Previsão de Preço Maverick Protocol - Projeção MAV
Previsão de Preço Maverick Protocol até $0.029857 até 2026
| Ano | Preço Mínimo | Preço Máximo |
|---|---|---|
| 2026 | $0.0100024 | $0.029857 |
| 2027 | $0.009629 | $0.025295 |
| 2028 | $0.017377 | $0.042563 |
| 2029 | $0.038174 | $0.125575 |
| 2030 | $0.032465 | $0.093866 |
| 2031 | $0.038384 | $0.085689 |
| 2032 | $0.05859 | $0.15895 |
| 2033 | $0.136151 | $0.423385 |
| 2034 | $0.109459 | $0.2452021 |
| 2035 | $0.129414 | $0.2889092 |
Calculadora de lucro do investimento
Se você abrir um short de $10,000.00 em Maverick Protocol hoje e fechar em Apr 06, 2026, nossa previsão mostra que pode lucrar cerca de $3,954.57, com um retorno de 39.55% nos próximos 90 dias.
Previsão de preço de longo prazo de Maverick Protocol para os anos 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'Maverick Protocol'
'name_with_ticker' => 'Maverick Protocol <small>MAV</small>'
'name_lang' => 'Maverick Protocol'
'name_lang_with_ticker' => 'Maverick Protocol <small>MAV</small>'
'name_with_lang' => 'Maverick Protocol'
'name_with_lang_with_ticker' => 'Maverick Protocol <small>MAV</small>'
'image' => '/uploads/coins/maverick-protocol.png?1717140033'
'price_for_sd' => 0.02895
'ticker' => 'MAV'
'marketcap' => '$24.4M'
'low24h' => '$0.02747'
'high24h' => '$0.02923'
'volume24h' => '$5.67M'
'current_supply' => '842.96M'
'max_supply' => '2B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.02895'
'change_24h_pct' => '4.8117%'
'ath_price' => '$0.8047'
'ath_days' => 675
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '2 de mar. de 2024'
'ath_pct' => '-96.40%'
'fdv' => '$57.9M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$1.42'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.029198'
'next_week_prediction_price_date' => '13 de janeiro de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.025587'
'next_month_prediction_price_date' => '5 de fevereiro de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.0100024'
'current_year_max_price_prediction' => '$0.029857'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.032465'
'grand_prediction_max_price' => '$0.093866'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.029499402431879
107 => 0.029609542492277
108 => 0.029857693672243
109 => 0.027737269009009
110 => 0.028689277430404
111 => 0.029248493186847
112 => 0.026721936054792
113 => 0.029198551275847
114 => 0.027700357133141
115 => 0.027191847538986
116 => 0.027876488716471
117 => 0.02760968338377
118 => 0.027380299826048
119 => 0.027252299859529
120 => 0.027755024779185
121 => 0.027731572060797
122 => 0.026909016517538
123 => 0.025836026343009
124 => 0.026196157065283
125 => 0.026065318197637
126 => 0.02559114126274
127 => 0.025910679264519
128 => 0.024503595619165
129 => 0.022082781341177
130 => 0.023682045404763
131 => 0.023620475477979
201 => 0.023589429128921
202 => 0.024791231872294
203 => 0.024675706268825
204 => 0.0244660261673
205 => 0.025587290323242
206 => 0.025178013823192
207 => 0.026439307558676
208 => 0.027270077188229
209 => 0.027059367137592
210 => 0.027840709989645
211 => 0.026204453749762
212 => 0.026747952437445
213 => 0.02685996676372
214 => 0.025573454097607
215 => 0.024694607686282
216 => 0.024635998650229
217 => 0.023112200085486
218 => 0.023926200979099
219 => 0.024642488079833
220 => 0.024299442144706
221 => 0.024190844049851
222 => 0.024745648164414
223 => 0.024788761195692
224 => 0.023805779513651
225 => 0.024010172532329
226 => 0.024862525397727
227 => 0.023988695427033
228 => 0.022290986533289
301 => 0.021869931254979
302 => 0.021813754719264
303 => 0.020671819410172
304 => 0.02189806818203
305 => 0.02136277773169
306 => 0.02305375385055
307 => 0.022087877360344
308 => 0.022046240355324
309 => 0.021983299915416
310 => 0.021000389022126
311 => 0.021215584040511
312 => 0.021930925056747
313 => 0.022186166790234
314 => 0.022159542986297
315 => 0.021927419495515
316 => 0.02203368444093
317 => 0.021691368026585
318 => 0.02157048897598
319 => 0.021188961441868
320 => 0.020628221366393
321 => 0.020706195713107
322 => 0.019595222897971
323 => 0.018989905944495
324 => 0.018822362189722
325 => 0.018598315678704
326 => 0.018847668839306
327 => 0.019592075651572
328 => 0.018694163101264
329 => 0.017154755015004
330 => 0.017247276064012
331 => 0.017455143391387
401 => 0.017067784002003
402 => 0.016701180848561
403 => 0.017019912547025
404 => 0.016367645047218
405 => 0.017533966802493
406 => 0.017502421067592
407 => 0.017937153693105
408 => 0.01820900092545
409 => 0.017582481066482
410 => 0.017424913016241
411 => 0.017514670938727
412 => 0.016031172418281
413 => 0.017815920214496
414 => 0.017831354787551
415 => 0.017699194602454
416 => 0.018649517706032
417 => 0.020654995867791
418 => 0.019900454313165
419 => 0.019608273017075
420 => 0.019052836159624
421 => 0.0197929227936
422 => 0.019736095687261
423 => 0.019479101961354
424 => 0.019323671354056
425 => 0.019610057013765
426 => 0.019288185001529
427 => 0.01923036794368
428 => 0.018880059478694
429 => 0.018755015294714
430 => 0.018662437559047
501 => 0.018560518568579
502 => 0.018785326464922
503 => 0.018275882195866
504 => 0.017661542348822
505 => 0.017610466637789
506 => 0.017751491166572
507 => 0.017689098310627
508 => 0.017610167924799
509 => 0.017459468322842
510 => 0.017414758970129
511 => 0.017560042676552
512 => 0.017396025842567
513 => 0.017638041615572
514 => 0.017572226716658
515 => 0.017204590041393
516 => 0.016746378627482
517 => 0.016742299584767
518 => 0.016643578687258
519 => 0.016517842781493
520 => 0.016482865928957
521 => 0.016993069852395
522 => 0.018049176704795
523 => 0.017841837659174
524 => 0.017991661368595
525 => 0.018728645732972
526 => 0.018962910900515
527 => 0.018796635033468
528 => 0.018569026371205
529 => 0.018579039997211
530 => 0.019356847697991
531 => 0.01940535861021
601 => 0.019527930035175
602 => 0.019685468954935
603 => 0.018823464592721
604 => 0.018538439669269
605 => 0.018403379047958
606 => 0.017987444609355
607 => 0.018435994241864
608 => 0.018174643579812
609 => 0.018209908713132
610 => 0.018186942248794
611 => 0.018199483491308
612 => 0.017533640791793
613 => 0.017776238875834
614 => 0.017372872508443
615 => 0.016832810222507
616 => 0.016830999744354
617 => 0.016963179223731
618 => 0.016884553697214
619 => 0.016672974427003
620 => 0.016703028263711
621 => 0.016439725030021
622 => 0.01673499804354
623 => 0.01674346541703
624 => 0.016629769223195
625 => 0.017084678040345
626 => 0.017271054553902
627 => 0.017196217283511
628 => 0.01726580377151
629 => 0.017850453532599
630 => 0.017945776953714
701 => 0.017988113320661
702 => 0.017931388197445
703 => 0.017276490095886
704 => 0.017305537611532
705 => 0.017092406215052
706 => 0.01691233264426
707 => 0.01691953464273
708 => 0.017012115866043
709 => 0.017416423498067
710 => 0.018267265074427
711 => 0.018299553890292
712 => 0.018338688877053
713 => 0.018179507218229
714 => 0.018131496506765
715 => 0.018194835027803
716 => 0.018514366388758
717 => 0.019336287801055
718 => 0.019045765879664
719 => 0.01880956703533
720 => 0.019016777100562
721 => 0.018984878735186
722 => 0.018715624430029
723 => 0.018708067358463
724 => 0.01819128226106
725 => 0.018000238577177
726 => 0.017840588175553
727 => 0.017666254104758
728 => 0.01756290302386
729 => 0.017721697256346
730 => 0.017758015376113
731 => 0.017410809011536
801 => 0.017363486067015
802 => 0.017647022279299
803 => 0.017522248563568
804 => 0.017650581424437
805 => 0.017680355748977
806 => 0.017675561396965
807 => 0.017545283307572
808 => 0.017628318676803
809 => 0.017431915274538
810 => 0.017218356073412
811 => 0.017082118608302
812 => 0.016963233350716
813 => 0.017029197801276
814 => 0.016794046579661
815 => 0.016718816971208
816 => 0.017600188162063
817 => 0.018251266537084
818 => 0.018241799599656
819 => 0.018184172052761
820 => 0.018098549207395
821 => 0.018508102544308
822 => 0.018365422351005
823 => 0.018469234112962
824 => 0.018495658563346
825 => 0.018575637416123
826 => 0.018604222981576
827 => 0.018517817548825
828 => 0.018227830362978
829 => 0.017505209867001
830 => 0.017168828075447
831 => 0.017057816481353
901 => 0.017061851541957
902 => 0.016950546557187
903 => 0.016983330863541
904 => 0.016939145513355
905 => 0.016855469149687
906 => 0.017024031021614
907 => 0.017043456207091
908 => 0.017004111852019
909 => 0.017013378871924
910 => 0.016687624416122
911 => 0.016712390819895
912 => 0.016574488336523
913 => 0.01654863328333
914 => 0.01620002781391
915 => 0.01558242269366
916 => 0.015924635882658
917 => 0.015511290472805
918 => 0.015354750302889
919 => 0.016095787120282
920 => 0.016021407576977
921 => 0.01589410213085
922 => 0.015705790843249
923 => 0.015635944354903
924 => 0.015211579202426
925 => 0.015186505445317
926 => 0.015396832273708
927 => 0.01529977367931
928 => 0.015163466653811
929 => 0.014669776424675
930 => 0.014114705151908
1001 => 0.014131459264579
1002 => 0.014308017108978
1003 => 0.014821382853637
1004 => 0.014620801975881
1005 => 0.014475278247669
1006 => 0.014448026027802
1007 => 0.014789144615824
1008 => 0.015271898884428
1009 => 0.015498396386239
1010 => 0.015273944240776
1011 => 0.015016105701429
1012 => 0.01503179913861
1013 => 0.015136200545394
1014 => 0.01514717165709
1015 => 0.014979345274206
1016 => 0.015026587417939
1017 => 0.014954822281696
1018 => 0.01451439977304
1019 => 0.014506433926453
1020 => 0.014398347140057
1021 => 0.014395074315121
1022 => 0.014211191727948
1023 => 0.014185465282882
1024 => 0.013820355245175
1025 => 0.014060671777649
1026 => 0.01389948006485
1027 => 0.013656526132381
1028 => 0.013614640782848
1029 => 0.013613381658663
1030 => 0.013862841023804
1031 => 0.014057756699725
1101 => 0.013902284063706
1102 => 0.013866885958195
1103 => 0.014244845116058
1104 => 0.014196746368045
1105 => 0.014155093162471
1106 => 0.01522867353457
1107 => 0.014378850897532
1108 => 0.014008279721603
1109 => 0.013549627521834
1110 => 0.013698966990804
1111 => 0.013730435011169
1112 => 0.012627459148997
1113 => 0.01217998197908
1114 => 0.012026424677186
1115 => 0.011938050278965
1116 => 0.01197832360197
1117 => 0.011575541665208
1118 => 0.01184621778811
1119 => 0.011497442677184
1120 => 0.011438969394825
1121 => 0.012062622498107
1122 => 0.0121494001841
1123 => 0.011779179615939
1124 => 0.012016921153964
1125 => 0.011930712767422
1126 => 0.011503421425416
1127 => 0.011487102039093
1128 => 0.011272702263692
1129 => 0.010937208131165
1130 => 0.010783878310092
1201 => 0.010704022808006
1202 => 0.010736972744519
1203 => 0.010720312248333
1204 => 0.010611591241127
1205 => 0.010726544009202
1206 => 0.010432887188533
1207 => 0.010315950676389
1208 => 0.01026313316676
1209 => 0.01000249583616
1210 => 0.010417285735091
1211 => 0.010499004570566
1212 => 0.010580884417391
1213 => 0.011293592582257
1214 => 0.011257987696433
1215 => 0.011579838524002
1216 => 0.011567331992689
1217 => 0.011475534923028
1218 => 0.011088258186015
1219 => 0.011242619790845
1220 => 0.0107675187643
1221 => 0.011123496757117
1222 => 0.010961043267191
1223 => 0.011068571068759
1224 => 0.010875226386149
1225 => 0.010982231316512
1226 => 0.010518383138026
1227 => 0.010085248235476
1228 => 0.010259554364258
1229 => 0.010449045060568
1230 => 0.0108599091715
1231 => 0.010615201896584
]
'min_raw' => 0.01000249583616
'max_raw' => 0.029857693672243
'avg_raw' => 0.019930094754202
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.0100024'
'max' => '$0.029857'
'avg' => '$0.01993'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.01894830416384
'max_diff' => 0.00090689367224335
'year' => 2026
]
1 => [
'items' => [
101 => 0.01070320788605
102 => 0.010408402553363
103 => 0.0098001349450502
104 => 0.0098035776736556
105 => 0.0097100089539468
106 => 0.0096291519188616
107 => 0.010643309470791
108 => 0.01051718294775
109 => 0.010316216840316
110 => 0.010585217961192
111 => 0.010656346127174
112 => 0.010658371046065
113 => 0.010854627319933
114 => 0.010959369328477
115 => 0.01097783056146
116 => 0.011286644048789
117 => 0.011390154256393
118 => 0.0118164981522
119 => 0.010950482700843
120 => 0.01093264768252
121 => 0.010589003358616
122 => 0.010371058695594
123 => 0.010603926216153
124 => 0.010810215049781
125 => 0.010595413327704
126 => 0.010623461897896
127 => 0.010335108135953
128 => 0.010438181037542
129 => 0.01052696130581
130 => 0.010477942059935
131 => 0.010404557876303
201 => 0.01079330171791
202 => 0.010771367266868
203 => 0.011133374469355
204 => 0.011415584971077
205 => 0.011921356641325
206 => 0.011393557536948
207 => 0.011374322439773
208 => 0.011562348600064
209 => 0.011390125470567
210 => 0.011498964543469
211 => 0.011903820984035
212 => 0.011912374962659
213 => 0.011769084799516
214 => 0.011760365580067
215 => 0.011787886023321
216 => 0.011949074119047
217 => 0.01189275004559
218 => 0.011957929689345
219 => 0.012039437831927
220 => 0.01237659006838
221 => 0.012457876331166
222 => 0.012260392854692
223 => 0.012278223401489
224 => 0.012204359160245
225 => 0.01213300722872
226 => 0.012293395950676
227 => 0.012586509492499
228 => 0.012584686048368
301 => 0.012652682692758
302 => 0.012695044038898
303 => 0.012513198130863
304 => 0.012394823131392
305 => 0.012440215638586
306 => 0.01251279924611
307 => 0.012416677752924
308 => 0.011823371369172
309 => 0.012003342625444
310 => 0.011973386608256
311 => 0.011930725597003
312 => 0.012111688086861
313 => 0.012094233813253
314 => 0.011571410554275
315 => 0.011604880003019
316 => 0.011573445942307
317 => 0.01167501582327
318 => 0.011384640363671
319 => 0.011473957899335
320 => 0.011529977020404
321 => 0.011562972713072
322 => 0.01168217578035
323 => 0.011668188676241
324 => 0.011681306322319
325 => 0.011858053002648
326 => 0.012751977059616
327 => 0.012800631373705
328 => 0.012561039736654
329 => 0.012656751869919
330 => 0.012473005503992
331 => 0.012596355670433
401 => 0.012680748721557
402 => 0.012299392751376
403 => 0.012276811325802
404 => 0.01209230657326
405 => 0.012191448976392
406 => 0.012033706284417
407 => 0.012072410823423
408 => 0.011964189558162
409 => 0.012158966288992
410 => 0.012376756939305
411 => 0.012431779458387
412 => 0.012287038899365
413 => 0.012182237195766
414 => 0.011998239928073
415 => 0.012304231484893
416 => 0.012393712741031
417 => 0.012303761477948
418 => 0.012282917804818
419 => 0.0122434190819
420 => 0.012291297645607
421 => 0.012393225406893
422 => 0.012345158156981
423 => 0.012376907422384
424 => 0.012255911962368
425 => 0.012513258329426
426 => 0.012921986294088
427 => 0.012923300421329
428 => 0.012875232912316
429 => 0.012855564723257
430 => 0.012904884904484
501 => 0.01293163907958
502 => 0.013091131501895
503 => 0.013262273225497
504 => 0.014060916974563
505 => 0.01383666100565
506 => 0.014545265251351
507 => 0.015105679208955
508 => 0.015273722850908
509 => 0.015119130607375
510 => 0.01459027889316
511 => 0.01456433090504
512 => 0.015354658641513
513 => 0.015131354856656
514 => 0.015104793581994
515 => 0.014822226495572
516 => 0.014989258640261
517 => 0.014952726260004
518 => 0.014895058110543
519 => 0.015213743807051
520 => 0.015810294981646
521 => 0.015717316886664
522 => 0.015647913051889
523 => 0.01534380565106
524 => 0.015526946231206
525 => 0.015461733378443
526 => 0.015741929179013
527 => 0.015575947393852
528 => 0.01512966311086
529 => 0.015200735353899
530 => 0.015189992927341
531 => 0.015411071304684
601 => 0.015344709063308
602 => 0.015177034634636
603 => 0.015808256034584
604 => 0.01576726802791
605 => 0.015825379650212
606 => 0.01585096218351
607 => 0.01623517552629
608 => 0.016392575439371
609 => 0.016428307975314
610 => 0.016577825718995
611 => 0.016424587837644
612 => 0.017037648619806
613 => 0.017445298266856
614 => 0.017918804309364
615 => 0.018610723903893
616 => 0.01887089207205
617 => 0.018823895021148
618 => 0.01934850056095
619 => 0.02029120505465
620 => 0.019014442552277
621 => 0.020358876567498
622 => 0.019933244280516
623 => 0.01892407778488
624 => 0.018859099359853
625 => 0.019542518627361
626 => 0.021058276786028
627 => 0.020678596558869
628 => 0.021058897806863
629 => 0.020615256200187
630 => 0.020593225655111
701 => 0.021037351124253
702 => 0.022075074490923
703 => 0.021582091017897
704 => 0.020875278324807
705 => 0.021397177818161
706 => 0.0209450601775
707 => 0.019926312593331
708 => 0.020678306224554
709 => 0.020175469498901
710 => 0.020322223987717
711 => 0.021379111993723
712 => 0.021251944432662
713 => 0.021416511032074
714 => 0.021126055291569
715 => 0.02085472382927
716 => 0.020348263505552
717 => 0.020198325571891
718 => 0.020239763022553
719 => 0.020198305037548
720 => 0.019914945141038
721 => 0.019853753598365
722 => 0.019751765013048
723 => 0.019783375540258
724 => 0.019591607162049
725 => 0.019953513713098
726 => 0.020020686758082
727 => 0.020284052165434
728 => 0.020311395635706
729 => 0.021044864546409
730 => 0.020640882195838
731 => 0.020911908434759
801 => 0.020887665296952
