Predicción del precio de KAN - Pronóstico de KAN
Predicción de precio de KAN hasta $0.000678 para el año 2026
| Año | Precio min. | Precio max. |
|---|---|---|
| 2026 | $0.000227 | $0.000678 |
| 2027 | $0.000218 | $0.000574 |
| 2028 | $0.000394 | $0.000967 |
| 2029 | $0.000867 | $0.002853 |
| 2030 | $0.000737 | $0.002132 |
| 2031 | $0.000872 | $0.001946 |
| 2032 | $0.001331 | $0.003611 |
| 2033 | $0.003093 | $0.009619 |
| 2034 | $0.002486 | $0.00557 |
| 2035 | $0.00294 | $0.006563 |
Calculadora de ganancias de inversión
Si abres una posición corta de $10,000.00 en KAN hoy y la cierras el Apr 06, 2026, nuestra previsión indica que podrías obtener una ganancia de alrededor de $3,964.36, equivalente a un ROI del 39.64% en los próximos 90 días.
Predicción del precio a largo plazo de BitKan para 2027, 2028, 2029, 2030, 2031, 2032 y 2037
[
'name' => 'KAN'
'name_with_ticker' => 'KAN <small>KAN</small>'
'name_lang' => 'BitKan'
'name_lang_with_ticker' => 'BitKan <small>KAN</small>'
'name_with_lang' => 'BitKan/KAN'
'name_with_lang_with_ticker' => 'BitKan/KAN <small>KAN</small>'
'image' => '/uploads/coins/kan.png?1717202944'
'price_for_sd' => 0.0006577
'ticker' => 'KAN'
'marketcap' => '$3.59M'
'low24h' => '$0.0006556'
'high24h' => '$0.0006639'
'volume24h' => '$90.87K'
'current_supply' => '5.45B'
'max_supply' => '10B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.0006577'
'change_24h_pct' => '-0.7414%'
'ath_price' => '$0.02442'
'ath_days' => 2757
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '20 jun. 2018'
'ath_pct' => '-97.31%'
'fdv' => '$6.58M'
'new_prediction' => true
'change_24h_pct_is_increased' => false
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.032432'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.000663'
'next_week_prediction_price_date' => '13 de enero de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.000581'
'next_month_prediction_price_date' => '5 de febrero de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.000227'
'current_year_max_price_prediction' => '$0.000678'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.000737'
'grand_prediction_max_price' => '$0.002132'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.00067022420601824
107 => 0.00067272657991213
108 => 0.00067836455606943
109 => 0.00063018866709609
110 => 0.00065181822687533
111 => 0.00066452356682996
112 => 0.00060712037869074
113 => 0.00066338889036577
114 => 0.00062935003205075
115 => 0.00061779673229214
116 => 0.00063335172838561
117 => 0.00062728993128025
118 => 0.00062207835408974
119 => 0.00061917020447117
120 => 0.00063059207685994
121 => 0.00063005923286091
122 => 0.00061137083274298
123 => 0.00058699257662578
124 => 0.00059517471956769
125 => 0.0005922020703289
126 => 0.00058142880600812
127 => 0.00058868868539143
128 => 0.0005567198507282
129 => 0.00050171913228556
130 => 0.00053805429160634
131 => 0.00053665542749754
201 => 0.00053595005678044
202 => 0.00056325492477996
203 => 0.0005606301917523
204 => 0.00055586627560562
205 => 0.00058134131295218
206 => 0.00057204258163308
207 => 0.0006006990805019
208 => 0.00061957410404305
209 => 0.00061478678752997
210 => 0.00063253883840132
211 => 0.00059536321961547
212 => 0.00060771146894918
213 => 0.00061025642602293
214 => 0.00058102695494571
215 => 0.00056105963053624
216 => 0.0005597280376423
217 => 0.00052510744878308
218 => 0.00054360148790405
219 => 0.00055987547699515
220 => 0.00055208149913308
221 => 0.00054961415858042
222 => 0.00056221926636311
223 => 0.00056319879119328
224 => 0.00054086552126017
225 => 0.00054550931528194
226 => 0.00056487470831925
227 => 0.00054502135706389
228 => 0.00050644953860123
301 => 0.00049688319432538
302 => 0.00049560686765627
303 => 0.00046966218326383
304 => 0.00049752246319314
305 => 0.00048536070439492
306 => 0.00052377955471828
307 => 0.000501834913458
308 => 0.00050088892383347
309 => 0.00049945892176948
310 => 0.00047712726015149
311 => 0.0004820164747947
312 => 0.00049826896891713
313 => 0.00050406804191747
314 => 0.00050346315109313
315 => 0.00049818932282941
316 => 0.00050060365440217
317 => 0.00049282625119744
318 => 0.0004900798882532
319 => 0.00048141161135453
320 => 0.00046867163898611
321 => 0.00047044321028273
322 => 0.00044520199142577
323 => 0.00043144923573963
324 => 0.00042764265422411
325 => 0.00042255233433356
326 => 0.00042821761940057
327 => 0.00044513048622414
328 => 0.00042472998057005
329 => 0.0003897547445552
330 => 0.0003918568158346
331 => 0.00039657954588883
401 => 0.00038777876967675
402 => 0.00037944957358517
403 => 0.00038669113381776
404 => 0.00037187166524788
405 => 0.00039837040786465
406 => 0.00039765369113874
407 => 0.00040753078371502
408 => 0.00041370713240132
409 => 0.00039947264829604
410 => 0.0003958927140377
411 => 0.00039793200729019
412 => 0.00036422703240839
413 => 0.00040477636819318
414 => 0.00040512704053289
415 => 0.0004021243710609
416 => 0.00042371564054602
417 => 0.00046927995364544
418 => 0.00045213682623719
419 => 0.00044549848915095
420 => 0.0004328790054974
421 => 0.00044969371819495
422 => 0.00044840261061016
423 => 0.00044256373247372
424 => 0.00043903236075839
425 => 0.00044553902142165
426 => 0.00043822611349619
427 => 0.00043691251428751
428 => 0.00042895353229292
429 => 0.00042611253783145
430 => 0.00042400917863544
501 => 0.00042169358683243
502 => 0.00042680120534034
503 => 0.00041522666983823
504 => 0.0004012689146884
505 => 0.0004001084783727
506 => 0.00040331254506696
507 => 0.00040189498406946
508 => 0.00040010169163602
509 => 0.00039667780800643
510 => 0.00039566201487324
511 => 0.00039896284976336
512 => 0.00039523639962304
513 => 0.00040073497979533
514 => 0.00039923967023878
515 => 0.00039088699260907
516 => 0.0003804764637251
517 => 0.00038038378818121
518 => 0.00037814085680985
519 => 0.00037528414648144
520 => 0.00037448947502075
521 => 0.00038608126981333
522 => 0.00041007593812073
523 => 0.00040536521058824
524 => 0.00040876919400524
525 => 0.00042551342337068
526 => 0.00043083591036941
527 => 0.00042705813516773
528 => 0.00042188688346863
529 => 0.00042211439229885
530 => 0.00043978612479899
531 => 0.00044088828907843
601 => 0.00044367310264092
602 => 0.00044725237505693
603 => 0.00042766770073738
604 => 0.00042119195589962
605 => 0.00041812338873484
606 => 0.00040867338955226
607 => 0.00041886440348897
608 => 0.00041292653609078
609 => 0.00041372775726923
610 => 0.00041320596092567
611 => 0.00041349089701297
612 => 0.00039836300092605
613 => 0.00040387481116131
614 => 0.00039471035761201
615 => 0.00038244018306768
616 => 0.00038239904914013
617 => 0.00038540215697671
618 => 0.0003836157909239
619 => 0.00037880872580743
620 => 0.00037949154671852
621 => 0.00037350931703947
622 => 0.00038021789771332
623 => 0.00038041027580259
624 => 0.0003778271068243
625 => 0.00038816260095809
626 => 0.00039239706133767
627 => 0.00039069676417931
628 => 0.00039227776395639
629 => 0.00040556096258487
630 => 0.00040772670354791
701 => 0.00040868858262287
702 => 0.00040739979208698
703 => 0.00039252055644301
704 => 0.00039318051381521
705 => 0.00038833818450657
706 => 0.00038424692651285
707 => 0.00038441055537678
708 => 0.00038651399381186
709 => 0.00039569983282289
710 => 0.00041503088948681
711 => 0.00041576448895639
712 => 0.00041665363291412
713 => 0.00041303703759007
714 => 0.00041194623783418
715 => 0.0004133852842715
716 => 0.0004206450127758
717 => 0.00043931900548592
718 => 0.00043271836926812
719 => 0.00042735194927804
720 => 0.00043205974638578
721 => 0.00043133501792198
722 => 0.00042521758034652
723 => 0.00042504588424854
724 => 0.00041330456567813
725 => 0.00040896406753954
726 => 0.00040533682241428
727 => 0.00040137596542913
728 => 0.0003990278366392
729 => 0.00040263562966598
730 => 0.00040346077461736
731 => 0.00039557227211088
801 => 0.00039449709836826
802 => 0.00040093901980021
803 => 0.00039810417035705
804 => 0.00040101988331022
805 => 0.00040169635372588
806 => 0.00040158742640852
807 => 0.00039862751800948
808 => 0.00040051407535729
809 => 0.0003960518048199
810 => 0.00039119975582186
811 => 0.00038810445085444
812 => 0.00038540338673774
813 => 0.00038690209409645
814 => 0.00038155947601579
815 => 0.00037985026496613
816 => 0.00039987495217674
817 => 0.00041466740392088
818 => 0.00041445231581406
819 => 0.00041314302228
820 => 0.00041119767766889
821 => 0.0004205026987007
822 => 0.00041726101543298
823 => 0.00041961961086194
824 => 0.00042021997238855
825 => 0.00042203708591228
826 => 0.00042268654781082
827 => 0.00042072342287313
828 => 0.0004141349358067
829 => 0.00039771705245171
830 => 0.00039007448343073
831 => 0.00038755230835675
901 => 0.0003876439846304
902 => 0.00038511514374232
903 => 0.00038586000071855
904 => 0.00038485611288339
905 => 0.00038295499219013
906 => 0.00038678470525086
907 => 0.00038722604400486
908 => 0.00038633214321483
909 => 0.00038654268921056
910 => 0.00037914157245907
911 => 0.00037970426329131
912 => 0.00037657112923413
913 => 0.00037598370436891
914 => 0.00036806341430556
915 => 0.00035403147239393
916 => 0.00036180653032653
917 => 0.00035241535368253
918 => 0.0003488587727879
919 => 0.00036569507358126
920 => 0.0003640051759479
921 => 0.00036111280578043
922 => 0.00035683438747999
923 => 0.00035524748051457
924 => 0.00034560593614641
925 => 0.0003450362622695
926 => 0.00034981487200196
927 => 0.00034760970803235
928 => 0.00034451282265812
929 => 0.00033329621775889
930 => 0.0003206850401619
1001 => 0.00032106569234251
1002 => 0.00032507707329682
1003 => 0.00033674070442988
1004 => 0.00033218352196332
1005 => 0.00032887723379619
1006 => 0.00032825806540915
1007 => 0.00033600825408985
1008 => 0.00034697639478776
1009 => 0.0003521224010049
1010 => 0.00034702286513024
1011 => 0.00034116479289595
1012 => 0.00034152134660916
1013 => 0.00034389333872426
1014 => 0.00034414260155739
1015 => 0.00034032959875242
1016 => 0.00034140293670723
1017 => 0.00033977243820579
1018 => 0.00032976607191217
1019 => 0.00032958508847645
1020 => 0.00032712936481354
1021 => 0.00032705500647699
1022 => 0.00032287720791741
1023 => 0.00032229270501916
1024 => 0.00031399743240486
1025 => 0.00031945740595999
1026 => 0.00031579514236069
1027 => 0.00031027524727589
1028 => 0.00030932361528269
1029 => 0.00030929500807585
1030 => 0.00031496270610198
1031 => 0.00031939117560866
1101 => 0.00031585884900395
1102 => 0.00031505460670733
1103 => 0.0003236418103658
1104 => 0.00032254901042616
1105 => 0.00032160265272623
1106 => 0.00034599431808788
1107 => 0.00032668641164875
1108 => 0.00031826706238452
1109 => 0.00030784651887898
1110 => 0.00031123950038932
1111 => 0.00031195445144682
1112 => 0.00028689492276013
1113 => 0.00027672827509291
1114 => 0.00027323946473555
1115 => 0.00027123160505035
1116 => 0.00027214661192201
1117 => 0.00026299543659268
1118 => 0.00026914517776046
1119 => 0.00026122103345485
1120 => 0.00025989252487462
1121 => 0.00027406187650616
1122 => 0.00027603345900954
1123 => 0.00026762207552746
1124 => 0.00027302354540225
1125 => 0.0002710648973396
1126 => 0.0002613568701653
1127 => 0.00026098609493465
1128 => 0.00025611494815224
1129 => 0.00024849254667765
1130 => 0.00024500890466743
1201 => 0.00024319459366214
1202 => 0.00024394321374314
1203 => 0.00024356468852203
1204 => 0.00024109455540999
1205 => 0.00024370627366058
1206 => 0.00023703441276681
1207 => 0.00023437762400008
1208 => 0.00023317761415117
1209 => 0.00022725595358997
1210 => 0.00023667994891725
1211 => 0.00023853659471709
1212 => 0.0002403968986827
1213 => 0.00025658957461989
1214 => 0.0002557806342901
1215 => 0.00026309306090152
1216 => 0.00026280891345009
1217 => 0.00026072329092706
1218 => 0.00025192439257062
1219 => 0.00025543147663021
1220 => 0.00024463721701666
1221 => 0.00025272501025744
1222 => 0.00024903407917667
1223 => 0.00025147710274629
1224 => 0.00024708432608956
1225 => 0.00024951547006469
1226 => 0.00023897687431325
1227 => 0.00022913608188259
1228 => 0.00023309630402733
1229 => 0.00023740151840499
1230 => 0.00024673632012399
1231 => 0.0002411765892306
]
'min_raw' => 0.00022725595358997
'max_raw' => 0.00067836455606943
'avg_raw' => 0.0004528102548297
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.000227'
'max' => '$0.000678'
'avg' => '$0.000452'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.00043050404641003
'max_diff' => 2.0604556069428E-5
'year' => 2026
]
1 => [
'items' => [
101 => 0.00024317607869656
102 => 0.00023647812369607
103 => 0.00022265832935381
104 => 0.00022273654788896
105 => 0.00022061067360999
106 => 0.00021877360785023
107 => 0.00024181519120396
108 => 0.00023894960608039
109 => 0.0002343836712245
110 => 0.00024049535647215
111 => 0.00024211138305712
112 => 0.00024215738906213
113 => 0.00024661631685338
114 => 0.00024899604741489
115 => 0.00024941548524069
116 => 0.00025643170446175
117 => 0.00025878344859848
118 => 0.00026846994986637
119 => 0.00024879414390299
120 => 0.0002483889336272
121 => 0.00024058136041709
122 => 0.00023562967405438
123 => 0.00024092040661869
124 => 0.00024560727341366
125 => 0.000240726994433
126 => 0.00024136425583956
127 => 0.00023481288004147
128 => 0.0002371546886184
129 => 0.00023917176964054
130 => 0.00023805805605866
131 => 0.00023639077292223
201 => 0.00024522300378479
202 => 0.00024472465470574
203 => 0.00025294943113706
204 => 0.00025936123252469
205 => 0.0002708523268579
206 => 0.0002588607708769
207 => 0.00025842375091483
208 => 0.00026269569114423
209 => 0.00025878279458668
210 => 0.00026125561014246
211 => 0.00027045391804229
212 => 0.00027064826379371
213 => 0.00026739272205707
214 => 0.00026719462204653
215 => 0.00026781988444878
216 => 0.00027148206586845
217 => 0.00027020238715295
218 => 0.00027168326376002
219 => 0.00027353512263316
220 => 0.00028119519610435
221 => 0.0002830420138852
222 => 0.00027855520414298
223 => 0.00027896031282602
224 => 0.00027728212281675
225 => 0.00027566101229545
226 => 0.00027930503200315
227 => 0.00028596454964236
228 => 0.00028592312112876
301 => 0.00028746799977853
302 => 0.00028843044637887
303 => 0.00028429892101623
304 => 0.00028160944992555
305 => 0.00028264076427721
306 => 0.00028428985838462
307 => 0.00028210598528411
308 => 0.00026862610883937
309 => 0.00027271504225486
310 => 0.0002720344437959
311 => 0.00027106518882673
312 => 0.00027517664299479
313 => 0.00027478008321032
314 => 0.00026290157806278
315 => 0.00026366200142261
316 => 0.00026294782192589
317 => 0.00026525548198717
318 => 0.00025865817337028
319 => 0.00026068746106728
320 => 0.00026196021128745
321 => 0.00026270987094486
322 => 0.00026541815567386
323 => 0.00026510036971981
324 => 0.00026539840165276
325 => 0.0002694140729452
326 => 0.00028972396033039
327 => 0.00029082938268953
328 => 0.00028538587870391
329 => 0.0002875604511778
330 => 0.00028338574755466
331 => 0.00028618825406496
401 => 0.00028810565784335
402 => 0.00027944127886432
403 => 0.00027892823057254
404 => 0.00027473629646253
405 => 0.00027698880440996
406 => 0.00027340490230454
407 => 0.00027428426652164
408 => 0.00027182548750904
409 => 0.0002762508001937
410 => 0.00028119898739922
411 => 0.00028244909489717
412 => 0.00027916060027518
413 => 0.00027677951344651
414 => 0.00027259910935412
415 => 0.00027955121452614
416 => 0.00028158422194001
417 => 0.00027954053600367
418 => 0.00027906696931681
419 => 0.00027816956130091
420 => 0.0002792573586697
421 => 0.00028157314974502
422 => 0.00028048106543985
423 => 0.00028120240636346
424 => 0.00027845339860616
425 => 0.00028430028872304
426 => 0.00029358655735937
427 => 0.00029361641423149
428 => 0.00029252432403958
429 => 0.00029207746426246
430 => 0.00029319801507294
501 => 0.00029380586792022
502 => 0.00029742952376744
503 => 0.00030131785086432
504 => 0.00031946297681545
505 => 0.00031436789805727
506 => 0.00033046733325948
507 => 0.00034319989625441
508 => 0.00034701783516909
509 => 0.00034350551101549
510 => 0.00033149003981806
511 => 0.00033090050347828
512 => 0.00034885669024833
513 => 0.00034378324504034
514 => 0.00034317977487641
515 => 0.00033675987191122
516 => 0.0003405548296841
517 => 0.0003397248167505
518 => 0.00033841460072919
519 => 0.0003456551158008
520 => 0.00035920871364962
521 => 0.00035709625832004
522 => 0.0003555194084105
523 => 0.00034861011112098
524 => 0.00035277105133669
525 => 0.00035128942022344
526 => 0.00035765544775231
527 => 0.00035388435406898
528 => 0.00034374480870301
529 => 0.00034535956472292
530 => 0.00034511549759895
531 => 0.00035013838171549
601 => 0.00034863063657936
602 => 0.00034482108616268
603 => 0.00035916238892563
604 => 0.00035823114449472
605 => 0.00035955143618564
606 => 0.00036013266941936
607 => 0.00036886196768907
608 => 0.00037243808188378
609 => 0.00037324992241467
610 => 0.00037664695431305
611 => 0.00037316540116641
612 => 0.00038709409605828
613 => 0.00039635586539949
614 => 0.0004071138870956
615 => 0.00042283424827724
616 => 0.00042874524950301
617 => 0.0004276774800389
618 => 0.00043959647847282
619 => 0.00046101465371412
620 => 0.00043200670562423
621 => 0.00046255214539969
622 => 0.00045288181183084
623 => 0.00042995362490097
624 => 0.00042847731996825
625 => 0.00044400455435888
626 => 0.00047844246579638
627 => 0.00046981615957284
628 => 0.00047845657534307
629 => 0.0004683770713844
630 => 0.00046787653905612
701 => 0.00047796703633367
702 => 0.00050154403322705
703 => 0.00049034348577352
704 => 0.00047428475451197
705 => 0.00048614227177396
706 => 0.00047587019296021
707 => 0.00045272432441899
708 => 0.00046980956319905
709 => 0.00045838515058641
710 => 0.00046171940154195
711 => 0.0004857318176006
712 => 0.00048284258017145
713 => 0.00048658152094095
714 => 0.0004799823883479
715 => 0.0004738177579183
716 => 0.00046231101742997
717 => 0.00045890443884683
718 => 0.00045984589461135
719 => 0.00045890397230811
720 => 0.0004524660567573
721 => 0.00045107578950706
722 => 0.00044875861651432
723 => 0.0004494768053166
724 => 0.00044511984217739
725 => 0.00045334233181561
726 => 0.00045486849834879
727 => 0.00046085214060875
728 => 0.00046147338219815
729 => 0.00047813774072033
