Previsão de Preço Pillar - Projeção PLR
Previsão de Preço Pillar até $0.000793 até 2026
| Ano | Preço Mínimo | Preço Máximo |
|---|---|---|
| 2026 | $0.000265 | $0.000793 |
| 2027 | $0.000256 | $0.000672 |
| 2028 | $0.000462 | $0.001131 |
| 2029 | $0.001015 | $0.003339 |
| 2030 | $0.000863 | $0.002495 |
| 2031 | $0.00102 | $0.002278 |
| 2032 | $0.001557 | $0.004226 |
| 2033 | $0.00362 | $0.011257 |
| 2034 | $0.00291 | $0.006519 |
| 2035 | $0.003441 | $0.007682 |
Calculadora de lucro do investimento
Se você abrir um short de $10,000.00 em Pillar hoje e fechar em Apr 06, 2026, nossa previsão mostra que pode lucrar cerca de $3,959.47, com um retorno de 39.59% nos próximos 90 dias.
Previsão de preço de longo prazo de Pillar para os anos 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'Pillar'
'name_with_ticker' => 'Pillar <small>PLR</small>'
'name_lang' => 'Pillar'
'name_lang_with_ticker' => 'Pillar <small>PLR</small>'
'name_with_lang' => 'Pillar'
'name_with_lang_with_ticker' => 'Pillar <small>PLR</small>'
'image' => '/uploads/coins/pillar.png?1717568582'
'price_for_sd' => 0.0007697
'ticker' => 'PLR'
'marketcap' => '$199.72K'
'low24h' => '$0.0006327'
'high24h' => '$0.0007987'
'volume24h' => '$6.49K'
'current_supply' => '259.35M'
'max_supply' => '800M'
'algo' => null
'proof' => null
'ico_price_and_roi' => ''
'price' => '$0.0007697'
'change_24h_pct' => '21.3647%'
'ath_price' => '$1.56'
'ath_days' => 2896
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '1 de fev. de 2018'
'ath_pct' => '-99.95%'
'fdv' => '$616.07K'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.037956'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.000776'
'next_week_prediction_price_date' => '13 de janeiro de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.00068'
'next_month_prediction_price_date' => '5 de fevereiro de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.000265'
'current_year_max_price_prediction' => '$0.000793'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.000863'
'grand_prediction_max_price' => '$0.002495'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0007843873050852
107 => 0.0007873159225498
108 => 0.00079391424723645
109 => 0.00073753228522649
110 => 0.00076284613088152
111 => 0.00077771564361728
112 => 0.00071053464411963
113 => 0.00077638769126059
114 => 0.00073655080070644
115 => 0.00072302956172234
116 => 0.00074123412872665
117 => 0.00073413979126055
118 => 0.00072804049650067
119 => 0.00072463698522547
120 => 0.00073800441006869
121 => 0.00073738080372222
122 => 0.00071550910217336
123 => 0.00068697835910746
124 => 0.00069655421297009
125 => 0.00069307521548769
126 => 0.00068046687981186
127 => 0.00068896337572112
128 => 0.00065154910771493
129 => 0.00058717980423471
130 => 0.00062970413779883
131 => 0.00062806699721419
201 => 0.00062724147669299
202 => 0.00065919733808018
203 => 0.00065612551935496
204 => 0.00065055013828935
205 => 0.00068036448356632
206 => 0.00066948184648069
207 => 0.00070301956970683
208 => 0.0007251096833075
209 => 0.00071950691595805
210 => 0.00074028277457027
211 => 0.00069677482130258
212 => 0.000711226418142
213 => 0.00071420487222155
214 => 0.00067999657917356
215 => 0.00065662810688823
216 => 0.00065506969620688
217 => 0.00061455198563795
218 => 0.00063619621957634
219 => 0.00065524224974287
220 => 0.00064612067932475
221 => 0.00064323306262954
222 => 0.00065798527007772
223 => 0.00065913164294056
224 => 0.00063299422018074
225 => 0.00063842901803704
226 => 0.00066109302855777
227 => 0.00063785794312177
228 => 0.0005927159675493
301 => 0.00058152013347068
302 => 0.00058002640282443
303 => 0.00054966241285043
304 => 0.00058226829263878
305 => 0.00056803495232791
306 => 0.00061299790382834
307 => 0.00058731530707244
308 => 0.00058620818165745
309 => 0.0005845345992127
310 => 0.00055839905872145
311 => 0.00056412108108878
312 => 0.00058314195492643
313 => 0.00058992881699718
314 => 0.00058922089168008
315 => 0.00058304874226782
316 => 0.00058587432066223
317 => 0.00057677214815706
318 => 0.00057355798160014
319 => 0.00056341318782036
320 => 0.00054850314353488
321 => 0.00055057647664139
322 => 0.00052103577748656
323 => 0.00050494043674344
324 => 0.00050048545855892
325 => 0.00049452807554423
326 => 0.00050115836082242
327 => 0.00052095209239745
328 => 0.00049707665264356
329 => 0.00045614388585289
330 => 0.00045860401488305
331 => 0.00046413119439495
401 => 0.00045383133194047
402 => 0.00044408337652923
403 => 0.00045255843288268
404 => 0.00043521467998634
405 => 0.00046622710407171
406 => 0.00046538830491152
407 => 0.00047694781881511
408 => 0.00048417622008412
409 => 0.00046751709538174
410 => 0.00046332737057015
411 => 0.00046571402823521
412 => 0.00042626789337749
413 => 0.00047372422803927
414 => 0.00047413463239209
415 => 0.00047062050115952
416 => 0.00049588953431696
417 => 0.00054921507588826
418 => 0.0005291518621342
419 => 0.00052138277935478
420 => 0.00050661374731194
421 => 0.00052629260561067
422 => 0.00052478157633134
423 => 0.00051794812888937
424 => 0.00051381523855481
425 => 0.00052143021571757
426 => 0.00051287165861312
427 => 0.00051133430658374
428 => 0.0005020196259412
429 => 0.00049869470874278
430 => 0.00049623307241784
501 => 0.00049352305269947
502 => 0.00049950068090336
503 => 0.00048595458897086
504 => 0.00046961933004003
505 => 0.00046826123000988
506 => 0.0004720110635985
507 => 0.00047035204137781
508 => 0.00046825328724976
509 => 0.00046424619405764
510 => 0.00046305737510553
511 => 0.00046692045996691
512 => 0.00046255926239026
513 => 0.00046899444698133
514 => 0.00046724443284757
515 => 0.00045746899615431
516 => 0.00044528518270431
517 => 0.00044517672120819
518 => 0.00044255173858584
519 => 0.00043920842854751
520 => 0.00043827839617942
521 => 0.00045184468727545
522 => 0.0004799265038393
523 => 0.0004744133713069
524 => 0.00047839717457011
525 => 0.00049799354371009
526 => 0.00050422264017631
527 => 0.00049980137504882
528 => 0.00049374927465056
529 => 0.00049401553635316
530 => 0.0005146973955094
531 => 0.00051598729769609
601 => 0.00051924646438364
602 => 0.00052343541461753
603 => 0.00050051477138719
604 => 0.00049293597611823
605 => 0.00048934472246424
606 => 0.00047828505120003
607 => 0.00049021195847393
608 => 0.00048326266036652
609 => 0.00048420035810303
610 => 0.00048358968122199
611 => 0.00048392315209283
612 => 0.00046621843546715
613 => 0.00047266910367304
614 => 0.00046194361665307
615 => 0.00044758339352576
616 => 0.00044753525302249
617 => 0.00045104989728879
618 => 0.00044895924935115
619 => 0.00044333336950645
620 => 0.00044413249918498
621 => 0.00043713128231724
622 => 0.00044498257367385
623 => 0.00044520772061669
624 => 0.00044218454578166
625 => 0.00045428054338594
626 => 0.00045923628347381
627 => 0.00045724636503472
628 => 0.00045909666549141
629 => 0.00047464246685392
630 => 0.00047717711078688
701 => 0.00047830283219272
702 => 0.0004767945146384
703 => 0.00045938081420249
704 => 0.00046015318586559
705 => 0.00045448603507838
706 => 0.00044969788985282
707 => 0.00044988939055133
708 => 0.00045235111961258
709 => 0.00046310163480154
710 => 0.00048572546023922
711 => 0.00048658401787678
712 => 0.00048762461477939
713 => 0.00048339198421436
714 => 0.00048211538233512
715 => 0.00048379954973274
716 => 0.0004922958690629
717 => 0.00051415070910827
718 => 0.00050642574900055
719 => 0.0005001452361868
720 => 0.00050565493913856
721 => 0.00050480676355561
722 => 0.00049764730806184
723 => 0.00049744636599143
724 => 0.00048370508188249
725 => 0.00047862524202132
726 => 0.0004743801476139
727 => 0.00046974461534199
728 => 0.00046699651642675
729 => 0.00047121884534917
730 => 0.00047218454193086
731 => 0.0004629523459483
801 => 0.00046169403175001
802 => 0.00046923324228016
803 => 0.00046591551681594
804 => 0.00046932787973153
805 => 0.00047011957719865
806 => 0.0004699920956721
807 => 0.00046652800924911
808 => 0.00046873591463458
809 => 0.00046351356018968
810 => 0.00045783503410311
811 => 0.00045421248824456
812 => 0.000451051336522
813 => 0.00045280532722489
814 => 0.00044655267063512
815 => 0.00044455231995094
816 => 0.00046798792596943
817 => 0.00048530006011051
818 => 0.00048504833482374
819 => 0.00048351602187902
820 => 0.0004812393156615
821 => 0.00049212931382236
822 => 0.0004883354562155
823 => 0.0004910958046119
824 => 0.00049179842913024
825 => 0.00049392506193029
826 => 0.00049468515036605
827 => 0.00049238763519784
828 => 0.0004846768936755
829 => 0.00046546245891712
830 => 0.00045651808766872
831 => 0.00045356629617646
901 => 0.00045367358819095
902 => 0.00045071399545858
903 => 0.0004515857281579
904 => 0.00045041084240092
905 => 0.00044818589301259
906 => 0.00045266794286991
907 => 0.00045318445736278
908 => 0.00045213829336958
909 => 0.00045238470286166
910 => 0.00044372291182041
911 => 0.00044438144898086
912 => 0.00044071463038865
913 => 0.00044002714610676
914 => 0.00043075774801207
915 => 0.00041433566566657
916 => 0.00042343509341608
917 => 0.00041244426426784
918 => 0.00040828187073116
919 => 0.00042798599434878
920 => 0.00042600824684489
921 => 0.0004226232028244
922 => 0.00041761601721311
923 => 0.00041575880336311
924 => 0.00040447495993297
925 => 0.00040380825026615
926 => 0.00040940082775953
927 => 0.00040682004567518
928 => 0.00040319565021014
929 => 0.00039006845723485
930 => 0.00037530914606639
1001 => 0.00037575463689684
1002 => 0.00038044929917278
1003 => 0.00039409966290154
1004 => 0.00038876622963903
1005 => 0.00038489676261297
1006 => 0.00038417212775475
1007 => 0.0003932424501313
1008 => 0.00040607885658541
1009 => 0.00041210141129527
1010 => 0.0004061332424855
1011 => 0.00039927733150587
1012 => 0.00039969461903997
1013 => 0.00040247064605621
1014 => 0.00040276236724471
1015 => 0.00039829987399601
1016 => 0.00039955603970631
1017 => 0.00039764780912616
1018 => 0.00038593700157806
1019 => 0.00038572519020489
1020 => 0.00038285116917031
1021 => 0.00038276414495559
1022 => 0.00037787471821762
1023 => 0.00037719065361796
1024 => 0.00036748240006273
1025 => 0.00037387240195208
1026 => 0.00036958632417486
1027 => 0.00036312619398105
1028 => 0.00036201246510067
1029 => 0.00036197898506566
1030 => 0.00036861209431602
1031 => 0.00037379489020851
1101 => 0.00036966088233283
1102 => 0.00036871964887391
1103 => 0.00037876955974761
1104 => 0.00037749061698196
1105 => 0.00037638306079521
1106 => 0.00040492949717838
1107 => 0.00038233276527489
1108 => 0.0003724793003886
1109 => 0.00036028376646959
1110 => 0.00036425469380884
1111 => 0.00036509142654428
1112 => 0.00033576336587927
1113 => 0.00032386497532006
1114 => 0.00031978189606152
1115 => 0.00031743202622197
1116 => 0.00031850289141566
1117 => 0.00030779294437035
1118 => 0.00031499020591098
1119 => 0.00030571629705902
1120 => 0.00030416149606009
1121 => 0.00032074439390423
1122 => 0.00032305180726335
1123 => 0.00031320766501617
1124 => 0.00031952919796073
1125 => 0.00031723692223915
1126 => 0.00030587527160856
1127 => 0.00030544134012512
1128 => 0.00029974046322001
1129 => 0.00029081969477082
1130 => 0.00028674266421337
1201 => 0.00028461931130065
1202 => 0.00028549544809576
1203 => 0.00028505244652192
1204 => 0.00028216156159482
1205 => 0.000285218148662
1206 => 0.00027740983177434
1207 => 0.00027430049707379
1208 => 0.00027289608272557
1209 => 0.00026596575205783
1210 => 0.00027699499008225
1211 => 0.00027916788891574
1212 => 0.00028134506903117
1213 => 0.00030029593551203
1214 => 0.00029934920377724
1215 => 0.00030790719758269
1216 => 0.00030757464968055
1217 => 0.00030513377121693
1218 => 0.00029483610648392
1219 => 0.00029894057210827
1220 => 0.00028630766489209
1221 => 0.00029577309793265
1222 => 0.00029145346957887
1223 => 0.00029431262724108
1224 => 0.00028917160396458
1225 => 0.00029201685851344
1226 => 0.00027968316383839
1227 => 0.00026816613329059
1228 => 0.00027280092258611
1229 => 0.00027783946860278
1230 => 0.00028876432016457
1231 => 0.00028225756870243
]
'min_raw' => 0.00026596575205783
'max_raw' => 0.00079391424723645
'avg_raw' => 0.00052993999964714
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.000265'
'max' => '$0.000793'
'avg' => '$0.000529'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.00050383424794217
'max_diff' => 2.4114247236447E-5
'year' => 2026
]
1 => [
'items' => [
101 => 0.00028459764257573
102 => 0.00027675878682382
103 => 0.00026058498834919
104 => 0.00026067653029209
105 => 0.00025818854376212
106 => 0.00025603856014824
107 => 0.00028300494738021
108 => 0.00027965125085242
109 => 0.00027430757435633
110 => 0.00028146029769561
111 => 0.00028335159127549
112 => 0.00028340543374487
113 => 0.00028862387605469
114 => 0.0002914089596509
115 => 0.00029189984270598
116 => 0.0003001111744324
117 => 0.00030286350451701
118 => 0.00031419996261119
119 => 0.00029117266476606
120 => 0.00029069843272048
121 => 0.00028156095118139
122 => 0.00027576581593144
123 => 0.00028195774904991
124 => 0.00028744295650972
125 => 0.00028173139186713
126 => 0.00028247720163174
127 => 0.00027480989275104
128 => 0.00027755059489547
129 => 0.00027991125679471
130 => 0.00027860783804724
131 => 0.00027665655709611
201 => 0.0002869932320505
202 => 0.00028640999633981
203 => 0.00029603574569647
204 => 0.00030353970566393
205 => 0.0003169881434189
206 => 0.00030295399753867
207 => 0.00030244253748212
208 => 0.0003074421415757
209 => 0.00030286273910367
210 => 0.00030575676339039
211 => 0.00031652187136487
212 => 0.00031674932113293
213 => 0.00031293924446536
214 => 0.00031270740095388
215 => 0.00031343916785556
216 => 0.00031772514945501
217 => 0.00031622749578925
218 => 0.00031796061852722
219 => 0.00032012791504957
220 => 0.0003290927723807
221 => 0.00033125416913286
222 => 0.00032600309558086
223 => 0.00032647720872882
224 => 0.00032451316307518
225 => 0.00032261591958319
226 => 0.00032688064588303
227 => 0.00033467451701941
228 => 0.00033462603175158
301 => 0.00033643405836401
302 => 0.00033756044396506
303 => 0.00033272517240072
304 => 0.00032957758841019
305 => 0.00033078457239813
306 => 0.00033271456607954
307 => 0.00033015870145906
308 => 0.00031438272102978
309 => 0.00031916814571849
310 => 0.00031837161705498
311 => 0.00031723726337694
312 => 0.00032204904490603
313 => 0.00032158493683913
314 => 0.0003076830983835
315 => 0.00030857304897702
316 => 0.0003077372192267
317 => 0.00031043795614468
318 => 0.00030271689044704
319 => 0.00030509183825346
320 => 0.00030658138325389
321 => 0.00030745873670237
322 => 0.00031062833896518
323 => 0.00031025642272305
324 => 0.00031060522012937
325 => 0.00031530490354114
326 => 0.00033907428950124
327 => 0.00034036800473486
328 => 0.00033399727777042
329 => 0.00033654225753568
330 => 0.00033165645291228
331 => 0.00033493632628801
401 => 0.00033718033235194
402 => 0.0003270401004466
403 => 0.00032643966172273
404 => 0.00032153369164566
405 => 0.00032416988207673
406 => 0.00031997551355211
407 => 0.00032100466487527
408 => 0.00031812706805591
409 => 0.00032330616940694
410 => 0.00032909720946837
411 => 0.00033056025488299
412 => 0.00032671161227778
413 => 0.0003239249413937
414 => 0.00031903246530771
415 => 0.00032716876207465
416 => 0.00032954806319846
417 => 0.00032715626461875
418 => 0.000326602032626
419 => 0.00032555176400121
420 => 0.00032682485207969
421 => 0.00032953510501356
422 => 0.00032825699978046
423 => 0.00032910121080423
424 => 0.00032588394892822
425 => 0.0003327267730768
426 => 0.00034359482464006
427 => 0.00034362976720294
428 => 0.00034235165508037
429 => 0.00034182867913713
430 => 0.00034314009973721
501 => 0.00034385149161546
502 => 0.00034809238536271
503 => 0.00035264303331816
504 => 0.00037387892172302
505 => 0.00036791596923572
506 => 0.00038675771275716
507 => 0.00040165908558843
508 => 0.00040612735574246
509 => 0.00040201675744911
510 => 0.00038795462273769
511 => 0.00038726466732179
512 => 0.00040827943346078
513 => 0.00040234179948925
514 => 0.00040163553682173
515 => 0.00039412209528894
516 => 0.00039856346979266
517 => 0.00039759207603766
518 => 0.00039605868347319
519 => 0.00040453251663746
520 => 0.00042039477585666
521 => 0.00041792249400202
522 => 0.00041607705028339
523 => 0.00040799085310893
524 => 0.00041286054992548
525 => 0.00041112654416201
526 => 0.00041857693334914
527 => 0.00041416348784101
528 => 0.00040229681607209
529 => 0.00040418662266436
530 => 0.0004039009821997
531 => 0.00040977944272164
601 => 0.00040801487478531
602 => 0.00040355642198983
603 => 0.00042034056037909
604 => 0.00041925069179038
605 => 0.00042079587627053
606 => 0.00042147611426511
607 => 0.00043169232353296
608 => 0.00043587757758777
609 => 0.0004368277035314
610 => 0.0004408033711843
611 => 0.00043672878529844
612 => 0.00045303003397236
613 => 0.00046386941313629
614 => 0.00047645990982454
615 => 0.00049485800949255
616 => 0.00050177586515966
617 => 0.00050052621645272
618 => 0.0005144754456464
619 => 0.00053954190043349
620 => 0.00050559286364256
621 => 0.00054134128181811
622 => 0.00053002374535907
623 => 0.00050319007000846
624 => 0.00050146229766413
625 => 0.00051963437415694
626 => 0.00055993829082044
627 => 0.00054984261681947
628 => 0.00055995480372643
629 => 0.00054815840055903
630 => 0.00054757260971388
701 => 0.00055938187875465
702 => 0.00058697487955817
703 => 0.00057386647918459
704 => 0.00055507237293742
705 => 0.00056894964852165
706 => 0.00055692786812936
707 => 0.00052983943222108
708 => 0.00054983489684783
709 => 0.00053646449908997
710 => 0.00054036669196515
711 => 0.0005684692793556
712 => 0.00056508790169056
713 => 0.00056946371749627
714 => 0.00056174051713423
715 => 0.00055452583015918
716 => 0.00054105908115056
717 => 0.00053707224067181
718 => 0.00053817405994864
719 => 0.0005370716946649
720 => 0.00052953717236038
721 => 0.00052791009298609
722 => 0.00052519822274496
723 => 0.00052603874472866
724 => 0.0005209396352897
725 => 0.00053056270833078
726 => 0.00053234883548543
727 => 0.00053935170554703
728 => 0.00054007876674796
729 => 0.00055958166018991
730 => 0.00054883979421489
731 => 0.00055604636531902
