Predicción del precio de Pillar - Pronóstico de PLR
Predicción de precio de Pillar hasta $0.000793 para el año 2026
| Año | Precio min. | Precio max. |
|---|---|---|
| 2026 | $0.000265 | $0.000793 |
| 2027 | $0.000255 | $0.000671 |
| 2028 | $0.000461 | $0.00113 |
| 2029 | $0.001013 | $0.003335 |
| 2030 | $0.000862 | $0.002493 |
| 2031 | $0.001019 | $0.002275 |
| 2032 | $0.001556 | $0.004221 |
| 2033 | $0.003616 | $0.011245 |
| 2034 | $0.0029073 | $0.006512 |
| 2035 | $0.003437 | $0.007673 |
Calculadora de ganancias de inversión
Si abres una posición corta de $10,000.00 en Pillar hoy y la cierras el Apr 06, 2026, nuestra previsión indica que podrías obtener una ganancia de alrededor de $3,965.80, equivalente a un ROI del 39.66% en los próximos 90 días.
Predicción del precio a largo plazo de Pillar para 2027, 2028, 2029, 2030, 2031, 2032 y 2037
[
'name' => 'Pillar'
'name_with_ticker' => 'Pillar <small>PLR</small>'
'name_lang' => 'Pillar'
'name_lang_with_ticker' => 'Pillar <small>PLR</small>'
'name_with_lang' => 'Pillar'
'name_with_lang_with_ticker' => 'Pillar <small>PLR</small>'
'image' => '/uploads/coins/pillar.png?1717568582'
'price_for_sd' => 0.0007689
'ticker' => 'PLR'
'marketcap' => '$199.42K'
'low24h' => '$0.0006327'
'high24h' => '$0.0007987'
'volume24h' => '$6.48K'
'current_supply' => '259.35M'
'max_supply' => '800M'
'algo' => null
'proof' => null
'ico_price_and_roi' => ''
'price' => '$0.0007689'
'change_24h_pct' => '21.1154%'
'ath_price' => '$1.56'
'ath_days' => 2896
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '1 feb. 2018'
'ath_pct' => '-99.95%'
'fdv' => '$615.14K'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.037914'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.000775'
'next_week_prediction_price_date' => '13 de enero de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.000679'
'next_month_prediction_price_date' => '5 de febrero de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.000265'
'current_year_max_price_prediction' => '$0.000793'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.000862'
'grand_prediction_max_price' => '$0.002493'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0007835211980323
107 => 0.00078644658176756
108 => 0.00079303762069689
109 => 0.00073671791468551
110 => 0.00076200380922492
111 => 0.00077685690329892
112 => 0.00070975008391243
113 => 0.00077553041724452
114 => 0.00073573751390389
115 => 0.00072223120484073
116 => 0.00074041567067336
117 => 0.00073332916665341
118 => 0.00072723660663054
119 => 0.0007238368534543
120 => 0.00073718951821553
121 => 0.00073656660044454
122 => 0.00071471904925461
123 => 0.00068621980934747
124 => 0.00069578508971597
125 => 0.00069230993368311
126 => 0.00067971551991599
127 => 0.00068820263413971
128 => 0.00065082967832865
129 => 0.00058653145033292
130 => 0.00062900882925488
131 => 0.00062737349637289
201 => 0.00062654888737734
202 => 0.00065846946364868
203 => 0.00065540103677318
204 => 0.00064983181194803
205 => 0.00067961323673464
206 => 0.00066874261607084
207 => 0.00070224330751632
208 => 0.00072430902959119
209 => 0.00071871244872167
210 => 0.00073946536698598
211 => 0.00069600545445651
212 => 0.00071044109408975
213 => 0.00071341625941123
214 => 0.00067924573857562
215 => 0.00065590306935789
216 => 0.00065434637944698
217 => 0.00061387340784139
218 => 0.00063549374258668
219 => 0.0006545187424523
220 => 0.0006454072439163
221 => 0.00064252281567808
222 => 0.00065725873399099
223 => 0.00065840384104851
224 => 0.00063229527878407
225 => 0.00063772407562949
226 => 0.00066036306093725
227 => 0.00063715363128538
228 => 0.00059206150071061
301 => 0.00058087802888059
302 => 0.00057938594758619
303 => 0.00054905548501083
304 => 0.00058162536194413
305 => 0.00056740773784431
306 => 0.00061232104202235
307 => 0.00058666680355073
308 => 0.0005855609006047
309 => 0.00058388916610107
310 => 0.00055778248402683
311 => 0.00056349818823489
312 => 0.00058249805954881
313 => 0.00058927742768249
314 => 0.00058857028404442
315 => 0.00058240494981403
316 => 0.00058522740825308
317 => 0.00057613528621119
318 => 0.00057292466868204
319 => 0.00056279107661011
320 => 0.00054789749574064
321 => 0.00054996853950818
322 => 0.00052046045868835
323 => 0.00050438289014532
324 => 0.00049993283107156
325 => 0.00049398202609735
326 => 0.00050060499032788
327 => 0.00052037686600288
328 => 0.00049652778910141
329 => 0.00045564021957207
330 => 0.00045809763216981
331 => 0.00046361870866458
401 => 0.00045333021914214
402 => 0.00044359302725663
403 => 0.00045205872559773
404 => 0.00043473412337685
405 => 0.00046571230407371
406 => 0.00046487443110121
407 => 0.00047642118118716
408 => 0.00048364160097907
409 => 0.00046700087099739
410 => 0.00046281577240831
411 => 0.00046519979476677
412 => 0.00042579721565682
413 => 0.00047320114984515
414 => 0.0004736111010365
415 => 0.00047010085004756
416 => 0.00049534198157057
417 => 0.00054860864199049
418 => 0.00052856758169406
419 => 0.00052080707740304
420 => 0.0005060543530729
421 => 0.00052571148231271
422 => 0.00052420212148608
423 => 0.00051737621941995
424 => 0.00051324789255225
425 => 0.00052085446138741
426 => 0.0005123053544954
427 => 0.00051076969998385
428 => 0.00050146530445244
429 => 0.00049814405857075
430 => 0.00049568514034255
501 => 0.00049297811298163
502 => 0.00049894914079064
503 => 0.00048541800622128
504 => 0.00046910078440411
505 => 0.0004677441839648
506 => 0.00047148987705127
507 => 0.00046983268669456
508 => 0.00046773624997494
509 => 0.00046373358134661
510 => 0.00046254607506807
511 => 0.00046640489437718
512 => 0.00046204851236034
513 => 0.0004684765913306
514 => 0.00046672850953252
515 => 0.00045696386670935
516 => 0.00044479350641787
517 => 0.00044468516468308
518 => 0.00044206308052167
519 => 0.00043872346210913
520 => 0.00043779445666688
521 => 0.0004513457680962
522 => 0.00047939657719828
523 => 0.00047388953217257
524 => 0.00047786893658832
525 => 0.0004974436677525
526 => 0.00050366588615689
527 => 0.00049924950291477
528 => 0.00049320408514231
529 => 0.00049347005284328
530 => 0.00051412907544421
531 => 0.00051541755334295
601 => 0.00051867312131436
602 => 0.00052285744618102
603 => 0.0004999621115331
604 => 0.00049239168464031
605 => 0.00048880439638721
606 => 0.00047775693702295
607 => 0.00048967067480972
608 => 0.00048272904999848
609 => 0.00048366571234519
610 => 0.00048305570976312
611 => 0.00048338881242113
612 => 0.00046570364504087
613 => 0.0004721471905292
614 => 0.00046143354640865
615 => 0.00044708917959422
616 => 0.00044704109224688
617 => 0.00045055185570306
618 => 0.00044846351622313
619 => 0.00044284384837878
620 => 0.00044364209567198
621 => 0.00043664860942822
622 => 0.00044449123152313
623 => 0.00044471612986256
624 => 0.00044169629316551
625 => 0.00045377893457602
626 => 0.00045872920262041
627 => 0.00045674148141523
628 => 0.00045858973880179
629 => 0.0004741183747562
630 => 0.00047665021997866
701 => 0.00047777469838217
702 => 0.00047626804628631
703 => 0.00045887357376072
704 => 0.00045964509258424
705 => 0.00045398419936804
706 => 0.00044920134113059
707 => 0.0004493926303773
708 => 0.0004518516412394
709 => 0.00046259028589327
710 => 0.00048518913048967
711 => 0.00048604674012256
712 => 0.00048708618801586
713 => 0.00048285823104914
714 => 0.00048158303877188
715 => 0.00048326534654064
716 => 0.00049175228438025
717 => 0.00051358299268486
718 => 0.00050586656234603
719 => 0.00049959298436716
720 => 0.00050509660359911
721 => 0.00050424936455714
722 => 0.00049709781441173
723 => 0.00049689709421812
724 => 0.00048317098300018
725 => 0.00047809675221134
726 => 0.00047385634516459
727 => 0.00046922593136817
728 => 0.00046648086685678
729 => 0.00047069853355579
730 => 0.00047166316383182
731 => 0.00046244116188224
801 => 0.00046118423709298
802 => 0.00046871512295574
803 => 0.00046540106086726
804 => 0.00046880965591005
805 => 0.00046960047919836
806 => 0.00046947313843474
807 => 0.00046601287699676
808 => 0.00046821834445085
809 => 0.00046300175644044
810 => 0.00045732950048531
811 => 0.00045371095457997
812 => 0.00045055329334709
813 => 0.00045230534732344
814 => 0.00044605959481018
815 => 0.00044406145287903
816 => 0.00046747118170199
817 => 0.00048476420008051
818 => 0.0004845127527445
819 => 0.00048298213175354
820 => 0.0004807079394361
821 => 0.00049158591304716
822 => 0.00048779624455302
823 => 0.0004905535450199
824 => 0.00049125539371226
825 => 0.00049337967832073
826 => 0.00049413892747983
827 => 0.00049184394918859
828 => 0.00048414172173522
829 => 0.00046494850322722
830 => 0.00045601400820065
831 => 0.00045306547602609
901 => 0.00045317264957058
902 => 0.00045021632476991
903 => 0.00045108709491689
904 => 0.00044991350644867
905 => 0.00044769101381142
906 => 0.00045216811466591
907 => 0.00045268405883231
908 => 0.0004516390499955
909 => 0.00045188518740644
910 => 0.00044323296056678
911 => 0.00044389077058175
912 => 0.00044022800082794
913 => 0.00043954127565445
914 => 0.00043028211267066
915 => 0.00041387816330775
916 => 0.0004229675436247
917 => 0.00041198885036211
918 => 0.00040783105286922
919 => 0.00042751341953039
920 => 0.00042553785582148
921 => 0.00042215654950873
922 => 0.00041715489274619
923 => 0.00041529972959998
924 => 0.00040402834559685
925 => 0.00040336237209945
926 => 0.00040894877436437
927 => 0.00040637084193547
928 => 0.00040275044846595
929 => 0.00038963775031272
930 => 0.00037489473612334
1001 => 0.00037533973505044
1002 => 0.00038002921356055
1003 => 0.00039366450479104
1004 => 0.00038833696061435
1005 => 0.00038447176618764
1006 => 0.00038374793145884
1007 => 0.00039280823854048
1008 => 0.00040563047125402
1009 => 0.00041164637596193
1010 => 0.00040568479710214
1011 => 0.00039883645630221
1012 => 0.00039925328307454
1013 => 0.00040202624484921
1014 => 0.00040231764392416
1015 => 0.00039786007808421
1016 => 0.00039911485675782
1017 => 0.00039720873321325
1018 => 0.00038551085653865
1019 => 0.00038529927904397
1020 => 0.00038242843145428
1021 => 0.00038234150333022
1022 => 0.00037745747541366
1023 => 0.00037677416614644
1024 => 0.00036707663227882
1025 => 0.00037345957843733
1026 => 0.00036917823327392
1027 => 0.00036272523624543
1028 => 0.00036161273712543
1029 => 0.0003615792940585
1030 => 0.00036820507914303
1031 => 0.00037338215228089
1101 => 0.00036925270910604
1102 => 0.00036831251494101
1103 => 0.00037835132887494
1104 => 0.00037707379829602
1105 => 0.00037596746505388
1106 => 0.00040448238095001
1107 => 0.00038191059997158
1108 => 0.00037206801511278
1109 => 0.00035988594729383
1110 => 0.000363852490003
1111 => 0.00036468829883245
1112 => 0.00033539262171066
1113 => 0.00032350736915089
1114 => 0.00031942879835867
1115 => 0.00031708152320523
1116 => 0.00031815120596788
1117 => 0.00030745308466301
1118 => 0.00031464239911048
1119 => 0.00030537873035014
1120 => 0.00030382564613588
1121 => 0.00032039023342771
1122 => 0.00032269509898046
1123 => 0.00031286182646686
1124 => 0.0003191763792828
1125 => 0.00031688663465289
1126 => 0.00030553752936269
1127 => 0.00030510407701898
1128 => 0.00029940949492469
1129 => 0.00029049857663552
1130 => 0.00028642604786551
1201 => 0.00028430503952277
1202 => 0.00028518020890262
1203 => 0.00028473769648354
1204 => 0.00028185000362216
1205 => 0.00028490321565815
1206 => 0.00027710352058051
1207 => 0.00027399761915419
1208 => 0.00027259475553628
1209 => 0.00026567207722119
1210 => 0.00027668913694952
1211 => 0.00027885963650527
1212 => 0.00028103441261564
1213 => 0.0002999643538737
1214 => 0.0002990186675039
1215 => 0.0003075672117189
1216 => 0.00030723503101047
1217 => 0.00030479684772312
1218 => 0.00029451055349546
1219 => 0.00029861048703904
1220 => 0.00028599152886305
1221 => 0.00029544651033425
1222 => 0.00029113165164026
1223 => 0.00029398765226946
1224 => 0.00028885230562297
1225 => 0.0002916944184904
1226 => 0.00027937434247016
1227 => 0.00026787002883061
1228 => 0.00027249970047101
1229 => 0.00027753268301131
1230 => 0.00028844547153877
1231 => 0.00028194590472036
]
'min_raw' => 0.00026567207722119
'max_raw' => 0.00079303762069689
'avg_raw' => 0.00052935484895904
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.000265'
'max' => '$0.000793'
'avg' => '$0.000529'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.00050327792277881
'max_diff' => 2.408762069689E-5
'year' => 2026
]
1 => [
'items' => [
101 => 0.0002842833947241
102 => 0.0002764531945027
103 => 0.00026029725485984
104 => 0.00026038869572369
105 => 0.00025790345638592
106 => 0.00025575584674719
107 => 0.00028269245815538
108 => 0.00027934246472196
109 => 0.00027400468862211
110 => 0.00028114951404655
111 => 0.0002830387192924
112 => 0.00028309250230984
113 => 0.00028830518250488
114 => 0.00029108719085939
115 => 0.00029157753188979
116 => 0.00029977979680409
117 => 0.00030252908781288
118 => 0.00031385302838383
119 => 0.00029085115688733
120 => 0.00029037744848066
121 => 0.00028125005639248
122 => 0.0002754613200318
123 => 0.00028164641612358
124 => 0.00028712556691108
125 => 0.00028142030888052
126 => 0.00028216529513474
127 => 0.00027450645236543
128 => 0.00027724412827341
129 => 0.00027960218357014
130 => 0.00027830020403537
131 => 0.0002763510776553
201 => 0.00028667633902992
202 => 0.00028609374731813
203 => 0.00029570886808691
204 => 0.00030320454231005
205 => 0.00031663813052996
206 => 0.00030261948091369
207 => 0.00030210858560259
208 => 0.0003071026692188
209 => 0.0003025283232447
210 => 0.00030541915199927
211 => 0.00031617237332556
212 => 0.00031639957194748
213 => 0.00031259370230142
214 => 0.00031236211478758
215 => 0.00031309307368476
216 => 0.00031737432277661
217 => 0.00031587832279442
218 => 0.00031760953184789
219 => 0.00031977443527848
220 => 0.0003287293937674
221 => 0.00033088840394221
222 => 0.00032564312853585
223 => 0.00032611671817619
224 => 0.00032415484118818
225 => 0.00032225969260001
226 => 0.00032651970986199
227 => 0.0003343049751391
228 => 0.00033425654340787
301 => 0.00033606257362822
302 => 0.00033718771549354
303 => 0.0003323577829534
304 => 0.00032921367447131
305 => 0.00033041932572817
306 => 0.00033234718834355
307 => 0.00032979414586508
308 => 0.0003140355850037
309 => 0.00031881572570828
310 => 0.0003180200765581
311 => 0.000316886975414
312 => 0.00032169344385619
313 => 0.00032122984824948
314 => 0.00030734335996621
315 => 0.00030823232789151
316 => 0.0003073974210501
317 => 0.00031009517586055
318 => 0.00030238263563166
319 => 0.00030475496106131
320 => 0.00030624286133162
321 => 0.00030711924602142
322 => 0.00031028534846359
323 => 0.00030991384288502
324 => 0.00031026225515521
325 => 0.00031495674925689
326 => 0.00033869988946737
327 => 0.00033999217620274
328 => 0.00033362848368611
329 => 0.00033617065332822
330 => 0.00033129024352675
331 => 0.00033456649532238
401 => 0.00033680802359317
402 => 0.00032667898835855
403 => 0.00032607921262885
404 => 0.00032117865964008
405 => 0.00032381193923474
406 => 0.00031962220206013
407 => 0.000320650217012
408 => 0.00031777579758586
409 => 0.00032294918026171
410 => 0.00032873382595571
411 => 0.00033019525590059
412 => 0.00032635086290075
413 => 0.00032356726901102
414 => 0.00031868019511349
415 => 0.00032680750792063
416 => 0.00032918418186081
417 => 0.00032679502426421
418 => 0.00032624140424495
419 => 0.00032519229530882
420 => 0.0003264639776652
421 => 0.00032917123798412
422 => 0.00032789454401297
423 => 0.00032873782287336
424 => 0.00032552411344291
425 => 0.00033235938186205
426 => 0.00034321543310856
427 => 0.00034325033708846
428 => 0.00034197363623546
429 => 0.00034145123775331
430 => 0.00034276121030518
501 => 0.00034347181667668
502 => 0.00034770802770155
503 => 0.00035225365090933
504 => 0.00037346609100924
505 => 0.00036750972271214
506 => 0.00038633066150249
507 => 0.00040121558049262
508 => 0.00040567891685914
509 => 0.00040157285741815
510 => 0.00038752624987548
511 => 0.00038683705629656
512 => 0.00040782861829004
513 => 0.00040189754055243
514 => 0.00040119205772807
515 => 0.00039368691240898
516 => 0.00039812338282289
517 => 0.00039715306166428
518 => 0.00039562136224566
519 => 0.00040408583874821
520 => 0.00041993058313195
521 => 0.00041746103112867
522 => 0.00041561762511745
523 => 0.00040754035658368
524 => 0.00041240467636425
525 => 0.00041067258526029
526 => 0.00041811474785505
527 => 0.000413706175598
528 => 0.00040185260680519
529 => 0.00040374032670532
530 => 0.00040345500163998
531 => 0.00040932697126631
601 => 0.00040756435173573
602 => 0.0004031108218876
603 => 0.00041987642751819
604 => 0.00041878776234374
605 => 0.0004203312406576
606 => 0.00042101072754502
607 => 0.00043121565624925
608 => 0.00043539628901808
609 => 0.00043634536584888
610 => 0.00044031664363752
611 => 0.00043624655683975
612 => 0.00045252980595356
613 => 0.00046335721646031
614 => 0.00047593381093736
615 => 0.00049431159573824
616 => 0.00050122181282738
617 => 0.00049997354396118
618 => 0.00051390737065445
619 => 0.00053894614749069
620 => 0.00050503459664581
621 => 0.00054074354202914
622 => 0.00052943850220038
623 => 0.00050263445613537
624 => 0.00050090859156773
625 => 0.00051906060276433
626 => 0.00055932001653205
627 => 0.00054923549000173
628 => 0.00055933651120477
629 => 0.00054755313342409
630 => 0.00054696798939917
701 => 0.00055876421884696
702 => 0.0005863267519307
703 => 0.00057323282562872
704 => 0.00055445947151238
705 => 0.00056832142404614
706 => 0.00055631291789825
707 => 0.00052925439257781
708 => 0.00054922777855435
709 => 0.00053587214416112
710 => 0.00053977002830164
711 => 0.00056784158529552
712 => 0.00056446394128989
713 => 0.00056883492539459
714 => 0.00056112025285836
715 => 0.00055391353221733
716 => 0.00054046165296275
717 => 0.0005364792146851
718 => 0.00053757981735192
719 => 0.00053647866928107
720 => 0.00052895246646729
721 => 0.00052732718368622
722 => 0.00052461830784585
723 => 0.00052545790173954
724 => 0.00052036442265006
725 => 0.00052997687005839
726 => 0.00053176102500198
727 => 0.00053875616261417
728 => 0.00053948242100655
729 => 0.00055896377968697
