Prédiction du prix de Pillar jusqu'à $0.000793 d'ici 2026
| Année | Prix min. | Prix max. |
|---|---|---|
| 2026 | $0.000265 | $0.000793 |
| 2027 | $0.000255 | $0.000672 |
| 2028 | $0.000461 | $0.001131 |
| 2029 | $0.001014 | $0.003337 |
| 2030 | $0.000862 | $0.002494 |
| 2031 | $0.00102 | $0.002277 |
| 2032 | $0.001557 | $0.004224 |
| 2033 | $0.003618 | $0.011252 |
| 2034 | $0.0029091 | $0.006516 |
| 2035 | $0.003439 | $0.007678 |
Calculateur de profit d’investissement
Si vous ouvrez une position short de $10,000.00 sur Pillar aujourd’hui et la fermez le Apr 06, 2026, notre prévision indique que vous pourriez gagner environ $3,956.57, soit un rendement de 39.57% sur les 90 prochains jours.
Prévision du prix à long terme de Pillar pour 2027, 2028, 2029, 2030, 2031, 2032 et 2037
[
'name' => 'Pillar'
'name_with_ticker' => 'Pillar <small>PLR</small>'
'name_lang' => 'Pillar'
'name_lang_with_ticker' => 'Pillar <small>PLR</small>'
'name_with_lang' => 'Pillar'
'name_with_lang_with_ticker' => 'Pillar <small>PLR</small>'
'image' => '/uploads/coins/pillar.png?1717568582'
'price_for_sd' => 0.0007694
'ticker' => 'PLR'
'marketcap' => '$198.97K'
'low24h' => '$0.0006341'
'high24h' => '$0.0007987'
'volume24h' => '$6.27K'
'current_supply' => '259.35M'
'max_supply' => '800M'
'algo' => null
'proof' => null
'ico_price_and_roi' => ''
'price' => '$0.0007694'
'change_24h_pct' => '21.2027%'
'ath_price' => '$1.56'
'ath_days' => 2896
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '1 févr. 2018'
'ath_pct' => '-99.95%'
'fdv' => '$613.75K'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.037938'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.000776'
'next_week_prediction_price_date' => '13 janvier 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.00068'
'next_month_prediction_price_date' => '5 février 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.000265'
'current_year_max_price_prediction' => '$0.000793'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.000862'
'grand_prediction_max_price' => '$0.002494'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.00078401029377982
107 => 0.00078693750362106
108 => 0.0007935326568604
109 => 0.00073717779452041
110 => 0.00076247947321924
111 => 0.00077734183900811
112 => 0.0007101931296765
113 => 0.00077601452492418
114 => 0.00073619678174533
115 => 0.00072268204166799
116 => 0.00074087785875051
117 => 0.00073378693113744
118 => 0.00072769056796896
119 => 0.00072428869257214
120 => 0.00073764969243849
121 => 0.00073702638582488
122 => 0.0007151651967852
123 => 0.000686648166859
124 => 0.00069621941814183
125 => 0.00069274209281982
126 => 0.00068013981726895
127 => 0.00068863222938568
128 => 0.00065123594433502
129 => 0.00058689757959511
130 => 0.0006294014740797
131 => 0.00062776512037738
201 => 0.00062693999663794
202 => 0.00065888049862176
203 => 0.00065581015634877
204 => 0.00065023745505842
205 => 0.00068003747023959
206 => 0.0006691600638317
207 => 0.00070268166734155
208 => 0.00072476116345452
209 => 0.00071916108904339
210 => 0.00073992696185711
211 => 0.00069643992044017
212 => 0.00071088457120161
213 => 0.00071386159370412
214 => 0.00067966974267799
215 => 0.0006563125023162
216 => 0.0006547548406761
217 => 0.00061425660471474
218 => 0.00063589043547496
219 => 0.00065492731127521
220 => 0.00064581012508813
221 => 0.00064292389630949
222 => 0.00065766901319291
223 => 0.00065881483505814
224 => 0.00063268997510219
225 => 0.00063812216075375
226 => 0.00066077527794648
227 => 0.0006375513603224
228 => 0.00059243108198422
301 => 0.0005812406291197
302 => 0.00057974761642661
303 => 0.00054939822073201
304 => 0.00058198842868934
305 => 0.00056776192955269
306 => 0.00061270326986573
307 => 0.00058703301730417
308 => 0.00058592642402272
309 => 0.00058425364597588
310 => 0.00055813066738379
311 => 0.00056384993949356
312 => 0.00058286167105617
313 => 0.0005896452710602
314 => 0.00058893768600338
315 => 0.0005827685031997
316 => 0.0005855927234959
317 => 0.00057649492589827
318 => 0.00057328230421226
319 => 0.00056314238647002
320 => 0.00054823950861269
321 => 0.00055031184518341
322 => 0.00052078534459793
323 => 0.00050469773998896
324 => 0.00050024490306442
325 => 0.00049429038343206
326 => 0.00050091748190127
327 => 0.00052070169973158
328 => 0.00049683773557227
329 => 0.00045592464288359
330 => 0.0004583835894667
331 => 0.00046390811237114
401 => 0.00045361320048708
402 => 0.00044386993037527
403 => 0.000452340913241
404 => 0.00043500549652103
405 => 0.00046600301466082
406 => 0.00046516461866468
407 => 0.00047671857655353
408 => 0.00048394350353251
409 => 0.00046729238594384
410 => 0.0004631046748997
411 => 0.0004654901854313
412 => 0.00042606301013437
413 => 0.0004734965351783
414 => 0.0004739067422726
415 => 0.00047039430008725
416 => 0.00049565118782736
417 => 0.00054895109877982
418 => 0.00052889752829555
419 => 0.00052113217968167
420 => 0.00050637024629024
421 => 0.00052603964605744
422 => 0.00052452934304576
423 => 0.00051769918006151
424 => 0.00051356827617722
425 => 0.00052117959324444
426 => 0.00051262514976188
427 => 0.00051108853665202
428 => 0.00050177833305786
429 => 0.00049845501396202
430 => 0.0004959945608086
501 => 0.00049328584364582
502 => 0.00049926059873665
503 => 0.00048572101765634
504 => 0.00046939361017498
505 => 0.00046803616290791
506 => 0.00047178419416029
507 => 0.00047012596933922
508 => 0.00046802822396543
509 => 0.0004640230567599
510 => 0.00046283480920687
511 => 0.00046669603729844
512 => 0.00046233693590664
513 => 0.00046876902746278
514 => 0.00046701985446337
515 => 0.00045724911627827
516 => 0.00044507115890903
517 => 0.00044496274954432
518 => 0.00044233902860497
519 => 0.00043899732550963
520 => 0.00043806774015631
521 => 0.00045162751069154
522 => 0.00047969582988968
523 => 0.00047418534721313
524 => 0.00047816723568392
525 => 0.00049775418594032
526 => 0.00050398028842668
527 => 0.00049956114835518
528 => 0.00049351195686462
529 => 0.00049377809059004
530 => 0.00051445000912808
531 => 0.00051573929133061
601 => 0.00051899689151819
602 => 0.00052318382835693
603 => 0.00050027420180364
604 => 0.0004926990492396
605 => 0.0004891095217013
606 => 0.0004780551662053
607 => 0.00048997634087892
608 => 0.0004830303829122
609 => 0.00048396762994962
610 => 0.00048335724658695
611 => 0.00048369055717691
612 => 0.00046599435022277
613 => 0.0004724419179516
614 => 0.00046172158607609
615 => 0.0004473682651085
616 => 0.0004473201477437
617 => 0.00045083310271618
618 => 0.0004487434596366
619 => 0.00044312028383911
620 => 0.0004439190294205
621 => 0.0004369211776479
622 => 0.00044476869532589
623 => 0.00044499373405313
624 => 0.00044197201228992
625 => 0.00045406219602162
626 => 0.00045901555416115
627 => 0.00045702659216506
628 => 0.00045887600328534
629 => 0.00047441433264668
630 => 0.00047694775831742
701 => 0.00047807293865165
702 => 0.00047656534606161
703 => 0.00045916001542195
704 => 0.000459932015849
705 => 0.00045426758894564
706 => 0.00044948174511491
707 => 0.00044967315376969
708 => 0.00045213369961484
709 => 0.0004628790476297
710 => 0.00048549199905412
711 => 0.00048635014403082
712 => 0.00048739024077644
713 => 0.00048315964460126
714 => 0.00048188365631348
715 => 0.00048356701422559
716 => 0.0004920592498481
717 => 0.00051390358548867
718 => 0.00050618233833917
719 => 0.00049990484421825
720 => 0.00050541189896256
721 => 0.0005045641310504
722 => 0.00049740811670826
723 => 0.00049720727121952
724 => 0.00048347259178078
725 => 0.0004783951935158
726 => 0.00047415213948891
727 => 0.00046951883525927
728 => 0.00046677205720218
729 => 0.00047099235668617
730 => 0.00047195758911128
731 => 0.00046272983053131
801 => 0.0004614721211346
802 => 0.000469007707986
803 => 0.00046569157716769
804 => 0.00046910229995041
805 => 0.00046989361689264
806 => 0.00046976619663937
807 => 0.00046630377520985
808 => 0.00046851061937813
809 => 0.00046329077502824
810 => 0.00045761497829301
811 => 0.00045399417359056
812 => 0.00045083454125763
813 => 0.00045258768891485
814 => 0.00044633803762897
815 => 0.00044433864840199
816 => 0.00046776299022949
817 => 0.00048506680339157
818 => 0.00048481519909513
819 => 0.00048328362264793
820 => 0.00048100801071633
821 => 0.00049189277466139
822 => 0.00048810074055066
823 => 0.00049085976220127
824 => 0.00049156204900712
825 => 0.00049368765965319
826 => 0.00049444738275675
827 => 0.00049215097187617
828 => 0.00048444393647796
829 => 0.00046523873702857
830 => 0.00045629866484144
831 => 0.000453348292111
901 => 0.0004534555325562
902 => 0.00045049736233527
903 => 0.00045136867604123
904 => 0.00045019435498641
905 => 0.00044797047500738
906 => 0.00045245037059287
907 => 0.00045296663682599
908 => 0.00045192097566557
909 => 0.00045216726672233
910 => 0.00044350963892177
911 => 0.00044416785956007
912 => 0.0004405028034034
913 => 0.00043981564955693
914 => 0.00043055070674581
915 => 0.00041413651758097
916 => 0.00042323157174218
917 => 0.00041224602527358
918 => 0.00040808563236773
919 => 0.00042778028531019
920 => 0.00042580348839941
921 => 0.00042242007138111
922 => 0.00041741529244515
923 => 0.00041555897125445
924 => 0.0004042805513396
925 => 0.000403614162123
926 => 0.00040920405157575
927 => 0.00040662450992966
928 => 0.00040300185650972
929 => 0.00038988097304522
930 => 0.00037512875585589
1001 => 0.0003755740325637
1002 => 0.00038026643837687
1003 => 0.00039391024113579
1004 => 0.0003885793713577
1005 => 0.00038471176416901
1006 => 0.00038398747760241
1007 => 0.00039305344038
1008 => 0.00040588367708821
1009 => 0.00041190333709134
1010 => 0.00040593803684804
1011 => 0.0003990854211231
1012 => 0.00039950250809031
1013 => 0.00040227720082493
1014 => 0.00040256878179929
1015 => 0.00039810843342264
1016 => 0.00039936399536403
1017 => 0.00039745668196407
1018 => 0.00038575150314914
1019 => 0.0003855397935819
1020 => 0.00038266715392921
1021 => 0.00038258017154219
1022 => 0.00037769309487942
1023 => 0.00037700935907154
1024 => 0.00036730577173326
1025 => 0.00037369270230448
1026 => 0.00036940868460621
1027 => 0.00036295165943731
1028 => 0.00036183846586439
1029 => 0.00036180500192137
1030 => 0.00036843492300542
1031 => 0.00037361522781649
1101 => 0.00036948320692822
1102 => 0.00036854242586782
1103 => 0.00037858750630892
1104 => 0.00037730917825985
1105 => 0.00037620215441368
1106 => 0.00040473487011426
1107 => 0.00038214899920168
1108 => 0.00037230027032736
1109 => 0.00036011059812249
1110 => 0.00036407961685806
1111 => 0.00036491594742266
1112 => 0.00033560198312352
1113 => 0.00032370931145818
1114 => 0.00031962819470852
1115 => 0.00031727945432056
1116 => 0.00031834980480898
1117 => 0.00030764500543892
1118 => 0.00031483880765664
1119 => 0.00030556935625633
1120 => 0.00030401530256367
1121 => 0.0003205902299321
1122 => 0.00032289653424609
1123 => 0.00031305712353
1124 => 0.00031937561806563
1125 => 0.00031708444411337
1126 => 0.00030572825439565
1127 => 0.00030529453147891
1128 => 0.00029959639466793
1129 => 0.00029067991393546
1130 => 0.0002866048429796
1201 => 0.0002844825106444
1202 => 0.00028535822632933
1203 => 0.00028491543768169
1204 => 0.00028202594224201
1205 => 0.00028508106017797
1206 => 0.0002772764963135
1207 => 0.00027416865609702
1208 => 0.00027276491677259
1209 => 0.00026583791712894
1210 => 0.00027686185401271
1211 => 0.00027903370845471
1212 => 0.00028120984212088
1213 => 0.00030015159997534
1214 => 0.00029920532328179
1215 => 0.0003077592037361
1216 => 0.00030742681567122
1217 => 0.00030498711040198
1218 => 0.00029469439518306
1219 => 0.00029879688801931
1220 => 0.00028617005273827
1221 => 0.00029563093627217
1222 => 0.00029131338412324
1223 => 0.00029417116754755
1224 => 0.0002890326152747
1225 => 0.00029187650226812
1226 => 0.00027954873571339
1227 => 0.00026803724076095
1228 => 0.0002726698023713
1229 => 0.00027770592663943
1230 => 0.00028862552723334
1231 => 0.00028212190320436
]
'min_raw' => 0.00026583791712894
'max_raw' => 0.0007935326568604
'avg_raw' => 0.00052968528699467
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.000265'
'max' => '$0.000793'
'avg' => '$0.000529'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.00050359208287106
'max_diff' => 2.4102656860405E-5
'year' => 2026
]
1 => [
'items' => [
101 => 0.00028446085233443
102 => 0.00027662576428404
103 => 0.00026045973965383
104 => 0.00026055123759761
105 => 0.00025806444690424
106 => 0.00025591549666779
107 => 0.00028286892265881
108 => 0.00027951683806622
109 => 0.00027417572997791
110 => 0.00028132501540131
111 => 0.00028321539994168
112 => 0.00028326921653197
113 => 0.00028848515062713
114 => 0.00029126889558872
115 => 0.00029175954270364
116 => 0.00029996692770008
117 => 0.00030271793489286
118 => 0.00031404894418281
119 => 0.00029103271427767
120 => 0.00029055871016902
121 => 0.00028142562050857
122 => 0.00027563327065748
123 => 0.00028182222765845
124 => 0.00028730479868443
125 => 0.00028159597927296
126 => 0.00028234143056834
127 => 0.00027467780693613
128 => 0.00027741719177764
129 => 0.00027977671903813
130 => 0.00027847392677149
131 => 0.00027652358369246
201 => 0.00028685529038271
202 => 0.00028627233500096
203 => 0.00029589345779584
204 => 0.00030339381102753
205 => 0.00031683578486724
206 => 0.00030280838441956
207 => 0.00030229717019338
208 => 0.00030729437125563
209 => 0.00030271716984741
210 => 0.00030560980313779
211 => 0.00031636973692423
212 => 0.00031659707736985
213 => 0.000312788831994
214 => 0.00031255709991678
215 => 0.00031328851509886
216 => 0.00031757243666559
217 => 0.00031607550283856
218 => 0.00031780779256093
219 => 0.00031997404738451
220 => 0.00032893459580785
221 => 0.00033109495369693
222 => 0.00032584640404362
223 => 0.00032632028931179
224 => 0.00032435718766555
225 => 0.00032246085607286
226 => 0.00032672353255623
227 => 0.00033451365761269
228 => 0.00033446519564902
301 => 0.00033627235324373
302 => 0.00033739819745393
303 => 0.00033256524993542
304 => 0.00032941917881327
305 => 0.00033062558267121
306 => 0.00033255464871211
307 => 0.00033000001255345
308 => 0.0003142316147596
309 => 0.0003190147393611
310 => 0.00031821859354457
311 => 0.00031708478508719
312 => 0.00032189425386081
313 => 0.00032143036886481
314 => 0.00030753521224892
315 => 0.00030842473509274
316 => 0.00030758930707924
317 => 0.00031028874590335
318 => 0.00030257139129211
319 => 0.00030494519759335
320 => 0.00030643402665243
321 => 0.00030731095840596
322 => 0.00031047903721743
323 => 0.00031010729973473
324 => 0.00031045592949356
325 => 0.00031515335402917
326 => 0.00033891131536885
327 => 0.00034020440878558
328 => 0.0003338367438749
329 => 0.00033638050041008
330 => 0.00033149704412093
331 => 0.00033477534104415
401 => 0.0003370182685393
402 => 0.00032688291047886
403 => 0.00032628276035245
404 => 0.00032137914830206
405 => 0.00032401407166316
406 => 0.00031982171913795
407 => 0.00032085037580537
408 => 0.00031797416208659
409 => 0.00032315077413196
410 => 0.00032893903076286
411 => 0.00033040137297301
412 => 0.00032655458019602
413 => 0.00032376924870948
414 => 0.00031887912416434
415 => 0.00032701151026643
416 => 0.00032938966779266
417 => 0.00032699901881736
418 => 0.00032644505321307
419 => 0.00032539528939394
420 => 0.00032666776556985
421 => 0.00032937671583604
422 => 0.00032809922491696
423 => 0.0003289430301755
424 => 0.00032572731465814
425 => 0.00033256684984214
426 => 0.00034342967773811
427 => 0.00034346460350605
428 => 0.00034218710570082
429 => 0.000341664381123
430 => 0.00034297517139621
501 => 0.00034368622134799
502 => 0.00034792507673374
503 => 0.00035247353744608
504 => 0.00037369921894173
505 => 0.00036773913251369
506 => 0.00038657181985807
507 => 0.00040146603042908
508 => 0.00040593215293443
509 => 0.00040182353037681
510 => 0.00038776815455061
511 => 0.00038707853075786
512 => 0.00040808319626881
513 => 0.00040214841618734
514 => 0.00040144249298096
515 => 0.00039393266274119
516 => 0.00039837190252347
517 => 0.00039740097566336
518 => 0.00039586832011533
519 => 0.00040433808037978
520 => 0.00042019271549414
521 => 0.00041772162192774
522 => 0.00041587706521115
523 => 0.00040779475462147
524 => 0.00041266211084588
525 => 0.00041092893852244
526 => 0.0004183757467223
527 => 0.0004139644225117
528 => 0.00040210345439121
529 => 0.00040399235265866
530 => 0.00040370684948547
531 => 0.00040958248455873
601 => 0.00040781876475197
602 => 0.00040336245488651
603 => 0.00042013852607494
604 => 0.00041904918132537
605 => 0.00042059362312137
606 => 0.00042127353416343
607 => 0.00043148483306829
608 => 0.00043566807550449
609 => 0.00043661774477548
610 => 0.00044059150154629
611 => 0.00043651887408701
612 => 0.00045281228765829
613 => 0.00046364645693616
614 => 0.00047623090207365
615 => 0.0004946201587995
616 => 0.00050153468943855
617 => 0.00050028564136817
618 => 0.00051422816594402
619 => 0.00053928257268192
620 => 0.0005053498533028
621 => 0.00054108108920409
622 => 0.0005297689924547
623 => 0.00050294821455782
624 => 0.00050122127265746
625 => 0.00051938461484486
626 => 0.00055966915965961
627 => 0.00054957833808704
628 => 0.00055968566462877
629 => 0.00054789493133559
630 => 0.00054730942204748
701 => 0.00055911301503013
702 => 0.00058669275341445
703 => 0.00057359065351909
704 => 0.0005548055805524
705 => 0.0005686761861029
706 => 0.00055666018391111
707 => 0.00052958476790577
708 => 0.00054957062182596
709 => 0.00053620665047388
710 => 0.00054010696778221
711 => 0.00056819604782357
712 => 0.0005648162953985
713 => 0.00056919000799318
714 => 0.00056147051974356
715 => 0.00055425930046685
716 => 0.00054079902417469
717 => 0.00053681409994818
718 => 0.00053791538964183
719 => 0.0005368135542037
720 => 0.00052928265332457
721 => 0.00052765635599674
722 => 0.00052494578920064
723 => 0.00052578590719222
724 => 0.00052068924861127
725 => 0.00053030769637692
726 => 0.00053209296503969
727 => 0.00053909246921155
728 => 0.00053981918095464
729 => 0.00055931270044157
730 => 0.00054857599748346
731 => 0.00055577910479009
801 => 0.00055513479107431
