Prédiction du prix de Pillar jusqu'à $0.000796 d'ici 2026
| Année | Prix min. | Prix max. |
|---|---|---|
| 2026 | $0.000266 | $0.000796 |
| 2027 | $0.000256 | $0.000674 |
| 2028 | $0.000463 | $0.001135 |
| 2029 | $0.001018 | $0.003349 |
| 2030 | $0.000865 | $0.0025034 |
| 2031 | $0.001023 | $0.002285 |
| 2032 | $0.001562 | $0.004239 |
| 2033 | $0.003631 | $0.011291 |
| 2034 | $0.002919 | $0.006539 |
| 2035 | $0.003451 | $0.0077053 |
Calculateur de profit d’investissement
Si vous ouvrez une position short de $10,000.00 sur Pillar aujourd’hui et la fermez le Apr 06, 2026, notre prévision indique que vous pourriez gagner environ $3,964.75, soit un rendement de 39.65% sur les 90 prochains jours.
Prévision du prix à long terme de Pillar pour 2027, 2028, 2029, 2030, 2031, 2032 et 2037
[
'name' => 'Pillar'
'name_with_ticker' => 'Pillar <small>PLR</small>'
'name_lang' => 'Pillar'
'name_lang_with_ticker' => 'Pillar <small>PLR</small>'
'name_with_lang' => 'Pillar'
'name_with_lang_with_ticker' => 'Pillar <small>PLR</small>'
'image' => '/uploads/coins/pillar.png?1717568582'
'price_for_sd' => 0.0007721
'ticker' => 'PLR'
'marketcap' => '$200.18K'
'low24h' => '$0.0006337'
'high24h' => '$0.0007987'
'volume24h' => '$4.62K'
'current_supply' => '259.35M'
'max_supply' => '800M'
'algo' => null
'proof' => null
'ico_price_and_roi' => ''
'price' => '$0.0007721'
'change_24h_pct' => '21.3443%'
'ath_price' => '$1.56'
'ath_days' => 2896
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '1 févr. 2018'
'ath_pct' => '-99.95%'
'fdv' => '$617.48K'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.038071'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.000778'
'next_week_prediction_price_date' => '13 janvier 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.000682'
'next_month_prediction_price_date' => '5 février 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.000266'
'current_year_max_price_prediction' => '$0.000796'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.000865'
'grand_prediction_max_price' => '$0.0025034'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.00078676145735962
107 => 0.00078969893904699
108 => 0.00079631723528017
109 => 0.00073976461859175
110 => 0.00076515508318726
111 => 0.00078006960237232
112 => 0.00071268526209937
113 => 0.00077873763062229
114 => 0.00073878016335342
115 => 0.00072521799882134
116 => 0.00074347766668447
117 => 0.0007363618563601
118 => 0.00073024410049761
119 => 0.00072683028760995
120 => 0.00074023817244263
121 => 0.0007396126785893
122 => 0.00071767477664473
123 => 0.00068905767786132
124 => 0.00069866251553728
125 => 0.00069517298796377
126 => 0.00068252648987936
127 => 0.00069104870264425
128 => 0.00065352119062085
129 => 0.00058895705669492
130 => 0.00063161010121929
131 => 0.00062996800540269
201 => 0.00062913998622884
202 => 0.00066119257034534
203 => 0.00065811145396147
204 => 0.00065251919755437
205 => 0.00068242378370494
206 => 0.00067150820748654
207 => 0.00070514744135845
208 => 0.00072730441643572
209 => 0.00072168469085307
210 => 0.0007425234330072
211 => 0.00069888379159829
212 => 0.00071337912995581
213 => 0.00071636659910162
214 => 0.00068205476575381
215 => 0.00065861556270669
216 => 0.00065705243508992
217 => 0.00061641208712735
218 => 0.00063812183297153
219 => 0.00065722551090408
220 => 0.00064807633167968
221 => 0.00064517997486119
222 => 0.00065997683370371
223 => 0.0006611266763623
224 => 0.0006349101418916
225 => 0.00064036138957773
226 => 0.00066309399862342
227 => 0.00063978858615565
228 => 0.00059450997664827
301 => 0.00058328025546469
302 => 0.00058178200365397
303 => 0.00055132610916368
304 => 0.00058403067913118
305 => 0.00056975425791238
306 => 0.00061485330148477
307 => 0.00058909296966724
308 => 0.00058798249324911
309 => 0.00058630384527163
310 => 0.00056008919876668
311 => 0.00056582854032357
312 => 0.00058490698578506
313 => 0.0005917143900598
314 => 0.00059100432202252
315 => 0.00058481349099409
316 => 0.00058764762173672
317 => 0.0005785178991381
318 => 0.00057529400406978
319 => 0.00056511850443197
320 => 0.00055016333101791
321 => 0.00055224293960655
322 => 0.00052261282783931
323 => 0.00050646877035946
324 => 0.00050200030802429
325 => 0.00049602489343982
326 => 0.00050267524700158
327 => 0.0005225288894555
328 => 0.00049858118447086
329 => 0.0004575245240109
330 => 0.00045999209926169
331 => 0.00046553600822054
401 => 0.00045520497055234
402 => 0.00044542751041766
403 => 0.00045392821873435
404 => 0.00043653197045707
405 => 0.00046763826171329
406 => 0.00046679692370919
407 => 0.00047839142548936
408 => 0.00048564170539563
409 => 0.00046893215751767
410 => 0.00046472975141378
411 => 0.00046712363291927
412 => 0.00042755810407061
413 => 0.00047515807767727
414 => 0.00047556972422565
415 => 0.00047204495656053
416 => 0.00049739047302177
417 => 0.0005508774182198
418 => 0.00053075347792891
419 => 0.00052296087999897
420 => 0.00050814714563779
421 => 0.00052788556712155
422 => 0.00052636996431894
423 => 0.00051951583367024
424 => 0.00051537043406771
425 => 0.00052300845994025
426 => 0.00051442399813581
427 => 0.0005128819929105
428 => 0.00050353911896334
429 => 0.00050020413803789
430 => 0.00049773505093009
501 => 0.0004950168286319
502 => 0.00050101254968292
503 => 0.00048742545697853
504 => 0.00047104075513615
505 => 0.00046967854446289
506 => 0.00047343972789856
507 => 0.00047177568421545
508 => 0.00046967057766194
509 => 0.00046565135595963
510 => 0.00046445893873764
511 => 0.00046833371623051
512 => 0.00046395931835462
513 => 0.00047041398070628
514 => 0.00046865866969939
515 => 0.00045885364510344
516 => 0.00044663295417183
517 => 0.00044652416438877
518 => 0.00044389123657351
519 => 0.00044053780713742
520 => 0.00043960495978438
521 => 0.00045321231279032
522 => 0.00048137912627883
523 => 0.00047584930681631
524 => 0.00047984516809667
525 => 0.00049950085074678
526 => 0.00050574880119425
527 => 0.00050131415395745
528 => 0.0004952437353026
529 => 0.00049551080291552
530 => 0.00051625526109986
531 => 0.00051754906751115
601 => 0.0005208180989147
602 => 0.00052501972809643
603 => 0.00050202970957546
604 => 0.00049442797511064
605 => 0.00049082585159303
606 => 0.00047973270535604
607 => 0.00049169571251815
608 => 0.00048472538055183
609 => 0.00048566591647453
610 => 0.00048505339122101
611 => 0.00048538787142821
612 => 0.00046762956687094
613 => 0.0004740997597026
614 => 0.00046334180920543
615 => 0.00044893812112632
616 => 0.0004488898349133
617 => 0.00045241511716497
618 => 0.00045031814133737
619 => 0.00044467523330347
620 => 0.00044547678175591
621 => 0.00043845437388362
622 => 0.00044632942921641
623 => 0.00044655525762505
624 => 0.00044352293236476
625 => 0.00045565554165314
626 => 0.00046062628157786
627 => 0.00045863034013284
628 => 0.0004604862410053
629 => 0.00047607909578062
630 => 0.00047862141147294
701 => 0.00047975054016753
702 => 0.00047823765729767
703 => 0.00046077124976639
704 => 0.0004615459592133
705 => 0.00045586165531965
706 => 0.00045105901752671
707 => 0.00045125109785191
708 => 0.00045372027797669
709 => 0.00046450333239713
710 => 0.00048719563472916
711 => 0.0004880567910148
712 => 0.0004891005375547
713 => 0.00048485509583195
714 => 0.00048357462998496
715 => 0.00048526389495341
716 => 0.00049378593060475
717 => 0.0005157069200101
718 => 0.00050795857830059
719 => 0.00050165905588064
720 => 0.00050718543538199
721 => 0.00050633469257495
722 => 0.00049915356712625
723 => 0.00049895201685238
724 => 0.00048516914117164
725 => 0.00048007392585336
726 => 0.00047581598256316
727 => 0.00047116641964667
728 => 0.00046841000289502
729 => 0.00047264511179457
730 => 0.00047361373130823
731 => 0.00046435359168234
801 => 0.00046309146886872
802 => 0.00047065349878122
803 => 0.00046732573135762
804 => 0.00047074842267745
805 => 0.00047154251642296
806 => 0.0004714146490404
807 => 0.00046794007765851
808 => 0.00047015466584412
809 => 0.00046491650458464
810 => 0.00045922079096134
811 => 0.00045558728052517
812 => 0.00045241656075439
813 => 0.00045417586036653
814 => 0.00044790427848467
815 => 0.00044589787321865
816 => 0.00046940441319664
817 => 0.00048676894701628
818 => 0.00048651645981743
819 => 0.00048497950892888
820 => 0.0004826959116676
821 => 0.00049361887124144
822 => 0.00048981353053738
823 => 0.00049258223384644
824 => 0.0004932869850407
825 => 0.00049542005464827
826 => 0.00049618244368945
827 => 0.00049387797449378
828 => 0.0004861438944059
829 => 0.00046687130216118
830 => 0.00045789985844589
831 => 0.00045493913258863
901 => 0.00045504674935032
902 => 0.00045207819864047
903 => 0.00045295256986563
904 => 0.0004517741280112
905 => 0.00044954244423462
906 => 0.00045403806018205
907 => 0.00045455613804043
908 => 0.00045350680755969
909 => 0.00045375396287422
910 => 0.00044506595466861
911 => 0.00044572648506312
912 => 0.00044204856789034
913 => 0.0004413590027584
914 => 0.00043206154841849
915 => 0.0004155897603678
916 => 0.00042471672990304
917 => 0.00041369263415059
918 => 0.00040951764204683
919 => 0.00042928140532155
920 => 0.00042729767165023
921 => 0.00042390238191323
922 => 0.00041888004075183
923 => 0.00041701720556087
924 => 0.00040569920864256
925 => 0.00040503048100546
926 => 0.0004106399858898
927 => 0.00040805139239695
928 => 0.00040441602675598
929 => 0.00039124910091549
930 => 0.00037644511685144
1001 => 0.00037689195607581
1002 => 0.00038160082796867
1003 => 0.00039529250807504
1004 => 0.00038994293178901
1005 => 0.00038606175281418
1006 => 0.00038533492466001
1007 => 0.0003944327007273
1008 => 0.00040730795990555
1009 => 0.00041334874344429
1010 => 0.00040736251041872
1011 => 0.00040048584824062
1012 => 0.00040090439880401
1013 => 0.00040368882818834
1014 => 0.00040398143234692
1015 => 0.00039950543220127
1016 => 0.00040076540002395
1017 => 0.00039885139368742
1018 => 0.00038710514033317
1019 => 0.00038689268785776
1020 => 0.0003840099678507
1021 => 0.00038392268023455
1022 => 0.00037901845437434
1023 => 0.00037833231927519
1024 => 0.00036859468116451
1025 => 0.00037500402405724
1026 => 0.0003707049733504
1027 => 0.00036422528989165
1028 => 0.00036310819002102
1029 => 0.00036307460864997
1030 => 0.0003697277947314
1031 => 0.0003749262777042
1101 => 0.00037077975717803
1102 => 0.00036983567483114
1103 => 0.00037991600437506
1104 => 0.00037863319055636
1105 => 0.00037752228206262
1106 => 0.00040615512166321
1107 => 0.000383489994871
1108 => 0.00037360670590939
1109 => 0.00036137425903373
1110 => 0.00036535720541779
1111 => 0.00036619647074258
1112 => 0.00033677964107088
1113 => 0.0003248452369367
1114 => 0.00032074979917639
1115 => 0.00031839281684434
1116 => 0.00031946692329017
1117 => 0.00030872455980343
1118 => 0.00031594360572881
1119 => 0.00030664162697868
1120 => 0.00030508211996996
1121 => 0.00032171521026925
1122 => 0.00032402960761529
1123 => 0.00031415566951018
1124 => 0.00032049633621904
1125 => 0.00031819712232855
1126 => 0.00030680108270605
1127 => 0.00030636583781606
1128 => 0.00030064770572366
1129 => 0.00029169993624759
1130 => 0.00028761056549632
1201 => 0.00028548078570352
1202 => 0.00028635957435461
1203 => 0.00028591523192124
1204 => 0.00028301559697871
1205 => 0.00028608143560196
1206 => 0.00027824948481154
1207 => 0.00027513073890048
1208 => 0.00027372207372681
1209 => 0.00026677076661005
1210 => 0.00027783338749312
1211 => 0.00028001286317031
1212 => 0.00028219663308786
1213 => 0.00030120485929709
1214 => 0.00030025526203237
1215 => 0.00030883915883284
1216 => 0.00030850560438795
1217 => 0.00030605733797055
1218 => 0.0002957285046758
1219 => 0.00029984539353333
1220 => 0.00028717424953641
1221 => 0.00029666833217294
1222 => 0.00029233562934
1223 => 0.00029520344098682
1224 => 0.00029004685706569
1225 => 0.00029290072351777
1226 => 0.00028052969770659
1227 => 0.00026897780786914
1228 => 0.00027362662556042
1229 => 0.00027868042204763
1230 => 0.00028963834051529
1231 => 0.00028311189467681
]
'min_raw' => 0.00026677076661005
'max_raw' => 0.00079631723528017
'avg_raw' => 0.00053154400094511
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.000266'
'max' => '$0.000796'
'avg' => '$0.000531'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.00050535923338995
'max_diff' => 2.4187235280174E-5
'year' => 2026
]
1 => [
'items' => [
101 => 0.00028545905139257
102 => 0.00027759646930408
103 => 0.00026137371661998
104 => 0.00026146553563838
105 => 0.00025897001856981
106 => 0.00025681352747111
107 => 0.00028386153549062
108 => 0.00028049768812767
109 => 0.00027513783760425
110 => 0.00028231221052184
111 => 0.00028420922859385
112 => 0.00028426323403147
113 => 0.00028949747131477
114 => 0.00029229098469116
115 => 0.00029278335353152
116 => 0.00030101953898998
117 => 0.00030378019971774
118 => 0.00031515097055206
119 => 0.00029205397459836
120 => 0.0002915783071661
121 => 0.00028241316866159
122 => 0.00027660049292692
123 => 0.0002828111675421
124 => 0.00028831297740952
125 => 0.0002825841252304
126 => 0.00028333219238233
127 => 0.00027564167639628
128 => 0.00027839067398888
129 => 0.0002807584810456
130 => 0.00027945111716214
131 => 0.00027749393015149
201 => 0.00028786189174221
202 => 0.00028727689071689
203 => 0.00029693177490857
204 => 0.00030445844756338
205 => 0.00031794759051446
206 => 0.00030387096664008
207 => 0.00030335795851658
208 => 0.00030837269521284
209 => 0.00030377943198768
210 => 0.00030668221579192
211 => 0.00031747990716674
212 => 0.00031770804537071
213 => 0.00031388643651473
214 => 0.00031365389126853
215 => 0.00031438787305314
216 => 0.00031868682729111
217 => 0.00031718464058685
218 => 0.00031892300907174
219 => 0.00032109686548094
220 => 0.00033008885728542
221 => 0.00033225679606723
222 => 0.00032698982877481
223 => 0.00032746537694958
224 => 0.00032549538660073
225 => 0.00032359240060764
226 => 0.00032787003521131
227 => 0.00033568749652663
228 => 0.00033563886450552
301 => 0.00033745236358094
302 => 0.00033858215848109
303 => 0.00033373225170923
304 => 0.00033057514073677
305 => 0.0003317857779758
306 => 0.00033372161328526
307 => 0.00033115801267548
308 => 0.00031533428213656
309 => 0.00032013419115825
310 => 0.00031933525159348
311 => 0.00031819746449888
312 => 0.00032302381013678
313 => 0.00032255829732606
314 => 0.00030861438133911
315 => 0.00030950702559967
316 => 0.00030866866599313
317 => 0.00031137757739411
318 => 0.00030363314188214
319 => 0.00030601527808605
320 => 0.00030750933158201
321 => 0.00030838934056898
322 => 0.00031156853645776
323 => 0.00031119549451435
324 => 0.00031154534764678
325 => 0.00031625925587324
326 => 0.00034010058606468
327 => 0.00034139821706407
328 => 0.00033500820743683
329 => 0.00033756089024555
330 => 0.00033266029746318
331 => 0.0003359500982291
401 => 0.00033820089636127
402 => 0.0003280299724056
403 => 0.0003274277162977
404 => 0.00032250689702568
405 => 0.00032515106657301
406 => 0.00032094400270068
407 => 0.00032197626901811
408 => 0.00031908996240323
409 => 0.00032428473965209
410 => 0.00033009330780308
411 => 0.00033156078150533
412 => 0.00032770048998187
413 => 0.00032490538451327
414 => 0.0003199981000754
415 => 0.00032815902346155
416 => 0.00033054552615929
417 => 0.00032814648817884
418 => 0.00032759057865876
419 => 0.0003265371311227
420 => 0.0003278140725335
421 => 0.00033053252875307
422 => 0.00032925055500193
423 => 0.00033009732125003
424 => 0.00032687032149382
425 => 0.00033373385723018
426 => 0.00034463480377933
427 => 0.00034466985210497
428 => 0.0003433878714435
429 => 0.00034286331257749
430 => 0.00034417870253325
501 => 0.00034489224762412
502 => 0.00034914597753976
503 => 0.00035371039921532
504 => 0.00037501056356196
505 => 0.00036902956264741
506 => 0.00038792833560819
507 => 0.00040287481132163
508 => 0.00040735660585792
509 => 0.00040323356576926
510 => 0.00038912886834821
511 => 0.00038843682460272
512 => 0.00040951519739942
513 => 0.00040355959163372
514 => 0.00040285119127847
515 => 0.0003953150083599
516 => 0.00039976982583919
517 => 0.00039879549190824
518 => 0.00039725745813218
519 => 0.00040575693955739
520 => 0.00042166721003144
521 => 0.00041918744517249
522 => 0.00041733641573826
523 => 0.00040922574358405
524 => 0.00041411017980509
525 => 0.00041237092562199
526 => 0.00041984386535057
527 => 0.00041541706140124
528 => 0.00040351447206254
529 => 0.00040540999864618
530 => 0.00040512349361633
531 => 0.0004110197468286
601 => 0.00040924983796828
602 => 0.00040477789050533
603 => 0.00042161283045662
604 => 0.00042051966309704
605 => 0.00042206952448008
606 => 0.00042275182139195
607 => 0.00043299895267538
608 => 0.00043719687449058
609 => 0.00043814987623759
610 => 0.0004421375772831
611 => 0.00043805065860287
612 => 0.00045440124724744
613 => 0.00046527343461279
614 => 0.00047790203971528
615 => 0.00049635582601907
616 => 0.00050329462037637
617 => 0.00050204118928246
618 => 0.00051603263944785
619 => 0.00054117496438258
620 => 0.00050712317199835
621 => 0.00054297979206315
622 => 0.00053162800013522
623 => 0.00050471310568412
624 => 0.00050298010378723
625 => 0.00052120718279787
626 => 0.00056163308975212
627 => 0.00055150685856692
628 => 0.00056164965263872
629 => 0.00054981754458774
630 => 0.00054922998069417
701 => 0.00056107499356044
702 => 0.00058875151176052
703 => 0.00057560343540243
704 => 0.00055675244390253
705 => 0.00057067172267215
706 => 0.00055861355523347
707 => 0.00053144312912557
708 => 0.00055149911522878
709 => 0.00053808824848316
710 => 0.00054200225236042
711 => 0.00057018989954383
712 => 0.00056679828725946
713 => 0.00057118734761028
714 => 0.00056344077097279
715 => 0.00055620424687037
716 => 0.00054269673724186
717 => 0.00053869782955303
718 => 0.0005398029837726
719 => 0.00053869728189349
720 => 0.00053113995439676
721 => 0.00052950795024338
722 => 0.00052678787182134
723 => 0.00052763093786352
724 => 0.00052251639464307
725 => 0.00053216859441861
726 => 0.00053396012775184
727 => 0.00054098419382181
728 => 0.00054171345566264
729 => 0.00056127537968619
730 => 0.0005505010006588
731 => 0.00055772938432551
