Prédiction du prix de Maverick Protocol jusqu'à $0.029884 d'ici 2026
| Année | Prix min. | Prix max. |
|---|---|---|
| 2026 | $0.010011 | $0.029884 |
| 2027 | $0.009637 | $0.025318 |
| 2028 | $0.017393 | $0.0426017 |
| 2029 | $0.0382082 | $0.125687 |
| 2030 | $0.032494 | $0.093951 |
| 2031 | $0.038418 | $0.085766 |
| 2032 | $0.058642 | $0.159092 |
| 2033 | $0.136273 | $0.423764 |
| 2034 | $0.109557 | $0.245421 |
| 2035 | $0.12953 | $0.289168 |
Calculateur de profit d’investissement
Si vous ouvrez une position short de $10,000.00 sur Maverick Protocol aujourd’hui et la fermez le Apr 06, 2026, notre prévision indique que vous pourriez gagner environ $3,954.46, soit un rendement de 39.54% sur les 90 prochains jours.
Prévision du prix à long terme de Maverick Protocol pour 2027, 2028, 2029, 2030, 2031, 2032 et 2037
[
'name' => 'Maverick Protocol'
'name_with_ticker' => 'Maverick Protocol <small>MAV</small>'
'name_lang' => 'Maverick Protocol'
'name_lang_with_ticker' => 'Maverick Protocol <small>MAV</small>'
'name_with_lang' => 'Maverick Protocol'
'name_with_lang_with_ticker' => 'Maverick Protocol <small>MAV</small>'
'image' => '/uploads/coins/maverick-protocol.png?1717140033'
'price_for_sd' => 0.02897
'ticker' => 'MAV'
'marketcap' => '$24.47M'
'low24h' => '$0.02782'
'high24h' => '$0.02936'
'volume24h' => '$7.05M'
'current_supply' => '842.96M'
'max_supply' => '2B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.02897'
'change_24h_pct' => '3.2365%'
'ath_price' => '$0.8047'
'ath_days' => 675
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '2 mars 2024'
'ath_pct' => '-96.39%'
'fdv' => '$58.06M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$1.42'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.029224'
'next_week_prediction_price_date' => '13 janvier 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.02561'
'next_month_prediction_price_date' => '5 février 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.010011'
'current_year_max_price_prediction' => '$0.029884'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.032494'
'grand_prediction_max_price' => '$0.093951'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.029525844170729
107 => 0.029636082954982
108 => 0.029884456564833
109 => 0.027762131262583
110 => 0.028714993015096
111 => 0.029274710023626
112 => 0.026745888216411
113 => 0.029224723347279
114 => 0.027725186300819
115 => 0.027216220904959
116 => 0.027901475759392
117 => 0.027634431276187
118 => 0.027404842110906
119 => 0.027276727411837
120 => 0.027779902948114
121 => 0.027756429207921
122 => 0.02693313636841
123 => 0.025859184420976
124 => 0.026219637945806
125 => 0.026088681800965
126 => 0.025614079838384
127 => 0.025933904257504
128 => 0.024525559375134
129 => 0.022102575204414
130 => 0.023703272765604
131 => 0.023641647650722
201 => 0.023610573473323
202 => 0.024813453450526
203 => 0.02469782429588
204 => 0.024487956247955
205 => 0.025610225447104
206 => 0.025200582092764
207 => 0.026463006386727
208 => 0.027294520675215
209 => 0.027083621754985
210 => 0.027865664962366
211 => 0.026227942067004
212 => 0.026771927918805
213 => 0.026884042648929
214 => 0.025596376819392
215 => 0.02471674265559
216 => 0.024658081085428
217 => 0.023132916666452
218 => 0.023947647188372
219 => 0.024664576331822
220 => 0.024321222908058
221 => 0.024212527471487
222 => 0.024767828883768
223 => 0.024810980559337
224 => 0.023827117783349
225 => 0.024031694009359
226 => 0.024884810879789
227 => 0.024010197653097
228 => 0.022310967020894
301 => 0.021889534330406
302 => 0.021833307440949
303 => 0.020690348560098
304 => 0.021917696477943
305 => 0.021381926220925
306 => 0.023074418043333
307 => 0.022107675791389
308 => 0.022066001465111
309 => 0.022003004608647
310 => 0.021019212684862
311 => 0.021234600592932
312 => 0.021950582803864
313 => 0.022206053322841
314 => 0.022179405654703
315 => 0.021947074100428
316 => 0.022053434296245
317 => 0.021710811047168
318 => 0.021589823646833
319 => 0.021207954131169
320 => 0.020646711437288
321 => 0.020724755676174
322 => 0.019612787042457
323 => 0.019006927514167
324 => 0.018839233581836
325 => 0.018614986247111
326 => 0.018864562914992
327 => 0.01960963697503
328 => 0.018710919582345
329 => 0.017170131650283
330 => 0.017262735630375
331 => 0.017470789279272
401 => 0.017083082680964
402 => 0.016716150923413
403 => 0.017035168316489
404 => 0.016382316157826
405 => 0.017549683343609
406 => 0.017518109332742
407 => 0.0179532316301
408 => 0.018225322532246
409 => 0.017598241093275
410 => 0.017440531807182
411 => 0.017530370184028
412 => 0.016045541932224
413 => 0.01783188948407
414 => 0.017847337891878
415 => 0.017715059245225
416 => 0.018666234169289
417 => 0.020673509937965
418 => 0.019918292051308
419 => 0.019625848859014
420 => 0.019069914136686
421 => 0.01981066414605
422 => 0.019753786102831
423 => 0.019496562021038
424 => 0.019340992093782
425 => 0.019627634454786
426 => 0.019305473933123
427 => 0.019247605051053
428 => 0.018896982587674
429 => 0.018771826320554
430 => 0.018679165602993
501 => 0.018577155257611
502 => 0.018802164660128
503 => 0.018292263751574
504 => 0.01767737324206
505 => 0.017626251749401
506 => 0.017767402685279
507 => 0.017704953903604
508 => 0.01762595276866
509 => 0.017475118087373
510 => 0.017430368659508
511 => 0.017575782590733
512 => 0.017411618740539
513 => 0.017653851443968
514 => 0.017587977551982
515 => 0.017220011346213
516 => 0.016761389215286
517 => 0.016757306516328
518 => 0.016658497130511
519 => 0.016532648521582
520 => 0.016497640317604
521 => 0.017008301561456
522 => 0.018065355053424
523 => 0.017857830159804
524 => 0.018007788163451
525 => 0.018745433122501
526 => 0.018979908273225
527 => 0.01881348336509
528 => 0.018585670686192
529 => 0.018595693287895
530 => 0.019374198175275
531 => 0.019422752570168
601 => 0.019545433861819
602 => 0.019703113991321
603 => 0.018840336972972
604 => 0.018555056567919
605 => 0.01841987488525
606 => 0.018003567624526
607 => 0.01845251931373
608 => 0.018190934390459
609 => 0.018226231133622
610 => 0.018203244083333
611 => 0.018215796567168
612 => 0.017549357040689
613 => 0.017792172577108
614 => 0.017388444652964
615 => 0.016847898283122
616 => 0.016846086182151
617 => 0.016978384140378
618 => 0.016899688138005
619 => 0.016687919219078
620 => 0.01671799999449
621 => 0.016454460749397
622 => 0.016749998430376
623 => 0.016758473393582
624 => 0.016644675288359
625 => 0.017099991862248
626 => 0.017286535434074
627 => 0.017211631083424
628 => 0.017281279945152
629 => 0.017866453756053
630 => 0.017961862620153
701 => 0.01800423693523
702 => 0.017947460966547
703 => 0.017291975848197
704 => 0.017321049400534
705 => 0.017107726964091
706 => 0.016927491984662
707 => 0.016934700438631
708 => 0.017027364646965
709 => 0.017432034679443
710 => 0.018283638906192
711 => 0.018315956664083
712 => 0.018355126729422
713 => 0.018195802388391
714 => 0.018147748642608
715 => 0.01821114393702
716 => 0.018530961709364
717 => 0.019353619849511
718 => 0.019062837519293
719 => 0.018826426958529
720 => 0.019033822756149
721 => 0.019001895798727
722 => 0.018732400147936
723 => 0.018724836302601
724 => 0.018207587985761
725 => 0.018016373060199
726 => 0.017856579556211
727 => 0.01768208922137
728 => 0.017578645501908
729 => 0.017737582069332
730 => 0.017773932742784
731 => 0.017426415160376
801 => 0.017379049798015
802 => 0.017662840157498
803 => 0.017537954601061
804 => 0.017666402492869
805 => 0.017696203505574
806 => 0.017691404856153
807 => 0.017561009992218
808 => 0.017644119790059
809 => 0.017447540341941
810 => 0.017233789717391
811 => 0.017097430136062
812 => 0.016978438315879
813 => 0.017044461893562
814 => 0.016809099894552
815 => 0.016733802854168
816 => 0.01761596406058
817 => 0.018267626028588
818 => 0.018258150605487
819 => 0.018200471404239
820 => 0.018114771810983
821 => 0.018524692250327
822 => 0.018381884165878
823 => 0.01848578897933
824 => 0.018512237115224
825 => 0.018592287656909
826 => 0.018620898844985
827 => 0.018534415962872
828 => 0.018244168847508
829 => 0.017520900631887
830 => 0.01718421732509
831 => 0.017073106225943
901 => 0.017077144903367
902 => 0.016965740150564
903 => 0.016998553843076
904 => 0.016954328887427
905 => 0.016870577520593
906 => 0.017039290482665
907 => 0.017058733079874
908 => 0.017019353458557
909 => 0.01702862878494
910 => 0.016702582339688
911 => 0.016727370942785
912 => 0.016589344850759
913 => 0.016563466622433
914 => 0.016214548681097
915 => 0.015596389971556
916 => 0.01593890990276
917 => 0.015525193991456
918 => 0.015368513507027
919 => 0.016110214551502
920 => 0.016035768338221
921 => 0.015908348782076
922 => 0.015719868701974
923 => 0.015649959606848
924 => 0.015225214075393
925 => 0.015200117843465
926 => 0.015410633197949
927 => 0.015313487605246
928 => 0.015177058401178
929 => 0.01468292565365
930 => 0.014127356843699
1001 => 0.01414412597389
1002 => 0.01432084207561
1003 => 0.014834667974776
1004 => 0.014633907306693
1005 => 0.014488253138537
1006 => 0.014460976491189
1007 => 0.014802400840273
1008 => 0.015285587824839
1009 => 0.015512288347298
1010 => 0.015287635014538
1011 => 0.015029565362059
1012 => 0.015045272866025
1013 => 0.015149767852831
1014 => 0.015160748798465
1015 => 0.014992771984689
1016 => 0.015040056473837
1017 => 0.014968227011037
1018 => 0.01452740973042
1019 => 0.01451943674366
1020 => 0.014411253073858
1021 => 0.014407977315331
1022 => 0.014223929905316
1023 => 0.014198180400395
1024 => 0.013832743096931
1025 => 0.014073275036717
1026 => 0.013911938840003
1027 => 0.013668767136192
1028 => 0.013626844242798
1029 => 0.013625583989999
1030 => 0.013875266957615
1031 => 0.014070357345868
1101 => 0.013914745352218
1102 => 0.013879315517676
1103 => 0.014257613458582
1104 => 0.01420947159734
1105 => 0.014167781055985
1106 => 0.015242323730012
1107 => 0.014391739355909
1108 => 0.014020836019142
1109 => 0.013561772707259
1110 => 0.013711246036406
1111 => 0.013742742263077
1112 => 0.01263877775038
1113 => 0.012190899485068
1114 => 0.01203720454235
1115 => 0.011948750929888
1116 => 0.011989060351817
1117 => 0.011585917382156
1118 => 0.011856836125137
1119 => 0.011507748390238
1120 => 0.011449222695452
1121 => 0.012073434809125
1122 => 0.012160290278148
1123 => 0.011789737863416
1124 => 0.012027692500661
1125 => 0.011941406841379
1126 => 0.01151373249751
1127 => 0.011497398483334
1128 => 0.011282806531061
1129 => 0.010947011678943
1130 => 0.010793544420947
1201 => 0.010713617340518
1202 => 0.010746596811651
1203 => 0.010729921381858
1204 => 0.010621102922763
1205 => 0.010736158728555
1206 => 0.010442238689097
1207 => 0.010325197361111
1208 => 0.010272332508597
1209 => 0.010011461556173
1210 => 0.010426623251319
1211 => 0.010508415335333
1212 => 0.010590368575018
1213 => 0.011303715574627
1214 => 0.011268078774425
1215 => 0.011590218092432
1216 => 0.011577700350911
1217 => 0.011485820999104
1218 => 0.011098197127251
1219 => 0.01125269709384
1220 => 0.010777170211304
1221 => 0.011133467284385
1222 => 0.010970868179553
1223 => 0.011078492363481
1224 => 0.010884974376696
1225 => 0.010992075220745
1226 => 0.010527811272738
1227 => 0.01009428813046
1228 => 0.010268750498242
1229 => 0.010458411044213
1230 => 0.010869643432487
1231 => 0.010624716814625
]
'min_raw' => 0.010011461556173
'max_raw' => 0.029884456564833
'avg_raw' => 0.019947959060503
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.010011'
'max' => '$0.029884'
'avg' => '$0.019947'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.018965288443827
'max_diff' => 0.00090770656483335
'year' => 2026
]
1 => [
'items' => [
101 => 0.010712801688109
102 => 0.010417732107167
103 => 0.0098089192792249
104 => 0.0098123650937142
105 => 0.0097187125038437
106 => 0.0096377829926936
107 => 0.010652849583008
108 => 0.010526610006674
109 => 0.010325463763614
110 => 0.010594706003184
111 => 0.010665897924776
112 => 0.010667924658699
113 => 0.010864356846542
114 => 0.010969192740406
115 => 0.010987670521084
116 => 0.011296760812853
117 => 0.011400363801654
118 => 0.011827089850083
119 => 0.010960298147259
120 => 0.010942447142547
121 => 0.010598494793642
122 => 0.010380354776294
123 => 0.010613431027257
124 => 0.010819904767528
125 => 0.010604910508295
126 => 0.010632984219775
127 => 0.010344371992431
128 => 0.010447537283239
129 => 0.010536397129548
130 => 0.010487333945357
131 => 0.010413883983937
201 => 0.010802976275421
202 => 0.010781022163471
203 => 0.011143353850494
204 => 0.011425817311116
205 => 0.011932042328934
206 => 0.011403770132734
207 => 0.011384517794213
208 => 0.011572712491431
209 => 0.011400334990026
210 => 0.011509271620645
211 => 0.011914490953588
212 => 0.011923052599557
213 => 0.011779633998521
214 => 0.011770906963614
215 => 0.011798452074771
216 => 0.01195978465117
217 => 0.011903410091727
218 => 0.011968648159144
219 => 0.012050229361409
220 => 0.012387683803693
221 => 0.012469042927281
222 => 0.012271382436831
223 => 0.012289228966008
224 => 0.012215298516678
225 => 0.012143882628971
226 => 0.012304415115083
227 => 0.012597791388727
228 => 0.012595966310155
301 => 0.012664023903221
302 => 0.012706423219881
303 => 0.012524414314578
304 => 0.012405933209879
305 => 0.012451366404569
306 => 0.012524015072285
307 => 0.012427807420764
308 => 0.011833969227851
309 => 0.01201410180105
310 => 0.011984118932837
311 => 0.01194141968246
312 => 0.012122544377736
313 => 0.01210507445902
314 => 0.011581782568309
315 => 0.011615282017336
316 => 0.011583819780758
317 => 0.011685480703709
318 => 0.011394844966564
319 => 0.011484242561848
320 => 0.01154031189556
321 => 0.011573337163861
322 => 0.011692647078604
323 => 0.011678647437179
324 => 0.011691776841236
325 => 0.01186868194815
326 => 0.012763407272415
327 => 0.012812105197715
328 => 0.01257229880311
329 => 0.012668096727783
330 => 0.012484185661114
331 => 0.012607646392266
401 => 0.012692115088957
402 => 0.012310417291005
403 => 0.012287815624609
404 => 0.012103145491548
405 => 0.012202376760804
406 => 0.012044492676437
407 => 0.01208323190819
408 => 0.011974913638983
409 => 0.012169864957603
410 => 0.012387850824192
411 => 0.012442922662615
412 => 0.012298052365641
413 => 0.012193156723214
414 => 0.012008994529885
415 => 0.012315260361713
416 => 0.012404821824222
417 => 0.012314789933478
418 => 0.012293927577157
419 => 0.012254393449626
420 => 0.012302314929202
421 => 0.012404334053263
422 => 0.012356223718353
423 => 0.012388001442156
424 => 0.012266897528067
425 => 0.012524474567099
426 => 0.012933568894374
427 => 0.012934884199529
428 => 0.012886773605287
429 => 0.012867087786681
430 => 0.012916452175968
501 => 0.012943230332123
502 => 0.013102865715197
503 => 0.01327416084139
504 => 0.014073520453413
505 => 0.013849063473046
506 => 0.014558302874949
507 => 0.015119219158644
508 => 0.015287413426228
509 => 0.015132682614203
510 => 0.014603356864659
511 => 0.014577385618104
512 => 0.01536842176349
513 => 0.015144917820668
514 => 0.015118332737853
515 => 0.014835512372907
516 => 0.015002694236574
517 => 0.01496612911058
518 => 0.014908409270371
519 => 0.015227380620258
520 => 0.015824466512476
521 => 0.015731405076738
522 => 0.015661939031955
523 => 0.015357559044978
524 => 0.01554086378287
525 => 0.015475592476678
526 => 0.015756039430274
527 => 0.015589908867624
528 => 0.015143224558479
529 => 0.015214360507001
530 => 0.015203608451488
531 => 0.015424884992055
601 => 0.015358463266998
602 => 0.01519063854364
603 => 0.015822425737808
604 => 0.015781400991604
605 => 0.015839564702159
606 => 0.015865170166318
607 => 0.016249727898069
608 => 0.016407268896293
609 => 0.016443033461033
610 => 0.016592685224688
611 => 0.016439309988824
612 => 0.017052920286969
613 => 0.017460935330082
614 => 0.01793486579892
615 => 0.018627405594392
616 => 0.018887806963841
617 => 0.018840767787213
618 => 0.019365843556293
619 => 0.020309393041551
620 => 0.019031486115296
621 => 0.020377125211643
622 => 0.01995111140989
623 => 0.018941040349594
624 => 0.018876003681267
625 => 0.019560035530465
626 => 0.021077152336362
627 => 0.020697131783481
628 => 0.021077773913847
629 => 0.020633734649778
630 => 0.02061168435766
701 => 0.021056207917906
702 => 0.022094861446138
703 => 0.02160143608822
704 => 0.020893989844783
705 => 0.021416357141855
706 => 0.02096383424632
707 => 0.019944173509499
708 => 0.020696841188926
709 => 0.020193553746434
710 => 0.020340439778385
711 => 0.021398275124146
712 => 0.021270993576659
713 => 0.021435707685061
714 => 0.02114499159505
715 => 0.02087341692526
716 => 0.020366502636697
717 => 0.020216430306426
718 => 0.020257904899476
719 => 0.020216409753678
720 => 0.01993279586801
721 => 0.019871549476403
722 => 0.019769469473792
723 => 0.019801108335043
724 => 0.019609168065577
725 => 0.019971399010943
726 => 0.020038632266371
727 => 0.020302233740855
728 => 0.0203296017204
729 => 0.021063728074705
730 => 0.020659383615246
731 => 0.020930652788072
801 => 0.02090638791997