730 => 0.00054823377469673
731 => 0.00055543238842824
801 => 0.00055478847666011
802 => 0.00050321538109057
803 => 0.00051032169862678
804 => 0.00052137689862783
805 => 0.00051639654601233
806 => 0.00050935549263704
807 => 0.0005036694645191
808 => 0.00049505455049419
809 => 0.00050717987654948
810 => 0.00052312339092751
811 => 0.00053988677484198
812 => 0.0005600268822348
813 => 0.00055553184472141
814 => 0.00053951026954344
815 => 0.00054022898570216
816 => 0.00054467180619095
817 => 0.00053891794998515
818 => 0.00053722102546145
819 => 0.00054443867481944
820 => 0.00054448837880382
821 => 0.0005378678718623
822 => 0.00053051038993678
823 => 0.00053047956181887
824 => 0.00052917036897506
825 => 0.00054778603592261
826 => 0.00055802277048755
827 => 0.0005591963956081
828 => 0.00055794377616598
829 => 0.00055842585967457
830 => 0.00055246932938228
831 => 0.00056608419127625
901 => 0.00057857853492045
902 => 0.00057522978392109
903 => 0.00057020953012004
904 => 0.00056621065615931
905 => 0.00057428777630198
906 => 0.0005739281148566
907 => 0.00057846940772854
908 => 0.00057826338845209
909 => 0.00057673632246592
910 => 0.00057522983845742
911 => 0.00058120287726589
912 => 0.00057948273801312
913 => 0.00057775992690898
914 => 0.00057430456549043
915 => 0.00057477420649468
916 => 0.00056975481951123
917 => 0.00056743262142117
918 => 0.00053251233387888
919 => 0.00052318049199427
920 => 0.00052611647941833
921 => 0.00052708308271121
922 => 0.00052302185316394
923 => 0.00052884461309045
924 => 0.00052793714212373
925 => 0.00053146758080246
926 => 0.00052926191598982
927 => 0.0005293524372431
928 => 0.00053583882715977
929 => 0.00053772185374765
930 => 0.00053676413122716
1001 => 0.00053743488725171
1002 => 0.00055289217672885
1003 => 0.00055069464446149
1004 => 0.0005495272492429
1005 => 0.00054985062569657
1006 => 0.000553800294566
1007 => 0.00055490598620552
1008 => 0.00055022109303332
1009 => 0.00055243051573637
1010 => 0.00056183795718849
1011 => 0.00056513002928166
1012 => 0.00057563674311881
1013 => 0.00057117330433884
1014 => 0.00057936613939257
1015 => 0.00060454812120446
1016 => 0.00062466523073639
1017 => 0.00060616470543611
1018 => 0.00064310721519306
1019 => 0.00067187225812712
1020 => 0.00067076820786863
1021 => 0.00066575235728564
1022 => 0.00063300412066344
1023 => 0.00060286870507499
1024 => 0.00062807825983207
1025 => 0.00062814252417153
1026 => 0.00062597700106065
1027 => 0.00061252712300327
1028 => 0.00062550897445856
1029 => 0.00062653942668392
1030 => 0.00062596264745708
1031 => 0.00061565065748539
1101 => 0.00059990615477293
1102 => 0.00060298259291593
1103 => 0.0006080218613518
1104 => 0.00059848147490117
1105 => 0.0005954327433578
1106 => 0.00060110091534184
1107 => 0.00061936494648496
1108 => 0.00061591223719369
1109 => 0.0006158220730006
1110 => 0.00063059422752529
1111 => 0.00062002055291608
1112 => 0.00060302139665303
1113 => 0.00059872888550529
1114 => 0.00058349336271278
1115 => 0.00059401659257264
1116 => 0.00059439530488115
1117 => 0.00058863183943171
1118 => 0.00060348907010998
1119 => 0.00060335215811372
1120 => 0.00061745688743579
1121 => 0.00064441983240517
1122 => 0.00063644556281178
1123 => 0.00062717235487274
1124 => 0.00062818060969388
1125 => 0.00063923867649684
1126 => 0.00063255271687666
1127 => 0.00063495703457224
1128 => 0.00063923503727405
1129 => 0.00064181606252088
1130 => 0.00062780923988058
1201 => 0.00062454357949936
1202 => 0.00061786318445041
1203 => 0.00061612039407762
1204 => 0.00062156143645397
1205 => 0.00062012791402266
1206 => 0.00059436347557806
1207 => 0.00059167094840862
1208 => 0.00059175352437286
1209 => 0.00058498303678261
1210 => 0.00057465641810427
1211 => 0.00060179415542059
1212 => 0.0005996146153217
1213 => 0.00059720857173553
1214 => 0.00059750329834614
1215 => 0.0006092828703319
1216 => 0.00060245012369752
1217 => 0.00062061610049018
1218 => 0.00061688172178086
1219 => 0.00061305157034874
1220 => 0.00061252212675155
1221 => 0.00061104784522335
1222 => 0.00060599198530715
1223 => 0.00059988673064827
1224 => 0.00059585551269437
1225 => 0.00054964521365733
1226 => 0.00055822157636566
1227 => 0.00056808789990154
1228 => 0.00057149371524931
1229 => 0.0005656678324217
1230 => 0.00060622202667036
1231 => 0.00061363166874953
]
'min_raw' => 0.00025575584674719
'max_raw' => 0.00067187225812712
'avg_raw' => 0.00046381405243716
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.000255'
'max' => '$0.000671'
'avg' => '$0.000463'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -9.916230473992E-6
'max_diff' => -0.00012116536256977
'year' => 2027
]
2 => [
'items' => [
101 => 0.00059118737957273
102 => 0.00058698896946204
103 => 0.00060649727373826
104 => 0.00059473138146649
105 => 0.00060002956203604
106 => 0.00058857779359451
107 => 0.00061184690295231
108 => 0.00061166963132542
109 => 0.00060261742222857
110 => 0.00061026828737038
111 => 0.00060893876127344
112 => 0.00059871883949771
113 => 0.00061217089270155
114 => 0.0006121775647521
115 => 0.00060346501030838
116 => 0.00059329065414153
117 => 0.00059147171956646
118 => 0.00059010139670362
119 => 0.0005996925466141
120 => 0.00060829194163308
121 => 0.00062429328379259
122 => 0.000628316401394
123 => 0.00064401889722642
124 => 0.00063466882549886
125 => 0.00063881359119199
126 => 0.00064331332066478
127 => 0.00064547065644611
128 => 0.00064195539355946
129 => 0.00066634783299234
130 => 0.00066840730224551
131 => 0.00066909782447176
201 => 0.0006608728311375
202 => 0.00066817855030198
203 => 0.00066476044624491
204 => 0.00067365340342475
205 => 0.00067504793266153
206 => 0.0006738668160098
207 => 0.0006743094616007
208 => 0.00065349481766591
209 => 0.0006524154685719
210 => 0.00063769846708792
211 => 0.00064369575397522
212 => 0.00063248411359685
213 => 0.00063603944025352
214 => 0.00063760659436739
215 => 0.00063678800199352
216 => 0.00064403483157758
217 => 0.00063787354600165
218 => 0.00062161290035767
219 => 0.00060534782451165
220 => 0.00060514362973365
221 => 0.00060086132236583
222 => 0.00059776599848261
223 => 0.00059836226767503
224 => 0.00060046359808174
225 => 0.00059764386533936
226 => 0.00059824559828403
227 => 0.00060823837449111
228 => 0.00061024235449422
229 => 0.00060343204743811
301 => 0.00057608768188525
302 => 0.00056937730599043
303 => 0.00057420059111109
304 => 0.00057189537148276
305 => 0.00046156419939027
306 => 0.00048748487170799
307 => 0.00047208368839966
308 => 0.00047918126224251
309 => 0.00046346064220179
310 => 0.00047096334607351
311 => 0.00046957787062328
312 => 0.00051125754466172
313 => 0.00051060677388013
314 => 0.00051091826341526
315 => 0.00049605005632206
316 => 0.00051973551393733
317 => 0.00053140382206013
318 => 0.00052924432876856
319 => 0.00052978782670559
320 => 0.0005204487314526
321 => 0.00051100868627156
322 => 0.00050053822335324
323 => 0.00051999104926714
324 => 0.00051782822709633
325 => 0.00052278896299732
326 => 0.0005354055111192
327 => 0.00053726334575576
328 => 0.00053976029434758
329 => 0.00053886531602232
330 => 0.00056018733068274
331 => 0.00055760509402018
401 => 0.00056382754141676
402 => 0.00055102749502378
403 => 0.00053654302753856
404 => 0.00053929605127458
405 => 0.00053903091295038
406 => 0.00053565539777175
407 => 0.00053260813359795
408 => 0.00052753529730994
409 => 0.00054358650196371
410 => 0.00054293485236771
411 => 0.00055348430186718
412 => 0.00055161958419626
413 => 0.00053916654321607
414 => 0.0005396113060109
415 => 0.00054260254955185
416 => 0.00055295527760049
417 => 0.00055602867215281
418 => 0.00055460495334258
419 => 0.0005579747901634
420 => 0.00056063817178726
421 => 0.00055830926988921
422 => 0.00059128160954612
423 => 0.00057758919529707
424 => 0.00058426278273085
425 => 0.00058585439401075
426 => 0.00058177751518528
427 => 0.00058266164422044
428 => 0.00058400085879796
429 => 0.0005921323074676
430 => 0.00061347158163037
501 => 0.00062292260089571
502 => 0.00065135645866055
503 => 0.00062213782531026
504 => 0.00062040411252598
505 => 0.00062552590892967
506 => 0.00064221959346715
507 => 0.00065574825682672
508 => 0.0006602364949504
509 => 0.00066082968971118
510 => 0.00066924992280364
511 => 0.00067407624338419
512 => 0.0006682274850321
513 => 0.00066327127471923
514 => 0.00064551874456601
515 => 0.00064757364826978
516 => 0.0006617298970388
517 => 0.00068172643222394
518 => 0.00069888553969768
519 => 0.00069287701831565
520 => 0.00073871779510551
521 => 0.00074326272088144
522 => 0.00074263475909425
523 => 0.00075298877638747
524 => 0.00073243816061939
525 => 0.0007236523742291
526 => 0.00066434286364425
527 => 0.0006810064169151
528 => 0.00070522787021044
529 => 0.00070202207004101
530 => 0.00068443180321663
531 => 0.00069887219590294
601 => 0.00069409775048801
602 => 0.00069033194729734
603 => 0.00070758382175067
604 => 0.00068861467712129
605 => 0.00070503863848212
606 => 0.00068397473815273
607 => 0.0006929044647352
608 => 0.00068783552004472
609 => 0.00069111574848596
610 => 0.00067193960004455
611 => 0.00068228658426884
612 => 0.00067150913148309
613 => 0.00067150402156721
614 => 0.00067126610869962
615 => 0.00068394573410751
616 => 0.00068435921623685
617 => 0.00067498895390257
618 => 0.00067363855270919
619 => 0.00067863169369503
620 => 0.00067278603330631
621 => 0.00067552118101004
622 => 0.00067286887814391
623 => 0.0006722717889027
624 => 0.00066751408024238
625 => 0.00066546432853559
626 => 0.00066626808899541
627 => 0.0006635244401791
628 => 0.00066187129252516
629 => 0.00067093725602213
630 => 0.00066609367744562
701 => 0.00067019490813858
702 => 0.00066552103814738
703 => 0.00064931936844964
704 => 0.00064000161687692
705 => 0.00060939816471347
706 => 0.00061807726578356
707 => 0.00062383151877221
708 => 0.00062192973819378
709 => 0.00062601549876762
710 => 0.00062626633128368
711 => 0.00062493800887173
712 => 0.00062339998168733
713 => 0.0006226513551122
714 => 0.00062823100426496
715 => 0.0006314701784005
716 => 0.00062440903504159
717 => 0.00062275470794849
718 => 0.00062989391374076
719 => 0.00063424882514985
720 => 0.00066640304418127
721 => 0.00066402095577866
722 => 0.00066999953020796
723 => 0.00066932643447593
724 => 0.00067559293293943
725 => 0.00068583600950742
726 => 0.00066500897083545
727 => 0.00066862382460409
728 => 0.00066773754593919
729 => 0.00067741370400789
730 => 0.00067744391191719
731 => 0.00067164257179506
801 => 0.00067478757239126
802 => 0.00067303211933704
803 => 0.00067620446026973
804 => 0.00066398914153575
805 => 0.00067886608119156
806 => 0.00068730034732759
807 => 0.00068741745712107
808 => 0.00069141523233107
809 => 0.00069547720347996
810 => 0.00070327380337712
811 => 0.00069525976054044
812 => 0.0006808432776286
813 => 0.00068188410112988
814 => 0.00067343172247344
815 => 0.00067357380848571
816 => 0.00067281534221677
817 => 0.00067509155658452
818 => 0.00066448864258684
819 => 0.00066697712530929
820 => 0.00066349323492532
821 => 0.00066861625130679
822 => 0.00066310473254527
823 => 0.00066773711854878
824 => 0.00066973630278187
825 => 0.00067711333564131
826 => 0.00066201513879385
827 => 0.00063122889336382
828 => 0.00063770053540036
829 => 0.00062812846849181
830 => 0.00062901439972762
831 => 0.00063080412181888
901 => 0.00062500304696048
902 => 0.00062610970923059
903 => 0.00062607017146684
904 => 0.00062572945637886
905 => 0.00062422037276005
906 => 0.00062203190294968
907 => 0.00063075009309871
908 => 0.00063223148349011
909 => 0.00063552443082476
910 => 0.00064532200846515
911 => 0.00064434299941609
912 => 0.00064593980379381
913 => 0.00064245398880291
914 => 0.00062917609668749
915 => 0.00062989715011122
916 => 0.00062090560236317
917 => 0.00063529449673308
918 => 0.00063188701662216
919 => 0.00062969019202768
920 => 0.00062909076808364
921 => 0.00063891263202394
922 => 0.00064185148765373
923 => 0.00064002019004451
924 => 0.00063626414522051
925 => 0.00064347686165756
926 => 0.00064540668029604
927 => 0.00064583869552022
928 => 0.00065861824614547
929 => 0.00064655293043708
930 => 0.00064945717184701
1001 => 0.00067211523427506
1002 => 0.00065156749825171
1003 => 0.00066245209229247
1004 => 0.00066191934805487
1005 => 0.00066748753805154
1006 => 0.00066146259395185
1007 => 0.0006615372803548
1008 => 0.00066648145584998
1009 => 0.00065953825305375
1010 => 0.00065781901839892
1011 => 0.00065544390803666
1012 => 0.00066062987462097
1013 => 0.00066373862704717
1014 => 0.00068879288847527
1015 => 0.00070497908397096
1016 => 0.00070427639853644
1017 => 0.00071069762803595
1018 => 0.00070780480533469
1019 => 0.00069846311774429
1020 => 0.00071440823936368
1021 => 0.00070936253571108
1022 => 0.00070977849738967
1023 => 0.00070976301527521
1024 => 0.00071311796710112
1025 => 0.00071074067625565
1026 => 0.00070605479197531
1027 => 0.00070916550064166
1028 => 0.00071840319328202
1029 => 0.0007470772746847
1030 => 0.0007631236705187
1031 => 0.00074611126150705
1101 => 0.00075784619343805
1102 => 0.00075080941586323
1103 => 0.00074953062405189
1104 => 0.00075690102850921
1105 => 0.00076428433388386
1106 => 0.0007638140492504
1107 => 0.00075845414868533
1108 => 0.00075542647685857
1109 => 0.00077835302227531
1110 => 0.00079524491039485
1111 => 0.00079409299686976
1112 => 0.00079917716854719
1113 => 0.00081410445383966
1114 => 0.00081546921773197
1115 => 0.00081529728885028
1116 => 0.00081191457914479
1117 => 0.00082661243006816
1118 => 0.00083887363589252
1119 => 0.00081113157958385
1120 => 0.00082169539145601
1121 => 0.00082643782695018
1122 => 0.00083340112927284
1123 => 0.00084514938747613
1124 => 0.00085791111195649
1125 => 0.0008597157597232
1126 => 0.00085843527577237
1127 => 0.00085001857542401
1128 => 0.00086398260662946
1129 => 0.00087216240861278
1130 => 0.00087703329350241
1201 => 0.00088938504714455
1202 => 0.00082646711461728
1203 => 0.00078193067475033
1204 => 0.00077497566655112
1205 => 0.0007891189492164
1206 => 0.00079284842006467
1207 => 0.00079134507504209
1208 => 0.00074121526289588
1209 => 0.00077471174346477
1210 => 0.00081075114009282
1211 => 0.00081213556009236
1212 => 0.00083017763559261
1213 => 0.00083605287494515
1214 => 0.00085057911055174
1215 => 0.00084967049055948
1216 => 0.00085320739776679
1217 => 0.00085239432405053
1218 => 0.00087930111665195
1219 => 0.00090898330458869
1220 => 0.00090795550480402
1221 => 0.0009036883391044
1222 => 0.0009100258078282
1223 => 0.00094066100671549
1224 => 0.000937840608521
1225 => 0.000940580385126
1226 => 0.00097670101113825
1227 => 0.0010236629630533
1228 => 0.0010018444214859
1229 => 0.001049184378571
1230 => 0.0010789823721728
1231 => 0.001130514920937
]
'min_raw' => 0.00046156419939027
'max_raw' => 0.001130514920937
'avg_raw' => 0.00079603956016365
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.000461'
'max' => '$0.00113'
'avg' => '$0.000796'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.00020580835264307
'max_diff' => 0.00045864266280992
'year' => 2028
]
3 => [
'items' => [
101 => 0.0011240627920286
102 => 0.0011441240350992
103 => 0.0011125121346826
104 => 0.0010399248215068
105 => 0.0010284376013436
106 => 0.001051435307013
107 => 0.0011079729223178
108 => 0.0010496547363068
109 => 0.001061452429383
110 => 0.0010580546929834
111 => 0.0010578736420501
112 => 0.0010647836197863
113 => 0.0010547603366797
114 => 0.0010139236781495
115 => 0.001032638878102
116 => 0.0010254120406226
117 => 0.0010334307556024
118 => 0.0010767044531787
119 => 0.0010575721199641
120 => 0.0010374177611071
121 => 0.001062695799724
122 => 0.0010948834293599
123 => 0.001092869185344
124 => 0.0010889607100645
125 => 0.0011109925805739
126 => 0.0011473827759231
127 => 0.0011572188994983
128 => 0.0011644797248308
129 => 0.0011654808699716
130 => 0.0011757932871291
131 => 0.0011203408210093
201 => 0.0012083453088617
202 => 0.0012235412528389
203 => 0.0012206850451786
204 => 0.0012375746973661
205 => 0.0012326053332434
206 => 0.001225405504299
207 => 0.0012521791955483
208 => 0.0012214853190564
209 => 0.0011779192256277
210 => 0.0011540180051331
211 => 0.0011854930603369
212 => 0.0012047137782218
213 => 0.0012174174500764
214 => 0.0012212615735039
215 => 0.0011246454381013
216 => 0.0010725746996958
217 => 0.0011059514460215
218 => 0.0011466733800788
219 => 0.0011201146086095
220 => 0.0011211556621687
221 => 0.0010832898335759
222 => 0.0011500236656966
223 => 0.0011403011076765
224 => 0.0011907417558837
225 => 0.0011787036903775
226 => 0.0012198360808958
227 => 0.0012090045439758
228 => 0.0012539656481476
301 => 0.0012719018498751
302 => 0.0013020195241223
303 => 0.0013241742078996
304 => 0.0013371838619651
305 => 0.001336402811133
306 => 0.0013879535419248
307 => 0.0013575558770222
308 => 0.0013193692457251
309 => 0.0013186785700422
310 => 0.0013384559674997
311 => 0.0013799039669067
312 => 0.0013906508301091
313 => 0.0013966568605251
314 => 0.0013874584158715
315 => 0.0013544639292401
316 => 0.0013402170771985
317 => 0.0013523558079089
318 => 0.001337511183343
319 => 0.0013631371700098
320 => 0.0013983271231187
321 => 0.0013910605369579
322 => 0.001415351645026
323 => 0.0014404903863775
324 => 0.0014764399155615
325 => 0.0014858384536975
326 => 0.0015013738798418
327 => 0.0015173649364659
328 => 0.0015225008328825
329 => 0.0015323068527169
330 => 0.001532255170152
331 => 0.0015618062709441
401 => 0.0015944020502393
402 => 0.0016067062023292
403 => 0.001634998921605
404 => 0.0015865486313403
405 => 0.0016232987330629
406 => 0.0016564482447313
407 => 0.0016169260303262
408 => 0.0016713981953888
409 => 0.0016735132261215
410 => 0.0017054476791066
411 => 0.0016730759931053
412 => 0.0016538537892918
413 => 0.0017093475714548
414 => 0.0017361992646057
415 => 0.0017281113161024
416 => 0.0016665616286403
417 => 0.0016307370705472
418 => 0.0015369772919761
419 => 0.0016480397998145
420 => 0.0017021351076448
421 => 0.0016664215348615
422 => 0.001684433383639
423 => 0.0017827001902071
424 => 0.0018201138278437
425 => 0.0018123320527563
426 => 0.0018136470446472
427 => 0.0018338347644103
428 => 0.0019233582314204