730 => 0.00046895929207949
731 => 0.0004751169878569
801 => 0.00047456618558808
802 => 0.00043045054823608
803 => 0.00043652929382763
804 => 0.00044598591435261
805 => 0.00044172571962425
806 => 0.00043570280101039
807 => 0.00043083897130123
808 => 0.00042346977193973
809 => 0.0004338417785281
810 => 0.00044747986425188
811 => 0.00046181926655838
812 => 0.00047904711887478
813 => 0.00047520206279207
814 => 0.00046149720384277
815 => 0.00046211199380383
816 => 0.00046591238343216
817 => 0.00046099053356166
818 => 0.00045953898394892
819 => 0.00046571296280543
820 => 0.00046575547960466
821 => 0.00046009229650322
822 => 0.00045379870483753
823 => 0.00045377233445865
824 => 0.00045265245061062
825 => 0.00046857629623312
826 => 0.00047733280124311
827 => 0.0004783367204307
828 => 0.00047726522948298
829 => 0.0004776776038228
830 => 0.00047258238649391
831 => 0.00048422854236799
901 => 0.0004949162066835
902 => 0.0004920516843383
903 => 0.000487757358127
904 => 0.00048433672045692
905 => 0.00049124589081266
906 => 0.00049093823633276
907 => 0.00049482285925942
908 => 0.00049464663032479
909 => 0.00049334037774262
910 => 0.00049205173098869
911 => 0.00049716106970598
912 => 0.00049568966220887
913 => 0.00049421596920951
914 => 0.00049126025228816
915 => 0.00049166198330703
916 => 0.0004873683985717
917 => 0.00048538198981206
918 => 0.00045551116812819
919 => 0.00044752870851701
920 => 0.00045004015280863
921 => 0.00045086698547906
922 => 0.00044739300882647
923 => 0.0004523737989549
924 => 0.00045159754808935
925 => 0.00045461748611565
926 => 0.00045273075994728
927 => 0.00045280819184735
928 => 0.00045835665121609
929 => 0.00045996739257566
930 => 0.00045914815651991
1001 => 0.00045972192137159
1002 => 0.00047294409020764
1003 => 0.00047106432062031
1004 => 0.00047006573049224
1005 => 0.0004703423467822
1006 => 0.00047372089440631
1007 => 0.0004746667032792
1008 => 0.00047065924462396
1009 => 0.00047254918529262
1010 => 0.00048059631279056
1011 => 0.00048341235198687
1012 => 0.000492399797326
1013 => 0.00048858177080684
1014 => 0.00049558992372308
1015 => 0.00051713059653221
1016 => 0.00053433877647333
1017 => 0.00051851342304137
1018 => 0.00055011405405473
1019 => 0.00057471967813993
1020 => 0.00057377527330473
1021 => 0.00056948471360713
1022 => 0.0005414718647605
1023 => 0.00051569402360378
1024 => 0.00053725828231633
1025 => 0.00053731325404652
1026 => 0.00053546086509871
1027 => 0.00052395583643492
1028 => 0.00053506051503981
1029 => 0.0005359419641012
1030 => 0.00053544858702304
1031 => 0.00052662770852148
1101 => 0.00051315985742044
1102 => 0.0005157914432881
1103 => 0.00052010203462223
1104 => 0.00051194118594317
1105 => 0.00050933330030695
1106 => 0.00051418185587522
1107 => 0.00052980491215287
1108 => 0.00052685146386179
1109 => 0.00052677433739108
1110 => 0.00053941044163735
1111 => 0.00053036571803899
1112 => 0.0005158246360134
1113 => 0.00051215282102862
1114 => 0.00049912035146363
1115 => 0.00050812192461224
1116 => 0.00050844587520466
1117 => 0.00050351580558502
1118 => 0.00051622468399187
1119 => 0.00051610756943999
1120 => 0.00052817275802037
1121 => 0.00055123686710817
1122 => 0.00054441567513503
1123 => 0.00053648337101384
1124 => 0.00053734583241075
1125 => 0.00054680490519873
1126 => 0.00054108573386149
1127 => 0.00054314238774984
1128 => 0.00054680179220675
1129 => 0.0005490096017735
1130 => 0.00053702816259036
1201 => 0.00053423471597828
1202 => 0.0005285203045765
1203 => 0.00052702952130632
1204 => 0.00053168379015796
1205 => 0.0005304575547533
1206 => 0.00050841864841177
1207 => 0.00050611546007576
1208 => 0.00050618609557383
1209 => 0.0005003946189923
1210 => 0.00049156122709183
1211 => 0.00051477485359185
1212 => 0.0005129104745094
1213 => 0.00051085234429386
1214 => 0.00051110445350174
1215 => 0.00052118070198259
1216 => 0.00051533596900095
1217 => 0.00053087514956554
1218 => 0.00052768076119198
1219 => 0.00052440444881018
1220 => 0.0005239515626401
1221 => 0.00052269046189494
1222 => 0.00051836567820487
1223 => 0.00051314324201991
1224 => 0.00050969493729092
1225 => 0.00047016663727843
1226 => 0.0004775028598352
1227 => 0.00048594251516904
1228 => 0.00048885585037049
1229 => 0.00048387238891176
1230 => 0.00051856245563782
1231 => 0.00052490066511047
]
'min_raw' => 0.00021877360785023
'max_raw' => 0.00057471967813993
'avg_raw' => 0.00039674664299508
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.000218'
'max' => '$0.000574'
'avg' => '$0.000396'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -8.4823457397399E-6
'max_diff' => -0.0001036448779295
'year' => 2027
]
2 => [
'items' => [
101 => 0.00050570181518663
102 => 0.00050211049424976
103 => 0.00051879790204055
104 => 0.00050873335519007
105 => 0.00051326542002058
106 => 0.00050346957476394
107 => 0.00052337397605295
108 => 0.00052322233786412
109 => 0.0005154790762014
110 => 0.00052202362793516
111 => 0.00052088635101791
112 => 0.00051214422767152
113 => 0.00052365111695607
114 => 0.00052365682422959
115 => 0.00051620410323225
116 => 0.00050750095671777
117 => 0.00050594503968013
118 => 0.00050477286520031
119 => 0.00051297713695414
120 => 0.00052033306135454
121 => 0.00053402061297538
122 => 0.00053746198866106
123 => 0.00055089390706763
124 => 0.00054289585364475
125 => 0.00054644128713498
126 => 0.00055029035672081
127 => 0.00055213574222511
128 => 0.0005491287855747
129 => 0.00056999408365829
130 => 0.00057175575411276
131 => 0.00057234642697776
201 => 0.00056531076586124
202 => 0.00057156007964969
203 => 0.0005686362326836
204 => 0.0005762432702213
205 => 0.00057743615083874
206 => 0.00057642582339373
207 => 0.00057680446253004
208 => 0.00055899961150651
209 => 0.00055807633605287
210 => 0.00054548740972983
211 => 0.00055061749025911
212 => 0.00054102705060077
213 => 0.00054406827780891
214 => 0.00054540882178438
215 => 0.00054470859768679
216 => 0.00055090753731513
217 => 0.00054563717227134
218 => 0.00053172781239256
219 => 0.00051781466291799
220 => 0.00051763999465974
221 => 0.00051397690799057
222 => 0.00051132916725655
223 => 0.00051183921605557
224 => 0.00051363669455003
225 => 0.00051122469453881
226 => 0.00051173941703271
227 => 0.00052028724000946
228 => 0.00052200144494716
229 => 0.00051617590678574
301 => 0.00049278553044651
302 => 0.00048704547342255
303 => 0.00049117131258109
304 => 0.00048919942720138
305 => 0.00039482211820137
306 => 0.00041699466703251
307 => 0.00040382049142566
308 => 0.00040989175765997
309 => 0.00039644433580161
310 => 0.00040286215035219
311 => 0.00040167701434576
312 => 0.00043732981673281
313 => 0.00043677314726237
314 => 0.00043703959547958
315 => 0.00042432132784498
316 => 0.00044458187352549
317 => 0.00045456294687336
318 => 0.00045271571583433
319 => 0.00045318062408983
320 => 0.00044519195994572
321 => 0.00043711694321085
322 => 0.0004281605069157
323 => 0.0004448004585031
324 => 0.00044295037994003
325 => 0.00044719379452646
326 => 0.00045798599257919
327 => 0.00045957518473803
328 => 0.0004617110751155
329 => 0.00046094551045821
330 => 0.00047918436651262
331 => 0.00047697552070058
401 => 0.00048229820357928
402 => 0.00047134904106488
403 => 0.00045895902437579
404 => 0.00046131396148822
405 => 0.00046108716210709
406 => 0.00045819974567702
407 => 0.00045559311522907
408 => 0.0004512538099468
409 => 0.00046498401395624
410 => 0.00046442659274776
411 => 0.00047345059418188
412 => 0.00047185551427393
413 => 0.00046120318026634
414 => 0.00046158363045937
415 => 0.0004641423408456
416 => 0.0004729980667072
417 => 0.00047562704908672
418 => 0.00047440919970169
419 => 0.00047729175886323
420 => 0.0004795700160931
421 => 0.00047757787289463
422 => 0.00050578241952671
423 => 0.00049406992535094
424 => 0.0004997785135172
425 => 0.0005011399781579
426 => 0.00049765261510926
427 => 0.0004984088992814
428 => 0.00049955446372709
429 => 0.00050651010671681
430 => 0.00052476372655334
501 => 0.00053284813052235
502 => 0.00055717045874058
503 => 0.00053217683331306
504 => 0.0005306938150141
505 => 0.00053507500079014
506 => 0.00054935478223416
507 => 0.00056092720386286
508 => 0.00056476644374612
509 => 0.00056527386267563
510 => 0.00057247653192447
511 => 0.00057660496761608
512 => 0.00057160193842866
513 => 0.00056736239503131
514 => 0.0005521768768135
515 => 0.000553934641896
516 => 0.0005660439002227
517 => 0.00058314894084092
518 => 0.0005978268451675
519 => 0.00059268715464894
520 => 0.0006318993652495
521 => 0.00063578709576302
522 => 0.00063524993711143
523 => 0.00064410676579312
524 => 0.00062652776452176
525 => 0.00061901240090115
526 => 0.00056827903243468
527 => 0.00058253303958655
528 => 0.00060325207609028
529 => 0.00060050983391661
530 => 0.00058546311578617
531 => 0.00059781543088252
601 => 0.00059373136921906
602 => 0.00059051010033721
603 => 0.00060526735755865
604 => 0.00058904114704897
605 => 0.00060309020722804
606 => 0.00058507214222946
607 => 0.00059271063232229
608 => 0.00058837465591341
609 => 0.00059118056404724
610 => 0.00057477728243098
611 => 0.00058362809502396
612 => 0.00057440905952834
613 => 0.00057440468850516
614 => 0.00057420117778563
615 => 0.00058504733216277
616 => 0.00058540102486762
617 => 0.00057738570039528
618 => 0.00057623056691592
619 => 0.00058050170081909
620 => 0.00057550132163022
621 => 0.00057784096758068
622 => 0.00057557218712262
623 => 0.00057506143685369
624 => 0.00057099169181381
625 => 0.00056923833375066
626 => 0.00056992587062569
627 => 0.00056757895282165
628 => 0.00056616484995299
629 => 0.00057391987713261
630 => 0.00056977667894744
701 => 0.0005732848725889
702 => 0.00056928684316512
703 => 0.0005554279313238
704 => 0.00054745752456852
705 => 0.00052127932482207
706 => 0.00052870342979621
707 => 0.00053362561907485
708 => 0.00053199883554762
709 => 0.00053549379604577
710 => 0.00053570835823546
711 => 0.00053457211095061
712 => 0.00053325648215704
713 => 0.00053261610681917
714 => 0.000537388939938
715 => 0.00054015973020965
716 => 0.00053411962661936
717 => 0.00053270451485819
718 => 0.00053881139307123
719 => 0.00054253658525336
720 => 0.00057004131132151
721 => 0.00056800367237528
722 => 0.00057311774626386
723 => 0.00057254198002586
724 => 0.00057790234419695
725 => 0.00058666427415775
726 => 0.00056884882067329
727 => 0.00057194096738616
728 => 0.00057118284442026
729 => 0.00057945983217144
730 => 0.00057948567202374
731 => 0.0005745232044007
801 => 0.00057721343860599
802 => 0.00057571182367532
803 => 0.00057842544481048
804 => 0.00056797645846487
805 => 0.00058070219593545
806 => 0.00058791686905286
807 => 0.0005880170447961
808 => 0.00059143674259456
809 => 0.00059491135361335
810 => 0.00060158056688906
811 => 0.00059472535287481
812 => 0.00058239349020481
813 => 0.00058328381085791
814 => 0.00057605364428654
815 => 0.00057617518469284
816 => 0.00057552639247871
817 => 0.00057747346675211
818 => 0.00056840373177439
819 => 0.00057053238044533
820 => 0.00056755225984067
821 => 0.00057193448918598
822 => 0.00056721993481888
823 => 0.00057118247883042
824 => 0.00057289258146538
825 => 0.00057920289700426
826 => 0.00056628789608303
827 => 0.00053995333493594
828 => 0.00054548917896475
829 => 0.00053730123081497
830 => 0.00053805905658995
831 => 0.00053958998526248
901 => 0.00053462774454611
902 => 0.00053557438369662
903 => 0.00053554056308476
904 => 0.00053524911532318
905 => 0.00053395824486202
906 => 0.00053208622730241
907 => 0.0005395437690833
908 => 0.00054081095075162
909 => 0.00054362773862968
910 => 0.00055200858870933
911 => 0.00055117114415232
912 => 0.00055253705097005
913 => 0.00054955528405619
914 => 0.00053819737220517
915 => 0.00053881416146324
916 => 0.0005311227895317
917 => 0.00054343105295683
918 => 0.00054051629371662
919 => 0.00053863712947283
920 => 0.00053812438209857
921 => 0.00054652600668453
922 => 0.00054903990443998
923 => 0.00054747341206019
924 => 0.00054426049048735
925 => 0.00055043024972219
926 => 0.00055208101701219
927 => 0.00055245056293047
928 => 0.00056338219336062
929 => 0.00055306151963625
930 => 0.00055554580838038
1001 => 0.00057492751999059
1002 => 0.00055735098205351
1003 => 0.00056666166620235
1004 => 0.00056620595666372
1005 => 0.0005709689876179
1006 => 0.00056581524910303
1007 => 0.00056587913586862
1008 => 0.00057010838468026
1009 => 0.00056416916747335
1010 => 0.00056269853376952
1011 => 0.00056066686384056
1012 => 0.00056510294080329
1013 => 0.00056776216831595
1014 => 0.00058919358908056
1015 => 0.00060303926428602
1016 => 0.00060243818700998
1017 => 0.00060793090814347
1018 => 0.00060545638696528
1019 => 0.00059746550533518
1020 => 0.00061110496589356
1021 => 0.00060678886987362
1022 => 0.00060714468358545
1023 => 0.00060713144018132
1024 => 0.00061000126671492
1025 => 0.00060796773160013
1026 => 0.00060395942515077
1027 => 0.00060662032603168
1028 => 0.00061452225035852
1029 => 0.00063905006592966
1030 => 0.00065277615647361
1031 => 0.00063822373804393
1101 => 0.00064826180141207
1102 => 0.00064224254031888
1103 => 0.00064114866152074
1104 => 0.00064745330712299
1105 => 0.00065376898817277
1106 => 0.00065336670659334
1107 => 0.00064878184646501
1108 => 0.00064619197531503
1109 => 0.00066580334733313
1110 => 0.00068025267216506
1111 => 0.00067926732508102
1112 => 0.00068361632665791
1113 => 0.00069638512979722
1114 => 0.00069755254913243
1115 => 0.00069740548112902
1116 => 0.0006945119104991
1117 => 0.00070708445542836
1118 => 0.00071757269360123
1119 => 0.00069384213250156
1120 => 0.00070287841951246
1121 => 0.00070693509988264
1122 => 0.00071289151022889
1123 => 0.0007229409728933
1124 => 0.00073385735483517
1125 => 0.00073540105093379
1126 => 0.00073430572467916
1127 => 0.0007271060773404
1128 => 0.00073905091272072
1129 => 0.00074604791714565
1130 => 0.0007502144731571
1201 => 0.00076078016595332
1202 => 0.00070696015255955
1203 => 0.00066886367205121
1204 => 0.00066291435649998
1205 => 0.00067501252361868
1206 => 0.0006782027138068
1207 => 0.00067691675214213
1208 => 0.00063403569974952
1209 => 0.00066268859663358
1210 => 0.00069351670447682
1211 => 0.0006947009376505
1212 => 0.00071013413302217
1213 => 0.00071515981406323
1214 => 0.00072758555921258
1215 => 0.00072680832547032
1216 => 0.0007298337966774
1217 => 0.00072913829324075
1218 => 0.00075215436958058
1219 => 0.00077754451970383
1220 => 0.00077666533954079
1221 => 0.00077301520505796
1222 => 0.00077843627720538
1223 => 0.00080464163310642
1224 => 0.00080222906386732
1225 => 0.00080457266938095
1226 => 0.0008354702608574
1227 => 0.00087564152490794
1228 => 0.00085697793962749
1229 => 0.00089747254938406
1230 => 0.00092296175969879
1231 => 0.00096704271330457
]
'min_raw' => 0.00039482211820137
'max_raw' => 0.00096704271330457
'avg_raw' => 0.00068093241575297
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.000394'
'max' => '$0.000967'
'avg' => '$0.00068'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.00017604851035114
'max_diff' => 0.00039232303516465
'year' => 2028
]
3 => [
'items' => [
101 => 0.00096152356080985
102 => 0.00097868395256761
103 => 0.00095164312596242
104 => 0.00088955192222421
105 => 0.00087972575155706
106 => 0.00089939799407097
107 => 0.00094776028270207
108 => 0.0008978748934952
109 => 0.00090796664276088
110 => 0.00090506021829346
111 => 0.0009049053472851
112 => 0.0009108161437683
113 => 0.000902242225183
114 => 0.00086731053844803
115 => 0.00088331952462495
116 => 0.00087713768624738
117 => 0.00088399689681387
118 => 0.0009210132272876
119 => 0.00090464742522606
120 => 0.00088740738220402
121 => 0.00090903022202547
122 => 0.00093656352753206
123 => 0.00093484054275557
124 => 0.0009314972321374
125 => 0.00095034329904196
126 => 0.00098147148018879
127 => 0.00098988530246961
128 => 0.0009960962140643
129 => 0.00099695259383899
130 => 0.0010057738377554
131 => 0.00095833978597709
201 => 0.0010336188443421
202 => 0.0010466174581798
203 => 0.0010441742575156
204 => 0.0010586216697309
205 => 0.0010543708745617
206 => 0.0010482121392908
207 => 0.0010711143607047
208 => 0.0010448588119677
209 => 0.0010075923660172
210 => 0.00098714725672199
211 => 0.0010140710259018
212 => 0.0010305124322299
213 => 0.0010413791559429
214 => 0.0010446674199726
215 => 0.00096202195638921
216 => 0.00091748063524534
217 => 0.00094603111143128
218 => 0.00098086466282673
219 => 0.0009581462838403
220 => 0.00095903680128499
221 => 0.00092664636313531
222 => 0.00098373049788487
223 => 0.000975413819605
224 => 0.0010185607612329
225 => 0.0010082633973376
226 => 0.0010434480532805
227 => 0.0010341827542045
228 => 0.0010726424926531
301 => 0.0010879851235761
302 => 0.0011137477887856
303 => 0.0011326989101866
304 => 0.0011438273711505
305 => 0.001143159260096
306 => 0.0011872557666122
307 => 0.0011612535973342
308 => 0.0011285887444803
309 => 0.0011279979403485
310 => 0.0011449155305061
311 => 0.0011803701583621
312 => 0.0011895630275214
313 => 0.0011947005872671
314 => 0.0011868322356768
315 => 0.0011586087445178
316 => 0.0011464219841317
317 => 0.0011568054570651
318 => 0.0011441073619295
319 => 0.0011660278365897
320 => 0.0011961293302589
321 => 0.0011899134908504
322 => 0.0012106921100622
323 => 0.0012321957949719
324 => 0.0012629470301837
325 => 0.001270986541783
326 => 0.0012842755487414
327 => 0.001297954302113
328 => 0.0013023475490433
329 => 0.0013107356205775
330 => 0.0013106914113
331 => 0.0013359694294508
401 => 0.0013638518662662
402 => 0.0013743768406841
403 => 0.0013985784390076
404 => 0.0013571340500038
405 => 0.001388570095142
406 => 0.0014169261947519
407 => 0.0013831188838122
408 => 0.0014297143858494
409 => 0.0014315235836058
410 => 0.0014588403217494
411 => 0.0014311495743871
412 => 0.0014147068969954
413 => 0.0014621762905262
414 => 0.0014851452347839
415 => 0.001478226801846
416 => 0.0014255771855836
417 => 0.0013949328506705
418 => 0.0013147307153524
419 => 0.0014097336091111
420 => 0.0014560067473886
421 => 0.0014254573493342
422 => 0.0014408646887605
423 => 0.0015249221368237
424 => 0.0015569257707295
425 => 0.0015502692385994
426 => 0.0015513940829535
427 => 0.001568662662902