802 => 0.00050352950214256
803 => 0.00051064025564003
804 => 0.00052170235660474
805 => 0.00051671889511446
806 => 0.00050967344651761
807 => 0.0005039838690226
808 => 0.00049536357732849
809 => 0.00050749647234991
810 => 0.00052344993911354
811 => 0.000540223787199
812 => 0.00056037646660761
813 => 0.00055587862316665
814 => 0.00053984704687536
815 => 0.00054056621167672
816 => 0.00054501180549776
817 => 0.00053925435757472
818 => 0.00053755637378347
819 => 0.00054477852859916
820 => 0.00054482826361015
821 => 0.00053820362396386
822 => 0.00053084154929326
823 => 0.00053081070193158
824 => 0.00052950069185315
825 => 0.00054812797921833
826 => 0.00055837110383801
827 => 0.00055954546156804
828 => 0.00055829206020599
829 => 0.00055877444464452
830 => 0.00055281419612018
831 => 0.00056643755679002
901 => 0.0005789396997514
902 => 0.00057558885836843
903 => 0.00057056547078517
904 => 0.00056656410061599
905 => 0.00057464626272194
906 => 0.00057428637676586
907 => 0.00057883050443927
908 => 0.00057862435655985
909 => 0.00057709633733657
910 => 0.00057558891293881
911 => 0.00058156568028441
912 => 0.00057984446727282
913 => 0.00057812058074202
914 => 0.00057466306239066
915 => 0.00057513299655791
916 => 0.00057011047633335
917 => 0.00056778682866258
918 => 0.00053284474290452
919 => 0.00052350707582437
920 => 0.00052644489597353
921 => 0.00052741210264709
922 => 0.00052334833796727
923 => 0.00052917473262264
924 => 0.00052826669518728
925 => 0.00053179933766414
926 => 0.00052959229601411
927 => 0.00052968287377327
928 => 0.00053617331267513
929 => 0.00053805751470064
930 => 0.00053709919434309
1001 => 0.00053777036907222
1002 => 0.00055323730741983
1003 => 0.00055103840339164
1004 => 0.00054987027945245
1005 => 0.00055019385776671
1006 => 0.00055414599212942
1007 => 0.00055525237397245
1008 => 0.00055056455635948
1009 => 0.00055277535824571
1010 => 0.00056218867208471
1011 => 0.00056548279918095
1012 => 0.00057599607160141
1013 => 0.00057152984661868
1014 => 0.00057972779586817
1015 => 0.00060492549697425
1016 => 0.00062505516416607
1017 => 0.00060654309032279
1018 => 0.00064350866062292
1019 => 0.00067229165949769
1020 => 0.00067118692006029
1021 => 0.00066616793844371
1022 => 0.0006333992594604
1023 => 0.00060324503250647
1024 => 0.00062847032376954
1025 => 0.0006285346282246
1026 => 0.0006263677533339
1027 => 0.00061290947948814
1028 => 0.00062589943457656
1029 => 0.00062693053003889
1030 => 0.0006263533907704
1031 => 0.00061603496376745
1101 => 0.00060028063289803
1102 => 0.00060335899143937
1103 => 0.00060840140552691
1104 => 0.00059885506370142
1105 => 0.00059580442905493
1106 => 0.00060147613926975
1107 => 0.00061975157132964
1108 => 0.00061629670676109
1109 => 0.000616206486285
1110 => 0.00063098786199985
1111 => 0.00062040758700855
1112 => 0.00060339781939885
1113 => 0.00059910262874613
1114 => 0.00058385759551609
1115 => 0.00059438739426902
1116 => 0.0005947663429803
1117 => 0.00058899927981525
1118 => 0.00060386578479059
1119 => 0.00060372878733005
1120 => 0.00061784232121688
1121 => 0.00064482209720725
1122 => 0.00063684284985275
1123 => 0.00062756385331911
1124 => 0.00062857273752099
1125 => 0.00063963770707713
1126 => 0.0006329475738948
1127 => 0.00063535339243243
1128 => 0.00063963406558264
1129 => 0.00064221670197729
1130 => 0.00062820113588831
1201 => 0.00062493343699095
1202 => 0.00061824887185341
1203 => 0.00061650499358234
1204 => 0.00062194943240884
1205 => 0.00062051501513292
1206 => 0.00059473449380848
1207 => 0.00059204028588861
1208 => 0.00059212291339907
1209 => 0.00058534819948195
1210 => 0.0005750151346407
1211 => 0.00060216981208826
1212 => 0.00059998891145975
1213 => 0.00059758136595418
1214 => 0.00059787627654135
1215 => 0.00060966320166393
1216 => 0.00060282618983885
1217 => 0.00062100350634002
1218 => 0.00061726679652753
1219 => 0.00061343425420824
1220 => 0.00061290448011763
1221 => 0.00061142927830185
1222 => 0.00060637026237712
1223 => 0.00060026119664829
1224 => 0.0005962274622959
1225 => 0.00054998831750355
1226 => 0.00055857003381628
1227 => 0.00056844251618602
1228 => 0.00057185045753856
1229 => 0.00056602093803268
1230 => 0.00060660044733855
1231 => 0.00061401471472262
]
'min_raw' => 0.00025591549666779
'max_raw' => 0.00067229165949769
'avg_raw' => 0.00046410357808274
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.000255'
'max' => '$0.000672'
'avg' => '$0.000464'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -9.922420461153E-6
'max_diff' => -0.00012124099736271
'year' => 2027
]
2 => [
'items' => [
101 => 0.00059155641519559
102 => 0.00058735538432041
103 => 0.00060687586622333
104 => 0.00059510262935401
105 => 0.00060040411719538
106 => 0.00058894520024114
107 => 0.00061222883482489
108 => 0.00061205145254012
109 => 0.0006029935928023
110 => 0.00061064923382716
111 => 0.00060931887780301
112 => 0.00059909257646755
113 => 0.00061255302681754
114 => 0.00061255970303298
115 => 0.00060384170997019
116 => 0.00059366100268693
117 => 0.00059184093268226
118 => 0.00059046975442574
119 => 0.00060006689139903
120 => 0.00060867165439982
121 => 0.00062468298504263
122 => 0.00062870861398607
123 => 0.00064442091175359
124 => 0.00063506500345093
125 => 0.0006392123564222
126 => 0.00064371489475142
127 => 0.00064587357720181
128 => 0.00064235611999019
129 => 0.00066676378586293
130 => 0.00066882454069415
131 => 0.00066951549396359
201 => 0.00066128536635949
202 => 0.00066859564595728
203 => 0.00066517540822449
204 => 0.00067407391663581
205 => 0.00067546931637657
206 => 0.00067428746243893
207 => 0.00067473038434154
208 => 0.00065390274732646
209 => 0.00065282272447269
210 => 0.00063809653622662
211 => 0.00064409756678738
212 => 0.00063287892779092
213 => 0.00063643647378148
214 => 0.00063800460615658
215 => 0.00063718550279456
216 => 0.00064443685605141
217 => 0.00063827172442949
218 => 0.00062200092843774
219 => 0.00060572569947851
220 => 0.00060552137723644
221 => 0.00060123639673313
222 => 0.00059813914066256
223 => 0.00059873578206281
224 => 0.00060083842417847
225 => 0.0005980169312804
226 => 0.00059861903984353
227 => 0.00060861805381974
228 => 0.00061062328476297
229 => 0.00060380872652358
301 => 0.00057644729185639
302 => 0.0005697327271581
303 => 0.00057455902310762
304 => 0.00057225236449702
305 => 0.00046185232061493
306 => 0.00048778917333803
307 => 0.00047237837618226
308 => 0.00047948038052832
309 => 0.00046374994723886
310 => 0.00047125733450724
311 => 0.00046987099420466
312 => 0.00051157668585613
313 => 0.0005109255088453
314 => 0.00051123719282086
315 => 0.00049635970457882
316 => 0.00052005994731622
317 => 0.00053173553912182
318 => 0.00052957469781442
319 => 0.00053011853501799
320 => 0.00052077361004171
321 => 0.00051132767212163
322 => 0.00050085067324882
323 => 0.00052031564215829
324 => 0.00051815146989366
325 => 0.00052311530242412
326 => 0.00053573972614663
327 => 0.00053759872049529
328 => 0.00054009722775195
329 => 0.00053920169075629
330 => 0.00056053701521194
331 => 0.00055795316664536
401 => 0.00056417949826685
402 => 0.00055137146172852
403 => 0.0005368779526354
404 => 0.0005396326948855
405 => 0.00053936739105457
406 => 0.00053598976878538
407 => 0.00053294060242444
408 => 0.00052786459953078
409 => 0.00054392582379341
410 => 0.00054327376741958
411 => 0.00055382980217916
412 => 0.00055196392049955
413 => 0.00053950310598444
414 => 0.0005399481464126
415 => 0.00054294125717105
416 => 0.0005533004476808
417 => 0.00055637576073156
418 => 0.00055495115319641
419 => 0.0005583230935632
420 => 0.00056098813774403
421 => 0.00055865778208057
422 => 0.00059165070398995
423 => 0.00057794974255469
424 => 0.00058462749582756
425 => 0.00058622010063553
426 => 0.00058214067690878
427 => 0.0005830253578419
428 => 0.00058436540839446
429 => 0.00059250193294076
430 => 0.00061385452767261
501 => 0.00062331144652732
502 => 0.00065176305349787
503 => 0.0006225261810631
504 => 0.00062079138604703
505 => 0.00062591637961864
506 => 0.00064262048481882
507 => 0.00065615759314674
508 => 0.00066064863295362
509 => 0.00066124219800309
510 => 0.00066966768723949
511 => 0.00067449702054372
512 => 0.00066864461123383
513 => 0.00066368530711648
514 => 0.00064592169533965
515 => 0.00064797788177153
516 => 0.00066214296726519
517 => 0.00068215198484436
518 => 0.00069932180351074
519 => 0.00069330953144237
520 => 0.00073917892332145
521 => 0.0007437266861666
522 => 0.00074309833238818
523 => 0.00075345881294728
524 => 0.00073289536891264
525 => 0.00072410409818987
526 => 0.00066475756495715
527 => 0.00068143152008191
528 => 0.0007056680930828
529 => 0.00070246029176365
530 => 0.00068485904460495
531 => 0.00069930845138643
601 => 0.00069453102562975
602 => 0.00069076287171987
603 => 0.00070802551527358
604 => 0.00068904452957596
605 => 0.00070547874323077
606 => 0.00068440169422831
607 => 0.00069333699499474
608 => 0.00068826488612785
609 => 0.00069154716217901
610 => 0.00067235904345182
611 => 0.00068271248655176
612 => 0.0006719283061799
613 => 0.00067192319307426
614 => 0.00067168513169484
615 => 0.00068437267207796
616 => 0.00068478641231435
617 => 0.00067541030080142
618 => 0.00067405905665002
619 => 0.00067905531449348
620 => 0.00067320600508079
621 => 0.00067594286013987
622 => 0.00067328890163245
623 => 0.00067269143967151
624 => 0.00066793076111697
625 => 0.00066587972989809
626 => 0.00066668399208758
627 => 0.00066393863060928
628 => 0.00066228445101455
629 => 0.00067135607373835
630 => 0.00066650947166524
701 => 0.00067061326246059
702 => 0.0006659364749096
703 => 0.00064972469167853
704 => 0.00064040112370584
705 => 0.00060977856801545
706 => 0.00061846308682209
707 => 0.00062422093177567
708 => 0.00062231796405286
709 => 0.0006264062750722
710 => 0.00062665726416491
711 => 0.00062532811257712
712 => 0.00062378912531332
713 => 0.00062304003142464
714 => 0.00062862316354976
715 => 0.00063186435966798
716 => 0.00062479880854679
717 => 0.00062314344877666
718 => 0.00063028711105995
719 => 0.00063464474092601
720 => 0.00066681903151622
721 => 0.0006644354561477
722 => 0.00067041776256963
723 => 0.00066974424667249
724 => 0.00067601465685882
725 => 0.0006862641274404
726 => 0.000665424087951
727 => 0.00066904119821201
728 => 0.00066815436630729
729 => 0.00067783656450327
730 => 0.00067786679126919
731 => 0.00067206182978903
801 => 0.00067520879358217
802 => 0.00067345224472528
803 => 0.0006766265659215
804 => 0.00066440362204546
805 => 0.00067928984830122
806 => 0.00068772937934101
807 => 0.00068784656223768
808 => 0.00069184683297028
809 => 0.00069591133971466
810 => 0.00070371280646656
811 => 0.0006956937610412
812 => 0.00068126827895932
813 => 0.00068230975217161
814 => 0.00067385209730508
815 => 0.00067399427201139
816 => 0.00067323533228669
817 => 0.00067551296753082
818 => 0.00066490343489901
819 => 0.00066739347100166
820 => 0.00066390740587631
821 => 0.00066903362018725
822 => 0.00066351866098226
823 => 0.00066815393865009
824 => 0.00067015437082964
825 => 0.00067753600863839
826 => 0.00066242838707608
827 => 0.00063162292401447
828 => 0.00063809860583016
829 => 0.00062852056377092
830 => 0.00062940704802968
831 => 0.0006311978873153
901 => 0.00062539319126446
902 => 0.00062650054434396
903 => 0.00062646098189964
904 => 0.00062612005412782
905 => 0.000624610028497
906 => 0.00062242019258284
907 => 0.0006311438248689
908 => 0.00063262613998543
909 => 0.00063592114286949
910 => 0.00064572483643064
911 => 0.00064474521625687
912 => 0.00064634301740435
913 => 0.00064285502647068
914 => 0.0006295688459253
915 => 0.00063029034945065
916 => 0.00062129318892814
917 => 0.00063569106524655
918 => 0.00063228145809167
919 => 0.00063008326217811
920 => 0.00062948346405696
921 => 0.0006393114590782
922 => 0.0006422521492235
923 => 0.00064041970846733
924 => 0.00063666131901557
925 => 0.00064387853783104
926 => 0.00064580956111604
927 => 0.00064624184601616
928 => 0.00065902937399273
929 => 0.00064695652677833
930 => 0.00064986258109662
1001 => 0.00067253478731811
1002 => 0.00065197422482581
1003 => 0.00066286561333324
1004 => 0.00066233253654185
1005 => 0.00066790420235776
1006 => 0.00066187549732021
1007 => 0.00066195023034449
1008 => 0.00066689749213168
1009 => 0.00065994995519493
1010 => 0.00065822964734596
1011 => 0.00065585305437369
1012 => 0.00066104225818274
1013 => 0.00066415295117876
1014 => 0.00068922285217443
1015 => 0.00070541915154402
1016 => 0.00070471602747369
1017 => 0.00071114126528344
1018 => 0.00070824663680171
1019 => 0.00069889911786981
1020 => 0.00071485419287807
1021 => 0.00070980533955676
1022 => 0.00071022156089022
1023 => 0.0007102060691114
1024 => 0.00071356311519165
1025 => 0.00071118434037504
1026 => 0.00070649553103526
1027 => 0.00070960818149257
1028 => 0.00071885164055788
1029 => 0.00074754362112056
1030 => 0.00076360003356161
1031 => 0.00074657700493058
1101 => 0.00075831926213283
1102 => 0.00075127809200552
1103 => 0.00074999850193672
1104 => 0.00075737350720573
1105 => 0.00076476142144517
1106 => 0.00076429084324695
1107 => 0.00075892759688271
1108 => 0.00075589803509889
1109 => 0.00077883889190363
1110 => 0.00079574132441006
1111 => 0.00079458869182846
1112 => 0.00079967603718742
1113 => 0.00081461264050699
1114 => 0.00081597825632292
1115 => 0.00081580622011843
1116 => 0.00081242139883137
1117 => 0.00082712842456252
1118 => 0.00083939728417294
1119 => 0.0008116379105003
1120 => 0.00082220831659796
1121 => 0.00082695371245241
1122 => 0.00083392136146225
1123 => 0.00084567695325542
1124 => 0.00085844664395953
1125 => 0.00086025241823763
1126 => 0.00085897113497307
1127 => 0.00085054918068599
1128 => 0.00086452192862853
1129 => 0.000872706836672
1130 => 0.0008775807621036
1201 => 0.00088994022605427
1202 => 0.00082698301840168
1203 => 0.00078241877764893
1204 => 0.00077545942793995
1205 => 0.00078961153923607
1206 => 0.00079334333812389
1207 => 0.00079183905467149
1208 => 0.00074167795010076
1209 => 0.00077519534010547
1210 => 0.00081125723352834
1211 => 0.00081264251772139
1212 => 0.00083069585558752
1213 => 0.00083657476242805
1214 => 0.00085111006571536
1215 => 0.0008502008785372
1216 => 0.00085373999358047
1217 => 0.00085292641232096
1218 => 0.00087985000089149
1219 => 0.00090955071727639
1220 => 0.00090852227591047
1221 => 0.00090425244652722
1222 => 0.00091059387127545
1223 => 0.00094124819350686
1224 => 0.00093842603474129
1225 => 0.00094116752159113
1226 => 0.00097731069510385
1227 => 0.0010243019619769
1228 => 0.0010024698006683
1229 => 0.0010498393086727
1230 => 0.0010796559030118
1231 => 0.0011312206198278
]
'min_raw' => 0.00046185232061493
'max_raw' => 0.0011312206198278
'avg_raw' => 0.00079653647022137
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.000461'
'max' => '$0.001131'
'avg' => '$0.000796'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.00020593682394715
'max_diff' => 0.00045892896033011
'year' => 2028
]
3 => [
'items' => [
101 => 0.0011247644633209
102 => 0.001144838229178
103 => 0.0011132065957329
104 => 0.0010405739715352
105 => 0.0010290795807294
106 => 0.0010520916422069
107 => 0.0011086645498654
108 => 0.0010503099600189
109 => 0.0010621150175436
110 => 0.0010587151601823
111 => 0.001058533996232
112 => 0.0010654482873687
113 => 0.0010554187474498
114 => 0.0010145565975402
115 => 0.0010332834800416
116 => 0.0010260521313691
117 => 0.001034075851854
118 => 0.0010773765620772
119 => 0.0010582322859275
120 => 0.0010380653461585
121 => 0.001063359164031
122 => 0.0010955668860815
123 => 0.0010935513847185
124 => 0.0010896404696599
125 => 0.0011116860930763
126 => 0.0011480990041986
127 => 0.001157941267756
128 => 0.0011652066254979
129 => 0.0011662083955813
130 => 0.0011765272500367
131 => 0.0011210401689436
201 => 0.0012090995916477
202 => 0.0012243050213562
203 => 0.0012214470307715
204 => 0.0012383472259502
205 => 0.0012333747598121
206 => 0.0012261704365339
207 => 0.0012529608406668
208 => 0.0012222478042026
209 => 0.0011786545156054
210 => 0.0011547383753035
211 => 0.001186233078113
212 => 0.0012054657941052
213 => 0.0012181773959455
214 => 0.0012220239189818
215 => 0.0011253474730974
216 => 0.0010732442306872
217 => 0.0011066418117073
218 => 0.0011473891655296
219 => 0.0011208138153357
220 => 0.0011218555187496
221 => 0.0010839660532522
222 => 0.001150741542489
223 => 0.0011410129153775
224 => 0.0011914850500417
225 => 0.0011794394700399
226 => 0.0012205975365416
227 => 0.0012097592382747
228 => 0.0012547484084196
301 => 0.0012726958064235
302 => 0.0013028322809616
303 => 0.0013250007943093
304 => 0.0013380185693632
305 => 0.0013372370309774
306 => 0.0013888199411706
307 => 0.0013584033011993
308 => 0.0013201928327437
309 => 0.0013195017259218
310 => 0.0013392914689815
311 => 0.0013807653413837
312 => 0.0013915189130773
313 => 0.0013975286926248
314 => 0.0013883245060459
315 => 0.0013553094233373
316 => 0.0013410536780139
317 => 0.0013531999860581
318 => 0.0013383460950642
319 => 0.0013639880781854
320 => 0.0013991999978428
321 => 0.0013919288756766
322 => 0.0014162351469307
323 => 0.0014413895805844
324 => 0.0014773615504656
325 => 0.0014867659554307
326 => 0.0015023110792206
327 => 0.0015183121179075
328 => 0.0015234512202936
329 => 0.0015332633613186
330 => 0.001533211646492
331 => 0.0015627811939041
401 => 0.0015953973203922
402 => 0.0016077091530764
403 => 0.0016360195334554
404 => 0.0015875389991705
405 => 0.0016243120413298
406 => 0.0016574822458465
407 => 0.0016179353605747
408 => 0.0016724415286793
409 => 0.0016745578796732
410 => 0.001706512267033
411 => 0.001674120373724
412 => 0.0016548861708756
413 => 0.0017104145938026
414 => 0.001737283048528
415 => 0.001729190051302
416 => 0.0016676019428113
417 => 0.0016317550220315
418 => 0.0015379367159961
419 => 0.0016490685521442
420 => 0.0017031976277719
421 => 0.001667461761582
422 => 0.001685484853857
423 => 0.0017838130013018
424 => 0.0018212499935727
425 => 0.0018134633608847
426 => 0.0018147791736301
427 => 0.00183497949513
428 => 0.0019245588451808
429 => 0.0018708808221973
430 => 0.0019119156594911
501 => 0.0019336803892296
