Prédiction du prix de KAN jusqu'à $0.000676 d'ici 2026
| Année | Prix min. | Prix max. |
|---|---|---|
| 2026 | $0.000226 | $0.000676 |
| 2027 | $0.000218 | $0.000572 |
| 2028 | $0.000393 | $0.000964 |
| 2029 | $0.000864 | $0.002844 |
| 2030 | $0.000735 | $0.002126 |
| 2031 | $0.000869 | $0.00194 |
| 2032 | $0.001327 | $0.00360035 |
| 2033 | $0.003083 | $0.00959 |
| 2034 | $0.002479 | $0.005554 |
| 2035 | $0.002931 | $0.006544 |
Calculateur de profit d’investissement
Si vous ouvrez une position short de $10,000.00 sur KAN aujourd’hui et la fermez le Apr 06, 2026, notre prévision indique que vous pourriez gagner environ $3,961.21, soit un rendement de 39.61% sur les 90 prochains jours.
Prévision du prix à long terme de BitKan pour 2027, 2028, 2029, 2030, 2031, 2032 et 2037
[
'name' => 'KAN'
'name_with_ticker' => 'KAN <small>KAN</small>'
'name_lang' => 'BitKan'
'name_lang_with_ticker' => 'BitKan <small>KAN</small>'
'name_with_lang' => 'BitKan/KAN'
'name_with_lang_with_ticker' => 'BitKan/KAN <small>KAN</small>'
'image' => '/uploads/coins/kan.png?1717202944'
'price_for_sd' => 0.0006557
'ticker' => 'KAN'
'marketcap' => '$3.59M'
'low24h' => '$0.0006556'
'high24h' => '$0.0006639'
'volume24h' => '$89.32K'
'current_supply' => '5.45B'
'max_supply' => '10B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.0006557'
'change_24h_pct' => '-1.1718%'
'ath_price' => '$0.02442'
'ath_days' => 2757
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '20 juin 2018'
'ath_pct' => '-97.32%'
'fdv' => '$6.59M'
'new_prediction' => true
'change_24h_pct_is_increased' => false
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.032333'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.000661'
'next_week_prediction_price_date' => '13 janvier 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.000579'
'next_month_prediction_price_date' => '5 février 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.000226'
'current_year_max_price_prediction' => '$0.000676'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.000735'
'grand_prediction_max_price' => '$0.002126'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.00066818630707024
107 => 0.00067068107218921
108 => 0.00067630190538812
109 => 0.00062827250111733
110 => 0.00064983629356569
111 => 0.00066250300137499
112 => 0.0006052743546738
113 => 0.00066137177503383
114 => 0.00062743641604476
115 => 0.00061591824551187
116 => 0.00063142594473082
117 => 0.00062538257926347
118 => 0.00062018684851296
119 => 0.00061728754148019
120 => 0.00062867468426428
121 => 0.00062814346044282
122 => 0.00060951188469888
123 => 0.00058520775366109
124 => 0.00059336501779328
125 => 0.0005904014072593
126 => 0.00057966090037078
127 => 0.00058689870519989
128 => 0.00055502707570166
129 => 0.00050019359369311
130 => 0.00053641827150294
131 => 0.00053502366081213
201 => 0.00053432043486126
202 => 0.00056154227905879
203 => 0.000558925526854
204 => 0.00055417609597899
205 => 0.00057957367334821
206 => 0.00057030321596282
207 => 0.00059887258123012
208 => 0.00061769021294586
209 => 0.00061291745285613
210 => 0.00063061552643829
211 => 0.00059355294468353
212 => 0.00060586364764977
213 => 0.00060840086646922
214 => 0.00057926027118584
215 => 0.00055935365987662
216 => 0.00055802611585428
217 => 0.00052351079514412
218 => 0.00054194860086955
219 => 0.00055817310689969
220 => 0.00055040282758378
221 => 0.00054794298928286
222 => 0.00056050976968845
223 => 0.00056148631615316
224 => 0.00053922095326802
225 => 0.00054385062726418
226 => 0.00056315713744744
227 => 0.00054336415274297
228 => 0.00050490961662786
301 => 0.00049537235999576
302 => 0.00049409991415452
303 => 0.00046823411775889
304 => 0.00049600968508808
305 => 0.00048388490560996
306 => 0.00052218693870417
307 => 0.00050030902281868
308 => 0.0004993659095917
309 => 0.00049794025562448
310 => 0.00047567649616417
311 => 0.00048055084455025
312 => 0.0004967539209698
313 => 0.00050253536117702
314 => 0.00050193230959746
315 => 0.00049667451705579
316 => 0.00049908150755711
317 => 0.00049132775250126
318 => 0.00048858974021059
319 => 0.0004799478202716
320 => 0.0004672465853526
321 => 0.00046901276996929
322 => 0.00044384830013586
323 => 0.00043013736139111
324 => 0.00042634235425383
325 => 0.0004212675121056
326 => 0.00042691557117811
327 => 0.00044377701235457
328 => 0.00042343853694146
329 => 0.00038856964742386
330 => 0.00039066532709757
331 => 0.0003953736971115
401 => 0.00038659968073952
402 => 0.00037829581059081
403 => 0.00038551535197083
404 => 0.00037074094381377
405 => 0.00039715911375171
406 => 0.00039644457629096
407 => 0.00040629163635515
408 => 0.0004124492050953
409 => 0.0003982580026858
410 => 0.0003946889536569
411 => 0.000396722046188
412 => 0.00036311955541858
413 => 0.00040354559597172
414 => 0.00040389520204915
415 => 0.00040090166256218
416 => 0.00042242728114275
417 => 0.00046785305035657
418 => 0.000450762048731
419 => 0.00044414389632332
420 => 0.00043156278375848
421 => 0.00044832636925858
422 => 0.00044703918744484
423 => 0.00044121806313392
424 => 0.00043769742898766
425 => 0.00044418430535068
426 => 0.0004368936332192
427 => 0.00043558402817012
428 => 0.000427649246437
429 => 0.00042481689036785
430 => 0.00042271992669359
501 => 0.00042041137573162
502 => 0.00042550346389866
503 => 0.00041396412219217
504 => 0.00040004880730976
505 => 0.00039889189944308
506 => 0.00040208622377936
507 => 0.00040067297305003
508 => 0.0003988851333423
509 => 0.00039547166045107
510 => 0.00039445895596156
511 => 0.00039774975425812
512 => 0.00039403463484676
513 => 0.00039951649591125
514 => 0.00039802573302692
515 => 0.00038969845273857
516 => 0.00037931957834525
517 => 0.00037922718459273
518 => 0.00037699107312945
519 => 0.00037414304897936
520 => 0.00037335079381477
521 => 0.00038490734233274
522 => 0.00040882905190655
523 => 0.00040413264791922
524 => 0.0004075262811069
525 => 0.00042421959758811
526 => 0.00042952590091195
527 => 0.00042575961249937
528 => 0.00042060408462569
529 => 0.00042083090168738
530 => 0.00043844890111619
531 => 0.00043954771412989
601 => 0.00044232406012498
602 => 0.00044589244932397
603 => 0.00042636732461011
604 => 0.00041991127006922
605 => 0.00041685203325948
606 => 0.00040743076795912
607 => 0.00041759079486732
608 => 0.00041167098228364
609 => 0.00041246976725077
610 => 0.00041194955749303
611 => 0.00041223362719719
612 => 0.00039715172933481
613 => 0.00040264678023465
614 => 0.00039351019233102
615 => 0.00038127732675819
616 => 0.00038123631790339
617 => 0.00038423029442205
618 => 0.00038244936003444
619 => 0.00037765691138938
620 => 0.00037833765609969
621 => 0.00037237361612413
622 => 0.00037906179853516
623 => 0.00037925359167524
624 => 0.00037667827713923
625 => 0.00038698234493474
626 => 0.00039120392991788
627 => 0.0003895088027217
628 => 0.00039108499527494
629 => 0.00040432780470788
630 => 0.00040648696046974
701 => 0.00040744591483333
702 => 0.00040616104302322
703 => 0.0003913270495212
704 => 0.00039198500021203
705 => 0.00038715739459989
706 => 0.00038307857657818
707 => 0.00038324170790847
708 => 0.00038533875058086
709 => 0.00039449665892109
710 => 0.00041376893713493
711 => 0.00041450030600529
712 => 0.00041538674641171
713 => 0.00041178114778956
714 => 0.00041069366474419
715 => 0.00041212833558423
716 => 0.0004193659899931
717 => 0.00043798320213671
718 => 0.00043140263596337
719 => 0.00042605253323182
720 => 0.00043074601570473
721 => 0.00043002349086676
722 => 0.00042392465411098
723 => 0.00042375348007605
724 => 0.00041204786242565
725 => 0.00040772056210431
726 => 0.00040410434606299
727 => 0.00040015553254957
728 => 0.00039781454353339
729 => 0.00040141136662273
730 => 0.00040223400261962
731 => 0.00039436948607308
801 => 0.00039329758152818
802 => 0.00039971991550746
803 => 0.00039689368577192
804 => 0.00039980053314204
805 => 0.00040047494666639
806 => 0.00040036635055591
807 => 0.00039741544212159
808 => 0.00039929626316027
809 => 0.00039484756070406
810 => 0.00039001026495643
811 => 0.00038692437164362
812 => 0.00038423152044384
813 => 0.0003857256707989
814 => 0.00038039929760417
815 => 0.00037869528362046
816 => 0.00039865908331218
817 => 0.00041340655679146
818 => 0.00041319212268643
819 => 0.00041188681022004
820 => 0.00040994738066795
821 => 0.0004192241086414
822 => 0.00041599228210948
823 => 0.0004183437059396
824 => 0.00041894224199331
825 => 0.00042075383036037
826 => 0.00042140131749031
827 => 0.0004194441616749
828 => 0.00041287570771193
829 => 0.00039650774494608
830 => 0.0003888884140941
831 => 0.00038637390800295
901 => 0.00038646530552364
902 => 0.00038394415388662
903 => 0.00038468674603381
904 => 0.0003836859106428
905 => 0.00038179057054032
906 => 0.00038560863888851
907 => 0.00038604863569787
908 => 0.00038515745292288
909 => 0.00038536735872768
910 => 0.00037798874597994
911 => 0.00037854972588164
912 => 0.00037542611850306
913 => 0.00037484047977523
914 => 0.00036694427232579
915 => 0.00035295499625553
916 => 0.00036070641317034
917 => 0.00035134379155141
918 => 0.00034779802487746
919 => 0.00036458313283211
920 => 0.00036289837353989
921 => 0.00036001479797886
922 => 0.0003557493887343
923 => 0.00035416730695426
924 => 0.00034455507888496
925 => 0.00034398713717138
926 => 0.00034875121695452
927 => 0.00034655275805658
928 => 0.00034346528914237
929 => 0.00033228278970684
930 => 0.00031970995794297
1001 => 0.00032008945270391
1002 => 0.00032408863656215
1003 => 0.00033571680299339
1004 => 0.00033117347719939
1005 => 0.00032787724220718
1006 => 0.00032725995647759
1007 => 0.00033498657975851
1008 => 0.00034592137047862
1009 => 0.00035105172963235
1010 => 0.00034596769952233
1011 => 0.00034012743947556
1012 => 0.00034048290904345
1013 => 0.00034284768882544
1014 => 0.00034309619374434
1015 => 0.00033929478484232
1016 => 0.00034036485918136
1017 => 0.00033873931841071
1018 => 0.00032876337770178
1019 => 0.00032858294456841
1020 => 0.00032613468783466
1021 => 0.00032606055559376
1022 => 0.00032189546014339
1023 => 0.00032131273449794
1024 => 0.00031304268467802
1025 => 0.00031848605651351
1026 => 0.00031483492847611
1027 => 0.00030933181730971
1028 => 0.00030838307887037
1029 => 0.00030835455864725
1030 => 0.000314005023342
1031 => 0.00031842002754369
1101 => 0.0003148984414115
1102 => 0.00031409664451228
1103 => 0.00032265773772421
1104 => 0.00032156826057689
1105 => 0.00032062478039369
1106 => 0.00034494227990347
1107 => 0.00032569308152333
1108 => 0.00031729933232376
1109 => 0.00030691047375954
1110 => 0.00031029313849322
1111 => 0.0003110059156543
1112 => 0.00028602258353987
1113 => 0.00027588684881252
1114 => 0.0002724086466112
1115 => 0.00027040689206978
1116 => 0.00027131911675076
1117 => 0.00026219576669304
1118 => 0.00026832680881811
1119 => 0.00026042675884571
1120 => 0.00025910228975885
1121 => 0.0002732285577379
1122 => 0.00027519414540272
1123 => 0.00026680833776436
1124 => 0.00027219338380713
1125 => 0.00027024069125428
1126 => 0.00026056218252797
1127 => 0.00026019253468491
1128 => 0.00025533619922208
1129 => 0.00024773697459459
1130 => 0.00024426392502541
1201 => 0.00024245513065538
1202 => 0.00024320147446515
1203 => 0.00024282410019644
1204 => 0.00024036147782725
1205 => 0.00024296525482799
1206 => 0.00023631368054604
1207 => 0.00023366497007159
1208 => 0.0002324686089999
1209 => 0.00022656495397434
1210 => 0.00023596029448731
1211 => 0.00023781129492775
1212 => 0.00023966594241086
1213 => 0.00025580938252971
1214 => 0.00025500290188226
1215 => 0.00026229309416319
1216 => 0.00026200981069696
1217 => 0.00025993052976515
1218 => 0.00025115838553896
1219 => 0.00025465480587909
1220 => 0.00024389336753655
1221 => 0.00025195656884946
1222 => 0.00024827686049758
1223 => 0.00025071245575423
1224 => 0.00024633303587401
1225 => 0.00024875678765754
1226 => 0.00023825023579977
1227 => 0.00022843936550616
1228 => 0.00023238754610946
1229 => 0.00023667966995448
1230 => 0.00024598608806329
1231 => 0.00024044326221396
]
'min_raw' => 0.00022656495397434
'max_raw' => 0.00067630190538812
'avg_raw' => 0.00045143342968123
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.000226'
'max' => '$0.000676'
'avg' => '$0.000451'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.00042919504602566
'max_diff' => 2.0541905388117E-5
'year' => 2026
]
1 => [
'items' => [
101 => 0.00024243667198683
102 => 0.00023575908294049
103 => 0.00022198130937888
104 => 0.00022205929008098
105 => 0.00021993987978364
106 => 0.00021810839984777
107 => 0.00024107992243966
108 => 0.00023822305047932
109 => 0.00023367099890869
110 => 0.00023976410082732
111 => 0.00024137521368514
112 => 0.00024142107980324
113 => 0.00024586644967735
114 => 0.00024823894437604
115 => 0.00024865710684967
116 => 0.00025565199239515
117 => 0.00025799658576523
118 => 0.0002676536340373
119 => 0.00024803765477656
120 => 0.00024763367659233
121 => 0.00023984984326671
122 => 0.00023491321311406
123 => 0.00024018785855673
124 => 0.00024486047435803
125 => 0.00023999503446452
126 => 0.00024063035819957
127 => 0.00023409890266357
128 => 0.00023643359068415
129 => 0.0002384445385239
130 => 0.00023733421132484
131 => 0.0002356719977674
201 => 0.00024447737314813
202 => 0.00024398053936061
203 => 0.00025218030734985
204 => 0.00025857261286851
205 => 0.00027002876711922
206 => 0.00025807367293577
207 => 0.00025763798178653
208 => 0.00026189693265742
209 => 0.00025799593374204
210 => 0.00026046123039865
211 => 0.0002696315697145
212 => 0.00026982532453382
213 => 0.00026657968167135
214 => 0.0002663821840082
215 => 0.00026700554522338
216 => 0.00027065659133102
217 => 0.0002693808036357
218 => 0.00027085717745572
219 => 0.00027270340552469
220 => 0.00028034018760246
221 => 0.0002821813899072
222 => 0.00027770822286062
223 => 0.00027811209976099
224 => 0.00027643901249439
225 => 0.00027482283115857
226 => 0.00027845577077716
227 => 0.00028509503933574
228 => 0.00028505373679061
301 => 0.00028659391804726
302 => 0.00028755343821061
303 => 0.00028343447525785
304 => 0.00028075318183407
305 => 0.00028178136034788
306 => 0.00028342544018228
307 => 0.00028124820741594
308 => 0.00026780931818977
309 => 0.00027188581870143
310 => 0.0002712072896856
311 => 0.00027024098185511
312 => 0.00027433993464222
313 => 0.00027394458064644
314 => 0.00026210219355152
315 => 0.00026286030475081
316 => 0.00026214829680449
317 => 0.00026444894014216
318 => 0.00025787169145174
319 => 0.00025989480885046
320 => 0.0002611636891174
321 => 0.00026191106934262
322 => 0.00026461111919954
323 => 0.00026429429951269
324 => 0.00026459142524297
325 => 0.00026859488639404
326 => 0.00028884301907422
327 => 0.00028994508026101
328 => 0.00028451812791729
329 => 0.00028668608833671
330 => 0.00028252407841225
331 => 0.00028531806355758
401 => 0.00028722963723449
402 => 0.00027859160336303
403 => 0.00027808011505754
404 => 0.00027390092703762
405 => 0.00027614658595822
406 => 0.00027257358114696
407 => 0.00027345027154924
408 => 0.00027099896875597
409 => 0.00027541082573434
410 => 0.00028034396736942
411 => 0.00028159027376211
412 => 0.00027831177821158
413 => 0.00027593793136962
414 => 0.00027177023830889
415 => 0.00027870120475198
416 => 0.00028072803055731
417 => 0.00027869055869887
418 => 0.00027821843194963
419 => 0.00027732375261293
420 => 0.00027840824240033
421 => 0.00028071699202869
422 => 0.00027962822833987
423 => 0.00028034737593789
424 => 0.00027760672687603
425 => 0.00028343583880598
426 => 0.00029269387140291
427 => 0.00029272363749155
428 => 0.00029163486793389
429 => 0.00029118936688876
430 => 0.00029230651052698
501 => 0.00029291251512309
502 => 0.00029652515280001
503 => 0.00030040165696118
504 => 0.00031849161043009
505 => 0.00031341202388414
506 => 0.00032946250677791
507 => 0.00034215635485251
508 => 0.00034596268485539
509 => 0.00034246104035441
510 => 0.00033048210367169
511 => 0.0003298943598895
512 => 0.0003477959486701
513 => 0.00034273792989487
514 => 0.00034213629465604
515 => 0.00033573591219365
516 => 0.00033951933093171
517 => 0.0003386918417543
518 => 0.00033738560960559
519 => 0.00034460410900257
520 => 0.00035811649547384
521 => 0.00035601046332393
522 => 0.00035443840802005
523 => 0.00034755011929685
524 => 0.0003516984076632
525 => 0.00035022128163117
526 => 0.00035656795247211
527 => 0.00035280832526191
528 => 0.00034269961042795
529 => 0.00034430945658402
530 => 0.00034406613157609
531 => 0.00034907374299707
601 => 0.00034757058234505
602 => 0.00034377261533392
603 => 0.00035807031160586
604 => 0.00035714189873793
605 => 0.00035845817591993
606 => 0.00035903764184267
607 => 0.00036774039760974
608 => 0.00037130563819038
609 => 0.00037211501022051
610 => 0.00037550171302652
611 => 0.00037203074596948
612 => 0.0003859170889552
613 => 0.00039515069675013
614 => 0.00040587600736105
615 => 0.00042154856885533
616 => 0.00042744159695648
617 => 0.00042637707417646
618 => 0.00043825983143294
619 => 0.000459612882084
620 => 0.00043069313622012
621 => 0.00046114569883742
622 => 0.00045150476910452
623 => 0.00042864629814075
624 => 0.00042717448209435
625 => 0.00044265450402332
626 => 0.00047698770276489
627 => 0.00046838762588404
628 => 0.00047700176940977
629 => 0.00046695291341983
630 => 0.00046645390302153
701 => 0.00047651371890381
702 => 0.00050001902704477
703 => 0.0004888525362303
704 => 0.00047284263351187
705 => 0.00048466409653748
706 => 0.00047442325123994
707 => 0.00045134776055247
708 => 0.00046838104956733
709 => 0.00045699137428324
710 => 0.00046031548703958
711 => 0.0004842548904004
712 => 0.00048137443805222
713 => 0.00048510201011347
714 => 0.00047852294299291
715 => 0.00047237705687865
716 => 0.00046090530404688
717 => 0.00045750908358398
718 => 0.00045844767673671
719 => 0.00045750861846382
720 => 0.0004510902781853
721 => 0.00044970423821325
722 => 0.00044739411086936
723 => 0.00044811011593045
724 => 0.00044376640067235
725 => 0.00045196388882176
726 => 0.00045348541485831
727 => 0.00045945086311967
728 => 0.00046007021574778
729 => 0.00047668390424283
730 => 0.00046753336380145
731 => 0.00047367233634918
