Prédiction du prix de Pillar jusqu'à $0.0008058 d'ici 2026
| Année | Prix min. | Prix max. |
|---|---|---|
| 2026 | $0.000269 | $0.0008058 |
| 2027 | $0.000259 | $0.000682 |
| 2028 | $0.000469 | $0.001148 |
| 2029 | $0.00103 | $0.003389 |
| 2030 | $0.000876 | $0.002533 |
| 2031 | $0.001035 | $0.002312 |
| 2032 | $0.001581 | $0.004289 |
| 2033 | $0.003674 | $0.011426 |
| 2034 | $0.002954 | $0.006617 |
| 2035 | $0.003492 | $0.007797 |
Calculateur de profit d’investissement
Si vous ouvrez une position short de $10,000.00 sur Pillar aujourd’hui et la fermez le Apr 06, 2026, notre prévision indique que vous pourriez gagner environ $3,959.10, soit un rendement de 39.59% sur les 90 prochains jours.
Prévision du prix à long terme de Pillar pour 2027, 2028, 2029, 2030, 2031, 2032 et 2037
[
'name' => 'Pillar'
'name_with_ticker' => 'Pillar <small>PLR</small>'
'name_lang' => 'Pillar'
'name_lang_with_ticker' => 'Pillar <small>PLR</small>'
'name_with_lang' => 'Pillar'
'name_with_lang_with_ticker' => 'Pillar <small>PLR</small>'
'image' => '/uploads/coins/pillar.png?1717568582'
'price_for_sd' => 0.0007813
'ticker' => 'PLR'
'marketcap' => '$202.64K'
'low24h' => '$0.0006363'
'high24h' => '$0.0007987'
'volume24h' => '$6.36K'
'current_supply' => '259.35M'
'max_supply' => '800M'
'algo' => null
'proof' => null
'ico_price_and_roi' => ''
'price' => '$0.0007813'
'change_24h_pct' => '22.5378%'
'ath_price' => '$1.56'
'ath_days' => 2896
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '1 févr. 2018'
'ath_pct' => '-99.95%'
'fdv' => '$625.07K'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.038525'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.000788'
'next_week_prediction_price_date' => '13 janvier 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.00069'
'next_month_prediction_price_date' => '5 février 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.000269'
'current_year_max_price_prediction' => '$0.0008058'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.000876'
'grand_prediction_max_price' => '$0.002533'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.00079614598201516
107 => 0.00079911850211101
108 => 0.00080581574166761
109 => 0.00074858856292396
110 => 0.00077428188607816
111 => 0.00078937430629244
112 => 0.00072118620269737
113 => 0.00078802644672584
114 => 0.00074759236506101
115 => 0.00073386843044444
116 => 0.00075234590041475
117 => 0.0007451452123974
118 => 0.00073895448367866
119 => 0.00073549995068338
120 => 0.00074906776534563
121 => 0.00074843481057459
122 => 0.0007262352323878
123 => 0.0006972767876137
124 => 0.00070699619220843
125 => 0.00070346504139926
126 => 0.00069066769533931
127 => 0.00069929156142626
128 => 0.00066131641961806
129 => 0.00059598216191316
130 => 0.00063914397379545
131 => 0.000637482290989
201 => 0.00063664439516667
202 => 0.00066907930389135
203 => 0.00066596143581814
204 => 0.000660302474735
205 => 0.0006905637640812
206 => 0.00067951798639806
207 => 0.00071355847050498
208 => 0.00073597973493827
209 => 0.00073029297702606
210 => 0.00075138028459695
211 => 0.00070722010765986
212 => 0.00072188834703958
213 => 0.00072491145084644
214 => 0.00069019034446801
215 => 0.00066647155759424
216 => 0.00066488978492373
217 => 0.00062376467713478
218 => 0.00064573337776537
219 => 0.00066506492519368
220 => 0.0006558066141642
221 => 0.00065287570947644
222 => 0.00066784906589053
223 => 0.00066901262392203
224 => 0.00064248337749548
225 => 0.00064799964789953
226 => 0.00067100341248808
227 => 0.00064742001205348
228 => 0.00060160131733563
301 => 0.00059023764755259
302 => 0.00058872152452954
303 => 0.00055790235081391
304 => 0.00059099702230499
305 => 0.00057655031131708
306 => 0.00062218729822971
307 => 0.00059611969606129
308 => 0.00059499597383246
309 => 0.00059329730286938
310 => 0.00056676996692831
311 => 0.00057257776759926
312 => 0.00059188378158251
313 => 0.00059877238486955
314 => 0.00059805384711004
315 => 0.00059178917158163
316 => 0.00059465710795821
317 => 0.00058541848563398
318 => 0.000582156135806
319 => 0.00057185926236887
320 => 0.00055672570300019
321 => 0.00055883011724992
322 => 0.00052884657622934
323 => 0.00051250995173437
324 => 0.00050798818938741
325 => 0.0005019414997996
326 => 0.00050867117906598
327 => 0.00052876163662487
328 => 0.00050452828238051
329 => 0.00046298189630072
330 => 0.00046547890489571
331 => 0.00047108894184015
401 => 0.00046063467510829
402 => 0.00045074058900669
403 => 0.00045934269413946
404 => 0.00044173894266112
405 => 0.00047321627110339
406 => 0.00047236489758322
407 => 0.00048409769908157
408 => 0.00049143446063981
409 => 0.00047452560055283
410 => 0.00047027306796737
411 => 0.00047269550379488
412 => 0.00043265803560868
413 => 0.00048082578375708
414 => 0.00048124234044328
415 => 0.00047767552919716
416 => 0.0005033233680738
417 => 0.00055744830786507
418 => 0.00053708432834494
419 => 0.0005291987799702
420 => 0.00051420834674553
421 => 0.00053418220897356
422 => 0.00053264852799523
423 => 0.00052571264098002
424 => 0.00052151779487193
425 => 0.00052924692744708
426 => 0.00052056006981135
427 => 0.00051899967148109
428 => 0.00050954535532983
429 => 0.0005061705946078
430 => 0.00050367205612231
501 => 0.00050092141075111
502 => 0.00050698864902186
503 => 0.00049323948888866
504 => 0.00047665934961481
505 => 0.00047528089043378
506 => 0.00047908693742797
507 => 0.00047740304495991
508 => 0.00047527282860448
509 => 0.00047120566545206
510 => 0.00046999902502593
511 => 0.00047392002103214
512 => 0.00046949344514939
513 => 0.00047602509899246
514 => 0.00047424885056004
515 => 0.00046432687120708
516 => 0.00045196041134604
517 => 0.00045185032391375
518 => 0.00044918599042175
519 => 0.00044579256113446
520 => 0.00044484858673789
521 => 0.0004586182488384
522 => 0.00048712103729514
523 => 0.00048152525790716
524 => 0.00048556878199352
525 => 0.0005054589184755
526 => 0.00051178139474586
527 => 0.00050729385084522
528 => 0.00050115102397437
529 => 0.00050142127718131
530 => 0.00052241317615915
531 => 0.00052372241514921
601 => 0.00052703043970058
602 => 0.00053128218609673
603 => 0.00050801794164155
604 => 0.00050032553335959
605 => 0.00049668044355704
606 => 0.00048545497779245
607 => 0.00049756068022086
608 => 0.00049050720583369
609 => 0.00049145896050951
610 => 0.00049083912902831
611 => 0.00049117759892987
612 => 0.00047320747254858
613 => 0.00047975484211989
614 => 0.00046886857032438
615 => 0.00045429307443156
616 => 0.0004542442122585
617 => 0.00045781154422918
618 => 0.00045568955558331
619 => 0.00044997933869858
620 => 0.00045079044805559
621 => 0.00044368427659879
622 => 0.00045165326593183
623 => 0.00045188178803149
624 => 0.00044881329306449
625 => 0.00046109062064065
626 => 0.00046612065176595
627 => 0.00046410090264514
628 => 0.00046597894078339
629 => 0.00048175778780416
630 => 0.00048433042834791
701 => 0.00048547302533835
702 => 0.00048394209673625
703 => 0.0004662673491413
704 => 0.00046705129935596
705 => 0.00046129919283988
706 => 0.00045643926897584
707 => 0.00045663364044346
708 => 0.00045913227305546
709 => 0.0004700439482149
710 => 0.00049300692530957
711 => 0.0004938783535046
712 => 0.00049493454989832
713 => 0.00049063846836327
714 => 0.00048934272906434
715 => 0.00049105214365832
716 => 0.0004996758305191
717 => 0.00052185829443318
718 => 0.00051401753016899
719 => 0.00050764286677344
720 => 0.00051323516516825
721 => 0.00051237427466425
722 => 0.00050510749244094
723 => 0.0005049035380667
724 => 0.00049095625964934
725 => 0.00048580026838261
726 => 0.00048149153616087
727 => 0.00047678651305704
728 => 0.00047399721764728
729 => 0.00047828284310876
730 => 0.00047926301635783
731 => 0.00046989242138639
801 => 0.00046861524391732
802 => 0.00047626747404934
803 => 0.00047290001287213
804 => 0.00047636353020191
805 => 0.00047716709593192
806 => 0.0004770377033417
807 => 0.00047352168712224
808 => 0.00047576269101141
809 => 0.00047046204873811
810 => 0.00046469839639663
811 => 0.00046102154529099
812 => 0.0004578130050378
813 => 0.00045959328965173
814 => 0.00045324690007021
815 => 0.00045121656231549
816 => 0.00047500348931794
817 => 0.00049257514804722
818 => 0.00049231964917015
819 => 0.000490764365465
820 => 0.00048845352935692
821 => 0.00049950677846449
822 => 0.0004956560474921
823 => 0.00049845777601385
824 => 0.00049917093351081
825 => 0.00050132944646482
826 => 0.00050210092931542
827 => 0.00049976897231161
828 => 0.0004919426397823
829 => 0.0004724401632246
830 => 0.00046336170774107
831 => 0.00046036566621787
901 => 0.00046047456663694
902 => 0.00045747060692596
903 => 0.00045835540768888
904 => 0.00045716290932909
905 => 0.00045490460593201
906 => 0.00045945384578069
907 => 0.00045997810329415
908 => 0.0004589162563541
909 => 0.0004591663597479
910 => 0.00045037472060504
911 => 0.00045104312983464
912 => 0.00044732134230692
913 => 0.00044662355201229
914 => 0.00043721519723532
915 => 0.00042054693298508
916 => 0.00042978276940727
917 => 0.00041862717776439
918 => 0.00041440238617444
919 => 0.00043440189247139
920 => 0.00043239449673914
921 => 0.00042895870783946
922 => 0.00042387645997569
923 => 0.00042199140480609
924 => 0.00041053840633155
925 => 0.0004098617020823
926 => 0.00041553811738326
927 => 0.00041291864703539
928 => 0.00040923991859598
929 => 0.00039591593709519
930 => 0.00038093537046962
1001 => 0.00038138753961156
1002 => 0.0003861525791318
1003 => 0.00040000757419004
1004 => 0.00039459418792694
1005 => 0.00039066671408161
1006 => 0.00038993121628981
1007 => 0.00039913751102311
1008 => 0.0004121663468491
1009 => 0.00041827918511489
1010 => 0.00041222154804315
1011 => 0.00040526286074149
1012 => 0.00040568640379409
1013 => 0.00040850404597241
1014 => 0.00040880014032603
1015 => 0.00040427075025726
1016 => 0.00040554574703056
1017 => 0.00040360891034376
1018 => 0.000391722547172
1019 => 0.00039150756055429
1020 => 0.00038859045533844
1021 => 0.00038850212655183
1022 => 0.00038353940287367
1023 => 0.00038284508352541
1024 => 0.00037299129444663
1025 => 0.0003794770882583
1026 => 0.00037512675828889
1027 => 0.00036856978488588
1028 => 0.00036743936019973
1029 => 0.00036740537826864
1030 => 0.0003741379238411
1031 => 0.00037939841454341
1101 => 0.00037520243414124
1102 => 0.00037424709073933
1103 => 0.00038444765888958
1104 => 0.00038314954361222
1105 => 0.00038202538415397
1106 => 0.00041099975750241
1107 => 0.00038806428009857
1108 => 0.00037806310283922
1109 => 0.00036568474680871
1110 => 0.00036971520194933
1111 => 0.00037056447806717
1112 => 0.00034079676318019
1113 => 0.00032872000495788
1114 => 0.00032457571663901
1115 => 0.00032219062011987
1116 => 0.0003232775385538
1117 => 0.00031240703969126
1118 => 0.00031971219470834
1119 => 0.00031029926155378
1120 => 0.00030872115267808
1121 => 0.0003255526431971
1122 => 0.00032789464677468
1123 => 0.00031790293190924
1124 => 0.00032431923036455
1125 => 0.00032199259135144
1126 => 0.00031046061927596
1127 => 0.00031002018276612
1128 => 0.00030423384454706
1129 => 0.0002951793456901
1130 => 0.00029104119674782
1201 => 0.00028888601284963
1202 => 0.00028977528372972
1203 => 0.00028932564116061
1204 => 0.0002863914192472
1205 => 0.00028949382732601
1206 => 0.00028156845668818
1207 => 0.00027841251024115
1208 => 0.00027698704244843
1209 => 0.00026995281984004
1210 => 0.00028114739614297
1211 => 0.00028335286870021
1212 => 0.00028556268671969
1213 => 0.00030479764387239
1214 => 0.00030383671977047
1215 => 0.00031252300566285
1216 => 0.00031218547256612
1217 => 0.00030970800312112
1218 => 0.00029925596705657
1219 => 0.00030342196234227
1220 => 0.00029059967639229
1221 => 0.00030020700485671
1222 => 0.00029582262135718
1223 => 0.00029872464038522
1224 => 0.00029350654850829
1225 => 0.00029639445600272
1226 => 0.00028387586806117
1227 => 0.00027218618678263
1228 => 0.00027689045577218
1229 => 0.00028200453416224
1230 => 0.00029309315915482
1231 => 0.00028648886558841
]
'min_raw' => 0.00026995281984004
'max_raw' => 0.00080581574166761
'avg_raw' => 0.00053788428075383
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.000269'
'max' => '$0.0008058'
'avg' => '$0.000537'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.00051138718015996
'max_diff' => 2.4475741667609E-5
'year' => 2026
]
1 => [
'items' => [
101 => 0.00028886401929088
102 => 0.00028090765198353
103 => 0.00026449139360451
104 => 0.00026458430784414
105 => 0.00026205902414015
106 => 0.00025987681032246
107 => 0.00028724744815024
108 => 0.0002838434766706
109 => 0.00027841969361857
110 => 0.00028567964276628
111 => 0.00028759928855182
112 => 0.00028765393816864
113 => 0.0002929506096604
114 => 0.00029577744418503
115 => 0.0002962756860222
116 => 0.00030461011305665
117 => 0.00030740370306484
118 => 0.00031891010494495
119 => 0.00029553760702561
120 => 0.00029505626581166
121 => 0.00028578180513909
122 => 0.00027989979555712
123 => 0.00028618455136744
124 => 0.00029175198706067
125 => 0.00028595480088524
126 => 0.00028671179101447
127 => 0.00027892954222148
128 => 0.00028171132997613
129 => 0.00028410738033772
130 => 0.00028278442216138
131 => 0.00028080388973951
201 => 0.00029129552082402
202 => 0.0002907035418812
203 => 0.00030047358994866
204 => 0.00030809004108009
205 => 0.0003217400831111
206 => 0.00030749555265895
207 => 0.0003069764253524
208 => 0.00031205097804463
209 => 0.00030740292617727
210 => 0.00031034033451214
211 => 0.00032126682121619
212 => 0.00032149768066252
213 => 0.00031763048749099
214 => 0.00031739516843505
215 => 0.0003181379051861
216 => 0.00032248813753596
217 => 0.00032096803268378
218 => 0.00032272713650307
219 => 0.00032492692276544
220 => 0.00033402617143666
221 => 0.00033621996948593
222 => 0.00033089017758008
223 => 0.00033137139811403
224 => 0.00032937790963518
225 => 0.00032745222474295
226 => 0.00033178088315699
227 => 0.00033969159148863
228 => 0.00033964237938267
301 => 0.00034147750995341
302 => 0.00034262078109594
303 => 0.00033771302442657
304 => 0.00033451825529803
305 => 0.00033574333307035
306 => 0.00033770225910702
307 => 0.0003351080797584
308 => 0.00031909560307795
309 => 0.00032395276562183
310 => 0.00032314429627142
311 => 0.00032199293760319
312 => 0.00032687685210039
313 => 0.00032640578663275
314 => 0.00031229554701346
315 => 0.00031319883877333
316 => 0.00031235047917717
317 => 0.00031509170259039
318 => 0.00030725489111703
319 => 0.0003096654415445
320 => 0.00031117731617511
321 => 0.0003120678219473
322 => 0.00031528493942199
323 => 0.00031490744781817
324 => 0.00031526147401388
325 => 0.00032003160994132
326 => 0.00034415732054936
327 => 0.00034547042974738
328 => 0.00033900419980922
329 => 0.00034158733112877
330 => 0.00033662828386396
331 => 0.00033995732551556
401 => 0.00034223497126509
402 => 0.00033194272808904
403 => 0.00033133328824426
404 => 0.00032635377322736
405 => 0.0003290294825433
406 => 0.00032477223663133
407 => 0.00032581681586599
408 => 0.00032289608126111
409 => 0.00032815282203743
410 => 0.00033403067504029
411 => 0.00033551565283226
412 => 0.00033160931558472
413 => 0.00032878086997734
414 => 0.00032381505123867
415 => 0.00033207331847156
416 => 0.00033448828747659
417 => 0.00033206063366746
418 => 0.0003314980932346
419 => 0.00033043208013082
420 => 0.00033172425295394
421 => 0.00033447513503675
422 => 0.00033317786984731
423 => 0.00033403473635981
424 => 0.00033076924481109
425 => 0.00033771464909824
426 => 0.00034874562260881
427 => 0.00034878108899239
428 => 0.00034748381681021
429 => 0.00034695300098338
430 => 0.00034828408096736
501 => 0.00034900613725491
502 => 0.00035331060584476
503 => 0.00035792947213927
504 => 0.00037948370576651
505 => 0.00037343136321464
506 => 0.00039255556155583
507 => 0.00040768031947734
508 => 0.0004122155730525
509 => 0.00040804335316353
510 => 0.00039377041430224
511 => 0.00039307011582905
512 => 0.00041439991236717
513 => 0.00040837326787858
514 => 0.00040765641769329
515 => 0.00040003034285926
516 => 0.00040453829759391
517 => 0.00040355234176574
518 => 0.00040199596225636
519 => 0.00041059682586322
520 => 0.00042669687473089
521 => 0.00042418753112956
522 => 0.00042231442253627
523 => 0.00041410700593418
524 => 0.0004190497039215
525 => 0.00041728970383936
526 => 0.00042485178111589
527 => 0.0004203721740578
528 => 0.00040832761011921
529 => 0.00041024574662583
530 => 0.00040995582415161
531 => 0.00041592240812695
601 => 0.00041413138771727
602 => 0.00040960609867177
603 => 0.00042664184651416
604 => 0.00042553563980708
605 => 0.00042710398800366
606 => 0.00042779442338257
607 => 0.00043816378289068
608 => 0.00044241177769866
609 => 0.00044337614689169
610 => 0.00044741141340756
611 => 0.00044327574578473
612 => 0.00045982136495709
613 => 0.00047082323624306
614 => 0.00048360247589284
615 => 0.00050227637975696
616 => 0.00050929794035314
617 => 0.00050802955827899
618 => 0.00052218789906645
619 => 0.00054763012273928
620 => 0.00051317215910429
621 => 0.00054945647848241
622 => 0.00053796928188991
623 => 0.00051073334541493
624 => 0.00050897967219654
625 => 0.00052742416459312
626 => 0.00056833227351213
627 => 0.00055808525620385
628 => 0.00056834903396156
629 => 0.00055637579201454
630 => 0.00055578121963346
701 => 0.00056776752032497
702 => 0.0005957741652299
703 => 0.00058246925804895
704 => 0.00056339341110798
705 => 0.00057747871963614
706 => 0.00056527672185528
707 => 0.00053778220573086
708 => 0.00055807742050283
709 => 0.00054450658835925
710 => 0.00054846727864387
711 => 0.00057699114930073
712 => 0.0005735590817185
713 => 0.00057800049497081
714 => 0.0005701615168325
715 => 0.00056283867515793
716 => 0.00054917004737098
717 => 0.00054512344053847
718 => 0.00054624177708531
719 => 0.00054512288634641
720 => 0.00053747541472079
721 => 0.00053582394395135
722 => 0.00053307142031637
723 => 0.00053392454248673
724 => 0.00052874899277378
725 => 0.00053851632440526
726 => 0.0005403292272255
727 => 0.00054743707665903
728 => 0.0005481750371666
729 => 0.00056797029666508
730 => 0.00055706740037914
731 => 0.00056438200451853
801 => 0.00056372771747658