502 => 0.0019538966831723
503 => 0.0019042518546743
504 => 0.0018396646622259
505 => 0.0018192071871916
506 => 0.0016639085339664
507 => 0.0016558245646382
508 => 0.0016512867876849
509 => 0.0016226767458757
510 => 0.0016001970899638
511 => 0.0015823204329664
512 => 0.0015354067465838
513 => 0.0015512387385722
514 => 0.0014764681141256
515 => 0.0015243037099383
516 => 0.0014049679879216
517 => 0.0015043543232972
518 => 0.0014502628594944
519 => 0.0014865838226528
520 => 0.0014864571022339
521 => 0.0014195786934876
522 => 0.0013810046230395
523 => 0.0014055855220543
524 => 0.0014319381970324
525 => 0.0014362138298865
526 => 0.0014703807608708
527 => 0.0014799160168928
528 => 0.0014510237459876
529 => 0.0014024950203318
530 => 0.0014137671364792
531 => 0.0013807761939656
601 => 0.0013229608361886
602 => 0.0013644848355033
603 => 0.0013786629545507
604 => 0.0013849248196317
605 => 0.0013280700553968
606 => 0.0013102050540972
607 => 0.0013006938773071
608 => 0.0013951557842206
609 => 0.001400330620717
610 => 0.0013738554255532
611 => 0.0014935258181747
612 => 0.0014664407226828
613 => 0.0014967014103567
614 => 0.0014127443100876
615 => 0.0014159515843811
616 => 0.0013762049476415
617 => 0.0013984604083444
618 => 0.0013827309660466
619 => 0.0013966623870524
620 => 0.0014050128233619
621 => 0.0014447529380695
622 => 0.0015048080915718
623 => 0.0014388170901482
624 => 0.0014100638658195
625 => 0.0014279022044788
626 => 0.0014754080510373
627 => 0.0015473818403529
628 => 0.0015047719084706
629 => 0.0015236814726764
630 => 0.0015278123712274
701 => 0.0014963933849628
702 => 0.0015485403031921
703 => 0.001576486260312
704 => 0.001605153029716
705 => 0.0016300435823648
706 => 0.0015937028916203
707 => 0.0016325926399504
708 => 0.001601254367761
709 => 0.0015731406979161
710 => 0.0015731833347485
711 => 0.0015555472189796
712 => 0.0015213750223838
713 => 0.001515073145036
714 => 0.0015478563068387
715 => 0.0015741452980275
716 => 0.0015763105852576
717 => 0.0015908655215569
718 => 0.001599478982931
719 => 0.0016839026138305
720 => 0.0017178584965672
721 => 0.0017593791072256
722 => 0.0017755537250505
723 => 0.0018242335257819
724 => 0.0017849206331111
725 => 0.0017764150414921
726 => 0.0016583337679593
727 => 0.0016776695698852
728 => 0.0017086280543961
729 => 0.0016588442619661
730 => 0.0016904206196135
731 => 0.0016966544614918
801 => 0.0016571526277494
802 => 0.0016782522639247
803 => 0.0016222178858492
804 => 0.0015060294878895
805 => 0.0015486696540932
806 => 0.0015800671689439
807 => 0.0015352590439663
808 => 0.0016155758736747
809 => 0.001568656439835
810 => 0.0015537852318378
811 => 0.0014957673474723
812 => 0.0015231495555796
813 => 0.0015601843841203
814 => 0.0015373011658431
815 => 0.0015847872797008
816 => 0.0016520402810072
817 => 0.0016999687747236
818 => 0.0017036481293406
819 => 0.0016728333188407
820 => 0.0017222142493244
821 => 0.0017225739354926
822 => 0.0016668720441799
823 => 0.0016327549459004
824 => 0.0016250034693883
825 => 0.001644368177482
826 => 0.0016678805080301
827 => 0.0017049529000486
828 => 0.0017273549701181
829 => 0.0017857676877197
830 => 0.0018015724942788
831 => 0.0018189371849693
901 => 0.0018421417668042
902 => 0.0018700048168296
903 => 0.0018090420496183
904 => 0.0018114642140085
905 => 0.0017546965292683
906 => 0.001694032116814
907 => 0.0017400688439411
908 => 0.0018002557406505
909 => 0.0017864488000448
910 => 0.0017848952371764
911 => 0.0017875078989986
912 => 0.0017770979166744
913 => 0.0017300139524339
914 => 0.0017063686803535
915 => 0.0017368771138894
916 => 0.0017530909885396
917 => 0.0017782372941236
918 => 0.0017751374811863
919 => 0.0018399116638545
920 => 0.0018650809525698
921 => 0.0018586415714618
922 => 0.0018598265725581
923 => 0.0019053943675351
924 => 0.0019560751272814
925 => 0.0020035443466991
926 => 0.0020518320755412
927 => 0.00199361933372
928 => 0.0019640624934859
929 => 0.0019945576079941
930 => 0.0019783764709862
1001 => 0.0020713580838705
1002 => 0.0020777959290073
1003 => 0.0021707708182627
1004 => 0.0022590150594099
1005 => 0.0022035904326051
1006 => 0.002255853359302
1007 => 0.0023123799755836
1008 => 0.0024214289895038
1009 => 0.0023847051180061
1010 => 0.0023565752079752
1011 => 0.0023299925789188
1012 => 0.0023853068101117
1013 => 0.0024564676848749
1014 => 0.0024717950557285
1015 => 0.0024966312520177
1016 => 0.0024705190284452
1017 => 0.0025019683255711
1018 => 0.0026129981639471
1019 => 0.0025829969215305
1020 => 0.0025403903343584
1021 => 0.0026280377283372
1022 => 0.0026597569794975
1023 => 0.0028823792956414
1024 => 0.0031634491658423
1025 => 0.0030470843939749
1026 => 0.002974853025009
1027 => 0.002991829110067
1028 => 0.0030944663118488
1029 => 0.0031274301235192
1030 => 0.0030378231200918
1031 => 0.0030694738285656
1101 => 0.0032438723440854
1102 => 0.0033374315522874
1103 => 0.003210365580871
1104 => 0.0028597956052424
1105 => 0.0025365540773523
1106 => 0.0026222922863045
1107 => 0.0026125722341757
1108 => 0.0027999416824437
1109 => 0.0025822814018209
1110 => 0.0025859462427257
1111 => 0.0027771902927562
1112 => 0.0027261696589611
1113 => 0.0026435227664421
1114 => 0.0025371574911302
1115 => 0.002340531442119
1116 => 0.0021663742671867
1117 => 0.0025079365932309
1118 => 0.0024932078046411
1119 => 0.0024718783360789
1120 => 0.0025193447602746
1121 => 0.0027498282425892
1122 => 0.0027445148523196
1123 => 0.0027107137743401
1124 => 0.0027363515940785
1125 => 0.0026390283326849
1126 => 0.0026641107531555
1127 => 0.0025365028742428
1128 => 0.0025941869648871
1129 => 0.0026433454433294
1130 => 0.0026532147356804
1201 => 0.0026754507552857
1202 => 0.0024854464023356
1203 => 0.0025707527785755
1204 => 0.0026208622824899
1205 => 0.0023944657208052
1206 => 0.0026163871503859
1207 => 0.0024821388492723
1208 => 0.0024365729595325
1209 => 0.0024979214272176
1210 => 0.0024740138696974
1211 => 0.0024534595556404
1212 => 0.0024419898952286
1213 => 0.0024870374391133
1214 => 0.0024849359173476
1215 => 0.0024112293922008
1216 => 0.0023150822348092
1217 => 0.0023473523767527
1218 => 0.0023356283316504
1219 => 0.0022931388797679
1220 => 0.0023217716401407
1221 => 0.0021956874541672
1222 => 0.0019787661654854
1223 => 0.0021220710132673
1224 => 0.0021165539325134
1225 => 0.0021137719702176
1226 => 0.0022214616026707
1227 => 0.0022111097293328
1228 => 0.0021923209778588
1229 => 0.0022927938096128
1230 => 0.0022561198744723
1231 => 0.0023691403011094
]
'min_raw' => 0.0010145565975402
'max_raw' => 0.0033374315522874
'avg_raw' => 0.0021759940749138
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.001014'
'max' => '$0.003337'
'avg' => '$0.002175'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.0005527042769253
'max_diff' => 0.0022062109324596
'year' => 2029
]
4 => [
'items' => [
101 => 0.0024435828637954
102 => 0.0024247018219336
103 => 0.002494715411952
104 => 0.0023480958156465
105 => 0.002396796964182
106 => 0.0024068342033983
107 => 0.0022915539904649
108 => 0.0022128034238347
109 => 0.0022075516588626
110 => 0.0020710090288224
111 => 0.0021439489996563
112 => 0.002208133155529
113 => 0.0021773939257577
114 => 0.0021676628039205
115 => 0.0022173769949641
116 => 0.0022212402133814
117 => 0.0021331584240605
118 => 0.0021514734172478
119 => 0.0022278499834532
120 => 0.0021495489237415
121 => 0.0019974227551271
122 => 0.0019596933620019
123 => 0.0019546595654683
124 => 0.0018523344589568
125 => 0.0019622146204606
126 => 0.001914248985359
127 => 0.0020657718519286
128 => 0.0019792228031774
129 => 0.0019754918466692
130 => 0.0019698519586946
131 => 0.0018817765125233
201 => 0.0019010594377482
202 => 0.0019651588180682
203 => 0.0019880301990976
204 => 0.0019856445266766
205 => 0.0019648446961354
206 => 0.0019743667520448
207 => 0.0019436928922564
208 => 0.001932861313944
209 => 0.0018986738733295
210 => 0.0018484277801478
211 => 0.0018554148075819
212 => 0.0017558641493836
213 => 0.0017016236672437
214 => 0.0016866106166655
215 => 0.0016665345379937
216 => 0.0016888782631719
217 => 0.0017555821348768
218 => 0.0016751231135849
219 => 0.0015371817651241
220 => 0.0015454722752072
221 => 0.0015640985898894
222 => 0.0015293885757045
223 => 0.0014965384602691
224 => 0.0015250989704261
225 => 0.0014666514026346
226 => 0.0015711616992205
227 => 0.0015683349885845
228 => 0.0016072899642784
301 => 0.0016316493100163
302 => 0.0015755089045222
303 => 0.0015613897443602
304 => 0.0015694326596685
305 => 0.0014365011854375
306 => 0.001596426626826
307 => 0.0015978096686842
308 => 0.0015859672246254
309 => 0.0016711225850208
310 => 0.001850826956078
311 => 0.0017832149430947
312 => 0.0017570335280836
313 => 0.0017072626390092
314 => 0.0017735793935979
315 => 0.001768487301548
316 => 0.0017454589301799
317 => 0.0017315312993235
318 => 0.0017571933862208
319 => 0.0017283514827672
320 => 0.0017231706843844
321 => 0.001691780682949
322 => 0.0016805758805907
323 => 0.0016722802910006
324 => 0.0016631476619697
325 => 0.0016832919659025
326 => 0.0016376423229869
327 => 0.0015825933287203
328 => 0.0015780166004854
329 => 0.001590653349532
330 => 0.0015850625287742
331 => 0.0015779898337865
401 => 0.0015644861329213
402 => 0.0015604798733354
403 => 0.0015734982734285
404 => 0.0015588012587433
405 => 0.0015804875044991
406 => 0.0015745900456082
407 => 0.001541647319646
408 => 0.0015005884861378
409 => 0.0015002229763958
410 => 0.0014913769180664
411 => 0.0014801101327702
412 => 0.0014769759708499
413 => 0.0015226936839224
414 => 0.0016173279817664
415 => 0.0015987490046928
416 => 0.0016121742196786
417 => 0.0016782129899853
418 => 0.0016992047292106
419 => 0.0016843052899251
420 => 0.0016639100184736
421 => 0.0016648073069097
422 => 0.001734504123528
423 => 0.0017388510284886
424 => 0.0017498342549594
425 => 0.0017639508048338
426 => 0.0016867093994104
427 => 0.0016611692436604
428 => 0.0016490669009522
429 => 0.001611796369607
430 => 0.001651989442329
501 => 0.0016285706600929
502 => 0.001631730653916
503 => 0.0016296727037932
504 => 0.0016307964837182
505 => 0.0015711324864626
506 => 0.0015928709112152
507 => 0.0015567265638272
508 => 0.0015083333400682
509 => 0.0015081711090133
510 => 0.0015200152819697
511 => 0.0015129699044327
512 => 0.0014940109746338
513 => 0.0014967040011281
514 => 0.0014731102553024
515 => 0.0014995687090499
516 => 0.0015003274428305
517 => 0.001490139496936
518 => 0.0015309023954971
519 => 0.0015476029882969
520 => 0.0015408970640622
521 => 0.001547132482776
522 => 0.0015995210450693
523 => 0.0016080626665963
524 => 0.0016118562906507
525 => 0.0016067733369766
526 => 0.0015480900495237
527 => 0.0015506929028628
528 => 0.0015315948920805
529 => 0.0015154590854682
530 => 0.0015161044331115
531 => 0.0015244003352183
601 => 0.0015606290262666
602 => 0.0016368701707799
603 => 0.0016397634664826
604 => 0.0016432702252777
605 => 0.0016290064749023
606 => 0.0016247043913034
607 => 0.0016303799500324
608 => 0.0016590121153426
609 => 0.0017326618180776
610 => 0.0017066290942328
611 => 0.0016854640845235
612 => 0.0017040315040842
613 => 0.0017011731953791
614 => 0.0016770461934076
615 => 0.0016763690288197
616 => 0.0016300615981673
617 => 0.0016129427954243
618 => 0.0015986370425321
619 => 0.0015830155338349
620 => 0.0015737545798415
621 => 0.0015879836142037
622 => 0.0015912379627153
623 => 0.0015601259304014
624 => 0.0015558854753599
625 => 0.0015812922325473
626 => 0.0015701116659685
627 => 0.0015816111559595
628 => 0.0015842791362782
629 => 0.0015838495299981
630 => 0.00157217573441
701 => 0.0015796162636003
702 => 0.0015620171939367
703 => 0.0015428808489724
704 => 0.0015306730531216
705 => 0.0015200201321126
706 => 0.0015259309918398
707 => 0.0015048598561927
708 => 0.0014981187758211
709 => 0.0015770955797278
710 => 0.0016354365939174
711 => 0.0016345882924655
712 => 0.0016294244755425
713 => 0.001621752091037
714 => 0.0016584508326277
715 => 0.001645665724872
716 => 0.0016549679589958
717 => 0.0016573357679938
718 => 0.0016645024126924
719 => 0.0016670638721783
720 => 0.0016593213625641
721 => 0.001633336554631
722 => 0.0015685848838232
723 => 0.0015384428062684
724 => 0.0015284954186192
725 => 0.0015288569872675
726 => 0.0015188833098348
727 => 0.0015218210048276
728 => 0.0015178616994028
729 => 0.0015103637327872
730 => 0.00152546801353
731 => 0.0015272086411795
801 => 0.0015236831215714
802 => 0.0015245135090648
803 => 0.0014953237124789
804 => 0.0014975429493164
805 => 0.0014851859565982
806 => 0.0014828691694293
807 => 0.0014516317678839
808 => 0.0013962901831126
809 => 0.0014269547932135
810 => 0.0013899162563082
811 => 0.0013758892011568
812 => 0.0014422910985891
813 => 0.0014356261897888
814 => 0.001424218763089
815 => 0.0014073448014839
816 => 0.0014010860849852
817 => 0.0013630601048082
818 => 0.0013608133270386
819 => 0.0013796600296022
820 => 0.0013709629248445
821 => 0.0013587488959136
822 => 0.0013145109212422
823 => 0.0012647727910215
824 => 0.0012662740725301
825 => 0.0012820948463425
826 => 0.0013280958799241
827 => 0.0013101224802778
828 => 0.0012970825726134
829 => 0.0012946405898861
830 => 0.001325207116356
831 => 0.0013684651551963
901 => 0.0013887608591761
902 => 0.0013686484329218
903 => 0.0013455443605708
904 => 0.0013469505984009
905 => 0.0013563056686785
906 => 0.0013572887542911
907 => 0.0013422503783276
908 => 0.0013464835930736
909 => 0.0013400529527812
910 => 0.0013005881251772
911 => 0.0012998743315902
912 => 0.0012901890264399
913 => 0.0012898957592491
914 => 0.0012734186390758
915 => 0.0012711133760626
916 => 0.0012383970538688
917 => 0.0012599310362109
918 => 0.0012454871714406
919 => 0.0012237168602685
920 => 0.0012199636504167
921 => 0.0012198508243965
922 => 0.0012422040662177
923 => 0.0012596698255655
924 => 0.0012457384286522
925 => 0.0012425665196239
926 => 0.0012764342096561
927 => 0.0012721242373887
928 => 0.0012683918292014
929 => 0.0013645918722765
930 => 0.0012884420315996
1001 => 0.0012552363545835
1002 => 0.0012141380236891
1003 => 0.0012275198474641
1004 => 0.0012303395943534
1005 => 0.0011315055170832
1006 => 0.0010914085442437
1007 => 0.0010776487741877
1008 => 0.0010697298319859
1009 => 0.0010733385933871
1010 => 0.0010372466149257
1011 => 0.001061501021358
1012 => 0.0010302484187894
1013 => 0.001025008818264
1014 => 0.0010808923431111
1015 => 0.0010886682091268
1016 => 0.0010554939489318
1017 => 0.0010767971944019
1018 => 0.0010690723414571
1019 => 0.00103078415496
1020 => 0.0010293218278647
1021 => 0.0010101101617752
1022 => 0.0009800476244569
1023 => 0.00096630823821685
1024 => 0.00095915264657221
1025 => 0.00096210518314449
1026 => 0.00096061229030443
1027 => 0.00095087015469145
1028 => 0.00096117069811403
1029 => 0.00093485706614773
1030 => 0.00092437876587541
1031 => 0.00091964596073713
1101 => 0.00089629109781089
1102 => 0.00093345907068121
1103 => 0.00094078162956645
1104 => 0.00094811861615475
1105 => 0.0010119820752324
1106 => 0.0010087916372931
1107 => 0.0010376316424577
1108 => 0.0010365109728904
1109 => 0.0010282853362403
1110 => 0.00099358272826533
1111 => 0.0010074145692897
1112 => 0.00096484231256213
1113 => 0.00099674034193446
1114 => 0.00098218341342248
1115 => 0.00099181862976161
1116 => 0.00097449364201143
1117 => 0.00098408200556359
1118 => 0.00094251807992717
1119 => 0.00090370627098809
1120 => 0.00091932527589251
1121 => 0.00093630492047348
1122 => 0.00097312111625801
1123 => 0.00095119369377577
1124 => 0.00095907962406802
1125 => 0.00093266307767775
1126 => 0.00087815819696119
1127 => 0.00087846668866683
1128 => 0.00087008230022196
1129 => 0.00086283696446484
1130 => 0.0009537123220217
1201 => 0.0009424105347827
1202 => 0.00092440261595869
1203 => 0.00094850693091087
1204 => 0.00095488049437115
1205 => 0.00095506194076269
1206 => 0.00097264782672938
1207 => 0.00098203341722225
1208 => 0.0009836876682261
1209 => 0.0010113594397629
1210 => 0.0010206346525826
1211 => 0.0010588379415094
1212 => 0.0009812371154424
1213 => 0.00097963897749619
1214 => 0.00094884612805403
1215 => 0.00092931681612212
1216 => 0.00095018331675006
1217 => 0.00096866818774503
1218 => 0.00094942050452222
1219 => 0.00095193384561035
1220 => 0.00092609540347722
1221 => 0.00093533143072811
1222 => 0.00094328674162381
1223 => 0.00093889428653877
1224 => 0.00093231856867923
1225 => 0.00096715263912214
1226 => 0.00096518716435192
1227 => 0.00099762545158018
1228 => 0.0010229134161588
1229 => 0.001068233969448
1230 => 0.0010209396094768
1231 => 0.0010192160150214
]
'min_raw' => 0.00086283696446484
'max_raw' => 0.002494715411952
'avg_raw' => 0.0016787761882084
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.000862'
'max' => '$0.002494'
'avg' => '$0.001678'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0001517196330754
'max_diff' => -0.00084271614033541
'year' => 2030
]
5 => [
'items' => [
101 => 0.0010360644272962
102 => 0.0010206320731784
103 => 0.0010303847882741
104 => 0.0010666626562697
105 => 0.0010674291504545
106 => 0.0010545893852866
107 => 0.0010538080844093
108 => 0.0010562741017614
109 => 0.0010707176424175
110 => 0.0010656706255071
111 => 0.0010715111612507
112 => 0.0010788148406315
113 => 0.0011090259552463
114 => 0.0011163097527007
115 => 0.0010986139011025
116 => 0.0011002116383698
117 => 0.0010935929041101
118 => 0.0010871992897477
119 => 0.0011015712011219
120 => 0.0011278361516389
121 => 0.0011276727587449
122 => 0.0011337657167472
123 => 0.0011375615791058
124 => 0.0011212669591215
125 => 0.0011106597606815
126 => 0.001114727235517
127 => 0.001121231216357
128 => 0.0011126180821891
129 => 0.0010594538281128
130 => 0.0010755804666538
131 => 0.0010728962054482
201 => 0.0010690734910742
202 => 0.0010852889508308
203 => 0.0010837249301794
204 => 0.0010368764395201
205 => 0.0010398755278925
206 => 0.0010370588240173
207 => 0.0010461601704816
208 => 0.0010201405706013
209 => 0.0010281440242798
210 => 0.0010331637153992
211 => 0.0010361203520316
212 => 0.0010468017509327
213 => 0.0010455484120559
214 => 0.0010467238416284
215 => 0.0010625615364139
216 => 0.0011426631617985
