Prédiction du prix de Pillar jusqu'à $0.00079 d'ici 2026
| Année | Prix min. | Prix max. |
|---|---|---|
| 2026 | $0.000264 | $0.00079 |
| 2027 | $0.000254 | $0.000669 |
| 2028 | $0.000459 | $0.001126 |
| 2029 | $0.00101 | $0.003323 |
| 2030 | $0.000859 | $0.002484 |
| 2031 | $0.001015 | $0.002268 |
| 2032 | $0.00155 | $0.0042072 |
| 2033 | $0.0036037 | $0.0112066 |
| 2034 | $0.002897 | $0.00649 |
| 2035 | $0.003425 | $0.007647 |
Calculateur de profit d’investissement
Si vous ouvrez une position short de $10,000.00 sur Pillar aujourd’hui et la fermez le Apr 06, 2026, notre prévision indique que vous pourriez gagner environ $3,957.98, soit un rendement de 39.58% sur les 90 prochains jours.
Prévision du prix à long terme de Pillar pour 2027, 2028, 2029, 2030, 2031, 2032 et 2037
[
'name' => 'Pillar'
'name_with_ticker' => 'Pillar <small>PLR</small>'
'name_lang' => 'Pillar'
'name_lang_with_ticker' => 'Pillar <small>PLR</small>'
'name_with_lang' => 'Pillar'
'name_with_lang_with_ticker' => 'Pillar <small>PLR</small>'
'image' => '/uploads/coins/pillar.png?1717568582'
'price_for_sd' => 0.0007663
'ticker' => 'PLR'
'marketcap' => '$198.7K'
'low24h' => '$0.0006338'
'high24h' => '$0.0007987'
'volume24h' => '$6.25K'
'current_supply' => '259.35M'
'max_supply' => '800M'
'algo' => null
'proof' => null
'ico_price_and_roi' => ''
'price' => '$0.0007663'
'change_24h_pct' => '20.8929%'
'ath_price' => '$1.56'
'ath_days' => 2896
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '1 févr. 2018'
'ath_pct' => '-99.95%'
'fdv' => '$612.92K'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.037783'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.000772'
'next_week_prediction_price_date' => '13 janvier 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.000677'
'next_month_prediction_price_date' => '5 février 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.000264'
'current_year_max_price_prediction' => '$0.00079'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.000859'
'grand_prediction_max_price' => '$0.002484'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0007808209819262
107 => 0.0007837362840347
108 => 0.00079030460854415
109 => 0.00073417899476365
110 => 0.00075937774758965
111 => 0.00077417965407108
112 => 0.00070730410208999
113 => 0.00077285773942971
114 => 0.00073320197269595
115 => 0.00071974220985688
116 => 0.00073786400733077
117 => 0.00073080192523117
118 => 0.00072473036174131
119 => 0.00072134232499126
120 => 0.00073464897302629
121 => 0.00073402820199057
122 => 0.00071225594309618
123 => 0.00068385491891926
124 => 0.00069338723486488
125 => 0.0006899240551159
126 => 0.00067737304494652
127 => 0.00068583091038593
128 => 0.00064858675141848
129 => 0.00058451011169792
130 => 0.00062684110261788
131 => 0.00062521140551472
201 => 0.00062438963833443
202 => 0.00065620020806812
203 => 0.00065314235578294
204 => 0.00064759232394275
205 => 0.00067727111425938
206 => 0.00066643795655775
207 => 0.00069982319598122
208 => 0.00072181287388742
209 => 0.00071623558027885
210 => 0.00073691697863497
211 => 0.00069360684017169
212 => 0.00070799273086803
213 => 0.00071095764300257
214 => 0.00067690488259379
215 => 0.00065364265823389
216 => 0.00065209133307786
217 => 0.00061175784176976
218 => 0.00063330366726598
219 => 0.00065226310207581
220 => 0.00064318300411348
221 => 0.00064030851635881
222 => 0.00065499365089706
223 => 0.00065613481162036
224 => 0.00063011622619447
225 => 0.00063552631400595
226 => 0.00065808727953211
227 => 0.00063495783556017
228 => 0.0005900211040959
301 => 0.00057887617339385
302 => 0.00057738923419636
303 => 0.00054716329821679
304 => 0.00057962093095492
305 => 0.00056545230445425
306 => 0.00061021082580366
307 => 0.00058464499845364
308 => 0.00058354290673435
309 => 0.00058187693345894
310 => 0.00055586022174363
311 => 0.000561556228161
312 => 0.0005804906210186
313 => 0.0005872466257014
314 => 0.00058654191906267
315 => 0.00058039783216398
316 => 0.00058321056368339
317 => 0.00057414977543876
318 => 0.00057095022252558
319 => 0.00056085155342523
320 => 0.00054600929967625
321 => 0.00054807320609288
322 => 0.00051866681772922
323 => 0.00050264465663354
324 => 0.00049820993361094
325 => 0.00049227963664529
326 => 0.00049887977643313
327 => 0.0005185835131257
328 => 0.00049481662629353
329 => 0.00045406996587304
330 => 0.00045651890959324
331 => 0.00046202095903462
401 => 0.00045176792630031
402 => 0.0004420642912891
403 => 0.00045050081465056
404 => 0.00043323591747666
405 => 0.00046410733937406
406 => 0.0004632723539279
407 => 0.00047477931093533
408 => 0.0004819748472986
409 => 0.00046539146556382
410 => 0.00046122078990375
411 => 0.00046359659630636
412 => 0.00042432980864532
413 => 0.00047157037665172
414 => 0.00047197891504554
415 => 0.00046848076128675
416 => 0.00049363490536125
417 => 0.00054671799513273
418 => 0.00052674600149836
419 => 0.00051901224190643
420 => 0.00050431035926882
421 => 0.00052389974497202
422 => 0.00052239558579203
423 => 0.00051559320754472
424 => 0.00051147910795603
425 => 0.00051905946259337
426 => 0.00051053981812839
427 => 0.00050900945587831
428 => 0.00049973712569335
429 => 0.00049642732568147
430 => 0.0004939768815196
501 => 0.00049127918327306
502 => 0.00049722963338042
503 => 0.00048374513059024
504 => 0.00046748414212741
505 => 0.00046613221688305
506 => 0.00046986500134519
507 => 0.00046821352209382
508 => 0.00046612431023577
509 => 0.00046213543583576
510 => 0.0004609520220101
511 => 0.00046479754283274
512 => 0.00046045617403177
513 => 0.0004668621001842
514 => 0.0004651200427268
515 => 0.00045538905138094
516 => 0.00044326063328957
517 => 0.00044315266492834
518 => 0.00044053961714514
519 => 0.00043721150791888
520 => 0.00043628570406896
521 => 0.00044979031418443
522 => 0.00047774445296448
523 => 0.00047225638663611
524 => 0.00047622207699802
525 => 0.0004957293485906
526 => 0.00050193012362576
527 => 0.00049752896037921
528 => 0.0004915043766754
529 => 0.00049176942778309
530 => 0.0005123572540645
531 => 0.00051364129153613
601 => 0.00051688563998075
602 => 0.00052105554458485
603 => 0.00049823911316446
604 => 0.00049069477591504
605 => 0.00048711985038237
606 => 0.00047611046341203
607 => 0.00048798314338603
608 => 0.00048106544120403
609 => 0.00048199887557074
610 => 0.00048139097521488
611 => 0.00048172292991522
612 => 0.00046409871018248
613 => 0.00047052004955137
614 => 0.00045984332741134
615 => 0.00044554839498414
616 => 0.00044550047335819
617 => 0.00044899913781813
618 => 0.00044691799529461
619 => 0.00044131769427486
620 => 0.00044211319060204
621 => 0.00043514380571538
622 => 0.00044295940011207
623 => 0.00044318352339383
624 => 0.0004401740938328
625 => 0.00045221509534509
626 => 0.0004571483034892
627 => 0.0004551674324839
628 => 0.00045700932029887
629 => 0.00047248444056919
630 => 0.00047500756040008
701 => 0.00047612816356103
702 => 0.00047462670377683
703 => 0.00045729217708933
704 => 0.00045806103706002
705 => 0.0004524196527417
706 => 0.00044765327746716
707 => 0.00044784390748179
708 => 0.00045029444395832
709 => 0.00046099608047339
710 => 0.00048351704362342
711 => 0.00048437169771236
712 => 0.00048540756340017
713 => 0.00048119417706347
714 => 0.00047992337942765
715 => 0.00048159988953
716 => 0.00049005757919317
717 => 0.00051181305324717
718 => 0.00050412321571723
719 => 0.00049787125810593
720 => 0.00050335591044671
721 => 0.00050251159120897
722 => 0.00049538468714963
723 => 0.00049518465868957
724 => 0.00048150585119064
725 => 0.00047644910750966
726 => 0.00047222331399913
727 => 0.00046760885780276
728 => 0.00046487325349158
729 => 0.00046907638502348
730 => 0.00047003769093481
731 => 0.00046084747038216
801 => 0.00045959487727986
802 => 0.00046709980976785
803 => 0.00046379716879197
804 => 0.00046719401693721
805 => 0.00046798211484454
806 => 0.00046785521293002
807 => 0.00046440687644531
808 => 0.00046660474328979
809 => 0.00046140613298694
810 => 0.00045575342508862
811 => 0.00045214734962563
812 => 0.00044900057050767
813 => 0.00045074658645419
814 => 0.00044452235841477
815 => 0.000442531102596
816 => 0.00046586015545645
817 => 0.00048309357763404
818 => 0.00048284299685039
819 => 0.00048131765077409
820 => 0.00047905129590986
821 => 0.00048989178121859
822 => 0.00048611517289938
823 => 0.00048886297099779
824 => 0.00048956240093856
825 => 0.00049167936471445
826 => 0.00049243599730515
827 => 0.00049014892810094
828 => 0.00048247324450965
829 => 0.00046334617078226
830 => 0.00045444246632961
831 => 0.00045150409555731
901 => 0.00045161089975413
902 => 0.0004486647632111
903 => 0.0004495325324596
904 => 0.0004483629884799
905 => 0.00044614815512542
906 => 0.00045060982673579
907 => 0.00045112399282554
908 => 0.00045008258535867
909 => 0.00045032787451662
910 => 0.00044170546548192
911 => 0.00044236100851394
912 => 0.00043871086160927
913 => 0.00043802650306783
914 => 0.00042879924954747
915 => 0.00041245183242439
916 => 0.00042150988839275
917 => 0.00041056903053838
918 => 0.00040642556188788
919 => 0.00042604009803777
920 => 0.00042407134263086
921 => 0.00042070168917165
922 => 0.00041571726940816
923 => 0.00041386849963257
924 => 0.00040263595972543
925 => 0.00040197228134444
926 => 0.00040753943142651
927 => 0.00040497038321757
928 => 0.00040136246655758
929 => 0.00038829495814376
930 => 0.00037360275218326
1001 => 0.00037404621752929
1002 => 0.00037871953488712
1003 => 0.0003923078353877
1004 => 0.00038699865130214
1005 => 0.00038314677733219
1006 => 0.00038242543712453
1007 => 0.00039145452005146
1008 => 0.00040423256404442
1009 => 0.0004102277363933
1010 => 0.00040428670267165
1011 => 0.0003974619630202
1012 => 0.00039787735329998
1013 => 0.00040064075873327
1014 => 0.00040093115357186
1015 => 0.00039648894965334
1016 => 0.00039773940403604
1017 => 0.00039583984948477
1018 => 0.00038418228670989
1019 => 0.00038397143836582
1020 => 0.00038111048445727
1021 => 0.00038102385590993
1022 => 0.00037615665961309
1023 => 0.00037547570520583
1024 => 0.00036581159154075
1025 => 0.00037217254042074
1026 => 0.00036790594987685
1027 => 0.00036147519154024
1028 => 0.00036036652637911
1029 => 0.00036033319856562
1030 => 0.00036693614948606
1031 => 0.0003720953810948
1101 => 0.00036798016904604
1102 => 0.00036704321503258
1103 => 0.00037704743262483
1104 => 0.00037577430474575
1105 => 0.00037467178421326
1106 => 0.00040308843035567
1107 => 0.0003805944375554
1108 => 0.00037078577278226
1109 => 0.00035864568751058
1110 => 0.00036259856049066
1111 => 0.00036343148890735
1112 => 0.00033423677224381
1113 => 0.00032239247932938
1114 => 0.00031832796434391
1115 => 0.00031598877850597
1116 => 0.00031705477486597
1117 => 0.00030639352204599
1118 => 0.00031355806026186
1119 => 0.00030432631649302
1120 => 0.00030277858460749
1121 => 0.00031928608605977
1122 => 0.00032158300845143
1123 => 0.00031178362393075
1124 => 0.00031807641516927
1125 => 0.00031579456158984
1126 => 0.00030448456824323
1127 => 0.00030405260968807
1128 => 0.00029837765259223
1129 => 0.00028949744362546
1130 => 0.00028543894983984
1201 => 0.00028332525103882
1202 => 0.00028419740435929
1203 => 0.00028375641695213
1204 => 0.00028087867582503
1205 => 0.00028392136570497
1206 => 0.00027614855038799
1207 => 0.00027305335269895
1208 => 0.00027165532371084
1209 => 0.00026475650273047
1210 => 0.00027573559482986
1211 => 0.0002778986142844
1212 => 0.00028006589555545
1213 => 0.0002989305993542
1214 => 0.00029798817206352
1215 => 0.00030650725579062
1216 => 0.00030617621986257
1217 => 0.0003037464391836
1218 => 0.00029349559417852
1219 => 0.0002975813982938
1220 => 0.00028500592830191
1221 => 0.00029442832546867
1222 => 0.00029012833689048
1223 => 0.00029297449500499
1224 => 0.00028785684608737
1225 => 0.00029068916430092
1226 => 0.0002784115464398
1227 => 0.00026694687963183
1228 => 0.00027156059622984
1229 => 0.00027657623381438
1230 => 0.00028745141405834
1231 => 0.00028097424642332
]
'min_raw' => 0.00026475650273047
'max_raw' => 0.00079030460854415
'avg_raw' => 0.00052753055563731
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.000264'
'max' => '$0.00079'
'avg' => '$0.000527'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.00050154349726953
'max_diff' => 2.4004608544154E-5
'year' => 2026
]
1 => [
'items' => [
101 => 0.0002833036808337
102 => 0.00027550046550155
103 => 0.00025940020339307
104 => 0.00025949132912812
105 => 0.000257014654566
106 => 0.00025487444614393
107 => 0.00028171822704268
108 => 0.00027837977855054
109 => 0.00027306039780366
110 => 0.00028018060031715
111 => 0.00028206329487453
112 => 0.00028211689254182
113 => 0.00028731160849664
114 => 0.00029008402933293
115 => 0.00029057268052168
116 => 0.00029874667831585
117 => 0.00030148649455882
118 => 0.0003127714099103
119 => 0.00028984880879479
120 => 0.00028937673290946
121 => 0.00028028079616823
122 => 0.00027451200928587
123 => 0.00028067578994148
124 => 0.00028613605816238
125 => 0.00028045046192229
126 => 0.00028119288076176
127 => 0.00027356043233972
128 => 0.00027628867351052
129 => 0.00027863860234059
130 => 0.00027734110976306
131 => 0.00027539870057515
201 => 0.00028568837843634
202 => 0.00028510779448584
203 => 0.00029468977906886
204 => 0.00030215962126561
205 => 0.0003155469138762
206 => 0.0003015765761417
207 => 0.00030106744150759
208 => 0.00030604431422377
209 => 0.00030148573262554
210 => 0.00030436659883873
211 => 0.00031508276179124
212 => 0.00031530917742812
213 => 0.00031151642379034
214 => 0.00031128563438679
215 => 0.00031201407421111
216 => 0.00031628056901452
217 => 0.00031478972463406
218 => 0.00031651496749469
219 => 0.00031867241010975
220 => 0.00032759650750238
221 => 0.00032974807717136
222 => 0.00032452087833672
223 => 0.00032499283586503
224 => 0.00032303772001106
225 => 0.00032114910259365
226 => 0.00032539443873755
227 => 0.00033315287398282
228 => 0.00033310460915983
301 => 0.0003349044153343
302 => 0.00033602567967059
303 => 0.00033121239232355
304 => 0.00032807911925011
305 => 0.00032928061552181
306 => 0.00033120183422545
307 => 0.00032865759018976
308 => 0.00031295333739299
309 => 0.00031771700449997
310 => 0.00031692409736195
311 => 0.0003157949011766
312 => 0.00032058480528903
313 => 0.00032012280735233
314 => 0.0003062841754888
315 => 0.00030717007980137
316 => 0.00030633805026425
317 => 0.00030902650791591
318 => 0.00030134054708959
319 => 0.00030370469687403
320 => 0.0003051874694563
321 => 0.00030606083389845
322 => 0.00030921602513512
323 => 0.00030884579986058
324 => 0.00030919301141223
325 => 0.00031387132707661
326 => 0.00033753264230294
327 => 0.00033882047548496
328 => 0.00033247871389383
329 => 0.00033501212256377
330 => 0.00033014853191306
331 => 0.00033341349290011
401 => 0.00033564729628643
402 => 0.00032555316831934
403 => 0.00032495545957148
404 => 0.00032007179515208
405 => 0.00032269599978617
406 => 0.00031852070152634
407 => 0.00031954517367357
408 => 0.00031668066023804
409 => 0.00032183621410306
410 => 0.00032760092441623
411 => 0.00032905731789665
412 => 0.00032522617366649
413 => 0.00032245217275915
414 => 0.00031758194097856
415 => 0.00032568124496987
416 => 0.00032804972827874
417 => 0.00032566880433534
418 => 0.00032511709223344
419 => 0.00032407159879726
420 => 0.00032533889860829
421 => 0.00032803682900999
422 => 0.0003267645348555
423 => 0.00032760490755948
424 => 0.00032440227340049
425 => 0.00033121398572194
426 => 0.00034203262421626
427 => 0.00034206740790804
428 => 0.00034079510689542
429 => 0.00034027450873316
430 => 0.00034157996678179
501 => 0.00034228812422049
502 => 0.00034650973616971
503 => 0.00035103969398767
504 => 0.00037217903054865
505 => 0.00036624318943275
506 => 0.0003849992664144
507 => 0.00039983288813511
508 => 0.00040428084269349
509 => 0.00040018893379222
510 => 0.00038619073448154
511 => 0.00038550391604142
512 => 0.00040642313569888
513 => 0.00040051249798469
514 => 0.00039980944643608
515 => 0.00039233016578321
516 => 0.00039675134697599
517 => 0.00039578436979431
518 => 0.00039425794900689
519 => 0.00040269325474056
520 => 0.00041848339404905
521 => 0.00041602235275883
522 => 0.0004141852996001
523 => 0.0004061358674167
524 => 0.00041098342349688
525 => 0.00040925730162554
526 => 0.00041667381660879
527 => 0.00041228043742864
528 => 0.00040046771909073
529 => 0.00040234893342127
530 => 0.00040206459165969
531 => 0.0004079163249644
601 => 0.00040615977987527
602 => 0.0004017215980395
603 => 0.0004184294250695
604 => 0.00041734451171599
605 => 0.00041888267080554
606 => 0.00041955981600592
607 => 0.00042972957589414
608 => 0.00043389580112433
609 => 0.00043484160719162
610 => 0.00043879919893287
611 => 0.00043474313870381
612 => 0.00045097027154199
613 => 0.00046176036799992
614 => 0.00047429362028909
615 => 0.00049260807050421
616 => 0.00049949447320323
617 => 0.00049825050619345
618 => 0.00051213631332662
619 => 0.00053708880008078
620 => 0.00050329411718537
621 => 0.00053888000033413
622 => 0.00052761392058801
623 => 0.00050090224817808
624 => 0.00049918233138481
625 => 0.00051727178606971
626 => 0.00055739245551533
627 => 0.00054734268286407
628 => 0.00055740889334315
629 => 0.00054566612412105
630 => 0.00054508299665334
701 => 0.00055683857325239
702 => 0.00058430611873918
703 => 0.00057125731748395
704 => 0.00055254866118725
705 => 0.0005663628418578
706 => 0.0005543957201189
707 => 0.00052743044545468
708 => 0.00054733499799232
709 => 0.00053402539055942
710 => 0.00053790984158599
711 => 0.00056588465675526
712 => 0.00056251865298191
713 => 0.00056687457354818
714 => 0.00055918648776301
715 => 0.0005520046033398
716 => 0.00053859908273016
717 => 0.00053463036896182
718 => 0.00053572717866802
719 => 0.0005346298254374
720 => 0.00052712955985939
721 => 0.00052550987822193
722 => 0.00052281033786628
723 => 0.0005236470383029
724 => 0.00051857111265588
725 => 0.00052815043309155
726 => 0.00052992843937709
727 => 0.00053689946994114
728 => 0.00053762322545981
729 => 0.00055703744635428
730 => 0.00054634441972833
731 => 0.00055351822518052
801 => 0.0005528765324984
