Prédiction du prix de Six Sigma jusqu'à $0.021942 d'ici 2026
| Année | Prix min. | Prix max. |
|---|---|---|
| 2026 | $0.00735 | $0.021942 |
| 2027 | $0.007076 | $0.01859 |
| 2028 | $0.012771 | $0.03128 |
| 2029 | $0.028054 | $0.092286 |
| 2030 | $0.023859 | $0.068983 |
| 2031 | $0.0282087 | $0.062974 |
| 2032 | $0.043058 | $0.116813 |
| 2033 | $0.100058 | $0.311149 |
| 2034 | $0.080442 | $0.18020082 |
| 2035 | $0.0951077 | $0.212321 |
Calculateur de profit d’investissement
Si vous ouvrez une position short de $10,000.00 sur Six Sigma aujourd’hui et la fermez le Apr 06, 2026, notre prévision indique que vous pourriez gagner environ $3,954.73, soit un rendement de 39.55% sur les 90 prochains jours.
Prévision du prix à long terme de Six Sigma pour 2027, 2028, 2029, 2030, 2031, 2032 et 2037
[
'name' => 'Six Sigma'
'name_with_ticker' => 'Six Sigma <small>SIX</small>'
'name_lang' => 'Six Sigma'
'name_lang_with_ticker' => 'Six Sigma <small>SIX</small>'
'name_with_lang' => 'Six Sigma'
'name_with_lang_with_ticker' => 'Six Sigma <small>SIX</small>'
'image' => '/uploads/coins/six.png?1750953532'
'price_for_sd' => 0.02127
'ticker' => 'SIX'
'marketcap' => '$31.97M'
'low24h' => '$0.02069'
'high24h' => '$0.0216'
'volume24h' => '$2.88K'
'current_supply' => '1.5B'
'max_supply' => '1.5B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.02127'
'change_24h_pct' => '-0.3519%'
'ath_price' => '$0.09743'
'ath_days' => 168
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '22 juil. 2025'
'ath_pct' => '-78.16%'
'fdv' => '$31.97M'
'new_prediction' => true
'change_24h_pct_is_increased' => false
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$1.04'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.021458'
'next_week_prediction_price_date' => '13 janvier 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.018804'
'next_month_prediction_price_date' => '5 février 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.00735'
'current_year_max_price_prediction' => '$0.021942'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.023859'
'grand_prediction_max_price' => '$0.068983'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.021679321851245
107 => 0.021760264569444
108 => 0.021942632646583
109 => 0.020384317394546
110 => 0.021083955192979
111 => 0.021494926852361
112 => 0.019638141943993
113 => 0.021458224184742
114 => 0.020357190592947
115 => 0.019983483254922
116 => 0.020486630953374
117 => 0.02029055380596
118 => 0.02012197818865
119 => 0.020027910097694
120 => 0.020397366237052
121 => 0.020380130666556
122 => 0.019775628714219
123 => 0.018987080560047
124 => 0.019251743203798
125 => 0.019155588784098
126 => 0.018807112762937
127 => 0.019041943526044
128 => 0.018007867690451
129 => 0.016228793961897
130 => 0.017404104561482
131 => 0.01735885638189
201 => 0.017336040197898
202 => 0.018219253630286
203 => 0.018134353037963
204 => 0.017980257631547
205 => 0.018804282679955
206 => 0.018503502452585
207 => 0.019430436240605
208 => 0.020040974783714
209 => 0.019886122460329
210 => 0.020460336911111
211 => 0.019257840496567
212 => 0.019657261569696
213 => 0.019739581699294
214 => 0.018794114338768
215 => 0.018148243824851
216 => 0.018105171625035
217 => 0.016985321160341
218 => 0.017583536239464
219 => 0.018109940753269
220 => 0.017857833841797
221 => 0.017778024325104
222 => 0.018185753837314
223 => 0.01821743791238
224 => 0.017495037643152
225 => 0.017645247534566
226 => 0.018271647752078
227 => 0.017629463856262
228 => 0.016381805446835
301 => 0.016072368911071
302 => 0.016031084373153
303 => 0.015191867946437
304 => 0.016093046940019
305 => 0.015699658159225
306 => 0.016942368604231
307 => 0.016232539062834
308 => 0.016201939730022
309 => 0.016155684350532
310 => 0.015433336104464
311 => 0.015591484462727
312 => 0.016117193692268
313 => 0.016304772667907
314 => 0.016285206643958
315 => 0.016114617430244
316 => 0.016192712298724
317 => 0.015941141517293
318 => 0.015852306638376
319 => 0.015571919324557
320 => 0.015159827432216
321 => 0.015217131337352
322 => 0.014400669468915
323 => 0.013955817710079
324 => 0.013832688606285
325 => 0.013668035222773
326 => 0.013851286644079
327 => 0.014398356535025
328 => 0.013738474179192
329 => 0.012607152165483
330 => 0.012675146546186
331 => 0.012827909731912
401 => 0.012543236545941
402 => 0.012273817266228
403 => 0.012508055471261
404 => 0.012028699420098
405 => 0.012885837620545
406 => 0.012862654434325
407 => 0.013182142550381
408 => 0.013381925025906
409 => 0.012921491100164
410 => 0.012805693212985
411 => 0.012871656952243
412 => 0.011781423278362
413 => 0.013093047199789
414 => 0.013104390177928
415 => 0.013007264712581
416 => 0.013705663958896
417 => 0.015179504204806
418 => 0.014624986219208
419 => 0.01441026009479
420 => 0.014002065575306
421 => 0.014545960536326
422 => 0.014504197889403
423 => 0.014315331362003
424 => 0.014201104296932
425 => 0.014411571166718
426 => 0.014175025122631
427 => 0.014132534953263
428 => 0.01387509075665
429 => 0.013783194891423
430 => 0.01371515885129
501 => 0.013640257856186
502 => 0.01380547078722
503 => 0.013431076549925
504 => 0.012979593802067
505 => 0.012942057896694
506 => 0.01304569783162
507 => 0.012999844875501
508 => 0.012941838370381
509 => 0.012831088154975
510 => 0.012798230931868
511 => 0.012905000966907
512 => 0.012784463822427
513 => 0.012962322945105
514 => 0.012913955105131
515 => 0.012643776282838
516 => 0.012307033437249
517 => 0.012304035719581
518 => 0.012231485025868
519 => 0.012139080809354
520 => 0.012113376070243
521 => 0.012488328582977
522 => 0.013264469062952
523 => 0.013112094115265
524 => 0.013222200630982
525 => 0.013763815711883
526 => 0.013935978859168
527 => 0.013813781535133
528 => 0.013646510301191
529 => 0.013653869386568
530 => 0.014225485829394
531 => 0.014261136845774
601 => 0.014351215462712
602 => 0.014466991941692
603 => 0.013833498770135
604 => 0.013624031915157
605 => 0.01352477489849
606 => 0.013219101704455
607 => 0.013548744037783
608 => 0.013356675566845
609 => 0.013382592165568
610 => 0.01336571394665
611 => 0.013374930595479
612 => 0.012885598032949
613 => 0.013063885100173
614 => 0.012767448271568
615 => 0.012370552634662
616 => 0.012369222101318
617 => 0.012466361746169
618 => 0.012408579284337
619 => 0.01225308816527
620 => 0.012275174944836
621 => 0.012081671515035
622 => 0.012298669764706
623 => 0.01230489249805
624 => 0.012221336351952
625 => 0.012555652095558
626 => 0.01269262152849
627 => 0.012637623083182
628 => 0.012688762690952
629 => 0.013118425982273
630 => 0.013188479846282
701 => 0.013219593145177
702 => 0.013177905446381
703 => 0.012696616147174
704 => 0.012717963374194
705 => 0.012561331586429
706 => 0.012428994231219
707 => 0.012434287031409
708 => 0.012502325634639
709 => 0.012799454205356
710 => 0.013424743765743
711 => 0.013448473047479
712 => 0.013477233629175
713 => 0.013360249889507
714 => 0.013324966474239
715 => 0.013371514406399
716 => 0.013606340289117
717 => 0.014210376214074
718 => 0.013996869575991
719 => 0.013823285355801
720 => 0.013975565514878
721 => 0.013952123177999
722 => 0.013754246263211
723 => 0.013748692517262
724 => 0.013368903452707
725 => 0.01322850408292
726 => 0.013111175860815
727 => 0.012983056505207
728 => 0.012907103056603
729 => 0.013023802073884
730 => 0.013050492519878
731 => 0.012795328079044
801 => 0.012760550108623
802 => 0.012968922899115
803 => 0.01287722580294
804 => 0.012971538540335
805 => 0.01299341990441
806 => 0.012989896500824
807 => 0.012894154201072
808 => 0.012955177487857
809 => 0.012810839222694
810 => 0.012653893038235
811 => 0.012553771150642
812 => 0.012466401524477
813 => 0.012514879271026
814 => 0.012342064956266
815 => 0.012286778178909
816 => 0.012934504171362
817 => 0.013412986326215
818 => 0.013406029006184
819 => 0.013363678109771
820 => 0.013300753268266
821 => 0.013601736945027
822 => 0.013496880250402
823 => 0.013573172256812
824 => 0.013592591774408
825 => 0.013651368805389
826 => 0.013672376541908
827 => 0.013608876571336
828 => 0.01339576291423
829 => 0.012864703942958
830 => 0.012617494558265
831 => 0.012535911343719
901 => 0.012538876738619
902 => 0.012457077909166
903 => 0.012481171330406
904 => 0.012448699200505
905 => 0.012387204842322
906 => 0.012511082167695
907 => 0.012525357875447
908 => 0.012496443427481
909 => 0.012503253826696
910 => 0.012263854547061
911 => 0.012282055554344
912 => 0.012180710032922
913 => 0.012161708969394
914 => 0.011905516316403
915 => 0.01145163389591
916 => 0.011703128816296
917 => 0.011399358318007
918 => 0.011284315827431
919 => 0.01182890908504
920 => 0.011774247026642
921 => 0.01168068934369
922 => 0.011542298031474
923 => 0.011490967347589
924 => 0.011179098361624
925 => 0.011160671478176
926 => 0.011315242168792
927 => 0.011243913113525
928 => 0.011143740105506
929 => 0.010780923624834
930 => 0.01037299777615
1001 => 0.010385310493391
1002 => 0.010515064116128
1003 => 0.010892340273893
1004 => 0.01074493195211
1005 => 0.010637985523341
1006 => 0.010617957672031
1007 => 0.010868648162329
1008 => 0.011223427727383
1009 => 0.011389882361561
1010 => 0.011224930874393
1011 => 0.011035443487553
1012 => 0.01104697670679
1013 => 0.0111237020474
1014 => 0.011131764795861
1015 => 0.011008427986646
1016 => 0.01104314657599
1017 => 0.010990405864042
1018 => 0.010666736212166
1019 => 0.010660882054531
1020 => 0.010581448302082
1021 => 0.010579043079627
1022 => 0.010443906451034
1023 => 0.010424999902538
1024 => 0.010156677924259
1025 => 0.010333288262916
1026 => 0.010214827320204
1027 => 0.010036278737425
1028 => 0.010005496894455
1029 => 0.010004571555085
1030 => 0.010187901026866
1031 => 0.010331145951299
1101 => 0.01021688799902
1102 => 0.010190873678083
1103 => 0.010468638566672
1104 => 0.010433290452716
1105 => 0.010402679214001
1106 => 0.011191661108589
1107 => 0.010567120373998
1108 => 0.010294784966177
1109 => 0.0099577181839074
1110 => 0.010067468827853
1111 => 0.010090594901104
1112 => 0.0092800100506005
1113 => 0.0089511558777031
1114 => 0.0088383055181727
1115 => 0.0087733585407931
1116 => 0.0088029556939378
1117 => 0.0085069483675828
1118 => 0.0087058701864027
1119 => 0.0084495528626557
1120 => 0.0084065804292008
1121 => 0.0088649075556838
1122 => 0.0089286810978257
1123 => 0.0086566033541619
1124 => 0.0088313213109796
1125 => 0.0087679661510763
1126 => 0.008453946687496
1127 => 0.0084419534537581
1128 => 0.0082843895252514
1129 => 0.008037832487527
1130 => 0.0079251493052784
1201 => 0.0078664629256031
1202 => 0.0078906780696318
1203 => 0.0078784341518153
1204 => 0.0077985343059569
1205 => 0.0078830139174525
1206 => 0.007667203419467
1207 => 0.0075812659402658
1208 => 0.007542449974645
1209 => 0.0073509057360941
1210 => 0.0076557377997381
1211 => 0.0077157935564491
1212 => 0.007775967641553
1213 => 0.0082997419697899
1214 => 0.008273575684522
1215 => 0.0085101061598454
1216 => 0.008500915020526
1217 => 0.0084334526974241
1218 => 0.0081488402532707
1219 => 0.0082622817007812
1220 => 0.0079131265580591
1221 => 0.0081747373312284
1222 => 0.008055349099481
1223 => 0.0081343720499809
1224 => 0.0079922816597699
1225 => 0.0080709203484811
1226 => 0.007730035004287
1227 => 0.0074117210662648
1228 => 0.0075398198870881
1229 => 0.0076790779552
1230 => 0.0079810249291626
1231 => 0.007801187802479
]
'min_raw' => 0.0073509057360941
'max_raw' => 0.021942632646583
'avg_raw' => 0.014646769191339
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.00735'
'max' => '$0.021942'
'avg' => '$0.014646'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.013925244263906
'max_diff' => 0.00066648264658318
'year' => 2026
]
1 => [
'items' => [
101 => 0.007865864033629
102 => 0.0076492094859466
103 => 0.0072021892697656
104 => 0.007204719355643
105 => 0.0071359550342483
106 => 0.007076532620808
107 => 0.0078218442598122
108 => 0.0077291529758686
109 => 0.0075814615460398
110 => 0.0077791523938898
111 => 0.007831424991837
112 => 0.0078329131192139
113 => 0.007977143258666
114 => 0.0080541189099462
115 => 0.0080676862021159
116 => 0.0082946354428421
117 => 0.0083707058348006
118 => 0.008684029013393
119 => 0.008047588063734
120 => 0.0080344809811974
121 => 0.0077819343095324
122 => 0.0076217652177575
123 => 0.0077929012242768
124 => 0.0079445043636584
125 => 0.0077866450416651
126 => 0.0078072581365252
127 => 0.0075953448943296
128 => 0.0076710939069698
129 => 0.0077363391611494
130 => 0.0077003145667302
131 => 0.0076463840052745
201 => 0.0079320746350886
202 => 0.0079159548501238
203 => 0.0081819965326058
204 => 0.0083893950489238
205 => 0.0087610902670849
206 => 0.0083732069300238
207 => 0.0083590709195247
208 => 0.0084972526896411
209 => 0.0083706846798916
210 => 0.0084506712930741
211 => 0.008748203187113
212 => 0.0087544895671894
213 => 0.0086491846013661
214 => 0.0086427767846256
215 => 0.0086630017552221
216 => 0.0087814600397211
217 => 0.0087400670752617
218 => 0.0087879680616757
219 => 0.0088478689786724
220 => 0.0090956445688331
221 => 0.0091553824247805
222 => 0.0090102504053554
223 => 0.0090233542017352
224 => 0.0089690708425072
225 => 0.0089166337976614
226 => 0.0090345046166593
227 => 0.0092499158551346
228 => 0.0092485757929999
301 => 0.00929854701333
302 => 0.0093296786696118
303 => 0.0091960388110853
304 => 0.0091090441772584
305 => 0.00914240345548
306 => 0.009195745667827
307 => 0.0091251052949443
308 => 0.0086890801897087
309 => 0.0088213423532456
310 => 0.0087993274619437
311 => 0.0087679755796275
312 => 0.0089009662078169
313 => 0.0088881389372953
314 => 0.0085039123846091
315 => 0.008528509321892
316 => 0.0085054082058328
317 => 0.0085800526378638
318 => 0.0083666536355998
319 => 0.008432293731432
320 => 0.0084734625842002
321 => 0.0084977113547548
322 => 0.0085853145415354
323 => 0.0085750353186789
324 => 0.00858467557061
325 => 0.0087145679702218
326 => 0.0093715191537696
327 => 0.009407275557209
328 => 0.0092311979493831
329 => 0.0093015374807323
330 => 0.0091665009621064
331 => 0.009257151881726
401 => 0.0093191729386461
402 => 0.0090389117083878
403 => 0.0090223164572122
404 => 0.0088867225948388
405 => 0.0089595830560494
406 => 0.0088436568234108
407 => 0.0088721010659728
408 => 0.0087925684840449
409 => 0.0089357112967361
410 => 0.0090957672034691
411 => 0.0091362036463092
412 => 0.0090298327741802
413 => 0.0089528132525767
414 => 0.0088175923444487
415 => 0.0090424677282601
416 => 0.0091082281434397
417 => 0.0090421223167942
418 => 0.0090268041523196
419 => 0.0089977762583196
420 => 0.0090329625572554
421 => 0.0091078699980958
422 => 0.0090725450323187
423 => 0.0090958777945603
424 => 0.0090069573655354
425 => 0.0091960830514393
426 => 0.0094964601562296
427 => 0.0094974259177381
428 => 0.0094621007615463
429 => 0.0094476464687237
430 => 0.0094838922226862
501 => 0.0095035540573322
502 => 0.0096207661793126
503 => 0.0097465394561344
504 => 0.010333468459882
505 => 0.010168661144264
506 => 0.010689419472952
507 => 0.011101271698938
508 => 0.011224768173396
509 => 0.011111157227852
510 => 0.010722500320292
511 => 0.010703430958221
512 => 0.011284248464831
513 => 0.011120140916086
514 => 0.011100620845349
515 => 0.010892960272385
516 => 0.011015713390269
517 => 0.010988865482708
518 => 0.010946484747179
519 => 0.011180689145045
520 => 0.011619098870281
521 => 0.011550768603223
522 => 0.011499763228614
523 => 0.011276272524518
524 => 0.011410863846839
525 => 0.011362938454888
526 => 0.011568856352918
527 => 0.011446875151765
528 => 0.01111889764
529 => 0.011171129139777
530 => 0.011163234453661
531 => 0.011325706534505
601 => 0.011276936448641
602 => 0.011153711311664
603 => 0.011617600433502
604 => 0.011587478054216
605 => 0.011630184701108
606 => 0.011648985487817
607 => 0.011931346621637
608 => 0.012047020943614
609 => 0.012073281039867
610 => 0.012183162699172
611 => 0.012070547084083
612 => 0.012521089838011
613 => 0.012820674479475
614 => 0.013168657457019
615 => 0.013677154116218
616 => 0.013868353563934
617 => 0.013833815095064
618 => 0.014219351458677
619 => 0.014912151734097
620 => 0.013973849838645
621 => 0.014961884012931
622 => 0.014649083800755
623 => 0.013907440124721
624 => 0.013859687015389
625 => 0.01436193672346
626 => 0.015475878236216
627 => 0.015196848521491
628 => 0.01547633462887
629 => 0.015150299238833
630 => 0.015134108833676
701 => 0.0154604998177
702 => 0.016223130142519
703 => 0.015860833061968
704 => 0.015341391358109
705 => 0.015724939028831
706 => 0.01539267454079
707 => 0.014643989654262
708 => 0.015196635152727
709 => 0.014827096846341
710 => 0.014934947769881
711 => 0.01571166232523
712 => 0.015618205974998
713 => 0.015739147146023
714 => 0.015525689144746
715 => 0.015326285712317
716 => 0.014954084397794
717 => 0.014843893937866
718 => 0.014874346616753
719 => 0.014843878847031
720 => 0.014635635632262
721 => 0.01459066552986
722 => 0.014515713389004
723 => 0.014538944191554
724 => 0.014398012238723
725 => 0.014663979951743
726 => 0.014713345902979
727 => 0.014906895024649
728 => 0.014926989936535
729 => 0.015466021485385
730 => 0.015169131966336
