Previsão de Preço Six Sigma - Projeção SIX
Previsão de Preço Six Sigma até $0.021988 até 2026
| Ano | Preço Mínimo | Preço Máximo |
|---|---|---|
| 2026 | $0.007366 | $0.021988 |
| 2027 | $0.007091 | $0.018628 |
| 2028 | $0.012797 | $0.031345 |
| 2029 | $0.028112 | $0.092477 |
| 2030 | $0.0239085 | $0.069126 |
| 2031 | $0.028267 | $0.0631047 |
| 2032 | $0.043147 | $0.117055 |
| 2033 | $0.100266 | $0.311794 |
| 2034 | $0.0806092 | $0.180574 |
| 2035 | $0.0953051 | $0.212761 |
Calculadora de lucro do investimento
Se você abrir um short de $10,000.00 em Six Sigma hoje e fechar em Apr 06, 2026, nossa previsão mostra que pode lucrar cerca de $3,954.59, com um retorno de 39.55% nos próximos 90 dias.
Previsão de preço de longo prazo de Six Sigma para os anos 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'Six Sigma'
'name_with_ticker' => 'Six Sigma <small>SIX</small>'
'name_lang' => 'Six Sigma'
'name_lang_with_ticker' => 'Six Sigma <small>SIX</small>'
'name_with_lang' => 'Six Sigma'
'name_with_lang_with_ticker' => 'Six Sigma <small>SIX</small>'
'image' => '/uploads/coins/six.png?1750953532'
'price_for_sd' => 0.02132
'ticker' => 'SIX'
'marketcap' => '$31.9M'
'low24h' => '$0.02069'
'high24h' => '$0.0216'
'volume24h' => '$2.89K'
'current_supply' => '1.5B'
'max_supply' => '1.5B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.02132'
'change_24h_pct' => '-0.3221%'
'ath_price' => '$0.09743'
'ath_days' => 168
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '22 de jul. de 2025'
'ath_pct' => '-78.17%'
'fdv' => '$31.9M'
'new_prediction' => true
'change_24h_pct_is_increased' => false
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$1.05'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.021502'
'next_week_prediction_price_date' => '13 de janeiro de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.018843'
'next_month_prediction_price_date' => '5 de fevereiro de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.007366'
'current_year_max_price_prediction' => '$0.021988'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.0239085'
'grand_prediction_max_price' => '$0.069126'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.021724298281027
107 => 0.021805408924889
108 => 0.02198815534712
109 => 0.020426607177697
110 => 0.021127696461122
111 => 0.021539520731952
112 => 0.019678883694047
113 => 0.021502741920117
114 => 0.020399424098199
115 => 0.020024941458162
116 => 0.020529132998635
117 => 0.020332649064971
118 => 0.020163723716729
119 => 0.020069460469905
120 => 0.020439683091639
121 => 0.020422411763823
122 => 0.019816655697552
123 => 0.019026471602878
124 => 0.019291683321959
125 => 0.019195329418044
126 => 0.018846130440353
127 => 0.019081448388871
128 => 0.018045227235286
129 => 0.016262462598632
130 => 0.017440211525164
131 => 0.017394869472637
201 => 0.017372005953654
202 => 0.018257051721353
203 => 0.018171974992269
204 => 0.018017559895907
205 => 0.018843294486015
206 => 0.018541890252928
207 => 0.019470747079533
208 => 0.020082552260229
209 => 0.01992737867658
210 => 0.020502784406135
211 => 0.019297793264314
212 => 0.019698042985774
213 => 0.019780533898644
214 => 0.018833105049348
215 => 0.018185894597308
216 => 0.018142733038897
217 => 0.017020559306153
218 => 0.017620015456315
219 => 0.018147512061276
220 => 0.01789488212289
221 => 0.017814907031502
222 => 0.018223482428924
223 => 0.018255232236515
224 => 0.017531333258739
225 => 0.017681854779118
226 => 0.018309554541218
227 => 0.017666038355624
228 => 0.016415791524788
301 => 0.016105713024725
302 => 0.016064342836936
303 => 0.015223385352131
304 => 0.016126433952798
305 => 0.015732229038409
306 => 0.016977517639663
307 => 0.016266215469243
308 => 0.016235552654338
309 => 0.016189201312352
310 => 0.015465354465664
311 => 0.015623830922222
312 => 0.016150630800466
313 => 0.016338598931848
314 => 0.016318992315768
315 => 0.016148049193667
316 => 0.016226306079594
317 => 0.015974213383517
318 => 0.015885194205676
319 => 0.015604225193757
320 => 0.015191278365907
321 => 0.01524870115507
322 => 0.014430545435683
323 => 0.013984770776951
324 => 0.013861386226629
325 => 0.013696391249344
326 => 0.013880022848349
327 => 0.014428227703326
328 => 0.013766976340075
329 => 0.012633307259172
330 => 0.012701442702612
331 => 0.012854522814428
401 => 0.012569259038785
402 => 0.012299280815514
403 => 0.012534004976623
404 => 0.012053654442149
405 => 0.012912570881617
406 => 0.012889339599015
407 => 0.013209490532613
408 => 0.01340968748155
409 => 0.012948298328782
410 => 0.01283226020459
411 => 0.012898360793768
412 => 0.011805865295528
413 => 0.013120210342717
414 => 0.013131576853264
415 => 0.013034249889148
416 => 0.013734098050926
417 => 0.015210995960392
418 => 0.01465532755877
419 => 0.014440155958496
420 => 0.014031114589084
421 => 0.014576137927351
422 => 0.014534288638661
423 => 0.014345030284332
424 => 0.014230566241112
425 => 0.014441469750404
426 => 0.014204432962344
427 => 0.014161854641874
428 => 0.01390387634549
429 => 0.013811789830945
430 => 0.013743612641646
501 => 0.01366855625518
502 => 0.013834111940838
503 => 0.013458940976474
504 => 0.013006521571914
505 => 0.01296890779367
506 => 0.013072762742438
507 => 0.0130268146587
508 => 0.012968687811923
509 => 0.012857707831521
510 => 0.012824782442048
511 => 0.012931773984708
512 => 0.01281098677104
513 => 0.012989214884427
514 => 0.012940746699397
515 => 0.01267000735778
516 => 0.012332565897582
517 => 0.012329561960779
518 => 0.012256860751694
519 => 0.012164264831225
520 => 0.012138506764458
521 => 0.012514237162473
522 => 0.013291987841699
523 => 0.013139296773371
524 => 0.013249631718648
525 => 0.013792370446904
526 => 0.013964890767894
527 => 0.013842439930423
528 => 0.013674821671654
529 => 0.013682196024363
530 => 0.014254998356073
531 => 0.014290723334888
601 => 0.014380988831039
602 => 0.014497005502619
603 => 0.013862198071263
604 => 0.013652296651434
605 => 0.013552833713831
606 => 0.013246526363016
607 => 0.013576852580062
608 => 0.013384385639368
609 => 0.013410356005275
610 => 0.013393442770408
611 => 0.013402678540313
612 => 0.012912330796968
613 => 0.013090987742724
614 => 0.01279393591932
615 => 0.012396216873413
616 => 0.012394883579713
617 => 0.01249222475275
618 => 0.012434322414067
619 => 0.012278508709476
620 => 0.012300641310793
621 => 0.012106736434237
622 => 0.012324184873568
623 => 0.01233042051674
624 => 0.012246691023101
625 => 0.012581700345994
626 => 0.012718953938924
627 => 0.012663841392551
628 => 0.012715087095752
629 => 0.013145641776619
630 => 0.013215840976018
701 => 0.013247018823292
702 => 0.013205244638218
703 => 0.012722956844938
704 => 0.012744348359416
705 => 0.012587391619669
706 => 0.012454779714277
707 => 0.012460083495035
708 => 0.012528263252747
709 => 0.012826008253368
710 => 0.013452595054149
711 => 0.013476373565209
712 => 0.013505193814283
713 => 0.013387967377404
714 => 0.013352610762335
715 => 0.013399255263927
716 => 0.013634568321932
717 => 0.014239857393991
718 => 0.014025907810027
719 => 0.013851963467941
720 => 0.014004559551009
721 => 0.013981068580108
722 => 0.013782781145229
723 => 0.013777215877349
724 => 0.01339663889349
725 => 0.013255948247876
726 => 0.013138376613888
727 => 0.013009991458859
728 => 0.012933880435448
729 => 0.013050821559249
730 => 0.013077567377868
731 => 0.012821873566898
801 => 0.012787023445284
802 => 0.012995828530856
803 => 0.012903941197734
804 => 0.012998449598547
805 => 0.013020376358213
806 => 0.013016845644891
807 => 0.012920904715918
808 => 0.012982054603046
809 => 0.01283741689033
810 => 0.012680145101635
811 => 0.012579815498825
812 => 0.012492264613584
813 => 0.012540842933203
814 => 0.01236767009381
815 => 0.012312268617208
816 => 0.012961338397203
817 => 0.013440813222361
818 => 0.01343384146851
819 => 0.013391402709934
820 => 0.013328347323077
821 => 0.013629955427635
822 => 0.013524881194852
823 => 0.013601331478448
824 => 0.013620791284231
825 => 0.013679690255419
826 => 0.013700741575081
827 => 0.013637109865981
828 => 0.013423554078281
829 => 0.012891393359608
830 => 0.012643671108525
831 => 0.012561918639527
901 => 0.012564890186505
902 => 0.012482921655281
903 => 0.012507065061299
904 => 0.012474525563954
905 => 0.012412903628134
906 => 0.012537037952312
907 => 0.012551343276782
908 => 0.012522368842224
909 => 0.012529193370453
910 => 0.012289297427456
911 => 0.012307536194975
912 => 0.012205980419757
913 => 0.012186939936176
914 => 0.011930215779896
915 => 0.011475391724285
916 => 0.011727408401933
917 => 0.011423007694241
918 => 0.011307726533815
919 => 0.011853449617374
920 => 0.011798674155787
921 => 0.01170492237587
922 => 0.011566243953791
923 => 0.011514806778065
924 => 0.011202290781384
925 => 0.011183825669092
926 => 0.011338717035689
927 => 0.011267239999491
928 => 0.011166859170198
929 => 0.010803289981943
930 => 0.010394517840722
1001 => 0.010406856102215
1002 => 0.010536878914862
1003 => 0.010914937778596
1004 => 0.01076722364005
1005 => 0.010660055337711
1006 => 0.01063998593615
1007 => 0.010891196514822
1008 => 0.011246712113886
1009 => 0.011413512078753
1010 => 0.01124821837936
1011 => 0.011058337877541
1012 => 0.011069895023865
1013 => 0.011146779540667
1014 => 0.011154859016295
1015 => 0.011031266329642
1016 => 0.011066056946986
1017 => 0.011013206817919
1018 => 0.010688865673389
1019 => 0.010682999370581
1020 => 0.010603400823006
1021 => 0.01060099061062
1022 => 0.010465573624406
1023 => 0.010446627851941
1024 => 0.010177749206591
1025 => 0.0103547259452
1026 => 0.010236019240637
1027 => 0.010057100236779
1028 => 0.010026254533075
1029 => 0.010025327273974
1030 => 0.010209037085379
1031 => 0.010352579189093
1101 => 0.010238084194585
1102 => 0.010212015903728
1103 => 0.010490357049872
1104 => 0.010454935601889
1105 => 0.01042426085638
1106 => 0.011214879591319
1107 => 0.010589043169866
1108 => 0.010316142768618
1109 => 0.0099783766996933
1110 => 0.010088355034899
1111 => 0.010111529086045
1112 => 0.0092992625771917
1113 => 0.0089697261557111
1114 => 0.0088566416741771
1115 => 0.0087915599562743
1116 => 0.0088212185123674
1117 => 0.0085245970822678
1118 => 0.0087239315889604
1119 => 0.0084670825032795
1120 => 0.0084240209182058
1121 => 0.0088832989008993
1122 => 0.0089472047491281
1123 => 0.0086745625465935
1124 => 0.0088496429773839
1125 => 0.0087861563793792
1126 => 0.0084714854436519
1127 => 0.0084594673284698
1128 => 0.0083015765141401
1129 => 0.0080545079634002
1130 => 0.0079415910059778
1201 => 0.0078827828741622
1202 => 0.0079070482554969
1203 => 0.0078947789361612
1204 => 0.0078147133282079
1205 => 0.0078993682030876
1206 => 0.0076831099795793
1207 => 0.0075969942124674
1208 => 0.0075580977183336
1209 => 0.0073661560976111
1210 => 0.0076716205730068
1211 => 0.0077318009227998
1212 => 0.0077920998464725
1213 => 0.0083169608092202
1214 => 0.008290740238763
1215 => 0.0085277614257603
1216 => 0.0085185512182876
1217 => 0.0084509489362673
1218 => 0.0081657460284593
1219 => 0.0082794228242586
1220 => 0.0079295433160849
1221 => 0.0081916968331026
1222 => 0.0080720609157283
1223 => 0.0081512478090955
1224 => 0.0080088626348271
1225 => 0.008087664469207
1226 => 0.0077460719162795
1227 => 0.0074270975966927
1228 => 0.0075554621743353
1229 => 0.0076950091505029
1230 => 0.0079975825507423
1231 => 0.007817372329736
]
'min_raw' => 0.0073661560976111
'max_raw' => 0.02198815534712
'avg_raw' => 0.014677155722365
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.007366'
'max' => '$0.021988'
'avg' => '$0.014677'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.013954133902389
'max_diff' => 0.0006678653471197
'year' => 2026
]
1 => [
'items' => [
101 => 0.0078821827397128
102 => 0.0076650787154223
103 => 0.0072171311006122
104 => 0.0072196664354651
105 => 0.0071507594539958
106 => 0.0070912137614224
107 => 0.0078380716414404
108 => 0.0077451880579843
109 => 0.0075971902240498
110 => 0.0077952912059712
111 => 0.0078476722498766
112 => 0.0078491634645575
113 => 0.007993692827241
114 => 0.0080708281740134
115 => 0.0080844236132058
116 => 0.0083118436881518
117 => 0.0083880718975304
118 => 0.0087020451037407
119 => 0.0080642837787545
120 => 0.0080511495039569
121 => 0.0077980788930413
122 => 0.0076375775107105
123 => 0.0078090685600044
124 => 0.007960986218816
125 => 0.0078027993981694
126 => 0.0078234552574398
127 => 0.0076111023750597
128 => 0.0076870085383788
129 => 0.0077523891518936
130 => 0.0077162898200055
131 => 0.0076622473729417
201 => 0.0079485307032396
202 => 0.0079323774757908
203 => 0.0081989710945895
204 => 0.0084067998847357
205 => 0.0087792662305176
206 => 0.0083905781815844
207 => 0.0083764128441862
208 => 0.0085148812894451
209 => 0.0083880506987329
210 => 0.0084682032540198
211 => 0.0087663524147072
212 => 0.0087726518366553
213 => 0.008667128402679
214 => 0.0086607072921316
215 => 0.0086809742219266
216 => 0.008799678262762
217 => 0.0087581994234874
218 => 0.0088061997864117
219 => 0.0088662249752563
220 => 0.00911451460647
221 => 0.009174376395975
222 => 0.0090289432822571
223 => 0.0090420742640803
224 => 0.0089876782873216
225 => 0.0089351324553523
226 => 0.0090532478119168
227 => 0.0092691059476017
228 => 0.0092677631053427
301 => 0.009317837997139
302 => 0.0093490342398853
303 => 0.0092151171289728
304 => 0.0091279420140373
305 => 0.0091613705002003
306 => 0.0092148233775525
307 => 0.0091440364524948
308 => 0.0087071067593453
309 => 0.00883964331707
310 => 0.008817582753158
311 => 0.0087861658274912
312 => 0.0089194323611582
313 => 0.0089065784788802
314 => 0.0085215548007725
315 => 0.0085462027674387
316 => 0.0085230537252621
317 => 0.0085978530163831
318 => 0.008384011291542
319 => 0.0084497875658571
320 => 0.0084910418284933
321 => 0.0085153409061162
322 => 0.0086031258365236
323 => 0.0085928252881502
324 => 0.0086024855399741
325 => 0.0087326474174058
326 => 0.0093909615272933
327 => 0.0094267921118063
328 => 0.0092503492092438
329 => 0.0093208346686352
330 => 0.0091855180000793
331 => 0.0092763569862237
401 => 0.0093385067134837
402 => 0.0090576640467012
403 => 0.0090410343666282
404 => 0.0089051591980464
405 => 0.0089781708172793
406 => 0.0088620040813585
407 => 0.0088905073350136
408 => 0.0088108097529251
409 => 0.0089542495330541
410 => 0.0091146374955267
411 => 0.0091551578287598
412 => 0.0090485662771237
413 => 0.0089713869690136
414 => 0.0088358855284168
415 => 0.0090612274439758
416 => 0.0091271242872557
417 => 0.0090608813159112
418 => 0.0090455313720131
419 => 0.0090164432560631
420 => 0.0090517025533203
421 => 0.0091267653988951
422 => 0.0090913671471152
423 => 0.0091147483160527
424 => 0.0090256434106194
425 => 0.0092151614611088
426 => 0.0095161617352885
427 => 0.0095171295003885
428 => 0.0094817310577988
429 => 0.0094672467777612
430 => 0.0095035677280154
501 => 0.0095232703535649
502 => 0.0096407256465636
503 => 0.0097667598555766
504 => 0.010354906516007
505 => 0.010189757287265
506 => 0.0107115959934
507 => 0.011124302657677
508 => 0.011248055340819
509 => 0.011134208695342
510 => 0.010744745471042
511 => 0.010725636547225
512 => 0.011307659031462
513 => 0.011143211021347
514 => 0.011123650453813
515 => 0.010915559063351
516 => 0.011038566847734
517 => 0.011011663240874
518 => 0.010969194581276
519 => 0.011203884865082
520 => 0.011643204125421
521 => 0.011574732098787
522 => 0.011523620907231
523 => 0.011299666544076
524 => 0.011434537092713
525 => 0.011386512273619
526 => 0.011592857373752
527 => 0.011470623107537
528 => 0.011141965165931
529 => 0.011194305026402
530 => 0.011186393961785
531 => 0.011349203111021
601 => 0.011300331845592
602 => 0.011176851062855
603 => 0.011641702579949
604 => 0.011611517708069
605 => 0.011654312955173
606 => 0.011673152746435
607 => 0.011956099673287
608 => 0.012072013975927
609 => 0.012098328551992
610 => 0.012208438174366
611 => 0.01209558892428
612 => 0.012547066384776
613 => 0.012847272551566
614 => 0.01319597746276
615 => 0.01370552906106
616 => 0.013897125175636
617 => 0.013862515052448
618 => 0.014248851258847
619 => 0.014943088833974
620 => 0.014002840315393
621 => 0.01499292428856
622 => 0.014679475133725
623 => 0.013936292826319
624 => 0.013888440647266
625 => 0.014391732334365
626 => 0.015507984856321
627 => 0.015228376260003
628 => 0.015508442195818
629 => 0.015181730405111
630 => 0.015165506410959
701 => 0.015492574533377
702 => 0.016256787028962
703 => 0.015893738318387
704 => 0.015373218968581
705 => 0.0157575623563
706 => 0.015424608544557
707 => 0.014674370418795
708 => 0.015228162448578
709 => 0.014857857489352
710 => 0.014965932162948
711 => 0.015744258108538
712 => 0.015650607871569
713 => 0.015771799949985
714 => 0.015557899103731
715 => 0.015358081984261
716 => 0.014985108492158
717 => 0.014874689428517
718 => 0.014905205285246
719 => 0.014874674306374
720 => 0.014665999065346
721 => 0.014620935666914
722 => 0.014545828028588
723 => 0.014569107026307
724 => 0.014427882692739
725 => 0.014694402188617
726 => 0.014743870555614
727 => 0.014937821218833
728 => 0.014957957820095