801 => 0.00055540174176859
802 => 0.00050377163712013
803 => 0.00051088581000442
804 => 0.00052195323046193
805 => 0.00051696737254736
806 => 0.00050991853596722
807 => 0.00050422622249405
808 => 0.00049560178551326
809 => 0.00050774051494608
810 => 0.00052370165334027
811 => 0.00054048356755752
812 => 0.00056064593789498
813 => 0.00055614593155153
814 => 0.00054010664606872
815 => 0.00054082615669877
816 => 0.00054527388829676
817 => 0.00053951367175834
818 => 0.00053781487144837
819 => 0.00054504049922103
820 => 0.00054509025814836
821 => 0.00053846243287548
822 => 0.00053109681796389
823 => 0.00053106595576847
824 => 0.00052975531573835
825 => 0.00054839156050878
826 => 0.00055863961079565
827 => 0.00055981453324548
828 => 0.00055856052915349
829 => 0.00055904314555886
830 => 0.0005530800308973
831 => 0.00056670994270689
901 => 0.00057921809764193
902 => 0.00057586564492158
903 => 0.00057083984171455
904 => 0.00056683654738467
905 => 0.00057492259600399
906 => 0.00057456253698759
907 => 0.00057910884982045
908 => 0.00057890260280957
909 => 0.00057737384879936
910 => 0.0005758656995182
911 => 0.00058184534094452
912 => 0.00058012330024384
913 => 0.00057839858473832
914 => 0.00057493940375126
915 => 0.00057540956389831
916 => 0.00057038462846706
917 => 0.00056805986341116
918 => 0.00053310097486178
919 => 0.00052375881752674
920 => 0.00052669805040149
921 => 0.00052766572218101
922 => 0.0005236000033365
923 => 0.00052942919976205
924 => 0.00052852072567377
925 => 0.00053205506691168
926 => 0.00052984696394949
927 => 0.00052993758526528
928 => 0.00053643114525989
929 => 0.0005383162533519
930 => 0.00053735747216161
1001 => 0.00053802896964219
1002 => 0.00055350334566079
1003 => 0.00055130338423364
1004 => 0.00055013469857232
1005 => 0.00055045843248744
1006 => 0.00055441246733456
1007 => 0.00055551938120945
1008 => 0.00055082930934007
1009 => 0.00055304117434665
1010 => 0.00056245901481722
1011 => 0.00056575472597831
1012 => 0.00057627305397341
1013 => 0.00057180468129272
1014 => 0.00058000657273477
1015 => 0.00060521639079679
1016 => 0.00062535573785145
1017 => 0.00060683476200627
1018 => 0.00064381810814177
1019 => 0.00067261494805418
1020 => 0.00067150967737469
1021 => 0.00066648828225306
1022 => 0.00063370384561638
1023 => 0.00060353511823491
1024 => 0.00062877253972134
1025 => 0.00062883687509883
1026 => 0.00062666895821119
1027 => 0.0006132042126119
1028 => 0.00062620041425086
1029 => 0.00062723200554169
1030 => 0.00062665458874109
1031 => 0.00061633119985988
1101 => 0.00060056929311945
1102 => 0.00060364913196786
1103 => 0.00060869397082856
1104 => 0.00059914303840162
1105 => 0.00059609093677981
1106 => 0.00060176537438085
1107 => 0.00062004959464741
1108 => 0.00061659306871929
1109 => 0.00061650280485839
1110 => 0.00063129128857399
1111 => 0.00062070592578815
1112 => 0.00060368797859875
1113 => 0.00059939072249427
1114 => 0.00058413835830197
1115 => 0.00059467322057665
1116 => 0.00059505235151506
1117 => 0.0005892825151109
1118 => 0.00060415616902356
1119 => 0.0006040191056843
1120 => 0.00061813942642314
1121 => 0.00064513217632551
1122 => 0.00063714909194683
1123 => 0.00062786563337153
1124 => 0.00062887500272105
1125 => 0.00063994529314945
1126 => 0.00063325194284629
1127 => 0.000635658918283
1128 => 0.00063994164990384
1129 => 0.00064252552822494
1130 => 0.00062850322239427
1201 => 0.00062523395214072
1202 => 0.00061854617255989
1203 => 0.00061680145570057
1204 => 0.00062224851262405
1205 => 0.00062081340557208
1206 => 0.00059502048702776
1207 => 0.00059232498352943
1208 => 0.00059240765077343
1209 => 0.00058562967906269
1210 => 0.0005752916453042
1211 => 0.00060245938076959
1212 => 0.0006002774313995
1213 => 0.0005978687281644
1214 => 0.00059816378056683
1215 => 0.00060995637373236
1216 => 0.00060311607415612
1217 => 0.00062130213168261
1218 => 0.00061756362497809
1219 => 0.00061372923968328
1220 => 0.00061319921083731
1221 => 0.00061172329963318
1222 => 0.00060666185095188
1223 => 0.0006005498475233
1224 => 0.00059651417344707
1225 => 0.00055025279338502
1226 => 0.00055883863643447
1227 => 0.00056871586623864
1228 => 0.00057212544638653
1229 => 0.00056629312360781
1230 => 0.00060689214660361
1231 => 0.00061430997932686
]
'min_raw' => 0.00025603856014824
'max_raw' => 0.00067261494805418
'avg_raw' => 0.00046432675410121
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.000256'
'max' => '$0.000672'
'avg' => '$0.000464'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -9.9271919095897E-6
'max_diff' => -0.00012129929918227
'year' => 2027
]
2 => [
'items' => [
101 => 0.00059184088015487
102 => 0.00058763782910707
103 => 0.00060716769793057
104 => 0.00059538879960063
105 => 0.00060069283679737
106 => 0.00058922840953125
107 => 0.00061252324064333
108 => 0.00061234577305977
109 => 0.00060328355761955
110 => 0.00061094288005425
111 => 0.00060961188429456
112 => 0.0005993806653818
113 => 0.00061284758853196
114 => 0.00061285426795783
115 => 0.00060413208262617
116 => 0.00059394647969068
117 => 0.00059212553445902
118 => 0.00059075369683653
119 => 0.00060035544883742
120 => 0.00060896434965751
121 => 0.00062498337975621
122 => 0.00062901094452579
123 => 0.00064473079795162
124 => 0.00063537039062231
125 => 0.00063951973795383
126 => 0.0006440244414432
127 => 0.000646184161951
128 => 0.00064266501328054
129 => 0.00066708441620067
130 => 0.0006691461619983
131 => 0.00066983744753022
201 => 0.00066160336225977
202 => 0.00066891715719158
203 => 0.00066549527475042
204 => 0.00067439806223601
205 => 0.00067579413299024
206 => 0.00067461171072806
207 => 0.00067505484562093
208 => 0.00065421719310647
209 => 0.00065313665089622
210 => 0.0006384033811877
211 => 0.00064440729749675
212 => 0.00063318326373217
213 => 0.00063674252045928
214 => 0.00063831140691075
215 => 0.00063749190966202
216 => 0.00064474674991666
217 => 0.00063857865363427
218 => 0.00062230003341613
219 => 0.0006060169780988
220 => 0.00060581255760318
221 => 0.00060152551655792
222 => 0.00059842677109294
223 => 0.00059902369940339
224 => 0.00060112735262803
225 => 0.00059830450294329
226 => 0.00059890690104564
227 => 0.00060891072330224
228 => 0.0006109169185118
229 => 0.00060409908331863
301 => 0.00057672449120914
302 => 0.0005700066976415
303 => 0.00057483531443828
304 => 0.00057252754661217
305 => 0.00046207441405895
306 => 0.00048802373917785
307 => 0.00047260553134802
308 => 0.00047971095087364
309 => 0.00046397295320494
310 => 0.00047148395059157
311 => 0.00047009694363197
312 => 0.00051182269052682
313 => 0.00051117120038094
314 => 0.00051148303423768
315 => 0.00049659839177674
316 => 0.0005203100313791
317 => 0.00053199123769021
318 => 0.00052982935728726
319 => 0.0005303734560088
320 => 0.00052102403728749
321 => 0.00051157355704772
322 => 0.00050109152004334
323 => 0.00052056584917855
324 => 0.0005184006362166
325 => 0.00052336685573228
326 => 0.00053599735023027
327 => 0.00053785723852368
328 => 0.00054035694725115
329 => 0.00053946097961373
330 => 0.0005608065637032
331 => 0.00055822147262727
401 => 0.0005644507983388
402 => 0.00055163660273009
403 => 0.00053713612406422
404 => 0.00053989219100224
405 => 0.00053962675959322
406 => 0.00053624751310838
407 => 0.00053319688047819
408 => 0.00052811843665934
409 => 0.00054418738437046
410 => 0.00054353501443873
411 => 0.00055409612533631
412 => 0.00055222934640001
413 => 0.00053976253978507
414 => 0.00054020779422224
415 => 0.00054320234429418
416 => 0.00055356651628436
417 => 0.00055664330817768
418 => 0.00055521801558374
419 => 0.00055859157743388
420 => 0.00056125790316904
421 => 0.00055892642689475
422 => 0.00059193521429041
423 => 0.0005782276643991
424 => 0.0005849086288396
425 => 0.00058650199949214
426 => 0.00058242061407065
427 => 0.00058330572042512
428 => 0.00058464641537509
429 => 0.00059278685257632
430 => 0.00061414971524684
501 => 0.00062361118170169
502 => 0.00065207647035164
503 => 0.00062282553862259
504 => 0.00062108990938618
505 => 0.0006262173674414
506 => 0.00064292950523573
507 => 0.00065647312322675
508 => 0.00066096632266444
509 => 0.00066156017314477
510 => 0.00066998971399212
511 => 0.0006748213696042
512 => 0.00066896614601432
513 => 0.00066400445708936
514 => 0.00064623230322767
515 => 0.00064828947842913
516 => 0.00066246137556469
517 => 0.00068248001498926
518 => 0.00069965809019998
519 => 0.00069364292697755
520 => 0.00073953437632124
521 => 0.00074408432607391
522 => 0.00074345567013558
523 => 0.00075382113279546
524 => 0.00073324780030536
525 => 0.00072445230207629
526 => 0.0006650772305525
527 => 0.00068175920377299
528 => 0.00070600743154691
529 => 0.00070279808767484
530 => 0.00068518837650844
531 => 0.00069964473165496
601 => 0.0006948650085515
602 => 0.0006910950426289
603 => 0.00070836598736416
604 => 0.00068937587417644
605 => 0.00070581799064118
606 => 0.00068473080620323
607 => 0.00069367040373647
608 => 0.00068859585581692
609 => 0.00069187971023407
610 => 0.00067268236441159
611 => 0.00068304078622818
612 => 0.00067225142000869
613 => 0.00067224630444429
614 => 0.00067200812858699
615 => 0.00068470177009684
616 => 0.00068511570929076
617 => 0.00067573508903595
618 => 0.00067438319510441
619 => 0.00067938185552563
620 => 0.00067352973332362
621 => 0.00067626790446912
622 => 0.0006736126697382
623 => 0.00067301492047247
624 => 0.00066825195262447
625 => 0.00066619993511502
626 => 0.00066700458405445
627 => 0.00066425790239921
628 => 0.00066260292735011
629 => 0.00067167891239461
630 => 0.00066682997970953
701 => 0.00067093574391714
702 => 0.00066625670741381
703 => 0.00065003712833413
704 => 0.00064070907688647
705 => 0.00061007179556074
706 => 0.00061876049053929
707 => 0.00062452110429917
708 => 0.00062261722148589
709 => 0.00062670749847365
710 => 0.00062695860826085
711 => 0.00062562881751669
712 => 0.0006240890901917
713 => 0.00062333963608215
714 => 0.00062892545299846
715 => 0.00063216820772834
716 => 0.00062509925895704
717 => 0.00062344310316503
718 => 0.00063059020066017
719 => 0.00063494992600346
720 => 0.00066713968842024
721 => 0.00066475496684884
722 => 0.00067074015001508
723 => 0.00067006631024068
724 => 0.00067633973571335
725 => 0.00068659413501373
726 => 0.00066574407406091
727 => 0.00066936292370145
728 => 0.00066847566534103
729 => 0.00067816251946846
730 => 0.0006781927607697
731 => 0.00067238500782605
801 => 0.00067553348491683
802 => 0.00067377609137871
803 => 0.00067695193902808
804 => 0.00066472311743836
805 => 0.00067961650211492
806 => 0.00068806009151802
807 => 0.00068817733076507
808 => 0.00069217952512967
809 => 0.00069624598639557
810 => 0.00070405120468133
811 => 0.00069602830309387
812 => 0.00068159588415176
813 => 0.00068263785818295
814 => 0.0006741761362378
815 => 0.00067431837931244
816 => 0.00067355907463226
817 => 0.00067583780513527
818 => 0.00066522317063964
819 => 0.00066771440413953
820 => 0.00066422666265103
821 => 0.0006693553420326
822 => 0.00066383773081911
823 => 0.00066847523747819
824 => 0.00067047663161647
825 => 0.00067786181907365
826 => 0.00066274693262697
827 => 0.00063192665597434
828 => 0.00063840545178646
829 => 0.00062882280388191
830 => 0.00062970971442919
831 => 0.00063150141488546
901 => 0.00062569392749877
902 => 0.00062680181307719
903 => 0.00062676223160826
904 => 0.00062642113989264
905 => 0.00062491038812756
906 => 0.00062271949917507
907 => 0.00063144732644175
908 => 0.00063293035436724
909 => 0.0006362269417373
910 => 0.00064603534965404
911 => 0.00064505525840497
912 => 0.0006466538278958
913 => 0.00064316415967291
914 => 0.00062987159012944
915 => 0.00063059344060813
916 => 0.00062159195357197
917 => 0.00063599675347569
918 => 0.00063258550672442
919 => 0.0006303862537524
920 => 0.00062978616720305
921 => 0.00063961888826586
922 => 0.00064256099251687
923 => 0.00064072767058491
924 => 0.00063696747381592
925 => 0.00064418816321476
926 => 0.00064612011508147
927 => 0.00064655260785678
928 => 0.00065934628504166
929 => 0.00064726763229139
930 => 0.00065017508405986
1001 => 0.00067285819278879
1002 => 0.00065228774322669
1003 => 0.0006631843691355
1004 => 0.00066265103600057
1005 => 0.0006682253810938
1006 => 0.00066219377699998
1007 => 0.00066226854596154
1008 => 0.00066721818676548
1009 => 0.00066026730892877
1010 => 0.00065854617382598
1011 => 0.00065616843800848
1012 => 0.00066136013717826
1013 => 0.00066447232603019
1014 => 0.00068955428252587
1015 => 0.00070575837029826
1016 => 0.00070505490811282
1017 => 0.00071148323566171
1018 => 0.0007085872152242
1019 => 0.00069923520129989
1020 => 0.00071519794871209
1021 => 0.00071014666752115
1022 => 0.00071056308900522
1023 => 0.00071054758977679
1024 => 0.0007139062501781
1025 => 0.00071152633146706
1026 => 0.00070683526739398
1027 => 0.00070994941464849
1028 => 0.00071919731866636
1029 => 0.0007479030964982
1030 => 0.00076396723007386
1031 => 0.00074693601548622
1101 => 0.00075868391925172
1102 => 0.00075163936319854
1103 => 0.00075035915780629
1104 => 0.00075773770953429
1105 => 0.00076512917644034
1106 => 0.00076465837195261
1107 => 0.00075929254653485
1108 => 0.00075626152790913
1109 => 0.00077921341640879
1110 => 0.00079612397688011
1111 => 0.0007949707900258
1112 => 0.00080006058176426
1113 => 0.00081500436772972
1114 => 0.00081637064023678
1115 => 0.0008161985213043
1116 => 0.00081281207233977
1117 => 0.00082752617031858
1118 => 0.00083980092972243
1119 => 0.00081202820724839
1120 => 0.00082260369639488
1121 => 0.00082735137419371
1122 => 0.00083432237377493
1123 => 0.00084608361854363
1124 => 0.00085885944987855
1125 => 0.00086066609250917
1126 => 0.00085938419310693
1127 => 0.00085095818890878
1128 => 0.00086493765600281
1129 => 0.00087312649996765
1130 => 0.00087800276915035
1201 => 0.00089036817646385
1202 => 0.00082738069423549
1203 => 0.00078279502363327
1204 => 0.00077583232734385
1205 => 0.0007899912440429
1206 => 0.0007937248374612
1207 => 0.00079221983063581
1208 => 0.00074203460482118
1209 => 0.000775568112516
1210 => 0.00081164734721822
1211 => 0.00081303329756044
1212 => 0.00083109531683359
1213 => 0.00083697705069612
1214 => 0.00085151934365399
1215 => 0.00085060971927003
1216 => 0.00085415053618685
1217 => 0.00085333656369608
1218 => 0.00088027309915947
1219 => 0.00090998809788982
1220 => 0.0009089591619717
1221 => 0.0009046872793323
1222 => 0.00091103175351603
1223 => 0.00094170081665854
1224 => 0.0009388773007861
1225 => 0.00094162010594967
1226 => 0.00097778065982734
1227 => 0.0010247945236471
1228 => 0.0010029518637881
1229 => 0.0010503441506261
1230 => 0.0010801750830335
1231 => 0.0011317645960561
]
'min_raw' => 0.00046207441405895
'max_raw' => 0.0011317645960561
'avg_raw' => 0.00079691950505752
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.000462'
'max' => '$0.001131'
'avg' => '$0.000796'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.00020603585391071
'max_diff' => 0.00045914964800192
'year' => 2028
]
3 => [
'items' => [
101 => 0.001125305334942
102 => 0.0011453887537803
103 => 0.0011137419094592
104 => 0.0010410743580154
105 => 0.0010295744398392
106 => 0.0010525975672522
107 => 0.0011091976794333
108 => 0.001050815028297
109 => 0.0010626257625841
110 => 0.0010592242703149
111 => 0.0010590430192472
112 => 0.0010659606352968
113 => 0.0010559262724183
114 => 0.0010150444729039
115 => 0.0010337803607034
116 => 0.0010265455346528
117 => 0.001034573113548
118 => 0.0010778946460198
119 => 0.0010587411638577
120 => 0.0010385645263024
121 => 0.001063870507351
122 => 0.0010960937173045
123 => 0.0010940772467362
124 => 0.0010901644510146
125 => 0.0011122206756302
126 => 0.0011486510968276
127 => 0.001158498093288
128 => 0.0011657669447621
129 => 0.0011667691965721
130 => 0.0011770930131114
131 => 0.001121579249643
201 => 0.0012096810179618
202 => 0.0012248937595883
203 => 0.001222034394666
204 => 0.0012389427167338
205 => 0.0012339678594587
206 => 0.0012267600717984
207 => 0.001253563358779
208 => 0.0012228355531694
209 => 0.0011792213016298
210 => 0.0011552936606431
211 => 0.0011868035084821
212 => 0.0012060454730153
213 => 0.0012187631875529
214 => 0.0012226115602878
215 => 0.0011258886250736
216 => 0.0010737603274931
217 => 0.0011071739685901
218 => 0.0011479409168147
219 => 0.0011213527871872
220 => 0.0011223949915306
221 => 0.0010844873059194
222 => 0.0011512949058498
223 => 0.0011415616004803
224 => 0.0011920580059552
225 => 0.0011800066335296
226 => 0.0012211844919352
227 => 0.0012103409817967
228 => 0.0012553517861292
301 => 0.0012733078145963
302 => 0.0013034587810252
303 => 0.0013256379546669
304 => 0.0013386619896492
305 => 0.0013378800754408
306 => 0.0013894877905894
307 => 0.0013590565240025
308 => 0.0013208276810705
309 => 0.0013201362419123
310 => 0.0013399355013737
311 => 0.0013814293175431
312 => 0.0013921880603654
313 => 0.0013982007298683
314 => 0.001388992117222
315 => 0.0013559611583705
316 => 0.0013416985578092
317 => 0.0013538507067148
318 => 0.0013389896728493
319 => 0.0013646439865707
320 => 0.0013998728387759
321 => 0.0013925982201055
322 => 0.0014169161796489
323 => 0.0014420827094523
324 => 0.0014780719773708
325 => 0.0014874809046834
326 => 0.0015030335037417
327 => 0.0015190422369354
328 => 0.0015241838105897
329 => 0.0015340006700325
330 => 0.0015339489303375
331 => 0.001563532697019
401 => 0.0015961645078018
402 => 0.0016084822609441
403 => 0.0016368062550901
404 => 0.0015883024077063
405 => 0.0016250931331189
406 => 0.0016582792883727
407 => 0.0016187133859746
408 => 0.0016732457647575
409 => 0.0016753631334526
410 => 0.0017073328868929
411 => 0.0016749254171175
412 => 0.0016556819650131
413 => 0.0017112370901956
414 => 0.0017381184653014
415 => 0.0017300215763517
416 => 0.0016684038516514
417 => 0.0016325396929673
418 => 0.0015386762720115
419 => 0.0016498615487317
420 => 0.0017040166537031
421 => 0.0016682636030124
422 => 0.00168629536215
423 => 0.0017846707931873
424 => 0.0018221257879889
425 => 0.0018143354109003
426 => 0.0018156518563878
427 => 0.0018358618917264
428 => 0.0019254843182879
429 => 0.0018717804828607
