Predicción del precio de Six Sigma - Pronóstico de SIX
Predicción de precio de Six Sigma hasta $0.021925 para el año 2026
| Año | Precio min. | Precio max. |
|---|---|---|
| 2026 | $0.007345 | $0.021925 |
| 2027 | $0.007071 | $0.018575 |
| 2028 | $0.012761 | $0.031256 |
| 2029 | $0.028032 | $0.092214 |
| 2030 | $0.02384 | $0.06893 |
| 2031 | $0.028187 | $0.062925 |
| 2032 | $0.043025 | $0.116723 |
| 2033 | $0.099981 | $0.3109091 |
| 2034 | $0.08038 | $0.180061 |
| 2035 | $0.095034 | $0.212157 |
Calculadora de ganancias de inversión
Si abres una posición corta de $10,000.00 en Six Sigma hoy y la cierras el Apr 06, 2026, nuestra previsión indica que podrías obtener una ganancia de alrededor de $3,954.77, equivalente a un ROI del 39.55% en los próximos 90 días.
Predicción del precio a largo plazo de Six Sigma para 2027, 2028, 2029, 2030, 2031, 2032 y 2037
[
'name' => 'Six Sigma'
'name_with_ticker' => 'Six Sigma <small>SIX</small>'
'name_lang' => 'Six Sigma'
'name_lang_with_ticker' => 'Six Sigma <small>SIX</small>'
'name_with_lang' => 'Six Sigma'
'name_with_lang_with_ticker' => 'Six Sigma <small>SIX</small>'
'image' => '/uploads/coins/six.png?1750953532'
'price_for_sd' => 0.02125
'ticker' => 'SIX'
'marketcap' => '$31.84M'
'low24h' => '$0.02069'
'high24h' => '$0.0216'
'volume24h' => '$2.87K'
'current_supply' => '1.5B'
'max_supply' => '1.5B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.02125'
'change_24h_pct' => '-0.187%'
'ath_price' => '$0.09743'
'ath_days' => 168
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '22 jul. 2025'
'ath_pct' => '-78.22%'
'fdv' => '$31.84M'
'new_prediction' => true
'change_24h_pct_is_increased' => false
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$1.04'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.021441'
'next_week_prediction_price_date' => '13 de enero de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.018789'
'next_month_prediction_price_date' => '5 de febrero de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.007345'
'current_year_max_price_prediction' => '$0.021925'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.02384'
'grand_prediction_max_price' => '$0.06893'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.021662611079872
107 => 0.021743491406116
108 => 0.021925718910996
109 => 0.02036860483352
110 => 0.02106770333984
111 => 0.021478358215631
112 => 0.019623004547054
113 => 0.02144168383902
114 => 0.020341498941697
115 => 0.019968079663324
116 => 0.020470839527405
117 => 0.020274913519422
118 => 0.02010646784292
119 => 0.020012472261168
120 => 0.020381643617768
121 => 0.020364421332727
122 => 0.019760385340257
123 => 0.018972445011737
124 => 0.019236903649248
125 => 0.019140823346927
126 => 0.018792615936711
127 => 0.019027265688474
128 => 0.017993986935233
129 => 0.016216284545439
130 => 0.017390689196634
131 => 0.017345475895069
201 => 0.01732267729816
202 => 0.018205209935373
203 => 0.018120374785797
204 => 0.017966398158609
205 => 0.018789788035203
206 => 0.018489239654089
207 => 0.019415458946577
208 => 0.020025526876717
209 => 0.019870793916003
210 => 0.020444565753014
211 => 0.019242996242125
212 => 0.019642109435041
213 => 0.019724366110954
214 => 0.018779627531937
215 => 0.018134254865442
216 => 0.018091215866373
217 => 0.016972228600502
218 => 0.017569982565781
219 => 0.018095981318487
220 => 0.017844068735093
221 => 0.017764320736865
222 => 0.018171735964582
223 => 0.018203395617051
224 => 0.017481552185616
225 => 0.01763164629282
226 => 0.018257563670929
227 => 0.01761587478083
228 => 0.016369178086654
301 => 0.016059980069568
302 => 0.016018727354438
303 => 0.015180157809297
304 => 0.016080642159557
305 => 0.015687556609188
306 => 0.016929309152916
307 => 0.016220026759591
308 => 0.01618945101324
309 => 0.016143231288143
310 => 0.015421439839768
311 => 0.015579466294722
312 => 0.0161047702991
313 => 0.016292204685835
314 => 0.016272653743694
315 => 0.0161021960229
316 => 0.016180230694595
317 => 0.015928853827984
318 => 0.015840087424427
319 => 0.015559916237677
320 => 0.015148141992421
321 => 0.015205401726782
322 => 0.014389569200338
323 => 0.013945060340421
324 => 0.013822026146529
325 => 0.013657499680503
326 => 0.013840609848655
327 => 0.014387258049294
328 => 0.013727884341438
329 => 0.012597434369006
330 => 0.012665376338542
331 => 0.012818021771938
401 => 0.012533568016655
402 => 0.012264356409674
403 => 0.012498414060116
404 => 0.012019427504338
405 => 0.012875905008819
406 => 0.012852739692573
407 => 0.01317198154203
408 => 0.013371610021997
409 => 0.01291153100616
410 => 0.012795822377863
411 => 0.012861735271205
412 => 0.011772341967046
413 => 0.013082954867573
414 => 0.013094289102361
415 => 0.012997238502892
416 => 0.013695099411789
417 => 0.015167803597838
418 => 0.014613713043657
419 => 0.014399152433603
420 => 0.013991272557047
421 => 0.014534748275047
422 => 0.014493017819447
423 => 0.014304296873416
424 => 0.014190157856412
425 => 0.014400462494936
426 => 0.01416409878436
427 => 0.0141216413671
428 => 0.013864395612631
429 => 0.013772570582222
430 => 0.013704586985367
501 => 0.013629743725159
502 => 0.013794829307398
503 => 0.013420723659227
504 => 0.012969588921562
505 => 0.012932081949471
506 => 0.013035641997062
507 => 0.012989824385142
508 => 0.012931862592372
509 => 0.012821197745021
510 => 0.012788365848792
511 => 0.012895053583764
512 => 0.012774609351262
513 => 0.012952331377256
514 => 0.012904000819994
515 => 0.0126340302559
516 => 0.012297546977134
517 => 0.012294551570156
518 => 0.012222056799689
519 => 0.012129723809837
520 => 0.012104038884354
521 => 0.012478702377636
522 => 0.013254244595996
523 => 0.013101987101379
524 => 0.013212008745215
525 => 0.013753206340466
526 => 0.013925236781616
527 => 0.013803133649252
528 => 0.013635991350678
529 => 0.013643344763554
530 => 0.014214520595195
531 => 0.014250144131196
601 => 0.014340153314082
602 => 0.014455840550682
603 => 0.013822835685891
604 => 0.013613530291348
605 => 0.013514349783592
606 => 0.013208912207391
607 => 0.013538300447085
608 => 0.013346380025626
609 => 0.013372276647416
610 => 0.013355411438503
611 => 0.01336462098299
612 => 0.012875665605901
613 => 0.013053815246574
614 => 0.012757606916264
615 => 0.012361017212924
616 => 0.012359687705177
617 => 0.012456752473221
618 => 0.012399014551043
619 => 0.012243643287042
620 => 0.012265713041761
621 => 0.012072358767529
622 => 0.012289189751445
623 => 0.012295407688205
624 => 0.012211915948534
625 => 0.012545973996167
626 => 0.012682837850847
627 => 0.012627881799229
628 => 0.012678981987764
629 => 0.013108314087682
630 => 0.013178313953042
701 => 0.013209403269303
702 => 0.013167747704058
703 => 0.012686829390415
704 => 0.012708160162647
705 => 0.012551649109194
706 => 0.012419413761754
707 => 0.012424702482169
708 => 0.012492688640145
709 => 0.012789588179361
710 => 0.013414395756457
711 => 0.01343810674728
712 => 0.013466845159855
713 => 0.013349951593143
714 => 0.013314695374901
715 => 0.013361207427164
716 => 0.013595852302299
717 => 0.01419942262661
718 => 0.013986080562892
719 => 0.013812630144222
720 => 0.013964792923293
721 => 0.013941368656146
722 => 0.01374364426808
723 => 0.013738094803048
724 => 0.013358598486037
725 => 0.013218307338351
726 => 0.013101069554734
727 => 0.012973048955595
728 => 0.012897154053135
729 => 0.013013763116929
730 => 0.013040432989497
731 => 0.012785465233534
801 => 0.012750714070534
802 => 0.012958926243915
803 => 0.012867299829342
804 => 0.012961539868956
805 => 0.012983404366522
806 => 0.012979883678832
807 => 0.012884215178792
808 => 0.012945191427842
809 => 0.012800964420944
810 => 0.012644139213138
811 => 0.012544094501114
812 => 0.012456792220867
813 => 0.012505232599986
814 => 0.01233255149329
815 => 0.012277307331874
816 => 0.012924534046673
817 => 0.013402647379754
818 => 0.013395695422537
819 => 0.013353377170879
820 => 0.013290500832859
821 => 0.013591252506541
822 => 0.013486476637149
823 => 0.013562709836448
824 => 0.013582114385167
825 => 0.013640846109863
826 => 0.01366183765328
827 => 0.013598386629511
828 => 0.013385437243852
829 => 0.012854787621412
830 => 0.012607768789705
831 => 0.012526248460818
901 => 0.012529211569944
902 => 0.012447475792349
903 => 0.012471550641991
904 => 0.012439103542132
905 => 0.012377656584794
906 => 0.012501438423524
907 => 0.01251570312733
908 => 0.012486810967087
909 => 0.012493616116736
910 => 0.012254401369933
911 => 0.012272588347585
912 => 0.012171320944927
913 => 0.012152334527726
914 => 0.011896339352169
915 => 0.011442806791576
916 => 0.011694107855615
917 => 0.011390571508532
918 => 0.011275617694566
919 => 0.011819791170897
920 => 0.011765171246896
921 => 0.011671685679717
922 => 0.011533401041759
923 => 0.011482109924394
924 => 0.01117048133208
925 => 0.011152068652372
926 => 0.011306520197403
927 => 0.011235246123724
928 => 0.011135150330677
929 => 0.010772613514807
930 => 0.010365002101955
1001 => 0.010377305328355
1002 => 0.010506958934903
1003 => 0.010883944282114
1004 => 0.010736649585046
1005 => 0.010629785592311
1006 => 0.010609773178792
1007 => 0.010860270432812
1008 => 0.011214776528048
1009 => 0.011381102856306
1010 => 0.011216278516408
1011 => 0.011026937189506
1012 => 0.011038461518752
1013 => 0.01111512771823
1014 => 0.011123184251794
1015 => 0.010999942512583
1016 => 0.011034634340278
1017 => 0.010981934281722
1018 => 0.01065851411964
1019 => 0.010652664474485
1020 => 0.010573291950855
1021 => 0.010570888582384
1022 => 0.010435856119287
1023 => 0.010416964144264
1024 => 0.010148848992899
1025 => 0.010325323197455
1026 => 0.01020695356635
1027 => 0.010028542611703
1028 => 0.0099977844958742
1029 => 0.0099968598697708
1030 => 0.010180048028235
1031 => 0.010323182537166
1101 => 0.010209012656762
1102 => 0.010183018388084
1103 => 0.010460569171011
1104 => 0.010425248303952
1105 => 0.010394660660874
1106 => 0.011183034395477
1107 => 0.010558975066969
1108 => 0.010286849579679
1109 => 0.0099500426139281
1110 => 0.010059708660305
1111 => 0.010082816907606
1112 => 0.0092728568689944
1113 => 0.0089442561822039
1114 => 0.0088314928095531
1115 => 0.0087665958943525
1116 => 0.0087961702335335
1117 => 0.0085003910744058
1118 => 0.0086991595610754
1119 => 0.0084430398108607
1120 => 0.0084001005012515
1121 => 0.008858074341784
1122 => 0.0089217987262498
1123 => 0.0086499307045045
1124 => 0.0088245139858997
1125 => 0.0087612076611767
1126 => 0.0084474302488699
1127 => 0.0084354462597102
1128 => 0.008278003784024
1129 => 0.0080316367964459
1130 => 0.0079190404722138
1201 => 0.0078603993289477
1202 => 0.0078845958075524
1203 => 0.0078723613275454
1204 => 0.0077925230697785
1205 => 0.0078769375630253
1206 => 0.0076612934152567
1207 => 0.0075754221780522
1208 => 0.0075366361324046
1209 => 0.0073452395392459
1210 => 0.0076498366334126
1211 => 0.0077098460981766
1212 => 0.007769973800124
1213 => 0.0082933443946503
1214 => 0.0082671982787777
1215 => 0.0085035464325911
1216 => 0.0084943623779503
1217 => 0.0084269520558965
1218 => 0.0081425589956112
1219 => 0.008255913000622
1220 => 0.0079070269923222
1221 => 0.008168436111683
1222 => 0.0080491399063125
1223 => 0.008128101944646
1224 => 0.0079861210800025
1225 => 0.0080646991527424
1226 => 0.0077240765684765
1227 => 0.007406007991978
1228 => 0.0075340080721616
1229 => 0.0076731587979058
1230 => 0.0079748730262649
1231 => 0.0077951745209426
]
'min_raw' => 0.0073452395392459
'max_raw' => 0.021925718910996
'avg_raw' => 0.014635479225121
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.007345'
'max' => '$0.021925'
'avg' => '$0.014635'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.013914510460754
'max_diff' => 0.00066596891099643
'year' => 2026
]
1 => [
'items' => [
101 => 0.0078598008986093
102 => 0.0076433133517508
103 => 0.0071966377059712
104 => 0.0071991658416175
105 => 0.0071304545248722
106 => 0.0070710779151878
107 => 0.007815815055945
108 => 0.0077231952199399
109 => 0.0075756176330502
110 => 0.0077731560976022
111 => 0.0078253884029867
112 => 0.0078268753832911
113 => 0.0079709943478225
114 => 0.0080479106650277
115 => 0.0080614674993095
116 => 0.008288241803896
117 => 0.008364253559568
118 => 0.0086773352235946
119 => 0.0080413848528972
120 => 0.0080282878735115
121 => 0.0077759358688993
122 => 0.0076158902380469
123 => 0.0077868943301687
124 => 0.0079383806114023
125 => 0.0077806429699236
126 => 0.0078012401758773
127 => 0.0075894902798309
128 => 0.0076651809039089
129 => 0.0077303758659929
130 => 0.0076943790399128
131 => 0.0076404900490049
201 => 0.0079259604638679
202 => 0.0079098531042938
203 => 0.0081756897175507
204 => 0.0083829283677431
205 => 0.0087543370772278
206 => 0.0083667527269066
207 => 0.0083526276126727
208 => 0.0084907028700492
209 => 0.0083642324209655
210 => 0.0084441573791749
211 => 0.0087414599308252
212 => 0.0087477414652583
213 => 0.0086425176702032
214 => 0.0086361147927113
215 => 0.0086563241735738
216 => 0.0087746911485142
217 => 0.0087333300904203
218 => 0.0087811941539804
219 => 0.008841048898383
220 => 0.0090886334991175
221 => 0.0091483253081609
222 => 0.0090033051588401
223 => 0.009016398854602
224 => 0.0089621573378639
225 => 0.0089097607123391
226 => 0.0090275406746062
227 => 0.0092427858706203
228 => 0.0092414468414271
301 => 0.0092913795431337
302 => 0.009322487202632
303 => 0.0091889503558666
304 => 0.0091020227789083
305 => 0.0091353563432596
306 => 0.0091886574385678
307 => 0.0091180715164253
308 => 0.008682382506382
309 => 0.0088145427201074
310 => 0.0087925447982392
311 => 0.0087612170824602
312 => 0.0088941051993258
313 => 0.0088812878162714
314 => 0.0084973574316168
315 => 0.0085219354091833
316 => 0.0084988520998374
317 => 0.0085734389947347
318 => 0.0083602044838677
319 => 0.0084257939832541
320 => 0.0084669311024058
321 => 0.0084911611816164
322 => 0.008578696842446
323 => 0.0085684255429805
324 => 0.0085780583640497
325 => 0.0087078506405023
326 => 0.009364295435469
327 => 0.0094000242772952
328 => 0.0092240823929328
329 => 0.0092943677054354
330 => 0.0091594352751387
331 => 0.0092500163195656
401 => 0.0093119895696534
402 => 0.0090319443692772
403 => 0.0090153619099893
404 => 0.0088798725655546
405 => 0.008952676864745
406 => 0.0088368399899186
407 => 0.0088652623071992
408 => 0.0087857910302697
409 => 0.0089288235061693
410 => 0.0090887560392248
411 => 0.0091291613130017
412 => 0.0090228724332587
413 => 0.0089459122795462
414 => 0.0088107956018778
415 => 0.009035497648112
416 => 0.0091012073741016
417 => 0.0090351525028948
418 => 0.0090198461459088
419 => 0.0089908406270782
420 => 0.0090259998038466
421 => 0.009100849504822
422 => 0.0090655517680989
423 => 0.0090888665450706
424 => 0.0090000146573483
425 => 0.0091889945621194
426 => 0.0094891401313866
427 => 0.0094901051484706
428 => 0.0094548072214796
429 => 0.0094403640702593
430 => 0.0094765818854094
501 => 0.0094962285643958
502 => 0.0096133503373797
503 => 0.0097390266661287
504 => 0.010325503255522
505 => 0.010160822976044
506 => 0.010681179895803
507 => 0.011092714659442
508 => 0.011216115940823
509 => 0.011102592568432
510 => 0.010714235243891
511 => 0.010695180580793
512 => 0.011275550383889
513 => 0.011111569331894
514 => 0.011092064307542
515 => 0.010884563802701
516 => 0.011007222300499
517 => 0.010980395087739
518 => 0.010938047019965
519 => 0.0111720708893
520 => 0.01161014268124
521 => 0.011541865084255
522 => 0.011490899025412
523 => 0.01126758059156
524 => 0.011402068168717
525 => 0.011354179718431
526 => 0.01155993889162
527 => 0.011438051715547
528 => 0.011110327014145
529 => 0.011162518253038
530 => 0.011154629652273
531 => 0.011316976497014
601 => 0.011268244003919
602 => 0.011145113850868
603 => 0.01160864539948
604 => 0.011578546239011
605 => 0.01162121996693
606 => 0.011640006261688
607 => 0.011922149746986
608 => 0.012037734905328
609 => 0.012063974759875
610 => 0.012173771720623
611 => 0.012061242911469
612 => 0.012511438379766
613 => 0.01281079209655
614 => 0.013158506843196
615 => 0.013666611544959
616 => 0.013857663613053
617 => 0.013823151766992
618 => 0.01420839095295
619 => 0.01490065720673
620 => 0.013963078569531
621 => 0.01495035115112
622 => 0.014637792050399
623 => 0.013896720045288
624 => 0.013849003744823
625 => 0.014350866310708
626 => 0.015463949179358
627 => 0.015185134545243
628 => 0.015464405220217
629 => 0.015138621143524
630 => 0.015122443218192
701 => 0.015448582614776
702 => 0.016210625091825
703 => 0.015848607275714
704 => 0.015329565965908
705 => 0.015712817991891
706 => 0.015380809618684
707 => 0.014632701830556
708 => 0.015184921340946
709 => 0.014815667880655
710 => 0.014923435670961
711 => 0.015699551522188
712 => 0.01560616720962
713 => 0.015727015157237
714 => 0.015513721692835
715 => 0.015314471963791
716 => 0.014942557548052
717 => 0.014832452024711
718 => 0.014862881230181
719 => 0.014832436945508
720 => 0.014624354247972
721 => 0.014579418809251
722 => 0.014504524442715
723 => 0.014527737338588
724 => 0.014386914018382
725 => 0.014652676719194
726 => 0.014702004618357
727 => 0.014895404549238