802 => 0.00051132363074492
803 => 0.00051854445153137
804 => 0.0005297777826567
805 => 0.00052471718221116
806 => 0.0005175626771793
807 => 0.00051178503076578
808 => 0.00050303130565463
809 => 0.00051535200564818
810 => 0.00053155241597933
811 => 0.00054858590630735
812 => 0.00056905052885797
813 => 0.00056448306333914
814 => 0.00054820333442366
815 => 0.00054893363117046
816 => 0.00055344803829799
817 => 0.0005476014708907
818 => 0.00054587720402373
819 => 0.00055321115050839
820 => 0.00055326165536716
821 => 0.0005465344729838
822 => 0.00053905844082606
823 => 0.00053902711597835
824 => 0.00053769682826579
825 => 0.00055661244724335
826 => 0.00056701412509623
827 => 0.00056820666069892
828 => 0.00056693385794854
829 => 0.00056742370921143
830 => 0.00056137120205417
831 => 0.00057520543860041
901 => 0.00058790110211944
902 => 0.00058449839309305
903 => 0.0005793972485389
904 => 0.00057533394119711
905 => 0.00058354120701709
906 => 0.00058317575038956
907 => 0.00058779021657406
908 => 0.00058758087773348
909 => 0.00058602920631449
910 => 0.00058449844850812
911 => 0.00059056773018133
912 => 0.00058881987452913
913 => 0.00058706930397433
914 => 0.00058355826672773
915 => 0.0005840354750017
916 => 0.00057893521123208
917 => 0.00057657559584006
918 => 0.00054109264185308
919 => 0.00053161043710879
920 => 0.00053459373174942
921 => 0.00053557590980633
922 => 0.00053144924214983
923 => 0.0005373658235153
924 => 0.0005364437305767
925 => 0.00054003105479446
926 => 0.00053778985036672
927 => 0.00053788183017819
928 => 0.00054447273452502
929 => 0.00054638610209661
930 => 0.00054541294790693
1001 => 0.00054609451174361
1002 => 0.00056180086268979
1003 => 0.00055956792184608
1004 => 0.00055838171652701
1005 => 0.00055871030350706
1006 => 0.00056272361292178
1007 => 0.00056384712043933
1008 => 0.00055908674014
1009 => 0.00056133176300859
1010 => 0.00057089078544724
1011 => 0.00057423590230695
1012 => 0.00058491190957598
1013 => 0.0005803765519372
1014 => 0.00058870139716886
1015 => 0.0006142891332621
1016 => 0.00063473038739004
1017 => 0.00061593176532343
1018 => 0.00065346952535138
1019 => 0.000682698056005
1020 => 0.00068157621631585
1021 => 0.0006764795459283
1022 => 0.00064320364085984
1023 => 0.00061258265690005
1024 => 0.00063819841021807
1025 => 0.00063826371004121
1026 => 0.0006360632941137
1027 => 0.000622396699769
1028 => 0.00063558772625457
1029 => 0.00063663478203422
1030 => 0.00063604870923222
1031 => 0.00062557056339116
1101 => 0.00060957237137692
1102 => 0.00061269837980224
1103 => 0.00061781884537176
1104 => 0.00060812473580764
1105 => 0.00060502688041509
1106 => 0.00061078638298094
1107 => 0.00062934470028814
1108 => 0.00062583635790222
1109 => 0.0006257447409042
1110 => 0.00064075491739985
1111 => 0.00063001087042779
1112 => 0.00061273780877935
1113 => 0.00060837613290943
1114 => 0.00059289512194812
1115 => 0.00060358791136056
1116 => 0.00060397272581551
1117 => 0.00059811639433197
1118 => 0.00061321301780315
1119 => 0.00061307389976016
1120 => 0.00062740589691017
1121 => 0.0006548032926087
1122 => 0.00064670053455668
1123 => 0.00063727790851975
1124 => 0.00063830240923105
1125 => 0.00064953865335072
1126 => 0.00064274496365746
1127 => 0.00064518802183845
1128 => 0.00064953495548957
1129 => 0.00065215756848958
1130 => 0.00063792505558007
1201 => 0.00063460677600108
1202 => 0.00062781874054032
1203 => 0.0006260478687933
1204 => 0.00063157658203907
1205 => 0.00063011996143113
1206 => 0.00060394038365065
1207 => 0.00060120447211079
1208 => 0.00060128837861174
1209 => 0.00059440879895926
1210 => 0.00058391578870094
1211 => 0.00061149079315472
1212 => 0.00060927613438515
1213 => 0.00060683132250451
1214 => 0.00060713079800998
1215 => 0.00061910017283975
1216 => 0.00061215733097057
1217 => 0.0006306160139892
1218 => 0.00062682146367937
1219 => 0.00062292959747224
1220 => 0.00062239162301328
1221 => 0.00062089358656195
1222 => 0.00061575626217555
1223 => 0.00060955263427364
1224 => 0.00060545646178376
1225 => 0.00055850158168804
1226 => 0.00056721613430983
1227 => 0.00057724143274474
1228 => 0.00058070212559061
1229 => 0.00057478237100509
1230 => 0.00061599001016792
1231 => 0.00062351904292966
]
'min_raw' => 0.00025987681032246
'max_raw' => 0.000682698056005
'avg_raw' => 0.00047128743316373
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.000259'
'max' => '$0.000682'
'avg' => '$0.000471'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -1.0076009517587E-5
'max_diff' => -0.00012311768566261
'year' => 2027
]
2 => [
'items' => [
101 => 0.0006007131115877
102 => 0.00059644705299365
103 => 0.00061626969225912
104 => 0.00060431421756295
105 => 0.00060969776708659
106 => 0.00059806147766063
107 => 0.00062170551941317
108 => 0.00062152539142962
109 => 0.00061232732516298
110 => 0.00062010146778591
111 => 0.00061875051919292
112 => 0.00060836592503171
113 => 0.00062203472957075
114 => 0.00062204150912726
115 => 0.00061318857032883
116 => 0.00060285027596975
117 => 0.00060100203311796
118 => 0.00059960963040563
119 => 0.0006093553213752
120 => 0.00061809327742453
121 => 0.00063435244730932
122 => 0.0006384403889267
123 => 0.00065439589720904
124 => 0.00064489516888651
125 => 0.00064910671869686
126 => 0.00065367895177609
127 => 0.00065587104845257
128 => 0.00065229914455263
129 => 0.00067708461646432
130 => 0.0006791772697009
131 => 0.00067987891822975
201 => 0.00067152139655501
202 => 0.00067894483190448
203 => 0.0006754716523428
204 => 0.00068450790068522
205 => 0.00068592489980592
206 => 0.00068472475196189
207 => 0.00068517452984861
208 => 0.00066402450202885
209 => 0.00066292776151111
210 => 0.00064797362673057
211 => 0.00065406754718903
212 => 0.00064267525498116
213 => 0.00064628786819389
214 => 0.00064788027367581
215 => 0.00064704849142027
216 => 0.0006544120883085
217 => 0.00064815152667005
218 => 0.00063162887517454
219 => 0.00061510172209368
220 => 0.00061489423714948
221 => 0.00061054292947177
222 => 0.00060739773100254
223 => 0.00060800360780962
224 => 0.00061013879670354
225 => 0.00060727362994246
226 => 0.00060788505853858
227 => 0.00061803884716156
228 => 0.00062007511705639
229 => 0.00061315507633175
301 => 0.0005853701142652
302 => 0.00057855161488076
303 => 0.00058345261702157
304 => 0.00058111025366323
305 => 0.00046900132850197
306 => 0.00049533965753342
307 => 0.00047969031678807
308 => 0.00048690225299507
309 => 0.00047092832847122
310 => 0.00047855192251912
311 => 0.00047714412306755
312 => 0.0005194953767423
313 => 0.00051883412016841
314 => 0.00051915062869741
315 => 0.00050404285194965
316 => 0.00052810995052968
317 => 0.00053996626871508
318 => 0.00053777197976465
319 => 0.00053832423501937
320 => 0.00052883466003404
321 => 0.00051924250852645
322 => 0.00050860333628301
323 => 0.0005283696032699
324 => 0.00052617193180239
325 => 0.00053121259945163
326 => 0.00054403243651457
327 => 0.00054592020621991
328 => 0.00054845738784777
329 => 0.00054754798884307
330 => 0.00056921356259269
331 => 0.00056658971865756
401 => 0.00057291242760982
402 => 0.00055990613558993
403 => 0.00054518828160086
404 => 0.00054798566448128
405 => 0.00054771625401476
406 => 0.00054428634956106
407 => 0.00054118998518164
408 => 0.00053603541088517
409 => 0.00055234524669267
410 => 0.00055168309714414
411 => 0.00056240252867014
412 => 0.00056050776502491
413 => 0.0005478540696748
414 => 0.00054830599887971
415 => 0.00055134543997248
416 => 0.00056186498029829
417 => 0.00056498789609191
418 => 0.00056354123706963
419 => 0.00056696537167081
420 => 0.00056967166804637
421 => 0.00056730524082871
422 => 0.00060080885987746
423 => 0.00058689582138424
424 => 0.00059367693953954
425 => 0.00059529419626291
426 => 0.00059115162717324
427 => 0.00059205000207451
428 => 0.00059341079525743
429 => 0.00060167326499348
430 => 0.00062335637634576
501 => 0.00063295967876175
502 => 0.00066185168789887
503 => 0.00063216225818053
504 => 0.00063040061028812
505 => 0.0006356049335888
506 => 0.00065256760148205
507 => 0.00066631425058715
508 => 0.00067087480715852
509 => 0.00067147755999601
510 => 0.00068003346730398
511 => 0.00068493755381468
512 => 0.00067899455511409
513 => 0.00067395848597324
514 => 0.00065591991141063
515 => 0.00065800792553366
516 => 0.00067239227225736
517 => 0.00069271100923838
518 => 0.00071014659937237
519 => 0.00070404126339911
520 => 0.00075062066717958
521 => 0.00075523882480461
522 => 0.00075460074474374
523 => 0.00076512159508756
524 => 0.00074423984968899
525 => 0.00073531249896634
526 => 0.00067504734128331
527 => 0.0006919793924084
528 => 0.00071659112310322
529 => 0.00071333366825651
530 => 0.00069545997155248
531 => 0.00071013304057065
601 => 0.00070528166508395
602 => 0.00070145518395384
603 => 0.00071898503581074
604 => 0.00069971024360745
605 => 0.00071639884230655
606 => 0.00069499554185351
607 => 0.00070406915205956
608 => 0.00069891853206546
609 => 0.00070225161443789
610 => 0.00068276648299474
611 => 0.00069328018694664
612 => 0.00068232907834449
613 => 0.00068232388609314
614 => 0.00068208213976378
615 => 0.00069496607046956
616 => 0.00069538621498732
617 => 0.00068586497072922
618 => 0.00068449281068184
619 => 0.0006895664055552
620 => 0.00068362655473509
621 => 0.00068640577354885
622 => 0.00068371073444173
623 => 0.00068310402437251
624 => 0.00067826965531774
625 => 0.00067618687620521
626 => 0.00067700358756184
627 => 0.00067421573065809
628 => 0.00067253594603239
629 => 0.00068174798832217
630 => 0.00067682636573947
701 => 0.00068099367907536
702 => 0.00067624449957224
703 => 0.00065978177429539
704 => 0.00065031388689851
705 => 0.00061921732494599
706 => 0.00062803627134056
707 => 0.00063388324192402
708 => 0.00063195081818107
709 => 0.00063610241212965
710 => 0.00063635728628024
711 => 0.00063500756076707
712 => 0.00063344475153336
713 => 0.00063268406242716
714 => 0.00063835361580387
715 => 0.00064164498236744
716 => 0.00063447006364445
717 => 0.00063278908057543
718 => 0.0006400433195425
719 => 0.00064446840112177
720 => 0.00067714071726457
721 => 0.00067472024655452
722 => 0.00068079515304336
723 => 0.00068011121179975
724 => 0.00068647868160855
725 => 0.00069688680365242
726 => 0.00067572418138055
727 => 0.00067939728085853
728 => 0.00067849672169078
729 => 0.00068832879054493
730 => 0.00068835948519069
731 => 0.00068246466876436
801 => 0.00068566034438155
802 => 0.00068387660592081
803 => 0.00068710006240608
804 => 0.0006746879196925
805 => 0.00068980456970962
806 => 0.00069837473617393
807 => 0.0006984937329436
808 => 0.00070255592383063
809 => 0.00070668334503808
810 => 0.00071460557062317
811 => 0.00070646239846631
812 => 0.00069181362447796
813 => 0.00069287121864467
814 => 0.00068428264781507
815 => 0.00068442702324237
816 => 0.00068365633589655
817 => 0.00068596922663599
818 => 0.00067519546914468
819 => 0.00067772404849361
820 => 0.00067418402259776
821 => 0.00067938958553358
822 => 0.00067378926032502
823 => 0.00067849628741388
824 => 0.00068052768426501
825 => 0.00068802358237854
826 => 0.00067268211007892
827 => 0.00064139980953363
828 => 0.00064797572836949
829 => 0.00063824942788398
830 => 0.00063914963402455
831 => 0.00064096819369525
901 => 0.00063507364680682
902 => 0.00063619814059461
903 => 0.00063615796576357
904 => 0.00063581176077386
905 => 0.00063427836146998
906 => 0.00063205462910554
907 => 0.00064091329441673
908 => 0.00064241855427552
909 => 0.00064576456047938
910 => 0.00065572000532436
911 => 0.00065472522161879
912 => 0.00065634775511575
913 => 0.00065280577360202
914 => 0.00063931393638833
915 => 0.00064004660806022
916 => 0.00063091018057148
917 => 0.000645530921487
918 => 0.00064206853705385
919 => 0.00063983631528566
920 => 0.00063922723289482
921 => 0.00064920735536197
922 => 0.00065219356442339
923 => 0.00065033275933335
924 => 0.00064651619380531
925 => 0.00065384512788545
926 => 0.00065580604146239
927 => 0.00065624501769656
928 => 0.00066923048370285
929 => 0.00065697076099578
930 => 0.00065992179810253
1001 => 0.00068294494719874
1002 => 0.00066206612794588
1003 => 0.00067312610415736
1004 => 0.00067258477587514
1005 => 0.00067824268545574
1006 => 0.00067212066214753
1007 => 0.00067219655196361
1008 => 0.00067722039237119
1009 => 0.00067016531457314
1010 => 0.00066841837809456
1011 => 0.00066600499786119
1012 => 0.00067127452530899
1013 => 0.00067443336869372
1014 => 0.00069989132645981
1015 => 0.00071633832820062
1016 => 0.00071562432047917
1017 => 0.00072214901448678
1018 => 0.000719209580077
1019 => 0.00070971737098423
1020 => 0.00072591941445401
1021 => 0.00072079240997788
1022 => 0.00072121507399758
1023 => 0.00072119934242166
1024 => 0.00072460835218778
1025 => 0.00072219275633733
1026 => 0.00071743136896026
1027 => 0.0007205922001058
1028 => 0.00072997873859025
1029 => 0.00075911484206014
1030 => 0.00077541979156392
1031 => 0.00075813326362692
1101 => 0.00077005727912203
1102 => 0.00076290711878611
1103 => 0.00076160772195422
1104 => 0.00076909688486298
1105 => 0.00077659915656001
1106 => 0.00077612129428612
1107 => 0.00077067503027999
1108 => 0.00076759857393676
1109 => 0.00079089453205617
1110 => 0.00080805859716225
1111 => 0.00080688812299137
1112 => 0.00081205421532305
1113 => 0.0008272220221901
1114 => 0.00082860877636088
1115 => 0.00082843407720954
1116 => 0.00082499686230443
1117 => 0.00083993153795365
1118 => 0.00085239030713085
1119 => 0.00082420124636459
1120 => 0.00083493527168248
1121 => 0.00083975412147637
1122 => 0.00084682962266212
1123 => 0.00085876717915417
1124 => 0.00087173453178501
1125 => 0.0008735682576268
1126 => 0.00087226714139019
1127 => 0.000863714823749
1128 => 0.00087790385573036
1129 => 0.0008862154578913
1130 => 0.0008911648267705
1201 => 0.00090371560275171
1202 => 0.00083978388105217
1203 => 0.0007945298308205
1204 => 0.00078746275740041
1205 => 0.00080183392909909
1206 => 0.00080562349246808
1207 => 0.00080409592422575
1208 => 0.00075315837637176
1209 => 0.00078719458175273
1210 => 0.00082381467689722
1211 => 0.00082522140389176
1212 => 0.00084355418921117
1213 => 0.00084952409559743
1214 => 0.00086428439071266
1215 => 0.0008633611302344
1216 => 0.00086695502720737
1217 => 0.00086612885253091
1218 => 0.00089346919108503
1219 => 0.0009236296445898
1220 => 0.0009225852839893
1221 => 0.0009182493619557
1222 => 0.00092468894556016
1223 => 0.00095581776576771
1224 => 0.00095295192283218
1225 => 0.00095573584513212
1226 => 0.00099243847850024
1227 => 0.0010401571227675
1228 => 0.0010179870216318
1229 => 0.0010660897618215
1230 => 0.0010963678869543
1231 => 0.0011487307735548
]
'min_raw' => 0.00046900132850197
'max_raw' => 0.0011487307735548
'avg_raw' => 0.00080886605102838
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.000469'
'max' => '$0.001148'
'avg' => '$0.0008088'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.00020912451817952
'max_diff' => 0.00046603271754978
'year' => 2028
]
3 => [
'items' => [
101 => 0.0011421746822597
102 => 0.0011625591697567
103 => 0.0011304379105441
104 => 0.0010566810066144
105 => 0.0010450086942374
106 => 0.0010683769592061
107 => 0.0011258255583897
108 => 0.0010665676983756
109 => 0.0010785554862789
110 => 0.0010751030025563
111 => 0.0010749190343708
112 => 0.0010819403517574
113 => 0.0010717555646809
114 => 0.001030260909923
115 => 0.001049277665669
116 => 0.0010419343830159
117 => 0.0010500823025975
118 => 0.001094053264122
119 => 0.0010746126538952
120 => 0.0010541335502483
121 => 0.0010798188908985
122 => 0.0011125251559868
123 => 0.0011104784566964
124 => 0.0011065070046191
125 => 0.0011288938720406
126 => 0.0011658704182843
127 => 0.0011758650301502
128 => 0.0011832428482988
129 => 0.0011842601247722
130 => 0.0011947387046823
131 => 0.0011383927395636
201 => 0.001227815233274
202 => 0.0012432560276912
203 => 0.0012403537982961
204 => 0.001257515591443
205 => 0.0012524661565465
206 => 0.0012451503176136
207 => 0.0012723554101694
208 => 0.0012411669668919
209 => 0.0011968988981754
210 => 0.0011726125601544
211 => 0.0012045947691835
212 => 0.0012241251882122
213 => 0.0012370335528223
214 => 0.0012409396161539
215 => 0.0011427667164394
216 => 0.0010898569684119
217 => 0.001123771510286
218 => 0.0011651495920291
219 => 0.0011381628822303
220 => 0.0011392207101618
221 => 0.0011007447539713
222 => 0.001168553860401
223 => 0.0011586746439585
224 => 0.001209928036338
225 => 0.0011976960029125
226 => 0.0012394911547528
227 => 0.0012284850905652
228 => 0.0012741706476672
301 => 0.0012923958532822
302 => 0.0013229988100367
303 => 0.0013455104696017
304 => 0.0013587297466777
305 => 0.0013579361108663
306 => 0.0014103174724592
307 => 0.0013794300135933
308 => 0.0013406280856426
309 => 0.0013399262811845
310 => 0.0013600223494977
311 => 0.0014021381955951
312 => 0.0014130582217276
313 => 0.0014191610265982
314 => 0.0014098143684986
315 => 0.0013762882456238
316 => 0.0013618118357478
317 => 0.0013741461563841
318 => 0.0013590623421461
319 => 0.0013851012372917
320 => 0.0014208582019345
321 => 0.0014134745301341
322 => 0.0014381570379409
323 => 0.0014637008368453
324 => 0.0015002296165224
325 => 0.0015097795921867
326 => 0.0015255653388069
327 => 0.0015418140574267
328 => 0.0015470327079322
329 => 0.0015569967309992
330 => 0.0015569442156792
331 => 0.0015869714698478
401 => 0.0016200924610624
402 => 0.0016325948684932
403 => 0.0016613434649936
404 => 0.0016121125009577
405 => 0.0016494547527035
406 => 0.0016831383985154
407 => 0.0016429793673647
408 => 0.0016983292359517
409 => 0.0017004783459234
410 => 0.0017329273549557
411 => 0.0017000340678235
412 => 0.0016805021389236
413 => 0.001736890085806
414 => 0.0017641744370987
415 => 0.0017559561684419
416 => 0.0016934147381778
417 => 0.001657012943236
418 => 0.0015617424244914
419 => 0.0016745944693245
420 => 0.0017295614084235
421 => 0.0016932723870846
422 => 0.0017115744586416
423 => 0.00181142462659
424 => 0.0018494411057252
425 => 0.0018415339438203
426 => 0.0018428701240193
427 => 0.0018633831261127
428 => 0.0019543490741115
429 => 0.0018998401694964
430 => 0.001941510184665