430 => 0.0019128350528004
501 => 0.0019346102486632
502 => 0.0019548362641254
503 => 0.0019051675626481
504 => 0.0018405493118042
505 => 0.0018200819992723
506 => 0.0016647086667369
507 => 0.0016566208100262
508 => 0.0016520808509674
509 => 0.0016234570512914
510 => 0.0016009665854647
511 => 0.0015830813320218
512 => 0.001536145085999
513 => 0.0015519846912037
514 => 0.0014771781113992
515 => 0.0015250367101757
516 => 0.0014056436025396
517 => 0.0015050777303643
518 => 0.0014509602553043
519 => 0.0014872986843223
520 => 0.0014871719029667
521 => 0.0014202613340353
522 => 0.0013816687142636
523 => 0.0014062614336293
524 => 0.0014326267809619
525 => 0.001436904469863
526 => 0.0014710878308856
527 => 0.0014806276721782
528 => 0.0014517215076892
529 => 0.0014031694457604
530 => 0.0014144469823918
531 => 0.0013814401753437
601 => 0.0013235970155803
602 => 0.0013651409827671
603 => 0.0013793259197239
604 => 0.0013855907959821
605 => 0.0013287086916866
606 => 0.0013108350995464
607 => 0.0013013193490649
608 => 0.0013958266803907
609 => 0.001401004005339
610 => 0.0013745160789037
611 => 0.0014942440180795
612 => 0.00146714589803
613 => 0.0014974211373258
614 => 0.001413423664148
615 => 0.001416632480741
616 => 0.0013768667308194
617 => 0.0013991328936272
618 => 0.0013833958874266
619 => 0.0013973340077108
620 => 0.0014056884595401
621 => 0.0014454476842935
622 => 0.0015055317168449
623 => 0.0014395089819686
624 => 0.0014107419309201
625 => 0.0014285888475986
626 => 0.0014761175385525
627 => 0.0015481259382968
628 => 0.0015054955163441
629 => 0.0015244141736952
630 => 0.0015285470586939
701 => 0.00149711296381
702 => 0.0015492849582123
703 => 0.001577244353857
704 => 0.0016059249084067
705 => 0.0016308274303113
706 => 0.0015944692642206
707 => 0.0016333777136761
708 => 0.0016020243716809
709 => 0.0015738971826623
710 => 0.0015739398399976
711 => 0.0015562952434536
712 => 0.0015221066142873
713 => 0.0015158017065213
714 => 0.0015486006329419
715 => 0.0015749022658612
716 => 0.0015770685943248
717 => 0.0015916305297356
718 => 0.0016002481331119
719 => 0.0016847123612632
720 => 0.0017186845725503
721 => 0.0017602251494512
722 => 0.0017764075452528
723 => 0.0018251107549054
724 => 0.0017857789576296
725 => 0.0017772692758804
726 => 0.0016591312199616
727 => 0.0016784763200001
728 => 0.0017094496916862
729 => 0.0016596419594525
730 => 0.0016912335013952
731 => 0.001697470340975
801 => 0.0016579495117703
802 => 0.0016790592942428
803 => 0.0016229979706103
804 => 0.0015067537005021
805 => 0.0015494143713151
806 => 0.0015808269844599
807 => 0.001535997312355
808 => 0.0016163527644552
809 => 0.0015694107682115
810 => 0.0015545324090154
811 => 0.0014964866252735
812 => 0.0015238820008126
813 => 0.0015609346384932
814 => 0.001538040416238
815 => 0.0015855493650022
816 => 0.0016528347066261
817 => 0.0017007862479786
818 => 0.001704467371907
819 => 0.0016736377433211
820 => 0.0017230424198821
821 => 0.0017234022790146
822 => 0.0016676736020297
823 => 0.0016335400976751
824 => 0.0016257848936682
825 => 0.0016451589137747
826 => 0.0016686825508254
827 => 0.0017057727700472
828 => 0.0017281856127223
829 => 0.0017866264195659
830 => 0.0018024388262686
831 => 0.0018198118672126
901 => 0.0018430276075613
902 => 0.0018709040562434
903 => 0.0018099119735339
904 => 0.0018123353026834
905 => 0.0017555403197572
906 => 0.001694846735276
907 => 0.0017409056003351
908 => 0.0018011214394458
909 => 0.0017873078594212
910 => 0.0017857535494826
911 => 0.0017883674676697
912 => 0.0017779524794405
913 => 0.0017308458736774
914 => 0.0017071892311661
915 => 0.0017377123354588
916 => 0.0017539340069634
917 => 0.0017790924047884
918 => 0.0017759911012271
919 => 0.0018407964322098
920 => 0.0018659778242182
921 => 0.00185953534657
922 => 0.0018607209175041
923 => 0.0019063106249153
924 => 0.0019570157557949
925 => 0.002004507801995
926 => 0.0020528187512206
927 => 0.0019945780163207
928 => 0.0019650069629277
929 => 0.0019955167417879
930 => 0.0019793278236684
1001 => 0.002072354149128
1002 => 0.0020787950900665
1003 => 0.0021718146886638
1004 => 0.0022601013643005
1005 => 0.0022046500851532
1006 => 0.0022569381438087
1007 => 0.0023134919423525
1008 => 0.0024225933952667
1009 => 0.0023858518641606
1010 => 0.0023577084271465
1011 => 0.0023311130151563
1012 => 0.0023864538456051
1013 => 0.0024576489398863
1014 => 0.0024729836812963
1015 => 0.0024978318207026
1016 => 0.0024717070404028
1017 => 0.0025031714607237
1018 => 0.0026142546906236
1019 => 0.0025842390213459
1020 => 0.0025416119457119
1021 => 0.002629301487171
1022 => 0.0026610359913406
1023 => 0.0028837653610917
1024 => 0.0031649703908938
1025 => 0.0030485496620639
1026 => 0.0029762835588058
1027 => 0.0029932678072464
1028 => 0.0030959543647391
1029 => 0.0031289340278973
1030 => 0.0030392839346616
1031 => 0.0030709498631842
1101 => 0.0032454322426691
1102 => 0.0033390364411979
1103 => 0.0032119093668748
1104 => 0.0028611708107503
1105 => 0.002537773843944
1106 => 0.0026235532822962
1107 => 0.002613828556033
1108 => 0.0028012881056694
1109 => 0.0025835231575604
1110 => 0.0025871897607972
1111 => 0.002778525775397
1112 => 0.0027274806070315
1113 => 0.0026447939716506
1114 => 0.0025383775478887
1115 => 0.0023416569462371
1116 => 0.0021674160233944
1117 => 0.0025091425983769
1118 => 0.0024944067270742
1119 => 0.0024730670016942
1120 => 0.0025205562513281
1121 => 0.0027511505674917
1122 => 0.0027458346221432
1123 => 0.002712017290055
1124 => 0.0027376674383916
1125 => 0.0026402973766306
1126 => 0.0026653918586215
1127 => 0.0025377226162121
1128 => 0.0025954344457197
1129 => 0.0026446165632676
1130 => 0.002654490601519
1201 => 0.0026767373138804
1202 => 0.0024866415925009
1203 => 0.0025719889904831
1204 => 0.0026221225908279
1205 => 0.002395617160594
1206 => 0.0026176453067427
1207 => 0.0024833324489165
1208 => 0.0024377446476588
1209 => 0.0024991226163161
1210 => 0.0024752035622384
1211 => 0.0024546393641163
1212 => 0.0024431641882264
1213 => 0.0024882333943691
1214 => 0.0024861308620332
1215 => 0.0024123888932277
1216 => 0.0023161955010282
1217 => 0.0023484811608908
1218 => 0.0023367514779831
1219 => 0.0022942415939661
1220 => 0.0023228881231306
1221 => 0.0021967433063669
1222 => 0.0019797177055621
1223 => 0.0021230914651277
1224 => 0.0021175717313451
1225 => 0.0021147884312719
1226 => 0.0022225298490257
1227 => 0.0022121729977261
1228 => 0.0021933752112028
1229 => 0.0022938963578752
1230 => 0.0022572047871395
1231 => 0.0023702795625255
]
'min_raw' => 0.0010150444729039
'max_raw' => 0.0033390364411979
'avg_raw' => 0.0021770404570509
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.001015'
'max' => '$0.003339'
'avg' => '$0.002177'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.00055297005884499
'max_diff' => 0.0022072718451418
'year' => 2029
]
4 => [
'items' => [
101 => 0.0024447579228127
102 => 0.0024258678015213
103 => 0.0024959150593565
104 => 0.0023492249572862
105 => 0.0023979495250085
106 => 0.0024079915908868
107 => 0.0022926559425288
108 => 0.0022138675066841
109 => 0.0022086132162672
110 => 0.0020720049262278
111 => 0.0021449799721033
112 => 0.0022091949925611
113 => 0.0021784409810487
114 => 0.0021687051797538
115 => 0.0022184432771316
116 => 0.0022223083532758
117 => 0.0021341842075845
118 => 0.0021525080080025
119 => 0.0022289213018238
120 => 0.0021505825890545
121 => 0.0019983832666998
122 => 0.0019606357304356
123 => 0.0019555995132728
124 => 0.0018532252011294
125 => 0.0019631582013056
126 => 0.0019151695007075
127 => 0.0020667652309042
128 => 0.00198017456284
129 => 0.0019764418122064
130 => 0.0019707992121481
131 => 0.0018826814126567
201 => 0.001901973610567
202 => 0.0019661038147056
203 => 0.0019889861940207
204 => 0.0019865993743883
205 => 0.0019657895417192
206 => 0.0019753161765516
207 => 0.001944627566457
208 => 0.0019337907795044
209 => 0.001899586898989
210 => 0.0018493166436944
211 => 0.0018563070310185
212 => 0.0017567085013522
213 => 0.001702441936296
214 => 0.0016874216663103
215 => 0.001667335933545
216 => 0.0016896904032722
217 => 0.0017564263512316
218 => 0.0016759286391714
219 => 0.0015379209581021
220 => 0.001546215454888
221 => 0.0015648507265078
222 => 0.001530124021129
223 => 0.0014972581088795
224 => 0.0015258323530847
225 => 0.0014673566792926
226 => 0.0015719172323147
227 => 0.001569089162383
228 => 0.0016080628705685
301 => 0.0016324339301178
302 => 0.0015762665280808
303 => 0.0015621405783613
304 => 0.0015701873613101
305 => 0.0014371919635961
306 => 0.0015971943092038
307 => 0.0015985780161329
308 => 0.0015867298773334
309 => 0.0016719261868513
310 => 0.0018517169733294
311 => 0.0017840724473887
312 => 0.0017578784423778
313 => 0.0017080836197045
314 => 0.0017744322643927
315 => 0.0017693377236808
316 => 0.0017462982785341
317 => 0.0017323639502219
318 => 0.0017580383773869
319 => 0.0017291826045699
320 => 0.0017239993148683
321 => 0.0016925942187518
322 => 0.001681384028279
323 => 0.0016730844495435
324 => 0.0016639474288555
325 => 0.0016841014196896
326 => 0.0016384298249812
327 => 0.0015833543590046
328 => 0.0015787754299334
329 => 0.0015914182556824
330 => 0.0015858247464362
331 => 0.0015787486503631
401 => 0.0015652384558995
402 => 0.0015612302698018
403 => 0.0015742549301239
404 => 0.0015595508480052
405 => 0.0015812475221442
406 => 0.0015753472273101
407 => 0.0015423886599996
408 => 0.0015013100823062
409 => 0.0015009443967995
410 => 0.0014920940846179
411 => 0.0014808218814012
412 => 0.0014776862123394
413 => 0.0015234259099378
414 => 0.0016181057150927
415 => 0.0015995178038451
416 => 0.0016129494746872
417 => 0.0016790200014175
418 => 0.001700021835055
419 => 0.0016851152309948
420 => 0.0016647101519579
421 => 0.001665607871878
422 => 0.0017353382039845
423 => 0.0017396871992651
424 => 0.0017506757072999
425 => 0.0017647990454766
426 => 0.0016875204965573
427 => 0.0016619680591734
428 => 0.0016498598967457
429 => 0.0016125714429168
430 => 0.0016527838435008
501 => 0.0016293537997472
502 => 0.0016325153131338
503 => 0.0016304563733933
504 => 0.0016315806937165
505 => 0.0015718880055092
506 => 0.0015936368837366
507 => 0.0015574751554192
508 => 0.0015090586605467
509 => 0.0015088963514789
510 => 0.0015207462200073
511 => 0.0015136974545212
512 => 0.0014947294078384
513 => 0.001497423729343
514 => 0.0014738186378641
515 => 0.0015002898148326
516 => 0.0015010489134696
517 => 0.001490856068442
518 => 0.0015316385688804
519 => 0.0015483471925854
520 => 0.0015416380436363
521 => 0.0015478764608099
522 => 0.0016002902154768
523 => 0.0016088359444599
524 => 0.0016126313927751
525 => 0.0016075459948333
526 => 0.0015488344880279
527 => 0.0015514385930153
528 => 0.0015323313984684
529 => 0.0015161878325428
530 => 0.001516833490518
531 => 0.0015251333819204
601 => 0.001561379494457
602 => 0.0016376573014652
603 => 0.0016405519884828
604 => 0.0016440604335921
605 => 0.0016297898241293
606 => 0.001625485671764
607 => 0.0016311639597298
608 => 0.0016598098935455
609 => 0.0017334950126147
610 => 0.0017074497702721
611 => 0.0016862745828291
612 => 0.0017048509310061
613 => 0.0017019912478105
614 => 0.001677852643756
615 => 0.0016771751535363
616 => 0.0016308454547772
617 => 0.0016137184200221
618 => 0.0015994057878445
619 => 0.0015837767671472
620 => 0.0015745113597884
621 => 0.0015887472365439
622 => 0.0015920031499919
623 => 0.0015608761566653
624 => 0.0015566336624931
625 => 0.0015820526371664
626 => 0.0015708666941276
627 => 0.001582371713941
628 => 0.001585040977226
629 => 0.0015846111643587
630 => 0.0015729317551288
701 => 0.001580375862287
702 => 0.0015627683296628
703 => 0.0015436227825
704 => 0.0015314091162198
705 => 0.0015207510724826
706 => 0.0015266647745971
707 => 0.0015055835063582
708 => 0.0014988391843664
709 => 0.0015778539662795
710 => 0.0016362230352308
711 => 0.0016353743258515
712 => 0.0016302080257758
713 => 0.0016225319518088
714 => 0.0016592483409236
715 => 0.0016464570851234
716 => 0.0016557637924632
717 => 0.0016581327400824
718 => 0.0016653028310446
719 => 0.0016678655222734
720 => 0.0016601192894764
721 => 0.001634121986087
722 => 0.0015693391777902
723 => 0.0015391826056501
724 => 0.0015292304345465
725 => 0.0015295921770642
726 => 0.0015196137035349
727 => 0.0015225528111931
728 => 0.0015185916018355
729 => 0.0015110900296318
730 => 0.0015262015736524
731 => 0.001527943038327
801 => 0.0015244158233831
802 => 0.0015252466101894
803 => 0.0014960427769469
804 => 0.001498263080961
805 => 0.0014859001460682
806 => 0.0014835822448132
807 => 0.0014523298219682
808 => 0.0013969616247872
809 => 0.0014276409807465
810 => 0.001390584632918
811 => 0.0013765508325
812 => 0.0014429846609748
813 => 0.0014363165471835
814 => 0.0014249036349322
815 => 0.0014080215590532
816 => 0.0014017598328914
817 => 0.0013637155669539
818 => 0.001361467708764
819 => 0.0013803234742443
820 => 0.0013716221872624
821 => 0.0013594022849048
822 => 0.0013151430372773
823 => 0.0012653809892106
824 => 0.0012668829926487
825 => 0.0012827113742829
826 => 0.0013287345286323
827 => 0.0013107524860194
828 => 0.0012977063077835
829 => 0.0012952631507666
830 => 0.0013258443759288
831 => 0.0013691232164981
901 => 0.0013894286801837
902 => 0.0013693065823574
903 => 0.0013461913998251
904 => 0.0013475983138804
905 => 0.0013569578827817
906 => 0.001357941441136
907 => 0.0013428958335867
908 => 0.0013471310839817
909 => 0.0013406973513523
910 => 0.0013012135460814
911 => 0.0013004994092486
912 => 0.0012908094466727
913 => 0.001290516038457
914 => 0.001274030994841
915 => 0.0012717246232834
916 => 0.0012389925686133
917 => 0.001260536906119
918 => 0.0012460860956487
919 => 0.0012243053156684
920 => 0.0012205503009901
921 => 0.0012204374207145
922 => 0.0012428014116611
923 => 0.0012602755698638
924 => 0.0012463374736837
925 => 0.0012431640393622
926 => 0.0012770480155353
927 => 0.0012727359707079
928 => 0.0012690017676972
929 => 0.0013652480710116
930 => 0.0012890616117455
1001 => 0.0012558399669345
1002 => 0.0012147218728615
1003 => 0.0012281101316271
1004 => 0.0012309312344634
1005 => 0.0011320496303116
1006 => 0.0010919333758221
1007 => 0.0010781669890304
1008 => 0.0010702442388037
1009 => 0.0010738547355697
1010 => 0.0010377454013618
1011 => 0.0010620114711427
1012 => 0.0010307438399648
1013 => 0.0010255017198441
1014 => 0.0010814121177066
1015 => 0.0010891917229453
1016 => 0.0010560015100629
1017 => 0.0010773149997408
1018 => 0.0010695864321039
1019 => 0.0010312798337578
1020 => 0.0010298168034652
1021 => 0.0010105958989571
1022 => 0.00098051890530253
1023 => 0.00096677291212889
1024 => 0.00095961387953587
1025 => 0.00096256783591051
1026 => 0.00096107422517494
1027 => 0.00095132740480808
1028 => 0.00096163290150915
1029 => 0.00093530661596315
1030 => 0.00092482327693344
1031 => 0.00092008819590533
1101 => 0.0008967221021988
1102 => 0.00093390794823493
1103 => 0.00094123402835899
1104 => 0.00094857454312404
1105 => 0.0010124687125715
1106 => 0.0010092767404289
1107 => 0.0010381306140441
1108 => 0.0010370094055743
1109 => 0.0010287798134175
1110 => 0.00099406051781013
1111 => 0.0010078990102273
1112 => 0.00096530628154651
1113 => 0.00099721964989817
1114 => 0.0009826557213166
1115 => 0.00099229557099475
1116 => 0.00097496225208323
1117 => 0.00098455522644406
1118 => 0.00094297131373606
1119 => 0.00090414084115077
1120 => 0.00091976735685125
1121 => 0.0009367551665265
1122 => 0.00097358906631586
1123 => 0.0009516510994744
1124 => 0.00095954082191696
1125 => 0.00093311157245797
1126 => 0.00087858048168219
1127 => 0.00087888912173392
1128 => 0.00087050070144245
1129 => 0.00086325188158121
1130 => 0.00095417093886683
1201 => 0.00094286371687577
1202 => 0.00092484713848563
1203 => 0.00094896304461119
1204 => 0.00095533967296169
1205 => 0.00095552120660634
1206 => 0.00097311554919392
1207 => 0.00098250565298687
1208 => 0.00098416069947942
1209 => 0.0010118457776919
1210 => 0.0010211254507337
1211 => 0.0010593471106845
1212 => 0.00098170896828505
1213 => 0.00098011006183353
1214 => 0.00094930240486593
1215 => 0.00092976370176729
1216 => 0.00095064023658318
1217 => 0.00096913399649887
1218 => 0.00094987705753766
1219 => 0.00095239160722983
1220 => 0.00092654074002413
1221 => 0.00093578120865381
1222 => 0.00094374034506324
1223 => 0.00093934577775437
1224 => 0.00093276689779352
1225 => 0.00096761771908584
1226 => 0.00096565129916706
1227 => 0.00099810518517139
1228 => 0.0010234053101114
1229 => 0.0010687476569422
1230 => 0.0010214305542743
1231 => 0.0010197061309846
]
'min_raw' => 0.00086325188158121
'max_raw' => 0.0024959150593565
'avg_raw' => 0.0016795834704688
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.000863'
'max' => '$0.002495'
'avg' => '$0.001679'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.00015179259132272
'max_diff' => -0.00084312138184137
'year' => 2030
]
5 => [
'items' => [
101 => 0.0010365626452473
102 => 0.0010211228700892
103 => 0.0010308802750262
104 => 0.001067175588158
105 => 0.0010679424509311
106 => 0.0010550965114353
107 => 0.0010543148348495
108 => 0.0010567820380489
109 => 0.0010712325242491
110 => 0.0010661830803522
111 => 0.001072026424666
112 => 0.0010793336162069
113 => 0.0011095592586052
114 => 0.001116846558659
115 => 0.0010991421975601
116 => 0.00110074070314
117 => 0.0010941187860935
118 => 0.0010877220971989
119 => 0.0011021009196725
120 => 0.0011283785003596
121 => 0.0011282150288939
122 => 0.0011343109168501
123 => 0.0011381086045458
124 => 0.0011218061488787
125 => 0.0011111938496974
126 => 0.0011152632804816
127 => 0.0011217703889264
128 => 0.0011131531129136
129 => 0.0010599632934526
130 => 0.0010760976868982
131 => 0.0010734121348973
201 => 0.0010695875822738
202 => 0.001085810839647
203 => 0.0010842460668964
204 => 0.0010373750479479
205 => 0.0010403755785083
206 => 0.0010375575201493
207 => 0.0010466632432277
208 => 0.0010206311311606
209 => 0.0010286384335035
210 => 0.0010336605384691
211 => 0.0010366185968756
212 => 0.0010473051321992
213 => 0.0010460511906225
214 => 0.0010472271854301