731 => 0.015368311087922
801 => 0.015350494632541
802 => 0.013923513792041
803 => 0.014120139161504
804 => 0.014426026531947
805 => 0.014288224686183
806 => 0.014093405116938
807 => 0.013936077869209
808 => 0.013697711001361
809 => 0.014033207790426
810 => 0.01447435039194
811 => 0.014938178040905
812 => 0.015495436569946
813 => 0.015371062953468
814 => 0.014927760480326
815 => 0.014947646705439
816 => 0.015070575524143
817 => 0.01491137153466
818 => 0.01486441917013
819 => 0.015064124990259
820 => 0.015065500254486
821 => 0.014882316824141
822 => 0.014678741963526
823 => 0.014677888977427
824 => 0.01464166479728
825 => 0.015156743440009
826 => 0.015439984613185
827 => 0.015472457757224
828 => 0.015437798911859
829 => 0.015451137725879
830 => 0.015286325928002
831 => 0.01566303682453
901 => 0.016008743996031
902 => 0.015916087089112
903 => 0.015777181213685
904 => 0.015666535993295
905 => 0.015890022591544
906 => 0.015880071085124
907 => 0.016005724545476
908 => 0.016000024178705
909 => 0.015957771646054
910 => 0.015916088598083
911 => 0.016081357171651
912 => 0.016033762476595
913 => 0.015986093853832
914 => 0.01589048713318
915 => 0.015903481674377
916 => 0.015764599783008
917 => 0.015700346665258
918 => 0.014734133939082
919 => 0.014475930326736
920 => 0.014557166439399
921 => 0.014583911476983
922 => 0.014471540933993
923 => 0.014632651427016
924 => 0.014607542527337
925 => 0.014705226567775
926 => 0.014644197820257
927 => 0.014646702461343
928 => 0.014826174995091
929 => 0.014878276635169
930 => 0.014851777320513
1001 => 0.014870336532155
1002 => 0.015298025731074
1003 => 0.015237222003718
1004 => 0.015204921235424
1005 => 0.015213868768989
1006 => 0.015323152529073
1007 => 0.015353746015224
1008 => 0.015224119264635
1009 => 0.015285251989576
1010 => 0.015545547373478
1011 => 0.015636636026401
1012 => 0.015927347281497
1013 => 0.015803847973352
1014 => 0.016030536298377
1015 => 0.016727298925761
1016 => 0.017283921124822
1017 => 0.016772028347181
1018 => 0.017794194130346
1019 => 0.018590096813514
1020 => 0.018559548742888
1021 => 0.018420764700517
1022 => 0.017514650655899
1023 => 0.016680831002642
1024 => 0.017378356548444
1025 => 0.017380134684508
1026 => 0.017320216621518
1027 => 0.016948070678309
1028 => 0.017307266749368
1029 => 0.01733577842908
1030 => 0.017319819470309
1031 => 0.017034496048193
1101 => 0.016598859919204
1102 => 0.016683982176043
1103 => 0.016823414169192
1104 => 0.0165594403176
1105 => 0.016475084677277
1106 => 0.016631917861955
1107 => 0.01713726706048
1108 => 0.017041733721787
1109 => 0.017039238960234
1110 => 0.017447971095601
1111 => 0.017155407096593
1112 => 0.016685055840301
1113 => 0.016566285944916
1114 => 0.016144732829289
1115 => 0.016435901067773
1116 => 0.01644637969432
1117 => 0.016286909825769
1118 => 0.016697995941245
1119 => 0.016694207710321
1120 => 0.017084472794872
1121 => 0.017830513059662
1122 => 0.017609872242952
1123 => 0.017353290978771
1124 => 0.017381188476414
1125 => 0.017687155168669
1126 => 0.017502160721991
1127 => 0.017568686014844
1128 => 0.017687054474671
1129 => 0.017758469105408
1130 => 0.01737091301006
1201 => 0.017280555145283
1202 => 0.017095714665251
1203 => 0.017047493234221
1204 => 0.017198041948384
1205 => 0.017158377681167
1206 => 0.016445499006334
1207 => 0.016370999218394
1208 => 0.016373284020529
1209 => 0.016185950761483
1210 => 0.015900222576304
1211 => 0.016651099187011
1212 => 0.016590793286659
1213 => 0.016524220239978
1214 => 0.016532375058336
1215 => 0.016858305145474
1216 => 0.01666924923507
1217 => 0.017171885358533
1218 => 0.017068558482174
1219 => 0.016962581661324
1220 => 0.01694793243655
1221 => 0.01690714040204
1222 => 0.016767249337659
1223 => 0.016598322471269
1224 => 0.016486782321884
1225 => 0.015208185203921
1226 => 0.015445485391758
1227 => 0.015718477627271
1228 => 0.015812713453023
1229 => 0.015651516552154
1230 => 0.016773614373812
1231 => 0.016978632458632
]
'min_raw' => 0.007076532620808
'max_raw' => 0.018590096813514
'avg_raw' => 0.012833314717161
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.007076'
'max' => '$0.01859'
'avg' => '$0.012833'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00027437311528607
'max_diff' => -0.0033525358330695
'year' => 2027
]
2 => [
'items' => [
101 => 0.016357619306712
102 => 0.016241453101788
103 => 0.016781230210867
104 => 0.016455678629024
105 => 0.016602274486394
106 => 0.016285414426407
107 => 0.016929249605629
108 => 0.016924344660283
109 => 0.016673878233888
110 => 0.016885570742357
111 => 0.016848783959514
112 => 0.016566007980986
113 => 0.016938214108527
114 => 0.016938398718123
115 => 0.016697330228328
116 => 0.016415815008925
117 => 0.016365486736789
118 => 0.016327571144386
119 => 0.016592949574931
120 => 0.016830887045941
121 => 0.01727362968979
122 => 0.017384945709759
123 => 0.017819419546426
124 => 0.017560711530838
125 => 0.017675393443318
126 => 0.017799896882063
127 => 0.017859588409059
128 => 0.017762324269042
129 => 0.018437240973952
130 => 0.018494224622759
131 => 0.018513330747298
201 => 0.018285752631779
202 => 0.018487895263681
203 => 0.018393319420474
204 => 0.018639379490572
205 => 0.018677964851416
206 => 0.018645284423495
207 => 0.018657532026056
208 => 0.018081609681881
209 => 0.018051745070103
210 => 0.017644538969416
211 => 0.017810478465362
212 => 0.017500262531379
213 => 0.017598635199623
214 => 0.017641996934456
215 => 0.017619347224936
216 => 0.017819860435489
217 => 0.017649383244376
218 => 0.017199465907985
219 => 0.016749425991916
220 => 0.016743776107364
221 => 0.016625288541327
222 => 0.016539643733163
223 => 0.016556141961628
224 => 0.016614283870638
225 => 0.016536264419715
226 => 0.016552913825256
227 => 0.016829404891643
228 => 0.016884853203163
229 => 0.016696418175565
301 => 0.015939824348713
302 => 0.015754154325832
303 => 0.015887610256282
304 => 0.01582382691719
305 => 0.012771063321227
306 => 0.013488264845816
307 => 0.013062128053767
308 => 0.013258511493154
309 => 0.01282353617606
310 => 0.013031129196387
311 => 0.012992794345616
312 => 0.014146033173619
313 => 0.014128026935548
314 => 0.014136645568844
315 => 0.013725255745909
316 => 0.014380610904295
317 => 0.014703462421126
318 => 0.014643711197775
319 => 0.014658749293403
320 => 0.014400344986924
321 => 0.014139147487374
322 => 0.013849439262367
323 => 0.014387681335412
324 => 0.014327838004988
325 => 0.01446509707403
326 => 0.014814185532738
327 => 0.014865590134341
328 => 0.014934678440189
329 => 0.014909915200583
330 => 0.015499876033169
331 => 0.015428427883656
401 => 0.015600597366947
402 => 0.015246431677287
403 => 0.014845659581721
404 => 0.014921833254861
405 => 0.014914497117588
406 => 0.014821099670071
407 => 0.014736784630535
408 => 0.014596423845323
409 => 0.015040546139223
410 => 0.015022515585153
411 => 0.015314409297316
412 => 0.015262814248387
413 => 0.014918249884188
414 => 0.014930556067864
415 => 0.015013321067231
416 => 0.015299771675037
417 => 0.015384809718478
418 => 0.015345416708576
419 => 0.015438657041075
420 => 0.015512350398168
421 => 0.015447911792123
422 => 0.016360226564724
423 => 0.015981369864776
424 => 0.016166021984263
425 => 0.016210060426727
426 => 0.016097256882384
427 => 0.01612171993196
428 => 0.016158774786286
429 => 0.016383764605666
430 => 0.016974202993049
501 => 0.017235704135571
502 => 0.018022443225087
503 => 0.017213990105956
504 => 0.017166019843578
505 => 0.017307735310845
506 => 0.017769634441181
507 => 0.018143960302339
508 => 0.018268145785863
509 => 0.018284558947589
510 => 0.018517539170373
511 => 0.01865107908925
512 => 0.018489249243339
513 => 0.018352115393221
514 => 0.017860918963779
515 => 0.017917776287971
516 => 0.018309466868954
517 => 0.018862752885053
518 => 0.019337529846464
519 => 0.019171279502226
520 => 0.020439652274314
521 => 0.020565406253829
522 => 0.020548031119973
523 => 0.020834517400008
524 => 0.020265900476055
525 => 0.02002280572463
526 => 0.018381765288152
527 => 0.018842830713633
528 => 0.019513016386992
529 => 0.019424314800056
530 => 0.018937608049948
531 => 0.01933716063575
601 => 0.01920505605572
602 => 0.019100859692425
603 => 0.019578203432136
604 => 0.019053344382124
605 => 0.019507780516472
606 => 0.018924961473631
607 => 0.019172038919794
608 => 0.01903178581156
609 => 0.019122546761362
610 => 0.018591960103372
611 => 0.01887825178476
612 => 0.018580049428186
613 => 0.018579908041442
614 => 0.018573325207893
615 => 0.018924158957971
616 => 0.018935599633965
617 => 0.018676332962578
618 => 0.018638968584724
619 => 0.018777124273112
620 => 0.018615380145042
621 => 0.01869105920456
622 => 0.018617672386659
623 => 0.018601151468187
624 => 0.018469509978996
625 => 0.018412795205894
626 => 0.018435034529787
627 => 0.018359120252184
628 => 0.018313379153988
629 => 0.018564226152175
630 => 0.018430208720183
701 => 0.018543686058642
702 => 0.018414364309486
703 => 0.017966078784108
704 => 0.017708265037929
705 => 0.01686149523658
706 => 0.017101638101828
707 => 0.017260853069933
708 => 0.017208232523924
709 => 0.0173212818182
710 => 0.01732822212672
711 => 0.01729146864875
712 => 0.017248912829673
713 => 0.01722819901043
714 => 0.017382582848549
715 => 0.017472207862898
716 => 0.017276832422004
717 => 0.017231058689796
718 => 0.017428594047513
719 => 0.017549090501609
720 => 0.01843876861754
721 => 0.018372858389089
722 => 0.018538280128271
723 => 0.018519656179043
724 => 0.018693044515455
725 => 0.018976461166111
726 => 0.018400195870786
727 => 0.0185002156003
728 => 0.018475693072416
729 => 0.0187434236017
730 => 0.018744259427189
731 => 0.018583741600751
801 => 0.018670760918567
802 => 0.018622189122612
803 => 0.018709964922775
804 => 0.018371978117805
805 => 0.018783609562837
806 => 0.019016978067227
807 => 0.019020218389137
808 => 0.01913083320809
809 => 0.019243224270525
810 => 0.01945894912767
811 => 0.019237207821344
812 => 0.018838316797344
813 => 0.018867115440867
814 => 0.018633245779444
815 => 0.018637177170704
816 => 0.018616191096047
817 => 0.018679171885852
818 => 0.01838579885945
819 => 0.018454652922361
820 => 0.018358256831077
821 => 0.018500006054023
822 => 0.018347507322119
823 => 0.01847568124691
824 => 0.018530996863817
825 => 0.018735112681065
826 => 0.01831735924995
827 => 0.017465531724485
828 => 0.017644596197748
829 => 0.017379745776581
830 => 0.017404258691417
831 => 0.017453778680586
901 => 0.017293268193756
902 => 0.017323888536376
903 => 0.017322794562266
904 => 0.017313367284394
905 => 0.017271612307561
906 => 0.017211059330181
907 => 0.017452283754837
908 => 0.017493272485153
909 => 0.017584385355214
910 => 0.017855475454068
911 => 0.017828387160448
912 => 0.017872569291225
913 => 0.017776119947811
914 => 0.017408732699834
915 => 0.017428683594953
916 => 0.017179895613134
917 => 0.017578023287168
918 => 0.017483741398928
919 => 0.01742295725224
920 => 0.017406371734655
921 => 0.017678133813429
922 => 0.017759449286747
923 => 0.017708778940654
924 => 0.017604852582526
925 => 0.017804421913201
926 => 0.017857818246935
927 => 0.017869771716877
928 => 0.018223370307209
929 => 0.017889533950086
930 => 0.017969891679294
1001 => 0.018596819743444
1002 => 0.018028282499419
1003 => 0.018329449357472
1004 => 0.018314708806967
1005 => 0.018468775580617
1006 => 0.018302070834656
1007 => 0.018304137339776
1008 => 0.018440938197389
1009 => 0.018248826065036
1010 => 0.018201256399386
1011 => 0.018135539246992
1012 => 0.018279030245032
1013 => 0.018365046608817
1014 => 0.019058275328868
1015 => 0.019506132697092
1016 => 0.019486690027597
1017 => 0.019664359631624
1018 => 0.019584317847743
1019 => 0.019325841813636
1020 => 0.019767028886062
1021 => 0.019627418836295
1022 => 0.019638928119172
1023 => 0.019638499743088
1024 => 0.019731328221261
1025 => 0.019665550736871
1026 => 0.019535896563217
1027 => 0.019621967054395
1028 => 0.019877565642431
1029 => 0.020670951502416
1030 => 0.021114940740629
1031 => 0.020644222792787
1101 => 0.020968917730044
1102 => 0.020774216468325
1103 => 0.02073883345721
1104 => 0.020942765872575
1105 => 0.021147055244636
1106 => 0.021134042894803
1107 => 0.020985739301062
1108 => 0.020901966364022
1109 => 0.021536323109283
1110 => 0.022003706353206
1111 => 0.021971833949347
1112 => 0.022112508374518
1113 => 0.022525532837715
1114 => 0.022563294618438
1115 => 0.022558537502012
1116 => 0.022464940988454
1117 => 0.022871617210475
1118 => 0.023210873669673
1119 => 0.022443276099828
1120 => 0.022735567205835
1121 => 0.022866786100353
1122 => 0.023059454368396
1123 => 0.023384518031537
1124 => 0.023737623388586
1125 => 0.023787556357676
1126 => 0.023752126526594
1127 => 0.023519244051639
1128 => 0.023905616146745
1129 => 0.024131943858517
1130 => 0.02426671683146
1201 => 0.024608478666759
1202 => 0.022867596463573
1203 => 0.021635313512698
1204 => 0.021442874735537
1205 => 0.021834206556175
1206 => 0.021937397636464
1207 => 0.02189580144139
1208 => 0.020508754945916
1209 => 0.021435572222795
1210 => 0.022432749683706
1211 => 0.022471055331113
1212 => 0.022970263218042
1213 => 0.023132825769249
1214 => 0.023534753550901
1215 => 0.023509612858726
1216 => 0.02360747587749
1217 => 0.023584978864227
1218 => 0.024329465443858
1219 => 0.025150744698517
1220 => 0.025122306409436
1221 => 0.025004237799644
1222 => 0.025179589818875
1223 => 0.026027238023317
1224 => 0.025949200159938
1225 => 0.026025007296961
1226 => 0.027024432301358
1227 => 0.028323826973623
1228 => 0.027720127691263
1229 => 0.029029981424194
1230 => 0.02985446491671
1231 => 0.031280323863833
]
'min_raw' => 0.012771063321227
'max_raw' => 0.031280323863833
'avg_raw' => 0.02202569359253
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.012771'
'max' => '$0.03128'
'avg' => '$0.022025'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0056945307004186
'max_diff' => 0.01269022705032
'year' => 2028
]
3 => [
'items' => [
101 => 0.03110179930115
102 => 0.031656875725829
103 => 0.030782203074747
104 => 0.028773777867354
105 => 0.028455936890341
106 => 0.029092262575336
107 => 0.030656607180144
108 => 0.029042995796701
109 => 0.029369427277999
110 => 0.029275414989425
111 => 0.029270405474094
112 => 0.02946159829913
113 => 0.029184263134468
114 => 0.028054349781989
115 => 0.028572182412809
116 => 0.028372222365684
117 => 0.028594092945978
118 => 0.029791436961437
119 => 0.029262062631086
120 => 0.02870440977694
121 => 0.029403830209114
122 => 0.030294432766208
123 => 0.030238700458752
124 => 0.03013055648799
125 => 0.030740158388944
126 => 0.031747042132721
127 => 0.032019198762678
128 => 0.032220099222914
129 => 0.03224780000214
130 => 0.032533135244101
131 => 0.030998815734335
201 => 0.033433820200453
202 => 0.033854278206111
203 => 0.033775249527246
204 => 0.034242570904957
205 => 0.034105073100835
206 => 0.033905860355408
207 => 0.034646664141187
208 => 0.033797392380574
209 => 0.032591958036725
210 => 0.031930632914901
211 => 0.032801519182894
212 => 0.033333339037015
213 => 0.033684838130494
214 => 0.033791201543799
215 => 0.031117920590231
216 => 0.029677170423217
217 => 0.030600674762039
218 => 0.031727413792266
219 => 0.030992556642132
220 => 0.031021361651149
221 => 0.029973648472119
222 => 0.031820113160686
223 => 0.031551098786775
224 => 0.032946745834507
225 => 0.032613663465798
226 => 0.033751759454518
227 => 0.033452060638938
228 => 0.034696093666475
301 => 0.035192372122009
302 => 0.036025700888425
303 => 0.036638700921259
304 => 0.036998666265361
305 => 0.036977055296297
306 => 0.038403417323652
307 => 0.037562341469415
308 => 0.036505751970133
309 => 0.036486641599589
310 => 0.037033864273255
311 => 0.038180692874052
312 => 0.038478048844561
313 => 0.038644230266028
314 => 0.038389717634234
315 => 0.037476790074909
316 => 0.03708259258344
317 => 0.037418460267172
318 => 0.037007722951407
319 => 0.037716770790954
320 => 0.038690444919099
321 => 0.038489385061962
322 => 0.039161498019793
323 => 0.039857064222804
324 => 0.040851755132941
325 => 0.041111804170149
326 => 0.041541655339874
327 => 0.041984113392274
328 => 0.042126218994126
329 => 0.042397542680841
330 => 0.042396112671083
331 => 0.043213764863187
401 => 0.044115660551659
402 => 0.044456105295124
403 => 0.045238939210489
404 => 0.043898363564199
405 => 0.044915205591333
406 => 0.045832422553015
407 => 0.044738878678881
408 => 0.04624607414633
409 => 0.046304595130953
410 => 0.047188192519442
411 => 0.046292497289431
412 => 0.045760636321011
413 => 0.047296099008269
414 => 0.048039061036012
415 => 0.04781527482683
416 => 0.04611225072527
417 => 0.045121017652022
418 => 0.042526769504751
419 => 0.045599768498373
420 => 0.047096536667557
421 => 0.046108374457304
422 => 0.046606745998193
423 => 0.049325699527764
424 => 0.050360900992621
425 => 0.050145586324535
426 => 0.050181970959061
427 => 0.050740546879262
428 => 0.053217580122811
429 => 0.051733284386095
430 => 0.052867972861314
501 => 0.053469807537147
502 => 0.054028825124671
503 => 0.052656054609035
504 => 0.050870100338196
505 => 0.050304413651361
506 => 0.046010121200043