728 => 0.014915483971642
729 => 0.01545410002627
730 => 0.015157439354456
731 => 0.015356464945559
801 => 0.015338662223389
802 => 0.013912781322765
803 => 0.014109255130217
804 => 0.014414906717736
805 => 0.01427721109186
806 => 0.014082541692685
807 => 0.013925335715339
808 => 0.013687152584523
809 => 0.014022390767245
810 => 0.014463193328918
811 => 0.014926663452041
812 => 0.015483492437208
813 => 0.015359214689923
814 => 0.014916253921485
815 => 0.014936124817974
816 => 0.01505895888116
817 => 0.014899877608683
818 => 0.014852961435794
819 => 0.015052513319452
820 => 0.015053887523603
821 => 0.014870845294004
822 => 0.01466742735218
823 => 0.014666575023576
824 => 0.014630378765612
825 => 0.015145060377405
826 => 0.015428083223711
827 => 0.015460531336926
828 => 0.015425899207159
829 => 0.015439227739406
830 => 0.015274542981124
831 => 0.015650963502809
901 => 0.01599640419764
902 => 0.015903818712161
903 => 0.015765019907627
904 => 0.015654459974359
905 => 0.015877774305528
906 => 0.015867830469891
907 => 0.015993387074526
908 => 0.01598769110169
909 => 0.015945471137974
910 => 0.015903820219969
911 => 0.016068961401851
912 => 0.016021403393556
913 => 0.015973771514537
914 => 0.015878238489089
915 => 0.015891223013883
916 => 0.015752448174919
917 => 0.01568824458451
918 => 0.014722776630706
919 => 0.014464772045874
920 => 0.01454594554043
921 => 0.014572669962507
922 => 0.014460386036546
923 => 0.014621372343
924 => 0.014596282797666
925 => 0.014693891541667
926 => 0.014632909836094
927 => 0.014635412546562
928 => 0.014814746739983
929 => 0.014866808219275
930 => 0.014840329330719
1001 => 0.014858874236621
1002 => 0.015286233765799
1003 => 0.015225476906938
1004 => 0.015193201036598
1005 => 0.015202141673259
1006 => 0.015311341195656
1007 => 0.015341911099854
1008 => 0.015212384267657
1009 => 0.015273469870507
1010 => 0.015533564614524
1011 => 0.015624583054842
1012 => 0.015915070225008
1013 => 0.015791666112124
1014 => 0.016018179702128
1015 => 0.016714405253627
1016 => 0.017270598399308
1017 => 0.016759100196886
1018 => 0.017780478078159
1019 => 0.018575767266686
1020 => 0.018545242743007
1021 => 0.018406565677617
1022 => 0.017501150080336
1023 => 0.016667973148733
1024 => 0.01736496103058
1025 => 0.017366737796028
1026 => 0.017306865918849
1027 => 0.016935006831743
1028 => 0.017293926028669
1029 => 0.017322415731118
1030 => 0.01730646907377
1031 => 0.017021365583556
1101 => 0.01658606524993
1102 => 0.016671121893159
1103 => 0.016810446409876
1104 => 0.016546676033592
1105 => 0.016462385415958
1106 => 0.016619097711085
1107 => 0.017124057378287
1108 => 0.017028597678235
1109 => 0.017026104839683
1110 => 0.01743452191772
1111 => 0.017142183431768
1112 => 0.016672194729819
1113 => 0.016553516384188
1114 => 0.016132288208509
1115 => 0.016423232009814
1116 => 0.016433702559265
1117 => 0.016274355612664
1118 => 0.016685124856325
1119 => 0.01668133954543
1120 => 0.017071303807352
1121 => 0.017816769012258
1122 => 0.017596298269052
1123 => 0.017339914781853
1124 => 0.017367790775654
1125 => 0.017673521623842
1126 => 0.017488669773872
1127 => 0.017555143787954
1128 => 0.017673421007461
1129 => 0.017744780590647
1130 => 0.017357523229795
1201 => 0.01726723501432
1202 => 0.017082537012315
1203 => 0.017034352751143
1204 => 0.017184785419926
1205 => 0.017145151726567
1206 => 0.016432822550128
1207 => 0.016358380187828
1208 => 0.0163606632288
1209 => 0.016173474369256
1210 => 0.015887966427976
1211 => 0.016638264250865
1212 => 0.016578004835276
1213 => 0.016511483104174
1214 => 0.016519631636666
1215 => 0.01684531049163
1216 => 0.016656400308574
1217 => 0.017158648991997
1218 => 0.017055401761663
1219 => 0.016949506629458
1220 => 0.016934868696542
1221 => 0.016894108105192
1222 => 0.016754324871102
1223 => 0.016585528216268
1224 => 0.016474074043831
1225 => 0.015196462489175
1226 => 0.015433579762195
1227 => 0.015706361570885
1228 => 0.01580052475814
1229 => 0.015639452110446
1230 => 0.016760685000982
1231 => 0.016965545054552
]
'min_raw' => 0.0070710779151878
'max_raw' => 0.018575767266686
'avg_raw' => 0.012823422590937
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.007071'
'max' => '$0.018575'
'avg' => '$0.012823'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00027416162405807
'max_diff' => -0.0033499516443106
'year' => 2027
]
2 => [
'items' => [
101 => 0.016345010589598
102 => 0.01622893392746
103 => 0.016768294967627
104 => 0.016442994326201
105 => 0.016589477185117
106 => 0.016272861365981
107 => 0.01691620026665
108 => 0.016911299102114
109 => 0.016661025739286
110 => 0.01687255507175
111 => 0.016835796644753
112 => 0.016553238634516
113 => 0.016925157859564
114 => 0.016925342326859
115 => 0.016684459656549
116 => 0.016403161433624
117 => 0.016352871955333
118 => 0.016314985588881
119 => 0.016580159461446
120 => 0.016817913526411
121 => 0.01726031489708
122 => 0.017371545112863
123 => 0.017805684050081
124 => 0.017547175450809
125 => 0.017661768964619
126 => 0.017786176434103
127 => 0.017845821949906
128 => 0.017748632782659
129 => 0.018423029250873
130 => 0.018479968975764
131 => 0.018499060372994
201 => 0.018271657678361
202 => 0.018473644495458
203 => 0.018379141552839
204 => 0.018625011955861
205 => 0.018663567574486
206 => 0.018630912337167
207 => 0.018643150499077
208 => 0.018067672085146
209 => 0.018037830493493
210 => 0.017630938273844
211 => 0.017796749860946
212 => 0.017486773046415
213 => 0.017585069887418
214 => 0.017628398198325
215 => 0.017605765947567
216 => 0.0178061245993
217 => 0.017635778814759
218 => 0.017186208281916
219 => 0.016736515263881
220 => 0.016730869734352
221 => 0.016612473500445
222 => 0.016526894708682
223 => 0.016543380220046
224 => 0.016601477312333
225 => 0.016523518000063
226 => 0.016540154571973
227 => 0.016816432514581
228 => 0.016871838085647
229 => 0.016683548306811
301 => 0.015927537674699
302 => 0.01574201076927
303 => 0.015875363829734
304 => 0.015811629655869
305 => 0.012761219179384
306 => 0.013477867873456
307 => 0.013052059554528
308 => 0.013248291618389
309 => 0.012813651587294
310 => 0.013021084591568
311 => 0.012982779289919
312 => 0.01413512918281
313 => 0.014117136824238
314 => 0.014125748814152
315 => 0.013714676097136
316 => 0.014369526097184
317 => 0.014692128754851
318 => 0.014632423588709
319 => 0.014647450092729
320 => 0.014389244968463
321 => 0.014128248804164
322 => 0.013838763890934
323 => 0.014376591078298
324 => 0.014316793876079
325 => 0.014453947143614
326 => 0.014802766519301
327 => 0.014854131497407
328 => 0.014923166548873
329 => 0.014898422397172
330 => 0.015487928478422
331 => 0.015416535402296
401 => 0.015588572174569
402 => 0.015234679481542
403 => 0.014834216307579
404 => 0.014910331264822
405 => 0.014903000782362
406 => 0.014809675327106
407 => 0.014725425278964
408 => 0.014585172686111
409 => 0.015028952643375
410 => 0.015010935987547
411 => 0.015302604703324
412 => 0.015251049424691
413 => 0.014906750656269
414 => 0.014919047354139
415 => 0.015001748556909
416 => 0.01528797836396
417 => 0.015372950858704
418 => 0.01533358821357
419 => 0.015426756674916
420 => 0.015500393227979
421 => 0.015436004292252
422 => 0.016347615837894
423 => 0.015969051166808
424 => 0.016153560953459
425 => 0.016197565450381
426 => 0.016084848856831
427 => 0.016109293049893
428 => 0.016146319341739
429 => 0.016371135735333
430 => 0.016961119003272
501 => 0.017222418576491
502 => 0.018008551234812
503 => 0.017200721284401
504 => 0.017152787998276
505 => 0.017294394228971
506 => 0.017755937319999
507 => 0.018129974644739
508 => 0.018254064404086
509 => 0.018270464914282
510 => 0.018503265552149
511 => 0.018636702536299
512 => 0.018474997431447
513 => 0.018337969286315
514 => 0.017847151479013
515 => 0.017903964976661
516 => 0.018295353636219
517 => 0.018848213170522
518 => 0.019322624166185
519 => 0.019156501970396
520 => 0.02042389706027
521 => 0.020549554106586
522 => 0.020532192365764
523 => 0.020818457817548
524 => 0.020250279192702
525 => 0.020007371822638
526 => 0.018367596326628
527 => 0.018828306355434
528 => 0.019497975438853
529 => 0.019409342224533
530 => 0.018923010635847
531 => 0.019322255240064
601 => 0.019190252488377
602 => 0.019086136441322
603 => 0.01956311223677
604 => 0.019038657756589
605 => 0.019492743604227
606 => 0.018910373807715
607 => 0.019157260802593
608 => 0.01901711580372
609 => 0.019107806793516
610 => 0.01857762912029
611 => 0.018863700123427
612 => 0.018565727626046
613 => 0.018565586348285
614 => 0.01855900858889
615 => 0.018909571910647
616 => 0.018921003767984
617 => 0.018661936943534
618 => 0.018624601366746
619 => 0.018762650562498
620 => 0.018601031109414
621 => 0.018676651834291
622 => 0.018603321584134
623 => 0.018586813400253
624 => 0.018455273382447
625 => 0.018398602326009
626 => 0.018420824507472
627 => 0.018344968745819
628 => 0.018299262905601
629 => 0.018549916546871
630 => 0.018416002417679
701 => 0.018529392285973
702 => 0.01840017022011
703 => 0.017952230240454
704 => 0.017694615221275
705 => 0.016848498123762
706 => 0.017088455883012
707 => 0.017247548125649
708 => 0.017194968140406
709 => 0.01730793029446
710 => 0.017314865253278
711 => 0.017278140105483
712 => 0.017235617089118
713 => 0.017214919236422
714 => 0.017369184072985
715 => 0.017458740002926
716 => 0.017263515160577
717 => 0.0172177767115
718 => 0.017415159805774
719 => 0.017535563379257
720 => 0.018424555716929
721 => 0.018358696293147
722 => 0.018523990522581
723 => 0.018505380928994
724 => 0.018678635614876
725 => 0.018961833803401
726 => 0.018386012702671
727 => 0.018485955335362
728 => 0.018461451709839
729 => 0.018728975868108
730 => 0.018729811049329
731 => 0.018569416952624
801 => 0.018656369194545
802 => 0.018607834838514
803 => 0.018695542979673
804 => 0.01835781670039
805 => 0.018769130853257
806 => 0.019002319473435
807 => 0.019005557297652
808 => 0.019116086852917
809 => 0.019228391282506
810 => 0.019443949855448
811 => 0.019222379470901
812 => 0.018823795918544
813 => 0.018852572363607
814 => 0.018618882972696
815 => 0.018622811333577
816 => 0.018601841435325
817 => 0.01866477367852
818 => 0.018371626788784
819 => 0.018440427777871
820 => 0.018344105990251
821 => 0.018485745950607
822 => 0.018333364767188
823 => 0.018461439893449
824 => 0.018516712872185
825 => 0.018720671353665
826 => 0.01830323993364
827 => 0.017452069010588
828 => 0.017630995458063
829 => 0.017366349187878
830 => 0.017390843207763
831 => 0.017440325026125
901 => 0.01727993826337
902 => 0.017310535003336
903 => 0.017309441872478
904 => 0.017300021861305
905 => 0.017258299069882
906 => 0.017197792767715
907 => 0.017438831252689
908 => 0.017479788388229
909 => 0.017570831027019
910 => 0.017841712165247
911 => 0.017814644751721
912 => 0.017858792826199
913 => 0.017762417827496
914 => 0.017395313767543
915 => 0.017415249284189
916 => 0.017166653072164
917 => 0.017564473862958
918 => 0.01747026464872
919 => 0.017409527355433
920 => 0.017392954622233
921 => 0.017664507222408
922 => 0.017745760016446
923 => 0.017695128727874
924 => 0.017591282477862
925 => 0.017790697977273
926 => 0.017844053152251
927 => 0.017855997408266
928 => 0.018209323439094
929 => 0.017875744408427
930 => 0.017956040196599
1001 => 0.018582485014473
1002 => 0.018014386008137
1003 => 0.018315320721913
1004 => 0.018300591533662
1005 => 0.018454539550154
1006 => 0.018287963302904
1007 => 0.018290028215128
1008 => 0.018426723624432
1009 => 0.018234759575212
1010 => 0.018187226577029
1011 => 0.018121560080477
1012 => 0.018264940473338
1013 => 0.018350890534321
1014 => 0.01904358490248
1015 => 0.019491097055012
1016 => 0.019471669372241
1017 => 0.019649202025668
1018 => 0.019569221939286
1019 => 0.01931094514268
1020 => 0.019751792140987
1021 => 0.019612289704901
1022 => 0.019623790116236
1023 => 0.019623362070352
1024 => 0.019716118994835
1025 => 0.019650392212792
1026 => 0.019520837978669
1027 => 0.019606842125322
1028 => 0.019862243693839
1029 => 0.020655017999191
1030 => 0.021098665003329
1031 => 0.020628309892483
1101 => 0.020952754549639
1102 => 0.020758203366797
1103 => 0.020722847629478
1104 => 0.020926622850444
1105 => 0.021130754752959
1106 => 0.021117752433255
1107 => 0.020969563154318
1108 => 0.020885854790811
1109 => 0.021519722563649
1110 => 0.02198674554102
1111 => 0.021954897704925
1112 => 0.022095463695977
1113 => 0.022508169793247
1114 => 0.022545902466581
1115 => 0.022541149017016
1116 => 0.022447624649163
1117 => 0.022853987398585
1118 => 0.023192982353425
1119 => 0.022425976460183
1120 => 0.022718042263485
1121 => 0.02284916001236
1122 => 0.023041679768591
1123 => 0.023366492867411
1124 => 0.023719326045149
1125 => 0.0237692205251
1126 => 0.023733818003904
1127 => 0.023501115038521
1128 => 0.023887189311777
1129 => 0.024113342566494
1130 => 0.024248011654253
1201 => 0.024589510054011
1202 => 0.022849969750939
1203 => 0.021618636663663
1204 => 0.021426346221419
1205 => 0.021817376397169
1206 => 0.021920487936108
1207 => 0.021878923804053
1208 => 0.020492946466416
1209 => 0.021419049337571
1210 => 0.022415458157992
1211 => 0.022453734278787
1212 => 0.022952557368216
1213 => 0.023114994613584
1214 => 0.023516612582811
1215 => 0.023491491269487
1216 => 0.023589278853856
1217 => 0.023566799181655
1218 => 0.024310711899007
1219 => 0.025131358098354
1220 => 0.025102941729966
1221 => 0.024984964129365
1222 => 0.025160180984428
1223 => 0.026007175807945
1224 => 0.025929198097411
1225 => 0.02600494680107
1226 => 0.027003601432533
1227 => 0.028301994510401
1228 => 0.027698760569198
1229 => 0.029007604645718
1230 => 0.029831452613045
1231 => 0.031256212485066
]
'min_raw' => 0.012761219179384
'max_raw' => 0.031256212485066
'avg_raw' => 0.022008715832225
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.012761'
'max' => '$0.031256'
'avg' => '$0.0220087'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0056901412641961
'max_diff' => 0.01268044521838
'year' => 2028
]
3 => [
'items' => [
101 => 0.031077825531998
102 => 0.031632474094805
103 => 0.030758475655527
104 => 0.028751598574717
105 => 0.028434002594662
106 => 0.029069837789544
107 => 0.030632976572268
108 => 0.029020608986537
109 => 0.029346788849178
110 => 0.029252849026794
111 => 0.029247843372878
112 => 0.029438888823398
113 => 0.029161767433159
114 => 0.028032725036138
115 => 0.028550158513204
116 => 0.028350352598513
117 => 0.028572052157381
118 => 0.029768473240738
119 => 0.029239506960669
120 => 0.028682283954348
121 => 0.029381165261959
122 => 0.03027108132822
123 => 0.030215391980126
124 => 0.030107331368482
125 => 0.030716463378447
126 => 0.031722570999975
127 => 0.031994517847206
128 => 0.032195263450124
129 => 0.032222942877141
130 => 0.03250805817809
131 => 0.03097492134658
201 => 0.033408048871933
202 => 0.03382818278177
203 => 0.033749215019487
204 => 0.034216176178334
205 => 0.03407878435974
206 => 0.033879725170713
207 => 0.034619957932972
208 => 0.033771340804746
209 => 0.032566835629156
210 => 0.031906020267416
211 => 0.03277623524221
212 => 0.033307645160999
213 => 0.0336588733133
214 => 0.033765154739968
215 => 0.031093934394529
216 => 0.02965429478101
217 => 0.030577087267774
218 => 0.031702957789362
219 => 0.030968667078986
220 => 0.030997449884636
221 => 0.029950544299845
222 => 0.031795585703612
223 => 0.031526778690324
224 => 0.032921349950774
225 => 0.032588524327334
226 => 0.033725743053287
227 => 0.033426275250394
228 => 0.034669349357184
301 => 0.03516524527327
302 => 0.035997931696416
303 => 0.036610459218925
304 => 0.036970147095927
305 => 0.036948552784947
306 => 0.038373815349418
307 => 0.037533387810031
308 => 0.036477612746998
309 => 0.036458517107036
310 => 0.037005317972628
311 => 0.03815126257942
312 => 0.038448389343145
313 => 0.038614442669289
314 => 0.038360126219942
315 => 0.037447902359921
316 => 0.037054008722245
317 => 0.037389617513743
318 => 0.036979196800933
319 => 0.037687698094956
320 => 0.038660621699359
321 => 0.038459716822407
322 => 0.039131311704716
323 => 0.039826341754065
324 => 0.040820265940386
325 => 0.041080114527596
326 => 0.041509634361098
327 => 0.041951751359687
328 => 0.042093747424246
329 => 0.042364861970281
330 => 0.042363433062798
331 => 0.043180454995389
401 => 0.0440816554881
402 => 0.044421837811259
403 => 0.0452040683056
404 => 0.043864525996666
405 => 0.044880584225546
406 => 0.045797094181582
407 => 0.044704393228725
408 => 0.046210426925569
409 => 0.046268902801271
410 => 0.047151819098625
411 => 0.046256814284961
412 => 0.045725363283564
413 => 0.047259642411388
414 => 0.048002031752002
415 => 0.047778418040844
416 => 0.046076706657763
417 => 0.045086237642974
418 => 0.042493989184069
419 => 0.045564619460442
420 => 0.04706023389655
421 => 0.046072833377687
422 => 0.046570820765743
423 => 0.049287678482027
424 => 0.050322081996878
425 => 0.050106933296815
426 => 0.050143289885477
427 => 0.050701435246338
428 => 0.053176559152663
429 => 0.05169340753507
430 => 0.052827221374089
501 => 0.053428592146035
502 => 0.053987178833775
503 => 0.05261546647182
504 => 0.050830888843374