428 => 0.0016452410563744
429 => 0.0015993535079325
430 => 0.0016344328193427
501 => 0.0016530387596268
502 => 0.001670320993883
503 => 0.001627881288656
504 => 0.0015726678557188
505 => 0.0015551794438053
506 => 0.0014224198137605
507 => 0.0014155090984708
508 => 0.0014116299045626
509 => 0.0013871721356943
510 => 0.0013679550289104
511 => 0.0013526728721105
512 => 0.0013125679290292
513 => 0.0013261021700262
514 => 0.0012621832613067
515 => 0.0013030763139584
516 => 0.0012010601922661
517 => 0.0012860222498369
518 => 0.0012397812646518
519 => 0.0012708308425563
520 => 0.001270722513504
521 => 0.0012135503963043
522 => 0.0011805747122551
523 => 0.0012015881015641
524 => 0.0012241161229482
525 => 0.0012277712186244
526 => 0.0012569793863904
527 => 0.0012651307581864
528 => 0.0012404317210933
529 => 0.0011989461348965
530 => 0.0012085822903846
531 => 0.0011803794358717
601 => 0.0011309550181451
602 => 0.0011664524978239
603 => 0.0011785728981003
604 => 0.0011839259573463
605 => 0.0011353227189449
606 => 0.0011200505262115
607 => 0.0011119197389464
608 => 0.0011926720671522
609 => 0.0011970958619794
610 => 0.001174463102182
611 => 0.0012767653225928
612 => 0.0012536111793819
613 => 0.0012794800302513
614 => 0.0012077079102754
615 => 0.0012104497019125
616 => 0.0011764716301166
617 => 0.0011954970799067
618 => 0.001182050505214
619 => 0.0011939600115769
620 => 0.001201098520586
621 => 0.0012350710169146
622 => 0.0012864101611742
623 => 0.001229996658846
624 => 0.0012054164880254
625 => 0.0012206658877584
626 => 0.0012612770487897
627 => 0.0013228050365992
628 => 0.0012863792294498
629 => 0.0013025443841124
630 => 0.0013060757512685
701 => 0.0012792167096332
702 => 0.0013237953677757
703 => 0.0013476854328305
704 => 0.0013721916962245
705 => 0.0013934697980795
706 => 0.0013624033557207
707 => 0.0013956489022442
708 => 0.0013688588603752
709 => 0.0013448254233151
710 => 0.0013448618721185
711 => 0.0013297853459782
712 => 0.0013005726768168
713 => 0.0012951854124207
714 => 0.0013232106421458
715 => 0.0013456842223862
716 => 0.001347535254096
717 => 0.0013599777828513
718 => 0.0013673411432004
719 => 0.0014395120846252
720 => 0.0014685398342955
721 => 0.0015040344171253
722 => 0.0015178615575026
723 => 0.0015594762927339
724 => 0.0015258690142511
725 => 0.0015185978681516
726 => 0.0014176541325564
727 => 0.0014341836636051
728 => 0.0014606490376767
729 => 0.001418090536827
730 => 0.0014450841099996
731 => 0.0014504132131459
801 => 0.0014166444152534
802 => 0.0014346817892714
803 => 0.0013867798715882
804 => 0.0012874542920788
805 => 0.0013239059455394
806 => 0.0013507466319802
807 => 0.0013124416629964
808 => 0.0013811018372929
809 => 0.0013409919809026
810 => 0.0013282790820395
811 => 0.0012786815310988
812 => 0.001302089665958
813 => 0.0013337495035272
814 => 0.0013141874047606
815 => 0.0013547816969652
816 => 0.0014122740408293
817 => 0.0014532465087951
818 => 0.0014563918661283
819 => 0.0014300493141685
820 => 0.0014722634218
821 => 0.0014725709054879
822 => 0.0014249532196298
823 => 0.0013957876521781
824 => 0.0013891611738882
825 => 0.001405715415854
826 => 0.0014258153216821
827 => 0.0014575072710135
828 => 0.0014766580522528
829 => 0.0015265931329354
830 => 0.0015401041340172
831 => 0.0015549486279264
901 => 0.0015747854496616
902 => 0.0015986046402113
903 => 0.0015464896073158
904 => 0.0015485602347273
905 => 0.0015000314376766
906 => 0.0014481714582946
907 => 0.0014875267182079
908 => 0.0015389784853337
909 => 0.0015271753931059
910 => 0.0015258473041149
911 => 0.0015280807814165
912 => 0.0015191816353297
913 => 0.0014789311273968
914 => 0.0014587175742944
915 => 0.0014847982148239
916 => 0.0014986589145495
917 => 0.0015201556510439
918 => 0.0015175057245299
919 => 0.0015728790091587
920 => 0.0015943953931642
921 => 0.0015888905813976
922 => 0.0015899035992433
923 => 0.0016288579847288
924 => 0.0016721832729691
925 => 0.0017127631226815
926 => 0.001754042688754
927 => 0.0017042785606847
928 => 0.0016790114054758
929 => 0.0017050806600135
930 => 0.0016912479466045
1001 => 0.0017707348209021
1002 => 0.0017762383196182
1003 => 0.0018557194461101
1004 => 0.0019311564995873
1005 => 0.0018837758378934
1006 => 0.0019284536677989
1007 => 0.0019767763834785
1008 => 0.0020699987421026
1009 => 0.0020386047313202
1010 => 0.0020145574110676
1011 => 0.0019918328096248
1012 => 0.0020391190977984
1013 => 0.0020999521521169
1014 => 0.0021130550093653
1015 => 0.0021342866437845
1016 => 0.0021119641762735
1017 => 0.0021388491296514
1018 => 0.0022337648289225
1019 => 0.0022081177691354
1020 => 0.0021716948212671
1021 => 0.002246621650041
1022 => 0.0022737373781036
1023 => 0.002464049758264
1024 => 0.0027043269996289
1025 => 0.0026048506439584
1026 => 0.0025431024599118
1027 => 0.0025576147478493
1028 => 0.0026453558624978
1029 => 0.0026735355237591
1030 => 0.0025969334903391
1031 => 0.002623990623549
1101 => 0.0027730780877345
1102 => 0.0028530587289715
1103 => 0.0027444342753385
1104 => 0.0024447437158731
1105 => 0.0021684153333237
1106 => 0.002241710063605
1107 => 0.0022334007157914
1108 => 0.0023935765970188
1109 => 0.0022075060952416
1110 => 0.0022106390452871
1111 => 0.0023741271941091
1112 => 0.0023305113588998
1113 => 0.0022598592917549
1114 => 0.0021689311716021
1115 => 0.0020008421316665
1116 => 0.001851960981486
1117 => 0.0021439512022713
1118 => 0.0021313600530012
1119 => 0.0021131262029545
1120 => 0.0021537036631249
1121 => 0.0023507362915996
1122 => 0.0023461940517809
1123 => 0.0023172986395253
1124 => 0.0023392155550487
1125 => 0.0022560171504969
1126 => 0.0022774592737424
1127 => 0.0021683715614961
1128 => 0.0022176837633367
1129 => 0.0022597077041503
1130 => 0.0022681446324437
1201 => 0.0022871534626889
1202 => 0.0021247250894822
1203 => 0.0021976506604055
1204 => 0.002240487601121
1205 => 0.0020469487445471
1206 => 0.0022366619602014
1207 => 0.0021218975728752
1208 => 0.0020829448161134
1209 => 0.0021353895714577
1210 => 0.0021149517992958
1211 => 0.0020973806029373
1212 => 0.0020875755734577
1213 => 0.0021260852136662
1214 => 0.0021242886929215
1215 => 0.0020612794471414
1216 => 0.0019790864546068
1217 => 0.0020066731207944
1218 => 0.0019966506263421
1219 => 0.0019603278135193
1220 => 0.0019848050037287
1221 => 0.0018770198456689
1222 => 0.001691581083412
1223 => 0.0018140876099018
1224 => 0.0018093712418934
1225 => 0.0018069930352733
1226 => 0.0018990533040987
1227 => 0.0018902038334429
1228 => 0.0018741419575484
1229 => 0.0019600328245726
1230 => 0.0019286815027136
1231 => 0.0020252988893827
]
'min_raw' => 0.00086731053844803
'max_raw' => 0.0028530587289715
'avg_raw' => 0.0018601846337098
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.000867'
'max' => '$0.002853'
'avg' => '$0.00186'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.00047248842024666
'max_diff' => 0.001886016015667
'year' => 2029
]
4 => [
'items' => [
101 => 0.0020889373490637
102 => 0.0020727965772001
103 => 0.0021326488561215
104 => 0.0020073086618661
105 => 0.002048941646622
106 => 0.0020575221470794
107 => 0.001958972944606
108 => 0.0018916517162854
109 => 0.0018871621578746
110 => 0.0017704364254035
111 => 0.0018327903695124
112 => 0.0018876592599467
113 => 0.0018613813194266
114 => 0.001853062508489
115 => 0.0018955615094389
116 => 0.001898864045792
117 => 0.0018235658669535
118 => 0.0018392227427172
119 => 0.0019045145173911
120 => 0.0018375775575169
121 => 0.0017075299785717
122 => 0.0016752763809448
123 => 0.0016709731564696
124 => 0.0015834988416405
125 => 0.0016774317205648
126 => 0.0016364275016697
127 => 0.0017659593378534
128 => 0.0016919714477184
129 => 0.0016887819776524
130 => 0.0016839606258542
131 => 0.0016086678695623
201 => 0.0016251521980859
202 => 0.0016799486167326
203 => 0.0016995005962316
204 => 0.0016974611645852
205 => 0.0016796800843871
206 => 0.0016878201718479
207 => 0.0016615981139422
208 => 0.0016523385595308
209 => 0.0016231128587672
210 => 0.0015801591524506
211 => 0.0015861321287643
212 => 0.0015010295971024
213 => 0.0014546612211198
214 => 0.0014418270657732
215 => 0.0014246646968675
216 => 0.0014437656010085
217 => 0.0015007885123228
218 => 0.0014320067831922
219 => 0.0013140853330751
220 => 0.0013211726131556
221 => 0.0013370956272639
222 => 0.0013074231958143
223 => 0.0012793407296656
224 => 0.0013037561555794
225 => 0.0012537912826338
226 => 0.0013431336434494
227 => 0.0013407171829684
228 => 0.0013740184901859
301 => 0.0013948424810006
302 => 0.0013468499240198
303 => 0.0013347799257247
304 => 0.0013416555453044
305 => 0.0012280168692842
306 => 0.0013647317859469
307 => 0.0013659141022234
308 => 0.0013557903924589
309 => 0.0014285868649822
310 => 0.0015822101277957
311 => 0.0015244108768438
312 => 0.0015020292598837
313 => 0.0014594817896815
314 => 0.0015161737675071
315 => 0.0015118207081427
316 => 0.0014921345228482
317 => 0.0014802282565575
318 => 0.0015021659172642
319 => 0.0014775099376226
320 => 0.001473081046178
321 => 0.0014462467827048
322 => 0.0014366681715261
323 => 0.0014295765491449
324 => 0.0014217693697116
325 => 0.0014389900621135
326 => 0.0013999657075599
327 => 0.0013529061615729
328 => 0.0013489936695154
329 => 0.001359796404076
330 => 0.0013550169982019
331 => 0.0013489707875589
401 => 0.0013374269248538
402 => 0.0013340021073848
403 => 0.0013451311026738
404 => 0.0013325671158533
405 => 0.0013511059628028
406 => 0.0013460644222337
407 => 0.0013179027864398
408 => 0.0012828029614676
409 => 0.001282490499401
410 => 0.001274928299686
411 => 0.0012652967013646
412 => 0.0012626174110527
413 => 0.0013016999565091
414 => 0.0013825996559618
415 => 0.0013667171091935
416 => 0.0013781938769424
417 => 0.0014346482152928
418 => 0.0014525933518132
419 => 0.0014398563189648
420 => 0.0014224210828161
421 => 0.0014231881447213
422 => 0.0014827696246465
423 => 0.0014864856484653
424 => 0.0014958748418207
425 => 0.0015079426086681
426 => 0.0014419115118414
427 => 0.0014200780859988
428 => 0.0014097321975623
429 => 0.0013778708655404
430 => 0.0014122305805418
501 => 0.0013922106460402
502 => 0.0013949120191828
503 => 0.0013931527463798
504 => 0.0013941134282917
505 => 0.0013431086704387
506 => 0.0013616921234692
507 => 0.001330793528486
508 => 0.0012894237783336
509 => 0.001289285092425
510 => 0.0012994102801663
511 => 0.0012933874222991
512 => 0.0012771800666404
513 => 0.0012794822450152
514 => 0.0012593127399863
515 => 0.0012819311881064
516 => 0.0012825798042657
517 => 0.0012738704697043
518 => 0.0013087173097776
519 => 0.0013229940885879
520 => 0.0013172614180076
521 => 0.0013225918691378
522 => 0.0013673771007171
523 => 0.0013746790475812
524 => 0.0013779220900386
525 => 0.0013735768427664
526 => 0.0013234104609577
527 => 0.0013256355533148
528 => 0.0013093093019701
529 => 0.0012955153400018
530 => 0.0012960670261407
531 => 0.001303158915682
601 => 0.0013341296132425
602 => 0.0013993056204362
603 => 0.0014017790022661
604 => 0.0014047768131977
605 => 0.00139258320956
606 => 0.0013889055020258
607 => 0.0013937573475603
608 => 0.0014182340290706
609 => 0.0014811946992692
610 => 0.0014589401934193
611 => 0.0014408469337512
612 => 0.0014567196003879
613 => 0.0014542761277732
614 => 0.0014336507598817
615 => 0.0014330718744999
616 => 0.0013934851991871
617 => 0.001378850906669
618 => 0.001366621396483
619 => 0.0013532670906193
620 => 0.001345350210463
621 => 0.0013575141365408
622 => 0.0013602961703542
623 => 0.0013336995333959
624 => 0.0013300745100565
625 => 0.0013517938979248
626 => 0.0013422360051044
627 => 0.0013520665348946
628 => 0.0013543473021306
629 => 0.0013539800460751
630 => 0.0013440005082535
701 => 0.0013503611680669
702 => 0.0013353163114043
703 => 0.0013189572894481
704 => 0.0013085212526432
705 => 0.0012994144263915
706 => 0.0013044674228878
707 => 0.0012864544130192
708 => 0.0012806916886319
709 => 0.0013482063196415
710 => 0.0013980801034729
711 => 0.0013973549189038
712 => 0.0013929405443417
713 => 0.0013863816791657
714 => 0.0014177542072303
715 => 0.0014068246457661
716 => 0.0014147768149267
717 => 0.0014168009757296
718 => 0.0014229275008416
719 => 0.0014251172069766
720 => 0.0014184983941881
721 => 0.0013962848500502
722 => 0.0013409308100588
723 => 0.0013151633550174
724 => 0.0013066596656629
725 => 0.0013069687586201
726 => 0.0012984425950079
727 => 0.0013009539323076
728 => 0.0012975692543821
729 => 0.0012911594932328
730 => 0.001304071638199
731 => 0.0013055596426214
801 => 0.0013025457936977
802 => 0.0013032556642221
803 => 0.001278302282365
804 => 0.0012801994337917
805 => 0.0012696358535695
806 => 0.0012676553096237
807 => 0.0012409514986981
808 => 0.0011936418268642
809 => 0.0012198559775212
810 => 0.0011881929697949
811 => 0.0011762017089961
812 => 0.0012329664725939
813 => 0.0012272688647382
814 => 0.0012175170367797
815 => 0.0012030920507701
816 => 0.0011977416831419
817 => 0.0011652345431535
818 => 0.0011633138479042
819 => 0.001179425264249
820 => 0.0011719903999659
821 => 0.001161549034709
822 => 0.0011237314681729
823 => 0.0010812120024204
824 => 0.0010824953978236
825 => 0.0010960200487767
826 => 0.0011353447954705
827 => 0.0011199799366122
828 => 0.0011088325552191
829 => 0.0011067449857732
830 => 0.0011328752880111
831 => 0.0011698551401452
901 => 0.001187205259389
902 => 0.0011700118181494
903 => 0.0011502609186139
904 => 0.0011514630643518
905 => 0.001159460401375
906 => 0.0011603008084199
907 => 0.0011474450032476
908 => 0.0011510638371003
909 => 0.0011455664975649
910 => 0.0011118293349838
911 => 0.0011112191366944
912 => 0.0011029394929117
913 => 0.0011026887885885
914 => 0.0010886030490603
915 => 0.0010866323567302
916 => 0.0010586642659536
917 => 0.001077072947998
918 => 0.0010647253705818
919 => 0.0010461146589166
920 => 0.0010429061652108
921 => 0.0010428097140156
922 => 0.0010619187536167
923 => 0.0010768496477444
924 => 0.0010649401619774
925 => 0.001062228602924
926 => 0.0010911809595979
927 => 0.0010874965083046
928 => 0.0010843057972467
929 => 0.0011665439999852
930 => 0.0011014460453907
1001 => 0.0010730596215261
1002 => 0.0010379260315581
1003 => 0.0010493657056106
1004 => 0.0010517762130172
1005 => 0.00096728626244965
1006 => 0.00093300870002692
1007 => 0.00092124593232614
1008 => 0.00091447629321321
1009 => 0.00091756130276475
1010 => 0.00088670747622723
1011 => 0.00090744175793563
1012 => 0.00088072495216318
1013 => 0.00087624579273142
1014 => 0.00092401875102971
1015 => 0.00093066607909134
1016 => 0.00090230651241746
1017 => 0.00092051794521889
1018 => 0.00091391422652724
1019 => 0.00088118293511626
1020 => 0.00087993284053945
1021 => 0.00086350942906995
1022 => 0.00083780997031929
1023 => 0.0008260646280617
1024 => 0.00081994755183621
1025 => 0.00082247157670629
1026 => 0.00082119535249554
1027 => 0.0008128671262491
1028 => 0.00082167271667531
1029 => 0.00079917807185752
1030 => 0.00079022052303941
1031 => 0.00078617460605182
1101 => 0.00076620931403258
1102 => 0.00079798297224085
1103 => 0.00080424278318188
1104 => 0.00081051492788421
1105 => 0.00086510966534298
1106 => 0.00086238226654266
1107 => 0.00088703662340041
1108 => 0.00088607860042937
1109 => 0.00087904677847944
1110 => 0.00084938067835125
1111 => 0.00086120505711496
1112 => 0.00082481145719672
1113 => 0.00085208001677971
1114 => 0.0008396357849483
1115 => 0.00084787260947974
1116 => 0.00083306205628769
1117 => 0.00084125882793692
1118 => 0.00080572721657967
1119 => 0.00077254829783753
1120 => 0.00078590046329238
1121 => 0.00080041579414715
1122 => 0.00083188872987779
1123 => 0.0008131437090027
1124 => 0.0008198851273371
1125 => 0.00079730250441667
1126 => 0.00075070810292449
1127 => 0.0007509718221768
1128 => 0.00074380428862144
1129 => 0.00073761049315258
1130 => 0.00081529680014166
1201 => 0.00080563527982879
1202 => 0.00079024091167876
1203 => 0.00081084688519545
1204 => 0.00081629543165404
1205 => 0.00081645054411196
1206 => 0.00083148413047258
1207 => 0.00083950755820816
1208 => 0.00084092172212209
1209 => 0.00086457739508266
1210 => 0.00087250646463317
1211 => 0.0009051651799478
1212 => 0.00083882682642137
1213 => 0.00083746063168566
1214 => 0.00081113685350041
1215 => 0.00079444189721285
1216 => 0.00081227997144057
1217 => 0.00082808207006638
1218 => 0.00081162786875289
1219 => 0.00081377644007728
1220 => 0.00079168801917156
1221 => 0.00079958359028855
1222 => 0.0008063843197828
1223 => 0.00080262935668448
1224 => 0.00079700799518403
1225 => 0.00082678647818382
1226 => 0.00082510625947015
1227 => 0.00085283666744392
1228 => 0.00087445450347998
1229 => 0.000913197530307
1230 => 0.00087276716209333
1231 => 0.00087129371877947
]
'min_raw' => 0.00073761049315258
'max_raw' => 0.0021326488561215
'avg_raw' => 0.001435129674637
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.000737'
'max' => '$0.002132'
'avg' => '$0.001435'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.00012970004529544
'max_diff' => -0.00072040987285006
'year' => 2030
]
5 => [
'items' => [
101 => 0.00088569686352024
102 => 0.00087250425958675
103 => 0.00088084152987951
104 => 0.00091185426716914
105 => 0.00091250951743884
106 => 0.0009015332311791
107 => 0.00090086532316267
108 => 0.00090297343900627
109 => 0.00091532073934802
110 => 0.0009110062132144
111 => 0.00091599909208666
112 => 0.00092224276357011
113 => 0.00094806923608748
114 => 0.00095429591117631
115 => 0.00093916831887135
116 => 0.00094053417108001
117 => 0.00093487603629626
118 => 0.00092941034899138
119 => 0.00094169641585323
120 => 0.0009641494445265
121 => 0.00096400976540044
122 => 0.00096921843162813
123 => 0.00097246338753706
124 => 0.00095853366132303
125 => 0.00094946592176792
126 => 0.00095294307010861
127 => 0.00095850310602781
128 => 0.00095114002539631
129 => 0.00090569168082794
130 => 0.00091947780531849
131 => 0.00091718312009622
201 => 0.00091391520929644
202 => 0.00092777726407664
203 => 0.00092644023507638
204 => 0.0008863910256407
205 => 0.00088895484608943
206 => 0.00088654694005382
207 => 0.00089432737706609
208 => 0.00087208409045487
209 => 0.00087892597560566
210 => 0.00088321714183355
211 => 0.00088574467170806