729 => 0.015498107656443
730 => 0.015200602203432
731 => 0.015400194546697
801 => 0.015382341128879
802 => 0.013952399840447
803 => 0.014149433133514
804 => 0.014455955105073
805 => 0.014317867372366
806 => 0.014122643625872
807 => 0.013964989983343
808 => 0.013726128593999
809 => 0.014062321412574
810 => 0.01450437921888
811 => 0.014969169135569
812 => 0.015527583766229
813 => 0.015402952121328
814 => 0.014958729962474
815 => 0.014978657444016
816 => 0.015101841293732
817 => 0.014942307015916
818 => 0.01489525724291
819 => 0.015095377377419
820 => 0.015096755494801
821 => 0.014913192027813
822 => 0.014709194826016
823 => 0.014708340070292
824 => 0.014672040738612
825 => 0.015188187975578
826 => 0.015472016767538
827 => 0.015504557281123
828 => 0.015469826531704
829 => 0.015483193018741
830 => 0.01531803929844
831 => 0.015695531728234
901 => 0.016041956111944
902 => 0.015949106976832
903 => 0.015809912924017
904 => 0.015699038156456
905 => 0.015922988405245
906 => 0.015913016253197
907 => 0.016038930397166
908 => 0.01603321820428
909 => 0.015990878013534
910 => 0.015949108488933
911 => 0.016114719932562
912 => 0.016067026496435
913 => 0.016019258979229
914 => 0.015923453910631
915 => 0.015936475410607
916 => 0.015797305391608
917 => 0.015732918972832
918 => 0.014764701719064
919 => 0.014505962431446
920 => 0.014587367078455
921 => 0.014614167601921
922 => 0.014501563932366
923 => 0.014663008668998
924 => 0.014637847677806
925 => 0.014735734375846
926 => 0.014674579016657
927 => 0.01467708885393
928 => 0.014856933725608
929 => 0.014909143456971
930 => 0.014882589166215
1001 => 0.014901186881232
1002 => 0.015329763374199
1003 => 0.015268833502004
1004 => 0.015236465721778
1005 => 0.015245431818106
1006 => 0.015354942300842
1007 => 0.015385599256958
1008 => 0.01525570357967
1009 => 0.015316963131997
1010 => 0.01557779853081
1011 => 0.015669076158389
1012 => 0.015960390529876
1013 => 0.015836635007169
1014 => 0.016063793625112
1015 => 0.016762001772591
1016 => 0.017319778753127
1017 => 0.016806823990718
1018 => 0.017831110383001
1019 => 0.018628664264549
1020 => 0.01859805281818
1021 => 0.018458980851178
1022 => 0.017550986961102
1023 => 0.016715437446028
1024 => 0.017414410094694
1025 => 0.017416191919721
1026 => 0.017356149549312
1027 => 0.016983231543397
1028 => 0.017343172811053
1029 => 0.017371743641765
1030 => 0.017355751574163
1031 => 0.017069836213381
1101 => 0.016633296303458
1102 => 0.016718595156928
1103 => 0.016858316418961
1104 => 0.016593794921023
1105 => 0.016509264274509
1106 => 0.016666422828992
1107 => 0.017172820436822
1108 => 0.017077088902423
1109 => 0.017074588965178
1110 => 0.017484169065824
1111 => 0.01719099810668
1112 => 0.016719671048635
1113 => 0.016600654750438
1114 => 0.016178227070826
1115 => 0.01646999937377
1116 => 0.016480499739521
1117 => 0.016320699031039
1118 => 0.016732637995416
1119 => 0.016728841905339
1120 => 0.017119916642992
1121 => 0.01786750466042
1122 => 0.017646406097094
1123 => 0.017389292523402
1124 => 0.017417247897848
1125 => 0.017723849355782
1126 => 0.017538471115285
1127 => 0.017605134423071
1128 => 0.017723748452882
1129 => 0.017795311242088
1130 => 0.01740695111377
1201 => 0.017316405790447
1202 => 0.017131181836018
1203 => 0.017082860363676
1204 => 0.017233721409734
1205 => 0.017193974854097
1206 => 0.016479617224439
1207 => 0.016404962877491
1208 => 0.01640725241973
1209 => 0.01621953051471
1210 => 0.015933209551134
1211 => 0.016685643948075
1212 => 0.016625212935688
1213 => 0.016558501775001
1214 => 0.016566673511537
1215 => 0.016893279780881
1216 => 0.016703831650649
1217 => 0.017207510554808
1218 => 0.017103969314087
1219 => 0.016997772631238
1220 => 0.016983093014838
1221 => 0.016942216352217
1222 => 0.016802035066551
1223 => 0.01663275774052
1224 => 0.016520986187324
1225 => 0.015239736461781
1226 => 0.015477528958155
1227 => 0.015751087549765
1228 => 0.015845518879372
1229 => 0.01568398755563
1230 => 0.016808413307757
1231 => 0.017013856727907
]
'min_raw' => 0.0070912137614224
'max_raw' => 0.018628664264549
'avg_raw' => 0.012859939012986
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.007091'
'max' => '$0.018628'
'avg' => '$0.012859'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00027494233618876
'max_diff' => -0.0033594910825706
'year' => 2027
]
2 => [
'items' => [
101 => 0.016391555207531
102 => 0.016275148001472
103 => 0.016816044944807
104 => 0.016489817966014
105 => 0.016636717954589
106 => 0.016319200529287
107 => 0.016964371424078
108 => 0.016959456302817
109 => 0.016708470252898
110 => 0.016920601943611
111 => 0.016883738842045
112 => 0.016600376209837
113 => 0.016973354524944
114 => 0.016973539517535
115 => 0.016731970901395
116 => 0.016449871643913
117 => 0.016399438959562
118 => 0.016361444706582
119 => 0.016627373697446
120 => 0.016865804799116
121 => 0.017309465967241
122 => 0.017421012926037
123 => 0.01785638813232
124 => 0.017597143395013
125 => 0.01771206322928
126 => 0.017836824965779
127 => 0.017896640330218
128 => 0.017799174403735
129 => 0.018475491306676
130 => 0.018532593175098
131 => 0.018551738937651
201 => 0.018323688683234
202 => 0.018526250684983
203 => 0.018431478632513
204 => 0.018678049184606
205 => 0.018716714595545
206 => 0.018683966368041
207 => 0.018696239379766
208 => 0.018119122213583
209 => 0.01808919564398
210 => 0.017681144743962
211 => 0.01784742850188
212 => 0.017536568986641
213 => 0.017635145741131
214 => 0.017678597435237
215 => 0.017655900736098
216 => 0.017856829936062
217 => 0.017685999068969
218 => 0.017235148323515
219 => 0.016784174744076
220 => 0.016778513138142
221 => 0.01665977975502
222 => 0.016573957266128
223 => 0.016590489722205
224 => 0.016648752253783
225 => 0.016570570941877
226 => 0.016587254888665
227 => 0.016864319569906
228 => 0.016919882915794
229 => 0.016731056956466
301 => 0.015972893482309
302 => 0.015786838264041
303 => 0.015920571065297
304 => 0.015856655399792
305 => 0.012797558468845
306 => 0.013516247916545
307 => 0.013089227051109
308 => 0.013286017912187
309 => 0.012850140185094
310 => 0.013058163882772
311 => 0.01301974950162
312 => 0.014175380865955
313 => 0.01415733727172
314 => 0.014165973785434
315 => 0.01375373048352
316 => 0.014410445257095
317 => 0.014733966569257
318 => 0.014674091384617
319 => 0.014689160678631
320 => 0.014430220280514
321 => 0.014168480894504
322 => 0.013878171634015
323 => 0.014417530356694
324 => 0.014357562873892
325 => 0.01449510670382
326 => 0.014844919389635
327 => 0.01489643063643
328 => 0.014965662274499
329 => 0.014940847660495
330 => 0.015532032439667
331 => 0.015460436062146
401 => 0.015632962732287
402 => 0.015278062282178
403 => 0.014876458735418
404 => 0.014952790440248
405 => 0.014945439083252
406 => 0.0148518478712
407 => 0.014767357909704
408 => 0.014626705928713
409 => 0.015071749609145
410 => 0.015053681648464
411 => 0.015346180930172
412 => 0.015294478840944
413 => 0.01494919963543
414 => 0.014961531349803
415 => 0.01504446805538
416 => 0.015331512940338
417 => 0.0154167274057
418 => 0.015377252670135
419 => 0.015470686441216
420 => 0.015544532684276
421 => 0.015479960392387
422 => 0.016394167874621
423 => 0.016014525189674
424 => 0.016199560392781
425 => 0.016243690198431
426 => 0.016130652629208
427 => 0.016155166430401
428 => 0.016192298159596
429 => 0.016417754748135
430 => 0.01700941807285
501 => 0.017271461731778
502 => 0.018059833008669
503 => 0.017249702653728
504 => 0.017201632871118
505 => 0.017343642344618
506 => 0.017806499741728
507 => 0.018181602188101
508 => 0.018306045309742
509 => 0.018322492522599
510 => 0.01855595609162
511 => 0.018689773055545
512 => 0.018527607473639
513 => 0.018390189122418
514 => 0.017897973645339
515 => 0.017954948927069
516 => 0.018347452118522
517 => 0.018901885994772
518 => 0.019377647939607
519 => 0.019211052688504
520 => 0.020482056856506
521 => 0.020608071728177
522 => 0.02059066054746
523 => 0.020877741178654
524 => 0.020307944588688
525 => 0.020064345507189
526 => 0.018419900529717
527 => 0.018881922492348
528 => 0.01955349854863
529 => 0.0194646129393
530 => 0.018976896455948
531 => 0.01937727796292
601 => 0.019244899315628
602 => 0.019140486784113
603 => 0.019618820832346
604 => 0.019092872897435
605 => 0.01954825181565
606 => 0.018964223642747
607 => 0.019211813681578
608 => 0.019071269600955
609 => 0.019162218845553
610 => 0.018630531420032
611 => 0.01891741704886
612 => 0.018618596034681
613 => 0.018618454354612
614 => 0.018611857864162
615 => 0.018963419462169
616 => 0.018974883873259
617 => 0.018715079321151
618 => 0.018677637426283
619 => 0.018816079735703
620 => 0.01865400004947
621 => 0.018729836114541
622 => 0.018656297046626
623 => 0.018639741853468
624 => 0.018507827257755
625 => 0.018450994822854
626 => 0.01847328028497
627 => 0.018397208513825
628 => 0.018351372520074
629 => 0.01860273993133
630 => 0.018468444463628
701 => 0.018582157224836
702 => 0.018452567181745
703 => 0.018003351632698
704 => 0.017745003020073
705 => 0.016896476490225
706 => 0.017137117561496
707 => 0.01729666284071
708 => 0.017243933126882
709 => 0.017357216955875
710 => 0.017364171662922
711 => 0.017327341935325
712 => 0.017284697828947
713 => 0.017263941036329
714 => 0.017418645162781
715 => 0.017508456115287
716 => 0.017312675343919
717 => 0.017266806648452
718 => 0.017464751817658
719 => 0.017585498256524
720 => 0.018477022119549
721 => 0.018410975152192
722 => 0.018576740079196
723 => 0.018558077492285
724 => 0.018731825544209
725 => 0.019015830177698
726 => 0.01843836934887
727 => 0.018538596581661
728 => 0.018514023178766
729 => 0.018782309148088
730 => 0.0187831467076
731 => 0.018622295867113
801 => 0.018709495717248
802 => 0.018660823153105
803 => 0.018748781055002
804 => 0.018410093054676
805 => 0.018822578479963
806 => 0.019056431136127
807 => 0.019059678180485
808 => 0.019170522483537
809 => 0.019283146715107
810 => 0.019499319120103
811 => 0.01927711778406
812 => 0.018877399211382
813 => 0.018906257601246
814 => 0.018671902748336
815 => 0.018675842295754
816 => 0.018654812682893
817 => 0.018717924134122
818 => 0.018423942469156
819 => 0.018492939378322
820 => 0.018396343301445
821 => 0.018538386600655
822 => 0.018385571491303
823 => 0.018514011328727
824 => 0.01856944170471
825 => 0.018773980985422
826 => 0.018355360873236
827 => 0.017501766126401
828 => 0.017681202091021
829 => 0.017415802204956
830 => 0.01744036597486
831 => 0.017489988699361
901 => 0.017329145213708
902 => 0.01735982908201
903 => 0.017358732838315
904 => 0.017349286002392
905 => 0.017307444399704
906 => 0.017246765797697
907 => 0.017488490672204
908 => 0.017529564438701
909 => 0.017620866333661
910 => 0.017892518842395
911 => 0.017865374350765
912 => 0.017909648142827
913 => 0.017812998703342
914 => 0.017444849265161
915 => 0.017464841550874
916 => 0.017215537427671
917 => 0.017614491066719
918 => 0.017520013579061
919 => 0.017459103328156
920 => 0.017442483401867
921 => 0.017714809284627
922 => 0.017796293456933
923 => 0.017745517988951
924 => 0.017641376022763
925 => 0.017841359384653
926 => 0.017894866495674
927 => 0.017906844764566
928 => 0.018261176938829
929 => 0.017926647996968
930 => 0.018007172438205
1001 => 0.018635401142028
1002 => 0.018065684397296
1003 => 0.01836747606318
1004 => 0.018352704931583
1005 => 0.018507091335776
1006 => 0.018340040740238
1007 => 0.018342111532578
1008 => 0.01847919620046
1009 => 0.018286685507769
1010 => 0.018239017152975
1011 => 0.018173163662234
1012 => 0.018316952350065
1013 => 0.018403147165417
1014 => 0.019097814074037
1015 => 0.019546600577664
1016 => 0.019527117571952
1017 => 0.019705155773507
1018 => 0.019624947933064
1019 => 0.019365935658511
1020 => 0.01980803802799
1021 => 0.019668138339938
1022 => 0.019679671500243
1023 => 0.01967924223544
1024 => 0.019772263297752
1025 => 0.019706349349849
1026 => 0.019576426192605
1027 => 0.019662675247643
1028 => 0.019918804106507
1029 => 0.020713835943413
1030 => 0.021158746292117
1031 => 0.020687051781775
1101 => 0.021012420338768
1102 => 0.020817315145243
1103 => 0.020781858727703
1104 => 0.020986214226042
1105 => 0.021190927421628
1106 => 0.021177888076068
1107 => 0.021029276808212
1108 => 0.020945330073871
1109 => 0.02158100287052
1110 => 0.022049355758687
1111 => 0.022017417231591
1112 => 0.022158383503225
1113 => 0.022572264836664
1114 => 0.022610104958864
1115 => 0.022605337973212
1116 => 0.022511547282131
1117 => 0.022919067204185
1118 => 0.023259027492793
1119 => 0.02248983744702
1120 => 0.022782734947013
1121 => 0.022914226071328
1122 => 0.023107294053481
1123 => 0.023433032101324
1124 => 0.023786870019032
1125 => 0.023836906580231
1126 => 0.023801403245591
1127 => 0.023568037627189
1128 => 0.023955211298909
1129 => 0.024182008555463
1130 => 0.024317061131577
1201 => 0.024659531993999
1202 => 0.022915038115747
1203 => 0.021680198641749
1204 => 0.021487360626586
1205 => 0.0218795043134
1206 => 0.021982909476326
1207 => 0.021941226984809
1208 => 0.020551302890131
1209 => 0.021480042963879
1210 => 0.022479289192548
1211 => 0.022517674309749
1212 => 0.023017917865074
1213 => 0.023180817672364
1214 => 0.023583579302822
1215 => 0.023558386453177
1216 => 0.023656452500856
1217 => 0.023633908814762
1218 => 0.024379939923719
1219 => 0.02520292302359
1220 => 0.025174425735767
1221 => 0.025056112178066
1222 => 0.025231827986711
1223 => 0.026081234742007
1224 => 0.026003034979445
1225 => 0.026078999387734
1226 => 0.027080497822694
1227 => 0.028382588249634
1228 => 0.027777636518579
1229 => 0.029090207704797
1230 => 0.029916401690112
1231 => 0.031345218757663
]
'min_raw' => 0.012797558468845
'max_raw' => 0.031345218757663
'avg_raw' => 0.022071388613254
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.012797'
'max' => '$0.031345'
'avg' => '$0.022071'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0057063447074225
'max_diff' => 0.012716554493114
'year' => 2028
]
3 => [
'items' => [
101 => 0.031166323823733
102 => 0.031722551822986
103 => 0.030846064555499
104 => 0.028833472622047
105 => 0.028514972244685
106 => 0.029152618065877
107 => 0.030720208096707
108 => 0.029103249077227
109 => 0.029430357780936
110 => 0.029336150452262
111 => 0.029331130544072
112 => 0.029522720022229
113 => 0.029244809491527
114 => 0.028112551994296
115 => 0.028631458932842
116 => 0.028431084043911
117 => 0.028653414922117
118 => 0.029853242975565
119 => 0.029322770392807
120 => 0.028763960618965
121 => 0.029464832085179
122 => 0.030357282307234
123 => 0.030301434376225
124 => 0.030193066047444
125 => 0.030803932642805
126 => 0.031812905291222
127 => 0.032085626543709
128 => 0.032286943796754
129 => 0.032314702044666
130 => 0.032600629249815
131 => 0.031063126604794
201 => 0.033503182788311
202 => 0.033924513086012
203 => 0.033845320452396
204 => 0.034313611346002
205 => 0.03417582828571
206 => 0.033976202248846
207 => 0.034718542923541
208 => 0.033867509243807
209 => 0.032659574077585
210 => 0.031996876955147
211 => 0.032869569984225
212 => 0.033402493164294
213 => 0.033754721486039
214 => 0.033861305563377
215 => 0.031182478558418
216 => 0.029738739377303
217 => 0.030664159639895
218 => 0.031793236229351
219 => 0.031056854527331
220 => 0.031085719295896
221 => 0.030035832506522
222 => 0.031886127914056
223 => 0.031616555436612
224 => 0.033015097926457
225 => 0.032681324537251
226 => 0.033821781646612
227 => 0.033521461068837
228 => 0.034768074996483
301 => 0.035265383042945
302 => 0.036100440652772
303 => 0.036714712429857
304 => 0.037075424566508
305 => 0.037053768762821
306 => 0.038483089954305
307 => 0.037640269184366
308 => 0.036581487659718
309 => 0.03656233764235
310 => 0.037110695597015
311 => 0.038259903435336
312 => 0.038557876307518
313 => 0.038724402492861
314 => 0.03846936184319
315 => 0.03755454030293
316 => 0.037159525000096
317 => 0.037496089482805
318 => 0.037084500041767
319 => 0.037795018888599
320 => 0.038770713023936
321 => 0.038569236043302
322 => 0.039242743382446
323 => 0.039939752623421
324 => 0.040936507142659
325 => 0.041197095683701
326 => 0.041627838632748
327 => 0.042071214619006
328 => 0.042213615036474
329 => 0.042485501617675
330 => 0.042484068641185
331 => 0.043303417153712
401 => 0.044207183936141
402 => 0.044548334974259
403 => 0.045332792975232
404 => 0.043989436139252
405 => 0.045008387730714
406 => 0.045927507572226
407 => 0.044831695006312
408 => 0.046342017336842
409 => 0.046400659730473
410 => 0.047286090250836
411 => 0.046388536790485
412 => 0.045855572410821
413 => 0.047394220604997
414 => 0.048138723999195
415 => 0.047914473517893
416 => 0.046207916282573
417 => 0.045214626773933
418 => 0.042614996538586
419 => 0.045694370848024
420 => 0.04719424424757
421 => 0.046204031972811
422 => 0.046703437446991
423 => 0.049428031781351
424 => 0.050465380899456
425 => 0.050249619534508
426 => 0.05028607965345
427 => 0.050845814408361
428 => 0.053327986563197
429 => 0.051840611471719
430 => 0.052977653998272
501 => 0.053580737254445
502 => 0.054140914592972
503 => 0.052765296095414
504 => 0.050975636641941
505 => 0.050408776368232