429 => 0.0018697136948502
430 => 0.0019107229330357
501 => 0.0019324740850995
502 => 0.0019526777673412
503 => 0.0019030639091949
504 => 0.0018385170087189
505 => 0.0018180722958436
506 => 0.0016628705238858
507 => 0.0016547915976483
508 => 0.0016502566515346
509 => 0.0016216644577689
510 => 0.0015991988255301
511 => 0.0015813333206783
512 => 0.0015344489008559
513 => 0.0015502710162394
514 => 0.0014755470365814
515 => 0.0015233527907114
516 => 0.0014040915149036
517 => 0.0015034158492643
518 => 0.0014493581297951
519 => 0.0014856564345409
520 => 0.0014855297931752
521 => 0.0014186931057501
522 => 0.0013801430992894
523 => 0.0014047086637948
524 => 0.0014310448989616
525 => 0.0014353178645117
526 => 0.0014694634808515
527 => 0.0014789927884144
528 => 0.0014501185416181
529 => 0.001401620090046
530 => 0.0014128851742143
531 => 0.0013799148127183
601 => 0.0013221355223831
602 => 0.0013636336174314
603 => 0.0013778028916234
604 => 0.0013840608503123
605 => 0.001327241554264
606 => 0.0013093876978387
607 => 0.0012998824544862
608 => 0.0013942854324324
609 => 0.0013994570406669
610 => 0.0013729983617472
611 => 0.0014925940993793
612 => 0.0014655259006108
613 => 0.0014957677105049
614 => 0.0014118629859011
615 => 0.0014150682593736
616 => 0.0013753464181133
617 => 0.0013975879950047
618 => 0.0013818683653373
619 => 0.0013957910953874
620 => 0.0014041363223738
621 => 0.0014438516456709
622 => 0.0015038693344607
623 => 0.0014379195007596
624 => 0.0014091842137971
625 => 0.0014270114242153
626 => 0.0014744876348012
627 => 0.0015464165241015
628 => 0.0015038331739319
629 => 0.001522730941625
630 => 0.0015268592631627
701 => 0.001495459877269
702 => 0.001547574264247
703 => 0.001575502787605
704 => 0.0016041516735767
705 => 0.0016290266985424
706 => 0.0015927086785171
707 => 0.0016315741659278
708 => 0.0016002554437568
709 => 0.0015721593122995
710 => 0.0015722019225333
711 => 0.0015545768088512
712 => 0.0015204259301847
713 => 0.0015141279841902
714 => 0.0015468906945968
715 => 0.0015731632857028
716 => 0.0015753272221435
717 => 0.0015898730785142
718 => 0.0015984811664801
719 => 0.0016828521306746
720 => 0.0017167868304268
721 => 0.0017582815389329
722 => 0.0017744460664096
723 => 0.0018230954988107
724 => 0.0017838071310331
725 => 0.001775306845529
726 => 0.0016572992356319
727 => 0.0016766229751417
728 => 0.0017075621465603
729 => 0.001657809411173
730 => 0.0016893660702751
731 => 0.0016955960232433
801 => 0.0016561188322627
802 => 0.0016772053056742
803 => 0.0016212058839969
804 => 0.0015050899688245
805 => 0.0015477035344541
806 => 0.0015790814623285
807 => 0.0015343012903811
808 => 0.0016145680153648
809 => 0.0015676778516708
810 => 0.0015528159209046
811 => 0.0014948342303248
812 => 0.0015221993563586
813 => 0.0015592110811501
814 => 0.0015363421383037
815 => 0.0015837986284989
816 => 0.0016510096747988
817 => 0.0016989082688792
818 => 0.0017025853281734
819 => 0.0016717897411363
820 => 0.0017211398658981
821 => 0.0017214993276802
822 => 0.0016658321853478
823 => 0.0016317363706251
824 => 0.0016239897297819
825 => 0.0016433423574266
826 => 0.0016668400200795
827 => 0.0017038892849153
828 => 0.0017262773797127
829 => 0.0017846536572164
830 => 0.0018004486041299
831 => 0.0018178024620591
901 => 0.0018409925679842
902 => 0.0018688382359683
903 => 0.0018079134996738
904 => 0.0018103341530247
905 => 0.0017536018821477
906 => 0.0016929753144849
907 => 0.0017389833221326
908 => 0.0017991326719432
909 => 0.0017853343446375
910 => 0.0017837817509414
911 => 0.0017863927828847
912 => 0.0017759892947074
913 => 0.0017289347032531
914 => 0.001705304182002
915 => 0.0017357935832048
916 => 0.001751997343017
917 => 0.0017771279613693
918 => 0.0017740300822143
919 => 0.0018387638562584
920 => 0.0018639174434043
921 => 0.0018574820794297
922 => 0.0018586663412767
923 => 0.0019042057093123
924 => 0.0019548548524532
925 => 0.0020022944587478
926 => 0.0020505520638491
927 => 0.0019923756373731
928 => 0.0019628372358317
929 => 0.0019933133263157
930 => 0.0019771422837228
1001 => 0.0020700658911041
1002 => 0.0020764997200657
1003 => 0.0021694166080125
1004 => 0.0022576057990113
1005 => 0.0022022157482184
1006 => 0.0022544460712934
1007 => 0.0023109374240997
1008 => 0.0024199184090547
1009 => 0.0023832174473191
1010 => 0.0023551050858071
1011 => 0.0023285390400161
1012 => 0.0023838187640661
1013 => 0.0024549352459412
1014 => 0.0024702530549919
1015 => 0.0024950737575075
1016 => 0.0024689778237435
1017 => 0.0025004075015894
1018 => 0.0026113680752858
1019 => 0.0025813855487969
1020 => 0.0025388055412511
1021 => 0.0026263982574177
1022 => 0.0026580977208903
1023 => 0.0028805811566789
1024 => 0.0031614756846944
1025 => 0.0030451835056431
1026 => 0.0029729971973808
1027 => 0.0029899626921045
1028 => 0.003092535864856
1029 => 0.0031254791124339
1030 => 0.0030359280092986
1031 => 0.0030675589728442
1101 => 0.0032418486918686
1102 => 0.0033353495342415
1103 => 0.0032083628314606
1104 => 0.0028580115548538
1105 => 0.0025349716774496
1106 => 0.0026206563996125
1107 => 0.0026109424112257
1108 => 0.0027981949712321
1109 => 0.0025806704754561
1110 => 0.0025843330300923
1111 => 0.0027754577747357
1112 => 0.0027244689695725
1113 => 0.0026418736353608
1114 => 0.0025355747147948
1115 => 0.0023390713286685
1116 => 0.0021650227996741
1117 => 0.0025063720460145
1118 => 0.0024916524458089
1119 => 0.0024703362833888
1120 => 0.0025177730962051
1121 => 0.002748112794067
1122 => 0.0027428027184944
1123 => 0.0027090227269262
1124 => 0.0027346445528075
1125 => 0.0026373820054041
1126 => 0.002662448778497
1127 => 0.0025349205062826
1128 => 0.0025925686113746
1129 => 0.002641696422869
1130 => 0.0026515595583762
1201 => 0.0026737817062981
1202 => 0.0024838958853644
1203 => 0.0025691490442089
1204 => 0.0026192272878892
1205 => 0.0023929719610792
1206 => 0.0026147549475445
1207 => 0.0024805903956798
1208 => 0.002435052931693
1209 => 0.0024963631278466
1210 => 0.0024724704847794
1211 => 0.0024519289932933
1212 => 0.0024404664880965
1213 => 0.0024854859295922
1214 => 0.0024833857188366
1215 => 0.0024097251746524
1216 => 0.0023136379975521
1217 => 0.0023458880081411
1218 => 0.0023341712769486
1219 => 0.0022917083316189
1220 => 0.0023203232297756
1221 => 0.0021943176999621
1222 => 0.0019775317351156
1223 => 0.0021207471838269
1224 => 0.0021152335448399
1225 => 0.0021124533180391
1226 => 0.0022200757695614
1227 => 0.0022097303541199
1228 => 0.0021909533237911
1229 => 0.0022913634767318
1230 => 0.0022547124202013
1231 => 0.0023676623403533
]
'min_raw' => 0.0010139236781495
'max_raw' => 0.0033353495342415
'avg_raw' => 0.0021746366061955
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.001013'
'max' => '$0.003335'
'avg' => '$0.002174'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.00055235947875922
'max_diff' => 0.0022048346133044
'year' => 2029
]
4 => [
'items' => [
101 => 0.0024420584629083
102 => 0.0024231891997659
103 => 0.0024931591126165
104 => 0.0023466309832492
105 => 0.0023953017501368
106 => 0.0024053327277376
107 => 0.0022901244310308
108 => 0.00221142299203
109 => 0.0022061745033108
110 => 0.0020697170538099
111 => 0.0021426115218872
112 => 0.0022067556372172
113 => 0.0021760355837586
114 => 0.0021663105325691
115 => 0.00221599370999
116 => 0.0022198545183833
117 => 0.0021318276778671
118 => 0.0021501312454579
119 => 0.0022264601650265
120 => 0.0021482079525246
121 => 0.0019961766860598
122 => 0.0019584708299798
123 => 0.0019534401737219
124 => 0.0018511789015438
125 => 0.0019609905155806
126 => 0.0019130548032853
127 => 0.0020644831440683
128 => 0.0019779880879395
129 => 0.0019742594589453
130 => 0.0019686230893495
131 => 0.0018806025880259
201 => 0.0018998734838211
202 => 0.0019639328764846
203 => 0.0019867899894677
204 => 0.0019844058053207
205 => 0.0019636189505131
206 => 0.0019731350661981
207 => 0.0019424803419422
208 => 0.0019316555207845
209 => 0.0018974894076092
210 => 0.0018472746598712
211 => 0.0018542573285291
212 => 0.0017547687738566
213 => 0.0017005621290138
214 => 0.0016855584441534
215 => 0.0016654948897109
216 => 0.0016878246760147
217 => 0.0017544869352813
218 => 0.0016740781074186
219 => 0.0015362228120715
220 => 0.0015445081502158
221 => 0.0015631228450872
222 => 0.0015284344843429
223 => 0.0014956048620719
224 => 0.0015241475550851
225 => 0.0014657364491323
226 => 0.0015701815481793
227 => 0.001567356600954
228 => 0.0016062872750372
301 => 0.0016306314244792
302 => 0.0015745260415273
303 => 0.00156041568944
304 => 0.0015684535872687
305 => 0.0014356050407992
306 => 0.0015954307145522
307 => 0.0015968128936157
308 => 0.0015849778373286
309 => 0.0016700800745379
310 => 0.0018496723391032
311 => 0.0017821025050916
312 => 0.0017559374230533
313 => 0.0017061975829719
314 => 0.0017724729666209
315 => 0.0017673840512137
316 => 0.0017443700458285
317 => 0.0017304511035634
318 => 0.0017560971814649
319 => 0.0017272732706989
320 => 0.0017220957042972
321 => 0.0016907252851509
322 => 0.0016795274727788
323 => 0.0016712370582963
324 => 0.0016621101265503
325 => 0.0016822418636922
326 => 0.001636620698778
327 => 0.0015816060461893
328 => 0.0015770321730934
329 => 0.0015896610388503
330 => 0.0015840737058614
331 => 0.0015770054230926
401 => 0.0015635101463548
402 => 0.0015595063860277
403 => 0.0015725166647425
404 => 0.0015578288186198
405 => 0.0015795015356622
406 => 0.0015736077558328
407 => 0.0015406855808089
408 => 0.0014996523613788
409 => 0.0014992870796558
410 => 0.0014904465398375
411 => 0.0014791867831949
412 => 0.0014760545764852
413 => 0.0015217437690916
414 => 0.0016163190304242
415 => 0.0015977516436304
416 => 0.0016111684834512
417 => 0.0016771660562354
418 => 0.0016981447000072
419 => 0.0016832545555643
420 => 0.0016628720074669
421 => 0.00166376873614
422 => 0.0017334220732059
423 => 0.0017377662664002
424 => 0.0017487426411123
425 => 0.0017628503845405
426 => 0.0016856571652738
427 => 0.0016601329424544
428 => 0.0016480381496526
429 => 0.001610790869097
430 => 0.0016509588678357
501 => 0.0016275546951359
502 => 0.0016307127176335
503 => 0.001628656051339
504 => 0.001629779130207
505 => 0.0015701523536455
506 => 0.0015918772171334
507 => 0.0015557554179782
508 => 0.0015073923837716
509 => 0.0015072302539227
510 => 0.0015190670380289
511 => 0.0015120260556691
512 => 0.0014930789531792
513 => 0.0014957702996601
514 => 0.0014721912725196
515 => 0.001498633220467
516 => 0.0014993914809203
517 => 0.0014892098906579
518 => 0.0015299473597565
519 => 0.0015466375340849
520 => 0.0015399357932634
521 => 0.0015461673220833
522 => 0.0015985232023784
523 => 0.0016070594953137
524 => 0.0016108507527597
525 => 0.0016057709700274
526 => 0.0015471242914641
527 => 0.0015497255210433
528 => 0.001530639424334
529 => 0.0015145136838579
530 => 0.0015151586289086
531 => 0.0015234493557128
601 => 0.0015596554459116
602 => 0.0016358490282692
603 => 0.0016387405190229
604 => 0.0016422450901671
605 => 0.0016279902380673
606 => 0.0016236908382734
607 => 0.0016293628563708
608 => 0.0016579771598361
609 => 0.0017315809170565
610 => 0.0017055644334252
611 => 0.0016844126272622
612 => 0.0017029684637531
613 => 0.0017001119381708
614 => 0.0016759999875502
615 => 0.0016753232454037
616 => 0.0016290447031059
617 => 0.0016119365797298
618 => 0.001597639751316
619 => 0.0015820279879162
620 => 0.0015727728112617
621 => 0.0015869929690055
622 => 0.0015902452873295
623 => 0.0015591526638968
624 => 0.0015549148542142
625 => 0.0015803057616901
626 => 0.0015691321699784
627 => 0.0015806244861457
628 => 0.0015832908020757
629 => 0.0015828614638005
630 => 0.0015711949507746
701 => 0.0015786308382769
702 => 0.0015610427475893
703 => 0.0015419183406123
704 => 0.0015297181604536
705 => 0.0015190718851461
706 => 0.0015249790574519
707 => 0.0015039210667889
708 => 0.0014971841917622
709 => 0.0015761117269039
710 => 0.0016344163457271
711 => 0.0016335685734782
712 => 0.0016284079779427
713 => 0.0016207403797654
714 => 0.0016574162272709
715 => 0.0016446390953567
716 => 0.0016539355263894
717 => 0.0016563018582572
718 => 0.0016634640321275
719 => 0.0016660238936764
720 => 0.0016582862141373
721 => 0.0016323176165259
722 => 0.0015676063402984
723 => 0.0015374830665298
724 => 0.0015275418844434
725 => 0.0015279032275312
726 => 0.0015179357720617
727 => 0.0015208716344075
728 => 0.0015169147989496
729 => 0.0015094215098536
730 => 0.0015245163679657
731 => 0.0015262559097448
801 => 0.0015227325894913
802 => 0.0015235624589571
803 => 0.001494390872088
804 => 0.0014966087244803
805 => 0.0014842594405289
806 => 0.0014819440986609
807 => 0.0014507261842069
808 => 0.0013954191236427
809 => 0.0014260646039815
810 => 0.0013890491731388
811 => 0.0013750308686034
812 => 0.0014413913419805
813 => 0.0014347305910065
814 => 0.0014233302806978
815 => 0.0014064668457183
816 => 0.0014002120336475
817 => 0.0013622097755381
818 => 0.0013599643993948
819 => 0.0013787993446611
820 => 0.0013701076654916
821 => 0.0013579012561413
822 => 0.0013136908788184
823 => 0.0012639837771545
824 => 0.001265484122106
825 => 0.0012812950263118
826 => 0.001327267362681
827 => 0.0013093051755321
828 => 0.0012962734026631
829 => 0.0012938329433385
830 => 0.0013243804012347
831 => 0.0013676114540481
901 => 0.0013878944967878
902 => 0.0013677946174379
903 => 0.001344704958295
904 => 0.0013461103188599
905 => 0.0013554595530852
906 => 0.0013564420254112
907 => 0.0013414130309645
908 => 0.0013456436048684
909 => 0.0013392169762566
910 => 0.0012997767683285
911 => 0.0012990634200334
912 => 0.0012893841569486
913 => 0.0012890910727091
914 => 0.0012726242315965
915 => 0.001270320406695
916 => 0.0012376244942001
917 => 0.0012591450428166
918 => 0.0012447101886841
919 => 0.0012229534586687
920 => 0.0012192025902135
921 => 0.0012190898345784
922 => 0.0012414291315884
923 => 0.0012588839951244
924 => 0.0012449612891519
925 => 0.0012417913588822
926 => 0.0012756379209481
927 => 0.0012713306374069
928 => 0.0012676005576393
929 => 0.001363740587431
930 => 0.0012876382519508
1001 => 0.001254453289912
1002 => 0.0012133805977356
1003 => 0.0012267540734147
1004 => 0.0012295720612375
1005 => 0.0011307996404626
1006 => 0.0010907276816555
1007 => 0.0010769764954728
1008 => 0.0010690624934114
1009 => 0.0010726690035286
1010 => 0.0010365995406302
1011 => 0.0010608388162318
1012 => 0.0010296057102376
1013 => 0.0010243693783763
1014 => 0.0010802180409333
1015 => 0.001087989056065
1016 => 0.0010548354912482
1017 => 0.0010761254469351
1018 => 0.0010684054130505
1019 => 0.0010301411121954
1020 => 0.0010286796973559
1021 => 0.001009480016242
1022 => 0.0009794362330896
1023 => 0.00096570541800663
1024 => 0.00095855429029502
1025 => 0.00096150498496153
1026 => 0.0009600130234454
1027 => 0.00095027696535096
1028 => 0.00096057108289875
1029 => 0.00093427386638719
1030 => 0.00092380210288122
1031 => 0.00091907225024864
1101 => 0.00089573195698333
1102 => 0.00093287674304396
1103 => 0.0009401947338356
1104 => 0.00094752714332973
1105 => 0.0010113507619276
1106 => 0.0010081623143061
1107 => 0.0010369843279673
1108 => 0.0010358643575167
1109 => 0.0010276438523348
1110 => 0.00099296289318018
1111 => 0.0010067861053706
1112 => 0.00096424040685267
1113 => 0.00099611853700857
1114 => 0.00098157068966796
1115 => 0.00099119989518889
1116 => 0.0009738857154318
1117 => 0.00098346809739433
1118 => 0.00094193010093185
1119 => 0.00090314250429057
1120 => 0.00091875176545955
1121 => 0.00093572081748578
1122 => 0.00097251404591268
1123 => 0.00095060030259916
1124 => 0.00095848131334508
1125 => 0.00093208124661152
1126 => 0.00087761036813395
1127 => 0.00087791866739061
1128 => 0.00086953950944943
1129 => 0.00086229869361116
1130 => 0.00095311735962802
1201 => 0.00094182262287817
1202 => 0.00092382593808589
1203 => 0.00094791521584018
1204 => 0.00095428480322666
1205 => 0.00095446613642497
1206 => 0.00097204105164025
1207 => 0.00098142078704112
1208 => 0.00098307400605962
1209 => 0.001010728514882
1210 => 0.0010199979414675
1211 => 0.0010581773977148
1212 => 0.00098062498202492
1213 => 0.00097902784105857
1214 => 0.00094825420137913
1215 => 0.00092873707258243
1216 => 0.00094959055588547
1217 => 0.00096806389530762
1218 => 0.00094882821952921
1219 => 0.00095133999269859
1220 => 0.00092551766957853
1221 => 0.00093474793504072
1222 => 0.00094269828310779
1223 => 0.00093830856820501
1224 => 0.00093173695253095
1225 => 0.00096654929214219
1226 => 0.00096458504351066
1227 => 0.00099700309448888
1228 => 0.0010222752834635
1229 => 0.0010675675640501
1230 => 0.001020302708118
1231 => 0.001018580188907
]
'min_raw' => 0.00086229869361116
'max_raw' => 0.0024931591126165
'avg_raw' => 0.0016777289031138
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.000862'
'max' => '$0.002493'
'avg' => '$0.001677'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.00015162498453833
'max_diff' => -0.00084219042162499
'year' => 2030
]
5 => [
'items' => [
101 => 0.0010354180904948
102 => 0.0010199953636725
103 => 0.0010297419946498
104 => 0.0010659972311173
105 => 0.0010667632471336
106 => 0.0010539314919046
107 => 0.0010531506784328
108 => 0.0010556151573885
109 => 0.0010700496876089
110 => 0.0010650058192216
111 => 0.0010708427114146
112 => 0.0010781418344795
113 => 0.0011083341022401
114 => 0.0011156133557818
115 => 0.0010979285435358
116 => 0.0010995252840732
117 => 0.0010929106788342
118 => 0.0010865210530542
119 => 0.0011008839986778
120 => 0.0011271325641095
121 => 0.0011269692731462
122 => 0.0011330584301272
123 => 0.001136851924481
124 => 0.0011205674697068
125 => 0.0011099668884448
126 => 0.0011140318258332
127 => 0.00112053174924
128 => 0.0011119239882761
129 => 0.0010587929001044
130 => 0.0010749094782286
131 => 0.0010722268915683
201 => 0.0010684065619504
202 => 0.0010846119058802
203 => 0.0010830488609249
204 => 0.0010362295961542
205 => 0.0010392268135801
206 => 0.001036411866873
207 => 0.0010455075355676
208 => 0.0010195041677136
209 => 0.0010275026285301
210 => 0.0010325191881733
211 => 0.0010354739803422
212 => 0.0010461487157762
