Predicción del precio de Maverick Protocol - Pronóstico de MAV
Predicción de precio de Maverick Protocol hasta $0.030243 para el año 2026
| Año | Precio min. | Precio max. |
|---|---|---|
| 2026 | $0.010131 | $0.030243 |
| 2027 | $0.009753 | $0.025622 |
| 2028 | $0.0176024 | $0.043113 |
| 2029 | $0.038667 | $0.127198 |
| 2030 | $0.032885 | $0.09508 |
| 2031 | $0.03888 | $0.086797 |
| 2032 | $0.059347 | $0.161005 |
| 2033 | $0.137911 | $0.428858 |
| 2034 | $0.110874 | $0.248372 |
| 2035 | $0.131087 | $0.292644 |
Calculadora de ganancias de inversión
Si abres una posición corta de $10,000.00 en Maverick Protocol hoy y la cierras el Apr 06, 2026, nuestra previsión indica que podrías obtener una ganancia de alrededor de $3,954.66, equivalente a un ROI del 39.55% en los próximos 90 días.
Predicción del precio a largo plazo de Maverick Protocol para 2027, 2028, 2029, 2030, 2031, 2032 y 2037
[
'name' => 'Maverick Protocol'
'name_with_ticker' => 'Maverick Protocol <small>MAV</small>'
'name_lang' => 'Maverick Protocol'
'name_lang_with_ticker' => 'Maverick Protocol <small>MAV</small>'
'name_with_lang' => 'Maverick Protocol'
'name_with_lang_with_ticker' => 'Maverick Protocol <small>MAV</small>'
'image' => '/uploads/coins/maverick-protocol.png?1717140033'
'price_for_sd' => 0.02932
'ticker' => 'MAV'
'marketcap' => '$24.74M'
'low24h' => '$0.02779'
'high24h' => '$0.02936'
'volume24h' => '$6.76M'
'current_supply' => '842.96M'
'max_supply' => '2B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.02932'
'change_24h_pct' => '4.8098%'
'ath_price' => '$0.8047'
'ath_days' => 675
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '2 mar. 2024'
'ath_pct' => '-96.36%'
'fdv' => '$58.7M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$1.44'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.029576'
'next_week_prediction_price_date' => '13 de enero de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.025918'
'next_month_prediction_price_date' => '5 de febrero de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.010131'
'current_year_max_price_prediction' => '$0.030243'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.032885'
'grand_prediction_max_price' => '$0.09508'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.029880764651513
107 => 0.029992328580004
108 => 0.03024368780749
109 => 0.028095850729445
110 => 0.029060166520304
111 => 0.029626611703263
112 => 0.027067391759201
113 => 0.029576024153488
114 => 0.028058461664422
115 => 0.02754337816261
116 => 0.028236870240709
117 => 0.027966615703431
118 => 0.027734266722157
119 => 0.027604611998345
120 => 0.028113836042573
121 => 0.028090080132256
122 => 0.02725689075977
123 => 0.026170029188505
124 => 0.026534815606837
125 => 0.026402285281166
126 => 0.025921978284183
127 => 0.026245647207662
128 => 0.024820373073757
129 => 0.022368263005676
130 => 0.023988202026813
131 => 0.023925836136653
201 => 0.023894388426767
202 => 0.025111727829326
203 => 0.024994708734568
204 => 0.024782317931729
205 => 0.02591807756053
206 => 0.025503510017895
207 => 0.026781109499899
208 => 0.027622619148701
209 => 0.02740918508178
210 => 0.028200628973847
211 => 0.02654321954915
212 => 0.02709374447631
213 => 0.027207206900803
214 => 0.02590406246301
215 => 0.02501385450567
216 => 0.024954487784029
217 => 0.023410989864214
218 => 0.024235513994299
219 => 0.024961061107648
220 => 0.024613580345084
221 => 0.024503578316349
222 => 0.025065554824627
223 => 0.025109225212324
224 => 0.024113535744863
225 => 0.024320571114533
226 => 0.025183943022822
227 => 0.024298816357628
228 => 0.022579159831776
301 => 0.022152661237253
302 => 0.022095758462815
303 => 0.020939060448438
304 => 0.022181161912721
305 => 0.021638951337312
306 => 0.023351788048349
307 => 0.022373424905132
308 => 0.022331249625458
309 => 0.022267495504461
310 => 0.021271877740894
311 => 0.021489854756306
312 => 0.02221444355437
313 => 0.022472985000597
314 => 0.022446017009588
315 => 0.022210892673962
316 => 0.02231853139078
317 => 0.021971789580094
318 => 0.021849347829934
319 => 0.021462887986172
320 => 0.020894898778099
321 => 0.020973881161162
322 => 0.019848545917508
323 => 0.019235403550704
324 => 0.019065693824659
325 => 0.018838750886334
326 => 0.019091327633415
327 => 0.019845357984154
328 => 0.0189358374047
329 => 0.017376528166677
330 => 0.017470245308816
331 => 0.017680799902332
401 => 0.017288432810272
402 => 0.016917090286511
403 => 0.01723994248295
404 => 0.016579242602789
405 => 0.017760642326319
406 => 0.017728688774632
407 => 0.018169041534295
408 => 0.018444403151861
409 => 0.017809783772754
410 => 0.017650178715102
411 => 0.017741097009586
412 => 0.016238420124769
413 => 0.018046240774159
414 => 0.018061874882206
415 => 0.017928006157363
416 => 0.018890614842962
417 => 0.020922019414755
418 => 0.020157723301787
419 => 0.019861764745874
420 => 0.019299147314737
421 => 0.020048801636809
422 => 0.019991239881303
423 => 0.019730923793258
424 => 0.019573483810972
425 => 0.019863571805706
426 => 0.019537538698163
427 => 0.019478974193258
428 => 0.01912413701234
429 => 0.018997476282816
430 => 0.018903701721185
501 => 0.018800465142927
502 => 0.019028179309611
503 => 0.018512149049612
504 => 0.017889867143124
505 => 0.017838131135783
506 => 0.017980978800728
507 => 0.017917779342748
508 => 0.017837828561093
509 => 0.017685180745614
510 => 0.017639893399566
511 => 0.017787055303925
512 => 0.017620918093976
513 => 0.017866062597219
514 => 0.017799396856801
515 => 0.017427007450058
516 => 0.01696287237304
517 => 0.016958740597299
518 => 0.016858743456289
519 => 0.016731382062543
520 => 0.016695953036437
521 => 0.017212752771474
522 => 0.018282512756486
523 => 0.018072493274241
524 => 0.018224253873825
525 => 0.018970765820793
526 => 0.019208059520337
527 => 0.01903963407301
528 => 0.01880908293268
529 => 0.018819226012788
530 => 0.019607089051872
531 => 0.019656227103207
601 => 0.019780383106395
602 => 0.019939958656973
603 => 0.019066810479298
604 => 0.01877810081214
605 => 0.018641294154838
606 => 0.018219982601188
607 => 0.018674330991277
608 => 0.01840960164151
609 => 0.018445322675236
610 => 0.018422059305161
611 => 0.018434762678284
612 => 0.017760312101019
613 => 0.018006046443296
614 => 0.017597465438301
615 => 0.017050421337984
616 => 0.017048587454342
617 => 0.017182475722898
618 => 0.017102833741712
619 => 0.016888519218125
620 => 0.016918961584664
621 => 0.016652254420814
622 => 0.016951344663245
623 => 0.016959921501201
624 => 0.01684475546631
625 => 0.017305545251274
626 => 0.017494331202143
627 => 0.017418526450882
628 => 0.017489012538714
629 => 0.01808122053191
630 => 0.018177776274647
701 => 0.018220659957456
702 => 0.018163201503491
703 => 0.017499837013698
704 => 0.017529260049664
705 => 0.017313373334237
706 => 0.017130971809283
707 => 0.017138266913711
708 => 0.017232045008076
709 => 0.01764157944618
710 => 0.018503420527796
711 => 0.018536126766846
712 => 0.018575767682682
713 => 0.018414528156047
714 => 0.018365896771959
715 => 0.018430054120396
716 => 0.0187537163172
717 => 0.019586263360808
718 => 0.019291985631649
719 => 0.019052733257138
720 => 0.019262622091561
721 => 0.019230311350665
722 => 0.018957576181118
723 => 0.018949921413282
724 => 0.018426455424214
725 => 0.018232941966799
726 => 0.018071227637552
727 => 0.017894639811674
728 => 0.017789952629216
729 => 0.017950799720945
730 => 0.017987587353911
731 => 0.017635892376719
801 => 0.017587957650885
802 => 0.017875159361123
803 => 0.017748772596406
804 => 0.017878764518159
805 => 0.017908923759055
806 => 0.017904067426645
807 => 0.017772105128853
808 => 0.017856213962293
809 => 0.017657271497157
810 => 0.017440951446514
811 => 0.017302952731419
812 => 0.017182530549625
813 => 0.017249347775062
814 => 0.017011156566721
815 => 0.016934954405331
816 => 0.017827719782032
817 => 0.018487215164647
818 => 0.018477625840595
819 => 0.018419253296602
820 => 0.018332523536666
821 => 0.018747371495054
822 => 0.018602846761499
823 => 0.018708000580606
824 => 0.01873476664086
825 => 0.01881577944383
826 => 0.018844734557606
827 => 0.018757212093156
828 => 0.018463476012492
829 => 0.017731513627067
830 => 0.017390783160758
831 => 0.017278336431561
901 => 0.0172824236566
902 => 0.017169679743833
903 => 0.01720288787897
904 => 0.017158131309647
905 => 0.017073373195124
906 => 0.017244114200333
907 => 0.01726379051062
908 => 0.017223937519802
909 => 0.017233324341839
910 => 0.016903358599295
911 => 0.016928445178053
912 => 0.016788759919682
913 => 0.016762570617668
914 => 0.016409458448293
915 => 0.015783869055818
916 => 0.016130506306681
917 => 0.015711817252212
918 => 0.01555325336311
919 => 0.016303870152374
920 => 0.016228529045601
921 => 0.016099577820797
922 => 0.015908832083522
923 => 0.015838082634112
924 => 0.015408231376048
925 => 0.015382833470554
926 => 0.015595879361011
927 => 0.015497566013026
928 => 0.01535949683828
929 => 0.014859424283195
930 => 0.014297177162948
1001 => 0.014314147869348
1002 => 0.01449298821732
1003 => 0.015012990648953
1004 => 0.014809816702781
1005 => 0.01466241167368
1006 => 0.014634807142708
1007 => 0.014980335641818
1008 => 0.015469330858518
1009 => 0.015698756473542
1010 => 0.015471402656812
1011 => 0.015210230833753
1012 => 0.015226127152469
1013 => 0.01533187823921
1014 => 0.015342991183186
1015 => 0.015172995175272
1016 => 0.015220848055742
1017 => 0.015148155154548
1018 => 0.014702038954101
1019 => 0.014693970126684
1020 => 0.014584486016499
1021 => 0.014581170881155
1022 => 0.014394911097638
1023 => 0.014368852066371
1024 => 0.013999021961039
1025 => 0.014242445256317
1026 => 0.014079169690141
1027 => 0.013833074899101
1028 => 0.013790648064367
1029 => 0.013789372662483
1030 => 0.014042056987093
1031 => 0.014239492492864
1101 => 0.014082009938519
1102 => 0.014046154213566
1103 => 0.014428999549841
1104 => 0.014380278991088
1105 => 0.014338087301421
1106 => 0.015425546700209
1107 => 0.014564737730553
1108 => 0.014189375886525
1109 => 0.013724794325259
1110 => 0.013876064424231
1111 => 0.013907939256704
1112 => 0.012790704348981
1113 => 0.01233744228606
1114 => 0.012181899826886
1115 => 0.012092382942584
1116 => 0.012133176910843
1117 => 0.011725187891877
1118 => 0.011999363260137
1119 => 0.011646079256166
1120 => 0.011586850043215
1121 => 0.012218565605805
1122 => 0.012306465135911
1123 => 0.011931458432237
1124 => 0.012172273444066
1125 => 0.012084950573198
1126 => 0.011652135296428
1127 => 0.011635604936429
1128 => 0.011418433444738
1129 => 0.011078602112929
1130 => 0.010923290075401
1201 => 0.010842402217775
1202 => 0.010875778124304
1203 => 0.010858902244644
1204 => 0.010748775714572
1205 => 0.010865214568438
1206 => 0.010567761412667
1207 => 0.010449313169296
1208 => 0.010395812845743
1209 => 0.010131806049232
1210 => 0.010551958266837
1211 => 0.010634733546644
1212 => 0.010717671919322
1213 => 0.011439593829054
1214 => 0.011403528650574
1215 => 0.011729540299579
1216 => 0.011716872086396
1217 => 0.011623888283061
1218 => 0.011231604911884
1219 => 0.011387962071856
1220 => 0.010906719036759
1221 => 0.01126729904
1222 => 0.011102745384702
1223 => 0.011211663283617
1224 => 0.011015819080636
1225 => 0.011124207348775
1226 => 0.010654362636246
1227 => 0.01021562825458
1228 => 0.010392187777218
1229 => 0.010584128170355
1230 => 0.011000303848179
1231 => 0.010752433047842
]
'min_raw' => 0.010131806049232
'max_raw' => 0.03024368780749
'avg_raw' => 0.020187746928361
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.010131'
'max' => '$0.030243'
'avg' => '$0.020187'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.019193263950768
'max_diff' => 0.00091861780749041
'year' => 2026
]
1 => [
'items' => [
101 => 0.010841576760676
102 => 0.010542960245159
103 => 0.0099268290780581
104 => 0.0099303163135522
105 => 0.0098355379566408
106 => 0.0097536356184027
107 => 0.010780903990999
108 => 0.010653146930157
109 => 0.010449582774136
110 => 0.010722061486288
111 => 0.0107941091826
112 => 0.010796160279227
113 => 0.010994953713919
114 => 0.011101049805651
115 => 0.011119749701665
116 => 0.011432555466371
117 => 0.011537403832692
118 => 0.011969259414874
119 => 0.011092048293519
120 => 0.01107398270774
121 => 0.010725895820552
122 => 0.010505133613661
123 => 0.010741011597728
124 => 0.010949967291055
125 => 0.010732388656405
126 => 0.010760799832755
127 => 0.010468718292565
128 => 0.010573123699469
129 => 0.010663051700822
130 => 0.010613398744199
131 => 0.010539065864903
201 => 0.010932835307102
202 => 0.010910617291978
203 => 0.011277304449274
204 => 0.011563163310436
205 => 0.012075473493023
206 => 0.01154085111016
207 => 0.011521367345597
208 => 0.011711824269495
209 => 0.01153737467473
210 => 0.011647620796826
211 => 0.012057711138355
212 => 0.01206637570106
213 => 0.011921233112099
214 => 0.01191240117237
215 => 0.011940277394266
216 => 0.012103549296608
217 => 0.012046497077091
218 => 0.012112519349901
219 => 0.01219508121302
220 => 0.012536592084383
221 => 0.012618929199289
222 => 0.012418892696967
223 => 0.012436953753413
224 => 0.01236213461042
225 => 0.012289860255769
226 => 0.012452322450202
227 => 0.012749225303729
228 => 0.012747378286486
301 => 0.012816253977538
302 => 0.012859162962466
303 => 0.012674966187858
304 => 0.012555060860691
305 => 0.012601040192901
306 => 0.012674562146404
307 => 0.012577198014284
308 => 0.011976221487385
309 => 0.012158519375117
310 => 0.012128176092687
311 => 0.012084963568637
312 => 0.01226826550442
313 => 0.012250585585546
314 => 0.011721003374789
315 => 0.011754905509697
316 => 0.011723065075901
317 => 0.011825948031436
318 => 0.011531818657498
319 => 0.011622290871929
320 => 0.011679034196697
321 => 0.011712456450908
322 => 0.011833200550971
323 => 0.011819032624452
324 => 0.011832319852766
325 => 0.012011351477899
326 => 0.01291683200159
327 => 0.012966115308664
328 => 0.012723426280108
329 => 0.012820375760187
330 => 0.012634253958956
331 => 0.01275919877103
401 => 0.012844682838197
402 => 0.01245839677631
403 => 0.012435523422701
404 => 0.012248633430589
405 => 0.01234905752636
406 => 0.012189275569241
407 => 0.012228480472582
408 => 0.012118860145017
409 => 0.012316154909444
410 => 0.012536761112581
411 => 0.012592494951496
412 => 0.012445883216236
413 => 0.012339726657724
414 => 0.012153350711121
415 => 0.012463298063981
416 => 0.012553936115431
417 => 0.012462821980882
418 => 0.012441708845024
419 => 0.012401699490724
420 => 0.012450197018676
421 => 0.012553442481138
422 => 0.012504753827685
423 => 0.012536913541074
424 => 0.012414353876587
425 => 0.012675027164655
426 => 0.01308903908055
427 => 0.013090370196557
428 => 0.013041681280654
429 => 0.013021758825284
430 => 0.013071716607691
501 => 0.013098816655271
502 => 0.013260370962884
503 => 0.013433725171561
504 => 0.014242693623087
505 => 0.014015538519038
506 => 0.01473330345498
507 => 0.015300962329198
508 => 0.015471178404862
509 => 0.015314587624536
510 => 0.01477889902391
511 => 0.014752615585526
512 => 0.015553160516755
513 => 0.015326969906402
514 => 0.015300065253033
515 => 0.015013845197317
516 => 0.015183036699289
517 => 0.015146032035918
518 => 0.015087618364457
519 => 0.015410423964237
520 => 0.01601468722997
521 => 0.01592050713326
522 => 0.015850206059956
523 => 0.015542167221069
524 => 0.015727675405044
525 => 0.015661619493906
526 => 0.015945437608273
527 => 0.015777310044663
528 => 0.015325256290064
529 => 0.015397247340473
530 => 0.015386366038029
531 => 0.015610302471256
601 => 0.015543082312445
602 => 0.015373240223176
603 => 0.016012621923819
604 => 0.015971104032607
605 => 0.016029966910035
606 => 0.016055880169073
607 => 0.016445060543085
608 => 0.016604495289935
609 => 0.016640689768768
610 => 0.016792140447149
611 => 0.016636921537921
612 => 0.01725790784404
613 => 0.017670827502053
614 => 0.018150454933487
615 => 0.018851319522512
616 => 0.019114851091345
617 => 0.019067246472215
618 => 0.019598634004757
619 => 0.020553525588653
620 => 0.019260257362716
621 => 0.020622071944928
622 => 0.020190937171105
623 => 0.019168724378154
624 => 0.019102905925385
625 => 0.019795160296906
626 => 0.021330513865926
627 => 0.020945925210722
628 => 0.021331142915191
629 => 0.020881766000885
630 => 0.020859450649444
701 => 0.021309317681491
702 => 0.022360456522843
703 => 0.021861099860667
704 => 0.02114514963816
705 => 0.02167379614104
706 => 0.021215833616321
707 => 0.020183915872491
708 => 0.020945631123026
709 => 0.020436293827394
710 => 0.02058494552812
711 => 0.021655496765332
712 => 0.021526685208143
713 => 0.021693379290774
714 => 0.021399168598074
715 => 0.021124329418324
716 => 0.020611321679496
717 => 0.020459445379004
718 => 0.020501418524523
719 => 0.020459424579198
720 => 0.020172401464108
721 => 0.020110418849732
722 => 0.020007111776918
723 => 0.020039130958535
724 => 0.019844883438094
725 => 0.020211468642751
726 => 0.020279510087073
727 => 0.020546280228353
728 => 0.020573977189397
729 => 0.021316928235626
730 => 0.020907723284148
