Prédiction du prix de Boson jusqu'à $0.041479 d'ici 2026
| Année | Prix min. | Prix max. |
|---|---|---|
| 2026 | $0.013895 | $0.041479 |
| 2027 | $0.013377 | $0.035141 |
| 2028 | $0.024141 | $0.059131 |
| 2029 | $0.053032 | $0.174454 |
| 2030 | $0.0451021 | $0.1304036 |
| 2031 | $0.053324 | $0.119043 |
| 2032 | $0.081396 | $0.220819 |
| 2033 | $0.189146 | $0.588183 |
| 2034 | $0.152065 | $0.340644 |
| 2035 | $0.179788 | $0.401364 |
Calculateur de profit d’investissement
Si vous ouvrez une position short de $10,000.00 sur Boson aujourd’hui et la fermez le Apr 06, 2026, notre prévision indique que vous pourriez gagner environ $3,954.44, soit un rendement de 39.54% sur les 90 prochains jours.
Prévision du prix à long terme de Boson Protocol pour 2027, 2028, 2029, 2030, 2031, 2032 et 2037
[
'name' => 'Boson'
'name_with_ticker' => 'Boson <small>BOSON</small>'
'name_lang' => 'Boson Protocol'
'name_lang_with_ticker' => 'Boson Protocol <small>BOSON</small>'
'name_with_lang' => 'Boson Protocol/Boson'
'name_with_lang_with_ticker' => 'Boson Protocol/Boson <small>BOSON</small>'
'image' => '/uploads/coins/boson-protocol.png?1717209480'
'price_for_sd' => 0.04021
'ticker' => 'BOSON'
'marketcap' => '$5.82M'
'low24h' => '$0.03894'
'high24h' => '$0.04052'
'volume24h' => '$105.56K'
'current_supply' => '144.7M'
'max_supply' => '200M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.04021'
'change_24h_pct' => '2.1921%'
'ath_price' => '$5.36'
'ath_days' => 1733
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '9 avr. 2021'
'ath_pct' => '-99.25%'
'fdv' => '$8.04M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$1.98'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.040563'
'next_week_prediction_price_date' => '13 janvier 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.035546'
'next_month_prediction_price_date' => '5 février 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.013895'
'current_year_max_price_prediction' => '$0.041479'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.0451021'
'grand_prediction_max_price' => '$0.1304036'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.04098174026449
107 => 0.041134751206266
108 => 0.04147949267102
109 => 0.03853371459976
110 => 0.039856282470255
111 => 0.04063316718632
112 => 0.03712317377583
113 => 0.040563785902084
114 => 0.038482435157304
115 => 0.037775993453686
116 => 0.03872712414099
117 => 0.038356467587143
118 => 0.038037798847828
119 => 0.037859976215867
120 => 0.038558381620159
121 => 0.038525800173274
122 => 0.037383073377204
123 => 0.035892432855233
124 => 0.036392740743014
125 => 0.036210974196972
126 => 0.035552228785764
127 => 0.035996143655694
128 => 0.034041367228697
129 => 0.030678275986488
130 => 0.032900037075362
131 => 0.032814501690252
201 => 0.032771370870358
202 => 0.034440962923681
203 => 0.034280470171796
204 => 0.033989174255576
205 => 0.035546878907825
206 => 0.03497829575567
207 => 0.036730535055574
208 => 0.037884673186223
209 => 0.037591946423833
210 => 0.038677418914142
211 => 0.036404266826268
212 => 0.037159316766828
213 => 0.037314931513123
214 => 0.035527657074213
215 => 0.034306728770852
216 => 0.034225306772619
217 => 0.032108385348875
218 => 0.033239227686247
219 => 0.034234322145698
220 => 0.03375774912207
221 => 0.033606880340004
222 => 0.034377636228135
223 => 0.03443753056172
224 => 0.033071933408653
225 => 0.033355884299613
226 => 0.034540006717825
227 => 0.03332604745282
228 => 0.030967522900033
301 => 0.030382576201789
302 => 0.030304533529537
303 => 0.028718111691191
304 => 0.030421665137197
305 => 0.029678018405622
306 => 0.032027189520413
307 => 0.030685355578502
308 => 0.030627511799156
309 => 0.030540072442836
310 => 0.029174573632311
311 => 0.029473531089839
312 => 0.03046731121117
313 => 0.030821903154196
314 => 0.030784916309452
315 => 0.030462441146421
316 => 0.030610068624717
317 => 0.030134509080304
318 => 0.029966579107255
319 => 0.029436545919537