501 => 0.0019636118104579
502 => 0.0019841410322314
503 => 0.0019337277518829
504 => 0.0018681408148676
505 => 0.0018473666787626
506 => 0.0016896641590909
507 => 0.0016814550580747
508 => 0.001676847040913
509 => 0.0016477941445259
510 => 0.0016249665262237
511 => 0.0016068131566146
512 => 0.0015591732937054
513 => 0.0015752503489544
514 => 0.0014993223506893
515 => 0.0015478983932563
516 => 0.0014267154746795
517 => 0.0015276402102401
518 => 0.0014727114651591
519 => 0.0015095946401771
520 => 0.0015094659582541
521 => 0.0014415523392246
522 => 0.0014023811810895
523 => 0.0014273425676175
524 => 0.0014541031554128
525 => 0.0014584449707492
526 => 0.0014931407713486
527 => 0.0015028236235122
528 => 0.0014734841294075
529 => 0.0014242042280468
530 => 0.001435650825178
531 => 0.001402149216164
601 => 0.0013434389349877
602 => 0.0013856056839117
603 => 0.0014000032659354
604 => 0.0014063620583692
605 => 0.0013486272397537
606 => 0.0013304857062608
607 => 0.0013208273060514
608 => 0.0014167513879663
609 => 0.00142200632571
610 => 0.00139512132124
611 => 0.0015166440907849
612 => 0.0014891397453452
613 => 0.0015198688379295
614 => 0.0014346121664659
615 => 0.0014378690861291
616 => 0.0013975072115594
617 => 0.001420107164337
618 => 0.0014041342461443
619 => 0.0014182813114897
620 => 0.0014267610041272
621 => 0.0014671162557104
622 => 0.0015281010023897
623 => 0.0014610885268529
624 => 0.0014318902316252
625 => 0.001450004689767
626 => 0.0014982458788941
627 => 0.0015713337498426
628 => 0.0015280642592106
629 => 0.0015472665243894
630 => 0.0015514613650817
701 => 0.0015195560446133
702 => 0.0015725101445175
703 => 0.0016008886768545
704 => 0.0016299991789224
705 => 0.0016552750122103
706 => 0.0016183718042428
707 => 0.0016578635266351
708 => 0.0016260401696144
709 => 0.0015974913285286
710 => 0.0015975346253361
711 => 0.001579625520291
712 => 0.0015449243725737
713 => 0.0015385249485235
714 => 0.0015718155605908
715 => 0.0015985114788361
716 => 0.0016007102825276
717 => 0.001615490514554
718 => 0.0016242373036187
719 => 0.0017099677271361
720 => 0.001744449212674
721 => 0.0017866125204887
722 => 0.0018030375050764
723 => 0.0018524708200023
724 => 0.0018125494034221
725 => 0.0018039121538275
726 => 0.0016840031013312
727 => 0.0017036382019601
728 => 0.0017350758925722
729 => 0.0016845214972702
730 => 0.0017165866250716
731 => 0.0017229169605318
801 => 0.0016828036782627
802 => 0.0017042299155153
803 => 0.0016473281818091
804 => 0.00152934130469
805 => 0.0015726414976401
806 => 0.0016045250143387
807 => 0.0015590233048005
808 => 0.0016405833579884
809 => 0.0015929376586573
810 => 0.0015778362593662
811 => 0.0015189203166942
812 => 0.0015467263737528
813 => 0.0015843344640689
814 => 0.0015610970366633
815 => 0.0016093181876472
816 => 0.0016776121975516
817 => 0.0017262825759881
818 => 0.001730018883302
819 => 0.0016987270906294
820 => 0.0017488723880887
821 => 0.0017492376418358
822 => 0.0016926735414522
823 => 0.0016580283449174
824 => 0.0016501568833706
825 => 0.0016698213376055
826 => 0.0016936976153051
827 => 0.0017313438505438
828 => 0.0017540926820531
829 => 0.0018134095695812
830 => 0.0018294590185979
831 => 0.0018470924971784
901 => 0.0018706562625252
902 => 0.0018989506044495
903 => 0.0018370441951169
904 => 0.0018395038521677
905 => 0.0017818574609497
906 => 0.0017202540246046
907 => 0.0017670033538138
908 => 0.0018281218829522
909 => 0.0018141012248378
910 => 0.0018125236143839
911 => 0.0018151767175748
912 => 0.0018046055992285
913 => 0.001756792822732
914 => 0.0017327815456993
915 => 0.0017637622190016
916 => 0.0017802270680706
917 => 0.0018057626130909
918 => 0.0018026148181772
919 => 0.0018683916398322
920 => 0.0018939505237395
921 => 0.0018874114675097
922 => 0.0018886148112272
923 => 0.0019348879496899
924 => 0.0019863531964572
925 => 0.0020345571914923
926 => 0.0020835923656517
927 => 0.0020244785493271
928 => 0.0019944641990308
929 => 0.0020254313471403
930 => 0.0020089997424592
1001 => 0.0021034206168871
1002 => 0.0021099581133704
1003 => 0.0022043721600943
1004 => 0.0022939823330509
1005 => 0.0022376997889499
1006 => 0.0022907716930157
1007 => 0.0023481732842786
1008 => 0.0024589102668975
1009 => 0.0024216179469255
1010 => 0.0023930526142721
1011 => 0.0023660585129413
1012 => 0.0024222289526177
1013 => 0.0024944913259168
1014 => 0.002510055949005
1015 => 0.0025352765845515
1016 => 0.0025087601701069
1017 => 0.0025406962706182
1018 => 0.0026534447388566
1019 => 0.0026229791074803
1020 => 0.0025797130133314
1021 => 0.0026687171005276
1022 => 0.0027009273336893
1023 => 0.0029269956186482
1024 => 0.0032124161668238
1025 => 0.0030942501857067
1026 => 0.003020900748035
1027 => 0.0030381396057598
1028 => 0.0031423655278582
1029 => 0.0031758395860708
1030 => 0.0030848455566491
1031 => 0.0031169861861527
1101 => 0.0032940842147143
1102 => 0.0033890916250526
1103 => 0.0032600588006157
1104 => 0.0029040623555101
1105 => 0.0025758173749379
1106 => 0.0026628827248497
1107 => 0.0026530122161221
1108 => 0.0028432819543826
1109 => 0.0026222525122477
1110 => 0.0026259740811916
1111 => 0.0028201783961402
1112 => 0.0027683680144167
1113 => 0.0026844418313971
1114 => 0.0025764301289522
1115 => 0.0023767605071095
1116 => 0.0021999075548441
1117 => 0.002546756921039
1118 => 0.002531800145664
1119 => 0.0025101405184512
1120 => 0.002558341674997
1121 => 0.0027923928090465
1122 => 0.002786997172857
1123 => 0.0027526728882977
1124 => 0.0027787075556156
1125 => 0.0026798778283405
1126 => 0.0027053484993704
1127 => 0.0025757653792559
1128 => 0.0026343423614168
1129 => 0.0026842617635015
1130 => 0.0026942838225394
1201 => 0.0027168640332908
1202 => 0.0025239186046826
1203 => 0.0026105454375475
1204 => 0.0026614305860191
1205 => 0.0024315296340069
1206 => 0.0026568861833857
1207 => 0.0025205598540353
1208 => 0.0024742886503011
1209 => 0.0025365867303617
1210 => 0.0025123091079752
1211 => 0.0024914366338771
1212 => 0.0024797894346957
1213 => 0.0025255342691041
1214 => 0.002523400217902
1215 => 0.0024485527901202
1216 => 0.0023509173717503
1217 => 0.0023836870229286
1218 => 0.0023717815014384
1219 => 0.0023286343557151
1220 => 0.0023577103223263
1221 => 0.0022296744803803
1222 => 0.002009395469036
1223 => 0.0021549185312586
1224 => 0.0021493160516617
1225 => 0.0021464910273967
1226 => 0.0022558475866949
1227 => 0.0022453354768035
1228 => 0.0022262558944156
1229 => 0.0023282839442221
1230 => 0.0022910423335718
1231 => 0.002405812202369
]
'min_raw' => 0.001030260909923
'max_raw' => 0.0033890916250526
'avg_raw' => 0.0022096762674878
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.00103'
'max' => '$0.003389'
'avg' => '$0.0022096'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.00056125958142107
'max_diff' => 0.0022403608514979
'year' => 2029
]
4 => [
'items' => [
101 => 0.0024814070608086
102 => 0.0024622337594708
103 => 0.0025333310892148
104 => 0.0023844419695063
105 => 0.0024338969626788
106 => 0.00244408956823
107 => 0.0023270249339249
108 => 0.0022470553879872
109 => 0.0022417223309927
110 => 0.002103066158819
111 => 0.0021771351668007
112 => 0.0022423128286408
113 => 0.0022110977866102
114 => 0.0022012160368262
115 => 0.0022516997533827
116 => 0.0022556227705229
117 => 0.002166177563983
118 => 0.0021847760547839
119 => 0.0022623348531658
120 => 0.0021828217720601
121 => 0.0020283408438597
122 => 0.0019900274378001
123 => 0.0019849157231756
124 => 0.0018810067272674
125 => 0.0019925877227957
126 => 0.0019438796280628
127 => 0.0020977479157114
128 => 0.0020098591750187
129 => 0.0020060704670685
130 => 0.002000343279319
131 => 0.0019109045141142
201 => 0.001930485919564
202 => 0.0019955774936114
203 => 0.0020188029005406
204 => 0.0020163803003177
205 => 0.001995258509388
206 => 0.0020049279571146
207 => 0.0019737792969284
208 => 0.0019627800567134
209 => 0.0019280634290154
210 => 0.0018770395770125
211 => 0.0018841347565809
212 => 0.0017830431546461
213 => 0.0017279630845746
214 => 0.0017127176471224
215 => 0.0016923308110108
216 => 0.0017150203945086
217 => 0.0017827567748393
218 => 0.0017010523290857
219 => 0.0015609757877416
220 => 0.0015693946265552
221 => 0.0015883092577937
222 => 0.0015530619676136
223 => 0.001519703365539
224 => 0.0015487059635739
225 => 0.0014893536864101
226 => 0.0015954816969301
227 => 0.0015926112316658
228 => 0.0016321691910755
301 => 0.0016569055949055
302 => 0.0015998961925833
303 => 0.0015855584820691
304 => 0.0015937258935906
305 => 0.0014587367742741
306 => 0.0016211377001212
307 => 0.0016225421500718
308 => 0.0016105163969287
309 => 0.0016969898763762
310 => 0.0018794758897651
311 => 0.0018108173110453
312 => 0.0017842306341485
313 => 0.0017336893419329
314 => 0.0018010326129652
315 => 0.0017958617004686
316 => 0.0017724768731486
317 => 0.0017583336566204
318 => 0.0017843929667283
319 => 0.0017551046197124
320 => 0.0017498436277984
321 => 0.0017179677408152
322 => 0.0017065894994226
323 => 0.0016981655024764
324 => 0.0016888915095634
325 => 0.0017093476269943
326 => 0.0016629913736695
327 => 0.0016070902765194
328 => 0.0016024427051496
329 => 0.0016152750583202
330 => 0.0016095976972985
331 => 0.0016024155241293
401 => 0.0015887027996006
402 => 0.0015846345271589
403 => 0.0015978544389491
404 => 0.0015829299293068
405 => 0.0016049518562642
406 => 0.0015989631106605
407 => 0.0015655104645416
408 => 0.0015238160817214
409 => 0.0015234449142574
410 => 0.0015144619278713
411 => 0.0015030207441075
412 => 0.0014998380685233
413 => 0.0015462634456623
414 => 0.0016423625869453
415 => 0.0016234960260539
416 => 0.0016371290498209
417 => 0.0017041900336549
418 => 0.0017255067038216
419 => 0.0017103766362503
420 => 0.0016896656665767
421 => 0.0016905768441324
422 => 0.0017613524971438
423 => 0.0017657666878069
424 => 0.0017769199235408
425 => 0.0017912549833628
426 => 0.0017128179589245
427 => 0.0016868824673351
428 => 0.0016745927925737
429 => 0.0016367453510115
430 => 0.001677560571942
501 => 0.0016537792905878
502 => 0.0016569881979267
503 => 0.0016548983928126
504 => 0.0016560395677169
505 => 0.0015954520319882
506 => 0.0016175269456206
507 => 0.0015808231202069
508 => 0.0015316808181756
509 => 0.0015315160759477
510 => 0.00154354358475
511 => 0.0015363891518779
512 => 0.0015171367569764
513 => 0.0015198714688034
514 => 0.0014959125155998
515 => 0.0015227805195132
516 => 0.0015235509977271
517 => 0.0015132053527104
518 => 0.0015545992198091
519 => 0.0015715583209336
520 => 0.0015647485957584
521 => 0.0015710805324619
522 => 0.0016242800168364
523 => 0.0016329538540456
524 => 0.0016368061995725
525 => 0.0016316445669045
526 => 0.0015720529213766
527 => 0.001574696064259
528 => 0.0015553024355408
529 => 0.0015389168629242
530 => 0.0015395721998978
531 => 0.0015479965141981
601 => 0.001584785988827
602 => 0.0016622072693256
603 => 0.0016651453503263
604 => 0.001668706390209
605 => 0.0016542218513707
606 => 0.0016498531758587
607 => 0.0016556165865099
608 => 0.0016846919488476
609 => 0.0017594816746641
610 => 0.0017330459905227
611 => 0.0017115533678198
612 => 0.0017304081922997
613 => 0.00172750563986
614 => 0.0017030051762436
615 => 0.0017023175298312
616 => 0.0016552933068792
617 => 0.0016379095223436
618 => 0.0016233823308319
619 => 0.0016075190169431
620 => 0.0015981147127267
621 => 0.0016125639981829
622 => 0.0016158687207257
623 => 0.0015842751055454
624 => 0.0015799690125388
625 => 0.0016057690406905
626 => 0.0015944154102229
627 => 0.0016060929007153
628 => 0.0016088021786772
629 => 0.0016083659225254
630 => 0.0015965114283611
701 => 0.0016040671294353
702 => 0.0015861956439319
703 => 0.0015667630876572
704 => 0.001554366327445
705 => 0.0015435485099682
706 => 0.0015495508638396
707 => 0.0015281535682747
708 => 0.001521308142781
709 => 0.00160150742792
710 => 0.0016607515021398
711 => 0.0016598900698374
712 => 0.0016546463222391
713 => 0.0016468551769632
714 => 0.0016841219780426
715 => 0.0016711389697198
716 => 0.0016805851930413
717 => 0.0016829896533334
718 => 0.0016902672304603
719 => 0.0016928683387543
720 => 0.001685005982904
721 => 0.0016586189563643
722 => 0.0015928649950306
723 => 0.0015622563485304
724 => 0.0015521549853579
725 => 0.001552522150724
726 => 0.0015423940908287
727 => 0.0015453772583757
728 => 0.0015413566668981
729 => 0.0015337426393251
730 => 0.0015490807190927
731 => 0.0015508482899018
801 => 0.0015472681988077
802 => 0.0015481114398615
803 => 0.0015184698146788
804 => 0.0015207234030632
805 => 0.0015081751365666
806 => 0.0015058224878701
807 => 0.0014741015628691
808 => 0.0014179033462084
809 => 0.0014490426135314
810 => 0.0014114307574489
811 => 0.0013971865776378
812 => 0.0014646163094389
813 => 0.0014578482345757
814 => 0.0014462642324213
815 => 0.0014291290789174
816 => 0.0014227734838028
817 => 0.001384158899823
818 => 0.0013818773442007
819 => 0.0014010157747025
820 => 0.0013921840475391
821 => 0.0013797809577651
822 => 0.0013348582238844
823 => 0.0012843501975966
824 => 0.0012858747174281
825 => 0.001301940380855
826 => 0.0013486534640187
827 => 0.0013304018542821
828 => 0.0013171601020051
829 => 0.0013146803198492
830 => 0.0013457199853055
831 => 0.0013896476149371
901 => 0.001410257475935
902 => 0.0013898337296169
903 => 0.0013663720295393
904 => 0.001367800034512
905 => 0.0013772999118377
906 => 0.0013782982146236
907 => 0.0013630270597748
908 => 0.0013673258004134
909 => 0.0013607956202983
910 => 0.0013207199169853
911 => 0.0013199950745938
912 => 0.0013101598506927
913 => 0.0013098620440218
914 => 0.0012931298746546
915 => 0.0012907889284961
916 => 0.0012575661906474
917 => 0.0012794334973071
918 => 0.0012647660560849
919 => 0.0012426587624634
920 => 0.0012388474567103
921 => 0.0012387328842571
922 => 0.001261432131706
923 => 0.0012791682433845
924 => 0.0012650212025046
925 => 0.0012618001955251
926 => 0.0012961921232246
927 => 0.0012918154369355
928 => 0.0012880252548357
929 => 0.0013857143775061
930 => 0.0013083858141352
1001 => 0.0012746661467453
1002 => 0.0012329316551593
1003 => 0.0012465206160633
1004 => 0.0012493840097891
1005 => 0.0011490200807322
1006 => 0.0011083024472133
1007 => 0.0010943296898013
1008 => 0.0010862881703649
1009 => 0.0010899527917511
1010 => 0.0010533021458821
1011 => 0.0010779319860518
1012 => 0.0010461956247312
1013 => 0.0010408749204767
1014 => 0.0010976234658987
1015 => 0.001105519694474
1016 => 0.0010718319302059
1017 => 0.0010934649284197
1018 => 0.0010856205025462
1019 => 0.0010467396535571
1020 => 0.0010452546911139
1021 => 0.0010257456478191
1022 => 0.00099521777275795
1023 => 0.00098126571468275
1024 => 0.00097399936169986
1025 => 0.000976997600559
1026 => 0.0009754815992442
1027 => 0.00096558866520231
1028 => 0.00097604865064323
1029 => 0.00094932771020609
1030 => 0.00093868721641877
1031 => 0.00093388115223262
1101 => 0.00091016477959471
1102 => 0.00094790807518041
1103 => 0.0009553439798883
1104 => 0.00096279453562553
1105 => 0.0010276465366077
1106 => 0.0010244067139085
1107 => 0.0010536931332518
1108 => 0.0010525551168503
1109 => 0.0010442021556451
1110 => 0.0010089623863156
1111 => 0.0010230083302819
1112 => 0.00097977709797811
1113 => 0.0010121688766581
1114 => 0.00099738662158159
1115 => 0.0010071709813471
1116 => 0.00098957782026853
1117 => 0.00099931460201325
1118 => 0.00095710730874842
1119 => 0.00091769473217036
1120 => 0.0009335555035102
1121 => 0.00095079797585583
1122 => 0.0009881840492014
1123 => 0.00096591721234519
1124 => 0.000973925208881
1125 => 0.00094709976100845
1126 => 0.00089175119973702
1127 => 0.00089206446658298
1128 => 0.00088355029626532
1129 => 0.00087619281002165
1130 => 0.00096847482641492
1201 => 0.00095699809891363
1202 => 0.00093871143567727
1203 => 0.00096318886110224
1204 => 0.00096966108089359
1205 => 0.00096984533589218
1206 => 0.00098770343362845
1207 => 0.00099723430359153
1208 => 0.00099891416073168
1209 => 0.0010270142633694
1210 => 0.0010364330471243
1211 => 0.0010752276844144
1212 => 0.00099642567586365
1213 => 0.00099480280035465
1214 => 0.00096353330867491
1215 => 0.00094370170270051
1216 => 0.00096489119570265
1217 => 0.00098366219384831
1218 => 0.00096411657591125
1219 => 0.00096666882098331
1220 => 0.00094043042583846
1221 => 0.00094980941747151
1222 => 0.0009578878685525
1223 => 0.00095342742269498
1224 => 0.00094674991935826
1225 => 0.00098212318606201
1226 => 0.00098012728772563
1227 => 0.001013067686908
1228 => 0.0010387470836613
1229 => 0.0010847691533843
1230 => 0.0010367427244436
1231 => 0.0010349924504852
]
'min_raw' => 0.00087619281002165
'max_raw' => 0.0025333310892148
'avg_raw' => 0.0017047619496182
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.000876'
'max' => '$0.002533'
'avg' => '$0.0017047'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.00015406809990139
'max_diff' => -0.00085576053583779
'year' => 2030
]
5 => [
'items' => [
101 => 0.001052101659181
102 => 0.0010364304277936
103 => 0.0010463341050779
104 => 0.0010831735178636
105 => 0.0010839518766049
106 => 0.0010709133648283
107 => 0.0010701199702018
108 => 0.0010726241590142
109 => 0.0010872912711052
110 => 0.0010821661314658
111 => 0.0010880970728092
112 => 0.001095513805777
113 => 0.0011261925579613
114 => 0.0011335891012505
115 => 0.0011156193357257
116 => 0.0011172418043537
117 => 0.0011105206187663
118 => 0.0011040280377051
119 => 0.0011186224117653
120 => 0.0011452939172135
121 => 0.0011451279951623
122 => 0.0011513152660063
123 => 0.001155169884484
124 => 0.0011386230402246
125 => 0.0011278516530561
126 => 0.0011319820882976
127 => 0.0011385867441981
128 => 0.0011298402874044
129 => 0.0010758531043209
130 => 0.0010922293669538
131 => 0.0010895035560934
201 => 0.0010856216699582
202 => 0.0011020881286695
203 => 0.0011004998985566
204 => 0.0010529262405347
205 => 0.0010559717517689
206 => 0.0010531114481599
207 => 0.0010623536742837
208 => 0.0010359313172525
209 => 0.001044058656318
210 => 0.0010491560471908
211 => 0.0010521584495749
212 => 0.0010630051857528
213 => 0.0010617324464549
214 => 0.001062926070491
215 => 0.0010790089168106