505 => 0.050265638196972
506 => 0.045974655855623
507 => 0.045751291589964
508 => 0.04562591045902
509 => 0.044835400163929
510 => 0.044214275610981
511 => 0.0437203343056
512 => 0.042424084816922
513 => 0.042861530967548
514 => 0.040795579830889
515 => 0.04211730215531
516 => 0.038819994257068
517 => 0.041566090254758
518 => 0.040071515052879
519 => 0.041075082104469
520 => 0.041071580753568
521 => 0.039223695630367
522 => 0.038157874055683
523 => 0.038837057045468
524 => 0.03956519512413
525 => 0.039683333077642
526 => 0.040627383102976
527 => 0.040890847172759
528 => 0.040092538741355
529 => 0.038751664879844
530 => 0.039063119295796
531 => 0.038151562441884
601 => 0.036554094117932
602 => 0.037701423757316
603 => 0.038093172540725
604 => 0.038266191120914
605 => 0.036695264494783
606 => 0.036201645242377
607 => 0.035938846494262
608 => 0.038548877979262
609 => 0.038691861395824
610 => 0.037960338020878
611 => 0.041266893041523
612 => 0.040518517804161
613 => 0.041354636300679
614 => 0.039034858072059
615 => 0.039123476724388
616 => 0.038025256534864
617 => 0.038640186457898
618 => 0.038205573808414
619 => 0.038590506196973
620 => 0.038821233083539
621 => 0.039919273065936
622 => 0.041578628107551
623 => 0.039755262508973
624 => 0.038960796006596
625 => 0.039453678556421
626 => 0.040766289737909
627 => 0.042754962869193
628 => 0.041577628349696
629 => 0.042100109417012
630 => 0.042214248286656
701 => 0.041346125399272
702 => 0.042786971798328
703 => 0.043559133088998
704 => 0.044351210796959
705 => 0.045038949677269
706 => 0.044034837542237
707 => 0.045109381460542
708 => 0.044243488744924
709 => 0.043466693464672
710 => 0.043467871542465
711 => 0.042980576515994
712 => 0.042036380999083
713 => 0.041862256859206
714 => 0.042768072624299
715 => 0.043494451086832
716 => 0.043554279096124
717 => 0.043956439535655
718 => 0.044194433941188
719 => 0.046527102653111
720 => 0.047465321305894
721 => 0.048612557314947
722 => 0.049059470395152
723 => 0.050404518539361
724 => 0.049318282923443
725 => 0.049083269015197
726 => 0.045820622179239
727 => 0.04635488041585
728 => 0.047210279400917
729 => 0.045834727393439
730 => 0.046707198533756
731 => 0.04687944281832
801 => 0.045787986662587
802 => 0.046370980554401
803 => 0.044822721623386
804 => 0.041612375921343
805 => 0.042790545830821
806 => 0.043658075451899
807 => 0.042420003716989
808 => 0.044639199381823
809 => 0.043342791087924
810 => 0.042931891897331
811 => 0.041328827658688
812 => 0.042085412271726
813 => 0.043108703794109
814 => 0.042476428603684
815 => 0.043788494560412
816 => 0.045646729870348
817 => 0.046971019012034
818 => 0.047072681488569
819 => 0.046221252290947
820 => 0.047585673013885
821 => 0.04759561132928
822 => 0.046056539179983
823 => 0.045113866058128
824 => 0.044899688741442
825 => 0.045434745670461
826 => 0.046084403559249
827 => 0.047108732980008
828 => 0.047727713795887
829 => 0.04934168748164
830 => 0.049778382484753
831 => 0.050258177895522
901 => 0.050899332527735
902 => 0.051669203052379
903 => 0.049984770173211
904 => 0.050051695831676
905 => 0.048483175257155
906 => 0.046806986074675
907 => 0.048079004724246
908 => 0.04974199989901
909 => 0.049360506968473
910 => 0.049317581220594
911 => 0.049389770421916
912 => 0.049102137210686
913 => 0.047801182856473
914 => 0.047147851724193
915 => 0.047990815567382
916 => 0.048438813334033
917 => 0.049133618800598
918 => 0.04904796936128
919 => 0.050837713626491
920 => 0.051533154128895
921 => 0.051355230688803
922 => 0.051387972883747
923 => 0.052647034694781
924 => 0.054047370374461
925 => 0.05535896952905
926 => 0.056693184523592
927 => 0.055084736272374
928 => 0.054268065445702
929 => 0.055110661277248
930 => 0.054663568068635
1001 => 0.057232698261787
1002 => 0.057410579262198
1003 => 0.059979523677996
1004 => 0.062417757832798
1005 => 0.060886346645669
1006 => 0.062330398418857
1007 => 0.063892258146828
1008 => 0.066905338964693
1009 => 0.065890639346697
1010 => 0.065113395341683
1011 => 0.06437890351256
1012 => 0.06590726441167
1013 => 0.067873476292215
1014 => 0.068296979499141
1015 => 0.068983216485037
1016 => 0.068261722203433
1017 => 0.069130682595637
1018 => 0.072198494620661
1019 => 0.071369544731174
1020 => 0.070192302627757
1021 => 0.072614045585715
1022 => 0.073490464947912
1023 => 0.079641635016197
1024 => 0.087407741319569
1025 => 0.08419252231497
1026 => 0.082196732124346
1027 => 0.082665790159919
1028 => 0.085501709282621
1029 => 0.08641251649726
1030 => 0.083936628513798
1031 => 0.084811154006015
1101 => 0.089629875449578
1102 => 0.092214964900956
1103 => 0.088704066202151
1104 => 0.079017635936411
1105 => 0.07008630485683
1106 => 0.072455296042215
1107 => 0.072186725960147
1108 => 0.077363841003513
1109 => 0.071349774550461
1110 => 0.071451036005598
1111 => 0.0767352083054
1112 => 0.07532548172946
1113 => 0.073041905220576
1114 => 0.070102977492501
1115 => 0.064670097769244
1116 => 0.059858044691295
1117 => 0.069295588926791
1118 => 0.068888624858296
1119 => 0.068299280578419
1120 => 0.069610802499574
1121 => 0.075979180666708
1122 => 0.075832368937527
1123 => 0.07489842762048
1124 => 0.075606813878079
1125 => 0.072917721684622
1126 => 0.073610761972367
1127 => 0.070084890088355
1128 => 0.071678731433345
1129 => 0.073037005690994
1130 => 0.073309699357811
1201 => 0.073924092113234
1202 => 0.06867417328679
1203 => 0.071031232710344
1204 => 0.072415784295082
1205 => 0.06616032986482
1206 => 0.072292134073815
1207 => 0.068582783880036
1208 => 0.067323774711698
1209 => 0.069018864695021
1210 => 0.068358286479991
1211 => 0.067790360121162
1212 => 0.067473447454722
1213 => 0.06871813445822
1214 => 0.068660068321784
1215 => 0.066623518800725
1216 => 0.063966922970881
1217 => 0.064858563731162
1218 => 0.064534622283775
1219 => 0.063360616689167
1220 => 0.064151754709957
1221 => 0.060667983252188
1222 => 0.054674335529779
1223 => 0.058633922805597
1224 => 0.05848148300268
1225 => 0.058404615941455
1226 => 0.061380136344278
1227 => 0.061094108714482
1228 => 0.060574965765612
1229 => 0.063351082221794
1230 => 0.062337762371252
1231 => 0.065460575382439
]
'min_raw' => 0.028032725036138
'max_raw' => 0.092214964900956
'avg_raw' => 0.060123844968547
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.028032'
'max' => '$0.092214'
'avg' => '$0.060123'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.015271505856755
'max_diff' => 0.06095875241589
'year' => 2029
]
4 => [
'items' => [
101 => 0.067517462002489
102 => 0.066995769022333
103 => 0.068930280830286
104 => 0.064879105333418
105 => 0.066224743328527
106 => 0.066502077454346
107 => 0.06331682537565
108 => 0.06114090637208
109 => 0.060995797381834
110 => 0.057223053689753
111 => 0.05923842291754
112 => 0.061011864436347
113 => 0.06016252357346
114 => 0.059893647629606
115 => 0.061267276514677
116 => 0.061374019243383
117 => 0.058940273716803
118 => 0.059446326478476
119 => 0.061556650618926
120 => 0.059393151724671
121 => 0.055189826778672
122 => 0.05414734407655
123 => 0.054008257667318
124 => 0.051180961898818
125 => 0.05421700775553
126 => 0.052891692378105
127 => 0.057078347775676
128 => 0.054686952666067
129 => 0.054583864402512
130 => 0.054428031372389
131 => 0.051994461110324
201 => 0.052527258336258
202 => 0.054298357462571
203 => 0.054930305583699
204 => 0.054864388217267
205 => 0.054289678110632
206 => 0.054552777454458
207 => 0.053705242798108
208 => 0.053405960671042
209 => 0.052461343953988
210 => 0.051073018336948
211 => 0.051266073529093
212 => 0.048515437206577
213 => 0.047016744550752
214 => 0.046601926176071
215 => 0.046047213708995
216 => 0.046664582425261
217 => 0.048507644999475
218 => 0.046284520507435
219 => 0.042473129499885
220 => 0.042702200593733
221 => 0.043216855329791
222 => 0.042257799633928
223 => 0.041350133905237
224 => 0.042139275615086
225 => 0.040524339000507
226 => 0.043412012704212
227 => 0.043333909223139
228 => 0.044410255407337
301 => 0.045083316765162
302 => 0.043532128241576
303 => 0.043142008522754
304 => 0.043364238444548
305 => 0.039691272860565
306 => 0.044110095758763
307 => 0.044148309922682
308 => 0.043821097050714
309 => 0.046173983828153
310 => 0.051139308812339
311 => 0.049271153823554
312 => 0.048547747746612
313 => 0.04717255226554
314 => 0.049004918593041
315 => 0.048864221448456
316 => 0.048227935602838
317 => 0.047843107938075
318 => 0.048552164709861
319 => 0.047755247957267
320 => 0.047612099810693
321 => 0.046744777789176
322 => 0.046435183288132
323 => 0.046205971844871
324 => 0.045953632567693
325 => 0.046510230134119
326 => 0.045248906822089
327 => 0.043727874556829
328 => 0.04360141718177
329 => 0.043950577112554
330 => 0.043796099835082
331 => 0.043600677603997
401 => 0.043227563344778
402 => 0.043116868314393
403 => 0.043476573461551
404 => 0.043070487322522
405 => 0.043669689541316
406 => 0.043506739693175
407 => 0.04259651508759
408 => 0.04146203822072
409 => 0.041451938996959
410 => 0.041207517816907
411 => 0.04089621069514
412 => 0.040809612175606
413 => 0.042072816301378
414 => 0.044687611037207
415 => 0.044174264263828
416 => 0.044545209917488
417 => 0.046369895395084
418 => 0.046949908038205
419 => 0.04653822880247
420 => 0.045974696873326
421 => 0.045999489418236
422 => 0.047925248612835
423 => 0.048045355851618
424 => 0.048348828095958
425 => 0.048738875691182
426 => 0.04660465559455
427 => 0.045898967843612
428 => 0.045564573837151
429 => 0.04453476972402
430 => 0.0456453251713
501 => 0.044998252070896
502 => 0.045085564339305
503 => 0.045028702109961
504 => 0.04505975273219
505 => 0.043411205540561
506 => 0.044011849492101
507 => 0.043013162425856
508 => 0.041676032552037
509 => 0.041671550023842
510 => 0.041998810666148
511 => 0.041804143230394
512 => 0.041280298166137
513 => 0.041354707885036
514 => 0.040702800449898
515 => 0.041433861250827
516 => 0.041454825458736
517 => 0.041173327229228
518 => 0.042299627260009
519 => 0.042761073301594
520 => 0.042575785136655
521 => 0.042748072990001
522 => 0.044195596139884
523 => 0.044431605573178
524 => 0.044536425373539
525 => 0.044395980727017
526 => 0.042774531055925
527 => 0.042846449243775
528 => 0.042318761299804
529 => 0.041872920593534
530 => 0.041890751883658
531 => 0.042119971961916
601 => 0.043120989487247
602 => 0.045227571856099
603 => 0.045307515117105
604 => 0.045404408681554
605 => 0.045010293860136
606 => 0.044891425058826
607 => 0.045048243690395
608 => 0.045839365269297
609 => 0.047874344757646
610 => 0.047155047094753
611 => 0.046570246898286
612 => 0.047083274331589
613 => 0.047004297779474
614 => 0.046337656200431
615 => 0.046318945791626
616 => 0.045039447463236
617 => 0.044566446063998
618 => 0.044171170691254
619 => 0.043739540303141
620 => 0.043483655340687
621 => 0.043876810940653
622 => 0.043966730278045
623 => 0.043107088687536
624 => 0.042989922715235
625 => 0.043691924594697
626 => 0.043382999740814
627 => 0.043700736614
628 => 0.043774454294076
629 => 0.043762584049722
630 => 0.043440031022474
701 => 0.043645616703372
702 => 0.043159345280007
703 => 0.042630598142704
704 => 0.042293290411215
705 => 0.041998944678113
706 => 0.042162264798313
707 => 0.041580058390878
708 => 0.04139379884364
709 => 0.043575968900508
710 => 0.045187961383798
711 => 0.045164522374672
712 => 0.04502184343464
713 => 0.044809851471119
714 => 0.045823856736749
715 => 0.045470597577879
716 => 0.045727623131747
717 => 0.045793046922535
718 => 0.045991065032866
719 => 0.046061839487077
720 => 0.045847909930431
721 => 0.045129936209033
722 => 0.043340813958203
723 => 0.042507972720798
724 => 0.042233121240386
725 => 0.042243111569682
726 => 0.041967533688913
727 => 0.042048703725334
728 => 0.041939306062773
729 => 0.041732133356019
730 => 0.042149472467468
731 => 0.04219756691228
801 => 0.042100154976837
802 => 0.042123099013997
803 => 0.041316569793709
804 => 0.041377888458638
805 => 0.041036458340314
806 => 0.04097244430913
807 => 0.040109338701727
808 => 0.038580222009055
809 => 0.039427501091744
810 => 0.038404107105323
811 => 0.038016532295716
812 => 0.039851251164146
813 => 0.039667096276936
814 => 0.039351903160237
815 => 0.038885666848638
816 => 0.038712735265411
817 => 0.037662057709208
818 => 0.037599978074041
819 => 0.038120722241575
820 => 0.037880416725971
821 => 0.037542936771246
822 => 0.03632061858503
823 => 0.034946328248078
824 => 0.03498780943487
825 => 0.035424945621473
826 => 0.036695978039869
827 => 0.036199363684918
828 => 0.035839064272408
829 => 0.035771591023005
830 => 0.036616160004094
831 => 0.037811402055008
901 => 0.038372182883263
902 => 0.037816466113629
903 => 0.03717808861059
904 => 0.037216943691243
905 => 0.037475429135448
906 => 0.037502592300847
907 => 0.037087074172636
908 => 0.037204040091816
909 => 0.037026358164993
910 => 0.03593592450806
911 => 0.035916202021009
912 => 0.035648592015979
913 => 0.035640488891382
914 => 0.035185217514382
915 => 0.035121521901598
916 => 0.034217552949568
917 => 0.034812548051264
918 => 0.034413456575691
919 => 0.033811931585841
920 => 0.033708228450863
921 => 0.0337051110094
922 => 0.034322742675449
923 => 0.034805330665644
924 => 0.034420398942775
925 => 0.034332757451066
926 => 0.035268539293681
927 => 0.035149452524367
928 => 0.035046324150169
929 => 0.037704381238878
930 => 0.035600321642384
1001 => 0.034682831562789
1002 => 0.03354726336265
1003 => 0.033917010094647
1004 => 0.033994921163788
1005 => 0.031264084344007
1006 => 0.030156184186325
1007 => 0.029775994602546
1008 => 0.029557190121989
1009 => 0.029656902071352
1010 => 0.028659661985712
1011 => 0.029329823816091
1012 => 0.028466298196532
1013 => 0.028321525316258
1014 => 0.029865616094326
1015 => 0.030080467305647
1016 => 0.029163845289113
1017 => 0.029752465011352
1018 => 0.029539023317642
1019 => 0.028481100864811
1020 => 0.028440696008663
1021 => 0.027909867709605
1022 => 0.027079224210191
1023 => 0.026699597841819
1024 => 0.026501885133103
1025 => 0.026583465250063
1026 => 0.026542215846535
1027 => 0.026273035586345
1028 => 0.026557644943958
1029 => 0.025830585643963
1030 => 0.02554106477239
1031 => 0.025410294911533
1101 => 0.024764987934815
1102 => 0.025791958304089
1103 => 0.025994284404267
1104 => 0.026197009149365
1105 => 0.027961589649379
1106 => 0.027873436194251
1107 => 0.028670300496134
1108 => 0.028639335814702
1109 => 0.028412057207459
1110 => 0.027453206149018
1111 => 0.027835387091036
1112 => 0.02665909355561
1113 => 0.027540452652536
1114 => 0.027138237167135
1115 => 0.02740446319233
1116 => 0.026925764794397
1117 => 0.027190696252785
1118 => 0.026042263428423
1119 => 0.02496987301592
1120 => 0.025401434222939
1121 => 0.025870590609979
1122 => 0.026887841195906
1123 => 0.026281975139063
1124 => 0.026499867483436
1125 => 0.025769964604525
1126 => 0.024263966478881
1127 => 0.024272490264722
1128 => 0.024040825263044
1129 => 0.02384063287795
1130 => 0.0263515661439
1201 => 0.026039291900298
1202 => 0.025541723762561
1203 => 0.026207738487494
1204 => 0.026383843351841
1205 => 0.026388856809755
1206 => 0.026874763960737
1207 => 0.02713409269432
1208 => 0.027179800507609
1209 => 0.027944385908399
1210 => 0.028200664849618
1211 => 0.029256241538548
1212 => 0.027112090463105
1213 => 0.027067933082704
1214 => 0.026217110680499
1215 => 0.025677505662051
1216 => 0.026254057897765
1217 => 0.026764804471378
1218 => 0.026232981000242
1219 => 0.026302425918166
1220 => 0.02558849635974
1221 => 0.025843692583369
1222 => 0.026063501949803
1223 => 0.025942136137456
1224 => 0.0257604456422
1225 => 0.026722929076819
1226 => 0.026668621989435
1227 => 0.02756490869115
1228 => 0.028263628269214
1229 => 0.02951585866417
1230 => 0.028209090966787
1231 => 0.028161467157963
]
'min_raw' => 0.02384063287795
'max_raw' => 0.068930280830286
'avg_raw' => 0.046385456854118
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.02384'
'max' => '$0.06893'
'avg' => '$0.046385'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0041920921581881
'max_diff' => -0.02328468407067
'year' => 2030
]
5 => [
'items' => [
101 => 0.028626997528315
102 => 0.028200593579344
103 => 0.02847006615613
104 => 0.02947244246602
105 => 0.029493621097924
106 => 0.029138851726405
107 => 0.029117263977906
108 => 0.029185401316458
109 => 0.029584483836588
110 => 0.029445032141487
111 => 0.029606409173543
112 => 0.029808213623221
113 => 0.030642962390402
114 => 0.030844217492141
115 => 0.030355271933722
116 => 0.030399418243156
117 => 0.030216539182452
118 => 0.030039880301279
119 => 0.030436983667197
120 => 0.031162697873498
121 => 0.031158183243086
122 => 0.031326534833079
123 => 0.031431416478945
124 => 0.030981187676831
125 => 0.030688105282026
126 => 0.030800491721512
127 => 0.030980200085707
128 => 0.030742214721052
129 => 0.029273258804856
130 => 0.029718846192562
131 => 0.029644678663138
201 => 0.029539055082158
202 => 0.029987096646122
203 => 0.029943881944273
204 => 0.028649433847246
205 => 0.028732300214591
206 => 0.028654473225507
207 => 0.028905948149144
208 => 0.028187013108198
209 => 0.028408152684691
210 => 0.028546849354013
