Previsão de Preço Maverick Protocol - Projeção MAV
Previsão de Preço Maverick Protocol até $0.030177 até 2026
| Ano | Preço Mínimo | Preço Máximo |
|---|---|---|
| 2026 | $0.0101095 | $0.030177 |
| 2027 | $0.009732 | $0.025566 |
| 2028 | $0.017563 | $0.043019 |
| 2029 | $0.038582 | $0.126919 |
| 2030 | $0.032812 | $0.094871 |
| 2031 | $0.038794 | $0.0866069 |
| 2032 | $0.059217 | $0.160651 |
| 2033 | $0.1376086 | $0.427917 |
| 2034 | $0.11063 | $0.247826 |
| 2035 | $0.130799 | $0.2920015 |
Calculadora de lucro do investimento
Se você abrir um short de $10,000.00 em Maverick Protocol hoje e fechar em Apr 06, 2026, nossa previsão mostra que pode lucrar cerca de $3,954.68, com um retorno de 39.55% nos próximos 90 dias.
Previsão de preço de longo prazo de Maverick Protocol para os anos 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'Maverick Protocol'
'name_with_ticker' => 'Maverick Protocol <small>MAV</small>'
'name_lang' => 'Maverick Protocol'
'name_lang_with_ticker' => 'Maverick Protocol <small>MAV</small>'
'name_with_lang' => 'Maverick Protocol'
'name_with_lang_with_ticker' => 'Maverick Protocol <small>MAV</small>'
'image' => '/uploads/coins/maverick-protocol.png?1717140033'
'price_for_sd' => 0.02926
'ticker' => 'MAV'
'marketcap' => '$24.67M'
'low24h' => '$0.02754'
'high24h' => '$0.02932'
'volume24h' => '$6.67M'
'current_supply' => '842.96M'
'max_supply' => '2B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.02926'
'change_24h_pct' => '6.1383%'
'ath_price' => '$0.8047'
'ath_days' => 675
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '2 de mar. de 2024'
'ath_pct' => '-96.35%'
'fdv' => '$58.52M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$1.44'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.029511'
'next_week_prediction_price_date' => '13 de janeiro de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.025861'
'next_month_prediction_price_date' => '5 de fevereiro de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.0101095'
'current_year_max_price_prediction' => '$0.030177'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.032812'
'grand_prediction_max_price' => '$0.094871'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.029815144305388
107 => 0.029926463231327
108 => 0.030177270455552
109 => 0.028034150184929
110 => 0.028996348267733
111 => 0.029561549495613
112 => 0.027007949785856
113 => 0.0295110730398
114 => 0.027996843229029
115 => 0.027482890888285
116 => 0.028174860007025
117 => 0.02790519896849
118 => 0.027673360242585
119 => 0.027543990250035
120 => 0.028052096000993
121 => 0.028028392260393
122 => 0.02719703263275
123 => 0.026112557889043
124 => 0.026476543209701
125 => 0.026344303930325
126 => 0.025865051722661
127 => 0.026188009845494
128 => 0.024765865717902
129 => 0.022319140662999
130 => 0.023935522179483
131 => 0.023873293249383
201 => 0.02384191460097
202 => 0.025056580637104
203 => 0.024939818524843
204 => 0.024727894147751
205 => 0.025861159565283
206 => 0.025447502443313
207 => 0.026722296223348
208 => 0.027561957855372
209 => 0.027348992505282
210 => 0.028138698328637
211 => 0.026484928696342
212 => 0.027034244630469
213 => 0.027147457883174
214 => 0.025847175245943
215 => 0.02495892225043
216 => 0.024899685902455
217 => 0.023359577617039
218 => 0.024182291031789
219 => 0.024906244790574
220 => 0.024559527121197
221 => 0.024449766664968
222 => 0.025010509031703
223 => 0.025054083516032
224 => 0.024060580655516
225 => 0.024267161360361
226 => 0.02512863724075
227 => 0.024245454378494
228 => 0.022529574344233
301 => 0.022104012371839
302 => 0.022047234560058
303 => 0.020893076739179
304 => 0.022132450457738
305 => 0.021591430616436
306 => 0.023300505812695
307 => 0.022324291226546
308 => 0.022282208566873
309 => 0.022218594454592
310 => 0.021225163140503
311 => 0.021442661462435
312 => 0.022165659010466
313 => 0.022423632680755
314 => 0.022396723913428
315 => 0.022162115928051
316 => 0.022269518262369
317 => 0.021923537922077
318 => 0.021801365062962
319 => 0.021415753913302
320 => 0.0208490120511
321 => 0.020927820983069
322 => 0.019804957057973
323 => 0.019193161196682
324 => 0.019023824165616
325 => 0.018797379610594
326 => 0.019049401680652
327 => 0.019801776125554
328 => 0.018894252919859
329 => 0.017338368039048
330 => 0.017431879371483
331 => 0.017641971571702
401 => 0.017250466146493
402 => 0.016879939118092
403 => 0.017202082307479
404 => 0.016542833372611
405 => 0.017721638655882
406 => 0.017689755276533
407 => 0.018129140989307
408 => 0.018403897892607
409 => 0.017770672184104
410 => 0.01761141763084
411 => 0.017702136262095
412 => 0.016202759365697
413 => 0.018006609908628
414 => 0.01802220968303
415 => 0.017888634943704
416 => 0.018849129670177
417 => 0.020876073128853
418 => 0.020113455466088
419 => 0.019818146856824
420 => 0.019256764974744
421 => 0.020004773001057
422 => 0.01994733765538
423 => 0.019687593240516
424 => 0.019530499007955
425 => 0.019819949948221
426 => 0.019494632833244
427 => 0.019436196940278
428 => 0.01908213900778
429 => 0.018955756434488
430 => 0.018862187808657
501 => 0.018759177945482
502 => 0.018986392035189
503 => 0.018471495015409
504 => 0.017850579685532
505 => 0.01779895729425
506 => 0.017941491255267
507 => 0.017878430587922
508 => 0.017798655384036
509 => 0.017646342794332
510 => 0.01760115490261
511 => 0.017747993628657
512 => 0.01758222126818
513 => 0.017826827416151
514 => 0.017760308078579
515 => 0.017388736466228
516 => 0.016925620663809
517 => 0.01692149796175
518 => 0.01682172042178
519 => 0.016694638722976
520 => 0.016659287501604
521 => 0.017174952306599
522 => 0.018242363020389
523 => 0.018032804756299
524 => 0.018184232078499
525 => 0.018929104630594
526 => 0.019165877215806
527 => 0.018997821643089
528 => 0.018767776809937
529 => 0.018777897615098
530 => 0.019564030449285
531 => 0.019613060589864
601 => 0.019736943937382
602 => 0.019896169048372
603 => 0.019024938367999
604 => 0.018736862728401
605 => 0.018600356508532
606 => 0.018179970185889
607 => 0.01863332079366
608 => 0.01836917280892
609 => 0.018404815396642
610 => 0.01838160311463
611 => 0.018394278590216
612 => 0.017721309155781
613 => 0.017966503847457
614 => 0.017558820116254
615 => 0.017012977364819
616 => 0.017011147508519
617 => 0.017144741748637
618 => 0.017065274667072
619 => 0.016851430793864
620 => 0.016881806306738
621 => 0.01661568485134
622 => 0.016914118269708
623 => 0.016922676272301
624 => 0.016807763150451
625 => 0.017267541007322
626 => 0.017455912370426
627 => 0.017380274091946
628 => 0.017450605387171
629 => 0.01804151284827
630 => 0.01813785654753
701 => 0.018180646054633
702 => 0.018123313783638
703 => 0.017461406090816
704 => 0.017490764511642
705 => 0.017275351899242
706 => 0.017093350941387
707 => 0.017100630025232
708 => 0.017194202176038
709 => 0.017602837246542
710 => 0.018462785662065
711 => 0.01849542007582
712 => 0.018534973937304
713 => 0.018374088504471
714 => 0.018325563918462
715 => 0.018389580372666
716 => 0.018712531783597
717 => 0.019543250492963
718 => 0.019249619019236
719 => 0.01901089206045
720 => 0.019220319963631
721 => 0.019188080179487
722 => 0.018915943956334
723 => 0.018908305998928
724 => 0.018385989579484
725 => 0.018192901091785
726 => 0.018031541899041
727 => 0.017855341872952
728 => 0.017750884591209
729 => 0.017911378450952
730 => 0.017948085295583
731 => 0.017597162666302
801 => 0.017549333208634
802 => 0.017835904202897
803 => 0.017709794992765
804 => 0.017839501442743
805 => 0.01786959445174
806 => 0.01786474878419
807 => 0.017733076285263
808 => 0.017817000409549
809 => 0.017618494836627
810 => 0.017402649840647
811 => 0.01726495418083
812 => 0.017144796454961
813 => 0.017211466944881
814 => 0.016973798821867
815 => 0.016897764006
816 => 0.017788568804593
817 => 0.01844661588708
818 => 0.018437047621885
819 => 0.018378803268271
820 => 0.018292263973236
821 => 0.018706200895145
822 => 0.018561993548482
823 => 0.018666916442106
824 => 0.018693623722134
825 => 0.018774458615058
826 => 0.018803350141285
827 => 0.018716019882573
828 => 0.018422928867841
829 => 0.017692573925386
830 => 0.017352591728118
831 => 0.017240391940168
901 => 0.017244470189363
902 => 0.017131973870479
903 => 0.017165109078122
904 => 0.0171204507975
905 => 0.017035878818
906 => 0.017206244863465
907 => 0.017225877963135
908 => 0.017186112492401
909 => 0.01719547870029
910 => 0.016866237586667
911 => 0.016891269073462
912 => 0.016751890574141
913 => 0.016725758785752
914 => 0.016373422076545
915 => 0.015749206524162
916 => 0.016095082534252
917 => 0.01567731295159
918 => 0.015519097280394
919 => 0.016268065660252
920 => 0.016192890008063
921 => 0.016064221969587
922 => 0.015873895123911
923 => 0.01580330104547
924 => 0.015374393772229
925 => 0.015349051642394
926 => 0.015561629668483
927 => 0.015463532223807
928 => 0.015325766259073
929 => 0.014826791899919
930 => 0.014265779515498
1001 => 0.014282712952986
1002 => 0.014461160554464
1003 => 0.014980021022698
1004 => 0.014777293261382
1005 => 0.014630211944514
1006 => 0.014602668035112
1007 => 0.014947437728349
1008 => 0.015435359075764
1009 => 0.015664280855346
1010 => 0.015437426324238
1011 => 0.015176828053616
1012 => 0.015192689462853
1013 => 0.015298208312468
1014 => 0.015309296851606
1015 => 0.015139674167366
1016 => 0.015187421959409
1017 => 0.015114888697147
1018 => 0.014669752200526
1019 => 0.014661701092846
1020 => 0.014552457417779
1021 => 0.014549149562715
1022 => 0.014363298819315
1023 => 0.014337297015588
1024 => 0.013968279084234
1025 => 0.01421116780414
1026 => 0.014048250803057
1027 => 0.01380269645419
1028 => 0.01376036279189
1029 => 0.013759090190882
1030 => 0.014011219602221
1031 => 0.014208221525172
1101 => 0.014051084814042
1102 => 0.014015307830885
1103 => 0.014397312410782
1104 => 0.014348698845941
1105 => 0.014306599812313
1106 => 0.015391671070671
1107 => 0.014532752500514
1108 => 0.014158214978568
1109 => 0.013694653672413
1110 => 0.013845591571176
1111 => 0.013877396404185
1112 => 0.012762615026088
1113 => 0.012310348359832
1114 => 0.012155147483282
1115 => 0.012065827184609
1116 => 0.012106531566328
1117 => 0.011699438521108
1118 => 0.011973011780194
1119 => 0.011620503613752
1120 => 0.011561404472487
1121 => 0.012191732741467
1122 => 0.012279439237772
1123 => 0.011905256076265
1124 => 0.012145542240703
1125 => 0.012058411137251
1126 => 0.011626546354506
1127 => 0.011610052296387
1128 => 0.011393357729187
1129 => 0.011054272691855
1130 => 0.010899301730928
1201 => 0.010818591508957
1202 => 0.010851894119553
1203 => 0.010835055300559
1204 => 0.010725170616408
1205 => 0.010841353762029
1206 => 0.010544553835158
1207 => 0.010426365712798
1208 => 0.010372982879872
1209 => 0.010109555861608
1210 => 0.010528785394193
1211 => 0.010611378893427
1212 => 0.010694135127369
1213 => 0.01141447164375
1214 => 0.011378485667041
1215 => 0.011703781370605
1216 => 0.011691140977745
1217 => 0.011598361373648
1218 => 0.011206939485465
1219 => 0.01136295327367
1220 => 0.0108827670835
1221 => 0.011242555226663
1222 => 0.011078362943235
1223 => 0.011187041650473
1224 => 0.010991627535695
1225 => 0.011099777775264
1226 => 0.010630964876112
1227 => 0.010193193987259
1228 => 0.010369365772262
1229 => 0.010560884650248
1230 => 0.010976146375825
1231 => 0.010728819917906
]
'min_raw' => 0.010109555861608
'max_raw' => 0.030177270455552
'avg_raw' => 0.02014341315858
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.0101095'
'max' => '$0.030177'
'avg' => '$0.020143'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.019151114138392
'max_diff' => 0.00091660045555221
'year' => 2026
]
1 => [
'items' => [
101 => 0.010817767864623
102 => 0.01051980713283
103 => 0.0099050290348655
104 => 0.0099085086121352
105 => 0.0098139383954323
106 => 0.0097322159207233
107 => 0.010757228336788
108 => 0.010629751839802
109 => 0.010426634725566
110 => 0.010698515054524
111 => 0.010770404528822
112 => 0.01077245112109
113 => 0.010970807990851
114 => 0.0110766710878
115 => 0.011095329917474
116 => 0.011407448737826
117 => 0.011512066849462
118 => 0.011942974045178
119 => 0.011067689343648
120 => 0.011049663431217
121 => 0.01070234096831
122 => 0.010482063571383
123 => 0.010717423550133
124 => 0.010925920361464
125 => 0.01070881954542
126 => 0.010737168328747
127 => 0.010445728220997
128 => 0.010549904345986
129 => 0.010639634858866
130 => 0.01059009094377
131 => 0.010515921304917
201 => 0.010908826000601
202 => 0.010886656777865
203 => 0.011252538663326
204 => 0.011537769757507
205 => 0.012048954869438
206 => 0.011515506556456
207 => 0.011496065579666
208 => 0.011686104246219
209 => 0.011512037755532
210 => 0.011622041769075
211 => 0.0120312315222
212 => 0.012039877056891
213 => 0.011895053211679
214 => 0.011886240667536
215 => 0.011914055671208
216 => 0.012076969016503
217 => 0.012020042087835
218 => 0.012085919370903
219 => 0.012168299922127
220 => 0.012509060810622
221 => 0.012591217107198
222 => 0.012391619899675
223 => 0.012409641292719
224 => 0.01233498645804
225 => 0.012262870823162
226 => 0.012424976238725
227 => 0.012721227071856
228 => 0.012719384110798
301 => 0.012788108545791
302 => 0.012830923299448
303 => 0.012647131034438
304 => 0.012527489028146
305 => 0.012573367386377
306 => 0.012646727880289
307 => 0.012549577566929
308 => 0.011949920828468
309 => 0.012131818376696
310 => 0.012101541730335
311 => 0.012058424104151
312 => 0.012241323495467
313 => 0.012223682402989
314 => 0.011695263193527
315 => 0.011729090876865
316 => 0.011697320366992
317 => 0.011799977384027
318 => 0.011506493939721
319 => 0.011596767470548
320 => 0.011653386182821
321 => 0.011686735039315
322 => 0.011807213976498
323 => 0.011793077163782
324 => 0.011806335212371
325 => 0.011984973670952
326 => 0.012888465693141
327 => 0.012937640770466
328 => 0.012695484704779
329 => 0.012792221276704
330 => 0.01260650821257
331 => 0.012731178636692
401 => 0.012816474974591
402 => 0.012431037225169
403 => 0.012408214103118
404 => 0.012221734535107
405 => 0.012321938092214
406 => 0.012162507027967
407 => 0.012201625834471
408 => 0.012092246241169
409 => 0.012289107731853
410 => 0.012509229467621
411 => 0.012564840910947
412 => 0.012418551145789
413 => 0.012312627714848
414 => 0.012126661063465
415 => 0.012435927749253
416 => 0.012526366752909
417 => 0.012435452711668
418 => 0.012414385941801
419 => 0.012374464450971
420 => 0.012422855474802
421 => 0.012525874202672
422 => 0.012477292473066
423 => 0.012509381561371
424 => 0.012387091046876
425 => 0.012647191877325
426 => 0.013060294592752
427 => 0.013061622785531
428 => 0.013013040794051
429 => 0.012993162089851
430 => 0.013043010161311
501 => 0.013070050695204
502 => 0.013231250217733
503 => 0.01340422372788
504 => 0.014211415625478
505 => 0.013984759370663
506 => 0.014700948042273
507 => 0.015267360296057
508 => 0.015437202564761
509 => 0.01528095566925
510 => 0.014746443479997
511 => 0.014720217761968
512 => 0.015519004637936
513 => 0.015293310758718
514 => 0.015266465189937
515 => 0.014980873694412
516 => 0.015149693639462
517 => 0.01511277024104
518 => 0.015054484850277
519 => 0.015376581545334
520 => 0.01597951780471
521 => 0.015885544534386
522 => 0.015815397847383
523 => 0.015508035484332
524 => 0.015693136278758
525 => 0.015627225431235
526 => 0.015910420260251
527 => 0.015742661917075
528 => 0.015291600905607
529 => 0.0153634338584
530 => 0.015352576452093
531 => 0.015576021104523
601 => 0.015508948566101
602 => 0.01533947946249
603 => 0.015977457034123
604 => 0.015936030319239
605 => 0.015994763929479
606 => 0.016020620281104
607 => 0.016408945986531
608 => 0.016568030603007
609 => 0.016604145596116
610 => 0.016755263677723
611 => 0.01660038564058
612 => 0.017220008215321
613 => 0.017632021071544
614 => 0.018110595206035
615 => 0.018809920645126
616 => 0.019072873479347
617 => 0.019025373403445
618 => 0.019555593970073
619 => 0.020508388542163
620 => 0.019217960427903
621 => 0.020576784365623
622 => 0.020146596395318
623 => 0.019126628456475
624 => 0.019060954545846
625 => 0.019751688676101
626 => 0.021283670496312
627 => 0.020899926425943
628 => 0.021284298164138
629 => 0.020835908114427
630 => 0.02081364176913
701 => 0.021262520860249
702 => 0.022311351323774
703 => 0.021813091285375
704 => 0.021098713341957
705 => 0.021626198898425
706 => 0.021169242092929
707 => 0.020139590515989
708 => 0.020899632984085
709 => 0.020391414230432
710 => 0.020539739481143
711 => 0.021607939709486
712 => 0.021479411031904
713 => 0.02164573904213
714 => 0.021352174457644
715 => 0.021077938844848
716 => 0.02056605770856
717 => 0.020414514939541
718 => 0.02045639590896
719 => 0.020414494185412
720 => 0.02012810139409
721 => 0.020066254898071
722 => 0.01996317469515
723 => 0.019995123560301
724 => 0.019801302621632
725 => 0.020167082778349
726 => 0.02023497479868
727 => 0.020501159093205
728 => 0.020528795229695
729 => 0.021270114701051
730 => 0.020861808393596
731 => 0.021135735516107
801 => 0.021111232895968