731 => 0.021182253294655
801 => 0.021157696746539
802 => 0.019190878828998
803 => 0.019461888984653
804 => 0.019883495739182
805 => 0.019693562467741
806 => 0.019425041259465
807 => 0.019208195986586
808 => 0.018879653224606
809 => 0.019342070852987
810 => 0.019950100861677
811 => 0.020589397833819
812 => 0.021357471257451
813 => 0.021186046210657
814 => 0.020575039235425
815 => 0.020602448561993
816 => 0.020771882233664
817 => 0.020552450234178
818 => 0.020487735453708
819 => 0.020762991416591
820 => 0.020764886953129
821 => 0.020512403918477
822 => 0.020231815229369
823 => 0.020230639552516
824 => 0.020180711505455
825 => 0.020890648089542
826 => 0.021281041428105
827 => 0.021325799395221
828 => 0.021278028860305
829 => 0.02129641384325
830 => 0.02106925256127
831 => 0.02158847588929
901 => 0.022064966560946
902 => 0.021937256882204
903 => 0.021745801918769
904 => 0.021593298818672
905 => 0.021901331998439
906 => 0.021887615765834
907 => 0.022060804830611
908 => 0.022052947974244
909 => 0.021994711005729
910 => 0.021937258962029
911 => 0.022165049821216
912 => 0.022099449711979
913 => 0.022033747707654
914 => 0.021901972279506
915 => 0.02191988274875
916 => 0.021728460842713
917 => 0.02163990031011
918 => 0.020308162386191
919 => 0.019952278497128
920 => 0.020064246813312
921 => 0.020101109690255
922 => 0.019946228565657
923 => 0.020168288312634
924 => 0.020133680536287
925 => 0.020268319149181
926 => 0.020184202789174
927 => 0.02018765495393
928 => 0.020435023233212
929 => 0.020506835297067
930 => 0.020470311101796
1001 => 0.020495891396187
1002 => 0.02108537848368
1003 => 0.021001572270574
1004 => 0.020957051890182
1005 => 0.020969384339808
1006 => 0.021120010929408
1007 => 0.02116217815059
1008 => 0.020983512671407
1009 => 0.021067772344242
1010 => 0.02142653933703
1011 => 0.021552087480053
1012 => 0.021952776886054
1013 => 0.021782556904698
1014 => 0.022095003047424
1015 => 0.023055355969425
1016 => 0.023822552334886
1017 => 0.023117006851477
1018 => 0.024525865274779
1019 => 0.025622863646057
1020 => 0.025580759021421
1021 => 0.02538947198136
1022 => 0.02414056850087
1023 => 0.022991308898021
1024 => 0.023952713355944
1025 => 0.023955164173622
1026 => 0.023872578678059
1027 => 0.023359647257909
1028 => 0.023854729776481
1029 => 0.02389402762893
1030 => 0.023872031281701
1031 => 0.023478767964504
1101 => 0.022878327566353
1102 => 0.0229956521829
1103 => 0.023187832298162
1104 => 0.022823995246999
1105 => 0.022707727263488
1106 => 0.022923891565724
1107 => 0.023620417987148
1108 => 0.023488743701881
1109 => 0.023485305154155
1110 => 0.024048663585116
1111 => 0.023645420528907
1112 => 0.02299713202204
1113 => 0.022833430624182
1114 => 0.022252400944259
1115 => 0.022653720213738
1116 => 0.022668162979792
1117 => 0.022448364517281
1118 => 0.023014967455895
1119 => 0.023009746110067
1120 => 0.023547651272562
1121 => 0.0245759239153
1122 => 0.024271813096619
1123 => 0.023918165301655
1124 => 0.023956616622558
1125 => 0.024378332706908
1126 => 0.024123353535468
1127 => 0.024215045823296
1128 => 0.024378193919649
1129 => 0.024476625216918
1130 => 0.023942453873652
1201 => 0.023817912981168
1202 => 0.023563146023059
1203 => 0.023496682079139
1204 => 0.023704184450632
1205 => 0.02364951490691
1206 => 0.02266694912123
1207 => 0.022564265529682
1208 => 0.022567414688837
1209 => 0.022309211915551
1210 => 0.021915390710523
1211 => 0.022950329323493
1212 => 0.022867209268915
1213 => 0.022775451161642
1214 => 0.022786691006218
1215 => 0.023235922780784
1216 => 0.022975345664787
1217 => 0.023668132635414
1218 => 0.023525716461336
1219 => 0.023379647849778
1220 => 0.023359456718302
1221 => 0.02330323276484
1222 => 0.023110419908409
1223 => 0.022877586798012
1224 => 0.02272385021087
1225 => 0.02096155064135
1226 => 0.021288623190628
1227 => 0.021664890344971
1228 => 0.021794776258854
1229 => 0.021572597415325
1230 => 0.023119192883348
1231 => 0.02340177077872
]
'min_raw' => 0.0097536356184027
'max_raw' => 0.025622863646057
'avg_raw' => 0.01768824963223
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.009753'
'max' => '$0.025622'
'avg' => '$0.017688'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00037817043082899
'max_diff' => -0.004620824161433
'year' => 2027
]
2 => [
'items' => [
101 => 0.022545823901537
102 => 0.022385711188897
103 => 0.023129689846133
104 => 0.022680979768127
105 => 0.022883033888778
106 => 0.022446303397626
107 => 0.023333706038572
108 => 0.023326945517254
109 => 0.022981725847028
110 => 0.023273503148341
111 => 0.023222799661951
112 => 0.022833047504505
113 => 0.023346061877151
114 => 0.023346316325879
115 => 0.02301404989901
116 => 0.022626035454901
117 => 0.022556667636786
118 => 0.022504408304092
119 => 0.022870181296491
120 => 0.023198132217733
121 => 0.023808367576237
122 => 0.023961795244199
123 => 0.024560633646515
124 => 0.024204054534849
125 => 0.024362121436578
126 => 0.024533725418333
127 => 0.024615998677714
128 => 0.024481938816579
129 => 0.025412181347095
130 => 0.025490722318565
131 => 0.025517056426922
201 => 0.025203383879583
202 => 0.025481998517594
203 => 0.025351643955216
204 => 0.025690790312984
205 => 0.02574397279232
206 => 0.025698929124344
207 => 0.025715810082714
208 => 0.024922012188946
209 => 0.024880849580537
210 => 0.02431959449411
211 => 0.024548310090417
212 => 0.024120737245745
213 => 0.024256324999279
214 => 0.024316090789109
215 => 0.02428487253218
216 => 0.02456124132707
217 => 0.024326271392999
218 => 0.023706147104352
219 => 0.023085853863258
220 => 0.023078066586896
221 => 0.0229147543256
222 => 0.022796709472817
223 => 0.022819449099329
224 => 0.022899586509134
225 => 0.022792051740877
226 => 0.022814999735836
227 => 0.023196089353843
228 => 0.023272514158928
229 => 0.023012792810152
301 => 0.021969974117202
302 => 0.02171406379424
303 => 0.021898007059463
304 => 0.02181009402615
305 => 0.017602448087149
306 => 0.018590972087623
307 => 0.018003624693645
308 => 0.018274301395344
309 => 0.017674771798963
310 => 0.017960898746394
311 => 0.017908061546887
312 => 0.019497578887097
313 => 0.019472760760139
314 => 0.019484639884168
315 => 0.018917618343388
316 => 0.019820899054163
317 => 0.020265887613214
318 => 0.02018353207392
319 => 0.02020425918888
320 => 0.019848098681655
321 => 0.019488088296406
322 => 0.019088781373964
323 => 0.019830644280034
324 => 0.019748161788901
325 => 0.019937346947297
326 => 0.020418498071339
327 => 0.02048934940207
328 => 0.020584574309075
329 => 0.020550442958484
330 => 0.021363590201423
331 => 0.021265112704985
401 => 0.021502415137492
402 => 0.021014266029647
403 => 0.020461878978581
404 => 0.020566869698096
405 => 0.020556758247524
406 => 0.020428027876369
407 => 0.020311815853215
408 => 0.020118355577196
409 => 0.020730492517252
410 => 0.020705640875379
411 => 0.021107960070429
412 => 0.021036846244783
413 => 0.02056193071262
414 => 0.02057889241376
415 => 0.020692968005444
416 => 0.021087784930755
417 => 0.021204993475373
418 => 0.021150697807553
419 => 0.021279211625953
420 => 0.021380783708087
421 => 0.021291967515638
422 => 0.022549417503938
423 => 0.022027236599688
424 => 0.022281743939108
425 => 0.022342442439915
426 => 0.022186964506449
427 => 0.022220682102971
428 => 0.022271755074206
429 => 0.02258186015443
430 => 0.023395665614567
501 => 0.0237560945131
502 => 0.024840462637587
503 => 0.02372616591049
504 => 0.023660048154122
505 => 0.023855375598122
506 => 0.024492014479219
507 => 0.025007950495899
508 => 0.025179116237694
509 => 0.025201738616111
510 => 0.025522856926603
511 => 0.025706915953675
512 => 0.025483864717459
513 => 0.025294852149204
514 => 0.024617832590819
515 => 0.024696199448165
516 => 0.025236069382607
517 => 0.025998667463187
518 => 0.026653055951131
519 => 0.026423911910394
520 => 0.028172119190734
521 => 0.028345446801793
522 => 0.028321498530297
523 => 0.028716364622897
524 => 0.027932635842167
525 => 0.027597576604376
526 => 0.025335718811845
527 => 0.025971208591566
528 => 0.026894930307396
529 => 0.026772672274527
530 => 0.026101840873339
531 => 0.026652547065358
601 => 0.026470466376102
602 => 0.02632685178195
603 => 0.026984778078817
604 => 0.02626136108929
605 => 0.02688771366954
606 => 0.026084410006581
607 => 0.026424958621071
608 => 0.026231646757003
609 => 0.026356743224466
610 => 0.025625431831821
611 => 0.026020029707711
612 => 0.025609015262866
613 => 0.025608820388503
614 => 0.025599747221853
615 => 0.026083303893497
616 => 0.026099072659199
617 => 0.02574172354824
618 => 0.025690223958509
619 => 0.025880644933774
620 => 0.025657711843071
621 => 0.025762020833087
622 => 0.025660871256118
623 => 0.025638100355806
624 => 0.025456657947972
625 => 0.025378487569815
626 => 0.025409140189293
627 => 0.025304506996506
628 => 0.025241461713103
629 => 0.025587205928158
630 => 0.025402488741336
701 => 0.02555889537006
702 => 0.025380650276539
703 => 0.024762775124704
704 => 0.024407428590973
705 => 0.023240319706215
706 => 0.023571310338138
707 => 0.023790757469538
708 => 0.023718230193919
709 => 0.023874046846278
710 => 0.023883612723242
711 => 0.023832955141198
712 => 0.023774300150828
713 => 0.023745750145341
714 => 0.023958538495663
715 => 0.024082069295152
716 => 0.023812781924998
717 => 0.023749691661901
718 => 0.02402195606089
719 => 0.024188037186992
720 => 0.025414286909199
721 => 0.025323442369044
722 => 0.025551444337494
723 => 0.025525774814821
724 => 0.025764757201319
725 => 0.02615539240175
726 => 0.025361121815954
727 => 0.025498979725837
728 => 0.025465180149938
729 => 0.025834195056884
730 => 0.025835347081144
731 => 0.025614104210768
801 => 0.025734043560054
802 => 0.025667096705647
803 => 0.025788078719971
804 => 0.025322229084825
805 => 0.025889583655073
806 => 0.026211237136883
807 => 0.02621570329579
808 => 0.026368164493368
809 => 0.026523073900064
810 => 0.026820409016452
811 => 0.026514781385047
812 => 0.0259649870284
813 => 0.026004680405125
814 => 0.025682336174984
815 => 0.025687754839729
816 => 0.025658829582653
817 => 0.025745636456532
818 => 0.025341278312067
819 => 0.025436180360353
820 => 0.025303316937007
821 => 0.025498690906703
822 => 0.025288500811784
823 => 0.025465163850759
824 => 0.025541405761908
825 => 0.02582274005542
826 => 0.025246947507887
827 => 0.024072867525738
828 => 0.02431967337233
829 => 0.02395462813904
830 => 0.023988414465206
831 => 0.024056668221116
901 => 0.023835435466974
902 => 0.023877639704619
903 => 0.023876131872263
904 => 0.023863138187622
905 => 0.023805587003855
906 => 0.023722126401239
907 => 0.024054607754244
908 => 0.024111102814944
909 => 0.024236684336623
910 => 0.024610329762379
911 => 0.02457299377318
912 => 0.024633890320619
913 => 0.024500953499479
914 => 0.023994581023067
915 => 0.024022079484768
916 => 0.023679173226727
917 => 0.024227915452646
918 => 0.024097966050505
919 => 0.024014186825574
920 => 0.023991326887843
921 => 0.024365898508338
922 => 0.024477976207881
923 => 0.02440813690678
924 => 0.024264894462685
925 => 0.024539962301175
926 => 0.024613558850574
927 => 0.024630034403848
928 => 0.025117401874625
929 => 0.024657272831488
930 => 0.02476803046546
1001 => 0.025632129908554
1002 => 0.02484851095124
1003 => 0.025263611389717
1004 => 0.025243294383332
1005 => 0.025455645721424
1006 => 0.025225875375538
1007 => 0.025228723654352
1008 => 0.025417277256652
1009 => 0.025152487728043
1010 => 0.025086922117016
1011 => 0.024996343694972
1012 => 0.02519411836576
1013 => 0.025312675336319
1014 => 0.02626815744852
1015 => 0.02688544246828
1016 => 0.026858644497599
1017 => 0.027103527785926
1018 => 0.026993205621661
1019 => 0.026636946251732
1020 => 0.027245037554999
1021 => 0.027052612023025
1022 => 0.027068475350084
1023 => 0.027067884916258
1024 => 0.027195831072889
1025 => 0.027105169494823
1026 => 0.026926466218235
1027 => 0.027045097792967
1028 => 0.027397391158357
1029 => 0.028490920574209
1030 => 0.029102874122658
1031 => 0.028454080202201
1101 => 0.028901609560835
1102 => 0.02863325141667
1103 => 0.028584482758912
1104 => 0.028865564268294
1105 => 0.029147137773649
1106 => 0.029129202758634
1107 => 0.028924794852705
1108 => 0.028809330013305
1109 => 0.029683668460804
1110 => 0.030327866134954
1111 => 0.030283936172333
1112 => 0.030477828740553
1113 => 0.031047103317718
1114 => 0.031099150650673
1115 => 0.031092593883015
1116 => 0.030963589137709
1117 => 0.031524113888574
1118 => 0.03199171349724
1119 => 0.030933728266476
1120 => 0.031336595192308
1121 => 0.031517455134875
1122 => 0.031783011189291
1123 => 0.032231048765452
1124 => 0.032717736409262
1125 => 0.032786559378355
1126 => 0.032737726188301
1127 => 0.032416742604343
1128 => 0.03294928203159
1129 => 0.033261231138486
1130 => 0.033446989692813
1201 => 0.033918042479312
1202 => 0.031518572064308
1203 => 0.02982010764315
1204 => 0.029554867897663
1205 => 0.030094243350149
1206 => 0.030236472355532
1207 => 0.030179140021802
1208 => 0.02826736389816
1209 => 0.029544802792023
1210 => 0.030919219631708
1211 => 0.030972016580009
1212 => 0.031660078387655
1213 => 0.031884139516832
1214 => 0.03243811945831
1215 => 0.032403467862138
1216 => 0.032538353162142
1217 => 0.032507345367559
1218 => 0.033533476554908
1219 => 0.03466545163651
1220 => 0.034626254938895
1221 => 0.034463520127993
1222 => 0.034705209072591
1223 => 0.035873528666626
1224 => 0.035765968520347
1225 => 0.035870454040506
1226 => 0.03724796868548
1227 => 0.039038933673121
1228 => 0.038206850626417
1229 => 0.040012231412317
1230 => 0.041148622917918
1231 => 0.043113894521781
]
'min_raw' => 0.017602448087149
'max_raw' => 0.043113894521781
'avg_raw' => 0.030358171304465
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.0176024'
'max' => '$0.043113'
'avg' => '$0.030358'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0078488124687467
'max_diff' => 0.017491030875723
'year' => 2028
]
3 => [
'items' => [
101 => 0.04286783283781
102 => 0.043632898651365
103 => 0.04242733106888
104 => 0.039659104214089
105 => 0.039221021717972
106 => 0.040098073969215
107 => 0.042254221347388
108 => 0.040030169215199
109 => 0.040480092064929
110 => 0.040350514253939
111 => 0.040343609603061
112 => 0.040607132043808
113 => 0.040224878999099
114 => 0.038667511328944
115 => 0.039381243754551
116 => 0.039105637388778
117 => 0.039411443199418
118 => 0.041061751035537
119 => 0.040332110602764
120 => 0.039563493678013
121 => 0.0405275098714
122 => 0.041755033757487
123 => 0.041678217518768
124 => 0.041529161908957
125 => 0.042369380577165
126 => 0.043757175656075
127 => 0.044132291089292
128 => 0.044409193633195
129 => 0.044447373815692
130 => 0.044840653424267
131 => 0.042725889849737
201 => 0.046082073953497
202 => 0.046661594235502
203 => 0.04655266844114
204 => 0.047196780844646
205 => 0.04700726663598
206 => 0.046732690281491
207 => 0.047753745447686
208 => 0.046583188094547
209 => 0.044921729300838
210 => 0.04401022014668
211 => 0.045210568930221
212 => 0.04594358004593
213 => 0.04642805376515
214 => 0.046574655219859
215 => 0.042890052926068
216 => 0.040904256647126
217 => 0.042177129294727
218 => 0.043730121773778
219 => 0.042717262898104
220 => 0.042756965048435
221 => 0.041312894466353
222 => 0.043857889977512
223 => 0.043487105538318
224 => 0.045410735864765
225 => 0.044951646049261
226 => 0.04652029190558
227 => 0.046107214880564
228 => 0.04782187451658
301 => 0.048505898667944
302 => 0.049654481677941
303 => 0.050499384015669
304 => 0.05099552682879
305 => 0.050965740275275
306 => 0.052931705278225
307 => 0.051772444401571
308 => 0.050316139523683
309 => 0.050289799563025
310 => 0.051044040495283
311 => 0.052624722573401
312 => 0.053034570438268
313 => 0.053263619482255
314 => 0.052912822898135
315 => 0.051654528301502
316 => 0.051111203074374
317 => 0.051574131909534
318 => 0.051008009724062
319 => 0.051985295442018
320 => 0.053327317469736
321 => 0.053050195227943
322 => 0.053976573333771
323 => 0.054935277215483
324 => 0.056306266824418
325 => 0.056664694275792
326 => 0.057257161223138
327 => 0.05786700432721
328 => 0.058062869496506
329 => 0.058436836878084
330 => 0.058434865885387
331 => 0.059561841760681
401 => 0.060804931050667
402 => 0.061274168480053
403 => 0.062353154075024
404 => 0.060505429055801
405 => 0.061906949708017
406 => 0.063171156418654
407 => 0.061663917061108
408 => 0.063741295373755
409 => 0.063821955266194
410 => 0.065039823878197
411 => 0.063805280724538
412 => 0.063072212940696
413 => 0.065188552164956
414 => 0.066212582051514
415 => 0.065904135915851
416 => 0.063556845593591
417 => 0.062190621946018
418 => 0.058614951135459
419 => 0.06285048766805
420 => 0.064913493960781
421 => 0.063551502905679
422 => 0.064238411971584
423 => 0.067985965104149
424 => 0.069412790700934
425 => 0.069116020951067
426 => 0.069166170153548
427 => 0.069936059346857
428 => 0.07335017201571
429 => 0.071304356566021
430 => 0.072868305822065
501 => 0.073697818868233
502 => 0.074468316814778
503 => 0.072576217376441
504 => 0.070114623807625