802 => 0.018962931652274
803 => 0.019230722778703
804 => 0.019647321733941
805 => 0.019459644469293
806 => 0.019194312726797
807 => 0.018980043118543
808 => 0.018655402751847
809 => 0.019112327833806
810 => 0.019713135728017
811 => 0.020344839200081
812 => 0.021103789530915
813 => 0.020934400652229
814 => 0.020330651151561
815 => 0.020357734913122
816 => 0.020525156070022
817 => 0.02030833046002
818 => 0.020244384354692
819 => 0.02051637085711
820 => 0.020518243878671
821 => 0.020268759810112
822 => 0.019991503923013
823 => 0.019990342210722
824 => 0.019941007203587
825 => 0.020642511237949
826 => 0.02102826752679
827 => 0.021072493863628
828 => 0.021025290741944
829 => 0.021043457350055
830 => 0.020818994265138
831 => 0.021332050314798
901 => 0.021802881281951
902 => 0.021676688524918
903 => 0.021487507642767
904 => 0.021336815957948
905 => 0.021641190353025
906 => 0.021627637040342
907 => 0.021798768984197
908 => 0.021791005450718
909 => 0.021733460214597
910 => 0.021676690580039
911 => 0.021901775764113
912 => 0.021836954845857
913 => 0.021772033242811
914 => 0.021641823028903
915 => 0.021659520759535
916 => 0.021470372542132
917 => 0.021382863921927
918 => 0.020066944236589
919 => 0.01971528749775
920 => 0.019825925866422
921 => 0.019862350890112
922 => 0.019709309426709
923 => 0.019928731572103
924 => 0.019894534863169
925 => 0.020027574253226
926 => 0.019944457018217
927 => 0.019947868178534
928 => 0.020192298244231
929 => 0.020263257332183
930 => 0.020227166967341
1001 => 0.020252443421771
1002 => 0.020834928645592
1003 => 0.020752117873593
1004 => 0.020708126301449
1005 => 0.020720312267577
1006 => 0.020869149730887
1007 => 0.020910816094389
1008 => 0.020734272784385
1009 => 0.020817531629968
1010 => 0.021172037227338
1011 => 0.021296094123139
1012 => 0.021692024183845
1013 => 0.021523826056961
1014 => 0.021832560998301
1015 => 0.022781506952482
1016 => 0.023539590642748
1017 => 0.022842425552046
1018 => 0.024234549707842
1019 => 0.025318518051479
1020 => 0.025276913541007
1021 => 0.025087898587654
1022 => 0.023853829447213
1023 => 0.022718220625245
1024 => 0.023668205625319
1025 => 0.02367062733245
1026 => 0.023589022778444
1027 => 0.023082183902055
1028 => 0.023571385884182
1029 => 0.023610216961003
1030 => 0.023588481884
1031 => 0.023199889705819
1101 => 0.022606581273576
1102 => 0.022722512321057
1103 => 0.022912409741759
1104 => 0.022552894307618
1105 => 0.022438007342601
1106 => 0.022651604068706
1107 => 0.023339857224863
1108 => 0.02320974695247
1109 => 0.023206349247441
1110 => 0.023763016168078
1111 => 0.023364562789142
1112 => 0.022723974582828
1113 => 0.022562217612414
1114 => 0.021988089339993
1115 => 0.022384641782729
1116 => 0.022398912999174
1117 => 0.022181725278955
1118 => 0.022741598169334
1119 => 0.022736438842086
1120 => 0.023267954825418
1121 => 0.024284013757262
1122 => 0.023983515133892
1123 => 0.02363406792907
1124 => 0.023672062529354
1125 => 0.024088769515807
1126 => 0.023836818959303
1127 => 0.023927422136083
1128 => 0.024088632377048
1129 => 0.024185894518046
1130 => 0.023658068004044
1201 => 0.023535006394769
1202 => 0.023283265530949
1203 => 0.023217591038544
1204 => 0.02342262871938
1205 => 0.023368608534568
1206 => 0.022397713558693
1207 => 0.022296249631705
1208 => 0.022299361385489
1209 => 0.022044225516731
1210 => 0.021655082077252
1211 => 0.022677727801656
1212 => 0.022595595038069
1213 => 0.022504926823639
1214 => 0.022516033162561
1215 => 0.022959929010846
1216 => 0.022702447001563
1217 => 0.023387005123713
1218 => 0.023246280553499
1219 => 0.023101946929063
1220 => 0.023081995625656
1221 => 0.023026439494214
1222 => 0.022835916847973
1223 => 0.022605849304002
1224 => 0.022453938783363
1225 => 0.020712571616939
1226 => 0.02103575923396
1227 => 0.021407557127865
1228 => 0.021535900270955
1229 => 0.021316360443625
1230 => 0.022844585618467
1231 => 0.023123807084255
]
'min_raw' => 0.0096377829926936
'max_raw' => 0.025318518051479
'avg_raw' => 0.017478150522087
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.009637'
'max' => '$0.025318'
'avg' => '$0.017478'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00037367856347909
'max_diff' => -0.0045659385133539
'year' => 2027
]
2 => [
'items' => [
101 => 0.022278027051218
102 => 0.022119816140008
103 => 0.022854957899467
104 => 0.022411577551088
105 => 0.022611231694815
106 => 0.022179688641056
107 => 0.023056550809706
108 => 0.023049870589127
109 => 0.022708751400692
110 => 0.022997063002874
111 => 0.022946961766994
112 => 0.022561839043391
113 => 0.023068759886975
114 => 0.023069011313389
115 => 0.022740691511091
116 => 0.022357285860453
117 => 0.022288741985756
118 => 0.022237103383746
119 => 0.022598531764224
120 => 0.022922587320003
121 => 0.023525574369123
122 => 0.02367717963989
123 => 0.024268905104631
124 => 0.023916561400968
125 => 0.024072750801187
126 => 0.024242316489464
127 => 0.024323612515996
128 => 0.024191145003347
129 => 0.025110338214007
130 => 0.025187946284339
131 => 0.025213967599014
201 => 0.024904020820162
202 => 0.02517932610373
203 => 0.025050519878701
204 => 0.025385637892826
205 => 0.025438188676442
206 => 0.025393680032267
207 => 0.025410360480445
208 => 0.024625991231941
209 => 0.024585317548528
210 => 0.024030728989128
211 => 0.024256727926395
212 => 0.023834233745585
213 => 0.023968211002492
214 => 0.024027266900755
215 => 0.023996419450895
216 => 0.024269505567222
217 => 0.024037326580536
218 => 0.023424568060913
219 => 0.022811642595641
220 => 0.022803947815703
221 => 0.02264257535973
222 => 0.022525932630901
223 => 0.022548402158596
224 => 0.022627587704942
225 => 0.022521330222995
226 => 0.02254400564416
227 => 0.022920568721029
228 => 0.02299608576057
229 => 0.022739449353797
301 => 0.021709017148148
302 => 0.021456146500238
303 => 0.021637904907313
304 => 0.021551036095472
305 => 0.01739336811845
306 => 0.01837015053809
307 => 0.017789779592737
308 => 0.018057241225939
309 => 0.01746483277706
310 => 0.017747561139652
311 => 0.017695351534668
312 => 0.019265988760357
313 => 0.019241465420419
314 => 0.019253203445501
315 => 0.018692916925067
316 => 0.019585468565555
317 => 0.020025171598779
318 => 0.019943794269646
319 => 0.019964275190183
320 => 0.019612345118823
321 => 0.019256610897873
322 => 0.018862046899735
323 => 0.019595098038691
324 => 0.01951359526564
325 => 0.019700533303248
326 => 0.020175969366439
327 => 0.02024597913275
328 => 0.020340072968641
329 => 0.020306347026529
330 => 0.021109835794735
331 => 0.021012528003315
401 => 0.021247011783273
402 => 0.020764660857572
403 => 0.020218834999971
404 => 0.02032257865111
405 => 0.020312587303251
406 => 0.020185385977479
407 => 0.020070554308127
408 => 0.019879391932279
409 => 0.020484257976171
410 => 0.020459701519404
411 => 0.020857242010703
412 => 0.020786972867363
413 => 0.020317698330368
414 => 0.020334458562262
415 => 0.020447179176444
416 => 0.020837306509149
417 => 0.02095312286339
418 => 0.020899472113622
419 => 0.02102645945883
420 => 0.021126825078791
421 => 0.021039063835441
422 => 0.022281577969199
423 => 0.021765599473079
424 => 0.022017083801933
425 => 0.022077061332533
426 => 0.021923430149093
427 => 0.021956747251661
428 => 0.022007213583684
429 => 0.022313635269409
430 => 0.02311777443658
501 => 0.023473922199759
502 => 0.024545410317306
503 => 0.023444349085843
504 => 0.023379016669013
505 => 0.023572024034824
506 => 0.02420110098836
507 => 0.024710908773007
508 => 0.024880041426691
509 => 0.024902395098951
510 => 0.025219699200989
511 => 0.025401571994906
512 => 0.025181170137075
513 => 0.0249944026396
514 => 0.02432542464608
515 => 0.024402860670396
516 => 0.024936318088327
517 => 0.025689858111639
518 => 0.026336473844118
519 => 0.026110051551438
520 => 0.027837493815363
521 => 0.028008762659863
522 => 0.027985098843337
523 => 0.028375274759328
524 => 0.02760085502403
525 => 0.027269775583514
526 => 0.025034783892455
527 => 0.025662725393517
528 => 0.02657547524302
529 => 0.026454669377802
530 => 0.025791806039219
531 => 0.026335971002836
601 => 0.026156053048252
602 => 0.02601414429267
603 => 0.02666425581236
604 => 0.025949431491351
605 => 0.026568344323606
606 => 0.025774582214406
607 => 0.026111085829398
608 => 0.02592007010268
609 => 0.026043680687874
610 => 0.025321055732611
611 => 0.025710966617741
612 => 0.025304834157881
613 => 0.025304641598215
614 => 0.025295676201654
615 => 0.025773489239612
616 => 0.025789070705626
617 => 0.025435966148639
618 => 0.025385078265448
619 => 0.025573237441027
620 => 0.02535295232539
621 => 0.025456022344538
622 => 0.025356074211271
623 => 0.025333573781243
624 => 0.025154286526645
625 => 0.025077044647758
626 => 0.025107333178748
627 => 0.025003942807673
628 => 0.024941646369307
629 => 0.025283283872084
630 => 0.025100760735968
701 => 0.025255309583724
702 => 0.025079181666086
703 => 0.024468645568272
704 => 0.024117519802118
705 => 0.022964273710073
706 => 0.02329133287118
707 => 0.023508173433361
708 => 0.023436507628853
709 => 0.02359047350792
710 => 0.023599925762435
711 => 0.023549869885654
712 => 0.023491911592897
713 => 0.023463700701278
714 => 0.02367396157466
715 => 0.023796025088714
716 => 0.023529936284728
717 => 0.023467595400932
718 => 0.023736625872927
719 => 0.023900734305431
720 => 0.025112418766473
721 => 0.02502265326791
722 => 0.025247947053714
723 => 0.025222582430848
724 => 0.025458726210485
725 => 0.025844721488386
726 => 0.025059885162437
727 => 0.025196105611024
728 => 0.02516270750282
729 => 0.025527339290735
730 => 0.025528477631376
731 => 0.025309862659812
801 => 0.02542837738252
802 => 0.025362225715586
803 => 0.02548177071867
804 => 0.025021454394949
805 => 0.025582069989164
806 => 0.025899902905813
807 => 0.025904316016169
808 => 0.026054966296182
809 => 0.026208035705752
810 => 0.026501839107885
811 => 0.026199841688329
812 => 0.025656577729403
813 => 0.025695799632506
814 => 0.02537728417216
815 => 0.025382638474593
816 => 0.025354056788582
817 => 0.02543983257983
818 => 0.025040277357537
819 => 0.02513405216959
820 => 0.025002766883571
821 => 0.025195820222452
822 => 0.024988126742677
823 => 0.025162691397241
824 => 0.025238027715241
825 => 0.025516020350536
826 => 0.024947067004415
827 => 0.023786932616919
828 => 0.024030806930441
829 => 0.023670097664829
830 => 0.023703482680678
831 => 0.02377092572588
901 => 0.02355232075039
902 => 0.023594023690679
903 => 0.023592533768193
904 => 0.023579694421128
905 => 0.023522826824078
906 => 0.023440357557445
907 => 0.02376888973301
908 => 0.023824713751508
909 => 0.023948803629496
910 => 0.024318010935422
911 => 0.024281118419052
912 => 0.024341291643907
913 => 0.024209933831907
914 => 0.023709575992833
915 => 0.023736747830789
916 => 0.02339791457608
917 => 0.023940138901373
918 => 0.023811733024132
919 => 0.023728948919745
920 => 0.023706360509874
921 => 0.024076483009298
922 => 0.024187229462085
923 => 0.024118219704626
924 => 0.023976678678742
925 => 0.024248479291288
926 => 0.024321201668858
927 => 0.024337481527298
928 => 0.024819060100131
929 => 0.024364396419849
930 => 0.024473838486661
1001 => 0.025327674250315
1002 => 0.024553363033962
1003 => 0.024963532954465
1004 => 0.024943457271278
1005 => 0.025153286323214
1006 => 0.024926245164568
1007 => 0.024929059611836
1008 => 0.025115373594904
1009 => 0.024853729207588
1010 => 0.024788942377776
1011 => 0.024699439836402
1012 => 0.024894865361107
1013 => 0.025012014124831
1014 => 0.025956147124164
1015 => 0.026566100099428
1016 => 0.026539620432136
1017 => 0.026781595023331
1018 => 0.026672583253764
1019 => 0.026320555493981
1020 => 0.026921423954719
1021 => 0.026731284032338
1022 => 0.026746958936519
1023 => 0.026746375515802
1024 => 0.026872801941866
1025 => 0.026783217232188
1026 => 0.026606636573731
1027 => 0.026723859055489
1028 => 0.027071967918505
1029 => 0.028152508510592
1030 => 0.028757193341183
1031 => 0.028116105724526
1101 => 0.028558319377991
1102 => 0.028293148762748
1103 => 0.028244959373816
1104 => 0.028522702227524
1105 => 0.02880093123333
1106 => 0.028783209248477
1107 => 0.028581229277479
1108 => 0.028467135916915
1109 => 0.029331089067191
1110 => 0.029967635031256
1111 => 0.029924226863965
1112 => 0.030115816397295
1113 => 0.030678329192793
1114 => 0.030729758313174
1115 => 0.03072327942609
1116 => 0.030595806985154
1117 => 0.031149673883839
1118 => 0.031611719395083
1119 => 0.03056630079811
1120 => 0.030964382514303
1121 => 0.031143094222094
1122 => 0.031405496030505
1123 => 0.031848211864944
1124 => 0.032329118685721
1125 => 0.032397124183054
1126 => 0.032348871028334
1127 => 0.032031700052562
1128 => 0.032557914034268
1129 => 0.032866157843515
1130 => 0.033049709977887
1201 => 0.033515167650492
1202 => 0.03114419788476
1203 => 0.029465907639732
1204 => 0.029203818383165
1205 => 0.029736787192544
1206 => 0.02987732681723
1207 => 0.029820675470741
1208 => 0.027931607216488
1209 => 0.029193872829759
1210 => 0.030551964495331
1211 => 0.030604134327208
1212 => 0.031284023411351
1213 => 0.031505423166743
1214 => 0.032052822994577
1215 => 0.032018582986305
1216 => 0.032151866133349
1217 => 0.032121226645986
1218 => 0.033135169558417
1219 => 0.034253699162807
1220 => 0.034214968039313
1221 => 0.034054166174841
1222 => 0.034292984364375
1223 => 0.035447426785022
1224 => 0.035341144226492
1225 => 0.035444388678978
1226 => 0.036805541354445
1227 => 0.038575233454263
1228 => 0.037753033799716
1229 => 0.039536970468506
1230 => 0.04065986403909
1231 => 0.042601792360053
]
'min_raw' => 0.01739336811845
'max_raw' => 0.042601792360053
'avg_raw' => 0.029997580239251
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.017393'
'max' => '$0.0426017'
'avg' => '$0.029997'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0077555851257561
'max_diff' => 0.017283274308573
'year' => 2028
]
3 => [
'items' => [
101 => 0.04235865337007
102 => 0.043114631814892
103 => 0.041923383833361
104 => 0.039188037676828
105 => 0.038755158677072
106 => 0.039621793396825
107 => 0.04175233029036
108 => 0.039554695208111
109 => 0.039999273923044
110 => 0.039871235223235
111 => 0.039864412585051
112 => 0.040124804934836
113 => 0.039747092250322
114 => 0.038208222824395
115 => 0.038913477613683
116 => 0.038641144870422
117 => 0.038943318352821
118 => 0.040574024011503
119 => 0.039853050168632
120 => 0.039093562792326
121 => 0.040046128505954
122 => 0.041259071996495
123 => 0.041183168172726
124 => 0.041035883029277
125 => 0.0418661216713
126 => 0.043237432670823
127 => 0.04360809252362
128 => 0.043881706049148
129 => 0.04391943273158
130 => 0.044308041007631
131 => 0.042218396365409
201 => 0.045534716078496
202 => 0.046107352881462
203 => 0.045999720895868
204 => 0.046636182602125
205 => 0.046448919422669
206 => 0.046177604456331
207 => 0.047186531640035
208 => 0.046029878040143
209 => 0.044388153873735
210 => 0.043487471526421
211 => 0.044673562697337
212 => 0.045397867186537
213 => 0.045876586379481
214 => 0.046021446518015
215 => 0.04238060953053
216 => 0.040418400324351
217 => 0.041676153928737
218 => 0.043210700131605
219 => 0.042209871883771
220 => 0.042249102456268
221 => 0.040822184387894
222 => 0.043336950718477
223 => 0.042970570416625
224 => 0.044871352070749
225 => 0.044417715274266
226 => 0.045967728925285
227 => 0.045559558384358
228 => 0.04725385147924
301 => 0.047929750865943
302 => 0.049064691131557
303 => 0.049899557810981
304 => 0.050389807493593
305 => 0.050360374741529
306 => 0.052302988225461
307 => 0.051157496923732
308 => 0.04971848987719
309 => 0.049692462779727
310 => 0.050437744920019
311 => 0.0519996518279
312 => 0.052404631564293
313 => 0.052630959988585
314 => 0.052284330128233
315 => 0.051040981418307
316 => 0.050504109749282
317 => 0.050961539965961
318 => 0.05040214211839
319 => 0.051367819742613
320 => 0.052693901378281
321 => 0.052420070764411
322 => 0.0533354454516
323 => 0.054282761952615
324 => 0.055637467095713
325 => 0.055991637184705
326 => 0.056577066873926
327 => 0.05717966632777
328 => 0.057373205031834
329 => 0.057742730469425
330 => 0.057740782887966
331 => 0.058854372666077
401 => 0.060082696676339
402 => 0.060546360554446
403 => 0.061612530075579
404 => 0.059786752133675
405 => 0.061171625675635
406 => 0.062420816276115
407 => 0.060931479744139
408 => 0.062984183182562
409 => 0.06306388500555
410 => 0.064267287906305
411 => 0.06304740852229
412 => 0.062323048038054
413 => 0.064414249614609
414 => 0.065426116185272
415 => 0.065121333739345
416 => 0.062801924276876
417 => 0.061451928485568
418 => 0.057918729104974
419 => 0.062103956394142
420 => 0.064142458521942
421 => 0.062796645048831
422 => 0.063475395083374
423 => 0.067178435186401
424 => 0.068588313103542
425 => 0.068295068352567
426 => 0.068344621888263
427 => 0.069105366421258
428 => 0.072478926630225
429 => 0.070457411154499
430 => 0.072002783990952
501 => 0.07282244417115
502 => 0.073583790226677
503 => 0.071714164940196
504 => 0.069281809912734
505 => 0.068511380972219
506 => 0.062662830422015