506 => 0.046105574877037
507 => 0.045881574551563
508 => 0.04575583638097
509 => 0.0449630750014
510 => 0.044340181712675
511 => 0.043844833842935
512 => 0.042544893109344
513 => 0.04298358494677
514 => 0.040911750736142
515 => 0.042237236842806
516 => 0.038930539416457
517 => 0.041684455292165
518 => 0.040185624086207
519 => 0.041192048930072
520 => 0.041188537608602
521 => 0.03933539038376
522 => 0.038266533738667
523 => 0.038947650793444
524 => 0.039677862343303
525 => 0.039796336710541
526 => 0.040743075045405
527 => 0.041007289364593
528 => 0.040206707642466
529 => 0.038862015462133
530 => 0.039174356786461
531 => 0.038260204151699
601 => 0.036658186821651
602 => 0.037808783636631
603 => 0.038201647977435
604 => 0.038375159251323
605 => 0.036799759200154
606 => 0.036304734300478
607 => 0.036041187197552
608 => 0.038658651098554
609 => 0.038802041679642
610 => 0.038068435193412
611 => 0.041384406074589
612 => 0.040633899737997
613 => 0.041472399194487
614 => 0.039146015085085
615 => 0.039234886090956
616 => 0.038133538571606
617 => 0.038750219590374
618 => 0.038314369322866
619 => 0.038700397858218
620 => 0.038931781770653
621 => 0.040032948569713
622 => 0.041697028848182
623 => 0.03986847097061
624 => 0.039071742117921
625 => 0.039566028217156
626 => 0.04088237723568
627 => 0.04287671338141
628 => 0.041696026243382
629 => 0.042219995145871
630 => 0.042334459041311
701 => 0.041463864057143
702 => 0.04290881346028
703 => 0.043683173584169
704 => 0.044477506840029
705 => 0.04516720414938
706 => 0.044160232669876
707 => 0.045237836496637
708 => 0.04436947803495
709 => 0.043590470725569
710 => 0.043591652158097
711 => 0.043102969493441
712 => 0.042156085252693
713 => 0.041981465270888
714 => 0.042889860468309
715 => 0.043618307391294
716 => 0.043678305768897
717 => 0.044081611414416
718 => 0.044320283541056
719 => 0.046659594841148
720 => 0.047600485197843
721 => 0.048750988115866
722 => 0.049199173841228
723 => 0.050548052191091
724 => 0.049458723373033
725 => 0.049223040231047
726 => 0.045951102569024
727 => 0.046486882177883
728 => 0.047344717026709
729 => 0.045965247949721
730 => 0.046840203569057
731 => 0.047012938342408
801 => 0.045918374118345
802 => 0.046503028163745
803 => 0.044950360357005
804 => 0.041730872763417
805 => 0.042912397670311
806 => 0.043782397698768
807 => 0.04254080038793
808 => 0.044766315511155
809 => 0.043466215520124
810 => 0.043054146238772
811 => 0.041446517058914
812 => 0.042205256148485
813 => 0.043231461631228
814 => 0.042597385952085
815 => 0.043913188193248
816 => 0.045776715078375
817 => 0.047104775311661
818 => 0.047206727285783
819 => 0.046352873528905
820 => 0.047721179623524
821 => 0.047731146239609
822 => 0.046187691375185
823 => 0.045242333864718
824 => 0.045027546649291
825 => 0.045564127224943
826 => 0.046215635102022
827 => 0.047242881438697
828 => 0.047863624885772
829 => 0.049482194578861
830 => 0.049920133129781
831 => 0.05040129482257
901 => 0.051044275228906
902 => 0.051816338063505
903 => 0.050127108534964
904 => 0.050194224773251
905 => 0.048621237625248
906 => 0.046940275268431
907 => 0.048215916162339
908 => 0.049883646939727
909 => 0.049501067656715
910 => 0.049458019671991
911 => 0.049530414441782
912 => 0.049241962156263
913 => 0.047937303159399
914 => 0.047282111578772
915 => 0.04812747587498
916 => 0.048576749375579
917 => 0.04927353339424
918 => 0.049187640056614
919 => 0.050982480859546
920 => 0.051679901722397
921 => 0.051501471621359
922 => 0.05153430705411
923 => 0.052796954213139
924 => 0.054201277537173
925 => 0.055516611646915
926 => 0.056854625998259
927 => 0.055241597474125
928 => 0.054422601067338
929 => 0.05526759630394
930 => 0.05481922993723
1001 => 0.05739567607445
1002 => 0.057574063614956
1003 => 0.060150323445794
1004 => 0.062595500800575
1005 => 0.06105972871394
1006 => 0.062507892618942
1007 => 0.064074199952738
1008 => 0.067095860923837
1009 => 0.066078271812086
1010 => 0.065298814500139
1011 => 0.064562231106659
1012 => 0.06609494421917
1013 => 0.068066755152725
1014 => 0.068491464342042
1015 => 0.069179655480134
1016 => 0.068456106646439
1017 => 0.069327541520334
1018 => 0.072404089553072
1019 => 0.071572779117186
1020 => 0.070392184658406
1021 => 0.072820823855438
1022 => 0.073699738939749
1023 => 0.079868425292841
1024 => 0.087656646629343
1025 => 0.084432271855813
1026 => 0.082430798383959
1027 => 0.08290119212543
1028 => 0.085745186909591
1029 => 0.086658587770381
1030 => 0.084175649362596
1031 => 0.085052665183875
1101 => 0.089885108585419
1102 => 0.092477559427001
1103 => 0.088956662971533
1104 => 0.079242649291675
1105 => 0.070285885044556
1106 => 0.072661622251243
1107 => 0.072392287379713
1108 => 0.077584144955081
1109 => 0.071552952638223
1110 => 0.071654502448984
1111 => 0.076953722140737
1112 => 0.075539981178602
1113 => 0.073249901878206
1114 => 0.070302605157803
1115 => 0.064854254578188
1116 => 0.060028498531327
1117 => 0.069492917444466
1118 => 0.069084794491002
1119 => 0.068493771973954
1120 => 0.069809028630329
1121 => 0.076195541611572
1122 => 0.076048311816229
1123 => 0.075111710975559
1124 => 0.075822114458386
1125 => 0.073125364712916
1126 => 0.073820378526174
1127 => 0.070284466247338
1128 => 0.071882846270113
1129 => 0.073244988396554
1130 => 0.073518458595296
1201 => 0.074134600916796
1202 => 0.068869732239777
1203 => 0.071233503707335
1204 => 0.072621997989091
1205 => 0.066348730310263
1206 => 0.072497995657174
1207 => 0.068778082589386
1208 => 0.067515488222959
1209 => 0.069215405203194
1210 => 0.068552945902773
1211 => 0.067983402297186
1212 => 0.067665587179268
1213 => 0.068913818596561
1214 => 0.068855587108985
1215 => 0.066813238239015
1216 => 0.064149077394929
1217 => 0.065043257222303
1218 => 0.064718393308037
1219 => 0.06354104457446
1220 => 0.064334435467263
1221 => 0.060840743501301
1222 => 0.05483002806017
1223 => 0.058800890793774
1224 => 0.058648016897998
1225 => 0.058570930947468
1226 => 0.061554924545187
1227 => 0.061268082413212
1228 => 0.06074746113491
1229 => 0.063531482956408
1230 => 0.062515277541183
1231 => 0.065646983182796
]
'min_raw' => 0.028112551994296
'max_raw' => 0.092477559427001
'avg_raw' => 0.060295055710649
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.028112'
'max' => '$0.092477'
'avg' => '$0.060295'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.015314993525451
'max_diff' => 0.061132340669339
'year' => 2029
]
4 => [
'items' => [
101 => 0.067709727064384
102 => 0.067186548493239
103 => 0.069126569083979
104 => 0.065063857319536
105 => 0.066413327199979
106 => 0.066691451072054
107 => 0.063497128559283
108 => 0.061315013333439
109 => 0.06116949112581
110 => 0.057386004038199
111 => 0.05940711230116
112 => 0.061185603933423
113 => 0.060333844458095
114 => 0.060064202853797
115 => 0.061441743332029
116 => 0.061548790025024
117 => 0.059108114080439
118 => 0.059615607895473
119 => 0.061731941467993
120 => 0.059562281719398
121 => 0.055346987239786
122 => 0.054301535927836
123 => 0.054162053451332
124 => 0.051326706577535
125 => 0.054371397983521
126 => 0.053042308592151
127 => 0.057240886054552
128 => 0.054842681125451
129 => 0.054739299304189
130 => 0.054583022518535
131 => 0.052142522337554
201 => 0.052676836775312
202 => 0.054452979344803
203 => 0.055086727023276
204 => 0.055020621948269
205 => 0.054444275277241
206 => 0.054708123831865
207 => 0.053858175706491
208 => 0.05355804133328
209 => 0.052610734692966
210 => 0.051218455631841
211 => 0.051412060574635
212 => 0.048653591444914
213 => 0.047150631060005
214 => 0.046734631434162
215 => 0.046178339348663
216 => 0.046797466105456
217 => 0.048645777048453
218 => 0.046416321910157
219 => 0.042594077453644
220 => 0.042823800858268
221 => 0.043339921142967
222 => 0.042378134406907
223 => 0.041467883977868
224 => 0.042259272874966
225 => 0.040639737510983
226 => 0.043535634254283
227 => 0.043457308363033
228 => 0.044536719587882
301 => 0.045211697578529
302 => 0.043656091836808
303 => 0.043264861199571
304 => 0.043487723950983
305 => 0.039804299103064
306 => 0.044235705194303
307 => 0.044274028178198
308 => 0.043945883523529
309 => 0.046305470462801
310 => 0.051284934878285
311 => 0.049411460066688
312 => 0.048685993993562
313 => 0.047306882458236
314 => 0.049144466695517
315 => 0.049003368896874
316 => 0.048365271141656
317 => 0.047979347628315
318 => 0.048690423534707
319 => 0.047891237454384
320 => 0.047747681674193
321 => 0.046877889836465
322 => 0.046567413723404
323 => 0.046337549569703
324 => 0.046084491722464
325 => 0.046642674275387
326 => 0.045377759175433
327 => 0.043852395566044
328 => 0.043725578086587
329 => 0.044075732297276
330 => 0.043920815124961
331 => 0.043724836402767
401 => 0.043350659650468
402 => 0.043239649401082
403 => 0.043600378857069
404 => 0.043193136333094
405 => 0.043794044860867
406 => 0.043630630991098
407 => 0.042717814398419
408 => 0.041580106955953
409 => 0.041569978973293
410 => 0.041324861771028
411 => 0.041012668160325
412 => 0.04092582303985
413 => 0.042192624309416
414 => 0.044814865025245
415 => 0.044300056427825
416 => 0.044672058399168
417 => 0.046501939914291
418 => 0.047083604221492
419 => 0.046670752673715
420 => 0.046105616011543
421 => 0.046130479156562
422 => 0.048061722209703
423 => 0.048182171470016
424 => 0.048486507892425
425 => 0.048877666200682
426 => 0.046737368625027
427 => 0.046029671333222
428 => 0.045694325094814
429 => 0.044661588475844
430 => 0.045775306379257
501 => 0.045126390651094
502 => 0.045213951552941
503 => 0.045156927400745
504 => 0.0451880664438
505 => 0.043534824792124
506 => 0.044137179158172
507 => 0.043135648196067
508 => 0.041794710664936
509 => 0.041790215372138
510 => 0.042118407933178
511 => 0.041923186155695
512 => 0.0413978493721
513 => 0.04147247098269
514 => 0.040818707153374
515 => 0.041551849748346
516 => 0.041572873654659
517 => 0.041290573821048
518 => 0.042420081142784
519 => 0.042882841214089
520 => 0.042697025416158
521 => 0.042869803882359
522 => 0.044321449049269
523 => 0.044558130551195
524 => 0.044663248840048
525 => 0.044522404258489
526 => 0.042896337291188
527 => 0.042968460275758
528 => 0.042439269669333
529 => 0.041992159371635
530 => 0.042010041438758
531 => 0.042239914252045
601 => 0.043243782309531
602 => 0.045356363455255
603 => 0.045436534365459
604 => 0.045533703847376
605 => 0.04513846673095
606 => 0.045019259434726
607 => 0.045176524628459
608 => 0.045969899032554
609 => 0.048010673398934
610 => 0.047289327439118
611 => 0.046702861945369
612 => 0.047217350293349
613 => 0.04713814884487
614 => 0.046469608914191
615 => 0.046450845224978
616 => 0.04516770335286
617 => 0.044693355018464
618 => 0.044296954045886
619 => 0.04386409453214
620 => 0.043607480902809
621 => 0.04400175606627
622 => 0.04409193146108
623 => 0.043229841925422
624 => 0.043112342307242
625 => 0.043816343231556
626 => 0.043506538672565
627 => 0.04382518034427
628 => 0.043899107945364
629 => 0.04388720389889
630 => 0.043563732358477
701 => 0.043769903472276
702 => 0.043282247325574
703 => 0.042751994509621
704 => 0.04241372624896
705 => 0.04211854232676
706 => 0.042282327522987
707 => 0.041698463204433
708 => 0.041511673258061
709 => 0.043700057337918
710 => 0.045316640186802
711 => 0.045293134431942
712 => 0.045150049194422
713 => 0.044937453555248
714 => 0.045954346337372
715 => 0.045600081225493
716 => 0.045857838694225
717 => 0.045923448788065
718 => 0.04612203078162
719 => 0.046193006775617
720 => 0.045978468025761
721 => 0.045258449777542
722 => 0.04346423276026
723 => 0.042629019895318
724 => 0.042353385738317
725 => 0.042363404516421
726 => 0.042087041890539
727 => 0.042168443069566
728 => 0.042058733882434
729 => 0.041850971223509
730 => 0.042269498764258
731 => 0.042317730164475
801 => 0.042220040835433
802 => 0.042243050208828
803 => 0.041434224288015
804 => 0.041495717566096
805 => 0.041153315179549
806 => 0.041089118859793
807 => 0.040223555442987
808 => 0.038690084384691
809 => 0.039539776208624
810 => 0.038513467970063
811 => 0.038124789489013
812 => 0.0399647329664
813 => 0.039780053673359
814 => 0.03946396300183
815 => 0.038996399019572
816 => 0.038822974990382
817 => 0.037769305488401
818 => 0.037707049073116
819 => 0.038229276129768
820 => 0.037988286311859
821 => 0.037649845337534
822 => 0.03642404643574
823 => 0.035045842622055
824 => 0.035087441932109
825 => 0.035525822922849
826 => 0.036800474777156
827 => 0.036302446245977
828 => 0.035941120832388
829 => 0.035873455443825
830 => 0.03672042944878
831 => 0.03791907511233
901 => 0.038481452839483
902 => 0.03792415359154
903 => 0.037283958222626
904 => 0.037322923948352
905 => 0.037582145464655
906 => 0.037609385980824
907 => 0.037192684608808
908 => 0.037309983604188
909 => 0.03713179570416
910 => 0.036038256890601
911 => 0.036018478241112
912 => 0.035750106180569
913 => 0.035741979981234
914 => 0.035285412157702
915 => 0.035221535163086
916 => 0.034314992037778
917 => 0.034911681468121
918 => 0.034511453525848
919 => 0.033908215612615
920 => 0.033804217169
921 => 0.033801090850203
922 => 0.034420481305564
923 => 0.034904443530023
924 => 0.034518415662256
925 => 0.034430524599601
926 => 0.035368971206984
927 => 0.035249545322063
928 => 0.035146123275937
929 => 0.03781174954002
930 => 0.035701698350587
1001 => 0.034781595594483
1002 => 0.03364279371103
1003 => 0.03401359334662
1004 => 0.034091726278018
1005 => 0.031353113032782
1006 => 0.030242057980262
1007 => 0.029860785755463
1008 => 0.029641358199694
1009 => 0.029741354092256
1010 => 0.028741274231228
1011 => 0.029413344437633
1012 => 0.028547359812629
1013 => 0.02840217467209
1014 => 0.029950662456505
1015 => 0.030166125485573
1016 => 0.029246893264456
1017 => 0.029837189160592
1018 => 0.029623139662926
1019 => 0.028562204633498
1020 => 0.028521684719084
1021 => 0.027989344814987
1022 => 0.027156335946392
1023 => 0.026775628540832
1024 => 0.026577352818563
1025 => 0.026659165245888
1026 => 0.026617798379131
1027 => 0.026347851591914
1028 => 0.026633271412986
1029 => 0.025904141713761
1030 => 0.025613796392532
1031 => 0.025482654146893
1101 => 0.024835509571691
1102 => 0.025865404377336
1103 => 0.026068306628321
1104 => 0.02627160865942
1105 => 0.028041214039946
1106 => 0.027952809555988
1107 => 0.02875194303624
1108 => 0.02872089017871
1109 => 0.028492964365038
1110 => 0.027531382849132
1111 => 0.02791465210283
1112 => 0.026735008913215
1113 => 0.027618877798814
1114 => 0.027215516950674
1115 => 0.027482501090314
1116 => 0.027002439534252
1117 => 0.027268125420633
1118 => 0.026116422279207
1119 => 0.025040978090645
1120 => 0.025473768226295
1121 => 0.025944260599303
1122 => 0.02696440794321
1123 => 0.026356816601212
1124 => 0.026575329423367
1125 => 0.025843348047752
1126 => 0.024333061389717
1127 => 0.024341609448184
1128 => 0.024109284749229
1129 => 0.02390852228937
1130 => 0.026426605775803
1201 => 0.026113442289256
1202 => 0.025614457259267
1203 => 0.026282368550784
1204 => 0.026458974897439
1205 => 0.026464002631849
1206 => 0.026951293468854
1207 => 0.027211360675915
1208 => 0.027257198648355
1209 => 0.028023961308998
1210 => 0.028280970039002
1211 => 0.029339552624649
1212 => 0.027189295790384
1213 => 0.027145012665898
1214 => 0.026291767432371
1215 => 0.025750625815994
1216 => 0.026328819861811
1217 => 0.026841020855047
1218 => 0.026307682944985
1219 => 0.026377325616661
1220 => 0.025661363047712
1221 => 0.025917285976942
1222 => 0.026137721280135
1223 => 0.0260160098623
1224 => 0.025833801978901
1225 => 0.026799026214664
1226 => 0.026744564480538
1227 => 0.02764340347929
1228 => 0.028344112755411
1229 => 0.029599909044985
1230 => 0.028289420150673
1231 => 0.028241660726643
]
'min_raw' => 0.02390852228937
'max_raw' => 0.069126569083979
'avg_raw' => 0.046517545686675
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.0239085'
'max' => '$0.069126'
'avg' => '$0.046517'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0042040297049258
'max_diff' => -0.023350990343022
'year' => 2030
]
5 => [
'items' => [
101 => 0.028708516757392
102 => 0.028280898565776
103 => 0.028551138501999
104 => 0.029556369213366
105 => 0.029577608154275
106 => 0.029221828529214
107 => 0.029200179306695
108 => 0.029268510675491
109 => 0.029668729636819
110 => 0.029528880834245
111 => 0.029690717409122
112 => 0.029893096524137
113 => 0.030730222350802
114 => 0.030932050553535
115 => 0.030441712656819
116 => 0.030485984678812
117 => 0.030302584845364
118 => 0.030125422904247
119 => 0.030523657075455
120 => 0.031251437850651
121 => 0.03124691036422
122 => 0.031415741358029
123 => 0.0315209216685
124 => 0.031069410779264
125 => 0.030775493792887
126 => 0.030888200267888
127 => 0.031068420375842
128 => 0.030829757315824
129 => 0.029356618349913
130 => 0.029803474607689
131 => 0.029729095876241
201 => 0.029623171517895
202 => 0.030072488940526
203 => 0.030029151178996
204 => 0.028731016966761
205 => 0.028814119307243
206 => 0.02873607069533
207 => 0.028988261727664
208 => 0.02826727942241
209 => 0.028489048723616
210 => 0.028628140350374