213 => 0.0010448961587804
214 => 0.0010460708550747
215 => 0.0010618986696976
216 => 0.0011419503246104
217 => 0.0011463073595632
218 => 0.0011248517259446
219 => 0.0011334228283816
220 => 0.0011169681859966
221 => 0.0011280142976662
222 => 0.0011355717667297
223 => 0.0011014210172495
224 => 0.0010993988315018
225 => 0.0010828762749545
226 => 0.0010917545609576
227 => 0.0010776285695553
228 => 0.0010810945937392
301 => 0.0010714032879584
302 => 0.0010888457088441
303 => 0.0011083490456725
304 => 0.0011132763587654
305 => 0.0011003147193595
306 => 0.001090929638216
307 => 0.0010744525273658
308 => 0.001101854329926
309 => 0.0011098674520494
310 => 0.0011018122404068
311 => 0.0010999456718593
312 => 0.0010964085278347
313 => 0.0011006960936853
314 => 0.0011098238108654
315 => 0.0011055193480057
316 => 0.0011083625215594
317 => 0.0010975272758406
318 => 0.0011205728605389
319 => 0.0011571747952618
320 => 0.001157292476467
321 => 0.0011529879904047
322 => 0.0011512266874494
323 => 0.0011556433513674
324 => 0.0011580392103619
325 => 0.001172321891595
326 => 0.0011876477776053
327 => 0.0012591670004075
328 => 0.0012390846888334
329 => 0.0013025407980011
330 => 0.0013527263416082
331 => 0.0013677747917881
401 => 0.0013539309257069
402 => 0.0013065718076739
403 => 0.0013042481434046
404 => 0.0013750226602497
405 => 0.0013550256175627
406 => 0.0013526470329652
407 => 0.0013273429115293
408 => 0.0013423007812743
409 => 0.0013390292757424
410 => 0.0013338650442127
411 => 0.0013624036177119
412 => 0.0014158252796464
413 => 0.0014074990126488
414 => 0.0014012838405794
415 => 0.0013740507657809
416 => 0.0013904511595371
417 => 0.0013846112934494
418 => 0.0014097030642328
419 => 0.0013948392550715
420 => 0.0013548741202968
421 => 0.0013612386997364
422 => 0.0013602767063579
423 => 0.0013800744619209
424 => 0.0013741316671114
425 => 0.0013591162802929
426 => 0.0014156426902136
427 => 0.0014119721795698
428 => 0.0014171761244672
429 => 0.0014194670619484
430 => 0.00145387369156
501 => 0.0014679689868226
502 => 0.0014711688656201
503 => 0.0014845583059503
504 => 0.0014708357241472
505 => 0.0015257358353945
506 => 0.0015622412058637
507 => 0.0016046440722129
508 => 0.001666606056765
509 => 0.001689904336137
510 => 0.0016856957105032
511 => 0.0017326745800283
512 => 0.0018170945642833
513 => 0.0017027594029809
514 => 0.0018231546054597
515 => 0.0017850388743844
516 => 0.0016946671616775
517 => 0.0016888482887916
518 => 0.0017500490618739
519 => 0.0018857864862143
520 => 0.0018517858009382
521 => 0.001885842099155
522 => 0.0018461136182783
523 => 0.0018441407643448
524 => 0.0018839125755145
525 => 0.0019768415801609
526 => 0.001932694493445
527 => 0.0018693988193281
528 => 0.0019161353601063
529 => 0.0018756478432215
530 => 0.0017844181359378
531 => 0.0018517598012549
601 => 0.0018067303474376
602 => 0.0018198723359589
603 => 0.0019145175502573
604 => 0.0019031295876727
605 => 0.0019178666657541
606 => 0.001891856108677
607 => 0.0018675581468786
608 => 0.0018222041967915
609 => 0.0018087771280935
610 => 0.0018124878868263
611 => 0.0018087752892257
612 => 0.0017834001709763
613 => 0.0017779204166064
614 => 0.0017687872525829
615 => 0.001771618002014
616 => 0.0017544449816485
617 => 0.0017868540192053
618 => 0.0017928694221633
619 => 0.0018164540170078
620 => 0.0018189026478834
621 => 0.0018845854088195
622 => 0.0018484084478498
623 => 0.0018726790766368
624 => 0.0018705080831541
625 => 0.0016966257907228
626 => 0.0017205852364434
627 => 0.0017578586150963
628 => 0.0017410670085361
629 => 0.0017173276054906
630 => 0.0016981567647052
701 => 0.0016691109805961
702 => 0.0017099923639548
703 => 0.0017637470358209
704 => 0.0018202659550707
705 => 0.0018881697332829
706 => 0.0018730144004731
707 => 0.0018189965411699
708 => 0.0018214197428781
709 => 0.0018363990223439
710 => 0.0018169994944247
711 => 0.0018112781949175
712 => 0.0018356130036482
713 => 0.0018357805841017
714 => 0.0018134590827194
715 => 0.0017886528187245
716 => 0.0017885488795726
717 => 0.0017841348444948
718 => 0.0018468988653128
719 => 0.0018814127306045
720 => 0.0018853696896383
721 => 0.0018811463957341
722 => 0.0018827717739413
723 => 0.0018626889161892
724 => 0.001908592373624
725 => 0.0019507179255476
726 => 0.0019394273777509
727 => 0.0019225012415578
728 => 0.0019090187588067
729 => 0.0019362513332943
730 => 0.0019350387096204
731 => 0.0019503499956011
801 => 0.0019496553872267
802 => 0.001944506777638
803 => 0.001939427561624
804 => 0.001959566078991
805 => 0.001953766509404
806 => 0.0019479579314836
807 => 0.0019363079392153
808 => 0.0019378913666504
809 => 0.0019209681529933
810 => 0.001913138700002
811 => 0.0017954025124965
812 => 0.0017639395560542
813 => 0.0017738384426385
814 => 0.0017770974131265
815 => 0.0017634046941619
816 => 0.0017830365357862
817 => 0.0017799769340643
818 => 0.0017918800545571
819 => 0.0017844435016466
820 => 0.001784748700372
821 => 0.0018066180168414
822 => 0.0018129667724512
823 => 0.0018097377441073
824 => 0.0018119992448747
825 => 0.0018641145755404
826 => 0.0018567054420742
827 => 0.0018527694875898
828 => 0.0018538597738807
829 => 0.0018671763582311
830 => 0.0018709042747907
831 => 0.0018551088303718
901 => 0.0018625580532721
902 => 0.0018942758989345
903 => 0.0019053753498418
904 => 0.001940799469099
905 => 0.001925750673625
906 => 0.0019533733890142
907 => 0.0020382761988428
908 => 0.0021061024381614
909 => 0.0020437266254461
910 => 0.0021682808763353
911 => 0.0022652642268987
912 => 0.0022615418443698
913 => 0.0022446305539338
914 => 0.0021342175877532
915 => 0.0020326139301092
916 => 0.0021176097040476
917 => 0.0021178263757549
918 => 0.0021105251633946
919 => 0.0020651779604836
920 => 0.002108947179029
921 => 0.0021124214206507
922 => 0.002110476769218
923 => 0.0020757091750683
924 => 0.0020226254849271
925 => 0.0020329979109163
926 => 0.0020499881562783
927 => 0.0020178220772715
928 => 0.0020075430660174
929 => 0.0020266537036007
930 => 0.0020882321597537
1001 => 0.0020765911093177
1002 => 0.0020762871144456
1003 => 0.0021260924647845
1004 => 0.0020904425826092
1005 => 0.0020331287404251
1006 => 0.002018656239397
1007 => 0.0019672886105918
1008 => 0.0020027684147727
1009 => 0.0020040452697617
1010 => 0.0019846133436066
1011 => 0.0020347055341372
1012 => 0.0020342439257829
1013 => 0.002081799005453
1014 => 0.00217270645691
1015 => 0.0021458206502301
1016 => 0.0021145553822289
1017 => 0.0021179547837525
1018 => 0.0021552378280283
1019 => 0.00213269564837
1020 => 0.0021408019733448
1021 => 0.0021552255581345
1022 => 0.0021639276649557
1023 => 0.0021167026844988
1024 => 0.0021056922825223
1025 => 0.0020831688642045
1026 => 0.0020772929247849
1027 => 0.0020956377790382
1028 => 0.0020908045580758
1029 => 0.0020039379550441
1030 => 0.0019948599117061
1031 => 0.0019951383223348
1101 => 0.0019723111507239
1102 => 0.0019374942348684
1103 => 0.0020289910109267
1104 => 0.0020216425393127
1105 => 0.0020135303953773
1106 => 0.0020145240867221
1107 => 0.0020542397360956
1108 => 0.0020312026537706
1109 => 0.0020924505128351
1110 => 0.0020798597942906
1111 => 0.0020669461713246
1112 => 0.0020651611152721
1113 => 0.0020601904721687
1114 => 0.0020431442874724
1115 => 0.0020225599951347
1116 => 0.0020089684623525
1117 => 0.001853167212849
1118 => 0.0018820830185027
1119 => 0.0019153480171486
1120 => 0.0019268309613801
1121 => 0.0019071885906766
1122 => 0.0020439198879894
1123 => 0.002068902013584
1124 => 0.0019932295256142
1125 => 0.0019790742928024
1126 => 0.002044847902696
1127 => 0.0020051783754333
1128 => 0.0020230415611307
1129 => 0.0019844311242932
1130 => 0.0020628845510903
1201 => 0.0020622868674236
1202 => 0.0020317667124485
1203 => 0.0020575621384404
1204 => 0.0020530795483801
1205 => 0.002018622368581
1206 => 0.0020639769051501
1207 => 0.0020639994004344
1208 => 0.0020346244148363
1209 => 0.0020003208626689
1210 => 0.0019941881977551
1211 => 0.0019895680585501
1212 => 0.002021905290106
1213 => 0.0020508987508031
1214 => 0.0021048483930719
1215 => 0.0021184126149502
1216 => 0.0021713546759624
1217 => 0.0021398302563318
1218 => 0.0021538046232445
1219 => 0.0021689757753231
1220 => 0.0021762493835302
1221 => 0.00216439742928
1222 => 0.0022466382418537
1223 => 0.0022535818862283
1224 => 0.0022559100301248
1225 => 0.0022281788908477
1226 => 0.0022528106330798
1227 => 0.0022412862566069
1228 => 0.0022712694826252
1229 => 0.0022759712353099
1230 => 0.0022719890180557
1231 => 0.0022734814285699
]
'min_raw' => 0.0010195041677136
'max_raw' => 0.0022759712353099
'avg_raw' => 0.0016477377015118
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.001019'
'max' => '$0.002275'
'avg' => '$0.001647'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0001572054741024
'max_diff' => -0.00021718787730652
'year' => 2031
]
6 => [
'items' => [
101 => 0.0022033034033118
102 => 0.0021996643024836
103 => 0.0021500449044721
104 => 0.0021702651759298
105 => 0.0021324643476224
106 => 0.0021444513796704
107 => 0.0021497351491805
108 => 0.0021469752078397
109 => 0.0021714083997398
110 => 0.0021506351952534
111 => 0.0020958112931827
112 => 0.0020409724543765
113 => 0.002040283997426
114 => 0.0020258458991543
115 => 0.0020154097985734
116 => 0.0020174201617858
117 => 0.0020245049439622
118 => 0.0020149980181539
119 => 0.0020170268027884
120 => 0.002050718145444
121 => 0.0020574747039379
122 => 0.0020345132782178
123 => 0.0019423198406337
124 => 0.0019196953398008
125 => 0.0019359573823361
126 => 0.0019281851734139
127 => 0.0015561959236276
128 => 0.0016435892800704
129 => 0.00159166311527
130 => 0.001615593081018
131 => 0.001562589912972
201 => 0.0015878858028976
202 => 0.0015832145756864
203 => 0.0017237405066889
204 => 0.0017215463875634
205 => 0.0017225965962786
206 => 0.0016724673979988
207 => 0.0017523245720145
208 => 0.0017916650875058
209 => 0.0017843842051023
210 => 0.0017862166463428
211 => 0.0017547292346625
212 => 0.0017229014632517
213 => 0.0016875995664982
214 => 0.0017531861272199
215 => 0.0017458940212676
216 => 0.0017626194887053
217 => 0.0018051570615575
218 => 0.0018114208807445
219 => 0.0018198395172532
220 => 0.0018168220353442
221 => 0.0018887106964273
222 => 0.0018800045052335
223 => 0.0019009839210685
224 => 0.0018578276709838
225 => 0.0018089922775842
226 => 0.0018182742893202
227 => 0.0018173803569488
228 => 0.001805999571853
229 => 0.0017957255079379
301 => 0.0017786220862188
302 => 0.0018327398433683
303 => 0.0018305427612586
304 => 0.0018661109667851
305 => 0.0018598239409672
306 => 0.0018178376438589
307 => 0.001819337192674
308 => 0.0018294223791143
309 => 0.0018643273245347
310 => 0.0018746894888454
311 => 0.0018698893214758
312 => 0.0018812509615917
313 => 0.0018902307386879
314 => 0.0018823786833399
315 => 0.0019935472285484
316 => 0.0019473822979339
317 => 0.0019698827639019
318 => 0.0019752489924548
319 => 0.0019615035108562
320 => 0.0019644844136261
321 => 0.0019689996690752
322 => 0.0019964154159845
323 => 0.0020683622686848
324 => 0.002100227039987
325 => 0.0021960937766298
326 => 0.0020975811143094
327 => 0.0020917357806132
328 => 0.0021090042747807
329 => 0.0021652881977146
330 => 0.0022109010307725
331 => 0.0022260334389653
401 => 0.0022280334365168
402 => 0.00225642284027
403 => 0.0022726951170702
404 => 0.0022529756199389
405 => 0.0022362654108375
406 => 0.0021764115159838
407 => 0.0021833397672899
408 => 0.0022310685483724
409 => 0.0022984882628626
410 => 0.0023563413917209
411 => 0.0023360832423798
412 => 0.0024906386218277
413 => 0.0025059621563978
414 => 0.0025038449393894
415 => 0.0025387542315879
416 => 0.0024694663957276
417 => 0.0024398445035088
418 => 0.0022398783477141
419 => 0.0022960606809789
420 => 0.002377725001852
421 => 0.002366916422759
422 => 0.0023076096100474
423 => 0.0023562964021853
424 => 0.0023401990261277
425 => 0.0023275023577504
426 => 0.0023856682569572
427 => 0.0023217124614559
428 => 0.0023770869938683
429 => 0.0023060685832732
430 => 0.0023361757798996
501 => 0.0023190854789732
502 => 0.0023301449981811
503 => 0.0022654912748749
504 => 0.0023003768545905
505 => 0.0022640399200656
506 => 0.0022640226916275
507 => 0.0022632205517838
508 => 0.0023059707941097
509 => 0.0023073648779772
510 => 0.0022757723843063
511 => 0.0022712194124009
512 => 0.0022880541358446
513 => 0.002268345083713
514 => 0.0022775668251581
515 => 0.0022686244008671
516 => 0.0022666112728029
517 => 0.002250570325882
518 => 0.0022436594448935
519 => 0.0022463693794005
520 => 0.0022371189758609
521 => 0.0022315452731265
522 => 0.0022621118020219
523 => 0.0022457813386834
524 => 0.0022596089243035
525 => 0.0022438506453089
526 => 0.0021892255847586
527 => 0.0021578101347865
528 => 0.0020546284591526
529 => 0.0020838906543659
530 => 0.0021032915200663
531 => 0.002096879534068
601 => 0.0021106549611014
602 => 0.0021115006604419
603 => 0.0021070221286895
604 => 0.0021018365626556
605 => 0.0020993125158902
606 => 0.0021181246925674
607 => 0.0021290457943172
608 => 0.0021052386564894
609 => 0.0020996609771936
610 => 0.0021237313079656
611 => 0.0021384141958316
612 => 0.0022468243902319
613 => 0.0022387930128704
614 => 0.0022589501939695
615 => 0.0022566808047149
616 => 0.0022778087417976
617 => 0.0023123439895953
618 => 0.0022421241746154
619 => 0.0022543119064774
620 => 0.0022513237560807
621 => 0.0022839475985771
622 => 0.0022840494466523
623 => 0.0022644898233939
624 => 0.002275093412481
625 => 0.0022691747799468
626 => 0.0022798705488872
627 => 0.0022386857489293
628 => 0.0022888443896536
629 => 0.0023172811067928
630 => 0.0023176759506379
701 => 0.0023311547288742
702 => 0.0023448499482004
703 => 0.0023711367290949
704 => 0.0023441168241485
705 => 0.0022955106454845
706 => 0.002299019854587
707 => 0.0022705220698206
708 => 0.0022710011227311
709 => 0.002268443900751
710 => 0.002276118316412
711 => 0.002240369851597
712 => 0.0022487599448361
713 => 0.0022370137651691
714 => 0.0022542863725768
715 => 0.0022357039022704
716 => 0.0022513223151041
717 => 0.0022580627043245
718 => 0.0022829348856581
719 => 0.0022320302608645
720 => 0.0021282322849701
721 => 0.0021500518779319
722 => 0.0021177789860493
723 => 0.0021207659650646
724 => 0.0021268001380497
725 => 0.0021072414091465
726 => 0.0021109725982549
727 => 0.002110839293924
728 => 0.0021096905492169
729 => 0.0021046025684352
730 => 0.0020972239896755
731 => 0.0021266179764475
801 => 0.0021316125875795
802 => 0.0021427149894245
803 => 0.0021757482064841
804 => 0.002172447409123
805 => 0.0021778311465678
806 => 0.0021660784779541
807 => 0.0021213111376542
808 => 0.0021237422196146
809 => 0.0020934265886122
810 => 0.0021419397505809
811 => 0.0021304511934843
812 => 0.0021230444459866
813 => 0.0021210234463088
814 => 0.0021541385463242
815 => 0.0021640471032644
816 => 0.0021578727555178
817 => 0.002145208988155
818 => 0.0021695271651983
819 => 0.0021760336834735
820 => 0.0021774902529642
821 => 0.002220577400137
822 => 0.0021798983458527
823 => 0.0021896901985339
824 => 0.0022660834379455
825 => 0.0021968053113456
826 => 0.0022335034800922
827 => 0.0022317072957001
828 => 0.0022504808370325
829 => 0.0022301673173522
830 => 0.0022304191277742
831 => 0.0022470887606475
901 => 0.0022236792676611
902 => 0.0022178827479892
903 => 0.0022098748975779
904 => 0.0022273597459895
905 => 0.0022378411218406
906 => 0.0023223133134781
907 => 0.0023768862016759
908 => 0.0023745170486735
909 => 0.002396166672247
910 => 0.0023864133185393
911 => 0.0023549171666125
912 => 0.0024086772574051
913 => 0.0023916653152606
914 => 0.0023930677591015
915 => 0.0023930155600717
916 => 0.002404327014388
917 => 0.0023963118123253
918 => 0.0023805130263162
919 => 0.0023910009977675
920 => 0.0024221465234596
921 => 0.0025188231908691
922 => 0.002572924734747
923 => 0.0025155662099958
924 => 0.002555131352308
925 => 0.0025314063654223
926 => 0.002527094829548
927 => 0.0025519446627611
928 => 0.0025768379923176
929 => 0.0025752523948417
930 => 0.0025571811158702
1001 => 0.002546973108921
1002 => 0.0026242715574738
1003 => 0.0026812237376228
1004 => 0.0026773399807489
1005 => 0.0026944816205249
1006 => 0.0027448100050783
1007 => 0.002749411401826
1008 => 0.0027488317315977
1009 => 0.0027374266896524
1010 => 0.0027869815202117
1011 => 0.0028283210316986
1012 => 0.0027347867519654
1013 => 0.0027704033812342
1014 => 0.002786392833609
1015 => 0.0028098700935521
1016 => 0.0028494801663217
1017 => 0.0028925072114024
1018 => 0.0028985917073443
1019 => 0.0028942744663036
1020 => 0.0028658969734438
1021 => 0.0029129776795905
1022 => 0.0029405564530728
1023 => 0.0029569789815525
1024 => 0.0029986237813289
1025 => 0.0027864915790234
1026 => 0.0026363338625771
1027 => 0.0026128845668503
1028 => 0.0026605696318088
1029 => 0.002673143803157
1030 => 0.0026680751704532
1031 => 0.0024990590088505
1101 => 0.0026119947317381
1102 => 0.0027335040736599
1103 => 0.0027381717423455
1104 => 0.0027990018595521
1105 => 0.0028188106392253
1106 => 0.0028677868567623
1107 => 0.0028647233810206
1108 => 0.002876648310609
1109 => 0.0028739069758076
1110 => 0.0029646251056356
1111 => 0.0030647006746085
1112 => 0.0030612353758758
1113 => 0.0030468483287955
1114 => 0.0030682155470657
1115 => 0.0031715042589955
1116 => 0.0031619950895689
1117 => 0.0031712324376777
1118 => 0.0032930156501396
1119 => 0.0034513511498
1120 => 0.0033777884135835
1121 => 0.0035373983840663
1122 => 0.0036378643999242
1123 => 0.0038116099859705
1124 => 0.0037898561828824
1125 => 0.0038574940645262
1126 => 0.0037509123351991
1127 => 0.0035061791409426
1128 => 0.0034674491761505
1129 => 0.0035449875464632
1130 => 0.0037356080637936
1201 => 0.0035389842280117
1202 => 0.0035787609739069
1203 => 0.0035673052684132
1204 => 0.003566694842551
1205 => 0.0035899923149278
1206 => 0.0035561981161308
1207 => 0.0034185144707716
1208 => 0.0034816140740649
1209 => 0.0034572482869415
1210 => 0.0034842839443447
1211 => 0.0036301842369962
1212 => 0.0035656782397864
1213 => 0.0034977264117676
1214 => 0.003582953083821
1215 => 0.0036914759244069
1216 => 0.0036846847600773
