Previsão de Preço Maverick Protocol - Projeção MAV
Previsão de Preço Maverick Protocol até $0.029864 até 2026
| Ano | Preço Mínimo | Preço Máximo |
|---|---|---|
| 2026 | $0.0100048 | $0.029864 |
| 2027 | $0.009631 | $0.0253017 |
| 2028 | $0.017381 | $0.042573 |
| 2029 | $0.038182 | $0.1256045 |
| 2030 | $0.032472 | $0.093888 |
| 2031 | $0.038393 | $0.0857098 |
| 2032 | $0.0586041 | $0.158987 |
| 2033 | $0.136183 | $0.423484 |
| 2034 | $0.109484 | $0.245259 |
| 2035 | $0.129445 | $0.288976 |
Calculadora de lucro do investimento
Se você abrir um short de $10,000.00 em Maverick Protocol hoje e fechar em Apr 06, 2026, nossa previsão mostra que pode lucrar cerca de $3,954.61, com um retorno de 39.55% nos próximos 90 dias.
Previsão de preço de longo prazo de Maverick Protocol para os anos 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'Maverick Protocol'
'name_with_ticker' => 'Maverick Protocol <small>MAV</small>'
'name_lang' => 'Maverick Protocol'
'name_lang_with_ticker' => 'Maverick Protocol <small>MAV</small>'
'name_with_lang' => 'Maverick Protocol'
'name_with_lang_with_ticker' => 'Maverick Protocol <small>MAV</small>'
'image' => '/uploads/coins/maverick-protocol.png?1717140033'
'price_for_sd' => 0.02895
'ticker' => 'MAV'
'marketcap' => '$24.4M'
'low24h' => '$0.02747'
'high24h' => '$0.02923'
'volume24h' => '$5.69M'
'current_supply' => '842.96M'
'max_supply' => '2B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.02895'
'change_24h_pct' => '4.9468%'
'ath_price' => '$0.8047'
'ath_days' => 675
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '2 de mar. de 2024'
'ath_pct' => '-96.40%'
'fdv' => '$57.9M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$1.42'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.029205'
'next_week_prediction_price_date' => '13 de janeiro de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.025593'
'next_month_prediction_price_date' => '5 de fevereiro de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.0100048'
'current_year_max_price_prediction' => '$0.029864'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.032472'
'grand_prediction_max_price' => '$0.093888'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.029506310909313
107 => 0.029616476763457
108 => 0.029864686058053
109 => 0.027743764811677
110 => 0.028695996184323
111 => 0.02925534290374
112 => 0.026728194076209
113 => 0.029205389296822
114 => 0.027706844291401
115 => 0.027198215609171
116 => 0.027883017123061
117 => 0.027616149307106
118 => 0.027386712029953
119 => 0.027258682087068
120 => 0.027761524740084
121 => 0.027738066529294
122 => 0.026915318351407
123 => 0.025842076892859
124 => 0.026202291954298
125 => 0.026071422445443
126 => 0.02559713446285
127 => 0.025916747297368
128 => 0.024509334126505
129 => 0.022087952917006
130 => 0.023687591512913
131 => 0.023626007167043
201 => 0.023594953547227
202 => 0.024797037741288
203 => 0.02468148508283
204 => 0.024471755876234
205 => 0.0255932826215
206 => 0.025183910272814
207 => 0.026445499391207
208 => 0.027276463579048
209 => 0.027065704182136
210 => 0.0278472300172
211 => 0.026210590581781
212 => 0.02675421655165
213 => 0.026866257110607
214 => 0.025579443155553
215 => 0.024700390926818
216 => 0.02464176816509
217 => 0.023117612741322
218 => 0.023931804266146
219 => 0.024648259114457
220 => 0.024305132841258
221 => 0.02419650931377
222 => 0.024751443358141
223 => 0.024794566486078
224 => 0.023811354599144
225 => 0.024015795484709
226 => 0.024868347962982
227 => 0.023994313349681
228 => 0.022296206868779
301 => 0.021875052983357
302 => 0.021818863291635
303 => 0.020676660552233
304 => 0.021903196499806
305 => 0.021367780689571
306 => 0.023059152818838
307 => 0.022093050129611
308 => 0.022051403373604
309 => 0.021988448193647
310 => 0.021005307112043
311 => 0.021220552527039
312 => 0.021936061069289
313 => 0.022191362577944
314 => 0.022164732538968
315 => 0.021932554687087
316 => 0.022038844518735
317 => 0.021696447937165
318 => 0.021575540577845
319 => 0.021193923693639
320 => 0.020633052298211
321 => 0.020711044905769
322 => 0.019599811911444
323 => 0.018994353198536
324 => 0.018826770206621
325 => 0.018602671226056
326 => 0.01885208278278
327 => 0.01959666392799
328 => 0.018698541095165
329 => 0.017158772494279
330 => 0.01725131521083
331 => 0.017459231218742
401 => 0.0170717811135
402 => 0.016705092105112
403 => 0.017023898447486
404 => 0.01637147819288
405 => 0.017538073089536
406 => 0.017506519966926
407 => 0.017941354402655
408 => 0.018213265299017
409 => 0.0175865987151
410 => 0.017428993763932
411 => 0.017518772706863
412 => 0.016034926765277
413 => 0.017820092532327
414 => 0.017835530720011
415 => 0.017703339584264
416 => 0.018653885244409
417 => 0.020659833069941
418 => 0.019905114808911
419 => 0.019612865086761
420 => 0.019057298151319
421 => 0.019797558106495
422 => 0.019740717691791
423 => 0.019483663780416
424 => 0.019328196772759
425 => 0.019614649501246
426 => 0.019292702109668
427 => 0.019234871511618
428 => 0.018884481007745
429 => 0.018759407539615
430 => 0.01866680812313
501 => 0.01856486526421
502 => 0.018789725808409
503 => 0.018280162232386
504 => 0.017665678512835
505 => 0.017614590840361
506 => 0.017755648395737
507 => 0.017693240927983
508 => 0.017614292057415
509 => 0.017463557163055
510 => 0.01741883733984
511 => 0.017564155070315
512 => 0.017400099825158
513 => 0.017642172275939
514 => 0.017576341963806
515 => 0.017208619191554
516 => 0.01675030046892
517 => 0.016746220470932
518 => 0.016647476453934
519 => 0.016521711102025
520 => 0.016486726058245
521 => 0.016997049466555
522 => 0.018053403649061
523 => 0.017846016046622
524 => 0.01799587484332
525 => 0.018733031802375
526 => 0.018967351832576
527 => 0.018801037025313
528 => 0.018573375059282
529 => 0.018583391030384
530 => 0.019361380886276
531 => 0.019409903159286
601 => 0.019532503289304
602 => 0.01969007910317
603 => 0.018827872867792
604 => 0.018542781194234
605 => 0.018407688943019
606 => 0.017991657096556
607 => 0.018440311775091
608 => 0.018178899907218
609 => 0.018214173299295
610 => 0.018191201456431
611 => 0.018203745635984
612 => 0.017537747002487
613 => 0.017780401900676
614 => 0.017376941068746
615 => 0.016836752305396
616 => 0.016834941403246
617 => 0.016967151837791
618 => 0.016888507897929
619 => 0.016676879077881
620 => 0.016706939952909
621 => 0.016443575056124
622 => 0.016738917219754
623 => 0.016747386576222
624 => 0.016633663755828
625 => 0.017088679108264
626 => 0.017275099269415
627 => 0.017200244472853
628 => 0.01726984725734
629 => 0.017854633937802
630 => 0.017949979682749
701 => 0.017992325964468
702 => 0.017935587556771
703 => 0.017280536084351
704 => 0.017309590402647
705 => 0.017096409092836
706 => 0.016916293350538
707 => 0.016923497035647
708 => 0.017016099940596
709 => 0.017420502257594
710 => 0.018271543092899
711 => 0.018303839470496
712 => 0.018342983622296
713 => 0.018183764684653
714 => 0.01813574272954
715 => 0.018199096083852
716 => 0.018518702275992
717 => 0.019340816174408
718 => 0.019050226215567
719 => 0.018813972055726
720 => 0.019021230647571
721 => 0.018989324811903
722 => 0.018720007449968
723 => 0.018712448608608
724 => 0.018195542485085
725 => 0.018004454060602
726 => 0.017844766270383
727 => 0.01767039137222
728 => 0.017567016087489
729 => 0.017725847508062
730 => 0.017762174133185
731 => 0.017414886456204
801 => 0.017367552429103
802 => 0.017651155042852
803 => 0.017526352106312
804 => 0.017654715021507
805 => 0.017684496318909
806 => 0.017679700844106
807 => 0.017549392244832
808 => 0.017632447060151
809 => 0.017435997662091
810 => 0.017222388447446
811 => 0.017086119076826
812 => 0.016967205977452
813 => 0.017033185876255
814 => 0.016797979584477
815 => 0.016722732357969
816 => 0.017604309957513
817 => 0.018255540808853
818 => 0.018246071654359
819 => 0.018188430611644
820 => 0.018102787714229
821 => 0.018512436964609
822 => 0.018369723356972
823 => 0.018473559430649
824 => 0.018499990069386
825 => 0.018579987652444
826 => 0.018608579912363
827 => 0.018522154244287
828 => 0.018232099146219
829 => 0.017509309419445
830 => 0.017172848850499
831 => 0.017061811258552
901 => 0.017065847264129
902 => 0.016954516212797
903 => 0.016987308196922
904 => 0.01694311249895
905 => 0.01685941653908
906 => 0.017028017886582
907 => 0.017047447621251
908 => 0.017008094052108
909 => 0.017017363242261
910 => 0.016691532497886
911 => 0.016716304701714
912 => 0.016578369922902
913 => 0.016552508814703
914 => 0.016203821705221
915 => 0.015586071947769
916 => 0.015928365279818
917 => 0.015514923068429
918 => 0.015358346238305
919 => 0.016099556599421
920 => 0.01602515963714
921 => 0.015897824377298
922 => 0.015709468988997
923 => 0.015639606143273
924 => 0.015215141608542
925 => 0.0151900619794
926 => 0.015400438064319
927 => 0.015303356739728
928 => 0.015167017792429
929 => 0.014673211945771
930 => 0.01411801068063
1001 => 0.014134768716954
1002 => 0.014311367909509
1003 => 0.014824853879507
1004 => 0.014624226027631
1005 => 0.014478668219156
1006 => 0.01445140961708
1007 => 0.014792608091807
1008 => 0.015275475416836
1009 => 0.015502025962192
1010 => 0.015277521252187
1011 => 0.015019622329524
1012 => 0.015035319441958
1013 => 0.015139745298551
1014 => 0.015150718979577
1015 => 0.014982853293361
1016 => 0.015030106500752
1017 => 0.014958324557801
1018 => 0.014517798906413
1019 => 0.014509831194302
1020 => 0.014401719095015
1021 => 0.014398445503615
1022 => 0.014214519852902
1023 => 0.014188787382949
1024 => 0.013823591839969
1025 => 0.014063964652273
1026 => 0.013902735189919
1027 => 0.013659724359966
1028 => 0.013617829201286
1029 => 0.013616569782226
1030 => 0.01386608756836
1031 => 0.014061048891665
1101 => 0.013905539845445
1102 => 0.013870133450037
1103 => 0.014248181122313
1104 => 0.014200071110034
1105 => 0.014158408149678
1106 => 0.015232239944015
1107 => 0.014382218286657
1108 => 0.014011560326509
1109 => 0.013552800714789
1110 => 0.013702175157632
1111 => 0.013733650547506
1112 => 0.012630416378953
1113 => 0.012182834414171
1114 => 0.012029241150628
1115 => 0.011940846055969
1116 => 0.011981128810601
1117 => 0.011578252546168
1118 => 0.011848992058825
1119 => 0.011500135268109
1120 => 0.011441648291867
1121 => 0.012065447448731
1122 => 0.012152245457227
1123 => 0.011781938186956
1124 => 0.012019735401771
1125 => 0.011933506826051
1126 => 0.011506115416506
1127 => 0.01148979220834
1128 => 0.011275342222565
1129 => 0.010939769520527
1130 => 0.010786403791078
1201 => 0.010706529587599
1202 => 0.010739487240671
1203 => 0.010722822842757
1204 => 0.010614076374132
1205 => 0.010729056063044
1206 => 0.010435330470761
1207 => 0.010318366573206
1208 => 0.010265536694222
1209 => 0.010004838324857
1210 => 0.010419725363609
1211 => 0.010501463336852
1212 => 0.010583362359153
1213 => 0.011296237433443
1214 => 0.011260624209295
1215 => 0.011582550411245
1216 => 0.011570040951022
1217 => 0.011478222383367
1218 => 0.011090854949853
1219 => 0.011245252704691
1220 => 0.010770040414037
1221 => 0.01112610177349
1222 => 0.010963610238514
1223 => 0.011071163222062
1224 => 0.01087777325998
1225 => 0.010984803249872
1226 => 0.010520846442587
1227 => 0.010087610103992
1228 => 0.0102619570536
1229 => 0.010451492126815
1230 => 0.010862452458185
1231 => 0.01061768787517
]
'min_raw' => 0.010004838324857
'max_raw' => 0.029864686058053
'avg_raw' => 0.019934762191455
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.0100048'
'max' => '$0.029864'
'avg' => '$0.019934'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.018952741675143
'max_diff' => 0.000907106058053
'year' => 2026
]
1 => [
'items' => [
101 => 0.010705714474796
102 => 0.010410840101525
103 => 0.0098024300427652
104 => 0.0098058735776247
105 => 0.0097122829450181
106 => 0.00963140697399
107 => 0.010645802031902
108 => 0.010519645971238
109 => 0.010318632799467
110 => 0.010587696917828
111 => 0.010658841741345
112 => 0.010660867134453
113 => 0.010857169369659
114 => 0.010961935907778
115 => 0.010980401464206
116 => 0.011289287272694
117 => 0.011392821721397
118 => 0.011819265462861
119 => 0.010953047198982
120 => 0.010935208003868
121 => 0.010591483201755
122 => 0.010373487498181
123 => 0.010606409554083
124 => 0.01081274669858
125 => 0.010597894671997
126 => 0.010625949810895
127 => 0.010337528519264
128 => 0.010440625559539
129 => 0.010529426619295
130 => 0.010480395893583
131 => 0.010406994524078
201 => 0.010795829405769
202 => 0.010773889817888
203 => 0.011135981798994
204 => 0.011418258391712
205 => 0.011924148508839
206 => 0.011396225798968
207 => 0.011376986197118
208 => 0.011565056391335
209 => 0.01139279292883
210 => 0.011501657490801
211 => 0.011906608744866
212 => 0.011915164726751
213 => 0.011771841006424
214 => 0.011763119745017
215 => 0.011790646633295
216 => 0.011951872477729
217 => 0.011895535213714
218 => 0.011960730121917
219 => 0.012042257352924
220 => 0.012379488547202
221 => 0.012460793846451
222 => 0.01226326412124
223 => 0.01228109884378
224 => 0.012207217304238
225 => 0.012135848662774
226 => 0.012296274946232
227 => 0.012589457132438
228 => 0.012587633261274
301 => 0.012655645829827
302 => 0.012698017096588
303 => 0.012516128601984
304 => 0.012397725880222
305 => 0.012443129017907
306 => 0.012515729623816
307 => 0.012419585619897
308 => 0.011826140289475
309 => 0.01200615369329
310 => 0.01197619066069
311 => 0.011933519658637
312 => 0.012114524528176
313 => 0.012097066166945
314 => 0.011574120467768
315 => 0.011607597754736
316 => 0.011576156332469
317 => 0.011677750000125
318 => 0.011387306537375
319 => 0.01147664499035
320 => 0.01153267723056
321 => 0.011565680650504
322 => 0.011684911633997
323 => 0.011670921254243
324 => 0.011684041972349
325 => 0.011860830045057
326 => 0.012754963450475
327 => 0.012803629158937
328 => 0.01256398141182
329 => 0.012659715959951
330 => 0.012475926562384
331 => 0.012599305616253
401 => 0.012683718431421
402 => 0.012302273151326
403 => 0.012279686437398
404 => 0.01209513847561
405 => 0.012194304096944
406 => 0.012036524463141
407 => 0.012075238066379
408 => 0.011966991456735
409 => 0.01216181380241
410 => 0.012379655457206
411 => 0.012434690862035
412 => 0.012289916406161
413 => 0.012185090159007
414 => 0.012001049800916
415 => 0.012307113018028
416 => 0.012396615229819
417 => 0.012306642901011
418 => 0.012285794346493
419 => 0.012246286373352
420 => 0.012294176149761
421 => 0.012396127781552
422 => 0.01234804927475
423 => 0.012379805975527
424 => 0.012258782179533
425 => 0.012516188814644
426 => 0.012925012499481
427 => 0.012926326934477
428 => 0.012878248168514
429 => 0.012858575373354
430 => 0.012907907104895
501 => 0.012934667545563
502 => 0.013094197319474
503 => 0.013265379122829
504 => 0.01406420990661
505 => 0.013839901419097
506 => 0.014548671613123
507 => 0.015109216814307
508 => 0.015277299810471
509 => 0.015122671362916
510 => 0.014593695796696
511 => 0.014567741731806
512 => 0.015358254555463
513 => 0.015134898474999
514 => 0.015108330979941
515 => 0.014825697719014
516 => 0.014992768981032
517 => 0.014956228045241
518 => 0.014898546390452
519 => 0.015217306720097
520 => 0.015813997601262
521 => 0.0157209977317
522 => 0.015651577643213
523 => 0.015347399023344
524 => 0.015530582493259
525 => 0.015465354368271
526 => 0.015745615788013
527 => 0.015579595131508
528 => 0.015133206333012
529 => 0.01520429522049
530 => 0.015193550278158
531 => 0.015414680429939
601 => 0.015348302647162
602 => 0.015180588950746
603 => 0.015811958176698
604 => 0.015770960571025
605 => 0.015829085802512
606 => 0.015854674326995
607 => 0.016238977648859
608 => 0.016396414423492
609 => 0.016432155327652
610 => 0.016581708086956
611 => 0.016428434318761
612 => 0.017041638673886
613 => 0.017449383788578
614 => 0.017923000721664
615 => 0.018615082357133
616 => 0.018875311454183
617 => 0.018828303397021
618 => 0.019353031794416
619 => 0.020295957060476
620 => 0.019018895552557
621 => 0.020363644421344
622 => 0.019937912455358
623 => 0.018928509622598
624 => 0.018863515980245
625 => 0.019547095297999
626 => 0.021063208432705
627 => 0.020683439288074
628 => 0.021063829598977
629 => 0.020620084095687
630 => 0.020598048391268
701 => 0.02104227787034
702 => 0.022080244261881
703 => 0.021587145336848
704 => 0.020880167114998
705 => 0.021402188832213
706 => 0.020949965309932
707 => 0.019930979144838
708 => 0.020683148885766
709 => 0.020180194400569
710 => 0.02032698325788
711 => 0.021384118776932
712 => 0.021256921434446
713 => 0.02142152657378
714 => 0.021131002811322
715 => 0.020859607805795
716 => 0.02035302887392
717 => 0.020203055826232
718 => 0.020244502981148
719 => 0.02020303528708
720 => 0.019919609030397
721 => 0.019858403157252
722 => 0.019756390687185
723 => 0.019788008617277
724 => 0.019596195328751
725 => 0.019958186634847
726 => 0.020025375411115
727 => 0.020288802496122
728 => 0.020316152369973
729 => 0.021049793052068
730 => 0.020645716092701
731 => 0.020916805803371