211 => 0.028710066387087
212 => 0.029006039408904
213 => 0.028971310390902
214 => 0.029003880604383
215 => 0.029442730461757
216 => 0.031662282445266
217 => 0.031783087762563
218 => 0.031188198197723
219 => 0.031425844845199
220 => 0.030969615249654
221 => 0.031275885233616
222 => 0.031485427378228
223 => 0.030538546719362
224 => 0.030482478591949
225 => 0.030024365974574
226 => 0.030270529746326
227 => 0.029878865485667
228 => 0.029974966195399
301 => 0.02970626023308
302 => 0.03018987746643
303 => 0.030730636679836
304 => 0.030867253812371
305 => 0.030507872954046
306 => 0.030247657528265
307 => 0.029790804960885
308 => 0.030550560962062
309 => 0.030772736769951
310 => 0.030549393967126
311 => 0.030497640559575
312 => 0.030399567945782
313 => 0.030518447128211
314 => 0.030771526752786
315 => 0.030652179075483
316 => 0.030731010318977
317 => 0.030430586909203
318 => 0.031069560248156
319 => 0.032084403687721
320 => 0.032087666575323
321 => 0.031968318254691
322 => 0.031919483493284
323 => 0.032041942112914
324 => 0.032108370890547
325 => 0.032504379611359
326 => 0.032929312746474
327 => 0.034912290275203
328 => 0.034355478120149
329 => 0.036114893751498
330 => 0.037506363084368
331 => 0.037923603895717
401 => 0.037539761981974
402 => 0.036226659529791
403 => 0.036162232459
404 => 0.038124561900117
405 => 0.03757011395262
406 => 0.037504164133503
407 => 0.036802569482086
408 => 0.037217298815262
409 => 0.037126591426384
410 => 0.036983405375483
411 => 0.037774680052887
412 => 0.039255875611409
413 => 0.039025017393049
414 => 0.038852692442248
415 => 0.038097614670878
416 => 0.038552340141969
417 => 0.038390421111406
418 => 0.03908612802306
419 => 0.038674006660391
420 => 0.037565913464103
421 => 0.037742380957934
422 => 0.037715708251245
423 => 0.038264630664864
424 => 0.038099857781387
425 => 0.037683533701236
426 => 0.039250813046016
427 => 0.039149042643032
428 => 0.039293329806511
429 => 0.039356849478103
430 => 0.040310824796711
501 => 0.040701637960939
502 => 0.040790359391366
503 => 0.041161601670808
504 => 0.04078112254526
505 => 0.042303310324473
506 => 0.04331547637553
507 => 0.044491159329422
508 => 0.046209148118845
509 => 0.046855127795953
510 => 0.046738437349223
511 => 0.048040996842229
512 => 0.050381667296889
513 => 0.04721155377044
514 => 0.050549691011428
515 => 0.049492875301579
516 => 0.046987184264829
517 => 0.046825847302219
518 => 0.048522730363977
519 => 0.052286253676014
520 => 0.051343533771876
521 => 0.052287795628057
522 => 0.051186264015401
523 => 0.051131563686395
524 => 0.052234296696295
525 => 0.054810892480771
526 => 0.053586848405815
527 => 0.051831881076445
528 => 0.053127721642136
529 => 0.052005144619751
530 => 0.049475664398794
531 => 0.051342812891733
601 => 0.050094303867832
602 => 0.050458685175396
603 => 0.053082865441934
604 => 0.052767117129544
605 => 0.053175724683283
606 => 0.052454543046056
607 => 0.05178084567698
608 => 0.050523339508176
609 => 0.050151053925899
610 => 0.050253940267408
611 => 0.050151002940537
612 => 0.04944743979617
613 => 0.049295505402131
614 => 0.049042274755667
615 => 0.049120761521763
616 => 0.048644613821172
617 => 0.049543202909322
618 => 0.049709988962423
619 => 0.050363907164667
620 => 0.050431799121714
621 => 0.052252952007022
622 => 0.051249891601025
623 => 0.051922831121437
624 => 0.051862637076779
625 => 0.047041490187515
626 => 0.047705801691517
627 => 0.048739261919309
628 => 0.048273689487511
629 => 0.047615478996119
630 => 0.047083938733307
701 => 0.046278600882364
702 => 0.047412098442423
703 => 0.048902527199873
704 => 0.050469598854585
705 => 0.05235233276912
706 => 0.051932128476834
707 => 0.050434402453655
708 => 0.050501589348966
709 => 0.050916912298705
710 => 0.050379031342724
711 => 0.050220399748121
712 => 0.05089511875356
713 => 0.050899765172532
714 => 0.05028086812759
715 => 0.049593077319101
716 => 0.049590195450501
717 => 0.049467809719401
718 => 0.051208036165082
719 => 0.052164984753468
720 => 0.052274697366927
721 => 0.052157600220438
722 => 0.052202666264702
723 => 0.051645838966043
724 => 0.052918581048771
725 => 0.054086575045027
726 => 0.053773527703478
727 => 0.053304225236195
728 => 0.052930403216334
729 => 0.053685467115834
730 => 0.05365184530897
731 => 0.054076373636406
801 => 0.054057114579279
802 => 0.05391436167008
803 => 0.053773532801634
804 => 0.054331903346449
805 => 0.054171101596699
806 => 0.054010050077417
807 => 0.053687036599743
808 => 0.053730939496044
809 => 0.053261718060448
810 => 0.05304463475423
811 => 0.049780222684381
812 => 0.048907865111576
813 => 0.049182326562456
814 => 0.049272686398474
815 => 0.048893035264833
816 => 0.0494373574661
817 => 0.049352525427613
818 => 0.049682557264286
819 => 0.049476367701049
820 => 0.049484829792646
821 => 0.050091189333875
822 => 0.050267218088332
823 => 0.050177688443089
824 => 0.05024039193772
825 => 0.051685367506012
826 => 0.051479938187918
827 => 0.051370807957039
828 => 0.051401037776802
829 => 0.051770260015126
830 => 0.05187362208307
831 => 0.051435669738068
901 => 0.051642210595743
902 => 0.052521635353787
903 => 0.052829384247972
904 => 0.05381157099036
905 => 0.053394320605217
906 => 0.054160201745322
907 => 0.056514259261884
908 => 0.058394843294504
909 => 0.056665380499684
910 => 0.060118833584658
911 => 0.062807842179733
912 => 0.062704633551076
913 => 0.062235742704635
914 => 0.059174377910135
915 => 0.056357264383858
916 => 0.058713899469547
917 => 0.058719907017027
918 => 0.05851746997317
919 => 0.057260150879925
920 => 0.058473717994122
921 => 0.058570046544619
922 => 0.05851612817217
923 => 0.05755214457132
924 => 0.05608031978677
925 => 0.056367910826621
926 => 0.056838990816594
927 => 0.055947138117994
928 => 0.055662137141531
929 => 0.05619200818043
930 => 0.057899363070779
1001 => 0.057576597518792
1002 => 0.057568168805832
1003 => 0.058949096711127
1004 => 0.057960650353829
1005 => 0.056371538270627
1006 => 0.055970266511805
1007 => 0.054546022097034
1008 => 0.055529752787301
1009 => 0.055565155503542
1010 => 0.055026376257966
1011 => 0.056415257237024
1012 => 0.056402458454294
1013 => 0.057720994236256
1014 => 0.060241539431943
1015 => 0.059496090189082
1016 => 0.058629213824282
1017 => 0.05872346732101
1018 => 0.059757195542665
1019 => 0.059132179862133
1020 => 0.059356939858616
1021 => 0.059756855341492
1022 => 0.059998134281653
1023 => 0.058688750994593
1024 => 0.058383471115337
1025 => 0.057758975621056
1026 => 0.057596056403359
1027 => 0.058104694952924
1028 => 0.057970686665579
1029 => 0.055562180042328
1030 => 0.055310477699394
1031 => 0.055318197050903
1101 => 0.054685279541802
1102 => 0.053719928422814
1103 => 0.056256813525393
1104 => 0.056053066147972
1105 => 0.055828144812093
1106 => 0.055855696392355
1107 => 0.05695687223237
1108 => 0.056318134634448
1109 => 0.058016323225558
1110 => 0.057667226703447
1111 => 0.057309177172807
1112 => 0.057259683821217
1113 => 0.05712186529927
1114 => 0.056649234307503
1115 => 0.056078503984226
1116 => 0.055701658388983
1117 => 0.051381835485315
1118 => 0.052183569488982
1119 => 0.053105891379847
1120 => 0.053424273200601
1121 => 0.05287965906485
1122 => 0.056670738993045
1123 => 0.057363405827681
1124 => 0.055265272804028
1125 => 0.05487279778151
1126 => 0.056696469590182
1127 => 0.055596572554741
1128 => 0.056091856122452
1129 => 0.055021323954687
1130 => 0.05719656267087
1201 => 0.057179990996374
1202 => 0.056333774005785
1203 => 0.057048990811587
1204 => 0.056924704290958
1205 => 0.055969327392723
1206 => 0.057226849822619
1207 => 0.057227473538055
1208 => 0.056413008082957
1209 => 0.055461890740816
1210 => 0.05529185342443
1211 => 0.055163753147832
1212 => 0.056060351307099
1213 => 0.056864238413108
1214 => 0.058360073016876
1215 => 0.058736161376417
1216 => 0.060204059281325
1217 => 0.059329997549604
1218 => 0.059717457794281
1219 => 0.060138100699476
1220 => 0.060339772376858
1221 => 0.060011159200864
1222 => 0.062291408858068
1223 => 0.06248393179418
1224 => 0.062548483069342
1225 => 0.061779595714613
1226 => 0.062462547645938
1227 => 0.062143017054262
1228 => 0.062974346885649
1229 => 0.063104710018163
1230 => 0.062994297082727
1231 => 0.063035676398629
]
'min_raw' => 0.02826727942241
'max_raw' => 0.063104710018163
'avg_raw' => 0.045685994720286
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.028267'
'max' => '$0.0631047'
'avg' => '$0.045685'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0043587571330395
'max_diff' => -0.0060218590658162
'year' => 2031
]
6 => [
'items' => [
101 => 0.061089885579809
102 => 0.060988986060989
103 => 0.059613213962374
104 => 0.060173851261754
105 => 0.059125766702609
106 => 0.059458125112781
107 => 0.059604625533157
108 => 0.059528102027378
109 => 0.060205548853487
110 => 0.059629580658052
111 => 0.058109505892359
112 => 0.056589016983313
113 => 0.056569928483623
114 => 0.05616961059273
115 => 0.055880254079493
116 => 0.055935994409416
117 => 0.056132430602391
118 => 0.055868836850856
119 => 0.055925087942288
120 => 0.056859230859129
121 => 0.057046566559099
122 => 0.056409926653818
123 => 0.053853725567414
124 => 0.053226427409066
125 => 0.053677316885424
126 => 0.053461820756726
127 => 0.04314786187471
128 => 0.045570973524925
129 => 0.044131242863464
130 => 0.044794736991088
131 => 0.043325144802183
201 => 0.044026511222654
202 => 0.043896994454594
203 => 0.047793286283054
204 => 0.047732451045326
205 => 0.047761569654297
206 => 0.046371662579985
207 => 0.048585822289454
208 => 0.049676596980946
209 => 0.049474723615579
210 => 0.049525530792451
211 => 0.048652495161561
212 => 0.047770022547566
213 => 0.046791224607083
214 => 0.048609710197418
215 => 0.048407525642357
216 => 0.048871264267961
217 => 0.050050682161328
218 => 0.050224355926299
219 => 0.050457775227646
220 => 0.05037411102403
221 => 0.052367331782212
222 => 0.052125939596703
223 => 0.05270762531051
224 => 0.051511053664607
225 => 0.050157019267645
226 => 0.050414376939788
227 => 0.050389591326421
228 => 0.050074042020655
229 => 0.049789178216573
301 => 0.049314960242654
302 => 0.050815456083186
303 => 0.050754538692288
304 => 0.051740720442212
305 => 0.051566403238655
306 => 0.050402270290641
307 => 0.050443847526622
308 => 0.050723474419932
309 => 0.051691266290401
310 => 0.051978572809851
311 => 0.051845480982857
312 => 0.052160499465393
313 => 0.052409477229652
314 => 0.052191767239255
315 => 0.055274081593535
316 => 0.053994089775431
317 => 0.054617948881449
318 => 0.054766735602243
319 => 0.054385621545577
320 => 0.054468271537797
321 => 0.054593463755235
322 => 0.055353606384369
323 => 0.057348440592261
324 => 0.05823193908364
325 => 0.060889987886002
326 => 0.058158576832824
327 => 0.057996506204631
328 => 0.05847530105932
329 => 0.060035857089347
330 => 0.06130054117611
331 => 0.061720109849064
401 => 0.061775562775519
402 => 0.06256270149838
403 => 0.063013874735055
404 => 0.062467122153621
405 => 0.062003806588236
406 => 0.060344267741875
407 => 0.060536363882115
408 => 0.061859715795797
409 => 0.06372902831891
410 => 0.065333092932562
411 => 0.064771405412157
412 => 0.069056684703252
413 => 0.069481552641168
414 => 0.069422849629773
415 => 0.070390762021173
416 => 0.068469653036176
417 => 0.067648341725356
418 => 0.062103980672328
419 => 0.06366171997668
420 => 0.065925985538379
421 => 0.065626301500728
422 => 0.06398193132583
423 => 0.06533184553033
424 => 0.064885521678602
425 => 0.064533487538751
426 => 0.066146224178585
427 => 0.064372953995518
428 => 0.065908295811821
429 => 0.063939204051335
430 => 0.064773971153437
501 => 0.064300116973142
502 => 0.064606758701177
503 => 0.062814137424805
504 => 0.063781392352114
505 => 0.06277389643979
506 => 0.062773418755547
507 => 0.062751178227442
508 => 0.063936492700371
509 => 0.063975145762779
510 => 0.063099196576374
511 => 0.062972958613715
512 => 0.06343972652566
513 => 0.062893263547482
514 => 0.063148950135574
515 => 0.062901008033763
516 => 0.062845191044186
517 => 0.062400431774756
518 => 0.062208817252575
519 => 0.06228395424402
520 => 0.062027472956443
521 => 0.061872933703345
522 => 0.062720436480304
523 => 0.062267649934739
524 => 0.062651040448323
525 => 0.062214118570354
526 => 0.060699556983513
527 => 0.059828516598722
528 => 0.056967650161112
529 => 0.057778988333924
530 => 0.058316906381889
531 => 0.058139124470246
601 => 0.058521068808923
602 => 0.058544517089294
603 => 0.058420343091329
604 => 0.058276565509359
605 => 0.058206582533855
606 => 0.058728178297285
607 => 0.059030982194062
608 => 0.058370893654418
609 => 0.058216244145199
610 => 0.058883630103266
611 => 0.059290735152151
612 => 0.062296570100549
613 => 0.062073888138853
614 => 0.062632776163583
615 => 0.062569853948834
616 => 0.063155657636595
617 => 0.064113199086975
618 => 0.062166249585553
619 => 0.062504172698551
620 => 0.062421321755028
621 => 0.063325866631728
622 => 0.063328690522098
623 => 0.06278637068315
624 => 0.063080371065978
625 => 0.062916268117762
626 => 0.063212824325033
627 => 0.062070914085492
628 => 0.063461637495659
629 => 0.064250088052987
630 => 0.064261035689741
701 => 0.064634754996383
702 => 0.065014475456295
703 => 0.065743315812414
704 => 0.064994148494342
705 => 0.063646469419099
706 => 0.063743767495355
707 => 0.062953623746636
708 => 0.062966906205803
709 => 0.062896003397804
710 => 0.063108788061924
711 => 0.062117608353346
712 => 0.062350236249808
713 => 0.062024555832495
714 => 0.062503464732928
715 => 0.061988237922539
716 => 0.062421281801795
717 => 0.06260816918445
718 => 0.063297787649844
719 => 0.061886380714489
720 => 0.059008426429449
721 => 0.059613407311987
722 => 0.058718593066491
723 => 0.058801411531709
724 => 0.058968718011912
725 => 0.058426422970301
726 => 0.058529875774559
727 => 0.058526179712405
728 => 0.058494329045534
729 => 0.058353257160782
730 => 0.058148675017671
731 => 0.058963667308764
801 => 0.059102150380187
802 => 0.059409981093539
803 => 0.060325876492907
804 => 0.06023435694421
805 => 0.060383629125245
806 => 0.060057768792172
807 => 0.058816527257971
808 => 0.058883932645071
809 => 0.058043386387832
810 => 0.059388486435936
811 => 0.059069948990092
812 => 0.058864585826548
813 => 0.058808550584698
814 => 0.059726716311607
815 => 0.060001445887583
816 => 0.059830252852251
817 => 0.059479130942286
818 => 0.060153388809292
819 => 0.060333791769847
820 => 0.060374177339711
821 => 0.061568833003923
822 => 0.060440945320371
823 => 0.060712439096041
824 => 0.062830556032505
825 => 0.06090971625129
826 => 0.061927227923239
827 => 0.061877426021772
828 => 0.062397950562423
829 => 0.061834727816466
830 => 0.061841709637418
831 => 0.06230390016613
901 => 0.061654836925055
902 => 0.061494119738768
903 => 0.061272090096991
904 => 0.06175688369702
905 => 0.062047495534908
906 => 0.064389613517413
907 => 0.065902728547668
908 => 0.065837040233648
909 => 0.066437308460422
910 => 0.066166882126434
911 => 0.065293604159121
912 => 0.066784183164421
913 => 0.066312501598669
914 => 0.066351386453857
915 => 0.066349939157605
916 => 0.066663566163711
917 => 0.066441332686392
918 => 0.066003287690797
919 => 0.066294082401577
920 => 0.067157638731581
921 => 0.06983814407706
922 => 0.071338190380363
923 => 0.069747839406088
924 => 0.070844842212495
925 => 0.070187031430717
926 => 0.070067487643493
927 => 0.070756486473787
928 => 0.071446691305325
929 => 0.071402728241393
930 => 0.070901674976107
1001 => 0.070618642700303
1002 => 0.072761857915461
1003 => 0.074340942377272
1004 => 0.074233259403293
1005 => 0.074708537030056
1006 => 0.076103966842019
1007 => 0.076231547455929
1008 => 0.076215475230983
1009 => 0.075899253367746
1010 => 0.077273235237082
1011 => 0.078419435085393
1012 => 0.075826057142935
1013 => 0.076813581513613
1014 => 0.077256913019658
1015 => 0.077907855201064
1016 => 0.079006103771671
1017 => 0.080199093015398
1018 => 0.080367794774922
1019 => 0.080248092803417
1020 => 0.079461284327908
1021 => 0.080766667393715
1022 => 0.081531330178665
1023 => 0.081986669368106
1024 => 0.083141333791312
1025 => 0.077259650884112
1026 => 0.073096303383788
1027 => 0.072446136552145
1028 => 0.073768276370838
1029 => 0.07411691409716
1030 => 0.073976378666834
1031 => 0.069290152540225
1101 => 0.072421464541426
1102 => 0.075790492966527
1103 => 0.075919911069135
1104 => 0.077606517141803
1105 => 0.078155745215382
1106 => 0.079513684172391
1107 => 0.079428744720904
1108 => 0.079759381247407
1109 => 0.07968337363579
1110 => 0.082198669605866
1111 => 0.084973414585926
1112 => 0.084877333990416
1113 => 0.08447843157024
1114 => 0.085070869687171
1115 => 0.087934703866336
1116 => 0.087671047907126
1117 => 0.087927167213337
1118 => 0.091303789109194
1119 => 0.095693877892673
1120 => 0.093654240895039
1121 => 0.098079666290167
1122 => 0.10086523699468
1123 => 0.10568259349475
1124 => 0.10507943673496
1125 => 0.10695479826904
1126 => 0.10399966025232
1127 => 0.097214066034004
1128 => 0.096140219774744
1129 => 0.0982900871799
1130 => 0.10357532641448
1201 => 0.098123636187834
1202 => 0.099226506020389