216 => 0.001160350434529
217 => 0.0011647776738684
218 => 0.0011429763281742
219 => 0.0011516855357665
220 => 0.0011349657616836
221 => 0.0011461898580382
222 => 0.0011538690997029
223 => 0.0011191680832534
224 => 0.001117113314267
225 => 0.0011003245317289
226 => 0.0011093458724996
227 => 0.001094992270676
228 => 0.0010985141424958
301 => 0.0010886666818563
302 => 0.0011063901503976
303 => 0.0011262077421753
304 => 0.0011312144484788
305 => 0.001118043959717
306 => 0.0011085076578759
307 => 0.0010917650532961
308 => 0.0011196083778456
309 => 0.0011277506144538
310 => 0.0011195656101429
311 => 0.0011176689657982
312 => 0.0011140748281922
313 => 0.0011184314790819
314 => 0.0011277062700846
315 => 0.0011233324499263
316 => 0.0011262214351976
317 => 0.0011152116024518
318 => 0.0011386285179186
319 => 0.0011758202152674
320 => 0.0011759397926559
321 => 0.001171565948921
322 => 0.0011697762663004
323 => 0.0011742640953995
324 => 0.0011766985585853
325 => 0.0011912113749644
326 => 0.0012067842051553
327 => 0.0012794558086981
328 => 0.0012590499132234
329 => 0.0013235284831396
330 => 0.0013745226604488
331 => 0.0013898135845188
401 => 0.001375746653868
402 => 0.0013276244439924
403 => 0.0013252633387968
404 => 0.0013971782370239
405 => 0.0013768589843637
406 => 0.0013744420739151
407 => 0.0013487302301767
408 => 0.0013639291142999
409 => 0.001360604895388
410 => 0.0013553574532091
411 => 0.0013843558653528
412 => 0.0014386383041796
413 => 0.001430177877031
414 => 0.0014238625606324
415 => 0.001396190682535
416 => 0.0014128553338874
417 => 0.0014069213707312
418 => 0.0014324174422364
419 => 0.0014173141342838
420 => 0.0013767050460403
421 => 0.0013831721771924
422 => 0.0013821946833288
423 => 0.0014023114377752
424 => 0.0013962728874189
425 => 0.0013810155594565
426 => 0.001438452772705
427 => 0.0014347231195592
428 => 0.0014400109150025
429 => 0.0014423387660872
430 => 0.0014772997856343
501 => 0.001491622196715
502 => 0.0014948736347794
503 => 0.0015084788175709
504 => 0.0014945351254375
505 => 0.0015503198356553
506 => 0.0015874134128221
507 => 0.0016304995115193
508 => 0.0016934598821676
509 => 0.0017171335639473
510 => 0.0017128571252287
511 => 0.0017605929596974
512 => 0.0018463731931297
513 => 0.0017301957629561
514 => 0.0018525308790297
515 => 0.0018138009937077
516 => 0.0017219731323299
517 => 0.0017160605006365
518 => 0.0017782473945049
519 => 0.0019161719398384
520 => 0.0018816234055596
521 => 0.0019162284488638
522 => 0.0018758598276943
523 => 0.0018738551853998
524 => 0.001914267835038
525 => 0.0020086941936965
526 => 0.001963835770217
527 => 0.0018995202204224
528 => 0.0019470098215299
529 => 0.0019058699340955
530 => 0.0018131702533762
531 => 0.0018815969869465
601 => 0.0018358419788892
602 => 0.0018491957227104
603 => 0.001945365944103
604 => 0.0019337944886302
605 => 0.0019487690235
606 => 0.0019223393614067
607 => 0.0018976498894364
608 => 0.0018515651565396
609 => 0.0018379217390787
610 => 0.0018416922888261
611 => 0.0018379198705815
612 => 0.0018121358860663
613 => 0.0018065678370651
614 => 0.0017972875114547
615 => 0.0018001638724152
616 => 0.0017827141452126
617 => 0.0018156453857415
618 => 0.0018217577141727
619 => 0.0018457223247921
620 => 0.0018482104101661
621 => 0.0019149515096261
622 => 0.0018781916335822
623 => 0.0019028533321274
624 => 0.0019006473576846
625 => 0.0017239633205324
626 => 0.0017483088219555
627 => 0.0017861827821307
628 => 0.0017691206144087
629 => 0.0017449987011822
630 => 0.0017255189629166
701 => 0.0016960051675388
702 => 0.0017375452677709
703 => 0.0017921660822789
704 => 0.0018495956841601
705 => 0.0019185935878838
706 => 0.0019031940589968
707 => 0.0018483058163439
708 => 0.0018507680628134
709 => 0.0018659887016298
710 => 0.0018462765914218
711 => 0.0018404631052953
712 => 0.0018651900179081
713 => 0.0018653602985656
714 => 0.0018426791334832
715 => 0.0018174731691036
716 => 0.0018173675551925
717 => 0.0018128823972918
718 => 0.001876657727321
719 => 0.001911727710424
720 => 0.0019157484274686
721 => 0.0019114570841315
722 => 0.0019131086518646
723 => 0.0018927022014114
724 => 0.0019393452958026
725 => 0.0019821496117399
726 => 0.0019706771406879
727 => 0.001953478275673
728 => 0.0019397785512791
729 => 0.0019674499210042
730 => 0.0019662177584691
731 => 0.0019817757533818
801 => 0.0019810699528653
802 => 0.0019758383843419
803 => 0.0019706773275236
804 => 0.0019911403344286
805 => 0.0019852473170658
806 => 0.0019793451462193
807 => 0.0019675074390097
808 => 0.0019691163800229
809 => 0.0019519204846346
810 => 0.0019439648765974
811 => 0.0018243316198895
812 => 0.0017923617045677
813 => 0.0018024200907356
814 => 0.001805731572628
815 => 0.0017918182245094
816 => 0.0018117663916655
817 => 0.0018086574909446
818 => 0.0018207524050037
819 => 0.0018131960277997
820 => 0.0018135061441559
821 => 0.0018357278383235
822 => 0.0018421788906782
823 => 0.0018388978333842
824 => 0.0018411957734448
825 => 0.0018941508322423
826 => 0.0018866223162888
827 => 0.0018826229422373
828 => 0.0018837307961818
829 => 0.0018972619490738
830 => 0.00190104993311
831 => 0.0018849999785717
901 => 0.0018925692299156
902 => 0.0019247981414572
903 => 0.0019360764364983
904 => 0.0019720713403808
905 => 0.0019567800654531
906 => 0.0019848478623738
907 => 0.0020711187010909
908 => 0.002140037816546
909 => 0.0020766569497705
910 => 0.0022032181285075
911 => 0.002301764160277
912 => 0.0022979817994407
913 => 0.0022807980193909
914 => 0.0021686059822031
915 => 0.0020653651968938
916 => 0.0021517304976403
917 => 0.0021519506605531
918 => 0.0021445318046254
919 => 0.0020984539276211
920 => 0.0021429283943852
921 => 0.0021464586160494
922 => 0.0021444826306792
923 => 0.0021091548304153
924 => 0.0020552158090812
925 => 0.0020657553647381
926 => 0.0020830193719052
927 => 0.0020503350046887
928 => 0.0020398903689473
929 => 0.0020593089339637
930 => 0.0021218795964653
1001 => 0.0021100509751665
1002 => 0.0021097420820612
1003 => 0.0021603499400933
1004 => 0.0021241256356016
1005 => 0.0020658883022873
1006 => 0.0020511826075693
1007 => 0.0019989872982636
1008 => 0.0020350387843144
1009 => 0.0020363362131161
1010 => 0.0020165911826434
1011 => 0.002067490502689
1012 => 0.0020670214564942
1013 => 0.0021153427855135
1014 => 0.0022077150179362
1015 => 0.0021803960034473
1016 => 0.0021486269618971
1017 => 0.0021520811375736
1018 => 0.0021899649191126
1019 => 0.0021670595199915
1020 => 0.0021752964612175
1021 => 0.0021899524515155
1022 => 0.00219879477435
1023 => 0.0021508088633933
1024 => 0.0021396210521178
1025 => 0.0021167347166364
1026 => 0.002110764098903
1027 => 0.0021294045416136
1028 => 0.0021244934435359
1029 => 0.0020362271692492
1030 => 0.0020270028524774
1031 => 0.0020272857491035
1101 => 0.0020040907659882
1102 => 0.0019687128493037
1103 => 0.002061683902045
1104 => 0.0020542170253808
1105 => 0.0020459741714339
1106 => 0.0020469838740093
1107 => 0.002087339456923
1108 => 0.0020639311808273
1109 => 0.0021261659193687
1110 => 0.0021133723280721
1111 => 0.0021002506294333
1112 => 0.0020984368109847
1113 => 0.0020933860764995
1114 => 0.0020760652286542
1115 => 0.0020551492640595
1116 => 0.0020413387325242
1117 => 0.0018830270759964
1118 => 0.0019124087985915
1119 => 0.0019462097922087
1120 => 0.0019578777597564
1121 => 0.0019379188938673
1122 => 0.0020768533263303
1123 => 0.0021022379859468
1124 => 0.002025346196168
1125 => 0.0020109628817715
1126 => 0.0020777962940275
1127 => 0.0020374875763848
1128 => 0.0020556385894712
1129 => 0.0020164060272518
1130 => 0.0020961235647947
1201 => 0.0020955162507221
1202 => 0.0020645043281156
1203 => 0.0020907153927421
1204 => 0.0020861605752406
1205 => 0.0020511481909969
1206 => 0.0020972335198257
1207 => 0.0020972563775739
1208 => 0.0020674080763225
1209 => 0.0020325517950942
1210 => 0.0020263203152792
1211 => 0.0020216257323201
1212 => 0.0020544840098464
1213 => 0.0020839446387314
1214 => 0.0021387635651769
1215 => 0.0021525463457509
1216 => 0.0022063414559028
1217 => 0.0021743090870437
1218 => 0.0021885086212703
1219 => 0.0022039242243201
1220 => 0.0022113150313121
1221 => 0.0021992721079311
1222 => 0.0022828380569478
1223 => 0.0022898935834393
1224 => 0.0022922592404418
1225 => 0.0022640812726119
1226 => 0.0022891099031804
1227 => 0.0022773998357985
1228 => 0.0023078661779757
1229 => 0.0023126436894428
1230 => 0.0023085973071951
1231 => 0.0023101137647426
]
'min_raw' => 0.0010359313172525
'max_raw' => 0.0023126436894428
'avg_raw' => 0.0016742875033477
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.001035'
'max' => '$0.002312'
'avg' => '$0.001674'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.00015973850723086
'max_diff' => -0.000220687399772
'year' => 2031
]
6 => [
'items' => [
101 => 0.0022388049693005
102 => 0.002235107232073
103 => 0.0021846883225961
104 => 0.0022052344008857
105 => 0.0021668244923224
106 => 0.0021790046699937
107 => 0.0021843735762542
108 => 0.0021815691643065
109 => 0.0022063960453251
110 => 0.0021852881246626
111 => 0.0021295808515708
112 => 0.0020738584010697
113 => 0.0020731588510942
114 => 0.0020584881134602
115 => 0.0020478838572304
116 => 0.0020499266131865
117 => 0.0020571255516164
118 => 0.0020474654418419
119 => 0.0020495269160423
120 => 0.0020837611232996
121 => 0.0020906265494178
122 => 0.0020672951489729
123 => 0.0019736162094814
124 => 0.0019506271627543
125 => 0.0019671512336491
126 => 0.0019592537920479
127 => 0.0015812707236715
128 => 0.0016700722388844
129 => 0.0016173093939594
130 => 0.0016416249404026
131 => 0.0015877677386067
201 => 0.0016134712182015
202 => 0.0016087247240611
203 => 0.0017515149326956
204 => 0.0017492854599893
205 => 0.0017503525905927
206 => 0.0016994156664964
207 => 0.0017805595696701
208 => 0.0018205339742139
209 => 0.0018131357758172
210 => 0.0018149977429657
211 => 0.0017830029783617
212 => 0.0017506623698512
213 => 0.0017147916578291
214 => 0.0017814350070121
215 => 0.0017740254042229
216 => 0.0017910203671305
217 => 0.0018342433428406
218 => 0.0018406080902021
219 => 0.0018491623752007
220 => 0.0018460962729642
221 => 0.0019191432675031
222 => 0.0019102967944849
223 => 0.0019316142491549
224 => 0.0018877626275395
225 => 0.0018381403552476
226 => 0.001847571926936
227 => 0.0018466635907385
228 => 0.0018350994284045
229 => 0.0018246598197181
301 => 0.0018072808125966
302 => 0.001862270562738
303 => 0.0018600380793053
304 => 0.001896179391102
305 => 0.001889791063184
306 => 0.0018471282458583
307 => 0.0018486519567253
308 => 0.0018588996445766
309 => 0.0018943670092359
310 => 0.0019048961378691
311 => 0.001900018625973
312 => 0.0019115633348463
313 => 0.0019206878020241
314 => 0.0019127092274411
315 => 0.0020256690182119
316 => 0.0019787602375547
317 => 0.0020016232508578
318 => 0.0020070759448139
319 => 0.0019931089839032
320 => 0.0019961379176054
321 => 0.0020007259268291
322 => 0.0020285834204114
323 => 0.0021016895442021
324 => 0.0021340677487788
325 => 0.0022314791747602
326 => 0.0021313791896151
327 => 0.0021254396707515
328 => 0.002142986410114
329 => 0.0022001772292117
330 => 0.00224652501643
331 => 0.0022619012513183
401 => 0.0022639334745927
402 => 0.0022927803134359
403 => 0.0023093147834991
404 => 0.0022892775484531
405 => 0.0022722980897377
406 => 0.0022114797761867
407 => 0.002218519661583
408 => 0.002267017490845
409 => 0.0023355235311854
410 => 0.0023943088406362
411 => 0.0023737242741414
412 => 0.0025307699860574
413 => 0.0025463404269196
414 => 0.0025441890954451
415 => 0.0025796608769216
416 => 0.0025092566143934
417 => 0.0024791574281443
418 => 0.002275969241437
419 => 0.0023330568339633
420 => 0.0024160370023371
421 => 0.0024050542658931
422 => 0.0023447918495538
423 => 0.0023942631261896
424 => 0.0023779063750239
425 => 0.0023650051267374
426 => 0.0024241082461681
427 => 0.0023591219385317
428 => 0.0024153887142064
429 => 0.0023432259923983
430 => 0.0023738183027073
501 => 0.0023564526277923
502 => 0.0023676903477194
503 => 0.0023019948666504
504 => 0.0023374425535675
505 => 0.0023005201263334
506 => 0.0023005026202955
507 => 0.0022996875556679
508 => 0.0023431266275697
509 => 0.0023445431741449
510 => 0.0023124416343766
511 => 0.0023078153009757
512 => 0.0023249212803184
513 => 0.0023048946585712
514 => 0.0023142649888407
515 => 0.0023051784763294
516 => 0.0023031329109719
517 => 0.0022868334981789
518 => 0.002279811262986
519 => 0.0022825648623458
520 => 0.0022731654081529
521 => 0.0022675018970085
522 => 0.0022985609407527
523 => 0.0022819673465984
524 => 0.0022960177344629
525 => 0.002280005544191
526 => 0.0022245003165294
527 => 0.002192578673144
528 => 0.0020877344434285
529 => 0.0021174681369169
530 => 0.0021371816064615
531 => 0.0021306663048946
601 => 0.0021446636937473
602 => 0.0021455230197408
603 => 0.0021409723259383
604 => 0.002135703205495
605 => 0.0021331384890638
606 => 0.002152253784109
607 => 0.0021633508562739
608 => 0.0021391601168625
609 => 0.0021334925650828
610 => 0.0021579507382351
611 => 0.0021728702097289
612 => 0.0022830272047127
613 => 0.0022748664187219
614 => 0.0022953483900854
615 => 0.0022930424344313
616 => 0.0023145108034542
617 => 0.002349602513597
618 => 0.0022782512550803
619 => 0.0022906353664179
620 => 0.0022875990683088
621 => 0.0023207485749037
622 => 0.0023208520640449
623 => 0.0023009772789006
624 => 0.0023117517223589
625 => 0.0023057377236019
626 => 0.0023166058321965
627 => 0.0022747574264496
628 => 0.0023257242673931
629 => 0.0023546191819774
630 => 0.0023550203878944
701 => 0.0023687163480832
702 => 0.0023826322368515
703 => 0.0024093425735237
704 => 0.0023818873000587
705 => 0.0023324979358123
706 => 0.0023360636883842
707 => 0.0023071067221974
708 => 0.0023075934940305
709 => 0.0023049950678364
710 => 0.0023127931404453
711 => 0.0022764686648635
712 => 0.0022849939466782
713 => 0.0022730585022137
714 => 0.0022906094210926
715 => 0.0022717275336497
716 => 0.0022875976041139
717 => 0.0022944466004251
718 => 0.0023197195442618
719 => 0.0022679946992962
720 => 0.0021625242389473
721 => 0.0021846954084184
722 => 0.0021519025072629
723 => 0.0021549376151162
724 => 0.0021610690160137
725 => 0.0021411951396353
726 => 0.0021449864489505
727 => 0.0021448509967027
728 => 0.0021436837424086
729 => 0.0021385137795971
730 => 0.0021310163106743
731 => 0.0021608839192633
801 => 0.0021659590079711
802 => 0.0021772403014981
803 => 0.0022108057788599
804 => 0.002207451796143
805 => 0.0022129222811097
806 => 0.0022009802431428
807 => 0.0021554915720069
808 => 0.0021579618257022
809 => 0.0021271577225389
810 => 0.0021764525713231
811 => 0.0021647789004708
812 => 0.0021572528089306
813 => 0.0021551992451251
814 => 0.002188847924813
815 => 0.002198916137154
816 => 0.0021926423028757
817 => 0.0021797744857338
818 => 0.0022044844986749
819 => 0.0022110958557061
820 => 0.002212575894728
821 => 0.0022563572999844
822 => 0.0022150227889311
823 => 0.0022249724165713
824 => 0.0023025965711741
825 => 0.0022322021743505
826 => 0.0022694916563303
827 => 0.0022676665302325
828 => 0.0022867425674062
829 => 0.0022661017383965
830 => 0.0022663576062099
831 => 0.0022832958348974
901 => 0.0022595091475314
902 => 0.0022536192292267
903 => 0.0022454823492731
904 => 0.00226324892897
905 => 0.002273899189985
906 => 0.0023597324720112
907 => 0.0024151846866734
908 => 0.0024127773597901
909 => 0.0024347758211763
910 => 0.002424865312839
911 => 0.0023928616671578
912 => 0.0024474879879068
913 => 0.0024302019343595
914 => 0.0024316269756113
915 => 0.0024315739355048
916 => 0.0024430676499407
917 => 0.0024349232998794
918 => 0.0024188699499081
919 => 0.0024295269127975
920 => 0.002461174282645
921 => 0.0025594086897116
922 => 0.0026143819653388
923 => 0.0025560992294923
924 => 0.0025963018802423
925 => 0.0025721946154615
926 => 0.0025678136083218
927 => 0.0025930638439453
928 => 0.0026183582767637
929 => 0.002616747130744
930 => 0.0025983846714013
1001 => 0.0025880121840488
1002 => 0.0026665561333203
1003 => 0.0027244259771822
1004 => 0.0027204796417952
1005 => 0.0027378974827765
1006 => 0.0027890368026112
1007 => 0.002793712341118
1008 => 0.0027931233307322
1009 => 0.0027815345207009
1010 => 0.002831887822358
1011 => 0.0028738934324824
1012 => 0.0027788520460116
1013 => 0.0028150425617966
1014 => 0.0028312896503181
1015 => 0.0028551451965616
1016 => 0.0028953935017281
1017 => 0.0029391138364746
1018 => 0.0029452963711768
1019 => 0.0029409095669441
1020 => 0.0029120748309131
1021 => 0.0029599141428848
1022 => 0.0029879372898679
1023 => 0.003004624432598
1024 => 0.0030469402500859
1025 => 0.0028313899868056
1026 => 0.0026788127969127
1027 => 0.0026549856654695
1028 => 0.0027034390742148
1029 => 0.0027162158516922
1030 => 0.0027110655487118
1031 => 0.002539326049776
1101 => 0.0026540814925499
1102 => 0.002777548700063
1103 => 0.0027822915783396
1104 => 0.0028441018439982
1105 => 0.002864229800185
1106 => 0.0029139951656969
1107 => 0.0029108823285345
1108 => 0.0029229994030967
1109 => 0.0029202138974934
1110 => 0.0030123937577701
1111 => 0.003114081832497
1112 => 0.0031105606978175
1113 => 0.0030959418339568
1114 => 0.0031176533396766
1115 => 0.0032226063303512
1116 => 0.0032129439408073
1117 => 0.0032223301292088
1118 => 0.0033460756201055
1119 => 0.0035069623608619
1120 => 0.0034322143170159
1121 => 0.0035943960639916
1122 => 0.0036964808768278
1123 => 0.0038730260048614
1124 => 0.0038509216853285
1125 => 0.003919649408124
1126 => 0.0038113503400539
1127 => 0.0035626737889123
1128 => 0.0035233197727985
1129 => 0.0036021075096607
1130 => 0.0037957994727414
1201 => 0.0035960074604521
1202 => 0.0036364251243286
1203 => 0.0036247848344131
1204 => 0.0036241645728315
1205 => 0.003647837434613
1206 => 0.0036134987139055
1207 => 0.0034735965883252
1208 => 0.0035377129080303
1209 => 0.0035129545178736
1210 => 0.0035404257976127
1211 => 0.003688676964347
1212 => 0.0036231315896674
1213 => 0.0035540848619162
1214 => 0.0036406847812116
1215 => 0.0037509562374356
1216 => 0.0037440556478819
1217 => 0.0037306656199252
1218 => 0.0038061445064382
1219 => 0.0039308135137189