215 => 0.0010630724961743
216 => 0.0011432126404643
217 => 0.0011475744916988
218 => 0.0011260951409482
219 => 0.0011346757179116
220 => 0.0011182028865078
221 => 0.0011292612085876
222 => 0.0011368270317036
223 => 0.0011026385318664
224 => 0.0011006141107875
225 => 0.0010840732901488
226 => 0.0010929613902401
227 => 0.0010788197839179
228 => 0.001082289639457
301 => 0.0010725876208731
302 => 0.0010900493226714
303 => 0.001109574218556
304 => 0.001114506978318
305 => 0.0011015310110709
306 => 0.0010921355556261
307 => 0.0010756402309204
308 => 0.0011030723235282
309 => 0.0011110943033846
310 => 0.0011030301874831
311 => 0.0011011615556243
312 => 0.0010976205016284
313 => 0.0011019128069692
314 => 0.0011110506139595
315 => 0.0011067413929317
316 => 0.0011095877093393
317 => 0.0010987404863022
318 => 0.0011218115456699
319 => 0.0011584539402985
320 => 0.0011585717515889
321 => 0.0011542625073328
322 => 0.0011524992574271
323 => 0.0011569208035407
324 => 0.001159319310926
325 => 0.0011736177802846
326 => 0.0011889606075825
327 => 0.0012605588879819
328 => 0.0012404543773509
329 => 0.001303980631122
330 => 0.0013542216500032
331 => 0.0013692867347922
401 => 0.0013554275656533
402 => 0.0013080160966869
403 => 0.0013056898638311
404 => 0.0013765426150728
405 => 0.0013565234675854
406 => 0.0013541422536922
407 => 0.0013288101609926
408 => 0.0013437845652188
409 => 0.0013405094433533
410 => 0.0013353395032641
411 => 0.0013639096234016
412 => 0.0014173903378267
413 => 0.0014090548669446
414 => 0.0014028328246024
415 => 0.0013755696462685
416 => 0.0013919881690769
417 => 0.0013861418475809
418 => 0.0014112613548949
419 => 0.0013963811152273
420 => 0.0013563718028538
421 => 0.0013627434177217
422 => 0.0013617803609523
423 => 0.0013816000010231
424 => 0.0013756506370276
425 => 0.0013606186521483
426 => 0.0014172075465589
427 => 0.0014135329785198
428 => 0.001418742675876
429 => 0.0014210361457674
430 => 0.0014554808085869
501 => 0.0014695916848378
502 => 0.0014727951007924
503 => 0.0014861993418564
504 => 0.0014724615910638
505 => 0.0015274223890847
506 => 0.0015639681127172
507 => 0.001606417851342
508 => 0.001668448328887
509 => 0.001691772362258
510 => 0.0016875590843948
511 => 0.0017345898845254
512 => 0.0018191031869241
513 => 0.0017046416391374
514 => 0.0018251699268911
515 => 0.0017870120625543
516 => 0.0016965404526423
517 => 0.0016907151475542
518 => 0.0017519835721836
519 => 0.0018878710411442
520 => 0.0018538327713924
521 => 0.0018879267155596
522 => 0.0018481543186821
523 => 0.0018461792839491
524 => 0.0018859950590169
525 => 0.0019790267877078
526 => 0.0019348309006489
527 => 0.001871465259274
528 => 0.0019182534627867
529 => 0.0018777211908602
530 => 0.0017863906379412
531 => 0.0018538067429691
601 => 0.0018087275134371
602 => 0.0018218840291582
603 => 0.0019166338646051
604 => 0.0019052333137271
605 => 0.0019199866822258
606 => 0.0018939473729885
607 => 0.0018696225521388
608 => 0.0018242184676378
609 => 0.0018107765566114
610 => 0.0018144914172298
611 => 0.001810774715711
612 => 0.0017853715477178
613 => 0.0017798857360083
614 => 0.0017707424761536
615 => 0.001773576354705
616 => 0.0017563843512231
617 => 0.0017888292138426
618 => 0.0017948512662479
619 => 0.0018184619315854
620 => 0.0018209132691861
621 => 0.0018866686360742
622 => 0.0018504516849663
623 => 0.0018747491425906
624 => 0.0018725757492841
625 => 0.001698501246763
626 => 0.0017224871773381
627 => 0.0017598017581132
628 => 0.0017429915900528
629 => 0.0017192259453888
630 => 0.0017000339130893
701 => 0.0016709560216697
702 => 0.0017118825954514
703 => 0.0017656966879185
704 => 0.0018222780833778
705 => 0.0018902569226623
706 => 0.001875084837095
707 => 0.0018210072662625
708 => 0.0018234331465864
709 => 0.0018384289841997
710 => 0.0018190080119749
711 => 0.0018132803881234
712 => 0.0018376420966362
713 => 0.0018378098623337
714 => 0.0018154636866862
715 => 0.001790630001761
716 => 0.0017905259477144
717 => 0.0017861070333469
718 => 0.0018489404337315
719 => 0.0018834924507697
720 => 0.0018874537838397
721 => 0.0018832258214918
722 => 0.0018848529963977
723 => 0.0018647479389849
724 => 0.001910702138261
725 => 0.0019528742559159
726 => 0.0019415712275085
727 => 0.0019246263811056
728 => 0.0019111289947714
729 => 0.0019383916722413
730 => 0.001937177708129
731 => 0.0019525059192584
801 => 0.0019518105430615
802 => 0.0019466562421819
803 => 0.0019415714115848
804 => 0.0019617321901389
805 => 0.0019559262096875
806 => 0.0019501112109449
807 => 0.0019384483407347
808 => 0.001940033518496
809 => 0.0019230915978598
810 => 0.0019152534901639
811 => 0.001797387156668
812 => 0.0017658894209643
813 => 0.0017757992498122
814 => 0.0017790618227775
815 => 0.0017653539678339
816 => 0.0017850075105641
817 => 0.0017819445267478
818 => 0.0017938608049913
819 => 0.0017864160316894
820 => 0.0017867215677826
821 => 0.0018086150586703
822 => 0.0018149708322165
823 => 0.0018117382344935
824 => 0.0018140022351317
825 => 0.0018661751742649
826 => 0.0018587578507168
827 => 0.0018548175454147
828 => 0.0018559090369119
829 => 0.0018692403414608
830 => 0.0018729723788723
831 => 0.0018571594741143
901 => 0.0018646169314115
902 => 0.0018963698380906
903 => 0.0019074815583695
904 => 0.0019429448355712
905 => 0.0019278794051064
906 => 0.001955532654741
907 => 0.0020405293164304
908 => 0.0021084305311095
909 => 0.0020459857679542
910 => 0.0021706777015449
911 => 0.0022677682578407
912 => 0.0022640417605773
913 => 0.0022471117763421
914 => 0.0021365767592853
915 => 0.0020348607886053
916 => 0.0021199505171673
917 => 0.0021201674283843
918 => 0.0021128581452385
919 => 0.002067460815372
920 => 0.0021112784165635
921 => 0.002114756498624
922 => 0.0021128096975668
923 => 0.0020780036711978
924 => 0.0020248613021613
925 => 0.0020352451938662
926 => 0.0020522542203044
927 => 0.0020200525848022
928 => 0.0020097622110933
929 => 0.0020288939736418
930 => 0.002090540498834
1001 => 0.0020788865803404
1002 => 0.0020785822494314
1003 => 0.0021284426547775
1004 => 0.0020927533650986
1005 => 0.0020353761679944
1006 => 0.0020208876690133
1007 => 0.0019694632582529
1008 => 0.0020049822819326
1009 => 0.0020062605483615
1010 => 0.0019868071420878
1011 => 0.0020369547046997
1012 => 0.0020364925860819
1013 => 0.0020841002333022
1014 => 0.0021751081741717
1015 => 0.0021481926478278
1016 => 0.0021168928190908
1017 => 0.0021202959783246
1018 => 0.0021576202354069
1019 => 0.002135053137545
1020 => 0.0021431684232796
1021 => 0.00215760795195
1022 => 0.0021663196781102
1023 => 0.002119042494996
1024 => 0.002108019922083
1025 => 0.0020854716063003
1026 => 0.0020795891715969
1027 => 0.0020979543043158
1028 => 0.0020931157406941
1029 => 0.0020061531150179
1030 => 0.0019970650367792
1031 => 0.001997343755164
1101 => 0.0019744913503184
1102 => 0.0019396359477232
1103 => 0.0020312338646354
1104 => 0.0020238772699953
1105 => 0.0020157561588679
1106 => 0.0020167509486426
1107 => 0.0020565104998327
1108 => 0.002033447952237
1109 => 0.0020947635148975
1110 => 0.002082158878529
1111 => 0.0020692309807994
1112 => 0.0020674439515397
1113 => 0.0020624678138702
1114 => 0.0020454027862621
1115 => 0.0020247957399762
1116 => 0.0020111891830664
1117 => 0.0018552157103208
1118 => 0.0018841634796064
1119 => 0.0019174652494974
1120 => 0.0019289608870153
1121 => 0.001909296803567
1122 => 0.0020461792441307
1123 => 0.0020711889850536
1124 => 0.0019954328484529
1125 => 0.0019812619683975
1126 => 0.0020471082846679
1127 => 0.0020073949065721
1128 => 0.0020252778382969
1129 => 0.0019866247213485
1130 => 0.002065164870836
1201 => 0.0020645665264876
1202 => 0.0020340126344273
1203 => 0.0020598365747727
1204 => 0.0020553490296417
1205 => 0.0020208537607564
1206 => 0.0020662584323878
1207 => 0.0020662809525384
1208 => 0.0020368734957292
1209 => 0.0020025320242961
1210 => 0.0019963925803132
1211 => 0.0019917673339904
1212 => 0.0020241403112343
1213 => 0.0020531658214035
1214 => 0.0021071750997942
1215 => 0.0021207543156104
1216 => 0.0021737548989607
1217 => 0.0021421956321272
1218 => 0.0021561854463536
1219 => 0.0021713733686764
1220 => 0.0021786550171553
1221 => 0.0021667899617137
1222 => 0.0022491216835672
1223 => 0.0022560730034704
1224 => 0.0022584037209053
1225 => 0.0022306419275305
1226 => 0.0022553008977759
1227 => 0.0022437637822174
1228 => 0.0022737801517978
1229 => 0.0022784871018162
1230 => 0.0022745004826052
1231 => 0.0022759945428352
]
'min_raw' => 0.0010206311311606
'max_raw' => 0.0022784871018162
'avg_raw' => 0.0016495591164884
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.00102'
'max' => '$0.002278'
'avg' => '$0.001649'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.00015737924957934
'max_diff' => -0.00021742795754024
'year' => 2031
]
6 => [
'items' => [
101 => 0.0022057389425443
102 => 0.0022020958190414
103 => 0.002152421571575
104 => 0.0021726641945911
105 => 0.0021348215811168
106 => 0.0021468218636716
107 => 0.0021521114738789
108 => 0.0021493484816893
109 => 0.0021738086821246
110 => 0.0021530125148658
111 => 0.0020981280102634
112 => 0.0020432285524144
113 => 0.0020425393344412
114 => 0.0020280852762455
115 => 0.0020176376395628
116 => 0.0020196502250377
117 => 0.0020267428387569
118 => 0.0020172254039597
119 => 0.0020192564312199
120 => 0.0020529850164026
121 => 0.0020597490436197
122 => 0.0020367622362599
123 => 0.0019444668877297
124 => 0.0019218173776951
125 => 0.0019380973963487
126 => 0.0019303165959998
127 => 0.0015579161480051
128 => 0.0016454061093675
129 => 0.0015934225452043
130 => 0.0016173789632195
131 => 0.0015643172052876
201 => 0.0015896410573777
202 => 0.0015849646665757
203 => 0.0017256459354303
204 => 0.0017234493909179
205 => 0.0017245007605374
206 => 0.0016743161492678
207 => 0.001754261597681
208 => 0.0017936456003146
209 => 0.0017863566695984
210 => 0.0017881911364259
211 => 0.0017566689184514
212 => 0.0017248059645116
213 => 0.0016894650449188
214 => 0.0017551241052524
215 => 0.0017478239385809
216 => 0.0017645678944084
217 => 0.0018071524884413
218 => 0.0018134232316758
219 => 0.0018218511741745
220 => 0.0018188303567305
221 => 0.0018907984837893
222 => 0.0018820826687415
223 => 0.0019030852752955
224 => 0.0018598813201422
225 => 0.0018109919439291
226 => 0.0018202842160331
227 => 0.0018193892955058
228 => 0.0018079959300507
229 => 0.0017977105091496
301 => 0.0017805881812487
302 => 0.0018347657603549
303 => 0.0018325662495831
304 => 0.0018681737723275
305 => 0.0018618797968094
306 => 0.0018198470879025
307 => 0.001821348294324
308 => 0.0018314446289644
309 => 0.0018663881584327
310 => 0.0018767617771158
311 => 0.0018719563036245
312 => 0.0018833305029369
313 => 0.0018923202063099
314 => 0.0018844594712726
315 => 0.001995750902577
316 => 0.0019495349410879
317 => 0.0019720602791491
318 => 0.0019774324395497
319 => 0.0019636717636479
320 => 0.0019666559615182
321 => 0.0019711762081463
322 => 0.0019986222605175
323 => 0.0020706486435186
324 => 0.0021025486382496
325 => 0.0021985213463159
326 => 0.0020998997877565
327 => 0.0020940479926082
328 => 0.0021113355754291
329 => 0.0021676817148069
330 => 0.0022133449684488
331 => 0.0022284941040581
401 => 0.0022304963124139
402 => 0.0022589170979125
403 => 0.002275207362144
404 => 0.0022554660670121
405 => 0.0022387373863875
406 => 0.0021788173288307
407 => 0.0021857532386498
408 => 0.0022335347792926
409 => 0.0023010290197693
410 => 0.0023589460996772
411 => 0.0023386655569075
412 => 0.0024933917824084
413 => 0.0025087322556669
414 => 0.0025066126982794
415 => 0.0025415605793307
416 => 0.0024721961524561
417 => 0.0024425415160947
418 => 0.0022423543170172
419 => 0.0022985987544282
420 => 0.0023803533473252
421 => 0.0023695328203913
422 => 0.002310160449723
423 => 0.00235890106041
424 => 0.002342785890257
425 => 0.0023300751869384
426 => 0.0023883053829322
427 => 0.0023242788904724
428 => 0.0023797146340852
429 => 0.0023086177194924
430 => 0.0023387581967185
501 => 0.0023216490041142
502 => 0.002332720748553
503 => 0.0022679955567966
504 => 0.0023029196991531
505 => 0.0022665425976546
506 => 0.0022665253501721
507 => 0.0022657223236403
508 => 0.0023085198222325
509 => 0.0023099154471251
510 => 0.002278288031002
511 => 0.0022737300262256
512 => 0.0022905833588311
513 => 0.0022708525202449
514 => 0.002280084455435
515 => 0.0022711321461571
516 => 0.0022691167927741
517 => 0.0022530581141348
518 => 0.0022461395938344
519 => 0.0022488525239125
520 => 0.0022395918949447
521 => 0.00223401203102
522 => 0.0022646123482625
523 => 0.0022482638331731
524 => 0.0022621067038544
525 => 0.0022463310056035
526 => 0.0021916455623215
527 => 0.002160195385602
528 => 0.0020568996525856
529 => 0.0020861941943311
530 => 0.0021056165058157
531 => 0.0020991974319859
601 => 0.0021129880864242
602 => 0.0021138347206036
603 => 0.0021093512382667
604 => 0.0021041599400901
605 => 0.0021016331032346
606 => 0.0021204660749572
607 => 0.0021313992489309
608 => 0.0021075657946102
609 => 0.0021019819497284
610 => 0.0021260788879276
611 => 0.0021407780063088
612 => 0.0022493080377145
613 => 0.0022412677824405
614 => 0.0022614472453576
615 => 0.0022591753475123
616 => 0.00228032663949
617 => 0.0023149000626705
618 => 0.0022446026264633
619 => 0.0022568038306864
620 => 0.0022538123771778
621 => 0.002286472282183
622 => 0.0022865742428415
623 => 0.0022669929983077
624 => 0.0022776083086389
625 => 0.0022716831336278
626 => 0.0022823907257082
627 => 0.0022411603999294
628 => 0.0022913744861894
629 => 0.0023198426373745
630 => 0.0023202379176813
701 => 0.0023337315954059
702 => 0.0023474419534751
703 => 0.0023737577918685
704 => 0.0023467080190253
705 => 0.0022980481109226
706 => 0.0023015611991171
707 => 0.0022730319128005
708 => 0.0022735114952577
709 => 0.0022709514465155
710 => 0.0022786343455023
711 => 0.0022428463642102
712 => 0.0022512457318874
713 => 0.0022394865679526
714 => 0.0022567782685605
715 => 0.0022381752571269
716 => 0.0022538109346084
717 => 0.0022605587746785
718 => 0.0022854584498077
719 => 0.002234497554865
720 => 0.0021305848403277
721 => 0.0021524285527433
722 => 0.002120119986294
723 => 0.0021231102671263
724 => 0.0021291511103071
725 => 0.0021095707611171
726 => 0.0021133060746949
727 => 0.0021131726230089
728 => 0.0021120226084754
729 => 0.0021069290034221
730 => 0.0020995422683558
731 => 0.0021289687473429
801 => 0.0021339688795353
802 => 0.0021450835540139
803 => 0.0021781532861063
804 => 0.0021748488400323
805 => 0.0021802385286792
806 => 0.0021684728686249
807 => 0.0021236560423515
808 => 0.0021260898116384
809 => 0.0020957406696322
810 => 0.0021443074582186
811 => 0.0021328062016311
812 => 0.002125391266689
813 => 0.0021233680329911
814 => 0.0021565197385531
815 => 0.0021664392484465
816 => 0.0021602580755544
817 => 0.0021475803096192
818 => 0.0021719253680599
819 => 0.002178439078663
820 => 0.0021798972582507
821 => 0.0022230320341055
822 => 0.0021823080130534
823 => 0.0021921106896826
824 => 0.0022685883744463
825 => 0.0021992336675647
826 => 0.0022359724025944
827 => 0.0022341742326938
828 => 0.002252968526364
829 => 0.0022326325520486
830 => 0.0022328846408226
831 => 0.002249572700366
901 => 0.0022261373304447
902 => 0.0022203344032799
903 => 0.002212317700963
904 => 0.0022298218771867
905 => 0.0022403148391871
906 => 0.0023248804066786
907 => 0.0023795136199365
908 => 0.0023771418480641
909 => 0.0023988154032067
910 => 0.0023890512681079
911 => 0.0023575203002254
912 => 0.002411339817609
913 => 0.0023943090704046
914 => 0.0023957130645117
915 => 0.002395660807781
916 => 0.0024069847658181
917 => 0.0023989607037233
918 => 0.0023831444536812
919 => 0.0023936440185726
920 => 0.0024248239726369
921 => 0.0025216075067704
922 => 0.0025757688546827
923 => 0.0025183469256191
924 => 0.0025579558033769
925 => 0.0025342045908084
926 => 0.0025298882889473
927 => 0.0025547655912523
928 => 0.0025796864379818
929 => 0.0025780990877809
930 => 0.002560007832755
1001 => 0.0025497885418394
1002 => 0.0026271724363657
1003 => 0.0026841875716524
1004 => 0.0026802995216601
1005 => 0.0026974601098642
1006 => 0.0027478441275886
1007 => 0.0027524506107363
1008 => 0.0027518702997385
1009 => 0.0027404526506202
1010 => 0.0027900622592613
1011 => 0.0028314474675877
1012 => 0.0027378097947369
1013 => 0.0027734657947514
1014 => 0.0027894729219224
1015 => 0.0028129761337101
1016 => 0.0028526299915917
1017 => 0.0028957045989174
1018 => 0.0029017958206823
1019 => 0.0028974738073483
1020 => 0.0028690649459094
1021 => 0.0029161976952322
1022 => 0.0029438069543865
1023 => 0.0029602476363862
1024 => 0.0030019384704688
1025 => 0.0027895717764903
1026 => 0.0026392480751828
1027 => 0.0026157728585231
1028 => 0.002663510634718
1029 => 0.0026760987055989
1030 => 0.0026710244700109
1031 => 0.0025018214773563
1101 => 0.0026148820397841
1102 => 0.0027365256985544
1103 => 0.0027411985268972
1104 => 0.0028020958859265
1105 => 0.0028219265622935
1106 => 0.0028709569183115
1107 => 0.002867890056193
1108 => 0.00287982816764
1109 => 0.0028770838025576
1110 => 0.0029679022125213
1111 => 0.0030680884053756
1112 => 0.0030646192760897
1113 => 0.0030502163255176
1114 => 0.0030716071631851
1115 => 0.0031750100508157
1116 => 0.0031654903699202
1117 => 0.0031747379290257
1118 => 0.0032966557610735
1119 => 0.0034551662853451
1120 => 0.0033815222326245
1121 => 0.0035413086365228
1122 => 0.0036418857078635
1123 => 0.0038158233528839
1124 => 0.0037940455030664
1125 => 0.0038617581518594
1126 => 0.0037550586067186
1127 => 0.0035100548835394
1128 => 0.0034712821065097
1129 => 0.0035489061880062
1130 => 0.0037397374179183
1201 => 0.0035428962334656
1202 => 0.0035827169487139
1203 => 0.0035712485800435
1204 => 0.0035706374794145
1205 => 0.0035939607048982
1206 => 0.0035601291498765
1207 => 0.0034222933085376
1208 => 0.0034854626623515
1209 => 0.0034610699412024
1210 => 0.0034881354839151
1211 => 0.0036341970552568
1212 => 0.0035696197528937
1213 => 0.0035015928106882
1214 => 0.0035869136926008
1215 => 0.0036955564947115
1216 => 0.0036887578234053
1217 => 0.0036755655594471