505 => 0.069334933793713
506 => 0.063416079737159
507 => 0.063107977679235
508 => 0.062935030657674
509 => 0.061844624150577
510 => 0.060987863323477
511 => 0.060306535304278
512 => 0.058518527120129
513 => 0.059121927394749
514 => 0.056272215535526
515 => 0.058095360195469
516 => 0.053547151259451
517 => 0.057335034812125
518 => 0.055273462008336
519 => 0.056657752700258
520 => 0.056652923040442
521 => 0.054104004986851
522 => 0.052633842248102
523 => 0.053570687164822
524 => 0.054575059282389
525 => 0.05473801527935
526 => 0.05604020994657
527 => 0.05640362448761
528 => 0.055302461462056
529 => 0.053452899738612
530 => 0.053882510742957
531 => 0.052625136194811
601 => 0.050421635663399
602 => 0.052004228214487
603 => 0.052544594893111
604 => 0.052783251602402
605 => 0.050616361903505
606 => 0.049935478114647
607 => 0.049572981298627
608 => 0.05317318148912
609 => 0.053370408582548
610 => 0.052361366887471
611 => 0.056922331030477
612 => 0.055890044375088
613 => 0.057043361485528
614 => 0.053843528047282
615 => 0.05396576599377
616 => 0.052450913564499
617 => 0.053299129702415
618 => 0.052699637875418
619 => 0.053230602220706
620 => 0.053548860060024
621 => 0.055063463916918
622 => 0.057352329155229
623 => 0.054837232608286
624 => 0.053741369025936
625 => 0.054421236629055
626 => 0.056231813648066
627 => 0.058974930513599
628 => 0.057350950118831
629 => 0.058071645041054
630 => 0.058229084820074
701 => 0.057031621799994
702 => 0.059019082683193
703 => 0.060084179116602
704 => 0.061176747666628
705 => 0.062125394325539
706 => 0.06074035176165
707 => 0.062222545843064
708 => 0.061028159055921
709 => 0.059956670634417
710 => 0.059958295640061
711 => 0.059286135301304
712 => 0.057983739947308
713 => 0.057743558261701
714 => 0.058993013721829
715 => 0.05999495867698
716 => 0.060077483662479
717 => 0.06063221187144
718 => 0.060960494311349
719 => 0.064178108500789
720 => 0.065472259545283
721 => 0.067054722945464
722 => 0.067671181622585
723 => 0.069526501228051
724 => 0.068028179964946
725 => 0.067704008734791
726 => 0.063203610242347
727 => 0.063940550243367
728 => 0.065120462289135
729 => 0.063223066557393
730 => 0.064426527428888
731 => 0.064664116097708
801 => 0.063158593776475
802 => 0.063962758298025
803 => 0.061827135746953
804 => 0.05739887989086
805 => 0.059024012597844
806 => 0.060220657283939
807 => 0.058512897771656
808 => 0.061573990598004
809 => 0.059785763362634
810 => 0.059218981179067
811 => 0.057007761808533
812 => 0.058051372233786
813 => 0.059462870277002
814 => 0.058590728590555
815 => 0.060400553542667
816 => 0.062963748337541
817 => 0.064790433589258
818 => 0.064930663800844
819 => 0.063756227562397
820 => 0.06563826912966
821 => 0.065651977747806
822 => 0.063529027171568
823 => 0.06222873176426
824 => 0.061933301911875
825 => 0.062671343605568
826 => 0.063567462471723
827 => 0.064980392161245
828 => 0.065834195980872
829 => 0.068060463519901
830 => 0.068662827683871
831 => 0.069324643274669
901 => 0.070209033000346
902 => 0.071270969618892
903 => 0.068947512753598
904 => 0.069039828026322
905 => 0.066876257163811
906 => 0.064564171409771
907 => 0.066318756291529
908 => 0.068612642621783
909 => 0.068086422563104
910 => 0.068027212056802
911 => 0.068126787704777
912 => 0.067730034965273
913 => 0.06593553702884
914 => 0.065034351399314
915 => 0.066197110778376
916 => 0.066815065639881
917 => 0.067773459738748
918 => 0.067655317436818
919 => 0.070124037711488
920 => 0.071083307759999
921 => 0.07083788543211
922 => 0.07088304904686
923 => 0.072619761648979
924 => 0.074551343244723
925 => 0.076360524303778
926 => 0.078200900983184
927 => 0.075982255065036
928 => 0.074855763494857
929 => 0.076018015249548
930 => 0.075401308108631
1001 => 0.078945090267561
1002 => 0.07919045405541
1003 => 0.082733979958554
1004 => 0.086097207995853
1005 => 0.083984824724115
1006 => 0.085976707005532
1007 => 0.08813109009343
1008 => 0.092287244606044
1009 => 0.090887597981474
1010 => 0.089815490602313
1011 => 0.08880235430939
1012 => 0.090910530104105
1013 => 0.093622664585074
1014 => 0.094206832375774
1015 => 0.095153407365979
1016 => 0.094158199505461
1017 => 0.095356817754905
1018 => 0.099588466874987
1019 => 0.098445037928941
1020 => 0.09682118501018
1021 => 0.10016166557858
1022 => 0.1013705725105
1023 => 0.10985531446816
1024 => 0.12056765167691
1025 => 0.11613267373149
1026 => 0.11337973980492
1027 => 0.11402674457813
1028 => 0.11793852749127
1029 => 0.11919486800919
1030 => 0.11577970139494
1031 => 0.11698599597865
1101 => 0.12363279773516
1102 => 0.1271985936226
1103 => 0.12235576385718
1104 => 0.10899458860381
1105 => 0.096674974821805
1106 => 0.09994269115623
1107 => 0.09957223353295
1108 => 0.10671339281491
1109 => 0.098417767526735
1110 => 0.098557444581271
1111 => 0.10584627547457
1112 => 0.10390174035443
1113 => 0.10075184249705
1114 => 0.096697972562049
1115 => 0.089204019049608
1116 => 0.082566415439286
1117 => 0.095584284667947
1118 => 0.095022930475348
1119 => 0.094210006416434
1120 => 0.096019080941976
1121 => 0.10480343332325
1122 => 0.10460092556868
1123 => 0.10331267455452
1124 => 0.10428980159464
1125 => 0.10058054740258
1126 => 0.10153650666602
1127 => 0.096673023332039
1128 => 0.098871520916005
1129 => 0.10074508423094
1130 => 0.101121229805
1201 => 0.10196870498981
1202 => 0.09472712232398
1203 => 0.097978380339239
1204 => 0.099888189821525
1205 => 0.091259601101092
1206 => 0.09971763036555
1207 => 0.094601062480835
1208 => 0.092864422492492
1209 => 0.095202579451875
1210 => 0.094291397410871
1211 => 0.093508016598421
1212 => 0.093070876644883
1213 => 0.094787761062887
1214 => 0.094707666352667
1215 => 0.091898510211906
1216 => 0.088234080542136
1217 => 0.089463983420115
1218 => 0.089017148174144
1219 => 0.087397759599853
1220 => 0.088489031973203
1221 => 0.08368362072128
1222 => 0.075416160425887
1223 => 0.080877897936181
1224 => 0.080667626983262
1225 => 0.080561598833771
1226 => 0.08466594362142
1227 => 0.084271405573433
1228 => 0.083555315153008
1229 => 0.087384608037717
1230 => 0.085986864623541
1231 => 0.090294380476266
]
'min_raw' => 0.038667511328944
'max_raw' => 0.1271985936226
'avg_raw' => 0.082933052475772
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.038667'
'max' => '$0.127198'
'avg' => '$0.082933'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.021065063241794
'max_diff' => 0.084084699100819
'year' => 2029
]
4 => [
'items' => [
101 => 0.093131589009529
102 => 0.092411981151412
103 => 0.095080389490365
104 => 0.089492317898368
105 => 0.091348451126711
106 => 0.091730997612583
107 => 0.087337355157926
108 => 0.084335956877418
109 => 0.084135797830553
110 => 0.078931786830313
111 => 0.081711727501332
112 => 0.084157960250068
113 => 0.082986404598753
114 => 0.082615525078777
115 => 0.084510268112384
116 => 0.084657505873472
117 => 0.081300469317109
118 => 0.081998503520698
119 => 0.084909422188198
120 => 0.081925155838925
121 => 0.076127213799429
122 => 0.074689244010814
123 => 0.074497392333971
124 => 0.070597504220425
125 => 0.074785336028009
126 => 0.072957235217084
127 => 0.078732183774787
128 => 0.075433564130297
129 => 0.075291367230291
130 => 0.075076415760181
131 => 0.071719620958502
201 => 0.072454545684631
202 => 0.07489754740648
203 => 0.07576923794322
204 => 0.075678313478688
205 => 0.074885575365268
206 => 0.075248486814116
207 => 0.074079422590647
208 => 0.073666601681372
209 => 0.072363625336365
210 => 0.070448610065606
211 => 0.070714904684477
212 => 0.066920758342101
213 => 0.064853506044188
214 => 0.064281317854072
215 => 0.06351616389286
216 => 0.064367744029988
217 => 0.066910010002223
218 => 0.063843497867895
219 => 0.058586177904406
220 => 0.058902151792249
221 => 0.059612051304743
222 => 0.058289158259665
223 => 0.057037151014497
224 => 0.058125669735612
225 => 0.055898073961058
226 => 0.059881245611633
227 => 0.059773511981194
228 => 0.061258192054846
301 => 0.062186592973603
302 => 0.060046929429236
303 => 0.059508809834093
304 => 0.059815347211658
305 => 0.054748967180948
306 => 0.060844160718372
307 => 0.060896872205192
308 => 0.060445524452967
309 => 0.063691026843658
310 => 0.070540049185596
311 => 0.067963171479273
312 => 0.066965326544844
313 => 0.065068422595074
314 => 0.067595934481131
315 => 0.067401861003609
316 => 0.066524187138076
317 => 0.065993367245692
318 => 0.066971419173236
319 => 0.065872175788248
320 => 0.065674721471117
321 => 0.064478363141713
322 => 0.064051317648952
323 => 0.063735150167282
324 => 0.063387080835939
325 => 0.064154835047409
326 => 0.062415002997741
327 => 0.060316936103681
328 => 0.060142504542838
329 => 0.060624125418504
330 => 0.060411044033479
331 => 0.060141484391145
401 => 0.059626821623728
402 => 0.059474132174665
403 => 0.059970298809729
404 => 0.059410155607054
405 => 0.06023667741518
406 => 0.060011909216907
407 => 0.058756372332677
408 => 0.057191508515635
409 => 0.057177577945251
410 => 0.05684043060276
411 => 0.056411022771656
412 => 0.056291571336563
413 => 0.058033997725046
414 => 0.061640768202771
415 => 0.060932672855291
416 => 0.061444344312375
417 => 0.063961261461377
418 => 0.064761313736705
419 => 0.064193455581954
420 => 0.063416136315765
421 => 0.063450334418515
422 => 0.066106669661627
423 => 0.066272342032413
424 => 0.066690942665457
425 => 0.067228962775442
426 => 0.064285082733149
427 => 0.063311677933262
428 => 0.062850424736633
429 => 0.061429943418468
430 => 0.062961810737244
501 => 0.062069257251692
502 => 0.062189693210862
503 => 0.062111259134456
504 => 0.062154089443863
505 => 0.059880132233979
506 => 0.060708642725589
507 => 0.059331083341036
508 => 0.057486685963417
509 => 0.057480502896679
510 => 0.057931916541895
511 => 0.057663398041902
512 => 0.056940821662665
513 => 0.057043460226872
514 => 0.056144238403052
515 => 0.05715264203722
516 => 0.057181559445206
517 => 0.056793269117934
518 => 0.058346854049256
519 => 0.058983359063224
520 => 0.058727778051828
521 => 0.058965426818137
522 => 0.060962097413837
523 => 0.061287641841782
524 => 0.061432227172417
525 => 0.061238501983252
526 => 0.059001922291287
527 => 0.059101124111297
528 => 0.058373246977506
529 => 0.057758267501256
530 => 0.057782863455163
531 => 0.058099042847692
601 => 0.05947981679854
602 => 0.062385574177031
603 => 0.062495845545463
604 => 0.062629497660846
605 => 0.062085867339412
606 => 0.061921903232626
607 => 0.062138214212203
608 => 0.063229463906099
609 => 0.066036454390202
610 => 0.06504427648053
611 => 0.064237620395796
612 => 0.064945275255026
613 => 0.06483633733623
614 => 0.063916791670342
615 => 0.063890983086143
616 => 0.062126080956772
617 => 0.06147363682442
618 => 0.06092840567283
619 => 0.060333027488914
620 => 0.059980067344231
621 => 0.060522374543981
622 => 0.060646406616954
623 => 0.059460642446793
624 => 0.059299027171949
625 => 0.0602673477898
626 => 0.059841225988515
627 => 0.060279502828449
628 => 0.060381186814783
629 => 0.060364813351002
630 => 0.059919893250683
701 => 0.060203472054918
702 => 0.059532723643993
703 => 0.058803385490265
704 => 0.058338113187559
705 => 0.057932101394033
706 => 0.058157380334626
707 => 0.057354302045724
708 => 0.057097381138332
709 => 0.060107401936769
710 => 0.06233093666375
711 => 0.062298605588204
712 => 0.062101798480691
713 => 0.06180938303979
714 => 0.063208071895254
715 => 0.062720796665677
716 => 0.063075330108402
717 => 0.063165573749298
718 => 0.063438714070642
719 => 0.063536338258319
720 => 0.063241250158802
721 => 0.062250898454847
722 => 0.059783036168406
723 => 0.058634239612201
724 => 0.058255117613933
725 => 0.058268897978515
726 => 0.057888774005091
727 => 0.058000737551226
728 => 0.057849837652947
729 => 0.057564069752212
730 => 0.058139734972028
731 => 0.058206075025919
801 => 0.058071707884927
802 => 0.058103356210792
803 => 0.056990853672334
804 => 0.057075434824105
805 => 0.056604476222994
806 => 0.056516177162776
807 => 0.055325634830224
808 => 0.053216416516237
809 => 0.054385128208961
810 => 0.052973488829883
811 => 0.052438879607199
812 => 0.054969636518593
813 => 0.054715618716959
814 => 0.054280850659446
815 => 0.053637738088782
816 => 0.053399201380526
817 => 0.051949927852706
818 => 0.051864297041108
819 => 0.052582596135173
820 => 0.052251125818425
821 => 0.051785615956085
822 => 0.050099586422667
823 => 0.048203931001911
824 => 0.048261148923398
825 => 0.048864121642818
826 => 0.05061734614648
827 => 0.049932331001807
828 => 0.049435344654704
829 => 0.049342274051247
830 => 0.050507247510026
831 => 0.052155929023683
901 => 0.052929453502722
902 => 0.052162914236282
903 => 0.051282355200402
904 => 0.051335950748798
905 => 0.051692497921051
906 => 0.051729965987549
907 => 0.051156812578122
908 => 0.05131815190561
909 => 0.051073062713978
910 => 0.049568950797332
911 => 0.04954174618235
912 => 0.049172612860924
913 => 0.049161435650654
914 => 0.048533447786286
915 => 0.048445587942985
916 => 0.047198679922144
917 => 0.048019398557447
918 => 0.047468903586548
919 => 0.046639177816767
920 => 0.046496132781314
921 => 0.046491832674816
922 => 0.047343775517094
923 => 0.04800944310931
924 => 0.047478479682254
925 => 0.047357589602207
926 => 0.048648379382869
927 => 0.048484114617469
928 => 0.048341862390028
929 => 0.052008307677032
930 => 0.049106030136075
1001 => 0.047840471472006
1002 => 0.04627410230215
1003 => 0.046784120002174
1004 => 0.046891588225288
1005 => 0.043124752731048
1006 => 0.041596548040164
1007 => 0.041072125779432
1008 => 0.040770313354138
1009 => 0.040907853066266
1010 => 0.039532289603939
1011 => 0.040456691000343
1012 => 0.039265569315452
1013 => 0.039065873888735
1014 => 0.041195747012981
1015 => 0.041492106415682
1016 => 0.040227745132112
1017 => 0.041039669757662
1018 => 0.040745254601841
1019 => 0.039285987678013
1020 => 0.039230254415164
1021 => 0.038498045568499
1022 => 0.037352280507041
1023 => 0.036828635128973
1024 => 0.036555916069578
1025 => 0.036668445268673
1026 => 0.03661154706216
1027 => 0.036240247777234
1028 => 0.036632829502544
1029 => 0.035629945420346
1030 => 0.035230588898028
1031 => 0.035050208821899
1101 => 0.034160091475093
1102 => 0.035576664010841
1103 => 0.035855746645894
1104 => 0.036135379159951
1105 => 0.038569389281591
1106 => 0.038447793014355
1107 => 0.039546964050384
1108 => 0.03950425228517
1109 => 0.039190750900304
1110 => 0.037868140126031
1111 => 0.038395309207386
1112 => 0.036772764715239
1113 => 0.037988485371056
1114 => 0.03743368123345
1115 => 0.037800905534049
1116 => 0.037140603130291
1117 => 0.037506041743749
1118 => 0.035921927491948
1119 => 0.034442703892706
1120 => 0.03503798665027
1121 => 0.035685127086583
1122 => 0.037088292440825
1123 => 0.036252578731701
1124 => 0.036553132983336
1125 => 0.035546326552533
1126 => 0.033468997305747
1127 => 0.033480754763686
1128 => 0.033161202916146
1129 => 0.032885063464537
1130 => 0.036348570504333
1201 => 0.035917828653991
1202 => 0.03523149788957
1203 => 0.036150178891447
1204 => 0.036393092729772
1205 => 0.036400008145252
1206 => 0.037070254089634
1207 => 0.037427964470298
1208 => 0.037491012475296
1209 => 0.038545658950402
1210 => 0.038899162537734
1211 => 0.040355193784255
1212 => 0.037397615243682
1213 => 0.037336705859928
1214 => 0.036163106617123
1215 => 0.035418791423467
1216 => 0.036214070515222
1217 => 0.036918579224096
1218 => 0.036184997666518
1219 => 0.036280787931186
1220 => 0.035296014625954
1221 => 0.035648024744684
1222 => 0.035951223279818
1223 => 0.035783814869903
1224 => 0.035533196377602
1225 => 0.03686081754408
1226 => 0.036785907954878
1227 => 0.038022219306981
1228 => 0.038986012415418
1229 => 0.040713301964364
1230 => 0.038910785274398
1231 => 0.038845094401861
]
'min_raw' => 0.032885063464537
'max_raw' => 0.095080389490365
'avg_raw' => 0.063982726477451
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.032885'
'max' => '$0.09508'
'avg' => '$0.063982'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0057824478644065
'max_diff' => -0.032118204132235
'year' => 2030
]
5 => [
'items' => [
101 => 0.03948723321806
102 => 0.038899064229627
103 => 0.039270766727414
104 => 0.040653414945472
105 => 0.040682628123571
106 => 0.040193269751358
107 => 0.040163492249936
108 => 0.040257478878314
109 => 0.04080796149634
110 => 0.040615605954979
111 => 0.040838204657288
112 => 0.041116567743078
113 => 0.042267995489406
114 => 0.042545600820906
115 => 0.041871163787224
116 => 0.041932057900014
117 => 0.041679799935707
118 => 0.041436121902968
119 => 0.041983874534245
120 => 0.042984903234007
121 => 0.04297867588642
122 => 0.043210895087547
123 => 0.043355565726042
124 => 0.042734533440243
125 => 0.042330264258177
126 => 0.042485286786898
127 => 0.042733171186273
128 => 0.042404901217083
129 => 0.0403786668978
130 => 0.040993296953921
131 => 0.040890992458708
201 => 0.040745298416874
202 => 0.041363313691097
203 => 0.04130370461024
204 => 0.039518181212426
205 => 0.039632484627237
206 => 0.039525132381665
207 => 0.039872009449312