801 => 0.00055708280965417
802 => 0.00050529643305997
803 => 0.00051243213883958
804 => 0.00052353305772483
805 => 0.00051853210881396
806 => 0.00051146193709583
807 => 0.00050575239435481
808 => 0.00049710185327144
809 => 0.00050927732372735
810 => 0.00052528677265994
811 => 0.00054211948170719
812 => 0.00056234287870467
813 => 0.00055782925192112
814 => 0.00054174141936742
815 => 0.00054246310778361
816 => 0.00054692430159857
817 => 0.000541146650266
818 => 0.00053944270809487
819 => 0.00054669020611007
820 => 0.00054674011564575
821 => 0.00054009222953513
822 => 0.0005327043206735
823 => 0.00053267336506561
824 => 0.00053135875804242
825 => 0.00055005141025675
826 => 0.00056033047893433
827 => 0.00056150895759267
828 => 0.000560251157931
829 => 0.00056073523510049
830 => 0.00055475407152083
831 => 0.00056842523780497
901 => 0.00058097125192552
902 => 0.00057760865213471
903 => 0.00057256763702657
904 => 0.00056855222568476
905 => 0.00057666274883419
906 => 0.00057630160000549
907 => 0.00058086167343708
908 => 0.00058065480216596
909 => 0.00057912142098396
910 => 0.00057760870689659
911 => 0.00058360644726356
912 => 0.00058187919435864
913 => 0.00058014925855287
914 => 0.00057667960745448
915 => 0.00057715119066355
916 => 0.00057211104595774
917 => 0.00056977924439551
918 => 0.00053471454367371
919 => 0.0005253441098687
920 => 0.00052829223909652
921 => 0.00052926283978647
922 => 0.00052518481498599
923 => 0.00053103165499126
924 => 0.00053012043116977
925 => 0.00053366547001106
926 => 0.00053145068365072
927 => 0.0005315415792555
928 => 0.00053805479369903
929 => 0.00053994560756119
930 => 0.00053898392437016
1001 => 0.00053965745431258
1002 => 0.0005551786675566
1003 => 0.00055297204737376
1004 => 0.00055179982438119
1005 => 0.00055212453816125
1006 => 0.00055609054092366
1007 => 0.00055720080516141
1008 => 0.00055249653756917
1009 => 0.00055471509736072
1010 => 0.00056416144337597
1011 => 0.00056746712986442
1012 => 0.00057801729431605
1013 => 0.00057353539694278
1014 => 0.00058176211354339
1015 => 0.0006070482356793
1016 => 0.00062724853970803
1017 => 0.00060867150531034
1018 => 0.0006457667911659
1019 => 0.00067465079220716
1020 => 0.00067354217613837
1021 => 0.00066850558245785
1022 => 0.00063562191519327
1023 => 0.00060536187430854
1024 => 0.00063067568341782
1025 => 0.00063074021352307
1026 => 0.00062856573487088
1027 => 0.00061506023471554
1028 => 0.00062809577274034
1029 => 0.00062913048641063
1030 => 0.00062855132190784
1031 => 0.00061819668660406
1101 => 0.00060238707235168
1102 => 0.00060547623313373
1103 => 0.00061053634151189
1104 => 0.00060095650070283
1105 => 0.00059789516110132
1106 => 0.00060358677386423
1107 => 0.00062192633608094
1108 => 0.00061845934807772
1109 => 0.00061836881100976
1110 => 0.00063320205591925
1111 => 0.00062258465377865
1112 => 0.00060551519734405
1113 => 0.00060120493447584
1114 => 0.00058590640503469
1115 => 0.00059647315381119
1116 => 0.00059685343228803
1117 => 0.0005910661319727
1118 => 0.00060598480486901
1119 => 0.00060584732667189
1120 => 0.00062001038623551
1121 => 0.00064708483671891
1122 => 0.00063907758945817
1123 => 0.00062976603207996
1124 => 0.00063077845654846
1125 => 0.0006418822540913
1126 => 0.00063516864462185
1127 => 0.00063758290539601
1128 => 0.00064187859981847
1129 => 0.00064447029891962
1130 => 0.00063040555093178
1201 => 0.00062712638538115
1202 => 0.00062041836349528
1203 => 0.00061866836579641
1204 => 0.00062413190965499
1205 => 0.00062269245887811
1206 => 0.00059682147135456
1207 => 0.00059411780921354
1208 => 0.00059420072667146
1209 => 0.00058740223966572
1210 => 0.00057703291515814
1211 => 0.00060428288084388
1212 => 0.00060209432723629
1213 => 0.00059967833343411
1214 => 0.0005999742788894
1215 => 0.00061180256540656
1216 => 0.00060494156188382
1217 => 0.00062318266424538
1218 => 0.00061943284197757
1219 => 0.00061558685091797
1220 => 0.00061505521780178
1221 => 0.00061357483936837
1222 => 0.00060849807089566
1223 => 0.00060236756789837
1224 => 0.00059831967880448
1225 => 0.00055191827663858
1226 => 0.00056053010697603
1227 => 0.00057043723278623
1228 => 0.0005738571329156
1229 => 0.00056800715709443
1230 => 0.0006087290635971
1231 => 0.00061616934832119
]
'min_raw' => 0.00025681352747111
'max_raw' => 0.00067465079220716
'avg_raw' => 0.00046573215983914
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.000256'
'max' => '$0.000674'
'avg' => '$0.000465'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -9.9572391389342E-6
'max_diff' => -0.00012166644307301
'year' => 2027
]
2 => [
'items' => [
101 => 0.00059363224057415
102 => 0.00058941646789873
103 => 0.00060900544895185
104 => 0.00059719089872128
105 => 0.00060251098996669
106 => 0.00059101186262843
107 => 0.00061437720160813
108 => 0.00061419919687275
109 => 0.00060510955227953
110 => 0.00061279205764652
111 => 0.00061145703328183
112 => 0.0006011948469229
113 => 0.00061470253122003
114 => 0.00061470923086292
115 => 0.00060596064556787
116 => 0.00059574421325483
117 => 0.00059391775645861
118 => 0.00059254176661261
119 => 0.00060217258081428
120 => 0.00061080753871273
121 => 0.00062687505457412
122 => 0.00063091480981644
123 => 0.00064668224346893
124 => 0.00063729350443128
125 => 0.00064145541084215
126 => 0.00064597374898875
127 => 0.00064814000645261
128 => 0.00064461020616303
129 => 0.00066910352075997
130 => 0.00067117150696772
131 => 0.00067186488485517
201 => 0.00066360587698316
202 => 0.00067094180901836
203 => 0.00066750956935962
204 => 0.00067643930344802
205 => 0.00067783959977365
206 => 0.00067665359860283
207 => 0.00067709807475876
208 => 0.00065619735166705
209 => 0.00065511353891465
210 => 0.0006403356751318
211 => 0.00064635776385576
212 => 0.00063509975763253
213 => 0.00063866978737623
214 => 0.00064024342247076
215 => 0.00063942144480039
216 => 0.00064669824371675
217 => 0.00064051147808604
218 => 0.00062418358638815
219 => 0.00060785124616709
220 => 0.00060764620693965
221 => 0.00060334619004919
222 => 0.00060023806542477
223 => 0.00060083680049408
224 => 0.00060294682097257
225 => 0.00060011542719875
226 => 0.00060071964861571
227 => 0.00061075375004333
228 => 0.0006127660175247
229 => 0.00060592754637934
301 => 0.00057847009794403
302 => 0.00057173197122621
303 => 0.00057657520308812
304 => 0.0005742604502022
305 => 0.00046347300250368
306 => 0.00048950087000701
307 => 0.0004740359949594
308 => 0.00048116292088603
309 => 0.00046537728807239
310 => 0.00047291101944696
311 => 0.0004715198143499
312 => 0.00051337185507466
313 => 0.00051271839302434
314 => 0.00051303117072738
315 => 0.00049810147602309
316 => 0.00052188488507242
317 => 0.00053360144759384
318 => 0.00053143302369734
319 => 0.00053197876927523
320 => 0.00052260105210547
321 => 0.00051312196752826
322 => 0.00050260820391148
323 => 0.000522141477171
324 => 0.00051996971062864
325 => 0.00052495096169988
326 => 0.00053761968567588
327 => 0.00053948520340515
328 => 0.0005419924781515
329 => 0.00054109379863491
330 => 0.00056250399068868
331 => 0.00055991107516198
401 => 0.00056615925554863
402 => 0.00055330627444269
403 => 0.00053876190630515
404 => 0.00054152631519688
405 => 0.00054126008039064
406 => 0.00053787060573704
407 => 0.00053481073957343
408 => 0.00052971692452296
409 => 0.00054583450908543
410 => 0.00054518016458636
411 => 0.00055577324143404
412 => 0.00055390081220555
413 => 0.00054139627155657
414 => 0.00054184287367214
415 => 0.00054484648752906
416 => 0.00055524202938249
417 => 0.00055832813398706
418 => 0.00055689852737422
419 => 0.00056028230018709
420 => 0.00056295669625086
421 => 0.00056061816315698
422 => 0.00059372686023649
423 => 0.00057997782087877
424 => 0.00058667900699652
425 => 0.00058827720039993
426 => 0.0005841834616035
427 => 0.00058507124696264
428 => 0.00058641599987473
429 => 0.00059458107622727
430 => 0.00061600859916023
501 => 0.00062549870320515
502 => 0.0006540501494578
503 => 0.00062471068217285
504 => 0.00062296979960294
505 => 0.00062811277724412
506 => 0.00064487549867194
507 => 0.00065846010994683
508 => 0.00066296690922174
509 => 0.00066356255714506
510 => 0.00067201761219114
511 => 0.00067686389206611
512 => 0.00067099094611852
513 => 0.00066601423935101
514 => 0.00064818829344138
515 => 0.00065025169521886
516 => 0.0006644664872886
517 => 0.00068454571833419
518 => 0.00070177578745922
519 => 0.00069574241778017
520 => 0.00074177276953614
521 => 0.00074633649089562
522 => 0.00074570593216652
523 => 0.00075610276859621
524 => 0.00073546716556219
525 => 0.00072664504546917
526 => 0.00066709025984217
527 => 0.00068382272539522
528 => 0.00070814434673982
529 => 0.00070492528895347
530 => 0.00068726227741421
531 => 0.00070176238848109
601 => 0.00069696819830198
602 => 0.00069318682159659
603 => 0.00071051004133994
604 => 0.00069146244963348
605 => 0.0007079543324419
606 => 0.00068680332215342
607 => 0.00069576997770465
608 => 0.00069068007034544
609 => 0.00069397386420243
610 => 0.00067471841261772
611 => 0.00068510818689317
612 => 0.00067428616384946
613 => 0.00067428103280147
614 => 0.00067404213604297
615 => 0.0006867741981617
616 => 0.00068718939025029
617 => 0.00067778037710747
618 => 0.00067642439131718
619 => 0.00068143818148481
620 => 0.00067556834631224
621 => 0.00067831480524518
622 => 0.00067565153375546
623 => 0.00067505197524604
624 => 0.00067027459103654
625 => 0.00066821636256217
626 => 0.00066902344698099
627 => 0.00066626845177904
628 => 0.00066460846751733
629 => 0.00067371192339212
630 => 0.00066884831415058
701 => 0.00067296650552187
702 => 0.0006682733066971
703 => 0.00065200463484104
704 => 0.00064264834961854
705 => 0.00061191833658913
706 => 0.00062063333016381
707 => 0.00062641137992013
708 => 0.00062450173451013
709 => 0.00062860439178548
710 => 0.00062885626162178
711 => 0.00062752244591993
712 => 0.00062597805820955
713 => 0.00062522633568214
714 => 0.00063082905952677
715 => 0.00063408162929758
716 => 0.00062699128451351
717 => 0.00062533011593507
718 => 0.00063249884598043
719 => 0.00063687176716686
720 => 0.00066915896027529
721 => 0.00066676702072356
722 => 0.00067277031960398
723 => 0.00067209444027817
724 => 0.00067838685390536
725 => 0.0006886722908134
726 => 0.00066775912172596
727 => 0.00067138892475656
728 => 0.00067049898087785
729 => 0.0006802151547898
730 => 0.00068024548762419
731 => 0.0006744201560051
801 => 0.00067757816278102
802 => 0.00067581545003409
803 => 0.00067900091021272
804 => 0.00066673507491255
805 => 0.00068167353829305
806 => 0.00069014268441648
807 => 0.00069026027851862
808 => 0.00069427458656583
809 => 0.00069835335603483
810 => 0.00070618219884463
811 => 0.00069813501385798
812 => 0.00068365891144466
813 => 0.00068470403928137
814 => 0.00067621670573304
815 => 0.00067635937934335
816 => 0.00067559777642999
817 => 0.00067788340410378
818 => 0.00066723664165495
819 => 0.00066973541552125
820 => 0.00066623711747563
821 => 0.00067138132013982
822 => 0.00066584700844032
823 => 0.00067049855171997
824 => 0.00067250600359836
825 => 0.00067991354424699
826 => 0.00066475290866363
827 => 0.00063383934642435
828 => 0.00064033775199776
829 => 0.00063072609971595
830 => 0.00063161569472877
831 => 0.00063341281823267
901 => 0.00062758775297432
902 => 0.00062869899185671
903 => 0.00062865929058416
904 => 0.00062831716646571
905 => 0.00062680184201732
906 => 0.00062460432176935
907 => 0.00063335856607621
908 => 0.0006348460827716
909 => 0.0006381526481211
910 => 0.00064799074373652
911 => 0.00064700768598627
912 => 0.00064861109396361
913 => 0.00064511086335184
914 => 0.00063177806038795
915 => 0.00063250209573494
916 => 0.0006234733633561
917 => 0.00063792176313482
918 => 0.00063450019135766
919 => 0.00063229428177428
920 => 0.00063169237890685
921 => 0.0006415548612584
922 => 0.00064450587055345
923 => 0.00064266699959564
924 => 0.00063889542161274
925 => 0.00064613796630685
926 => 0.00064807576572857
927 => 0.0006485095675558
928 => 0.00066134196813357
929 => 0.00064922675619791
930 => 0.00065214300812567
1001 => 0.00067489477318525
1002 => 0.00065426206180518
1003 => 0.00066519166918757
1004 => 0.00066465672178114
1005 => 0.00067024793908022
1006 => 0.00066419807876721
1007 => 0.00066427307403648
1008 => 0.0006692376962162
1009 => 0.00066226577973911
1010 => 0.0006605394351731
1011 => 0.00065815450251947
1012 => 0.00066336191571766
1013 => 0.00066648352441892
1014 => 0.0006916413979822
1015 => 0.00070789453164249
1016 => 0.00070718894024571
1017 => 0.00071363672480057
1018 => 0.00071073193880367
1019 => 0.00070135161857585
1020 => 0.00071736268139655
1021 => 0.00071229611118876
1022 => 0.0007127137930808
1023 => 0.00071269824693992
1024 => 0.00071606707320085
1025 => 0.00071367995104659
1026 => 0.00070897468824748
1027 => 0.00071209826127895
1028 => 0.00072137415648462
1029 => 0.00075016681982223
1030 => 0.00076627957567801
1031 => 0.00074919681168794
1101 => 0.00076098027354096
1102 => 0.00075391439530591
1103 => 0.00075263031503893
1104 => 0.00076003119987362
1105 => 0.0007674450389775
1106 => 0.00076697280947749
1107 => 0.00076159074299292
1108 => 0.00075855055020067
1109 => 0.00078157190856289
1110 => 0.00079853365324557
1111 => 0.00079737697597119
1112 => 0.0008024821732887
1113 => 0.00081747119051071
1114 => 0.00081884159839702
1115 => 0.00081866895850181
1116 => 0.00081527225956833
1117 => 0.00083003089359325
1118 => 0.0008423428057503
1119 => 0.0008144860219053
1120 => 0.0008250935205214
1121 => 0.00082985556840243
1122 => 0.00083684766752772
1123 => 0.00084864451076396
1124 => 0.00086145901147665
1125 => 0.00086327112238127
1126 => 0.00086198534297695
1127 => 0.00085353383528466
1128 => 0.00086755561487327
1129 => 0.00087576924450509
1130 => 0.00088066027298526
1201 => 0.00089306310742145
1202 => 0.00082988497718895
1203 => 0.00078516435645357
1204 => 0.00077818058575215
1205 => 0.00079238235809671
1206 => 0.00079612725220695
1207 => 0.00079461769008681
1208 => 0.00074428056562819
1209 => 0.00077791557120938
1210 => 0.00081410400910315
1211 => 0.0008154941543847
1212 => 0.00083361084305887
1213 => 0.00083951037951934
1214 => 0.00085409668851072
1215 => 0.00085318431091188
1216 => 0.00085673584503242
1217 => 0.0008559194088421
1218 => 0.00088293747473889
1219 => 0.00091274241364467
1220 => 0.00091171036338426
1221 => 0.00090742555078053
1222 => 0.00091378922816619
1223 => 0.00094455111920831
1224 => 0.00094171905723041
1225 => 0.00094447016420747
1226 => 0.00098074016741034
1227 => 0.0010278963309219
1228 => 0.0010059875585694
1229 => 0.0010535232904949
1230 => 0.0010834445139811
1231 => 0.0011351901760883
]
'min_raw' => 0.00046347300250368
'max_raw' => 0.0011351901760883
'avg_raw' => 0.00079933158929601
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.000463'
'max' => '$0.001135'
'avg' => '$0.000799'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.00020665947503257
'max_diff' => 0.00046053938388117
'year' => 2028
]
3 => [
'items' => [
101 => 0.0011287113643397
102 => 0.0011488555708709
103 => 0.001117112939141
104 => 0.0010442254404448
105 => 0.001032690714774
106 => 0.0010557835276727
107 => 0.0011125549548205
108 => 0.0010539955933995
109 => 0.0010658420759471
110 => 0.0010624302881764
111 => 0.0010622484885053
112 => 0.0010691870425198
113 => 0.0010591223080311
114 => 0.0010181167691132
115 => 0.0010369093659521
116 => 0.001029652641818
117 => 0.0010377045182694
118 => 0.0010811571746314
119 => 0.0010619457194718
120 => 0.0010417080120731
121 => 0.0010670905882579
122 => 0.0010994113301407
123 => 0.0010973887561996
124 => 0.0010934641173836
125 => 0.0011155871009019
126 => 0.0011521277882482
127 => 0.0011620045892056
128 => 0.00116929544175
129 => 0.0011703007271359
130 => 0.0011806557913921
131 => 0.0011249740010741
201 => 0.0012133424323186
202 => 0.0012286012192659
203 => 0.0012257331997317
204 => 0.0012426926992357
205 => 0.0012377027842607
206 => 0.0012304731803555
207 => 0.0012573575944583
208 => 0.0012265367831498
209 => 0.0011827905217296
210 => 0.0011587904575115
211 => 0.0011903956781038
212 => 0.0012096958834493
213 => 0.0012224520914591
214 => 0.0012263121122954
215 => 0.0011292964199507
216 => 0.001077010342514
217 => 0.0011105251186898
218 => 0.0011514154586907
219 => 0.0011247468531708
220 => 0.0011257922120168
221 => 0.0010877697889316
222 => 0.0011547795994464
223 => 0.0011450168336956
224 => 0.0011956660796807
225 => 0.0011835782306407
226 => 0.0012248807245492
227 => 0.0012140043937058
228 => 0.0012591514349493
301 => 0.0012771618120086
302 => 0.0013074040381827
303 => 0.0013296503428643
304 => 0.0013427137984773
305 => 0.0013419295176021
306 => 0.0013936934369288
307 => 0.0013631700621954
308 => 0.0013248255097233
309 => 0.0013241319777446
310 => 0.0013439911648164
311 => 0.0013856105728171
312 => 0.0013964018797739
313 => 0.0014024327481856
314 => 0.001393196263277
315 => 0.001360065327634
316 => 0.0013457595576009
317 => 0.0013579484881471
318 => 0.0013430424734959
319 => 0.001368774436673
320 => 0.0014041099181658
321 => 0.0013968132809692
322 => 0.0014212048451446
323 => 0.0014464475479987
324 => 0.0014825457468009
325 => 0.0014919831526802
326 => 0.0015075828257263
327 => 0.0015236400135164
328 => 0.0015287971494812
329 => 0.0015386437222034
330 => 0.0015385918259047
331 => 0.0015682651355538
401 => 0.0016009957150026
402 => 0.0016133507510299
403 => 0.0016417604751139
404 => 0.0015931098182155
405 => 0.0016300119003314
406 => 0.001663298502119
407 => 0.0016236128432223
408 => 0.0016783102784388
409 => 0.0016804340559012
410 => 0.0017125005741188
411 => 0.0016799950147037
412 => 0.0016606933172845
413 => 0.0017164165945086
414 => 0.0017433793330906
415 => 0.0017352579367997
416 => 0.0016734537100228
417 => 0.0016374809991307
418 => 0.0015433334761084
419 => 0.0016548552839987
420 => 0.0017091743034863
421 => 0.0016733130368849
422 => 0.0016913993738334
423 => 0.0017900725637097
424 => 0.0018276409257987
425 => 0.0018198269691069
426 => 0.0018211473991591
427 => 0.0018414186054283
428 => 0.0019313122975833
429 => 0.0018774459135246