1220 => 0.0039645110454262
1221 => 0.0039893858744169
1222 => 0.003992815693071
1223 => 0.0040281449568289
1224 => 0.0038381706014816
1225 => 0.0041396647823053
1226 => 0.0041917244987249
1227 => 0.0041819394296922
1228 => 0.0042398016134848
1229 => 0.0042227770911911
1230 => 0.0041981112294532
1231 => 0.004289835098404
]
'min_raw' => 0.0015812707236715
'max_raw' => 0.004289835098404
'avg_raw' => 0.0029355529110377
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.001581'
'max' => '$0.004289'
'avg' => '$0.002935'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.00054533940641898
'max_diff' => 0.0019771914089611
'year' => 2032
]
7 => [
'items' => [
101 => 0.0041846810843865
102 => 0.0040354282000109
103 => 0.0039535451157551
104 => 0.0040613753664231
105 => 0.0041272235377489
106 => 0.004170744990265
107 => 0.0041839145555
108 => 0.0038529177698996
109 => 0.0036745288603843
110 => 0.0037888741061506
111 => 0.0039283831976728
112 => 0.0038373956214342
113 => 0.0038409621621605
114 => 0.0037112377895587
115 => 0.0039398609261672
116 => 0.0039065524581865
117 => 0.0040793568489916
118 => 0.0040381156942841
119 => 0.0041790309667579
120 => 0.0041419232529305
121 => 0.0042959552983636
122 => 0.0043574028515381
123 => 0.0044605828568659
124 => 0.0045364824888033
125 => 0.0045810522044055
126 => 0.0045783764058575
127 => 0.0047549838236177
128 => 0.0046508445995577
129 => 0.0045200211904078
130 => 0.0045176550076789
131 => 0.0045854103050597
201 => 0.0047274068206117
202 => 0.0047642244511291
203 => 0.0047848004838348
204 => 0.0047532875734892
205 => 0.0046402519094975
206 => 0.0045914436828897
207 => 0.00463302970607
208 => 0.0045821735732483
209 => 0.0046699655262093
210 => 0.004790522628974
211 => 0.0047656280639875
212 => 0.0048488468623356
213 => 0.0049349695637528
214 => 0.0050581288947921
215 => 0.0050903273045026
216 => 0.0051435500513582
217 => 0.0051983337406341
218 => 0.0052159287851677
219 => 0.0052495231846041
220 => 0.0052493461255364
221 => 0.0053505851094017
222 => 0.0054622548437155
223 => 0.0055044075832587
224 => 0.0056013354835226
225 => 0.0054353498510794
226 => 0.0055612518599931
227 => 0.0056748186235649
228 => 0.0055394196462265
301 => 0.0057260355925718
302 => 0.0057332814668876
303 => 0.0058426855663574
304 => 0.0057317835522554
305 => 0.0056659302902934
306 => 0.0058560461900882
307 => 0.0059480372854042
308 => 0.0059203288188466
309 => 0.005709466020208
310 => 0.0055867348270695
311 => 0.0052655236215468
312 => 0.0056460121697799
313 => 0.0058313370426211
314 => 0.0057089860735586
315 => 0.0057706927856229
316 => 0.006107344598177
317 => 0.006235519811807
318 => 0.0062088602633843
319 => 0.0062133652882142
320 => 0.0062825263069442
321 => 0.0065892243516619
322 => 0.0064054437740621
323 => 0.0065459371395103
324 => 0.0066204543139575
325 => 0.0066896700184713
326 => 0.0065196981240334
327 => 0.0062985671867528
328 => 0.0062285257364707
329 => 0.0056968206809593
330 => 0.005669143123742
331 => 0.00565360687216
401 => 0.0055556530035823
402 => 0.005478688094703
403 => 0.0054174827416383
404 => 0.0052568616177309
405 => 0.0053110665319671
406 => 0.0050550699846927
407 => 0.0052188475036783
408 => 0.0048102708329755
409 => 0.0051505456252581
410 => 0.004965349526215
411 => 0.0050897037258893
412 => 0.0050892698658015
413 => 0.0048602943576661
414 => 0.0047282260631706
415 => 0.0048123851205981
416 => 0.0049026103107146
417 => 0.0049172490442571
418 => 0.0050342283583616
419 => 0.0050668747704662
420 => 0.0049679546176739
421 => 0.0048018039896235
422 => 0.0048403969910273
423 => 0.0047274439772289
424 => 0.0045294981652223
425 => 0.0046716663032078
426 => 0.0047202087562078
427 => 0.0047416478688552
428 => 0.0045469908969767
429 => 0.004485825450204
430 => 0.00445326147957
501 => 0.0047766762189516
502 => 0.0047943936084424
503 => 0.004703748938821
504 => 0.0051134714407902
505 => 0.0050207386198483
506 => 0.0051243439009331
507 => 0.0048368950806626
508 => 0.0048478760126981
509 => 0.0047117931346104
510 => 0.0047879904532783
511 => 0.004734136644398
512 => 0.0047818344629265
513 => 0.004810424338687
514 => 0.0049464848869135
515 => 0.0051520992181618
516 => 0.0049261619782279
517 => 0.0048277178873079
518 => 0.0048887920476441
519 => 0.0050514405848782
520 => 0.0052978614446132
521 => 0.0051519753359681
522 => 0.005216717113678
523 => 0.0052308603119464
524 => 0.0051232892964288
525 => 0.005301827741393
526 => 0.0053975079444931
527 => 0.0054956560346455
528 => 0.0055808752712778
529 => 0.0054564535291159
530 => 0.0055896026283852
531 => 0.0054823079583542
601 => 0.0053860535474172
602 => 0.0053861995256265
603 => 0.0053258177275931
604 => 0.0052088203853074
605 => 0.0051872442803286
606 => 0.0052994859031899
607 => 0.0053894930554033
608 => 0.0053969064755648
609 => 0.0054467390597646
610 => 0.0054762294697776
611 => 0.0057652755781736
612 => 0.0058815323140852
613 => 0.0060236888501306
614 => 0.0060790668324237
615 => 0.0062457347050203
616 => 0.0061111368617958
617 => 0.006082015771754
618 => 0.0056777340294802
619 => 0.0057439351421292
620 => 0.0058499295109376
621 => 0.0056794818375817
622 => 0.0057875916546797
623 => 0.0058089348226539
624 => 0.0056736900908636
625 => 0.0057459301456927
626 => 0.0055540819777502
627 => 0.0051562809839624
628 => 0.0053022706076166
629 => 0.0054097681102021
630 => 0.0052563559196661
701 => 0.0055313413333301
702 => 0.0053707005315187
703 => 0.0053197851094629
704 => 0.0051211458953645
705 => 0.0052148959580944
706 => 0.0053416942603082
707 => 0.0052633476514249
708 => 0.0054259286286603
709 => 0.0056561866511886
710 => 0.0058202822301445
711 => 0.0058328794511138
712 => 0.0057273769873951
713 => 0.005896445358812
714 => 0.0058976768373217
715 => 0.0057069670236988
716 => 0.0055901583247314
717 => 0.0055636191425584
718 => 0.0056299192229397
719 => 0.0057104197601926
720 => 0.0058373466706761
721 => 0.0059140459443822
722 => 0.0061140369720562
723 => 0.0061681488099527
724 => 0.0062276013141168
725 => 0.0063070481941533
726 => 0.006402444543399
727 => 0.0061937227621665
728 => 0.006202015667641
729 => 0.0060076568349071
730 => 0.0057999565482548
731 => 0.0059575751756177
801 => 0.0061636405637672
802 => 0.0061163689360437
803 => 0.0061110499122531
804 => 0.0061199950348947
805 => 0.0060843537713382
806 => 0.005923149657199
807 => 0.0058421939602694
808 => 0.0059466474633095
809 => 0.0060021598514848
810 => 0.0060882547243556
811 => 0.006077641714032
812 => 0.0062994128606329
813 => 0.0063855864221906
814 => 0.0063635395375695
815 => 0.0063675966949277
816 => 0.0065236098119422
817 => 0.006697128484607
818 => 0.0068596516193632
819 => 0.0070249771325681
820 => 0.0068256707736349
821 => 0.0067244752960759
822 => 0.0068288831979842
823 => 0.0067734828955841
824 => 0.0070918294659725
825 => 0.0071138710917995
826 => 0.0074321946421074
827 => 0.007734321596613
828 => 0.0075445610696547
829 => 0.0077234966995745
830 => 0.0079170301721687
831 => 0.0082903876404773
901 => 0.0081646539800251
902 => 0.0080683439666163
903 => 0.0079773314693117
904 => 0.0081667140283756
905 => 0.0084103516651512
906 => 0.0084628288785803
907 => 0.008547862012174
908 => 0.0084584600695571
909 => 0.0085661348621382
910 => 0.0089462741946508
911 => 0.0088435571914232
912 => 0.0086976825342578
913 => 0.0089977660283068
914 => 0.0091063650782582
915 => 0.0098685700845805
916 => 0.010830885390181
917 => 0.010432480534759
918 => 0.010185177784555
919 => 0.010243299796953
920 => 0.010594704770129
921 => 0.010707564894477
922 => 0.010400772171281
923 => 0.01050913654764
924 => 0.011106234915525
925 => 0.011426559032686
926 => 0.010991515856313
927 => 0.0097912489867611
928 => 0.0086845481174292
929 => 0.0089780950233657
930 => 0.0089448159140535
1001 => 0.0095863236208076
1002 => 0.008841107424867
1003 => 0.0088536549543932
1004 => 0.0095084283611545
1005 => 0.0093337460418886
1006 => 0.0090507830562989
1007 => 0.0086866140603696
1008 => 0.0080134139898391
1009 => 0.0074171419137975
1010 => 0.0085865687681731
1011 => 0.0085361409557477
1012 => 0.0084631140103726
1013 => 0.0086256275749641
1014 => 0.0094147473143403
1015 => 0.0093965555502164
1016 => 0.0092808288283794
1017 => 0.0093686065269242
1018 => 0.0090353952013451
1019 => 0.0091212713470277
1020 => 0.0086843728103572
1021 => 0.0088818691954269
1022 => 0.009050175944817
1023 => 0.0090839660165811
1024 => 0.0091600967736294
1025 => 0.008509567790057
1026 => 0.0088016362051535
1027 => 0.0089731990359131
1028 => 0.0081980719250322
1029 => 0.0089578772651546
1030 => 0.0084982435277494
1031 => 0.008342236933807
1101 => 0.0085522792602446
1102 => 0.008470425561359
1103 => 0.0084000525576676
1104 => 0.0083607832124462
1105 => 0.0085150151154563
1106 => 0.0085078200128339
1107 => 0.0082554666843869
1108 => 0.0079262820546655
1109 => 0.0080367672215171
1110 => 0.0079966269245959
1111 => 0.0078511533103523
1112 => 0.0079491849618013
1113 => 0.0075175031815031
1114 => 0.0067748171153664
1115 => 0.0072654582797457
1116 => 0.007246569128632
1117 => 0.0072370443620857
1118 => 0.007605747636791
1119 => 0.0075703053243599
1120 => 0.0075059771802453
1121 => 0.0078499718735389
1122 => 0.0077244091831052
1123 => 0.0081113638087313
1124 => 0.0083662371518246
1125 => 0.0083015930277272
1126 => 0.0085413026388163
1127 => 0.0080393125766127
1128 => 0.0082060535389311
1129 => 0.008240418620172
1130 => 0.0078457270324205
1201 => 0.0075761041249961
1202 => 0.0075581233509971
1203 => 0.0070906343858484
1204 => 0.0073403632175918
1205 => 0.0075601142550446
1206 => 0.0074548705614741
1207 => 0.0074215535521556
1208 => 0.0075917629271862
1209 => 0.0076049896533708
1210 => 0.0073034188946565
1211 => 0.0073661250048971
1212 => 0.0076276199086239
1213 => 0.00735953600425
1214 => 0.0068386927693086
1215 => 0.006709516445822
1216 => 0.0066922819430769
1217 => 0.0063419455086778
1218 => 0.006718148625438
1219 => 0.0065539258833555
1220 => 0.0070727035579036
1221 => 0.0067763805324622
1222 => 0.0067636066390887
1223 => 0.006744297025732
1224 => 0.0064427479844289
1225 => 0.006508768060033
1226 => 0.0067282288464823
1227 => 0.0068065349274901
1228 => 0.0067983669616982
1229 => 0.0067271533689022
1230 => 0.0067597545870116
1231 => 0.006654734704464
]
'min_raw' => 0.0036745288603843
'max_raw' => 0.011426559032686
'avg_raw' => 0.0075505439465352
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.003674'
'max' => '$0.011426'
'avg' => '$0.00755'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.0020932581367128
'max_diff' => 0.0071367239342821
'year' => 2033
]
8 => [
'items' => [
101 => 0.0066176499981366
102 => 0.0065006004640152
103 => 0.0063285699846158
104 => 0.0063524918779006
105 => 0.006011654483987
106 => 0.0058259481821732
107 => 0.0057745471254009
108 => 0.0057058114840869
109 => 0.0057823109989858
110 => 0.006010688934474
111 => 0.0057352166911934
112 => 0.0052629388522201
113 => 0.0052913235550647
114 => 0.0053550955548626
115 => 0.0052362568551333
116 => 0.0051237859992155
117 => 0.005221570283387
118 => 0.0050214599370853
119 => 0.0053792779341746
120 => 0.0053695999601267
121 => 0.0055029723821251
122 => 0.0055863728946783
123 => 0.0053941617144797
124 => 0.0053458211224541
125 => 0.0053733581206293
126 => 0.0049182328802143
127 => 0.0054657789401784
128 => 0.0054705141412423
129 => 0.0054299684749092
130 => 0.005721519848252
131 => 0.0063367841831592
201 => 0.0061052969914166
202 => 0.0060156581540364
203 => 0.0058452546586512
204 => 0.0060723071986937
205 => 0.0060548731061898
206 => 0.005976029528204
207 => 0.0059283446862313
208 => 0.0060162054696631
209 => 0.0059174577628519
210 => 0.0058997199613031
211 => 0.0057922481828357
212 => 0.0057538856475772
213 => 0.0057254835537283
214 => 0.0056942156391328
215 => 0.0057631848672516
216 => 0.0056068915226768
217 => 0.0054184170707451
218 => 0.0054027474593888
219 => 0.0054460126340298
220 => 0.0054268710149646
221 => 0.005402655816681
222 => 0.0053564224085408
223 => 0.0053427059439661
224 => 0.0053872777995514
225 => 0.0053369587732962
226 => 0.0054112072375549
227 => 0.0053910157636315
228 => 0.0052782278316521
301 => 0.0051376523089652
302 => 0.0051364008919461
303 => 0.0051061141261733
304 => 0.0050675393763159
305 => 0.0050568087633763
306 => 0.0052133351637166
307 => 0.0055373401279803
308 => 0.0054737302007136
309 => 0.0055196948921714
310 => 0.0057457956812161
311 => 0.0058176663229654
312 => 0.0057666542438012
313 => 0.0056968257635531
314 => 0.0056998978622985
315 => 0.0059385229178246
316 => 0.0059534056698343
317 => 0.005991009582805
318 => 0.006039341237837
319 => 0.0057748853336451
320 => 0.0056874420129932
321 => 0.0056460065164976
322 => 0.0055184012248463
323 => 0.0056560125918413
324 => 0.0055758323413996
325 => 0.0055866513965316
326 => 0.0055796054726837
327 => 0.0055834530235479
328 => 0.0053791779167521
329 => 0.005453605029285
330 => 0.0053298555193232
331 => 0.0051641688170188
401 => 0.0051636133770954
402 => 0.0052041649627562
403 => 0.0051800432928215
404 => 0.0051151324992519
405 => 0.0051243527711081
406 => 0.0050435734876214
407 => 0.0051341608386796
408 => 0.0051367585597708
409 => 0.005101877495287
410 => 0.0052414398082377
411 => 0.0052986186017256
412 => 0.0052756591378576
413 => 0.0052970077045354
414 => 0.0054763734803732
415 => 0.0055056179281122
416 => 0.0055186063800181
417 => 0.0055012035751043
418 => 0.0053002861816513
419 => 0.0053091977224177
420 => 0.0052438107491743
421 => 0.0051885656470931
422 => 0.0051907751614539
423 => 0.0052191783252842
424 => 0.0053432166075547
425 => 0.0056042478601367
426 => 0.0056141538053608
427 => 0.0056261600999493
428 => 0.0055773244659779
429 => 0.005562595171478
430 => 0.0055820269128768
501 => 0.0056800565269754
502 => 0.0059322153092175
503 => 0.0058430855544544
504 => 0.0057706216764446
505 => 0.0058341920335804
506 => 0.0058244058753803
507 => 0.0057418008517297
508 => 0.0057394824038404
509 => 0.0055809369530314
510 => 0.0055223263097725
511 => 0.0054733468693348
512 => 0.0054198625990174
513 => 0.0053881553307644
514 => 0.0054368721054968
515 => 0.005448014208278
516 => 0.0053414941289021
517 => 0.0053269758356883
518 => 0.0054139624319024
519 => 0.0053756828740958
520 => 0.0054150543485872
521 => 0.0054241888683915
522 => 0.0054227180003172
523 => 0.0053827497455878
524 => 0.0054082243192818
525 => 0.0053479693581597
526 => 0.0052824511379419
527 => 0.0052406545953723
528 => 0.0052041815684734
529 => 0.0052244189236217
530 => 0.0051522764477133
531 => 0.005129196617729
601 => 0.0053995941069103
602 => 0.0055993396394315
603 => 0.0055964352602807
604 => 0.0055787555991461
605 => 0.0055524872088883
606 => 0.0056781348306123
607 => 0.0056343617116072
608 => 0.0056662103130499
609 => 0.0056743171187987
610 => 0.0056988539781865
611 => 0.0057076237964033
612 => 0.0056811153147217
613 => 0.0055921496124598
614 => 0.0053704555410283
615 => 0.0052672563523252
616 => 0.0052331989011348
617 => 0.0052344368248012
618 => 0.0052002893637455
619 => 0.0052103473214083
620 => 0.0051967916165329
621 => 0.0051711203909761
622 => 0.0052228337977832
623 => 0.005228793286174
624 => 0.005216722759096
625 => 0.0052195658051823
626 => 0.0051196269963664
627 => 0.005127225126945
628 => 0.0050849177703596
629 => 0.0050769856510227
630 => 0.0049700363376979
701 => 0.0047805601265921
702 => 0.0048855483404455
703 => 0.0047587373416874
704 => 0.0047107120949576
705 => 0.0049380561435186
706 => 0.0049152371065854
707 => 0.0048761808345527
708 => 0.0048184084681761
709 => 0.0047969801355135
710 => 0.0046667883696416
711 => 0.0046590959455679
712 => 0.0047236225002074
713 => 0.0046938457154644
714 => 0.0046520278323351
715 => 0.0045005676986514
716 => 0.0043302763616641
717 => 0.0043354163867146
718 => 0.0043895828926273
719 => 0.004547079313917
720 => 0.0044855427374034
721 => 0.0044408972450918
722 => 0.0044325364864205
723 => 0.0045371888856266
724 => 0.0046852939558588
725 => 0.0047547815411475
726 => 0.0046859214544957
727 => 0.0046068186946405
728 => 0.004611633313106
729 => 0.0046436628127698
730 => 0.0046470286603117
731 => 0.0045955408955411
801 => 0.0046100343997327
802 => 0.0045880174415518
803 => 0.0044528994098358
804 => 0.004450455553106
805 => 0.0044172954090503
806 => 0.004416291333067
807 => 0.0043598776558426
808 => 0.0043519849924296
809 => 0.0042399722122352
810 => 0.0043136993633651
811 => 0.0042642470612364
812 => 0.0041897107773096
813 => 0.0041768606938661
814 => 0.0041764744048409
815 => 0.0042530065024256
816 => 0.0043128050412457
817 => 0.0042651073052043
818 => 0.0042542474552894
819 => 0.0043702022406959
820 => 0.0043554459373016
821 => 0.0043426670737301
822 => 0.0046720327712501
823 => 0.0044113141209371
824 => 0.0042976259081004
825 => 0.0041569151559088
826 => 0.0042027312863476
827 => 0.00421238541821
828 => 0.0038740014242088
829 => 0.0037367190799856
830 => 0.0036896089528241
831 => 0.0036624964086033
901 => 0.0036748519354627
902 => 0.0035512817240488
903 => 0.0036343229497816
904 => 0.0035273215918271
905 => 0.0035093824659535
906 => 0.0037007141489007
907 => 0.0037273368348394
908 => 0.003613756185605
909 => 0.0036866933494503
910 => 0.0036602453199376
911 => 0.0035291558229967
912 => 0.0035241491684427
913 => 0.0034583730668964
914 => 0.0033554462047394
915 => 0.0033084058668373
916 => 0.0032839068504349
917 => 0.0032940156220789
918 => 0.0032889043178022
919 => 0.0032555495999774
920 => 0.0032908161711843
921 => 0.003200724654904
922 => 0.0031648494872045
923 => 0.0031486455062522
924 => 0.0030686841000792
925 => 0.0031959382562991
926 => 0.0032210089281801
927 => 0.0032461289970293
928 => 0.0034647820461629
929 => 0.0034538587577352
930 => 0.0035525999652636
1001 => 0.0035487630635125
1002 => 0.0035206004716239
1003 => 0.0034017871289674
1004 => 0.0034491440097061
1005 => 0.0033033868916857
1006 => 0.0034125980350272
1007 => 0.0033627586299725
1008 => 0.0033957472820443
1009 => 0.0033364307111524
1010 => 0.0033692589506052
1011 => 0.0032269541145437
1012 => 0.0030940718609125
