Previsão de Preço Maverick Protocol - Projeção MAV
Previsão de Preço Maverick Protocol até $0.029855 até 2026
| Ano | Preço Mínimo | Preço Máximo |
|---|---|---|
| 2026 | $0.0100018 | $0.029855 |
| 2027 | $0.009628 | $0.025294 |
| 2028 | $0.017376 | $0.042561 |
| 2029 | $0.038171 | $0.125567 |
| 2030 | $0.032463 | $0.093861 |
| 2031 | $0.038381 | $0.085684 |
| 2032 | $0.058586 | $0.15894 |
| 2033 | $0.136143 | $0.42336 |
| 2034 | $0.109452 | $0.245187 |
| 2035 | $0.1294069 | $0.288891 |
Calculadora de lucro do investimento
Se você abrir um short de $10,000.00 em Maverick Protocol hoje e fechar em Apr 06, 2026, nossa previsão mostra que pode lucrar cerca de $3,954.55, com um retorno de 39.55% nos próximos 90 dias.
Previsão de preço de longo prazo de Maverick Protocol para os anos 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'Maverick Protocol'
'name_with_ticker' => 'Maverick Protocol <small>MAV</small>'
'name_lang' => 'Maverick Protocol'
'name_lang_with_ticker' => 'Maverick Protocol <small>MAV</small>'
'name_with_lang' => 'Maverick Protocol'
'name_with_lang_with_ticker' => 'Maverick Protocol <small>MAV</small>'
'image' => '/uploads/coins/maverick-protocol.png?1717140033'
'price_for_sd' => 0.02894
'ticker' => 'MAV'
'marketcap' => '$24.41M'
'low24h' => '$0.02747'
'high24h' => '$0.02923'
'volume24h' => '$6.24M'
'current_supply' => '842.96M'
'max_supply' => '2B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.02894'
'change_24h_pct' => '5.2329%'
'ath_price' => '$0.8047'
'ath_days' => 675
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '2 de mar. de 2024'
'ath_pct' => '-96.41%'
'fdv' => '$57.92M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$1.42'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.029196'
'next_week_prediction_price_date' => '13 de janeiro de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.025585'
'next_month_prediction_price_date' => '5 de fevereiro de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.0100018'
'current_year_max_price_prediction' => '$0.029855'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.032463'
'grand_prediction_max_price' => '$0.093861'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.029497629459794
107 => 0.029607762900558
108 => 0.029855899166151
109 => 0.027735601944607
110 => 0.028687553148424
111 => 0.029246735294902
112 => 0.026720330013897
113 => 0.029196796385508
114 => 0.027698692287216
115 => 0.027190213255487
116 => 0.027874813284691
117 => 0.027608023987515
118 => 0.027378654216196
119 => 0.027250661942727
120 => 0.027753356647627
121 => 0.027729905338793
122 => 0.026907399232739
123 => 0.02583447354703
124 => 0.026194582624739
125 => 0.026063751620767
126 => 0.025589603184835
127 => 0.025909121981753
128 => 0.024502122904892
129 => 0.022081454122602
130 => 0.023680622067273
131 => 0.023619055840963
201 => 0.023588011357851
202 => 0.024789741870516
203 => 0.024674223210363
204 => 0.024464555711025
205 => 0.025585752476787
206 => 0.025176500575059
207 => 0.026437718504309
208 => 0.027268438202974
209 => 0.027057740816426
210 => 0.027839036708237
211 => 0.026202878810571
212 => 0.026746344832915
213 => 0.026858352426908
214 => 0.025571917082736
215 => 0.024693123491808
216 => 0.024634517978273
217 => 0.02311081099682
218 => 0.023924762967379
219 => 0.02464100701785
220 => 0.024297981700458
221 => 0.024189390132562
222 => 0.024744160902307
223 => 0.024787271342407
224 => 0.023804348739498
225 => 0.024008729473753
226 => 0.024861031111069
227 => 0.023987253659274
228 => 0.022289646801173
301 => 0.021868616829112
302 => 0.021812443669718
303 => 0.020670576993182
304 => 0.021896752065079
305 => 0.021361493786747
306 => 0.023052368274618
307 => 0.022086549835488
308 => 0.022044915332934
309 => 0.02198197867587
310 => 0.020999126857457
311 => 0.021214308942198
312 => 0.021929606965033
313 => 0.02218483335799
314 => 0.022158211154196
315 => 0.021926101614492
316 => 0.022032360173175
317 => 0.02169006433272
318 => 0.021569192547183
319 => 0.021187687943625
320 => 0.020626981569732
321 => 0.020704951230034
322 => 0.019594045186549
323 => 0.018988764613811
324 => 0.018821230928747
325 => 0.018597197883365
326 => 0.018846536057352
327 => 0.019590898129305
328 => 0.018693039545307
329 => 0.017153723980499
330 => 0.01724623946881
331 => 0.01745409430295
401 => 0.017066758194628
402 => 0.016700177074756
403 => 0.017018889616818
404 => 0.016366661319571
405 => 0.017532912976615
406 => 0.017501369137675
407 => 0.017936075634902
408 => 0.018207906528694
409 => 0.017581424324801
410 => 0.01742386574471
411 => 0.017513618272568
412 => 0.0160302089133
413 => 0.017814849442664
414 => 0.01783028308807
415 => 0.01769813084606
416 => 0.018648396833351
417 => 0.02065375446193
418 => 0.019899258256735
419 => 0.019607094521315
420 => 0.019051691046711
421 => 0.019791733200026
422 => 0.019734909509107
423 => 0.019477931229028
424 => 0.019322509963416
425 => 0.019608878410783
426 => 0.019287025743688
427 => 0.019229212160758
428 => 0.018878924749999
429 => 0.01875388808142
430 => 0.018661315909858
501 => 0.018559403044921
502 => 0.018784197429868
503 => 0.018274783779414
504 => 0.017660480855402
505 => 0.01760940821412
506 => 0.017750424267052
507 => 0.01768803516104
508 => 0.017609109519084
509 => 0.017458418974469
510 => 0.017413712308876
511 => 0.017558987283463
512 => 0.017394980307211
513 => 0.017636981534593
514 => 0.017571170591284
515 => 0.017203556011705
516 => 0.016745372137202
517 => 0.016741293339645
518 => 0.016642578375456
519 => 0.016516850026666
520 => 0.016481875276308
521 => 0.016992048535487
522 => 0.018048091913788
523 => 0.017840765329652
524 => 0.017990580034373
525 => 0.018727520104542
526 => 0.018961771192287
527 => 0.018795505318746
528 => 0.018567910336211
529 => 0.018577923360379
530 => 0.019355684313387
531 => 0.019404192310005
601 => 0.019526756368186
602 => 0.019684285819548
603 => 0.01882233326549
604 => 0.018537325472597
605 => 0.018402272968694
606 => 0.017986363528569
607 => 0.018434886202363
608 => 0.018173551247999
609 => 0.018208814261816
610 => 0.018185849177808
611 => 0.018198389666569
612 => 0.017532586985509
613 => 0.017775170488928
614 => 0.017371828364649
615 => 0.016831798537517
616 => 0.016829988168178
617 => 0.016962159703309
618 => 0.01688353890234
619 => 0.01667197234846
620 => 0.016702024378872
621 => 0.016438736970224
622 => 0.016733992237255
623 => 0.016742459101839
624 => 0.016628769741369
625 => 0.017083651217605
626 => 0.017270016529567
627 => 0.017195183757043
628 => 0.017264766062757
629 => 0.017849380685246
630 => 0.017944698377236
701 => 0.017987032199684
702 => 0.01793031048576
703 => 0.017275451744864
704 => 0.017304497514697
705 => 0.017091378927833
706 => 0.016911316179816
707 => 0.016918517745432
708 => 0.017011093404432
709 => 0.017415376736773
710 => 0.01826616717588
711 => 0.018298454051125
712 => 0.018337586685796
713 => 0.018178414594103
714 => 0.018130406768177
715 => 0.018193741482445
716 => 0.018513253638937
717 => 0.019335125652141
718 => 0.019044621191689
719 => 0.01880843654337
720 => 0.019015634154869
721 => 0.018983737706648
722 => 0.018714499584204
723 => 0.018706942966833
724 => 0.01819018892923
725 => 0.017999156727448
726 => 0.017839515921127
727 => 0.017665192328153
728 => 0.017561847458858
729 => 0.017720632147498
730 => 0.017756948084475
731 => 0.017409762587683
801 => 0.017362442487364
802 => 0.017645961658565
803 => 0.017521195441979
804 => 0.01764952058979
805 => 0.017679293124835
806 => 0.017674499060974
807 => 0.01754422880155
808 => 0.017627259180191
809 => 0.017430867582157
810 => 0.017217321216359
811 => 0.017081091939388
812 => 0.01696221382704
813 => 0.017028174313007
814 => 0.016793037224443
815 => 0.016717812137437
816 => 0.01759913035615
817 => 0.018250169600082
818 => 0.018240703231635
819 => 0.018183079148269
820 => 0.018097461449005
821 => 0.018506990170957
822 => 0.018364318553014
823 => 0.01846812407568
824 => 0.018494546937902
825 => 0.018574520983793
826 => 0.018603104831197
827 => 0.018516704591583
828 => 0.018226734834536
829 => 0.017504157769471
830 => 0.017167796195125
831 => 0.017056791273045
901 => 0.017060826091134
902 => 0.016949527796012
903 => 0.016982310131965
904 => 0.016938127437406
905 => 0.016854456102852
906 => 0.017023007843878
907 => 0.017042431861864
908 => 0.017003089871465
909 => 0.017012356334404
910 => 0.016686621457085
911 => 0.016711386372348
912 => 0.016573492177187
913 => 0.016547638677934
914 => 0.016199054160387
915 => 0.01558148615942
916 => 0.015923678780732
917 => 0.015510358213751
918 => 0.015353827452207
919 => 0.01609481973183
920 => 0.016020444658882
921 => 0.015893146864063
922 => 0.01570484689434
923 => 0.015635004603906
924 => 0.015210664956608
925 => 0.015185592706482
926 => 0.015395906893817
927 => 0.015298854132831
928 => 0.015162555299652
929 => 0.014668894742269
930 => 0.014113856830378
1001 => 0.014130609936094
1002 => 0.014307157169019
1003 => 0.014820492059387
1004 => 0.014619923236937
1005 => 0.014474408254987
1006 => 0.014447157673032
1007 => 0.014788255759156
1008 => 0.015270981013279
1009 => 0.015497464902145
1010 => 0.015273026246697
1011 => 0.015015203203953
1012 => 0.015030895697928
1013 => 0.015135290829982
1014 => 0.015146261282293
1015 => 0.014978444986104
1016 => 0.015025684290492
1017 => 0.014953923467474
1018 => 0.014513527429077
1019 => 0.014505562061253
1020 => 0.014397481771085
1021 => 0.014394209142853
1022 => 0.014210337607385
1023 => 0.014184612708529
1024 => 0.013819524614653
1025 => 0.014059826703631
1026 => 0.013898644678771
1027 => 0.01365570534831
1028 => 0.013613822516169
1029 => 0.01361256346766
1030 => 0.013862007839803
1031 => 0.014056911800909
1101 => 0.013901448509101
1102 => 0.013866052531086
1103 => 0.014243988972859
1104 => 0.014195893115677
1105 => 0.014154242413541
1106 => 0.015227758261349
1107 => 0.014377986700323
1108 => 0.014007437796451
1109 => 0.01354881316258
1110 => 0.013698143655954
1111 => 0.01372960978503
1112 => 0.012626700213875
1113 => 0.012179249938216
1114 => 0.012025701865418
1115 => 0.011937332778672
1116 => 0.011977603681171
1117 => 0.011574845952395
1118 => 0.011845505807131
1119 => 0.011496751658274
1120 => 0.011438281890274
1121 => 0.012061897510778
1122 => 0.012148669981262
1123 => 0.011778471664086
1124 => 0.012016198913376
1125 => 0.011929995708127
1126 => 0.011502730047171
1127 => 0.011486411641676
1128 => 0.011272024752123
1129 => 0.010936550783453
1130 => 0.010783230177803
1201 => 0.01070337947519
1202 => 0.010736327431347
1203 => 0.01071966793649
1204 => 0.01061095346363
1205 => 0.010725899322818
1206 => 0.010432260151501
1207 => 0.010315330667471
1208 => 0.010262516332278
1209 => 0.010001894666494
1210 => 0.010416659635737
1211 => 0.010498373559749
1212 => 0.010580248485435
1213 => 0.011292913815139
1214 => 0.011257311069238
1215 => 0.01157914255294
1216 => 0.011566636773293
1217 => 0.011474845220817
1218 => 0.011087591759898
1219 => 0.011241944087291
1220 => 0.010766871615252
1221 => 0.011122828213092
1222 => 0.010960384486941
1223 => 0.011067905825876
1224 => 0.010874572763662
1225 => 0.010981571262818
1226 => 0.010517750962519
1227 => 0.010084642092228
1228 => 0.01025893774487
1229 => 0.010448417052416
1230 => 0.010859256469607
1231 => 0.01061456390208
]
'min_raw' => 0.010001894666494
'max_raw' => 0.029855899166151
'avg_raw' => 0.019928896916322
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.0100018'
'max' => '$0.029855'
'avg' => '$0.019928'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.018947165333506
'max_diff' => 0.00090683916615061
'year' => 2026
]
1 => [
'items' => [
101 => 0.010702564602213
102 => 0.010407776987906
103 => 0.0097995459376721
104 => 0.0098029884593627
105 => 0.0097094253633179
106 => 0.0096285731878995
107 => 0.010642669786966
108 => 0.010516550844377
109 => 0.010315596815401
110 => 0.010584581768781
111 => 0.01065570565982
112 => 0.01065773045701
113 => 0.01085397493549
114 => 0.010958710648833
115 => 0.01097717077226
116 => 0.011285965699291
117 => 0.011389469685728
118 => 0.011815787957429
119 => 0.010949824555303
120 => 0.0109319906089
121 => 0.010588366938695
122 => 0.010370435374576
123 => 0.010603288899339
124 => 0.010809565334603
125 => 0.010594776522532
126 => 0.010622823406949
127 => 0.010334486975634
128 => 0.010437553682339
129 => 0.010526328614738
130 => 0.010477312315017
131 => 0.010403932541918
201 => 0.010792653019257
202 => 0.010770719886517
203 => 0.01113270533166
204 => 0.011414898871976
205 => 0.011920640144352
206 => 0.011392872761739
207 => 0.011373638820631
208 => 0.011561653680181
209 => 0.011389440901632
210 => 0.011498273433092
211 => 0.01190310554099
212 => 0.011911659005503
213 => 0.011768377454381
214 => 0.011759658758974
215 => 0.011787177548195
216 => 0.011948355956199
217 => 0.01189203526793
218 => 0.01195721099426
219 => 0.012038714238042
220 => 0.012375846210984
221 => 0.012457127588305
222 => 0.012259655980977
223 => 0.012277485456123
224 => 0.012203625654265
225 => 0.012132278011131
226 => 0.01229265709341
227 => 0.012585753018532
228 => 0.012583929683994
301 => 0.012651922241651
302 => 0.012694281041791
303 => 0.012512446063054
304 => 0.012394078178153
305 => 0.012439467957168
306 => 0.012512047202274
307 => 0.012415931486179
308 => 0.011822660761307
309 => 0.012002621200953
310 => 0.01197266698418
311 => 0.011930008536938
312 => 0.012110960150594
313 => 0.012093506926023
314 => 0.01157071508975
315 => 0.011604182526915
316 => 0.011572750355452
317 => 0.011674314131865
318 => 0.011383956124402
319 => 0.011473268291907
320 => 0.011529284046116
321 => 0.011562277755678
322 => 0.011681473658617
323 => 0.011667487395161
324 => 0.011680604252843
325 => 0.011857340310349
326 => 0.012751210640723
327 => 0.012799862030592
328 => 0.012560284793469
329 => 0.012655991174248
330 => 0.012472255851838
331 => 0.012595598604691
401 => 0.012679986583627
402 => 0.01229865353369
403 => 0.012276073465304
404 => 0.01209157980186
405 => 0.01219071624634
406 => 0.01203298303501
407 => 0.012071685247797
408 => 0.011963470486847
409 => 0.012158235511213
410 => 0.012376013071879
411 => 0.012431032284
412 => 0.01228630042417
413 => 0.012181505019359
414 => 0.011997518810263
415 => 0.01230349197639
416 => 0.012392967854528
417 => 0.012303021997693
418 => 0.012282179577308
419 => 0.012242683228341
420 => 0.012290558914453
421 => 0.01239248054968
422 => 0.012344416188704
423 => 0.012376163545914
424 => 0.012255175357963
425 => 0.012512506257998
426 => 0.012921209657306
427 => 0.012922523705565
428 => 0.012874459085504
429 => 0.012854792078542
430 => 0.012904109295529
501 => 0.012930861862647
502 => 0.013090344699153
503 => 0.013261476136801
504 => 0.014060071885808
505 => 0.013835829395119
506 => 0.014544391052312
507 => 0.015104771327935
508 => 0.015272804870135
509 => 0.0151182219179
510 => 0.014589401988712
511 => 0.014563455560118
512 => 0.01535373579634
513 => 0.015130445432479
514 => 0.015103885754202
515 => 0.014821335650617
516 => 0.014988357756347
517 => 0.014951827571757
518 => 0.014894162888265
519 => 0.015212829431136
520 => 0.015809344751833
521 => 0.015716372245017
522 => 0.015646972581549
523 => 0.015342883458173
524 => 0.01552601303121
525 => 0.015460804097868
526 => 0.015740983058119
527 => 0.01557501124879
528 => 0.015128753788361
529 => 0.015199821759818
530 => 0.015189079978901
531 => 0.015410145068999
601 => 0.015343786816124
602 => 0.015176122465015
603 => 0.015807305927316
604 => 0.015766320384101
605 => 0.01582442851378
606 => 0.015850009509519
607 => 0.016234199760321
608 => 0.016391590213358
609 => 0.016427320601705
610 => 0.016576829359076
611 => 0.016423600687622
612 => 0.017036624623627
613 => 0.017444249770131
614 => 0.017917727353995
615 => 0.018609605362796
616 => 0.018869757894335
617 => 0.018822763668047
618 => 0.019347337678026
619 => 0.020289985513332
620 => 0.019013299746896
621 => 0.020357652958988
622 => 0.019932046253344
623 => 0.018922940410599
624 => 0.018857965890903
625 => 0.019541344083569
626 => 0.021057011142191
627 => 0.020677353734559
628 => 0.021057632125701
629 => 0.020614017182758
630 => 0.020591987961761
701 => 0.021036086738089
702 => 0.022073747735545
703 => 0.021580793891794
704 => 0.020874023679537
705 => 0.021395891805705
706 => 0.020943801338203
707 => 0.019925114982767
708 => 0.020677063417695
709 => 0.020174256913517
710 => 0.0203210025821
711 => 0.021377827067059
712 => 0.021250667149018
713 => 0.021415223857655
714 => 0.02112478557411
715 => 0.020853470419366
716 => 0.020347040534908
717 => 0.020197111612812
718 => 0.020238546573002
719 => 0.020197091079703
720 => 0.01991374821368
721 => 0.01985256034874
722 => 0.019750577893137
723 => 0.019782186520492
724 => 0.019590429667939
725 => 0.019952314467693
726 => 0.020019483475445
727 => 0.020282833054018
728 => 0.020310174880895
729 => 0.021043599708674
730 => 0.020639641638237
731 => 0.020910651587948
801 => 0.020886409907201