320 => 0.028657543558997
321 => 0.028765868615129
322 => 0.027222461101843
323 => 0.026381530773768
324 => 0.02614877234224
325 => 0.025837518039957
326 => 0.026183929343899
327 => 0.027218088822276
328 => 0.025970673082181
329 => 0.023832066291827
330 => 0.023960600203936
331 => 0.024249377742384
401 => 0.023711242709941
402 => 0.023201943063984
403 => 0.023644737785358
404 => 0.02273858189553
405 => 0.024358882352459
406 => 0.024315057765938
407 => 0.024919005577573
408 => 0.025296666538446
409 => 0.024426280292823
410 => 0.024207380505824
411 => 0.024332075772939
412 => 0.022271140769661
413 => 0.02475058321908
414 => 0.024772025540344
415 => 0.024588423367674
416 => 0.025908649927792
417 => 0.028694739758633
418 => 0.027646500694067
419 => 0.027240590845073
420 => 0.026468955925419
421 => 0.027497113640711
422 => 0.027418167169935
423 => 0.027061141289528
424 => 0.02684521092307
425 => 0.027243069244056
426 => 0.026795911874196
427 => 0.026715590123507
428 => 0.026228927705254
429 => 0.026055211363667
430 => 0.025926598700203
501 => 0.025785008794949
502 => 0.026097320843934
503 => 0.025389580652861
504 => 0.024536115363053
505 => 0.024465158958828
506 => 0.024661075829444
507 => 0.024574397198492
508 => 0.02446474397489
509 => 0.024255386108756
510 => 0.024193274102097
511 => 0.024395107991277
512 => 0.02416724929804
513 => 0.024503467212017
514 => 0.024412034543201
515 => 0.023901299087721
516 => 0.02326473361171
517 => 0.023259066843732
518 => 0.023121919856102
519 => 0.022947242547167
520 => 0.022898651315897
521 => 0.023607446848978
522 => 0.025074632389991
523 => 0.024786588761516
524 => 0.024994729802988
525 => 0.026018577722269
526 => 0.026344028187627
527 => 0.026113031156032
528 => 0.025796828171909
529 => 0.025810739498453
530 => 0.026891300816355
531 => 0.026958694100309
601 => 0.027128975186963
602 => 0.027347834504743
603 => 0.026150303844225
604 => 0.025754335912035
605 => 0.025566704338299
606 => 0.02498887171375
607 => 0.025612014659701
608 => 0.025248935950737
609 => 0.025297927673111
610 => 0.025266021749644
611 => 0.025283444541326
612 => 0.024358429445459
613 => 0.024695456329031
614 => 0.024135083767654
615 => 0.023384807812742
616 => 0.02338229262466
617 => 0.02356592160171
618 => 0.023456691900758
619 => 0.02316275758405
620 => 0.023204509566407
621 => 0.022838718267454
622 => 0.023248923252965
623 => 0.023260686464166
624 => 0.023102735200728
625 => 0.023734712578287
626 => 0.023993634225517
627 => 0.023889667320278
628 => 0.023986339630291
629 => 0.024798558274718
630 => 0.024930985353344
701 => 0.024989800714027
702 => 0.024910995922253
703 => 0.024001185496101
704 => 0.024041539457313
705 => 0.02374544886521
706 => 0.02349528351614
707 => 0.023505288818158
708 => 0.023633906326799
709 => 0.024195586530351
710 => 0.025377609405868
711 => 0.025422466309946
712 => 0.025476834186258
713 => 0.025255692710195
714 => 0.025188994324975
715 => 0.025276986711394
716 => 0.025720892355628
717 => 0.026862738191805
718 => 0.02645913361198
719 => 0.026130996806104
720 => 0.026418861249905
721 => 0.026374546775138
722 => 0.026000488011592
723 => 0.025989989427941
724 => 0.025272051066876
725 => 0.025006645601456
726 => 0.024784852929296
727 => 0.024542661121341
728 => 0.024399081699243
729 => 0.024619684947266
730 => 0.02467013952019
731 => 0.024187786662902
801 => 0.024122043750809
802 => 0.02451594350638
803 => 0.024342602910016
804 => 0.024520888012016
805 => 0.024562251684981
806 => 0.024555591180948
807 => 0.024374603690304
808 => 0.024489959719716
809 => 0.024217108320869
810 => 0.023920423405578
811 => 0.023731156913745
812 => 0.023565996797064
813 => 0.023657637228961
814 => 0.023330955822131
815 => 0.023226443865288
816 => 0.024450879692544
817 => 0.025355383603041
818 => 0.025342231757959
819 => 0.025262173283406
820 => 0.025143222629487
821 => 0.025712190374396
822 => 0.025513973388939
823 => 0.025658192807442
824 => 0.025694902702321