1217 => 0.0036715070627915
1218 => 0.00374578905243
1219 => 0.0038684811367319
1220 => 0.003901644314102
1221 => 0.0039261246936453
1222 => 0.0039295001243849
1223 => 0.0039642691588215
1224 => 0.0037773072977311
1225 => 0.0040740205728027
1226 => 0.0041252547588688
1227 => 0.0041156248553278
1228 => 0.0041725694968761
1229 => 0.0041558149387864
1230 => 0.0041315402128242
1231 => 0.0042218095821508
]
'min_raw' => 0.0015561959236276
'max_raw' => 0.0042218095821508
'avg_raw' => 0.0028890027528892
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.001556'
'max' => '$0.004221'
'avg' => '$0.002889'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.00053669175591404
'max_diff' => 0.0019458383468409
'year' => 2032
]
7 => [
'items' => [
101 => 0.0041183230345803
102 => 0.003971436908898
103 => 0.0038908522752705
104 => 0.0039969726214082
105 => 0.0040617766137047
106 => 0.0041046079303047
107 => 0.0041175686608284
108 => 0.0037918206147954
109 => 0.0036162604847985
110 => 0.0037287925153256
111 => 0.0038660893591144
112 => 0.0037765446068316
113 => 0.0037800545915905
114 => 0.0036523873067821
115 => 0.0038773850809842
116 => 0.0038446047978121
117 => 0.0040146689648963
118 => 0.0039740817865715
119 => 0.0041127625129757
120 => 0.0040762432300162
121 => 0.0042278327318155
122 => 0.0042883058882051
123 => 0.0043898497296786
124 => 0.0044645457928242
125 => 0.0045084087498114
126 => 0.0045057753823997
127 => 0.0046795822704211
128 => 0.004577094420905
129 => 0.0044483455273813
130 => 0.004446016866095
131 => 0.0045126977424369
201 => 0.0046524425662444
202 => 0.0046886763658531
203 => 0.0047089261167286
204 => 0.0046779129183639
205 => 0.0045666697030846
206 => 0.0045186354467429
207 => 0.0045595620248324
208 => 0.0045095123366898
209 => 0.0045959121398861
210 => 0.0047145575236767
211 => 0.0046900577210986
212 => 0.0047719568879014
213 => 0.0048567139094987
214 => 0.0049779202570589
215 => 0.0050096080845691
216 => 0.0050619868584635
217 => 0.0051159018223316
218 => 0.0051332178556771
219 => 0.0051662795361831
220 => 0.0051661052848071
221 => 0.0052657388843198
222 => 0.005375637829978
223 => 0.0054171221377976
224 => 0.0055125130161705
225 => 0.0053491594798519
226 => 0.0054730650136197
227 => 0.005584830906635
228 => 0.0054515790014153
301 => 0.0056352357090487
302 => 0.0056423666828311
303 => 0.0057500359206626
304 => 0.0056408925211902
305 => 0.0055760835189816
306 => 0.0057631846799963
307 => 0.00585371703818
308 => 0.0058264479551183
309 => 0.0056189288865781
310 => 0.0054981438877762
311 => 0.0051820262482253
312 => 0.0055564812475391
313 => 0.0057388673547028
314 => 0.0056184565506218
315 => 0.0056791847563221
316 => 0.0060104981554358
317 => 0.0061366408468643
318 => 0.0061104040488511
319 => 0.0061148376358209
320 => 0.0061829019424639
321 => 0.0064847365618174
322 => 0.0063038702614291
323 => 0.006442135771145
324 => 0.0065154712989449
325 => 0.0065835894241988
326 => 0.0064163128375298
327 => 0.0061986884560544
328 => 0.0061297576791911
329 => 0.0056064840691935
330 => 0.0055792454053311
331 => 0.0055639555178891
401 => 0.0054675549403648
402 => 0.0053918104927712
403 => 0.0053315756958338
404 => 0.0051735016010369
405 => 0.0052268469677171
406 => 0.0049749098532385
407 => 0.0051360902909788
408 => 0.0047339925730367
409 => 0.0050688715009371
410 => 0.0048866121255574
411 => 0.0050089943942747
412 => 0.0050085674140682
413 => 0.004783222856026
414 => 0.0046532488177682
415 => 0.0047360733336113
416 => 0.0048248677892134
417 => 0.0048392743908944
418 => 0.0049543987203549
419 => 0.0049865274461182
420 => 0.0048891759071088
421 => 0.0047256599915799
422 => 0.0047636410093563
423 => 0.0046524791336552
424 => 0.004457672222269
425 => 0.004597585947029
426 => 0.0046453586442342
427 => 0.0046664577888706
428 => 0.0044748875652472
429 => 0.0044146920417928
430 => 0.004382644450195
501 => 0.0047009306813459
502 => 0.0047183671195789
503 => 0.004629159836315
504 => 0.0050323852156495
505 => 0.0049411228936601
506 => 0.005043085267134
507 => 0.0047601946300913
508 => 0.0047710014333891
509 => 0.0046370764722894
510 => 0.0047120655016361
511 => 0.0046590656727031
512 => 0.0047060071291209
513 => 0.0047341436445509
514 => 0.0048680466298822
515 => 0.0050704004579383
516 => 0.0048480459891447
517 => 0.0047511629629167
518 => 0.0048112686474978
519 => 0.0049713380061715
520 => 0.0052138512783619
521 => 0.0050702785401908
522 => 0.0051339936833679
523 => 0.0051479126076627
524 => 0.005042047385887
525 => 0.0052177546800934
526 => 0.0053119176465021
527 => 0.0054085093657571
528 => 0.0054923772491476
529 => 0.0053699285089892
530 => 0.0055009662132962
531 => 0.0053953729548934
601 => 0.0053006448860758
602 => 0.0053007885494541
603 => 0.0052413642481285
604 => 0.0051262221763664
605 => 0.0051049882117371
606 => 0.0052154499772926
607 => 0.0053040298525
608 => 0.0053113257152911
609 => 0.0053603680856042
610 => 0.0053893908551789
611 => 0.0056738534515532
612 => 0.0057882666610129
613 => 0.0059281689678091
614 => 0.0059826688007682
615 => 0.0061466937587035
616 => 0.0060142302837149
617 => 0.0059855709776669
618 => 0.0055877000818706
619 => 0.0056528514187681
620 => 0.0057571649953099
621 => 0.0055894201743267
622 => 0.0056958156537051
623 => 0.0057168203750988
624 => 0.005583720269498
625 => 0.0056548147868155
626 => 0.0054660088268757
627 => 0.0050745159119178
628 => 0.0052181905236219
629 => 0.0053239833981876
630 => 0.005173003922015
701 => 0.0054436287893416
702 => 0.0052855353286806
703 => 0.0052354272914755
704 => 0.0050399379735333
705 => 0.0051322014065281
706 => 0.0052569890207388
707 => 0.0051798847832738
708 => 0.005339887653273
709 => 0.0055664943883987
710 => 0.0057279878425136
711 => 0.0057403853046484
712 => 0.0056365558328736
713 => 0.0058029432240235
714 => 0.0058041551745188
715 => 0.0056164695175892
716 => 0.005501513097758
717 => 0.0054753947573019
718 => 0.0055406434925634
719 => 0.0056198675027518
720 => 0.0057447816858427
721 => 0.0058202647105392
722 => 0.0060170844058446
723 => 0.0060703381721314
724 => 0.0061288479157474
725 => 0.0062070349769552
726 => 0.0063009185906861
727 => 0.00609550658864
728 => 0.0061036679904171
729 => 0.0059123911782346
730 => 0.0057079844725479
731 => 0.0058631036825085
801 => 0.0060659014148883
802 => 0.0060193793910088
803 => 0.0060141447129636
804 => 0.0060229479894569
805 => 0.0059878719027191
806 => 0.005829224062384
807 => 0.0057495521101558
808 => 0.005852349255013
809 => 0.00590698136253
810 => 0.0059917109968685
811 => 0.0059812662810107
812 => 0.0061995207197682
813 => 0.0062843277949977
814 => 0.0062626305160546
815 => 0.0062666233375543
816 => 0.0064201624963434
817 => 0.0065909296186533
818 => 0.006750875563403
819 => 0.0069135794482405
820 => 0.0067174335646282
821 => 0.0066178427815261
822 => 0.0067205950483656
823 => 0.0066660732492377
824 => 0.0069793716792428
825 => 0.0070010637827824
826 => 0.007314339557745
827 => 0.0076116755723699
828 => 0.0074249241489121
829 => 0.007601022329764
830 => 0.0077914868698507
831 => 0.0081589238694359
901 => 0.0080351840145651
902 => 0.0079404012249848
903 => 0.0078508319468185
904 => 0.0080372113959601
905 => 0.0082769855797962
906 => 0.0083286306424659
907 => 0.0084123153739233
908 => 0.008324331111278
909 => 0.0084302984644856
910 => 0.0088044097857229
911 => 0.0087033216043526
912 => 0.0085597601360707
913 => 0.0088550850941543
914 => 0.0089619620484381
915 => 0.009712080485497
916 => 0.010659135998131
917 => 0.010267048797199
918 => 0.010023667619005
919 => 0.010080867968959
920 => 0.010426700582321
921 => 0.010537771041554
922 => 0.010235843245075
923 => 0.010342489247073
924 => 0.010930119203283
925 => 0.011245363821363
926 => 0.010817219287009
927 => 0.0096359854971842
928 => 0.008546833996592
929 => 0.0088357260196803
930 => 0.0088029746296253
1001 => 0.0094343097092431
1002 => 0.008700910684659
1003 => 0.0087132592433264
1004 => 0.0093576496637952
1005 => 0.0091857373472627
1006 => 0.008907261411346
1007 => 0.0085488671791041
1008 => 0.0078863422933509
1009 => 0.0072995255261661
1010 => 0.008450408342446
1011 => 0.0084007801826634
1012 => 0.008328911252817
1013 => 0.0084888477791597
1014 => 0.009265454152305
1015 => 0.0092475508617745
1016 => 0.0091336592617584
1017 => 0.0092200450365761
1018 => 0.0088921175673514
1019 => 0.0089766319429403
1020 => 0.0085466614694296
1021 => 0.0087410260806096
1022 => 0.0089066639270574
1023 => 0.008939918177042
1024 => 0.0090148417002615
1025 => 0.008374628397579
1026 => 0.0086620653748084
1027 => 0.0088309076697281
1028 => 0.0080680720387456
1029 => 0.0088158288620071
1030 => 0.0083634837083253
1031 => 0.0082099509691695
1101 => 0.0084166625760425
1102 => 0.0083361068618105
1103 => 0.008266849789104
1104 => 0.0082282031525462
1105 => 0.0083799893427063
1106 => 0.0083729083355116
1107 => 0.0081245566679798
1108 => 0.0078005920417936
1109 => 0.007909325204118
1110 => 0.0078698214268667
1111 => 0.0077266546420193
1112 => 0.007823131768983
1113 => 0.0073982953277917
1114 => 0.0066673863117989
1115 => 0.0071502471961124
1116 => 0.0071316575773179
1117 => 0.0071222838485496
1118 => 0.0074851404578166
1119 => 0.0074502601673619
1120 => 0.0073869520986378
1121 => 0.0077254919396904
1122 => 0.0076019203437028
1123 => 0.007982738885407
1124 => 0.0082335706067724
1125 => 0.008169951568678
1126 => 0.008405860014997
1127 => 0.0079118301965679
1128 => 0.008075927085214
1129 => 0.0081097472265355
1130 => 0.007721314410602
1201 => 0.0074559670142521
1202 => 0.0074382713680974
1203 => 0.0069781955499503
1204 => 0.0072239643384022
1205 => 0.0074402307016364
1206 => 0.007336655896595
1207 => 0.0073038672075281
1208 => 0.0074713775089716
1209 => 0.0074843944940224
1210 => 0.0071876058553844
1211 => 0.0072493176114311
1212 => 0.0075066658928717
1213 => 0.0072428330950265
1214 => 0.0067302490656562
1215 => 0.0066031211393437
1216 => 0.0065861599305411
1217 => 0.0062413789117386
1218 => 0.0066116164352657
1219 => 0.0064499978344974
1220 => 0.0069605490578365
1221 => 0.0066689249372063
1222 => 0.0066563536042277
1223 => 0.0066373501906169
1224 => 0.0063405829250091
1225 => 0.0064055560956336
1226 => 0.0066215368104827
1227 => 0.0066986011627377
1228 => 0.0066905627194279
1229 => 0.006620478387152
1230 => 0.0066525626355781
1231 => 0.0065492080925046
]
'min_raw' => 0.0036162604847985
'max_raw' => 0.011245363821363
'avg_raw' => 0.0074308121530809
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.003616'
'max' => '$0.011245'
'avg' => '$0.00743'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.0020600645611709
'max_diff' => 0.0070235542392124
'year' => 2033
]
8 => [
'items' => [
101 => 0.0065127114522066
102 => 0.0063975180162343
103 => 0.0062282154883538
104 => 0.0062517580432483
105 => 0.0059163254351009
106 => 0.0057335639474263
107 => 0.0056829779763957
108 => 0.0056153323018002
109 => 0.0056906187353395
110 => 0.0059153751966669
111 => 0.0056442712195628
112 => 0.0051794824665506
113 => 0.0052074170625682
114 => 0.0052701778059635
115 => 0.0051532235758501
116 => 0.0050425362122722
117 => 0.0051387698945535
118 => 0.0049418327727004
119 => 0.0052939767162613
120 => 0.0052844522094599
121 => 0.0054157096951841
122 => 0.0054977876946821
123 => 0.005308624478907
124 => 0.0052610504416913
125 => 0.0052881507754088
126 => 0.0048402426257978
127 => 0.005379106043528
128 => 0.0053837661567414
129 => 0.0053438634381721
130 => 0.005630791572572
131 => 0.0062362994312851
201 => 0.00600848301834
202 => 0.0059202656174602
203 => 0.005752564273901
204 => 0.0059760163570731
205 => 0.005958858723481
206 => 0.0058812653975382
207 => 0.0058343367119021
208 => 0.0059208042540987
209 => 0.00582362242653
210 => 0.0058061658999206
211 => 0.0057003983415561
212 => 0.0056626441353373
213 => 0.0056346924240911
214 => 0.0056039203364875
215 => 0.0056717958938146
216 => 0.0055179809511382
217 => 0.0053324952089352
218 => 0.0053170740764546
219 => 0.0053596531790734
220 => 0.005340815095806
221 => 0.0053169838869594
222 => 0.0052714836192278
223 => 0.0052579846617512
224 => 0.0053018497247869
225 => 0.0052523286261117
226 => 0.0053253997047609
227 => 0.0053055284145755
228 => 0.0051945290029295
301 => 0.0050561826387729
302 => 0.0050549510659405
303 => 0.0050251445687165
304 => 0.0049871815130648
305 => 0.0049766210594596
306 => 0.0051306653622494
307 => 0.0054495324588661
308 => 0.0053869312179573
309 => 0.0054321670301471
310 => 0.0056546824545922
311 => 0.0057254134167511
312 => 0.0056752102551654
313 => 0.0056064890711907
314 => 0.0056095124545197
315 => 0.0058443535434781
316 => 0.0058590002941345
317 => 0.0058960079078224
318 => 0.0059435731497617
319 => 0.0056833108215455
320 => 0.0055972541222657
321 => 0.0055564756839031
322 => 0.0054308938769877
323 => 0.0055663230891755
324 => 0.0054874142868907
325 => 0.0054980617802275
326 => 0.0054911275862238
327 => 0.005494914125038
328 => 0.0052938782848523
329 => 0.0053671251788833
330 => 0.0052453380110881
331 => 0.0050822786646615
401 => 0.0050817320325563
402 => 0.0051216405765882
403 => 0.0050979014129765
404 => 0.0050340199340872
405 => 0.0050430939966514
406 => 0.0049635956604122
407 => 0.0050527465340347
408 => 0.005055303062093
409 => 0.0050209751196674
410 => 0.0051583243409327
411 => 0.0052145964289514
412 => 0.0051920010418711
413 => 0.0052130110763592
414 => 0.0053895325821447
415 => 0.005418313289761
416 => 0.0054310957789374
417 => 0.0054139689367964
418 => 0.0052162375654398
419 => 0.0052250077925782
420 => 0.0051606576849739
421 => 0.0051062886250956
422 => 0.0051084631023626
423 => 0.0051364158666231
424 => 0.0052584872275567
425 => 0.0055153792101417
426 => 0.0055251280730952
427 => 0.0055369439793893
428 => 0.0054888827502927
429 => 0.0054743870237131
430 => 0.005493510628736
501 => 0.0055899857506562
502 => 0.005838145956975
503 => 0.005750429565999
504 => 0.0056791147747486
505 => 0.0057416770730049
506 => 0.0057320460975678
507 => 0.005650750972608
508 => 0.0056484692892122
509 => 0.0054924379527907
510 => 0.0054347567203772
511 => 0.0053865539652072
512 => 0.0053339178149262
513 => 0.00530271334066
514 => 0.0053506575953129
515 => 0.0053616230136117
516 => 0.005256792062891
517 => 0.0052425039916714
518 => 0.0053281112089632
519 => 0.0052904386643919
520 => 0.0053291858107177
521 => 0.0053381754810321
522 => 0.0053367279370618
523 => 0.0052973934738651
524 => 0.0053224640877361
525 => 0.0052631646120215
526 => 0.0051986853386751
527 => 0.0051575515794808
528 => 0.0051216569189823
529 => 0.0051415733628368
530 => 0.0050705748770946
531 => 0.0050478610325885
601 => 0.0053139707278633
602 => 0.0055105488209241
603 => 0.0055076904975975
604 => 0.0054902911894481
605 => 0.0054644393468588
606 => 0.0055880945273496
607 => 0.00554501553503
608 => 0.0055763591013128
609 => 0.0055843373544171
610 => 0.0056084851236677
611 => 0.0056171158756039
612 => 0.0055910277488101
613 => 0.0055034728088937
614 => 0.0052852942230958
615 => 0.0051837315024451
616 => 0.0051502141129695
617 => 0.0051514324064183
618 => 0.0051178264343975
619 => 0.0051277248992716
620 => 0.0051143841522679
621 => 0.005089120004916
622 => 0.0051400133729303
623 => 0.0051458783594894
624 => 0.0051339992392644
625 => 0.0051367972021078
626 => 0.0050384431602835
627 => 0.0050459208044697
628 => 0.0050042843314281
629 => 0.004996477994668
630 => 0.0048912246165213
701 => 0.0047047530004134
702 => 0.0048080763769749
703 => 0.0046832762675539
704 => 0.0046360125750859
705 => 0.0048597515442171
706 => 0.0048372943572694
707 => 0.0047988574151193
708 => 0.0047420011667187
709 => 0.0047209126311249
710 => 0.004592785364676
711 => 0.0045852149222418
712 => 0.0046487182552211
713 => 0.0046194136520674
714 => 0.0045782588907186
715 => 0.0044292005169043
716 => 0.0042616095532055
717 => 0.0042666680709604
718 => 0.0043199756383722
719 => 0.0044749745801271
720 => 0.0044144138120745
721 => 0.0043704762799977
722 => 0.004362248100997
723 => 0.0044652409880495
724 => 0.0046109975009056
725 => 0.0046793831956195
726 => 0.0046116150490625
727 => 0.0045337666511938
728 => 0.0045385049224573
729 => 0.0045700265183906
730 => 0.0045733389924319
731 => 0.004522667688364
801 => 0.0045369313636502
802 => 0.0045152635365926
803 => 0.0043822881219357
804 => 0.0043798830183542
805 => 0.0043472487070791
806 => 0.0043462605531034
807 => 0.0042907414486142
808 => 0.0042829739421107
809 => 0.0041727373903784
810 => 0.0042452954225556
811 => 0.0041966273040388
812 => 0.0041232729697855
813 => 0.0041106266549113
814 => 0.0041102464914153
815 => 0.0041855649909645
816 => 0.0042444152820358
817 => 0.0041974739067971
818 => 0.0041867862655755
819 => 0.004300902312672
820 => 0.0042863800054881
821 => 0.0042738037811257
822 => 0.0045979466038508
823 => 0.004341362266484
824 => 0.0042294768500701
825 => 0.0040909974007936
826 => 0.004136087007752
827 => 0.0041455880504423
828 => 0.0038125699377292
829 => 0.0036774645308763
830 => 0.0036311014465842
831 => 0.0036044188360964
901 => 0.0036165784367548
902 => 0.0034949677243035
903 => 0.0035766921343263
904 => 0.0034713875368411
905 => 0.003453732878382
906 => 0.0036420305434219
907 => 0.0036682310634932
908 => 0.0035564515050054
909 => 0.0036282320770213
910 => 0.0036022034437837
911 => 0.0034731926819225
912 => 0.0034682654197583
913 => 0.0034035323544039
914 => 0.0033022376419157
915 => 0.0032559432402086
916 => 0.0032318327138531
917 => 0.0032417811869321
918 => 0.0032367509345151
919 => 0.0032039251348998
920 => 0.0032386324709245
921 => 0.0031499695694428
922 => 0.0031146632876672
923 => 0.0030987162592887
924 => 0.0030200228309774
925 => 0.003145259070547
926 => 0.0031699321874268
927 => 0.0031946539179688
928 => 0.0034098397040942
929 => 0.0033990896303281
930 => 0.0034962650616754
1001 => 0.0034924890031074
1002 => 0.0034647729959495
1003 => 0.0033478437208123
1004 => 0.0033944496458181
1005 => 0.0032510038528192
1006 => 0.0033584831942997
1007 => 0.0033094341112926
1008 => 0.0033418996499961
1009 => 0.0032835236841076
1010 => 0.0033158313539149