212 => 0.00089487584275827
213 => 0.00089380440522711
214 => 0.00089480924069697
215 => 0.00090834835682465
216 => 0.00097682456013487
217 => 0.00098055156879682
218 => 0.00096219841505601
219 => 0.00096953013797551
220 => 0.00095545483324161
221 => 0.00096490367960583
222 => 0.00097136834031354
223 => 0.00094215578165812
224 => 0.00094042600352249
225 => 0.00092629260499908
226 => 0.00093388709280895
227 => 0.00092180371664045
228 => 0.00092476855449365
301 => 0.0009164786093862
302 => 0.000931398860068
303 => 0.00094808201870281
304 => 0.00095229684341186
305 => 0.00094120945419847
306 => 0.00093318145371343
307 => 0.00091908692944944
308 => 0.00094252643741741
309 => 0.0009493808638533
310 => 0.00094249043403336
311 => 0.00094089377088521
312 => 0.00093786809710458
313 => 0.00094153568188105
314 => 0.00094934353317487
315 => 0.00094566149469308
316 => 0.00094809354597947
317 => 0.00093882507439615
318 => 0.00095853827264202
319 => 0.00098984757569599
320 => 0.00098994824022489
321 => 0.00098626618189554
322 => 0.00098475956295823
323 => 0.00098853757825012
324 => 0.00099058699656367
325 => 0.0010028044052481
326 => 0.0010159141715296
327 => 0.0010770917305261
328 => 0.0010599133167658
329 => 0.0011141936865767
330 => 0.0011571224116733
331 => 0.0011699948592841
401 => 0.0011581528131776
402 => 0.0011176418131421
403 => 0.0011156541502124
404 => 0.0011761946875686
405 => 0.0011590892128332
406 => 0.0011570545710426
407 => 0.0011354094199721
408 => 0.0011482043850589
409 => 0.0011454059385036
410 => 0.0011409884537114
411 => 0.0011654003557919
412 => 0.0012110972572212
413 => 0.0012039749665906
414 => 0.0011986585070284
415 => 0.0011753633288251
416 => 0.0011893922292699
417 => 0.0011843968065274
418 => 0.0012058603128029
419 => 0.0011931458071602
420 => 0.0011589596220384
421 => 0.0011644038846981
422 => 0.0011635809953495
423 => 0.0011805159998349
424 => 0.0011754325318411
425 => 0.0011625883666369
426 => 0.00121094107018
427 => 0.0012078013145638
428 => 0.0012122527701795
429 => 0.0012142124386074
430 => 0.0012436438771839
501 => 0.0012557009958677
502 => 0.0012584381728985
503 => 0.001269891503117
504 => 0.0012581532036089
505 => 0.0013051147709072
506 => 0.0013363414728772
507 => 0.0013726128941267
508 => 0.0014256151894112
509 => 0.0014455445427368
510 => 0.0014419444834393
511 => 0.0014821302188171
512 => 0.0015543430920124
513 => 0.0014565407697571
514 => 0.0015595268525746
515 => 0.001526922647786
516 => 0.0014496186647571
517 => 0.0014446411996041
518 => 0.001496992354429
519 => 0.0016131021772187
520 => 0.0015840179835166
521 => 0.0016131497485405
522 => 0.0015791659972153
523 => 0.0015774784175245
524 => 0.0016114992335918
525 => 0.0016909907247112
526 => 0.0016532272969743
527 => 0.0015990841633412
528 => 0.0016390626106555
529 => 0.0016044295797612
530 => 0.0015263916679816
531 => 0.0015839957433818
601 => 0.0015454775386313
602 => 0.0015567191985179
603 => 0.001637678735753
604 => 0.0016279374700405
605 => 0.0016405435698893
606 => 0.0016182941336151
607 => 0.001597509651721
608 => 0.0015587138727896
609 => 0.0015472283552569
610 => 0.0015504025390973
611 => 0.001547226782289
612 => 0.0015255209005285
613 => 0.001520833517429
614 => 0.0015130210069041
615 => 0.0015154424305933
616 => 0.001500752625176
617 => 0.0015284753230672
618 => 0.0015336209000873
619 => 0.0015537951677314
620 => 0.0015558897271237
621 => 0.0016120747753496
622 => 0.0015811289949382
623 => 0.0016018900961683
624 => 0.0016000330278632
625 => 0.0014512940764755
626 => 0.0014717889916419
627 => 0.001503672647982
628 => 0.0014893091040181
629 => 0.0014690024134047
630 => 0.0014526036719585
701 => 0.0014277579018101
702 => 0.0014627278461732
703 => 0.0015087096043716
704 => 0.0015570559003931
705 => 0.0016151408072881
706 => 0.001602176932252
707 => 0.0015559700434617
708 => 0.0015580428507387
709 => 0.0015708561297054
710 => 0.0015542617692344
711 => 0.0015493677683711
712 => 0.0015701837691393
713 => 0.0015703271174963
714 => 0.0015512333002789
715 => 0.0015300140165735
716 => 0.001529925107
717 => 0.0015261493404186
718 => 0.0015798376977023
719 => 0.0016093608657031
720 => 0.0016127456493354
721 => 0.0016091330427961
722 => 0.0016105233916739
723 => 0.0015933445107128
724 => 0.0016326103383509
725 => 0.0016686445447795
726 => 0.0016589866076981
727 => 0.0016445079870564
728 => 0.0016329750683305
729 => 0.0016562698185677
730 => 0.001655232540009
731 => 0.0016683298174219
801 => 0.0016677356492649
802 => 0.0016633315274845
803 => 0.0016589867649832
804 => 0.0016762132571912
805 => 0.0016712523040843
806 => 0.0016662836452469
807 => 0.0016563182392851
808 => 0.0016576727034631
809 => 0.0016431965827595
810 => 0.0016364992669397
811 => 0.0015357877061184
812 => 0.0015088742862217
813 => 0.0015173417959944
814 => 0.0015201295200703
815 => 0.0015084167652408
816 => 0.0015252098469065
817 => 0.0015225926629172
818 => 0.0015327745948182
819 => 0.0015264133658145
820 => 0.0015266744328717
821 => 0.0015453814510145
822 => 0.0015508121779667
823 => 0.0015480500664074
824 => 0.0015499845546639
825 => 0.001594564020037
826 => 0.001588226245632
827 => 0.0015848594292959
828 => 0.0015857920604302
829 => 0.0015971830696275
830 => 0.0016003719302768
831 => 0.0015868605036288
901 => 0.0015932325705446
902 => 0.0016203640227364
903 => 0.0016298584954964
904 => 0.0016601602949406
905 => 0.0016472875519652
906 => 0.0016709160288159
907 => 0.0017435419111136
908 => 0.0018015604912219
909 => 0.0017482042072351
910 => 0.0018547479409823
911 => 0.0019377075204953
912 => 0.0019345233936572
913 => 0.0019200574720795
914 => 0.0018256101963984
915 => 0.0017386984051871
916 => 0.0018114038090049
917 => 0.0018115891500313
918 => 0.0018053436913641
919 => 0.0017665536839686
920 => 0.0018039938831889
921 => 0.0018069657502402
922 => 0.0018053022949747
923 => 0.0017755620872526
924 => 0.0017301542869701
925 => 0.0017390268624544
926 => 0.0017535603220933
927 => 0.0017260454509996
928 => 0.0017172527825003
929 => 0.0017336000261141
930 => 0.0017862742511211
1001 => 0.0017763164940046
1002 => 0.0017760564567238
1003 => 0.0018186599644147
1004 => 0.0017881650473204
1005 => 0.0017391387740452
1006 => 0.0017267589934661
1007 => 0.0016828191124298
1008 => 0.00171316854477
1009 => 0.0017142607668099
1010 => 0.0016976386928808
1011 => 0.0017404875637351
1012 => 0.0017400927038467
1013 => 0.0017807713295101
1014 => 0.0018585335835842
1015 => 0.0018355354586064
1016 => 0.001808791141446
1017 => 0.0018116989902608
1018 => 0.0018435909145769
1019 => 0.0018243083291136
1020 => 0.0018312424812891
1021 => 0.001843580418907
1022 => 0.0018510242030057
1023 => 0.0018106279442824
1024 => 0.0018012096439975
1025 => 0.001781943106989
1026 => 0.0017769168271104
1027 => 0.0017926090194944
1028 => 0.0017884746812145
1029 => 0.0017141689697768
1030 => 0.0017064036094984
1031 => 0.0017066417620118
1101 => 0.0016871153943692
1102 => 0.001657332996849
1103 => 0.0017355993593175
1104 => 0.0017293134750742
1105 => 0.0017223743453585
1106 => 0.0017232243491545
1107 => 0.0017571971244089
1108 => 0.0017374911990951
1109 => 0.0017898826312795
1110 => 0.001779112527853
1111 => 0.0017680662119129
1112 => 0.001766539274571
1113 => 0.0017622873853615
1114 => 0.0017477060752036
1115 => 0.0017300982669872
1116 => 0.0017184720668405
1117 => 0.0015851996435706
1118 => 0.0016099342301194
1119 => 0.0016383891173154
1120 => 0.0016482116303496
1121 => 0.0016314095421074
1122 => 0.0017483695240574
1123 => 0.0017697392398141
1124 => 0.001705008976875
1125 => 0.0016929005875983
1126 => 0.0017491633480425
1127 => 0.0017152300256519
1128 => 0.0017305101986467
1129 => 0.0016974828224398
1130 => 0.0017645919010666
1201 => 0.0017640806423259
1202 => 0.0017379736950128
1203 => 0.0017600391081092
1204 => 0.0017562046995806
1205 => 0.0017267300203626
1206 => 0.0017655263009709
1207 => 0.001765545543442
1208 => 0.0017404181742671
1209 => 0.0017110749081593
1210 => 0.0017058290252362
1211 => 0.0017018769571389
1212 => 0.0017295382321609
1213 => 0.0017543392448511
1214 => 0.001800487780775
1215 => 0.0018120906191685
1216 => 0.0018573772698628
1217 => 0.0018304112743414
1218 => 0.0018423649508879
1219 => 0.00185534235773
1220 => 0.0018615642037985
1221 => 0.0018514260395126
1222 => 0.00192177484877
1223 => 0.0019277144437032
1224 => 0.001929705938507
1225 => 0.0019059847158385
1226 => 0.0019270547135894
1227 => 0.0019171967594067
1228 => 0.0019428444175715
1229 => 0.0019468662978574
1230 => 0.0019434599083378
1231 => 0.0019447365166216
]
'min_raw' => 0.00087208409045487
'max_raw' => 0.0019468662978574
'avg_raw' => 0.0014094751941562
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.000872'
'max' => '$0.001946'
'avg' => '$0.0014094'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.00013447359730229
'max_diff' => -0.00018578255826405
'year' => 2031
]
6 => [
'items' => [
101 => 0.0018847062183008
102 => 0.0018815933306478
103 => 0.0018391488866189
104 => 0.0018564453112941
105 => 0.0018241104744029
106 => 0.0018343641842669
107 => 0.0018388839218739
108 => 0.0018365230674409
109 => 0.0018574232251939
110 => 0.0018396538214837
111 => 0.0017927574435319
112 => 0.0017458482886933
113 => 0.0017452593824656
114 => 0.001732909030012
115 => 0.0017239819872679
116 => 0.0017257016524042
117 => 0.0017317619766443
118 => 0.001723629750206
119 => 0.0017253651730309
120 => 0.001754184754987
121 => 0.0017599643166164
122 => 0.0017403231079791
123 => 0.0016614608210874
124 => 0.0016421078180732
125 => 0.0016560183728531
126 => 0.0016493700236228
127 => 0.0013311703371159
128 => 0.001405926633538
129 => 0.001361508980688
130 => 0.0013819786786792
131 => 0.0013366397570148
201 => 0.0013582778668495
202 => 0.0013542820980603
203 => 0.0014744880105074
204 => 0.0014726111605224
205 => 0.0014735095092895
206 => 0.0014306289819984
207 => 0.0014989388263064
208 => 0.001532590711955
209 => 0.0015263626435374
210 => 0.0015279301141796
211 => 0.0015009957752671
212 => 0.0014737702925658
213 => 0.0014435730422783
214 => 0.0014996758008195
215 => 0.0014934381317757
216 => 0.0015077451003196
217 => 0.0015441317495416
218 => 0.001549489821859
219 => 0.0015566911253898
220 => 0.0015541099706977
221 => 0.0016156035472814
222 => 0.0016081562694094
223 => 0.0016261020663528
224 => 0.0015891862004894
225 => 0.0015474123941788
226 => 0.0015553522290698
227 => 0.0015545875591217
228 => 0.0015448524330347
229 => 0.0015360639964903
301 => 0.0015214337257705
302 => 0.0015677260672006
303 => 0.0015658466826783
304 => 0.0015962717335491
305 => 0.0015908938102745
306 => 0.0015549787224457
307 => 0.0015562614368337
308 => 0.0015648883075443
309 => 0.0015947460055738
310 => 0.001603609803216
311 => 0.0015995037389868
312 => 0.0016092224884538
313 => 0.0016169037917672
314 => 0.0016101871418865
315 => 0.0017052807400351
316 => 0.0016657912481813
317 => 0.0016850381517448
318 => 0.0016896284248353
319 => 0.0016778705368369
320 => 0.0016804204017254
321 => 0.0016842827522348
322 => 0.0017077341882021
323 => 0.001769277541908
324 => 0.0017965346743246
325 => 0.001878539102043
326 => 0.001794271348915
327 => 0.001789271249179
328 => 0.0018040427229075
329 => 0.0018521880030285
330 => 0.0018912052305104
331 => 0.001904149495824
401 => 0.0019058602941717
402 => 0.0019301445964185
403 => 0.0019440639055909
404 => 0.0019271958433851
405 => 0.0019129019268255
406 => 0.0018617028919351
407 => 0.001867629319634
408 => 0.0019084565295239
409 => 0.001966127368204
410 => 0.0020156149474197
411 => 0.0019982861219946
412 => 0.0021304928277435
413 => 0.0021436005826025
414 => 0.0021417895147055
415 => 0.0021716509309698
416 => 0.0021123821008568
417 => 0.0020870435277039
418 => 0.0019159924338285
419 => 0.0019640508141241
420 => 0.0020339064922533
421 => 0.0020246608313076
422 => 0.0019739297706025
423 => 0.0020155764633609
424 => 0.0020018067643225
425 => 0.0019909460313855
426 => 0.0020407011544264
427 => 0.0019859933528152
428 => 0.002033360740083
429 => 0.0019726115759591
430 => 0.0019983652786095
501 => 0.0019837462314187
502 => 0.0019932065465942
503 => 0.0019379017373844
504 => 0.0019677428699856
505 => 0.0019366602481597
506 => 0.0019366455109498
507 => 0.0019359593603503
508 => 0.0019725279270871
509 => 0.0019737204267355
510 => 0.001946696200665
511 => 0.0019428015874905
512 => 0.0019572020136461
513 => 0.0019403428860954
514 => 0.0019482311657663
515 => 0.0019405818140508
516 => 0.0019388597838596
517 => 0.0019251383543171
518 => 0.0019192267851917
519 => 0.0019215448637681
520 => 0.0019136320665352
521 => 0.001908864319984
522 => 0.0019350109355588
523 => 0.0019210418536087
524 => 0.0019328699734051
525 => 0.0019193903380693
526 => 0.001872664049198
527 => 0.0018457912663465
528 => 0.0017575296381978
529 => 0.0017825605264526
530 => 0.0017991560312618
531 => 0.0017936712170214
601 => 0.0018054547203512
602 => 0.001806178131754
603 => 0.0018023471947029
604 => 0.0017979114603711
605 => 0.0017957523902099
606 => 0.0018118443302986
607 => 0.0018211862431499
608 => 0.0018008216121887
609 => 0.0017960504640859
610 => 0.0018166402303498
611 => 0.0018291999758765
612 => 0.0019219340801339
613 => 0.0019150640381633
614 => 0.0019323064953318
615 => 0.0019303652592617
616 => 0.0019484381013132
617 => 0.0019779795599145
618 => 0.0019179135146564
619 => 0.0019283389031856
620 => 0.0019257828386756
621 => 0.0019536892807596
622 => 0.0019537764016257
623 => 0.0019370450955662
624 => 0.0019461154080155
625 => 0.0019410526084373
626 => 0.0019502017715535
627 => 0.0019149722845643
628 => 0.001957877996929
629 => 0.0019822027710567
630 => 0.0019825405205691
701 => 0.0019940702704523
702 => 0.0020057851640917
703 => 0.0020282708822804
704 => 0.0020051580496156
705 => 0.0019635803136405
706 => 0.0019665820918826
707 => 0.0019422050804932
708 => 0.0019426148624587
709 => 0.0019404274142115
710 => 0.0019469921110647
711 => 0.0019164128663586
712 => 0.0019235897539702
713 => 0.0019135420692862
714 => 0.0019283170614814
715 => 0.0019124216122731
716 => 0.0019257816060639
717 => 0.0019315473364933
718 => 0.0019528230059048
719 => 0.0019092791786023
720 => 0.0018204903670745
721 => 0.0018391548517179
722 => 0.0018115486128667
723 => 0.0018141036753767
724 => 0.0018192653082822
725 => 0.0018025347672543
726 => 0.0018057264272425
727 => 0.0018056123986884
728 => 0.001804629762212
729 => 0.0018002775023265
730 => 0.0017939658644241
731 => 0.0018191094872074
801 => 0.0018233818786739
802 => 0.0018328788756666
803 => 0.0018611354968424
804 => 0.00185831199405
805 => 0.0018629172442505
806 => 0.0018528640089201
807 => 0.0018145700161303
808 => 0.0018166495641768
809 => 0.0017907175667151
810 => 0.0018322157361885
811 => 0.0018223884219081
812 => 0.0018160526884611
813 => 0.0018143239248899
814 => 0.0018426505887642
815 => 0.0018511263705614
816 => 0.0018458448321339
817 => 0.0018350122427321
818 => 0.0018558140167512
819 => 0.0018613796939223
820 => 0.0018626256437867
821 => 0.001899482399004
822 => 0.0018646855269758
823 => 0.0018730614799242
824 => 0.0019384082738059
825 => 0.0018791477489963
826 => 0.0019105393706553
827 => 0.0019090029141293
828 => 0.0019250618055355
829 => 0.00190768561631
830 => 0.0019079010150006
831 => 0.0019221602226458
901 => 0.0019021357371698
902 => 0.001897177392961
903 => 0.0018903274759488
904 => 0.0019052840191457
905 => 0.0019142497903659
906 => 0.0019865073217679
907 => 0.0020331889823972
908 => 0.0020311624083952
909 => 0.0020496815011863
910 => 0.0020413384802685
911 => 0.002014396664947
912 => 0.0020603830584964
913 => 0.0020458310394249
914 => 0.0020470306901965
915 => 0.0020469860391348
916 => 0.0020566618596578
917 => 0.0020498056540413
918 => 0.0020362913689963
919 => 0.0020452627820945
920 => 0.0020719046716571
921 => 0.0021546019143327
922 => 0.0022008803869266
923 => 0.0021518158921735
924 => 0.0021856599236544
925 => 0.0021653655646273
926 => 0.0021616774758872
927 => 0.0021829340287115
928 => 0.0022042277883176
929 => 0.0022028714678862
930 => 0.0021874132918588
1001 => 0.0021786813604576
1002 => 0.0022448024704389
1003 => 0.0022935193779294
1004 => 0.0022901972114408
1005 => 0.0023048601738949
1006 => 0.0023479110851685
1007 => 0.0023518471209637
1008 => 0.0023513512709223
1009 => 0.0023415953955208
1010 => 0.0023839846085369
1011 => 0.0024193464358022
1012 => 0.0023393371922398
1013 => 0.0023698036647904
1014 => 0.0023834810458868
1015 => 0.0024035634992325
1016 => 0.0024374459642366
1017 => 0.0024742513081111
1018 => 0.002479455987285
1019 => 0.0024757630183443
1020 => 0.0024514889046783
1021 => 0.0024917617511249
1022 => 0.0025153526400588
1023 => 0.002529400474551
1024 => 0.0025650234454866
1025 => 0.0023835655127362
1026 => 0.002255120568891
1027 => 0.0022350620361421
1028 => 0.0022758518512498
1029 => 0.002286607800201
1030 => 0.0022822720906656
1031 => 0.0021376956286644
1101 => 0.0022343008709904
1102 => 0.0023382399889337
1103 => 0.0023422327137593
1104 => 0.0023942668094661
1105 => 0.0024112112439779
1106 => 0.0024531055112868
1107 => 0.00245048501346
1108 => 0.0024606856008663
1109 => 0.0024583406624712
1110 => 0.0025359409707821
1111 => 0.0026215456346062
1112 => 0.0026185814173042
1113 => 0.002606274734051
1114 => 0.0026245522572833
1115 => 0.0027129054443031
1116 => 0.0027047712986733
1117 => 0.0027126729282878
1118 => 0.0028168463151516
1119 => 0.0029522865365661
1120 => 0.0028893609557432
1121 => 0.0030258913597808
1122 => 0.0031118300119567
1123 => 0.0032604520246725
1124 => 0.0032418438167017
1125 => 0.0032997012756132
1126 => 0.0032085312407836
1127 => 0.0029991864123108
1128 => 0.0029660567918652
1129 => 0.003032383130973
1130 => 0.0031954399636399
1201 => 0.0030272478910423
1202 => 0.0030612729282749
1203 => 0.003051473715263
1204 => 0.0030509515568455
1205 => 0.0030708802198673
1206 => 0.0030419726547451
1207 => 0.0029241980340656
1208 => 0.0029781734486728
1209 => 0.0029573309489807
1210 => 0.0029804572563004
1211 => 0.0031052603988902
1212 => 0.0030500819546159
1213 => 0.0029919559459058
1214 => 0.0030648588600222