208 => 0.038880331729621
209 => 0.039185365117146
210 => 0.039376679198292
211 => 0.039489364661831
212 => 0.039896461825279
213 => 0.039848693671846
214 => 0.039893492489792
215 => 0.040497110113518
216 => 0.043550000917773
217 => 0.043716163028425
218 => 0.042897920024639
219 => 0.043224791965522
220 => 0.042597269318062
221 => 0.043018529475338
222 => 0.043306744976098
223 => 0.042004354548816
224 => 0.041927235440156
225 => 0.041297122783508
226 => 0.041635709633786
227 => 0.041096993609738
228 => 0.041229175678553
301 => 0.040859583090721
302 => 0.041524776163668
303 => 0.042268565379775
304 => 0.04245647590889
305 => 0.041962164207358
306 => 0.04160424995872
307 => 0.040975870442395
308 => 0.042020879582395
309 => 0.042326472101007
310 => 0.042019274434989
311 => 0.041948090023371
312 => 0.041813195691983
313 => 0.041976708493462
314 => 0.042324807778521
315 => 0.042160650584072
316 => 0.042269079303083
317 => 0.041855860837421
318 => 0.04273473902777
319 => 0.0441306091076
320 => 0.044135097058154
321 => 0.043970938978836
322 => 0.043903769029615
323 => 0.04407220518094
324 => 0.044163574883422
325 => 0.044708266510901
326 => 0.045292742328657
327 => 0.04802023594335
328 => 0.047254366650586
329 => 0.049674361244863
330 => 0.051588262771966
331 => 0.052162158155174
401 => 0.051634201406487
402 => 0.049828089888893
403 => 0.04973947344133
404 => 0.052438566569229
405 => 0.051675949134301
406 => 0.051585238217045
407 => 0.050620227315953
408 => 0.051190668277423
409 => 0.051065904471286
410 => 0.050868958699643
411 => 0.051957320316867
412 => 0.0539946361056
413 => 0.053677101334099
414 => 0.053440076357188
415 => 0.052401501905298
416 => 0.053026955699338
417 => 0.052804243583059
418 => 0.053761156171196
419 => 0.053194302352193
420 => 0.051670171557176
421 => 0.051912894409884
422 => 0.051876207338987
423 => 0.052631224658355
424 => 0.052404587199763
425 => 0.051831952737796
426 => 0.053987672781718
427 => 0.053847692312811
428 => 0.054046152613731
429 => 0.054133520975785
430 => 0.055445669778473
501 => 0.055983215158856
502 => 0.056105247371259
503 => 0.056615873907371
504 => 0.05609254251787
505 => 0.058186241204829
506 => 0.05957842866095
507 => 0.061195526032547
508 => 0.063558539927248
509 => 0.064447055010756
510 => 0.06428655271371
511 => 0.066078162879967
512 => 0.069297646523475
513 => 0.064937302406623
514 => 0.069528755349411
515 => 0.068075154358598
516 => 0.064628692558545
517 => 0.064406781049737
518 => 0.066740764994977
519 => 0.071917316747889
520 => 0.070620649245749
521 => 0.071919437631404
522 => 0.07040433199033
523 => 0.070329094224938
524 => 0.071845852332197
525 => 0.075389840323987
526 => 0.073706224473491
527 => 0.071292348312261
528 => 0.07307471690564
529 => 0.071530664279629
530 => 0.068051481560108
531 => 0.070619657708547
601 => 0.068902391455531
602 => 0.069403581043056
603 => 0.073013019282819
604 => 0.072578722124421
605 => 0.073140742862222
606 => 0.072148790970648
607 => 0.071222151487463
608 => 0.069492510078945
609 => 0.068980448528174
610 => 0.069121963918763
611 => 0.068980378400175
612 => 0.068012659928335
613 => 0.067803681216478
614 => 0.067455374207816
615 => 0.067563329114145
616 => 0.066908410037051
617 => 0.068144377648713
618 => 0.068373784128746
619 => 0.069273218285369
620 => 0.069366600523267
621 => 0.071871511846816
622 => 0.07049184878313
623 => 0.071417445880629
624 => 0.071334651764171
625 => 0.064703387836338
626 => 0.065617117497457
627 => 0.067038594105993
628 => 0.066398220820613
629 => 0.065492882819358
630 => 0.064761773842191
701 => 0.063654068982053
702 => 0.06521314230111
703 => 0.067263157926707
704 => 0.069418592302573
705 => 0.072008205475522
706 => 0.071430233961741
707 => 0.069370181285602
708 => 0.069462593743785
709 => 0.070033851197305
710 => 0.069294020890784
711 => 0.069075830490187
712 => 0.070003875186804
713 => 0.070010266120585
714 => 0.069159001941454
715 => 0.068212977586049
716 => 0.068209013709458
717 => 0.068040677812924
718 => 0.070434278572363
719 => 0.071750516969721
720 => 0.071901421580754
721 => 0.071740359887054
722 => 0.071802346140649
723 => 0.07103645601856
724 => 0.072787053719995
725 => 0.074393575287
726 => 0.073962993188716
727 => 0.073317489412535
728 => 0.072803314563133
729 => 0.073841869934908
730 => 0.073795624699041
731 => 0.074379543722611
801 => 0.074353053782823
802 => 0.074156703777501
803 => 0.073963000200993
804 => 0.074731012986589
805 => 0.074509837638245
806 => 0.074288318743495
807 => 0.073844028687228
808 => 0.073904415084751
809 => 0.073259022763898
810 => 0.072960434745128
811 => 0.068470387355662
812 => 0.067270499976666
813 => 0.067648008972058
814 => 0.067772294735358
815 => 0.067250102210321
816 => 0.067998792150971
817 => 0.067882109616779
818 => 0.068336053100318
819 => 0.068052448919738
820 => 0.068064088134234
821 => 0.068898107558534
822 => 0.06914022694558
823 => 0.069017083071186
824 => 0.069103328819687
825 => 0.071090825691842
826 => 0.070808267193194
827 => 0.070658163622387
828 => 0.070699743337326
829 => 0.071207591400575
830 => 0.071349761130809
831 => 0.07074737799372
901 => 0.071031465363507
902 => 0.072241073328003
903 => 0.072664367657695
904 => 0.074015319965267
905 => 0.073441411413748
906 => 0.074494845398242
907 => 0.077732742324466
908 => 0.080319398434559
909 => 0.077940602577633
910 => 0.08269066711515
911 => 0.086389273713895
912 => 0.086247315032283
913 => 0.08560237742148
914 => 0.081391612141353
915 => 0.077516803151606
916 => 0.080758245404609
917 => 0.080766508507521
918 => 0.080488065743295
919 => 0.078758681648532
920 => 0.080427886925455
921 => 0.080560382378674
922 => 0.080486220158256
923 => 0.079160305427556
924 => 0.077135878703781
925 => 0.077531446839814
926 => 0.078179395516007
927 => 0.076952693495719
928 => 0.076560687871741
929 => 0.077289500908838
930 => 0.079637888368592
1001 => 0.079193939322608
1002 => 0.079182346018878
1003 => 0.081081748301293
1004 => 0.079722186183752
1005 => 0.077536436220794
1006 => 0.076984505528647
1007 => 0.075025523396589
1008 => 0.076378599332856
1009 => 0.076427294126968
1010 => 0.075686228264775
1011 => 0.077596569631263
1012 => 0.077578965499262
1013 => 0.079392550309954
1014 => 0.082859443316648
1015 => 0.081834112459125
1016 => 0.080641764227505
1017 => 0.080771405540513
1018 => 0.082193250762178
1019 => 0.08133357068359
1020 => 0.081642717633753
1021 => 0.082192782831243
1022 => 0.08252465082224
1023 => 0.080723654843767
1024 => 0.080303756529589
1025 => 0.079444791943063
1026 => 0.079220704115772
1027 => 0.079920312848613
1028 => 0.079735990665051
1029 => 0.076423201518078
1030 => 0.076076996620035
1031 => 0.076087614229991
1101 => 0.075217065552715
1102 => 0.073889269864248
1103 => 0.07737863765498
1104 => 0.077098392587713
1105 => 0.076789023722696
1106 => 0.076826919643427
1107 => 0.078341535935736
1108 => 0.077462981996241
1109 => 0.079798761636549
1110 => 0.079318595562465
1111 => 0.078826115040413
1112 => 0.078758039230941
1113 => 0.078568476246415
1114 => 0.077918394239194
1115 => 0.077133381151602
1116 => 0.076615047514505
1117 => 0.070673331476042
1118 => 0.071776079411409
1119 => 0.073044690392411
1120 => 0.073482609819414
1121 => 0.072733518336424
1122 => 0.077947972936709
1123 => 0.078900704039915
1124 => 0.07601481938319
1125 => 0.075474988193811
1126 => 0.077983364179612
1127 => 0.076470506823681
1128 => 0.077151746398423
1129 => 0.075679279055955
1130 => 0.078671219016376
1201 => 0.078648425446748
1202 => 0.077484493226116
1203 => 0.07846824076873
1204 => 0.078297290424363
1205 => 0.076983213813907
1206 => 0.078712877588804
1207 => 0.078713735480457
1208 => 0.077593476024166
1209 => 0.076285258235548
1210 => 0.076051379793668
1211 => 0.075875183804859
1212 => 0.077108412986187
1213 => 0.078214122413958
1214 => 0.080271573530426
1215 => 0.080788865624938
1216 => 0.082807891107907
1217 => 0.081605659737366
1218 => 0.082138593332424
1219 => 0.082717168137919
1220 => 0.082994558176058
1221 => 0.082542565994481
1222 => 0.085678943633575
1223 => 0.085943750002442
1224 => 0.086032537287357
1225 => 0.084974968394084
1226 => 0.085914337098392
1227 => 0.085474837590268
1228 => 0.086618293213927
1229 => 0.08679760165609
1230 => 0.08664573378466
1231 => 0.086702649114395
]
'min_raw' => 0.038880331729621
'max_raw' => 0.08679760165609
'avg_raw' => 0.062838966692856
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.03888'
'max' => '$0.086797'
'avg' => '$0.062838'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0059952682650838
'max_diff' => -0.0082827878342742
'year' => 2031
]
6 => [
'items' => [
101 => 0.084026304094358
102 => 0.083887521486224
103 => 0.081995210776758
104 => 0.08276634137812
105 => 0.081324749680125
106 => 0.081781893257599
107 => 0.081983397790726
108 => 0.081878143257902
109 => 0.082809939945326
110 => 0.082017722407529
111 => 0.07992693007266
112 => 0.077835568102818
113 => 0.077809312756874
114 => 0.077258694065819
115 => 0.07686069760303
116 => 0.076937365841447
117 => 0.077207554713621
118 => 0.076844993734603
119 => 0.076922364501785
120 => 0.078207234755725
121 => 0.078464906321877
122 => 0.077589237661312
123 => 0.074073301630757
124 => 0.073210482109801
125 => 0.07383065967101
126 => 0.073534254741302
127 => 0.059347882689504
128 => 0.062680760373643
129 => 0.060700477627559
130 => 0.061613083025383
131 => 0.059591727133363
201 => 0.060556424113374
202 => 0.060378279806259
203 => 0.065737448495334
204 => 0.06565377244755
205 => 0.065693823743586
206 => 0.063782071030668
207 => 0.066827545012089
208 => 0.068327855007039
209 => 0.068050187556432
210 => 0.068120070471639
211 => 0.066919250455198
212 => 0.065705450306208
213 => 0.064359159138474
214 => 0.066860401721506
215 => 0.066582306243908
216 => 0.067220157213924
217 => 0.068842391821532
218 => 0.069081272029772
219 => 0.069402329452131
220 => 0.069287253220639
221 => 0.072028835922335
222 => 0.071696812167615
223 => 0.072496893886738
224 => 0.070851065088156
225 => 0.068988653579057
226 => 0.069342637120117
227 => 0.069308545658557
228 => 0.068874522224541
229 => 0.068482705274809
301 => 0.067830440447248
302 => 0.069894302878683
303 => 0.069810513833022
304 => 0.071166961088161
305 => 0.07092719585999
306 => 0.069325984985757
307 => 0.069383172545379
308 => 0.069767786367245
309 => 0.071098939196167
310 => 0.071494115987587
311 => 0.071311054352729
312 => 0.071744347664015
313 => 0.072086805030464
314 => 0.071787355036674
315 => 0.07602693546458
316 => 0.074266366088397
317 => 0.075124455352386
318 => 0.075329104585692
319 => 0.074804899877889
320 => 0.074918581108648
321 => 0.075090777196967
322 => 0.076136318125789
323 => 0.078880120052724
324 => 0.080095331248472
325 => 0.083751354088344
326 => 0.079994424875221
327 => 0.079771504243433
328 => 0.080430064358207
329 => 0.082576536794533
330 => 0.08431605109627
331 => 0.084893148345144
401 => 0.08496942127342
402 => 0.086052094077008
403 => 0.086672661937372
404 => 0.085920629121531
405 => 0.085283360051223
406 => 0.083000741342131
407 => 0.083264960673073
408 => 0.085085169849559
409 => 0.08765632252113
410 => 0.08986263899618
411 => 0.08909006386451
412 => 0.094984266766109
413 => 0.095568652908143
414 => 0.09548790963878
415 => 0.096819228238651
416 => 0.094176831936225
417 => 0.09304715632292
418 => 0.085421144857535
419 => 0.087563743018343
420 => 0.090678135275455
421 => 0.090265933781855
422 => 0.088004178876796
423 => 0.089860923252268
424 => 0.089247025495972
425 => 0.08876281886494
426 => 0.090981063309772
427 => 0.08854201242222
428 => 0.090653803877075
429 => 0.087945409492538
430 => 0.089093592922635
501 => 0.088441828476328
502 => 0.088863599950335
503 => 0.0863979325315
504 => 0.08772834682001
505 => 0.086342582923102
506 => 0.086341925890583
507 => 0.086311335075753
508 => 0.087941680155047
509 => 0.087994845649552
510 => 0.086790018172638
511 => 0.086616383710273
512 => 0.087258401323144
513 => 0.086506766843151
514 => 0.086858451885609
515 => 0.08651741902482
516 => 0.086440645344605
517 => 0.08582889959869
518 => 0.08556534271105
519 => 0.085668690157718
520 => 0.085315912042979
521 => 0.085103350468307
522 => 0.086269051228453
523 => 0.085646264336542
524 => 0.086173600205246
525 => 0.085572634427765
526 => 0.08348942521469
527 => 0.082291349566713
528 => 0.07835636047681
529 => 0.079472318501367
530 => 0.080212199826191
531 => 0.079967669052751
601 => 0.080493015774948
602 => 0.080525267797002
603 => 0.08035447222234
604 => 0.080156712827149
605 => 0.08006045449035
606 => 0.08077788526987
607 => 0.08119437798499
608 => 0.080286456815472
609 => 0.080073743588621
610 => 0.080991702018706
611 => 0.08155165613077
612 => 0.085686042683215
613 => 0.085379753973517
614 => 0.086148478528735
615 => 0.086061931940857
616 => 0.08686767774215
617 => 0.088184731593683
618 => 0.085506792859469
619 => 0.085971590427574
620 => 0.085857632797618
621 => 0.087101792320183
622 => 0.087105676450408
623 => 0.086359740666253
624 => 0.086764124556269
625 => 0.086538408562554
626 => 0.086946307870544
627 => 0.085375663301064
628 => 0.087288538846087
629 => 0.088373016017137
630 => 0.088388073983709
701 => 0.088902107555844
702 => 0.08942439543595
703 => 0.090426881540126
704 => 0.089396436642605
705 => 0.087542766583754
706 => 0.087676595574685
707 => 0.086589789497412
708 => 0.086608058903918
709 => 0.086510535380187
710 => 0.086803210816132
711 => 0.085439889100686
712 => 0.085759857982332
713 => 0.085311899674292
714 => 0.085970616653697
715 => 0.085261946073675
716 => 0.085857577843799
717 => 0.086114632770278
718 => 0.087063170982984
719 => 0.085121846208425
720 => 0.081163353576966
721 => 0.081995476720183
722 => 0.080764701229503
723 => 0.080878614187058
724 => 0.081108736490432
725 => 0.080362834813864
726 => 0.08050512934769
727 => 0.08050004558563
728 => 0.080456236470672
729 => 0.080262198636507
730 => 0.079980805387752
731 => 0.081101789482517
801 => 0.081292266524026
802 => 0.081715673392187
803 => 0.082975445032214
804 => 0.082849564137914
805 => 0.083054881099265
806 => 0.082606675325442
807 => 0.08089940516742
808 => 0.080992118150925
809 => 0.079835985760992
810 => 0.081686108487637
811 => 0.08124797500554
812 => 0.080965507499406
813 => 0.080888433623314
814 => 0.082151327993569
815 => 0.082529205782594
816 => 0.082293737702909
817 => 0.081810785801774
818 => 0.082738196223865
819 => 0.082986332128512
820 => 0.083041880606663
821 => 0.084685074061298
822 => 0.083133716867175
823 => 0.083507143962964
824 => 0.086420515564851
825 => 0.08377848953974
826 => 0.085178029649452
827 => 0.085109529443937
828 => 0.085825486806211
829 => 0.085050800043001
830 => 0.085060403213885
831 => 0.085696124848431
901 => 0.084803368465712
902 => 0.084582309430489
903 => 0.084276917956584
904 => 0.084943729067332
905 => 0.085343452170954
906 => 0.088564926821872
907 => 0.090646146363458
908 => 0.090555795134331
909 => 0.091381436238132
910 => 0.091009477358864
911 => 0.089808324019913
912 => 0.091858546304457
913 => 0.091209770188683
914 => 0.091263254503405
915 => 0.09126126381454
916 => 0.091692643214537
917 => 0.091386971374297
918 => 0.090784460800615
919 => 0.091184435437417
920 => 0.092372217115167
921 => 0.096059127888499
922 => 0.098122372002325
923 => 0.09593491800216
924 => 0.097443794480298
925 => 0.096539006261077
926 => 0.096374579326527
927 => 0.097322265259893
928 => 0.098271609992033
929 => 0.098211140836725
930 => 0.097521965310583
1001 => 0.097132667543047
1002 => 0.10008056066315
1003 => 0.10225251809799
1004 => 0.10210440516192
1005 => 0.10275812749282
1006 => 0.10467747647522
1007 => 0.10485295769211
1008 => 0.10483085109217
1009 => 0.10439590258655
1010 => 0.10628575091867
1011 => 0.10786229564605
1012 => 0.10429522457436
1013 => 0.10565351854207
1014 => 0.10626330046568
1015 => 0.10715864124367
1016 => 0.10866923121269
1017 => 0.11031013258324
1018 => 0.1105421740286
1019 => 0.11037752951891
1020 => 0.10929531095523
1021 => 0.11109080481492
1022 => 0.1121425630084
1023 => 0.11276886094357
1024 => 0.11435704830111
1025 => 0.10626706627124
1026 => 0.10054057489231
1027 => 0.099646300571954
1028 => 0.101464842568
1029 => 0.10194437758976
1030 => 0.10175107762378
1031 => 0.09530539094697
1101 => 0.099612365365566
1102 => 0.10424630769928
1103 => 0.10442431629664
1104 => 0.10674416472007
1105 => 0.10749960246053
1106 => 0.10936738451087
1107 => 0.10925055423508
1108 => 0.10970532944143
1109 => 0.1096007844971
1110 => 0.11306045743744
1111 => 0.11687699045704
1112 => 0.1167448360544
1113 => 0.11619616427767
1114 => 0.11701103542856
1115 => 0.12095010650932
1116 => 0.12058745996653
1117 => 0.12093974019269
1118 => 0.12558412699322
1119 => 0.13162249049024
1120 => 0.12881706440409
1121 => 0.13490403177142
1122 => 0.13873545507287
1123 => 0.14536150549617
1124 => 0.14453189134919
1125 => 0.14711136415478
1126 => 0.14304670888039
1127 => 0.13371343876804
1128 => 0.13223641304643
1129 => 0.13519345594533