802 => 0.018944810794088
803 => 0.019212346021001
804 => 0.019628546876898
805 => 0.019441048955463
806 => 0.019175970762311
807 => 0.018961905908747
808 => 0.018637575766343
809 => 0.019094064213568
810 => 0.019694297979536
811 => 0.020325397799736
812 => 0.021083622882409
813 => 0.020914395870669
814 => 0.020311223309226
815 => 0.020338281189714
816 => 0.020505542360011
817 => 0.020288923947197
818 => 0.020225038948365
819 => 0.020496765542192
820 => 0.020498636773906
821 => 0.020249391110754
822 => 0.019972400167635
823 => 0.01997123956547
824 => 0.019921951702557
825 => 0.020622785384077
826 => 0.021008173046636
827 => 0.021052357121065
828 => 0.021005199106386
829 => 0.021023348354601
830 => 0.020799099765196
831 => 0.021311665541723
901 => 0.021782046585765
902 => 0.021655974417737
903 => 0.021466974315647
904 => 0.021316426630854
905 => 0.021620510167674
906 => 0.021606969806451
907 => 0.021777938217697
908 => 0.021770182103001
909 => 0.021712691856747
910 => 0.021655976470894
911 => 0.021880846564982
912 => 0.021816087589188
913 => 0.021751228024818
914 => 0.02162114223897
915 => 0.021638823057763
916 => 0.021449855589206
917 => 0.021362430591688
918 => 0.020047768390922
919 => 0.019696447693051
920 => 0.019806980336394
921 => 0.019843370552561
922 => 0.019690475334618
923 => 0.019909687801589
924 => 0.019875523770815
925 => 0.020008436029268
926 => 0.019925398220566
927 => 0.0199288061212
928 => 0.020173002611064
929 => 0.020243893890958
930 => 0.020207838013841
1001 => 0.02023309031425
1002 => 0.020815018918856
1003 => 0.02073228728031
1004 => 0.020688337746235
1005 => 0.02070051206753
1006 => 0.020849207302697
1007 => 0.020890833850085
1008 => 0.020714459243757
1009 => 0.020797638527711
1010 => 0.021151805361762
1011 => 0.021275743709574
1012 => 0.021671295422005
1013 => 0.021503258024193
1014 => 0.021811697940365
1015 => 0.022759737087763
1016 => 0.023517096358023
1017 => 0.022820597473896
1018 => 0.024211391324607
1019 => 0.025294323834915
1020 => 0.02525275908145
1021 => 0.025063924749598
1022 => 0.023831034877864
1023 => 0.022696511236541
1024 => 0.023645588436926
1025 => 0.023648007829889
1026 => 0.023566481256681
1027 => 0.023060126712334
1028 => 0.023548861216125
1029 => 0.023587655186213
1030 => 0.023565940879113
1031 => 0.023177720037173
1101 => 0.022584978566735
1102 => 0.022700798831236
1103 => 0.022890514787158
1104 => 0.022531342903703
1105 => 0.022416565723948
1106 => 0.022629958338365
1107 => 0.023317553804136
1108 => 0.023187567864301
1109 => 0.023184173406098
1110 => 0.023740308379327
1111 => 0.023342235759934
1112 => 0.022702259695679
1113 => 0.022540657299208
1114 => 0.021967077660152
1115 => 0.022363251159868
1116 => 0.022377508738829
1117 => 0.02216052856183
1118 => 0.022719866441197
1119 => 0.022714712044169
1120 => 0.023245720114171
1121 => 0.024260808106492
1122 => 0.023960596637717
1123 => 0.023611483362445
1124 => 0.023649441655328
1125 => 0.024065750439206
1126 => 0.023814040645068
1127 => 0.023904557242023
1128 => 0.024065613431496
1129 => 0.024162782629405
1130 => 0.023635460503098
1201 => 0.023512516490723
1202 => 0.023261016188889
1203 => 0.023195404454615
1204 => 0.023400246202734
1205 => 0.02334627763927
1206 => 0.022376310444526
1207 => 0.022274943475828
1208 => 0.022278052256039
1209 => 0.022023160193513
1210 => 0.021634388617057
1211 => 0.02265605710764
1212 => 0.022574002829605
1213 => 0.022483421257151
1214 => 0.022494516982925
1215 => 0.02293798864713
1216 => 0.022680752686035
1217 => 0.02336465664875
1218 => 0.023224066554051
1219 => 0.023079870853917
1220 => 0.023059938615851
1221 => 0.023004435573498
1222 => 0.0228140949895
1223 => 0.022584247296626
1224 => 0.022432481940725
1225 => 0.02069277881381
1226 => 0.021015657594777
1227 => 0.021387100200954
1228 => 0.021515320700143
1229 => 0.021295990663692
1230 => 0.022822755476171
1231 => 0.023101710119683
]
'min_raw' => 0.0096285731878995
'max_raw' => 0.025294323834915
'avg_raw' => 0.017461448511407
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.009628'
'max' => '$0.025294'
'avg' => '$0.017461'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00037332147859474
'max_diff' => -0.004561575331236
'year' => 2027
]
2 => [
'items' => [
101 => 0.022256738308725
102 => 0.022098678582866
103 => 0.022833117845485
104 => 0.022390161188577
105 => 0.02258962454406
106 => 0.022158493870128
107 => 0.023034518114807
108 => 0.023027844277804
109 => 0.02268705106072
110 => 0.022975087154148
111 => 0.022925033794695
112 => 0.022540279091943
113 => 0.023046715525158
114 => 0.023046966711311
115 => 0.02271896064935
116 => 0.02233592137874
117 => 0.022267443004139
118 => 0.022215853747652
119 => 0.022576936749443
120 => 0.022900682639772
121 => 0.023503093478261
122 => 0.023654553875986
123 => 0.024245713891594
124 => 0.023893706885358
125 => 0.024049747031969
126 => 0.024219150684341
127 => 0.024300369024901
128 => 0.024168028097375
129 => 0.025086342932785
130 => 0.025163876841334
131 => 0.025189873290204
201 => 0.024880222694544
202 => 0.025155264898114
203 => 0.025026581759504
204 => 0.025361379536963
205 => 0.025413880103381
206 => 0.025369413991386
207 => 0.025386078499833
208 => 0.024602458789648
209 => 0.024561823973751
210 => 0.024007765375689
211 => 0.024233548349794
212 => 0.023811457901765
213 => 0.023945307130848
214 => 0.024004306595666
215 => 0.023973488623435
216 => 0.024246313780388
217 => 0.024014356662481
218 => 0.023402183691044
219 => 0.02278984393349
220 => 0.022782156506635
221 => 0.022620938257166
222 => 0.022504406991395
223 => 0.022526855047351
224 => 0.022605964924487
225 => 0.022499808981522
226 => 0.022522462734196
227 => 0.022898665969758
228 => 0.022974110845691
229 => 0.022717719679054
301 => 0.021688272147938
302 => 0.021435643141629
303 => 0.021617227861513
304 => 0.021530442060962
305 => 0.017376747125302
306 => 0.018352596137807
307 => 0.017772779791278
308 => 0.018039985839826
309 => 0.017448143492734
310 => 0.017730601681882
311 => 0.017678441968068
312 => 0.019247578302705
313 => 0.019223078397116
314 => 0.019234805205415
315 => 0.018675054091255
316 => 0.019566752815011
317 => 0.020006035670782
318 => 0.019924736105314
319 => 0.019945197454412
320 => 0.019593603685214
321 => 0.019238209401647
322 => 0.018844022446383
323 => 0.019576373086283
324 => 0.019494948196769
325 => 0.019681707597565
326 => 0.020156689337045
327 => 0.020226632202463
328 => 0.020320636122876
329 => 0.020286942409063
330 => 0.021089663368456
331 => 0.02099244856375
401 => 0.021226708272484
402 => 0.020744818278292
403 => 0.020199514008447
404 => 0.020303158522805
405 => 0.020293176722616
406 => 0.02016609694963
407 => 0.020051375012699
408 => 0.019860395310415
409 => 0.020464683348121
410 => 0.02044015035735
411 => 0.020837310961455
412 => 0.020767108966867
413 => 0.020298282865667
414 => 0.020315027081589
415 => 0.020427639980661
416 => 0.020817394510142
417 => 0.020933100191003
418 => 0.020879500709554
419 => 0.021006366706454
420 => 0.02110663641766
421 => 0.021018959038402
422 => 0.022260285833471
423 => 0.021744800403156
424 => 0.021996044415167
425 => 0.022055964631616
426 => 0.021902480257168
427 => 0.021935765522122
428 => 0.021986183628836
429 => 0.022292312499926
430 => 0.023095683236768
501 => 0.023451490667385
502 => 0.024521954877628
503 => 0.023421945813351
504 => 0.023356675827767
505 => 0.023549498756954
506 => 0.02417797456851
507 => 0.024687295184046
508 => 0.02485626621563
509 => 0.024878598526862
510 => 0.025195599415096
511 => 0.025377298412515
512 => 0.025157107169313
513 => 0.024970518145684
514 => 0.024302179423325
515 => 0.024379541450264
516 => 0.024912489099643
517 => 0.025665309044849
518 => 0.026311306875402
519 => 0.02608510095044
520 => 0.027810892481406
521 => 0.027981997662475
522 => 0.027958356458944
523 => 0.028348159525284
524 => 0.027574479820613
525 => 0.027243716757527
526 => 0.025010860810468
527 => 0.025638202254581
528 => 0.026550079886071
529 => 0.026429389462178
530 => 0.025767159551631
531 => 0.026310804514631
601 => 0.026131058488514
602 => 0.025989285340045
603 => 0.026638775617257
604 => 0.025924634377872
605 => 0.026542955780918
606 => 0.025749952185796
607 => 0.026086134240051
608 => 0.02589530104676
609 => 0.026018793510456
610 => 0.025296859091054
611 => 0.025686397379796
612 => 0.025280653017559
613 => 0.025280460641902
614 => 0.025271503812617
615 => 0.025748860255442
616 => 0.025764426831905
617 => 0.025411659699412
618 => 0.025360820444361
619 => 0.025548799816216
620 => 0.02532872520365
621 => 0.025431696729736
622 => 0.025331844106276
623 => 0.025309365177517
624 => 0.025130249248692
625 => 0.025053081181659
626 => 0.025083340769118
627 => 0.024980049197232
628 => 0.02491781228895
629 => 0.02525912332508
630 => 0.025076774606924
701 => 0.025231175768773
702 => 0.025055216157866
703 => 0.024445263484506
704 => 0.024094473251924
705 => 0.02294232919459
706 => 0.02326907582002
707 => 0.023485709170723
708 => 0.023414111849608
709 => 0.023567930599849
710 => 0.02357737382185
711 => 0.02352736577815
712 => 0.023469462869973
713 => 0.023441278936503
714 => 0.023651338885918
715 => 0.023773285756846
716 => 0.023507451225647
717 => 0.023445169914407
718 => 0.023713943302576
719 => 0.023877894914094
720 => 0.025088421497089
721 => 0.024998741777871
722 => 0.025223820274351
723 => 0.025198479889758
724 => 0.025434398011886
725 => 0.025820024435127
726 => 0.025035938093834
727 => 0.025172028371017
728 => 0.025138662177835
729 => 0.025502945525908
730 => 0.025504082778757
731 => 0.025285676714285
801 => 0.025404078185069
802 => 0.025337989732252
803 => 0.025457420498883
804 => 0.024997544050546
805 => 0.025557623924026
806 => 0.025875153121539
807 => 0.025879562014754
808 => 0.026030068334308
809 => 0.026182991471713
810 => 0.026476514117163
811 => 0.026174805284441
812 => 0.025632060465137
813 => 0.025671244888035
814 => 0.02535303379906
815 => 0.025358382984955
816 => 0.025329828611423
817 => 0.025415522435865
818 => 0.025016349026029
819 => 0.025110034227461
820 => 0.024978874396836
821 => 0.02517174325516
822 => 0.024964248245968
823 => 0.025138646087646
824 => 0.025213910414735
825 => 0.025491637402016
826 => 0.024923227744134
827 => 0.02376420197376
828 => 0.024007843242522
829 => 0.023647478668415
830 => 0.023680831781753
831 => 0.023748210378805
901 => 0.023529814300854
902 => 0.023571477390076
903 => 0.02356998889135
904 => 0.023557161813485
905 => 0.023500348558753
906 => 0.023417958099232
907 => 0.023746176331517
908 => 0.023801947004934
909 => 0.023925918303416
910 => 0.024294772797163
911 => 0.024257915535049
912 => 0.024318031258749
913 => 0.024186798971448
914 => 0.023686919271178
915 => 0.023714065143896
916 => 0.023375555676114
917 => 0.023917261855252
918 => 0.02378897868186
919 => 0.023706273685442
920 => 0.023683706860913
921 => 0.024053475673606
922 => 0.024164116297779
923 => 0.02409517248561
924 => 0.02395376671544
925 => 0.02422530759703
926 => 0.024297960481554
927 => 0.024314224783063
928 => 0.024795343162442
929 => 0.024341113955912
930 => 0.024450451440574
1001 => 0.025303471284144
1002 => 0.024529899994718
1003 => 0.024939677959425
1004 => 0.024919621460435
1005 => 0.025129250001049
1006 => 0.024902425801506
1007 => 0.024905237559305
1008 => 0.025091373501903
1009 => 0.024829979140319
1010 => 0.024765254220393
1011 => 0.024675837207085
1012 => 0.024871075984388
1013 => 0.024988112801491
1014 => 0.025931343593269
1015 => 0.026540713701307
1016 => 0.026514259337818
1017 => 0.026756002699617
1018 => 0.026647095101011
1019 => 0.02629540373674
1020 => 0.026895698011358
1021 => 0.026705739785489
1022 => 0.026721399710831
1023 => 0.026720816847627
1024 => 0.026847122461393
1025 => 0.026757623358301
1026 => 0.02658121143921
1027 => 0.026698321903902
1028 => 0.027046098116279
1029 => 0.028125606150574
1030 => 0.028729713148145
1031 => 0.028089238150781
1101 => 0.028531029227661
1102 => 0.028266112007789
1103 => 0.028217968668334
1104 => 0.028495446112719
1105 => 0.028773409244637
1106 => 0.028755704194802
1107 => 0.028553917234593
1108 => 0.028439932900926
1109 => 0.029303060463007
1110 => 0.029938998147754
1111 => 0.029895631461034
1112 => 0.030087037912612
1113 => 0.030649013174421
1114 => 0.030700393149458
1115 => 0.030693920453559
1116 => 0.030566569824484
1117 => 0.031119907451446
1118 => 0.031581511434906
1119 => 0.030537091833367
1120 => 0.030934793145177
1121 => 0.031113334077184
1122 => 0.031375485136078
1123 => 0.031817777914051
1124 => 0.032298225183296
1125 => 0.032366165695003
1126 => 0.032317958650694
1127 => 0.032001090761511
1128 => 0.032526801896447
1129 => 0.032834751149848
1130 => 0.033018127882956
1201 => 0.033483140767138
1202 => 0.031114436685197
1203 => 0.029437750203768
1204 => 0.029175911398047
1205 => 0.029708370905784
1206 => 0.029848776231689
1207 => 0.02979217902087
1208 => 0.027904915948356
1209 => 0.029165975348548
1210 => 0.030522769230269
1211 => 0.030574889208983
1212 => 0.031254128595394
1213 => 0.031475316782573
1214 => 0.032022193518576
1215 => 0.031987986229841
1216 => 0.032121142012348
1217 => 0.032090531803886
1218 => 0.033103505798848
1219 => 0.034220966543385
1220 => 0.03418227243111
1221 => 0.034021624227887
1222 => 0.034260214204262
1223 => 0.035413553446995
1224 => 0.035307372451409
1225 => 0.035410518244145
1226 => 0.036770370210679
1227 => 0.03853837120386
1228 => 0.03771695723813
1229 => 0.039499189188263
1230 => 0.040621009728816
1231 => 0.042561082355292
]
'min_raw' => 0.017376747125302
'max_raw' => 0.042561082355292
'avg_raw' => 0.029968914740297
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.017376'
'max' => '$0.042561'
'avg' => '$0.029968'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0077481739374023
'max_diff' => 0.017266758520377
'year' => 2028
]
3 => [
'items' => [
101 => 0.042318175707398
102 => 0.043073431743975
103 => 0.041883322111521
104 => 0.039150589834566
105 => 0.038718124491259
106 => 0.039583931060326
107 => 0.041712432026209
108 => 0.039516896990219
109 => 0.039961050868528
110 => 0.039833134521695
111 => 0.039826318403182
112 => 0.040086461923676
113 => 0.039709110179026
114 => 0.038171711287041
115 => 0.038876292139289
116 => 0.038604219635485
117 => 0.038906104362805
118 => 0.040535251729418
119 => 0.039814966844616
120 => 0.039056205229669
121 => 0.040007860677494
122 => 0.041219645086866
123 => 0.041143813796314
124 => 0.040996669397621
125 => 0.041826114668821
126 => 0.04319611525218
127 => 0.043566420904754
128 => 0.043839772966918
129 => 0.04387746359797
130 => 0.044265700522397
131 => 0.042178052731449
201 => 0.045491203390281
202 => 0.046063292985122
203 => 0.045955763851976
204 => 0.046591617359431
205 => 0.046404533127491
206 => 0.046133477428027
207 => 0.047141440487262
208 => 0.045985892178273
209 => 0.04434573683315
210 => 0.043445915172221
211 => 0.044630872921875
212 => 0.045354485270263
213 => 0.045832747002157
214 => 0.045977468713255
215 => 0.042340110886689
216 => 0.040379776755284
217 => 0.041636328458238
218 => 0.043169408258409
219 => 0.042169536395752
220 => 0.04220872947976
221 => 0.040783174965315
222 => 0.043295538201014
223 => 0.042929508009873
224 => 0.044828473289007
225 => 0.044375269984993
226 => 0.045923802452719
227 => 0.045516021956992
228 => 0.047208695996052
301 => 0.047883949497554
302 => 0.04901780522139
303 => 0.049851874107467
304 => 0.050341655310567
305 => 0.050312250684256
306 => 0.052253007818964
307 => 0.051108611141516
308 => 0.049670979201054
309 => 0.049644976974922
310 => 0.050389546928289
311 => 0.051949961287756
312 => 0.052354554028061
313 => 0.052580666174334
314 => 0.052234367551296
315 => 0.050992206977575
316 => 0.05045584833974
317 => 0.050912841438981
318 => 0.050353978148474
319 => 0.051318732977234
320 => 0.052643547417634
321 => 0.052369978474576
322 => 0.053284478435473
323 => 0.054230889686799
324 => 0.055584300282185
325 => 0.055938131928468
326 => 0.056523002184762
327 => 0.057125025798359
328 => 0.057318379558054
329 => 0.057687551879462
330 => 0.0576856061591
331 => 0.058798131797825
401 => 0.06002528202939
402 => 0.060488502833213
403 => 0.061553653529459
404 => 0.05972962028947
405 => 0.061113170454985
406 => 0.062361167336787
407 => 0.060873254005431
408 => 0.062923995893362
409 => 0.063003621553789
410 => 0.064205874490304
411 => 0.062987160815353
412 => 0.062263492525439
413 => 0.064352695762923
414 => 0.065363595400257
415 => 0.065059104202518
416 => 0.06274191115314
417 => 0.061393205409317
418 => 0.057863382331823
419 => 0.062044610244124
420 => 0.064081164392115
421 => 0.062736636969892
422 => 0.063414738395172
423 => 0.067114239896373
424 => 0.068522770543047
425 => 0.068229806014911
426 => 0.068279312197559
427 => 0.069039329767865
428 => 0.07240966622392
429 => 0.070390082495664
430 => 0.071933978583557
501 => 0.072752855501644
502 => 0.07351347401967
503 => 0.07164563533535
504 => 0.06921560465105
505 => 0.068445911927584