801 => 0.00047312320886226
802 => 0.00042914171051948
803 => 0.00043520197293907
804 => 0.00044462983944884
805 => 0.00044038259836536
806 => 0.00043437799317467
807 => 0.00042952895253663
808 => 0.00042218216013014
809 => 0.00043252262935963
810 => 0.0004461192468101
811 => 0.00046041504840416
812 => 0.0004775905173214
813 => 0.00047375715260357
814 => 0.00046009396495976
815 => 0.0004607068855765
816 => 0.00046449571965379
817 => 0.00045958883527182
818 => 0.00045814169927381
819 => 0.00046429690538995
820 => 0.00046433929291163
821 => 0.00045869332941338
822 => 0.0004524188741855
823 => 0.000452392583989
824 => 0.00045127610528524
825 => 0.00046715153250096
826 => 0.00047588141228288
827 => 0.00047688227893097
828 => 0.00047581404598297
829 => 0.00047622516644801
830 => 0.00047114544175268
831 => 0.00048275618606062
901 => 0.00049341135322119
902 => 0.00049055554080771
903 => 0.00048627427202226
904 => 0.0004828640352208
905 => 0.00048975219739617
906 => 0.00048944547837748
907 => 0.00049331828963141
908 => 0.00049314259654249
909 => 0.00049184031578159
910 => 0.00049055558731626
911 => 0.00049564939046217
912 => 0.00049418245696012
913 => 0.00049271324490517
914 => 0.00048976651520385
915 => 0.00049016702471026
916 => 0.00048588649514622
917 => 0.00048390612630619
918 => 0.00045412613052138
919 => 0.00044616794255824
920 => 0.0004486717504953
921 => 0.00044949606907952
922 => 0.00044603265547927
923 => 0.00045099830090408
924 => 0.00045022441032454
925 => 0.00045323516585867
926 => 0.00045135417651276
927 => 0.00045143137297163
928 => 0.00045696296156875
929 => 0.00045856880527155
930 => 0.00045775206020356
1001 => 0.0004583240804528
1002 => 0.00047150604566189
1003 => 0.00046963199174467
1004 => 0.00046863643795243
1005 => 0.00046891221315662
1006 => 0.00047228048789206
1007 => 0.000473223420917
1008 => 0.0004692281474316
1009 => 0.00047111234150372
1010 => 0.00047913500072297
1011 => 0.00048194247740652
1012 => 0.00049090259531515
1013 => 0.00048709617797417
1014 => 0.00049408302174143
1015 => 0.00051555819749143
1016 => 0.00053271405384966
1017 => 0.00051693681934688
1018 => 0.00054844136476364
1019 => 0.00057297217242921
1020 => 0.00057203063917281
1021 => 0.00056775312544851
1022 => 0.00053982545310652
1023 => 0.00051412599263928
1024 => 0.00053562468257686
1025 => 0.00053567948715876
1026 => 0.00053383273062687
1027 => 0.00052236268441462
1028 => 0.00053343359788145
1029 => 0.0005343123667888
1030 => 0.0005338204898842
1031 => 0.00052502643234621
1101 => 0.00051159953189921
1102 => 0.0005142231161071
1103 => 0.00051852060055928
1104 => 0.00051038456594212
1105 => 0.00050778460990222
1106 => 0.00051261842284227
1107 => 0.00052819397530006
1108 => 0.00052524950733095
1109 => 0.00052517261537274
1110 => 0.00053777029799335
1111 => 0.00052875307598706
1112 => 0.00051425620790584
1113 => 0.00051059555752513
1114 => 0.00049760271478319
1115 => 0.00050657691754397
1116 => 0.00050689988312486
1117 => 0.00050198480398691
1118 => 0.00051465503948933
1119 => 0.00051453828103863
1120 => 0.0005265667839325
1121 => 0.0005495607637662
1122 => 0.00054276031246434
1123 => 0.00053485212748728
1124 => 0.00053571196646447
1125 => 0.00054514227778083
1126 => 0.00053944049628589
1127 => 0.0005414908966657
1128 => 0.00054513917425428
1129 => 0.0005473402707051
1130 => 0.00053539526255815
1201 => 0.00053261030976331
1202 => 0.00052691327373067
1203 => 0.00052542702336997
1204 => 0.000530067140346
1205 => 0.00052884463346057
1206 => 0.00050687273911837
1207 => 0.00050457655390915
1208 => 0.00050464697463132
1209 => 0.00049887310774506
1210 => 0.0004900665748567
1211 => 0.00051320961747657
1212 => 0.00051135090726752
1213 => 0.00050929903504947
1214 => 0.00050955037768836
1215 => 0.00051959598809916
1216 => 0.00051376902674541
1217 => 0.00052926095852453
1218 => 0.00052607628308084
1219 => 0.0005228099327289
1220 => 0.0005223584236148
1221 => 0.00052110115740122
1222 => 0.00051678952374669
1223 => 0.00051158296701984
1224 => 0.00050814514728456
1225 => 0.00046873703791915
1226 => 0.00047605095379094
1227 => 0.00048446494731703
1228 => 0.00048736942416528
1229 => 0.00048240111553268
1230 => 0.00051698570285371
1231 => 0.00052330464022263
]
'min_raw' => 0.00021810839984777
'max_raw' => 0.00057297217242921
'avg_raw' => 0.00039554028613849
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.000218'
'max' => '$0.000572'
'avg' => '$0.000395'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -8.4565541265688E-6
'max_diff' => -0.00010332973295891
'year' => 2027
]
2 => [
'items' => [
101 => 0.00050416416675807
102 => 0.00050058376567323
103 => 0.00051722043335276
104 => 0.00050718648899209
105 => 0.00051170477352331
106 => 0.00050193871373631
107 => 0.00052178259325055
108 => 0.00052163141613624
109 => 0.00051391169881086
110 => 0.00052043635103193
111 => 0.00051930253214471
112 => 0.00051058699029718
113 => 0.00052205889147274
114 => 0.0005220645813926
115 => 0.00051463452130805
116 => 0.00050595783777859
117 => 0.00050440665169764
118 => 0.00050323804135817
119 => 0.00051141736701692
120 => 0.00051875092482646
121 => 0.00053239685776686
122 => 0.00053582776952745
123 => 0.00054921884653774
124 => 0.00054124511217782
125 => 0.00054477976534243
126 => 0.00054861713135983
127 => 0.00055045690574303
128 => 0.00054745909211334
129 => 0.00056826094669752
130 => 0.00057001726057678
131 => 0.00057060613742844
201 => 0.00056359186910297
202 => 0.00056982218108593
203 => 0.00056690722443535
204 => 0.00057449113184188
205 => 0.00057568038535942
206 => 0.00057467312993899
207 => 0.00057505061777654
208 => 0.00055729990458755
209 => 0.00055637943646623
210 => 0.00054382878831858
211 => 0.00054894327020846
212 => 0.00053938199145883
213 => 0.00054241397144242
214 => 0.00054375043932942
215 => 0.00054305234434914
216 => 0.0005492324353408
217 => 0.00054397809548871
218 => 0.00053011102872559
219 => 0.00051624018388941
220 => 0.00051606604673144
221 => 0.00051241409812682
222 => 0.00050977440817343
223 => 0.00051028290610648
224 => 0.00051207491914699
225 => 0.00050967025311781
226 => 0.0005101834105348
227 => 0.0005187052428068
228 => 0.00052041423549402
229 => 0.00051460641059629
301 => 0.00049128715556678
302 => 0.00048556455189061
303 => 0.00048967784592887
304 => 0.00048771195630865
305 => 0.00039362161309859
306 => 0.00041572674357401
307 => 0.00040259262566482
308 => 0.00040864543146908
309 => 0.00039523889814714
310 => 0.00040163719854498
311 => 0.00040045566609002
312 => 0.00043600006175612
313 => 0.00043544508490752
314 => 0.00043571072295622
315 => 0.00042303112677515
316 => 0.00044323006778015
317 => 0.00045318079244964
318 => 0.00045133917814328
319 => 0.00045180267278816
320 => 0.00044383829915776
321 => 0.00043578783550222
322 => 0.00042685863235076
323 => 0.00044344798812331
324 => 0.00044160353495115
325 => 0.00044583404691478
326 => 0.00045659342996492
327 => 0.00045817778998998
328 => 0.00046030718593065
329 => 0.00045954394906664
330 => 0.00047772734764096
331 => 0.00047552521809568
401 => 0.00048083171670389
402 => 0.00046991584646179
403 => 0.00045756350313894
404 => 0.00045991127977608
405 => 0.0004596851700063
406 => 0.00045680653312023
407 => 0.00045420782845204
408 => 0.00044988171736
409 => 0.00046357017299919
410 => 0.00046301444669829
411 => 0.00047201100954863
412 => 0.00047042077967689
413 => 0.0004598008353981
414 => 0.00046018012878562
415 => 0.00046273105909893
416 => 0.00047155985803927
417 => 0.00047418084667524
418 => 0.00047296670031072
419 => 0.00047584049469738
420 => 0.00047811182460656
421 => 0.00047612573876396
422 => 0.00050424452601075
423 => 0.00049256764511088
424 => 0.00049825887561426
425 => 0.00049961620055464
426 => 0.00049613944126133
427 => 0.00049689342585863
428 => 0.00049803550707504
429 => 0.00050497000057865
430 => 0.00052316811804399
501 => 0.00053122794039062
502 => 0.00055547631358507
503 => 0.00053055868434288
504 => 0.00052908017534305
505 => 0.00053344803958608
506 => 0.00054768440160221
507 => 0.00055922163586279
508 => 0.00056304920206603
509 => 0.00056355507812602
510 => 0.0005707358467751
511 => 0.00057485172945135
512 => 0.00056986391258814
513 => 0.00056563726004276
514 => 0.00055049791525665
515 => 0.00055225033563871
516 => 0.00056432277427943
517 => 0.00058137580492252
518 => 0.00059600907927973
519 => 0.00059088501662094
520 => 0.00062997799768306
521 => 0.00063385390707486
522 => 0.00063331838172007
523 => 0.00064214828012724
524 => 0.00062462272996654
525 => 0.00061713021773129
526 => 0.00056655111029762
527 => 0.0005807617763915
528 => 0.00060141781412211
529 => 0.0005986839100723
530 => 0.00058368294333486
531 => 0.00059599769970129
601 => 0.00059192605612851
602 => 0.00058871458191001
603 => 0.00060342696787986
604 => 0.00058725009515451
605 => 0.00060125643744201
606 => 0.00058329315858123
607 => 0.00059090842290754
608 => 0.00058658563056704
609 => 0.00058938300699285
610 => 0.00057302960156735
611 => 0.00058185350217847
612 => 0.00057266249829163
613 => 0.00057265814055909
614 => 0.00057245524863887
615 => 0.00058326842395259
616 => 0.00058362104121136
617 => 0.00057563008831673
618 => 0.00057447846716246
619 => 0.00057873661415885
620 => 0.00057375143923655
621 => 0.00057608397120638
622 => 0.00057382208925373
623 => 0.00057331289198366
624 => 0.00056925552150301
625 => 0.00056750749474022
626 => 0.00056819294107501
627 => 0.00056585315936257
628 => 0.00056444335624722
629 => 0.000572174803315
630 => 0.00056804420303237
701 => 0.00057154172958054
702 => 0.00056755585665586
703 => 0.00055373908453675
704 => 0.00054579291278134
705 => 0.00051969431106379
706 => 0.00052709584213567
707 => 0.00053200306489377
708 => 0.00053038122780149
709 => 0.00053386556144334
710 => 0.00053407947123036
711 => 0.00053294667884482
712 => 0.00053163505038205
713 => 0.00053099662218398
714 => 0.00053575494291799
715 => 0.0005385173082618
716 => 0.00053249557034771
717 => 0.00053108476140751
718 => 0.00053717307090791
719 => 0.00054088693618605
720 => 0.00056830803075923
721 => 0.00056627658750428
722 => 0.0005713751114236
723 => 0.00057080109587351
724 => 0.00057614516119951
725 => 0.000584880449437
726 => 0.00056711916602517
727 => 0.00057020191068649
728 => 0.00056944609288651
729 => 0.00057769791344068
730 => 0.00057772367472374
731 => 0.0005727762960925
801 => 0.00057545835031055
802 => 0.00057396130122434
803 => 0.00057666667126143
804 => 0.0005662494563411
805 => 0.0005789364996452
806 => 0.00058612923566362
807 => 0.00058622910681021
808 => 0.00058963840659786
809 => 0.00059310245263544
810 => 0.00059975138734974
811 => 0.00059291701745497
812 => 0.00058062265132678
813 => 0.00058151026485067
814 => 0.00057430208248805
815 => 0.00057442325333583
816 => 0.00057377643385405
817 => 0.00057571758780917
818 => 0.00056667543047369
819 => 0.00056879760672712
820 => 0.00056582654754487
821 => 0.00057019545218407
822 => 0.0005654952329981
823 => 0.00056944572840828
824 => 0.00057115063126632
825 => 0.00057744175951641
826 => 0.0005645660282404
827 => 0.00053831154055824
828 => 0.00054383055217392
829 => 0.00053566750048532
830 => 0.00053642302199803
831 => 0.00053794929569406
901 => 0.00053300214327954
902 => 0.00053394590405755
903 => 0.00053391218628141
904 => 0.00053362162470252
905 => 0.00053233467929141
906 => 0.00053046835383092
907 => 0.00053790322004084
908 => 0.00053916654868779
909 => 0.00054197477177663
910 => 0.00055033013885312
911 => 0.00054949524064906
912 => 0.00055085699425948
913 => 0.00054788429377385
914 => 0.00053656091704765
915 => 0.00053717583088229
916 => 0.00052950784551098
917 => 0.00054177868415071
918 => 0.00053887278759366
919 => 0.00053699933717936
920 => 0.00053648814887642
921 => 0.00054486422729179
922 => 0.00054737048123261
923 => 0.00054580875196513
924 => 0.00054260559967462
925 => 0.00054875659899937
926 => 0.00055040234692884
927 => 0.0005507707691974
928 => 0.0005616691606637
929 => 0.00055137986821434
930 => 0.00055385660317367
1001 => 0.00057317938231122
1002 => 0.00055565628799472
1003 => 0.0005649386618658
1004 => 0.00056448433796795
1005 => 0.000569232886342
1006 => 0.00056409481840154
1007 => 0.00056415851091158
1008 => 0.0005683749001732
1009 => 0.00056245374188507
1010 => 0.00056098757982349
1011 => 0.00055896208743627
1012 => 0.00056338467596261
1013 => 0.00056603581776767
1014 => 0.00058740207366739
1015 => 0.00060120564939826
1016 => 0.00060060639977144
1017 => 0.00060608241961226
1018 => 0.00060361542251938
1019 => 0.00059564883814551
1020 => 0.00060924682625024
1021 => 0.00060494385384992
1022 => 0.00060529858566649
1023 => 0.00060528538253056
1024 => 0.0006081464830044
1025 => 0.00060611913110268
1026 => 0.00060212301240098
1027 => 0.00060477582248621
1028 => 0.00061265372004241
1029 => 0.00063710695578027
1030 => 0.00065079131046146
1031 => 0.00063628314044588
1101 => 0.00064629068185049
1102 => 0.00064028972305933
1103 => 0.00063919917033391
1104 => 0.00064548464588751
1105 => 0.000651781123334
1106 => 0.00065138006494108
1107 => 0.00064680914564262
1108 => 0.00064422714931371
1109 => 0.00066377889054848
1110 => 0.00067818428043504
1111 => 0.00067720192941974
1112 => 0.00068153770732363
1113 => 0.00069426768535001
1114 => 0.00069543155500346
1115 => 0.00069528493417837
1116 => 0.00069240016180504
1117 => 0.00070493447836855
1118 => 0.00071539082576615
1119 => 0.00069173242034971
1120 => 0.00070074123142102
1121 => 0.0007047855769567
1122 => 0.00071072387610632
1123 => 0.00072074278214623
1124 => 0.00073162597148916
1125 => 0.00073316497379034
1126 => 0.00073207297800961
1127 => 0.00072489522208212
1128 => 0.0007368037377246
1129 => 0.00074377946689891
1130 => 0.00074793335398549
1201 => 0.00075846692049614
1202 => 0.00070481055345786
1203 => 0.0006668299099737
1204 => 0.0006608986840465
1205 => 0.00067296006520339
1206 => 0.00067614055522675
1207 => 0.00067485850368633
1208 => 0.00063210783639586
1209 => 0.00066067361063067
1210 => 0.00069140798182881
1211 => 0.0006925886141962
1212 => 0.00070797488304338
1213 => 0.00071298528288449
1214 => 0.00072537324603083
1215 => 0.00072459837556315
1216 => 0.00072761464745374
1217 => 0.00072692125878064
1218 => 0.00074986735191584
1219 => 0.00077518030017176
1220 => 0.00077430379326391
1221 => 0.00077066475746291
1222 => 0.0007760693461752
1223 => 0.00080219502147571
1224 => 0.00079978978794945
1225 => 0.00080212626744291
1226 => 0.00083292991100074
1227 => 0.00087297902939313
1228 => 0.00085437219303412
1229 => 0.00089474367396024
1230 => 0.00092015538120298
1231 => 0.00096410230125973
]
'min_raw' => 0.00039362161309859
'max_raw' => 0.00096410230125973
'avg_raw' => 0.00067886195717916
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.000393'
'max' => '$0.000964'
'avg' => '$0.000678'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.00017551321325082
'max_diff' => 0.00039113012883052
'year' => 2028
]
3 => [
'items' => [
101 => 0.00095859993042548
102 => 0.00097570814390618
103 => 0.00094874953825273
104 => 0.00088684713043929
105 => 0.00087705083744991
106 => 0.00089666326409629
107 => 0.00094487850125381
108 => 0.00089514479469474
109 => 0.00090520585875832
110 => 0.00090230827163116
111 => 0.00090215387152711
112 => 0.00090804669550823
113 => 0.00089949884697459
114 => 0.00086467337431993
115 => 0.00088063368320976
116 => 0.00087447064147041
117 => 0.00088130899576542
118 => 0.00091821277354371
119 => 0.00090189673371174
120 => 0.00088470911115621
121 => 0.00090626620407963
122 => 0.00093371579119195
123 => 0.00093199804536212
124 => 0.00092866490049017
125 => 0.00094745366361553
126 => 0.00097848719570755
127 => 0.00098687543472919
128 => 0.00099306746128497
129 => 0.00099392123713186
130 => 0.0010027156589736
131 => 0.00095542583625081
201 => 0.0010304759994007
202 => 0.0010434350893578
203 => 0.0010409993175451
204 => 0.0010554028006305
205 => 0.0010511649305257
206 => 0.0010450249216452
207 => 0.0010678575060443
208 => 0.0010416817905253
209 => 0.001004528657777
210 => 0.00098414571434567
211 => 0.0010109876185012
212 => 0.0010273790327156
213 => 0.0010382127148216
214 => 0.001041490980481
215 => 0.00095909681057192
216 => 0.00091469092278107
217 => 0.00094315458774047
218 => 0.00097788222344815
219 => 0.00095523292248101
220 => 0.00095612073219813
221 => 0.00092382878115058
222 => 0.0009807393445831
223 => 0.00097244795418416
224 => 0.0010154637022411
225 => 0.0010051976487443
226 => 0.001040275321423
227 => 0.0010310381946259
228 => 0.00106938099152
301 => 0.0010846769712908
302 => 0.0011103613019552
303 => 0.0011292548001459
304 => 0.0011403494236586
305 => 0.0011396833440778
306 => 0.0011836457697543
307 => 0.001157722663263
308 => 0.0011251571319028
309 => 0.0011245681241835
310 => 0.001141434274332
311 => 0.0011767810980411
312 => 0.0011859460151535
313 => 0.0011910679535184
314 => 0.0011832235266167
315 => 0.0011550858524461
316 => 0.0011429361474006
317 => 0.0011532880481102
318 => 0.0011406285630913
319 => 0.0011624823858582
320 => 0.0011924923522418
321 => 0.0011862954128558
322 => 0.001207010852126
323 => 0.0012284491524428
324 => 0.0012591068847502
325 => 0.0012671219512279
326 => 0.0012803705513298
327 => 0.0012940077127731
328 => 0.0012983876014969
329 => 0.0013067501680703
330 => 0.0013067060932165
331 => 0.001331907250451
401 => 0.0013597049072955
402 => 0.0013701978792371
403 => 0.0013943258896309
404 => 0.0013530075173779
405 => 0.001384347977363
406 => 0.0014126178567722
407 => 0.0013789133411102
408 => 0.0014253671638054
409 => 0.001427170860474
410 => 0.0014544045387229
411 => 0.0014267979884762
412 => 0.0014104053070629
413 => 0.0014577303640773
414 => 0.0014806294684412
415 => 0.0014737320718477
416 => 0.0014212425432046
417 => 0.0013906913861526
418 => 0.0013107331152692
419 => 0.0014054471410708
420 => 0.0014515795801927
421 => 0.0014211230713321
422 => 0.001436483562852
423 => 0.001520285423929
424 => 0.0015521917468584
425 => 0.0015455554547311
426 => 0.0015466768788579
427 => 0.0015638929515699
428 => 0.0016402384990393
429 => 0.0015944904773197