217 => 0.0011470229165339
218 => 0.0011255538897114
219 => 0.0011341303424691
220 => 0.0011176654286382
221 => 0.0011287184355983
222 => 0.0011362806222444
223 => 0.0011021085549155
224 => 0.0011000851068632
225 => 0.001083552236476
226 => 0.0010924360645524
227 => 0.001078301255313
228 => 0.0010817694430857
301 => 0.001072072087722
302 => 0.0010895253966525
303 => 0.0011090409080067
304 => 0.0011139712968657
305 => 0.0011010015664436
306 => 0.0010916106268711
307 => 0.0010751232305496
308 => 0.0011025421380778
309 => 0.0011105602622152
310 => 0.0011025000222852
311 => 0.0011006322885737
312 => 0.0010970929365653
313 => 0.0011013831788338
314 => 0.0011105165937891
315 => 0.0011062094439639
316 => 0.0011090543923057
317 => 0.0010982123829248
318 => 0.0011212723533188
319 => 0.0011578971359884
320 => 0.0011580148906535
321 => 0.0011537077176111
322 => 0.0011519453152015
323 => 0.0011563647361241
324 => 0.0011587620906805
325 => 0.0011730536875609
326 => 0.001188389140416
327 => 0.0012599530075083
328 => 0.0012398581599962
329 => 0.001303353880234
330 => 0.0013535707510548
331 => 0.0013686285948963
401 => 0.0013547760870884
402 => 0.0013073874061754
403 => 0.0013050622914101
404 => 0.0013758809876792
405 => 0.0013558714622814
406 => 0.0013534913929051
407 => 0.0013281714759321
408 => 0.0013431386827959
409 => 0.0013398651350991
410 => 0.0013346976799123
411 => 0.0013632540679837
412 => 0.001416709077207
413 => 0.0014083776127217
414 => 0.0014021585609689
415 => 0.0013749084865268
416 => 0.0013913191178654
417 => 0.0013854756063707
418 => 0.0014105830401361
419 => 0.0013957099525712
420 => 0.0013557198704466
421 => 0.001362088422834
422 => 0.0013611258289524
423 => 0.0013809359428256
424 => 0.0013749894383582
425 => 0.0013599646785171
426 => 0.0014165263737968
427 => 0.001412853571918
428 => 0.0014180607652627
429 => 0.0014203531328109
430 => 0.0014547812399988
501 => 0.0014688853339371
502 => 0.001472087210188
503 => 0.0014854850085796
504 => 0.0014717538607589
505 => 0.0015266882421843
506 => 0.0015632164003222
507 => 0.0016056457357211
508 => 0.0016676463986692
509 => 0.0016909592214759
510 => 0.0016867479687008
511 => 0.0017337561637443
512 => 0.0018182288453039
513 => 0.0017038223128104
514 => 0.0018242926693269
515 => 0.0017861531453509
516 => 0.0016957250201047
517 => 0.0016899025149164
518 => 0.0017511414912253
519 => 0.0018869636466453
520 => 0.0018529417371947
521 => 0.0018870192943011
522 => 0.0018472660138005
523 => 0.0018452919283567
524 => 0.0018850885661982
525 => 0.0019780755797168
526 => 0.0019339009351602
527 => 0.0018705657501211
528 => 0.0019173314651493
529 => 0.0018768186748293
530 => 0.0017855320194221
531 => 0.0018529157212817
601 => 0.0018078581588255
602 => 0.001821008350942
603 => 0.0019157126454184
604 => 0.0019043175741505
605 => 0.0019190638515263
606 => 0.0018930370579353
607 => 0.0018687239286726
608 => 0.0018233416673871
609 => 0.0018099062171389
610 => 0.0018136192922306
611 => 0.0018099043771233
612 => 0.0017845134190186
613 => 0.0017790302440333
614 => 0.0017698913788346
615 => 0.0017727238952983
616 => 0.0017555401550553
617 => 0.0017879694232358
618 => 0.0017939885811758
619 => 0.001817587898181
620 => 0.0018200380575602
621 => 0.0018857618195045
622 => 0.0018495622758685
623 => 0.0018738480550578
624 => 0.0018716757063804
625 => 0.0016976848717808
626 => 0.0017216592736545
627 => 0.0017589559193882
628 => 0.0017421538310396
629 => 0.0017183996091978
630 => 0.0016992168014398
701 => 0.0016701528861435
702 => 0.0017110597887999
703 => 0.001764848015829
704 => 0.0018214022157618
705 => 0.0018893483814031
706 => 0.0018741835882125
707 => 0.0018201320094575
708 => 0.0018225567237957
709 => 0.0018375453537448
710 => 0.0018181337161001
711 => 0.0018124088451985
712 => 0.0018367588443943
713 => 0.0018369265294563
714 => 0.0018145910943712
715 => 0.0017897693456157
716 => 0.0017896653415821
717 => 0.0017852485511407
718 => 0.001848051751008
719 => 0.0018825871608154
720 => 0.0018865465898932
721 => 0.0018823206596914
722 => 0.0018839470525049
723 => 0.0018638516584738
724 => 0.0019097837701249
725 => 0.0019519356179909
726 => 0.0019406380223199
727 => 0.0019237013203613
728 => 0.0019102104214691
729 => 0.0019374599952879
730 => 0.0019362466146605
731 => 0.0019515674583723
801 => 0.001950872416404
802 => 0.0019457205929098
803 => 0.0019406382063078
804 => 0.0019607892946981
805 => 0.0019549861048582
806 => 0.0019491739010617
807 => 0.0019375166365439
808 => 0.0019391010523985
809 => 0.0019221672748002
810 => 0.0019143329344463
811 => 0.0017965232527345
812 => 0.0017650406562387
813 => 0.0017749457219836
814 => 0.0017782067268118
815 => 0.0017645054604708
816 => 0.0017841495568373
817 => 0.0017810880452268
818 => 0.0017929985959787
819 => 0.0017855574009649
820 => 0.0017858627902039
821 => 0.0018077457581095
822 => 0.0018140984767892
823 => 0.001810867432796
824 => 0.0018131303452552
825 => 0.0018652782077613
826 => 0.0018578644493077
827 => 0.0018539260378909
828 => 0.0018550170047689
829 => 0.001868341901702
830 => 0.0018720721453309
831 => 0.0018562668409558
901 => 0.0018637207138685
902 => 0.0018954583586933
903 => 0.0019065647381868
904 => 0.0019420109701657
905 => 0.0019269527808145
906 => 0.0019545927390717
907 => 0.0020395485475982
908 => 0.0021074171259439
909 => 0.0020450023765095
910 => 0.0021696343776301
911 => 0.0022666782679012
912 => 0.0022629535617576
913 => 0.0022460317148232
914 => 0.0021355498257948
915 => 0.0020338827443188
916 => 0.0021189315749858
917 => 0.0021191483819456
918 => 0.0021118426119652
919 => 0.0020664671020676
920 => 0.0021102636425779
921 => 0.002113740052918
922 => 0.0021117941875797
923 => 0.0020770048905297
924 => 0.0020238880640711
925 => 0.0020342669648174
926 => 0.0020512678159637
927 => 0.0020190816579947
928 => 0.0020087962302956
929 => 0.002027918797271
930 => 0.0020895356924108
1001 => 0.002077887375307
1002 => 0.0020775831906729
1003 => 0.0021274196308982
1004 => 0.0020917474950738
1005 => 0.0020343978759937
1006 => 0.0020199163408274
1007 => 0.0019685166469181
1008 => 0.0020040185985807
1009 => 0.0020052962506181
1010 => 0.0019858521945136
1011 => 0.0020359756539842
1012 => 0.0020355137574811
1013 => 0.0020830985223561
1014 => 0.0021740627207754
1015 => 0.0021471601312264
1016 => 0.0021158753465744
1017 => 0.0021192768700991
1018 => 0.0021565831874892
1019 => 0.0021340269363747
1020 => 0.0021421383215433
1021 => 0.0021565709099362
1022 => 0.0021652784488547
1023 => 0.0021180239892501
1024 => 0.0021070067142742
1025 => 0.0020844692362116
1026 => 0.002078589628867
1027 => 0.0020969459344891
1028 => 0.0020921096964955
1029 => 0.0020051888689117
1030 => 0.0019961051588062
1031 => 0.0019963837432266
1101 => 0.0019735423222596
1102 => 0.0019387036727158
1103 => 0.0020302575636093
1104 => 0.0020229045048746
1105 => 0.0020147872971132
1106 => 0.0020157816087478
1107 => 0.0020555220497354
1108 => 0.0020324705870222
1109 => 0.0020937566787056
1110 => 0.0020811581006841
1111 => 0.002068236416675
1112 => 0.0020664502463409
1113 => 0.0020614765004237
1114 => 0.0020444196750242
1115 => 0.0020238225333981
1116 => 0.0020102225164027
1117 => 0.0018543240114213
1118 => 0.001883257867126
1119 => 0.0019165436307103
1120 => 0.0019280337429152
1121 => 0.0019083791108971
1122 => 0.0020451957596927
1123 => 0.0020701934798257
1124 => 0.0019944737549819
1125 => 0.0019803096860797
1126 => 0.0020461243536919
1127 => 0.0020064300636058
1128 => 0.0020243044000011
1129 => 0.0019856698614538
1130 => 0.0020641722610644
1201 => 0.0020635742043068
1202 => 0.0020330349978012
1203 => 0.0020588465260163
1204 => 0.0020543611377984
1205 => 0.0020198824488683
1206 => 0.002065265297002
1207 => 0.0020652878063284
1208 => 0.0020358944840464
1209 => 0.0020015695186466
1210 => 0.0019954330255526
1211 => 0.0019908100023281
1212 => 0.0020231674196843
1213 => 0.0020521789789068
1214 => 0.0021061622980445
1215 => 0.0021197349870877
1216 => 0.0021727100960085
1217 => 0.0021411659979574
1218 => 0.002155149088059
1219 => 0.0021703297103932
1220 => 0.0021776078589891
1221 => 0.002165748506419
1222 => 0.0022480406559978
1223 => 0.0022549886347886
1224 => 0.0022573182319773
1225 => 0.0022295697821509
1226 => 0.0022542169002023
1227 => 0.0022426853298928
1228 => 0.0022726872722756
1229 => 0.0022773919599253
1230 => 0.0022734072568601
1231 => 0.0022749005989786
]
'min_raw' => 0.0010201405706013
'max_raw' => 0.0022773919599253
'avg_raw' => 0.0016487662652633
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.00102'
'max' => '$0.002277'
'avg' => '$0.001648'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.00015730360613644
'max_diff' => -0.00021732345202673
'year' => 2031
]
6 => [
'items' => [
101 => 0.0022046787666431
102 => 0.0022010373941868
103 => 0.0021513870223655
104 => 0.0021716199158797
105 => 0.0021337954912428
106 => 0.0021457900059299
107 => 0.002151077073716
108 => 0.002148315409543
109 => 0.0021727638533218
110 => 0.0021519776816228
111 => 0.0020971195569459
112 => 0.0020422464862096
113 => 0.0020415575995052
114 => 0.0020271104885705
115 => 0.002016667873485
116 => 0.0020186794916222
117 => 0.0020257686963169
118 => 0.0020162558360207
119 => 0.0020182858870792
120 => 0.0020519982608088
121 => 0.0020587590369347
122 => 0.0020357832780533
123 => 0.0019435322907585
124 => 0.0019208936670823
125 => 0.0019371658608373
126 => 0.0019293888002859
127 => 0.0015571673444526
128 => 0.0016446152542617
129 => 0.0015926566757035
130 => 0.0016166015792024
131 => 0.0015635653251032
201 => 0.0015888770054276
202 => 0.0015842028623062
203 => 0.0017248165135076
204 => 0.0017226210247518
205 => 0.0017236718890365
206 => 0.0016735113987154
207 => 0.0017534184218026
208 => 0.001792783494739
209 => 0.001785498067406
210 => 0.0017873316525074
211 => 0.001755824585508
212 => 0.0017239769463161
213 => 0.0016886530131357
214 => 0.0017542805148147
215 => 0.0017469838569269
216 => 0.001763719764867
217 => 0.0018062838908566
218 => 0.0018125516200939
219 => 0.00182097551175
220 => 0.0018179561462447
221 => 0.0018898896822317
222 => 0.0018811780563909
223 => 0.0019021705681614
224 => 0.0018589873787438
225 => 0.0018101215009319
226 => 0.0018194093067581
227 => 0.0018185148163692
228 => 0.0018071269270705
229 => 0.0017968464497986
301 => 0.0017797323516475
302 => 0.0018338838906078
303 => 0.0018316854370183
304 => 0.001867275845209
305 => 0.0018609848948545
306 => 0.0018189723887306
307 => 0.0018204728736058
308 => 0.0018305643555003
309 => 0.0018654910895594
310 => 0.0018758597222216
311 => 0.0018710565584539
312 => 0.0018824252908219
313 => 0.001891410673345
314 => 0.0018835537165254
315 => 0.0019947916562352
316 => 0.0019485979081856
317 => 0.0019711124195709
318 => 0.0019764819978731
319 => 0.0019627279359621
320 => 0.0019657106994946
321 => 0.0019702287734919
322 => 0.0019976616340737
323 => 0.0020696533980027
324 => 0.0021015380601824
325 => 0.0021974646395113
326 => 0.0020988904828443
327 => 0.0020930415003281
328 => 0.0021103207739704
329 => 0.0021666398308961
330 => 0.0022122811367544
331 => 0.0022274229910177
401 => 0.0022294242370234
402 => 0.0022578313622328
403 => 0.0022741137966413
404 => 0.0022543819900508
405 => 0.0022376613499716
406 => 0.0021777700926503
407 => 0.0021847026687637
408 => 0.0022324612434803
409 => 0.0022999230432334
410 => 0.0023578122856256
411 => 0.0023375414905837
412 => 0.0024921933478027
413 => 0.0025075264477497
414 => 0.0025054079091155
415 => 0.0025403389926662
416 => 0.0024710079054096
417 => 0.0024413675223809
418 => 0.0022412765421441
419 => 0.0022974939459856
420 => 0.0023792092440016
421 => 0.0023683939178925
422 => 0.0023090500842171
423 => 0.0023577672680063
424 => 0.0023416598435184
425 => 0.0023289552495272
426 => 0.0023871574575078
427 => 0.0023231617390182
428 => 0.0023785708377555
429 => 0.0023075080954911
430 => 0.0023376340858679
501 => 0.0023205331166999
502 => 0.0023315995395676
503 => 0.0022669054576072
504 => 0.0023018128138729
505 => 0.0022654531968218
506 => 0.0022654359576291
507 => 0.0022646333170675
508 => 0.002307410245285
509 => 0.0023088051993784
510 => 0.0022771929847933
511 => 0.002272637170796
512 => 0.0022894824029429
513 => 0.0022697610478722
514 => 0.002278988545785
515 => 0.0022700405393838
516 => 0.002268026154669
517 => 0.0022519751945424
518 => 0.0022450599995895
519 => 0.0022477716257132
520 => 0.0022385154478141
521 => 0.0022329382658193
522 => 0.0022635238751931
523 => 0.0022471832179247
524 => 0.0022610194351087
525 => 0.0022452513193577
526 => 0.0021905921603235
527 => 0.0021591570999529
528 => 0.0020559110154442
529 => 0.0020851914769345
530 => 0.0021046044531954
531 => 0.002098188464657
601 => 0.0021119724906955
602 => 0.002112818717945
603 => 0.0021083373905684
604 => 0.0021031485875598
605 => 0.0021006229652141
606 => 0.0021194468849758
607 => 0.0021303748039814
608 => 0.0021065528050753
609 => 0.0021009716440368
610 => 0.0021250570001795
611 => 0.0021397490535129
612 => 0.002248226920575
613 => 0.0022401905298041
614 => 0.002260360293577
615 => 0.0022580894877064
616 => 0.0022792306134356
617 => 0.0023137874190966
618 => 0.002243523770953
619 => 0.0022557191107366
620 => 0.0022527290950532
621 => 0.0022853733022605
622 => 0.0022854752139121
623 => 0.0022659033809923
624 => 0.0022765135891349
625 => 0.0022705912620255
626 => 0.0022812937075626
627 => 0.0022400831989058
628 => 0.0022902731500503
629 => 0.0023187276181802
630 => 0.0023191227084977
701 => 0.0023326099005627
702 => 0.0023463136688262
703 => 0.0023726168586612
704 => 0.0023455800871377
705 => 0.0022969435671437
706 => 0.0023004549667922
707 => 0.0022719393929151
708 => 0.0022724187448638
709 => 0.0022698599265945
710 => 0.0022775391328395
711 => 0.0022417683528374
712 => 0.0022501636834063
713 => 0.0022384101714468
714 => 0.002255693560897
715 => 0.0022370994908953
716 => 0.0022527276531771
717 => 0.0022594722499362
718 => 0.0022843599571779
719 => 0.0022334235563001
720 => 0.0021295607868191
721 => 0.0021513940001784
722 => 0.0021191009626581
723 => 0.0021220898062289
724 => 0.0021281277459127
725 => 0.0021085568079064
726 => 0.0021122903261269
727 => 0.0021121569385837
728 => 0.0021110074767982
729 => 0.0021059163199572
730 => 0.0020985331352832
731 => 0.0021279454706002
801 => 0.0021329431995075
802 => 0.0021440525317809
803 => 0.0021771063690943
804 => 0.0021738035112835
805 => 0.0021791906094072
806 => 0.0021674306044506
807 => 0.0021226353191303
808 => 0.0021250679186398
809 => 0.0020947333637765
810 => 0.0021432768090116
811 => 0.0021317810804378
812 => 0.0021243697094421
813 => 0.0021223474482
814 => 0.0021554832195828
815 => 0.0021653979617202
816 => 0.0021592197597738
817 => 0.0021465480873348
818 => 0.0021708814444613
819 => 0.0021773920242864
820 => 0.0021788495030083
821 => 0.0022219635463781
822 => 0.0021812590990954
823 => 0.0021910570641238
824 => 0.0022674979903224
825 => 0.002198176618387
826 => 0.0022348976951523
827 => 0.0022331003895319
828 => 0.0022518856498315
829 => 0.0022315594498866
830 => 0.0022318114174957
831 => 0.002248491456018
901 => 0.0022250673501742
902 => 0.0022192672121533
903 => 0.0022112543630189
904 => 0.0022287501259597
905 => 0.0022392380445775
906 => 0.002323762966109
907 => 0.0023783699202231
908 => 0.0023759992883294
909 => 0.0023976624262007
910 => 0.0023879029841781
911 => 0.0023563871714762
912 => 0.0024101808208144
913 => 0.0023931582593419
914 => 0.0023945615786273
915 => 0.0023945093470134
916 => 0.0024058278622544
917 => 0.0023978076568795
918 => 0.0023819990088282
919 => 0.0023924935271633
920 => 0.0024236584947597
921 => 0.0025203955104369
922 => 0.0025745308260048
923 => 0.0025171364964654
924 => 0.002556726336441
925 => 0.002532986539758
926 => 0.0025286723125029
927 => 0.0025535376576738
928 => 0.0025784465263398
929 => 0.0025768599390897
930 => 0.0025587773795228
1001 => 0.0025485630004514
1002 => 0.002625909700848
1003 => 0.0026828974321336
1004 => 0.0026790112509106
1005 => 0.0026961635909754
1006 => 0.0027465233919076
1007 => 0.0027511276609753
1008 => 0.0027505476289007
1009 => 0.0027391354676107
1010 => 0.002788721231675
1011 => 0.002830086548436
1012 => 0.0027364938820011
1013 => 0.0027721327441615
1014 => 0.0027881321775978
1015 => 0.0028116240927002
1016 => 0.0028512588911801
1017 => 0.0028943127949403
1018 => 0.002900401088994
1019 => 0.0028960811530112
1020 => 0.0028676859461303
1021 => 0.0029147960413646
1022 => 0.0029423920302852
1023 => 0.0029588248101645
1024 => 0.0030004956057844
1025 => 0.0027882309846518
1026 => 0.002637979535578
1027 => 0.0026145156021479
1028 => 0.0026622304334516
1029 => 0.0026748124539478
1030 => 0.0026697406572623
1031 => 0.0025006189910656
1101 => 0.0026136252115759
1102 => 0.0027352104030121
1103 => 0.0027398809853864
1104 => 0.0028007490744459
1105 => 0.0028205702193109
1106 => 0.0028695770091665
1107 => 0.002866511621118
1108 => 0.0028784439945795
1109 => 0.0028757009485606
1110 => 0.0029664757071711
1111 => 0.0030666137461005
1112 => 0.0030631462842319
1113 => 0.0030487502563563
1114 => 0.0030701308126391
1115 => 0.0031734840002587
1116 => 0.0031639688949438
1117 => 0.0031732120092625
1118 => 0.0032950712421964
1119 => 0.0034535055792843
1120 => 0.0033798969231596
1121 => 0.00353960652663
1122 => 0.0036401352561723
1123 => 0.003813989299051
1124 => 0.0037922219166334
1125 => 0.0038599020197262
1126 => 0.003753253759116
1127 => 0.0035083677955855
1128 => 0.003469613654471
1129 => 0.0035472004263934
1130 => 0.0037379399343582
1201 => 0.0035411933605033
1202 => 0.0035809949361509
1203 => 0.0035695320796868
1204 => 0.0035689212727798
1205 => 0.0035922332880875
1206 => 0.0035584179940107
1207 => 0.0034206484026865
1208 => 0.0034837873945091
1209 => 0.003459406397583
1210 => 0.0034864589313963
1211 => 0.0036324502990728
1212 => 0.0035679040354235
1213 => 0.0034999097899816
1214 => 0.0035851896628967
1215 => 0.0036937802464613
1216 => 0.0036869848428978
1217 => 0.0036737989197264
1218 => 0.0037481272782511
1219 => 0.0038708959503682