1013 => 0.0031475475588485
1014 => 0.0032056817581927
1015 => 0.0033317315146896
1016 => 0.003256657319608
1017 => 0.003283656839029
1018 => 0.0031932129686337
1019 => 0.0030066014299939
1020 => 0.0030076576310367
1021 => 0.0029789515113703
1022 => 0.0029541452328165
1023 => 0.003265280494011
1024 => 0.0032265859059609
1025 => 0.0031649311441254
1026 => 0.003247458492905
1027 => 0.0032692800338075
1028 => 0.0032699012623995
1029 => 0.0033301110857299
1030 => 0.0033622450792345
1031 => 0.0033679088348664
1101 => 0.0034626502927961
1102 => 0.0034944063798241
1103 => 0.0036252052080028
1104 => 0.0033595187343934
1105 => 0.0033540470963092
1106 => 0.0032486198219448
1107 => 0.0031817561778036
1108 => 0.0032531980328635
1109 => 0.0033164857636608
1110 => 0.0032505863481545
1111 => 0.0032591914206071
1112 => 0.00317072683947
1113 => 0.0032023487645811
1114 => 0.0032295858264201
1115 => 0.0032145471217931
1116 => 0.0031920334530849
1117 => 0.0033112968914592
1118 => 0.0033045675808689
1119 => 0.0034156284365377
1120 => 0.0035022083155694
1121 => 0.003657374936799
1122 => 0.003495450478527
1123 => 0.0034895493076762
1124 => 0.0035472341993209
1125 => 0.0034943975485678
1126 => 0.0035277884879846
1127 => 0.003651995140237
1128 => 0.0036546194310768
1129 => 0.0036106591783022
1130 => 0.0036079841929257
1201 => 0.0036164272403436
1202 => 0.0036658784327837
1203 => 0.0036485986666634
1204 => 0.0036685952494879
1205 => 0.0036936012825085
1206 => 0.0037970368374198
1207 => 0.0038219747995296
1208 => 0.0037613884804539
1209 => 0.0037668587467102
1210 => 0.0037441978002442
1211 => 0.0037223076098989
1212 => 0.0037715135609896
1213 => 0.003861438403753
1214 => 0.0038608789859733
1215 => 0.0038817398016053
1216 => 0.0038947359169237
1217 => 0.0038389470762393
1218 => 0.0038026305923663
1219 => 0.0038165566431611
1220 => 0.003838824701652
1221 => 0.0038093354119139
1222 => 0.0036273138548829
1223 => 0.003682527567704
1224 => 0.003673337306078
1225 => 0.0036602492559485
1226 => 0.0037157670711451
1227 => 0.0037104122424328
1228 => 0.0035500143329253
1229 => 0.0035602824866822
1230 => 0.0035506387733644
1231 => 0.0035817995840123
]
'min_raw' => 0.0029541452328165
'max_raw' => 0.0066176499981366
'avg_raw' => 0.0047858976154765
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.002954'
'max' => '$0.006617'
'avg' => '$0.004785'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0007203836275678
'max_diff' => -0.0048089090345495
'year' => 2034
]
9 => [
'items' => [
101 => 0.0034927147625317
102 => 0.0035201166536237
103 => 0.0035373028628398
104 => 0.0035474256720988
105 => 0.0035839962004175
106 => 0.0035797050710148
107 => 0.0035837294577888
108 => 0.003637953897024
109 => 0.0039122025030947
110 => 0.0039271292496277
111 => 0.0038536244904982
112 => 0.0038829881919532
113 => 0.0038266163062952
114 => 0.0038644591307962
115 => 0.0038903502302163
116 => 0.0037733533305092
117 => 0.0037664255334121
118 => 0.0037098209809295
119 => 0.0037402370611879
120 => 0.0036918428905032
121 => 0.003703717127233
122 => 0.0036705157261591
123 => 0.0037302716377591
124 => 0.0037970880320578
125 => 0.003813968491917
126 => 0.0037695632695223
127 => 0.0037374109620618
128 => 0.0036809621017896
129 => 0.0037748378144671
130 => 0.0038022899336645
131 => 0.0037746936201717
201 => 0.003768298951344
202 => 0.0037561810654706
203 => 0.003770869818117
204 => 0.0038021404235277
205 => 0.0037873937834935
206 => 0.0037971341990385
207 => 0.0037600137792538
208 => 0.0038389655446669
209 => 0.00396435994892
210 => 0.0039647631124337
211 => 0.0039500163929096
212 => 0.0039439823530028
213 => 0.0039591133821403
214 => 0.0039673213447401
215 => 0.0040162523184148
216 => 0.0040687572026637
217 => 0.0043137745877774
218 => 0.0042449746864904
219 => 0.0044623686867128
220 => 0.0046342991158108
221 => 0.0046858535338908
222 => 0.00463842589508
223 => 0.004476178504699
224 => 0.0044682178736849
225 => 0.0047106839739954
226 => 0.0046421761950068
227 => 0.004634027412686
228 => 0.0045473381363782
301 => 0.0045985822353518
302 => 0.0045873743992007
303 => 0.0045696822815301
304 => 0.004667452452677
305 => 0.0048504694850605
306 => 0.0048219445642407
307 => 0.0048006520340817
308 => 0.0047073543650872
309 => 0.0047635404006107
310 => 0.0047435336295334
311 => 0.004829495414692
312 => 0.0047785735574507
313 => 0.0046416571812016
314 => 0.0046634615654016
315 => 0.0046601658765941
316 => 0.0047279909187172
317 => 0.0047076315245929
318 => 0.0046561903781347
319 => 0.0048498439527404
320 => 0.0048372691667632
321 => 0.0048550973382825
322 => 0.0048629458507398
323 => 0.0049808193690435
324 => 0.0050291083779606
325 => 0.0050400708284029
326 => 0.0050859416520682
327 => 0.0050389295205228
328 => 0.0052270115657863
329 => 0.005352075150995
330 => 0.0054973429409281
331 => 0.0057096182263213
401 => 0.0057894356972853
402 => 0.0057750173855741
403 => 0.0059359620842949
404 => 0.0062251761302965
405 => 0.0058334758132171
406 => 0.0062459371982244
407 => 0.0061153566858268
408 => 0.0058057526399751
409 => 0.0057858177894142
410 => 0.0059954852438418
411 => 0.0064605074780177
412 => 0.0063440246825951
413 => 0.0064606980021422
414 => 0.0063245923774223
415 => 0.0063178335859667
416 => 0.006454087655743
417 => 0.0067724527165979
418 => 0.0066212094099216
419 => 0.0064043650434208
420 => 0.0065644795491729
421 => 0.0064257735463925
422 => 0.0061132301007623
423 => 0.0063439356103967
424 => 0.0061896694062189
425 => 0.0062346924858404
426 => 0.0065589371016563
427 => 0.0065199231316365
428 => 0.0065704108214385
429 => 0.0064813013704309
430 => 0.0063980590919191
501 => 0.0062426811974242
502 => 0.0061966814629018
503 => 0.0062093941346267
504 => 0.0061966751631331
505 => 0.0061097426591597
506 => 0.0060909695932036
507 => 0.0060596803274764
508 => 0.0060693781792757
509 => 0.0060105452057112
510 => 0.0061215751823401
511 => 0.0061421833243952
512 => 0.006222981682254
513 => 0.0062313704358052
514 => 0.0064563927123494
515 => 0.0063324542237746
516 => 0.0064156028622448
517 => 0.0064081652653947
518 => 0.0058124626984503
519 => 0.005894545256247
520 => 0.006022239957253
521 => 0.0059647136675359
522 => 0.0058833849529545
523 => 0.0058177076553603
524 => 0.0057181998336565
525 => 0.0058582551818261
526 => 0.0060424130714433
527 => 0.0062360409837927
528 => 0.006468672233477
529 => 0.0064167516466738
530 => 0.0062316921043947
531 => 0.0062399937402753
601 => 0.0062913111867156
602 => 0.0062248504308937
603 => 0.0062052498565338
604 => 0.0062886183687858
605 => 0.0062891924819112
606 => 0.0062127213502875
607 => 0.0061277376815571
608 => 0.0061273815968821
609 => 0.0061122595738764
610 => 0.0063272825517213
611 => 0.0064455234482608
612 => 0.0064590795764943
613 => 0.0064446110128211
614 => 0.0064501793887422
615 => 0.0063813776163062
616 => 0.006538638065563
617 => 0.0066829558052476
618 => 0.0066442755681133
619 => 0.0065862883939293
620 => 0.0065400988166511
621 => 0.0066333947716324
622 => 0.0066292404496186
623 => 0.0066816953156915
624 => 0.0066793156599724
625 => 0.0066616770614394
626 => 0.0066442761980432
627 => 0.0067132686545047
628 => 0.0066933999350288
629 => 0.0066735003539436
630 => 0.0066335886976038
701 => 0.0066390133545628
702 => 0.006581036192682
703 => 0.0065542133047415
704 => 0.0061508614272237
705 => 0.0060430726256482
706 => 0.0060769851768672
707 => 0.0060881500692676
708 => 0.0060412402446868
709 => 0.0061084968829904
710 => 0.0060980150071532
711 => 0.0061387938543435
712 => 0.0061133170010307
713 => 0.0061143625799774
714 => 0.0061892845733324
715 => 0.0062110347467444
716 => 0.0061999724330016
717 => 0.0062077200983531
718 => 0.0063862617762929
719 => 0.0063608788591313
720 => 0.0063473946902896
721 => 0.0063511298972112
722 => 0.0063967511239015
723 => 0.0064095225765482
724 => 0.0063554090342502
725 => 0.0063809292936246
726 => 0.0064895913190377
727 => 0.0065276168781942
728 => 0.0066489762097181
729 => 0.0065974206086967
730 => 0.0066920531456457
731 => 0.0069829213016179
801 => 0.0072152869111539
802 => 0.0070015938937096
803 => 0.0074283037440405
804 => 0.0077605585704157
805 => 0.0077478060767801
806 => 0.007689869762609
807 => 0.0073116064762324
808 => 0.0069635229605208
809 => 0.0072547096018203
810 => 0.0072554518964521
811 => 0.0072304387057238
812 => 0.0070750839263491
813 => 0.0072250326961526
814 => 0.0072369350849656
815 => 0.0072302729123309
816 => 0.0071111627672329
817 => 0.0069293035909027
818 => 0.0069648384386483
819 => 0.0070230452441468
820 => 0.0069128476181265
821 => 0.0068776327995034
822 => 0.0069431038472171
823 => 0.0071540652043852
824 => 0.0071141841818285
825 => 0.0071131427271577
826 => 0.0072837706538408
827 => 0.0071616378821469
828 => 0.0069652866468767
829 => 0.0069157053704164
830 => 0.006739725240932
831 => 0.0068612753431866
901 => 0.0068656497149753
902 => 0.0067990779661824
903 => 0.0069706885773934
904 => 0.0069691071553997
905 => 0.0071320258898759
906 => 0.0074434653207122
907 => 0.0073513573560103
908 => 0.00724424581438
909 => 0.0072558918088361
910 => 0.007383619623256
911 => 0.0073063924709153
912 => 0.0073341638933439
913 => 0.007383577587882
914 => 0.0074133900966699
915 => 0.00725160224761
916 => 0.0072138817607867
917 => 0.0071367188828382
918 => 0.0071165885282947
919 => 0.0071794360823276
920 => 0.0071628779722768
921 => 0.0068652820659648
922 => 0.0068341816379472
923 => 0.0068351354436734
924 => 0.0067569319386784
925 => 0.0066376528225693
926 => 0.006951111217918
927 => 0.0069259361219241
928 => 0.0068981447643445
929 => 0.0069015490470727
930 => 0.0070376107124029
1001 => 0.0069586880752326
1002 => 0.0071685168413156
1003 => 0.007125382355039
1004 => 0.0070811416319507
1005 => 0.0070750262164145
1006 => 0.0070579973124667
1007 => 0.0069995988646533
1008 => 0.0069290792297161
1009 => 0.0068825160584244
1010 => 0.0063487572554741
1011 => 0.0064478197845696
1012 => 0.0065617821944602
1013 => 0.0066011215616788
1014 => 0.0065338288518501
1015 => 0.0070022559909913
1016 => 0.0070878421431886
1017 => 0.0068285961055363
1018 => 0.0067801017568376
1019 => 0.0070054352724185
1020 => 0.0068695316166213
1021 => 0.0069307290245053
1022 => 0.0067984537018524
1023 => 0.0070672269453793
1024 => 0.007065179343582
1025 => 0.006960620481331
1026 => 0.0070489929157174
1027 => 0.0070336360305039
1028 => 0.0069155893325397
1029 => 0.0070709692362609
1030 => 0.0070710463027546
1031 => 0.0069704106711437
1101 => 0.0068528902853947
1102 => 0.0068318804161304
1103 => 0.0068160523019186
1104 => 0.0069268362786902
1105 => 0.0070261648458512
1106 => 0.0072109906836976
1107 => 0.0072574602906858
1108 => 0.0074388342604176
1109 => 0.0073308348923806
1110 => 0.0073787096134055
1111 => 0.0074306843953707
1112 => 0.0074556030171541
1113 => 0.007414999460165
1114 => 0.0076967478916628
1115 => 0.0077205360918301
1116 => 0.0077285120695791
1117 => 0.0076335080837177
1118 => 0.0077178938591224
1119 => 0.0076784125493737
1120 => 0.007781131949116
1121 => 0.0077972396625828
1122 => 0.007783597002325
1123 => 0.0077887098448223
1124 => 0.0075482872623681
1125 => 0.0075358200831377
1126 => 0.0073658292097004
1127 => 0.0074351017471352
1128 => 0.00730560005872
1129 => 0.0073466663781316
1130 => 0.007364768020434
1201 => 0.0073553127497544
1202 => 0.0074390183124661
1203 => 0.0073678514842445
1204 => 0.0071800305236579
1205 => 0.0069921583913762
1206 => 0.0069897998097927
1207 => 0.0069403363935815
1208 => 0.0069045834033374
1209 => 0.0069114706976639
1210 => 0.0069357424211943
1211 => 0.0069031726866422
1212 => 0.0069101230908364
1213 => 0.0070255461107602
1214 => 0.0070486933742466
1215 => 0.0069700299287001
1216 => 0.0066541848437499
1217 => 0.0065766756676657
1218 => 0.0066323877263612
1219 => 0.0066057609506209
1220 => 0.0053313646456548
1221 => 0.005630765154119
1222 => 0.0054528715386702
1223 => 0.0055348531011607
1224 => 0.0053532697851158
1225 => 0.0054399308611294
1226 => 0.0054239277247455
1227 => 0.0059053548824508
1228 => 0.0058978380595646
1229 => 0.0059014359648988
1230 => 0.0057296985690054
1231 => 0.0060032809038421
]
'min_raw' => 0.0034927147625317
'max_raw' => 0.0077972396625828
'avg_raw' => 0.0056449772125573
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.003492'
'max' => '$0.007797'
'avg' => '$0.005644'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.00053856952971528
'max_diff' => 0.0011795896644462
'year' => 2035
]
10 => [
'items' => [
101 => 0.0061380573996852
102 => 0.0061131138572649
103 => 0.0061193916095046
104 => 0.006011519026839
105 => 0.0059024804072968
106 => 0.0057815397973013
107 => 0.0060062325019618
108 => 0.0059812505088359
109 => 0.0060385502128293
110 => 0.0061842794931679
111 => 0.0062057386832694
112 => 0.0062345800523835
113 => 0.0062242424746246
114 => 0.0064705255166908
115 => 0.0064406990152688
116 => 0.0065125723020258
117 => 0.0063647234981272
118 => 0.0061974185425786
119 => 0.0062292177450173
120 => 0.0062261552261094
121 => 0.0061871658454165
122 => 0.0061519679758599
123 => 0.0060933734399864
124 => 0.0062787752218497
125 => 0.0062712482480895
126 => 0.0063931012041179
127 => 0.0063715625105234
128 => 0.006227721843287
129 => 0.0062328591408573
130 => 0.0062674099359186
131 => 0.0063869906321198
201 => 0.0064224903244269
202 => 0.0064060454525321
203 => 0.0064449692445244
204 => 0.0064757330226643
205 => 0.0064488327014113
206 => 0.0068296845225959
207 => 0.0066715282935437
208 => 0.0067486125391398
209 => 0.0067669966775077
210 => 0.0067199060936551
211 => 0.0067301183551053
212 => 0.0067455871485278
213 => 0.0068395106330886
214 => 0.0070859930335556
215 => 0.0071951584108599
216 => 0.0075235878346049
217 => 0.0071860937459302
218 => 0.0071660682433977
219 => 0.0072252283002325
220 => 0.0074180511397561
221 => 0.0075743159402615
222 => 0.0076261579897218
223 => 0.0076330097723769
224 => 0.0077302689035587
225 => 0.0077860160237767
226 => 0.0077184590868641
227 => 0.0076612116563369
228 => 0.007456158466001
229 => 0.0074798939311237
301 => 0.0076434077484907
302 => 0.0078743806464375
303 => 0.00807257942151
304 => 0.0080031771184043
305 => 0.0085326677007104
306 => 0.008585164529171
307 => 0.0085779111649034
308 => 0.0086975067527121
309 => 0.0084601338661297
310 => 0.0083586523582326
311 => 0.0076735892006028
312 => 0.0078660640045337
313 => 0.0081458374356962
314 => 0.0081088083729853
315 => 0.0079056294289099
316 => 0.0080724252920614
317 => 0.0080172773635146
318 => 0.0079737799041801
319 => 0.0081730501977888
320 => 0.0079539443243936
321 => 0.0081436516870018
322 => 0.0079003500321853
323 => 0.0080034941422788
324 => 0.0079449445568705
325 => 0.007982833314197
326 => 0.0077613364130608
327 => 0.0078808507643806
328 => 0.0077563642231192
329 => 0.00775630520029
330 => 0.007753557152992
331 => 0.0079000150167282
401 => 0.0079047910024066
402 => 0.00779655841982
403 => 0.0077809604137586
404 => 0.0078386344174136
405 => 0.0077711132639791
406 => 0.007802705986698
407 => 0.0077720701753662
408 => 0.0077651734089465
409 => 0.0077102188007263
410 => 0.0076865428444966
411 => 0.0076958267969885
412 => 0.0076641358809281
413 => 0.0076450409576911
414 => 0.007749758692148
415 => 0.007693812230929
416 => 0.0077411840945809
417 => 0.0076871978771438
418 => 0.0075000581268312
419 => 0.0073924320774595
420 => 0.0070389424369832
421 => 0.0071391916605197
422 => 0.0072056569994398
423 => 0.0071836902053232
424 => 0.0072308833791065
425 => 0.0072337806566897
426 => 0.0072184376748153
427 => 0.0072006724673624
428 => 0.007192025346852
429 => 0.007256473898684
430 => 0.007293888452261
501 => 0.0072123276853919
502 => 0.0071932191388709
503 => 0.0072756815772689
504 => 0.0073259836170546
505 => 0.007697385616558
506 => 0.0076698709568222
507 => 0.0077389273532799
508 => 0.0077311526627955
509 => 0.0078035347678299
510 => 0.0079218489186012
511 => 0.0076812831689264
512 => 0.0077230370649322
513 => 0.0077127999738698
514 => 0.0078245658497792
515 => 0.0078249147706441
516 => 0.0077579055449169
517 => 0.0077942323332841
518 => 0.0077739557165909
519 => 0.0078105983035047
520 => 0.0076695034817665
521 => 0.0078413417443989
522 => 0.0079387629662983
523 => 0.0079401156600589
524 => 0.0079862925460567
525 => 0.0080332109366153
526 => 0.0081232667015618
527 => 0.0080306993302087
528 => 0.0078641796403965
529 => 0.0078762018241456
530 => 0.0077785713909359
531 => 0.0077802125761565
601 => 0.0077714518008268
602 => 0.0077977435470717
603 => 0.0076752730415541
604 => 0.0077040166244085
605 => 0.0076637754400901
606 => 0.0077229495884564
607 => 0.0076592879866515
608 => 0.0077127950372346
609 => 0.0077358869064794
610 => 0.0078210964011253
611 => 0.0076467024750105
612 => 0.0072911014542317
613 => 0.0073658531000451
614 => 0.0072552895442721
615 => 0.007265522622304
616 => 0.0072861950685108
617 => 0.0072191889067511
618 => 0.007231971570808
619 => 0.0072315148840977
620 => 0.0072275794047501
621 => 0.0072101485141757
622 => 0.0071848702742461
623 => 0.0072855710018935
624 => 0.0073026820178033
625 => 0.0073407176865643
626 => 0.0074538860369564
627 => 0.0074425778500588
628 => 0.007461021972061
629 => 0.0074207585572894
630 => 0.007267390326637
701 => 0.0072757189594383
702 => 0.0071718607749494
703 => 0.0073380617992819
704 => 0.0072987032029736
705 => 0.0072733284598909
706 => 0.0072664047261454
707 => 0.0073798535989889
708 => 0.0074137992798369
709 => 0.0073926466095424
710 => 0.0073492618656462
711 => 0.0074325733994749
712 => 0.0074548640512961
713 => 0.0074598541061912
714 => 0.0076074661707335
715 => 0.0074681039808336
716 => 0.0075016498450836
717 => 0.0077633651018724
718 => 0.0075260254782017
719 => 0.0076517495701652
720 => 0.0076455960301002
721 => 0.0077099122212775
722 => 0.0076403202251747
723 => 0.0076411829013717
724 => 0.0076982913219809
725 => 0.0076180928447932
726 => 0.0075982345740078
727 => 0.0075708005151454
728 => 0.0076307017790165
729 => 0.0076666098776061
730 => 0.0079560027806458
731 => 0.0081429637939292
801 => 0.008134847323268