430 => 0.0019186247458025
501 => 0.0019404658499614
502 => 0.0019607530847222
503 => 0.0019109340479962
504 => 0.0018461202132026
505 => 0.0018255909510238
506 => 0.0016697473406697
507 => 0.0016616350039563
508 => 0.0016570813035301
509 => 0.0016283708664765
510 => 0.001605812327403
511 => 0.0015878729395869
512 => 0.0015407946288028
513 => 0.0015566821766941
514 => 0.0014816491753113
515 => 0.0015296526305897
516 => 0.0014098981486476
517 => 0.0015096332397326
518 => 0.0014553519640532
519 => 0.0014918003807817
520 => 0.0014916732156894
521 => 0.0014245601245111
522 => 0.001385850694134
523 => 0.0014105178497639
524 => 0.0014369629986803
525 => 0.0014412536351199
526 => 0.0014755404609791
527 => 0.0014851091770836
528 => 0.0014561155205664
529 => 0.0014074165031891
530 => 0.0014187281742195
531 => 0.0013856214634816
601 => 0.0013276032263446
602 => 0.0013692729371576
603 => 0.001383500808517
604 => 0.0013897846470533
605 => 0.0013327303742686
606 => 0.0013148026830511
607 => 0.0013052581306749
608 => 0.0014000515130294
609 => 0.0014052445084988
610 => 0.0013786764094621
611 => 0.0014987667363987
612 => 0.001471586596838
613 => 0.0015019534720231
614 => 0.0014177017586368
615 => 0.0014209202875482
616 => 0.0013810341762375
617 => 0.0014033677333805
618 => 0.001387583095036
619 => 0.0014015634026679
620 => 0.0014099431414195
621 => 0.0014498227078118
622 => 0.0015100886003214
623 => 0.0014438660304591
624 => 0.0014150119084454
625 => 0.001432912843461
626 => 0.001480585392365
627 => 0.0015528117442675
628 => 0.0015100522902504
629 => 0.0015290282098406
630 => 0.0015331736040911
701 => 0.00150164436574
702 => 0.0015539742722583
703 => 0.0015820182942889
704 => 0.0016107856579996
705 => 0.0016357635538663
706 => 0.0015992953403256
707 => 0.0016383215563272
708 => 0.0016068733152844
709 => 0.0015786609920097
710 => 0.0015787037784585
711 => 0.001561005775952
712 => 0.0015267136660037
713 => 0.0015203896747939
714 => 0.0015532878756994
715 => 0.0015796691173544
716 => 0.0015818420027747
717 => 0.0015964480136721
718 => 0.0016050917004673
719 => 0.0016898115815824
720 => 0.0017238866186065
721 => 0.0017655529288722
722 => 0.0017817843049052
723 => 0.0018306349274943
724 => 0.0017911840823
725 => 0.0017826486437848
726 => 0.0016641530123005
727 => 0.0016835566653178
728 => 0.0017146237859725
729 => 0.0016646652976774
730 => 0.0016963524596418
731 => 0.0017026081766394
801 => 0.001662967727362
802 => 0.0016841414040837
803 => 0.0016279103962683
804 => 0.0015113142826302
805 => 0.0015541040770635
806 => 0.0015856117686556
807 => 0.0015406464078834
808 => 0.0016212450766677
809 => 0.0015741609982582
810 => 0.0015592376058367
811 => 0.0015010161314269
812 => 0.0015284944261982
813 => 0.0015656592133278
814 => 0.001542695695752
815 => 0.0015903484427113
816 => 0.0016578374409291
817 => 0.0017059341200984
818 => 0.0017096263859062
819 => 0.0016787034434275
820 => 0.0017282576560971
821 => 0.0017286186044369
822 => 0.0016727212501107
823 => 0.0016384844318236
824 => 0.0016307057546739
825 => 0.0016501384152934
826 => 0.0016737332527524
827 => 0.0017109357351734
828 => 0.0017334164161487
829 => 0.0017920341093004
830 => 0.0018078943763663
831 => 0.0018253200013391
901 => 0.0018486060101666
902 => 0.0018765668341741
903 => 0.0018153901430563
904 => 0.001817820807042
905 => 0.001760853919322
906 => 0.0016999766299152
907 => 0.0017461749041137
908 => 0.0018065730021295
909 => 0.0017927176117107
910 => 0.0017911585972487
911 => 0.0017937804271393
912 => 0.0017833339152383
913 => 0.0017360847290758
914 => 0.0017123564835805
915 => 0.0017429719739904
916 => 0.0017592427446046
917 => 0.0017844772908668
918 => 0.0017813666004034
919 => 0.0018463680815825
920 => 0.0018716256916259
921 => 0.0018651637141427
922 => 0.0018663528735158
923 => 0.0019120805700387
924 => 0.0019629391731903
925 => 0.0020105749664255
926 => 0.0020590321413093
927 => 0.0020006151256712
928 => 0.0019709545677908
929 => 0.0020015566924353
930 => 0.0019853187743428
1001 => 0.0020786266681816
1002 => 0.0020850871043037
1003 => 0.0021783882509197
1004 => 0.0022669421491522
1005 => 0.0022113230322803
1006 => 0.0022637693543504
1007 => 0.0023204943276807
1008 => 0.0024299260045301
1009 => 0.00239307326562
1010 => 0.002364844645171
1011 => 0.0023381687352463
1012 => 0.0023936770691181
1013 => 0.0024650876538768
1014 => 0.0024804688098718
1015 => 0.0025053921586374
1016 => 0.0024791883048924
1017 => 0.0025107479604685
1018 => 0.0026221674126672
1019 => 0.0025920608931564
1020 => 0.0025493047955865
1021 => 0.0026372597522595
1022 => 0.0026690903091632
1023 => 0.0028924938273054
1024 => 0.0031745499972991
1025 => 0.003057776890841
1026 => 0.0029852920554179
1027 => 0.0030023277111056
1028 => 0.0031053250761834
1029 => 0.0031384045608734
1030 => 0.0030484831183038
1031 => 0.0030802448919985
1101 => 0.0032552553878048
1102 => 0.0033491429037959
1103 => 0.0032216310463043
1104 => 0.0028698308886784
1105 => 0.0025454550768049
1106 => 0.002631494148947
1107 => 0.0026217399882693
1108 => 0.0028097669330092
1109 => 0.0025913428626229
1110 => 0.0025950205637885
1111 => 0.0027869357066216
1112 => 0.0027357360367722
1113 => 0.0026527991287745
1114 => 0.0025460606080168
1115 => 0.002348744580278
1116 => 0.0021739762719453
1117 => 0.0025167371713234
1118 => 0.002501956698072
1119 => 0.0024805523824605
1120 => 0.002528185370665
1121 => 0.0027594776405266
1122 => 0.0027541456050863
1123 => 0.0027202259160433
1124 => 0.002745953701228
1125 => 0.0026482889236396
1126 => 0.0026734593606098
1127 => 0.0025454036940191
1128 => 0.0026032902033951
1129 => 0.0026526211834188
1130 => 0.0026625251080162
1201 => 0.002684839155841
1202 => 0.0024941680602984
1203 => 0.0025797737843878
1204 => 0.0026300591271187
1205 => 0.002402868119264
1206 => 0.0026255682913682
1207 => 0.0024908489007299
1208 => 0.0024451231161299
1209 => 0.0025066868611798
1210 => 0.0024826954098611
1211 => 0.0024620689688427
1212 => 0.0024505590603471
1213 => 0.0024957646801691
1214 => 0.002493655783972
1215 => 0.0024196906159105
1216 => 0.0023232060693802
1217 => 0.0023555894501931
1218 => 0.0023438242643479
1219 => 0.0023011857131061
1220 => 0.0023299189484448
1221 => 0.0022033923215707
1222 => 0.0019857098363155
1223 => 0.0021295175538699
1224 => 0.0021239811131768
1225 => 0.0021211893887217
1226 => 0.0022292569139104
1227 => 0.0022188687149055
1228 => 0.0022000140319901
1229 => 0.0023008394320683
1230 => 0.0022640368047468
1231 => 0.0023774538303622
]
'min_raw' => 0.0010181167691132
'max_raw' => 0.0033491429037959
'avg_raw' => 0.0021836298364545
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.001018'
'max' => '$0.003349'
'avg' => '$0.002183'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.00055464376660948
'max_diff' => 0.0022139527277076
'year' => 2029
]
4 => [
'items' => [
101 => 0.0024521576187858
102 => 0.0024332103216272
103 => 0.0025034695957144
104 => 0.0023563354978818
105 => 0.0024052075431863
106 => 0.0024152800039899
107 => 0.002299595262282
108 => 0.0022205683527358
109 => 0.0022152981588417
110 => 0.0020782763882674
111 => 0.0021514723121072
112 => 0.002215881696033
113 => 0.0021850345995026
114 => 0.0021752693302719
115 => 0.0022251579729431
116 => 0.002229034747746
117 => 0.0021406438713981
118 => 0.0021590231335658
119 => 0.0022356677121034
120 => 0.0021570918868364
121 => 0.0020044318936307
122 => 0.0019665701046262
123 => 0.0019615186440417
124 => 0.0018588344694051
125 => 0.0019691002104107
126 => 0.0019209662595236
127 => 0.0020730208336426
128 => 0.0019861680763908
129 => 0.0019824240276161
130 => 0.0019767643487606
131 => 0.001888379837821
201 => 0.0019077304285881
202 => 0.001972054739476
203 => 0.0019950063782661
204 => 0.001992612334303
205 => 0.0019717395152607
206 => 0.0019812949849321
207 => 0.001950513487774
208 => 0.001939643900466
209 => 0.0019053364930064
210 => 0.001854914081704
211 => 0.0018619256272543
212 => 0.0017620256367227
213 => 0.0017075948197873
214 => 0.0016925290870462
215 => 0.0016723825595845
216 => 0.0016948046909308
217 => 0.0017617426326013
218 => 0.0016810012732702
219 => 0.0015425758760449
220 => 0.0015508954782836
221 => 0.0015695871544017
222 => 0.0015347553396134
223 => 0.0015017899501288
224 => 0.001530450681719
225 => 0.0014717980160849
226 => 0.0015766750488272
227 => 0.001573838419006
228 => 0.0016129300912601
301 => 0.0016373749161625
302 => 0.0015810375088686
303 => 0.0015668688032867
304 => 0.0015749399419179
305 => 0.0014415419990276
306 => 0.0016020286333665
307 => 0.0016034165284446
308 => 0.0015915325281703
309 => 0.0016769867064868
310 => 0.0018573216765612
311 => 0.0017894724068618
312 => 0.0017631991188792
313 => 0.0017132535792186
314 => 0.0017798030453437
315 => 0.0017746930846786
316 => 0.0017515839046564
317 => 0.0017376074004739
318 => 0.0017633595379732
319 => 0.0017344164256515
320 => 0.001729217447375
321 => 0.0016977172955635
322 => 0.0016864731745324
323 => 0.0016781484749623
324 => 0.0016689837987038
325 => 0.0016891987908351
326 => 0.0016433889591618
327 => 0.0015881467929569
328 => 0.0015835540045654
329 => 0.0015962350971162
330 => 0.0015906246576588
331 => 0.0015835271439398
401 => 0.0015699760573574
402 => 0.0015659557394415
403 => 0.0015790198222871
404 => 0.0015642712344378
405 => 0.0015860335792066
406 => 0.0015801154255949
407 => 0.0015470571006047
408 => 0.0015058541879074
409 => 0.0015054873955584
410 => 0.001496610295604
411 => 0.0014853039741313
412 => 0.0014821588141512
413 => 0.0015280369548458
414 => 0.0016230033330664
415 => 0.0016043591606689
416 => 0.0016178314859577
417 => 0.0016841019923285
418 => 0.0017051673934801
419 => 0.0016902156707041
420 => 0.0016697488303861
421 => 0.0016706492674892
422 => 0.0017405906565895
423 => 0.0017449528152358
424 => 0.0017559745828494
425 => 0.001770140668984
426 => 0.0016926282164287
427 => 0.0016669984379444
428 => 0.0016548536270125
429 => 0.0016174523099758
430 => 0.0016577864238533
501 => 0.0016342854629758
502 => 0.0016374565455054
503 => 0.001635391373848
504 => 0.0016365190972192
505 => 0.0015766457335591
506 => 0.0015984604404255
507 => 0.0015621892592282
508 => 0.0015136262192361
509 => 0.0015134634188976
510 => 0.0015253491541365
511 => 0.0015182790537276
512 => 0.001499253595316
513 => 0.0015019560718857
514 => 0.0014782795334554
515 => 0.0015048308323287
516 => 0.0015055922285753
517 => 0.0014953685322501
518 => 0.0015362744715376
519 => 0.0015530336682397
520 => 0.0015463042123057
521 => 0.001552561511672
522 => 0.0016051339102054
523 => 0.0016137055050609
524 => 0.0016175124412879
525 => 0.0016124116510661
526 => 0.0015535224386087
527 => 0.0015561344255975
528 => 0.0015369693981546
529 => 0.0015207769695262
530 => 0.0015214245817533
531 => 0.0015297495949366
601 => 0.001566105415764
602 => 0.0016426140974024
603 => 0.0016455175459434
604 => 0.0016490366102747
605 => 0.0016347228070992
606 => 0.0016304056270968
607 => 0.0016361011018787
608 => 0.0016648337400667
609 => 0.0017387418863214
610 => 0.0017126178112759
611 => 0.0016913785316184
612 => 0.0017100111059467
613 => 0.0017071427671758
614 => 0.0016829311013553
615 => 0.0016822515605352
616 => 0.0016357816328879
617 => 0.0016186027587058
618 => 0.0016042468056227
619 => 0.0015885704796277
620 => 0.0015792770281026
621 => 0.0015935559934433
622 => 0.0015968217617605
623 => 0.0015656005544895
624 => 0.0015613452193048
625 => 0.0015868411311188
626 => 0.0015756213309128
627 => 0.0015871611736623
628 => 0.0015898385161672
629 => 0.0015894074023595
630 => 0.0015776926423586
701 => 0.001585159281044
702 => 0.0015674984546409
703 => 0.0015482949584979
704 => 0.0015360443243788
705 => 0.001525354021299
706 => 0.0015312856227717
707 => 0.0015101405465891
708 => 0.001503375811152
709 => 0.001582629751862
710 => 0.001641175489988
711 => 0.001640324211769
712 => 0.0016351422745417
713 => 0.0016274429669397
714 => 0.0016642704877595
715 => 0.0016514405158954
716 => 0.0016607753924066
717 => 0.0016631515102622
718 => 0.0016703433033703
719 => 0.0016729137512509
720 => 0.0016651440724648
721 => 0.0016390680814723
722 => 0.0015740891911498
723 => 0.0015438413422975
724 => 0.0015338590483585
725 => 0.0015342218857841
726 => 0.0015242132098082
727 => 0.0015271612134405
728 => 0.0015231880144521
729 => 0.0015156637367882
730 => 0.0015308210198288
731 => 0.0015325677554994
801 => 0.0015290298645217
802 => 0.0015298631659205
803 => 0.0015005709396779
804 => 0.0015027979640197
805 => 0.0014903976094877
806 => 0.0014880726925015
807 => 0.001456725676067
808 => 0.0014011898926305
809 => 0.0014319621076432
810 => 0.0013947935991361
811 => 0.0013807173217696
812 => 0.0014473522295122
813 => 0.0014406639329395
814 => 0.0014292164765396
815 => 0.0014122833026653
816 => 0.00140600262376
817 => 0.0013678432069526
818 => 0.0013655885450351
819 => 0.0013845013823957
820 => 0.0013757737587048
821 => 0.0013635168696331
822 => 0.0013191236598765
823 => 0.0012692109940234
824 => 0.0012707175436657
825 => 0.0012865938340154
826 => 0.0013327562894166
827 => 0.0013147198194727
828 => 0.0013016341535838
829 => 0.0012991836017165
830 => 0.0013298573889139
831 => 0.0013732672241552
901 => 0.0013936341476101
902 => 0.0013734511450189
903 => 0.0013502659983723
904 => 0.001351677170819
905 => 0.0013610650688909
906 => 0.0013620516042405
907 => 0.0013469604572451
908 => 0.0013512085267274
909 => 0.0013447553207322
910 => 0.0013051520074511
911 => 0.0013044357090973
912 => 0.0012947164173284
913 => 0.0012944221210364
914 => 0.0012778871811465
915 => 0.0012755738287553
916 => 0.001242742702005
917 => 0.0012643522490539
918 => 0.0012498576994456
919 => 0.0012280109942674
920 => 0.0012242446140601
921 => 0.001224131392123
922 => 0.0012465630735072
923 => 0.0012640901217965
924 => 0.0012501098383417
925 => 0.0012469267987954
926 => 0.0012809133336389
927 => 0.0012765882372859
928 => 0.0012728427317381
929 => 0.0013693803495326
930 => 0.001292963292124
1001 => 0.0012596410933607
1002 => 0.0012183985446773
1003 => 0.0012318273264916
1004 => 0.0012346569681297
1005 => 0.0011354760730741
1006 => 0.0010952383963023
1007 => 0.001081430341959
1008 => 0.0010734836114673
1009 => 0.0010771050363411
1010 => 0.0010408864078377
1011 => 0.0010652259251928
1012 => 0.0010338636543933
1013 => 0.0010286056676321
1014 => 0.0010846852928615
1015 => 0.0010924884450997
1016 => 0.001059197773402
1017 => 0.0010805757739021
1018 => 0.0010728238137443
1019 => 0.001034401270511
1020 => 0.0010329338119766
1021 => 0.0010136547303998
1022 => 0.00098348670089794
1023 => 0.00096969910189929
1024 => 0.00096251840063137
1025 => 0.0009654812979236
1026 => 0.0009639831663865
1027 => 0.00095420684473169
1028 => 0.0009645435337
1029 => 0.00093813756480076
1030 => 0.00092762249521774
1031 => 0.00092287308223485
1101 => 0.00089943626496591
1102 => 0.00093673466364073
1103 => 0.00094408291805251
1104 => 0.00095144565079548
1105 => 0.0010155332125719
1106 => 0.0010123315790951
1107 => 0.0010412727864664
1108 => 0.0010401481843674
1109 => 0.0010318936832087
1110 => 0.0009970693006193
1111 => 0.0010109496788345
1112 => 0.00096822803217785
1113 => 0.0010002379946426
1114 => 0.00098562998454168
1115 => 0.00099529901173314
1116 => 0.00097791322902186
1117 => 0.00098753523901566
1118 => 0.00094582546177582
1119 => 0.00090687745866165
1120 => 0.00092255127207788
1121 => 0.00093959049977931
1122 => 0.00097653588695046
1123 => 0.00095453151914415
1124 => 0.00096244512188457
1125 => 0.00093593587742526
1126 => 0.0008812397341144
1127 => 0.00088154930834556
1128 => 0.00087313549831744
1129 => 0.00086586473801676
1130 => 0.00095705898548616
1201 => 0.00094571753924563
1202 => 0.00092764642899313
1203 => 0.00095183532818348
1204 => 0.00095823125705885
1205 => 0.00095841334016232
1206 => 0.00097606093660574
1207 => 0.00098547946199111
1208 => 0.0009871395179125
1209 => 0.0010149083922178
1210 => 0.0010242161526046
1211 => 0.0010625535003544
1212 => 0.00098468036591573
1213 => 0.00098307661995781
1214 => 0.00095217571560032
1215 => 0.00093257787353284
1216 => 0.00095351759661337
1217 => 0.00097206733270547
1218 => 0.00095275210760789
1219 => 0.00095527426823898
1220 => 0.00092934515665735
1221 => 0.00093861359396969
1222 => 0.00094659682077641
1223 => 0.00094218895216612
1224 => 0.00093559015951326
1225 => 0.00097054646588432
1226 => 0.000968574094084
1227 => 0.0010011262102187
1228 => 0.0010265029125699
1229 => 0.0010719824998114
1230 => 0.0010245221796204
1231 => 0.001022792536915
]
'min_raw' => 0.00086586473801676
'max_raw' => 0.0025034695957144
'avg_raw' => 0.0016846671668656
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.000865'
'max' => '$0.0025034'
'avg' => '$0.001684'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0001522520310964
'max_diff' => -0.00084567330808154
'year' => 2030
]
5 => [
'items' => [
101 => 0.0010397000718041
102 => 0.0010242135641491
103 => 0.001034000502411
104 => 0.0010704056727519
105 => 0.0010711748566347
106 => 0.0010582900355606
107 => 0.0010575059930272
108 => 0.001059980663859
109 => 0.0010744748882157
110 => 0.001069410160863
111 => 0.0010752711915788
112 => 0.0010826005002362
113 => 0.0011129176284058
114 => 0.0011202269853694
115 => 0.0011024690374151
116 => 0.001104072381288
117 => 0.0010974304212865
118 => 0.0010910143711486
119 => 0.0011054367148698
120 => 0.0011317938314921
121 => 0.0011316298652375
122 => 0.0011377442039848
123 => 0.0011415533863704
124 => 0.0011252015870794
125 => 0.0011145571670133
126 => 0.0011186389149887
127 => 0.0011251657188903
128 => 0.0011165223604495
129 => 0.0010631715481599
130 => 0.0010793547765455
131 => 0.0010766610960227
201 => 0.0010728249673955
202 => 0.0010890973286784
203 => 0.001087527819736
204 => 0.0010405149334529
205 => 0.0010435245458998
206 => 0.0010406979579539
207 => 0.0010498312418725
208 => 0.0010237203368446
209 => 0.0010317518753716
210 => 0.0010367891810447
211 => 0.0010397561927845
212 => 0.0010504750736879
213 => 0.0010492173367307
214 => 0.0010503968909927
215 => 0.0010662901616927