1220 => 0.003904079829117
1221 => 0.0039285754899948
1222 => 0.0039319530277723
1223 => 0.0039667437660083
1224 => 0.0037796651981186
1225 => 0.0040765636898779
1226 => 0.0041278298577494
1227 => 0.0041181939429545
1228 => 0.0041751741309336
1229 => 0.0041584091141823
1230 => 0.0041341192352602
1231 => 0.0042244449532406
]
'min_raw' => 0.0015571673444526
'max_raw' => 0.0042244449532406
'avg_raw' => 0.0028908061488466
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.001557'
'max' => '$0.004224'
'avg' => '$0.00289'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.00053702677385128
'max_diff' => 0.0019470529933153
'year' => 2032
]
7 => [
'items' => [
101 => 0.0041208938064857
102 => 0.0039739159903939
103 => 0.0038932810535944
104 => 0.0039994676430068
105 => 0.0040643120877597
106 => 0.0041071701408601
107 => 0.0041201389618327
108 => 0.0037941875747995
109 => 0.0036185178552813
110 => 0.003731120131435
111 => 0.0038685026797366
112 => 0.0037789020311262
113 => 0.0037824142069152
114 => 0.003654667228633
115 => 0.0038798054527105
116 => 0.0038470047071729
117 => 0.0040171750330453
118 => 0.0039765625190737
119 => 0.0041153298138487
120 => 0.0040787877345359
121 => 0.0042304718627229
122 => 0.0042909827681406
123 => 0.0043925899961072
124 => 0.0044673326866152
125 => 0.0045112230240814
126 => 0.0045085880128484
127 => 0.0046825033959687
128 => 0.0045799515706833
129 => 0.0044511223085155
130 => 0.004448792193614
131 => 0.0045155146940155
201 => 0.0046553467504329
202 => 0.0046916031681883
203 => 0.0047118655595221
204 => 0.0046808330018555
205 => 0.0045695203454638
206 => 0.0045214561048018
207 => 0.0045624082304009
208 => 0.0045123272998495
209 => 0.0045987810362086
210 => 0.0047175004817512
211 => 0.0046929853857142
212 => 0.0047749356762573
213 => 0.0048597456055473
214 => 0.0049810276134844
215 => 0.0050127352214189
216 => 0.0050651466916023
217 => 0.005119095310692
218 => 0.0051364221531876
219 => 0.0051695044717152
220 => 0.0051693301115666
221 => 0.0052690259051463
222 => 0.0053789934527863
223 => 0.0054205036562658
224 => 0.005515954080281
225 => 0.0053524985741368
226 => 0.0054764814531887
227 => 0.0055883171135863
228 => 0.0054549820288172
301 => 0.0056387533800811
302 => 0.0056458888052158
303 => 0.0057536252531835
304 => 0.0056444137233623
305 => 0.00557956426557
306 => 0.0057667822203389
307 => 0.0058573710913412
308 => 0.0058300849861586
309 => 0.0056224363784379
310 => 0.0055015759822767
311 => 0.0051852610132935
312 => 0.0055599497578439
313 => 0.0057424497154938
314 => 0.0056219637476363
315 => 0.0056827298615735
316 => 0.0060142500757357
317 => 0.0061404715089444
318 => 0.0061142183331914
319 => 0.0061186546877296
320 => 0.006186761482008
321 => 0.0064887845149349
322 => 0.006307805312766
323 => 0.0064461571316628
324 => 0.0065195384375411
325 => 0.0065876990840254
326 => 0.0064203180786534
327 => 0.0062025578499798
328 => 0.0061335840446063
329 => 0.0056099837926518
330 => 0.0055827281256569
331 => 0.0055674286938415
401 => 0.0054709679403926
402 => 0.0053951762110059
403 => 0.0053349038138311
404 => 0.0051767310447829
405 => 0.0052301097111264
406 => 0.0049780153304862
407 => 0.0051392963815435
408 => 0.0047369476630101
409 => 0.0050720356316614
410 => 0.0048896624849049
411 => 0.0050121211480419
412 => 0.0050116939013025
413 => 0.0047862086769128
414 => 0.0046561535052415
415 => 0.0047390297224535
416 => 0.004827879606027
417 => 0.00484229520071
418 => 0.0049574913939823
419 => 0.0049896401753908
420 => 0.0048922278668401
421 => 0.004728609880124
422 => 0.0047666146067092
423 => 0.0046553833406702
424 => 0.0044604548253858
425 => 0.0046004558881885
426 => 0.0046482584064415
427 => 0.0046693707217514
428 => 0.0044776809146604
429 => 0.0044174478154843
430 => 0.0043853802188875
501 => 0.004703865133166
502 => 0.0047213124557093
503 => 0.0046320494867753
504 => 0.0050355265706187
505 => 0.0049442072801468
506 => 0.0050462333013732
507 => 0.0047631660761183
508 => 0.0047739796253236
509 => 0.0046399710645343
510 => 0.004715006904121
511 => 0.0046619739912192
512 => 0.0047089447498011
513 => 0.0047370988288273
514 => 0.0048710854001304
515 => 0.0050735655430801
516 => 0.0048510722744361
517 => 0.0047541287711256
518 => 0.0048142719753485
519 => 0.0049744412537728
520 => 0.0052171059095
521 => 0.0050734435492282
522 => 0.0051371984651717
523 => 0.0051511260780466
524 => 0.0050451947722518
525 => 0.0052210117478435
526 => 0.0053152334933977
527 => 0.0054118855078932
528 => 0.0054958057439517
529 => 0.0053732805678804
530 => 0.0055044000695708
531 => 0.0053987408969161
601 => 0.0053039536962004
602 => 0.0053040974492574
603 => 0.0052446360536284
604 => 0.0051294221069791
605 => 0.0051081748875179
606 => 0.0052187056063831
607 => 0.0053073407756149
608 => 0.0053146411926867
609 => 0.0053637141766129
610 => 0.0053927550630084
611 => 0.0056773952288557
612 => 0.0057918798582264
613 => 0.0059318694959378
614 => 0.00598640334921
615 => 0.0061505306960911
616 => 0.0060179845337133
617 => 0.0059893073377284
618 => 0.005591188079841
619 => 0.005656380086017
620 => 0.0057607587779977
621 => 0.0055929092460267
622 => 0.0056993711404257
623 => 0.0057203889735513
624 => 0.0055872057831587
625 => 0.0056583446796534
626 => 0.0054694208617764
627 => 0.0050776835660406
628 => 0.0052214478634377
629 => 0.0053273067768613
630 => 0.005176233055096
701 => 0.0054470268539998
702 => 0.0052888347069988
703 => 0.0052386953909617
704 => 0.0050430840431442
705 => 0.0051354050695428
706 => 0.0052602705796567
707 => 0.0051831182115799
708 => 0.0053432209598256
709 => 0.0055699691491848
710 => 0.0057315634120102
711 => 0.005743968612986
712 => 0.005640074327964
713 => 0.0058065655827562
714 => 0.0058077782897848
715 => 0.0056199754742424
716 => 0.0055049472954131
717 => 0.0054788126511618
718 => 0.0055441021165005
719 => 0.0056233755805219
720 => 0.0057483677385239
721 => 0.0058238978818261
722 => 0.0060208404374654
723 => 0.0060741274462359
724 => 0.006132673713263
725 => 0.0062109095810113
726 => 0.0063048517995079
727 => 0.0060993115735708
728 => 0.0061074780699222
729 => 0.0059160818574277
730 => 0.005711547555384
731 => 0.0058667635950745
801 => 0.0060696879194453
802 => 0.0060231368552232
803 => 0.0060178989095463
804 => 0.0060267076812899
805 => 0.005991609699082
806 => 0.0058328628263478
807 => 0.0057531411406687
808 => 0.0058560024543659
809 => 0.0059106686647656
810 => 0.0059954511897009
811 => 0.0059849999539607
812 => 0.0062033906332157
813 => 0.0062882506473829
814 => 0.0062665398243942
815 => 0.0062705351383242
816 => 0.0064241701405313
817 => 0.0065950438604336
818 => 0.0067550896478954
819 => 0.0069178950970281
820 => 0.0067216267736938
821 => 0.006621973823252
822 => 0.0067247902309174
823 => 0.0066702343977644
824 => 0.0069837283973728
825 => 0.0070054340417274
826 => 0.0073189053721513
827 => 0.0076164269921954
828 => 0.0074295589932992
829 => 0.0076057670995387
830 => 0.0077963505328945
831 => 0.0081640168968855
901 => 0.008040199800152
902 => 0.0079453578445154
903 => 0.0078557326547118
904 => 0.0080422284470948
905 => 0.0082821523046526
906 => 0.0083338296056084
907 => 0.0084175665754052
908 => 0.0083295273905334
909 => 0.0084355608915133
910 => 0.0088099057434538
911 => 0.0087087544600261
912 => 0.0085651033766785
913 => 0.0088606126848237
914 => 0.0089675563546781
915 => 0.0097181430365511
916 => 0.010665789727605
917 => 0.010273457774925
918 => 0.010029924671424
919 => 0.010087160727429
920 => 0.010433209219137
921 => 0.010544349011643
922 => 0.010242232743427
923 => 0.010348945316828
924 => 0.010936942088018
925 => 0.011252383490567
926 => 0.010823971696474
927 => 0.0096420005476279
928 => 0.0085521691683436
929 => 0.0088412415258764
930 => 0.0088084696914918
1001 => 0.0094401988680447
1002 => 0.0087063420353693
1003 => 0.0087186983023508
1004 => 0.009363490969262
1005 => 0.0091914713402749
1006 => 0.0089128215719253
1007 => 0.0085542036200248
1008 => 0.0078912651677912
1009 => 0.0073040820932414
1010 => 0.0084556833226195
1011 => 0.0084060241835577
1012 => 0.0083341103911242
1013 => 0.0084941467542999
1014 => 0.0092712379067665
1015 => 0.0092533234405035
1016 => 0.0091393607461796
1017 => 0.0092258004454032
1018 => 0.0088976682747216
1019 => 0.0089822354065369
1020 => 0.008551996533485
1021 => 0.0087464824724669
1022 => 0.0089122237146704
1023 => 0.0089454987228838
1024 => 0.0090204690154525
1025 => 0.0083798560738009
1026 => 0.0086674724771947
1027 => 0.008836420168176
1028 => 0.0080731083539528
1029 => 0.0088213319478434
1030 => 0.0083687044277219
1031 => 0.0082150758491555
1101 => 0.008421916491169
1102 => 0.0083413104918172
1103 => 0.0082720101869177
1104 => 0.0082333394260533
1105 => 0.0083852203653794
1106 => 0.0083781349380229
1107 => 0.0081296282424653
1108 => 0.0078054613885393
1109 => 0.0079142624251311
1110 => 0.0078747339885221
1111 => 0.0077314778349814
1112 => 0.0078280151856539
1113 => 0.0074029135497273
1114 => 0.0066715482799759
1115 => 0.0071547105794978
1116 => 0.0071361093565456
1117 => 0.0071267297764348
1118 => 0.0074898128909004
1119 => 0.0074549108271972
1120 => 0.0073915632398139
1121 => 0.0077303144068613
1122 => 0.0076066656740429
1123 => 0.007987721933284
1124 => 0.0082387102307938
1125 => 0.0081750514799245
1126 => 0.0084111071868642
1127 => 0.007916768981267
1128 => 0.00808096830376
1129 => 0.0081148095565553
1130 => 0.007726134270043
1201 => 0.0074606212364601
1202 => 0.0074429145441904
1203 => 0.0069825515339076
1204 => 0.0072284737380803
1205 => 0.0074448751007999
1206 => 0.0073412356414814
1207 => 0.0073084264848019
1208 => 0.0074760413508395
1209 => 0.0074890664614549
1210 => 0.0071920925590851
1211 => 0.0072538428373282
1212 => 0.0075113517627314
1213 => 0.0072473542731078
1214 => 0.0067344502745144
1215 => 0.0066072429914107
1216 => 0.0065902711949493
1217 => 0.006245274954235
1218 => 0.006615743590333
1219 => 0.006454024102734
1220 => 0.0069648940263621
1221 => 0.0066730878658361
1222 => 0.0066605086854814
1223 => 0.0066414934094107
1224 => 0.0063445408934128
1225 => 0.0064095546220994
1226 => 0.0066256701581243
1227 => 0.0067027826160938
1228 => 0.0066947391549638
1229 => 0.0066246110740964
1230 => 0.0066567153504036
1231 => 0.0065532962905467
]
'min_raw' => 0.0036185178552813
'max_raw' => 0.011252383490567
'avg_raw' => 0.0074354506729242
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.003618'
'max' => '$0.011252'
'avg' => '$0.007435'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.0020613505108287
'max_diff' => 0.0070279385373265
'year' => 2033
]
8 => [
'items' => [
101 => 0.0065167768680296
102 => 0.0064015115251071
103 => 0.0062321033138749
104 => 0.0062556605646877
105 => 0.0059200185701668
106 => 0.0057371429976829
107 => 0.0056865254494806
108 => 0.0056188375485716
109 => 0.0056941709779989
110 => 0.0059190677385675
111 => 0.0056477945308124
112 => 0.0051827156437194
113 => 0.0052106676772896
114 => 0.0052734675976885
115 => 0.0051564403614882
116 => 0.0050456839037761
117 => 0.0051419776578013
118 => 0.0049449176023134
119 => 0.0052972813639286
120 => 0.005287750911665
121 => 0.0054190903319663
122 => 0.0055012195668369
123 => 0.0053119382701157
124 => 0.0052643345358613
125 => 0.0052914517863617
126 => 0.0048432640400125
127 => 0.0053824638312917
128 => 0.0053871268534775
129 => 0.0053471992265203
130 => 0.0056343064694506
131 => 0.0062401923030284
201 => 0.0060122336807353
202 => 0.0059239612120975
203 => 0.0057561551846904
204 => 0.0059797467528744
205 => 0.0059625784090097
206 => 0.0058849366471524
207 => 0.005837978667324
208 => 0.005924500184968
209 => 0.0058272576937967
210 => 0.0058097902703374
211 => 0.0057039566889181
212 => 0.0056661789154725
213 => 0.0056382097559899
214 => 0.0056074184595925
215 => 0.0056753363867323
216 => 0.005521425428486
217 => 0.0053358239009182
218 => 0.0053203931421373
219 => 0.0053629988238175
220 => 0.005344148981294
221 => 0.0053203028963433
222 => 0.0052747742260777
223 => 0.005261266842176
224 => 0.0053051592870054
225 => 0.0052556072758816
226 => 0.0053287239675326
227 => 0.0053088402731346
228 => 0.0051977715725652
301 => 0.0050593388487561
302 => 0.0050581065071417
303 => 0.0050282814038722
304 => 0.0049902946506242
305 => 0.0049797276048898
306 => 0.0051338680664224
307 => 0.0054529342087592
308 => 0.0053902938904128
309 => 0.0054355579400561
310 => 0.0056582122648246
311 => 0.0057289873792194
312 => 0.0056787528794225
313 => 0.0056099887977714
314 => 0.0056130140683804
315 => 0.0058480017516853
316 => 0.0058626576452512
317 => 0.005899688360122
318 => 0.0059472832936096
319 => 0.0056868585024017
320 => 0.0056007480841341
321 => 0.0055599441907348
322 => 0.005434283992159
323 => 0.0055697977430318
324 => 0.0054908396836756
325 => 0.0055014938234742
326 => 0.0054945553009535
327 => 0.0054983442034306
328 => 0.0052971828710761
329 => 0.0053704754878577
330 => 0.0052486122971214
331 => 0.0050854511645107
401 => 0.0050849041911825
402 => 0.0051248376472388
403 => 0.0051010836649802
404 => 0.0050371623094932
405 => 0.0050462420363398
406 => 0.0049666940750256
407 => 0.0050559005991057
408 => 0.00505845872302
409 => 0.005024109352137
410 => 0.0051615443106104
411 => 0.0052178515252333
412 => 0.0051952420334832
413 => 0.0052162651830198
414 => 0.0053928968784442
415 => 0.0054216955517795
416 => 0.0054344860201415
417 => 0.0054173484869488
418 => 0.0052194936861648
419 => 0.0052282693879231
420 => 0.00516387911119
421 => 0.0051094761126306
422 => 0.0051116519472669
423 => 0.0051396221604211
424 => 0.0052617697216971
425 => 0.0055188220634103
426 => 0.0055285770118755
427 => 0.0055404002939873
428 => 0.0054923090637333
429 => 0.0054778042885176
430 => 0.0054969398310272
501 => 0.0055934751754047
502 => 0.0058417902902338
503 => 0.0057540191442443
504 => 0.0056826598363156
505 => 0.0057452611877003
506 => 0.0057356242003403
507 => 0.0056542783286999
508 => 0.0056519952210138
509 => 0.0054958664854877
510 => 0.0054381492468429
511 => 0.005389916402171
512 => 0.0053372473949395
513 => 0.0053060234419715
514 => 0.0053539976247631
515 => 0.0053649698879814
516 => 0.0052600734988624
517 => 0.0052457765086309
518 => 0.0053314371643314
519 => 0.0052937411035087
520 => 0.0053325124368821
521 => 0.0053415077187991
522 => 0.0053400592712315
523 => 0.0053007002543677
524 => 0.0053257865180139
525 => 0.0052664500259155
526 => 0.0052019305028114
527 => 0.0051607710667793
528 => 0.0051248539998343
529 => 0.0051447828760876
530 => 0.0050737400711138
531 => 0.0050510120479935
601 => 0.0053172878563494
602 => 0.0055139886589293
603 => 0.0055111285513577
604 => 0.0054937183820756
605 => 0.0054678504020464
606 => 0.0055915827715438
607 => 0.0055484768881178
608 => 0.0055798400199273
609 => 0.0055878232532794
610 => 0.0056119860962399
611 => 0.0056206222357318
612 => 0.0055945178240028
613 => 0.0055069082298551
614 => 0.0052885934509092
615 => 0.0051869673319804
616 => 0.0051534290200171
617 => 0.0051546480739586
618 => 0.0051210211241543
619 => 0.0051309257679259
620 => 0.0051175766932564
621 => 0.0050922967753203
622 => 0.0051432219123919
623 => 0.005149090560039
624 => 0.0051372040245364
625 => 0.0051400037339461
626 => 0.0050415882967904
627 => 0.0050490706087303
628 => 0.0050074081450429
629 => 0.00499959693535
630 => 0.0048942778551141
701 => 0.0047076898382315
702 => 0.0048110777121215
703 => 0.0046861996989973
704 => 0.0046389065032165
705 => 0.0048627851364419
706 => 0.0048403139310928
707 => 0.0048018529955332
708 => 0.0047449612558793
709 => 0.0047238595562344
710 => 0.0045956523091783
711 => 0.0045880771410632
712 => 0.004651620114591
713 => 0.0046222972186881
714 => 0.0045811167673914
715 => 0.0044319653471899
716 => 0.0042642697685453
717 => 0.0042693314439678
718 => 0.0043226722874475
719 => 0.0044777679838574
720 => 0.0044171694120873
721 => 0.0043732044529795
722 => 0.0043649711377205
723 => 0.0044680283158007
724 => 0.0046138758139305
725 => 0.0046823041968991
726 => 0.0046144937475781
727 => 0.0045365967545719
728 => 0.0045413379835963
729 => 0.0045728792561874
730 => 0.0045761937979672
731 => 0.0045254908634604
801 => 0.00453976344253
802 => 0.0045180820898114
803 => 0.0043850236681982
804 => 0.004382617063284
805 => 0.0043499623807633
806 => 0.0043489736099543
807 => 0.0042934198488942
808 => 0.0042856474936969
809 => 0.0041753421292397
810 => 0.0042479454541608
811 => 0.0041992469556494
812 => 0.0041258468315782
813 => 0.0041131926225221
814 => 0.0041128122217175
815 => 0.0041881777371712
816 => 0.0042470647642328
817 => 0.0042000940868807
818 => 0.0041893997741359
819 => 0.0043035870556463
820 => 0.0042890556832339
821 => 0.0042764716084421
822 => 0.0046008167701423
823 => 0.004344072265688
824 => 0.0042321170072819
825 => 0.0040935511152775
826 => 0.004138668868424
827 => 0.0041481758419297
828 => 0.0038149498500384
829 => 0.0036797601066288
830 => 0.0036333680812086
831 => 0.0036066688146923
901 => 0.003618836005712
902 => 0.003497149380468
903 => 0.003578924805143
904 => 0.0034735544735961
905 => 0.0034558887946075
906 => 0.0036443040002927
907 => 0.0036705208754582
908 => 0.0035586715410577
909 => 0.0036304969205052
910 => 0.0036044520394701
911 => 0.0034753607454993
912 => 0.0034704304076008
913 => 0.0034056569340647
914 => 0.0033042989905965
915 => 0.0032579756906349
916 => 0.0032338501138175
917 => 0.0032438047970105
918 => 0.0032387714045698
919 => 0.0032059251141764
920 => 0.0032406541154866
921 => 0.0031519358681531
922 => 0.0031166075472134
923 => 0.0031006505642558
924 => 0.0030219080133155
925 => 0.0031472224288328
926 => 0.0031719109473592
927 => 0.0031966481098936
928 => 0.0034119682209782
929 => 0.0034012114367167
930 => 0.003498447527674
1001 => 0.0034946691119851
1002 => 0.0034669358037238
1003 => 0.0033499335380774
1004 => 0.0033965685557992
1005 => 0.0032530332199423
1006 => 0.0033605796530204
1007 => 0.00331149995221
1008 => 0.0033439857568067
1009 => 0.003285573351015
1010 => 0.0033179011881692
1011 => 0.0031777655109854