506 => 0.062602950215491
507 => 0.06229879868368
508 => 0.06212806921214
509 => 0.061051644044243
510 => 0.060205868719943
511 => 0.059533276780436
512 => 0.057768194678214
513 => 0.058363858073185
514 => 0.055550685603508
515 => 0.057350453656897
516 => 0.052860562468868
517 => 0.056599877268095
518 => 0.054564738228657
519 => 0.055931279358751
520 => 0.055926511625484
521 => 0.053410276142722
522 => 0.051958964028759
523 => 0.052883796593688
524 => 0.053875290516593
525 => 0.054036157069798
526 => 0.055321654821484
527 => 0.055680409612297
528 => 0.054593365847472
529 => 0.052767519453733
530 => 0.053191621927876
531 => 0.051950369605657
601 => 0.049775122655048
602 => 0.051337422991143
603 => 0.051870861015383
604 => 0.052106457636181
605 => 0.049967352089058
606 => 0.049295198683911
607 => 0.048937349850924
608 => 0.052491387789336
609 => 0.05268608601039
610 => 0.051689982383927
611 => 0.05619246522996
612 => 0.055173414693198
613 => 0.056311943816204
614 => 0.053153139073579
615 => 0.053273809668642
616 => 0.051778380881392
617 => 0.052615721077665
618 => 0.052023916015674
619 => 0.052548072264563
620 => 0.05286224935897
621 => 0.054357432761071
622 => 0.056616949860801
623 => 0.05413410222077
624 => 0.053052289948975
625 => 0.053723440198053
626 => 0.055510801754494
627 => 0.058218746005858
628 => 0.056615588506594
629 => 0.057327042581387
630 => 0.057482463646341
701 => 0.0563003546585
702 => 0.058262332050382
703 => 0.059313771673768
704 => 0.060392331162588
705 => 0.061328814146179
706 => 0.059961530784722
707 => 0.061424719973852
708 => 0.060245647775074
709 => 0.059187898122527
710 => 0.05918950229213
711 => 0.05852596048383
712 => 0.057240264618601
713 => 0.05700316257494
714 => 0.058236597348755
715 => 0.059225695230648
716 => 0.05930716206966
717 => 0.059854777478759
718 => 0.060178850636977
719 => 0.063355208143607
720 => 0.064632765408982
721 => 0.06619493825016
722 => 0.066803492611036
723 => 0.068635023058459
724 => 0.067155913472535
725 => 0.066835898809584
726 => 0.062393205033178
727 => 0.06312069589018
728 => 0.064285478944668
729 => 0.062412411876731
730 => 0.063600441810728
731 => 0.063834984085614
801 => 0.0623487657745
802 => 0.063142619190168
803 => 0.061034379879288
804 => 0.056662903716625
805 => 0.058267198753004
806 => 0.059448499899649
807 => 0.057762637510006
808 => 0.060784480591557
809 => 0.059019182246818
810 => 0.0584596674208
811 => 0.056276800603065
812 => 0.057307029714787
813 => 0.05870042933985
814 => 0.057839470371654
815 => 0.0596260895043
816 => 0.062156418670045
817 => 0.063959681917262
818 => 0.064098114078175
819 => 0.062938736619469
820 => 0.064796646396093
821 => 0.06481017924049
822 => 0.062714449422673
823 => 0.061430826578333
824 => 0.061139184767333
825 => 0.061867763190956
826 => 0.06275239190023
827 => 0.064147204814837
828 => 0.064990061046811
829 => 0.067187783083397
830 => 0.067782423652869
831 => 0.068435753354962
901 => 0.069308803316377
902 => 0.070357123640471
903 => 0.068063458452262
904 => 0.068154590046117
905 => 0.066018760780813
906 => 0.063736320901936
907 => 0.065468408259856
908 => 0.067732882070411
909 => 0.067213409276249
910 => 0.067154957975039
911 => 0.067253256850635
912 => 0.066861591328231
913 => 0.065090102686203
914 => 0.064200472180283
915 => 0.065348322501868
916 => 0.06595835386285
917 => 0.066904459303409
918 => 0.066787831837997
919 => 0.069224897848569
920 => 0.070171868007226
921 => 0.069929592517504
922 => 0.069974177038298
923 => 0.071688621277357
924 => 0.07359543587354
925 => 0.075381419369214
926 => 0.077198198490788
927 => 0.075008000349634
928 => 0.073895952806197
929 => 0.075043302012241
930 => 0.074434502373405
1001 => 0.077932845679858
1002 => 0.078175063380149
1003 => 0.081673153716564
1004 => 0.084993257990669
1005 => 0.08290795998195
1006 => 0.084874302080287
1007 => 0.087001061377862
1008 => 0.091103925117145
1009 => 0.089722224950242
1010 => 0.088663864276395
1011 => 0.087663718553572
1012 => 0.089744863034105
1013 => 0.092422222161215
1014 => 0.092998899673768
1015 => 0.093933337551868
1016 => 0.092950890380673
1017 => 0.094134139785371
1018 => 0.09831153013009
1019 => 0.097182762384103
1020 => 0.09557973072633
1021 => 0.098877379202652
1022 => 0.10007078536695
1023 => 0.10844673481965
1024 => 0.11902171699689
1025 => 0.11464360493644
1026 => 0.11192596949972
1027 => 0.11256467829052
1028 => 0.11642630379591
1029 => 0.11766653534638
1030 => 0.11429515845876
1031 => 0.11548598577073
1101 => 0.12204756133926
1102 => 0.12556763611123
1103 => 0.12078690176178
1104 => 0.10759704529834
1105 => 0.095435395264697
1106 => 0.098661212499857
1107 => 0.098295504934153
1108 => 0.10534509930931
1109 => 0.097155841646669
1110 => 0.097293727743186
1111 => 0.10448910026437
1112 => 0.10256949823564
1113 => 0.099459988793131
1114 => 0.095458098124817
1115 => 0.088060233094354
1116 => 0.081507737732146
1117 => 0.094358690086996
1118 => 0.093804533653515
1119 => 0.093002033016451
1120 => 0.094787911344598
1121 => 0.10345962957567
1122 => 0.10325971840283
1123 => 0.10198798551681
1124 => 0.10295258370232
1125 => 0.099290890067447
1126 => 0.10023459189237
1127 => 0.095433468797196
1128 => 0.097603776948825
1129 => 0.099453317182419
1130 => 0.099824639767224
1201 => 0.10066124851099
1202 => 0.093512518394133
1203 => 0.096722088340913
1204 => 0.098607409988611
1205 => 0.090089458195721
1206 => 0.098439037468969
1207 => 0.093388074907287
1208 => 0.091673702350941
1209 => 0.093981879146652
1210 => 0.093082380404588
1211 => 0.092309044206499
1212 => 0.091877509320364
1213 => 0.093572379614957
1214 => 0.093493311889906
1215 => 0.090720175127803
1216 => 0.087102731269154
1217 => 0.088316864166664
1218 => 0.087875758302442
1219 => 0.086277133746713
1220 => 0.087354413678609
1221 => 0.082610618057436
1222 => 0.074449164252247
1223 => 0.079840870628046
1224 => 0.079633295797625
1225 => 0.079528627155358
1226 => 0.083580345480952
1227 => 0.083190866252992
1228 => 0.082483957640454
1229 => 0.08626415081568
1230 => 0.084884329455949
1231 => 0.089136613759839
]
'min_raw' => 0.038171711287041
'max_raw' => 0.12556763611123
'avg_raw' => 0.081869673699134
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.038171'
'max' => '$0.125567'
'avg' => '$0.081869'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.020794964161739
'max_diff' => 0.083006553755935
'year' => 2029
]
4 => [
'items' => [
101 => 0.091937443222887
102 => 0.091227062273717
103 => 0.093861255921297
104 => 0.088344835336418
105 => 0.090177168974336
106 => 0.090554810397606
107 => 0.086217503818681
108 => 0.083254589871458
109 => 0.08305699729087
110 => 0.077919712821076
111 => 0.080664008718128
112 => 0.083078875540854
113 => 0.081922341734004
114 => 0.08155621768122
115 => 0.083426666064275
116 => 0.083572015922945
117 => 0.080258023741772
118 => 0.080947107656722
119 => 0.083820702132731
120 => 0.08087470044881
121 => 0.075151100403597
122 => 0.073731568457422
123 => 0.073542176728638
124 => 0.069692293506113
125 => 0.073826428369822
126 => 0.072021767713887
127 => 0.07772266910283
128 => 0.074466344804013
129 => 0.074325971171824
130 => 0.074113775838435
131 => 0.070800022312136
201 => 0.071525523734373
202 => 0.073937200958874
203 => 0.074797714562064
204 => 0.074707955943272
205 => 0.073925382424788
206 => 0.074283640574125
207 => 0.073129566249697
208 => 0.072722038585761
209 => 0.071435769179066
210 => 0.069545308492217
211 => 0.069808188645592
212 => 0.066062691358997
213 => 0.064021945648674
214 => 0.063457094132652
215 => 0.062701751078659
216 => 0.063542412140492
217 => 0.066052080835781
218 => 0.063024887933347
219 => 0.057834978035016
220 => 0.058146900463082
221 => 0.058847697548346
222 => 0.057541766816193
223 => 0.056305812976669
224 => 0.057380374564031
225 => 0.055181341322735
226 => 0.059113440209551
227 => 0.059007087954242
228 => 0.060472731259884
301 => 0.061389228096929
302 => 0.059276999606913
303 => 0.058745779853748
304 => 0.059048386767743
305 => 0.054046968544637
306 => 0.060064008689009
307 => 0.060116044302041
308 => 0.059670483791528
309 => 0.062874371913133
310 => 0.069635575167485
311 => 0.067091738534427
312 => 0.066106688102238
313 => 0.064234106510578
314 => 0.066729210298571
315 => 0.066537625257336
316 => 0.0656712050444
317 => 0.065147191396221
318 => 0.066112702610127
319 => 0.065027553871979
320 => 0.064832631340714
321 => 0.063651612879057
322 => 0.063230043021161
323 => 0.062917929481555
324 => 0.062574323142092
325 => 0.063332233105583
326 => 0.061614709416952
327 => 0.059543544219387
328 => 0.059371349243527
329 => 0.059846794711413
330 => 0.059636445484626
331 => 0.059370342172357
401 => 0.05886227848031
402 => 0.058711546835943
403 => 0.059201351555538
404 => 0.058648390584505
405 => 0.059464314618607
406 => 0.059242428428467
407 => 0.058002990207389
408 => 0.056458191285124
409 => 0.05644443933439
410 => 0.056111614940566
411 => 0.055687713034548
412 => 0.055569793221856
413 => 0.057289877984339
414 => 0.060850401964875
415 => 0.060151385911378
416 => 0.060656496648077
417 => 0.063141141546161
418 => 0.063930935443384
419 => 0.063370358442429
420 => 0.062603006068638
421 => 0.062636765678706
422 => 0.065259041033308
423 => 0.065422589130626
424 => 0.065835822409933
425 => 0.066366943953553
426 => 0.063460810737942
427 => 0.062499887065595
428 => 0.062044548119621
429 => 0.060642280404372
430 => 0.06215450591392
501 => 0.061273396869459
502 => 0.061392288582528
503 => 0.061314860198422
504 => 0.061357141331828
505 => 0.059112341107776
506 => 0.059930228326194
507 => 0.058570332193739
508 => 0.056749583927886
509 => 0.056743480141262
510 => 0.057189105699877
511 => 0.056924030180283
512 => 0.05621071877277
513 => 0.056312041291472
514 => 0.055424349411075
515 => 0.056419823157933
516 => 0.056448369783016
517 => 0.056065058166655
518 => 0.057598722822594
519 => 0.058227066483483
520 => 0.057974762566264
521 => 0.058209364168061
522 => 0.060180433184269
523 => 0.060501803437682
524 => 0.06064453487572
525 => 0.060453293657041
526 => 0.058245391691334
527 => 0.058343321532238
528 => 0.05762477733716
529 => 0.057017683210642
530 => 0.057041963791914
531 => 0.057354089089656
601 => 0.058717158570805
602 => 0.061585657936547
603 => 0.061694515390632
604 => 0.061826453800578
605 => 0.061289793980395
606 => 0.061127932243486
607 => 0.061341469654529
608 => 0.06241872719777
609 => 0.065189726071557
610 => 0.064210270000769
611 => 0.063413956969076
612 => 0.064112538182322
613 => 0.064004997080203
614 => 0.063097241952781
615 => 0.063071764289727
616 => 0.061329491973333
617 => 0.060685413567584
618 => 0.060147173443307
619 => 0.05955942927871
620 => 0.059210994836575
621 => 0.059746348500317
622 => 0.059868790217333
623 => 0.05869823007518
624 => 0.058538687053173
625 => 0.059494591733551
626 => 0.059073933723435
627 => 0.059506590918655
628 => 0.059606971099211
629 => 0.05959080757819
630 => 0.059151592303365
701 => 0.05943153502195
702 => 0.058769387037554
703 => 0.058049400555934
704 => 0.057590094037404
705 => 0.057189288181817
706 => 0.05741167856547
707 => 0.056618897454628
708 => 0.056365270821738
709 => 0.059336696727804
710 => 0.061531720992827
711 => 0.061499804470688
712 => 0.061305520850433
713 => 0.061016854799728
714 => 0.062397609478171
715 => 0.061916582157263
716 => 0.062266569724401
717 => 0.06235565624917
718 => 0.0626252943285
719 => 0.062721666765684
720 => 0.062430362325552
721 => 0.061452709044625
722 => 0.059016490021042
723 => 0.057882423489116
724 => 0.057508162644209
725 => 0.057521766315099
726 => 0.057146516342495
727 => 0.057257044276951
728 => 0.057108079237506
729 => 0.056825975491311
730 => 0.05739425945409
731 => 0.057459748886868
801 => 0.057327104619468
802 => 0.057358347146234
803 => 0.056260109265268
804 => 0.05634360590611
805 => 0.055878685999659
806 => 0.055791519121892
807 => 0.05461624208359
808 => 0.052534068451108
809 => 0.053687794764988
810 => 0.05229425561629
811 => 0.051766501225115
812 => 0.054264808430293
813 => 0.054014047679149
814 => 0.053584854276268
815 => 0.052949987781664
816 => 0.052714509623231
817 => 0.051283818875919
818 => 0.051199286034129
819 => 0.051908375000397
820 => 0.051581154840726
821 => 0.051121613808583
822 => 0.049457202773087
823 => 0.047585853701634
824 => 0.04764233796722
825 => 0.048237579289162
826 => 0.049968323711937
827 => 0.049292091923777
828 => 0.0488014780026
829 => 0.048709600762964
830 => 0.049859636775039
831 => 0.051487178672117
901 => 0.052250784916029
902 => 0.051494074319379
903 => 0.050624805930139
904 => 0.05067771426919
905 => 0.051029689745544
906 => 0.051066677391444
907 => 0.050500873032283
908 => 0.050660143645169
909 => 0.050418197020185
910 => 0.048933371029259
911 => 0.048906515235518
912 => 0.048542114991291
913 => 0.048531081096718
914 => 0.047911145377387
915 => 0.047824412084839
916 => 0.0465934920867
917 => 0.047403687357044
918 => 0.046860250906858
919 => 0.046041163992729
920 => 0.0458999531
921 => 0.045895708130047
922 => 0.046736727246376
923 => 0.047393859559005
924 => 0.046869704216575
925 => 0.046750364205428
926 => 0.048024603305548
927 => 0.04786244476511
928 => 0.047722016514902
929 => 0.05134145014627
930 => 0.048476385999114
1001 => 0.047227054498809
1002 => 0.045680769525566
1003 => 0.046184247709899
1004 => 0.046290337960972
1005 => 0.042571801339137
1006 => 0.041063191494772
1007 => 0.040545493446949
1008 => 0.040247550901251
1009 => 0.040383327060652
1010 => 0.039025401258439
1011 => 0.039937949855546
1012 => 0.03876210089344
1013 => 0.038564965988399
1014 => 0.04066752959238
1015 => 0.040960089034876
1016 => 0.039711939562095
1017 => 0.040513453580665
1018 => 0.040222813455653
1019 => 0.038782257449004
1020 => 0.038727238805563
1021 => 0.038004418439418
1022 => 0.036873344532004
1023 => 0.036356413405552
1024 => 0.036087191186693
1025 => 0.036198277521231
1026 => 0.036142108871191
1027 => 0.035775570435741
1028 => 0.036163118425256
1029 => 0.035173093457929
1030 => 0.034778857538767
1031 => 0.034600790320285
1101 => 0.033722086178071
1102 => 0.035120495229838
1103 => 0.03539599942973
1104 => 0.035672046458002
1105 => 0.038074847373805
1106 => 0.037954810230296
1107 => 0.039039887547154
1108 => 0.03899772343795
1109 => 0.038688241810095
1110 => 0.037382589729432
1111 => 0.037902999377773
1112 => 0.036301259369793
1113 => 0.037501391891506
1114 => 0.036953701527328
1115 => 0.03731621722845
1116 => 0.03666438131111
1117 => 0.037025134221411
1118 => 0.035461331696056
1119 => 0.034001074901174
1120 => 0.034588724862988
1121 => 0.035227567577404
1122 => 0.036612741356355
1123 => 0.035787743281047
1124 => 0.036084443785559
1125 => 0.03509054676251
1126 => 0.03303985331131
1127 => 0.033051460013539
1128 => 0.032736005502857
1129 => 0.032463406748516
1130 => 0.035882504234232
1201 => 0.035457285413951
1202 => 0.034779754875096
1203 => 0.035686656425347
1204 => 0.035926455589696
1205 => 0.035933282334787
1206 => 0.036594934295333
1207 => 0.036948058065285
1208 => 0.037010297660264
1209 => 0.038051421316121
1210 => 0.03840039223281
1211 => 0.039837754050443
1212 => 0.036918097980543
1213 => 0.036857969585116
1214 => 0.035699418389982
1215 => 0.034964646906058
1216 => 0.03574972882211
1217 => 0.036445204225364
1218 => 0.035721028749391
1219 => 0.035815590778374
1220 => 0.03484344436919
1221 => 0.035190940966734
1222 => 0.035490251849385
1223 => 0.035324989972665
1224 => 0.035077584944451
1225 => 0.036388183173395
1226 => 0.036314234085042
1227 => 0.037534693286357
1228 => 0.038486128509657
1229 => 0.0401912705192
1230 => 0.038411865941178
1231 => 0.038347017365863
]
'min_raw' => 0.032463406748516
'max_raw' => 0.093861255921297
'avg_raw' => 0.063162331334906
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.032463'
'max' => '$0.093861'
'avg' => '$0.063162'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0057083045385255
'max_diff' => -0.03170638018993
'year' => 2030
]
5 => [
'items' => [
101 => 0.038980922591613
102 => 0.038400295185223
103 => 0.038767231663485
104 => 0.040132151379737
105 => 0.040160989982529
106 => 0.03967790622932
107 => 0.039648510539035
108 => 0.039741292058196
109 => 0.040284716313899
110 => 0.040094827181215
111 => 0.040314571692961
112 => 0.040589365569747
113 => 0.041726029554322
114 => 0.042000075392845
115 => 0.04133428608171
116 => 0.041394399401979
117 => 0.041145375923289
118 => 0.04090482236313
119 => 0.041445551636341
120 => 0.042433745011196
121 => 0.042427597511498
122 => 0.04265683916673
123 => 0.0427996548188
124 => 0.042186585492672
125 => 0.041787499904547
126 => 0.04194053471351
127 => 0.042185240705706
128 => 0.041861179858306
129 => 0.039860926188563
130 => 0.040467675375263
131 => 0.040366682642077
201 => 0.040222856708883
202 => 0.040832947707964
203 => 0.040774102942776
204 => 0.039011473766623
205 => 0.039124311567644
206 => 0.039018335807034
207 => 0.039360765170166
208 => 0.038381802875857
209 => 0.038682925084175