1215 => 0.0031576893218517
1216 => 0.0031518801583828
1217 => 0.0031406079532112
1218 => 0.0032041487835703
1219 => 0.003309099619607
1220 => 0.0033374674088611
1221 => 0.0033584079309346
1222 => 0.0033612952751355
1223 => 0.0033910367148793
1224 => 0.003231109497569
1225 => 0.0034849180986627
1226 => 0.0035287438327505
1227 => 0.0035205064111326
1228 => 0.0035692168701024
1229 => 0.0035548850174084
1230 => 0.0035341204114536
1231 => 0.0036113368499324
]
'min_raw' => 0.0013311703371159
'max_raw' => 0.0036113368499324
'avg_raw' => 0.0024712535935242
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.001331'
'max' => '$0.003611'
'avg' => '$0.002471'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.00045908624666105
'max_diff' => 0.001664470552075
'year' => 2032
]
7 => [
'items' => [
101 => 0.0035228144342617
102 => 0.0033971680098794
103 => 0.0033282358964588
104 => 0.003419011264006
105 => 0.0034744446133434
106 => 0.0035110825310322
107 => 0.0035221691427876
108 => 0.0032435241921944
109 => 0.003093350018182
110 => 0.0031896099419735
111 => 0.0033070536925042
112 => 0.0032304570916049
113 => 0.0032334595333436
114 => 0.0031242529096937
115 => 0.0033167160554889
116 => 0.0032886757940164
117 => 0.0034341487201381
118 => 0.003399430438826
119 => 0.0035180579628518
120 => 0.0034868193601346
121 => 0.0036164890534872
122 => 0.0036682178048323
123 => 0.0037550784292781
124 => 0.0038189734582067
125 => 0.0038564938413108
126 => 0.0038542412582446
127 => 0.0040029157086835
128 => 0.0039152475795494
129 => 0.0038051157475653
130 => 0.0038031238101862
131 => 0.0038601626465509
201 => 0.0039797003997307
202 => 0.0040106947999266
203 => 0.0040280164413023
204 => 0.0040014877445648
205 => 0.0039063302736211
206 => 0.0038652417601269
207 => 0.0039002503640728
208 => 0.0038574378497706
209 => 0.003931344260526
210 => 0.0040328335480507
211 => 0.004011876411509
212 => 0.0040819329768985
213 => 0.0041544341519109
214 => 0.0042581140884102
215 => 0.0042852198630681
216 => 0.0043300246778372
217 => 0.0043761435498496
218 => 0.0043909556886015
219 => 0.0044192366574157
220 => 0.0044190876027502
221 => 0.0045043142058004
222 => 0.004598321788213
223 => 0.0046338074742932
224 => 0.0047154048527425
225 => 0.0045756722016612
226 => 0.0046816610226394
227 => 0.0047772655922339
228 => 0.0046632818830495
301 => 0.0048203818713621
302 => 0.0048264817079121
303 => 0.0049185819977568
304 => 0.0048252207097186
305 => 0.0047697830749013
306 => 0.0049298294493977
307 => 0.005007270848603
308 => 0.0049839448689234
309 => 0.0048064330118156
310 => 0.0047031134971373
311 => 0.0044327063983779
312 => 0.0047530152875757
313 => 0.0049090284039656
314 => 0.0048060289755342
315 => 0.004857975896116
316 => 0.0051413814509649
317 => 0.0052492839371006
318 => 0.0052268409742797
319 => 0.0052306334655538
320 => 0.0052888556885039
321 => 0.0055470450886287
322 => 0.0053923320152905
323 => 0.0055106043628693
324 => 0.0055733355895624
325 => 0.0056316038489642
326 => 0.0054885154197459
327 => 0.0053023594757193
328 => 0.0052433960739511
329 => 0.0047957877122736
330 => 0.0047724877531837
331 => 0.0047594087800855
401 => 0.0046769477047589
402 => 0.0046121558875417
403 => 0.0045606310289247
404 => 0.0044254144132883
405 => 0.0044710460517402
406 => 0.0042555389883168
407 => 0.0043934127703937
408 => 0.00404945829357
409 => 0.0043359138025312
410 => 0.0041800090925374
411 => 0.0042846949122545
412 => 0.0042843296732915
413 => 0.0040915698885229
414 => 0.0039803900674624
415 => 0.0040512381766255
416 => 0.0041271929735783
417 => 0.0041395163838413
418 => 0.0042379937607135
419 => 0.0042654766798345
420 => 0.0041822021518433
421 => 0.0040423306015496
422 => 0.0040748195725524
423 => 0.003979731679502
424 => 0.0038130938044342
425 => 0.0039327760355261
426 => 0.0039736408112771
427 => 0.0039916890242637
428 => 0.0038278198126237
429 => 0.0037763285485527
430 => 0.0037489150316149
501 => 0.0040211771441083
502 => 0.0040360922772277
503 => 0.0039597843474018
504 => 0.0043047034260298
505 => 0.0042266376156237
506 => 0.0043138562524353
507 => 0.0040718715389672
508 => 0.0040811156808973
509 => 0.0039665562395645
510 => 0.0040307018718462
511 => 0.0039853658064597
512 => 0.0040255195386574
513 => 0.0040495875201766
514 => 0.0041641281634324
515 => 0.0043372216726881
516 => 0.0041470196109238
517 => 0.0040641458488694
518 => 0.0041155602647482
519 => 0.004252483629546
520 => 0.0044599295361927
521 => 0.0043371173842199
522 => 0.0043916193317798
523 => 0.0044035255826988
524 => 0.0043129684485871
525 => 0.0044632685068967
526 => 0.0045438155291804
527 => 0.0046264401071856
528 => 0.0046981807131795
529 => 0.0045934380337769
530 => 0.004705527715011
531 => 0.0046152032184287
601 => 0.0045341728074195
602 => 0.0045342956971051
603 => 0.0044834641366136
604 => 0.0043849715829726
605 => 0.0043668080449343
606 => 0.0044612970636114
607 => 0.0045370683084471
608 => 0.0045433091910916
609 => 0.0045852600454998
610 => 0.0046100861290104
611 => 0.0048534154968381
612 => 0.0049512845815045
613 => 0.0050709570456676
614 => 0.0051175762148297
615 => 0.0052578832001103
616 => 0.00514457391432
617 => 0.0051200587375904
618 => 0.0047797198853647
619 => 0.0048354503533506
620 => 0.0049246802097862
621 => 0.004781191252832
622 => 0.0048722019694143
623 => 0.0048901694127382
624 => 0.0047763155529814
625 => 0.0048371298188124
626 => 0.0046756251589385
627 => 0.004340742032932
628 => 0.0044636413275474
629 => 0.0045541365758396
630 => 0.004424988698543
701 => 0.0046564812698841
702 => 0.0045212480886833
703 => 0.0044783856625801
704 => 0.0043111640567934
705 => 0.0043900862177748
706 => 0.0044968295705587
707 => 0.004430874588785
708 => 0.0045677410791558
709 => 0.0047615805304807
710 => 0.0048997220668337
711 => 0.0049103268586846
712 => 0.0048215111055738
713 => 0.0049638389167484
714 => 0.00496487561947
715 => 0.0048043292670388
716 => 0.0047059955201005
717 => 0.0046836538859002
718 => 0.0047394676684681
719 => 0.0048072359042981
720 => 0.0049140875241302
721 => 0.0049786557201434
722 => 0.0051470153310207
723 => 0.0051925686144758
724 => 0.0052426178621003
725 => 0.0053094990915431
726 => 0.0053898071554843
727 => 0.0052140976835215
728 => 0.005221078948406
729 => 0.0050574607209774
730 => 0.0048826111797426
731 => 0.0050153001862368
801 => 0.0051887734113491
802 => 0.0051489784618375
803 => 0.0051445007170804
804 => 0.005152031041739
805 => 0.0051220269493888
806 => 0.0049863195516922
807 => 0.0049181681461423
808 => 0.0050061008465796
809 => 0.0050528331634277
810 => 0.005125310911373
811 => 0.0051163764991191
812 => 0.005303071394284
813 => 0.0053756153851846
814 => 0.0053570555279798
815 => 0.0053604709883734
816 => 0.0054918084187462
817 => 0.0056378826529234
818 => 0.0057747004494232
819 => 0.0059138773884839
820 => 0.0057460941562778
821 => 0.0056609041783947
822 => 0.0057487984901658
823 => 0.005702160531138
824 => 0.0059701560774286
825 => 0.0059887115075921
826 => 0.0062566876747544
827 => 0.0065110289673998
828 => 0.0063512817584868
829 => 0.0065019161813194
830 => 0.0066648395910176
831 => 0.006979145281696
901 => 0.0068732981824831
902 => 0.0067922209633214
903 => 0.006715603382976
904 => 0.0068750324049765
905 => 0.0070801352948394
906 => 0.0071243124928648
907 => 0.0071958964306545
908 => 0.0071206346729361
909 => 0.0072112791702973
910 => 0.0075312940771924
911 => 0.0074448232244996
912 => 0.0073220207127926
913 => 0.007574641747228
914 => 0.0076660643175507
915 => 0.0083077157944476
916 => 0.0091178272893304
917 => 0.0087824358109701
918 => 0.0085742474973364
919 => 0.0086231766893332
920 => 0.0089190019832596
921 => 0.0090140116786433
922 => 0.0087557425747845
923 => 0.0088469675884706
924 => 0.0093496263829264
925 => 0.009619286698927
926 => 0.0092530517695859
927 => 0.0082426241246218
928 => 0.0073109636902248
929 => 0.007558081990643
930 => 0.0075300664443493
1001 => 0.0080701106110303
1002 => 0.0074427609232607
1003 => 0.0074533238830748
1004 => 0.0080045355912061
1005 => 0.0078574817576377
1006 => 0.0076192733804889
1007 => 0.0073127028749952
1008 => 0.0067459789412504
1009 => 0.0062440157488666
1010 => 0.0072284811643504
1011 => 0.0071860292255006
1012 => 0.0071245525270211
1013 => 0.0072613622670136
1014 => 0.0079256715302948
1015 => 0.0079103570516169
1016 => 0.0078129341517839
1017 => 0.0078868285626612
1018 => 0.0076063193329879
1019 => 0.0076786129485511
1020 => 0.007310816110452
1021 => 0.0074770756418256
1022 => 0.0076187622922964
1023 => 0.0076472079850851
1024 => 0.0077112975834112
1025 => 0.0071636589827577
1026 => 0.0074095326366265
1027 => 0.0075539603730286
1028 => 0.006901430605638
1029 => 0.0075410619575705
1030 => 0.0071541258131063
1031 => 0.0070227938740893
1101 => 0.0071996150283084
1102 => 0.007130707652545
1103 => 0.0070714651372405
1104 => 0.007038406795785
1105 => 0.0071682447364048
1106 => 0.007162187641285
1107 => 0.0069497475699726
1108 => 0.0066726281571106
1109 => 0.0067656385282017
1110 => 0.0067318469884074
1111 => 0.0066093820889975
1112 => 0.0066919086447314
1113 => 0.0063285034590133
1114 => 0.0057032837251432
1115 => 0.0061163230323362
1116 => 0.0061004214683096
1117 => 0.0060924031786488
1118 => 0.0064027908024364
1119 => 0.0063729541942701
1120 => 0.0063188004582873
1121 => 0.0066083875131683
1122 => 0.0065026843426412
1123 => 0.0068284366074066
1124 => 0.0070429981173166
1125 => 0.0069885783780657
1126 => 0.0071903745152019
1127 => 0.0067677812992971
1128 => 0.0069081498141236
1129 => 0.006937079570487
1130 => 0.0066048140538625
1201 => 0.0063778358323616
1202 => 0.0063626989727287
1203 => 0.0059691500161718
1204 => 0.0061793806921483
1205 => 0.0063643749870712
1206 => 0.0062757770759403
1207 => 0.0062477296240636
1208 => 0.0063910179729516
1209 => 0.0064021527048419
1210 => 0.0061482796377368
1211 => 0.0062010678875024
1212 => 0.0064212036643414
1213 => 0.0061955210307363
1214 => 0.0057570565386905
1215 => 0.0056483112824172
1216 => 0.0056338026606576
1217 => 0.0053388769009496
1218 => 0.0056555781604271
1219 => 0.0055173295735991
1220 => 0.0059540552029164
1221 => 0.0057045998656569
1222 => 0.0056938463446477
1223 => 0.0056775908204437
1224 => 0.0054237360358333
1225 => 0.0054793141003498
1226 => 0.0056640640515808
1227 => 0.0057299849155373
1228 => 0.0057231088293529
1229 => 0.0056631586760298
1230 => 0.0056906035492267
1231 => 0.0056021940502319
]
'min_raw' => 0.003093350018182
'max_raw' => 0.009619286698927
'avg_raw' => 0.0063563183585545
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.003093'
'max' => '$0.009619'
'avg' => '$0.006356'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.0017621796810661
'max_diff' => 0.0060079498489946
'year' => 2033
]
8 => [
'items' => [
101 => 0.0055709748160523
102 => 0.0054724383254545
103 => 0.0053276169056761
104 => 0.0053477552123376
105 => 0.0050608260851707
106 => 0.0049044918682088
107 => 0.0048612206174056
108 => 0.0048033564924015
109 => 0.0048677565242954
110 => 0.0050600132510042
111 => 0.0048281108490534
112 => 0.004430530446971
113 => 0.0044544257065802
114 => 0.0045081112603558
115 => 0.0044080685860604
116 => 0.0043133865907851
117 => 0.0043957049038839
118 => 0.0042272448463117
119 => 0.004528468853486
120 => 0.0045203215882624
121 => 0.0046325992705693
122 => 0.0047028088094858
123 => 0.0045409985528914
124 => 0.0045003037109394
125 => 0.0045234853423927
126 => 0.0041403446121916
127 => 0.0046012884988504
128 => 0.0046052747607233
129 => 0.0045711419664375
130 => 0.0048165803560374
131 => 0.0053345319122467
201 => 0.0051396577022477
202 => 0.0050641965180319
203 => 0.0049207447516759
204 => 0.0051118857130222
205 => 0.0050972090694543
206 => 0.0050308357212884
207 => 0.0049906929132203
208 => 0.0050646572679315
209 => 0.0049815279111443
210 => 0.0049665955944233
211 => 0.0048761220016152
212 => 0.0048438270452689
213 => 0.0048199171452893
214 => 0.00479359469475
215 => 0.0048516554614936
216 => 0.0047200821255227
217 => 0.0045614175806349
218 => 0.0045482263405017
219 => 0.0045846485142953
220 => 0.0045685344137035
221 => 0.0045481491923876
222 => 0.0045092282533107
223 => 0.0044976812421009
224 => 0.0045352034267194
225 => 0.0044928430679644
226 => 0.0045553480847955
227 => 0.0045383501787778
228 => 0.004443401257516
301 => 0.0043250597470307
302 => 0.0043240062593576
303 => 0.0042985097750426
304 => 0.0042660361688452
305 => 0.0042570027544966
306 => 0.0043887722851592
307 => 0.0046615312701005
308 => 0.0046079821547872
309 => 0.0046466768785351
310 => 0.0048370166217993
311 => 0.0048975199024672
312 => 0.0048545761069479
313 => 0.0047957919909831
314 => 0.0047983781937511
315 => 0.0049992613131649
316 => 0.0050117901469145
317 => 0.0050434464678448
318 => 0.0050841337863154
319 => 0.0048615053332204
320 => 0.004787892413631
321 => 0.0047530105284402
322 => 0.0046455878230411
323 => 0.0047614340010873
324 => 0.0046939353941677
325 => 0.0047030432623219
326 => 0.0046971117512382
327 => 0.0047003507573769
328 => 0.004528384655237
329 => 0.0045910400645845
330 => 0.0044868632943277
331 => 0.0043473822933451
401 => 0.0043469147041215
402 => 0.0043810524815094
403 => 0.0043607459957077
404 => 0.0043061017645429
405 => 0.0043138637196663
406 => 0.0042458608252718
407 => 0.004322120502278
408 => 0.0043243073569443
409 => 0.0042949432274042
410 => 0.0044124317816398
411 => 0.0044605669381717
412 => 0.0044412388390678
413 => 0.0044592108272138
414 => 0.0046102073622882
415 => 0.0046348263859461
416 => 0.0046457605300135
417 => 0.0046311102254596
418 => 0.0044619707666867
419 => 0.0044694728209198
420 => 0.0044144277246485
421 => 0.0043679204188086
422 => 0.0043697804671435
423 => 0.0043936912678718
424 => 0.004498111137002
425 => 0.0047178565956991
426 => 0.0047261957752248
427 => 0.004736303104081
428 => 0.0046951915180864
429 => 0.0046827918703655
430 => 0.00469915020633
501 => 0.0047816750469493
502 => 0.0049939513422978
503 => 0.0049189187220645
504 => 0.0048579160338626
505 => 0.0049114318376224
506 => 0.0049031934991043
507 => 0.0048336536312409
508 => 0.0048317018787597
509 => 0.0046982326390891
510 => 0.0046488921001305
511 => 0.0046076594527013
512 => 0.0045626344781142
513 => 0.0045359421639281
514 => 0.0045769536899577
515 => 0.0045863335111948
516 => 0.0044966610927722
517 => 0.0044844390734922
518 => 0.0045576675060897
519 => 0.0045254424031347
520 => 0.004558586720668
521 => 0.0045662764866424
522 => 0.0045650382572102
523 => 0.0045313915486957
524 => 0.0045528369573436
525 => 0.0045021121727073
526 => 0.0044469565880317
527 => 0.004411770761323
528 => 0.004381066460797
529 => 0.0043981029912732
530 => 0.004337370870873
531 => 0.0043179414432609
601 => 0.0045455717354306
602 => 0.0047137246796945
603 => 0.004711279669289
604 => 0.0046963962972513
605 => 0.0046742826253851
606 => 0.0047800572941147
607 => 0.0047432075145606
608 => 0.0047700188080883
609 => 0.0047768434075576
610 => 0.0047974994147132
611 => 0.0048048821618275
612 => 0.0047825663724005
613 => 0.0047076718574392
614 => 0.0045210418469127
615 => 0.0044341650732145
616 => 0.004405494290847
617 => 0.0044065364193325
618 => 0.0043777898634362
619 => 0.004386257012478
620 => 0.0043748453345415
621 => 0.0043532343773114
622 => 0.0043967685755623
623 => 0.0044017854863616
624 => 0.0043916240842949
625 => 0.0043940174623298
626 => 0.0043098853932091
627 => 0.0043162817716991
628 => 0.0042806659234543
629 => 0.0042739883812638
630 => 0.0041839546183277
701 => 0.0040244467566837
702 => 0.0041128295958372
703 => 0.0040060755546476
704 => 0.0039656461816614
705 => 0.0041570325453206
706 => 0.0041378226626406
707 => 0.0041049436938278
708 => 0.0040563088463761
709 => 0.0040382697083669
710 => 0.00392866961632
711 => 0.0039221938581881
712 => 0.003976514623258
713 => 0.0039514474592417
714 => 0.0039162436672853
715 => 0.0037887391013707
716 => 0.0036453817539716
717 => 0.0036497088111774
718 => 0.0036953081161268
719 => 0.0038278942451712
720 => 0.0037760905507902
721 => 0.0037385063761379
722 => 0.0037314679900017
723 => 0.0038195681283561
724 => 0.0039442482816772
725 => 0.0040027454200543
726 => 0.0039447765325071
727 => 0.0038781849957595
728 => 0.0038822381140459
729 => 0.003909201694176
730 => 0.0039120351852032
731 => 0.0038686909405011
801 => 0.0038808920914944
802 => 0.0038623574274389
803 => 0.0037486102283431
804 => 0.0037465529022077
805 => 0.0037186375051283
806 => 0.003717792237999
807 => 0.0036703011837447
808 => 0.0036636568569643
809 => 0.0035693604862414
810 => 0.0036314266430069
811 => 0.0035897959236681
812 => 0.0035270486099306
813 => 0.0035162309493913
814 => 0.0035159057574528
815 => 0.0035803332186186
816 => 0.0036306737706117
817 => 0.0035905201078547
818 => 0.0035813778971909
819 => 0.0036789927891061
820 => 0.0036665704043304
821 => 0.0036558126992304
822 => 0.0039330845414512
823 => 0.0037136022425418
824 => 0.0036178954326057
825 => 0.0034994400810794
826 => 0.0035380097408401
827 => 0.0035461369348579
828 => 0.0032612731676192
829 => 0.003145703972728
830 => 0.0031060449801746
831 => 0.0030832206692643
901 => 0.0030936219943558
902 => 0.0029895961640391
903 => 0.0030595032424403
904 => 0.0029694256664707
905 => 0.0029543238677216
906 => 0.0031153937320257
907 => 0.0031378056626871
908 => 0.0030421894036444
909 => 0.0031035905208161
910 => 0.0030813256221903
911 => 0.0029709697879724
912 => 0.0029667550068278
913 => 0.0029113823284124
914 => 0.0028247348089557
915 => 0.0027851345675006
916 => 0.0027645104179257
917 => 0.002773020343997
918 => 0.0027687174649673
919 => 0.0027406382687193
920 => 0.0027703269316279
921 => 0.0026944846660988
922 => 0.0026642836648625
923 => 0.0026506425732619
924 => 0.0025833281972869
925 => 0.002690455304302
926 => 0.0027115606939357
927 => 0.0027327076677068
928 => 0.0029167776367319
929 => 0.0029075820212557
930 => 0.0029907059067138
1001 => 0.00298747586538
1002 => 0.0029637675867296
1003 => 0.0028637462589265
1004 => 0.0029036129774801
1005 => 0.0027809094144357
1006 => 0.0028728472668998
1007 => 0.0028308906704517