802 => 0.00050148117111608
803 => 0.00050856299844945
804 => 0.00051958009938033
805 => 0.0005146169103443
806 => 0.00050760012225471
807 => 0.000501933689656
808 => 0.00049334846484647
809 => 0.00050543200390125
810 => 0.00052132057281716
811 => 0.00053802618578765
812 => 0.00055809688517657
813 => 0.00055361733872166
814 => 0.00053765097802346
815 => 0.00053836721730095
816 => 0.00054279472668461
817 => 0.00053706069975112
818 => 0.00053536962326693
819 => 0.00054256239874392
820 => 0.00054261193143556
821 => 0.00053601424046828
822 => 0.00052868211432285
823 => 0.00052865139244658
824 => 0.00052734671141894
825 => 0.0005458982239775
826 => 0.00055609968011524
827 => 0.00055726926062096
828 => 0.00055602095802847
829 => 0.00055650138015296
830 => 0.00055056537760016
831 => 0.00056413331916899
901 => 0.00057658460408289
902 => 0.00057324739374306
903 => 0.00056824444103125
904 => 0.00056425934822145
905 => 0.00057230863252514
906 => 0.00057195021056585
907 => 0.00057647585297143
908 => 0.00057627054369054
909 => 0.00057474874036756
910 => 0.00057324744809145
911 => 0.00057919990226784
912 => 0.00057748569105853
913 => 0.00057576881720573
914 => 0.00057232536385371
915 => 0.00057279338635396
916 => 0.00056779129747247
917 => 0.00056547710227588
918 => 0.00053067715904986
919 => 0.00052137747709891
920 => 0.00052430334635316
921 => 0.00052526661848182
922 => 0.0005212193849789
923 => 0.0005270220781731
924 => 0.00052611773458536
925 => 0.00052963600646197
926 => 0.00052743794293907
927 => 0.00052752815223277
928 => 0.00053399218837705
929 => 0.00053586872556971
930 => 0.00053491430360801
1001 => 0.00053558274803431
1002 => 0.00055098676770572
1003 => 0.00054879680870127
1004 => 0.00054763343662765
1005 => 0.00054795569864267
1006 => 0.00055189175593462
1007 => 0.00055299363707561
1008 => 0.00054832488925344
1009 => 0.00055052669771608
1010 => 0.00055990171869893
1011 => 0.00056318244546269
1012 => 0.00057365295045444
1013 => 0.00056920489383556
1014 => 0.0005773694942669
1015 => 0.00060246469247542
1016 => 0.00062251247326003
1017 => 0.00060407570554092
1018 => 0.00064089090188236
1019 => 0.00066955681306042
1020 => 0.00066845656764384
1021 => 0.00066345800297547
1022 => 0.00063082262522192
1023 => 0.00060079106404704
1024 => 0.00062591374017727
1025 => 0.00062597778304525
1026 => 0.00062381972288547
1027 => 0.00061041619657638
1028 => 0.00062335330922374
1029 => 0.00062438021024499
1030 => 0.00062380541874811
1031 => 0.00061352896655316
1101 => 0.00059783872345731
1102 => 0.0006009045594011
1103 => 0.0006059264612184
1104 => 0.00059641895339979
1105 => 0.00059338072857153
1106 => 0.00059902936657319
1107 => 0.00061723045515499
1108 => 0.00061378964479033
1109 => 0.0006136997913263
1110 => 0.000628421037197
1111 => 0.00061788380219728
1112 => 0.00060094322941052
1113 => 0.00059666551136316
1114 => 0.0005814824941112
1115 => 0.00059196945820718
1116 => 0.00059234686537541
1117 => 0.00058660326231422
1118 => 0.00060140929114413
1119 => 0.00060127285098192
1120 => 0.00061532897176935
1121 => 0.00064219899547706
1122 => 0.00063425220727313
1123 => 0.00062501095720005
1124 => 0.00062601573731507
1125 => 0.00063703569516812
1126 => 0.000630372777089
1127 => 0.00063276880888576
1128 => 0.00063703206848703
1129 => 0.00063960419885525
1130 => 0.00062564564733792
1201 => 0.00062239124126453
1202 => 0.00061573386857968
1203 => 0.00061399708431196
1204 => 0.00061941937545312
1205 => 0.0006179907933098
1206 => 0.00059231514576432
1207 => 0.00058963189773786
1208 => 0.00058971418912404
1209 => 0.00058296703438002
1210 => 0.00057267600389271
1211 => 0.00059972021756785
1212 => 0.00059754818872621
1213 => 0.00059515043698672
1214 => 0.00059544414789343
1215 => 0.00060718312443636
1216 => 0.00060037392520893
1217 => 0.00061847729736085
1218 => 0.00061475578828359
1219 => 0.00061093883654105
1220 => 0.00061041121754303
1221 => 0.00060894201676917
1222 => 0.00060390358065007
1223 => 0.00059781936627319
1224 => 0.00059380204093595
1225 => 0.00054775099450629
1226 => 0.00055629780085702
1227 => 0.00056613012249762
1228 => 0.00056952420052741
1229 => 0.00056371839519442
1230 => 0.00060413282923142
1231 => 0.00061151693577316
]
'min_raw' => 0.00025487444614393
'max_raw' => 0.00066955681306042
'avg_raw' => 0.00046221562960218
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.000254'
'max' => '$0.000669'
'avg' => '$0.000462'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -9.8820565865402E-6
'max_diff' => -0.00012074779548373
'year' => 2027
]
2 => [
'items' => [
101 => 0.00058914999540488
102 => 0.00058496605409814
103 => 0.00060440712772694
104 => 0.00059268178375418
105 => 0.00059796170542716
106 => 0.00058654940273292
107 => 0.00060973832073913
108 => 0.00060956166003599
109 => 0.0006005406471861
110 => 0.0006081651454736
111 => 0.00060684020126646
112 => 0.00059665549997671
113 => 0.00061006119393614
114 => 0.00061006784299309
115 => 0.00060138531425881
116 => 0.00059124602154711
117 => 0.00058943335548967
118 => 0.0005880677551128
119 => 0.00059762585144728
120 => 0.00060619561073338
121 => 0.00062214180814131
122 => 0.00062615106104197
123 => 0.00064179944202433
124 => 0.00063248159305518
125 => 0.00063661207481686
126 => 0.00064109629706148
127 => 0.00064324619810736
128 => 0.00063974304972314
129 => 0.00066405142651932
130 => 0.00066610379831034
131 => 0.00066679194081892
201 => 0.00065859529293279
202 => 0.000665875834705
203 => 0.00066246951031598
204 => 0.00067133182007203
205 => 0.00067272154340143
206 => 0.00067154449718227
207 => 0.00067198561730231
208 => 0.0006512427059983
209 => 0.00065016707661961
210 => 0.00063550079371802
211 => 0.00064147741240811
212 => 0.00063030441023378
213 => 0.00063384748431794
214 => 0.00063540923761458
215 => 0.00063459346632113
216 => 0.0006418153214616
217 => 0.00063567526926467
218 => 0.00061947066199894
219 => 0.00060326163979879
220 => 0.00060305814872865
221 => 0.00059879059929636
222 => 0.00059570594269748
223 => 0.00059630015699249
224 => 0.00059839424567272
225 => 0.00059558423045654
226 => 0.0005961838896743
227 => 0.00060614222819759
228 => 0.00060813930196881
229 => 0.0006013524649871
301 => 0.00057410233516961
302 => 0.00056741508496062
303 => 0.0005722217477969
304 => 0.00056992447254989
305 => 0.00045997353012909
306 => 0.00048580487312547
307 => 0.00047045676626654
308 => 0.00047752988003958
309 => 0.00046186343730962
310 => 0.00046934028492897
311 => 0.00046795958418443
312 => 0.00050949561931761
313 => 0.00050884709125996
314 => 0.00050915750732182
315 => 0.00049434053990454
316 => 0.00051794437132477
317 => 0.0005295724674487
318 => 0.00052742041632791
319 => 0.00052796204123089
320 => 0.00051865513090855
321 => 0.00050924761855764
322 => 0.0004988132395547
323 => 0.00051819902601393
324 => 0.00051604365748607
325 => 0.00052098729741186
326 => 0.0005335603656553
327 => 0.00053541179771459
328 => 0.00053790014117765
329 => 0.00053700824717849
330 => 0.00055825678067779
331 => 0.00055568344306868
401 => 0.00056188444630686
402 => 0.00054912851217468
403 => 0.00053469396189973
404 => 0.000537437498006
405 => 0.00053717327341684
406 => 0.000533809391134
407 => 0.00053077262861839
408 => 0.00052571727463244
409 => 0.00054171316269561
410 => 0.00054106375885217
411 => 0.00055157685222813
412 => 0.00054971856085519
413 => 0.00053730843626565
414 => 0.00053775166629319
415 => 0.00054073260123751
416 => 0.00055104965111549
417 => 0.0005541124539576
418 => 0.00055269364164954
419 => 0.00055605186514365
420 => 0.00055870606806759
421 => 0.00055638519216607
422 => 0.00058924390063749
423 => 0.00057559867397899
424 => 0.00058224926250947
425 => 0.00058383538868644
426 => 0.00057977255983676
427 => 0.00058065364193526
428 => 0.00058198824123399
429 => 0.00059009166683455
430 => 0.00061135740035549
501 => 0.00062077584897117
502 => 0.00064911171632952
503 => 0.00061999377792477
504 => 0.00061826603996184
505 => 0.0006233701853343
506 => 0.00064000633912982
507 => 0.00065348837922663
508 => 0.00065796114972429
509 => 0.00065855230018295
510 => 0.00066694351498073
511 => 0.00067175320281592
512 => 0.00066592460079342
513 => 0.00066098547085942
514 => 0.0006432941205032
515 => 0.00064534194247888
516 => 0.00065944940516397
517 => 0.00067937702713207
518 => 0.0006964769998964
519 => 0.00069048918542855
520 => 0.00073617198307998
521 => 0.00074070124586962
522 => 0.00074007544820069
523 => 0.00075039378288018
524 => 0.00072991398983372
525 => 0.00072115848152905
526 => 0.00066205336681265
527 => 0.00067865949318166
528 => 0.00070279747310262
529 => 0.0006996027209473
530 => 0.00068207307471865
531 => 0.00069646370208781
601 => 0.00069170571064304
602 => 0.0006879528853813
603 => 0.00070514530542629
604 => 0.00068624153336114
605 => 0.00070260889351564
606 => 0.00068161758481883
607 => 0.00069051653726066
608 => 0.00068546506146078
609 => 0.00068873398538889
610 => 0.00066962392290024
611 => 0.00067993524874857
612 => 0.00066919493784446
613 => 0.00066918984553866
614 => 0.00066895275258017
615 => 0.00068158868072903
616 => 0.00068200073789232
617 => 0.00067266276789848
618 => 0.00067131702053586
619 => 0.00067629295387021
620 => 0.0006704674391347
621 => 0.00067319316081409
622 => 0.00067054999846763
623 => 0.00066995496694992
624 => 0.00066521365458058
625 => 0.00066317096684677
626 => 0.00066397195734077
627 => 0.00066123776384583
628 => 0.00065959031336502
629 => 0.00066862503321381
630 => 0.00066379814685816
701 => 0.00066788524365251
702 => 0.00066322748102261
703 => 0.0006470816464568
704 => 0.0006377960062589
705 => 0.00060729802148375
706 => 0.00061594721213335
707 => 0.00062168163448227
708 => 0.00061978640793016
709 => 0.00062385808791941
710 => 0.00062410805600193
711 => 0.00062278431133157
712 => 0.00062125158458547
713 => 0.00062050553797058
714 => 0.00062606595821346
715 => 0.00062929396931959
716 => 0.00062225716048166
717 => 0.00062060853462635
718 => 0.00062772313687437
719 => 0.00063206304013568
720 => 0.00066410644743625
721 => 0.00066173256832459
722 => 0.00066769053904462
723 => 0.00066701976297406
724 => 0.00067326466546783
725 => 0.00068347244175243
726 => 0.0006627171784267
727 => 0.00066631957447704
728 => 0.00066543635015697
729 => 0.00067507916168964
730 => 0.0006751092654947
731 => 0.0006693279182867
801 => 0.0006724620803998
802 => 0.00067071267708951
803 => 0.00067387408531725
804 => 0.00066170086372176
805 => 0.00067652653360699
806 => 0.00068493173308685
807 => 0.00068504843928978
808 => 0.00068903243713545
809 => 0.00069308040968424
810 => 0.00070085014048754
811 => 0.00069286371610916
812 => 0.00067849691611521
813 => 0.0006795341526703
814 => 0.00067111090309045
815 => 0.00067125249943767
816 => 0.0006704966470391
817 => 0.00067276501698513
818 => 0.00066219864336341
819 => 0.00066467855013266
820 => 0.00066120666613339
821 => 0.00066631202727927
822 => 0.00066081950263274
823 => 0.00066543592423946
824 => 0.00066742821876812
825 => 0.00067477982846991
826 => 0.00065973366390237
827 => 0.00062905351581338
828 => 0.00063550285490252
829 => 0.00062596377580502
830 => 0.00062684665389333
831 => 0.00062863020814072
901 => 0.00062284912528229
902 => 0.00062395197370882
903 => 0.0006239125722024
904 => 0.00062357303130649
905 => 0.000622069148379
906 => 0.00061988822059997
907 => 0.00062857636561745
908 => 0.00063005265075554
909 => 0.00063333424974447
910 => 0.00064309806240568
911 => 0.00064212242727427
912 => 0.00064371372865231
913 => 0.00064023992667881
914 => 0.00062700779360378
915 => 0.00062772636209147
916 => 0.00061876580153573
917 => 0.00063310510806498
918 => 0.00062970937100925
919 => 0.00062752011723885
920 => 0.0006269227590643
921 => 0.00063671077432856
922 => 0.00063963950190397
923 => 0.00063781451541857
924 => 0.00063407141489366
925 => 0.00064125927444982
926 => 0.0006431824424356
927 => 0.00064361296882391
928 => 0.00065634847782207
929 => 0.00064432474230305
930 => 0.00064721897494813
1001 => 0.0006697989518499
1002 => 0.00064932202862382
1003 => 0.00066016911154655
1004 => 0.00065963820328298
1005 => 0.00066518720386098
1006 => 0.00065918302327239
1007 => 0.00065925745228673
1008 => 0.00066418458887814
1009 => 0.00065726531414928
1010 => 0.00065555200442043
1011 => 0.00065318507930099
1012 => 0.00065835317370707
1013 => 0.00066145121257071
1014 => 0.00068641913055283
1015 => 0.00070254954424468
1016 => 0.00070184928044538
1017 => 0.0007082483807321
1018 => 0.00070536552744389
1019 => 0.00069605603371799
1020 => 0.00071194620433628
1021 => 0.00070691788947968
1022 => 0.00070733241764705
1023 => 0.00070731698888796
1024 => 0.00071066037868469
1025 => 0.00070829128059653
1026 => 0.00070362154508184
1027 => 0.00070672153344393
1028 => 0.00071592739061319
1029 => 0.00074450265373677
1030 => 0.00076049374955261
1031 => 0.00074353996968964
1101 => 0.00075523446001896
1102 => 0.00074822193299434
1103 => 0.00074694754822935
1104 => 0.00075429255237221
1105 => 0.0007616504129725
1106 => 0.00076118174906117
1107 => 0.00075584032009568
1108 => 0.00075282308240682
1109 => 0.00077567061703566
1110 => 0.00079250429135259
1111 => 0.00079135634761856
1112 => 0.00079642299792927
1113 => 0.00081129883994711
1114 => 0.0008126589005111
1115 => 0.00081248756414067
1116 => 0.00080911651212518
1117 => 0.00082376371046393
1118 => 0.00083598266101104
1119 => 0.00080833621098265
1120 => 0.00081886361723486
1121 => 0.00082358970907332
1122 => 0.00083052901406044
1123 => 0.00084223678473628
1124 => 0.00085495452902303
1125 => 0.00085675295750815
1126 => 0.00085547688643523
1127 => 0.0008470891922068
1128 => 0.00086100509975961
1129 => 0.00086915671203586
1130 => 0.00087401081060004
1201 => 0.00088631999691381
1202 => 0.00082361889580756
1203 => 0.00077923593999763
1204 => 0.00077230490055026
1205 => 0.00078639944181615
1206 => 0.00079011605994611
1207 => 0.00078861789583817
1208 => 0.00073866084395229
1209 => 0.00077204188701093
1210 => 0.00080795708258421
1211 => 0.00080933673151541
1212 => 0.00082731662937072
1213 => 0.00083317162113332
1214 => 0.00084764779558593
1215 => 0.00084674230693248
1216 => 0.00085026702504545
1217 => 0.00084945675339088
1218 => 0.00087627081824617
1219 => 0.00090585071370871
1220 => 0.00090482645598715
1221 => 0.00090057399604097
1222 => 0.00090688962421322
1223 => 0.0009374192463048
1224 => 0.00093460856792984
1225 => 0.0009373389025581
1226 => 0.00097333504757818
1227 => 0.0010201351564962
1228 => 0.00099839180724968
1229 => 0.0010455686186345
1230 => 0.0010752639206659
1231 => 0.0011266188749776
]
'min_raw' => 0.00045997353012909
'max_raw' => 0.0011266188749776
'avg_raw' => 0.00079329620255336
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.000459'
'max' => '$0.001126'
'avg' => '$0.000793'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.00020509908398516
'max_diff' => 0.00045706206191722
'year' => 2028
]
3 => [
'items' => [
101 => 0.0011201889817693
102 => 0.0011401810886228
103 => 0.0011086781309672
104 => 0.0010363409723918
105 => 0.0010248933401517
106 => 0.0010478117897966
107 => 0.0011041545618989
108 => 0.0010460373553962
109 => 0.0010577943905796
110 => 0.0010544083636559
111 => 0.0010542279366708
112 => 0.0010611141008417
113 => 0.0010511253605536
114 => 0.0010104294356798
115 => 0.0010290801382269
116 => 0.0010218782062931
117 => 0.0010298692867132
118 => 0.001072993851968
119 => 0.0010539274537076
120 => 0.0010338425519687
121 => 0.0010590334759458
122 => 0.0010911101787093
123 => 0.0010891028762977
124 => 0.001085207870632
125 => 0.0011071638136339
126 => 0.0011434285989854
127 => 0.0011532308247423
128 => 0.0011604666273982
129 => 0.0011614643223346
130 => 0.0011717412002432
131 => 0.001116479837622
201 => 0.0012041810393143
202 => 0.0012193246141498
203 => 0.0012164782497176
204 => 0.0012333096958081
205 => 0.0012283574573957
206 => 0.0012211824409185
207 => 0.0012478638631233
208 => 0.0012172757656453
209 => 0.0011738598122096
210 => 0.0011500409614845
211 => 0.0011814075455311
212 => 0.0012005620238654
213 => 0.0012132219155908
214 => 0.0012170527911776
215 => 0.0011207696198934
216 => 0.0010688783306806
217 => 0.0011021400521312
218 => 0.0011427216479022
219 => 0.0011162544048085
220 => 0.0011172918706286
221 => 0.0010795565374462
222 => 0.0011460603875717
223 => 0.0011363713359938
224 => 0.0011866381527195
225 => 0.0011746415734915
226 => 0.0012156322111847
227 => 0.0012048380025342
228 => 0.0012496441591463
301 => 0.0012675185480971
302 => 0.001297532429072
303 => 0.0013196107620956
304 => 0.0013325755815383
305 => 0.0013317972224088
306 => 0.0013831702960881
307 => 0.0013528773893779
308 => 0.0013148223590599
309 => 0.0013141340636236
310 => 0.0013338433030692
311 => 0.0013751484619814
312 => 0.0013858582887217
313 => 0.0013918436208081
314 => 0.0013826768763669
315 => 0.0013497960972452
316 => 0.0013355983435297
317 => 0.0013476952410438
318 => 0.0013329017748823
319 => 0.0013584394477905
320 => 0.001393508127246
321 => 0.0013862665836151
322 => 0.0014104739782605
323 => 0.0014355260850264
324 => 0.0014713517228621
325 => 0.0014807178712119
326 => 0.0014961997582714
327 => 0.0015121357055905
328 => 0.0015172539023836
329 => 0.0015270261281448
330 => 0.0015269746236914
331 => 0.0015564238837694
401 => 0.0015889073296032
402 => 0.0016011690784119
403 => 0.0016293642936808
404 => 0.001581080975611
405 => 0.0016177044270058
406 => 0.0016507396969083
407 => 0.0016113536862462
408 => 0.0016656381261804
409 => 0.0016677458679718
410 => 0.0016995702665966
411 => 0.0016673101417733
412 => 0.0016481541826313
413 => 0.00170345671891
414 => 0.0017302158742017
415 => 0.0017221557988546
416 => 0.0016608182274883
417 => 0.0016251171300609
418 => 0.001531680471866
419 => 0.0016423602296611
420 => 0.0016962691111103
421 => 0.0016606786165087
422 => 0.0016786283918103
423 => 0.0017765565456215
424 => 0.0018138412462144
425 => 0.0018060862891309
426 => 0.0018073967492205
427 => 0.0018275148968953
428 => 0.0019167298429514
429 => 0.0018632701792883
430 => 0.0019041380890633