507 => 0.062358387966909
508 => 0.062187495191308
509 => 0.061110040414404
510 => 0.06026345609946
511 => 0.059590220820555
512 => 0.057823450403638
513 => 0.058419683555258
514 => 0.055603820264336
515 => 0.0574053098098
516 => 0.052911124006091
517 => 0.056654015488872
518 => 0.054616929823188
519 => 0.055984778060452
520 => 0.055980005766811
521 => 0.053461363485329
522 => 0.052008663180094
523 => 0.052934380354532
524 => 0.05392682264905
525 => 0.054087843072358
526 => 0.055374570412595
527 => 0.055733668355143
528 => 0.054645584824542
529 => 0.052817991994592
530 => 0.053242500126035
531 => 0.05200006053636
601 => 0.049822732945204
602 => 0.051386527633665
603 => 0.051920475895504
604 => 0.052156297866294
605 => 0.050015146248155
606 => 0.049342349923073
607 => 0.048984158804907
608 => 0.052541596208121
609 => 0.052736480659529
610 => 0.051739424252237
611 => 0.056246213757968
612 => 0.055226188491479
613 => 0.056365806626405
614 => 0.05320398046259
615 => 0.053324766480011
616 => 0.051827907303549
617 => 0.052666048422202
618 => 0.052073677294087
619 => 0.052598334902486
620 => 0.052912812509717
621 => 0.054409426066317
622 => 0.056671104411645
623 => 0.054185881908625
624 => 0.053103034875017
625 => 0.053774827084504
626 => 0.055563898266111
627 => 0.058274432687115
628 => 0.056669741755292
629 => 0.057381876341416
630 => 0.057537446067821
701 => 0.056354206383582
702 => 0.058318060422028
703 => 0.059370505755553
704 => 0.060450096894874
705 => 0.061387475631689
706 => 0.060018884453111
707 => 0.061483473194029
708 => 0.060303273203565
709 => 0.059244511805286
710 => 0.05924611750929
711 => 0.058581941018114
712 => 0.057295015374836
713 => 0.057057686541234
714 => 0.05829230110496
715 => 0.059282345066633
716 => 0.059363889829307
717 => 0.059912029036785
718 => 0.060236412173488
719 => 0.063415807890663
720 => 0.064694587149452
721 => 0.066258254221046
722 => 0.06686739066888
723 => 0.068700672989355
724 => 0.067220148623661
725 => 0.066899827864208
726 => 0.062452884616812
727 => 0.06318107132445
728 => 0.064346968502946
729 => 0.062472109831858
730 => 0.063661276125685
731 => 0.063896042742072
801 => 0.062408402851638
802 => 0.063203015594244
803 => 0.061092759736142
804 => 0.056717102222688
805 => 0.058322931779689
806 => 0.059505362850026
807 => 0.057817887919955
808 => 0.060842621417808
809 => 0.059075634551536
810 => 0.058515584545255
811 => 0.056330629798511
812 => 0.057361844332353
813 => 0.058756576754945
814 => 0.057894794272831
815 => 0.059683122320508
816 => 0.062215871765689
817 => 0.064020859848162
818 => 0.064159424420508
819 => 0.062998938008288
820 => 0.064858624889996
821 => 0.064872170678663
822 => 0.062774436279052
823 => 0.061489585639524
824 => 0.061197664870874
825 => 0.061926940185399
826 => 0.062812415048882
827 => 0.06420856211284
828 => 0.065052224543325
829 => 0.067252048718053
830 => 0.067847258065832
831 => 0.068501212682844
901 => 0.069375097723305
902 => 0.070424420773905
903 => 0.068128561677187
904 => 0.068219780439117
905 => 0.066081908236586
906 => 0.063797285186295
907 => 0.065531029299182
908 => 0.067797669096468
909 => 0.067277699422556
910 => 0.067219192212225
911 => 0.067317585111456
912 => 0.066925544957948
913 => 0.06515236187332
914 => 0.064261880428933
915 => 0.065410828678237
916 => 0.066021443538939
917 => 0.066968453936675
918 => 0.06685171491619
919 => 0.069291111999268
920 => 0.070238987942213
921 => 0.069996480714109
922 => 0.070041107880342
923 => 0.071757191998588
924 => 0.073665830477695
925 => 0.075453522280408
926 => 0.077272039165277
927 => 0.075079746082645
928 => 0.073966634857124
929 => 0.075115081511565
930 => 0.074505699551162
1001 => 0.078007389050071
1002 => 0.078249838433467
1003 => 0.081751274720369
1004 => 0.085074554699915
1005 => 0.082987262087507
1006 => 0.084955485007284
1007 => 0.087084278566592
1008 => 0.091191066726804
1009 => 0.089808044952994
1010 => 0.08874867194897
1011 => 0.08774756957902
1012 => 0.08983070469036
1013 => 0.092510624732202
1014 => 0.09308785384126
1015 => 0.094023185516425
1016 => 0.093039798626905
1017 => 0.094224179818819
1018 => 0.098405565869742
1019 => 0.097275718448667
1020 => 0.095671153478704
1021 => 0.098971956181322
1022 => 0.10016650384785
1023 => 0.10855046496105
1024 => 0.11913556219061
1025 => 0.11475326243207
1026 => 0.11203302755602
1027 => 0.11267234727673
1028 => 0.11653766645681
1029 => 0.11777908429836
1030 => 0.11440448266265
1031 => 0.11559644901016
1101 => 0.12216430077652
1102 => 0.12568774252725
1103 => 0.12090243536839
1104 => 0.10769996270513
1105 => 0.095526679959084
1106 => 0.098755582713402
1107 => 0.09838952534558
1108 => 0.10544586271233
1109 => 0.097248771961339
1110 => 0.097386789946975
1111 => 0.10458904489768
1112 => 0.10266760675474
1113 => 0.099555123042384
1114 => 0.095549404534665
1115 => 0.08814446338903
1116 => 0.081585700514281
1117 => 0.094448944904545
1118 => 0.093894258416145
1119 => 0.093090990181009
1120 => 0.094878576715603
1121 => 0.1035585895123
1122 => 0.10335848712287
1123 => 0.1020855378145
1124 => 0.10305105864564
1125 => 0.09938586257246
1126 => 0.10033046705548
1127 => 0.095524751648902
1128 => 0.09769713571708
1129 => 0.099548445050225
1130 => 0.099920122807957
1201 => 0.10075753177446
1202 => 0.093601963841907
1203 => 0.096814603767188
1204 => 0.098701728739638
1205 => 0.090175629459915
1206 => 0.098533195170377
1207 => 0.093477401323903
1208 => 0.091761388956934
1209 => 0.094071773541619
1210 => 0.093171414422045
1211 => 0.092397338521896
1212 => 0.091965390869301
1213 => 0.093661882320452
1214 => 0.09358273896651
1215 => 0.090806949677626
1216 => 0.087186045705922
1217 => 0.088401339930947
1218 => 0.087959812145551
1219 => 0.086359658493059
1220 => 0.08743796885155
1221 => 0.08268963575314
1222 => 0.074520375454205
1223 => 0.079917239038892
1224 => 0.079709465661539
1225 => 0.079604696902906
1226 => 0.083660290728445
1227 => 0.083270438960588
1228 => 0.082562854184489
1229 => 0.086346663143751
1230 => 0.084965521974208
1231 => 0.089221873620955
]
'min_raw' => 0.038208222824395
'max_raw' => 0.12568774252725
'avg_raw' => 0.081947982675824
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.0382082'
'max' => '$0.125687'
'avg' => '$0.081947'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.020814854705945
'max_diff' => 0.083085950167201
'year' => 2029
]
4 => [
'items' => [
101 => 0.092025382099066
102 => 0.091314321665019
103 => 0.093951034939215
104 => 0.088429337855342
105 => 0.090263424134569
106 => 0.090641426774784
107 => 0.08629997152854
108 => 0.083334223531188
109 => 0.083136441951767
110 => 0.077994243629607
111 => 0.08074116446693
112 => 0.083158341128467
113 => 0.082000701088077
114 => 0.081634226834802
115 => 0.083506464316216
116 => 0.083651953203151
117 => 0.080334791162801
118 => 0.08102453419185
119 => 0.083900877283221
120 => 0.080952057725884
121 => 0.075222983012917
122 => 0.073802093273447
123 => 0.073612520390008
124 => 0.069758954724377
125 => 0.073897043920087
126 => 0.072090657092264
127 => 0.07779701143752
128 => 0.074537572439302
129 => 0.074397064538647
130 => 0.074184666238779
131 => 0.070867743081578
201 => 0.071593938451542
202 => 0.074007922463978
203 => 0.074869259155092
204 => 0.074779414681485
205 => 0.073996092625373
206 => 0.074354693451403
207 => 0.073199515245949
208 => 0.072791597778649
209 => 0.071504098045308
210 => 0.069611829118177
211 => 0.069874960718454
212 => 0.066125880834709
213 => 0.064083183135315
214 => 0.063517791334445
215 => 0.062761725788973
216 => 0.06360319094962
217 => 0.066115260162445
218 => 0.063085171726564
219 => 0.057890297639238
220 => 0.058202518423521
221 => 0.058903985826622
222 => 0.057596805961615
223 => 0.056359669922675
224 => 0.057435259336513
225 => 0.055234122702898
226 => 0.05916998267274
227 => 0.059063528690676
228 => 0.060530573895485
301 => 0.061447947368851
302 => 0.059333698515932
303 => 0.05880197064696
304 => 0.059104867006811
305 => 0.054098664888457
306 => 0.060121460378308
307 => 0.060173545763806
308 => 0.059727559071215
309 => 0.062934511736612
310 => 0.069702182134219
311 => 0.067155912301728
312 => 0.066169919661174
313 => 0.064295546930726
314 => 0.066793037304808
315 => 0.066601269010998
316 => 0.065734020060421
317 => 0.065209505189131
318 => 0.066175939921987
319 => 0.06508975323067
320 => 0.064894644254496
321 => 0.063712496139537
322 => 0.063290523046809
323 => 0.062978110968185
324 => 0.062634175966598
325 => 0.063392810876837
326 => 0.061673644363502
327 => 0.059600498080391
328 => 0.059428138398704
329 => 0.05990403863386
330 => 0.059693488206409
331 => 0.059427130364262
401 => 0.058918580705361
402 => 0.058767704885009
403 => 0.05925797810661
404 => 0.058704488224127
405 => 0.059521192695885
406 => 0.059299094269886
407 => 0.058058470516555
408 => 0.056512193982161
409 => 0.05649842887758
410 => 0.056165286134646
411 => 0.055740978763174
412 => 0.055622946159268
413 => 0.057344676196143
414 => 0.06090860584543
415 => 0.060208921177666
416 => 0.060714515056695
417 => 0.063201536536859
418 => 0.063992085878058
419 => 0.063430972680863
420 => 0.062662886328586
421 => 0.062696678229982
422 => 0.065321461811261
423 => 0.065485166343601
424 => 0.065898794883738
425 => 0.066430424449227
426 => 0.063521511494697
427 => 0.062559668691418
428 => 0.062103894210218
429 => 0.060700285215043
430 => 0.062213957179998
501 => 0.061332005347915
502 => 0.061451010781827
503 => 0.061373508336872
504 => 0.06141582991251
505 => 0.059168882519665
506 => 0.05998755205354
507 => 0.058626355169906
508 => 0.056803865344242
509 => 0.056797755719299
510 => 0.057243807522211
511 => 0.05697847845583
512 => 0.056264484760433
513 => 0.056365904194909
514 => 0.055477363230356
515 => 0.056473789155559
516 => 0.056502363085711
517 => 0.056118684828821
518 => 0.057653816446876
519 => 0.058282761123342
520 => 0.058030215875472
521 => 0.058265041875517
522 => 0.060237996234499
523 => 0.060559673881047
524 => 0.060702541842811
525 => 0.060511117700425
526 => 0.058301103859396
527 => 0.05839912737095
528 => 0.057679895882788
529 => 0.057072221066037
530 => 0.057096524871873
531 => 0.057408948719879
601 => 0.058773321987539
602 => 0.061644565095131
603 => 0.061753526672213
604 => 0.061885591282269
605 => 0.061348418142814
606 => 0.0611864015839
607 => 0.06140014324513
608 => 0.062478431193551
609 => 0.065252080549213
610 => 0.06427168762111
611 => 0.063474612909838
612 => 0.064173862321423
613 => 0.064066218355407
614 => 0.063157594953178
615 => 0.063132092920542
616 => 0.06138815410719
617 => 0.060743459635459
618 => 0.060204704680336
619 => 0.059616398333896
620 => 0.05926763061152
621 => 0.059803496345185
622 => 0.059926055178652
623 => 0.058754375386661
624 => 0.058594679760518
625 => 0.059551498771123
626 => 0.059130438398364
627 => 0.059563509433541
628 => 0.059663985628517
629 => 0.059647806646963
630 => 0.059208171259327
701 => 0.05948838174529
702 => 0.058825600411221
703 => 0.058104925256957
704 => 0.057645179408186
705 => 0.057243990178696
706 => 0.057466593280472
707 => 0.05667305386836
708 => 0.056419184639633
709 => 0.059393452737581
710 => 0.061590576560306
711 => 0.061558629509767
712 => 0.061364160055726
713 => 0.061075217893708
714 => 0.06245729327469
715 => 0.061975805847425
716 => 0.062326128180381
717 => 0.0624152999171
718 => 0.062685195907341
719 => 0.062781660525508
720 => 0.062490077450423
721 => 0.061511489036565
722 => 0.059072939750625
723 => 0.057937788475282
724 => 0.057563169646979
725 => 0.057576786329886
726 => 0.057201177427779
727 => 0.057311811083059
728 => 0.057162703557401
729 => 0.056880329976789
730 => 0.057449157507577
731 => 0.057514709581505
801 => 0.057381938438836
802 => 0.05741321084932
803 => 0.056313922495319
804 => 0.056397499001345
805 => 0.055932134395404
806 => 0.055844884141844
807 => 0.054668482941957
808 => 0.052584317694276
809 => 0.053739147556307
810 => 0.052344275476625
811 => 0.051816016284288
812 => 0.05431671313965
813 => 0.054065712533906
814 => 0.053636108604212
815 => 0.053000634854891
816 => 0.052764931459777
817 => 0.051332872245689
818 => 0.051248258547582
819 => 0.051958025762935
820 => 0.051630492614648
821 => 0.05117051202795
822 => 0.049504508970414
823 => 0.047631369939087
824 => 0.047687908232311
825 => 0.048283718907185
826 => 0.050016118800399
827 => 0.049339240191298
828 => 0.048848156994108
829 => 0.048756191873181
830 => 0.049907327903604
831 => 0.051536426557107
901 => 0.052300763196302
902 => 0.051543328800108
903 => 0.050673228948925
904 => 0.050726187895212
905 => 0.051078500038834
906 => 0.051115523063703
907 => 0.050549177508292
908 => 0.050708600464752
909 => 0.050466422415949
910 => 0.048980176177468
911 => 0.048953294695952
912 => 0.04858854590007
913 => 0.048577501451491
914 => 0.047956972758846
915 => 0.047870156505233
916 => 0.046638059122586
917 => 0.047449029350979
918 => 0.046905073099621
919 => 0.046085202722517
920 => 0.045943856760476
921 => 0.045939607730177
922 => 0.046781431287801
923 => 0.047439192152574
924 => 0.046914535451501
925 => 0.04679508129071
926 => 0.048070539210394
927 => 0.047908225564057
928 => 0.04776766299314
929 => 0.051390558640796
930 => 0.048522754037603
1001 => 0.047272227542047
1002 => 0.045724463535256
1003 => 0.046228423300371
1004 => 0.04633461502759
1005 => 0.042612521596688
1006 => 0.041102468755329
1007 => 0.040584275525315
1008 => 0.040286047995266
1009 => 0.040421954025615
1010 => 0.039062729356859
1011 => 0.039976150813764
1012 => 0.038799177143022
1013 => 0.038601853676919
1014 => 0.040706428399264
1015 => 0.040999267677131
1016 => 0.039749924339718
1017 => 0.040552205012651
1018 => 0.04026128688811
1019 => 0.038819352978488
1020 => 0.038764281709288
1021 => 0.038040769959868
1022 => 0.036908614171505
1023 => 0.036391188596429
1024 => 0.036121708864434
1025 => 0.03623290145391
1026 => 0.036176679078121
1027 => 0.03580979004582
1028 => 0.036197708727988
1029 => 0.035206736794116
1030 => 0.034812123785244
1031 => 0.034633886244089
1101 => 0.033754341614561
1102 => 0.035154088255412
1103 => 0.035429855977204
1104 => 0.035706167046596
1105 => 0.038111266260075
1106 => 0.03799111430011
1107 => 0.039077229501821
1108 => 0.03903502506232
1109 => 0.038725247412892
1110 => 0.037418346465906
1111 => 0.037939253890106
1112 => 0.036335981805408
1113 => 0.037537262263168
1114 => 0.036989048028917
1115 => 0.037351910479114
1116 => 0.036699451075673
1117 => 0.037060549048926
1118 => 0.035495250734348
1119 => 0.034033597192538
1120 => 0.034621809246089
1121 => 0.035261263018507
1122 => 0.036647761726901
1123 => 0.035821974534548
1124 => 0.036118958835389
1125 => 0.035124111142143
1126 => 0.033071456186781
1127 => 0.033083073990911
1128 => 0.032767317745548
1129 => 0.032494458248387
1130 => 0.035916826127318
1201 => 0.035491200581943
1202 => 0.034813021979882
1203 => 0.035720790988487
1204 => 0.035960819522594
1205 => 0.035967652797519
1206 => 0.036629937633288
1207 => 0.036983399168859
1208 => 0.037045698296493
1209 => 0.038087817795186
1210 => 0.038437122505259
1211 => 0.039875859170598
1212 => 0.036953410427064
1213 => 0.036893224518361
1214 => 0.03573356516004
1215 => 0.034998090861503
1216 => 0.035783923714486
1217 => 0.036480064345348
1218 => 0.035755196189925
1219 => 0.035849848668222
1220 => 0.034876772393471
1221 => 0.0352246013742
1222 => 0.035524198550028
1223 => 0.035358778599044
1224 => 0.035111136926005
1225 => 0.0364229887523
1226 => 0.036348968931072
1227 => 0.037570595511061
1228 => 0.038522940789518
1229 => 0.040229713780594
1230 => 0.038448607188318
1231 => 0.038383696584838
]
'min_raw' => 0.032494458248387
'max_raw' => 0.093951034939215
'avg_raw' => 0.063222746593801
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.032494'
'max' => '$0.093951'
'avg' => '$0.063222'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0057137645760076
'max_diff' => -0.031736707588038
'year' => 2030
]
5 => [
'items' => [
101 => 0.039018208145844
102 => 0.038437025364845
103 => 0.038804312820688
104 => 0.040170538093216
105 => 0.040199404280355
106 => 0.039715858453796
107 => 0.039686434646306
108 => 0.039779304911708
109 => 0.040323248956919
110 => 0.04013317819381
111 => 0.040353132892882
112 => 0.040628189612138
113 => 0.041765940824614
114 => 0.042040248790103
115 => 0.041373822646338
116 => 0.041433993465463
117 => 0.041184731793888
118 => 0.040943948142386
119 => 0.041485194627334
120 => 0.042474333216802
121 => 0.042468179836973
122 => 0.042697640763623
123 => 0.042840593019969
124 => 0.042226937288285
125 => 0.041827469971705
126 => 0.041980651159647
127 => 0.04222559121502
128 => 0.04190122040091
129 => 0.039899053473047
130 => 0.040506383020042
131 => 0.040405293686524
201 => 0.040261330182712
202 => 0.040872004738556
203 => 0.040813103687895
204 => 0.039048788543289
205 => 0.039161734274541
206 => 0.039055657147295
207 => 0.039398414046764
208 => 0.038418515367441
209 => 0.038719925601483