430 => 0.0016294631257786
501 => 0.001648012492418
502 => 0.0016652421779201
503 => 0.001622931515825
504 => 0.0015678859661064
505 => 0.0015504507298556
506 => 0.0014180947717581
507 => 0.0014112050693463
508 => 0.0014073376706032
509 => 0.0013829542685826
510 => 0.0013637955937702
511 => 0.0013485599042435
512 => 0.0013085769051633
513 => 0.0013220699936396
514 => 0.0012583454382062
515 => 0.0012991141505129
516 => 0.001197408221358
517 => 0.0012821119413662
518 => 0.0012360115575713
519 => 0.0012669667254237
520 => 0.0012668587257592
521 => 0.001209860447398
522 => 0.0011769850299629
523 => 0.0011979345254829
524 => 0.0012203940476534
525 => 0.0012240380295627
526 => 0.0012531573863102
527 => 0.0012612839728599
528 => 0.0012366600362201
529 => 0.0011953005920392
530 => 0.001204907447614
531 => 0.0011767903473413
601 => 0.0011275162106222
602 => 0.0011629057558578
603 => 0.0011749893025697
604 => 0.0011803260851821
605 => 0.0011318706308917
606 => 0.0011166448751345
607 => 0.0011085388105259
608 => 0.0011890456013679
609 => 0.001193455945104
610 => 0.0011708920029902
611 => 0.0012728831609454
612 => 0.0012497994207484
613 => 0.0012755896142021
614 => 0.0012040357261649
615 => 0.001206769181048
616 => 0.0011728944237492
617 => 0.0011918620243244
618 => 0.0011784563355922
619 => 0.0011903296296394
620 => 0.0011974464331359
621 => 0.0012313156319203
622 => 0.0012824986732115
623 => 0.0012262567030602
624 => 0.0012017512712654
625 => 0.0012169543033271
626 => 0.0012574419811395
627 => 0.0013187828855514
628 => 0.0012824678355388
629 => 0.0012985838380649
630 => 0.0013021044676658
701 => 0.0012753270942427
702 => 0.0013197702055044
703 => 0.0013435876298847
704 => 0.0013680193789774
705 => 0.0013892327821525
706 => 0.0013582608011241
707 => 0.0013914052604835
708 => 0.0013646966770245
709 => 0.0013407363165791
710 => 0.0013407726545555
711 => 0.0013257419704431
712 => 0.0012966181259873
713 => 0.0012912472422297
714 => 0.0013191872578046
715 => 0.0013415925043663
716 => 0.001343437907787
717 => 0.0013558426035067
718 => 0.0013631835746551
719 => 0.0014351350714756
720 => 0.0014640745587108
721 => 0.0014994612159056
722 => 0.0015132463131657
723 => 0.0015547345136877
724 => 0.0015212294222593
725 => 0.0015139803849718
726 => 0.0014133435811925
727 => 0.0014298228521736
728 => 0.0014562077550275
729 => 0.0014137786585224
730 => 0.0014406901544231
731 => 0.0014460030537773
801 => 0.0014123369340589
802 => 0.0014303194632276
803 => 0.0013825631972037
804 => 0.001283539629308
805 => 0.0013198804470428
806 => 0.0013466395210827
807 => 0.0013084510230578
808 => 0.0013769024276684
809 => 0.0013369145302187
810 => 0.0013242402864847
811 => 0.0012747935429843
812 => 0.0012981305025368
813 => 0.0013296940744846
814 => 0.00131019145668
815 => 0.0013506623169574
816 => 0.0014079798482945
817 => 0.0014488277344433
818 => 0.0014519635279316
819 => 0.0014257010737338
820 => 0.0014677868241906
821 => 0.0014680933729366
822 => 0.001420620474496
823 => 0.0013915435885313
824 => 0.0013849372588618
825 => 0.0014014411656234
826 => 0.0014214799552212
827 => 0.0014530755412914
828 => 0.0014721680922302
829 => 0.0015219513391719
830 => 0.0015354212583968
831 => 0.0015502206158006
901 => 0.0015699971212449
902 => 0.0015937438866228
903 => 0.0015417873158802
904 => 0.001543851647295
905 => 0.0014954704080072
906 => 0.0014437681152567
907 => 0.0014830037106726
908 => 0.0015342990323863
909 => 0.0015225318289089
910 => 0.0015212077781355
911 => 0.0015234344642753
912 => 0.0015145623771342
913 => 0.0014744342558102
914 => 0.0014542821644966
915 => 0.0014802835036379
916 => 0.0014941020582051
917 => 0.0015155334312341
918 => 0.0015128915621469
919 => 0.0015680964775083
920 => 0.0015895474383078
921 => 0.0015840593645969
922 => 0.0015850693022376
923 => 0.0016239052421336
924 => 0.0016670987945181
925 => 0.0017075552562175
926 => 0.0017487093067035
927 => 0.0016990964925727
928 => 0.00167390616525
929 => 0.0016998961530201
930 => 0.0016861054996737
1001 => 0.0017653506843754
1002 => 0.0017708374490283
1003 => 0.0018500769034011
1004 => 0.0019252845812597
1005 => 0.0018780479862822
1006 => 0.001922589967763
1007 => 0.0019707657522955
1008 => 0.002063704656898
1009 => 0.0020324061034579
1010 => 0.0020084319020337
1011 => 0.0019857763975304
1012 => 0.0020329189059418
1013 => 0.0020935669898932
1014 => 0.0021066300062962
1015 => 0.0021277970833254
1016 => 0.0021055424900163
1017 => 0.0021323456963941
1018 => 0.0022269727928336
1019 => 0.0022014037160792
1020 => 0.0021650915166537
1021 => 0.0022397905212097
1022 => 0.0022668238005735
1023 => 0.002456557512587
1024 => 0.0026961041615127
1025 => 0.0025969302759094
1026 => 0.0025353698447941
1027 => 0.0025498380063391
1028 => 0.002637312333361
1029 => 0.0026654063109041
1030 => 0.0025890371953672
1031 => 0.0026160120580432
1101 => 0.0027646462034979
1102 => 0.0028443836537801
1103 => 0.0027360894861286
1104 => 0.0024373101725872
1105 => 0.0021618220003958
1106 => 0.002234893869055
1107 => 0.0022266097868331
1108 => 0.002386298633637
1109 => 0.0022007939020548
1110 => 0.0022039173259813
1111 => 0.0023669083690236
1112 => 0.0023234251531138
1113 => 0.0022529879122494
1114 => 0.0021623362702046
1115 => 0.0019947583256228
1116 => 0.00184632986685
1117 => 0.0021374322555361
1118 => 0.0021248793912006
1119 => 0.0021067009834125
1120 => 0.0021471550628357
1121 => 0.0023435885894237
1122 => 0.0023390601608426
1123 => 0.002310252608634
1124 => 0.0023321028830861
1125 => 0.0022491574534934
1126 => 0.0022705343793318
1127 => 0.0021617783616618
1128 => 0.0022109406237011
1129 => 0.0022528367855655
1130 => 0.0022612480603431
1201 => 0.0022801990919072
1202 => 0.0021182646021023
1203 => 0.0021909684338779
1204 => 0.0022336751236182
1205 => 0.0020407247456887
1206 => 0.0022298611150293
1207 => 0.0021154456829065
1208 => 0.002076611366782
1209 => 0.0021288966574116
1210 => 0.0021085210288041
1211 => 0.0020910032598245
1212 => 0.0020812280437403
1213 => 0.0021196205906618
1214 => 0.0021178295324589
1215 => 0.0020550118740231
1216 => 0.001973068799369
1217 => 0.0020005715849126
1218 => 0.0019905795650846
1219 => 0.0019543671962317
1220 => 0.0019787699605405
1221 => 0.0018713125364811
1222 => 0.0016864376235378
1223 => 0.0018085716538999
1224 => 0.0018038696265872
1225 => 0.0018014986511962
1226 => 0.0018932789994766
1227 => 0.0018844564367224
1228 => 0.0018684433989326
1229 => 0.0019540731042352
1230 => 0.0019228171099177
1231 => 0.0020191407195658
]
'min_raw' => 0.00086467337431993
'max_raw' => 0.0028443836537801
'avg_raw' => 0.00185452851405
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.000864'
'max' => '$0.002844'
'avg' => '$0.001854'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.00047105176122134
'max_diff' => 0.0018802813525203
'year' => 2029
]
4 => [
'items' => [
101 => 0.0020825856787005
102 => 0.0020664939848345
103 => 0.0021261642755568
104 => 0.0020012051935437
105 => 0.0020427115881003
106 => 0.002051265998493
107 => 0.0019530164469637
108 => 0.0018858999170994
109 => 0.001881424009742
110 => 0.0017650531961849
111 => 0.0018272175454747
112 => 0.0018819196003141
113 => 0.001855721561097
114 => 0.001847428044525
115 => 0.001889797822047
116 => 0.0018930903166331
117 => 0.0018180210911478
118 => 0.0018336303602594
119 => 0.0018987236072798
120 => 0.0018319901774466
121 => 0.0017023380241245
122 => 0.0016701824975194
123 => 0.0016658923575263
124 => 0.0015786840190862
125 => 0.0016723312835648
126 => 0.0016314517430292
127 => 0.0017605897217689
128 => 0.0016868268008937
129 => 0.0016836470288028
130 => 0.0016788403369164
131 => 0.0016037765174899
201 => 0.0016202107233897
202 => 0.0016748405268009
203 => 0.0016943330561068
204 => 0.0016922998256026
205 => 0.001674572810961
206 => 0.0016826881474869
207 => 0.0016565458209662
208 => 0.0016473144213663
209 => 0.0016181775849324
210 => 0.0015753544846311
211 => 0.0015813092993774
212 => 0.0014964655324068
213 => 0.0014502381451617
214 => 0.0014374430136394
215 => 0.0014203328290225
216 => 0.0014393756545203
217 => 0.001496225180675
218 => 0.0014276525908327
219 => 0.001310089695356
220 => 0.0013171554256916
221 => 0.0013330300239214
222 => 0.001303447815141
223 => 0.001275450737177
224 => 0.001299791924992
225 => 0.0012499789763742
226 => 0.0013390496807777
227 => 0.0013366405678414
228 => 0.0013698406183476
301 => 0.0013906012912627
302 => 0.001342754661541
303 => 0.001330721363557
304 => 0.0013375760769716
305 => 0.0012242829332915
306 => 0.0013605821514724
307 => 0.0013617608727712
308 => 0.0013516679453886
309 => 0.0014242430713037
310 => 0.001577399223734
311 => 0.0015197757184978
312 => 0.0014974621555907
313 => 0.0014550440561931
314 => 0.0015115636551028
315 => 0.0015072238317497
316 => 0.0014875975047175
317 => 0.0014757274408905
318 => 0.0014975983974477
319 => 0.0014730173873379
320 => 0.0014686019624812
321 => 0.0014418492918793
322 => 0.0014322998056433
323 => 0.0014252297462102
324 => 0.0014174463054641
325 => 0.0014346146362375
326 => 0.0013957089400229
327 => 0.0013487924843606
328 => 0.0013448918887154
329 => 0.0013556617762358
330 => 0.0013508969027318
331 => 0.0013448690763342
401 => 0.0013333603141604
402 => 0.0013299459102692
403 => 0.0013410410664823
404 => 0.0013285152820055
405 => 0.0013469977593158
406 => 0.0013419715481695
407 => 0.0013138955412852
408 => 0.0012789024416383
409 => 0.0012785909296509
410 => 0.0012710517237321
411 => 0.0012614494114674
412 => 0.0012587782678665
413 => 0.0012977419780473
414 => 0.0013783956920358
415 => 0.0013625614381001
416 => 0.0013740033093283
417 => 0.0014302859913348
418 => 0.0014481765634654
419 => 0.0014354782591285
420 => 0.0014180960369549
421 => 0.0014188607665143
422 => 0.001478261081638
423 => 0.0014819658064303
424 => 0.0014913264507911
425 => 0.0015033575241124
426 => 0.001437527202939
427 => 0.001415760164307
428 => 0.0014054457338139
429 => 0.001373681280082
430 => 0.0014079365201534
501 => 0.0013879774587194
502 => 0.0013906706180055
503 => 0.0013889166944874
504 => 0.0013898744553281
505 => 0.0013390247837006
506 => 0.0013575517314616
507 => 0.0013267470874483
508 => 0.0012855031270981
509 => 0.001285364862881
510 => 0.0012954592637464
511 => 0.0012894547191177
512 => 0.0012732966439128
513 => 0.0012755918222317
514 => 0.0012554836450581
515 => 0.0012780333190109
516 => 0.0012786799629733
517 => 0.0012699971102124
518 => 0.001304737994192
519 => 0.0013189713627043
520 => 0.0013132561230124
521 => 0.0013185703662519
522 => 0.0013632194228385
523 => 0.001370499167237
524 => 0.0013737323488259
525 => 0.0013694003138113
526 => 0.0013193864690428
527 => 0.0013216047957336
528 => 0.0013053281863596
529 => 0.0012915761666255
530 => 0.001292126175295
531 => 0.0012991965010758
601 => 0.0013300730284296
602 => 0.0013950508599751
603 => 0.0013975167211841
604 => 0.0014005054169036
605 => 0.0013883488894142
606 => 0.0013846823644011
607 => 0.0013895194573037
608 => 0.0014139217144601
609 => 0.0014766909450146
610 => 0.0014545041067207
611 => 0.0014364658618291
612 => 0.0014522902656749
613 => 0.0014498542227386
614 => 0.0014292915688093
615 => 0.0014287144435996
616 => 0.0013892481364311
617 => 0.0013746583412753
618 => 0.0013624660164158
619 => 0.001349152315958
620 => 0.0013412595080473
621 => 0.0013533864482152
622 => 0.0013561600229133
623 => 0.0013296442562936
624 => 0.0013260302552825
625 => 0.0013476836026867
626 => 0.0013381547718123
627 => 0.0013479554106702
628 => 0.0013502292429536
629 => 0.0013498631035852
630 => 0.001339913909773
701 => 0.0013462552292197
702 => 0.0013312561182901
703 => 0.0013149468379477
704 => 0.0013045425331934
705 => 0.0012954633973645
706 => 0.0013005010296048
707 => 0.0012825427905033
708 => 0.0012767975883867
709 => 0.0013441069328754
710 => 0.0013938290693465
711 => 0.0013931060897901
712 => 0.0013887051376756
713 => 0.0013821662155341
714 => 0.0014134433515771
715 => 0.0014025470227858
716 => 0.0014104750124002
717 => 0.0014124930184937
718 => 0.0014186009151543
719 => 0.001420783963219
720 => 0.0014141852757431
721 => 0.0013920392746121
722 => 0.0013368535453724
723 => 0.0013111644394403
724 => 0.0013026866065968
725 => 0.0013029947597189
726 => 0.0012944945209535
727 => 0.0012969982222239
728 => 0.001293623835827
729 => 0.0012872335643431
730 => 0.001300106448348
731 => 0.0013015899283104
801 => 0.0012985852433641
802 => 0.0012992929554401
803 => 0.0012744154474028
804 => 0.0012763068303078
805 => 0.0012657753699476
806 => 0.0012638008480887
807 => 0.0012371782333774
808 => 0.0011900124124064
809 => 0.0012161468557213
810 => 0.0011845801232558
811 => 0.001172625323357
812 => 0.0012292174867249
813 => 0.0012235372031451
814 => 0.0012138150268163
815 => 0.0011994339017469
816 => 0.001194099802568
817 => 0.001161691504528
818 => 0.0011597766493883
819 => 0.0011758390769946
820 => 0.0011684268193287
821 => 0.0011580172023242
822 => 0.0011203146247401
823 => 0.0010779244446412
824 => 0.0010792039377232
825 => 0.0010926874653153
826 => 0.0011318926402909
827 => 0.0011165745001715
828 => 0.0011054610137595
829 => 0.0011033797918247
830 => 0.0011294306416719
831 => 0.0011662980520275
901 => 0.0011835954161045
902 => 0.001166454253633
903 => 0.0011467634091313
904 => 0.0011479618995976
905 => 0.0011559349197362
906 => 0.0011567727714203
907 => 0.0011439560559013
908 => 0.0011475638862456
909 => 0.0011420832620457
910 => 0.0011084486814476
911 => 0.001107840338541
912 => 0.0010995858700313
913 => 0.0010993359280054
914 => 0.0010852930178968
915 => 0.0010833283176985
916 => 0.0010554452673342
917 => 0.0010737979755217
918 => 0.00106148794243
919 => 0.0010429338189175
920 => 0.0010397350810305
921 => 0.001039638923107
922 => 0.0010586898593282
923 => 0.0010735753542399
924 => 0.001061702080726
925 => 0.0010589987665006
926 => 0.001087863089981
927 => 0.001084189841714
928 => 0.0010810088324046
929 => 0.0011629969797955
930 => 0.0010980969635207
1001 => 0.0010697968520615
1002 => 0.0010347700900853
1003 => 0.001046174980405
1004 => 0.0010485781583681
1005 => 0.00096434510986374
1006 => 0.00093017177257609
1007 => 0.00091844477101402
1008 => 0.00091169571581958
1009 => 0.00091477134502099
1010 => 0.00088401133332943
1011 => 0.00090468256990979
1012 => 0.00087804699986397
1013 => 0.00087358145986614
1014 => 0.00092120915862204
1015 => 0.00092783627466695
1016 => 0.00089956293873582
1017 => 0.00091771899744091
1018 => 0.00091113535816635
1019 => 0.00087850359026368
1020 => 0.00087725729675283
1021 => 0.00086088382268138
1022 => 0.00083526250628888
1023 => 0.00082355287718581
1024 => 0.00081745440068127
1025 => 0.00081997075094398
1026 => 0.00081869840724956
1027 => 0.00081039550399706
1028 => 0.00081917431994497
1029 => 0.00079674807285528
1030 => 0.00078781776056361
1031 => 0.00078378414568313
1101 => 0.00076387956058441
1102 => 0.00079555660708565
1103 => 0.00080179738430331
1104 => 0.00080805045777996
1105 => 0.00086247919323964
1106 => 0.00085976008743009
1107 => 0.00088433947969024
1108 => 0.00088338436970561
1109 => 0.00087637392887326
1110 => 0.00084679803216312
1111 => 0.00085858645745211
1112 => 0.00082230351674063
1113 => 0.00084948916292182
1114 => 0.00083708276930445
1115 => 0.00084529454876008
1116 => 0.00083052902887256
1117 => 0.00083870087723169
1118 => 0.00080327730409919
1119 => 0.00077019926993118
1120 => 0.0007835108364884
1121 => 0.00079798203169838
1122 => 0.00082935927010559
1123 => 0.00081067124576686
1124 => 0.0008173921659915
1125 => 0.00079487820830739
1126 => 0.000748425482811
1127 => 0.00074868840019256
1128 => 0.00074154266040257
1129 => 0.00073536769792893
1130 => 0.00081281779016798
1201 => 0.00080318564689328
1202 => 0.0007878380872088
1203 => 0.00080838140573426
1204 => 0.00081381338521869
1205 => 0.00081396802603815
1206 => 0.00082895590093453
1207 => 0.00083695493245345
1208 => 0.00083836479642845
1209 => 0.00086194854141237
1210 => 0.00086985350165386
1211 => 0.00090241291413672
1212 => 0.0008362762705152
1213 => 0.00083491422986224
1214 => 0.000808670492355
1215 => 0.00079202629913083
1216 => 0.00080981013450478
1217 => 0.00082556418491049
1218 => 0.00080916001461535
1219 => 0.00081130205294496
1220 => 0.00078928079459368
1221 => 0.00079715235825775
1222 => 0.00080393240929939
1223 => 0.00080018886362718
1224 => 0.00079458459456622
1225 => 0.00082427253243405
1226 => 0.00082259742263158
1227 => 0.00085024351289684
1228 => 0.00087179561724949
1229 => 0.00091042084114893
1230 => 0.00087011340643141
1231 => 0.00086864444330276
]
'min_raw' => 0.00073536769792893
'max_raw' => 0.0021261642755568
'avg_raw' => 0.0014307659867428
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.000735'
'max' => '$0.002126'
'avg' => '$0.00143'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.00012930567639099
'max_diff' => -0.00071821937822329
'year' => 2030
]
5 => [
'items' => [
101 => 0.0008830037935144
102 => 0.00086985130331216
103 => 0.00087816322311144
104 => 0.00090908166236748
105 => 0.00090973492026832
106 => 0.00089879200875396
107 => 0.00089812613159382
108 => 0.00090022783745249
109 => 0.00091253759431229
110 => 0.00090823618702486
111 => 0.00091321388443619
112 => 0.00091943857127027
113 => 0.00094518651522854
114 => 0.00095139425734763
115 => 0.00093631266234351
116 => 0.00093767436151093
117 => 0.00093203343098035
118 => 0.00092658436276846
119 => 0.00093883307233628
120 => 0.00096121782982045
121 => 0.00096107857540591
122 => 0.00096627140404473
123 => 0.000969506493267
124 => 0.00095561912209497
125 => 0.00094657895411477
126 => 0.00095004552975921
127 => 0.00095558865970687
128 => 0.00094824796742562
129 => 0.00090293781412632
130 => 0.00091668202021353
131 => 0.00091439431226328
201 => 0.00091113633794732
202 => 0.00092495624344882
203 => 0.00092362327984931
204 => 0.00088369584494974
205 => 0.00088625186978776
206 => 0.00088385128528596
207 => 0.00089160806492467
208 => 0.00086943241175609
209 => 0.00087625349331544
210 => 0.0008805316117258
211 => 0.00088305145633556
212 => 0.00089215486293962
213 => 0.00089108668324576