1011 => 0.0031757830987513
1012 => 0.0030450080086117
1013 => 0.0030976357224468
1014 => 0.0031548480660945
1015 => 0.003278899004557
1016 => 0.0032050152890068
1017 => 0.0032315866669712
1018 => 0.0031425769987853
1019 => 0.0029589246289628
1020 => 0.0029599640814314
1021 => 0.0029317131654186
1022 => 0.0029073002492823
1023 => 0.0032135017225149
1024 => 0.0031754207289894
1025 => 0.0031147436497239
1026 => 0.0031959623315321
1027 => 0.003217437840116
1028 => 0.0032180492176544
1029 => 0.0032773042713441
1030 => 0.0033089287041204
1031 => 0.0033145026474653
1101 => 0.0034077417547362
1102 => 0.0034389942736399
1103 => 0.003567718975982
1104 => 0.0033062455919469
1105 => 0.00330086071967
1106 => 0.0031971052449439
1107 => 0.0031313018825634
1108 => 0.0032016108574633
1109 => 0.0032638950110925
1110 => 0.0031990405872136
1111 => 0.0032075092058205
1112 => 0.0031204474405642
1113 => 0.0031515679250065
1114 => 0.0031783730785902
1115 => 0.0031635728483154
1116 => 0.0031414161872548
1117 => 0.003258788420774
1118 => 0.0032521658193733
1119 => 0.0033614655416024
1120 => 0.0034466724911781
1121 => 0.0035993785773819
1122 => 0.00344002181568
1123 => 0.0034342142218978
1124 => 0.0034909843826859
1125 => 0.003438985582424
1126 => 0.003471847029252
1127 => 0.0035940840902619
1128 => 0.0035966667667424
1129 => 0.0035534036081033
1130 => 0.0035507710409684
1201 => 0.0035590802038321
1202 => 0.003607747230257
1203 => 0.0035907414758375
1204 => 0.0036104209653848
1205 => 0.0036350304684067
1206 => 0.0037368258071185
1207 => 0.0037613683186555
1208 => 0.003701742739454
1209 => 0.0037071262616566
1210 => 0.0036848246582765
1211 => 0.0036632815888497
1212 => 0.0037117072628087
1213 => 0.0038002061337778
1214 => 0.0037996555868946
1215 => 0.0038201856047871
1216 => 0.0038329756358544
1217 => 0.0037780714596388
1218 => 0.003742330859805
1219 => 0.0037560360800148
1220 => 0.003777951025591
1221 => 0.0037489293585266
1222 => 0.0035697941852615
1223 => 0.003624132353631
1224 => 0.0036150878254136
1225 => 0.0036022073173799
1226 => 0.00365684476586
1227 => 0.0036515748506652
1228 => 0.0034937204306741
1229 => 0.0035038257584845
1230 => 0.0034943349691281
1231 => 0.0035250016511714
]
'min_raw' => 0.0029073002492823
'max_raw' => 0.0065127114522066
'avg_raw' => 0.0047100058507444
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.0029073'
'max' => '$0.006512'
'avg' => '$0.00471'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.00070896023551622
'max_diff' => -0.0047326523691566
'year' => 2034
]
9 => [
'items' => [
101 => 0.0034373294809542
102 => 0.003464296850032
103 => 0.0034812105311141
104 => 0.0034911728192085
105 => 0.0035271634350105
106 => 0.0035229403516482
107 => 0.0035269009222192
108 => 0.0035802655042831
109 => 0.0038501652478494
110 => 0.0038648552953915
111 => 0.0037925161286618
112 => 0.0038214141989434
113 => 0.003765936223316
114 => 0.0038031789600248
115 => 0.003828659494618
116 => 0.0037135178584163
117 => 0.0037066999179835
118 => 0.0036509929650161
119 => 0.0036809267261377
120 => 0.0036332999598797
121 => 0.0036449859024059
122 => 0.0036123109883406
123 => 0.0036711193281476
124 => 0.003736876189944
125 => 0.0037534889700509
126 => 0.0037097878978411
127 => 0.0036781454415202
128 => 0.0036225917118938
129 => 0.0037149788023581
130 => 0.0037419956030555
131 => 0.0037148368946055
201 => 0.0037085436284281
202 => 0.0036966179003937
203 => 0.0037110737280072
204 => 0.0037418484637567
205 => 0.0037273356666974
206 => 0.0037369216248376
207 => 0.003700389837404
208 => 0.0037780896352057
209 => 0.0039014956135895
210 => 0.0039018923839889
211 => 0.0038873795087002
212 => 0.0038814411528163
213 => 0.0038963322435775
214 => 0.0039044100494509
215 => 0.0039525651064134
216 => 0.0040042374011163
217 => 0.0042453694541064
218 => 0.0041776605385323
219 => 0.0043916072409551
220 => 0.0045608113050691
221 => 0.0046115482055
222 => 0.0045648726444592
223 => 0.0044051980715032
224 => 0.0043973636751862
225 => 0.0046359849000484
226 => 0.0045685634744803
227 => 0.0045605439104422
228 => 0.0044752292983439
301 => 0.0045256608005143
302 => 0.0045146306912041
303 => 0.0044972191240466
304 => 0.0045934389170988
305 => 0.0047735537800923
306 => 0.0047454811895883
307 => 0.004724526303027
308 => 0.0046327080899913
309 => 0.0046880031625791
310 => 0.004668313646338
311 => 0.0047529123033858
312 => 0.0047027979330404
313 => 0.0045680526908708
314 => 0.0045895113148125
315 => 0.0045862678869724
316 => 0.0046530174020882
317 => 0.0046329808544753
318 => 0.0045823554294759
319 => 0.0047729381670716
320 => 0.004760562784169
321 => 0.0047781082477185
322 => 0.0047858323033844
323 => 0.0049018366573144
324 => 0.0049493599293942
325 => 0.0049601485441683
326 => 0.0050052919770623
327 => 0.0049590253344331
328 => 0.005144124892507
329 => 0.0052672052977674
330 => 0.0054101695221372
331 => 0.0056190786791023
401 => 0.0056976304546389
402 => 0.0056834407794779
403 => 0.0058418333180416
404 => 0.0061264611889722
405 => 0.0057409722100152
406 => 0.0061468930408973
407 => 0.0060183831924214
408 => 0.0057136886534785
409 => 0.0056940699172832
410 => 0.0059004125966317
411 => 0.0063580607996797
412 => 0.0062434251154191
413 => 0.006358248302592
414 => 0.0062243009555621
415 => 0.0062176493407852
416 => 0.0063517427789228
417 => 0.0066650594061842
418 => 0.0065162144210705
419 => 0.0063028086366223
420 => 0.0064603841468971
421 => 0.006323877656972
422 => 0.00601629032941
423 => 0.0062433374556718
424 => 0.0060915175082704
425 => 0.0061358266401144
426 => 0.0064549295880393
427 => 0.0064165342771033
428 => 0.0064662213647645
429 => 0.0063785249555799
430 => 0.0062966026809471
501 => 0.0061436886717169
502 => 0.0060984183721534
503 => 0.006110929454298
504 => 0.0060984121722825
505 => 0.0060128581894705
506 => 0.0059943828150279
507 => 0.0059635897148655
508 => 0.0059731337842093
509 => 0.0059152337470648
510 => 0.0060245030799145
511 => 0.0060447844309695
512 => 0.0061243015391113
513 => 0.0061325572690665
514 => 0.0063540112833863
515 => 0.0062320381336825
516 => 0.0063138682531589
517 => 0.006306548597058
518 => 0.005720292308052
519 => 0.005801073252094
520 => 0.0059267430505666
521 => 0.0058701289766961
522 => 0.0057900899218962
523 => 0.0057254540937227
524 => 0.0056275242046871
525 => 0.0057653586429278
526 => 0.0059465962721559
527 => 0.0061371537544313
528 => 0.0063660960835644
529 => 0.0063149988208844
530 => 0.0061328738368371
531 => 0.0061410438305791
601 => 0.006191547517118
602 => 0.0061261406543064
603 => 0.0061068508935696
604 => 0.0061888974002072
605 => 0.0061894624094064
606 => 0.0061142039090583
607 => 0.0060305678580815
608 => 0.0060302174199741
609 => 0.0060153351925312
610 => 0.0062269484707631
611 => 0.0063433143772751
612 => 0.0063566555409237
613 => 0.0063424164106648
614 => 0.0063478964867706
615 => 0.006280185729719
616 => 0.0064349524413376
617 => 0.0065769816807602
618 => 0.0065389148105828
619 => 0.0064818471606624
620 => 0.0064363900287504
621 => 0.0065282065549528
622 => 0.0065241181095736
623 => 0.0065757411792574
624 => 0.0065733992586273
625 => 0.0065560403619344
626 => 0.0065389154305237
627 => 0.0066068138478529
628 => 0.0065872601940773
629 => 0.0065676761680765
630 => 0.0065283974057676
701 => 0.0065337360419165
702 => 0.0064766782455305
703 => 0.0064502806981352
704 => 0.0060533249218825
705 => 0.0059472453675637
706 => 0.0059806201548008
707 => 0.0059916080013353
708 => 0.005945442043351
709 => 0.0060116321680389
710 => 0.0060013165072189
711 => 0.0060414487090095
712 => 0.0060163758516684
713 => 0.0060174048504794
714 => 0.0060911387778227
715 => 0.006112544050617
716 => 0.0061016571561121
717 => 0.0061092819638424
718 => 0.0062849924397579
719 => 0.0062600120289875
720 => 0.0062467416836437
721 => 0.0062504176599951
722 => 0.0062953154538666
723 => 0.0063078843848219
724 => 0.006254628941161
725 => 0.0062797445162575
726 => 0.0063866834473776
727 => 0.0064241060210503
728 => 0.0065435409123593
729 => 0.0064928028477453
730 => 0.0065859347612362
731 => 0.0068721905122982
801 => 0.0071008714136378
802 => 0.006890567006128
803 => 0.007310510359101
804 => 0.0076374964966867
805 => 0.0076249462241022
806 => 0.0075679286276886
807 => 0.0071956636034235
808 => 0.006853099777936
809 => 0.0071396689639846
810 => 0.0071403994877733
811 => 0.0071157829405461
812 => 0.0069628916798912
813 => 0.0071104626560864
814 => 0.0071221763042777
815 => 0.007115619776201
816 => 0.0069983984051294
817 => 0.0068194230376337
818 => 0.0068543943960358
819 => 0.006911678194495
820 => 0.0068032280133596
821 => 0.0067685716092586
822 => 0.006833004458133
823 => 0.0070406205223232
824 => 0.007001371908026
825 => 0.0070003469680906
826 => 0.0071682691840567
827 => 0.0070480731173073
828 => 0.0068548354968591
829 => 0.0068060404492048
830 => 0.0066328509023149
831 => 0.0067524735392318
901 => 0.0067567785449743
902 => 0.0066912624492487
903 => 0.0068601517669474
904 => 0.0068585954221524
905 => 0.0070189306934498
906 => 0.0073254315129926
907 => 0.0072347841386645
908 => 0.0071293711047271
909 => 0.0071408324243025
910 => 0.0072665348110972
911 => 0.0071905322785348
912 => 0.0072178633191527
913 => 0.0072664934422939
914 => 0.007295833203003
915 => 0.0071366108842498
916 => 0.0070994885452645
917 => 0.0070235492678711
918 => 0.0070037381278729
919 => 0.0070655890847848
920 => 0.0070492935428651
921 => 0.0067564167259115
922 => 0.0067258094689886
923 => 0.0067267481498613
924 => 0.006649784747033
925 => 0.0065323970843866
926 => 0.0068408848529681
927 => 0.0068161089678675
928 => 0.0067887583082175
929 => 0.006792108607964
930 => 0.0069260126926846
1001 => 0.0068483415612283
1002 => 0.007054842994253
1003 => 0.0070123925076244
1004 => 0.0069688533261941
1005 => 0.0069628348850846
1006 => 0.0069460760148223
1007 => 0.006888603612992
1008 => 0.0068192022342261
1009 => 0.0067733774325203
1010 => 0.0062480826421236
1011 => 0.006345574299722
1012 => 0.0064577295651448
1013 => 0.0064964451133347
1014 => 0.0064302194891214
1015 => 0.0068912186042859
1016 => 0.0069754475849245
1017 => 0.0067203125084498
1018 => 0.0066725871527379
1019 => 0.006894347470661
1020 => 0.0067605988898571
1021 => 0.0068208258676035
1022 => 0.0066906480841112
1023 => 0.0069551592900011
1024 => 0.0069531441577897
1025 => 0.006850243324442
1026 => 0.006937214404153
1027 => 0.0069221010388
1028 => 0.006805926251384
1029 => 0.0069588422379794
1030 => 0.006958918082401
1031 => 0.0068598782675608
1101 => 0.0067442214464309
1102 => 0.006723544738505
1103 => 0.0067079676166077
1104 => 0.0068169948505117
1105 => 0.0069147483275108
1106 => 0.0070966433130638
1107 => 0.0071423760341501
1108 => 0.0073208738891496
1109 => 0.0072145871074002
1110 => 0.0072617026611055
1111 => 0.0073128532595545
1112 => 0.0073373767374519
1113 => 0.0072974170462204
1114 => 0.0075746976876829
1115 => 0.0075981086694816
1116 => 0.0076059581691746
1117 => 0.0075124606969754
1118 => 0.0075955083356441
1119 => 0.0075566530957597
1120 => 0.0076577436356424
1121 => 0.0076735959230848
1122 => 0.0076601695995825
1123 => 0.0076652013658281
1124 => 0.0074285912539969
1125 => 0.0074163217714807
1126 => 0.0072490265067693
1127 => 0.0073172005637234
1128 => 0.0071897524319153
1129 => 0.0072301675473729
1130 => 0.0072479821451772
1201 => 0.0072386768102538
1202 => 0.007321055022616
1203 => 0.0072510167133512
1204 => 0.0070661740998371
1205 => 0.0068812811260766
1206 => 0.0068789599454016
1207 => 0.0068302808890425
1208 => 0.0067950948473088
1209 => 0.0068018729272386
1210 => 0.0068257597649901
1211 => 0.0067937065008748
1212 => 0.0068005466899156
1213 => 0.0069141394039331
1214 => 0.0069369196126231
1215 => 0.0068595035626923
1216 => 0.0065486669511371
1217 => 0.0064723868669869
1218 => 0.0065272154787743
1219 => 0.0065010109337548
1220 => 0.0052468232066402
1221 => 0.0055414760094963
1222 => 0.0053664033195029
1223 => 0.005447084869759
1224 => 0.0052683809881291
1225 => 0.0053536678471158
1226 => 0.0053379184784384
1227 => 0.0058117114660206
1228 => 0.0058043138402005
1229 => 0.0058078546922069
1230 => 0.0056388406002978
1231 => 0.0059080846379417
]
'min_raw' => 0.0034373294809542
'max_raw' => 0.0076735959230848
'avg_raw' => 0.0055554627020195
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.003437'
'max' => '$0.007673'
'avg' => '$0.005555'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.00053002923167196
'max_diff' => 0.0011608844708781
'year' => 2035
]
10 => [
'items' => [
101 => 0.0060407239325875
102 => 0.0060161759292291
103 => 0.0060223541328085
104 => 0.0059161921259476
105 => 0.005808882572492
106 => 0.0056898597628879
107 => 0.0059109894314684
108 => 0.0058864035871316
109 => 0.0059427946683327
110 => 0.0060862130650823
111 => 0.0061073319687972
112 => 0.0061357159895568
113 => 0.0061255423386267
114 => 0.0063679199785745
115 => 0.0063385664471177
116 => 0.0064093000123413
117 => 0.0062637957021078
118 => 0.0060991437636827
119 => 0.0061304387142999
120 => 0.0061274247588973
121 => 0.0060890536473661
122 => 0.006054413923564
123 => 0.0059967485431151
124 => 0.0061792103397258
125 => 0.0061718027239978
126 => 0.0062917234122232
127 => 0.0062705262657319
128 => 0.0061289665336417
129 => 0.006134022367167
130 => 0.0061680252773756
131 => 0.0062857097378459
201 => 0.0063206464982826
202 => 0.0063044623988591
203 => 0.0063427689617542
204 => 0.0063730449071821
205 => 0.0063465711543633
206 => 0.0067213836660739
207 => 0.0065657353793745
208 => 0.006641597271318
209 => 0.0066596898855423
210 => 0.0066133460346534
211 => 0.0066233963564623
212 => 0.006638619855454
213 => 0.0067310539602651
214 => 0.006973627797313
215 => 0.0070810620984856
216 => 0.0074042834942784
217 => 0.0070721411753309
218 => 0.0070524332246661
219 => 0.0071106551583995
220 => 0.0073004203341893
221 => 0.0074542071854303
222 => 0.0075052271561633
223 => 0.0075119702875435
224 => 0.007607687144382
225 => 0.0076625502617082
226 => 0.0075960646003586
227 => 0.0075397249637037
228 => 0.0073379233783391
229 => 0.0073612824613325
301 => 0.0075222033790692
302 => 0.0077495136535671
303 => 0.0079445695166894
304 => 0.0078762677518071
305 => 0.0083973620043275
306 => 0.0084490263709858
307 => 0.0084418880260226
308 => 0.0085595871419587
309 => 0.0083259783658336
310 => 0.0082261060880833
311 => 0.0075519062326305
312 => 0.007741328891758
313 => 0.0080166658512026
314 => 0.0079802239721595
315 => 0.0077802669124328
316 => 0.007944417831329
317 => 0.0078901444040681
318 => 0.0078473367001809
319 => 0.0080434470903701
320 => 0.0078278156605862
321 => 0.008014514762741
322 => 0.0077750712330726
323 => 0.0078765797485158
324 => 0.0078189586057358
325 => 0.0078562465468961
326 => 0.0076382620047907
327 => 0.0077558811724351
328 => 0.0076333686607207
329 => 0.0076333105738386
330 => 0.0076306061033522
331 => 0.0077747415300806
401 => 0.0077794417811715
402 => 0.0076729254830428
403 => 0.0076575748203851
404 => 0.0077143342658385
405 => 0.0076478838205349
406 => 0.0076789755656583
407 => 0.007648825557821
408 => 0.0076420381560005
409 => 0.0075879549835136
410 => 0.0075646544657584
411 => 0.0075737911991506
412 => 0.0075426028177741
413 => 0.0075238106898618
414 => 0.0076268678761195
415 => 0.007571808578817
416 => 0.0076184292491464
417 => 0.0075652991113084
418 => 0.0073811269058628
419 => 0.0072752075229254
420 => 0.0069273232996112
421 => 0.0070259828337941
422 => 0.007091394207028
423 => 0.0070697757485644
424 => 0.007116220562577
425 => 0.0071190718969483
426 => 0.0071039722144639
427 => 0.0070864887165361
428 => 0.007077978716643
429 => 0.0071414052837344
430 => 0.0071782265407711
501 => 0.0070979591134233
502 => 0.0070791535782563
503 => 0.0071603083789911
504 => 0.0072098127605577
505 => 0.0075753252999364
506 => 0.0075482469504293
507 => 0.0076162082938344
508 => 0.0076085568895188
509 => 0.0076797912044985
510 => 0.0077962292036225
511 => 0.0075594781948268
512 => 0.0076005699837198
513 => 0.0075904952260312
514 => 0.0077004887887318
515 => 0.0077008321766284
516 => 0.0076348855412034
517 => 0.0076706362821292
518 => 0.0076506811993147
519 => 0.0076867427310518
520 => 0.0075478853025627
521 => 0.0077169986617292
522 => 0.0078128750389525
523 => 0.0078142062825432
524 => 0.0078596509244251
525 => 0.0079058253125532
526 => 0.0079944530296235
527 => 0.0079033535336269
528 => 0.0077394744086862
529 => 0.0077513059521806
530 => 0.0076552236811889
531 => 0.007656838841523
601 => 0.0076482169890774
602 => 0.0076740918172893
603 => 0.0075535633722874
604 => 0.0075818511574205
605 => 0.0075422480925811
606 => 0.0076004838943912
607 => 0.0075378317983665
608 => 0.007590490367678
609 => 0.0076132160605336
610 => 0.0076970743564201
611 => 0.0075254458598809
612 => 0.0071754837372098
613 => 0.0072490500182759
614 => 0.0071402397100725
615 => 0.0071503105183668
616 => 0.0071706551538785
617 => 0.0071047115338345
618 => 0.0071172914984166
619 => 0.0071168420535579
620 => 0.0071129689805752
621 => 0.0070958144981383
622 => 0.0070709371046939
623 => 0.0071700409833185
624 => 0.0071868806634626
625 => 0.0072243131864279
626 => 0.00733568698405
627 => 0.0073245581152926
628 => 0.0073427097619683
629 => 0.0073030848191923
630 => 0.0071521486058151
701 => 0.0071603451683775
702 => 0.0070581339018832
703 => 0.0072216994145414
704 => 0.0071829649421847
705 => 0.0071579925758736
706 => 0.0071511786343583
707 => 0.0072628285060826
708 => 0.0072962358975998
709 => 0.0072754186530929
710 => 0.0072327218772733
711 => 0.0073147123090156
712 => 0.0073366494896513
713 => 0.0073415604153835
714 => 0.007486831740325
715 => 0.0073496794686846
716 => 0.0073826933836448
717 => 0.0076402585239265
718 => 0.0074066824832508
719 => 0.007530412921364
720 => 0.0075243569602805
721 => 0.0075876532656095
722 => 0.0075191648157628
723 => 0.0075200138121813
724 => 0.0075762166432504
725 => 0.0074972899032479
726 => 0.0074777465324741
727 => 0.0074507475057223
728 => 0.0075096988928952
729 => 0.0075450375833634
730 => 0.0078298414751294
731 => 0.0080138377778456