210 => 0.038908967274728
211 => 0.039020314272556
212 => 0.039422575980062
213 => 0.039375375211574
214 => 0.03941964191402
215 => 0.040016089833098
216 => 0.043032718731586
217 => 0.043196907186714
218 => 0.042388383184557
219 => 0.042711372575988
220 => 0.042091303574456
221 => 0.042507560049286
222 => 0.042792352157596
223 => 0.041505431382514
224 => 0.04142922828626
225 => 0.040806600039387
226 => 0.04114116519179
227 => 0.040608847978231
228 => 0.040739460002773
301 => 0.040374257395603
302 => 0.041031549377395
303 => 0.041766503945887
304 => 0.041952182494124
305 => 0.041463742173355
306 => 0.041110079191332
307 => 0.040489163498729
308 => 0.041521760133536
309 => 0.041823722857366
310 => 0.041520174051898
311 => 0.041449835160998
312 => 0.041316543089843
313 => 0.041478113704006
314 => 0.041822078303522
315 => 0.041659870950419
316 => 0.04176701176487
317 => 0.041358701463313
318 => 0.042227140433866
319 => 0.043606430520325
320 => 0.043610865163489
321 => 0.043448656936028
322 => 0.043382284824176
323 => 0.043548720309169
324 => 0.043639004732237
325 => 0.044177226571658
326 => 0.044754760049061
327 => 0.047449856790503
328 => 0.04669308441011
329 => 0.04908433457114
330 => 0.050975502983542
331 => 0.051542581699649
401 => 0.051020895963946
402 => 0.049236237243014
403 => 0.049148673372001
404 => 0.05181570696455
405 => 0.051062147816778
406 => 0.050972514353956
407 => 0.050018965747653
408 => 0.05058263107327
409 => 0.050459349198086
410 => 0.050264742726953
411 => 0.051340176902964
412 => 0.053353293675785
413 => 0.053039530547851
414 => 0.052805320927901
415 => 0.051779082550676
416 => 0.052397107272405
417 => 0.052177040506482
418 => 0.053122586990711
419 => 0.052562466199873
420 => 0.051056438865088
421 => 0.051296278682083
422 => 0.051260027376235
423 => 0.052006076681795
424 => 0.051782131198348
425 => 0.051216298426396
426 => 0.053346413061509
427 => 0.053208095265425
428 => 0.053404198276422
429 => 0.05349052888655
430 => 0.054787092128113
501 => 0.055318252602786
502 => 0.055438835329809
503 => 0.055943396699323
504 => 0.055426281383291
505 => 0.05749511134439
506 => 0.058870762548945
507 => 0.060468652213401
508 => 0.062803598485422
509 => 0.063681559883162
510 => 0.063522964014988
511 => 0.065293293630061
512 => 0.068474536596131
513 => 0.064165984173648
514 => 0.068702900336505
515 => 0.067266565060561
516 => 0.063861039959864
517 => 0.063641764291883
518 => 0.065948025429034
519 => 0.071063090661826
520 => 0.069781824835602
521 => 0.071065186353717
522 => 0.069568076973075
523 => 0.069493732873697
524 => 0.07099247509271
525 => 0.074494367979619
526 => 0.072830749935541
527 => 0.070445545533474
528 => 0.072206743346069
529 => 0.070681030809636
530 => 0.067243173445003
531 => 0.069780845075771
601 => 0.068083976325004
602 => 0.068579212836982
603 => 0.072145778560918
604 => 0.071716639937052
605 => 0.072271985053501
606 => 0.07129181545888
607 => 0.070376182498945
608 => 0.06866708558343
609 => 0.068161106244206
610 => 0.068300940730338
611 => 0.068161036949179
612 => 0.06720481293236
613 => 0.066998316446971
614 => 0.066654146591171
615 => 0.066760819220834
616 => 0.066113679201486
617 => 0.067334966123946
618 => 0.067561647738698
619 => 0.068450398513987
620 => 0.068542671567795
621 => 0.071017829826399
622 => 0.069654554250905
623 => 0.070569157206497
624 => 0.070487346509572
625 => 0.063934848015252
626 => 0.064837724494585
627 => 0.066242316958181
628 => 0.065609549957211
629 => 0.064714965462515
630 => 0.063992540518462
701 => 0.062897992856478
702 => 0.064438547671794
703 => 0.066464213434195
704 => 0.068594045794387
705 => 0.071152899823013
706 => 0.070581793392168
707 => 0.068546209798223
708 => 0.068637524591253
709 => 0.069201996710715
710 => 0.068470954028312
711 => 0.068255355269622
712 => 0.069172376752016
713 => 0.069178691774979
714 => 0.068337538819414
715 => 0.067402751238669
716 => 0.067398834444573
717 => 0.067232498023557
718 => 0.069597667852855
719 => 0.070898272113328
720 => 0.071047384295762
721 => 0.070888235675386
722 => 0.070949485662986
723 => 0.070192692700676
724 => 0.071922496992535
725 => 0.073509936470658
726 => 0.073084468779823
727 => 0.072446632227465
728 => 0.071938564691142
729 => 0.072964784214884
730 => 0.072919088274911
731 => 0.073496071571668
801 => 0.07346989627651
802 => 0.07327587849525
803 => 0.073084475708809
804 => 0.073843366121859
805 => 0.073624817870308
806 => 0.073405930152957
807 => 0.072966917325778
808 => 0.073026586460222
809 => 0.072388860039338
810 => 0.072093818616662
811 => 0.067657103522965
812 => 0.066471468276081
813 => 0.066844493260582
814 => 0.066967302771069
815 => 0.066451312792192
816 => 0.067191109874951
817 => 0.067075813283242
818 => 0.067524364875332
819 => 0.067244129314441
820 => 0.06725563027961
821 => 0.06807974331167
822 => 0.068318986830905
823 => 0.06819730564609
824 => 0.068282526976947
825 => 0.070246416576877
826 => 0.069967214277421
827 => 0.069818893620544
828 => 0.06985997945614
829 => 0.07036179535519
830 => 0.070502276408792
831 => 0.069907048313253
901 => 0.070187761324082
902 => 0.071383001696405
903 => 0.071801268181972
904 => 0.0731361740246
905 => 0.072569082296592
906 => 0.073610003706505
907 => 0.076809441244317
908 => 0.079365373333759
909 => 0.077014832555947
910 => 0.081708476342219
911 => 0.085363151293044
912 => 0.085222878781252
913 => 0.084585601669421
914 => 0.080424851402467
915 => 0.076596066973525
916 => 0.079799007727109
917 => 0.079807172681781
918 => 0.0795320372305
919 => 0.077823194572395
920 => 0.07947257321013
921 => 0.07960349489673
922 => 0.07953021356712
923 => 0.078220047907744
924 => 0.076219667104965
925 => 0.076610536725593
926 => 0.077250789137706
927 => 0.076038657750931
928 => 0.075651308327225
929 => 0.076371464602137
930 => 0.078691958170419
1001 => 0.078253282303039
1002 => 0.078241826703313
1003 => 0.080118668091483
1004 => 0.078775254705275
1005 => 0.076615466843247
1006 => 0.076070091923982
1007 => 0.07413437836916
1008 => 0.075471382616251
1009 => 0.075519499018881
1010 => 0.074787235456602
1011 => 0.076674885995591
1012 => 0.07665749096356
1013 => 0.078449534210625
1014 => 0.081875247838307
1015 => 0.080862095749471
1016 => 0.07968391010079
1017 => 0.079812011548346
1018 => 0.081216968246723
1019 => 0.080367499354843
1020 => 0.080672974291071
1021 => 0.081216505873821
1022 => 0.081544431972825
1023 => 0.079764828029196
1024 => 0.079349917221639
1025 => 0.078501155323283
1026 => 0.078279729186893
1027 => 0.078971028043106
1028 => 0.078788895218443
1029 => 0.075515455021556
1030 => 0.075173362307732
1031 => 0.075183853802869
1101 => 0.074323645408337
1102 => 0.073011621133005
1103 => 0.076459542591678
1104 => 0.076182626244917
1105 => 0.075876932029715
1106 => 0.07591437782681
1107 => 0.07741100367112
1108 => 0.076542885100004
1109 => 0.078850920603152
1110 => 0.078376457889603
1111 => 0.077889826997763
1112 => 0.077822559785371
1113 => 0.077635248409409
1114 => 0.076992888005743
1115 => 0.07621719921844
1116 => 0.07570502229205
1117 => 0.069833881312079
1118 => 0.070923530927106
1119 => 0.072177073484507
1120 => 0.072609791352065
1121 => 0.071869597496442
1122 => 0.077022115370697
1123 => 0.077963530037222
1124 => 0.075111923605361
1125 => 0.074578504472283
1126 => 0.077057086240257
1127 => 0.075562198439871
1128 => 0.076235346324852
1129 => 0.07478036878973
1130 => 0.077736770811895
1201 => 0.077714247981814
1202 => 0.076564140821824
1203 => 0.077536203517854
1204 => 0.077367283703131
1205 => 0.07606881555209
1206 => 0.077777934568319
1207 => 0.077778782270028
1208 => 0.076671829134023
1209 => 0.07537915021437
1210 => 0.075148049755249
1211 => 0.07497394660328
1212 => 0.076192527622184
1213 => 0.07728510355333
1214 => 0.079318116488648
1215 => 0.079829264243783
1216 => 0.081824307961108
1217 => 0.080636356564357
1218 => 0.08116296003199
1219 => 0.081734662588715
1220 => 0.082008757818075
1221 => 0.081562134350594
1222 => 0.084661258436355
1223 => 0.084922919463901
1224 => 0.085010652143079
1225 => 0.083965644938385
1226 => 0.084893855923135
1227 => 0.084459576742487
1228 => 0.085589450524301
1229 => 0.085766629160241
1230 => 0.085616565158912
1231 => 0.085672804454534
]
'min_raw' => 0.038418515367441
'max_raw' => 0.085766629160241
'avg_raw' => 0.062092572263841
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.038418'
'max' => '$0.085766'
'avg' => '$0.062092'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0059240571190544
'max_diff' => -0.0081844057789737
'year' => 2031
]
6 => [
'items' => [
101 => 0.083028248770291
102 => 0.08289111460692
103 => 0.081021280558765
104 => 0.081783251754503
105 => 0.0803587831263
106 => 0.080810496801956
107 => 0.081009607886099
108 => 0.080905603555197
109 => 0.081826332462658
110 => 0.081043524798828
111 => 0.078977566668484
112 => 0.076911045669229
113 => 0.076885102181435
114 => 0.076341023679457
115 => 0.075947754575475
116 => 0.076023512156873
117 => 0.076290491754936
118 => 0.075932237235893
119 => 0.076008689001496
120 => 0.077278297705954
121 => 0.077532908677198
122 => 0.076667641113983
123 => 0.073193466990157
124 => 0.072340895945864
125 => 0.072953707105283
126 => 0.072660822841174
127 => 0.058642954977536
128 => 0.061936245102125
129 => 0.059979483939659
130 => 0.060881249509576
131 => 0.058883903063545
201 => 0.059837141477487
202 => 0.059661113149125
203 => 0.064956626213925
204 => 0.064873944061158
205 => 0.064913519632245
206 => 0.063024474510646
207 => 0.066033774682518
208 => 0.067516264158116
209 => 0.067241894811362
210 => 0.067310947664885
211 => 0.066124390858322
212 => 0.064925008095817
213 => 0.063594708028516
214 => 0.066066241123505
215 => 0.065791448833819
216 => 0.066421723479213
217 => 0.068024689360147
218 => 0.06826073217519
219 => 0.068577976112318
220 => 0.068464266743819
221 => 0.071173285223617
222 => 0.070845205211034
223 => 0.071635783646297
224 => 0.07000950382363
225 => 0.068169213836384
226 => 0.068518992799347
227 => 0.068485306272469
228 => 0.068056438121715
229 => 0.067669275131205
301 => 0.067024757834501
302 => 0.069064105931883
303 => 0.068981312123416
304 => 0.070321647645219
305 => 0.070084730322415
306 => 0.068502538457232
307 => 0.068559046749226
308 => 0.068939092169842
309 => 0.070254433709878
310 => 0.070644916634242
311 => 0.070464029385623
312 => 0.070892176085965
313 => 0.071230565780968
314 => 0.070934672621718
315 => 0.075123895773251
316 => 0.073384238249115
317 => 0.07423213522192
318 => 0.074434353653834
319 => 0.07391637539268
320 => 0.074028706330113
321 => 0.074198857091977
322 => 0.075231979199077
323 => 0.077943190544397
324 => 0.079143967593399
325 => 0.082756564590619
326 => 0.079044259775103
327 => 0.078823986970395
328 => 0.079474724779572
329 => 0.081595701649168
330 => 0.083314554188749
331 => 0.08388479673911
401 => 0.083960163705819
402 => 0.085029976639304
403 => 0.085643173461947
404 => 0.084900073210305
405 => 0.084270373552878
406 => 0.082014867541172
407 => 0.082275948503566
408 => 0.084074537432927
409 => 0.086615150232009
410 => 0.08879526031933
411 => 0.088031861751257
412 => 0.09385605395025
413 => 0.094433498817088
414 => 0.094353714607519
415 => 0.095669219949495
416 => 0.093058209743677
417 => 0.09194195229475
418 => 0.084406521766208
419 => 0.086523670378511
420 => 0.089601070222272
421 => 0.089193764813293
422 => 0.086958874787621
423 => 0.088793564954838
424 => 0.08818695900949
425 => 0.08770850373229
426 => 0.089900400110262
427 => 0.087490320004541
428 => 0.089577027829603
429 => 0.086900803459733
430 => 0.088035348891613
501 => 0.08739132603269
502 => 0.087808087750886
503 => 0.085371707262153
504 => 0.08668631903408
505 => 0.085317015090399
506 => 0.085316365862041
507 => 0.08528613840159
508 => 0.086897118418908
509 => 0.086949652419437
510 => 0.085759135752583
511 => 0.085587563701524
512 => 0.086221955498842
513 => 0.085479248851658
514 => 0.085826756617335
515 => 0.085489774507868
516 => 0.085413912737098
517 => 0.084809433240785
518 => 0.084549006853263
519 => 0.084651126750171
520 => 0.084302538895607
521 => 0.084092502104259
522 => 0.085244356797242
523 => 0.084628967300467
524 => 0.085150039530933
525 => 0.084556211959758
526 => 0.08249774687971
527 => 0.081313901844301
528 => 0.077425652127903
529 => 0.078528354924114
530 => 0.079259448018831
531 => 0.079017821755389
601 => 0.079536928466215
602 => 0.079568797402249
603 => 0.079400030518893
604 => 0.079204620088344
605 => 0.079109505097627
606 => 0.079818414312181
607 => 0.080229959972016
608 => 0.07933282299165
609 => 0.07912263634943
610 => 0.080029691368871
611 => 0.080582994406741
612 => 0.084668273164253
613 => 0.08436562251862
614 => 0.08512521624697
615 => 0.085039697650073
616 => 0.085835872890154
617 => 0.087137282918924
618 => 0.084491152450467
619 => 0.084950429203484
620 => 0.084837825149894
621 => 0.086067206680628
622 => 0.086071044675575
623 => 0.085333969035738
624 => 0.08573354969778
625 => 0.08551051473415
626 => 0.085913569058413
627 => 0.08436158043473
628 => 0.086251735051556
629 => 0.087323330920424
630 => 0.087338210030103
701 => 0.087846137967235
702 => 0.088362222168564
703 => 0.089352800851553
704 => 0.088334595466733
705 => 0.086502943099737
706 => 0.086635182484433
707 => 0.085561285371838
708 => 0.085579337776316
709 => 0.08548297262642
710 => 0.085772171695289
711 => 0.084425043367273
712 => 0.084741211693256
713 => 0.0842985741854
714 => 0.084949466995988
715 => 0.084249213928231
716 => 0.084837770848809
717 => 0.08509177250476
718 => 0.086029044083482
719 => 0.084110778153982
720 => 0.080199304068544
721 => 0.081021543343343
722 => 0.079805386870415
723 => 0.079917946782219
724 => 0.080145335717839
725 => 0.079408293780463
726 => 0.079548898155253
727 => 0.079543874777568
728 => 0.079500586022524
729 => 0.079308852948703
730 => 0.079030802058429
731 => 0.08013847122573
801 => 0.080326685801605
802 => 0.080745063488922
803 => 0.08198987169808
804 => 0.081865486003386
805 => 0.082068364232145
806 => 0.081625482197877
807 => 0.079938490809572
808 => 0.080030102558317
809 => 0.078887702583483
810 => 0.0807158497531
811 => 0.080282920372971
812 => 0.08000380798523
813 => 0.079927649584276
814 => 0.081175543432212
815 => 0.081548932829854
816 => 0.081316261614474
817 => 0.080839046163626
818 => 0.081755440905338
819 => 0.082000629478629
820 => 0.082055518157983
821 => 0.083679193939033
822 => 0.082146263597356
823 => 0.082515255166615
824 => 0.085394022056684
825 => 0.082783377730067
826 => 0.084166294254192
827 => 0.084098607686686
828 => 0.084806060985085
829 => 0.084040575867203
830 => 0.084050064972665
831 => 0.084678235574605
901 => 0.083796083255345
902 => 0.08357764993536
903 => 0.08327588586825
904 => 0.083934776668967
905 => 0.08432975190493
906 => 0.08751296222944
907 => 0.089569461271101
908 => 0.089480183224072
909 => 0.090296017452415
910 => 0.089928476660362
911 => 0.088741590490459
912 => 0.090767460457134
913 => 0.090126390433678
914 => 0.090179239467512
915 => 0.090177272423833
916 => 0.090603527946117
917 => 0.090301486842834
918 => 0.08970613282438
919 => 0.090101356605838
920 => 0.091275029941683
921 => 0.094918147988839
922 => 0.096956885112922
923 => 0.094795413454055
924 => 0.096286367661083
925 => 0.09539232641817
926 => 0.095229852528909
927 => 0.096166281951573
928 => 0.097104350469978
929 => 0.097044599560737
930 => 0.096363609986727
1001 => 0.095978936255839
1002 => 0.098891814621276
1003 => 0.10103797378134
1004 => 0.10089162011466
1005 => 0.10153757760264
1006 => 0.10343412876605
1007 => 0.10360752563608
1008 => 0.10358568161593
1009 => 0.10315589938147
1010 => 0.10502330030014
1011 => 0.10658111900029
1012 => 0.1030564172118
1013 => 0.10439857751112
1014 => 0.10500111651119
1015 => 0.10588582252856
1016 => 0.1073784698738
1017 => 0.1089998807959
1018 => 0.10922916607815
1019 => 0.10906647719808
1020 => 0.10799711310909
1021 => 0.1097712802875
1022 => 0.11081054581127
1023 => 0.11142940464751
1024 => 0.11299872768792
1025 => 0.10500483758693
1026 => 0.099346364851331
1027 => 0.09846271262433
1028 => 0.10025965417584
1029 => 0.10073349333264
1030 => 0.10054248936268
1031 => 0.094173363852929
1101 => 0.098429180496642
1102 => 0.10300808136605
1103 => 0.10318397559661
1104 => 0.10547626911213
1105 => 0.10622273384508
1106 => 0.10806833058286
1107 => 0.10795288800441
1108 => 0.1084022614402
1109 => 0.10829895826937
1110 => 0.11171753758986
1111 => 0.11548873824431
1112 => 0.11535815355733
1113 => 0.11481599884443
1114 => 0.1156211910442
1115 => 0.11951347426601
1116 => 0.11915513519951
1117 => 0.11950323107937
1118 => 0.12409245235735
1119 => 0.13005909282784
1120 => 0.12728698928839
1121 => 0.1333016563177
1122 => 0.13708757038885
1123 => 0.14363491730408
1124 => 0.14281515722393
1125 => 0.14536399133138
1126 => 0.14134761559137
1127 => 0.13212520504884
1128 => 0.13066572327852
1129 => 0.13358764274267
1130 => 0.14077089662856
1201 => 0.13336141651478