802 => 0.018945949482901
803 => 0.019213500790174
804 => 0.019629726662065
805 => 0.019442217470959
806 => 0.019177123345128
807 => 0.018963045625072
808 => 0.018638695988617
809 => 0.019095211873345
810 => 0.01969548171671
811 => 0.02032661946953
812 => 0.02108489012576
813 => 0.020915652942533
814 => 0.020312444127054
815 => 0.020339503633872
816 => 0.020506774857498
817 => 0.020290143424709
818 => 0.020226254586032
819 => 0.020497997512144
820 => 0.020499868856328
821 => 0.020250608212122
822 => 0.019973600620303
823 => 0.019972439948378
824 => 0.01992314912299
825 => 0.020624024928524
826 => 0.021009435755031
827 => 0.021053622485169
828 => 0.021006461636031
829 => 0.021024611975117
830 => 0.020800349907121
831 => 0.02131294649171
901 => 0.021783355808277
902 => 0.021657276062608
903 => 0.021468264600558
904 => 0.02131770786701
905 => 0.021621809680946
906 => 0.021608268505872
907 => 0.021779247193273
908 => 0.021771490612392
909 => 0.021713996910653
910 => 0.021657278115889
911 => 0.021882161725924
912 => 0.021817398857754
913 => 0.021752535394962
914 => 0.021622441790234
915 => 0.021640123671742
916 => 0.021451144845186
917 => 0.021363714592938
918 => 0.02004897337364
919 => 0.019697631559435
920 => 0.019808170846406
921 => 0.019844563249828
922 => 0.01969165884203
923 => 0.019910884484894
924 => 0.019876718400671
925 => 0.020009638647891
926 => 0.019926595848154
927 => 0.019930003953622
928 => 0.020174215121057
929 => 0.020245110661912
930 => 0.020209052617636
1001 => 0.02023430643585
1002 => 0.02081627001761
1003 => 0.020733533406432
1004 => 0.020689581230745
1005 => 0.020701756283785
1006 => 0.020850460456364
1007 => 0.02089208950574
1008 => 0.020715704298314
1009 => 0.020798888581807
1010 => 0.021153076703261
1011 => 0.021277022500458
1012 => 0.021672597987755
1013 => 0.021504550489958
1014 => 0.021813008945089
1015 => 0.022761105074928
1016 => 0.023518509866705
1017 => 0.02282196911911
1018 => 0.02421284656429
1019 => 0.025295844164883
1020 => 0.025254276913145
1021 => 0.025065431231296
1022 => 0.023832467256003
1023 => 0.02269787542348
1024 => 0.023647009668699
1025 => 0.023649429207081
1026 => 0.023567897733672
1027 => 0.023061512754591
1028 => 0.023550276634053
1029 => 0.023589072935875
1030 => 0.023567357323624
1031 => 0.023179113147445
1101 => 0.022586336049938
1102 => 0.022702163275883
1103 => 0.022891890634793
1104 => 0.022532697163104
1105 => 0.0224179130846
1106 => 0.022631318525104
1107 => 0.023318955319197
1108 => 0.023188961566483
1109 => 0.023185566904253
1110 => 0.023741735304297
1111 => 0.023343638758519
1112 => 0.022703624228133
1113 => 0.022542012118456
1114 => 0.021968398004064
1115 => 0.022364595316018
1116 => 0.022378853751939
1117 => 0.02216186053322
1118 => 0.022721232031914
1119 => 0.022716077325078
1120 => 0.023247117311628
1121 => 0.0242622663164
1122 => 0.02396203680324
1123 => 0.023612902544313
1124 => 0.023650863118702
1125 => 0.02406719692506
1126 => 0.023815472001759
1127 => 0.023905994039267
1128 => 0.024067059909114
1129 => 0.024164234947434
1130 => 0.023636881126126
1201 => 0.02351392972413
1202 => 0.023262414305724
1203 => 0.02319679862782
1204 => 0.02340165268807
1205 => 0.023347680880795
1206 => 0.022377655385611
1207 => 0.022276282324193
1208 => 0.022279391291259
1209 => 0.022024483908298
1210 => 0.021635688964501
1211 => 0.022657418863061
1212 => 0.022575359653106
1213 => 0.022484772636194
1214 => 0.022495869028883
1215 => 0.022939367348208
1216 => 0.022682115925798
1217 => 0.023366060994956
1218 => 0.023225462450007
1219 => 0.023081258082908
1220 => 0.023061324646803
1221 => 0.023005818268408
1222 => 0.022815466243879
1223 => 0.022585604735876
1224 => 0.02243383025803
1225 => 0.020694022565252
1226 => 0.021016920753036
1227 => 0.021388385684985
1228 => 0.021516613890942
1229 => 0.021297270671531
1230 => 0.022824127251094
1231 => 0.023103098661336
]
'min_raw' => 0.0096291519188616
'max_raw' => 0.025295844164883
'avg_raw' => 0.017462498041872
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.009629'
'max' => '$0.025295'
'avg' => '$0.017462'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.0003733439172982
'max_diff' => -0.0045618495073605
'year' => 2027
]
2 => [
'items' => [
101 => 0.022258076062857
102 => 0.022100006836728
103 => 0.022834490243243
104 => 0.022391506962169
105 => 0.022590982306513
106 => 0.022159825719222
107 => 0.023035902617845
108 => 0.023029228379707
109 => 0.022688414679049
110 => 0.022976468085054
111 => 0.022926411717115
112 => 0.022541633888458
113 => 0.023048100761329
114 => 0.023048351962579
115 => 0.022720326185624
116 => 0.022337263892217
117 => 0.022268781401684
118 => 0.022217189044395
119 => 0.022578293749289
120 => 0.022902059098551
121 => 0.023504506145292
122 => 0.023655975646632
123 => 0.024247171194255
124 => 0.023895143030434
125 => 0.024051192555928
126 => 0.024220606390405
127 => 0.024301829612641
128 => 0.024169480730686
129 => 0.025087850761941
130 => 0.02516538933071
131 => 0.025191387342112
201 => 0.024881718134723
202 => 0.025156776869865
203 => 0.02502808599668
204 => 0.025362903897353
205 => 0.025415407619348
206 => 0.025370938834692
207 => 0.025387604344768
208 => 0.024603937534667
209 => 0.024563300276392
210 => 0.024009208376317
211 => 0.024235004921238
212 => 0.023812889103218
213 => 0.023946746377387
214 => 0.024005749388402
215 => 0.023974929563839
216 => 0.024247771119105
217 => 0.024015800059282
218 => 0.023403590292834
219 => 0.022791213730245
220 => 0.022783525841333
221 => 0.022622297901747
222 => 0.022505759631797
223 => 0.022528209037007
224 => 0.022607323669087
225 => 0.022501161345558
226 => 0.022523816459849
227 => 0.022900042307324
228 => 0.022975491717916
229 => 0.022719085140739
301 => 0.021689575734084
302 => 0.021436931543361
303 => 0.0216185271775
304 => 0.021531736160639
305 => 0.017377791564741
306 => 0.018353699231216
307 => 0.01777384803449
308 => 0.018041070143612
309 => 0.017449192223494
310 => 0.017731667389954
311 => 0.01767950454105
312 => 0.019248735189535
313 => 0.019224233811365
314 => 0.019235961324511
315 => 0.018676176566186
316 => 0.019567928886009
317 => 0.020007238145131
318 => 0.019925933693105
319 => 0.019946396272044
320 => 0.019594781370099
321 => 0.019239365725353
322 => 0.018845155077255
323 => 0.019577549735514
324 => 0.019496119951909
325 => 0.019682890577987
326 => 0.020157900866519
327 => 0.020227847935894
328 => 0.020321857506467
329 => 0.020288161767474
330 => 0.021090930974875
331 => 0.020993710327017
401 => 0.021227984116065
402 => 0.020746065157597
403 => 0.020200728111923
404 => 0.020304378855895
405 => 0.020294396455744
406 => 0.020167309044555
407 => 0.020052580212195
408 => 0.019861589030965
409 => 0.020465913389754
410 => 0.020441378924413
411 => 0.020838563400086
412 => 0.020768357185967
413 => 0.020299502905702
414 => 0.020316248128045
415 => 0.020428867795781
416 => 0.020818645751683
417 => 0.020934358387101
418 => 0.020880755684024
419 => 0.021007629306278
420 => 0.021107905044253
421 => 0.021020222395095
422 => 0.02226162380083
423 => 0.021746107386965
424 => 0.021997366500142
425 => 0.022057290318131
426 => 0.021903796718416
427 => 0.021937083984
428 => 0.021987505121124
429 => 0.022293652392266
430 => 0.023097071416171
501 => 0.0234529002328
502 => 0.024523428783913
503 => 0.023423353602955
504 => 0.023358079694281
505 => 0.023550914213201
506 => 0.02417942779966
507 => 0.024688779028206
508 => 0.024857760215892
509 => 0.02488009386942
510 => 0.025197113811176
511 => 0.025378823729718
512 => 0.025158619251794
513 => 0.024972019013124
514 => 0.02430364011988
515 => 0.024381006796708
516 => 0.024913986479213
517 => 0.025666851673098
518 => 0.026312888331725
519 => 0.026086668810524
520 => 0.027812564071189
521 => 0.027983679536634
522 => 0.027960036912134
523 => 0.028349863407814
524 => 0.027576137200676
525 => 0.027245354256885
526 => 0.025012364102727
527 => 0.025639743253561
528 => 0.026551675693983
529 => 0.026430978015922
530 => 0.025768708301663
531 => 0.026312385940759
601 => 0.026132629110902
602 => 0.025990847441077
603 => 0.026640376756277
604 => 0.025926192593021
605 => 0.026544551160632
606 => 0.02575149990157
607 => 0.026087702162242
608 => 0.025896857498811
609 => 0.026020357385093
610 => 0.025298379573405
611 => 0.025687941275571
612 => 0.025282172525835
613 => 0.025281980138615
614 => 0.025273022770975
615 => 0.025750407905585
616 => 0.025765975417686
617 => 0.02541318708192
618 => 0.025362344771147
619 => 0.02555033544161
620 => 0.025330247601332
621 => 0.025433225316582
622 => 0.025333366691422
623 => 0.025310886411554
624 => 0.025131759716862
625 => 0.025054587011598
626 => 0.025084848417827
627 => 0.024981550637541
628 => 0.024919309988474
629 => 0.025260641539301
630 => 0.02507828186097
701 => 0.025232692303191
702 => 0.025056722116129
703 => 0.02444673278121
704 => 0.024095921464179
705 => 0.02294370815656
706 => 0.023270474421284
707 => 0.023487120792861
708 => 0.023415519168347
709 => 0.023569347163953
710 => 0.023578790953544
711 => 0.023528779904082
712 => 0.023470873515617
713 => 0.023442687888136
714 => 0.023652760463325
715 => 0.023774714663941
716 => 0.023508864154603
717 => 0.023446579099909
718 => 0.023715368642858
719 => 0.023879330108783
720 => 0.025089929451178
721 => 0.025000244341709
722 => 0.025225336366662
723 => 0.025199994458971
724 => 0.025435926761094
725 => 0.025821576362634
726 => 0.025037442893378
727 => 0.025173541350346
728 => 0.025140173151669
729 => 0.025504478395203
730 => 0.025505615716408
731 => 0.025287196524513
801 => 0.025405605111886
802 => 0.025339512686784
803 => 0.025458950631871
804 => 0.024999046542393
805 => 0.025559160079798
806 => 0.025876708362587
807 => 0.025881117520802
808 => 0.026031632886625
809 => 0.026184565215564
810 => 0.026478105503362
811 => 0.026176378536256
812 => 0.025633601094961
813 => 0.025672787873062
814 => 0.025354557657825
815 => 0.025359907165236
816 => 0.025331351075427
817 => 0.025417050050546
818 => 0.02501785264816
819 => 0.025111543480596
820 => 0.024980375766534
821 => 0.025173256217352
822 => 0.024965748736552
823 => 0.025140157060514
824 => 0.025215425911408
825 => 0.025493169591631
826 => 0.024924725769157
827 => 0.023765630334869
828 => 0.02400928624783
829 => 0.023648900013801
830 => 0.023682255131848
831 => 0.023749637778729
901 => 0.023531228573956
902 => 0.023572894167362
903 => 0.023571405579169
904 => 0.023558577730325
905 => 0.023501761060799
906 => 0.023419365649152
907 => 0.023747603609184
908 => 0.02380337763473
909 => 0.023927356384578
910 => 0.024296233048538
911 => 0.024259373571097
912 => 0.024319492908087
913 => 0.024188252732994
914 => 0.023688342987165
915 => 0.023715490491501
916 => 0.023376960677412
917 => 0.023918699416113
918 => 0.023790408532187
919 => 0.023707698564738
920 => 0.023685130383817
921 => 0.024054921421677
922 => 0.024165568695969
923 => 0.024096620739893
924 => 0.023955206470447
925 => 0.024226763673159
926 => 0.024299420924526
927 => 0.024315686203611
928 => 0.024796833500889
929 => 0.024342576992649
930 => 0.024451921049104
1001 => 0.025304992163925
1002 => 0.024531374378549
1003 => 0.024941176973198
1004 => 0.0249211192687
1005 => 0.025130760409159
1006 => 0.024903922576216
1007 => 0.024906734503018
1008 => 0.025092881633424
1009 => 0.024831471560581
1010 => 0.024766742750326
1011 => 0.024677320362556
1012 => 0.024872570874799
1013 => 0.024989614726468
1014 => 0.025932902211678
1015 => 0.02654230894626
1016 => 0.026515852992716
1017 => 0.026757610884639
1018 => 0.026648696740079
1019 => 0.026296984237195
1020 => 0.026897314592847
1021 => 0.02670734494943
1022 => 0.02672300581602
1023 => 0.026722422917784
1024 => 0.026848736123222
1025 => 0.026759231640733
1026 => 0.026582809118303
1027 => 0.026699926621987
1028 => 0.027047723737654
1029 => 0.028127296656404
1030 => 0.028731439964175
1031 => 0.028090926470692
1101 => 0.028532744101679
1102 => 0.028267810958805
1103 => 0.028219664725667
1104 => 0.028497158847993
1105 => 0.028775138687047
1106 => 0.028757432573039
1107 => 0.028555633484309
1108 => 0.028441642299548
1109 => 0.02930482174041
1110 => 0.029940797648559
1111 => 0.02989742835526
1112 => 0.030088846311433
1113 => 0.030650855351091
1114 => 0.03070223841435
1115 => 0.030695765329406
1116 => 0.030568407045848
1117 => 0.031121777931488
1118 => 0.031583409659922
1119 => 0.030538927282939
1120 => 0.030936652498816
1121 => 0.031115204162129
1122 => 0.031377370977765
1123 => 0.031819690340001
1124 => 0.032300166486807
1125 => 0.032368111082118
1126 => 0.032319901140296
1127 => 0.032003014205586
1128 => 0.032528756938693
1129 => 0.032836724701563
1130 => 0.033020112456635
1201 => 0.033485153290685
1202 => 0.031116306836416
1203 => 0.029439519576776
1204 => 0.029177665033082
1205 => 0.029710156544605
1206 => 0.029850570309654
1207 => 0.029793969697027
1208 => 0.027906593189474
1209 => 0.029167728386371
1210 => 0.030524603818973
1211 => 0.030576726930388
1212 => 0.031256007142876
1213 => 0.031477208624699
1214 => 0.032024118231044
1215 => 0.03198990888626
1216 => 0.032123072672172
1217 => 0.032092460623866
1218 => 0.033105495504217
1219 => 0.034223023414378
1220 => 0.034184326976371
1221 => 0.034023669117295
1222 => 0.034262273434258
1223 => 0.035415681999114
1224 => 0.035309494621458
1225 => 0.035412646613832
1226 => 0.036772580315055
1227 => 0.038540687574958
1228 => 0.037719224237667
1229 => 0.039501563309882
1230 => 0.040623451278107
1231 => 0.042563640513771
]
'min_raw' => 0.017377791564741
'max_raw' => 0.042563640513771
'avg_raw' => 0.029970716039256
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.017377'
'max' => '$0.042563'
'avg' => '$0.02997'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0077486396458795
'max_diff' => 0.017267796348888
'year' => 2028
]
3 => [
'items' => [
101 => 0.042320719265832
102 => 0.04307602069751
103 => 0.041885839532828
104 => 0.039152943003419
105 => 0.038720451666532
106 => 0.039586310275404
107 => 0.041714939176069
108 => 0.039519272176175
109 => 0.039963452750611
110 => 0.039835528715292
111 => 0.039828712187092
112 => 0.040088871343662
113 => 0.039711496918068
114 => 0.038174005619833
115 => 0.038878628821321
116 => 0.038606539964441
117 => 0.038908442836717
118 => 0.040537688124176
119 => 0.039817359946233
120 => 0.039058552725481
121 => 0.040010265373107
122 => 0.041222122617482
123 => 0.041146286769046
124 => 0.040999133526154
125 => 0.041828628651642
126 => 0.043198711579679
127 => 0.043569039489688
128 => 0.043842407981836
129 => 0.043880100878305
130 => 0.044268361137937
131 => 0.042180587867711
201 => 0.04549393766538
202 => 0.046066061645997
203 => 0.04595852604975
204 => 0.046594417775548
205 => 0.046407322298802
206 => 0.046136250307379
207 => 0.047144273950817
208 => 0.045988656186928
209 => 0.044348402259319
210 => 0.043448526514089
211 => 0.044633555486314
212 => 0.04535721132784
213 => 0.045835501805933
214 => 0.045980232215613
215 => 0.04234265576355
216 => 0.040382203805127
217 => 0.041638831033849
218 => 0.043172002980668
219 => 0.042172071020135
220 => 0.042211266459866
221 => 0.040785626261642
222 => 0.043298140504386
223 => 0.042932088312789
224 => 0.044831167730329
225 => 0.044377937186269
226 => 0.045926562729435
227 => 0.045518757723825
228 => 0.047211533502038
301 => 0.047886827590042
302 => 0.049020751464932
303 => 0.049854870483202
304 => 0.050344681124885
305 => 0.050315274731192
306 => 0.05225614851623
307 => 0.051111683054158
308 => 0.049673964703997
309 => 0.049647960914986
310 => 0.050392575621161
311 => 0.051953083770236
312 => 0.052357700828821
313 => 0.052583826565695
314 => 0.052237507128178
315 => 0.050995271893678
316 => 0.050458881017696
317 => 0.050915901584772
318 => 0.050357004703463
319 => 0.051321817519371
320 => 0.052646711588509
321 => 0.052373126202431
322 => 0.053287681129877
323 => 0.0542341492658
324 => 0.055587641208712
325 => 0.055941494122251
326 => 0.05652639953251
327 => 0.057128459331084
328 => 0.05732182471242
329 => 0.057691019223143
330 => 0.057689073385833
331 => 0.058801665893555
401 => 0.060028889883695
402 => 0.060492138529672
403 => 0.061557353247417
404 => 0.059733210372854
405 => 0.061116843697453
406 => 0.062364915590829
407 => 0.060876912827581
408 => 0.06292777797654
409 => 0.063007408422914
410 => 0.064209733621537
411 => 0.062990946695095
412 => 0.06226723490868
413 => 0.064356563718934
414 => 0.065367524116975
415 => 0.065063014617617
416 => 0.06274568229201
417 => 0.061396895483447
418 => 0.057866860243895
419 => 0.062048339471319
420 => 0.064085016027576
421 => 0.062740407791754
422 => 0.063418549974712
423 => 0.067118273836591
424 => 0.068526889143815
425 => 0.068233907006876
426 => 0.068283416165122
427 => 0.069043479416724
428 => 0.072414018448802
429 => 0.070394313332298
430 => 0.071938302216958
501 => 0.072757228354116
502 => 0.073517892589558
503 => 0.071649941637713
504 => 0.069219764895013
505 => 0.06845002590872
506 => 0.062606713002033