214 => 0.00089208846339005
215 => 0.00090558641217364
216 => 0.00097385440518432
217 => 0.00097757008141906
218 => 0.00095927273269449
219 => 0.00096658216261071
220 => 0.00095254965556816
221 => 0.00096196977155545
222 => 0.00096841477566895
223 => 0.00093929104138307
224 => 0.00093756652285013
225 => 0.00092347609865938
226 => 0.00093104749449707
227 => 0.00091900085931668
228 => 0.00092195668221654
301 => 0.00091369194370453
302 => 0.00092856682753313
303 => 0.00094519925897676
304 => 0.00094940126799404
305 => 0.00093834759134819
306 => 0.00093034400098381
307 => 0.00091629233285053
308 => 0.00093966057011803
309 => 0.00094649415482918
310 => 0.00093962467620669
311 => 0.00093803286790879
312 => 0.0009350163940606
313 => 0.00093867282709547
314 => 0.00094645693765925
315 => 0.00094278609486732
316 => 0.00094521075120332
317 => 0.00093597046154527
318 => 0.00095562371939268
319 => 0.00098683782266844
320 => 0.0009869381811145
321 => 0.00098326731853536
322 => 0.00098176528065781
323 => 0.00098553180843058
324 => 0.00098757499523624
325 => 0.00099975525539029
326 => 0.0010128251598186
327 => 0.0010738167009392
328 => 0.0010566905202541
329 => 0.0011108058439394
330 => 0.0011536040389791
331 => 0.0011664373463332
401 => 0.0011546313074212
402 => 0.0011142434860527
403 => 0.0011122618668561
404 => 0.0011726183232789
405 => 0.0011555648598387
406 => 0.0011535364046261
407 => 0.0011319570682937
408 => 0.001144713128719
409 => 0.0011419231911839
410 => 0.0011375191382963
411 => 0.0011618568129927
412 => 0.0012074147673853
413 => 0.0012003141329534
414 => 0.001195013838739
415 => 0.0011717894923838
416 => 0.0011857757362352
417 => 0.0011807955026885
418 => 0.0012021937465392
419 => 0.0011895179009112
420 => 0.0011554356630806
421 => 0.0011608633717916
422 => 0.001160042984539
423 => 0.0011769264960651
424 => 0.0011718584849795
425 => 0.0011590533740358
426 => 0.00120725905525
427 => 0.001204128846446
428 => 0.0012085667668647
429 => 0.0012105204766802
430 => 0.0012398624253559
501 => 0.0012518828828907
502 => 0.0012546117371988
503 => 0.0012660302421613
504 => 0.0012543276343933
505 => 0.0013011464092832
506 => 0.0013322781626337
507 => 0.0013684392961757
508 => 0.001421280431477
509 => 0.0014411491871581
510 => 0.0014375600742826
511 => 0.0014776236200005
512 => 0.0015496169210929
513 => 0.0014521119788006
514 => 0.0015547849197949
515 => 0.0015222798520922
516 => 0.0014452109213104
517 => 0.001440248590751
518 => 0.0014924405654652
519 => 0.0016081973420897
520 => 0.0015792015824478
521 => 0.0016082447687651
522 => 0.0015743643492063
523 => 0.0015726819008086
524 => 0.0016065992724096
525 => 0.0016858490598951
526 => 0.0016482004564946
527 => 0.0015942219517037
528 => 0.0016340788396427
529 => 0.0015995511147291
530 => 0.001521750486797
531 => 0.0015791794099368
601 => 0.0015407783245148
602 => 0.0015519858027549
603 => 0.0016326991725817
604 => 0.0016229875263831
605 => 0.0016355552958383
606 => 0.0016133735117056
607 => 0.0015926522275793
608 => 0.0015539744119748
609 => 0.0015425238175675
610 => 0.0015456883499125
611 => 0.0015425222493825
612 => 0.0015208823670192
613 => 0.0015162092364832
614 => 0.0015084204808554
615 => 0.0015108345419087
616 => 0.0014961894026475
617 => 0.0015238278062736
618 => 0.0015289577375354
619 => 0.0015490706628429
620 => 0.0015511588534703
621 => 0.0016071730641621
622 => 0.0015763213781937
623 => 0.0015970193527477
624 => 0.0015951679310867
625 => 0.0014468812387339
626 => 0.0014673138365955
627 => 0.0014991005467658
628 => 0.00148478067692
629 => 0.0014645357312914
630 => 0.0014481868522311
701 => 0.0014234166286959
702 => 0.0014582802426516
703 => 0.0015041221876714
704 => 0.0015523214808468
705 => 0.0016102297734542
706 => 0.0015973053166711
707 => 0.0015512389255966
708 => 0.0015533054302487
709 => 0.0015660797488683
710 => 0.0015495358455867
711 => 0.0015446567255336
712 => 0.001565409432697
713 => 0.0015655523451857
714 => 0.0015465165850628
715 => 0.0015253618211935
716 => 0.0015252731819605
717 => 0.0015215088960607
718 => 0.0015750340073054
719 => 0.0016044674064909
720 => 0.0016078418982732
721 => 0.0016042402763074
722 => 0.0016056263976588
723 => 0.0015884997511935
724 => 0.001627646186264
725 => 0.0016635708262658
726 => 0.0016539422553273
727 => 0.0016395076587085
728 => 0.0016280098072373
729 => 0.0016512337269277
730 => 0.0016501996023417
731 => 0.0016632570558754
801 => 0.0016626646943596
802 => 0.0016582739638519
803 => 0.0016539424121342
804 => 0.0016711165250786
805 => 0.0016661706563584
806 => 0.001661217105338
807 => 0.0016512820004159
808 => 0.0016526323461794
809 => 0.0016382002418973
810 => 0.0016315232900881
811 => 0.0015311179551268
812 => 0.0015042863687861
813 => 0.0015127281320562
814 => 0.001515507379715
815 => 0.0015038302389539
816 => 0.0015205722591939
817 => 0.0015179630330737
818 => 0.0015281140055613
819 => 0.001521772118655
820 => 0.0015220323919058
821 => 0.0015406825290642
822 => 0.0015460967432246
823 => 0.0015433430302045
824 => 0.001545271636412
825 => 0.0015897155524499
826 => 0.0015833970488258
827 => 0.0015800404697079
828 => 0.0015809702650628
829 => 0.0015923266384988
830 => 0.0015955058030258
831 => 0.0015820354595287
901 => 0.0015883881513931
902 => 0.001615437107075
903 => 0.0016249027107253
904 => 0.0016551123738297
905 => 0.001642278772009
906 => 0.0016658354035762
907 => 0.0017382404579662
908 => 0.0017960826254616
909 => 0.0017428885778042
910 => 0.0018491083522539
911 => 0.0019318156829847
912 => 0.001928641237875
913 => 0.001914219301707
914 => 0.0018200592045582
915 => 0.0017334116793139
916 => 0.001805896013429
917 => 0.0018060807909032
918 => 0.0017998543223195
919 => 0.0017611822607019
920 => 0.0017985086184018
921 => 0.0018014714491266
922 => 0.001799813051801
923 => 0.0017701632728302
924 => 0.0017248935405369
925 => 0.0017337391378665
926 => 0.0017482284067379
927 => 0.0017207971979863
928 => 0.0017120312646746
929 => 0.0017283288024881
930 => 0.0017808428650499
1001 => 0.0017709153857158
1002 => 0.0017706561391103
1003 => 0.0018131301056078
1004 => 0.0017827279120512
1005 => 0.0017338507091764
1006 => 0.0017215085708394
1007 => 0.0016777022944036
1008 => 0.0017079594455704
1009 => 0.0017090483465751
1010 => 0.0016924768141017
1011 => 0.0017351953977057
1012 => 0.0017348017384373
1013 => 0.0017753566757472
1014 => 0.001852882484145
1015 => 0.0018299542877884
1016 => 0.0018032912900064
1017 => 0.0018061902971501
1018 => 0.0018379852501565
1019 => 0.0018187612957606
1020 => 0.0018256743637955
1021 => 0.0018379747864
1022 => 0.0018453959367596
1023 => 0.0018051225078183
1024 => 0.0017957328450313
1025 => 0.0017765248902929
1026 => 0.0017715138934351
1027 => 0.0017871583717824
1028 => 0.0017830366044655
1029 => 0.0017089568286621
1030 => 0.0017012150799147
1031 => 0.0017014525082961
1101 => 0.0016819855129706
1102 => 0.001652293672485
1103 => 0.0017303220564735
1104 => 0.0017240552852327
1105 => 0.0017171372547924
1106 => 0.0017179846740476
1107 => 0.0017518541509097
1108 => 0.0017322081438801
1109 => 0.0017844402734856
1110 => 0.0017737029178802
1111 => 0.0017626901896193
1112 => 0.0017611678951178
1113 => 0.0017569289342992
1114 => 0.0017423919604043
1115 => 0.0017248376908896
1116 => 0.0017132468416311
1117 => 0.0015803796495193
1118 => 0.0016050390275224
1119 => 0.0016334073941418
1120 => 0.0016432000406198
1121 => 0.0016264490411888
1122 => 0.0017430533919604
1123 => 0.0017643581304738
1124 => 0.0016998246878429
1125 => 0.0016877531156097
1126 => 0.0017438448022263
1127 => 0.0017100146582667
1128 => 0.0017252483700203
1129 => 0.0016923214176039
1130 => 0.0017592264428415
1201 => 0.0017587167386458
1202 => 0.0017326891727098
1203 => 0.0017546874932098
1204 => 0.0017508647436709
1205 => 0.0017214796858322
1206 => 0.0017601580015882
1207 => 0.0017601771855502
1208 => 0.001735126219225
1209 => 0.0017058721749187
1210 => 0.0017006422427464
1211 => 0.0016967021913971
1212 => 0.0017242793589179
1213 => 0.0017490049610854
1214 => 0.0017950131767226
1215 => 0.001806580735262
1216 => 0.0018517296863373
1217 => 0.0018248456842345
1218 => 0.0018367630141606
1219 => 0.0018497009616046
1220 => 0.0018559038893865
1221 => 0.0018457965514333
1222 => 0.001915931456503
1223 => 0.0019218529913689
1224 => 0.0019238384307883
1225 => 0.0019001893354084
1226 => 0.0019211952672454
1227 => 0.0019113672873822
1228 => 0.0019369369606949
1229 => 0.0019409466119603
1230 => 0.001937550579986
1231 => 0.0019388233065856
]
'min_raw' => 0.00086943241175609
'max_raw' => 0.0019409466119603
'avg_raw' => 0.0014051895118582
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.000869'
'max' => '$0.00194'
'avg' => '$0.0014051'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.00013406471382716
'max_diff' => -0.0001852176635965
'year' => 2031
]
6 => [
'items' => [
101 => 0.0018789755377537
102 => 0.0018758721152177
103 => 0.0018335567287296
104 => 0.001850800561503
105 => 0.0018185640426515
106 => 0.0018287865748523
107 => 0.0018332925696425
108 => 0.001830938893677
109 => 0.0018517755019356
110 => 0.001834060128278
111 => 0.0017873063445184
112 => 0.0017405398227218
113 => 0.0017399527071358
114 => 0.0017276399074444
115 => 0.0017187400084693
116 => 0.0017204544447528
117 => 0.0017264963418332
118 => 0.0017183888424274
119 => 0.0017201189884863
120 => 0.0017488509409667
121 => 0.0017546129291297
122 => 0.0017350314419976
123 => 0.0016564089455672
124 => 0.0016371147877336
125 => 0.0016509830457646
126 => 0.001644354911656
127 => 0.0013271227503453
128 => 0.0014016517410741
129 => 0.0013573691455484
130 => 0.0013777766029109
131 => 0.0013325755398017
201 => 0.0013541478563081
202 => 0.0013501642371443
203 => 0.001470004648763
204 => 0.0014681335055707
205 => 0.0014690291227981
206 => 0.0014262789790125
207 => 0.0014943811188559
208 => 0.0015279306818165
209 => 0.0015217215506052
210 => 0.0015232842551606
211 => 0.0014964318134109
212 => 0.0014692891131308
213 => 0.0014391836812886
214 => 0.0014951158525076
215 => 0.001488897149862
216 => 0.0015031606163123
217 => 0.001539436627462
218 => 0.001544778407903
219 => 0.0015519578149866
220 => 0.0015493845086121
221 => 0.0016106911064298
222 => 0.0016032664729201
223 => 0.0016211577034656
224 => 0.0015843540848226
225 => 0.0015427072968965
226 => 0.0015506229897452
227 => 0.0015498606448699
228 => 0.0015401551196285
229 => 0.0015313934054039
301 => 0.0015168076198177
302 => 0.0015629592037027
303 => 0.0015610855336796
304 => 0.0015914180734495
305 => 0.0015860565024106
306 => 0.0015502506188139
307 => 0.0015515294329513
308 => 0.0015601300726029
309 => 0.0015898969846373
310 => 0.0015987338308151
311 => 0.0015946402515781
312 => 0.0016043294499946
313 => 0.0016119873973626
314 => 0.0016052911702802
315 => 0.0017000956246738
316 => 0.0016607262054661
317 => 0.0016799145864573
318 => 0.0016844909022592
319 => 0.0016727687655622
320 => 0.0016753108772735
321 => 0.0016791614838322
322 => 0.0017025416128305
323 => 0.0017638978364169
324 => 0.0017910720901774
325 => 0.0018728271733698
326 => 0.0017888156466864
327 => 0.0017838307503673
328 => 0.0017985573096173
329 => 0.0018465561981057
330 => 0.0018854547889192
331 => 0.0018983596956056
401 => 0.001900065292061
402 => 0.0019242757549066
403 => 0.0019381527407113
404 => 0.0019213359679187
405 => 0.0019070855137665
406 => 0.0018560421558249
407 => 0.0018619505634931
408 => 0.001902653633241
409 => 0.0019601491166588
410 => 0.0020094862228167
411 => 0.0019922100878119
412 => 0.0021240148028476
413 => 0.0021370827019695
414 => 0.0021352771408466
415 => 0.0021650477598102
416 => 0.0021059591438485
417 => 0.0020806976157369
418 => 0.0019101666237038
419 => 0.0019580788765963
420 => 0.0020277221499636
421 => 0.0020185046015845
422 => 0.0019679277948952
423 => 0.0020094478557735
424 => 0.0019957200251948
425 => 0.0019848923156491
426 => 0.0020344961521325
427 => 0.0019799546963058
428 => 0.0020271780572197
429 => 0.0019666136083845
430 => 0.0019922890037414
501 => 0.0019777144075577
502 => 0.0019871459574839
503 => 0.0019320093093335
504 => 0.001961759706309
505 => 0.0019307715950091
506 => 0.0019307569026096
507 => 0.0019300728383351
508 => 0.0019665302138571
509 => 0.001967719087564
510 => 0.0019407770319692
511 => 0.001936894260844
512 => 0.0019512509007366
513 => 0.0019344430354323
514 => 0.0019423073298208
515 => 0.0019346812368978
516 => 0.0019329644427508
517 => 0.0019192847348987
518 => 0.0019133911406247
519 => 0.0019157021707987
520 => 0.0019078134333969
521 => 0.0019030601837642
522 => 0.0019291272973456
523 => 0.0019152006901034
524 => 0.0019269928450501
525 => 0.0019135541961997
526 => 0.0018669699843439
527 => 0.0018401789114866
528 => 0.0017521856536497
529 => 0.0017771404324169
530 => 0.0017936854765572
531 => 0.0017882173395675
601 => 0.0017999650137094
602 => 0.0018006862254911
603 => 0.0017968669368742
604 => 0.001792444689937
605 => 0.0017902921846936
606 => 0.0018063351952636
607 => 0.0018156487028825
608 => 0.0017953459930808
609 => 0.0017905893522394
610 => 0.0018111165127922
611 => 0.0018236380688712
612 => 0.0019160902037044
613 => 0.0019092410509395
614 => 0.001926431080301
615 => 0.0019244957467974
616 => 0.0019425136361547
617 => 0.0019719652703258
618 => 0.0019120818632496
619 => 0.0019224755521056
620 => 0.0019199272596235
621 => 0.0019477488487456
622 => 0.00194783570471
623 => 0.0019311552722398
624 => 0.001940198005291
625 => 0.0019351505997762
626 => 0.0019442719437392
627 => 0.0019091495763286
628 => 0.0019519248286094
629 => 0.0019761756402763
630 => 0.0019765123628198
701 => 0.0019880070550836
702 => 0.0019996863281513
703 => 0.0020221036757543
704 => 0.0019990611204936
705 => 0.0019576098067272
706 => 0.0019606024576942
707 => 0.0019362995675994
708 => 0.0019367081035726
709 => 0.0019345273065303
710 => 0.001941072042617
711 => 0.0019105857778572
712 => 0.0019177408432612
713 => 0.0019077237097955
714 => 0.0019224537768138
715 => 0.0019066066596695
716 => 0.0019199260307597
717 => 0.001925674229778
718 => 0.0019468852079058
719 => 0.0019034737809539
720 => 0.0018149549427037
721 => 0.001833562675691
722 => 0.0018060403769968
723 => 0.0018085876705258
724 => 0.001813733608853
725 => 0.0017970539390883
726 => 0.0018002358944426
727 => 0.0018001222126062
728 => 0.0017991425639566
729 => 0.0017948035376514
730 => 0.0017885110910587
731 => 0.0018135782615712
801 => 0.0018178376623072
802 => 0.0018273057825151
803 => 0.0018554764859666
804 => 0.0018526615683809
805 => 0.001857252815753
806 => 0.0018472301485184
807 => 0.0018090525933131
808 => 0.0018111258182385
809 => 0.0017852726701975
810 => 0.0018266446593939
811 => 0.0018168472262686
812 => 0.0018105307573967
813 => 0.0018088072503433
814 => 0.0018370477835198
815 => 0.0018454977936623
816 => 0.0018402323144006
817 => 0.0018294326628162
818 => 0.0018501711864886
819 => 0.0018557199405353
820 => 0.0018569621019362
821 => 0.0018937067896662
822 => 0.0018590157217977
823 => 0.0018673662066332
824 => 0.0019325143055688
825 => 0.0018734339696573
826 => 0.0019047301412384
827 => 0.0019031983564969
828 => 0.001919208418873
829 => 0.0019018850640833
830 => 0.0019020998078278
831 => 0.0019163156586023
901 => 0.0018963520600317
902 => 0.001891408792277
903 => 0.0018845797032781
904 => 0.0018994907692699
905 => 0.0019084292789625
906 => 0.0019804671024728
907 => 0.0020270068217843
908 => 0.0020249864098292
909 => 0.002043449193046
910 => 0.0020351315401071
911 => 0.0020082716446814
912 => 0.0020541182109577
913 => 0.0020396104390861
914 => 0.0020408064421723
915 => 0.0020407619268777
916 => 0.0020504083268809
917 => 0.002043572968399
918 => 0.0020300997751961
919 => 0.0020390439096118
920 => 0.0020656047912398
921 => 0.0021480505828004
922 => 0.0021941883400191
923 => 0.0021452730318835
924 => 0.0021790141564334
925 => 0.0021587815048954
926 => 0.0021551046302417
927 => 0.0021762965499086
928 => 0.0021975255632254
929 => 0.0021961733668527
930 => 0.0021807621933065
1001 => 0.0021720568124144
1002 => 0.0022379768730464
1003 => 0.0022865456508012
1004 => 0.0022832335857675
1005 => 0.0022978519636848
1006 => 0.0023407719733794
1007 => 0.0023446960411748
1008 => 0.0023442016988263
1009 => 0.0023344754873613
1010 => 0.0023767358107732
1011 => 0.002411990116063
1012 => 0.0023322241504244
1013 => 0.0023625979859264
1014 => 0.0023762337792671
1015 => 0.0023962551694489
1016 => 0.0024300346106601
1017 => 0.0024667280433698
1018 => 0.002471916897078
1019 => 0.0024682351570625
1020 => 0.0024440348518181
1021 => 0.0024841852437327
1022 => 0.0025077044016738
1023 => 0.0025217095220013
1024 => 0.0025572241769221
1025 => 0.0023763179892846
1026 => 0.0022482635980539
1027 => 0.0022282660557354
1028 => 0.0022689318444046
1029 => 0.0022796550885731
1030 => 0.0022753325622945
1031 => 0.0021311957027685
1101 => 0.0022275072049998
1102 => 0.0023311302832996
1103 => 0.0023351108677554
1104 => 0.0023869867474086
1105 => 0.0024038796602879
1106 => 0.0024456465429357
1107 => 0.0024430340130542
1108 => 0.0024532035843227
1109 => 0.0024508657760005
1110 => 0.0025282301310509
1111 => 0.0026135745033893
1112 => 0.0026106192991538
1113 => 0.0025983500358813
1114 => 0.0026165719840611
1115 => 0.0027046565223732
1116 => 0.0026965471096114
1117 => 0.0027044247133514
1118 => 0.0028082813482483
1119 => 0.0029433097470484
1120 => 0.0028805754991762
1121 => 0.0030166907657654
1122 => 0.003102368110923
1123 => 0.0032505382201703
1124 => 0.0032319865927394
1125 => 0.0032896681289469
1126 => 0.0031987753077965
1127 => 0.0029900670179654
1128 => 0.0029570381321964
1129 => 0.0030231627979306
1130 => 0.0031857238362875
1201 => 0.0030180431723271
1202 => 0.0030519647522585
1203 => 0.0030421953349562
1204 => 0.0030416747642256
1205 => 0.0030615428317017
1206 => 0.0030327231635788
1207 => 0.0029153066510868
1208 => 0.002969117946822
1209 => 0.002948338821308
1210 => 0.0029713948102523
1211 => 0.0030958184735713
1212 => 0.0030408078061283
1213 => 0.0029828585366808
1214 => 0.0030555397805403
1215 => 0.0031480879799584