1202 => 0.13486034469167
1203 => 0.13442865327588
1204 => 0.13440565027491
1205 => 0.13528358126222
1206 => 0.13401009657532
1207 => 0.12882169086538
1208 => 0.13119950662678
1209 => 0.13028131776921
1210 => 0.1313001167622
1211 => 0.13679815474268
1212 => 0.13436734109465
1213 => 0.13180667637972
1214 => 0.13501831818923
1215 => 0.1391078418526
1216 => 0.13885192681133
1217 => 0.13835534466707
1218 => 0.14115455221406
1219 => 0.14577802299083
1220 => 0.14702772856318
1221 => 0.14795023566758
1222 => 0.14807743381139
1223 => 0.14938765374586
1224 => 0.14234227094028
1225 => 0.153523474391
1226 => 0.15545415935243
1227 => 0.15509127059837
1228 => 0.15723714567736
1229 => 0.15660577479352
1230 => 0.15569101744191
1231 => 0.15909268588281
]
'min_raw' => 0.058642954977536
'max_raw' => 0.15909268588281
'avg_raw' => 0.10886782043017
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.058642'
'max' => '$0.159092'
'avg' => '$0.108867'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.020224439610094
'max_diff' => 0.073326056722572
'year' => 2032
]
7 => [
'items' => [
101 => 0.1551929475158
102 => 0.14965775986724
103 => 0.14662104644963
104 => 0.15062003564262
105 => 0.15306207879728
106 => 0.1546761139794
107 => 0.15516452005028
108 => 0.14288918395185
109 => 0.13627345861615
110 => 0.14051406270689
111 => 0.14568789236845
112 => 0.14231353005528
113 => 0.14244579866944
114 => 0.13763484477768
115 => 0.14611355503662
116 => 0.14487827826907
117 => 0.15128689632429
118 => 0.14975742819304
119 => 0.15498340743594
120 => 0.15360723195965
121 => 0.15931965942081
122 => 0.16159850139287
123 => 0.16542503173739
124 => 0.16823984303559
125 => 0.16989275406866
126 => 0.16979351949015
127 => 0.17634317648017
128 => 0.17248107258074
129 => 0.16762935985506
130 => 0.16754160767881
131 => 0.17005437844874
201 => 0.17532045663752
202 => 0.17668587409355
203 => 0.1774489561778
204 => 0.1762802694027
205 => 0.17208823241935
206 => 0.17027813210405
207 => 0.17182039001634
208 => 0.16993434111734
209 => 0.17319019064887
210 => 0.17766116746758
211 => 0.17673792843468
212 => 0.17982417810196
213 => 0.18301812182465
214 => 0.1875856047971
215 => 0.1887797139795
216 => 0.19075353105011
217 => 0.19278523718089
218 => 0.19343776643409
219 => 0.19468364724637
220 => 0.1946770808395
221 => 0.19843162652476
222 => 0.2025730066842
223 => 0.20413628182122
224 => 0.2077309467993
225 => 0.20157520899642
226 => 0.20624440683192
227 => 0.21045614015714
228 => 0.20543473805743
301 => 0.21235557101525
302 => 0.21262429127606
303 => 0.21668164817486
304 => 0.2125687396624
305 => 0.21012650771656
306 => 0.21717713983495
307 => 0.2205887186242
308 => 0.21956112332853
309 => 0.21174107238982
310 => 0.20718946732573
311 => 0.19527703893395
312 => 0.20938782494262
313 => 0.21626077719017
314 => 0.21172327310388
315 => 0.21401172623416
316 => 0.22649678447952
317 => 0.23125028631169
318 => 0.23026159116009
319 => 0.2304286643654
320 => 0.23299356767188
321 => 0.24436776145087
322 => 0.23755208088675
323 => 0.24276241329934
324 => 0.24552595482372
325 => 0.24809288620542
326 => 0.24178931401897
327 => 0.23358845922228
328 => 0.2309909042597
329 => 0.21127210774693
330 => 0.21024565875405
331 => 0.20966948182976
401 => 0.20603676782394
402 => 0.20318244969947
403 => 0.20091258995286
404 => 0.19495580014025
405 => 0.19696604183861
406 => 0.18747216215597
407 => 0.19354600993448
408 => 0.17839354872325
409 => 0.19101296867778
410 => 0.18414479213115
411 => 0.1887565879632
412 => 0.18874049784199
413 => 0.18024871954399
414 => 0.1753508390406
415 => 0.17847195912572
416 => 0.1818180476118
417 => 0.18236093921107
418 => 0.18669923027511
419 => 0.18790995405983
420 => 0.18424140446884
421 => 0.17807954764421
422 => 0.17951080644758
423 => 0.17532183462663
424 => 0.16798082263689
425 => 0.17325326560969
426 => 0.17505350945356
427 => 0.17584859969264
428 => 0.16862955752165
429 => 0.1663611777385
430 => 0.1651535113755
501 => 0.17714765995278
502 => 0.1778047264871
503 => 0.17444308119766
504 => 0.18963803667023
505 => 0.18619895026837
506 => 0.19004125237587
507 => 0.17938093471292
508 => 0.17978817320366
509 => 0.17474140798285
510 => 0.17756725928153
511 => 0.17557003866506
512 => 0.17733895842221
513 => 0.17839924163111
514 => 0.18344517872741
515 => 0.19107058517402
516 => 0.18269148399239
517 => 0.17904058961662
518 => 0.18130558395394
519 => 0.18733756235169
520 => 0.19647631839557
521 => 0.19106599088299
522 => 0.19346700235975
523 => 0.19399151655386
524 => 0.19000214134729
525 => 0.19662341234982
526 => 0.20017180527119
527 => 0.20381172217206
528 => 0.20697216002892
529 => 0.20235785931836
530 => 0.20729582251269
531 => 0.2033166958459
601 => 0.19974700787125
602 => 0.1997524216144
603 => 0.19751310420308
604 => 0.19317414454649
605 => 0.19237397381423
606 => 0.19653656301387
607 => 0.19987456535331
608 => 0.20014949921394
609 => 0.20199758882181
610 => 0.20309126921491
611 => 0.21381082385369
612 => 0.21812231740621
613 => 0.22339433010984
614 => 0.22544807617226
615 => 0.23162911551143
616 => 0.22663742424558
617 => 0.225557440441
618 => 0.21056426080674
619 => 0.21301939313192
620 => 0.21695029686956
621 => 0.21062907996153
622 => 0.21463843714611
623 => 0.21542996918414
624 => 0.21041428742984
625 => 0.21309337976963
626 => 0.20597850481068
627 => 0.19122567000542
628 => 0.19663983647228
629 => 0.20062648538062
630 => 0.19493704583816
701 => 0.20513514600631
702 => 0.19917762641959
703 => 0.19728937872198
704 => 0.18992265124466
705 => 0.19339946304261
706 => 0.19810190078248
707 => 0.19519634097631
708 => 0.20122581384613
709 => 0.20976515543147
710 => 0.21585079877178
711 => 0.21631797890171
712 => 0.21240531794033
713 => 0.21867538210121
714 => 0.21872105267343
715 => 0.21164839468601
716 => 0.20731643104943
717 => 0.20633219979667
718 => 0.20879100243597
719 => 0.21177644276008
720 => 0.21648365006209
721 => 0.2193281168491
722 => 0.22674497764101
723 => 0.22875176751324
724 => 0.23095662116215
725 => 0.23390298558877
726 => 0.23744085151526
727 => 0.22970020227892
728 => 0.23000775270345
729 => 0.22279976731115
730 => 0.21509700118981
731 => 0.22094244051255
801 => 0.22858457484084
802 => 0.22683146078212
803 => 0.22663419963765
804 => 0.22696593816698
805 => 0.22564414741806
806 => 0.21966573684854
807 => 0.21666341648736
808 => 0.2205371757269
809 => 0.22259590636152
810 => 0.22578881803565
811 => 0.22539522427762
812 => 0.23361982185648
813 => 0.23681565177671
814 => 0.23599802172584
815 => 0.23614848533257
816 => 0.2419343827504
817 => 0.24836949063959
818 => 0.25439681836509
819 => 0.26052807500722
820 => 0.25313660581811
821 => 0.24938367360633
822 => 0.25325574168376
823 => 0.25120116785857
824 => 0.26300735848429
825 => 0.26382479350769
826 => 0.27563013041146
827 => 0.2868348008865
828 => 0.27979734811365
829 => 0.28643334910461
830 => 0.29361072521743
831 => 0.30745704822638
901 => 0.30279409375649
902 => 0.29922234371036
903 => 0.29584705717534
904 => 0.30287049264307
905 => 0.31190603017018
906 => 0.31385219841222
907 => 0.31700573445781
908 => 0.31369017690191
909 => 0.3176834007813
910 => 0.33178123578704
911 => 0.32797187632346
912 => 0.32256197350008
913 => 0.33369086026664
914 => 0.33771836112501
915 => 0.36598547136761
916 => 0.40167386570497
917 => 0.38689863610667
918 => 0.37772717430133
919 => 0.37988268537557
920 => 0.39291487885918
921 => 0.39710040578498
922 => 0.38572270076302
923 => 0.3897414985241
924 => 0.41188546930713
925 => 0.42376499916859
926 => 0.40763100198301
927 => 0.36311794363162
928 => 0.32207487094186
929 => 0.33296134201284
930 => 0.33172715403992
1001 => 0.35551808812967
1002 => 0.32788102436009
1003 => 0.32834636163477
1004 => 0.35262926704646
1005 => 0.34615100419701
1006 => 0.33565704805413
1007 => 0.32215148843501
1008 => 0.29718521236603
1009 => 0.27507188541561
1010 => 0.31844121196043
1011 => 0.31657104773781
1012 => 0.31386277280066
1013 => 0.31988974560734
1014 => 0.34915501477054
1015 => 0.34848035559389
1016 => 0.34418851812622
1017 => 0.34744383901893
1018 => 0.33508637456239
1019 => 0.33827117452707
1020 => 0.32206836950945
1021 => 0.32939271406633
1022 => 0.33563453273732
1023 => 0.33688767024722
1024 => 0.33971105304383
1025 => 0.31558555617341
1026 => 0.32641719598086
1027 => 0.33277976958033
1028 => 0.3040334305855
1029 => 0.33221154688493
1030 => 0.31516558494729
1031 => 0.30937992944389
1101 => 0.31716955237706
1102 => 0.31413392874435
1103 => 0.31152407780274
1104 => 0.3100677361344
1105 => 0.3157875755072
1106 => 0.31552073816378
1107 => 0.30616197077688
1108 => 0.29395384023284
1109 => 0.29805128956165
1110 => 0.2965626478067
1111 => 0.29116761804816
1112 => 0.29480321670704
1113 => 0.27879388014772
1114 => 0.25125064869032
1115 => 0.26944655106307
1116 => 0.26874602861506
1117 => 0.2683927934306
1118 => 0.28206651116592
1119 => 0.28075209871201
1120 => 0.27836642723741
1121 => 0.29112380332066
1122 => 0.28646718943935
1123 => 0.30081777618534
1124 => 0.310270000754
1125 => 0.30787261085596
1126 => 0.31676247374935
1127 => 0.2981456865185
1128 => 0.30432943646073
1129 => 0.30560389875351
1130 => 0.29096637928007
1201 => 0.28096715284509
1202 => 0.2803003184414
1203 => 0.26296303778142
1204 => 0.27222447316834
1205 => 0.2803741530446
1206 => 0.27647108882458
1207 => 0.27523549529325
1208 => 0.28154787467728
1209 => 0.28203840061729
1210 => 0.27085435720139
1211 => 0.27317987398015
1212 => 0.28287766553257
1213 => 0.272935514515
1214 => 0.25361953912901
1215 => 0.24882891016903
1216 => 0.24818975195696
1217 => 0.23519718626792
1218 => 0.24914904290342
1219 => 0.24305868359552
1220 => 0.26229805567548
1221 => 0.25130862952623
1222 => 0.25083489732922
1223 => 0.25011878163204
1224 => 0.23893554362736
1225 => 0.24138396201853
1226 => 0.24952287765544
1227 => 0.25242693444614
1228 => 0.25212401753064
1229 => 0.24948299252865
1230 => 0.25069204025032
1231 => 0.24679727627867
]
'min_raw' => 0.13627345861615
'max_raw' => 0.42376499916859
'avg_raw' => 0.28001922889237
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.136273'
'max' => '$0.423764'
'avg' => '$0.280019'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.07763050363861
'max_diff' => 0.26467231328578
'year' => 2033
]
8 => [
'items' => [
101 => 0.24542195405778
102 => 0.24108105881646
103 => 0.23470114201464
104 => 0.23558830857623
105 => 0.22294802399579
106 => 0.21606092608568
107 => 0.21415466815466
108 => 0.21160554038129
109 => 0.21444259891963
110 => 0.22291221565774
111 => 0.21269606094215
112 => 0.1951811802622
113 => 0.19623385443497
114 => 0.19859890075942
115 => 0.19419165258016
116 => 0.1900205620508
117 => 0.19364698685481
118 => 0.18622570101612
119 => 0.19949572769741
120 => 0.1991368106645
121 => 0.20408305599834
122 => 0.20717604471276
123 => 0.20004770709301
124 => 0.19825494945871
125 => 0.1992761856835
126 => 0.1823974257196
127 => 0.20270370121178
128 => 0.20287931072548
129 => 0.20137563545361
130 => 0.21218810026728
131 => 0.23500577351647
201 => 0.22642084700134
202 => 0.22309650397391
203 => 0.21677692544868
204 => 0.22519738861411
205 => 0.22455082842269
206 => 0.22162683803643
207 => 0.21985839952742
208 => 0.22311680170356
209 => 0.21945464743865
210 => 0.21879682390341
211 => 0.21481112899888
212 => 0.21338841725552
213 => 0.21233509812053
214 => 0.21117549724991
215 => 0.21373328781597
216 => 0.20793699788789
217 => 0.20094724045193
218 => 0.20036611775136
219 => 0.20197064862048
220 => 0.20126076315417
221 => 0.20036271909286
222 => 0.19864810841207
223 => 0.19813942004994
224 => 0.19979241044635
225 => 0.19792628066413
226 => 0.20067985681114
227 => 0.19993103646147
228 => 0.19574818685953
301 => 0.19053480756624
302 => 0.1904883975551
303 => 0.18936518353801
304 => 0.1879346016109
305 => 0.18753664644606
306 => 0.19334157947273
307 => 0.20535761711093
308 => 0.20299858140314
309 => 0.20470322646572
310 => 0.21308839302439
311 => 0.21575378532264
312 => 0.21386195300262
313 => 0.21127229623984
314 => 0.21138622799467
315 => 0.22023586909549
316 => 0.22078781035576
317 => 0.22218238785746
318 => 0.22397481405469
319 => 0.21416721093468
320 => 0.2109242907697
321 => 0.20938761528518
322 => 0.2046552495611
323 => 0.20975870027214
324 => 0.20678513809436
325 => 0.2071863732235
326 => 0.20692506831928
327 => 0.20706775846634
328 => 0.19949201845451
329 => 0.20225221994565
330 => 0.19766284961675
331 => 0.19151819792734
401 => 0.19149759890029
402 => 0.19300149369615
403 => 0.19210691822416
404 => 0.18969963863068
405 => 0.1900415813349
406 => 0.18704580343696
407 => 0.19040532301202
408 => 0.19050166201249
409 => 0.18920806398182
410 => 0.19438386741156
411 => 0.19650439829978
412 => 0.19565292436444
413 => 0.19644465661862
414 => 0.20309660998721
415 => 0.20418116863136
416 => 0.20466285793917
417 => 0.20401745807831
418 => 0.19656624211504
419 => 0.19689673522803
420 => 0.19447179605055
421 => 0.19242297797937
422 => 0.19250491995759
423 => 0.19355827877387
424 => 0.19815835850329
425 => 0.20783895510433
426 => 0.20820632666891
427 => 0.20865159172218
428 => 0.20684047497827
429 => 0.20629422483826
430 => 0.20701486977206
501 => 0.21065039287382
502 => 0.22000194532645
503 => 0.21669648212051
504 => 0.21400908908147
505 => 0.21636665729266
506 => 0.21600372814578
507 => 0.21294024090711
508 => 0.21285425902358
509 => 0.20697444755644
510 => 0.20480081513387
511 => 0.20298436518801
512 => 0.20100084926675
513 => 0.19982495454057
514 => 0.20163166327457
515 => 0.20204487893839
516 => 0.19809447871562
517 => 0.19755605376249
518 => 0.20078203585971
519 => 0.19936240141546
520 => 0.20082253064661
521 => 0.201161293153
522 => 0.20110674458711
523 => 0.19962448318333
524 => 0.20056923240043
525 => 0.1983346188587
526 => 0.19590481226016
527 => 0.1943547470326
528 => 0.19300210953524
529 => 0.19375263143453
530 => 0.19107715790344
531 => 0.1902212200742
601 => 0.2002491726232
602 => 0.20765692898981
603 => 0.20754921727844
604 => 0.20689354993672
605 => 0.20591936126418
606 => 0.21057912490458
607 => 0.20895575642718
608 => 0.21013689263147
609 => 0.21043754136759
610 => 0.21134751454222
611 => 0.21167275173731
612 => 0.21068965904198
613 => 0.2073902798818
614 => 0.19916854071018
615 => 0.19534129893163
616 => 0.19407824539695
617 => 0.19412415499406
618 => 0.19285776335643
619 => 0.1932307724494
620 => 0.19272804601629
621 => 0.19177600377456
622 => 0.19369384550889
623 => 0.19391485890284
624 => 0.19346721172554
625 => 0.19357264884086
626 => 0.18986632140548
627 => 0.19014810543067
628 => 0.18857909617102
629 => 0.18828492584953
630 => 0.1843186070704
701 => 0.17729169842607
702 => 0.18118528793356
703 => 0.17648237933005
704 => 0.17470131658121
705 => 0.18313259062214
706 => 0.18228632455557
707 => 0.18083788491262
708 => 0.17869534079942
709 => 0.17790065034651
710 => 0.17307236272303
711 => 0.17278708173232
712 => 0.17518011145325
713 => 0.17407581057617
714 => 0.1725249539133
715 => 0.16690790828819
716 => 0.16059248926568
717 => 0.16078311206867
718 => 0.16279192935718
719 => 0.16863283654945
720 => 0.16635069306071
721 => 0.16469497177505
722 => 0.16438490494904
723 => 0.16826604044536
724 => 0.17375866029568
725 => 0.17633567463901
726 => 0.17378193168986
727 => 0.17084832929317
728 => 0.17102688407805
729 => 0.17221472906792
730 => 0.17233955478113
731 => 0.17043008120008
801 => 0.17096758682834
802 => 0.17015106662847
803 => 0.16514008366903
804 => 0.16504945087729
805 => 0.16381967484603
806 => 0.16378243771655
807 => 0.16169028190537
808 => 0.16139757484499
809 => 0.1572434724971
810 => 0.15997771524226
811 => 0.158143728763
812 => 0.15537947854507
813 => 0.15490292076559
814 => 0.15488859486328
815 => 0.15772686176205
816 => 0.15994454844103
817 => 0.158175631743
818 => 0.15777288369987
819 => 0.16207317912571
820 => 0.16152592733471
821 => 0.1610520108131
822 => 0.17326685643167
823 => 0.16359785298828
824 => 0.15938161559954
825 => 0.15416322118921
826 => 0.15586235672265
827 => 0.15622038954503
828 => 0.14367109167449
829 => 0.13857984309132
830 => 0.13683271843723
831 => 0.13582722349809
901 => 0.13628544016807
902 => 0.13170271929932
903 => 0.13478238351433
904 => 0.13081413460974
905 => 0.13014884476709
906 => 0.13724456538019
907 => 0.13823189345091
908 => 0.13401964516245
909 => 0.13672459046469
910 => 0.13574373969655
911 => 0.13088215884765
912 => 0.13069648221859
913 => 0.12825711184144
914 => 0.12443996955638
915 => 0.12269543310451
916 => 0.12178686337362
917 => 0.12216175695225
918 => 0.12197219928696
919 => 0.12073520729918
920 => 0.12204310221973
921 => 0.11870197115723
922 => 0.11737150584682
923 => 0.11677056553267
924 => 0.11380511940637
925 => 0.11852446293319
926 => 0.11945423306069
927 => 0.12038583512257
928 => 0.12849479503948
929 => 0.12808969431772
930 => 0.13175160755043
1001 => 0.13160931233603
1002 => 0.130564875363
1003 => 0.12615856757533
1004 => 0.12791484332461
1005 => 0.12250929955417