507 => 0.045786584628785
508 => 0.045661106777487
509 => 0.044869986674245
510 => 0.04424838297913
511 => 0.04375406064211
512 => 0.042456811212622
513 => 0.042894594813918
514 => 0.040827049980313
515 => 0.042149791895564
516 => 0.038849940418515
517 => 0.041598154784217
518 => 0.04010242665094
519 => 0.041106767864956
520 => 0.041103263813075
521 => 0.039253953211398
522 => 0.038187309450479
523 => 0.038867016369333
524 => 0.039595716141547
525 => 0.039713945227949
526 => 0.040658723503634
527 => 0.040922390812437
528 => 0.040123466557315
529 => 0.038781558331274
530 => 0.039093253006515
531 => 0.038180992967834
601 => 0.03658229233962
602 => 0.037730507041438
603 => 0.038122558024076
604 => 0.03829571007266
605 => 0.03672357161682
606 => 0.036229571581208
607 => 0.035966570107311
608 => 0.038578614998694
609 => 0.038721708714202
610 => 0.037989621034251
611 => 0.041298726767032
612 => 0.040549774224956
613 => 0.041386537712282
614 => 0.039064969981766
615 => 0.039153656995477
616 => 0.038054589627077
617 => 0.038669993913673
618 => 0.038235045999313
619 => 0.03862027532886
620 => 0.03885118020063
621 => 0.03995006722289
622 => 0.041610702308845
623 => 0.039785930146417
624 => 0.038990850784028
625 => 0.039484113548758
626 => 0.040797737292641
627 => 0.042787944507785
628 => 0.041609701779767
629 => 0.042132585894602
630 => 0.042246812812199
701 => 0.041378020245474
702 => 0.042819978128953
703 => 0.043592735073154
704 => 0.044385423798386
705 => 0.045073693207871
706 => 0.044068806489929
707 => 0.045144179322979
708 => 0.0442776186484
709 => 0.043500224139907
710 => 0.043501403126482
711 => 0.043013732195382
712 => 0.042068808315885
713 => 0.041894549854773
714 => 0.042801064375898
715 => 0.043528003174595
716 => 0.043587877335858
717 => 0.043990348006281
718 => 0.04422852600326
719 => 0.046562994160937
720 => 0.047501936565688
721 => 0.048650057564948
722 => 0.049097315398714
723 => 0.050443401127541
724 => 0.049356327577775
725 => 0.04912113237727
726 => 0.045855968700423
727 => 0.046390639069589
728 => 0.04724669791864
729 => 0.045870084795537
730 => 0.046743228969484
731 => 0.046915606125143
801 => 0.045823308008382
802 => 0.04640675162796
803 => 0.044857298353339
804 => 0.041644476156064
805 => 0.042823554918492
806 => 0.043691753761259
807 => 0.042452726964486
808 => 0.044673634540744
809 => 0.043376226183532
810 => 0.04296501002088
811 => 0.041360709161227
812 => 0.04211787741178
813 => 0.043141958312258
814 => 0.042509195377946
815 => 0.043822273476476
816 => 0.045681942249133
817 => 0.047007252961718
818 => 0.047108993861782
819 => 0.046256907862511
820 => 0.047622381114283
821 => 0.047632327096201
822 => 0.046092067690081
823 => 0.045148667380032
824 => 0.044934324844658
825 => 0.045469794522352
826 => 0.046119953564229
827 => 0.047145073163729
828 => 0.047764531468072
829 => 0.049379750190501
830 => 0.04981678206484
831 => 0.050296947594954
901 => 0.050938596820751
902 => 0.051709061231806
903 => 0.050023328962982
904 => 0.05009030624862
905 => 0.048520575700444
906 => 0.046843093487586
907 => 0.048116093386035
908 => 0.049780371413178
909 => 0.049398584194888
910 => 0.049355625333625
911 => 0.049427870222475
912 => 0.049140015127889
913 => 0.047838057203483
914 => 0.047184222084535
915 => 0.048027836199107
916 => 0.048476179556058
917 => 0.049171521003039
918 => 0.049085805492821
919 => 0.050876930386024
920 => 0.051572907358717
921 => 0.051394846666569
922 => 0.051427614119194
923 => 0.052687647184062
924 => 0.05408906309776
925 => 0.055401674034055
926 => 0.056736918256406
927 => 0.055127229230893
928 => 0.054309928415554
929 => 0.055153174234595
930 => 0.054705736133468
1001 => 0.057276848181306
1002 => 0.057454866401036
1003 => 0.060025792528209
1004 => 0.062465907563084
1005 => 0.060933315028881
1006 => 0.062378480759151
1007 => 0.063941545322529
1008 => 0.066956950463371
1009 => 0.065941468095167
1010 => 0.065163624515761
1011 => 0.064428566091734
1012 => 0.065958105984895
1013 => 0.067925834622449
1014 => 0.068349664524307
1015 => 0.069036430880802
1016 => 0.068314380030743
1017 => 0.069184010748347
1018 => 0.07225418931659
1019 => 0.071424599966235
1020 => 0.070246449725588
1021 => 0.072670060842132
1022 => 0.073547156283659
1023 => 0.079703071430749
1024 => 0.087475168592121
1025 => 0.084257469332972
1026 => 0.082260139568311
1027 => 0.082729559440302
1028 => 0.085567666221543
1029 => 0.086479176042671
1030 => 0.084001378132567
1031 => 0.084876578243162
1101 => 0.089699016900318
1102 => 0.092286100517526
1103 => 0.088772493473672
1104 => 0.079078590991355
1105 => 0.070140370186838
1106 => 0.072511188837525
1107 => 0.072242411577605
1108 => 0.077423520303244
1109 => 0.071404814534592
1110 => 0.071506154103905
1111 => 0.076794402671101
1112 => 0.075383588616906
1113 => 0.073098250532521
1114 => 0.070157055683961
1115 => 0.064719984978803
1116 => 0.05990421983131
1117 => 0.06934904429002
1118 => 0.068941766285062
1119 => 0.068351967378663
1120 => 0.069664501021946
1121 => 0.07603779182455
1122 => 0.075890866843221
1123 => 0.074956205073789
1124 => 0.075665137788173
1125 => 0.07297397120005
1126 => 0.073667546106533
1127 => 0.070138954326996
1128 => 0.071734025178357
1129 => 0.073093347223389
1130 => 0.073366251249036
1201 => 0.073981117953644
1202 => 0.068727149283304
1203 => 0.071086026967871
1204 => 0.072471646610605
1205 => 0.066211366655459
1206 => 0.072347901004226
1207 => 0.068635689377779
1208 => 0.067375708996215
1209 => 0.069072106590198
1210 => 0.068411018798022
1211 => 0.067842654334687
1212 => 0.067525497198405
1213 => 0.068771144366856
1214 => 0.068713033437577
1215 => 0.066674912900295
1216 => 0.064016267743831
1217 => 0.064908596325392
1218 => 0.064584404986086
1219 => 0.063409493750925
1220 => 0.0642012420641
1221 => 0.060714783187527
1222 => 0.054716511900747
1223 => 0.058679153644812
1224 => 0.058526596248191
1225 => 0.058449669890887
1226 => 0.061427485642179
1227 => 0.06114123736759
1228 => 0.060621693946261
1229 => 0.063399951928561
1230 => 0.062385850392178
1231 => 0.065511072374938
]
'min_raw' => 0.028054349781989
'max_raw' => 0.092286100517526
'avg_raw' => 0.060170225149757
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.028054'
'max' => '$0.092286'
'avg' => '$0.06017'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.015283286460762
'max_diff' => 0.061005776653693
'year' => 2029
]
4 => [
'items' => [
101 => 0.067569545699468
102 => 0.067047450279731
103 => 0.068983454390916
104 => 0.064929153773661
105 => 0.066275829808405
106 => 0.066553377872754
107 => 0.063365668656317
108 => 0.061188071125405
109 => 0.061042850196522
110 => 0.057267196169345
111 => 0.059284120074649
112 => 0.061058929645334
113 => 0.060208933591762
114 => 0.059939850234111
115 => 0.06131453875129
116 => 0.061421363822486
117 => 0.058985740878409
118 => 0.05949218401463
119 => 0.061604136081838
120 => 0.059438968241247
121 => 0.055232400805138
122 => 0.054189113920638
123 => 0.054049920218653
124 => 0.051220443443763
125 => 0.054258831338931
126 => 0.052932493598957
127 => 0.057122378627568
128 => 0.054729138770029
129 => 0.054625970983079
130 => 0.054470017741679
131 => 0.052034570197317
201 => 0.052567778428767
202 => 0.054340243800011
203 => 0.054972679412723
204 => 0.054906711196925
205 => 0.054331557752727
206 => 0.054594860054218
207 => 0.053746671600511
208 => 0.053447158603991
209 => 0.052501813199433
210 => 0.051112416613067
211 => 0.051305620730066
212 => 0.048552862537082
213 => 0.047053013773609
214 => 0.046637875403569
215 => 0.046082735025324
216 => 0.046700579986464
217 => 0.048545064318987
218 => 0.046320224884783
219 => 0.042505893729182
220 => 0.042735141530938
221 => 0.043250193277199
222 => 0.042290397755449
223 => 0.041382031843644
224 => 0.042171782305903
225 => 0.040555599911835
226 => 0.04344550119812
227 => 0.043367337467181
228 => 0.044444513956411
301 => 0.045118094521013
302 => 0.043565709393902
303 => 0.043175288732529
304 => 0.043397690084877
305 => 0.039721891135705
306 => 0.044144122761453
307 => 0.044182366404189
308 => 0.04385490111669
309 => 0.046209602936317
310 => 0.051178758225645
311 => 0.049309162121991
312 => 0.048585198001815
313 => 0.047208941680146
314 => 0.049042721514756
315 => 0.048901915834879
316 => 0.04826513915151
317 => 0.047880014626545
318 => 0.048589618372357
319 => 0.047792086869601
320 => 0.047648828297007
321 => 0.046780837213946
322 => 0.046471003888371
323 => 0.046241615628936
324 => 0.045989081694522
325 => 0.046546108626303
326 => 0.045283812315892
327 => 0.04376160670997
328 => 0.04363505178433
329 => 0.043984481060844
330 => 0.043829884617937
331 => 0.043634311636039
401 => 0.043260909552464
402 => 0.043150129130741
403 => 0.043510111758322
404 => 0.043103712360074
405 => 0.04370337680991
406 => 0.043540301260502
407 => 0.042629374497858
408 => 0.04149402248332
409 => 0.041483915468909
410 => 0.041239305739728
411 => 0.040927758472296
412 => 0.040841093149732
413 => 0.042105271724764
414 => 0.044722083541399
415 => 0.044208340766794
416 => 0.044579572571924
417 => 0.046405665631539
418 => 0.046986125702657
419 => 0.046574128893128
420 => 0.046010162249388
421 => 0.046034973919533
422 => 0.047962218665505
423 => 0.048082418556305
424 => 0.048386124902401
425 => 0.048776473384538
426 => 0.04664060692755
427 => 0.045934374801484
428 => 0.045599722839888
429 => 0.044569124324779
430 => 0.045680536466485
501 => 0.045032964206926
502 => 0.045120343828959
503 => 0.045063437735479
504 => 0.045094512310492
505 => 0.043444693411814
506 => 0.044045800706564
507 => 0.043046343242365
508 => 0.041708181892168
509 => 0.041703695906103
510 => 0.042031209000791
511 => 0.041836391396482
512 => 0.041312142232503
513 => 0.04138660935186
514 => 0.040734199028309
515 => 0.04146582377741
516 => 0.041486804157335
517 => 0.041205088777061
518 => 0.042332257647811
519 => 0.042794059653839
520 => 0.042608628555615
521 => 0.042781049313666
522 => 0.044229689098489
523 => 0.044465880592
524 => 0.044570781251483
525 => 0.04443022826445
526 => 0.042807527789627
527 => 0.042879501455941
528 => 0.04235140644781
529 => 0.04190522181522
530 => 0.041923066860593
531 => 0.042152463761687
601 => 0.043154253482712
602 => 0.04526246089188
603 => 0.045342465821978
604 => 0.045439434131166
605 => 0.045045015285332
606 => 0.044926054787348
607 => 0.045082994390498
608 => 0.045874726249102
609 => 0.047911275542534
610 => 0.047191423005682
611 => 0.046606171688048
612 => 0.047119594876235
613 => 0.047040557400757
614 => 0.046373401567224
615 => 0.046354676725008
616 => 0.045074191377835
617 => 0.044600825100226
618 => 0.044205244807804
619 => 0.043773281455364
620 => 0.043517199100495
621 => 0.043910657984923
622 => 0.04400064668706
623 => 0.043140341959775
624 => 0.043023085604381
625 => 0.04372562901565
626 => 0.043416465853809
627 => 0.04373444783264
628 => 0.043808222379327
629 => 0.043796342978139
630 => 0.043473541130014
701 => 0.043679285401919
702 => 0.043192638863544
703 => 0.042663483845007
704 => 0.042325915910704
705 => 0.042031343116135
706 => 0.042194789223233
707 => 0.041612133695508
708 => 0.04142573046565
709 => 0.04360958387199
710 => 0.045222819863634
711 => 0.045199362773404
712 => 0.045056573769302
713 => 0.044844418272899
714 => 0.045859205753105
715 => 0.045505674086318
716 => 0.045762897912465
717 => 0.045828372171869
718 => 0.046026543035502
719 => 0.046097372085889
720 => 0.04588327750168
721 => 0.045164749927625
722 => 0.043374247528631
723 => 0.042540763828531
724 => 0.042265700324728
725 => 0.042275698360672
726 => 0.041999907896159
727 => 0.04208114054802
728 => 0.041971658494924
729 => 0.041764325972914
730 => 0.042181987024246
731 => 0.042230118569631
801 => 0.042132631489572
802 => 0.042155593226009
803 => 0.041348441840399
804 => 0.041409807807207
805 => 0.041068114306014
806 => 0.041004050893716
807 => 0.040140279477357
808 => 0.038609983207608
809 => 0.039457915890502
810 => 0.038433732446944
811 => 0.038045858657957
812 => 0.039881992848272
813 => 0.039697695901999
814 => 0.039382259641937
815 => 0.038915663670629
816 => 0.038742598686117
817 => 0.037691110625937
818 => 0.037628983101871
819 => 0.038150128977062
820 => 0.037909638087196
821 => 0.037571897796802
822 => 0.036348636701178
823 => 0.034973286221868
824 => 0.035014799407693
825 => 0.035452272805857
826 => 0.036724285712342
827 => 0.036227288263732
828 => 0.035866710912376
829 => 0.035799185613382
830 => 0.036644406104075
831 => 0.037840570177573
901 => 0.038401783598196
902 => 0.037845638142664
903 => 0.037206768188346
904 => 0.037245653242228
905 => 0.037504338084886
906 => 0.037531522204243
907 => 0.037115683540875
908 => 0.037232739688824
909 => 0.037054920696251
910 => 0.035963645867057
911 => 0.035943908165867
912 => 0.035676091723599
913 => 0.035667982348164
914 => 0.035212359769923
915 => 0.035148615021657
916 => 0.034243948738247
917 => 0.03483940282557
918 => 0.034440003486537
919 => 0.033838014473834
920 => 0.033734231341141
921 => 0.03373111149485
922 => 0.034349219608616
923 => 0.03483217987238
924 => 0.034446951209037
925 => 0.034359242109737
926 => 0.035295745824539
927 => 0.03517656719041
928 => 0.035073359261873
929 => 0.037733466804434
930 => 0.035627784113717
1001 => 0.034709586272399
1002 => 0.033573142082726
1003 => 0.033943174041333
1004 => 0.034021145211911
1005 => 0.031288201795211
1006 => 0.030179446991422
1007 => 0.029798964125305
1008 => 0.029579990856617
1009 => 0.029679779724851
1010 => 0.028681770357474
1011 => 0.029352449157903
1012 => 0.028488257405386
1013 => 0.028343372845753
1014 => 0.029888654752069
1015 => 0.030103671701927
1016 => 0.029186342593303
1017 => 0.029775416383132
1018 => 0.029561810038202
1019 => 0.028503071492602
1020 => 0.028462635467714
1021 => 0.027931397681991
1022 => 0.027100113415241
1023 => 0.026720194199001
1024 => 0.026522328972574
1025 => 0.026603972021314
1026 => 0.026562690797552
1027 => 0.026293302888812
1028 => 0.026578131797147
1029 => 0.025850511635781
1030 => 0.025560767424691
1031 => 0.025429896686557
1101 => 0.02478409191309
1102 => 0.025811854498361
1103 => 0.026014336675072
1104 => 0.02621721780422
1105 => 0.027983159520626
1106 => 0.027894938062974
1107 => 0.028692417074557
1108 => 0.028661428506637
1109 => 0.02843397457423
1110 => 0.027474383847761
1111 => 0.027856859608271
1112 => 0.02667965866735
1113 => 0.027561697654171
1114 => 0.027159171895415
1115 => 0.027425603290231
1116 => 0.026946535619201
1117 => 0.027211671448568
1118 => 0.026062352710763
1119 => 0.024989135044752
1120 => 0.025421029162731
1121 => 0.025890547462059
1122 => 0.026908582766038
1123 => 0.026302249337597
1124 => 0.02652030976647
1125 => 0.025789843832621
1126 => 0.024282683963812
1127 => 0.024291214324992
1128 => 0.024059370614439
1129 => 0.023859023798784
1130 => 0.026371894025684
1201 => 0.026059378890369
1202 => 0.025561426923215
1203 => 0.026227955419076
1204 => 0.026404196132611
1205 => 0.02640921345796
1206 => 0.026895495442949
1207 => 0.027155024225509
1208 => 0.027200767298297
1209 => 0.027965942508495
1210 => 0.028222419146049
1211 => 0.029278810118199
1212 => 0.027133005021535
1213 => 0.027088813577656
1214 => 0.026237334841892
1215 => 0.025697313566324
1216 => 0.026274310560638
1217 => 0.026785451129656
1218 => 0.02625321740417
1219 => 0.026322715892651
1220 => 0.025608235601279
1221 => 0.025863628686022
1222 => 0.026083607615767
1223 => 0.025962148180526
1224 => 0.025780317527266
1225 => 0.026743543431967
1226 => 0.026689194451511
1227 => 0.027586172558436
1228 => 0.028285431136304
1229 => 0.029538627515266
1230 => 0.028230851763215
1231 => 0.028183191216872
]
'min_raw' => 0.023859023798784
'max_raw' => 0.068983454390916
'avg_raw' => 0.04642123909485
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.023859'
'max' => '$0.068983'
'avg' => '$0.046421'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0041953259832046
'max_diff' => -0.02330264612661
'year' => 2030
]
5 => [
'items' => [
101 => 0.028649080702363
102 => 0.028222347820796
103 => 0.028492028271628
104 => 0.029495177825393
105 => 0.029516372794722
106 => 0.029161329750291
107 => 0.029139725348771
108 => 0.029207915249199
109 => 0.029607305625881
110 => 0.029467746356242
111 => 0.029629247876277
112 => 0.029831208000079
113 => 0.030666600701445
114 => 0.030868011053536
115 => 0.03037868831725
116 => 0.030422868681623
117 => 0.030239848546042
118 => 0.030063053388307
119 => 0.030460463084036
120 => 0.031186737114088
121 => 0.031182219001041
122 => 0.031350700459263
123 => 0.03145566301196
124 => 0.031005086898501
125 => 0.030711778416782
126 => 0.030824251552377
127 => 0.031004098545539
128 => 0.030765929596411
129 => 0.029295840511809
130 => 0.029741771630423
131 => 0.029667546887368
201 => 0.02956184182722
202 => 0.03001022901527
203 => 0.029966980977135
204 => 0.028671534328912
205 => 0.028754464620265
206 => 0.028676577594603
207 => 0.028928246508703
208 => 0.028208756873528
209 => 0.028430067039471
210 => 0.028568870700897
211 => 0.028650627123816