501 => 0.0019258142810478
502 => 0.0019459483361903
503 => 0.0018965054601938
504 => 0.0018321810049825
505 => 0.0018118067498602
506 => 0.0016571398432326
507 => 0.0016490887590583
508 => 0.0016445694415384
509 => 0.0016160757838459
510 => 0.0015936875739693
511 => 0.0015758836382545
512 => 0.0015291607942336
513 => 0.0015449283825272
514 => 0.0014704619209732
515 => 0.0015181029241461
516 => 0.0013992526534504
517 => 0.0014982346905406
518 => 0.0014443632679134
519 => 0.0014805364793403
520 => 0.0014804102744134
521 => 0.0014138039234492
522 => 0.0013753867702522
523 => 0.0013998676754873
524 => 0.0014261131491961
525 => 0.0014303713890049
526 => 0.0014643993307452
527 => 0.0014738957978568
528 => 0.0014451210591611
529 => 0.0013967897457602
530 => 0.0014080160075433
531 => 0.0013751592704155
601 => 0.0013175791024152
602 => 0.0013589341843263
603 => 0.0013730546275454
604 => 0.0013792910196948
605 => 0.0013226675375935
606 => 0.0013048752101616
607 => 0.001295402724329
608 => 0.0013894803652681
609 => 0.001394634150807
610 => 0.0013682666553181
611 => 0.0014874502351965
612 => 0.0014604753204214
613 => 0.0014906129092398
614 => 0.0014069973419546
615 => 0.0014101915692282
616 => 0.0013706066196765
617 => 0.0013927715463581
618 => 0.0013771060905885
619 => 0.0013909808393203
620 => 0.0013992973065025
621 => 0.0014388757605535
622 => 0.0014986866129101
623 => 0.0014329640593434
624 => 0.0014043278015901
625 => 0.0014220935748438
626 => 0.0014694061701647
627 => 0.0015410871739631
628 => 0.0014986505769998
629 => 0.001517483218112
630 => 0.0015215973123891
701 => 0.0014903061368766
702 => 0.0015422409242375
703 => 0.0015700731987017
704 => 0.0015986233532243
705 => 0.0016234126524391
706 => 0.0015872197936766
707 => 0.0016259513405949
708 => 0.0015947405508172
709 => 0.0015667412458744
710 => 0.0015667837092624
711 => 0.0015492193362672
712 => 0.0015151861503356
713 => 0.0015089099086871
714 => 0.0015415597103447
715 => 0.0015677417593264
716 => 0.0015698982382841
717 => 0.0015843939658826
718 => 0.0015929723881575
719 => 0.0016770525882515
720 => 0.0017108703402771
721 => 0.0017522220473168
722 => 0.0017683308676633
723 => 0.0018168126415745
724 => 0.001777659671644
725 => 0.0017691886803159
726 => 0.0016515877550748
727 => 0.0016708448999949
728 => 0.0017016774470501
729 => 0.0016520961724194
730 => 0.0016835440791363
731 => 0.0016897525620799
801 => 0.0016504114196799
802 => 0.0016714252236662
803 => 0.0016156187904373
804 => 0.0014999030406531
805 => 0.0015423697489462
806 => 0.0015736395403893
807 => 0.0015290136924625
808 => 0.0016090037976124
809 => 0.0015622752295148
810 => 0.0015474645167946
811 => 0.0014896826460731
812 => 0.0015169534648255
813 => 0.0015538376376686
814 => 0.0015310475070969
815 => 0.0015783404499885
816 => 0.0016453198696903
817 => 0.0016930533928631
818 => 0.0016967177800628
819 => 0.0016660283225604
820 => 0.0017152083740656
821 => 0.0017155665970497
822 => 0.0016600912980454
823 => 0.001626112986293
824 => 0.0016183930423719
825 => 0.001637678975871
826 => 0.0016610956595187
827 => 0.0016980172430334
828 => 0.0017203281826827
829 => 0.0017785032804798
830 => 0.001794243793933
831 => 0.0018115378459925
901 => 0.0018346480328321
902 => 0.0018623977374634
903 => 0.0018016829635217
904 => 0.0018040952746769
905 => 0.0017475585178357
906 => 0.0016871408849598
907 => 0.0017329903371484
908 => 0.0017929323967879
909 => 0.0017791816220765
910 => 0.0017776343790186
911 => 0.0017802364126725
912 => 0.0017698687775984
913 => 0.0017229763484009
914 => 0.00169942726402
915 => 0.0017298115908835
916 => 0.0017459595083606
917 => 0.0017710035201213
918 => 0.0017679163170568
919 => 0.0018324270018218
920 => 0.0018574939032196
921 => 0.0018510807171688
922 => 0.0018522608977441
923 => 0.0018976433253736
924 => 0.0019481179185056
925 => 0.001995394035683
926 => 0.0020434853326323
927 => 0.0019855093971246
928 => 0.0019560727925324
929 => 0.0019864438545493
930 => 0.0019703285415395
1001 => 0.0020629319102063
1002 => 0.0020693435665341
1003 => 0.0021619402389232
1004 => 0.0022498255072272
1005 => 0.0021946263448336
1006 => 0.0022466766687459
1007 => 0.0023029733377822
1008 => 0.0024115787461586
1009 => 0.0023750042654017
1010 => 0.0023469887863372
1011 => 0.002320514293991
1012 => 0.0023756035098561
1013 => 0.0024464749059949
1014 => 0.0024617399259254
1015 => 0.0024864750898992
1016 => 0.0024604690894527
1017 => 0.0024917904525235
1018 => 0.002602368627468
1019 => 0.0025724894284974
1020 => 0.0025300561626383
1021 => 0.0026173470117162
1022 => 0.0026489372306629
1023 => 0.0028706539311569
1024 => 0.0031505804241906
1025 => 0.0030346890179782
1026 => 0.0029627514823498
1027 => 0.0029796585096036
1028 => 0.0030818781887498
1029 => 0.0031147079054011
1030 => 0.0030254654184609
1031 => 0.003056987373549
1101 => 0.0032306764452551
1102 => 0.0033238550596128
1103 => 0.0031973059857575
1104 => 0.00284816211
1105 => 0.0025262355113202
1106 => 0.0026116249418337
1107 => 0.002601944430356
1108 => 0.0027885516697512
1109 => 0.0025717768194837
1110 => 0.0025754267520121
1111 => 0.0027658928314975
1112 => 0.002715079746906
1113 => 0.0026327690575161
1114 => 0.0025268364704432
1115 => 0.0023310102856605
1116 => 0.0021575615727814
1117 => 0.0024977344415903
1118 => 0.0024830655689231
1119 => 0.0024618228674958
1120 => 0.0025090962008219
1121 => 0.002738642088684
1122 => 0.0027333503130012
1123 => 0.0026996867359952
1124 => 0.0027252202624571
1125 => 0.0026282929068745
1126 => 0.002653273293403
1127 => 0.0025261845165021
1128 => 0.0025836339513575
1129 => 0.0026325924557443
1130 => 0.0026424216003429
1201 => 0.0026645671650124
1202 => 0.0024753357395862
1203 => 0.0025602950940598
1204 => 0.002610200755198
1205 => 0.0023847251625918
1206 => 0.0026057438276915
1207 => 0.0024720416414714
1208 => 0.0024266611113289
1209 => 0.0024877600167356
1210 => 0.002463949713878
1211 => 0.0024434790136689
1212 => 0.0024320560112209
1213 => 0.0024769203041115
1214 => 0.0024748273312237
1215 => 0.0024014206402707
1216 => 0.002305664604362
1217 => 0.0023378034730977
1218 => 0.0023261271207826
1219 => 0.0022838105137129
1220 => 0.0023123267975512
1221 => 0.0021867555152883
1222 => 0.0019707166507823
1223 => 0.0021134385421244
1224 => 0.0021079439045593
1225 => 0.002105173259137
1226 => 0.0022124248159372
1227 => 0.0022021150534652
1228 => 0.0021834027336252
1229 => 0.0022834668472847
1230 => 0.0022469420997467
1231 => 0.0023595027653459
]
'min_raw' => 0.0010104294356798
'max_raw' => 0.0033238550596128
'avg_raw' => 0.0021671422476463
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.00101'
'max' => '$0.003323'
'avg' => '$0.002167'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.00055045590555068
'max_diff' => 0.0021972361846351
'year' => 2029
]
4 => [
'items' => [
101 => 0.002433642499677
102 => 0.0024148382648815
103 => 0.0024845670433682
104 => 0.002338543887722
105 => 0.0023870469225955
106 => 0.0023970433308607
107 => 0.0022822320716547
108 => 0.0022038018581086
109 => 0.002198571457035
110 => 0.0020625842750953
111 => 0.0021352275300373
112 => 0.0021991505882041
113 => 0.0021685364039719
114 => 0.0021588448678167
115 => 0.0022083568241958
116 => 0.0022122043272477
117 => 0.0021244808499247
118 => 0.0021427213387014
119 => 0.0022187872091291
120 => 0.0021408046739315
121 => 0.0019892973464173
122 => 0.0019517214344411
123 => 0.0019467081151221
124 => 0.0018447992616594
125 => 0.0019542324365556
126 => 0.0019064619230867
127 => 0.0020573684027564
128 => 0.0019711714308967
129 => 0.0019674556517196
130 => 0.001961838706507
131 => 0.00187412154653
201 => 0.0018933260298486
202 => 0.0019571646573251
203 => 0.0019799429988024
204 => 0.0019775670311689
205 => 0.0019568518132235
206 => 0.0019663351339198
207 => 0.001935786053749
208 => 0.0019249985377166
209 => 0.0018909501697782
210 => 0.0018409084750104
211 => 0.0018478670795914
212 => 0.0017487213881349
213 => 0.0016947015533692
214 => 0.0016797495750761
215 => 0.0016597551648163
216 => 0.001682007996918
217 => 0.001748440520848
218 => 0.0016683088025423
219 => 0.0015309285920936
220 => 0.0015391853768261
221 => 0.0015577359206585
222 => 0.0015231671049509
223 => 0.0014904506220244
224 => 0.0015188949495568
225 => 0.0014606851433384
226 => 0.0015647702976393
227 => 0.0015619550859108
228 => 0.0016007515948514
301 => 0.0016250118480765
302 => 0.0015690998187429
303 => 0.0015550380945677
304 => 0.0015630482917276
305 => 0.0014306575756089
306 => 0.0015899324488736
307 => 0.0015913098645916
308 => 0.0015795155949605
309 => 0.001664324547914
310 => 0.0018432978912215
311 => 0.0017759609202831
312 => 0.0017498860098651
313 => 0.0017003175860997
314 => 0.0017663645676853
315 => 0.0017612931899929
316 => 0.0017383584968052
317 => 0.0017244875228047
318 => 0.0017500452177079
319 => 0.0017213206415717
320 => 0.0017161609183991
321 => 0.0016848986098071
322 => 0.0016737393879841
323 => 0.0016654775444079
324 => 0.0016563820664224
325 => 0.0016764444244065
326 => 0.0016309804817915
327 => 0.0015761554238831
328 => 0.0015715973135333
329 => 0.0015841826569621
330 => 0.0015786145793635
331 => 0.00157157065572
401 => 0.001558121887186
402 => 0.0015541319248495
403 => 0.0015670973667887
404 => 0.0015524601387716
405 => 0.001574058166042
406 => 0.0015681846976978
407 => 0.0015353759809791
408 => 0.0014944841726049
409 => 0.0014941201497369
410 => 0.0014853100766987
411 => 0.0014740891240812
412 => 0.0014709677117636
413 => 0.0015164994476297
414 => 0.0016107487782223
415 => 0.0015922453794316
416 => 0.0016056159813625
417 => 0.0016713861094911
418 => 0.0016922924554464
419 => 0.0016774536262812
420 => 0.0016571413217009
421 => 0.0016580349600157
422 => 0.0017274482537196
423 => 0.0017317774757038
424 => 0.0017427160229981
425 => 0.0017567751475042
426 => 0.001679847955978
427 => 0.0016544116962128
428 => 0.001642358585186
429 => 0.0016052396683647
430 => 0.0016452692378211
501 => 0.0016219457219359
502 => 0.0016250928610736
503 => 0.0016230432825816
504 => 0.0016241624910301
505 => 0.0015647412037174
506 => 0.0015863911977233
507 => 0.0015503938836032
508 => 0.0015021975208846
509 => 0.0015020359497769
510 => 0.0015138319412726
511 => 0.0015068152239538
512 => 0.0014879334180652
513 => 0.001490615489472
514 => 0.0014671177217397
515 => 0.0014934685439156
516 => 0.0014942241912078
517 => 0.0014840776893311
518 => 0.0015246747666057
519 => 0.0015413074222891
520 => 0.0015346287773948
521 => 0.0015408388307594
522 => 0.0015930142791892
523 => 0.0016015211538577
524 => 0.0016052993456528
525 => 0.0016002370691618
526 => 0.0015417925021769
527 => 0.0015443847672482
528 => 0.0015253644461501
529 => 0.0015092942791343
530 => 0.001509937001538
531 => 0.0015181991563596
601 => 0.0015542804710346
602 => 0.0016302114706583
603 => 0.0016330929965892
604 => 0.0016365854900775
605 => 0.0016223797638741
606 => 0.0016180951809207
607 => 0.0016237476517809
608 => 0.0016522633429773
609 => 0.0017256134426691
610 => 0.0016996866185496
611 => 0.0016786077069654
612 => 0.0016970995952585
613 => 0.001694252914
614 => 0.0016702240593793
615 => 0.0016695496494607
616 => 0.0016234305949542
617 => 0.0016063814305832
618 => 0.001592133872727
619 => 0.0015765759114899
620 => 0.001567352630561
621 => 0.001581523781974
622 => 0.0015847648919703
623 => 0.0015537794217363
624 => 0.0015495562166387
625 => 0.0015748596204996
626 => 0.0015637245358664
627 => 0.0015751772465484
628 => 0.0015778343736662
629 => 0.0015774065150014
630 => 0.001565780207788
701 => 0.0015731904693044
702 => 0.001555662991713
703 => 0.0015366044923743
704 => 0.0015244463571827
705 => 0.0015138367716854
706 => 0.001519723586352
707 => 0.0014987381669554
708 => 0.0014920245089374
709 => 0.0015706800394388
710 => 0.0016287837255097
711 => 0.0016279388749026
712 => 0.0016227960641101
713 => 0.0016151548904535
714 => 0.0016517043435304
715 => 0.0016389712449078
716 => 0.0016482356380417
717 => 0.0016505938149197
718 => 0.0016577313060918
719 => 0.0016602823456977
720 => 0.0016525713321977
721 => 0.0016266922290705
722 => 0.001562203964589
723 => 0.0015321845033901
724 => 0.0015222775811808
725 => 0.0015226376789872
726 => 0.0015127045739397
727 => 0.0015156303185467
728 => 0.0015116871193642
729 => 0.0015042196540748
730 => 0.0015192624914132
731 => 0.0015209960382827
801 => 0.0015174848602994
802 => 0.0015183118698209
803 => 0.0014892408157631
804 => 0.0014914510248641
805 => 0.0014791442997299
806 => 0.001476836937127
807 => 0.0014457266076569
808 => 0.0013906101494862
809 => 0.0014211500175968
810 => 0.0013842621514745
811 => 0.0013702921576316
812 => 0.0014364239357041
813 => 0.0014297861393956
814 => 0.0014184251174962
815 => 0.0014016197982625
816 => 0.0013953865418871
817 => 0.0013575152493593
818 => 0.0013552776113612
819 => 0.0013740476465489
820 => 0.0013653859211473
821 => 0.0013532215782315
822 => 0.0013091635612699
823 => 0.0012596277630971
824 => 0.001261122937473
825 => 0.0012768793532255
826 => 0.001322693257068
827 => 0.0013047929722482
828 => 0.0012918061102292
829 => 0.0012893740613567
830 => 0.0013198162448353
831 => 0.0013628983122921
901 => 0.0013831114544359
902 => 0.0013630808444537
903 => 0.0013400707582307
904 => 0.0013414712755606
905 => 0.0013507882899138
906 => 0.0013517673763868
907 => 0.0013367901757307
908 => 0.0013410061699859
909 => 0.0013346016891936
910 => 0.0012952974023931
911 => 0.0012945865124801
912 => 0.001284940606632
913 => 0.0012846485324365
914 => 0.0012682384403049
915 => 0.001265942554978
916 => 0.0012333593210294
917 => 0.0012548057042855
918 => 0.0012404205963829
919 => 0.0012187388456699
920 => 0.0012150009036746
921 => 0.0012148885366245
922 => 0.0012371508466561
923 => 0.001254545556231
924 => 0.0012406708314937
925 => 0.0012375118256213
926 => 0.0012712417437057
927 => 0.0012669493041744
928 => 0.0012632320792236
929 => 0.0013590407856796
930 => 0.0012832007184731
1001 => 0.0012501301203714
1002 => 0.0012091989752842
1003 => 0.0012225263625173
1004 => 0.0012253346388274
1005 => 0.0011269026132863
1006 => 0.0010869687527831
1007 => 0.0010732649567342
1008 => 0.0010653782283649
1009 => 0.0010689723095181
1010 => 0.0010330271512906
1011 => 0.0010571828920975
1012 => 0.0010260574234411
1013 => 0.0010208391373299
1014 => 0.0010764953309932
1015 => 0.0010842395652026
1016 => 0.00105120025612
1017 => 0.0010724168411293
1018 => 0.0010647234124724
1019 => 0.0010265909802657
1020 => 0.0010251346018386
1021 => 0.0010060010877772
1022 => 0.00097606084324932
1023 => 0.00096237734809608
1024 => 0.00095525086501473
1025 => 0.00095819139082648
1026 => 0.00095670457099448
1027 => 0.00094700206586701
1028 => 0.00095726070723105
1029 => 0.00093105411770922
1030 => 0.00092061844260079
1031 => 0.00091590489026014
1101 => 0.00089264503366451
1102 => 0.00092966180921333
1103 => 0.0009369545803215
1104 => 0.00094426172044161
1105 => 0.0010078653863907
1106 => 0.0010046879269819
1107 => 0.0010334106125513
1108 => 0.0010322945018077
1109 => 0.0010241023266067
1110 => 0.00098954088698091
1111 => 0.0010033164608173
1112 => 0.00096091738574836
1113 => 0.00099268565564688
1114 => 0.00097818794393986
1115 => 0.00098778396473535
1116 => 0.00097052945410676
1117 => 0.0009800788127099
1118 => 0.00093868396689522
1119 => 0.00090003004231467
1120 => 0.00091558550994429
1121 => 0.00093249608224118
1122 => 0.00096916251171453
1123 => 0.00094732428881168
1124 => 0.00095517813956218
1125 => 0.00092886905426674
1126 => 0.00087458589648358
1127 => 0.0008748931332615
1128 => 0.00086654285205943
1129 => 0.00085932698993983
1130 => 0.0009498326714129
1201 => 0.00093857685923863
1202 => 0.00092064219566321
1203 => 0.00094464845555411
1204 => 0.00095099609169984
1205 => 0.00095117679997719
1206 => 0.00096869114750234
1207 => 0.00097803855791613
1208 => 0.00097968607951556
1209 => 0.0010072452837689
1210 => 0.0010164827655199
1211 => 0.0010545306455151
1212 => 0.00097724549544925
1213 => 0.00097565385864255
1214 => 0.00094498627286147
1215 => 0.00092553640512376
1216 => 0.00094631802194556
1217 => 0.00096472769747608
1218 => 0.00094555831279698
1219 => 0.00094806142974827
1220 => 0.00092232809701285
1221 => 0.00093152655259991
1222 => 0.00093944950171728
1223 => 0.00093507491490409
1224 => 0.00092852594671236
1225 => 0.00096321831402375
1226 => 0.00096126083469955
1227 => 0.000993567164714
1228 => 0.0010187522592081
1229 => 0.0010638884509156
1230 => 0.0010167864818659
1231 => 0.0010150698989004
]
'min_raw' => 0.00085932698993983
'max_raw' => 0.0024845670433682
'avg_raw' => 0.001671947016654
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.000859'
'max' => '$0.002484'
'avg' => '$0.001671'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.00015110244573993
'max_diff' => -0.00083928801624453
'year' => 2030
]
5 => [
'items' => [
101 => 0.0010318497727371
102 => 0.0010164801966087
103 => 0.0010261932381821
104 => 0.0010623235297551
105 => 0.0010630869058827
106 => 0.0010502993721913
107 => 0.001049521249604
108 => 0.0010519772353298
109 => 0.0010663620204366
110 => 0.0010613355345205
111 => 0.0010671523112777
112 => 0.0010744262796822
113 => 0.001104514497102
114 => 0.0011117686644588
115 => 0.0010941447986365
116 => 0.0010957360363941
117 => 0.0010891442267907
118 => 0.0010827766213088
119 => 0.0010970900685179
120 => 0.001123248174624
121 => 0.0011230854464035
122 => 0.0011291536185792
123 => 0.0011329340395732
124 => 0.0011167057052296
125 => 0.0011061416563044
126 => 0.0011101925848702
127 => 0.0011166701078647
128 => 0.001108092011465
129 => 0.0010551440267247
130 => 0.0010712050629645
131 => 0.0010685317211897
201 => 0.0010647245574128
202 => 0.0010808740535483
203 => 0.0010793163952491
204 => 0.0010326584817387
205 => 0.0010356453699804
206 => 0.0010328401243056
207 => 0.0010419044469803
208 => 0.0010159906934377
209 => 0.0010239615894956
210 => 0.0010289608607806
211 => 0.0010319054699737
212 => 0.0010425434175165
213 => 0.0010412951771551
214 => 0.001042465825143
215 => 0.001058239093035