211 => 0.028628542757762
212 => 0.028923675349794
213 => 0.028889044946526
214 => 0.028921522675303
215 => 0.02935912639717
216 => 0.031572375854913
217 => 0.031692838139638
218 => 0.03109963779264
219 => 0.031336609630906
220 => 0.030881675521479
221 => 0.031187075836931
222 => 0.031396022976436
223 => 0.030451831031237
224 => 0.030395922111997
225 => 0.029939110327672
226 => 0.030184575105426
227 => 0.029794022994477
228 => 0.029889850821571
301 => 0.029621907862896
302 => 0.0301041518416
303 => 0.030643375542929
304 => 0.030779604744474
305 => 0.030421244365568
306 => 0.03016176783414
307 => 0.029706212521836
308 => 0.03046381115891
309 => 0.030685356087791
310 => 0.030462647477713
311 => 0.030411041026479
312 => 0.030313246894641
313 => 0.030431788513851
314 => 0.030684149506529
315 => 0.030565140722758
316 => 0.030643748121103
317 => 0.030344177778207
318 => 0.030981336721298
319 => 0.031993298463577
320 => 0.031996552086051
321 => 0.031877542660779
322 => 0.031828846568051
323 => 0.031950957460476
324 => 0.032017197610366
325 => 0.032412081845163
326 => 0.032835808361981
327 => 0.034813155129609
328 => 0.03425792406974
329 => 0.036012343754865
330 => 0.037399861942915
331 => 0.037815917978694
401 => 0.037433166002726
402 => 0.036123792168796
403 => 0.036059548041806
404 => 0.038016305353071
405 => 0.037463431787476
406 => 0.037397669236077
407 => 0.036698066796783
408 => 0.037111618485854
409 => 0.037021168665016
410 => 0.036878389197868
411 => 0.037667417012356
412 => 0.039144406644077
413 => 0.038914203958852
414 => 0.038742368333127
415 => 0.037989434641799
416 => 0.038442868897807
417 => 0.038281409644203
418 => 0.038975141062258
419 => 0.038564189938235
420 => 0.03745924322645
421 => 0.037635209632254
422 => 0.037608612664012
423 => 0.03815597638575
424 => 0.037991671382887
425 => 0.037576529475202
426 => 0.039139358454085
427 => 0.039037877033108
428 => 0.039181754486171
429 => 0.039245093790567
430 => 0.040196360249878
501 => 0.040586063681126
502 => 0.040674533182738
503 => 0.041044721301679
504 => 0.040665322565105
505 => 0.042183188018114
506 => 0.04319247997446
507 => 0.044364824519445
508 => 0.046077934996176
509 => 0.046722080382585
510 => 0.046605721284052
511 => 0.047904582096049
512 => 0.050238606103155
513 => 0.047077494268188
514 => 0.050406152706187
515 => 0.049352337875926
516 => 0.046853761870697
517 => 0.046692883032236
518 => 0.048384947712042
519 => 0.052137784316659
520 => 0.051197741311523
521 => 0.052139321890255
522 => 0.051040918130167
523 => 0.050986373125405
524 => 0.05208597487131
525 => 0.054655254286789
526 => 0.053434685944494
527 => 0.051684701930178
528 => 0.052976862893582
529 => 0.051857473483229
530 => 0.049335175844337
531 => 0.051197022478353
601 => 0.049952058656526
602 => 0.050315405285652
603 => 0.052932134064741
604 => 0.052617282335035
605 => 0.053024729627759
606 => 0.052305595820853
607 => 0.051633811448211
608 => 0.050379876029311
609 => 0.050008647570043
610 => 0.050111241760784
611 => 0.050008596729458
612 => 0.049307031386845
613 => 0.049155528417904
614 => 0.048903016832172
615 => 0.04898128073128
616 => 0.048506485075234
617 => 0.049402522575981
618 => 0.049568835031975
619 => 0.050220896401692
620 => 0.050288595576227
621 => 0.052104577209376
622 => 0.051104365042169
623 => 0.051775393718095
624 => 0.051715370597353
625 => 0.046907913589075
626 => 0.047570338748264
627 => 0.048600864415495
628 => 0.048136613999252
629 => 0.047480272528551
630 => 0.046950241600157
701 => 0.046147190545196
702 => 0.047277469483825
703 => 0.048763666096357
704 => 0.050326287974918
705 => 0.052203675774968
706 => 0.0517846646732
707 => 0.05029119151588
708 => 0.050358187630735
709 => 0.050772331250766
710 => 0.05023597763391
711 => 0.050077796481432
712 => 0.050750599589452
713 => 0.050755232814691
714 => 0.050138093157998
715 => 0.049452255364949
716 => 0.049449381679554
717 => 0.049327343468688
718 => 0.051062628456771
719 => 0.052016859743115
720 => 0.052126260822274
721 => 0.052009496178826
722 => 0.052054434255866
723 => 0.051499188095394
724 => 0.052768316165099
725 => 0.053932993585618
726 => 0.053620835157215
727 => 0.053152865297104
728 => 0.052780104763043
729 => 0.053533024621891
730 => 0.053499498285782
731 => 0.053922821144392
801 => 0.053903616774294
802 => 0.053761269218922
803 => 0.053620840240895
804 => 0.0541776252654
805 => 0.054017280120037
806 => 0.053856685914374
807 => 0.053534589649174
808 => 0.053578367881067
809 => 0.05311047882255
810 => 0.052894011934933
811 => 0.049638869321865
812 => 0.0487689888508
813 => 0.049042670955047
814 => 0.049132774209918
815 => 0.048754201114128
816 => 0.049296977686041
817 => 0.049212386532251
818 => 0.049541481227478
819 => 0.049335877149531
820 => 0.049344315212608
821 => 0.049948952966439
822 => 0.05012448187869
823 => 0.050035206457227
824 => 0.050097731902237
825 => 0.051538604392151
826 => 0.051333758400594
827 => 0.051224938050311
828 => 0.051255082031031
829 => 0.051623255844858
830 => 0.051726324411185
831 => 0.051289615653159
901 => 0.051495570028027
902 => 0.052372497616715
903 => 0.052679372642953
904 => 0.053658770418335
905 => 0.053242704835945
906 => 0.054006411219318
907 => 0.056353784275112
908 => 0.058229028297942
909 => 0.056504476396811
910 => 0.059948123233851
911 => 0.062629496258286
912 => 0.062526580695548
913 => 0.062059021287462
914 => 0.059006349387133
915 => 0.056197235191676
916 => 0.058547178497465
917 => 0.058553168986221
918 => 0.058351306772192
919 => 0.057097557897641
920 => 0.058307679029016
921 => 0.05840373404991
922 => 0.058349968781301
923 => 0.057388722458752
924 => 0.055921076992236
925 => 0.056207851403346
926 => 0.056677593738785
927 => 0.055788273499283
928 => 0.055504081796948
929 => 0.056032448241272
930 => 0.057734955014401
1001 => 0.057413105970891
1002 => 0.057404701191671
1003 => 0.058781707885042
1004 => 0.057796068269232
1005 => 0.056211468547049
1006 => 0.055811336218895
1007 => 0.054391136015383
1008 => 0.055372073354529
1009 => 0.055407375543036
1010 => 0.054870126187322
1011 => 0.056255063371315
1012 => 0.056242300931351
1013 => 0.057557092666856
1014 => 0.060070480651917
1015 => 0.059327148148423
1016 => 0.058462733321206
1017 => 0.058556719180548
1018 => 0.05958751208066
1019 => 0.058964271162539
1020 => 0.059188392942086
1021 => 0.059587172845505
1022 => 0.059827766662385
1023 => 0.058522101432828
1024 => 0.058217688410631
1025 => 0.057594966201667
1026 => 0.057432509601009
1027 => 0.057939703846685
1028 => 0.057806076082386
1029 => 0.055404408530788
1030 => 0.055153420908894
1031 => 0.05516111834093
1101 => 0.054529998031866
1102 => 0.053567388074314
1103 => 0.056097069568307
1104 => 0.055893900741469
1105 => 0.055669618080659
1106 => 0.055697091426869
1107 => 0.05679514042455
1108 => 0.056158216553092
1109 => 0.057851583055134
1110 => 0.057503477809571
1111 => 0.05714644497798
1112 => 0.057097092165168
1113 => 0.056959664985615
1114 => 0.056488376052528
1115 => 0.05591926634575
1116 => 0.055543490821897
1117 => 0.051235934265384
1118 => 0.052035391706369
1119 => 0.052955094619384
1120 => 0.053272572379479
1121 => 0.052729504702045
1122 => 0.056509819674469
1123 => 0.057200519647953
1124 => 0.055108344375027
1125 => 0.054716983804416
1126 => 0.056535477208324
1127 => 0.05543870338399
1128 => 0.055932580569931
1129 => 0.054865088230304
1130 => 0.057034150250397
1201 => 0.057017625631976
1202 => 0.056173811515673
1203 => 0.056886997428583
1204 => 0.056763063825571
1205 => 0.055810399766487
1206 => 0.057064351400306
1207 => 0.057064973344672
1208 => 0.05625282060383
1209 => 0.055304404005623
1210 => 0.055134849518464
1211 => 0.05500711298883
1212 => 0.055901165214033
1213 => 0.056702769643521
1214 => 0.058194356752208
1215 => 0.058569377190567
1216 => 0.060033106928008
1217 => 0.059161527137069
1218 => 0.059547887169545
1219 => 0.05996733563876
1220 => 0.060168434659608
1221 => 0.059840754596704
1222 => 0.062114529374146
1223 => 0.062306505632021
1224 => 0.062370873610699
1225 => 0.061604169548995
1226 => 0.062285182205108
1227 => 0.061966558936081
1228 => 0.062795528165995
1229 => 0.062925521126056
1230 => 0.062815421713518
1231 => 0.062856683530841
]
'min_raw' => 0.028187013108198
'max_raw' => 0.062925521126056
'avg_raw' => 0.045556267117127
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.028187'
'max' => '$0.062925'
'avg' => '$0.045556'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0043463802302472
'max_diff' => -0.0060047597042297
'year' => 2031
]
6 => [
'items' => [
101 => 0.060916417879651
102 => 0.06081580486992
103 => 0.059443939343066
104 => 0.060002984685577
105 => 0.058957876213494
106 => 0.059289290875802
107 => 0.059435375301112
108 => 0.059359069087548
109 => 0.060034592270458
110 => 0.059460259564716
111 => 0.057944501125223
112 => 0.056428329718357
113 => 0.05640929542139
114 => 0.05601011425261
115 => 0.055721579381261
116 => 0.055777161433807
117 => 0.055973039836662
118 => 0.055710194572399
119 => 0.055766285936123
120 => 0.056697776308736
121 => 0.056884580059878
122 => 0.05624974792456
123 => 0.053700805295417
124 => 0.053075288380687
125 => 0.053524897534456
126 => 0.053310013317493
127 => 0.043025341423164
128 => 0.045441572530042
129 => 0.04400593005379
130 => 0.044667540157581
131 => 0.043202120947146
201 => 0.043901495803567
202 => 0.043772346804666
203 => 0.04765757492305
204 => 0.047596912429938
205 => 0.047625948355203
206 => 0.046239987989602
207 => 0.048447860484929
208 => 0.049535537868653
209 => 0.049334237732522
210 => 0.049384900639945
211 => 0.048514344036174
212 => 0.04763437724607
213 => 0.046658358649926
214 => 0.048471680562017
215 => 0.04827007011983
216 => 0.04873249193706
217 => 0.049908560815978
218 => 0.05008174142585
219 => 0.050314497921742
220 => 0.0502310712867
221 => 0.052218632197634
222 => 0.051977925456971
223 => 0.052557959445913
224 => 0.051364785523374
225 => 0.050014595972912
226 => 0.050271222865432
227 => 0.05024650763202
228 => 0.049931854343849
229 => 0.049647799424388
301 => 0.049174928015462
302 => 0.050671163125104
303 => 0.050610418712098
304 => 0.051593800150998
305 => 0.051419977929615
306 => 0.050259150593705
307 => 0.050300609769103
308 => 0.050579442648254
309 => 0.051544486426655
310 => 0.051830977125275
311 => 0.051698263218994
312 => 0.052012387191234
313 => 0.052260657971026
314 => 0.052043566178732
315 => 0.055117128151548
316 => 0.053840770932441
317 => 0.054462858560197
318 => 0.054611222793864
319 => 0.054231190929091
320 => 0.054313606232639
321 => 0.054438442960689
322 => 0.055196427127872
323 => 0.057185596907045
324 => 0.058066586661505
325 => 0.060717087805065
326 => 0.057993432726366
327 => 0.057831822305602
328 => 0.058309257599023
329 => 0.059865382354332
330 => 0.061126475309145
331 => 0.061544852596454
401 => 0.061600148061628
402 => 0.062385051665816
403 => 0.062834943774151
404 => 0.062289743723253
405 => 0.061827743764942
406 => 0.060172917259818
407 => 0.060364467933729
408 => 0.061684062125313
409 => 0.063548066644636
410 => 0.06514757643883
411 => 0.064587483857447
412 => 0.068860594889655
413 => 0.069284256394405
414 => 0.069225720073065
415 => 0.070190884030171
416 => 0.068275230127538
417 => 0.067456250970116
418 => 0.061927633399851
419 => 0.063480949427715
420 => 0.065738785497268
421 => 0.065439952427012
422 => 0.063800251521172
423 => 0.065146332578657
424 => 0.064701276085206
425 => 0.06435024156341
426 => 0.065958398759148
427 => 0.064190163862978
428 => 0.065721146001549
429 => 0.063757645572849
430 => 0.064590042313181
501 => 0.064117533664868
502 => 0.064423304668808
503 => 0.062635773627704
504 => 0.063600281987621
505 => 0.062595646908922
506 => 0.062595170581087
507 => 0.062572993206043
508 => 0.063754941920898
509 => 0.063793485226056
510 => 0.062920023339953
511 => 0.062794143836126
512 => 0.063259586337892
513 => 0.062714675067909
514 => 0.062969635621503
515 => 0.062722397563345
516 => 0.062666739068823
517 => 0.062223242714962
518 => 0.062032172291532
519 => 0.062107095927837
520 => 0.061851342931346
521 => 0.06169724249997
522 => 0.062542338751591
523 => 0.062090837915435
524 => 0.062473139773016
525 => 0.062037458555962
526 => 0.060527197640381
527 => 0.059658630617111
528 => 0.056805887748839
529 => 0.057614922087465
530 => 0.05815131269098
531 => 0.057974035599718
601 => 0.058354895388876
602 => 0.058378277086715
603 => 0.058254455686854
604 => 0.058111086368318
605 => 0.058041302112876
606 => 0.058561416779776
607 => 0.058863360850167
608 => 0.058205146664023
609 => 0.058050936289605
610 => 0.058716427172797
611 => 0.059122376227103
612 => 0.062119675961028
613 => 0.061897626315589
614 => 0.0624549273506
615 => 0.062392183806539
616 => 0.062976324076249
617 => 0.063931146541127
618 => 0.06198972549747
619 => 0.06232668906136
620 => 0.062244073377119
621 => 0.063146049754664
622 => 0.063148865626461
623 => 0.062608085731061
624 => 0.062901251285509
625 => 0.062737614315593
626 => 0.063033328437095
627 => 0.061894660707197
628 => 0.063281435090627
629 => 0.064067646804265
630 => 0.064078563354671
701 => 0.064451221467173
702 => 0.064829863692378
703 => 0.065556634470871
704 => 0.064809594449821
705 => 0.063465742174834
706 => 0.063562763968472
707 => 0.062774863871343
708 => 0.062788108614321
709 => 0.062717407138293
710 => 0.062929587590013
711 => 0.061941222384407
712 => 0.062173189722647
713 => 0.061848434090713
714 => 0.06232598310604
715 => 0.061812219307228
716 => 0.062244033537335
717 => 0.062430390244181
718 => 0.063118050504415
719 => 0.061710651327672
720 => 0.058840869133745
721 => 0.059444132143654
722 => 0.058551858766711
723 => 0.058634442064872
724 => 0.05880127347019
725 => 0.058260518301714
726 => 0.058363677346705
727 => 0.058359991779699
728 => 0.058328231554345
729 => 0.058187560250069
730 => 0.057983559027899
731 => 0.058796237108758
801 => 0.058934326950768
802 => 0.059241283563843
803 => 0.060154578233696
804 => 0.060063318559206
805 => 0.060212166874627
806 => 0.059887231837812
807 => 0.058649514869293
808 => 0.05871672885552
809 => 0.057878569370244
810 => 0.059219849941365
811 => 0.058902216998085
812 => 0.058697436973228
813 => 0.058641560846172
814 => 0.05955711939686
815 => 0.059831068864848
816 => 0.059660361940463
817 => 0.059310237058233
818 => 0.059982580337245
819 => 0.060162471034822
820 => 0.060202741927896
821 => 0.061394005309269
822 => 0.06026932031763
823 => 0.060540043173525
824 => 0.062652145613969
825 => 0.0607367601507
826 => 0.061751382548787
827 => 0.06170172206224
828 => 0.062220768548152
829 => 0.061659145100564
830 => 0.061666107096296
831 => 0.062126985212531
901 => 0.061479765018086
902 => 0.061319504196063
903 => 0.061098105018248
904 => 0.06158152202328
905 => 0.061871308654726
906 => 0.064206776079351
907 => 0.065715594545913
908 => 0.065650092757054
909 => 0.066248656493015
910 => 0.065978998047749
911 => 0.065108199795682
912 => 0.066594546229427
913 => 0.066124204026414
914 => 0.066162978466164
915 => 0.06616153527958
916 => 0.066474271726555
917 => 0.066252669291999
918 => 0.065815868146466
919 => 0.066105837131527
920 => 0.066966941351348
921 => 0.069639835271579
922 => 0.071135622120474
923 => 0.06954978702511
924 => 0.070643674838714
925 => 0.069987731942633
926 => 0.069868527605804
927 => 0.070555569990422
928 => 0.071243814951784
929 => 0.07119997672311
930 => 0.070700346222931
1001 => 0.070418117631034
1002 => 0.072555247082391
1003 => 0.0741298476571
1004 => 0.074022470454161
1005 => 0.074496398506997
1006 => 0.075887865928165
1007 => 0.07601508427072
1008 => 0.075999057683638
1009 => 0.075683733747756
1010 => 0.077053814128774
1011 => 0.07819675928689
1012 => 0.075610745367184
1013 => 0.0765954656144
1014 => 0.07703753825908
1015 => 0.077686632058514
1016 => 0.078781762098911
1017 => 0.079971363791679
1018 => 0.080139586514356
1019 => 0.080020224442418
1020 => 0.079235650147828
1021 => 0.080537326514955
1022 => 0.081299818002751
1023 => 0.081753864234426
1024 => 0.082905249931865
1025 => 0.077040268349234
1026 => 0.07288874287655
1027 => 0.072240422225236
1028 => 0.073558807763634
1029 => 0.073906455516182
1030 => 0.073766319143043
1031 => 0.069093399783354
1101 => 0.07221582027189
1102 => 0.075575282176983
1103 => 0.075704332790597
1104 => 0.077386149663323
1105 => 0.077933818177085
1106 => 0.079287901200406
1107 => 0.07920320293862
1108 => 0.079532900606632
1109 => 0.079457108822323
1110 => 0.081965262487204
1111 => 0.084732128443992
1112 => 0.084636320674003
1113 => 0.084238550956643
1114 => 0.084829306816738
1115 => 0.087685008999518
1116 => 0.087422101704223
1117 => 0.087677493747212
1118 => 0.091044527561032
1119 => 0.095422150473973
1120 => 0.093388305124757
1121 => 0.097801164309322
1122 => 0.10057882525039
1123 => 0.10538250263247
1124 => 0.10478105856562
1125 => 0.10665109491945
1126 => 0.1037043481608
1127 => 0.096938021967169
1128 => 0.09586722494657
1129 => 0.098010987698708
1130 => 0.10328121923953
1201 => 0.097845009352326
1202 => 0.098944747532372
1203 => 0.098628022862536