1203 => 0.098908879434419
1204 => 0.098891954463479
1205 => 0.099537911765436
1206 => 0.09860091700808
1207 => 0.09478343180447
1208 => 0.096532962776703
1209 => 0.095857384848946
1210 => 0.096606988927463
1211 => 0.10065229297898
1212 => 0.098863767629801
1213 => 0.096979701462441
1214 => 0.099342738544063
1215 => 0.10235169677661
1216 => 0.10216340157803
1217 => 0.10179803019151
1218 => 0.10385760956711
1219 => 0.10725943129547
1220 => 0.10817893003902
1221 => 0.10885768521319
1222 => 0.10895127408404
1223 => 0.109915297619
1224 => 0.10473150010631
1225 => 0.11295831988832
1226 => 0.11437886440336
1227 => 0.11411186091007
1228 => 0.11569073635289
1229 => 0.1152261911454
1230 => 0.11455313802467
1231 => 0.11705599143798
]
'min_raw' => 0.04314786187471
'max_raw' => 0.11705599143798
'avg_raw' => 0.080101926656345
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.043147'
'max' => '$0.117055'
'avg' => '$0.0801019'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.014880582452301
'max_diff' => 0.053951281419817
'year' => 2032
]
7 => [
'items' => [
101 => 0.11418667196948
102 => 0.11011403422122
103 => 0.10787970460489
104 => 0.11082205008191
105 => 0.11261883779102
106 => 0.11380640016958
107 => 0.11416575582778
108 => 0.10513390355084
109 => 0.10026623610306
110 => 0.10338635512916
111 => 0.10719311568013
112 => 0.10471035335924
113 => 0.10480767294173
114 => 0.1012679063306
115 => 0.1075063064806
116 => 0.10659742405195
117 => 0.11131270769958
118 => 0.11018736741456
119 => 0.11403249818294
120 => 0.11301994638726
121 => 0.11722299228012
122 => 0.11889970107971
123 => 0.1217151561131
124 => 0.12378621629663
125 => 0.12500238244946
126 => 0.12492936839537
127 => 0.12974842458448
128 => 0.12690679551476
129 => 0.12333703968265
130 => 0.12327247406208
131 => 0.12512130119136
201 => 0.12899593565339
202 => 0.13000057199575
203 => 0.13056202665613
204 => 0.12970213929939
205 => 0.1266177546056
206 => 0.12528593293301
207 => 0.12642068358465
208 => 0.12503298104793
209 => 0.12742854494687
210 => 0.13071816584494
211 => 0.13003887213806
212 => 0.13230964915476
213 => 0.13465966447434
214 => 0.13802029192713
215 => 0.13889888438697
216 => 0.14035116431319
217 => 0.14184603740638
218 => 0.14232615035596
219 => 0.14324283494699
220 => 0.14323800356671
221 => 0.14600049428178
222 => 0.14904760708772
223 => 0.15019782163114
224 => 0.15284267655053
225 => 0.14831345518784
226 => 0.15174892161939
227 => 0.15484779833594
228 => 0.15115318976277
301 => 0.15624534694749
302 => 0.1564430638719
303 => 0.15942835469009
304 => 0.15640219053333
305 => 0.15460526391691
306 => 0.15979292372856
307 => 0.16230306890167
308 => 0.16154699274729
309 => 0.15579321588039
310 => 0.15244427095275
311 => 0.14367943611389
312 => 0.15406176159321
313 => 0.15911868947759
314 => 0.15578011965883
315 => 0.15746390008241
316 => 0.1666500601058
317 => 0.1701475550829
318 => 0.169420100577
319 => 0.16954302841357
320 => 0.17143021321919
321 => 0.17979902993894
322 => 0.17478424097281
323 => 0.17861785923686
324 => 0.18065119654097
325 => 0.18253987354815
326 => 0.17790187974102
327 => 0.1718679179436
328 => 0.16995670895387
329 => 0.15544816468637
330 => 0.15469293194984
331 => 0.15426899692892
401 => 0.15159614658887
402 => 0.14949601837691
403 => 0.14782591845
404 => 0.14344307750773
405 => 0.1449221576661
406 => 0.13793682397412
407 => 0.14240579292523
408 => 0.13125703168605
409 => 0.14054205133327
410 => 0.13548863727733
411 => 0.13888186890475
412 => 0.13887003023927
413 => 0.1326220149881
414 => 0.12901829018399
415 => 0.13131472388824
416 => 0.13377668311033
417 => 0.13417612771109
418 => 0.13736812210624
419 => 0.13825893913024
420 => 0.13555972195926
421 => 0.13102599838986
422 => 0.1320790789718
423 => 0.1289969495396
424 => 0.12359563626207
425 => 0.12747495375588
426 => 0.12879952330981
427 => 0.12938452868389
428 => 0.12407295742046
429 => 0.12240394640967
430 => 0.12151537895188
501 => 0.1303403412396
502 => 0.13082379259495
503 => 0.12835038710786
504 => 0.13953041444744
505 => 0.13700002993494
506 => 0.13982708939466
507 => 0.13198352294686
508 => 0.13228315774793
509 => 0.12856988769281
510 => 0.13064907080288
511 => 0.12917957119588
512 => 0.13048109335448
513 => 0.13126122036996
514 => 0.134973881114
515 => 0.14058444395523
516 => 0.13441933340517
517 => 0.13173310645249
518 => 0.13339962654602
519 => 0.13783778916652
520 => 0.14456183272196
521 => 0.14058106360315
522 => 0.14234766134023
523 => 0.14273358435532
524 => 0.1397983125832
525 => 0.14467006037902
526 => 0.14728086960081
527 => 0.14995901963152
528 => 0.15228438226313
529 => 0.14888930761547
530 => 0.15252252415329
531 => 0.14959479297287
601 => 0.14696831544073
602 => 0.14697229872299
603 => 0.14532467100037
604 => 0.14213218467334
605 => 0.14154344121311
606 => 0.14460615904334
607 => 0.14706216870272
608 => 0.14726445742176
609 => 0.14862423056353
610 => 0.14942893030205
611 => 0.15731608167581
612 => 0.16048835920428
613 => 0.16436736011794
614 => 0.16587844958233
615 => 0.17042628711457
616 => 0.16675353894998
617 => 0.1659589167819
618 => 0.15492735051499
619 => 0.1567337688732
620 => 0.15962601895813
621 => 0.15497504265361
622 => 0.15792501661166
623 => 0.15850740395997
624 => 0.1548170042585
625 => 0.15678820619181
626 => 0.15155327827759
627 => 0.14069855107836
628 => 0.14468214479338
629 => 0.14761541063079
630 => 0.14342927861174
701 => 0.1509327582302
702 => 0.14654938034036
703 => 0.14516005998852
704 => 0.13973982596754
705 => 0.1422979677815
706 => 0.14575789121395
707 => 0.14362006079197
708 => 0.14805637991443
709 => 0.15433939091493
710 => 0.15881703871365
711 => 0.15916077691247
712 => 0.15628194935699
713 => 0.16089528888707
714 => 0.16092889202905
715 => 0.15572502619307
716 => 0.15253768734378
717 => 0.151813517251
718 => 0.15362263612467
719 => 0.15581924041907
720 => 0.15928267316322
721 => 0.16137555303396
722 => 0.16683267375913
723 => 0.16830921415945
724 => 0.16993148440033
725 => 0.17209933773175
726 => 0.1747024014823
727 => 0.16900704618859
728 => 0.16923333327188
729 => 0.16392989727993
730 => 0.15826241533288
731 => 0.16256332766909
801 => 0.1681861984223
802 => 0.16689630565879
803 => 0.16675116637278
804 => 0.16699525039357
805 => 0.16602271337385
806 => 0.16162396447754
807 => 0.15941494031944
808 => 0.16226514506556
809 => 0.1637799020401
810 => 0.16612915800693
811 => 0.16583956262224
812 => 0.17189099370111
813 => 0.17424239683258
814 => 0.17364080728933
815 => 0.17375151424335
816 => 0.17800861729523
817 => 0.18274339142893
818 => 0.18717813221362
819 => 0.19168934101636
820 => 0.18625090272918
821 => 0.1834895991632
822 => 0.18633855959909
823 => 0.18482686108978
824 => 0.19351352912315
825 => 0.19411497517058
826 => 0.20280101505897
827 => 0.21104510122744
828 => 0.20586713841317
829 => 0.21074972412646
830 => 0.21603063865844
831 => 0.22621837958813
901 => 0.22278750685206
902 => 0.22015951210486
903 => 0.21767606976713
904 => 0.22284371903657
905 => 0.2294918172665
906 => 0.23092375395053
907 => 0.23324403842058
908 => 0.23080454301121
909 => 0.23374264653019
910 => 0.24411544302029
911 => 0.24131262184546
912 => 0.23733216520121
913 => 0.24552049181617
914 => 0.24848381538682
915 => 0.2692819721102
916 => 0.29554050410247
917 => 0.28466929943485
918 => 0.27792119188608
919 => 0.27950715722729
920 => 0.28909588420346
921 => 0.29217547897723
922 => 0.28380407878216
923 => 0.28676099885489
924 => 0.30305391917362
925 => 0.31179454818515
926 => 0.2999235999644
927 => 0.26717212463198
928 => 0.23697376863151
929 => 0.24498373249253
930 => 0.24407565116881
1001 => 0.26158036146808
1002 => 0.24124577548739
1003 => 0.24158815776435
1004 => 0.2594548469348
1005 => 0.25468832057672
1006 => 0.24696715832721
1007 => 0.23703014166068
1008 => 0.21866064728982
1009 => 0.2023902738543
1010 => 0.23430022300457
1011 => 0.23292420797274
1012 => 0.23093153429263
1013 => 0.23536601393789
1014 => 0.25689858834625
1015 => 0.25640219281199
1016 => 0.25324437768629
1017 => 0.25563955262743
1018 => 0.24654727257952
1019 => 0.24889056017524
1020 => 0.23696898505763
1021 => 0.24235803489975
1022 => 0.24695059218077
1023 => 0.24787261604891
1024 => 0.24994998290353
1025 => 0.23219911057757
1026 => 0.24016873111369
1027 => 0.24485013652621
1028 => 0.22369937656148
1029 => 0.24443205400658
1030 => 0.2318901073825
1031 => 0.22763318232457
1101 => 0.23336457110784
1102 => 0.23113104332504
1103 => 0.22921078729454
1104 => 0.22813925143533
1105 => 0.23234775080747
1106 => 0.23215141928152
1107 => 0.22526549747417
1108 => 0.21628309318256
1109 => 0.2192978829002
1110 => 0.21820258153198
1111 => 0.21423306807686
1112 => 0.21690804086472
1113 => 0.2051288144797
1114 => 0.18486326771517
1115 => 0.1982513086583
1116 => 0.19773588364538
1117 => 0.1974759829812
1118 => 0.20753672573169
1119 => 0.20656961745706
1120 => 0.20481430646865
1121 => 0.21420083041402
1122 => 0.2107746229074
1123 => 0.2213333871268
1124 => 0.22828807213975
1125 => 0.22652413905998
1126 => 0.23306505392957
1127 => 0.21936733756627
1128 => 0.22391716948516
1129 => 0.22485488353785
1130 => 0.21408500216557
1201 => 0.20672784833122
1202 => 0.20623721004816
1203 => 0.19348091917764
1204 => 0.20029522679549
1205 => 0.20629153550399
1206 => 0.20341976896497
1207 => 0.2025106534703
1208 => 0.20715512736947
1209 => 0.20751604276866
1210 => 0.19928713341894
1211 => 0.20099818424842
1212 => 0.20813355064586
1213 => 0.20081839132266
1214 => 0.18660623168219
1215 => 0.18308141959287
1216 => 0.18261114468498
1217 => 0.17305157474238
1218 => 0.18331696439122
1219 => 0.17883584671416
1220 => 0.19299164376396
1221 => 0.18490592840818
1222 => 0.18455736937991
1223 => 0.18403047128618
1224 => 0.17580215453572
1225 => 0.17760363296726
1226 => 0.18359202164662
1227 => 0.18572874619144
1228 => 0.18550586831574
1229 => 0.18356267527513
1230 => 0.18445225909837
1231 => 0.18158659965218
]
'min_raw' => 0.10026623610306
'max_raw' => 0.31179454818515
'avg_raw' => 0.2060303921441
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.100266'
'max' => '$0.311794'
'avg' => '$0.20603'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.057118374228346
'max_diff' => 0.19473855674717
'year' => 2033
]
8 => [
'items' => [
101 => 0.18057467565819
102 => 0.17738076518153
103 => 0.17268659912113
104 => 0.17333935170282
105 => 0.16403898044181
106 => 0.15897164457074
107 => 0.15756907278805
108 => 0.15569349518271
109 => 0.15778092426929
110 => 0.16401263365856
111 => 0.1564958700042
112 => 0.14360890595848
113 => 0.14438343445595
114 => 0.14612357003018
115 => 0.14288083889975
116 => 0.13981186602659
117 => 0.14248008894616
118 => 0.13701971239414
119 => 0.14678343044923
120 => 0.14651934923835
121 => 0.15015865954501
122 => 0.15243439496593
123 => 0.1471895615988
124 => 0.1458705001905
125 => 0.14662189751667
126 => 0.1342029734734
127 => 0.1491437685009
128 => 0.14927297711673
129 => 0.14816661450319
130 => 0.15612212661004
131 => 0.17291073854195
201 => 0.16659418741282
202 => 0.16414822789685
203 => 0.159498457069
204 => 0.16569400062103
205 => 0.16521827954177
206 => 0.16306688840949
207 => 0.16176572033994
208 => 0.16416316240408
209 => 0.16146865073688
210 => 0.16098464240122
211 => 0.15805207849339
212 => 0.15700528660146
213 => 0.15623028355865
214 => 0.15537708135875
215 => 0.15725903280699
216 => 0.15299428323395
217 => 0.14785141332741
218 => 0.1474238393413
219 => 0.14860440870963
220 => 0.1480820946472
221 => 0.14742133870252
222 => 0.14615977565796
223 => 0.14578549685167
224 => 0.14700172139785
225 => 0.1456286747955
226 => 0.14765467985099
227 => 0.14710371857987
228 => 0.14402609370683
301 => 0.14019023363236
302 => 0.14015608643171
303 => 0.13932965667073
304 => 0.13827707411559
305 => 0.13798426972857
306 => 0.14225537865415
307 => 0.15109644630657
308 => 0.14936073317758
309 => 0.15061496379631
310 => 0.1567845370828
311 => 0.15874565890503
312 => 0.15735370108733
313 => 0.15544830337423
314 => 0.15553213120355
315 => 0.1620434519923
316 => 0.16244955508295
317 => 0.16347564657919
318 => 0.16479446412528
319 => 0.15757830141815
320 => 0.15519225058899
321 => 0.15406160733307
322 => 0.15057966371884
323 => 0.1543346413875
324 => 0.15214677670415
325 => 0.15244199439803
326 => 0.1522497334876
327 => 0.15235472094532
328 => 0.14678070129105
329 => 0.14881158109122
330 => 0.14543484952783
331 => 0.14091378502035
401 => 0.14089862882683
402 => 0.14200515296005
403 => 0.14134694910731
404 => 0.13957573946358
405 => 0.1398273314336
406 => 0.13762312103873
407 => 0.14009496248405
408 => 0.14016584605203
409 => 0.13921405245347
410 => 0.14302226524838
411 => 0.14458249313767
412 => 0.1439560022017
413 => 0.1445385368635
414 => 0.14943285989437
415 => 0.15023084810268
416 => 0.15058526175268
417 => 0.1501103944125
418 => 0.14462799610387
419 => 0.14487116378182
420 => 0.14308696070534
421 => 0.14157949712041
422 => 0.1416397877582
423 => 0.14241481999741
424 => 0.14579943124105
425 => 0.15292214606957
426 => 0.15319244789067
427 => 0.15352006158311
428 => 0.15218749205051
429 => 0.1517855763285
430 => 0.15231580690908
501 => 0.15499072410411
502 => 0.16187133736268
503 => 0.1594392690964
504 => 0.15746195973851
505 => 0.15919659312415
506 => 0.15892955991094
507 => 0.15667553085868
508 => 0.15661226777046
509 => 0.15228606536251
510 => 0.15068676683515
511 => 0.14935027328027
512 => 0.14789085720839
513 => 0.14702566644091
514 => 0.14835499268193
515 => 0.14865902532138
516 => 0.14575243026274
517 => 0.14535627209649
518 => 0.14772986036458
519 => 0.14668533266408
520 => 0.14775965530709
521 => 0.14800890737563
522 => 0.14796877205184
523 => 0.14687816516927
524 => 0.14757328547385
525 => 0.14592911872818
526 => 0.14414133433813
527 => 0.14300083928017
528 => 0.14200560607739
529 => 0.14255781930159
530 => 0.14058927998748
531 => 0.13995950464203
601 => 0.14733779435536
602 => 0.15278821629659
603 => 0.15270896500296
604 => 0.15222654313477
605 => 0.15150976209434
606 => 0.15493828710645
607 => 0.15374385754775
608 => 0.15461290484964
609 => 0.15483411386177
610 => 0.15550364691759
611 => 0.15574294743674
612 => 0.15501961506298
613 => 0.15259202326904
614 => 0.14654269532704
615 => 0.14372671684019
616 => 0.1427973970357
617 => 0.14283117604556
618 => 0.14189940015738
619 => 0.14217384991572
620 => 0.14180395773165
621 => 0.14110347142156
622 => 0.14251456624586
623 => 0.1426771817791
624 => 0.14234781538578
625 => 0.14242539309465
626 => 0.1396983800322
627 => 0.13990570891258
628 => 0.13875127536056
629 => 0.13853483298646
630 => 0.13561652549499
701 => 0.13044632075842
702 => 0.1333111160664
703 => 0.12985084618553
704 => 0.12854038955001
705 => 0.13474388744477
706 => 0.13412122831438
707 => 0.13305550654658
708 => 0.13147908193612
709 => 0.13089437071363
710 => 0.12734185042285
711 => 0.12713194857211
712 => 0.12889267355434
713 => 0.12808015955789
714 => 0.12693908218375
715 => 0.12280621560381
716 => 0.11815950522285
717 => 0.11829976020107
718 => 0.11977779231814
719 => 0.12407537003828
720 => 0.12239623207417
721 => 0.12117799821532
722 => 0.12094985963353
723 => 0.12380549162507
724 => 0.1278468091665
725 => 0.12974290493756
726 => 0.12786393161373
727 => 0.12570546823042
728 => 0.12583684389521
729 => 0.12671082733569
730 => 0.12680267063782
731 => 0.12539773286891
801 => 0.12579321462139
802 => 0.12519244167577
803 => 0.12150549921741
804 => 0.12143881411976
805 => 0.1205339789805
806 => 0.12050658093208
807 => 0.1189672306385
808 => 0.1187518648914
809 => 0.1156953914516
810 => 0.11770717152553
811 => 0.11635777507514
812 => 0.11432391633395
813 => 0.11397327832036
814 => 0.11396273771826
815 => 0.11605105588297
816 => 0.1176827683119
817 => 0.11638124840412
818 => 0.11608491755002
819 => 0.11924895580706
820 => 0.118846303098
821 => 0.11849760844879
822 => 0.12748495350623
823 => 0.12037076860198
824 => 0.11726857792026
825 => 0.11342902786159
826 => 0.11467920472138
827 => 0.11494263535466
828 => 0.10570920959447
829 => 0.10196320991351
830 => 0.10067772398803
831 => 0.09993790866381
901 => 0.10027505179707
902 => 0.096903212722272
903 => 0.099169144345609
904 => 0.096249416721294
905 => 0.095759914883462
906 => 0.10098074956058
907 => 0.10170719820623
908 => 0.098607942593995
909 => 0.10059816642096
910 => 0.099876483595121
911 => 0.096299467071286
912 => 0.096162851350828
913 => 0.094368030197379
914 => 0.091559482638089
915 => 0.090275901040101
916 => 0.089607400599303
917 => 0.08988323690999
918 => 0.089743765630577
919 => 0.088833621190393
920 => 0.089795934044511
921 => 0.087337622357364
922 => 0.086358702835578
923 => 0.085916547598348
924 => 0.083734654480864
925 => 0.087207016723055
926 => 0.087891115828434
927 => 0.088576562820379
928 => 0.094542910910725
929 => 0.094244849020855
930 => 0.096939183343243
1001 => 0.096834486466038
1002 => 0.096066018671971
1003 => 0.092823979455618
1004 => 0.094116198503464
1005 => 0.090138949129621
1006 => 0.093118974787173
1007 => 0.091759015525913
1008 => 0.092659171192945