210 => 0.038871786110386
211 => 0.038983026705724
212 => 0.039384904014473
213 => 0.039337748350742
214 => 0.039381972752206
215 => 0.039977850709405
216 => 0.042991596936296
217 => 0.043155628493969
218 => 0.042347877112262
219 => 0.042670557857062
220 => 0.042051081389567
221 => 0.042466940092328
222 => 0.042751460055092
223 => 0.041465769053405
224 => 0.041389638776351
225 => 0.040767605509114
226 => 0.041101850953162
227 => 0.040570042418583
228 => 0.040700529631096
301 => 0.04033567600924
302 => 0.04099233988695
303 => 0.04172659213748
304 => 0.041912093252464
305 => 0.041424119682192
306 => 0.04107079465829
307 => 0.040450472308817
308 => 0.041482082200776
309 => 0.041783756370927
310 => 0.041480497634787
311 => 0.041410225959289
312 => 0.041277061261199
313 => 0.041438477479499
314 => 0.041782113388609
315 => 0.041620061039832
316 => 0.041727099471194
317 => 0.041319179348392
318 => 0.042186788444129
319 => 0.043564760489658
320 => 0.043569190895106
321 => 0.043407137672806
322 => 0.043340828985726
323 => 0.043507105426018
324 => 0.043597303573859
325 => 0.044135011091876
326 => 0.044711992681922
327 => 0.047404514005873
328 => 0.046648464792405
329 => 0.049037429889825
330 => 0.05092679111359
331 => 0.051493327932844
401 => 0.050972140716748
402 => 0.049189187404462
403 => 0.049101707208933
404 => 0.05176619220096
405 => 0.051013353149569
406 => 0.05092380533992
407 => 0.049971167938666
408 => 0.050534294629245
409 => 0.050411130561445
410 => 0.050216710055031
411 => 0.051291116552909
412 => 0.053302309604007
413 => 0.052988846306144
414 => 0.052754860495434
415 => 0.051729602785146
416 => 0.052347036926339
417 => 0.052127180454832
418 => 0.05307182338079
419 => 0.052512237837856
420 => 0.051007649653317
421 => 0.051247260280892
422 => 0.051211043616564
423 => 0.0519563800021
424 => 0.051732648519549
425 => 0.051167356453834
426 => 0.053295435564803
427 => 0.053157249944335
428 => 0.053353165560528
429 => 0.053439413673668
430 => 0.054734737927555
501 => 0.055265390828619
502 => 0.055385858327547
503 => 0.05588993754139
504 => 0.055373316377501
505 => 0.057440169377705
506 => 0.058814506018624
507 => 0.060410868749769
508 => 0.062743583761822
509 => 0.063620706185174
510 => 0.063462261870214
511 => 0.065230899769445
512 => 0.06840910275975
513 => 0.064104667562856
514 => 0.068637248277171
515 => 0.067202285554179
516 => 0.063800014751844
517 => 0.063580948622312
518 => 0.065885005910829
519 => 0.070995183219466
520 => 0.069715141762803
521 => 0.070997276908726
522 => 0.069501598156389
523 => 0.069427325099765
524 => 0.070924635130143
525 => 0.07442318163024
526 => 0.072761153329099
527 => 0.070378228213353
528 => 0.072137743036398
529 => 0.070613488461267
530 => 0.067178916291502
531 => 0.069714162939225
601 => 0.068018915705561
602 => 0.068513678972644
603 => 0.072076836508812
604 => 0.071648107967115
605 => 0.072202922399265
606 => 0.071223689448542
607 => 0.070308931461703
608 => 0.068601467748449
609 => 0.068095971919898
610 => 0.068235672781074
611 => 0.068095902691089
612 => 0.067140592435924
613 => 0.066934293277278
614 => 0.066590452308026
615 => 0.066697023001995
616 => 0.066050501385579
617 => 0.067270621253939
618 => 0.067497086253166
619 => 0.068384987743805
620 => 0.068477172622064
621 => 0.070949965635008
622 => 0.069587992797077
623 => 0.070501721763838
624 => 0.0704199892447
625 => 0.063873752276718
626 => 0.064775765972968
627 => 0.066179016216843
628 => 0.065546853884038
629 => 0.064653124248657
630 => 0.063931389649335
701 => 0.062837887930211
702 => 0.064376970601038
703 => 0.06640070064998
704 => 0.068528497755768
705 => 0.071084906559583
706 => 0.07051434587445
707 => 0.068480707471381
708 => 0.068571935004569
709 => 0.069135867718026
710 => 0.06840552361541
711 => 0.068190130881538
712 => 0.069106276063972
713 => 0.069112585052339
714 => 0.068272235897246
715 => 0.067338341593633
716 => 0.067334428542401
717 => 0.067168251071422
718 => 0.069531160759311
719 => 0.070830522170535
720 => 0.070979491862306
721 => 0.07082049532335
722 => 0.070881686780847
723 => 0.070125617005131
724 => 0.071853768306891
725 => 0.073439690837836
726 => 0.073014629721249
727 => 0.072377402681488
728 => 0.071869820651306
729 => 0.072895059526128
730 => 0.072849407252907
731 => 0.073425839188057
801 => 0.073399688905846
802 => 0.073205856526757
803 => 0.073014636643614
804 => 0.07377280186576
805 => 0.073554462457543
806 => 0.073335783907918
807 => 0.072897190598634
808 => 0.072956802713629
809 => 0.072319685700101
810 => 0.072024926217152
811 => 0.067592450820486
812 => 0.066407948559185
813 => 0.066780617083357
814 => 0.066903309237849
815 => 0.06638781233575
816 => 0.067126902473071
817 => 0.06701171605806
818 => 0.06745983901707
819 => 0.067179871247517
820 => 0.067191361222436
821 => 0.068014686737268
822 => 0.068253701636901
823 => 0.068132136729861
824 => 0.06821727662375
825 => 0.070179289543134
826 => 0.069900354047639
827 => 0.069752175125048
828 => 0.069793221699278
829 => 0.070294558066212
830 => 0.070434904877003
831 => 0.069840245577688
901 => 0.070120690340929
902 => 0.071314788549073
903 => 0.071732655341817
904 => 0.07306628555682
905 => 0.0724997357381
906 => 0.073539662450062
907 => 0.076736042625491
908 => 0.079289532282309
909 => 0.076941237666476
910 => 0.081630396236275
911 => 0.085281578802709
912 => 0.085141440334447
913 => 0.084504772200615
914 => 0.08034799792044
915 => 0.07652287225381
916 => 0.079722752297361
917 => 0.079730909449653
918 => 0.079456036916079
919 => 0.077748827217266
920 => 0.079396629719152
921 => 0.079527426297812
922 => 0.07945421499538
923 => 0.078145301322065
924 => 0.076146832070596
925 => 0.076537328178674
926 => 0.07717696876961
927 => 0.075965995687962
928 => 0.075579016412929
929 => 0.076298484511035
930 => 0.078616760630262
1001 => 0.078178503958781
1002 => 0.078167059305954
1003 => 0.080042107196301
1004 => 0.078699977567474
1005 => 0.076542253585138
1006 => 0.075997399822716
1007 => 0.074063536023589
1008 => 0.075399262637832
1009 => 0.075447333060731
1010 => 0.074715769244905
1011 => 0.076601615956914
1012 => 0.076584237547466
1013 => 0.078374568329279
1014 => 0.08179700836657
1015 => 0.080784824439497
1016 => 0.079607764657609
1017 => 0.079735743692228
1018 => 0.081139357822823
1019 => 0.080290700678071
1020 => 0.080595883704372
1021 => 0.081138895891762
1022 => 0.081466508626648
1023 => 0.079688605261351
1024 => 0.079274090939952
1025 => 0.078426140113127
1026 => 0.07820492557016
1027 => 0.078895563825535
1028 => 0.078713605045853
1029 => 0.075443292927824
1030 => 0.075101527115645
1031 => 0.075112008585175
1101 => 0.074252622200373
1102 => 0.072941851687184
1103 => 0.076386478333804
1104 => 0.076109826606561
1105 => 0.075804424510828
1106 => 0.075841834524955
1107 => 0.077337030203024
1108 => 0.076469741200553
1109 => 0.078775571159495
1110 => 0.078301561839529
1111 => 0.077815395969108
1112 => 0.077748193036841
1113 => 0.077561060654452
1114 => 0.076919314086346
1115 => 0.076144366542368
1116 => 0.075632679049027
1117 => 0.06976714849444
1118 => 0.07085575684715
1119 => 0.072108101527169
1120 => 0.072540405892255
1121 => 0.071800919361224
1122 => 0.076948513521814
1123 => 0.077889028578406
1124 => 0.075040147123711
1125 => 0.074507237722601
1126 => 0.076983450973432
1127 => 0.075489991678422
1128 => 0.076162496307519
1129 => 0.074708909139776
1130 => 0.077662486042769
1201 => 0.077639984735363
1202 => 0.076490976610539
1203 => 0.077462110409572
1204 => 0.077293352013561
1205 => 0.075996124670517
1206 => 0.077703610463366
1207 => 0.077704457355016
1208 => 0.076598562016464
1209 => 0.075307118372654
1210 => 0.075076238751678
1211 => 0.074902301971586
1212 => 0.076119718522135
1213 => 0.077211250394594
1214 => 0.079242320595542
1215 => 0.079752979901098
1216 => 0.081746117167197
1217 => 0.080559300969327
1218 => 0.081085401218
1219 => 0.081656557459359
1220 => 0.081930390765041
1221 => 0.081484194088137
1222 => 0.084580356670418
1223 => 0.084841767656333
1224 => 0.084929416498714
1225 => 0.083885407896331
1226 => 0.084812731888503
1227 => 0.084378867702308
1228 => 0.085507661783844
1229 => 0.085684671108995
1230 => 0.085534750507882
1231 => 0.085590936061587
]
'min_raw' => 0.038381802875857
'max_raw' => 0.085684671108995
'avg_raw' => 0.062033236992426
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.038381'
'max' => '$0.085684'
'avg' => '$0.062033'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0059183961273411
'max_diff' => -0.0081765848123014
'year' => 2031
]
6 => [
'items' => [
101 => 0.082948907498117
102 => 0.08281190437929
103 => 0.080943857132788
104 => 0.081705100193646
105 => 0.080281992778702
106 => 0.080733274799611
107 => 0.080932195614455
108 => 0.080828290669437
109 => 0.081748139734147
110 => 0.080966080116395
111 => 0.078902096202643
112 => 0.076837549957854
113 => 0.076811631261494
114 => 0.076268072677509
115 => 0.075875179379009
116 => 0.075950864566938
117 => 0.076217589040977
118 => 0.075859676867699
119 => 0.075936055576476
120 => 0.077204451050844
121 => 0.077458818717445
122 => 0.076594377998469
123 => 0.07312352377358
124 => 0.072271767440813
125 => 0.072883993001743
126 => 0.072591388615995
127 => 0.058586916138697
128 => 0.061877059215961
129 => 0.059922167922153
130 => 0.060823071770563
131 => 0.058827633976231
201 => 0.059779961481542
202 => 0.059604101364743
203 => 0.064894554070573
204 => 0.064811950928351
205 => 0.064851488681272
206 => 0.062964248719307
207 => 0.065970673222866
208 => 0.067451746040848
209 => 0.067177638879716
210 => 0.067246625746766
211 => 0.066061202806423
212 => 0.064862966166541
213 => 0.063533937325614
214 => 0.066003108639126
215 => 0.065728578939224
216 => 0.066358251298132
217 => 0.067959685394955
218 => 0.068195502648969
219 => 0.068512443429786
220 => 0.068398842721244
221 => 0.071105272480026
222 => 0.070777505978639
223 => 0.071567328942124
224 => 0.069942603182224
225 => 0.068104071764512
226 => 0.068453516480898
227 => 0.068419862144653
228 => 0.067991403817606
229 => 0.067604610797614
301 => 0.066960709397584
302 => 0.068998108706754
303 => 0.06891539401553
304 => 0.07025444872114
305 => 0.07001775779504
306 => 0.068437077862449
307 => 0.068493532155475
308 => 0.068873214407078
309 => 0.070187299015013
310 => 0.070577408796351
311 => 0.070396694402448
312 => 0.070824431968497
313 => 0.071162498300437
314 => 0.070866887894828
315 => 0.075052107851073
316 => 0.073314112732723
317 => 0.074161199460514
318 => 0.074363224653768
319 => 0.073845741369381
320 => 0.073957964964077
321 => 0.074127953130943
322 => 0.075160087993057
323 => 0.077868708521872
324 => 0.079068338115881
325 => 0.082677482938138
326 => 0.078968725577749
327 => 0.078748663264347
328 => 0.079398779232568
329 => 0.081517729310011
330 => 0.083234939324919
331 => 0.083804636955086
401 => 0.083879931901596
402 => 0.084948722528572
403 => 0.085561333384189
404 => 0.084818943234473
405 => 0.084189845314077
406 => 0.081936494649726
407 => 0.082197326124794
408 => 0.08399419633389
409 => 0.086532381339364
410 => 0.088710408127202
411 => 0.087947739057998
412 => 0.093766365695567
413 => 0.094343258759723
414 => 0.094263550791443
415 => 0.09557779904479
416 => 0.092969283903898
417 => 0.091854093143566
418 => 0.084325863425031
419 => 0.08644098890344
420 => 0.089515448003271
421 => 0.089108531812778
422 => 0.086875777433953
423 => 0.08870871438279
424 => 0.088102688106267
425 => 0.08762469003792
426 => 0.089814491853502
427 => 0.087406714805168
428 => 0.08949142858536
429 => 0.086817761598662
430 => 0.087951222866064
501 => 0.087307815431334
502 => 0.087724178894654
503 => 0.085290126595788
504 => 0.086603482132976
505 => 0.085235486687529
506 => 0.085234838079569
507 => 0.08520463950429
508 => 0.086814080079239
509 => 0.086866563878607
510 => 0.08567718486199
511 => 0.085505776764103
512 => 0.086139562340611
513 => 0.085397565419226
514 => 0.085744741108669
515 => 0.085408081017186
516 => 0.085332291739447
517 => 0.084728389879937
518 => 0.084468212354233
519 => 0.08457023466601
520 => 0.084221979919807
521 => 0.084012143838295
522 => 0.08516289782618
523 => 0.084548096391736
524 => 0.085068670688857
525 => 0.084475410575574
526 => 0.082418912551805
527 => 0.081236198791264
528 => 0.077351664661833
529 => 0.07845331372219
530 => 0.079183708188945
531 => 0.07894231282204
601 => 0.079460923477759
602 => 0.079492761960039
603 => 0.079324156349255
604 => 0.079128932651683
605 => 0.079033908552253
606 => 0.079742140337621
607 => 0.080153292727014
608 => 0.079257013045102
609 => 0.079047027255915
610 => 0.079953215499286
611 => 0.080505989804254
612 => 0.084587364695087
613 => 0.084285003260507
614 => 0.085043871125868
615 => 0.084958434250005
616 => 0.085753848670035
617 => 0.087054015079569
618 => 0.084410413236741
619 => 0.084869251107782
620 => 0.084756754657916
621 => 0.085984961399394
622 => 0.085988795726777
623 => 0.085252424431785
624 => 0.08565162325706
625 => 0.085428801424238
626 => 0.085831470592324
627 => 0.084280965039207
628 => 0.086169313436172
629 => 0.087239885294769
630 => 0.087254750186064
701 => 0.087762192750455
702 => 0.088277783784968
703 => 0.0892674158772
704 => 0.088250183483039
705 => 0.086420281431522
706 => 0.086552394449094
707 => 0.085479523545824
708 => 0.085497558699538
709 => 0.085401285635573
710 => 0.085690208347631
711 => 0.08434436732697
712 => 0.08466023352449
713 => 0.084218018998252
714 => 0.084868289819764
715 => 0.084168705909434
716 => 0.084756700408722
717 => 0.085010459342288
718 => 0.085946835270186
719 => 0.08403040242354
720 => 0.08012266611813
721 => 0.08094411966625
722 => 0.079729125344797
723 => 0.079841577695057
724 => 0.080068749339241
725 => 0.079332411714503
726 => 0.079472881728638
727 => 0.079467863151261
728 => 0.079424615762679
729 => 0.079233065907777
730 => 0.078955280721184
731 => 0.080061891406798
801 => 0.080249926126008
802 => 0.080667904014239
803 => 0.081911522692504
804 => 0.081787255859997
805 => 0.081989940219597
806 => 0.081547481400615
807 => 0.079862102090667
808 => 0.079953626295802
809 => 0.078812317991197
810 => 0.080638718194879
811 => 0.080206202519342
812 => 0.079927356849643
813 => 0.079851271225178
814 => 0.081097972593604
815 => 0.081471005182687
816 => 0.081238556306456
817 => 0.08076179687969
818 => 0.081677315920352
819 => 0.081922270192986
820 => 0.081977106421063
821 => 0.083599230627751
822 => 0.082067765144664
823 => 0.082436404107901
824 => 0.085312420066442
825 => 0.082704270455119
826 => 0.084085865472914
827 => 0.084018243586266
828 => 0.084725020846743
829 => 0.083960267221624
830 => 0.083969747259357
831 => 0.084597317585422
901 => 0.083716008245368
902 => 0.083497783658889
903 => 0.083196307955624
904 => 0.083854569124437
905 => 0.084249166924549
906 => 0.0874293353933
907 => 0.089483869257414
908 => 0.089394676523925
909 => 0.090209731146212
910 => 0.089842541573827
911 => 0.088656789584881
912 => 0.090680723642962
913 => 0.090040266221987
914 => 0.090093064753617
915 => 0.090091099589632
916 => 0.090516947784821
917 => 0.090215195310116
918 => 0.089620410208216
919 => 0.090015256316316
920 => 0.091187808097304
921 => 0.094827444803774
922 => 0.096864233723488
923 => 0.09470482755334
924 => 0.096194357013907
925 => 0.095301170111181
926 => 0.095138851480947
927 => 0.096074386057546
928 => 0.097011558163576
929 => 0.096951864351929
930 => 0.096271525527271
1001 => 0.09588721938818
1002 => 0.098797314225377
1003 => 0.10094142252925
1004 => 0.10079520871721
1005 => 0.10144054893228
1006 => 0.10333528776333
1007 => 0.1035085189364
1008 => 0.10348669579027
1009 => 0.103057324253
1010 => 0.1049229406951
1011 => 0.1064792707535
1012 => 0.10295793714787
1013 => 0.10429881488725
1014 => 0.10490077810484
1015 => 0.10578463870271
1016 => 0.10727585968354
1017 => 0.10889572119555
1018 => 0.10912478737423
1019 => 0.10896225395863
1020 => 0.10789391174724
1021 => 0.10966638354266
1022 => 0.11070465595083
1023 => 0.11132292340946
1024 => 0.11289074681464
1025 => 0.10490449562474
1026 => 0.099251430090091
1027 => 0.0983686222756
1028 => 0.10016384668107
1029 => 0.10063723304015
1030 => 0.10044641159238
1031 => 0.094083372378899
1101 => 0.098335122191002
1102 => 0.10290964749155
1103 => 0.10308537363868
1104 => 0.10537547665295
1105 => 0.10612122806889
1106 => 0.10796506116603
1107 => 0.10784972890379
1108 => 0.10829867292115
1109 => 0.10819546846618
1110 => 0.11161078101379
1111 => 0.11537837793261
1112 => 0.11524791803154
1113 => 0.11470628139827
1114 => 0.11551070416144
1115 => 0.11939926794189
1116 => 0.11904127130195
1117 => 0.11938903454357
1118 => 0.12397387039057
1119 => 0.12993480917697
1120 => 0.12716535464222
1121 => 0.13317427409355
1122 => 0.13695657036903
1123 => 0.14349766068074
1124 => 0.14267868395817
1125 => 0.14522508241578
1126 => 0.14121254469916
1127 => 0.13199894703413
1128 => 0.13054085993541
1129 => 0.1334599872317
1130 => 0.14063637684537