212 => 0.028945987384307
213 => 0.028911330266773
214 => 0.02894383304922
215 => 0.029381774343309
216 => 0.031596731125507
217 => 0.031717286336135
218 => 0.031123628388005
219 => 0.031360783028898
220 => 0.030905497978402
221 => 0.031211133882944
222 => 0.031420242206522
223 => 0.030475321901492
224 => 0.03041936985351
225 => 0.029962205679657
226 => 0.030207859811583
227 => 0.029817006424531
228 => 0.029912908174243
301 => 0.029644758521485
302 => 0.030127374508386
303 => 0.030667014172683
304 => 0.0308033484629
305 => 0.03044471164094
306 => 0.030185034946523
307 => 0.029729128213947
308 => 0.030487311270765
309 => 0.030709027101789
310 => 0.030486146691892
311 => 0.030434500430886
312 => 0.030336630859602
313 => 0.030455263923093
314 => 0.030707819589757
315 => 0.030588719001329
316 => 0.030667387038268
317 => 0.030367585603584
318 => 0.031005236057943
319 => 0.032017978438403
320 => 0.032021234570757
321 => 0.031902133340332
322 => 0.031853399682914
323 => 0.031975604772997
324 => 0.032041896021251
325 => 0.032437084873997
326 => 0.032861138258011
327 => 0.034840010372221
328 => 0.034284351001136
329 => 0.036040124064491
330 => 0.037428712599007
331 => 0.037845089584891
401 => 0.037462042349929
402 => 0.036151658450929
403 => 0.036087364765327
404 => 0.038045631540246
405 => 0.037492331482031
406 => 0.037426518200692
407 => 0.036726376080545
408 => 0.037140246787841
409 => 0.037049727193038
410 => 0.036906837584272
411 => 0.037696474063309
412 => 0.039174603060731
413 => 0.038944222794677
414 => 0.038772254613101
415 => 0.038018740100618
416 => 0.038472524140692
417 => 0.038310940335682
418 => 0.03900520690562
419 => 0.038593938769476
420 => 0.037488139689904
421 => 0.037664241838088
422 => 0.037637624352658
423 => 0.038185410316663
424 => 0.038020978567152
425 => 0.037605516414531
426 => 0.039169550976511
427 => 0.039067991271674
428 => 0.039211979713353
429 => 0.03927536787837
430 => 0.040227368154867
501 => 0.040617372207537
502 => 0.040705909955475
503 => 0.041076383641516
504 => 0.040696692232673
505 => 0.042215728583431
506 => 0.043225799118457
507 => 0.044399048022644
508 => 0.046113480011237
509 => 0.04675812229833
510 => 0.046641673439136
511 => 0.047941536206346
512 => 0.050277360704695
513 => 0.047113810354031
514 => 0.050445036554981
515 => 0.049390408800616
516 => 0.04688990536696
517 => 0.046728902424832
518 => 0.048422272381545
519 => 0.052178003964717
520 => 0.051237235800288
521 => 0.052179542724413
522 => 0.051080291643841
523 => 0.051025704562476
524 => 0.052126154553004
525 => 0.054697415938281
526 => 0.053475906036428
527 => 0.051724572065605
528 => 0.053017729815886
529 => 0.051897476896493
530 => 0.049373233530051
531 => 0.051236516412602
601 => 0.049990592212281
602 => 0.050354219130908
603 => 0.052972966482745
604 => 0.052657871873026
605 => 0.053065633474978
606 => 0.052345944920512
607 => 0.051673642326173
608 => 0.050418739607993
609 => 0.050047224779096
610 => 0.0501498981121
611 => 0.050047173899291
612 => 0.049345067361621
613 => 0.049193447521659
614 => 0.048940741145772
615 => 0.049019065418494
616 => 0.048543903499968
617 => 0.049440632213688
618 => 0.049607072964901
619 => 0.050259637341778
620 => 0.050327388740184
621 => 0.052144771241114
622 => 0.051143787499474
623 => 0.051815333814144
624 => 0.051755264390921
625 => 0.046944098858557
626 => 0.047607035019644
627 => 0.048638355645468
628 => 0.048173747101456
629 => 0.04751689932188
630 => 0.046986459521922
701 => 0.046182788984732
702 => 0.047313939832702
703 => 0.048801282913299
704 => 0.050365110215198
705 => 0.052243946252406
706 => 0.051824611920964
707 => 0.050329986682374
708 => 0.050397034478752
709 => 0.05081149757363
710 => 0.05027473020782
711 => 0.050116427032699
712 => 0.050789749148279
713 => 0.050794385947638
714 => 0.050176770222771
715 => 0.049490403367065
716 => 0.049487527464878
717 => 0.049365395112423
718 => 0.051102018718025
719 => 0.052056986108655
720 => 0.052166471580984
721 => 0.052049616864033
722 => 0.05209458960679
723 => 0.051538915123452
724 => 0.052809022212212
725 => 0.053974598077431
726 => 0.053662198846656
727 => 0.053193867989557
728 => 0.052820819904007
729 => 0.053574320573339
730 => 0.053540768374654
731 => 0.053964417789074
801 => 0.053945198604518
802 => 0.053802741240709
803 => 0.053662203934257
804 => 0.054219418468724
805 => 0.054058949631389
806 => 0.053898231541627
807 => 0.053575886807901
808 => 0.053619698810793
809 => 0.05315144881762
810 => 0.052934814945116
811 => 0.049677161279996
812 => 0.048806609773772
813 => 0.04908050299934
814 => 0.049170675760832
815 => 0.048791810629681
816 => 0.049335005905284
817 => 0.049250349496968
818 => 0.049579698059385
819 => 0.049373935376239
820 => 0.049382379948528
821 => 0.049987484126432
822 => 0.050163148443575
823 => 0.050073804154091
824 => 0.050136377831902
825 => 0.051578361826365
826 => 0.051373357814405
827 => 0.051264453518933
828 => 0.051294620753044
829 => 0.051663078580114
830 => 0.051766226654643
831 => 0.05132918101478
901 => 0.05153529426507
902 => 0.052412898325139
903 => 0.052720010078075
904 => 0.053700163371444
905 => 0.053283776831585
906 => 0.054048072346283
907 => 0.056397256190921
908 => 0.058273946797176
909 => 0.056548064558145
910 => 0.059994367861424
911 => 0.062677809325873
912 => 0.062574814372962
913 => 0.062106894284516
914 => 0.059051867520222
915 => 0.056240586343836
916 => 0.058592342421187
917 => 0.058598337531071
918 => 0.058396319598358
919 => 0.057141603568428
920 => 0.058352658200271
921 => 0.058448787319042
922 => 0.058394980575326
923 => 0.057432992737016
924 => 0.055964215112989
925 => 0.056251210744967
926 => 0.056721315444699
927 => 0.055831309173992
928 => 0.055546898243119
929 => 0.056075672275005
930 => 0.057779492380186
1001 => 0.057457395058859
1002 => 0.057448983796102
1003 => 0.058827052727259
1004 => 0.057840652778439
1005 => 0.056254830678973
1006 => 0.055854389684434
1007 => 0.054433093923198
1008 => 0.055414787967966
1009 => 0.055450117388961
1010 => 0.054912453593311
1011 => 0.056298459132756
1012 => 0.056285686847709
1013 => 0.057601492827711
1014 => 0.060116819667319
1015 => 0.059372913749131
1016 => 0.058507832103011
1017 => 0.058601890464056
1018 => 0.059633478528908
1019 => 0.059009756836034
1020 => 0.059234051505533
1021 => 0.059633139032062
1022 => 0.059873918445603
1023 => 0.058567246011833
1024 => 0.058262598162153
1025 => 0.057639395578575
1026 => 0.057476813657147
1027 => 0.057984399157923
1028 => 0.057850668311728
1029 => 0.055447148087928
1030 => 0.055195966851481
1031 => 0.055203670221399
1101 => 0.054572063059335
1102 => 0.0536087105341
1103 => 0.056140343451627
1104 => 0.05593701789817
1105 => 0.055712562223301
1106 => 0.055740056762746
1107 => 0.056838952807244
1108 => 0.056201537605855
1109 => 0.057896210389045
1110 => 0.057547836611348
1111 => 0.057190528360787
1112 => 0.057141137476684
1113 => 0.057003604284326
1114 => 0.056531951793882
1115 => 0.055962403069751
1116 => 0.055586337668614
1117 => 0.051275458216605
1118 => 0.052075532367665
1119 => 0.052995944749407
1120 => 0.053313667415263
1121 => 0.052770180809577
1122 => 0.056553411957665
1123 => 0.057244644744543
1124 => 0.05515085554509
1125 => 0.054759193074722
1126 => 0.056579089284017
1127 => 0.055481469396549
1128 => 0.055975727564668
1129 => 0.054907411749959
1130 => 0.057078147007843
1201 => 0.057061609642154
1202 => 0.056217144598557
1203 => 0.056930880670758
1204 => 0.056806851464031
1205 => 0.055853452509636
1206 => 0.057108371455244
1207 => 0.057108993879384
1208 => 0.056296214635176
1209 => 0.055347066418196
1210 => 0.05517738113488
1211 => 0.055049546067912
1212 => 0.055944287974626
1213 => 0.0567465107704
1214 => 0.058239248505438
1215 => 0.0586145582386
1216 => 0.060079417112917
1217 => 0.059207164975946
1218 => 0.059593823050709
1219 => 0.060013595086988
1220 => 0.060214849237786
1221 => 0.059886916398954
1222 => 0.062162445190736
1223 => 0.062354569541163
1224 => 0.062418987173992
1225 => 0.061651691668521
1226 => 0.062333229665128
1227 => 0.062014360606682
1228 => 0.062843969312383
1229 => 0.062974062550413
1230 => 0.062863878206003
1231 => 0.062905171853135
]
'min_raw' => 0.028208756873528
'max_raw' => 0.062974062550413
'avg_raw' => 0.04559140971197
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.0282087'
'max' => '$0.062974'
'avg' => '$0.045591'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0043497330747433
'max_diff' => -0.0060093918405035
'year' => 2031
]
6 => [
'items' => [
101 => 0.060963409460137
102 => 0.060862718836447
103 => 0.059489795037758
104 => 0.060049271633864
105 => 0.059003356953855
106 => 0.059335027273001
107 => 0.05948122438941
108 => 0.059404859312411
109 => 0.060080903601176
110 => 0.059506127849002
111 => 0.057989200137133
112 => 0.056471859139323
113 => 0.056452810159095
114 => 0.056053321057664
115 => 0.055764563607409
116 => 0.055820188536549
117 => 0.056016218042112
118 => 0.055753170016183
119 => 0.055809304649389
120 => 0.056741513583702
121 => 0.056928461437269
122 => 0.056293139585608
123 => 0.053742230674683
124 => 0.053116231229472
125 => 0.053566187216581
126 => 0.05335113723562
127 => 0.043058531634683
128 => 0.045476626648246
129 => 0.044039876701935
130 => 0.044701997178882
131 => 0.043235447528292
201 => 0.043935361890006
202 => 0.043806113264178
203 => 0.047694338489354
204 => 0.047633629200542
205 => 0.047662687524432
206 => 0.046275658014087
207 => 0.048485233686022
208 => 0.049573750115789
209 => 0.049372294694566
210 => 0.049422996683901
211 => 0.048551768523395
212 => 0.047671122917436
213 => 0.046694351410041
214 => 0.048509072138175
215 => 0.048307306171522
216 => 0.04877008470592
217 => 0.049947060817031
218 => 0.050120375020289
219 => 0.050353311067048
220 => 0.050269820075802
221 => 0.052258914212617
222 => 0.052018021788183
223 => 0.052598503221589
224 => 0.051404408871841
225 => 0.050053177770626
226 => 0.050310002627894
227 => 0.050285268328884
228 => 0.04997037231378
229 => 0.049686098271296
301 => 0.049212862084275
302 => 0.050710251405787
303 => 0.050649460133887
304 => 0.051633600163815
305 => 0.051459643854099
306 => 0.050297921043486
307 => 0.050339412200939
308 => 0.050618460174774
309 => 0.051584248398334
310 => 0.051870960098963
311 => 0.051738143815746
312 => 0.052052510106599
313 => 0.052300972405143
314 => 0.052083713145904
315 => 0.055159646097511
316 => 0.053882304282706
317 => 0.054504871795555
318 => 0.054653350478989
319 => 0.054273025453544
320 => 0.054355504333144
321 => 0.05448043736159
322 => 0.055239006245919
323 => 0.057229710492073
324 => 0.058111379851512
325 => 0.060763925620185
326 => 0.05803816948464
327 => 0.057876434395857
328 => 0.058354237988004
329 => 0.0599115631547
330 => 0.061173628930192
331 => 0.061592328958245
401 => 0.061647667078936
402 => 0.062433176166213
403 => 0.062883415326163
404 => 0.062337794702078
405 => 0.061875438352026
406 => 0.060219335295922
407 => 0.060411033734085
408 => 0.061731645874833
409 => 0.063597088307307
410 => 0.065197831980575
411 => 0.064637307337745
412 => 0.068913714693801
413 => 0.069337703015597
414 => 0.069279121538708
415 => 0.07024503003368
416 => 0.068327898375005
417 => 0.067508287448245
418 => 0.061975405042874
419 => 0.063529919315443
420 => 0.065789497104044
421 => 0.065490433510741
422 => 0.063849467721971
423 => 0.065196587160875
424 => 0.064751187346054
425 => 0.064399882032449
426 => 0.066009279777958
427 => 0.064239680846355
428 => 0.065771844001028
429 => 0.063806828906962
430 => 0.064639867767099
501 => 0.064166994620529
502 => 0.064473001499513
503 => 0.062684091537721
504 => 0.063649343929769
505 => 0.062643933864757
506 => 0.062643457169477
507 => 0.062621262686567
508 => 0.063804123169384
509 => 0.063842696207263
510 => 0.062968560523258
511 => 0.062842583914627
512 => 0.063308385463749
513 => 0.062763053843347
514 => 0.063018211076257
515 => 0.062770782295999
516 => 0.062715080865915
517 => 0.062271242394193
518 => 0.062080024576982
519 => 0.062155006010186
520 => 0.061899055723081
521 => 0.061744836416973
522 => 0.062590584584939
523 => 0.062138735456179
524 => 0.062521332225528
525 => 0.062085314919293
526 => 0.060573888972184
527 => 0.059704651926963
528 => 0.056849708422134
529 => 0.057659366858557
530 => 0.058196171239558
531 => 0.058018757394839
601 => 0.058399910983338
602 => 0.058423310718071
603 => 0.058299393801049
604 => 0.058155913885878
605 => 0.05808607579811
606 => 0.058606591687063
607 => 0.05890876868036
608 => 0.058250046740707
609 => 0.058095717406746
610 => 0.05876172165677
611 => 0.059167983864546
612 => 0.06216759574775
613 => 0.061945374810824
614 => 0.062503105753853
615 => 0.062440313808747
616 => 0.063024904690548
617 => 0.063980463715754
618 => 0.062037545039006
619 => 0.062374768540216
620 => 0.062292089125347
621 => 0.063194761297179
622 => 0.06319757934117
623 => 0.062656382282337
624 => 0.06294977398785
625 => 0.062786010786613
626 => 0.063081953025172
627 => 0.06194240691473
628 => 0.063330251070847
629 => 0.064117069276664
630 => 0.064127994248215
701 => 0.064500939833197
702 => 0.06487987414709
703 => 0.065607205564384
704 => 0.064859589268621
705 => 0.063514700331523
706 => 0.063611796968817
707 => 0.062823289077072
708 => 0.062836544037187
709 => 0.062765788021279
710 => 0.062978132151284
711 => 0.061989004510119
712 => 0.06222115079046
713 => 0.061896144638536
714 => 0.062374062040314
715 => 0.061859901918577
716 => 0.06229204925483
717 => 0.062478549719245
718 => 0.063166740448007
719 => 0.061758255588389
720 => 0.058886259613585
721 => 0.059489987987074
722 => 0.058597026300844
723 => 0.058679673304649
724 => 0.05884663340551
725 => 0.058305461092676
726 => 0.058408699715665
727 => 0.058405011305573
728 => 0.058373226580039
729 => 0.058232446760404
730 => 0.058028288169496
731 => 0.058841593158975
801 => 0.058979789524975
802 => 0.059286982927686
803 => 0.060200982122878
804 => 0.060109652049693
805 => 0.060258615188306
806 => 0.059933429493106
807 => 0.058694757736395
808 => 0.058762023572214
809 => 0.057923217521688
810 => 0.059265532771081
811 => 0.058947654802329
812 => 0.058742716807956
813 => 0.058686797577454
814 => 0.059603062399864
815 => 0.059877223195421
816 => 0.059706384585876
817 => 0.059355989613543
818 => 0.060028851545398
819 => 0.060208881012596
820 => 0.060249182971071
821 => 0.061441365305839
822 => 0.06031581272009
823 => 0.06058674441451
824 => 0.062700476153513
825 => 0.060783613141279
826 => 0.061799018230006
827 => 0.061749319434826
828 => 0.062268766318784
829 => 0.061706709628823
830 => 0.061713676995114
831 => 0.062174910637688
901 => 0.061527191170618
902 => 0.061366806721672
903 => 0.061145236754148
904 => 0.061629026672261
905 => 0.061919036848234
906 => 0.064256305877571
907 => 0.06576628826294
908 => 0.065700735945296
909 => 0.066299761419766
910 => 0.066029894957072
911 => 0.06515842496186
912 => 0.066645917979244
913 => 0.066175212949192
914 => 0.066214017299963
915 => 0.066212573000089
916 => 0.066525550695326
917 => 0.066303777314266
918 => 0.065866639215627
919 => 0.066156831885885
920 => 0.067018600370771
921 => 0.069693556190143
922 => 0.071190496905115
923 => 0.069603438479488
924 => 0.070698170129926
925 => 0.070041721232434
926 => 0.069922424940097
927 => 0.070609997316606
928 => 0.07129877319754
929 => 0.071254901151585
930 => 0.070754885231059
1001 => 0.070472438924989
1002 => 0.072611216981009
1003 => 0.074187032219552
1004 => 0.074079572184683
1005 => 0.07455386583072
1006 => 0.075946406644835
1007 => 0.076073723124988
1008 => 0.076057684174825
1009 => 0.075742116994665
1010 => 0.077113254270437
1011 => 0.078257081108751
1012 => 0.07566907231007
1013 => 0.076654552181085
1014 => 0.077096965845362
1015 => 0.07774656036274
1016 => 0.078842535198238
1017 => 0.080033054562558
1018 => 0.080201407054053
1019 => 0.080081952904929
1020 => 0.079296773381282
1021 => 0.08059945387557
1022 => 0.081362533557508
1023 => 0.081816930045333
1024 => 0.082969203934094
1025 => 0.077099698041537
1026 => 0.072944970037414
1027 => 0.07229614926457
1028 => 0.073615551819764
1029 => 0.073963467751531
1030 => 0.073823223275685
1031 => 0.069146699175701
1101 => 0.072271528333013
1102 => 0.075633581763183
1103 => 0.075762731927829
1104 => 0.077445846172194
1105 => 0.077993937163343
1106 => 0.079349064740884
1107 => 0.079264301141947
1108 => 0.079594253142289
1109 => 0.079518402891383
1110 => 0.082028491373
1111 => 0.08479749171997
1112 => 0.084701610042836
1113 => 0.084303533481634
1114 => 0.084894745057159
1115 => 0.087752650159343
1116 => 0.08748954005453
1117 => 0.087745129109691
1118 => 0.091114760289639
1119 => 0.095495760148018
1120 => 0.093460345868607
1121 => 0.097876609180248
1122 => 0.10065641283887
1123 => 0.10546379582939
1124 => 0.10486188780211
1125 => 0.10673336672211
1126 => 0.1037843468113
1127 => 0.097012801000801
1128 => 0.095941177955854
1129 => 0.098086594429655
1130 => 0.10336089148382
1201 => 0.09792048804579
1202 => 0.099021074575707
1203 => 0.09870410558105