1204 => 0.098611145950873
1205 => 0.099255269025667
1206 => 0.098320934910478
1207 => 0.094514289641702
1208 => 0.096258852735681
1209 => 0.095585193144295
1210 => 0.096332668685587
1211 => 0.10036648589958
1212 => 0.09858303915508
1213 => 0.096704322885201
1214 => 0.099060650008145
1215 => 0.1020610641575
1216 => 0.1018733036323
1217 => 0.10150896973559
1218 => 0.10356270083542
1219 => 0.1069548629256
1220 => 0.10787175070776
1221 => 0.10854857852361
1222 => 0.10864190164431
1223 => 0.10960318778758
1224 => 0.10443410991994
1225 => 0.11263756924721
1226 => 0.11405408005704
1227 => 0.11378783473315
1228 => 0.11536222688239
1229 => 0.11489900077361
1230 => 0.11422785881993
1231 => 0.11672360525929
]
'min_raw' => 0.043025341423164
'max_raw' => 0.11672360525929
'avg_raw' => 0.079874473341227
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.043025'
'max' => '$0.116723'
'avg' => '$0.079874'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.014838328314966
'max_diff' => 0.053798084133234
'year' => 2032
]
7 => [
'items' => [
101 => 0.11386243336292
102 => 0.10980136006755
103 => 0.10757337493879
104 => 0.11050736548278
105 => 0.11229905112583
106 => 0.11348324136328
107 => 0.11384157661363
108 => 0.10483537072033
109 => 0.09998152525092
110 => 0.10309278454736
111 => 0.10688873561666
112 => 0.10441302322009
113 => 0.10451006645889
114 => 0.10098035118715
115 => 0.10720103709663
116 => 0.10629473548382
117 => 0.11099662985429
118 => 0.10987448502772
119 => 0.11370869736034
120 => 0.11269902075471
121 => 0.11689013189442
122 => 0.11856207959785
123 => 0.1213695400098
124 => 0.12343471931724
125 => 0.12464743210716
126 => 0.12457462538003
127 => 0.12937999762479
128 => 0.12654643749897
129 => 0.1229868181621
130 => 0.12292243587875
131 => 0.12476601317351
201 => 0.12862964542261
202 => 0.12963142905123
203 => 0.1301912894338
204 => 0.12933384376902
205 => 0.12625821733553
206 => 0.12493017743532
207 => 0.12606170590732
208 => 0.12467794381942
209 => 0.1270667053982
210 => 0.1303469852578
211 => 0.12966962043843
212 => 0.13193394947339
213 => 0.13427729181022
214 => 0.13762837659797
215 => 0.1385044742518
216 => 0.13995263035857
217 => 0.14144325868693
218 => 0.14192200833244
219 => 0.14283608995301
220 => 0.14283127229167
221 => 0.14558591878005
222 => 0.14862437916103
223 => 0.14977132761433
224 => 0.15240867233959
225 => 0.14789231192117
226 => 0.15131802317875
227 => 0.15440810048421
228 => 0.15072398293171
301 => 0.15580168068853
302 => 0.15599883618612
303 => 0.1589756501259
304 => 0.15595807890939
305 => 0.15416625475345
306 => 0.15933918395286
307 => 0.16184220144671
308 => 0.16108827220733
309 => 0.15535083346957
310 => 0.15201139803388
311 => 0.14327145136967
312 => 0.15362429573102
313 => 0.15866686422283
314 => 0.15533777443538
315 => 0.15701677368258
316 => 0.16617684915798
317 => 0.16966441282804
318 => 0.16893902396458
319 => 0.16906160274159
320 => 0.1709434287942
321 => 0.179288481852
322 => 0.17428793262295
323 => 0.17811066514156
324 => 0.18013822868554
325 => 0.18202154270253
326 => 0.1773967187043
327 => 0.17137989063476
328 => 0.16947410861588
329 => 0.1550067620652
330 => 0.15425367384874
331 => 0.15383094261193
401 => 0.15116568196036
402 => 0.14907151716457
403 => 0.14740615956759
404 => 0.14303576391527
405 => 0.14451064415362
406 => 0.13754514565627
407 => 0.14200142475276
408 => 0.13088432096315
409 => 0.14014297534566
410 => 0.13510391070462
411 => 0.13848750708587
412 => 0.13847570203685
413 => 0.13224542832876
414 => 0.12865193647643
415 => 0.13094184934553
416 => 0.13339681771471
417 => 0.13379512807311
418 => 0.13697805864499
419 => 0.13786634615074
420 => 0.13517479353814
421 => 0.13065394369724
422 => 0.13170403400567
423 => 0.12863065642984
424 => 0.12324468044396
425 => 0.12711298242714
426 => 0.12843379080143
427 => 0.12901713502431
428 => 0.12372064622571
429 => 0.12205637445283
430 => 0.12117033012554
501 => 0.1299702335038
502 => 0.13045231207552
503 => 0.12798592994356
504 => 0.13913421105196
505 => 0.1366110116893
506 => 0.13943004357624
507 => 0.13160874931671
508 => 0.13190753329019
509 => 0.12820480724593
510 => 0.13027808641447
511 => 0.12881275952305
512 => 0.1301105859462
513 => 0.13088849775309
514 => 0.13459061621645
515 => 0.14018524759172
516 => 0.13403764317279
517 => 0.13135904389215
518 => 0.13302083182085
519 => 0.13744639206282
520 => 0.14415134236967
521 => 0.14018187683831
522 => 0.14194345823523
523 => 0.14232828540316
524 => 0.13940134847794
525 => 0.14425926270904
526 => 0.14686265841111
527 => 0.1495332037046
528 => 0.15185196335596
529 => 0.14846652918783
530 => 0.15208942903066
531 => 0.14917001128525
601 => 0.14655099176377
602 => 0.1465549637353
603 => 0.1449120145317
604 => 0.14172859342481
605 => 0.14114152173025
606 => 0.1441955428243
607 => 0.14664457852486
608 => 0.14684629283524
609 => 0.14820220483507
610 => 0.14900461958956
611 => 0.15686937501354
612 => 0.16003264470573
613 => 0.16390063100771
614 => 0.1654074296601
615 => 0.16994235338656
616 => 0.16628003416894
617 => 0.16548766836914
618 => 0.15448742677098
619 => 0.15628871571644
620 => 0.15917275311664
621 => 0.15453498348546
622 => 0.15747658084902
623 => 0.15805731448014
624 => 0.15437739384805
625 => 0.15634299845764
626 => 0.15112293537573
627 => 0.14029903070212
628 => 0.14427131280912
629 => 0.14719624949557
630 => 0.14302200420191
701 => 0.15050417732519
702 => 0.14613324624998
703 => 0.14474787094082
704 => 0.13934302793787
705 => 0.14189390578378
706 => 0.14534400459542
707 => 0.14321224464686
708 => 0.14763596662549
709 => 0.15390113671079
710 => 0.1583660700109
711 => 0.15870883214838
712 => 0.15583817916371
713 => 0.16043841889191
714 => 0.16047192661613
715 => 0.15528283741019
716 => 0.15210454916452
717 => 0.15138243538793
718 => 0.1531864171806
719 => 0.15537678411032
720 => 0.1588303822688
721 => 0.1609173193054
722 => 0.16635894427096
723 => 0.16783129196303
724 => 0.16944895568868
725 => 0.17161065329517
726 => 0.17420632551965
727 => 0.16852714246419
728 => 0.1687527869943
729 => 0.1634644103667
730 => 0.15781302151018
731 => 0.16210172119671
801 => 0.16770862553504
802 => 0.16642239548475
803 => 0.1662776683288
804 => 0.16652105926114
805 => 0.16555128380757
806 => 0.16116502537261
807 => 0.158962273846
808 => 0.16180438529717
809 => 0.16331484104564
810 => 0.16565742618594
811 => 0.16536865312142
812 => 0.17140290086753
813 => 0.17374762707549
814 => 0.17314774577501
815 => 0.17325813837125
816 => 0.17750315317204
817 => 0.18222448268439
818 => 0.18664663080702
819 => 0.19114502981303
820 => 0.18572203423578
821 => 0.18296857152552
822 => 0.18580944219974
823 => 0.18430203623185
824 => 0.192964038049
825 => 0.19356377626115
826 => 0.20222515171698
827 => 0.21044582840197
828 => 0.20528256866485
829 => 0.21015129003862
830 => 0.21541720915704
831 => 0.22557602150106
901 => 0.22215489089492
902 => 0.21953435846657
903 => 0.2170579679841
904 => 0.2222109434622
905 => 0.22884016409399
906 => 0.23026803472419
907 => 0.23258173063368
908 => 0.23014916229013
909 => 0.23307892292132
910 => 0.24342226535148
911 => 0.24062740292364
912 => 0.23665824897956
913 => 0.244823324443
914 => 0.2477782335123
915 => 0.2685173328585
916 => 0.29470130247254
917 => 0.28386096711912
918 => 0.27713202114981
919 => 0.27871348306533
920 => 0.28827498238507
921 => 0.29134583249975
922 => 0.28299820330253
923 => 0.28594672705696
924 => 0.30219338283632
925 => 0.31090919240682
926 => 0.29907195232068
927 => 0.26641347639478
928 => 0.23630087009434
929 => 0.24428808927355
930 => 0.2433825864909
1001 => 0.26083759131424
1002 => 0.24056074637906
1003 => 0.2409021564449
1004 => 0.25871811228281
1005 => 0.25396512070807
1006 => 0.24626588307414
1007 => 0.23635708304956
1008 => 0.21803974975105
1009 => 0.20181557683193
1010 => 0.2336349161302
1011 => 0.23226280835994
1012 => 0.23027579297363
1013 => 0.23469768069834
1014 => 0.2561691123148
1015 => 0.2556741263198
1016 => 0.25252527796368
1017 => 0.25491365168912
1018 => 0.24584718961246
1019 => 0.24818382332912
1020 => 0.23629610010366
1021 => 0.24166984747674
1022 => 0.24624936396808
1023 => 0.24716876970462
1024 => 0.24924023777506
1025 => 0.23153976991408
1026 => 0.23948676032523
1027 => 0.24415487265947
1028 => 0.22306417130596
1029 => 0.24373797730549
1030 => 0.2312316441486
1031 => 0.22698680683634
1101 => 0.23270192106251
1102 => 0.23047473549044
1103 => 0.2285599321203
1104 => 0.22749143893926
1105 => 0.23168798807283
1106 => 0.23149221403978
1107 => 0.22462584514219
1108 => 0.21566894682427
1109 => 0.21867517589993
1110 => 0.21758298469319
1111 => 0.21362474286452
1112 => 0.2162921199371
1113 => 0.20454634123808
1114 => 0.18433833947886
1115 => 0.19768836442883
1116 => 0.19717440299029
1117 => 0.19691524032668
1118 => 0.206947415109
1119 => 0.20598305298533
1120 => 0.20423272628781
1121 => 0.21359259674209
1122 => 0.21017611811826
1123 => 0.22070490021332
1124 => 0.22763983706005
1125 => 0.22588091275402
1126 => 0.23240325437783
1127 => 0.2187444333461
1128 => 0.22328134579606
1129 => 0.2242163971641
1130 => 0.21347709739358
1201 => 0.20614083455523
1202 => 0.20565158946343
1203 => 0.19293152070103
1204 => 0.1997264787611
1205 => 0.20570576065949
1206 => 0.20284214864118
1207 => 0.20193561462416
1208 => 0.20656690031388
1209 => 0.20692679087625
1210 => 0.1987212479147
1211 => 0.20042744013216
1212 => 0.20754254530981
1213 => 0.20024815773716
1214 => 0.18607635421495
1215 => 0.18256155100093
1216 => 0.1820926114615
1217 => 0.17256018638251
1218 => 0.18279642695837
1219 => 0.17832803363282
1220 => 0.19244363460867
1221 => 0.18438087903475
1222 => 0.18403330975678
1223 => 0.18350790781581
1224 => 0.17530295577081
1225 => 0.17709931881676
1226 => 0.18307070317532
1227 => 0.18520136038691
1228 => 0.18497911538378
1229 => 0.18304144013428
1230 => 0.183928497941
1231 => 0.18107097567413
]
'min_raw' => 0.09998152525092
'max_raw' => 0.31090919240682
'avg_raw' => 0.20544535882887
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.099981'
'max' => '$0.3109091'
'avg' => '$0.205445'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.056956183827756
'max_diff' => 0.19418558714753
'year' => 2033
]
8 => [
'items' => [
101 => 0.18006192508752
102 => 0.17687708387494
103 => 0.17219624712729
104 => 0.17284714618629
105 => 0.16357318378163
106 => 0.15852023685714
107 => 0.15712164774521
108 => 0.15525139593367
109 => 0.15733289766387
110 => 0.16354691181135
111 => 0.15605149237285
112 => 0.14320112148807
113 => 0.14397345067421
114 => 0.14570864504888
115 => 0.14247512181114
116 => 0.13941486343566
117 => 0.14207550980653
118 => 0.13663063825921
119 => 0.14636663176219
120 => 0.14610330042274
121 => 0.14973227673085
122 => 0.15200155009041
123 => 0.14677160968261
124 => 0.14545629381331
125 => 0.14620555751024
126 => 0.13382189760557
127 => 0.14872026751921
128 => 0.14884910924089
129 => 0.14774588819778
130 => 0.15567881024122
131 => 0.17241975009333
201 => 0.16612113511822
202 => 0.16368212102321
203 => 0.15904555344569
204 => 0.16522350445059
205 => 0.16474913420447
206 => 0.16260385205191
207 => 0.16130637871235
208 => 0.16369701312319
209 => 0.16101015265287
210 => 0.16052751868241
211 => 0.15760328193237
212 => 0.15655946245691
213 => 0.15578666007292
214 => 0.15493588058215
215 => 0.15681248813775
216 => 0.15255984852846
217 => 0.14743158205106
218 => 0.14700522218207
219 => 0.14818243926628
220 => 0.14766160834002
221 => 0.14700272864398
222 => 0.14574474786901
223 => 0.14537153184559
224 => 0.14658430286305
225 => 0.14521515509328
226 => 0.14723540720891
227 => 0.14668601041911
228 => 0.14361712461152
301 => 0.13979215664822
302 => 0.13975810641021
303 => 0.13893402333672
304 => 0.13788442964091
305 => 0.13759245668619
306 => 0.14185143759033
307 => 0.15066740060131
308 => 0.14893661611414
309 => 0.15018728528405
310 => 0.15633933976724
311 => 0.15829489288871
312 => 0.1569068876029
313 => 0.15500690035925
314 => 0.15509049015537
315 => 0.16158332173218
316 => 0.16198827167335
317 => 0.1630114495329
318 => 0.16432652223245
319 => 0.15713085017017
320 => 0.15475157464834
321 => 0.15362414190891
322 => 0.15015208544286
323 => 0.15389640066987
324 => 0.15171474853466
325 => 0.15200912794355
326 => 0.15181741296732
327 => 0.15192210230805
328 => 0.14636391035359
329 => 0.14838902337182
330 => 0.14502188020187
331 => 0.14051365347687
401 => 0.1404985403201
402 => 0.14160192242424
403 => 0.14094558757335
404 => 0.13917940736551
405 => 0.1394302849279
406 => 0.13723233349561
407 => 0.13969715602698
408 => 0.13976783831762
409 => 0.13881874738325
410 => 0.14261614657279
411 => 0.14417194411912
412 => 0.14354723213462
413 => 0.14412811266094
414 => 0.1490085380236
415 => 0.14980426030561
416 => 0.15015766758081
417 => 0.14968414864953
418 => 0.14421731787744
419 => 0.14445979506894
420 => 0.14268065832385
421 => 0.14117747525506
422 => 0.14123759469465
423 => 0.14201042619213
424 => 0.1453854266676
425 => 0.15248791620107
426 => 0.15275745048701
427 => 0.15308413390444
428 => 0.15175534826781
429 => 0.15135457380504
430 => 0.1518832987701
501 => 0.15455062040772
502 => 0.16141169583042
503 => 0.15898653354021
504 => 0.15701483884838
505 => 0.15874454665819
506 => 0.15847827169877
507 => 0.1562306430716
508 => 0.15616755962199
509 => 0.15185364167611
510 => 0.15025888443467
511 => 0.14892618591822
512 => 0.14747091392923
513 => 0.14660817991299
514 => 0.14793373146752
515 => 0.14823690079151
516 => 0.14533855915085
517 => 0.14494352589497
518 => 0.14731037424378
519 => 0.14626881253047
520 => 0.1473400845821
521 => 0.14758862888728
522 => 0.14754860752968
523 => 0.14646109747838
524 => 0.14715424395507
525 => 0.1455147459008
526 => 0.14373203801144
527 => 0.14259478144465
528 => 0.14160237425494
529 => 0.14215301944284
530 => 0.14019006989182
531 => 0.13956208282408
601 => 0.14691942152506
602 => 0.15235436672819
603 => 0.15227534047246
604 => 0.15179428846462
605 => 0.1510795427588
606 => 0.15449833230746
607 => 0.15330729438956
608 => 0.15417387398938
609 => 0.15439445486777
610 => 0.15506208675193
611 => 0.15530070776562
612 => 0.1545794293293
613 => 0.15215873080028
614 => 0.14612658021908
615 => 0.14331859784005
616 => 0.14239191688433
617 => 0.14242559997705
618 => 0.1414964699118
619 => 0.14177014035671
620 => 0.14140129849948
621 => 0.14070280125433
622 => 0.14210988920626
623 => 0.14227204298479
624 => 0.14194361184336
625 => 0.14202096926655
626 => 0.13930169969028
627 => 0.13950843985022
628 => 0.1383572843684
629 => 0.13814145659294
630 => 0.13523143577747
701 => 0.13007591208861
702 => 0.13293257267104
703 => 0.12948212839473
704 => 0.12817539286453
705 => 0.13436127562542
706 => 0.13374038456591
707 => 0.13267768896688
708 => 0.13110574069074
709 => 0.1305226897842
710 => 0.12698025704749
711 => 0.12677095122327
712 => 0.1285266765413
713 => 0.12771646971785
714 => 0.1265786324884
715 => 0.12245750138404
716 => 0.11782398556312
717 => 0.11796384228051
718 => 0.11943767745352
719 => 0.12372305199279
720 => 0.12204868202256
721 => 0.12083390739798
722 => 0.12060641662679
723 => 0.12345393991246
724 => 0.12748378193625
725 => 0.12937449365118
726 => 0.12750085576345
727 => 0.12534852144186
728 => 0.12547952405906
729 => 0.12635102578107
730 => 0.12644260828968
731 => 0.12504165990987
801 => 0.12543601867269
802 => 0.12483695165105
803 => 0.12116047844505
804 => 0.12109398270298
805 => 0.12019171688709
806 => 0.12016439663677
807 => 0.11862941740318
808 => 0.11841466319759
809 => 0.11536686876273
810 => 0.11737293628933
811 => 0.11602737151575
812 => 0.11399928801534
813 => 0.11364964565544
814 => 0.1136391349839
815 => 0.11572152326765
816 => 0.1173486023698
817 => 0.11605077819108
818 => 0.11575528878285
819 => 0.11891034259943
820 => 0.11850883324231
821 => 0.11816112872851
822 => 0.12712295378271
823 => 0.12002896995238
824 => 0.11693558809191
825 => 0.11310694062231
826 => 0.11435356754413
827 => 0.11461625015331
828 => 0.10540904315448
829 => 0.10167368042174
830 => 0.10039184469604
831 => 0.099654130113401
901 => 0.099990315912346
902 => 0.096628051338529
903 => 0.098887548738857
904 => 0.095976111823082
905 => 0.095487999949517
906 => 0.10069400981275
907 => 0.10141839567215
908 => 0.098327940546901
909 => 0.10031251303655
910 => 0.09959287946418
911 => 0.096026020052672
912 => 0.095889792259194
913 => 0.09410006758767
914 => 0.09129949503572
915 => 0.090019558230085
916 => 0.089352956028789
917 => 0.089628009088862
918 => 0.089488933844927
919 => 0.08858137380413
920 => 0.089540954124113
921 => 0.087089622932519
922 => 0.086113483100309
923 => 0.085672583384372
924 => 0.083496885858473
925 => 0.086959388159259
926 => 0.087641544731969
927 => 0.088325045363855
928 => 0.094274451718728
929 => 0.093977236190086
930 => 0.096663919819173
1001 => 0.096559520233841
1002 => 0.095793234541436
1003 => 0.092560401253059
1004 => 0.093848950982093
1005 => 0.089882995201212
1006 => 0.092854558931028
1007 => 0.091498461340208
1008 => 0.09239606097146