802 => 0.019148734254523
803 => 0.019419149252042
804 => 0.019839830127281
805 => 0.019650313963205
806 => 0.019382382447155
807 => 0.019166013382366
808 => 0.018838192124337
809 => 0.019299594249763
810 => 0.019906288980052
811 => 0.020544182009254
812 => 0.021310568687432
813 => 0.021139520102587
814 => 0.020529854943392
815 => 0.020557204077073
816 => 0.020726265660001
817 => 0.020507315549245
818 => 0.02044274288717
819 => 0.020717394367812
820 => 0.020719285741613
821 => 0.020467357178185
822 => 0.020187384682374
823 => 0.020186211587394
824 => 0.020136393185978
825 => 0.020844770697366
826 => 0.021234306703585
827 => 0.02127896637893
828 => 0.021231300751605
829 => 0.021249645359781
830 => 0.021022982940602
831 => 0.021541066016193
901 => 0.02201651027946
902 => 0.021889081060519
903 => 0.021698046546196
904 => 0.021545878354069
905 => 0.021853235070429
906 => 0.021839548959673
907 => 0.022012357688589
908 => 0.022004518086454
909 => 0.021946409010584
910 => 0.021889083135777
911 => 0.022116373749565
912 => 0.02205091770297
913 => 0.021985359985054
914 => 0.021853873945391
915 => 0.021871745081933
916 => 0.021680743552413
917 => 0.021592377505221
918 => 0.020263564175252
919 => 0.019908461833256
920 => 0.020020184258822
921 => 0.02005696618219
922 => 0.019902425187878
923 => 0.020123997275398
924 => 0.020089465500261
925 => 0.020223808436906
926 => 0.020139876802583
927 => 0.020143321386132
928 => 0.020390146426567
929 => 0.020461800785875
930 => 0.020425356800409
1001 => 0.020450880918602
1002 => 0.021039073449307
1003 => 0.020955451280779
1004 => 0.0209110286704
1005 => 0.020923334037065
1006 => 0.02107362983965
1007 => 0.021115704458527
1008 => 0.020937431341813
1009 => 0.02102150597424
1010 => 0.021379485088454
1011 => 0.021504757518566
1012 => 0.021904566981305
1013 => 0.021734720815487
1014 => 0.022046480803615
1015 => 0.023004724720312
1016 => 0.023770236266404
1017 => 0.023066240212515
1018 => 0.024472004679606
1019 => 0.025566593962172
1020 => 0.025524581802374
1021 => 0.025333714842652
1022 => 0.024087554045612
1023 => 0.022940818300965
1024 => 0.023900111444334
1025 => 0.023902556879836
1026 => 0.023820152748066
1027 => 0.023308347762856
1028 => 0.023802343043982
1029 => 0.023841554595471
1030 => 0.02381960655383
1031 => 0.02342720687166
1101 => 0.022828085084569
1102 => 0.022945152047672
1103 => 0.023136910121335
1104 => 0.022773872082966
1105 => 0.022657859432456
1106 => 0.022873549022063
1107 => 0.023568545820488
1108 => 0.023437160701588
1109 => 0.023433729705165
1110 => 0.02399585095978
1111 => 0.023593493454835
1112 => 0.022946628636977
1113 => 0.022783286739369
1114 => 0.022203533043148
1115 => 0.02260397098614
1116 => 0.022618382034822
1117 => 0.022399066265822
1118 => 0.022964424902913
1119 => 0.022959215023543
1120 => 0.023495938906932
1121 => 0.024521953387688
1122 => 0.024218510418623
1123 => 0.0238656392601
1124 => 0.023904006139088
1125 => 0.024324796104052
1126 => 0.024070376885534
1127 => 0.024161867810387
1128 => 0.024324657621579
1129 => 0.024422872756516
1130 => 0.023889874492615
1201 => 0.023765607101046
1202 => 0.023511399629823
1203 => 0.023445081645588
1204 => 0.023652128326686
1205 => 0.023597578841284
1206 => 0.022617170841983
1207 => 0.022514712751117
1208 => 0.022517854994488
1209 => 0.02226021925339
1210 => 0.021867262908552
1211 => 0.022899928720581
1212 => 0.022816991203726
1213 => 0.022725434603973
1214 => 0.022736649765028
1215 => 0.023184894993738
1216 => 0.022924890124159
1217 => 0.023616155683894
1218 => 0.023474052266157
1219 => 0.023328304431961
1220 => 0.023308157641687
1221 => 0.023252057160142
1222 => 0.023059667734856
1223 => 0.02282734594301
1224 => 0.022673946972665
1225 => 0.020915517541981
1226 => 0.021241871816003
1227 => 0.021617312660136
1228 => 0.021746913335047
1229 => 0.021525222412519
1230 => 0.023068421443699
1231 => 0.023350378777332
]
'min_raw' => 0.0097322159207233
'max_raw' => 0.025566593962172
'avg_raw' => 0.017649404941448
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.009732'
'max' => '$0.025566'
'avg' => '$0.017649'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00037733994088487
'max_diff' => -0.0046106764933797
'year' => 2027
]
2 => [
'items' => [
101 => 0.022496311622137
102 => 0.022336550528732
103 => 0.023078895354386
104 => 0.022631170676553
105 => 0.022832781071566
106 => 0.022397009672537
107 => 0.023282463512334
108 => 0.023275717837616
109 => 0.022931256295053
110 => 0.023222392832056
111 => 0.023171800694234
112 => 0.022782904461051
113 => 0.023294792216588
114 => 0.023295046106528
115 => 0.022963509361051
116 => 0.022576347025059
117 => 0.02250713154375
118 => 0.022454986976375
119 => 0.022819956704512
120 => 0.023147187421529
121 => 0.023756082658523
122 => 0.023909173388097
123 => 0.024506696697453
124 => 0.024150900659613
125 => 0.024308620434858
126 => 0.024479847561709
127 => 0.024561940142991
128 => 0.024428174687123
129 => 0.025356374336958
130 => 0.025434742826707
131 => 0.025461019103435
201 => 0.025148035403967
202 => 0.025426038183841
203 => 0.025295969889622
204 => 0.025634371457167
205 => 0.025687437143886
206 => 0.025642492395102
207 => 0.025659336281651
208 => 0.024867281626156
209 => 0.024826209413847
210 => 0.024266186884668
211 => 0.024494400204786
212 => 0.024067766341374
213 => 0.024203056334278
214 => 0.02426269087406
215 => 0.024231541174708
216 => 0.024507303043497
217 => 0.024272849120599
218 => 0.023654086670276
219 => 0.023035155638537
220 => 0.023027385463604
221 => 0.022864431847988
222 => 0.02274664623034
223 => 0.022769335918968
224 => 0.022849297341157
225 => 0.022741998727121
226 => 0.022764896326603
227 => 0.023145149043918
228 => 0.023221406014537
229 => 0.022962255032851
301 => 0.021921726446075
302 => 0.021666378120912
303 => 0.021849917433262
304 => 0.021762197463404
305 => 0.01756379182284
306 => 0.018550144952259
307 => 0.017964087416146
308 => 0.018234169691998
309 => 0.017635956706489
310 => 0.017921455298202
311 => 0.017868734133052
312 => 0.019454760776848
313 => 0.019429997152313
314 => 0.019441850188916
315 => 0.01887607386894
316 => 0.019777370909163
317 => 0.02022138224077
318 => 0.020139207560268
319 => 0.020159889156967
320 => 0.019804510804283
321 => 0.019445291028188
322 => 0.019046861012973
323 => 0.019787094733805
324 => 0.01970479338026
325 => 0.019893563074201
326 => 0.02037365755516
327 => 0.020444353291183
328 => 0.020539369077323
329 => 0.020505312681676
330 => 0.021316674193756
331 => 0.021218412961107
401 => 0.021455194260104
402 => 0.020968117163427
403 => 0.020416943194755
404 => 0.020521703346965
405 => 0.020511614101879
406 => 0.020383166432041
407 => 0.020267209618994
408 => 0.020074174195901
409 => 0.020684966838435
410 => 0.020660169772586
411 => 0.021061605445238
412 => 0.020990647790759
413 => 0.020516775207863
414 => 0.020533699659866
415 => 0.020647524733201
416 => 0.021041474611648
417 => 0.021158425757723
418 => 0.021104249327164
419 => 0.021232480919813
420 => 0.02133382994222
421 => 0.021245208796631
422 => 0.022499897332724
423 => 0.021978863175958
424 => 0.022232811598634
425 => 0.022293376801091
426 => 0.022138240308546
427 => 0.022171883858757
428 => 0.022222844670009
429 => 0.022532268736781
430 => 0.023344287020566
501 => 0.023703924390859
502 => 0.02478591116358
503 => 0.02367406151365
504 => 0.023608088956714
505 => 0.023802987447352
506 => 0.024438228222871
507 => 0.024953031206297
508 => 0.025123821055596
509 => 0.025146393753614
510 => 0.025466806864793
511 => 0.025650461684771
512 => 0.025427900285395
513 => 0.025239302802573
514 => 0.024563770028689
515 => 0.024641964786681
516 => 0.025180649127234
517 => 0.025941572486614
518 => 0.026594523889545
519 => 0.026365883065893
520 => 0.028110251155094
521 => 0.028283198126034
522 => 0.028259302446695
523 => 0.028653301384456
524 => 0.027871293729489
525 => 0.027536970306306
526 => 0.025280079719032
527 => 0.025914173916685
528 => 0.026835867072021
529 => 0.02671387752674
530 => 0.026044519320407
531 => 0.026594016121323
601 => 0.026412335294586
602 => 0.026269036088595
603 => 0.02692551753116
604 => 0.026203689218288
605 => 0.02682866628243
606 => 0.026027126733108
607 => 0.026366927477916
608 => 0.02617404014085
609 => 0.026298861887315
610 => 0.025569156508012
611 => 0.025962887818087
612 => 0.025552775991044
613 => 0.02555258154464
614 => 0.025543528303328
615 => 0.026026023049129
616 => 0.026041757185467
617 => 0.025685192839311
618 => 0.025633806346448
619 => 0.025823809143314
620 => 0.025601365629995
621 => 0.025705445549834
622 => 0.025604518104739
623 => 0.025581797210991
624 => 0.025400753263965
625 => 0.025322754553679
626 => 0.025353339857761
627 => 0.025248936447123
628 => 0.025186029615778
629 => 0.025531014551231
630 => 0.025346703016871
701 => 0.025502766165191
702 => 0.025324912510941
703 => 0.024708394258161
704 => 0.024353828091426
705 => 0.023189282263198
706 => 0.023519546015469
707 => 0.023738511224907
708 => 0.023666143224494
709 => 0.02382161769208
710 => 0.023831162561678
711 => 0.023780616227392
712 => 0.023722090047674
713 => 0.023693602740088
714 => 0.023905923791619
715 => 0.024029183308431
716 => 0.023760487313051
717 => 0.02369753560079
718 => 0.023969202087232
719 => 0.024134918487025
720 => 0.025358475275094
721 => 0.025267830236197
722 => 0.025495331495637
723 => 0.025469718345116
724 => 0.025708175908801
725 => 0.026097953245742
726 => 0.025305426936284
727 => 0.025442982100108
728 => 0.025409256750551
729 => 0.025777461273753
730 => 0.025778610768084
731 => 0.025557853763244
801 => 0.025677529716941
802 => 0.025610729882726
803 => 0.025731446211692
804 => 0.025266619616439
805 => 0.025832728234527
806 => 0.026153675341749
807 => 0.026158131692644
808 => 0.026310258074274
809 => 0.026464827288575
810 => 0.026761509435286
811 => 0.026456552984528
812 => 0.025907966016527
813 => 0.025947572223692
814 => 0.025625935885073
815 => 0.025631342650034
816 => 0.025602480914939
817 => 0.025689097154569
818 => 0.025285627010184
819 => 0.025380320646627
820 => 0.025247749001082
821 => 0.025442693915242
822 => 0.025232965413155
823 => 0.025409240487167
824 => 0.025485314965499
825 => 0.025766031428311
826 => 0.025191503363354
827 => 0.024020001746777
828 => 0.024266265589665
829 => 0.023902022022426
830 => 0.023935734151347
831 => 0.024003838017013
901 => 0.023783091106191
902 => 0.023825202660241
903 => 0.023823698139196
904 => 0.023810732989637
905 => 0.023753308192482
906 => 0.023670030875457
907 => 0.024001782075077
908 => 0.024058153068489
909 => 0.024183458803955
910 => 0.024556283677009
911 => 0.024519029680375
912 => 0.024579792494539
913 => 0.024447147612388
914 => 0.023941887166995
915 => 0.023969325240061
916 => 0.02362717202926
917 => 0.024174709177089
918 => 0.024045045153346
919 => 0.023961449913725
920 => 0.023938640178089
921 => 0.024312389211891
922 => 0.024424220780603
923 => 0.02435453485172
924 => 0.024211606978515
925 => 0.0244860707479
926 => 0.02455950567389
927 => 0.024575945045644
928 => 0.025062242221785
929 => 0.024603123655702
930 => 0.024713638057804
1001 => 0.025575839875278
1002 => 0.024793941802547
1003 => 0.025208130650081
1004 => 0.025187858261329
1005 => 0.02539974326034
1006 => 0.02517047750695
1007 => 0.025173319530736
1008 => 0.025361459055525
1009 => 0.025097251024101
1010 => 0.025031829399954
1011 => 0.024941449894754
1012 => 0.02513879023789
1013 => 0.025257086848664
1014 => 0.026210470652216
1015 => 0.026826400068895
1016 => 0.026799660948518
1017 => 0.027044006455221
1018 => 0.026933926566503
1019 => 0.026578449568225
1020 => 0.027185205458484
1021 => 0.026993202507062
1022 => 0.027009030997093
1023 => 0.027008441859904
1024 => 0.027136107037411
1025 => 0.027045644558805
1026 => 0.026867333727691
1027 => 0.026985704778803
1028 => 0.027337224482179
1029 => 0.028428352427399
1030 => 0.029038962081067
1031 => 0.028391592959544
1101 => 0.028838139510953
1102 => 0.028570370700913
1103 => 0.028521709142696
1104 => 0.028802173376512
1105 => 0.029083128525841
1106 => 0.029065232897431
1107 => 0.028861273886225
1108 => 0.028746062616062
1109 => 0.029618480952338
1110 => 0.030261263921248
1111 => 0.03021743043204
1112 => 0.030410897197989
1113 => 0.030978921606518
1114 => 0.031030854639721
1115 => 0.031024312271204
1116 => 0.030895590829761
1117 => 0.031454884627248
1118 => 0.03192145735295
1119 => 0.030865795535187
1120 => 0.031267777735763
1121 => 0.03144824049666
1122 => 0.031713213370544
1123 => 0.032160267023397
1124 => 0.03264588586552
1125 => 0.032714557694336
1126 => 0.032665831745542
1127 => 0.032345553065026
1128 => 0.032876922996715
1129 => 0.033188187040541
1130 => 0.033373537655488
1201 => 0.033843555975592
1202 => 0.031449354973234
1203 => 0.029754620504255
1204 => 0.029489963244661
1205 => 0.030028154189177
1206 => 0.030170070849254
1207 => 0.030112864421525
1208 => 0.028205286698172
1209 => 0.02947992024273
1210 => 0.030851318762442
1211 => 0.03090399976478
1212 => 0.031590550538339
1213 => 0.031814119612876
1214 => 0.032366882973858
1215 => 0.032332307475127
1216 => 0.03246689655714
1217 => 0.032435956857943
1218 => 0.033459834586103
1219 => 0.034589323767578
1220 => 0.034550213148779
1221 => 0.034387835715433
1222 => 0.034628993893419
1223 => 0.035794747772117
1224 => 0.035687423835792
1225 => 0.035791679898101
1226 => 0.037166169420096
1227 => 0.038953201317544
1228 => 0.03812294558611
1229 => 0.039924361623671
1230 => 0.041058257530354
1231 => 0.043019213253937
]
'min_raw' => 0.01756379182284
'max_raw' => 0.043019213253937
'avg_raw' => 0.030291502538388
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.017563'
'max' => '$0.043019'
'avg' => '$0.030291'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0078315759021166
'max_diff' => 0.017452619291765
'year' => 2028
]
3 => [
'items' => [
101 => 0.042773691939434
102 => 0.043537077612467
103 => 0.042334157544628
104 => 0.039572009918615
105 => 0.039134889483722
106 => 0.04001001566403
107 => 0.042161427984754
108 => 0.039942260033824
109 => 0.040391194820047
110 => 0.040261901571413
111 => 0.040255012083654
112 => 0.040517955809834
113 => 0.040136542220788
114 => 0.038582594644019
115 => 0.039294759660982
116 => 0.039019758546959
117 => 0.039324892785658
118 => 0.040971576424984
119 => 0.040243538336003
120 => 0.039476609350273
121 => 0.040438508493544
122 => 0.041663336647336
123 => 0.041586689102699
124 => 0.041437960829916
125 => 0.042276334316434
126 => 0.043661081695779
127 => 0.04403537334805
128 => 0.044311667793701
129 => 0.044349764129723
130 => 0.044742180067494
131 => 0.042632060668551
201 => 0.045980874346383
202 => 0.046559121959433
203 => 0.046450435374088
204 => 0.047093133259614
205 => 0.046904035238021
206 => 0.046630061873302
207 => 0.047648874727622
208 => 0.046480888004102
209 => 0.044823077895505
210 => 0.043913570482163
211 => 0.045111283211922
212 => 0.045842684581572
213 => 0.046326094361047
214 => 0.046472373868232
215 => 0.042795863230752
216 => 0.040814427905777
217 => 0.042084505231884
218 => 0.043634087225788
219 => 0.042623452662335
220 => 0.042663067623838
221 => 0.041222168326445
222 => 0.043761574841196
223 => 0.043391604671767
224 => 0.045311010565228
225 => 0.044852928944559
226 => 0.04641812993977
227 => 0.046005960062133
228 => 0.047716854180095
301 => 0.048399376164358
302 => 0.049545436802002
303 => 0.050388483672359
304 => 0.050883536919549
305 => 0.050853815779486
306 => 0.052815463379402
307 => 0.051658748324479
308 => 0.050205641598688
309 => 0.050179359482511
310 => 0.05093194404648
311 => 0.052509154831066
312 => 0.052918102640025
313 => 0.053146648675547
314 => 0.0527966224664
315 => 0.051541091176796
316 => 0.050998959131632
317 => 0.051460871341189
318 => 0.05089599240147
319 => 0.051871131928462
320 => 0.053210206777586
321 => 0.052933693116518
322 => 0.053858036828224
323 => 0.054814635326046
324 => 0.056182614141458
325 => 0.056540254459916
326 => 0.057131420306483
327 => 0.057739924150465
328 => 0.057935359185513
329 => 0.058308505307351
330 => 0.058306538643099
331 => 0.059431039596887
401 => 0.060671398971812
402 => 0.06113960592146
403 => 0.062216221985095
404 => 0.060372554705247
405 => 0.061770997515535
406 => 0.063032427935708
407 => 0.061528498586105
408 => 0.063601314823936
409 => 0.063681797581349
410 => 0.064896991664745
411 => 0.063665159658206
412 => 0.06293370174487
413 => 0.0650453933333
414 => 0.06606717437528
415 => 0.065759405609905
416 => 0.063417270108989
417 => 0.062054046788539
418 => 0.058486228412781
419 => 0.062712463397151
420 => 0.064770939177073
421 => 0.063411939154011
422 => 0.064097339717333
423 => 0.067836662948938
424 => 0.069260355132284
425 => 0.068964237110508
426 => 0.069014276181671
427 => 0.069782474641963
428 => 0.073189089669519
429 => 0.071147766980289
430 => 0.072708281689303
501 => 0.07353597306411
502 => 0.074304778940772
503 => 0.072416834691283
504 => 0.069960646962107
505 => 0.06918266920453