1008 => 0.0028586616994362
1009 => 0.0028087268853094
1010 => 0.0028363628732051
1011 => 0.0027165655647762
1012 => 0.0026047005237589
1013 => 0.0026497182818084
1014 => 0.0026986577332133
1015 => 0.0028047709333994
1016 => 0.0027415707867834
1017 => 0.0027642999493686
1018 => 0.002688161059524
1019 => 0.0025310647817759
1020 => 0.0025319539296474
1021 => 0.0025077880898443
1022 => 0.002486905275984
1023 => 0.0027488300838824
1024 => 0.0027162555936018
1025 => 0.0026643524065835
1026 => 0.0027338268849582
1027 => 0.0027521970397487
1028 => 0.0027527200122301
1029 => 0.0028034067982565
1030 => 0.0028304583450448
1031 => 0.0028352262974144
1101 => 0.0029149830503873
1102 => 0.0029417164619668
1103 => 0.0030518276008088
1104 => 0.0028281632102985
1105 => 0.0028235569893623
1106 => 0.0027348045333433
1107 => 0.0026785163226151
1108 => 0.0027386586352885
1109 => 0.0027919365140727
1110 => 0.0027364600255486
1111 => 0.0027437040837773
1112 => 0.0026692314305293
1113 => 0.0026958518998014
1114 => 0.002718781034103
1115 => 0.0027061209138539
1116 => 0.0026871681010842
1117 => 0.0027875683355853
1118 => 0.002781903360883
1119 => 0.0028753983674419
1120 => 0.0029482844109465
1121 => 0.0030789092308456
1122 => 0.0029425954216551
1123 => 0.0029376276046498
1124 => 0.0029861888127388
1125 => 0.0029417090274989
1126 => 0.0029698187163805
1127 => 0.0030743803253927
1128 => 0.0030765895474251
1129 => 0.0030395822319605
1130 => 0.0030373303334513
1201 => 0.0030444379932019
1202 => 0.0030860677783651
1203 => 0.003071521052275
1204 => 0.0030883548919845
1205 => 0.0031094058663102
1206 => 0.0031964816215492
1207 => 0.0032174752913438
1208 => 0.0031664715577128
1209 => 0.0031710766237951
1210 => 0.0031519998273334
1211 => 0.0031335718809828
1212 => 0.0031749952131934
1213 => 0.0032506971669857
1214 => 0.0032502262290601
1215 => 0.0032677876109042
1216 => 0.0032787282063068
1217 => 0.0032317631618337
1218 => 0.0032011906448343
1219 => 0.0032129140932317
1220 => 0.0032316601425226
1221 => 0.0032068350020996
1222 => 0.0030536027352853
1223 => 0.0031000836165216
1224 => 0.0030923469250849
1225 => 0.0030813289356653
1226 => 0.0031280658211744
1227 => 0.0031235579345517
1228 => 0.0029885292287928
1229 => 0.0029971733284359
1230 => 0.0029890549051222
1231 => 0.0030152871917218
]
'min_raw' => 0.002486905275984
'max_raw' => 0.0055709748160523
'avg_raw' => 0.0040289400460182
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.002486'
'max' => '$0.00557'
'avg' => '$0.004028'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.000606444742198
'max_diff' => -0.0040483118828747
'year' => 2034
]
9 => [
'items' => [
101 => 0.0029402923979355
102 => 0.0029633602914065
103 => 0.0029778282579435
104 => 0.0029863500013819
105 => 0.0030171363820957
106 => 0.003013523955654
107 => 0.003016911828596
108 => 0.0030625599038914
109 => 0.0032934322042076
110 => 0.0033059980741228
111 => 0.0032441191349094
112 => 0.0032688385506171
113 => 0.0032213826780003
114 => 0.0032532401232147
115 => 0.0032750361781389
116 => 0.0031765439970765
117 => 0.0031707119293229
118 => 0.0031230601894389
119 => 0.0031486655353201
120 => 0.0031079255889336
121 => 0.003117921746754
122 => 0.0030899716180388
123 => 0.0031402762849111
124 => 0.0031965247190293
125 => 0.0032107352948055
126 => 0.0031733533879758
127 => 0.0031462864238433
128 => 0.0030987657512391
129 => 0.0031777936888472
130 => 0.0032009038661366
131 => 0.0031776723009242
201 => 0.0031722890396448
202 => 0.0031620877692476
203 => 0.0031744532873841
204 => 0.003200778003148
205 => 0.0031883637533349
206 => 0.0031965635840473
207 => 0.0031653142850002
208 => 0.0032317787092177
209 => 0.0033373402104098
210 => 0.0033376796078972
211 => 0.0033252652911667
212 => 0.0033201856202308
213 => 0.00333292346256
214 => 0.00333983321949
215 => 0.0033810250658619
216 => 0.0034252255581745
217 => 0.0036314899696118
218 => 0.0035735717482606
219 => 0.0037565818048126
220 => 0.0039013189986635
221 => 0.003944719354509
222 => 0.0039047930692757
223 => 0.0037682074042681
224 => 0.0037615058599265
225 => 0.0039656225084281
226 => 0.0039079502060917
227 => 0.0039010902692405
228 => 0.0038281121311902
301 => 0.0038712512492961
302 => 0.0038618160913537
303 => 0.0038469222329578
304 => 0.003929228665207
305 => 0.0040832989588315
306 => 0.0040592856587081
307 => 0.0040413608441109
308 => 0.0039628195243809
309 => 0.0040101189416972
310 => 0.0039932765251515
311 => 0.0040656422350934
312 => 0.0040227743916206
313 => 0.0039075132816792
314 => 0.0039258689933429
315 => 0.0039230945644515
316 => 0.0039801921144386
317 => 0.0039630528471808
318 => 0.003919747847444
319 => 0.0040827723633175
320 => 0.0040721864580467
321 => 0.0040871948514459
322 => 0.0040938020103702
323 => 0.0041930321603682
324 => 0.0042336835778117
325 => 0.0042429121612746
326 => 0.0042815278637525
327 => 0.0042419513674189
328 => 0.0044002855703172
329 => 0.0045055685761877
330 => 0.0046278602053202
331 => 0.0048065611443739
401 => 0.0048737543505342
402 => 0.0048616164992644
403 => 0.0049971055117693
404 => 0.0052405762554891
405 => 0.0049108288976652
406 => 0.0052580536661429
407 => 0.0051481263133456
408 => 0.0048874905373718
409 => 0.004870708666093
410 => 0.005047214239626
411 => 0.0054386866136905
412 => 0.0053406272240303
413 => 0.0054388470037232
414 => 0.0053242684134606
415 => 0.0053185786207099
416 => 0.0054332821773383
417 => 0.005701293289566
418 => 0.0055739712563929
419 => 0.005391423901196
420 => 0.005526214027522
421 => 0.0054094463458611
422 => 0.005146336077863
423 => 0.005340552239863
424 => 0.0052106854232914
425 => 0.0052485874644667
426 => 0.0055215481966691
427 => 0.005488704839206
428 => 0.0055312071849763
429 => 0.0054561916571718
430 => 0.0053861153253395
501 => 0.0052553126480376
502 => 0.0052165884237826
503 => 0.0052272904062151
504 => 0.0052165831204116
505 => 0.0051434002245999
506 => 0.0051275963852172
507 => 0.0051012559605305
508 => 0.0051094199595572
509 => 0.0050598922549833
510 => 0.0051533612664602
511 => 0.0051707099386364
512 => 0.0052387288905207
513 => 0.0052457908437495
514 => 0.0054352226565579
515 => 0.0053308867973353
516 => 0.0054008842996265
517 => 0.0053946230641795
518 => 0.0048931393049539
519 => 0.0049622393423465
520 => 0.0050697373157432
521 => 0.005021309624438
522 => 0.0049528441992671
523 => 0.0048975546975578
524 => 0.0048137854488263
525 => 0.0049316890577699
526 => 0.0050867197658798
527 => 0.0052497226783468
528 => 0.0054455599973019
529 => 0.0054018513875088
530 => 0.0052460616358905
531 => 0.0052530502503436
601 => 0.0052962511149744
602 => 0.0052403020700651
603 => 0.0052238016044663
604 => 0.005293984204383
605 => 0.0052944675133769
606 => 0.0052300913755409
607 => 0.005158549079045
608 => 0.0051582493142105
609 => 0.0051455190535656
610 => 0.0053265330985489
611 => 0.0054260725207055
612 => 0.00543748455504
613 => 0.0054253043998685
614 => 0.0054299920581809
615 => 0.0053720722616295
616 => 0.0055044597409639
617 => 0.0056259515837659
618 => 0.0055933891746004
619 => 0.0055445734942419
620 => 0.0055056894535547
621 => 0.005584229330367
622 => 0.0055807320732858
623 => 0.0056248904585062
624 => 0.0056228871790814
625 => 0.0056080383750127
626 => 0.0055933897048979
627 => 0.0056514700260924
628 => 0.0056347438263298
629 => 0.0056179916461591
630 => 0.0055843925841962
701 => 0.0055889592547383
702 => 0.0055401520030953
703 => 0.0055175715352174
704 => 0.0051780154764516
705 => 0.0050872750022351
706 => 0.0051158238026163
707 => 0.0051252228089711
708 => 0.0050857324383049
709 => 0.0051423514855963
710 => 0.0051335274670503
711 => 0.0051678565613344
712 => 0.0051464092336217
713 => 0.0051472894394322
714 => 0.0052103614571828
715 => 0.0052286715322633
716 => 0.0052193588802969
717 => 0.0052258811425151
718 => 0.0053761839224594
719 => 0.0053548156735637
720 => 0.0053434642172228
721 => 0.0053466086482065
722 => 0.0053850142310102
723 => 0.0053957656973282
724 => 0.0053502109790468
725 => 0.005371694847537
726 => 0.0054631704328592
727 => 0.0054951817106523
728 => 0.0055973463430827
729 => 0.0055539449913947
730 => 0.0056336100507845
731 => 0.0058784732835285
801 => 0.0060740869770914
802 => 0.0058941925404132
803 => 0.0062534121773877
804 => 0.0065331161917689
805 => 0.0065223806858255
806 => 0.0064736078212477
807 => 0.0061551722371908
808 => 0.0058621430651345
809 => 0.0061072744102354
810 => 0.0061078993004458
811 => 0.0060868423005054
812 => 0.0059560590823399
813 => 0.0060822913280023
814 => 0.0060923111852548
815 => 0.0060867027296885
816 => 0.0059864315429585
817 => 0.0058333359740346
818 => 0.0058632504817433
819 => 0.0059122510556096
820 => 0.0058194827466902
821 => 0.0057898376509604
822 => 0.0058449535241323
823 => 0.0060225483513406
824 => 0.0059889750779936
825 => 0.0059880983441463
826 => 0.0061317390448081
827 => 0.0060289233027376
828 => 0.0058636277994851
829 => 0.005821888504934
830 => 0.0056737421282355
831 => 0.0057760673583004
901 => 0.0057797498611644
902 => 0.0057237073783963
903 => 0.005868175338094
904 => 0.0058668440404123
905 => 0.0060039948669271
906 => 0.0062661757357254
907 => 0.0061886359516847
908 => 0.0060984656191499
909 => 0.0061082696344486
910 => 0.0062157954839032
911 => 0.0061507829007465
912 => 0.0061741618789335
913 => 0.0062157600970196
914 => 0.0062408573348166
915 => 0.0061046585281542
916 => 0.0060729040711791
917 => 0.0060079455965081
918 => 0.0059909991429738
919 => 0.0060439064651903
920 => 0.0060299672550296
921 => 0.005779440361058
922 => 0.0057532589067195
923 => 0.0057540618545455
924 => 0.0056882273427511
925 => 0.0055878139101712
926 => 0.0058516944156165
927 => 0.005830501118024
928 => 0.0058071053577127
929 => 0.0058099712048565
930 => 0.0059245127885301
1001 => 0.0058580728855108
1002 => 0.0060347142569737
1003 => 0.0059984021013266
1004 => 0.0059611586759054
1005 => 0.0059560105000497
1006 => 0.0059416749587223
1007 => 0.0058925130534907
1008 => 0.005833147098751
1009 => 0.0057939485532409
1010 => 0.005344611273403
1011 => 0.0054280056588662
1012 => 0.0055239432977042
1013 => 0.0055570605861851
1014 => 0.0055004111725919
1015 => 0.0058947499176216
1016 => 0.0059667994062812
1017 => 0.0057485568054594
1018 => 0.0057077325256323
1019 => 0.0058974263506106
1020 => 0.0057830177850217
1021 => 0.005834535955101
1022 => 0.0057231818503219
1023 => 0.0059494447943184
1024 => 0.0059477210497793
1025 => 0.0058596996541843
1026 => 0.0059340947349967
1027 => 0.0059211667589325
1028 => 0.0058217908200928
1029 => 0.0059525951888333
1030 => 0.0059526600661683
1031 => 0.0058679413866582
1101 => 0.0057690085162941
1102 => 0.0057513216557631
1103 => 0.0057379969822484
1104 => 0.0058312589022337
1105 => 0.0059148772480701
1106 => 0.0060704702589257
1107 => 0.0061095900386535
1108 => 0.0062622771432825
1109 => 0.0061713594066761
1110 => 0.0062116620617319
1111 => 0.0062554162949536
1112 => 0.0062763936833688
1113 => 0.006242212154655
1114 => 0.0064793980766634
1115 => 0.0064994238356698
1116 => 0.0065061382994425
1117 => 0.0064261605410528
1118 => 0.0064971995095302
1119 => 0.006463962728743
1120 => 0.0065504355989078
1121 => 0.0065639956490906
1122 => 0.0065525107689985
1123 => 0.0065568149429574
1124 => 0.0063544186009871
1125 => 0.0063439232829302
1126 => 0.0062008188765103
1127 => 0.0062591349799008
1128 => 0.0061501158197759
1129 => 0.0061846869184733
1130 => 0.0061999255293736
1201 => 0.0061919657438228
1202 => 0.0062624320848897
1203 => 0.0062025212996604
1204 => 0.0060444068871954
1205 => 0.0058862493965644
1206 => 0.0058842638581018
1207 => 0.0058426237825303
1208 => 0.0058125256346523
1209 => 0.0058183236057227
1210 => 0.0058387564120163
1211 => 0.0058113380428057
1212 => 0.0058171891420234
1213 => 0.0059143563747071
1214 => 0.0059338425702568
1215 => 0.0058676208640308
1216 => 0.0056017311577866
1217 => 0.0055364811569404
1218 => 0.0055833815635849
1219 => 0.0055609661899819
1220 => 0.0044881337309314
1221 => 0.0047401798036365
1222 => 0.004590422585911
1223 => 0.0046594376018372
1224 => 0.004506574261983
1225 => 0.0045795286600155
1226 => 0.004566056646567
1227 => 0.0049713392728913
1228 => 0.0049650113421292
1229 => 0.0049680401877184
1230 => 0.0048234654961336
1231 => 0.0050537769054588
]
'min_raw' => 0.0029402923979355
'max_raw' => 0.0065639956490906
'avg_raw' => 0.0047521440235131
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.00294'
'max' => '$0.006563'
'avg' => '$0.004752'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.00045338712195143
'max_diff' => 0.00099302083303833
'year' => 2035
]
10 => [
'items' => [
101 => 0.0051672365874228
102 => 0.005146238219923
103 => 0.0051515230566306
104 => 0.0050607120524914
105 => 0.0049689194367415
106 => 0.0048671072990925
107 => 0.0050562616664838
108 => 0.0050352309298026
109 => 0.005083467873129
110 => 0.0052061480014157
111 => 0.0052242131163224
112 => 0.0052484928139553
113 => 0.0052397902707004
114 => 0.0054471201574969
115 => 0.0054220111401992
116 => 0.0054825166475293
117 => 0.0053580522283873
118 => 0.0052172089238571
119 => 0.0052439786315338
120 => 0.0052414004934161
121 => 0.0052085778361292
122 => 0.0051789470087307
123 => 0.005129620029546
124 => 0.0052856978907056
125 => 0.0052793614145741
126 => 0.0053819415977943
127 => 0.0053638095539994
128 => 0.0052427193278733
129 => 0.0052470440889886
130 => 0.0052761301858984
131 => 0.0053767974994025
201 => 0.0054066824120039
202 => 0.0053928385297791
203 => 0.0054256059721484
204 => 0.0054515040225608
205 => 0.0054288583685468
206 => 0.0057494730739278
207 => 0.0056163314950743
208 => 0.0056812237742143
209 => 0.0056967002004217
210 => 0.0056570576601257
211 => 0.005665654707623
212 => 0.0056786768920261
213 => 0.0057577450457169
214 => 0.0059652427595561
215 => 0.0060571420845308
216 => 0.0063336257379499
217 => 0.006049511124892
218 => 0.0060326529395363
219 => 0.0060824559945235
220 => 0.0062447811678475
221 => 0.0063763304743984
222 => 0.0064199729686429
223 => 0.0064257410447164
224 => 0.0065076172652172
225 => 0.0065545471879072
226 => 0.00649767533849
227 => 0.0064494824008398
228 => 0.0062768612801045
229 => 0.0062968426448613
301 => 0.0064344944334698
302 => 0.0066289356925292
303 => 0.0067957865209671
304 => 0.0067373611761866
305 => 0.0071831053149964
306 => 0.0072272990256579
307 => 0.0072211928837982
308 => 0.007321872733591
309 => 0.0071220437348472
310 => 0.0070366129663797
311 => 0.0064599022609729
312 => 0.0066219344454682
313 => 0.0068574577414487
314 => 0.0068262853500587
315 => 0.0066552420369619
316 => 0.0067956567692763
317 => 0.0067492312675985
318 => 0.0067126135482294
319 => 0.0068803664193534
320 => 0.0066959152466444
321 => 0.0068556176999032
322 => 0.0066507976516885
323 => 0.0067376280582402
324 => 0.0066883389199672
325 => 0.0067202350330794
326 => 0.0065337710075702
327 => 0.0066343824695766
328 => 0.006529585239971
329 => 0.0065295355524391
330 => 0.0065272221477872
331 => 0.0066505156236762
401 => 0.0066545362194986
402 => 0.0065634221545305
403 => 0.0065502911942994
404 => 0.0065988432364886
405 => 0.006542001510885
406 => 0.0065685973965374
407 => 0.0065428070731678
408 => 0.00653700112815
409 => 0.0064907383704479
410 => 0.0064708071024088
411 => 0.0064786226661724
412 => 0.0064519441178479
413 => 0.0064358693274771
414 => 0.0065240244673859
415 => 0.0064769267323008
416 => 0.0065168060640075
417 => 0.0064713585323548
418 => 0.0063138175870998
419 => 0.0062232141235183
420 => 0.0059256338819849
421 => 0.0060100272693366
422 => 0.0060659801724621
423 => 0.0060474877383129
424 => 0.0060872166424874
425 => 0.0060896556745389
426 => 0.0060767394028036
427 => 0.0060617840148109
428 => 0.0060545045590209
429 => 0.0061087596585333
430 => 0.0061402565699429
501 => 0.006071595794844
502 => 0.0060555095359047
503 => 0.006124929370395
504 => 0.0061672754293315
505 => 0.0064799349363238
506 => 0.0064567721101689
507 => 0.0065149062583426
508 => 0.0065083612453995
509 => 0.0065692950941816
510 => 0.0066688961843745
511 => 0.0064663793191095
512 => 0.0065015292444132
513 => 0.0064929112944591
514 => 0.0065869998123106
515 => 0.0065872935463933
516 => 0.0065308827798712
517 => 0.006561463971563
518 => 0.0065443943893117
519 => 0.0065752414315321
520 => 0.0064564627565039
521 => 0.0066011223613226
522 => 0.0066831350355958
523 => 0.0066842737816577
524 => 0.0067231471383703
525 => 0.0067626447201834
526 => 0.0068384568889592
527 => 0.0067605303599433
528 => 0.0066203481202386
529 => 0.0066304688251594
530 => 0.0065482800293112
531 => 0.006549661637818
601 => 0.00654228650333
602 => 0.0065644198371028
603 => 0.0064613197786017
604 => 0.0064855171562585
605 => 0.0064516406858394
606 => 0.0065014556035825
607 => 0.0064478629867918
608 => 0.0064929071386227
609 => 0.0065123467013156
610 => 0.0065840791061563
611 => 0.006437268052273
612 => 0.0061379103751702
613 => 0.0062008389882582
614 => 0.0061077626265652
615 => 0.0061163771982066
616 => 0.0061337800039211
617 => 0.0060773718167566
618 => 0.0060881327212413
619 => 0.0060877482660098
620 => 0.0060844352385242
621 => 0.0060697612904551
622 => 0.0060484811626029
623 => 0.0061332546422883
624 => 0.0061476593084065
625 => 0.0061796790968267
626 => 0.0062749482679352
627 => 0.0062654286311397
628 => 0.0062809555537191
629 => 0.0062470603689082
630 => 0.0061179494986162
701 => 0.0061249608400442
702 => 0.006037529300088
703 => 0.0061774432757771
704 => 0.0061443097995597
705 => 0.0061229484318963
706 => 0.0061171197848177
707 => 0.0062126251097742
708 => 0.0062412017998638
709 => 0.0062233947243103
710 => 0.0061868718928347
711 => 0.0062570065262737
712 => 0.0062757715954393
713 => 0.0062799724023963
714 => 0.006404237525868
715 => 0.0062869174423851
716 => 0.0063151575525408
717 => 0.0065354788304804
718 => 0.0063356778336473
719 => 0.0064415168777637
720 => 0.006436336607314
721 => 0.006490480280886
722 => 0.0064318952457457
723 => 0.0064326214774698
724 => 0.0064806973915916
725 => 0.0064131834407443
726 => 0.0063964660370637
727 => 0.0063733710636113
728 => 0.006423798093232
