Prédiction du prix de Six Sigma jusqu'à $0.02203 d'ici 2026
| Année | Prix min. | Prix max. |
|---|---|---|
| 2026 | $0.00738 | $0.02203 |
| 2027 | $0.0071049 | $0.018664 |
| 2028 | $0.012822 | $0.0314057 |
| 2029 | $0.028166 | $0.092656 |
| 2030 | $0.023954 | $0.06926 |
| 2031 | $0.028321 | $0.063226 |
| 2032 | $0.043231 | $0.117282 |
| 2033 | $0.100459 | $0.312396 |
| 2034 | $0.080764 | $0.180923 |
| 2035 | $0.095489 | $0.213172 |
Calculateur de profit d’investissement
Si vous ouvrez une position short de $10,000.00 sur Six Sigma aujourd’hui et la fermez le Apr 06, 2026, notre prévision indique que vous pourriez gagner environ $3,954.53, soit un rendement de 39.55% sur les 90 prochains jours.
Prévision du prix à long terme de Six Sigma pour 2027, 2028, 2029, 2030, 2031, 2032 et 2037
[
'name' => 'Six Sigma'
'name_with_ticker' => 'Six Sigma <small>SIX</small>'
'name_lang' => 'Six Sigma'
'name_lang_with_ticker' => 'Six Sigma <small>SIX</small>'
'name_with_lang' => 'Six Sigma'
'name_with_lang_with_ticker' => 'Six Sigma <small>SIX</small>'
'image' => '/uploads/coins/six.png?1750953532'
'price_for_sd' => 0.02136
'ticker' => 'SIX'
'marketcap' => '$31.9M'
'low24h' => '$0.02069'
'high24h' => '$0.0216'
'volume24h' => '$2.89K'
'current_supply' => '1.5B'
'max_supply' => '1.5B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.02136'
'change_24h_pct' => '-0.0402%'
'ath_price' => '$0.09743'
'ath_days' => 168
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '22 juil. 2025'
'ath_pct' => '-78.16%'
'fdv' => '$31.9M'
'new_prediction' => true
'change_24h_pct_is_increased' => false
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$1.05'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.021544'
'next_week_prediction_price_date' => '13 janvier 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.018879'
'next_month_prediction_price_date' => '5 février 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.00738'
'current_year_max_price_prediction' => '$0.02203'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.023954'
'grand_prediction_max_price' => '$0.06926'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.021766248430872
107 => 0.021847515701365
108 => 0.022030615011394
109 => 0.02046605145437
110 => 0.021168494558301
111 => 0.021581114071843
112 => 0.019716884098436
113 => 0.021544264239225
114 => 0.020438815883682
115 => 0.020063610108534
116 => 0.020568775255169
117 => 0.020371911906236
118 => 0.020202660359027
119 => 0.020108215087574
120 => 0.02047915261822
121 => 0.020461847939049
122 => 0.01985492214304
123 => 0.019063212183606
124 => 0.019328936032985
125 => 0.019232396067331
126 => 0.018882522777898
127 => 0.019118295131114
128 => 0.018080073009208
129 => 0.016293865810558
130 => 0.017473888998992
131 => 0.017428459389856
201 => 0.01740555172086
202 => 0.018292306533523
203 => 0.0182070655192
204 => 0.018052352243521
205 => 0.018879681347262
206 => 0.01857769509525
207 => 0.019508345567043
208 => 0.020121332158464
209 => 0.019965858930841
210 => 0.020542375782894
211 => 0.019335057773788
212 => 0.019736080387222
213 => 0.019818730592057
214 => 0.018869472234545
215 => 0.018221012003337
216 => 0.018177767098903
217 => 0.017053426421312
218 => 0.01765404013592
219 => 0.018182555349691
220 => 0.017929437576732
221 => 0.017849308051492
222 => 0.018258672417972
223 => 0.018290483535216
224 => 0.017565186690857
225 => 0.017715998871963
226 => 0.018344910737614
227 => 0.017700151906571
228 => 0.016447490818609
301 => 0.016136813549401
302 => 0.01609536347477
303 => 0.015252782080551
304 => 0.01615757449009
305 => 0.015762608356397
306 => 0.017010301640313
307 => 0.016297625928054
308 => 0.016266903902505
309 => 0.016220463054947
310 => 0.015495218442343
311 => 0.015654000920804
312 => 0.016181818062461
313 => 0.01637014916489
314 => 0.016350504687956
315 => 0.016179231470518
316 => 0.0162576394724
317 => 0.016005059979178
318 => 0.015915868903134
319 => 0.0156343573332
320 => 0.015220613094953
321 => 0.015278146768922
322 => 0.014458411170886
323 => 0.014011775710415
324 => 0.013888152901517
325 => 0.013722839314907
326 => 0.013906825511008
327 => 0.014456088962931
328 => 0.01379356070717
329 => 0.01265770248362
330 => 0.012725969498264
331 => 0.012879345211509
401 => 0.012593530584558
402 => 0.012323031026752
403 => 0.012558208445942
404 => 0.01207693034287
405 => 0.012937505370932
406 => 0.012914229228157
407 => 0.013234998381016
408 => 0.013435581915144
409 => 0.012973301808669
410 => 0.012857039612028
411 => 0.012923267843057
412 => 0.011828662709363
413 => 0.013145545788895
414 => 0.013156934248452
415 => 0.013059419343594
416 => 0.013760618929242
417 => 0.015240368764593
418 => 0.014683627353735
419 => 0.014468040251852
420 => 0.01405820901358
421 => 0.014604284805207
422 => 0.014562354704519
423 => 0.014372730887692
424 => 0.014258045811612
425 => 0.014469356580725
426 => 0.014231862068846
427 => 0.0141892015286
428 => 0.013930725069834
429 => 0.013838460733984
430 => 0.013770151892869
501 => 0.013694950570691
502 => 0.013860825948415
503 => 0.013484930519768
504 => 0.013031637482303
505 => 0.012993951070937
506 => 0.013098006566143
507 => 0.013051969755535
508 => 0.012993730664399
509 => 0.012882536378948
510 => 0.012849547409745
511 => 0.012956745555683
512 => 0.012835725098959
513 => 0.01301429737518
514 => 0.012965735596903
515 => 0.012694473451014
516 => 0.012356380383126
517 => 0.012353370645648
518 => 0.012280529048755
519 => 0.012187754323305
520 => 0.012161946517083
521 => 0.012538402459661
522 => 0.013317654994418
523 => 0.013164669075913
524 => 0.01327521708066
525 => 0.013819003850638
526 => 0.013991857312576
527 => 0.013869170019551
528 => 0.013701228085837
529 => 0.0137086166786
530 => 0.014282525105583
531 => 0.014318319070204
601 => 0.014408758871229
602 => 0.014524999573832
603 => 0.013888966313843
604 => 0.013678659569252
605 => 0.013579004566291
606 => 0.013272105728511
607 => 0.013603069813539
608 => 0.013410231214488
609 => 0.013436251729805
610 => 0.013419305835069
611 => 0.013428559439471
612 => 0.012937264822673
613 => 0.01311626675935
614 => 0.012818641321629
615 => 0.012420154270544
616 => 0.012418818402221
617 => 0.012516347543438
618 => 0.012458333393927
619 => 0.012302218809271
620 => 0.012324394149182
621 => 0.012130114837579
622 => 0.012347983175151
623 => 0.012354230859502
624 => 0.012270339682168
625 => 0.012605995916234
626 => 0.0127435145492
627 => 0.012688295579156
628 => 0.01273964023906
629 => 0.013171026331517
630 => 0.013241361087282
701 => 0.01327259913974
702 => 0.013230744287695
703 => 0.012747525184923
704 => 0.012768958006937
705 => 0.012611698179898
706 => 0.012478830197682
707 => 0.01248414422017
708 => 0.012552455634657
709 => 0.012850775588137
710 => 0.013478572343312
711 => 0.013502396771258
712 => 0.013531272672935
713 => 0.013413819868947
714 => 0.013378394979393
715 => 0.013425129552655
716 => 0.013660897005914
717 => 0.014267354905934
718 => 0.014052992180106
719 => 0.013878711947252
720 => 0.014031602697078
721 => 0.01400806636454
722 => 0.013809396031788
723 => 0.01380382001724
724 => 0.013422508129942
725 => 0.01328154580726
726 => 0.01316374713958
727 => 0.013035114069685
728 => 0.012958856074031
729 => 0.013076023013994
730 => 0.013102820479442
731 => 0.012846632917486
801 => 0.012811715499437
802 => 0.013020923792723
803 => 0.012928859022919
804 => 0.013023549921759
805 => 0.013045519022533
806 => 0.013041981491317
807 => 0.01294585529807
808 => 0.013007123267121
809 => 0.012862206255455
810 => 0.012704630771099
811 => 0.01260410742938
812 => 0.012516387481243
813 => 0.012565059606783
814 => 0.012391552366414
815 => 0.012336043908209
816 => 0.01298636705778
817 => 0.01346676776052
818 => 0.013459782544043
819 => 0.013417261835188
820 => 0.013354084686841
821 => 0.013656275204006
822 => 0.013550998070316
823 => 0.013627595981274
824 => 0.013647093364417
825 => 0.013706106070955
826 => 0.013727198041229
827 => 0.013663443457747
828 => 0.013449475288612
829 => 0.012916286954611
830 => 0.012668086345819
831 => 0.01258617601081
901 => 0.012589153295918
902 => 0.012507026481461
903 => 0.012531216508984
904 => 0.012498614177077
905 => 0.012436873247795
906 => 0.012561247278381
907 => 0.012575580226782
908 => 0.012546549841884
909 => 0.012553387548443
910 => 0.012313028360529
911 => 0.012331302347553
912 => 0.012229550465656
913 => 0.012210473214437
914 => 0.01195325331755
915 => 0.011497550985593
916 => 0.011750054313593
917 => 0.01144506580071
918 => 0.011329562029552
919 => 0.011876338917695
920 => 0.011821457683356
921 => 0.011727524866466
922 => 0.011588578652971
923 => 0.011537042150804
924 => 0.011223922678111
925 => 0.011205421909237
926 => 0.01136061237484
927 => 0.011288997314742
928 => 0.01118842264762
929 => 0.010824151398394
930 => 0.010414589908199
1001 => 0.010426951995176
1002 => 0.010557225885045
1003 => 0.010936014789666
1004 => 0.010788015411516
1005 => 0.010680640164571
1006 => 0.010660532008506
1007 => 0.010912227680932
1008 => 0.011268429789289
1009 => 0.011435551848957
1010 => 0.011269938963399
1011 => 0.0110796917977
1012 => 0.011091271261156
1013 => 0.011168304243835
1014 => 0.011176399321126
1015 => 0.011052567973981
1016 => 0.011087425772856
1017 => 0.011034473588901
1018 => 0.01070950613371
1019 => 0.010703628502928
1020 => 0.010623876248616
1021 => 0.010621461382051
1022 => 0.010485782902334
1023 => 0.010466800545121
1024 => 0.010197402688548
1025 => 0.010374721173556
1026 => 0.010255785243451
1027 => 0.010076520742632
1028 => 0.010045615475123
1029 => 0.010044686425462
1030 => 0.010228750984993
1031 => 0.01037257027201
1101 => 0.010257854184876
1102 => 0.010231735555513
1103 => 0.010510614185199
1104 => 0.010475124337536
1105 => 0.010444390358345
1106 => 0.011236535797345
1107 => 0.010609490870497
1108 => 0.010336063491919
1109 => 0.0099976451884768
1110 => 0.010107835894531
1111 => 0.010131054695335
1112 => 0.0093172196800409
1113 => 0.0089870469156929
1114 => 0.0088737440652668
1115 => 0.0088085366729794
1116 => 0.0088382525004677
1117 => 0.0085410582871519
1118 => 0.0087407777136387
1119 => 0.0084834326461087
1120 => 0.008440287908064
1121 => 0.008900452767744
1122 => 0.0089644820197244
1123 => 0.0086913133384468
1124 => 0.0088667318538194
1125 => 0.0088031226616455
1126 => 0.0084878440886664
1127 => 0.0084758027662108
1128 => 0.0083176070608675
1129 => 0.00807006141473
1130 => 0.0079569264119087
1201 => 0.0078980047201563
1202 => 0.0079223169585342
1203 => 0.0079100239468436
1204 => 0.0078298037302485
1205 => 0.0079146220757564
1206 => 0.0076979462523439
1207 => 0.0076116641935853
1208 => 0.0075726925893726
1209 => 0.007380380324699
1210 => 0.007686434659447
1211 => 0.0077467312189633
1212 => 0.0078071465813284
1213 => 0.0083330210633967
1214 => 0.0083067498603784
1215 => 0.0085442287410688
1216 => 0.0085350007484608
1217 => 0.0084672679247851
1218 => 0.008181514283206
1219 => 0.0082954105916705
1220 => 0.0079448554576329
1221 => 0.0082075151994859
1222 => 0.0080876482622373
1223 => 0.0081669880674269
1224 => 0.0080243279439142
1225 => 0.0081032819465582
1226 => 0.0077610297700795
1227 => 0.0074414395033017
1228 => 0.0075700519560746
1229 => 0.0077098684008567
1230 => 0.0080130260777119
1231 => 0.0078324678663735
]
'min_raw' => 0.007380380324699
'max_raw' => 0.022030615011394
'avg_raw' => 0.014705497668047
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.00738'
'max' => '$0.02203'
'avg' => '$0.0147054'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.013981079675301
'max_diff' => 0.00066915501139448
'year' => 2026
]
1 => [
'items' => [
101 => 0.0078974034268327
102 => 0.007679880169376
103 => 0.0072310675567961
104 => 0.0072336077874424
105 => 0.0071645677449113
106 => 0.0071049070681531
107 => 0.0078532071489536
108 => 0.0077601442050323
109 => 0.0076118605836708
110 => 0.0078103441034201
111 => 0.0078628262963988
112 => 0.0078643203906517
113 => 0.0080091288430596
114 => 0.0080864131400681
115 => 0.0081000348323851
116 => 0.0083278940610427
117 => 0.0084042694689528
118 => 0.0087188489650823
119 => 0.0080798561074222
120 => 0.0080666964700196
121 => 0.0078131371735819
122 => 0.0076523258591671
123 => 0.0078241480618599
124 => 0.0079763590773761
125 => 0.0078178667941205
126 => 0.007838562540359
127 => 0.0076257995993837
128 => 0.0077018523393555
129 => 0.0077673592044296
130 => 0.0077311901638512
131 => 0.007677043359504
201 => 0.0079638795098953
202 => 0.0079476950901703
203 => 0.0082148035077492
204 => 0.0084230336203582
205 => 0.0087962192077384
206 => 0.0084067805927025
207 => 0.0083925879016923
208 => 0.0085313237328963
209 => 0.0084042482292199
210 => 0.0084845555610461
211 => 0.0087832804550347
212 => 0.0087895920413202
213 => 0.0086838648390192
214 => 0.0086774313291507
215 => 0.0086977373948814
216 => 0.008816670656115
217 => 0.00877511172019
218 => 0.0088232047729859
219 => 0.0088833458719341
220 => 0.0091321149564816
221 => 0.0091920923405622
222 => 0.0090463783919546
223 => 0.0090595347300239
224 => 0.0090050337133073
225 => 0.0089523864140548
226 => 0.0090707298542538
227 => 0.0092870048172636
228 => 0.0092856593819434
301 => 0.0093358309695772
302 => 0.0093670874530291
303 => 0.0092329117449091
304 => 0.0091455682927004
305 => 0.0091790613300855
306 => 0.0092326174262476
307 => 0.0091616938099111
308 => 0.0087239203948672
309 => 0.0088567128839175
310 => 0.0088346097205186
311 => 0.008803132128002
312 => 0.008936656002596
313 => 0.0089237772991578
314 => 0.0085380101309368
315 => 0.0085627056934278
316 => 0.0085395119498861
317 => 0.0086144556802627
318 => 0.0084002010218352
319 => 0.0084661043117404
320 => 0.0085074382373639
321 => 0.0085317842370983
322 => 0.0086197386823475
323 => 0.0086094182433639
324 => 0.0086190971493697
325 => 0.0087495103725615
326 => 0.0094090957030517
327 => 0.0094449954772972
328 => 0.0092682118591865
329 => 0.009338833427719
330 => 0.0092032554593758
331 => 0.009294269857818
401 => 0.0093565395977172
402 => 0.0090751546168953
403 => 0.0090584928245045
404 => 0.0089223552776581
405 => 0.0089955078841085
406 => 0.0088791168273873
407 => 0.0089076751215204
408 => 0.008827823641457
409 => 0.0089715404073
410 => 0.00913223808284
411 => 0.009172836661825
412 => 0.0090660392793028
413 => 0.0089887109360663
414 => 0.0088529478388828
415 => 0.0090787248951769
416 => 0.0091447489868684
417 => 0.0090783780987306
418 => 0.0090629985137165
419 => 0.0090338542279051
420 => 0.0090691816117253
421 => 0.0091443894054857
422 => 0.0091089227988182
423 => 0.0091323491173632
424 => 0.0090430721481842
425 => 0.0092329561626515
426 => 0.0095345376757022
427 => 0.0095355073095802
428 => 0.0095000405117345
429 => 0.0094855282621988
430 => 0.0095219193490938
501 => 0.0095416600208938
502 => 0.0096593421229282
503 => 0.0097856197070728
504 => 0.010374902093049
505 => 0.010209433957119
506 => 0.010732280346523
507 => 0.011145783957435
508 => 0.011269775610026
509 => 0.011155709123901
510 => 0.010765493836615
511 => 0.010746348013
512 => 0.01132949439685
513 => 0.011164728833616
514 => 0.011145130494149
515 => 0.010936637274137
516 => 0.011059882589552
517 => 0.011032927031171
518 => 0.010990376363556
519 => 0.011225519840024
520 => 0.011665687436569
521 => 0.011597083188782
522 => 0.011545873300268
523 => 0.011321486475776
524 => 0.011456617462732
525 => 0.011408499906541
526 => 0.011615243464095
527 => 0.01149277316053
528 => 0.011163480572423
529 => 0.011215921502442
530 => 0.011207995161366
531 => 0.011371118699039
601 => 0.011322153062005
602 => 0.011198433834865
603 => 0.011664182991576
604 => 0.011633939831973
605 => 0.011676817717742
606 => 0.011695693889101
607 => 0.01197918719337
608 => 0.012095325329356
609 => 0.012121690719509
610 => 0.012232012966249
611 => 0.012118945801509
612 => 0.012571295075993
613 => 0.012872080948213
614 => 0.013221459217096
615 => 0.01373199477196
616 => 0.013923960863307
617 => 0.013889283907127
618 => 0.014276366138163
619 => 0.01497194430298
620 => 0.014029880141577
621 => 0.015021875991045
622 => 0.014707821558246
623 => 0.013963204147679
624 => 0.013915259564901
625 => 0.014419523120523
626 => 0.015537931153324
627 => 0.015257782625987
628 => 0.015538389375955
629 => 0.015211046696812
630 => 0.015194791373732
701 => 0.015522491072671
702 => 0.016288179281224
703 => 0.015924429514734
704 => 0.015402905029368
705 => 0.015787990593543
706 => 0.015454393839868
707 => 0.014702706985988
708 => 0.015257568401687
709 => 0.014886548374552
710 => 0.01499483174298
711 => 0.015774660654954
712 => 0.015680829577094
713 => 0.015802255680369
714 => 0.015587941786363
715 => 0.015387738815163
716 => 0.015014045102149
717 => 0.014903412816603
718 => 0.014933987600196
719 => 0.014903397665259
720 => 0.014694319467251
721 => 0.014649169050297
722 => 0.01457391637729
723 => 0.014597240327321
724 => 0.01445574328612
725 => 0.014722777437646
726 => 0.014772341329266
727 => 0.014966666515945
728 => 0.014986842001476
729 => 0.015528034880333
730 => 0.015229954937035
731 => 0.015429932697983