1012 => 0.0030469087873933
1013 => 0.0030995693529127
1014 => 0.0031568174100984
1015 => 0.0032809457846106
1016 => 0.003207015948788
1017 => 0.0032336039133464
1018 => 0.0031445386828472
1019 => 0.0029607716721021
1020 => 0.0029618117734259
1021 => 0.0029335432224047
1022 => 0.0029091150670463
1023 => 0.0032155076797641
1024 => 0.0031774029150223
1025 => 0.0031166879594344
1026 => 0.0031979573402052
1027 => 0.0032194462543995
1028 => 0.0032200580135768
1029 => 0.0032793500559208
1030 => 0.0033109942295485
1031 => 0.0033165716523041
1101 => 0.0034098689620219
1102 => 0.003441140989618
1103 => 0.0035699460455034
1104 => 0.0033083094425018
1105 => 0.0033029212088377
1106 => 0.0031991009670553
1107 => 0.0031332565283839
1108 => 0.0032036093921035
1109 => 0.0032659324252356
1110 => 0.0032010375174195
1111 => 0.003209511422374
1112 => 0.0031223953107397
1113 => 0.003153535221455
1114 => 0.0031803571075619
1115 => 0.0031655476385712
1116 => 0.0031433771467058
1117 => 0.0032608226472412
1118 => 0.0032541959118284
1119 => 0.0033635638619874
1120 => 0.0034488240001134
1121 => 0.003601625409708
1122 => 0.0034421691730784
1123 => 0.0034363579540345
1124 => 0.0034931635523377
1125 => 0.0034411322929768
1126 => 0.0034740142528348
1127 => 0.0035963276176218
1128 => 0.0035989119062808
1129 => 0.0035556217415735
1130 => 0.0035529875311169
1201 => 0.0035613018807914
1202 => 0.0036099992865292
1203 => 0.0035929829166443
1204 => 0.0036126746906769
1205 => 0.0036372995556359
1206 => 0.0037391584378324
1207 => 0.0037637162694884
1208 => 0.0037040534703402
1209 => 0.0037094403530873
1210 => 0.0036871248284254
1211 => 0.0036655683112148
1212 => 0.0037140242138278
1213 => 0.0038025783282562
1214 => 0.0038020274377063
1215 => 0.0038225702710077
1216 => 0.0038353682859685
1217 => 0.0037804298370374
1218 => 0.0037446669269261
1219 => 0.0037583807023158
1220 => 0.0037803093278113
1221 => 0.0037512695446143
1222 => 0.0035720225501863
1223 => 0.0036263946379534
1224 => 0.0036173444638897
1225 => 0.0036044559154842
1226 => 0.003659127470181
1227 => 0.0036538542653584
1228 => 0.0034959013082432
1229 => 0.0035060129440806
1230 => 0.0034965162303092
1231 => 0.0035272020553493
]
'min_raw' => 0.0029091150670463
'max_raw' => 0.0065167768680296
'avg_raw' => 0.004712945967538
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.0029091'
'max' => '$0.006516'
'avg' => '$0.004712'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.00070940278823494
'max_diff' => -0.0047356066225375
'year' => 2034
]
9 => [
'items' => [
101 => 0.0034394751577224
102 => 0.0034664593605827
103 => 0.0034833835996556
104 => 0.0034933521064876
105 => 0.003529365188634
106 => 0.0035251394691055
107 => 0.0035291025119749
108 => 0.0035825004056968
109 => 0.0038525686281979
110 => 0.0038672678456767
111 => 0.003794883522825
112 => 0.0038237996320866
113 => 0.0037682870255622
114 => 0.0038055530102242
115 => 0.0038310494504765
116 => 0.0037158359396597
117 => 0.0037090137432786
118 => 0.0036532720164801
119 => 0.0036832244630888
120 => 0.0036355679668772
121 => 0.0036472612040941
122 => 0.0036145658934377
123 => 0.0036734109430478
124 => 0.0037392088521082
125 => 0.003755832002375
126 => 0.0037121036507392
127 => 0.003680441442316
128 => 0.0036248530345048
129 => 0.0037172977955633
130 => 0.0037443314608999
131 => 0.0037171557992279
201 => 0.0037108586046186
202 => 0.0036989254322127
203 => 0.0037133902835562
204 => 0.0037441842297527
205 => 0.0037296623734013
206 => 0.0037392543153636
207 => 0.0037026997237711
208 => 0.00378044802395
209 => 0.0039039310357815
210 => 0.0039043280538561
211 => 0.0038898061192265
212 => 0.0038838640564555
213 => 0.0038987644426501
214 => 0.0039068472909149
215 => 0.0039550324076048
216 => 0.0040067369575927
217 => 0.0042480195319242
218 => 0.0041802683505597
219 => 0.0043943486044711
220 => 0.0045636582904732
221 => 0.0046144268622899
222 => 0.0045677221650644
223 => 0.0044079479187941
224 => 0.0044001086320288
225 => 0.0046388788109035
226 => 0.0045714152990044
227 => 0.0045633907289311
228 => 0.0044780228610765
301 => 0.0045284858439947
302 => 0.0045174488493832
303 => 0.0045000264134406
304 => 0.0045963062695667
305 => 0.0047765335652727
306 => 0.004748443451076
307 => 0.0047274754838911
308 => 0.0046355999553704
309 => 0.0046909295446821
310 => 0.0046712277376967
311 => 0.0047558792035817
312 => 0.004705733550451
313 => 0.0045709041965495
314 => 0.0045923762155617
315 => 0.0045891307630837
316 => 0.0046559219451053
317 => 0.0046358728901215
318 => 0.0045852158633223
319 => 0.0047759175679692
320 => 0.004763534460008
321 => 0.0047810908759243
322 => 0.0047888197531609
323 => 0.0049048965202385
324 => 0.0049524494576679
325 => 0.0049632448069958
326 => 0.0050084164196776
327 => 0.0049621208961219
328 => 0.0051473359984936
329 => 0.00527049323397
330 => 0.0054135467005891
331 => 0.0056225862644667
401 => 0.0057011870742087
402 => 0.0056869885414574
403 => 0.0058454799530538
404 => 0.0061302854966264
405 => 0.0057445558847156
406 => 0.0061507301026824
407 => 0.0060221400347809
408 => 0.0057172552970231
409 => 0.0056976243142665
410 => 0.0059040957984606
411 => 0.0063620296782594
412 => 0.0062473224352128
413 => 0.0063622172982162
414 => 0.0062281863375228
415 => 0.0062215305706228
416 => 0.0063557077136181
417 => 0.0066692199218419
418 => 0.0065202820235442
419 => 0.0063067430252634
420 => 0.0064644168985591
421 => 0.0063278251974822
422 => 0.0060200458653462
423 => 0.0062472347207459
424 => 0.0060953200031062
425 => 0.006139656793944
426 => 0.0064589589348138
427 => 0.0064205396564557
428 => 0.0064702577601805
429 => 0.0063825066084555
430 => 0.0063005331956579
501 => 0.0061475237332456
502 => 0.0061022251747006
503 => 0.006114744066611
504 => 0.0061022189709595
505 => 0.0060166115829693
506 => 0.0059981246756836
507 => 0.0059673123536108
508 => 0.0059768623806283
509 => 0.0059189262006686
510 => 0.0060282637424782
511 => 0.0060485577537172
512 => 0.006128124498652
513 => 0.0061363853820636
514 => 0.0063579776341452
515 => 0.0062359283454052
516 => 0.0063178095455206
517 => 0.0063104853202865
518 => 0.0057238630737817
519 => 0.0058046944435382
520 => 0.0059304426885981
521 => 0.0058737932746463
522 => 0.0057937042572399
523 => 0.0057290280815828
524 => 0.0056310370619837
525 => 0.0057689575403185
526 => 0.0059503083031211
527 => 0.0061409847366826
528 => 0.006370069977992
529 => 0.0063189408189779
530 => 0.0061367021474447
531 => 0.0061448772411243
601 => 0.0061954124534704
602 => 0.006129964761874
603 => 0.0061106629599314
604 => 0.0061927606822829
605 => 0.0061933260441766
606 => 0.0061180205653771
607 => 0.0060343323064486
608 => 0.006033981649588
609 => 0.0060190901322443
610 => 0.0062308355053766
611 => 0.0063472740507274
612 => 0.0063606235423018
613 => 0.0063463755235812
614 => 0.0063518590205031
615 => 0.0062841059965117
616 => 0.0064389693178209
617 => 0.0065810872158493
618 => 0.0065429965832716
619 => 0.0064858933101353
620 => 0.0064404078026158
621 => 0.0065322816432503
622 => 0.0065281906457497
623 => 0.006579845939991
624 => 0.0065775025574687
625 => 0.0065601328248693
626 => 0.0065429972035995
627 => 0.0066109380050114
628 => 0.0065913721453007
629 => 0.0065717758944055
630 => 0.0065324726131995
701 => 0.0065378145818738
702 => 0.0064807211684226
703 => 0.0064543071429432
704 => 0.0060571035758425
705 => 0.0059509578037122
706 => 0.0059843534244208
707 => 0.005995348129875
708 => 0.0059491533538144
709 => 0.006015384796221
710 => 0.0060050626960784
711 => 0.0060452199495067
712 => 0.00602013144099
713 => 0.0060211610821307
714 => 0.0060949410362444
715 => 0.006116359670806
716 => 0.0061054659803984
717 => 0.006113095547746
718 => 0.0062889157070329
719 => 0.0062639197027945
720 => 0.0062506410737317
721 => 0.0062543193447299
722 => 0.0062992451650544
723 => 0.0063118219418864
724 => 0.0062585332546947
725 => 0.0062836645076325
726 => 0.006390670193011
727 => 0.0064281161268961
728 => 0.0065476255727896
729 => 0.0064968558360631
730 => 0.0065900458850874
731 => 0.0068764803249595
801 => 0.0071053039752849
802 => 0.0068948682899084
803 => 0.0073150737832149
804 => 0.007642264034652
805 => 0.007629705927838
806 => 0.007572652739453
807 => 0.0072001553369948
808 => 0.0068573776736293
809 => 0.0071441257441429
810 => 0.0071448567239449
811 => 0.0071202248103835
812 => 0.0069672381107467
813 => 0.0071149012048541
814 => 0.0071266221650307
815 => 0.0071200615441867
816 => 0.0070027670002714
817 => 0.0068236799113681
818 => 0.0068586730998659
819 => 0.006915992656467
820 => 0.0068074747777089
821 => 0.0067727967401156
822 => 0.0068372698097682
823 => 0.0070450154736864
824 => 0.0070057423593114
825 => 0.0070047167795799
826 => 0.0071727438172687
827 => 0.0070524727207878
828 => 0.0068591144760365
829 => 0.0068102889691549
830 => 0.0066369913125277
831 => 0.0067566886212252
901 => 0.0067609963142722
902 => 0.0066954393215754
903 => 0.0068644340646887
904 => 0.0068628767483799
905 => 0.0070233121054179
906 => 0.0073300042513062
907 => 0.0072393002923631
908 => 0.007133821456675
909 => 0.0071452899307252
910 => 0.0072710707844496
911 => 0.0071950208089902
912 => 0.0072223689104047
913 => 0.0072710293898227
914 => 0.0073003874652274
915 => 0.0071410657554696
916 => 0.0071039202436867
917 => 0.007027933562882
918 => 0.0070081100562186
919 => 0.0070699996222199
920 => 0.0070536939081692
921 => 0.0067606342693518
922 => 0.006730007906527
923 => 0.0067309471733504
924 => 0.0066539357278231
925 => 0.0065364747885293
926 => 0.0068451551237652
927 => 0.0068203637728672
928 => 0.0067929960401741
929 => 0.0067963484312708
930 => 0.0069303361026495
1001 => 0.0068526164867103
1002 => 0.0070592468236792
1003 => 0.0070167698382749
1004 => 0.0069732034784753
1005 => 0.0069671812804872
1006 => 0.0069504119488715
1007 => 0.0068929036711678
1008 => 0.0068234589701289
1009 => 0.006777605563306
1010 => 0.0062519828692752
1011 => 0.0063495353838808
1012 => 0.006461760659743
1013 => 0.006500500375256
1014 => 0.0064342334111642
1015 => 0.0068955202948121
1016 => 0.0069798018535255
1017 => 0.0067245075146324
1018 => 0.0066767523674246
1019 => 0.0068986511143126
1020 => 0.0067648190439206
1021 => 0.0068250836170235
1022 => 0.0066948245729341
1023 => 0.0069595008940836
1024 => 0.0069574845039705
1025 => 0.0068545194370576
1026 => 0.0069415448065381
1027 => 0.0069264220070017
1028 => 0.0068101747000487
1029 => 0.0069631861410606
1030 => 0.0069632620328263
1031 => 0.0068641603945762
1101 => 0.0067484313772382
1102 => 0.0067277417623355
1103 => 0.0067121549167651
1104 => 0.0068212502085041
1105 => 0.0069190647059453
1106 => 0.0071010732354129
1107 => 0.007146834504137
1108 => 0.0073254437824675
1109 => 0.0072190906535496
1110 => 0.0072662356180953
1111 => 0.0073174181461721
1112 => 0.0073419569323072
1113 => 0.0073019722971239
1114 => 0.0075794260248831
1115 => 0.0076028516204685
1116 => 0.0076107060200377
1117 => 0.0075171501841131
1118 => 0.0076002496634302
1119 => 0.0075613701690232
1120 => 0.0076625238124355
1121 => 0.0076783859953171
1122 => 0.00766495129073
1123 => 0.0076699861979441
1124 => 0.0074332283874932
1125 => 0.0074209512460243
1126 => 0.0072535515509507
1127 => 0.0073217681640493
1128 => 0.0071942404755688
1129 => 0.0072346808192667
1130 => 0.007252506537439
1201 => 0.0072431953938664
1202 => 0.0073256250290025
1203 => 0.0072555429998749
1204 => 0.0070705850024549
1205 => 0.0068855766133522
1206 => 0.0068832539837316
1207 => 0.0068345445405501
1208 => 0.0067993365347095
1209 => 0.0068061188457055
1210 => 0.0068300205942862
1211 => 0.006797947321631
1212 => 0.0068047917805082
1213 => 0.0069184554022605
1214 => 0.0069412498309911
1215 => 0.0068637854558064
1216 => 0.0065527548113837
1217 => 0.006476427111081
1218 => 0.0065312899484145
1219 => 0.0065050690457883
1220 => 0.005250098419774
1221 => 0.0055449351531136
1222 => 0.0053697531778726
1223 => 0.0054504850917988
1224 => 0.0052716696582303
1225 => 0.0053570097556491
1226 => 0.0053412505557772
1227 => 0.0058153392981342
1228 => 0.00580793705451
1229 => 0.0058114801168149
1230 => 0.0056423605216037
1231 => 0.0059117726288725
]
'min_raw' => 0.0034394751577224
'max_raw' => 0.0076783859953171
'avg_raw' => 0.0055589305765198
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.003439'
'max' => '$0.007678'
'avg' => '$0.005558'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.00053036009067606
'max_diff' => 0.0011616091272876
'year' => 2035
]
10 => [
'items' => [
101 => 0.0060444947206591
102 => 0.0060199313937535
103 => 0.0060261134539396
104 => 0.0059198851777981
105 => 0.0058125086387314
106 => 0.0056934115317756
107 => 0.0059146792356522
108 => 0.0058900780441468
109 => 0.0059465043262309
110 => 0.006090012248737
111 => 0.0061111443354596
112 => 0.0061395460743153
113 => 0.006129366072709
114 => 0.0063718950115282
115 => 0.0063425231567797
116 => 0.0064133008758642
117 => 0.006267705737789
118 => 0.0061029510190394
119 => 0.0061342655048362
120 => 0.0061312496680387
121 => 0.0060928546041913
122 => 0.0060581932573091
123 => 0.0060004918805242
124 => 0.0061830675748686
125 => 0.0061756553351006
126 => 0.0062956508811586
127 => 0.0062744405028183
128 => 0.0061327924052018
129 => 0.0061378513947192
130 => 0.0061718755304911
131 => 0.0062896334528783
201 => 0.0063245920218136
202 => 0.0063083978198247
203 => 0.0063467282947429
204 => 0.0063770231392589
205 => 0.0063505328607865
206 => 0.0067255793409028
207 => 0.0065698338942092
208 => 0.0066457431412578
209 => 0.0066638470493957
210 => 0.0066174742693847
211 => 0.0066275308648843
212 => 0.006642763866808
213 => 0.0067352556715609
214 => 0.006977980929952
215 => 0.0070854822946067
216 => 0.0074089054541942
217 => 0.0070765558027634
218 => 0.007056835549847
219 => 0.0071150938273325
220 => 0.0073049774598287
221 => 0.0074588603091042
222 => 0.0075099121279234
223 => 0.007516659468554
224 => 0.0076124360745197
225 => 0.0076673334389312
226 => 0.0076008062753806
227 => 0.0075444314699559
228 => 0.0073425039144229
229 => 0.0073658775788063
301 => 0.0075268989478604
302 => 0.0077543511157606
303 => 0.0079495287381837
304 => 0.007881184337438
305 => 0.0084026038714998
306 => 0.0084543004884942
307 => 0.0084471576875773
308 => 0.0085649302745787
309 => 0.0083311756733512
310 => 0.0082312410525443
311 => 0.0075566203427699
312 => 0.0077461612447954
313 => 0.0080216700772362
314 => 0.0079852054501576
315 => 0.0077851235716668
316 => 0.0079493769581371
317 => 0.0078950696518917
318 => 0.0078522352262438
319 => 0.0080484680339989
320 => 0.0078327020010727
321 => 0.0080195176460054
322 => 0.0077799246490189
323 => 0.0078814965289037
324 => 0.007823839417402
325 => 0.0078611506347334
326 => 0.0076430300206075
327 => 0.0077607226094112
328 => 0.0076381336219759
329 => 0.0076380754988343
330 => 0.0076353693401422
331 => 0.0077795947402171
401 => 0.0077842979253356
402 => 0.0076777151367678
403 => 0.0076623548917991
404 => 0.0077191497680787
405 => 0.007652657842557
406 => 0.0076837689960134
407 => 0.0076536001677017
408 => 0.007646808528996
409 => 0.007592691596287
410 => 0.0075693765336998
411 => 0.0075785189704954
412 => 0.0075473111204629
413 => 0.0075285072619811
414 => 0.0076316287794039
415 => 0.007576535112555
416 => 0.0076231848848049
417 => 0.0075700215816556
418 => 0.0073857344107914
419 => 0.007279748910026
420 => 0.0069316475276934
421 => 0.0070303686479045
422 => 0.0070958208527389
423 => 0.0070741888994316
424 => 0.0071206627055903
425 => 0.0071235158198438
426 => 0.0071084067117173
427 => 0.0070909123001033
428 => 0.0070823969880313
429 => 0.0071458631477519
430 => 0.0071827073896424
501 => 0.0071023898571315
502 => 0.0070835725830259
503 => 0.0071647780428469
504 => 0.0072143133264269
505 => 0.0075800540289097
506 => 0.0075529587763428
507 => 0.0076209625431108
508 => 0.0076133063625756
509 => 0.007684585143998
510 => 0.0078010958269631
511 => 0.0075641970315958
512 => 0.0076053144711275
513 => 0.0075952334244947
514 => 0.0077052956482397
515 => 0.0077056392504886
516 => 0.0076396514493376
517 => 0.0076754245068713
518 => 0.0076554569675385
519 => 0.0076915410098877
520 => 0.0075525969027256
521 => 0.0077218158271595
522 => 0.007817752053087
523 => 0.007819084127677
524 => 0.0078645571373697
525 => 0.0079107603488365
526 => 0.0079994433897954
527 => 0.0079082870269569
528 => 0.0077443056041036
529 => 0.0077561445331768
530 => 0.0076600022849564
531 => 0.0076616184535185
601 => 0.0076529912190726
602 => 0.0076788821990726
603 => 0.0075582785168595
604 => 0.0075865839600157
605 => 0.0075469561738406
606 => 0.0076052283280596
607 => 0.0075425371228521
608 => 0.0075952285631088
609 => 0.0076179684419746
610 => 0.0077018790845443
611 => 0.0075301434527189
612 => 0.0071799628739468
613 => 0.0072535750771338
614 => 0.0071446968465064
615 => 0.0071547739412796
616 => 0.0071751312764793
617 => 0.0071091464925916
618 => 0.0071217343099379
619 => 0.0071212845845231
620 => 0.0071174090938604
621 => 0.007100243903118
622 => 0.007075350980512
623 => 0.0071745167225369
624 => 0.0071913669144782
625 => 0.0072288228038667
626 => 0.0073402661241142
627 => 0.007329130308407
628 => 0.007347293285846
629 => 0.0073076436080775
630 => 0.0071566131761133
701 => 0.0071648148551983
702 => 0.0070625397855855
703 => 0.007226207400391
704 => 0.0071874487488981
705 => 0.0071624607941407
706 => 0.0071556425991733
707 => 0.0072673621658562
708 => 0.0073007904111974
709 => 0.0072799601719869
710 => 0.0072372367436509
711 => 0.0073192783561037
712 => 0.0073412292305382
713 => 0.0073461432218071
714 => 0.0074915052291544
715 => 0.0073542673432473
716 => 0.0073873018664124
717 => 0.0076450277860262
718 => 0.0074113059406823
719 => 0.0075351136147801
720 => 0.007529053873397
721 => 0.0075923896900422
722 => 0.0075238584877982
723 => 0.0075247080141839
724 => 0.0075809459286249
725 => 0.0075019699203538
726 => 0.0074824143500638
727 => 0.0074553984697677
728 => 0.0075143866560379
729 => 0.0075497474059007
730 => 0.0078347290801858
731 => 0.0080188402385172
801 => 0.0080108474875754