1201 => 0.13323397718416
1202 => 0.13473147299472
1203 => 0.13430019410054
1204 => 0.13427721308108
1205 => 0.13515430512307
1206 => 0.13388203737013
1207 => 0.12869858966804
1208 => 0.13107413320365
1209 => 0.13015682176158
1210 => 0.13117464719666
1211 => 0.13666743128663
1212 => 0.13423894050884
1213 => 0.131680722749
1214 => 0.1348892955338
1215 => 0.13897491127409
1216 => 0.13871924078362
1217 => 0.13822313317013
1218 => 0.141019665812
1219 => 0.14563871842918
1220 => 0.14688722979075
1221 => 0.14780885535317
1222 => 0.14793593194724
1223 => 0.14924489984378
1224 => 0.14220624956168
1225 => 0.15337676832473
1226 => 0.15530560833575
1227 => 0.15494306635591
1228 => 0.15708689085017
1229 => 0.15645612330038
1230 => 0.15554224008513
1231 => 0.15894065791308
]
'min_raw' => 0.058586916138697
'max_raw' => 0.15894065791308
'avg_raw' => 0.10876378702589
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.058586'
'max' => '$0.15894'
'avg' => '$0.108763'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.02020511326284
'max_diff' => 0.07325598680408
'year' => 2032
]
7 => [
'items' => [
101 => 0.15504464611151
102 => 0.14951474785344
103 => 0.14648093630008
104 => 0.15047610408414
105 => 0.15291581363773
106 => 0.15452830645798
107 => 0.1550162458111
108 => 0.14275263994661
109 => 0.13614323655642
110 => 0.14037978835257
111 => 0.14554867393506
112 => 0.14217753614129
113 => 0.1423096783604
114 => 0.13750332178591
115 => 0.14597392984267
116 => 0.14473983349782
117 => 0.15114232751794
118 => 0.14961432093682
119 => 0.15483530626684
120 => 0.15346044585517
121 => 0.15916741455659
122 => 0.1614440788816
123 => 0.16526695261779
124 => 0.16807907410003
125 => 0.16973040562171
126 => 0.16963126587114
127 => 0.17617466405014
128 => 0.1723162507529
129 => 0.16746917429338
130 => 0.16738150597256
131 => 0.16989187555455
201 => 0.17515292151214
202 => 0.17651703418384
203 => 0.17727938707165
204 => 0.17611181708628
205 => 0.1719237859871
206 => 0.17011541539227
207 => 0.1716561995326
208 => 0.16977195293007
209 => 0.17302469119226
210 => 0.17749139557366
211 => 0.17656903878217
212 => 0.17965233924868
213 => 0.18284323085885
214 => 0.1874063491733
215 => 0.18859931727248
216 => 0.19057124817592
217 => 0.1926010128211
218 => 0.19325291852145
219 => 0.19449760877786
220 => 0.19449104864581
221 => 0.19824200651084
222 => 0.20237942919345
223 => 0.20394121047458
224 => 0.20753244041342
225 => 0.20138258499487
226 => 0.20604732097429
227 => 0.21025502959364
228 => 0.20523842591418
301 => 0.21215264536757
302 => 0.21242110884099
303 => 0.21647458855506
304 => 0.2123656103121
305 => 0.20992571214775
306 => 0.21696960672644
307 => 0.22037792543246
308 => 0.21935131210039
309 => 0.21153873395316
310 => 0.20699147837423
311 => 0.19509043342408
312 => 0.20918773525442
313 => 0.21605411975204
314 => 0.21152095167611
315 => 0.21380721797497
316 => 0.22628034557722
317 => 0.23102930499295
318 => 0.23004155463221
319 => 0.23020846818342
320 => 0.23277092048443
321 => 0.2441342451554
322 => 0.23732507761275
323 => 0.24253043106447
324 => 0.24529133176596
325 => 0.24785581020417
326 => 0.24155826167165
327 => 0.23336524356021
328 => 0.23077017080481
329 => 0.21107021744994
330 => 0.21004474932525
331 => 0.209469122992
401 => 0.20583988038483
402 => 0.20298828982881
403 => 0.20072059914589
404 => 0.19476950160415
405 => 0.19677782232819
406 => 0.18729301493724
407 => 0.19336105858504
408 => 0.1782230769704
409 => 0.19083043788662
410 => 0.18396882452629
411 => 0.18857621335525
412 => 0.18856013860967
413 => 0.18007647500158
414 => 0.17518327488198
415 => 0.17830141244439
416 => 0.18164430342936
417 => 0.18218667624484
418 => 0.18652082166523
419 => 0.18773038848992
420 => 0.18406534454184
421 => 0.17790937594882
422 => 0.17933926705028
423 => 0.17515429818445
424 => 0.16782030121958
425 => 0.17308770587905
426 => 0.17488622942123
427 => 0.17568055987708
428 => 0.16846841617738
429 => 0.16620220404367
430 => 0.16499569171905
501 => 0.17697837876341
502 => 0.17763481740909
503 => 0.17427638448673
504 => 0.18945681975545
505 => 0.18602101972292
506 => 0.1898596501507
507 => 0.17920951942023
508 => 0.17961636875644
509 => 0.17457442619272
510 => 0.17739757712568
511 => 0.17540226504067
512 => 0.17716949442922
513 => 0.17822876443816
514 => 0.18326987966871
515 => 0.1908879993249
516 => 0.18251690515965
517 => 0.17886949955557
518 => 0.18113232947855
519 => 0.18715854375569
520 => 0.19628856686179
521 => 0.19088340942414
522 => 0.19328212650945
523 => 0.19380613948109
524 => 0.18982057649637
525 => 0.19643552025399
526 => 0.1999805223534
527 => 0.20361696097258
528 => 0.20677437873491
529 => 0.20216448742108
530 => 0.20709773192884
531 => 0.20312240769047
601 => 0.19955613088718
602 => 0.199561539457
603 => 0.19732436192331
604 => 0.19298954854927
605 => 0.19219014245513
606 => 0.19634875391071
607 => 0.19968356647612
608 => 0.19995823761168
609 => 0.20180456119675
610 => 0.20289719647575
611 => 0.21360650757555
612 => 0.21791388109196
613 => 0.22318085589342
614 => 0.22523263940902
615 => 0.23140777218588
616 => 0.2264208509488
617 => 0.22534189916995
618 => 0.21036304692383
619 => 0.21281583314
620 => 0.21674298053076
621 => 0.21042780413784
622 => 0.21443333000592
623 => 0.21522410566091
624 => 0.21021321686054
625 => 0.21288974907654
626 => 0.20578167304734
627 => 0.19104293595821
628 => 0.19645192868166
629 => 0.20043476797339
630 => 0.19475076522355
701 => 0.20493912015135
702 => 0.19898729353286
703 => 0.19710085023287
704 => 0.18974116235398
705 => 0.19321465173245
706 => 0.19791259585241
707 => 0.1950098125809
708 => 0.20103352372438
709 => 0.20956470516863
710 => 0.21564453310644
711 => 0.21611126680198
712 => 0.2122023447548
713 => 0.21846641728181
714 => 0.21851204421153
715 => 0.21144614481158
716 => 0.2071183207722
717 => 0.20613503004463
718 => 0.20859148306759
719 => 0.21157407052372
720 => 0.21627677964804
721 => 0.21911852828049
722 => 0.22652830156689
723 => 0.22853317376334
724 => 0.23073592046797
725 => 0.23367946936728
726 => 0.23721395453136
727 => 0.22948070221072
728 => 0.229787958742
729 => 0.2225868612552
730 => 0.2148914558487
731 => 0.2207313093064
801 => 0.2283661408592
802 => 0.22661470206525
803 => 0.22641762942228
804 => 0.22674905094436
805 => 0.22542852329037
806 => 0.21945582565238
807 => 0.21645637428965
808 => 0.22032643178923
809 => 0.22238319511381
810 => 0.22557305566162
811 => 0.22517983801932
812 => 0.23339657622448
813 => 0.23658935222973
814 => 0.235772503501
815 => 0.23592282332565
816 => 0.24170319177631
817 => 0.24813215031689
818 => 0.25415371836594
819 => 0.26027911601779
820 => 0.25289471007014
821 => 0.24914536413676
822 => 0.2530137320903
823 => 0.25096112160293
824 => 0.26275603030717
825 => 0.2635726841948
826 => 0.27536673999289
827 => 0.28656070335532
828 => 0.27952997552806
829 => 0.28615963519823
830 => 0.29333015265559
831 => 0.30716324420539
901 => 0.30250474562544
902 => 0.29893640872119
903 => 0.29556434758875
904 => 0.30258107150573
905 => 0.31160797473003
906 => 0.31355228322594
907 => 0.31670280577232
908 => 0.31339041654237
909 => 0.31737982452214
910 => 0.33146418772544
911 => 0.3276584684618
912 => 0.32225373530752
913 => 0.33337198737991
914 => 0.33739563958379
915 => 0.36563573795368
916 => 0.40129002868594
917 => 0.38652891820409
918 => 0.37736622058994
919 => 0.37951967187136
920 => 0.39253941187287
921 => 0.39672093913547
922 => 0.38535410657685
923 => 0.38936906400007
924 => 0.41149187414394
925 => 0.42336005200139
926 => 0.40724147236203
927 => 0.36277095040915
928 => 0.32176709822145
929 => 0.33264316624915
930 => 0.3314101576585
1001 => 0.35517835728131
1002 => 0.32756770331599
1003 => 0.3280325959173
1004 => 0.35229229673735
1005 => 0.34582022447513
1006 => 0.33533629629071
1007 => 0.3218436424994
1008 => 0.29690122404676
1009 => 0.27480902845245
1010 => 0.31813691154167
1011 => 0.31626853443622
1012 => 0.31356284750956
1013 => 0.31958406097895
1014 => 0.34882136443504
1015 => 0.34814734995846
1016 => 0.34385961374368
1017 => 0.34711182387222
1018 => 0.33476616813097
1019 => 0.33794792472084
1020 => 0.32176060300176
1021 => 0.32907794846106
1022 => 0.33531380248939
1023 => 0.33656574250898
1024 => 0.33938642729875
1025 => 0.31528398460136
1026 => 0.32610527376195
1027 => 0.33246176732612
1028 => 0.30374289815198
1029 => 0.33189408762075
1030 => 0.3148644146971
1031 => 0.3090842879297
1101 => 0.3168664671482
1102 => 0.31383374433833
1103 => 0.31122638735387
1104 => 0.30977143735646
1105 => 0.31548581088675
1106 => 0.31521922853141
1107 => 0.30586940432375
1108 => 0.29367293979245
1109 => 0.29776647362445
1110 => 0.2962792544062
1111 => 0.29088938010416
1112 => 0.29452150460783
1113 => 0.27852746646981
1114 => 0.25101055515111
1115 => 0.26918906963403
1116 => 0.26848921660086
1117 => 0.26813631896572
1118 => 0.2817969701824
1119 => 0.28048381377277
1120 => 0.27810042203081
1121 => 0.29084560724574
1122 => 0.28619344319536
1123 => 0.30053031661094
1124 => 0.30997350869327
1125 => 0.30757840972593
1126 => 0.31645977752227
1127 => 0.29786078037617
1128 => 0.30403862116586
1129 => 0.30531186559049
1130 => 0.29068833363857
1201 => 0.28069866240146
1202 => 0.28003246522054
1203 => 0.26271175195688
1204 => 0.27196433717441
1205 => 0.28010622926785
1206 => 0.27620689479144
1207 => 0.27497248198552
1208 => 0.28127882929952
1209 => 0.28176888649603
1210 => 0.27059553048166
1211 => 0.27291882501122
1212 => 0.28260734941504
1213 => 0.27267469905444
1214 => 0.253377181893
1215 => 0.24859113082792
1216 => 0.24795258339141
1217 => 0.23497243331641
1218 => 0.24891095764548
1219 => 0.24282641824661
1220 => 0.26204740530366
1221 => 0.2510684805809
1222 => 0.2505952010794
1223 => 0.24987976969787
1224 => 0.23870721832507
1225 => 0.24115329702303
1226 => 0.24928443516337
1227 => 0.25218571685566
1228 => 0.25188308940566
1229 => 0.24924458815055
1230 => 0.25045248051383
1231 => 0.24656143835412
]
'min_raw' => 0.13614323655642
'max_raw' => 0.42336005200139
'avg_raw' => 0.27975164427891
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.136143'
'max' => '$0.42336'
'avg' => '$0.279751'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.077556320417726
'max_diff' => 0.26441939408832
'year' => 2033
]
8 => [
'items' => [
101 => 0.24518743038249
102 => 0.24085068327335
103 => 0.23447686307989
104 => 0.2353631818707
105 => 0.22273497626668
106 => 0.21585445962401
107 => 0.21395002330107
108 => 0.21140333145816
109 => 0.21423767892121
110 => 0.22269920214685
111 => 0.21249280992444
112 => 0.19499466635428
113 => 0.19604633459823
114 => 0.19840912089929
115 => 0.19400608425866
116 => 0.18983897959717
117 => 0.19346193901245
118 => 0.18604774490782
119 => 0.1993050908351
120 => 0.19894651678105
121 => 0.20388803551397
122 => 0.20697806858783
123 => 0.19985654276266
124 => 0.19806549827628
125 => 0.19908575861416
126 => 0.18222312788709
127 => 0.20250999883016
128 => 0.20268544053251
129 => 0.20118320216327
130 => 0.21198533465359
131 => 0.23478120347778
201 => 0.22620448066442
202 => 0.22288331435827
203 => 0.21656977478252
204 => 0.22498219140632
205 => 0.22433624906375
206 => 0.22141505282431
207 => 0.21964830422401
208 => 0.22290359269154
209 => 0.21924493795821
210 => 0.21858774303499
211 => 0.21460585683544
212 => 0.21318450462647
213 => 0.21213219203662
214 => 0.21097369927329
215 => 0.21352904563079
216 => 0.20773829460089
217 => 0.20075521653316
218 => 0.20017464914979
219 => 0.2017776467393
220 => 0.20106843963508
221 => 0.20017125373902
222 => 0.19845828152941
223 => 0.19795007926668
224 => 0.19960149007587
225 => 0.19773714355553
226 => 0.2004880884025
227 => 0.19973998362085
228 => 0.19556113112367
301 => 0.19035273370283
302 => 0.1903063680408
303 => 0.18918422735997
304 => 0.18775501248794
305 => 0.18735743760655
306 => 0.19315682347575
307 => 0.20516137866397
308 => 0.20280459723587
309 => 0.20450761335035
310 => 0.21288476709661
311 => 0.21554761236274
312 => 0.21365758786579
313 => 0.21107040576272
314 => 0.21118422864508
315 => 0.22002541308454
316 => 0.22057682691322
317 => 0.22197007176543
318 => 0.22376078513146
319 => 0.21396255409529
320 => 0.21072273284442
321 => 0.20918752579732
322 => 0.20445968229215
323 => 0.20955825617781
324 => 0.20658753551734
325 => 0.2069883872287
326 => 0.20672733202581
327 => 0.20686988581907
328 => 0.19930138513673
329 => 0.20205894899669
330 => 0.1974739642412
331 => 0.19133518434229
401 => 0.19131460499954
402 => 0.19281706268299
403 => 0.1919233420617
404 => 0.18951836284945
405 => 0.18985997879537
406 => 0.18686706364394
407 => 0.19022337288323
408 => 0.19031961982276
409 => 0.18902725794624
410 => 0.19419811541078
411 => 0.19631661993303
412 => 0.19546595966082
413 => 0.19625693534064
414 => 0.20290253214443
415 => 0.20398605439117
416 => 0.20446728339971
417 => 0.20382250027889
418 => 0.19637840465072
419 => 0.19670858194657
420 => 0.19428596002571
421 => 0.1922390997922
422 => 0.19232096346717
423 => 0.1933733157004
424 => 0.19796899962257
425 => 0.2076403455064
426 => 0.20800736601303
427 => 0.20845220557381
428 => 0.20664281952167
429 => 0.20609709137485
430 => 0.20681704766489
501 => 0.21044909668365
502 => 0.21979171285158
503 => 0.21648940832548
504 => 0.21380458334233
505 => 0.21615989867617
506 => 0.2157973163421
507 => 0.21273675655256
508 => 0.21265085683277
509 => 0.20677666407649
510 => 0.20460510876338
511 => 0.20279039460566
512 => 0.20080877411973
513 => 0.19963400307116
514 => 0.20143898532566
515 => 0.20185180612319
516 => 0.19790518087802
517 => 0.19736727044039
518 => 0.20059016980941
519 => 0.1991718919589
520 => 0.20063062589975
521 => 0.20096906468682
522 => 0.20091456824719
523 => 0.19943372328309
524 => 0.20037756970378
525 => 0.19814509154469
526 => 0.19571760685405
527 => 0.19416902285907
528 => 0.19281767793359
529 => 0.19356748263888
530 => 0.19089456577346
531 => 0.19003944587303
601 => 0.20005781577366
602 => 0.20745849333489
603 => 0.20735088455216
604 => 0.20669584376202
605 => 0.20572258601805
606 => 0.21037789681763
607 => 0.20875607962093
608 => 0.20993608713889
609 => 0.21023644857697
610 => 0.21114555218696
611 => 0.21147047858744
612 => 0.2104883253293
613 => 0.20719209903509
614 => 0.1989782165057
615 => 0.19515463201531
616 => 0.19389278544665
617 => 0.19393865117283
618 => 0.19267346969108
619 => 0.19304612233891
620 => 0.19254387630802
621 => 0.19159274383187
622 => 0.19350875288869
623 => 0.19372955508363
624 => 0.19328233567517
625 => 0.19338767203544
626 => 0.18968488634324
627 => 0.18996640109739
628 => 0.18839889117312
629 => 0.18810500195893
630 => 0.18414247336908
701 => 0.17712227959444
702 => 0.18101214841229
703 => 0.17631373387866
704 => 0.17453437310217
705 => 0.18295759027067
706 => 0.18211213289063
707 => 0.18066507736749
708 => 0.17852458065597
709 => 0.17773064960426
710 => 0.17290697586205
711 => 0.17262196748407
712 => 0.17501271044085
713 => 0.17390946482674
714 => 0.17236009015273
715 => 0.16674841214109
716 => 0.16043902809327
717 => 0.1606294687383
718 => 0.16263636641365
719 => 0.16847169207175
720 => 0.16619172938497
721 => 0.16453759029616
722 => 0.16422781976806
723 => 0.16810524647572
724 => 0.17359261761307
725 => 0.1761671693777
726 => 0.17361586676925
727 => 0.17068506770454
728 => 0.1708634518636
729 => 0.17205016175627
730 => 0.17217486818681
731 => 0.1702672192867
801 => 0.17080421127797
802 => 0.16998847133966
803 => 0.16498227684401
804 => 0.1648917306604
805 => 0.16366312979538
806 => 0.16362592824946
807 => 0.16153577168921
808 => 0.16124334433786
809 => 0.15709321162404
810 => 0.15982484154404
811 => 0.15799260761071
812 => 0.1552309988929
813 => 0.15475489650904
814 => 0.15474058429647
815 => 0.15757613896525
816 => 0.15979170643679
817 => 0.15802448010443
818 => 0.1576221169248
819 => 0.16191830301538
820 => 0.16137157417475
821 => 0.16089811052479
822 => 0.17310128371373
823 => 0.1634415199092
824 => 0.15922931153039
825 => 0.15401590378493
826 => 0.15571341563513
827 => 0.15607110632361
828 => 0.14353380048315
829 => 0.1384474170651
830 => 0.13670196195234
831 => 0.13569742785784
901 => 0.13615520665885
902 => 0.13157686500933
903 => 0.13465358631659
904 => 0.13068912944569
905 => 0.13002447534983
906 => 0.13711341533696
907 => 0.13809979992318
908 => 0.13389157683268
909 => 0.13659393730621
910 => 0.13561402383289
911 => 0.13075708868006
912 => 0.13057158948242
913 => 0.12813455015226
914 => 0.12432105550436
915 => 0.12257818612054
916 => 0.12167048461317
917 => 0.12204501994586
918 => 0.12185564342068
919 => 0.12061983349466
920 => 0.12192647859905
921 => 0.11858854030037
922 => 0.11725934637424
923 => 0.11665898031488
924 => 0.11369636795024
925 => 0.11841120170207
926 => 0.1193400833471
927 => 0.12027079517591
928 => 0.12837200622174
929 => 0.12796729261167
930 => 0.13162570654314
1001 => 0.13148354730515
1002 => 0.13044010838952
1003 => 0.12603801124185
1004 => 0.12779260870507