507 => 0.062302543189019
508 => 0.062131803455685
509 => 0.06105531358863
510 => 0.060209487428515
511 => 0.05953685506248
512 => 0.057771666868977
513 => 0.058367366066642
514 => 0.055554024509606
515 => 0.057353900739094
516 => 0.052863739683558
517 => 0.056603279236465
518 => 0.054568017873817
519 => 0.055934641140656
520 => 0.055929873120822
521 => 0.05341348639827
522 => 0.051962087052353
523 => 0.052886975204879
524 => 0.0538785287221
525 => 0.054039404944282
526 => 0.055324979961554
527 => 0.055683756315532
528 => 0.054596647213312
529 => 0.052770691076019
530 => 0.053194819041087
531 => 0.051953492112678
601 => 0.049778114417593
602 => 0.051340508656654
603 => 0.051873978743495
604 => 0.052109589524964
605 => 0.049970355405664
606 => 0.049298161600348
607 => 0.04894029125865
608 => 0.052494542814569
609 => 0.052689252738071
610 => 0.051693089240224
611 => 0.056195842710593
612 => 0.05517673092321
613 => 0.056315328478167
614 => 0.053156333873756
615 => 0.053277011721794
616 => 0.051781493050932
617 => 0.052618883576021
618 => 0.052027042943245
619 => 0.052551230696848
620 => 0.052865426675052
621 => 0.054360699946016
622 => 0.056620352855329
623 => 0.054137355982303
624 => 0.053055478687556
625 => 0.053726669276508
626 => 0.05551413826335
627 => 0.05822224527727
628 => 0.056618991419296
629 => 0.057330488256449
630 => 0.057485918663076
701 => 0.05630373862389
702 => 0.058265833941558
703 => 0.059317336762331
704 => 0.060395961078593
705 => 0.061332500350036
706 => 0.059965134807221
707 => 0.061428411942184
708 => 0.06024926887459
709 => 0.059191455645387
710 => 0.05919305991141
711 => 0.058529478220546
712 => 0.057243705077823
713 => 0.057006588783006
714 => 0.058240097693132
715 => 0.059229255025325
716 => 0.059310726760948
717 => 0.059858375084789
718 => 0.060182467721612
719 => 0.063359016145048
720 => 0.06463665019874
721 => 0.066198916935221
722 => 0.066807507873609
723 => 0.06863914840623
724 => 0.067159949917568
725 => 0.066839916019951
726 => 0.062396955212865
727 => 0.063124489796126
728 => 0.064289342860573
729 => 0.062416163210856
730 => 0.06360426455208
731 => 0.063838820924264
801 => 0.062352513283139
802 => 0.063146414413826
803 => 0.061038048386002
804 => 0.056666309473236
805 => 0.058270700936696
806 => 0.05945207308613
807 => 0.057766109366752
808 => 0.06078813407793
809 => 0.059022729628913
810 => 0.058463181172932
811 => 0.056280183152725
812 => 0.057310474186963
813 => 0.058703957563117
814 => 0.057842946846485
815 => 0.059629673364907
816 => 0.062160154617551
817 => 0.063963526250948
818 => 0.064101966732406
819 => 0.062942519588647
820 => 0.064800541036014
821 => 0.064814074693809
822 => 0.06271821891094
823 => 0.061434518913706
824 => 0.061142859573406
825 => 0.061871481788656
826 => 0.062756163669051
827 => 0.064151060419695
828 => 0.064993967312031
829 => 0.067191821443972
830 => 0.067786497754658
831 => 0.068439866725511
901 => 0.069312969162099
902 => 0.070361352496093
903 => 0.068067549445811
904 => 0.068158686517183
905 => 0.066022728876625
906 => 0.063740151810379
907 => 0.065472343276412
908 => 0.067736953194476
909 => 0.0672174491771
910 => 0.067158994362641
911 => 0.067257299146548
912 => 0.066865610082862
913 => 0.065094014964484
914 => 0.064204330986807
915 => 0.0653522503006
916 => 0.06596231832787
917 => 0.066908480634643
918 => 0.06679184615927
919 => 0.069229058651105
920 => 0.070176085727951
921 => 0.06993379567612
922 => 0.069978382876693
923 => 0.071692930163415
924 => 0.073599859369793
925 => 0.075385950213037
926 => 0.077202838533172
927 => 0.075012508748891
928 => 0.073900394365194
929 => 0.075047812533325
930 => 0.074438976302235
1001 => 0.077937529878637
1002 => 0.078179762137563
1003 => 0.08167806272872
1004 => 0.084998366559615
1005 => 0.082912943212852
1006 => 0.084879403499319
1007 => 0.087006290626992
1008 => 0.091109400971274
1009 => 0.089727617756482
1010 => 0.088669193469255
1011 => 0.087668987632094
1012 => 0.08975025720102
1013 => 0.09242777725235
1014 => 0.093004489426438
1015 => 0.093938983469468
1016 => 0.092956477247717
1017 => 0.094139797772305
1018 => 0.098317439201488
1019 => 0.097188603610262
1020 => 0.095585475601344
1021 => 0.098883322284736
1022 => 0.1000768001794
1023 => 0.10845325307339
1024 => 0.11902887086605
1025 => 0.11465049565664
1026 => 0.11193269687487
1027 => 0.11257144405563
1028 => 0.11643330166626
1029 => 0.11767360776156
1030 => 0.11430202823539
1031 => 0.11549292712272
1101 => 0.12205489707855
1102 => 0.12557518342664
1103 => 0.12079416172839
1104 => 0.107603512481
1105 => 0.095441131464345
1106 => 0.098667142589115
1107 => 0.098301413042347
1108 => 0.10535143113745
1109 => 0.097161681254742
1110 => 0.097299575638982
1111 => 0.1044953806422
1112 => 0.10257566323467
1113 => 0.099465966893301
1114 => 0.095463835689033
1115 => 0.088065526005613
1116 => 0.081512636801879
1117 => 0.094364361570656
1118 => 0.093810171829281
1119 => 0.093007622957453
1120 => 0.09479360862685
1121 => 0.10346584807656
1122 => 0.10326592488795
1123 => 0.10199411556368
1124 => 0.10295877172693
1125 => 0.09929685800384
1126 => 0.10024061655051
1127 => 0.095439204881052
1128 => 0.097609643480309
1129 => 0.099459294881588
1130 => 0.099830639784952
1201 => 0.10066729881357
1202 => 0.093518139018154
1203 => 0.096727901877992
1204 => 0.098613336844039
1205 => 0.090094873074728
1206 => 0.098444954204269
1207 => 0.09339368805156
1208 => 0.091679212451859
1209 => 0.093987527981872
1210 => 0.093087975174916
1211 => 0.092314592495008
1212 => 0.091883031671218
1213 => 0.093578003836971
1214 => 0.093498931359509
1215 => 0.090725627916416
1216 => 0.087107966629211
1217 => 0.088322172502881
1218 => 0.087881040125736
1219 => 0.086282319483754
1220 => 0.087359664166183
1221 => 0.082615583416429
1222 => 0.074453639062338
1223 => 0.079845669509767
1224 => 0.079638082202942
1225 => 0.079533407269506
1226 => 0.083585369125974
1227 => 0.083195866488139
1228 => 0.08248891538645
1229 => 0.086269335772373
1230 => 0.084889431477682
1231 => 0.08914197136758
]
'min_raw' => 0.038174005619833
'max_raw' => 0.12557518342664
'avg_raw' => 0.081874594523238
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.038174'
'max' => '$0.125575'
'avg' => '$0.081874'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.020796214055091
'max_diff' => 0.083011542912873
'year' => 2029
]
4 => [
'items' => [
101 => 0.091942969176103
102 => 0.091232545529075
103 => 0.093866897506388
104 => 0.088350145353859
105 => 0.09018258912525
106 => 0.090560253246876
107 => 0.08622268597163
108 => 0.08325959393675
109 => 0.083061989479745
110 => 0.077924396230496
111 => 0.080668857075041
112 => 0.083083869044734
113 => 0.081927265723751
114 => 0.081561119664869
115 => 0.083431680472306
116 => 0.083577039067314
117 => 0.080262847696724
118 => 0.08095197302946
119 => 0.083825740224528
120 => 0.080879561469472
121 => 0.075155617403966
122 => 0.073736000136002
123 => 0.073546597023719
124 => 0.069696482401736
125 => 0.073830865750012
126 => 0.072026096623904
127 => 0.077727340668824
128 => 0.074470820646751
129 => 0.074330438577323
130 => 0.074118230489811
131 => 0.070804277788439
201 => 0.071529822817358
202 => 0.073941644997115
203 => 0.074802210321973
204 => 0.074712446308186
205 => 0.073929825752669
206 => 0.074288105435319
207 => 0.073133961744586
208 => 0.072726409585965
209 => 0.071440062867302
210 => 0.06954948855322
211 => 0.069812384507159
212 => 0.066066662095283
213 => 0.064025793724757
214 => 0.063460908258009
215 => 0.062705519803684
216 => 0.063546231393937
217 => 0.066056050934315
218 => 0.0630286760807
219 => 0.057838454239832
220 => 0.058150395416176
221 => 0.058851234623254
222 => 0.057545225397379
223 => 0.056309197270135
224 => 0.057383823444642
225 => 0.055184658029181
226 => 0.059116993257076
227 => 0.059010634609403
228 => 0.060476366008383
301 => 0.061392917932001
302 => 0.05928056248527
303 => 0.058749310802834
304 => 0.059051935905192
305 => 0.054050217068951
306 => 0.060067618871002
307 => 0.060119657611664
308 => 0.059674070320479
309 => 0.062878151013633
310 => 0.069639760654019
311 => 0.067095771122188
312 => 0.066110661482973
313 => 0.064237967338713
314 => 0.066733221096363
315 => 0.066541624539798
316 => 0.065675152250174
317 => 0.065151107105852
318 => 0.066116676352367
319 => 0.065031462390727
320 => 0.064836528143531
321 => 0.063655438696075
322 => 0.06323384349948
323 => 0.062921711200108
324 => 0.062578084207987
325 => 0.063336039726095
326 => 0.06161841280471
327 => 0.059547123118562
328 => 0.059374917792824
329 => 0.059850391837634
330 => 0.059640029967685
331 => 0.059373910661122
401 => 0.058865816431614
402 => 0.058715075727434
403 => 0.059204909887025
404 => 0.058651915679953
405 => 0.059467888755641
406 => 0.059245989228903
407 => 0.058006476510674
408 => 0.056461584737375
409 => 0.056447831960073
410 => 0.056114987561646
411 => 0.055691060176759
412 => 0.055573133276428
413 => 0.057293321425601
414 => 0.060854059413491
415 => 0.06015500134523
416 => 0.060660142441901
417 => 0.063144936681005
418 => 0.063934778049246
419 => 0.063374167354487
420 => 0.062606768858538
421 => 0.062640530497746
422 => 0.065262963465726
423 => 0.065426521393197
424 => 0.065839779510129
425 => 0.066370932977117
426 => 0.063464625086687
427 => 0.062503643657467
428 => 0.062048277343083
429 => 0.060645925343721
430 => 0.062158241746458
501 => 0.061277079742428
502 => 0.061395978601552
503 => 0.061318545563568
504 => 0.061360829238307
505 => 0.059115894089238
506 => 0.059933830467241
507 => 0.058573852597442
508 => 0.056752994894461
509 => 0.056746890740966
510 => 0.057192543084163
511 => 0.056927451632051
512 => 0.056214097350543
513 => 0.056315425959294
514 => 0.055427680723663
515 => 0.056423214304046
516 => 0.056451762644941
517 => 0.056068427989413
518 => 0.057602184827153
519 => 0.058230566255002
520 => 0.05797824717291
521 => 0.058212862875571
522 => 0.060184050364024
523 => 0.060505439933581
524 => 0.060648179950576
525 => 0.060456927237232
526 => 0.058248892564301
527 => 0.058346828291333
528 => 0.057628240907742
529 => 0.05702111029148
530 => 0.057045392332149
531 => 0.057357536390364
601 => 0.058720687799592
602 => 0.061589359578149
603 => 0.061698223575173
604 => 0.061830169915354
605 => 0.061293477838922
606 => 0.061131606373219
607 => 0.061345156619052
608 => 0.062422478911481
609 => 0.065193644337759
610 => 0.064214129396196
611 => 0.063417768501648
612 => 0.064116391703522
613 => 0.064008844137584
614 => 0.063101034449014
615 => 0.06307555525461
616 => 0.061333178217931
617 => 0.060689061099477
618 => 0.060150788623965
619 => 0.059563009132666
620 => 0.059214553747676
621 => 0.05974993958916
622 => 0.059872388665607
623 => 0.058701758166259
624 => 0.058542205554826
625 => 0.059498167690408
626 => 0.059077484396399
627 => 0.059510167596731
628 => 0.059610553810696
629 => 0.059594389318157
630 => 0.059155147644043
701 => 0.059435107188748
702 => 0.058772919405563
703 => 0.05805288964874
704 => 0.057593555523325
705 => 0.057192725577071
706 => 0.057415129327626
707 => 0.056622300566217
708 => 0.056368658688952
709 => 0.059340263194291
710 => 0.061535419392517
711 => 0.061503500952017
712 => 0.061309205654233
713 => 0.061020522253088
714 => 0.06240135992259
715 => 0.061920303689256
716 => 0.062270312292599
717 => 0.062359404171965
718 => 0.062629058458048
719 => 0.062725436687754
720 => 0.062434114738599
721 => 0.061456402695257
722 => 0.059020037241319
723 => 0.057885902545668
724 => 0.057511619205596
725 => 0.057525223694143
726 => 0.057149951166923
727 => 0.057260485744724
728 => 0.057111511751649
729 => 0.056829391049445
730 => 0.05739770916926
731 => 0.057463202538319
801 => 0.057330550298259
802 => 0.057361794702874
803 => 0.056263490811685
804 => 0.056346992471141
805 => 0.05588204462041
806 => 0.055794872503428
807 => 0.05461952482442
808 => 0.052537226041686
809 => 0.053691021700954
810 => 0.05229739879278
811 => 0.051769612680621
812 => 0.054268070048
813 => 0.054017294224735
814 => 0.053588075024936
815 => 0.052953170371314
816 => 0.05271767805933
817 => 0.051286901319523
818 => 0.051202363396838
819 => 0.051911494983308
820 => 0.05158425515588
821 => 0.051124686502758
822 => 0.049460175426874
823 => 0.047588713876902
824 => 0.047645201537508
825 => 0.048240478636774
826 => 0.049971327086944
827 => 0.04929505465348
828 => 0.04880441124367
829 => 0.0487125284817
830 => 0.049862633617354
831 => 0.05149027333878
901 => 0.052253925479687
902 => 0.051497169400508
903 => 0.050627848763389
904 => 0.050680760282527
905 => 0.05103275691457
906 => 0.051069746783633
907 => 0.050503908416474
908 => 0.050663188602412
909 => 0.050421227435087
910 => 0.048936312197836
911 => 0.048909454789911
912 => 0.048545032643197
913 => 0.048533998085425
914 => 0.047914025104499
915 => 0.047827286598797
916 => 0.046596292615499
917 => 0.047406536583099
918 => 0.046863067469351
919 => 0.046043931323528
920 => 0.045902711943237
921 => 0.045898466718138
922 => 0.046739536384407
923 => 0.047396708194354
924 => 0.046872521347263
925 => 0.046753174163116
926 => 0.048027489852115
927 => 0.047865321565044
928 => 0.047724884874314
929 => 0.051344536053835
930 => 0.048479299700341
1001 => 0.047229893108244
1002 => 0.045683515194647
1003 => 0.046187023640828
1004 => 0.046293120268517
1005 => 0.042574360141886
1006 => 0.041065659621654
1007 => 0.040547930457291
1008 => 0.040249970003583
1009 => 0.04038575432389
1010 => 0.03902774690276
1011 => 0.039940350349129
1012 => 0.03876443071194
1013 => 0.038567283957992
1014 => 0.040669973937775
1015 => 0.040962550964725
1016 => 0.039714326471198
1017 => 0.040515888665232
1018 => 0.040225231071127
1019 => 0.038784588479026
1020 => 0.038729566528657
1021 => 0.038006702716976
1022 => 0.036875560825711
1023 => 0.036358598628814
1024 => 0.036089360228198
1025 => 0.036200453239644
1026 => 0.036144281213555
1027 => 0.0357777207471
1028 => 0.036165292030412
1029 => 0.035175207557061
1030 => 0.034780947942121
1031 => 0.034602870020805
1101 => 0.033724113063571
1102 => 0.035122606167524
1103 => 0.035398126926754
1104 => 0.035674190546993
1105 => 0.038077135884535
1106 => 0.037957091526124
1107 => 0.039042234062182
1108 => 0.03900006741868
1109 => 0.038690567189252
1110 => 0.037384836631615
1111 => 0.03790527755948
1112 => 0.03630344127799
1113 => 0.037503645934362
1114 => 0.036955922650939
1115 => 0.037318460141276
1116 => 0.036666585044961
1117 => 0.037027359638525
1118 => 0.035463463119914
1119 => 0.034003118555453
1120 => 0.034590803838307
1121 => 0.035229684950735
1122 => 0.036614941986357
1123 => 0.035789894324062
1124 => 0.03608661266193
1125 => 0.035092655900125
1126 => 0.033041839190809
1127 => 0.033053446590665
1128 => 0.032737973119408
1129 => 0.03246535798036
1130 => 0.03588466097291
1201 => 0.035459416594605
1202 => 0.034781845332385
1203 => 0.035688801392478
1204 => 0.035928614970095
1205 => 0.035935442125512
1206 => 0.036597133855032
1207 => 0.036950278849691
1208 => 0.037012522185618
1209 => 0.038053708418814
1210 => 0.038402700310603
1211 => 0.039840148521699
1212 => 0.036920316964181
1213 => 0.036860184954703
1214 => 0.035701564124178
1215 => 0.034966748476389
1216 => 0.035751877580245
1217 => 0.03644739478545
1218 => 0.035723175782491
1219 => 0.03581774349518
1220 => 0.034845538654573
1221 => 0.035193056138601
1222 => 0.035492385011505
1223 => 0.035327113201625
1224 => 0.035079693302989
1225 => 0.036390370306197
1226 => 0.036316416773091
1227 => 0.037536949330813
1228 => 0.038488441740678
1229 => 0.040193686238768
1230 => 0.038414174708604
1231 => 0.038349322235528
]
'min_raw' => 0.03246535798036
'max_raw' => 0.093866897506388
'avg_raw' => 0.063166127743374
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.032465'
'max' => '$0.093866'
'avg' => '$0.063166'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0057086476394723
'max_diff' => -0.031708285920256
'year' => 2030
]
5 => [
'items' => [
101 => 0.038983265562518
102 => 0.038402603257182
103 => 0.038769561790373
104 => 0.040134563545914
105 => 0.040163403882067
106 => 0.03968029109283
107 => 0.0396508936357
108 => 0.039743680731548
109 => 0.04028713765008
110 => 0.040097237104
111 => 0.040316994823617
112 => 0.040591805217048
113 => 0.041728537521469
114 => 0.042002599831676
115 => 0.041336770502889
116 => 0.041396887436304
117 => 0.041147848989914
118 => 0.040907280971144
119 => 0.041448042745201
120 => 0.04243629551599
121 => 0.042430147646794
122 => 0.042659403080728
123 => 0.042802227316815
124 => 0.042189121141801
125 => 0.041790011566405
126 => 0.041943055573614
127 => 0.042187776274005
128 => 0.04186369594874
129 => 0.039863322052593
130 => 0.040470107708305
131 => 0.040369108904892
201 => 0.040225274326957
202 => 0.04083540199591
203 => 0.040776553693823
204 => 0.039013818573824
205 => 0.039126663157027
206 => 0.039020681026682
207 => 0.03936313097173
208 => 0.038384109836325
209 => 0.038685250143767
210 => 0.03887412252158