1009 => 0.090782095901173
1010 => 0.091675330810055
1011 => 0.087803309361699
1012 => 0.084187670214036
1013 => 0.085642708954142
1014 => 0.087224502468501
1015 => 0.090654233841122
1016 => 0.088611514130258
1017 => 0.089346153382069
1018 => 0.086885234865629
1019 => 0.08180765703959
1020 => 0.081836395578662
1021 => 0.081055320851172
1022 => 0.080380358247843
1023 => 0.088846145061754
1024 => 0.08779329064716
1025 => 0.086115704931682
1026 => 0.088361220076455
1027 => 0.08895496992185
1028 => 0.088971873145235
1029 => 0.090610143029726
1030 => 0.091484487960755
1031 => 0.091638595044477
1101 => 0.094216448104888
1102 => 0.095080510448033
1103 => 0.09863946095277
1104 => 0.091410305902066
1105 => 0.091261426211074
1106 => 0.088392819079519
1107 => 0.086573503085802
1108 => 0.088517389202101
1109 => 0.090239406934226
1110 => 0.088446326970562
1111 => 0.088680465359832
1112 => 0.086273402008628
1113 => 0.087133813893826
1114 => 0.087874916519356
1115 => 0.087465723209537
1116 => 0.086853141019559
1117 => 0.090098221117823
1118 => 0.089915120981107
1119 => 0.09293701417268
1120 => 0.095292796013166
1121 => 0.099514778217693
1122 => 0.095108919690359
1123 => 0.094948352693922
1124 => 0.096517920839855
1125 => 0.095080270155328
1126 => 0.095988815761934
1127 => 0.099368397474408
1128 => 0.099439802710518
1129 => 0.098243673005234
1130 => 0.098170888403963
1201 => 0.098400618198088
1202 => 0.099746152777757
1203 => 0.09927598165152
1204 => 0.099820075582078
1205 => 0.1005004733737
1206 => 0.10331488712255
1207 => 0.10399343274925
1208 => 0.10234491866195
1209 => 0.10249376102641
1210 => 0.10187717150503
1211 => 0.10128155375323
1212 => 0.10262041547629
1213 => 0.10506721159059
1214 => 0.10505199019895
1215 => 0.10561959933854
1216 => 0.10597321513018
1217 => 0.10445523728988
1218 => 0.10346708953344
1219 => 0.10384600826074
1220 => 0.10445190755746
1221 => 0.10364952328492
1222 => 0.098696835854234
1223 => 0.10019916484181
1224 => 0.099949103838139
1225 => 0.099592986560461
1226 => 0.10110358997463
1227 => 0.10095788859019
1228 => 0.096593566455587
1229 => 0.096872956198636
1230 => 0.096610557071229
1231 => 0.09745842233369
]
'min_raw' => 0.080380358247843
'max_raw' => 0.18006192508752
'avg_raw' => 0.13022114166768
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.08038'
'max' => '$0.180061'
'avg' => '$0.130221'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.019601167003077
'max_diff' => -0.1308472673193
'year' => 2034
]
9 => [
'items' => [
101 => 0.095034482648699
102 => 0.095780070170319
103 => 0.09624769567443
104 => 0.096523130688821
105 => 0.097518190828355
106 => 0.097401432005922
107 => 0.097510932936015
108 => 0.098986344436808
109 => 0.10644846950773
110 => 0.10685461651109
111 => 0.10485460012526
112 => 0.10565356722282
113 => 0.1041197251104
114 => 0.10514940359632
115 => 0.10585388346538
116 => 0.10267047440076
117 => 0.10248197357611
118 => 0.10094180075168
119 => 0.10176940238768
120 => 0.10045262867814
121 => 0.10077571888767
122 => 0.099872330495316
123 => 0.10149824973872
124 => 0.10331628009514
125 => 0.10377558635937
126 => 0.10256734932197
127 => 0.10169250608019
128 => 0.1001565695389
129 => 0.10271086623764
130 => 0.10345782043313
131 => 0.10270694280524
201 => 0.10253294805186
202 => 0.1022032283086
203 => 0.10260289965407
204 => 0.10345375236017
205 => 0.10305250593676
206 => 0.10331753626847
207 => 0.10230751394206
208 => 0.10445573980371
209 => 0.10786763947072
210 => 0.10787860928605
211 => 0.10747736069977
212 => 0.10731317842329
213 => 0.10772488382261
214 => 0.1079482171127
215 => 0.10927959688026
216 => 0.11070822041535
217 => 0.11737498309635
218 => 0.11550298281301
219 => 0.12141813127108
220 => 0.12609624571551
221 => 0.12749900768825
222 => 0.12620853267838
223 => 0.12179388737973
224 => 0.1215772838202
225 => 0.12817462771156
226 => 0.12631057588476
227 => 0.12608885285132
228 => 0.12373009438256
301 => 0.12512441277552
302 => 0.12481945488956
303 => 0.12433806394752
304 => 0.12699832631223
305 => 0.1319780999757
306 => 0.13120195555023
307 => 0.13062259974092
308 => 0.12808403123245
309 => 0.12961281648435
310 => 0.1290684453381
311 => 0.13140740924885
312 => 0.13002185884252
313 => 0.12629645385882
314 => 0.12688973688157
315 => 0.1268000633462
316 => 0.12864553834976
317 => 0.12809157256119
318 => 0.12669189263515
319 => 0.13196107965069
320 => 0.13161892795466
321 => 0.13210402083287
322 => 0.13231757371985
323 => 0.13552483500272
324 => 0.13683874732939
325 => 0.13713702843082
326 => 0.13838514351954
327 => 0.13710597419041
328 => 0.14222356353921
329 => 0.14562646183654
330 => 0.14957910332044
331 => 0.1553549748983
401 => 0.15752675604137
402 => 0.15713444321673
403 => 0.16151364312795
404 => 0.16938296802426
405 => 0.15872505877088
406 => 0.16994786309411
407 => 0.16639485281888
408 => 0.15797072937225
409 => 0.15742831513617
410 => 0.16313322934032
411 => 0.17578617996747
412 => 0.17261675934395
413 => 0.1757913640042
414 => 0.17208801903896
415 => 0.1719041167472
416 => 0.17561150080526
417 => 0.18427400573591
418 => 0.1801587743525
419 => 0.17425858106825
420 => 0.17861519197216
421 => 0.17484109242189
422 => 0.16633698983117
423 => 0.17261433574773
424 => 0.16841685330184
425 => 0.16964190182999
426 => 0.17846438560286
427 => 0.17740284101391
428 => 0.17877657800839
429 => 0.17635196817009
430 => 0.17408700025524
501 => 0.16985926944344
502 => 0.16860764677468
503 => 0.16895355025166
504 => 0.16860747536209
505 => 0.16624209882775
506 => 0.16573129599036
507 => 0.16487993554927
508 => 0.16514380774932
509 => 0.16354300104579
510 => 0.1665640540389
511 => 0.16712478809585
512 => 0.16932325852932
513 => 0.16955151102287
514 => 0.17567421988682
515 => 0.1723019347325
516 => 0.17456435476311
517 => 0.17436198262085
518 => 0.15815330567151
519 => 0.16038671834476
520 => 0.16386120758084
521 => 0.16229595488954
522 => 0.16008305379678
523 => 0.15829601751612
524 => 0.15558847481708
525 => 0.15939928917223
526 => 0.16441010481431
527 => 0.16967859357666
528 => 0.17600833761956
529 => 0.17459561243552
530 => 0.16956026341465
531 => 0.16978614549341
601 => 0.17118245962293
602 => 0.16937410595668
603 => 0.16884078715725
604 => 0.17110918980955
605 => 0.17112481105193
606 => 0.16904408161207
607 => 0.16673173160914
608 => 0.1667220427782
609 => 0.16631058242983
610 => 0.17216121692087
611 => 0.17537847432509
612 => 0.17574732770161
613 => 0.17535364755398
614 => 0.17550515941819
615 => 0.17363310822211
616 => 0.17791206211682
617 => 0.18183885335528
618 => 0.18078638941971
619 => 0.17920859636373
620 => 0.17795180819784
621 => 0.18049033006913
622 => 0.1803772936862
623 => 0.18180455625947
624 => 0.18173980738488
625 => 0.18125987266355
626 => 0.18078640655969
627 => 0.1826636461433
628 => 0.18212303129077
629 => 0.18158157671405
630 => 0.18049560666788
701 => 0.18064320803321
702 => 0.17906568740545
703 => 0.17833585418061
704 => 0.16736091359385
705 => 0.16442805085254
706 => 0.16535078917488
707 => 0.16565457858949
708 => 0.1643781929659
709 => 0.16620820207356
710 => 0.16592299709259
711 => 0.16703256283421
712 => 0.16633935433059
713 => 0.16636780384938
714 => 0.16840638225088
715 => 0.16899819023357
716 => 0.1686971919171
717 => 0.16890800082034
718 => 0.17376600301859
719 => 0.17307535045616
720 => 0.17270845504759
721 => 0.17281008758317
722 => 0.17405141130157
723 => 0.17439891416896
724 => 0.17292652010124
725 => 0.17362090965538
726 => 0.17657753224577
727 => 0.17761218282206
728 => 0.18091429080113
729 => 0.17951149664133
730 => 0.18208638603315
731 => 0.19000071817912
801 => 0.19632323432744
802 => 0.19050878718841
803 => 0.20211928292724
804 => 0.2111597192866
805 => 0.2108127322815
806 => 0.20923632309318
807 => 0.19894402665047
808 => 0.1894729020144
809 => 0.19739589993767
810 => 0.19741609728876
811 => 0.19673550474059
812 => 0.19250840287609
813 => 0.19658841075848
814 => 0.19691226696777
815 => 0.19673099361088
816 => 0.19349008452233
817 => 0.18854181536424
818 => 0.18950869531325
819 => 0.19109246439354
820 => 0.18809405911571
821 => 0.18713588694965
822 => 0.18891731130606
823 => 0.19465743175689
824 => 0.19357229523591
825 => 0.19354395793597
826 => 0.19818663214221
827 => 0.19486347936234
828 => 0.18952089076578
829 => 0.18817181668507
830 => 0.18338351254371
831 => 0.1866908112695
901 => 0.18680983506277
902 => 0.18499846135043
903 => 0.18966787375949
904 => 0.18962484430211
905 => 0.19405775643419
906 => 0.20253181950497
907 => 0.20002562207162
908 => 0.19711118713014
909 => 0.1974280670168
910 => 0.20090345724719
911 => 0.19880215697845
912 => 0.19955779920587
913 => 0.20090231349217
914 => 0.20171349234351
915 => 0.19731135086342
916 => 0.19628500110565
917 => 0.19418544970105
918 => 0.19363771592958
919 => 0.19534775674004
920 => 0.19489722140312
921 => 0.18679983157383
922 => 0.18595360928322
923 => 0.18597956171274
924 => 0.18385169552732
925 => 0.18060618884816
926 => 0.18913518662187
927 => 0.1884501887374
928 => 0.18769400408756
929 => 0.18778663239243
930 => 0.19148878125145
1001 => 0.18934134795022
1002 => 0.19505065133893
1003 => 0.19387699019958
1004 => 0.19267322908064
1005 => 0.19250683262654
1006 => 0.19204348729582
1007 => 0.19045450375357
1008 => 0.1885357106432
1009 => 0.18726875722872
1010 => 0.17274552955444
1011 => 0.17544095613306
1012 => 0.17854179871589
1013 => 0.17961219714964
1014 => 0.1777812065594
1015 => 0.19052680242209
1016 => 0.19285554560582
1017 => 0.18580163060214
1018 => 0.1844821311144
1019 => 0.19061330858884
1020 => 0.18691545906579
1021 => 0.18858060047959
1022 => 0.18498147552661
1023 => 0.19229461956642
1024 => 0.19223890566171
1025 => 0.18939392745537
1026 => 0.1917984835538
1027 => 0.19138063275847
1028 => 0.18816865937039
1029 => 0.19239644485192
1030 => 0.19239854178077
1031 => 0.18966031211233
1101 => 0.18646265933514
1102 => 0.18589099454377
1103 => 0.18546032191583
1104 => 0.18847468141383
1105 => 0.19117734671409
1106 => 0.19620633679031
1107 => 0.19747074438133
1108 => 0.20240581138546
1109 => 0.19946721926855
1110 => 0.20076985909284
1111 => 0.20218405889175
1112 => 0.20286207828083
1113 => 0.20175728207086
1114 => 0.20942347248289
1115 => 0.21007073383967
1116 => 0.21028775497381
1117 => 0.2077027587002
1118 => 0.20999884041707
1119 => 0.20892457981998
1120 => 0.21171950745542
1121 => 0.21215778779609
1122 => 0.21178657993982
1123 => 0.21192569703773
1124 => 0.20538395592972
1125 => 0.20504473214284
1126 => 0.20041939173846
1127 => 0.20230425214203
1128 => 0.19878059596126
1129 => 0.19989798363387
1130 => 0.20039051747309
1201 => 0.20013324574653
1202 => 0.20241081932123
1203 => 0.20047441650519
1204 => 0.19536393109957
1205 => 0.19025205334561
1206 => 0.19018787788446
1207 => 0.18884201070398
1208 => 0.18786919524036
1209 => 0.18805659401113
1210 => 0.18871701172215
1211 => 0.18783081056242
1212 => 0.18801992651139
1213 => 0.19116051133723
1214 => 0.19179033322643
1215 => 0.18964995235964
1216 => 0.181056014324
1217 => 0.17894704037379
1218 => 0.18046292902643
1219 => 0.1797384318862
1220 => 0.14506294254161
1221 => 0.15320943441432
1222 => 0.14836906557228
1223 => 0.15059973022935
1224 => 0.14565896704906
1225 => 0.14801695820628
1226 => 0.14758152333959
1227 => 0.16068084119869
1228 => 0.16047631336784
1229 => 0.1605742100171
1230 => 0.15590134787981
1231 => 0.16334534414654
]
'min_raw' => 0.095034482648699
'max_raw' => 0.21215778779609
'avg_raw' => 0.15359613522239
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.095034'
'max' => '$0.212157'
'avg' => '$0.153596'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.014654124400856
'max_diff' => 0.032095862708566
'year' => 2035
]
10 => [
'items' => [
101 => 0.16701252438498
102 => 0.16633382692168
103 => 0.16650464045123
104 => 0.1635694980813
105 => 0.16060262861114
106 => 0.1573119137708
107 => 0.16342565519951
108 => 0.16274591151768
109 => 0.16430499895973
110 => 0.16827019729551
111 => 0.16885408781278
112 => 0.16963884258922
113 => 0.16935756386451
114 => 0.1760587642428
115 => 0.17524720466104
116 => 0.17720282975144
117 => 0.17317996056686
118 => 0.16862770223025
119 => 0.1694929377155
120 => 0.16940960858049
121 => 0.16834873305103
122 => 0.16739102205799
123 => 0.16579670308797
124 => 0.17084136422392
125 => 0.17063656019444
126 => 0.17395209937319
127 => 0.17336604561791
128 => 0.16945223520852
129 => 0.16959201771296
130 => 0.17053212223251
131 => 0.17378583470859
201 => 0.17475175810113
202 => 0.17430430390031
203 => 0.17536339480415
204 => 0.17620045707194
205 => 0.17546851693735
206 => 0.18583124571794
207 => 0.18152791824131
208 => 0.18362533011106
209 => 0.18412555048333
210 => 0.18284424651827
211 => 0.18312211546824
212 => 0.18354301121268
213 => 0.1860986077531
214 => 0.19280523254298
215 => 0.19577555100888
216 => 0.20471190066647
217 => 0.19552890740912
218 => 0.19498402659223
219 => 0.19659373301747
220 => 0.20184031627515
221 => 0.206092179219
222 => 0.20750276745333
223 => 0.20768919997478
224 => 0.21033555727651
225 => 0.21185239993023
226 => 0.21001421989398
227 => 0.20845655477872
228 => 0.2028771916804
229 => 0.20352301815113
301 => 0.20797212209918
302 => 0.21425674347672
303 => 0.21964960242205
304 => 0.21776121117951
305 => 0.23216830336368
306 => 0.23359670770605
307 => 0.23339934841177
308 => 0.23665346607875
309 => 0.23019470519934
310 => 0.22743345979079
311 => 0.20879333965689
312 => 0.2140304530939
313 => 0.22164290503947
314 => 0.22063536847925
315 => 0.21510700239495
316 => 0.21964540866064
317 => 0.21814486962011
318 => 0.21696133222143
319 => 0.22238334648481
320 => 0.21642161907816
321 => 0.22158343224811
322 => 0.21496335346552
323 => 0.21776983719164
324 => 0.21617674129435
325 => 0.21720766958238
326 => 0.21118088387587
327 => 0.21443279115115
328 => 0.21104559384194
329 => 0.21104398786939
330 => 0.21096921530105
331 => 0.21495423791421
401 => 0.21508418935856
402 => 0.2121392516264
403 => 0.21171484009062
404 => 0.21328411198148
405 => 0.21144690559024
406 => 0.21230652289746
407 => 0.21147294252277
408 => 0.21128528602254
409 => 0.20979000710157
410 => 0.20914579982887
411 => 0.20939841009967
412 => 0.2085361210159
413 => 0.20801656065256
414 => 0.21086586166764
415 => 0.20934359507576
416 => 0.21063255248006
417 => 0.20916362283847
418 => 0.20407167271854
419 => 0.20114323835817
420 => 0.19152501660564
421 => 0.19425273236329
422 => 0.19606121073264
423 => 0.19546350864236
424 => 0.19674760401229
425 => 0.19682643703901
426 => 0.19640896454444
427 => 0.19592558487727
428 => 0.19569030238787
429 => 0.19744390530057
430 => 0.19846193081495
501 => 0.19624271573132
502 => 0.19572278468735
503 => 0.19796653366312
504 => 0.19933521924217
505 => 0.20944082455988
506 => 0.20869216867727
507 => 0.21057114802633
508 => 0.21035960378691
509 => 0.21232907348961
510 => 0.21554832409352
511 => 0.20900268749915
512 => 0.21013878368085
513 => 0.20986023913339
514 => 0.21290131546426
515 => 0.21291080937262
516 => 0.21108753219923
517 => 0.21207596033422
518 => 0.21152424686538
519 => 0.21252126767212
520 => 0.20868216992153
521 => 0.21335777657676
522 => 0.21600854426084
523 => 0.2160453501727
524 => 0.21730179301716
525 => 0.21857841171539
526 => 0.2210287701366
527 => 0.21851007254896
528 => 0.21397918077907
529 => 0.21430629653017
530 => 0.21164983634327
531 => 0.21169449191894
601 => 0.21145611695629
602 => 0.21217149816323
603 => 0.20883915586707
604 => 0.20962124994339
605 => 0.20852631365661
606 => 0.2101364035032
607 => 0.20840421298566
608 => 0.20986010481077
609 => 0.21048841945891
610 => 0.2128069140372
611 => 0.20806176945133
612 => 0.19838609842271
613 => 0.2004200417791
614 => 0.1974116797922
615 => 0.19769011514773
616 => 0.19825259887856
617 => 0.19642940507372
618 => 0.19677721299624
619 => 0.19676478684977
620 => 0.19665770503255
621 => 0.19618342190883
622 => 0.19549561754538
623 => 0.19823561843436
624 => 0.19870119797782
625 => 0.19973612362983
626 => 0.20281536037344
627 => 0.20250767200935
628 => 0.20300952449705
629 => 0.20191398333419
630 => 0.19774093416019
701 => 0.19796755080748
702 => 0.19514163758445
703 => 0.1996638586752
704 => 0.19859293703051
705 => 0.19790250687942
706 => 0.1977141166159
707 => 0.20080098619181
708 => 0.20172462594967
709 => 0.20114907563573
710 => 0.19996860515035
711 => 0.20223545745704
712 => 0.2028419715035
713 => 0.20297774763112
714 => 0.20699417529277
715 => 0.20320222132046
716 => 0.20411498233038
717 => 0.21123608317062
718 => 0.20477822735326
719 => 0.20819909760709
720 => 0.20803166380951
721 => 0.20978166527543
722 => 0.20788811261059
723 => 0.20791158546527
724 => 0.20946546821164
725 => 0.2072833201386
726 => 0.20674298958809
727 => 0.2059965268025
728 => 0.20762640098606
729 => 0.20860343684623
730 => 0.21647762832549
731 => 0.22156471512784
801 => 0.22134387127351
802 => 0.22336197069969
803 => 0.22245279842453
804 => 0.21951684132049
805 => 0.22452816209525
806 => 0.22294237051955
807 => 0.22307310125032
808 => 0.22306823544599
809 => 0.22412264821152