1005 => 0.12239223043825
1006 => 0.12643856102578
1007 => 0.12459198472444
1008 => 0.12581423172081
1009 => 0.12361652141577
1010 => 0.12483282503981
1011 => 0.11956035564437
1012 => 0.11463699790855
1013 => 0.11661830078322
1014 => 0.11877220359744
1015 => 0.12344241370292
1016 => 0.1206608750925
1017 => 0.12166122155842
1018 => 0.11831022835354
1019 => 0.11139617220798
1020 => 0.1114353050149
1021 => 0.1103717281078
1022 => 0.1094526423753
1023 => 0.12098036826216
1024 => 0.11954671332175
1025 => 0.11726237180633
1026 => 0.12032005370084
1027 => 0.12112855332569
1028 => 0.12115157017339
1029 => 0.12338237595344
1030 => 0.12457295739814
1031 => 0.12478280253805
1101 => 0.1282930236327
1102 => 0.12946960344269
1103 => 0.13431576916424
1104 => 0.12447194488069
1105 => 0.12426921779748
1106 => 0.12036308155562
1107 => 0.11788574819747
1108 => 0.12053270669011
1109 => 0.12287755056872
1110 => 0.12043594239116
1111 => 0.12075476487398
1112 => 0.11747710538233
1113 => 0.11864871442238
1114 => 0.11965786196046
1115 => 0.11910067000488
1116 => 0.11826652667899
1117 => 0.12268530011092
1118 => 0.12243597559658
1119 => 0.12655083900355
1120 => 0.12975866928599
1121 => 0.13550767462038
1122 => 0.12950828785152
1123 => 0.12928964635226
1124 => 0.13142690207873
1125 => 0.12946927623997
1126 => 0.13070642819512
1127 => 0.13530835031411
1128 => 0.13540558167687
1129 => 0.1337768310751
1130 => 0.13367772145296
1201 => 0.13399054082261
1202 => 0.13582273364139
1203 => 0.13518250917291
1204 => 0.13592339313633
1205 => 0.13684987987741
1206 => 0.14068222186075
1207 => 0.1416061865386
1208 => 0.13936143139218
1209 => 0.13956410764845
1210 => 0.13872450760378
1211 => 0.13791346448079
1212 => 0.13973657097794
1213 => 0.14306833393472
1214 => 0.14304760721028
1215 => 0.14382051145604
1216 => 0.14430202439806
1217 => 0.14223501836189
1218 => 0.14088947343826
1219 => 0.14140544098122
1220 => 0.14223048431874
1221 => 0.14113789054652
1222 => 0.13439389564573
1223 => 0.13643959289057
1224 => 0.13609908883954
1225 => 0.13561416966418
1226 => 0.13767113406277
1227 => 0.13747273482853
1228 => 0.13152990749829
1229 => 0.13191034802252
1230 => 0.13155304334663
1231 => 0.13270756785208
]
'min_raw' => 0.1094526423753
'max_raw' => 0.24518743038249
'avg_raw' => 0.1773200363789
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.109452'
'max' => '$0.245187'
'avg' => '$0.17732'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.026690594181122
'max_diff' => -0.1781726216189
'year' => 2034
]
9 => [
'items' => [
101 => 0.12940692812785
102 => 0.13042218267688
103 => 0.13105894081261
104 => 0.13143399624636
105 => 0.13278895365098
106 => 0.13262996503841
107 => 0.1327790706956
108 => 0.13478811483116
109 => 0.14494917064817
110 => 0.14550221449718
111 => 0.14277882431835
112 => 0.1438667649783
113 => 0.14177815681767
114 => 0.14318025346836
115 => 0.14413953238737
116 => 0.1398047354111
117 => 0.13954805686677
118 => 0.1374508282773
119 => 0.13857776012818
120 => 0.13678473052416
121 => 0.13722467727148
122 => 0.13599454781212
123 => 0.13820853592263
124 => 0.14068411864914
125 => 0.14130954860959
126 => 0.13966431164819
127 => 0.13847305166174
128 => 0.13638159155097
129 => 0.13985973632641
130 => 0.14087685185329
131 => 0.13985439385155
201 => 0.13961746799139
202 => 0.13916849391452
203 => 0.13971271996424
204 => 0.1408713124237
205 => 0.14032494161566
206 => 0.14068582916018
207 => 0.13931049798608
208 => 0.14223570262689
209 => 0.14688163158533
210 => 0.14689656900662
211 => 0.14635019525344
212 => 0.14612663088543
213 => 0.14668724351292
214 => 0.1469913528658
215 => 0.14880427130433
216 => 0.15074960501874
217 => 0.15982762864828
218 => 0.1572785559394
219 => 0.16533311855757
220 => 0.17170323183448
221 => 0.17361335027493
222 => 0.17185613118773
223 => 0.16584477961354
224 => 0.16554983402664
225 => 0.17453333120566
226 => 0.17199508178235
227 => 0.17169316509009
228 => 0.16848128158075
301 => 0.17037990253428
302 => 0.16996464628065
303 => 0.16930914396927
304 => 0.17293158048953
305 => 0.17971245827833
306 => 0.17865559488427
307 => 0.17786669538709
308 => 0.17440996743565
309 => 0.17649168975056
310 => 0.17575042830699
311 => 0.17893535788472
312 => 0.1770486761577
313 => 0.17197585204653
314 => 0.17278371600648
315 => 0.17266160899413
316 => 0.17517456265569
317 => 0.17442023634184
318 => 0.17251431467485
319 => 0.17968928197522
320 => 0.179223379508
321 => 0.17988392268639
322 => 0.18017471422149
323 => 0.18454199038012
324 => 0.18633112368506
325 => 0.18673728826847
326 => 0.18843682653163
327 => 0.18669500220824
328 => 0.19366354140149
329 => 0.19829721333947
330 => 0.20367946174201
331 => 0.21154437327011
401 => 0.21450165275918
402 => 0.21396744668906
403 => 0.21993053284867
404 => 0.23064606612553
405 => 0.21613336233313
406 => 0.23141527466612
407 => 0.22657719765966
408 => 0.21510620411063
409 => 0.2143676073602
410 => 0.22213589737258
411 => 0.23936521694983
412 => 0.23504946780906
413 => 0.23937227596935
414 => 0.23432949063089
415 => 0.23407907383491
416 => 0.23912735914117
417 => 0.25092295292697
418 => 0.24531930847056
419 => 0.2372851100723
420 => 0.2432174371436
421 => 0.23807830642349
422 => 0.22649840655896
423 => 0.23504616763702
424 => 0.22933052323034
425 => 0.23099865212858
426 => 0.24301208653349
427 => 0.24156659832228
428 => 0.24343719391618
429 => 0.24013564165496
430 => 0.23705147123597
501 => 0.23129463811542
502 => 0.22959032363687
503 => 0.23006133484393
504 => 0.22959009022711
505 => 0.22636919500419
506 => 0.22567364298746
507 => 0.22451435915342
508 => 0.22487366968867
509 => 0.22269387692022
510 => 0.22680759624245
511 => 0.22757113879862
512 => 0.23056476066562
513 => 0.23087556841881
514 => 0.23921276270684
515 => 0.23462077619385
516 => 0.23770147719981
517 => 0.23742591030515
518 => 0.21535481532393
519 => 0.21839601747742
520 => 0.22312717364645
521 => 0.22099579420523
522 => 0.21798252234133
523 => 0.21554914374982
524 => 0.21186232635794
525 => 0.21705145103795
526 => 0.22387459819028
527 => 0.2310486146905
528 => 0.23966772545532
529 => 0.23774404027012
530 => 0.23088748641008
531 => 0.23119506640752
601 => 0.23309640492347
602 => 0.2306339987905
603 => 0.22990778715001
604 => 0.2329966345958
605 => 0.23301790579056
606 => 0.23018460994286
607 => 0.22703592009581
608 => 0.22702272697038
609 => 0.22646244802483
610 => 0.23442916301064
611 => 0.2388100507271
612 => 0.23931231244363
613 => 0.23877624451176
614 => 0.23898255578296
615 => 0.23643341374703
616 => 0.24225999651658
617 => 0.24760704505524
618 => 0.24617392182385
619 => 0.24402546636952
620 => 0.24231411811652
621 => 0.24577078256287
622 => 0.24561686273637
623 => 0.24756034325092
624 => 0.24747217574869
625 => 0.24681865634965
626 => 0.24617394516309
627 => 0.24873015214296
628 => 0.24799400558418
629 => 0.24725671558647
630 => 0.24577796762261
701 => 0.24597895403031
702 => 0.24383086953711
703 => 0.24283706736089
704 => 0.22789266709548
705 => 0.2238990350222
706 => 0.22515551297033
707 => 0.22556917813529
708 => 0.22383114433902
709 => 0.22632303833863
710 => 0.22593467929836
711 => 0.2274455571416
712 => 0.22650162625983
713 => 0.22654036551248
714 => 0.22931626496848
715 => 0.23012212039008
716 => 0.22971225581861
717 => 0.22999931091513
718 => 0.2366143744562
719 => 0.23567392395849
720 => 0.23517432837545
721 => 0.23531271976625
722 => 0.23700301032955
723 => 0.23747619940084
724 => 0.23547126405541
725 => 0.2364168031547
726 => 0.24044278863273
727 => 0.241851655699
728 => 0.24634808307997
729 => 0.24443792081091
730 => 0.24794410632565
731 => 0.25872092525125
801 => 0.26733019390817
802 => 0.25941275465819
803 => 0.27522258016287
804 => 0.28753279710303
805 => 0.28706031047312
806 => 0.28491373940916
807 => 0.27089888470684
808 => 0.25800220646005
809 => 0.26879082543537
810 => 0.26881832784384
811 => 0.26789157590591
812 => 0.26213559921278
813 => 0.26769128039379
814 => 0.26813227019067
815 => 0.26788543317307
816 => 0.26347233933805
817 => 0.25673436072806
818 => 0.25805094562001
819 => 0.26020753853063
820 => 0.25612465823841
821 => 0.25481993059461
822 => 0.25724566751903
823 => 0.26506189731187
824 => 0.26358428434587
825 => 0.26354569789983
826 => 0.26986755277379
827 => 0.26534246902571
828 => 0.25806755197178
829 => 0.2562305394713
830 => 0.24971038265449
831 => 0.25421387819186
901 => 0.25437595097883
902 => 0.25190943249762
903 => 0.25826769635277
904 => 0.258209103832
905 => 0.26424532905978
906 => 0.27578432459264
907 => 0.27237167581409
908 => 0.26840313657977
909 => 0.2688346268302
910 => 0.27356700986871
911 => 0.27070570305383
912 => 0.2717346489342
913 => 0.27356545243588
914 => 0.27467002164474
915 => 0.2686756963194
916 => 0.26727813234433
917 => 0.26441920692965
918 => 0.26367336665333
919 => 0.26600190175015
920 => 0.2653884150205
921 => 0.25436232938867
922 => 0.25321004209158
923 => 0.25324538109789
924 => 0.25034789990109
925 => 0.2459285456008
926 => 0.25754234483603
927 => 0.25660959422242
928 => 0.25557990973417
929 => 0.25570604020868
930 => 0.26074719682852
1001 => 0.2578230714045
1002 => 0.26559733809898
1003 => 0.26399918258244
1004 => 0.2623600404073
1005 => 0.2621334610292
1006 => 0.26150253113681
1007 => 0.25933883777713
1008 => 0.2567260480275
1009 => 0.25500085791882
1010 => 0.23522481213576
1011 => 0.23889513120113
1012 => 0.24311749872573
1013 => 0.24457504307514
1014 => 0.24208181260647
1015 => 0.25943728571245
1016 => 0.26260829789041
1017 => 0.25300309516336
1018 => 0.25120635391097
1019 => 0.25955507976983
1020 => 0.25451977748671
1021 => 0.25678717379648
1022 => 0.25188630317422
1023 => 0.26184449391482
1024 => 0.26176862918591
1025 => 0.25789466807188
1026 => 0.26116891347771
1027 => 0.26059993276323
1028 => 0.25622624020663
1029 => 0.26198314777008
1030 => 0.2619860031244
1031 => 0.25825739977933
1101 => 0.25390320736851
1102 => 0.25312478060689
1103 => 0.25253834060893
1104 => 0.25664294550641
1105 => 0.26032312142273
1106 => 0.26717101641002
1107 => 0.26889273991179
1108 => 0.27561274136085
1109 => 0.27161130768887
1110 => 0.27338509140842
1111 => 0.27531078455301
1112 => 0.27623403266155
1113 => 0.27472964941291
1114 => 0.28516857772624
1115 => 0.28604994311638
1116 => 0.28634545730792
1117 => 0.28282550941463
1118 => 0.28595204699793
1119 => 0.28448924360275
1120 => 0.28829505165853
1121 => 0.28889185095668
1122 => 0.2883863831829
1123 => 0.28857581669997
1124 => 0.27966803293768
1125 => 0.27920611735731
1126 => 0.27290786564283
1127 => 0.27547444977081
1128 => 0.27067634376313
1129 => 0.27219787260414
1130 => 0.27286854801959
1201 => 0.27251822524305
1202 => 0.27561956058653
1203 => 0.27298279198362
1204 => 0.26602392611565
1205 => 0.25906316430933
1206 => 0.25897577761497
1207 => 0.25714313189901
1208 => 0.25581846471218
1209 => 0.25607364260746
1210 => 0.25697292279379
1211 => 0.25576619691295
1212 => 0.25602371306218
1213 => 0.26030019696056
1214 => 0.26115781530789
1215 => 0.25824329307054
1216 => 0.24654106572402
1217 => 0.24366930978037
1218 => 0.24573347100327
1219 => 0.24474693488773
1220 => 0.19752987816948
1221 => 0.20862282526493
1222 => 0.2020317727817
1223 => 0.20506923300572
1224 => 0.19834147516511
1225 => 0.20155231383865
1226 => 0.2009593891767
1227 => 0.21879651984202
1228 => 0.21851801758085
1229 => 0.21865132187526
1230 => 0.21228836058061
1231 => 0.22242473069621
]
'min_raw' => 0.12940692812785
'max_raw' => 0.28889185095668
'avg_raw' => 0.20914938954226
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.1294069'
'max' => '$0.288891'
'avg' => '$0.209149'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.019954285752553
'max_diff' => 0.043704420574185
'year' => 2035
]
10 => [
'items' => [
101 => 0.22741827110724
102 => 0.22649409967593
103 => 0.2267266937147
104 => 0.22272995750775
105 => 0.21869001901817
106 => 0.21420910549116
107 => 0.2225340889667
108 => 0.22160849291643
109 => 0.22373147723681
110 => 0.22913082410281
111 => 0.22992589843895
112 => 0.23099448640957
113 => 0.23061147368937
114 => 0.239736390578
115 => 0.23863130293465
116 => 0.24129424619971
117 => 0.23581636986548
118 => 0.2296176328285
119 => 0.23079581008725
120 => 0.23068234214293
121 => 0.22923776497928
122 => 0.22793366530735
123 => 0.22576270678139
124 => 0.23263194079894
125 => 0.23235306244252
126 => 0.2368677788723
127 => 0.23606975888972
128 => 0.23074038613744
129 => 0.23093072572789
130 => 0.23221085094774
131 => 0.23664137894985
201 => 0.23795666131422
202 => 0.2373473701181
203 => 0.23878951718572
204 => 0.23992933142689
205 => 0.23893266030552
206 => 0.25304342159073
207 => 0.24718364970627
208 => 0.25003966175072
209 => 0.25072080379473
210 => 0.24897607277189
211 => 0.24935444245661
212 => 0.24992756942939
213 => 0.25340748417836
214 => 0.26253978740111
215 => 0.26658442233277
216 => 0.27875290608346
217 => 0.26624857170573
218 => 0.26550661625184
219 => 0.26769852762834
220 => 0.27484271575481
221 => 0.28063240921185
222 => 0.28255318454698
223 => 0.28280704671606
224 => 0.28641054893549
225 => 0.28847600920633
226 => 0.28597298898453
227 => 0.2838519414237
228 => 0.27625461233492
229 => 0.27713402386379
301 => 0.28319229722723
302 => 0.2917499651836
303 => 0.29909333456377
304 => 0.2965219425491
305 => 0.3161398485012
306 => 0.31808488374439
307 => 0.3178161427643
308 => 0.32224722250834
309 => 0.31345243159011
310 => 0.30969248808152
311 => 0.28431053598127
312 => 0.29144182920507
313 => 0.30180758271203
314 => 0.3004356363658
315 => 0.29290774909166
316 => 0.29908762398623
317 => 0.29704436408353
318 => 0.29543276022334
319 => 0.30281582993166
320 => 0.29469784150757
321 => 0.30172659956756
322 => 0.29271214465244
323 => 0.29653368845122
324 => 0.29436439536376
325 => 0.29576819384991
326 => 0.28756161658418
327 => 0.29198968647337
328 => 0.28737739431865
329 => 0.28737520749163
330 => 0.28727339088668
331 => 0.29269973215267
401 => 0.29287668494654
402 => 0.28886661055222
403 => 0.28828869618287
404 => 0.29042554850356
405 => 0.28792385407854
406 => 0.28909438115453
407 => 0.28795930815124
408 => 0.2877037793099
409 => 0.28566768202748
410 => 0.28479047533456
411 => 0.28513445068168
412 => 0.28396028549049
413 => 0.28325280849138
414 => 0.28713265590462
415 => 0.28505980994432
416 => 0.2868149625324
417 => 0.28481474464037
418 => 0.27788111797313
419 => 0.27389351595503
420 => 0.26079653792814
421 => 0.26451082464981
422 => 0.26697340058899
423 => 0.26615951925578
424 => 0.26790805128978
425 => 0.26801539695568
426 => 0.26744693136725
427 => 0.26678872104081
428 => 0.26646834065521
429 => 0.26885619356674
430 => 0.27024242255332
501 => 0.2672205530295
502 => 0.26651257128052
503 => 0.26956784821109
504 => 0.27143156537376
505 => 0.2851922057707
506 => 0.28417277308381
507 => 0.28673134907434
508 => 0.28644329268235
509 => 0.28912508793354
510 => 0.29350868975801
511 => 0.28459560157453
512 => 0.28614260549178
513 => 0.2857633158568
514 => 0.28990430063635
515 => 0.28991722833883
516 => 0.28743450110596
517 => 0.28878042781655
518 => 0.28802916845027
519 => 0.28938679566393
520 => 0.28415915793876
521 => 0.2905258563994
522 => 0.2941353641656
523 => 0.29418548218443
524 => 0.29589636021879
525 => 0.29763471138906
526 => 0.30097132508193
527 => 0.29754165504412
528 => 0.29137201251775
529 => 0.29181744078033
530 => 0.2882001816245
531 => 0.28826098840442
601 => 0.28793639704769
602 => 0.28891052014333
603 => 0.28437292317855
604 => 0.28543788811657
605 => 0.28394693096692
606 => 0.28613936444211
607 => 0.28378066844505
608 => 0.28576313295186
609 => 0.28661869891326
610 => 0.28977575572985
611 => 0.28331436858631
612 => 0.27013916280319
613 => 0.27290875079273
614 => 0.26881231260975
615 => 0.26919145355983
616 => 0.26995737861881
617 => 0.26747476490756
618 => 0.26794836936752
619 => 0.2679314488835
620 => 0.26778563729346
621 => 0.26713981358408
622 => 0.26620324143314
623 => 0.26993425662077
624 => 0.27056822880476
625 => 0.27197747043721
626 => 0.27617041763767
627 => 0.27575144333584
628 => 0.2764348078052
629 => 0.27494302700551
630 => 0.2692606529926
701 => 0.26956923324022
702 => 0.26572123260765
703 => 0.27187906840955
704 => 0.2704208116122
705 => 0.26948066396842
706 => 0.26922413597341
707 => 0.27342747667897
708 => 0.27468518209737
709 => 0.27390146448209
710 => 0.27229403678847
711 => 0.27538077315356
712 => 0.27620665358591
713 => 0.27639153775741
714 => 0.28186064277336
715 => 0.27669719997362
716 => 0.27794009197573
717 => 0.28763678057697
718 => 0.2788432220672
719 => 0.28350136612958
720 => 0.28327337421754
721 => 0.28565632309685
722 => 0.28307790285637
723 => 0.28310986546546
724 => 0.28522576263535
725 => 0.28225436666431
726 => 0.28151860723504
727 => 0.28050216085312
728 => 0.2827215343421
729 => 0.28405194837511
730 => 0.29477410839978
731 => 0.30170111276561
801 => 0.30140039323742
802 => 0.30414840680176
803 => 0.3029104015221
804 => 0.29891255590481
805 => 0.30573639088819