1216 => 0.003142296479964
1217 => 0.0031310585493155
1218 => 0.0031944061759821
1219 => 0.0032990378961224
1220 => 0.003327319429632
1221 => 0.0033481962794783
1222 => 0.0033510748443548
1223 => 0.0033807258516013
1224 => 0.0032212849126213
1225 => 0.0034743217775162
1226 => 0.0035180142540812
1227 => 0.0035098018793546
1228 => 0.0035583642281962
1229 => 0.0035440759532591
1230 => 0.0035233744846369
1231 => 0.0036003561370586
]
'min_raw' => 0.0013271227503453
'max_raw' => 0.0036003561370586
'avg_raw' => 0.002463739443702
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.001327'
'max' => '$0.00360035'
'avg' => '$0.002463'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.00045769033858923
'max_diff' => 0.0016594095250983
'year' => 2032
]
7 => [
'items' => [
101 => 0.0035121028846562
102 => 0.0033868385036465
103 => 0.003318115986776
104 => 0.0034086153406783
105 => 0.0034638801381143
106 => 0.0035004066537182
107 => 0.00351145955527
108 => 0.0032336618588442
109 => 0.0030839443078373
110 => 0.0031799115415175
111 => 0.003296998189912
112 => 0.0032206344903776
113 => 0.0032236278028238
114 => 0.0031147532353149
115 => 0.0033066311732963
116 => 0.0032786761716799
117 => 0.0034237067695174
118 => 0.0033890940534002
119 => 0.0035073608758813
120 => 0.0034762172579692
121 => 0.0036054926747062
122 => 0.0036570641384347
123 => 0.0037436606524924
124 => 0.0038073614007444
125 => 0.0038447676985191
126 => 0.0038425219647082
127 => 0.0039907443522353
128 => 0.0039033427888064
129 => 0.0037935458261728
130 => 0.0037915599455237
131 => 0.0038484253483066
201 => 0.0039675996322783
202 => 0.0039984997901968
203 => 0.0040157687629962
204 => 0.0039893207300167
205 => 0.0038944525970411
206 => 0.0038534890182146
207 => 0.0038883911742039
208 => 0.0038457088366054
209 => 0.0039193905258491
210 => 0.0040205712227404
211 => 0.0039996778089442
212 => 0.0040695213587493
213 => 0.0041418020850418
214 => 0.0042451667699706
215 => 0.0042721901261942
216 => 0.0043168587064256
217 => 0.004362837348348
218 => 0.0043776044489743
219 => 0.0044057994260321
220 => 0.0044056508245856
221 => 0.0044906182856903
222 => 0.004584340026512
223 => 0.0046197178140089
224 => 0.0047010670856154
225 => 0.0045617593088077
226 => 0.0046674258577687
227 => 0.0047627397299369
228 => 0.0046491026022083
301 => 0.0048057249087272
302 => 0.0048118061979755
303 => 0.0049036264455865
304 => 0.0048105490340018
305 => 0.0047552799641165
306 => 0.0049148396979704
307 => 0.0049920456270978
308 => 0.004968790572922
309 => 0.0047918184624
310 => 0.0046888131033853
311 => 0.004419228210594
312 => 0.004738563161306
313 => 0.0048941019006696
314 => 0.0047914156546404
315 => 0.0048432046242353
316 => 0.0051257484497153
317 => 0.0052333228451001
318 => 0.0052109481228618
319 => 0.0052147290826008
320 => 0.0052727742737371
321 => 0.0055301786173059
322 => 0.0053759359680535
323 => 0.0054938486940452
324 => 0.0055563891787452
325 => 0.0056144802663536
326 => 0.005471826915064
327 => 0.0052862370010302
328 => 0.0052274528847211
329 => 0.0047812055311975
330 => 0.0047579764184926
331 => 0.0047449372136172
401 => 0.0046627268713097
402 => 0.004598132061564
403 => 0.0045467638706027
404 => 0.0044119583976799
405 => 0.0044574512875352
406 => 0.004242599499785
407 => 0.0043800540597077
408 => 0.0040371454186807
409 => 0.0043227299245133
410 => 0.0041672992619227
411 => 0.004271666771558
412 => 0.0042713026431489
413 => 0.0040791289681613
414 => 0.0039682872029907
415 => 0.0040389198897834
416 => 0.0041146437368549
417 => 0.0041269296762766
418 => 0.0042251076205994
419 => 0.0042525069745321
420 => 0.0041694856529627
421 => 0.0040300393992827
422 => 0.0040624295835821
423 => 0.0039676308169397
424 => 0.0038014996247807
425 => 0.0039208179473616
426 => 0.003961558468747
427 => 0.0039795518039271
428 => 0.0038161808567351
429 => 0.0037648461581716
430 => 0.0037375159953962
501 => 0.0040089502615247
502 => 0.0040238200433514
503 => 0.0039477441371506
504 => 0.0042916144469918
505 => 0.0042137860052624
506 => 0.0043007394431053
507 => 0.0040594905138548
508 => 0.0040687065478369
509 => 0.0039544954385441
510 => 0.004018446028159
511 => 0.0039732478126429
512 => 0.0040132794524902
513 => 0.004037274252358
514 => 0.0041514666207316
515 => 0.0043240338179304
516 => 0.0041344100888764
517 => 0.0040517883146658
518 => 0.0041030463987036
519 => 0.0042395534312075
520 => 0.0044463685731174
521 => 0.0043239298465641
522 => 0.0043782660742641
523 => 0.004390136122766
524 => 0.0042998543387336
525 => 0.0044496973912713
526 => 0.004529999500449
527 => 0.0046123728482851
528 => 0.0046838953181625
529 => 0.0045794711217306
530 => 0.0046912199805333
531 => 0.0046011701266674
601 => 0.0045203860985669
602 => 0.0045205086145913
603 => 0.0044698316136976
604 => 0.0043716385387529
605 => 0.004353530229181
606 => 0.0044477319424012
607 => 0.0045232727954684
608 => 0.0045294947019433
609 => 0.0045713179996304
610 => 0.0045960685963874
611 => 0.004838658091411
612 => 0.0049362295931151
613 => 0.0050555381784647
614 => 0.0051020155963219
615 => 0.0052418959609954
616 => 0.0051289312059938
617 => 0.0051044905706675
618 => 0.0047651865604883
619 => 0.0048207475731469
620 => 0.0049097061152538
621 => 0.0047666534540821
622 => 0.0048573874414119
623 => 0.0048753002525194
624 => 0.0047617925793953
625 => 0.0048224219319879
626 => 0.0046614083468522
627 => 0.004327543474087
628 => 0.004450069078315
629 => 0.0045402891646992
630 => 0.0044115339773725
701 => 0.0046423226671418
702 => 0.0045075006790241
703 => 0.0044647685813876
704 => 0.0042980554334146
705 => 0.0043767376218803
706 => 0.0044831564084006
707 => 0.0044174019708429
708 => 0.0045538523018536
709 => 0.0047471023605388
710 => 0.0048848238605978
711 => 0.0048953964072777
712 => 0.0048068507093636
713 => 0.004948745755362
714 => 0.0049497793058618
715 => 0.0047897211143173
716 => 0.0046916863632041
717 => 0.0046694126614842
718 => 0.0047250567353968
719 => 0.0047926189135893
720 => 0.0048991456379585
721 => 0.0049635175064479
722 => 0.0051313651992674
723 => 0.0051767799723738
724 => 0.0052266770391189
725 => 0.0052933549079759
726 => 0.0053734187853934
727 => 0.005198243579643
728 => 0.0052052036171349
729 => 0.005042082891006
730 => 0.0048677650012588
731 => 0.0050000505505452
801 => 0.005172996309028
802 => 0.005133322360944
803 => 0.0051288582313193
804 => 0.0051363656591017
805 => 0.0051064527978764
806 => 0.0049711580351765
807 => 0.0049032138523386
808 => 0.0049908791826091
809 => 0.005037469404113
810 => 0.0051097267745711
811 => 0.0051008195284941
812 => 0.0052869467549192
813 => 0.0053592701669129
814 => 0.0053407667432316
815 => 0.0053441718184987
816 => 0.0054751099012968
817 => 0.0056207399788388
818 => 0.0057571417640381
819 => 0.0058958955185359
820 => 0.0057286224518376
821 => 0.0056436915045367
822 => 0.0057313185628665
823 => 0.0056848224122766
824 => 0.0059520030852204
825 => 0.0059705020953214
826 => 0.0062376634480615
827 => 0.0064912313847939
828 => 0.0063319699068737
829 => 0.006482146307258
830 => 0.0066445743283351
831 => 0.0069579243339895
901 => 0.0068523990758712
902 => 0.0067715683819442
903 => 0.0066951837667543
904 => 0.0068541280252484
905 => 0.0070586072746045
906 => 0.0071026501464379
907 => 0.00717401642448
908 => 0.007098983509372
909 => 0.0071893523910151
910 => 0.0075083942533138
911 => 0.0074221863258602
912 => 0.0072997572102604
913 => 0.007551610119439
914 => 0.0076427547082173
915 => 0.0082824551650555
916 => 0.0090901034165216
917 => 0.0087557317371103
918 => 0.0085481764455931
919 => 0.0085969568623769
920 => 0.0088918826631937
921 => 0.008986603469939
922 => 0.0087291196649851
923 => 0.008820067297822
924 => 0.0093211976965272
925 => 0.0095900380772444
926 => 0.0092249167301502
927 => 0.0082175614144398
928 => 0.0072887338079266
929 => 0.0075351007148261
930 => 0.0075071703532389
1001 => 0.0080455724493572
1002 => 0.0074201302953013
1003 => 0.0074306611371398
1004 => 0.0079801968184281
1005 => 0.0078335901200871
1006 => 0.0075961060447418
1007 => 0.0072904677044922
1008 => 0.0067254669644161
1009 => 0.0062250300527195
1010 => 0.0072065020802943
1011 => 0.0071641792217742
1012 => 0.0071028894507409
1013 => 0.0072392832039297
1014 => 0.0079015725533721
1015 => 0.0078863046402461
1016 => 0.0077891779666957
1017 => 0.0078628476925484
1018 => 0.0075831913856119
1019 => 0.0076552651835652
1020 => 0.0072885866768882
1021 => 0.0074543406757533
1022 => 0.0075955965105756
1023 => 0.0076239557107446
1024 => 0.0076878504367819
1025 => 0.0071418769984997
1026 => 0.0073870030433504
1027 => 0.0075309916294959
1028 => 0.0068804459589411
1029 => 0.0075181324332528
1030 => 0.0071323728156205
1031 => 0.0070014402074811
1101 => 0.0071777237152814
1102 => 0.0071090258608503
1103 => 0.0070499634796838
1104 => 0.0070170056561723
1105 => 0.0071464488086001
1106 => 0.0071404101308213
1107 => 0.0069286160096162
1108 => 0.006652339212337
1109 => 0.0067450667739806
1110 => 0.00671137798151
1111 => 0.0065892854516556
1112 => 0.0066715610752692
1113 => 0.0063092608676152
1114 => 0.0056859421910726
1115 => 0.006097725601564
1116 => 0.0060818723881943
1117 => 0.0060738784791272
1118 => 0.006383322331254
1119 => 0.0063535764449564
1120 => 0.0062995873700536
1121 => 0.0065882938999563
1122 => 0.006482912132891
1123 => 0.0068076739079192
1124 => 0.0070215830172274
1125 => 0.0069673287478721
1126 => 0.0071685112990889
1127 => 0.0067472030297176
1128 => 0.0068871447368488
1129 => 0.0069159865287377
1130 => 0.006584731306192
1201 => 0.0063584432398283
1202 => 0.0063433524056746
1203 => 0.0059510000830163
1204 => 0.0061605915268231
1205 => 0.0063450233238898
1206 => 0.0062566948055805
1207 => 0.0062287326354231
1208 => 0.0063715852985021
1209 => 0.0063826861738736
1210 => 0.0061295850389842
1211 => 0.0061822127795982
1212 => 0.0064016792065928
1213 => 0.0061766827887308
1214 => 0.0057395515017812
1215 => 0.0056311368988049
1216 => 0.0056166723922902
1217 => 0.0053226433905477
1218 => 0.0056383816809803
1219 => 0.0055005534559464
1220 => 0.005935951167393
1221 => 0.0056872543296994
1222 => 0.0056765335060905
1223 => 0.0056603274088028
1224 => 0.0054072445008179
1225 => 0.0054626535734087
1226 => 0.0056468417697407
1227 => 0.0057125621932204
1228 => 0.00570570701462
1229 => 0.0056459391470951
1230 => 0.005673300570787
1231 => 0.0055851598917235
]
'min_raw' => 0.0030839443078373
'max_raw' => 0.0095900380772444
'avg_raw' => 0.0063369911925409
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.003083'
'max' => '$0.00959'
'avg' => '$0.006336'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.0017568215574919
'max_diff' => 0.0059896819401858
'year' => 2033
]
8 => [
'items' => [
101 => 0.0055540355834566
102 => 0.0054557987051509
103 => 0.0053114176326716
104 => 0.0053314947063405
105 => 0.0050454380223965
106 => 0.0048895791588065
107 => 0.0048464394795516
108 => 0.0047887512975206
109 => 0.0048529555132144
110 => 0.005044627659752
111 => 0.0048134303855133
112 => 0.0044170588754343
113 => 0.0044408814785743
114 => 0.0044944037948353
115 => 0.0043946653125684
116 => 0.004300271209519
117 => 0.0043823392236848
118 => 0.004214391389591
119 => 0.0045146994882053
120 => 0.0045065769957415
121 => 0.0046185132839767
122 => 0.004688509342174
123 => 0.0045271910895221
124 => 0.0044866199852311
125 => 0.0045097311300892
126 => 0.0041277553862971
127 => 0.0045872977165016
128 => 0.0045912718576561
129 => 0.0045572428483201
130 => 0.0048019349523763
131 => 0.0053183116133162
201 => 0.0051240299422675
202 => 0.0050487982070429
203 => 0.0049057826233868
204 => 0.0050963423971835
205 => 0.0050817103797514
206 => 0.005015538847896
207 => 0.0049755180989621
208 => 0.005049257555976
209 => 0.0049663809641996
210 => 0.0049514940510201
211 => 0.0048612955542738
212 => 0.0048290987947055
213 => 0.004805261595711
214 => 0.0047790191818129
215 => 0.00483690340767
216 => 0.0047057301365737
217 => 0.0045475480307059
218 => 0.0045343969001571
219 => 0.0045707083278616
220 => 0.0045546432241702
221 => 0.0045343199866213
222 => 0.0044955173914361
223 => 0.0044840054903309
224 => 0.0045214135841423
225 => 0.0044791820272566
226 => 0.0045414969899135
227 => 0.004524550768115
228 => 0.0044298905507003
301 => 0.0043119088721005
302 => 0.004310858587686
303 => 0.0042854396285604
304 => 0.0042530647623479
305 => 0.0042440588152041
306 => 0.004375427684438
307 => 0.0046473573122128
308 => 0.0045939710195561
309 => 0.0046325480872479
310 => 0.0048223090791643
311 => 0.0048826283921824
312 => 0.0048398151725434
313 => 0.0047812097968971
314 => 0.0047837881359982
315 => 0.0049840604456352
316 => 0.0049965511839283
317 => 0.0050281112499299
318 => 0.0050686748536156
319 => 0.004846723329653
320 => 0.0047733342391793
321 => 0.0047385584166412
322 => 0.0046314623431607
323 => 0.004746956276686
324 => 0.0046796629075642
325 => 0.0046887430821275
326 => 0.0046828296065311
327 => 0.0046860587640742
328 => 0.0045146155459714
329 => 0.0045770804438578
330 => 0.0044732204358555
331 => 0.0043341635439735
401 => 0.0043336973765122
402 => 0.0043677313537986
403 => 0.004347486612359
404 => 0.0042930085336849
405 => 0.0043007468876313
406 => 0.0042329507643824
407 => 0.0043089785644822
408 => 0.0043111587697485
409 => 0.0042818839254478
410 => 0.0043990152413161
411 => 0.0044470040369974
412 => 0.0044277347073508
413 => 0.0044456520494613
414 => 0.0045961894610406
415 => 0.0046207336275358
416 => 0.0046316345249963
417 => 0.0046170287664914
418 => 0.0044484035969996
419 => 0.0044558828403161
420 => 0.0044010051154152
421 => 0.0043546392207461
422 => 0.0043564936133757
423 => 0.0043803317103801
424 => 0.0044844340780838
425 => 0.0047035113737467
426 => 0.0047118251969737
427 => 0.0047219017932561
428 => 0.0046809152120839
429 => 0.0046685532670136
430 => 0.0046848618634501
501 => 0.0047671357771641
502 => 0.0049787666203861
503 => 0.0049039621460427
504 => 0.0048431449440004
505 => 0.0048964980263914
506 => 0.0048882847375526
507 => 0.0048189563141913
508 => 0.0048170104962531
509 => 0.004683947086185
510 => 0.0046347565731901
511 => 0.0045936492986855
512 => 0.0045487612280591
513 => 0.0045221500751299
514 => 0.0045630369005818
515 => 0.0045723882013213
516 => 0.0044829884428915
517 => 0.0044708035861609
518 => 0.0045438093587226
519 => 0.0045116822401477
520 => 0.0045447257783161
521 => 0.0045523921626134
522 => 0.0045511576981698
523 => 0.0045176132966016
524 => 0.0045389934978527
525 => 0.004488422948149
526 => 0.0044334350707973
527 => 0.0043983562309127
528 => 0.0043677452905804
529 => 0.0043847300193951
530 => 0.0043241825624599
531 => 0.0043048122124068
601 => 0.0045317503667386
602 => 0.0046993920213397
603 => 0.0046969544452884
604 => 0.0046821163279699
605 => 0.0046600698954368
606 => 0.0047655229433055
607 => 0.0047287852100283
608 => 0.0047555149805278
609 => 0.0047623188289649
610 => 0.0047829120289958
611 => 0.0047902723279615
612 => 0.0047680243924308
613 => 0.0046933576034334
614 => 0.004507295064357
615 => 0.0044206824501507
616 => 0.0043920988448155
617 => 0.0043931378045814
618 => 0.0043644786561161
619 => 0.0043729200597521
620 => 0.0043615430804229
621 => 0.0043399978339602
622 => 0.0043833996611389
623 => 0.0043884013174053
624 => 0.0043782708123285
625 => 0.0043806569130037
626 => 0.0042967806577638
627 => 0.0043031575872801
628 => 0.0042676500333926
629 => 0.0042609927950887
630 => 0.0041712327908577
701 => 0.0040122099324417
702 => 0.0041003240327265
703 => 0.0039938945902999
704 => 0.0039535881477838
705 => 0.0041443925777174
706 => 0.0041252411050432
707 => 0.0040924621087699
708 => 0.0040439751415403
709 => 0.004025990853744
710 => 0.0039167240142271
711 => 0.0039102679464325
712 => 0.0039644235425499
713 => 0.003939432598322
714 => 0.0039043358478153
715 => 0.0037772189751806
716 => 0.0036342975233891
717 => 0.0036386114236465
718 => 0.0036840720783132
719 => 0.0038162550629613
720 => 0.0037646088840705
721 => 0.0037271389887135
722 => 0.0037201220036541
723 => 0.0038079542627262
724 => 0.0039322553107404
725 => 0.0039905745813895
726 => 0.0039327819553588
727 => 0.0038663928983508
728 => 0.0038704336926336
729 => 0.0038973152866894
730 => 0.0039001401621394
731 => 0.0038569277109325
801 => 0.0038690917628289
802 => 0.0038506134556941
803 => 0.0037372121189161
804 => 0.0037351610483333
805 => 0.0037073305314444
806 => 0.0037064878344536
807 => 0.0036591411825778
808 => 0.0036525170586884
809 => 0.0035585074076527
810 => 0.0036203848446519
811 => 0.0035788807086241
812 => 0.0035163241857943
813 => 0.0035055394176794
814 => 0.0035052152145269
815 => 0.0035694467760906
816 => 0.0036196342614576
817 => 0.0035796026908398
818 => 0.0035704882781895
819 => 0.0036678063600465
820 => 0.0036554217470562
821 => 0.0036446967520788
822 => 0.0039211255152366
823 => 0.0037023105791918
824 => 0.0036068947775564
825 => 0.0034887996040632
826 => 0.0035272519880401
827 => 0.0035353544703271
828 => 0.0032513568663311
829 => 0.0031361390737596
830 => 0.00309660066924
831 => 0.0030738457584479
901 => 0.003084215457034
902 => 0.0029805059300205
903 => 0.0030502004473709
904 => 0.0029603967633252
905 => 0.0029453408834485
906 => 0.0031059209950638
907 => 0.0031282647794997
908 => 0.0030329392534266
909 => 0.0030941536729663
910 => 0.0030719564734971
911 => 0.002961936189736
912 => 0.0029577342241507
913 => 0.0029025299131594
914 => 0.0028161458561189
915 => 0.0027766660240577
916 => 0.0027561045847406
917 => 0.0027645886353373
918 => 0.0027602988397394
919 => 0.0027323050217334
920 => 0.0027619034126191
921 => 0.0026862917548056
922 => 0.0026561825834198
923 => 0.0026425829692323
924 => 0.0025754732708782
925 => 0.0026822746447778
926 => 0.0027033158608843
927 => 0.0027243985346865
928 => 0.0029079088163818
929 => 0.002898741161303
930 => 0.0029816122983864
1001 => 0.0029783920783896
1002 => 0.00295475588767
1003 => 0.0028550386869886
1004 => 0.002894784185892
1005 => 0.0027724537180892
1006 => 0.0028641120222303
1007 => 0.0028222829999626
1008 => 0.0028499695877254
1009 => 0.0028001866065289