1009 => 0.091040610139857
1010 => 0.091936388655384
1011 => 0.088053341104723
1012 => 0.084427405937869
1013 => 0.085886588096657
1014 => 0.08747288598098
1015 => 0.090912383975378
1016 => 0.088863847345157
1017 => 0.089600578581131
1018 => 0.087132652267939
1019 => 0.082040615355524
1020 => 0.082069435731455
1021 => 0.081286136788534
1022 => 0.080609252138332
1023 => 0.089099146419815
1024 => 0.088043293860545
1025 => 0.086360930993916
1026 => 0.088612840545342
1027 => 0.08920828117335
1028 => 0.089225232530938
1029 => 0.090868167609461
1030 => 0.091745002355381
1031 => 0.091899548279769
1101 => 0.094484742123786
1102 => 0.095351265000769
1103 => 0.098920350096155
1104 => 0.091670609053293
1105 => 0.09152130540734
1106 => 0.088644529530821
1107 => 0.086820032789905
1108 => 0.088769454383596
1109 => 0.090496375793022
1110 => 0.088698189792787
1111 => 0.088932994922639
1112 => 0.086519077134517
1113 => 0.087381939158382
1114 => 0.088125152173401
1115 => 0.087714793630549
1116 => 0.087100467030322
1117 => 0.090354787931002
1118 => 0.090171166391999
1119 => 0.093201664831226
1120 => 0.095564155077626
1121 => 0.099798159944821
1122 => 0.095379755142237
1123 => 0.095218730909663
1124 => 0.096792768612179
1125 => 0.095351024023798
1126 => 0.096262156836323
1127 => 0.099651362362664
1128 => 0.099722970934796
1129 => 0.09852343508916
1130 => 0.098450443223939
1201 => 0.098680827204578
1202 => 0.10003019337509
1203 => 0.099558683373279
1204 => 0.10010432668455
1205 => 0.10078666200048
1206 => 0.10360909017134
1207 => 0.10428956804805
1208 => 0.10263635959497
1209 => 0.1027856258081
1210 => 0.10216728046506
1211 => 0.10156996661153
1212 => 0.10291264092358
1213 => 0.10536640461918
1214 => 0.10535113988258
1215 => 0.10592036536561
1216 => 0.10627498812582
1217 => 0.10475268763928
1218 => 0.10376172599908
1219 => 0.10414172374846
1220 => 0.10474934842499
1221 => 0.10394467925522
1222 => 0.098977888380375
1223 => 0.10048449545197
1224 => 0.10023372236594
1225 => 0.099876590996373
1226 => 0.10139149605711
1227 => 0.10124537976837
1228 => 0.096868629638984
1229 => 0.097148814981936
1230 => 0.096885668637691
1231 => 0.097735948310622
]
'min_raw' => 0.080609252138332
'max_raw' => 0.18057467565819
'avg_raw' => 0.13059196389826
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.0806092'
'max' => '$0.180574'
'avg' => '$0.130591'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.019656983964724
'max_diff' => -0.13121987252696
'year' => 2034
]
9 => [
'items' => [
101 => 0.09530510613108
102 => 0.096052816813535
103 => 0.096521773944219
104 => 0.09679799329689
105 => 0.097795887004121
106 => 0.097678795695224
107 => 0.097788608443956
108 => 0.099268221377609
109 => 0.10675159585418
110 => 0.10715889941581
111 => 0.10515318771409
112 => 0.10595442997801
113 => 0.1044162200437
114 => 0.10544883067771
115 => 0.10615531664804
116 => 0.10296284239758
117 => 0.10277380479145
118 => 0.10122924611757
119 => 0.10205920446064
120 => 0.1007386810607
121 => 0.1010626913131
122 => 0.10015673040069
123 => 0.101787279668
124 => 0.10361048711061
125 => 0.10407110131125
126 => 0.10285942365624
127 => 0.10198208918056
128 => 0.10044177885321
129 => 0.10300334925564
130 => 0.10375243050376
131 => 0.10299941465074
201 => 0.10282492442388
202 => 0.10249426575926
203 => 0.1028950752227
204 => 0.10374835084641
205 => 0.10334596181979
206 => 0.10361174686106
207 => 0.10259884836011
208 => 0.10475319158408
209 => 0.10817480709468
210 => 0.10818580814804
211 => 0.1077834169524
212 => 0.10761876714478
213 => 0.10803164493065
214 => 0.10825561419235
215 => 0.10959078524301
216 => 0.11102347697594
217 => 0.11770922416112
218 => 0.11583189310497
219 => 0.12176388574454
220 => 0.1264553217496
221 => 0.12786207827588
222 => 0.12656792846471
223 => 0.12214071186929
224 => 0.12192349150196
225 => 0.12853962221816
226 => 0.12667026225285
227 => 0.12644790783323
228 => 0.1240824324822
301 => 0.12548072138448
302 => 0.12517489508989
303 => 0.12469213332235
304 => 0.12735997114225
305 => 0.13235392538158
306 => 0.13157557078037
307 => 0.1309945651774
308 => 0.12844876775338
309 => 0.12998190642708
310 => 0.12943598511071
311 => 0.13178160953606
312 => 0.13039211358843
313 => 0.12665610001254
314 => 0.12725107248857
315 => 0.12716114359573
316 => 0.12901187383779
317 => 0.12845633055707
318 => 0.12705266485402
319 => 0.1323368565889
320 => 0.13199373056986
321 => 0.13248020481533
322 => 0.13269436582291
323 => 0.13591076021402
324 => 0.13722841408292
325 => 0.13752754457994
326 => 0.13877921384439
327 => 0.1374964019084
328 => 0.14262856428177
329 => 0.14604115279009
330 => 0.1500050499527
331 => 0.15579736910238
401 => 0.15797533468461
402 => 0.1575819046964
403 => 0.16197357496886
404 => 0.16986530882714
405 => 0.15917704974246
406 => 0.17043181251175
407 => 0.16686868456148
408 => 0.15842057228932
409 => 0.15787661345569
410 => 0.163597773171
411 => 0.17628675477834
412 => 0.17310830880294
413 => 0.17629195357731
414 => 0.17257806283876
415 => 0.17239363686046
416 => 0.17611157819369
417 => 0.18479875077323
418 => 0.18067180071449
419 => 0.17475480583561
420 => 0.17912382277554
421 => 0.17533897596874
422 => 0.16681065680111
423 => 0.1731058783052
424 => 0.168896442963
425 => 0.17012497998175
426 => 0.17897258696479
427 => 0.17790801948473
428 => 0.17928566838023
429 => 0.17685415413902
430 => 0.17458273642313
501 => 0.17034296657874
502 => 0.16908777974594
503 => 0.16943466822963
504 => 0.16908760784523
505 => 0.16671549558279
506 => 0.16620323816556
507 => 0.16534945336101
508 => 0.16561407697268
509 => 0.16400871175656
510 => 0.16703836760475
511 => 0.16760069842741
512 => 0.16980542930138
513 => 0.17003433177463
514 => 0.17617447587628
515 => 0.17279258768602
516 => 0.17506145026223
517 => 0.17485850183805
518 => 0.15860366849917
519 => 0.16084344111566
520 => 0.16432782442755
521 => 0.16275811446851
522 => 0.160538911842
523 => 0.15874678673497
524 => 0.15603153394362
525 => 0.15985320010563
526 => 0.16487828471979
527 => 0.1701617762131
528 => 0.17650954505424
529 => 0.17509279694507
530 => 0.17004310909003
531 => 0.17026963439841
601 => 0.17166992472038
602 => 0.16985642152364
603 => 0.16932158402713
604 => 0.17159644626135
605 => 0.17161211198731
606 => 0.16952545739028
607 => 0.16720652265944
608 => 0.16719680623825
609 => 0.16678417420114
610 => 0.17265146916149
611 => 0.17587788813925
612 => 0.17624779187541
613 => 0.17585299067057
614 => 0.17600493398521
615 => 0.17412755187134
616 => 0.17841869066327
617 => 0.18235666396839
618 => 0.18130120300009
619 => 0.17971891696599
620 => 0.17845854992661
621 => 0.18100430058065
622 => 0.18089094231141
623 => 0.18232226920698
624 => 0.18225733595126
625 => 0.1817760345512
626 => 0.18130122018888
627 => 0.18318380546491
628 => 0.18264165113881
629 => 0.18209865469729
630 => 0.18100959220523
701 => 0.18115761388531
702 => 0.17957560105521
703 => 0.17884368953202
704 => 0.16783749632455
705 => 0.16489628186178
706 => 0.16582164780571
707 => 0.16612630230156
708 => 0.1648462819981
709 => 0.16668150230303
710 => 0.16639548516249
711 => 0.16750821054192
712 => 0.16681302803377
713 => 0.16684155856639
714 => 0.16888594209432
715 => 0.1694794353299
716 => 0.16917757988021
717 => 0.16938898909017
718 => 0.17426082510364
719 => 0.17356820581507
720 => 0.17320026562244
721 => 0.17330218757034
722 => 0.17454704612513
723 => 0.17489553855371
724 => 0.17341895164568
725 => 0.17411531856755
726 => 0.17708036053877
727 => 0.17811795742186
728 => 0.18142946859791
729 => 0.18002267979291
730 => 0.18260490152889
731 => 0.19054177080102
801 => 0.19688229116518
802 => 0.19105128660521
803 => 0.2026948447936
804 => 0.21176102501248
805 => 0.21141304991516
806 => 0.20983215168947
807 => 0.19951054654715
808 => 0.19001245160873
809 => 0.19795801133513
810 => 0.1979782662009
811 => 0.19729573557383
812 => 0.19305659646774
813 => 0.1971482227218
814 => 0.19747300115525
815 => 0.19729121159808
816 => 0.19404107358462
817 => 0.18907871356399
818 => 0.19004834683381
819 => 0.19163662590976
820 => 0.18862968226926
821 => 0.18766878157899
822 => 0.18945527878105
823 => 0.19521174499757
824 => 0.19412351840428
825 => 0.19409510041006
826 => 0.19875099525607
827 => 0.19541837935132
828 => 0.19006057701454
829 => 0.18870766126377
830 => 0.1839057217818
831 => 0.18722243848592
901 => 0.18734180121546
902 => 0.18552526937264
903 => 0.19020797856211
904 => 0.19016482657255
905 => 0.19461036201866
906 => 0.20310855612477
907 => 0.20059522195686
908 => 0.19767248776956
909 => 0.19799027001435
910 => 0.20147555688626
911 => 0.19936827288214
912 => 0.20012606690253
913 => 0.20147440987425
914 => 0.20228789866656
915 => 0.19787322149602
916 => 0.19684394906914
917 => 0.19473841890929
918 => 0.19418912539217
919 => 0.19590403577404
920 => 0.19545221747709
921 => 0.18733176924024
922 => 0.18648313721774
923 => 0.1865091635503
924 => 0.18437523797948
925 => 0.18112048928315
926 => 0.18967377452616
927 => 0.18898682601799
928 => 0.18822848803057
929 => 0.18832138010701
930 => 0.19203407133327
1001 => 0.18988052292664
1002 => 0.1956060843253
1003 => 0.19442908102787
1004 => 0.19322189203709
1005 => 0.19305502174669
1006 => 0.19259035697777
1007 => 0.19099684859098
1008 => 0.18907259145893
1009 => 0.18780203022406
1010 => 0.17323744570394
1011 => 0.17594054787258
1012 => 0.17905022052209
1013 => 0.18012366705947
1014 => 0.17828746247704
1015 => 0.1910693531397
1016 => 0.19340472773313
1017 => 0.18633072575691
1018 => 0.18500746881676
1019 => 0.1911561056444
1020 => 0.18744772599705
1021 => 0.18911760912518
1022 => 0.18550823517939
1023 => 0.19284220438132
1024 => 0.19278633182376
1025 => 0.18993325215901
1026 => 0.19234465555461
1027 => 0.1919256148729
1028 => 0.18870449495822
1029 => 0.19294431962802
1030 => 0.19294642252816
1031 => 0.19020039538214
1101 => 0.18699363685822
1102 => 0.18642034417439
1103 => 0.18598844514817
1104 => 0.18901138844062
1105 => 0.19172174994414
1106 => 0.19676506074658
1107 => 0.19803306890842
1108 => 0.20298218918018
1109 => 0.20003522902664
1110 => 0.20134157829318
1111 => 0.20275980521639
1112 => 0.20343975535695
1113 => 0.20233181309105
1114 => 0.21001983401226
1115 => 0.21066893853289
1116 => 0.21088657766392
1117 => 0.20829422026545
1118 => 0.21059684038409
1119 => 0.20951952068534
1120 => 0.21232240725346
1121 => 0.21276193565639
1122 => 0.21238967073579
1123 => 0.21252918398836
1124 => 0.20596881439193
1125 => 0.20562862461965
1126 => 0.20099011293583
1127 => 0.20288034073314
1128 => 0.19934665046705
1129 => 0.20046722005147
1130 => 0.2009611564471
1201 => 0.20070315210467
1202 => 0.20298721137672
1203 => 0.201045294393
1204 => 0.19592025619223
1205 => 0.19079382167824
1206 => 0.19072946346882
1207 => 0.18937976375037
1208 => 0.18840417806376
1209 => 0.18859211047776
1210 => 0.18925440881712
1211 => 0.18836568408029
1212 => 0.18855533856238
1213 => 0.19170486662628
1214 => 0.19233648201809
1215 => 0.19019000612866
1216 => 0.18157159569759
1217 => 0.17945661616016
1218 => 0.18097682150979
1219 => 0.18025026126643
1220 => 0.1454760287981
1221 => 0.15364571890305
1222 => 0.14879156645915
1223 => 0.15102858323412
1224 => 0.14607375056558
1225 => 0.14843845642003
1226 => 0.14800178159395
1227 => 0.16113840152401
1228 => 0.16093329127263
1229 => 0.16103146669577
1230 => 0.15634529795451
1231 => 0.16381049200268
]
'min_raw' => 0.09530510613108
'max_raw' => 0.21276193565639
'avg_raw' => 0.15403352089374
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.0953051'
'max' => '$0.212761'
'avg' => '$0.154033'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.014695853992748
'max_diff' => 0.032187259998203
'year' => 2035
]
10 => [
'items' => [
101 => 0.1674881150305
102 => 0.16680748488482
103 => 0.16697878482889
104 => 0.16403528424594
105 => 0.16105996621559
106 => 0.15775988062176
107 => 0.16389103175218
108 => 0.16320935240872
109 => 0.16477287956214
110 => 0.16874936933395
111 => 0.16933492255807
112 => 0.17012191202938
113 => 0.16983983232564
114 => 0.17656011527408
115 => 0.17574624466717
116 => 0.17770743866327
117 => 0.17367311381714
118 => 0.16910789231212
119 => 0.16997559167189
120 => 0.16989202524595
121 => 0.16882812873061
122 => 0.16786769052659
123 => 0.16626883151868
124 => 0.17132785800631
125 => 0.17112247076978
126 => 0.17444745139266
127 => 0.17385972877043
128 => 0.16993477325903
129 => 0.17007495381297
130 => 0.17101773540669
131 => 0.17428071326705
201 => 0.17524938725648
202 => 0.17480065886959
203 => 0.17586276567735
204 => 0.17670221159262
205 => 0.17596818715997
206 => 0.18636042520574
207 => 0.18204484342483
208 => 0.18414822795722
209 => 0.18464987277434
210 => 0.18336492012375
211 => 0.18364358034296
212 => 0.18406567464469
213 => 0.18662854859029
214 => 0.19335427139707
215 => 0.19633304824465
216 => 0.20529484536085
217 => 0.19608570229403
218 => 0.19553926985567
219 => 0.19715356013664
220 => 0.20241508374642
221 => 0.20667905444237
222 => 0.20809365951658
223 => 0.20828062292972
224 => 0.21093451609012
225 => 0.21245567815748
226 => 0.21061226365613
227 => 0.20905016287977
228 => 0.20345491179396
229 => 0.20410257734251
301 => 0.20856435071297
302 => 0.21486686839588
303 => 0.22027508423302
304 => 0.2183813155422
305 => 0.23282943386078
306 => 0.23426190577679
307 => 0.23406398447536
308 => 0.23732736868045
309 => 0.23085021560999
310 => 0.22808110718343
311 => 0.20938790679822
312 => 0.21463993362073
313 => 0.22227406304797
314 => 0.22126365739176
315 => 0.21571954854083
316 => 0.2202708785293
317 => 0.21876606650186
318 => 0.21757915882112
319 => 0.22301661299999
320 => 0.21703790877201
321 => 0.22221442089982
322 => 0.21557549055175
323 => 0.21838996611806
324 => 0.21679233366575
325 => 0.21782619766087
326 => 0.21178224987076
327 => 0.21504341738976
328 => 0.21164657458024
329 => 0.21164496403447
330 => 0.21156997854118
331 => 0.21556634904267
401 => 0.21569667054125
402 => 0.21274334670247
403 => 0.21231772659771
404 => 0.21389146720152
405 => 0.21204902911777
406 => 0.21291109430099
407 => 0.21207514019397
408 => 0.2118869493166
409 => 0.21038741238761
410 => 0.20974137064798
411 => 0.20999470026053
412 => 0.20912995569252
413 => 0.20860891581111
414 => 0.21146633059438
415 => 0.20993972914346
416 => 0.21123235702748
417 => 0.209759244411
418 => 0.20465279427765
419 => 0.20171602080623
420 => 0.19207040987251
421 => 0.19480589316797
422 => 0.19661952142292
423 => 0.19602011729548
424 => 0.19730786929983
425 => 0.19738692681421
426 => 0.19696826551052
427 => 0.19648350935468
428 => 0.19624755686671
429 => 0.19800615339977
430 => 0.19902707787884
501 => 0.19680154328152
502 => 0.19628013166391
503 => 0.19853027001693
504 => 0.19990285311241
505 => 0.21003723550163
506 => 0.20928644772062
507 => 0.21117077771631
508 => 0.21095863107619
509 => 0.21293370910899
510 => 0.21616212696235
511 => 0.20959785078663
512 => 0.21073718215515
513 => 0.21045784441459
514 => 0.21350758061969
515 => 0.21351710156323
516 => 0.21168863236265
517 => 0.21267987517981
518 => 0.2121265906326
519 => 0.21312645059031
520 => 0.20927642049207
521 => 0.21396534156665
522 => 0.21662365766855
523 => 0.2166605683902
524 => 0.21792058912479
525 => 0.21920084316662
526 => 0.22165817931328
527 => 0.21913230939521
528 => 0.21458851530108
529 => 0.21491656255831
530 => 0.21225253774344
531 => 0.21229732048187
601 => 0.21205826671442
602 => 0.21277568506565
603 => 0.20943385347623
604 => 0.21021817467071
605 => 0.20912012040546
606 => 0.21073479519962
607 => 0.20899767203641
608 => 0.21045770970948
609 => 0.21108781356816
610 => 0.21341291037186
611 => 0.20865425334802
612 => 0.19895102954366
613 => 0.20099076482755
614 => 0.19797383612492
615 => 0.19825306436261
616 => 0.19881714984158
617 => 0.19698876424696
618 => 0.19733756259936
619 => 0.19732510106775
620 => 0.19721771432065
621 => 0.19674208061189
622 => 0.19605231763292
623 => 0.19880012104329
624 => 0.19926702638717
625 => 0.20030489912929
626 => 0.20339290441403
627 => 0.20308433986591
628 => 0.20358762144612
629 => 0.20248896058232
630 => 0.19830402808905
701 => 0.19853129005775
702 => 0.1956973296664
703 => 0.20023242839047
704 => 0.19915845715223
705 => 0.19846606090835
706 => 0.19827713417819
707 => 0.20137279403075
708 => 0.20229906397716
709 => 0.20172187470622
710 => 0.20053804267223
711 => 0.20281135014602
712 => 0.20341959132286
713 => 0.20355575409129
714 => 0.20758361907138
715 => 0.20378086699968
716 => 0.20469622721944
717 => 0.21183760635293
718 => 0.20536136092181
719 => 0.20879197256418
720 => 0.20862406197633
721 => 0.210379046807
722 => 0.20848010199605
723 => 0.20850364169284
724 => 0.21006194932951
725 => 0.20787358729608
726 => 0.20733171808159
727 => 0.20658312964273
728 => 0.20821764511243
729 => 0.20919746321374
730 => 0.21709407751321
731 => 0.22219565048004
801 => 0.22197417774311
802 => 0.22399802397907
803 => 0.22308626271346
804 => 0.22014194507634
805 => 0.22516753626161
806 => 0.22357722893093
807 => 0.22370833193505
808 => 0.22370345227468