806 => 0.30357704397807
807 => 0.30375505791373
808 => 0.30374843222616
809 => 0.30518420914801
810 => 0.30416682961185
811 => 0.30216147011423
812 => 0.30349272133496
813 => 0.30744606152951
814 => 0.3197173507967
815 => 0.32658452684357
816 => 0.319303938176
817 => 0.32432599074792
818 => 0.32131454874507
819 => 0.32076728015051
820 => 0.32392150029245
821 => 0.3270812414792
822 => 0.32687997962554
823 => 0.32458616977846
824 => 0.32329045479912
825 => 0.33310204271906
826 => 0.34033105356244
827 => 0.33983808348682
828 => 0.34201389307813
829 => 0.34840213733346
830 => 0.34898619832808
831 => 0.34891262006725
901 => 0.34746496395161
902 => 0.35375502003933
903 => 0.35900229549071
904 => 0.34712987338765
905 => 0.35165073630308
906 => 0.35368029731892
907 => 0.35666029503379
908 => 0.36168805068439
909 => 0.36714952686727
910 => 0.36792183948157
911 => 0.36737384672316
912 => 0.3637718563682
913 => 0.36974786877646
914 => 0.37324847669049
915 => 0.3753330085933
916 => 0.38061903466581
917 => 0.35369283119681
918 => 0.33463312606231
919 => 0.33165667788007
920 => 0.33770940230169
921 => 0.33930545746209
922 => 0.33866208962821
923 => 0.31720865866675
924 => 0.33154373000595
925 => 0.3469670614399
926 => 0.34755953441377
927 => 0.35528077661625
928 => 0.35779512958179
929 => 0.36401174160114
930 => 0.36362289082673
1001 => 0.36513653692554
1002 => 0.36478857590012
1003 => 0.37630354060387
1004 => 0.3890062566609
1005 => 0.38856640199601
1006 => 0.3867402362711
1007 => 0.38945240378012
1008 => 0.40256296805676
1009 => 0.40135595739068
1010 => 0.40252846543985
1011 => 0.41798655960104
1012 => 0.43808428089883
1013 => 0.42874687157778
1014 => 0.44900636303731
1015 => 0.46175863900159
1016 => 0.48381238167186
1017 => 0.48105114447257
1018 => 0.48963650465627
1019 => 0.47610795359825
1020 => 0.44504366579776
1021 => 0.44012762334401
1022 => 0.44996966483043
1023 => 0.47416536345243
1024 => 0.44920765617565
1025 => 0.45425656785275
1026 => 0.45280248095009
1027 => 0.45272499883851
1028 => 0.45568217589468
1029 => 0.45139263633873
1030 => 0.43391628051437
1031 => 0.44192559139986
1101 => 0.43883281182828
1102 => 0.44226448134494
1103 => 0.46078378639823
1104 => 0.45259596018908
1105 => 0.44397075040273
1106 => 0.45478867756209
1107 => 0.46856361627904
1108 => 0.46770160537008
1109 => 0.46602894391409
1110 => 0.47545764896382
1111 => 0.4910311073546
1112 => 0.49524055057841
1113 => 0.49834787550794
1114 => 0.49877632311704
1115 => 0.50318959976946
1116 => 0.4794582989205
1117 => 0.51712048283082
1118 => 0.5236237015953
1119 => 0.52240136599838
1120 => 0.52962941995782
1121 => 0.52750274312492
1122 => 0.52442152205943
1123 => 0.5358795250363
1124 => 0.52274384923647
1125 => 0.50409941117422
1126 => 0.49387070370809
1127 => 0.50734069082578
1128 => 0.51556634192079
1129 => 0.52100297404492
1130 => 0.52264809564078
1201 => 0.48130049225106
1202 => 0.45901642726722
1203 => 0.47330025743454
1204 => 0.49072751605596
1205 => 0.47936148961894
1206 => 0.47980701633654
1207 => 0.46360204957654
1208 => 0.49216129603887
1209 => 0.48800045405038
1210 => 0.50958690964707
1211 => 0.50443512877679
1212 => 0.52203804533451
1213 => 0.51740260746689
1214 => 0.53664405089156
1215 => 0.54431998361494
1216 => 0.55720906932103
1217 => 0.56669033323445
1218 => 0.57225791275209
1219 => 0.57192365616132
1220 => 0.59398517996731
1221 => 0.58097627014985
1222 => 0.56463401345449
1223 => 0.56433843359003
1224 => 0.57280231990413
1225 => 0.59054030366465
1226 => 0.59513950477659
1227 => 0.59770983076361
1228 => 0.5937732870408
1229 => 0.57965304779092
1230 => 0.57355600007406
1231 => 0.5787508613773
]
'min_raw' => 0.21420910549116
'max_raw' => 0.59770983076361
'avg_raw' => 0.40595946812738
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.2142091'
'max' => '$0.5977098'
'avg' => '$0.405959'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.084802177363305
'max_diff' => 0.30881797980694
'year' => 2036
]
11 => [
'items' => [
101 => 0.57239799240295
102 => 0.58336482655289
103 => 0.59842463223012
104 => 0.5953148419107
105 => 0.6057104047027
106 => 0.61646871854733
107 => 0.63185359053126
108 => 0.63587576576802
109 => 0.64252426848476
110 => 0.64936776169965
111 => 0.65156570728296
112 => 0.65576226738396
113 => 0.65574014944075
114 => 0.66838676576619
115 => 0.68233637520625
116 => 0.68760202983567
117 => 0.69971011230614
118 => 0.67897544539328
119 => 0.69470292842937
120 => 0.70888951181236
121 => 0.69197568225898
122 => 0.71528745588146
123 => 0.7161925992256
124 => 0.72985918908653
125 => 0.71600548206067
126 => 0.70777919505131
127 => 0.73152817741238
128 => 0.74301956189096
129 => 0.73955826336603
130 => 0.71321761068585
131 => 0.69788622102225
201 => 0.6577610170684
202 => 0.70529105443155
203 => 0.72844154916094
204 => 0.71315765649725
205 => 0.72086596294587
206 => 0.76291998350281
207 => 0.7789314317347
208 => 0.77560116243094
209 => 0.77616392312237
210 => 0.78480340995996
211 => 0.82311565245012
212 => 0.80015806867919
213 => 0.81770828126781
214 => 0.82701685074282
215 => 0.83566316884342
216 => 0.81443054428525
217 => 0.78680721170426
218 => 0.77805774272724
219 => 0.71163797458445
220 => 0.70818053720618
221 => 0.70623977283469
222 => 0.69400352799898
223 => 0.68438919134766
224 => 0.67674351388509
225 => 0.65667897303075
226 => 0.66345016656832
227 => 0.63147147624164
228 => 0.65193030905745
301 => 0.6008915471436
302 => 0.64339814469045
303 => 0.62026373618353
304 => 0.63579786929801
305 => 0.63574367217097
306 => 0.60714040800584
307 => 0.59064264217028
308 => 0.60115566066335
309 => 0.61242645101237
310 => 0.614255098827
311 => 0.62886797271223
312 => 0.63294611171092
313 => 0.62058916015478
314 => 0.59983388224742
315 => 0.60465485992781
316 => 0.59054494521146
317 => 0.56581786240109
318 => 0.58357728496894
319 => 0.5896411326603
320 => 0.59231927325058
321 => 0.56800302723123
322 => 0.56036233480057
323 => 0.5562944942621
324 => 0.59669496023666
325 => 0.59890818896164
326 => 0.58758499788563
327 => 0.63876689525824
328 => 0.62718285556868
329 => 0.64012506606055
330 => 0.60421740673441
331 => 0.60558912767674
401 => 0.58858986630598
402 => 0.59810831678255
403 => 0.59138098277969
404 => 0.59733932004721
405 => 0.60091072283821
406 => 0.61790719479745
407 => 0.64359221709842
408 => 0.61536848866913
409 => 0.60307100602126
410 => 0.61070029509233
411 => 0.63101809726456
412 => 0.66180060760464
413 => 0.64357674192756
414 => 0.65166418405374
415 => 0.65343093037305
416 => 0.63999332650695
417 => 0.66229607122638
418 => 0.6742482933087
419 => 0.68650880000129
420 => 0.69715425443086
421 => 0.68161168401395
422 => 0.6982444623
423 => 0.68484137908205
424 => 0.67281742785028
425 => 0.67283566322103
426 => 0.66529286297144
427 => 0.65067773703386
428 => 0.64798248357471
429 => 0.6620035324422
430 => 0.67324708583565
501 => 0.67417315874613
502 => 0.68039816761937
503 => 0.68408206374787
504 => 0.72018925382108
505 => 0.73471186436287
506 => 0.75246983763442
507 => 0.75938756900822
508 => 0.78020746029941
509 => 0.76339370717288
510 => 0.75975594592049
511 => 0.7092536997826
512 => 0.71752343975849
513 => 0.73076409137111
514 => 0.70947203325086
515 => 0.72297694337195
516 => 0.72564309870297
517 => 0.70874853726344
518 => 0.7177726524992
519 => 0.69380727789672
520 => 0.64411459677494
521 => 0.66235139338588
522 => 0.67577981413089
523 => 0.65661580201542
524 => 0.69096655198271
525 => 0.67089955299523
526 => 0.66453927770202
527 => 0.63972557618136
528 => 0.65143668813215
529 => 0.66727613473257
530 => 0.65748919826682
531 => 0.67779856094915
601 => 0.70656203481651
602 => 0.72706059918887
603 => 0.7286342244297
604 => 0.71545502083542
605 => 0.7365747787038
606 => 0.73672861308291
607 => 0.71290543993063
608 => 0.69831387902284
609 => 0.69499864568368
610 => 0.70328074855468
611 => 0.7133367504006
612 => 0.72919226254593
613 => 0.73877341646477
614 => 0.76375598443373
615 => 0.77051555101977
616 => 0.7779422653253
617 => 0.78786664595135
618 => 0.79978340945189
619 => 0.77371020933443
620 => 0.77474614618162
621 => 0.75046714324027
622 => 0.72452154663622
623 => 0.74421102029442
624 => 0.7699523879216
625 => 0.76404728974625
626 => 0.76338284557131
627 => 0.76450025637211
628 => 0.76004800519036
629 => 0.73991063810346
630 => 0.72979777841901
701 => 0.74284594747762
702 => 0.74978046862507
703 => 0.76053530617098
704 => 0.75920954543637
705 => 0.7869128519694
706 => 0.79767751918363
707 => 0.79492345666415
708 => 0.79543027044795
709 => 0.8149191862518
710 => 0.8365948688269
711 => 0.85689700591672
712 => 0.87754921176156
713 => 0.85265217154629
714 => 0.84001098996094
715 => 0.85305346259712
716 => 0.84613294303027
717 => 0.88590030122084
718 => 0.88865370681994
719 => 0.92841818937787
720 => 0.96615941839186
721 => 0.94245482865252
722 => 0.96480718909854
723 => 0.9889830893356
724 => 1.0356223232913
725 => 1.0199158700831
726 => 1.0078849730771
727 => 0.99651583353923
728 => 1.0201732081174
729 => 1.0506080425763
730 => 1.0571634144176
731 => 1.0677856211452
801 => 1.0566176695928
802 => 1.0700682371281
803 => 1.1175546510069
804 => 1.1047234028027
805 => 1.0865009676266
806 => 1.1239869307402
807 => 1.1375529550681
808 => 1.2327664183828
809 => 1.3529773488897
810 => 1.3032092343124
811 => 1.2723165595872
812 => 1.2795770709316
813 => 1.3234740333559
814 => 1.3375723444667
815 => 1.2992482748884
816 => 1.3127849841562
817 => 1.3873735831215
818 => 1.4273879733776
819 => 1.3730430567602
820 => 1.2231075871634
821 => 1.084860236715
822 => 1.1215296594132
823 => 1.1173724848639
824 => 1.1975086293349
825 => 1.1044173817766
826 => 1.1059847996397
827 => 1.1877780747127
828 => 1.1659570312149
829 => 1.1306097353767
830 => 1.0851183110923
831 => 1.0010232058551
901 => 0.9265378259811
902 => 1.0726208088726
903 => 1.0663214450157
904 => 1.0571990326374
905 => 1.0774999742371
906 => 1.1760755841227
907 => 1.1738030972567
908 => 1.1593466952484
909 => 1.1703117487588
910 => 1.128687508481
911 => 1.139415022967
912 => 1.0848383376284
913 => 1.1095092787251
914 => 1.1305338959551
915 => 1.1347548991388
916 => 1.1442650348414
917 => 1.0630019665084
918 => 1.0994866984316
919 => 1.1209180602794
920 => 1.0240903877713
921 => 1.1190040885186
922 => 1.0615873572827
923 => 1.0420992563309
924 => 1.0683374169004
925 => 1.058112380209
926 => 1.049321494096
927 => 1.0444160285984
928 => 1.0636824379206
929 => 1.0627836368974
930 => 1.0312600517974
1001 => 0.99013882010014
1002 => 1.0039404552162
1003 => 0.99892619178749
1004 => 0.98075385426915
1005 => 0.99299981562011
1006 => 0.93907479936969
1007 => 0.84629961168928
1008 => 0.90758974245181
1009 => 0.90523013908829
1010 => 0.90404032007291
1011 => 0.95009815940615
1012 => 0.94567076088941
1013 => 0.9376349892283
1014 => 0.98060627102086
1015 => 0.96492117512127
1016 => 1.0132589448104
1017 => 1.0450973262186
1018 => 1.0370220828298
1019 => 1.0669662344324
1020 => 1.0042584170138
1021 => 1.0250874385593
1022 => 1.0293802710321
1023 => 0.9800760120738
1024 => 0.94639513804131
1025 => 0.94414900773341
1026 => 0.88575101367141
1027 => 0.9169467507272
1028 => 0.94439770836897
1029 => 0.93125082993893
1030 => 0.9270889209798
1031 => 0.94835121124408
1101 => 0.95000347329681
1102 => 0.91233172339556
1103 => 0.9201648731092
1104 => 0.95283040956786
1105 => 0.91934178540157
1106 => 0.85427885898218
1107 => 0.83814235366484
1108 => 0.8359894464007
1109 => 0.79222596417769
1110 => 0.83922067210984
1111 => 0.81870622271759
1112 => 0.88351112254689
1113 => 0.84649491132004
1114 => 0.84489921643741
1115 => 0.84248708958478
1116 => 0.80481805258875
1117 => 0.81306517769869
1118 => 0.84047987763676
1119 => 0.85026175142336
1120 => 0.84924142184689
1121 => 0.84034553065103
1122 => 0.84441802408616
1123 => 0.83129910378082
1124 => 0.8266665399743
1125 => 0.81204489431383
1126 => 0.79055511452566
1127 => 0.79354340020968
1128 => 0.75096652334255
1129 => 0.72776838109945
1130 => 0.72134744107316
1201 => 0.71276109172046
1202 => 0.72231729207996
1203 => 0.75084590839989
1204 => 0.71643434443447
1205 => 0.6574381317063
1206 => 0.66098390461592
1207 => 0.6689502035944
1208 => 0.65410505815034
1209 => 0.64005537384614
1210 => 0.65227043446172
1211 => 0.62727296139547
1212 => 0.67197102878762
1213 => 0.67076207132955
1214 => 0.6874227467434
1215 => 0.69784100899116
1216 => 0.67383028746253
1217 => 0.66779165592998
1218 => 0.67123153489142
1219 => 0.61437799808383
1220 => 0.68277659985251
1221 => 0.68336811380092
1222 => 0.67830321225611
1223 => 0.71472335612802
1224 => 0.7915812194255
1225 => 0.7626641996526
1226 => 0.75146665557498
1227 => 0.73018011609808
1228 => 0.7585431660814
1229 => 0.75636532637519
1230 => 0.74651630930251
1231 => 0.74055959304614
]
'min_raw' => 0.5562944942621
'max_raw' => 1.4273879733776
'avg_raw' => 0.99184123381986
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.556294'
'max' => '$1.42'
'avg' => '$0.991841'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.34208538877094
'max_diff' => 0.82967814261402
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.017461448511407
]
1 => [
'year' => 2028
'avg' => 0.029968914740297
]
2 => [
'year' => 2029
'avg' => 0.081869673699134
]
3 => [
'year' => 2030
'avg' => 0.063162331334906
]
4 => [
'year' => 2031
'avg' => 0.062033236992426
]
5 => [
'year' => 2032
'avg' => 0.10876378702589
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.017461448511407
'min' => '$0.017461'
'max_raw' => 0.10876378702589
'max' => '$0.108763'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.10876378702589
]
1 => [
'year' => 2033
'avg' => 0.27975164427891
]
2 => [
'year' => 2034
'avg' => 0.1773200363789
]
3 => [
'year' => 2035
'avg' => 0.20914938954226
]
4 => [
'year' => 2036
'avg' => 0.40595946812738
]
5 => [
'year' => 2037
'avg' => 0.99184123381986
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.10876378702589
'min' => '$0.108763'
'max_raw' => 0.99184123381986
'max' => '$0.991841'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.99184123381986
]
]
]
]
'prediction_2025_max_price' => '$0.029855'
'last_price' => 0.02894906
'sma_50day_nextmonth' => '$0.02670012'
'sma_200day_nextmonth' => '$0.042785'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 de fev. de 2026'
'sma_50day_date_nextmonth' => '4 de fev. de 2026'
'daily_sma3' => '$0.028254'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.027975'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.027352'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.026889'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.028866'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.034839'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.045518'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.0284059'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.028059'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.027614'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.02766'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.029774'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.035411'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.048629'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.043995'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.055578'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.183648'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.028435'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.028942'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.031985'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.040174'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.074578'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.165214'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.146755'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '55.10'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 115.91
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.027564'
'vwma_10_action' => 'BUY'
'hma_9' => '0.028563'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 203.31
'cci_20_action' => 'SELL'
'adx_14' => 10.82
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '-0.000345'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 71.08
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '-0.001312'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 14
'buy_signals' => 19
'sell_pct' => 42.42
'buy_pct' => 57.58
'overall_action' => 'bullish'
'overall_action_label' => 'Altista'
'overall_action_dir' => 1
'last_updated' => 1767698294
'last_updated_date' => '6 de janeiro de 2026'
]
Previsão de preço de Maverick Protocol para 2026
A previsão de preço para Maverick Protocol em 2026 sugere que o preço médio poderia variar entre $0.0100018 na extremidade inferior e $0.029855 na extremidade superior. No mercado de criptomoedas, comparado ao preço médio de hoje, Maverick Protocol poderia potencialmente ganhar 3.13% até 2026 se MAV atingir a meta de preço prevista.