211 => 0.038985369803098
212 => 0.039387271266915
213 => 0.039340112768866
214 => 0.039384339828463
215 => 0.039980253601251
216 => 0.042994180971103
217 => 0.043158222387988
218 => 0.042350422455916
219 => 0.04267312259563
220 => 0.042053608894143
221 => 0.042469492592332
222 => 0.042754029656333
223 => 0.041468261377445
224 => 0.041392126524536
225 => 0.040770055869629
226 => 0.041104321403693
227 => 0.040572480904455
228 => 0.040702975959977
301 => 0.040338100408383
302 => 0.040994803755255
303 => 0.041729100138442
304 => 0.041914612403077
305 => 0.041426609502872
306 => 0.041073263242165
307 => 0.040452903607858
308 => 0.041484575505327
309 => 0.041786267807778
310 => 0.041482990844096
311 => 0.041412714944879
312 => 0.041279542242847
313 => 0.041440968163163
314 => 0.041784624726707
315 => 0.04162256263768
316 => 0.041729607502649
317 => 0.041321662861573
318 => 0.042189324105456
319 => 0.043567378974792
320 => 0.043571809646532
321 => 0.04340974668393
322 => 0.043343434011328
323 => 0.043509720445761
324 => 0.043599924015014
325 => 0.044137663852253
326 => 0.04471468012211
327 => 0.047407363281613
328 => 0.046651268625371
329 => 0.04904037731292
330 => 0.050929852097834
331 => 0.051496422969112
401 => 0.050975204426756
402 => 0.04919214394903
403 => 0.049104658495453
404 => 0.051769303637892
405 => 0.051016419336674
406 => 0.050926866144702
407 => 0.049974171484627
408 => 0.05053733202226
409 => 0.050414160551613
410 => 0.050219728359442
411 => 0.051294199435144
412 => 0.053305513370164
413 => 0.052992031231409
414 => 0.052758031356846
415 => 0.05173271202285
416 => 0.052350183275279
417 => 0.052130313589172
418 => 0.05307501329344
419 => 0.052515394116292
420 => 0.05101071549761
421 => 0.051250340527121
422 => 0.051214121685969
423 => 0.05195950287038
424 => 0.051735757940318
425 => 0.051170431897397
426 => 0.053298638917792
427 => 0.053160444991597
428 => 0.053356372383412
429 => 0.053442625680545
430 => 0.054738027790645
501 => 0.055268712586909
502 => 0.055389187326606
503 => 0.055893296838422
504 => 0.055376644622719
505 => 0.057443621852318
506 => 0.058818041098536
507 => 0.060414499779986
508 => 0.062747355001225
509 => 0.063624530144528
510 => 0.063466076306181
511 => 0.065234820510415
512 => 0.06841321452845
513 => 0.064108520610988
514 => 0.068641373758689
515 => 0.067206324786433
516 => 0.063803849488643
517 => 0.063584770192014
518 => 0.065888965967228
519 => 0.070999450426028
520 => 0.069719332031733
521 => 0.071001544241131
522 => 0.069505775590157
523 => 0.069431498069308
524 => 0.070928898096371
525 => 0.074427654878631
526 => 0.072765526680316
527 => 0.070382458337477
528 => 0.072142078917179
529 => 0.070617732725845
530 => 0.067182954119133
531 => 0.069718353149323
601 => 0.068023004021842
602 => 0.068517797026958
603 => 0.072081168728771
604 => 0.071652414418097
605 => 0.07220726219769
606 => 0.071227970389603
607 => 0.070313157420707
608 => 0.068605591079358
609 => 0.068100064867687
610 => 0.068239774125665
611 => 0.068099995634718
612 => 0.067144627960078
613 => 0.066938316401701
614 => 0.066594454765689
615 => 0.066701031865151
616 => 0.066054471389179
617 => 0.067274664593549
618 => 0.067501143204586
619 => 0.068389098063058
620 => 0.068481288482142
621 => 0.070954230123741
622 => 0.069592175423644
623 => 0.070505959310614
624 => 0.070424221878896
625 => 0.063877591445554
626 => 0.064779659357859
627 => 0.066182993944901
628 => 0.065550793615614
629 => 0.064657010262095
630 => 0.063935232282498
701 => 0.06284166483782
702 => 0.064380840016102
703 => 0.066404691702509
704 => 0.068532616700773
705 => 0.071089179159018
706 => 0.070518584180006
707 => 0.068484823543924
708 => 0.068576056560396
709 => 0.069140023169354
710 => 0.068409635168983
711 => 0.068194229488807
712 => 0.069110429736677
713 => 0.069116739104249
714 => 0.068276339439484
715 => 0.067342389003613
716 => 0.067338475717186
717 => 0.067172288258013
718 => 0.069535339969956
719 => 0.070834779480049
720 => 0.07098375812573
721 => 0.070824752030195
722 => 0.070885947165641
723 => 0.070129831945913
724 => 0.071858087119207
725 => 0.073444104972943
726 => 0.073019018307812
727 => 0.072381752967151
728 => 0.071874140428457
729 => 0.072899440925854
730 => 0.072853785908678
731 => 0.073430252490602
801 => 0.073404100636614
802 => 0.073210256607117
803 => 0.073019025230593
804 => 0.073777236022698
805 => 0.073558883491065
806 => 0.073340191797639
807 => 0.07290157212645
808 => 0.072961187824466
809 => 0.072324032516651
810 => 0.072029255317013
811 => 0.067596513503849
812 => 0.066411940047354
813 => 0.066784630970984
814 => 0.066907330499958
815 => 0.066391802613619
816 => 0.067130937174381
817 => 0.067015743836023
818 => 0.067463893729723
819 => 0.067183909132546
820 => 0.067195399798077
821 => 0.068018774799365
822 => 0.068257804065126
823 => 0.068136231851357
824 => 0.068221376862629
825 => 0.070183507709935
826 => 0.069904555448861
827 => 0.069756367619889
828 => 0.069797416661248
829 => 0.070298783161294
830 => 0.070439138407711
831 => 0.069844443366055
901 => 0.070124904985591
902 => 0.071319074965698
903 => 0.071736966874568
904 => 0.073070677248186
905 => 0.072504093376662
906 => 0.07354408259402
907 => 0.076740654889729
908 => 0.07929429802552
909 => 0.076945862264081
910 => 0.081635302678469
911 => 0.085286704701344
912 => 0.085146557809977
913 => 0.084509851408839
914 => 0.080352827283341
915 => 0.07652747170532
916 => 0.079727544079512
917 => 0.079735701722094
918 => 0.079460812667148
919 => 0.077753500355508
920 => 0.079401401899517
921 => 0.079532206339781
922 => 0.079458990636941
923 => 0.078149998290613
924 => 0.076151408919993
925 => 0.076541928499065
926 => 0.077181607535969
927 => 0.075970561668084
928 => 0.075583559133438
929 => 0.076303070475589
930 => 0.078621485936144
1001 => 0.078183202922992
1002 => 0.078171757582278
1003 => 0.080046918173463
1004 => 0.078704707875158
1005 => 0.076546854201574
1006 => 0.076001967690401
1007 => 0.074067987655272
1008 => 0.075403794554136
1009 => 0.075451867866335
1010 => 0.074720260079443
1011 => 0.07660622014136
1012 => 0.076588840687372
1013 => 0.078379279078052
1014 => 0.081801924823082
1015 => 0.080789680058109
1016 => 0.079612549528361
1017 => 0.079740536255234
1018 => 0.081144234750869
1019 => 0.080295526597088
1020 => 0.080600727966591
1021 => 0.081143772792043
1022 => 0.081471405218282
1023 => 0.079693394991075
1024 => 0.079278855755053
1025 => 0.078430853961652
1026 => 0.078209626122457
1027 => 0.078900305889044
1028 => 0.078718336172625
1029 => 0.075447827490594
1030 => 0.075106041136383
1031 => 0.075116523235908
1101 => 0.07425708519719
1102 => 0.072946235899381
1103 => 0.076391069587278
1104 => 0.076114401231723
1105 => 0.075808980779621
1106 => 0.075846393042298
1107 => 0.077341678589968
1108 => 0.07647433745859
1109 => 0.078780306010775
1110 => 0.078306268200206
1111 => 0.077820073108503
1112 => 0.077752866136965
1113 => 0.077565722506876
1114 => 0.076923937366221
1115 => 0.076148943243573
1116 => 0.07563722499496
1117 => 0.069771341889264
1118 => 0.070860015673409
1119 => 0.07211243562633
1120 => 0.07254476597532
1121 => 0.071805234997023
1122 => 0.076953138556739
1123 => 0.077893710143532
1124 => 0.075044657455169
1125 => 0.074511716023231
1126 => 0.076988078108292
1127 => 0.075494529048047
1128 => 0.076167074098424
1129 => 0.074713399561984
1130 => 0.077667153991425
1201 => 0.077644651331564
1202 => 0.076495574144942
1203 => 0.077466766314534
1204 => 0.077297997775202
1205 => 0.076000692461558
1206 => 0.077708280883829
1207 => 0.077709127826382
1208 => 0.076603166017351
1209 => 0.075311644750574
1210 => 0.075080751252444
1211 => 0.074906804017781
1212 => 0.076124293741856
1213 => 0.07721589122147
1214 => 0.079247083501067
1215 => 0.079757773500096
1216 => 0.081751030564864
1217 => 0.08056414303272
1218 => 0.081090274902953
1219 => 0.081661465473988
1220 => 0.08193531523858
1221 => 0.081489091742766
1222 => 0.08458544042169
1223 => 0.084846867119864
1224 => 0.084934521230429
1225 => 0.083890449877305
1226 => 0.084817829606822
1227 => 0.08438393934297
1228 => 0.085512801271327
1229 => 0.085689821235726
1230 => 0.085539891623548
1231 => 0.085596080554318
]
'min_raw' => 0.038384109836325
'max_raw' => 0.085689821235726
'avg_raw' => 0.062036965536025
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.038384'
'max' => '$0.085689'
'avg' => '$0.062036'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0059187518559645
'max_diff' => -0.0081770762706623
'year' => 2031
]
6 => [
'items' => [
101 => 0.082953893190193
102 => 0.082816881836714
103 => 0.080948722310152
104 => 0.081710011125964
105 => 0.080286818174325
106 => 0.080738127319802
107 => 0.080937060090896
108 => 0.080833148900612
109 => 0.081753053253381
110 => 0.080970946629484
111 => 0.078906838658785
112 => 0.07684216832325
113 => 0.076816248069031
114 => 0.076272656814143
115 => 0.075879739900563
116 => 0.075955429637595
117 => 0.076222170143263
118 => 0.075864236457466
119 => 0.075940619757029
120 => 0.077209091469041
121 => 0.077463474424559
122 => 0.076598981747873
123 => 0.073127918905282
124 => 0.072276111377208
125 => 0.07288837373631
126 => 0.072595751763406
127 => 0.058590437539187
128 => 0.061880778372405
129 => 0.059925769578724
130 => 0.060826727576482
131 => 0.058831169845206
201 => 0.059783554590713
202 => 0.05960768390374
203 => 0.064898454595291
204 => 0.064815846488159
205 => 0.064855386617519
206 => 0.062968033221905
207 => 0.065974638428348
208 => 0.067455800267068
209 => 0.067181676630567
210 => 0.067250667644113
211 => 0.066065173453238
212 => 0.064866864792649
213 => 0.063537756069675
214 => 0.066007075794157
215 => 0.065732529593488
216 => 0.066362239799218
217 => 0.067963770151164
218 => 0.068199601579111
219 => 0.068516561409837
220 => 0.068402953873258
221 => 0.071109546303567
222 => 0.070781760101585
223 => 0.071571630537836
224 => 0.069946807122854
225 => 0.068108165199147
226 => 0.068457630919111
227 => 0.068423974560052
228 => 0.067995490480269
229 => 0.067608674211859
301 => 0.066964734109763
302 => 0.069002255877997
303 => 0.068919536215159
304 => 0.070258671405427
305 => 0.070021966252882
306 => 0.068441191312609
307 => 0.068497648998852
308 => 0.068877354071477
309 => 0.070191517663228
310 => 0.07058165089234
311 => 0.070400925636494
312 => 0.070828688911957
313 => 0.071166775563569
314 => 0.070871147390126
315 => 0.075056618901437
316 => 0.073318519319885
317 => 0.074165656962315
318 => 0.074367694298409
319 => 0.07385017991039
320 => 0.073962410250351
321 => 0.074132408634454
322 => 0.07516460553363
323 => 0.07787338886565
324 => 0.079073090564089
325 => 0.082682452316084
326 => 0.078973472038688
327 => 0.078753396498313
328 => 0.07940355154213
329 => 0.081522628980294
330 => 0.083239942209103
331 => 0.083809674081276
401 => 0.083884973553432
402 => 0.084953828420687
403 => 0.085566476097635
404 => 0.084824041326129
405 => 0.084194905593438
406 => 0.081941419490142
407 => 0.082202266642637
408 => 0.083999244853656
409 => 0.086537582418209
410 => 0.088715740117607
411 => 0.087953025207737
412 => 0.093772001577226
413 => 0.094348929315874
414 => 0.0942692165567
415 => 0.095583543803699
416 => 0.092974871876495
417 => 0.091859614086978
418 => 0.084330931879839
419 => 0.086446184489089
420 => 0.089520828381063
421 => 0.089113887732637
422 => 0.086880999152819
423 => 0.088714046271391
424 => 0.088107983569308
425 => 0.08762995677061
426 => 0.089819890205498
427 => 0.087411968436332
428 => 0.089496807519451
429 => 0.086822979830452
430 => 0.087956509225199
501 => 0.087313063118093
502 => 0.08772945160718
503 => 0.085295253008193
504 => 0.086608687485375
505 => 0.08524060981577
506 => 0.085239961168825
507 => 0.085209760778443
508 => 0.086819298089749
509 => 0.086871785043686
510 => 0.085682334538755
511 => 0.085510916138286
512 => 0.086144739808842
513 => 0.085402698289303
514 => 0.085749894845942
515 => 0.085413214519309
516 => 0.085337420686211
517 => 0.084733482528831
518 => 0.084473289365006
519 => 0.084575317808894
520 => 0.084227042130637
521 => 0.084017193436806
522 => 0.085168016591425
523 => 0.084553178203986
524 => 0.085073783790526
525 => 0.084480488019
526 => 0.082423866388228
527 => 0.081241081539992
528 => 0.07735631392839
529 => 0.078458029204001
530 => 0.079188467571539
531 => 0.078947057695425
601 => 0.079465699522537
602 => 0.079497539918488
603 => 0.079328924173566
604 => 0.079133688741961
605 => 0.079038658931052
606 => 0.079746933285102
607 => 0.080158110387046
608 => 0.079261776833726
609 => 0.079051778423222
610 => 0.079958021133561
611 => 0.080510828663348
612 => 0.08459244886758
613 => 0.084290069259391
614 => 0.085048982736945
615 => 0.084963540725849
616 => 0.085759002954723
617 => 0.087059247511511
618 => 0.084415486773464
619 => 0.084874352223221
620 => 0.084761849011692
621 => 0.085990129575246
622 => 0.085993964133094
623 => 0.085257548578079
624 => 0.08565677139743
625 => 0.085433936171773
626 => 0.085836629542523
627 => 0.084286030795372
628 => 0.08617449269261
629 => 0.087245128898548
630 => 0.087259994683306
701 => 0.087767467747826
702 => 0.088283089772236
703 => 0.089272781346878
704 => 0.088255487811376
705 => 0.086425475772537
706 => 0.086557596730838
707 => 0.085484661342042
708 => 0.085502697579769
709 => 0.085406418729255
710 => 0.08569535880718
711 => 0.084349436893966
712 => 0.084665322076807
713 => 0.084223080971009
714 => 0.084873390877425
715 => 0.084173764918199
716 => 0.084761794759237
717 => 0.08501556894513
718 => 0.085952001154445
719 => 0.084035453119494
720 => 0.080127481937333
721 => 0.080948984859394
722 => 0.079733917510004
723 => 0.079846376619277
724 => 0.080073561917745
725 => 0.079337180035008
726 => 0.079477658492174
727 => 0.079472639613152
728 => 0.079429389625161
729 => 0.079237828257044
730 => 0.078960026374012
731 => 0.080066703573101
801 => 0.080254749594247
802 => 0.080672752605281
803 => 0.081916446031966
804 => 0.081792171730329
805 => 0.08199486827239
806 => 0.081552382859165
807 => 0.079866902248518
808 => 0.079958431954768
809 => 0.078817055051167
810 => 0.08064356503169
811 => 0.080211023359549
812 => 0.079932160929669
813 => 0.079856070732034
814 => 0.081102847034167
815 => 0.081475902044589
816 => 0.081243439196884
817 => 0.080766651114217
818 => 0.081682225182681
819 => 0.081927194178433
820 => 0.081982033702473
821 => 0.083604255407875
822 => 0.08207269787517
823 => 0.082441358995665
824 => 0.085317547818808
825 => 0.082709241443144
826 => 0.084090919502507
827 => 0.084023293551406
828 => 0.08473011329314
829 => 0.083965313702062
830 => 0.083974794309597
831 => 0.08460240235614
901 => 0.083721040044478
902 => 0.083502802341485
903 => 0.083201308517847
904 => 0.083859609251829
905 => 0.08425423076947
906 => 0.087434590384086
907 => 0.089489247737148
908 => 0.089400049642678
909 => 0.090215153254294
910 => 0.089847941611768
911 => 0.088662118352513
912 => 0.09068617406032
913 => 0.090045678144282
914 => 0.090098479849398
915 => 0.090096514567296
916 => 0.090522388358337
917 => 0.090220617746625
918 => 0.089625796894823
919 => 0.090020666735376
920 => 0.091193288993267
921 => 0.094833144462208
922 => 0.096870055804297
923 => 0.094710519841792
924 => 0.09620013883139
925 => 0.095306898243148
926 => 0.095144569856659
927 => 0.096080160664105
928 => 0.097017389099407
929 => 0.096957691699828
930 => 0.096277311983011
1001 => 0.095892982744978
1002 => 0.098803252495108
1003 => 0.10094748967185
1004 => 0.10080126707155
1005 => 0.10144664607516
1006 => 0.10334149879058
1007 => 0.10351474037582
1008 => 0.10349291591799
1009 => 0.1030635185731
1010 => 0.10492924714916
1011 => 0.10648567075167
1012 => 0.10296412549424
1013 => 0.10430508382786
1014 => 0.1049070832268
1015 => 0.10579099694962
1016 => 0.10728230756115
1017 => 0.10890226643588
1018 => 0.10913134638271
1019 => 0.10896880319795
1020 => 0.10790039677323
1021 => 0.10967297510409
1022 => 0.11071130991823
1023 => 0.11132961453818
1024 => 0.11289753217829
1025 => 0.10491080097014
1026 => 0.09925739565472
1027 => 0.098374534778554
1028 => 0.10016986708703
1029 => 0.10064328189926
1030 => 0.10045244898206
1031 => 0.094089027314429
1101 => 0.098341032680414
1102 => 0.10291583293545
1103 => 0.10309156964471
1104 => 0.10538181030694
1105 => 0.1061276065467
1106 => 0.1079715504685
1107 => 0.10785621127414
1108 => 0.10830518227554
1109 => 0.10820197161741
1110 => 0.11161748944435
1111 => 0.11538531281677
1112 => 0.11525484507433
1113 => 0.11471317588568
1114 => 0.11551764699914
1115 => 0.11940644450397
1116 => 0.11904842634643
1117 => 0.11939621049056
1118 => 0.12398132191178
1119 => 0.12994261898385
1120 => 0.12717299798943
1121 => 0.13318227861035
1122 => 0.13696480222293
1123 => 0.14350628569066
1124 => 0.14268725974302
1125 => 0.14523381125338
1126 => 0.14122103236086
1127 => 0.13200688090721
1128 => 0.13054870616932
1129 => 0.13346800892145
1130 => 0.14064482987616
1201 => 0.13324198528945