801 => 0.01541204480478
802 => 0.013979342264843
803 => 0.014176756034005
804 => 0.014483869906967
805 => 0.014345515523481
806 => 0.014149914795171
807 => 0.013991956719613
808 => 0.0137526340831
809 => 0.014089476098207
810 => 0.014532387528919
811 => 0.014998074966274
812 => 0.015557567909205
813 => 0.015432695597559
814 => 0.014987615634881
815 => 0.015007581596875
816 => 0.015131003317609
817 => 0.014971160975213
818 => 0.014924020347947
819 => 0.015124526919317
820 => 0.015125907697877
821 => 0.014941989765358
822 => 0.014737598639988
823 => 0.01473674223371
824 => 0.014700372807134
825 => 0.015217516737004
826 => 0.015501893609284
827 => 0.015534496959395
828 => 0.015499699144052
829 => 0.015513091442101
830 => 0.015347618805939
831 => 0.015725840182821
901 => 0.016072933520465
902 => 0.015979905091409
903 => 0.015840442251483
904 => 0.015729353382042
905 => 0.015953736084224
906 => 0.015943744675707
907 => 0.016069901962959
908 => 0.016064178739689
909 => 0.016021756789002
910 => 0.01597990660643
911 => 0.016145837849796
912 => 0.016098052316481
913 => 0.016050192559034
914 => 0.015954202488512
915 => 0.015967249133322
916 => 0.015827810373622
917 => 0.015763299623101
918 => 0.014793212718201
919 => 0.014533973798707
920 => 0.014615535640075
921 => 0.014642387916005
922 => 0.014529566806018
923 => 0.014691323296374
924 => 0.014666113718695
925 => 0.014764189438336
926 => 0.014702915986657
927 => 0.014705430670487
928 => 0.014885622826998
929 => 0.014937933376626
930 => 0.014911327808887
1001 => 0.014929961436546
1002 => 0.015359365521173
1003 => 0.015298317991909
1004 => 0.01526588770871
1005 => 0.015274871118788
1006 => 0.015384593068938
1007 => 0.015415309224384
1008 => 0.015285162715375
1009 => 0.015346540561391
1010 => 0.015607879639721
1011 => 0.015699333526626
1012 => 0.01599121043327
1013 => 0.015867215935629
1014 => 0.016094813202404
1015 => 0.016794369606846
1016 => 0.017353223668335
1017 => 0.016839278377769
1018 => 0.017865542692058
1019 => 0.018664636669604
1020 => 0.018633966111785
1021 => 0.018494625593423
1022 => 0.017584878344999
1023 => 0.016747715363432
1024 => 0.017448037745331
1025 => 0.017449823011105
1026 => 0.017389664697415
1027 => 0.017016026577735
1028 => 0.017376662900758
1029 => 0.01740528890244
1030 => 0.017389265953766
1031 => 0.017102798483449
1101 => 0.016665415604312
1102 => 0.016750879171949
1103 => 0.016890870239147
1104 => 0.016625837943745
1105 => 0.016541144066491
1106 => 0.016698606097975
1107 => 0.017205981571937
1108 => 0.01711006517761
1109 => 0.017107560412926
1110 => 0.017517931422735
1111 => 0.017224194343319
1112 => 0.016751957141229
1113 => 0.016632711019658
1114 => 0.016209467621893
1115 => 0.01650180334427
1116 => 0.016512323986483
1117 => 0.016352214698936
1118 => 0.016764949127501
1119 => 0.016761145707081
1120 => 0.01715297561959
1121 => 0.017902007247714
1122 => 0.01768048173767
1123 => 0.017422871671396
1124 => 0.017450881028352
1125 => 0.01775807454118
1126 => 0.017572338330778
1127 => 0.017639130367038
1128 => 0.017757973443433
1129 => 0.01782967442213
1130 => 0.017440564360933
1201 => 0.017349844192382
1202 => 0.01716426256598
1203 => 0.017115847783696
1204 => 0.017267000146114
1205 => 0.017227176838908
1206 => 0.016511439767243
1207 => 0.016436641260931
1208 => 0.016438935224332
1209 => 0.016250850823734
1210 => 0.015963976967394
1211 => 0.016717864333508
1212 => 0.016657316627362
1213 => 0.016590476645797
1214 => 0.016598664162155
1215 => 0.016925901116172
1216 => 0.01673608715698
1217 => 0.017240738677387
1218 => 0.017136997496005
1219 => 0.017030595744771
1220 => 0.017015887781674
1221 => 0.01697493218522
1222 => 0.016834480206072
1223 => 0.016664876001396
1224 => 0.016552888614605
1225 => 0.015269164764591
1226 => 0.015507416444076
1227 => 0.015781503283999
1228 => 0.015876116962806
1229 => 0.015714273718139
1230 => 0.016840870763818
1231 => 0.017046710900223
]
'min_raw' => 0.0071049070681531
'max_raw' => 0.018664636669604
'avg_raw' => 0.012884771868879
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.0071049'
'max' => '$0.018664'
'avg' => '$0.012884'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00027547325654589
'max_diff' => -0.0033659783417902
'year' => 2027
]
2 => [
'items' => [
101 => 0.016423207700433
102 => 0.01630657570922
103 => 0.016848517137745
104 => 0.016521660206699
105 => 0.016668843862735
106 => 0.016350713303541
107 => 0.016997130039066
108 => 0.016992205426585
109 => 0.016740734716482
110 => 0.016953276038664
111 => 0.01691634175355
112 => 0.016632431941188
113 => 0.017006130486518
114 => 0.017006315836335
115 => 0.016764280745305
116 => 0.016481636747276
117 => 0.016431106676182
118 => 0.016393039055372
119 => 0.016659481561604
120 => 0.016898373079547
121 => 0.017342890968209
122 => 0.017454653326903
123 => 0.017890869253328
124 => 0.01763112390811
125 => 0.017746265655379
126 => 0.017871268309835
127 => 0.017931199179202
128 => 0.017833545043637
129 => 0.018511167931013
130 => 0.018568380064537
131 => 0.018587562798024
201 => 0.018359072173003
202 => 0.018562025326918
203 => 0.018467070267303
204 => 0.018714116953146
205 => 0.018752857027937
206 => 0.018720045562807
207 => 0.018732342274016
208 => 0.018154110680509
209 => 0.018124126321971
210 => 0.017715287465713
211 => 0.017881892321622
212 => 0.017570432529078
213 => 0.017669199637685
214 => 0.017712735238072
215 => 0.017689994711053
216 => 0.017891311910204
217 => 0.017720151164539
218 => 0.017268429815299
219 => 0.01681658539488
220 => 0.016810912856246
221 => 0.016691950196066
222 => 0.016605961981854
223 => 0.016622526362507
224 => 0.016680901400454
225 => 0.016602569118528
226 => 0.016619285282425
227 => 0.016896884982322
228 => 0.016952555622386
229 => 0.016763365035526
301 => 0.016003737529208
302 => 0.015817323033776
303 => 0.015951314076333
304 => 0.015887274988119
305 => 0.012822270866386
306 => 0.013542348120938
307 => 0.013114502667796
308 => 0.013311673536827
309 => 0.012874954119212
310 => 0.013083379515723
311 => 0.013044890955464
312 => 0.01420275387215
313 => 0.014184675435294
314 => 0.014193328626327
315 => 0.013780289272542
316 => 0.014438272178362
317 => 0.014762418218069
318 => 0.014702427412987
319 => 0.014717525806175
320 => 0.014458085387835
321 => 0.014195840576686
322 => 0.013904970721934
323 => 0.014445370959462
324 => 0.014385287677988
325 => 0.014523097108406
326 => 0.014873585291049
327 => 0.014925196007319
328 => 0.014994561333369
329 => 0.01496969880174
330 => 0.01556202517314
331 => 0.015490290541268
401 => 0.015663150364617
402 => 0.015307564593082
403 => 0.014905185540079
404 => 0.014981664643293
405 => 0.014974299090647
406 => 0.014880527151681
407 => 0.014795874038009
408 => 0.014654950454613
409 => 0.015100853525246
410 => 0.015082750674893
411 => 0.015375814779847
412 => 0.015324012852624
413 => 0.014978066904543
414 => 0.014990422431757
415 => 0.015073519290136
416 => 0.015361118465767
417 => 0.01544649748234
418 => 0.015406946520098
419 => 0.01550056071407
420 => 0.015574549556027
421 => 0.015509852573467
422 => 0.016425825412647
423 => 0.016045449628416
424 => 0.016230842139013
425 => 0.016275057160394
426 => 0.016161801312868
427 => 0.016186362450808
428 => 0.016223565882279
429 => 0.016449457832989
430 => 0.017042263674015
501 => 0.01730481334564
502 => 0.018094706986695
503 => 0.017283012250279
504 => 0.017234849643747
505 => 0.017377133341004
506 => 0.017840884527037
507 => 0.018216711305382
508 => 0.018341394729727
509 => 0.018357873702553
510 => 0.01859178809542
511 => 0.018725863463166
512 => 0.018563384735566
513 => 0.018425701026158
514 => 0.017932535068986
515 => 0.017989620371375
516 => 0.018382881496064
517 => 0.018938385997652
518 => 0.019415066650407
519 => 0.01924814969981
520 => 0.020521608207861
521 => 0.020647866417322
522 => 0.020630421615191
523 => 0.020918056606086
524 => 0.020347159725008
525 => 0.02010309024774
526 => 0.018455469806908
527 => 0.018918383945218
528 => 0.019591256831245
529 => 0.019502199581635
530 => 0.019013541305859
531 => 0.019414695959286
601 => 0.019282061685597
602 => 0.019177447530937
603 => 0.019656705253884
604 => 0.019129741700682
605 => 0.019585999966695
606 => 0.019000844021146
607 => 0.01924891216238
608 => 0.01910809668771
609 => 0.019199221557517
610 => 0.01866650743061
611 => 0.018953947042585
612 => 0.018654548997738
613 => 0.018654407044082
614 => 0.018647797815648
615 => 0.019000038287676
616 => 0.019011524836823
617 => 0.018751218595788
618 => 0.018713704399708
619 => 0.018852414044604
620 => 0.018690021378544
621 => 0.018766003884906
622 => 0.018692322811257
623 => 0.018675735649618
624 => 0.018543566323603
625 => 0.018486624143884
626 => 0.018508952639771
627 => 0.018432733972181
628 => 0.018386809468008
629 => 0.018638662275865
630 => 0.01850410748034
701 => 0.018618039823663
702 => 0.018488199539039
703 => 0.018038116543809
704 => 0.017779269053712
705 => 0.01692910399844
706 => 0.017170209753488
707 => 0.017330063118528
708 => 0.017277231582336
709 => 0.017390734165166
710 => 0.017397702301922
711 => 0.017360801455222
712 => 0.017318075002035
713 => 0.017297278127544
714 => 0.017452280991437
715 => 0.017542265371084
716 => 0.017346106542271
717 => 0.017300149273234
718 => 0.01749847667939
719 => 0.017619456282574
720 => 0.018512701699924
721 => 0.018446527194262
722 => 0.018612612217382
723 => 0.018593913592561
724 => 0.018767997156211
725 => 0.019052550209574
726 => 0.018473974289801
727 => 0.018574395063824
728 => 0.018549774209088
729 => 0.018818578245161
730 => 0.01881941742202
731 => 0.018658255974637
801 => 0.01874562420981
802 => 0.018696857657759
803 => 0.01878498540851
804 => 0.018445643393394
805 => 0.018858925338098
806 => 0.019093229569445
807 => 0.019096482883924
808 => 0.019207541230029
809 => 0.019320382941738
810 => 0.01953697278092
811 => 0.019314342368677
812 => 0.018913851929686
813 => 0.018942766045805
814 => 0.018707958647958
815 => 0.018711905802738
816 => 0.018690835581182
817 => 0.018754068902163
818 => 0.018459519551431
819 => 0.018528649695311
820 => 0.018431867089054
821 => 0.018574184677339
822 => 0.018421074478284
823 => 0.018549762336166
824 => 0.018605299749558
825 => 0.018810234000609
826 => 0.018390805522777
827 => 0.017535562463665
828 => 0.01771534492351
829 => 0.017449432543792
830 => 0.017474043746935
831 => 0.017523762294127
901 => 0.017362608215781
902 => 0.017393351335381
903 => 0.017392252974812
904 => 0.017382787896819
905 => 0.017340865496975
906 => 0.017280069723108
907 => 0.017522261374243
908 => 0.017563414455185
909 => 0.017654892656331
910 => 0.017927069732685
911 => 0.01789987282438
912 => 0.017944232110214
913 => 0.017847396038304
914 => 0.017478535694578
915 => 0.017498566585883
916 => 0.017248781050337
917 => 0.017648505078593
918 => 0.017553845152602
919 => 0.017492817282517
920 => 0.017476165262745
921 => 0.017749017013426
922 => 0.017830658533657
923 => 0.017779785017008
924 => 0.017675441950143
925 => 0.017875811484783
926 => 0.01792942191934
927 => 0.017941423318561
928 => 0.018296439716895
929 => 0.017961264791488
930 => 0.018041944727385
1001 => 0.018671386556157
1002 => 0.018100569674496
1003 => 0.018402944107448
1004 => 0.018388144452435
1005 => 0.01854282898054
1006 => 0.018375455806228
1007 => 0.018377530597318
1008 => 0.018514879979038
1009 => 0.018321997543504
1010 => 0.018274237139954
1011 => 0.018208256484516
1012 => 0.018352322831811
1013 => 0.018438684091453
1014 => 0.019134692418817
1015 => 0.019584345540129
1016 => 0.019564824912257
1017 => 0.019743206909922
1018 => 0.019662844186182
1019 => 0.019403331752611
1020 => 0.019846287832548
1021 => 0.019706117994786
1022 => 0.019717673425905
1023 => 0.019717243332181
1024 => 0.019810444020433
1025 => 0.019744402791089
1026 => 0.019614228749059
1027 => 0.019700644353127
1028 => 0.019957267803064
1029 => 0.020753834865838
1030 => 0.021199604347277
1031 => 0.020726998983331
1101 => 0.021052995834943
1102 => 0.020857513888531
1103 => 0.020821989003784
1104 => 0.021026739117574
1105 => 0.021231847619334
1106 => 0.02121878309448
1107 => 0.021069884854641
1108 => 0.020985776017108
1109 => 0.021622676313431
1110 => 0.022091933602449
1111 => 0.022059933401279
1112 => 0.022201171882221
1113 => 0.02261585243061
1114 => 0.022653765623009
1115 => 0.022648989432191
1116 => 0.022555017628998
1117 => 0.022963324481961
1118 => 0.023303941242178
1119 => 0.022533265871666
1120 => 0.022826728963875
1121 => 0.022958474000759
1122 => 0.023151914801894
1123 => 0.023478281857853
1124 => 0.02383280304521
1125 => 0.023882936228229
1126 => 0.023847364335783
1127 => 0.02361354808268
1128 => 0.024001469396204
1129 => 0.024228704603792
1130 => 0.024364017969725
1201 => 0.024707150151735
1202 => 0.022959287613255
1203 => 0.021722063634114
1204 => 0.021528853244041
1205 => 0.021921754169879
1206 => 0.022025359010696
1207 => 0.021983596029272
1208 => 0.020590987957266
1209 => 0.021521521450748
1210 => 0.022522697248257
1211 => 0.022561156488056
1212 => 0.023062366025887
1213 => 0.023225580396678
1214 => 0.023629119769669
1215 => 0.023603878272016
1216 => 0.023702133687625
1217 => 0.023679546469123
1218 => 0.024427018182347
1219 => 0.025251590482657
1220 => 0.025223038165877
1221 => 0.025104496141811
1222 => 0.025280551261967
1223 => 0.026131598242425
1224 => 0.026053247474214
1225 => 0.026129358571628
1226 => 0.027132790924494
1227 => 0.028437395719806
1228 => 0.027831275812204
1229 => 0.029146381605396
1230 => 0.029974170991449
1231 => 0.031405747139606
]
'min_raw' => 0.012822270866386
'max_raw' => 0.031405747139606
'avg_raw' => 0.022114009002996
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.012822'
'max' => '$0.0314057'
'avg' => '$0.022114'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0057173637982325
'max_diff' => 0.012741110470001
'year' => 2028
]
3 => [
'items' => [
101 => 0.031226506755195
102 => 0.031783808844282
103 => 0.030905629058503
104 => 0.028889150760939
105 => 0.028570035351581
106 => 0.029208912482406
107 => 0.030779529567819
108 => 0.029159448161034
109 => 0.029487188519628
110 => 0.029392799274305
111 => 0.02938776967255
112 => 0.029579729114663
113 => 0.029301281931947
114 => 0.028166838017873
115 => 0.028686746978373
116 => 0.028485985160645
117 => 0.028708745365199
118 => 0.029910890315883
119 => 0.029379393377629
120 => 0.028819504528484
121 => 0.029521729394594
122 => 0.030415902959795
123 => 0.030359947185069
124 => 0.030251369594402
125 => 0.030863415788058
126 => 0.031874336787268
127 => 0.032147584671145
128 => 0.032349290672716
129 => 0.032377102522482
130 => 0.032663581860038
131 => 0.03112311025991
201 => 0.03356787825143
202 => 0.033990022148213
203 => 0.03391067659169
204 => 0.034379871766433
205 => 0.034241822643691
206 => 0.034041811124081
207 => 0.034785585276725
208 => 0.033932908230198
209 => 0.032722640511708
210 => 0.032058663704963
211 => 0.032933041925566
212 => 0.033466994193293
213 => 0.033819902676519
214 => 0.03392669257031
215 => 0.031242692685067
216 => 0.02979616560838
217 => 0.03072337288007
218 => 0.031854629743959
219 => 0.031116826070912
220 => 0.031145746578048
221 => 0.030093832431678
222 => 0.031947700804773
223 => 0.0316776077763
224 => 0.033078850885804
225 => 0.032744432972042
226 => 0.033887092331898
227 => 0.033586191827763
228 => 0.034835212997307
301 => 0.035333481357737
302 => 0.036170151484176
303 => 0.036785609435045
304 => 0.03714701811563
305 => 0.037125320494058
306 => 0.038557401739624
307 => 0.037712953462221
308 => 0.036652127404626
309 => 0.036632940408107
310 => 0.037182357255357
311 => 0.038333784242043
312 => 0.038632332507109
313 => 0.038799180258578
314 => 0.038543647119192
315 => 0.037627059036224
316 => 0.037231280949206
317 => 0.03756849534614
318 => 0.037156111115853
319 => 0.037868001991908
320 => 0.038845580216418
321 => 0.03864371417882
322 => 0.039318522077063
323 => 0.040016877259882
324 => 0.041015556536409
325 => 0.041276648280279
326 => 0.041708223004467
327 => 0.042152455160568
328 => 0.042295130556716
329 => 0.042567542157537
330 => 0.042566106413934
331 => 0.043387037108423
401 => 0.044292549086552
402 => 0.044634358895645
403 => 0.045420331704152
404 => 0.044074380813356
405 => 0.045095300025194
406 => 0.046016194709537
407 => 0.044918266102832
408 => 0.046431504902619
409 => 0.046490260536142
410 => 0.047377400844436
411 => 0.046478114186462
412 => 0.045944120639581
413 => 0.047485740000949
414 => 0.04823168104936
415 => 0.048006997534909
416 => 0.046297144895943
417 => 0.045301937321036
418 => 0.042697287136299
419 => 0.045782607792634
420 => 0.047285377484298
421 => 0.046293253085484
422 => 0.046793622923816
423 => 0.049523478516289
424 => 0.050562830780843
425 => 0.050346652775437
426 => 0.050383183299757
427 => 0.050943998916132
428 => 0.053430964205941
429 => 0.051940716956883
430 => 0.053079955140288
501 => 0.053684202964938
502 => 0.054245462019569
503 => 0.05286718716914
504 => 0.051074071839611
505 => 0.050506116944889
506 => 0.046194605866657
507 => 0.045970172991091