801 => 0.008005850013089
802 => 0.0080788432304956
803 => 0.0080459591175127
804 => 0.0079397676423001
805 => 0.0081210235418171
806 => 0.008063666591141
807 => 0.008068395028466
808 => 0.0080682190357926
809 => 0.0081063563937606
810 => 0.0080793325804028
811 => 0.0080260658703369
812 => 0.0080614267983319
813 => 0.0081664361127139
814 => 0.0084923882466347
815 => 0.0086747953790682
816 => 0.008481407108225
817 => 0.0086148037478805
818 => 0.0085348132981699
819 => 0.0085202766539478
820 => 0.0086040596015856
821 => 0.0086879892001823
822 => 0.0086826432475893
823 => 0.0086217146688407
824 => 0.0085872976607111
825 => 0.0088479147768123
826 => 0.0090399330284589
827 => 0.0090268386710033
828 => 0.0090846329062991
829 => 0.0092543185686363
830 => 0.0092698324990304
831 => 0.0092678781003843
901 => 0.0092294252051912
902 => 0.0093965027762298
903 => 0.0095358818254403
904 => 0.009220524470965
905 => 0.0093406084232183
906 => 0.0093945179782481
907 => 0.0094736731992761
908 => 0.0096072213251057
909 => 0.0097522900116477
910 => 0.0097728043145219
911 => 0.0097582484349328
912 => 0.0096625717365029
913 => 0.0098213076243464
914 => 0.0099142913846305
915 => 0.0099696610859842
916 => 0.010110069435977
917 => 0.009394850905307
918 => 0.0088885836806311
919 => 0.0088095227429106
920 => 0.008970296268683
921 => 0.0090126909652844
922 => 0.0089956017162428
923 => 0.0084257519270678
924 => 0.0088065226017037
925 => 0.0092161998315043
926 => 0.009231937202364
927 => 0.0094370301895491
928 => 0.0095038168732222
929 => 0.0096689436100585
930 => 0.0096586148877102
1001 => 0.0096988206203896
1002 => 0.0096895780187129
1003 => 0.0099954405271654
1004 => 0.010332852295011
1005 => 0.010321168798394
1006 => 0.010272661864691
1007 => 0.010344702932901
1008 => 0.01069294803656
1009 => 0.010660887207929
1010 => 0.010692031572009
1011 => 0.011102632175456
1012 => 0.011636471367193
1013 => 0.011388449466053
1014 => 0.011926585625148
1015 => 0.012265313811926
1016 => 0.01285110918581
1017 => 0.012777764719897
1018 => 0.013005810560185
1019 => 0.01264646281846
1020 => 0.011821327767298
1021 => 0.011690746986962
1022 => 0.011952173016028
1023 => 0.012594863398906
1024 => 0.01193193240873
1025 => 0.012066042484639
1026 => 0.012027418773755
1027 => 0.012025360680343
1028 => 0.012103909735038
1029 => 0.011989970234359
1030 => 0.011525760211265
1031 => 0.011738504929242
1101 => 0.011656353976791
1102 => 0.011747506583295
1103 => 0.012239419606402
1104 => 0.012021933133145
1105 => 0.011792828800734
1106 => 0.012080176475898
1107 => 0.012446068809756
1108 => 0.012423171925075
1109 => 0.012378742398639
1110 => 0.012629189312908
1111 => 0.01304285424122
1112 => 0.013154666209102
1113 => 0.013237203517898
1114 => 0.013248584018301
1115 => 0.013365810245401
1116 => 0.012735455277474
1117 => 0.013735844800237
1118 => 0.013908584435616
1119 => 0.013876116543489
1120 => 0.014068109378217
1121 => 0.014011620215852
1122 => 0.013929776282463
1123 => 0.014234125763554
1124 => 0.01388521364322
1125 => 0.01338997681522
1126 => 0.013118280096706
1127 => 0.013476072252795
1128 => 0.013694563437293
1129 => 0.013838972211596
1130 => 0.013882670219447
1201 => 0.012784387939244
1202 => 0.012192474703743
1203 => 0.0125718843014
1204 => 0.013034790195994
1205 => 0.012732883811857
1206 => 0.012744717970531
1207 => 0.012314278806354
1208 => 0.01307287451092
1209 => 0.012962353497559
1210 => 0.013535736710384
1211 => 0.013398894204956
1212 => 0.013866465956407
1213 => 0.013743338644214
1214 => 0.014254433233171
1215 => 0.01445832270204
1216 => 0.014800684853132
1217 => 0.01505252784514
1218 => 0.015200414867036
1219 => 0.015191536284952
1220 => 0.015777538342725
1221 => 0.015431993402609
1222 => 0.014997907519133
1223 => 0.014990056275024
1224 => 0.015214875505121
1225 => 0.01568603493526
1226 => 0.015808199720404
1227 => 0.015876473169273
1228 => 0.015771910005714
1229 => 0.015396845738647
1230 => 0.015234894889746
1231 => 0.015372881705177
]
'min_raw' => 0.0056898597628879
'max_raw' => 0.015876473169273
'avg_raw' => 0.010783166466081
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.005689'
'max' => '$0.015876'
'avg' => '$0.010783'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.0022525302819336
'max_diff' => 0.0082028772461884
'year' => 2036
]
11 => [
'items' => [
101 => 0.015204135687247
102 => 0.015495438655965
103 => 0.015895459850971
104 => 0.015812857056057
105 => 0.01608898581495
106 => 0.016374750030812
107 => 0.016783405693968
108 => 0.016890243416792
109 => 0.017066842109946
110 => 0.01724862017485
111 => 0.017307002390241
112 => 0.01741847215436
113 => 0.01741788465368
114 => 0.017753806290633
115 => 0.018124338258819
116 => 0.018264205498974
117 => 0.018585822505387
118 => 0.018035064652709
119 => 0.018452820810616
120 => 0.018829647322162
121 => 0.018380379220363
122 => 0.018999590632651
123 => 0.019023633208627
124 => 0.019386647561202
125 => 0.019018662969732
126 => 0.018800154893966
127 => 0.019430979521313
128 => 0.019736215687696
129 => 0.019644276070287
130 => 0.018944611042185
131 => 0.018537375985785
201 => 0.017471563293411
202 => 0.01873406446721
203 => 0.019348991961304
204 => 0.018943018528531
205 => 0.019147767913958
206 => 0.020264814170632
207 => 0.020690113061785
208 => 0.020601653865489
209 => 0.020616602013501
210 => 0.020846085575446
211 => 0.021863742068016
212 => 0.021253938708575
213 => 0.021720110527972
214 => 0.021967366380072
215 => 0.022197031395222
216 => 0.021633046704388
217 => 0.020899310908195
218 => 0.020666905981407
219 => 0.018902652471504
220 => 0.018810815414549
221 => 0.018759264491532
222 => 0.018434243213936
223 => 0.018178865520565
224 => 0.017975779697232
225 => 0.017442821850243
226 => 0.01762267947846
227 => 0.016773255907308
228 => 0.017316687006408
301 => 0.0159609864768
302 => 0.017090054162716
303 => 0.01647555395368
304 => 0.016888174317118
305 => 0.016886734723541
306 => 0.016126969813047
307 => 0.015688753268563
308 => 0.015968001906351
309 => 0.016267378612845
310 => 0.016315951476249
311 => 0.016704101190749
312 => 0.016812425432816
313 => 0.016484197922178
314 => 0.015932892596656
315 => 0.016060948249839
316 => 0.015686158224839
317 => 0.015029353122116
318 => 0.015501082013608
319 => 0.015662150997619
320 => 0.015733288236856
321 => 0.015087395852904
322 => 0.01488444244286
323 => 0.014776391750297
324 => 0.015849516000657
325 => 0.015908304169533
326 => 0.015607535585755
327 => 0.016967038104478
328 => 0.016659340814159
329 => 0.017003114075112
330 => 0.016049328541529
331 => 0.016085764433354
401 => 0.015634227076665
402 => 0.015887057824674
403 => 0.015708365201096
404 => 0.015866631598757
405 => 0.015961495824957
406 => 0.01641295908881
407 => 0.017095209147994
408 => 0.016345525532163
409 => 0.016018877645079
410 => 0.016221528157089
411 => 0.016761213175543
412 => 0.017578863604469
413 => 0.017094798093796
414 => 0.017309618147467
415 => 0.017356546772516
416 => 0.016999614786025
417 => 0.017592024195933
418 => 0.017909501211429
419 => 0.018235166936715
420 => 0.018517933361035
421 => 0.018105088884493
422 => 0.018546891653324
423 => 0.018190876610334
424 => 0.017871494312612
425 => 0.017871978683723
426 => 0.017671625502931
427 => 0.017283415969022
428 => 0.017211824174767
429 => 0.017584253729531
430 => 0.017882906963243
501 => 0.017907505474023
502 => 0.018072855249563
503 => 0.018170707543489
504 => 0.019129793047709
505 => 0.019515545171478
506 => 0.019987235566508
507 => 0.020170985558387
508 => 0.020724007155923
509 => 0.020277397301694
510 => 0.020180770450424
511 => 0.018839320946788
512 => 0.019058983227859
513 => 0.019410683734112
514 => 0.018845120358597
515 => 0.019203840145617
516 => 0.019274659030298
517 => 0.018825902731513
518 => 0.019065602860309
519 => 0.018429030384361
520 => 0.017109084688418
521 => 0.017593493672819
522 => 0.01795018173564
523 => 0.017441143890674
524 => 0.018353574525291
525 => 0.017820551384939
526 => 0.017651608639071
527 => 0.016992502755
528 => 0.017303575360969
529 => 0.017724305514673
530 => 0.017464343194814
531 => 0.01800380404206
601 => 0.018767824470714
602 => 0.019312310926375
603 => 0.019354109835525
604 => 0.019004041522295
605 => 0.019565028228353
606 => 0.019569114404064
607 => 0.018936319107932
608 => 0.01854873551247
609 => 0.018460675704098
610 => 0.018680666370553
611 => 0.018947775652147
612 => 0.019368932541668
613 => 0.019623428829488
614 => 0.020287020173723
615 => 0.020466568964818
616 => 0.020663838650439
617 => 0.020927451786148
618 => 0.021243986944586
619 => 0.020551426038279
620 => 0.020578942774182
621 => 0.019934039647388
622 => 0.019244868167945
623 => 0.019767863414404
624 => 0.020451610128008
625 => 0.020294757876435
626 => 0.020277108793932
627 => 0.020306789655254
628 => 0.020188528179883
629 => 0.019653635909755
630 => 0.0193850163603
701 => 0.019731604111253
702 => 0.019915800076039
703 => 0.020201471953845
704 => 0.020166256865104
705 => 0.020902116943413
706 => 0.02118804991859
707 => 0.021114896027778
708 => 0.021128358104234
709 => 0.021646026097853
710 => 0.022221779373301
711 => 0.022761048293094
712 => 0.023309615800446
713 => 0.022648296259378
714 => 0.022312518980943
715 => 0.022658955422527
716 => 0.022475131370177
717 => 0.023531438900737
718 => 0.023604575342315
719 => 0.024660806489818
720 => 0.025663295622463
721 => 0.025033650159707
722 => 0.025627377471231
723 => 0.026269541965943
724 => 0.027508381463677
725 => 0.027091183903739
726 => 0.026771617111146
727 => 0.026469628036281
728 => 0.02709801936166
729 => 0.027906434762962
730 => 0.028080559697496
731 => 0.028362708612286
801 => 0.028066063527912
802 => 0.028423339857656
803 => 0.029684682296826
804 => 0.029343856435585
805 => 0.028859828922131
806 => 0.02985553763724
807 => 0.030215880750518
808 => 0.032744957432659
809 => 0.035938021214809
810 => 0.034616071842211
811 => 0.033795495207601
812 => 0.033988350181072
813 => 0.035154348982283
814 => 0.03552883079028
815 => 0.034510860144524
816 => 0.034870424586045
817 => 0.036851660010421
818 => 0.037914529249956
819 => 0.036471010060284
820 => 0.03248839786678
821 => 0.028816247540404
822 => 0.029790267166043
823 => 0.029679843567844
824 => 0.031808433867183
825 => 0.029335727851513
826 => 0.029377361879209
827 => 0.031549969171722
828 => 0.030970354793998
829 => 0.030031453733486
830 => 0.028823102557196
831 => 0.026589353648868
901 => 0.024610859948066
902 => 0.028491141715226
903 => 0.028323816909592
904 => 0.028081505794886
905 => 0.028620742959863
906 => 0.031239125567847
907 => 0.031178763373856
908 => 0.030794769892744
909 => 0.031086025563804
910 => 0.029980395206148
911 => 0.030265341324051
912 => 0.028815665853031
913 => 0.029470979709728
914 => 0.030029439273492
915 => 0.030141558299052
916 => 0.03039416818858
917 => 0.028235644340321
918 => 0.029204758177258
919 => 0.029774021762773
920 => 0.027202068173432
921 => 0.029723182509773
922 => 0.028198069242404
923 => 0.027680422893027
924 => 0.028377365507743
925 => 0.028105766292989
926 => 0.027872261236985
927 => 0.027741961403609
928 => 0.028253719141107
929 => 0.028229845030969
930 => 0.027392510044526
1001 => 0.026300240688852
1002 => 0.026666842137135
1003 => 0.026533652394067
1004 => 0.026050955583368
1005 => 0.026376234952744
1006 => 0.024943869230135
1007 => 0.022479558452277
1008 => 0.02410755763601
1009 => 0.024044881438359
1010 => 0.024013277257364
1011 => 0.025236673649347
1012 => 0.025119072314815
1013 => 0.024905624741083
1014 => 0.026047035451289
1015 => 0.025630405187923
1016 => 0.026914361489181
1017 => 0.027760058150276
1018 => 0.027545562121601
1019 => 0.028340943918968
1020 => 0.026675287894073
1021 => 0.027228552011022
1022 => 0.027342578978735
1023 => 0.026032950620302
1024 => 0.025138313347545
1025 => 0.025078651241063
1026 => 0.023527473498712
1027 => 0.024356100128007
1028 => 0.025085257270886
1029 => 0.024736047584327
1030 => 0.024625498229905
1031 => 0.025190270906418
1101 => 0.025234158580333
1102 => 0.024233514964044
1103 => 0.024441580458133
1104 => 0.025309248156493
1105 => 0.02441971745834
1106 => 0.022691504615844
1107 => 0.022262883936493
1108 => 0.022205698036821
1109 => 0.021043244760087
1110 => 0.022291526419817
1111 => 0.021746618023476
1112 => 0.023467977118512
1113 => 0.022484746035262
1114 => 0.022442360908422
1115 => 0.022378289572657
1116 => 0.021377718017031
1117 => 0.021596779598074
1118 => 0.022324973657479
1119 => 0.022584801501569
1120 => 0.022557699328723
1121 => 0.022321405109323
1122 => 0.022429579392942
1123 => 0.022081112334987
1124 => 0.021958061364108
1125 => 0.021569678652178
1126 => 0.020998863359104
1127 => 0.02107823872662
1128 => 0.019947304269094
1129 => 0.019331111153399
1130 => 0.01916055702027
1201 => 0.018932484905501
1202 => 0.01918631837251
1203 => 0.01994410047387
1204 => 0.019030054487188
1205 => 0.017462986755893
1206 => 0.017557170196698
1207 => 0.01776877242487
1208 => 0.017374453072559
1209 => 0.017001262898312
1210 => 0.017325721476944
1211 => 0.016661734220906
1212 => 0.017849012112526
1213 => 0.017816899572866
1214 => 0.018259443350089
1215 => 0.0185361750559
1216 => 0.01789839806696
1217 => 0.017737998878974
1218 => 0.017829369546188
1219 => 0.016319215947826
1220 => 0.018136031582946
1221 => 0.018151743480003
1222 => 0.018017208678428
1223 => 0.01898460691624
1224 => 0.0210261189371
1225 => 0.020258019995222
1226 => 0.019960588869013
1227 => 0.019395172080669
1228 => 0.02014855638001
1229 => 0.020090708220447
1230 => 0.019829096904638
1231 => 0.019670873564559
]
'min_raw' => 0.014776391750297
'max_raw' => 0.037914529249956
'avg_raw' => 0.026345460500126
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.014776'
'max' => '$0.037914'
'avg' => '$0.026345'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.0090865319874088
'max_diff' => 0.022038056080683
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.00046381405243716
]
1 => [
'year' => 2028
'avg' => 0.00079603956016365
]
2 => [
'year' => 2029
'avg' => 0.0021746366061955
]
3 => [
'year' => 2030
'avg' => 0.0016777289031138
]
4 => [
'year' => 2031
'avg' => 0.0016477377015118
]
5 => [
'year' => 2032
'avg' => 0.0028890027528892
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.00046381405243716
'min' => '$0.000463'
'max_raw' => 0.0028890027528892
'max' => '$0.002889'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.0028890027528892
]
1 => [
'year' => 2033
'avg' => 0.0074308121530809
]
2 => [
'year' => 2034
'avg' => 0.0047100058507444
]
3 => [
'year' => 2035
'avg' => 0.0055554627020195
]
4 => [
'year' => 2036
'avg' => 0.010783166466081
]
5 => [
'year' => 2037
'avg' => 0.026345460500126
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.0028890027528892
'min' => '$0.002889'
'max_raw' => 0.026345460500126
'max' => '$0.026345'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.026345460500126
]
]
]
]
'prediction_2025_max_price' => '$0.000793'
'last_price' => 0.00076895
'sma_50day_nextmonth' => '$0.000672'
'sma_200day_nextmonth' => '$0.001783'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 feb. 2026'
'sma_50day_date_nextmonth' => '4 feb. 2026'
'daily_sma3' => '$0.000669'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.000913'
'daily_sma5_action' => 'SELL'
'daily_sma10' => '$0.0007062'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.00061'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.000592'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.001125'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.002074'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.000731'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.000737'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.0007064'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.000651'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.000734'
'daily_ema50_action' => 'BUY'
'daily_ema100' => '$0.001121'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.001725'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.00158'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.00233'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.003467'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.005153'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.000692'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.0007024'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.000882'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.00138'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.002239'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.0038018'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.015193'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '51.81'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 23.26
'stoch_rsi_14_action' => 'NEUTRAL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.000662'
'vwma_10_action' => 'BUY'
'hma_9' => '0.0007061'
'hma_9_action' => 'SELL'
'stochastic_fast_14' => 27.3
'stochastic_fast_14_action' => 'NEUTRAL'
'cci_20' => 33.22
'cci_20_action' => 'NEUTRAL'
'adx_14' => 18.54
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.000333'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'NEUTRAL'
'williams_percent_r_14' => -72.7
'williams_percent_r_14_action' => 'NEUTRAL'
'ultimate_oscillator' => 52.14
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.000655'
'ichimoku_cloud_action' => 'NEUTRAL'
'sell_signals' => 16
'buy_signals' => 17
'sell_pct' => 48.48
'buy_pct' => 51.52
'overall_action' => 'bullish'
'overall_action_label' => 'Alcista'
'overall_action_dir' => 1
'last_updated' => 1767690169
'last_updated_date' => '6 de enero de 2026'
]
Predicción de precio de Pillar para 2026
La previsión del precio de Pillar para 2026 sugiere que el precio medio podría oscilar entre $0.000265 en el extremo inferior y $0.000793 en el extremo superior. En el mercado de criptomonedas, en comparación con el precio medio de hoy, Pillar podría potencialmente ganar 3.13% para 2026 si PLR alcanza el objetivo de precio previsto.