809 => 0.22476086762251
810 => 0.22401159193788
811 => 0.22253469265191
812 => 0.22351512732194
813 => 0.22642666778013
814 => 0.23546417869932
815 => 0.24052168954079
816 => 0.23515971019627
817 => 0.23885833174836
818 => 0.23664047677071
819 => 0.2362374265458
820 => 0.2385604342065
821 => 0.24088750798459
822 => 0.24073928344515
823 => 0.23904994737881
824 => 0.23809568430026
825 => 0.24532168403267
826 => 0.25064567754382
827 => 0.25028261687887
828 => 0.25188504858032
829 => 0.25658983761715
830 => 0.25701998456434
831 => 0.25696579593581
901 => 0.25589963184601
902 => 0.26053210764682
903 => 0.26439660046052
904 => 0.25565284566366
905 => 0.25898235302615
906 => 0.2604770761512
907 => 0.26267177316314
908 => 0.26637459489621
909 => 0.27039684142328
910 => 0.2709656311839
911 => 0.27056204762964
912 => 0.26790926792125
913 => 0.27231045806655
914 => 0.27488857203306
915 => 0.27642377990103
916 => 0.28031681161996
917 => 0.26048630705235
918 => 0.24644929027937
919 => 0.24425720741329
920 => 0.24871489412087
921 => 0.24989035055627
922 => 0.24941652554105
923 => 0.23361658697333
924 => 0.2441740240066
925 => 0.25553293855988
926 => 0.25596928072851
927 => 0.26165579085759
928 => 0.26350755165354
929 => 0.26808593765537
930 => 0.26779955836439
1001 => 0.2689143224978
1002 => 0.26865805752856
1003 => 0.27713855350402
1004 => 0.2864937999308
1005 => 0.28616985749491
1006 => 0.28482493013481
1007 => 0.28682237660875
1008 => 0.29647799349032
1009 => 0.29558905901597
1010 => 0.29645258313854
1011 => 0.30783709960864
1012 => 0.32263859044834
1013 => 0.31576181190792
1014 => 0.33068244260093
1015 => 0.34007418871353
1016 => 0.35631624249059
1017 => 0.3542826573639
1018 => 0.36060556970962
1019 => 0.35064211556511
1020 => 0.32776401090299
1021 => 0.32414346326634
1022 => 0.33139189132178
1023 => 0.3492114444048
1024 => 0.33083069018079
1025 => 0.33454909282116
1026 => 0.33347819261058
1027 => 0.33342112888939
1028 => 0.33559901903224
1029 => 0.33243987578893
1030 => 0.31956895789665
1031 => 0.32546762371789
1101 => 0.32318986556711
1102 => 0.32571720805352
1103 => 0.33935623309732
1104 => 0.33332609501171
1105 => 0.32697383438715
1106 => 0.33494097888982
1107 => 0.3450858916496
1108 => 0.34445104124126
1109 => 0.34321916610218
1110 => 0.35016318176227
1111 => 0.36163266122704
1112 => 0.36473281543827
1113 => 0.36702128589713
1114 => 0.36733682730939
1115 => 0.37058709996348
1116 => 0.35310956472824
1117 => 0.3808468620015
1118 => 0.38563632701322
1119 => 0.384736106094
1120 => 0.39005939488303
1121 => 0.38849314828249
1122 => 0.38622390269488
1123 => 0.39466244772149
1124 => 0.38498833680396
1125 => 0.37125715429322
1126 => 0.36372395599583
1127 => 0.3736442791996
1128 => 0.37970227440858
1129 => 0.38370622388085
1130 => 0.3849178165719
1201 => 0.35446629603639
1202 => 0.33805461538651
1203 => 0.34857431452278
1204 => 0.36140907349989
1205 => 0.35303826699408
1206 => 0.35336638676108
1207 => 0.34143181649305
1208 => 0.36246501814997
1209 => 0.35940065758563
1210 => 0.3752985656142
1211 => 0.3715044022745
1212 => 0.38446852911856
1213 => 0.38105464004532
1214 => 0.39522550272039
1215 => 0.40087864350227
1216 => 0.41037114671615
1217 => 0.41735387072172
1218 => 0.42145425981601
1219 => 0.42120808783496
1220 => 0.4374558722323
1221 => 0.42787512142754
1222 => 0.41583944040717
1223 => 0.4156217529096
1224 => 0.42185520265697
1225 => 0.43491880326403
1226 => 0.43830600483378
1227 => 0.44019898842073
1228 => 0.43729981816208
1229 => 0.42690059982211
1230 => 0.42241027006814
1231 => 0.4262361611159
]
'min_raw' => 0.15775988062176
'max_raw' => 0.44019898842073
'avg_raw' => 0.29897943452125
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.157759'
'max' => '$0.440198'
'avg' => '$0.298979'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.062454774490678
'max_diff' => 0.22743705276434
'year' => 2036
]
11 => [
'items' => [
101 => 0.42155742512706
102 => 0.42963423606526
103 => 0.44072542259712
104 => 0.4384351364376
105 => 0.44609121969
106 => 0.45401446041279
107 => 0.46534505050139
108 => 0.46830728632108
109 => 0.4732037494873
110 => 0.4782438184897
111 => 0.4798625528196
112 => 0.48295321891915
113 => 0.48293692958321
114 => 0.49225085990002
115 => 0.50252441346787
116 => 0.50640244210642
117 => 0.51531975512502
118 => 0.50004916908058
119 => 0.51163208401114
120 => 0.52208016321766
121 => 0.5096235324639
122 => 0.52679209593524
123 => 0.52745871235003
124 => 0.5375238287699
125 => 0.52732090503537
126 => 0.52126244149069
127 => 0.53875299873652
128 => 0.54721612844038
129 => 0.54466696489834
130 => 0.5252677044757
131 => 0.51397650283631
201 => 0.48442525023587
202 => 0.5194299854602
203 => 0.53647977088584
204 => 0.52522354965038
205 => 0.53090053290626
206 => 0.56187231278235
207 => 0.57366436128492
208 => 0.57121169762903
209 => 0.5716261574126
210 => 0.57798893274376
211 => 0.60620498260654
212 => 0.58929727148585
213 => 0.60222258311777
214 => 0.60907812180166
215 => 0.61544592819459
216 => 0.59980860825945
217 => 0.57946468478169
218 => 0.57302091023647
219 => 0.52410434028438
220 => 0.52155802038448
221 => 0.52012869386328
222 => 0.51111699232933
223 => 0.50403626343645
224 => 0.49840540493022
225 => 0.48362835069318
226 => 0.4886151727132
227 => 0.46506363247027
228 => 0.48013107330236
301 => 0.44254224640282
302 => 0.47384733840278
303 => 0.45680940009508
304 => 0.46824991743482
305 => 0.46821000254758
306 => 0.44714438290579
307 => 0.43499417312467
308 => 0.44273675969044
309 => 0.45103742709623
310 => 0.45238418245602
311 => 0.46314621441722
312 => 0.46614966620848
313 => 0.45704906706319
314 => 0.44176330151448
315 => 0.44531383622025
316 => 0.43492222165219
317 => 0.41671131682933
318 => 0.429790706605
319 => 0.43425658533459
320 => 0.43622897179707
321 => 0.41832063844034
322 => 0.41269345129083
323 => 0.4096975840691
324 => 0.43945156056135
325 => 0.4410815505594
326 => 0.43274229127201
327 => 0.470436534012
328 => 0.46190516596229
329 => 0.47143679430973
330 => 0.44499166241065
331 => 0.44600190206229
401 => 0.43348235281922
402 => 0.44049246383875
403 => 0.43553794331657
404 => 0.43992611614364
405 => 0.44255636884307
406 => 0.4550738637513
407 => 0.4739902680875
408 => 0.45320416743368
409 => 0.44414736571636
410 => 0.4497661545644
411 => 0.46472972970206
412 => 0.48740031200692
413 => 0.47397887099445
414 => 0.47993507860494
415 => 0.4812362449946
416 => 0.47133977128076
417 => 0.48776520910894
418 => 0.49656773468108
419 => 0.50559730449208
420 => 0.51343742695617
421 => 0.50199069574507
422 => 0.51424033896541
423 => 0.50436928888293
424 => 0.49551393650854
425 => 0.49552736642276
426 => 0.48997227452226
427 => 0.4792085839784
428 => 0.47722359429747
429 => 0.48754976129422
430 => 0.49583036933396
501 => 0.49651239987355
502 => 0.50109696995735
503 => 0.50381007130812
504 => 0.53040215282807
505 => 0.54109770799663
506 => 0.55417603040025
507 => 0.55927077403032
508 => 0.57460412579016
509 => 0.56222119893015
510 => 0.55954207481173
511 => 0.5223483789435
512 => 0.52843884455829
513 => 0.53819026765009
514 => 0.52250917631861
515 => 0.53245521947875
516 => 0.53441877908457
517 => 0.52197633883561
518 => 0.52862238377868
519 => 0.51097245882487
520 => 0.47437498821982
521 => 0.48780595255566
522 => 0.49769566312055
523 => 0.48358182675193
524 => 0.50888033216179
525 => 0.4941014675685
526 => 0.48941727700304
527 => 0.47114257957266
528 => 0.47976753330219
529 => 0.49143290671882
530 => 0.48422506219256
531 => 0.49918242184784
601 => 0.52036603210184
602 => 0.53546273427464
603 => 0.53662167161097
604 => 0.52691550351435
605 => 0.54246969983311
606 => 0.54258299517239
607 => 0.52503779818407
608 => 0.51429146272079
609 => 0.51184987269305
610 => 0.51794944328427
611 => 0.52535544802485
612 => 0.5370326533309
613 => 0.5440889439353
614 => 0.56248800746423
615 => 0.56746626651267
616 => 0.57293586389307
617 => 0.58024493275464
618 => 0.58902134392975
619 => 0.56981905591998
620 => 0.57058199862015
621 => 0.55270109389922
622 => 0.53359278282379
623 => 0.54809360904544
624 => 0.56705151036618
625 => 0.56270254685658
626 => 0.56221319962049
627 => 0.56303614593799
628 => 0.55975716947563
629 => 0.54492648046088
630 => 0.5374786012827
701 => 0.54708826557918
702 => 0.5521953744758
703 => 0.56011605498777
704 => 0.55913966392938
705 => 0.57954248630922
706 => 0.5874704061367
707 => 0.58544210499001
708 => 0.5858153612148
709 => 0.60016848137564
710 => 0.6161321029388
711 => 0.6310841411181
712 => 0.64629399655906
713 => 0.62795792217422
714 => 0.61864799441344
715 => 0.6282534634311
716 => 0.62315666636357
717 => 0.65244437412184
718 => 0.65447219146239
719 => 0.68375778138603
720 => 0.71155329348676
721 => 0.69409543034462
722 => 0.71055740896823
723 => 0.72836238101447
724 => 0.76271106084429
725 => 0.75114363387873
726 => 0.74228316610781
727 => 0.73391006687775
728 => 0.75133315718343
729 => 0.77374768452101
730 => 0.77857555902585
731 => 0.78639856011371
801 => 0.77817363102089
802 => 0.78807965216696
803 => 0.82305225973886
804 => 0.81360235246119
805 => 0.80018196497849
806 => 0.82778947985157
807 => 0.83778053216264
808 => 0.90790296963644
809 => 0.99643544356053
810 => 0.95978241802039
811 => 0.93703070228188
812 => 0.94237789515835
813 => 0.97470695762205
814 => 0.98509002641224
815 => 0.95686526618206
816 => 0.96683472865285
817 => 1.0217674470428
818 => 1.0512370880064
819 => 1.011213357277
820 => 0.90078947155879
821 => 0.79897360592132
822 => 0.82597975831656
823 => 0.82291809873342
824 => 0.88193645164726
825 => 0.81337697529791
826 => 0.81453134104905
827 => 0.87477013099963
828 => 0.85869945459512
829 => 0.83266701699654
830 => 0.79916367152501
831 => 0.7372296387365
901 => 0.68237293873745
902 => 0.78995956017911
903 => 0.78532022942896
904 => 0.77860179099247
905 => 0.79355294872193
906 => 0.86615152669604
907 => 0.86447789449507
908 => 0.85383110032717
909 => 0.86190659986698
910 => 0.83125134288275
911 => 0.83915190061481
912 => 0.79895747776801
913 => 0.81712703556214
914 => 0.83261116307722
915 => 0.8357198309223
916 => 0.84272381830977
917 => 0.78287551293646
918 => 0.80974564499515
919 => 0.82552933018873
920 => 0.75421806626874
921 => 0.82411973578423
922 => 0.78183368709037
923 => 0.76748116704854
924 => 0.78680494448414
925 => 0.77927444962449
926 => 0.77280017234967
927 => 0.76918741438811
928 => 0.78337666384933
929 => 0.78271471840214
930 => 0.75949835226895
1001 => 0.72921354906836
1002 => 0.73937812308726
1003 => 0.7356852380528
1004 => 0.72230174629629
1005 => 0.73132060381122
1006 => 0.69160611965479
1007 => 0.6232794138429
1008 => 0.66841812860583
1009 => 0.66668033718893
1010 => 0.66580406395397
1011 => 0.69972456055587
1012 => 0.6964638874866
1013 => 0.69054573393728
1014 => 0.72219305476528
1015 => 0.71064135694653
1016 => 0.74624096770162
1017 => 0.76968917378339
1018 => 0.76374195025105
1019 => 0.78579510140597
1020 => 0.7396122943431
1021 => 0.75495237031677
1022 => 0.75811393871451
1023 => 0.72180253173875
1024 => 0.69699737392616
1025 => 0.69534315269956
1026 => 0.65233442741383
1027 => 0.67530934130716
1028 => 0.69552631476676
1029 => 0.68584395338013
1030 => 0.68277880701744
1031 => 0.69843797503529
1101 => 0.69965482650198
1102 => 0.67191048410529
1103 => 0.67767941143862
1104 => 0.70173679742297
1105 => 0.67707322703671
1106 => 0.62915593854755
1107 => 0.61727178849389
1108 => 0.61568622380839
1109 => 0.58345546631904
1110 => 0.61806594422675
1111 => 0.60295754311689
1112 => 0.65068480119649
1113 => 0.62342324734784
1114 => 0.6222480562484
1115 => 0.62047158253855
1116 => 0.59272923813165
1117 => 0.5988030484388
1118 => 0.61899331896719
1119 => 0.62619743495139
1120 => 0.62544598663266
1121 => 0.61889437562684
1122 => 0.62189366959562
1123 => 0.61223189869886
1124 => 0.60882012630284
1125 => 0.59805163413908
1126 => 0.58222492553023
1127 => 0.58442572643314
1128 => 0.55306887539544
1129 => 0.53598399871605
1130 => 0.53125513002625
1201 => 0.52493148918123
1202 => 0.53196940208626
1203 => 0.55298004537623
1204 => 0.5276367519119
1205 => 0.48418745289265
1206 => 0.48679882979771
1207 => 0.49266581837862
1208 => 0.48173272397211
1209 => 0.47138546766141
1210 => 0.48038156752412
1211 => 0.46197152674768
1212 => 0.49489058385144
1213 => 0.49400021561138
1214 => 0.50627040439882
1215 => 0.51394320525724
1216 => 0.49625988337737
1217 => 0.49181257574537
1218 => 0.49434596429142
1219 => 0.45247469481796
1220 => 0.50284862838619
1221 => 0.50328426425551
1222 => 0.49955408546018
1223 => 0.52637664996455
1224 => 0.58298062723644
1225 => 0.56168393409704
1226 => 0.55343721081751
1227 => 0.5377601838348
1228 => 0.5586488914795
1229 => 0.55704496464699
1230 => 0.54979139923919
1231 => 0.54540442024804
]
'min_raw' => 0.4096975840691
'max_raw' => 1.0512370880064
'avg_raw' => 0.73046733603776
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.409697'
'max' => '$1.05'
'avg' => '$0.730467'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.25193770344734
'max_diff' => 0.61103809958569
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.012859939012986
]
1 => [
'year' => 2028
'avg' => 0.022071388613254
]
2 => [
'year' => 2029
'avg' => 0.060295055710649
]
3 => [
'year' => 2030
'avg' => 0.046517545686675
]
4 => [
'year' => 2031
'avg' => 0.045685994720286
]
5 => [
'year' => 2032
'avg' => 0.080101926656345
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.012859939012986
'min' => '$0.012859'
'max_raw' => 0.080101926656345
'max' => '$0.0801019'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.080101926656345
]
1 => [
'year' => 2033
'avg' => 0.2060303921441
]
2 => [
'year' => 2034
'avg' => 0.13059196389826
]
3 => [
'year' => 2035
'avg' => 0.15403352089374
]
4 => [
'year' => 2036
'avg' => 0.29897943452125
]
5 => [
'year' => 2037
'avg' => 0.73046733603776
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.080101926656345
'min' => '$0.0801019'
'max_raw' => 0.73046733603776
'max' => '$0.730467'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.73046733603776
]
]
]
]
'prediction_2025_max_price' => '$0.021988'
'last_price' => 0.02132029
'sma_50day_nextmonth' => '$0.020353'
'sma_200day_nextmonth' => '$0.0363013'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 de fev. de 2026'
'sma_50day_date_nextmonth' => '4 de fev. de 2026'
'daily_sma3' => '$0.0212042'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.021273'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.021285'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.021541'
'daily_sma21_action' => 'SELL'
'daily_sma50' => '$0.024917'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.0233091'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '—'
'daily_sma200_action' => '—'
'daily_ema3' => '$0.021251'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.02125'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.02134'
'daily_ema10_action' => 'SELL'
'daily_ema21' => '$0.021947'
'daily_ema21_action' => 'SELL'
'daily_ema50' => '$0.023372'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.028771'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.0414061'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.028368'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '—'
'weekly_sma50_action' => '—'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.021442'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.021865'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.02362'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.034064'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.024765'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.012382'
'weekly_ema100_action' => 'BUY'
'weekly_ema200' => '$0.006191'
'weekly_ema200_action' => 'BUY'
'rsi_14' => '40.10'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 82.2
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'SELL'
'vwma_10' => '0.021265'
'vwma_10_action' => 'BUY'
'hma_9' => '0.0212013'
'hma_9_action' => 'SELL'
'stochastic_fast_14' => 65.03
'stochastic_fast_14_action' => 'NEUTRAL'
'cci_20' => -30.75
'cci_20_action' => 'NEUTRAL'
'adx_14' => 25.41
'adx_14_action' => 'SELL'
'ao_5_34' => '-0.001863'
'ao_5_34_action' => 'SELL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -34.97
'williams_percent_r_14_action' => 'NEUTRAL'
'ultimate_oscillator' => 52.37
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '0.004925'
'ichimoku_cloud_action' => 'NEUTRAL'
'sell_signals' => 18
'buy_signals' => 13
'sell_pct' => 58.06
'buy_pct' => 41.94
'overall_action' => 'bearish'
'overall_action_label' => 'Baixista'
'overall_action_dir' => -1
'last_updated' => 1767679152
'last_updated_date' => '6 de janeiro de 2026'
]
Previsão de preço de Six Sigma para 2026
A previsão de preço para Six Sigma em 2026 sugere que o preço médio poderia variar entre $0.007366 na extremidade inferior e $0.021988 na extremidade superior. No mercado de criptomoedas, comparado ao preço médio de hoje, Six Sigma poderia potencialmente ganhar 3.13% até 2026 se SIX atingir a meta de preço prevista.