1204 => 0.098687215650357
1205 => 0.099331835608624
1206 => 0.098396780738041
1207 => 0.094587198982128
1208 => 0.096333107850857
1209 => 0.095658928591211
1210 => 0.096406980743182
1211 => 0.10044390968719
1212 => 0.098659087172679
1213 => 0.096778921640846
1214 => 0.099137066459897
1215 => 0.10213979516102
1216 => 0.10195188979533
1217 => 0.10158727484753
1218 => 0.10364259021764
1219 => 0.10703736905817
1220 => 0.10795496413744
1221 => 0.10863231406555
1222 => 0.10872570917671
1223 => 0.10968773686645
1224 => 0.10451467151651
1225 => 0.11272445908061
1226 => 0.11414206260213
1227 => 0.11387561189373
1228 => 0.11545121854602
1229 => 0.11498763509963
1230 => 0.11431597541983
1231 => 0.11681364710486
]
'min_raw' => 0.043058531634683
'max_raw' => 0.11681364710486
'avg_raw' => 0.079936089369769
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.043058'
'max' => '$0.116813'
'avg' => '$0.079936'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.014849774761155
'max_diff' => 0.053839584554443
'year' => 2032
]
7 => [
'items' => [
101 => 0.11395026806969
102 => 0.10988606201866
103 => 0.10765635819819
104 => 0.11059261205406
105 => 0.11238567982271
106 => 0.11357078355726
107 => 0.11392939523127
108 => 0.1049162418538
109 => 0.10005865207575
110 => 0.1031723114311
111 => 0.10697119073792
112 => 0.10449356855015
113 => 0.10459068664915
114 => 0.10105824851706
115 => 0.10728373313061
116 => 0.10637673238698
117 => 0.11108225384938
118 => 0.10995924338821
119 => 0.1137964134735
120 => 0.11278595799247
121 => 0.11698030220042
122 => 0.11865353966231
123 => 0.12146316577944
124 => 0.12352993818844
125 => 0.12474358647805
126 => 0.12467072358702
127 => 0.12947980274767
128 => 0.12664405678307
129 => 0.12308169151752
130 => 0.12301725956898
131 => 0.12486225901911
201 => 0.12872887171572
202 => 0.12973142813102
203 => 0.13029172039591
204 => 0.12943361328831
205 => 0.12635561428348
206 => 0.125026549919
207 => 0.12615895126424
208 => 0.12477412172737
209 => 0.12716472602255
210 => 0.13044753632535
211 => 0.12976964897946
212 => 0.13203572474221
213 => 0.13438087475854
214 => 0.13773454460917
215 => 0.13861131809416
216 => 0.14006059132414
217 => 0.14155236953924
218 => 0.14203148849738
219 => 0.14294627525036
220 => 0.14294145387262
221 => 0.14569822532495
222 => 0.14873902960698
223 => 0.14988686282866
224 => 0.15252624203004
225 => 0.14800639764257
226 => 0.15143475153069
227 => 0.15452721255505
228 => 0.15084025303461
301 => 0.15592186778214
302 => 0.1561191753676
303 => 0.15909828565369
304 => 0.15607838665027
305 => 0.15428518026189
306 => 0.15946209991456
307 => 0.16196704826305
308 => 0.16121253743454
309 => 0.15547067277478
310 => 0.15212866126264
311 => 0.1433819725095
312 => 0.15374280316643
313 => 0.15878926154985
314 => 0.1554576036667
315 => 0.157137898112
316 => 0.16630503976822
317 => 0.16979529378245
318 => 0.16906934534621
319 => 0.1691920186818
320 => 0.17107529639528
321 => 0.17942678691685
322 => 0.17442238021029
323 => 0.17824806162591
324 => 0.18027718925424
325 => 0.18216195607994
326 => 0.17753356444269
327 => 0.17151209492721
328 => 0.16960484276757
329 => 0.15512633595003
330 => 0.1543726667932
331 => 0.15394960945697
401 => 0.15128229279465
402 => 0.14918651253758
403 => 0.14751987026583
404 => 0.14314610324326
405 => 0.1446221212201
406 => 0.13765124946223
407 => 0.14211096618039
408 => 0.13098528653724
409 => 0.14025108314541
410 => 0.13520813131566
411 => 0.13859433783958
412 => 0.13858252368402
413 => 0.13234744387572
414 => 0.12875117996509
415 => 0.13104285929763
416 => 0.13349972145585
417 => 0.13389833907514
418 => 0.13708372499393
419 => 0.13797269773422
420 => 0.13527906882896
421 => 0.13075473155583
422 => 0.13180563191523
423 => 0.12872988350285
424 => 0.12333975271712
425 => 0.12721103875009
426 => 0.12853286601018
427 => 0.12911666023107
428 => 0.123816085664
429 => 0.12215053005396
430 => 0.12126380222253
501 => 0.13007049394098
502 => 0.1305529443933
503 => 0.12808465966762
504 => 0.13924154068007
505 => 0.13671639489427
506 => 0.13953760141275
507 => 0.13171027372263
508 => 0.13200928818129
509 => 0.12830370581429
510 => 0.13037858433271
511 => 0.12891212707235
512 => 0.13021095465277
513 => 0.1309894665492
514 => 0.13469444086659
515 => 0.14029338800073
516 => 0.13414104125358
517 => 0.13146037567262
518 => 0.13312344552241
519 => 0.13755241968919
520 => 0.14426254226688
521 => 0.14029001464709
522 => 0.14205295494686
523 => 0.14243807897461
524 => 0.13950888417874
525 => 0.14437054585717
526 => 0.14697594984671
527 => 0.14964855522759
528 => 0.1519691035951
529 => 0.14858105786661
530 => 0.15220675245337
531 => 0.1492850826377
601 => 0.14666404277636
602 => 0.14666801781191
603 => 0.14502380121961
604 => 0.14183792438741
605 => 0.14125039981943
606 => 0.14430677681823
607 => 0.14675770173128
608 => 0.14695957164626
609 => 0.14831652961119
610 => 0.14911956335707
611 => 0.15699038573804
612 => 0.16015609561052
613 => 0.16402706571877
614 => 0.16553502673186
615 => 0.1700734487473
616 => 0.16640830437722
617 => 0.16561532733791
618 => 0.15460660003497
619 => 0.15640927851411
620 => 0.15929554069181
621 => 0.15465419343521
622 => 0.15759805997864
623 => 0.15817924159394
624 => 0.15449648223146
625 => 0.1564636031296
626 => 0.15123951323484
627 => 0.14040725888465
628 => 0.14438260525282
629 => 0.14730979826692
630 => 0.14313233291551
701 => 0.15062027786768
702 => 0.14624597500918
703 => 0.1448595310066
704 => 0.13945051864957
705 => 0.14200336427011
706 => 0.14545612452512
707 => 0.14332272011399
708 => 0.14774985459937
709 => 0.15401985770431
710 => 0.15848823530203
711 => 0.15883126184992
712 => 0.15595839441263
713 => 0.16056218281528
714 => 0.16059571638772
715 => 0.15540262426251
716 => 0.15222188425107
717 => 0.15149921342814
718 => 0.15330458683179
719 => 0.15549664343413
720 => 0.15895290573541
721 => 0.1610414526577
722 => 0.16648727535134
723 => 0.16796075882826
724 => 0.16957967043713
725 => 0.17174303560042
726 => 0.1743407101544
727 => 0.16865714611599
728 => 0.16888296471073
729 => 0.16359050857246
730 => 0.15793476017374
731 => 0.16222676820938
801 => 0.16783799777407
802 => 0.16655077551208
803 => 0.16640593671204
804 => 0.16664951539877
805 => 0.16567899184997
806 => 0.16128934980804
807 => 0.15908489905519
808 => 0.16192920294173
809 => 0.16344082387202
810 => 0.16578521610771
811 => 0.16549622028055
812 => 0.17153512291033
813 => 0.17388165786532
814 => 0.17328131380994
815 => 0.17339179156422
816 => 0.17764008101512
817 => 0.18236505261189
818 => 0.18679061202718
819 => 0.19129248114661
820 => 0.18586530221219
821 => 0.18310971545116
822 => 0.18595277760359
823 => 0.18444420880651
824 => 0.19311289258511
825 => 0.19371309344177
826 => 0.20238115037586
827 => 0.21060816857933
828 => 0.20544092584807
829 => 0.21031340300593
830 => 0.21558338431104
831 => 0.22575003327225
901 => 0.22232626356914
902 => 0.21970370963387
903 => 0.21722540883712
904 => 0.22238235937597
905 => 0.22901669385991
906 => 0.23044566596489
907 => 0.23276114668431
908 => 0.23032670183135
909 => 0.23325872251143
910 => 0.24361004390729
911 => 0.24081302549249
912 => 0.23684080970032
913 => 0.24501218379087
914 => 0.24796937230883
915 => 0.26872447001952
916 => 0.29492863822958
917 => 0.28407994052477
918 => 0.2773458037741
919 => 0.27892848564637
920 => 0.28849736080961
921 => 0.29157057981113
922 => 0.28321651116289
923 => 0.28616730944028
924 => 0.30242649806479
925 => 0.31114903110462
926 => 0.29930265964406
927 => 0.26661899061827
928 => 0.23648315512919
929 => 0.24447653573525
930 => 0.243570334438
1001 => 0.26103880423996
1002 => 0.24074631752833
1003 => 0.24108799096157
1004 => 0.25891769021959
1005 => 0.25416103213598
1006 => 0.24645585522727
1007 => 0.23653941144768
1008 => 0.21820794796109
1009 => 0.20197125954033
1010 => 0.23381514461946
1011 => 0.2324419783905
1012 => 0.23045343019913
1013 => 0.23487872901563
1014 => 0.25636672392557
1015 => 0.25587135609304
1016 => 0.2527200786814
1017 => 0.25511029482404
1018 => 0.24603683878094
1019 => 0.248375275002
1020 => 0.23647838145888
1021 => 0.24185627419853
1022 => 0.24643932337819
1023 => 0.24735943835421
1024 => 0.24943250437742
1025 => 0.23171838218499
1026 => 0.23967150299009
1027 => 0.24434321635644
1028 => 0.22323624540888
1029 => 0.24392599940489
1030 => 0.23141001872799
1031 => 0.22716190690252
1101 => 0.23288142982933
1102 => 0.23065252618234
1103 => 0.22873624571226
1104 => 0.22766692828408
1105 => 0.23186671468082
1106 => 0.23167078962559
1107 => 0.22479912393711
1108 => 0.21583531617141
1109 => 0.21884386428454
1110 => 0.21775083054975
1111 => 0.21378953529072
1112 => 0.21645897000669
1113 => 0.20470413048754
1114 => 0.18448054005824
1115 => 0.19784086336116
1116 => 0.19732650544724
1117 => 0.19706714286276
1118 => 0.2071070565727
1119 => 0.20614195052971
1120 => 0.20439027361133
1121 => 0.21375736437043
1122 => 0.21033825023821
1123 => 0.22087515434911
1124 => 0.22781544088079
1125 => 0.2260551597216
1126 => 0.23258253274996
1127 => 0.21891317515665
1128 => 0.22345358742971
1129 => 0.22438936010645
1130 => 0.21364177592448
1201 => 0.20629985381401
1202 => 0.20581023131328
1203 => 0.1930803501529
1204 => 0.19988054991676
1205 => 0.20586444429758
1206 => 0.20299862325813
1207 => 0.20209138993101
1208 => 0.20672624824437
1209 => 0.20708641643019
1210 => 0.19887454362447
1211 => 0.20058205201697
1212 => 0.20770264586335
1213 => 0.20040263132161
1214 => 0.1862198955176
1215 => 0.18270238094655
1216 => 0.18223307966211
1217 => 0.17269330116781
1218 => 0.18293743808984
1219 => 0.17846559779757
1220 => 0.19259208769996
1221 => 0.1845231124296
1222 => 0.18417527503295
1223 => 0.18364946779127
1224 => 0.17543818635793
1225 => 0.17723593513767
1226 => 0.1832119258864
1227 => 0.18534422670991
1228 => 0.18512181026459
1229 => 0.18318264027155
1230 => 0.1840703823642
1231 => 0.1812106557739
]
'min_raw' => 0.10005865207575
'max_raw' => 0.31114903110462
'avg_raw' => 0.20560384159018
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.100058'
'max' => '$0.311149'
'avg' => '$0.2056038'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.057000120441064
'max_diff' => 0.19433538399976
'year' => 2033
]
8 => [
'items' => [
101 => 0.18020082679481
102 => 0.17701352876143
103 => 0.17232908116593
104 => 0.17298048233547
105 => 0.16369936589638
106 => 0.15864252107424
107 => 0.15724285307561
108 => 0.1553711585317
109 => 0.15745426595474
110 => 0.16367307365962
111 => 0.15617187217388
112 => 0.14331158837467
113 => 0.14408451334386
114 => 0.14582104626614
115 => 0.14258502865378
116 => 0.13952240956205
117 => 0.14218510838417
118 => 0.13673603660432
119 => 0.14647954055749
120 => 0.14621600608141
121 => 0.14984778182091
122 => 0.15211880572236
123 => 0.14688483088224
124 => 0.14556850036412
125 => 0.14631834205113
126 => 0.13392512925791
127 => 0.14883499193447
128 => 0.14896393304604
129 => 0.14785986096634
130 => 0.15579890255124
131 => 0.17255275654456
201 => 0.16624928275006
202 => 0.16380838717332
203 => 0.15916824289766
204 => 0.16535095964047
205 => 0.16487622346003
206 => 0.16272928641372
207 => 0.16143081218926
208 => 0.16382329076122
209 => 0.16113435761781
210 => 0.16065135133831
211 => 0.15772485880057
212 => 0.15668023411153
213 => 0.15590683557946
214 => 0.15505539978823
215 => 0.15693345497911
216 => 0.15267753483784
217 => 0.14754531236047
218 => 0.1471186235929
219 => 0.14829674879504
220 => 0.1477755160942
221 => 0.14711612813126
222 => 0.14585717693639
223 => 0.1454836730101
224 => 0.14669737957218
225 => 0.14532717562708
226 => 0.14734898618694
227 => 0.14679916558654
228 => 0.14372791240741
301 => 0.13989999382265
302 => 0.13986591731792
303 => 0.13904119853787
304 => 0.13799079517419
305 => 0.13769859698839
306 => 0.14196086331624
307 => 0.15078362705599
308 => 0.14905150742303
309 => 0.15030314137261
310 => 0.15645994161684
311 => 0.15841700327305
312 => 0.15702792726502
313 => 0.15512647435076
314 => 0.15521012862895
315 => 0.16170796884592
316 => 0.16211323116984
317 => 0.16313719831981
318 => 0.16445328548059
319 => 0.15725206259942
320 => 0.15487095167884
321 => 0.15374264922566
322 => 0.15026791437788
323 => 0.15401511800996
324 => 0.15183178292481
325 => 0.15212638942114
326 => 0.15193452655392
327 => 0.15203929665313
328 => 0.14647681704956
329 => 0.14850349226178
330 => 0.14513375164134
331 => 0.14062204722171
401 => 0.14060692240649
402 => 0.14171115567147
403 => 0.14105431451681
404 => 0.13928677185855
405 => 0.13953784295059
406 => 0.1373381959949
407 => 0.1398049199169
408 => 0.13987565673262
409 => 0.13892583365929
410 => 0.14272616220344
411 => 0.14428315990875
412 => 0.1436579660147
413 => 0.14423929463851
414 => 0.14912348481384
415 => 0.14991982092457
416 => 0.15027350082195
417 => 0.14979961661307
418 => 0.14432856866888
419 => 0.14457123290989
420 => 0.14279072371956
421 => 0.14128638107917
422 => 0.14134654689555
423 => 0.14211997456357
424 => 0.14549757855073
425 => 0.15260554702108
426 => 0.15287528922867
427 => 0.15320222465321
428 => 0.15187241397703
429 => 0.15147133035253
430 => 0.15200046318172
501 => 0.15466984241995
502 => 0.16153621055009
503 => 0.15910917746359
504 => 0.15713596178525
505 => 0.15886700391028
506 => 0.15860052354349
507 => 0.1563511610714
508 => 0.15628802895854
509 => 0.15197078320992
510 => 0.15037479575558
511 => 0.14904106918115
512 => 0.14758467457968
513 => 0.14672127504114
514 => 0.14804784914041
515 => 0.14835125233247
516 => 0.14545067487987
517 => 0.14505533689109
518 => 0.14742401105219
519 => 0.14638164586696
520 => 0.14745374430938
521 => 0.14770248034432
522 => 0.14766242811382
523 => 0.14657407914556
524 => 0.14726776032289
525 => 0.14562699754218
526 => 0.14384291445276
527 => 0.14270478059402
528 => 0.14171160785071
529 => 0.14226267781224
530 => 0.1402982140208
531 => 0.13966974251708
601 => 0.14703275674833
602 => 0.1524718945267
603 => 0.15239280730927
604 => 0.15191138421273
605 => 0.15119608714438
606 => 0.15461751398409
607 => 0.15342555728673
608 => 0.15429280537538
609 => 0.15451355641223
610 => 0.15518170331481
611 => 0.15542050840332
612 => 0.15469867356505
613 => 0.15227610768313
614 => 0.14623930383604
615 => 0.14342915534917
616 => 0.14250175954179
617 => 0.14253546861801
618 => 0.14160562181183
619 => 0.14187950336906
620 => 0.14151037698325
621 => 0.1408113409098
622 => 0.14221951430453
623 => 0.14238179317023
624 => 0.14205310867348
625 => 0.14213052577102
626 => 0.13940915852093
627 => 0.13961605816245
628 => 0.1384640146669
629 => 0.13824802039958
630 => 0.13533575476273
701 => 0.1301762540474
702 => 0.13303511828854
703 => 0.12958201230238
704 => 0.12827426874233
705 => 0.13446492335977
706 => 0.13384355333821
707 => 0.13278003796435
708 => 0.1312068770704
709 => 0.1306233763921
710 => 0.12707821098466
711 => 0.12686874369966
712 => 0.12862582340311
713 => 0.12781499157739
714 => 0.12667627660805
715 => 0.1225519664188
716 => 0.1179148762539
717 => 0.11805484085827
718 => 0.11952981296359
719 => 0.12381849328691
720 => 0.12214283168967
721 => 0.12092711997486
722 => 0.12069945371484
723 => 0.12354917361062
724 => 0.12758212429793
725 => 0.12947429452823
726 => 0.12759921129607
727 => 0.12544521664061
728 => 0.12557632031464
729 => 0.12644849432246
730 => 0.12654014747881
731 => 0.12513811839233
801 => 0.12553278136774
802 => 0.12493325221936
803 => 0.12125394294235
804 => 0.12118739590475
805 => 0.12028443407129
806 => 0.12025709274584
807 => 0.11872092941275
808 => 0.11850600954345
809 => 0.11545586400715
810 => 0.11746347903584
811 => 0.11611687627912
812 => 0.11408722829326
813 => 0.11373731621548
814 => 0.11372679743589
815 => 0.11581079209638
816 => 0.11743912634487
817 => 0.1161403010106
818 => 0.11584458365866
819 => 0.11900207131771
820 => 0.11860025223196
821 => 0.11825227949515
822 => 0.12722101779767
823 => 0.12012156159185
824 => 0.11702579346332
825 => 0.11319419253384
826 => 0.11444178111709
827 => 0.11470466636247
828 => 0.10549035682504
829 => 0.10175211259328
830 => 0.1004692880457
831 => 0.099731004382095
901 => 0.10006744951838
902 => 0.096702591257482
903 => 0.098963831658427
904 => 0.096050148828874
905 => 0.095561660420556
906 => 0.10077168625584
907 => 0.10149663091429
908 => 0.098403791778687
909 => 0.10038989518892
910 => 0.099669706483464
911 => 0.09610009555821
912 => 0.095963762677146
913 => 0.094172657392745
914 => 0.091369924448982
915 => 0.090089000286317
916 => 0.089421883860908
917 => 0.089697149099871
918 => 0.089557966571796
919 => 0.088649706429414
920 => 0.089610026979986
921 => 0.087156804805124
922 => 0.086179911968139
923 => 0.085738672137415
924 => 0.083561296255024
925 => 0.087026469567357
926 => 0.08770915236299
927 => 0.088393180254622
928 => 0.094347176045599
929 => 0.094049731241699
930 => 0.096738487407458
1001 => 0.096634007287162
1002 => 0.095867130473725
1003 => 0.092631803342949
1004 => 0.093921347073116
1005 => 0.089952331911254
1006 => 0.092926187937318
1007 => 0.091569044238219
1008 => 0.092467336287489