216 => 0.0011380148693009
217 => 0.0011423568887877
218 => 0.0011209751968156
219 => 0.0011295167610232
220 => 0.0011131188255793
221 => 0.0011241268694994
222 => 0.0011316582935756
223 => 0.001097625236385
224 => 0.0010956100196109
225 => 0.0010791444040544
226 => 0.0010879920931943
227 => 0.0010739147836013
228 => 0.001077368862972
301 => 0.0010677109559302
302 => 0.0010850932657354
303 => 0.0011045293890355
304 => 0.0011094397213368
305 => 0.0010965227510829
306 => 0.0010871700133492
307 => 0.0010707496868723
308 => 0.0010980570557543
309 => 0.0011060425625924
310 => 0.0010980151112864
311 => 0.0010961549754156
312 => 0.0010926300213014
313 => 0.0010969028110944
314 => 0.0011059990718072
315 => 0.0011017094432366
316 => 0.001104542818481
317 => 0.0010937449138132
318 => 0.0011167110774836
319 => 0.0011531868725004
320 => 0.0011533041481457
321 => 0.0011490144964524
322 => 0.0011472592634014
323 => 0.0011516607063565
324 => 0.0011540483086031
325 => 0.0011682817680334
326 => 0.0011835548370882
327 => 0.0012548275862049
328 => 0.0012348144834554
329 => 0.0012980519065066
330 => 0.0013480644977883
331 => 0.0013630610871282
401 => 0.0013492649305796
402 => 0.0013020690242806
403 => 0.0012997533679576
404 => 0.001370283977566
405 => 0.001350355849845
406 => 0.0013479854624634
407 => 0.0013227685455555
408 => 0.001337674866624
409 => 0.0013344146355438
410 => 0.0013292682012877
411 => 0.001357708423503
412 => 0.0014109459806139
413 => 0.0014026484080795
414 => 0.0013964546550959
415 => 0.0013693154324962
416 => 0.001385659306266
417 => 0.0013798395658629
418 => 0.0014048448639334
419 => 0.0013900322792916
420 => 0.0013502048746777
421 => 0.0013565475201353
422 => 0.001355588842034
423 => 0.0013753183694258
424 => 0.0013693960550198
425 => 0.0013544324150965
426 => 0.0014107640204314
427 => 0.0014071061593138
428 => 0.001412292170075
429 => 0.0014145752123949
430 => 0.001448863267888
501 => 0.0014629099871281
502 => 0.0014660988383181
503 => 0.0014794421351839
504 => 0.0014657668449366
505 => 0.0015204777562427
506 => 0.0015568573197911
507 => 0.0015991140549278
508 => 0.0016608625025021
509 => 0.0016840804899952
510 => 0.0016798863683707
511 => 0.0017267033365963
512 => 0.0018108323878149
513 => 0.0016968912549636
514 => 0.0018168715445267
515 => 0.0017788871700901
516 => 0.0016888269016106
517 => 0.0016830280820613
518 => 0.0017440179414968
519 => 0.0018792875796684
520 => 0.001845404069522
521 => 0.0018793430009526
522 => 0.0018397514346663
523 => 0.0018377853796963
524 => 0.0018774201269481
525 => 0.0019700288742796
526 => 0.0019260339298094
527 => 0.0018629563889084
528 => 0.0019095318635145
529 => 0.001869183877054
530 => 0.0017782685708682
531 => 0.0018453781594404
601 => 0.0018005038887332
602 => 0.001813600586573
603 => 0.0019079196290554
604 => 0.0018965709123267
605 => 0.0019112572026365
606 => 0.0018853362846468
607 => 0.0018611220598908
608 => 0.0018159244112118
609 => 0.0018025436156551
610 => 0.0018062415861564
611 => 0.0018025417831246
612 => 0.0017772541140766
613 => 0.0017717932443533
614 => 0.0017626915555683
615 => 0.0017655125495069
616 => 0.0017483987117982
617 => 0.0017806960594539
618 => 0.001786690731782
619 => 0.0018101940480305
620 => 0.0018126342402927
621 => 0.001878090641496
622 => 0.0018420383556634
623 => 0.0018662253416045
624 => 0.0018640618299252
625 => 0.0016907787807151
626 => 0.001714655656007
627 => 0.0017518005809849
628 => 0.0017350668426311
629 => 0.0017114092516906
630 => 0.0016923044785663
701 => 0.0016633587937198
702 => 0.0017040992892887
703 => 0.0017576687086931
704 => 0.0018139928491718
705 => 0.001881662613453
706 => 0.0018665595098283
707 => 0.0018127278099987
708 => 0.0018151426607289
709 => 0.0018300703177348
710 => 0.0018107376455916
711 => 0.0018050360631579
712 => 0.0018292870078622
713 => 0.0018294540107902
714 => 0.001807209435058
715 => 0.001782488659846
716 => 0.0017823850788952
717 => 0.0017779862557206
718 => 0.001840533975537
719 => 0.0018749288971483
720 => 0.0018788722194809
721 => 0.0018746634801366
722 => 0.0018762832568713
723 => 0.0018562696098261
724 => 0.0019020148721088
725 => 0.001943995248517
726 => 0.0019327436108597
727 => 0.0019158758064968
728 => 0.0019024397878583
729 => 0.0019295785118713
730 => 0.0019283700672113
731 => 0.001943628586552
801 => 0.0019429363719772
802 => 0.0019378055058249
803 => 0.0019327437940991
804 => 0.0019528129089418
805 => 0.0019470333261672
806 => 0.0019412447661042
807 => 0.0019296349227137
808 => 0.0019312128932495
809 => 0.0019143480013509
810 => 0.0019065455306737
811 => 0.0017892150924327
812 => 0.001757860565452
813 => 0.0017677253379204
814 => 0.0017709730771557
815 => 0.0017573275468317
816 => 0.0017768917320671
817 => 0.0017738426745218
818 => 0.0017857047737916
819 => 0.0017782938491603
820 => 0.0017785979960922
821 => 0.0018003919452572
822 => 0.0018067188214179
823 => 0.0018035009211385
824 => 0.001805754628191
825 => 0.0018576903559875
826 => 0.0018503067563059
827 => 0.0018463843661357
828 => 0.0018474708950189
829 => 0.0018607415869855
830 => 0.0018644566561832
831 => 0.0018487156469392
901 => 0.0018561391978964
902 => 0.0018877477356831
903 => 0.0018988089350202
904 => 0.0019341109736272
905 => 0.0019191140401832
906 => 0.0019466415605717
907 => 0.0020312517734225
908 => 0.0020988442660291
909 => 0.0020366834164502
910 => 0.0021608084212702
911 => 0.0022574575421971
912 => 0.0022537479879584
913 => 0.0022368949781904
914 => 0.0021268625235649
915 => 0.0020256090183272
916 => 0.0021103118749095
917 => 0.0021105277999102
918 => 0.0021032517494106
919 => 0.0020580608246551
920 => 0.0021016792031861
921 => 0.0021051414716752
922 => 0.0021032035220128
923 => 0.0020685557459585
924 => 0.0020156549959031
925 => 0.0020259916758374
926 => 0.0020429233684324
927 => 0.002010868142029
928 => 0.0020006245548984
929 => 0.0020196693322963
930 => 0.0020810355732093
1001 => 0.0020694346408351
1002 => 0.0020691316936078
1003 => 0.0021187654018654
1004 => 0.0020832383783776
1005 => 0.002026122054474
1006 => 0.0020116994294166
1007 => 0.0019605088267072
1008 => 0.0019958663583333
1009 => 0.0019971388129507
1010 => 0.0019777738542243
1011 => 0.0020276934141483
1012 => 0.0020272333966154
1013 => 0.0020746245892173
1014 => 0.002165218750153
1015 => 0.0021384255988964
1016 => 0.0021072680790715
1017 => 0.0021106557653808
1018 => 0.0021478103226713
1019 => 0.0021253458291774
1020 => 0.0021334242176658
1021 => 0.0021477980950627
1022 => 0.0021564702121796
1023 => 0.002109407981184
1024 => 0.0020984355238922
1025 => 0.0020759897270823
1026 => 0.0020701340376652
1027 => 0.00208841567082
1028 => 0.0020835991063833
1029 => 0.0019970318680673
1030 => 0.0019879851100077
1031 => 0.0019882625611616
1101 => 0.0019655140578708
1102 => 0.0019308171300861
1103 => 0.0020219985846585
1104 => 0.0020146754377727
1105 => 0.0020065912503773
1106 => 0.0020075815172055
1107 => 0.0020471602962092
1108 => 0.0020242026056108
1109 => 0.0020852393887581
1110 => 0.0020726920610766
1111 => 0.0020598229417856
1112 => 0.0020580440374966
1113 => 0.0020530905245112
1114 => 0.0020361030853633
1115 => 0.0020155897318053
1116 => 0.0020020450389501
1117 => 0.0018467807207311
1118 => 0.0018755968750616
1119 => 0.0019087472339437
1120 => 0.001920190604988
1121 => 0.0019006159269595
1122 => 0.0020368760129609
1123 => 0.0020617720437082
1124 => 0.0019863603426467
1125 => 0.0019722538924176
1126 => 0.0020378008294895
1127 => 0.0019982680136479
1128 => 0.0020160696382008
1129 => 0.0019775922628856
1130 => 0.0020557753189421
1201 => 0.0020551796950474
1202 => 0.002024764720397
1203 => 0.0020504712486987
1204 => 0.0020460041067997
1205 => 0.0020116656753282
1206 => 0.0020568639084681
1207 => 0.0020568863262278
1208 => 0.0020276125744054
1209 => 0.0019934272411251
1210 => 0.0019873157109561
1211 => 0.0019827114939423
1212 => 0.002014937283059
1213 => 0.0020438308248136
1214 => 0.0020975945427024
1215 => 0.0021111120187741
1216 => 0.0021638716277911
1217 => 0.0021324558494402
1218 => 0.0021463820570807
1219 => 0.0021615009254569
1220 => 0.0021687494669344
1221 => 0.002156938357575
1222 => 0.0022388957471
1223 => 0.0022458154618854
1224 => 0.0022481355823976
1225 => 0.0022205000117779
1226 => 0.0022450468666741
1227 => 0.0022335622061745
1228 => 0.0022634421022638
1229 => 0.0022681276514962
1230 => 0.0022641591579896
1231 => 0.0022656464252723
]
'min_raw' => 0.0010159906934377
'max_raw' => 0.0022681276514962
'avg_raw' => 0.001642059172467
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.001015'
'max' => '$0.002268'
'avg' => '$0.001642'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.00015666370349785
'max_diff' => -0.00021643939187202
'year' => 2031
]
6 => [
'items' => [
101 => 0.002195710251587
102 => 0.0021920836920387
103 => 0.0021426352952688
104 => 0.0021627858824567
105 => 0.0021251153255518
106 => 0.0021370610471961
107 => 0.0021423266074739
108 => 0.0021395761776027
109 => 0.0021639251664226
110 => 0.0021432235517559
111 => 0.0020885885869899
112 => 0.0020339387369643
113 => 0.002033252652614
114 => 0.0020188643117523
115 => 0.0020084641766653
116 => 0.0020104676116477
117 => 0.0020175279778377
118 => 0.0020080538153473
119 => 0.0020100756082668
120 => 0.0020436508418671
121 => 0.002050384115518
122 => 0.0020275018207924
123 => 0.0019356261055694
124 => 0.0019130795746009
125 => 0.0019292855739439
126 => 0.001921540150058
127 => 0.0015508328711566
128 => 0.0016379250475556
129 => 0.0015861778337102
130 => 0.001610025330625
131 => 0.0015572048251648
201 => 0.0015824135389303
202 => 0.0015777584099726
203 => 0.0017178000523775
204 => 0.0017156134947524
205 => 0.0017166600841775
206 => 0.0016667036440425
207 => 0.0017462856096427
208 => 0.0017854905475722
209 => 0.0017782347569671
210 => 0.0017800608831426
211 => 0.001748681985203
212 => 0.0017169639005004
213 => 0.0016817836631869
214 => 0.0017471441957066
215 => 0.0017398772202319
216 => 0.0017565450473956
217 => 0.001798936024802
218 => 0.0018051782572527
219 => 0.001813567880969
220 => 0.0018105607980808
221 => 0.0018822017122989
222 => 0.0018735255248851
223 => 0.0018944326402429
224 => 0.0018514251177253
225 => 0.0018027580236852
226 => 0.0018120080472151
227 => 0.0018111171955652
228 => 0.0017997756315898
229 => 0.0017895369747485
301 => 0.0017724924958313
302 => 0.0018264237492335
303 => 0.0018242342388354
304 => 0.0018596798671532
305 => 0.0018534145080476
306 => 0.0018115729065467
307 => 0.0018130672875299
308 => 0.0018231177178169
309 => 0.0018579023717939
310 => 0.0018682288254142
311 => 0.0018634452006592
312 => 0.0018747676856333
313 => 0.0018837165161019
314 => 0.0018758915209615
315 => 0.0019866769506947
316 => 0.0019406711163363
317 => 0.001963094039896
318 => 0.0019684417750415
319 => 0.0019547436639171
320 => 0.0019577142937274
321 => 0.0019622139884418
322 => 0.0019895352536172
323 => 0.0020612341589092
324 => 0.002092989115992
325 => 0.0021885254711378
326 => 0.0020903523088566
327 => 0.0020845271196878
328 => 0.0021017361021711
329 => 0.0021578260561919
330 => 0.0022032816956642
331 => 0.002218361953676
401 => 0.0022203550587201
402 => 0.0022486466252668
403 => 0.0022648628236048
404 => 0.0022452112849459
405 => 0.0022285586635344
406 => 0.0021689110406378
407 => 0.0021758154154031
408 => 0.0022233797107975
409 => 0.0022905670795651
410 => 0.002348220831622
411 => 0.0023280324970878
412 => 0.0024820552388407
413 => 0.002497325964559
414 => 0.0024952160440264
415 => 0.0025300050298014
416 => 0.0024609559776918
417 => 0.0024314361701525
418 => 0.0022321591492988
419 => 0.0022881478637547
420 => 0.0023695307483181
421 => 0.002358759418376
422 => 0.0022996569922353
423 => 0.0023481759971319
424 => 0.0023321340967835
425 => 0.0023194811843997
426 => 0.0023774466289178
427 => 0.0023137112415809
428 => 0.0023688949390744
429 => 0.0022981212762368
430 => 0.0023281247156994
501 => 0.0023110933123573
502 => 0.0023221147176099
503 => 0.0022576838077075
504 => 0.0022924491627189
505 => 0.0022562374546411
506 => 0.0022562202855766
507 => 0.0022554209101138
508 => 0.00229802382408
509 => 0.0022994131035749
510 => 0.0022679294857844
511 => 0.0022633922045943
512 => 0.0022801689112396
513 => 0.0022605277815844
514 => 0.0022697177425303
515 => 0.0022608061361395
516 => 0.0022587999458338
517 => 0.0022428142801527
518 => 0.0022359272158422
519 => 0.0022386278112161
520 => 0.0022294092869526
521 => 0.0022238547926353
522 => 0.0022543159813894
523 => 0.0022380417970389
524 => 0.0022518217292331
525 => 0.0022361177573318
526 => 0.002181680948827
527 => 0.0021503737645971
528 => 0.0020475476796263
529 => 0.0020767090297687
530 => 0.0020960430350826
531 => 0.0020896531464417
601 => 0.0021033810998011
602 => 0.0021042238846435
603 => 0.0020997607870665
604 => 0.0020945930918304
605 => 0.002092077743581
606 => 0.002110825088646
607 => 0.0021217085534629
608 => 0.0020979834611715
609 => 0.0020924250039969
610 => 0.0021164123822018
611 => 0.0021310446690497
612 => 0.0022390812539628
613 => 0.0022310775547989
614 => 0.0022511652690537
615 => 0.0022489037006997
616 => 0.0022699588254627
617 => 0.0023043750558904
618 => 0.0022343972365014
619 => 0.0022465429662964
620 => 0.0022435651138366
621 => 0.0022760765261586
622 => 0.0022761780232391
623 => 0.0022566858074866
624 => 0.0022672528538711
625 => 0.002261354618471
626 => 0.0022720135270333
627 => 0.0022309706605169
628 => 0.0022809564416302
629 => 0.0023092951585088
630 => 0.0023096886416202
701 => 0.0023231209685107
702 => 0.0023367689905794
703 => 0.002362965180448
704 => 0.0023360383930619
705 => 0.0022875997238244
706 => 0.0022910968392874
707 => 0.0022626972652364
708 => 0.002263174667207
709 => 0.0022606262580733
710 => 0.0022682742257189
711 => 0.0022326489593326
712 => 0.0022410101381467
713 => 0.002229304438844
714 => 0.0022465175203922
715 => 0.0022279990900706
716 => 0.0022435636778259
717 => 0.0022502808379269
718 => 0.0022750673033095
719 => 0.0022243381089803
720 => 0.0021208978476788
721 => 0.0021426422446963
722 => 0.0021104805735218
723 => 0.0021134572586372
724 => 0.002119470636306
725 => 0.0020999793118265
726 => 0.002103697642295
727 => 0.0021035647973651
728 => 0.0021024200115286
729 => 0.0020973495652408
730 => 0.0020899964149663
731 => 0.0021192891024796
801 => 0.0021242665008936
802 => 0.0021353306409988
803 => 0.0021682500170736
804 => 0.0021649605951114
805 => 0.0021703257788086
806 => 0.0021586136129219
807 => 0.0021140005524213
808 => 0.0021164232562464
809 => 0.0020862121007264
810 => 0.0021345580738282
811 => 0.002123109109262
812 => 0.0021157278873263
813 => 0.0021137138525346
814 => 0.0021467148293754
815 => 0.0021565892388731
816 => 0.0021504361695211
817 => 0.0021378160447665
818 => 0.0021620504151004
819 => 0.0021685345102358
820 => 0.0021699860600123
821 => 0.0022129247177644
822 => 0.0021723858539917
823 => 0.0021821439614234
824 => 0.0022582739300314
825 => 0.0021892345537215
826 => 0.0022258062511147
827 => 0.0022240162568372
828 => 0.0022427250997048
829 => 0.0022224815856519
830 => 0.0022227325282702
831 => 0.0022393447132898
901 => 0.0022160158954531
902 => 0.0022102393520828
903 => 0.0022022590987892
904 => 0.0022196836899041
905 => 0.0022301289442311
906 => 0.0023143100229122
907 => 0.0023686948388637
908 => 0.0023663338505735
909 => 0.0023879088639611
910 => 0.0023781891228255
911 => 0.0023468015147606
912 => 0.0024003763344164
913 => 0.0023834230198117
914 => 0.0023848206304694
915 => 0.0023847686113309
916 => 0.0023960410834586
917 => 0.0023880535038492
918 => 0.002372309164531
919 => 0.002382760991728
920 => 0.0024137991819066
921 => 0.0025101426765889
922 => 0.0025640577725947
923 => 0.0025068969201116
924 => 0.0025463257107401
925 => 0.0025226824862776
926 => 0.0025183858090677
927 => 0.0025431500033472
928 => 0.0025679575440705
929 => 0.0025663774109723
930 => 0.0025483684102885
1001 => 0.0025381955827637
1002 => 0.0026152276409288
1003 => 0.002671983549178
1004 => 0.0026681131767318
1005 => 0.0026851957419966
1006 => 0.0027353506819578
1007 => 0.0027399362211057
1008 => 0.0027393585485705
1009 => 0.0027279928113409
1010 => 0.0027773768631748
1011 => 0.0028185739080443
1012 => 0.00272536197156
1013 => 0.0027608558567394
1014 => 0.0027767902053379
1015 => 0.0028001865565888
1016 => 0.0028396601228328
1017 => 0.0028825388856202
1018 => 0.00288860241282
1019 => 0.0028843000501053
1020 => 0.002856020353404
1021 => 0.0029029388072959
1022 => 0.0029304225372127
1023 => 0.0029467884694242
1024 => 0.002988289750481
1025 => 0.0027768886104502
1026 => 0.002627248376218
1027 => 0.0026038798928115
1028 => 0.0026514006227389
1029 => 0.00266393146025
1030 => 0.0026588802953616
1031 => 0.0024904466070384
1101 => 0.0026029931243006
1102 => 0.0027240837136948
1103 => 0.0027287352963903
1104 => 0.0027893557773259
1105 => 0.002809096290836
1106 => 0.0028579037236972
1107 => 0.0028548508054829
1108 => 0.0028667346386887
1109 => 0.002864002751234
1110 => 0.0029544082429918
1111 => 0.0030541389257461
1112 => 0.0030506855693265
1113 => 0.0030363481037207
1114 => 0.0030576416850465
1115 => 0.0031605744374384
1116 => 0.0031510980390619
1117 => 0.003160303552887
1118 => 0.0032816670689928
1119 => 0.0034394569036892
1120 => 0.0033661476836323
1121 => 0.0035252075969959
1122 => 0.0036253273810545
1123 => 0.0037984741950051
1124 => 0.0037767953611325
1125 => 0.0038442001451934
1126 => 0.0037379857239913
1127 => 0.003494095943435
1128 => 0.0034554994520894
1129 => 0.0035327706051821
1130 => 0.0037227341950517
1201 => 0.0035267879757141
1202 => 0.0035664276406852
1203 => 0.0035550114145068
1204 => 0.0035544030923296
1205 => 0.0035776202756085
1206 => 0.0035439425403356
1207 => 0.0034067333883247
1208 => 0.0034696155341127
1209 => 0.0034453337177753
1210 => 0.003472276203331
1211 => 0.0036176736859486
1212 => 0.0035533899930403
1213 => 0.0034856723445445
1214 => 0.0035706053035074
1215 => 0.0036787541463983
1216 => 0.0036719863861724
1217 => 0.0036588541026297
1218 => 0.0037328800973758
1219 => 0.0038551493531149