802 => 0.0082090166717152
803 => 0.0081756027009264
804 => 0.0080677001750891
805 => 0.0082518766293821
806 => 0.0081935954929737
807 => 0.0081984001190476
808 => 0.0081982212906251
809 => 0.0082369731513114
810 => 0.0082095139064593
811 => 0.0081553889162222
812 => 0.0081913196106491
813 => 0.0082980209276388
814 => 0.0086292250895709
815 => 0.0088145713264596
816 => 0.0086180670133826
817 => 0.0087536130572455
818 => 0.0086723337309215
819 => 0.0086575628594779
820 => 0.0087426957917978
821 => 0.0088279777380459
822 => 0.0088225456467539
823 => 0.0087606353330541
824 => 0.0087256637677612
825 => 0.0089904801764932
826 => 0.0091855923954172
827 => 0.0091722870501355
828 => 0.0092310125170788
829 => 0.0094034323043348
830 => 0.0094191962088464
831 => 0.0094172103192071
901 => 0.0093781378370819
902 => 0.009547907509174
903 => 0.0096895323564465
904 => 0.0093690936863824
905 => 0.0094911125370926
906 => 0.0095458907303783
907 => 0.0096263213700792
908 => 0.009762021340995
909 => 0.0099094275020492
910 => 0.0099302723494486
911 => 0.009915481932701
912 => 0.0098182636069954
913 => 0.0099795571873422
914 => 0.010074039183909
915 => 0.010130301050683
916 => 0.010272971783739
917 => 0.0095462290218513
918 => 0.0090318043735279
919 => 0.0089514695363102
920 => 0.0091148335868038
921 => 0.0091579113841151
922 => 0.0091405467780339
923 => 0.0085615150669031
924 => 0.0089484210541845
925 => 0.0093646993645199
926 => 0.0093806903097667
927 => 0.0095890879358896
928 => 0.0096569507454625
929 => 0.0098247381497927
930 => 0.0098142430019683
1001 => 0.0098550965648419
1002 => 0.0098457050382224
1003 => 0.010156495872938
1004 => 0.010499344316514
1005 => 0.010487472565104
1006 => 0.010438184044942
1007 => 0.010511385902325
1008 => 0.010865242237968
1009 => 0.010832664817014
1010 => 0.010864311006533
1011 => 0.011281527568725
1012 => 0.011823968447939
1013 => 0.01157195019937
1014 => 0.012118757282467
1015 => 0.012462943356278
1016 => 0.013058177581431
1017 => 0.012983651324851
1018 => 0.013215371640673
1019 => 0.012850233771475
1020 => 0.012011803417259
1021 => 0.011879118604321
1022 => 0.012144756959936
1023 => 0.012797802936604
1024 => 0.012124190218138
1025 => 0.012260461193768
1026 => 0.012221215143619
1027 => 0.012219123888392
1028 => 0.012298938594674
1029 => 0.012183163200356
1030 => 0.011711473416308
1031 => 0.011927646064652
1101 => 0.011844171423663
1102 => 0.011936792761287
1103 => 0.012436631920497
1104 => 0.012215641113533
1105 => 0.011982845250232
1106 => 0.012274822924349
1107 => 0.012646610837916
1108 => 0.012623345018452
1109 => 0.012578199604334
1110 => 0.01283268193998
1111 => 0.013253012202139
1112 => 0.013366625782977
1113 => 0.013450493005624
1114 => 0.013462056878678
1115 => 0.013581171958049
1116 => 0.012940660155409
1117 => 0.013957168835708
1118 => 0.01413269180431
1119 => 0.014099700760894
1120 => 0.01429478715336
1121 => 0.014237387787832
1122 => 0.014154225112868
1123 => 0.014463478540991
1124 => 0.014108944441112
1125 => 0.013605727920936
1126 => 0.013329653385474
1127 => 0.013693210604069
1128 => 0.013915222311066
1129 => 0.014061957926795
1130 => 0.014106360035454
1201 => 0.012990381263345
1202 => 0.012388930600198
1203 => 0.012774453579629
1204 => 0.01324481822191
1205 => 0.012938047256072
1206 => 0.012950072097139
1207 => 0.012512697317845
1208 => 0.013283516184878
1209 => 0.013171214359559
1210 => 0.013753836427975
1211 => 0.013614788995513
1212 => 0.014089894675049
1213 => 0.013964783427102
1214 => 0.014484113222454
1215 => 0.014691287938113
1216 => 0.015039166529873
1217 => 0.015295067438093
1218 => 0.015445337346004
1219 => 0.015436315704382
1220 => 0.016031759943696
1221 => 0.01568064727901
1222 => 0.015239567021262
1223 => 0.01523158927099
1224 => 0.015460030986633
1225 => 0.015938782152697
1226 => 0.016062915364511
1227 => 0.016132288895351
1228 => 0.016026040917959
1229 => 0.015644933284913
1230 => 0.015480372941224
1231 => 0.01562058312182
]
'min_raw' => 0.0057815397973013
'max_raw' => 0.016132288895351
'avg_raw' => 0.010956914346326
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.005781'
'max' => '$0.016132'
'avg' => '$0.010956'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.0022888250347695
'max_diff' => 0.0083350492327679
'year' => 2036
]
11 => [
'items' => [
101 => 0.015449118119349
102 => 0.015745114818196
103 => 0.016151581507195
104 => 0.01606764774326
105 => 0.016348225732041
106 => 0.016638594432765
107 => 0.017053834716074
108 => 0.017162393902434
109 => 0.017341838109351
110 => 0.01752654514262
111 => 0.017585868063712
112 => 0.017699133926897
113 => 0.017698536959889
114 => 0.018039871262271
115 => 0.018416373568042
116 => 0.018558494472422
117 => 0.018885293655451
118 => 0.018325661506922
119 => 0.018750148920172
120 => 0.019133047192533
121 => 0.018676540087182
122 => 0.019305728779395
123 => 0.019330158750541
124 => 0.019699022310254
125 => 0.019325108426777
126 => 0.019103079556344
127 => 0.019744068585971
128 => 0.020054222986442
129 => 0.0199608019569
130 => 0.019249863309319
131 => 0.018836066522834
201 => 0.017753080517164
202 => 0.019035924222394
203 => 0.019660759970148
204 => 0.019248245135682
205 => 0.019456293623632
206 => 0.020591338713937
207 => 0.021023490395598
208 => 0.020933605866781
209 => 0.020948794872526
210 => 0.021181976075842
211 => 0.022216029946581
212 => 0.021596400898053
213 => 0.022070084088595
214 => 0.022321323944867
215 => 0.022554689525122
216 => 0.021981617415966
217 => 0.021236059022055
218 => 0.020999909382291
219 => 0.019207228665173
220 => 0.019113911848629
221 => 0.019061530291714
222 => 0.018731271984884
223 => 0.018471779421079
224 => 0.0182654213
225 => 0.017723875966537
226 => 0.017906631619351
227 => 0.017043521387107
228 => 0.017595708726948
301 => 0.016218163955762
302 => 0.01736542417517
303 => 0.016741022597267
304 => 0.017160291463602
305 => 0.017158828674025
306 => 0.016386821761787
307 => 0.015941544286182
308 => 0.016225292424096
309 => 0.016529492951896
310 => 0.016578848464078
311 => 0.016973252388816
312 => 0.017083322046526
313 => 0.016749805845003
314 => 0.016189617402264
315 => 0.016319736400975
316 => 0.015938907428826
317 => 0.01527151930351
318 => 0.015750849106591
319 => 0.015914513376006
320 => 0.015986796841128
321 => 0.015330497269924
322 => 0.015124273695694
323 => 0.015014481995158
324 => 0.016104897369079
325 => 0.016164632784736
326 => 0.015859017952499
327 => 0.017240425973799
328 => 0.016927770793595
329 => 0.017277083232262
330 => 0.016307929465684
331 => 0.016344952444706
401 => 0.01588613952023
402 => 0.016143044100046
403 => 0.015961472223453
404 => 0.016122288748778
405 => 0.016218681510985
406 => 0.016677419148775
407 => 0.017370662222113
408 => 0.016608899043242
409 => 0.016276987917558
410 => 0.016482903713193
411 => 0.017031284612236
412 => 0.017862109745388
413 => 0.017370244544648
414 => 0.017588525968323
415 => 0.017636210748732
416 => 0.017273527559546
417 => 0.017875482391899
418 => 0.018198074876829
419 => 0.018528988015259
420 => 0.018816310621381
421 => 0.018396814030834
422 => 0.018845735515194
423 => 0.01848398404411
424 => 0.018159455577367
425 => 0.018159947753092
426 => 0.0179563663053
427 => 0.01756190159729
428 => 0.017489156252958
429 => 0.017867586720895
430 => 0.018171052118681
501 => 0.018196046982344
502 => 0.018364061019174
503 => 0.018463489995487
504 => 0.019438029130499
505 => 0.019829996832411
506 => 0.020309287518741
507 => 0.020495998252409
508 => 0.021057930621248
509 => 0.020604124595495
510 => 0.02050594080725
511 => 0.019142876687123
512 => 0.019366078360434
513 => 0.019723445775162
514 => 0.019148769544166
515 => 0.019513269340498
516 => 0.019585229321456
517 => 0.019129242265739
518 => 0.019372804654235
519 => 0.018725975161605
520 => 0.017384761337471
521 => 0.017876975546291
522 => 0.018239410881494
523 => 0.017722170970205
524 => 0.018649303491242
525 => 0.018107691812352
526 => 0.01793602691209
527 => 0.01726630093321
528 => 0.017582385815124
529 => 0.018009895143813
530 => 0.017745744081977
531 => 0.018293897197768
601 => 0.019070228196823
602 => 0.019623487898061
603 => 0.019665960308069
604 => 0.019310251385694
605 => 0.019880277203903
606 => 0.019884429219678
607 => 0.019241437768114
608 => 0.018847609084223
609 => 0.01875813037862
610 => 0.018981665728549
611 => 0.019253078910265
612 => 0.019681021850714
613 => 0.019939618806987
614 => 0.020613902519717
615 => 0.020796344359153
616 => 0.020996792627784
617 => 0.021264653330631
618 => 0.021586288782473
619 => 0.020882568724558
620 => 0.020910528834358
621 => 0.020255234460095
622 => 0.019554958442476
623 => 0.020086380649211
624 => 0.020781144492383
625 => 0.020621764899114
626 => 0.020603831439041
627 => 0.020633990544556
628 => 0.020513823536082
629 => 0.019970312610349
630 => 0.019697364826005
701 => 0.020049537104216
702 => 0.0202367009967
703 => 0.020526975871536
704 => 0.020491193366253
705 => 0.021238910270585
706 => 0.021529450449823
707 => 0.021455117839058
708 => 0.021468796828353
709 => 0.021994805944856
710 => 0.022579836264432
711 => 0.023127794360265
712 => 0.023685200870694
713 => 0.023013225566425
714 => 0.022672037948593
715 => 0.023024056479403
716 => 0.022837270491936
717 => 0.023910598180248
718 => 0.023984913060621
719 => 0.025058163135125
720 => 0.02607680525607
721 => 0.025437014390774
722 => 0.026040308359935
723 => 0.026692819974862
724 => 0.02795162074625
725 => 0.027527700931592
726 => 0.027202984997234
727 => 0.026896130008282
728 => 0.027534646528434
729 => 0.028356087831059
730 => 0.028533018419978
731 => 0.028819713566712
801 => 0.028518288675335
802 => 0.028881321756136
803 => 0.030162988056183
804 => 0.029816670508329
805 => 0.029324843917053
806 => 0.0303365963684
807 => 0.030702745647454
808 => 0.033272573041724
809 => 0.036517086281265
810 => 0.035173836495472
811 => 0.034340038007031
812 => 0.03453600042978
813 => 0.035720786831155
814 => 0.036101302620037
815 => 0.035066929534199
816 => 0.035432287594851
817 => 0.037445446430252
818 => 0.038525441555577
819 => 0.037058663112689
820 => 0.033011879562039
821 => 0.029280560313699
822 => 0.030270274201855
823 => 0.030158071361336
824 => 0.032320959383295
825 => 0.029808410949348
826 => 0.029850715821186
827 => 0.032058330076901
828 => 0.031469376441566
829 => 0.030515346979806
830 => 0.029287525784562
831 => 0.027017784745441
901 => 0.02500741181068
902 => 0.028950216096983
903 => 0.028780195206633
904 => 0.028533979761722
905 => 0.029081905591077
906 => 0.031742477886965
907 => 0.031681143084113
908 => 0.031290962361658
909 => 0.031586911000745
910 => 0.030463465752483
911 => 0.030753003173333
912 => 0.029279969253667
913 => 0.029945842104686
914 => 0.030513300061057
915 => 0.030627225647157
916 => 0.030883905809825
917 => 0.028690601923228
918 => 0.029675330976291
919 => 0.030253767038331
920 => 0.02764037186635
921 => 0.030202108618487
922 => 0.028652421382223
923 => 0.028126434258714
924 => 0.028834606626985
925 => 0.028558631166349
926 => 0.028321363671118
927 => 0.028188964332005
928 => 0.028708967961132
929 => 0.028684709170294
930 => 0.027833882304688
1001 => 0.026724013342646
1002 => 0.027096521796514
1003 => 0.026961185982938
1004 => 0.026470711535872
1005 => 0.026801232093084
1006 => 0.025345786831749
1007 => 0.022841768907084
1008 => 0.024495999848261
1009 => 0.024432313756483
1010 => 0.024400200341074
1011 => 0.025643309173783
1012 => 0.025523812942919
1013 => 0.025306926113789
1014 => 0.026466728239171
1015 => 0.026043384861866
1016 => 0.027348029398474
1017 => 0.028207352669402
1018 => 0.027989400491699
1019 => 0.028797598181476
1020 => 0.02710510363893
1021 => 0.027667282434869
1022 => 0.027783146705565
1023 => 0.026452416460975
1024 => 0.025543364004123
1025 => 0.025482740569208
1026 => 0.023906568884172
1027 => 0.024748547075905
1028 => 0.025489453041205
1029 => 0.025134616580451
1030 => 0.025022285957415
1031 => 0.02559615874897
1101 => 0.025640753579762
1102 => 0.024623986711758
1103 => 0.024835404740435
1104 => 0.025717053065341
1105 => 0.024813189464724
1106 => 0.023057130134006
1107 => 0.022621603140568
1108 => 0.022563495811288
1109 => 0.021382312063003
1110 => 0.022650707136823
1111 => 0.022097018696226
1112 => 0.023846113845865
1113 => 0.022847040076977
1114 => 0.022803972003623
1115 => 0.022738868294037
1116 => 0.021722174647802
1117 => 0.021944765942075
1118 => 0.022684693305852
1119 => 0.022948707725126
1120 => 0.022921168858189
1121 => 0.022681067258104
1122 => 0.022790984541104
1123 => 0.02243690267484
1124 => 0.022311868998286
1125 => 0.021917228321858
1126 => 0.021337215549779
1127 => 0.021417869883161
1128 => 0.020268712813075
1129 => 0.01964259105091
1130 => 0.019469288799295
1201 => 0.019237541785635
1202 => 0.019495465241143
1203 => 0.020265457395479
1204 => 0.019336683494401
1205 => 0.017744365786917
1206 => 0.017840066794314
1207 => 0.018055078544051
1208 => 0.017654405570861
1209 => 0.01727520222767
1210 => 0.017604888768835
1211 => 0.01693020276502
1212 => 0.018136611124262
1213 => 0.018103981159065
1214 => 0.018553655591597
1215 => 0.018834846242508
1216 => 0.018186792828713
1217 => 0.018023809147666
1218 => 0.018116652059586
1219 => 0.016582165535697
1220 => 0.018428255305311
1221 => 0.018444220366299
1222 => 0.018307517821449
1223 => 0.019290503632141
1224 => 0.021364910293665
1225 => 0.020584435064785
1226 => 0.020282211466174
1227 => 0.01970768418429
1228 => 0.020473207675346
1229 => 0.020414427415259
1230 => 0.020148600787398
1231 => 0.019987828013437
]
'min_raw' => 0.015014481995158
'max_raw' => 0.038525441555577
'avg_raw' => 0.026769961775367
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.015014'
'max' => '$0.038525'
'avg' => '$0.026769'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.0092329421978568
'max_diff' => 0.022393152660226
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.00047128743316373
]
1 => [
'year' => 2028
'avg' => 0.00080886605102838
]
2 => [
'year' => 2029
'avg' => 0.0022096762674878
]
3 => [
'year' => 2030
'avg' => 0.0017047619496182
]
4 => [
'year' => 2031
'avg' => 0.0016742875033477
]
5 => [
'year' => 2032
'avg' => 0.0029355529110377
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.00047128743316373
'min' => '$0.000471'
'max_raw' => 0.0029355529110377
'max' => '$0.002935'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.0029355529110377
]
1 => [
'year' => 2033
'avg' => 0.0075505439465352
]
2 => [
'year' => 2034
'avg' => 0.0047858976154765
]
3 => [
'year' => 2035
'avg' => 0.0056449772125573
]
4 => [
'year' => 2036
'avg' => 0.010956914346326
]
5 => [
'year' => 2037
'avg' => 0.026769961775367
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.0029355529110377
'min' => '$0.002935'
'max_raw' => 0.026769961775367
'max' => '$0.026769'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.026769961775367
]
]
]
]
'prediction_2025_max_price' => '$0.0008058'
'last_price' => 0.00078134
'sma_50day_nextmonth' => '$0.000679'
'sma_200day_nextmonth' => '$0.001785'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'augmenter'
'sma_200day_date_nextmonth' => '4 févr. 2026'
'sma_50day_date_nextmonth' => '4 févr. 2026'
'daily_sma3' => '$0.000673'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.000915'
'daily_sma5_action' => 'SELL'
'daily_sma10' => '$0.0007074'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.00061'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.000592'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.001125'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.002074'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.000738'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.000741'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.0007086'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.000652'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.000735'
'daily_ema50_action' => 'BUY'
'daily_ema100' => '$0.001121'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.001725'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.00158'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.00233'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.003467'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.005153'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.000699'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.0007065'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.000884'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.001381'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.00224'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.0038021'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.015194'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '51.97'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 23.45
'stoch_rsi_14_action' => 'NEUTRAL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.000666'
'vwma_10_action' => 'BUY'
'hma_9' => '0.0007098'
'hma_9_action' => 'SELL'
'stochastic_fast_14' => 28.06
'stochastic_fast_14_action' => 'NEUTRAL'
'cci_20' => 35.76
'cci_20_action' => 'NEUTRAL'
'adx_14' => 18.57
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.000335'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'NEUTRAL'
'williams_percent_r_14' => -71.94
'williams_percent_r_14_action' => 'NEUTRAL'
'ultimate_oscillator' => 52.29
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.000655'
'ichimoku_cloud_action' => 'NEUTRAL'
'sell_signals' => 16
'buy_signals' => 17
'sell_pct' => 48.48
'buy_pct' => 51.52
'overall_action' => 'bullish'
'overall_action_label' => 'Haussier'
'overall_action_dir' => 1
'last_updated' => 1767711640
'last_updated_date' => '6 janvier 2026'
]
Prévision du prix de Pillar pour 2026
La prévision du prix de Pillar pour 2026 suggère que le prix moyen pourrait varier entre $0.000269 à la baisse et $0.0008058 à la hausse. Sur le marché des cryptomonnaies, comparé au prix moyen d'aujourd'hui, Pillar pourrait potentiellement gagner 3.13% d'ici 2026 si PLR atteint l'objectif de prix prévu.