506 => 0.06327681338468
507 => 0.062969387941425
508 => 0.062796820724182
509 => 0.06170880882958
510 => 0.060853929511963
511 => 0.060174097738959
512 => 0.058390016151646
513 => 0.0589920913151
514 => 0.056148637631689
515 => 0.057967778532524
516 => 0.053429557796209
517 => 0.05720912287937
518 => 0.055152077440343
519 => 0.056533328128589
520 => 0.05652850907506
521 => 0.053985188632068
522 => 0.052518254478293
523 => 0.05345304201501
524 => 0.054455208457897
525 => 0.054617806591563
526 => 0.055917141543986
527 => 0.056279758000096
528 => 0.055181013209139
529 => 0.053335513258609
530 => 0.053764180805744
531 => 0.052509567544133
601 => 0.05031090606116
602 => 0.051890023123178
603 => 0.052429203117026
604 => 0.052667335718717
605 => 0.050505204668191
606 => 0.049825816149967
607 => 0.049464115403486
608 => 0.053056409290865
609 => 0.05325320325916
610 => 0.052246377493497
611 => 0.056797325425431
612 => 0.055767305747089
613 => 0.056918090088745
614 => 0.053725283718923
615 => 0.053847253221934
616 => 0.052335727519468
617 => 0.053182080912665
618 => 0.052583905613596
619 => 0.053113703922322
620 => 0.053431262844131
621 => 0.054942540520103
622 => 0.05722637924283
623 => 0.054716806031982
624 => 0.053623349046265
625 => 0.054301723610368
626 => 0.05610832446973
627 => 0.05884541724986
628 => 0.057225003234897
629 => 0.057944115458323
630 => 0.058101209488066
701 => 0.05690637618442
702 => 0.058889472458058
703 => 0.059952229861746
704 => 0.061042399051271
705 => 0.061988962412689
706 => 0.06060696150364
707 => 0.062085900578371
708 => 0.060894136752029
709 => 0.05982500139752
710 => 0.059826622834533
711 => 0.059155938609074
712 => 0.057856403410597
713 => 0.057616749181551
714 => 0.058863460746042
715 => 0.059863205356739
716 => 0.05994554911133
717 => 0.060499059096544
718 => 0.060826620604188
719 => 0.064037168677374
720 => 0.065328477671456
721 => 0.06690746586619
722 => 0.067522570754938
723 => 0.069373815942762
724 => 0.067878785102811
725 => 0.067555325776403
726 => 0.063064810488429
727 => 0.063800132115272
728 => 0.06497745298783
729 => 0.063084224075984
730 => 0.064285042059325
731 => 0.064522108966039
801 => 0.063019892882012
802 => 0.063822291399416
803 => 0.061691358831771
804 => 0.057272827749638
805 => 0.058894391546256
806 => 0.060088408313039
807 => 0.058384399165634
808 => 0.061438769608096
809 => 0.059654469450614
810 => 0.059088931962204
811 => 0.056882568591246
812 => 0.057923887171624
813 => 0.059332285461831
814 => 0.058462059062358
815 => 0.060267909506415
816 => 0.062825475337922
817 => 0.064648149055133
818 => 0.064788071310911
819 => 0.063616214220399
820 => 0.065494122686635
821 => 0.065507801199653
822 => 0.063389512778257
823 => 0.062092072914831
824 => 0.061797291848024
825 => 0.062533712748141
826 => 0.06342786367168
827 => 0.064837690464193
828 => 0.065689619268142
829 => 0.067910997760717
830 => 0.068512039088896
831 => 0.069172401284219
901 => 0.07005484882533
902 => 0.071114453353339
903 => 0.068796098969374
904 => 0.068888211511003
905 => 0.066729392008456
906 => 0.064422383763951
907 => 0.066173115448893
908 => 0.068461964236878
909 => 0.067936899795961
910 => 0.067877819320264
911 => 0.067977176292828
912 => 0.067581294851378
913 => 0.065790737763752
914 => 0.064891531203826
915 => 0.066051737078189
916 => 0.066668334865591
917 => 0.067624624260873
918 => 0.067506741408084
919 => 0.069970040192347
920 => 0.070927203613623
921 => 0.070682320251129
922 => 0.070727384683275
923 => 0.072460283337411
924 => 0.0743876230386
925 => 0.076192831003638
926 => 0.078029166081159
927 => 0.075815392471829
928 => 0.074691374759585
929 => 0.075851074124359
930 => 0.075235721317459
1001 => 0.078771721071401
1002 => 0.079016546022414
1003 => 0.082552290083327
1004 => 0.085908132225704
1005 => 0.083800387902234
1006 => 0.085787895864377
1007 => 0.087937547769336
1008 => 0.092084575062455
1009 => 0.090688002164312
1010 => 0.089618249211421
1011 => 0.088607337839949
1012 => 0.090710883926322
1013 => 0.093417062361472
1014 => 0.093999947276949
1015 => 0.094944443519196
1016 => 0.093951421207979
1017 => 0.095147407204021
1018 => 0.099369763312924
1019 => 0.09822884542053
1020 => 0.096608558601627
1021 => 0.099941703230215
1022 => 0.10114795531403
1023 => 0.10961406415736
1024 => 0.12030287628957
1025 => 0.11587763788031
1026 => 0.11313074959813
1027 => 0.11377633350151
1028 => 0.11767952585307
1029 => 0.11893310735525
1030 => 0.11552544069685
1031 => 0.11672908616937
1101 => 0.12336129106274
1102 => 0.12691925620143
1103 => 0.12208706164462
1104 => 0.10875522851
1105 => 0.096462669501527
1106 => 0.09972320969172
1107 => 0.099353565620494
1108 => 0.10647904239402
1109 => 0.098201634906123
1110 => 0.098341005219624
1111 => 0.10561382930682
1112 => 0.10367356452812
1113 => 0.10053058407698
1114 => 0.096485616737051
1115 => 0.089008120495
1116 => 0.082385093548007
1117 => 0.095374374583073
1118 => 0.094814253165366
1119 => 0.094003114347183
1120 => 0.095808216012663
1121 => 0.10457327731318
1122 => 0.10437121428047
1123 => 0.10308579235982
1124 => 0.10406077355745
1125 => 0.10035966515907
1126 => 0.101313525066
1127 => 0.096460722297375
1128 => 0.098654391819741
1129 => 0.10052384065251
1130 => 0.10089916018336
1201 => 0.10174477425064
1202 => 0.094519094630349
1203 => 0.09776321264505
1204 => 0.099668828045935
1205 => 0.091059188337852
1206 => 0.099498643151009
1207 => 0.094393311623846
1208 => 0.092660485424021
1209 => 0.094993507619593
1210 => 0.09408432660104
1211 => 0.093302666150189
1212 => 0.092866486187983
1213 => 0.094579600202147
1214 => 0.094499681385773
1215 => 0.091696694357497
1216 => 0.088040312043479
1217 => 0.089267513964722
1218 => 0.088821660001655
1219 => 0.087205827723195
1220 => 0.088294703582544
1221 => 0.083499845365434
1222 => 0.075250541017939
1223 => 0.08070028415292
1224 => 0.080490474970403
1225 => 0.080384679666489
1226 => 0.08448001101259
1227 => 0.084086339399032
1228 => 0.083371821565581
1229 => 0.087192705042852
1230 => 0.085798031175513
1231 => 0.090096087408162
]
'min_raw' => 0.038582594644019
'max_raw' => 0.12691925620143
'avg_raw' => 0.082750925422727
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.038582'
'max' => '$0.126919'
'avg' => '$0.08275'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.021018802821179
'max_diff' => 0.083900042947497
'year' => 2029
]
4 => [
'items' => [
101 => 0.092927065223832
102 => 0.09220903767724
103 => 0.094871585996181
104 => 0.089295786218388
105 => 0.091147843242312
106 => 0.091529549628102
107 => 0.087145555933843
108 => 0.084150748943629
109 => 0.083951029460681
110 => 0.078758446849475
111 => 0.081532282567319
112 => 0.0839731432099
113 => 0.082804160380542
114 => 0.082434095339135
115 => 0.084324677378366
116 => 0.084471591794554
117 => 0.081121927536168
118 => 0.081818428805558
119 => 0.084722954882615
120 => 0.081745242200662
121 => 0.075960032866232
122 => 0.074525220964516
123 => 0.074333790607997
124 => 0.070442466934178
125 => 0.074621101956609
126 => 0.072797015788861
127 => 0.078559282136868
128 => 0.075267906502541
129 => 0.075126021877334
130 => 0.074911542456385
131 => 0.071562119421772
201 => 0.072295430199414
202 => 0.07473306691068
203 => 0.075602843151203
204 => 0.07551211836345
205 => 0.074721121160947
206 => 0.075083235629692
207 => 0.07391673875682
208 => 0.073504824432476
209 => 0.072204709518887
210 => 0.070293899761821
211 => 0.070559609578218
212 => 0.066773795458902
213 => 0.064711082998335
214 => 0.064140151375363
215 => 0.063376677748251
216 => 0.064226387753071
217 => 0.066763070723164
218 => 0.063703292873919
219 => 0.058457518369849
220 => 0.058772798355908
221 => 0.059481138877116
222 => 0.058161151001987
223 => 0.056911893256363
224 => 0.057998021510699
225 => 0.055775317699501
226 => 0.059749742013606
227 => 0.059642244974105
228 => 0.061123664581653
301 => 0.062050026664043
302 => 0.059915061977419
303 => 0.059378124132292
304 => 0.059683988331341
305 => 0.054628734441982
306 => 0.060710542488296
307 => 0.060763138216833
308 => 0.060312781657306
309 => 0.06355115668721
310 => 0.070385138074811
311 => 0.067813919380531
312 => 0.066818265786609
313 => 0.064925527576746
314 => 0.067447488861714
315 => 0.067253841583753
316 => 0.066378095154265
317 => 0.065848440981216
318 => 0.066824345035143
319 => 0.065727515669082
320 => 0.065530494976082
321 => 0.064336763937131
322 => 0.063910656267527
323 => 0.063595183112787
324 => 0.063247878167171
325 => 0.0640139463342
326 => 0.062277935083051
327 => 0.060184475697445
328 => 0.060010427201077
329 => 0.060490990402051
330 => 0.060278376959343
331 => 0.060009409289711
401 => 0.0594958767594
402 => 0.059343522627542
403 => 0.059838599644361
404 => 0.059279686557156
405 => 0.060104393262899
406 => 0.05988011867204
407 => 0.058627339038699
408 => 0.057065911777131
409 => 0.057052011799299
410 => 0.056715604857048
411 => 0.056287140036969
412 => 0.05616795092597
413 => 0.057906550818576
414 => 0.061505400564356
415 => 0.060798860246084
416 => 0.0613094080352
417 => 0.063820797849931
418 => 0.064619093151907
419 => 0.064052482055225
420 => 0.063276869839035
421 => 0.063310992840249
422 => 0.065961494576753
423 => 0.066126803118887
424 => 0.066544484474303
425 => 0.067081323052749
426 => 0.06414390798649
427 => 0.063172640854786
428 => 0.062712400603935
429 => 0.061295038766709
430 => 0.062823541992737
501 => 0.061932948619965
502 => 0.062053120092954
503 => 0.06197485826352
504 => 0.062017594514433
505 => 0.059748631081011
506 => 0.060575322102943
507 => 0.059200787939621
508 => 0.057360440993634
509 => 0.057354271505362
510 => 0.057804693813175
511 => 0.057536764999461
512 => 0.056815775450838
513 => 0.056918188613245
514 => 0.056020941546364
515 => 0.057027130652347
516 => 0.057055984555589
517 => 0.056668546942294
518 => 0.058218720087401
519 => 0.058853827289773
520 => 0.058598807552984
521 => 0.058835934425209
522 => 0.060828220186146
523 => 0.061153049694701
524 => 0.061297317505368
525 => 0.061104017750896
526 => 0.058872349751629
527 => 0.058971333717181
528 => 0.058245055054849
529 => 0.057631426118539
530 => 0.057655968057931
531 => 0.057971453097373
601 => 0.059349194767567
602 => 0.062248570890184
603 => 0.062358600094621
604 => 0.062491958700177
605 => 0.061949522230716
606 => 0.061785918201109
607 => 0.062001754145944
608 => 0.063090607375644
609 => 0.065891433503203
610 => 0.064901434488836
611 => 0.064096549879904
612 => 0.06480265067727
613 => 0.064693951994116
614 => 0.063776425717812
615 => 0.063750673811152
616 => 0.061989647536029
617 => 0.061338636218744
618 => 0.060794602434668
619 => 0.060200531744819
620 => 0.059848346726447
621 => 0.060389462979895
622 => 0.060513222669358
623 => 0.0593300625241
624 => 0.059168802168228
625 => 0.060134996283131
626 => 0.05970981027651
627 => 0.060147124628426
628 => 0.060248585309283
629 => 0.060232247802828
630 => 0.059788304779613
701 => 0.060071260824038
702 => 0.059401985425715
703 => 0.058674248951953
704 => 0.058209998421277
705 => 0.057804878259365
706 => 0.058029662470915
707 => 0.057228347800713
708 => 0.056971991110437
709 => 0.059975401682899
710 => 0.062194053364882
711 => 0.062161793290743
712 => 0.061965418386043
713 => 0.061673645110852
714 => 0.063069262343221
715 => 0.062583057205711
716 => 0.062936812067048
717 => 0.063026857526303
718 => 0.063299398011511
719 => 0.063396807809326
720 => 0.063102367744873
721 => 0.062114190925743
722 => 0.059651748245504
723 => 0.058505474530616
724 => 0.058127185112004
725 => 0.058140935213897
726 => 0.05776164602054
727 => 0.057873363686533
728 => 0.057722795175474
729 => 0.057437654841965
730 => 0.058012055858826
731 => 0.058078250225103
801 => 0.057944178164187
802 => 0.057975756988012
803 => 0.056865697586552
804 => 0.056950092991922
805 => 0.056480168650369
806 => 0.05639206350135
807 => 0.055204135686895
808 => 0.053099549370698
809 => 0.054265694487008
810 => 0.052857155171322
811 => 0.052323719989619
812 => 0.054848919173612
813 => 0.054595459213662
814 => 0.054161645938623
815 => 0.053519945690233
816 => 0.053281932826046
817 => 0.051835842008965
818 => 0.051750399248897
819 => 0.052467120905579
820 => 0.052136378521907
821 => 0.051671890953295
822 => 0.049989564064131
823 => 0.048098071641421
824 => 0.048155163908165
825 => 0.048756812455362
826 => 0.050506186749697
827 => 0.049822675948417
828 => 0.049326781019707
829 => 0.049233914806106
830 => 0.050396329897906
831 => 0.052041390786294
901 => 0.052813216548963
902 => 0.052048360658855
903 => 0.051169735395065
904 => 0.051223213243714
905 => 0.051578977412281
906 => 0.051616363196162
907 => 0.051044468473572
908 => 0.051205453488088
909 => 0.050960902530259
910 => 0.049460093753466
911 => 0.04943294888181
912 => 0.049064626204174
913 => 0.049053473539876
914 => 0.04842686478282
915 => 0.048339197886166
916 => 0.047095028166598
917 => 0.047913944443711
918 => 0.047364658400058
919 => 0.046536754768794
920 => 0.046394023870709
921 => 0.04638973320756
922 => 0.047239805121003
923 => 0.047904010858466
924 => 0.047374213465957
925 => 0.047253588869374
926 => 0.048541543981205
927 => 0.048377639953253
928 => 0.048235700122114
929 => 0.051894093626924
930 => 0.048998189699862
1001 => 0.047735410295246
1002 => 0.046172480986728
1003 => 0.046681378650555
1004 => 0.046788610865585
1005 => 0.043030047617782
1006 => 0.041505198976248
1007 => 0.040981928385182
1008 => 0.040680778762063
1009 => 0.040818016426918
1010 => 0.03944547380263
1011 => 0.040367845145911
1012 => 0.039179339251418
1013 => 0.038980082370473
1014 => 0.041105278137455
1015 => 0.041400986713217
1016 => 0.040139402059563
1017 => 0.040949543639212
1018 => 0.040655775040621
1019 => 0.03919971277376
1020 => 0.039144101905235
1021 => 0.038413501042788
1022 => 0.037270252165262
1023 => 0.036747756750769
1024 => 0.036475636602389
1025 => 0.036587918679127
1026 => 0.03653114542524
1027 => 0.036160661540719
1028 => 0.036552381127827
1029 => 0.035551699452474
1030 => 0.035153219946308
1031 => 0.034973235998027
1101 => 0.034085073414063
1102 => 0.035498535052844
1103 => 0.035777004802004
1104 => 0.036056023222594
1105 => 0.038484688079864
1106 => 0.03836335884693
1107 => 0.039460116022917
1108 => 0.039417498055865
1109 => 0.039104685142985
1110 => 0.037784978918773
1111 => 0.038310990298242
1112 => 0.036692009032553
1113 => 0.037905059876833
1114 => 0.037351474129718
1115 => 0.037717891978876
1116 => 0.037059039647524
1117 => 0.03742367573104
1118 => 0.035843040310077
1119 => 0.034367065194122
1120 => 0.034961040667182
1121 => 0.035606759935733
1122 => 0.037006843836161
1123 => 0.036172965415507
1124 => 0.036472859628008
1125 => 0.035468264217814
1126 => 0.033395496938092
1127 => 0.033407228575794
1128 => 0.033088378487498
1129 => 0.032812845458336
1130 => 0.036268746383181
1201 => 0.035838950473467
1202 => 0.035154126941637
1203 => 0.036070790452797
1204 => 0.036313170834554
1205 => 0.036320071063276
1206 => 0.036988845098509
1207 => 0.037345769920997
1208 => 0.037408679467961
1209 => 0.038461009862219
1210 => 0.038813737129801
1211 => 0.040266570825139
1212 => 0.037315487343504
1213 => 0.037254711721214
1214 => 0.036083689788241
1215 => 0.035341009165226
1216 => 0.03613454176589
1217 => 0.036837503322077
1218 => 0.03610553276329
1219 => 0.036201112665526
1220 => 0.035218501994546
1221 => 0.035569739073292
1222 => 0.035872271762252
1223 => 0.035705230993458
1224 => 0.035455162877708
1225 => 0.036779868490937
1226 => 0.036705123408676
1227 => 0.037938719730565
1228 => 0.038900396278797
1229 => 0.040623892573474
1230 => 0.038825334342084
1231 => 0.038759787731511
]
'min_raw' => 0.032812845458336
'max_raw' => 0.094871585996181
'avg_raw' => 0.063842215727258
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.032812'
'max' => '$0.094871'
'avg' => '$0.063842'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0057697491856833
'max_diff' => -0.032047670205253
'year' => 2030
]
5 => [
'items' => [
101 => 0.039400516363872
102 => 0.038813639037586
103 => 0.039184525249482
104 => 0.040564137070859
105 => 0.040593286094681
106 => 0.040105002389269
107 => 0.040075290281419
108 => 0.040169070508282
109 => 0.040718344226189
110 => 0.040526411111676
111 => 0.040748520970943
112 => 0.041026272751023
113 => 0.042175171877748
114 => 0.042452167567622
115 => 0.041779211647028
116 => 0.04183997203189
117 => 0.041588268044534
118 => 0.041345125146591
119 => 0.041891674872999
120 => 0.042890505240473
121 => 0.042884291568596
122 => 0.043116000799362
123 => 0.043260353730546
124 => 0.042640685277099
125 => 0.042237303899746
126 => 0.042391985987647
127 => 0.042639326014739
128 => 0.042311776950427
129 => 0.040289992390008
130 => 0.040903272673541
131 => 0.040801192846488
201 => 0.040655818759432
202 => 0.041272476826881
203 => 0.041212998651928
204 => 0.039431396394177
205 => 0.039545448790324
206 => 0.03943833229814
207 => 0.039784447598358
208 => 0.03879494767552