801 => 0.020892556988053
802 => 0.018950386442761
803 => 0.019218000407986
804 => 0.019634323755988
805 => 0.019446770652026
806 => 0.019181614443691
807 => 0.018967486588684
808 => 0.018643060992652
809 => 0.019099683789026
810 => 0.019700094209838
811 => 0.020331379769073
812 => 0.021089828005026
813 => 0.020920551188072
814 => 0.020317201106867
815 => 0.020344266950763
816 => 0.020511577347707
817 => 0.020294895181912
818 => 0.020230991381081
819 => 0.020502797946782
820 => 0.020504669729218
821 => 0.020255350710556
822 => 0.019978278246213
823 => 0.019977117302471
824 => 0.019927814933643
825 => 0.020628854877576
826 => 0.021014355963606
827 => 0.021058553041853
828 => 0.021011381148096
829 => 0.021029535737818
830 => 0.020805221149794
831 => 0.021317937779592
901 => 0.021788457261515
902 => 0.021662347989177
903 => 0.021473292262453
904 => 0.02132270026996
905 => 0.021626873301628
906 => 0.02161332895534
907 => 0.021784347684312
908 => 0.021776589286914
909 => 0.021719082120701
910 => 0.021662350042939
911 => 0.021887286318561
912 => 0.021822508283548
913 => 0.021757629630354
914 => 0.02162750555895
915 => 0.021645191581385
916 => 0.021456168497798
917 => 0.021368717770223
918 => 0.020053668651127
919 => 0.019702244556035
920 => 0.019812809730248
921 => 0.019849210656423
922 => 0.019696270439877
923 => 0.019915547423286
924 => 0.019881373337693
925 => 0.020014324713562
926 => 0.019931262465997
927 => 0.01993467136961
928 => 0.020178939728962
929 => 0.020249851872873
930 => 0.020213785384149
1001 => 0.020239045116565
1002 => 0.02082114498862
1003 => 0.02073838900132
1004 => 0.020694426532455
1005 => 0.020706604436775
1006 => 0.020855343434448
1007 => 0.020896982232948
1008 => 0.020720555717797
1009 => 0.020803759482251
1010 => 0.02115803055117
1011 => 0.021282005375286
1012 => 0.021677673502571
1013 => 0.02150958664966
1014 => 0.021818117342807
1015 => 0.022766435507676
1016 => 0.0235240176764
1017 => 0.022827313805635
1018 => 0.024218516980987
1019 => 0.025301768209242
1020 => 0.025260191222852
1021 => 0.025071301315154
1022 => 0.02383804859151
1023 => 0.02270319104845
1024 => 0.023652547571816
1025 => 0.023654967676831
1026 => 0.023573417109531
1027 => 0.02306691353994
1028 => 0.02355579188322
1029 => 0.023594597270764
1030 => 0.023572876572924
1031 => 0.023184541473679
1101 => 0.022591625553455
1102 => 0.022707479905027
1103 => 0.022897251696266
1104 => 0.022537974104908
1105 => 0.022423163145072
1106 => 0.022636618563086
1107 => 0.023324416395129
1108 => 0.023194392199122
1109 => 0.023190996741896
1110 => 0.02374729539125
1111 => 0.023349105615075
1112 => 0.022708941199417
1113 => 0.022547291241733
1114 => 0.021973542792411
1115 => 0.022369832889979
1116 => 0.022384094665089
1117 => 0.022167050628638
1118 => 0.022726553126777
1119 => 0.022721397212759
1120 => 0.023252561563785
1121 => 0.024267948306729
1122 => 0.023967648482694
1123 => 0.023618432459868
1124 => 0.023656401924259
1125 => 0.024072833232006
1126 => 0.02382104935714
1127 => 0.023911592594042
1128 => 0.024072696183973
1129 => 0.024169893979756
1130 => 0.023642416657235
1201 => 0.023519436461199
1202 => 0.023267862140292
1203 => 0.023202231095824
1204 => 0.023407133130933
1205 => 0.023353148683977
1206 => 0.022382896018115
1207 => 0.022281499216098
1208 => 0.022284608911255
1209 => 0.022029641831427
1210 => 0.021640755835578
1211 => 0.022662725013491
1212 => 0.022580646586056
1213 => 0.022490038354532
1214 => 0.02250113734589
1215 => 0.022944739528273
1216 => 0.022687427860044
1217 => 0.023371533102585
1218 => 0.023230901630804
1219 => 0.023086663492424
1220 => 0.023066725388098
1221 => 0.023011206010642
1222 => 0.022820809407492
1223 => 0.022590894068126
1224 => 0.022439084046152
1225 => 0.02069886890708
1226 => 0.021021842714526
1227 => 0.021393394640004
1228 => 0.021521652875778
1229 => 0.021302258288286
1230 => 0.022829472443032
1231 => 0.023108509185705
]
'min_raw' => 0.00963140697399
'max_raw' => 0.025301768209242
'avg_raw' => 0.017466587591616
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.009631'
'max' => '$0.0253017'
'avg' => '$0.017466'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00037343135086685
'max_diff' => -0.0045629178488108
'year' => 2027
]
2 => [
'items' => [
101 => 0.02226328869103
102 => 0.022105182446602
103 => 0.022839837862095
104 => 0.022396750838581
105 => 0.022596272898138
106 => 0.022165015338106
107 => 0.023041297405545
108 => 0.023034621604365
109 => 0.022693728088403
110 => 0.022981848953756
111 => 0.022931780863095
112 => 0.022546912923158
113 => 0.023053498405717
114 => 0.023053749665797
115 => 0.022725647068347
116 => 0.022342495065421
117 => 0.022273996536944
118 => 0.02222239209722
119 => 0.022583581369376
120 => 0.022907422541381
121 => 0.023510010675449
122 => 0.023661515649495
123 => 0.024252849649452
124 => 0.023900739044007
125 => 0.024056825114805
126 => 0.024226278624379
127 => 0.024307520868315
128 => 0.02417514099152
129 => 0.025093726096238
130 => 0.025171282823797
131 => 0.025197286923684
201 => 0.024887545194734
202 => 0.025162668345996
203 => 0.025033947334642
204 => 0.025368843646459
205 => 0.025421359664323
206 => 0.025376880465504
207 => 0.025393549878483
208 => 0.024609699541122
209 => 0.02456905276599
210 => 0.024014831102901
211 => 0.02424068052721
212 => 0.023818465853709
213 => 0.023952354475969
214 => 0.024011371304924
215 => 0.023980544262654
216 => 0.024253449714798
217 => 0.024021424329575
218 => 0.023409071189465
219 => 0.022796551214152
220 => 0.02278886152481
221 => 0.022627595827185
222 => 0.022511030265089
223 => 0.022533484927734
224 => 0.022612618087704
225 => 0.022506430901975
226 => 0.022529091321877
227 => 0.022905405277841
228 => 0.022980872357962
229 => 0.022724405732821
301 => 0.021694655224926
302 => 0.021441951867355
303 => 0.021623590029451
304 => 0.021536778686965
305 => 0.01738186127704
306 => 0.018357997491741
307 => 0.017778010499419
308 => 0.018045295189399
309 => 0.017453278657142
310 => 0.01773581997658
311 => 0.017683644911637
312 => 0.019253243058906
313 => 0.019228735942748
314 => 0.019240466202365
315 => 0.018680550347813
316 => 0.019572511507486
317 => 0.020011923648627
318 => 0.019930600155877
319 => 0.019951067526957
320 => 0.019599370280171
321 => 0.019243871400486
322 => 0.01884956843203
323 => 0.019582134610101
324 => 0.019500685756421
325 => 0.01968750012239
326 => 0.020162621653781
327 => 0.02023258510409
328 => 0.020326616690804
329 => 0.020292913060591
330 => 0.02109587026885
331 => 0.020998626852847
401 => 0.021232955506573
402 => 0.020750923687302
403 => 0.020205458928916
404 => 0.020309133946899
405 => 0.020299149208965
406 => 0.020172032035122
407 => 0.02005727633437
408 => 0.019866240424835
409 => 0.020470706310598
410 => 0.02044616609952
411 => 0.020843443591993
412 => 0.020773220936251
413 => 0.020304256854806
414 => 0.020321005998719
415 => 0.020433652040902
416 => 0.020823521279067
417 => 0.020939261013276
418 => 0.020885645756959
419 => 0.0210125490918
420 => 0.021112848313393
421 => 0.021025145129798
422 => 0.022266837259849
423 => 0.021751200116979
424 => 0.022002518072633
425 => 0.022062455924206
426 => 0.02190892637776
427 => 0.021942221438903
428 => 0.021992654384174
429 => 0.022298873352075
430 => 0.023102480529017
501 => 0.023458392677346
502 => 0.02452917193599
503 => 0.023428839127964
504 => 0.023363549932766
505 => 0.023556429611683
506 => 0.024185090390003
507 => 0.024694560903726
508 => 0.024863581665187
509 => 0.024885920549043
510 => 0.025203014733832
511 => 0.025384767207097
512 => 0.025164511159394
513 => 0.024977867220735
514 => 0.024309331799558
515 => 0.02438671659492
516 => 0.024919821096161
517 => 0.025672862603862
518 => 0.026319050558084
519 => 0.026092778058439
520 => 0.027819077507239
521 => 0.027990233046286
522 => 0.027966584884911
523 => 0.028356502674221
524 => 0.027582595267818
525 => 0.027251734857831
526 => 0.025018221758772
527 => 0.025645747835792
528 => 0.026557893842055
529 => 0.026437167897754
530 => 0.025774743086273
531 => 0.026318548049463
601 => 0.026138749122279
602 => 0.025996934248545
603 => 0.026646615677288
604 => 0.025932264258943
605 => 0.026550767640207
606 => 0.025757530656137
607 => 0.026093811652158
608 => 0.025902922294735
609 => 0.026026451103507
610 => 0.025304304211533
611 => 0.025693957145317
612 => 0.025288093368427
613 => 0.025287900936152
614 => 0.025278941470782
615 => 0.025756438404418
616 => 0.025772009562281
617 => 0.025419138606866
618 => 0.025368284389311
619 => 0.025556319085388
620 => 0.025336179702647
621 => 0.025439181534291
622 => 0.025339299523197
623 => 0.025316813978663
624 => 0.025137645334216
625 => 0.025060454555843
626 => 0.025090723049004
627 => 0.024987401077367
628 => 0.024925145852137
629 => 0.025266557339543
630 => 0.025084154954322
701 => 0.025238601557989
702 => 0.025062590160395
703 => 0.024452457971819
704 => 0.024101564498137
705 => 0.0229490813532
706 => 0.023275924143454
707 => 0.023492621251535
708 => 0.023421002858607
709 => 0.023574866879255
710 => 0.023584312880491
711 => 0.02353429011892
712 => 0.023476370169334
713 => 0.023448177941049
714 => 0.023658299713223
715 => 0.023780282474344
716 => 0.023514369705364
717 => 0.023452070064107
718 => 0.023720922554992
719 => 0.023884922419121
720 => 0.025095805272284
721 => 0.025006099159421
722 => 0.02523124389877
723 => 0.025205896056247
724 => 0.025441883611455
725 => 0.025827623528437
726 => 0.025043306422635
727 => 0.025179436752557
728 => 0.025146060739369
729 => 0.025510451299701
730 => 0.025511588887255
731 => 0.025293118543678
801 => 0.025411554861208
802 => 0.025345446957893
803 => 0.025464912874202
804 => 0.025004901079593
805 => 0.025565145790222
806 => 0.025882768439777
807 => 0.025887178630574
808 => 0.026037729245654
809 => 0.026190697389879
810 => 0.026484306422001
811 => 0.026182508793329
812 => 0.025639604238757
813 => 0.025678800194026
814 => 0.025360495452321
815 => 0.025365846212536
816 => 0.025337283435164
817 => 0.025423002480162
818 => 0.02502371158957
819 => 0.025117424363501
820 => 0.024986225931216
821 => 0.025179151552788
822 => 0.024971595475725
823 => 0.025146044644445
824 => 0.025221331122583
825 => 0.025499139847714
826 => 0.024930562901143
827 => 0.023771196017809
828 => 0.024014908992651
829 => 0.023654438359619
830 => 0.023687801289114
831 => 0.023755199716366
901 => 0.02353673936225
902 => 0.023578414713338
903 => 0.023576925776532
904 => 0.023564094923529
905 => 0.023507264948084
906 => 0.023424850240221
907 => 0.023753165070438
908 => 0.023808952157726
909 => 0.02393295994221
910 => 0.02430192299355
911 => 0.024265054883973
912 => 0.024325188300336
913 => 0.024193917390051
914 => 0.023693890570149
915 => 0.023721044432171
916 => 0.023382435337642
917 => 0.023924300946366
918 => 0.023795980017943
919 => 0.023713250680612
920 => 0.02369067721444
921 => 0.024060554853819
922 => 0.024171228040642
923 => 0.024102263937615
924 => 0.023960816550302
925 => 0.02423243734911
926 => 0.024305111616109
927 => 0.024321380704366
928 => 0.024802640681731
929 => 0.02434827779097
930 => 0.024457647454755
1001 => 0.025310918350658
1002 => 0.024537119391409
1003 => 0.024947017957899
1004 => 0.024926955556079
1005 => 0.025136645792484
1006 => 0.024909754836294
1007 => 0.024912567421622
1008 => 0.025098758145903
1009 => 0.024837286853325
1010 => 0.024772542884203
1011 => 0.024683099554567
1012 => 0.024878395792609
1013 => 0.024995467054826
1014 => 0.025938975448929
1015 => 0.026548524900729
1016 => 0.026522062751454
1017 => 0.02676387726076
1018 => 0.026654937609551
1019 => 0.026303142738968
1020 => 0.026903613686238
1021 => 0.02671359955375
1022 => 0.026729264087965
1023 => 0.02672868105322
1024 => 0.02685502384
1025 => 0.02676549839642
1026 => 0.026589034557525
1027 => 0.026706179489006
1028 => 0.027054058055426
1029 => 0.028133883799811
1030 => 0.028738168592157
1031 => 0.028097505096549
1101 => 0.028539426196993
1102 => 0.028274431009315
1103 => 0.02822627350079
1104 => 0.028503832609582
1105 => 0.028781877548851
1106 => 0.02876416728824
1107 => 0.028562320940097
1108 => 0.028448303059692
1109 => 0.02931168464891
1110 => 0.029947809496524
1111 => 0.029904430046551
1112 => 0.030095892830976
1113 => 0.030658033487767
1114 => 0.030709428584447
1115 => 0.030702953983568
1116 => 0.030575565873921
1117 => 0.03112906635372
1118 => 0.031590806191883
1119 => 0.030546079207134
1120 => 0.030943897566446
1121 => 0.031122491044848
1122 => 0.03138471925744
1123 => 0.031827142206634
1124 => 0.03230773087635
1125 => 0.032375691383634
1126 => 0.032327470151506
1127 => 0.032010509004912
1128 => 0.03253637486193
1129 => 0.0328444147479
1130 => 0.033027845450627
1201 => 0.033492995192785
1202 => 0.03112359397737
1203 => 0.029446414030219
1204 => 0.029184498162699
1205 => 0.029717114378633
1206 => 0.02985756102724
1207 => 0.029800947159292
1208 => 0.027913128646243
1209 => 0.029174559188921
1210 => 0.030531752388749
1211 => 0.030583887706898
1212 => 0.031263327000304
1213 => 0.031484580285395
1214 => 0.03203161797273
1215 => 0.031997400616445
1216 => 0.032130595588041
1217 => 0.032099976370686
1218 => 0.0331132484941
1219 => 0.034231038118592
1220 => 0.034192332618249
1221 => 0.034031637134642
1222 => 0.03427029733045
1223 => 0.035423976012542
1224 => 0.035317763766819
1225 => 0.035420939916401
1226 => 0.036781192101069
1227 => 0.038549713434754
1228 => 0.037728057718618
1229 => 0.039510814197569
1230 => 0.040632964901208
1231 => 0.042573608510603
]
'min_raw' => 0.01738186127704
'max_raw' => 0.042573608510603
'avg_raw' => 0.029977734893821
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.017381'
'max' => '$0.042573'
'avg' => '$0.029977'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0077504543030496
'max_diff' => 0.017271840301361
'year' => 2028
]
3 => [
'items' => [
101 => 0.042330630372835
102 => 0.043086108688872
103 => 0.041895648795164
104 => 0.039162112247569
105 => 0.038729519625355
106 => 0.039595581010018
107 => 0.041724708415178
108 => 0.039528527211109
109 => 0.039972811808379
110 => 0.039844857814477
111 => 0.039838039689911
112 => 0.040098259773264
113 => 0.039720796970194
114 => 0.038182945606227
115 => 0.038887733823718
116 => 0.038615581246235
117 => 0.038917554821271
118 => 0.040547181662367
119 => 0.039826684790467
120 => 0.039067699864333
121 => 0.040019635393943
122 => 0.041231776443675
123 => 0.04115592283521
124 => 0.041008735130438
125 => 0.041838424515737
126 => 0.04320882830407
127 => 0.043579242941328
128 => 0.043852675453758
129 => 0.043890377177542
130 => 0.044278728364007
131 => 0.042190466157283
201 => 0.045504591909732
202 => 0.046076849876303
203 => 0.04596928909625
204 => 0.046605329741798
205 => 0.046418190449084
206 => 0.046147054975197
207 => 0.047155314688116
208 => 0.045999426289618
209 => 0.044358788230253
210 => 0.043458701742744
211 => 0.044644008237402
212 => 0.045367833552193
213 => 0.045846236041334
214 => 0.045991000345489
215 => 0.042352572007871
216 => 0.040391660930381
217 => 0.041648582449161
218 => 0.043182113450161
219 => 0.042181947315143
220 => 0.04222115193407
221 => 0.04079517786457
222 => 0.043308280514079
223 => 0.042942142596566
224 => 0.044841666760312
225 => 0.044388330074
226 => 0.045937318290431
227 => 0.045529417780797
228 => 0.047222589990879
301 => 0.047898042226289
302 => 0.049032231655287
303 => 0.04986654601624
304 => 0.050356471366883
305 => 0.050327058086494
306 => 0.052268386405578
307 => 0.05112365292066
308 => 0.049685597870634
309 => 0.049659587991785
310 => 0.050404377079591
311 => 0.051965250684724
312 => 0.052369962500747
313 => 0.052596141194103
314 => 0.052249740651892
315 => 0.0510072144978
316 => 0.050470698004214
317 => 0.050927825601129
318 => 0.050368797831525
319 => 0.051333836597351
320 => 0.052659040943987
321 => 0.052385391486833
322 => 0.053300160594281
323 => 0.054246850383973
324 => 0.055600659301732
325 => 0.055954595084233
326 => 0.056539637473735
327 => 0.057141838268947
328 => 0.057335248934602
329 => 0.057704529907143
330 => 0.057702583614136
331 => 0.058815436680364
401 => 0.060042948074605
402 => 0.060506305208977
403 => 0.061571769389804
404 => 0.059747199318456
405 => 0.061131156676724
406 => 0.06237952085658
407 => 0.060891169617341
408 => 0.06294251505927
409 => 0.063022164154331
410 => 0.064224770925997
411 => 0.063005698571334
412 => 0.062281817298551
413 => 0.064371635409596
414 => 0.065382832564877
415 => 0.065078251752311
416 => 0.062760376729674
417 => 0.061411274048163
418 => 0.057880412108177
419 => 0.062062870597976
420 => 0.06410002412437
421 => 0.062755100994181
422 => 0.063433401991542
423 => 0.067133992293304
424 => 0.068542937484738
425 => 0.06824988673419
426 => 0.068299407487006
427 => 0.06905964873814
428 => 0.072430977118168
429 => 0.070410799006075
430 => 0.07195514947814
501 => 0.072774267399954
502 => 0.073535109775672
503 => 0.07166672136761
504 => 0.069235975500799
505 => 0.06846605624901