Previsão de preço de Six Sigma 2027-2032
A previsão de preço de SIX para 2027-2032 está atualmente dentro de uma faixa de preço entre $0.012859 na extremidade inferior e $0.0801019 na extremidade superior. Considerando a volatilidade de preços no mercado, se Six Sigma atingir a meta de preço superior, poderia ganhar 275.71% até 2032 em comparação com o preço de hoje.
| Previsão de Preço de Six Sigma | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.007091 | $0.012859 | $0.018628 |
| 2028 | $0.012797 | $0.022071 | $0.031345 |
| 2029 | $0.028112 | $0.060295 | $0.092477 |
| 2030 | $0.0239085 | $0.046517 | $0.069126 |
| 2031 | $0.028267 | $0.045685 | $0.0631047 |
| 2032 | $0.043147 | $0.0801019 | $0.117055 |
Previsão de preço de Six Sigma 2032-2037
A previsão de preço de Six Sigma para 2032-2037 é atualmente estimada entre $0.0801019 na extremidade inferior e $0.730467 na extremidade superior. Comparado ao preço atual, Six Sigma poderia potencialmente ganhar 3326.16% até 2037 se atingir a meta de preço superior. Por favor, note que esta informação é apenas para fins gerais e não deve ser considerada como aconselhamento de investimento a longo prazo.
| Previsão de Preço de Six Sigma | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.043147 | $0.0801019 | $0.117055 |
| 2033 | $0.100266 | $0.20603 | $0.311794 |
| 2034 | $0.0806092 | $0.130591 | $0.180574 |
| 2035 | $0.0953051 | $0.154033 | $0.212761 |
| 2036 | $0.157759 | $0.298979 | $0.440198 |
| 2037 | $0.409697 | $0.730467 | $1.05 |
Six Sigma Histograma de preços potenciais
Previsão de preço de Six Sigma baseada na análise técnica
Em 6 de janeiro de 2026, o sentimento geral de previsão de preço para Six Sigma é Baixista, com 13 indicadores técnicos mostrando sinais de alta e 18 indicando sinais de baixa. A previsão de preço de SIX foi atualizada pela última vez em 6 de janeiro de 2026.
Médias Móveis Simples de 50 e 200 dias e Índice de Força Relativa de 14 dias - RSI (14) de Six Sigma
De acordo com nossos indicadores técnicos, o SMA de 200 dias de Six Sigma está projetado para aumentar no próximo mês, alcançando $0.0363013 até 4 de fev. de 2026. O SMA de 50 dias de curto prazo para Six Sigma é esperado para alcançar $0.020353 até 4 de fev. de 2026.
O oscilador de momentum Índice de Força Relativa (RSI) é uma ferramenta comumente usada para identificar se uma criptomoeda está sobrevendida (abaixo de 30) ou sobrecomprada (acima de 70). No momento, o RSI está em 40.10, sugerindo que o mercado de SIX está em um estado NEUTRAL.
Médias Móveis e Osciladores Populares de SIX para Sábado, 19 de Outubro de 2024
Médias móveis (MA) são indicadores amplamente utilizados nos mercados financeiros, projetados para suavizar movimentos de preços ao longo de um período definido. Como indicadores atrasados, eles se baseiam em dados históricos de preços. A tabela abaixo destaca dois tipos: a média móvel simples (SMA) e a média móvel exponencial (EMA).
Média Móvel Simples Diária (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 3 | $0.0212042 | BUY |
| SMA 5 | $0.021273 | BUY |
| SMA 10 | $0.021285 | BUY |
| SMA 21 | $0.021541 | SELL |
| SMA 50 | $0.024917 | SELL |
| SMA 100 | $0.0233091 | SELL |
| SMA 200 | — | — |
Média Móvel Exponencial Diária (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 3 | $0.021251 | BUY |
| EMA 5 | $0.02125 | BUY |
| EMA 10 | $0.02134 | SELL |
| EMA 21 | $0.021947 | SELL |
| EMA 50 | $0.023372 | SELL |
| EMA 100 | $0.028771 | SELL |
| EMA 200 | $0.0414061 | SELL |
Média Móvel Simples Semanal (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 21 | $0.028368 | SELL |
| SMA 50 | — | — |
| SMA 100 | — | — |
| SMA 200 | — | — |
Média Móvel Exponencial Semanal (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 21 | $0.034064 | SELL |
| EMA 50 | $0.024765 | SELL |
| EMA 100 | $0.012382 | BUY |
| EMA 200 | $0.006191 | BUY |
Osciladores de Six Sigma
Um oscilador é uma ferramenta de análise técnica que define limites altos e baixos entre dois extremos, criando um indicador de tendência que flutua dentro desses limites. Os traders usam esse indicador para identificar condições de sobrecompra ou sobrevenda de curto prazo.
| Período | Valor | Ação |
|---|---|---|
| RSI (14) | 40.10 | NEUTRAL |
| Stoch RSI (14) | 82.2 | SELL |
| Estocástico Rápido (14) | 65.03 | NEUTRAL |
| Índice de Canal de Commodities (20) | -30.75 | NEUTRAL |
| Índice Direcional Médio (14) | 25.41 | SELL |
| Oscilador Impressionante (5, 34) | -0.001863 | SELL |
| Momentum (10) | 0 | SELL |
| MACD (12, 26) | 0 | BUY |
| Williams Percent Range (14) | -34.97 | NEUTRAL |
| Oscilador Ultimate (7, 14, 28) | 52.37 | NEUTRAL |
| VWMA (10) | 0.021265 | BUY |
| Média Móvel de Hull (9) | 0.0212013 | SELL |
| Nuvem Ichimoku B/L (9, 26, 52, 26) | 0.004925 | NEUTRAL |
Previsão do preço de Six Sigma com base nos fluxos financeiros mundiais
Definições dos fluxos financeiros mundiais, usadas na previsão do preço do Six Sigma
M0: o total de todas as moedas físicas, mais as contas no Banco Central que podem ser trocadas por moedas físicas.
M1: o valor de M0, mais o valor em contas de demanda, incluindo contas 'correntes'.
M2: o valor de M1, mais a maioria das contas de poupança, do mercado de moedas e de certificados de depósito (CD) de menos de US$ 100.000.
Previsões de preço de Six Sigma por empresas de Internet ou nichos tecnológicos
| Comparação | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.029958 | $0.042096 | $0.059153 | $0.083119 | $0.116797 | $0.164119 |
| Amazon.com stock | $0.044486 | $0.092822 | $0.19368 | $0.404125 | $0.843231 | $1.75 |
| Apple stock | $0.030241 | $0.042894 | $0.060843 | $0.0863012 | $0.122411 | $0.173631 |
| Netflix stock | $0.03364 | $0.053078 | $0.083749 | $0.132144 | $0.208503 | $0.328985 |
| Google stock | $0.0276096 | $0.035754 | $0.0463018 | $0.05996 | $0.077648 | $0.100554 |
| Tesla stock | $0.048331 | $0.109563 | $0.248372 | $0.563042 | $1.27 | $2.89 |
| Kodak stock | $0.015987 | $0.011989 | $0.00899 | $0.006742 | $0.005055 | $0.003791 |
| Nokia stock | $0.014123 | $0.009356 | $0.006198 | $0.004106 | $0.00272 | $0.0018019 |
Este cálculo mostra quanto a criptomoeda pode custar, se assumirmos que sua capitalização se comportará da mesma forma que a de algumas empresas de Internet ou nichos tecnológicos. Se você extrapolar os dados, poderá obter uma imagem em potencial do preço futuro para 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Visão geral da previsão para Six Sigma
Você pode fazer perguntas como: 'Devo investir em Six Sigma agora?', 'Devo comprar SIX hoje?', 'Six Sigma será um bom ou mau investimento no curto ou no longo prazo?'.
Atualizamos a previsão para Six Sigma regularmente com novos valores. Veja nossas previsões semelhantes. Fazemos previsões de preços futuros para uma enorme quantidade de moedas digitais, como Six Sigma, com métodos de análise técnica.
Se você estiver tentando encontrar criptomoedas com bom retorno, você deve explorar o máximo de fontes de informações disponíveis sobre Six Sigma para poder tomar sozinho uma decisão de tão grande responsabilidade sobre o seu investimento.
O preço de Six Sigma é de $0.02132 USD hoje, mas o preço pode tanto subir quanto descer e seu investimento pode ser perdido, porque criptomoedas são ativos de alto risco
Previsão do preço de Six Sigma com base no padrão de crescimento do Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se Six Sigma tiver 1% da média anterior do crescimento anual do Bitcoin | $0.021874 | $0.022443 | $0.023026 | $0.023624 |
| Se Six Sigma tiver 2% da média anterior do crescimento anual do Bitcoin | $0.022428 | $0.023594 | $0.024821 | $0.026111 |
| Se Six Sigma tiver 5% da média anterior do crescimento anual do Bitcoin | $0.024091 | $0.027222 | $0.03076 | $0.034757 |
| Se Six Sigma tiver 10% da média anterior do crescimento anual do Bitcoin | $0.026862 | $0.033844 | $0.042641 | $0.053725 |
| Se Six Sigma tiver 20% da média anterior do crescimento anual do Bitcoin | $0.0324039 | $0.049249 | $0.074852 | $0.113765 |
| Se Six Sigma tiver 50% da média anterior do crescimento anual do Bitcoin | $0.049029 | $0.112751 | $0.259289 | $0.596277 |
| Se Six Sigma tiver 100% da média anterior do crescimento anual do Bitcoin | $0.076738 | $0.2762067 | $0.994156 | $3.57 |
Perguntas Frequentes sobre Six Sigma
SIX é um bom investimento?
A decisão de adquirir Six Sigma depende inteiramente da sua tolerância individual ao risco. Como você pode perceber, o valor de Six Sigma experimentou uma queda de -0.3221% nas últimas 24 horas, e Six Sigma registrou um declínio de durante os últimos 30 dias. Consequentemente, a decisão de investir ou não em Six Sigma dependerá de quão alinhado esse investimento está com suas aspirações de negociação.
Six Sigma pode subir?
Parece que o valor médio de Six Sigma pode potencialmente subir para $0.021988 até o final deste ano. Observando as perspectivas de Six Sigma em um horizonte de cinco anos mais longo, a moeda digital poderia potencialmente crescer até $0.069126. No entanto, dada a imprevisibilidade do mercado, é vital conduzir uma pesquisa aprofundada antes de investir quaisquer fundos em um projeto, rede ou ativo específico.
Qual será o preço de Six Sigma na próxima semana?
Com base na nossa nova previsão experimental de Six Sigma, o preço de Six Sigma aumentará 0.86% na próxima semana e atingirá $0.021502 até 13 de janeiro de 2026.
Qual será o preço de Six Sigma no próximo mês?
Com base na nossa nova previsão experimental de Six Sigma, o preço de Six Sigma diminuirá -11.62% no próximo mês e atingirá $0.018843 até 5 de fevereiro de 2026.
Até onde o preço de Six Sigma pode subir este ano em 2026?
De acordo com nossa previsão mais recente sobre o valor de Six Sigma em 2026, espera-se que SIX fluctue dentro do intervalo de $0.007366 e $0.021988. No entanto, é crucial lembrar que o mercado de criptomoedas é excepcionalmente instável, e essa previsão de preço de Six Sigma não considera flutuações repentinas e extremas de preço.
Onde estará Six Sigma em 5 anos?
O futuro de Six Sigma parece seguir uma tendência de alta, com um preço máximo de $0.069126 projetada após um período de cinco anos. Com base na previsão de Six Sigma para 2030, o valor de Six Sigma pode potencialmente atingir seu pico mais alto de aproximadamente $0.069126, enquanto seu pico mais baixo está previsto para cerca de $0.0239085.
Quanto será Six Sigma em 2026?
Com base na nossa nova simulação experimental de previsão de preços de Six Sigma, espera-se que o valor de SIX em 2026 aumente 3.13% para $0.021988 se o melhor cenário ocorrer. O preço ficará entre $0.021988 e $0.007366 durante 2026.
Quanto será Six Sigma em 2027?
De acordo com nossa última simulação experimental para previsão de preços de Six Sigma, o valor de SIX pode diminuir -12.62% para $0.018628 em 2027, assumindo as condições mais favoráveis. O preço está projetado para flutuar entre $0.018628 e $0.007091 ao longo do ano.
Quanto será Six Sigma em 2028?
Nosso novo modelo experimental de previsão de preços de Six Sigma sugere que o valor de SIX em 2028 pode aumentar 47.02%, alcançando $0.031345 no melhor cenário. O preço é esperado para variar entre $0.031345 e $0.012797 durante o ano.
Quanto será Six Sigma em 2029?
Com base no nosso modelo de previsão experimental, o valor de Six Sigma pode experimentar um 333.75% crescimento em 2029, potencialmente alcançando $0.092477 sob condições ótimas. A faixa de preço prevista para 2029 está entre $0.092477 e $0.028112.
Quanto será Six Sigma em 2030?
Usando nossa nova simulação experimental para previsões de preços de Six Sigma, espera-se que o valor de SIX em 2030 aumente 224.23%, alcançando $0.069126 no melhor cenário. O preço está previsto para variar entre $0.069126 e $0.0239085 ao longo de 2030.
Quanto será Six Sigma em 2031?
Nossa simulação experimental indica que o preço de Six Sigma poderia aumentar 195.98% em 2031, potencialmente atingindo $0.0631047 sob condições ideais. O preço provavelmente oscilará entre $0.0631047 e $0.028267 durante o ano.
Quanto será Six Sigma em 2032?
Com base nos achados da nossa mais recente previsão experimental de preços de Six Sigma, SIX poderia ver um 449.04% aumento em valor, atingindo $0.117055 se o cenário mais positivo se desenrolar em 2032. O preço é esperado para permanecer dentro de uma faixa de $0.117055 e $0.043147 ao longo do ano.
Quanto será Six Sigma em 2033?
De acordo com nossa previsão experimental de preços de Six Sigma, espera-se que o valor de SIX seja aumentar 1362.43% em 2033, com o preço potencial mais alto sendo $0.311794. Ao longo do ano, o preço de SIX poderia variar entre $0.311794 e $0.100266.
Quanto será Six Sigma em 2034?
Os resultados da nossa nova simulação de previsão de preços de Six Sigma sugerem que SIX pode aumentar 746.96% em 2034, atingindo potencialmente $0.180574 nas melhores circunstâncias. A faixa de preço prevista para o ano é entre $0.180574 e $0.0806092.
Quanto será Six Sigma em 2035?
Com base em nossa previsão experimental para o preço de Six Sigma, SIX poderia aumentar 897.93%, com o valor potencialmente atingindo $0.212761 em 2035. A faixa de preço esperada para o ano está entre $0.212761 e $0.0953051.
Quanto será Six Sigma em 2036?
Nossa recente simulação de previsão de preços de Six Sigma sugere que o valor de SIX pode aumentar 1964.7% em 2036, possivelmente atingindo $0.440198 se as condições forem ideais. A faixa de preço esperada para 2036 está entre $0.440198 e $0.157759.
Quanto será Six Sigma em 2037?
De acordo com a simulação experimental, o valor de Six Sigma poderia aumentar 4830.69% em 2037, com um pico de $1.05 sob condições favoráveis. O preço é esperado para cair entre $1.05 e $0.409697 ao longo do ano.
Previsões relacionadas
Como ler e prever os movimentos de preço de Six Sigma?
Traders de Six Sigma utilizam indicadores e padrões de gráfico para prever a direção do mercado. Eles também identificam níveis-chave de suporte e resistência para avaliar quando uma tendência de baixa pode desacelerar ou uma tendência de alta pode estagnar.
Indicadores de Previsão de Preço de Six Sigma
Médias móveis são ferramentas populares para a previsão de preço de Six Sigma. Uma média móvel simples (SMA) calcula o preço médio de fechamento de SIX em um período específico, como uma SMA de 12 dias. Uma média móvel exponencial (EMA) dá mais peso aos preços recentes, reagindo mais rapidamente às mudanças de preço.
Médias móveis comumente usadas no mercado de criptomoedas incluem as de 50 dias, 100 dias e 200 dias, que ajudam a identificar níveis-chave de resistência e suporte. Um movimento de preço de SIX acima dessas médias é visto como altista, enquanto uma queda abaixo indica fraqueza.
Traders também usam RSI e níveis de retração de Fibonacci para avaliar a direção futura de SIX.
Como ler gráficos de Six Sigma e prever movimentos de preço?
A maioria dos traders prefere gráficos de velas em vez de gráficos de linha simples porque eles fornecem informações mais detalhadas. Velas podem representar a ação de preço de Six Sigma em diferentes períodos de tempo, como 5 minutos para tendências de curto prazo e semanal para tendências de longo prazo. Opções populares incluem gráficos de 1 hora, 4 horas e 1 dia.
Por exemplo, um gráfico de velas de 1 hora mostra os preços de abertura, fechamento, máximo e mínimo de SIX dentro de cada hora. A cor da vela é crucial: verde indica que o preço fechou mais alto do que abriu, enquanto vermelho significa o oposto. Alguns gráficos usam velas vazias e preenchidas para transmitir a mesma informação.
O que afeta o preço de Six Sigma?
A ação de preço de Six Sigma é impulsionada pela oferta e demanda, influenciada por fatores como reduções pela metade das recompensas de bloco, hard forks e atualizações de protocolo. Eventos do mundo real, como regulamentações, adoção por empresas e governos e hacks de exchanges de criptomoedas, também impactam o preço de SIX. A capitalização de mercado de Six Sigma pode mudar rapidamente.
Traders frequentemente monitoram a atividade de "baleias" de SIX, grandes detentores de Six Sigma, pois suas ações podem influenciar significativamente os movimentos de preço no relativamente pequeno mercado de Six Sigma.
Padrões de previsão de preço altistas e baixistas
Traders frequentemente identificam padrões de velas para ganhar vantagem em previsões de preço de criptomoedas. Certas formações indicam tendências altistas, enquanto outras sugerem movimentos baixistas.
Padrões de velas altistas comumente seguidos:
- Martelo
- Engolfo de Alta
- Linha de Perfuração
- Estrela da Manhã
- Três Soldados Brancos
Padrões de velas baixistas comuns:
- Harami de Baixa
- Nuvem Negra
- Estrela da Noite
- Estrela Cadente
- Homem Enforcado