1202 => 0.13473957110785
1203 => 0.1343082662914
1204 => 0.13428528389066
1205 => 0.13516242865077
1206 => 0.13389008442744
1207 => 0.12870632517123
1208 => 0.13108201149026
1209 => 0.13016464491266
1210 => 0.13118253152472
1211 => 0.13667564576166
1212 => 0.13424700901802
1213 => 0.13168863749503
1214 => 0.13489740313295
1215 => 0.13898326444154
1216 => 0.13872757858384
1217 => 0.13823144115152
1218 => 0.1410281418806
1219 => 0.14564747212862
1220 => 0.14689605853268
1221 => 0.14781773948994
1222 => 0.14794482372202
1223 => 0.14925387029483
1224 => 0.14221479695059
1225 => 0.15338598712413
1226 => 0.1553149430692
1227 => 0.15495237929855
1228 => 0.15709633264862
1229 => 0.15646552718619
1230 => 0.15555158904146
1231 => 0.15895021113328
]
'min_raw' => 0.058590437539187
'max_raw' => 0.15895021113328
'avg_raw' => 0.10877032433623
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.05859'
'max' => '$0.15895'
'avg' => '$0.10877'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.020206327702862
'max_diff' => 0.07326038989755
'year' => 2032
]
7 => [
'items' => [
101 => 0.15505396515967
102 => 0.14952373452386
103 => 0.1464897406215
104 => 0.15048514853744
105 => 0.15292500473118
106 => 0.15453759447125
107 => 0.15502556315224
108 => 0.14276122017663
109 => 0.13615141952442
110 => 0.14038822596097
111 => 0.14555742222232
112 => 0.14218608180436
113 => 0.14231823196595
114 => 0.13751158650262
115 => 0.14598270369017
116 => 0.14474853316926
117 => 0.15115141201498
118 => 0.14962331359214
119 => 0.1548446127325
120 => 0.15346966968406
121 => 0.15917698140613
122 => 0.16145378257136
123 => 0.16527688608359
124 => 0.16808917659002
125 => 0.16974060736594
126 => 0.16964146165651
127 => 0.17618525313025
128 => 0.17232660792085
129 => 0.16747924012499
130 => 0.16739156653481
131 => 0.16990208700402
201 => 0.17516344917983
202 => 0.17652764384231
203 => 0.17729004255177
204 => 0.17612240238893
205 => 0.17193411956572
206 => 0.17012564027773
207 => 0.17166651702779
208 => 0.16978215717152
209 => 0.17303509094143
210 => 0.17750206379668
211 => 0.1765796515664
212 => 0.17966313735647
213 => 0.18285422075703
214 => 0.18741761334035
215 => 0.18861065314356
216 => 0.19058270257104
217 => 0.19261258921641
218 => 0.19326453409992
219 => 0.19450929916917
220 => 0.19450273864282
221 => 0.19825392196133
222 => 0.20239159332613
223 => 0.20395346847903
224 => 0.20754491427082
225 => 0.20139468921165
226 => 0.20605970556773
227 => 0.21026766709384
228 => 0.20525076188852
301 => 0.21216539692506
302 => 0.21243387653463
303 => 0.21648759988545
304 => 0.21237837466997
305 => 0.20993832985413
306 => 0.21698264781018
307 => 0.22039117137517
308 => 0.21936449633791
309 => 0.21155144861115
310 => 0.2070039197168
311 => 0.19510215944746
312 => 0.20920030860427
313 => 0.21606710580991
314 => 0.21153366526529
315 => 0.21382006898151
316 => 0.2262939462883
317 => 0.23104319114299
318 => 0.23005538141294
319 => 0.23022230499659
320 => 0.23278491131528
321 => 0.24414891898545
322 => 0.23733934217385
323 => 0.24254500849634
324 => 0.24530607514337
325 => 0.24787070772104
326 => 0.24157278067073
327 => 0.23337927011319
328 => 0.23078404137945
329 => 0.21108290394747
330 => 0.21005737418643
331 => 0.20948171325483
401 => 0.20585225250993
402 => 0.20300049055741
403 => 0.20073266357363
404 => 0.19478120833773
405 => 0.19678964977305
406 => 0.18730427229227
407 => 0.19337268066333
408 => 0.17823378917156
409 => 0.1908419078605
410 => 0.18397988207892
411 => 0.18858754783766
412 => 0.18857147212589
413 => 0.1800872986023
414 => 0.17519380437407
415 => 0.17831212935394
416 => 0.18165522126531
417 => 0.18219762668042
418 => 0.18653203260713
419 => 0.18774167213353
420 => 0.18407640789586
421 => 0.17792006929479
422 => 0.17935004634069
423 => 0.17516482593488
424 => 0.16783038815588
425 => 0.17309810941576
426 => 0.17489674105923
427 => 0.17569111925878
428 => 0.168478542069
429 => 0.1662121937233
430 => 0.16500560888056
501 => 0.17698901615126
502 => 0.17764549425256
503 => 0.17428685946965
504 => 0.18946820716721
505 => 0.18603220062393
506 => 0.18987106177482
507 => 0.17922029091208
508 => 0.1796271647022
509 => 0.17458491908961
510 => 0.17740823970969
511 => 0.17541280769529
512 => 0.17718014330419
513 => 0.17823947698116
514 => 0.18328089521086
515 => 0.19089947275854
516 => 0.18252787544383
517 => 0.17888025061033
518 => 0.18114321654201
519 => 0.18716979302825
520 => 0.19630036489967
521 => 0.1908948825819
522 => 0.19329374384349
523 => 0.19381778831123
524 => 0.18983198577194
525 => 0.19644732712458
526 => 0.1999925422984
527 => 0.20362919948782
528 => 0.20678680702858
529 => 0.20217663863456
530 => 0.20711017965784
531 => 0.2031346164803
601 => 0.19956812532389
602 => 0.19957353421879
603 => 0.19733622221824
604 => 0.19300114829774
605 => 0.19220169415483
606 => 0.19636055556617
607 => 0.19969556857241
608 => 0.19997025621724
609 => 0.20181669077666
610 => 0.20290939172913
611 => 0.21361934651827
612 => 0.21792697893186
613 => 0.22319427030788
614 => 0.22524617714712
615 => 0.23142168108391
616 => 0.22643446010505
617 => 0.22535544347518
618 => 0.21037569091647
619 => 0.21282862455878
620 => 0.216756007993
621 => 0.21044045202275
622 => 0.21444621864528
623 => 0.2152370418303
624 => 0.21022585184756
625 => 0.21290254493808
626 => 0.20579404167386
627 => 0.1910544187044
628 => 0.19646373653849
629 => 0.20044681522108
630 => 0.19476247083097
701 => 0.20495143813573
702 => 0.19899925377927
703 => 0.1971126970935
704 => 0.18975256685632
705 => 0.19322626501088
706 => 0.19792449150348
707 => 0.19502153375851
708 => 0.20104560696063
709 => 0.20957730117648
710 => 0.21565749454587
711 => 0.21612425629471
712 => 0.21221509929951
713 => 0.21847954833222
714 => 0.21852517800437
715 => 0.21145885390444
716 => 0.2071307697387
717 => 0.20614741990987
718 => 0.20860402057937
719 => 0.21158678730563
720 => 0.21628977908901
721 => 0.2191316985264
722 => 0.22654191718152
723 => 0.22854690988197
724 => 0.23074978898397
725 => 0.23369351480699
726 => 0.23722821241333
727 => 0.22949449528109
728 => 0.22980177028021
729 => 0.22260023996727
730 => 0.21490437202398
731 => 0.22074457648946
801 => 0.22837986693822
802 => 0.22662832287303
803 => 0.2264312383849
804 => 0.22676267982726
805 => 0.22544207280218
806 => 0.21946901617175
807 => 0.21646938452526
808 => 0.22033967463688
809 => 0.22239656158441
810 => 0.22558661386064
811 => 0.22519337258376
812 => 0.23341060466072
813 => 0.23660357256963
814 => 0.23578667474373
815 => 0.23593700360344
816 => 0.24171771948649
817 => 0.24814706444334
818 => 0.25416899442222
819 => 0.26029476024465
820 => 0.252909910453
821 => 0.24916033916302
822 => 0.25302893962705
823 => 0.25097620576634
824 => 0.26277182341039
825 => 0.26358852638348
826 => 0.27538329107011
827 => 0.28657792725218
828 => 0.27954677683897
829 => 0.28617683498866
830 => 0.29334778343413
831 => 0.30718170642989
901 => 0.3025229278482
902 => 0.29895437646699
903 => 0.29558211265486
904 => 0.30259925831609
905 => 0.31162670410763
906 => 0.31357112946733
907 => 0.31672184137769
908 => 0.31340925305467
909 => 0.31739890082012
910 => 0.33148411057222
911 => 0.32767816256361
912 => 0.32227310455473
913 => 0.33339202489608
914 => 0.33741591894391
915 => 0.36565771470125
916 => 0.40131414845528
917 => 0.38655215074834
918 => 0.37738890240496
919 => 0.37954248312081
920 => 0.39256300568133
921 => 0.39674478427704
922 => 0.38537726850838
923 => 0.38939246725294
924 => 0.41151660710111
925 => 0.42338549830226
926 => 0.40726594984634
927 => 0.36279275496701
928 => 0.32178643821905
929 => 0.33266315995911
930 => 0.33143007725776
1001 => 0.35519970548196
1002 => 0.32758739196232
1003 => 0.32805231250627
1004 => 0.35231347146967
1005 => 0.3458410101998
1006 => 0.33535645187281
1007 => 0.32186298709774
1008 => 0.2969190694666
1009 => 0.2748255460081
1010 => 0.3181560333448
1011 => 0.31628754393946
1012 => 0.31358169438592
1013 => 0.31960326976383
1014 => 0.34884233054497
1015 => 0.34816827555636
1016 => 0.3438802816247
1017 => 0.34713268722922
1018 => 0.33478628944519
1019 => 0.33796823727638
1020 => 0.32177994260896
1021 => 0.32909772788154
1022 => 0.33533395671949
1023 => 0.33658597198766
1024 => 0.33940682631631
1025 => 0.31530293492767
1026 => 0.3261248745081
1027 => 0.33248175013299
1028 => 0.30376115479461
1029 => 0.33191403630691
1030 => 0.31488333980491
1031 => 0.30910286561965
1101 => 0.31688551259053
1102 => 0.31385260749711
1103 => 0.31124509379595
1104 => 0.30979005634792
1105 => 0.31550477334394
1106 => 0.31523817496551
1107 => 0.30588778878126
1108 => 0.2936905911744
1109 => 0.29778437105063
1110 => 0.2962970624422
1111 => 0.29090686417865
1112 => 0.29453920699327
1113 => 0.27854420752433
1114 => 0.25102564228575
1115 => 0.2692052493988
1116 => 0.26850535430056
1117 => 0.26815243545431
1118 => 0.28181390775233
1119 => 0.28050067241467
1120 => 0.27811713741757
1121 => 0.29086308868924
1122 => 0.28621064501784
1123 => 0.30054838015949
1124 => 0.30999213983035
1125 => 0.3075968969042
1126 => 0.31647879852029
1127 => 0.2978786834707
1128 => 0.30405689558308
1129 => 0.30533021653681
1130 => 0.29070580562905
1201 => 0.28071553395697
1202 => 0.28004929673387
1203 => 0.26272754239873
1204 => 0.27198068374825
1205 => 0.28012306521482
1206 => 0.27622349636666
1207 => 0.27498900936564
1208 => 0.28129573572629
1209 => 0.28178582237798
1210 => 0.27061179478258
1211 => 0.2729352289551
1212 => 0.28262433569328
1213 => 0.27269108832498
1214 => 0.25339241127511
1215 => 0.24860607254166
1216 => 0.24796748672489
1217 => 0.23498655647046
1218 => 0.2489259185826
1219 => 0.24284101346897
1220 => 0.26206315581457
1221 => 0.25108357119718
1222 => 0.25061026324894
1223 => 0.249894788866
1224 => 0.23872156596053
1225 => 0.24116779168147
1226 => 0.24929941854857
1227 => 0.25220087462408
1228 => 0.25189822898448
1229 => 0.24925956914073
1230 => 0.25046753410507
1231 => 0.24657625807202
]
'min_raw' => 0.13615141952442
'max_raw' => 0.42338549830226
'avg_raw' => 0.27976845891334
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.136151'
'max' => '$0.423385'
'avg' => '$0.279768'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.077560981985235
'max_diff' => 0.26443528716898
'year' => 2033
]
8 => [
'items' => [
101 => 0.24520216751485
102 => 0.24086515974302
103 => 0.23449095644741
104 => 0.23537732851092
105 => 0.22274836388129
106 => 0.21586743368119
107 => 0.213962882891
108 => 0.21141603797771
109 => 0.21425055580085
110 => 0.22271258761124
111 => 0.21250558192772
112 => 0.19500638662151
113 => 0.1960581180766
114 => 0.19842104639429
115 => 0.1940177451066
116 => 0.18985038997887
117 => 0.19347356715422
118 => 0.18605892741517
119 => 0.19931707018289
120 => 0.19895847457654
121 => 0.2039002903223
122 => 0.20699050912439
123 => 0.19986855525579
124 => 0.19807740311765
125 => 0.19909772477886
126 => 0.18223408051362
127 => 0.20252217081081
128 => 0.20269762305818
129 => 0.20119529439604
130 => 0.21199807615478
131 => 0.23479531513785
201 => 0.2262180768156
202 => 0.22289671088883
203 => 0.21658279183413
204 => 0.2249957140911
205 => 0.2243497329238
206 => 0.22142836110417
207 => 0.21966150631242
208 => 0.22291699044094
209 => 0.21925811580205
210 => 0.21860088137775
211 => 0.21461875584462
212 => 0.21319731820447
213 => 0.21214494236475
214 => 0.21098637996955
215 => 0.21354187991761
216 => 0.20775078083128
217 => 0.2007672830416
218 => 0.20018668076289
219 => 0.2017897747015
220 => 0.20108052496997
221 => 0.20018328514804
222 => 0.19847020997924
223 => 0.19796197717072
224 => 0.19961348723891
225 => 0.19774902866094
226 => 0.20050013885505
227 => 0.19975198910812
228 => 0.1955728854386
301 => 0.19036417496402
302 => 0.19031780651516
303 => 0.18919559838741
304 => 0.1877662976116
305 => 0.18736869883374
306 => 0.19316843327838
307 => 0.20517371000734
308 => 0.20281678692352
309 => 0.20451990539877
310 => 0.2128975626587
311 => 0.21556056797669
312 => 0.21367042987872
313 => 0.21108309227158
314 => 0.21119692199533
315 => 0.2200386378393
316 => 0.22059008481101
317 => 0.22198341340501
318 => 0.22377423440291
319 => 0.21397541443839
320 => 0.21073539845619
321 => 0.20920009913459
322 => 0.20447197145965
323 => 0.20957085179804
324 => 0.20659995258068
325 => 0.20700082838547
326 => 0.20673975749171
327 => 0.20688231985324
328 => 0.19931336426179
329 => 0.20207109386672
330 => 0.19748583352807
331 => 0.19134668465424
401 => 0.19132610407456
402 => 0.1928286520641
403 => 0.19193487772521
404 => 0.1895297539603
405 => 0.18987139043924
406 => 0.18687829539692
407 => 0.19023480636911
408 => 0.19033105909362
409 => 0.18903861953894
410 => 0.19420978780086
411 => 0.19632841965705
412 => 0.19547770825542
413 => 0.19626873147729
414 => 0.20291472771852
415 => 0.20399831509099
416 => 0.20447957302407
417 => 0.20383475114819
418 => 0.19639020808835
419 => 0.19672040522969
420 => 0.19429763769575
421 => 0.19225065443451
422 => 0.19233252302995
423 => 0.19338493851542
424 => 0.19798089866383
425 => 0.2076528258495
426 => 0.20801986841611
427 => 0.20846473471422
428 => 0.20665523990789
429 => 0.20610947895977
430 => 0.2068294785232
501 => 0.21046174584836
502 => 0.21980492355965
503 => 0.21650242054662
504 => 0.21381743419051
505 => 0.21617289109194
506 => 0.21581028696465
507 => 0.21274954321839
508 => 0.21266363833556
509 => 0.20678909250751
510 => 0.20461740667182
511 => 0.20280258343965
512 => 0.20082084384728
513 => 0.19964600218841
514 => 0.20145109293242
515 => 0.20186393854278
516 => 0.19791707608342
517 => 0.19737913331437
518 => 0.20060222639762
519 => 0.1991838633007
520 => 0.2006426849196
521 => 0.20098114404872
522 => 0.20092664433356
523 => 0.19944571036241
524 => 0.20038961351353
525 => 0.19815700117005
526 => 0.19572937057405
527 => 0.19418069350053
528 => 0.19282926735168
529 => 0.19357911712441
530 => 0.19090603960178
531 => 0.19005086830387
601 => 0.20006984036443
602 => 0.20747096274766
603 => 0.20736334749704
604 => 0.20670826733529
605 => 0.2057349510931
606 => 0.21039054170283
607 => 0.20876862702587
608 => 0.20994870546887
609 => 0.21024908496035
610 => 0.21115824321254
611 => 0.2114831891429
612 => 0.21050097685188
613 => 0.20720455243607
614 => 0.19899017620652
615 => 0.19516636189738
616 => 0.1939044394847
617 => 0.19395030796766
618 => 0.19268505044145
619 => 0.19305772548779
620 => 0.1925554492691
621 => 0.19160425962458
622 => 0.19352038384424
623 => 0.19374119931063
624 => 0.19329395302178
625 => 0.19339929571335
626 => 0.18969628746308
627 => 0.18997781913784
628 => 0.18841021499748
629 => 0.18811630811891
630 => 0.18415354135898
701 => 0.17713292563153
702 => 0.1810230282522
703 => 0.17632433131764
704 => 0.17454486359165
705 => 0.18296858704249
706 => 0.18212307884574
707 => 0.18067593634649
708 => 0.17853531097918
709 => 0.17774133220778
710 => 0.17291736853588
711 => 0.17263234302729
712 => 0.17502322968106
713 => 0.17391991775574
714 => 0.17237044995567
715 => 0.16675843465088
716 => 0.16044867137388
717 => 0.16063912346545
718 => 0.16264614176655
719 => 0.16848181816027
720 => 0.16620171843502
721 => 0.16454747992322
722 => 0.16423769077618
723 => 0.16811535053882
724 => 0.17360305149778
725 => 0.17617775800734
726 => 0.17362630205137
727 => 0.17069532682929
728 => 0.17087372171023
729 => 0.17206050293078
730 => 0.17218521685688
731 => 0.17027745329643
801 => 0.17081447756391
802 => 0.16999868859508
803 => 0.16499219319922
804 => 0.16490164157327
805 => 0.16367296686248
806 => 0.16363576308055
807 => 0.16154548089023
808 => 0.16125303596236
809 => 0.15710265380242
810 => 0.15983444790861
811 => 0.1580021038478
812 => 0.1552403291419
813 => 0.15476419814163
814 => 0.15474988506882
815 => 0.15758561017025
816 => 0.15980131080976
817 => 0.15803397825723
818 => 0.15763159089333
819 => 0.16192803520867
820 => 0.16138127350658
821 => 0.16090778139881
822 => 0.17311168806654
823 => 0.16345134365632
824 => 0.15923888210028
825 => 0.15402516099993
826 => 0.15572277488007
827 => 0.15608048706775
828 => 0.14354242766527
829 => 0.1384557385272
830 => 0.13671017850286
831 => 0.13570558403025
901 => 0.13616339034632
902 => 0.13158477351293
903 => 0.1346616797483
904 => 0.13069698459143
905 => 0.13003229054615
906 => 0.13712165661811
907 => 0.13810810049155
908 => 0.13389962446337
909 => 0.13660214736384
910 => 0.13562217499226
911 => 0.13076494791053
912 => 0.13057943756335
913 => 0.12814225175353
914 => 0.12432852789333
915 => 0.12258555375334
916 => 0.12167779768804
917 => 0.12205235553239
918 => 0.12186296762463
919 => 0.12062708341954
920 => 0.12193380706059
921 => 0.1185956681332
922 => 0.1172663943151
923 => 0.11666599217038
924 => 0.11370320173621
925 => 0.11841831887586
926 => 0.11934725635185
927 => 0.12027802412163
928 => 0.12837972209544
929 => 0.12797498415983
930 => 0.13163361798238
1001 => 0.13149145019983
1002 => 0.1304479485677
1003 => 0.12604558682943
1004 => 0.12780028975375
1005 => 0.12239958689407