1009 => 0.090852126187173
1010 => 0.091746050147078
1011 => 0.087871041779697
1012 => 0.084252613489075
1013 => 0.085708774661728
1014 => 0.087291788388631
1015 => 0.090724165492953
1016 => 0.088679870006115
1017 => 0.089415075966552
1018 => 0.086952259071078
1019 => 0.081870764346847
1020 => 0.081899525055137
1021 => 0.081117847798194
1022 => 0.080442364521448
1023 => 0.088914681934437
1024 => 0.087861015336614
1025 => 0.086182135513457
1026 => 0.088429382872784
1027 => 0.089023590743202
1028 => 0.089040507005915
1029 => 0.09068004066943
1030 => 0.091555060079551
1031 => 0.091709286043136
1101 => 0.094289127687146
1102 => 0.095153856577285
1103 => 0.098715552494751
1104 => 0.091480820796022
1105 => 0.091331826257634
1106 => 0.088461006251659
1107 => 0.086640286818001
1108 => 0.088585672468975
1109 => 0.090309018584115
1110 => 0.088514555419265
1111 => 0.088748874425409
1112 => 0.086339954239626
1113 => 0.087201029855814
1114 => 0.087942704175887
1115 => 0.087533195209944
1116 => 0.08692014046747
1117 => 0.090167723855453
1118 => 0.089984482473321
1119 => 0.093008706785831
1120 => 0.095366305901788
1121 => 0.099591544988834
1122 => 0.095182287734806
1123 => 0.095021596875259
1124 => 0.096592375802956
1125 => 0.095153616099215
1126 => 0.096062862567682
1127 => 0.099445051325869
1128 => 0.099516511644746
1129 => 0.098319459232132
1130 => 0.098246618484036
1201 => 0.098476525494197
1202 => 0.099823098033725
1203 => 0.099352564212419
1204 => 0.099897077862893
1205 => 0.1005780005207
1206 => 0.10339458533861
1207 => 0.10407365440271
1208 => 0.1024238686339
1209 => 0.10257282581695
1210 => 0.10195576065179
1211 => 0.10135968343404
1212 => 0.10269957796945
1213 => 0.1051482615686
1214 => 0.10513302843502
1215 => 0.10570107543441
1216 => 0.10605496400908
1217 => 0.10453581518434
1218 => 0.10354690516008
1219 => 0.10392611618936
1220 => 0.10453248288332
1221 => 0.10372947964291
1222 => 0.098772971655832
1223 => 0.10027645955616
1224 => 0.10002620565274
1225 => 0.09966981366236
1226 => 0.10118158237226
1227 => 0.10103576859221
1228 => 0.09666807977253
1229 => 0.096947685039834
1230 => 0.096685083494916
1231 => 0.097533602809767
]
'min_raw' => 0.080442364521448
'max_raw' => 0.18020082679481
'avg_raw' => 0.13032159565813
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.080442'
'max' => '$0.18020082'
'avg' => '$0.130321'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.019616287554299
'max_diff' => -0.13094820430981
'year' => 2034
]
9 => [
'items' => [
101 => 0.09510779327161
102 => 0.095853955947471
103 => 0.09632194218293
104 => 0.096597589670855
105 => 0.097593417410492
106 => 0.097476568519046
107 => 0.097586153919336
108 => 0.099062703568442
109 => 0.10653058500297
110 => 0.1069370453125
111 => 0.1049354860925
112 => 0.10573506952188
113 => 0.10420004418714
114 => 0.10523051697813
115 => 0.10593554029055
116 => 0.10274967550991
117 => 0.10256102927369
118 => 0.10101966834336
119 => 0.10184790840018
120 => 0.10053011891722
121 => 0.10085345836202
122 => 0.099949373086133
123 => 0.10157654658114
124 => 0.10339597938576
125 => 0.10385563996378
126 => 0.10264647087932
127 => 0.10177095277404
128 => 0.10023383139477
129 => 0.10279009850548
130 => 0.10353762890948
131 => 0.10278617204651
201 => 0.1026120430717
202 => 0.10228206897908
203 => 0.10268204863533
204 => 0.10353355769836
205 => 0.10313200174914
206 => 0.10339723652811
207 => 0.1023864350596
208 => 0.10453631808581
209 => 0.10795084972895
210 => 0.10796182800651
211 => 0.10756026989275
212 => 0.10739596096429
213 => 0.10780798395759
214 => 0.10803148952939
215 => 0.10936389633763
216 => 0.11079362192829
217 => 0.11746552742179
218 => 0.11559208305728
219 => 0.12151179452454
220 => 0.12619351771682
221 => 0.12759736179524
222 => 0.12630589129906
223 => 0.1218878404955
224 => 0.12167106984565
225 => 0.12827350299911
226 => 0.12640801322266
227 => 0.12618611914969
228 => 0.12382554110925
301 => 0.12522093509443
302 => 0.12491574196068
303 => 0.12443397966849
304 => 0.12709629418822
305 => 0.1320799093027
306 => 0.13130316615106
307 => 0.13072336342044
308 => 0.1281828366329
309 => 0.1297128012062
310 => 0.12916801012619
311 => 0.13150877833888
312 => 0.13012215910405
313 => 0.12639388030284
314 => 0.1269876209905
315 => 0.12689787828
316 => 0.12874477690284
317 => 0.12819038377911
318 => 0.1267896241249
319 => 0.13206287584803
320 => 0.13172046021249
321 => 0.13220592729657
322 => 0.13241964492054
323 => 0.13562938031929
324 => 0.13694430621208
325 => 0.13724281741076
326 => 0.13849189530889
327 => 0.13721173921477
328 => 0.14233327632709
329 => 0.1457387996568
330 => 0.14969449025089
331 => 0.15547481739825
401 => 0.15764827387667
402 => 0.1572556584177
403 => 0.16163823649086
404 => 0.16951363186911
405 => 0.15884750098981
406 => 0.1700789627051
407 => 0.1665232115995
408 => 0.15809258969336
409 => 0.1575497570331
410 => 0.16325907206948
411 => 0.17592178331895
412 => 0.17274991777024
413 => 0.17592697135469
414 => 0.17222076958929
415 => 0.17203672543331
416 => 0.17574696940735
417 => 0.18441615668754
418 => 0.18029775077035
419 => 0.17439300601349
420 => 0.17875297765395
421 => 0.17497596672265
422 => 0.16646530397565
423 => 0.17274749230443
424 => 0.1685467718754
425 => 0.16977276541917
426 => 0.17860205495099
427 => 0.17753969147512
428 => 0.1789144881851
429 => 0.17648800797667
430 => 0.17422129284119
501 => 0.16999030071234
502 => 0.16873771252837
503 => 0.16908388283902
504 => 0.16873754098356
505 => 0.16637033977229
506 => 0.1658591428961
507 => 0.1650071257064
508 => 0.16527120146031
509 => 0.16366915987725
510 => 0.16669254334316
511 => 0.1672537099564
512 => 0.16945387631363
513 => 0.16968230488361
514 => 0.17580973687108
515 => 0.17243485029969
516 => 0.17469901558547
517 => 0.17449648733116
518 => 0.15827530683394
519 => 0.16051044238577
520 => 0.16398761188024
521 => 0.16242115173618
522 => 0.16020654358769
523 => 0.15841812876801
524 => 0.15570849744139
525 => 0.15952225149974
526 => 0.16453693253896
527 => 0.16980948547024
528 => 0.17614411234583
529 => 0.17473029737039
530 => 0.16969106402708
531 => 0.1699171203537
601 => 0.17131451161497
602 => 0.16950476296524
603 => 0.16897103275794
604 => 0.17124118528047
605 => 0.17125681857324
606 => 0.1691744840363
607 => 0.16686035026168
608 => 0.16685065395667
609 => 0.16643887620336
610 => 0.17229402393683
611 => 0.17551376316804
612 => 0.17588290108203
613 => 0.17548891724529
614 => 0.17564054598739
615 => 0.17376705067086
616 => 0.17804930539666
617 => 0.18197912580416
618 => 0.18092584998658
619 => 0.17934683980405
620 => 0.17808908213824
621 => 0.18062956225263
622 => 0.18051643867222
623 => 0.1819448022512
624 => 0.18188000342863
625 => 0.18139969848049
626 => 0.18092586713978
627 => 0.18280455484621
628 => 0.18226352295756
629 => 0.18172165069695
630 => 0.1806348429218
701 => 0.18078255814841
702 => 0.17920382060426
703 => 0.17847342437822
704 => 0.16749001760415
705 => 0.16455489242095
706 => 0.16547834255357
707 => 0.1657823663146
708 => 0.1645049960734
709 => 0.16633641686978
710 => 0.16605099187862
711 => 0.1671614135512
712 => 0.16646767029908
713 => 0.16649614176413
714 => 0.16853629274696
715 => 0.16912855725669
716 => 0.16882732674688
717 => 0.16903829827038
718 => 0.17390004798382
719 => 0.17320886264457
720 => 0.17284168420893
721 => 0.17294339514494
722 => 0.17418567643382
723 => 0.17453344736866
724 => 0.17305991748031
725 => 0.17375484269403
726 => 0.17671374605491
727 => 0.17774919477179
728 => 0.1810538500325
729 => 0.17964997374219
730 => 0.1822268494314
731 => 0.19014728677838
801 => 0.19647468018372
802 => 0.19065574771757
803 => 0.20227519991779
804 => 0.21132261016709
805 => 0.21097535549247
806 => 0.20939773024513
807 => 0.19909749421416
808 => 0.18961906345059
809 => 0.19754817325975
810 => 0.19756838619129
811 => 0.1968872686267
812 => 0.19265690593032
813 => 0.19674006117471
814 => 0.19706416721017
815 => 0.19688275401706
816 => 0.19363934485635
817 => 0.18868725855016
818 => 0.18965488436077
819 => 0.19123987517759
820 => 0.18823915689764
821 => 0.18728024558727
822 => 0.18906304415359
823 => 0.19480759259513
824 => 0.19372161898816
825 => 0.19369325982852
826 => 0.19833951544362
827 => 0.19501379914793
828 => 0.18966708922101
829 => 0.18831697445003
830 => 0.18352497655932
831 => 0.18683482657094
901 => 0.18695394218045
902 => 0.18514117115493
903 => 0.18981418559898
904 => 0.18977112294821
905 => 0.19420745467643
906 => 0.20268805473068
907 => 0.20017992398966
908 => 0.19726324082169
909 => 0.1975803651529
910 => 0.20105843633673
911 => 0.19895551510234
912 => 0.19971174024032
913 => 0.20105729169941
914 => 0.20186909630284
915 => 0.19746355896343
916 => 0.1964364174684
917 => 0.19433524644725
918 => 0.19378709014805
919 => 0.19549845010241
920 => 0.19504756721767
921 => 0.18694393097471
922 => 0.18609705589911
923 => 0.18612302834862
924 => 0.18399352070432
925 => 0.18074551040636
926 => 0.18928108754077
927 => 0.18859556124155
928 => 0.18783879326274
929 => 0.18793149302208
930 => 0.19163649775858
1001 => 0.18948740790419
1002 => 0.19520111551099
1003 => 0.19402654899681
1004 => 0.19282185928358
1005 => 0.19265533446946
1006 => 0.19219163170916
1007 => 0.19060142240791
1008 => 0.18868114911988
1009 => 0.1874132183639
1010 => 0.17287878731545
1011 => 0.17557629317515
1012 => 0.17867952778133
1013 => 0.17975075193195
1014 => 0.17791834889586
1015 => 0.1906737768484
1016 => 0.19300431644969
1017 => 0.18594495998004
1018 => 0.1846244426162
1019 => 0.19076034974693
1020 => 0.18705964766296
1021 => 0.18872607358478
1022 => 0.18512417222805
1023 => 0.19244295770591
1024 => 0.19238720082288
1025 => 0.18954002796973
1026 => 0.19194643896862
1027 => 0.1915282658387
1028 => 0.18831381469976
1029 => 0.19254486154052
1030 => 0.19254696008697
1031 => 0.18980661811869
1101 => 0.18660649863773
1102 => 0.18603439285798
1103 => 0.18560338800454
1104 => 0.18862007281191
1105 => 0.19132482297727
1106 => 0.19635769247057
1107 => 0.19762307543921
1108 => 0.20256194940715
1109 => 0.19962109042865
1110 => 0.20092473512332
1111 => 0.20234002585119
1112 => 0.20301856827172
1113 => 0.20191291981006
1114 => 0.20958502400389
1115 => 0.21023278466505
1116 => 0.21044997321163
1117 => 0.20786298284408
1118 => 0.2101608357831
1119 => 0.20908574648982
1120 => 0.21188283016252
1121 => 0.21232144859736
1122 => 0.21194995438736
1123 => 0.21208917880169
1124 => 0.20554239132418
1125 => 0.20520290585641
1126 => 0.20057399741466
1127 => 0.20246031181984
1128 => 0.19893393745275
1129 => 0.20005218709024
1130 => 0.20054510087537
1201 => 0.20028763068663
1202 => 0.2025669612061
1203 => 0.20062906462809
1204 => 0.19551463693901
1205 => 0.19039881582752
1206 => 0.19033459086073
1207 => 0.18898768546382
1208 => 0.18801411955988
1209 => 0.18820166289208
1210 => 0.18886259005643
1211 => 0.18797570527159
1212 => 0.18816496710663
1213 => 0.19130797461342
1214 => 0.191938282354
1215 => 0.18979625037437
1216 => 0.18119568288242
1217 => 0.179085082047
1218 => 0.18060214007247
1219 => 0.17987708404735
1220 => 0.14517484565701
1221 => 0.15332762182124
1222 => 0.14848351906657
1223 => 0.15071590448238
1224 => 0.14577132994419
1225 => 0.14813114008117
1226 => 0.14769536931534
1227 => 0.16080479212923
1228 => 0.16060010652342
1229 => 0.1606980786912
1230 => 0.15602161185776
1231 => 0.16347135050334
]
'min_raw' => 0.09510779327161
'max_raw' => 0.21232144859736
'avg_raw' => 0.15371462093448
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.0951077'
'max' => '$0.212321'
'avg' => '$0.153714'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.014665428750162
'max_diff' => 0.032120621802554
'year' => 2035
]
10 => [
'items' => [
101 => 0.16714135964409
102 => 0.16646213862627
103 => 0.16663308392321
104 => 0.16369567735286
105 => 0.16072651920765
106 => 0.15743326587446
107 => 0.16355172350912
108 => 0.1628714554657
109 => 0.16443174560459
110 => 0.16840000273705
111 => 0.16898434367374
112 => 0.16976970381847
113 => 0.16948820811232
114 => 0.17619457786872
115 => 0.17538239224116
116 => 0.17733952592181
117 => 0.17331355345263
118 => 0.16875778345494
119 => 0.16962368639216
120 => 0.16954029297615
121 => 0.16847859907589
122 => 0.16752014929428
123 => 0.16592460044944
124 => 0.1709731530913
125 => 0.17076819107378
126 => 0.17408628789515
127 => 0.1734997820517
128 => 0.16958295248682
129 => 0.16972284282099
130 => 0.17066367254728
131 => 0.1739198949722
201 => 0.17488656348844
202 => 0.17443876411664
203 => 0.1754986720146
204 => 0.17633638000123
205 => 0.17560387524014
206 => 0.18597459794127
207 => 0.1816679508315
208 => 0.18376698066734
209 => 0.18426758691499
210 => 0.18298529453825
211 => 0.18326337783932
212 => 0.18368459826727
213 => 0.18624216622237
214 => 0.19295396457481
215 => 0.19592657437635
216 => 0.20486981763026
217 => 0.19567974051306
218 => 0.19513443936924
219 => 0.19674538753935
220 => 0.20199601806783
221 => 0.20625116094453
222 => 0.20766283732181
223 => 0.2078494136593
224 => 0.21049781238955
225 => 0.21201582515202
226 => 0.2101762271239
227 => 0.20861736040901
228 => 0.20303369332993
229 => 0.20368001799815
301 => 0.20813255403288
302 => 0.214422023435
303 => 0.21981904248977
304 => 0.21792919452189
305 => 0.23234740049206
306 => 0.23377690672092
307 => 0.23357939518156
308 => 0.23683602310993
309 => 0.23037227987285
310 => 0.22760890440987
311 => 0.20895440508665
312 => 0.21419555848934
313 => 0.22181388276229
314 => 0.22080556897752
315 => 0.21527293825211
316 => 0.21981484549325
317 => 0.21831314892075
318 => 0.21712869852858
319 => 0.22255489539213
320 => 0.21658856904478
321 => 0.22175436409297
322 => 0.21512917851035
323 => 0.21793782718822
324 => 0.21634350235961
325 => 0.21737522591683
326 => 0.21134379108294
327 => 0.2145982069145
328 => 0.21120839668482
329 => 0.21120678947341
330 => 0.21113195922471
331 => 0.2151200559272
401 => 0.2152501076175
402 => 0.21230289812867
403 => 0.21187815919726
404 => 0.21344864164135
405 => 0.21161001800933
406 => 0.21247029843459
407 => 0.21163607502703
408 => 0.21144827376655
409 => 0.20995184137133
410 => 0.2093071371502
411 => 0.20955994228728
412 => 0.20869698802443
413 => 0.20817702686664
414 => 0.21102852586319
415 => 0.20950508497847
416 => 0.21079503669839
417 => 0.20932497390866
418 => 0.20422909580359
419 => 0.20129840241744
420 => 0.19167276106512
421 => 0.19440258101207
422 => 0.19621245446109
423 => 0.19561429129699
424 => 0.1968993772319
425 => 0.19697827107127
426 => 0.19656047653393
427 => 0.19607672398248
428 => 0.19584125999363
429 => 0.1975962156545
430 => 0.19861502648472
501 => 0.19639409947469
502 => 0.19587376735031
503 => 0.19811924717819
504 => 0.19948898857603
505 => 0.20960238946647
506 => 0.20885315606265
507 => 0.21073358487661
508 => 0.21052187744969
509 => 0.21249286642251
510 => 0.21571460039099
511 => 0.20916391442209
512 => 0.21030088700061
513 => 0.21002212758089
514 => 0.21306554983078
515 => 0.21307505106284
516 => 0.21125036739382
517 => 0.21223955801291
518 => 0.21168741894635
519 => 0.21268520886568
520 => 0.20884314959376
521 => 0.21352236306229
522 => 0.2161751755771
523 => 0.21621200988144
524 => 0.21746942195943
525 => 0.21874702545507
526 => 0.22119927410914
527 => 0.21867863357107
528 => 0.2141442466225
529 => 0.2144716147142
530 => 0.21181310530532
531 => 0.21185779532878
601 => 0.21161923648112
602 => 0.21233516954083
603 => 0.20900025663995
604 => 0.20978295403206
605 => 0.20868717309964
606 => 0.21029850498687
607 => 0.20856497823892
608 => 0.21002199315466
609 => 0.21065079249148
610 => 0.21297107558144
611 => 0.20822227053996
612 => 0.19853913559456
613 => 0.20057464795675
614 => 0.19756396528703
615 => 0.19784261543059
616 => 0.19840553306742
617 => 0.19658093283125
618 => 0.19692900905655
619 => 0.19691657332441
620 => 0.19680940890313
621 => 0.1963347599123
622 => 0.19564642496916
623 => 0.19838853952433
624 => 0.19885447822086
625 => 0.19989020222566
626 => 0.20297181432563
627 => 0.20266388860743
628 => 0.20316612822954
629 => 0.20206974195443
630 => 0.19789347364538
701 => 0.19812026510719
702 => 0.19529217194428
703 => 0.19981788152506
704 => 0.19874613375988
705 => 0.19805517100354
706 => 0.19786663541375
707 => 0.20095588623407
708 => 0.20188023849758
709 => 0.20130424419794
710 => 0.20012286308492
711 => 0.20239146406589
712 => 0.2029984459838
713 => 0.20313432685059
714 => 0.20715385282777
715 => 0.20335897370135
716 => 0.20427243882494
717 => 0.21139903295902
718 => 0.20493619548217
719 => 0.20835970463213
720 => 0.20819214167432
721 => 0.20994349311021
722 => 0.20804847973846
723 => 0.20807197070036
724 => 0.2096270521286
725 => 0.20744322072305
726 => 0.20690247335574
727 => 0.20615543474071
728 => 0.20778656622677
729 => 0.20876435578292
730 => 0.21664462149824
731 => 0.22173563253412
801 => 0.22151461831846
802 => 0.22353427452826
803 => 0.22262440090782
804 => 0.21968617897487
805 => 0.22470136553642
806 => 0.22311435066403
807 => 0.22324518224188
808 => 0.22324031268402
809 => 0.22429553883492