1218 => 0.0037499296606549
1219 => 0.0038727573692129
1220 => 0.0039059572052744
1221 => 0.0039304646455142
1222 => 0.0039338438074667
1223 => 0.0039686512757147
1224 => 0.0037814827463339
1225 => 0.00407852400929
1226 => 0.0041298148298032
1227 => 0.0041201742813334
1228 => 0.0041771818696862
1229 => 0.0041604087910499
1230 => 0.0041361072317213
1231 => 0.0042264763851222
]
'min_raw' => 0.0015579161480051
'max_raw' => 0.0042264763851222
'avg_raw' => 0.0028921962665637
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.001557'
'max' => '$0.004226'
'avg' => '$0.002892'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.00053728501684456
'max_diff' => 0.001947989283306
'year' => 2032
]
7 => [
'items' => [
101 => 0.0041228754431627
102 => 0.003975826949047
103 => 0.0038951532368857
104 => 0.0040013908888224
105 => 0.0040662665156771
106 => 0.0041091451781631
107 => 0.0041221202355234
108 => 0.0037960121064692
109 => 0.003620257911695
110 => 0.0037329143355194
111 => 0.0038703629477161
112 => 0.0037807192123532
113 => 0.0037842330770614
114 => 0.0036564246683931
115 => 0.0038816711559161
116 => 0.0038488546373051
117 => 0.0040191067939102
118 => 0.0039784747503774
119 => 0.0041173087749382
120 => 0.0040807491234365
121 => 0.0042325061927974
122 => 0.0042930461964241
123 => 0.0043947022848125
124 => 0.0044694809172457
125 => 0.0045133923604978
126 => 0.0045107560821526
127 => 0.0046847550969116
128 => 0.0045821539569708
129 => 0.0044532627439731
130 => 0.0044509315085766
131 => 0.0045176860941907
201 => 0.0046575853924116
202 => 0.0046938592449883
203 => 0.0047141313800087
204 => 0.0046830838995469
205 => 0.0045717177156311
206 => 0.0045236303620556
207 => 0.0045646021805267
208 => 0.0045144971672851
209 => 0.0046009924771238
210 => 0.0047197690119336
211 => 0.0046952421271887
212 => 0.0047772318256149
213 => 0.0048620825379181
214 => 0.0049834228673957
215 => 0.0050151457227405
216 => 0.0050675823963134
217 => 0.0051215569579698
218 => 0.0051388921325186
219 => 0.0051719903595211
220 => 0.0051718159155271
221 => 0.0052715596503666
222 => 0.005381580078701
223 => 0.0054231102434184
224 => 0.0055186065671995
225 => 0.0053550724593147
226 => 0.0054791149586898
227 => 0.0055910043981113
228 => 0.0054576051957728
301 => 0.0056414649181685
302 => 0.0056486037745541
303 => 0.005756392030335
304 => 0.0056471279833699
305 => 0.0055822473410651
306 => 0.0057695553243529
307 => 0.0058601877573197
308 => 0.0058328885309189
309 => 0.0056251400700798
310 => 0.0055042215551208
311 => 0.0051877544780335
312 => 0.0055626234012038
313 => 0.0057452111186036
314 => 0.0056246672120017
315 => 0.0056854625468714
316 => 0.0060171421809669
317 => 0.0061434243109645
318 => 0.0061171585107037
319 => 0.0061215969985759
320 => 0.0061897365437398
321 => 0.0064919048121296
322 => 0.0063108385815048
323 => 0.0064492569303952
324 => 0.0065226735235422
325 => 0.0065908669468084
326 => 0.0064234054520195
327 => 0.0062055405077972
328 => 0.0061365335346138
329 => 0.0056126814961509
330 => 0.0055854127225748
331 => 0.0055701059336381
401 => 0.0054735987945807
402 => 0.0053977706188118
403 => 0.0053374692381206
404 => 0.0051792204076705
405 => 0.0052326247425043
406 => 0.0049804091358646
407 => 0.0051417677430204
408 => 0.0047392255448646
409 => 0.0050744746490947
410 => 0.0048920138035686
411 => 0.0050145313540707
412 => 0.0050141039018788
413 => 0.0047885102471797
414 => 0.0046583925351687
415 => 0.0047413086055192
416 => 0.0048302012148209
417 => 0.0048446237416094
418 => 0.0049598753299034
419 => 0.0049920395708717
420 => 0.004894580419133
421 => 0.0047308837525433
422 => 0.0047689067546687
423 => 0.0046576220002443
424 => 0.0044625997486217
425 => 0.0046026681344989
426 => 0.0046504936398095
427 => 0.0046716161075136
428 => 0.0044798341214998
429 => 0.0044195720577048
430 => 0.004387489040588
501 => 0.004706127106444
502 => 0.0047235828189764
503 => 0.0046342769256718
504 => 0.0050379480317407
505 => 0.0049465848280637
506 => 0.0050486599110993
507 => 0.0047654565657641
508 => 0.0047762753149397
509 => 0.0046422023127231
510 => 0.0047172742352032
511 => 0.0046642158200753
512 => 0.004711209165742
513 => 0.0047393767833738
514 => 0.00487342778553
515 => 0.0050760052962103
516 => 0.0048534050360149
517 => 0.0047564149149533
518 => 0.0048165870405667
519 => 0.0049768333404654
520 => 0.0052196146876689
521 => 0.0050758832436945
522 => 0.0051396688178121
523 => 0.0051536031281342
524 => 0.0050476208825747
525 => 0.0052235224042342
526 => 0.005317789458713
527 => 0.0054144879507898
528 => 0.0054984485420299
529 => 0.0053758644466089
530 => 0.0055070470004492
531 => 0.005401337018892
601 => 0.0053065042373381
602 => 0.0053066480595225
603 => 0.0052471580703678
604 => 0.0051318887201598
605 => 0.0051106312834323
606 => 0.005221215153807
607 => 0.005309892945516
608 => 0.0053171968731791
609 => 0.0053662934550987
610 => 0.0053953483065437
611 => 0.0056801253488597
612 => 0.0057946650310784
613 => 0.0059347219863703
614 => 0.005989282063634
615 => 0.0061534883353273
616 => 0.0060208784347536
617 => 0.0059921874486091
618 => 0.0055938767449431
619 => 0.0056591001003546
620 => 0.0057635289854862
621 => 0.0055955987387954
622 => 0.0057021118281061
623 => 0.0057231397681918
624 => 0.0055898925332721
625 => 0.0056610656387159
626 => 0.0054720509720124
627 => 0.0050801252994269
628 => 0.0052239587295457
629 => 0.0053298685479222
630 => 0.0051787221785125
701 => 0.0054496461955071
702 => 0.0052913779777858
703 => 0.0052412145509823
704 => 0.0050455091384693
705 => 0.0051378745597833
706 => 0.005262800114656
707 => 0.0051856106458992
708 => 0.0053457903836265
709 => 0.005572647610624
710 => 0.0057343195801638
711 => 0.0057467307464963
712 => 0.0056427865012629
713 => 0.0058093578176127
714 => 0.0058105711078023
715 => 0.0056226779824959
716 => 0.005507594489439
717 => 0.0054814472776787
718 => 0.0055467681391187
719 => 0.005626079723803
720 => 0.0057511319874657
721 => 0.0058266984513597
722 => 0.0060237357118398
723 => 0.0060770483450247
724 => 0.0061356227655145
725 => 0.0062138962549712
726 => 0.0063078836479747
727 => 0.0061022445827883
728 => 0.0061104150062073
729 => 0.0059189267559724
730 => 0.0057142940984035
731 => 0.0058695847776774
801 => 0.0060726066833747
802 => 0.0060260332338885
803 => 0.0060207927694121
804 => 0.0060296057770778
805 => 0.0059944909171118
806 => 0.0058356677069032
807 => 0.0057559076850224
808 => 0.0058588184622004
809 => 0.0059135109602388
810 => 0.0059983342550093
811 => 0.0059878779935263
812 => 0.0062063736914982
813 => 0.0062912745127631
814 => 0.0062695532495726
815 => 0.006273550484751
816 => 0.0064272593662594
817 => 0.0065982152551393
818 => 0.0067583380046916
819 => 0.0069212217429684
820 => 0.0067248590390153
821 => 0.0066251581679157
822 => 0.0067280240174678
823 => 0.0066734419497538
824 => 0.0069870867009313
825 => 0.0070088027829975
826 => 0.0073224248540895
827 => 0.0076200895449774
828 => 0.0074331316858476
829 => 0.0076094245262401
830 => 0.0078000996064908
831 => 0.0081679427722112
901 => 0.0080440661348751
902 => 0.0079491785720701
903 => 0.0078595102837128
904 => 0.0080460957573445
905 => 0.0082861349883961
906 => 0.0083378371396974
907 => 0.0084216143765474
908 => 0.0083335328557927
909 => 0.0084396173456805
910 => 0.0088141422108713
911 => 0.0087129422862743
912 => 0.0085692221246469
913 => 0.0088648735359647
914 => 0.0089718686324048
915 => 0.0097228162529886
916 => 0.010670918644075
917 => 0.010278398028589
918 => 0.010034747815996
919 => 0.010092011395416
920 => 0.010438226293349
921 => 0.010549419530254
922 => 0.01024715798174
923 => 0.010353921870598
924 => 0.010942201395002
925 => 0.011257794485578
926 => 0.010829176678769
927 => 0.0096466371490116
928 => 0.0085562816965687
929 => 0.0088454930619025
930 => 0.0088127054683472
1001 => 0.0094447384279542
1002 => 0.0087105287015418
1003 => 0.0087228909103487
1004 => 0.0093679936422259
1005 => 0.0091958912932217
1006 => 0.0089171075290385
1007 => 0.0085583171265679
1008 => 0.0078950598835055
1009 => 0.0073075944470286
1010 => 0.0084597494531698
1011 => 0.0084100664342471
1012 => 0.0083381180602361
1013 => 0.0084982313809704
1014 => 0.0092756962174971
1015 => 0.0092577731366071
1016 => 0.0091437556404209
1017 => 0.009230236906374
1018 => 0.0089019469449861
1019 => 0.0089865547430593
1020 => 0.0085561089786943
1021 => 0.0087506884411903
1022 => 0.0089165093842887
1023 => 0.0089498003936368
1024 => 0.0090248067375789
1025 => 0.0083838857408886
1026 => 0.0086716404519507
1027 => 0.0088406693857295
1028 => 0.0080769905135917
1029 => 0.0088255739098421
1030 => 0.0083727287322568
1031 => 0.008219026277478
1101 => 0.008425966384079
1102 => 0.0083453216232807
1103 => 0.0082759879935656
1104 => 0.0082372986368816
1105 => 0.0083892526120233
1106 => 0.0083821637774587
1107 => 0.0081335375811312
1108 => 0.0078092148433224
1109 => 0.007918068199662
1110 => 0.0078785207547981
1111 => 0.0077351957128897
1112 => 0.0078317794860044
1113 => 0.007406473429136
1114 => 0.006674756463779
1115 => 0.0071581511041906
1116 => 0.0071395409363669
1117 => 0.0071301568458463
1118 => 0.0074934145580691
1119 => 0.0074584957108202
1120 => 0.0073951176611371
1121 => 0.0077340317253056
1122 => 0.0076103235328466
1123 => 0.0079915630326891
1124 => 0.0082426720243103
1125 => 0.0081789826615103
1126 => 0.0084151518818451
1127 => 0.0079205759611392
1128 => 0.0080848542430558
1129 => 0.0081187117692789
1130 => 0.007729849578362
1201 => 0.0074642088660788
1202 => 0.0074464936590953
1203 => 0.0069859092715414
1204 => 0.0072319497336654
1205 => 0.0074484551584885
1206 => 0.0073447658614979
1207 => 0.0073119409277003
1208 => 0.0074796363956126
1209 => 0.007492667769684
1210 => 0.0071955510598543
1211 => 0.0072573310322904
1212 => 0.0075149637874148
1213 => 0.0072508393478788
1214 => 0.0067376887063426
1215 => 0.006610420252379
1216 => 0.0065934402945972
1217 => 0.0062482781536594
1218 => 0.0066189249390306
1219 => 0.0064571276844998
1220 => 0.0069682432729339
1221 => 0.0066762967899882
1222 => 0.0066637115606145
1223 => 0.0066446871405643
1224 => 0.0063475918273906
1225 => 0.0064126368195835
1226 => 0.0066288562802647
1227 => 0.0067060058197224
1228 => 0.0066979584906894
1229 => 0.0066277966869493
1230 => 0.0066599164014149
1231 => 0.0065564476098707
]
'min_raw' => 0.003620257911695
'max_raw' => 0.011257794485578
'avg_raw' => 0.0074390261986367
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.00362'
'max' => '$0.011257'
'avg' => '$0.007439'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.0020623417636899
'max_diff' => 0.0070313181004561
'year' => 2033
]
8 => [
'items' => [
101 => 0.0065199106260598
102 => 0.0064045898548633
103 => 0.0062351001793807
104 => 0.0062586687582971
105 => 0.00592286536178
106 => 0.0057399018489223
107 => 0.0056892599599836
108 => 0.0056215395096246
109 => 0.0056969091650489
110 => 0.0059219140729491
111 => 0.0056505104165673
112 => 0.0051852078844537
113 => 0.0052131733594707
114 => 0.0052760034788097
115 => 0.0051589199670842
116 => 0.0050481102493103
117 => 0.0051444503086382
118 => 0.0049472954918067
119 => 0.0052998286965055
120 => 0.0052902936612813
121 => 0.0054216962394859
122 => 0.0055038649682896
123 => 0.005314492650839
124 => 0.0052668660251173
125 => 0.0052939963156378
126 => 0.0048455930468029
127 => 0.0053850521260263
128 => 0.0053897173905449
129 => 0.005349770563372
130 => 0.0056370158691279
131 => 0.0062431930583305
201 => 0.0060151248163316
202 => 0.0059268098996305
203 => 0.0057589231784238
204 => 0.0059826222663045
205 => 0.0059654456666047
206 => 0.00588776656873
207 => 0.0058407860079618
208 => 0.0059273491316798
209 => 0.0058300598789815
210 => 0.005812584055867
211 => 0.0057066995816762
212 => 0.0056689036418267
213 => 0.0056409210326619
214 => 0.0056101149294858
215 => 0.0056780655166897
216 => 0.0055240805464415
217 => 0.005338389767655
218 => 0.005322951588601
219 => 0.0053655777583077
220 => 0.0053467188513576
221 => 0.0053228612994101
222 => 0.0052773107355245
223 => 0.0052637968562535
224 => 0.0053077104078822
225 => 0.0052581345684125
226 => 0.0053312864200857
227 => 0.0053113931641072
228 => 0.0052002710533261
301 => 0.0050617717606182
302 => 0.005060538826401
303 => 0.0050306993809714
304 => 0.0049926943608262
305 => 0.0049821222336589
306 => 0.0051363368175558
307 => 0.0054555563909684
308 => 0.0053928859504305
309 => 0.0054381717664442
310 => 0.0056609331602121
311 => 0.0057317423086221
312 => 0.0056814836522873
313 => 0.0056126865036773
314 => 0.0056157132290647
315 => 0.0058508139121783
316 => 0.0058654768534037
317 => 0.0059025253754362
318 => 0.0059501431961591
319 => 0.0056895931730617
320 => 0.0056034413464077
321 => 0.0055626178314176
322 => 0.0054368972059369
323 => 0.005572476122046
324 => 0.0054934800936973
325 => 0.0055041393568101
326 => 0.0054971974977243
327 => 0.0055009882221916
328 => 0.0052997301562902
329 => 0.0053730580176921
330 => 0.0052511362259388
331 => 0.0050878966331444
401 => 0.0050873493967902
402 => 0.0051273020558652
403 => 0.0051035366508997
404 => 0.0050395845572019
405 => 0.0050486686502663
406 => 0.0049690824362901
407 => 0.0050583318575979
408 => 0.0050608912116512
409 => 0.0050265253229989
410 => 0.0051640263705703
411 => 0.0052203606619505
412 => 0.0051977402978508
413 => 0.005218773556904
414 => 0.0053954901901749
415 => 0.0054243027120854
416 => 0.0054370993310696
417 => 0.0054199535568579
418 => 0.0052220036125569
419 => 0.0052307835343348
420 => 0.0051663622938981
421 => 0.0051119331342722
422 => 0.0051141100152139
423 => 0.0051420936785571
424 => 0.0052642999775969
425 => 0.0055214759294715
426 => 0.005531235568852
427 => 0.0055430645364898
428 => 0.0054949501803437
429 => 0.0054804384301377
430 => 0.00549958317446
501 => 0.0055961649403149
502 => 0.0058445994637874
503 => 0.0057567861108083
504 => 0.00568539248794
505 => 0.005748023942778
506 => 0.0057383823212273
507 => 0.0056569973323541
508 => 0.0056547131267775
509 => 0.0054985093127749
510 => 0.0054407643193269
511 => 0.0053925082806639
512 => 0.0053398139461997
513 => 0.0053085749783992
514 => 0.0053565722307977
515 => 0.005367549770308
516 => 0.0052626029390903
517 => 0.0052482990737872
518 => 0.0053340009215943
519 => 0.0052962867336613
520 => 0.0053350767112172
521 => 0.0053440763187444
522 => 0.005342627174654
523 => 0.0053032492310051
524 => 0.0053283475580197
525 => 0.0052689825324588
526 => 0.0052044319834997
527 => 0.0051632527549052
528 => 0.0051273184163243
529 => 0.005147256875885
530 => 0.0050761799081702
531 => 0.0050534409557015
601 => 0.0053198448095574
602 => 0.0055166402007249
603 => 0.0055137787177978
604 => 0.0054963601763927
605 => 0.0054704797570868
606 => 0.0055942716264435
607 => 0.0055511450144562
608 => 0.005582523228026
609 => 0.005590510300319
610 => 0.0056146847625976
611 => 0.0056233250549969
612 => 0.0055972080902972
613 => 0.0055095563668462
614 => 0.005291136605682
615 => 0.0051894616172472
616 => 0.0051559071775329
617 => 0.0051571268176876
618 => 0.0051234836975085
619 => 0.0051333931041801
620 => 0.0051200376102683
621 => 0.0050947455358403
622 => 0.0051456951615603
623 => 0.0051515666312959
624 => 0.0051396743798502
625 => 0.0051424754355714
626 => 0.0050440126728477
627 => 0.0050514985828477
628 => 0.0050098160847043
629 => 0.0050020011187924
630 => 0.0048966313931961
701 => 0.0047099536507162
702 => 0.004813391241297
703 => 0.0046884531774016
704 => 0.0046411372394839
705 => 0.0048651235304485
706 => 0.0048426415192483
707 => 0.0048041620887689
708 => 0.0047472429912739
709 => 0.0047261311443396
710 => 0.0045978622455655
711 => 0.004590283434738
712 => 0.004653856964522
713 => 0.0046245199679583
714 => 0.0045833197139933
715 => 0.0044340965705351
716 => 0.0042663203512031
717 => 0.004271384460661
718 => 0.004324750954443
719 => 0.0044799212325663
720 => 0.0044192935204304
721 => 0.004375307419653
722 => 0.0043670701451948
723 => 0.0044701768809422
724 => 0.0046160945135537
725 => 0.0046845558020521
726 => 0.0046167127443505
727 => 0.0045387782925925
728 => 0.0045435218015576
729 => 0.0045750782415724
730 => 0.004578394377234
731 => 0.0045276670609306
801 => 0.0045419465033331
802 => 0.0045202547245842
803 => 0.0043871323184422
804 => 0.0043847245562508
805 => 0.0043520541708948
806 => 0.0043510649246102
807 => 0.0042954844491101
808 => 0.0042877083563779
809 => 0.0041773499487786
810 => 0.0042499881868565
811 => 0.0042012662704325
812 => 0.0041278308500434
813 => 0.0041151705558888
814 => 0.0041147899721588
815 => 0.0041901917290389
816 => 0.0042491070734263
817 => 0.0042021138090284
818 => 0.0041914143536512
819 => 0.0043056565450223
820 => 0.0042911181848296
821 => 0.0042785280586651
822 => 0.004603029189992
823 => 0.0043461612234077
824 => 0.0042341521284661
825 => 0.0040955196035255
826 => 0.004140659052692
827 => 0.0041501705978679
828 => 0.0038167843657767
829 => 0.0036815296129379
830 => 0.0036351152787315
831 => 0.0036084031731933
901 => 0.0036205762151166
902 => 0.0034988310737615
903 => 0.0035806458222309
904 => 0.003475224820678
905 => 0.003457550646698
906 => 0.0036460564566307
907 => 0.0036722859388478
908 => 0.003560382818848
909 => 0.0036322427373574
910 => 0.0036061853319783
911 => 0.003477031961173
912 => 0.0034720992523961
913 => 0.0034072946308865
914 => 0.0033058879468713
915 => 0.0032595423711718
916 => 0.0032354051929568
917 => 0.0032453646631125
918 => 0.0032403288502369
919 => 0.0032074667648688
920 => 0.0032422124665033
921 => 0.0031534515567424
922 => 0.0031181062472803
923 => 0.0031021415910013
924 => 0.0030233611747011
925 => 0.0031487358508448
926 => 0.0031734362414737
927 => 0.0031981852995024
928 => 0.003413608952743
929 => 0.003402846995808
930 => 0.0035001298452145
1001 => 0.0034963496125783
1002 => 0.0034686029680499
1003 => 0.0033515444388859
1004 => 0.003398201882243
1005 => 0.0032545975237664
1006 => 0.0033621956732843
1007 => 0.0033130923712505
1008 => 0.0033455937974732
1009 => 0.0032871533025893
1010 => 0.0033194966854069