1006 => 0.12644616068864
1007 => 0.12459947339776
1008 => 0.125821793858
1009 => 0.1236239514583
1010 => 0.12484032818898
1011 => 0.11956754188872
1012 => 0.11464388823163
1013 => 0.11662531019366
1014 => 0.11877934246946
1015 => 0.12344983328062
1016 => 0.1206681274842
1017 => 0.12166853407653
1018 => 0.11831733945826
1019 => 0.11140286773936
1020 => 0.11144200289838
1021 => 0.11037836206438
1022 => 0.1094592210897
1023 => 0.12098763985719
1024 => 0.11955389874612
1025 => 0.11726941992903
1026 => 0.12032728560728
1027 => 0.12113583382747
1028 => 0.12115885205861
1029 => 0.12338979192253
1030 => 0.12458044492782
1031 => 0.12479030268059
1101 => 0.12830073475911
1102 => 0.12947738528811
1103 => 0.13432384229125
1104 => 0.12447942633895
1105 => 0.12427668707071
1106 => 0.12037031604828
1107 => 0.11789283378856
1108 => 0.12053995137818
1109 => 0.12288493619499
1110 => 0.12044318126315
1111 => 0.12076202290899
1112 => 0.11748416641171
1113 => 0.11865584587201
1114 => 0.11966505406548
1115 => 0.11910782861956
1116 => 0.118273635157
1117 => 0.12269267418186
1118 => 0.12244333468173
1119 => 0.12655844541495
1120 => 0.12976646850588
1121 => 0.13551581938757
1122 => 0.12951607202209
1123 => 0.12929741738126
1124 => 0.13143480156872
1125 => 0.12947705806573
1126 => 0.13071428438061
1127 => 0.13531648310079
1128 => 0.1354137203077
1129 => 0.13378487180893
1130 => 0.13368575622975
1201 => 0.13399859440159
1202 => 0.13583089734537
1203 => 0.13519063439583
1204 => 0.13593156289052
1205 => 0.13685810531862
1206 => 0.14069067764709
1207 => 0.14161469786037
1208 => 0.13936980779165
1209 => 0.13957249622988
1210 => 0.13873284572057
1211 => 0.13792175384936
1212 => 0.13974496992538
1213 => 0.1430769331397
1214 => 0.14305620516947
1215 => 0.14382915587109
1216 => 0.14431069775472
1217 => 0.14224356747996
1218 => 0.14089794168157
1219 => 0.14141394023707
1220 => 0.14223903316429
1221 => 0.14114637372109
1222 => 0.13440197346859
1223 => 0.13644779367124
1224 => 0.13610726915402
1225 => 0.13562232083231
1226 => 0.13767940886593
1227 => 0.13748099770679
1228 => 0.13153781317948
1229 => 0.1319182765703
1230 => 0.13156095041841
1231 => 0.13271554431723
]
'min_raw' => 0.1094592210897
'max_raw' => 0.24520216751485
'avg_raw' => 0.17733069430227
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.109459'
'max' => '$0.2452021'
'avg' => '$0.17733'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.026692198434727
'max_diff' => -0.17818333078741
'year' => 2034
]
9 => [
'items' => [
101 => 0.12941470620614
102 => 0.13043002177763
103 => 0.13106681818607
104 => 0.13144189616274
105 => 0.13279693500787
106 => 0.13263793683919
107 => 0.13278705145846
108 => 0.13479621634879
109 => 0.14495788290193
110 => 0.14551095999197
111 => 0.1427874061222
112 => 0.14387541217344
113 => 0.14178667847581
114 => 0.14318885940033
115 => 0.14414819597735
116 => 0.13981313845561
117 => 0.13955644448346
118 => 0.13745908983886
119 => 0.13858608942463
120 => 0.13679295204953
121 => 0.1372329252401
122 => 0.1360027218431
123 => 0.13821684302664
124 => 0.14069257454949
125 => 0.14131804210176
126 => 0.13967270625245
127 => 0.13848137466462
128 => 0.13638978884543
129 => 0.13986814267678
130 => 0.14088531933798
131 => 0.1398627998808
201 => 0.13962585978008
202 => 0.13917685871736
203 => 0.13972111747811
204 => 0.14087977957543
205 => 0.14033337592746
206 => 0.14069428516334
207 => 0.13931887132416
208 => 0.14224425178609
209 => 0.14689045999078
210 => 0.14690539830989
211 => 0.1463589917166
212 => 0.14613541391112
213 => 0.14669606023456
214 => 0.14700018786611
215 => 0.14881321527115
216 => 0.15075866591097
217 => 0.15983723518037
218 => 0.157288009258
219 => 0.16534305600031
220 => 0.17171355215657
221 => 0.1736237854058
222 => 0.17186646069993
223 => 0.16585474780997
224 => 0.1655597844952
225 => 0.17454382163251
226 => 0.17200541964625
227 => 0.17170348480711
228 => 0.16849140824565
301 => 0.1703901433169
302 => 0.16997486210405
303 => 0.16931932039333
304 => 0.17294197464223
305 => 0.1797232599996
306 => 0.17866633308217
307 => 0.17787738616773
308 => 0.17442045044765
309 => 0.17650229788568
310 => 0.17576099188816
311 => 0.17894611289793
312 => 0.17705931777081
313 => 0.17198618875462
314 => 0.1727941012717
315 => 0.17267198692004
316 => 0.17518509162413
317 => 0.17443071997106
318 => 0.17252468374754
319 => 0.17970008230347
320 => 0.17923415183291
321 => 0.17989473471363
322 => 0.18018554372693
323 => 0.18455308238322
324 => 0.18634232322505
325 => 0.18674851222122
326 => 0.18844815263611
327 => 0.18670622361936
328 => 0.19367518166069
329 => 0.19830913210821
330 => 0.2036917040139
331 => 0.21155708826706
401 => 0.21451454550512
402 => 0.21398030732623
403 => 0.21994375190059
404 => 0.23065992924078
405 => 0.21614635315392
406 => 0.2314291840151
407 => 0.22659081621322
408 => 0.21511913319348
409 => 0.21438049204926
410 => 0.22214924897921
411 => 0.23937960413468
412 => 0.23506359559331
413 => 0.23938666357849
414 => 0.2343435751405
415 => 0.23409314329307
416 => 0.23914173202944
417 => 0.25093803479623
418 => 0.24533405352952
419 => 0.23729937223112
420 => 0.24323205586838
421 => 0.23809261625784
422 => 0.22651202037673
423 => 0.23506029522292
424 => 0.22934430727412
425 => 0.23101253643621
426 => 0.24302669291554
427 => 0.24158111782244
428 => 0.24345182584957
429 => 0.24015007514663
430 => 0.2370657193518
501 => 0.23130854021346
502 => 0.2296041232961
503 => 0.23007516281357
504 => 0.22960388987231
505 => 0.22638280105562
506 => 0.22568720723234
507 => 0.22452785371887
508 => 0.22488718585069
509 => 0.22270726206454
510 => 0.22682122864424
511 => 0.22758481709358
512 => 0.23057861889395
513 => 0.23088944532842
514 => 0.23922714072834
515 => 0.23463487821135
516 => 0.23771576438462
517 => 0.23744018092686
518 => 0.2153677593497
519 => 0.21840914429641
520 => 0.22314058483431
521 => 0.2210090772853
522 => 0.21799562430695
523 => 0.21556209945581
524 => 0.21187506046564
525 => 0.217064497041
526 => 0.22388805430253
527 => 0.23106250200116
528 => 0.23968213082262
529 => 0.23775833001321
530 => 0.23090136403603
531 => 0.23120896252075
601 => 0.23311041531774
602 => 0.23064786118043
603 => 0.22992160589057
604 => 0.23301063899332
605 => 0.2330319114666
606 => 0.23019844532202
607 => 0.22704956622114
608 => 0.22703637230273
609 => 0.22647605968129
610 => 0.23444325351111
611 => 0.23882440454336
612 => 0.23932669644863
613 => 0.23879059629608
614 => 0.23899691996774
615 => 0.23644762471415
616 => 0.24227455769384
617 => 0.24762192761994
618 => 0.24618871824985
619 => 0.24404013366136
620 => 0.24232868254678
621 => 0.24578555475795
622 => 0.24563162568001
623 => 0.24757522300858
624 => 0.24748705020699
625 => 0.24683349152779
626 => 0.24618874159049
627 => 0.24874510221265
628 => 0.24800891140737
629 => 0.24727157709441
630 => 0.24579274024956
701 => 0.24599373873765
702 => 0.24384552513259
703 => 0.24285166322332
704 => 0.22790636471609
705 => 0.22391249260324
706 => 0.22516904607271
707 => 0.22558273610125
708 => 0.22384459783945
709 => 0.22633664161579
710 => 0.22594825923297
711 => 0.22745922788841
712 => 0.22651524027112
713 => 0.22655398185221
714 => 0.22933004815526
715 => 0.23013595201327
716 => 0.22972606280665
717 => 0.23001313515678
718 => 0.23662859630008
719 => 0.23568808927604
720 => 0.23518846366452
721 => 0.23532686337341
722 => 0.23701725553261
723 => 0.23749047304519
724 => 0.23548541719197
725 => 0.23643101312344
726 => 0.24045724058566
727 => 0.24186619233269
728 => 0.24636288997403
729 => 0.24445261289356
730 => 0.24795900914962
731 => 0.25873647582215
801 => 0.26734626194414
802 => 0.2594283468119
803 => 0.27523912257528
804 => 0.28755007942815
805 => 0.28707756439917
806 => 0.28493086431431
807 => 0.27091516724103
808 => 0.25801771383194
809 => 0.26880698126344
810 => 0.26883448532496
811 => 0.26790767768407
812 => 0.26215135502464
813 => 0.26770737013307
814 => 0.2681483864359
815 => 0.26790153458201
816 => 0.26348817549544
817 => 0.25674979189534
818 => 0.25806645592139
819 => 0.26022317845528
820 => 0.25614005275918
821 => 0.25483524669397
822 => 0.25726112941871
823 => 0.26507782901057
824 => 0.26360012723178
825 => 0.26356153846648
826 => 0.26988377331919
827 => 0.26535841758832
828 => 0.2580830632713
829 => 0.25624594035612
830 => 0.24972539164151
831 => 0.25422915786409
901 => 0.25439124039254
902 => 0.25192457365981
903 => 0.25828321968209
904 => 0.25822462363957
905 => 0.26426121167817
906 => 0.27580090076903
907 => 0.27238804687125
908 => 0.26841926910558
909 => 0.26885078529098
910 => 0.27358345277211
911 => 0.27072197397673
912 => 0.27175098170249
913 => 0.27358189524567
914 => 0.27468653084531
915 => 0.26869184522757
916 => 0.26729419725111
917 => 0.26443509999907
918 => 0.26368921489359
919 => 0.26601788994836
920 => 0.26540436634473
921 => 0.25437761798364
922 => 0.25322526142765
923 => 0.25326060255804
924 => 0.25036294720645
925 => 0.24594332727832
926 => 0.25755782456767
927 => 0.25662501789055
928 => 0.25559527151251
929 => 0.25572140956817
930 => 0.26076286918964
1001 => 0.25783856800937
1002 => 0.26561330198065
1003 => 0.26401505040605
1004 => 0.26237580970932
1005 => 0.26214921671254
1006 => 0.26151824889774
1007 => 0.25935442548802
1008 => 0.25674147869515
1009 => 0.25501618489292
1010 => 0.23523895045919
1011 => 0.23890949013121
1012 => 0.24313211144365
1013 => 0.24458974339961
1014 => 0.24209636307388
1015 => 0.25945287934061
1016 => 0.26262408211409
1017 => 0.25301830206077
1018 => 0.25122145281421
1019 => 0.25957068047807
1020 => 0.25453507554519
1021 => 0.25680260813813
1022 => 0.25190144294621
1023 => 0.26186023222962
1024 => 0.26178436294081
1025 => 0.25791016898011
1026 => 0.26118461118636
1027 => 0.26061559627296
1028 => 0.25624164083304
1029 => 0.26199889441874
1030 => 0.2620017499447
1031 => 0.25827292248976
1101 => 0.25391846836768
1102 => 0.25313999481827
1103 => 0.252553519572
1104 => 0.25665837117913
1105 => 0.26033876829456
1106 => 0.26718707487853
1107 => 0.2689089018655
1108 => 0.27562930722413
1109 => 0.27162763304366
1110 => 0.2734015233775
1111 => 0.275327332267
1112 => 0.2762506358679
1113 => 0.27474616219744
1114 => 0.28518571794859
1115 => 0.28606713631371
1116 => 0.2863626682673
1117 => 0.28284250880551
1118 => 0.28596923431116
1119 => 0.28450634299333
1120 => 0.28831237979941
1121 => 0.28890921496852
1122 => 0.28840371681331
1123 => 0.28859316171639
1124 => 0.27968484254661
1125 => 0.27922289920253
1126 => 0.27292426892799
1127 => 0.27549100732199
1128 => 0.27069261292138
1129 => 0.27221423321475
1130 => 0.27288494894154
1201 => 0.27253460510865
1202 => 0.27563612685968
1203 => 0.27299919977227
1204 => 0.26603991563764
1205 => 0.2590787354507
1206 => 0.25899134350391
1207 => 0.25715858763573
1208 => 0.25583384082901
1209 => 0.2560890340619
1210 => 0.25698836829999
1211 => 0.25578156988819
1212 => 0.25603910151558
1213 => 0.2603158424545
1214 => 0.26117351234948
1215 => 0.25825881493308
1216 => 0.24655588421741
1217 => 0.24368395566521
1218 => 0.24574824095572
1219 => 0.24476164554385
1220 => 0.19754175081709
1221 => 0.20863536466054
1222 => 0.20204391601829
1223 => 0.20508155881061
1224 => 0.19835339659422
1225 => 0.20156442825708
1226 => 0.20097146795705
1227 => 0.21880967073343
1228 => 0.21853115173272
1229 => 0.21866446403946
1230 => 0.21230112029534
1231 => 0.22243809966334
]
'min_raw' => 0.12941470620614
'max_raw' => 0.28890921496852
'avg_raw' => 0.20916196058733
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.129414'
'max' => '$0.2889092'
'avg' => '$0.209161'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.019955485116443
'max_diff' => 0.043707047453669
'year' => 2035
]
10 => [
'items' => [
101 => 0.227431940214
102 => 0.22650771323483
103 => 0.2267403212538
104 => 0.22274334482071
105 => 0.21870316350829
106 => 0.21422198065338
107 => 0.22254746450687
108 => 0.22162181282311
109 => 0.22374492474669
110 => 0.22914459614355
111 => 0.2299397182681
112 => 0.23100837046682
113 => 0.23062533472542
114 => 0.23975080007246
115 => 0.23864564600717
116 => 0.24130874932998
117 => 0.23583054374482
118 => 0.22963143412917
119 => 0.23080968220294
120 => 0.23069620743857
121 => 0.22925154344777
122 => 0.22794736539218
123 => 0.2257762763795
124 => 0.23264592327633
125 => 0.23236702815777
126 => 0.23688201594719
127 => 0.23608394799916
128 => 0.23075425492184
129 => 0.23094460595276
130 => 0.23222480811528
131 => 0.23665560241684
201 => 0.23797096383702
202 => 0.2373616360191
203 => 0.23880386976781
204 => 0.23994375251817
205 => 0.23894702149131
206 => 0.25305863091198
207 => 0.24719850682254
208 => 0.25005469052926
209 => 0.2507358735137
210 => 0.24899103762279
211 => 0.24936943004964
212 => 0.24994259147055
213 => 0.25342271538181
214 => 0.26255556750693
215 => 0.26660044554371
216 => 0.27876966068815
217 => 0.26626457473018
218 => 0.26552257468062
219 => 0.26771461780323
220 => 0.27485923533526
221 => 0.28064927678517
222 => 0.28257016756961
223 => 0.28282404499722
224 => 0.28642776380724
225 => 0.28849334822376
226 => 0.28599017755649
227 => 0.28386900250887
228 => 0.27627121677823
229 => 0.27715068116463
301 => 0.2832093186641
302 => 0.29176750098406
303 => 0.29911131174169
304 => 0.29653976517201
305 => 0.3161588502697
306 => 0.31810400242036
307 => 0.31783524528744
308 => 0.32226659136409
309 => 0.31347127182987
310 => 0.30971110232769
311 => 0.28432762463052
312 => 0.29145934648483
313 => 0.3018257230314
314 => 0.30045369422354
315 => 0.29292535448138
316 => 0.29910560082091
317 => 0.29706221810689
318 => 0.29545051738032
319 => 0.30283403085231
320 => 0.29471555449184
321 => 0.30174473501939
322 => 0.29272973828524
323 => 0.29655151178013
324 => 0.29438208830605
325 => 0.29578597116832
326 => 0.28757890064152
327 => 0.2920072366824
328 => 0.2873946673032
329 => 0.28739248034474
330 => 0.28729065762004
331 => 0.29271732503941
401 => 0.29289428846913
402 => 0.28888397304698
403 => 0.28830602394174
404 => 0.29044300469918
405 => 0.28794115990837
406 => 0.28911175733957
407 => 0.28797661611205
408 => 0.28772107191201
409 => 0.28568485224879
410 => 0.28480759283084
411 => 0.28515158885281
412 => 0.28397735308774
413 => 0.28326983356532
414 => 0.28714991417902
415 => 0.28507694362912
416 => 0.28683220171167
417 => 0.28483186359538
418 => 0.2778978201785
419 => 0.27390997848327
420 => 0.26081221325494
421 => 0.26452672322596
422 => 0.26698944717969
423 => 0.26617551692768
424 => 0.2679241540582
425 => 0.26803150617617
426 => 0.2674630064198
427 => 0.26680475653124
428 => 0.26648435688899
429 => 0.2688723533238
430 => 0.27025866563048
501 => 0.26723661447545
502 => 0.26652859017281
503 => 0.26958405074256
504 => 0.27144787992503
505 => 0.28520934741322
506 => 0.28418985345274
507 => 0.28674858322796
508 => 0.28646050952218
509 => 0.28914246596423
510 => 0.29352633126762
511 => 0.28461270735781
512 => 0.28615980425863
513 => 0.28578049182624
514 => 0.28992172550207
515 => 0.28993465398157
516 => 0.28745177752295
517 => 0.28879778513124
518 => 0.28804648061008
519 => 0.28940418942471
520 => 0.28417623748935
521 => 0.29054331862408
522 => 0.29415304334184
523 => 0.29420316437304
524 => 0.29591414524071
525 => 0.29765260089559
526 => 0.30098941513755
527 => 0.29755953895744
528 => 0.29138952560114
529 => 0.29183498063644
530 => 0.28821750406316
531 => 0.2882783144979
601 => 0.28795370363142
602 => 0.2889278852773
603 => 0.28439001557763
604 => 0.28545504452598
605 => 0.28396399776149
606 => 0.28615656301416
607 => 0.28379772524631
608 => 0.2857803089103
609 => 0.28663592629598
610 => 0.2897931728693
611 => 0.28333139736035
612 => 0.27015539967386
613 => 0.27292515413109
614 => 0.26882846972933
615 => 0.26920763346789
616 => 0.26997360456324
617 => 0.26749084163305
618 => 0.26796447455928
619 => 0.26794755305825
620 => 0.26780173270412
621 => 0.26715587017713
622 => 0.26621924173298
623 => 0.26995048117544
624 => 0.27058449146469
625 => 0.27199381780043
626 => 0.2761870170204
627 => 0.27576801753588
628 => 0.27645142307925
629 => 0.27495955261522
630 => 0.26927683705993
701 => 0.26958543585495
702 => 0.26573720393607
703 => 0.27189540985826
704 => 0.27043706541153
705 => 0.26949686125964
706 => 0.26924031784587
707 => 0.27344391119565
708 => 0.27470169220916
709 => 0.27391792748808
710 => 0.27231040317909
711 => 0.27539732507426
712 => 0.27622325514662
713 => 0.2764081504307
714 => 0.28187758417036
715 => 0.27671383101891
716 => 0.27795679772576
717 => 0.28765406915208
718 => 0.27885998210039
719 => 0.28351840614322
720 => 0.28329040052759
721 => 0.28567349263542
722 => 0.2830949174175
723 => 0.28312688194772
724 => 0.28524290629483
725 => 0.28227133172631
726 => 0.2815355280738
727 => 0.28051902059778
728 => 0.28273852748349
729 => 0.28406902148181
730 => 0.29479182596811
731 => 0.30171924668555
801 => 0.30141850908243
802 => 0.30416668781771
803 => 0.30292860812704
804 => 0.29893052221692
805 => 0.30575476735085
806 => 0.30359529065193