506 => 0.062621374894422
507 => 0.062317133847751
508 => 0.062146354128807
509 => 0.061069612158138
510 => 0.060223587913641
511 => 0.05955079802355
512 => 0.057785196439883
513 => 0.058381035144592
514 => 0.055567034729917
515 => 0.057367332473175
516 => 0.052876119864937
517 => 0.056616535182181
518 => 0.05458079718082
519 => 0.055947740497736
520 => 0.055942971361277
521 => 0.053425995325062
522 => 0.051974256075324
523 => 0.052899360827794
524 => 0.053891146557349
525 => 0.054052060455202
526 => 0.055337936541826
527 => 0.055696796917788
528 => 0.054609433225032
529 => 0.052783049466305
530 => 0.053207276758079
531 => 0.051965659122796
601 => 0.049789771975096
602 => 0.051352532111919
603 => 0.051886127132343
604 => 0.0521217930916
605 => 0.049982057984165
606 => 0.049309706757499
607 => 0.048951752605996
608 => 0.052506836533578
609 => 0.052701592056279
610 => 0.051705195266484
611 => 0.056209003238578
612 => 0.055189652784977
613 => 0.056328516988573
614 => 0.05316878257789
615 => 0.053289488687525
616 => 0.051793619780518
617 => 0.052631206414445
618 => 0.052039227178263
619 => 0.052563537691616
620 => 0.052877807251507
621 => 0.054373430701147
622 => 0.056633612799523
623 => 0.054150034432417
624 => 0.053067903772372
625 => 0.05373925154773
626 => 0.055527139142684
627 => 0.058235880369322
628 => 0.056632251044655
629 => 0.05734391450755
630 => 0.057499381314489
701 => 0.056316924420064
702 => 0.058279479241658
703 => 0.059331228314317
704 => 0.06041010523406
705 => 0.061346863834029
706 => 0.059979178067303
707 => 0.061442797887753
708 => 0.060263378676148
709 => 0.059205317717222
710 => 0.059206922358948
711 => 0.05854318526361
712 => 0.057257111005135
713 => 0.057019939179954
714 => 0.058253736966049
715 => 0.059243125949412
716 => 0.059324616764936
717 => 0.059872393342767
718 => 0.06019656187898
719 => 0.063373854219625
720 => 0.064651787482973
721 => 0.066214420087356
722 => 0.066823153551911
723 => 0.068655223037197
724 => 0.06717567813442
725 => 0.06685556928793
726 => 0.062411567981989
727 => 0.063139272946879
728 => 0.064304398808754
729 => 0.062430780478308
730 => 0.063619160061484
731 => 0.063853771364524
801 => 0.062367115644389
802 => 0.063161202699115
803 => 0.061052342912166
804 => 0.056679580180029
805 => 0.058284347376599
806 => 0.059465996192073
807 => 0.057779637636144
808 => 0.060802370076557
809 => 0.059036552186731
810 => 0.058476872689863
811 => 0.056293363432433
812 => 0.057323895750961
813 => 0.058717705467572
814 => 0.057856493110478
815 => 0.059643638063134
816 => 0.062174711930244
817 => 0.063978505896001
818 => 0.064116978798893
819 => 0.062957260123721
820 => 0.06481571670191
821 => 0.064829253529159
822 => 0.062732906916944
823 => 0.061448906289469
824 => 0.061157178645346
825 => 0.061885971496938
826 => 0.062770860561353
827 => 0.064166083983453
828 => 0.065009188276508
829 => 0.06720755712483
830 => 0.067802372703011
831 => 0.068455894686618
901 => 0.069329201595432
902 => 0.070377830450759
903 => 0.068083490213778
904 => 0.068174648628578
905 => 0.066038190767205
906 => 0.063755079143277
907 => 0.065487676271956
908 => 0.067752816539967
909 => 0.067233190859728
910 => 0.067174722355712
911 => 0.067273050161657
912 => 0.066881269368144
913 => 0.065109259359162
914 => 0.064219367026021
915 => 0.06536755517152
916 => 0.065977766070878
917 => 0.066924149959799
918 => 0.066807488169749
919 => 0.069245271433399
920 => 0.070192520294914
921 => 0.069950173501075
922 => 0.069994771143543
923 => 0.071709719960813
924 => 0.073617095751742
925 => 0.07540360488035
926 => 0.077220918698323
927 => 0.075030075959791
928 => 0.07391770112956
929 => 0.075065388012033
930 => 0.07445640919733
1001 => 0.077955782101462
1002 => 0.078198071088863
1003 => 0.081697190948504
1004 => 0.085018272362745
1005 => 0.082932360629814
1006 => 0.08489928144244
1007 => 0.087026666666702
1008 => 0.091130737920117
1009 => 0.089748631104935
1010 => 0.08868995894488
1011 => 0.087689518869095
1012 => 0.089771275851414
1013 => 0.092449422952288
1014 => 0.093026270186842
1015 => 0.093960983079424
1016 => 0.092978246764129
1017 => 0.094161844411048
1018 => 0.098340464203829
1019 => 0.097211364250123
1020 => 0.095607860803984
1021 => 0.098906479811474
1022 => 0.10010023720723
1023 => 0.10847865178623
1024 => 0.11905674628727
1025 => 0.11467734570432
1026 => 0.11195891044012
1027 => 0.11259780720935
1028 => 0.11646056923004
1029 => 0.11770116579314
1030 => 0.11432879667534
1031 => 0.11551997445979
1101 => 0.12208348116611
1102 => 0.12560459193154
1103 => 0.12082245056382
1104 => 0.10762871219273
1105 => 0.09546348286297
1106 => 0.09869024948864
1107 => 0.098324434291515
1108 => 0.10537610343332
1109 => 0.097184435589645
1110 => 0.097322362267429
1111 => 0.10451985245924
1112 => 0.10259968547228
1113 => 0.099489260869824
1114 => 0.09548619240477
1115 => 0.088086150108101
1116 => 0.081531726280495
1117 => 0.094386460800088
1118 => 0.093832141272786
1119 => 0.0930294044517
1120 => 0.09481580838183
1121 => 0.10349007878694
1122 => 0.10329010877823
1123 => 0.1020180016084
1124 => 0.10298288368488
1125 => 0.099320112376682
1126 => 0.10026409194256
1127 => 0.09546155582849
1128 => 0.097632502723673
1129 => 0.09948258729559
1130 => 0.099854019164373
1201 => 0.10069087413052
1202 => 0.093540040070371
1203 => 0.096750554625921
1204 => 0.098636431142773
1205 => 0.090115972430857
1206 => 0.098468009069402
1207 => 0.093415559958554
1208 => 0.091700682845093
1209 => 0.094009538960488
1210 => 0.093109775486882
1211 => 0.09233621168816
1212 => 0.09190454979696
1213 => 0.093599918908956
1214 => 0.093520827913477
1215 => 0.090746874989287
1216 => 0.087128366480467
1217 => 0.08834285670952
1218 => 0.087901621023399
1219 => 0.086302525976358
1220 => 0.087380122962591
1221 => 0.082634931194576
1222 => 0.074471075391311
1223 => 0.079864368600614
1224 => 0.07965673267883
1225 => 0.079552033231527
1226 => 0.083604944018642
1227 => 0.083215350163022
1228 => 0.082508233500157
1229 => 0.086289539224317
1230 => 0.08490931176926
1231 => 0.08916284756326
]
'min_raw' => 0.038182945606227
'max_raw' => 0.12560459193154
'avg_raw' => 0.081893768768885
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.038182'
'max' => '$0.1256045'
'avg' => '$0.081893'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.020801084329187
'max_diff' => 0.08303098342094
'year' => 2029
]
4 => [
'items' => [
101 => 0.091964501338635
102 => 0.091253911317194
103 => 0.093888880234502
104 => 0.088370836111472
105 => 0.090203709023638
106 => 0.090581461590584
107 => 0.086242878498638
108 => 0.08327909253599
109 => 0.083081441801915
110 => 0.077942645377547
111 => 0.080687748948529
112 => 0.083103326490889
113 => 0.081946452304488
114 => 0.081580220497707
115 => 0.083451219372564
116 => 0.083596612009163
117 => 0.080281644486705
118 => 0.080970931205992
119 => 0.083845371409805
120 => 0.08089850268791
121 => 0.075173218129542
122 => 0.073753268400814
123 => 0.073563820932136
124 => 0.069712804650195
125 => 0.073848156231442
126 => 0.072042964445695
127 => 0.07774554366735
128 => 0.074488260999487
129 => 0.074347846053923
130 => 0.07413558826931
131 => 0.070820859471964
201 => 0.071546574416578
202 => 0.073958961421983
203 => 0.074819728282996
204 => 0.074729943247337
205 => 0.073947139409583
206 => 0.074305502997903
207 => 0.073151089017774
208 => 0.072743441414342
209 => 0.071456793445602
210 => 0.069565776377127
211 => 0.06982873389878
212 => 0.066082134274601
213 => 0.064040787952255
214 => 0.063475770194742
215 => 0.062720204835678
216 => 0.063561113312531
217 => 0.066071520628601
218 => 0.063043436792799
219 => 0.0578519994517
220 => 0.058164013681679
221 => 0.058865017018585
222 => 0.057558701937861
223 => 0.056322384344671
224 => 0.057397262186333
225 => 0.055197581747401
226 => 0.059130837890532
227 => 0.059024454334684
228 => 0.060490528993915
301 => 0.061407295565213
302 => 0.059294445425073
303 => 0.058763069328582
304 => 0.059065765302841
305 => 0.054062875111966
306 => 0.06008168613187
307 => 0.060133737059507
308 => 0.059688045416047
309 => 0.062892876474203
310 => 0.069656069618788
311 => 0.067111484308981
312 => 0.066126143966526
313 => 0.064253011255239
314 => 0.066748849377414
315 => 0.06655720795077
316 => 0.065690532741638
317 => 0.065166364870963
318 => 0.066132160244545
319 => 0.065046692136192
320 => 0.064851712237262
321 => 0.063670346189974
322 => 0.063248652259822
323 => 0.062936446862057
324 => 0.062592739395786
325 => 0.063350872419815
326 => 0.06163284324666
327 => 0.059561068484311
328 => 0.059388822829736
329 => 0.059864408226012
330 => 0.059653997091328
331 => 0.059387815462174
401 => 0.058879602241864
402 => 0.058728826235656
403 => 0.059218775109714
404 => 0.058665651396696
405 => 0.059481815565462
406 => 0.059259864071981
407 => 0.058020061071748
408 => 0.056474807499597
409 => 0.056461051501525
410 => 0.056128129154129
411 => 0.05570410248951
412 => 0.055586147971829
413 => 0.057306738972587
414 => 0.0608683108512
415 => 0.060169089070236
416 => 0.060674348466113
417 => 0.063159724620222
418 => 0.063949750961745
419 => 0.063389008977332
420 => 0.062621430764007
421 => 0.062655200309868
422 => 0.065278247426525
423 => 0.065441843657695
424 => 0.06585519855572
425 => 0.066386476413761
426 => 0.063479487893866
427 => 0.062518281412002
428 => 0.06206280845519
429 => 0.060660128038424
430 => 0.062172798611175
501 => 0.061291430247445
502 => 0.061410356951543
503 => 0.061332905779483
504 => 0.061375199356653
505 => 0.05912973846528
506 => 0.059947866396147
507 => 0.05858757003256
508 => 0.056766285902149
509 => 0.05676018031912
510 => 0.057205937029826
511 => 0.056940783495836
512 => 0.05622726215359
513 => 0.05632861449253
514 => 0.05544066135547
515 => 0.05643642808028
516 => 0.056464983106922
517 => 0.056081558678091
518 => 0.057615674706988
519 => 0.058244203295748
520 => 0.057991825122943
521 => 0.058226495770355
522 => 0.060198144892032
523 => 0.060519609727948
524 => 0.060662383173287
525 => 0.06047108567039
526 => 0.058262533896892
527 => 0.058360492559534
528 => 0.057641736889661
529 => 0.057034464089225
530 => 0.057058751816516
531 => 0.057370968975879
601 => 0.058734439622108
602 => 0.061603783216112
603 => 0.061712672708041
604 => 0.061844649948791
605 => 0.061307832184217
606 => 0.061145922809767
607 => 0.061359523067021
608 => 0.06243709765801
609 => 0.065208912064682
610 => 0.064229167730105
611 => 0.063432620335464
612 => 0.064131407148199
613 => 0.064023834395651
614 => 0.063115812106749
615 => 0.063090326945362
616 => 0.061347541860674
617 => 0.060703273896161
618 => 0.060164875362393
619 => 0.059576958218768
620 => 0.059228421228865
621 => 0.059763932452584
622 => 0.059886410205431
623 => 0.058715505555636
624 => 0.05855591557851
625 => 0.059512101591265
626 => 0.059091319777259
627 => 0.059524104307851
628 => 0.059624514031306
629 => 0.059608345753197
630 => 0.059169001212892
701 => 0.05944902632144
702 => 0.058786683460221
703 => 0.058066485079326
704 => 0.05760704338226
705 => 0.057206119565472
706 => 0.057428575400855
707 => 0.056635560966546
708 => 0.056381859688783
709 => 0.059354160115428
710 => 0.061549830398205
711 => 0.061517904482713
712 => 0.061323563682831
713 => 0.061034812674799
714 => 0.062415973723254
715 => 0.061934804831159
716 => 0.062284895403164
717 => 0.062374008146995
718 => 0.062643725583528
719 => 0.062740126384092
720 => 0.062448736210127
721 => 0.061470795195991
722 => 0.059033859168606
723 => 0.057899458869475
724 => 0.057525087875831
725 => 0.057538695550418
726 => 0.057163335137967
727 => 0.057273895601908
728 => 0.057124886720551
729 => 0.056842699948381
730 => 0.057411151162855
731 => 0.057476659869834
801 => 0.057343976563889
802 => 0.057375228285645
803 => 0.056276667182207
804 => 0.056360188396952
805 => 0.055895131659888
806 => 0.055807939128031
807 => 0.054632316193857
808 => 0.052549529756698
809 => 0.053703595623856
810 => 0.052309646342547
811 => 0.051781736627937
812 => 0.054280779110096
813 => 0.054029944557536
814 => 0.053600624838712
815 => 0.052965571496503
816 => 0.052730024034476
817 => 0.051298912220464
818 => 0.051214354499807
819 => 0.051923652158101
820 => 0.051596335694241
821 => 0.051136659414542
822 => 0.049471758526111
823 => 0.047599858697774
824 => 0.047656359587248
825 => 0.048251776094708
826 => 0.049983029893003
827 => 0.049306599083014
828 => 0.048815840769218
829 => 0.048723936489185
830 => 0.049874310968444
831 => 0.051502331867499
901 => 0.052266162848421
902 => 0.051509229544219
903 => 0.050639705320535
904 => 0.050692629231043
905 => 0.051044708297326
906 => 0.051081706829062
907 => 0.050515735947978
908 => 0.05067505343581
909 => 0.050433035603497
910 => 0.048947772613324
911 => 0.048920908915651
912 => 0.048556401424762
913 => 0.048545364282802
914 => 0.047925246110144
915 => 0.047838487291114
916 => 0.046607205020819
917 => 0.047417638739794
918 => 0.046874042350785
919 => 0.046054714371125
920 => 0.045913461918608
921 => 0.045909215699318
922 => 0.046750482336045
923 => 0.047407808049334
924 => 0.046883498442706
925 => 0.046764123308591
926 => 0.048038737430116
927 => 0.047876531164786
928 => 0.047736061585129
929 => 0.051356560452278
930 => 0.04849065308788
1001 => 0.047240953896729
1002 => 0.04569421383624
1003 => 0.046197840199275
1004 => 0.046303961673778
1005 => 0.042584330649153
1006 => 0.041075276805713
1007 => 0.040557426394139
1008 => 0.040259396160948
1009 => 0.040395212280641
1010 => 0.039036886827183
1011 => 0.039949703996536
1012 => 0.038773508970234
1013 => 0.038576316046405
1014 => 0.040679498456037
1015 => 0.040972144001724
1016 => 0.039723627185979
1017 => 0.040525377098199
1018 => 0.040234651434871
1019 => 0.038793671458076
1020 => 0.038738636622094
1021 => 0.038015603522633
1022 => 0.036884196728774
1023 => 0.036367113464283
1024 => 0.036097812010614
1025 => 0.036208931038978
1026 => 0.036152745857939
1027 => 0.035786099546534
1028 => 0.036173761595328
1029 => 0.035183445253679
1030 => 0.034789093306914
1031 => 0.034610973681455
1101 => 0.03373201092776
1102 => 0.0351308315454
1103 => 0.035406416828953
1104 => 0.035682545100647
1105 => 0.038086053184965
1106 => 0.037965980713316
1107 => 0.039051377379359
1108 => 0.039009200860833
1109 => 0.038699628149417
1110 => 0.037393591802193
1111 => 0.037914154612337
1112 => 0.036311943196136
1113 => 0.03751242892894
1114 => 0.036964577373971
1115 => 0.037327199767116
1116 => 0.036675172007899
1117 => 0.037036031091416
1118 => 0.035471768323223
1119 => 0.034011081760055
1120 => 0.034598904673173
1121 => 0.035237935405436
1122 => 0.036623516854984
1123 => 0.035798275974432
1124 => 0.036095063800891
1125 => 0.035100874263935
1126 => 0.033049577272994
1127 => 0.033061187391192
1128 => 0.03274564003907
1129 => 0.032472961056168
1130 => 0.03589306481672
1201 => 0.035467720850256
1202 => 0.034789990907338
1203 => 0.035697159367852
1204 => 0.035937029107511
1205 => 0.035943857861782
1206 => 0.036605704553166
1207 => 0.036958932251
1208 => 0.037021190163719
1209 => 0.038062620232756
1210 => 0.038411693855102
1211 => 0.039849478702799
1212 => 0.036928963348703
1213 => 0.036868817256884
1214 => 0.035709925088461
1215 => 0.034974937353887
1216 => 0.035760250327457
1217 => 0.036455930416129
1218 => 0.035731541808017
1219 => 0.035826131667558
1220 => 0.034853699145892
1221 => 0.035201298015185
1222 => 0.035500696988044
1223 => 0.035335386473089
1224 => 0.035087908631083
1225 => 0.036398892582289
1226 => 0.036324921729974
1227 => 0.037545740124728
1228 => 0.038497455364999
1229 => 0.040203099215014
1230 => 0.038423170940298
1231 => 0.038358303279394
]
'min_raw' => 0.032472961056168
'max_raw' => 0.093888880234502
'avg_raw' => 0.063180920645335
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.032472'
'max' => '$0.093888'
'avg' => '$0.06318'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0057099845500584
'max_diff' => -0.031715711697041
'year' => 2030
]
5 => [
'items' => [
101 => 0.038992395069838
102 => 0.038411596778953
103 => 0.038778641250317
104 => 0.040143962676192
105 => 0.040172809766475
106 => 0.039689583836851
107 => 0.039660179495118
108 => 0.039752988320815
109 => 0.040296572511751
110 => 0.040106627492783
111 => 0.040326436677552
112 => 0.040601311428944
113 => 0.041738309945181
114 => 0.042012436438155
115 => 0.041346451178519
116 => 0.041406582190743
117 => 0.041157485421935
118 => 0.04091686106444
119 => 0.041457749479724
120 => 0.042446233689844
121 => 0.042440084380875
122 => 0.042669393504236
123 => 0.04281225118839
124 => 0.042199001429784
125 => 0.04179979838675
126 => 0.041952878235398
127 => 0.042197656247033
128 => 0.041873500025261
129 => 0.039872657660711
130 => 0.040479585419811
131 => 0.040378562963445
201 => 0.040234694700831
202 => 0.040844965255839
203 => 0.040786103172043
204 => 0.039022955236367
205 => 0.039135826246689
206 => 0.039029819296345
207 => 0.039372349439889
208 => 0.038393099027114
209 => 0.038694309858731