1220 => 0.0038881982416235
1221 => 0.0039125942554658
1222 => 0.0039159580536006
1223 => 0.0039506072649781
1224 => 0.0037642897226756
1225 => 0.0040599804472836
1226 => 0.004111038067132
1227 => 0.004101441350722
1228 => 0.0041581897463504
1229 => 0.0041414929287887
1230 => 0.0041173018597922
1231 => 0.0042072601375931
]
'min_raw' => 0.0015508328711566
'max_raw' => 0.0042072601375931
'avg_raw' => 0.0028790465043748
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.00155'
'max' => '$0.0042072'
'avg' => '$0.002879'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.00053484217771887
'max_diff' => 0.0019391324860968
'year' => 2032
]
7 => [
'items' => [
101 => 0.004104130231353
102 => 0.0039577503131394
103 => 0.0038774433949409
104 => 0.003983198022999
105 => 0.0040477786840261
106 => 0.0040904623928636
107 => 0.0041033784573676
108 => 0.0037787530231065
109 => 0.0036037979185917
110 => 0.0037159421347213
111 => 0.0038527658181798
112 => 0.0037635296602056
113 => 0.0037670275486518
114 => 0.0036398002382302
115 => 0.0038640226120791
116 => 0.0038313552982163
117 => 0.0040008333803239
118 => 0.0039603860758824
119 => 0.0040985888727398
120 => 0.0040621954446472
121 => 0.0042132625299307
122 => 0.0042735272802283
123 => 0.0043747211754375
124 => 0.0044491598166867
125 => 0.0044928716106125
126 => 0.004490247318464
127 => 0.0046634552231272
128 => 0.0045613205731706
129 => 0.0044330153815362
130 => 0.0044306947454173
131 => 0.0044971458222633
201 => 0.00463640904937
202 => 0.0046725179779612
203 => 0.0046926979429731
204 => 0.0046617916240878
205 => 0.0045509317816161
206 => 0.004503063063709
207 => 0.0045438485982561
208 => 0.0044939713942459
209 => 0.0045800734414393
210 => 0.0046983099426406
211 => 0.0046738945727003
212 => 0.0047555114938538
213 => 0.0048399764208972
214 => 0.0049607650601264
215 => 0.0049923436832113
216 => 0.0050445419463431
217 => 0.005098271105342
218 => 0.005115527463171
219 => 0.0051484752045999
220 => 0.0051483015537391
221 => 0.005247591790174
222 => 0.0053571119957243
223 => 0.0053984533379209
224 => 0.0054935154747272
225 => 0.005330724896821
226 => 0.0054542034201662
227 => 0.0055655841390915
228 => 0.0054327914543007
301 => 0.0056158152335575
302 => 0.0056229216321652
303 => 0.005730219814037
304 => 0.0056214525508656
305 => 0.0055568668971917
306 => 0.0057433232593552
307 => 0.0058335436196857
308 => 0.0058063685129165
309 => 0.0055995646086024
310 => 0.0054791958660549
311 => 0.0051641676494116
312 => 0.0055373321802318
313 => 0.0057190897378357
314 => 0.0055990939004376
315 => 0.0056596128210802
316 => 0.0059897844287801
317 => 0.0061154923999637
318 => 0.0060893460207226
319 => 0.0060937643284083
320 => 0.0061615940678979
321 => 0.0064623884873148
322 => 0.0062821454988401
323 => 0.0064199345099531
324 => 0.0064930173046121
325 => 0.0065609006772398
326 => 0.0063942005688264
327 => 0.0061773261770914
328 => 0.0061086329534614
329 => 0.0055871626792678
330 => 0.0055600178868655
331 => 0.0055447806923186
401 => 0.0054487123360447
402 => 0.0053732289233508
403 => 0.0053132017110572
404 => 0.0051556723803558
405 => 0.0052088339051455
406 => 0.004957765030934
407 => 0.0051183899993199
408 => 0.0047176780138084
409 => 0.0050514028625634
410 => 0.004869771599993
411 => 0.0049917321078519
412 => 0.0049913065991293
413 => 0.0047667386365469
414 => 0.0046372125223432
415 => 0.0047197516035456
416 => 0.004808240050555
417 => 0.0048225970033714
418 => 0.0049373245847038
419 => 0.0049693425865926
420 => 0.004872326546092
421 => 0.0047093741485762
422 => 0.0047472242739706
423 => 0.0046364454907601
424 => 0.0044423099342281
425 => 0.0045817414802111
426 => 0.0046293495403819
427 => 0.0046503759719248
428 => 0.0044594659486948
429 => 0.0043994778745377
430 => 0.0043675407272052
501 => 0.0046847300619226
502 => 0.0047021064096929
503 => 0.0046132065577322
504 => 0.0050150423184241
505 => 0.0049240945099314
506 => 0.0050257054947719
507 => 0.0047437897718173
508 => 0.0047545593320841
509 => 0.0046210959109375
510 => 0.0046958265087506
511 => 0.0046430093308959
512 => 0.0046897890149494
513 => 0.0047178285646912
514 => 0.0048512700858037
515 => 0.0050529265503844
516 => 0.004831338372432
517 => 0.004734789230097
518 => 0.0047946877749887
519 => 0.0049542054933731
520 => 0.0051958830022872
521 => 0.0050528050527969
522 => 0.0051163006171596
523 => 0.0051301715732518
524 => 0.0050246711903312
525 => 0.0051997729518897
526 => 0.005293611408433
527 => 0.005389870247714
528 => 0.0054734491007502
529 => 0.0053514223505279
530 => 0.0054820084651133
531 => 0.0053767791083098
601 => 0.0052823774968462
602 => 0.0052825206651235
603 => 0.0052233011552648
604 => 0.0051085558927753
605 => 0.0050873951058641
606 => 0.0051974761916891
607 => 0.0052857507978032
608 => 0.0052930215171696
609 => 0.0053418948748274
610 => 0.0053708176244536
611 => 0.0056542998893624
612 => 0.005768318801397
613 => 0.0059077389687653
614 => 0.0059620509812454
615 => 0.0061255106668762
616 => 0.0059935036951827
617 => 0.0059649431564941
618 => 0.0055684434264093
619 => 0.0056333702349984
620 => 0.0057373243200546
621 => 0.0055701575909832
622 => 0.005676186404102
623 => 0.005697118737809
624 => 0.0055644773294965
625 => 0.0056353268367731
626 => 0.0054471715508613
627 => 0.0050570278214482
628 => 0.005200207293389
629 => 0.0053056355784266
630 => 0.0051551764164642
701 => 0.0054248686407081
702 => 0.0052673200108823
703 => 0.0052173846588955
704 => 0.0050225690475565
705 => 0.005114514516968
706 => 0.0052388720808793
707 => 0.0051620335645006
708 => 0.0053214850233476
709 => 0.0055473108132257
710 => 0.0057082477192512
711 => 0.0057206024565343
712 => 0.0056171308078952
713 => 0.0057829447851866
714 => 0.0057841525589879
715 => 0.0055971137152333
716 => 0.0054825534648702
717 => 0.0054565251349509
718 => 0.005521549006244
719 => 0.0056004999900627
720 => 0.0057249836866653
721 => 0.0058002065773928
722 => 0.0059963479812715
723 => 0.0060494182213464
724 => 0.0061077263252972
725 => 0.0061856439337288
726 => 0.0062792040003157
727 => 0.0060744999010011
728 => 0.0060826331764831
729 => 0.0058920155535225
730 => 0.0056883132860569
731 => 0.0058428979152172
801 => 0.0060449967543129
802 => 0.0059986350573249
803 => 0.0059934184193303
804 => 0.0060021913574626
805 => 0.0059672361519652
806 => 0.0058091350530007
807 => 0.005729737670866
808 => 0.0058321805502522
809 => 0.005886624381438
810 => 0.0059710620156061
811 => 0.0059606532949327
812 => 0.0061781555726098
813 => 0.0062626703807877
814 => 0.0062410478762633
815 => 0.0062450269374704
816 => 0.006398036960723
817 => 0.0065682155754913
818 => 0.0067276103052679
819 => 0.0068897534705595
820 => 0.006694283556245
821 => 0.0065950359886643
822 => 0.0066974341446941
823 => 0.0066431002417463
824 => 0.0069553189645669
825 => 0.0069769363115237
826 => 0.007289132457377
827 => 0.0075854437754172
828 => 0.0073993359455248
829 => 0.0075748272466326
830 => 0.0077646353967964
831 => 0.0081308061137249
901 => 0.0080074926983045
902 => 0.0079130365546601
903 => 0.0078237759553249
904 => 0.0080095130928203
905 => 0.008248460952985
906 => 0.0082999280334504
907 => 0.0083833243657421
908 => 0.0082956433195557
909 => 0.0084012454819368
910 => 0.0087740675190838
911 => 0.0086733277136555
912 => 0.0085302609952155
913 => 0.008824568187334
914 => 0.0089310768160714
915 => 0.0096786101515525
916 => 0.010622401866659
917 => 0.010231665899335
918 => 0.0099891234754453
919 => 0.010046126698242
920 => 0.010390767483234
921 => 0.010501455165021
922 => 0.010200567889591
923 => 0.010306846361963
924 => 0.010892451193804
925 => 0.011206609397634
926 => 0.010779940359757
927 => 0.0096027774061932
928 => 0.0085173794025469
929 => 0.008805275829223
930 => 0.0087726373089042
1001 => 0.0094017966450264
1002 => 0.0086709251026129
1003 => 0.0086832311049626
1004 => 0.0093254007898645
1005 => 0.0091540809275082
1006 => 0.0088765646914811
1007 => 0.0085194055781877
1008 => 0.0078591639240455
1009 => 0.0072743694787711
1010 => 0.0084212860560717
1011 => 0.008371828927726
1012 => 0.0083002076767458
1013 => 0.0084595930205736
1014 => 0.0092335230078826
1015 => 0.0092156814167082
1016 => 0.0091021823165167
1017 => 0.0091882703836768
1018 => 0.0088614730370783
1019 => 0.008945696154334
1020 => 0.0085172074699576
1021 => 0.0087109022505639
1022 => 0.0088759692662775
1023 => 0.0089091089135409
1024 => 0.0089837742309778
1025 => 0.0083457672684372
1026 => 0.0086322136637176
1027 => 0.0088004740845473
1028 => 0.0080402673818723
1029 => 0.0087854472422863
1030 => 0.0083346609866567
1031 => 0.0081816573609137
1101 => 0.0083876565862818
1102 => 0.008307378487815
1103 => 0.0082383600928414
1104 => 0.0081998466425596
1105 => 0.0083511097383651
1106 => 0.0083440531341472
1107 => 0.0080965573505077
1108 => 0.0077737091899687
1109 => 0.0078820676297752
1110 => 0.0078426999927277
1111 => 0.0077000265975413
1112 => 0.0077961712394455
1113 => 0.0073727988941892
1114 => 0.0066444087791554
1115 => 0.0071256056003393
1116 => 0.0071070800461652
1117 => 0.0070977386216836
1118 => 0.0074593447335001
1119 => 0.0074245846495213
1120 => 0.0073614947567282
1121 => 0.0076988679021845
1122 => 0.0075757221657838
1123 => 0.0079552283085862
1124 => 0.0082051955991543
1125 => 0.0081417958086715
1126 => 0.0083768912536475
1127 => 0.0078845639893751
1128 => 0.0080480953578249
1129 => 0.0080817989462178
1130 => 0.0076947047699386
1201 => 0.0074302718291455
1202 => 0.0074126371667508
1203 => 0.0069541468885193
1204 => 0.0071990686943463
1205 => 0.0074145897479211
1206 => 0.0073113718883682
1207 => 0.0072786961975796
1208 => 0.007445629215326
1209 => 0.0074586013404895
1210 => 0.0071628355120373
1211 => 0.0072243345934582
1212 => 0.0074807959863549
1213 => 0.0072178724243694
1214 => 0.0067070548917515
1215 => 0.0065803650810574
1216 => 0.0065634623249543
1217 => 0.0062198695104562
1218 => 0.0065888310999989
1219 => 0.0064277694786076
1220 => 0.006936561210768
1221 => 0.0066459421020628
1222 => 0.0066334140931396
1223 => 0.0066144761701928
1224 => 0.0063187316411138
1225 => 0.0063834808974368
1226 => 0.0065987172870445
1227 => 0.006675516055668
1228 => 0.0066675053149068
1229 => 0.0065976625113136
1230 => 0.0066296361891456
1231 => 0.006526637832481
]
'min_raw' => 0.0036037979185917
'max_raw' => 0.011206609397634
'avg_raw' => 0.0074052036581128
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.0036037'
'max' => '$0.0112066'
'avg' => '$0.0074052'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.0020529650474352
'max_diff' => 0.0069993492600409
'year' => 2033
]
8 => [
'items' => [
101 => 0.0064902669690174
102 => 0.006375470519332
103 => 0.006206751451623
104 => 0.0062302128728021
105 => 0.0058959362519252
106 => 0.0057138046074683
107 => 0.0056633929687392
108 => 0.0055959804185832
109 => 0.0056710073956573
110 => 0.0058949892882579
111 => 0.0056248196053722
112 => 0.0051616326342646
113 => 0.0051894709604603
114 => 0.005252015414149
115 => 0.0051354642384731
116 => 0.0050251583320947
117 => 0.0051210603682897
118 => 0.0049248019425454
119 => 0.0052757323072645
120 => 0.0052662406243698
121 => 0.0053970457629489
122 => 0.005478840900494
123 => 0.0052903295899427
124 => 0.0052429195051278
125 => 0.0052699264441066
126 => 0.0048235619014875
127 => 0.005360568256916
128 => 0.0053652123101774
129 => 0.0053254471066666
130 => 0.0056113864127211
131 => 0.0062148075352022
201 => 0.0059877762363664
202 => 0.0058998628553999
203 => 0.0057327394539181
204 => 0.0059554214635868
205 => 0.0059383229596248
206 => 0.0058609970402933
207 => 0.00581423008301
208 => 0.0059003996357576
209 => 0.0058035527218284
210 => 0.0057861563549115
211 => 0.0056807532988289
212 => 0.0056431292033409
213 => 0.0056152738209
214 => 0.0055846077818459
215 => 0.0056522494224984
216 => 0.0054989645657809
217 => 0.0053141180552793
218 => 0.0052987500679981
219 => 0.0053411824320489
220 => 0.0053224092696744
221 => 0.0052986601893192
222 => 0.005253316727244
223 => 0.005239864290656
224 => 0.0052835781833724
225 => 0.0052342277471739
226 => 0.0053070470040422
227 => 0.0052872441954473
228 => 0.0051766273163988
301 => 0.0050387577294904
302 => 0.0050375304009757
303 => 0.0050078266246277
304 => 0.0049699943994559
305 => 0.0049594703398971
306 => 0.0051129837662939
307 => 0.0054307519646649
308 => 0.0053683664637762
309 => 0.0054134463816916
310 => 0.0056351949606008
311 => 0.0057056821656237
312 => 0.0056556520170794
313 => 0.0055871676640269
314 => 0.0055901806279972
315 => 0.0058242123940013
316 => 0.0058388086681777
317 => 0.0058756887440852
318 => 0.0059230900639344
319 => 0.0056637246668188
320 => 0.0055779645411174
321 => 0.0055373266357694
322 => 0.0054121776161463
323 => 0.0055471401043438
324 => 0.0054685032421411
325 => 0.00547911404147
326 => 0.0054722037444871
327 => 0.005475977233912
328 => 0.0052756342150755
329 => 0.0053486286814205
330 => 0.0052272612236125
331 => 0.005064763821744
401 => 0.0050642190734741
402 => 0.0051039900823714
403 => 0.0050803327300395
404 => 0.0050166714032005
405 => 0.005025714194205
406 => 0.0049464898297339
407 => 0.0050353334664553
408 => 0.0050378811840586
409 => 0.0050036715445753
410 => 0.0051405474250039
411 => 0.0051966255848956
412 => 0.0051741080673462
413 => 0.0051950456958372
414 => 0.0053709588629917
415 => 0.0053996403848675
416 => 0.0054123788222897
417 => 0.0053953110036635
418 => 0.0051982610656045
419 => 0.0052070010682784
420 => 0.0051428727277398
421 => 0.0050886910376627
422 => 0.0050908580211203
423 => 0.0051187144529466
424 => 0.0052403651244902
425 => 0.0054963717910548
426 => 0.0055060870569125
427 => 0.0055178622425463
428 => 0.0054699666448394
429 => 0.0054555208742719
430 => 0.0054745785744202
501 => 0.0055707212181909
502 => 0.0058180262004421
503 => 0.0057306121027701
504 => 0.0056595430806813
505 => 0.0057218897731239
506 => 0.0057122919885119
507 => 0.0056312770275174
508 => 0.005629003207391
509 => 0.0054735095951928
510 => 0.0054160271471813
511 => 0.0053679905111363
512 => 0.0053155357586033
513 => 0.0052844388230025
514 => 0.0053322178493898
515 => 0.0053431454780294
516 => 0.005238675801799
517 => 0.0052244369709576
518 => 0.0053097491637018
519 => 0.0052722064484342
520 => 0.0053108200621015
521 => 0.0053197787516938
522 => 0.0053183361963333
523 => 0.0052791372898405
524 => 0.0053041215039108
525 => 0.0052450263894819
526 => 0.0051807693283396
527 => 0.0051397773266872
528 => 0.0051040063684455
529 => 0.0051238541750983
530 => 0.0050531003684474
531 => 0.005030464801707
601 => 0.0052956574143464
602 => 0.0054915580486041
603 => 0.0054887095757968
604 => 0.0054713702301503
605 => 0.0054456074796774
606 => 0.0055688365125275
607 => 0.0055259059815248
608 => 0.0055571415297952
609 => 0.0055650922877818
610 => 0.0055891568375923
611 => 0.0055977578457315
612 => 0.0055717596253504
613 => 0.0054845064223359
614 => 0.0052670797362096
615 => 0.0051658670268856
616 => 0.0051324651469777
617 => 0.0051336792418732
618 => 0.0051001890846983
619 => 0.0051100534369099
620 => 0.0050967586655606
621 => 0.0050715815849758
622 => 0.0051222995613193
623 => 0.0051281443356223
624 => 0.005116306153909
625 => 0.0051190944742509
626 => 0.0050210793858187
627 => 0.0050285312601146
628 => 0.0049870382770965
629 => 0.004979258842986
630 => 0.0048743681951236
701 => 0.0046885392082928
702 => 0.0047915065058533
703 => 0.0046671364897933
704 => 0.0046200356801981
705 => 0.004843003587143
706 => 0.0048206237934528
707 => 0.0047823193149176
708 => 0.0047256590078114
709 => 0.0047046431487496
710 => 0.0045769574419029
711 => 0.0045694130891656
712 => 0.0046326975732829
713 => 0.0046034939613489
714 => 0.0045624810299208
715 => 0.0044139363497025
716 => 0.0042469229476837
717 => 0.0042519640324818
718 => 0.0043050878882692
719 => 0.004459552663699
720 => 0.0043992006036709
721 => 0.0043554144916603
722 => 0.0043472146690864
723 => 0.0044498526160899
724 => 0.0045951068144144
725 => 0.0046632568343888
726 => 0.0045957222343411
727 => 0.0045181421221273
728 => 0.0045228640640862
729 => 0.004554277028471
730 => 0.0045575780868724
731 => 0.0045070814091857
801 => 0.0045212959281685
802 => 0.0044997027740307
803 => 0.004367185626945
804 => 0.0043647888119706
805 => 0.0043322669669481
806 => 0.0043312822184058
807 => 0.0042759544470681
808 => 0.0042682137093952
809 => 0.0041583570612485
810 => 0.0042306650397352
811 => 0.0041821646441055
812 => 0.0041090631078049
813 => 0.0040964603753931
814 => 0.0040960815220385
815 => 0.0041711404546148
816 => 0.0042297879324066
817 => 0.0041830083292523
818 => 0.0041723575203986
819 => 0.0042860802941681
820 => 0.0042716080345998
821 => 0.0042590751511498
822 => 0.0045821008941165
823 => 0.0043264008125453
824 => 0.0042149009821298
825 => 0.0040768987687472
826 => 0.0041218329852921
827 => 0.0041313012849391
828 => 0.0037994308385226
829 => 0.0036647910397432
830 => 0.0036185877345959
831 => 0.0035919970792648
901 => 0.0036041147748036
902 => 0.0034829231642289
903 => 0.0035643659308593
904 => 0.0034594242401734
905 => 0.0034418304242202
906 => 0.0036294791669474
907 => 0.0036555893932698
908 => 0.0035441950559668
909 => 0.0036157282536204
910 => 0.0035897893217654
911 => 0.0034612231642593
912 => 0.0034563128827113
913 => 0.0033918029041937
914 => 0.003290857279407
915 => 0.0032447224201467
916 => 0.0032206949848828
917 => 0.003230609172958
918 => 0.003225596256088
919 => 0.0031928835826435
920 => 0.0032274713082378
921 => 0.0031391139619793
922 => 0.0031039293547557
923 => 0.0030880372839494
924 => 0.0030096150534859
925 => 0.0031344196966775
926 => 0.0031590077836338
927 => 0.0031836443167169
928 => 0.0033980885171303
929 => 0.0033873754908907
930 => 0.0034842160306416
1001 => 0.0034804529853452
1002 => 0.0034528324946955
1003 => 0.0033363061879946
1004 => 0.0033827514969639
1005 => 0.0032398000551601
1006 => 0.0033469089951127
1007 => 0.0032980289478946
1008 => 0.0033303826019793
1009 => 0.0032722078147236
1010 => 0.003304404143969
1011 => 0.003164838531209