216 => 0.0011466728709817
217 => 0.0011510479244939
218 => 0.0011295035608994
219 => 0.0011381101092116
220 => 0.0011215874184974
221 => 0.0011326792114663
222 => 0.0011402679345146
223 => 0.0011059759542868
224 => 0.0011039454057708
225 => 0.0010873545200346
226 => 0.0010962695222734
227 => 0.0010820851127001
228 => 0.0010855654706598
301 => 0.0010758340863923
302 => 0.0010933486405745
303 => 0.0011129326336369
304 => 0.0011178803236798
305 => 0.0011048650812915
306 => 0.0010954411880561
307 => 0.0010788959359581
308 => 0.001106411058932
309 => 0.0011144573193977
310 => 0.0011063687953512
311 => 0.0011044945075918
312 => 0.0011009427356747
313 => 0.0011052480327944
314 => 0.0011144134977352
315 => 0.0011100912337287
316 => 0.0011129461652535
317 => 0.0011020661102735
318 => 0.0011252070002054
319 => 0.0011619603025756
320 => 0.0011620784704525
321 => 0.0011577561831474
322 => 0.0011559875963071
323 => 0.0011604225253805
324 => 0.0011628282924725
325 => 0.001177170039869
326 => 0.0011925593062259
327 => 0.0012643742974506
328 => 0.001244208935287
329 => 0.0013079274677945
330 => 0.001358320554192
331 => 0.00137343123738
401 => 0.0013595301198596
402 => 0.001311975147746
403 => 0.0013096418739411
404 => 0.0013807090794702
405 => 0.001360629338824
406 => 0.0013582409175674
407 => 0.0013328321506979
408 => 0.0013478518788547
409 => 0.0013445668439807
410 => 0.0013393812557227
411 => 0.0013680378507626
412 => 0.0014216804384855
413 => 0.0014133197381319
414 => 0.0014070788631596
415 => 0.0013797331657226
416 => 0.0013962013834623
417 => 0.0013903373665532
418 => 0.0014155329045921
419 => 0.0014006076260073
420 => 0.0013604772150396
421 => 0.0013668681152578
422 => 0.0013659021435465
423 => 0.001385781772915
424 => 0.0013798144016213
425 => 0.0013647369185286
426 => 0.0014214970939523
427 => 0.001417811403877
428 => 0.0014230368697378
429 => 0.0014253372814126
430 => 0.0014598861999665
501 => 0.001474039786456
502 => 0.0014772528983825
503 => 0.0014906977108698
504 => 0.0014769183791999
505 => 0.0015320455303767
506 => 0.0015687018691509
507 => 0.001611280092955
508 => 0.0016734983218804
509 => 0.0016968929515072
510 => 0.0016926669210623
511 => 0.0017398400721468
512 => 0.0018246091760453
513 => 0.0017098011806017
514 => 0.0018306942785794
515 => 0.0017924209195376
516 => 0.0017016754737578
517 => 0.0016958325368681
518 => 0.0017572864063264
519 => 0.0018935851740694
520 => 0.0018594438786376
521 => 0.001893641016998
522 => 0.0018537482386127
523 => 0.0018517672259231
524 => 0.0018917035137941
525 => 0.0019850168272185
526 => 0.0019406871698078
527 => 0.0018771297358317
528 => 0.0019240595560165
529 => 0.0018834046026226
530 => 0.0017917976140212
531 => 0.0018594177714324
601 => 0.0018142020978828
602 => 0.001827398435222
603 => 0.0019224350556995
604 => 0.001910999998088
605 => 0.0019257980214952
606 => 0.0018996798975132
607 => 0.0018752814512639
608 => 0.0018297399394871
609 => 0.0018162573430194
610 => 0.0018199834476301
611 => 0.0018162554965471
612 => 0.0017907754392561
613 => 0.0017852730233101
614 => 0.0017761020890003
615 => 0.0017789445450226
616 => 0.0017617005054688
617 => 0.0017942435709071
618 => 0.001800283850621
619 => 0.0018239659797805
620 => 0.0018264247369923
621 => 0.0018923791296076
622 => 0.0018560525584736
623 => 0.0018804235586756
624 => 0.0018782435870288
625 => 0.0017036422027321
626 => 0.0017277007329671
627 => 0.0017651282560301
628 => 0.001748267207622
629 => 0.0017244296300507
630 => 0.0017051795080718
701 => 0.0016760136048478
702 => 0.001717064053554
703 => 0.0017710410283743
704 => 0.0018277936821493
705 => 0.0018959782770788
706 => 0.0018807602692467
707 => 0.0018265190185753
708 => 0.0018289522414572
709 => 0.0018439934678749
710 => 0.0018245137130244
711 => 0.001818768753029
712 => 0.0018432041985914
713 => 0.0018433724720755
714 => 0.001820958659913
715 => 0.0017960498093787
716 => 0.0017959454403854
717 => 0.0017915131510238
718 => 0.0018545367330437
719 => 0.0018891933307518
720 => 0.0018931666538272
721 => 0.0018889258944511
722 => 0.0018905579944252
723 => 0.0018703920838249
724 => 0.0019164853754422
725 => 0.0019587851379844
726 => 0.0019474478980205
727 => 0.0019304517636309
728 => 0.0019169135239449
729 => 0.0019442587190019
730 => 0.0019430410805113
731 => 0.0019584156864601
801 => 0.0019577182055262
802 => 0.0019525483038138
803 => 0.0019474480826539
804 => 0.0019676698830501
805 => 0.0019618463292882
806 => 0.0019560137299388
807 => 0.0019443155590172
808 => 0.0019459055347315
809 => 0.0019289123349642
810 => 0.0019210505031959
811 => 0.0018028274165732
812 => 0.0017712343447768
813 => 0.0017811741683002
814 => 0.0017844466162915
815 => 0.0017706972709581
816 => 0.0017904103002492
817 => 0.0017873380455155
818 => 0.0017992903914756
819 => 0.0017918230846302
820 => 0.0017921295455079
821 => 0.0018140893027424
822 => 0.001820464313691
823 => 0.0018172219316699
824 => 0.0018194927848951
825 => 0.0018718236390038
826 => 0.0018643838649961
827 => 0.0018604316333347
828 => 0.0018615264285149
829 => 0.0018748980837258
830 => 0.0018786414171196
831 => 0.0018627806504909
901 => 0.001870260679723
902 => 0.0019021096948362
903 => 0.0019132550476277
904 => 0.0019488256636653
905 => 0.0019337146337553
906 => 0.0019614515831452
907 => 0.0020467055093471
908 => 0.0021148122447202
909 => 0.0020521784762412
910 => 0.0021772478224134
911 => 0.0022746322485406
912 => 0.0022708944720636
913 => 0.0022539132448259
914 => 0.0021430436647791
915 => 0.0020410198242476
916 => 0.0021263670990133
917 => 0.0021265846667685
918 => 0.0021192532601754
919 => 0.0020737185234777
920 => 0.0021176687500405
921 => 0.0021211573594213
922 => 0.0021192046658642
923 => 0.00208429329
924 => 0.002030990071756
925 => 0.002041405393011
926 => 0.0020584659016935
927 => 0.0020261667995626
928 => 0.0020158452793602
929 => 0.0020350349491661
930 => 0.002096868063607
1001 => 0.0020851788714968
1002 => 0.0020848736194511
1003 => 0.0021348849402875
1004 => 0.0020990876276872
1005 => 0.0020415367635665
1006 => 0.0020270044113734
1007 => 0.0019754243512533
1008 => 0.0020110508825001
1009 => 0.002012333017935
1010 => 0.0019928207308655
1011 => 0.0020431200781239
1012 => 0.0020426565607838
1013 => 0.0020904083049358
1014 => 0.0021816917050184
1015 => 0.0021546947118307
1016 => 0.0021233001460179
1017 => 0.0021267136057986
1018 => 0.0021641508344567
1019 => 0.0021415154314012
1020 => 0.0021496552801596
1021 => 0.0021641385138207
1022 => 0.0021728766082869
1023 => 0.0021254563284765
1024 => 0.0021144003928786
1025 => 0.0020917838287512
1026 => 0.0020858835893285
1027 => 0.0021043043089002
1028 => 0.0020994511001067
1029 => 0.0020122252594164
1030 => 0.0020031096737443
1031 => 0.0020033892357428
1101 => 0.0019804676621477
1102 => 0.0019455067606073
1103 => 0.0020373819224486
1104 => 0.0020300030611607
1105 => 0.0020218573693773
1106 => 0.0020228551701421
1107 => 0.0020627350639593
1108 => 0.0020396027115624
1109 => 0.0021011038617275
1110 => 0.0020884610741473
1111 => 0.0020754940467714
1112 => 0.0020737016086027
1113 => 0.0020687104093577
1114 => 0.0020515937300033
1115 => 0.0020309243111299
1116 => 0.0020172765704353
1117 => 0.0018608310033905
1118 => 0.001889866390632
1119 => 0.0019232689569946
1120 => 0.0019347993890505
1121 => 0.0019150757871372
1122 => 0.0020523725380236
1123 => 0.002077457977435
1124 => 0.0020014725451753
1125 => 0.0019872587732642
1126 => 0.0020533043905438
1127 => 0.0020134708095759
1128 => 0.0020314078686467
1129 => 0.0019926377579823
1130 => 0.0020714156296682
1201 => 0.002070815474275
1202 => 0.0020401691029103
1203 => 0.0020660712061305
1204 => 0.0020615700782765
1205 => 0.0020269704004844
1206 => 0.0020725125011686
1207 => 0.0020725350894823
1208 => 0.0020430386233533
1209 => 0.0020085932085214
1210 => 0.0020024351819138
1211 => 0.0019977959360795
1212 => 0.0020302668985624
1213 => 0.0020593802619905
1214 => 0.0021135530135153
1215 => 0.0021271733303615
1216 => 0.0021803343337679
1217 => 0.0021486795446017
1218 => 0.0021627117026409
1219 => 0.0021779455951625
1220 => 0.0021852492834452
1221 => 0.0021733483153261
1222 => 0.0022559292355583
1223 => 0.0022629015954399
1224 => 0.0022652393673975
1225 => 0.0022373935457315
1226 => 0.0022621271527666
1227 => 0.0022505551171259
1228 => 0.002280662339059
1229 => 0.0022853835358864
1230 => 0.0022813848501351
1231 => 0.0022828834325271
]
'min_raw' => 0.0010237203368446
'max_raw' => 0.0022853835358864
'avg_raw' => 0.0016545519363655
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.001023'
'max' => '$0.002285'
'avg' => '$0.001654'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.00015785559882787
'max_diff' => -0.00021808605982793
'year' => 2031
]
6 => [
'items' => [
101 => 0.0022124151853815
102 => 0.0022087610350174
103 => 0.002158936435516
104 => 0.0021792403280977
105 => 0.0021412831741072
106 => 0.0021533197786396
107 => 0.0021586253992285
108 => 0.0021558540441242
109 => 0.0021803882797205
110 => 0.0021595291674504
111 => 0.002104478540614
112 => 0.0020494129152711
113 => 0.0020487216112004
114 => 0.0020342238040367
115 => 0.0020237445448631
116 => 0.0020257632219516
117 => 0.0020328773033117
118 => 0.0020233310615217
119 => 0.0020253682362144
120 => 0.0020591989097362
121 => 0.0020659834100417
122 => 0.0020429270271283
123 => 0.0019503523227108
124 => 0.0019276342580407
125 => 0.0019439635524068
126 => 0.001936159201441
127 => 0.0015626315865929
128 => 0.001650386359088
129 => 0.0015982454531419
130 => 0.0016222743814896
131 => 0.0015690520183407
201 => 0.0015944525196584
202 => 0.0015897619745428
203 => 0.0017308690518625
204 => 0.0017286658589366
205 => 0.0017297204107999
206 => 0.0016793839027464
207 => 0.0017595713268608
208 => 0.001799074535426
209 => 0.0017917635428644
210 => 0.001793603562183
211 => 0.0017619859340139
212 => 0.0017300265385533
213 => 0.0016945786504718
214 => 0.0017604364450358
215 => 0.0017531141825103
216 => 0.0017699088182769
217 => 0.001812622305664
218 => 0.0018189120289346
219 => 0.0018273654807942
220 => 0.0018243355200602
221 => 0.0018965214773814
222 => 0.0018877792816515
223 => 0.0019088454580592
224 => 0.001865510734894
225 => 0.0018164733822629
226 => 0.0018257937798463
227 => 0.0018248961506091
228 => 0.0018134683001689
229 => 0.0018031517477653
301 => 0.0017859775946838
302 => 0.00184031915633
303 => 0.0018381129881665
304 => 0.0018738282863435
305 => 0.0018675152604708
306 => 0.0018253553286336
307 => 0.001826861078847
308 => 0.0018369879726712
309 => 0.0018720372678236
310 => 0.0018824422849628
311 => 0.0018776222664557
312 => 0.0018890308927418
313 => 0.0018980478057912
314 => 0.001890163278194
315 => 0.002001791561973
316 => 0.0019554357158511
317 => 0.001978029232709
318 => 0.0019834176533509
319 => 0.001969615327183
320 => 0.0019726085575046
321 => 0.0019771424858353
322 => 0.0020046716108253
323 => 0.0020769160004157
324 => 0.002108912548781
325 => 0.0022051757432202
326 => 0.0021062556808528
327 => 0.0021003861737238
328 => 0.0021177260819122
329 => 0.002174242767542
330 => 0.0022200442329025
331 => 0.0022352392213126
401 => 0.0022372474898729
402 => 0.0022657542982738
403 => 0.0022820938692287
404 => 0.0022622928219304
405 => 0.0022455135076012
406 => 0.0021854120863991
407 => 0.002192368989554
408 => 0.0022402951534622
409 => 0.0023079936828195
410 => 0.0023660860638396
411 => 0.0023457441367303
412 => 0.002500938681412
413 => 0.0025163255866044
414 => 0.002514199613825
415 => 0.0025492532737316
416 => 0.0024796788973707
417 => 0.0024499345035363
418 => 0.0022491413858125
419 => 0.002305556061648
420 => 0.0023875581060928
421 => 0.0023767048280186
422 => 0.0023171527514219
423 => 0.0023660408882493
424 => 0.0023498769413408
425 => 0.0023371277657713
426 => 0.0023955342106046
427 => 0.0023313139253059
428 => 0.0023869174596209
429 => 0.0023156053517169
430 => 0.0023458370569398
501 => 0.0023286760789123
502 => 0.0023397813348665
503 => 0.0022748602354759
504 => 0.0023098900848364
505 => 0.002273402878575
506 => 0.0022733855788885
507 => 0.002272580121788
508 => 0.0023155071581455
509 => 0.00231690700726
510 => 0.0022851838625326
511 => 0.0022806120617688
512 => 0.0022975164053705
513 => 0.0022777258462675
514 => 0.0022869857243115
515 => 0.0022780063185402
516 => 0.0022759848651659
517 => 0.0022598775807572
518 => 0.002252938119755
519 => 0.0022556592612218
520 => 0.0022463706025508
521 => 0.0022407738497161
522 => 0.0022714667867809
523 => 0.0022550687886567
524 => 0.002268953558388
525 => 0.0022531301108816
526 => 0.0021982791478765
527 => 0.0021667337790139
528 => 0.0020631253945842
529 => 0.0020925086038826
530 => 0.0021119897020467
531 => 0.0021055511992197
601 => 0.0021193835946619
602 => 0.0021202327914
603 => 0.0021157357386371
604 => 0.0021105287276459
605 => 0.0021079942426611
606 => 0.002126884217273
607 => 0.0021378504833424
608 => 0.0021139448908709
609 => 0.0021083441450296
610 => 0.0021325140188823
611 => 0.0021472576279699
612 => 0.0022561161537548
613 => 0.0022480515625563
614 => 0.0022682921038685
615 => 0.0022660133295332
616 => 0.0022872286413996
617 => 0.0023219067100413
618 => 0.0022513965003522
619 => 0.0022636346346946
620 => 0.0022606341267736
621 => 0.0022933928854793
622 => 0.0022934951547483
623 => 0.0022738546424828
624 => 0.0022845020828128
625 => 0.0022785589737179
626 => 0.0022892989751119
627 => 0.0022479438550241
628 => 0.0022983099272816
629 => 0.0023268642447337
630 => 0.0023272607214592
701 => 0.0023407952413104
702 => 0.0023545470973457
703 => 0.0023809425874713
704 => 0.0023538109414523
705 => 0.0023050037514766
706 => 0.0023085274729466
707 => 0.0022799118353217
708 => 0.00228039286936
709 => 0.0022778250719642
710 => 0.0022855312252438
711 => 0.0022496349223143
712 => 0.0022580597128634
713 => 0.0022462649567592
714 => 0.0022636089951983
715 => 0.0022449496769101
716 => 0.0022606326798378
717 => 0.0022674009440017
718 => 0.0022923759844765
719 => 0.0022412608431254
720 => 0.0021370336097197
721 => 0.0021589434378146
722 => 0.0021265370810824
723 => 0.0021295364127776
724 => 0.0021355955401422
725 => 0.0021159559259306
726 => 0.0021197025454068
727 => 0.0021195686897945
728 => 0.0021184151944429
729 => 0.0021133061722685
730 => 0.0021058970793265
731 => 0.0021354126252089
801 => 0.0021404278916025
802 => 0.0021515762075354
803 => 0.0021847460337767
804 => 0.0021814315859368
805 => 0.0021868375878788
806 => 0.0021750363159929
807 => 0.0021300838399336
808 => 0.0021325249756565
809 => 0.0021020839740753
810 => 0.0021507977626843
811 => 0.0021392616945511
812 => 0.002131824316379
813 => 0.0021297949588379
814 => 0.0021630470066627
815 => 0.0021729965405339
816 => 0.0021667966587138
817 => 0.0021540805202212
818 => 0.0021784992653158
819 => 0.0021850326913589
820 => 0.0021864952845065
821 => 0.002229760618984
822 => 0.0021889133360859
823 => 0.0021987456830665
824 => 0.0022754548474424
825 => 0.0022058902204946
826 => 0.0022427401548652
827 => 0.0022409365423355
828 => 0.0022597877218257
829 => 0.0022393901953926
830 => 0.002239643047179
831 => 0.0022563816174768
901 => 0.0022328753143106
902 => 0.0022270548230768
903 => 0.0022190138561244
904 => 0.002236571013292
905 => 0.0022470957349721
906 => 0.0023319172621573
907 => 0.0023867158370506
908 => 0.0023843368863935
909 => 0.0024060760421901
910 => 0.0023962823533959
911 => 0.0023646559488348
912 => 0.0024186383649915
913 => 0.0024015560697993
914 => 0.0024029643134599
915 => 0.0024029118985605
916 => 0.0024142701315032
917 => 0.0024062217824966
918 => 0.0023903576604584
919 => 0.0024008890050149
920 => 0.0024321633333231
921 => 0.0025292398080055
922 => 0.0025835650893299
923 => 0.0025259693578569
924 => 0.0025656981221894
925 => 0.0025418750203961
926 => 0.0025375456541243
927 => 0.0025624982540578
928 => 0.0025874945302142
929 => 0.0025859023754849
930 => 0.0025677563625683
1001 => 0.0025575061403098
1002 => 0.0026351242573279
1003 => 0.0026923119637567
1004 => 0.0026884121455695
1005 => 0.002705624674759
1006 => 0.0027561611928228
1007 => 0.0027607816186903
1008 => 0.0027601995512303
1009 => 0.0027487473436261
1010 => 0.002798507108656
1011 => 0.0028400175800838
1012 => 0.0027460964884518
1013 => 0.0027818604106279
1014 => 0.0027979159875344
1015 => 0.002821490337908
1016 => 0.0028612642185083
1017 => 0.002904469202341
1018 => 0.0029105788607735
1019 => 0.0029062437657416
1020 => 0.0028777489174916
1021 => 0.002925024326344
1022 => 0.002952717152105
1023 => 0.0029692075961066
1024 => 0.0030110246183464
1025 => 0.0027980151413114
1026 => 0.002647236446208
1027 => 0.0026236901756969
1028 => 0.0026715724426926
1029 => 0.0026841986146455
1030 => 0.0026791090205632
1031 => 0.0025093938910251
1101 => 0.0026227966606632
1102 => 0.0027448085056181
1103 => 0.0027494954774917
1104 => 0.0028105771582235
1105 => 0.0028304678572924
1106 => 0.0028796466164404
1107 => 0.0028765704716658
1108 => 0.0028885447169134
1109 => 0.002885792045296
1110 => 0.0029768853408081
1111 => 0.0030773747732433
1112 => 0.0030738951437349
1113 => 0.0030594485988853
1114 => 0.0030809041814889
1115 => 0.003184620044864
1116 => 0.0031750715501773
1117 => 0.0031843470994266
1118 => 0.0033066339475158
1119 => 0.0034656242451331
1120 => 0.003391757289525
1121 => 0.0035520273285507
1122 => 0.0036529088225677
1123 => 0.0038273729351289
1124 => 0.0038055291689824
1125 => 0.0038734467677257
1126 => 0.0037664242686485
1127 => 0.0035206789779518
1128 => 0.0034817888450238
1129 => 0.0035596478760006
1130 => 0.0037510567062838
1201 => 0.0035536197307688
1202 => 0.003593560973773
1203 => 0.0035820578931008
1204 => 0.0035814449428167
1205 => 0.003604838762111
1206 => 0.0035709048070851
1207 => 0.0034326517697079
1208 => 0.0034960123220076
1209 => 0.0034715457699411
1210 => 0.0034986932335612
1211 => 0.0036451968982533
1212 => 0.0035804241358818
1213 => 0.0035121912924353
1214 => 0.0035977704201973
1215 => 0.0037067420580172
1216 => 0.0036999228087632
1217 => 0.0036866906149856
1218 => 0.003761279798495
1219 => 0.0038844792770724