729 => 0.0064540268168713
730 => 0.0066976481288525
731 => 0.006855038606874
801 => 0.0068482058711352
802 => 0.0069106442854422
803 => 0.0068825152079266
804 => 0.0067916789965529
805 => 0.0069467253330719
806 => 0.006897662184783
807 => 0.0069017068911163
808 => 0.0069015563469445
809 => 0.0069341790513818
810 => 0.006911062875461
811 => 0.0068654985198945
812 => 0.006895746265519
813 => 0.0069855712562568
814 => 0.0072643907836744
815 => 0.0074204218850847
816 => 0.0072549975154511
817 => 0.0073691050305038
818 => 0.007300681182137
819 => 0.0072882465334556
820 => 0.0073599144853878
821 => 0.0074317078825826
822 => 0.0074271349535527
823 => 0.007375016633821
824 => 0.007345576317458
825 => 0.0075685082561884
826 => 0.0077327607110984
827 => 0.007721559794836
828 => 0.0077709969964853
829 => 0.0079161461495627
830 => 0.0079294167690516
831 => 0.0079277449760177
901 => 0.0078948523609683
902 => 0.0080377705521724
903 => 0.0081569954216811
904 => 0.0078872386709434
905 => 0.0079899585102492
906 => 0.00803607275554
907 => 0.0081037821491071
908 => 0.0082180192454667
909 => 0.0083421110320065
910 => 0.0083596589712204
911 => 0.0083472078686019
912 => 0.0082653659996127
913 => 0.0084011487131674
914 => 0.0084806870422714
915 => 0.0085280502970505
916 => 0.0086481556306762
917 => 0.0080363575414198
918 => 0.0076032964455061
919 => 0.0075356677019012
920 => 0.0076731934113908
921 => 0.0077094578442363
922 => 0.007694839696828
923 => 0.0072073900611849
924 => 0.0075331013804495
925 => 0.0078835393733927
926 => 0.0078970011239053
927 => 0.0080724377104855
928 => 0.0081295670544647
929 => 0.0082708165016609
930 => 0.0082619813102806
1001 => 0.0082963733029033
1002 => 0.0082884671793857
1003 => 0.0085501020367363
1004 => 0.0088387241375463
1005 => 0.0088287300719573
1006 => 0.0087872372301442
1007 => 0.0088488611758176
1008 => 0.0091467501144775
1009 => 0.0091193252745787
1010 => 0.0091459661704981
1011 => 0.0094971940174631
1012 => 0.0099538401800963
1013 => 0.009741682191028
1014 => 0.010202003980489
1015 => 0.010491752146346
1016 => 0.010992841638674
1017 => 0.010930102766317
1018 => 0.011125173228516
1019 => 0.0108177870908
1020 => 0.010111966385614
1021 => 0.010000267557246
1022 => 0.010223891440305
1023 => 0.010773648935906
1024 => 0.010206577620347
1025 => 0.01032129540893
1026 => 0.0102882566781
1027 => 0.01028649618454
1028 => 0.010353687063293
1029 => 0.010256223189222
1030 => 0.0098591378328393
1031 => 0.010041119711631
1101 => 0.0099708477687417
1102 => 0.010048819728497
1103 => 0.010469602237216
1104 => 0.010283564259909
1105 => 0.010087588363315
1106 => 0.010333385628177
1107 => 0.010646370011451
1108 => 0.010626784011233
1109 => 0.010588778984497
1110 => 0.010803011330331
1111 => 0.011156860401463
1112 => 0.011252504383509
1113 => 0.0113231068157
1114 => 0.011332841698261
1115 => 0.011433117038839
1116 => 0.010893911259915
1117 => 0.011749644678853
1118 => 0.011897406201145
1119 => 0.011869633159042
1120 => 0.012033863872314
1121 => 0.011985543030338
1122 => 0.011915533711623
1123 => 0.012175874325034
1124 => 0.011877414820163
1125 => 0.011453789128005
1126 => 0.011221379694921
1127 => 0.01152743518434
1128 => 0.011714332591864
1129 => 0.011837859889329
1130 => 0.011875239174905
1201 => 0.010935768269611
1202 => 0.010429445557102
1203 => 0.010753992610819
1204 => 0.011149962415394
1205 => 0.010891711627658
1206 => 0.010901834569603
1207 => 0.010533636813405
1208 => 0.011182539746801
1209 => 0.011088000047538
1210 => 0.011578472174553
1211 => 0.011461417065156
1212 => 0.011861378044718
1213 => 0.011756054914647
1214 => 0.012193245339035
1215 => 0.012367652435781
1216 => 0.012660509095515
1217 => 0.012875935646556
1218 => 0.013002438237781
1219 => 0.012994843496703
1220 => 0.013496109786477
1221 => 0.013200530568307
1222 => 0.012829213407614
1223 => 0.012822497451668
1224 => 0.013014807870796
1225 => 0.013417837751501
1226 => 0.013522337535722
1227 => 0.013580738658978
1228 => 0.013491295305753
1229 => 0.013170465248784
1230 => 0.01303193245683
1231 => 0.013149966409256
]
'min_raw' => 0.0048671072990925
'max_raw' => 0.013580738658978
'avg_raw' => 0.0092239229790353
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.004867'
'max' => '$0.01358'
'avg' => '$0.009223'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.001926814901157
'max_diff' => 0.0070167430098874
'year' => 2036
]
11 => [
'items' => [
101 => 0.013005621028212
102 => 0.013254801652055
103 => 0.0135969798707
104 => 0.013526321421669
105 => 0.013762522023073
106 => 0.014006964796498
107 => 0.014356528941107
108 => 0.014447917952831
109 => 0.014598980513997
110 => 0.014754473510904
111 => 0.014804413670856
112 => 0.014899764931728
113 => 0.014899262383516
114 => 0.015186609826031
115 => 0.015503562953535
116 => 0.015623205421686
117 => 0.015898316680075
118 => 0.015427198291132
119 => 0.015784547000963
120 => 0.016106884482249
121 => 0.015722580448646
122 => 0.016252254027612
123 => 0.016272820052417
124 => 0.016583342609866
125 => 0.016268568508968
126 => 0.01608165665265
127 => 0.016621264178345
128 => 0.016882363262552
129 => 0.016803718093494
130 => 0.016205224473773
131 => 0.015856875516497
201 => 0.014945179103809
202 => 0.016025122886992
203 => 0.016551132001388
204 => 0.016203862237241
205 => 0.016379004906801
206 => 0.017334526521718
207 => 0.017698327287236
208 => 0.017622659271167
209 => 0.017635445920281
210 => 0.017831746209903
211 => 0.018702249798632
212 => 0.018180623870151
213 => 0.018579387347524
214 => 0.018790890058075
215 => 0.018987345562808
216 => 0.018504912933583
217 => 0.017877275171304
218 => 0.01767847594555
219 => 0.016169333103136
220 => 0.016090775664313
221 => 0.016046678993368
222 => 0.015768655720656
223 => 0.015550205585288
224 => 0.01537648592711
225 => 0.014920593666969
226 => 0.015074443921909
227 => 0.014347846811354
228 => 0.014812697893667
301 => 0.013653031360921
302 => 0.014618836109069
303 => 0.014093192494405
304 => 0.014446148044512
305 => 0.014444916615848
306 => 0.013795013543442
307 => 0.01342016301441
308 => 0.01365903236091
309 => 0.013915119261831
310 => 0.013956668499925
311 => 0.014288691851521
312 => 0.014381352432134
313 => 0.014100586546969
314 => 0.013628999849635
315 => 0.013738538683678
316 => 0.013417943213434
317 => 0.012856111983358
318 => 0.013259628981431
319 => 0.013397407425963
320 => 0.013458258236133
321 => 0.012905761748106
322 => 0.012732155356285
323 => 0.012639728769979
324 => 0.013557679490984
325 => 0.013607966903637
326 => 0.01335068939058
327 => 0.014513608145655
328 => 0.01425040381549
329 => 0.014544467538911
330 => 0.01372859918262
331 => 0.013759766452543
401 => 0.013373521297805
402 => 0.013589792775548
403 => 0.013436939065834
404 => 0.013572320177382
405 => 0.013653467057447
406 => 0.014039648833156
407 => 0.014623245684615
408 => 0.013981966153893
409 => 0.013702551479065
410 => 0.01387589877184
411 => 0.01433754545594
412 => 0.01503696381361
413 => 0.014622894068763
414 => 0.014806651190166
415 => 0.014846793946407
416 => 0.014541474246252
417 => 0.015048221386458
418 => 0.015319791295701
419 => 0.01559836582911
420 => 0.015840244290987
421 => 0.015487097034481
422 => 0.015865015220613
423 => 0.015560479874131
424 => 0.015287280186051
425 => 0.015287694517206
426 => 0.015116312362063
427 => 0.014784237840932
428 => 0.014722998204298
429 => 0.01504157452778
430 => 0.015297042569923
501 => 0.015318084141484
502 => 0.015459524376036
503 => 0.015543227249894
504 => 0.016363629202239
505 => 0.016693601654193
506 => 0.017097085722383
507 => 0.01725426550606
508 => 0.017727320302854
509 => 0.01734529013481
510 => 0.017262635504872
511 => 0.016115159302893
512 => 0.016303058466684
513 => 0.016603903157487
514 => 0.016120120121036
515 => 0.016426969106159
516 => 0.016487547595772
517 => 0.01610368135858
518 => 0.016308720901745
519 => 0.015764196665085
520 => 0.014635114824961
521 => 0.015049478377312
522 => 0.015354589425105
523 => 0.014919158339983
524 => 0.015699651706555
525 => 0.015243703594457
526 => 0.015099189932291
527 => 0.014535390613341
528 => 0.01480148218926
529 => 0.015161374855753
530 => 0.014939003029873
531 => 0.015400457957872
601 => 0.016054001201452
602 => 0.016519755036
603 => 0.016555509832129
604 => 0.016256061319598
605 => 0.016735929471983
606 => 0.01673942478759
607 => 0.016198131551379
608 => 0.015866592458134
609 => 0.015791266078584
610 => 0.015979446143306
611 => 0.016207931481834
612 => 0.01656818917824
613 => 0.016785885359106
614 => 0.017353521541671
615 => 0.017507107617269
616 => 0.017675852149962
617 => 0.017901346884526
618 => 0.018172111129034
619 => 0.017579694376668
620 => 0.017603232198642
621 => 0.017051581921407
622 => 0.016462064485529
623 => 0.016909434734975
624 => 0.017494311824955
625 => 0.017360140374281
626 => 0.017345043345207
627 => 0.017370432360544
628 => 0.017269271468366
629 => 0.016811724502244
630 => 0.016581947280253
701 => 0.016878418519043
702 => 0.017035979788043
703 => 0.017280343575475
704 => 0.01725022058078
705 => 0.01787967545445
706 => 0.018124262584631
707 => 0.018061686730257
708 => 0.018073202193434
709 => 0.018516015509622
710 => 0.019008514988728
711 => 0.019469805741941
712 => 0.019939050509008
713 => 0.019373357627374
714 => 0.019086133669166
715 => 0.019382475477887
716 => 0.019225232342867
717 => 0.020128798038037
718 => 0.020191358966332
719 => 0.021094859323418
720 => 0.021952388749114
721 => 0.02141378988107
722 => 0.02192166435461
723 => 0.022470972005357
724 => 0.023530675585601
725 => 0.023173804700596
726 => 0.022900447195562
727 => 0.022642125674159
728 => 0.023179651752813
729 => 0.023871170465812
730 => 0.024020116973308
731 => 0.024261467217397
801 => 0.024007716946641
802 => 0.024313331198091
803 => 0.025392283799415
804 => 0.025100741282359
805 => 0.024686704040342
806 => 0.025538433495378
807 => 0.025846671074141
808 => 0.028010043827175
809 => 0.03074139129235
810 => 0.029610595506773
811 => 0.028908674072113
812 => 0.029073642259057
813 => 0.030071037891393
814 => 0.030391369712744
815 => 0.029520597397311
816 => 0.029828168900081
817 => 0.031522918120105
818 => 0.032432096702583
819 => 0.031197310068603
820 => 0.027790582717801
821 => 0.024649424516778
822 => 0.025482601119886
823 => 0.025388144749574
824 => 0.027208941362219
825 => 0.025093788089747
826 => 0.025129401846243
827 => 0.02698785060458
828 => 0.026492048337733
829 => 0.025688912162998
830 => 0.024655288299657
831 => 0.022744538989635
901 => 0.021052135040562
902 => 0.024371328922046
903 => 0.024228199246314
904 => 0.024020926265225
905 => 0.02448218985536
906 => 0.026721954917104
907 => 0.026670321083019
908 => 0.026341852974383
909 => 0.026590993139798
910 => 0.025645236687426
911 => 0.025888979659676
912 => 0.02464892694127
913 => 0.025209482559166
914 => 0.025687188993474
915 => 0.025783095632726
916 => 0.025999178188075
917 => 0.024152776411066
918 => 0.024981756601435
919 => 0.025468704798337
920 => 0.023268655129406
921 => 0.025425216890082
922 => 0.024120634664002
923 => 0.023677839862303
924 => 0.024274004729011
925 => 0.024041678700665
926 => 0.023841938424136
927 => 0.023730479917859
928 => 0.024168237599654
929 => 0.024147815680565
930 => 0.023431559148043
1001 => 0.022497231699719
1002 => 0.02281082265963
1003 => 0.022696892123963
1004 => 0.022283993165377
1005 => 0.022562237209854
1006 => 0.021336991254065
1007 => 0.019229019269874
1008 => 0.020621610131559
1009 => 0.020567996898231
1010 => 0.020540962674821
1011 => 0.021587456218993
1012 => 0.021486860011435
1013 => 0.021304276909676
1014 => 0.022280639883529
1015 => 0.021924254264138
1016 => 0.023022550768091
1017 => 0.023745959878959
1018 => 0.02356247992861
1019 => 0.02424284969392
1020 => 0.022818047161981
1021 => 0.023291309409936
1022 => 0.023388848103326
1023 => 0.022268591715989
1024 => 0.021503318795085
1025 => 0.021452283816011
1026 => 0.020125406032269
1027 => 0.020834213434161
1028 => 0.021457934615382
1029 => 0.021159220572296
1030 => 0.021064656630083
1031 => 0.021547763302432
1101 => 0.021585304828403
1102 => 0.020729354057806
1103 => 0.020907333327449
1104 => 0.02164953646845
1105 => 0.020888631712592
1106 => 0.019410318065047
1107 => 0.01904367584117
1108 => 0.018994759009948
1109 => 0.018000396220033
1110 => 0.019068176627738
1111 => 0.018602061865039
1112 => 0.020074512815492
1113 => 0.019233456729506
1114 => 0.019197200482637
1115 => 0.019142393847859
1116 => 0.018286504717969
1117 => 0.018473890042823
1118 => 0.019096787402229
1119 => 0.019319044197505
1120 => 0.019295860992862
1121 => 0.019093734865347
1122 => 0.01918626717147
1123 => 0.018888188373055
1124 => 0.018782930545361
1125 => 0.018450707887713
1126 => 0.017962432359821
1127 => 0.018030330066742
1128 => 0.017062928481747
1129 => 0.016535836754353
1130 => 0.016389944711168
1201 => 0.016194851773773
1202 => 0.016411980977569
1203 => 0.017060187954604
1204 => 0.016278312815519
1205 => 0.01493784273172
1206 => 0.015018407267807
1207 => 0.015199411860567
1208 => 0.014862110999423
1209 => 0.014542884041867
1210 => 0.014820425981761
1211 => 0.01425245113615
1212 => 0.015268048907127
1213 => 0.015240579833602
1214 => 0.015619131878477
1215 => 0.015855848240807
1216 => 0.015310293663468
1217 => 0.015173088162604
1218 => 0.015251246651538
1219 => 0.013959460929634
1220 => 0.015513565425578
1221 => 0.015527005385795
1222 => 0.015411924286784
1223 => 0.016239436953282
1224 => 0.017985746787264
1225 => 0.01732871478257
1226 => 0.017074292131454
1227 => 0.016590634485703
1228 => 0.017235079581918
1229 => 0.017185596253438
1230 => 0.016961813876057
1231 => 0.016826469595974
]
'min_raw' => 0.012639728769979
'max_raw' => 0.032432096702583
'avg_raw' => 0.022535912736281
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.012639'
'max' => '$0.032432'
'avg' => '$0.022535'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.0077726214708863
'max_diff' => 0.018851358043605
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.00039674664299508
]
1 => [
'year' => 2028
'avg' => 0.00068093241575297
]
2 => [
'year' => 2029
'avg' => 0.0018601846337098
]
3 => [
'year' => 2030
'avg' => 0.001435129674637
]
4 => [
'year' => 2031
'avg' => 0.0014094751941562
]
5 => [
'year' => 2032
'avg' => 0.0024712535935242
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.00039674664299508
'min' => '$0.000396'
'max_raw' => 0.0024712535935242
'max' => '$0.002471'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.0024712535935242
]
1 => [
'year' => 2033
'avg' => 0.0063563183585545
]
2 => [
'year' => 2034
'avg' => 0.0040289400460182
]
3 => [
'year' => 2035
'avg' => 0.0047521440235131
]
4 => [
'year' => 2036
'avg' => 0.0092239229790353
]
5 => [
'year' => 2037
'avg' => 0.022535912736281
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.0024712535935242
'min' => '$0.002471'
'max_raw' => 0.022535912736281
'max' => '$0.022535'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.022535912736281
]
]
]
]
'prediction_2025_max_price' => '$0.000678'
'last_price' => 0.00065776
'sma_50day_nextmonth' => '$0.000621'
'sma_200day_nextmonth' => '$0.000681'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 feb. 2026'
'sma_50day_date_nextmonth' => '4 feb. 2026'
'daily_sma3' => '$0.000658'
'daily_sma3_action' => 'SELL'
'daily_sma5' => '$0.000652'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.000649'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.000647'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.000656'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.000668'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.000694'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.000656'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.000654'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.000651'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.00065'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.000657'
'daily_ema50_action' => 'BUY'
'daily_ema100' => '$0.000669'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.000688'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.000677'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.0007087'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.000792'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.000984'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.000655'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.000655'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.000661'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.000676'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.000713'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.000821'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.001212'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '56.52'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 122.95
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'SELL'
'vwma_10' => '0.000650'
'vwma_10_action' => 'BUY'
'hma_9' => '0.000658'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 87.99
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 166.79
'cci_20_action' => 'SELL'
'adx_14' => 13.46
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.0000042'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -12.01
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 62.66
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.000015'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 17
'buy_signals' => 18
'sell_pct' => 48.57
'buy_pct' => 51.43
'overall_action' => 'bullish'
'overall_action_label' => 'Alcista'
'overall_action_dir' => 1
'last_updated' => 1767714210
'last_updated_date' => '6 de enero de 2026'
]
Predicción de precio de BitKan para 2026
La previsión del precio de BitKan para 2026 sugiere que el precio medio podría oscilar entre $0.000227 en el extremo inferior y $0.000678 en el extremo superior. En el mercado de criptomonedas, en comparación con el precio medio de hoy, BitKan podría potencialmente ganar 3.13% para 2026 si KAN alcanza el objetivo de precio previsto.