209 => 0.039099311187402
210 => 0.039290205128823
211 => 0.039402643126836
212 => 0.039808846275118
213 => 0.039761183024046
214 => 0.039805883460509
215 => 0.040408175495756
216 => 0.043454361928365
217 => 0.043620159134861
218 => 0.042803713052598
219 => 0.043129867158775
220 => 0.042503722596977
221 => 0.042924057636116
222 => 0.043211640194542
223 => 0.041912109911959
224 => 0.041835160162506
225 => 0.04120643127937
226 => 0.041544274568143
227 => 0.041006741603913
228 => 0.04113863339123
301 => 0.040769852455772
302 => 0.041433584716045
303 => 0.042175740516597
304 => 0.042363238380437
305 => 0.041870012223579
306 => 0.041512883980827
307 => 0.04088588443191
308 => 0.041928598655355
309 => 0.04223352007043
310 => 0.041926997032971
311 => 0.041855968947531
312 => 0.041721370853967
313 => 0.041884524569366
314 => 0.042231859402919
315 => 0.042068062709683
316 => 0.042176253311291
317 => 0.041763942303623
318 => 0.042640890413142
319 => 0.044033695060113
320 => 0.0440381731548
321 => 0.043874375578639
322 => 0.043807353139541
323 => 0.043975419392751
324 => 0.044066588440678
325 => 0.044610083885478
326 => 0.045193276151562
327 => 0.047914779990653
328 => 0.04715059260291
329 => 0.04956527271194
330 => 0.051474971171212
331 => 0.052047606238156
401 => 0.05152080892113
402 => 0.049718663756617
403 => 0.049630241917258
404 => 0.052323407639104
405 => 0.051562464967878
406 => 0.051471953258435
407 => 0.05050906159191
408 => 0.051078249823279
409 => 0.050953760007591
410 => 0.050757246743277
411 => 0.051843218238734
412 => 0.053876059932885
413 => 0.053559222490983
414 => 0.053322718038269
415 => 0.052286424371887
416 => 0.052910504623619
417 => 0.052688281599447
418 => 0.053643092737505
419 => 0.053077483770976
420 => 0.051556700078735
421 => 0.051798889894293
422 => 0.05176228339089
423 => 0.052515642636965
424 => 0.052289502890819
425 => 0.051718125976042
426 => 0.053869111900972
427 => 0.05372943883942
428 => 0.053927463306994
429 => 0.05401463980173
430 => 0.055323907029612
501 => 0.055860271920997
502 => 0.05598203614173
503 => 0.056491541304596
504 => 0.05596935918913
505 => 0.058058459960535
506 => 0.05944759007111
507 => 0.061061136178525
508 => 0.063418960721765
509 => 0.06430552456112
510 => 0.064145374738866
511 => 0.065933050398071
512 => 0.069145463819866
513 => 0.064794695337826
514 => 0.069376065113905
515 => 0.067925656337256
516 => 0.06448676321956
517 => 0.064265339044667
518 => 0.066594197390341
519 => 0.071759381056736
520 => 0.070465561131332
521 => 0.071761497282636
522 => 0.070249718924439
523 => 0.070174646386686
524 => 0.071688073582131
525 => 0.075224278716909
526 => 0.073544360210043
527 => 0.071135785097533
528 => 0.072914239479031
529 => 0.071373577705595
530 => 0.067902035525964
531 => 0.070464571771619
601 => 0.06875107676098
602 => 0.06925116569949
603 => 0.072852677348705
604 => 0.072419333938654
605 => 0.07298012043778
606 => 0.07199034694516
607 => 0.0710657424301
608 => 0.069339899440707
609 => 0.068828962414579
610 => 0.068970167027012
611 => 0.068828892440586
612 => 0.067863299149336
613 => 0.067654779370026
614 => 0.067307237269047
615 => 0.0674149550985
616 => 0.066761474271633
617 => 0.06799472760796
618 => 0.068223630294573
619 => 0.069121089227959
620 => 0.069214266391628
621 => 0.071713676746578
622 => 0.070337043523957
623 => 0.071260607942485
624 => 0.071177995647967
625 => 0.064561294461057
626 => 0.065473017504964
627 => 0.066891372446832
628 => 0.066252405468055
629 => 0.065349055655311
630 => 0.064619552246968
701 => 0.063514279987774
702 => 0.065069929467716
703 => 0.067115443108959
704 => 0.069266143993182
705 => 0.071850070186071
706 => 0.071273367940035
707 => 0.069217839290347
708 => 0.069310048804008
709 => 0.06988005173435
710 => 0.06914184614933
711 => 0.068924134910822
712 => 0.069850141553362
713 => 0.069856518452185
714 => 0.069007123711494
715 => 0.068063176894813
716 => 0.068059221723185
717 => 0.067891255504601
718 => 0.070279599741586
719 => 0.071592947583089
720 => 0.071743520796552
721 => 0.071582812806118
722 => 0.071644662933364
723 => 0.070880454762038
724 => 0.072627208022796
725 => 0.07423020155086
726 => 0.073800565042377
727 => 0.073156478839733
728 => 0.072643433155932
729 => 0.0736797077841
730 => 0.073633564106155
731 => 0.074216200800813
801 => 0.074189769034871
802 => 0.073993850228532
803 => 0.073800572039254
804 => 0.074566898212563
805 => 0.074346208581472
806 => 0.074125176158428
807 => 0.073681861795641
808 => 0.073742115580216
809 => 0.073098140588136
810 => 0.072800208290508
811 => 0.068320021373733
812 => 0.06712276903524
813 => 0.067499448993248
814 => 0.067623461815915
815 => 0.067102416063883
816 => 0.067849461826626
817 => 0.06773303553582
818 => 0.068185982126245
819 => 0.067903000761202
820 => 0.067914614415131
821 => 0.068746802271734
822 => 0.068988389946886
823 => 0.068865516505452
824 => 0.068951572851978
825 => 0.070934705035538
826 => 0.070652767056033
827 => 0.070502993123653
828 => 0.070544481526496
829 => 0.071051214318229
830 => 0.07119307183333
831 => 0.070592011573698
901 => 0.070875475066828
902 => 0.072082426643704
903 => 0.072504791388068
904 => 0.073852776905497
905 => 0.073280128699161
906 => 0.074331249265525
907 => 0.07756203553312
908 => 0.08014301115708
909 => 0.077769439309958
910 => 0.082509072358097
911 => 0.086199556546053
912 => 0.086057909616096
913 => 0.085414388335489
914 => 0.081212870204099
915 => 0.077346570578488
916 => 0.080580894387065
917 => 0.080589139343598
918 => 0.080311308060061
919 => 0.078585721819342
920 => 0.080251261399309
921 => 0.080383465882816
922 => 0.080309466528062
923 => 0.078986463603153
924 => 0.07696648266863
925 => 0.077361182108085
926 => 0.078007707841562
927 => 0.076783699748692
928 => 0.076392554997755
929 => 0.077119767508081
930 => 0.079462997737097
1001 => 0.07902002363571
1002 => 0.079008455791724
1003 => 0.080903686847711
1004 => 0.079547110428085
1005 => 0.077366160532019
1006 => 0.076815441920067
1007 => 0.074860761856148
1008 => 0.076210866338628
1009 => 0.076259454195408
1010 => 0.075520015768087
1011 => 0.077426161885118
1012 => 0.077408596413079
1013 => 0.079218198458792
1014 => 0.082677477914704
1015 => 0.081654398758787
1016 => 0.080464669011151
1017 => 0.080594025622347
1018 => 0.082012748367841
1019 => 0.081154956209625
1020 => 0.081463424250459
1021 => 0.082012281464517
1022 => 0.082343420649116
1023 => 0.080546379789626
1024 => 0.080127403602878
1025 => 0.079270325365451
1026 => 0.079046729651429
1027 => 0.079744801992289
1028 => 0.079560884593732
1029 => 0.076255370574187
1030 => 0.075909925967439
1031 => 0.075920520260346
1101 => 0.075051883371681
1102 => 0.073727003619725
1103 => 0.077208708503405
1104 => 0.076929078874817
1105 => 0.07662038940647
1106 => 0.076658202104985
1107 => 0.078169492189063
1108 => 0.077292867618319
1109 => 0.079623517715583
1110 => 0.079144406121341
1111 => 0.078653007122559
1112 => 0.078585080812548
1113 => 0.078395934122209
1114 => 0.077747279742655
1115 => 0.076963990601259
1116 => 0.076446795262765
1117 => 0.070518127667593
1118 => 0.071618453887784
1119 => 0.072884278906223
1120 => 0.073321236630113
1121 => 0.072573790206845
1122 => 0.077776793483186
1123 => 0.07872743231916
1124 => 0.075847885276356
1125 => 0.075309239595779
1126 => 0.07781210700433
1127 => 0.076302571993877
1128 => 0.076982315516653
1129 => 0.075513081820238
1130 => 0.078498451261528
1201 => 0.078475707748247
1202 => 0.077314331607959
1203 => 0.07829591876897
1204 => 0.078125343844071
1205 => 0.076814153042028
1206 => 0.078540018348682
1207 => 0.078540874356342
1208 => 0.077423075071808
1209 => 0.076117730225201
1210 => 0.075884365397497
1211 => 0.075708556347975
1212 => 0.076939077267762
1213 => 0.078042358476703
1214 => 0.080095291279936
1215 => 0.080611447363149
1216 => 0.082626038918386
1217 => 0.081426447735925
1218 => 0.081958210969803
1219 => 0.08253551518268
1220 => 0.082812296051993
1221 => 0.082361296478328
1222 => 0.085490786402577
1223 => 0.085755011237278
1224 => 0.085843603538817
1225 => 0.084788357144236
1226 => 0.085725662926118
1227 => 0.08528712859108
1228 => 0.0864280731025
1229 => 0.086606987770202
1230 => 0.086455453411733
1231 => 0.086512243751237
]
'min_raw' => 0.03879494767552
'max_raw' => 0.086606987770202
'avg_raw' => 0.062700967722861
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.038794'
'max' => '$0.0866069'
'avg' => '$0.06270096'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0059821022171844
'max_diff' => -0.0082645982259792
'year' => 2031
]
6 => [
'items' => [
101 => 0.083841776180744
102 => 0.083703298349375
103 => 0.081815143292724
104 => 0.082584580434847
105 => 0.08114615457773
106 => 0.08160229423445
107 => 0.081803356248873
108 => 0.081698332862707
109 => 0.082628083256408
110 => 0.081837605486306
111 => 0.079751404684428
112 => 0.077664635498537
113 => 0.077638437811254
114 => 0.077089028319144
115 => 0.076691905885717
116 => 0.07676840575507
117 => 0.077038001272706
118 => 0.076676236504134
119 => 0.076753437359448
120 => 0.078035485944272
121 => 0.078292591644806
122 => 0.077418846016709
123 => 0.073910631239006
124 => 0.073049706532868
125 => 0.073668522138761
126 => 0.073372768135973
127 => 0.05921755039549
128 => 0.062543108836304
129 => 0.060567174936067
130 => 0.061477776185644
131 => 0.059460859339104
201 => 0.060423437773942
202 => 0.060245684684763
203 => 0.065593084247164
204 => 0.065509591958104
205 => 0.065549555298563
206 => 0.063642000934523
207 => 0.066680786832185
208 => 0.068177802036579
209 => 0.067900744364015
210 => 0.067970473811226
211 => 0.066772290883428
212 => 0.065561156328403
213 => 0.064217821714607
214 => 0.066713571385862
215 => 0.066436086626287
216 => 0.067072536828889
217 => 0.068691208890568
218 => 0.068929564500388
219 => 0.06924991685715
220 => 0.069135093341484
221 => 0.071870655326913
222 => 0.071539360720658
223 => 0.072337685401769
224 => 0.070695470963686
225 => 0.068837149446569
226 => 0.069190355613865
227 => 0.06915633901965
228 => 0.068723268732861
229 => 0.068332312241828
301 => 0.067681479835567
302 => 0.06974080987405
303 => 0.069657204835265
304 => 0.071010673232955
305 => 0.070771434546773
306 => 0.069173740048811
307 => 0.069230802020367
308 => 0.069614571202131
309 => 0.070942800722014
310 => 0.071337109676277
311 => 0.071154450058167
312 => 0.071586791825629
313 => 0.071928497130637
314 => 0.071629704750951
315 => 0.075859974749945
316 => 0.074103271712967
317 => 0.074959476550129
318 => 0.075163676358741
319 => 0.074640622842842
320 => 0.074754054421298
321 => 0.074925872354405
322 => 0.075969117198825
323 => 0.078706893535911
324 => 0.079919436038933
325 => 0.083567429985067
326 => 0.079818751263463
327 => 0.079596320181698
328 => 0.08025343405026
329 => 0.082395192676017
330 => 0.084130886877034
331 => 0.084706716778112
401 => 0.084782822205455
402 => 0.085863117380326
403 => 0.08648232242825
404 => 0.085731941131513
405 => 0.085096071550725
406 => 0.082818465639381
407 => 0.083082104725334
408 => 0.084898316589249
409 => 0.087463822821373
410 => 0.089665294063965
411 => 0.088894415563828
412 => 0.094775674364463
413 => 0.095358777151758
414 => 0.095278211200524
415 => 0.096606606127312
416 => 0.093970012720561
417 => 0.092842817957583
418 => 0.085233553771518
419 => 0.08737144662995
420 => 0.090478999453725
421 => 0.090067703184774
422 => 0.087810915259023
423 => 0.089663582087952
424 => 0.08905103249606
425 => 0.088567889218229
426 => 0.090781262235907
427 => 0.088347567682617
428 => 0.090454721488877
429 => 0.087752274936634
430 => 0.088897936871883
501 => 0.088247603748003
502 => 0.088668448980983
503 => 0.086208196348261
504 => 0.087535688949621
505 => 0.086152968291654
506 => 0.086152312702026
507 => 0.086121789066864
508 => 0.087748553789041
509 => 0.087801602528228
510 => 0.086599420940635
511 => 0.086426167792256
512 => 0.087066775487462
513 => 0.086316791651798
514 => 0.086667704368163
515 => 0.086327420440496
516 => 0.086250815360902
517 => 0.085640413053418
518 => 0.085377434955993
519 => 0.085480555444104
520 => 0.085128552055925
521 => 0.084916457282028
522 => 0.086079598077988
523 => 0.085458178871673
524 => 0.085984356672214
525 => 0.085384710659565
526 => 0.08330607632639
527 => 0.082110631740222
528 => 0.078184284174359
529 => 0.079297791473419
530 => 0.080036047964702
531 => 0.079792054198737
601 => 0.080316247221083
602 => 0.080348428415336
603 => 0.080178007920256
604 => 0.07998068281917
605 => 0.079884635872725
606 => 0.080600491121744
607 => 0.081016069188379
608 => 0.0801101418802
609 => 0.079897895787163
610 => 0.08081383831335
611 => 0.081372562725202
612 => 0.085497869862185
613 => 0.085192253784911
614 => 0.085959290164743
615 => 0.085872933639506
616 => 0.086676909964048
617 => 0.087991071468928
618 => 0.085319013684171
619 => 0.085782790522799
620 => 0.085669083152139
621 => 0.086910510409333
622 => 0.086914386009724
623 => 0.086170088355145
624 => 0.086573584188542
625 => 0.086348363883669
626 => 0.086755367414925
627 => 0.085188172095873
628 => 0.087096846826198
629 => 0.088178942406009
630 => 0.088193967304184
701 => 0.088706872020973
702 => 0.089228012918668
703 => 0.090228297489988
704 => 0.08920011552488
705 => 0.087350516261146
706 => 0.087484051353818
707 => 0.086399631982233
708 => 0.086417861267786
709 => 0.086320551912851
710 => 0.086612584612118
711 => 0.085252256850939
712 => 0.085571523057503
713 => 0.085124548498693
714 => 0.0857818188874
715 => 0.085074704599839
716 => 0.085669028319002
717 => 0.085925518734049
718 => 0.086871973887417
719 => 0.084934912404147
720 => 0.080985112912225
721 => 0.081815408652117
722 => 0.080587336034495
723 => 0.080700998830858
724 => 0.080930615768811
725 => 0.080186352146917
726 => 0.080328334191532
727 => 0.080323261593786
728 => 0.080279548686851
729 => 0.080085936973971
730 => 0.079805161685386
731 => 0.080923684017034
801 => 0.081113742757019
802 => 0.081536219792709
803 => 0.082793224882012
804 => 0.08266762043137
805 => 0.082872486501647
806 => 0.082425265020506
807 => 0.080721744152706
808 => 0.080814253531713
809 => 0.079660660093125
810 => 0.081506719814853
811 => 0.08106954850595
812 => 0.080787701319132
813 => 0.080710796702913
814 => 0.081970917664701
815 => 0.082347965606444
816 => 0.082113014631896
817 => 0.081631123328483
818 => 0.082556497089411
819 => 0.08280408806945
820 => 0.082859514559077
821 => 0.084499099440622
822 => 0.08295114914044
823 => 0.083323756162996
824 => 0.086230729787618
825 => 0.083594505845025
826 => 0.084990972462226
827 => 0.084922622688175
828 => 0.085637007755681
829 => 0.084864022261302
830 => 0.08487360434292
831 => 0.085507929886229
901 => 0.084617134061866
902 => 0.084396560488464
903 => 0.084091839676586
904 => 0.084757186421332
905 => 0.085156031703763
906 => 0.08837043176057
907 => 0.09044708079172
908 => 0.090356927980505
909 => 0.091180755916014
910 => 0.090809613885668
911 => 0.089611098367362
912 => 0.091656818213714
913 => 0.091009466857774
914 => 0.091062833717026
915 => 0.091060847399859
916 => 0.091491279459121
917 => 0.091186278896615
918 => 0.09058509148025
919 => 0.090984187743475
920 => 0.092169360965729
921 => 0.09584817501316
922 => 0.097906888091905
923 => 0.095724237900823
924 => 0.097229800775781
925 => 0.09632699953771
926 => 0.096162933696742
927 => 0.097108538442438
928 => 0.098055798344064
929 => 0.097995461983448
930 => 0.097307799937201
1001 => 0.096919357096055
1002 => 0.099860776427112
1003 => 0.10202796408446
1004 => 0.10188017641524
1005 => 0.10253246312406
1006 => 0.10444759707561
1007 => 0.1046226929229
1008 => 0.10460063487068
1009 => 0.10416664154381
1010 => 0.10605233963068
1011 => 0.10762542215045
1012 => 0.10406618462791
1013 => 0.10542149568265
1014 => 0.10602993848052
1015 => 0.10692331302464
1016 => 0.10843058562752
1017 => 0.11006788345857
1018 => 0.11029941532393
1019 => 0.11013513238564
1020 => 0.10905529045314
1021 => 0.11084684127689
1022 => 0.11189628973241
1023 => 0.11252121227147
1024 => 0.11410591185333
1025 => 0.1060336960161
1026 => 0.10031978043136
1027 => 0.099427470002859
1028 => 0.10124201834759
1029 => 0.10172050027534
1030 => 0.10152762481023
1031 => 0.09509609333312
1101 => 0.099393609320668
1102 => 0.10401737517786
1103 => 0.10419499285532
1104 => 0.10650974672181
1105 => 0.10726352546571
1106 => 0.10912720572997
1107 => 0.10901063202201
1108 => 0.10946440850873
1109 => 0.10936009315275
1110 => 0.1128121683981
1111 => 0.11662032003186
1112 => 0.11648845584996
1113 => 0.1159409889966
1114 => 0.11675407063081
1115 => 0.12068449122318
1116 => 0.12032264107874
1117 => 0.12067414767174
1118 => 0.12530833505894
1119 => 0.13133343786777
1120 => 0.12853417270263
1121 => 0.13460777264412
1122 => 0.13843078185959
1123 => 0.1450422809912
1124 => 0.14421448873761
1125 => 0.14678829683212
1126 => 0.14273256783821
1127 => 0.13341979427011
1128 => 0.1319460122051
1129 => 0.13489656122137
1130 => 0.1421501980675