210 => 0.038883226468645
211 => 0.038994499803211
212 => 0.039396495388501
213 => 0.039349325846382
214 => 0.039393563263533
215 => 0.039989616593618
216 => 0.043004249796385
217 => 0.043168329630199
218 => 0.042360340519122
219 => 0.042683116232117
220 => 0.042063457446456
221 => 0.042479438540623
222 => 0.042764042240478
223 => 0.041477972846977
224 => 0.041401820164015
225 => 0.040779603826121
226 => 0.041113947641971
227 => 0.040581982590783
228 => 0.040712508206997
301 => 0.040347547205044
302 => 0.041004404345548
303 => 0.041738872693913
304 => 0.041924428403744
305 => 0.041436311217935
306 => 0.041082882206919
307 => 0.040462377290329
308 => 0.041494290795472
309 => 0.04179605375137
310 => 0.041492705763129
311 => 0.041422413405969
312 => 0.041289209516167
313 => 0.041450673240886
314 => 0.041794410285505
315 => 0.041632310243089
316 => 0.04173938017694
317 => 0.041331339999137
318 => 0.042199204440971
319 => 0.043577582037556
320 => 0.043582013746916
321 => 0.043419912830721
322 => 0.043353584628326
323 => 0.043519910005449
324 => 0.043610134699514
325 => 0.044148000470271
326 => 0.044725151871811
327 => 0.047418465631913
328 => 0.046662193905545
329 => 0.04905186209946
330 => 0.050941779381268
331 => 0.051508482938015
401 => 0.05098714233127
402 => 0.049203664277863
403 => 0.049116158336031
404 => 0.051781427512834
405 => 0.051028366893326
406 => 0.050938792728854
407 => 0.049985874956816
408 => 0.050549167381253
409 => 0.050425967065027
410 => 0.050231489338699
411 => 0.051306212045234
412 => 0.053317997010708
413 => 0.053004441457439
414 => 0.052770386782347
415 => 0.051744827328386
416 => 0.052362443186667
417 => 0.052142522009186
418 => 0.053087442953074
419 => 0.052527692718476
420 => 0.051022661718477
421 => 0.051262342865874
422 => 0.051226115542617
423 => 0.05197167128816
424 => 0.051747873959179
425 => 0.051182415522314
426 => 0.053311120948405
427 => 0.053172894658516
428 => 0.053368867934649
429 => 0.053455141431478
430 => 0.054750846912342
501 => 0.055281655989901
502 => 0.055402158943628
503 => 0.055906386513062
504 => 0.05538961330236
505 => 0.057457074598223
506 => 0.058831815720262
507 => 0.06042864827704
508 => 0.062762049830622
509 => 0.06363943039994
510 => 0.063480939453222
511 => 0.065250097880404
512 => 0.068429236247867
513 => 0.064123534212331
514 => 0.068657448910812
515 => 0.067222063863835
516 => 0.063818791738927
517 => 0.063599661136026
518 => 0.065904396531815
519 => 0.071016077817115
520 => 0.069735659631357
521 => 0.07101817212257
522 => 0.069522053176908
523 => 0.069447758260975
524 => 0.070945508964779
525 => 0.074445085122357
526 => 0.072782567669542
527 => 0.070398941234929
528 => 0.072158973900912
529 => 0.070634270722304
530 => 0.067198687723349
531 => 0.069734680519701
601 => 0.068038934357697
602 => 0.068533843238594
603 => 0.072098049447922
604 => 0.071669194727096
605 => 0.072224172446723
606 => 0.071244651297877
607 => 0.070329624088547
608 => 0.06862165785152
609 => 0.068116013250454
610 => 0.068255755227002
611 => 0.068115944001271
612 => 0.067160352588674
613 => 0.066953992714107
614 => 0.066610050548994
615 => 0.066716652607792
616 => 0.06606994071355
617 => 0.067290419675479
618 => 0.067516951325637
619 => 0.06840511413463
620 => 0.068497326143827
621 => 0.070970846924667
622 => 0.069608473244408
623 => 0.07052247113081
624 => 0.070440714556969
625 => 0.063892550965498
626 => 0.064794830133466
627 => 0.066198493368024
628 => 0.065566144983476
629 => 0.064672152314459
630 => 0.063950205301374
701 => 0.062856381753678
702 => 0.06439591739204
703 => 0.066420243045123
704 => 0.068548666383035
705 => 0.071105827563715
706 => 0.070535098956825
707 => 0.068500862033487
708 => 0.068592116415857
709 => 0.069156215100392
710 => 0.068425656050149
711 => 0.068210199924025
712 => 0.069126614737216
713 => 0.069132925582382
714 => 0.068292329104067
715 => 0.067358159945952
716 => 0.06735424574307
717 => 0.067188019364387
718 => 0.069551624480402
719 => 0.070851368306779
720 => 0.071000381841831
721 => 0.070841338508592
722 => 0.070902547975352
723 => 0.070146255680684
724 => 0.071874915594781
725 => 0.073461304878704
726 => 0.073036118662349
727 => 0.072398704080251
728 => 0.071890972663563
729 => 0.072916513276514
730 => 0.07287084756737
731 => 0.073447449152245
801 => 0.073421291173743
802 => 0.073227401747832
803 => 0.073036125586751
804 => 0.07379451394456
805 => 0.073576110276855
806 => 0.07335736736793
807 => 0.072918644976217
808 => 0.072978274635658
809 => 0.072340970112174
810 => 0.07204612387854
811 => 0.067612343959711
812 => 0.066427493087461
813 => 0.066800271291734
814 => 0.066922999555763
815 => 0.066407350937732
816 => 0.067146658596727
817 => 0.067031438281193
818 => 0.067479693127304
819 => 0.067199642960417
820 => 0.067211136316951
821 => 0.068034704144776
822 => 0.068273789388902
823 => 0.068152188704085
824 => 0.068237353655503
825 => 0.070199944015055
826 => 0.069920926426034
827 => 0.069772703892893
828 => 0.069813762547544
829 => 0.070315246462821
830 => 0.070455634579092
831 => 0.069860800265554
901 => 0.070141327566515
902 => 0.07133577720979
903 => 0.071753766984942
904 => 0.073087789700752
905 => 0.072521073140713
906 => 0.073561305913583
907 => 0.076758626815899
908 => 0.079312867990447
909 => 0.076963882247852
910 => 0.081654420884258
911 => 0.085306678030505
912 => 0.085166498318079
913 => 0.084529642806401
914 => 0.080371645145679
915 => 0.07654539370603
916 => 0.079746215506514
917 => 0.079754375059539
918 => 0.079479421628209
919 => 0.077771709480383
920 => 0.079419996947145
921 => 0.079550832020556
922 => 0.0794775991713
923 => 0.078168300271505
924 => 0.076169242850402
925 => 0.076559853885418
926 => 0.077199682729024
927 => 0.075988353245799
928 => 0.075601260078867
929 => 0.076320939923682
930 => 0.078639898334926
1001 => 0.078201512680091
1002 => 0.078190064658988
1003 => 0.080065664394818
1004 => 0.07872313976372
1005 => 0.076564780741479
1006 => 0.076019766623105
1007 => 0.07408533366838
1008 => 0.075421453400423
1009 => 0.075469537970931
1010 => 0.074737758848504
1011 => 0.076624160584199
1012 => 0.07660677706011
1013 => 0.078397634754308
1014 => 0.081821082050182
1015 => 0.080808600227182
1016 => 0.079631194024742
1017 => 0.07975921072488
1018 => 0.081163237953254
1019 => 0.080314331040155
1020 => 0.080619603884895
1021 => 0.081162775886242
1022 => 0.081490485040857
1023 => 0.079712058420688
1024 => 0.079297422103548
1025 => 0.078449221716252
1026 => 0.078227942067616
1027 => 0.078918783584788
1028 => 0.078736771252804
1029 => 0.075465496648972
1030 => 0.075123630251672
1031 => 0.075134114806004
1101 => 0.074274475495131
1102 => 0.072963319208975
1103 => 0.076408959643919
1104 => 0.076132226495286
1105 => 0.07582673451664
1106 => 0.075864155540911
1107 => 0.07735979127013
1108 => 0.076492247015768
1109 => 0.078798755603697
1110 => 0.078324606778014
1111 => 0.077838297824079
1112 => 0.077771075113312
1113 => 0.077583887655977
1114 => 0.076941952215391
1115 => 0.076166776596544
1116 => 0.075654938508419
1117 => 0.069787681669098
1118 => 0.070876610410213
1119 => 0.072129323667888
1120 => 0.072561755264504
1121 => 0.071822051095137
1122 => 0.076971160244548
1123 => 0.077911952104195
1124 => 0.075062232194988
1125 => 0.074529165953272
1126 => 0.077006107978609
1127 => 0.075512209143483
1128 => 0.076184911697468
1129 => 0.074730896724377
1130 => 0.077685342894808
1201 => 0.07766283496504
1202 => 0.07651348867555
1203 => 0.077484908289043
1204 => 0.077316100225736
1205 => 0.076018491095616
1206 => 0.077726479418736
1207 => 0.077727326559635
1208 => 0.076621105744944
1209 => 0.075329282016259
1210 => 0.075098334445085
1211 => 0.074924346473646
1212 => 0.07614212132215
1213 => 0.077233974443436
1214 => 0.079265642408805
1215 => 0.079776452006539
1216 => 0.081770175873016
1217 => 0.080583010383182
1218 => 0.081109265468459
1219 => 0.081680589806853
1220 => 0.081954503704436
1221 => 0.081508175707355
1222 => 0.084605249521476
1223 => 0.084866737443277
1224 => 0.084954412081595
1225 => 0.083910096216963
1226 => 0.084837693129928
1227 => 0.084403701253133
1228 => 0.085532827550139
1229 => 0.085709888970917
1230 => 0.08555992424666
1231 => 0.08561612633634
]
'min_raw' => 0.038393099027114
'max_raw' => 0.085709888970917
'avg_raw' => 0.062051493999015
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.038393'
'max' => '$0.0857098'
'avg' => '$0.062051'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0059201379709452
'max_diff' => -0.0081789912635851
'year' => 2031
]
6 => [
'items' => [
101 => 0.082973320197247
102 => 0.082836276757022
103 => 0.080967679725396
104 => 0.081729146827756
105 => 0.080305620577963
106 => 0.080757035415717
107 => 0.080956014774961
108 => 0.080852079249671
109 => 0.081772199035227
110 => 0.080989909249451
111 => 0.078925317884441
112 => 0.076860164022893
113 => 0.076834237698399
114 => 0.076290519139647
115 => 0.075897510208691
116 => 0.075973217671534
117 => 0.076240020645272
118 => 0.075882003134836
119 => 0.075958404322636
120 => 0.07722717309857
121 => 0.077481615628139
122 => 0.07661692049555
123 => 0.073145044763296
124 => 0.07229303775006
125 => 0.07290544349514
126 => 0.072612752992973
127 => 0.05860415885834
128 => 0.061895270257858
129 => 0.059939803619847
130 => 0.060840972613336
131 => 0.058844947541558
201 => 0.059797555326448
202 => 0.059621643452245
203 => 0.064913653191604
204 => 0.064831025738446
205 => 0.064870575127725
206 => 0.062982779732027
207 => 0.065990089056605
208 => 0.067471597769238
209 => 0.067197409935607
210 => 0.067266417106187
211 => 0.066080645283931
212 => 0.064882055990934
213 => 0.06355263600343
214 => 0.066022534018935
215 => 0.065747923522176
216 => 0.066377781200003
217 => 0.067979686615014
218 => 0.068215573272422
219 => 0.068532607332104
220 => 0.068418973189729
221 => 0.071126199478054
222 => 0.070798336511684
223 => 0.071588391928023
224 => 0.069963187994964
225 => 0.068124115478934
226 => 0.068473663040421
227 => 0.068439998799366
228 => 0.068011414372716
229 => 0.067624507515642
301 => 0.066980416608943
302 => 0.069018415545255
303 => 0.068935676510264
304 => 0.070275125313164
305 => 0.07003836472654
306 => 0.068457219583921
307 => 0.068513690492014
308 => 0.068893484487929
309 => 0.070207955844203
310 => 0.070598180438779
311 => 0.07041741285881
312 => 0.070845276312333
313 => 0.0711834421406
314 => 0.070887744733871
315 => 0.075074196442512
316 => 0.07333568981469
317 => 0.074183025848639
318 => 0.074385110499942
319 => 0.073867474915012
320 => 0.073979731538242
321 => 0.074149769734338
322 => 0.07518220836414
323 => 0.077891626067264
324 => 0.079091608724348
325 => 0.082701815754286
326 => 0.078991966869243
327 => 0.078771839789285
328 => 0.079422147093184
329 => 0.081541720798983
330 => 0.083259436206098
331 => 0.083829301504017
401 => 0.083904618610587
402 => 0.084973723793412
403 => 0.085586514946576
404 => 0.08484390630396
405 => 0.084214623233708
406 => 0.081960609385555
407 => 0.082221517625955
408 => 0.084018916672055
409 => 0.086557848690947
410 => 0.088736516494011
411 => 0.087973622963617
412 => 0.093793962081623
413 => 0.09437102493122
414 => 0.094291293504082
415 => 0.09560592855393
416 => 0.092996645700753
417 => 0.091881126728546
418 => 0.084350681376163
419 => 0.086466429357308
420 => 0.089541793301425
421 => 0.089134757351398
422 => 0.086901345850467
423 => 0.088734822251112
424 => 0.088128617614951
425 => 0.087650478866957
426 => 0.089840925163274
427 => 0.087432439481899
428 => 0.089517766814358
429 => 0.08684331294053
430 => 0.087977107797002
501 => 0.087333511000982
502 => 0.087749997004264
503 => 0.085315228339285
504 => 0.086628970410239
505 => 0.08526057234995
506 => 0.085259923551099
507 => 0.085229716088075
508 => 0.086839630337599
509 => 0.086892129583478
510 => 0.085702400520634
511 => 0.085530941975618
512 => 0.086164914081605
513 => 0.085422698783051
514 => 0.085769976649797
515 => 0.085433217475857
516 => 0.08535740589257
517 => 0.084753326298659
518 => 0.084493072200088
519 => 0.08459512453806
520 => 0.084246767296976
521 => 0.084036869458591
522 => 0.085187962124968
523 => 0.084572979748269
524 => 0.08509370725565
525 => 0.084500272539938
526 => 0.082443169268084
527 => 0.081260107422968
528 => 0.077374430036009
529 => 0.078476403322783
530 => 0.079207012751987
531 => 0.078965546339994
601 => 0.079484309628053
602 => 0.079516157480719
603 => 0.079347502247605
604 => 0.079152221093733
605 => 0.079057169027753
606 => 0.079765609252871
607 => 0.080176882648553
608 => 0.079280339182501
609 => 0.079070291592381
610 => 0.079976746536081
611 => 0.080529683528096
612 => 0.084612259608676
613 => 0.08430980918608
614 => 0.085068900393899
615 => 0.084983438373103
616 => 0.08577908689161
617 => 0.087079635953217
618 => 0.084435256071734
619 => 0.084894228983382
620 => 0.084781699424679
621 => 0.086010267639774
622 => 0.086014103095638
623 => 0.085277515079155
624 => 0.085676831392666
625 => 0.085453943981134
626 => 0.085856731658813
627 => 0.084305769776291
628 => 0.086194673933214
629 => 0.087265560871894
630 => 0.087280430138076
701 => 0.087788022047926
702 => 0.088303764826075
703 => 0.089293688177001
704 => 0.088276156401099
705 => 0.086445715790973
706 => 0.086577867690737
707 => 0.085504681030752
708 => 0.085522721492393
709 => 0.085426420094295
710 => 0.085715427839218
711 => 0.084369190723986
712 => 0.084685149884111
713 => 0.084242805209682
714 => 0.084893267412449
715 => 0.084193477607526
716 => 0.084781645159518
717 => 0.085035478776895
718 => 0.085972130289662
719 => 0.084055133417522
720 => 0.08014624702595
721 => 0.080967942336125
722 => 0.079752590429603
723 => 0.079865075875722
724 => 0.08009231437881
725 => 0.079355760042491
726 => 0.079496271398366
727 => 0.079491251343971
728 => 0.079447991227247
729 => 0.079256384997292
730 => 0.078978518055721
731 => 0.080085454428008
801 => 0.08027354448773
802 => 0.080691645391064
803 => 0.081935630078835
804 => 0.081811326673348
805 => 0.082014070684996
806 => 0.081571481645927
807 => 0.079885606311869
808 => 0.079977157453499
809 => 0.078835513250362
810 => 0.080662450982024
811 => 0.080229808012767
812 => 0.079950880275977
813 => 0.079874772258747
814 => 0.081121840543945
815 => 0.081494982920277
816 => 0.081262465632
817 => 0.080785565890132
818 => 0.081701354377271
819 => 0.081946380742415
820 => 0.082001233109346
821 => 0.08362383472353
822 => 0.082091918514723
823 => 0.082460665972121
824 => 0.085337528371132
825 => 0.082728611155103
826 => 0.08411061279023
827 => 0.08404297100178
828 => 0.084749956273925
829 => 0.08398497757411
830 => 0.083994460401913
831 => 0.084622215428248
901 => 0.083740646709976
902 => 0.083522357897804
903 => 0.083220793467201
904 => 0.083879248368908
905 => 0.084273962303127
906 => 0.087455066727497
907 => 0.089510205261626
908 => 0.089420986277817
909 => 0.09023628077889
910 => 0.089868983138915
911 => 0.088682882171213
912 => 0.090707411893476
913 => 0.090066765979431
914 => 0.0901195800502
915 => 0.090117614307848
916 => 0.09054358783445
917 => 0.090241746550952
918 => 0.089646786397805
919 => 0.090041748713092
920 => 0.091214645587882
921 => 0.094855353476102
922 => 0.096892741843314
923 => 0.094732700138176
924 => 0.096222667982269
925 => 0.095329218205639
926 => 0.095166851803397
927 => 0.096102661717247
928 => 0.097040109642469
929 => 0.096980398262331
930 => 0.096299859207103
1001 => 0.095915439962844
1002 => 0.098826391270269
1003 => 0.10097113060682
1004 => 0.10082487376258
1005 => 0.10147040390777
1006 => 0.10336570037955
1007 => 0.1035389825363
1008 => 0.10351715296739
1009 => 0.10308765506176
1010 => 0.10495382057358
1011 => 0.10651060867559
1012 => 0.102988238706
1013 => 0.10432951107921
1014 => 0.10493165146064
1015 => 0.10581577218758
1016 => 0.10730743204977
1017 => 0.10892777030335
1018 => 0.10915690389851
1019 => 0.10899432264769
1020 => 0.10792566601243
1021 => 0.10969865946415
1022 => 0.11073723744635
1023 => 0.11135568686732
1024 => 0.11292397169872
1025 => 0.10493537007464
1026 => 0.099280640785857
1027 => 0.098397573152132
1028 => 0.10019332591023
1029 => 0.10066685159168
1030 => 0.10047597398324
1031 => 0.094111062063216
1101 => 0.098364063208122
1102 => 0.10293993483755
1103 => 0.10311571270266
1104 => 0.10540648971731
1105 => 0.10615246061541
1106 => 0.10799683637121
1107 => 0.10788147016552
1108 => 0.10833054631163
1109 => 0.10822731148255
1110 => 0.11164362919104
1111 => 0.11541233495159
1112 => 0.11528183665486
1113 => 0.11474004061247
1114 => 0.11554470012537
1115 => 0.11943440834931
1116 => 0.11907630634735
1117 => 0.1194241719392
1118 => 0.12401035714958
1119 => 0.12997305030031
1120 => 0.12720278068719
1121 => 0.13321346862406
1122 => 0.13699687806744
1123 => 0.14353989348792
1124 => 0.14272067573225
1125 => 0.14526782362058
1126 => 0.14125410497368
1127 => 0.13203779565404
1128 => 0.1305792794256
1129 => 0.13349926585046
1130 => 0.14067776754789