Predicción de precio de BitKan 2027-2032
La predicción del precio de KAN para 2027-2032 está actualmente dentro de un rango de precios de $0.000396 en el extremo inferior y $0.002471 en el extremo superior. Considerando la volatilidad de precios en el mercado, si BitKan alcanza el objetivo de precio superior, podría ganar 275.71% para 2032 en comparación con el precio de hoy.
| Predicción de Precio de BitKan | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.000218 | $0.000396 | $0.000574 |
| 2028 | $0.000394 | $0.00068 | $0.000967 |
| 2029 | $0.000867 | $0.00186 | $0.002853 |
| 2030 | $0.000737 | $0.001435 | $0.002132 |
| 2031 | $0.000872 | $0.0014094 | $0.001946 |
| 2032 | $0.001331 | $0.002471 | $0.003611 |
Predicción de precio de BitKan 2032-2037
La predicción de precio de BitKan para 2032-2037 se estima actualmente entre $0.002471 en el extremo inferior y $0.022535 en el extremo superior. Comparado con el precio actual, BitKan podría potencialmente ganar 3326.16% para 2037 si alcanza el objetivo de precio superior. Tenga en cuenta que esta información es solo para fines generales y no debe considerarse como consejo de inversión a largo plazo.
| Predicción de Precio de BitKan | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.001331 | $0.002471 | $0.003611 |
| 2033 | $0.003093 | $0.006356 | $0.009619 |
| 2034 | $0.002486 | $0.004028 | $0.00557 |
| 2035 | $0.00294 | $0.004752 | $0.006563 |
| 2036 | $0.004867 | $0.009223 | $0.01358 |
| 2037 | $0.012639 | $0.022535 | $0.032432 |
BitKan Histograma de precios potenciales
Pronóstico de precio de BitKan basado en análisis técnico
A fecha de 6 de enero de 2026, el sentimiento general de predicción de precio para BitKan es Alcista, con 18 indicadores técnicos mostrando señales alcistas y 17 indicando señales bajistas. La predicción de precio de KAN se actualizó por última vez el 6 de enero de 2026.
Promedios Móviles Simples de 50 y 200 días y el Índice de Fuerza Relativa de 14 días - RSI (14) de BitKan
Según nuestros indicadores técnicos, se proyecta que el SMA de 200 días de BitKan aumentar durante el próximo mes, alcanzando $0.000681 para el 4 feb. 2026. Se espera que el SMA de 50 días a corto plazo para BitKan alcance $0.000621 para el 4 feb. 2026.
El oscilador de momento del Índice de Fuerza Relativa (RSI) es una herramienta comúnmente utilizada para identificar si una criptomoneda está sobrevendida (por debajo de 30) o sobrecomprada (por encima de 70). Actualmente, el RSI se encuentra en 56.52, lo que sugiere que el mercado de KAN está en un estado NEUTRAL.
Promedios Móviles y Osciladores Populares de KAN para Sáb, 19 de Oct de 2024
Los promedios móviles (MA) son indicadores ampliamente utilizados en los mercados financieros, diseñados para suavizar los movimientos de precios durante un período establecido. Como indicadores rezagados, se basan en datos históricos de precios. La tabla a continuación resalta dos tipos: el promedio móvil simple (SMA) y el promedio móvil exponencial (EMA).
Promedio Móvil Simple Diario (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 3 | $0.000658 | SELL |
| SMA 5 | $0.000652 | BUY |
| SMA 10 | $0.000649 | BUY |
| SMA 21 | $0.000647 | BUY |
| SMA 50 | $0.000656 | BUY |
| SMA 100 | $0.000668 | SELL |
| SMA 200 | $0.000694 | SELL |
Promedio Móvil Exponencial Diario (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 3 | $0.000656 | BUY |
| EMA 5 | $0.000654 | BUY |
| EMA 10 | $0.000651 | BUY |
| EMA 21 | $0.00065 | BUY |
| EMA 50 | $0.000657 | BUY |
| EMA 100 | $0.000669 | SELL |
| EMA 200 | $0.000688 | SELL |
Promedio Móvil Simple Semanal (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 21 | $0.000677 | SELL |
| SMA 50 | $0.0007087 | SELL |
| SMA 100 | $0.000792 | SELL |
| SMA 200 | $0.000984 | SELL |
Promedio Móvil Exponencial Semanal (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 21 | $0.000676 | SELL |
| EMA 50 | $0.000713 | SELL |
| EMA 100 | $0.000821 | SELL |
| EMA 200 | $0.001212 | SELL |
Osciladores de BitKan
Un oscilador es una herramienta de análisis técnico que establece límites altos y bajos entre dos extremos, creando un indicador de tendencia que fluctúa dentro de estos límites. Los traders utilizan este indicador para identificar condiciones de sobrecompra o sobreventa a corto plazo.
| Período | Valor | Acción |
|---|---|---|
| RSI (14) | 56.52 | NEUTRAL |
| Stoch RSI (14) | 122.95 | SELL |
| Estocástico Rápido (14) | 87.99 | SELL |
| Índice de Canal de Materias Primas (20) | 166.79 | SELL |
| Índice Direccional Medio (14) | 13.46 | NEUTRAL |
| Oscilador Asombroso (5, 34) | 0.0000042 | BUY |
| Momentum (10) | 0 | SELL |
| MACD (12, 26) | 0 | BUY |
| Rango Percentil de Williams (14) | -12.01 | SELL |
| Oscilador Ultimate (7, 14, 28) | 62.66 | NEUTRAL |
| VWMA (10) | 0.000650 | BUY |
| Promedio Móvil de Hull (9) | 0.000658 | BUY |
| Nube Ichimoku B/L (9, 26, 52, 26) | -0.000015 | SELL |
Predicción de precios de BitKan basada en flujos de dinero globales
Definiciones de flujos de dinero globales utilizadas para la predicción de precios de BitKan
M0: El total de toda la moneda física, además de cuentas en el banco central que pueden cambiarse por moneda física.
M1: Medir M0 más la cantidad en cuentas a la vista, incluyendo cuentas "de cheques" o "corrientes".
M2: Medir M1 más la mayoría de cuentas de ahorro, cuentas del mercado monetario, y cuentas de certificados de depósito (CD) inferiores a 100 000 $.
Predicciones de precios de BitKan por parte de empresas de Internet o nichos tecnológicos
| Comparación | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook acción | $0.000924 | $0.001298 | $0.001824 | $0.002564 | $0.0036033 | $0.005063 |
| Amazon.com acción | $0.001372 | $0.002863 | $0.005975 | $0.012467 | $0.026014 | $0.054281 |
| Apple acción | $0.000932 | $0.001323 | $0.001877 | $0.002662 | $0.003776 | $0.005356 |
| Netflix acción | $0.001037 | $0.001637 | $0.002583 | $0.004076 | $0.006432 | $0.010149 |
| Google acción | $0.000851 | $0.001103 | $0.001428 | $0.001849 | $0.002395 | $0.0031022 |
| Tesla acción | $0.001491 | $0.00338 | $0.007662 | $0.01737 | $0.039377 | $0.089266 |
| Kodak acción | $0.000493 | $0.000369 | $0.000277 | $0.000208 | $0.000155 | $0.000116 |
| Nokia acción | $0.000435 | $0.000288 | $0.000191 | $0.000126 | $0.000083 | $0.000055 |
Este cálculo muestra cuánto puede costar la criptomoneda si asumimos que su capitalización se comportará como la capitalización de algunas empresas de Internet o nichos tecnológicos. Si extrapola los datos, puede obtener una imagen potencial del precio futuro en 2024, 2025, 2026, 2027, 2028, 2029 y 2030.
Resumen de pronósticos y predicciones de BitKan
Podría preguntarse cosas como: "¿Debo invertir en BitKan ahora?", "¿Debería comprar KAN hoy?", "¿Será BitKan una buena o mala inversión a corto plazo?, ¿Lo será a largo plazo?".
Actualizamos el pronóstico de BitKan/KAN regularmente con valores actualizados. Aquí hay algunas predicciones similares. Hacemos un pronóstico de precios futuros para una gran cantidad de monedas digitales, como BitKan, con métodos de análisis técnico.
Si está tratando de encontrar criptomonedas que ofrezcan un buen rendimiento, debería explorar el máximo de fuentes de información disponibles acerca de BitKan a fin de tomar una decisión responsable sobre la inversión por sus propios medios.
El precio de BitKan es de $0.0006577 USD hoy, pero dicho precio puede subir y bajar, y su inversión puede perderse porque estos son activos de criptomonedas conllevan un alto riesgo
Pronóstico a corto plazo de BitKan
basado en el historial de precios de las últimas 4 horas
Pronóstico a largo plazo de BitKan
basado en el historial de precios del último mes
Predicción de precios de BitKan basada en el patrón de crecimiento del Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si BitKan ofrece un 1 % del crecimiento medio anterior anual del Bitcoin | $0.000674 | $0.000692 | $0.00071 | $0.000728 |
| Si BitKan ofrece un 2 % del crecimiento medio anterior anual del Bitcoin | $0.000691 | $0.000727 | $0.000765 | $0.0008055 |
| Si BitKan ofrece un 5 % del crecimiento medio anterior anual del Bitcoin | $0.000743 | $0.000839 | $0.000948 | $0.001072 |
| Si BitKan ofrece un 10 % del crecimiento medio anterior anual del Bitcoin | $0.000828 | $0.001044 | $0.001315 | $0.001657 |
| Si BitKan ofrece un 20 % del crecimiento medio anterior anual del Bitcoin | $0.000999 | $0.001519 | $0.0023093 | $0.0035098 |
| Si BitKan ofrece un 50 % del crecimiento medio anterior anual del Bitcoin | $0.001512 | $0.003478 | $0.007999 | $0.018395 |
| Si BitKan ofrece un 100 % del crecimiento medio anterior anual del Bitcoin | $0.002367 | $0.008521 | $0.030671 | $0.110395 |
Cuadro de preguntas
¿Es KAN una buena inversión?
La decisión de adquirir BitKan depende completamente de su tolerancia individual al riesgo. Como puede discernir, el valor de BitKan ha experimentado una caída de -0.7414% durante las últimas 24 horas, y BitKan ha sufrido un declive de durante el período previo de 30 días. Por lo tanto, la determinación de si invertir o no en BitKan dependerá de si dicha inversión se alinea con sus aspiraciones comerciales.
¿Puede BitKan subir?
Parece que el valor medio de BitKan podría potencialmente aumentar hasta $0.000678 para el final de este año. Mirando las perspectivas de BitKan en un horizonte de cinco años más extendido, la moneda digital podría potencialmente crecer hasta $0.002132. Sin embargo, dada la imprevisibilidad del mercado, es vital realizar una investigación exhaustiva antes de invertir cualquier fondo en un proyecto, red o activo en particular.
¿Cuál será el precio de BitKan la próxima semana?
Basado en nuestro nuevo pronóstico experimental de BitKan, el precio de BitKan aumentará en un 0.86% durante la próxima semana y alcanzará $0.000663 para el 13 de enero de 2026.
¿Cuál será el precio de BitKan el próximo mes?
Basado en nuestro nuevo pronóstico experimental de BitKan, el precio de BitKan disminuirá en un -11.62% durante el próximo mes y alcanzará $0.000581 para el 5 de febrero de 2026.
¿Hasta qué punto puede subir el precio de BitKan este año en 2026?
Según nuestra predicción más reciente sobre el valor de BitKan en 2026, se anticipa que KAN fluctúe dentro del rango de $0.000227 y $0.000678. Sin embargo, es crucial tener en cuenta que el mercado de criptomonedas es excepcionalmente inestable, y esta predicción de precios proyectada de BitKan no considera fluctuaciones de precios repentinas y extremas.
¿Dónde estará BitKan en 5 años?
El futuro de BitKan parece estar en una tendencia alcista, con un precio máximo de $0.002132 proyectada después de un período de cinco años. Basado en el pronóstico de BitKan para 2030, el valor de BitKan podría potencialmente alcanzar su punto más alto de aproximadamente $0.002132, mientras que su punto más bajo se anticipa que esté alrededor de $0.000737.
¿Cuánto será BitKan en 2026?
Basado en nuestra nueva simulación experimental de predicción de precios de BitKan, se espera que el valor de KAN en 2026 crezca en un 3.13% hasta $0.000678 si ocurre lo mejor. El precio estará entre $0.000678 y $0.000227 durante 2026.
¿Cuánto será BitKan en 2027?
Según nuestra última simulación experimental para la predicción de precios de BitKan, el valor de KAN podría disminuir en un -12.62% hasta $0.000574 en 2027, asumiendo las condiciones más favorables. Se proyecta que el precio fluctúe entre $0.000574 y $0.000218 a lo largo del año.
¿Cuánto será BitKan en 2028?
Nuestro nuevo modelo experimental de predicción de precios de BitKan sugiere que el valor de KAN en 2028 podría aumentar en un 47.02% , alcanzando $0.000967 en el mejor escenario. Se espera que el precio oscile entre $0.000967 y $0.000394 durante el año.
¿Cuánto será BitKan en 2029?
Basado en nuestro modelo de pronóstico experimental, el valor de BitKan podría experimentar un 333.75% crecimiento en 2029, potencialmente alcanzando $0.002853 bajo condiciones óptimas. El rango de precios previsto para 2029 se encuentra entre $0.002853 y $0.000867.
¿Cuánto será BitKan en 2030?
Usando nuestra nueva simulación experimental para las predicciones de precios de BitKan, se espera que el valor de KAN en 2030 aumente en un 224.23% , alcanzando $0.002132 en el mejor escenario. Se pronostica que el precio oscile entre $0.002132 y $0.000737 durante el transcurso de 2030.
¿Cuánto será BitKan en 2031?
Nuestra simulación experimental indica que el precio de BitKan podría crecer en un 195.98% en 2031, potencialmente alcanzando $0.001946 bajo condiciones ideales. Es probable que el precio fluctúe entre $0.001946 y $0.000872 durante el año.
¿Cuánto será BitKan en 2032?
Basado en los hallazgos de nuestra última predicción experimental de precios de BitKan, KAN podría experimentar un 449.04% aumento en valor, alcanzando $0.003611 si se desarrolla el escenario más positivo en 2032. Se espera que el precio se mantenga dentro de un rango de $0.003611 y $0.001331 a lo largo del año.
¿Cuánto será BitKan en 2033?
Según nuestra predicción experimental de precios de BitKan, se anticipa que el valor de KAN aumente en un 1362.43% en 2033, con el precio potencial más alto siendo $0.009619. A lo largo del año, el precio de KAN podría oscilar entre $0.009619 y $0.003093.
¿Cuánto será BitKan en 2034?
Los resultados de nuestra nueva simulación de predicción de precios de BitKan sugieren que KAN podría aumentar en un 746.96% en 2034, alcanzando potencialmente $0.00557 bajo las mejores circunstancias. El rango de precios previsto para el año está entre $0.00557 y $0.002486.
¿Cuánto será BitKan en 2035?
Basado en nuestra predicción experimental para el precio de BitKan, KAN podría crecer en un 897.93% , con el valor potencialmente alcanzando $0.006563 en 2035. El rango de precios esperado para el año está entre $0.006563 y $0.00294.
¿Cuánto será BitKan en 2036?
Nuestra reciente simulación de predicción de precios de BitKan sugiere que el valor de KAN podría aumentar en un 1964.7% en 2036, posiblemente alcanzando $0.01358 si las condiciones son óptimas. El rango de precios esperado para 2036 está entre $0.01358 y $0.004867.
¿Cuánto será BitKan en 2037?
Según la simulación experimental, el valor de BitKan podría aumentar en un 4830.69% en 2037, con un máximo de $0.032432 bajo condiciones favorables. Se espera que el precio caiga entre $0.032432 y $0.012639 durante el transcurso del año.
Predicciones relacionadas
Predicción de precios de Mean DAO
Predicción de precios de DinoLFG
Predicción de precios de ICE Token
Predicción de precios de Silly GoosePredicción de precios de DeHub
Predicción de precios de Crowny Token
Predicción de precios de 5ire
Predicción de precios de Giddy
Predicción de precios de Dope Wars Paper
Predicción de precios de Chumbi ValleyPredicción de precios de OccamFi
Predicción de precios de NMKR
Predicción de precios de Dypius
Predicción de precios de COMDEX
Predicción de precios de Effect Network
Predicción de precios de Sin City
Predicción de precios de Parex
Predicción de precios de Grai
Predicción de precios de MIMO Parallel Governance Token
Predicción de precios de Good Person Coin
Predicción de precios de LilAI
Predicción de precios de SavePlanetEarth
Predicción de precios de MBD Financials
Predicción de precios de RepubliK
Predicción de precios de Dogebonk
¿Cómo leer y predecir los movimientos de precio de BitKan?
Los traders de BitKan utilizan indicadores y patrones de gráficos para predecir la dirección del mercado. También identifican niveles clave de soporte y resistencia para estimar cuándo una tendencia bajista podría desacelerar o una tendencia alcista podría estancarse.
Indicadores de predicción de precio de BitKan
Las medias móviles son herramientas populares para la predicción de precios de BitKan. Una media móvil simple (SMA) calcula el precio de cierre promedio de KAN durante un período específico, como una SMA de 12 días. Una media móvil exponencial (EMA) da más peso a los precios recientes, reaccionando más rápido a los cambios de precio.
Las medias móviles comúnmente utilizadas en el mercado de criptomonedas incluyen las de 50 días, 100 días y 200 días, que ayudan a identificar niveles clave de resistencia y soporte. Un movimiento de precio de KAN por encima de estas medias se considera alcista, mientras que una caída por debajo indica debilidad.
Los traders también utilizan RSI y niveles de retroceso de Fibonacci para evaluar la dirección futura de KAN.
¿Cómo leer gráficos de BitKan y predecir movimientos de precio?
La mayoría de los traders prefieren gráficos de velas sobre gráficos lineales simples porque proporcionan información más detallada. Las velas pueden representar la acción del precio de BitKan en diferentes marcos de tiempo, como 5 minutos para tendencias a corto plazo y semanal para tendencias a largo plazo. Las opciones populares incluyen gráficos de 1 hora, 4 horas y 1 día.
Por ejemplo, un gráfico de velas de 1 hora muestra los precios de apertura, cierre, máximo y mínimo de KAN dentro de cada hora. El color de la vela es crucial: el verde indica que el precio cerró más alto de lo que abrió, mientras que el rojo significa lo contrario. Algunos gráficos usan velas huecas y llenas para transmitir la misma información.
¿Qué afecta el precio de BitKan?
La acción del precio de BitKan está impulsada por la oferta y la demanda, influenciada por factores como reducciones a la mitad de recompensas de bloque, hard forks y actualizaciones de protocolo. Los eventos del mundo real, como regulaciones, adopción por empresas y gobiernos y hacks de exchanges de criptomonedas, también impactan el precio de KAN. La capitalización de mercado de BitKan puede cambiar rápidamente.
Los traders a menudo monitorean la actividad de las "ballenas" de KAN, grandes poseedores de BitKan, ya que sus acciones pueden influir significativamente en los movimientos de precios en el relativamente pequeño mercado de BitKan.
Patrones de predicción de precios alcistas y bajistas
Los traders a menudo identifican patrones de velas para obtener una ventaja en las predicciones de precios de criptomonedas. Ciertas formaciones indican tendencias alcistas, mientras que otras sugieren movimientos bajistas.
Patrones de velas alcistas comúnmente seguidos:
- Martillo
- Envolvente Alcista
- Línea Penetrante
- Estrella de la Mañana
- Tres Soldados Blancos
Patrones de velas bajistas comunes:
- Harami Bajista
- Cubierta de Nube Oscura
- Estrella de la Tarde
- Estrella Fugaz
- Hombre Colgado