810 => 0.22354781439695
811 => 0.22207397277738
812 => 0.22305237762576
813 => 0.22595789023931
814 => 0.23497669054378
815 => 0.24002373067737
816 => 0.23467285239048
817 => 0.23836381658166
818 => 0.23615055329197
819 => 0.23574833751335
820 => 0.23806653578552
821 => 0.24038879175689
822 => 0.2402408740909
823 => 0.23855503550485
824 => 0.23760274806416
825 => 0.24481378760475
826 => 0.2501267587014
827 => 0.24976444969122
828 => 0.25136356383296
829 => 0.25605861241185
830 => 0.25648786881364
831 => 0.25643379237336
901 => 0.25536983559325
902 => 0.25999272064826
903 => 0.26384921269308
904 => 0.25512356033932
905 => 0.25844617452846
906 => 0.2599378030859
907 => 0.26212795635448
908 => 0.26582311203088
909 => 0.2698370311871
910 => 0.27040464336617
911 => 0.27000189536237
912 => 0.26735460777891
913 => 0.27174668601565
914 => 0.27431946243983
915 => 0.27585149192348
916 => 0.27973646378863
917 => 0.25994701487606
918 => 0.24593905933631
919 => 0.24375151480145
920 => 0.24819997263403
921 => 0.2493729954887
922 => 0.24890015144683
923 => 0.23313292393925
924 => 0.24366850361173
925 => 0.25500390148262
926 => 0.2554393402797
927 => 0.26111407746586
928 => 0.26296200450901
929 => 0.26753091174868
930 => 0.26724512535686
1001 => 0.26835758156252
1002 => 0.2681018471459
1003 => 0.27656478571045
1004 => 0.28590066370569
1005 => 0.28557739193699
1006 => 0.28423524901808
1007 => 0.28622856012204
1008 => 0.29586418670661
1009 => 0.29497709261847
1010 => 0.2958388289626
1011 => 0.30719977574594
1012 => 0.3219706226401
1013 => 0.31510808128898
1014 => 0.32999782137784
1015 => 0.33937012349256
1016 => 0.35557855088586
1017 => 0.35354917594803
1018 => 0.35985899778931
1019 => 0.34991617126599
1020 => 0.32708543179167
1021 => 0.3234723798773
1022 => 0.33070580130692
1023 => 0.34848846206469
1024 => 0.33014576203654
1025 => 0.33385646636265
1026 => 0.3327877832671
1027 => 0.33273083768655
1028 => 0.33490421888177
1029 => 0.33175161610216
1030 => 0.31890734523559
1031 => 0.32479379888197
1101 => 0.32252075643838
1102 => 0.32504286649609
1103 => 0.3386536542802
1104 => 0.33263600056019
1105 => 0.32629689120065
1106 => 0.33424754109849
1107 => 0.34437145055816
1108 => 0.34373791449859
1109 => 0.34250858974549
1110 => 0.34943822901336
1111 => 0.36088396289008
1112 => 0.36397769876427
1113 => 0.36626143133796
1114 => 0.36657631947589
1115 => 0.36981986299849
1116 => 0.35237851199927
1117 => 0.38005838396069
1118 => 0.3848379332074
1119 => 0.38393957604103
1120 => 0.38925184387457
1121 => 0.38768883991872
1122 => 0.38542429241449
1123 => 0.39384536688242
1124 => 0.38419128455061
1125 => 0.37048853009577
1126 => 0.3629709279921
1127 => 0.37287071286988
1128 => 0.37891616603986
1129 => 0.38291182602218
1130 => 0.38412091031859
1201 => 0.35373243442818
1202 => 0.33735473134538
1203 => 0.34785265125071
1204 => 0.36066083806293
1205 => 0.35230736187482
1206 => 0.35263480232618
1207 => 0.34072494053686
1208 => 0.36171459656091
1209 => 0.358656580229
1210 => 0.37452157436848
1211 => 0.37073526619256
1212 => 0.38367255303778
1213 => 0.38026573183574
1214 => 0.39440725617261
1215 => 0.40004869309708
1216 => 0.40952154371281
1217 => 0.41648981118718
1218 => 0.42058171112984
1219 => 0.42033604880561
1220 => 0.43655019495491
1221 => 0.42698927944979
1222 => 0.41497851624059
1223 => 0.41476127942761
1224 => 0.42098182388748
1225 => 0.43401837855235
1226 => 0.4373985675028
1227 => 0.43928763199224
1228 => 0.43639446396785
1229 => 0.42601677542403
1230 => 0.42153574212688
1231 => 0.42535371232408
]
'min_raw' => 0.15743326587446
'max_raw' => 0.43928763199224
'avg_raw' => 0.29836044893335
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.157433'
'max' => '$0.439287'
'avg' => '$0.29836'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.062325472602851
'max_diff' => 0.22696618339488
'year' => 2036
]
11 => [
'items' => [
101 => 0.42068466285483
102 => 0.42874475214267
103 => 0.43981297627705
104 => 0.4375274317618
105 => 0.44516766440829
106 => 0.45307450142149
107 => 0.46438163346864
108 => 0.46733773648765
109 => 0.47222406236755
110 => 0.4772536967724
111 => 0.47886907979079
112 => 0.48195334719681
113 => 0.48193709158514
114 => 0.49123173900832
115 => 0.50148402294736
116 => 0.50535402279343
117 => 0.51425287404642
118 => 0.49901390312861
119 => 0.51057283762245
120 => 0.52099928587479
121 => 0.50856844443634
122 => 0.52570146334466
123 => 0.52636669964461
124 => 0.53641097796901
125 => 0.52622917763634
126 => 0.52018325710026
127 => 0.53763760315024
128 => 0.54608321139707
129 => 0.54353932546048
130 => 0.52418022787592
131 => 0.51291240273095
201 => 0.48342233092542
202 => 0.51835459485537
203 => 0.53536908162754
204 => 0.52413616446558
205 => 0.5298013945023
206 => 0.56070905262565
207 => 0.57247668771636
208 => 0.57002910187947
209 => 0.57044270359521
210 => 0.57679230589247
211 => 0.60494993926838
212 => 0.58807723266071
213 => 0.60097578465402
214 => 0.60781713012208
215 => 0.61417175306514
216 => 0.59856680751619
217 => 0.57826500263917
218 => 0.57183456882283
219 => 0.52301927223042
220 => 0.5204782240487
221 => 0.51905185670266
222 => 0.51005881234954
223 => 0.50299274289015
224 => 0.4973735421097
225 => 0.48262708122641
226 => 0.48760357888762
227 => 0.46410079806524
228 => 0.47913704434799
301 => 0.44162603866099
302 => 0.47286631884268
303 => 0.45586365466102
304 => 0.46728048637382
305 => 0.4672406541235
306 => 0.44621864723046
307 => 0.43409359237264
308 => 0.44182014924224
309 => 0.45010363154129
310 => 0.45144759867533
311 => 0.46218734969707
312 => 0.46518458335706
313 => 0.45610282543983
314 => 0.4408487064443
315 => 0.44439189037755
316 => 0.43402178986333
317 => 0.41584858759231
318 => 0.42890089873702
319 => 0.43335753163144
320 => 0.43532583460639
321 => 0.41745457737923
322 => 0.41183904035458
323 => 0.40884937556158
324 => 0.43854175155391
325 => 0.44016836693752
326 => 0.43184637265474
327 => 0.46946257593679
328 => 0.46094887061989
329 => 0.47046076536731
330 => 0.4440703835735
331 => 0.44507853169739
401 => 0.43258490203157
402 => 0.43958049981979
403 => 0.43463623678172
404 => 0.43901532465035
405 => 0.44164013186315
406 => 0.45413171144728
407 => 0.47300895261603
408 => 0.45226588601488
409 => 0.44322783485057
410 => 0.44883499096098
411 => 0.46376758658538
412 => 0.48639123334186
413 => 0.4729975791187
414 => 0.47894145542394
415 => 0.48023992797199
416 => 0.47036394320786
417 => 0.48675537498707
418 => 0.4955396764413
419 => 0.50455055207829
420 => 0.51237444291487
421 => 0.50095141019547
422 => 0.51317569263265
423 => 0.50332507886462
424 => 0.49448805997696
425 => 0.49450146208685
426 => 0.48895787105038
427 => 0.47821646487979
428 => 0.4762355847792
429 => 0.48654037322007
430 => 0.49480383768254
501 => 0.495484456195
502 => 0.50005953471356
503 => 0.50276701905379
504 => 0.5293040462345
505 => 0.53997745809239
506 => 0.55302870407487
507 => 0.55811289991296
508 => 0.57341450660054
509 => 0.56105721646459
510 => 0.55838363901267
511 => 0.52126694630602
512 => 0.52734480265742
513 => 0.53707603710192
514 => 0.52142741077777
515 => 0.53135286236317
516 => 0.53331235675594
517 => 0.5208956764433
518 => 0.52752796189137
519 => 0.50991457807688
520 => 0.47339287625136
521 => 0.48679603408149
522 => 0.4966652696986
523 => 0.482580653605
524 => 0.50782678280286
525 => 0.49307851531136
526 => 0.48840402255824
527 => 0.47016715975134
528 => 0.47877425699498
529 => 0.49041547925875
530 => 0.48322255733709
531 => 0.49814895034721
601 => 0.51928870357315
602 => 0.53435415061602
603 => 0.53551068857158
604 => 0.52582461542957
605 => 0.54134660945533
606 => 0.54145967023606
607 => 0.5239507975658
608 => 0.51322671054507
609 => 0.51079017541029
610 => 0.51687711788782
611 => 0.52426778976712
612 => 0.53592081942442
613 => 0.54296250119061
614 => 0.56132347261741
615 => 0.56629142503519
616 => 0.57174969855328
617 => 0.57904363524266
618 => 0.58780187636524
619 => 0.56863934339598
620 => 0.56940070655428
621 => 0.55155682117663
622 => 0.53248807057861
623 => 0.54695887532919
624 => 0.56587752757009
625 => 0.56153756784278
626 => 0.56104923371612
627 => 0.56187047626456
628 => 0.55859828836
629 => 0.54379830374061
630 => 0.53636584411755
701 => 0.54595561325397
702 => 0.55105214875845
703 => 0.55895643086131
704 => 0.55798206125298
705 => 0.578342643092
706 => 0.58625414952261
707 => 0.58423004762521
708 => 0.58460253108706
709 => 0.59892593557688
710 => 0.61485650720236
711 => 0.6297775897537
712 => 0.64495595580032
713 => 0.6266578431094
714 => 0.61736718995565
715 => 0.62695277249886
716 => 0.62186652747459
717 => 0.65109360006231
718 => 0.6531172191552
719 => 0.68234217829291
720 => 0.71008014455799
721 => 0.69265842492418
722 => 0.70908632184738
723 => 0.72685443175591
724 => 0.7611319985414
725 => 0.74958851994739
726 => 0.74074639625374
727 => 0.73239063208808
728 => 0.74977765087662
729 => 0.77214577278366
730 => 0.77696365200323
731 => 0.78477045691045
801 => 0.7765625561212
802 => 0.78644806855124
803 => 0.82134827134354
804 => 0.81191792847645
805 => 0.79852532560191
806 => 0.82607568385533
807 => 0.83604605140794
808 => 0.90602331241416
809 => 0.99437249505098
810 => 0.95779535330732
811 => 0.93509074109005
812 => 0.94042686352171
813 => 0.97268899421211
814 => 0.98305056664102
815 => 0.95488424093103
816 => 0.96483306334142
817 => 1.0196520529693
818 => 1.0490606821009
819 => 1.0091198136343
820 => 0.89892454161297
821 => 0.7973194682447
822 => 0.82426970903805
823 => 0.82121438809542
824 => 0.88011055364232
825 => 0.81169301791789
826 => 0.81284499375294
827 => 0.87295906963122
828 => 0.85692166480306
829 => 0.83094312289706
830 => 0.79750914035019
831 => 0.73570333134323
901 => 0.68096020272326
902 => 0.78832408453659
903 => 0.78369435872425
904 => 0.77698982966106
905 => 0.79191003358538
906 => 0.86435830866813
907 => 0.86268814143529
908 => 0.85206338962678
909 => 0.86012217023127
910 => 0.82953037969347
911 => 0.83741458067718
912 => 0.79730337348197
913 => 0.81543531432619
914 => 0.83088738461369
915 => 0.83398961649572
916 => 0.84097910332981
917 => 0.78125470359752
918 => 0.80806920566107
919 => 0.82382021344433
920 => 0.75265658725297
921 => 0.82241353736303
922 => 0.78021503467297
923 => 0.76589222905973
924 => 0.78517599993181
925 => 0.77766109566888
926 => 0.77120022227359
927 => 0.76759494390713
928 => 0.78175481696346
929 => 0.78109424196067
930 => 0.75792594132759
1001 => 0.72770383761247
1002 => 0.737847367626
1003 => 0.73416212807599
1004 => 0.72080634454136
1005 => 0.72980653006025
1006 => 0.69017426792474
1007 => 0.62198902082634
1008 => 0.66703428363015
1009 => 0.66530009001202
1010 => 0.66442563095034
1011 => 0.69827590098778
1012 => 0.69502197858228
1013 => 0.6891160775538
1014 => 0.72069787803751
1015 => 0.7091700960258
1016 => 0.74469600389886
1017 => 0.76809566449573
1018 => 0.76216075366864
1019 => 0.78416824756036
1020 => 0.73808105407046
1021 => 0.75338937105054
1022 => 0.75654439396372
1023 => 0.72030816352186
1024 => 0.69555436052976
1025 => 0.6939035640842
1026 => 0.65098388098008
1027 => 0.67391122925872
1028 => 0.69408634694579
1029 => 0.68442403122606
1030 => 0.68136523072267
1031 => 0.69699197912163
1101 => 0.69820631130628
1102 => 0.67051940880714
1103 => 0.67627639256689
1104 => 0.70028397186393
1105 => 0.6756714631657
1106 => 0.62785337919552
1107 => 0.61599383323418
1108 => 0.61441155118813
1109 => 0.58224752194853
1110 => 0.61678634480394
1111 => 0.60170922304465
1112 => 0.6493376700306
1113 => 0.62213255654871
1114 => 0.62095979848067
1115 => 0.61918700265464
1116 => 0.59150209400879
1117 => 0.5975633295345
1118 => 0.6177117995742
1119 => 0.62490100067312
1120 => 0.62415110809912
1121 => 0.61761306107904
1122 => 0.62060614552461
1123 => 0.61096437766568
1124 => 0.60755966875865
1125 => 0.59681347090908
1126 => 0.58101952878315
1127 => 0.58321577330564
1128 => 0.5519238412444
1129 => 0.53487433586891
1130 => 0.53015525748984
1201 => 0.52384470865749
1202 => 0.53086805077218
1203 => 0.5518351951325
1204 => 0.52654437060614
1205 => 0.48318502590077
1206 => 0.48579099639829
1207 => 0.49164583838664
1208 => 0.48073537907501
1209 => 0.470409544982
1210 => 0.47938701996448
1211 => 0.46101509401667
1212 => 0.49386599786452
1213 => 0.49297747297903
1214 => 0.50522225844724
1215 => 0.5128791740888
1216 => 0.49523246249087
1217 => 0.49079436224577
1218 => 0.49332250584579
1219 => 0.45153792364696
1220 => 0.50180756663436
1221 => 0.50224230059441
1222 => 0.49851984449384
1223 => 0.52528687748352
1224 => 0.58177366593871
1225 => 0.56052106394607
1226 => 0.55229141409122
1227 => 0.53664684370132
1228 => 0.55749230486319
1229 => 0.55589169868581
1230 => 0.54865315053983
1231 => 0.54427525403549
]
'min_raw' => 0.40884937556158
'max_raw' => 1.0490606821009
'avg_raw' => 0.72895502883122
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.408849'
'max' => '$1.04'
'avg' => '$0.728955'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.25141610968712
'max_diff' => 0.60977305010862
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.012833314717161
]
1 => [
'year' => 2028
'avg' => 0.02202569359253
]
2 => [
'year' => 2029
'avg' => 0.060170225149757
]
3 => [
'year' => 2030
'avg' => 0.04642123909485
]
4 => [
'year' => 2031
'avg' => 0.04559140971197
]
5 => [
'year' => 2032
'avg' => 0.079936089369769
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.012833314717161
'min' => '$0.012833'
'max_raw' => 0.079936089369769
'max' => '$0.079936'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.079936089369769
]
1 => [
'year' => 2033
'avg' => 0.20560384159018
]
2 => [
'year' => 2034
'avg' => 0.13032159565813
]
3 => [
'year' => 2035
'avg' => 0.15371462093448
]
4 => [
'year' => 2036
'avg' => 0.29836044893335
]
5 => [
'year' => 2037
'avg' => 0.72895502883122
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.079936089369769
'min' => '$0.079936'
'max_raw' => 0.72895502883122
'max' => '$0.728955'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.72895502883122
]
]
]
]
'prediction_2025_max_price' => '$0.021942'
'last_price' => 0.02127615
'sma_50day_nextmonth' => '$0.020328'
'sma_200day_nextmonth' => '$0.036295'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'augmenter'
'sma_200day_date_nextmonth' => '4 févr. 2026'
'sma_50day_date_nextmonth' => '4 févr. 2026'
'daily_sma3' => '$0.021189'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.021264'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.021281'
'daily_sma10_action' => 'SELL'
'daily_sma21' => '$0.021539'
'daily_sma21_action' => 'SELL'
'daily_sma50' => '$0.024916'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.0233086'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '—'
'daily_sma200_action' => '—'
'daily_ema3' => '$0.021229'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.021235'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.021332'
'daily_ema10_action' => 'SELL'
'daily_ema21' => '$0.021943'
'daily_ema21_action' => 'SELL'
'daily_ema50' => '$0.02337'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.02877'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.0414059'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.028366'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '—'
'weekly_sma50_action' => '—'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.02142'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.02185'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.023612'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.03406'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.024764'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.012382'
'weekly_ema100_action' => 'BUY'
'weekly_ema200' => '$0.006191'
'weekly_ema200_action' => 'BUY'
'rsi_14' => '39.59'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 80.09
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'SELL'
'vwma_10' => '0.021254'
'vwma_10_action' => 'BUY'
'hma_9' => '0.021188'
'hma_9_action' => 'SELL'
'stochastic_fast_14' => 58.68
'stochastic_fast_14_action' => 'NEUTRAL'
'cci_20' => -39.47
'cci_20_action' => 'NEUTRAL'
'adx_14' => 25.48
'adx_14_action' => 'SELL'
'ao_5_34' => '-0.001871'
'ao_5_34_action' => 'SELL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -41.32
'williams_percent_r_14_action' => 'NEUTRAL'
'ultimate_oscillator' => 51.31
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '0.004925'
'ichimoku_cloud_action' => 'NEUTRAL'
'sell_signals' => 19
'buy_signals' => 12
'sell_pct' => 61.29
'buy_pct' => 38.71
'overall_action' => 'bearish'
'overall_action_label' => 'Baissier'
'overall_action_dir' => -1
'last_updated' => 1767701297
'last_updated_date' => '6 janvier 2026'
]
Prévision du prix de Six Sigma pour 2026
La prévision du prix de Six Sigma pour 2026 suggère que le prix moyen pourrait varier entre $0.00735 à la baisse et $0.021942 à la hausse. Sur le marché des cryptomonnaies, comparé au prix moyen d'aujourd'hui, Six Sigma pourrait potentiellement gagner 3.13% d'ici 2026 si SIX atteint l'objectif de prix prévu.