1220 => 0.0039177796010763
1221 => 0.0039423612194608
1222 => 0.0039457506093262
1223 => 0.0039806634314336
1224 => 0.0037929283877978
1225 => 0.0040908687234257
1226 => 0.0041423147889529
1227 => 0.0041326450608547
1228 => 0.0041898251975069
1229 => 0.0041730013507838
1230 => 0.0041486262364626
1231 => 0.0042392689156202
]
'min_raw' => 0.0015626315865929
'max_raw' => 0.0042392689156202
'avg_raw' => 0.0029009502511065
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.001562'
'max' => '$0.004239'
'avg' => '$0.00290095'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.00053891124974824
'max_diff' => 0.0019538853797337
'year' => 2032
]
7 => [
'items' => [
101 => 0.0041353543984531
102 => 0.0039878608238083
103 => 0.0039069429316661
104 => 0.0040135021394992
105 => 0.0040785741293189
106 => 0.004121582575234
107 => 0.0041345969049814
108 => 0.0038075017248222
109 => 0.0036312155642467
110 => 0.0037442129720506
111 => 0.0038820776082359
112 => 0.0037921625427829
113 => 0.0037956870431169
114 => 0.0036674917890444
115 => 0.0038934200436704
116 => 0.0038605041973271
117 => 0.0040312716663833
118 => 0.0039905166393985
119 => 0.0041297708812588
120 => 0.0040931005724591
121 => 0.0042453169740772
122 => 0.0043060402177773
123 => 0.0044080039947678
124 => 0.0044830089641893
125 => 0.0045270533168501
126 => 0.0045244090591225
127 => 0.0046989347271737
128 => 0.0045960230381864
129 => 0.0044667417023954
130 => 0.0044644034109083
131 => 0.0045313600466452
201 => 0.0046716827864936
202 => 0.0047080664313235
203 => 0.0047283999252353
204 => 0.0046972584714954
205 => 0.0045855552088467
206 => 0.0045373223063835
207 => 0.0045784181367239
208 => 0.0045281614676225
209 => 0.0046149185780223
210 => 0.0047340546209201
211 => 0.0047094534991767
212 => 0.0047916913607586
213 => 0.0048767988958206
214 => 0.0049985064933778
215 => 0.0050303253661986
216 => 0.0050829207530079
217 => 0.0051370586827192
218 => 0.0051544463266844
219 => 0.0051876447340829
220 => 0.0051874697620887
221 => 0.0052875153972948
222 => 0.0053978688310826
223 => 0.0054395246976496
224 => 0.0055353100659025
225 => 0.005371280979489
226 => 0.005495698925764
227 => 0.0056079270276872
228 => 0.0054741240579528
301 => 0.0056585402796382
302 => 0.0056657007436301
303 => 0.0057738152486134
304 => 0.0056642204855798
305 => 0.0055991434651294
306 => 0.0057870183847657
307 => 0.0058779251403731
308 => 0.0058505432857604
309 => 0.005642166020149
310 => 0.0055208815138418
311 => 0.0052034565668018
312 => 0.0055794601283079
313 => 0.0057626004949433
314 => 0.0056416917308429
315 => 0.0057026710786124
316 => 0.0060353546274227
317 => 0.006162018983145
318 => 0.0061356736826054
319 => 0.0061401256047161
320 => 0.0062084713919432
321 => 0.0065115542512206
322 => 0.0063299399765359
323 => 0.0064687772845753
324 => 0.0065424160921443
325 => 0.0066108159205497
326 => 0.0064428475599738
327 => 0.0062243231908099
328 => 0.0061551073500667
329 => 0.0056296697371044
330 => 0.0056023184274898
331 => 0.0055869653085736
401 => 0.005490166065549
402 => 0.0054141083760758
403 => 0.0053536244775657
404 => 0.0051948966658543
405 => 0.0052484626428031
406 => 0.004995483640004
407 => 0.0051573306409695
408 => 0.0047535700441106
409 => 0.0050898338669856
410 => 0.0049068207562346
411 => 0.0050297091379821
412 => 0.0050292803919949
413 => 0.004803003919401
414 => 0.0046724923722783
415 => 0.0047556594096903
416 => 0.0048448210756036
417 => 0.0048592872559221
418 => 0.0049748876831363
419 => 0.0050071492775489
420 => 0.0049093951403289
421 => 0.0047452030031843
422 => 0.0047833410918191
423 => 0.0046717195051294
424 => 0.004476106967918
425 => 0.0046165993072105
426 => 0.004664569568857
427 => 0.0046857559692056
428 => 0.00449339350511
429 => 0.0044329490424988
430 => 0.0044007689177828
501 => 0.0047203714246539
502 => 0.0047378799714422
503 => 0.0046483037706144
504 => 0.00505319669232
505 => 0.0049615569541346
506 => 0.0050639409939687
507 => 0.00477988046002
508 => 0.0047907319549551
509 => 0.0046562531459118
510 => 0.0047315522930988
511 => 0.0046783332828718
512 => 0.0047254688661267
513 => 0.0047537217403824
514 => 0.0048881784827764
515 => 0.0050913691470029
516 => 0.0048680951292
517 => 0.0047708114423004
518 => 0.0048311656945087
519 => 0.0049918970215296
520 => 0.0052354132096516
521 => 0.0050912467250634
522 => 0.005155225362818
523 => 0.0051692018489559
524 => 0.0050628988205539
525 => 0.0052393327539379
526 => 0.0053338851321851
527 => 0.0054308763074089
528 => 0.0055150910272246
529 => 0.0053921358991428
530 => 0.0055237155111156
531 => 0.0054176855707938
601 => 0.0053225657531513
602 => 0.0053227100106509
603 => 0.005263039959565
604 => 0.0051474217166757
605 => 0.0051260999387848
606 => 0.0052370185200169
607 => 0.0053259647181362
608 => 0.0053332907530369
609 => 0.0053825359385364
610 => 0.0054116787320493
611 => 0.0056973177261822
612 => 0.0058122040925521
613 => 0.0059526849666616
614 => 0.0060074101841955
615 => 0.0061721134688962
616 => 0.0060391021899536
617 => 0.0060103243630742
618 => 0.0056108080684242
619 => 0.0056762288392918
620 => 0.0057809738056163
621 => 0.0056125352743389
622 => 0.0057193707532289
623 => 0.0057404623398466
624 => 0.0056068117974999
625 => 0.0056782003268663
626 => 0.0054886135580929
627 => 0.0050955016204813
628 => 0.0052397703999014
629 => 0.0053460007819007
630 => 0.0051943969286761
701 => 0.0054661409677019
702 => 0.0053073937100386
703 => 0.0052570784505716
704 => 0.0050607806847055
705 => 0.0051534256740004
706 => 0.0052787293485702
707 => 0.0052013062458017
708 => 0.0053619708091836
709 => 0.0055895146786063
710 => 0.0057516759904286
711 => 0.0057641247223853
712 => 0.0056598658628476
713 => 0.0058269413506278
714 => 0.0058281583131558
715 => 0.0056396964804164
716 => 0.0055242646572233
717 => 0.0054980383041232
718 => 0.0055635568761467
719 => 0.0056431085179787
720 => 0.0057685392848557
721 => 0.0058443344703149
722 => 0.0060419681153324
723 => 0.0060954421130734
724 => 0.0061541938242878
725 => 0.0062327042288268
726 => 0.0063269760991306
727 => 0.0061207146138066
728 => 0.006128909767138
729 => 0.005936841927889
730 => 0.0057315898963371
731 => 0.0058873506032581
801 => 0.0060909870075787
802 => 0.0060442725914294
803 => 0.0060390162653236
804 => 0.0060478559478502
805 => 0.0060126348036237
806 => 0.0058533308736441
807 => 0.0057733294373036
808 => 0.0058765517007259
809 => 0.0059314097398405
810 => 0.0060164897743834
811 => 0.0060060018643043
812 => 0.0062251588963581
813 => 0.0063103166920496
814 => 0.0062885296838042
815 => 0.006292539017655
816 => 0.0064467131390879
817 => 0.0066181864704477
818 => 0.0067787938731652
819 => 0.0069421706214578
820 => 0.006745213574688
821 => 0.0066452109329602
822 => 0.0067483881327713
823 => 0.0066936408582273
824 => 0.0070082349368538
825 => 0.0070300167482928
826 => 0.0073445880781867
827 => 0.0076431537287132
828 => 0.0074556299929768
829 => 0.0076324564295217
830 => 0.0078237086375159
831 => 0.0081926651762892
901 => 0.0080684135940779
902 => 0.0079732388293745
903 => 0.007883299136611
904 => 0.0080704493597278
905 => 0.0083112151319697
906 => 0.0083630737732847
907 => 0.0084471045837407
908 => 0.0083587564613448
909 => 0.0084651620435442
910 => 0.0088408205056899
911 => 0.0087393142731891
912 => 0.0085951591050969
913 => 0.0088917053823388
914 => 0.0089990243272781
915 => 0.0097522448862303
916 => 0.010703216955897
917 => 0.010309508274636
918 => 0.010065120591277
919 => 0.01012255749382
920 => 0.010469820301226
921 => 0.010581350093394
922 => 0.010278173671656
923 => 0.010385260709204
924 => 0.010975320814657
925 => 0.011291869129838
926 => 0.010861953999712
927 => 0.0096758352063735
928 => 0.0085821795094461
929 => 0.0088722662482291
930 => 0.0088393794144907
1001 => 0.0094733253863033
1002 => 0.0087368933831143
1003 => 0.0087492930093629
1004 => 0.0093963483125122
1005 => 0.0092237250509682
1006 => 0.0089440974751838
1007 => 0.0085842211002037
1008 => 0.0079189563365174
1009 => 0.00732971278304
1010 => 0.0084853550860951
1011 => 0.0084355216885882
1012 => 0.0083633555441025
1013 => 0.008523953489463
1014 => 0.0093037715256119
1015 => 0.009285794195854
1016 => 0.0091714315960486
1017 => 0.0092581746200553
1018 => 0.0089288910036791
1019 => 0.0090137548892678
1020 => 0.0085820062687961
1021 => 0.0087771746766644
1022 => 0.0089434975199933
1023 => 0.0089768892932434
1024 => 0.0090521226634019
1025 => 0.0084092617525492
1026 => 0.0086978874281173
1027 => 0.0088674279719451
1028 => 0.0081014376269935
1029 => 0.0088522868056721
1030 => 0.0083980709743276
1031 => 0.0082439032990765
1101 => 0.0084514697637554
1102 => 0.008370580910605
1103 => 0.0083010374246192
1104 => 0.0082622309645303
1105 => 0.0084146448679157
1106 => 0.0084075345771488
1107 => 0.0081581558489463
1108 => 0.0078328514639835
1109 => 0.0079420342933294
1110 => 0.0079023671478336
1111 => 0.0077586082953929
1112 => 0.0078554844044279
1113 => 0.0074288910481148
1114 => 0.0066949593509712
1115 => 0.0071798171110401
1116 => 0.0071611506147012
1117 => 0.0071517381207889
1118 => 0.0075160953269965
1119 => 0.0074810707887706
1120 => 0.0074175009089293
1121 => 0.0077574407846976
1122 => 0.0076333581572056
1123 => 0.0080157515775919
1124 => 0.0082676206159141
1125 => 0.0082037384806858
1126 => 0.0084406225286165
1127 => 0.0079445496451992
1128 => 0.0081093251580809
1129 => 0.0081432851629168
1130 => 0.0077532459793981
1201 => 0.0074868012363801
1202 => 0.0074690324097133
1203 => 0.0070070539436675
1204 => 0.0072538391112693
1205 => 0.0074709998460947
1206 => 0.0073669967064671
1207 => 0.0073340724194664
1208 => 0.0075022754613463
1209 => 0.007515346278262
1210 => 0.007217330267401
1211 => 0.0072792972329987
1212 => 0.0075377097806919
1213 => 0.0072727858998151
1214 => 0.0067580820743418
1215 => 0.0066304284092873
1216 => 0.0066133970572452
1217 => 0.0062671901932775
1218 => 0.006638958837586
1219 => 0.0064766718615651
1220 => 0.0069893344743186
1221 => 0.0066965043393785
1222 => 0.0066838810175334
1223 => 0.0066647990151259
1224 => 0.0063668044656834
1225 => 0.0064320463334698
1226 => 0.0066489202386085
1227 => 0.0067263032912214
1228 => 0.0067182316048532
1229 => 0.0066478574381582
1230 => 0.0066800743712971
1231 => 0.0065762924045329
]
'min_raw' => 0.0036312155642467
'max_raw' => 0.011291869129838
'avg_raw' => 0.0074615423470425
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.003631'
'max' => '$0.011291'
'avg' => '$0.007461'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.0020685839776538
'max_diff' => 0.0070526002142182
'year' => 2033
]
8 => [
'items' => [
101 => 0.0065396448320337
102 => 0.006423975012517
103 => 0.0062539723324308
104 => 0.0062776122477838
105 => 0.0059407924549119
106 => 0.0057572751553759
107 => 0.0057064799855835
108 => 0.0056385545616607
109 => 0.0057141523429582
110 => 0.0059398382867579
111 => 0.0056676131565915
112 => 0.0052009022652939
113 => 0.0052289523850975
114 => 0.005291972676141
115 => 0.0051745347807024
116 => 0.0050633896684853
117 => 0.0051600213260701
118 => 0.0049622697688864
119 => 0.0053158700070575
120 => 0.0053063061115681
121 => 0.0054381064138663
122 => 0.0055205238477078
123 => 0.0053305783456642
124 => 0.0052828075655675
125 => 0.0053100199729715
126 => 0.0048602594949701
127 => 0.0054013513874625
128 => 0.0054060307726181
129 => 0.0053659630359787
130 => 0.005654077764393
131 => 0.0062620897065845
201 => 0.0060333311567084
202 => 0.0059447489319325
203 => 0.0057763540578805
204 => 0.0060007302292566
205 => 0.0059835016401084
206 => 0.0059055874262321
207 => 0.0058584646665725
208 => 0.005945289796108
209 => 0.0058477060721719
210 => 0.0058301773539316
211 => 0.0057239723928289
212 => 0.005686062053733
213 => 0.0056579947479205
214 => 0.0056270954020575
215 => 0.0056952516593941
216 => 0.005540800613567
217 => 0.0053545477933223
218 => 0.0053390628866023
219 => 0.0053818180755029
220 => 0.0053629020871639
221 => 0.0053389723241277
222 => 0.0052932838896084
223 => 0.0052797291070655
224 => 0.0053237755744844
225 => 0.005274049680837
226 => 0.0053474229456233
227 => 0.0053274694775293
228 => 0.0052160110267663
301 => 0.0050770925299118
302 => 0.0050758558638984
303 => 0.0050459261016231
304 => 0.0050078060493956
305 => 0.0049972019229346
306 => 0.0051518832773959
307 => 0.0054720690519075
308 => 0.0054092089229747
309 => 0.0054546318082938
310 => 0.0056780674473819
311 => 0.0057490909181039
312 => 0.0056986801408685
313 => 0.0056296747597874
314 => 0.0056327106463467
315 => 0.0058685229228504
316 => 0.0058832302452827
317 => 0.005920390904307
318 => 0.0059681528527544
319 => 0.0057068142072176
320 => 0.0056204016196437
321 => 0.0055794545416634
322 => 0.0054533533899975
323 => 0.0055893426709735
324 => 0.0055101075405904
325 => 0.0055207990667365
326 => 0.005513836196308
327 => 0.0055176383943892
328 => 0.0053157711685845
329 => 0.0053893209758387
330 => 0.0052670301560589
331 => 0.0051032964761624
401 => 0.005102747583455
402 => 0.0051428211696483
403 => 0.0051189838325009
404 => 0.0050548381711513
405 => 0.005063949759587
406 => 0.0049841226572262
407 => 0.00507364221513
408 => 0.0050762093157343
409 => 0.005041739409778
410 => 0.0051796566400473
411 => 0.0052361614418184
412 => 0.0052134726113011
413 => 0.0052345695329855
414 => 0.0054118210451283
415 => 0.0054407207756332
416 => 0.0054535561269145
417 => 0.0054363584565558
418 => 0.0052378093652423
419 => 0.005246615861738
420 => 0.0051819996336549
421 => 0.0051274057300151
422 => 0.0051295891998534
423 => 0.0051576575630349
424 => 0.0052802337512366
425 => 0.005538188113046
426 => 0.0055479772925145
427 => 0.0055598420636008
428 => 0.0055115820768366
429 => 0.0054970264030426
430 => 0.005516229093915
501 => 0.0056131031896147
502 => 0.0058622896648145
503 => 0.0057742105218738
504 => 0.0057026008076294
505 => 0.0057654218328621
506 => 0.005755751028435
507 => 0.0056741197067167
508 => 0.0056718285873977
509 => 0.0055151519819081
510 => 0.0054572322082123
511 => 0.0054088301100922
512 => 0.0053559762825138
513 => 0.005324642761849
514 => 0.0053727852904206
515 => 0.0053837960563106
516 => 0.0052785315762014
517 => 0.0052641844165281
518 => 0.0053501456632769
519 => 0.0053123173235411
520 => 0.0053512247090571
521 => 0.0053602515562382
522 => 0.0053587980259361
523 => 0.0053193008946947
524 => 0.0053444751883266
525 => 0.0052849304790691
526 => 0.0052201845510777
527 => 0.0051788806828331
528 => 0.0051428375796265
529 => 0.005162836388123
530 => 0.0050915442874713
531 => 0.0050687365096464
601 => 0.0053359467040836
602 => 0.0055333377477081
603 => 0.0055304676037584
604 => 0.0055129963406055
605 => 0.0054870375874766
606 => 0.0056112041451362
607 => 0.0055679469992363
608 => 0.0055994201871339
609 => 0.0056074314343794
610 => 0.0056316790669583
611 => 0.0056403455114507
612 => 0.0056141494969617
613 => 0.005526232472763
614 => 0.0053071516073594
615 => 0.0052051688731165
616 => 0.0051715128721596
617 => 0.0051727362038725
618 => 0.0051389912540364
619 => 0.0051489306541057
620 => 0.0051355347363165
621 => 0.0051101661088443
622 => 0.0051612699468635
623 => 0.00516715918813
624 => 0.005155230941691
625 => 0.0051580404755362
626 => 0.0050592796896414
627 => 0.0050667882576958
628 => 0.005024979596626
629 => 0.0050171409766864
630 => 0.0049114523221986
701 => 0.004724209550958
702 => 0.0048279602223209
703 => 0.0047026440008666
704 => 0.0046551848489513
705 => 0.0048798490927061
706 => 0.0048572990338493
707 => 0.0048187031353613
708 => 0.0047616117574075
709 => 0.0047404360099753
710 => 0.0046117788720037
711 => 0.0046041771219332
712 => 0.0046679430735469
713 => 0.0046385172809296
714 => 0.0045971923236758
715 => 0.0044475175175464
716 => 0.0042792334798317
717 => 0.0042843129171346
718 => 0.0043378409384958
719 => 0.0044934808798407
720 => 0.0044326696621589
721 => 0.0043885504260025
722 => 0.0043802882192897
723 => 0.004483707034401
724 => 0.004630066324695
725 => 0.0046987348290965
726 => 0.0046306864267281
727 => 0.0045525160860736
728 => 0.0045572739525028
729 => 0.0045889259062943
730 => 0.0045922520791032
731 => 0.004541371223378
801 => 0.0045556938862283
802 => 0.0045339364516669
803 => 0.0044004111159246
804 => 0.0043979960660145
805 => 0.0043652267952364
806 => 0.0043642345547406
807 => 0.0043084858504694
808 => 0.0043006862213693
809 => 0.0041899937853344
810 => 0.0042628518819401
811 => 0.0042139824959588
812 => 0.0041403248041621
813 => 0.0041276261903331
814 => 0.0041272444546674
815 => 0.0042028744345841
816 => 0.0042619681015909
817 => 0.0042148325998507
818 => 0.0042041007597878
819 => 0.0043186887348767
820 => 0.004304106370554
821 => 0.0042914781370968
822 => 0.004616961455532
823 => 0.0043593160112105
824 => 0.0042469678915985
825 => 0.0041079157592493
826 => 0.0041531918347039
827 => 0.0041627321690461
828 => 0.0038283368567773
829 => 0.0036926727202361
830 => 0.0036461179009703
831 => 0.0036193249442943
901 => 0.0036315348310963
902 => 0.0035094211963931
903 => 0.0035914835784868
904 => 0.0034857434928424
905 => 0.0034680158233761
906 => 0.0036570921951913
907 => 0.0036834010677612
908 => 0.0035711592438518
909 => 0.0036432366651023
910 => 0.0036171003902058
911 => 0.0034875561031183
912 => 0.0034826084642149
913 => 0.0034176076946562
914 => 0.0033158940769261
915 => 0.0032694082242828
916 => 0.0032451979886174
917 => 0.003255187603701
918 => 0.0032501365486275
919 => 0.0032171749976074
920 => 0.0032520258661486
921 => 0.0031629962983989
922 => 0.003127544007161
923 => 0.0031115310296958
924 => 0.0030325121639673
925 => 0.0031582663191904
926 => 0.0031830414719785
927 => 0.003207865439471
928 => 0.0034239411284508
929 => 0.0034131465976529
930 => 0.0035107238989159
1001 => 0.003506932224422
1002 => 0.0034791015974543
1003 => 0.0033616887601935
1004 => 0.0034084874244431
1005 => 0.0032644484100101
1006 => 0.0033723722333242
1007 => 0.0033231203073703
1008 => 0.0033557201076162
1009 => 0.0032971027273685
1010 => 0.0033295440058499
1011 => 0.0031889165798021