1012 => 0.0030345141257548
1013 => 0.0030869604709161
1014 => 0.0031439756460735
1015 => 0.0032675990730113
1016 => 0.0031939699797983
1017 => 0.003220449785942
1018 => 0.0031317468680267
1019 => 0.0029487274116317
1020 => 0.0029497632818791
1021 => 0.0029216097258083
1022 => 0.0028972809428767
1023 => 0.003202427166868
1024 => 0.0031644774102667
1025 => 0.003104009439864
1026 => 0.0031849482211497
1027 => 0.0032063497195928
1028 => 0.0032069589901666
1029 => 0.0032660098356603
1030 => 0.0032975252824858
1031 => 0.0033030800165845
1101 => 0.0033959977978469
1102 => 0.0034271426125109
1103 => 0.0035554236963326
1104 => 0.0032948514170088
1105 => 0.0032894851023905
1106 => 0.0031860871957871
1107 => 0.003120510608763
1108 => 0.0031905772808039
1109 => 0.0032526467871775
1110 => 0.0031880158683682
1111 => 0.0031964553019316
1112 => 0.0031096935739702
1113 => 0.0031407068091976
1114 => 0.0031674195853095
1115 => 0.0031526703604449
1116 => 0.0031305900569521
1117 => 0.0032475577954862
1118 => 0.0032409580172778
1119 => 0.0033498810644775
1120 => 0.0034347943689314
1121 => 0.0035869741905816
1122 => 0.0034281666133761
1123 => 0.0034223790340598
1124 => 0.0034789535502337
1125 => 0.0034271339512472
1126 => 0.0034598821490549
1127 => 0.0035816979496297
1128 => 0.003584271725541
1129 => 0.0035411576629034
1130 => 0.0035385341682737
1201 => 0.0035468146956194
1202 => 0.0035953140029208
1203 => 0.0035783668547165
1204 => 0.0035979785236678
1205 => 0.0036225032159959
1206 => 0.0037239477417191
1207 => 0.0037484056734322
1208 => 0.0036889855793532
1209 => 0.0036943505485499
1210 => 0.0036721258022463
1211 => 0.0036506569757923
1212 => 0.0036989157623906
1213 => 0.0037871096434279
1214 => 0.0037865609938712
1215 => 0.0038070202600278
1216 => 0.0038197662133497
1217 => 0.0037650512510843
1218 => 0.0037294338225744
1219 => 0.0037430918110609
1220 => 0.0037649312320832
1221 => 0.0037360095811678
1222 => 0.0035574917539058
1223 => 0.0036116426589342
1224 => 0.0036026293004935
1225 => 0.0035897931820121
1226 => 0.0036442423357546
1227 => 0.0036389905820466
1228 => 0.0034816801690949
1229 => 0.0034917506713397
1230 => 0.003482292589691
1231 => 0.0035128535864395
]
'min_raw' => 0.0028972809428767
'max_raw' => 0.0064902669690174
'avg_raw' => 0.004693773955947
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.002897'
'max' => '$0.00649'
'avg' => '$0.004693'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.00070651697571505
'max_diff' => -0.0047163424286166
'year' => 2034
]
9 => [
'items' => [
101 => 0.0034254835571302
102 => 0.0034523579896996
103 => 0.003469213381875
104 => 0.0034791413373555
105 => 0.0035150079202139
106 => 0.003510799390686
107 => 0.0035147463121094
108 => 0.0035679269860617
109 => 0.0038368965855089
110 => 0.0038515360073588
111 => 0.0037794461400527
112 => 0.0038082446201317
113 => 0.0037529578359153
114 => 0.003790072224549
115 => 0.003815464946649
116 => 0.0037007201182189
117 => 0.0036939256741671
118 => 0.0036384107017256
119 => 0.0036682413033869
120 => 0.0036207786712476
121 => 0.0036324243410022
122 => 0.0035998620331171
123 => 0.0036584677042194
124 => 0.0037239979509124
125 => 0.0037405534790949
126 => 0.0036970030120497
127 => 0.0036654696037934
128 => 0.0036101073266457
129 => 0.0037021760273711
130 => 0.0037290997212061
131 => 0.0037020346086692
201 => 0.00369576303071
202 => 0.0036838784018098
203 => 0.0036982844109134
204 => 0.0037289530889873
205 => 0.0037144903067692
206 => 0.0037240432292257
207 => 0.0036876373397525
208 => 0.0037650693640135
209 => 0.0038880500535713
210 => 0.0038884454565976
211 => 0.0038739825964197
212 => 0.0038680647056416
213 => 0.0038829044778638
214 => 0.0038909544455351
215 => 0.0039389435477529
216 => 0.0039904377664028
217 => 0.0042307388161541
218 => 0.0041632632429641
219 => 0.0043764726298769
220 => 0.004545093573151
221 => 0.0045956556211387
222 => 0.0045491409161182
223 => 0.0043900166229181
224 => 0.0043822092259512
225 => 0.0046200081005359
226 => 0.0045528190265873
227 => 0.0045448271000349
228 => 0.0044598065040912
301 => 0.0045100642062996
302 => 0.0044990721095906
303 => 0.0044817205471837
304 => 0.0045776087420155
305 => 0.0047571028827423
306 => 0.0047291270376247
307 => 0.0047082443670064
308 => 0.0046167425832113
309 => 0.0046718470947193
310 => 0.0046522254336287
311 => 0.0047365325418877
312 => 0.0046865908785862
313 => 0.0045523100032698
314 => 0.0045736946752595
315 => 0.0045704624251082
316 => 0.0046369819041813
317 => 0.0046170144076785
318 => 0.0045665634509492
319 => 0.0047564893912828
320 => 0.0047441566571412
321 => 0.0047616416544985
322 => 0.0047693390910768
323 => 0.0048849436640874
324 => 0.0049323031587161
325 => 0.0049430545931415
326 => 0.004988042450124
327 => 0.0049419352542767
328 => 0.0051263969115392
329 => 0.0052490531499827
330 => 0.005391524682767
331 => 0.0055997138849029
401 => 0.0056779949507637
402 => 0.0056638541768826
403 => 0.0058217008539115
404 => 0.0061053478237979
405 => 0.0057211873392739
406 => 0.0061257092622922
407 => 0.0059976422918948
408 => 0.005693997808909
409 => 0.005674446683938
410 => 0.0058800782532009
411 => 0.006336149282521
412 => 0.0062219086623911
413 => 0.0063363361392499
414 => 0.0062028504093208
415 => 0.0061962217177238
416 => 0.006329853035293
417 => 0.0066420898926575
418 => 0.0064937578657472
419 => 0.0062810875326661
420 => 0.0064381199970963
421 => 0.0063020839437384
422 => 0.0059955566414291
423 => 0.0062218213047419
424 => 0.0060705245680312
425 => 0.0061146809991803
426 => 0.006432684236055
427 => 0.006394421245262
428 => 0.0064439370984057
429 => 0.0063565429136627
430 => 0.0062749029643147
501 => 0.0061225159361944
502 => 0.0060774016497577
503 => 0.0060898696154868
504 => 0.0060773954712531
505 => 0.0059921363295289
506 => 0.0059737246259911
507 => 0.005943037646793
508 => 0.0059525488248125
509 => 0.0058948483261276
510 => 0.0060037410886774
511 => 0.0060239525449664
512 => 0.0061031956166474
513 => 0.0061114228952281
514 => 0.0063321137219051
515 => 0.0062105609231301
516 => 0.0062921090349121
517 => 0.0062848146042337
518 => 0.0057005787055859
519 => 0.0057810812576626
520 => 0.0059063179656014
521 => 0.0058498989984293
522 => 0.0057701357788531
523 => 0.005705722702412
524 => 0.0056081303050286
525 => 0.0057454897302498
526 => 0.0059261027678693
527 => 0.006116003539919
528 => 0.0063441568747453
529 => 0.0062932357064096
530 => 0.0061117383720246
531 => 0.0061198802098612
601 => 0.0061702098476721
602 => 0.0061050283937772
603 => 0.0060858051105304
604 => 0.0061675688637476
605 => 0.0061681319257795
606 => 0.0060931327856315
607 => 0.0060097849660548
608 => 0.0060094357356475
609 => 0.0059946047961982
610 => 0.0062054888005017
611 => 0.0063214536800909
612 => 0.0063347488666491
613 => 0.0063205588081051
614 => 0.0063260199984554
615 => 0.0062585425901342
616 => 0.0064127759357526
617 => 0.0065543157057891
618 => 0.0065163800238632
619 => 0.0064595090437813
620 => 0.0064142085688685
621 => 0.0065057086716435
622 => 0.0065016343161015
623 => 0.0065530794793744
624 => 0.0065507456296067
625 => 0.0065334465561485
626 => 0.0065163806416676
627 => 0.0065840450635408
628 => 0.0065645587966987
629 => 0.0065450422623019
630 => 0.0065058988647372
701 => 0.0065112191025692
702 => 0.0064543579420639
703 => 0.0064280513674244
704 => 0.0060324636031453
705 => 0.0059267496263268
706 => 0.0059600093954404
707 => 0.0059709593750221
708 => 0.0059249525168345
709 => 0.0059909145332833
710 => 0.0059806344228908
711 => 0.0060206283187645
712 => 0.0059956418689557
713 => 0.0059966673215715
714 => 0.0060701471427863
715 => 0.0060914786474905
716 => 0.0060806292720316
717 => 0.0060882278027082
718 => 0.0062633327350107
719 => 0.0062384384131778
720 => 0.0062252138008663
721 => 0.0062288771088552
722 => 0.0062736201733506
723 => 0.0062861457885286
724 => 0.0062330738768602
725 => 0.0062581028972081
726 => 0.0063646732891937
727 => 0.0064019668950268
728 => 0.0065209901828999
729 => 0.0064704269747412
730 => 0.0065632379316409
731 => 0.0068485071715639
801 => 0.0070763999795444
802 => 0.006866820335257
803 => 0.0072853164551389
804 => 0.00761117571417
805 => 0.0075986686930614
806 => 0.0075418475939889
807 => 0.0071708654909986
808 => 0.0068294822287955
809 => 0.0071150638235274
810 => 0.0071157918297428
811 => 0.0070912601174855
812 => 0.006938895759543
813 => 0.007085958168098
814 => 0.0070976314480369
815 => 0.0070910975154468
816 => 0.0069742801194494
817 => 0.006795921547225
818 => 0.0068307723853076
819 => 0.0068878587690246
820 => 0.006779782335181
821 => 0.0067452453659859
822 => 0.0068094561626468
823 => 0.007016356728339
824 => 0.0069772433748883
825 => 0.0069762219671602
826 => 0.0071435654798656
827 => 0.0070237836397589
828 => 0.0068312119659836
829 => 0.006782585078647
830 => 0.0066099923875985
831 => 0.0067292027740598
901 => 0.0067334929436424
902 => 0.0066682026332782
903 => 0.0068365099148342
904 => 0.0068349589336048
905 => 0.0069947416482094
906 => 0.0073001861868863
907 => 0.0072098512067866
908 => 0.0071048014533486
909 => 0.007116223274261
910 => 0.0072414924582142
911 => 0.0071657518499788
912 => 0.0071929887007825
913 => 0.0072414512319784
914 => 0.0072706898803058
915 => 0.007112016282724
916 => 0.0070750218768921
917 => 0.0069993443058322
918 => 0.0069796014401314
919 => 0.0070412392426954
920 => 0.0070249998594155
921 => 0.0067331323715013
922 => 0.0067026305950789
923 => 0.0067035660410153
924 => 0.0066268678739208
925 => 0.0065098847594323
926 => 0.0068173093996091
927 => 0.0067926188985979
928 => 0.0067653624963744
929 => 0.0067687012501239
930 => 0.0069021438668369
1001 => 0.0068247404101297
1002 => 0.0070305301859628
1003 => 0.0069882259946584
1004 => 0.0069448368604754
1005 => 0.006938839160466
1006 => 0.0069221380455925
1007 => 0.0068648637084801
1008 => 0.0067957015047629
1009 => 0.0067500346271413
1010 => 0.0062265501380575
1011 => 0.0063237058142623
1012 => 0.0064354745637173
1013 => 0.006474056688144
1014 => 0.0064080592945104
1015 => 0.0068674696878396
1016 => 0.0069514083936896
1017 => 0.0066971525784838
1018 => 0.0066495916966553
1019 => 0.0068705877713343
1020 => 0.0067373001226315
1021 => 0.006797319542681
1022 => 0.0066675903854014
1023 => 0.0069311900174626
1024 => 0.0069291818299164
1025 => 0.0068266356193769
1026 => 0.0069133069743188
1027 => 0.0068982456935203
1028 => 0.0067824712743814
1029 => 0.0069348602730524
1030 => 0.0069349358560945
1031 => 0.0068362373579971
1101 => 0.0067209791200988
1102 => 0.0067003736694406
1103 => 0.0066848502303225
1104 => 0.0067935017282621
1105 => 0.0068909183215703
1106 => 0.0070721864500953
1107 => 0.007117761564431
1108 => 0.0072956442697904
1109 => 0.0071897237797006
1110 => 0.0072366769610574
1111 => 0.0072876512813533
1112 => 0.0073120902450217
1113 => 0.0072722682651911
1114 => 0.0075485933260568
1115 => 0.007571923627575
1116 => 0.0075797460758677
1117 => 0.0074865708200692
1118 => 0.0075693322551584
1119 => 0.0075306109204508
1120 => 0.0076313530762634
1121 => 0.0076471507326352
1122 => 0.0076337706797062
1123 => 0.0076387851051877
1124 => 0.0074029904128199
1125 => 0.0073907632141045
1126 => 0.0072240444920181
1127 => 0.0072919836035909
1128 => 0.0071649746909119
1129 => 0.0072052505254592
1130 => 0.0072230037295654
1201 => 0.0072137304632258
1202 => 0.0072958247790242
1203 => 0.0072260278398348
1204 => 0.0070418222416349
1205 => 0.006857566456743
1206 => 0.0068552532754552
1207 => 0.0068067419796779
1208 => 0.0067716771981179
1209 => 0.0067784319190363
1210 => 0.0068022364365849
1211 => 0.0067702936362837
1212 => 0.0067771102522691
1213 => 0.0068903114965003
1214 => 0.0069130131987165
1215 => 0.0068358639444581
1216 => 0.0065260985560262
1217 => 0.0064500813527174
1218 => 0.0065047210109691
1219 => 0.0064786067735695
1220 => 0.0052287413007977
1221 => 0.0055223786541088
1222 => 0.0053479093097537
1223 => 0.0054283128105811
1224 => 0.0052502247886122
1225 => 0.0053352177270887
1226 => 0.0053195226347972
1227 => 0.0057916828095606
1228 => 0.0057843106778667
1229 => 0.005787839327184
1230 => 0.0056194077014217
1231 => 0.0058877238546781
]
'min_raw' => 0.0034254835571302
'max_raw' => 0.0076471507326352
'avg_raw' => 0.0055363171448827
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.003425'
'max' => '$0.007647'
'avg' => '$0.005536'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.00052820261425349
'max_diff' => 0.0011568837636178
'year' => 2035
]
10 => [
'items' => [
101 => 0.006019906040109
102 => 0.0059954426355007
103 => 0.0060015995473972
104 => 0.0058958034021895
105 => 0.0057888636651286
106 => 0.0056702510388204
107 => 0.0058906186375372
108 => 0.0058661175223603
109 => 0.0059223142653532
110 => 0.0060652384053223
111 => 0.0060862845278488
112 => 0.006114570729953
113 => 0.0061044321400476
114 => 0.0063459744841429
115 => 0.0063167221125252
116 => 0.006387211911642
117 => 0.0062422090467848
118 => 0.0060781245414006
119 => 0.0061093116415475
120 => 0.0061063080730126
121 => 0.006068069198227
122 => 0.0060335488518461
123 => 0.0059760822011693
124 => 0.0061579151873748
125 => 0.0061505331002009
126 => 0.006270040510809
127 => 0.006248916415151
128 => 0.0061078445344035
129 => 0.0061128829442227
130 => 0.0061467686716339
131 => 0.0062640475611045
201 => 0.0062988639204551
202 => 0.0062827355956119
203 => 0.0063209101442126
204 => 0.0063510817509248
205 => 0.0063246992334854
206 => 0.0066982200446224
207 => 0.0065431081620582
208 => 0.0066187086143585
209 => 0.0066367388767683
210 => 0.006590554738741
211 => 0.0066005704245491
212 => 0.0066157414594374
213 => 0.006707857012486
214 => 0.0069495948775356
215 => 0.0070566589324007
216 => 0.0073787664239099
217 => 0.0070477687530478
218 => 0.0070281287210633
219 => 0.0070861500069985
220 => 0.0072752612030551
221 => 0.0074285180651476
222 => 0.0074793622079041
223 => 0.0074860821007147
224 => 0.0075814690925807
225 => 0.0076361431374562
226 => 0.0075698866028413
227 => 0.0075137411271034
228 => 0.0073126350020433
229 => 0.0073359135836128
301 => 0.0074962799263681
302 => 0.0077228068310403
303 => 0.0079171904813565
304 => 0.0078491241019699
305 => 0.0083684225293142
306 => 0.0084199088472415
307 => 0.0084127951028559
308 => 0.0085300885972858
309 => 0.0082972848972473
310 => 0.0081977568051215
311 => 0.0075258804162361
312 => 0.0077146502760312
313 => 0.0079890383533084
314 => 0.0079527220623783
315 => 0.0077534541062452
316 => 0.007917039318743
317 => 0.0078629529317087
318 => 0.0078202927542084
319 => 0.0080157272974193
320 => 0.0078008389891504
321 => 0.0079868946780524
322 => 0.0077482763325359
323 => 0.0078494350234575
324 => 0.0077920124579951
325 => 0.0078291718952942
326 => 0.0076119385841356
327 => 0.0077291524057962
328 => 0.0076070621037913
329 => 0.0076070042170915
330 => 0.0076043090669079
331 => 0.0077479477657855
401 => 0.0077526318185991
402 => 0.0076464826031025
403 => 0.007631184842787
404 => 0.007687748680554
405 => 0.0076215272406215
406 => 0.0076525118355731
407 => 0.007622465732438
408 => 0.0076157017217546
409 => 0.0075618049338272
410 => 0.007538584715665
411 => 0.0075476899615177
412 => 0.0075166090633465
413 => 0.0074978816979531
414 => 0.0076005837225702
415 => 0.0075457141738051
416 => 0.0075921741772818
417 => 0.0075392271396003
418 => 0.0073556896390698
419 => 0.0072501352816408
420 => 0.006903449957074
421 => 0.0070017694850593
422 => 0.0070669554338325
423 => 0.0070454114781518
424 => 0.007091696231358
425 => 0.0070945377392957
426 => 0.0070794900942112
427 => 0.007062066848926
428 => 0.0070535861766871
429 => 0.0071167941594716
430 => 0.0071534885209609
501 => 0.0070734977158674
502 => 0.0070547569894243
503 => 0.0071356321097872
504 => 0.0071849658864885
505 => 0.0075492187753966
506 => 0.007522233744865
507 => 0.0075899608759546
508 => 0.0075823358403515
509 => 0.0076533246635115
510 => 0.0077693613872631
511 => 0.0075334262834979
512 => 0.0075743764594895
513 => 0.007564336422014
514 => 0.007673950918532
515 => 0.0076742931230253
516 => 0.0076085737567126
517 => 0.0076442012913657
518 => 0.0076243149789126
519 => 0.0076602522333116
520 => 0.0075218733433303
521 => 0.0076904038942494
522 => 0.0077859498567518
523 => 0.0077872765125338
524 => 0.0078325645404603
525 => 0.0078785797997393
526 => 0.0079669020828408
527 => 0.0078761165392005
528 => 0.0077128021839863
529 => 0.0077245929529306
530 => 0.0076288418062228
531 => 0.0076304514002979
601 => 0.0076218592609793
602 => 0.0076476449178604
603 => 0.0075275318449624
604 => 0.007555722143093
605 => 0.007516255560628
606 => 0.0075742906668469
607 => 0.0075118544861021
608 => 0.007564331580404
609 => 0.0075869789546614
610 => 0.0076705482532346
611 => 0.0074995112327547
612 => 0.007150755169808
613 => 0.0072240679224979
614 => 0.0071156326026771
615 => 0.0071256687043689
616 => 0.00714594322702
617 => 0.0070802268656966
618 => 0.0070927634764765
619 => 0.0070923155805207
620 => 0.0070884558551463
621 => 0.0070713604914798
622 => 0.0070465688319487
623 => 0.0071453311730502
624 => 0.0071621128193138
625 => 0.0071994163401518
626 => 0.0073104063149457
627 => 0.00729931579914
628 => 0.0073174048905603
629 => 0.0072779165055557
630 => 0.0071275004572938
701 => 0.0071356687723879
702 => 0.0070338097522766
703 => 0.0071968115759972
704 => 0.0071582105926212
705 => 0.0071333242875245
706 => 0.0071265338286088
707 => 0.0072377989260824
708 => 0.0072710911871132
709 => 0.0072503456841993
710 => 0.00720779605248
711 => 0.0072895039240505
712 => 0.0073113655035045
713 => 0.0073162595049202
714 => 0.0074610301874128
715 => 0.0073243505778698
716 => 0.0073572507183653
717 => 0.0076139282227517
718 => 0.0073811571453476
719 => 0.007504461176463
720 => 0.0074984260857831
721 => 0.0075615042557208
722 => 0.0074932518347344
723 => 0.0074940979052923
724 => 0.0075501070469117
725 => 0.0074714523088092
726 => 0.007451976289531
727 => 0.007425070308388
728 => 0.0074838185338781
729 => 0.0075190354381057
730 => 0.0078028578222143
731 => 0.0079862200262216