1130 => 0.14246305736824
1201 => 0.13496451032621
1202 => 0.13648145662668
1203 => 0.1360445759901
1204 => 0.1360212964776
1205 => 0.13690978078512
1206 => 0.13562098795683
1207 => 0.13037021412496
1208 => 0.1327766128291
1209 => 0.13184738672468
1210 => 0.13287843236593
1211 => 0.13844256045622
1212 => 0.13598252679526
1213 => 0.13339108117034
1214 => 0.13664132907181
1215 => 0.14078001155673
1216 => 0.14052102024475
1217 => 0.14001846884954
1218 => 0.1428513247516
1219 => 0.1475303727529
1220 => 0.14879510062572
1221 => 0.1497286968852
1222 => 0.14985742403615
1223 => 0.15118339369437
1224 => 0.14405332065476
1225 => 0.15536892968188
1226 => 0.15732282277347
1227 => 0.15695557185282
1228 => 0.15912724179174
1229 => 0.15848828140576
1230 => 0.15756252805629
1231 => 0.16100508683691
]
'min_raw' => 0.059347882689504
'max_raw' => 0.16100508683691
'avg_raw' => 0.11017648476321
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.059347'
'max' => '$0.161005'
'avg' => '$0.110176'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.020467550959883
'max_diff' => 0.074207485180822
'year' => 2032
]
7 => [
'items' => [
101 => 0.1570584709951
102 => 0.15145674667276
103 => 0.14838352991998
104 => 0.15243058964936
105 => 0.15490198780318
106 => 0.1565354247724
107 => 0.15702970181234
108 => 0.14460680792811
109 => 0.13791155712979
110 => 0.1422031361303
111 => 0.1474391586999
112 => 0.14402423428501
113 => 0.14415809285677
114 => 0.13928930806749
115 => 0.14786993811928
116 => 0.14661981249519
117 => 0.15310546644439
118 => 0.15155761307879
119 => 0.15684641210272
120 => 0.15545369407276
121 => 0.16123478874931
122 => 0.16354102393267
123 => 0.16741355174238
124 => 0.17026219896323
125 => 0.17193497909725
126 => 0.17183455165244
127 => 0.17846293991918
128 => 0.17455441093654
129 => 0.16964437736477
130 => 0.16955557034842
131 => 0.17209854631095
201 => 0.17742792629702
202 => 0.17880975698809
203 => 0.17958201183158
204 => 0.17839927665638
205 => 0.17415684857251
206 => 0.1723249896355
207 => 0.1738857865239
208 => 0.17197706605019
209 => 0.17527205308019
210 => 0.17979677404363
211 => 0.17886243705736
212 => 0.18198578551881
213 => 0.18521812259058
214 => 0.18984050977654
215 => 0.19104897295345
216 => 0.19304651663115
217 => 0.19510264523441
218 => 0.19576301832756
219 => 0.19702387546412
220 => 0.19701723012464
221 => 0.20081690797113
222 => 0.20500807030204
223 => 0.20659013705633
224 => 0.21022801232214
225 => 0.20399827841579
226 => 0.20872360314578
227 => 0.21298596433479
228 => 0.20790420160873
301 => 0.21490822762774
302 => 0.2151801780866
303 => 0.21928630714084
304 => 0.21512395870522
305 => 0.21265236949084
306 => 0.21978775494352
307 => 0.22324034320153
308 => 0.22220039552012
309 => 0.21428634231605
310 => 0.20968002390157
311 => 0.1976244001184
312 => 0.21190480725375
313 => 0.21886037700419
314 => 0.21426832907074
315 => 0.2165842909449
316 => 0.22921942797714
317 => 0.23403007009449
318 => 0.23302949016301
319 => 0.23319857170048
320 => 0.23579430686766
321 => 0.24730522609644
322 => 0.24040761647354
323 => 0.24568058058174
324 => 0.24847734173165
325 => 0.25107512935287
326 => 0.24469578399435
327 => 0.23639634941412
328 => 0.23376757009599
329 => 0.21381174040313
330 => 0.21277295280384
331 => 0.21218984984587
401 => 0.20851346817744
402 => 0.20562483923175
403 => 0.20332769424621
404 => 0.19729929981861
405 => 0.19933370597255
406 => 0.18972570347865
407 => 0.19587256298755
408 => 0.18053795901395
409 => 0.19330907287338
410 => 0.18635833623099
411 => 0.19102556894689
412 => 0.19100928541163
413 => 0.18241543023417
414 => 0.17745867391699
415 => 0.18061731196214
416 => 0.18400362267953
417 => 0.18455304020052
418 => 0.18894348043737
419 => 0.19016875793528
420 => 0.18645610991388
421 => 0.18022018343102
422 => 0.18166864692664
423 => 0.17742932085048
424 => 0.17000006496533
425 => 0.17533588624441
426 => 0.17715777022859
427 => 0.17796241798644
428 => 0.1706565980792
429 => 0.16836095084728
430 => 0.16713876752335
501 => 0.17927709382355
502 => 0.17994205873899
503 => 0.176540004215
504 => 0.19191761325949
505 => 0.1884371867289
506 => 0.19232567588878
507 => 0.18153721404649
508 => 0.18194934781746
509 => 0.17684191708855
510 => 0.17970173701809
511 => 0.17768050846819
512 => 0.17947069182908
513 => 0.18054372035439
514 => 0.18565031300417
515 => 0.19336738195861
516 => 0.18488755835215
517 => 0.18119277777351
518 => 0.18348499886427
519 => 0.18958948569431
520 => 0.19883809572476
521 => 0.19336273244111
522 => 0.1957926056887
523 => 0.19632342489576
524 => 0.19228609471936
525 => 0.19898695784715
526 => 0.20257800483505
527 => 0.20626167598216
528 => 0.20946010442508
529 => 0.20479033672034
530 => 0.20978765754931
531 => 0.20576069910704
601 => 0.202148101085
602 => 0.20215357990499
603 => 0.19988734439413
604 => 0.19549622752779
605 => 0.19468643820582
606 => 0.19889906452384
607 => 0.20227719189369
608 => 0.20255543064401
609 => 0.20442573553041
610 => 0.20553256269651
611 => 0.21638097358286
612 => 0.22074429418411
613 => 0.22607968002189
614 => 0.22815811349157
615 => 0.23441345307568
616 => 0.22936175832767
617 => 0.22826879239229
618 => 0.21309538466722
619 => 0.21558002933217
620 => 0.21955818517331
621 => 0.2131609829918
622 => 0.217218535343
623 => 0.21801958212784
624 => 0.21294360850959
625 => 0.21565490533897
626 => 0.20845450480362
627 => 0.19352433101385
628 => 0.19900357939859
629 => 0.20303815050483
630 => 0.1972803200772
701 => 0.20760100825991
702 => 0.20157187528582
703 => 0.19966092958246
704 => 0.1922056490923
705 => 0.19572425450359
706 => 0.20048321870394
707 => 0.19754273211709
708 => 0.20364468330108
709 => 0.21228667350855
710 => 0.2184454703698
711 => 0.21891826631873
712 => 0.21495857254428
713 => 0.22130400708826
714 => 0.22135022665144
715 => 0.21419255056398
716 => 0.20980851381451
717 => 0.20881245144094
718 => 0.21130081053965
719 => 0.21432213786192
720 => 0.21908592895774
721 => 0.22196458814629
722 => 0.22947060458717
723 => 0.23150151742171
724 => 0.23373287489258
725 => 0.23671465659881
726 => 0.24029505005029
727 => 0.23246135301037
728 => 0.23277260039761
729 => 0.22547797017896
730 => 0.21768261163454
731 => 0.22359831706459
801 => 0.23133231498107
802 => 0.22955812731372
803 => 0.22935849495778
804 => 0.22969422120708
805 => 0.22835654164545
806 => 0.22230626656492
807 => 0.21926785629621
808 => 0.22318818072398
809 => 0.22527165868377
810 => 0.22850295130104
811 => 0.22810462628165
812 => 0.23642808904825
813 => 0.2396623349909
814 => 0.23883487647758
815 => 0.23898714875793
816 => 0.24484259654938
817 => 0.25135505875815
818 => 0.25745483901175
819 => 0.26365979747736
820 => 0.25617947786341
821 => 0.25238143288542
822 => 0.25630004582219
823 => 0.25422077463947
824 => 0.26616888360727
825 => 0.26699614474876
826 => 0.27894338973229
827 => 0.29028274787312
828 => 0.28316070019057
829 => 0.28987647037114
830 => 0.29714012336622
831 => 0.31115288847894
901 => 0.30643388216399
902 => 0.302819197283
903 => 0.2994033375365
904 => 0.30651119941651
905 => 0.31565535017428
906 => 0.31762491266592
907 => 0.32081635633315
908 => 0.31746094354822
909 => 0.32150216866107
910 => 0.33576946911374
911 => 0.33191431859048
912 => 0.32643938510109
913 => 0.33770204856237
914 => 0.34177796268651
915 => 0.37038486258252
916 => 0.40650225539334
917 => 0.39154941761007
918 => 0.38226770867294
919 => 0.38444913043825
920 => 0.39763797964185
921 => 0.4018738194129
922 => 0.39035934673366
923 => 0.39442645314344
924 => 0.4168366093304
925 => 0.42885893912081
926 => 0.41253100045112
927 => 0.3674828652369
928 => 0.32594642724291
929 => 0.3369637610091
930 => 0.33571473726768
1001 => 0.35979165436665
1002 => 0.33182237452549
1003 => 0.3322933054668
1004 => 0.35686810771347
1005 => 0.35031197179283
1006 => 0.33969187124783
1007 => 0.3260239657298
1008 => 0.30075757825148
1009 => 0.27837843425659
1010 => 0.32226908923963
1011 => 0.32037644438678
1012 => 0.31763561416561
1013 => 0.32373503523402
1014 => 0.35335209259137
1015 => 0.35266932355822
1016 => 0.34832589532117
1017 => 0.35162034735776
1018 => 0.33911433787738
1019 => 0.34233742127701
1020 => 0.32593984765892
1021 => 0.33335223575746
1022 => 0.33966908528179
1023 => 0.34093728634636
1024 => 0.34379460810077
1025 => 0.31937910655178
1026 => 0.33034094994581
1027 => 0.33678000595398
1028 => 0.30768811665421
1029 => 0.33620495284008
1030 => 0.3189540869894
1031 => 0.31309888402037
1101 => 0.32098214345384
1102 => 0.31791002958589
1103 => 0.31526880648281
1104 => 0.31379495860932
1105 => 0.31958355429367
1106 => 0.31931350938612
1107 => 0.30984224332853
1108 => 0.29748736285459
1109 => 0.30163406627677
1110 => 0.30012753004794
1111 => 0.29466764840762
1112 => 0.29834694940458
1113 => 0.28214516986562
1114 => 0.25427085026406
1115 => 0.27268547960635
1116 => 0.27197653640793
1117 => 0.27161905509927
1118 => 0.28545714010703
1119 => 0.28412692753248
1120 => 0.28171257868418
1121 => 0.29462330699767
1122 => 0.28991071748944
1123 => 0.30443380792806
1124 => 0.31399965458553
1125 => 0.31157344645047
1126 => 0.32057017146757
1127 => 0.30172959794846
1128 => 0.3079876807189
1129 => 0.30927746290456
1130 => 0.29446399061436
1201 => 0.28434456676069
1202 => 0.28366971655953
1203 => 0.26612403013977
1204 => 0.27549679420138
1205 => 0.28374443870425
1206 => 0.27979445703044
1207 => 0.27854401083486
1208 => 0.2849322692594
1209 => 0.28542869165072
1210 => 0.27411020852014
1211 => 0.27646367957273
1212 => 0.28627804509406
1213 => 0.27621638274266
1214 => 0.25666821635711
1215 => 0.25182000081895
1216 => 0.25117315949582
1217 => 0.2380244144395
1218 => 0.25214398176386
1219 => 0.2459804122459
1220 => 0.26545105450223
1221 => 0.25432952806856
1222 => 0.25385010129232
1223 => 0.25312537740341
1224 => 0.24180770936562
1225 => 0.24428555939057
1226 => 0.25252231026072
1227 => 0.25546127576483
1228 => 0.25515471758452
1229 => 0.25248194568791
1230 => 0.25370552697537
1231 => 0.24976394532449
]
'min_raw' => 0.13791155712979
'max_raw' => 0.42885893912081
'avg_raw' => 0.2833852481253
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.137911'
'max' => '$0.428858'
'avg' => '$0.283385'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.078563674440283
'max_diff' => 0.26785385228389
'year' => 2033
]
8 => [
'items' => [
101 => 0.24837209080663
102 => 0.24397901508854
103 => 0.23752240740108
104 => 0.2384202383007
105 => 0.22562800900854
106 => 0.21865812355518
107 => 0.2167289511233
108 => 0.21414918112173
109 => 0.21702034300948
110 => 0.22559177023021
111 => 0.21525281047229
112 => 0.19752738916102
113 => 0.19859271718448
114 => 0.20098619295445
115 => 0.19652596669153
116 => 0.19230473685209
117 => 0.19597475371828
118 => 0.1884642590386
119 => 0.20189380035468
120 => 0.20153056889794
121 => 0.20653627142331
122 => 0.20966643993978
123 => 0.2024524149134
124 => 0.20063810712807
125 => 0.20167161929829
126 => 0.18458996530139
127 => 0.20514033586564
128 => 0.20531805632365
129 => 0.20379630586493
130 => 0.21473874376888
131 => 0.2378307007782
201 => 0.22914257767947
202 => 0.22577827381574
203 => 0.21938272971149
204 => 0.22790441250057
205 => 0.22725008022133
206 => 0.22429094150645
207 => 0.22250124517862
208 => 0.22579881553773
209 => 0.22209263971853
210 => 0.2214269087025
211 => 0.21739330306784
212 => 0.21595348937363
213 => 0.21488750863508
214 => 0.21371396858303
215 => 0.21630250550989
216 => 0.21043654028324
217 => 0.20336276126756
218 => 0.20277465308175
219 => 0.20439847148976
220 => 0.20368005272328
221 => 0.2027712135691
222 => 0.20103599211614
223 => 0.20052118897819
224 => 0.20219404942956
225 => 0.20030548751379
226 => 0.20309216349579
227 => 0.2023343418225
228 => 0.19810121155854
301 => 0.19282516394408
302 => 0.19277819605342
303 => 0.19164148024934
304 => 0.19019370176648
305 => 0.18979096291323
306 => 0.19566567513432
307 => 0.20782615361665
308 => 0.20543876071498
309 => 0.2071638967563
310 => 0.2156498586497
311 => 0.21834729075384
312 => 0.2164327173385
313 => 0.21381193116185
314 => 0.21392723245291
315 => 0.22288325218446
316 => 0.22344182814944
317 => 0.22485316940951
318 => 0.22666714177369
319 => 0.21674164467596
320 => 0.21345974243219
321 => 0.21190459507608
322 => 0.20711534313705
323 => 0.21228014075387
324 => 0.20927083436123
325 => 0.20967689260615
326 => 0.20941244664145
327 => 0.20955685201993
328 => 0.20189004652419
329 => 0.2046834274914
330 => 0.20003888984826
331 => 0.19382037531791
401 => 0.19379952867671
402 => 0.19532150129825
403 => 0.19441617242816
404 => 0.19197995571689
405 => 0.19232600880211
406 => 0.18929421964144
407 => 0.19269412289853
408 => 0.1927916199585
409 => 0.19148247201054
410 => 0.19672049207433
411 => 0.19886651316828
412 => 0.19800480394427
413 => 0.19880605335198
414 => 0.20553796766848
415 => 0.20663556343608
416 => 0.20712304297294
417 => 0.20646988497221
418 => 0.19892910038774
419 => 0.19926356624995
420 => 0.19680947767462
421 => 0.19473603143395
422 => 0.19481895840978
423 => 0.19588497930663
424 => 0.20054035508447
425 => 0.21033731895956
426 => 0.21070910657713
427 => 0.21115972401543
428 => 0.20932683643166
429 => 0.20877401999802
430 => 0.20950332756802
501 => 0.21318255209961
502 => 0.22264651649458
503 => 0.21930131940047
504 => 0.21658162209186
505 => 0.21896752985664
506 => 0.21860023805762
507 => 0.21549992564445
508 => 0.21541291020092
509 => 0.20946241945021
510 => 0.2072626585058
511 => 0.20542437361139
512 => 0.20341701449634
513 => 0.20222698472565
514 => 0.20405541131229
515 => 0.20447359410596
516 => 0.20047570741885
517 => 0.19993081023609
518 => 0.20319557080516
519 => 0.20175887140126
520 => 0.20323655236661
521 => 0.20357938702588
522 => 0.20352418274959
523 => 0.20202410356803
524 => 0.20298020930535
525 => 0.20071873420775
526 => 0.1982597197017
527 => 0.19669102164885
528 => 0.19532212454014
529 => 0.19608166821682
530 => 0.19337403369665
531 => 0.19250780691974
601 => 0.20265630219461
602 => 0.21015310476886
603 => 0.21004409829037
604 => 0.20938054938676
605 => 0.20839465031197
606 => 0.2131104274415
607 => 0.21146754498451
608 => 0.2126628792394
609 => 0.21296714197529
610 => 0.21388805363875
611 => 0.2142172004034
612 => 0.21322229027349
613 => 0.20988325035946
614 => 0.20156268036008
615 => 0.19768943256442
616 => 0.1964111962778
617 => 0.19645765773911
618 => 0.1951760432233
619 => 0.19555353613614
620 => 0.1950447665936
621 => 0.19408128016459
622 => 0.19602217564486
623 => 0.19624584576827
624 => 0.1957928175712
625 => 0.19589952211147
626 => 0.19214864213061
627 => 0.19243381338908
628 => 0.19084594358415
629 => 0.19054823713778
630 => 0.18653424054257
701 => 0.17942286373605
702 => 0.18336325680491
703 => 0.17860381608083
704 => 0.17680134376133
705 => 0.1853339673799
706 => 0.18447752862674
707 => 0.18301167776629
708 => 0.18084337883361
709 => 0.18003913566763
710 => 0.17515280878353
711 => 0.17486409852368
712 => 0.17728589406936
713 => 0.17616831875393
714 => 0.17459881975219
715 => 0.16891425346545
716 => 0.16252291886393
717 => 0.16271583308105
718 => 0.16474879770279
719 => 0.17065991652311
720 => 0.16835034013662
721 => 0.16667471596888
722 => 0.16636092193134
723 => 0.17028871128346
724 => 0.17584735611403
725 => 0.17845534790086
726 => 0.175870907246
727 => 0.17290204097786
728 => 0.1730827421112
729 => 0.17428486579578
730 => 0.17441119199791
731 => 0.17247876526174
801 => 0.17302273206871
802 => 0.17219639674755
803 => 0.16712517840683
804 => 0.16703345614806
805 => 0.1657888973828
806 => 0.16575121263801
807 => 0.16363390770858
808 => 0.16333768211271
809 => 0.15913364466411
810 => 0.16190075484378
811 => 0.16004472261506
812 => 0.15724724425264
813 => 0.15676495792852
814 => 0.15675045981924
815 => 0.15962284459273
816 => 0.16186718935532
817 => 0.16007700909031
818 => 0.15966941974516
819 => 0.16402140761073
820 => 0.16346757748558
821 => 0.16298796416903
822 => 0.1753496404372
823 => 0.16556440907731
824 => 0.16129748968292
825 => 0.15601636666635
826 => 0.15773592695028
827 => 0.1580982635677
828 => 0.14539811470682
829 => 0.14024566589566
830 => 0.1384775396296
831 => 0.13745995796585
901 => 0.13792368270801
902 => 0.133285874456
903 => 0.13640255830362
904 => 0.13238660838155
905 => 0.13171332130809
906 => 0.13889433724947
907 => 0.13989353366683
908 => 0.13563065132439
909 => 0.1383681118862
910 => 0.13737547063294
911 => 0.13245545031649
912 => 0.13226754172962
913 => 0.1297988484819
914 => 0.12593582158243
915 => 0.12417031463053
916 => 0.12325082328114
917 => 0.12363022333242
918 => 0.12343838705666
919 => 0.12218652559425
920 => 0.12351014229031
921 => 0.12012884858805
922 => 0.11878239019087
923 => 0.11817422617046
924 => 0.1151731333897
925 => 0.11994920659591
926 => 0.12089015318492
927 => 0.12183295372938
928 => 0.13003938879165
929 => 0.12962941848709
930 => 0.13333535037673
1001 => 0.13319134467827
1002 => 0.13213435287123
1003 => 0.12767507830403
1004 => 0.12945246566759