1012 => 0.00305760066804
1013 => 0.0031104460242835
1014 => 0.0031678949701198
1015 => 0.0032924589224119
1016 => 0.003218269660057
1017 => 0.0032449509242064
1018 => 0.0031555731556955
1019 => 0.0029711612897602
1020 => 0.0029722050408943
1021 => 0.002943837292951
1022 => 0.002919323416969
1023 => 0.0032267911892911
1024 => 0.0031885527114567
1025 => 0.0031276247015558
1026 => 0.003209179263991
1027 => 0.0032307435847439
1028 => 0.0032313574906398
1029 => 0.0032908575941647
1030 => 0.0033226128100819
1031 => 0.0033282098045223
1101 => 0.0034218345030034
1102 => 0.0034532162669947
1103 => 0.0035824733115612
1104 => 0.0033199186018726
1105 => 0.0033145114604055
1106 => 0.003210326903932
1107 => 0.0031442514111239
1108 => 0.0032148511494547
1109 => 0.0032773928797904
1110 => 0.003212270249828
1111 => 0.0032207738904873
1112 => 0.0031333520804771
1113 => 0.0031646012639772
1114 => 0.0031915172705272
1115 => 0.0031766558337601
1116 => 0.003154407543618
1117 => 0.0032722651711194
1118 => 0.003265615181888
1119 => 0.0033753669141524
1120 => 0.0034609262378742
1121 => 0.0036142638415422
1122 => 0.0034542480584446
1123 => 0.0034484164473034
1124 => 0.0035054213816286
1125 => 0.0034532075398362
1126 => 0.0034862048854884
1127 => 0.0036089474590207
1128 => 0.0036115408161842
1129 => 0.0035680987423432
1130 => 0.003565455288202
1201 => 0.0035737988136874
1202 => 0.0036226671030605
1203 => 0.0036055910211827
1204 => 0.0036253518954452
1205 => 0.0036500631712997
1206 => 0.0037522794855978
1207 => 0.0037769234929234
1208 => 0.0037170513315751
1209 => 0.0037224571173847
1210 => 0.0037000632855128
1211 => 0.0036784311245185
1212 => 0.0037270570633103
1213 => 0.0038159219221976
1214 => 0.0038153690985225
1215 => 0.0038359840184983
1216 => 0.0038488269428601
1217 => 0.0037936957099043
1218 => 0.0037578073044818
1219 => 0.0037715692027594
1220 => 0.0037935747778004
1221 => 0.0037644330913573
1222 => 0.0035845571028883
1223 => 0.0036391199872672
1224 => 0.0036300380553178
1225 => 0.0036171042798212
1226 => 0.0036719676819865
1227 => 0.0036666759730075
1228 => 0.0035081687445691
1229 => 0.0035183158630583
1230 => 0.0035087858244527
1231 => 0.0035395793288497
]
'min_raw' => 0.002919323416969
'max_raw' => 0.0065396448320337
'avg_raw' => 0.0047294841245014
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.002919'
'max' => '$0.006539'
'avg' => '$0.004729'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.00071189214727765
'max_diff' => -0.0047522242978047
'year' => 2034
]
9 => [
'items' => [
101 => 0.0034515445895431
102 => 0.0034786234824308
103 => 0.0034956071102011
104 => 0.0035056105974322
105 => 0.0035417500527663
106 => 0.0035375095048028
107 => 0.0035414864543509
108 => 0.0035950717261488
109 => 0.0038660876426582
110 => 0.0038808384410309
111 => 0.0038082001149927
112 => 0.0038372176935173
113 => 0.0037815102881969
114 => 0.0038189070425957
115 => 0.0038444929521807
116 => 0.0037288751466533
117 => 0.0037220290105633
118 => 0.0036660916809648
119 => 0.0036961492334387
120 => 0.0036483255062383
121 => 0.0036600597760903
122 => 0.0036272497346088
123 => 0.0036863012768614
124 => 0.0037523300767819
125 => 0.0037690115591981
126 => 0.0037251297607908
127 => 0.0036933564467924
128 => 0.0036375729741915
129 => 0.0037303421323425
130 => 0.0037574706612747
131 => 0.003730199637729
201 => 0.0037238803456898
202 => 0.0037119052986943
203 => 0.0037264209085196
204 => 0.00375732291348
205 => 0.0037427500986111
206 => 0.003752375699572
207 => 0.0037156928345858
208 => 0.0037937139606365
209 => 0.0039176302856114
210 => 0.0039180286968585
211 => 0.0039034558034367
212 => 0.0038974928894259
213 => 0.0039124455624338
214 => 0.0039205567741498
215 => 0.003968910976806
216 => 0.0040207969627725
217 => 0.0042629262196491
218 => 0.004194937293214
219 => 0.0044097687742488
220 => 0.0045796725833709
221 => 0.0046306193067335
222 => 0.0045837507184684
223 => 0.0044234158098053
224 => 0.0044155490142682
225 => 0.0046551570594633
226 => 0.004587456811952
227 => 0.0045794040829309
228 => 0.0044937366514471
301 => 0.0045443767135718
302 => 0.0045333009891403
303 => 0.0045158174162821
304 => 0.0046124351271987
305 => 0.0047932948569122
306 => 0.0047651061719446
307 => 0.0047440646262517
308 => 0.0046518666981273
309 => 0.004707390444011
310 => 0.0046876195015891
311 => 0.0047725680171835
312 => 0.0047222463983854
313 => 0.0045869439159921
314 => 0.004608491282276
315 => 0.0046052344412095
316 => 0.0046722599995765
317 => 0.0046521405906314
318 => 0.004601305803708
319 => 0.004792676698018
320 => 0.0047802501366024
321 => 0.0047978681595824
322 => 0.0048056241581536
323 => 0.0049221082491867
324 => 0.0049698280542078
325 => 0.0049806612854004
326 => 0.0050259914093883
327 => 0.0049795334306208
328 => 0.0051653984696683
329 => 0.0052889878751091
330 => 0.0054325433293813
331 => 0.0056423164321415
401 => 0.0057211930592891
402 => 0.0057069447025922
403 => 0.0058659922749976
404 => 0.0061517972271813
405 => 0.0057647140549048
406 => 0.0061723135752234
407 => 0.0060432722730533
408 => 0.0057373176669619
409 => 0.0057176177972974
410 => 0.0059248138087486
411 => 0.00638435462027
412 => 0.0062692448590527
413 => 0.0063845428986024
414 => 0.0062500416110517
415 => 0.0062433624884589
416 => 0.0063780104712786
417 => 0.0066926228224163
418 => 0.0065431622874584
419 => 0.0063288739613696
420 => 0.006487101126658
421 => 0.0063500301128523
422 => 0.0060411707549871
423 => 0.0062691568367876
424 => 0.0061167090365574
425 => 0.0061612014092354
426 => 0.0064816240104204
427 => 0.0064430699153128
428 => 0.0064929624843951
429 => 0.0064049034058807
430 => 0.006322642340906
501 => 0.006169095954344
502 => 0.0061236384390283
503 => 0.0061362012608715
504 => 0.0061236322135177
505 => 0.0060377244214004
506 => 0.006019172641872
507 => 0.0059882521965526
508 => 0.0059978357354854
509 => 0.0059396962521896
510 => 0.006049417469399
511 => 0.0060697826941732
512 => 0.006149628646068
513 => 0.0061579185176725
514 => 0.0063802883571637
515 => 0.0062578107863453
516 => 0.006339979315055
517 => 0.0063326293884471
518 => 0.0057439486310114
519 => 0.0058250636454117
520 => 0.0059512531525249
521 => 0.0058944049506162
522 => 0.005814034893548
523 => 0.0057491317632956
524 => 0.0056507968842773
525 => 0.0057892013381414
526 => 0.0059711884772999
527 => 0.0061625340118461
528 => 0.0063924231341473
529 => 0.0063411145582541
530 => 0.0061582363946122
531 => 0.0061664401754406
601 => 0.0062171527204529
602 => 0.0061514753669414
603 => 0.0061321058332166
604 => 0.0062144916439586
605 => 0.0062150589897587
606 => 0.0061394892571704
607 => 0.0060555073285135
608 => 0.006055155441166
609 => 0.0060402116681307
610 => 0.0062527000750769
611 => 0.0063695472138962
612 => 0.0063829435500532
613 => 0.0063686455337364
614 => 0.0063741482727487
615 => 0.0063061574972208
616 => 0.0064615642480395
617 => 0.0066041808507255
618 => 0.0065659565546463
619 => 0.0065086529009198
620 => 0.0064630077806087
621 => 0.0065552040149238
622 => 0.0065510986617401
623 => 0.006602935219117
624 => 0.0066005836134519
625 => 0.0065831529288776
626 => 0.006565957177151
627 => 0.0066341363890275
628 => 0.0066145018709317
629 => 0.0065948368550061
630 => 0.006555395655004
701 => 0.0065607563691332
702 => 0.0065034626096905
703 => 0.0064769558949882
704 => 0.0060783585043672
705 => 0.0059718402570478
706 => 0.0060053530660334
707 => 0.0060163863529111
708 => 0.0059700294751709
709 => 0.0060364933297455
710 => 0.0060261350084127
711 => 0.0060664331773034
712 => 0.0060412566309236
713 => 0.006042289885169
714 => 0.0061163287398664
715 => 0.0061378225343688
716 => 0.0061268906170087
717 => 0.0061345469572035
718 => 0.0063109840854546
719 => 0.006285900367959
720 => 0.0062725751429765
721 => 0.0062762663213629
722 => 0.0063213497904857
723 => 0.006333970700374
724 => 0.0062804950183219
725 => 0.0063057144591169
726 => 0.0064130956371984
727 => 0.0064506729722786
728 => 0.0065706017877104
729 => 0.0065196538953503
730 => 0.0066131709567505
731 => 0.0069006105211793
801 => 0.0071302371345499
802 => 0.0069190630111731
803 => 0.0073407430438555
804 => 0.0076690814357067
805 => 0.0076564792613513
806 => 0.0075992258681282
807 => 0.0072254213383333
808 => 0.0068814408369045
809 => 0.0071691951325333
810 => 0.00716992867741
811 => 0.0071452103282189
812 => 0.006991686784309
813 => 0.0071398680416724
814 => 0.0071516301317666
815 => 0.007145046489106
816 => 0.0070273403479453
817 => 0.006847624826124
818 => 0.0068827408089097
819 => 0.0069402615050594
820 => 0.0068313628271739
821 => 0.0067965631011859
822 => 0.0068612624127163
823 => 0.0070697370751043
824 => 0.0070303261477913
825 => 0.0070292969692071
826 => 0.0071979136290861
827 => 0.0070772204903654
828 => 0.0068831837339096
829 => 0.0068341868938741
830 => 0.0066602811199745
831 => 0.0067803984574381
901 => 0.0067847212665726
902 => 0.0067189342284133
903 => 0.0068885219894832
904 => 0.0068869592084096
905 => 0.0070479575477384
906 => 0.0073557259043202
907 => 0.0072647036569179
908 => 0.0071588546863814
909 => 0.0071703634043523
910 => 0.0072965856345569
911 => 0.0072202687928019
912 => 0.0072477128611969
913 => 0.0072965440946724
914 => 0.0073260051902395
915 => 0.0071661244060807
916 => 0.0071288485473114
917 => 0.0070525952223179
918 => 0.0070327021531628
919 => 0.0070948088952922
920 => 0.0070784459630047
921 => 0.0067843579512036
922 => 0.0067536241176802
923 => 0.0067545666804765
924 => 0.0066772849947676
925 => 0.0065594118743318
926 => 0.0068691753969988
927 => 0.006844297050991
928 => 0.0068168332824293
929 => 0.006820197437372
930 => 0.0069546552837019
1001 => 0.0068766629425466
1002 => 0.0070840183642013
1003 => 0.0070413923231836
1004 => 0.0069976730850566
1005 => 0.0069916297546269
1006 => 0.0069748015778981
1007 => 0.0069170914984063
1008 => 0.0068474031095819
1009 => 0.0068013887989751
1010 => 0.0062739216470029
1011 => 0.0063718164822737
1012 => 0.0064844355668577
1013 => 0.0065233112235634
1014 => 0.0064568117226547
1015 => 0.0069197173040214
1016 => 0.0070042946144063
1017 => 0.0067481044244091
1018 => 0.0067001817000371
1019 => 0.006922859109853
1020 => 0.0067885574105278
1021 => 0.0068490334575105
1022 => 0.0067183173225629
1023 => 0.0069839224170473
1024 => 0.0069818989512376
1025 => 0.00687857257052
1026 => 0.006965903319954
1027 => 0.0069507274531357
1028 => 0.0068340722237872
1029 => 0.0069876205958919
1030 => 0.0069876967539687
1031 => 0.0068882473590373
1101 => 0.0067721122380293
1102 => 0.0067513500213822
1103 => 0.00673570848015
1104 => 0.0068451865972113
1105 => 0.0069433443346393
1106 => 0.007125991548626
1107 => 0.007171913397813
1108 => 0.0073511494323806
1109 => 0.0072444231006398
1110 => 0.0072917335011631
1111 => 0.0073430956333959
1112 => 0.0073677205283682
1113 => 0.0073275955834556
1114 => 0.0076060229216342
1115 => 0.0076295307197696
1116 => 0.0076374126811428
1117 => 0.0075435285492627
1118 => 0.0076269196322269
1119 => 0.0075879037061304
1120 => 0.0076894123068971
1121 => 0.0077053301516242
1122 => 0.0076918483034341
1123 => 0.0076969008785966
1124 => 0.0074593122634094
1125 => 0.0074469920403321
1126 => 0.0072790049244708
1127 => 0.0073474609158823
1128 => 0.0072194857211194
1129 => 0.0072600679736693
1130 => 0.0072779562439114
1201 => 0.0072686124266874
1202 => 0.0073513313149262
1203 => 0.0072810033615708
1204 => 0.0070953963296797
1205 => 0.006909738729277
1206 => 0.0069074079493373
1207 => 0.0068585275802802
1208 => 0.0068231960263379
1209 => 0.0068300021370814
1210 => 0.0068539877590764
1211 => 0.0068218019383841
1212 => 0.0068286704150914
1213 => 0.0069427328928524
1214 => 0.006965607309311
1215 => 0.0068878711045732
1216 => 0.0065757490252702
1217 => 0.0064991534841103
1218 => 0.0065542088401404
1219 => 0.0065278959259771
1220 => 0.0052685214936512
1221 => 0.0055643928359612
1222 => 0.005388596131202
1223 => 0.0054696113407725
1224 => 0.0052901684275494
1225 => 0.0053758079911484
1226 => 0.0053599934908078
1227 => 0.0058357458537727
1228 => 0.005828317635001
1229 => 0.0058318731302344
1230 => 0.0056621600789492
1231 => 0.005932517577858
]
'min_raw' => 0.0034515445895431
'max_raw' => 0.0077053301516242
'avg_raw' => 0.0055784373705837
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.003451'
'max' => '$0.0077053'
'avg' => '$0.005578'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.00053222117257412
'max_diff' => 0.0011656853195905
'year' => 2035
]
10 => [
'items' => [
101 => 0.0060657054035618
102 => 0.0060410558817032
103 => 0.0060472596353019
104 => 0.0059406585944572
105 => 0.0058329052613281
106 => 0.0057133902317688
107 => 0.0059354343841859
108 => 0.0059107468648572
109 => 0.0059673711519081
110 => 0.0061113826567944
111 => 0.0061325888979354
112 => 0.0061610903010814
113 => 0.0061508745769216
114 => 0.0063942545718925
115 => 0.0063647796486286
116 => 0.0064358057331805
117 => 0.0062896996884954
118 => 0.0061243668304211
119 => 0.0061557912016026
120 => 0.006152764781959
121 => 0.006114234986333
122 => 0.0060794520096254
123 => 0.0060215481534501
124 => 0.0062047645225469
125 => 0.006197326272554
126 => 0.0063177428939201
127 => 0.006296458086429
128 => 0.0061543129327274
129 => 0.0061593896747001
130 => 0.0061935332042656
131 => 0.0063117043499356
201 => 0.0063467855916756
202 => 0.0063305345627558
203 => 0.0063689995428042
204 => 0.0063994006946909
205 => 0.0063728174594168
206 => 0.0067491800118156
207 => 0.006592888040154
208 => 0.0066690636596693
209 => 0.0066872310960709
210 => 0.0066406955897483
211 => 0.0066507874747581
212 => 0.006666073930674
213 => 0.0067588902976
214 => 0.007002467301046
215 => 0.0071103458977875
216 => 0.0074349039787206
217 => 0.0071013880820707
218 => 0.0070815986289895
219 => 0.0071400613400806
220 => 0.0073306112915503
221 => 0.0074850341297696
222 => 0.0075362650940742
223 => 0.0075430361117381
224 => 0.0076391488065436
225 => 0.0076942388108105
226 => 0.0076274781973794
227 => 0.0075709055676241
228 => 0.007368269429894
229 => 0.0073917251145961
301 => 0.0075533115223106
302 => 0.0077815618405992
303 => 0.0079774243590889
304 => 0.0079088401316117
305 => 0.0084320893743435
306 => 0.0084839673994788
307 => 0.0084767995338225
308 => 0.0085949853955661
309 => 0.0083604105281372
310 => 0.0082601252276374
311 => 0.0075831372123038
312 => 0.0077733432306302
313 => 0.0080498188486755
314 => 0.0080132262638968
315 => 0.0078124422798579
316 => 0.0079772720464323
317 => 0.0079227741708994
318 => 0.0078797894353477
319 => 0.008076710841911
320 => 0.0078601876663092
321 => 0.0080476588643673
322 => 0.0078072251137165
323 => 0.0079091534185857
324 => 0.0078512939830246
325 => 0.0078887361288184
326 => 0.0076698501095767
327 => 0.0077879556924018
328 => 0.0076649365290361
329 => 0.0076648782019351
330 => 0.0076621625470854
331 => 0.0078068940472347
401 => 0.0078116137362585
402 => 0.0077046569389711
403 => 0.0076892427935028
404 => 0.0077462369681798
405 => 0.007679511716431
406 => 0.0077107320417605
407 => 0.0076804573482806
408 => 0.0076736418770956
409 => 0.0076193350431372
410 => 0.0075959381658704
411 => 0.0076051126843099
412 => 0.0075737953230872
413 => 0.0075549254801521
414 => 0.0076584088603786
415 => 0.0076031218648312
416 => 0.0076499353353838
417 => 0.0075965854773582
418 => 0.0074116516260145
419 => 0.0073052942124668
420 => 0.0069559713106558
421 => 0.0070550388522757
422 => 0.0071207207348625
423 => 0.0070990128730594
424 => 0.0071456497600398
425 => 0.0071485128861313
426 => 0.0071333507587672
427 => 0.0071157949576683
428 => 0.0071072497645901
429 => 0.0071709386328498
430 => 0.0072079121645433
501 => 0.0071273127904903
502 => 0.0071084294848547
503 => 0.0071899199020358
504 => 0.0072396290094407
505 => 0.0076066531293841
506 => 0.0075794627971064
507 => 0.0076477051952902
508 => 0.0076400221485196
509 => 0.0077115510536828
510 => 0.0078284705832539
511 => 0.0075907404884213
512 => 0.0076320022127961
513 => 0.0076218857908518
514 => 0.0077323342329716
515 => 0.007732679040952
516 => 0.0076664596825923
517 => 0.0077023582710455
518 => 0.0076823206637972
519 => 0.0077185313283399
520 => 0.0075790996536417
521 => 0.007748912382705
522 => 0.0078451852575933
523 => 0.0078465220065545
524 => 0.0078921545851828
525 => 0.0079385199279299
526 => 0.0080275141657626
527 => 0.0079360379269384
528 => 0.0077714810783262
529 => 0.0077833615512806
530 => 0.0076868819311482
531 => 0.0076885037709931
601 => 0.0076798462627952
602 => 0.0077058280966039
603 => 0.0075848012050774
604 => 0.0076132059746136
605 => 0.0075734391309248
606 => 0.0076319157674442
607 => 0.0075690045730837
608 => 0.0076218809124068
609 => 0.0076447005875802
610 => 0.0077289056802427
611 => 0.0075565674124324
612 => 0.007205158018092
613 => 0.0072790285332094
614 => 0.007169768238947
615 => 0.0071798806951642
616 => 0.0072003094661086
617 => 0.0071340931356
618 => 0.0071467251247447
619 => 0.0071462738212025
620 => 0.0071423847310898
621 => 0.0071251593061285
622 => 0.0071001790319882
623 => 0.0071996927556404
624 => 0.0072166020764411
625 => 0.0072541894019593
626 => 0.0073660237869752
627 => 0.0073548488946757
628 => 0.007373075607658
629 => 0.0073332867955562
630 => 0.0071817263840406
701 => 0.007189956843565
702 => 0.0070873228814111
703 => 0.0072515648207944
704 => 0.0072126701616608
705 => 0.0071875945218926
706 => 0.0071807524012577
707 => 0.0072928640020828
708 => 0.0073264095501837
709 => 0.0073055062157652
710 => 0.0072626328670252
711 => 0.0073449623709737
712 => 0.0073669902730274
713 => 0.0073719215079395
714 => 0.0075177936038197
715 => 0.0073800741376623
716 => 0.0074132245819802
717 => 0.0076718548853364
718 => 0.0074373128887346
719 => 0.0075615550152452
720 => 0.0075554740096773
721 => 0.0076190320774759
722 => 0.0075502603929969
723 => 0.0075511129004481
724 => 0.0076075481588567
725 => 0.0075282950165743
726 => 0.0075086708240057
727 => 0.0074815601425234
728 => 0.0075407553237157
729 => 0.0075762401576727
730 => 0.0078622218586276
731 => 0.0080469790797944