801 => 0.0079782597893622
802 => 0.0080510014533178
803 => 0.0080182306674685
804 => 0.0079124051554647
805 => 0.0080930364004089
806 => 0.0080358771165763
807 => 0.0080405892584869
808 => 0.0080404138723296
809 => 0.008078419799127
810 => 0.0080514891167991
811 => 0.0079984059775528
812 => 0.0080336450426708
813 => 0.0081382924678752
814 => 0.0084631212866846
815 => 0.0086448997970998
816 => 0.0084521779921098
817 => 0.0085851149125441
818 => 0.0085054001305515
819 => 0.0084909135833541
820 => 0.0085744077933481
821 => 0.0086580481489039
822 => 0.0086527206198422
823 => 0.0085920020166885
824 => 0.0085577036184445
825 => 0.0088174225807546
826 => 0.0090087790879875
827 => 0.0089957298570645
828 => 0.0090533249185214
829 => 0.0092224258003068
830 => 0.0092378862656961
831 => 0.0092359386024117
901 => 0.0091976182258118
902 => 0.009364120004454
903 => 0.0095030187175173
904 => 0.0091887481658111
905 => 0.0093084182777972
906 => 0.009362142046598
907 => 0.0094410244783214
908 => 0.0095741123628695
909 => 0.0097186811053067
910 => 0.0097391247106029
911 => 0.0097246189943287
912 => 0.009629272022475
913 => 0.0097874608655135
914 => 0.0098801241797806
915 => 0.0099353030628645
916 => 0.010075227529474
917 => 0.0093624738263043
918 => 0.008857951329043
919 => 0.0087791628557024
920 => 0.0089393823144441
921 => 0.008981630907988
922 => 0.0089646005529057
923 => 0.0083967146130594
924 => 0.0087761730537558
925 => 0.0091844384301733
926 => 0.0092001215659946
927 => 0.0094045077498556
928 => 0.0094710642693935
929 => 0.0096356219369111
930 => 0.0096253288100037
1001 => 0.0096653959833598
1002 => 0.009656185234072
1003 => 0.0099609936614433
1004 => 0.010297242621323
1005 => 0.010285599389049
1006 => 0.010237259622749
1007 => 0.010309052418859
1008 => 0.010656097380084
1009 => 0.010624147041337
1010 => 0.010655184073906
1011 => 0.011064369641787
1012 => 0.011596369086001
1013 => 0.011349201932293
1014 => 0.011885483535406
1015 => 0.0122230443775
1016 => 0.012806820949459
1017 => 0.01273372924749
1018 => 0.012960989183003
1019 => 0.012602879846266
1020 => 0.011780588423279
1021 => 0.011650457657987
1022 => 0.011910982745539
1023 => 0.012551458251618
1024 => 0.011890811892593
1025 => 0.012024459790596
1026 => 0.011985969186981
1027 => 0.011983918186288
1028 => 0.012062196540685
1029 => 0.011948649704908
1030 => 0.011486039469266
1031 => 0.011698051014082
1101 => 0.011616183174998
1102 => 0.011707021646113
1103 => 0.012197239410087
1104 => 0.011980502451302
1105 => 0.011752187671503
1106 => 0.012038545072477
1107 => 0.012403176446994
1108 => 0.012380358470883
1109 => 0.012336082060052
1110 => 0.012585665869668
1111 => 0.012997905201959
1112 => 0.013109331836966
1113 => 0.01319158470091
1114 => 0.013202925981175
1115 => 0.013319748216465
1116 => 0.012691565614316
1117 => 0.013688507536799
1118 => 0.013860651866847
1119 => 0.01382829586745
1120 => 0.014019627045357
1121 => 0.013963332559214
1122 => 0.013881770681125
1123 => 0.014185071295417
1124 => 0.013837361616229
1125 => 0.013343831502052
1126 => 0.013073071120496
1127 => 0.013429630232546
1128 => 0.013647368440077
1129 => 0.013791279544504
1130 => 0.01383482695775
1201 => 0.012740329641515
1202 => 0.012150456291668
1203 => 0.012528558346008
1204 => 0.012989868947513
1205 => 0.012689003010633
1206 => 0.012700796385744
1207 => 0.012271840625931
1208 => 0.013027822014068
1209 => 0.012917681884621
1210 => 0.013489089071029
1211 => 0.013352718160163
1212 => 0.013818678538779
1213 => 0.013695975555057
1214 => 0.014205308780257
1215 => 0.014408495593436
1216 => 0.014749677876266
1217 => 0.015000652952378
1218 => 0.015148030317459
1219 => 0.015139182333258
1220 => 0.01572316487682
1221 => 0.015378810773677
1222 => 0.0149462208621
1223 => 0.014938396675403
1224 => 0.015162441120455
1225 => 0.015631976813694
1226 => 0.015753720587484
1227 => 0.015821758748441
1228 => 0.015717555936509
1229 => 0.015343784237629
1230 => 0.015182391513118
1231 => 0.015319902790399
]
'min_raw' => 0.0056702510388204
'max_raw' => 0.015821758748441
'avg_raw' => 0.010746004893631
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.00567'
'max' => '$0.015821'
'avg' => '$0.010746'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.0022447674816903
'max_diff' => 0.0081746080158062
'year' => 2036
]
11 => [
'items' => [
101 => 0.015151738314763
102 => 0.015442037378329
103 => 0.015840679997138
104 => 0.015758361872757
105 => 0.016033539020738
106 => 0.016318318419417
107 => 0.016725565749772
108 => 0.016832035282252
109 => 0.017008025370767
110 => 0.017189176981582
111 => 0.017247357996803
112 => 0.017358443607369
113 => 0.017357858131368
114 => 0.017692622095731
115 => 0.0180618771152
116 => 0.018201262336776
117 => 0.018521770968045
118 => 0.017972911168959
119 => 0.018389227631413
120 => 0.018764755501623
121 => 0.018317035693562
122 => 0.018934113143638
123 => 0.018958072862697
124 => 0.019319836174197
125 => 0.018953119752527
126 => 0.018735364711939
127 => 0.019364015354941
128 => 0.01966819959878
129 => 0.019576576829002
130 => 0.018879323027019
131 => 0.018473491407643
201 => 0.017411351780663
202 => 0.018669502049838
203 => 0.019282310345207
204 => 0.018877736001578
205 => 0.019081779767821
206 => 0.020194976395026
207 => 0.020618809596522
208 => 0.020530655253429
209 => 0.020545551886268
210 => 0.020774244588678
211 => 0.021788393974538
212 => 0.021180692154732
213 => 0.021645257425821
214 => 0.021891661170491
215 => 0.022120534700771
216 => 0.021558493646626
217 => 0.020827286493205
218 => 0.020595682493728
219 => 0.018837509056393
220 => 0.018745988493619
221 => 0.018694615228378
222 => 0.018370714057922
223 => 0.018116216461941
224 => 0.017913830524727
225 => 0.01738270938792
226 => 0.017561947180368
227 => 0.016715450941895
228 => 0.017257009237285
301 => 0.015905980801316
302 => 0.017031157428818
303 => 0.016418774945972
304 => 0.016829973313229
305 => 0.016828538680863
306 => 0.016071392116182
307 => 0.015634685778919
308 => 0.015912972053888
309 => 0.016211317031046
310 => 0.016259722499837
311 => 0.016646534550323
312 => 0.016754485479117
313 => 0.016427389125125
314 => 0.015877983739928
315 => 0.016005598080307
316 => 0.015632099678385
317 => 0.014977558095425
318 => 0.015447661287506
319 => 0.015608175186261
320 => 0.015679067268226
321 => 0.015035400795995
322 => 0.01483314681574
323 => 0.014725468493728
324 => 0.01579489448118
325 => 0.015853480050865
326 => 0.015553747993191
327 => 0.01690856531564
328 => 0.016601928429534
329 => 0.016944516959176
330 => 0.015994018416507
331 => 0.016030328740853
401 => 0.015580347498339
402 => 0.01583230692639
403 => 0.015654230123675
404 => 0.015811951094515
405 => 0.015906488394128
406 => 0.016356395799148
407 => 0.017036294648687
408 => 0.016289194635928
409 => 0.0159636724617
410 => 0.016165624587785
411 => 0.016703449712489
412 => 0.017518282307178
413 => 0.017035885011088
414 => 0.017249964739455
415 => 0.01729673163636
416 => 0.016941029729541
417 => 0.01753139754385
418 => 0.017847780451678
419 => 0.018172323848891
420 => 0.018454115787192
421 => 0.018042694079182
422 => 0.018482974281738
423 => 0.018128186158396
424 => 0.017809904534436
425 => 0.017810387236279
426 => 0.017610724524216
427 => 0.017223852860475
428 => 0.017152507790004
429 => 0.017523653856479
430 => 0.017821277854129
501 => 0.017845791592099
502 => 0.018010571529671
503 => 0.018108086599357
504 => 0.019063866847597
505 => 0.019448289570068
506 => 0.019918354398355
507 => 0.020101471140376
508 => 0.020652586882871
509 => 0.020207516161374
510 => 0.020111222311152
511 => 0.018774395788444
512 => 0.018993301056647
513 => 0.019343789512257
514 => 0.018780175213984
515 => 0.019137658760109
516 => 0.019208233584651
517 => 0.018761023815798
518 => 0.018999897876136
519 => 0.018365519193102
520 => 0.01705012237042
521 => 0.01753286195654
522 => 0.017888320780312
523 => 0.017381037211033
524 => 0.018290323374381
525 => 0.017759137169229
526 => 0.017590776643631
527 => 0.016933942208409
528 => 0.017243942777958
529 => 0.017663222987053
530 => 0.017404156564388
531 => 0.017941758290436
601 => 0.018703145707663
602 => 0.019245755722584
603 => 0.019287410581914
604 => 0.018938548694368
605 => 0.019497602095568
606 => 0.019501674189263
607 => 0.018871059668909
608 => 0.018484811786469
609 => 0.018397055454906
610 => 0.018616287976793
611 => 0.018882476730919
612 => 0.019302182205189
613 => 0.019555801433171
614 => 0.020217105870504
615 => 0.020396035890162
616 => 0.020592625733574
617 => 0.020855330390435
618 => 0.021170774687088
619 => 0.020480600524265
620 => 0.020508022430399
621 => 0.019865341806091
622 => 0.019178545389292
623 => 0.01969973825926
624 => 0.020381128605361
625 => 0.020224816907096
626 => 0.020207228647883
627 => 0.020236807221303
628 => 0.020118953305474
629 => 0.019585904412049
630 => 0.019318210594834
701 => 0.019663603915018
702 => 0.019847165093008
703 => 0.020131852471853
704 => 0.020096758743389
705 => 0.020830082858102
706 => 0.021115030434509
707 => 0.02104212865087
708 => 0.021055544333539
709 => 0.021571428309753
710 => 0.022145197390936
711 => 0.022682607850962
712 => 0.023229284853218
713 => 0.022570244389832
714 => 0.02223562428649
715 => 0.022580866818756
716 => 0.022397676271495
717 => 0.0234503434939
718 => 0.02352322788844
719 => 0.024575818991023
720 => 0.025574853287591
721 => 0.024947377745475
722 => 0.025539058919572
723 => 0.026179010349831
724 => 0.027413580487178
725 => 0.026997820697621
726 => 0.026679355214606
727 => 0.026378406871971
728 => 0.02700463259879
729 => 0.027810261992142
730 => 0.027983786847248
731 => 0.028264963404116
801 => 0.027969340635203
802 => 0.028325385698578
803 => 0.029582381226423
804 => 0.029242729938993
805 => 0.028760370509173
806 => 0.029752647755272
807 => 0.030111749033256
808 => 0.032632109864941
809 => 0.035814169525857
810 => 0.034496775931708
811 => 0.033679027215793
812 => 0.033871217561292
813 => 0.035033198029941
814 => 0.035406389277055
815 => 0.034391926820663
816 => 0.034750252110392
817 => 0.036724659686567
818 => 0.037783866004605
819 => 0.036345321554322
820 => 0.032376434469489
821 => 0.028716939320127
822 => 0.029687602222952
823 => 0.029577559172948
824 => 0.031698813801186
825 => 0.029234629368118
826 => 0.029276119914217
827 => 0.03144123984172
828 => 0.030863622964615
829 => 0.029927957599285
830 => 0.028723770712763
831 => 0.026497719879222
901 => 0.024526044577935
902 => 0.028392953893462
903 => 0.028226205732259
904 => 0.027984729684142
905 => 0.028522108498788
906 => 0.031131467485066
907 => 0.031071313314761
908 => 0.030688643174211
909 => 0.030978895103119
910 => 0.0298770750328
911 => 0.030161039152898
912 => 0.028716359637398
913 => 0.02936941511355
914 => 0.029925950081639
915 => 0.030037682716124
916 => 0.030289422046829
917 => 0.028138337028399
918 => 0.029104111049136
919 => 0.029671412805531
920 => 0.027108322831525
921 => 0.029620748757707
922 => 0.028100891423961
923 => 0.027585029017396
924 => 0.028279569788131
925 => 0.028008906574313
926 => 0.027776206236949
927 => 0.0276463554504
928 => 0.02815634953876
929 => 0.028132557704964
930 => 0.027298108390819
1001 => 0.026209603277023
1002 => 0.026574941322175
1003 => 0.026442210585309
1004 => 0.0259611772723
1005 => 0.026285335645085
1006 => 0.02485790622414
1007 => 0.022402088096729
1008 => 0.02402447677544
1009 => 0.023962016576129
1010 => 0.023930521311292
1011 => 0.025149701563814
1012 => 0.025032505513808
1013 => 0.02481979353546
1014 => 0.025957270650007
1015 => 0.025542076201971
1016 => 0.026821607658702
1017 => 0.027664389831011
1018 => 0.027450633010967
1019 => 0.028243273717543
1020 => 0.026583357972857
1021 => 0.027134715398981
1022 => 0.027248349400357
1023 => 0.025943234358979
1024 => 0.025051680236977
1025 => 0.0249922237415
1026 => 0.023446391757674
1027 => 0.024272162725914
1028 => 0.024998807005241
1029 => 0.024650800785317
1030 => 0.02454063241248
1031 => 0.025103458736703
1101 => 0.025147195162377
1102 => 0.024150000022039
1103 => 0.024357348468779
1104 => 0.025222025960492
1105 => 0.024335560814521
1106 => 0.022613303839159
1107 => 0.022186160297204
1108 => 0.022129171474889
1109 => 0.020970724311925
1110 => 0.022214704071143
1111 => 0.02167167356966
1112 => 0.023387100417343
1113 => 0.022407257801965
1114 => 0.022365018745202
1115 => 0.022301168215784
1116 => 0.02130404488777
1117 => 0.021522351526112
1118 => 0.022248036040999
1119 => 0.022506968451332
1120 => 0.022479959679564
1121 => 0.022244479790981
1122 => 0.022352281278122
1123 => 0.022005015127512
1124 => 0.021882388222011
1125 => 0.021495343977065
1126 => 0.020926495860695
1127 => 0.021005597680224
1128 => 0.019878560714489
1129 => 0.019264491159178
1130 => 0.019094524799574
1201 => 0.018867238680129
1202 => 0.019120197371551
1203 => 0.01987536796037
1204 => 0.018964472011876
1205 => 0.017402804800105
1206 => 0.017496663660484
1207 => 0.01770753665281
1208 => 0.017314576226676
1209 => 0.016942672162008
1210 => 0.017266012572706
1211 => 0.016604313587983
1212 => 0.017787499813809
1213 => 0.017755497942242
1214 => 0.018196516599484
1215 => 0.018472294616472
1216 => 0.017836715571509
1217 => 0.017676869160489
1218 => 0.01776792494082
1219 => 0.016262975721203
1220 => 0.018073530141116
1221 => 0.018089187890924
1222 => 0.01795511673097
1223 => 0.018919181064978
1224 => 0.02095365750894
1225 => 0.020188205634096
1226 => 0.019891799532251
1227 => 0.019328331315972
1228 => 0.020079119258732
1229 => 0.020021470458844
1230 => 0.019760760723095
1231 => 0.019603082661449
]
'min_raw' => 0.014725468493728
'max_raw' => 0.037783866004605
'avg_raw' => 0.026254667249167
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.014725'
'max' => '$0.037783'
'avg' => '$0.026254'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.0090552174549078
'max_diff' => 0.021962107256164
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.00046221562960218
]
1 => [
'year' => 2028
'avg' => 0.00079329620255336
]
2 => [
'year' => 2029
'avg' => 0.0021671422476463
]
3 => [
'year' => 2030
'avg' => 0.001671947016654
]
4 => [
'year' => 2031
'avg' => 0.001642059172467
]
5 => [
'year' => 2032
'avg' => 0.0028790465043748
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.00046221562960218
'min' => '$0.000462'
'max_raw' => 0.0028790465043748
'max' => '$0.002879'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.0028790465043748
]
1 => [
'year' => 2033
'avg' => 0.0074052036581128
]
2 => [
'year' => 2034
'avg' => 0.004693773955947
]
3 => [
'year' => 2035
'avg' => 0.0055363171448827
]
4 => [
'year' => 2036
'avg' => 0.010746004893631
]
5 => [
'year' => 2037
'avg' => 0.026254667249167
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.0028790465043748
'min' => '$0.002879'
'max_raw' => 0.026254667249167
'max' => '$0.026254'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.026254667249167
]
]
]
]
'prediction_2025_max_price' => '$0.00079'
'last_price' => 0.0007663
'sma_50day_nextmonth' => '$0.000671'
'sma_200day_nextmonth' => '$0.001782'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'augmenter'
'sma_200day_date_nextmonth' => '4 févr. 2026'
'sma_50day_date_nextmonth' => '4 févr. 2026'
'daily_sma3' => '$0.000668'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.000912'
'daily_sma5_action' => 'SELL'
'daily_sma10' => '$0.0007059'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.0006099'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.000592'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.001125'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.002074'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.00073'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.000736'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.0007059'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.00065'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.000734'
'daily_ema50_action' => 'BUY'
'daily_ema100' => '$0.001121'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.001725'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.00158'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.00233'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.003467'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.005153'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.000691'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.0007015'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.000881'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.00138'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.002239'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.0038018'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.015193'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '51.77'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 23.22
'stoch_rsi_14_action' => 'NEUTRAL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.000659'
'vwma_10_action' => 'BUY'
'hma_9' => '0.0007053'
'hma_9_action' => 'SELL'
'stochastic_fast_14' => 27.14
'stochastic_fast_14_action' => 'NEUTRAL'
'cci_20' => 32.68
'cci_20_action' => 'NEUTRAL'
'adx_14' => 18.54
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.000333'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'NEUTRAL'
'williams_percent_r_14' => -72.86
'williams_percent_r_14_action' => 'NEUTRAL'
'ultimate_oscillator' => 52.1
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.000655'
'ichimoku_cloud_action' => 'NEUTRAL'
'sell_signals' => 16
'buy_signals' => 17
'sell_pct' => 48.48
'buy_pct' => 51.52
'overall_action' => 'bullish'
'overall_action_label' => 'Haussier'
'overall_action_dir' => 1
'last_updated' => 1767708154
'last_updated_date' => '6 janvier 2026'
]
Prévision du prix de Pillar pour 2026
La prévision du prix de Pillar pour 2026 suggère que le prix moyen pourrait varier entre $0.000264 à la baisse et $0.00079 à la hausse. Sur le marché des cryptomonnaies, comparé au prix moyen d'aujourd'hui, Pillar pourrait potentiellement gagner 3.13% d'ici 2026 si PLR atteint l'objectif de prix prévu.