1006 => 0.12655950048823
1007 => 0.12471115792236
1008 => 0.12593457400744
1009 => 0.12373476157548
1010 => 0.12495222860336
1011 => 0.11967471605012
1012 => 0.11474664908452
1013 => 0.11672984709072
1014 => 0.11888581012966
1015 => 0.12356048732726
1016 => 0.12077628815362
1017 => 0.12177759145869
1018 => 0.11842339300286
1019 => 0.11150272350907
1020 => 0.11154189374682
1021 => 0.11047729952018
1022 => 0.10955733467506
1023 => 0.12109608692097
1024 => 0.11966106067852
1025 => 0.11737453417275
1026 => 0.12043514076367
1027 => 0.12124441372467
1028 => 0.12126745258816
1029 => 0.12350039215121
1030 => 0.12469211239628
1031 => 0.12490215825469
1101 => 0.12841573690299
1102 => 0.12959344212068
1103 => 0.13444424323725
1104 => 0.12459100325957
1105 => 0.12438808226634
1106 => 0.12047820977492
1107 => 0.11799850682823
1108 => 0.12064799715716
1109 => 0.1229950838971
1110 => 0.12055114030241
1111 => 0.12087026774141
1112 => 0.11758947314308
1113 => 0.11876220283625
1114 => 0.11977231563176
1115 => 0.11921459071776
1116 => 0.11837964952732
1117 => 0.12280264955025
1118 => 0.12255308655508
1119 => 0.12667188586076
1120 => 0.1298827844577
1121 => 0.13563728876019
1122 => 0.12963216353144
1123 => 0.1294133128999
1124 => 0.13155261292801
1125 => 0.12959311460499
1126 => 0.13083144990556
1127 => 0.13543777379868
1128 => 0.135535098164
1129 => 0.13390478964966
1130 => 0.1338055852284
1201 => 0.1341187038122
1202 => 0.13595264913759
1203 => 0.13531181228945
1204 => 0.13605340491412
1205 => 0.13698077784694
1206 => 0.14081678549505
1207 => 0.14174163395227
1208 => 0.13949473168018
1209 => 0.13969760179785
1210 => 0.13885719866924
1211 => 0.13804537977723
1212 => 0.13987023008985
1213 => 0.14320517990369
1214 => 0.14318443335398
1215 => 0.14395807688864
1216 => 0.14444005040151
1217 => 0.14237106725807
1218 => 0.1410242353103
1219 => 0.14154069638022
1220 => 0.14236652887807
1221 => 0.14127289003145
1222 => 0.13452244444733
1223 => 0.13657009841742
1224 => 0.13622926867164
1225 => 0.13574388566732
1226 => 0.13780281756829
1227 => 0.13760422856364
1228 => 0.13165571687305
1229 => 0.13203652129159
1230 => 0.13167887485101
1231 => 0.13283450366809
]
'min_raw' => 0.10955733467506
'max_raw' => 0.24542195405778
'avg_raw' => 0.17748964436642
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.109557'
'max' => '$0.245421'
'avg' => '$0.177489'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.026716123941082
'max_diff' => -0.17834304511081
'year' => 2034
]
9 => [
'items' => [
101 => 0.12953070685642
102 => 0.13054693250428
103 => 0.13118429970409
104 => 0.13155971388127
105 => 0.13291596731314
106 => 0.13275682662673
107 => 0.13290607490463
108 => 0.13491704070646
109 => 0.14508781565202
110 => 0.14564138849176
111 => 0.14291539336914
112 => 0.14400437465275
113 => 0.14191376872225
114 => 0.14331720648924
115 => 0.14427740296596
116 => 0.13993845972282
117 => 0.13968153566347
118 => 0.13758230105863
119 => 0.13871031082855
120 => 0.13691556617783
121 => 0.13735593373761
122 => 0.13612462764991
123 => 0.13834073345718
124 => 0.14081868409774
125 => 0.14144471228678
126 => 0.1397979016435
127 => 0.13860550220765
128 => 0.13651204159909
129 => 0.13999351324694
130 => 0.14101160165269
131 => 0.13998816566195
201 => 0.13975101318038
202 => 0.13930160965633
203 => 0.13984635626248
204 => 0.14100605692459
205 => 0.14045916350864
206 => 0.1408203962449
207 => 0.13944374955588
208 => 0.14237175217758
209 => 0.14702212500303
210 => 0.14703707671208
211 => 0.14649018034817
212 => 0.14626640213911
213 => 0.14682755099692
214 => 0.14713195123275
215 => 0.14894660374181
216 => 0.15089379818297
217 => 0.15998050501239
218 => 0.15742899409573
219 => 0.1654912609654
220 => 0.17186746730498
221 => 0.17377941278851
222 => 0.17202051290765
223 => 0.16600341142913
224 => 0.1657081837245
225 => 0.17470027368811
226 => 0.17215959640958
227 => 0.17185739093167
228 => 0.16864243523088
301 => 0.17054287223006
302 => 0.17012721878061
303 => 0.16947108947619
304 => 0.17309699088503
305 => 0.17988435463592
306 => 0.17882648034385
307 => 0.17803682625819
308 => 0.1745767919197
309 => 0.17666050541812
310 => 0.17591853495224
311 => 0.17910651093977
312 => 0.17721802458707
313 => 0.17214034828037
314 => 0.17294898496845
315 => 0.1728267611598
316 => 0.17534211848099
317 => 0.17458707064818
318 => 0.17267932595236
319 => 0.1798611561645
320 => 0.17939480805796
321 => 0.18005598305101
322 => 0.18034705273047
323 => 0.18471850622256
324 => 0.18650935084735
325 => 0.18691590393033
326 => 0.18861706781499
327 => 0.18687357742316
328 => 0.19384878207809
329 => 0.19848688615915
330 => 0.20387428272396
331 => 0.21174671710082
401 => 0.21470682525061
402 => 0.21417210820825
403 => 0.22014089810594
404 => 0.23086668087333
405 => 0.21634009556741
406 => 0.23163662516785
407 => 0.22679392050328
408 => 0.21531195486011
409 => 0.21457265163617
410 => 0.22234837207809
411 => 0.2395941716329
412 => 0.23527429444466
413 => 0.23960123740442
414 => 0.23455362860275
415 => 0.23430297228116
416 => 0.2393560863114
417 => 0.25116296267397
418 => 0.24555395828826
419 => 0.23751207511703
420 => 0.2434500765051
421 => 0.23830603016667
422 => 0.22671505403827
423 => 0.23527099111599
424 => 0.22954987965118
425 => 0.23121960412762
426 => 0.24324452947554
427 => 0.24179765864367
428 => 0.24367004347674
429 => 0.24036533325522
430 => 0.23727821280335
501 => 0.23151587322735
502 => 0.22980992855881
503 => 0.23028139029174
504 => 0.22980969492579
505 => 0.22658571889166
506 => 0.22588950157404
507 => 0.22472910887604
508 => 0.22508876309459
509 => 0.22290688533749
510 => 0.22702453946409
511 => 0.22778881235463
512 => 0.23078529764412
513 => 0.23109640268733
514 => 0.23944157156624
515 => 0.2348451927826
516 => 0.23792884050292
517 => 0.2376530100264
518 => 0.21556080387196
519 => 0.21860491495886
520 => 0.22334059651539
521 => 0.22120717839324
522 => 0.21819102431147
523 => 0.2157553181745
524 => 0.21206497431324
525 => 0.21725906243118
526 => 0.22408873597658
527 => 0.23126961447912
528 => 0.23989696949011
529 => 0.23797144428514
530 => 0.23110833207825
531 => 0.23141620627835
601 => 0.2333193634393
602 => 0.2308546019958
603 => 0.23012769572826
604 => 0.23321949768054
605 => 0.23324078922136
606 => 0.23040478330425
607 => 0.22725308171098
608 => 0.22723987596623
609 => 0.22667906110953
610 => 0.2346533963199
611 => 0.23903847438937
612 => 0.23954121652313
613 => 0.23900463583813
614 => 0.23921114444766
615 => 0.23665956413764
616 => 0.24249172007872
617 => 0.24784388311069
618 => 0.24640938908584
619 => 0.24425887861724
620 => 0.24254589344638
621 => 0.24600586421903
622 => 0.24585179716703
623 => 0.24779713663573
624 => 0.24770888480061
625 => 0.2470547403052
626 => 0.2464094124474
627 => 0.24896806445903
628 => 0.24823121377038
629 => 0.24749321854908
630 => 0.24601305615134
701 => 0.24621423480409
702 => 0.24406409565144
703 => 0.24306934289575
704 => 0.2281106481958
705 => 0.22411319618252
706 => 0.22537087596154
707 => 0.22578493680043
708 => 0.22404524056138
709 => 0.22653951807688
710 => 0.22615078756819
711 => 0.22766311057779
712 => 0.22671827681882
713 => 0.22675705312586
714 => 0.22953560775119
715 => 0.23034223397973
716 => 0.22993197736962
717 => 0.23021930703657
718 => 0.23684069793713
719 => 0.23589934789123
720 => 0.23539927444115
721 => 0.23553779820439
722 => 0.2372297055437
723 => 0.23770334722399
724 => 0.23569649414238
725 => 0.23664293765715
726 => 0.24067277402146
727 => 0.24208298867998
728 => 0.24658371692855
729 => 0.24467172757449
730 => 0.24818126678282
731 => 0.25896839381915
801 => 0.26758589730819
802 => 0.25966088496628
803 => 0.27548583269144
804 => 0.2878078244494
805 => 0.28733488588238
806 => 0.28518626160657
807 => 0.27115800158723
808 => 0.25824898756786
809 => 0.26904792594075
810 => 0.26907545465549
811 => 0.26814781627215
812 => 0.26238633394276
813 => 0.26794732917582
814 => 0.26838874078286
815 => 0.26814166766374
816 => 0.26372435267031
817 => 0.25697992913161
818 => 0.2582977733472
819 => 0.26045642905564
820 => 0.25636964345681
821 => 0.25506366783092
822 => 0.25749172499149
823 => 0.26531543106864
824 => 0.2638364047544
825 => 0.26379778140012
826 => 0.27012568317721
827 => 0.26559627115149
828 => 0.25831439558308
829 => 0.25647562596592
830 => 0.24994923256864
831 => 0.25445703573436
901 => 0.2546192635452
902 => 0.25215038581997
903 => 0.25851473140372
904 => 0.25845608283875
905 => 0.26449808176269
906 => 0.27604811443411
907 => 0.27263220143058
908 => 0.26865986625776
909 => 0.26909176923195
910 => 0.27382867883147
911 => 0.27096463515447
912 => 0.27199456522954
913 => 0.27382711990895
914 => 0.27493274564681
915 => 0.26893268670289
916 => 0.26753378594706
917 => 0.26467212594809
918 => 0.26392557226977
919 => 0.26625633462844
920 => 0.26564226109398
921 => 0.25460562892588
922 => 0.25345223945707
923 => 0.25348761226542
924 => 0.25058735960542
925 => 0.24616377815853
926 => 0.25778868608264
927 => 0.25685504328585
928 => 0.25582437389641
929 => 0.2559506250157
930 => 0.26099660354087
1001 => 0.25806968116824
1002 => 0.265851384009
1003 => 0.26425169984434
1004 => 0.26261098981702
1005 => 0.26238419371399
1006 => 0.26175266033227
1007 => 0.25958689738314
1008 => 0.25697160847989
1009 => 0.25524476821352
1010 => 0.23544980648957
1011 => 0.23912363624354
1012 => 0.24335004249536
1013 => 0.24480898099723
1014 => 0.24231336573431
1015 => 0.25968543948468
1016 => 0.26285948476034
1017 => 0.25324509458251
1018 => 0.25144663473321
1019 => 0.25980334621299
1020 => 0.25476322762425
1021 => 0.25703279271615
1022 => 0.2521272343732
1023 => 0.26209495020032
1024 => 0.26201901290621
1025 => 0.25814134631839
1026 => 0.2614187235653
1027 => 0.26084919861636
1028 => 0.25647132258897
1029 => 0.26223373667907
1030 => 0.26223659476456
1031 => 0.25850442498152
1101 => 0.25414606775195
1102 => 0.25336689641911
1103 => 0.25277989548675
1104 => 0.2568884264706
1105 => 0.26057212250367
1106 => 0.26742656755553
1107 => 0.26914993789916
1108 => 0.27587636708162
1109 => 0.27187110600736
1110 => 0.27364658636477
1111 => 0.27557412144976
1112 => 0.27649825265227
1113 => 0.2749924304494
1114 => 0.28544134367848
1115 => 0.28632355210144
1116 => 0.28661934895459
1117 => 0.28309603420389
1118 => 0.28622556234459
1119 => 0.28476135976664
1120 => 0.28857080810729
1121 => 0.28916817824858
1122 => 0.28866222699097
1123 => 0.28885184170266
1124 => 0.27993553757625
1125 => 0.27947318017004
1126 => 0.27316890412904
1127 => 0.27573794321461
1128 => 0.27093524778139
1129 => 0.27245823197651
1130 => 0.27312954889819
1201 => 0.2727788910352
1202 => 0.27588319282995
1203 => 0.27324390213746
1204 => 0.26627838006041
1205 => 0.25931096023154
1206 => 0.25922348995112
1207 => 0.25738909129536
1208 => 0.25606315705411
1209 => 0.25631857902902
1210 => 0.25721871938381
1211 => 0.25601083926032
1212 => 0.25626860172574
1213 => 0.26054917611407
1214 => 0.26140761477999
1215 => 0.25849030477956
1216 => 0.24677688416199
1217 => 0.24390238136155
1218 => 0.24596851697064
1219 => 0.24498103722567
1220 => 0.19771881702713
1221 => 0.20882237461236
1222 => 0.2022250177364
1223 => 0.20526538331464
1224 => 0.19853119032157
1225 => 0.20174510018716
1226 => 0.20115160838818
1227 => 0.21900580040707
1228 => 0.21872703175633
1229 => 0.21886046355733
1230 => 0.21249141604094
1231 => 0.22263748167303
]
'min_raw' => 0.12953070685642
'max_raw' => 0.28916817824858
'avg_raw' => 0.2093494425525
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.12953'
'max' => '$0.289168'
'avg' => '$0.209349'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.019973372181352
'max_diff' => 0.043746224190803
'year' => 2035
]
10 => [
'items' => [
101 => 0.22763579844412
102 => 0.22671074303568
103 => 0.22694355955245
104 => 0.22294300043638
105 => 0.21889919771436
106 => 0.21441399815887
107 => 0.22274694454555
108 => 0.22182046315549
109 => 0.22394547812681
110 => 0.22934998950988
111 => 0.23014582434078
112 => 0.23121543442407
113 => 0.23083205534924
114 => 0.23996570029151
115 => 0.23885955562328
116 => 0.24152504601419
117 => 0.23604193004884
118 => 0.22983726387189
119 => 0.23101656806631
120 => 0.23090299158902
121 => 0.22945703267614
122 => 0.22815168562277
123 => 0.22597865055818
124 => 0.23285445505124
125 => 0.23257530994551
126 => 0.23709434473651
127 => 0.23629556144164
128 => 0.23096109110306
129 => 0.2311516127548
130 => 0.23243296242434
131 => 0.23686772826078
201 => 0.23818426870292
202 => 0.23757439471505
203 => 0.23901792120751
204 => 0.24015882568982
205 => 0.23916120124481
206 => 0.25328545958242
207 => 0.24742008278079
208 => 0.25027882662288
209 => 0.25096062018452
210 => 0.24921422031295
211 => 0.2495929519112
212 => 0.25016662708437
213 => 0.25364987039874
214 => 0.26279090874022
215 => 0.26683941239651
216 => 0.2790195353961
217 => 0.26650324052574
218 => 0.26576057538571
219 => 0.26795458334242
220 => 0.27510560494014
221 => 0.28090083628379
222 => 0.28282344885539
223 => 0.2830775538456
224 => 0.2866845028428
225 => 0.28875193874238
226 => 0.28624652436237
227 => 0.28412344800312
228 => 0.27651885201026
229 => 0.27739910470306
301 => 0.28346317285187
302 => 0.29202902628389
303 => 0.29937941965372
304 => 0.29680556808268
305 => 0.3164422387137
306 => 0.31838913439816
307 => 0.31812013636524
308 => 0.32255545447136
309 => 0.31375225126753
310 => 0.30998871134387
311 => 0.28458248120993
312 => 0.29172059557091
313 => 0.30209626400134
314 => 0.30072300537782
315 => 0.29318791762122
316 => 0.29937370361397
317 => 0.29732848931736
318 => 0.2957153439456
319 => 0.30310547561724
320 => 0.29497972227439
321 => 0.30201520339587
322 => 0.29299212608484
323 => 0.29681732521985
324 => 0.29464595718675
325 => 0.29605109841702
326 => 0.28783667149661
327 => 0.29226897686892
328 => 0.28765227302105
329 => 0.28765008410232
330 => 0.28754817010899
331 => 0.29297970171242
401 => 0.293156823763
402 => 0.28914291370149
403 => 0.28856444655256
404 => 0.29070334278904
405 => 0.28819925547394
406 => 0.28937090216814
407 => 0.28823474345873
408 => 0.28797897020208
409 => 0.28594092537685
410 => 0.28506287962893
411 => 0.28540718399114
412 => 0.28423189570185
413 => 0.28352374199552
414 => 0.28740730051284
415 => 0.28533247185934
416 => 0.28708930326445
417 => 0.28508717214852
418 => 0.2781469134137
419 => 0.27415549722339
420 => 0.26104599183563
421 => 0.26476383130131
422 => 0.26722876271344
423 => 0.26641410289643
424 => 0.26816430741486
425 => 0.26827175575772
426 => 0.26770274642755
427 => 0.26704390651783
428 => 0.26672321968592
429 => 0.26911335659725
430 => 0.27050091152258
501 => 0.26747615155717
502 => 0.26676749261817
503 => 0.26982569194477
504 => 0.27169119176733
505 => 0.28546499432334
506 => 0.28444458654119
507 => 0.28700560982946
508 => 0.28671727790931
509 => 0.28940163831842
510 => 0.29378943309197
511 => 0.28486781947064
512 => 0.28641630310911
513 => 0.28603665068067
514 => 0.29018159634422
515 => 0.29019453641214
516 => 0.28770943443145
517 => 0.28905664853136
518 => 0.28830467057968
519 => 0.28966359637428
520 => 0.28443095837315
521 => 0.29080374663016
522 => 0.29441670691848
523 => 0.29446687287559
524 => 0.29617938737803
525 => 0.29791940129466
526 => 0.30125920648435
527 => 0.2978262559406
528 => 0.29165071210339
529 => 0.29209656642155
530 => 0.28847584732933
531 => 0.28853671227141
601 => 0.28821181044053
602 => 0.28918686529246
603 => 0.28464492808106
604 => 0.28571091166628
605 => 0.28421852840458
606 => 0.28641305895936
607 => 0.28405210685131
608 => 0.28603646760077
609 => 0.28689285191764
610 => 0.29005292848351
611 => 0.28358536097315
612 => 0.2703975530037
613 => 0.27316979012559
614 => 0.26906943366778
615 => 0.26944893726911
616 => 0.27021559494135
617 => 0.26773060659086
618 => 0.26820466405715
619 => 0.26818772738856
620 => 0.26804177632861
621 => 0.26739533488384
622 => 0.26645786689439
623 => 0.27019245082694
624 => 0.27082702941022
625 => 0.27223761899321
626 => 0.27643457678012
627 => 0.27601520172613
628 => 0.27669921983889
629 => 0.27520601213932
630 => 0.26951820289167
701 => 0.2698270782987
702 => 0.26597539702372
703 => 0.27213912284325
704 => 0.27067947121198
705 => 0.2697384243097
706 => 0.26948165094368
707 => 0.27368901217716
708 => 0.27494792060053
709 => 0.27416345335329
710 => 0.27255448814263
711 => 0.27564417699495
712 => 0.27647084738832
713 => 0.27665590840297
714 => 0.2821302446602
715 => 0.27696186298746
716 => 0.27820594382538
717 => 0.28791190738434
718 => 0.27910993776778
719 => 0.28377253738102
720 => 0.28354432739295
721 => 0.28592955558131
722 => 0.28334866906191
723 => 0.28338066224348
724 => 0.2854985832854
725 => 0.2825243451511
726 => 0.28178788196224
727 => 0.28077046334149
728 => 0.28299195967839
729 => 0.28432364626273
730 => 0.29505606211647
731 => 0.3019896922156
801 => 0.30168868504685
802 => 0.30443932710744
803 => 0.30320013766615
804 => 0.29919846807858
805 => 0.30602883011294
806 => 0.30386741777078