1201 => 0.13466811838358
1202 => 0.13618173335896
1203 => 0.13574581214422
1204 => 0.13572258375523
1205 => 0.13660911688619
1206 => 0.13532315434128
1207 => 0.13008391159305
1208 => 0.13248502566951
1209 => 0.13155784021362
1210 => 0.13258662160318
1211 => 0.13813853046095
1212 => 0.13568389921396
1213 => 0.1330981445933
1214 => 0.13634125471249
1215 => 0.14047084834777
1216 => 0.14021242579966
1217 => 0.1397109780441
1218 => 0.14253761278726
1219 => 0.1472063852567
1220 => 0.14846833569454
1221 => 0.14939988170831
1222 => 0.14952832616501
1223 => 0.15085138389681
1224 => 0.14373696901945
1225 => 0.15502772814096
1226 => 0.15697733034032
1227 => 0.15661088592957
1228 => 0.15877778672236
1229 => 0.15814022954015
1230 => 0.15721650921279
1231 => 0.16065150788238
]
'min_raw' => 0.05921755039549
'max_raw' => 0.16065150788238
'avg_raw' => 0.10993452913893
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.059217'
'max' => '$0.160651'
'avg' => '$0.109934'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.02042260271997
'max_diff' => 0.074044520112174
'year' => 2032
]
7 => [
'items' => [
101 => 0.1567135590978
102 => 0.15112413657206
103 => 0.1480576688282
104 => 0.15209584091821
105 => 0.1545618117008
106 => 0.15619166152289
107 => 0.15668485309428
108 => 0.14428924079423
109 => 0.13760869325669
110 => 0.14189084763562
111 => 0.14711537151643
112 => 0.14370794652549
113 => 0.14384151113403
114 => 0.13898341855249
115 => 0.14754520491268
116 => 0.14629782465596
117 => 0.1527692356344
118 => 0.15122478146808
119 => 0.15650196590227
120 => 0.15511230638304
121 => 0.16088070535256
122 => 0.16318187587467
123 => 0.16704589932988
124 => 0.16988829071294
125 => 0.17155739729936
126 => 0.17145719040057
127 => 0.17807102224155
128 => 0.17417107667461
129 => 0.16927182589594
130 => 0.16918321390629
131 => 0.17172060530748
201 => 0.17703828158506
202 => 0.17841707767479
203 => 0.17918763659013
204 => 0.17800749878794
205 => 0.17377438738664
206 => 0.17194655134592
207 => 0.17350392061012
208 => 0.17159939182627
209 => 0.17488714282359
210 => 0.17940192716863
211 => 0.17846964205478
212 => 0.18158613141441
213 => 0.18481137003739
214 => 0.18942360612278
215 => 0.19062941542611
216 => 0.1926225723517
217 => 0.19467418554606
218 => 0.19533310841157
219 => 0.19659119661357
220 => 0.19658456586774
221 => 0.20037589934359
222 => 0.20455785757527
223 => 0.20613644999517
224 => 0.20976633622065
225 => 0.20355028326591
226 => 0.20826523083695
227 => 0.21251823156882
228 => 0.20744762876564
301 => 0.2144362734309
302 => 0.21470762666664
303 => 0.21880473836095
304 => 0.21465153074714
305 => 0.21218536932357
306 => 0.21930508494756
307 => 0.22275009106907
308 => 0.22171242718888
309 => 0.21381575382486
310 => 0.20921955122275
311 => 0.19719040247176
312 => 0.21143944878787
313 => 0.21837974359806
314 => 0.21379778013796
315 => 0.21610865599034
316 => 0.22871604533691
317 => 0.23351612293207
318 => 0.23251774034735
319 => 0.23268645056939
320 => 0.23527648531217
321 => 0.24676212571984
322 => 0.23987966375251
323 => 0.24514104804561
324 => 0.24793166730333
325 => 0.25052374999281
326 => 0.2441584141436
327 => 0.23587720572913
328 => 0.23325419940279
329 => 0.21334219417248
330 => 0.21230568782679
331 => 0.21172386540559
401 => 0.20805555734038
402 => 0.20517327203526
403 => 0.20288117174824
404 => 0.19686601611602
405 => 0.19889595456515
406 => 0.18930905194793
407 => 0.19544241250346
408 => 0.18014148444252
409 => 0.1928845520012
410 => 0.1859490796852
411 => 0.19060606281647
412 => 0.19058981504103
413 => 0.18201483259852
414 => 0.177068961681
415 => 0.18022066312582
416 => 0.18359953725704
417 => 0.18414774821694
418 => 0.1885285467257
419 => 0.18975113342455
420 => 0.18604663864993
421 => 0.17982440671802
422 => 0.1812696892818
423 => 0.17703967307598
424 => 0.16962673238049
425 => 0.17495083580552
426 => 0.17676871879912
427 => 0.17757159949161
428 => 0.17028182369959
429 => 0.16799121787701
430 => 0.16677171855711
501 => 0.17888338820435
502 => 0.17954689280818
503 => 0.17615230944492
504 => 0.19149614813447
505 => 0.18802336487526
506 => 0.19190331462835
507 => 0.18113854503787
508 => 0.18154977373291
509 => 0.1764535592957
510 => 0.17930709885137
511 => 0.17729030906729
512 => 0.1790765610545
513 => 0.18014723313063
514 => 0.18524261132921
515 => 0.19294273303541
516 => 0.18448153174223
517 => 0.18079486517216
518 => 0.18308205237763
519 => 0.18917313330781
520 => 0.19840143271374
521 => 0.1929380937286
522 => 0.19536263079669
523 => 0.19589228428592
524 => 0.19186382038208
525 => 0.19854996792401
526 => 0.2021331287099
527 => 0.20580871024557
528 => 0.20900011470553
529 => 0.20434060215245
530 => 0.20932694849913
531 => 0.20530883355233
601 => 0.20170416905995
602 => 0.20170963584805
603 => 0.19944837715623
604 => 0.19506690350392
605 => 0.19425889253857
606 => 0.19846226762087
607 => 0.20183297637577
608 => 0.20211060409343
609 => 0.20397680165342
610 => 0.20508119814605
611 => 0.21590578512811
612 => 0.22025952355797
613 => 0.22558319249795
614 => 0.22765706157562
615 => 0.23389866397618
616 => 0.22885806311956
617 => 0.22776749741737
618 => 0.2126274116062
619 => 0.21510659980962
620 => 0.21907601932937
621 => 0.21269286587205
622 => 0.21674150754132
623 => 0.21754079516879
624 => 0.21247596876012
625 => 0.21518131138322
626 => 0.20799672345445
627 => 0.19309933741905
628 => 0.19856655297331
629 => 0.20259226386611
630 => 0.19684707805551
701 => 0.20714510125161
702 => 0.2011292086948
703 => 0.19922245956806
704 => 0.1917835514195
705 => 0.19529442971579
706 => 0.20004294288245
707 => 0.19710891381936
708 => 0.20319746467195
709 => 0.21182047643642
710 => 0.21796574812901
711 => 0.21843750578343
712 => 0.21448650778632
713 => 0.22081800729161
714 => 0.22086412535326
715 => 0.21372216804635
716 => 0.20934775896245
717 => 0.20835388401475
718 => 0.21083677849476
719 => 0.2138514707611
720 => 0.21860480022302
721 => 0.2214771376653
722 => 0.22896667034471
723 => 0.23099312314603
724 => 0.23321958039258
725 => 0.23619481388795
726 => 0.23976734453336
727 => 0.23195085086549
728 => 0.23226141473068
729 => 0.22498280405388
730 => 0.21720456468736
731 => 0.22310727879533
801 => 0.23082429228634
802 => 0.22905400086496
803 => 0.22885480691628
804 => 0.22918979588616
805 => 0.22785505396675
806 => 0.22181806573311
807 => 0.21878632803573
808 => 0.22269804314413
809 => 0.22477694563384
810 => 0.22800114209603
811 => 0.22760369182753
812 => 0.2359088756607
813 => 0.23913601896255
814 => 0.23831037760869
815 => 0.23846231548797
816 => 0.24430490428751
817 => 0.25080306465263
818 => 0.25688944934235
819 => 0.26308078126503
820 => 0.25561688898044
821 => 0.2518271847872
822 => 0.25573719216316
823 => 0.25366248721213
824 => 0.26558435725817
825 => 0.26640980167364
826 => 0.27833080963278
827 => 0.28964526571322
828 => 0.28253885856863
829 => 0.28923988042637
830 => 0.29648758190784
831 => 0.31046957396279
901 => 0.30576093093109
902 => 0.30215418416266
903 => 0.29874582589416
904 => 0.30583807838927
905 => 0.31496214792272
906 => 0.31692738511097
907 => 0.32011182013433
908 => 0.31676377608146
909 => 0.32079612636819
910 => 0.33503209478485
911 => 0.3311854104543
912 => 0.32572250031955
913 => 0.33696043014756
914 => 0.34102739326597
915 => 0.3695714703161
916 => 0.4056095466889
917 => 0.39068954643179
918 => 0.38142822080681
919 => 0.38360485201026
920 => 0.39676473753573
921 => 0.40099127509263
922 => 0.38950208903813
923 => 0.39356026378456
924 => 0.41592120562835
925 => 0.42791713350263
926 => 0.41162505218129
927 => 0.36667584596904
928 => 0.32523062503291
929 => 0.3362237639278
930 => 0.33497748313393
1001 => 0.35900152556078
1002 => 0.3310936683052
1003 => 0.33156356504769
1004 => 0.35608439923002
1005 => 0.3495426610637
1006 => 0.33894588303678
1007 => 0.32530799323961
1008 => 0.30009709259742
1009 => 0.27776709484065
1010 => 0.32156136273302
1011 => 0.3196728742668
1012 => 0.31693806310939
1013 => 0.32302408940272
1014 => 0.35257610553446
1015 => 0.35189483591209
1016 => 0.34756094616133
1017 => 0.35084816334013
1018 => 0.33836961797187
1019 => 0.34158562324447
1020 => 0.32522405989817
1021 => 0.33262016984994
1022 => 0.33892314711038
1023 => 0.34018856311259
1024 => 0.34303960997931
1025 => 0.31867772665867
1026 => 0.32961549704232
1027 => 0.33604041241223
1028 => 0.30701241103058
1029 => 0.33546662215705
1030 => 0.31825364047036
1031 => 0.31241129595559
1101 => 0.32027724317437
1102 => 0.31721187589332
1103 => 0.31457645310949
1104 => 0.3131058419138
1105 => 0.31888172541836
1106 => 0.31861227354919
1107 => 0.30916180708506
1108 => 0.29683405883289
1109 => 0.30097165579086
1110 => 0.29946842802585
1111 => 0.29402053668521
1112 => 0.29769175766789
1113 => 0.2815255584226
1114 => 0.25371245286698
1115 => 0.27208664233548
1116 => 0.27137925602822
1117 => 0.27102255977468
1118 => 0.28483025533496
1119 => 0.28350296400458
1120 => 0.28109391724306
1121 => 0.29397629265224
1122 => 0.28927405233549
1123 => 0.30376524900457
1124 => 0.31331008836266
1125 => 0.31088920835824
1126 => 0.31986617590874
1127 => 0.301066977668
1128 => 0.30731131723065
1129 => 0.30859826696023
1130 => 0.29381732613937
1201 => 0.28372012528112
1202 => 0.28304675710039
1203 => 0.26553960229217
1204 => 0.2748917830779
1205 => 0.28312131514982
1206 => 0.27918000792486
1207 => 0.27793230780064
1208 => 0.28430653714213
1209 => 0.28480186935354
1210 => 0.2735082424403
1211 => 0.27585654509822
1212 => 0.28564935755455
1213 => 0.27560979135009
1214 => 0.25610455416864
1215 => 0.25126698566664
1216 => 0.25062156485439
1217 => 0.23750169540457
1218 => 0.25159025512567
1219 => 0.24544022125748
1220 => 0.26486810455838
1221 => 0.25377100181073
1222 => 0.25329262789078
1223 => 0.25256949554858
1224 => 0.24127668193813
1225 => 0.24374909042307
1226 => 0.25196775278547
1227 => 0.25490026410623
1228 => 0.25459437915012
1229 => 0.25192747685622
1230 => 0.25314837106961
1231 => 0.24921544542052
]
'min_raw' => 0.13760869325669
'max_raw' => 0.42791713350263
'avg_raw' => 0.28276291337966
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.1376086'
'max' => '$0.427917'
'avg' => '$0.282762'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.078391142861196
'max_diff' => 0.26726562562025
'year' => 2033
]
8 => [
'items' => [
101 => 0.24782664751705
102 => 0.24344321931476
103 => 0.23700079081034
104 => 0.23789665000759
105 => 0.22513251338721
106 => 0.21817793431242
107 => 0.2162529984844
108 => 0.21367889384657
109 => 0.21654375045268
110 => 0.22509635419189
111 => 0.2147800995463
112 => 0.19709360455754
113 => 0.19815659304269
114 => 0.2005448125647
115 => 0.19609438128509
116 => 0.19188242157533
117 => 0.19554437881587
118 => 0.18805037773219
119 => 0.20145042679265
120 => 0.20108799301876
121 => 0.20608270265502
122 => 0.20920599709234
123 => 0.20200781459291
124 => 0.20019749116026
125 => 0.20122873366211
126 => 0.18418459222758
127 => 0.20468983267401
128 => 0.20486716284489
129 => 0.20334875426155
130 => 0.214267161771
131 => 0.23730840715264
201 => 0.22863936380812
202 => 0.2252824482019
203 => 0.21890094918058
204 => 0.22740391773056
205 => 0.2267510224129
206 => 0.22379838218322
207 => 0.2220126161595
208 => 0.22530294481277
209 => 0.22160490802691
210 => 0.22094063900492
211 => 0.21691589146345
212 => 0.21547923970549
213 => 0.21441559993866
214 => 0.21324463706645
215 => 0.21582748937677
216 => 0.20997440623908
217 => 0.20291616175985
218 => 0.20232934510266
219 => 0.2039495974866
220 => 0.20323275642031
221 => 0.20232591314342
222 => 0.20059450236378
223 => 0.2000808297712
224 => 0.20175001649858
225 => 0.199865602003
226 => 0.20264615824059
227 => 0.20189000079916
228 => 0.19766616679907
301 => 0.19240170577133
302 => 0.1923548410256
303 => 0.19122062153262
304 => 0.18977602247726
305 => 0.18937416806801
306 => 0.1952359789911
307 => 0.20736975217266
308 => 0.20498760216054
309 => 0.20670894967685
310 => 0.21517627577686
311 => 0.21786778412267
312 => 0.21595741525068
313 => 0.21334238451228
314 => 0.21345743259326
315 => 0.22239378425001
316 => 0.22295113354129
317 => 0.22435937539265
318 => 0.22616936414076
319 => 0.21626566416109
320 => 0.21299096921485
321 => 0.21143923707616
322 => 0.20666050268491
323 => 0.21181395802815
324 => 0.2088112602926
325 => 0.20921642680389
326 => 0.20895256158189
327 => 0.20909664983559
328 => 0.20144668120584
329 => 0.204233927704
330 => 0.19959958980545
331 => 0.19339473158814
401 => 0.19337393072769
402 => 0.19489256098596
403 => 0.19398922028433
404 => 0.19155835368327
405 => 0.19190364681058
406 => 0.1888785156808
407 => 0.1922709525015
408 => 0.1923682354508
409 => 0.19106196248755
410 => 0.19628847947591
411 => 0.19842978775047
412 => 0.19756997090298
413 => 0.19836946070836
414 => 0.2050865912483
415 => 0.20618177661527
416 => 0.20666818561139
417 => 0.20601646199343
418 => 0.19849223752382
419 => 0.19882596887452
420 => 0.19637726965731
421 => 0.19430837685633
422 => 0.19439112171846
423 => 0.1954548015554
424 => 0.20009995378731
425 => 0.20987540281269
426 => 0.21024637395744
427 => 0.21069600180687
428 => 0.20886713937838
429 => 0.20831553697009
430 => 0.20904324292729
501 => 0.21271438761253
502 => 0.22215756844903
503 => 0.21881971765257
504 => 0.2161059929983
505 => 0.218486661135
506 => 0.21812017593565
507 => 0.21502667203545
508 => 0.21493984768421
509 => 0.2090024246467
510 => 0.20680749453832
511 => 0.20497324665208
512 => 0.20297029584456
513 => 0.20178287946635
514 => 0.20360729069438
515 => 0.20402455512803
516 => 0.20003544809269
517 => 0.19949174754403
518 => 0.20274933845994
519 => 0.20131579415308
520 => 0.20279023002288
521 => 0.20313231179215
522 => 0.20307722874848
523 => 0.2015804438506
524 => 0.20253444990974
525 => 0.20027794117698
526 => 0.19782432684675
527 => 0.19625907376964
528 => 0.19489318285917
529 => 0.19565105852234
530 => 0.19294937016575
531 => 0.19208504568624
601 => 0.20221125412272
602 => 0.20969159316984
603 => 0.20958282607756
604 => 0.2089207343759
605 => 0.20793700040763
606 => 0.21264242134545
607 => 0.21100314677858
608 => 0.21219585599195
609 => 0.2124994505446
610 => 0.21341833981865
611 => 0.21374676375292
612 => 0.21275403851847
613 => 0.20942233138047
614 => 0.20112003396178
615 => 0.19725529210176
616 => 0.19597986291559
617 => 0.19602622234412
618 => 0.19474742234759
619 => 0.19512408625837
620 => 0.19461643401097
621 => 0.19365506346869
622 => 0.19559169660043
623 => 0.19581487552788
624 => 0.19536284221389
625 => 0.19546931242318
626 => 0.19172666964928
627 => 0.19201121465079
628 => 0.19042683192417
629 => 0.19012977926294
630 => 0.18612459769804
701 => 0.17902883799546
702 => 0.18296057767275
703 => 0.17821158902884
704 => 0.17641307507047
705 => 0.18492696042308
706 => 0.1840724024721
707 => 0.18260977072743
708 => 0.1804462335379
709 => 0.17964375654877
710 => 0.17476816039614
711 => 0.17448008416515
712 => 0.17689656127056
713 => 0.17578144023232
714 => 0.17421538796525
715 => 0.16854330540213
716 => 0.16216600663918
717 => 0.16235849720256
718 => 0.16438699728519
719 => 0.17028513485595
720 => 0.16798063046824
721 => 0.16630868609381
722 => 0.16599558117095
723 => 0.16991474481018
724 => 0.17546118244986
725 => 0.17806344689586
726 => 0.17548468186182
727 => 0.1725223354413
728 => 0.17270263974173
729 => 0.17390212347471
730 => 0.17402817225526
731 => 0.17209998926963
801 => 0.17264276148569
802 => 0.17181824085736
803 => 0.16675815928328
804 => 0.1666666384533
805 => 0.16542481283018
806 => 0.16538721084385
807 => 0.16327455567101
808 => 0.16297898060823
809 => 0.15878417553355
810 => 0.16154520893675
811 => 0.15969325269064
812 => 0.15690191779545
813 => 0.1564206906074
814 => 0.15640622433703
815 => 0.15927230114333
816 => 0.16151171716055
817 => 0.15972546826243
818 => 0.15931877401331
819 => 0.16366120459501
820 => 0.16310859072135
821 => 0.16263003067075
822 => 0.17496455979309
823 => 0.16520081751745
824 => 0.16094326859034
825 => 0.15567374330643
826 => 0.15738952731012
827 => 0.15775106820981
828 => 0.14507880980534
829 => 0.13993767614887
830 => 0.13817343281751
831 => 0.13715808583757
901 => 0.13762079220625
902 => 0.1329931689206
903 => 0.13610300830238
904 => 0.13209587770027
905 => 0.13142406921449
906 => 0.1385893151193
907 => 0.1395863172282
908 => 0.13533279648738
909 => 0.13806424538544
910 => 0.13707378404502
911 => 0.13216456845328
912 => 0.13197707252742
913 => 0.12951380071076
914 => 0.12565925730109
915 => 0.12389762753166
916 => 0.12298015545258
917 => 0.12335872231358
918 => 0.12316730732432
919 => 0.1219181950413
920 => 0.12323890497822
921 => 0.11986503684441
922 => 0.11852153536842
923 => 0.11791470692071
924 => 0.11492020475934
925 => 0.11968578935923
926 => 0.12062466956067
927 => 0.12156539964613
928 => 0.12975381277638
929 => 0.12934474279661
930 => 0.13304253618859
1001 => 0.13289884673718
1002 => 0.13184417616151
1003 => 0.12739469448763
1004 => 0.12916817857845