508 => 0.045844192017024
509 => 0.045049899795894
510 => 0.044425803685036
511 => 0.043929499286478
512 => 0.042627048335624
513 => 0.043066587297689
514 => 0.040990752324667
515 => 0.042318797977332
516 => 0.039005715237601
517 => 0.041764948992034
518 => 0.04026322350646
519 => 0.041271591781246
520 => 0.041268073679329
521 => 0.039411347981997
522 => 0.038340427348652
523 => 0.039022859657074
524 => 0.039754481263246
525 => 0.039873184407377
526 => 0.040821750917057
527 => 0.04108647544054
528 => 0.040284347775581
529 => 0.03893705896185
530 => 0.039250003424894
531 => 0.038334085539097
601 => 0.036728974674511
602 => 0.037881793320004
603 => 0.038275416291433
604 => 0.038449262619822
605 => 0.03687082043273
606 => 0.036374839627899
607 => 0.036110783609089
608 => 0.038733301896725
609 => 0.038876969368522
610 => 0.038141946270275
611 => 0.041464320372101
612 => 0.040712364789467
613 => 0.04155248340886
614 => 0.039221606995001
615 => 0.039310649612952
616 => 0.038207175364679
617 => 0.038825047209536
618 => 0.038388355304531
619 => 0.0387751292704
620 => 0.039006959990814
621 => 0.04011025316982
622 => 0.041777546827894
623 => 0.039945457960462
624 => 0.039147190604925
625 => 0.039642431182674
626 => 0.040961322103259
627 => 0.042959509360729
628 => 0.04177654228704
629 => 0.04230152298626
630 => 0.042416207914273
701 => 0.041543931789957
702 => 0.042991671425634
703 => 0.043767526857809
704 => 0.04456339399056
705 => 0.045254423122238
706 => 0.044245507156246
707 => 0.04532519186228
708 => 0.044455156579224
709 => 0.043674644987728
710 => 0.043675828701631
711 => 0.043186202378831
712 => 0.042237489681519
713 => 0.04206253250427
714 => 0.042972681834973
715 => 0.043702535406734
716 => 0.043762649642667
717 => 0.044166734081225
718 => 0.044405867089562
719 => 0.046749695656831
720 => 0.047692402895754
721 => 0.048845127462973
722 => 0.049294178645902
723 => 0.050645661712759
724 => 0.049554229374184
725 => 0.049318091122302
726 => 0.046039835268849
727 => 0.046576649481201
728 => 0.047436140830043
729 => 0.046054007964622
730 => 0.046930653144599
731 => 0.047103721473011
801 => 0.046007043618734
802 => 0.046592826645356
803 => 0.045037160599211
804 => 0.041811456096555
805 => 0.042995262556862
806 => 0.043866942576593
807 => 0.042622947711065
808 => 0.044852760358275
809 => 0.043550149842451
810 => 0.043137284845267
811 => 0.041526551294251
812 => 0.042286755527511
813 => 0.04331494263807
814 => 0.042679642543325
815 => 0.043997985630709
816 => 0.045865111031703
817 => 0.047195735781691
818 => 0.047297884627562
819 => 0.046442382058254
820 => 0.047813330385314
821 => 0.047823316247179
822 => 0.046276880933766
823 => 0.045329697914889
824 => 0.04511449594011
825 => 0.04565211266594
826 => 0.046304878620621
827 => 0.047334108595027
828 => 0.047956050712839
829 => 0.049577745903483
830 => 0.050016530124426
831 => 0.050498620952179
901 => 0.051142842969363
902 => 0.051916396676126
903 => 0.050223905204164
904 => 0.050291151045544
905 => 0.048715126420993
906 => 0.047030918084866
907 => 0.048309022272453
908 => 0.049979973478649
909 => 0.04959665542571
910 => 0.049553524314278
911 => 0.049626058880135
912 => 0.049337049586217
913 => 0.048029871261009
914 => 0.047373414489459
915 => 0.048220411204742
916 => 0.048670552263428
917 => 0.049368681789025
918 => 0.049282622589269
919 => 0.051080929273568
920 => 0.051779696873116
921 => 0.0516009222192
922 => 0.051633821057973
923 => 0.052898906419463
924 => 0.054305941526088
925 => 0.055623815578077
926 => 0.056964413667768
927 => 0.055348270346211
928 => 0.054527692437388
929 => 0.055374319380401
930 => 0.054925087207301
1001 => 0.057506508524853
1002 => 0.05768524053605
1003 => 0.060266475187458
1004 => 0.062716374239349
1005 => 0.061177636539357
1006 => 0.062628596884181
1007 => 0.064197928795642
1008 => 0.067225424667775
1009 => 0.066205870566629
1010 => 0.065424908103602
1011 => 0.064686902349623
1012 => 0.066222575168538
1013 => 0.068198193717099
1014 => 0.06862372303022
1015 => 0.069313243082184
1016 => 0.068588297058044
1017 => 0.069461414693936
1018 => 0.072543903615963
1019 => 0.071710987899349
1020 => 0.070528113683874
1021 => 0.072961442642431
1022 => 0.073842054933206
1023 => 0.080022653170103
1024 => 0.087825913751964
1025 => 0.084595312632102
1026 => 0.082589974266157
1027 => 0.083061276349416
1028 => 0.085910762956871
1029 => 0.086825927617002
1030 => 0.084338194594591
1031 => 0.085216903954813
1101 => 0.09005867892243
1102 => 0.092656135849818
1103 => 0.089128440457419
1104 => 0.079395668780216
1105 => 0.070421608802877
1106 => 0.072801933616055
1107 => 0.072532078652319
1108 => 0.077733961831296
1109 => 0.071691123134971
1110 => 0.071792869040893
1111 => 0.077102321655122
1112 => 0.075685850724707
1113 => 0.073391349225326
1114 => 0.07043836120307
1115 => 0.064979489725598
1116 => 0.060144415026109
1117 => 0.06962710996301
1118 => 0.069218198914169
1119 => 0.068626035118225
1120 => 0.069943831567283
1121 => 0.076342677060862
1122 => 0.076195162961194
1123 => 0.075256753521457
1124 => 0.075968528810736
1125 => 0.073266571575733
1126 => 0.073962927477616
1127 => 0.070420187265927
1128 => 0.072021653799511
1129 => 0.073386426255622
1130 => 0.073660424531987
1201 => 0.074277756639338
1202 => 0.069002721372491
1203 => 0.071371057340407
1204 => 0.072762232838487
1205 => 0.066476851326764
1206 => 0.072637991055042
1207 => 0.06891089474439
1208 => 0.067645862277446
1209 => 0.069349061838831
1210 => 0.068685323313344
1211 => 0.068114679905164
1212 => 0.067796251078501
1213 => 0.069046892861106
1214 => 0.068988548927107
1215 => 0.066942256231655
1216 => 0.064272950827999
1217 => 0.065168857338429
1218 => 0.064843366104021
1219 => 0.063663743881324
1220 => 0.064458666831292
1221 => 0.060958228460931
1222 => 0.054935906181679
1223 => 0.058914436748073
1224 => 0.058761267649075
1225 => 0.058684032843695
1226 => 0.061673788605832
1227 => 0.061386392574704
1228 => 0.060864765964016
1229 => 0.063654163799554
1230 => 0.062635996066887
1231 => 0.065773749108478
]
'min_raw' => 0.028166838017873
'max_raw' => 0.092656135849818
'avg_raw' => 0.060411486933845
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.028166'
'max' => '$0.092656'
'avg' => '$0.060411'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.015344567151487
'max_diff' => 0.061250388710213
'year' => 2029
]
4 => [
'items' => [
101 => 0.067840476198812
102 => 0.067316287357086
103 => 0.069260054174904
104 => 0.065189497214953
105 => 0.066541572954649
106 => 0.066820233890705
107 => 0.06361974306325
108 => 0.061433414119683
109 => 0.061287610905122
110 => 0.057496817811663
111 => 0.059521828883976
112 => 0.061303754826959
113 => 0.06045035058331
114 => 0.060180188294497
115 => 0.061560388836991
116 => 0.061667642239761
117 => 0.059222253290398
118 => 0.059730727088367
119 => 0.061851147352634
120 => 0.059677297938146
121 => 0.05545386362208
122 => 0.054406393518148
123 => 0.054266641697579
124 => 0.051425819699814
125 => 0.054476390479166
126 => 0.053144734583765
127 => 0.05735141960165
128 => 0.054948583680338
129 => 0.054845002226258
130 => 0.05468842366632
131 => 0.052243210819964
201 => 0.052778557031933
202 => 0.054558129376047
203 => 0.055193100836744
204 => 0.055126868111226
205 => 0.054549408500719
206 => 0.054813766553337
207 => 0.053962177157402
208 => 0.053661463217396
209 => 0.052712327304854
210 => 0.051317359718904
211 => 0.051511338517564
212 => 0.048747542716674
213 => 0.047241680078604
214 => 0.046824877147337
215 => 0.046267510848253
216 => 0.046887833153914
217 => 0.048739713230423
218 => 0.046505952959878
219 => 0.042676327656093
220 => 0.042906494662214
221 => 0.043423611587772
222 => 0.042459967618066
223 => 0.041547959473247
224 => 0.042340876561607
225 => 0.040718213835335
226 => 0.043619702625879
227 => 0.043541225485423
228 => 0.044622721079674
301 => 0.045299002469283
302 => 0.043740392814934
303 => 0.043348406701794
304 => 0.043571699806614
305 => 0.039881162175474
306 => 0.044321125419959
307 => 0.044359522406471
308 => 0.04403074409647
309 => 0.046394887455673
310 => 0.051383967338395
311 => 0.049506874801241
312 => 0.048780007835433
313 => 0.047398233202096
314 => 0.049239365859359
315 => 0.049097995597424
316 => 0.048458665659878
317 => 0.04807199691882
318 => 0.048784445930131
319 => 0.047983716601994
320 => 0.04783988361209
321 => 0.046968412185109
322 => 0.046657336535101
323 => 0.046427028508113
324 => 0.046173481999998
325 => 0.046732742417045
326 => 0.045465384735182
327 => 0.043937075611459
328 => 0.043810013244356
329 => 0.044160843611366
330 => 0.044005627290213
331 => 0.043809270128326
401 => 0.043434370831592
402 => 0.043323146218707
403 => 0.043684572252072
404 => 0.04327654333285
405 => 0.043878612229647
406 => 0.04371488280371
407 => 0.042800303539926
408 => 0.04166039915664
409 => 0.041650251616598
410 => 0.041404661087037
411 => 0.041091864622858
412 => 0.041004851802337
413 => 0.042274099296051
414 => 0.04490140362266
415 => 0.044385600917283
416 => 0.044758321233505
417 => 0.046591736294466
418 => 0.04717452380963
419 => 0.046760875035445
420 => 0.046194647080595
421 => 0.046219558236953
422 => 0.048154530567534
423 => 0.048275212418307
424 => 0.048580136521769
425 => 0.04897205016626
426 => 0.046827619623785
427 => 0.046118555751248
428 => 0.045782561951074
429 => 0.044747831092504
430 => 0.045863699612353
501 => 0.045213530812091
502 => 0.045301260796175
503 => 0.04524412652895
504 => 0.045275325702257
505 => 0.043618891600629
506 => 0.044222409127649
507 => 0.043218944184829
508 => 0.041875417270619
509 => 0.041870913297301
510 => 0.042199739606181
511 => 0.042004140850684
512 => 0.041477789628947
513 => 0.041552555335687
514 => 0.040897529072471
515 => 0.041632087383675
516 => 0.041653151887665
517 => 0.041370306926189
518 => 0.042501995354113
519 => 0.042965649026403
520 => 0.042779474413633
521 => 0.042952586519267
522 => 0.044407034848401
523 => 0.044644173388079
524 => 0.044749494662912
525 => 0.044608378107031
526 => 0.042979171164755
527 => 0.043051433420568
528 => 0.042521220934174
529 => 0.042073247255586
530 => 0.042091163853417
531 => 0.042321480556713
601 => 0.043327287107903
602 => 0.045443947699346
603 => 0.045524273421533
604 => 0.04562163054009
605 => 0.045225630211152
606 => 0.045106192722732
607 => 0.04526376159939
608 => 0.046058668028809
609 => 0.048103383180266
610 => 0.047380644283808
611 => 0.046793046310886
612 => 0.047308528148415
613 => 0.047229173760007
614 => 0.046559342862416
615 => 0.046540542940062
616 => 0.045254923289692
617 => 0.044779658977093
618 => 0.044382492544568
619 => 0.043948797168544
620 => 0.043691688012035
621 => 0.044086724530454
622 => 0.044177074056151
623 => 0.043313319804572
624 => 0.043195593291764
625 => 0.043900953659033
626 => 0.043590550859883
627 => 0.043909807836428
628 => 0.043983878193522
629 => 0.043971951160045
630 => 0.043647854988198
701 => 0.043854424223446
702 => 0.043365826400831
703 => 0.042834549653756
704 => 0.042495628188834
705 => 0.04219987425928
706 => 0.042363975728716
707 => 0.041778983953923
708 => 0.041591833311608
709 => 0.043784443214499
710 => 0.045404147724293
711 => 0.045380596579247
712 => 0.045237235040644
713 => 0.045024228874105
714 => 0.046043085300993
715 => 0.045688136094543
716 => 0.045946391299234
717 => 0.046012128087765
718 => 0.046211093547994
719 => 0.046282206598366
720 => 0.046067253568951
721 => 0.045345844947933
722 => 0.043548163253829
723 => 0.042711337572474
724 => 0.042435171159193
725 => 0.042445209283801
726 => 0.042168312994949
727 => 0.042249871361637
728 => 0.042139950323389
729 => 0.041931786469703
730 => 0.042351122197341
731 => 0.042399446733569
801 => 0.042301568764049
802 => 0.042324622569105
803 => 0.041514234785711
804 => 0.041575846808813
805 => 0.041232783234905
806 => 0.041168462950491
807 => 0.040301228109615
808 => 0.038764795881304
809 => 0.039616128480873
810 => 0.038587838416072
811 => 0.038198409387394
812 => 0.040041905840514
813 => 0.039856869927253
814 => 0.039540168876928
815 => 0.039071702017216
816 => 0.038897943101996
817 => 0.037842238938507
818 => 0.037779862304566
819 => 0.038303097794401
820 => 0.038061642619276
821 => 0.037722548107175
822 => 0.036494382157804
823 => 0.035113516998939
824 => 0.035155196638276
825 => 0.035594424153402
826 => 0.036871537391528
827 => 0.036372547155109
828 => 0.036010524013333
829 => 0.035942727961254
830 => 0.036791337493671
831 => 0.037992297771233
901 => 0.038555761463494
902 => 0.03799738605711
903 => 0.037355954455324
904 => 0.037394995424817
905 => 0.03765471750419
906 => 0.03768201062246
907 => 0.037264504589931
908 => 0.037382030092532
909 => 0.037203498107324
910 => 0.036107847643643
911 => 0.0360880308011
912 => 0.035819140507563
913 => 0.035810998616338
914 => 0.035353549149203
915 => 0.035289548806552
916 => 0.034381255124359
917 => 0.034979096776545
918 => 0.034578095984354
919 => 0.033973693203997
920 => 0.033869493936851
921 => 0.033866361581056
922 => 0.034486948094493
923 => 0.034971844861812
924 => 0.034585071564817
925 => 0.034497010782377
926 => 0.035437269553047
927 => 0.03531761305383
928 => 0.03521399129721
929 => 0.037884764950625
930 => 0.03577063920088
1001 => 0.034848759703912
1002 => 0.033707758766246
1003 => 0.034079274424976
1004 => 0.034157558232972
1005 => 0.031413656658762
1006 => 0.030300456131837
1007 => 0.029918447661073
1008 => 0.029698596385341
1009 => 0.029798785372411
1010 => 0.028796774332779
1011 => 0.029470142323145
1012 => 0.028602485460708
1013 => 0.028457019964121
1014 => 0.030008497916217
1015 => 0.030224377009649
1016 => 0.029303369728693
1017 => 0.029894805500601
1018 => 0.029680342668135
1019 => 0.028617358947289
1020 => 0.028576760787931
1021 => 0.028043392922495
1022 => 0.027208775493458
1023 => 0.026827332932612
1024 => 0.026628674335087
1025 => 0.026710644744205
1026 => 0.026669197997019
1027 => 0.026398729935972
1028 => 0.02668470090968
1029 => 0.025954163243222
1030 => 0.025663257258096
1031 => 0.025531861773583
1101 => 0.024883467546422
1102 => 0.025915351104056
1103 => 0.026118645164237
1104 => 0.026322339776516
1105 => 0.028095362308194
1106 => 0.028006787113021
1107 => 0.028807463739514
1108 => 0.028776350918159
1109 => 0.028547984974181
1110 => 0.027584546620915
1111 => 0.02796855597689
1112 => 0.026786634867504
1113 => 0.027672210525479
1114 => 0.027268070777703
1115 => 0.027535570470228
1116 => 0.027054581903593
1117 => 0.0273207808359
1118 => 0.026166853727618
1119 => 0.025089332830097
1120 => 0.025522958694055
1121 => 0.02599435959931
1122 => 0.027016476872621
1123 => 0.026407712256922
1124 => 0.026626647032666
1125 => 0.025893252183162
1126 => 0.024380049124753
1127 => 0.02438861368973
1128 => 0.024155840366114
1129 => 0.023954690229049
1130 => 0.026477636196111
1201 => 0.026163867983233
1202 => 0.025663919400981
1203 => 0.026333120445493
1204 => 0.02651006782331
1205 => 0.026515105266398
1206 => 0.027003337073894
1207 => 0.027263906477076
1208 => 0.027309832963759
1209 => 0.028078076261801
1210 => 0.028335581281931
1211 => 0.02939620801637
1212 => 0.027241798983713
1213 => 0.027197430347434
1214 => 0.026342537476549
1215 => 0.025800350902512
1216 => 0.026379661455134
1217 => 0.02689285152098
1218 => 0.026358483722406
1219 => 0.02642826087578
1220 => 0.025710915765648
1221 => 0.025967332888296
1222 => 0.026188193857436
1223 => 0.026066247411885
1224 => 0.025883687680619
1225 => 0.026850775787923
1226 => 0.02679620888686
1227 => 0.027696783565642
1228 => 0.028398845928465
1229 => 0.029657067191304
1230 => 0.028344047710974
1231 => 0.028296196062331
]
'min_raw' => 0.023954690229049
'max_raw' => 0.069260054174904
'avg_raw' => 0.046607372201976
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.023954'
'max' => '$0.06926'
'avg' => '$0.0466073'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0042121477888239
'max_diff' => -0.023396081674914
'year' => 2030
]
5 => [
'items' => [
101 => 0.028763953603462
102 => 0.028335509670688
103 => 0.028606271446819
104 => 0.029613443283208
105 => 0.02963472323703
106 => 0.029278256592835
107 => 0.02925656556514
108 => 0.029325028883476
109 => 0.029726020677379
110 => 0.029585901823356
111 => 0.029748050908607
112 => 0.029950820822629
113 => 0.030789563159683
114 => 0.030991781097598
115 => 0.030500496346445
116 => 0.030544853858792
117 => 0.030361099875792
118 => 0.030183595830645
119 => 0.030582599001752
120 => 0.031311785139375
121 => 0.031307248910257
122 => 0.031476405920833
123 => 0.031581789337049
124 => 0.031129406569274
125 => 0.030834922022027
126 => 0.03094784613598
127 => 0.031128414253358
128 => 0.030889290329151
129 => 0.029413306695966
130 => 0.029861025844075
131 => 0.029786503485482
201 => 0.029680374584617
202 => 0.03013055965015
203 => 0.030087138202345
204 => 0.028786497261285
205 => 0.028869760074412
206 => 0.028791560748726
207 => 0.029044238768095
208 => 0.028321864228424
209 => 0.02854406177156
210 => 0.028683421987642
211 => 0.02876550622553
212 => 0.029062050778471