1011 => 0.0031792936204158
1012 => 0.0030483739710375
1013 => 0.0031010598597302
1014 => 0.0031583354461013
1015 => 0.0032825235109019
1016 => 0.0032085581240359
1017 => 0.0032351588740939
1018 => 0.0031460508143116
1019 => 0.0029621954345219
1020 => 0.0029632360360049
1021 => 0.0029349538913314
1022 => 0.0029105139890728
1023 => 0.0032170539384771
1024 => 0.0031789308500892
1025 => 0.0031181866981695
1026 => 0.0031994951593906
1027 => 0.0032209944070763
1028 => 0.0032216064604335
1029 => 0.0032809270148653
1030 => 0.0033125864053994
1031 => 0.0033181665102007
1101 => 0.0034115086843045
1102 => 0.0034427957498511
1103 => 0.0035716627449261
1104 => 0.0033099003273044
1105 => 0.0033045095025711
1106 => 0.0032006393361829
1107 => 0.0031347632345371
1108 => 0.003205149929222
1109 => 0.0032675029319709
1110 => 0.0032025768177866
1111 => 0.003211054797634
1112 => 0.003123896794
1113 => 0.0031550516791339
1114 => 0.0031818864632275
1115 => 0.0031670698727267
1116 => 0.003144888719616
1117 => 0.0032623906968097
1118 => 0.0032557607747625
1119 => 0.003365181317284
1120 => 0.0034504824549177
1121 => 0.0036033573429594
1122 => 0.0034438244277397
1123 => 0.0034380104142232
1124 => 0.0034948433289442
1125 => 0.0034427870490279
1126 => 0.0034756848210133
1127 => 0.0035980570032949
1128 => 0.003600642534675
1129 => 0.0035573315527901
1130 => 0.0035546960756063
1201 => 0.0035630144234475
1202 => 0.0036117352465724
1203 => 0.0035947106939329
1204 => 0.0036144119372563
1205 => 0.0036390486437083
1206 => 0.003740956507341
1207 => 0.0037655261482554
1208 => 0.0037058346587317
1209 => 0.0037112241318984
1210 => 0.0036888978762485
1211 => 0.0036673309930379
1212 => 0.003715810196905
1213 => 0.0038044068948334
1214 => 0.0038038557393737
1215 => 0.0038244084512194
1216 => 0.0038372126204314
1217 => 0.0037822477529488
1218 => 0.0037464676453318
1219 => 0.0037601880153396
1220 => 0.0037821271857728
1221 => 0.0037530734380569
1222 => 0.0035737402481492
1223 => 0.0036281384821186
1224 => 0.0036190839560484
1225 => 0.0036061892098563
1226 => 0.0036608870547617
1227 => 0.0036556113141843
1228 => 0.0034975824013693
1229 => 0.0035076988996442
1230 => 0.0034981976191363
1231 => 0.0035288982002364
]
'min_raw' => 0.0029105139890728
'max_raw' => 0.0065199106260598
'avg_raw' => 0.0047152123075663
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.00291'
'max' => '$0.006519'
'avg' => '$0.004715'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.00070974392262227
'max_diff' => -0.0047378838595185
'year' => 2034
]
9 => [
'items' => [
101 => 0.0034411291168978
102 => 0.003468126295799
103 => 0.0034850586733229
104 => 0.0034950319737652
105 => 0.0035310623737188
106 => 0.0035268346221455
107 => 0.003530799570745
108 => 0.0035842231422032
109 => 0.0038544212338832
110 => 0.0038691275198549
111 => 0.0037967083891591
112 => 0.0038256384034679
113 => 0.0037700991022936
114 => 0.0038073830072529
115 => 0.0038328917081175
116 => 0.0037176227939514
117 => 0.0037107973169435
118 => 0.0036550287853169
119 => 0.003684995635322
120 => 0.0036373162222712
121 => 0.0036490150824788
122 => 0.00361630404945
123 => 0.0036751773962001
124 => 0.0037410069458598
125 => 0.0037576380897915
126 => 0.0037138887102648
127 => 0.0036822112762628
128 => 0.0036265961373507
129 => 0.0037190853528257
130 => 0.0037461320179883
131 => 0.0037189432882077
201 => 0.003712643065432
202 => 0.0037007041546564
203 => 0.0037151759617919
204 => 0.0037459847160412
205 => 0.0037314558764856
206 => 0.0037410524309773
207 => 0.003704480261179
208 => 0.003782265948607
209 => 0.0039058083403878
210 => 0.0039062055493786
211 => 0.0038916766315071
212 => 0.003885731711344
213 => 0.0039006392627686
214 => 0.0039087259978767
215 => 0.0039569342856064
216 => 0.0040086636990433
217 => 0.004250062300242
218 => 0.0041822785389975
219 => 0.0043964617388481
220 => 0.0045658528417221
221 => 0.0046166458268989
222 => 0.0045699186705309
223 => 0.0044100675927475
224 => 0.0044022245362616
225 => 0.0046411095338543
226 => 0.0045736135804083
227 => 0.0045655851515162
228 => 0.0044801762323495
301 => 0.0045306634816775
302 => 0.0045196211796462
303 => 0.0045021903656819
304 => 0.0045985165204274
305 => 0.0047788304830159
306 => 0.0047507268609728
307 => 0.0047297488108072
308 => 0.0046378291016
309 => 0.0046931852975531
310 => 0.0046734740164523
311 => 0.0047581661891493
312 => 0.0047079964222049
313 => 0.0045731022321768
314 => 0.0045945845765559
315 => 0.0045913375634195
316 => 0.004658160863681
317 => 0.0046381021675988
318 => 0.0045874207810788
319 => 0.0047782141894944
320 => 0.0047658251268006
321 => 0.0047833899851664
322 => 0.0047911225790303
323 => 0.0049072551645759
324 => 0.0049548309690456
325 => 0.004965631509592
326 => 0.0050108248441935
327 => 0.0049645070582569
328 => 0.0051498112260249
329 => 0.0052730276847927
330 => 0.0054161499423125
331 => 0.0056252900281851
401 => 0.0057039286351272
402 => 0.00568972327465
403 => 0.0058482909008758
404 => 0.0061332334004432
405 => 0.0057473183006304
406 => 0.0061536878378083
407 => 0.0060250359340997
408 => 0.0057200045847555
409 => 0.0057003641619411
410 => 0.0059069349332038
411 => 0.0063650890221645
412 => 0.0062503266192205
413 => 0.0063652767323432
414 => 0.0062311813194508
415 => 0.0062245223519559
416 => 0.0063587640174456
417 => 0.0066724269859947
418 => 0.0065234174671176
419 => 0.0063097757831742
420 => 0.0064675254779652
421 => 0.0063308680932922
422 => 0.0060229407576303
423 => 0.0062502388625738
424 => 0.0060982510928754
425 => 0.0061426092041877
426 => 0.0064620648896192
427 => 0.0064236271363731
428 => 0.0064733691483136
429 => 0.0063855757992138
430 => 0.0063035629674141
501 => 0.0061504799265072
502 => 0.0061051595849974
503 => 0.0061176844969356
504 => 0.006105153378273
505 => 0.0060195048237914
506 => 0.0060010090266057
507 => 0.0059701818876435
508 => 0.0059797365070347
509 => 0.0059217724669881
510 => 0.0060311625865378
511 => 0.0060514663566686
512 => 0.0061310713632979
513 => 0.0061393362191656
514 => 0.0063610350295218
515 => 0.0062389270502748
516 => 0.0063208476250494
517 => 0.0063135198777752
518 => 0.0057266155390317
519 => 0.0058074857786098
520 => 0.005933294492914
521 => 0.0058766178376496
522 => 0.0057964903074006
523 => 0.0057317830305582
524 => 0.0056337448894832
525 => 0.0057717316903906
526 => 0.0059531696603234
527 => 0.0061439377855013
528 => 0.00637313318828
529 => 0.0063219794425084
530 => 0.0061396531368714
531 => 0.0061478321617528
601 => 0.0061983916752421
602 => 0.0061329125114573
603 => 0.006113601427752
604 => 0.0061957386288829
605 => 0.0061963042626453
606 => 0.0061209625712895
607 => 0.0060372340687316
608 => 0.0060368832432486
609 => 0.0060219845649399
610 => 0.0062338317612244
611 => 0.0063503262990135
612 => 0.0063636822100307
613 => 0.0063494273397877
614 => 0.0063549134735886
615 => 0.0062871278688311
616 => 0.0064420656601101
617 => 0.0065842518991471
618 => 0.0065461429497193
619 => 0.0064890122170205
620 => 0.0064435048366371
621 => 0.0065354228571463
622 => 0.0065313298923854
623 => 0.0065830100263897
624 => 0.0065806655169924
625 => 0.0065632874317149
626 => 0.0065461435703454
627 => 0.006614117042821
628 => 0.0065945417743686
629 => 0.0065749361001175
630 => 0.0065356139189283
701 => 0.0065409584564242
702 => 0.0064838375881519
703 => 0.0064574108608161
704 => 0.00606001628827
705 => 0.0059538194732434
706 => 0.0059872311530863
707 => 0.0059982311456244
708 => 0.0059520141556299
709 => 0.0060182774471114
710 => 0.0060079503833242
711 => 0.0060481269473899
712 => 0.0060230263744253
713 => 0.0060240565106952
714 => 0.0060978719437778
715 => 0.006119300878035
716 => 0.0061084019491191
717 => 0.0061160351853383
718 => 0.006291939892224
719 => 0.0062669318680208
720 => 0.0062536468535912
721 => 0.0062573268933796
722 => 0.0063022743174283
723 => 0.0063148571421236
724 => 0.0062615428297103
725 => 0.0062866861676508
726 => 0.0063937433094366
727 => 0.0064312072501522
728 => 0.0065507741652047
729 => 0.006499980014558
730 => 0.0065932148763894
731 => 0.0068797870555526
801 => 0.0071087207415546
802 => 0.0068981838628224
803 => 0.007318591422636
804 => 0.0076459390118336
805 => 0.0076333748661342
806 => 0.0075762942422715
807 => 0.007203617714956
808 => 0.0068606752182263
809 => 0.0071475611788483
810 => 0.0071482925101605
811 => 0.0071236487517165
812 => 0.0069705884845312
813 => 0.0071183225861959
814 => 0.0071300491826945
815 => 0.007123485407009
816 => 0.0070061344590267
817 => 0.0068269612515383
818 => 0.0068619712674015
819 => 0.0069193183875704
820 => 0.0068107483252282
821 => 0.0067760536118178
822 => 0.006840557684987
823 => 0.0070484032486955
824 => 0.0070091112488438
825 => 0.0070080851759362
826 => 0.007176193013703
827 => 0.007055864081804
828 => 0.0068624128558192
829 => 0.0068135638699498
830 => 0.0066401828787333
831 => 0.0067599377469284
901 => 0.0067642475114393
902 => 0.0066986589939939
903 => 0.0068677350025309
904 => 0.006866176937347
905 => 0.00702668944381
906 => 0.007333529070423
907 => 0.0072427814941725
908 => 0.0071372519363014
909 => 0.0071487259252593
910 => 0.0072745672639088
911 => 0.0071984807178829
912 => 0.0072258419703281
913 => 0.0072745258493762
914 => 0.0073038980423587
915 => 0.0071444997187015
916 => 0.0071073363445538
917 => 0.0070313131236195
918 => 0.0070114800843184
919 => 0.0070733994114928
920 => 0.0070570858564245
921 => 0.0067638852924204
922 => 0.0067332442021294
923 => 0.0067341839206233
924 => 0.0066571354421822
925 => 0.006539618018806
926 => 0.006848446790838
927 => 0.0068236435183879
928 => 0.0067962626252239
929 => 0.0067996166284032
930 => 0.0069336687311641
1001 => 0.0068559117417693
1002 => 0.0070626414421952
1003 => 0.0070201440306513
1004 => 0.0069765567208587
1005 => 0.0069705316269434
1006 => 0.0069537542313677
1007 => 0.0068962182993449
1008 => 0.0068267402040539
1009 => 0.0067808647474532
1010 => 0.0062549892943712
1011 => 0.0063525887195865
1012 => 0.0064648679618291
1013 => 0.0065036263063204
1014 => 0.0064373274760722
1015 => 0.0068988361812593
1016 => 0.0069831582689055
1017 => 0.0067277411652314
1018 => 0.0066799630537456
1019 => 0.0069019685062941
1020 => 0.0067680720793446
1021 => 0.0068283656322013
1022 => 0.0066980439497351
1023 => 0.0069628475472305
1024 => 0.0069608301874849
1025 => 0.0068578156071987
1026 => 0.0069448828250432
1027 => 0.0069297527533237
1028 => 0.0068134495458943
1029 => 0.0069665345663523
1030 => 0.0069666104946125
1031 => 0.0068674612008171
1101 => 0.0067516765322355
1102 => 0.0067309769682049
1103 => 0.006715382627303
1104 => 0.00682453038029
1105 => 0.0069223919143219
1106 => 0.0071044879672236
1107 => 0.0071502712414185
1108 => 0.0073289664085667
1109 => 0.0072225621370398
1110 => 0.0072697297724417
1111 => 0.0073209369129398
1112 => 0.0073454874991749
1113 => 0.0073054836363619
1114 => 0.0075830707848082
1115 => 0.0076065076451876
1116 => 0.0076143658217447
1117 => 0.0075207649971151
1118 => 0.007603904436932
1119 => 0.0075650062463305
1120 => 0.007666208532047
1121 => 0.0076820783426629
1122 => 0.0076686371776561
1123 => 0.0076736745060335
1124 => 0.0074368028445632
1125 => 0.0074245197993184
1126 => 0.0072570396058405
1127 => 0.0073252890226338
1128 => 0.0071977000092183
1129 => 0.0072381597996849
1130 => 0.0072559940898075
1201 => 0.0072466784687345
1202 => 0.0073291477422587
1203 => 0.0072590320124036
1204 => 0.0070739850732228
1205 => 0.0068888877181271
1206 => 0.0068865639716109
1207 => 0.0068378311052539
1208 => 0.0068026061687475
1209 => 0.0068093917411904
1210 => 0.0068333049835352
1211 => 0.0068012162876305
1212 => 0.0068080640378399
1213 => 0.0069217823176379
1214 => 0.0069445877076498
1215 => 0.0068670860817485
1216 => 0.0065559058703237
1217 => 0.0064795414659036
1218 => 0.0065344306854288
1219 => 0.0065081971738142
1220 => 0.0052526230632312
1221 => 0.0055476015763187
1222 => 0.0053723353603659
1223 => 0.0054531060962878
1224 => 0.0052742046747667
1225 => 0.0053595858101434
1226 => 0.0053438190320592
1227 => 0.005818135752055
1228 => 0.0058107299488736
1229 => 0.0058142747149501
1230 => 0.005645073794277
1231 => 0.005914615455215
]
'min_raw' => 0.0034411291168978
'max_raw' => 0.0076820783426629
'avg_raw' => 0.0055616037297804
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.003441'
'max' => '$0.007682'
'avg' => '$0.005561'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.00053061512782505
'max_diff' => 0.0011621677166032
'year' => 2035
]
10 => [
'items' => [
101 => 0.0060474013697976
102 => 0.0060228262309911
103 => 0.0060290112639781
104 => 0.0059227319052662
105 => 0.0058153037314576
106 => 0.0056961493536265
107 => 0.0059175234597105
108 => 0.005892910438096
109 => 0.0059493638541941
110 => 0.0060929407861375
111 => 0.0061140830347618
112 => 0.0061424984313166
113 => 0.0061323135343973
114 => 0.00637495909943
115 => 0.0063455731204776
116 => 0.0064163848748298
117 => 0.0062707197236265
118 => 0.0061058857783769
119 => 0.0061372153225412
120 => 0.0061341980355019
121 => 0.0060957845084107
122 => 0.0060611064937376
123 => 0.006003377369777
124 => 0.0061860408602912
125 => 0.006178625056159
126 => 0.0062986783051296
127 => 0.006277457727239
128 => 0.0061357415145294
129 => 0.0061408029367906
130 => 0.0061748434339342
131 => 0.0062926579832158
201 => 0.0063276333628688
202 => 0.0063114313734856
203 => 0.0063497802805884
204 => 0.0063800896931515
205 => 0.0063535866761544
206 => 0.0067288135069168
207 => 0.0065729931660609
208 => 0.0066489389160031
209 => 0.006667051529866
210 => 0.0066206564503234
211 => 0.006630717881793
212 => 0.0066459582088934
213 => 0.0067384944906848
214 => 0.0069813364696945
215 => 0.0070888895291167
216 => 0.0074124682149627
217 => 0.0070799587447425
218 => 0.0070602290088406
219 => 0.0071185153013017
220 => 0.0073084902441757
221 => 0.0074624470919361
222 => 0.0075135234603219
223 => 0.007520274045583
224 => 0.0076160967081674
225 => 0.0076710204713739
226 => 0.0076044613165434
227 => 0.0075480594018586
228 => 0.0073460347443208
229 => 0.0073694196485256
301 => 0.0075305184488036
302 => 0.0077580799928681
303 => 0.0079533514714189
304 => 0.0078849742055285
305 => 0.008406644477445
306 => 0.0084583659540736
307 => 0.0084512197183591
308 => 0.0085690489393066
309 => 0.0083351819312293
310 => 0.0082351992543163
311 => 0.0075602541360024
312 => 0.007749886183595
313 => 0.0080255275014705
314 => 0.0079890453394478
315 => 0.007788867246493
316 => 0.0079531996183849
317 => 0.0078988661970891
318 => 0.0078560111734173
319 => 0.0080523383447128
320 => 0.0078364685551977
321 => 0.0080233740351883
322 => 0.0077836658238108
323 => 0.0078852865471194
324 => 0.0078276017097281
325 => 0.0078649308691081
326 => 0.0076467053661329
327 => 0.0077644545504137
328 => 0.0076418066129434
329 => 0.0076417484618518
330 => 0.0076390410018344
331 => 0.0077833357563639
401 => 0.0077880412031288
402 => 0.0076814071615142
403 => 0.0076660395301807
404 => 0.0077228617177222
405 => 0.0076563378178656
406 => 0.0076874639319121
407 => 0.0076572805961514
408 => 0.0076504856915134
409 => 0.0075963427352998
410 => 0.0075730164610714
411 => 0.0075821632942404
412 => 0.0075509404371189
413 => 0.0075321275363231
414 => 0.0076352986423523
415 => 0.0075801784823114
416 => 0.0076268506872916
417 => 0.0075736618192148
418 => 0.0073892860291739
419 => 0.0072832495625827
420 => 0.0069349807868401
421 => 0.0070337493796147
422 => 0.0070992330588077
423 => 0.007077590703225
424 => 0.0071240868574963
425 => 0.0071269413437425
426 => 0.0071118249700167
427 => 0.0070943221457696
428 => 0.007085802738893
429 => 0.007149299417932
430 => 0.007186161377314
501 => 0.0071058052220733
502 => 0.0070869788992025
503 => 0.0071682234087358
504 => 0.0072177825126177
505 => 0.0075836990908265
506 => 0.0075565908088178
507 => 0.007624627276928
508 => 0.0076169674147235
509 => 0.0076882804723623
510 => 0.0078048471824548
511 => 0.0075678344682719
512 => 0.007608971680171
513 => 0.0075988857858103
514 => 0.007709000935777
515 => 0.0077093447032558
516 => 0.007643325170191
517 => 0.00767911543011
518 => 0.0076591382888777
519 => 0.0076952396831571
520 => 0.0075562287611845
521 => 0.0077255290588454
522 => 0.007821511418149
523 => 0.007822844133301
524 => 0.0078683390098478
525 => 0.0079145644393049
526 => 0.0080032901257613
527 => 0.0079120899280655
528 => 0.0077480296505711
529 => 0.0077598742726948
530 => 0.0076636857920271
531 => 0.007665302737765
601 => 0.0076566713546938
602 => 0.0076825747850306
603 => 0.0075619131074672
604 => 0.0075902321620162
605 => 0.0075505853198114
606 => 0.007608885495679
607 => 0.0075461641438098
608 => 0.0075988809220867
609 => 0.0076216317360021
610 => 0.00770558272914
611 => 0.0075337645138648
612 => 0.0071834155418481
613 => 0.0072570631433367
614 => 0.0071481325558409
615 => 0.0071582144964416
616 => 0.007178581620984
617 => 0.0071125651066335
618 => 0.0071251589771521
619 => 0.0071247090354755
620 => 0.0071208316811845
621 => 0.0071036582361232
622 => 0.0070787533431217
623 => 0.0071779667715177
624 => 0.0071948250663028
625 => 0.007232298967309
626 => 0.0073437958779137
627 => 0.0073326547072661
628 => 0.0073508264188351
629 => 0.0073111576745098
630 => 0.0071600546157181
701 => 0.0071682602387893
702 => 0.0070659359876061
703 => 0.00722968230615
704 => 0.007190905016573
705 => 0.0071659050457215
706 => 0.0071590835720516
707 => 0.0072708568619317
708 => 0.0073043011820955
709 => 0.0072834609261343
710 => 0.0072407169531504
711 => 0.0073227980174007
712 => 0.007344759447472
713 => 0.0073496758017586
714 => 0.0074951077101271
715 => 0.0073578038298894
716 => 0.0073908542385458
717 => 0.0076487040922279
718 => 0.0074148698557858
719 => 0.0075387370659549
720 => 0.007532674410591
721 => 0.0075960406838757
722 => 0.0075274765266587
723 => 0.0075283264615608
724 => 0.0075845914194345
725 => 0.0075055774335396
726 => 0.0074860124594558
727 => 0.0074589835878861
728 => 0.0075180001401271
729 => 0.0075533778941065
730 => 0.0078384966090834
731 => 0.0080226963019515