802 => 0.0080838862693806
803 => 0.0080509816292188
804 => 0.0079447238663307
805 => 0.0081260929108269
806 => 0.0080687001563452
807 => 0.0080734315452925
808 => 0.0080732554427595
809 => 0.0081114166071282
810 => 0.0080843759247537
811 => 0.0080310759641243
812 => 0.0080664589653951
813 => 0.0081715338295149
814 => 0.0084976894318332
815 => 0.0086802104278775
816 => 0.0084867014386912
817 => 0.0086201813482433
818 => 0.0085401409662668
819 => 0.0085255952478666
820 => 0.0086094304951532
821 => 0.0086934124849422
822 => 0.0086880631952567
823 => 0.0086270965831928
824 => 0.0085926580910084
825 => 0.0088534378915699
826 => 0.0090455760063556
827 => 0.0090324734750375
828 => 0.0090903037871042
829 => 0.0092600953719563
830 => 0.0092756189865778
831 => 0.0092736633679417
901 => 0.0092351864693807
902 => 0.0094023683348911
903 => 0.0095418343883849
904 => 0.0092262801790683
905 => 0.0093464390910682
906 => 0.0094003822979432
907 => 0.0094795869298641
908 => 0.0096132184201523
909 => 0.0097583776626075
910 => 0.0097789047710808
911 => 0.0097643398053064
912 => 0.0096686033828174
913 => 0.0098274383580218
914 => 0.009920480161358
915 => 0.0099758844260209
916 => 0.010116380422816
917 => 0.0094007154328244
918 => 0.0088941321820508
919 => 0.0088150218922917
920 => 0.0089758957773754
921 => 0.0090183169379268
922 => 0.0090012170213001
923 => 0.0084310115160203
924 => 0.0088120198783132
925 => 0.0092219528400473
926 => 0.0092377000346121
927 => 0.0094429210465502
928 => 0.0095097494203308
929 => 0.0096749792338739
930 => 0.0096646440640495
1001 => 0.0097048748942667
1002 => 0.0096956265231007
1003 => 0.010001679959447
1004 => 0.010339302349112
1005 => 0.010327611559332
1006 => 0.010279074346251
1007 => 0.010351160384501
1008 => 0.01069962287245
1009 => 0.010667542030557
1010 => 0.010698705835816
1011 => 0.011109562747593
1012 => 0.011643735176617
1013 => 0.0113955584533
1014 => 0.011934030531969
1015 => 0.012272970162312
1016 => 0.01285913120598
1017 => 0.012785740956409
1018 => 0.01301392914926
1019 => 0.012654357092669
1020 => 0.011828706969234
1021 => 0.011698044676739
1022 => 0.01195963389521
1023 => 0.012602725463321
1024 => 0.011939380653162
1025 => 0.012073574444315
1026 => 0.012034926623435
1027 => 0.012032867245303
1028 => 0.012111465332506
1029 => 0.011997454707618
1030 => 0.011532954911703
1031 => 0.011745832430856
1101 => 0.011663630197493
1102 => 0.011754839703992
1103 => 0.012247059792905
1104 => 0.012029437558535
1105 => 0.011800190212821
1106 => 0.012087717258405
1107 => 0.012453837992445
1108 => 0.012430926814891
1109 => 0.012386469554307
1110 => 0.012637072804514
1111 => 0.013050995953991
1112 => 0.013162877718017
1113 => 0.013245466548899
1114 => 0.013256854153328
1115 => 0.013374153556303
1116 => 0.012743405103254
1117 => 0.013744419097011
1118 => 0.01391726656128
1119 => 0.01388477840179
1120 => 0.014076891083792
1121 => 0.014020366659318
1122 => 0.013938471636667
1123 => 0.014243011101179
1124 => 0.013893881180184
1125 => 0.013398335211567
1126 => 0.013126468892396
1127 => 0.013484484392311
1128 => 0.01370311196509
1129 => 0.013847610883372
1130 => 0.013891336168735
1201 => 0.012792368310154
1202 => 0.01220008558593
1203 => 0.012579732021622
1204 => 0.013042926874964
1205 => 0.012740832032456
1206 => 0.012752673578341
1207 => 0.012321965722054
1208 => 0.01308103496318
1209 => 0.012970444959525
1210 => 0.013544186094117
1211 => 0.013407258167786
1212 => 0.013875121790543
1213 => 0.013751917618854
1214 => 0.014263331247284
1215 => 0.014467347989636
1216 => 0.014809923852715
1217 => 0.015061924052131
1218 => 0.015209903389224
1219 => 0.015201019264881
1220 => 0.015787387121456
1221 => 0.015441626482566
1222 => 0.015007269630596
1223 => 0.014999413485522
1224 => 0.015224373054042
1225 => 0.015695826595015
1226 => 0.01581806763882
1227 => 0.015886383705877
1228 => 0.01578175527108
1229 => 0.015406456878454
1230 => 0.015244404935324
1231 => 0.015382477885967
]
'min_raw' => 0.0056934115317756
'max_raw' => 0.015886383705877
'avg_raw' => 0.010789897618826
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.005693'
'max' => '$0.015886'
'avg' => '$0.010789'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.0022539363740532
'max_diff' => 0.0082079977105595
'year' => 2036
]
11 => [
'items' => [
101 => 0.015213626532074
102 => 0.015505111340216
103 => 0.01590538223959
104 => 0.015822727881712
105 => 0.016099029007864
106 => 0.016384971605706
107 => 0.016793882363105
108 => 0.016900786777011
109 => 0.017077495707986
110 => 0.017259387243819
111 => 0.017317805903015
112 => 0.017429345249664
113 => 0.01742875738225
114 => 0.017764888710842
115 => 0.018135651975399
116 => 0.01827560652458
117 => 0.018597424293283
118 => 0.018046322642219
119 => 0.018464339575151
120 => 0.018841401312298
121 => 0.01839185276484
122 => 0.019011450706133
123 => 0.019035508290154
124 => 0.019398749246395
125 => 0.019030534948698
126 => 0.018811890474106
127 => 0.01944310887975
128 => 0.019748535583047
129 => 0.019656538574369
130 => 0.018956436795876
131 => 0.018548947532015
201 => 0.017482469529682
202 => 0.018745758791866
203 => 0.019361070140823
204 => 0.01895484328813
205 => 0.019159720483824
206 => 0.020277464031874
207 => 0.020703028406436
208 => 0.020614513991447
209 => 0.020629471470509
210 => 0.020859098282483
211 => 0.021877390024571
212 => 0.021267206008894
213 => 0.02173366882572
214 => 0.021981079021808
215 => 0.022210887400254
216 => 0.021646550654474
217 => 0.020912356839967
218 => 0.020679806839553
219 => 0.018914452033486
220 => 0.018822557649283
221 => 0.018770974546745
222 => 0.018445750381817
223 => 0.018190213274581
224 => 0.017987000679421
225 => 0.017453710145305
226 => 0.017633680045662
227 => 0.016783726240666
228 => 0.017327496564589
301 => 0.015970949768963
302 => 0.017100722250366
303 => 0.01648583845319
304 => 0.016898716385747
305 => 0.016897275893536
306 => 0.01613703671663
307 => 0.015698546625178
308 => 0.015977969577741
309 => 0.01627753316351
310 => 0.016326136347448
311 => 0.016714528355808
312 => 0.016822920216882
313 => 0.016494487817494
314 => 0.015942838351837
315 => 0.016070973940924
316 => 0.015695949961555
317 => 0.015038734862799
318 => 0.0155107582206
319 => 0.015671927748356
320 => 0.015743109393438
321 => 0.015096813825476
322 => 0.014893733726263
323 => 0.014785615585449
324 => 0.015859409709845
325 => 0.015918234575933
326 => 0.015617278244031
327 => 0.016977629402079
328 => 0.016669740038544
329 => 0.017013727892338
330 => 0.016059346979268
331 => 0.016095805615392
401 => 0.015643986396512
402 => 0.015896974968514
403 => 0.015718170800025
404 => 0.015876535991978
405 => 0.01597145943507
406 => 0.016423204514862
407 => 0.017105880453529
408 => 0.016355728864312
409 => 0.016028877074521
410 => 0.016231654086623
411 => 0.016771675991492
412 => 0.017589836820582
413 => 0.01710546914274
414 => 0.01732042329307
415 => 0.017367381212272
416 => 0.017010226418897
417 => 0.017603005627254
418 => 0.017920680820742
419 => 0.018246549835642
420 => 0.018529492770637
421 => 0.018116390585078
422 => 0.018558469139498
423 => 0.018202231862005
424 => 0.017882650196961
425 => 0.01788313487043
426 => 0.017682656623604
427 => 0.017294204758495
428 => 0.017222568274648
429 => 0.017595230310311
430 => 0.017894069971686
501 => 0.017918683837542
502 => 0.018084136829015
503 => 0.018182050205068
504 => 0.019141734397164
505 => 0.019527727318149
506 => 0.019999712155457
507 => 0.020183576849196
508 => 0.020736943658211
509 => 0.020290055017677
510 => 0.020193367849236
511 => 0.01885108097547
512 => 0.019070880375853
513 => 0.019422800423353
514 => 0.018856884007433
515 => 0.019215827717331
516 => 0.019286690809133
517 => 0.01883765438417
518 => 0.019077504140461
519 => 0.018440534298249
520 => 0.017119764655452
521 => 0.017604476021429
522 => 0.017961386738869
523 => 0.017452031138307
524 => 0.018365031337531
525 => 0.017831675469294
526 => 0.01766262726466
527 => 0.017003109948345
528 => 0.017314376734496
529 => 0.017735369519676
530 => 0.017475244924099
531 => 0.018015042517826
601 => 0.018779539869304
602 => 0.019324366208571
603 => 0.019366191209764
604 => 0.019015904374145
605 => 0.019577241263726
606 => 0.019581329990141
607 => 0.018948139685566
608 => 0.018560314149632
609 => 0.018472199371876
610 => 0.01869232736263
611 => 0.018959603381275
612 => 0.019381023168653
613 => 0.019635678320142
614 => 0.02029968389657
615 => 0.02047934476702
616 => 0.020676737593872
617 => 0.020940515284239
618 => 0.021257248032736
619 => 0.020564254810629
620 => 0.020591788723245
621 => 0.019946483029963
622 => 0.019256881350493
623 => 0.019780203065148
624 => 0.020464376592488
625 => 0.020307426429371
626 => 0.02028976632982
627 => 0.020319465718762
628 => 0.020201130421286
629 => 0.01966590425651
630 => 0.019397117027252
701 => 0.01974392112793
702 => 0.019928232072965
703 => 0.020214082275112
704 => 0.020178845204131
705 => 0.02091516462679
706 => 0.021201276089292
707 => 0.021128076533784
708 => 0.021141547013643
709 => 0.021659538150037
710 => 0.02223565082671
711 => 0.022775256373178
712 => 0.023324166311642
713 => 0.022662433956504
714 => 0.022326447076542
715 => 0.022673099773399
716 => 0.022489160972957
717 => 0.023546127880088
718 => 0.02361930997547
719 => 0.024676200451863
720 => 0.025679315366138
721 => 0.025049276861153
722 => 0.025643374793796
723 => 0.026285940145466
724 => 0.027525552961307
725 => 0.027108094975036
726 => 0.026788328699954
727 => 0.0264861511151
728 => 0.02711493469984
729 => 0.027923854736545
730 => 0.028098088364711
731 => 0.028380413404709
801 => 0.028083583146215
802 => 0.028441082497791
803 => 0.029703212302031
804 => 0.029362173687798
805 => 0.028877844030893
806 => 0.029874174295106
807 => 0.030234742344588
808 => 0.032765397746812
809 => 0.035960454728279
810 => 0.034637680158076
811 => 0.033816591296683
812 => 0.034009566655598
813 => 0.035176293305726
814 => 0.035551008875694
815 => 0.034532402784318
816 => 0.034892191675975
817 => 0.036874663842666
818 => 0.037938196554774
819 => 0.036493776280232
820 => 0.032508678029308
821 => 0.028834235444454
822 => 0.029808863080264
823 => 0.029698370552579
824 => 0.03182828957725
825 => 0.029354040029637
826 => 0.029395700046452
827 => 0.03156966354093
828 => 0.030989687351773
829 => 0.030050200203077
830 => 0.028841094740338
831 => 0.026605951463748
901 => 0.02462622273209
902 => 0.028508926679169
903 => 0.028341497424732
904 => 0.028099035052682
905 => 0.02863860882451
906 => 0.031258625899823
907 => 0.031198226026069
908 => 0.030813992845535
909 => 0.031105430326494
910 => 0.029999109803585
911 => 0.030284233792789
912 => 0.028833653393975
913 => 0.029489376315828
914 => 0.030048184485601
915 => 0.030160373498979
916 => 0.030413141074633
917 => 0.028253269815687
918 => 0.029222988600466
919 => 0.02979260753616
920 => 0.027219048461778
921 => 0.029741736547883
922 => 0.028215671262349
923 => 0.027697701783707
924 => 0.028395079449409
925 => 0.028123310694863
926 => 0.027889659878501
927 => 0.027759278708341
928 => 0.028271355899267
929 => 0.028247466886246
930 => 0.02740960921199
1001 => 0.026316658031372
1002 => 0.026683488322487
1003 => 0.026550215438672
1004 => 0.026067217315184
1005 => 0.026392699732999
1006 => 0.024959439887824
1007 => 0.022493590818565
1008 => 0.024122606244717
1009 => 0.024059890922838
1010 => 0.024028267013634
1011 => 0.025252427083708
1012 => 0.025134752339148
1013 => 0.024921171525498
1014 => 0.02606329473605
1015 => 0.025646404400473
1016 => 0.026931162183003
1017 => 0.027777386751501
1018 => 0.027562756828433
1019 => 0.028358635125263
1020 => 0.026691939351501
1021 => 0.027245548831317
1022 => 0.027359646977837
1023 => 0.026049201112919
1024 => 0.025154005382666
1025 => 0.025094306033437
1026 => 0.02354216000275
1027 => 0.024371303883858
1028 => 0.025100916186928
1029 => 0.024751488513959
1030 => 0.024640870151552
1031 => 0.025205995374894
1101 => 0.025249910444718
1102 => 0.024248642198823
1103 => 0.024456837573186
1104 => 0.025325046893882
1105 => 0.0244349609259
1106 => 0.022705669284829
1107 => 0.022276781048516
1108 => 0.022219559451813
1109 => 0.021056380539377
1110 => 0.022305441411275
1111 => 0.021760192867941
1112 => 0.023482626483252
1113 => 0.022498781639783
1114 => 0.022456370054967
1115 => 0.022392258724091
1116 => 0.021391062583841
1117 => 0.021610260909221
1118 => 0.022338909527634
1119 => 0.022598899563498
1120 => 0.022571780472722
1121 => 0.022335338751891
1122 => 0.02244358056091
1123 => 0.022094895980114
1124 => 0.021971768197393
1125 => 0.021583143046161
1126 => 0.021011971434288
1127 => 0.021091396350118
1128 => 0.019959755931815
1129 => 0.019343178171221
1130 => 0.019172517573452
1201 => 0.018944303089719
1202 => 0.019198295006646
1203 => 0.019956550136693
1204 => 0.019041933577056
1205 => 0.017473887638451
1206 => 0.017568129871182
1207 => 0.017779864187357
1208 => 0.017385298689927
1209 => 0.017011875559982
1210 => 0.017336536674693
1211 => 0.016672134939322
1212 => 0.01786015396286
1213 => 0.017828021377658
1214 => 0.018270841403029
1215 => 0.018547745852476
1216 => 0.017909570745382
1217 => 0.017749071431757
1218 => 0.017840499135084
1219 => 0.016329402856799
1220 => 0.018147352598824
1221 => 0.018163074303685
1222 => 0.018028455521741
1223 => 0.018996457636468
1224 => 0.021039244025974
1225 => 0.02027066561535
1226 => 0.019973048824351
1227 => 0.019407279087105
1228 => 0.020161133669902
1229 => 0.020103249399907
1230 => 0.01984147477903
1231 => 0.019683152671537
]
'min_raw' => 0.014785615585449
'max_raw' => 0.037938196554774
'avg_raw' => 0.026361906070112
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.014785'
'max' => '$0.037938'
'avg' => '$0.026361'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.0090922040536731
'max_diff' => 0.022051812848898
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.00046410357808274
]
1 => [
'year' => 2028
'avg' => 0.00079653647022137
]
2 => [
'year' => 2029
'avg' => 0.0021759940749138
]
3 => [
'year' => 2030
'avg' => 0.0016787761882084
]
4 => [
'year' => 2031
'avg' => 0.0016487662652633
]
5 => [
'year' => 2032
'avg' => 0.0028908061488466
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.00046410357808274
'min' => '$0.000464'
'max_raw' => 0.0028908061488466
'max' => '$0.00289'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.0028908061488466
]
1 => [
'year' => 2033
'avg' => 0.0074354506729242
]
2 => [
'year' => 2034
'avg' => 0.004712945967538
]
3 => [
'year' => 2035
'avg' => 0.0055589305765198
]
4 => [
'year' => 2036
'avg' => 0.010789897618826
]
5 => [
'year' => 2037
'avg' => 0.026361906070112
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.0028908061488466
'min' => '$0.00289'
'max_raw' => 0.026361906070112
'max' => '$0.026361'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.026361906070112
]
]
]
]
'prediction_2025_max_price' => '$0.000793'
'last_price' => 0.00076943
'sma_50day_nextmonth' => '$0.000672'
'sma_200day_nextmonth' => '$0.001783'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'augmenter'
'sma_200day_date_nextmonth' => '4 févr. 2026'
'sma_50day_date_nextmonth' => '4 févr. 2026'
'daily_sma3' => '$0.000669'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.000913'
'daily_sma5_action' => 'SELL'
'daily_sma10' => '$0.0007062'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.00061'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.000592'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.001125'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.002074'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.000732'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.000737'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.0007065'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.000651'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.000734'
'daily_ema50_action' => 'BUY'
'daily_ema100' => '$0.001121'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.001725'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.00158'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.00233'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.003467'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.005153'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.000693'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.0007025'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.000882'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.00138'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.002239'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.0038018'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.015193'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '51.81'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 23.27
'stoch_rsi_14_action' => 'NEUTRAL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.000661'
'vwma_10_action' => 'BUY'
'hma_9' => '0.0007062'
'hma_9_action' => 'SELL'
'stochastic_fast_14' => 27.33
'stochastic_fast_14_action' => 'NEUTRAL'
'cci_20' => 33.32
'cci_20_action' => 'NEUTRAL'
'adx_14' => 18.54
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.000333'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'NEUTRAL'
'williams_percent_r_14' => -72.67
'williams_percent_r_14_action' => 'NEUTRAL'
'ultimate_oscillator' => 52.14
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.000655'
'ichimoku_cloud_action' => 'NEUTRAL'
'sell_signals' => 16
'buy_signals' => 17
'sell_pct' => 48.48
'buy_pct' => 51.52
'overall_action' => 'bullish'
'overall_action_label' => 'Haussier'
'overall_action_dir' => 1
'last_updated' => 1767708811
'last_updated_date' => '6 janvier 2026'
]
Prévision du prix de Pillar pour 2026
La prévision du prix de Pillar pour 2026 suggère que le prix moyen pourrait varier entre $0.000265 à la baisse et $0.000793 à la hausse. Sur le marché des cryptomonnaies, comparé au prix moyen d'aujourd'hui, Pillar pourrait potentiellement gagner 3.13% d'ici 2026 si PLR atteint l'objectif de prix prévu.