213 => 0.029027254697888
214 => 0.029059887805246
215 => 0.029499585092398
216 => 0.031723423084923
217 => 0.031844461680234
218 => 0.031248423369135
219 => 0.031486528918083
220 => 0.031029418332062
221 => 0.031336279730833
222 => 0.031546226506437
223 => 0.030597517397924
224 => 0.030541341001589
225 => 0.030082343757577
226 => 0.030328982877576
227 => 0.029936562303677
228 => 0.030032848586223
301 => 0.029763623746137
302 => 0.030248174856161
303 => 0.030789978288797
304 => 0.030926859232347
305 => 0.030566784400819
306 => 0.030306066492704
307 => 0.029848331731873
308 => 0.03060955484042
309 => 0.030832159675212
310 => 0.030608385591988
311 => 0.030556532247345
312 => 0.030458270252943
313 => 0.030577378993972
314 => 0.030830947321475
315 => 0.030711369180896
316 => 0.030790352649444
317 => 0.030489349114738
318 => 0.031129556326793
319 => 0.032146359453793
320 => 0.03214962864211
321 => 0.032030049856961
322 => 0.031981120794438
323 => 0.032103815884649
324 => 0.032170372937872
325 => 0.032567146361183
326 => 0.032992900052546
327 => 0.034979706759248
328 => 0.034421819386342
329 => 0.036184632492188
330 => 0.037578788786279
331 => 0.037996835299811
401 => 0.03761225217797
402 => 0.036296614092925
403 => 0.036232062611889
404 => 0.038198181359019
405 => 0.037642662759012
406 => 0.037576585589186
407 => 0.036873636141384
408 => 0.037289166327018
409 => 0.03719828377996
410 => 0.037054821233302
411 => 0.037847623881408
412 => 0.03933167966468
413 => 0.03910037565347
414 => 0.038927717938986
415 => 0.038171182094022
416 => 0.038626785651089
417 => 0.038464553950929
418 => 0.039161604289598
419 => 0.038748687110526
420 => 0.037638454159249
421 => 0.037815262416115
422 => 0.037788538203779
423 => 0.038338520599967
424 => 0.038173429536033
425 => 0.037756301523929
426 => 0.039326607323351
427 => 0.039224640399236
428 => 0.039369206184746
429 => 0.039432848514374
430 => 0.04038866598259
501 => 0.04078023381657
502 => 0.040869126570244
503 => 0.041241085727582
504 => 0.040859871887562
505 => 0.042384999048503
506 => 0.043399119616893
507 => 0.044577072843244
508 => 0.046298379110921
509 => 0.046945606190542
510 => 0.046828690411713
511 => 0.048133765178869
512 => 0.050478955525267
513 => 0.047302720432278
514 => 0.050647303697697
515 => 0.049588447250936
516 => 0.04707791766368
517 => 0.04691626915546
518 => 0.048616428939798
519 => 0.052387219707144
520 => 0.051442679387878
521 => 0.052388764636734
522 => 0.051285105939667
523 => 0.051230299982992
524 => 0.05233516239723
525 => 0.05491673365101
526 => 0.05369032591709
527 => 0.051931969703003
528 => 0.053230312568432
529 => 0.052105567822437
530 => 0.049571203113479
531 => 0.051441957115697
601 => 0.05019103719042
602 => 0.050556122127177
603 => 0.053185369749813
604 => 0.052869011719731
605 => 0.053278408304622
606 => 0.052555834048064
607 => 0.051880835752937
608 => 0.05062090130905
609 => 0.050247896834233
610 => 0.050350981851777
611 => 0.050247845750418
612 => 0.049542924008458
613 => 0.049390696225399
614 => 0.04913697658438
615 => 0.049215614910336
616 => 0.048738547756921
617 => 0.049638872042518
618 => 0.049805980163555
619 => 0.050461161097797
620 => 0.050529184155869
621 => 0.052353853731817
622 => 0.051348856391712
623 => 0.05202309537475
624 => 0.051962785093924
625 => 0.047132328452427
626 => 0.047797922758146
627 => 0.048833378622844
628 => 0.048366907159325
629 => 0.04770742564742
630 => 0.047174858967396
701 => 0.04636796598942
702 => 0.047503652360914
703 => 0.048996959172648
704 => 0.050567056880946
705 => 0.05245342640059
706 => 0.052032410683567
707 => 0.050531792514908
708 => 0.050599109149752
709 => 0.051015234098237
710 => 0.05047631448101
711 => 0.050317376564929
712 => 0.050993398469225
713 => 0.050998053860545
714 => 0.050377961710314
715 => 0.049688842760999
716 => 0.049685955327439
717 => 0.049563333266508
718 => 0.0513069201319
719 => 0.052265716611351
720 => 0.052375641082542
721 => 0.052258317818607
722 => 0.052303470886502
723 => 0.051745568340749
724 => 0.05302076811948
725 => 0.054191017540632
726 => 0.053877365697031
727 => 0.053407156995236
728 => 0.053032613115937
729 => 0.053789135062244
730 => 0.053755448330851
731 => 0.054180796432841
801 => 0.054161500186005
802 => 0.054018471617457
803 => 0.053877370805031
804 => 0.054436819576986
805 => 0.054275707315136
806 => 0.054114344801442
807 => 0.053790707576864
808 => 0.05383469525073
809 => 0.053364567737097
810 => 0.053147065237719
811 => 0.049876349508543
812 => 0.049002307391988
813 => 0.049277298834624
814 => 0.049367833157689
815 => 0.048987448908449
816 => 0.049532822209163
817 => 0.04944782635794
818 => 0.049778495494139
819 => 0.049571907773827
820 => 0.04958038620593
821 => 0.050187916642222
822 => 0.050364285312497
823 => 0.050274582783325
824 => 0.050337407359934
825 => 0.051785173211292
826 => 0.051579347204175
827 => 0.051470006240158
828 => 0.05150029443444
829 => 0.051870229649912
830 => 0.05197379131253
831 => 0.051534993270868
901 => 0.051741932963977
902 => 0.052623055912678
903 => 0.052931399077484
904 => 0.053915482446428
905 => 0.053497426340613
906 => 0.05426478641588
907 => 0.056623389674923
908 => 0.058507605161178
909 => 0.05677480273152
910 => 0.060234924518632
911 => 0.062929125654889
912 => 0.062825717727853
913 => 0.062355921441751
914 => 0.059288645077165
915 => 0.056466091635959
916 => 0.058827277441478
917 => 0.058833296589678
918 => 0.058630468634952
919 => 0.057370721627871
920 => 0.058586632169765
921 => 0.058683146733043
922 => 0.058629124242901
923 => 0.057663279166206
924 => 0.056188612252099
925 => 0.056476758637262
926 => 0.056948748294185
927 => 0.056055173406272
928 => 0.055769622085972
929 => 0.056300516318771
930 => 0.058011168153056
1001 => 0.057687779332916
1002 => 0.057679334343905
1003 => 0.059062928854667
1004 => 0.058072573783345
1005 => 0.056480393085951
1006 => 0.056078346461576
1007 => 0.054651351796102
1008 => 0.055636982094325
1009 => 0.055672453174075
1010 => 0.055132633532635
1011 => 0.056524196474738
1012 => 0.056511372977247
1013 => 0.057832454883964
1014 => 0.060357867313901
1015 => 0.05961097859037
1016 => 0.058742428266166
1017 => 0.058836863768695
1018 => 0.059872588144759
1019 => 0.059246365543703
1020 => 0.059471559557222
1021 => 0.059872247286649
1022 => 0.060113992142329
1023 => 0.058802080404205
1024 => 0.058496211022056
1025 => 0.057870509611744
1026 => 0.057707275793063
1027 => 0.058216896536074
1028 => 0.058082629475457
1029 => 0.055669471967172
1030 => 0.055417283580875
1031 => 0.055425017838641
1101 => 0.054790878150392
1102 => 0.053823662914848
1103 => 0.056365446804436
1104 => 0.056161305985859
1105 => 0.055935950321395
1106 => 0.05596355510443
1107 => 0.057066857341851
1108 => 0.056426886326048
1109 => 0.058128354160747
1110 => 0.057778583524737
1111 => 0.05741984259172
1112 => 0.057370253667261
1113 => 0.057232169014387
1114 => 0.056758625360648
1115 => 0.056186792943195
1116 => 0.055809219649917
1117 => 0.05148105506286
1118 => 0.052284337234443
1119 => 0.053208440151375
1120 => 0.05352743677519
1121 => 0.05298177097626
1122 => 0.056780171572262
1123 => 0.05747417596345
1124 => 0.055371991393754
1125 => 0.054978758492394
1126 => 0.056805951855809
1127 => 0.055703930892366
1128 => 0.056200170864726
1129 => 0.055127571473235
1130 => 0.057307010628434
1201 => 0.05729040695363
1202 => 0.056442555897392
1203 => 0.057159153804291
1204 => 0.057034627283359
1205 => 0.056077405529031
1206 => 0.057337356265411
1207 => 0.057337981185257
1208 => 0.0565219429775
1209 => 0.055568989004573
1210 => 0.055398623341982
1211 => 0.055270275700626
1212 => 0.056168605212806
1213 => 0.056974044644424
1214 => 0.058472767741296
1215 => 0.058849582336632
1216 => 0.060320314788197
1217 => 0.059444565221953
1218 => 0.059832773661814
1219 => 0.060254228838718
1220 => 0.060456289949028
1221 => 0.060127042212976
1222 => 0.062411695087884
1223 => 0.062604589790482
1224 => 0.06266926571573
1225 => 0.061898893620765
1226 => 0.062583164348928
1227 => 0.062263016735885
1228 => 0.063095951885454
1229 => 0.063226566752356
1230 => 0.063115940606848
1231 => 0.063157399827219
]
'min_raw' => 0.028321864228424
'max_raw' => 0.063226566752356
'avg_raw' => 0.04577421549039
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.028321'
'max' => '$0.063226'
'avg' => '$0.045774'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0043671739993752
'max_diff' => -0.006033487422548
'year' => 2031
]
6 => [
'items' => [
101 => 0.061207851638869
102 => 0.061106757280617
103 => 0.059728328532525
104 => 0.060290048436203
105 => 0.059239940000211
106 => 0.05957294020258
107 => 0.059719723518842
108 => 0.059643052244306
109 => 0.06032180723676
110 => 0.059744726832691
111 => 0.05822171676555
112 => 0.056698291755335
113 => 0.056679166395287
114 => 0.056278075480783
115 => 0.055988160213061
116 => 0.056044008178921
117 => 0.056240823694976
118 => 0.055976720937477
119 => 0.056033080651139
120 => 0.056969027420737
121 => 0.057156724870513
122 => 0.056518855598046
123 => 0.053957718424998
124 => 0.053329208938606
125 => 0.05378096909354
126 => 0.053565056836561
127 => 0.043231181448383
128 => 0.045658972186295
129 => 0.044216461369811
130 => 0.044881236720778
131 => 0.043408806713513
201 => 0.044111527489649
202 => 0.043981760621551
203 => 0.047885576284563
204 => 0.047824623572508
205 => 0.047853798410223
206 => 0.04646120739145
207 => 0.048679642697322
208 => 0.049772523701347
209 => 0.049570260513588
210 => 0.049621165800358
211 => 0.048746444316371
212 => 0.047862267626234
213 => 0.046881579603055
214 => 0.048703576733419
215 => 0.048501001755051
216 => 0.048965635871251
217 => 0.050147331249337
218 => 0.050321340382584
219 => 0.050555210422295
220 => 0.050471384661061
221 => 0.052468454377143
222 => 0.052226596057435
223 => 0.052809405020544
224 => 0.051610522765608
225 => 0.050253873695199
226 => 0.050511728331284
227 => 0.050486894856293
228 => 0.050170736217122
229 => 0.049885322334086
301 => 0.049410188633694
302 => 0.050913581968291
303 => 0.050852546944425
304 => 0.051840633035362
305 => 0.051665979221033
306 => 0.050499598303903
307 => 0.050541255826541
308 => 0.050821422686202
309 => 0.051791083386377
310 => 0.052078944701724
311 => 0.051945595871166
312 => 0.052261222662075
313 => 0.052510681208469
314 => 0.052292550814771
315 => 0.055380817193248
316 => 0.054098353679724
317 => 0.054723417472892
318 => 0.054872491504473
319 => 0.054490641507268
320 => 0.054573451098638
321 => 0.054698885065302
322 => 0.055460495548393
323 => 0.057459181829795
324 => 0.05834438637831
325 => 0.06100756793774
326 => 0.058270882463198
327 => 0.058108498872669
328 => 0.0585882182919
329 => 0.060151787793684
330 => 0.061418914016265
331 => 0.06183929288656
401 => 0.061894852893968
402 => 0.062683511600901
403 => 0.063135556064101
404 => 0.062587747690096
405 => 0.062123537451055
406 => 0.060460793994704
407 => 0.060653261077277
408 => 0.061979168415781
409 => 0.06385209062697
410 => 0.065459252728514
411 => 0.064896480575807
412 => 0.069190034845733
413 => 0.069615723214
414 => 0.069556906845658
415 => 0.070526688299493
416 => 0.06860186960619
417 => 0.067778972323197
418 => 0.062223904973746
419 => 0.063784652310689
420 => 0.066053290224413
421 => 0.065753027489576
422 => 0.064105481995764
423 => 0.065458002917517
424 => 0.065010817203546
425 => 0.064658103277185
426 => 0.066273954150805
427 => 0.064497259739764
428 => 0.066035566338563
429 => 0.064062672213859
430 => 0.064899051271596
501 => 0.064424282067322
502 => 0.064731515928012
503 => 0.062935433056233
504 => 0.063904555776398
505 => 0.062895114364894
506 => 0.062894635758232
507 => 0.062872352283125
508 => 0.064059955627211
509 => 0.064098683329625
510 => 0.063221042663976
511 => 0.063094560932732
512 => 0.0635622301849
513 => 0.063014711973383
514 => 0.063270892298513
515 => 0.063022471414456
516 => 0.062966546640911
517 => 0.062520928530484
518 => 0.062328943995986
519 => 0.062404226078795
520 => 0.062147249519596
521 => 0.061992411847431
522 => 0.062841551172923
523 => 0.062387890285495
524 => 0.062772021135512
525 => 0.06233425555074
526 => 0.060816769308533
527 => 0.059944046923515
528 => 0.057077656083036
529 => 0.057890560969649
530 => 0.058429517750484
531 => 0.058251392537633
601 => 0.058634074420144
602 => 0.058657567979717
603 => 0.058533154198732
604 => 0.058389098978745
605 => 0.058318980864409
606 => 0.058841583841979
607 => 0.059144972460467
608 => 0.058483609273753
609 => 0.05832866113256
610 => 0.05899733582919
611 => 0.059405227007854
612 => 0.062416866296851
613 => 0.062193754330855
614 => 0.062753721581992
615 => 0.062690677862912
616 => 0.063277612751882
617 => 0.064237003238157
618 => 0.062286294129761
619 => 0.062624869780533
620 => 0.062541858849817
621 => 0.063448150424736
622 => 0.063450979768108
623 => 0.062907612696322
624 => 0.063202180801061
625 => 0.063037760966049
626 => 0.063334889830589
627 => 0.062190774534524
628 => 0.063584183465517
629 => 0.064374156540102
630 => 0.064385125317009
701 => 0.064759566284748
702 => 0.065140019994129
703 => 0.065870267758752
704 => 0.065119653780317
705 => 0.063769372303909
706 => 0.063866858265123
707 => 0.063075188729554
708 => 0.063088496837474
709 => 0.063017457114423
710 => 0.063230652670919
711 => 0.062237558970149
712 => 0.062470636076752
713 => 0.06214432676261
714 => 0.062624160447811
715 => 0.062107938721884
716 => 0.062541818819433
717 => 0.062729067086182
718 => 0.063420017221653
719 => 0.062005884825081
720 => 0.059122373140123
721 => 0.059728522255501
722 => 0.058831980101871
723 => 0.058914958491566
724 => 0.059082588044663
725 => 0.058539245818099
726 => 0.058642898392246
727 => 0.058639195192906
728 => 0.05860728302162
729 => 0.058465938723618
730 => 0.058260961527398
731 => 0.059077527588483
801 => 0.059216278074096
802 => 0.059524703216063
803 => 0.060442367231786
804 => 0.060350670956608
805 => 0.060500231385866
806 => 0.060173741808542
807 => 0.058930103406663
808 => 0.05899763895521
809 => 0.058155469582647
810 => 0.059503167051752
811 => 0.05918401450233
812 => 0.058978254777508
813 => 0.05892211133024
814 => 0.059842050057562
815 => 0.06011731014305
816 => 0.059945786529791
817 => 0.059593986594854
818 => 0.060269546470247
819 => 0.060450297793319
820 => 0.060490761348703
821 => 0.061687723922141
822 => 0.060557658259962
823 => 0.060829676296736
824 => 0.062951883368665
825 => 0.061027334398983
826 => 0.062046810910787
827 => 0.061996912840634
828 => 0.062518442526869
829 => 0.061954132184052
830 => 0.061961127487071
831 => 0.062424210516966
901 => 0.061773893918943
902 => 0.061612866383849
903 => 0.061390407997418
904 => 0.061876137745713
905 => 0.062167310762148
906 => 0.064513951431603
907 => 0.066029988323886
908 => 0.06596417316413
909 => 0.066565600523491
910 => 0.066294651989655
911 => 0.065419687701289
912 => 0.066913145051003
913 => 0.066440552656644
914 => 0.066479512599435
915 => 0.066478062508418
916 => 0.066792295135923
917 => 0.066569632520339
918 => 0.066130741649173
919 => 0.066422097891632
920 => 0.067287321769973
921 => 0.069973003236652
922 => 0.071475946165953
923 => 0.069882524185157
924 => 0.07098164533074
925 => 0.070322564300298
926 => 0.070202789671105
927 => 0.070893118974945
928 => 0.071584656608847
929 => 0.071540608651167
930 => 0.071038587839805
1001 => 0.070755009021773
1002 => 0.072902362837786
1003 => 0.074484496550206
1004 => 0.074376605637778
1005 => 0.074852801037231
1006 => 0.076250925458195
1007 => 0.076378752433383
1008 => 0.076362649172578
1009 => 0.076045816677211
1010 => 0.077422451739049
1011 => 0.078570864927223
1012 => 0.075972479108705
1013 => 0.076961910413028
1014 => 0.077406098003025
1015 => 0.078058297169659
1016 => 0.079158666485044
1017 => 0.080353959420097
1018 => 0.080522986946834
1019 => 0.080403053827902
1020 => 0.079614726006036
1021 => 0.080922629798382
1022 => 0.08168876916582
1023 => 0.082144987626342
1024 => 0.083301881734712
1025 => 0.077408841154361
1026 => 0.073237454128469
1027 => 0.072586031808817
1028 => 0.073910724711747
1029 => 0.074260035666021
1030 => 0.074119228858352
1031 => 0.069423953514793
1101 => 0.072561312155842
1102 => 0.075936846257004
1103 => 0.076066514269125
1104 => 0.077756377219256
1105 => 0.078306665865642
1106 => 0.079667227035897
1107 => 0.079582123564257
1108 => 0.079913398557958
1109 => 0.079837244173789
1110 => 0.082357397241732
1111 => 0.085137500322026
1112 => 0.085041234192542
1113 => 0.084641561482063
1114 => 0.085235143611448
1115 => 0.088104507924263
1116 => 0.087840342838965
1117 => 0.088096956717804
1118 => 0.091480098952899
1119 => 0.095878665104894
1120 => 0.093835089518471
1121 => 0.098269060517974
1122 => 0.10106001022746
1123 => 0.10588666916043
1124 => 0.10528234769022
1125 => 0.10716133059317
1126 => 0.10420048613286
1127 => 0.097401788766604
1128 => 0.096325868884026
1129 => 0.098479887735578
1130 => 0.10377533289603
1201 => 0.098313115322586
1202 => 0.099418114823687
1203 => 0.099099874893032
1204 => 0.09908291723956