801 => 0.0080146997074919
802 => 0.0080877736118545
803 => 0.0080548531486589
804 => 0.007948544289021
805 => 0.0081300005494386
806 => 0.0080725801961901
807 => 0.0080773138603462
808 => 0.0080771376731299
809 => 0.0081153171882657
810 => 0.0080882635026908
811 => 0.0080349379114187
812 => 0.0080703379275063
813 => 0.0081754633195489
814 => 0.0085017757620904
815 => 0.0086843845280014
816 => 0.0084907824850922
817 => 0.0086243265818563
818 => 0.0085442477104249
819 => 0.0085296949973457
820 => 0.0086135705589448
821 => 0.0086975929336112
822 => 0.0086922410715837
823 => 0.0086312451421726
824 => 0.0085967900893626
825 => 0.0088576952925289
826 => 0.0090499258018176
827 => 0.0090368169698138
828 => 0.0090946750910581
829 => 0.0092645483245155
830 => 0.0092800794040622
831 => 0.0092781228450171
901 => 0.0092396274438601
902 => 0.0094068897030258
903 => 0.0095464228223213
904 => 0.0092307168707313
905 => 0.0093509335642024
906 => 0.0094049027110416
907 => 0.0094841454305257
908 => 0.0096178411809174
909 => 0.0097630702268891
910 => 0.009783607206345
911 => 0.0097690352366361
912 => 0.0096732527768515
913 => 0.0098321641318966
914 => 0.0099252506767522
915 => 0.009980681583966
916 => 0.010121245141837
917 => 0.0094052360061192
918 => 0.0088984091518952
919 => 0.0088192608199397
920 => 0.0089802120653257
921 => 0.0090226536251719
922 => 0.0090055454856151
923 => 0.0084350657825045
924 => 0.0088162573623663
925 => 0.0092263874507992
926 => 0.0092421422178033
927 => 0.0094474619154886
928 => 0.0095143224253937
929 => 0.0096796316938983
930 => 0.0096692915541444
1001 => 0.0097095417303803
1002 => 0.0097002889118996
1003 => 0.010006489521831
1004 => 0.010344274265816
1005 => 0.010332577854222
1006 => 0.010284017300786
1007 => 0.010356138003443
1008 => 0.010704768058448
1009 => 0.010672671789666
1010 => 0.010703850580834
1011 => 0.011114905063615
1012 => 0.011649334363047
1013 => 0.011401038297636
1014 => 0.01193976931431
1015 => 0.012278871932402
1016 => 0.012865314846527
1017 => 0.012791889305386
1018 => 0.013020187228338
1019 => 0.012660442262372
1020 => 0.011834395104059
1021 => 0.011703669979275
1022 => 0.011965384989581
1023 => 0.01260878580464
1024 => 0.011945122008245
1025 => 0.012079380329898
1026 => 0.01204071392423
1027 => 0.012038653555794
1028 => 0.012117289438888
1029 => 0.012003223989088
1030 => 0.011538500826623
1031 => 0.01175148071335
1101 => 0.011669238950951
1102 => 0.011760492317862
1103 => 0.012252949103334
1104 => 0.012035222219774
1105 => 0.011805864634638
1106 => 0.01209352994492
1107 => 0.012459826737435
1108 => 0.012436904542458
1109 => 0.012392425903469
1110 => 0.012643149662626
1111 => 0.013057271857586
1112 => 0.013169207422806
1113 => 0.01325183596863
1114 => 0.013263229049078
1115 => 0.013380584858456
1116 => 0.012749533093959
1117 => 0.013751028450774
1118 => 0.013923959033145
1119 => 0.013891455250898
1120 => 0.014083660315172
1121 => 0.014027108709491
1122 => 0.013945174305534
1123 => 0.014249860215598
1124 => 0.013900562406594
1125 => 0.013404778142085
1126 => 0.013132781089075
1127 => 0.013490968749855
1128 => 0.013709701455267
1129 => 0.013854269859532
1130 => 0.013898016171312
1201 => 0.012798519846063
1202 => 0.012205952307616
1203 => 0.01258578130596
1204 => 0.013049198898337
1205 => 0.012746958785835
1206 => 0.012758806026029
1207 => 0.012327891052906
1208 => 0.013087325311797
1209 => 0.012976682128124
1210 => 0.013550699160744
1211 => 0.013413705389134
1212 => 0.013881793996023
1213 => 0.013758530578472
1214 => 0.014270190133162
1215 => 0.014474304982158
1216 => 0.014817045581561
1217 => 0.015069166961687
1218 => 0.01521721745841
1219 => 0.01520832906191
1220 => 0.015794978888393
1221 => 0.0154490519817
1222 => 0.015014486258181
1223 => 0.01500662633528
1224 => 0.015231694081335
1225 => 0.015703374332744
1226 => 0.015825674159265
1227 => 0.015894023077842
1228 => 0.015789344329799
1229 => 0.015413865465388
1230 => 0.015251735595457
1231 => 0.015389874941993
]
'min_raw' => 0.0056961493536265
'max_raw' => 0.015894023077842
'avg_raw' => 0.010795086215734
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.005696'
'max' => '$0.015894'
'avg' => '$0.010795'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.0022550202367287
'max_diff' => 0.008211944735179
'year' => 2036
]
11 => [
'items' => [
101 => 0.015220942391629
102 => 0.015512567367659
103 => 0.015913030747484
104 => 0.015830336643154
105 => 0.016106770635735
106 => 0.016392850736353
107 => 0.016801958128898
108 => 0.016908913950513
109 => 0.017085707856475
110 => 0.017267686859483
111 => 0.017326133610778
112 => 0.017437726593961
113 => 0.017437138443856
114 => 0.017773431409753
115 => 0.018144372965263
116 => 0.018284394815151
117 => 0.01860636733812
118 => 0.018055000675799
119 => 0.018473218622813
120 => 0.018850461679694
121 => 0.018400696955375
122 => 0.019020592846108
123 => 0.019044661998831
124 => 0.019408077628732
125 => 0.019039686265817
126 => 0.018820936650465
127 => 0.019452458593545
128 => 0.019758032169047
129 => 0.019665990921265
130 => 0.018965552481012
131 => 0.018557867265567
201 => 0.017490876420141
202 => 0.018754773167122
203 => 0.019370380404203
204 => 0.018963958206988
205 => 0.019168933923096
206 => 0.020287214966581
207 => 0.020712983984605
208 => 0.020624427005206
209 => 0.020639391676953
210 => 0.020869128910824
211 => 0.021887910324415
212 => 0.021277432886223
213 => 0.021744120013568
214 => 0.021991649183145
215 => 0.0222215680708
216 => 0.021656959949331
217 => 0.020922413079041
218 => 0.02068975125104
219 => 0.018923547529181
220 => 0.018831608955224
221 => 0.018780001047638
222 => 0.018454620490393
223 => 0.018198960501634
224 => 0.017995650186526
225 => 0.017462103206083
226 => 0.017642159649546
227 => 0.016791797122629
228 => 0.017335828932353
301 => 0.015978629806672
302 => 0.017108945567929
303 => 0.016493766088228
304 => 0.016906842563648
305 => 0.01690540137874
306 => 0.016144796621476
307 => 0.015706095670902
308 => 0.015985652991104
309 => 0.016285360629648
310 => 0.016333987185664
311 => 0.016722565962207
312 => 0.016831009946267
313 => 0.016502419611799
314 => 0.015950504871456
315 => 0.016078702077803
316 => 0.015703497758607
317 => 0.015045966621243
318 => 0.01551821696349
319 => 0.015679463993715
320 => 0.015750679868303
321 => 0.015104073512667
322 => 0.014900895757219
323 => 0.014792725625045
324 => 0.015867036110678
325 => 0.0159258892642
326 => 0.015624788209785
327 => 0.016985793527313
328 => 0.016677756107341
329 => 0.01702190937645
330 => 0.016067069525026
331 => 0.016103545693213
401 => 0.015651509205561
402 => 0.015904619433557
403 => 0.015725729282533
404 => 0.015884170628419
405 => 0.015979139717865
406 => 0.016431102030777
407 => 0.017114106251545
408 => 0.016363593932843
409 => 0.01603658496805
410 => 0.016239459490639
411 => 0.016779741078787
412 => 0.017598295341336
413 => 0.017113694742967
414 => 0.017328752259471
415 => 0.017375732759585
416 => 0.017018406219237
417 => 0.017611470480564
418 => 0.017929298436255
419 => 0.018255324153565
420 => 0.018538403148872
421 => 0.018125102312612
422 => 0.018567393451758
423 => 0.018210984868502
424 => 0.01789124952448
425 => 0.017891734431016
426 => 0.017691159779123
427 => 0.017302521117047
428 => 0.017230850184974
429 => 0.017603691424661
430 => 0.017902674790694
501 => 0.017927300492754
502 => 0.01809283304651
503 => 0.018190793506702
504 => 0.019150939187368
505 => 0.019537117722874
506 => 0.020009329526105
507 => 0.020193282635862
508 => 0.020746915545392
509 => 0.02029981200708
510 => 0.020203078344153
511 => 0.018860145997578
512 => 0.019080051094097
513 => 0.01943214037131
514 => 0.018865951820077
515 => 0.019225068137195
516 => 0.019295965305317
517 => 0.018846712949761
518 => 0.019086678043912
519 => 0.018449401898538
520 => 0.01712799713004
521 => 0.017612941581815
522 => 0.017970023928859
523 => 0.017460423391691
524 => 0.018373862630299
525 => 0.017840250284318
526 => 0.017671120788551
527 => 0.017011286326548
528 => 0.017322702793256
529 => 0.017743898023533
530 => 0.017483648340423
531 => 0.018023705509563
601 => 0.01878857048905
602 => 0.019333658821931
603 => 0.01937550393574
604 => 0.01902504865578
605 => 0.019586655478492
606 => 0.019590746171075
607 => 0.018957251380826
608 => 0.018569239349111
609 => 0.018481082199122
610 => 0.018701316044023
611 => 0.018968720589145
612 => 0.019390343026954
613 => 0.019645120635854
614 => 0.020309445516265
615 => 0.020489192781217
616 => 0.020686680529434
617 => 0.020950585064018
618 => 0.021267470121519
619 => 0.020574143655982
620 => 0.02060169080898
621 => 0.01995607480403
622 => 0.019266141512041
623 => 0.019789714879262
624 => 0.020474217408857
625 => 0.02031719177226
626 => 0.0202995231804
627 => 0.02032923685105
628 => 0.020210844649033
629 => 0.019675361107133
630 => 0.019406444624694
701 => 0.019753415494951
702 => 0.019937815070596
703 => 0.020223802731088
704 => 0.020188548715465
705 => 0.02092522221606
706 => 0.021211471262541
707 => 0.021138236507164
708 => 0.021151713464646
709 => 0.021669953690263
710 => 0.02224634340538
711 => 0.022786208434909
712 => 0.023335382330689
713 => 0.022673331764705
714 => 0.0223371833169
715 => 0.022684002710529
716 => 0.022499975458433
717 => 0.023557450635005
718 => 0.02363066792186
719 => 0.02468806663094
720 => 0.025691663918554
721 => 0.025061322443517
722 => 0.025655706063273
723 => 0.026298580408847
724 => 0.027538789324063
725 => 0.027121130592494
726 => 0.026801210549659
727 => 0.026498887655022
728 => 0.027127973606354
729 => 0.027937282632848
730 => 0.028111600045689
731 => 0.028394060848869
801 => 0.028097087851989
802 => 0.028454759116228
803 => 0.02971749584771
804 => 0.029376293236378
805 => 0.02889173067723
806 => 0.02988854005221
807 => 0.030249281490017
808 => 0.032781153822304
809 => 0.035977747228246
810 => 0.034654336568222
811 => 0.03383285286535
812 => 0.034025921021379
813 => 0.035193208721713
814 => 0.035568104483201
815 => 0.034549008569159
816 => 0.034908970474462
817 => 0.036892395963355
818 => 0.037956440102238
819 => 0.036511325241442
820 => 0.032524310654591
821 => 0.028848101120493
822 => 0.029823197430808
823 => 0.02971265176998
824 => 0.031843595020427
825 => 0.029368155666941
826 => 0.029409835717036
827 => 0.031584844617194
828 => 0.031004589531724
829 => 0.03006465060672
830 => 0.028854963714844
831 => 0.026618745612717
901 => 0.024638064878109
902 => 0.028522635922207
903 => 0.028355126155152
904 => 0.028112547188899
905 => 0.028652380428509
906 => 0.031273657405721
907 => 0.031213228487151
908 => 0.030828810538311
909 => 0.031120388164402
910 => 0.030013535639109
911 => 0.030298796737441
912 => 0.02884751879012
913 => 0.02950355703303
914 => 0.030062633919935
915 => 0.030174876882256
916 => 0.030427766007633
917 => 0.028266856119616
918 => 0.029237041218354
919 => 0.029806934069813
920 => 0.027232137434044
921 => 0.029756038618926
922 => 0.028229239486056
923 => 0.027711020928607
924 => 0.028408733946109
925 => 0.02813683450464
926 => 0.027903071331336
927 => 0.027772627464072
928 => 0.02828495090035
929 => 0.028261050399688
930 => 0.027422789820244
1001 => 0.026329313066231
1002 => 0.026696319757028
1003 => 0.026562982785555
1004 => 0.026079752400126
1005 => 0.026405391334446
1006 => 0.024971442269794
1007 => 0.022504407434245
1008 => 0.024134206213929
1009 => 0.024071460733791
1010 => 0.024039821617425
1011 => 0.025264570356028
1012 => 0.025146839024572
1013 => 0.024933155505151
1014 => 0.026075827934719
1015 => 0.025658737126814
1016 => 0.026944112717825
1017 => 0.027790744214945
1018 => 0.027576011081616
1019 => 0.028372272096783
1020 => 0.026704774849935
1021 => 0.02725865054696
1022 => 0.027372803560479
1023 => 0.026061727534311
1024 => 0.025166101326406
1025 => 0.025106373269225
1026 => 0.023553480849612
1027 => 0.024383023445659
1028 => 0.025112986601376
1029 => 0.024763390897217
1030 => 0.024652719341155
1031 => 0.025218116319345
1101 => 0.025262052506848
1102 => 0.024260302775631
1103 => 0.024468598266039
1104 => 0.025337225087286
1105 => 0.024446711098811
1106 => 0.022716587883838
1107 => 0.022287493405699
1108 => 0.022230244292535
1109 => 0.021066506035912
1110 => 0.022316167550524
1111 => 0.021770656810549
1112 => 0.023493918701906
1113 => 0.022509600751602
1114 => 0.022467168772096
1115 => 0.022403026611654
1116 => 0.021401349020757
1117 => 0.021620652753231
1118 => 0.022349651760879
1119 => 0.022609766819569
1120 => 0.022582634687888
1121 => 0.022346079268037
1122 => 0.022454373127885
1123 => 0.022105520873233
1124 => 0.021982333881384
1125 => 0.021593521849856
1126 => 0.021022075575575
1127 => 0.021101538684897
1128 => 0.019969354088495
1129 => 0.019352479830791
1130 => 0.019181737166531
1201 => 0.018953412940054
1202 => 0.019207526995459
1203 => 0.019966146751785
1204 => 0.019051090375496
1205 => 0.017482290402089
1206 => 0.017576577953596
1207 => 0.017788414087607
1208 => 0.017393658853314
1209 => 0.017020056153352
1210 => 0.017344873389624
1211 => 0.016680152159767
1212 => 0.017868742472492
1213 => 0.017836594435518
1214 => 0.01827962740217
1215 => 0.018556665008169
1216 => 0.017918183018332
1217 => 0.017757606524526
1218 => 0.017849078193192
1219 => 0.016337255265799
1220 => 0.018156079215231
1221 => 0.018171808480274
1222 => 0.018037124963462
1223 => 0.019005592566645
1224 => 0.021049361281981
1225 => 0.020280413280866
1226 => 0.019982653373257
1227 => 0.019416611571233
1228 => 0.020170828664194
1229 => 0.020112916559074
1230 => 0.019851016057208
1231 => 0.0196926178165
]
'min_raw' => 0.014792725625045
'max_raw' => 0.037956440102238
'avg_raw' => 0.026374582863642
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.014792'
'max' => '$0.037956'
'avg' => '$0.026374'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.0090965762714186
'max_diff' => 0.022062417024397
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.00046432675410121
]
1 => [
'year' => 2028
'avg' => 0.00079691950505752
]
2 => [
'year' => 2029
'avg' => 0.0021770404570509
]
3 => [
'year' => 2030
'avg' => 0.0016795834704688
]
4 => [
'year' => 2031
'avg' => 0.0016495591164884
]
5 => [
'year' => 2032
'avg' => 0.0028921962665637
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.00046432675410121
'min' => '$0.000464'
'max_raw' => 0.0028921962665637
'max' => '$0.002892'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.0028921962665637
]
1 => [
'year' => 2033
'avg' => 0.0074390261986367
]
2 => [
'year' => 2034
'avg' => 0.0047152123075663
]
3 => [
'year' => 2035
'avg' => 0.0055616037297804
]
4 => [
'year' => 2036
'avg' => 0.010795086215734
]
5 => [
'year' => 2037
'avg' => 0.026374582863642
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.0028921962665637
'min' => '$0.002892'
'max_raw' => 0.026374582863642
'max' => '$0.026374'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.026374582863642
]
]
]
]
'prediction_2025_max_price' => '$0.000793'
'last_price' => 0.0007698
'sma_50day_nextmonth' => '$0.000673'
'sma_200day_nextmonth' => '$0.001783'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 de fev. de 2026'
'sma_50day_date_nextmonth' => '4 de fev. de 2026'
'daily_sma3' => '$0.000669'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.000913'
'daily_sma5_action' => 'SELL'
'daily_sma10' => '$0.0007063'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.00061'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.000592'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.001125'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.002074'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.000732'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.000737'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.0007065'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.000651'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.000735'
'daily_ema50_action' => 'BUY'
'daily_ema100' => '$0.001121'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.001725'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.00158'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.00233'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.003467'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.005153'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.000693'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.0007027'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.000882'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.00138'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.002239'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.0038018'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.015193'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '51.82'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 23.28
'stoch_rsi_14_action' => 'NEUTRAL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.000662'
'vwma_10_action' => 'BUY'
'hma_9' => '0.0007063'
'hma_9_action' => 'SELL'
'stochastic_fast_14' => 27.35
'stochastic_fast_14_action' => 'NEUTRAL'
'cci_20' => 33.4
'cci_20_action' => 'NEUTRAL'
'adx_14' => 18.54
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.000333'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'NEUTRAL'
'williams_percent_r_14' => -72.65
'williams_percent_r_14_action' => 'NEUTRAL'
'ultimate_oscillator' => 52.15
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.000655'
'ichimoku_cloud_action' => 'NEUTRAL'
'sell_signals' => 16
'buy_signals' => 17
'sell_pct' => 48.48
'buy_pct' => 51.52
'overall_action' => 'bullish'
'overall_action_label' => 'Altista'
'overall_action_dir' => 1
'last_updated' => 1767685925
'last_updated_date' => '6 de janeiro de 2026'
]
Previsão de preço de Pillar para 2026
A previsão de preço para Pillar em 2026 sugere que o preço médio poderia variar entre $0.000265 na extremidade inferior e $0.000793 na extremidade superior. No mercado de criptomoedas, comparado ao preço médio de hoje, Pillar poderia potencialmente ganhar 3.13% até 2026 se PLR atingir a meta de preço prevista.