Prévision du prix de Pillar de 2027 à 2032
La prévision du prix de PLR pour 2027-2032 se situe actuellement dans une fourchette de prix comprise entre $0.000471 à la baisse et $0.002935 à la hausse. Compte tenu de la volatilité des prix sur le marché, si Pillar atteint l'objectif de prix le plus élevé, il pourrait gagner 275.71% d'ici 2032 par rapport au prix actuel.
| Prévision du Prix de Pillar | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2027 | $0.000259 | $0.000471 | $0.000682 |
| 2028 | $0.000469 | $0.0008088 | $0.001148 |
| 2029 | $0.00103 | $0.0022096 | $0.003389 |
| 2030 | $0.000876 | $0.0017047 | $0.002533 |
| 2031 | $0.001035 | $0.001674 | $0.002312 |
| 2032 | $0.001581 | $0.002935 | $0.004289 |
Prévision du prix de Pillar de 2032 à 2037
La prévision du prix de Pillar pour 2032-2037 est actuellement estimée entre $0.002935 à la baisse et $0.026769 à la hausse. Par rapport au prix actuel, Pillar pourrait potentiellement gagner 3326.16% d'ici 2037 s'il atteint l'objectif de prix le plus élevé. Veuillez noter que ces informations sont à titre général seulement et ne doivent pas être considérées comme un conseil en investissement à long terme.
| Prévision du Prix de Pillar | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2032 | $0.001581 | $0.002935 | $0.004289 |
| 2033 | $0.003674 | $0.00755 | $0.011426 |
| 2034 | $0.002954 | $0.004785 | $0.006617 |
| 2035 | $0.003492 | $0.005644 | $0.007797 |
| 2036 | $0.005781 | $0.010956 | $0.016132 |
| 2037 | $0.015014 | $0.026769 | $0.038525 |
Pillar Histogramme des prix potentiels
Prévision du prix de Pillar basée sur l'analyse technique
Au 6 janvier 2026, le sentiment global de prévision du prix pour Pillar est Haussier, avec 17 indicateurs techniques montrant des signaux haussiers et 16 indiquant des signaux baissiers. La prévision du prix de PLR a été mise à jour pour la dernière fois le 6 janvier 2026.
Moyennes Mobiles Simples sur 50 et 200 jours de Pillar et Indice de Force Relative sur 14 jours - RSI (14)
Selon nos indicateurs techniques, le SMA sur 200 jours de Pillar devrait augmenter au cours du prochain mois, atteignant $0.001785 d'ici le 4 févr. 2026. Le SMA à court terme sur 50 jours pour Pillar devrait atteindre $0.000679 d'ici le 4 févr. 2026.
Le Relative Strength Index (RSI), un oscillateur de momentum, est un outil couramment utilisé pour identifier si une cryptomonnaie est survendue (en dessous de 30) ou surachetée (au-dessus de 70). Actuellement, le RSI est à 51.97, ce qui suggère que le marché de PLR est dans un état NEUTRAL.
Moyennes Mobiles et Oscillateurs Populaires de PLR pour le Samedi 19 Octobre 2024
Les moyennes mobiles (MA) sont des indicateurs largement utilisés sur les marchés financiers, conçus pour lisser les mouvements de prix sur une période donnée. En tant qu'indicateurs retardés, ils sont basés sur des données historiques de prix. Le tableau ci-dessous met en évidence deux types : la moyenne mobile simple (SMA) et la moyenne mobile exponentielle (EMA).
Moyenne Mobile Simple Quotidienne (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 3 | $0.000673 | BUY |
| SMA 5 | $0.000915 | SELL |
| SMA 10 | $0.0007074 | BUY |
| SMA 21 | $0.00061 | BUY |
| SMA 50 | $0.000592 | BUY |
| SMA 100 | $0.001125 | SELL |
| SMA 200 | $0.002074 | SELL |
Moyenne Mobile Exponentielle Quotidienne (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 3 | $0.000738 | BUY |
| EMA 5 | $0.000741 | BUY |
| EMA 10 | $0.0007086 | BUY |
| EMA 21 | $0.000652 | BUY |
| EMA 50 | $0.000735 | BUY |
| EMA 100 | $0.001121 | SELL |
| EMA 200 | $0.001725 | SELL |
Moyenne Mobile Simple Hebdomadaire (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 21 | $0.00158 | SELL |
| SMA 50 | $0.00233 | SELL |
| SMA 100 | $0.003467 | SELL |
| SMA 200 | $0.005153 | SELL |
Moyenne Mobile Exponentielle Hebdomadaire (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 21 | $0.001381 | SELL |
| EMA 50 | $0.00224 | SELL |
| EMA 100 | $0.0038021 | SELL |
| EMA 200 | $0.015194 | SELL |
Oscillateurs de Pillar
Un oscillateur est un outil d'analyse technique qui établit des limites hautes et basses entre deux extrêmes, créant un indicateur de tendance qui fluctue à l'intérieur de ces limites. Les traders utilisent cet indicateur pour identifier les conditions de surachat ou de survente à court terme.
| Période | Valeur | Action |
|---|---|---|
| RSI (14) | 51.97 | NEUTRAL |
| Stoch RSI (14) | 23.45 | NEUTRAL |
| Stochastique Rapide (14) | 28.06 | NEUTRAL |
| Indice de Canal des Matières Premières (20) | 35.76 | NEUTRAL |
| Indice Directionnel Moyen (14) | 18.57 | NEUTRAL |
| Oscillateur Impressionnant (5, 34) | 0.000335 | BUY |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | NEUTRAL |
| Plage de Pourcentage de Williams (14) | -71.94 | NEUTRAL |
| Oscillateur Ultime (7, 14, 28) | 52.29 | NEUTRAL |
| VWMA (10) | 0.000666 | BUY |
| Moyenne Mobile de Hull (9) | 0.0007098 | SELL |
| Nuage Ichimoku B/L (9, 26, 52, 26) | -0.000655 | NEUTRAL |
Prévision du cours de Pillar basée sur les flux monétaires mondiaux
Définitions des flux monétaires mondiaux utilisés pour la prédiction du cours de Pillar
M0 : le total de toutes les devises physiques, plus les comptes à la banque centrale qui peuvent être échangés contre des devises physiques.
M1 : M0 plus le montant des comptes à vue, y compris les comptes de "chèques" et les comptes "courants".
M2 : M1 plus la plupart des comptes d'épargne, comptes du marché monétaire et comptes de certificats de dépôt (CD) de moins de 100 000 $.
Prédictions du cours de Pillar par des sociétés Internet ou des niches technologiques
| Comparaison | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Action Facebook | $0.001097 | $0.001542 | $0.002167 | $0.003046 | $0.00428 | $0.006014 |
| Action Amazon.com | $0.00163 | $0.0034017 | $0.007097 | $0.01481 | $0.0309025 | $0.064479 |
| Action Apple | $0.0011082 | $0.001571 | $0.002229 | $0.003162 | $0.004486 | $0.006363 |
| Action Netflix | $0.001232 | $0.001945 | $0.003069 | $0.004842 | $0.007641 | $0.012056 |
| Action Google | $0.001011 | $0.00131 | $0.001696 | $0.002197 | $0.002845 | $0.003685 |
| Action Tesla | $0.001771 | $0.004015 | $0.0091023 | $0.020634 | $0.046776 | $0.106038 |
| Action Kodak | $0.000585 | $0.000439 | $0.000329 | $0.000247 | $0.000185 | $0.000138 |
| Action Nokia | $0.000517 | $0.000342 | $0.000227 | $0.00015 | $0.000099 | $0.000066 |
Ce calcul montre la valeur potentielle des cryptomonnaies si l'on suppose que leur capitalisation se comportera comme celle de certaines sociétés Internet ou niches technologiques. En extrapolant les données, vous pourrez obtenir une potentielle image des cours futurs pour 2024, 2025, 2026, 2027, 2028, 2029 et 2030.
Aperçu des prévisions relatives à Pillar
Vous vous posez peut-être des questions telles que : "Devrais-je investir dans Pillar maintenant ?", "Devrais-je acheter PLR aujourd'hui ?", " Pillar sera-t-il un bon ou un mauvais investissement à court ou à long terme ?".
Nous mettons régulièrement à jour les prévisions de Pillar avec de nouvelles valeurs. Regardez nos prévisions similaires. Nous faisons une prévision des cours futurs pour une grande quantité de devises numériques comme Pillar en utilisant des méthodes d'analyse technique.
Si vous souhaitez trouver des cryptomonnaies ayant un bon rendement, vous devriez consulter un maximum d'informations disponibles à propos de Pillar afin de prendre une décision responsable concernant cet investissement.
Le cours de Pillar est de $0.0007813 USD actuellement, mais ce cours peut subir une hausse ou une baisse, ce qui pourrait causer la perte de votre investissement, car les cryptomonnaies sont des actifs à haut risque.
Prévision du cours de Pillar basée sur le modèle de croissance du Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si Pillar présente 1 % de la précédente croissance annuelle moyenne du Bitcoin | $0.0008016 | $0.000822 | $0.000843 | $0.000865 |
| Si Pillar présente 2 % de la précédente croissance annuelle moyenne du Bitcoin | $0.000821 | $0.000864 | $0.0009096 | $0.000956 |
| Si Pillar présente 5 % de la précédente croissance annuelle moyenne du Bitcoin | $0.000882 | $0.000997 | $0.001127 | $0.001273 |
| Si Pillar présente 10 % de la précédente croissance annuelle moyenne du Bitcoin | $0.000984 | $0.00124 | $0.001562 | $0.001968 |
| Si Pillar présente 20 % de la précédente croissance annuelle moyenne du Bitcoin | $0.001187 | $0.0018048 | $0.002743 | $0.004169 |
| Si Pillar présente 50 % de la précédente croissance annuelle moyenne du Bitcoin | $0.001796 | $0.004132 | $0.0095023 | $0.021852 |
| Si Pillar présente 100 % de la précédente croissance annuelle moyenne du Bitcoin | $0.002812 | $0.010122 | $0.036433 | $0.131136 |
Boîte à questions
Est-ce que PLR est un bon investissement ?
La décision d'acquérir Pillar dépend entièrement de votre tolérance individuelle au risque. Comme vous pouvez le discerner, la valeur de Pillar a connu une hausse de 22.5378% au cours des 24 heures précédentes, et Pillar a enregistré une déclin de sur une période de 30 jours précédents. Par conséquent, la détermination de si investir ou non dans Pillar dépendra de la mesure dans laquelle cet investissement s'aligne avec vos aspirations de trading.
Est-ce que Pillar peut monter ?
Il semble que la valeur moyenne de Pillar pourrait potentiellement s'envoler jusqu'à $0.0008058 pour la fin de cette année. En regardant les perspectives de Pillar sur une période de cinq ans plus longue, la monnaie numérique pourrait potentiellement croître jusqu'à $0.002533. Cependant, compte tenu de l'imprévisibilité du marché, il est essentiel de mener des recherches approfondies avant d'investir des fonds dans un projet, un réseau ou un actif particulier.
Quel sera le prix de Pillar la semaine prochaine ?
Basé sur notre nouveau pronostic expérimental de Pillar, le prix de Pillar va augmenter de 0.86% durant la prochaine semaine et atteindre $0.000788 d'ici 13 janvier 2026.
Quel sera le prix de Pillar le mois prochain ?
Basé sur notre nouveau pronostic expérimental de Pillar, le prix de Pillar va diminuer de -11.62% durant le prochain mois et atteindre $0.00069 d'ici 5 février 2026.
Jusqu'où le prix de Pillar peut-il monter cette année en 2026 ?
Selon notre prédiction la plus récente sur la valeur de Pillar en 2026, PLR devrait fluctuer dans la fourchette de $0.000269 et $0.0008058. Cependant, il est crucial de garder à l'esprit que le marché des cryptomonnaies est exceptionnellement instable, et cette prévision de prix de Pillar ne prend pas en compte les fluctuations de prix soudaines et extrêmes.
Où sera Pillar dans 5 ans ?
L'avenir de Pillar semble suivre une tendance haussière, avec un prix maximum de $0.002533 prévue après une période de cinq ans. Selon la prévision de Pillar pour 2030, la valeur de Pillar pourrait potentiellement atteindre son point le plus élevé d'environ $0.002533, tandis que son point le plus bas devrait être autour de $0.000876.
Combien vaudra Pillar en 2026 ?
Basé sur notre nouvelle simulation expérimentale de prédiction de prix de Pillar, il est attendu que la valeur de PLR en 2026 augmente de 3.13% jusqu'à $0.0008058 si le meilleur scénario se produit. Le prix sera entre $0.0008058 et $0.000269 durant 2026.
Combien vaudra Pillar en 2027 ?
Selon notre dernière simulation expérimentale pour la prédiction de prix de Pillar, le valeur de PLR pourrait diminuer de -12.62% jusqu'à $0.000682 en 2027, en supposant les conditions les plus favorables. Il est prévu que le prix fluctue entre $0.000682 et $0.000259 tout au long de l'année.
Combien vaudra Pillar en 2028 ?
Notre nouveau modèle expérimental de prédiction de prix de Pillar suggère que la valeur de PLR en 2028 pourrait augmenter de 47.02%, atteignant $0.001148 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.001148 et $0.000469 durant l'année.
Combien vaudra Pillar en 2029 ?
Basé sur notre modèle de prévision expérimental, la valeur de Pillar pourrait connaître un 333.75% croissance en 2029, atteignant potentiellement $0.003389 sous des conditions optimales. Le range de prix prévu pour 2029 se situe entre $0.003389 et $0.00103.
Combien vaudra Pillar en 2030 ?
En utilisant notre nouvelle simulation expérimentale pour les prédictions de prix de Pillar, il est prévu que la valeur de PLR en 2030 augmente de 224.23%, atteignant $0.002533 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.002533 et $0.000876 au cours de 2030.
Combien vaudra Pillar en 2031 ?
Notre simulation expérimentale indique que le prix de Pillar pourrait augmenter de 195.98% en 2031, atteignant potentiellement $0.002312 dans des conditions idéales. Il est probable que le prix fluctue entre $0.002312 et $0.001035 durant l'année.
Combien vaudra Pillar en 2032 ?
Basé sur les résultats de notre dernière prédiction expérimentale de prix de Pillar, PLR pourrait connaître une 449.04% hausse en valeur, atteignant $0.004289 si le scénario le plus positif se réalise en 2032. Il est prévu que le prix reste dans une fourchette de $0.004289 et $0.001581 tout au long de l'année.
Combien vaudra Pillar en 2033 ?
Selon notre prédiction expérimentale de prix de Pillar, la valeur de PLR est anticipée à augmenter de 1362.43% en 2033, avec le prix potentiel le plus élevé étant $0.011426. Tout au long de l'année, le prix de PLR pourrait osciller entre $0.011426 et $0.003674.
Combien vaudra Pillar en 2034 ?
Les résultats de notre nouvelle simulation de prédiction de prix de Pillar suggèrent que PLR pourrait augmenter de 746.96% en 2034, atteignant potentiellement $0.006617 dans les meilleures circonstances. La fourchette de prix prévue pour l'année est entre $0.006617 et $0.002954.
Combien vaudra Pillar en 2035 ?
Basé sur notre prédiction expérimentale pour le prix de Pillar, PLR pourrait augmenter de 897.93%, avec la valeur potentiellement atteignant $0.007797 en 2035. La fourchette de prix attendue pour l'année se situe entre $0.007797 et $0.003492.
Combien vaudra Pillar en 2036 ?
Notre récente simulation de prédiction de prix de Pillar suggère que la valeur de PLR pourrait augmenter de 1964.7% en 2036, pouvant atteindre $0.016132 si les conditions sont optimales. La fourchette de prix attendue pour 2036 est entre $0.016132 et $0.005781.
Combien vaudra Pillar en 2037 ?
Selon la simulation expérimentale, la valeur de Pillar pourrait augmenter de 4830.69% en 2037, avec un maximum de $0.038525 sous des conditions favorables. Il est prévu que le prix chute entre $0.038525 et $0.015014 au cours de l'année.
Prévisions liées
Prévision du cours de Metaverser
Prévision du cours de TYBENG
Prévision du cours de DePay
Prévision du cours de SafeMoonCash
Prévision du cours de Kambria
Prévision du cours de League of Ancients
Prévision du cours de Revuto
Prévision du cours de Heroes of NFT
Prévision du cours de Pandacoin
Prévision du cours de DOLA Borrowing Right
Prévision du cours de MetaFighter
Prévision du cours de Kalmar
Prévision du cours de Nominex
Prévision du cours de MetaVPad
Prévision du cours de FlowX Finance
Prévision du cours de Solanacorn
Prévision du cours de Battle Infinity
Prévision du cours de Virtacoinplus
Prévision du cours de Cryptocart
Prévision du cours de SYNO Finance
Prévision du cours de NFTY Token
Prévision du cours de IP Exchange
Prévision du cours de NetherFi
Prévision du cours de Tokenomy
Prévision du cours de Roobee
Comment lire et prédire les mouvements de prix de Pillar ?
Les traders de Pillar utilisent des indicateurs et des modèles graphiques pour prédire la direction du marché. Ils identifient également des niveaux clés de support et de résistance pour évaluer quand une tendance baissière pourrait ralentir ou une tendance haussière pourrait s'arrêter.
Indicateurs de prédiction du prix de Pillar
Les moyennes mobiles sont des outils populaires pour la prédiction du prix de Pillar. Une moyenne mobile simple (SMA) calcule le prix de clôture moyen de PLR sur une période spécifique, comme une SMA de 12 jours. Une moyenne mobile exponentielle (EMA) donne plus de poids aux prix récents, réagissant plus rapidement aux changements de prix.
Les moyennes mobiles couramment utilisées sur le marché des cryptomonnaies incluent les moyennes sur 50 jours, 100 jours et 200 jours, qui aident à identifier les niveaux clés de résistance et de support. Un mouvement de prix de PLR au-dessus de ces moyennes est considéré comme haussier, tandis qu'une chute en dessous indique une faiblesse.
Les traders utilisent également le RSI et les niveaux de retracement de Fibonacci pour évaluer la direction future de PLR.
Comment lire les graphiques de Pillar et prédire les mouvements de prix ?
La plupart des traders préfèrent les graphiques en chandeliers aux simples graphiques linéaires parce qu'ils fournissent des informations plus détaillées. Les chandeliers peuvent représenter l'action des prix de Pillar dans différentes périodes, comme 5 minutes pour les tendances à court terme et hebdomadaire pour les tendances à long terme. Les options populaires incluent les graphiques de 1 heure, 4 heures et 1 jour.
Par exemple, un graphique en chandeliers de 1 heure montre les prix d'ouverture, de clôture, les plus hauts et les plus bas de PLR au sein de chaque heure. La couleur du chandelier est cruciale : le vert indique que le prix a clôturé plus haut qu'il n'a ouvert, tandis que le rouge signifie le contraire. Certains graphiques utilisent des chandeliers creux et pleins pour transmettre la même information.
Qu'est-ce qui affecte le prix de Pillar ?
L'action du prix de Pillar est déterminée par l'offre et la demande, influencée par des facteurs tels que les réductions de récompenses de bloc, les hard forks et les mises à jour de protocole. Les événements du monde réel, tels que les réglementations, l'adoption par les entreprises et les gouvernements et les piratages d'échanges de cryptomonnaies, impactent également le prix de PLR. La capitalisation boursière de Pillar peut changer rapidement.
Les traders surveillent souvent l'activité des « baleines » de PLR, de grands détenteurs de Pillar, car leurs actions peuvent influencer significativement les mouvements de prix sur le marché relativement petit de Pillar.
Modèles de prédiction de prix haussiers et baissiers
Les traders identifient souvent des modèles de chandeliers pour obtenir un avantage dans les prédictions de prix des cryptomonnaies. Certaines formations indiquent des tendances haussières, tandis que d'autres suggèrent des mouvements baissiers.
Modèles de chandeliers haussiers couramment suivis :
- Marteau
- Englobante haussière
- Ligne pénétrante
- Étoile du matin
- Trois soldats blancs
Modèles de chandeliers baissiers courants :
- Harami baissier
- Nuage sombre
- Étoile du soir
- Étoile filante
- Pendu