807 => 0.30377331528723
808 => 0.30376668920141
809 => 0.30520255242146
810 => 0.30418511173512
811 => 0.30217963170421
812 => 0.30351096294056
813 => 0.30746454075292
814 => 0.31973656759304
815 => 0.32660415639551
816 => 0.31932313012394
817 => 0.32434548454924
818 => 0.32133386154192
819 => 0.32078656005346
820 => 0.32394096978163
821 => 0.32710090088645
822 => 0.32689962693583
823 => 0.32460567921799
824 => 0.32330988635895
825 => 0.33312206401006
826 => 0.34035150935731
827 => 0.33985850965145
828 => 0.34203445002105
829 => 0.3484230782455
830 => 0.34900717434544
831 => 0.34893359166215
901 => 0.3474858485343
902 => 0.35377628268948
903 => 0.35902387353138
904 => 0.34715073782952
905 => 0.35167187247403
906 => 0.35370155547781
907 => 0.35668173230717
908 => 0.36170979015394
909 => 0.367171594602
910 => 0.3679439536366
911 => 0.36739592794077
912 => 0.36379372108609
913 => 0.36977009268604
914 => 0.37327091100613
915 => 0.37535556820094
916 => 0.38064191199309
917 => 0.35371409010906
918 => 0.33465323937995
919 => 0.33167661229658
920 => 0.33772970052069
921 => 0.33932585161292
922 => 0.33868244510905
923 => 0.31722772467671
924 => 0.33156365763366
925 => 0.34698791609586
926 => 0.34758042468067
927 => 0.35530213097288
928 => 0.35781663506506
929 => 0.36403362073747
930 => 0.36364474659096
1001 => 0.36515848366835
1002 => 0.36481050172853
1003 => 0.37632615854589
1004 => 0.38902963810702
1005 => 0.38858975700441
1006 => 0.38676348151675
1007 => 0.38947581204217
1008 => 0.40258716433686
1009 => 0.40138008112271
1010 => 0.40255265964616
1011 => 0.41801168292503
1012 => 0.43811061220799
1013 => 0.42877264165655
1014 => 0.44903335082454
1015 => 0.46178639327174
1016 => 0.48384146149498
1017 => 0.48108005832993
1018 => 0.48966593454167
1019 => 0.47613657034225
1020 => 0.44507041540478
1021 => 0.44015407746946
1022 => 0.44999671051747
1023 => 0.47419386343593
1024 => 0.44923465606171
1025 => 0.45428387120658
1026 => 0.45282969690518
1027 => 0.4527522101365
1028 => 0.4557095649355
1029 => 0.45141976755429
1030 => 0.43394236130346
1031 => 0.44195215359321
1101 => 0.43885918812832
1102 => 0.44229106390747
1103 => 0.4608114820743
1104 => 0.45262316373112
1105 => 0.44399743552154
1106 => 0.45481601289868
1107 => 0.46859177956629
1108 => 0.46772971684566
1109 => 0.46605695485338
1110 => 0.47548622662089
1111 => 0.4910606210634
1112 => 0.49527031729823
1113 => 0.49837782899533
1114 => 0.49880630235651
1115 => 0.50321984427148
1116 => 0.47948711703896
1117 => 0.51715156465663
1118 => 0.52365517430083
1119 => 0.52243276523472
1120 => 0.52966125364053
1121 => 0.52753444898249
1122 => 0.52445304271842
1123 => 0.53591173438519
1124 => 0.52277526905797
1125 => 0.50412971036098
1126 => 0.49390038809247
1127 => 0.50737118483153
1128 => 0.51559733033405
1129 => 0.5210342892301
1130 => 0.52267950970695
1201 => 0.48132942109561
1202 => 0.45904401671514
1203 => 0.47332870542034
1204 => 0.49075701151723
1205 => 0.47939030191861
1206 => 0.47983585541485
1207 => 0.46362991464595
1208 => 0.49219087767831
1209 => 0.48802978560001
1210 => 0.5096175386631
1211 => 0.50446544814205
1212 => 0.52206942273326
1213 => 0.51743370624996
1214 => 0.53667630619271
1215 => 0.54435270028248
1216 => 0.55724256069452
1217 => 0.5667243944848
1218 => 0.57229230864502
1219 => 0.57195803196356
1220 => 0.5940208817902
1221 => 0.58101119006469
1222 => 0.56466795110854
1223 => 0.56437235347808
1224 => 0.57283674851896
1225 => 0.59057579843127
1226 => 0.59517527598085
1227 => 0.5977457564588
1228 => 0.59380897612775
1229 => 0.57968788817272
1230 => 0.57359047398928
1231 => 0.57878564753266
]
'min_raw' => 0.21422198065338
'max_raw' => 0.5977457564588
'avg_raw' => 0.40598386855609
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.214221'
'max' => '$0.597745'
'avg' => '$0.405983'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.084807274447239
'max_diff' => 0.30883654149028
'year' => 2036
]
11 => [
'items' => [
101 => 0.57243239671545
102 => 0.5833998900333
103 => 0.59846060088886
104 => 0.59535062365369
105 => 0.60574681127702
106 => 0.61650577175632
107 => 0.63189156845688
108 => 0.63591398544881
109 => 0.64256288777765
110 => 0.64940679232467
111 => 0.65160487001677
112 => 0.65580168235444
113 => 0.65577956308181
114 => 0.66842693953944
115 => 0.68237738742885
116 => 0.68764335855349
117 => 0.69975216878726
118 => 0.67901625560525
119 => 0.69474468395081
120 => 0.7089321200266
121 => 0.69201727385771
122 => 0.71533044864783
123 => 0.71623564639614
124 => 0.72990305769536
125 => 0.71604851798442
126 => 0.70782173652932
127 => 0.73157214633671
128 => 0.74306422151161
129 => 0.73960271494332
130 => 0.71326047904298
131 => 0.69792816787733
201 => 0.65780055217488
202 => 0.70533344635843
203 => 0.7284853325617
204 => 0.7132005212508
205 => 0.72090929101164
206 => 0.76296583924981
207 => 0.77897824985906
208 => 0.77564778038753
209 => 0.77621057490403
210 => 0.78485058102297
211 => 0.82316512629263
212 => 0.80020616264284
213 => 0.81775743009715
214 => 0.82706655906911
215 => 0.83571339686167
216 => 0.81447949610431
217 => 0.78685450320693
218 => 0.77810450833802
219 => 0.71168074799663
220 => 0.70822310280709
221 => 0.70628222178483
222 => 0.69404524148255
223 => 0.68443032695596
224 => 0.67678418994553
225 => 0.65671844310035
226 => 0.66349004362442
227 => 0.63150943120006
228 => 0.65196949370585
301 => 0.60092766407769
302 => 0.64343681650818
303 => 0.62030101749425
304 => 0.63583608429679
305 => 0.6357818839122
306 => 0.60717690053133
307 => 0.59067814308801
308 => 0.60119179347214
309 => 0.61246326125853
310 => 0.6142920189851
311 => 0.62890577118557
312 => 0.63298415530316
313 => 0.62062646102529
314 => 0.59986993560995
315 => 0.60469120305799
316 => 0.59058044025706
317 => 0.56585187121107
318 => 0.58361236121929
319 => 0.58967657338172
320 => 0.59235487494319
321 => 0.56803716738181
322 => 0.5603960157029
323 => 0.55632793066453
324 => 0.59673082493247
325 => 0.59894418668484
326 => 0.58762031502188
327 => 0.63880528871204
328 => 0.62722055275707
329 => 0.64016354114799
330 => 0.60425372357122
331 => 0.60562552696163
401 => 0.58862524384043
402 => 0.59814426642898
403 => 0.59141652807581
404 => 0.59737522347263
405 => 0.60094684092487
406 => 0.61794433446689
407 => 0.64363090058098
408 => 0.61540547574817
409 => 0.60310725395299
410 => 0.6107370015869
411 => 0.63105602497238
412 => 0.66184038551305
413 => 0.64361542447998
414 => 0.65170335270655
415 => 0.65347020521717
416 => 0.64003179367611
417 => 0.66233587891492
418 => 0.67428881939246
419 => 0.6865500630099
420 => 0.69719615729067
421 => 0.68165265267857
422 => 0.69828643068738
423 => 0.68488254186936
424 => 0.67285786793104
425 => 0.67287610439784
426 => 0.66533285078388
427 => 0.6507168463957
428 => 0.64802143093678
429 => 0.66204332254752
430 => 0.67328755174126
501 => 0.67421368031388
502 => 0.68043906334489
503 => 0.68412318089609
504 => 0.72023254121285
505 => 0.73475602464455
506 => 0.75251506526936
507 => 0.75943321243741
508 => 0.78025435512021
509 => 0.76343959139332
510 => 0.75980161149118
511 => 0.70929632988657
512 => 0.71756656691997
513 => 0.73080801436962
514 => 0.70951467647789
515 => 0.72302039831942
516 => 0.72568671390124
517 => 0.70879113700432
518 => 0.71781579463975
519 => 0.69384897958457
520 => 0.64415331165544
521 => 0.66239120439959
522 => 0.6758204322676
523 => 0.65665526828809
524 => 0.69100808292708
525 => 0.67093987780102
526 => 0.66457922021979
527 => 0.63976402725724
528 => 0.65147584311119
529 => 0.66731624175071
530 => 0.65752871703548
531 => 0.6778393004238
601 => 0.7066045031364
602 => 0.72710429958683
603 => 0.72867801941131
604 => 0.71549802367338
605 => 0.73661905095703
606 => 0.73677289458244
607 => 0.71294828952455
608 => 0.69835585158255
609 => 0.69504041897938
610 => 0.70332301965096
611 => 0.71337962591869
612 => 0.72923609106875
613 => 0.73881782086839
614 => 0.76380189042905
615 => 0.77056186330275
616 => 0.77798902399524
617 => 0.78791400113193
618 => 0.79983148089644
619 => 0.7737567136342
620 => 0.77479271274698
621 => 0.75051225050211
622 => 0.72456509442296
623 => 0.74425575152837
624 => 0.76999866635534
625 => 0.76409321325064
626 => 0.7634287291389
627 => 0.76454620710233
628 => 0.76009368831545
629 => 0.73995511086045
630 => 0.72984164333671
701 => 0.74289059666307
702 => 0.74982553461393
703 => 0.76058101858557
704 => 0.75925517816535
705 => 0.78696014982165
706 => 0.79772546405243
707 => 0.79497123599843
708 => 0.79547808024456
709 => 0.81496816744097
710 => 0.83664515284551
711 => 0.85694851020703
712 => 0.87760195736465
713 => 0.85270342069837
714 => 0.84006147930749
715 => 0.85310473586903
716 => 0.84618380034035
717 => 0.88595354877099
718 => 0.88870711986513
719 => 0.92847399249029
720 => 0.96621748996268
721 => 0.94251147544527
722 => 0.96486517939284
723 => 0.98904253273637
724 => 1.0356845699702
725 => 1.0199771727165
726 => 1.0079455525865
727 => 0.99657572969995
728 => 1.0202345262183
729 => 1.0506711899806
730 => 1.0572269558362
731 => 1.0678498010177
801 => 1.0566811782091
802 => 1.0701325541986
803 => 1.1176218222758
804 => 1.104789802842
805 => 1.0865662723959
806 => 1.124054488625
807 => 1.1376213283466
808 => 1.2328405145216
809 => 1.3530586703761
810 => 1.3032875644574
811 => 1.2723930329101
812 => 1.2796539806518
813 => 1.3235535815284
814 => 1.3376527400263
815 => 1.2993263669577
816 => 1.3128638898572
817 => 1.3874569720134
818 => 1.4274737673576
819 => 1.3731255843075
820 => 1.2231811027526
821 => 1.0849254428672
822 => 1.1215970696023
823 => 1.1174396451836
824 => 1.1975806062839
825 => 1.1044837634223
826 => 1.1060512754959
827 => 1.1878494668011
828 => 1.1660271117369
829 => 1.1306776913289
830 => 1.0851835327562
831 => 1.0010833729341
901 => 0.92659351607319
902 => 1.0726852793669
903 => 1.066385536883
904 => 1.0572625761969
905 => 1.0775647379965
906 => 1.1761462728261
907 => 1.173873649371
908 => 1.1594163784523
909 => 1.1703820910236
910 => 1.1287553488967
911 => 1.1394835081661
912 => 1.0849035424643
913 => 1.1095759664222
914 => 1.130601847349
915 => 1.1348231042385
916 => 1.1443338115533
917 => 1.0630658588566
918 => 1.0995527837157
919 => 1.1209854337079
920 => 1.0241519413166
921 => 1.1190713469067
922 => 1.061651164605
923 => 1.0421618923096
924 => 1.068401629939
925 => 1.0581759786658
926 => 1.0493845641715
927 => 1.0444788038281
928 => 1.0637463711689
929 => 1.0628475161227
930 => 1.0313220362794
1001 => 0.99019833296678
1002 => 1.0040007976381
1003 => 0.99898623282418
1004 => 0.98081280304698
1005 => 0.99305950044854
1006 => 0.93913124300382
1007 => 0.84635047901708
1008 => 0.90764429365838
1009 => 0.90528454846953
1010 => 0.90409465793938
1011 => 0.95015526560571
1012 => 0.94572760097762
1013 => 0.9376913463218
1014 => 0.98066521092812
1015 => 0.96497917226677
1016 => 1.0133198473255
1017 => 1.0451601423981
1018 => 1.037084413642
1019 => 1.0670303650553
1020 => 1.004318778547
1021 => 1.0251490520329
1022 => 1.0294421425288
1023 => 0.98013492010954
1024 => 0.94645202166863
1025 => 0.94420575635577
1026 => 0.88580425224855
1027 => 0.91700186434216
1028 => 0.94445447193962
1029 => 0.93130680330885
1030 => 0.92714464419577
1031 => 0.94840821244231
1101 => 0.95006057380521
1102 => 0.91238655962163
1103 => 0.92022018015127
1104 => 0.95288767999089
1105 => 0.91939704297148
1106 => 0.85433020590725
1107 => 0.83819273069592
1108 => 0.83603969403005
1109 => 0.79227358137762
1110 => 0.83927111395388
1111 => 0.81875543152877
1112 => 0.88356422649407
1113 => 0.84654579038643
1114 => 0.84494999959364
1115 => 0.84253772775873
1116 => 0.80486642664343
1117 => 0.8131140474516
1118 => 0.84053039516607
1119 => 0.85031285689786
1120 => 0.84929246599389
1121 => 0.84039604010534
1122 => 0.84446877832004
1123 => 0.83134906949441
1124 => 0.82671622724496
1125 => 0.81209370274202
1126 => 0.7906026312982
1127 => 0.79359109659486
1128 => 0.75101166061992
1129 => 0.72781212403906
1130 => 0.72139079807845
1201 => 0.71280393263825
1202 => 0.7223607073787
1203 => 0.75089103842762
1204 => 0.71647740613524
1205 => 0.65747764740557
1206 => 0.66102363343592
1207 => 0.66899041123342
1208 => 0.6541443735133
1209 => 0.6400938447447
1210 => 0.65230963955356
1211 => 0.62731066399973
1212 => 0.67201141799508
1213 => 0.67080238787192
1214 => 0.68746406468531
1215 => 0.69788295312874
1216 => 0.67387078842181
1217 => 0.66783179393381
1218 => 0.67127187965117
1219 => 0.61441492562886
1220 => 0.68281763853507
1221 => 0.68340918803677
1222 => 0.67834398206312
1223 => 0.71476631498885
1224 => 0.79162879787267
1225 => 0.76271004002556
1226 => 0.75151182291308
1227 => 0.73022400399641
1228 => 0.75858875875726
1229 => 0.75641078815073
1230 => 0.74656117909718
1231 => 0.74060410480894
]
'min_raw' => 0.55632793066453
'max_raw' => 1.4274737673576
'avg_raw' => 0.99190084901106
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.556327'
'max' => '$1.42'
'avg' => '$0.99190084'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.34210595001115
'max_diff' => 0.8297280108988
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.017462498041872
]
1 => [
'year' => 2028
'avg' => 0.029970716039256
]
2 => [
'year' => 2029
'avg' => 0.081874594523238
]
3 => [
'year' => 2030
'avg' => 0.063166127743374
]
4 => [
'year' => 2031
'avg' => 0.062036965536025
]
5 => [
'year' => 2032
'avg' => 0.10877032433623
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.017462498041872
'min' => '$0.017462'
'max_raw' => 0.10877032433623
'max' => '$0.10877'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.10877032433623
]
1 => [
'year' => 2033
'avg' => 0.27976845891334
]
2 => [
'year' => 2034
'avg' => 0.17733069430227
]
3 => [
'year' => 2035
'avg' => 0.20916196058733
]
4 => [
'year' => 2036
'avg' => 0.40598386855609
]
5 => [
'year' => 2037
'avg' => 0.99190084901106
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.10877032433623
'min' => '$0.10877'
'max_raw' => 0.99190084901106
'max' => '$0.99190084'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.99190084901106
]
]
]
]
'prediction_2025_max_price' => '$0.029857'
'last_price' => 0.0289508
'sma_50day_nextmonth' => '$0.0267011'
'sma_200day_nextmonth' => '$0.042785'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 de fev. de 2026'
'sma_50day_date_nextmonth' => '4 de fev. de 2026'
'daily_sma3' => '$0.028255'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.027976'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.027352'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.026889'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.028866'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.034839'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.045518'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.0284068'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.028059'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.027614'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.027661'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.029774'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.035411'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.048629'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.043995'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.055578'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.183648'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.028436'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.028943'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.031986'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.040174'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.074578'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.165214'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.146755'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '55.11'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 115.93
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.027546'
'vwma_10_action' => 'BUY'
'hma_9' => '0.028563'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 203.43
'cci_20_action' => 'SELL'
'adx_14' => 10.82
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '-0.000345'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 71.09
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '-0.001312'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 14
'buy_signals' => 19
'sell_pct' => 42.42
'buy_pct' => 57.58
'overall_action' => 'bullish'
'overall_action_label' => 'Altista'
'overall_action_dir' => 1
'last_updated' => 1767702143
'last_updated_date' => '6 de janeiro de 2026'
]
Previsão de preço de Maverick Protocol para 2026
A previsão de preço para Maverick Protocol em 2026 sugere que o preço médio poderia variar entre $0.0100024 na extremidade inferior e $0.029857 na extremidade superior. No mercado de criptomoedas, comparado ao preço médio de hoje, Maverick Protocol poderia potencialmente ganhar 3.13% até 2026 se MAV atingir a meta de preço prevista.