1201 => 0.13327318928589
1202 => 0.13477112582455
1203 => 0.13433972000064
1204 => 0.13431673221764
1205 => 0.13519408239665
1206 => 0.13392144020249
1207 => 0.12873646695952
1208 => 0.13111270964154
1209 => 0.13019512822547
1210 => 0.13121325321682
1211 => 0.13670765388849
1212 => 0.1342784483814
1213 => 0.1317194777123
1214 => 0.1349289948124
1215 => 0.13901581299055
1216 => 0.13876006725368
1217 => 0.13826381363073
1218 => 0.14106116932033
1219 => 0.14568158137123
1220 => 0.14693046018227
1221 => 0.14785235698837
1222 => 0.14797947098236
1223 => 0.14928882412134
1224 => 0.14224810229356
1225 => 0.15342190865281
1226 => 0.15535131634088
1227 => 0.15498866766128
1228 => 0.15713312310469
1229 => 0.15650216991365
1230 => 0.15558801773337
1231 => 0.15898743574992
]
'min_raw' => 0.05860415885834
'max_raw' => 0.15898743574992
'avg_raw' => 0.10879579730413
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.0586041'
'max' => '$0.158987'
'avg' => '$0.108795'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.020211059831226
'max_diff' => 0.073277546779
'year' => 2032
]
7 => [
'items' => [
101 => 0.15509027731283
102 => 0.14955875154999
103 => 0.14652404711532
104 => 0.15052039071752
105 => 0.15296081830221
106 => 0.15457378569534
107 => 0.15506186865392
108 => 0.14279465348669
109 => 0.13618330488249
110 => 0.14042110353851
111 => 0.1455915103761
112 => 0.14221938042252
113 => 0.14235156153241
114 => 0.13754379039876
115 => 0.14601689144081
116 => 0.14478243188898
117 => 0.15118681022759
118 => 0.14965835393873
119 => 0.15488087585733
120 => 0.1535056108104
121 => 0.1592142591302
122 => 0.16149159350045
123 => 0.1653155923469
124 => 0.16812854146482
125 => 0.16978035899
126 => 0.1696811900616
127 => 0.17622651402861
128 => 0.17236696516147
129 => 0.16751846215851
130 => 0.16743076803602
131 => 0.16994187644507
201 => 0.17520447078149
202 => 0.17656898492529
203 => 0.17733156218123
204 => 0.17616364856825
205 => 0.17197438488933
206 => 0.17016548207282
207 => 0.17170671968144
208 => 0.16982191852615
209 => 0.17307561410199
210 => 0.17754363307949
211 => 0.17662100482909
212 => 0.17970521274199
213 => 0.18289704346371
214 => 0.18746150474986
215 => 0.18865482395157
216 => 0.19062733521413
217 => 0.1926576972395
218 => 0.19330979480226
219 => 0.19455485138355
220 => 0.19454828932079
221 => 0.1983003511305
222 => 0.2024389914983
223 => 0.20400123242739
224 => 0.20759351930138
225 => 0.20144185391842
226 => 0.20610796277664
227 => 0.21031690976703
228 => 0.20529882965057
301 => 0.2122150840284
302 => 0.21248362651332
303 => 0.21653829920731
304 => 0.21242811165065
305 => 0.20998749539969
306 => 0.21703346306752
307 => 0.22044278487608
308 => 0.21941586940136
309 => 0.21160099193367
310 => 0.20705239805162
311 => 0.19514785050404
312 => 0.20924930131233
313 => 0.21611770665608
314 => 0.21158320442312
315 => 0.21387014359318
316 => 0.22634694216254
317 => 0.23109729924487
318 => 0.23010925817925
319 => 0.2302762208548
320 => 0.23283942731134
321 => 0.24420609632324
322 => 0.23739492477398
323 => 0.24260181021366
324 => 0.24536352347604
325 => 0.24792875666609
326 => 0.2416293547016
327 => 0.23343392530239
328 => 0.23083808879093
329 => 0.21113233754132
330 => 0.21010656761104
331 => 0.20953077186516
401 => 0.20590046113533
402 => 0.20304803132748
403 => 0.20077967324034
404 => 0.19482682423064
405 => 0.1968357360237
406 => 0.18734813715839
407 => 0.19341796669256
408 => 0.17827552981743
409 => 0.19088660120698
410 => 0.1840229684047
411 => 0.18863171323462
412 => 0.18861563375808
413 => 0.18012947332233
414 => 0.17523483308463
415 => 0.17835388834634
416 => 0.1816977631778
417 => 0.18224029561906
418 => 0.18657571662212
419 => 0.18778563943451
420 => 0.18411951682707
421 => 0.17796173647048
422 => 0.1793920484033
423 => 0.17520584785897
424 => 0.16786969242491
425 => 0.17313864733463
426 => 0.17493770020041
427 => 0.17573226443572
428 => 0.16851799812946
429 => 0.1662511190267
430 => 0.16504425161334
501 => 0.17703046528322
502 => 0.1776870971254
503 => 0.1743276757824
504 => 0.18951257880615
505 => 0.18607576758306
506 => 0.18991552775844
507 => 0.17926226258721
508 => 0.17966923166328
509 => 0.17462580520507
510 => 0.17744978701979
511 => 0.17545388769433
512 => 0.17722163719629
513 => 0.17828121895907
514 => 0.18332381784062
515 => 0.19094417958617
516 => 0.18257062172357
517 => 0.17892214265128
518 => 0.1811856385479
519 => 0.18721362640061
520 => 0.19634633656449
521 => 0.19093958833456
522 => 0.19333901138646
523 => 0.1938631785804
524 => 0.18987644260435
525 => 0.19649333320655
526 => 0.2000393786358
527 => 0.20367688749549
528 => 0.20683523451768
529 => 0.2022239864664
530 => 0.20715868287772
531 => 0.20318218866137
601 => 0.1996148622669
602 => 0.19962027242851
603 => 0.19738243647093
604 => 0.19304634731765
605 => 0.19224670595024
606 => 0.19640654132707
607 => 0.19974233536141
608 => 0.20001708733546
609 => 0.20186395431215
610 => 0.20295691116472
611 => 0.21366937412267
612 => 0.2179780153425
613 => 0.2232465402677
614 => 0.22529892764386
615 => 0.23147587782451
616 => 0.22648748888627
617 => 0.22540821956105
618 => 0.2104249588878
619 => 0.21287846698367
620 => 0.21680677017347
621 => 0.21048973516052
622 => 0.21449643989521
623 => 0.21528744828344
624 => 0.21027508472802
625 => 0.21295240467442
626 => 0.20584223666683
627 => 0.19109916181889
628 => 0.19650974646339
629 => 0.20049375794484
630 => 0.19480808233574
701 => 0.20499943579903
702 => 0.19904585749801
703 => 0.19715885899875
704 => 0.18979700508957
705 => 0.19327151675096
706 => 0.1979708435232
707 => 0.19506720593333
708 => 0.20109268991569
709 => 0.20962638217258
710 => 0.215707999465
711 => 0.21617487052497
712 => 0.21226479804266
713 => 0.21853071414932
714 => 0.2185763545075
715 => 0.21150837554217
716 => 0.20717927778058
717 => 0.20619569766064
718 => 0.20865287364248
719 => 0.21163633890414
720 => 0.21634043208313
721 => 0.21918301707083
722 => 0.22659497112816
723 => 0.2286004333787
724 => 0.23080382837387
725 => 0.23374824358928
726 => 0.23728376898794
727 => 0.22954824069324
728 => 0.22985558765322
729 => 0.22265237081087
730 => 0.21495470056904
731 => 0.22079627275445
801 => 0.22843335131509
802 => 0.22668139705506
803 => 0.22648426641163
804 => 0.2268157854744
805 => 0.22549486917581
806 => 0.21952041371274
807 => 0.21652007958125
808 => 0.22039127607774
809 => 0.22244864472849
810 => 0.2256394440844
811 => 0.22524611071418
812 => 0.23346526718817
813 => 0.23665898285957
814 => 0.23584189372403
815 => 0.23599225778932
816 => 0.24177432746065
817 => 0.24820517810849
818 => 0.25422851836568
819 => 0.26035571878377
820 => 0.25296913953106
821 => 0.2492186901274
822 => 0.2530881965806
823 => 0.25103498198928
824 => 0.26283336205398
825 => 0.26365025629108
826 => 0.2754477831986
827 => 0.28664504105722
828 => 0.27961224401593
829 => 0.28624385486173
830 => 0.29341648267462
831 => 0.30725364544262
901 => 0.30259377581961
902 => 0.29902438871786
903 => 0.29565133515385
904 => 0.30267012416337
905 => 0.31169968409623
906 => 0.31364456482172
907 => 0.31679601459862
908 => 0.31348265049915
909 => 0.31747323260188
910 => 0.33156174097516
911 => 0.32775490165
912 => 0.32234857782831
913 => 0.33347010211429
914 => 0.33749493851955
915 => 0.36574334823489
916 => 0.4014081323841
917 => 0.38664267755873
918 => 0.37747728327037
919 => 0.37963136833419
920 => 0.39265494017635
921 => 0.39683769810455
922 => 0.38546752017259
923 => 0.38948365923824
924 => 0.411612980348
925 => 0.42348465112976
926 => 0.40736132763002
927 => 0.36287771755452
928 => 0.32186179752004
929 => 0.33274106648413
930 => 0.33150769500663
1001 => 0.35528288985003
1002 => 0.3276641097911
1003 => 0.32812913921498
1004 => 0.35239597990939
1005 => 0.34592200285109
1006 => 0.33543498914099
1007 => 0.32193836432574
1008 => 0.29698860506807
1009 => 0.27488990751804
1010 => 0.31823054243975
1011 => 0.3163616154521
1012 => 0.31365513221451
1013 => 0.31967811778768
1014 => 0.34892402607673
1015 => 0.3482498132309
1016 => 0.34396081509215
1017 => 0.3472139823789
1018 => 0.33486469318679
1019 => 0.33804738619968
1020 => 0.32185530038875
1021 => 0.32917479941653
1022 => 0.33541248871952
1023 => 0.33666479719767
1024 => 0.33948631214339
1025 => 0.3153767758543
1026 => 0.3262012498293
1027 => 0.33255961417357
1028 => 0.30383229274691
1029 => 0.33199176739434
1030 => 0.31495708246638
1031 => 0.30917525454945
1101 => 0.3169597241417
1102 => 0.31392610877095
1103 => 0.31131798441506
1104 => 0.30986260621121
1105 => 0.31557866153919
1106 => 0.31531200072598
1107 => 0.30595942477087
1108 => 0.29375937069719
1109 => 0.29785410929744
1110 => 0.29636645237559
1111 => 0.29097499177924
1112 => 0.29460818525374
1113 => 0.27860943990917
1114 => 0.25108443008625
1115 => 0.26926829468912
1116 => 0.26856823568215
1117 => 0.26821523418569
1118 => 0.28187990586964
1119 => 0.28056636298484
1120 => 0.27818226978668
1121 => 0.29093120603803
1122 => 0.2862776728089
1123 => 0.30061876571075
1124 => 0.31006473701965
1125 => 0.30766893315055
1126 => 0.31655291482291
1127 => 0.29794844380458
1128 => 0.30412810279505
1129 => 0.30540172194834
1130 => 0.29077388614365
1201 => 0.28078127484565
1202 => 0.28011488159619
1203 => 0.26278907067212
1204 => 0.2720443790187
1205 => 0.280188667353
1206 => 0.27628818526318
1207 => 0.27505340915713
1208 => 0.28136161249268
1209 => 0.28185181391796
1210 => 0.27067516947235
1211 => 0.27299914777089
1212 => 0.28269052360505
1213 => 0.27275494996538
1214 => 0.25345175335024
1215 => 0.24866429370211
1216 => 0.24802555833466
1217 => 0.23504158807072
1218 => 0.24898421464793
1219 => 0.24289788450781
1220 => 0.26212452849499
1221 => 0.25114237256408
1222 => 0.25066895377165
1223 => 0.24995331183146
1224 => 0.23877747226424
1225 => 0.2412242708678
1226 => 0.24935780208401
1227 => 0.25225993765273
1228 => 0.25195722113642
1229 => 0.24931794334381
1230 => 0.25052619120198
1231 => 0.24663400386937
]
'min_raw' => 0.13618330488249
'max_raw' => 0.42348465112976
'avg_raw' => 0.27983397800613
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.136183'
'max' => '$0.423484'
'avg' => '$0.279833'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.077579146024151
'max_diff' => 0.26449721537984
'year' => 2033
]
8 => [
'items' => [
101 => 0.24525959151335
102 => 0.24092156805585
103 => 0.23454587198289
104 => 0.23543245162625
105 => 0.2228005294141
106 => 0.21591798776606
107 => 0.21401299094833
108 => 0.21146554958835
109 => 0.21430073122842
110 => 0.22276474476559
111 => 0.21255534869912
112 => 0.19505205524902
113 => 0.19610403300954
114 => 0.1984675147024
115 => 0.19406318220374
116 => 0.18989485112136
117 => 0.1935188768101
118 => 0.18610250063345
119 => 0.1993637483312
120 => 0.19900506874519
121 => 0.20394804181685
122 => 0.20703898431858
123 => 0.19991536255661
124 => 0.1981237909478
125 => 0.19914435155857
126 => 0.1822767579894
127 => 0.20256959956297
128 => 0.20274509289958
129 => 0.20124241240645
130 => 0.21204772407319
131 => 0.23485030195122
201 => 0.22627105492194
202 => 0.22294891116308
203 => 0.21663351344903
204 => 0.22504840593179
205 => 0.22440227348189
206 => 0.22148021750497
207 => 0.21971294893275
208 => 0.22296919546447
209 => 0.21930946395219
210 => 0.21865207560989
211 => 0.21466901750111
212 => 0.21324724697387
213 => 0.21219462467782
214 => 0.2110357909584
215 => 0.21359188938007
216 => 0.20779943407382
217 => 0.20081430081586
218 => 0.20023356256565
219 => 0.20183703193351
220 => 0.20112761610249
221 => 0.20023016615559
222 => 0.198516689801
223 => 0.19800833796922
224 => 0.19966023480525
225 => 0.19779533958894
226 => 0.2005470940667
227 => 0.19979876911027
228 => 0.1956186867347
301 => 0.19040875643004
302 => 0.19036237712213
303 => 0.18923990618398
304 => 0.18781027067962
305 => 0.18741257878794
306 => 0.19321367147482
307 => 0.20522175972457
308 => 0.20286428467195
309 => 0.20456780200123
310 => 0.21294742122823
311 => 0.21561105019656
312 => 0.21372046944635
313 => 0.21113252590953
314 => 0.21124638229111
315 => 0.22009016878022
316 => 0.22064174489554
317 => 0.22203539979374
318 => 0.22382664018476
319 => 0.21402552543048
320 => 0.21078475066758
321 => 0.20924909179358
322 => 0.20451985683644
323 => 0.20961993128376
324 => 0.20664833631027
325 => 0.20704930599633
326 => 0.20678817396226
327 => 0.20693076971054
328 => 0.1993600415422
329 => 0.20211841698098
330 => 0.19753208281829
331 => 0.19139149621461
401 => 0.19137091081515
402 => 0.19287381068704
403 => 0.19197982703476
404 => 0.18957414001291
405 => 0.18991585649984
406 => 0.18692206050333
407 => 0.19027935753824
408 => 0.19037563280422
409 => 0.18908289057257
410 => 0.19425526987256
411 => 0.19637439789203
412 => 0.19552348726194
413 => 0.19631469573387
414 => 0.20296224840375
415 => 0.204046089542
416 => 0.20452746018108
417 => 0.2038824872941
418 => 0.19643620079359
419 => 0.19676647526394
420 => 0.19434314034105
421 => 0.19229567769594
422 => 0.19237756546422
423 => 0.19343022741532
424 => 0.19802726389356
425 => 0.20770145615192
426 => 0.20806858467638
427 => 0.20851355515792
428 => 0.20670363658524
429 => 0.20615774782513
430 => 0.20687791600556
501 => 0.21051103397293
502 => 0.21985639976693
503 => 0.21655312333934
504 => 0.21386750818514
505 => 0.21622351671202
506 => 0.21586082766631
507 => 0.21279936712319
508 => 0.21271344212225
509 => 0.20683752053186
510 => 0.20466532610815
511 => 0.20285007786176
512 => 0.20086787416497
513 => 0.19969275736944
514 => 0.2014982708484
515 => 0.20191121314325
516 => 0.19796342636651
517 => 0.19742535761642
518 => 0.2006492055172
519 => 0.19923051025323
520 => 0.20068967351417
521 => 0.20102821190718
522 => 0.2009736994287
523 => 0.19949241863701
524 => 0.20043654284121
525 => 0.1982034076413
526 => 0.19577520851747
527 => 0.19422616875862
528 => 0.19287442611871
529 => 0.19362445149908
530 => 0.1909507479673
531 => 0.19009537639647
601 => 0.20011669480429
602 => 0.20751955045948
603 => 0.2074119100064
604 => 0.20675667643116
605 => 0.20578313224762
606 => 0.21043981315208
607 => 0.20881751863824
608 => 0.2099978734443
609 => 0.21029832328177
610 => 0.21120769445012
611 => 0.21153271647971
612 => 0.21055027416397
613 => 0.20725307775715
614 => 0.19903677779938
615 => 0.19521206798956
616 => 0.19394985004674
617 => 0.19399572927167
618 => 0.19273017543427
619 => 0.19310293775753
620 => 0.19260054391056
621 => 0.19164913150654
622 => 0.19356570446414
623 => 0.19378657164339
624 => 0.19333922061374
625 => 0.19344458797557
626 => 0.18974071251624
627 => 0.19002231012302
628 => 0.18845433886478
629 => 0.18816036315604
630 => 0.1841966683541
701 => 0.17717440846571
702 => 0.18106542211114
703 => 0.17636562478678
704 => 0.17458574032649
705 => 0.18301143653266
706 => 0.182165730326
707 => 0.18071824891984
708 => 0.17857712223857
709 => 0.17778295752495
710 => 0.17295786412697
711 => 0.17267277186815
712 => 0.17506421844466
713 => 0.17396064813425
714 => 0.17241081746368
715 => 0.16679748787866
716 => 0.16048624691555
717 => 0.16067674360918
718 => 0.16268423193473
719 => 0.16852127498796
720 => 0.1662406412852
721 => 0.16458601536658
722 => 0.1642761536699
723 => 0.1681547215433
724 => 0.17364370766926
725 => 0.17621901715041
726 => 0.1736669636679
727 => 0.1707353020395
728 => 0.17091373869881
729 => 0.17210079785216
730 => 0.17222554098506
731 => 0.17031733064466
801 => 0.17085448067808
802 => 0.17003850065929
803 => 0.16503083279017
804 => 0.16494025995791
805 => 0.16371129750327
806 => 0.16367408500857
807 => 0.16158331329418
808 => 0.16129079987852
809 => 0.15713944573883
810 => 0.15987187960503
811 => 0.1580391064268
812 => 0.15527668493972
813 => 0.15480044243413
814 => 0.15478612600933
815 => 0.15762251521042
816 => 0.15983873474579
817 => 0.15807098830091
818 => 0.15766850670174
819 => 0.16196595720318
820 => 0.16141906745474
821 => 0.16094546445965
822 => 0.1731522291654
823 => 0.16348962239507
824 => 0.1592761743209
825 => 0.15406123221701
826 => 0.15575924366206
827 => 0.15611703962251
828 => 0.14357604392664
829 => 0.13848816353471
830 => 0.13674219471692
831 => 0.13573736497791
901 => 0.13619527850784
902 => 0.13161558940625
903 => 0.13469321622358
904 => 0.13072759257309
905 => 0.13006274286283
906 => 0.13715376919641
907 => 0.13814044408556
908 => 0.13393098247261
909 => 0.13663413827805
910 => 0.13565393640632
911 => 0.13079557180855
912 => 0.13061001801663
913 => 0.12817226144124
914 => 0.12435764444344
915 => 0.12261426211561
916 => 0.12170629346254
917 => 0.12208093902475
918 => 0.12189150676415
919 => 0.12065533312682
920 => 0.12196236279003
921 => 0.11862344210248
922 => 0.11729385698119
923 => 0.11669331422804
924 => 0.11372982993674
925 => 0.11844605131165
926 => 0.1193752063359
927 => 0.12030619208257
928 => 0.12840978739643
929 => 0.12800495467507
930 => 0.13166444531461
1001 => 0.13152224423773
1002 => 0.13047849822751
1003 => 0.1260751054983
1004 => 0.12783021935724
1005 => 0.12242825170469