1205 => 0.099730121900823
1206 => 0.098791317783736
1207 => 0.094966460923089
1208 => 0.096719370282301
1209 => 0.096042487797088
1210 => 0.096793539379363
1211 => 0.10084665501167
1212 => 0.09905467597642
1213 => 0.097166971631337
1214 => 0.099534571795199
1215 => 0.10254934039948
1216 => 0.10236068159828
1217 => 0.1019946046707
1218 => 0.10405816114431
1219 => 0.1074665518734
1220 => 0.10838782619145
1221 => 0.10906789205841
1222 => 0.10916166165166
1223 => 0.11012754673958
1224 => 0.10493373918745
1225 => 0.11317644515912
1226 => 0.11459973278026
1227 => 0.11433221369672
1228 => 0.11591413798652
1229 => 0.11544869573092
1230 => 0.11477434292819
1231 => 0.11728202941249
]
'min_raw' => 0.043231181448383
'max_raw' => 0.11728202941249
'avg_raw' => 0.080256605430435
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.043231'
'max' => '$0.117282'
'avg' => '$0.080256'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.014909317219959
'max_diff' => 0.054055462660131
'year' => 2032
]
7 => [
'items' => [
101 => 0.11440716921811
102 => 0.11032666710703
103 => 0.10808802294571
104 => 0.11103605016361
105 => 0.11283630751361
106 => 0.11402616310409
107 => 0.11438621268683
108 => 0.10533691968285
109 => 0.1004598526505
110 => 0.10358599670255
111 => 0.10740010820099
112 => 0.1049125516055
113 => 0.10501005911448
114 => 0.10146345712769
115 => 0.10771390378053
116 => 0.10680326627775
117 => 0.1115276552531
118 => 0.11040014190854
119 => 0.11425269771823
120 => 0.11323819066033
121 => 0.11744935273733
122 => 0.1191292993025
123 => 0.12195019104823
124 => 0.12402525049949
125 => 0.12524376509883
126 => 0.12517061005282
127 => 0.12999897195697
128 => 0.12715185563221
129 => 0.12357520651451
130 => 0.12351051621616
131 => 0.12536291347572
201 => 0.1292450299514
202 => 0.13025160627104
203 => 0.13081414511406
204 => 0.12995259729386
205 => 0.126862256578
206 => 0.12552786312527
207 => 0.1266648050081
208 => 0.12527442278393
209 => 0.12767461257519
210 => 0.13097058581146
211 => 0.13028998037186
212 => 0.13256514231437
213 => 0.13491969557084
214 => 0.13828681247721
215 => 0.13916710152052
216 => 0.1406221858347
217 => 0.14211994556429
218 => 0.14260098562368
219 => 0.14351944035502
220 => 0.14351459964523
221 => 0.14628242479725
222 => 0.14933542165233
223 => 0.15048785728809
224 => 0.15313781948684
225 => 0.14859985208723
226 => 0.15204195248825
227 => 0.15514681321132
228 => 0.15144507025889
301 => 0.15654706052333
302 => 0.15674515924394
303 => 0.15973621473151
304 => 0.15670420697796
305 => 0.15490381045242
306 => 0.16010148776169
307 => 0.16261648008635
308 => 0.16185894393048
309 => 0.15609405638011
310 => 0.15273864455813
311 => 0.14395688460942
312 => 0.15435925861247
313 => 0.15942595154794
314 => 0.15608093486943
315 => 0.15776796671407
316 => 0.16697186543652
317 => 0.17047611416172
318 => 0.16974725492343
319 => 0.16987042013666
320 => 0.17176124914216
321 => 0.18014622625112
322 => 0.17512175360519
323 => 0.17896277467961
324 => 0.18100003840765
325 => 0.18289236249619
326 => 0.17824541260989
327 => 0.17219979908507
328 => 0.17028489950417
329 => 0.15574833888382
330 => 0.15499164777445
331 => 0.15456689412467
401 => 0.15188888244542
402 => 0.14978469883466
403 => 0.14811137390406
404 => 0.14372006958903
405 => 0.14520200588726
406 => 0.13820318334555
407 => 0.1426807819847
408 => 0.13151049221564
409 => 0.14081344146226
410 => 0.13575026914053
411 => 0.13915005318099
412 => 0.13913819165475
413 => 0.13287811133375
414 => 0.12926742764914
415 => 0.13156829582288
416 => 0.13403500914828
417 => 0.13443522508631
418 => 0.13763338330049
419 => 0.13852592051389
420 => 0.13582149108872
421 => 0.13127901278852
422 => 0.13233412689476
423 => 0.12924604579545
424 => 0.12383430245024
425 => 0.12772111100074
426 => 0.12904823833079
427 => 0.12963437336452
428 => 0.12431254532743
429 => 0.12264031141566
430 => 0.12175002811244
501 => 0.13059203161759
502 => 0.13107641652929
503 => 0.12859823483588
504 => 0.13979985108094
505 => 0.13726458033423
506 => 0.14009709891472
507 => 0.1322383863488
508 => 0.13253859975198
509 => 0.12881815928182
510 => 0.13090135734518
511 => 0.1294290200986
512 => 0.13073305552823
513 => 0.13151468898801
514 => 0.1352345189705
515 => 0.14085591594542
516 => 0.13467890041651
517 => 0.13198748629407
518 => 0.13365722447855
519 => 0.13810395729932
520 => 0.14484098514686
521 => 0.1408525290658
522 => 0.1426225381462
523 => 0.14300920638804
524 => 0.14006826653453
525 => 0.14494942179417
526 => 0.14756527255225
527 => 0.15024859415599
528 => 0.15257844711955
529 => 0.14917681649995
530 => 0.15281704886752
531 => 0.14988366416677
601 => 0.14725211484246
602 => 0.14725610581653
603 => 0.14560529648459
604 => 0.1424066453886
605 => 0.14181676505039
606 => 0.14488539706345
607 => 0.14734614933739
608 => 0.14754882868088
609 => 0.14891122757775
610 => 0.14971748121109
611 => 0.15761986286653
612 => 0.16079826614027
613 => 0.16468475749931
614 => 0.16619876491431
615 => 0.17075538443175
616 => 0.16707554410087
617 => 0.16627938749801
618 => 0.15522651900758
619 => 0.15703642560369
620 => 0.15993426069408
621 => 0.15527430324088
622 => 0.15822997367058
623 => 0.15881348562307
624 => 0.15511595966977
625 => 0.15709096804209
626 => 0.15184593135438
627 => 0.14097024341218
628 => 0.14496152954383
629 => 0.14790045958911
630 => 0.14370624404704
701 => 0.15122421306765
702 => 0.14683237076819
703 => 0.14544036760487
704 => 0.14000966697979
705 => 0.14257274862799
706 => 0.14603935325697
707 => 0.14389739463231
708 => 0.1483422803952
709 => 0.15463742404318
710 => 0.15912371828902
711 => 0.15946812025468
712 => 0.15658373361297
713 => 0.16120598161421
714 => 0.16123964964468
715 => 0.15602573501684
716 => 0.15283224133849
717 => 0.1521066728556
718 => 0.15391928518194
719 => 0.15612013117281
720 => 0.15959025189006
721 => 0.16168717316288
722 => 0.16715483172127
723 => 0.16863422335712
724 => 0.1702596262414
725 => 0.17243166575048
726 => 0.17503975608063
727 => 0.16933340291692
728 => 0.16956012696609
729 => 0.16424644990989
730 => 0.15856802391697
731 => 0.1628772414198
801 => 0.16851097007358
802 => 0.16721858649569
803 => 0.16707316694217
804 => 0.16731772229516
805 => 0.16634330728273
806 => 0.16193606429502
807 => 0.15972277445739
808 => 0.16257848301839
809 => 0.16409616502559
810 => 0.16644995746299
811 => 0.16615980286255
812 => 0.17222291940243
813 => 0.1745788631507
814 => 0.17397611192338
815 => 0.17408703265522
816 => 0.17835235627692
817 => 0.18309627337496
818 => 0.18753957775227
819 => 0.19205949780924
820 => 0.18661055776508
821 => 0.18384392205457
822 => 0.18669838390254
823 => 0.18518376626655
824 => 0.19388720846775
825 => 0.19448981592217
826 => 0.20319262876544
827 => 0.21145263446538
828 => 0.20626467287863
829 => 0.21115668698402
830 => 0.21644779909076
831 => 0.22665521279667
901 => 0.22321771496166
902 => 0.22058464549251
903 => 0.21809640756705
904 => 0.22327403569328
905 => 0.22993497156303
906 => 0.23136967335173
907 => 0.23369443834768
908 => 0.23125023221317
909 => 0.23419400928171
910 => 0.24458683589483
911 => 0.24177860240395
912 => 0.23779045940083
913 => 0.24599459787421
914 => 0.24896364369495
915 => 0.26980196216623
916 => 0.29611120002423
917 => 0.28521900279525
918 => 0.27845786448621
919 => 0.28004689236518
920 => 0.28965413540702
921 => 0.2927396769534
922 => 0.28435211138037
923 => 0.28731474133789
924 => 0.30363912368314
925 => 0.31239663106248
926 => 0.30050275975118
927 => 0.26768804052108
928 => 0.23743137075862
929 => 0.24545680205522
930 => 0.24454696720431
1001 => 0.26208547952612
1002 => 0.24171162696393
1003 => 0.24205467038942
1004 => 0.25995586057244
1005 => 0.2551801299357
1006 => 0.24744405793356
1007 => 0.23748785264548
1008 => 0.21908288633295
1009 => 0.20278109440949
1010 => 0.23475266244987
1011 => 0.23337399029944
1012 => 0.23137746871786
1013 => 0.23582051145147
1014 => 0.2573946657862
1015 => 0.25689731170006
1016 => 0.25373339875633
1017 => 0.2561331988387
1018 => 0.24702336137626
1019 => 0.24937117391747
1020 => 0.23742657794754
1021 => 0.24282603417634
1022 => 0.24742745979749
1023 => 0.24835126411621
1024 => 0.25043264241689
1025 => 0.23264749272352
1026 => 0.24063250279128
1027 => 0.24532294811183
1028 => 0.22413134551373
1029 => 0.24490405826466
1030 => 0.23233789283574
1031 => 0.22807274755169
1101 => 0.2338152037865
1102 => 0.23157736300707
1103 => 0.22965339891534
1104 => 0.22857979389426
1105 => 0.23279641998133
1106 => 0.23259970933441
1107 => 0.2257004906441
1108 => 0.21670074111073
1109 => 0.21972135246084
1110 => 0.21862393603896
1111 => 0.21464675735654
1112 => 0.2173268955821
1113 => 0.20552492322363
1114 => 0.18522024319402
1115 => 0.19863413677075
1116 => 0.19811771645955
1117 => 0.19785731392085
1118 => 0.20793748421098
1119 => 0.20696850842668
1120 => 0.20520980788994
1121 => 0.21461445744199
1122 => 0.2111816338451
1123 => 0.22176078729575
1124 => 0.22872890197509
1125 => 0.22696156269751
1126 => 0.23351510823325
1127 => 0.21979094124556
1128 => 0.22434955900087
1129 => 0.22528908380226
1130 => 0.21449840552637
1201 => 0.20712704484852
1202 => 0.20663545913097
1203 => 0.19385453555165
1204 => 0.20068200176371
1205 => 0.20668988949058
1206 => 0.20381257750033
1207 => 0.20290170648147
1208 => 0.20755514897301
1209 => 0.20791676130864
1210 => 0.19967196173426
1211 => 0.20138631664462
1212 => 0.20853546160861
1213 => 0.20120617653435
1214 => 0.18696657286696
1215 => 0.18343495427953
1216 => 0.18296377125932
1217 => 0.173385741554
1218 => 0.18367095392063
1219 => 0.17918118309604
1220 => 0.19336431533521
1221 => 0.18526298626586
1222 => 0.1849137541616
1223 => 0.18438583861481
1224 => 0.17614163278401
1225 => 0.17794658991434
1226 => 0.1839465423183
1227 => 0.18608739293033
1228 => 0.18586408467202
1229 => 0.18391713927825
1230 => 0.18480844090955
1231 => 0.18193724780508
]
'min_raw' => 0.1004598526505
'max_raw' => 0.31239663106248
'avg_raw' => 0.20642824185649
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.100459'
'max' => '$0.312396'
'avg' => '$0.206428'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.05722867120212
'max_diff' => 0.19511460165
'year' => 2033
]
8 => [
'items' => [
101 => 0.18092336976117
102 => 0.17772329176548
103 => 0.17302006115593
104 => 0.17367407421878
105 => 0.16435574371401
106 => 0.15927862269379
107 => 0.15787334251077
108 => 0.15599414311934
109 => 0.15808560308239
110 => 0.16432934605448
111 => 0.15679806734618
112 => 0.14388621825856
113 => 0.14466224238945
114 => 0.14640573820792
115 => 0.14315674528458
116 => 0.14008184614995
117 => 0.14275522147306
118 => 0.13728430080074
119 => 0.14706687283353
120 => 0.14680228167539
121 => 0.15044861957902
122 => 0.15272874950054
123 => 0.14747378823226
124 => 0.14615217968421
125 => 0.14690502797693
126 => 0.13446212268844
127 => 0.14943176875555
128 => 0.14956122687637
129 => 0.14845272784963
130 => 0.1564236022444
131 => 0.17324463339543
201 => 0.16691588485201
202 => 0.16446520212855
203 => 0.15980645247983
204 => 0.16601395977757
205 => 0.1655373200693
206 => 0.16338177454828
207 => 0.16207809389145
208 => 0.16448016547468
209 => 0.16178045063973
210 => 0.16129550767217
211 => 0.15835728091192
212 => 0.1573084676393
213 => 0.15653196804672
214 => 0.15567711829256
215 => 0.15756270383495
216 => 0.15328971892646
217 => 0.14813691801269
218 => 0.14770851837079
219 => 0.14889136744736
220 => 0.14836804478374
221 => 0.14770601290322
222 => 0.14644201374965
223 => 0.14606701220185
224 => 0.1472855853073
225 => 0.14590988731847
226 => 0.14793980463913
227 => 0.14738777944836
228 => 0.14430421160663
301 => 0.1404609443928
302 => 0.14042673125307
303 => 0.13959870563607
304 => 0.13854409051834
305 => 0.13825072071891
306 => 0.14253007726
307 => 0.15138821722969
308 => 0.14964915239631
309 => 0.15090580496496
310 => 0.15708729184794
311 => 0.15905220064424
312 => 0.15765755492204
313 => 0.15574847783949
314 => 0.1558324675424
315 => 0.1623563618504
316 => 0.16276324913602
317 => 0.16379132203997
318 => 0.1651126862549
319 => 0.15788258896159
320 => 0.15549193061007
321 => 0.15435910405445
322 => 0.15087043672218
323 => 0.1546326653443
324 => 0.15244057584088
325 => 0.15273636360733
326 => 0.1525437314364
327 => 0.15264892162746
328 => 0.14706413840528
329 => 0.14909893988388
330 => 0.14571568776948
331 => 0.14118589297616
401 => 0.14117070751566
402 => 0.14227936837397
403 => 0.14161989351355
404 => 0.13984526362079
405 => 0.14009734142104
406 => 0.13788887464213
407 => 0.14036548927358
408 => 0.14043650971946
409 => 0.13948287818424
410 => 0.14329844473095
411 => 0.14486168545834
412 => 0.14423398475309
413 => 0.14481764430354
414 => 0.14972141839155
415 => 0.15052094753456
416 => 0.15087604556595
417 => 0.15040026124536
418 => 0.14490727629188
419 => 0.14515091353254
420 => 0.14336326511641
421 => 0.14185289058253
422 => 0.14191329764301
423 => 0.14268982648837
424 => 0.14608097349888
425 => 0.15321744246346
426 => 0.15348826624397
427 => 0.15381651256644
428 => 0.15248136980957
429 => 0.1520786779785
430 => 0.15260993244726
501 => 0.15529001497264
502 => 0.16218391486323
503 => 0.15974715021381
504 => 0.15776602262332
505 => 0.15950400562834
506 => 0.15923645676748
507 => 0.15697807513015
508 => 0.15691468987936
509 => 0.15258013346904
510 => 0.15097774665722
511 => 0.14963867230069
512 => 0.14817643806078
513 => 0.14730957658882
514 => 0.14864146979124
515 => 0.14894608952513
516 => 0.14603388176054
517 => 0.1456369586032
518 => 0.14801513032814
519 => 0.14696858561917
520 => 0.1480449828054
521 => 0.14829471618577
522 => 0.14825450335968
523 => 0.14716179048863
524 => 0.14785825308747
525 => 0.14621091141571
526 => 0.14441967477039
527 => 0.14327697738867
528 => 0.1422798223663
529 => 0.1428331019277
530 => 0.14086076131616
531 => 0.14022976985916
601 => 0.14762230722989
602 => 0.15308325406882
603 => 0.15300384973901
604 => 0.15252049630242
605 => 0.15180233114032
606 => 0.15523747671786
607 => 0.15404074068655
608 => 0.15491146613997
609 => 0.1551331023121
610 => 0.15580392825258
611 => 0.15604369086687
612 => 0.15531896172065
613 => 0.15288668218775
614 => 0.14682567284595
615 => 0.14400425663596
616 => 0.14307314229226
617 => 0.14310698653022
618 => 0.14217341136007
619 => 0.14244839108758
620 => 0.14207778463269
621 => 0.14137594566645
622 => 0.14278976534926
623 => 0.14295269489707
624 => 0.14262269248921
625 => 0.14270042000252
626 => 0.13996814101134
627 => 0.14017587024884
628 => 0.13901920745748
629 => 0.13880234712788
630 => 0.13587840431346
701 => 0.13069821578544
702 => 0.13356854308303
703 => 0.13010159133663
704 => 0.12878860417738
705 => 0.13500408117788
706 => 0.13438021967753
707 => 0.133312439975
708 => 0.13173297125017
709 => 0.13114713093604
710 => 0.12758775064193
711 => 0.1273774434656
712 => 0.12914156845071
713 => 0.12832748546992
714 => 0.12718420464754
715 => 0.12304335740143
716 => 0.11838767410939
717 => 0.1185281999234
718 => 0.12000908615653
719 => 0.12431496260407
720 => 0.1226325821836
721 => 0.12141199588545
722 => 0.1211834167625
723 => 0.12404456304907
724 => 0.12809368447324
725 => 0.12999344165147
726 => 0.12811083998432
727 => 0.12594820855558
728 => 0.12607983790998
729 => 0.1269555090338
730 => 0.12704752968759
731 => 0.12563987894958
801 => 0.12603612438697
802 => 0.12543419133413
803 => 0.12174012929996
804 => 0.12167331543176
805 => 0.12076673303378
806 => 0.12073928207906
807 => 0.11919695926252
808 => 0.11898117763891
809 => 0.11591880207435
810 => 0.11793446694467
811 => 0.11658246477682
812 => 0.11454467860479
813 => 0.11419336350065
814 => 0.11418280254439
815 => 0.11627515330241
816 => 0.11791001660784
817 => 0.11660598343337
818 => 0.11630908035716
819 => 0.11947922844925
820 => 0.11907579820799
821 => 0.11872643022091
822 => 0.12773113006085
823 => 0.12060320749204
824 => 0.11749502640445
825 => 0.11364806208096
826 => 0.11490065306277
827 => 0.11516459238702
828 => 0.10591333665649
829 => 0.10216010335878
830 => 0.10087213512862
831 => 0.10013089120296
901 => 0.10046868536784
902 => 0.097090335189545
903 => 0.099360642382114
904 => 0.096435276692543
905 => 0.095944829614723
906 => 0.10117574585095
907 => 0.10190359728665
908 => 0.098798356936229
909 => 0.10079242393394
910 => 0.10006934752097
911 => 0.096485423690982
912 => 0.096348544162235
913 => 0.094550257165362
914 => 0.091736286232234
915 => 0.090450226006874
916 => 0.089780434675419
917 => 0.09005680363275
918 => 0.089917063030894
919 => 0.089005161079597
920 => 0.089969332183308
921 => 0.087506273436334
922 => 0.086525463597076
923 => 0.086082454547298
924 => 0.083896348140986
925 => 0.08737541559936
926 => 0.088060835716796
927 => 0.088747606323601
928 => 0.094725475577631
929 => 0.094426838122983
930 => 0.097126375270663
1001 => 0.097021476221234
1002 => 0.096251524497114
1003 => 0.093003224823959
1004 => 0.094297939178304
1005 => 0.090313009638914
1006 => 0.093298789798694
1007 => 0.091936204422931
1008 => 0.092838098312511
1009 => 0.091216411778552