Previsão de preço de Maverick Protocol 2027-2032
A previsão de preço de MAV para 2027-2032 está atualmente dentro de uma faixa de preço entre $0.017462 na extremidade inferior e $0.10877 na extremidade superior. Considerando a volatilidade de preços no mercado, se Maverick Protocol atingir a meta de preço superior, poderia ganhar 275.71% até 2032 em comparação com o preço de hoje.
| Previsão de Preço de Maverick Protocol | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.009629 | $0.017462 | $0.025295 |
| 2028 | $0.017377 | $0.02997 | $0.042563 |
| 2029 | $0.038174 | $0.081874 | $0.125575 |
| 2030 | $0.032465 | $0.063166 | $0.093866 |
| 2031 | $0.038384 | $0.062036 | $0.085689 |
| 2032 | $0.05859 | $0.10877 | $0.15895 |
Previsão de preço de Maverick Protocol 2032-2037
A previsão de preço de Maverick Protocol para 2032-2037 é atualmente estimada entre $0.10877 na extremidade inferior e $0.99190084 na extremidade superior. Comparado ao preço atual, Maverick Protocol poderia potencialmente ganhar 3326.16% até 2037 se atingir a meta de preço superior. Por favor, note que esta informação é apenas para fins gerais e não deve ser considerada como aconselhamento de investimento a longo prazo.
| Previsão de Preço de Maverick Protocol | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.05859 | $0.10877 | $0.15895 |
| 2033 | $0.136151 | $0.279768 | $0.423385 |
| 2034 | $0.109459 | $0.17733 | $0.2452021 |
| 2035 | $0.129414 | $0.209161 | $0.2889092 |
| 2036 | $0.214221 | $0.405983 | $0.597745 |
| 2037 | $0.556327 | $0.99190084 | $1.42 |
Maverick Protocol Histograma de preços potenciais
Previsão de preço de Maverick Protocol baseada na análise técnica
Em 6 de janeiro de 2026, o sentimento geral de previsão de preço para Maverick Protocol é Altista, com 19 indicadores técnicos mostrando sinais de alta e 14 indicando sinais de baixa. A previsão de preço de MAV foi atualizada pela última vez em 6 de janeiro de 2026.
Médias Móveis Simples de 50 e 200 dias e Índice de Força Relativa de 14 dias - RSI (14) de Maverick Protocol
De acordo com nossos indicadores técnicos, o SMA de 200 dias de Maverick Protocol está projetado para aumentar no próximo mês, alcançando $0.042785 até 4 de fev. de 2026. O SMA de 50 dias de curto prazo para Maverick Protocol é esperado para alcançar $0.0267011 até 4 de fev. de 2026.
O oscilador de momentum Índice de Força Relativa (RSI) é uma ferramenta comumente usada para identificar se uma criptomoeda está sobrevendida (abaixo de 30) ou sobrecomprada (acima de 70). No momento, o RSI está em 55.11, sugerindo que o mercado de MAV está em um estado NEUTRAL.
Médias Móveis e Osciladores Populares de MAV para Sábado, 19 de Outubro de 2024
Médias móveis (MA) são indicadores amplamente utilizados nos mercados financeiros, projetados para suavizar movimentos de preços ao longo de um período definido. Como indicadores atrasados, eles se baseiam em dados históricos de preços. A tabela abaixo destaca dois tipos: a média móvel simples (SMA) e a média móvel exponencial (EMA).
Média Móvel Simples Diária (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 3 | $0.028255 | BUY |
| SMA 5 | $0.027976 | BUY |
| SMA 10 | $0.027352 | BUY |
| SMA 21 | $0.026889 | BUY |
| SMA 50 | $0.028866 | BUY |
| SMA 100 | $0.034839 | SELL |
| SMA 200 | $0.045518 | SELL |
Média Móvel Exponencial Diária (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 3 | $0.0284068 | BUY |
| EMA 5 | $0.028059 | BUY |
| EMA 10 | $0.027614 | BUY |
| EMA 21 | $0.027661 | BUY |
| EMA 50 | $0.029774 | SELL |
| EMA 100 | $0.035411 | SELL |
| EMA 200 | $0.048629 | SELL |
Média Móvel Simples Semanal (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 21 | $0.043995 | SELL |
| SMA 50 | $0.055578 | SELL |
| SMA 100 | $0.183648 | SELL |
| SMA 200 | — | — |
Média Móvel Exponencial Semanal (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 21 | $0.040174 | SELL |
| EMA 50 | $0.074578 | SELL |
| EMA 100 | $0.165214 | SELL |
| EMA 200 | $0.146755 | SELL |
Osciladores de Maverick Protocol
Um oscilador é uma ferramenta de análise técnica que define limites altos e baixos entre dois extremos, criando um indicador de tendência que flutua dentro desses limites. Os traders usam esse indicador para identificar condições de sobrecompra ou sobrevenda de curto prazo.
| Período | Valor | Ação |
|---|---|---|
| RSI (14) | 55.11 | NEUTRAL |
| Stoch RSI (14) | 115.93 | SELL |
| Estocástico Rápido (14) | 100 | SELL |
| Índice de Canal de Commodities (20) | 203.43 | SELL |
| Índice Direcional Médio (14) | 10.82 | NEUTRAL |
| Oscilador Impressionante (5, 34) | -0.000345 | NEUTRAL |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Williams Percent Range (14) | -0 | SELL |
| Oscilador Ultimate (7, 14, 28) | 71.09 | SELL |
| VWMA (10) | 0.027546 | BUY |
| Média Móvel de Hull (9) | 0.028563 | BUY |
| Nuvem Ichimoku B/L (9, 26, 52, 26) | -0.001312 | SELL |
Previsão do preço de Maverick Protocol com base nos fluxos financeiros mundiais
Definições dos fluxos financeiros mundiais, usadas na previsão do preço do Maverick Protocol
M0: o total de todas as moedas físicas, mais as contas no Banco Central que podem ser trocadas por moedas físicas.
M1: o valor de M0, mais o valor em contas de demanda, incluindo contas 'correntes'.
M2: o valor de M1, mais a maioria das contas de poupança, do mercado de moedas e de certificados de depósito (CD) de menos de US$ 100.000.
Previsões de preço de Maverick Protocol por empresas de Internet ou nichos tecnológicos
| Comparação | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.04068 | $0.057163 | $0.080323 | $0.112868 | $0.158598 | $0.222858 |
| Amazon.com stock | $0.0604075 | $0.126043 | $0.262998 | $0.548761 | $1.14 | $2.38 |
| Apple stock | $0.041064 | $0.058246 | $0.082618 | $0.117188 | $0.166222 | $0.235774 |
| Netflix stock | $0.045679 | $0.072075 | $0.113724 | $0.179438 | $0.283126 | $0.446728 |
| Google stock | $0.037491 | $0.04855 | $0.062873 | $0.08142 | $0.105439 | $0.136543 |
| Tesla stock | $0.065629 | $0.148776 | $0.337265 | $0.764554 | $1.73 | $3.92 |
| Kodak stock | $0.02171 | $0.01628 | $0.0122084 | $0.009155 | $0.006865 | $0.005148 |
| Nokia stock | $0.019178 | $0.012705 | $0.008416 | $0.005575 | $0.003693 | $0.002446 |
Este cálculo mostra quanto a criptomoeda pode custar, se assumirmos que sua capitalização se comportará da mesma forma que a de algumas empresas de Internet ou nichos tecnológicos. Se você extrapolar os dados, poderá obter uma imagem em potencial do preço futuro para 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Visão geral da previsão para Maverick Protocol
Você pode fazer perguntas como: 'Devo investir em Maverick Protocol agora?', 'Devo comprar MAV hoje?', 'Maverick Protocol será um bom ou mau investimento no curto ou no longo prazo?'.
Atualizamos a previsão para Maverick Protocol regularmente com novos valores. Veja nossas previsões semelhantes. Fazemos previsões de preços futuros para uma enorme quantidade de moedas digitais, como Maverick Protocol, com métodos de análise técnica.
Se você estiver tentando encontrar criptomoedas com bom retorno, você deve explorar o máximo de fontes de informações disponíveis sobre Maverick Protocol para poder tomar sozinho uma decisão de tão grande responsabilidade sobre o seu investimento.
O preço de Maverick Protocol é de $0.02895 USD hoje, mas o preço pode tanto subir quanto descer e seu investimento pode ser perdido, porque criptomoedas são ativos de alto risco
Previsão de curto prazo para Maverick Protocol
com base no histórico de preços de 4 horas
Previsão de longo prazo para Maverick Protocol
com base no histórico de preços de 1 mês
Previsão do preço de Maverick Protocol com base no padrão de crescimento do Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se Maverick Protocol tiver 1% da média anterior do crescimento anual do Bitcoin | $0.0297033 | $0.030475 | $0.031267 | $0.03208 |
| Se Maverick Protocol tiver 2% da média anterior do crescimento anual do Bitcoin | $0.030455 | $0.032039 | $0.0337047 | $0.035456 |
| Se Maverick Protocol tiver 5% da média anterior do crescimento anual do Bitcoin | $0.032713 | $0.036965 | $0.041769 | $0.047197 |
| Se Maverick Protocol tiver 10% da média anterior do crescimento anual do Bitcoin | $0.036476 | $0.045957 | $0.0579031 | $0.072954 |
| Se Maverick Protocol tiver 20% da média anterior do crescimento anual do Bitcoin | $0.0440012 | $0.066875 | $0.101642 | $0.154482 |
| Se Maverick Protocol tiver 50% da média anterior do crescimento anual do Bitcoin | $0.066577 | $0.1531045 | $0.352088 | $0.809684 |
| Se Maverick Protocol tiver 100% da média anterior do crescimento anual do Bitcoin | $0.1042032 | $0.37506 | $1.34 | $4.85 |
Perguntas Frequentes sobre Maverick Protocol
MAV é um bom investimento?
A decisão de adquirir Maverick Protocol depende inteiramente da sua tolerância individual ao risco. Como você pode perceber, o valor de Maverick Protocol experimentou uma escalada de 4.8117% nas últimas 24 horas, e Maverick Protocol registrou um declínio de durante os últimos 30 dias. Consequentemente, a decisão de investir ou não em Maverick Protocol dependerá de quão alinhado esse investimento está com suas aspirações de negociação.
Maverick Protocol pode subir?
Parece que o valor médio de Maverick Protocol pode potencialmente subir para $0.029857 até o final deste ano. Observando as perspectivas de Maverick Protocol em um horizonte de cinco anos mais longo, a moeda digital poderia potencialmente crescer até $0.093866. No entanto, dada a imprevisibilidade do mercado, é vital conduzir uma pesquisa aprofundada antes de investir quaisquer fundos em um projeto, rede ou ativo específico.
Qual será o preço de Maverick Protocol na próxima semana?
Com base na nossa nova previsão experimental de Maverick Protocol, o preço de Maverick Protocol aumentará 0.86% na próxima semana e atingirá $0.029198 até 13 de janeiro de 2026.
Qual será o preço de Maverick Protocol no próximo mês?
Com base na nossa nova previsão experimental de Maverick Protocol, o preço de Maverick Protocol diminuirá -11.62% no próximo mês e atingirá $0.025587 até 5 de fevereiro de 2026.
Até onde o preço de Maverick Protocol pode subir este ano em 2026?
De acordo com nossa previsão mais recente sobre o valor de Maverick Protocol em 2026, espera-se que MAV fluctue dentro do intervalo de $0.0100024 e $0.029857. No entanto, é crucial lembrar que o mercado de criptomoedas é excepcionalmente instável, e essa previsão de preço de Maverick Protocol não considera flutuações repentinas e extremas de preço.
Onde estará Maverick Protocol em 5 anos?
O futuro de Maverick Protocol parece seguir uma tendência de alta, com um preço máximo de $0.093866 projetada após um período de cinco anos. Com base na previsão de Maverick Protocol para 2030, o valor de Maverick Protocol pode potencialmente atingir seu pico mais alto de aproximadamente $0.093866, enquanto seu pico mais baixo está previsto para cerca de $0.032465.
Quanto será Maverick Protocol em 2026?
Com base na nossa nova simulação experimental de previsão de preços de Maverick Protocol, espera-se que o valor de MAV em 2026 aumente 3.13% para $0.029857 se o melhor cenário ocorrer. O preço ficará entre $0.029857 e $0.0100024 durante 2026.
Quanto será Maverick Protocol em 2027?
De acordo com nossa última simulação experimental para previsão de preços de Maverick Protocol, o valor de MAV pode diminuir -12.62% para $0.025295 em 2027, assumindo as condições mais favoráveis. O preço está projetado para flutuar entre $0.025295 e $0.009629 ao longo do ano.
Quanto será Maverick Protocol em 2028?
Nosso novo modelo experimental de previsão de preços de Maverick Protocol sugere que o valor de MAV em 2028 pode aumentar 47.02%, alcançando $0.042563 no melhor cenário. O preço é esperado para variar entre $0.042563 e $0.017377 durante o ano.
Quanto será Maverick Protocol em 2029?
Com base no nosso modelo de previsão experimental, o valor de Maverick Protocol pode experimentar um 333.75% crescimento em 2029, potencialmente alcançando $0.125575 sob condições ótimas. A faixa de preço prevista para 2029 está entre $0.125575 e $0.038174.
Quanto será Maverick Protocol em 2030?
Usando nossa nova simulação experimental para previsões de preços de Maverick Protocol, espera-se que o valor de MAV em 2030 aumente 224.23%, alcançando $0.093866 no melhor cenário. O preço está previsto para variar entre $0.093866 e $0.032465 ao longo de 2030.
Quanto será Maverick Protocol em 2031?
Nossa simulação experimental indica que o preço de Maverick Protocol poderia aumentar 195.98% em 2031, potencialmente atingindo $0.085689 sob condições ideais. O preço provavelmente oscilará entre $0.085689 e $0.038384 durante o ano.
Quanto será Maverick Protocol em 2032?
Com base nos achados da nossa mais recente previsão experimental de preços de Maverick Protocol, MAV poderia ver um 449.04% aumento em valor, atingindo $0.15895 se o cenário mais positivo se desenrolar em 2032. O preço é esperado para permanecer dentro de uma faixa de $0.15895 e $0.05859 ao longo do ano.
Quanto será Maverick Protocol em 2033?
De acordo com nossa previsão experimental de preços de Maverick Protocol, espera-se que o valor de MAV seja aumentar 1362.43% em 2033, com o preço potencial mais alto sendo $0.423385. Ao longo do ano, o preço de MAV poderia variar entre $0.423385 e $0.136151.
Quanto será Maverick Protocol em 2034?
Os resultados da nossa nova simulação de previsão de preços de Maverick Protocol sugerem que MAV pode aumentar 746.96% em 2034, atingindo potencialmente $0.2452021 nas melhores circunstâncias. A faixa de preço prevista para o ano é entre $0.2452021 e $0.109459.
Quanto será Maverick Protocol em 2035?
Com base em nossa previsão experimental para o preço de Maverick Protocol, MAV poderia aumentar 897.93%, com o valor potencialmente atingindo $0.2889092 em 2035. A faixa de preço esperada para o ano está entre $0.2889092 e $0.129414.
Quanto será Maverick Protocol em 2036?
Nossa recente simulação de previsão de preços de Maverick Protocol sugere que o valor de MAV pode aumentar 1964.7% em 2036, possivelmente atingindo $0.597745 se as condições forem ideais. A faixa de preço esperada para 2036 está entre $0.597745 e $0.214221.
Quanto será Maverick Protocol em 2037?
De acordo com a simulação experimental, o valor de Maverick Protocol poderia aumentar 4830.69% em 2037, com um pico de $1.42 sob condições favoráveis. O preço é esperado para cair entre $1.42 e $0.556327 ao longo do ano.
Previsões relacionadas
Previsão de Preço do Myria
Previsão de Preço do MimbleWimbleCoin
Previsão de Preço do CYBER
Previsão de Preço do Velodrome Finance
Previsão de Preço do Ontology Gas
Previsão de Preço do DODO
Previsão de Preço do Cudos
Previsão de Preço do Acala
Previsão de Preço do WINk
Previsão de Preço do Radiant Capital
Previsão de Preço do APEX
Previsão de Preço do Metars Genesis
Previsão de Preço do Liquity
Previsão de Preço do Steem
Previsão de Preço do Alpha Finance
Previsão de Preço do Zignaly
Previsão de Preço do Heroes of Mavia
Previsão de Preço do Sovryn
Previsão de Preço do Verge
Previsão de Preço do Quasar
Previsão de Preço do Auction
Previsão de Preço do Pundi X
Previsão de Preço do XYO Network
Previsão de Preço do f(x) Coin
Previsão de Preço do Multibit
Como ler e prever os movimentos de preço de Maverick Protocol?
Traders de Maverick Protocol utilizam indicadores e padrões de gráfico para prever a direção do mercado. Eles também identificam níveis-chave de suporte e resistência para avaliar quando uma tendência de baixa pode desacelerar ou uma tendência de alta pode estagnar.
Indicadores de Previsão de Preço de Maverick Protocol
Médias móveis são ferramentas populares para a previsão de preço de Maverick Protocol. Uma média móvel simples (SMA) calcula o preço médio de fechamento de MAV em um período específico, como uma SMA de 12 dias. Uma média móvel exponencial (EMA) dá mais peso aos preços recentes, reagindo mais rapidamente às mudanças de preço.
Médias móveis comumente usadas no mercado de criptomoedas incluem as de 50 dias, 100 dias e 200 dias, que ajudam a identificar níveis-chave de resistência e suporte. Um movimento de preço de MAV acima dessas médias é visto como altista, enquanto uma queda abaixo indica fraqueza.
Traders também usam RSI e níveis de retração de Fibonacci para avaliar a direção futura de MAV.
Como ler gráficos de Maverick Protocol e prever movimentos de preço?
A maioria dos traders prefere gráficos de velas em vez de gráficos de linha simples porque eles fornecem informações mais detalhadas. Velas podem representar a ação de preço de Maverick Protocol em diferentes períodos de tempo, como 5 minutos para tendências de curto prazo e semanal para tendências de longo prazo. Opções populares incluem gráficos de 1 hora, 4 horas e 1 dia.
Por exemplo, um gráfico de velas de 1 hora mostra os preços de abertura, fechamento, máximo e mínimo de MAV dentro de cada hora. A cor da vela é crucial: verde indica que o preço fechou mais alto do que abriu, enquanto vermelho significa o oposto. Alguns gráficos usam velas vazias e preenchidas para transmitir a mesma informação.
O que afeta o preço de Maverick Protocol?
A ação de preço de Maverick Protocol é impulsionada pela oferta e demanda, influenciada por fatores como reduções pela metade das recompensas de bloco, hard forks e atualizações de protocolo. Eventos do mundo real, como regulamentações, adoção por empresas e governos e hacks de exchanges de criptomoedas, também impactam o preço de MAV. A capitalização de mercado de Maverick Protocol pode mudar rapidamente.
Traders frequentemente monitoram a atividade de "baleias" de MAV, grandes detentores de Maverick Protocol, pois suas ações podem influenciar significativamente os movimentos de preço no relativamente pequeno mercado de Maverick Protocol.
Padrões de previsão de preço altistas e baixistas
Traders frequentemente identificam padrões de velas para ganhar vantagem em previsões de preço de criptomoedas. Certas formações indicam tendências altistas, enquanto outras sugerem movimentos baixistas.
Padrões de velas altistas comumente seguidos:
- Martelo
- Engolfo de Alta
- Linha de Perfuração
- Estrela da Manhã
- Três Soldados Brancos
Padrões de velas baixistas comuns:
- Harami de Baixa
- Nuvem Negra
- Estrela da Noite
- Estrela Cadente
- Homem Enforcado