1010 => 0.0028277385638119
1011 => 0.0027083055138008
1012 => 0.0025967806121688
1013 => 0.0026416614882004
1014 => 0.0026904521331974
1015 => 0.0027962426831761
1016 => 0.0027332347043619
1017 => 0.002755894756139
1018 => 0.0026799873759327
1019 => 0.0025233687686958
1020 => 0.0025242552130041
1021 => 0.0025001628524025
1022 => 0.0024793435353005
1023 => 0.0027404719286772
1024 => 0.0027079964851318
1025 => 0.0026562511161232
1026 => 0.0027255143488205
1027 => 0.0027438286469009
1028 => 0.0027443500292204
1029 => 0.0027948826958536
1030 => 0.0028218519890942
1031 => 0.0028266054439194
1101 => 0.0029061196866972
1102 => 0.0029327718120581
1103 => 0.0030425481444696
1104 => 0.0028195638329867
1105 => 0.0028149716178306
1106 => 0.0027264890245457
1107 => 0.0026703719650299
1108 => 0.002730331407621
1109 => 0.0027834472884765
1110 => 0.0027281394830238
1111 => 0.0027353615148044
1112 => 0.0026611153047979
1113 => 0.0026876548312664
1114 => 0.0027105142467213
1115 => 0.0026978926211214
1116 => 0.0026789974367048
1117 => 0.0027790923919718
1118 => 0.0027734446423204
1119 => 0.0028666553658381
1120 => 0.0029393197903829
1121 => 0.0030695474294869
1122 => 0.0029336480991616
1123 => 0.0029286953874136
1124 => 0.0029771089391899
1125 => 0.0029327644001956
1126 => 0.0029607886181185
1127 => 0.0030650322947268
1128 => 0.0030672347993485
1129 => 0.0030303400091681
1130 => 0.0030280949578326
1201 => 0.0030351810058716
1202 => 0.0030766842105642
1203 => 0.0030621817155799
1204 => 0.003078964369934
1205 => 0.0030999513361888
1206 => 0.0031867623269082
1207 => 0.0032076921628734
1208 => 0.0031568435123537
1209 => 0.0031614345761674
1210 => 0.0031424157850464
1211 => 0.0031240438711282
1212 => 0.0031653412506137
1213 => 0.0032408130233254
1214 => 0.0032403435173444
1215 => 0.0032578515016519
1216 => 0.0032687588308315
1217 => 0.0032219365893397
1218 => 0.0031914570318301
1219 => 0.0032031448336439
1220 => 0.0032218338832714
1221 => 0.0031970842267344
1222 => 0.0030443178814319
1223 => 0.0030906574318448
1224 => 0.0030829442647678
1225 => 0.0030719597768971
1226 => 0.0031185545531704
1227 => 0.0031140603733301
1228 => 0.0029794422389217
1229 => 0.002988060055119
1230 => 0.0029799663168677
1231 => 0.0030061188409807
]
'min_raw' => 0.0024793435353005
'max_raw' => 0.0055540355834566
'avg_raw' => 0.0040166895593786
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.002479'
'max' => '$0.005554'
'avg' => '$0.004016'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.00060460077253674
'max_diff' => -0.0040360024937878
'year' => 2034
]
9 => [
'items' => [
101 => 0.0029313520780682
102 => 0.0029543498307783
103 => 0.0029687738056875
104 => 0.0029772696377192
105 => 0.0030079624086643
106 => 0.0030043609662486
107 => 0.0030077385379471
108 => 0.0030532478146676
109 => 0.0032834181194222
110 => 0.0032959457812679
111 => 0.0032342549925629
112 => 0.0032588992458535
113 => 0.0032115876686413
114 => 0.0032433482473839
115 => 0.0032650780287284
116 => 0.0031668853252293
117 => 0.0031610709905935
118 => 0.0031135641416724
119 => 0.0031390916313571
120 => 0.0030984755597772
121 => 0.0031084413230531
122 => 0.0030805761801342
123 => 0.0031307278894935
124 => 0.003186805293345
125 => 0.0032009726601217
126 => 0.0031637044175672
127 => 0.0031367197538608
128 => 0.0030893435736933
129 => 0.0031681312171589
130 => 0.0031911711251182
131 => 0.0031680101983308
201 => 0.0031626433055179
202 => 0.0031524730533353
203 => 0.0031648009725963
204 => 0.0031910456448314
205 => 0.0031786691420683
206 => 0.0031868440401892
207 => 0.0031556897584707
208 => 0.0032219520894499
209 => 0.0033271926179432
210 => 0.0033275309834509
211 => 0.0033151544139739
212 => 0.0033100901884008
213 => 0.0033227892997573
214 => 0.0033296780467233
215 => 0.0033707446442313
216 => 0.0034148107395228
217 => 0.0036204479787044
218 => 0.0035627058648129
219 => 0.003745159456829
220 => 0.00388945655948
221 => 0.0039327249512174
222 => 0.0038929200667541
223 => 0.0037567497072227
224 => 0.0037500685397491
225 => 0.0039535645465319
226 => 0.0038960676039082
227 => 0.0038892285255368
228 => 0.0038164722864711
301 => 0.0038594802347945
302 => 0.0038500737656076
303 => 0.0038352251938159
304 => 0.0039172813632573
305 => 0.0040708831872466
306 => 0.0040469429025091
307 => 0.0040290725905104
308 => 0.0039507700853016
309 => 0.003997925682935
310 => 0.0039811344778238
311 => 0.0040532801509438
312 => 0.0040105426524098
313 => 0.003895632008018
314 => 0.0039139319068878
315 => 0.0039111659139879
316 => 0.0039680898518673
317 => 0.0039510026986549
318 => 0.0039078293730842
319 => 0.0040703581929109
320 => 0.0040598044753842
321 => 0.0040747672339214
322 => 0.0040813543029681
323 => 0.0041802827315176
324 => 0.0042208105433377
325 => 0.00423001106616
326 => 0.0042685093528557
327 => 0.0042290531937159
328 => 0.0043869059620396
329 => 0.0044918688420105
330 => 0.004613788628437
331 => 0.0047919462053555
401 => 0.0048589351023265
402 => 0.0048468341576831
403 => 0.0049819111992183
404 => 0.0052246416402632
405 => 0.0048958969197471
406 => 0.0052420659087051
407 => 0.0051324728035142
408 => 0.0048726295226023
409 => 0.0048558986786626
410 => 0.0050318675653386
411 => 0.0054221496196084
412 => 0.0053243883915563
413 => 0.0054223095219555
414 => 0.0053080793219577
415 => 0.0053024068297201
416 => 0.0054167616161082
417 => 0.0056839578076589
418 => 0.0055570229127527
419 => 0.0053750306151913
420 => 0.0055094108955968
421 => 0.0053929982604017
422 => 0.0051306880114622
423 => 0.0053243136353876
424 => 0.005194841694809
425 => 0.0052326284901768
426 => 0.0055047592517753
427 => 0.0054720157585711
428 => 0.0055143888707432
429 => 0.0054396014368568
430 => 0.0053697381807112
501 => 0.0052393332250017
502 => 0.0052007267465028
503 => 0.0052113961882443
504 => 0.0052007214592573
505 => 0.0051277610850213
506 => 0.0051120052991516
507 => 0.0050857449657587
508 => 0.0050938841411445
509 => 0.0050445070316343
510 => 0.0051376918391114
511 => 0.0051549877605209
512 => 0.0052227998924346
513 => 0.005229840372928
514 => 0.0054186961950626
515 => 0.005314677581824
516 => 0.0053844622481194
517 => 0.0053782200507272
518 => 0.0048782611144134
519 => 0.0049471510446624
520 => 0.0050543221572788
521 => 0.0050060417163121
522 => 0.0049377844686685
523 => 0.0048826630814742
524 => 0.0047991485434236
525 => 0.0049166936519752
526 => 0.0050712529701918
527 => 0.0052337602522997
528 => 0.0054290021038535
529 => 0.0053854263954524
530 => 0.0052301103416923
531 => 0.0052370777064055
601 => 0.0052801472135058
602 => 0.0052243682885336
603 => 0.0052079179946254
604 => 0.0052778871957342
605 => 0.0052783690351679
606 => 0.0052141886408791
607 => 0.0051428638775154
608 => 0.0051425650241526
609 => 0.0051298734714275
610 => 0.0053103371209931
611 => 0.0054095738813212
612 => 0.0054209512159648
613 => 0.0054088080960498
614 => 0.0054134815009619
615 => 0.0053557378166597
616 => 0.0054877227556167
617 => 0.0056088451875613
618 => 0.0055763817883968
619 => 0.0055277145381052
620 => 0.0054889487291155
621 => 0.005567249795794
622 => 0.0055637631725521
623 => 0.0056077872887832
624 => 0.0056057901005753
625 => 0.0055909864461176
626 => 0.0055763823170819
627 => 0.0056342860379323
628 => 0.0056176106962327
629 => 0.0056009094531216
630 => 0.0055674125532299
701 => 0.0055719653382498
702 => 0.005523306491045
703 => 0.0055007946818507
704 => 0.0051622710849518
705 => 0.0050718065182827
706 => 0.0051002685125329
707 => 0.0051096389400554
708 => 0.0050702686447075
709 => 0.0051267155348373
710 => 0.0051179183468026
711 => 0.0051521430592627
712 => 0.0051307609447819
713 => 0.0051316384742186
714 => 0.005194518713759
715 => 0.0052127731148093
716 => 0.005203488779104
717 => 0.0052099912095836
718 => 0.0053598369754804
719 => 0.0053385336993677
720 => 0.0053272167585229
721 => 0.0053303516284782
722 => 0.0053686404343943
723 => 0.0053793592095595
724 => 0.0053339430059896
725 => 0.0053553615501411
726 => 0.0054465589927204
727 => 0.0054784729362949
728 => 0.0055803269246228
729 => 0.0055370575400708
730 => 0.005616480368071
731 => 0.0058605990641064
801 => 0.0060556179702284
802 => 0.0058762705246615
803 => 0.0062343979102465
804 => 0.0065132514502467
805 => 0.0065025485869267
806 => 0.006453924022229
807 => 0.0061364566806437
808 => 0.0058443184997454
809 => 0.0060887044929092
810 => 0.0060893274830642
811 => 0.0060683345095162
812 => 0.0059379489537752
813 => 0.0060637973748035
814 => 0.0060737867654504
815 => 0.0060681953630815
816 => 0.0059682290632
817 => 0.0058155990001413
818 => 0.0058454225491182
819 => 0.0058942741307263
820 => 0.0058017878952346
821 => 0.0057722329390564
822 => 0.0058271812256522
823 => 0.0060042360539939
824 => 0.0059707648643047
825 => 0.0059698907962742
826 => 0.0061130947397581
827 => 0.0060105916215689
828 => 0.005845798719579
829 => 0.0058041863384752
830 => 0.0056564904190155
831 => 0.0057585045166611
901 => 0.0057621758224232
902 => 0.0057063037437015
903 => 0.0058503324308387
904 => 0.005849005181131
905 => 0.0059857389837267
906 => 0.0062471226594187
907 => 0.006169818644607
908 => 0.006079922486034
909 => 0.006089696691021
910 => 0.0061968955949348
911 => 0.0061320806905155
912 => 0.0061553885820503
913 => 0.0061968603156494
914 => 0.006221881242215
915 => 0.0060860965647384
916 => 0.0060544386610867
917 => 0.0059896777006296
918 => 0.0059727827748669
919 => 0.0060255292258775
920 => 0.0060116323995958
921 => 0.0057618672633899
922 => 0.0057357654169763
923 => 0.005736565923341
924 => 0.0056709315894588
925 => 0.0055708234762434
926 => 0.0058339016206286
927 => 0.0058127727638582
928 => 0.0057894481412273
929 => 0.0057923052744111
930 => 0.0059064985803431
1001 => 0.0058402606960024
1002 => 0.006016364967698
1003 => 0.0059801632236163
1004 => 0.0059430330414007
1005 => 0.0059379005192054
1006 => 0.0059236085668507
1007 => 0.005874596144425
1008 => 0.0058154106991561
1009 => 0.005776331341634
1010 => 0.005328360326938
1011 => 0.005411501141538
1012 => 0.0055071470702117
1013 => 0.0055401636615129
1014 => 0.0054836864974137
1015 => 0.005876826207096
1016 => 0.0059486566204435
1017 => 0.0057310776130321
1018 => 0.0056903774644377
1019 => 0.0058794945020621
1020 => 0.005765433809757
1021 => 0.0058167953325179
1022 => 0.0057057798135597
1023 => 0.0059313547773081
1024 => 0.0059296362740258
1025 => 0.005841882518286
1026 => 0.0059160513917255
1027 => 0.0059031627247591
1028 => 0.0058040889506568
1029 => 0.0059344955926619
1030 => 0.0059345602727293
1031 => 0.005850099190761
1101 => 0.0057514671379303
1102 => 0.0057338340564692
1103 => 0.0057205498982595
1104 => 0.005813528243932
1105 => 0.0058968923379263
1106 => 0.006052012249138
1107 => 0.0060910130803749
1108 => 0.0062432359211245
1109 => 0.0061525946310537
1110 => 0.0061927747409409
1111 => 0.006236395934047
1112 => 0.0062573095381383
1113 => 0.0062232319425574
1114 => 0.0064596966716625
1115 => 0.0064796615398911
1116 => 0.0064863555875127
1117 => 0.0064066210113122
1118 => 0.0064774439770882
1119 => 0.0064443082568117
1120 => 0.0065305181956028
1121 => 0.006544037014789
1122 => 0.0065325870558843
1123 => 0.006536878142474
1124 => 0.0063350972114195
1125 => 0.0063246338056651
1126 => 0.0061819645257546
1127 => 0.0062401033118762
1128 => 0.0061314156378864
1129 => 0.0061658816189157
1130 => 0.0061810738949495
1201 => 0.0061731383121035
1202 => 0.0062433903916128
1203 => 0.0061836617724782
1204 => 0.006026028126288
1205 => 0.0058683515329163
1206 => 0.0058663720317271
1207 => 0.0058248585679154
1208 => 0.0057948519371496
1209 => 0.0058006322787775
1210 => 0.005821002956616
1211 => 0.0057936679563218
1212 => 0.0057995012645543
1213 => 0.0058963730483427
1214 => 0.0059157999937235
1215 => 0.0058497796427219
1216 => 0.0055846984067594
1217 => 0.0055196468065483
1218 => 0.0055664046067507
1219 => 0.005544057389842
1220 => 0.0044744870095408
1221 => 0.0047257667052308
1222 => 0.004576464842704
1223 => 0.0046452700100048
1224 => 0.0044928714698947
1225 => 0.0045656040411271
1226 => 0.0045521729909887
1227 => 0.0049562233057515
1228 => 0.0049499146158396
1229 => 0.004952934251852
1230 => 0.0048087991573591
1231 => 0.0050384102765806
]
'min_raw' => 0.0029313520780682
'max_raw' => 0.006544037014789
'avg_raw' => 0.0047376945464286
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.002931'
'max' => '$0.006544'
'avg' => '$0.004737'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.00045200854276767
'max_diff' => 0.00099000143133239
'year' => 2035
]
10 => [
'items' => [
101 => 0.0051515249704579
102 => 0.0051305904510713
103 => 0.0051358592185844
104 => 0.0050453243364475
105 => 0.0049538108274105
106 => 0.0048523082620604
107 => 0.0050408874823847
108 => 0.0050199206922393
109 => 0.0050680109652199
110 => 0.0051903180695213
111 => 0.0052083282552291
112 => 0.0052325341274618
113 => 0.0052238580453577
114 => 0.0054305575201899
115 => 0.0054055248499407
116 => 0.0054658463828505
117 => 0.0053417604130492
118 => 0.0052013453598706
119 => 0.0052280336709659
120 => 0.0052254633719936
121 => 0.0051927405160241
122 => 0.0051631997847926
123 => 0.0051140227903416
124 => 0.0052696260776104
125 => 0.0052633088683123
126 => 0.0053655771438968
127 => 0.0053475002328062
128 => 0.0052267781963728
129 => 0.0052310898075212
130 => 0.0052600874645839
131 => 0.0053604486867674
201 => 0.0053902427306246
202 => 0.0053764409424226
203 => 0.0054091087513622
204 => 0.0054349280555741
205 => 0.0054123512584502
206 => 0.0057319910954738
207 => 0.0055992543499299
208 => 0.0056639493161317
209 => 0.0056793786843659
210 => 0.0056398566820785
211 => 0.0056484275891979
212 => 0.0056614101780513
213 => 0.0057402379153175
214 => 0.0059471047068938
215 => 0.006038724600693
216 => 0.006314367571634
217 => 0.0060311168439235
218 => 0.0060143099179492
219 => 0.0060639615406359
220 => 0.00622579314435
221 => 0.0063569424590906
222 => 0.0064004522529756
223 => 0.0064062027905059
224 => 0.0064878300563105
225 => 0.0065346172828113
226 => 0.0064779183592316
227 => 0.0064298719581225
228 => 0.0062577757130888
229 => 0.0062776963220539
301 => 0.0064149295635066
302 => 0.0066087796000561
303 => 0.0067751230980743
304 => 0.0067168754027245
305 => 0.0071612642017788
306 => 0.0072053235360395
307 => 0.0071992359606535
308 => 0.0072996096810076
309 => 0.0071003882868574
310 => 0.0070152172811255
311 => 0.0064402601353921
312 => 0.006601799641146
313 => 0.0068366067996418
314 => 0.0068055291917332
315 => 0.0066350059568202
316 => 0.0067749937409094
317 => 0.0067287094016668
318 => 0.0066922030229671
319 => 0.0068594458209
320 => 0.0066755554946173
321 => 0.0068347723529683
322 => 0.0066305750852457
323 => 0.0067171414732904
324 => 0.0066680022046912
325 => 0.0066998013337571
326 => 0.0065139042750003
327 => 0.0066142098155095
328 => 0.0065097312347411
329 => 0.0065096816982903
330 => 0.0065073753278291
331 => 0.0066302939147742
401 => 0.0066343022854815
402 => 0.0065434652640095
403 => 0.0065303742300744
404 => 0.006578778643821
405 => 0.0065221097524598
406 => 0.006548624770058
407 => 0.0065229128653315
408 => 0.006517124574002
409 => 0.0064710024838921
410 => 0.0064511318193194
411 => 0.0064589236189023
412 => 0.0064323261899779
413 => 0.0064163002769799
414 => 0.0065041873703675
415 => 0.0064572328417257
416 => 0.0064969909154304
417 => 0.006451681572575
418 => 0.0062946196498974
419 => 0.0062042916772658
420 => 0.0059076162649756
421 => 0.0059917530438764
422 => 0.0060475358153334
423 => 0.0060290996096996
424 => 0.0060687077132655
425 => 0.0060711393291407
426 => 0.0060582623309147
427 => 0.0060433524166145
428 => 0.0060360950949032
429 => 0.0060901852251273
430 => 0.0061215863663125
501 => 0.0060531343627263
502 => 0.0060370970160314
503 => 0.0061063057709957
504 => 0.0061485230715434
505 => 0.0064602318989353
506 => 0.0064371395021958
507 => 0.0064950968863578
508 => 0.0064885717743297
509 => 0.0065493203462668
510 => 0.006648618587122
511 => 0.0064467174992387
512 => 0.0064817605468809
513 => 0.0064731688008612
514 => 0.0065669712310277
515 => 0.0065672640719758
516 => 0.006511024829312
517 => 0.0065415130351376
518 => 0.0065244953550459
519 => 0.0065552486030489
520 => 0.0064368310891586
521 => 0.0065810508386963
522 => 0.0066628141433688
523 => 0.0066639494269335
524 => 0.0067027045844346
525 => 0.006742082069003
526 => 0.006817663721576
527 => 0.0067399741377347
528 => 0.0066002181393329
529 => 0.0066103080710084
530 => 0.0065283691802801
531 => 0.0065297465878368
601 => 0.0065223938783502
602 => 0.0065444599130055
603 => 0.0064416733428847
604 => 0.0064657971454452
605 => 0.0064320236805917
606 => 0.0064816871299641
607 => 0.0064282574681016
608 => 0.0064731646576611
609 => 0.006492545111978
610 => 0.0065640594056389
611 => 0.0064176947487814
612 => 0.006119247305433
613 => 0.0061819845763503
614 => 0.0060891912247573
615 => 0.0060977796027364
616 => 0.0061151294930845
617 => 0.0060588928219355
618 => 0.0060696210065695
619 => 0.0060692377203213
620 => 0.0060659347665023
621 => 0.0060513054363732
622 => 0.0060300900133612
623 => 0.0061146057288782
624 => 0.0061289665958413
625 => 0.0061608890241654
626 => 0.0062558685176678
627 => 0.0062463778264962
628 => 0.006261857537562
629 => 0.0062280654152201
630 => 0.0060993471223737
701 => 0.0061063371449577
702 => 0.0060191714513283
703 => 0.0061586600014041
704 => 0.0061256272715872
705 => 0.0061043308557837
706 => 0.0060985199314218
707 => 0.0061937348607174
708 => 0.0062222246598739
709 => 0.0062044717289189
710 => 0.0061680599495945
711 => 0.0062379813300735
712 => 0.0062566893417435
713 => 0.0062608773756315
714 => 0.0063847646557455
715 => 0.0062678012983739
716 => 0.006295955541009
717 => 0.0065156069050654
718 => 0.0063164134276826
719 => 0.0064219306551969
720 => 0.0064167661359952
721 => 0.0064707451790832
722 => 0.0064123382789318
723 => 0.0064130623024592
724 => 0.0064609920358643
725 => 0.0063936833694698
726 => 0.0063770167971066
727 => 0.0063539920467552
728 => 0.006404265746804
729 => 0.0064344025562993
730 => 0.0066772831077844