1005 => 0.12370967020752
1006 => 0.12779955582151
1007 => 0.12593310282499
1008 => 0.1271685061859
1009 => 0.12494713955115
1010 => 0.1261765355648
1011 => 0.12084731288658
1012 => 0.11587095973385
1013 => 0.11787358951132
1014 => 0.12005067710791
1015 => 0.12477115772894
1016 => 0.12195967841418
1017 => 0.12297079268957
1018 => 0.11958372912549
1019 => 0.11259524952592
1020 => 0.1126348035615
1021 => 0.11155977822741
1022 => 0.11063079938249
1023 => 0.1222826106339
1024 => 0.12083352371691
1025 => 0.11852459336649
1026 => 0.12161518839377
1027 => 0.12243239077332
1028 => 0.12245565537622
1029 => 0.12471047372832
1030 => 0.12591387068703
1031 => 0.12612597461683
1101 => 0.12967398001243
1102 => 0.13086322462171
1103 => 0.13576155485915
1104 => 0.12581177086275
1105 => 0.12560686160898
1106 => 0.12165867940383
1107 => 0.11915467983102
1108 => 0.12183013039684
1109 => 0.12420021436273
1110 => 0.12173232451923
1111 => 0.12205457883279
1112 => 0.1187416383519
1113 => 0.11992585868548
1114 => 0.12094586876847
1115 => 0.12038267915406
1116 => 0.11953955704262
1117 => 0.12400589450561
1118 => 0.12375388624223
1119 => 0.12791304236842
1120 => 0.1311554019929
1121 => 0.13696629008107
1122 => 0.13090232543262
1123 => 0.13068133045875
1124 => 0.132841591777
1125 => 0.13086289389696
1126 => 0.13211336265482
1127 => 0.13676482023201
1128 => 0.13686309820095
1129 => 0.13521681559727
1130 => 0.13511663915122
1201 => 0.13543282573362
1202 => 0.13728474042261
1203 => 0.13663762452668
1204 => 0.13738648342442
1205 => 0.13832294294297
1206 => 0.1421965365623
1207 => 0.14313044686993
1208 => 0.14086152899936
1209 => 0.14106638687908
1210 => 0.1402177493123
1211 => 0.13939797605619
1212 => 0.14124070661766
1213 => 0.1446083329377
1214 => 0.14458738310915
1215 => 0.14536860695809
1216 => 0.14585530294398
1217 => 0.14376604748932
1218 => 0.14240601901238
1219 => 0.1429275404713
1220 => 0.14376146464137
1221 => 0.14265711010229
1222 => 0.13584052230035
1223 => 0.13790823959415
1224 => 0.13756407033025
1225 => 0.13707393144605
1226 => 0.13915303717414
1227 => 0.13895250235466
1228 => 0.13294570595515
1229 => 0.13333024157164
1230 => 0.13296909083961
1231 => 0.1341360427393
]
'min_raw' => 0.11063079938249
'max_raw' => 0.24782664751705
'avg_raw' => 0.17922872344977
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.11063'
'max' => '$0.247826'
'avg' => '$0.179228'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.026977893874195
'max_diff' => -0.18009048598558
'year' => 2034
]
9 => [
'items' => [
101 => 0.13079987466477
102 => 0.13182605749506
103 => 0.13246966974635
104 => 0.13284876230682
105 => 0.13421830458145
106 => 0.13405760460272
107 => 0.13420831524514
108 => 0.13623898489266
109 => 0.14650941512815
110 => 0.14706841198544
111 => 0.14431570701665
112 => 0.14541535835697
113 => 0.14330426825086
114 => 0.14472145718217
115 => 0.14569106185628
116 => 0.14130960477824
117 => 0.1410501633255
118 => 0.13893035999956
119 => 0.14006942223512
120 => 0.13825709231686
121 => 0.1387017746862
122 => 0.13745840401483
123 => 0.13969622367065
124 => 0.14219845376788
125 => 0.1428306159065
126 => 0.1411676694827
127 => 0.13996358667836
128 => 0.13784961392348
129 => 0.14136519772781
130 => 0.14239326156767
131 => 0.14135979774611
201 => 0.14112032159703
202 => 0.14066651472724
203 => 0.14121659886974
204 => 0.14238766251121
205 => 0.14183541052404
206 => 0.14220018269099
207 => 0.140810047342
208 => 0.14376673911981
209 => 0.14846267722959
210 => 0.14847777543847
211 => 0.14792552047446
212 => 0.14769954964169
213 => 0.1482661967484
214 => 0.1485735795587
215 => 0.15040601239649
216 => 0.15237228583877
217 => 0.1615480260416
218 => 0.15897151490996
219 => 0.16711277748514
220 => 0.17355145917146
221 => 0.17548213827977
222 => 0.1737060043456
223 => 0.16762994610169
224 => 0.16733182569687
225 => 0.1764120219589
226 => 0.17384645061554
227 => 0.17354128406783
228 => 0.17029482758719
301 => 0.17221388544871
302 => 0.17179415934351
303 => 0.17113160115276
304 => 0.1747930298698
305 => 0.18164689757011
306 => 0.18057865801385
307 => 0.17978126673931
308 => 0.17628733029139
309 => 0.178391460432
310 => 0.17764221999089
311 => 0.18086143240563
312 => 0.17895444228542
313 => 0.17382701388931
314 => 0.17464357376161
315 => 0.17452015237961
316 => 0.17706015567561
317 => 0.17629770973291
318 => 0.17437127257247
319 => 0.18162347179542
320 => 0.18115255431673
321 => 0.18182020763478
322 => 0.18211412927326
323 => 0.18652841514218
324 => 0.18833680682128
325 => 0.18874734339279
326 => 0.19046517562191
327 => 0.18870460216202
328 => 0.19574815126917
329 => 0.20043170042295
330 => 0.20587188377829
331 => 0.21382145384387
401 => 0.21681056572617
402 => 0.21627060941914
403 => 0.22229788271568
404 => 0.2331287588508
405 => 0.21845983915264
406 => 0.23390624721372
407 => 0.22901609275894
408 => 0.21742162451678
409 => 0.21667507745179
410 => 0.22452698595992
411 => 0.24194176331278
412 => 0.23757955910266
413 => 0.24194889831615
414 => 0.2368518320325
415 => 0.23659871973006
416 => 0.24170134518362
417 => 0.25362390768548
418 => 0.24795994515142
419 => 0.23983926599825
420 => 0.24583544911319
421 => 0.24064100037848
422 => 0.22893645354452
423 => 0.23757622340731
424 => 0.23179905534654
425 => 0.23348514011782
426 => 0.24562788809266
427 => 0.2441668405306
428 => 0.24605757136527
429 => 0.24272048093113
430 => 0.23960311225477
501 => 0.23378431212153
502 => 0.23206165226545
503 => 0.23253773347486
504 => 0.23206141634325
505 => 0.22880585114623
506 => 0.2281028121519
507 => 0.22693104969383
508 => 0.22729422787645
509 => 0.2250909716441
510 => 0.22924897137052
511 => 0.23002073275991
512 => 0.2330465782124
513 => 0.23336073152514
514 => 0.24178766804011
515 => 0.23714625301658
516 => 0.24026011493486
517 => 0.23998158181608
518 => 0.21767291180109
519 => 0.22074684969809
520 => 0.22552893241098
521 => 0.22337461063078
522 => 0.22032890366725
523 => 0.21786933199372
524 => 0.2141428294042
525 => 0.2193878102378
526 => 0.22628440229246
527 => 0.23353564048075
528 => 0.24224752804405
529 => 0.24030313615747
530 => 0.23337277780262
531 => 0.23368366861579
601 => 0.23560547329177
602 => 0.23311656162201
603 => 0.23238253298127
604 => 0.23550462902831
605 => 0.23552612918791
606 => 0.23266233551683
607 => 0.22947975292012
608 => 0.22946641778284
609 => 0.22890010794985
610 => 0.23695257729372
611 => 0.24138062123636
612 => 0.24188828933824
613 => 0.24134645112822
614 => 0.24155498315047
615 => 0.23897840194553
616 => 0.24486770251859
617 => 0.2502723071159
618 => 0.24882375763128
619 => 0.2466521760304
620 => 0.24492240668776
621 => 0.24841627894702
622 => 0.24826070231518
623 => 0.25022510260961
624 => 0.25013598606533
625 => 0.24947543213114
626 => 0.24882378122174
627 => 0.25140750341824
628 => 0.25066343291896
629 => 0.24991820667267
630 => 0.24842354134732
701 => 0.2486266911888
702 => 0.2464554845421
703 => 0.24545098499968
704 => 0.23034572201311
705 => 0.22630910216439
706 => 0.22757910494177
707 => 0.22799722283169
708 => 0.22624048070046
709 => 0.22875919764662
710 => 0.22836665827854
711 => 0.22989379933188
712 => 0.22893970790251
713 => 0.22897886414757
714 => 0.23178464360761
715 => 0.2325991733215
716 => 0.23218489693496
717 => 0.23247504191553
718 => 0.23916131053027
719 => 0.23821073694809
720 => 0.23770576367819
721 => 0.237845644725
722 => 0.23955412971128
723 => 0.24003241222762
724 => 0.23800589559758
725 => 0.23896161255546
726 => 0.24303093406357
727 => 0.24445496628775
728 => 0.24899979357311
729 => 0.24706907016443
730 => 0.25061299654082
731 => 0.26150581800831
801 => 0.27020775752245
802 => 0.26220509432238
803 => 0.2781850980548
804 => 0.29062782315587
805 => 0.29015025064205
806 => 0.28798057371526
807 => 0.27381486199465
808 => 0.26077936287048
809 => 0.27168411140438
810 => 0.27171190985097
811 => 0.27077518228097
812 => 0.2649572477938
813 => 0.27057273077192
814 => 0.27101846741828
815 => 0.27076897342726
816 => 0.26630837669682
817 => 0.2594978699455
818 => 0.26082862666266
819 => 0.26300843331207
820 => 0.25888160456944
821 => 0.2575628327328
822 => 0.26001468048372
823 => 0.26791504479996
824 => 0.26642152668967
825 => 0.26638252489603
826 => 0.27277242872209
827 => 0.26819863661018
828 => 0.26084541176654
829 => 0.2589886255164
830 => 0.25239828520949
831 => 0.25695025673346
901 => 0.25711407408489
902 => 0.25462100580123
903 => 0.26104771051767
904 => 0.26098848730231
905 => 0.26708968694181
906 => 0.2787528891466
907 => 0.27530350634332
908 => 0.27129224943489
909 => 0.27172838428092
910 => 0.27651170706942
911 => 0.27361960091886
912 => 0.27465962245508
913 => 0.27651013287226
914 => 0.27762659175254
915 => 0.27156774302938
916 => 0.27015513556377
917 => 0.267265436447
918 => 0.26651156788622
919 => 0.26886516752128
920 => 0.26824507717135
921 => 0.25710030587083
922 => 0.25593561526101
923 => 0.25597133465921
924 => 0.25304266474279
925 => 0.24857574015892
926 => 0.26031455125912
927 => 0.25937176044321
928 => 0.25833099234867
929 => 0.25845848050171
930 => 0.26355390053509
1001 => 0.26059829959085
1002 => 0.26845624911457
1003 => 0.26684089092408
1004 => 0.2651841048913
1005 => 0.26495508659464
1006 => 0.26431736532236
1007 => 0.26213038179409
1008 => 0.25948946776637
1009 => 0.25774570757322
1010 => 0.23775679084974
1011 => 0.24146661752344
1012 => 0.24573443495018
1013 => 0.24720766842369
1014 => 0.2446876006226
1015 => 0.26222988943087
1016 => 0.26543503463785
1017 => 0.25572644073948
1018 => 0.25391035922037
1019 => 0.26234895143292
1020 => 0.25725944875281
1021 => 0.25955125149803
1022 => 0.25459762751194
1023 => 0.26466300901509
1024 => 0.26458632767217
1025 => 0.26067066693049
1026 => 0.26398015657607
1027 => 0.26340505130761
1028 => 0.2589842799741
1029 => 0.26480315535155
1030 => 0.26480604144114
1031 => 0.26103730311108
1101 => 0.25663624182448
1102 => 0.25584943601487
1103 => 0.25525668352981
1104 => 0.25940547072309
1105 => 0.26312526034767
1106 => 0.27004686662497
1107 => 0.27178712289638
1108 => 0.27857945897916
1109 => 0.27453495355471
1110 => 0.27632783042425
1111 => 0.27827425188406
1112 => 0.27920743790917
1113 => 0.27768686135878
1114 => 0.28823815513239
1115 => 0.28912900761017
1116 => 0.28942770274013
1117 => 0.28586986584585
1118 => 0.28903005773006
1119 => 0.28755150860199
1120 => 0.29139828268045
1121 => 0.29200150597403
1122 => 0.29149059730466
1123 => 0.29168206989927
1124 => 0.28267840203926
1125 => 0.28221151436259
1126 => 0.27584546776231
1127 => 0.27843967880736
1128 => 0.27358992560241
1129 => 0.27512783230169
1130 => 0.27580572692103
1201 => 0.27545163324207
1202 => 0.27858635160753
1203 => 0.27592120061623
1204 => 0.26888742895882
1205 => 0.26185174095501
1206 => 0.26176341362327
1207 => 0.25991104116208
1208 => 0.25857211515157
1209 => 0.25883003980215
1210 => 0.25973899991242
1211 => 0.25851928473757
1212 => 0.25877957281125
1213 => 0.26310208912476
1214 => 0.26396893894465
1215 => 0.26102304455655
1216 => 0.2491948534978
1217 => 0.2462921857432
1218 => 0.2483785657628
1219 => 0.24738141049352
1220 => 0.19965610559574
1221 => 0.21086845806202
1222 => 0.20420645896206
1223 => 0.20727661465116
1224 => 0.20047643868642
1225 => 0.20372183908455
1226 => 0.20312253213406
1227 => 0.22115166310221
1228 => 0.2208701630204
1229 => 0.22100490221291
1230 => 0.21457344949336
1231 => 0.22481892830858
]
'min_raw' => 0.13079987466477
'max_raw' => 0.29200150597403
'avg_raw' => 0.2114006903194
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.130799'
'max' => '$0.2920015'
'avg' => '$0.21140069'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.020169075282277
'max_diff' => 0.044174858456974
'year' => 2035
]
10 => [
'items' => [
101 => 0.22986621958846
102 => 0.22893210030186
103 => 0.22916719800149
104 => 0.22512744060596
105 => 0.22104401589497
106 => 0.21651486945593
107 => 0.22492946372025
108 => 0.22399390447997
109 => 0.22613974077358
110 => 0.23159720664161
111 => 0.23240083922157
112 => 0.23348092955868
113 => 0.23309379405889
114 => 0.2423169322836
115 => 0.24119994938836
116 => 0.24389155678798
117 => 0.23835471615423
118 => 0.23208925541541
119 => 0.23328011466851
120 => 0.23316542534615
121 => 0.23170529863824
122 => 0.23038716153301
123 => 0.22819283463564
124 => 0.23513600963821
125 => 0.23485412941283
126 => 0.23941744261179
127 => 0.23861083267821
128 => 0.23322409413087
129 => 0.23341648255191
130 => 0.23471038714214
131 => 0.23918860570245
201 => 0.24051804587152
202 => 0.23990219621617
203 => 0.24135986667031
204 => 0.24251194996324
205 => 0.24150455059411
206 => 0.25576720124374
207 => 0.24984435430548
208 => 0.25273110869229
209 => 0.2534195826038
210 => 0.25165607115651
211 => 0.25203851364282
212 => 0.25261780980023
213 => 0.25613518263022
214 => 0.26536578669615
215 => 0.2694539584021
216 => 0.2817534246863
217 => 0.26911449265202
218 => 0.2683645507302
219 => 0.27058005601629
220 => 0.27780114475584
221 => 0.28365315893687
222 => 0.28559460965151
223 => 0.28585120441331
224 => 0.28949349501919
225 => 0.29158118806978
226 => 0.28905122513788
227 => 0.28690734645126
228 => 0.2792282391038
229 => 0.28011711668878
301 => 0.28624060179183
302 => 0.29489038517136
303 => 0.30231279916758
304 => 0.29971372848335
305 => 0.31954280314606
306 => 0.32150877490437
307 => 0.32123714117485
308 => 0.32571591741608
309 => 0.31682645866415
310 => 0.31302604282254
311 => 0.28737087735736
312 => 0.29457893239248
313 => 0.30505626370025
314 => 0.30366954961369
315 => 0.29606063155812
316 => 0.30230702712092
317 => 0.30024177340501
318 => 0.29861282211182
319 => 0.30607536377369
320 => 0.29786999267214
321 => 0.30497440884673
322 => 0.29586292161705
323 => 0.2997256008193
324 => 0.29753295728733
325 => 0.2989518663728
326 => 0.29065695285222
327 => 0.29513268684028
328 => 0.29047074760347
329 => 0.29046853723727
330 => 0.29036562467023
331 => 0.29585037550814
401 => 0.29602923303605
402 => 0.29197599387984
403 => 0.29139185879394
404 => 0.29355171236412
405 => 0.29102308949998
406 => 0.29220621622315
407 => 0.29105892520315
408 => 0.29080064582891
409 => 0.2887426318323
410 => 0.28785598281628
411 => 0.28820366074159
412 => 0.28701685674226
413 => 0.28630176440408
414 => 0.29022337480556
415 => 0.28812821656536
416 => 0.28990226175645
417 => 0.28788051335885
418 => 0.28087225257894
419 => 0.2768417276934
420 => 0.26360377274626
421 => 0.26735804034763
422 => 0.26984712365142
423 => 0.26902448163436
424 => 0.27079183500719
425 => 0.27090033615043
426 => 0.27032575155289
427 => 0.26966045619779
428 => 0.26933662721206
429 => 0.27175018316355
430 => 0.27315133362994
501 => 0.27009693646059
502 => 0.26938133393937
503 => 0.27246949811547
504 => 0.27435327647892
505 => 0.28826203751101
506 => 0.28723163156904
507 => 0.28981774827642
508 => 0.28952659122236
509 => 0.29223725353239
510 => 0.29666804079792
511 => 0.2876590114195
512 => 0.28922266741079
513 => 0.28883929507182
514 => 0.29302485374313
515 => 0.29303792060043
516 => 0.29052846909282
517 => 0.2918888834663
518 => 0.29112953748404
519 => 0.29250177830575
520 => 0.28721786986948
521 => 0.29365309998218
522 => 0.29730146077902
523 => 0.29735211827222
524 => 0.29908141233474
525 => 0.30083847525621
526 => 0.30421100452606
527 => 0.30074441724532
528 => 0.29450836419275
529 => 0.29495858708081
530 => 0.29130239145777
531 => 0.29136385276674
601 => 0.29103576748265
602 => 0.2920203761173
603 => 0.28743393609544
604 => 0.28851036440133
605 => 0.28700335846953
606 => 0.28921939147421
607 => 0.28683530628455
608 => 0.28883911019807
609 => 0.28970388553999
610 => 0.29289492516896
611 => 0.2863639871368
612 => 0.27304696238359
613 => 0.27584636244003
614 => 0.27170582986843
615 => 0.27208905192205
616 => 0.2728632214597
617 => 0.27035388469566
618 => 0.27083258707195
619 => 0.27081548445449
620 => 0.27066810333682
621 => 0.27001532792931
622 => 0.26906867444074
623 => 0.27283985057462
624 => 0.27348064688596
625 => 0.27490505770819
626 => 0.27914313812807
627 => 0.27871965395331
628 => 0.27941037421254
629 => 0.27790253576487
630 => 0.27215899622305
701 => 0.27247089805317
702 => 0.26858147723365
703 => 0.27480559647323
704 => 0.27333164288294
705 => 0.27238137541464
706 => 0.27212208613175
707 => 0.27637067193325
708 => 0.27764191539349
709 => 0.27684976177904
710 => 0.27522503160501
711 => 0.27834499384751
712 => 0.27917976412296
713 => 0.2793666384025
714 => 0.28489461330278
715 => 0.27967559079128
716 => 0.28093186138242
717 => 0.29073292591625
718 => 0.28184471283852
719 => 0.2865529975366
720 => 0.28632255150136
721 => 0.28873115063323
722 => 0.28612497607081
723 => 0.28615728272798
724 => 0.28829595558444
725 => 0.28529257526922
726 => 0.28454889606654
727 => 0.28352150857437
728 => 0.28576477157731
729 => 0.28710950629351
730 => 0.29794708050728
731 => 0.30494864770281
801 => 0.30464469120553
802 => 0.30742228460793
803 => 0.30617095334031
804 => 0.30213007459265