1005 => 0.12398194362987
1006 => 0.12808083069987
1007 => 0.12621026981474
1008 => 0.12744839218299
1009 => 0.12522213652788
1010 => 0.12645423832726
1011 => 0.12111328652799
1012 => 0.11612598088705
1013 => 0.11813301826549
1014 => 0.12031489742842
1015 => 0.12504576738613
1016 => 0.12222810026815
1017 => 0.12324143991157
1018 => 0.11984692173713
1019 => 0.1128430611471
1020 => 0.11288270223742
1021 => 0.11180531087304
1022 => 0.1108742874325
1023 => 0.12255174323151
1024 => 0.12109946700965
1025 => 0.11878545491932
1026 => 0.12188285205741
1027 => 0.12270185302302
1028 => 0.12272516882913
1029 => 0.12498494982569
1030 => 0.12619099534864
1031 => 0.12640356609936
1101 => 0.12995938032325
1102 => 0.13115124234877
1103 => 0.13606035335327
1104 => 0.12608867081219
1105 => 0.12588331057231
1106 => 0.12192643878711
1107 => 0.11941692814527
1108 => 0.12209826712773
1109 => 0.12447356742693
1110 => 0.12200024598853
1111 => 0.12232320955372
1112 => 0.11900297760045
1113 => 0.12018980429231
1114 => 0.12121205932216
1115 => 0.12064763018005
1116 => 0.11980265243563
1117 => 0.12427881988996
1118 => 0.12402625697995
1119 => 0.12819456702007
1120 => 0.13144406277505
1121 => 0.13726774008482
1122 => 0.13119042921691
1123 => 0.13096894785376
1124 => 0.13313396370528
1125 => 0.13115091089613
1126 => 0.13240413181885
1127 => 0.13706582681945
1128 => 0.13716432108901
1129 => 0.13551441517119
1130 => 0.13541401824614
1201 => 0.13573090072565
1202 => 0.1375868913058
1203 => 0.13693835116827
1204 => 0.13768885823444
1205 => 0.13862737881287
1206 => 0.14250949784974
1207 => 0.14344546360668
1208 => 0.14117155205993
1209 => 0.14137686081269
1210 => 0.14052635547394
1211 => 0.13970477797351
1212 => 0.14155156421272
1213 => 0.14492660236356
1214 => 0.14490560642639
1215 => 0.14568854967602
1216 => 0.14617631683429
1217 => 0.14408246312362
1218 => 0.14271944135112
1219 => 0.14324211063003
1220 => 0.14407787018926
1221 => 0.14297108506905
1222 => 0.13613949459443
1223 => 0.13821176274074
1224 => 0.13786683599246
1225 => 0.13737561835838
1226 => 0.13945930000387
1227 => 0.13925832382599
1228 => 0.133238307029
1229 => 0.13362368897244
1230 => 0.1332617433814
1231 => 0.13443126363316
]
'min_raw' => 0.1108742874325
'max_raw' => 0.24837209080663
'avg_raw' => 0.17962318911957
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.110874'
'max' => '$0.248372'
'avg' => '$0.179623'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.027037269697288
'max_diff' => -0.18048684831417
'year' => 2034
]
9 => [
'items' => [
101 => 0.13108775296449
102 => 0.13211619432729
103 => 0.13276122310899
104 => 0.13314115001676
105 => 0.13451370652594
106 => 0.13435265286158
107 => 0.13450369520403
108 => 0.13653883416566
109 => 0.14683186865824
110 => 0.14739209581537
111 => 0.1446333324002
112 => 0.14573540397036
113 => 0.14361966755222
114 => 0.14503997558392
115 => 0.1460117142673
116 => 0.14162061401172
117 => 0.14136060155259
118 => 0.13923613273764
119 => 0.14037770194273
120 => 0.1385613832557
121 => 0.13900704432936
122 => 0.13776093711536
123 => 0.1400036820031
124 => 0.14251141927491
125 => 0.14314497274331
126 => 0.14147836632986
127 => 0.1402716334518
128 => 0.13815300804045
129 => 0.14167632931617
130 => 0.14270665582846
131 => 0.14167091744962
201 => 0.14143091423592
202 => 0.14097610857962
203 => 0.1415274034059
204 => 0.142701044449
205 => 0.14214757700682
206 => 0.14251315200322
207 => 0.14111995709625
208 => 0.14408315627633
209 => 0.14878942970701
210 => 0.14880456114564
211 => 0.14825109072007
212 => 0.14802462254661
213 => 0.14859251679064
214 => 0.14890057612179
215 => 0.15073704197299
216 => 0.15270764299935
217 => 0.16190357814881
218 => 0.15932139635698
219 => 0.16748057709021
220 => 0.17393342971317
221 => 0.17586835806575
222 => 0.17408831502679
223 => 0.16799888394655
224 => 0.16770010740658
225 => 0.17680028833196
226 => 0.17422907040585
227 => 0.17392323221509
228 => 0.17066963058714
301 => 0.17259291211566
302 => 0.17217226223254
303 => 0.17150824581313
304 => 0.17517773299258
305 => 0.18204668541514
306 => 0.18097609476346
307 => 0.18017694850524
308 => 0.17667532222974
309 => 0.17878408336414
310 => 0.17803319391484
311 => 0.18125949151525
312 => 0.17934830428801
313 => 0.1742095909012
314 => 0.17502794794547
315 => 0.17490425492453
316 => 0.17744984853041
317 => 0.17668572451544
318 => 0.17475504744686
319 => 0.18202320808251
320 => 0.18155125415846
321 => 0.18222037691907
322 => 0.1825149454516
323 => 0.18693894675117
324 => 0.18875131853135
325 => 0.18916275865548
326 => 0.19088437167279
327 => 0.18911992335526
328 => 0.19617897465571
329 => 0.20087283186345
330 => 0.20632498855392
331 => 0.21429205488027
401 => 0.21728774551846
402 => 0.21674660081805
403 => 0.22278713957982
404 => 0.23364185346107
405 => 0.2189406488416
406 => 0.23442105300322
407 => 0.22952013577551
408 => 0.21790014919236
409 => 0.21715195904704
410 => 0.22502114887197
411 => 0.24247425452222
412 => 0.23810244950832
413 => 0.24248140522907
414 => 0.23737312077889
415 => 0.23711945139993
416 => 0.24223330725523
417 => 0.25418211020289
418 => 0.24850568181663
419 => 0.2403671298076
420 => 0.24637650996118
421 => 0.24117062873027
422 => 0.22944032128262
423 => 0.23809910647142
424 => 0.23230922340367
425 => 0.23399901908995
426 => 0.24616849211824
427 => 0.24470422892705
428 => 0.24659912108358
429 => 0.24325468602527
430 => 0.2401304563118
501 => 0.23429884954328
502 => 0.23257239827386
503 => 0.23304952729352
504 => 0.23257216183241
505 => 0.22930943144066
506 => 0.22860484512321
507 => 0.22743050372548
508 => 0.22779448122934
509 => 0.22558637583593
510 => 0.22975352693115
511 => 0.23052698689523
512 => 0.23355949195077
513 => 0.23387433668559
514 => 0.24231982010026
515 => 0.23766818975604
516 => 0.24078890499338
517 => 0.24050975884924
518 => 0.21815198953649
519 => 0.22123269288352
520 => 0.22602530051353
521 => 0.22386623727244
522 => 0.22081382699252
523 => 0.21834884203161
524 => 0.21461413775817
525 => 0.21987066230439
526 => 0.22678243311361
527 => 0.23404963059947
528 => 0.24278069221308
529 => 0.24083202090169
530 => 0.2338864094758
531 => 0.23419798453059
601 => 0.23612401891906
602 => 0.23362962938732
603 => 0.23289398521814
604 => 0.2360229527068
605 => 0.23604450018624
606 => 0.23317440357293
607 => 0.22998481640937
608 => 0.2299714519227
609 => 0.2294038956947
610 => 0.23747408777101
611 => 0.24191187742454
612 => 0.24242066285646
613 => 0.24187763211118
614 => 0.24208662309292
615 => 0.23950437107356
616 => 0.24540663344677
617 => 0.25082313307368
618 => 0.24937139546703
619 => 0.24719503441801
620 => 0.24546145801471
621 => 0.24896301996027
622 => 0.2488071009188
623 => 0.25077582467469
624 => 0.25068651199323
625 => 0.25002450424157
626 => 0.24937141910942
627 => 0.25196082783699
628 => 0.25121511970808
629 => 0.25046825328848
630 => 0.24897029834443
701 => 0.24917389529973
702 => 0.24699791003012
703 => 0.24599119967809
704 => 0.2308526914194
705 => 0.22680718734766
706 => 0.22807998528246
707 => 0.22849902341078
708 => 0.2267384148543
709 => 0.22926267526106
710 => 0.22886927195052
711 => 0.23039977409859
712 => 0.22944358280315
713 => 0.22948282522745
714 => 0.23229477994585
715 => 0.23311110236352
716 => 0.23269591419336
717 => 0.23298669775592
718 => 0.23968768222299
719 => 0.2387350165172
720 => 0.23822893184832
721 => 0.23836912076025
722 => 0.24008136596231
723 => 0.24056070113377
724 => 0.23852972433002
725 => 0.23948754473161
726 => 0.24356582243604
727 => 0.24499298882206
728 => 0.24954781884752
729 => 0.24761284609705
730 => 0.25116457232419
731 => 0.2620813678737
801 => 0.27080245954344
802 => 0.26278218322959
803 => 0.27879735745674
804 => 0.29126746783288
805 => 0.29078884422659
806 => 0.28861439204366
807 => 0.27441750291546
808 => 0.26135331387601
809 => 0.27228206274228
810 => 0.27230992237066
811 => 0.27137113315082
812 => 0.26554039393358
813 => 0.27116823606492
814 => 0.27161495373598
815 => 0.271364910632
816 => 0.26689449654504
817 => 0.26006900050487
818 => 0.26140268609319
819 => 0.26358729029331
820 => 0.25945137878631
821 => 0.25812970445611
822 => 0.26058694849478
823 => 0.26850470077452
824 => 0.26700789557045
825 => 0.26696880793751
826 => 0.2733727753447
827 => 0.26878891674381
828 => 0.26141950813951
829 => 0.25955863527637
830 => 0.25295379024637
831 => 0.25751578023424
901 => 0.25767995813235
902 => 0.2551814028384
903 => 0.26162225213129
904 => 0.26156289857117
905 => 0.26767752638086
906 => 0.27936639820367
907 => 0.27590942363122
908 => 0.27188933832122
909 => 0.27232643305929
910 => 0.2771202834942
911 => 0.27422181208829
912 => 0.27526412261472
913 => 0.27711870583238
914 => 0.27823762193431
915 => 0.27216543825136
916 => 0.27074972176875
917 => 0.26785366269428
918 => 0.26709813493926
919 => 0.26945691462716
920 => 0.26883545951631
921 => 0.25766615961574
922 => 0.25649890563073
923 => 0.256534703644
924 => 0.2535995879988
925 => 0.24912283213139
926 => 0.26088747925773
927 => 0.25994261344735
928 => 0.2588995547195
929 => 0.25902732346205
930 => 0.26413395803871
1001 => 0.26117185209302
1002 => 0.26904709622925
1003 => 0.26742818278635
1004 => 0.26576775032236
1005 => 0.26553822797782
1006 => 0.26489910314063
1007 => 0.262707306266
1008 => 0.26006057983333
1009 => 0.25831298178695
1010 => 0.23828007132591
1011 => 0.2419980629814
1012 => 0.24627527347544
1013 => 0.24775174939814
1014 => 0.24522613516334
1015 => 0.26280703290979
1016 => 0.26601923234182
1017 => 0.25628927073563
1018 => 0.25446919219083
1019 => 0.26292635695618
1020 => 0.25782565275633
1021 => 0.2601224995452
1022 => 0.25515797309568
1023 => 0.26524550756282
1024 => 0.26516865745143
1025 => 0.26124437870641
1026 => 0.2645611522294
1027 => 0.26398478120799
1028 => 0.25955428016994
1029 => 0.26538596234827
1030 => 0.26538885478987
1031 => 0.26161182181897
1101 => 0.2572010742078
1102 => 0.25641253671213
1103 => 0.25581847963425
1104 => 0.25997639792041
1105 => 0.2637043744543
1106 => 0.27064121454012
1107 => 0.27238530095295
1108 => 0.27919258633264
1109 => 0.27513917932975
1110 => 0.27693600215372
1111 => 0.27888670750525
1112 => 0.27982194738559
1113 => 0.27829802418832
1114 => 0.28887254037342
1115 => 0.28976535353424
1116 => 0.29006470606426
1117 => 0.28649903870349
1118 => 0.28966618587469
1119 => 0.28818438259818
1120 => 0.29203962306687
1121 => 0.29264417399854
1122 => 0.29213214086693
1123 => 0.29232403487483
1124 => 0.28330055078334
1125 => 0.28283263553052
1126 => 0.27645257785664
1127 => 0.27905249851775
1128 => 0.27419207145925
1129 => 0.27573336294745
1130 => 0.27641274954948
1201 => 0.27605787654343
1202 => 0.27919949413104
1203 => 0.2765284773915
1204 => 0.26947922506003
1205 => 0.26242805216448
1206 => 0.26233953043254
1207 => 0.26048308107268
1208 => 0.25914120821116
1209 => 0.25939970052978
1210 => 0.2603106611763
1211 => 0.25908826152235
1212 => 0.25934912246575
1213 => 0.26368115223369
1214 => 0.26454990990903
1215 => 0.2615975318827
1216 => 0.24974330808087
1217 => 0.24683425182583
1218 => 0.24892522377286
1219 => 0.24792587385802
1220 => 0.20009553002451
1221 => 0.21133255983068
1222 => 0.20465589829333
1223 => 0.20773281110817
1224 => 0.20091766859166
1225 => 0.20417021181276
1226 => 0.20356958584368
1227 => 0.22163839724411
1228 => 0.22135627760693
1229 => 0.22149131334781
1230 => 0.21504570560189
1231 => 0.22531373375846
]
'min_raw' => 0.13108775296449
'max_raw' => 0.29264417399854
'avg_raw' => 0.21186596348151
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.131087'
'max' => '$0.292644'
'avg' => '$0.211865'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.020213465531993
'max_diff' => 0.044272083191904
'year' => 2035
]
10 => [
'items' => [
101 => 0.23037213365473
102 => 0.22943595845888
103 => 0.22967157358658
104 => 0.22562292506257
105 => 0.22153051311543
106 => 0.21699139844837
107 => 0.22542451244824
108 => 0.22448689412951
109 => 0.22663745320825
110 => 0.2321069304486
111 => 0.23291233174877
112 => 0.23399479926377
113 => 0.23360681171492
114 => 0.24285024920489
115 => 0.24173080793469
116 => 0.24442833931063
117 => 0.23887931260812
118 => 0.23260006217577
119 => 0.23379354239879
120 => 0.23367860065596
121 => 0.23221526034562
122 => 0.23089422214382
123 => 0.22869506573802
124 => 0.23565352201987
125 => 0.23537102140246
126 => 0.23994437802729
127 => 0.23913599282063
128 => 0.23373739856518
129 => 0.23393021041516
130 => 0.23522696276846
131 => 0.23971503746929
201 => 0.24104740361193
202 => 0.24043019852905
203 => 0.24189107717962
204 => 0.24304569610021
205 => 0.24203607953922
206 => 0.25633012094996
207 => 0.25039423837913
208 => 0.25328734624255
209 => 0.25397733542079
210 => 0.25220994264963
211 => 0.25259322685611
212 => 0.25317379799022
213 => 0.25669891222908
214 => 0.26594983199187
215 => 0.27004700138167
216 => 0.28237353764167
217 => 0.2697067884992
218 => 0.26895519602531
219 => 0.27117557743146
220 => 0.27841255911246
221 => 0.28427745302978
222 => 0.286223176696
223 => 0.28648033619889
224 => 0.29013064314598
225 => 0.29222293101386
226 => 0.28968739987
227 => 0.28753880270675
228 => 0.2798427943617
229 => 0.28073362828318
301 => 0.28687059060464
302 => 0.295539411349
303 => 0.30297816138472
304 => 0.30037337038882
305 => 0.32024608699167
306 => 0.32221638567007
307 => 0.3219441541001
308 => 0.32643278770926
309 => 0.31752376408942
310 => 0.31371498388773
311 => 0.28800335380106
312 => 0.29522727309165
313 => 0.30572766402643
314 => 0.30433789791177
315 => 0.29671223333868
316 => 0.30297237663433
317 => 0.30090257748801
318 => 0.29927004102526
319 => 0.30674900704389
320 => 0.29852557668741
321 => 0.30564562901803
322 => 0.2965140882565
323 => 0.30038526885468
324 => 0.29818779951922
325 => 0.29960983149098
326 => 0.29129666164097
327 => 0.29578224630124
328 => 0.29111004657187
329 => 0.29110783134086
330 => 0.29100469227288
331 => 0.29650151453478
401 => 0.2966807657114
402 => 0.29261860575462
403 => 0.29203318504198
404 => 0.29419779224801
405 => 0.29166360412127
406 => 0.29284933479579
407 => 0.29169951869548
408 => 0.29144067087247
409 => 0.28937812737939
410 => 0.28848952693176
411 => 0.28883797006369
412 => 0.28764855401967
413 => 0.28693188783009
414 => 0.29086212932955
415 => 0.28876235984187
416 => 0.29054030954063
417 => 0.28851411146376
418 => 0.28149042615685
419 => 0.27745103046273
420 => 0.26418394001395
421 => 0.26794647040745
422 => 0.27044103195096
423 => 0.26961657937571
424 => 0.27138782252814
425 => 0.27149656247225
426 => 0.27092071326771
427 => 0.27025395365971
428 => 0.26992941195665
429 => 0.27234827991922
430 => 0.27375251418684
501 => 0.27069139457478
502 => 0.26997421707929
503 => 0.27306917801613
504 => 0.2749571023997
505 => 0.28889647531492
506 => 0.28786380154578
507 => 0.29045561005433
508 => 0.29016381219081
509 => 0.29288044041524
510 => 0.29732097942945
511 => 0.28829212201934
512 => 0.28985921947133
513 => 0.28947500336567
514 => 0.29366977406044
515 => 0.29368286967667
516 => 0.29116789510082
517 => 0.29253130361919
518 => 0.29177028638739
519 => 0.2931455473829
520 => 0.287850009558
521 => 0.29429940301075
522 => 0.29795579350872
523 => 0.29800656249434
524 => 0.29973966257147
525 => 0.30150059262422
526 => 0.30488054451579
527 => 0.30140632760044
528 => 0.29515654957791
529 => 0.29560776336447
530 => 0.29194352079657
531 => 0.29200511737614
601 => 0.291676310007
602 => 0.29266308567324
603 => 0.28806655132553
604 => 0.28914534874951
605 => 0.2876350260385
606 => 0.28985593632472
607 => 0.28746660398637
608 => 0.28947481808503
609 => 0.29034149671666
610 => 0.29353955952562
611 => 0.28699424750922
612 => 0.27364791322913
613 => 0.27645347450347
614 => 0.27230382900664
615 => 0.27268789449618
616 => 0.27346376790864
617 => 0.2709489083289
618 => 0.27142866428438
619 => 0.27141152402566
620 => 0.27126381853592
621 => 0.27060960643074
622 => 0.26966086944632
623 => 0.27344034558643
624 => 0.27408255223056
625 => 0.27551009804789
626 => 0.27975750608668
627 => 0.27933308986283
628 => 0.2800253303328
629 => 0.27851417327362
630 => 0.27275799273806
701 => 0.27307058103496
702 => 0.26917259996371
703 => 0.27541041790804
704 => 0.27393322028365
705 => 0.27298086136546
706 => 0.27272100141109
707 => 0.27697893795288
708 => 0.27825297930116
709 => 0.27745908223065
710 => 0.27583077617734
711 => 0.27895760516515
712 => 0.27979421269197
713 => 0.27998149826432
714 => 0.28552163972073
715 => 0.28029113062844
716 => 0.28155016615374
717 => 0.29137280191461
718 => 0.28246502671058
719 => 0.28718367390325
720 => 0.28695272067782
721 => 0.28936662091128
722 => 0.28675471040221
723 => 0.28678708816332
724 => 0.28893046803886
725 => 0.28592047756426
726 => 0.28517516159316
727 => 0.28414551291713
728 => 0.28639371313229
729 => 0.28774140748392
730 => 0.29860283418567
731 => 0.30561981117624
801 => 0.30531518569912
802 => 0.308098892325
803 => 0.30684480699421
804 => 0.30279503465009