Prévision du prix de Six Sigma de 2027 à 2032
La prévision du prix de SIX pour 2027-2032 se situe actuellement dans une fourchette de prix comprise entre $0.012833 à la baisse et $0.079936 à la hausse. Compte tenu de la volatilité des prix sur le marché, si Six Sigma atteint l'objectif de prix le plus élevé, il pourrait gagner 275.71% d'ici 2032 par rapport au prix actuel.
| Prévision du Prix de Six Sigma | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2027 | $0.007076 | $0.012833 | $0.01859 |
| 2028 | $0.012771 | $0.022025 | $0.03128 |
| 2029 | $0.028054 | $0.06017 | $0.092286 |
| 2030 | $0.023859 | $0.046421 | $0.068983 |
| 2031 | $0.0282087 | $0.045591 | $0.062974 |
| 2032 | $0.043058 | $0.079936 | $0.116813 |
Prévision du prix de Six Sigma de 2032 à 2037
La prévision du prix de Six Sigma pour 2032-2037 est actuellement estimée entre $0.079936 à la baisse et $0.728955 à la hausse. Par rapport au prix actuel, Six Sigma pourrait potentiellement gagner 3326.16% d'ici 2037 s'il atteint l'objectif de prix le plus élevé. Veuillez noter que ces informations sont à titre général seulement et ne doivent pas être considérées comme un conseil en investissement à long terme.
| Prévision du Prix de Six Sigma | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2032 | $0.043058 | $0.079936 | $0.116813 |
| 2033 | $0.100058 | $0.2056038 | $0.311149 |
| 2034 | $0.080442 | $0.130321 | $0.18020082 |
| 2035 | $0.0951077 | $0.153714 | $0.212321 |
| 2036 | $0.157433 | $0.29836 | $0.439287 |
| 2037 | $0.408849 | $0.728955 | $1.04 |
Six Sigma Histogramme des prix potentiels
Prévision du prix de Six Sigma basée sur l'analyse technique
Au 6 janvier 2026, le sentiment global de prévision du prix pour Six Sigma est Baissier, avec 12 indicateurs techniques montrant des signaux haussiers et 19 indiquant des signaux baissiers. La prévision du prix de SIX a été mise à jour pour la dernière fois le 6 janvier 2026.
Moyennes Mobiles Simples sur 50 et 200 jours de Six Sigma et Indice de Force Relative sur 14 jours - RSI (14)
Selon nos indicateurs techniques, le SMA sur 200 jours de Six Sigma devrait augmenter au cours du prochain mois, atteignant $0.036295 d'ici le 4 févr. 2026. Le SMA à court terme sur 50 jours pour Six Sigma devrait atteindre $0.020328 d'ici le 4 févr. 2026.
Le Relative Strength Index (RSI), un oscillateur de momentum, est un outil couramment utilisé pour identifier si une cryptomonnaie est survendue (en dessous de 30) ou surachetée (au-dessus de 70). Actuellement, le RSI est à 39.59, ce qui suggère que le marché de SIX est dans un état NEUTRAL.
Moyennes Mobiles et Oscillateurs Populaires de SIX pour le Samedi 19 Octobre 2024
Les moyennes mobiles (MA) sont des indicateurs largement utilisés sur les marchés financiers, conçus pour lisser les mouvements de prix sur une période donnée. En tant qu'indicateurs retardés, ils sont basés sur des données historiques de prix. Le tableau ci-dessous met en évidence deux types : la moyenne mobile simple (SMA) et la moyenne mobile exponentielle (EMA).
Moyenne Mobile Simple Quotidienne (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 3 | $0.021189 | BUY |
| SMA 5 | $0.021264 | BUY |
| SMA 10 | $0.021281 | SELL |
| SMA 21 | $0.021539 | SELL |
| SMA 50 | $0.024916 | SELL |
| SMA 100 | $0.0233086 | SELL |
| SMA 200 | — | — |
Moyenne Mobile Exponentielle Quotidienne (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 3 | $0.021229 | BUY |
| EMA 5 | $0.021235 | BUY |
| EMA 10 | $0.021332 | SELL |
| EMA 21 | $0.021943 | SELL |
| EMA 50 | $0.02337 | SELL |
| EMA 100 | $0.02877 | SELL |
| EMA 200 | $0.0414059 | SELL |
Moyenne Mobile Simple Hebdomadaire (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 21 | $0.028366 | SELL |
| SMA 50 | — | — |
| SMA 100 | — | — |
| SMA 200 | — | — |
Moyenne Mobile Exponentielle Hebdomadaire (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 21 | $0.03406 | SELL |
| EMA 50 | $0.024764 | SELL |
| EMA 100 | $0.012382 | BUY |
| EMA 200 | $0.006191 | BUY |
Oscillateurs de Six Sigma
Un oscillateur est un outil d'analyse technique qui établit des limites hautes et basses entre deux extrêmes, créant un indicateur de tendance qui fluctue à l'intérieur de ces limites. Les traders utilisent cet indicateur pour identifier les conditions de surachat ou de survente à court terme.
| Période | Valeur | Action |
|---|---|---|
| RSI (14) | 39.59 | NEUTRAL |
| Stoch RSI (14) | 80.09 | SELL |
| Stochastique Rapide (14) | 58.68 | NEUTRAL |
| Indice de Canal des Matières Premières (20) | -39.47 | NEUTRAL |
| Indice Directionnel Moyen (14) | 25.48 | SELL |
| Oscillateur Impressionnant (5, 34) | -0.001871 | SELL |
| Momentum (10) | 0 | SELL |
| MACD (12, 26) | 0 | BUY |
| Plage de Pourcentage de Williams (14) | -41.32 | NEUTRAL |
| Oscillateur Ultime (7, 14, 28) | 51.31 | NEUTRAL |
| VWMA (10) | 0.021254 | BUY |
| Moyenne Mobile de Hull (9) | 0.021188 | SELL |
| Nuage Ichimoku B/L (9, 26, 52, 26) | 0.004925 | NEUTRAL |
Prévision du cours de Six Sigma basée sur les flux monétaires mondiaux
Définitions des flux monétaires mondiaux utilisés pour la prédiction du cours de Six Sigma
M0 : le total de toutes les devises physiques, plus les comptes à la banque centrale qui peuvent être échangés contre des devises physiques.
M1 : M0 plus le montant des comptes à vue, y compris les comptes de "chèques" et les comptes "courants".
M2 : M1 plus la plupart des comptes d'épargne, comptes du marché monétaire et comptes de certificats de dépôt (CD) de moins de 100 000 $.
Prédictions du cours de Six Sigma par des sociétés Internet ou des niches technologiques
| Comparaison | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Action Facebook | $0.029896 | $0.0420096 | $0.05903 | $0.082947 | $0.116555 | $0.163779 |
| Action Amazon.com | $0.044393 | $0.09263 | $0.193279 | $0.403288 | $0.841485 | $1.75 |
| Action Apple | $0.030178 | $0.042806 | $0.060717 | $0.086122 | $0.122158 | $0.173272 |
| Action Netflix | $0.03357 | $0.052968 | $0.083576 | $0.13187 | $0.208071 | $0.328304 |
| Action Google | $0.027552 | $0.03568 | $0.0462059 | $0.059836 | $0.077487 | $0.100346 |
| Action Tesla | $0.048231 | $0.109336 | $0.247858 | $0.561876 | $1.27 | $2.88 |
| Action Kodak | $0.015954 | $0.011964 | $0.008972 | $0.006728 | $0.005045 | $0.003783 |
| Action Nokia | $0.014094 | $0.009337 | $0.006185 | $0.004097 | $0.002714 | $0.001798 |
Ce calcul montre la valeur potentielle des cryptomonnaies si l'on suppose que leur capitalisation se comportera comme celle de certaines sociétés Internet ou niches technologiques. En extrapolant les données, vous pourrez obtenir une potentielle image des cours futurs pour 2024, 2025, 2026, 2027, 2028, 2029 et 2030.
Aperçu des prévisions relatives à Six Sigma
Vous vous posez peut-être des questions telles que : "Devrais-je investir dans Six Sigma maintenant ?", "Devrais-je acheter SIX aujourd'hui ?", " Six Sigma sera-t-il un bon ou un mauvais investissement à court ou à long terme ?".
Nous mettons régulièrement à jour les prévisions de Six Sigma avec de nouvelles valeurs. Regardez nos prévisions similaires. Nous faisons une prévision des cours futurs pour une grande quantité de devises numériques comme Six Sigma en utilisant des méthodes d'analyse technique.
Si vous souhaitez trouver des cryptomonnaies ayant un bon rendement, vous devriez consulter un maximum d'informations disponibles à propos de Six Sigma afin de prendre une décision responsable concernant cet investissement.
Le cours de Six Sigma est de $0.02127 USD actuellement, mais ce cours peut subir une hausse ou une baisse, ce qui pourrait causer la perte de votre investissement, car les cryptomonnaies sont des actifs à haut risque.
Prévision du cours de Six Sigma basée sur le modèle de croissance du Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si Six Sigma présente 1 % de la précédente croissance annuelle moyenne du Bitcoin | $0.021829 | $0.022396 | $0.022978 | $0.023576 |
| Si Six Sigma présente 2 % de la précédente croissance annuelle moyenne du Bitcoin | $0.022382 | $0.023545 | $0.024769 | $0.026057 |
| Si Six Sigma présente 5 % de la précédente croissance annuelle moyenne du Bitcoin | $0.024041 | $0.027165 | $0.030696 | $0.034686 |
| Si Six Sigma présente 10 % de la précédente croissance annuelle moyenne du Bitcoin | $0.0268065 | $0.033774 | $0.042553 | $0.053614 |
| Si Six Sigma présente 20 % de la précédente croissance annuelle moyenne du Bitcoin | $0.032336 | $0.049147 | $0.074697 | $0.11353 |
| Si Six Sigma présente 50 % de la précédente croissance annuelle moyenne du Bitcoin | $0.048927 | $0.112517 | $0.258752 | $0.595042 |
| Si Six Sigma présente 100 % de la précédente croissance annuelle moyenne du Bitcoin | $0.076579 | $0.275634 | $0.992098 | $3.57 |
Boîte à questions
Est-ce que SIX est un bon investissement ?
La décision d'acquérir Six Sigma dépend entièrement de votre tolérance individuelle au risque. Comme vous pouvez le discerner, la valeur de Six Sigma a connu une baisse de -0.3519% au cours des 24 heures précédentes, et Six Sigma a enregistré une déclin de sur une période de 30 jours précédents. Par conséquent, la détermination de si investir ou non dans Six Sigma dépendra de la mesure dans laquelle cet investissement s'aligne avec vos aspirations de trading.
Est-ce que Six Sigma peut monter ?
Il semble que la valeur moyenne de Six Sigma pourrait potentiellement s'envoler jusqu'à $0.021942 pour la fin de cette année. En regardant les perspectives de Six Sigma sur une période de cinq ans plus longue, la monnaie numérique pourrait potentiellement croître jusqu'à $0.068983. Cependant, compte tenu de l'imprévisibilité du marché, il est essentiel de mener des recherches approfondies avant d'investir des fonds dans un projet, un réseau ou un actif particulier.
Quel sera le prix de Six Sigma la semaine prochaine ?
Basé sur notre nouveau pronostic expérimental de Six Sigma, le prix de Six Sigma va augmenter de 0.86% durant la prochaine semaine et atteindre $0.021458 d'ici 13 janvier 2026.
Quel sera le prix de Six Sigma le mois prochain ?
Basé sur notre nouveau pronostic expérimental de Six Sigma, le prix de Six Sigma va diminuer de -11.62% durant le prochain mois et atteindre $0.018804 d'ici 5 février 2026.
Jusqu'où le prix de Six Sigma peut-il monter cette année en 2026 ?
Selon notre prédiction la plus récente sur la valeur de Six Sigma en 2026, SIX devrait fluctuer dans la fourchette de $0.00735 et $0.021942. Cependant, il est crucial de garder à l'esprit que le marché des cryptomonnaies est exceptionnellement instable, et cette prévision de prix de Six Sigma ne prend pas en compte les fluctuations de prix soudaines et extrêmes.
Où sera Six Sigma dans 5 ans ?
L'avenir de Six Sigma semble suivre une tendance haussière, avec un prix maximum de $0.068983 prévue après une période de cinq ans. Selon la prévision de Six Sigma pour 2030, la valeur de Six Sigma pourrait potentiellement atteindre son point le plus élevé d'environ $0.068983, tandis que son point le plus bas devrait être autour de $0.023859.
Combien vaudra Six Sigma en 2026 ?
Basé sur notre nouvelle simulation expérimentale de prédiction de prix de Six Sigma, il est attendu que la valeur de SIX en 2026 augmente de 3.13% jusqu'à $0.021942 si le meilleur scénario se produit. Le prix sera entre $0.021942 et $0.00735 durant 2026.
Combien vaudra Six Sigma en 2027 ?
Selon notre dernière simulation expérimentale pour la prédiction de prix de Six Sigma, le valeur de SIX pourrait diminuer de -12.62% jusqu'à $0.01859 en 2027, en supposant les conditions les plus favorables. Il est prévu que le prix fluctue entre $0.01859 et $0.007076 tout au long de l'année.
Combien vaudra Six Sigma en 2028 ?
Notre nouveau modèle expérimental de prédiction de prix de Six Sigma suggère que la valeur de SIX en 2028 pourrait augmenter de 47.02%, atteignant $0.03128 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.03128 et $0.012771 durant l'année.
Combien vaudra Six Sigma en 2029 ?
Basé sur notre modèle de prévision expérimental, la valeur de Six Sigma pourrait connaître un 333.75% croissance en 2029, atteignant potentiellement $0.092286 sous des conditions optimales. Le range de prix prévu pour 2029 se situe entre $0.092286 et $0.028054.
Combien vaudra Six Sigma en 2030 ?
En utilisant notre nouvelle simulation expérimentale pour les prédictions de prix de Six Sigma, il est prévu que la valeur de SIX en 2030 augmente de 224.23%, atteignant $0.068983 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.068983 et $0.023859 au cours de 2030.
Combien vaudra Six Sigma en 2031 ?
Notre simulation expérimentale indique que le prix de Six Sigma pourrait augmenter de 195.98% en 2031, atteignant potentiellement $0.062974 dans des conditions idéales. Il est probable que le prix fluctue entre $0.062974 et $0.0282087 durant l'année.
Combien vaudra Six Sigma en 2032 ?
Basé sur les résultats de notre dernière prédiction expérimentale de prix de Six Sigma, SIX pourrait connaître une 449.04% hausse en valeur, atteignant $0.116813 si le scénario le plus positif se réalise en 2032. Il est prévu que le prix reste dans une fourchette de $0.116813 et $0.043058 tout au long de l'année.
Combien vaudra Six Sigma en 2033 ?
Selon notre prédiction expérimentale de prix de Six Sigma, la valeur de SIX est anticipée à augmenter de 1362.43% en 2033, avec le prix potentiel le plus élevé étant $0.311149. Tout au long de l'année, le prix de SIX pourrait osciller entre $0.311149 et $0.100058.
Combien vaudra Six Sigma en 2034 ?
Les résultats de notre nouvelle simulation de prédiction de prix de Six Sigma suggèrent que SIX pourrait augmenter de 746.96% en 2034, atteignant potentiellement $0.18020082 dans les meilleures circonstances. La fourchette de prix prévue pour l'année est entre $0.18020082 et $0.080442.
Combien vaudra Six Sigma en 2035 ?
Basé sur notre prédiction expérimentale pour le prix de Six Sigma, SIX pourrait augmenter de 897.93%, avec la valeur potentiellement atteignant $0.212321 en 2035. La fourchette de prix attendue pour l'année se situe entre $0.212321 et $0.0951077.
Combien vaudra Six Sigma en 2036 ?
Notre récente simulation de prédiction de prix de Six Sigma suggère que la valeur de SIX pourrait augmenter de 1964.7% en 2036, pouvant atteindre $0.439287 si les conditions sont optimales. La fourchette de prix attendue pour 2036 est entre $0.439287 et $0.157433.
Combien vaudra Six Sigma en 2037 ?
Selon la simulation expérimentale, la valeur de Six Sigma pourrait augmenter de 4830.69% en 2037, avec un maximum de $1.04 sous des conditions favorables. Il est prévu que le prix chute entre $1.04 et $0.408849 au cours de l'année.
Prévisions liées
Comment lire et prédire les mouvements de prix de Six Sigma ?
Les traders de Six Sigma utilisent des indicateurs et des modèles graphiques pour prédire la direction du marché. Ils identifient également des niveaux clés de support et de résistance pour évaluer quand une tendance baissière pourrait ralentir ou une tendance haussière pourrait s'arrêter.
Indicateurs de prédiction du prix de Six Sigma
Les moyennes mobiles sont des outils populaires pour la prédiction du prix de Six Sigma. Une moyenne mobile simple (SMA) calcule le prix de clôture moyen de SIX sur une période spécifique, comme une SMA de 12 jours. Une moyenne mobile exponentielle (EMA) donne plus de poids aux prix récents, réagissant plus rapidement aux changements de prix.
Les moyennes mobiles couramment utilisées sur le marché des cryptomonnaies incluent les moyennes sur 50 jours, 100 jours et 200 jours, qui aident à identifier les niveaux clés de résistance et de support. Un mouvement de prix de SIX au-dessus de ces moyennes est considéré comme haussier, tandis qu'une chute en dessous indique une faiblesse.
Les traders utilisent également le RSI et les niveaux de retracement de Fibonacci pour évaluer la direction future de SIX.
Comment lire les graphiques de Six Sigma et prédire les mouvements de prix ?
La plupart des traders préfèrent les graphiques en chandeliers aux simples graphiques linéaires parce qu'ils fournissent des informations plus détaillées. Les chandeliers peuvent représenter l'action des prix de Six Sigma dans différentes périodes, comme 5 minutes pour les tendances à court terme et hebdomadaire pour les tendances à long terme. Les options populaires incluent les graphiques de 1 heure, 4 heures et 1 jour.
Par exemple, un graphique en chandeliers de 1 heure montre les prix d'ouverture, de clôture, les plus hauts et les plus bas de SIX au sein de chaque heure. La couleur du chandelier est cruciale : le vert indique que le prix a clôturé plus haut qu'il n'a ouvert, tandis que le rouge signifie le contraire. Certains graphiques utilisent des chandeliers creux et pleins pour transmettre la même information.
Qu'est-ce qui affecte le prix de Six Sigma ?
L'action du prix de Six Sigma est déterminée par l'offre et la demande, influencée par des facteurs tels que les réductions de récompenses de bloc, les hard forks et les mises à jour de protocole. Les événements du monde réel, tels que les réglementations, l'adoption par les entreprises et les gouvernements et les piratages d'échanges de cryptomonnaies, impactent également le prix de SIX. La capitalisation boursière de Six Sigma peut changer rapidement.
Les traders surveillent souvent l'activité des « baleines » de SIX, de grands détenteurs de Six Sigma, car leurs actions peuvent influencer significativement les mouvements de prix sur le marché relativement petit de Six Sigma.
Modèles de prédiction de prix haussiers et baissiers
Les traders identifient souvent des modèles de chandeliers pour obtenir un avantage dans les prédictions de prix des cryptomonnaies. Certaines formations indiquent des tendances haussières, tandis que d'autres suggèrent des mouvements baissiers.
Modèles de chandeliers haussiers couramment suivis :
- Marteau
- Englobante haussière
- Ligne pénétrante
- Étoile du matin
- Trois soldats blancs
Modèles de chandeliers baissiers courants :
- Harami baissier
- Nuage sombre
- Étoile du soir
- Étoile filante
- Pendu