807 => 0.30404560197816
808 => 0.30403896995306
809 => 0.30547612020665
810 => 0.30445776753909
811 => 0.30245048989959
812 => 0.30378301447242
813 => 0.30774013606747
814 => 0.32002316291784
815 => 0.32689690747176
816 => 0.31960935486476
817 => 0.32463621106885
818 => 0.32162188859841
819 => 0.3210740965372
820 => 0.32423133371513
821 => 0.32739409721878
822 => 0.3271926428566
823 => 0.32489663896265
824 => 0.3235996846219
825 => 0.33342065740164
826 => 0.34065658284985
827 => 0.34016314124455
828 => 0.34234103201457
829 => 0.34873538667499
830 => 0.34932000632847
831 => 0.34924635768946
901 => 0.34779731687954
902 => 0.3540933894546
903 => 0.35934568396557
904 => 0.34746190579886
905 => 0.35198709295467
906 => 0.35401859526133
907 => 0.35700144336709
908 => 0.36203400810489
909 => 0.36750070823202
910 => 0.36827375956931
911 => 0.36772524265159
912 => 0.36411980696496
913 => 0.37010153547536
914 => 0.37360549174796
915 => 0.37569201752167
916 => 0.38098309971904
917 => 0.35403114112797
918 => 0.33495320523796
919 => 0.33197391006
920 => 0.33803242395937
921 => 0.3396300057589
922 => 0.33898602253871
923 => 0.31751207120445
924 => 0.33186085415036
925 => 0.34729893812022
926 => 0.34789197779908
927 => 0.3556206054295
928 => 0.35813736339312
929 => 0.36435992164999
930 => 0.36397069893681
1001 => 0.36548579284983
1002 => 0.36513749899699
1003 => 0.37666347785362
1004 => 0.3893783441569
1005 => 0.38893806876762
1006 => 0.38711015630105
1007 => 0.38982491801929
1008 => 0.40294802265216
1009 => 0.40173985747103
1010 => 0.40291348703323
1011 => 0.41838636698115
1012 => 0.43850331190496
1013 => 0.4291569712796
1014 => 0.44943584109955
1015 => 0.46220031471451
1016 => 0.48427515196038
1017 => 0.48151127361633
1018 => 0.49010484576351
1019 => 0.47656335454167
1020 => 0.44546935350941
1021 => 0.44054860882301
1022 => 0.4504000642983
1023 => 0.47461890629334
1024 => 0.44963732677633
1025 => 0.45469106777654
1026 => 0.4532355900285
1027 => 0.45315803380469
1028 => 0.4561180394236
1029 => 0.45182439688986
1030 => 0.43433132479586
1031 => 0.44234829664922
1101 => 0.43925255881003
1102 => 0.44268751074515
1103 => 0.46122452965709
1104 => 0.45302887172879
1105 => 0.4443954118625
1106 => 0.45522368645294
1107 => 0.46901180100541
1108 => 0.46814896557634
1109 => 0.46647470420672
1110 => 0.47591242788582
1111 => 0.49150078241012
1112 => 0.49571425199896
1113 => 0.49882454910884
1114 => 0.4992534065314
1115 => 0.5036709045171
1116 => 0.47991690449516
1117 => 0.51761511257596
1118 => 0.52412455171953
1119 => 0.52290104694915
1120 => 0.53013601459815
1121 => 0.5280073035824
1122 => 0.5249231353051
1123 => 0.53639209795053
1124 => 0.52324385777511
1125 => 0.50458158616351
1126 => 0.49434309485951
1127 => 0.50782596612415
1128 => 0.51605948511811
1129 => 0.52150131742295
1130 => 0.52314801259035
1201 => 0.4817608598979
1202 => 0.45945548003339
1203 => 0.47375297279484
1204 => 0.49119690072405
1205 => 0.47982000259475
1206 => 0.4802659554621
1207 => 0.46404548852595
1208 => 0.49263205212862
1209 => 0.48846723026255
1210 => 0.51007433347113
1211 => 0.50491762488257
1212 => 0.52253737876625
1213 => 0.51789750706642
1214 => 0.53715735508068
1215 => 0.54484062989314
1216 => 0.55774204410949
1217 => 0.56723237692524
1218 => 0.57280528187579
1219 => 0.572470705566
1220 => 0.5945533313903
1221 => 0.58153197844989
1222 => 0.56517409025949
1223 => 0.5648782276706
1224 => 0.57335020975748
1225 => 0.5911051600368
1226 => 0.5957087603202
1227 => 0.59828154484393
1228 => 0.59434123578657
1229 => 0.58020749041853
1230 => 0.57410461082833
1231 => 0.57930444105663
]
'min_raw' => 0.21441399815887
'max_raw' => 0.59828154484393
'avg_raw' => 0.4063477715014
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.214413'
'max' => '$0.598281'
'avg' => '$0.406347'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.084883291302452
'max_diff' => 0.30911336659534
'year' => 2036
]
11 => [
'items' => [
101 => 0.57294549551393
102 => 0.58392281952562
103 => 0.59899703002357
104 => 0.59588426516563
105 => 0.60628977139393
106 => 0.61705837564904
107 => 0.63245796338212
108 => 0.63648398586063
109 => 0.64313884792169
110 => 0.64998888699082
111 => 0.65218893492609
112 => 0.65638950906932
113 => 0.65636736997012
114 => 0.66902608288198
115 => 0.68298903523146
116 => 0.6882597265003
117 => 0.70037939044539
118 => 0.67962489066311
119 => 0.69536741715848
120 => 0.7095675701183
121 => 0.69263756235601
122 => 0.71597163387043
123 => 0.71687764299119
124 => 0.73055730505112
125 => 0.71669034684724
126 => 0.70845619133067
127 => 0.73222788977722
128 => 0.74373026585402
129 => 0.74026565657025
130 => 0.71389980885187
131 => 0.69855375459536
201 => 0.6583901705733
202 => 0.70596567078515
203 => 0.72913830914197
204 => 0.71383979731662
205 => 0.72155547682004
206 => 0.76364972237319
207 => 0.77967648567927
208 => 0.77634303094714
209 => 0.77690632992354
210 => 0.78555408049717
211 => 0.82390296894387
212 => 0.80092342606633
213 => 0.81849042556916
214 => 0.82780789876294
215 => 0.83646248713374
216 => 0.8152095534058
217 => 0.78755979889335
218 => 0.77880196098152
219 => 0.7123186618163
220 => 0.70885791737242
221 => 0.70691529664478
222 => 0.69466734774616
223 => 0.6850438149074
224 => 0.67739082429515
225 => 0.65730709155216
226 => 0.66408476178876
227 => 0.63207548359722
228 => 0.652553885445
301 => 0.60146630456026
302 => 0.64401355999674
303 => 0.62085702324898
304 => 0.63640601488204
305 => 0.63635176591504
306 => 0.60772114250629
307 => 0.59120759642999
308 => 0.60173067070664
309 => 0.61301224165388
310 => 0.61484263858431
311 => 0.62946948979653
312 => 0.63355152956675
313 => 0.62118275849078
314 => 0.60040762799942
315 => 0.60523321698229
316 => 0.59110980602328
317 => 0.56635907156677
318 => 0.5841354811598
319 => 0.59020512896841
320 => 0.59288583122091
321 => 0.56854632652399
322 => 0.56089832571187
323 => 0.55682659425243
324 => 0.59726570358546
325 => 0.59948104928085
326 => 0.58814702748491
327 => 0.63937788073859
328 => 0.62778276082539
329 => 0.64073735064178
330 => 0.60479534536152
331 => 0.60616837836556
401 => 0.58915285706969
402 => 0.59868041201783
403 => 0.59194664326792
404 => 0.59791067973115
405 => 0.60148549859658
406 => 0.61849822781283
407 => 0.64420781803646
408 => 0.61595709339244
409 => 0.60364784810721
410 => 0.61128443465235
411 => 0.63162167095964
412 => 0.66243362500917
413 => 0.64419232806348
414 => 0.65228750589067
415 => 0.65405594211651
416 => 0.64060548507828
417 => 0.6629295625457
418 => 0.67489321702096
419 => 0.68716545098312
420 => 0.69782108787227
421 => 0.68226365086643
422 => 0.69891233853367
423 => 0.68549643516286
424 => 0.67346098292866
425 => 0.67347923574168
426 => 0.66592922074525
427 => 0.65130011532658
428 => 0.64860228383663
429 => 0.6626367439459
430 => 0.67389105188522
501 => 0.6748180105916
502 => 0.68104897373402
503 => 0.68473639353769
504 => 0.72087812041773
505 => 0.73541462194893
506 => 0.75318958085939
507 => 0.7601139290968
508 => 0.78095373477519
509 => 0.76412389916363
510 => 0.76048265836444
511 => 0.70993210643715
512 => 0.71820975648335
513 => 0.73146307288174
514 => 0.71015064874306
515 => 0.72366847641524
516 => 0.72633718194447
517 => 0.70942646072613
518 => 0.71845920759797
519 => 0.69447090992916
520 => 0.64473069737319
521 => 0.66298493762127
522 => 0.67642620275468
523 => 0.65724386011326
524 => 0.69162746683882
525 => 0.67154127361146
526 => 0.6651749146657
527 => 0.64033747864744
528 => 0.65205979236747
529 => 0.66791438952118
530 => 0.65811809177494
531 => 0.6784468805199
601 => 0.70723786687268
602 => 0.72775603828056
603 => 0.72933116870611
604 => 0.71613935910156
605 => 0.73727931818185
606 => 0.73743329970473
607 => 0.7135873395029
608 => 0.69898182165414
609 => 0.69566341726863
610 => 0.70395344203514
611 => 0.71401906252468
612 => 0.72988974059012
613 => 0.73948005895686
614 => 0.76448652294548
615 => 0.77125255510929
616 => 0.77868637312455
617 => 0.7886202464975
618 => 0.80054840847458
619 => 0.77445026913936
620 => 0.77548719686817
621 => 0.75118497087255
622 => 0.72521455710449
623 => 0.74492286389667
624 => 0.77068885334126
625 => 0.76477810689378
626 => 0.76411302717285
627 => 0.76523150678573
628 => 0.76077499699126
629 => 0.74061836835685
630 => 0.73049583564382
701 => 0.74355648537714
702 => 0.75049763944776
703 => 0.76126276407904
704 => 0.75993573524403
705 => 0.78766554020422
706 => 0.79844050390598
707 => 0.79568380710438
708 => 0.79619110565949
709 => 0.81569866276217
710 => 0.83739507829546
711 => 0.85771663453658
712 => 0.87838859437619
713 => 0.85346773994921
714 => 0.84081446697581
715 => 0.85386941483803
716 => 0.84694227574064
717 => 0.88674767171718
718 => 0.88950371097005
719 => 0.92930622856339
720 => 0.9670835573551
721 => 0.94335629399218
722 => 0.965730034644
723 => 0.98992905931679
724 => 1.0366129040609
725 => 1.0208914275085
726 => 1.0088490228564
727 => 0.99746900864857
728 => 1.0211490116886
729 => 1.0516129573024
730 => 1.0581745994075
731 => 1.0688069663581
801 => 1.0576283325736
802 => 1.0710917656809
803 => 1.1186236006822
804 => 1.1057800792897
805 => 1.0875402142133
806 => 1.1250620329409
807 => 1.138641033276
808 => 1.2339455690055
809 => 1.3542714821981
810 => 1.3044557640338
811 => 1.2735335402261
812 => 1.2808009963059
813 => 1.3247399465146
814 => 1.338851742769
815 => 1.3004910159215
816 => 1.3140406731565
817 => 1.3887006166941
818 => 1.4287532810243
819 => 1.3743563830735
820 => 1.2242774990392
821 => 1.0858979139299
822 => 1.1226024112148
823 => 1.1184412602959
824 => 1.1986540556095
825 => 1.1054737655521
826 => 1.1070426826625
827 => 1.1889141936364
828 => 1.1670722781416
829 => 1.1316911723412
830 => 1.0861562351573
831 => 1.001980692301
901 => 0.92742406658448
902 => 1.07364677898
903 => 1.0673413897328
904 => 1.0582102516964
905 => 1.078530611304
906 => 1.1772005095235
907 => 1.1749258490063
908 => 1.1604556193375
909 => 1.1714311610065
910 => 1.1297671068207
911 => 1.1405048822572
912 => 1.0858759938966
913 => 1.1105705329395
914 => 1.1316152603786
915 => 1.1358403009845
916 => 1.1453595332056
917 => 1.0640187361186
918 => 1.1005383659703
919 => 1.1219902270816
920 => 1.0250699381553
921 => 1.1200744245921
922 => 1.0626027738082
923 => 1.043096032337
924 => 1.0693592899103
925 => 1.0591244728921
926 => 1.0503251782285
927 => 1.0454150206151
928 => 1.064699858407
929 => 1.0638001976736
930 => 1.0322464600205
1001 => 0.99108589554676
1002 => 1.0049007320336
1003 => 0.99988167242315
1004 => 0.98169195292329
1005 => 0.99394962763109
1006 => 0.93997303168516
1007 => 0.84710910381952
1008 => 0.9084578590666
1009 => 0.90609599872419
1010 => 0.90490504163771
1011 => 0.95100693565084
1012 => 0.94657530229314
1013 => 0.93853184435423
1014 => 0.98154422851049
1015 => 0.96584412969525
1016 => 1.0142281348353
1017 => 1.0460969699018
1018 => 1.0380140024801
1019 => 1.0679867958956
1020 => 1.0052189979642
1021 => 1.0260679426301
1022 => 1.0303648812303
1023 => 0.98101346236664
1024 => 0.94730037231739
1025 => 0.94505209356847
1026 => 0.88659824137306
1027 => 0.91782381739284
1028 => 0.94530103208811
1029 => 0.93214157856707
1030 => 0.92797568870981
1031 => 0.94925831651932
1101 => 0.9509121589735
1102 => 0.91320437575183
1103 => 0.92104501793381
1104 => 0.95374179923098
1105 => 0.92022114293642
1106 => 0.85509598332422
1107 => 0.83894404331462
1108 => 0.83678907677802
1109 => 0.79298373444547
1110 => 0.84002339317957
1111 => 0.81948932155766
1112 => 0.88435620777533
1113 => 0.84730459025588
1114 => 0.84570736907875
1115 => 0.84329293500811
1116 => 0.80558786728657
1117 => 0.81384288083553
1118 => 0.84128380314632
1119 => 0.85107503337093
1120 => 0.85005372784132
1121 => 0.84114932765666
1122 => 0.84522571646329
1123 => 0.83209424780912
1124 => 0.82745725291945
1125 => 0.81282162154171
1126 => 0.79131128661281
1127 => 0.79430243061522
1128 => 0.75168482863576
1129 => 0.72846449719002
1130 => 0.72203741548489
1201 => 0.71344285322255
1202 => 0.72300819416167
1203 => 0.75156409832397
1204 => 0.71711961943122
1205 => 0.65806697636885
1206 => 0.66161614083771
1207 => 0.66959005964284
1208 => 0.65473071470223
1209 => 0.64066759176624
1210 => 0.65289433618186
1211 => 0.6278729528391
1212 => 0.67261377427874
1213 => 0.6714036604435
1214 => 0.68808027192236
1215 => 0.69850849931861
1216 => 0.67447481134897
1217 => 0.66843040381861
1218 => 0.67187357305091
1219 => 0.61496565539522
1220 => 0.68342968095601
1221 => 0.68402176069209
1222 => 0.67895201452974
1223 => 0.71540699455121
1224 => 0.79233837298993
1225 => 0.76339369386375
1226 => 0.75218543924854
1227 => 0.73087853903184
1228 => 0.75926871849204
1229 => 0.75708879566529
1230 => 0.74723035793153
1231 => 0.74126794402996
]
'min_raw' => 0.55682659425243
'max_raw' => 1.4287532810243
'avg_raw' => 0.99278993763838
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.556826'
'max' => '$1.42'
'avg' => '$0.992789'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.34241259609357
'max_diff' => 0.83047173618041
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.017478150522087
]
1 => [
'year' => 2028
'avg' => 0.029997580239251
]
2 => [
'year' => 2029
'avg' => 0.081947982675824
]
3 => [
'year' => 2030
'avg' => 0.063222746593801
]
4 => [
'year' => 2031
'avg' => 0.062092572263841
]
5 => [
'year' => 2032
'avg' => 0.10886782043017
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.017478150522087
'min' => '$0.017478'
'max_raw' => 0.10886782043017
'max' => '$0.108867'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.10886782043017
]
1 => [
'year' => 2033
'avg' => 0.28001922889237
]
2 => [
'year' => 2034
'avg' => 0.17748964436642
]
3 => [
'year' => 2035
'avg' => 0.2093494425525
]
4 => [
'year' => 2036
'avg' => 0.4063477715014
]
5 => [
'year' => 2037
'avg' => 0.99278993763838
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.10886782043017
'min' => '$0.108867'
'max_raw' => 0.99278993763838
'max' => '$0.992789'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.99278993763838
]
]
]
]
'prediction_2025_max_price' => '$0.029884'
'last_price' => 0.02897675
'sma_50day_nextmonth' => '$0.026715'
'sma_200day_nextmonth' => '$0.042789'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'augmenter'
'sma_200day_date_nextmonth' => '4 févr. 2026'
'sma_50day_date_nextmonth' => '4 févr. 2026'
'daily_sma3' => '$0.028264'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.027981'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.027354'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.02689'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.028867'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.03484'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.045518'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.028419'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.028068'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.027619'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.027663'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.029775'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.035412'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.048629'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.043996'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.055579'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.183648'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.028449'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.028951'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.03199'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.040177'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.074579'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.165214'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.146755'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '55.22'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 116.23
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.027594'
'vwma_10_action' => 'BUY'
'hma_9' => '0.028571'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 205.31
'cci_20_action' => 'SELL'
'adx_14' => 10.84
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '-0.000340'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 71.2
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '-0.001312'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 14
'buy_signals' => 19
'sell_pct' => 42.42
'buy_pct' => 57.58
'overall_action' => 'bullish'
'overall_action_label' => 'Haussier'
'overall_action_dir' => 1
'last_updated' => 1767714462
'last_updated_date' => '6 janvier 2026'
]
Prévision du prix de Maverick Protocol pour 2026
La prévision du prix de Maverick Protocol pour 2026 suggère que le prix moyen pourrait varier entre $0.010011 à la baisse et $0.029884 à la hausse. Sur le marché des cryptomonnaies, comparé au prix moyen d'aujourd'hui, Maverick Protocol pourrait potentiellement gagner 3.13% d'ici 2026 si MAV atteint l'objectif de prix prévu.