810 => 0.22337550013163
811 => 0.22190279457298
812 => 0.2228804452511
813 => 0.22578371824861
814 => 0.23479556671616
815 => 0.23983871650971
816 => 0.23449196276622
817 => 0.2381800819026
818 => 0.23596852463199
819 => 0.23556661888779
820 => 0.2378830302553
821 => 0.24020349619426
822 => 0.2400556925456
823 => 0.23837115343115
824 => 0.237419600029
825 => 0.24462508118387
826 => 0.2499339569566
827 => 0.24957192722006
828 => 0.25116980873879
829 => 0.25586123829841
830 => 0.25629016382243
831 => 0.25623612906515
901 => 0.25517299240011
902 => 0.25979231406067
903 => 0.26364583345914
904 => 0.25492690697912
905 => 0.25824696004358
906 => 0.25973743882965
907 => 0.26192590389272
908 => 0.26561821128346
909 => 0.26962903644597
910 => 0.2701962111004
911 => 0.26979377354127
912 => 0.26714852652983
913 => 0.27153721928174
914 => 0.2741080125683
915 => 0.27563886113889
916 => 0.27952083840499
917 => 0.25974664351921
918 => 0.24574948553781
919 => 0.2435636271976
920 => 0.24800865608705
921 => 0.24918077475675
922 => 0.24870829519071
923 => 0.2329532213167
924 => 0.24348067999424
925 => 0.2548073403574
926 => 0.25524244351123
927 => 0.26091280651833
928 => 0.26275930914947
929 => 0.26732469460165
930 => 0.2670391284986
1001 => 0.26815072720506
1002 => 0.26789518991265
1003 => 0.27635160510749
1004 => 0.28568028685721
1005 => 0.28535726427161
1006 => 0.28401615589813
1007 => 0.2860079305257
1008 => 0.29563612981371
1009 => 0.29474971951202
1010 => 0.29561079161586
1011 => 0.30696298119795
1012 => 0.3217224424848
1013 => 0.31486519089137
1014 => 0.32974345372812
1015 => 0.33910853152102
1016 => 0.35530446519674
1017 => 0.35327665453389
1018 => 0.35958161266259
1019 => 0.34964645023052
1020 => 0.32683330905887
1021 => 0.32322304214327
1022 => 0.33045088793483
1023 => 0.34821984153053
1024 => 0.32989128035177
1025 => 0.33359912440706
1026 => 0.3325312650697
1027 => 0.33247436338372
1028 => 0.33464606930162
1029 => 0.33149589659914
1030 => 0.31866152630398
1031 => 0.32454344257683
1101 => 0.32227215223106
1102 => 0.32479231820561
1103 => 0.3383926145747
1104 => 0.33237959935935
1105 => 0.32604537628767
1106 => 0.33398989769618
1107 => 0.34410600348296
1108 => 0.34347295576321
1109 => 0.34224457859348
1110 => 0.3491688763835
1111 => 0.36060578770371
1112 => 0.36369713887633
1113 => 0.36597911111207
1114 => 0.36629375652914
1115 => 0.36953479987601
1116 => 0.3521068929518
1117 => 0.37976542882092
1118 => 0.38454129391389
1119 => 0.38364362921574
1120 => 0.38895180226744
1121 => 0.38739000310028
1122 => 0.38512720114584
1123 => 0.39354178451357
1124 => 0.38389514370433
1125 => 0.3702029515539
1126 => 0.36269114413933
1127 => 0.37258329810306
1128 => 0.37862409134011
1129 => 0.3826166714032
1130 => 0.3838248237179
1201 => 0.35345977175544
1202 => 0.33709469287066
1203 => 0.34758452080979
1204 => 0.36038283486478
1205 => 0.35203579767102
1206 => 0.35236298572598
1207 => 0.34046230425046
1208 => 0.36143578110869
1209 => 0.35838012194515
1210 => 0.37423288709096
1211 => 0.37044949746252
1212 => 0.38337681203813
1213 => 0.37997261686888
1214 => 0.39410324069043
1215 => 0.39974032910422
1216 => 0.40920587789372
1217 => 0.41616877411499
1218 => 0.4202575199551
1219 => 0.42001204699136
1220 => 0.43621369501497
1221 => 0.42666014921791
1222 => 0.41465864409895
1223 => 0.41444157473561
1224 => 0.42065732429936
1225 => 0.43368383017738
1226 => 0.43706141362359
1227 => 0.43894902199162
1228 => 0.43605808406787
1229 => 0.42568839481396
1230 => 0.42121081556964
1231 => 0.42502584281376
]
'min_raw' => 0.1573119137708
'max_raw' => 0.43894902199162
'avg_raw' => 0.29813046788121
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.157311'
'max' => '$0.438949'
'avg' => '$0.29813'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.0622774311221
'max_diff' => 0.22679123419553
'year' => 2036
]
11 => [
'items' => [
101 => 0.42036039232323
102 => 0.42841426876409
103 => 0.43947396133257
104 => 0.43719017855194
105 => 0.44482452198373
106 => 0.45272526427928
107 => 0.46402368060645
108 => 0.46697750501352
109 => 0.47186006443452
110 => 0.47688582191595
111 => 0.47849995977102
112 => 0.48158184977392
113 => 0.48156560669234
114 => 0.49085308965119
115 => 0.50109747096421
116 => 0.5049644877519
117 => 0.51385647962664
118 => 0.4986292551537
119 => 0.51017927983417
120 => 0.52059769121183
121 => 0.5081764316667
122 => 0.52529624416737
123 => 0.52596096769244
124 => 0.5359975037249
125 => 0.52582355168835
126 => 0.51978229144546
127 => 0.53722318340363
128 => 0.54566228163925
129 => 0.54312035657102
130 => 0.5237761812915
131 => 0.51251704156811
201 => 0.48304970118615
202 => 0.51795503876296
203 => 0.53495641049396
204 => 0.52373215184595
205 => 0.52939301503187
206 => 0.56027684903323
207 => 0.57203541344077
208 => 0.56958971424257
209 => 0.57000299714743
210 => 0.57634770506871
211 => 0.6044836340861
212 => 0.58762393323315
213 => 0.60051254281429
214 => 0.60734861486279
215 => 0.61369833955987
216 => 0.59810542255494
217 => 0.57781926663697
218 => 0.57139378950286
219 => 0.52261612052936
220 => 0.52007703102861
221 => 0.51865176314956
222 => 0.50966565078024
223 => 0.5026050279613
224 => 0.49699015855156
225 => 0.48225506447845
226 => 0.4872277261749
227 => 0.46374306167552
228 => 0.47876771777682
301 => 0.44128562617875
302 => 0.47250182584799
303 => 0.45551226759445
304 => 0.466920299029
305 => 0.46688049748202
306 => 0.44587469469137
307 => 0.43375898602164
308 => 0.44147958713643
309 => 0.44975668439356
310 => 0.45109961557603
311 => 0.46183108822424
312 => 0.46482601156813
313 => 0.45575125401656
314 => 0.44050889314228
315 => 0.44404934593214
316 => 0.43368723885886
317 => 0.41552804478562
318 => 0.42857029499813
319 => 0.43302349264794
320 => 0.43499027842317
321 => 0.41713279664967
322 => 0.41152158817165
323 => 0.40853422786055
324 => 0.43820371648998
325 => 0.43982907805218
326 => 0.43151349849698
327 => 0.46910070660209
328 => 0.46059356378674
329 => 0.47009812661208
330 => 0.44372808695073
331 => 0.44473545797776
401 => 0.43225145860344
402 => 0.43924166407192
403 => 0.43430121215164
404 => 0.43867692454863
405 => 0.44129970851764
406 => 0.4537816593905
407 => 0.47264434967692
408 => 0.45191727216648
409 => 0.44288618767796
410 => 0.44848902170189
411 => 0.46341010704044
412 => 0.48601631512466
413 => 0.47263298494647
414 => 0.47857227961587
415 => 0.4798697512803
416 => 0.47000137908472
417 => 0.48638017608361
418 => 0.49515770645643
419 => 0.50416163636496
420 => 0.51197949642014
421 => 0.50056526875883
422 => 0.5127801285217
423 => 0.50293710776584
424 => 0.49410690059504
425 => 0.49412029237437
426 => 0.48858097442739
427 => 0.47784784790614
428 => 0.47586849469991
429 => 0.48616534004344
430 => 0.49442243489407
501 => 0.49510252877478
502 => 0.49967408074894
503 => 0.50237947811652
504 => 0.52889605012815
505 => 0.53956123474781
506 => 0.55260242061913
507 => 0.55768269747697
508 => 0.57297250943901
509 => 0.56062474450185
510 => 0.55795322788661
511 => 0.52086514532607
512 => 0.52693831676765
513 => 0.53666205021949
514 => 0.52102548610922
515 => 0.53094328699626
516 => 0.53290127097911
517 => 0.52049416164416
518 => 0.5271213348195
519 => 0.5095215276857
520 => 0.47302797737771
521 => 0.48642080383734
522 => 0.49628243208827
523 => 0.4822086726442
524 => 0.50743534171799
525 => 0.49269844242923
526 => 0.48802755285061
527 => 0.46980474731206
528 => 0.47840521006615
529 => 0.49003745908782
530 => 0.48285008158652
531 => 0.49776496909187
601 => 0.51888842745465
602 => 0.53394226180766
603 => 0.53509790828508
604 => 0.52541930132466
605 => 0.54092933074677
606 => 0.54104230437843
607 => 0.52354692782996
608 => 0.51283110710869
609 => 0.51039645009453
610 => 0.51647870065851
611 => 0.52386367568858
612 => 0.53550772300243
613 => 0.54254397692661
614 => 0.56089079542013
615 => 0.56585491845996
616 => 0.57130898465268
617 => 0.57859729905787
618 => 0.58734878918676
619 => 0.56820102700736
620 => 0.56896180329464
621 => 0.551131672272
622 => 0.53207762017487
623 => 0.54653727059547
624 => 0.56544134003371
625 => 0.56110472561744
626 => 0.56061676790661
627 => 0.56143737742804
628 => 0.55816771177875
629 => 0.5433791352265
630 => 0.53595240466335
701 => 0.54553478185085
702 => 0.55062738886347
703 => 0.55852557821803
704 => 0.55755195966953
705 => 0.57789684724328
706 => 0.58580225535697
707 => 0.58377971367
708 => 0.58415191001559
709 => 0.59846427379392
710 => 0.61438256587754
711 => 0.62929214701749
712 => 0.64445881333445
713 => 0.62617480512429
714 => 0.61689131335602
715 => 0.62646950717741
716 => 0.62138718271294
717 => 0.65059172660113
718 => 0.65261378585575
719 => 0.68181621792301
720 => 0.70953280331577
721 => 0.69212451262478
722 => 0.70853974665975
723 => 0.72629416062223
724 => 0.76054530570571
725 => 0.74901072501141
726 => 0.74017541696949
727 => 0.73182609356178
728 => 0.74919971015546
729 => 0.77155059035293
730 => 0.77636475587339
731 => 0.78416554316932
801 => 0.77596396916254
802 => 0.78584186167996
803 => 0.82071516283236
804 => 0.81129208902584
805 => 0.79790980938587
806 => 0.82543893137825
807 => 0.83540161361054
808 => 0.90532493501394
809 => 0.99360601667407
810 => 0.95705706918194
811 => 0.93436995804641
812 => 0.93970196730873
813 => 0.9719392298278
814 => 0.98229281538936
815 => 0.95414820073808
816 => 0.96408935443549
817 => 1.0188660887009
818 => 1.0482520491862
819 => 1.0083419677861
820 => 0.89823163605992
821 => 0.79670488152299
822 => 0.82363434863552
823 => 0.82058138278362
824 => 0.87943215021502
825 => 0.81106735183197
826 => 0.81221843970545
827 => 0.87228617868328
828 => 0.85626113574575
829 => 0.83030261851937
830 => 0.79689440742615
831 => 0.73513623933485
901 => 0.68043530760245
902 => 0.7877164316019
903 => 0.78309027445698
904 => 0.77639091335306
905 => 0.79129961654326
906 => 0.86369204732563
907 => 0.86202316748467
908 => 0.85140660540642
909 => 0.85945917417268
910 => 0.82889096428104
911 => 0.83676908799532
912 => 0.79668879916635
913 => 0.81480676361776
914 => 0.83024692319996
915 => 0.83334676383156
916 => 0.84033086305633
917 => 0.78065249985581
918 => 0.80744633286816
919 => 0.82318519952026
920 => 0.75207642740117
921 => 0.8217796077276
922 => 0.77961363232487
923 => 0.76530186696148
924 => 0.78457077359157
925 => 0.7770616619382
926 => 0.77060576868846
927 => 0.76700326932878
928 => 0.7811522277263
929 => 0.78049216190539
930 => 0.75734171977257
1001 => 0.72714291174304
1002 => 0.73727862295983
1003 => 0.73359622405197
1004 => 0.72025073537098
1005 => 0.72924398340152
1006 => 0.68964227045368
1007 => 0.62150958164484
1008 => 0.66652012283266
1009 => 0.66478726595897
1010 => 0.66391348094446
1011 => 0.69773765864712
1012 => 0.69448624441756
1013 => 0.68858489575297
1014 => 0.72014235247486
1015 => 0.70862345626368
1016 => 0.74412198019326
1017 => 0.76750360395386
1018 => 0.76157326785188
1019 => 0.78356379801192
1020 => 0.73751212927501
1021 => 0.75280864635715
1022 => 0.75596123732772
1023 => 0.71975293835745
1024 => 0.69501821599643
1025 => 0.69336869201143
1026 => 0.65048209209214
1027 => 0.67339176760049
1028 => 0.69355133398104
1029 => 0.6838964661303
1030 => 0.68084002339973
1031 => 0.69645472644867
1101 => 0.69766812260647
1102 => 0.67000256161888
1103 => 0.67575510780258
1104 => 0.69974418166981
1105 => 0.67515064469075
1106 => 0.62736941967188
1107 => 0.61551901524008
1108 => 0.61393795284259
1109 => 0.58179871615613
1110 => 0.61631091592913
1111 => 0.60124541585876
1112 => 0.64883715006864
1113 => 0.62165300672755
1114 => 0.62048115264037
1115 => 0.61870972331399
1116 => 0.5910461546428
1117 => 0.59710271807029
1118 => 0.6172356573439
1119 => 0.62441931689053
1120 => 0.62367000234583
1121 => 0.61713699495798
1122 => 0.62012777228572
1123 => 0.61049343645716
1124 => 0.60709135195473
1125 => 0.596353437448
1126 => 0.58057166954771
1127 => 0.58276622116945
1128 => 0.55149840943477
1129 => 0.53446204609335
1130 => 0.5297466052561
1201 => 0.5234409206967
1202 => 0.53045884910587
1203 => 0.55140983165272
1204 => 0.52613850170232
1205 => 0.48281257908005
1206 => 0.48541654085343
1207 => 0.49126686983502
1208 => 0.48036482048162
1209 => 0.47004694570827
1210 => 0.47901750070806
1211 => 0.46065973613745
1212 => 0.49348531797812
1213 => 0.49259747798196
1214 => 0.50483282497179
1215 => 0.51248383853913
1216 => 0.49485072931147
1217 => 0.49041605002571
1218 => 0.49294224489182
1219 => 0.45118987092371
1220 => 0.50142076525851
1221 => 0.5018551641186
1222 => 0.49813557734731
1223 => 0.52488197787571
1224 => 0.58132522540218
1225 => 0.56008900525835
1226 => 0.55186569895051
1227 => 0.5362331876481
1228 => 0.55706258079188
1229 => 0.55546320838759
1230 => 0.54823023983141
1231 => 0.5438557178804
]
'min_raw' => 0.40853422786055
'max_raw' => 1.0482520491862
'avg_raw' => 0.72839313852339
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.408534'
'max' => '$1.04'
'avg' => '$0.728393'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.25122231408975
'max_diff' => 0.60930302719461
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.012823422590937
]
1 => [
'year' => 2028
'avg' => 0.022008715832225
]
2 => [
'year' => 2029
'avg' => 0.060123844968547
]
3 => [
'year' => 2030
'avg' => 0.046385456854118
]
4 => [
'year' => 2031
'avg' => 0.045556267117127
]
5 => [
'year' => 2032
'avg' => 0.079874473341227
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.012823422590937
'min' => '$0.012823'
'max_raw' => 0.079874473341227
'max' => '$0.079874'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.079874473341227
]
1 => [
'year' => 2033
'avg' => 0.20544535882887
]
2 => [
'year' => 2034
'avg' => 0.13022114166768
]
3 => [
'year' => 2035
'avg' => 0.15359613522239
]
4 => [
'year' => 2036
'avg' => 0.29813046788121
]
5 => [
'year' => 2037
'avg' => 0.72839313852339
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.079874473341227
'min' => '$0.079874'
'max_raw' => 0.72839313852339
'max' => '$0.728393'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.72839313852339
]
]
]
]
'prediction_2025_max_price' => '$0.021925'
'last_price' => 0.02125975
'sma_50day_nextmonth' => '$0.020318'
'sma_200day_nextmonth' => '$0.036292'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 feb. 2026'
'sma_50day_date_nextmonth' => '4 feb. 2026'
'daily_sma3' => '$0.021184'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.021261'
'daily_sma5_action' => 'SELL'
'daily_sma10' => '$0.021279'
'daily_sma10_action' => 'SELL'
'daily_sma21' => '$0.021538'
'daily_sma21_action' => 'SELL'
'daily_sma50' => '$0.024916'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.0233085'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '—'
'daily_sma200_action' => '—'
'daily_ema3' => '$0.02122'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.02123'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.021329'
'daily_ema10_action' => 'SELL'
'daily_ema21' => '$0.021942'
'daily_ema21_action' => 'SELL'
'daily_ema50' => '$0.023369'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.02877'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.0414058'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.028365'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '—'
'weekly_sma50_action' => '—'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.021411'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.021845'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.0236095'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.034058'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.024764'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.012382'
'weekly_ema100_action' => 'BUY'
'weekly_ema200' => '$0.006191'
'weekly_ema200_action' => 'BUY'
'rsi_14' => '39.39'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 79.3
'stoch_rsi_14_action' => 'NEUTRAL'
'momentum_10' => 0
'momentum_10_action' => 'SELL'
'vwma_10' => '0.021250'
'vwma_10_action' => 'BUY'
'hma_9' => '0.021183'
'hma_9_action' => 'SELL'
'stochastic_fast_14' => 56.32
'stochastic_fast_14_action' => 'NEUTRAL'
'cci_20' => -42.68
'cci_20_action' => 'NEUTRAL'
'adx_14' => 25.51
'adx_14_action' => 'SELL'
'ao_5_34' => '-0.001874'
'ao_5_34_action' => 'SELL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -43.68
'williams_percent_r_14_action' => 'NEUTRAL'
'ultimate_oscillator' => 50.9
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '0.004925'
'ichimoku_cloud_action' => 'NEUTRAL'
'sell_signals' => 20
'buy_signals' => 10
'sell_pct' => 66.67
'buy_pct' => 33.33
'overall_action' => 'bearish'
'overall_action_label' => 'Bajista'
'overall_action_dir' => -1
'last_updated' => 1767699726
'last_updated_date' => '6 de enero de 2026'
]
Predicción de precio de Six Sigma para 2026
La previsión del precio de Six Sigma para 2026 sugiere que el precio medio podría oscilar entre $0.007345 en el extremo inferior y $0.021925 en el extremo superior. En el mercado de criptomonedas, en comparación con el precio medio de hoy, Six Sigma podría potencialmente ganar 3.13% para 2026 si SIX alcanza el objetivo de precio previsto.