805 => 0.30970750222438
806 => 0.30752010825394
807 => 0.30770043435518
808 => 0.30769372260869
809 => 0.30914814837373
810 => 0.30811755442303
811 => 0.30608614795792
812 => 0.30743469037123
813 => 0.31143937922604
814 => 0.32387005631021
815 => 0.33082642789108
816 => 0.32345127400637
817 => 0.3285385563988
818 => 0.3254879997474
819 => 0.32493362285764
820 => 0.3281288121473
821 => 0.33132959419285
822 => 0.33112571821391
823 => 0.32880211481082
824 => 0.32748957020767
825 => 0.33742859767742
826 => 0.34475150381022
827 => 0.34425213070535
828 => 0.34645620118542
829 => 0.35292742028423
830 => 0.35351906745867
831 => 0.35344453351354
901 => 0.3519780742597
902 => 0.35834982985647
903 => 0.36366526047567
904 => 0.35163863131252
905 => 0.35621821425771
906 => 0.35827413658675
907 => 0.36129284053046
908 => 0.36638590007701
909 => 0.3719183136119
910 => 0.37270065754556
911 => 0.37214554708602
912 => 0.36849677164051
913 => 0.3745504045458
914 => 0.37809648072656
915 => 0.38020808794169
916 => 0.38556277250132
917 => 0.35828683326314
918 => 0.33897956776821
919 => 0.33596445946088
920 => 0.34209580076711
921 => 0.34371258657303
922 => 0.34306086224194
923 => 0.32132877958762
924 => 0.33585004454326
925 => 0.35147370465291
926 => 0.35207387306708
927 => 0.35989540399329
928 => 0.36244241507825
929 => 0.36873977266535
930 => 0.36834587123369
1001 => 0.3698791775933
1002 => 0.36952669701439
1003 => 0.3811912258794
1004 => 0.3940589334168
1005 => 0.39361336562158
1006 => 0.39176348041928
1007 => 0.394510875397
1008 => 0.40779172856294
1009 => 0.40656904042476
1010 => 0.40775677780268
1011 => 0.4234156521614
1012 => 0.44377441627666
1013 => 0.43431572635862
1014 => 0.45483836181605
1015 => 0.46775627297834
1016 => 0.49009646459657
1017 => 0.48729936257821
1018 => 0.49599623523529
1019 => 0.48229196619252
1020 => 0.45082419438061
1021 => 0.44584429903758
1022 => 0.45581417562536
1023 => 0.48032414437007
1024 => 0.45504226948601
1025 => 0.46015675984787
1026 => 0.45868378627959
1027 => 0.45860529777787
1028 => 0.46160088465269
1029 => 0.45725562965146
1030 => 0.43955227908
1031 => 0.4476656203204
1101 => 0.44453266963283
1102 => 0.44800891199763
1103 => 0.46676875832905
1104 => 0.45847458308705
1105 => 0.44973734323368
1106 => 0.46069578095854
1107 => 0.47464963791004
1108 => 0.47377643061951
1109 => 0.47208204350354
1110 => 0.48163321496102
1111 => 0.4974089519781
1112 => 0.50167307030178
1113 => 0.50482075527225
1114 => 0.50525476784911
1115 => 0.50972536712803
1116 => 0.48568582806919
1117 => 0.52383719393472
1118 => 0.53042488090948
1119 => 0.52918666878987
1120 => 0.53650860561008
1121 => 0.53435430605796
1122 => 0.5312330640062
1123 => 0.54283989128684
1124 => 0.52953360043224
1125 => 0.51064699577958
1126 => 0.50028543093244
1127 => 0.51393037536674
1128 => 0.52226286678984
1129 => 0.52777011357451
1130 => 0.52943660312399
1201 => 0.48755194905454
1202 => 0.46497844354052
1203 => 0.47944780176924
1204 => 0.49710141743004
1205 => 0.48558776134284
1206 => 0.48603907486323
1207 => 0.46962362701848
1208 => 0.49855382031854
1209 => 0.49433893449595
1210 => 0.51620576959957
1211 => 0.51098707390977
1212 => 0.52881862907113
1213 => 0.52412298299665
1214 => 0.54361434732176
1215 => 0.55138998025867
1216 => 0.56444647814037
1217 => 0.57405089113165
1218 => 0.57969078614328
1219 => 0.5793521880015
1220 => 0.60170026182211
1221 => 0.58852238347232
1222 => 0.57196786247753
1223 => 0.57166844342158
1224 => 0.58024226442416
1225 => 0.59821064113264
1226 => 0.6028695797839
1227 => 0.60547329090585
1228 => 0.60148561668675
1229 => 0.58718197420511
1230 => 0.58100573390265
1231 => 0.58626806958325
]
'min_raw' => 0.21699139844837
'max_raw' => 0.60547329090585
'avg_raw' => 0.41123234467711
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.216991'
'max' => '$0.605473'
'avg' => '$0.411232'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.085903645483873
'max_diff' => 0.31282911690732
'year' => 2036
]
11 => [
'items' => [
101 => 0.57983268524353
102 => 0.59094196406382
103 => 0.60619737669798
104 => 0.60304719431547
105 => 0.61357778171848
106 => 0.62447583183049
107 => 0.64006053295273
108 => 0.6441349509259
109 => 0.6508698088993
110 => 0.65780219003953
111 => 0.66002868402885
112 => 0.664279751895
113 => 0.66425734666896
114 => 0.67706822581345
115 => 0.69119902222972
116 => 0.69653307074818
117 => 0.70879842119521
118 => 0.68779443838381
119 => 0.70372620062262
120 => 0.7180970489599
121 => 0.70096353113166
122 => 0.72457809386024
123 => 0.72549499381924
124 => 0.73933909460638
125 => 0.72530544624982
126 => 0.71697231065268
127 => 0.74102976088309
128 => 0.75267040324701
129 => 0.74916414703231
130 => 0.72248136411322
131 => 0.70695083997591
201 => 0.66630446269419
202 => 0.71445185237721
203 => 0.7379030414132
204 => 0.722420631199
205 => 0.73022905835302
206 => 0.77282930501435
207 => 0.78904872078127
208 => 0.78567519568403
209 => 0.78624526589251
210 => 0.79499696823712
211 => 0.83380683608364
212 => 0.81055106366431
213 => 0.82832923030172
214 => 0.83775870578226
215 => 0.84651732811895
216 => 0.82500891985104
217 => 0.79702679671576
218 => 0.78816368370919
219 => 0.72088121062816
220 => 0.71737886571132
221 => 0.71541289337759
222 => 0.7030177159057
223 => 0.69327850173765
224 => 0.68553351703738
225 => 0.66520836433566
226 => 0.67206750672138
227 => 0.63967345550389
228 => 0.66039802149815
301 => 0.60869633357333
302 => 0.65175503560108
303 => 0.62832014172632
304 => 0.64405604268377
305 => 0.64400114160774
306 => 0.61502635887313
307 => 0.59831430888009
308 => 0.60896387757837
309 => 0.62038106058674
310 => 0.62223346011783
311 => 0.63703613590715
312 => 0.6411672445375
313 => 0.62864979252453
314 => 0.60762493100906
315 => 0.61250852681307
316 => 0.598215342967
317 => 0.57316708805613
318 => 0.59115718203369
319 => 0.59729979108622
320 => 0.60001271718054
321 => 0.57538063528722
322 => 0.56764070036782
323 => 0.56352002396108
324 => 0.60444523855307
325 => 0.60668721419187
326 => 0.59521694984037
327 => 0.64706363236425
328 => 0.63532913132072
329 => 0.6484394440089
330 => 0.61206539168129
331 => 0.61345492946436
401 => 0.59623487017242
402 => 0.60587695273113
403 => 0.59906223955746
404 => 0.6050979677453
405 => 0.60871575833485
406 => 0.62593299198451
407 => 0.65195162875293
408 => 0.62336131142139
409 => 0.61090410073916
410 => 0.6186324841844
411 => 0.63921418773356
412 => 0.67039652216855
413 => 0.65193595258007
414 => 0.66012843988264
415 => 0.66191813389985
416 => 0.64830599333274
417 => 0.67089842120741
418 => 0.683005886846
419 => 0.6954256413042
420 => 0.70620936610663
421 => 0.69046491825734
422 => 0.70731373433403
423 => 0.69373656279263
424 => 0.68155643633781
425 => 0.6815749085619
426 => 0.67393413731354
427 => 0.65912918022069
428 => 0.65639891898398
429 => 0.67060208273135
430 => 0.68199167501213
501 => 0.68292977638484
502 => 0.68923563988986
503 => 0.69296738495657
504 => 0.72954355967175
505 => 0.74425479971618
506 => 0.76224342557299
507 => 0.76925100912762
508 => 0.7903413232693
509 => 0.77330918172833
510 => 0.76962417076874
511 => 0.71846596725019
512 => 0.72684312021042
513 => 0.74025575037477
514 => 0.71868713658142
515 => 0.73236745762276
516 => 0.73506824278513
517 => 0.71795424333806
518 => 0.72709556989501
519 => 0.70281891677418
520 => 0.65248079345053
521 => 0.67095446192859
522 => 0.68455730009801
523 => 0.66514437281239
524 => 0.69994129358783
525 => 0.67961365082507
526 => 0.6731707639682
527 => 0.64803476528457
528 => 0.65989798908993
529 => 0.67594316915168
530 => 0.66602911332591
531 => 0.68660226776735
601 => 0.71573934111631
602 => 0.7365041547275
603 => 0.73809821927885
604 => 0.72474783526132
605 => 0.74614191085042
606 => 0.74629774333464
607 => 0.72216513867277
608 => 0.70738405268828
609 => 0.70402575885294
610 => 0.71241543528592
611 => 0.72260205129528
612 => 0.73866350557212
613 => 0.74836910600788
614 => 0.77367616449163
615 => 0.7805235289071
616 => 0.78804670640853
617 => 0.79809999161246
618 => 0.81017153810919
619 => 0.78375968160786
620 => 0.78480907390452
621 => 0.76021471882752
622 => 0.73393212324046
623 => 0.75387733711925
624 => 0.77995305106516
625 => 0.77397125347486
626 => 0.77329817904892
627 => 0.77443010353808
628 => 0.76992002350224
629 => 0.74952109865152
630 => 0.73927688629551
701 => 0.75249453381206
702 => 0.7595191252173
703 => 0.77041365387807
704 => 0.76907067326503
705 => 0.79713380910822
706 => 0.80803829511171
707 => 0.80524846096275
708 => 0.80576185758727
709 => 0.82550390863044
710 => 0.8474611296529
711 => 0.86802696465095
712 => 0.88894741533413
713 => 0.86372699549647
714 => 0.85092162168215
715 => 0.86413349878728
716 => 0.85712309082467
717 => 0.89740697439993
718 => 0.90019614309598
719 => 0.94047711368796
720 => 0.97870855134849
721 => 0.95469607034126
722 => 0.97733875838518
723 => 1.0018286715901
724 => 1.0490736875077
725 => 1.0331632282463
726 => 1.0209760658008
727 => 1.0094592561778
728 => 1.0334239087613
729 => 1.0642540514654
730 => 1.0708945689164
731 => 1.0816547440599
801 => 1.0703417355881
802 => 1.0839670082054
803 => 1.1320702077927
804 => 1.1190722986455
805 => 1.1006131781384
806 => 1.1385860343321
807 => 1.1523282633729
808 => 1.2487784236423
809 => 1.3705507351398
810 => 1.3201361985797
811 => 1.28884226887
812 => 1.2961970846537
813 => 1.3406642105597
814 => 1.3549456400847
815 => 1.3161237915318
816 => 1.3298363247487
817 => 1.4053937309601
818 => 1.4459278552208
819 => 1.3908770700156
820 => 1.2389941369805
821 => 1.0989511363023
822 => 1.1360968463007
823 => 1.1318856755525
824 => 1.2130626825483
825 => 1.1187623028111
826 => 1.120350079359
827 => 1.2032057408916
828 => 1.1811012709003
829 => 1.1452948604412
830 => 1.0992125627244
831 => 1.0140251732984
901 => 0.93857232685772
902 => 1.0865527344807
903 => 1.0801715502191
904 => 1.0709306497697
905 => 1.0914952737499
906 => 1.1913512504271
907 => 1.1890492469624
908 => 1.1744050754127
909 => 1.1855125504654
910 => 1.1433476663606
911 => 1.1542145170709
912 => 1.0989289527755
913 => 1.1239203367662
914 => 1.1452180359658
915 => 1.1494938643979
916 => 1.1591275241848
917 => 1.0768089560765
918 => 1.1137675764109
919 => 1.135477303303
920 => 1.037391967398
921 => 1.1335384715805
922 => 1.075375972948
923 => 1.0556347473407
924 => 1.0822137069122
925 => 1.0718558605183
926 => 1.062950792422
927 => 1.0579816114157
928 => 1.0774982659123
929 => 1.0765877906526
930 => 1.0446547558768
1001 => 1.0029994137687
1002 => 1.0169803138701
1003 => 1.0119009217916
1004 => 0.99349254964454
1005 => 1.0058975698364
1006 => 0.95127213894863
1007 => 0.85729192428912
1008 => 0.91937813278502
1009 => 0.91698788129472
1010 => 0.91578260810404
1011 => 0.96243867785195
1012 => 0.95795377328435
1013 => 0.94981362757786
1014 => 0.99334304948506
1015 => 0.97745422493558
1016 => 1.0264198383192
1017 => 1.0586717581909
1018 => 1.0504916280711
1019 => 1.0808247145976
1020 => 1.017302405571
1021 => 1.038401968557
1022 => 1.0427505592456
1023 => 0.99280590317562
1024 => 0.95868755913736
1025 => 0.95641225456761
1026 => 0.8972557478027
1027 => 0.92885667622188
1028 => 0.95666418549548
1029 => 0.94334654650331
1030 => 0.93913057985154
1031 => 0.96066903914384
1101 => 0.96234276189528
1102 => 0.92418170578925
1103 => 0.93211659775718
1104 => 0.96520641632945
1105 => 0.93128281922888
1106 => 0.86537481145062
1107 => 0.84902871427211
1108 => 0.84684784359015
1109 => 0.80251593161672
1110 => 0.85012103864748
1111 => 0.829340133691
1112 => 0.89498676345505
1113 => 0.85748976060376
1114 => 0.85587333975515
1115 => 0.8534298825651
1116 => 0.81527157460134
1117 => 0.82362581895843
1118 => 0.85139659958871
1119 => 0.86130552697783
1120 => 0.86027194466969
1121 => 0.85126050761332
1122 => 0.85538589735171
1123 => 0.84209657962331
1124 => 0.83740384494018
1125 => 0.82259228344187
1126 => 0.80082337983765
1127 => 0.80385047940026
1128 => 0.76072058521683
1129 => 0.73722112978895
1130 => 0.73071679024436
1201 => 0.72201891557027
1202 => 0.73169923833296
1203 => 0.76059840364559
1204 => 0.72573987897862
1205 => 0.66597738347831
1206 => 0.66956921128821
1207 => 0.67763898195382
1208 => 0.66260101770533
1209 => 0.64836884658481
1210 => 0.66074256468156
1211 => 0.63542040750302
1212 => 0.68069904367081
1213 => 0.67947438345439
1214 => 0.69635145900566
1215 => 0.70690504070033
1216 => 0.68258245165677
1217 => 0.67646538628759
1218 => 0.67994994472699
1219 => 0.62235795567346
1220 => 0.69164496481188
1221 => 0.69224416174411
1222 => 0.68711347382731
1223 => 0.72400666719711
1224 => 0.80186281248296
1225 => 0.77257019887024
1226 => 0.76122721350546
1227 => 0.73966419003533
1228 => 0.76839563852363
1229 => 0.76618951156014
1230 => 0.75621256878246
1231 => 0.75017848266057
]
'min_raw' => 0.56352002396108
'max_raw' => 1.4459278552208
'avg_raw' => 1.0047239395909
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.56352'
'max' => '$1.44'
'avg' => '$1.00'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.34652862551271
'max_diff' => 0.84045456431491
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.01768824963223
]
1 => [
'year' => 2028
'avg' => 0.030358171304465
]
2 => [
'year' => 2029
'avg' => 0.082933052475772
]
3 => [
'year' => 2030
'avg' => 0.063982726477451
]
4 => [
'year' => 2031
'avg' => 0.062838966692856
]
5 => [
'year' => 2032
'avg' => 0.11017648476321
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.01768824963223
'min' => '$0.017688'
'max_raw' => 0.11017648476321
'max' => '$0.110176'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.11017648476321
]
1 => [
'year' => 2033
'avg' => 0.2833852481253
]
2 => [
'year' => 2034
'avg' => 0.17962318911957
]
3 => [
'year' => 2035
'avg' => 0.21186596348151
]
4 => [
'year' => 2036
'avg' => 0.41123234467711
]
5 => [
'year' => 2037
'avg' => 1.0047239395909
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.11017648476321
'min' => '$0.110176'
'max_raw' => 1.0047239395909
'max' => '$1.00'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 1.0047239395909
]
]
]
]
'prediction_2025_max_price' => '$0.030243'
'last_price' => 0.02932507
'sma_50day_nextmonth' => '$0.026915'
'sma_200day_nextmonth' => '$0.042838'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 feb. 2026'
'sma_50day_date_nextmonth' => '4 feb. 2026'
'daily_sma3' => '$0.02838'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.028051'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.027389'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.0269071'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.028874'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.034843'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.045519'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.028594'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.028184'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.027682'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.027695'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.029789'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.035418'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.048632'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.044013'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.055586'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.183651'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.028623'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.029068'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.032054'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.0402088'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.074592'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.165221'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.146757'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '56.61'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 120.08
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.027638'
'vwma_10_action' => 'BUY'
'hma_9' => '0.028676'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 229.8
'cci_20_action' => 'SELL'
'adx_14' => 11.03
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '-0.000281'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 72.6
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '-0.001312'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 14
'buy_signals' => 19
'sell_pct' => 42.42
'buy_pct' => 57.58
'overall_action' => 'bullish'
'overall_action_label' => 'Alcista'
'overall_action_dir' => 1
'last_updated' => 1767712054
'last_updated_date' => '6 de enero de 2026'
]
Predicción de precio de Maverick Protocol para 2026
La previsión del precio de Maverick Protocol para 2026 sugiere que el precio medio podría oscilar entre $0.010131 en el extremo inferior y $0.030243 en el extremo superior. En el mercado de criptomonedas, en comparación con el precio medio de hoy, Maverick Protocol podría potencialmente ganar 3.13% para 2026 si MAV alcanza el objetivo de precio previsto.