Prévision du prix de Maverick Protocol de 2027 à 2032
La prévision du prix de MAV pour 2027-2032 se situe actuellement dans une fourchette de prix comprise entre $0.017478 à la baisse et $0.108867 à la hausse. Compte tenu de la volatilité des prix sur le marché, si Maverick Protocol atteint l'objectif de prix le plus élevé, il pourrait gagner 275.71% d'ici 2032 par rapport au prix actuel.
| Prévision du Prix de Maverick Protocol | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2027 | $0.009637 | $0.017478 | $0.025318 |
| 2028 | $0.017393 | $0.029997 | $0.0426017 |
| 2029 | $0.0382082 | $0.081947 | $0.125687 |
| 2030 | $0.032494 | $0.063222 | $0.093951 |
| 2031 | $0.038418 | $0.062092 | $0.085766 |
| 2032 | $0.058642 | $0.108867 | $0.159092 |
Prévision du prix de Maverick Protocol de 2032 à 2037
La prévision du prix de Maverick Protocol pour 2032-2037 est actuellement estimée entre $0.108867 à la baisse et $0.992789 à la hausse. Par rapport au prix actuel, Maverick Protocol pourrait potentiellement gagner 3326.16% d'ici 2037 s'il atteint l'objectif de prix le plus élevé. Veuillez noter que ces informations sont à titre général seulement et ne doivent pas être considérées comme un conseil en investissement à long terme.
| Prévision du Prix de Maverick Protocol | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2032 | $0.058642 | $0.108867 | $0.159092 |
| 2033 | $0.136273 | $0.280019 | $0.423764 |
| 2034 | $0.109557 | $0.177489 | $0.245421 |
| 2035 | $0.12953 | $0.209349 | $0.289168 |
| 2036 | $0.214413 | $0.406347 | $0.598281 |
| 2037 | $0.556826 | $0.992789 | $1.42 |
Maverick Protocol Histogramme des prix potentiels
Prévision du prix de Maverick Protocol basée sur l'analyse technique
Au 6 janvier 2026, le sentiment global de prévision du prix pour Maverick Protocol est Haussier, avec 19 indicateurs techniques montrant des signaux haussiers et 14 indiquant des signaux baissiers. La prévision du prix de MAV a été mise à jour pour la dernière fois le 6 janvier 2026.
Moyennes Mobiles Simples sur 50 et 200 jours de Maverick Protocol et Indice de Force Relative sur 14 jours - RSI (14)
Selon nos indicateurs techniques, le SMA sur 200 jours de Maverick Protocol devrait augmenter au cours du prochain mois, atteignant $0.042789 d'ici le 4 févr. 2026. Le SMA à court terme sur 50 jours pour Maverick Protocol devrait atteindre $0.026715 d'ici le 4 févr. 2026.
Le Relative Strength Index (RSI), un oscillateur de momentum, est un outil couramment utilisé pour identifier si une cryptomonnaie est survendue (en dessous de 30) ou surachetée (au-dessus de 70). Actuellement, le RSI est à 55.22, ce qui suggère que le marché de MAV est dans un état NEUTRAL.
Moyennes Mobiles et Oscillateurs Populaires de MAV pour le Samedi 19 Octobre 2024
Les moyennes mobiles (MA) sont des indicateurs largement utilisés sur les marchés financiers, conçus pour lisser les mouvements de prix sur une période donnée. En tant qu'indicateurs retardés, ils sont basés sur des données historiques de prix. Le tableau ci-dessous met en évidence deux types : la moyenne mobile simple (SMA) et la moyenne mobile exponentielle (EMA).
Moyenne Mobile Simple Quotidienne (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 3 | $0.028264 | BUY |
| SMA 5 | $0.027981 | BUY |
| SMA 10 | $0.027354 | BUY |
| SMA 21 | $0.02689 | BUY |
| SMA 50 | $0.028867 | BUY |
| SMA 100 | $0.03484 | SELL |
| SMA 200 | $0.045518 | SELL |
Moyenne Mobile Exponentielle Quotidienne (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 3 | $0.028419 | BUY |
| EMA 5 | $0.028068 | BUY |
| EMA 10 | $0.027619 | BUY |
| EMA 21 | $0.027663 | BUY |
| EMA 50 | $0.029775 | SELL |
| EMA 100 | $0.035412 | SELL |
| EMA 200 | $0.048629 | SELL |
Moyenne Mobile Simple Hebdomadaire (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 21 | $0.043996 | SELL |
| SMA 50 | $0.055579 | SELL |
| SMA 100 | $0.183648 | SELL |
| SMA 200 | — | — |
Moyenne Mobile Exponentielle Hebdomadaire (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 21 | $0.040177 | SELL |
| EMA 50 | $0.074579 | SELL |
| EMA 100 | $0.165214 | SELL |
| EMA 200 | $0.146755 | SELL |
Oscillateurs de Maverick Protocol
Un oscillateur est un outil d'analyse technique qui établit des limites hautes et basses entre deux extrêmes, créant un indicateur de tendance qui fluctue à l'intérieur de ces limites. Les traders utilisent cet indicateur pour identifier les conditions de surachat ou de survente à court terme.
| Période | Valeur | Action |
|---|---|---|
| RSI (14) | 55.22 | NEUTRAL |
| Stoch RSI (14) | 116.23 | SELL |
| Stochastique Rapide (14) | 100 | SELL |
| Indice de Canal des Matières Premières (20) | 205.31 | SELL |
| Indice Directionnel Moyen (14) | 10.84 | NEUTRAL |
| Oscillateur Impressionnant (5, 34) | -0.000340 | NEUTRAL |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Plage de Pourcentage de Williams (14) | -0 | SELL |
| Oscillateur Ultime (7, 14, 28) | 71.2 | SELL |
| VWMA (10) | 0.027594 | BUY |
| Moyenne Mobile de Hull (9) | 0.028571 | BUY |
| Nuage Ichimoku B/L (9, 26, 52, 26) | -0.001312 | SELL |
Prévision du cours de Maverick Protocol basée sur les flux monétaires mondiaux
Définitions des flux monétaires mondiaux utilisés pour la prédiction du cours de Maverick Protocol
M0 : le total de toutes les devises physiques, plus les comptes à la banque centrale qui peuvent être échangés contre des devises physiques.
M1 : M0 plus le montant des comptes à vue, y compris les comptes de "chèques" et les comptes "courants".
M2 : M1 plus la plupart des comptes d'épargne, comptes du marché monétaire et comptes de certificats de dépôt (CD) de moins de 100 000 $.
Prédictions du cours de Maverick Protocol par des sociétés Internet ou des niches technologiques
| Comparaison | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Action Facebook | $0.040717 | $0.057214 | $0.080395 | $0.112969 | $0.158741 | $0.223057 |
| Action Amazon.com | $0.060461 | $0.126156 | $0.263233 | $0.549253 | $1.14 | $2.39 |
| Action Apple | $0.0411013 | $0.058299 | $0.082692 | $0.117293 | $0.166371 | $0.235985 |
| Action Netflix | $0.04572 | $0.07214 | $0.113825 | $0.179599 | $0.283379 | $0.447128 |
| Action Google | $0.037524 | $0.048594 | $0.062929 | $0.081493 | $0.105533 | $0.136665 |
| Action Tesla | $0.065688 | $0.1489099 | $0.337567 | $0.76524 | $1.73 | $3.93 |
| Action Kodak | $0.021729 | $0.016294 | $0.012219 | $0.009163 | $0.006871 | $0.005152 |
| Action Nokia | $0.019195 | $0.012716 | $0.008424 | $0.00558 | $0.003696 | $0.002449 |
Ce calcul montre la valeur potentielle des cryptomonnaies si l'on suppose que leur capitalisation se comportera comme celle de certaines sociétés Internet ou niches technologiques. En extrapolant les données, vous pourrez obtenir une potentielle image des cours futurs pour 2024, 2025, 2026, 2027, 2028, 2029 et 2030.
Aperçu des prévisions relatives à Maverick Protocol
Vous vous posez peut-être des questions telles que : "Devrais-je investir dans Maverick Protocol maintenant ?", "Devrais-je acheter MAV aujourd'hui ?", " Maverick Protocol sera-t-il un bon ou un mauvais investissement à court ou à long terme ?".
Nous mettons régulièrement à jour les prévisions de Maverick Protocol avec de nouvelles valeurs. Regardez nos prévisions similaires. Nous faisons une prévision des cours futurs pour une grande quantité de devises numériques comme Maverick Protocol en utilisant des méthodes d'analyse technique.
Si vous souhaitez trouver des cryptomonnaies ayant un bon rendement, vous devriez consulter un maximum d'informations disponibles à propos de Maverick Protocol afin de prendre une décision responsable concernant cet investissement.
Le cours de Maverick Protocol est de $0.02897 USD actuellement, mais ce cours peut subir une hausse ou une baisse, ce qui pourrait causer la perte de votre investissement, car les cryptomonnaies sont des actifs à haut risque.
Prévision à court terme de Maverick Protocol
basée sur l'historique des cours sur 4 heures
Prévision à long terme de Maverick Protocol
basée sur l'historique des cours sur 1 mois
Prévision du cours de Maverick Protocol basée sur le modèle de croissance du Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si Maverick Protocol présente 1 % de la précédente croissance annuelle moyenne du Bitcoin | $0.029729 | $0.0305027 | $0.031295 | $0.032109 |
| Si Maverick Protocol présente 2 % de la précédente croissance annuelle moyenne du Bitcoin | $0.030483 | $0.032067 | $0.033734 | $0.035488 |
| Si Maverick Protocol présente 5 % de la précédente croissance annuelle moyenne du Bitcoin | $0.032742 | $0.036998 | $0.0418066 | $0.04724 |
| Si Maverick Protocol présente 10 % de la précédente croissance annuelle moyenne du Bitcoin | $0.0365087 | $0.045998 | $0.057955 | $0.073019 |
| Si Maverick Protocol présente 20 % de la précédente croissance annuelle moyenne du Bitcoin | $0.04404 | $0.066935 | $0.101733 | $0.154621 |
| Si Maverick Protocol présente 50 % de la précédente croissance annuelle moyenne du Bitcoin | $0.066636 | $0.153241 | $0.352404 | $0.8104097 |
| Si Maverick Protocol présente 100 % de la précédente croissance annuelle moyenne du Bitcoin | $0.104296 | $0.375397 | $1.35 | $4.86 |
Boîte à questions
Est-ce que MAV est un bon investissement ?
La décision d'acquérir Maverick Protocol dépend entièrement de votre tolérance individuelle au risque. Comme vous pouvez le discerner, la valeur de Maverick Protocol a connu une hausse de 3.2365% au cours des 24 heures précédentes, et Maverick Protocol a enregistré une déclin de sur une période de 30 jours précédents. Par conséquent, la détermination de si investir ou non dans Maverick Protocol dépendra de la mesure dans laquelle cet investissement s'aligne avec vos aspirations de trading.
Est-ce que Maverick Protocol peut monter ?
Il semble que la valeur moyenne de Maverick Protocol pourrait potentiellement s'envoler jusqu'à $0.029884 pour la fin de cette année. En regardant les perspectives de Maverick Protocol sur une période de cinq ans plus longue, la monnaie numérique pourrait potentiellement croître jusqu'à $0.093951. Cependant, compte tenu de l'imprévisibilité du marché, il est essentiel de mener des recherches approfondies avant d'investir des fonds dans un projet, un réseau ou un actif particulier.
Quel sera le prix de Maverick Protocol la semaine prochaine ?
Basé sur notre nouveau pronostic expérimental de Maverick Protocol, le prix de Maverick Protocol va augmenter de 0.86% durant la prochaine semaine et atteindre $0.029224 d'ici 13 janvier 2026.
Quel sera le prix de Maverick Protocol le mois prochain ?
Basé sur notre nouveau pronostic expérimental de Maverick Protocol, le prix de Maverick Protocol va diminuer de -11.62% durant le prochain mois et atteindre $0.02561 d'ici 5 février 2026.
Jusqu'où le prix de Maverick Protocol peut-il monter cette année en 2026 ?
Selon notre prédiction la plus récente sur la valeur de Maverick Protocol en 2026, MAV devrait fluctuer dans la fourchette de $0.010011 et $0.029884. Cependant, il est crucial de garder à l'esprit que le marché des cryptomonnaies est exceptionnellement instable, et cette prévision de prix de Maverick Protocol ne prend pas en compte les fluctuations de prix soudaines et extrêmes.
Où sera Maverick Protocol dans 5 ans ?
L'avenir de Maverick Protocol semble suivre une tendance haussière, avec un prix maximum de $0.093951 prévue après une période de cinq ans. Selon la prévision de Maverick Protocol pour 2030, la valeur de Maverick Protocol pourrait potentiellement atteindre son point le plus élevé d'environ $0.093951, tandis que son point le plus bas devrait être autour de $0.032494.
Combien vaudra Maverick Protocol en 2026 ?
Basé sur notre nouvelle simulation expérimentale de prédiction de prix de Maverick Protocol, il est attendu que la valeur de MAV en 2026 augmente de 3.13% jusqu'à $0.029884 si le meilleur scénario se produit. Le prix sera entre $0.029884 et $0.010011 durant 2026.
Combien vaudra Maverick Protocol en 2027 ?
Selon notre dernière simulation expérimentale pour la prédiction de prix de Maverick Protocol, le valeur de MAV pourrait diminuer de -12.62% jusqu'à $0.025318 en 2027, en supposant les conditions les plus favorables. Il est prévu que le prix fluctue entre $0.025318 et $0.009637 tout au long de l'année.
Combien vaudra Maverick Protocol en 2028 ?
Notre nouveau modèle expérimental de prédiction de prix de Maverick Protocol suggère que la valeur de MAV en 2028 pourrait augmenter de 47.02%, atteignant $0.0426017 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.0426017 et $0.017393 durant l'année.
Combien vaudra Maverick Protocol en 2029 ?
Basé sur notre modèle de prévision expérimental, la valeur de Maverick Protocol pourrait connaître un 333.75% croissance en 2029, atteignant potentiellement $0.125687 sous des conditions optimales. Le range de prix prévu pour 2029 se situe entre $0.125687 et $0.0382082.
Combien vaudra Maverick Protocol en 2030 ?
En utilisant notre nouvelle simulation expérimentale pour les prédictions de prix de Maverick Protocol, il est prévu que la valeur de MAV en 2030 augmente de 224.23%, atteignant $0.093951 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.093951 et $0.032494 au cours de 2030.
Combien vaudra Maverick Protocol en 2031 ?
Notre simulation expérimentale indique que le prix de Maverick Protocol pourrait augmenter de 195.98% en 2031, atteignant potentiellement $0.085766 dans des conditions idéales. Il est probable que le prix fluctue entre $0.085766 et $0.038418 durant l'année.
Combien vaudra Maverick Protocol en 2032 ?
Basé sur les résultats de notre dernière prédiction expérimentale de prix de Maverick Protocol, MAV pourrait connaître une 449.04% hausse en valeur, atteignant $0.159092 si le scénario le plus positif se réalise en 2032. Il est prévu que le prix reste dans une fourchette de $0.159092 et $0.058642 tout au long de l'année.
Combien vaudra Maverick Protocol en 2033 ?
Selon notre prédiction expérimentale de prix de Maverick Protocol, la valeur de MAV est anticipée à augmenter de 1362.43% en 2033, avec le prix potentiel le plus élevé étant $0.423764. Tout au long de l'année, le prix de MAV pourrait osciller entre $0.423764 et $0.136273.
Combien vaudra Maverick Protocol en 2034 ?
Les résultats de notre nouvelle simulation de prédiction de prix de Maverick Protocol suggèrent que MAV pourrait augmenter de 746.96% en 2034, atteignant potentiellement $0.245421 dans les meilleures circonstances. La fourchette de prix prévue pour l'année est entre $0.245421 et $0.109557.
Combien vaudra Maverick Protocol en 2035 ?
Basé sur notre prédiction expérimentale pour le prix de Maverick Protocol, MAV pourrait augmenter de 897.93%, avec la valeur potentiellement atteignant $0.289168 en 2035. La fourchette de prix attendue pour l'année se situe entre $0.289168 et $0.12953.
Combien vaudra Maverick Protocol en 2036 ?
Notre récente simulation de prédiction de prix de Maverick Protocol suggère que la valeur de MAV pourrait augmenter de 1964.7% en 2036, pouvant atteindre $0.598281 si les conditions sont optimales. La fourchette de prix attendue pour 2036 est entre $0.598281 et $0.214413.
Combien vaudra Maverick Protocol en 2037 ?
Selon la simulation expérimentale, la valeur de Maverick Protocol pourrait augmenter de 4830.69% en 2037, avec un maximum de $1.42 sous des conditions favorables. Il est prévu que le prix chute entre $1.42 et $0.556826 au cours de l'année.
Prévisions liées
Prévision du cours de Myria
Prévision du cours de MimbleWimbleCoin
Prévision du cours de CYBER
Prévision du cours de Velodrome Finance
Prévision du cours de Ontology Gas
Prévision du cours de DODO
Prévision du cours de Cudos
Prévision du cours de Acala
Prévision du cours de WINk
Prévision du cours de Radiant Capital
Prévision du cours de APEX
Prévision du cours de Metars Genesis
Prévision du cours de Liquity
Prévision du cours de Steem
Prévision du cours de Alpha Finance
Prévision du cours de Zignaly
Prévision du cours de Heroes of Mavia
Prévision du cours de Sovryn
Prévision du cours de Verge
Prévision du cours de Quasar
Prévision du cours de Auction
Prévision du cours de Pundi X
Prévision du cours de XYO Network
Prévision du cours de f(x) Coin
Prévision du cours de Multibit
Comment lire et prédire les mouvements de prix de Maverick Protocol ?
Les traders de Maverick Protocol utilisent des indicateurs et des modèles graphiques pour prédire la direction du marché. Ils identifient également des niveaux clés de support et de résistance pour évaluer quand une tendance baissière pourrait ralentir ou une tendance haussière pourrait s'arrêter.
Indicateurs de prédiction du prix de Maverick Protocol
Les moyennes mobiles sont des outils populaires pour la prédiction du prix de Maverick Protocol. Une moyenne mobile simple (SMA) calcule le prix de clôture moyen de MAV sur une période spécifique, comme une SMA de 12 jours. Une moyenne mobile exponentielle (EMA) donne plus de poids aux prix récents, réagissant plus rapidement aux changements de prix.
Les moyennes mobiles couramment utilisées sur le marché des cryptomonnaies incluent les moyennes sur 50 jours, 100 jours et 200 jours, qui aident à identifier les niveaux clés de résistance et de support. Un mouvement de prix de MAV au-dessus de ces moyennes est considéré comme haussier, tandis qu'une chute en dessous indique une faiblesse.
Les traders utilisent également le RSI et les niveaux de retracement de Fibonacci pour évaluer la direction future de MAV.
Comment lire les graphiques de Maverick Protocol et prédire les mouvements de prix ?
La plupart des traders préfèrent les graphiques en chandeliers aux simples graphiques linéaires parce qu'ils fournissent des informations plus détaillées. Les chandeliers peuvent représenter l'action des prix de Maverick Protocol dans différentes périodes, comme 5 minutes pour les tendances à court terme et hebdomadaire pour les tendances à long terme. Les options populaires incluent les graphiques de 1 heure, 4 heures et 1 jour.
Par exemple, un graphique en chandeliers de 1 heure montre les prix d'ouverture, de clôture, les plus hauts et les plus bas de MAV au sein de chaque heure. La couleur du chandelier est cruciale : le vert indique que le prix a clôturé plus haut qu'il n'a ouvert, tandis que le rouge signifie le contraire. Certains graphiques utilisent des chandeliers creux et pleins pour transmettre la même information.
Qu'est-ce qui affecte le prix de Maverick Protocol ?
L'action du prix de Maverick Protocol est déterminée par l'offre et la demande, influencée par des facteurs tels que les réductions de récompenses de bloc, les hard forks et les mises à jour de protocole. Les événements du monde réel, tels que les réglementations, l'adoption par les entreprises et les gouvernements et les piratages d'échanges de cryptomonnaies, impactent également le prix de MAV. La capitalisation boursière de Maverick Protocol peut changer rapidement.
Les traders surveillent souvent l'activité des « baleines » de MAV, de grands détenteurs de Maverick Protocol, car leurs actions peuvent influencer significativement les mouvements de prix sur le marché relativement petit de Maverick Protocol.
Modèles de prédiction de prix haussiers et baissiers
Les traders identifient souvent des modèles de chandeliers pour obtenir un avantage dans les prédictions de prix des cryptomonnaies. Certaines formations indiquent des tendances haussières, tandis que d'autres suggèrent des mouvements baissiers.
Modèles de chandeliers haussiers couramment suivis :
- Marteau
- Englobante haussière
- Ligne pénétrante
- Étoile du matin
- Trois soldats blancs
Modèles de chandeliers baissiers courants :
- Harami baissier
- Nuage sombre
- Étoile du soir
- Étoile filante
- Pendu