801 => 0.0080389582815611
802 => 0.0081122533631089
803 => 0.0080792332575656
804 => 0.0079726026265026
805 => 0.0081546081115069
806 => 0.0080970139606186
807 => 0.008101761952441
808 => 0.0081015852319482
809 => 0.0081398803073209
810 => 0.0081127447367272
811 => 0.008059257741678
812 => 0.0080947649051252
813 => 0.0082002084865203
814 => 0.0085275085985747
815 => 0.0087106700774301
816 => 0.0085164820475633
817 => 0.0086504303502841
818 => 0.008570109099312
819 => 0.0085555123386601
820 => 0.0086396417714706
821 => 0.0087239184617163
822 => 0.0087185504008858
823 => 0.0086573698514233
824 => 0.008622810511431
825 => 0.0088845054120815
826 => 0.0090773177570245
827 => 0.0090641692477297
828 => 0.0091222024916324
829 => 0.0092925898906315
830 => 0.0093081679790316
831 => 0.0093062054979515
901 => 0.0092675935804465
902 => 0.0094353621023608
903 => 0.009575317554948
904 => 0.0092586560371496
905 => 0.0093792365977236
906 => 0.0094333690962282
907 => 0.0095128516644217
908 => 0.0096469520797892
909 => 0.0097926206992568
910 => 0.0098132198392246
911 => 0.0097986037636578
912 => 0.0097025313933363
913 => 0.0098619237349458
914 => 0.0099552920304503
915 => 0.010010890713728
916 => 0.010151879723781
917 => 0.0094337034001101
918 => 0.0089253425025368
919 => 0.0088459546075604
920 => 0.0090073930137697
921 => 0.00904996303404
922 => 0.0090328031122473
923 => 0.0084605967038778
924 => 0.0088429420592412
925 => 0.0092543135131016
926 => 0.0092701159660073
927 => 0.0094760571171813
928 => 0.0095431199978165
929 => 0.0097089296178353
930 => 0.0096985581809581
1001 => 0.0097389301848253
1002 => 0.0097296493602819
1003 => 0.010036776766032
1004 => 0.010375583903435
1005 => 0.010363852089608
1006 => 0.010315144555022
1007 => 0.010387483549751
1008 => 0.01073716882433
1009 => 0.010704975407839
1010 => 0.010736248569732
1011 => 0.01114854721586
1012 => 0.011684594104624
1013 => 0.011435546506565
1014 => 0.011975908132837
1015 => 0.012316037133237
1016 => 0.012904255069432
1017 => 0.012830607286786
1018 => 0.013059596212804
1019 => 0.012698762385094
1020 => 0.011870214980121
1021 => 0.011739094181732
1022 => 0.012001601340614
1023 => 0.012646949575652
1024 => 0.011981277028094
1025 => 0.012115941717491
1026 => 0.012077158277885
1027 => 0.012075091673207
1028 => 0.012153965568262
1029 => 0.0120395548697
1030 => 0.011573425101663
1031 => 0.011787049627434
1101 => 0.011704558938942
1102 => 0.011796088507913
1103 => 0.012290035841981
1104 => 0.012071649951356
1105 => 0.011841598155811
1106 => 0.012130134160004
1107 => 0.012497539645071
1108 => 0.012474548070107
1109 => 0.012429934804943
1110 => 0.012681417444796
1111 => 0.013096793088332
1112 => 0.013209067455666
1113 => 0.013291946098283
1114 => 0.013303373662853
1115 => 0.013421084680124
1116 => 0.012788122873264
1117 => 0.013792649516363
1118 => 0.013966103518138
1119 => 0.013933501354736
1120 => 0.014126288177648
1121 => 0.014069565403818
1122 => 0.013987383004068
1123 => 0.014292991125317
1124 => 0.013942636075609
1125 => 0.013445351191021
1126 => 0.013172530868157
1127 => 0.013531802677093
1128 => 0.013751197433951
1129 => 0.013896203412107
1130 => 0.013940082133483
1201 => 0.012837257896519
1202 => 0.012242896798232
1203 => 0.01262387544787
1204 => 0.013088695694171
1205 => 0.012785540773326
1206 => 0.012797423872275
1207 => 0.012365204622863
1208 => 0.013126937507142
1209 => 0.013015959433084
1210 => 0.013591713877611
1211 => 0.013454305458707
1212 => 0.013923810857559
1213 => 0.013800174351202
1214 => 0.014313382576667
1215 => 0.014518115232363
1216 => 0.014861893225371
1217 => 0.015114777716455
1218 => 0.015263276326529
1219 => 0.015254361026985
1220 => 0.015842786501812
1221 => 0.015495812557327
1222 => 0.015059931507573
1223 => 0.01505204779457
1224 => 0.01527779676672
1225 => 0.01575090468114
1226 => 0.015873574679908
1227 => 0.015942130474271
1228 => 0.01583713488876
1229 => 0.015460519539868
1230 => 0.015297898941699
1231 => 0.015436456402911
]
'min_raw' => 0.0057133902317688
'max_raw' => 0.015942130474271
'avg_raw' => 0.01082776035302
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.005713'
'max' => '$0.015942'
'avg' => '$0.010827'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.0022618456422257
'max_diff' => 0.0082368003226471
'year' => 2036
]
11 => [
'items' => [
101 => 0.015267012534227
102 => 0.015559520189128
103 => 0.015961195675571
104 => 0.015878251276017
105 => 0.016155521968005
106 => 0.016442467964485
107 => 0.016852813627002
108 => 0.01696009317824
109 => 0.01713742219696
110 => 0.017319952006772
111 => 0.017378575662367
112 => 0.01749050641075
113 => 0.017489916480455
114 => 0.017827227324516
115 => 0.018199291631162
116 => 0.018339737293612
117 => 0.018662684350198
118 => 0.01810964883321
119 => 0.018529132625659
120 => 0.018907517506809
121 => 0.018456391452525
122 => 0.019078163619466
123 => 0.019102305623743
124 => 0.019466821225608
125 => 0.019097314830378
126 => 0.018877903112397
127 => 0.019511336520959
128 => 0.019817834994396
129 => 0.019725515159829
130 => 0.019022956660384
131 => 0.018614037479556
201 => 0.017543817108708
202 => 0.018811539368057
203 => 0.01942900990062
204 => 0.019021357560875
205 => 0.019226953689322
206 => 0.020348619501359
207 => 0.0207756772201
208 => 0.020686852199961
209 => 0.02070186216618
210 => 0.020932294759567
211 => 0.02195415978019
212 => 0.021341834573187
213 => 0.021809934250553
214 => 0.022058212631569
215 => 0.022288827428562
216 => 0.021722510373704
217 => 0.020985740206183
218 => 0.020752374166622
219 => 0.018980824569637
220 => 0.018888607719664
221 => 0.018836843607317
222 => 0.018510478201152
223 => 0.018254044390915
224 => 0.018050118704238
225 => 0.017514956805031
226 => 0.017695558236171
227 => 0.016842621865804
228 => 0.017388300329355
301 => 0.016026993287381
302 => 0.017160730243394
303 => 0.01654368876293
304 => 0.016958015521785
305 => 0.016956569974755
306 => 0.016193663049285
307 => 0.015753634256136
308 => 0.016034037729308
309 => 0.016334652511003
310 => 0.016383426247944
311 => 0.01677318115926
312 => 0.016881953377255
313 => 0.016552368478642
314 => 0.01599878322473
315 => 0.016127368453278
316 => 0.015751028480584
317 => 0.015091507154144
318 => 0.015565186884931
319 => 0.015726921971249
320 => 0.015798353399211
321 => 0.015149789921194
322 => 0.014945997195403
323 => 0.014837499658179
324 => 0.015915061824029
325 => 0.015974093111934
326 => 0.015672080696832
327 => 0.017037205451084
328 => 0.016728235675709
329 => 0.017073430614235
330 => 0.016115700691554
331 => 0.016152287264355
401 => 0.015698882570655
402 => 0.015952758902614
403 => 0.015773327294001
404 => 0.015932248203847
405 => 0.016027504741953
406 => 0.016480835036404
407 => 0.017165906547163
408 => 0.016413122607646
409 => 0.016085123865134
410 => 0.016288612440253
411 => 0.016830529331208
412 => 0.017651561161218
413 => 0.017165493793046
414 => 0.017381202237082
415 => 0.017428324935903
416 => 0.017069916853805
417 => 0.017664776178433
418 => 0.01798356612313
419 => 0.018310578642104
420 => 0.018594514449647
421 => 0.018179962650866
422 => 0.018623592499228
423 => 0.018266105152659
424 => 0.017945402046424
425 => 0.017945888420655
426 => 0.017744706677389
427 => 0.01735489169928
428 => 0.017283003836482
429 => 0.017656973577194
430 => 0.017956861894178
501 => 0.017981562132333
502 => 0.018147595713434
503 => 0.018245852676448
504 => 0.019208904487844
505 => 0.01959625189317
506 => 0.020069892968292
507 => 0.02025440286
508 => 0.020809711483585
509 => 0.020361254670079
510 => 0.020264228217551
511 => 0.018917231136802
512 => 0.019137801833314
513 => 0.019490956800338
514 => 0.018923054532133
515 => 0.019283257808226
516 => 0.019354369565075
517 => 0.01890375743037
518 => 0.019144448841317
519 => 0.018505243813872
520 => 0.017179839470015
521 => 0.017666251732355
522 => 0.018024414882034
523 => 0.017513271906244
524 => 0.018429475906382
525 => 0.017894248443791
526 => 0.017724607033599
527 => 0.017062775410909
528 => 0.017375134460583
529 => 0.017797604547818
530 => 0.017536567151326
531 => 0.01807825894401
601 => 0.018845438986374
602 => 0.019392177170924
603 => 0.019434148939859
604 => 0.019082632915806
605 => 0.019645939587695
606 => 0.019650042661824
607 => 0.019014630434758
608 => 0.01862544398367
609 => 0.018537020003128
610 => 0.018757920443065
611 => 0.01902613435762
612 => 0.019449032945442
613 => 0.019704581705069
614 => 0.020370917337586
615 => 0.020551208654405
616 => 0.020749294150678
617 => 0.021013997461003
618 => 0.021331841653584
619 => 0.020636416655097
620 => 0.020664047186721
621 => 0.020016477056945
622 => 0.019324455502328
623 => 0.019849613600578
624 => 0.020536187955184
625 => 0.02037868703964
626 => 0.02036096496919
627 => 0.020390768575995
628 => 0.020272018029174
629 => 0.019734913707002
630 => 0.019465183278859
701 => 0.019813204346735
702 => 0.019998162055676
703 => 0.020285015332235
704 => 0.020249654611161
705 => 0.020988557845786
706 => 0.021275673299488
707 => 0.021202216880068
708 => 0.021215734629069
709 => 0.021735543443573
710 => 0.022313677752138
711 => 0.022855176823651
712 => 0.02340601293712
713 => 0.022741958502834
714 => 0.022404792614287
715 => 0.022752661747052
716 => 0.022568077488594
717 => 0.023628753388941
718 => 0.023702192286965
719 => 0.024762791488371
720 => 0.025769426424309
721 => 0.025137177056784
722 => 0.025733359733223
723 => 0.026378179905278
724 => 0.027622142635476
725 => 0.027203219751082
726 => 0.026882331386994
727 => 0.026579093433453
728 => 0.027210083477103
729 => 0.028021842087946
730 => 0.028196687117794
731 => 0.02848000286209
801 => 0.028182130999164
802 => 0.02854088484855
803 => 0.02980744358131
804 => 0.029465208231495
805 => 0.02897917901768
806 => 0.0299790054956
807 => 0.030340838811233
808 => 0.03288037451392
809 => 0.03608664324155
810 => 0.034759226934816
811 => 0.033935256797769
812 => 0.034128909324808
813 => 0.035299730125093
814 => 0.03567576060615
815 => 0.034653580133158
816 => 0.035014631556828
817 => 0.037004060399046
818 => 0.038071325144377
819 => 0.036621836267439
820 => 0.032622753943529
821 => 0.028935417404736
822 => 0.029913465097753
823 => 0.029802584841718
824 => 0.031939977946379
825 => 0.029457046031587
826 => 0.029498852237198
827 => 0.031680444367724
828 => 0.031098432989257
829 => 0.030155649094527
830 => 0.028942300770515
831 => 0.026699314172444
901 => 0.024712638392224
902 => 0.028608967101343
903 => 0.028440950322392
904 => 0.028197637127779
905 => 0.028739104313153
906 => 0.031368315267185
907 => 0.031307703444769
908 => 0.030922121954984
909 => 0.031214582116627
910 => 0.030104379414166
911 => 0.030390503929436
912 => 0.02893483331179
913 => 0.029592857225141
914 => 0.030153626303714
915 => 0.030266208998566
916 => 0.030519863558682
917 => 0.028352413114626
918 => 0.029325534731005
919 => 0.029897152511463
920 => 0.027314562583721
921 => 0.029846103012252
922 => 0.028314682624537
923 => 0.027794895543784
924 => 0.028494720371277
925 => 0.028221997955401
926 => 0.027987527237029
927 => 0.027856688547459
928 => 0.028370562663922
929 => 0.028346589822176
930 => 0.027505792028975
1001 => 0.026409005583046
1002 => 0.026777123115087
1003 => 0.026643382564576
1004 => 0.02615868955665
1005 => 0.026485314121936
1006 => 0.025047024837329
1007 => 0.022572522878935
1008 => 0.024207254668695
1009 => 0.024144319273035
1010 => 0.02411258439265
1011 => 0.025341040151987
1012 => 0.025222952476023
1013 => 0.025008622187831
1014 => 0.026154753212828
1015 => 0.025736399971066
1016 => 0.027025666085755
1017 => 0.027874860133393
1018 => 0.027659477054362
1019 => 0.028458148160677
1020 => 0.026785603799533
1021 => 0.027341155945472
1022 => 0.027455654472788
1023 => 0.026140610133889
1024 => 0.025242273080226
1025 => 0.025182364240539
1026 => 0.023624771587959
1027 => 0.024456825010518
1028 => 0.025188997589661
1029 => 0.024838343743139
1030 => 0.024727337210816
1031 => 0.025294445510075
1101 => 0.025338514681882
1102 => 0.02433373289445
1103 => 0.024542658845358
1104 => 0.025413914791694
1105 => 0.024520705430923
1106 => 0.022785345547866
1107 => 0.022354952303641
1108 => 0.02229752991114
1109 => 0.021130269297881
1110 => 0.022383713238225
1111 => 0.021836551368056
1112 => 0.023565029159915
1113 => 0.022577731915217
1114 => 0.022535171504285
1115 => 0.022470835200905
1116 => 0.021466125772144
1117 => 0.021686093284428
1118 => 0.022417298797255
1119 => 0.022678201161852
1120 => 0.022650986907715
1121 => 0.022413715491335
1122 => 0.022522337130727
1123 => 0.022172428983956
1124 => 0.022048869134623
1125 => 0.021658880262314
1126 => 0.021085704357195
1127 => 0.021165407982294
1128 => 0.020029796534619
1129 => 0.019411055146465
1130 => 0.019239795685104
1201 => 0.019010780375947
1202 => 0.01926566357366
1203 => 0.02002657949007
1204 => 0.019108753457563
1205 => 0.017535205102839
1206 => 0.017629778040154
1207 => 0.017842255351343
1208 => 0.01744630528762
1209 => 0.017071571781876
1210 => 0.01739737216203
1211 => 0.016730638980412
1212 => 0.017922826870986
1213 => 0.017890581529614
1214 => 0.018334955450815
1215 => 0.018612831583214
1216 => 0.017972417061502
1217 => 0.017811354541157
1218 => 0.017903103072629
1219 => 0.016386704219773
1220 => 0.018211033313141
1221 => 0.018226810186898
1222 => 0.018091719015378
1223 => 0.019063117937754
1224 => 0.021113072650891
1225 => 0.020341797228572
1226 => 0.020043136073127
1227 => 0.019475380998306
1228 => 0.020231880925544
1229 => 0.02017379353437
1230 => 0.019911100322489
1231 => 0.019752222648291
]
'min_raw' => 0.014837499658179
'max_raw' => 0.038071325144377
'avg_raw' => 0.026454412401278
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.014837'
'max' => '$0.038071'
'avg' => '$0.026454'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.00912410942641
'max_diff' => 0.022129194670106
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.00046573215983914
]
1 => [
'year' => 2028
'avg' => 0.00079933158929601
]
2 => [
'year' => 2029
'avg' => 0.0021836298364545
]
3 => [
'year' => 2030
'avg' => 0.0016846671668656
]
4 => [
'year' => 2031
'avg' => 0.0016545519363655
]
5 => [
'year' => 2032
'avg' => 0.0029009502511065
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.00046573215983914
'min' => '$0.000465'
'max_raw' => 0.0029009502511065
'max' => '$0.00290095'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.0029009502511065
]
1 => [
'year' => 2033
'avg' => 0.0074615423470425
]
2 => [
'year' => 2034
'avg' => 0.0047294841245014
]
3 => [
'year' => 2035
'avg' => 0.0055784373705837
]
4 => [
'year' => 2036
'avg' => 0.01082776035302
]
5 => [
'year' => 2037
'avg' => 0.026454412401278
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.0029009502511065
'min' => '$0.00290095'
'max_raw' => 0.026454412401278
'max' => '$0.026454'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.026454412401278
]
]
]
]
'prediction_2025_max_price' => '$0.000796'
'last_price' => 0.00077213
'sma_50day_nextmonth' => '$0.000674'
'sma_200day_nextmonth' => '$0.001783'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'augmenter'
'sma_200day_date_nextmonth' => '4 févr. 2026'
'sma_50day_date_nextmonth' => '4 févr. 2026'
'daily_sma3' => '$0.00067'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.000914'
'daily_sma5_action' => 'SELL'
'daily_sma10' => '$0.0007065'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.00061'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.000592'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.001125'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.002074'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.000733'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.000738'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.000707'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.000651'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.000735'
'daily_ema50_action' => 'BUY'
'daily_ema100' => '$0.001121'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.001725'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.00158'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.00233'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.003467'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.005153'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.000694'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.0007034'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.000882'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.00138'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.002239'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.0038019'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.015193'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '51.85'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 23.31
'stoch_rsi_14_action' => 'NEUTRAL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.000649'
'vwma_10_action' => 'BUY'
'hma_9' => '0.0007070'
'hma_9_action' => 'SELL'
'stochastic_fast_14' => 27.5
'stochastic_fast_14_action' => 'NEUTRAL'
'cci_20' => 33.88
'cci_20_action' => 'NEUTRAL'
'adx_14' => 18.55
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.000334'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'NEUTRAL'
'williams_percent_r_14' => -72.5
'williams_percent_r_14_action' => 'NEUTRAL'
'ultimate_oscillator' => 52.18
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.000655'
'ichimoku_cloud_action' => 'NEUTRAL'
'sell_signals' => 16
'buy_signals' => 17
'sell_pct' => 48.48
'buy_pct' => 51.52
'overall_action' => 'bullish'
'overall_action_label' => 'Haussier'
'overall_action_dir' => 1
'last_updated' => 1767702048
'last_updated_date' => '6 janvier 2026'
]
Prévision du prix de Pillar pour 2026
La prévision du prix de Pillar pour 2026 suggère que le prix moyen pourrait varier entre $0.000266 à la baisse et $0.000796 à la hausse. Sur le marché des cryptomonnaies, comparé au prix moyen d'aujourd'hui, Pillar pourrait potentiellement gagner 3.13% d'ici 2026 si PLR atteint l'objectif de prix prévu.