Predicción de precio de Six Sigma 2027-2032
La predicción del precio de SIX para 2027-2032 está actualmente dentro de un rango de precios de $0.012823 en el extremo inferior y $0.079874 en el extremo superior. Considerando la volatilidad de precios en el mercado, si Six Sigma alcanza el objetivo de precio superior, podría ganar 275.71% para 2032 en comparación con el precio de hoy.
| Predicción de Precio de Six Sigma | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.007071 | $0.012823 | $0.018575 |
| 2028 | $0.012761 | $0.0220087 | $0.031256 |
| 2029 | $0.028032 | $0.060123 | $0.092214 |
| 2030 | $0.02384 | $0.046385 | $0.06893 |
| 2031 | $0.028187 | $0.045556 | $0.062925 |
| 2032 | $0.043025 | $0.079874 | $0.116723 |
Predicción de precio de Six Sigma 2032-2037
La predicción de precio de Six Sigma para 2032-2037 se estima actualmente entre $0.079874 en el extremo inferior y $0.728393 en el extremo superior. Comparado con el precio actual, Six Sigma podría potencialmente ganar 3326.16% para 2037 si alcanza el objetivo de precio superior. Tenga en cuenta que esta información es solo para fines generales y no debe considerarse como consejo de inversión a largo plazo.
| Predicción de Precio de Six Sigma | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.043025 | $0.079874 | $0.116723 |
| 2033 | $0.099981 | $0.205445 | $0.3109091 |
| 2034 | $0.08038 | $0.130221 | $0.180061 |
| 2035 | $0.095034 | $0.153596 | $0.212157 |
| 2036 | $0.157311 | $0.29813 | $0.438949 |
| 2037 | $0.408534 | $0.728393 | $1.04 |
Six Sigma Histograma de precios potenciales
Pronóstico de precio de Six Sigma basado en análisis técnico
A fecha de 6 de enero de 2026, el sentimiento general de predicción de precio para Six Sigma es Bajista, con 10 indicadores técnicos mostrando señales alcistas y 20 indicando señales bajistas. La predicción de precio de SIX se actualizó por última vez el 6 de enero de 2026.
Promedios Móviles Simples de 50 y 200 días y el Índice de Fuerza Relativa de 14 días - RSI (14) de Six Sigma
Según nuestros indicadores técnicos, se proyecta que el SMA de 200 días de Six Sigma aumentar durante el próximo mes, alcanzando $0.036292 para el 4 feb. 2026. Se espera que el SMA de 50 días a corto plazo para Six Sigma alcance $0.020318 para el 4 feb. 2026.
El oscilador de momento del Índice de Fuerza Relativa (RSI) es una herramienta comúnmente utilizada para identificar si una criptomoneda está sobrevendida (por debajo de 30) o sobrecomprada (por encima de 70). Actualmente, el RSI se encuentra en 39.39, lo que sugiere que el mercado de SIX está en un estado NEUTRAL.
Promedios Móviles y Osciladores Populares de SIX para Sáb, 19 de Oct de 2024
Los promedios móviles (MA) son indicadores ampliamente utilizados en los mercados financieros, diseñados para suavizar los movimientos de precios durante un período establecido. Como indicadores rezagados, se basan en datos históricos de precios. La tabla a continuación resalta dos tipos: el promedio móvil simple (SMA) y el promedio móvil exponencial (EMA).
Promedio Móvil Simple Diario (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 3 | $0.021184 | BUY |
| SMA 5 | $0.021261 | SELL |
| SMA 10 | $0.021279 | SELL |
| SMA 21 | $0.021538 | SELL |
| SMA 50 | $0.024916 | SELL |
| SMA 100 | $0.0233085 | SELL |
| SMA 200 | — | — |
Promedio Móvil Exponencial Diario (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 3 | $0.02122 | BUY |
| EMA 5 | $0.02123 | BUY |
| EMA 10 | $0.021329 | SELL |
| EMA 21 | $0.021942 | SELL |
| EMA 50 | $0.023369 | SELL |
| EMA 100 | $0.02877 | SELL |
| EMA 200 | $0.0414058 | SELL |
Promedio Móvil Simple Semanal (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 21 | $0.028365 | SELL |
| SMA 50 | — | — |
| SMA 100 | — | — |
| SMA 200 | — | — |
Promedio Móvil Exponencial Semanal (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 21 | $0.034058 | SELL |
| EMA 50 | $0.024764 | SELL |
| EMA 100 | $0.012382 | BUY |
| EMA 200 | $0.006191 | BUY |
Osciladores de Six Sigma
Un oscilador es una herramienta de análisis técnico que establece límites altos y bajos entre dos extremos, creando un indicador de tendencia que fluctúa dentro de estos límites. Los traders utilizan este indicador para identificar condiciones de sobrecompra o sobreventa a corto plazo.
| Período | Valor | Acción |
|---|---|---|
| RSI (14) | 39.39 | NEUTRAL |
| Stoch RSI (14) | 79.3 | NEUTRAL |
| Estocástico Rápido (14) | 56.32 | NEUTRAL |
| Índice de Canal de Materias Primas (20) | -42.68 | NEUTRAL |
| Índice Direccional Medio (14) | 25.51 | SELL |
| Oscilador Asombroso (5, 34) | -0.001874 | SELL |
| Momentum (10) | 0 | SELL |
| MACD (12, 26) | 0 | BUY |
| Rango Percentil de Williams (14) | -43.68 | NEUTRAL |
| Oscilador Ultimate (7, 14, 28) | 50.9 | NEUTRAL |
| VWMA (10) | 0.021250 | BUY |
| Promedio Móvil de Hull (9) | 0.021183 | SELL |
| Nube Ichimoku B/L (9, 26, 52, 26) | 0.004925 | NEUTRAL |
Predicción de precios de Six Sigma basada en flujos de dinero globales
Definiciones de flujos de dinero globales utilizadas para la predicción de precios de Six Sigma
M0: El total de toda la moneda física, además de cuentas en el banco central que pueden cambiarse por moneda física.
M1: Medir M0 más la cantidad en cuentas a la vista, incluyendo cuentas "de cheques" o "corrientes".
M2: Medir M1 más la mayoría de cuentas de ahorro, cuentas del mercado monetario, y cuentas de certificados de depósito (CD) inferiores a 100 000 $.
Predicciones de precios de Six Sigma por parte de empresas de Internet o nichos tecnológicos
| Comparación | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook acción | $0.029873 | $0.041977 | $0.058985 | $0.082883 | $0.116465 | $0.163653 |
| Amazon.com acción | $0.044359 | $0.092559 | $0.19313 | $0.402977 | $0.840837 | $1.75 |
| Apple acción | $0.030155 | $0.042773 | $0.06067 | $0.086056 | $0.122064 | $0.173138 |
| Netflix acción | $0.033544 | $0.052928 | $0.083512 | $0.131769 | $0.20791 | $0.32805 |
| Google acción | $0.027531 | $0.035652 | $0.04617 | $0.05979 | $0.077428 | $0.100269 |
| Tesla acción | $0.048194 | $0.109252 | $0.247667 | $0.561443 | $1.27 | $2.88 |
| Kodak acción | $0.015942 | $0.011955 | $0.008965 | $0.006722 | $0.005041 | $0.00378 |
| Nokia acción | $0.014083 | $0.009329 | $0.00618 | $0.004094 | $0.002712 | $0.001796 |
Este cálculo muestra cuánto puede costar la criptomoneda si asumimos que su capitalización se comportará como la capitalización de algunas empresas de Internet o nichos tecnológicos. Si extrapola los datos, puede obtener una imagen potencial del precio futuro en 2024, 2025, 2026, 2027, 2028, 2029 y 2030.
Resumen de pronósticos y predicciones de Six Sigma
Podría preguntarse cosas como: "¿Debo invertir en Six Sigma ahora?", "¿Debería comprar SIX hoy?", "¿Será Six Sigma una buena o mala inversión a corto plazo?, ¿Lo será a largo plazo?".
Actualizamos el pronóstico de Six Sigma regularmente con valores actualizados. Aquí hay algunas predicciones similares. Hacemos un pronóstico de precios futuros para una gran cantidad de monedas digitales, como Six Sigma, con métodos de análisis técnico.
Si está tratando de encontrar criptomonedas que ofrezcan un buen rendimiento, debería explorar el máximo de fuentes de información disponibles acerca de Six Sigma a fin de tomar una decisión responsable sobre la inversión por sus propios medios.
El precio de Six Sigma es de $0.02125 USD hoy, pero dicho precio puede subir y bajar, y su inversión puede perderse porque estos son activos de criptomonedas conllevan un alto riesgo
Predicción de precios de Six Sigma basada en el patrón de crecimiento del Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si Six Sigma ofrece un 1 % del crecimiento medio anterior anual del Bitcoin | $0.021812 | $0.022379 | $0.022961 | $0.023557 |
| Si Six Sigma ofrece un 2 % del crecimiento medio anterior anual del Bitcoin | $0.022364 | $0.023527 | $0.02475 | $0.026037 |
| Si Six Sigma ofrece un 5 % del crecimiento medio anterior anual del Bitcoin | $0.024022 | $0.027144 | $0.030672 | $0.034659 |
| Si Six Sigma ofrece un 10 % del crecimiento medio anterior anual del Bitcoin | $0.026785 | $0.033748 | $0.04252 | $0.053573 |
| Si Six Sigma ofrece un 20 % del crecimiento medio anterior anual del Bitcoin | $0.032311 | $0.0491097 | $0.07464 | $0.113442 |
| Si Six Sigma ofrece un 50 % del crecimiento medio anterior anual del Bitcoin | $0.04889 | $0.11243 | $0.258552 | $0.594583 |
| Si Six Sigma ofrece un 100 % del crecimiento medio anterior anual del Bitcoin | $0.07652 | $0.275422 | $0.991333 | $3.56 |
Cuadro de preguntas
¿Es SIX una buena inversión?
La decisión de adquirir Six Sigma depende completamente de su tolerancia individual al riesgo. Como puede discernir, el valor de Six Sigma ha experimentado una caída de -0.187% durante las últimas 24 horas, y Six Sigma ha sufrido un declive de durante el período previo de 30 días. Por lo tanto, la determinación de si invertir o no en Six Sigma dependerá de si dicha inversión se alinea con sus aspiraciones comerciales.
¿Puede Six Sigma subir?
Parece que el valor medio de Six Sigma podría potencialmente aumentar hasta $0.021925 para el final de este año. Mirando las perspectivas de Six Sigma en un horizonte de cinco años más extendido, la moneda digital podría potencialmente crecer hasta $0.06893. Sin embargo, dada la imprevisibilidad del mercado, es vital realizar una investigación exhaustiva antes de invertir cualquier fondo en un proyecto, red o activo en particular.
¿Cuál será el precio de Six Sigma la próxima semana?
Basado en nuestro nuevo pronóstico experimental de Six Sigma, el precio de Six Sigma aumentará en un 0.86% durante la próxima semana y alcanzará $0.021441 para el 13 de enero de 2026.
¿Cuál será el precio de Six Sigma el próximo mes?
Basado en nuestro nuevo pronóstico experimental de Six Sigma, el precio de Six Sigma disminuirá en un -11.62% durante el próximo mes y alcanzará $0.018789 para el 5 de febrero de 2026.
¿Hasta qué punto puede subir el precio de Six Sigma este año en 2026?
Según nuestra predicción más reciente sobre el valor de Six Sigma en 2026, se anticipa que SIX fluctúe dentro del rango de $0.007345 y $0.021925. Sin embargo, es crucial tener en cuenta que el mercado de criptomonedas es excepcionalmente inestable, y esta predicción de precios proyectada de Six Sigma no considera fluctuaciones de precios repentinas y extremas.
¿Dónde estará Six Sigma en 5 años?
El futuro de Six Sigma parece estar en una tendencia alcista, con un precio máximo de $0.06893 proyectada después de un período de cinco años. Basado en el pronóstico de Six Sigma para 2030, el valor de Six Sigma podría potencialmente alcanzar su punto más alto de aproximadamente $0.06893, mientras que su punto más bajo se anticipa que esté alrededor de $0.02384.
¿Cuánto será Six Sigma en 2026?
Basado en nuestra nueva simulación experimental de predicción de precios de Six Sigma, se espera que el valor de SIX en 2026 crezca en un 3.13% hasta $0.021925 si ocurre lo mejor. El precio estará entre $0.021925 y $0.007345 durante 2026.
¿Cuánto será Six Sigma en 2027?
Según nuestra última simulación experimental para la predicción de precios de Six Sigma, el valor de SIX podría disminuir en un -12.62% hasta $0.018575 en 2027, asumiendo las condiciones más favorables. Se proyecta que el precio fluctúe entre $0.018575 y $0.007071 a lo largo del año.
¿Cuánto será Six Sigma en 2028?
Nuestro nuevo modelo experimental de predicción de precios de Six Sigma sugiere que el valor de SIX en 2028 podría aumentar en un 47.02% , alcanzando $0.031256 en el mejor escenario. Se espera que el precio oscile entre $0.031256 y $0.012761 durante el año.
¿Cuánto será Six Sigma en 2029?
Basado en nuestro modelo de pronóstico experimental, el valor de Six Sigma podría experimentar un 333.75% crecimiento en 2029, potencialmente alcanzando $0.092214 bajo condiciones óptimas. El rango de precios previsto para 2029 se encuentra entre $0.092214 y $0.028032.
¿Cuánto será Six Sigma en 2030?
Usando nuestra nueva simulación experimental para las predicciones de precios de Six Sigma, se espera que el valor de SIX en 2030 aumente en un 224.23% , alcanzando $0.06893 en el mejor escenario. Se pronostica que el precio oscile entre $0.06893 y $0.02384 durante el transcurso de 2030.
¿Cuánto será Six Sigma en 2031?
Nuestra simulación experimental indica que el precio de Six Sigma podría crecer en un 195.98% en 2031, potencialmente alcanzando $0.062925 bajo condiciones ideales. Es probable que el precio fluctúe entre $0.062925 y $0.028187 durante el año.
¿Cuánto será Six Sigma en 2032?
Basado en los hallazgos de nuestra última predicción experimental de precios de Six Sigma, SIX podría experimentar un 449.04% aumento en valor, alcanzando $0.116723 si se desarrolla el escenario más positivo en 2032. Se espera que el precio se mantenga dentro de un rango de $0.116723 y $0.043025 a lo largo del año.
¿Cuánto será Six Sigma en 2033?
Según nuestra predicción experimental de precios de Six Sigma, se anticipa que el valor de SIX aumente en un 1362.43% en 2033, con el precio potencial más alto siendo $0.3109091. A lo largo del año, el precio de SIX podría oscilar entre $0.3109091 y $0.099981.
¿Cuánto será Six Sigma en 2034?
Los resultados de nuestra nueva simulación de predicción de precios de Six Sigma sugieren que SIX podría aumentar en un 746.96% en 2034, alcanzando potencialmente $0.180061 bajo las mejores circunstancias. El rango de precios previsto para el año está entre $0.180061 y $0.08038.
¿Cuánto será Six Sigma en 2035?
Basado en nuestra predicción experimental para el precio de Six Sigma, SIX podría crecer en un 897.93% , con el valor potencialmente alcanzando $0.212157 en 2035. El rango de precios esperado para el año está entre $0.212157 y $0.095034.
¿Cuánto será Six Sigma en 2036?
Nuestra reciente simulación de predicción de precios de Six Sigma sugiere que el valor de SIX podría aumentar en un 1964.7% en 2036, posiblemente alcanzando $0.438949 si las condiciones son óptimas. El rango de precios esperado para 2036 está entre $0.438949 y $0.157311.
¿Cuánto será Six Sigma en 2037?
Según la simulación experimental, el valor de Six Sigma podría aumentar en un 4830.69% en 2037, con un máximo de $1.04 bajo condiciones favorables. Se espera que el precio caiga entre $1.04 y $0.408534 durante el transcurso del año.
Predicciones relacionadas
¿Cómo leer y predecir los movimientos de precio de Six Sigma?
Los traders de Six Sigma utilizan indicadores y patrones de gráficos para predecir la dirección del mercado. También identifican niveles clave de soporte y resistencia para estimar cuándo una tendencia bajista podría desacelerar o una tendencia alcista podría estancarse.
Indicadores de predicción de precio de Six Sigma
Las medias móviles son herramientas populares para la predicción de precios de Six Sigma. Una media móvil simple (SMA) calcula el precio de cierre promedio de SIX durante un período específico, como una SMA de 12 días. Una media móvil exponencial (EMA) da más peso a los precios recientes, reaccionando más rápido a los cambios de precio.
Las medias móviles comúnmente utilizadas en el mercado de criptomonedas incluyen las de 50 días, 100 días y 200 días, que ayudan a identificar niveles clave de resistencia y soporte. Un movimiento de precio de SIX por encima de estas medias se considera alcista, mientras que una caída por debajo indica debilidad.
Los traders también utilizan RSI y niveles de retroceso de Fibonacci para evaluar la dirección futura de SIX.
¿Cómo leer gráficos de Six Sigma y predecir movimientos de precio?
La mayoría de los traders prefieren gráficos de velas sobre gráficos lineales simples porque proporcionan información más detallada. Las velas pueden representar la acción del precio de Six Sigma en diferentes marcos de tiempo, como 5 minutos para tendencias a corto plazo y semanal para tendencias a largo plazo. Las opciones populares incluyen gráficos de 1 hora, 4 horas y 1 día.
Por ejemplo, un gráfico de velas de 1 hora muestra los precios de apertura, cierre, máximo y mínimo de SIX dentro de cada hora. El color de la vela es crucial: el verde indica que el precio cerró más alto de lo que abrió, mientras que el rojo significa lo contrario. Algunos gráficos usan velas huecas y llenas para transmitir la misma información.
¿Qué afecta el precio de Six Sigma?
La acción del precio de Six Sigma está impulsada por la oferta y la demanda, influenciada por factores como reducciones a la mitad de recompensas de bloque, hard forks y actualizaciones de protocolo. Los eventos del mundo real, como regulaciones, adopción por empresas y gobiernos y hacks de exchanges de criptomonedas, también impactan el precio de SIX. La capitalización de mercado de Six Sigma puede cambiar rápidamente.
Los traders a menudo monitorean la actividad de las "ballenas" de SIX, grandes poseedores de Six Sigma, ya que sus acciones pueden influir significativamente en los movimientos de precios en el relativamente pequeño mercado de Six Sigma.
Patrones de predicción de precios alcistas y bajistas
Los traders a menudo identifican patrones de velas para obtener una ventaja en las predicciones de precios de criptomonedas. Ciertas formaciones indican tendencias alcistas, mientras que otras sugieren movimientos bajistas.
Patrones de velas alcistas comúnmente seguidos:
- Martillo
- Envolvente Alcista
- Línea Penetrante
- Estrella de la Mañana
- Tres Soldados Blancos
Patrones de velas bajistas comunes:
- Harami Bajista
- Cubierta de Nube Oscura
- Estrella de la Tarde
- Estrella Fugaz
- Hombre Colgado