1010 => 0.092113920064241
1011 => 0.088223374254051
1012 => 0.084590437317951
1013 => 0.086052437193078
1014 => 0.087641798257307
1015 => 0.091087938006222
1016 => 0.089035445601804
1017 => 0.089773599483763
1018 => 0.087300907544667
1019 => 0.082199037784777
1020 => 0.082227913813557
1021 => 0.081443102301272
1022 => 0.080764910570302
1023 => 0.089271199044714
1024 => 0.0882133076084
1025 => 0.086527696058041
1026 => 0.088783954101736
1027 => 0.08938054454012
1028 => 0.089397528631193
1029 => 0.091043636257424
1030 => 0.091922164192625
1031 => 0.092077008548962
1101 => 0.094667194465346
1102 => 0.095535390619139
1103 => 0.099111367704896
1104 => 0.091847627235256
1105 => 0.091698035280321
1106 => 0.088815704279419
1107 => 0.086987684390796
1108 => 0.088940870365132
1109 => 0.09067112650192
1110 => 0.088869468160659
1111 => 0.089104726704944
1112 => 0.086686147582697
1113 => 0.087550675814175
1114 => 0.088295323991654
1115 => 0.087884173036447
1116 => 0.087268660156571
1117 => 0.090529265230284
1118 => 0.090345289113611
1119 => 0.093381639519239
1120 => 0.095748691791927
1121 => 0.099990872625789
1122 => 0.095563935775765
1123 => 0.09540260060147
1124 => 0.096979677809181
1125 => 0.095535149176836
1126 => 0.096448041409044
1127 => 0.099843791573921
1128 => 0.099915538423952
1129 => 0.098713686245341
1130 => 0.098640553431048
1201 => 0.098871382288773
1202 => 0.10022335411827
1203 => 0.099750933619147
1204 => 0.10029763058096
1205 => 0.10098128350303
1206 => 0.10380916185153
1207 => 0.10449095374761
1208 => 0.10283455290869
1209 => 0.10298410735851
1210 => 0.10236456797554
1211 => 0.10176610069439
1212 => 0.10311136774328
1213 => 0.10556986971643
1214 => 0.10555457550325
1215 => 0.10612490017457
1216 => 0.10648020771998
1217 => 0.10495496763407
1218 => 0.10396209242277
1219 => 0.10434282395707
1220 => 0.10495162197168
1221 => 0.10414539896611
1222 => 0.099169017096945
1223 => 0.10067853346355
1224 => 0.10042727612856
1225 => 0.10006945512962
1226 => 0.10158728550898
1227 => 0.10144088706612
1228 => 0.097055685325479
1229 => 0.097336411713163
1230 => 0.097072757226909
1231 => 0.097924678810627
]
'min_raw' => 0.080764910570302
'max_raw' => 0.18092336976117
'avg_raw' => 0.13084414016574
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.080764'
'max' => '$0.180923'
'avg' => '$0.130844'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.019694942080201
'max_diff' => -0.13147326130131
'year' => 2034
]
9 => [
'items' => [
101 => 0.095489142615547
102 => 0.096238297145567
103 => 0.096708159843908
104 => 0.096984912582886
105 => 0.097984733247205
106 => 0.097867415832134
107 => 0.097977440631963
108 => 0.099459910734279
109 => 0.10695773578949
110 => 0.10736582586422
111 => 0.10535624108429
112 => 0.10615903056657
113 => 0.10461785031135
114 => 0.10565245494169
115 => 0.10636030515365
116 => 0.10316166615755
117 => 0.10297226351519
118 => 0.10142472226084
119 => 0.10225628327371
120 => 0.10093320991088
121 => 0.10125784583498
122 => 0.10035013548995
123 => 0.10198383338767
124 => 0.10381056148832
125 => 0.10427206514622
126 => 0.1030580477121
127 => 0.10217901908215
128 => 0.10063573437798
129 => 0.10320225123535
130 => 0.10395277897763
131 => 0.10319830903263
201 => 0.10302348186088
202 => 0.10269218468632
203 => 0.1030937681226
204 => 0.10394869144236
205 => 0.10354552539272
206 => 0.10381182367138
207 => 0.10279696923872
208 => 0.104955472552
209 => 0.10838369528561
210 => 0.10839471758227
211 => 0.10799154935941
212 => 0.107826581609
213 => 0.10824025667194
214 => 0.10846465842375
215 => 0.10980240772228
216 => 0.11123786601788
217 => 0.11793652354394
218 => 0.11605556731574
219 => 0.12199901477778
220 => 0.12669951006019
221 => 0.12810898306764
222 => 0.12681233422161
223 => 0.12237656856297
224 => 0.12215892873782
225 => 0.12878783536379
226 => 0.12691486561879
227 => 0.12669208182737
228 => 0.12432203868574
301 => 0.125723027718
302 => 0.12541661086537
303 => 0.12493291687308
304 => 0.12760590635288
305 => 0.13260950403965
306 => 0.13182964641673
307 => 0.13124751887777
308 => 0.12869680545683
309 => 0.1302329046587
310 => 0.12968592915496
311 => 0.13203608303828
312 => 0.13064390394008
313 => 0.12690067603086
314 => 0.12749679741324
315 => 0.12740669486553
316 => 0.12926099891282
317 => 0.12870438286448
318 => 0.12729800664872
319 => 0.13259240228672
320 => 0.13224861368296
321 => 0.13273602732207
322 => 0.13295060187978
323 => 0.13617320720691
324 => 0.13749340549757
325 => 0.13779311362287
326 => 0.1390471998912
327 => 0.13776191081407
328 => 0.14290398351816
329 => 0.14632316181812
330 => 0.15029471336284
331 => 0.15609821762208
401 => 0.15828038890897
402 => 0.15788619919785
403 => 0.16228634989273
404 => 0.17019332288157
405 => 0.1594844245079
406 => 0.17076092049861
407 => 0.16719091206136
408 => 0.15872648627835
409 => 0.15818147704694
410 => 0.1639136844612
411 => 0.17662716880151
412 => 0.17344258516941
413 => 0.17663237763949
414 => 0.17291131528734
415 => 0.17272653317798
416 => 0.17645165394661
417 => 0.18515560166829
418 => 0.18102068236832
419 => 0.17509226162801
420 => 0.17946971524621
421 => 0.17567755980792
422 => 0.16713277224797
423 => 0.17344014997833
424 => 0.16922258611381
425 => 0.17045349546751
426 => 0.17931818739543
427 => 0.1782515642096
428 => 0.17963187337872
429 => 0.1771956638242
430 => 0.17491985994531
501 => 0.17067190300193
502 => 0.16941429237274
503 => 0.16976185070656
504 => 0.16941412014009
505 => 0.16703742727101
506 => 0.16652418067222
507 => 0.16566874718839
508 => 0.1659338817947
509 => 0.1643254165792
510 => 0.16736092276672
511 => 0.16792433946391
512 => 0.17013332772698
513 => 0.17036267221649
514 => 0.17651467308616
515 => 0.17312625438732
516 => 0.1753994981925
517 => 0.17519615786996
518 => 0.15890993605145
519 => 0.16115403372349
520 => 0.16464514546454
521 => 0.16307240435728
522 => 0.16084891639637
523 => 0.15905333065205
524 => 0.15633283464134
525 => 0.16016188053392
526 => 0.16519666870903
527 => 0.17049036275328
528 => 0.17685038929087
529 => 0.17543090540655
530 => 0.1703714664811
531 => 0.17059842921537
601 => 0.17200142353211
602 => 0.17018441841646
603 => 0.16964854813571
604 => 0.17192780318438
605 => 0.17194349916124
606 => 0.16985281518329
607 => 0.16752940253292
608 => 0.16751966734908
609 => 0.16710623850946
610 => 0.17298486335947
611 => 0.17621751263097
612 => 0.17658813066028
613 => 0.17619256708467
614 => 0.17634480380557
615 => 0.17446379642105
616 => 0.17876322150664
617 => 0.18270879913426
618 => 0.18165130004509
619 => 0.18006595857807
620 => 0.17880315773919
621 => 0.18135382429984
622 => 0.18124024713301
623 => 0.18267433795573
624 => 0.1826092793123
625 => 0.18212704850751
626 => 0.18165131726707
627 => 0.18353753786118
628 => 0.18299433662185
629 => 0.18245029164096
630 => 0.18135912614267
701 => 0.18150743365623
702 => 0.17992236592076
703 => 0.17918904105857
704 => 0.16816159462357
705 => 0.16521470060394
706 => 0.16614185345207
707 => 0.16644709624319
708 => 0.1651646041893
709 => 0.16700336834941
710 => 0.16671679890279
711 => 0.16783167298206
712 => 0.16713514805954
713 => 0.16716373368531
714 => 0.16921206496769
715 => 0.16980670425319
716 => 0.16950426591326
717 => 0.16971608335957
718 => 0.17459732700721
719 => 0.1739033702539
720 => 0.17353471955977
721 => 0.17363683832145
722 => 0.17488410072846
723 => 0.17523326610443
724 => 0.17375382787106
725 => 0.17445153949445
726 => 0.17742230703403
727 => 0.17846190754201
728 => 0.18177981332691
729 => 0.18037030797841
730 => 0.18295751604754
731 => 0.19090971160782
801 => 0.19726247567146
802 => 0.19142021129946
803 => 0.2030862534827
804 => 0.21216994071671
805 => 0.21182129367099
806 => 0.21023734269227
807 => 0.19989580627867
808 => 0.19037937028726
809 => 0.19834027308329
810 => 0.1983605670617
811 => 0.19767671845134
812 => 0.19342939346424
813 => 0.1975289207484
814 => 0.19785432633692
815 => 0.19767218573968
816 => 0.19441577163045
817 => 0.18944382917158
818 => 0.1904153348269
819 => 0.19200668090848
820 => 0.18899393078648
821 => 0.18803117457353
822 => 0.18982112154526
823 => 0.19558870363845
824 => 0.19449837565306
825 => 0.194469902783
826 => 0.19913478827552
827 => 0.19579573700817
828 => 0.1904275886244
829 => 0.18907206036032
830 => 0.18426084821609
831 => 0.18758396958106
901 => 0.18770356280295
902 => 0.18588352319283
903 => 0.19057527480795
904 => 0.19053203949085
905 => 0.19498615937434
906 => 0.20350076370054
907 => 0.20098257622305
908 => 0.19805419816475
909 => 0.1983725940548
910 => 0.20186461110067
911 => 0.19975325787974
912 => 0.20051251521887
913 => 0.20186346187375
914 => 0.20267852153276
915 => 0.19825531951293
916 => 0.19722405953589
917 => 0.19511446354595
918 => 0.19456410932965
919 => 0.19628233124529
920 => 0.1958296404762
921 => 0.18769351145574
922 => 0.1868432407041
923 => 0.18686931729415
924 => 0.184731271061
925 => 0.18147023736555
926 => 0.19004003921098
927 => 0.18935176418849
928 => 0.18859196183192
929 => 0.18868503328523
930 => 0.1924048938088
1001 => 0.19024718684767
1002 => 0.19598380444504
1003 => 0.19480452832553
1004 => 0.19359500822337
1005 => 0.19342781570237
1006 => 0.19296225365445
1007 => 0.1913656681641
1008 => 0.18943769524459
1009 => 0.18816468052498
1010 => 0.17357197143692
1011 => 0.17628029336178
1012 => 0.17939597086502
1013 => 0.18047149025385
1014 => 0.17863173991558
1015 => 0.19143831272087
1016 => 0.1937781969796
1017 => 0.18669053493303
1018 => 0.18536472275145
1019 => 0.19152523274677
1020 => 0.18780969212787
1021 => 0.18948279984105
1022 => 0.18586645610614
1023 => 0.19321458738148
1024 => 0.19315860693265
1025 => 0.19030001790147
1026 => 0.19271607777585
1027 => 0.19229622791636
1028 => 0.18906888794055
1029 => 0.19331689981521
1030 => 0.1933190067761
1031 => 0.19056767698468
1101 => 0.18735472613184
1102 => 0.18678032640586
1103 => 0.18634759337208
1104 => 0.18937637404176
1105 => 0.19209196931945
1106 => 0.19714501887805
1107 => 0.19841547559459
1108 => 0.2033741527383
1109 => 0.20042150193282
1110 => 0.20173037379166
1111 => 0.20315133934566
1112 => 0.20383260248652
1113 => 0.20272252075708
1114 => 0.2104253874342
1115 => 0.21107574539149
1116 => 0.21129380478899
1117 => 0.20869644148516
1118 => 0.21100350801941
1119 => 0.20992410799005
1120 => 0.21273240700049
1121 => 0.21317278414349
1122 => 0.21279980037024
1123 => 0.21293958302631
1124 => 0.20636654519618
1125 => 0.20602569850915
1126 => 0.20137822974614
1127 => 0.20327210761942
1128 => 0.19973159371125
1129 => 0.20085432714286
1130 => 0.20134921734172
1201 => 0.20109071478661
1202 => 0.20337918463283
1203 => 0.20143351776004
1204 => 0.19629858298551
1205 => 0.19116224920143
1206 => 0.19109776671474
1207 => 0.18974546069321
1208 => 0.18876799112685
1209 => 0.18895628644293
1210 => 0.18961986369653
1211 => 0.18872942281056
1212 => 0.18891944352008
1213 => 0.19207505339949
1214 => 0.19270788845603
1215 => 0.1905572676693
1216 => 0.18192221487748
1217 => 0.17980315126298
1218 => 0.18132629216622
1219 => 0.18059832891731
1220 => 0.14575694655793
1221 => 0.15394241253373
1222 => 0.14907888660307
1223 => 0.15132022311199
1224 => 0.14635582254071
1225 => 0.14872509469985
1226 => 0.14828757664402
1227 => 0.16144956370758
1228 => 0.1612440573833
1229 => 0.16134242238558
1230 => 0.15664720453819
1231 => 0.16412681405814
]
'min_raw' => 0.095489142615547
'max_raw' => 0.21317278414349
'avg_raw' => 0.15433096337952
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.095489'
'max' => '$0.213172'
'avg' => '$0.15433'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.014724232045245
'max_diff' => 0.032249414382319
'year' => 2035
]
10 => [
'items' => [
101 => 0.16781153866573
102 => 0.16712959420663
103 => 0.16730122493507
104 => 0.16435204038071
105 => 0.16137097693866
106 => 0.15806451879906
107 => 0.16420750933186
108 => 0.16352451364896
109 => 0.16509106001145
110 => 0.169075228482
111 => 0.16966191242367
112 => 0.17045042159084
113 => 0.17016779718432
114 => 0.17690105716304
115 => 0.17608561495214
116 => 0.17805059606168
117 => 0.17400848083588
118 => 0.16943444377678
119 => 0.17030381868518
120 => 0.17022009089043
121 => 0.16915413996497
122 => 0.16819184713135
123 => 0.16658990068771
124 => 0.17165869627887
125 => 0.17145291243458
126 => 0.17478431367614
127 => 0.17419545614719
128 => 0.17026292145097
129 => 0.17040337269698
130 => 0.17134797482495
131 => 0.17461725357514
201 => 0.17558779809767
202 => 0.17513820320532
203 => 0.17620236096723
204 => 0.17704342787304
205 => 0.17630798602131
206 => 0.18672029173222
207 => 0.18239637645763
208 => 0.18450382267685
209 => 0.18500643618235
210 => 0.18371900225685
211 => 0.18399820057574
212 => 0.18442110995187
213 => 0.18698893286955
214 => 0.19372764321112
215 => 0.19671217214945
216 => 0.20569127471447
217 => 0.19646434856777
218 => 0.19591686095504
219 => 0.19753426846992
220 => 0.20280595221012
221 => 0.20707815673748
222 => 0.20849549344859
223 => 0.20868281789264
224 => 0.21134183578546
225 => 0.21286593525388
226 => 0.21101896107416
227 => 0.20945384384311
228 => 0.20384778819098
229 => 0.2044967043975
301 => 0.20896709356116
302 => 0.21528178155943
303 => 0.22070044079326
304 => 0.21880301518892
305 => 0.23327903317636
306 => 0.23471427123058
307 => 0.23451596773829
308 => 0.23778565361787
309 => 0.23129599300685
310 => 0.22852153736439
311 => 0.2097922399533
312 => 0.2150544085677
313 => 0.22270327968506
314 => 0.22169092291089
315 => 0.21613610825055
316 => 0.22069622696823
317 => 0.21918850911207
318 => 0.21799930948364
319 => 0.22344726351916
320 => 0.21745701426749
321 => 0.22264352236648
322 => 0.21599177208197
323 => 0.21881168246925
324 => 0.21721096494971
325 => 0.21824682536141
326 => 0.21219120656071
327 => 0.21545867147373
328 => 0.2120552692779
329 => 0.21205365562212
330 => 0.21197852533001
331 => 0.21598261292042
401 => 0.21611318607299
402 => 0.21315415929384
403 => 0.21272771730628
404 => 0.21430449684159
405 => 0.21245850096496
406 => 0.21332223081707
407 => 0.21248466246228
408 => 0.21229610818373
409 => 0.21079367561236
410 => 0.21014638635037
411 => 0.21040020514859
412 => 0.20953379073772
413 => 0.20901174471559
414 => 0.21187467723651
415 => 0.21034512788095
416 => 0.21164025186094
417 => 0.21016429462806
418 => 0.20504798381496
419 => 0.20210553936234
420 => 0.19244130251865
421 => 0.19518206809907
422 => 0.19699919851442
423 => 0.19639863692298
424 => 0.19768887560786
425 => 0.19776808578423
426 => 0.19734861603535
427 => 0.19686292380355
428 => 0.19662651568557
429 => 0.19838850811143
430 => 0.19941140402057
501 => 0.19718157186166
502 => 0.1966591533855
503 => 0.19891363681056
504 => 0.20028887039748
505 => 0.21044282252628
506 => 0.20969058495574
507 => 0.21157855363861
508 => 0.21136599733816
509 => 0.21334488929481
510 => 0.21657954130179
511 => 0.21000258934868
512 => 0.21114412079385
513 => 0.2108642436453
514 => 0.2139198689654
515 => 0.21392940829411
516 => 0.21209740827491
517 => 0.21309056520613
518 => 0.21253621225296
519 => 0.21353800296463
520 => 0.20968053836437
521 => 0.21437851385992
522 => 0.21704196323504
523 => 0.21707894523219
524 => 0.21834139909756
525 => 0.21962412534117
526 => 0.22208620666387
527 => 0.21955545922938
528 => 0.21500289095803
529 => 0.21533157168251
530 => 0.21266240257074
531 => 0.21270727178573
601 => 0.21246775639963
602 => 0.2131865601032
603 => 0.20983827535546
604 => 0.2106241110933
605 => 0.20952393645848
606 => 0.21114172922905
607 => 0.20940125163864
608 => 0.21086410868007
609 => 0.21149542928467
610 => 0.21382501590701
611 => 0.20905716980039
612 => 0.1993352088342
613 => 0.20137888289668
614 => 0.19835612843114
615 => 0.19863589586536
616 => 0.19920107060715
617 => 0.19736915435535
618 => 0.19771862624588
619 => 0.19770614065075
620 => 0.19759854653722
621 => 0.19712199436817
622 => 0.19643089944006
623 => 0.19918400892583
624 => 0.19965181587532
625 => 0.20069169277502
626 => 0.20378566107329
627 => 0.20347650067949
628 => 0.20398075410871
629 => 0.20287997170399
630 => 0.198686958004
701 => 0.19891465882111
702 => 0.19607522598312
703 => 0.20061908209344
704 => 0.19954303699055
705 => 0.19884930371262
706 => 0.19866001216035
707 => 0.20176164980758
708 => 0.20268970840385
709 => 0.20211140456635
710 => 0.20092528652383
711 => 0.2032029838098
712 => 0.20381239951519
713 => 0.20394882521724
714 => 0.20798446810285
715 => 0.20417437282415
716 => 0.20509150062682
717 => 0.2122466699376
718 => 0.20575791871859
719 => 0.20919515495572
720 => 0.20902692012843
721 => 0.21078529387761
722 => 0.20888268215791
723 => 0.20890626731043
724 => 0.21046758407715
725 => 0.20827499626326
726 => 0.20773208068611
727 => 0.20698204670471
728 => 0.20861971846365
729 => 0.20960142861761
730 => 0.2175132914719
731 => 0.22262471570055
801 => 0.22240281529436
802 => 0.22443056962677
803 => 0.22351704772792
804 => 0.22056704454163
805 => 0.22560234026606
806 => 0.22400896201313
807 => 0.22414031818034
808 => 0.22413542909724
809 => 0.22519488633989
810 => 0.22444416378564