Prévision du prix de Pillar de 2027 à 2032
La prévision du prix de PLR pour 2027-2032 se situe actuellement dans une fourchette de prix comprise entre $0.000465 à la baisse et $0.00290095 à la hausse. Compte tenu de la volatilité des prix sur le marché, si Pillar atteint l'objectif de prix le plus élevé, il pourrait gagner 275.71% d'ici 2032 par rapport au prix actuel.
| Prévision du Prix de Pillar | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2027 | $0.000256 | $0.000465 | $0.000674 |
| 2028 | $0.000463 | $0.000799 | $0.001135 |
| 2029 | $0.001018 | $0.002183 | $0.003349 |
| 2030 | $0.000865 | $0.001684 | $0.0025034 |
| 2031 | $0.001023 | $0.001654 | $0.002285 |
| 2032 | $0.001562 | $0.00290095 | $0.004239 |
Prévision du prix de Pillar de 2032 à 2037
La prévision du prix de Pillar pour 2032-2037 est actuellement estimée entre $0.00290095 à la baisse et $0.026454 à la hausse. Par rapport au prix actuel, Pillar pourrait potentiellement gagner 3326.16% d'ici 2037 s'il atteint l'objectif de prix le plus élevé. Veuillez noter que ces informations sont à titre général seulement et ne doivent pas être considérées comme un conseil en investissement à long terme.
| Prévision du Prix de Pillar | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2032 | $0.001562 | $0.00290095 | $0.004239 |
| 2033 | $0.003631 | $0.007461 | $0.011291 |
| 2034 | $0.002919 | $0.004729 | $0.006539 |
| 2035 | $0.003451 | $0.005578 | $0.0077053 |
| 2036 | $0.005713 | $0.010827 | $0.015942 |
| 2037 | $0.014837 | $0.026454 | $0.038071 |
Pillar Histogramme des prix potentiels
Prévision du prix de Pillar basée sur l'analyse technique
Au 6 janvier 2026, le sentiment global de prévision du prix pour Pillar est Haussier, avec 17 indicateurs techniques montrant des signaux haussiers et 16 indiquant des signaux baissiers. La prévision du prix de PLR a été mise à jour pour la dernière fois le 6 janvier 2026.
Moyennes Mobiles Simples sur 50 et 200 jours de Pillar et Indice de Force Relative sur 14 jours - RSI (14)
Selon nos indicateurs techniques, le SMA sur 200 jours de Pillar devrait augmenter au cours du prochain mois, atteignant $0.001783 d'ici le 4 févr. 2026. Le SMA à court terme sur 50 jours pour Pillar devrait atteindre $0.000674 d'ici le 4 févr. 2026.
Le Relative Strength Index (RSI), un oscillateur de momentum, est un outil couramment utilisé pour identifier si une cryptomonnaie est survendue (en dessous de 30) ou surachetée (au-dessus de 70). Actuellement, le RSI est à 51.85, ce qui suggère que le marché de PLR est dans un état NEUTRAL.
Moyennes Mobiles et Oscillateurs Populaires de PLR pour le Samedi 19 Octobre 2024
Les moyennes mobiles (MA) sont des indicateurs largement utilisés sur les marchés financiers, conçus pour lisser les mouvements de prix sur une période donnée. En tant qu'indicateurs retardés, ils sont basés sur des données historiques de prix. Le tableau ci-dessous met en évidence deux types : la moyenne mobile simple (SMA) et la moyenne mobile exponentielle (EMA).
Moyenne Mobile Simple Quotidienne (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 3 | $0.00067 | BUY |
| SMA 5 | $0.000914 | SELL |
| SMA 10 | $0.0007065 | BUY |
| SMA 21 | $0.00061 | BUY |
| SMA 50 | $0.000592 | BUY |
| SMA 100 | $0.001125 | SELL |
| SMA 200 | $0.002074 | SELL |
Moyenne Mobile Exponentielle Quotidienne (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 3 | $0.000733 | BUY |
| EMA 5 | $0.000738 | BUY |
| EMA 10 | $0.000707 | BUY |
| EMA 21 | $0.000651 | BUY |
| EMA 50 | $0.000735 | BUY |
| EMA 100 | $0.001121 | SELL |
| EMA 200 | $0.001725 | SELL |
Moyenne Mobile Simple Hebdomadaire (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 21 | $0.00158 | SELL |
| SMA 50 | $0.00233 | SELL |
| SMA 100 | $0.003467 | SELL |
| SMA 200 | $0.005153 | SELL |
Moyenne Mobile Exponentielle Hebdomadaire (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 21 | $0.00138 | SELL |
| EMA 50 | $0.002239 | SELL |
| EMA 100 | $0.0038019 | SELL |
| EMA 200 | $0.015193 | SELL |
Oscillateurs de Pillar
Un oscillateur est un outil d'analyse technique qui établit des limites hautes et basses entre deux extrêmes, créant un indicateur de tendance qui fluctue à l'intérieur de ces limites. Les traders utilisent cet indicateur pour identifier les conditions de surachat ou de survente à court terme.
| Période | Valeur | Action |
|---|---|---|
| RSI (14) | 51.85 | NEUTRAL |
| Stoch RSI (14) | 23.31 | NEUTRAL |
| Stochastique Rapide (14) | 27.5 | NEUTRAL |
| Indice de Canal des Matières Premières (20) | 33.88 | NEUTRAL |
| Indice Directionnel Moyen (14) | 18.55 | NEUTRAL |
| Oscillateur Impressionnant (5, 34) | 0.000334 | BUY |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | NEUTRAL |
| Plage de Pourcentage de Williams (14) | -72.5 | NEUTRAL |
| Oscillateur Ultime (7, 14, 28) | 52.18 | NEUTRAL |
| VWMA (10) | 0.000649 | BUY |
| Moyenne Mobile de Hull (9) | 0.0007070 | SELL |
| Nuage Ichimoku B/L (9, 26, 52, 26) | -0.000655 | NEUTRAL |
Prévision du cours de Pillar basée sur les flux monétaires mondiaux
Définitions des flux monétaires mondiaux utilisés pour la prédiction du cours de Pillar
M0 : le total de toutes les devises physiques, plus les comptes à la banque centrale qui peuvent être échangés contre des devises physiques.
M1 : M0 plus le montant des comptes à vue, y compris les comptes de "chèques" et les comptes "courants".
M2 : M1 plus la plupart des comptes d'épargne, comptes du marché monétaire et comptes de certificats de dépôt (CD) de moins de 100 000 $.
Prédictions du cours de Pillar par des sociétés Internet ou des niches technologiques
| Comparaison | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Action Facebook | $0.001084 | $0.001524 | $0.002142 | $0.00301 | $0.004229 | $0.005943 |
| Action Amazon.com | $0.001611 | $0.003361 | $0.007014 | $0.014635 | $0.030538 | $0.063719 |
| Action Apple | $0.001095 | $0.001553 | $0.0022034 | $0.003125 | $0.004433 | $0.006288 |
| Action Netflix | $0.001218 | $0.001922 | $0.003033 | $0.004785 | $0.007551 | $0.011914 |
| Action Google | $0.000999 | $0.001294 | $0.001676 | $0.002171 | $0.002812 | $0.003641 |
| Action Tesla | $0.00175 | $0.003967 | $0.008995 | $0.020391 | $0.046224 | $0.104788 |
| Action Kodak | $0.000579 | $0.000434 | $0.000325 | $0.000244 | $0.000183 | $0.000137 |
| Action Nokia | $0.000511 | $0.000338 | $0.000224 | $0.000148 | $0.000098 | $0.000065 |
Ce calcul montre la valeur potentielle des cryptomonnaies si l'on suppose que leur capitalisation se comportera comme celle de certaines sociétés Internet ou niches technologiques. En extrapolant les données, vous pourrez obtenir une potentielle image des cours futurs pour 2024, 2025, 2026, 2027, 2028, 2029 et 2030.
Aperçu des prévisions relatives à Pillar
Vous vous posez peut-être des questions telles que : "Devrais-je investir dans Pillar maintenant ?", "Devrais-je acheter PLR aujourd'hui ?", " Pillar sera-t-il un bon ou un mauvais investissement à court ou à long terme ?".
Nous mettons régulièrement à jour les prévisions de Pillar avec de nouvelles valeurs. Regardez nos prévisions similaires. Nous faisons une prévision des cours futurs pour une grande quantité de devises numériques comme Pillar en utilisant des méthodes d'analyse technique.
Si vous souhaitez trouver des cryptomonnaies ayant un bon rendement, vous devriez consulter un maximum d'informations disponibles à propos de Pillar afin de prendre une décision responsable concernant cet investissement.
Le cours de Pillar est de $0.0007721 USD actuellement, mais ce cours peut subir une hausse ou une baisse, ce qui pourrait causer la perte de votre investissement, car les cryptomonnaies sont des actifs à haut risque.
Prévision du cours de Pillar basée sur le modèle de croissance du Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si Pillar présente 1 % de la précédente croissance annuelle moyenne du Bitcoin | $0.000792 | $0.000812 | $0.000833 | $0.000855 |
| Si Pillar présente 2 % de la précédente croissance annuelle moyenne du Bitcoin | $0.000812 | $0.000854 | $0.000898 | $0.000945 |
| Si Pillar présente 5 % de la précédente croissance annuelle moyenne du Bitcoin | $0.000872 | $0.000985 | $0.001114 | $0.001258 |
| Si Pillar présente 10 % de la précédente croissance annuelle moyenne du Bitcoin | $0.000972 | $0.001225 | $0.001544 | $0.001945 |
| Si Pillar présente 20 % de la précédente croissance annuelle moyenne du Bitcoin | $0.001173 | $0.001783 | $0.00271 | $0.00412 |
| Si Pillar présente 50 % de la précédente croissance annuelle moyenne du Bitcoin | $0.001775 | $0.004083 | $0.00939 | $0.021594 |
| Si Pillar présente 100 % de la précédente croissance annuelle moyenne du Bitcoin | $0.002779 | $0.010003 | $0.0360041 | $0.12959 |
Boîte à questions
Est-ce que PLR est un bon investissement ?
La décision d'acquérir Pillar dépend entièrement de votre tolérance individuelle au risque. Comme vous pouvez le discerner, la valeur de Pillar a connu une hausse de 21.3443% au cours des 24 heures précédentes, et Pillar a enregistré une déclin de sur une période de 30 jours précédents. Par conséquent, la détermination de si investir ou non dans Pillar dépendra de la mesure dans laquelle cet investissement s'aligne avec vos aspirations de trading.
Est-ce que Pillar peut monter ?
Il semble que la valeur moyenne de Pillar pourrait potentiellement s'envoler jusqu'à $0.000796 pour la fin de cette année. En regardant les perspectives de Pillar sur une période de cinq ans plus longue, la monnaie numérique pourrait potentiellement croître jusqu'à $0.0025034. Cependant, compte tenu de l'imprévisibilité du marché, il est essentiel de mener des recherches approfondies avant d'investir des fonds dans un projet, un réseau ou un actif particulier.
Quel sera le prix de Pillar la semaine prochaine ?
Basé sur notre nouveau pronostic expérimental de Pillar, le prix de Pillar va augmenter de 0.86% durant la prochaine semaine et atteindre $0.000778 d'ici 13 janvier 2026.
Quel sera le prix de Pillar le mois prochain ?
Basé sur notre nouveau pronostic expérimental de Pillar, le prix de Pillar va diminuer de -11.62% durant le prochain mois et atteindre $0.000682 d'ici 5 février 2026.
Jusqu'où le prix de Pillar peut-il monter cette année en 2026 ?
Selon notre prédiction la plus récente sur la valeur de Pillar en 2026, PLR devrait fluctuer dans la fourchette de $0.000266 et $0.000796. Cependant, il est crucial de garder à l'esprit que le marché des cryptomonnaies est exceptionnellement instable, et cette prévision de prix de Pillar ne prend pas en compte les fluctuations de prix soudaines et extrêmes.
Où sera Pillar dans 5 ans ?
L'avenir de Pillar semble suivre une tendance haussière, avec un prix maximum de $0.0025034 prévue après une période de cinq ans. Selon la prévision de Pillar pour 2030, la valeur de Pillar pourrait potentiellement atteindre son point le plus élevé d'environ $0.0025034, tandis que son point le plus bas devrait être autour de $0.000865.
Combien vaudra Pillar en 2026 ?
Basé sur notre nouvelle simulation expérimentale de prédiction de prix de Pillar, il est attendu que la valeur de PLR en 2026 augmente de 3.13% jusqu'à $0.000796 si le meilleur scénario se produit. Le prix sera entre $0.000796 et $0.000266 durant 2026.
Combien vaudra Pillar en 2027 ?
Selon notre dernière simulation expérimentale pour la prédiction de prix de Pillar, le valeur de PLR pourrait diminuer de -12.62% jusqu'à $0.000674 en 2027, en supposant les conditions les plus favorables. Il est prévu que le prix fluctue entre $0.000674 et $0.000256 tout au long de l'année.
Combien vaudra Pillar en 2028 ?
Notre nouveau modèle expérimental de prédiction de prix de Pillar suggère que la valeur de PLR en 2028 pourrait augmenter de 47.02%, atteignant $0.001135 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.001135 et $0.000463 durant l'année.
Combien vaudra Pillar en 2029 ?
Basé sur notre modèle de prévision expérimental, la valeur de Pillar pourrait connaître un 333.75% croissance en 2029, atteignant potentiellement $0.003349 sous des conditions optimales. Le range de prix prévu pour 2029 se situe entre $0.003349 et $0.001018.
Combien vaudra Pillar en 2030 ?
En utilisant notre nouvelle simulation expérimentale pour les prédictions de prix de Pillar, il est prévu que la valeur de PLR en 2030 augmente de 224.23%, atteignant $0.0025034 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.0025034 et $0.000865 au cours de 2030.
Combien vaudra Pillar en 2031 ?
Notre simulation expérimentale indique que le prix de Pillar pourrait augmenter de 195.98% en 2031, atteignant potentiellement $0.002285 dans des conditions idéales. Il est probable que le prix fluctue entre $0.002285 et $0.001023 durant l'année.
Combien vaudra Pillar en 2032 ?
Basé sur les résultats de notre dernière prédiction expérimentale de prix de Pillar, PLR pourrait connaître une 449.04% hausse en valeur, atteignant $0.004239 si le scénario le plus positif se réalise en 2032. Il est prévu que le prix reste dans une fourchette de $0.004239 et $0.001562 tout au long de l'année.
Combien vaudra Pillar en 2033 ?
Selon notre prédiction expérimentale de prix de Pillar, la valeur de PLR est anticipée à augmenter de 1362.43% en 2033, avec le prix potentiel le plus élevé étant $0.011291. Tout au long de l'année, le prix de PLR pourrait osciller entre $0.011291 et $0.003631.
Combien vaudra Pillar en 2034 ?
Les résultats de notre nouvelle simulation de prédiction de prix de Pillar suggèrent que PLR pourrait augmenter de 746.96% en 2034, atteignant potentiellement $0.006539 dans les meilleures circonstances. La fourchette de prix prévue pour l'année est entre $0.006539 et $0.002919.
Combien vaudra Pillar en 2035 ?
Basé sur notre prédiction expérimentale pour le prix de Pillar, PLR pourrait augmenter de 897.93%, avec la valeur potentiellement atteignant $0.0077053 en 2035. La fourchette de prix attendue pour l'année se situe entre $0.0077053 et $0.003451.
Combien vaudra Pillar en 2036 ?
Notre récente simulation de prédiction de prix de Pillar suggère que la valeur de PLR pourrait augmenter de 1964.7% en 2036, pouvant atteindre $0.015942 si les conditions sont optimales. La fourchette de prix attendue pour 2036 est entre $0.015942 et $0.005713.
Combien vaudra Pillar en 2037 ?
Selon la simulation expérimentale, la valeur de Pillar pourrait augmenter de 4830.69% en 2037, avec un maximum de $0.038071 sous des conditions favorables. Il est prévu que le prix chute entre $0.038071 et $0.014837 au cours de l'année.
Prévisions liées
Prévision du cours de Metaverser
Prévision du cours de TYBENG
Prévision du cours de DePay
Prévision du cours de SafeMoonCash
Prévision du cours de Kambria
Prévision du cours de League of Ancients
Prévision du cours de Revuto
Prévision du cours de Heroes of NFT
Prévision du cours de Pandacoin
Prévision du cours de DOLA Borrowing Right
Prévision du cours de MetaFighter
Prévision du cours de Kalmar
Prévision du cours de Nominex
Prévision du cours de MetaVPad
Prévision du cours de FlowX Finance
Prévision du cours de Solanacorn
Prévision du cours de Battle Infinity
Prévision du cours de Virtacoinplus
Prévision du cours de Cryptocart
Prévision du cours de SYNO Finance
Prévision du cours de NFTY Token
Prévision du cours de IP Exchange
Prévision du cours de NetherFi
Prévision du cours de Tokenomy
Prévision du cours de Roobee
Comment lire et prédire les mouvements de prix de Pillar ?
Les traders de Pillar utilisent des indicateurs et des modèles graphiques pour prédire la direction du marché. Ils identifient également des niveaux clés de support et de résistance pour évaluer quand une tendance baissière pourrait ralentir ou une tendance haussière pourrait s'arrêter.
Indicateurs de prédiction du prix de Pillar
Les moyennes mobiles sont des outils populaires pour la prédiction du prix de Pillar. Une moyenne mobile simple (SMA) calcule le prix de clôture moyen de PLR sur une période spécifique, comme une SMA de 12 jours. Une moyenne mobile exponentielle (EMA) donne plus de poids aux prix récents, réagissant plus rapidement aux changements de prix.
Les moyennes mobiles couramment utilisées sur le marché des cryptomonnaies incluent les moyennes sur 50 jours, 100 jours et 200 jours, qui aident à identifier les niveaux clés de résistance et de support. Un mouvement de prix de PLR au-dessus de ces moyennes est considéré comme haussier, tandis qu'une chute en dessous indique une faiblesse.
Les traders utilisent également le RSI et les niveaux de retracement de Fibonacci pour évaluer la direction future de PLR.
Comment lire les graphiques de Pillar et prédire les mouvements de prix ?
La plupart des traders préfèrent les graphiques en chandeliers aux simples graphiques linéaires parce qu'ils fournissent des informations plus détaillées. Les chandeliers peuvent représenter l'action des prix de Pillar dans différentes périodes, comme 5 minutes pour les tendances à court terme et hebdomadaire pour les tendances à long terme. Les options populaires incluent les graphiques de 1 heure, 4 heures et 1 jour.
Par exemple, un graphique en chandeliers de 1 heure montre les prix d'ouverture, de clôture, les plus hauts et les plus bas de PLR au sein de chaque heure. La couleur du chandelier est cruciale : le vert indique que le prix a clôturé plus haut qu'il n'a ouvert, tandis que le rouge signifie le contraire. Certains graphiques utilisent des chandeliers creux et pleins pour transmettre la même information.
Qu'est-ce qui affecte le prix de Pillar ?
L'action du prix de Pillar est déterminée par l'offre et la demande, influencée par des facteurs tels que les réductions de récompenses de bloc, les hard forks et les mises à jour de protocole. Les événements du monde réel, tels que les réglementations, l'adoption par les entreprises et les gouvernements et les piratages d'échanges de cryptomonnaies, impactent également le prix de PLR. La capitalisation boursière de Pillar peut changer rapidement.
Les traders surveillent souvent l'activité des « baleines » de PLR, de grands détenteurs de Pillar, car leurs actions peuvent influencer significativement les mouvements de prix sur le marché relativement petit de Pillar.
Modèles de prédiction de prix haussiers et baissiers
Les traders identifient souvent des modèles de chandeliers pour obtenir un avantage dans les prédictions de prix des cryptomonnaies. Certaines formations indiquent des tendances haussières, tandis que d'autres suggèrent des mouvements baissiers.
Modèles de chandeliers haussiers couramment suivis :
- Marteau
- Englobante haussière
- Ligne pénétrante
- Étoile du matin
- Trois soldats blancs
Modèles de chandeliers baissiers courants :
- Harami baissier
- Nuage sombre
- Étoile du soir
- Étoile filante
- Pendu