Previsão de preço de Maverick Protocol 2027-2032
A previsão de preço de MAV para 2027-2032 está atualmente dentro de uma faixa de preço entre $0.017461 na extremidade inferior e $0.108763 na extremidade superior. Considerando a volatilidade de preços no mercado, se Maverick Protocol atingir a meta de preço superior, poderia ganhar 275.71% até 2032 em comparação com o preço de hoje.
| Previsão de Preço de Maverick Protocol | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.009628 | $0.017461 | $0.025294 |
| 2028 | $0.017376 | $0.029968 | $0.042561 |
| 2029 | $0.038171 | $0.081869 | $0.125567 |
| 2030 | $0.032463 | $0.063162 | $0.093861 |
| 2031 | $0.038381 | $0.062033 | $0.085684 |
| 2032 | $0.058586 | $0.108763 | $0.15894 |
Previsão de preço de Maverick Protocol 2032-2037
A previsão de preço de Maverick Protocol para 2032-2037 é atualmente estimada entre $0.108763 na extremidade inferior e $0.991841 na extremidade superior. Comparado ao preço atual, Maverick Protocol poderia potencialmente ganhar 3326.16% até 2037 se atingir a meta de preço superior. Por favor, note que esta informação é apenas para fins gerais e não deve ser considerada como aconselhamento de investimento a longo prazo.
| Previsão de Preço de Maverick Protocol | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.058586 | $0.108763 | $0.15894 |
| 2033 | $0.136143 | $0.279751 | $0.42336 |
| 2034 | $0.109452 | $0.17732 | $0.245187 |
| 2035 | $0.1294069 | $0.209149 | $0.288891 |
| 2036 | $0.2142091 | $0.405959 | $0.5977098 |
| 2037 | $0.556294 | $0.991841 | $1.42 |
Maverick Protocol Histograma de preços potenciais
Previsão de preço de Maverick Protocol baseada na análise técnica
Em 6 de janeiro de 2026, o sentimento geral de previsão de preço para Maverick Protocol é Altista, com 19 indicadores técnicos mostrando sinais de alta e 14 indicando sinais de baixa. A previsão de preço de MAV foi atualizada pela última vez em 6 de janeiro de 2026.
Médias Móveis Simples de 50 e 200 dias e Índice de Força Relativa de 14 dias - RSI (14) de Maverick Protocol
De acordo com nossos indicadores técnicos, o SMA de 200 dias de Maverick Protocol está projetado para aumentar no próximo mês, alcançando $0.042785 até 4 de fev. de 2026. O SMA de 50 dias de curto prazo para Maverick Protocol é esperado para alcançar $0.02670012 até 4 de fev. de 2026.
O oscilador de momentum Índice de Força Relativa (RSI) é uma ferramenta comumente usada para identificar se uma criptomoeda está sobrevendida (abaixo de 30) ou sobrecomprada (acima de 70). No momento, o RSI está em 55.10, sugerindo que o mercado de MAV está em um estado NEUTRAL.
Médias Móveis e Osciladores Populares de MAV para Sábado, 19 de Outubro de 2024
Médias móveis (MA) são indicadores amplamente utilizados nos mercados financeiros, projetados para suavizar movimentos de preços ao longo de um período definido. Como indicadores atrasados, eles se baseiam em dados históricos de preços. A tabela abaixo destaca dois tipos: a média móvel simples (SMA) e a média móvel exponencial (EMA).
Média Móvel Simples Diária (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 3 | $0.028254 | BUY |
| SMA 5 | $0.027975 | BUY |
| SMA 10 | $0.027352 | BUY |
| SMA 21 | $0.026889 | BUY |
| SMA 50 | $0.028866 | BUY |
| SMA 100 | $0.034839 | SELL |
| SMA 200 | $0.045518 | SELL |
Média Móvel Exponencial Diária (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 3 | $0.0284059 | BUY |
| EMA 5 | $0.028059 | BUY |
| EMA 10 | $0.027614 | BUY |
| EMA 21 | $0.02766 | BUY |
| EMA 50 | $0.029774 | SELL |
| EMA 100 | $0.035411 | SELL |
| EMA 200 | $0.048629 | SELL |
Média Móvel Simples Semanal (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 21 | $0.043995 | SELL |
| SMA 50 | $0.055578 | SELL |
| SMA 100 | $0.183648 | SELL |
| SMA 200 | — | — |
Média Móvel Exponencial Semanal (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 21 | $0.040174 | SELL |
| EMA 50 | $0.074578 | SELL |
| EMA 100 | $0.165214 | SELL |
| EMA 200 | $0.146755 | SELL |
Osciladores de Maverick Protocol
Um oscilador é uma ferramenta de análise técnica que define limites altos e baixos entre dois extremos, criando um indicador de tendência que flutua dentro desses limites. Os traders usam esse indicador para identificar condições de sobrecompra ou sobrevenda de curto prazo.
| Período | Valor | Ação |
|---|---|---|
| RSI (14) | 55.10 | NEUTRAL |
| Stoch RSI (14) | 115.91 | SELL |
| Estocástico Rápido (14) | 100 | SELL |
| Índice de Canal de Commodities (20) | 203.31 | SELL |
| Índice Direcional Médio (14) | 10.82 | NEUTRAL |
| Oscilador Impressionante (5, 34) | -0.000345 | NEUTRAL |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Williams Percent Range (14) | -0 | SELL |
| Oscilador Ultimate (7, 14, 28) | 71.08 | SELL |
| VWMA (10) | 0.027564 | BUY |
| Média Móvel de Hull (9) | 0.028563 | BUY |
| Nuvem Ichimoku B/L (9, 26, 52, 26) | -0.001312 | SELL |
Previsão do preço de Maverick Protocol com base nos fluxos financeiros mundiais
Definições dos fluxos financeiros mundiais, usadas na previsão do preço do Maverick Protocol
M0: o total de todas as moedas físicas, mais as contas no Banco Central que podem ser trocadas por moedas físicas.
M1: o valor de M0, mais o valor em contas de demanda, incluindo contas 'correntes'.
M2: o valor de M1, mais a maioria das contas de poupança, do mercado de moedas e de certificados de depósito (CD) de menos de US$ 100.000.
Previsões de preço de Maverick Protocol por empresas de Internet ou nichos tecnológicos
| Comparação | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.040678 | $0.057159 | $0.080319 | $0.112861 | $0.158589 | $0.222844 |
| Amazon.com stock | $0.0604039 | $0.126036 | $0.262982 | $0.548728 | $1.14 | $2.38 |
| Apple stock | $0.041062 | $0.058243 | $0.082613 | $0.117181 | $0.166212 | $0.23576 |
| Netflix stock | $0.045677 | $0.072071 | $0.113717 | $0.179427 | $0.283109 | $0.4467017 |
| Google stock | $0.037488 | $0.048547 | $0.062869 | $0.081415 | $0.105432 | $0.136535 |
| Tesla stock | $0.065625 | $0.148767 | $0.337245 | $0.764509 | $1.73 | $3.92 |
| Kodak stock | $0.0217087 | $0.016279 | $0.0122076 | $0.009154 | $0.006864 | $0.005147 |
| Nokia stock | $0.019177 | $0.0127043 | $0.008416 | $0.005575 | $0.003693 | $0.002446 |
Este cálculo mostra quanto a criptomoeda pode custar, se assumirmos que sua capitalização se comportará da mesma forma que a de algumas empresas de Internet ou nichos tecnológicos. Se você extrapolar os dados, poderá obter uma imagem em potencial do preço futuro para 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Visão geral da previsão para Maverick Protocol
Você pode fazer perguntas como: 'Devo investir em Maverick Protocol agora?', 'Devo comprar MAV hoje?', 'Maverick Protocol será um bom ou mau investimento no curto ou no longo prazo?'.
Atualizamos a previsão para Maverick Protocol regularmente com novos valores. Veja nossas previsões semelhantes. Fazemos previsões de preços futuros para uma enorme quantidade de moedas digitais, como Maverick Protocol, com métodos de análise técnica.
Se você estiver tentando encontrar criptomoedas com bom retorno, você deve explorar o máximo de fontes de informações disponíveis sobre Maverick Protocol para poder tomar sozinho uma decisão de tão grande responsabilidade sobre o seu investimento.
O preço de Maverick Protocol é de $0.02894 USD hoje, mas o preço pode tanto subir quanto descer e seu investimento pode ser perdido, porque criptomoedas são ativos de alto risco
Previsão de curto prazo para Maverick Protocol
com base no histórico de preços de 4 horas
Previsão de longo prazo para Maverick Protocol
com base no histórico de preços de 1 mês
Previsão do preço de Maverick Protocol com base no padrão de crescimento do Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se Maverick Protocol tiver 1% da média anterior do crescimento anual do Bitcoin | $0.0297015 | $0.030473 | $0.031265 | $0.032078 |
| Se Maverick Protocol tiver 2% da média anterior do crescimento anual do Bitcoin | $0.030454 | $0.032037 | $0.0337027 | $0.035454 |
| Se Maverick Protocol tiver 5% da média anterior do crescimento anual do Bitcoin | $0.032711 | $0.036962 | $0.041766 | $0.047195 |
| Se Maverick Protocol tiver 10% da média anterior do crescimento anual do Bitcoin | $0.036473 | $0.045954 | $0.057899 | $0.072949 |
| Se Maverick Protocol tiver 20% da média anterior do crescimento anual do Bitcoin | $0.043998 | $0.066871 | $0.101636 | $0.154473 |
| Se Maverick Protocol tiver 50% da média anterior do crescimento anual do Bitcoin | $0.066573 | $0.153095 | $0.352067 | $0.809635 |
| Se Maverick Protocol tiver 100% da média anterior do crescimento anual do Bitcoin | $0.104196 | $0.375038 | $1.34 | $4.85 |
Perguntas Frequentes sobre Maverick Protocol
MAV é um bom investimento?
A decisão de adquirir Maverick Protocol depende inteiramente da sua tolerância individual ao risco. Como você pode perceber, o valor de Maverick Protocol experimentou uma escalada de 5.2329% nas últimas 24 horas, e Maverick Protocol registrou um declínio de durante os últimos 30 dias. Consequentemente, a decisão de investir ou não em Maverick Protocol dependerá de quão alinhado esse investimento está com suas aspirações de negociação.
Maverick Protocol pode subir?
Parece que o valor médio de Maverick Protocol pode potencialmente subir para $0.029855 até o final deste ano. Observando as perspectivas de Maverick Protocol em um horizonte de cinco anos mais longo, a moeda digital poderia potencialmente crescer até $0.093861. No entanto, dada a imprevisibilidade do mercado, é vital conduzir uma pesquisa aprofundada antes de investir quaisquer fundos em um projeto, rede ou ativo específico.
Qual será o preço de Maverick Protocol na próxima semana?
Com base na nossa nova previsão experimental de Maverick Protocol, o preço de Maverick Protocol aumentará 0.86% na próxima semana e atingirá $0.029196 até 13 de janeiro de 2026.
Qual será o preço de Maverick Protocol no próximo mês?
Com base na nossa nova previsão experimental de Maverick Protocol, o preço de Maverick Protocol diminuirá -11.62% no próximo mês e atingirá $0.025585 até 5 de fevereiro de 2026.
Até onde o preço de Maverick Protocol pode subir este ano em 2026?
De acordo com nossa previsão mais recente sobre o valor de Maverick Protocol em 2026, espera-se que MAV fluctue dentro do intervalo de $0.0100018 e $0.029855. No entanto, é crucial lembrar que o mercado de criptomoedas é excepcionalmente instável, e essa previsão de preço de Maverick Protocol não considera flutuações repentinas e extremas de preço.
Onde estará Maverick Protocol em 5 anos?
O futuro de Maverick Protocol parece seguir uma tendência de alta, com um preço máximo de $0.093861 projetada após um período de cinco anos. Com base na previsão de Maverick Protocol para 2030, o valor de Maverick Protocol pode potencialmente atingir seu pico mais alto de aproximadamente $0.093861, enquanto seu pico mais baixo está previsto para cerca de $0.032463.
Quanto será Maverick Protocol em 2026?
Com base na nossa nova simulação experimental de previsão de preços de Maverick Protocol, espera-se que o valor de MAV em 2026 aumente 3.13% para $0.029855 se o melhor cenário ocorrer. O preço ficará entre $0.029855 e $0.0100018 durante 2026.
Quanto será Maverick Protocol em 2027?
De acordo com nossa última simulação experimental para previsão de preços de Maverick Protocol, o valor de MAV pode diminuir -12.62% para $0.025294 em 2027, assumindo as condições mais favoráveis. O preço está projetado para flutuar entre $0.025294 e $0.009628 ao longo do ano.
Quanto será Maverick Protocol em 2028?
Nosso novo modelo experimental de previsão de preços de Maverick Protocol sugere que o valor de MAV em 2028 pode aumentar 47.02%, alcançando $0.042561 no melhor cenário. O preço é esperado para variar entre $0.042561 e $0.017376 durante o ano.
Quanto será Maverick Protocol em 2029?
Com base no nosso modelo de previsão experimental, o valor de Maverick Protocol pode experimentar um 333.75% crescimento em 2029, potencialmente alcançando $0.125567 sob condições ótimas. A faixa de preço prevista para 2029 está entre $0.125567 e $0.038171.
Quanto será Maverick Protocol em 2030?
Usando nossa nova simulação experimental para previsões de preços de Maverick Protocol, espera-se que o valor de MAV em 2030 aumente 224.23%, alcançando $0.093861 no melhor cenário. O preço está previsto para variar entre $0.093861 e $0.032463 ao longo de 2030.
Quanto será Maverick Protocol em 2031?
Nossa simulação experimental indica que o preço de Maverick Protocol poderia aumentar 195.98% em 2031, potencialmente atingindo $0.085684 sob condições ideais. O preço provavelmente oscilará entre $0.085684 e $0.038381 durante o ano.
Quanto será Maverick Protocol em 2032?
Com base nos achados da nossa mais recente previsão experimental de preços de Maverick Protocol, MAV poderia ver um 449.04% aumento em valor, atingindo $0.15894 se o cenário mais positivo se desenrolar em 2032. O preço é esperado para permanecer dentro de uma faixa de $0.15894 e $0.058586 ao longo do ano.
Quanto será Maverick Protocol em 2033?
De acordo com nossa previsão experimental de preços de Maverick Protocol, espera-se que o valor de MAV seja aumentar 1362.43% em 2033, com o preço potencial mais alto sendo $0.42336. Ao longo do ano, o preço de MAV poderia variar entre $0.42336 e $0.136143.
Quanto será Maverick Protocol em 2034?
Os resultados da nossa nova simulação de previsão de preços de Maverick Protocol sugerem que MAV pode aumentar 746.96% em 2034, atingindo potencialmente $0.245187 nas melhores circunstâncias. A faixa de preço prevista para o ano é entre $0.245187 e $0.109452.
Quanto será Maverick Protocol em 2035?
Com base em nossa previsão experimental para o preço de Maverick Protocol, MAV poderia aumentar 897.93%, com o valor potencialmente atingindo $0.288891 em 2035. A faixa de preço esperada para o ano está entre $0.288891 e $0.1294069.
Quanto será Maverick Protocol em 2036?
Nossa recente simulação de previsão de preços de Maverick Protocol sugere que o valor de MAV pode aumentar 1964.7% em 2036, possivelmente atingindo $0.5977098 se as condições forem ideais. A faixa de preço esperada para 2036 está entre $0.5977098 e $0.2142091.
Quanto será Maverick Protocol em 2037?
De acordo com a simulação experimental, o valor de Maverick Protocol poderia aumentar 4830.69% em 2037, com um pico de $1.42 sob condições favoráveis. O preço é esperado para cair entre $1.42 e $0.556294 ao longo do ano.
Previsões relacionadas
Previsão de Preço do Myria
Previsão de Preço do MimbleWimbleCoin
Previsão de Preço do CYBER
Previsão de Preço do Velodrome Finance
Previsão de Preço do Ontology Gas
Previsão de Preço do DODO
Previsão de Preço do Cudos
Previsão de Preço do Acala
Previsão de Preço do WINk
Previsão de Preço do Radiant Capital
Previsão de Preço do APEX
Previsão de Preço do Metars Genesis
Previsão de Preço do Liquity
Previsão de Preço do Steem
Previsão de Preço do Alpha Finance
Previsão de Preço do Zignaly
Previsão de Preço do Heroes of Mavia
Previsão de Preço do Sovryn
Previsão de Preço do Verge
Previsão de Preço do Quasar
Previsão de Preço do Auction
Previsão de Preço do Pundi X
Previsão de Preço do XYO Network
Previsão de Preço do f(x) Coin
Previsão de Preço do Multibit
Como ler e prever os movimentos de preço de Maverick Protocol?
Traders de Maverick Protocol utilizam indicadores e padrões de gráfico para prever a direção do mercado. Eles também identificam níveis-chave de suporte e resistência para avaliar quando uma tendência de baixa pode desacelerar ou uma tendência de alta pode estagnar.
Indicadores de Previsão de Preço de Maverick Protocol
Médias móveis são ferramentas populares para a previsão de preço de Maverick Protocol. Uma média móvel simples (SMA) calcula o preço médio de fechamento de MAV em um período específico, como uma SMA de 12 dias. Uma média móvel exponencial (EMA) dá mais peso aos preços recentes, reagindo mais rapidamente às mudanças de preço.
Médias móveis comumente usadas no mercado de criptomoedas incluem as de 50 dias, 100 dias e 200 dias, que ajudam a identificar níveis-chave de resistência e suporte. Um movimento de preço de MAV acima dessas médias é visto como altista, enquanto uma queda abaixo indica fraqueza.
Traders também usam RSI e níveis de retração de Fibonacci para avaliar a direção futura de MAV.
Como ler gráficos de Maverick Protocol e prever movimentos de preço?
A maioria dos traders prefere gráficos de velas em vez de gráficos de linha simples porque eles fornecem informações mais detalhadas. Velas podem representar a ação de preço de Maverick Protocol em diferentes períodos de tempo, como 5 minutos para tendências de curto prazo e semanal para tendências de longo prazo. Opções populares incluem gráficos de 1 hora, 4 horas e 1 dia.
Por exemplo, um gráfico de velas de 1 hora mostra os preços de abertura, fechamento, máximo e mínimo de MAV dentro de cada hora. A cor da vela é crucial: verde indica que o preço fechou mais alto do que abriu, enquanto vermelho significa o oposto. Alguns gráficos usam velas vazias e preenchidas para transmitir a mesma informação.
O que afeta o preço de Maverick Protocol?
A ação de preço de Maverick Protocol é impulsionada pela oferta e demanda, influenciada por fatores como reduções pela metade das recompensas de bloco, hard forks e atualizações de protocolo. Eventos do mundo real, como regulamentações, adoção por empresas e governos e hacks de exchanges de criptomoedas, também impactam o preço de MAV. A capitalização de mercado de Maverick Protocol pode mudar rapidamente.
Traders frequentemente monitoram a atividade de "baleias" de MAV, grandes detentores de Maverick Protocol, pois suas ações podem influenciar significativamente os movimentos de preço no relativamente pequeno mercado de Maverick Protocol.
Padrões de previsão de preço altistas e baixistas
Traders frequentemente identificam padrões de velas para ganhar vantagem em previsões de preço de criptomoedas. Certas formações indicam tendências altistas, enquanto outras sugerem movimentos baixistas.
Padrões de velas altistas comumente seguidos:
- Martelo
- Engolfo de Alta
- Linha de Perfuração
- Estrela da Manhã
- Três Soldados Brancos
Padrões de velas baixistas comuns:
- Harami de Baixa
- Nuvem Negra
- Estrela da Noite
- Estrela Cadente
- Homem Enforcado