Predicción de precio de Maverick Protocol 2027-2032
La predicción del precio de MAV para 2027-2032 está actualmente dentro de un rango de precios de $0.017688 en el extremo inferior y $0.110176 en el extremo superior. Considerando la volatilidad de precios en el mercado, si Maverick Protocol alcanza el objetivo de precio superior, podría ganar 275.71% para 2032 en comparación con el precio de hoy.
| Predicción de Precio de Maverick Protocol | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.009753 | $0.017688 | $0.025622 |
| 2028 | $0.0176024 | $0.030358 | $0.043113 |
| 2029 | $0.038667 | $0.082933 | $0.127198 |
| 2030 | $0.032885 | $0.063982 | $0.09508 |
| 2031 | $0.03888 | $0.062838 | $0.086797 |
| 2032 | $0.059347 | $0.110176 | $0.161005 |
Predicción de precio de Maverick Protocol 2032-2037
La predicción de precio de Maverick Protocol para 2032-2037 se estima actualmente entre $0.110176 en el extremo inferior y $1.00 en el extremo superior. Comparado con el precio actual, Maverick Protocol podría potencialmente ganar 3326.16% para 2037 si alcanza el objetivo de precio superior. Tenga en cuenta que esta información es solo para fines generales y no debe considerarse como consejo de inversión a largo plazo.
| Predicción de Precio de Maverick Protocol | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.059347 | $0.110176 | $0.161005 |
| 2033 | $0.137911 | $0.283385 | $0.428858 |
| 2034 | $0.110874 | $0.179623 | $0.248372 |
| 2035 | $0.131087 | $0.211865 | $0.292644 |
| 2036 | $0.216991 | $0.411232 | $0.605473 |
| 2037 | $0.56352 | $1.00 | $1.44 |
Maverick Protocol Histograma de precios potenciales
Pronóstico de precio de Maverick Protocol basado en análisis técnico
A fecha de 6 de enero de 2026, el sentimiento general de predicción de precio para Maverick Protocol es Alcista, con 19 indicadores técnicos mostrando señales alcistas y 14 indicando señales bajistas. La predicción de precio de MAV se actualizó por última vez el 6 de enero de 2026.
Promedios Móviles Simples de 50 y 200 días y el Índice de Fuerza Relativa de 14 días - RSI (14) de Maverick Protocol
Según nuestros indicadores técnicos, se proyecta que el SMA de 200 días de Maverick Protocol aumentar durante el próximo mes, alcanzando $0.042838 para el 4 feb. 2026. Se espera que el SMA de 50 días a corto plazo para Maverick Protocol alcance $0.026915 para el 4 feb. 2026.
El oscilador de momento del Índice de Fuerza Relativa (RSI) es una herramienta comúnmente utilizada para identificar si una criptomoneda está sobrevendida (por debajo de 30) o sobrecomprada (por encima de 70). Actualmente, el RSI se encuentra en 56.61, lo que sugiere que el mercado de MAV está en un estado NEUTRAL.
Promedios Móviles y Osciladores Populares de MAV para Sáb, 19 de Oct de 2024
Los promedios móviles (MA) son indicadores ampliamente utilizados en los mercados financieros, diseñados para suavizar los movimientos de precios durante un período establecido. Como indicadores rezagados, se basan en datos históricos de precios. La tabla a continuación resalta dos tipos: el promedio móvil simple (SMA) y el promedio móvil exponencial (EMA).
Promedio Móvil Simple Diario (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 3 | $0.02838 | BUY |
| SMA 5 | $0.028051 | BUY |
| SMA 10 | $0.027389 | BUY |
| SMA 21 | $0.0269071 | BUY |
| SMA 50 | $0.028874 | BUY |
| SMA 100 | $0.034843 | SELL |
| SMA 200 | $0.045519 | SELL |
Promedio Móvil Exponencial Diario (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 3 | $0.028594 | BUY |
| EMA 5 | $0.028184 | BUY |
| EMA 10 | $0.027682 | BUY |
| EMA 21 | $0.027695 | BUY |
| EMA 50 | $0.029789 | SELL |
| EMA 100 | $0.035418 | SELL |
| EMA 200 | $0.048632 | SELL |
Promedio Móvil Simple Semanal (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 21 | $0.044013 | SELL |
| SMA 50 | $0.055586 | SELL |
| SMA 100 | $0.183651 | SELL |
| SMA 200 | — | — |
Promedio Móvil Exponencial Semanal (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 21 | $0.0402088 | SELL |
| EMA 50 | $0.074592 | SELL |
| EMA 100 | $0.165221 | SELL |
| EMA 200 | $0.146757 | SELL |
Osciladores de Maverick Protocol
Un oscilador es una herramienta de análisis técnico que establece límites altos y bajos entre dos extremos, creando un indicador de tendencia que fluctúa dentro de estos límites. Los traders utilizan este indicador para identificar condiciones de sobrecompra o sobreventa a corto plazo.
| Período | Valor | Acción |
|---|---|---|
| RSI (14) | 56.61 | NEUTRAL |
| Stoch RSI (14) | 120.08 | SELL |
| Estocástico Rápido (14) | 100 | SELL |
| Índice de Canal de Materias Primas (20) | 229.8 | SELL |
| Índice Direccional Medio (14) | 11.03 | NEUTRAL |
| Oscilador Asombroso (5, 34) | -0.000281 | NEUTRAL |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Rango Percentil de Williams (14) | -0 | SELL |
| Oscilador Ultimate (7, 14, 28) | 72.6 | SELL |
| VWMA (10) | 0.027638 | BUY |
| Promedio Móvil de Hull (9) | 0.028676 | BUY |
| Nube Ichimoku B/L (9, 26, 52, 26) | -0.001312 | SELL |
Predicción de precios de Maverick Protocol basada en flujos de dinero globales
Definiciones de flujos de dinero globales utilizadas para la predicción de precios de Maverick Protocol
M0: El total de toda la moneda física, además de cuentas en el banco central que pueden cambiarse por moneda física.
M1: Medir M0 más la cantidad en cuentas a la vista, incluyendo cuentas "de cheques" o "corrientes".
M2: Medir M1 más la mayoría de cuentas de ahorro, cuentas del mercado monetario, y cuentas de certificados de depósito (CD) inferiores a 100 000 $.
Predicciones de precios de Maverick Protocol por parte de empresas de Internet o nichos tecnológicos
| Comparación | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook acción | $0.0412066 | $0.0579021 | $0.081362 | $0.114327 | $0.160649 | $0.225739 |
| Amazon.com acción | $0.061188 | $0.127673 | $0.266398 | $0.555855 | $1.15 | $2.42 |
| Apple acción | $0.041595 | $0.058999 | $0.083686 | $0.1187033 | $0.168371 | $0.238822 |
| Netflix acción | $0.04627 | $0.0730073 | $0.115194 | $0.181758 | $0.286786 | $0.4525037 |
| Google acción | $0.037975 | $0.049178 | $0.063685 | $0.082473 | $0.1068022 | $0.1383084 |
| Tesla acción | $0.066477 | $0.150699 | $0.341625 | $0.774438 | $1.75 | $3.97 |
| Kodak acción | $0.02199 | $0.01649 | $0.012366 | $0.009273 | $0.006954 | $0.005214 |
| Nokia acción | $0.019426 | $0.012869 | $0.008525 | $0.005647 | $0.003741 | $0.002478 |
Este cálculo muestra cuánto puede costar la criptomoneda si asumimos que su capitalización se comportará como la capitalización de algunas empresas de Internet o nichos tecnológicos. Si extrapola los datos, puede obtener una imagen potencial del precio futuro en 2024, 2025, 2026, 2027, 2028, 2029 y 2030.
Resumen de pronósticos y predicciones de Maverick Protocol
Podría preguntarse cosas como: "¿Debo invertir en Maverick Protocol ahora?", "¿Debería comprar MAV hoy?", "¿Será Maverick Protocol una buena o mala inversión a corto plazo?, ¿Lo será a largo plazo?".
Actualizamos el pronóstico de Maverick Protocol regularmente con valores actualizados. Aquí hay algunas predicciones similares. Hacemos un pronóstico de precios futuros para una gran cantidad de monedas digitales, como Maverick Protocol, con métodos de análisis técnico.
Si está tratando de encontrar criptomonedas que ofrezcan un buen rendimiento, debería explorar el máximo de fuentes de información disponibles acerca de Maverick Protocol a fin de tomar una decisión responsable sobre la inversión por sus propios medios.
El precio de Maverick Protocol es de $0.02932 USD hoy, pero dicho precio puede subir y bajar, y su inversión puede perderse porque estos son activos de criptomonedas conllevan un alto riesgo
Pronóstico a corto plazo de Maverick Protocol
basado en el historial de precios de las últimas 4 horas
Pronóstico a largo plazo de Maverick Protocol
basado en el historial de precios del último mes
Predicción de precios de Maverick Protocol basada en el patrón de crecimiento del Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si Maverick Protocol ofrece un 1 % del crecimiento medio anterior anual del Bitcoin | $0.030087 | $0.030869 | $0.031671 | $0.032495 |
| Si Maverick Protocol ofrece un 2 % del crecimiento medio anterior anual del Bitcoin | $0.030849 | $0.032453 | $0.03414 | $0.035915 |
| Si Maverick Protocol ofrece un 5 % del crecimiento medio anterior anual del Bitcoin | $0.033136 | $0.037442 | $0.0423092 | $0.047808 |
| Si Maverick Protocol ofrece un 10 % del crecimiento medio anterior anual del Bitcoin | $0.036947 | $0.046551 | $0.058651 | $0.073897 |
| Si Maverick Protocol ofrece un 20 % del crecimiento medio anterior anual del Bitcoin | $0.04457 | $0.06774 | $0.102956 | $0.156479 |
| Si Maverick Protocol ofrece un 50 % del crecimiento medio anterior anual del Bitcoin | $0.067437 | $0.155083 | $0.35664 | $0.820151 |
| Si Maverick Protocol ofrece un 100 % del crecimiento medio anterior anual del Bitcoin | $0.10555 | $0.3799096 | $1.36 | $4.92 |
Cuadro de preguntas
¿Es MAV una buena inversión?
La decisión de adquirir Maverick Protocol depende completamente de su tolerancia individual al riesgo. Como puede discernir, el valor de Maverick Protocol ha experimentado un aumento de 4.8098% durante las últimas 24 horas, y Maverick Protocol ha sufrido un declive de durante el período previo de 30 días. Por lo tanto, la determinación de si invertir o no en Maverick Protocol dependerá de si dicha inversión se alinea con sus aspiraciones comerciales.
¿Puede Maverick Protocol subir?
Parece que el valor medio de Maverick Protocol podría potencialmente aumentar hasta $0.030243 para el final de este año. Mirando las perspectivas de Maverick Protocol en un horizonte de cinco años más extendido, la moneda digital podría potencialmente crecer hasta $0.09508. Sin embargo, dada la imprevisibilidad del mercado, es vital realizar una investigación exhaustiva antes de invertir cualquier fondo en un proyecto, red o activo en particular.
¿Cuál será el precio de Maverick Protocol la próxima semana?
Basado en nuestro nuevo pronóstico experimental de Maverick Protocol, el precio de Maverick Protocol aumentará en un 0.86% durante la próxima semana y alcanzará $0.029576 para el 13 de enero de 2026.
¿Cuál será el precio de Maverick Protocol el próximo mes?
Basado en nuestro nuevo pronóstico experimental de Maverick Protocol, el precio de Maverick Protocol disminuirá en un -11.62% durante el próximo mes y alcanzará $0.025918 para el 5 de febrero de 2026.
¿Hasta qué punto puede subir el precio de Maverick Protocol este año en 2026?
Según nuestra predicción más reciente sobre el valor de Maverick Protocol en 2026, se anticipa que MAV fluctúe dentro del rango de $0.010131 y $0.030243. Sin embargo, es crucial tener en cuenta que el mercado de criptomonedas es excepcionalmente inestable, y esta predicción de precios proyectada de Maverick Protocol no considera fluctuaciones de precios repentinas y extremas.
¿Dónde estará Maverick Protocol en 5 años?
El futuro de Maverick Protocol parece estar en una tendencia alcista, con un precio máximo de $0.09508 proyectada después de un período de cinco años. Basado en el pronóstico de Maverick Protocol para 2030, el valor de Maverick Protocol podría potencialmente alcanzar su punto más alto de aproximadamente $0.09508, mientras que su punto más bajo se anticipa que esté alrededor de $0.032885.
¿Cuánto será Maverick Protocol en 2026?
Basado en nuestra nueva simulación experimental de predicción de precios de Maverick Protocol, se espera que el valor de MAV en 2026 crezca en un 3.13% hasta $0.030243 si ocurre lo mejor. El precio estará entre $0.030243 y $0.010131 durante 2026.
¿Cuánto será Maverick Protocol en 2027?
Según nuestra última simulación experimental para la predicción de precios de Maverick Protocol, el valor de MAV podría disminuir en un -12.62% hasta $0.025622 en 2027, asumiendo las condiciones más favorables. Se proyecta que el precio fluctúe entre $0.025622 y $0.009753 a lo largo del año.
¿Cuánto será Maverick Protocol en 2028?
Nuestro nuevo modelo experimental de predicción de precios de Maverick Protocol sugiere que el valor de MAV en 2028 podría aumentar en un 47.02% , alcanzando $0.043113 en el mejor escenario. Se espera que el precio oscile entre $0.043113 y $0.0176024 durante el año.
¿Cuánto será Maverick Protocol en 2029?
Basado en nuestro modelo de pronóstico experimental, el valor de Maverick Protocol podría experimentar un 333.75% crecimiento en 2029, potencialmente alcanzando $0.127198 bajo condiciones óptimas. El rango de precios previsto para 2029 se encuentra entre $0.127198 y $0.038667.
¿Cuánto será Maverick Protocol en 2030?
Usando nuestra nueva simulación experimental para las predicciones de precios de Maverick Protocol, se espera que el valor de MAV en 2030 aumente en un 224.23% , alcanzando $0.09508 en el mejor escenario. Se pronostica que el precio oscile entre $0.09508 y $0.032885 durante el transcurso de 2030.
¿Cuánto será Maverick Protocol en 2031?
Nuestra simulación experimental indica que el precio de Maverick Protocol podría crecer en un 195.98% en 2031, potencialmente alcanzando $0.086797 bajo condiciones ideales. Es probable que el precio fluctúe entre $0.086797 y $0.03888 durante el año.
¿Cuánto será Maverick Protocol en 2032?
Basado en los hallazgos de nuestra última predicción experimental de precios de Maverick Protocol, MAV podría experimentar un 449.04% aumento en valor, alcanzando $0.161005 si se desarrolla el escenario más positivo en 2032. Se espera que el precio se mantenga dentro de un rango de $0.161005 y $0.059347 a lo largo del año.
¿Cuánto será Maverick Protocol en 2033?
Según nuestra predicción experimental de precios de Maverick Protocol, se anticipa que el valor de MAV aumente en un 1362.43% en 2033, con el precio potencial más alto siendo $0.428858. A lo largo del año, el precio de MAV podría oscilar entre $0.428858 y $0.137911.
¿Cuánto será Maverick Protocol en 2034?
Los resultados de nuestra nueva simulación de predicción de precios de Maverick Protocol sugieren que MAV podría aumentar en un 746.96% en 2034, alcanzando potencialmente $0.248372 bajo las mejores circunstancias. El rango de precios previsto para el año está entre $0.248372 y $0.110874.
¿Cuánto será Maverick Protocol en 2035?
Basado en nuestra predicción experimental para el precio de Maverick Protocol, MAV podría crecer en un 897.93% , con el valor potencialmente alcanzando $0.292644 en 2035. El rango de precios esperado para el año está entre $0.292644 y $0.131087.
¿Cuánto será Maverick Protocol en 2036?
Nuestra reciente simulación de predicción de precios de Maverick Protocol sugiere que el valor de MAV podría aumentar en un 1964.7% en 2036, posiblemente alcanzando $0.605473 si las condiciones son óptimas. El rango de precios esperado para 2036 está entre $0.605473 y $0.216991.
¿Cuánto será Maverick Protocol en 2037?
Según la simulación experimental, el valor de Maverick Protocol podría aumentar en un 4830.69% en 2037, con un máximo de $1.44 bajo condiciones favorables. Se espera que el precio caiga entre $1.44 y $0.56352 durante el transcurso del año.
Predicciones relacionadas
Predicción de precios de Myria
Predicción de precios de MimbleWimbleCoin
Predicción de precios de CYBER
Predicción de precios de Velodrome Finance
Predicción de precios de Ontology Gas
Predicción de precios de DODO
Predicción de precios de Cudos
Predicción de precios de Acala
Predicción de precios de WINk
Predicción de precios de Radiant Capital
Predicción de precios de APEX
Predicción de precios de Metars Genesis
Predicción de precios de Liquity
Predicción de precios de Steem
Predicción de precios de Alpha Finance
Predicción de precios de Zignaly
Predicción de precios de Heroes of Mavia
Predicción de precios de Sovryn
Predicción de precios de Verge
Predicción de precios de Quasar
Predicción de precios de Auction
Predicción de precios de Pundi X
Predicción de precios de XYO Network
Predicción de precios de f(x) Coin
Predicción de precios de Multibit
¿Cómo leer y predecir los movimientos de precio de Maverick Protocol?
Los traders de Maverick Protocol utilizan indicadores y patrones de gráficos para predecir la dirección del mercado. También identifican niveles clave de soporte y resistencia para estimar cuándo una tendencia bajista podría desacelerar o una tendencia alcista podría estancarse.
Indicadores de predicción de precio de Maverick Protocol
Las medias móviles son herramientas populares para la predicción de precios de Maverick Protocol. Una media móvil simple (SMA) calcula el precio de cierre promedio de MAV durante un período específico, como una SMA de 12 días. Una media móvil exponencial (EMA) da más peso a los precios recientes, reaccionando más rápido a los cambios de precio.
Las medias móviles comúnmente utilizadas en el mercado de criptomonedas incluyen las de 50 días, 100 días y 200 días, que ayudan a identificar niveles clave de resistencia y soporte. Un movimiento de precio de MAV por encima de estas medias se considera alcista, mientras que una caída por debajo indica debilidad.
Los traders también utilizan RSI y niveles de retroceso de Fibonacci para evaluar la dirección futura de MAV.
¿Cómo leer gráficos de Maverick Protocol y predecir movimientos de precio?
La mayoría de los traders prefieren gráficos de velas sobre gráficos lineales simples porque proporcionan información más detallada. Las velas pueden representar la acción del precio de Maverick Protocol en diferentes marcos de tiempo, como 5 minutos para tendencias a corto plazo y semanal para tendencias a largo plazo. Las opciones populares incluyen gráficos de 1 hora, 4 horas y 1 día.
Por ejemplo, un gráfico de velas de 1 hora muestra los precios de apertura, cierre, máximo y mínimo de MAV dentro de cada hora. El color de la vela es crucial: el verde indica que el precio cerró más alto de lo que abrió, mientras que el rojo significa lo contrario. Algunos gráficos usan velas huecas y llenas para transmitir la misma información.
¿Qué afecta el precio de Maverick Protocol?
La acción del precio de Maverick Protocol está impulsada por la oferta y la demanda, influenciada por factores como reducciones a la mitad de recompensas de bloque, hard forks y actualizaciones de protocolo. Los eventos del mundo real, como regulaciones, adopción por empresas y gobiernos y hacks de exchanges de criptomonedas, también impactan el precio de MAV. La capitalización de mercado de Maverick Protocol puede cambiar rápidamente.
Los traders a menudo monitorean la actividad de las "ballenas" de MAV, grandes poseedores de Maverick Protocol, ya que sus acciones pueden influir significativamente en los movimientos de precios en el relativamente pequeño mercado de Maverick Protocol.
Patrones de predicción de precios alcistas y bajistas
Los traders a menudo identifican patrones de velas para obtener una ventaja en las predicciones de precios de criptomonedas. Ciertas formaciones indican tendencias alcistas, mientras que otras sugieren movimientos bajistas.
Patrones de velas alcistas comúnmente seguidos:
- Martillo
- Envolvente Alcista
- Línea Penetrante
- Estrella de la Mañana
- Tres Soldados Blancos
Patrones de velas bajistas comunes:
- Harami Bajista
- Cubierta de Nube Oscura
- Estrella de la Tarde
- Estrella Fugaz
- Hombre Colgado