Prévision du prix de Pillar de 2027 à 2032
La prévision du prix de PLR pour 2027-2032 se situe actuellement dans une fourchette de prix comprise entre $0.000462 à la baisse et $0.002879 à la hausse. Compte tenu de la volatilité des prix sur le marché, si Pillar atteint l'objectif de prix le plus élevé, il pourrait gagner 275.71% d'ici 2032 par rapport au prix actuel.
| Prévision du Prix de Pillar | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2027 | $0.000254 | $0.000462 | $0.000669 |
| 2028 | $0.000459 | $0.000793 | $0.001126 |
| 2029 | $0.00101 | $0.002167 | $0.003323 |
| 2030 | $0.000859 | $0.001671 | $0.002484 |
| 2031 | $0.001015 | $0.001642 | $0.002268 |
| 2032 | $0.00155 | $0.002879 | $0.0042072 |
Prévision du prix de Pillar de 2032 à 2037
La prévision du prix de Pillar pour 2032-2037 est actuellement estimée entre $0.002879 à la baisse et $0.026254 à la hausse. Par rapport au prix actuel, Pillar pourrait potentiellement gagner 3326.16% d'ici 2037 s'il atteint l'objectif de prix le plus élevé. Veuillez noter que ces informations sont à titre général seulement et ne doivent pas être considérées comme un conseil en investissement à long terme.
| Prévision du Prix de Pillar | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2032 | $0.00155 | $0.002879 | $0.0042072 |
| 2033 | $0.0036037 | $0.0074052 | $0.0112066 |
| 2034 | $0.002897 | $0.004693 | $0.00649 |
| 2035 | $0.003425 | $0.005536 | $0.007647 |
| 2036 | $0.00567 | $0.010746 | $0.015821 |
| 2037 | $0.014725 | $0.026254 | $0.037783 |
Pillar Histogramme des prix potentiels
Prévision du prix de Pillar basée sur l'analyse technique
Au 6 janvier 2026, le sentiment global de prévision du prix pour Pillar est Haussier, avec 17 indicateurs techniques montrant des signaux haussiers et 16 indiquant des signaux baissiers. La prévision du prix de PLR a été mise à jour pour la dernière fois le 6 janvier 2026.
Moyennes Mobiles Simples sur 50 et 200 jours de Pillar et Indice de Force Relative sur 14 jours - RSI (14)
Selon nos indicateurs techniques, le SMA sur 200 jours de Pillar devrait augmenter au cours du prochain mois, atteignant $0.001782 d'ici le 4 févr. 2026. Le SMA à court terme sur 50 jours pour Pillar devrait atteindre $0.000671 d'ici le 4 févr. 2026.
Le Relative Strength Index (RSI), un oscillateur de momentum, est un outil couramment utilisé pour identifier si une cryptomonnaie est survendue (en dessous de 30) ou surachetée (au-dessus de 70). Actuellement, le RSI est à 51.77, ce qui suggère que le marché de PLR est dans un état NEUTRAL.
Moyennes Mobiles et Oscillateurs Populaires de PLR pour le Samedi 19 Octobre 2024
Les moyennes mobiles (MA) sont des indicateurs largement utilisés sur les marchés financiers, conçus pour lisser les mouvements de prix sur une période donnée. En tant qu'indicateurs retardés, ils sont basés sur des données historiques de prix. Le tableau ci-dessous met en évidence deux types : la moyenne mobile simple (SMA) et la moyenne mobile exponentielle (EMA).
Moyenne Mobile Simple Quotidienne (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 3 | $0.000668 | BUY |
| SMA 5 | $0.000912 | SELL |
| SMA 10 | $0.0007059 | BUY |
| SMA 21 | $0.0006099 | BUY |
| SMA 50 | $0.000592 | BUY |
| SMA 100 | $0.001125 | SELL |
| SMA 200 | $0.002074 | SELL |
Moyenne Mobile Exponentielle Quotidienne (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 3 | $0.00073 | BUY |
| EMA 5 | $0.000736 | BUY |
| EMA 10 | $0.0007059 | BUY |
| EMA 21 | $0.00065 | BUY |
| EMA 50 | $0.000734 | BUY |
| EMA 100 | $0.001121 | SELL |
| EMA 200 | $0.001725 | SELL |
Moyenne Mobile Simple Hebdomadaire (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 21 | $0.00158 | SELL |
| SMA 50 | $0.00233 | SELL |
| SMA 100 | $0.003467 | SELL |
| SMA 200 | $0.005153 | SELL |
Moyenne Mobile Exponentielle Hebdomadaire (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 21 | $0.00138 | SELL |
| EMA 50 | $0.002239 | SELL |
| EMA 100 | $0.0038018 | SELL |
| EMA 200 | $0.015193 | SELL |
Oscillateurs de Pillar
Un oscillateur est un outil d'analyse technique qui établit des limites hautes et basses entre deux extrêmes, créant un indicateur de tendance qui fluctue à l'intérieur de ces limites. Les traders utilisent cet indicateur pour identifier les conditions de surachat ou de survente à court terme.
| Période | Valeur | Action |
|---|---|---|
| RSI (14) | 51.77 | NEUTRAL |
| Stoch RSI (14) | 23.22 | NEUTRAL |
| Stochastique Rapide (14) | 27.14 | NEUTRAL |
| Indice de Canal des Matières Premières (20) | 32.68 | NEUTRAL |
| Indice Directionnel Moyen (14) | 18.54 | NEUTRAL |
| Oscillateur Impressionnant (5, 34) | 0.000333 | BUY |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | NEUTRAL |
| Plage de Pourcentage de Williams (14) | -72.86 | NEUTRAL |
| Oscillateur Ultime (7, 14, 28) | 52.1 | NEUTRAL |
| VWMA (10) | 0.000659 | BUY |
| Moyenne Mobile de Hull (9) | 0.0007053 | SELL |
| Nuage Ichimoku B/L (9, 26, 52, 26) | -0.000655 | NEUTRAL |
Prévision du cours de Pillar basée sur les flux monétaires mondiaux
Définitions des flux monétaires mondiaux utilisés pour la prédiction du cours de Pillar
M0 : le total de toutes les devises physiques, plus les comptes à la banque centrale qui peuvent être échangés contre des devises physiques.
M1 : M0 plus le montant des comptes à vue, y compris les comptes de "chèques" et les comptes "courants".
M2 : M1 plus la plupart des comptes d'épargne, comptes du marché monétaire et comptes de certificats de dépôt (CD) de moins de 100 000 $.
Prédictions du cours de Pillar par des sociétés Internet ou des niches technologiques
| Comparaison | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Action Facebook | $0.001076 | $0.001513 | $0.002126 | $0.002987 | $0.004197 | $0.005898 |
| Action Amazon.com | $0.001598 | $0.003336 | $0.006961 | $0.014525 | $0.0303076 | $0.063238 |
| Action Apple | $0.001086 | $0.001541 | $0.002186 | $0.0031018 | $0.004399 | $0.00624 |
| Action Netflix | $0.0012091 | $0.0019077 | $0.00301 | $0.004749 | $0.007494 | $0.011824 |
| Action Google | $0.000992 | $0.001285 | $0.001664 | $0.002155 | $0.00279 | $0.003614 |
| Action Tesla | $0.001737 | $0.003937 | $0.008927 | $0.020237 | $0.045875 | $0.103997 |
| Action Kodak | $0.000574 | $0.00043 | $0.000323 | $0.000242 | $0.000181 | $0.000136 |
| Action Nokia | $0.0005076 | $0.000336 | $0.000222 | $0.000147 | $0.000097 | $0.000064 |
Ce calcul montre la valeur potentielle des cryptomonnaies si l'on suppose que leur capitalisation se comportera comme celle de certaines sociétés Internet ou niches technologiques. En extrapolant les données, vous pourrez obtenir une potentielle image des cours futurs pour 2024, 2025, 2026, 2027, 2028, 2029 et 2030.
Aperçu des prévisions relatives à Pillar
Vous vous posez peut-être des questions telles que : "Devrais-je investir dans Pillar maintenant ?", "Devrais-je acheter PLR aujourd'hui ?", " Pillar sera-t-il un bon ou un mauvais investissement à court ou à long terme ?".
Nous mettons régulièrement à jour les prévisions de Pillar avec de nouvelles valeurs. Regardez nos prévisions similaires. Nous faisons une prévision des cours futurs pour une grande quantité de devises numériques comme Pillar en utilisant des méthodes d'analyse technique.
Si vous souhaitez trouver des cryptomonnaies ayant un bon rendement, vous devriez consulter un maximum d'informations disponibles à propos de Pillar afin de prendre une décision responsable concernant cet investissement.
Le cours de Pillar est de $0.0007663 USD actuellement, mais ce cours peut subir une hausse ou une baisse, ce qui pourrait causer la perte de votre investissement, car les cryptomonnaies sont des actifs à haut risque.
Prévision du cours de Pillar basée sur le modèle de croissance du Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si Pillar présente 1 % de la précédente croissance annuelle moyenne du Bitcoin | $0.000786 | $0.0008066 | $0.000827 | $0.000849 |
| Si Pillar présente 2 % de la précédente croissance annuelle moyenne du Bitcoin | $0.0008061 | $0.000848 | $0.000892 | $0.000938 |
| Si Pillar présente 5 % de la précédente croissance annuelle moyenne du Bitcoin | $0.000865 | $0.000978 | $0.0011055 | $0.001249 |
| Si Pillar présente 10 % de la précédente croissance annuelle moyenne du Bitcoin | $0.000965 | $0.001216 | $0.001532 | $0.001931 |
| Si Pillar présente 20 % de la précédente croissance annuelle moyenne du Bitcoin | $0.001164 | $0.00177 | $0.00269 | $0.004089 |
| Si Pillar présente 50 % de la précédente croissance annuelle moyenne du Bitcoin | $0.001762 | $0.004052 | $0.009319 | $0.021431 |
| Si Pillar présente 100 % de la précédente croissance annuelle moyenne du Bitcoin | $0.002758 | $0.009927 | $0.035732 | $0.128611 |
Boîte à questions
Est-ce que PLR est un bon investissement ?
La décision d'acquérir Pillar dépend entièrement de votre tolérance individuelle au risque. Comme vous pouvez le discerner, la valeur de Pillar a connu une hausse de 20.8929% au cours des 24 heures précédentes, et Pillar a enregistré une déclin de sur une période de 30 jours précédents. Par conséquent, la détermination de si investir ou non dans Pillar dépendra de la mesure dans laquelle cet investissement s'aligne avec vos aspirations de trading.
Est-ce que Pillar peut monter ?
Il semble que la valeur moyenne de Pillar pourrait potentiellement s'envoler jusqu'à $0.00079 pour la fin de cette année. En regardant les perspectives de Pillar sur une période de cinq ans plus longue, la monnaie numérique pourrait potentiellement croître jusqu'à $0.002484. Cependant, compte tenu de l'imprévisibilité du marché, il est essentiel de mener des recherches approfondies avant d'investir des fonds dans un projet, un réseau ou un actif particulier.
Quel sera le prix de Pillar la semaine prochaine ?
Basé sur notre nouveau pronostic expérimental de Pillar, le prix de Pillar va augmenter de 0.86% durant la prochaine semaine et atteindre $0.000772 d'ici 13 janvier 2026.
Quel sera le prix de Pillar le mois prochain ?
Basé sur notre nouveau pronostic expérimental de Pillar, le prix de Pillar va diminuer de -11.62% durant le prochain mois et atteindre $0.000677 d'ici 5 février 2026.
Jusqu'où le prix de Pillar peut-il monter cette année en 2026 ?
Selon notre prédiction la plus récente sur la valeur de Pillar en 2026, PLR devrait fluctuer dans la fourchette de $0.000264 et $0.00079. Cependant, il est crucial de garder à l'esprit que le marché des cryptomonnaies est exceptionnellement instable, et cette prévision de prix de Pillar ne prend pas en compte les fluctuations de prix soudaines et extrêmes.
Où sera Pillar dans 5 ans ?
L'avenir de Pillar semble suivre une tendance haussière, avec un prix maximum de $0.002484 prévue après une période de cinq ans. Selon la prévision de Pillar pour 2030, la valeur de Pillar pourrait potentiellement atteindre son point le plus élevé d'environ $0.002484, tandis que son point le plus bas devrait être autour de $0.000859.
Combien vaudra Pillar en 2026 ?
Basé sur notre nouvelle simulation expérimentale de prédiction de prix de Pillar, il est attendu que la valeur de PLR en 2026 augmente de 3.13% jusqu'à $0.00079 si le meilleur scénario se produit. Le prix sera entre $0.00079 et $0.000264 durant 2026.
Combien vaudra Pillar en 2027 ?
Selon notre dernière simulation expérimentale pour la prédiction de prix de Pillar, le valeur de PLR pourrait diminuer de -12.62% jusqu'à $0.000669 en 2027, en supposant les conditions les plus favorables. Il est prévu que le prix fluctue entre $0.000669 et $0.000254 tout au long de l'année.
Combien vaudra Pillar en 2028 ?
Notre nouveau modèle expérimental de prédiction de prix de Pillar suggère que la valeur de PLR en 2028 pourrait augmenter de 47.02%, atteignant $0.001126 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.001126 et $0.000459 durant l'année.
Combien vaudra Pillar en 2029 ?
Basé sur notre modèle de prévision expérimental, la valeur de Pillar pourrait connaître un 333.75% croissance en 2029, atteignant potentiellement $0.003323 sous des conditions optimales. Le range de prix prévu pour 2029 se situe entre $0.003323 et $0.00101.
Combien vaudra Pillar en 2030 ?
En utilisant notre nouvelle simulation expérimentale pour les prédictions de prix de Pillar, il est prévu que la valeur de PLR en 2030 augmente de 224.23%, atteignant $0.002484 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.002484 et $0.000859 au cours de 2030.
Combien vaudra Pillar en 2031 ?
Notre simulation expérimentale indique que le prix de Pillar pourrait augmenter de 195.98% en 2031, atteignant potentiellement $0.002268 dans des conditions idéales. Il est probable que le prix fluctue entre $0.002268 et $0.001015 durant l'année.
Combien vaudra Pillar en 2032 ?
Basé sur les résultats de notre dernière prédiction expérimentale de prix de Pillar, PLR pourrait connaître une 449.04% hausse en valeur, atteignant $0.0042072 si le scénario le plus positif se réalise en 2032. Il est prévu que le prix reste dans une fourchette de $0.0042072 et $0.00155 tout au long de l'année.
Combien vaudra Pillar en 2033 ?
Selon notre prédiction expérimentale de prix de Pillar, la valeur de PLR est anticipée à augmenter de 1362.43% en 2033, avec le prix potentiel le plus élevé étant $0.0112066. Tout au long de l'année, le prix de PLR pourrait osciller entre $0.0112066 et $0.0036037.
Combien vaudra Pillar en 2034 ?
Les résultats de notre nouvelle simulation de prédiction de prix de Pillar suggèrent que PLR pourrait augmenter de 746.96% en 2034, atteignant potentiellement $0.00649 dans les meilleures circonstances. La fourchette de prix prévue pour l'année est entre $0.00649 et $0.002897.
Combien vaudra Pillar en 2035 ?
Basé sur notre prédiction expérimentale pour le prix de Pillar, PLR pourrait augmenter de 897.93%, avec la valeur potentiellement atteignant $0.007647 en 2035. La fourchette de prix attendue pour l'année se situe entre $0.007647 et $0.003425.
Combien vaudra Pillar en 2036 ?
Notre récente simulation de prédiction de prix de Pillar suggère que la valeur de PLR pourrait augmenter de 1964.7% en 2036, pouvant atteindre $0.015821 si les conditions sont optimales. La fourchette de prix attendue pour 2036 est entre $0.015821 et $0.00567.
Combien vaudra Pillar en 2037 ?
Selon la simulation expérimentale, la valeur de Pillar pourrait augmenter de 4830.69% en 2037, avec un maximum de $0.037783 sous des conditions favorables. Il est prévu que le prix chute entre $0.037783 et $0.014725 au cours de l'année.
Prévisions liées
Prévision du cours de Metaverser
Prévision du cours de TYBENG
Prévision du cours de DePay
Prévision du cours de SafeMoonCash
Prévision du cours de Kambria
Prévision du cours de League of Ancients
Prévision du cours de Revuto
Prévision du cours de Heroes of NFT
Prévision du cours de Pandacoin
Prévision du cours de DOLA Borrowing Right
Prévision du cours de MetaFighter
Prévision du cours de Kalmar
Prévision du cours de Nominex
Prévision du cours de MetaVPad
Prévision du cours de FlowX Finance
Prévision du cours de Solanacorn
Prévision du cours de Battle Infinity
Prévision du cours de Virtacoinplus
Prévision du cours de Cryptocart
Prévision du cours de SYNO Finance
Prévision du cours de NFTY Token
Prévision du cours de IP Exchange
Prévision du cours de NetherFi
Prévision du cours de Tokenomy
Prévision du cours de Roobee
Comment lire et prédire les mouvements de prix de Pillar ?
Les traders de Pillar utilisent des indicateurs et des modèles graphiques pour prédire la direction du marché. Ils identifient également des niveaux clés de support et de résistance pour évaluer quand une tendance baissière pourrait ralentir ou une tendance haussière pourrait s'arrêter.
Indicateurs de prédiction du prix de Pillar
Les moyennes mobiles sont des outils populaires pour la prédiction du prix de Pillar. Une moyenne mobile simple (SMA) calcule le prix de clôture moyen de PLR sur une période spécifique, comme une SMA de 12 jours. Une moyenne mobile exponentielle (EMA) donne plus de poids aux prix récents, réagissant plus rapidement aux changements de prix.
Les moyennes mobiles couramment utilisées sur le marché des cryptomonnaies incluent les moyennes sur 50 jours, 100 jours et 200 jours, qui aident à identifier les niveaux clés de résistance et de support. Un mouvement de prix de PLR au-dessus de ces moyennes est considéré comme haussier, tandis qu'une chute en dessous indique une faiblesse.
Les traders utilisent également le RSI et les niveaux de retracement de Fibonacci pour évaluer la direction future de PLR.
Comment lire les graphiques de Pillar et prédire les mouvements de prix ?
La plupart des traders préfèrent les graphiques en chandeliers aux simples graphiques linéaires parce qu'ils fournissent des informations plus détaillées. Les chandeliers peuvent représenter l'action des prix de Pillar dans différentes périodes, comme 5 minutes pour les tendances à court terme et hebdomadaire pour les tendances à long terme. Les options populaires incluent les graphiques de 1 heure, 4 heures et 1 jour.
Par exemple, un graphique en chandeliers de 1 heure montre les prix d'ouverture, de clôture, les plus hauts et les plus bas de PLR au sein de chaque heure. La couleur du chandelier est cruciale : le vert indique que le prix a clôturé plus haut qu'il n'a ouvert, tandis que le rouge signifie le contraire. Certains graphiques utilisent des chandeliers creux et pleins pour transmettre la même information.
Qu'est-ce qui affecte le prix de Pillar ?
L'action du prix de Pillar est déterminée par l'offre et la demande, influencée par des facteurs tels que les réductions de récompenses de bloc, les hard forks et les mises à jour de protocole. Les événements du monde réel, tels que les réglementations, l'adoption par les entreprises et les gouvernements et les piratages d'échanges de cryptomonnaies, impactent également le prix de PLR. La capitalisation boursière de Pillar peut changer rapidement.
Les traders surveillent souvent l'activité des « baleines » de PLR, de grands détenteurs de Pillar, car leurs actions peuvent influencer significativement les mouvements de prix sur le marché relativement petit de Pillar.
Modèles de prédiction de prix haussiers et baissiers
Les traders identifient souvent des modèles de chandeliers pour obtenir un avantage dans les prédictions de prix des cryptomonnaies. Certaines formations indiquent des tendances haussières, tandis que d'autres suggèrent des mouvements baissiers.
Modèles de chandeliers haussiers couramment suivis :
- Marteau
- Englobante haussière
- Ligne pénétrante
- Étoile du matin
- Trois soldats blancs
Modèles de chandeliers baissiers courants :
- Harami baissier
- Nuage sombre
- Étoile du soir
- Étoile filante
- Pendu