Predicción de precio de Pillar 2027-2032
La predicción del precio de PLR para 2027-2032 está actualmente dentro de un rango de precios de $0.000463 en el extremo inferior y $0.002889 en el extremo superior. Considerando la volatilidad de precios en el mercado, si Pillar alcanza el objetivo de precio superior, podría ganar 275.71% para 2032 en comparación con el precio de hoy.
| Predicción de Precio de Pillar | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.000255 | $0.000463 | $0.000671 |
| 2028 | $0.000461 | $0.000796 | $0.00113 |
| 2029 | $0.001013 | $0.002174 | $0.003335 |
| 2030 | $0.000862 | $0.001677 | $0.002493 |
| 2031 | $0.001019 | $0.001647 | $0.002275 |
| 2032 | $0.001556 | $0.002889 | $0.004221 |
Predicción de precio de Pillar 2032-2037
La predicción de precio de Pillar para 2032-2037 se estima actualmente entre $0.002889 en el extremo inferior y $0.026345 en el extremo superior. Comparado con el precio actual, Pillar podría potencialmente ganar 3326.16% para 2037 si alcanza el objetivo de precio superior. Tenga en cuenta que esta información es solo para fines generales y no debe considerarse como consejo de inversión a largo plazo.
| Predicción de Precio de Pillar | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.001556 | $0.002889 | $0.004221 |
| 2033 | $0.003616 | $0.00743 | $0.011245 |
| 2034 | $0.0029073 | $0.00471 | $0.006512 |
| 2035 | $0.003437 | $0.005555 | $0.007673 |
| 2036 | $0.005689 | $0.010783 | $0.015876 |
| 2037 | $0.014776 | $0.026345 | $0.037914 |
Pillar Histograma de precios potenciales
Pronóstico de precio de Pillar basado en análisis técnico
A fecha de 6 de enero de 2026, el sentimiento general de predicción de precio para Pillar es Alcista, con 17 indicadores técnicos mostrando señales alcistas y 16 indicando señales bajistas. La predicción de precio de PLR se actualizó por última vez el 6 de enero de 2026.
Promedios Móviles Simples de 50 y 200 días y el Índice de Fuerza Relativa de 14 días - RSI (14) de Pillar
Según nuestros indicadores técnicos, se proyecta que el SMA de 200 días de Pillar aumentar durante el próximo mes, alcanzando $0.001783 para el 4 feb. 2026. Se espera que el SMA de 50 días a corto plazo para Pillar alcance $0.000672 para el 4 feb. 2026.
El oscilador de momento del Índice de Fuerza Relativa (RSI) es una herramienta comúnmente utilizada para identificar si una criptomoneda está sobrevendida (por debajo de 30) o sobrecomprada (por encima de 70). Actualmente, el RSI se encuentra en 51.81, lo que sugiere que el mercado de PLR está en un estado NEUTRAL.
Promedios Móviles y Osciladores Populares de PLR para Sáb, 19 de Oct de 2024
Los promedios móviles (MA) son indicadores ampliamente utilizados en los mercados financieros, diseñados para suavizar los movimientos de precios durante un período establecido. Como indicadores rezagados, se basan en datos históricos de precios. La tabla a continuación resalta dos tipos: el promedio móvil simple (SMA) y el promedio móvil exponencial (EMA).
Promedio Móvil Simple Diario (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 3 | $0.000669 | BUY |
| SMA 5 | $0.000913 | SELL |
| SMA 10 | $0.0007062 | BUY |
| SMA 21 | $0.00061 | BUY |
| SMA 50 | $0.000592 | BUY |
| SMA 100 | $0.001125 | SELL |
| SMA 200 | $0.002074 | SELL |
Promedio Móvil Exponencial Diario (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 3 | $0.000731 | BUY |
| EMA 5 | $0.000737 | BUY |
| EMA 10 | $0.0007064 | BUY |
| EMA 21 | $0.000651 | BUY |
| EMA 50 | $0.000734 | BUY |
| EMA 100 | $0.001121 | SELL |
| EMA 200 | $0.001725 | SELL |
Promedio Móvil Simple Semanal (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 21 | $0.00158 | SELL |
| SMA 50 | $0.00233 | SELL |
| SMA 100 | $0.003467 | SELL |
| SMA 200 | $0.005153 | SELL |
Promedio Móvil Exponencial Semanal (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 21 | $0.00138 | SELL |
| EMA 50 | $0.002239 | SELL |
| EMA 100 | $0.0038018 | SELL |
| EMA 200 | $0.015193 | SELL |
Osciladores de Pillar
Un oscilador es una herramienta de análisis técnico que establece límites altos y bajos entre dos extremos, creando un indicador de tendencia que fluctúa dentro de estos límites. Los traders utilizan este indicador para identificar condiciones de sobrecompra o sobreventa a corto plazo.
| Período | Valor | Acción |
|---|---|---|
| RSI (14) | 51.81 | NEUTRAL |
| Stoch RSI (14) | 23.26 | NEUTRAL |
| Estocástico Rápido (14) | 27.3 | NEUTRAL |
| Índice de Canal de Materias Primas (20) | 33.22 | NEUTRAL |
| Índice Direccional Medio (14) | 18.54 | NEUTRAL |
| Oscilador Asombroso (5, 34) | 0.000333 | BUY |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | NEUTRAL |
| Rango Percentil de Williams (14) | -72.7 | NEUTRAL |
| Oscilador Ultimate (7, 14, 28) | 52.14 | NEUTRAL |
| VWMA (10) | 0.000662 | BUY |
| Promedio Móvil de Hull (9) | 0.0007061 | SELL |
| Nube Ichimoku B/L (9, 26, 52, 26) | -0.000655 | NEUTRAL |
Predicción de precios de Pillar basada en flujos de dinero globales
Definiciones de flujos de dinero globales utilizadas para la predicción de precios de Pillar
M0: El total de toda la moneda física, además de cuentas en el banco central que pueden cambiarse por moneda física.
M1: Medir M0 más la cantidad en cuentas a la vista, incluyendo cuentas "de cheques" o "corrientes".
M2: Medir M1 más la mayoría de cuentas de ahorro, cuentas del mercado monetario, y cuentas de certificados de depósito (CD) inferiores a 100 000 $.
Predicciones de precios de Pillar por parte de empresas de Internet o nichos tecnológicos
| Comparación | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook acción | $0.00108 | $0.001518 | $0.002133 | $0.002997 | $0.004212 | $0.005919 |
| Amazon.com acción | $0.0016044 | $0.003347 | $0.006985 | $0.014575 | $0.030412 | $0.063457 |
| Apple acción | $0.00109 | $0.001547 | $0.002194 | $0.003112 | $0.004414 | $0.006262 |
| Netflix acción | $0.001213 | $0.001914 | $0.00302 | $0.004765 | $0.007519 | $0.011865 |
| Google acción | $0.000995 | $0.001289 | $0.001669 | $0.002162 | $0.00280052 | $0.003626 |
| Tesla acción | $0.001743 | $0.003951 | $0.008957 | $0.020307 | $0.046034 | $0.104356 |
| Kodak acción | $0.000576 | $0.000432 | $0.000324 | $0.000243 | $0.000182 | $0.000136 |
| Nokia acción | $0.0005093 | $0.000337 | $0.000223 | $0.000148 | $0.000098 | $0.000064 |
Este cálculo muestra cuánto puede costar la criptomoneda si asumimos que su capitalización se comportará como la capitalización de algunas empresas de Internet o nichos tecnológicos. Si extrapola los datos, puede obtener una imagen potencial del precio futuro en 2024, 2025, 2026, 2027, 2028, 2029 y 2030.
Resumen de pronósticos y predicciones de Pillar
Podría preguntarse cosas como: "¿Debo invertir en Pillar ahora?", "¿Debería comprar PLR hoy?", "¿Será Pillar una buena o mala inversión a corto plazo?, ¿Lo será a largo plazo?".
Actualizamos el pronóstico de Pillar regularmente con valores actualizados. Aquí hay algunas predicciones similares. Hacemos un pronóstico de precios futuros para una gran cantidad de monedas digitales, como Pillar, con métodos de análisis técnico.
Si está tratando de encontrar criptomonedas que ofrezcan un buen rendimiento, debería explorar el máximo de fuentes de información disponibles acerca de Pillar a fin de tomar una decisión responsable sobre la inversión por sus propios medios.
El precio de Pillar es de $0.0007689 USD hoy, pero dicho precio puede subir y bajar, y su inversión puede perderse porque estos son activos de criptomonedas conllevan un alto riesgo
Predicción de precios de Pillar basada en el patrón de crecimiento del Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si Pillar ofrece un 1 % del crecimiento medio anterior anual del Bitcoin | $0.000788 | $0.0008094 | $0.00083 | $0.000852 |
| Si Pillar ofrece un 2 % del crecimiento medio anterior anual del Bitcoin | $0.0008089 | $0.00085 | $0.000895 | $0.000941 |
| Si Pillar ofrece un 5 % del crecimiento medio anterior anual del Bitcoin | $0.000868 | $0.000981 | $0.0011094 | $0.001253 |
| Si Pillar ofrece un 10 % del crecimiento medio anterior anual del Bitcoin | $0.000968 | $0.00122 | $0.001537 | $0.001937 |
| Si Pillar ofrece un 20 % del crecimiento medio anterior anual del Bitcoin | $0.001168 | $0.001776 | $0.002699 | $0.0041031 |
| Si Pillar ofrece un 50 % del crecimiento medio anterior anual del Bitcoin | $0.001768 | $0.004066 | $0.009351 | $0.0215056 |
| Si Pillar ofrece un 100 % del crecimiento medio anterior anual del Bitcoin | $0.002767 | $0.009961 | $0.035855 | $0.129056 |
Cuadro de preguntas
¿Es PLR una buena inversión?
La decisión de adquirir Pillar depende completamente de su tolerancia individual al riesgo. Como puede discernir, el valor de Pillar ha experimentado un aumento de 21.1154% durante las últimas 24 horas, y Pillar ha sufrido un declive de durante el período previo de 30 días. Por lo tanto, la determinación de si invertir o no en Pillar dependerá de si dicha inversión se alinea con sus aspiraciones comerciales.
¿Puede Pillar subir?
Parece que el valor medio de Pillar podría potencialmente aumentar hasta $0.000793 para el final de este año. Mirando las perspectivas de Pillar en un horizonte de cinco años más extendido, la moneda digital podría potencialmente crecer hasta $0.002493. Sin embargo, dada la imprevisibilidad del mercado, es vital realizar una investigación exhaustiva antes de invertir cualquier fondo en un proyecto, red o activo en particular.
¿Cuál será el precio de Pillar la próxima semana?
Basado en nuestro nuevo pronóstico experimental de Pillar, el precio de Pillar aumentará en un 0.86% durante la próxima semana y alcanzará $0.000775 para el 13 de enero de 2026.
¿Cuál será el precio de Pillar el próximo mes?
Basado en nuestro nuevo pronóstico experimental de Pillar, el precio de Pillar disminuirá en un -11.62% durante el próximo mes y alcanzará $0.000679 para el 5 de febrero de 2026.
¿Hasta qué punto puede subir el precio de Pillar este año en 2026?
Según nuestra predicción más reciente sobre el valor de Pillar en 2026, se anticipa que PLR fluctúe dentro del rango de $0.000265 y $0.000793. Sin embargo, es crucial tener en cuenta que el mercado de criptomonedas es excepcionalmente inestable, y esta predicción de precios proyectada de Pillar no considera fluctuaciones de precios repentinas y extremas.
¿Dónde estará Pillar en 5 años?
El futuro de Pillar parece estar en una tendencia alcista, con un precio máximo de $0.002493 proyectada después de un período de cinco años. Basado en el pronóstico de Pillar para 2030, el valor de Pillar podría potencialmente alcanzar su punto más alto de aproximadamente $0.002493, mientras que su punto más bajo se anticipa que esté alrededor de $0.000862.
¿Cuánto será Pillar en 2026?
Basado en nuestra nueva simulación experimental de predicción de precios de Pillar, se espera que el valor de PLR en 2026 crezca en un 3.13% hasta $0.000793 si ocurre lo mejor. El precio estará entre $0.000793 y $0.000265 durante 2026.
¿Cuánto será Pillar en 2027?
Según nuestra última simulación experimental para la predicción de precios de Pillar, el valor de PLR podría disminuir en un -12.62% hasta $0.000671 en 2027, asumiendo las condiciones más favorables. Se proyecta que el precio fluctúe entre $0.000671 y $0.000255 a lo largo del año.
¿Cuánto será Pillar en 2028?
Nuestro nuevo modelo experimental de predicción de precios de Pillar sugiere que el valor de PLR en 2028 podría aumentar en un 47.02% , alcanzando $0.00113 en el mejor escenario. Se espera que el precio oscile entre $0.00113 y $0.000461 durante el año.
¿Cuánto será Pillar en 2029?
Basado en nuestro modelo de pronóstico experimental, el valor de Pillar podría experimentar un 333.75% crecimiento en 2029, potencialmente alcanzando $0.003335 bajo condiciones óptimas. El rango de precios previsto para 2029 se encuentra entre $0.003335 y $0.001013.
¿Cuánto será Pillar en 2030?
Usando nuestra nueva simulación experimental para las predicciones de precios de Pillar, se espera que el valor de PLR en 2030 aumente en un 224.23% , alcanzando $0.002493 en el mejor escenario. Se pronostica que el precio oscile entre $0.002493 y $0.000862 durante el transcurso de 2030.
¿Cuánto será Pillar en 2031?
Nuestra simulación experimental indica que el precio de Pillar podría crecer en un 195.98% en 2031, potencialmente alcanzando $0.002275 bajo condiciones ideales. Es probable que el precio fluctúe entre $0.002275 y $0.001019 durante el año.
¿Cuánto será Pillar en 2032?
Basado en los hallazgos de nuestra última predicción experimental de precios de Pillar, PLR podría experimentar un 449.04% aumento en valor, alcanzando $0.004221 si se desarrolla el escenario más positivo en 2032. Se espera que el precio se mantenga dentro de un rango de $0.004221 y $0.001556 a lo largo del año.
¿Cuánto será Pillar en 2033?
Según nuestra predicción experimental de precios de Pillar, se anticipa que el valor de PLR aumente en un 1362.43% en 2033, con el precio potencial más alto siendo $0.011245. A lo largo del año, el precio de PLR podría oscilar entre $0.011245 y $0.003616.
¿Cuánto será Pillar en 2034?
Los resultados de nuestra nueva simulación de predicción de precios de Pillar sugieren que PLR podría aumentar en un 746.96% en 2034, alcanzando potencialmente $0.006512 bajo las mejores circunstancias. El rango de precios previsto para el año está entre $0.006512 y $0.0029073.
¿Cuánto será Pillar en 2035?
Basado en nuestra predicción experimental para el precio de Pillar, PLR podría crecer en un 897.93% , con el valor potencialmente alcanzando $0.007673 en 2035. El rango de precios esperado para el año está entre $0.007673 y $0.003437.
¿Cuánto será Pillar en 2036?
Nuestra reciente simulación de predicción de precios de Pillar sugiere que el valor de PLR podría aumentar en un 1964.7% en 2036, posiblemente alcanzando $0.015876 si las condiciones son óptimas. El rango de precios esperado para 2036 está entre $0.015876 y $0.005689.
¿Cuánto será Pillar en 2037?
Según la simulación experimental, el valor de Pillar podría aumentar en un 4830.69% en 2037, con un máximo de $0.037914 bajo condiciones favorables. Se espera que el precio caiga entre $0.037914 y $0.014776 durante el transcurso del año.
Predicciones relacionadas
Predicción de precios de Metaverser
Predicción de precios de TYBENG
Predicción de precios de DePay
Predicción de precios de SafeMoonCash
Predicción de precios de Kambria
Predicción de precios de League of Ancients
Predicción de precios de Revuto
Predicción de precios de Heroes of NFT
Predicción de precios de Pandacoin
Predicción de precios de DOLA Borrowing Right
Predicción de precios de MetaFighter
Predicción de precios de Kalmar
Predicción de precios de Nominex
Predicción de precios de MetaVPad
Predicción de precios de FlowX Finance
Predicción de precios de Solanacorn
Predicción de precios de Battle Infinity
Predicción de precios de Virtacoinplus
Predicción de precios de Cryptocart
Predicción de precios de SYNO Finance
Predicción de precios de NFTY Token
Predicción de precios de IP Exchange
Predicción de precios de NetherFi
Predicción de precios de Tokenomy
Predicción de precios de Roobee
¿Cómo leer y predecir los movimientos de precio de Pillar?
Los traders de Pillar utilizan indicadores y patrones de gráficos para predecir la dirección del mercado. También identifican niveles clave de soporte y resistencia para estimar cuándo una tendencia bajista podría desacelerar o una tendencia alcista podría estancarse.
Indicadores de predicción de precio de Pillar
Las medias móviles son herramientas populares para la predicción de precios de Pillar. Una media móvil simple (SMA) calcula el precio de cierre promedio de PLR durante un período específico, como una SMA de 12 días. Una media móvil exponencial (EMA) da más peso a los precios recientes, reaccionando más rápido a los cambios de precio.
Las medias móviles comúnmente utilizadas en el mercado de criptomonedas incluyen las de 50 días, 100 días y 200 días, que ayudan a identificar niveles clave de resistencia y soporte. Un movimiento de precio de PLR por encima de estas medias se considera alcista, mientras que una caída por debajo indica debilidad.
Los traders también utilizan RSI y niveles de retroceso de Fibonacci para evaluar la dirección futura de PLR.
¿Cómo leer gráficos de Pillar y predecir movimientos de precio?
La mayoría de los traders prefieren gráficos de velas sobre gráficos lineales simples porque proporcionan información más detallada. Las velas pueden representar la acción del precio de Pillar en diferentes marcos de tiempo, como 5 minutos para tendencias a corto plazo y semanal para tendencias a largo plazo. Las opciones populares incluyen gráficos de 1 hora, 4 horas y 1 día.
Por ejemplo, un gráfico de velas de 1 hora muestra los precios de apertura, cierre, máximo y mínimo de PLR dentro de cada hora. El color de la vela es crucial: el verde indica que el precio cerró más alto de lo que abrió, mientras que el rojo significa lo contrario. Algunos gráficos usan velas huecas y llenas para transmitir la misma información.
¿Qué afecta el precio de Pillar?
La acción del precio de Pillar está impulsada por la oferta y la demanda, influenciada por factores como reducciones a la mitad de recompensas de bloque, hard forks y actualizaciones de protocolo. Los eventos del mundo real, como regulaciones, adopción por empresas y gobiernos y hacks de exchanges de criptomonedas, también impactan el precio de PLR. La capitalización de mercado de Pillar puede cambiar rápidamente.
Los traders a menudo monitorean la actividad de las "ballenas" de PLR, grandes poseedores de Pillar, ya que sus acciones pueden influir significativamente en los movimientos de precios en el relativamente pequeño mercado de Pillar.
Patrones de predicción de precios alcistas y bajistas
Los traders a menudo identifican patrones de velas para obtener una ventaja en las predicciones de precios de criptomonedas. Ciertas formaciones indican tendencias alcistas, mientras que otras sugieren movimientos bajistas.
Patrones de velas alcistas comúnmente seguidos:
- Martillo
- Envolvente Alcista
- Línea Penetrante
- Estrella de la Mañana
- Tres Soldados Blancos
Patrones de velas bajistas comunes:
- Harami Bajista
- Cubierta de Nube Oscura
- Estrella de la Tarde
- Estrella Fugaz
- Hombre Colgado