1006 => 0.12647577316807
1007 => 0.12462865340072
1008 => 0.1258512601167
1009 => 0.12365290300337
1010 => 0.12486956459783
1011 => 0.11959554346152
1012 => 0.11467073673193
1013 => 0.11665262272399
1014 => 0.11880715945351
1015 => 0.12347874404887
1016 => 0.12069638680361
1017 => 0.12169702768158
1018 => 0.11834504824564
1019 => 0.1114289572237
1020 => 0.1114681015478
1021 => 0.1104042116193
1022 => 0.10948485539061
1023 => 0.12101597400333
1024 => 0.11958189712383
1025 => 0.11729688330369
1026 => 0.12035546510479
1027 => 0.12116420267922
1028 => 0.12118722630101
1029 => 0.12341868862968
1030 => 0.12460962047449
1031 => 0.12481952737394
1101 => 0.12833078156202
1102 => 0.1295077076513
1103 => 0.13435529964824
1104 => 0.12450857822804
1105 => 0.1243057914802
1106 => 0.1203985056231
1107 => 0.11792044316078
1108 => 0.12056818067997
1109 => 0.12291371466976
1110 => 0.12047138790231
1111 => 0.12079030421781
1112 => 0.11751168007794
1113 => 0.11868363393434
1114 => 0.1196930784747
1115 => 0.11913572253192
1116 => 0.11830133370925
1117 => 0.12272140763071
1118 => 0.12247200973765
1119 => 0.12658808419038
1120 => 0.12979685856959
1121 => 0.13554755589417
1122 => 0.12954640344534
1123 => 0.12932769759769
1124 => 0.13146558234005
1125 => 0.12950738035229
1126 => 0.13074489641371
1127 => 0.13534817292475
1128 => 0.13544543290368
1129 => 0.1338162029442
1130 => 0.1337170641531
1201 => 0.13402997558864
1202 => 0.13586270764022
1203 => 0.13522229474723
1204 => 0.13596339676027
1205 => 0.13689015617573
1206 => 0.14072362605592
1207 => 0.14164786266588
1208 => 0.13940244686541
1209 => 0.13960518277134
1210 => 0.13876533562392
1211 => 0.13795405380277
1212 => 0.13977769685852
1213 => 0.14311044038671
1214 => 0.14308970756219
1215 => 0.14386283928145
1216 => 0.14434449393758
1217 => 0.14227687956071
1218 => 0.14093093862965
1219 => 0.14144705802707
1220 => 0.14227234418315
1221 => 0.14117942884958
1222 => 0.13443344912315
1223 => 0.13647974843729
1224 => 0.1361391441725
1225 => 0.13565408228053
1226 => 0.13771165206447
1227 => 0.13751319443933
1228 => 0.13156861807514
1229 => 0.13194917056685
1230 => 0.13159176073259
1231 => 0.13274662502624
]
'min_raw' => 0.10948485539061
'max_raw' => 0.24525959151335
'avg_raw' => 0.17737222345198
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.109484'
'max' => '$0.245259'
'avg' => '$0.177372'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.026698449491879
'max_diff' => -0.17822505961641
'year' => 2034
]
9 => [
'items' => [
101 => 0.12944501389049
102 => 0.13046056723915
103 => 0.13109751277922
104 => 0.13147267859556
105 => 0.1328280347778
106 => 0.13266899937328
107 => 0.13281814891376
108 => 0.13482778433126
109 => 0.14499183064935
110 => 0.14554503726474
111 => 0.14282084556475
112 => 0.14390910641659
113 => 0.14181988355754
114 => 0.1432223928594
115 => 0.14418195410386
116 => 0.13984588135317
117 => 0.13958912726575
118 => 0.13749128144079
119 => 0.13861854495906
120 => 0.13682498764837
121 => 0.13726506387644
122 => 0.13603457237759
123 => 0.13824921208711
124 => 0.14072552340256
125 => 0.14135113743334
126 => 0.13970541626213
127 => 0.13851380567587
128 => 0.13642173002731
129 => 0.1399008984558
130 => 0.14091831333003
131 => 0.1398955544086
201 => 0.13965855881877
202 => 0.13920945260431
203 => 0.13975383882524
204 => 0.14091277227012
205 => 0.14036624065966
206 => 0.14072723441702
207 => 0.1393514984691
208 => 0.1422775640271
209 => 0.14692486032924
210 => 0.14693980214676
211 => 0.14639326759028
212 => 0.14616963742502
213 => 0.14673041504646
214 => 0.14703461390178
215 => 0.14884806590048
216 => 0.1507939721462
217 => 0.15987466752954
218 => 0.15732484460289
219 => 0.16538177775998
220 => 0.1717537658254
221 => 0.17366444643296
222 => 0.17190671017848
223 => 0.16589358940295
224 => 0.1655985570106
225 => 0.17458469812334
226 => 0.17204570166765
227 => 0.17174369611827
228 => 0.16853086731925
301 => 0.17043004705606
302 => 0.17001466858833
303 => 0.16935897335602
304 => 0.17298247599584
305 => 0.17976534946528
306 => 0.17870817502568
307 => 0.17791904334743
308 => 0.17446129804613
309 => 0.17654363303289
310 => 0.1758021534286
311 => 0.17898802036319
312 => 0.17710078336674
313 => 0.17202646627233
314 => 0.17283456799478
315 => 0.17271242504511
316 => 0.17522611829425
317 => 0.17447156997456
318 => 0.17256508737562
319 => 0.17974216634115
320 => 0.17927612675414
321 => 0.17993686433704
322 => 0.18022774145502
323 => 0.18459630294702
324 => 0.18638596281192
325 => 0.18679224693366
326 => 0.18849228538805
327 => 0.18674994842821
328 => 0.19372053853275
329 => 0.19835557420707
330 => 0.20373940665953
331 => 0.21160663291033
401 => 0.21456478275654
402 => 0.21403041946419
403 => 0.21999526062014
404 => 0.23071394758639
405 => 0.21619697255906
406 => 0.23148338251281
407 => 0.22664388161154
408 => 0.21516951203355
409 => 0.21443069790665
410 => 0.22220127420504
411 => 0.23943566454462
412 => 0.2351186452354
413 => 0.23944272564168
414 => 0.23439845616069
415 => 0.23414796566452
416 => 0.23919773673201
417 => 0.25099680207989
418 => 0.24539150841446
419 => 0.23735494547068
420 => 0.2432890184856
421 => 0.23814837526754
422 => 0.22656506732182
423 => 0.23511534409209
424 => 0.22939801751368
425 => 0.23106663735905
426 => 0.24308360743873
427 => 0.24163769380579
428 => 0.24350883993482
429 => 0.2402063159935
430 => 0.23712123787209
501 => 0.23136271045755
502 => 0.22965789438208
503 => 0.23012904421249
504 => 0.22965766090363
505 => 0.22643581773879
506 => 0.2257400610141
507 => 0.22458043599115
508 => 0.22493985227511
509 => 0.22275941797169
510 => 0.22687434800295
511 => 0.22763811527739
512 => 0.23063261819746
513 => 0.23094351742451
514 => 0.23928316543281
515 => 0.23468982745193
516 => 0.23777143513923
517 => 0.23749578714246
518 => 0.21541819641563
519 => 0.21846029362556
520 => 0.22319284222151
521 => 0.22106083549385
522 => 0.21804667679368
523 => 0.21561258203434
524 => 0.21192467957496
525 => 0.21711533146664
526 => 0.22394048673991
527 => 0.23111661462546
528 => 0.23973826208141
529 => 0.23781401073628
530 => 0.23095543892336
531 => 0.2312631094447
601 => 0.23316500754372
602 => 0.23070187669982
603 => 0.22997545132793
604 => 0.23306520785264
605 => 0.23308648530773
606 => 0.23025235559252
607 => 0.22710273905432
608 => 0.22708954204603
609 => 0.22652909820474
610 => 0.23449815787503
611 => 0.23888033493087
612 => 0.23938274446809
613 => 0.23884651876603
614 => 0.23905289075672
615 => 0.2365029984826
616 => 0.24233129607416
617 => 0.24767991830307
618 => 0.24624637328908
619 => 0.24409728552267
620 => 0.24238543360263
621 => 0.24584311538015
622 => 0.2456891502535
623 => 0.24763320275394
624 => 0.24754500930313
625 => 0.24689129756674
626 => 0.24624639663518
627 => 0.24880335593252
628 => 0.24806699271839
629 => 0.24732948572881
630 => 0.24585030255453
701 => 0.24605134811455
702 => 0.24390263141844
703 => 0.24290853675623
704 => 0.22795973820327
705 => 0.22396493076384
706 => 0.22522177850609
707 => 0.22563556541687
708 => 0.22389702009975
709 => 0.22638964748886
710 => 0.22600117415061
711 => 0.22751249666043
712 => 0.22656828797029
713 => 0.22660703862429
714 => 0.22938375505547
715 => 0.23018984764844
716 => 0.22977986244969
717 => 0.23006700202942
718 => 0.23668401245033
719 => 0.23574328516856
720 => 0.23524354254951
721 => 0.23538197467029
722 => 0.23707276270314
723 => 0.23754609103873
724 => 0.23554056562063
725 => 0.23648638300161
726 => 0.24051355336773
727 => 0.24192283507776
728 => 0.24642058580261
729 => 0.24450986135355
730 => 0.24801707877401
731 => 0.25879706942599
801 => 0.2674088718774
802 => 0.2594891024453
803 => 0.27530358094089
804 => 0.28761742090191
805 => 0.28714479521443
806 => 0.28499759239298
807 => 0.27097861297773
808 => 0.25807813910861
809 => 0.26886993328318
810 => 0.26889744378588
811 => 0.26797041909552
812 => 0.26221274836047
813 => 0.26777006463441
814 => 0.26821118421903
815 => 0.26796427455481
816 => 0.26354988190182
817 => 0.25680992023684
818 => 0.25812689261299
819 => 0.26028412023063
820 => 0.25620003830561
821 => 0.25489492666732
822 => 0.25732137751056
823 => 0.26513990769857
824 => 0.26366185985619
825 => 0.26362326205376
826 => 0.26994697751331
827 => 0.26542056198748
828 => 0.25814350385218
829 => 0.25630595070042
830 => 0.24978387493576
831 => 0.25428869589725
901 => 0.25445081638387
902 => 0.25198357198142
903 => 0.25834370713768
904 => 0.25828509737254
905 => 0.26432309912222
906 => 0.27586549069771
907 => 0.27245183754224
908 => 0.26848213032684
909 => 0.2689137475692
910 => 0.27364752339571
911 => 0.27078537446941
912 => 0.27181462317892
913 => 0.27364596550452
914 => 0.27475085979923
915 => 0.26875477028355
916 => 0.26735679499133
917 => 0.2644970281661
918 => 0.26375096838147
919 => 0.26608018878963
920 => 0.26546652150465
921 => 0.25443719078473
922 => 0.25328456435788
923 => 0.25331991376482
924 => 0.25042157981011
925 => 0.24600092484933
926 => 0.25761814214268
927 => 0.25668511701117
928 => 0.25565512947639
929 => 0.25578129707238
930 => 0.26082393735539
1001 => 0.25789895133181
1002 => 0.26567550607129
1003 => 0.26407688020149
1004 => 0.26243725561029
1005 => 0.2622106095476
1006 => 0.26157949396618
1007 => 0.25941516380975
1008 => 0.25680160508977
1009 => 0.25507590724026
1010 => 0.2352940411677
1011 => 0.23896544044495
1012 => 0.24318905065485
1013 => 0.24464702397425
1014 => 0.24215305972273
1015 => 0.25951364071929
1016 => 0.26268558615808
1017 => 0.2530775565231
1018 => 0.25128028647166
1019 => 0.25963146944465
1020 => 0.25459468522134
1021 => 0.25686274884869
1022 => 0.25196043585083
1023 => 0.26192155738728
1024 => 0.26184567033062
1025 => 0.2579705690708
1026 => 0.26124577812005
1027 => 0.26067662994881
1028 => 0.25630165017043
1029 => 0.26206025204977
1030 => 0.26206310824445
1031 => 0.25833340753385
1101 => 0.25397793364034
1102 => 0.25319927777988
1103 => 0.25261266518672
1104 => 0.25671847811078
1105 => 0.26039973713994
1106 => 0.26724964753171
1107 => 0.26897187775406
1108 => 0.27569385696724
1109 => 0.27169124563302
1110 => 0.27346555139499
1111 => 0.27539181129047
1112 => 0.27631533112023
1113 => 0.27481050511645
1114 => 0.28525250571154
1115 => 0.2861341304964
1116 => 0.28642973166074
1117 => 0.28290874781133
1118 => 0.28603620556614
1119 => 0.28457297165318
1120 => 0.28837989979661
1121 => 0.2889768747388
1122 => 0.28847125820077
1123 => 0.28866074747002
1124 => 0.27975034205724
1125 => 0.27928829053046
1126 => 0.27298818517705
1127 => 0.27555552467659
1128 => 0.27075600653798
1129 => 0.27227798318025
1130 => 0.27294885598224
1201 => 0.27259843010218
1202 => 0.27570067819989
1203 => 0.27306313356942
1204 => 0.26610221963712
1205 => 0.25913940920847
1206 => 0.25905199679532
1207 => 0.25721881171327
1208 => 0.25589375466355
1209 => 0.25614900766025
1210 => 0.2570485525138
1211 => 0.25584147148137
1212 => 0.2560990634202
1213 => 0.26037680593087
1214 => 0.26123467668392
1215 => 0.25831929667332
1216 => 0.2466136252434
1217 => 0.24374102411304
1218 => 0.24580579283938
1219 => 0.24481896637633
1220 => 0.1975880132026
1221 => 0.20868422506414
1222 => 0.20209123276776
1223 => 0.20512958694692
1224 => 0.1983998490594
1225 => 0.20161163271511
1226 => 0.20101853354946
1227 => 0.21886091386203
1228 => 0.21858232963484
1229 => 0.21871567316205
1230 => 0.21235083918379
1231 => 0.22249019253523
]
'min_raw' => 0.12944501389049
'max_raw' => 0.2889768747388
'avg_raw' => 0.20921094431464
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.129445'
'max' => '$0.288976'
'avg' => '$0.20921'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.019960158499876
'max_diff' => 0.043717283225453
'year' => 2035
]
10 => [
'items' => [
101 => 0.22748520259551
102 => 0.22656075917124
103 => 0.22679342166478
104 => 0.2227955091781
105 => 0.21875438169392
106 => 0.21427214938892
107 => 0.22259958299096
108 => 0.22167371452845
109 => 0.2237973236645
110 => 0.22919825961268
111 => 0.2299935679472
112 => 0.23106247041403
113 => 0.23067934496933
114 => 0.23980694741293
115 => 0.23870153453115
116 => 0.24136526152724
117 => 0.23588577299882
118 => 0.22968521161108
119 => 0.23086373561927
120 => 0.23075023428019
121 => 0.22930523196293
122 => 0.22800074848133
123 => 0.2258291510204
124 => 0.23270040672272
125 => 0.23242144628959
126 => 0.2369374914459
127 => 0.236139236598
128 => 0.23080829535763
129 => 0.23099869096694
130 => 0.23227919294054
131 => 0.23671102489167
201 => 0.2380266943569
202 => 0.23741722384024
203 => 0.23885979534627
204 => 0.23999994504626
205 => 0.23900298059454
206 => 0.25311789481894
207 => 0.24725639834458
208 => 0.25011325094216
209 => 0.25079459345312
210 => 0.24904934893837
211 => 0.2494278299811
212 => 0.25000112563092
213 => 0.25348206455386
214 => 0.26261705550545
215 => 0.26666288081392
216 => 0.27883494587196
217 => 0.26632693134266
218 => 0.2655847575238
219 => 0.2677773140019
220 => 0.27492360473491
221 => 0.28071500215706
222 => 0.28263634279572
223 => 0.282890279679
224 => 0.28649484244543
225 => 0.28856091060204
226 => 0.28605715371617
227 => 0.28393548190968
228 => 0.27633591685041
229 => 0.27721558719895
301 => 0.28327564357327
302 => 0.29183583013754
303 => 0.2991813607453
304 => 0.29660921194405
305 => 0.31623289164351
306 => 0.31817849933016
307 => 0.3179096792569
308 => 0.32234206311235
309 => 0.31354468379855
310 => 0.30978363370071
311 => 0.28439421143624
312 => 0.29152760347148
313 => 0.30189640772412
314 => 0.30052405760027
315 => 0.29299395479306
316 => 0.29917564848708
317 => 0.2971317872324
318 => 0.29551970906096
319 => 0.30290495168107
320 => 0.29478457405121
321 => 0.3018154007455
322 => 0.29279829278548
323 => 0.29662096130311
324 => 0.29445102977083
325 => 0.29585524140902
326 => 0.28764624886493
327 => 0.29207562197969
328 => 0.28746197238093
329 => 0.2874597849103
330 => 0.2873579383397
331 => 0.29278587663259
401 => 0.29296288150545
402 => 0.28895162690584
403 => 0.28837354245047
404 => 0.29051102366832
405 => 0.28800859296943
406 => 0.28917946454333
407 => 0.28804405747662
408 => 0.28778845343057
409 => 0.28575175690421
410 => 0.28487429204052
411 => 0.28521836862306
412 => 0.28404385786322
413 => 0.2833361726465
414 => 0.28721716193791
415 => 0.28514370591817
416 => 0.28689937506534
417 => 0.28489856848903
418 => 0.27796290118561
419 => 0.27397412557606
420 => 0.2608732929766
421 => 0.26458867285027
422 => 0.26705197355036
423 => 0.26623785268368
424 => 0.26798689932826
425 => 0.26809427658707
426 => 0.2675256436935
427 => 0.26686723964912
428 => 0.26654676497235
429 => 0.26893532065305
430 => 0.27032195762078
501 => 0.26729919873032
502 => 0.26659100861518
503 => 0.26964718474453
504 => 0.27151145041793
505 => 0.28527614070997
506 => 0.28425640799377
507 => 0.28681573699899
508 => 0.28652759582911
509 => 0.28921018035966
510 => 0.2935950723223
511 => 0.28467936092718
512 => 0.28622682014327
513 => 0.28584741887953
514 => 0.28998962239262
515 => 0.29000255389985
516 => 0.28751909597534
517 => 0.28886541880572
518 => 0.28811393833624
519 => 0.28947196511327
520 => 0.28424278884165
521 => 0.29061136108579
522 => 0.29422193116649
523 => 0.29427206393556
524 => 0.29598344549855
525 => 0.29772230828309
526 => 0.30105990397498
527 => 0.29762922455073
528 => 0.29145776623641
529 => 0.29190332559301
530 => 0.28828500184137
531 => 0.28834582651734
601 => 0.2880211396301
602 => 0.28899554941999
603 => 0.28445661699471
604 => 0.28552189536263
605 => 0.28403049940928
606 => 0.28622357813973
607 => 0.28386418795467
608 => 0.28584723592076
609 => 0.28670305368384
610 => 0.28986103965405
611 => 0.28339775085919
612 => 0.27021866748027
613 => 0.27298907058746
614 => 0.26889142678146
615 => 0.26927067931653
616 => 0.27003682979498
617 => 0.2675534854255
618 => 0.26802722927202
619 => 0.26801030380814
620 => 0.26786444930428
621 => 0.26721843552247
622 => 0.26628158772891
623 => 0.2700137009919
624 => 0.27064785976028
625 => 0.27205751614675
626 => 0.27625169737381
627 => 0.27583259976362
628 => 0.27651616535403
629 => 0.27502394550822
630 => 0.26933989911539
701 => 0.26964857018129
702 => 0.26579943704336
703 => 0.27195908515838
704 => 0.27050039918136
705 => 0.26955997484266
706 => 0.26930337134888
707 => 0.27350794913995
708 => 0.27476602471372
709 => 0.27398207644246
710 => 0.27237417566668
711 => 0.27546182048937
712 => 0.27628794398665
713 => 0.27647288257143
714 => 0.28194359720008
715 => 0.27677863474711
716 => 0.27802189254485
717 => 0.28772143497924
718 => 0.27892528843661
719 => 0.28358480343772
720 => 0.28335674442536
721 => 0.28574039463053
722 => 0.283161215535
723 => 0.28319318755101
724 => 0.28530970745075
725 => 0.28233743696793
726 => 0.28160146099726
727 => 0.28058471546492
728 => 0.28280474213788
729 => 0.28413554772515
730 => 0.29486086338953
731 => 0.30178990644253
801 => 0.30148909840955
802 => 0.30423792074197
803 => 0.30299955110489
804 => 0.29900052888135
805 => 0.30582637218812