731 => 0.0068341950207426
801 => 0.0068273830607753
802 => 0.0068896316234212
803 => 0.0068615880758178
804 => 0.0067710280630921
805 => 0.0069256029621977
806 => 0.0068766889964323
807 => 0.0068807214043395
808 => 0.0068805713179158
809 => 0.0069130948290167
810 => 0.0068900489406657
811 => 0.0068446231291139
812 => 0.0068747789027558
813 => 0.0069643307695861
814 => 0.0072423025120139
815 => 0.0073978591817123
816 => 0.0072329378051754
817 => 0.0073466983623253
818 => 0.0072784825650665
819 => 0.0072660857254604
820 => 0.0073375357621897
821 => 0.0074091108627499
822 => 0.0074045518382718
823 => 0.0073525919906872
824 => 0.007323241191219
825 => 0.0075454952780316
826 => 0.0077092483031955
827 => 0.0076980814446935
828 => 0.0077473683264643
829 => 0.0078920761357291
830 => 0.0079053064042709
831 => 0.0079036396945289
901 => 0.0078708470935121
902 => 0.0080133307244169
903 => 0.0081321930760787
904 => 0.0078632565538461
905 => 0.0079656640608747
906 => 0.0080116380901436
907 => 0.0080791416049903
908 => 0.0081930313494392
909 => 0.0083167458196736
910 => 0.0083342404022249
911 => 0.0083218271587119
912 => 0.0082402341399689
913 => 0.0083756039895199
914 => 0.0084549004725733
915 => 0.0085021197135639
916 => 0.0086218598521834
917 => 0.008011922010097
918 => 0.0075801776895905
919 => 0.0075127545794798
920 => 0.0076498621251727
921 => 0.0076860162915597
922 => 0.0076714425924226
923 => 0.0071854751072162
924 => 0.0075101960612435
925 => 0.0078595685044635
926 => 0.0078729893228717
927 => 0.0080478924729809
928 => 0.0081048481081789
929 => 0.0082456680690967
930 => 0.0082368597422002
1001 => 0.0082711471617487
1002 => 0.0082632650777698
1003 => 0.008524104402229
1004 => 0.0088118489121219
1005 => 0.0088018852347158
1006 => 0.0087605185569802
1007 => 0.0088219551274843
1008 => 0.0091189382982695
1009 => 0.0090915968469619
1010 => 0.0091181567379679
1011 => 0.0094683166335617
1012 => 0.009923574307498
1013 => 0.0097120614108314
1014 => 0.010170983535401
1015 => 0.010459850686402
1016 => 0.010959416554636
1017 => 0.010896868447519
1018 => 0.011091345774039
1019 => 0.010784894281596
1020 => 0.010081219710883
1021 => 0.0099698605165097
1022 => 0.010192804443709
1023 => 0.010740890334179
1024 => 0.010175543268546
1025 => 0.010289912243614
1026 => 0.010256973971101
1027 => 0.010255218830537
1028 => 0.010322205407177
1029 => 0.010225037883976
1030 => 0.0098291599143496
1031 => 0.010010588454906
1101 => 0.0099405301824829
1102 => 0.010018265058926
1103 => 0.010437768126789
1104 => 0.010252295820783
1105 => 0.010056915812952
1106 => 0.010301965701066
1107 => 0.010613998416914
1108 => 0.010594471970333
1109 => 0.010556582502544
1110 => 0.010770163448641
1111 => 0.011122936598247
1112 => 0.011218289763028
1113 => 0.01128867751986
1114 => 0.011298382802317
1115 => 0.011398353243415
1116 => 0.010860786985833
1117 => 0.011713918442296
1118 => 0.011861230677546
1119 => 0.011833542082786
1120 => 0.01199727343242
1121 => 0.011949099515894
1122 => 0.011879303069104
1123 => 0.012138852084931
1124 => 0.011841300082811
1125 => 0.011418962476557
1126 => 0.011187259712876
1127 => 0.01149238460302
1128 => 0.011678713726041
1129 => 0.011801865423599
1130 => 0.01183913105287
1201 => 0.010902516724155
1202 => 0.010397733547989
1203 => 0.01072129377656
1204 => 0.011116059586351
1205 => 0.010858594041828
1206 => 0.010868686203726
1207 => 0.010501607997991
1208 => 0.011148537862385
1209 => 0.011054285622679
1210 => 0.011543266409001
1211 => 0.01142656722003
1212 => 0.01182531206915
1213 => 0.011720309186982
1214 => 0.012156170280232
1215 => 0.012330047070797
1216 => 0.012622013263918
1217 => 0.012836784784094
1218 => 0.012962902728666
1219 => 0.01295533108033
1220 => 0.013455073208434
1221 => 0.013160392735151
1222 => 0.012790204609853
1223 => 0.012783509074595
1224 => 0.012975234750293
1225 => 0.013377039169187
1226 => 0.013481221208989
1227 => 0.013539444756463
1228 => 0.01345027336673
1229 => 0.013130418832921
1230 => 0.012992307266922
1231 => 0.013109982322631
]
'min_raw' => 0.0048523082620604
'max_raw' => 0.013539444756463
'avg_raw' => 0.0091958765092619
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.004852'
'max' => '$0.013539'
'avg' => '$0.009195'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.0019209561839922
'max_diff' => 0.0069954077416743
'year' => 2036
]
11 => [
'items' => [
101 => 0.012966075841432
102 => 0.013214498801008
103 => 0.013555636584788
104 => 0.013485192981442
105 => 0.013720675385931
106 => 0.013964374901106
107 => 0.014312876153035
108 => 0.014403987285253
109 => 0.014554590522164
110 => 0.014709610723532
111 => 0.014759399034299
112 => 0.01485446036796
113 => 0.014853959347808
114 => 0.015140433075161
115 => 0.015456422467785
116 => 0.015575701148329
117 => 0.015849975897175
118 => 0.015380290001509
119 => 0.015736552148734
120 => 0.016057909523351
121 => 0.015674774013324
122 => 0.016202837054772
123 => 0.016223340546055
124 => 0.01653291892156
125 => 0.016219101929945
126 => 0.016032758402064
127 => 0.016570725184857
128 => 0.016831030365256
129 => 0.016752624326486
130 => 0.016155950500063
131 => 0.01580866074054
201 => 0.014899736452678
202 => 0.015976396534258
203 => 0.016500806253391
204 => 0.016154592405578
205 => 0.016329202532358
206 => 0.017281818766544
207 => 0.017644513351188
208 => 0.017569075413008
209 => 0.017581823182747
210 => 0.017777526597248
211 => 0.018645383312988
212 => 0.018125343452156
213 => 0.01852289444024
214 => 0.018733754050843
215 => 0.018929612208506
216 => 0.018448646474894
217 => 0.017822917122255
218 => 0.017624722369943
219 => 0.016120168261543
220 => 0.016041849686253
221 => 0.015997887096647
222 => 0.015720709187815
223 => 0.015502923276892
224 => 0.015329731834653
225 => 0.014875225770876
226 => 0.015028608225236
227 => 0.014304220422363
228 => 0.014767658067913
301 => 0.013611517643574
302 => 0.014574385743862
303 => 0.014050340413116
304 => 0.014402222758558
305 => 0.014400995074204
306 => 0.013753068111846
307 => 0.013379357361848
308 => 0.013617500396786
309 => 0.013872808634058
310 => 0.013914231536595
311 => 0.014245245330445
312 => 0.014337624165191
313 => 0.014057711983156
314 => 0.013587559203047
315 => 0.013696764970823
316 => 0.01337714431045
317 => 0.012817021397176
318 => 0.013219311452297
319 => 0.01335667096456
320 => 0.013417336750375
321 => 0.012866520195721
322 => 0.01269344167544
323 => 0.012601296123512
324 => 0.013516455702699
325 => 0.013566590210303
326 => 0.013310094981097
327 => 0.014469477738985
328 => 0.014207073713886
329 => 0.014500243300469
330 => 0.013686855692038
331 => 0.013717928194052
401 => 0.013332857465106
402 => 0.01354847134288
403 => 0.013396082403629
404 => 0.013531051872294
405 => 0.013611952015312
406 => 0.01399695955794
407 => 0.014578781911553
408 => 0.013939452269941
409 => 0.013660887189722
410 => 0.013833707398781
411 => 0.014293950389484
412 => 0.014991242079806
413 => 0.014578431364832
414 => 0.014761629750157
415 => 0.014801650447421
416 => 0.014497259109284
417 => 0.015002465422622
418 => 0.015273209590229
419 => 0.015550937083582
420 => 0.015792080084313
421 => 0.015440006615378
422 => 0.015816775694888
423 => 0.015513166325499
424 => 0.015240797334597
425 => 0.015241210405927
426 => 0.015070349359259
427 => 0.014739284551461
428 => 0.014678231121458
429 => 0.014995838774533
430 => 0.015250530034743
501 => 0.015271507626823
502 => 0.015412517794985
503 => 0.015495966159982
504 => 0.016313873579512
505 => 0.016642842709732
506 => 0.017045099935098
507 => 0.017201801794353
508 => 0.017673418209985
509 => 0.017292549651549
510 => 0.017210146343156
511 => 0.016066159183388
512 => 0.016253487016712
513 => 0.016553416952313
514 => 0.016071104917555
515 => 0.016377020890681
516 => 0.016437415183963
517 => 0.016054716139172
518 => 0.016259132234445
519 => 0.01571626369055
520 => 0.014590614962321
521 => 0.01500371859144
522 => 0.01530790191165
523 => 0.014873794808178
524 => 0.015651914988887
525 => 0.015197353242977
526 => 0.015053278992336
527 => 0.014491193974405
528 => 0.014756476466232
529 => 0.015115274834908
530 => 0.014893579157854
531 => 0.015353630975514
601 => 0.016005187040659
602 => 0.016469524693517
603 => 0.016505170772799
604 => 0.016206632770219
605 => 0.016685041824598
606 => 0.016688526512268
607 => 0.01614887914457
608 => 0.015818348136624
609 => 0.015743250796175
610 => 0.015930858676317
611 => 0.016158649277133
612 => 0.016517811565803
613 => 0.016734845814715
614 => 0.017300756029807
615 => 0.017453875108094
616 => 0.017622106552327
617 => 0.017846915642479
618 => 0.018116856595073
619 => 0.017526241158543
620 => 0.017549707410882
621 => 0.016999734494013
622 => 0.016412009558244
623 => 0.016858019523545
624 => 0.017441118222957
625 => 0.017307354737045
626 => 0.01729230361234
627 => 0.01731761542926
628 => 0.017216762129189
629 => 0.016760606390768
630 => 0.016531527834619
701 => 0.016827097616224
702 => 0.016984179800849
703 => 0.017227800570197
704 => 0.017197769168165
705 => 0.017825310107045
706 => 0.018069153540041
707 => 0.018006767955232
708 => 0.01801824840423
709 => 0.018459715292188
710 => 0.018950717266188
711 => 0.019410605408257
712 => 0.019878423379024
713 => 0.019314450556018
714 => 0.019028099937503
715 => 0.019323540682588
716 => 0.019166775664617
717 => 0.020067593957406
718 => 0.020129964661521
719 => 0.021030717814894
720 => 0.021885639817135
721 => 0.021348678625046
722 => 0.021855008843923
723 => 0.022402646257347
724 => 0.02345912767881
725 => 0.023103341903526
726 => 0.022830815575532
727 => 0.022573279512415
728 => 0.023109171177062
729 => 0.023798587242551
730 => 0.023947080859913
731 => 0.024187697248966
801 => 0.023934718537049
802 => 0.024239403530862
803 => 0.025315075444394
804 => 0.025024419398139
805 => 0.024611641087166
806 => 0.02546078075427
807 => 0.025768081098848
808 => 0.027924875851538
809 => 0.030647918319556
810 => 0.029520560857336
811 => 0.028820773700938
812 => 0.028985240281865
813 => 0.02997960321038
814 => 0.030298961023517
815 => 0.02943083639817
816 => 0.029737472692041
817 => 0.031427068819082
818 => 0.032333482932507
819 => 0.03110245081882
820 => 0.0277060820406
821 => 0.024574474916568
822 => 0.025405118143968
823 => 0.025310948979841
824 => 0.027126209236938
825 => 0.025017487347562
826 => 0.02505299281606
827 => 0.02690579073288
828 => 0.02641149601367
829 => 0.025610801873035
830 => 0.024580320869896
831 => 0.022675381427638
901 => 0.020988123440463
902 => 0.02429722490562
903 => 0.024154530433232
904 => 0.023947887691078
905 => 0.024407748752662
906 => 0.026640703533873
907 => 0.026589226698797
908 => 0.026261757337754
909 => 0.026510139961922
910 => 0.025567259198106
911 => 0.025810261039937
912 => 0.024573978854
913 => 0.025132830033748
914 => 0.025609083943019
915 => 0.025704698966365
916 => 0.025920124496187
917 => 0.024079336930371
918 => 0.024905796504739
919 => 0.02539126407589
920 => 0.023197903927966
921 => 0.025347908397956
922 => 0.024047292914232
923 => 0.023605844484468
924 => 0.024200196638738
925 => 0.023968577026192
926 => 0.023769444084486
927 => 0.023658324481475
928 => 0.024094751107318
929 => 0.024074391283579
930 => 0.023360312616943
1001 => 0.022428826105886
1002 => 0.022741463553999
1003 => 0.022627879438108
1004 => 0.022216235949476
1005 => 0.02249363395879
1006 => 0.021272113513691
1007 => 0.019170551077008
1008 => 0.020558907595279
1009 => 0.020505457379567
1010 => 0.020478505357031
1011 => 0.021521816909156
1012 => 0.021421526576712
1013 => 0.02123949864128
1014 => 0.022212892863694
1015 => 0.021857590878513
1016 => 0.022952547877164
1017 => 0.023673757373854
1018 => 0.02349083531681
1019 => 0.024169136334355
1020 => 0.022748666089365
1021 => 0.023220489325376
1022 => 0.023317731440399
1023 => 0.022200881330085
1024 => 0.021437935315411
1025 => 0.021387055514454
1026 => 0.020064212265447
1027 => 0.020770864451449
1028 => 0.021392689131876
1029 => 0.021094883365496
1030 => 0.021000606956554
1031 => 0.021482244683779
1101 => 0.021519672060133
1102 => 0.020666323912896
1103 => 0.020843762014728
1104 => 0.021583708395997
1105 => 0.020825117264427
1106 => 0.019351298610945
1107 => 0.018985771207744
1108 => 0.01893700311415
1109 => 0.017945663806326
1110 => 0.019010197496663
1111 => 0.018545500013102
1112 => 0.020013473795741
1113 => 0.019174975043999
1114 => 0.019138829038698
1115 => 0.019084189050218
1116 => 0.018230902356263
1117 => 0.018417717913041
1118 => 0.019038721276583
1119 => 0.019260302272799
1120 => 0.019237189559534
1121 => 0.019035678021315
1122 => 0.019127928971605
1123 => 0.018830756518357
1124 => 0.018725818740005
1125 => 0.018394606246118
1126 => 0.017907815379889
1127 => 0.0179755066355
1128 => 0.017011046553743
1129 => 0.016485557513431
1130 => 0.016340109072907
1201 => 0.01614560933953
1202 => 0.016362078335336
1203 => 0.01700831435951
1204 => 0.016228816607736
1205 => 0.014892422387729
1206 => 0.014972741957457
1207 => 0.01515319618354
1208 => 0.014816920927058
1209 => 0.014498664618241
1210 => 0.014775362657807
1211 => 0.014209114809417
1212 => 0.015221624530737
1213 => 0.015194238980301
1214 => 0.015571639991228
1215 => 0.015807636588409
1216 => 0.015263740836712
1217 => 0.015126952526011
1218 => 0.015204873364468
1219 => 0.013917015475578
1220 => 0.015466394526084
1221 => 0.015479793620452
1222 => 0.015365062439646
1223 => 0.016190058952329
1224 => 0.017931058916955
1225 => 0.017276024698701
1226 => 0.017022375650879
1227 => 0.016540188625554
1228 => 0.017182674207368
1229 => 0.017133341339021
1230 => 0.016910239399421
1231 => 0.016775306650231
]
'min_raw' => 0.012601296123512
'max_raw' => 0.032333482932507
'avg_raw' => 0.022467389528009
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.0126012'
'max' => '$0.032333'
'avg' => '$0.022467'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.0077489878614515
'max_diff' => 0.018794038176043
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.00039554028613849
]
1 => [
'year' => 2028
'avg' => 0.00067886195717916
]
2 => [
'year' => 2029
'avg' => 0.00185452851405
]
3 => [
'year' => 2030
'avg' => 0.0014307659867428
]
4 => [
'year' => 2031
'avg' => 0.0014051895118582
]
5 => [
'year' => 2032
'avg' => 0.002463739443702
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.00039554028613849
'min' => '$0.000395'
'max_raw' => 0.002463739443702
'max' => '$0.002463'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.002463739443702
]
1 => [
'year' => 2033
'avg' => 0.0063369911925409
]
2 => [
'year' => 2034
'avg' => 0.0040166895593786
]
3 => [
'year' => 2035
'avg' => 0.0047376945464286
]
4 => [
'year' => 2036
'avg' => 0.0091958765092619
]
5 => [
'year' => 2037
'avg' => 0.022467389528009
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.002463739443702
'min' => '$0.002463'
'max_raw' => 0.022467389528009
'max' => '$0.022467'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.022467389528009
]
]
]
]
'prediction_2025_max_price' => '$0.000676'
'last_price' => 0.00065576
'sma_50day_nextmonth' => '$0.00062'
'sma_200day_nextmonth' => '$0.00068'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'augmenter'
'sma_200day_date_nextmonth' => '4 févr. 2026'
'sma_50day_date_nextmonth' => '4 févr. 2026'
'daily_sma3' => '$0.000657'
'daily_sma3_action' => 'SELL'
'daily_sma5' => '$0.000652'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.000649'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.000647'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.000656'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.000668'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.000694'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.000655'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.000653'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.000651'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.00065'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.000657'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.000669'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.000688'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.000677'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.0007086'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.000792'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.000984'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.000654'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.000654'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.000661'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.000676'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.000713'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.000821'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.001212'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '54.45'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 118.57
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'SELL'
'vwma_10' => '0.000650'
'vwma_10_action' => 'BUY'
'hma_9' => '0.000657'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 75.49
'stochastic_fast_14_action' => 'NEUTRAL'
'cci_20' => 141.01
'cci_20_action' => 'SELL'
'adx_14' => 13.16
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.0000038'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -24.51
'williams_percent_r_14_action' => 'NEUTRAL'
'ultimate_oscillator' => 59.16
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.000015'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 19
'buy_signals' => 16
'sell_pct' => 54.29
'buy_pct' => 45.71
'overall_action' => 'bearish'
'overall_action_label' => 'Baissier'
'overall_action_dir' => -1
'last_updated' => 1767695146
'last_updated_date' => '6 janvier 2026'
]
Prévision du prix de BitKan pour 2026
La prévision du prix de BitKan pour 2026 suggère que le prix moyen pourrait varier entre $0.000226 à la baisse et $0.000676 à la hausse. Sur le marché des cryptomonnaies, comparé au prix moyen d'aujourd'hui, BitKan pourrait potentiellement gagner 3.13% d'ici 2026 si KAN atteint l'objectif de prix prévu.