805 => 0.30902736188223
806 => 0.30684477158905
807 => 0.30702470168097
808 => 0.30701800467397
809 => 0.30846923641357
810 => 0.30744090572263
811 => 0.30541396037479
812 => 0.30675954129026
813 => 0.31075543555524
814 => 0.32315881396275
815 => 0.3300999088425
816 => 0.32274095133549
817 => 0.32781706168346
818 => 0.32477320427773
819 => 0.3242200448402
820 => 0.32740821726033
821 => 0.33060197015423
822 => 0.33039854190186
823 => 0.32808004130191
824 => 0.32677037914278
825 => 0.33668757978077
826 => 0.34399440427575
827 => 0.34349612783076
828 => 0.34569535801074
829 => 0.35215236583879
830 => 0.35274271371273
831 => 0.3526683434496
901 => 0.35120510464761
902 => 0.35756286740275
903 => 0.36286662494727
904 => 0.35086640714199
905 => 0.35543593298785
906 => 0.35748734036099
907 => 0.3604994150099
908 => 0.36558128982493
909 => 0.37110155377478
910 => 0.3718821796239
911 => 0.37132828822756
912 => 0.36768752575998
913 => 0.37372786444435
914 => 0.37726615318228
915 => 0.37937312315342
916 => 0.38471604843386
917 => 0.35750000915454
918 => 0.33823514382773
919 => 0.33522665691892
920 => 0.34134453335089
921 => 0.34295776857685
922 => 0.34230747548009
923 => 0.32062311806983
924 => 0.33511249326483
925 => 0.35070184267339
926 => 0.3513006930738
927 => 0.35910504734564
928 => 0.36164646500785
929 => 0.36792999313678
930 => 0.3675369567415
1001 => 0.36906689584812
1002 => 0.36871518934236
1003 => 0.38035410204826
1004 => 0.39319355115813
1005 => 0.39274896186241
1006 => 0.3909031391434
1007 => 0.39364450064067
1008 => 0.40689618808104
1009 => 0.4056761850555
1010 => 0.40686131407521
1011 => 0.42248580039978
1012 => 0.44279985517899
1013 => 0.4333619372363
1014 => 0.45383950348422
1015 => 0.46672904596815
1016 => 0.48902017689052
1017 => 0.48622921751291
1018 => 0.49490699120111
1019 => 0.48123281773618
1020 => 0.44983415145426
1021 => 0.44486519232588
1022 => 0.45481317433498
1023 => 0.47926931739447
1024 => 0.45404296335802
1025 => 0.45914622192472
1026 => 0.45767648311419
1027 => 0.45759816697897
1028 => 0.46058717532576
1029 => 0.45625146282254
1030 => 0.43858699010463
1031 => 0.44668251385386
1101 => 0.4435564433553
1102 => 0.44702505163745
1103 => 0.4657436999733
1104 => 0.45746773934718
1105 => 0.448749687112
1106 => 0.45968405930558
1107 => 0.47360727256594
1108 => 0.47273598290252
1109 => 0.47104531678467
1110 => 0.48057551317059
1111 => 0.49631660551457
1112 => 0.50057135952232
1113 => 0.50371213194622
1114 => 0.50414519139969
1115 => 0.5086059729154
1116 => 0.48461922644377
1117 => 0.52268680911758
1118 => 0.5292600290496
1119 => 0.52802453613443
1120 => 0.53533039344549
1121 => 0.53318082489287
1122 => 0.53006643731709
1123 => 0.54164777515553
1124 => 0.52837070588952
1125 => 0.50952557760297
1126 => 0.49918676751059
1127 => 0.51280174664826
1128 => 0.52111593931034
1129 => 0.526611091778
1130 => 0.52827392159445
1201 => 0.48648124929085
1202 => 0.46395731684708
1203 => 0.47839489930612
1204 => 0.49600974633488
1205 => 0.48452137507913
1206 => 0.48497169748199
1207 => 0.46859229916214
1208 => 0.49745895964034
1209 => 0.49325333001549
1210 => 0.51507214394881
1211 => 0.5098649088967
1212 => 0.52765730465785
1213 => 0.52297197056582
1214 => 0.54242053042831
1215 => 0.5501790875062
1216 => 0.56320691236295
1217 => 0.57279023336037
1218 => 0.57841774274977
1219 => 0.57807988819429
1220 => 0.60037888400915
1221 => 0.5872299452447
1222 => 0.57071177918963
1223 => 0.57041301767984
1224 => 0.57896800994398
1225 => 0.59689692678212
1226 => 0.60154563406312
1227 => 0.60414362724489
1228 => 0.60016471025022
1229 => 0.58589247961434
1230 => 0.57972980278762
1231 => 0.58498058199392
]
'min_raw' => 0.21651486945593
'max_raw' => 0.60414362724489
'avg_raw' => 0.41032924835041
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.216514'
'max' => '$0.604143'
'avg' => '$0.410329'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.085714994791166
'max_diff' => 0.31214212127086
'year' => 2036
]
11 => [
'items' => [
101 => 0.57855933022921
102 => 0.58964421226013
103 => 0.60486612289162
104 => 0.60172285854017
105 => 0.61223032000252
106 => 0.62310443719887
107 => 0.63865491317681
108 => 0.6427203834299
109 => 0.64944045116228
110 => 0.65635760828614
111 => 0.65857921273172
112 => 0.66282094494169
113 => 0.66279858891917
114 => 0.67558133443544
115 => 0.68968109858856
116 => 0.69500343314607
117 => 0.70724184798583
118 => 0.68628399145795
119 => 0.70218076638086
120 => 0.7165200552834
121 => 0.69942416391429
122 => 0.72298686733479
123 => 0.72390175371437
124 => 0.73771545184295
125 => 0.72371262240529
126 => 0.71539778698382
127 => 0.73940240529278
128 => 0.75101748395409
129 => 0.74751892773466
130 => 0.72089474215975
131 => 0.70539832419011
201 => 0.66484120932779
202 => 0.71288286381919
203 => 0.73628255232768
204 => 0.72083414261946
205 => 0.72862542189596
206 => 0.77113211529773
207 => 0.78731591204055
208 => 0.78394979545132
209 => 0.7845186137439
210 => 0.79325109670963
211 => 0.8319757352459
212 => 0.80877103420488
213 => 0.82651015868718
214 => 0.83591892634942
215 => 0.84465831411043
216 => 0.82319713988126
217 => 0.79527646753637
218 => 0.78643281857465
219 => 0.71929810272886
220 => 0.71580344921779
221 => 0.71384179430319
222 => 0.70147383754823
223 => 0.6917560114073
224 => 0.68402803526028
225 => 0.66374751808148
226 => 0.6705915972885
227 => 0.63826868577838
228 => 0.6589477391089
301 => 0.60735959187477
302 => 0.65032373384143
303 => 0.6269403047088
304 => 0.64264164847605
305 => 0.6425868679668
306 => 0.61367571597572
307 => 0.59700036686761
308 => 0.6076265483336
309 => 0.61901865837246
310 => 0.62086698989861
311 => 0.6356371579285
312 => 0.63975919434194
313 => 0.62726923156973
314 => 0.60629054218895
315 => 0.61116341325915
316 => 0.59690161829091
317 => 0.57190837118109
318 => 0.58985895759559
319 => 0.59598807702907
320 => 0.59869504533913
321 => 0.57411705730045
322 => 0.56639411984461
323 => 0.56228249274485
324 => 0.60311783257031
325 => 0.60535488466652
326 => 0.59390980985504
327 => 0.64564263326947
328 => 0.63393390204907
329 => 0.64701542353105
330 => 0.61072125128454
331 => 0.61210773754094
401 => 0.59492549475953
402 => 0.60454640259925
403 => 0.59774665503447
404 => 0.60376912832146
405 => 0.6073789739781
406 => 0.62455839732254
407 => 0.65051989526033
408 => 0.62199236435816
409 => 0.60956251062232
410 => 0.61727392197188
411 => 0.63781042659368
412 => 0.66892428234004
413 => 0.6505042535135
414 => 0.65867874951434
415 => 0.66046451323251
416 => 0.64688226592235
417 => 0.66942507917188
418 => 0.6815059559298
419 => 0.69389843569821
420 => 0.70465847865172
421 => 0.68894860676223
422 => 0.70576042160566
423 => 0.69221306652668
424 => 0.680059688521
425 => 0.68007812017874
426 => 0.67245412862326
427 => 0.65768168429975
428 => 0.65495741891654
429 => 0.6691293914768
430 => 0.68049397137933
501 => 0.68143001261277
502 => 0.68772202798001
503 => 0.69144557786144
504 => 0.72794142861996
505 => 0.74262036170455
506 => 0.7605694832224
507 => 0.76756167761066
508 => 0.78860567587891
509 => 0.77161093816733
510 => 0.76793401976151
511 => 0.71688816340212
512 => 0.72524691952133
513 => 0.73863009456818
514 => 0.71710884702931
515 => 0.73075912508439
516 => 0.73345397912488
517 => 0.71637756327315
518 => 0.72549881480793
519 => 0.70127547499415
520 => 0.65104789787353
521 => 0.66948099682353
522 => 0.68305396216476
523 => 0.66368366708827
524 => 0.69840417127893
525 => 0.67812116950744
526 => 0.67169243170166
527 => 0.64661163351082
528 => 0.65844880480844
529 => 0.67445874848044
530 => 0.66456646464687
531 => 0.68509443893542
601 => 0.71416752513879
602 => 0.73488673769952
603 => 0.73647730156845
604 => 0.72315623597133
605 => 0.74450332860462
606 => 0.7446588188693
607 => 0.72057921117352
608 => 0.70583058553567
609 => 0.70247966675937
610 => 0.71085091884888
611 => 0.72101516430393
612 => 0.73704134645166
613 => 0.74672563267851
614 => 0.77197711500962
615 => 0.77880944211168
616 => 0.7863160981647
617 => 0.79634730561853
618 => 0.80839234211565
619 => 0.78203848798426
620 => 0.78308557573863
621 => 0.75854523166543
622 => 0.73232035458188
623 => 0.75222176731121
624 => 0.77824021708083
625 => 0.77227155595585
626 => 0.77159995965061
627 => 0.77272939835074
628 => 0.76822922278076
629 => 0.74787509546199
630 => 0.73765338014608
701 => 0.7508420007413
702 => 0.75785116562968
703 => 0.76872176910815
704 => 0.76738173777883
705 => 0.79538324492179
706 => 0.80626378387592
707 => 0.80348007640694
708 => 0.80399234557489
709 => 0.82369104162907
710 => 0.84560004298714
711 => 0.86612071390633
712 => 0.88699522174866
713 => 0.86183018779882
714 => 0.84905293552262
715 => 0.86223579837866
716 => 0.85524078578501
717 => 0.8954362030036
718 => 0.89821924648106
719 => 0.93841175711348
720 => 0.97655923573878
721 => 0.95259948789729
722 => 0.97519245094107
723 => 0.99962858250421
724 => 1.046769844909
725 => 1.0308943261807
726 => 1.0187339276359
727 => 1.0072424097697
728 => 1.0311544342222
729 => 1.0619168716764
730 => 1.0685428060651
731 => 1.0792793510765
801 => 1.0679911867992
802 => 1.0815865373207
803 => 1.129584098761
804 => 1.1166147339736
805 => 1.0981961510461
806 => 1.1360856160685
807 => 1.1497976661685
808 => 1.2460360148268
809 => 1.3675409054158
810 => 1.3172370828679
811 => 1.2860118769181
812 => 1.2933505409881
813 => 1.3377200138311
814 => 1.3519700802916
815 => 1.3132334873595
816 => 1.3269159068498
817 => 1.4023073834672
818 => 1.4427524918243
819 => 1.3878226021726
820 => 1.2362732151747
821 => 1.0965377591756
822 => 1.1336018944761
823 => 1.1293999717671
824 => 1.2103987081143
825 => 1.1163054189127
826 => 1.1178897085872
827 => 1.2005634130228
828 => 1.1785074860655
829 => 1.1427797091043
830 => 1.0967986114861
831 => 1.0117982998021
901 => 0.93651115333453
902 => 1.0841665851518
903 => 1.0777994144379
904 => 1.0685788076822
905 => 1.089098270243
906 => 1.188734955887
907 => 1.1864380077905
908 => 1.1718259959133
909 => 1.1829090781378
910 => 1.1408367912045
911 => 1.1516797775154
912 => 1.0965156243654
913 => 1.1214521254477
914 => 1.1427030533411
915 => 1.1469694917411
916 => 1.156581995306
917 => 1.0744442047981
918 => 1.1113216612973
919 => 1.1329837120402
920 => 1.0351137787116
921 => 1.1310491381341
922 => 1.0730143686054
923 => 1.0533164961744
924 => 1.0798370864054
925 => 1.0695019866003
926 => 1.0606164746852
927 => 1.0556582063642
928 => 1.0751320008591
929 => 1.0742235250697
930 => 1.0423606175754
1001 => 1.0007967536473
1002 => 1.0147469506688
1003 => 1.0096787133071
1004 => 0.99131076729253
1005 => 1.0036885451521
1006 => 0.9491830757086
1007 => 0.85540924847882
1008 => 0.91735911111682
1009 => 0.91497410879374
1010 => 0.9137714824712
1011 => 0.96032509207521
1012 => 0.9558500366863
1013 => 0.94772776733555
1014 => 0.99116159544635
1015 => 0.97530766391848
1016 => 1.0241657452313
1017 => 1.0563468375265
1018 => 1.0481846715712
1019 => 1.0784511444195
1020 => 1.0150683350328
1021 => 1.0361215618341
1022 => 1.0404606026994
1023 => 0.99062562874952
1024 => 0.95658221109187
1025 => 0.95431190325748
1026 => 0.89528530851104
1027 => 0.92681683897856
1028 => 0.95456328092659
1029 => 0.94127488844436
1030 => 0.93706818036392
1031 => 0.95855933962323
1101 => 0.96022938675701
1102 => 0.92215213512317
1103 => 0.93006960148758
1104 => 0.96308675239645
1105 => 0.92923765399796
1106 => 0.86347438502853
1107 => 0.84716418507579
1108 => 0.84498810374546
1109 => 0.80075354789535
1110 => 0.84825411062689
1111 => 0.82751884205863
1112 => 0.89302130701909
1113 => 0.85560665033044
1114 => 0.85399377926032
1115 => 0.85155568808109
1116 => 0.8134811785544
1117 => 0.82181707637943
1118 => 0.84952687034293
1119 => 0.85941403700227
1120 => 0.85838272451654
1121 => 0.84939107723548
1122 => 0.85350740731606
1123 => 0.84024727390203
1124 => 0.83556484480773
1125 => 0.82078581058252
1126 => 0.79906471308386
1127 => 0.80208516491428
1128 => 0.75904998713512
1129 => 0.73560213823127
1130 => 0.72911208269237
1201 => 0.72043330918766
1202 => 0.73009237325306
1203 => 0.75892807388355
1204 => 0.72414610108802
1205 => 0.6645148484018
1206 => 0.66809878829495
1207 => 0.67615083715356
1208 => 0.66114589737518
1209 => 0.64694498114407
1210 => 0.65929152565027
1211 => 0.6340249777822
1212 => 0.67920417875106
1213 => 0.6779822079781
1214 => 0.69482222023624
1215 => 0.7053526254931
1216 => 0.68108345063523
1217 => 0.6749798187893
1218 => 0.67845672488334
1219 => 0.62099121205288
1220 => 0.69012606184817
1221 => 0.69072394290009
1222 => 0.68560452234946
1223 => 0.72241669556643
1224 => 0.80010186305901
1225 => 0.77087357816968
1226 => 0.75955550283094
1227 => 0.73803983333855
1228 => 0.76670818546312
1229 => 0.76450690331592
1230 => 0.75455187063478
1231 => 0.74853103580764
]
'min_raw' => 0.56228249274485
'max_raw' => 1.4427524918243
'avg_raw' => 1.0025174922846
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.562282'
'max' => '$1.44'
'avg' => '$1.00'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.34576762328891
'max_diff' => 0.83860886457943
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.017649404941448
]
1 => [
'year' => 2028
'avg' => 0.030291502538388
]
2 => [
'year' => 2029
'avg' => 0.082750925422727
]
3 => [
'year' => 2030
'avg' => 0.063842215727258
]
4 => [
'year' => 2031
'avg' => 0.062700967722861
]
5 => [
'year' => 2032
'avg' => 0.10993452913893
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.017649404941448
'min' => '$0.017649'
'max_raw' => 0.10993452913893
'max' => '$0.109934'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.10993452913893
]
1 => [
'year' => 2033
'avg' => 0.28276291337966
]
2 => [
'year' => 2034
'avg' => 0.17922872344977
]
3 => [
'year' => 2035
'avg' => 0.2114006903194
]
4 => [
'year' => 2036
'avg' => 0.41032924835041
]
5 => [
'year' => 2037
'avg' => 1.0025174922846
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.10993452913893
'min' => '$0.109934'
'max_raw' => 1.0025174922846
'max' => '$1.00'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 1.0025174922846
]
]
]
]
'prediction_2025_max_price' => '$0.030177'
'last_price' => 0.02926067
'sma_50day_nextmonth' => '$0.026878'
'sma_200day_nextmonth' => '$0.042829'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 de fev. de 2026'
'sma_50day_date_nextmonth' => '4 de fev. de 2026'
'daily_sma3' => '$0.028358'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.028038'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.027383'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.026904'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.028873'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.034842'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.045519'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.028561'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.028162'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.027671'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.027689'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.029786'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.035417'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.048632'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.04401'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.055584'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.183651'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.028591'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.029046'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.032042'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.0402029'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.07459'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.16522'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.146756'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '56.36'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 119.39
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.027625'
'vwma_10_action' => 'BUY'
'hma_9' => '0.028656'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 225.38
'cci_20_action' => 'SELL'
'adx_14' => 11
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '-0.000292'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 72.36
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '-0.001312'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 14
'buy_signals' => 19
'sell_pct' => 42.42
'buy_pct' => 57.58
'overall_action' => 'bullish'
'overall_action_label' => 'Altista'
'overall_action_dir' => 1
'last_updated' => 1767707949
'last_updated_date' => '6 de janeiro de 2026'
]
Previsão de preço de Maverick Protocol para 2026
A previsão de preço para Maverick Protocol em 2026 sugere que o preço médio poderia variar entre $0.0101095 na extremidade inferior e $0.030177 na extremidade superior. No mercado de criptomoedas, comparado ao preço médio de hoje, Maverick Protocol poderia potencialmente ganhar 3.13% até 2026 se MAV atingir a meta de preço prevista.