806 => 0.30366638976044
807 => 0.3038444560874
808 => 0.30383782844982
809 => 0.30527402793528
810 => 0.30425634897408
811 => 0.30225039927895
812 => 0.30358204230033
813 => 0.30753654600273
814 => 0.31981144683397
815 => 0.32668064395994
816 => 0.31939791254177
817 => 0.32442144315437
818 => 0.32140911485379
819 => 0.32086168519257
820 => 0.32401683365327
821 => 0.32717750478368
822 => 0.32697618369663
823 => 0.32468169875821
824 => 0.3233856024369
825 => 0.33320007800601
826 => 0.34043121642011
827 => 0.33993810125843
828 => 0.34211455121242
829 => 0.34850467559239
830 => 0.34908890848205
831 => 0.34901530856639
901 => 0.34756722639098
902 => 0.35385913370557
903 => 0.35910795348298
904 => 0.34723203720648
905 => 0.35175423065741
906 => 0.35378438899351
907 => 0.35676526375173
908 => 0.36179449912147
909 => 0.36725758267181
910 => 0.36803012258549
911 => 0.36748196854729
912 => 0.36387891809028
913 => 0.3698566892992
914 => 0.3733583274774
915 => 0.37544347287896
916 => 0.38073105468219
917 => 0.35379692656024
918 => 0.33473161196251
919 => 0.33175428778159
920 => 0.33780879358097
921 => 0.33940531847649
922 => 0.33876176129298
923 => 0.31730201637066
924 => 0.33164130666577
925 => 0.34706917734153
926 => 0.34766182468617
927 => 0.35538533932802
928 => 0.35790043229297
929 => 0.36411887392387
930 => 0.36372990870676
1001 => 0.36524400028686
1002 => 0.36489593685301
1003 => 0.37641429052687
1004 => 0.38912074512121
1005 => 0.38868076100266
1006 => 0.38685405781878
1007 => 0.38956702354602
1008 => 0.40268144639381
1009 => 0.40147408049233
1010 => 0.40264693362243
1011 => 0.41810957725646
1012 => 0.4382132135161
1013 => 0.42887305610142
1014 => 0.44913851013339
1015 => 0.46189453922095
1016 => 0.48395477252987
1017 => 0.48119272267065
1018 => 0.48978060961234
1019 => 0.47624807696545
1020 => 0.44517464663212
1021 => 0.44025715733755
1022 => 0.45010209543593
1023 => 0.47430491509578
1024 => 0.44933986251432
1025 => 0.454390260137
1026 => 0.45293574528191
1027 => 0.45285824036657
1028 => 0.45581628774973
1029 => 0.45152548573908
1030 => 0.43404398644714
1031 => 0.44205565455351
1101 => 0.43896196474574
1102 => 0.44239464423732
1103 => 0.46091939970865
1104 => 0.45272916373976
1105 => 0.44410141546727
1106 => 0.45492252645158
1107 => 0.46870151927177
1108 => 0.46783925466431
1109 => 0.4661661009272
1110 => 0.47559758093982
1111 => 0.4911756227563
1112 => 0.49538630486166
1113 => 0.49849454430822
1114 => 0.49892311801377
1115 => 0.50333769353796
1116 => 0.47959940832809
1117 => 0.51727267659856
1118 => 0.52377780932583
1119 => 0.52255511398323
1120 => 0.52978529523177
1121 => 0.52765799249645
1122 => 0.52457586459656
1123 => 0.53603723977914
1124 => 0.52289769801759
1125 => 0.50424777270938
1126 => 0.4940160548316
1127 => 0.5074900063022
1128 => 0.51571807828919
1129 => 0.52115631046893
1130 => 0.52280191624065
1201 => 0.4814421438347
1202 => 0.45915152042604
1203 => 0.47343955446848
1204 => 0.49087194210768
1205 => 0.47950257053457
1206 => 0.47994822837517
1207 => 0.46373849233021
1208 => 0.49230614406649
1209 => 0.48814407750028
1210 => 0.50973688620832
1211 => 0.50458358911703
1212 => 0.52219168639043
1213 => 0.51755488426675
1214 => 0.53680199064206
1215 => 0.54448018246977
1216 => 0.55737306156364
1217 => 0.56685711590854
1218 => 0.57242633402092
1219 => 0.57209197905507
1220 => 0.59415999578977
1221 => 0.58114725731909
1222 => 0.56480019093295
1223 => 0.56450452407636
1224 => 0.57297090139747
1225 => 0.59071410562531
1226 => 0.59531466032847
1227 => 0.59788574278832
1228 => 0.59394804050104
1229 => 0.57982364552249
1230 => 0.57372480338307
1231 => 0.57892119358632
]
'min_raw' => 0.21427214938892
'max_raw' => 0.59788574278832
'avg_raw' => 0.40607894608862
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.214272'
'max' => '$0.597885'
'avg' => '$0.406078'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.084827135498428
'max_diff' => 0.30890886804952
'year' => 2036
]
11 => [
'items' => [
101 => 0.57256645489864
102 => 0.58353651669835
103 => 0.5986007546281
104 => 0.59549004906606
105 => 0.60588867137693
106 => 0.6166501515017
107 => 0.63203955140845
108 => 0.6360629104119
109 => 0.64271336984997
110 => 0.64955887717386
111 => 0.65175746963469
112 => 0.65595526482561
113 => 0.65593314037286
114 => 0.66858347872489
115 => 0.68253719367555
116 => 0.68780439804017
117 => 0.69991604404129
118 => 0.67917527470707
119 => 0.69490738649986
120 => 0.70909814513726
121 => 0.69217933767345
122 => 0.71549797218576
123 => 0.71640338192271
124 => 0.73007399399871
125 => 0.7162162096873
126 => 0.7079875015988
127 => 0.73174347352464
128 => 0.74323824003344
129 => 0.73977592281348
130 => 0.71342751781386
131 => 0.69809161596782
201 => 0.65795460276222
202 => 0.7054986286942
203 => 0.72865593684741
204 => 0.71336754598013
205 => 0.721078121061
206 => 0.76314451853985
207 => 0.77916067910226
208 => 0.77582942966669
209 => 0.77639235598427
210 => 0.78503438550987
211 => 0.82335790367897
212 => 0.80039356325985
213 => 0.81794894105285
214 => 0.82726025013363
215 => 0.83590911293275
216 => 0.81467023939926
217 => 0.78703877699321
218 => 0.77828673295933
219 => 0.71184741680963
220 => 0.70838896187272
221 => 0.70644762631472
222 => 0.69420778022888
223 => 0.68459061398142
224 => 0.67694268631895
225 => 0.65687224026811
226 => 0.66364542663615
227 => 0.63165732465874
228 => 0.65212217871516
301 => 0.60106839557949
302 => 0.64358750324623
303 => 0.62044628604983
304 => 0.63598499101617
305 => 0.63593077793838
306 => 0.60731909554444
307 => 0.59081647425019
308 => 0.60133258683052
309 => 0.61260669428668
310 => 0.61443588029079
311 => 0.62905305489202
312 => 0.6331323941281
313 => 0.62077180579662
314 => 0.60001041940188
315 => 0.60483281594457
316 => 0.59071874853817
317 => 0.56598438829822
318 => 0.58374903764305
319 => 0.58981466998587
320 => 0.59249359877992
321 => 0.56817019624439
322 => 0.56052725508097
323 => 0.55645821733605
324 => 0.59687057357475
325 => 0.59908445367524
326 => 0.58775793007003
327 => 0.63895489079066
328 => 0.62736744180151
329 => 0.64031346131631
330 => 0.60439523400429
331 => 0.60576735865792
401 => 0.58876309423328
402 => 0.59828434608572
403 => 0.59155503216069
404 => 0.59751512302688
405 => 0.60108757691771
406 => 0.61808905110988
407 => 0.64378163277166
408 => 0.61554959781477
409 => 0.60324849589386
410 => 0.61088003034157
411 => 0.63120381224766
412 => 0.66199538219065
413 => 0.6437661530463
414 => 0.65185597538818
415 => 0.65362324167873
416 => 0.64018168299044
417 => 0.66249099163233
418 => 0.67444673137401
419 => 0.68671084645724
420 => 0.69735943395129
421 => 0.68181228919933
422 => 0.69844996267959
423 => 0.68504293479923
424 => 0.67301544479747
425 => 0.67303368553507
426 => 0.66548866536338
427 => 0.65086923804701
428 => 0.64817319134761
429 => 0.66219836675103
430 => 0.67344522923552
501 => 0.67437157469858
502 => 0.68059841565465
503 => 0.68428339599089
504 => 0.7204012127739
505 => 0.73492809746627
506 => 0.75269129708826
507 => 0.75961106442009
508 => 0.78043708321504
509 => 0.76361838163157
510 => 0.7599795497494
511 => 0.7094624402917
512 => 0.71773461413537
513 => 0.73097916260516
514 => 0.70968083801769
515 => 0.72318972276989
516 => 0.72585666277727
517 => 0.70895712909811
518 => 0.7179839002219
519 => 0.69401147236824
520 => 0.64430416618979
521 => 0.66254633007369
522 => 0.67597870293821
523 => 0.65680905066091
524 => 0.69116991039998
525 => 0.67109700549253
526 => 0.66473485830623
527 => 0.63991385386323
528 => 0.65162841251225
529 => 0.66747252082137
530 => 0.65768270396163
531 => 0.677998043894
601 => 0.70676998314149
602 => 0.72727458044785
603 => 0.72884866882244
604 => 0.71566558645577
605 => 0.73679156008166
606 => 0.73694543973578
607 => 0.71311525518364
608 => 0.69851939983247
609 => 0.69520319078675
610 => 0.70348773116405
611 => 0.71354669259262
612 => 0.72940687117491
613 => 0.73899084492388
614 => 0.76398076551427
615 => 0.77074232150885
616 => 0.77817122157122
617 => 0.78809852304247
618 => 0.80001879376656
619 => 0.77393792004364
620 => 0.77497416177748
621 => 0.75068801328098
622 => 0.72473478062646
623 => 0.74443004909512
624 => 0.77017899266612
625 => 0.76427215656087
626 => 0.76360751683332
627 => 0.76472525649938
628 => 0.76027169497526
629 => 0.74012840125835
630 => 0.73001256525742
701 => 0.74306457452363
702 => 0.75000113657052
703 => 0.76075913937346
704 => 0.75943298845411
705 => 0.78714444834935
706 => 0.79791228371359
707 => 0.79515741064576
708 => 0.79566437358997
709 => 0.81515902517807
710 => 0.83684108712492
711 => 0.85714919933822
712 => 0.87780748333529
713 => 0.85290311567027
714 => 0.84025821365783
715 => 0.8533045248251
716 => 0.84638196847962
717 => 0.88616103060433
718 => 0.88891524655844
719 => 0.92869143220419
720 => 0.96644376884209
721 => 0.94273220260319
722 => 0.96509114157407
723 => 0.98927415702212
724 => 1.0359271173743
725 => 1.0202160415986
726 => 1.0081816037784
727 => 0.99680911818826
728 => 1.0204734553701
729 => 1.0509172471074
730 => 1.0574745482606
731 => 1.0680998812107
801 => 1.0569286428176
802 => 1.0703831689905
803 => 1.1178835585993
804 => 1.1050485340295
805 => 1.0868207358072
806 => 1.1243177314174
807 => 1.1378877483628
808 => 1.2331292339591
809 => 1.3533755437538
810 => 1.303592781919
811 => 1.2726910151684
812 => 1.2799536633545
813 => 1.3238635450971
814 => 1.3379660054828
815 => 1.2996306567447
816 => 1.3131713500024
817 => 1.3877819011439
818 => 1.4278080680382
819 => 1.3734471571643
820 => 1.2234675600483
821 => 1.0851795220119
822 => 1.1218597368907
823 => 1.117701338843
824 => 1.1978610681886
825 => 1.1047424229383
826 => 1.1063103021082
827 => 1.1881276497661
828 => 1.1663001841154
829 => 1.1309424852119
830 => 1.0854376723431
831 => 1.0013178170693
901 => 0.92681051539753
902 => 1.0729364919826
903 => 1.0666352741594
904 => 1.0575101769632
905 => 1.0778170933346
906 => 1.1764217150153
907 => 1.1741485593335
908 => 1.1596879026604
909 => 1.1706561832966
910 => 1.1290196925855
911 => 1.139750364287
912 => 1.0851576164801
913 => 1.1098358184834
914 => 1.13086662347
915 => 1.1350888689375
916 => 1.1446018035688
917 => 1.0633148186961
918 => 1.0998102884435
919 => 1.121247957757
920 => 1.0243917878895
921 => 1.119333422695
922 => 1.0618997931367
923 => 1.0424059566404
924 => 1.068651839365
925 => 1.0584237933423
926 => 1.049630319983
927 => 1.0447234107574
928 => 1.0639954903779
929 => 1.0630964248285
930 => 1.0315635620199
1001 => 0.99043022792987
1002 => 1.0042359250061
1003 => 0.99922018582923
1004 => 0.98104250000889
1005 => 0.99329206546964
1006 => 0.93935117854368
1007 => 0.8465486861909
1008 => 0.90785685525636
1009 => 0.9054965574378
1010 => 0.90430638824669
1011 => 0.95037778286606
1012 => 0.94594908132132
1013 => 0.93791094465166
1014 => 0.98089487332536
1015 => 0.96520516114404
1016 => 1.0135571571258
1017 => 1.0454049088904
1018 => 1.037327288876
1019 => 1.0672802533442
1020 => 1.0045539803832
1021 => 1.0253891321196
1022 => 1.0296832280162
1023 => 0.98036445831775
1024 => 0.94667367166472
1025 => 0.94442688029805
1026 => 0.88601169911807
1027 => 0.91721661739355
1028 => 0.94467565412871
1029 => 0.9315249064399
1030 => 0.92736177258903
1031 => 0.94863032055954
1101 => 0.95028306888964
1102 => 0.91260023181288
1103 => 0.92043568690139
1104 => 0.95311083715651
1105 => 0.91961235695076
1106 => 0.85453028185666
1107 => 0.83838902740323
1108 => 0.8362354865168
1109 => 0.79245912426008
1110 => 0.83946766320822
1111 => 0.81894717620684
1112 => 0.88377114877102
1113 => 0.8467440433003
1114 => 0.8451478787886
1115 => 0.84273504202273
1116 => 0.80505491864962
1117 => 0.81330447097157
1118 => 0.84072723933201
1119 => 0.85051199202262
1120 => 0.84949136215287
1121 => 0.84059285280661
1122 => 0.84466654481758
1123 => 0.83154376348184
1124 => 0.82690983626511
1125 => 0.81228388730703
1126 => 0.79078778286017
1127 => 0.79377694802677
1128 => 0.75118754035585
1129 => 0.72798257066578
1130 => 0.72155974089216
1201 => 0.71297086449033
1202 => 0.72252987733587
1203 => 0.75106688991499
1204 => 0.71664519827962
1205 => 0.6576316223717
1206 => 0.66117843883801
1207 => 0.66914708237854
1208 => 0.65429756785861
1209 => 0.64024374859079
1210 => 0.65246240422176
1211 => 0.62745757414735
1212 => 0.67216879663104
1213 => 0.67095948336461
1214 => 0.68762506218308
1215 => 0.69804639063037
1216 => 0.67402860250451
1217 => 0.66798819374186
1218 => 0.67142908509434
1219 => 0.61455881571811
1220 => 0.68297754788436
1221 => 0.68356923592128
1222 => 0.67850284372492
1223 => 0.71493370641208
1224 => 0.79181418975301
1225 => 0.76288865940988
1226 => 0.75168781978223
1227 => 0.73039501546231
1228 => 0.75876641297698
1229 => 0.75658793231061
1230 => 0.74673601657298
1231 => 0.74077754719501
]
'min_raw' => 0.55645821733605
'max_raw' => 1.4278080680382
'avg_raw' => 0.9921331426871
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.556458'
'max' => '$1.42'
'avg' => '$0.992133'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.34218606794713
'max_diff' => 0.82992232524983
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.017466587591616
]
1 => [
'year' => 2028
'avg' => 0.029977734893821
]
2 => [
'year' => 2029
'avg' => 0.081893768768885
]
3 => [
'year' => 2030
'avg' => 0.063180920645335
]
4 => [
'year' => 2031
'avg' => 0.062051493999015
]
5 => [
'year' => 2032
'avg' => 0.10879579730413
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.017466587591616
'min' => '$0.017466'
'max_raw' => 0.10879579730413
'max' => '$0.108795'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.10879579730413
]
1 => [
'year' => 2033
'avg' => 0.27983397800613
]
2 => [
'year' => 2034
'avg' => 0.17737222345198
]
3 => [
'year' => 2035
'avg' => 0.20921094431464
]
4 => [
'year' => 2036
'avg' => 0.40607894608862
]
5 => [
'year' => 2037
'avg' => 0.9921331426871
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.10879579730413
'min' => '$0.108795'
'max_raw' => 0.9921331426871
'max' => '$0.992133'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.9921331426871
]
]
]
]
'prediction_2025_max_price' => '$0.029864'
'last_price' => 0.02895758
'sma_50day_nextmonth' => '$0.026705'
'sma_200day_nextmonth' => '$0.042786'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 de fev. de 2026'
'sma_50day_date_nextmonth' => '4 de fev. de 2026'
'daily_sma3' => '$0.028257'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.027977'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.027352'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.026889'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.028867'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.034839'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.045518'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.02841'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.028061'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.027616'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.027661'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.029774'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.035411'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.048629'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.043995'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.055578'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.183648'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.02844'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.028945'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.031987'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.040175'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.074578'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.165214'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.146755'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '55.14'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 116.01
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.027547'
'vwma_10_action' => 'BUY'
'hma_9' => '0.028566'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 203.93
'cci_20_action' => 'SELL'
'adx_14' => 10.82
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '-0.000343'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 71.12
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '-0.001312'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 14
'buy_signals' => 19
'sell_pct' => 42.42
'buy_pct' => 57.58
'overall_action' => 'bullish'
'overall_action_label' => 'Altista'
'overall_action_dir' => 1
'last_updated' => 1767702776
'last_updated_date' => '6 de janeiro de 2026'
]
Previsão de preço de Maverick Protocol para 2026
A previsão de preço para Maverick Protocol em 2026 sugere que o preço médio poderia variar entre $0.0100048 na extremidade inferior e $0.029864 na extremidade superior. No mercado de criptomoedas, comparado ao preço médio de hoje, Maverick Protocol poderia potencialmente ganhar 3.13% até 2026 se MAV atingir a meta de preço prevista.