811 => 0.22296441257113
812 => 0.22394674048442
813 => 0.22686390319825
814 => 0.23591886577145
815 => 0.24098614278971
816 => 0.23561380933229
817 => 0.23931957301281
818 => 0.23709743530311
819 => 0.23669360677838
820 => 0.23902110022353
821 => 0.24135266763785
822 => 0.2412041568732
823 => 0.23951155865772
824 => 0.23855545287388
825 => 0.24579540618803
826 => 0.2511296804605
827 => 0.25076591871655
828 => 0.25237144475271
829 => 0.25708531885192
830 => 0.25751629642335
831 => 0.25746200315526
901 => 0.25639378027659
902 => 0.26103520150117
903 => 0.26490715674474
904 => 0.2561465175441
905 => 0.25948245426652
906 => 0.26098006373838
907 => 0.26317899876378
908 => 0.26688897073593
909 => 0.27091898431915
910 => 0.27148887242667
911 => 0.27108450954273
912 => 0.26842660725201
913 => 0.27283629620284
914 => 0.2754193885703
915 => 0.2769575609621
916 => 0.28085811022024
917 => 0.26098931246463
918 => 0.24692518986989
919 => 0.24472887403833
920 => 0.24919516864766
921 => 0.25037289491811
922 => 0.24989815493524
923 => 0.23406770630078
924 => 0.24464553000246
925 => 0.25602637889679
926 => 0.25646356365279
927 => 0.26216105457162
928 => 0.26401639116283
929 => 0.2686036181397
930 => 0.26831668584333
1001 => 0.26943360261347
1002 => 0.26917684279032
1003 => 0.27767371481036
1004 => 0.28704702644616
1005 => 0.28672245846952
1006 => 0.28537493402188
1007 => 0.28737623761369
1008 => 0.29705049972696
1009 => 0.29615984869846
1010 => 0.29702504030718
1011 => 0.30843154055625
1012 => 0.32326161343578
1013 => 0.31637155566826
1014 => 0.33132099846306
1015 => 0.34073088026647
1016 => 0.35700429784553
1017 => 0.35496678581636
1018 => 0.36130190786004
1019 => 0.35131921404256
1020 => 0.32839693120233
1021 => 0.32476939219989
1022 => 0.3320318171467
1023 => 0.34988578022134
1024 => 0.33146953231261
1025 => 0.33519511527918
1026 => 0.33412214713417
1027 => 0.33406497322155
1028 => 0.33624706892338
1029 => 0.33308182529741
1030 => 0.32018605334876
1031 => 0.32609610963757
1101 => 0.32381395308025
1102 => 0.32634617592664
1103 => 0.34001153826046
1104 => 0.33396975583113
1105 => 0.32760522883637
1106 => 0.3355877580894
1107 => 0.34575226092316
1108 => 0.34511618460319
1109 => 0.34388193068317
1110 => 0.35083935540686
1111 => 0.36233098271623
1112 => 0.36543712340085
1113 => 0.36773001295199
1114 => 0.36804616368241
1115 => 0.37130271269227
1116 => 0.35379142791021
1117 => 0.38158228658103
1118 => 0.3863810001665
1119 => 0.38547904089873
1120 => 0.39081260908825
1121 => 0.38924333802732
1122 => 0.38696971047114
1123 => 0.39542455053401
1124 => 0.38573175867234
1125 => 0.37197406091326
1126 => 0.36442631582622
1127 => 0.37436579541606
1128 => 0.38043548876154
1129 => 0.3844471699579
1130 => 0.385661102264
1201 => 0.35515077909961
1202 => 0.3387074070941
1203 => 0.34924742002599
1204 => 0.36210696323572
1205 => 0.35371999249839
1206 => 0.35404874587266
1207 => 0.34209112965835
1208 => 0.36316494694068
1209 => 0.36009466902134
1210 => 0.37602327629807
1211 => 0.37222178633642
1212 => 0.38521094722562
1213 => 0.38179046584931
1214 => 0.39598869280584
1215 => 0.40165274994045
1216 => 0.41116358340957
1217 => 0.4181597912255
1218 => 0.42226809827115
1219 => 0.422021450926
1220 => 0.4383006101913
1221 => 0.42870135872305
1222 => 0.41664243650908
1223 => 0.41642432865164
1224 => 0.42266981534251
1225 => 0.43575864208097
1226 => 0.43915238441956
1227 => 0.44104902340399
1228 => 0.43814425477686
1229 => 0.42772495529264
1230 => 0.42322595460239
1231 => 0.42705923353908
]
'min_raw' => 0.15806451879906
'max_raw' => 0.44104902340399
'avg_raw' => 0.29955677110153
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.158064'
'max' => '$0.441049'
'avg' => '$0.299556'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.062575376183515
'max_diff' => 0.2278762392605
'year' => 2036
]
11 => [
'items' => [
101 => 0.42237146279693
102 => 0.43046387025404
103 => 0.44157647413762
104 => 0.43928176537966
105 => 0.44695263271556
106 => 0.45489117340944
107 => 0.46624364314385
108 => 0.46921159911317
109 => 0.47411751746918
110 => 0.47916731896775
111 => 0.48078917911313
112 => 0.4838858133643
113 => 0.48386949257325
114 => 0.49320140831667
115 => 0.50349480036703
116 => 0.50738031757347
117 => 0.51631485014101
118 => 0.50101477622247
119 => 0.51262005804426
120 => 0.52308831274657
121 => 0.510607627935
122 => 0.52780934432115
123 => 0.52847724798849
124 => 0.53856180039367
125 => 0.52833917456455
126 => 0.522269011979
127 => 0.53979334391747
128 => 0.54827281613121
129 => 0.5457187300922
130 => 0.52628200922453
131 => 0.51496900399937
201 => 0.48536068720939
202 => 0.52043301743122
203 => 0.53751572640837
204 => 0.52623776913516
205 => 0.53192571478417
206 => 0.56295730192261
207 => 0.57477212115846
208 => 0.57231472134922
209 => 0.57272998146474
210 => 0.57910504347026
211 => 0.60737557921353
212 => 0.59043521889028
213 => 0.60338548961421
214 => 0.61025426651051
215 => 0.61663436929289
216 => 0.60096685331156
217 => 0.58058364522137
218 => 0.57412742759034
219 => 0.52511639854858
220 => 0.52256516164284
221 => 0.52113307505727
222 => 0.51210397170786
223 => 0.50500956975478
224 => 0.49936783792344
225 => 0.48456224883425
226 => 0.48955870052922
227 => 0.46596168168765
228 => 0.48105821811549
301 => 0.4433968062744
302 => 0.47476234917056
303 => 0.45769151018842
304 => 0.46915411944618
305 => 0.46911412748232
306 => 0.44800782961521
307 => 0.43583415748265
308 => 0.44359169517192
309 => 0.45190839136893
310 => 0.45325774734617
311 => 0.46404056105357
312 => 0.4670498125835
313 => 0.45793163995929
314 => 0.44261635722448
315 => 0.44617374809937
316 => 0.43576206707012
317 => 0.41751599654588
318 => 0.43062064294221
319 => 0.43509514539255
320 => 0.4370713405814
321 => 0.41912842579617
322 => 0.41349037241102
323 => 0.41048872009662
324 => 0.44030015224318
325 => 0.44193328979167
326 => 0.43357792719121
327 => 0.4713449584333
328 => 0.46279711610381
329 => 0.47234715025807
330 => 0.44585095216428
331 => 0.44686314261333
401 => 0.43431941781532
402 => 0.44134306553021
403 => 0.43637897770805
404 => 0.44077562420388
405 => 0.44341095598543
406 => 0.45595262248163
407 => 0.47490555485599
408 => 0.45407931573482
409 => 0.44500502511249
410 => 0.45063466397883
411 => 0.46562713414505
412 => 0.48834149389729
413 => 0.47489413575487
414 => 0.48086184494753
415 => 0.48216552392122
416 => 0.47224993987526
417 => 0.48870709562451
418 => 0.49752661908822
419 => 0.50657362521876
420 => 0.51442888715056
421 => 0.5029600520223
422 => 0.51523334960247
423 => 0.50534323828152
424 => 0.49647078600572
425 => 0.49648424185343
426 => 0.49091842293497
427 => 0.48013394744214
428 => 0.47814512469773
429 => 0.48849123177481
430 => 0.49678782987064
501 => 0.49747117742784
502 => 0.50206460042829
503 => 0.50478294084394
504 => 0.5314263723219
505 => 0.54214258086836
506 => 0.55524615783152
507 => 0.56035073953581
508 => 0.57571370037188
509 => 0.56330686177808
510 => 0.56062256420563
511 => 0.52335704640351
512 => 0.52945927285596
513 => 0.53922952618359
514 => 0.52351815428228
515 => 0.53348340349436
516 => 0.53545075478166
517 => 0.5229842878771
518 => 0.52964316649506
519 => 0.51195915910568
520 => 0.47529101789226
521 => 0.48874791774782
522 => 0.49865672558503
523 => 0.48451563505414
524 => 0.50986299249498
525 => 0.4950555895537
526 => 0.49036235370201
527 => 0.47205236738516
528 => 0.48069397611071
529 => 0.49238187564793
530 => 0.48516011259809
531 => 0.50014635527968
601 => 0.52137087160176
602 => 0.53649672587466
603 => 0.53765790114726
604 => 0.52793299020331
605 => 0.54351722205454
606 => 0.54363073616988
607 => 0.52605165897824
608 => 0.51528457207907
609 => 0.51283826728143
610 => 0.51894961629223
611 => 0.52636992220861
612 => 0.53806967648291
613 => 0.54513959295658
614 => 0.56357418552595
615 => 0.56856205771403
616 => 0.57404221702037
617 => 0.58136539987219
618 => 0.59015875851134
619 => 0.57091939041506
620 => 0.5716838063762
621 => 0.55376837319213
622 => 0.53462316350195
623 => 0.54915199117272
624 => 0.5681465006633
625 => 0.56378913919909
626 => 0.56329884702155
627 => 0.56412338246847
628 => 0.56083807422258
629 => 0.54597874678562
630 => 0.53851648557109
701 => 0.5481447063637
702 => 0.55326167721217
703 => 0.56119765275139
704 => 0.56021937625806
705 => 0.58066159698555
706 => 0.58860482581958
707 => 0.58657260797391
708 => 0.58694658496556
709 => 0.60132742135152
710 => 0.61732186905727
711 => 0.63230277998698
712 => 0.64754200602977
713 => 0.62917052423807
714 => 0.61984261877972
715 => 0.62946663619233
716 => 0.62435999708534
717 => 0.65370426012164
718 => 0.65573599322693
719 => 0.68507813433901
720 => 0.71292732025154
721 => 0.69543574554987
722 => 0.71192951265571
723 => 0.72976886653725
724 => 0.76418387450559
725 => 0.75259411055643
726 => 0.74371653300613
727 => 0.73532726511724
728 => 0.75278399983525
729 => 0.77524181017183
730 => 0.78007900742009
731 => 0.78791711491385
801 => 0.77967630328235
802 => 0.78960145319686
803 => 0.82464159372698
804 => 0.81517343844786
805 => 0.80172713586961
806 => 0.82938796152727
807 => 0.83939830680403
808 => 0.90965615241491
809 => 0.99835958470549
810 => 0.96163578127905
811 => 0.93884013142253
812 => 0.94419764985886
813 => 0.9765891405307
814 => 0.98699225927997
815 => 0.95871299634937
816 => 0.96870171009535
817 => 1.0237405049044
818 => 1.0532670524634
819 => 1.0131660349338
820 => 0.90252891799897
821 => 0.80051644344162
822 => 0.82757474537583
823 => 0.82450717365336
824 => 0.88363949244616
825 => 0.81494762607579
826 => 0.81610422093535
827 => 0.87645933345857
828 => 0.86035762418596
829 => 0.83427491731543
830 => 0.80070687606663
831 => 0.73865324715021
901 => 0.68369061752549
902 => 0.79148499135723
903 => 0.78683670194625
904 => 0.78010529004127
905 => 0.79508531882097
906 => 0.86782408641986
907 => 0.86614722239429
908 => 0.85547986900717
909 => 0.86357096253356
910 => 0.83285650950039
911 => 0.84077232340214
912 => 0.80050028414446
913 => 0.81870492779785
914 => 0.83421895554083
915 => 0.83733362629934
916 => 0.84435113855729
917 => 0.78438726464658
918 => 0.81130928358564
919 => 0.8271234474603
920 => 0.75567447975037
921 => 0.82571113109462
922 => 0.78334342700937
923 => 0.76896319190127
924 => 0.78832428402241
925 => 0.78077924759352
926 => 0.77429246833137
927 => 0.77067273404607
928 => 0.78488938329408
929 => 0.78422615961409
930 => 0.76096496211164
1001 => 0.73062167821741
1002 => 0.74080588027665
1003 => 0.73710586419113
1004 => 0.7236965285856
1005 => 0.73273280173437
1006 => 0.69294162794038
1007 => 0.62448298159305
1008 => 0.66970886031514
1009 => 0.66796771318063
1010 => 0.66708974784068
1011 => 0.70107574574885
1012 => 0.69780877624036
1013 => 0.69187919459218
1014 => 0.7235876271686
1015 => 0.7120136227396
1016 => 0.74768197721136
1017 => 0.77117546235098
1018 => 0.76521675458495
1019 => 0.78731249091263
1020 => 0.7410405037229
1021 => 0.75641020175743
1022 => 0.75957787522086
1023 => 0.72319635003258
1024 => 0.69834329285524
1025 => 0.69668587728711
1026 => 0.65359410110385
1027 => 0.67661338011628
1028 => 0.69686939304473
1029 => 0.68716833478211
1030 => 0.68409726954703
1031 => 0.69978667580025
1101 => 0.7010058770368
1102 => 0.67320795963825
1103 => 0.67898802691097
1104 => 0.70309186829443
1105 => 0.67838067195219
1106 => 0.63037085401024
1107 => 0.61846375537297
1108 => 0.61687512892339
1109 => 0.58458213305521
1110 => 0.61925944463992
1111 => 0.60412186883902
1112 => 0.65194128941805
1113 => 0.624627092844
1114 => 0.62344963242189
1115 => 0.62166972829797
1116 => 0.59387381274737
1117 => 0.59995935173037
1118 => 0.6201886101636
1119 => 0.62740663747148
1120 => 0.62665373808772
1121 => 0.62008947576124
1122 => 0.62309456143984
1123 => 0.61341413342782
1124 => 0.60999577281609
1125 => 0.59920648643131
1126 => 0.58334921606212
1127 => 0.58555426676525
1128 => 0.55413686488339
1129 => 0.53701899689043
1130 => 0.53228099663985
1201 => 0.52594514469012
1202 => 0.53299664797663
1203 => 0.55404786333124
1204 => 0.5286556313491
1205 => 0.4851224306737
1206 => 0.48773885021126
1207 => 0.49361716809022
1208 => 0.48266296161175
1209 => 0.47229572449674
1210 => 0.4813091960477
1211 => 0.46286360503349
1212 => 0.49584622963943
1213 => 0.49495414207658
1214 => 0.50724802489785
1215 => 0.51493564212186
1216 => 0.49721817331614
1217 => 0.49276227782463
1218 => 0.49530055840576
1219 => 0.45334843448968
1220 => 0.50381964135227
1221 => 0.50425611844508
1222 => 0.50051873658352
1223 => 0.52739309611416
1224 => 0.58410637704675
1225 => 0.56276855947347
1226 => 0.55450591157014
1227 => 0.53879861186596
1228 => 0.55972765611461
1229 => 0.55812063206027
1230 => 0.55085305984074
1231 => 0.54645760948616
]
'min_raw' => 0.41048872009662
'max_raw' => 1.0532670524634
'avg_raw' => 0.73187788628003
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.410488'
'max' => '$1.05'
'avg' => '$0.731877'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.25242420129755
'max_diff' => 0.61221802905945
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.012884771868879
]
1 => [
'year' => 2028
'avg' => 0.022114009002996
]
2 => [
'year' => 2029
'avg' => 0.060411486933845
]
3 => [
'year' => 2030
'avg' => 0.046607372201976
]
4 => [
'year' => 2031
'avg' => 0.04577421549039
]
5 => [
'year' => 2032
'avg' => 0.080256605430435
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.012884771868879
'min' => '$0.012884'
'max_raw' => 0.080256605430435
'max' => '$0.080256'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.080256605430435
]
1 => [
'year' => 2033
'avg' => 0.20642824185649
]
2 => [
'year' => 2034
'avg' => 0.13084414016574
]
3 => [
'year' => 2035
'avg' => 0.15433096337952
]
4 => [
'year' => 2036
'avg' => 0.29955677110153
]
5 => [
'year' => 2037
'avg' => 0.73187788628003
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.080256605430435
'min' => '$0.080256'
'max_raw' => 0.73187788628003
'max' => '$0.731877'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.73187788628003
]
]
]
]
'prediction_2025_max_price' => '$0.02203'
'last_price' => 0.02136146
'sma_50day_nextmonth' => '$0.020376'
'sma_200day_nextmonth' => '$0.0363072'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'augmenter'
'sma_200day_date_nextmonth' => '4 févr. 2026'
'sma_50day_date_nextmonth' => '4 févr. 2026'
'daily_sma3' => '$0.021218'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.021281'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.021289'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.021543'
'daily_sma21_action' => 'SELL'
'daily_sma50' => '$0.024918'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.0233095'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '—'
'daily_sma200_action' => '—'
'daily_ema3' => '$0.021271'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.021264'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.021348'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.021951'
'daily_ema21_action' => 'SELL'
'daily_ema50' => '$0.023373'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.028772'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.0414063'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.02837'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '—'
'weekly_sma50_action' => '—'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.021462'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.021879'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.023628'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.034067'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.024766'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.012383'
'weekly_ema100_action' => 'BUY'
'weekly_ema200' => '$0.006191'
'weekly_ema200_action' => 'BUY'
'rsi_14' => '40.57'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 84.14
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'SELL'
'vwma_10' => '0.021276'
'vwma_10_action' => 'BUY'
'hma_9' => '0.021213'
'hma_9_action' => 'SELL'
'stochastic_fast_14' => 70.95
'stochastic_fast_14_action' => 'NEUTRAL'
'cci_20' => -22.52
'cci_20_action' => 'NEUTRAL'
'adx_14' => 25.34
'adx_14_action' => 'SELL'
'ao_5_34' => '-0.001856'
'ao_5_34_action' => 'SELL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -29.05
'williams_percent_r_14_action' => 'NEUTRAL'
'ultimate_oscillator' => 53.3
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '0.004925'
'ichimoku_cloud_action' => 'NEUTRAL'
'sell_signals' => 17
'buy_signals' => 14
'sell_pct' => 54.84
'buy_pct' => 45.16
'overall_action' => 'bearish'
'overall_action_label' => 'Baissier'
'overall_action_dir' => -1
'last_updated' => 1767700791
'last_updated_date' => '6 janvier 2026'
]
Prévision du prix de Six Sigma pour 2026
La prévision du prix de Six Sigma pour 2026 suggère que le prix moyen pourrait varier entre $0.00738 à la baisse et $0.02203 à la hausse. Sur le marché des cryptomonnaies, comparé au prix moyen d'aujourd'hui, Six Sigma pourrait potentiellement gagner 3.13% d'ici 2026 si SIX atteint l'objectif de prix prévu.