Prévision du prix de Pillar de 2027 à 2032
La prévision du prix de PLR pour 2027-2032 se situe actuellement dans une fourchette de prix comprise entre $0.000464 à la baisse et $0.00289 à la hausse. Compte tenu de la volatilité des prix sur le marché, si Pillar atteint l'objectif de prix le plus élevé, il pourrait gagner 275.71% d'ici 2032 par rapport au prix actuel.
| Prévision du Prix de Pillar | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2027 | $0.000255 | $0.000464 | $0.000672 |
| 2028 | $0.000461 | $0.000796 | $0.001131 |
| 2029 | $0.001014 | $0.002175 | $0.003337 |
| 2030 | $0.000862 | $0.001678 | $0.002494 |
| 2031 | $0.00102 | $0.001648 | $0.002277 |
| 2032 | $0.001557 | $0.00289 | $0.004224 |
Prévision du prix de Pillar de 2032 à 2037
La prévision du prix de Pillar pour 2032-2037 est actuellement estimée entre $0.00289 à la baisse et $0.026361 à la hausse. Par rapport au prix actuel, Pillar pourrait potentiellement gagner 3326.16% d'ici 2037 s'il atteint l'objectif de prix le plus élevé. Veuillez noter que ces informations sont à titre général seulement et ne doivent pas être considérées comme un conseil en investissement à long terme.
| Prévision du Prix de Pillar | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2032 | $0.001557 | $0.00289 | $0.004224 |
| 2033 | $0.003618 | $0.007435 | $0.011252 |
| 2034 | $0.0029091 | $0.004712 | $0.006516 |
| 2035 | $0.003439 | $0.005558 | $0.007678 |
| 2036 | $0.005693 | $0.010789 | $0.015886 |
| 2037 | $0.014785 | $0.026361 | $0.037938 |
Pillar Histogramme des prix potentiels
Prévision du prix de Pillar basée sur l'analyse technique
Au 6 janvier 2026, le sentiment global de prévision du prix pour Pillar est Haussier, avec 17 indicateurs techniques montrant des signaux haussiers et 16 indiquant des signaux baissiers. La prévision du prix de PLR a été mise à jour pour la dernière fois le 6 janvier 2026.
Moyennes Mobiles Simples sur 50 et 200 jours de Pillar et Indice de Force Relative sur 14 jours - RSI (14)
Selon nos indicateurs techniques, le SMA sur 200 jours de Pillar devrait augmenter au cours du prochain mois, atteignant $0.001783 d'ici le 4 févr. 2026. Le SMA à court terme sur 50 jours pour Pillar devrait atteindre $0.000672 d'ici le 4 févr. 2026.
Le Relative Strength Index (RSI), un oscillateur de momentum, est un outil couramment utilisé pour identifier si une cryptomonnaie est survendue (en dessous de 30) ou surachetée (au-dessus de 70). Actuellement, le RSI est à 51.81, ce qui suggère que le marché de PLR est dans un état NEUTRAL.
Moyennes Mobiles et Oscillateurs Populaires de PLR pour le Samedi 19 Octobre 2024
Les moyennes mobiles (MA) sont des indicateurs largement utilisés sur les marchés financiers, conçus pour lisser les mouvements de prix sur une période donnée. En tant qu'indicateurs retardés, ils sont basés sur des données historiques de prix. Le tableau ci-dessous met en évidence deux types : la moyenne mobile simple (SMA) et la moyenne mobile exponentielle (EMA).
Moyenne Mobile Simple Quotidienne (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 3 | $0.000669 | BUY |
| SMA 5 | $0.000913 | SELL |
| SMA 10 | $0.0007062 | BUY |
| SMA 21 | $0.00061 | BUY |
| SMA 50 | $0.000592 | BUY |
| SMA 100 | $0.001125 | SELL |
| SMA 200 | $0.002074 | SELL |
Moyenne Mobile Exponentielle Quotidienne (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 3 | $0.000732 | BUY |
| EMA 5 | $0.000737 | BUY |
| EMA 10 | $0.0007065 | BUY |
| EMA 21 | $0.000651 | BUY |
| EMA 50 | $0.000734 | BUY |
| EMA 100 | $0.001121 | SELL |
| EMA 200 | $0.001725 | SELL |
Moyenne Mobile Simple Hebdomadaire (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 21 | $0.00158 | SELL |
| SMA 50 | $0.00233 | SELL |
| SMA 100 | $0.003467 | SELL |
| SMA 200 | $0.005153 | SELL |
Moyenne Mobile Exponentielle Hebdomadaire (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 21 | $0.00138 | SELL |
| EMA 50 | $0.002239 | SELL |
| EMA 100 | $0.0038018 | SELL |
| EMA 200 | $0.015193 | SELL |
Oscillateurs de Pillar
Un oscillateur est un outil d'analyse technique qui établit des limites hautes et basses entre deux extrêmes, créant un indicateur de tendance qui fluctue à l'intérieur de ces limites. Les traders utilisent cet indicateur pour identifier les conditions de surachat ou de survente à court terme.
| Période | Valeur | Action |
|---|---|---|
| RSI (14) | 51.81 | NEUTRAL |
| Stoch RSI (14) | 23.27 | NEUTRAL |
| Stochastique Rapide (14) | 27.33 | NEUTRAL |
| Indice de Canal des Matières Premières (20) | 33.32 | NEUTRAL |
| Indice Directionnel Moyen (14) | 18.54 | NEUTRAL |
| Oscillateur Impressionnant (5, 34) | 0.000333 | BUY |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | NEUTRAL |
| Plage de Pourcentage de Williams (14) | -72.67 | NEUTRAL |
| Oscillateur Ultime (7, 14, 28) | 52.14 | NEUTRAL |
| VWMA (10) | 0.000661 | BUY |
| Moyenne Mobile de Hull (9) | 0.0007062 | SELL |
| Nuage Ichimoku B/L (9, 26, 52, 26) | -0.000655 | NEUTRAL |
Prévision du cours de Pillar basée sur les flux monétaires mondiaux
Définitions des flux monétaires mondiaux utilisés pour la prédiction du cours de Pillar
M0 : le total de toutes les devises physiques, plus les comptes à la banque centrale qui peuvent être échangés contre des devises physiques.
M1 : M0 plus le montant des comptes à vue, y compris les comptes de "chèques" et les comptes "courants".
M2 : M1 plus la plupart des comptes d'épargne, comptes du marché monétaire et comptes de certificats de dépôt (CD) de moins de 100 000 $.
Prédictions du cours de Pillar par des sociétés Internet ou des niches technologiques
| Comparaison | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Action Facebook | $0.001081 | $0.001519 | $0.002134 | $0.002999 | $0.004215 | $0.005922 |
| Action Amazon.com | $0.0016054 | $0.003349 | $0.006989 | $0.014584 | $0.030431 | $0.063497 |
| Action Apple | $0.001091 | $0.001548 | $0.002195 | $0.003114 | $0.004417 | $0.006266 |
| Action Netflix | $0.001214 | $0.001915 | $0.003022 | $0.004768 | $0.007524 | $0.011872 |
| Action Google | $0.000996 | $0.00129 | $0.00167 | $0.002163 | $0.0028022 | $0.003628 |
| Action Tesla | $0.001744 | $0.003954 | $0.008963 | $0.020319 | $0.046063 | $0.104421 |
| Action Kodak | $0.000576 | $0.000432 | $0.000324 | $0.000243 | $0.000182 | $0.000136 |
| Action Nokia | $0.0005097 | $0.000337 | $0.000223 | $0.000148 | $0.000098 | $0.000065 |
Ce calcul montre la valeur potentielle des cryptomonnaies si l'on suppose que leur capitalisation se comportera comme celle de certaines sociétés Internet ou niches technologiques. En extrapolant les données, vous pourrez obtenir une potentielle image des cours futurs pour 2024, 2025, 2026, 2027, 2028, 2029 et 2030.
Aperçu des prévisions relatives à Pillar
Vous vous posez peut-être des questions telles que : "Devrais-je investir dans Pillar maintenant ?", "Devrais-je acheter PLR aujourd'hui ?", " Pillar sera-t-il un bon ou un mauvais investissement à court ou à long terme ?".
Nous mettons régulièrement à jour les prévisions de Pillar avec de nouvelles valeurs. Regardez nos prévisions similaires. Nous faisons une prévision des cours futurs pour une grande quantité de devises numériques comme Pillar en utilisant des méthodes d'analyse technique.
Si vous souhaitez trouver des cryptomonnaies ayant un bon rendement, vous devriez consulter un maximum d'informations disponibles à propos de Pillar afin de prendre une décision responsable concernant cet investissement.
Le cours de Pillar est de $0.0007694 USD actuellement, mais ce cours peut subir une hausse ou une baisse, ce qui pourrait causer la perte de votre investissement, car les cryptomonnaies sont des actifs à haut risque.
Prévision du cours de Pillar basée sur le modèle de croissance du Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si Pillar présente 1 % de la précédente croissance annuelle moyenne du Bitcoin | $0.000789 | $0.0008099 | $0.000831 | $0.000852 |
| Si Pillar présente 2 % de la précédente croissance annuelle moyenne du Bitcoin | $0.0008094 | $0.000851 | $0.000895 | $0.000942 |
| Si Pillar présente 5 % de la précédente croissance annuelle moyenne du Bitcoin | $0.000869 | $0.000982 | $0.00111 | $0.001254 |
| Si Pillar présente 10 % de la précédente croissance annuelle moyenne du Bitcoin | $0.000969 | $0.001221 | $0.001538 | $0.001938 |
| Si Pillar présente 20 % de la précédente croissance annuelle moyenne du Bitcoin | $0.001169 | $0.001777 | $0.0027013 | $0.0041057 |
| Si Pillar présente 50 % de la précédente croissance annuelle moyenne du Bitcoin | $0.001769 | $0.004069 | $0.009357 | $0.021519 |
| Si Pillar présente 100 % de la précédente croissance annuelle moyenne du Bitcoin | $0.002769 | $0.009968 | $0.035878 | $0.129137 |
Boîte à questions
Est-ce que PLR est un bon investissement ?
La décision d'acquérir Pillar dépend entièrement de votre tolérance individuelle au risque. Comme vous pouvez le discerner, la valeur de Pillar a connu une hausse de 21.2027% au cours des 24 heures précédentes, et Pillar a enregistré une déclin de sur une période de 30 jours précédents. Par conséquent, la détermination de si investir ou non dans Pillar dépendra de la mesure dans laquelle cet investissement s'aligne avec vos aspirations de trading.
Est-ce que Pillar peut monter ?
Il semble que la valeur moyenne de Pillar pourrait potentiellement s'envoler jusqu'à $0.000793 pour la fin de cette année. En regardant les perspectives de Pillar sur une période de cinq ans plus longue, la monnaie numérique pourrait potentiellement croître jusqu'à $0.002494. Cependant, compte tenu de l'imprévisibilité du marché, il est essentiel de mener des recherches approfondies avant d'investir des fonds dans un projet, un réseau ou un actif particulier.
Quel sera le prix de Pillar la semaine prochaine ?
Basé sur notre nouveau pronostic expérimental de Pillar, le prix de Pillar va augmenter de 0.86% durant la prochaine semaine et atteindre $0.000776 d'ici 13 janvier 2026.
Quel sera le prix de Pillar le mois prochain ?
Basé sur notre nouveau pronostic expérimental de Pillar, le prix de Pillar va diminuer de -11.62% durant le prochain mois et atteindre $0.00068 d'ici 5 février 2026.
Jusqu'où le prix de Pillar peut-il monter cette année en 2026 ?
Selon notre prédiction la plus récente sur la valeur de Pillar en 2026, PLR devrait fluctuer dans la fourchette de $0.000265 et $0.000793. Cependant, il est crucial de garder à l'esprit que le marché des cryptomonnaies est exceptionnellement instable, et cette prévision de prix de Pillar ne prend pas en compte les fluctuations de prix soudaines et extrêmes.
Où sera Pillar dans 5 ans ?
L'avenir de Pillar semble suivre une tendance haussière, avec un prix maximum de $0.002494 prévue après une période de cinq ans. Selon la prévision de Pillar pour 2030, la valeur de Pillar pourrait potentiellement atteindre son point le plus élevé d'environ $0.002494, tandis que son point le plus bas devrait être autour de $0.000862.
Combien vaudra Pillar en 2026 ?
Basé sur notre nouvelle simulation expérimentale de prédiction de prix de Pillar, il est attendu que la valeur de PLR en 2026 augmente de 3.13% jusqu'à $0.000793 si le meilleur scénario se produit. Le prix sera entre $0.000793 et $0.000265 durant 2026.
Combien vaudra Pillar en 2027 ?
Selon notre dernière simulation expérimentale pour la prédiction de prix de Pillar, le valeur de PLR pourrait diminuer de -12.62% jusqu'à $0.000672 en 2027, en supposant les conditions les plus favorables. Il est prévu que le prix fluctue entre $0.000672 et $0.000255 tout au long de l'année.
Combien vaudra Pillar en 2028 ?
Notre nouveau modèle expérimental de prédiction de prix de Pillar suggère que la valeur de PLR en 2028 pourrait augmenter de 47.02%, atteignant $0.001131 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.001131 et $0.000461 durant l'année.
Combien vaudra Pillar en 2029 ?
Basé sur notre modèle de prévision expérimental, la valeur de Pillar pourrait connaître un 333.75% croissance en 2029, atteignant potentiellement $0.003337 sous des conditions optimales. Le range de prix prévu pour 2029 se situe entre $0.003337 et $0.001014.
Combien vaudra Pillar en 2030 ?
En utilisant notre nouvelle simulation expérimentale pour les prédictions de prix de Pillar, il est prévu que la valeur de PLR en 2030 augmente de 224.23%, atteignant $0.002494 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.002494 et $0.000862 au cours de 2030.
Combien vaudra Pillar en 2031 ?
Notre simulation expérimentale indique que le prix de Pillar pourrait augmenter de 195.98% en 2031, atteignant potentiellement $0.002277 dans des conditions idéales. Il est probable que le prix fluctue entre $0.002277 et $0.00102 durant l'année.
Combien vaudra Pillar en 2032 ?
Basé sur les résultats de notre dernière prédiction expérimentale de prix de Pillar, PLR pourrait connaître une 449.04% hausse en valeur, atteignant $0.004224 si le scénario le plus positif se réalise en 2032. Il est prévu que le prix reste dans une fourchette de $0.004224 et $0.001557 tout au long de l'année.
Combien vaudra Pillar en 2033 ?
Selon notre prédiction expérimentale de prix de Pillar, la valeur de PLR est anticipée à augmenter de 1362.43% en 2033, avec le prix potentiel le plus élevé étant $0.011252. Tout au long de l'année, le prix de PLR pourrait osciller entre $0.011252 et $0.003618.
Combien vaudra Pillar en 2034 ?
Les résultats de notre nouvelle simulation de prédiction de prix de Pillar suggèrent que PLR pourrait augmenter de 746.96% en 2034, atteignant potentiellement $0.006516 dans les meilleures circonstances. La fourchette de prix prévue pour l'année est entre $0.006516 et $0.0029091.
Combien vaudra Pillar en 2035 ?
Basé sur notre prédiction expérimentale pour le prix de Pillar, PLR pourrait augmenter de 897.93%, avec la valeur potentiellement atteignant $0.007678 en 2035. La fourchette de prix attendue pour l'année se situe entre $0.007678 et $0.003439.
Combien vaudra Pillar en 2036 ?
Notre récente simulation de prédiction de prix de Pillar suggère que la valeur de PLR pourrait augmenter de 1964.7% en 2036, pouvant atteindre $0.015886 si les conditions sont optimales. La fourchette de prix attendue pour 2036 est entre $0.015886 et $0.005693.
Combien vaudra Pillar en 2037 ?
Selon la simulation expérimentale, la valeur de Pillar pourrait augmenter de 4830.69% en 2037, avec un maximum de $0.037938 sous des conditions favorables. Il est prévu que le prix chute entre $0.037938 et $0.014785 au cours de l'année.
Prévisions liées
Prévision du cours de Metaverser
Prévision du cours de TYBENG
Prévision du cours de DePay
Prévision du cours de SafeMoonCash
Prévision du cours de Kambria
Prévision du cours de League of Ancients
Prévision du cours de Revuto
Prévision du cours de Heroes of NFT
Prévision du cours de Pandacoin
Prévision du cours de DOLA Borrowing Right
Prévision du cours de MetaFighter
Prévision du cours de Kalmar
Prévision du cours de Nominex
Prévision du cours de MetaVPad
Prévision du cours de FlowX Finance
Prévision du cours de Solanacorn
Prévision du cours de Battle Infinity
Prévision du cours de Virtacoinplus
Prévision du cours de Cryptocart
Prévision du cours de SYNO Finance
Prévision du cours de NFTY Token
Prévision du cours de IP Exchange
Prévision du cours de NetherFi
Prévision du cours de Tokenomy
Prévision du cours de Roobee
Comment lire et prédire les mouvements de prix de Pillar ?
Les traders de Pillar utilisent des indicateurs et des modèles graphiques pour prédire la direction du marché. Ils identifient également des niveaux clés de support et de résistance pour évaluer quand une tendance baissière pourrait ralentir ou une tendance haussière pourrait s'arrêter.
Indicateurs de prédiction du prix de Pillar
Les moyennes mobiles sont des outils populaires pour la prédiction du prix de Pillar. Une moyenne mobile simple (SMA) calcule le prix de clôture moyen de PLR sur une période spécifique, comme une SMA de 12 jours. Une moyenne mobile exponentielle (EMA) donne plus de poids aux prix récents, réagissant plus rapidement aux changements de prix.
Les moyennes mobiles couramment utilisées sur le marché des cryptomonnaies incluent les moyennes sur 50 jours, 100 jours et 200 jours, qui aident à identifier les niveaux clés de résistance et de support. Un mouvement de prix de PLR au-dessus de ces moyennes est considéré comme haussier, tandis qu'une chute en dessous indique une faiblesse.
Les traders utilisent également le RSI et les niveaux de retracement de Fibonacci pour évaluer la direction future de PLR.
Comment lire les graphiques de Pillar et prédire les mouvements de prix ?
La plupart des traders préfèrent les graphiques en chandeliers aux simples graphiques linéaires parce qu'ils fournissent des informations plus détaillées. Les chandeliers peuvent représenter l'action des prix de Pillar dans différentes périodes, comme 5 minutes pour les tendances à court terme et hebdomadaire pour les tendances à long terme. Les options populaires incluent les graphiques de 1 heure, 4 heures et 1 jour.
Par exemple, un graphique en chandeliers de 1 heure montre les prix d'ouverture, de clôture, les plus hauts et les plus bas de PLR au sein de chaque heure. La couleur du chandelier est cruciale : le vert indique que le prix a clôturé plus haut qu'il n'a ouvert, tandis que le rouge signifie le contraire. Certains graphiques utilisent des chandeliers creux et pleins pour transmettre la même information.
Qu'est-ce qui affecte le prix de Pillar ?
L'action du prix de Pillar est déterminée par l'offre et la demande, influencée par des facteurs tels que les réductions de récompenses de bloc, les hard forks et les mises à jour de protocole. Les événements du monde réel, tels que les réglementations, l'adoption par les entreprises et les gouvernements et les piratages d'échanges de cryptomonnaies, impactent également le prix de PLR. La capitalisation boursière de Pillar peut changer rapidement.
Les traders surveillent souvent l'activité des « baleines » de PLR, de grands détenteurs de Pillar, car leurs actions peuvent influencer significativement les mouvements de prix sur le marché relativement petit de Pillar.
Modèles de prédiction de prix haussiers et baissiers
Les traders identifient souvent des modèles de chandeliers pour obtenir un avantage dans les prédictions de prix des cryptomonnaies. Certaines formations indiquent des tendances haussières, tandis que d'autres suggèrent des mouvements baissiers.
Modèles de chandeliers haussiers couramment suivis :
- Marteau
- Englobante haussière
- Ligne pénétrante
- Étoile du matin
- Trois soldats blancs
Modèles de chandeliers baissiers courants :
- Harami baissier
- Nuage sombre
- Étoile du soir
- Étoile filante
- Pendu