Previsão de preço de Maverick Protocol 2027-2032
A previsão de preço de MAV para 2027-2032 está atualmente dentro de uma faixa de preço entre $0.017466 na extremidade inferior e $0.108795 na extremidade superior. Considerando a volatilidade de preços no mercado, se Maverick Protocol atingir a meta de preço superior, poderia ganhar 275.71% até 2032 em comparação com o preço de hoje.
| Previsão de Preço de Maverick Protocol | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.009631 | $0.017466 | $0.0253017 |
| 2028 | $0.017381 | $0.029977 | $0.042573 |
| 2029 | $0.038182 | $0.081893 | $0.1256045 |
| 2030 | $0.032472 | $0.06318 | $0.093888 |
| 2031 | $0.038393 | $0.062051 | $0.0857098 |
| 2032 | $0.0586041 | $0.108795 | $0.158987 |
Previsão de preço de Maverick Protocol 2032-2037
A previsão de preço de Maverick Protocol para 2032-2037 é atualmente estimada entre $0.108795 na extremidade inferior e $0.992133 na extremidade superior. Comparado ao preço atual, Maverick Protocol poderia potencialmente ganhar 3326.16% até 2037 se atingir a meta de preço superior. Por favor, note que esta informação é apenas para fins gerais e não deve ser considerada como aconselhamento de investimento a longo prazo.
| Previsão de Preço de Maverick Protocol | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.0586041 | $0.108795 | $0.158987 |
| 2033 | $0.136183 | $0.279833 | $0.423484 |
| 2034 | $0.109484 | $0.177372 | $0.245259 |
| 2035 | $0.129445 | $0.20921 | $0.288976 |
| 2036 | $0.214272 | $0.406078 | $0.597885 |
| 2037 | $0.556458 | $0.992133 | $1.42 |
Maverick Protocol Histograma de preços potenciais
Previsão de preço de Maverick Protocol baseada na análise técnica
Em 6 de janeiro de 2026, o sentimento geral de previsão de preço para Maverick Protocol é Altista, com 19 indicadores técnicos mostrando sinais de alta e 14 indicando sinais de baixa. A previsão de preço de MAV foi atualizada pela última vez em 6 de janeiro de 2026.
Médias Móveis Simples de 50 e 200 dias e Índice de Força Relativa de 14 dias - RSI (14) de Maverick Protocol
De acordo com nossos indicadores técnicos, o SMA de 200 dias de Maverick Protocol está projetado para aumentar no próximo mês, alcançando $0.042786 até 4 de fev. de 2026. O SMA de 50 dias de curto prazo para Maverick Protocol é esperado para alcançar $0.026705 até 4 de fev. de 2026.
O oscilador de momentum Índice de Força Relativa (RSI) é uma ferramenta comumente usada para identificar se uma criptomoeda está sobrevendida (abaixo de 30) ou sobrecomprada (acima de 70). No momento, o RSI está em 55.14, sugerindo que o mercado de MAV está em um estado NEUTRAL.
Médias Móveis e Osciladores Populares de MAV para Sábado, 19 de Outubro de 2024
Médias móveis (MA) são indicadores amplamente utilizados nos mercados financeiros, projetados para suavizar movimentos de preços ao longo de um período definido. Como indicadores atrasados, eles se baseiam em dados históricos de preços. A tabela abaixo destaca dois tipos: a média móvel simples (SMA) e a média móvel exponencial (EMA).
Média Móvel Simples Diária (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 3 | $0.028257 | BUY |
| SMA 5 | $0.027977 | BUY |
| SMA 10 | $0.027352 | BUY |
| SMA 21 | $0.026889 | BUY |
| SMA 50 | $0.028867 | BUY |
| SMA 100 | $0.034839 | SELL |
| SMA 200 | $0.045518 | SELL |
Média Móvel Exponencial Diária (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 3 | $0.02841 | BUY |
| EMA 5 | $0.028061 | BUY |
| EMA 10 | $0.027616 | BUY |
| EMA 21 | $0.027661 | BUY |
| EMA 50 | $0.029774 | SELL |
| EMA 100 | $0.035411 | SELL |
| EMA 200 | $0.048629 | SELL |
Média Móvel Simples Semanal (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 21 | $0.043995 | SELL |
| SMA 50 | $0.055578 | SELL |
| SMA 100 | $0.183648 | SELL |
| SMA 200 | — | — |
Média Móvel Exponencial Semanal (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 21 | $0.040175 | SELL |
| EMA 50 | $0.074578 | SELL |
| EMA 100 | $0.165214 | SELL |
| EMA 200 | $0.146755 | SELL |
Osciladores de Maverick Protocol
Um oscilador é uma ferramenta de análise técnica que define limites altos e baixos entre dois extremos, criando um indicador de tendência que flutua dentro desses limites. Os traders usam esse indicador para identificar condições de sobrecompra ou sobrevenda de curto prazo.
| Período | Valor | Ação |
|---|---|---|
| RSI (14) | 55.14 | NEUTRAL |
| Stoch RSI (14) | 116.01 | SELL |
| Estocástico Rápido (14) | 100 | SELL |
| Índice de Canal de Commodities (20) | 203.93 | SELL |
| Índice Direcional Médio (14) | 10.82 | NEUTRAL |
| Oscilador Impressionante (5, 34) | -0.000343 | NEUTRAL |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Williams Percent Range (14) | -0 | SELL |
| Oscilador Ultimate (7, 14, 28) | 71.12 | SELL |
| VWMA (10) | 0.027547 | BUY |
| Média Móvel de Hull (9) | 0.028566 | BUY |
| Nuvem Ichimoku B/L (9, 26, 52, 26) | -0.001312 | SELL |
Previsão do preço de Maverick Protocol com base nos fluxos financeiros mundiais
Definições dos fluxos financeiros mundiais, usadas na previsão do preço do Maverick Protocol
M0: o total de todas as moedas físicas, mais as contas no Banco Central que podem ser trocadas por moedas físicas.
M1: o valor de M0, mais o valor em contas de demanda, incluindo contas 'correntes'.
M2: o valor de M1, mais a maioria das contas de poupança, do mercado de moedas e de certificados de depósito (CD) de menos de US$ 100.000.
Previsões de preço de Maverick Protocol por empresas de Internet ou nichos tecnológicos
| Comparação | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.04069 | $0.057176 | $0.080342 | $0.112894 | $0.158636 | $0.22291 |
| Amazon.com stock | $0.060421 | $0.126073 | $0.263059 | $0.548889 | $1.14 | $2.38 |
| Apple stock | $0.041074 | $0.05826 | $0.082638 | $0.117215 | $0.166261 | $0.235829 |
| Netflix stock | $0.04569 | $0.072092 | $0.11375 | $0.17948 | $0.283192 | $0.446833 |
| Google stock | $0.037499 | $0.048562 | $0.062887 | $0.081439 | $0.105463 | $0.136575 |
| Tesla stock | $0.065644 | $0.148811 | $0.337344 | $0.764734 | $1.73 | $3.92 |
| Kodak stock | $0.021715 | $0.016284 | $0.012211 | $0.009157 | $0.006866 | $0.005149 |
| Nokia stock | $0.019183 | $0.012708 | $0.008418 | $0.005576 | $0.003694 | $0.002447 |
Este cálculo mostra quanto a criptomoeda pode custar, se assumirmos que sua capitalização se comportará da mesma forma que a de algumas empresas de Internet ou nichos tecnológicos. Se você extrapolar os dados, poderá obter uma imagem em potencial do preço futuro para 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Visão geral da previsão para Maverick Protocol
Você pode fazer perguntas como: 'Devo investir em Maverick Protocol agora?', 'Devo comprar MAV hoje?', 'Maverick Protocol será um bom ou mau investimento no curto ou no longo prazo?'.
Atualizamos a previsão para Maverick Protocol regularmente com novos valores. Veja nossas previsões semelhantes. Fazemos previsões de preços futuros para uma enorme quantidade de moedas digitais, como Maverick Protocol, com métodos de análise técnica.
Se você estiver tentando encontrar criptomoedas com bom retorno, você deve explorar o máximo de fontes de informações disponíveis sobre Maverick Protocol para poder tomar sozinho uma decisão de tão grande responsabilidade sobre o seu investimento.
O preço de Maverick Protocol é de $0.02895 USD hoje, mas o preço pode tanto subir quanto descer e seu investimento pode ser perdido, porque criptomoedas são ativos de alto risco
Previsão de curto prazo para Maverick Protocol
com base no histórico de preços de 4 horas
Previsão de longo prazo para Maverick Protocol
com base no histórico de preços de 1 mês
Previsão do preço de Maverick Protocol com base no padrão de crescimento do Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se Maverick Protocol tiver 1% da média anterior do crescimento anual do Bitcoin | $0.02971 | $0.030482 | $0.031274 | $0.032087 |
| Se Maverick Protocol tiver 2% da média anterior do crescimento anual do Bitcoin | $0.030462 | $0.032046 | $0.033712 | $0.035465 |
| Se Maverick Protocol tiver 5% da média anterior do crescimento anual do Bitcoin | $0.032721 | $0.036973 | $0.041779 | $0.0472088 |
| Se Maverick Protocol tiver 10% da média anterior do crescimento anual do Bitcoin | $0.036484 | $0.045968 | $0.057916 | $0.072971 |
| Se Maverick Protocol tiver 20% da média anterior do crescimento anual do Bitcoin | $0.044011 | $0.066891 | $0.101666 | $0.154518 |
| Se Maverick Protocol tiver 50% da média anterior do crescimento anual do Bitcoin | $0.066592 | $0.15314 | $0.35217 | $0.809873 |
| Se Maverick Protocol tiver 100% da média anterior do crescimento anual do Bitcoin | $0.104227 | $0.375148 | $1.35 | $4.86 |
Perguntas Frequentes sobre Maverick Protocol
MAV é um bom investimento?
A decisão de adquirir Maverick Protocol depende inteiramente da sua tolerância individual ao risco. Como você pode perceber, o valor de Maverick Protocol experimentou uma escalada de 4.9468% nas últimas 24 horas, e Maverick Protocol registrou um declínio de durante os últimos 30 dias. Consequentemente, a decisão de investir ou não em Maverick Protocol dependerá de quão alinhado esse investimento está com suas aspirações de negociação.
Maverick Protocol pode subir?
Parece que o valor médio de Maverick Protocol pode potencialmente subir para $0.029864 até o final deste ano. Observando as perspectivas de Maverick Protocol em um horizonte de cinco anos mais longo, a moeda digital poderia potencialmente crescer até $0.093888. No entanto, dada a imprevisibilidade do mercado, é vital conduzir uma pesquisa aprofundada antes de investir quaisquer fundos em um projeto, rede ou ativo específico.
Qual será o preço de Maverick Protocol na próxima semana?
Com base na nossa nova previsão experimental de Maverick Protocol, o preço de Maverick Protocol aumentará 0.86% na próxima semana e atingirá $0.029205 até 13 de janeiro de 2026.
Qual será o preço de Maverick Protocol no próximo mês?
Com base na nossa nova previsão experimental de Maverick Protocol, o preço de Maverick Protocol diminuirá -11.62% no próximo mês e atingirá $0.025593 até 5 de fevereiro de 2026.
Até onde o preço de Maverick Protocol pode subir este ano em 2026?
De acordo com nossa previsão mais recente sobre o valor de Maverick Protocol em 2026, espera-se que MAV fluctue dentro do intervalo de $0.0100048 e $0.029864. No entanto, é crucial lembrar que o mercado de criptomoedas é excepcionalmente instável, e essa previsão de preço de Maverick Protocol não considera flutuações repentinas e extremas de preço.
Onde estará Maverick Protocol em 5 anos?
O futuro de Maverick Protocol parece seguir uma tendência de alta, com um preço máximo de $0.093888 projetada após um período de cinco anos. Com base na previsão de Maverick Protocol para 2030, o valor de Maverick Protocol pode potencialmente atingir seu pico mais alto de aproximadamente $0.093888, enquanto seu pico mais baixo está previsto para cerca de $0.032472.
Quanto será Maverick Protocol em 2026?
Com base na nossa nova simulação experimental de previsão de preços de Maverick Protocol, espera-se que o valor de MAV em 2026 aumente 3.13% para $0.029864 se o melhor cenário ocorrer. O preço ficará entre $0.029864 e $0.0100048 durante 2026.
Quanto será Maverick Protocol em 2027?
De acordo com nossa última simulação experimental para previsão de preços de Maverick Protocol, o valor de MAV pode diminuir -12.62% para $0.0253017 em 2027, assumindo as condições mais favoráveis. O preço está projetado para flutuar entre $0.0253017 e $0.009631 ao longo do ano.
Quanto será Maverick Protocol em 2028?
Nosso novo modelo experimental de previsão de preços de Maverick Protocol sugere que o valor de MAV em 2028 pode aumentar 47.02%, alcançando $0.042573 no melhor cenário. O preço é esperado para variar entre $0.042573 e $0.017381 durante o ano.
Quanto será Maverick Protocol em 2029?
Com base no nosso modelo de previsão experimental, o valor de Maverick Protocol pode experimentar um 333.75% crescimento em 2029, potencialmente alcançando $0.1256045 sob condições ótimas. A faixa de preço prevista para 2029 está entre $0.1256045 e $0.038182.
Quanto será Maverick Protocol em 2030?
Usando nossa nova simulação experimental para previsões de preços de Maverick Protocol, espera-se que o valor de MAV em 2030 aumente 224.23%, alcançando $0.093888 no melhor cenário. O preço está previsto para variar entre $0.093888 e $0.032472 ao longo de 2030.
Quanto será Maverick Protocol em 2031?
Nossa simulação experimental indica que o preço de Maverick Protocol poderia aumentar 195.98% em 2031, potencialmente atingindo $0.0857098 sob condições ideais. O preço provavelmente oscilará entre $0.0857098 e $0.038393 durante o ano.
Quanto será Maverick Protocol em 2032?
Com base nos achados da nossa mais recente previsão experimental de preços de Maverick Protocol, MAV poderia ver um 449.04% aumento em valor, atingindo $0.158987 se o cenário mais positivo se desenrolar em 2032. O preço é esperado para permanecer dentro de uma faixa de $0.158987 e $0.0586041 ao longo do ano.
Quanto será Maverick Protocol em 2033?
De acordo com nossa previsão experimental de preços de Maverick Protocol, espera-se que o valor de MAV seja aumentar 1362.43% em 2033, com o preço potencial mais alto sendo $0.423484. Ao longo do ano, o preço de MAV poderia variar entre $0.423484 e $0.136183.
Quanto será Maverick Protocol em 2034?
Os resultados da nossa nova simulação de previsão de preços de Maverick Protocol sugerem que MAV pode aumentar 746.96% em 2034, atingindo potencialmente $0.245259 nas melhores circunstâncias. A faixa de preço prevista para o ano é entre $0.245259 e $0.109484.
Quanto será Maverick Protocol em 2035?
Com base em nossa previsão experimental para o preço de Maverick Protocol, MAV poderia aumentar 897.93%, com o valor potencialmente atingindo $0.288976 em 2035. A faixa de preço esperada para o ano está entre $0.288976 e $0.129445.
Quanto será Maverick Protocol em 2036?
Nossa recente simulação de previsão de preços de Maverick Protocol sugere que o valor de MAV pode aumentar 1964.7% em 2036, possivelmente atingindo $0.597885 se as condições forem ideais. A faixa de preço esperada para 2036 está entre $0.597885 e $0.214272.
Quanto será Maverick Protocol em 2037?
De acordo com a simulação experimental, o valor de Maverick Protocol poderia aumentar 4830.69% em 2037, com um pico de $1.42 sob condições favoráveis. O preço é esperado para cair entre $1.42 e $0.556458 ao longo do ano.
Previsões relacionadas
Previsão de Preço do Myria
Previsão de Preço do MimbleWimbleCoin
Previsão de Preço do CYBER
Previsão de Preço do Velodrome Finance
Previsão de Preço do Ontology Gas
Previsão de Preço do DODO
Previsão de Preço do Cudos
Previsão de Preço do Acala
Previsão de Preço do WINk
Previsão de Preço do Radiant Capital
Previsão de Preço do APEX
Previsão de Preço do Metars Genesis
Previsão de Preço do Liquity
Previsão de Preço do Steem
Previsão de Preço do Alpha Finance
Previsão de Preço do Zignaly
Previsão de Preço do Heroes of Mavia
Previsão de Preço do Sovryn
Previsão de Preço do Verge
Previsão de Preço do Quasar
Previsão de Preço do Auction
Previsão de Preço do Pundi X
Previsão de Preço do XYO Network
Previsão de Preço do f(x) Coin
Previsão de Preço do Multibit
Como ler e prever os movimentos de preço de Maverick Protocol?
Traders de Maverick Protocol utilizam indicadores e padrões de gráfico para prever a direção do mercado. Eles também identificam níveis-chave de suporte e resistência para avaliar quando uma tendência de baixa pode desacelerar ou uma tendência de alta pode estagnar.
Indicadores de Previsão de Preço de Maverick Protocol
Médias móveis são ferramentas populares para a previsão de preço de Maverick Protocol. Uma média móvel simples (SMA) calcula o preço médio de fechamento de MAV em um período específico, como uma SMA de 12 dias. Uma média móvel exponencial (EMA) dá mais peso aos preços recentes, reagindo mais rapidamente às mudanças de preço.
Médias móveis comumente usadas no mercado de criptomoedas incluem as de 50 dias, 100 dias e 200 dias, que ajudam a identificar níveis-chave de resistência e suporte. Um movimento de preço de MAV acima dessas médias é visto como altista, enquanto uma queda abaixo indica fraqueza.
Traders também usam RSI e níveis de retração de Fibonacci para avaliar a direção futura de MAV.
Como ler gráficos de Maverick Protocol e prever movimentos de preço?
A maioria dos traders prefere gráficos de velas em vez de gráficos de linha simples porque eles fornecem informações mais detalhadas. Velas podem representar a ação de preço de Maverick Protocol em diferentes períodos de tempo, como 5 minutos para tendências de curto prazo e semanal para tendências de longo prazo. Opções populares incluem gráficos de 1 hora, 4 horas e 1 dia.
Por exemplo, um gráfico de velas de 1 hora mostra os preços de abertura, fechamento, máximo e mínimo de MAV dentro de cada hora. A cor da vela é crucial: verde indica que o preço fechou mais alto do que abriu, enquanto vermelho significa o oposto. Alguns gráficos usam velas vazias e preenchidas para transmitir a mesma informação.
O que afeta o preço de Maverick Protocol?
A ação de preço de Maverick Protocol é impulsionada pela oferta e demanda, influenciada por fatores como reduções pela metade das recompensas de bloco, hard forks e atualizações de protocolo. Eventos do mundo real, como regulamentações, adoção por empresas e governos e hacks de exchanges de criptomoedas, também impactam o preço de MAV. A capitalização de mercado de Maverick Protocol pode mudar rapidamente.
Traders frequentemente monitoram a atividade de "baleias" de MAV, grandes detentores de Maverick Protocol, pois suas ações podem influenciar significativamente os movimentos de preço no relativamente pequeno mercado de Maverick Protocol.
Padrões de previsão de preço altistas e baixistas
Traders frequentemente identificam padrões de velas para ganhar vantagem em previsões de preço de criptomoedas. Certas formações indicam tendências altistas, enquanto outras sugerem movimentos baixistas.
Padrões de velas altistas comumente seguidos:
- Martelo
- Engolfo de Alta
- Linha de Perfuração
- Estrela da Manhã
- Três Soldados Brancos
Padrões de velas baixistas comuns:
- Harami de Baixa
- Nuvem Negra
- Estrela da Noite
- Estrela Cadente
- Homem Enforcado