Previsão de preço de Maverick Protocol 2027-2032
A previsão de preço de MAV para 2027-2032 está atualmente dentro de uma faixa de preço entre $0.017649 na extremidade inferior e $0.109934 na extremidade superior. Considerando a volatilidade de preços no mercado, se Maverick Protocol atingir a meta de preço superior, poderia ganhar 275.71% até 2032 em comparação com o preço de hoje.
| Previsão de Preço de Maverick Protocol | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.009732 | $0.017649 | $0.025566 |
| 2028 | $0.017563 | $0.030291 | $0.043019 |
| 2029 | $0.038582 | $0.08275 | $0.126919 |
| 2030 | $0.032812 | $0.063842 | $0.094871 |
| 2031 | $0.038794 | $0.06270096 | $0.0866069 |
| 2032 | $0.059217 | $0.109934 | $0.160651 |
Previsão de preço de Maverick Protocol 2032-2037
A previsão de preço de Maverick Protocol para 2032-2037 é atualmente estimada entre $0.109934 na extremidade inferior e $1.00 na extremidade superior. Comparado ao preço atual, Maverick Protocol poderia potencialmente ganhar 3326.16% até 2037 se atingir a meta de preço superior. Por favor, note que esta informação é apenas para fins gerais e não deve ser considerada como aconselhamento de investimento a longo prazo.
| Previsão de Preço de Maverick Protocol | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.059217 | $0.109934 | $0.160651 |
| 2033 | $0.1376086 | $0.282762 | $0.427917 |
| 2034 | $0.11063 | $0.179228 | $0.247826 |
| 2035 | $0.130799 | $0.21140069 | $0.2920015 |
| 2036 | $0.216514 | $0.410329 | $0.604143 |
| 2037 | $0.562282 | $1.00 | $1.44 |
Maverick Protocol Histograma de preços potenciais
Previsão de preço de Maverick Protocol baseada na análise técnica
Em 6 de janeiro de 2026, o sentimento geral de previsão de preço para Maverick Protocol é Altista, com 19 indicadores técnicos mostrando sinais de alta e 14 indicando sinais de baixa. A previsão de preço de MAV foi atualizada pela última vez em 6 de janeiro de 2026.
Médias Móveis Simples de 50 e 200 dias e Índice de Força Relativa de 14 dias - RSI (14) de Maverick Protocol
De acordo com nossos indicadores técnicos, o SMA de 200 dias de Maverick Protocol está projetado para aumentar no próximo mês, alcançando $0.042829 até 4 de fev. de 2026. O SMA de 50 dias de curto prazo para Maverick Protocol é esperado para alcançar $0.026878 até 4 de fev. de 2026.
O oscilador de momentum Índice de Força Relativa (RSI) é uma ferramenta comumente usada para identificar se uma criptomoeda está sobrevendida (abaixo de 30) ou sobrecomprada (acima de 70). No momento, o RSI está em 56.36, sugerindo que o mercado de MAV está em um estado NEUTRAL.
Médias Móveis e Osciladores Populares de MAV para Sábado, 19 de Outubro de 2024
Médias móveis (MA) são indicadores amplamente utilizados nos mercados financeiros, projetados para suavizar movimentos de preços ao longo de um período definido. Como indicadores atrasados, eles se baseiam em dados históricos de preços. A tabela abaixo destaca dois tipos: a média móvel simples (SMA) e a média móvel exponencial (EMA).
Média Móvel Simples Diária (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 3 | $0.028358 | BUY |
| SMA 5 | $0.028038 | BUY |
| SMA 10 | $0.027383 | BUY |
| SMA 21 | $0.026904 | BUY |
| SMA 50 | $0.028873 | BUY |
| SMA 100 | $0.034842 | SELL |
| SMA 200 | $0.045519 | SELL |
Média Móvel Exponencial Diária (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 3 | $0.028561 | BUY |
| EMA 5 | $0.028162 | BUY |
| EMA 10 | $0.027671 | BUY |
| EMA 21 | $0.027689 | BUY |
| EMA 50 | $0.029786 | SELL |
| EMA 100 | $0.035417 | SELL |
| EMA 200 | $0.048632 | SELL |
Média Móvel Simples Semanal (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 21 | $0.04401 | SELL |
| SMA 50 | $0.055584 | SELL |
| SMA 100 | $0.183651 | SELL |
| SMA 200 | — | — |
Média Móvel Exponencial Semanal (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 21 | $0.0402029 | SELL |
| EMA 50 | $0.07459 | SELL |
| EMA 100 | $0.16522 | SELL |
| EMA 200 | $0.146756 | SELL |
Osciladores de Maverick Protocol
Um oscilador é uma ferramenta de análise técnica que define limites altos e baixos entre dois extremos, criando um indicador de tendência que flutua dentro desses limites. Os traders usam esse indicador para identificar condições de sobrecompra ou sobrevenda de curto prazo.
| Período | Valor | Ação |
|---|---|---|
| RSI (14) | 56.36 | NEUTRAL |
| Stoch RSI (14) | 119.39 | SELL |
| Estocástico Rápido (14) | 100 | SELL |
| Índice de Canal de Commodities (20) | 225.38 | SELL |
| Índice Direcional Médio (14) | 11 | NEUTRAL |
| Oscilador Impressionante (5, 34) | -0.000292 | NEUTRAL |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Williams Percent Range (14) | -0 | SELL |
| Oscilador Ultimate (7, 14, 28) | 72.36 | SELL |
| VWMA (10) | 0.027625 | BUY |
| Média Móvel de Hull (9) | 0.028656 | BUY |
| Nuvem Ichimoku B/L (9, 26, 52, 26) | -0.001312 | SELL |
Previsão do preço de Maverick Protocol com base nos fluxos financeiros mundiais
Definições dos fluxos financeiros mundiais, usadas na previsão do preço do Maverick Protocol
M0: o total de todas as moedas físicas, mais as contas no Banco Central que podem ser trocadas por moedas físicas.
M1: o valor de M0, mais o valor em contas de demanda, incluindo contas 'correntes'.
M2: o valor de M1, mais a maioria das contas de poupança, do mercado de moedas e de certificados de depósito (CD) de menos de US$ 100.000.
Previsões de preço de Maverick Protocol por empresas de Internet ou nichos tecnológicos
| Comparação | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.041116 | $0.057775 | $0.081183 | $0.114076 | $0.160296 | $0.225243 |
| Amazon.com stock | $0.061054 | $0.127393 | $0.265813 | $0.554635 | $1.15 | $2.41 |
| Apple stock | $0.041504 | $0.05887 | $0.083503 | $0.118442 | $0.1680018 | $0.238297 |
| Netflix stock | $0.046168 | $0.072847 | $0.114941 | $0.181359 | $0.286156 | $0.45151 |
| Google stock | $0.037892 | $0.04907 | $0.063546 | $0.082291 | $0.106567 | $0.1380047 |
| Tesla stock | $0.066331 | $0.150369 | $0.340875 | $0.772738 | $1.75 | $3.97 |
| Kodak stock | $0.021942 | $0.016454 | $0.012339 | $0.009253 | $0.006938 | $0.0052033 |
| Nokia stock | $0.019383 | $0.012841 | $0.0085066 | $0.005635 | $0.003733 | $0.002473 |
Este cálculo mostra quanto a criptomoeda pode custar, se assumirmos que sua capitalização se comportará da mesma forma que a de algumas empresas de Internet ou nichos tecnológicos. Se você extrapolar os dados, poderá obter uma imagem em potencial do preço futuro para 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Visão geral da previsão para Maverick Protocol
Você pode fazer perguntas como: 'Devo investir em Maverick Protocol agora?', 'Devo comprar MAV hoje?', 'Maverick Protocol será um bom ou mau investimento no curto ou no longo prazo?'.
Atualizamos a previsão para Maverick Protocol regularmente com novos valores. Veja nossas previsões semelhantes. Fazemos previsões de preços futuros para uma enorme quantidade de moedas digitais, como Maverick Protocol, com métodos de análise técnica.
Se você estiver tentando encontrar criptomoedas com bom retorno, você deve explorar o máximo de fontes de informações disponíveis sobre Maverick Protocol para poder tomar sozinho uma decisão de tão grande responsabilidade sobre o seu investimento.
O preço de Maverick Protocol é de $0.02926 USD hoje, mas o preço pode tanto subir quanto descer e seu investimento pode ser perdido, porque criptomoedas são ativos de alto risco
Previsão de curto prazo para Maverick Protocol
com base no histórico de preços de 4 horas
Previsão de longo prazo para Maverick Protocol
com base no histórico de preços de 1 mês
Previsão do preço de Maverick Protocol com base no padrão de crescimento do Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se Maverick Protocol tiver 1% da média anterior do crescimento anual do Bitcoin | $0.030021 | $0.0308015 | $0.0316022 | $0.032423 |
| Se Maverick Protocol tiver 2% da média anterior do crescimento anual do Bitcoin | $0.030781 | $0.032382 | $0.034065 | $0.035836 |
| Se Maverick Protocol tiver 5% da média anterior do crescimento anual do Bitcoin | $0.033063 | $0.03736 | $0.042216 | $0.047703 |
| Se Maverick Protocol tiver 10% da média anterior do crescimento anual do Bitcoin | $0.036866 | $0.046449 | $0.058522 | $0.073734 |
| Se Maverick Protocol tiver 20% da média anterior do crescimento anual do Bitcoin | $0.044472 | $0.067591 | $0.10273 | $0.156136 |
| Se Maverick Protocol tiver 50% da média anterior do crescimento anual do Bitcoin | $0.067289 | $0.154743 | $0.355857 | $0.81835 |
| Se Maverick Protocol tiver 100% da média anterior do crescimento anual do Bitcoin | $0.105318 | $0.379075 | $1.36 | $4.91 |
Perguntas Frequentes sobre Maverick Protocol
MAV é um bom investimento?
A decisão de adquirir Maverick Protocol depende inteiramente da sua tolerância individual ao risco. Como você pode perceber, o valor de Maverick Protocol experimentou uma escalada de 6.1383% nas últimas 24 horas, e Maverick Protocol registrou um declínio de durante os últimos 30 dias. Consequentemente, a decisão de investir ou não em Maverick Protocol dependerá de quão alinhado esse investimento está com suas aspirações de negociação.
Maverick Protocol pode subir?
Parece que o valor médio de Maverick Protocol pode potencialmente subir para $0.030177 até o final deste ano. Observando as perspectivas de Maverick Protocol em um horizonte de cinco anos mais longo, a moeda digital poderia potencialmente crescer até $0.094871. No entanto, dada a imprevisibilidade do mercado, é vital conduzir uma pesquisa aprofundada antes de investir quaisquer fundos em um projeto, rede ou ativo específico.
Qual será o preço de Maverick Protocol na próxima semana?
Com base na nossa nova previsão experimental de Maverick Protocol, o preço de Maverick Protocol aumentará 0.86% na próxima semana e atingirá $0.029511 até 13 de janeiro de 2026.
Qual será o preço de Maverick Protocol no próximo mês?
Com base na nossa nova previsão experimental de Maverick Protocol, o preço de Maverick Protocol diminuirá -11.62% no próximo mês e atingirá $0.025861 até 5 de fevereiro de 2026.
Até onde o preço de Maverick Protocol pode subir este ano em 2026?
De acordo com nossa previsão mais recente sobre o valor de Maverick Protocol em 2026, espera-se que MAV fluctue dentro do intervalo de $0.0101095 e $0.030177. No entanto, é crucial lembrar que o mercado de criptomoedas é excepcionalmente instável, e essa previsão de preço de Maverick Protocol não considera flutuações repentinas e extremas de preço.
Onde estará Maverick Protocol em 5 anos?
O futuro de Maverick Protocol parece seguir uma tendência de alta, com um preço máximo de $0.094871 projetada após um período de cinco anos. Com base na previsão de Maverick Protocol para 2030, o valor de Maverick Protocol pode potencialmente atingir seu pico mais alto de aproximadamente $0.094871, enquanto seu pico mais baixo está previsto para cerca de $0.032812.
Quanto será Maverick Protocol em 2026?
Com base na nossa nova simulação experimental de previsão de preços de Maverick Protocol, espera-se que o valor de MAV em 2026 aumente 3.13% para $0.030177 se o melhor cenário ocorrer. O preço ficará entre $0.030177 e $0.0101095 durante 2026.
Quanto será Maverick Protocol em 2027?
De acordo com nossa última simulação experimental para previsão de preços de Maverick Protocol, o valor de MAV pode diminuir -12.62% para $0.025566 em 2027, assumindo as condições mais favoráveis. O preço está projetado para flutuar entre $0.025566 e $0.009732 ao longo do ano.
Quanto será Maverick Protocol em 2028?
Nosso novo modelo experimental de previsão de preços de Maverick Protocol sugere que o valor de MAV em 2028 pode aumentar 47.02%, alcançando $0.043019 no melhor cenário. O preço é esperado para variar entre $0.043019 e $0.017563 durante o ano.
Quanto será Maverick Protocol em 2029?
Com base no nosso modelo de previsão experimental, o valor de Maverick Protocol pode experimentar um 333.75% crescimento em 2029, potencialmente alcançando $0.126919 sob condições ótimas. A faixa de preço prevista para 2029 está entre $0.126919 e $0.038582.
Quanto será Maverick Protocol em 2030?
Usando nossa nova simulação experimental para previsões de preços de Maverick Protocol, espera-se que o valor de MAV em 2030 aumente 224.23%, alcançando $0.094871 no melhor cenário. O preço está previsto para variar entre $0.094871 e $0.032812 ao longo de 2030.
Quanto será Maverick Protocol em 2031?
Nossa simulação experimental indica que o preço de Maverick Protocol poderia aumentar 195.98% em 2031, potencialmente atingindo $0.0866069 sob condições ideais. O preço provavelmente oscilará entre $0.0866069 e $0.038794 durante o ano.
Quanto será Maverick Protocol em 2032?
Com base nos achados da nossa mais recente previsão experimental de preços de Maverick Protocol, MAV poderia ver um 449.04% aumento em valor, atingindo $0.160651 se o cenário mais positivo se desenrolar em 2032. O preço é esperado para permanecer dentro de uma faixa de $0.160651 e $0.059217 ao longo do ano.
Quanto será Maverick Protocol em 2033?
De acordo com nossa previsão experimental de preços de Maverick Protocol, espera-se que o valor de MAV seja aumentar 1362.43% em 2033, com o preço potencial mais alto sendo $0.427917. Ao longo do ano, o preço de MAV poderia variar entre $0.427917 e $0.1376086.
Quanto será Maverick Protocol em 2034?
Os resultados da nossa nova simulação de previsão de preços de Maverick Protocol sugerem que MAV pode aumentar 746.96% em 2034, atingindo potencialmente $0.247826 nas melhores circunstâncias. A faixa de preço prevista para o ano é entre $0.247826 e $0.11063.
Quanto será Maverick Protocol em 2035?
Com base em nossa previsão experimental para o preço de Maverick Protocol, MAV poderia aumentar 897.93%, com o valor potencialmente atingindo $0.2920015 em 2035. A faixa de preço esperada para o ano está entre $0.2920015 e $0.130799.
Quanto será Maverick Protocol em 2036?
Nossa recente simulação de previsão de preços de Maverick Protocol sugere que o valor de MAV pode aumentar 1964.7% em 2036, possivelmente atingindo $0.604143 se as condições forem ideais. A faixa de preço esperada para 2036 está entre $0.604143 e $0.216514.
Quanto será Maverick Protocol em 2037?
De acordo com a simulação experimental, o valor de Maverick Protocol poderia aumentar 4830.69% em 2037, com um pico de $1.44 sob condições favoráveis. O preço é esperado para cair entre $1.44 e $0.562282 ao longo do ano.
Previsões relacionadas
Previsão de Preço do Myria
Previsão de Preço do MimbleWimbleCoin
Previsão de Preço do CYBER
Previsão de Preço do Velodrome Finance
Previsão de Preço do Ontology Gas
Previsão de Preço do DODO
Previsão de Preço do Cudos
Previsão de Preço do Acala
Previsão de Preço do WINk
Previsão de Preço do Radiant Capital
Previsão de Preço do APEX
Previsão de Preço do Metars Genesis
Previsão de Preço do Liquity
Previsão de Preço do Steem
Previsão de Preço do Alpha Finance
Previsão de Preço do Zignaly
Previsão de Preço do Heroes of Mavia
Previsão de Preço do Sovryn
Previsão de Preço do Verge
Previsão de Preço do Quasar
Previsão de Preço do Auction
Previsão de Preço do Pundi X
Previsão de Preço do XYO Network
Previsão de Preço do f(x) Coin
Previsão de Preço do Multibit
Como ler e prever os movimentos de preço de Maverick Protocol?
Traders de Maverick Protocol utilizam indicadores e padrões de gráfico para prever a direção do mercado. Eles também identificam níveis-chave de suporte e resistência para avaliar quando uma tendência de baixa pode desacelerar ou uma tendência de alta pode estagnar.
Indicadores de Previsão de Preço de Maverick Protocol
Médias móveis são ferramentas populares para a previsão de preço de Maverick Protocol. Uma média móvel simples (SMA) calcula o preço médio de fechamento de MAV em um período específico, como uma SMA de 12 dias. Uma média móvel exponencial (EMA) dá mais peso aos preços recentes, reagindo mais rapidamente às mudanças de preço.
Médias móveis comumente usadas no mercado de criptomoedas incluem as de 50 dias, 100 dias e 200 dias, que ajudam a identificar níveis-chave de resistência e suporte. Um movimento de preço de MAV acima dessas médias é visto como altista, enquanto uma queda abaixo indica fraqueza.
Traders também usam RSI e níveis de retração de Fibonacci para avaliar a direção futura de MAV.
Como ler gráficos de Maverick Protocol e prever movimentos de preço?
A maioria dos traders prefere gráficos de velas em vez de gráficos de linha simples porque eles fornecem informações mais detalhadas. Velas podem representar a ação de preço de Maverick Protocol em diferentes períodos de tempo, como 5 minutos para tendências de curto prazo e semanal para tendências de longo prazo. Opções populares incluem gráficos de 1 hora, 4 horas e 1 dia.
Por exemplo, um gráfico de velas de 1 hora mostra os preços de abertura, fechamento, máximo e mínimo de MAV dentro de cada hora. A cor da vela é crucial: verde indica que o preço fechou mais alto do que abriu, enquanto vermelho significa o oposto. Alguns gráficos usam velas vazias e preenchidas para transmitir a mesma informação.
O que afeta o preço de Maverick Protocol?
A ação de preço de Maverick Protocol é impulsionada pela oferta e demanda, influenciada por fatores como reduções pela metade das recompensas de bloco, hard forks e atualizações de protocolo. Eventos do mundo real, como regulamentações, adoção por empresas e governos e hacks de exchanges de criptomoedas, também impactam o preço de MAV. A capitalização de mercado de Maverick Protocol pode mudar rapidamente.
Traders frequentemente monitoram a atividade de "baleias" de MAV, grandes detentores de Maverick Protocol, pois suas ações podem influenciar significativamente os movimentos de preço no relativamente pequeno mercado de Maverick Protocol.
Padrões de previsão de preço altistas e baixistas
Traders frequentemente identificam padrões de velas para ganhar vantagem em previsões de preço de criptomoedas. Certas formações indicam tendências altistas, enquanto outras sugerem movimentos baixistas.
Padrões de velas altistas comumente seguidos:
- Martelo
- Engolfo de Alta
- Linha de Perfuração
- Estrela da Manhã
- Três Soldados Brancos
Padrões de velas baixistas comuns:
- Harami de Baixa
- Nuvem Negra
- Estrela da Noite
- Estrela Cadente
- Homem Enforcado