Prévision du prix de Six Sigma de 2027 à 2032
La prévision du prix de SIX pour 2027-2032 se situe actuellement dans une fourchette de prix comprise entre $0.012884 à la baisse et $0.080256 à la hausse. Compte tenu de la volatilité des prix sur le marché, si Six Sigma atteint l'objectif de prix le plus élevé, il pourrait gagner 275.71% d'ici 2032 par rapport au prix actuel.
| Prévision du Prix de Six Sigma | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2027 | $0.0071049 | $0.012884 | $0.018664 |
| 2028 | $0.012822 | $0.022114 | $0.0314057 |
| 2029 | $0.028166 | $0.060411 | $0.092656 |
| 2030 | $0.023954 | $0.0466073 | $0.06926 |
| 2031 | $0.028321 | $0.045774 | $0.063226 |
| 2032 | $0.043231 | $0.080256 | $0.117282 |
Prévision du prix de Six Sigma de 2032 à 2037
La prévision du prix de Six Sigma pour 2032-2037 est actuellement estimée entre $0.080256 à la baisse et $0.731877 à la hausse. Par rapport au prix actuel, Six Sigma pourrait potentiellement gagner 3326.16% d'ici 2037 s'il atteint l'objectif de prix le plus élevé. Veuillez noter que ces informations sont à titre général seulement et ne doivent pas être considérées comme un conseil en investissement à long terme.
| Prévision du Prix de Six Sigma | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2032 | $0.043231 | $0.080256 | $0.117282 |
| 2033 | $0.100459 | $0.206428 | $0.312396 |
| 2034 | $0.080764 | $0.130844 | $0.180923 |
| 2035 | $0.095489 | $0.15433 | $0.213172 |
| 2036 | $0.158064 | $0.299556 | $0.441049 |
| 2037 | $0.410488 | $0.731877 | $1.05 |
Six Sigma Histogramme des prix potentiels
Prévision du prix de Six Sigma basée sur l'analyse technique
Au 6 janvier 2026, le sentiment global de prévision du prix pour Six Sigma est Baissier, avec 14 indicateurs techniques montrant des signaux haussiers et 17 indiquant des signaux baissiers. La prévision du prix de SIX a été mise à jour pour la dernière fois le 6 janvier 2026.
Moyennes Mobiles Simples sur 50 et 200 jours de Six Sigma et Indice de Force Relative sur 14 jours - RSI (14)
Selon nos indicateurs techniques, le SMA sur 200 jours de Six Sigma devrait augmenter au cours du prochain mois, atteignant $0.0363072 d'ici le 4 févr. 2026. Le SMA à court terme sur 50 jours pour Six Sigma devrait atteindre $0.020376 d'ici le 4 févr. 2026.
Le Relative Strength Index (RSI), un oscillateur de momentum, est un outil couramment utilisé pour identifier si une cryptomonnaie est survendue (en dessous de 30) ou surachetée (au-dessus de 70). Actuellement, le RSI est à 40.57, ce qui suggère que le marché de SIX est dans un état NEUTRAL.
Moyennes Mobiles et Oscillateurs Populaires de SIX pour le Samedi 19 Octobre 2024
Les moyennes mobiles (MA) sont des indicateurs largement utilisés sur les marchés financiers, conçus pour lisser les mouvements de prix sur une période donnée. En tant qu'indicateurs retardés, ils sont basés sur des données historiques de prix. Le tableau ci-dessous met en évidence deux types : la moyenne mobile simple (SMA) et la moyenne mobile exponentielle (EMA).
Moyenne Mobile Simple Quotidienne (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 3 | $0.021218 | BUY |
| SMA 5 | $0.021281 | BUY |
| SMA 10 | $0.021289 | BUY |
| SMA 21 | $0.021543 | SELL |
| SMA 50 | $0.024918 | SELL |
| SMA 100 | $0.0233095 | SELL |
| SMA 200 | — | — |
Moyenne Mobile Exponentielle Quotidienne (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 3 | $0.021271 | BUY |
| EMA 5 | $0.021264 | BUY |
| EMA 10 | $0.021348 | BUY |
| EMA 21 | $0.021951 | SELL |
| EMA 50 | $0.023373 | SELL |
| EMA 100 | $0.028772 | SELL |
| EMA 200 | $0.0414063 | SELL |
Moyenne Mobile Simple Hebdomadaire (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 21 | $0.02837 | SELL |
| SMA 50 | — | — |
| SMA 100 | — | — |
| SMA 200 | — | — |
Moyenne Mobile Exponentielle Hebdomadaire (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 21 | $0.034067 | SELL |
| EMA 50 | $0.024766 | SELL |
| EMA 100 | $0.012383 | BUY |
| EMA 200 | $0.006191 | BUY |
Oscillateurs de Six Sigma
Un oscillateur est un outil d'analyse technique qui établit des limites hautes et basses entre deux extrêmes, créant un indicateur de tendance qui fluctue à l'intérieur de ces limites. Les traders utilisent cet indicateur pour identifier les conditions de surachat ou de survente à court terme.
| Période | Valeur | Action |
|---|---|---|
| RSI (14) | 40.57 | NEUTRAL |
| Stoch RSI (14) | 84.14 | SELL |
| Stochastique Rapide (14) | 70.95 | NEUTRAL |
| Indice de Canal des Matières Premières (20) | -22.52 | NEUTRAL |
| Indice Directionnel Moyen (14) | 25.34 | SELL |
| Oscillateur Impressionnant (5, 34) | -0.001856 | SELL |
| Momentum (10) | 0 | SELL |
| MACD (12, 26) | 0 | BUY |
| Plage de Pourcentage de Williams (14) | -29.05 | NEUTRAL |
| Oscillateur Ultime (7, 14, 28) | 53.3 | NEUTRAL |
| VWMA (10) | 0.021276 | BUY |
| Moyenne Mobile de Hull (9) | 0.021213 | SELL |
| Nuage Ichimoku B/L (9, 26, 52, 26) | 0.004925 | NEUTRAL |
Prévision du cours de Six Sigma basée sur les flux monétaires mondiaux
Définitions des flux monétaires mondiaux utilisés pour la prédiction du cours de Six Sigma
M0 : le total de toutes les devises physiques, plus les comptes à la banque centrale qui peuvent être échangés contre des devises physiques.
M1 : M0 plus le montant des comptes à vue, y compris les comptes de "chèques" et les comptes "courants".
M2 : M1 plus la plupart des comptes d'épargne, comptes du marché monétaire et comptes de certificats de dépôt (CD) de moins de 100 000 $.
Prédictions du cours de Six Sigma par des sociétés Internet ou des niches technologiques
| Comparaison | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Action Facebook | $0.030016 | $0.042178 | $0.059267 | $0.08328 | $0.117022 | $0.164436 |
| Action Amazon.com | $0.044571 | $0.093002 | $0.194054 | $0.4049057 | $0.844859 | $1.76 |
| Action Apple | $0.030299 | $0.042977 | $0.06096 | $0.086467 | $0.122648 | $0.173966 |
| Action Netflix | $0.033705 | $0.053181 | $0.083911 | $0.132399 | $0.2089056 | $0.32962 |
| Action Google | $0.027662 | $0.035823 | $0.046391 | $0.060076 | $0.077798 | $0.100748 |
| Action Tesla | $0.048424 | $0.109775 | $0.248852 | $0.564129 | $1.27 | $2.89 |
| Action Kodak | $0.016018 | $0.012012 | $0.009008 | $0.006755 | $0.005065 | $0.003798 |
| Action Nokia | $0.014151 | $0.009374 | $0.00621 | $0.004114 | $0.002725 | $0.0018054 |
Ce calcul montre la valeur potentielle des cryptomonnaies si l'on suppose que leur capitalisation se comportera comme celle de certaines sociétés Internet ou niches technologiques. En extrapolant les données, vous pourrez obtenir une potentielle image des cours futurs pour 2024, 2025, 2026, 2027, 2028, 2029 et 2030.
Aperçu des prévisions relatives à Six Sigma
Vous vous posez peut-être des questions telles que : "Devrais-je investir dans Six Sigma maintenant ?", "Devrais-je acheter SIX aujourd'hui ?", " Six Sigma sera-t-il un bon ou un mauvais investissement à court ou à long terme ?".
Nous mettons régulièrement à jour les prévisions de Six Sigma avec de nouvelles valeurs. Regardez nos prévisions similaires. Nous faisons une prévision des cours futurs pour une grande quantité de devises numériques comme Six Sigma en utilisant des méthodes d'analyse technique.
Si vous souhaitez trouver des cryptomonnaies ayant un bon rendement, vous devriez consulter un maximum d'informations disponibles à propos de Six Sigma afin de prendre une décision responsable concernant cet investissement.
Le cours de Six Sigma est de $0.02136 USD actuellement, mais ce cours peut subir une hausse ou une baisse, ce qui pourrait causer la perte de votre investissement, car les cryptomonnaies sont des actifs à haut risque.
Prévision du cours de Six Sigma basée sur le modèle de croissance du Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si Six Sigma présente 1 % de la précédente croissance annuelle moyenne du Bitcoin | $0.021916 | $0.022486 | $0.02307 | $0.02367 |
| Si Six Sigma présente 2 % de la précédente croissance annuelle moyenne du Bitcoin | $0.022471 | $0.02364 | $0.024869 | $0.026162 |
| Si Six Sigma présente 5 % de la précédente croissance annuelle moyenne du Bitcoin | $0.024137 | $0.027274 | $0.030819 | $0.034825 |
| Si Six Sigma présente 10 % de la précédente croissance annuelle moyenne du Bitcoin | $0.026913 | $0.0339098 | $0.042724 | $0.053829 |
| Si Six Sigma présente 20 % de la précédente croissance annuelle moyenne du Bitcoin | $0.032466 | $0.049344 | $0.074997 | $0.113985 |
| Si Six Sigma présente 50 % de la précédente croissance annuelle moyenne du Bitcoin | $0.049124 | $0.112968 | $0.259789 | $0.597428 |
| Si Six Sigma présente 100 % de la précédente croissance annuelle moyenne du Bitcoin | $0.076886 | $0.27674 | $0.996076 | $3.58 |
Boîte à questions
Est-ce que SIX est un bon investissement ?
La décision d'acquérir Six Sigma dépend entièrement de votre tolérance individuelle au risque. Comme vous pouvez le discerner, la valeur de Six Sigma a connu une baisse de -0.0402% au cours des 24 heures précédentes, et Six Sigma a enregistré une déclin de sur une période de 30 jours précédents. Par conséquent, la détermination de si investir ou non dans Six Sigma dépendra de la mesure dans laquelle cet investissement s'aligne avec vos aspirations de trading.
Est-ce que Six Sigma peut monter ?
Il semble que la valeur moyenne de Six Sigma pourrait potentiellement s'envoler jusqu'à $0.02203 pour la fin de cette année. En regardant les perspectives de Six Sigma sur une période de cinq ans plus longue, la monnaie numérique pourrait potentiellement croître jusqu'à $0.06926. Cependant, compte tenu de l'imprévisibilité du marché, il est essentiel de mener des recherches approfondies avant d'investir des fonds dans un projet, un réseau ou un actif particulier.
Quel sera le prix de Six Sigma la semaine prochaine ?
Basé sur notre nouveau pronostic expérimental de Six Sigma, le prix de Six Sigma va augmenter de 0.86% durant la prochaine semaine et atteindre $0.021544 d'ici 13 janvier 2026.
Quel sera le prix de Six Sigma le mois prochain ?
Basé sur notre nouveau pronostic expérimental de Six Sigma, le prix de Six Sigma va diminuer de -11.62% durant le prochain mois et atteindre $0.018879 d'ici 5 février 2026.
Jusqu'où le prix de Six Sigma peut-il monter cette année en 2026 ?
Selon notre prédiction la plus récente sur la valeur de Six Sigma en 2026, SIX devrait fluctuer dans la fourchette de $0.00738 et $0.02203. Cependant, il est crucial de garder à l'esprit que le marché des cryptomonnaies est exceptionnellement instable, et cette prévision de prix de Six Sigma ne prend pas en compte les fluctuations de prix soudaines et extrêmes.
Où sera Six Sigma dans 5 ans ?
L'avenir de Six Sigma semble suivre une tendance haussière, avec un prix maximum de $0.06926 prévue après une période de cinq ans. Selon la prévision de Six Sigma pour 2030, la valeur de Six Sigma pourrait potentiellement atteindre son point le plus élevé d'environ $0.06926, tandis que son point le plus bas devrait être autour de $0.023954.
Combien vaudra Six Sigma en 2026 ?
Basé sur notre nouvelle simulation expérimentale de prédiction de prix de Six Sigma, il est attendu que la valeur de SIX en 2026 augmente de 3.13% jusqu'à $0.02203 si le meilleur scénario se produit. Le prix sera entre $0.02203 et $0.00738 durant 2026.
Combien vaudra Six Sigma en 2027 ?
Selon notre dernière simulation expérimentale pour la prédiction de prix de Six Sigma, le valeur de SIX pourrait diminuer de -12.62% jusqu'à $0.018664 en 2027, en supposant les conditions les plus favorables. Il est prévu que le prix fluctue entre $0.018664 et $0.0071049 tout au long de l'année.
Combien vaudra Six Sigma en 2028 ?
Notre nouveau modèle expérimental de prédiction de prix de Six Sigma suggère que la valeur de SIX en 2028 pourrait augmenter de 47.02%, atteignant $0.0314057 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.0314057 et $0.012822 durant l'année.
Combien vaudra Six Sigma en 2029 ?
Basé sur notre modèle de prévision expérimental, la valeur de Six Sigma pourrait connaître un 333.75% croissance en 2029, atteignant potentiellement $0.092656 sous des conditions optimales. Le range de prix prévu pour 2029 se situe entre $0.092656 et $0.028166.
Combien vaudra Six Sigma en 2030 ?
En utilisant notre nouvelle simulation expérimentale pour les prédictions de prix de Six Sigma, il est prévu que la valeur de SIX en 2030 augmente de 224.23%, atteignant $0.06926 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.06926 et $0.023954 au cours de 2030.
Combien vaudra Six Sigma en 2031 ?
Notre simulation expérimentale indique que le prix de Six Sigma pourrait augmenter de 195.98% en 2031, atteignant potentiellement $0.063226 dans des conditions idéales. Il est probable que le prix fluctue entre $0.063226 et $0.028321 durant l'année.
Combien vaudra Six Sigma en 2032 ?
Basé sur les résultats de notre dernière prédiction expérimentale de prix de Six Sigma, SIX pourrait connaître une 449.04% hausse en valeur, atteignant $0.117282 si le scénario le plus positif se réalise en 2032. Il est prévu que le prix reste dans une fourchette de $0.117282 et $0.043231 tout au long de l'année.
Combien vaudra Six Sigma en 2033 ?
Selon notre prédiction expérimentale de prix de Six Sigma, la valeur de SIX est anticipée à augmenter de 1362.43% en 2033, avec le prix potentiel le plus élevé étant $0.312396. Tout au long de l'année, le prix de SIX pourrait osciller entre $0.312396 et $0.100459.
Combien vaudra Six Sigma en 2034 ?
Les résultats de notre nouvelle simulation de prédiction de prix de Six Sigma suggèrent que SIX pourrait augmenter de 746.96% en 2034, atteignant potentiellement $0.180923 dans les meilleures circonstances. La fourchette de prix prévue pour l'année est entre $0.180923 et $0.080764.
Combien vaudra Six Sigma en 2035 ?
Basé sur notre prédiction expérimentale pour le prix de Six Sigma, SIX pourrait augmenter de 897.93%, avec la valeur potentiellement atteignant $0.213172 en 2035. La fourchette de prix attendue pour l'année se situe entre $0.213172 et $0.095489.
Combien vaudra Six Sigma en 2036 ?
Notre récente simulation de prédiction de prix de Six Sigma suggère que la valeur de SIX pourrait augmenter de 1964.7% en 2036, pouvant atteindre $0.441049 si les conditions sont optimales. La fourchette de prix attendue pour 2036 est entre $0.441049 et $0.158064.
Combien vaudra Six Sigma en 2037 ?
Selon la simulation expérimentale, la valeur de Six Sigma pourrait augmenter de 4830.69% en 2037, avec un maximum de $1.05 sous des conditions favorables. Il est prévu que le prix chute entre $1.05 et $0.410488 au cours de l'année.
Prévisions liées
Comment lire et prédire les mouvements de prix de Six Sigma ?
Les traders de Six Sigma utilisent des indicateurs et des modèles graphiques pour prédire la direction du marché. Ils identifient également des niveaux clés de support et de résistance pour évaluer quand une tendance baissière pourrait ralentir ou une tendance haussière pourrait s'arrêter.
Indicateurs de prédiction du prix de Six Sigma
Les moyennes mobiles sont des outils populaires pour la prédiction du prix de Six Sigma. Une moyenne mobile simple (SMA) calcule le prix de clôture moyen de SIX sur une période spécifique, comme une SMA de 12 jours. Une moyenne mobile exponentielle (EMA) donne plus de poids aux prix récents, réagissant plus rapidement aux changements de prix.
Les moyennes mobiles couramment utilisées sur le marché des cryptomonnaies incluent les moyennes sur 50 jours, 100 jours et 200 jours, qui aident à identifier les niveaux clés de résistance et de support. Un mouvement de prix de SIX au-dessus de ces moyennes est considéré comme haussier, tandis qu'une chute en dessous indique une faiblesse.
Les traders utilisent également le RSI et les niveaux de retracement de Fibonacci pour évaluer la direction future de SIX.
Comment lire les graphiques de Six Sigma et prédire les mouvements de prix ?
La plupart des traders préfèrent les graphiques en chandeliers aux simples graphiques linéaires parce qu'ils fournissent des informations plus détaillées. Les chandeliers peuvent représenter l'action des prix de Six Sigma dans différentes périodes, comme 5 minutes pour les tendances à court terme et hebdomadaire pour les tendances à long terme. Les options populaires incluent les graphiques de 1 heure, 4 heures et 1 jour.
Par exemple, un graphique en chandeliers de 1 heure montre les prix d'ouverture, de clôture, les plus hauts et les plus bas de SIX au sein de chaque heure. La couleur du chandelier est cruciale : le vert indique que le prix a clôturé plus haut qu'il n'a ouvert, tandis que le rouge signifie le contraire. Certains graphiques utilisent des chandeliers creux et pleins pour transmettre la même information.
Qu'est-ce qui affecte le prix de Six Sigma ?
L'action du prix de Six Sigma est déterminée par l'offre et la demande, influencée par des facteurs tels que les réductions de récompenses de bloc, les hard forks et les mises à jour de protocole. Les événements du monde réel, tels que les réglementations, l'adoption par les entreprises et les gouvernements et les piratages d'échanges de cryptomonnaies, impactent également le prix de SIX. La capitalisation boursière de Six Sigma peut changer rapidement.
Les traders surveillent souvent l'activité des « baleines » de SIX, de grands détenteurs de Six Sigma, car leurs actions peuvent influencer significativement les mouvements de prix sur le marché relativement petit de Six Sigma.
Modèles de prédiction de prix haussiers et baissiers
Les traders identifient souvent des modèles de chandeliers pour obtenir un avantage dans les prédictions de prix des cryptomonnaies. Certaines formations indiquent des tendances haussières, tandis que d'autres suggèrent des mouvements baissiers.
Modèles de chandeliers haussiers couramment suivis :
- Marteau
- Englobante haussière
- Ligne pénétrante
- Étoile du matin
- Trois soldats blancs
Modèles de chandeliers baissiers courants :
- Harami baissier
- Nuage sombre
- Étoile du soir
- Étoile filante
- Pendu