Previsão de preço de Pillar 2027-2032
A previsão de preço de PLR para 2027-2032 está atualmente dentro de uma faixa de preço entre $0.000464 na extremidade inferior e $0.002892 na extremidade superior. Considerando a volatilidade de preços no mercado, se Pillar atingir a meta de preço superior, poderia ganhar 275.71% até 2032 em comparação com o preço de hoje.
| Previsão de Preço de Pillar | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.000256 | $0.000464 | $0.000672 |
| 2028 | $0.000462 | $0.000796 | $0.001131 |
| 2029 | $0.001015 | $0.002177 | $0.003339 |
| 2030 | $0.000863 | $0.001679 | $0.002495 |
| 2031 | $0.00102 | $0.001649 | $0.002278 |
| 2032 | $0.001557 | $0.002892 | $0.004226 |
Previsão de preço de Pillar 2032-2037
A previsão de preço de Pillar para 2032-2037 é atualmente estimada entre $0.002892 na extremidade inferior e $0.026374 na extremidade superior. Comparado ao preço atual, Pillar poderia potencialmente ganhar 3326.16% até 2037 se atingir a meta de preço superior. Por favor, note que esta informação é apenas para fins gerais e não deve ser considerada como aconselhamento de investimento a longo prazo.
| Previsão de Preço de Pillar | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.001557 | $0.002892 | $0.004226 |
| 2033 | $0.00362 | $0.007439 | $0.011257 |
| 2034 | $0.00291 | $0.004715 | $0.006519 |
| 2035 | $0.003441 | $0.005561 | $0.007682 |
| 2036 | $0.005696 | $0.010795 | $0.015894 |
| 2037 | $0.014792 | $0.026374 | $0.037956 |
Pillar Histograma de preços potenciais
Previsão de preço de Pillar baseada na análise técnica
Em 6 de janeiro de 2026, o sentimento geral de previsão de preço para Pillar é Altista, com 17 indicadores técnicos mostrando sinais de alta e 16 indicando sinais de baixa. A previsão de preço de PLR foi atualizada pela última vez em 6 de janeiro de 2026.
Médias Móveis Simples de 50 e 200 dias e Índice de Força Relativa de 14 dias - RSI (14) de Pillar
De acordo com nossos indicadores técnicos, o SMA de 200 dias de Pillar está projetado para aumentar no próximo mês, alcançando $0.001783 até 4 de fev. de 2026. O SMA de 50 dias de curto prazo para Pillar é esperado para alcançar $0.000673 até 4 de fev. de 2026.
O oscilador de momentum Índice de Força Relativa (RSI) é uma ferramenta comumente usada para identificar se uma criptomoeda está sobrevendida (abaixo de 30) ou sobrecomprada (acima de 70). No momento, o RSI está em 51.82, sugerindo que o mercado de PLR está em um estado NEUTRAL.
Médias Móveis e Osciladores Populares de PLR para Sábado, 19 de Outubro de 2024
Médias móveis (MA) são indicadores amplamente utilizados nos mercados financeiros, projetados para suavizar movimentos de preços ao longo de um período definido. Como indicadores atrasados, eles se baseiam em dados históricos de preços. A tabela abaixo destaca dois tipos: a média móvel simples (SMA) e a média móvel exponencial (EMA).
Média Móvel Simples Diária (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 3 | $0.000669 | BUY |
| SMA 5 | $0.000913 | SELL |
| SMA 10 | $0.0007063 | BUY |
| SMA 21 | $0.00061 | BUY |
| SMA 50 | $0.000592 | BUY |
| SMA 100 | $0.001125 | SELL |
| SMA 200 | $0.002074 | SELL |
Média Móvel Exponencial Diária (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 3 | $0.000732 | BUY |
| EMA 5 | $0.000737 | BUY |
| EMA 10 | $0.0007065 | BUY |
| EMA 21 | $0.000651 | BUY |
| EMA 50 | $0.000735 | BUY |
| EMA 100 | $0.001121 | SELL |
| EMA 200 | $0.001725 | SELL |
Média Móvel Simples Semanal (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 21 | $0.00158 | SELL |
| SMA 50 | $0.00233 | SELL |
| SMA 100 | $0.003467 | SELL |
| SMA 200 | $0.005153 | SELL |
Média Móvel Exponencial Semanal (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 21 | $0.00138 | SELL |
| EMA 50 | $0.002239 | SELL |
| EMA 100 | $0.0038018 | SELL |
| EMA 200 | $0.015193 | SELL |
Osciladores de Pillar
Um oscilador é uma ferramenta de análise técnica que define limites altos e baixos entre dois extremos, criando um indicador de tendência que flutua dentro desses limites. Os traders usam esse indicador para identificar condições de sobrecompra ou sobrevenda de curto prazo.
| Período | Valor | Ação |
|---|---|---|
| RSI (14) | 51.82 | NEUTRAL |
| Stoch RSI (14) | 23.28 | NEUTRAL |
| Estocástico Rápido (14) | 27.35 | NEUTRAL |
| Índice de Canal de Commodities (20) | 33.4 | NEUTRAL |
| Índice Direcional Médio (14) | 18.54 | NEUTRAL |
| Oscilador Impressionante (5, 34) | 0.000333 | BUY |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | NEUTRAL |
| Williams Percent Range (14) | -72.65 | NEUTRAL |
| Oscilador Ultimate (7, 14, 28) | 52.15 | NEUTRAL |
| VWMA (10) | 0.000662 | BUY |
| Média Móvel de Hull (9) | 0.0007063 | SELL |
| Nuvem Ichimoku B/L (9, 26, 52, 26) | -0.000655 | NEUTRAL |
Previsão do preço de Pillar com base nos fluxos financeiros mundiais
Definições dos fluxos financeiros mundiais, usadas na previsão do preço do Pillar
M0: o total de todas as moedas físicas, mais as contas no Banco Central que podem ser trocadas por moedas físicas.
M1: o valor de M0, mais o valor em contas de demanda, incluindo contas 'correntes'.
M2: o valor de M1, mais a maioria das contas de poupança, do mercado de moedas e de certificados de depósito (CD) de menos de US$ 100.000.
Previsões de preço de Pillar por empresas de Internet ou nichos tecnológicos
| Comparação | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.001081 | $0.001519 | $0.002135 | $0.0030011 | $0.004217 | $0.005925 |
| Amazon.com stock | $0.0016062 | $0.003351 | $0.006993 | $0.014591 | $0.030446 | $0.063527 |
| Apple stock | $0.001091 | $0.001548 | $0.002196 | $0.003116 | $0.004419 | $0.006269 |
| Netflix stock | $0.001214 | $0.001916 | $0.003023 | $0.004771 | $0.007528 | $0.011878 |
| Google stock | $0.000996 | $0.00129 | $0.001671 | $0.002164 | $0.0028036 | $0.00363 |
| Tesla stock | $0.001745 | $0.003955 | $0.008967 | $0.020329 | $0.046085 | $0.104472 |
| Kodak stock | $0.000577 | $0.000432 | $0.000324 | $0.000243 | $0.000182 | $0.000136 |
| Nokia stock | $0.0005099 | $0.000337 | $0.000223 | $0.000148 | $0.000098 | $0.000065 |
Este cálculo mostra quanto a criptomoeda pode custar, se assumirmos que sua capitalização se comportará da mesma forma que a de algumas empresas de Internet ou nichos tecnológicos. Se você extrapolar os dados, poderá obter uma imagem em potencial do preço futuro para 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Visão geral da previsão para Pillar
Você pode fazer perguntas como: 'Devo investir em Pillar agora?', 'Devo comprar PLR hoje?', 'Pillar será um bom ou mau investimento no curto ou no longo prazo?'.
Atualizamos a previsão para Pillar regularmente com novos valores. Veja nossas previsões semelhantes. Fazemos previsões de preços futuros para uma enorme quantidade de moedas digitais, como Pillar, com métodos de análise técnica.
Se você estiver tentando encontrar criptomoedas com bom retorno, você deve explorar o máximo de fontes de informações disponíveis sobre Pillar para poder tomar sozinho uma decisão de tão grande responsabilidade sobre o seu investimento.
O preço de Pillar é de $0.0007697 USD hoje, mas o preço pode tanto subir quanto descer e seu investimento pode ser perdido, porque criptomoedas são ativos de alto risco
Previsão do preço de Pillar com base no padrão de crescimento do Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se Pillar tiver 1% da média anterior do crescimento anual do Bitcoin | $0.000789 | $0.00081 | $0.000831 | $0.000853 |
| Se Pillar tiver 2% da média anterior do crescimento anual do Bitcoin | $0.0008098 | $0.000851 | $0.000896 | $0.000942 |
| Se Pillar tiver 5% da média anterior do crescimento anual do Bitcoin | $0.000869 | $0.000982 | $0.00111 | $0.001254 |
| Se Pillar tiver 10% da média anterior do crescimento anual do Bitcoin | $0.000969 | $0.001222 | $0.001539 | $0.001939 |
| Se Pillar tiver 20% da média anterior do crescimento anual do Bitcoin | $0.001169 | $0.001778 | $0.0027026 | $0.0041076 |
| Se Pillar tiver 50% da média anterior do crescimento anual do Bitcoin | $0.00177 | $0.004071 | $0.009362 | $0.021529 |
| Se Pillar tiver 100% da média anterior do crescimento anual do Bitcoin | $0.00277 | $0.009972 | $0.035895 | $0.129199 |
Perguntas Frequentes sobre Pillar
PLR é um bom investimento?
A decisão de adquirir Pillar depende inteiramente da sua tolerância individual ao risco. Como você pode perceber, o valor de Pillar experimentou uma escalada de 21.3647% nas últimas 24 horas, e Pillar registrou um declínio de durante os últimos 30 dias. Consequentemente, a decisão de investir ou não em Pillar dependerá de quão alinhado esse investimento está com suas aspirações de negociação.
Pillar pode subir?
Parece que o valor médio de Pillar pode potencialmente subir para $0.000793 até o final deste ano. Observando as perspectivas de Pillar em um horizonte de cinco anos mais longo, a moeda digital poderia potencialmente crescer até $0.002495. No entanto, dada a imprevisibilidade do mercado, é vital conduzir uma pesquisa aprofundada antes de investir quaisquer fundos em um projeto, rede ou ativo específico.
Qual será o preço de Pillar na próxima semana?
Com base na nossa nova previsão experimental de Pillar, o preço de Pillar aumentará 0.86% na próxima semana e atingirá $0.000776 até 13 de janeiro de 2026.
Qual será o preço de Pillar no próximo mês?
Com base na nossa nova previsão experimental de Pillar, o preço de Pillar diminuirá -11.62% no próximo mês e atingirá $0.00068 até 5 de fevereiro de 2026.
Até onde o preço de Pillar pode subir este ano em 2026?
De acordo com nossa previsão mais recente sobre o valor de Pillar em 2026, espera-se que PLR fluctue dentro do intervalo de $0.000265 e $0.000793. No entanto, é crucial lembrar que o mercado de criptomoedas é excepcionalmente instável, e essa previsão de preço de Pillar não considera flutuações repentinas e extremas de preço.
Onde estará Pillar em 5 anos?
O futuro de Pillar parece seguir uma tendência de alta, com um preço máximo de $0.002495 projetada após um período de cinco anos. Com base na previsão de Pillar para 2030, o valor de Pillar pode potencialmente atingir seu pico mais alto de aproximadamente $0.002495, enquanto seu pico mais baixo está previsto para cerca de $0.000863.
Quanto será Pillar em 2026?
Com base na nossa nova simulação experimental de previsão de preços de Pillar, espera-se que o valor de PLR em 2026 aumente 3.13% para $0.000793 se o melhor cenário ocorrer. O preço ficará entre $0.000793 e $0.000265 durante 2026.
Quanto será Pillar em 2027?
De acordo com nossa última simulação experimental para previsão de preços de Pillar, o valor de PLR pode diminuir -12.62% para $0.000672 em 2027, assumindo as condições mais favoráveis. O preço está projetado para flutuar entre $0.000672 e $0.000256 ao longo do ano.
Quanto será Pillar em 2028?
Nosso novo modelo experimental de previsão de preços de Pillar sugere que o valor de PLR em 2028 pode aumentar 47.02%, alcançando $0.001131 no melhor cenário. O preço é esperado para variar entre $0.001131 e $0.000462 durante o ano.
Quanto será Pillar em 2029?
Com base no nosso modelo de previsão experimental, o valor de Pillar pode experimentar um 333.75% crescimento em 2029, potencialmente alcançando $0.003339 sob condições ótimas. A faixa de preço prevista para 2029 está entre $0.003339 e $0.001015.
Quanto será Pillar em 2030?
Usando nossa nova simulação experimental para previsões de preços de Pillar, espera-se que o valor de PLR em 2030 aumente 224.23%, alcançando $0.002495 no melhor cenário. O preço está previsto para variar entre $0.002495 e $0.000863 ao longo de 2030.
Quanto será Pillar em 2031?
Nossa simulação experimental indica que o preço de Pillar poderia aumentar 195.98% em 2031, potencialmente atingindo $0.002278 sob condições ideais. O preço provavelmente oscilará entre $0.002278 e $0.00102 durante o ano.
Quanto será Pillar em 2032?
Com base nos achados da nossa mais recente previsão experimental de preços de Pillar, PLR poderia ver um 449.04% aumento em valor, atingindo $0.004226 se o cenário mais positivo se desenrolar em 2032. O preço é esperado para permanecer dentro de uma faixa de $0.004226 e $0.001557 ao longo do ano.
Quanto será Pillar em 2033?
De acordo com nossa previsão experimental de preços de Pillar, espera-se que o valor de PLR seja aumentar 1362.43% em 2033, com o preço potencial mais alto sendo $0.011257. Ao longo do ano, o preço de PLR poderia variar entre $0.011257 e $0.00362.
Quanto será Pillar em 2034?
Os resultados da nossa nova simulação de previsão de preços de Pillar sugerem que PLR pode aumentar 746.96% em 2034, atingindo potencialmente $0.006519 nas melhores circunstâncias. A faixa de preço prevista para o ano é entre $0.006519 e $0.00291.
Quanto será Pillar em 2035?
Com base em nossa previsão experimental para o preço de Pillar, PLR poderia aumentar 897.93%, com o valor potencialmente atingindo $0.007682 em 2035. A faixa de preço esperada para o ano está entre $0.007682 e $0.003441.
Quanto será Pillar em 2036?
Nossa recente simulação de previsão de preços de Pillar sugere que o valor de PLR pode aumentar 1964.7% em 2036, possivelmente atingindo $0.015894 se as condições forem ideais. A faixa de preço esperada para 2036 está entre $0.015894 e $0.005696.
Quanto será Pillar em 2037?
De acordo com a simulação experimental, o valor de Pillar poderia aumentar 4830.69% em 2037, com um pico de $0.037956 sob condições favoráveis. O preço é esperado para cair entre $0.037956 e $0.014792 ao longo do ano.
Previsões relacionadas
Previsão de Preço do Metaverser
Previsão de Preço do TYBENG
Previsão de Preço do DePay
Previsão de Preço do SafeMoonCash
Previsão de Preço do Kambria
Previsão de Preço do League of Ancients
Previsão de Preço do Revuto
Previsão de Preço do Heroes of NFT
Previsão de Preço do Pandacoin
Previsão de Preço do DOLA Borrowing Right
Previsão de Preço do MetaFighter
Previsão de Preço do Kalmar
Previsão de Preço do Nominex
Previsão de Preço do MetaVPad
Previsão de Preço do FlowX Finance
Previsão de Preço do Solanacorn
Previsão de Preço do Battle Infinity
Previsão de Preço do Virtacoinplus
Previsão de Preço do Cryptocart
Previsão de Preço do SYNO Finance
Previsão de Preço do NFTY Token
Previsão de Preço do IP Exchange
Previsão de Preço do NetherFi
Previsão de Preço do Tokenomy
Previsão de Preço do Roobee
Como ler e prever os movimentos de preço de Pillar?
Traders de Pillar utilizam indicadores e padrões de gráfico para prever a direção do mercado. Eles também identificam níveis-chave de suporte e resistência para avaliar quando uma tendência de baixa pode desacelerar ou uma tendência de alta pode estagnar.
Indicadores de Previsão de Preço de Pillar
Médias móveis são ferramentas populares para a previsão de preço de Pillar. Uma média móvel simples (SMA) calcula o preço médio de fechamento de PLR em um período específico, como uma SMA de 12 dias. Uma média móvel exponencial (EMA) dá mais peso aos preços recentes, reagindo mais rapidamente às mudanças de preço.
Médias móveis comumente usadas no mercado de criptomoedas incluem as de 50 dias, 100 dias e 200 dias, que ajudam a identificar níveis-chave de resistência e suporte. Um movimento de preço de PLR acima dessas médias é visto como altista, enquanto uma queda abaixo indica fraqueza.
Traders também usam RSI e níveis de retração de Fibonacci para avaliar a direção futura de PLR.
Como ler gráficos de Pillar e prever movimentos de preço?
A maioria dos traders prefere gráficos de velas em vez de gráficos de linha simples porque eles fornecem informações mais detalhadas. Velas podem representar a ação de preço de Pillar em diferentes períodos de tempo, como 5 minutos para tendências de curto prazo e semanal para tendências de longo prazo. Opções populares incluem gráficos de 1 hora, 4 horas e 1 dia.
Por exemplo, um gráfico de velas de 1 hora mostra os preços de abertura, fechamento, máximo e mínimo de PLR dentro de cada hora. A cor da vela é crucial: verde indica que o preço fechou mais alto do que abriu, enquanto vermelho significa o oposto. Alguns gráficos usam velas vazias e preenchidas para transmitir a mesma informação.
O que afeta o preço de Pillar?
A ação de preço de Pillar é impulsionada pela oferta e demanda, influenciada por fatores como reduções pela metade das recompensas de bloco, hard forks e atualizações de protocolo. Eventos do mundo real, como regulamentações, adoção por empresas e governos e hacks de exchanges de criptomoedas, também impactam o preço de PLR. A capitalização de mercado de Pillar pode mudar rapidamente.
Traders frequentemente monitoram a atividade de "baleias" de PLR, grandes detentores de Pillar, pois suas ações podem influenciar significativamente os movimentos de preço no relativamente pequeno mercado de Pillar.
Padrões de previsão de preço altistas e baixistas
Traders frequentemente identificam padrões de velas para ganhar vantagem em previsões de preço de criptomoedas. Certas formações indicam tendências altistas, enquanto outras sugerem movimentos baixistas.
Padrões de velas altistas comumente seguidos:
- Martelo
- Engolfo de Alta
- Linha de Perfuração
- Estrela da Manhã
- Três Soldados Brancos
Padrões de velas baixistas comuns:
- Harami de Baixa
- Nuvem Negra
- Estrela da Noite
- Estrela Cadente
- Homem Enforcado