Prévision du prix de BitKan de 2027 à 2032
La prévision du prix de KAN pour 2027-2032 se situe actuellement dans une fourchette de prix comprise entre $0.000395 à la baisse et $0.002463 à la hausse. Compte tenu de la volatilité des prix sur le marché, si BitKan atteint l'objectif de prix le plus élevé, il pourrait gagner 275.71% d'ici 2032 par rapport au prix actuel.
| Prévision du Prix de BitKan | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2027 | $0.000218 | $0.000395 | $0.000572 |
| 2028 | $0.000393 | $0.000678 | $0.000964 |
| 2029 | $0.000864 | $0.001854 | $0.002844 |
| 2030 | $0.000735 | $0.00143 | $0.002126 |
| 2031 | $0.000869 | $0.0014051 | $0.00194 |
| 2032 | $0.001327 | $0.002463 | $0.00360035 |
Prévision du prix de BitKan de 2032 à 2037
La prévision du prix de BitKan pour 2032-2037 est actuellement estimée entre $0.002463 à la baisse et $0.022467 à la hausse. Par rapport au prix actuel, BitKan pourrait potentiellement gagner 3326.16% d'ici 2037 s'il atteint l'objectif de prix le plus élevé. Veuillez noter que ces informations sont à titre général seulement et ne doivent pas être considérées comme un conseil en investissement à long terme.
| Prévision du Prix de BitKan | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2032 | $0.001327 | $0.002463 | $0.00360035 |
| 2033 | $0.003083 | $0.006336 | $0.00959 |
| 2034 | $0.002479 | $0.004016 | $0.005554 |
| 2035 | $0.002931 | $0.004737 | $0.006544 |
| 2036 | $0.004852 | $0.009195 | $0.013539 |
| 2037 | $0.0126012 | $0.022467 | $0.032333 |
BitKan Histogramme des prix potentiels
Prévision du prix de BitKan basée sur l'analyse technique
Au 6 janvier 2026, le sentiment global de prévision du prix pour BitKan est Baissier, avec 16 indicateurs techniques montrant des signaux haussiers et 19 indiquant des signaux baissiers. La prévision du prix de KAN a été mise à jour pour la dernière fois le 6 janvier 2026.
Moyennes Mobiles Simples sur 50 et 200 jours de BitKan et Indice de Force Relative sur 14 jours - RSI (14)
Selon nos indicateurs techniques, le SMA sur 200 jours de BitKan devrait augmenter au cours du prochain mois, atteignant $0.00068 d'ici le 4 févr. 2026. Le SMA à court terme sur 50 jours pour BitKan devrait atteindre $0.00062 d'ici le 4 févr. 2026.
Le Relative Strength Index (RSI), un oscillateur de momentum, est un outil couramment utilisé pour identifier si une cryptomonnaie est survendue (en dessous de 30) ou surachetée (au-dessus de 70). Actuellement, le RSI est à 54.45, ce qui suggère que le marché de KAN est dans un état NEUTRAL.
Moyennes Mobiles et Oscillateurs Populaires de KAN pour le Samedi 19 Octobre 2024
Les moyennes mobiles (MA) sont des indicateurs largement utilisés sur les marchés financiers, conçus pour lisser les mouvements de prix sur une période donnée. En tant qu'indicateurs retardés, ils sont basés sur des données historiques de prix. Le tableau ci-dessous met en évidence deux types : la moyenne mobile simple (SMA) et la moyenne mobile exponentielle (EMA).
Moyenne Mobile Simple Quotidienne (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 3 | $0.000657 | SELL |
| SMA 5 | $0.000652 | BUY |
| SMA 10 | $0.000649 | BUY |
| SMA 21 | $0.000647 | BUY |
| SMA 50 | $0.000656 | SELL |
| SMA 100 | $0.000668 | SELL |
| SMA 200 | $0.000694 | SELL |
Moyenne Mobile Exponentielle Quotidienne (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 3 | $0.000655 | BUY |
| EMA 5 | $0.000653 | BUY |
| EMA 10 | $0.000651 | BUY |
| EMA 21 | $0.00065 | BUY |
| EMA 50 | $0.000657 | SELL |
| EMA 100 | $0.000669 | SELL |
| EMA 200 | $0.000688 | SELL |
Moyenne Mobile Simple Hebdomadaire (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 21 | $0.000677 | SELL |
| SMA 50 | $0.0007086 | SELL |
| SMA 100 | $0.000792 | SELL |
| SMA 200 | $0.000984 | SELL |
Moyenne Mobile Exponentielle Hebdomadaire (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 21 | $0.000676 | SELL |
| EMA 50 | $0.000713 | SELL |
| EMA 100 | $0.000821 | SELL |
| EMA 200 | $0.001212 | SELL |
Oscillateurs de BitKan
Un oscillateur est un outil d'analyse technique qui établit des limites hautes et basses entre deux extrêmes, créant un indicateur de tendance qui fluctue à l'intérieur de ces limites. Les traders utilisent cet indicateur pour identifier les conditions de surachat ou de survente à court terme.
| Période | Valeur | Action |
|---|---|---|
| RSI (14) | 54.45 | NEUTRAL |
| Stoch RSI (14) | 118.57 | SELL |
| Stochastique Rapide (14) | 75.49 | NEUTRAL |
| Indice de Canal des Matières Premières (20) | 141.01 | SELL |
| Indice Directionnel Moyen (14) | 13.16 | NEUTRAL |
| Oscillateur Impressionnant (5, 34) | 0.0000038 | BUY |
| Momentum (10) | 0 | SELL |
| MACD (12, 26) | 0 | BUY |
| Plage de Pourcentage de Williams (14) | -24.51 | NEUTRAL |
| Oscillateur Ultime (7, 14, 28) | 59.16 | NEUTRAL |
| VWMA (10) | 0.000650 | BUY |
| Moyenne Mobile de Hull (9) | 0.000657 | BUY |
| Nuage Ichimoku B/L (9, 26, 52, 26) | -0.000015 | SELL |
Prévision du cours de BitKan basée sur les flux monétaires mondiaux
Définitions des flux monétaires mondiaux utilisés pour la prédiction du cours de BitKan
M0 : le total de toutes les devises physiques, plus les comptes à la banque centrale qui peuvent être échangés contre des devises physiques.
M1 : M0 plus le montant des comptes à vue, y compris les comptes de "chèques" et les comptes "courants".
M2 : M1 plus la plupart des comptes d'épargne, comptes du marché monétaire et comptes de certificats de dépôt (CD) de moins de 100 000 $.
Prédictions du cours de BitKan par des sociétés Internet ou des niches technologiques
| Comparaison | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Action Facebook | $0.000921 | $0.001294 | $0.001819 | $0.002556 | $0.003592 | $0.005047 |
| Action Amazon.com | $0.001368 | $0.002855 | $0.005957 | $0.012429 | $0.025935 | $0.054116 |
| Action Apple | $0.00093 | $0.001319 | $0.001871 | $0.002654 | $0.003765 | $0.00534 |
| Action Netflix | $0.001034 | $0.001632 | $0.002575 | $0.004064 | $0.006413 | $0.010118 |
| Action Google | $0.000849 | $0.001099 | $0.001424 | $0.001844 | $0.002388 | $0.003092 |
| Action Tesla | $0.001486 | $0.003369 | $0.007639 | $0.017317 | $0.039258 | $0.088995 |
| Action Kodak | $0.000491 | $0.000368 | $0.000276 | $0.0002073 | $0.000155 | $0.000116 |
| Action Nokia | $0.000434 | $0.000287 | $0.00019 | $0.000126 | $0.000083 | $0.000055 |
Ce calcul montre la valeur potentielle des cryptomonnaies si l'on suppose que leur capitalisation se comportera comme celle de certaines sociétés Internet ou niches technologiques. En extrapolant les données, vous pourrez obtenir une potentielle image des cours futurs pour 2024, 2025, 2026, 2027, 2028, 2029 et 2030.
Aperçu des prévisions relatives à BitKan
Vous vous posez peut-être des questions telles que : "Devrais-je investir dans BitKan maintenant ?", "Devrais-je acheter KAN aujourd'hui ?", " BitKan sera-t-il un bon ou un mauvais investissement à court ou à long terme ?".
Nous mettons régulièrement à jour les prévisions de BitKan/KAN avec de nouvelles valeurs. Regardez nos prévisions similaires. Nous faisons une prévision des cours futurs pour une grande quantité de devises numériques comme BitKan en utilisant des méthodes d'analyse technique.
Si vous souhaitez trouver des cryptomonnaies ayant un bon rendement, vous devriez consulter un maximum d'informations disponibles à propos de BitKan afin de prendre une décision responsable concernant cet investissement.
Le cours de BitKan est de $0.0006557 USD actuellement, mais ce cours peut subir une hausse ou une baisse, ce qui pourrait causer la perte de votre investissement, car les cryptomonnaies sont des actifs à haut risque.
Prévision à court terme de BitKan
basée sur l'historique des cours sur 4 heures
Prévision à long terme de BitKan
basée sur l'historique des cours sur 1 mois
Prévision du cours de BitKan basée sur le modèle de croissance du Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si BitKan présente 1 % de la précédente croissance annuelle moyenne du Bitcoin | $0.000672 | $0.00069 | $0.0007082 | $0.000726 |
| Si BitKan présente 2 % de la précédente croissance annuelle moyenne du Bitcoin | $0.000689 | $0.000725 | $0.000763 | $0.0008031 |
| Si BitKan présente 5 % de la précédente croissance annuelle moyenne du Bitcoin | $0.00074 | $0.000837 | $0.000946 | $0.001069 |
| Si BitKan présente 10 % de la précédente croissance annuelle moyenne du Bitcoin | $0.000826 | $0.00104 | $0.001311 | $0.001652 |
| Si BitKan présente 20 % de la précédente croissance annuelle moyenne du Bitcoin | $0.000996 | $0.001514 | $0.0023022 | $0.003499 |
| Si BitKan présente 50 % de la précédente croissance annuelle moyenne du Bitcoin | $0.001508 | $0.003467 | $0.007975 | $0.01834 |
| Si BitKan présente 100 % de la précédente croissance annuelle moyenne du Bitcoin | $0.00236 | $0.008495 | $0.030577 | $0.110059 |
Boîte à questions
Est-ce que KAN est un bon investissement ?
La décision d'acquérir BitKan dépend entièrement de votre tolérance individuelle au risque. Comme vous pouvez le discerner, la valeur de BitKan a connu une baisse de -1.1718% au cours des 24 heures précédentes, et BitKan a enregistré une déclin de sur une période de 30 jours précédents. Par conséquent, la détermination de si investir ou non dans BitKan dépendra de la mesure dans laquelle cet investissement s'aligne avec vos aspirations de trading.
Est-ce que BitKan peut monter ?
Il semble que la valeur moyenne de BitKan pourrait potentiellement s'envoler jusqu'à $0.000676 pour la fin de cette année. En regardant les perspectives de BitKan sur une période de cinq ans plus longue, la monnaie numérique pourrait potentiellement croître jusqu'à $0.002126. Cependant, compte tenu de l'imprévisibilité du marché, il est essentiel de mener des recherches approfondies avant d'investir des fonds dans un projet, un réseau ou un actif particulier.
Quel sera le prix de BitKan la semaine prochaine ?
Basé sur notre nouveau pronostic expérimental de BitKan, le prix de BitKan va augmenter de 0.86% durant la prochaine semaine et atteindre $0.000661 d'ici 13 janvier 2026.
Quel sera le prix de BitKan le mois prochain ?
Basé sur notre nouveau pronostic expérimental de BitKan, le prix de BitKan va diminuer de -11.62% durant le prochain mois et atteindre $0.000579 d'ici 5 février 2026.
Jusqu'où le prix de BitKan peut-il monter cette année en 2026 ?
Selon notre prédiction la plus récente sur la valeur de BitKan en 2026, KAN devrait fluctuer dans la fourchette de $0.000226 et $0.000676. Cependant, il est crucial de garder à l'esprit que le marché des cryptomonnaies est exceptionnellement instable, et cette prévision de prix de BitKan ne prend pas en compte les fluctuations de prix soudaines et extrêmes.
Où sera BitKan dans 5 ans ?
L'avenir de BitKan semble suivre une tendance haussière, avec un prix maximum de $0.002126 prévue après une période de cinq ans. Selon la prévision de BitKan pour 2030, la valeur de BitKan pourrait potentiellement atteindre son point le plus élevé d'environ $0.002126, tandis que son point le plus bas devrait être autour de $0.000735.
Combien vaudra BitKan en 2026 ?
Basé sur notre nouvelle simulation expérimentale de prédiction de prix de BitKan, il est attendu que la valeur de KAN en 2026 augmente de 3.13% jusqu'à $0.000676 si le meilleur scénario se produit. Le prix sera entre $0.000676 et $0.000226 durant 2026.
Combien vaudra BitKan en 2027 ?
Selon notre dernière simulation expérimentale pour la prédiction de prix de BitKan, le valeur de KAN pourrait diminuer de -12.62% jusqu'à $0.000572 en 2027, en supposant les conditions les plus favorables. Il est prévu que le prix fluctue entre $0.000572 et $0.000218 tout au long de l'année.
Combien vaudra BitKan en 2028 ?
Notre nouveau modèle expérimental de prédiction de prix de BitKan suggère que la valeur de KAN en 2028 pourrait augmenter de 47.02%, atteignant $0.000964 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.000964 et $0.000393 durant l'année.
Combien vaudra BitKan en 2029 ?
Basé sur notre modèle de prévision expérimental, la valeur de BitKan pourrait connaître un 333.75% croissance en 2029, atteignant potentiellement $0.002844 sous des conditions optimales. Le range de prix prévu pour 2029 se situe entre $0.002844 et $0.000864.
Combien vaudra BitKan en 2030 ?
En utilisant notre nouvelle simulation expérimentale pour les prédictions de prix de BitKan, il est prévu que la valeur de KAN en 2030 augmente de 224.23%, atteignant $0.002126 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.002126 et $0.000735 au cours de 2030.
Combien vaudra BitKan en 2031 ?
Notre simulation expérimentale indique que le prix de BitKan pourrait augmenter de 195.98% en 2031, atteignant potentiellement $0.00194 dans des conditions idéales. Il est probable que le prix fluctue entre $0.00194 et $0.000869 durant l'année.
Combien vaudra BitKan en 2032 ?
Basé sur les résultats de notre dernière prédiction expérimentale de prix de BitKan, KAN pourrait connaître une 449.04% hausse en valeur, atteignant $0.00360035 si le scénario le plus positif se réalise en 2032. Il est prévu que le prix reste dans une fourchette de $0.00360035 et $0.001327 tout au long de l'année.
Combien vaudra BitKan en 2033 ?
Selon notre prédiction expérimentale de prix de BitKan, la valeur de KAN est anticipée à augmenter de 1362.43% en 2033, avec le prix potentiel le plus élevé étant $0.00959. Tout au long de l'année, le prix de KAN pourrait osciller entre $0.00959 et $0.003083.
Combien vaudra BitKan en 2034 ?
Les résultats de notre nouvelle simulation de prédiction de prix de BitKan suggèrent que KAN pourrait augmenter de 746.96% en 2034, atteignant potentiellement $0.005554 dans les meilleures circonstances. La fourchette de prix prévue pour l'année est entre $0.005554 et $0.002479.
Combien vaudra BitKan en 2035 ?
Basé sur notre prédiction expérimentale pour le prix de BitKan, KAN pourrait augmenter de 897.93%, avec la valeur potentiellement atteignant $0.006544 en 2035. La fourchette de prix attendue pour l'année se situe entre $0.006544 et $0.002931.
Combien vaudra BitKan en 2036 ?
Notre récente simulation de prédiction de prix de BitKan suggère que la valeur de KAN pourrait augmenter de 1964.7% en 2036, pouvant atteindre $0.013539 si les conditions sont optimales. La fourchette de prix attendue pour 2036 est entre $0.013539 et $0.004852.
Combien vaudra BitKan en 2037 ?
Selon la simulation expérimentale, la valeur de BitKan pourrait augmenter de 4830.69% en 2037, avec un maximum de $0.032333 sous des conditions favorables. Il est prévu que le prix chute entre $0.032333 et $0.0126012 au cours de l'année.
Prévisions liées
Prévision du cours de Mean DAO
Prévision du cours de DinoLFG
Prévision du cours de ICE Token
Prévision du cours de Silly GoosePrévision du cours de DeHub
Prévision du cours de Crowny Token
Prévision du cours de 5ire
Prévision du cours de Giddy
Prévision du cours de Dope Wars Paper
Prévision du cours de Chumbi ValleyPrévision du cours de OccamFi
Prévision du cours de NMKR
Prévision du cours de Dypius
Prévision du cours de COMDEX
Prévision du cours de Effect Network
Prévision du cours de Sin City
Prévision du cours de Parex
Prévision du cours de Grai
Prévision du cours de MIMO Parallel Governance Token
Prévision du cours de Good Person Coin
Prévision du cours de LilAI
Prévision du cours de SavePlanetEarth
Prévision du cours de MBD Financials
Prévision du cours de RepubliK
Prévision du cours de Dogebonk
Comment lire et prédire les mouvements de prix de BitKan ?
Les traders de BitKan utilisent des indicateurs et des modèles graphiques pour prédire la direction du marché. Ils identifient également des niveaux clés de support et de résistance pour évaluer quand une tendance baissière pourrait ralentir ou une tendance haussière pourrait s'arrêter.
Indicateurs de prédiction du prix de BitKan
Les moyennes mobiles sont des outils populaires pour la prédiction du prix de BitKan. Une moyenne mobile simple (SMA) calcule le prix de clôture moyen de KAN sur une période spécifique, comme une SMA de 12 jours. Une moyenne mobile exponentielle (EMA) donne plus de poids aux prix récents, réagissant plus rapidement aux changements de prix.
Les moyennes mobiles couramment utilisées sur le marché des cryptomonnaies incluent les moyennes sur 50 jours, 100 jours et 200 jours, qui aident à identifier les niveaux clés de résistance et de support. Un mouvement de prix de KAN au-dessus de ces moyennes est considéré comme haussier, tandis qu'une chute en dessous indique une faiblesse.
Les traders utilisent également le RSI et les niveaux de retracement de Fibonacci pour évaluer la direction future de KAN.
Comment lire les graphiques de BitKan et prédire les mouvements de prix ?
La plupart des traders préfèrent les graphiques en chandeliers aux simples graphiques linéaires parce qu'ils fournissent des informations plus détaillées. Les chandeliers peuvent représenter l'action des prix de BitKan dans différentes périodes, comme 5 minutes pour les tendances à court terme et hebdomadaire pour les tendances à long terme. Les options populaires incluent les graphiques de 1 heure, 4 heures et 1 jour.
Par exemple, un graphique en chandeliers de 1 heure montre les prix d'ouverture, de clôture, les plus hauts et les plus bas de KAN au sein de chaque heure. La couleur du chandelier est cruciale : le vert indique que le prix a clôturé plus haut qu'il n'a ouvert, tandis que le rouge signifie le contraire. Certains graphiques utilisent des chandeliers creux et pleins pour transmettre la même information.
Qu'est-ce qui affecte le prix de BitKan ?
L'action du prix de BitKan est déterminée par l'offre et la demande, influencée par des facteurs tels que les réductions de récompenses de bloc, les hard forks et les mises à jour de protocole. Les événements du monde réel, tels que les réglementations, l'adoption par les entreprises et les gouvernements et les piratages d'échanges de cryptomonnaies, impactent également le prix de KAN. La capitalisation boursière de BitKan peut changer rapidement.
Les traders surveillent souvent l'activité des « baleines » de KAN, de grands détenteurs de BitKan, car leurs actions peuvent influencer significativement les mouvements de prix sur le marché relativement petit de BitKan.
Modèles de prédiction de prix haussiers et baissiers
Les traders identifient souvent des modèles de chandeliers pour obtenir un avantage dans les prédictions de prix des cryptomonnaies. Certaines formations indiquent des tendances haussières, tandis que d'autres suggèrent des mouvements baissiers.
Modèles de chandeliers haussiers couramment suivis :
- Marteau
- Englobante haussière
- Ligne pénétrante
- Étoile du matin
- Trois soldats blancs
Modèles de chandeliers baissiers courants :
- Harami baissier
- Nuage sombre
- Étoile du soir
- Étoile filante
- Pendu