825 => 0.025806012497807
826 => 0.025845724699483
827 => 0.025725686844119
828 => 0.025322825140129
829 => 0.024318932076725
830 => 0.023851617145753
831 => 0.023697395434787
901 => 0.023703001101071
902 => 0.023548371800137
903 => 0.023593917059262
904 => 0.023532533017703
905 => 0.023416286493387
906 => 0.023650459333659
907 => 0.023677445572029
908 => 0.023622786832953
909 => 0.02363566094468
910 => 0.02318310993018
911 => 0.023217516400923
912 => 0.023025936799661
913 => 0.022990017933951
914 => 0.022505721384705
915 => 0.021647719847809
916 => 0.022123135987474
917 => 0.021548900144384
918 => 0.021331428329513
919 => 0.022360906077306
920 => 0.022257575064696
921 => 0.022080717288018
922 => 0.021819107775921
923 => 0.021722074263111
924 => 0.021132529356352
925 => 0.021097695898161
926 => 0.021389890273002
927 => 0.021255052622808
928 => 0.021065689494923
929 => 0.020379835441157
930 => 0.019608708406251
1001 => 0.019631983884303
1002 => 0.019877265046778
1003 => 0.020590453107346
1004 => 0.020311798193803
1005 => 0.020109630856831
1006 => 0.020071770991744
1007 => 0.020545666468304
1008 => 0.021216327851809
1009 => 0.021530987167746
1010 => 0.021219169341998
1011 => 0.020860969813242
1012 => 0.02088277175882
1013 => 0.021027810335311
1014 => 0.021043051838965
1015 => 0.020809900769251
1016 => 0.020875531429686
1017 => 0.020775832455093
1018 => 0.020163980032046
1019 => 0.020152913561918
1020 => 0.020002755109849
1021 => 0.019998208371598
1022 => 0.019742751385847
1023 => 0.01970701118765
1024 => 0.019199785837312
1025 => 0.019533643098924
1026 => 0.019309709176128
1027 => 0.018972187933801
1028 => 0.018913999144405
1029 => 0.018912249919131
1030 => 0.019258808766631
1031 => 0.019529593357015
1101 => 0.019313604602589
1102 => 0.019264428149973
1103 => 0.019789504007827
1104 => 0.019722683318742
1105 => 0.019664817032942
1106 => 0.021156277480794
1107 => 0.019975670156209
1108 => 0.01946085797598
1109 => 0.018823680142765
1110 => 0.019031148458189
1111 => 0.019074865080593
1112 => 0.017542567251647
1113 => 0.016920914213279
1114 => 0.016707586317012
1115 => 0.016584813096697
1116 => 0.016640762394884
1117 => 0.016081201747724
1118 => 0.016457235756894
1119 => 0.015972703534938
1120 => 0.015891470131123
1121 => 0.016757873766005
1122 => 0.016878428770342
1123 => 0.016364103668335
1124 => 0.016694383645494
1125 => 0.016574619534541
1126 => 0.015981009449191
1127 => 0.015958337910231
1128 => 0.015660485235806
1129 => 0.015194403475974
1130 => 0.014981391605087
1201 => 0.014870453173275
1202 => 0.014916228532388
1203 => 0.014893083110072
1204 => 0.014742043573291
1205 => 0.014901740519519
1206 => 0.014493780813239
1207 => 0.014331327971043
1208 => 0.014257951791101
1209 => 0.013895864070493
1210 => 0.014472106655121
1211 => 0.014585633703605
1212 => 0.014699384435446
1213 => 0.015689506895193
1214 => 0.015640043175161
1215 => 0.016087171114441
1216 => 0.016069796544936
1217 => 0.015942268413661
1218 => 0.015404248205171
1219 => 0.015618693470987
1220 => 0.014958664274999
1221 => 0.015453203026256
1222 => 0.015227516192614
1223 => 0.015376898080781
1224 => 0.015108295976635
1225 => 0.015256951471379
1226 => 0.014612555178377
1227 => 0.014010826986872
1228 => 0.014252979976675
1229 => 0.014516227970143
1230 => 0.015087016694324
1231 => 0.014747059639107
]
'min_raw' => 0.013895864070493
'max_raw' => 0.04147949267102
'avg_raw' => 0.027687678370756
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.013895'
'max' => '$0.041479'
'avg' => '$0.027687'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.026323735929507
'max_diff' => 0.0012598926710198
'year' => 2026
]
1 => [
'items' => [
101 => 0.014869321051363
102 => 0.014459765786619
103 => 0.013614736291776
104 => 0.013619519066947
105 => 0.013489529689133
106 => 0.013377199887943
107 => 0.01478610779638
108 => 0.014610887826428
109 => 0.014331697736531
110 => 0.014705404766431
111 => 0.014804218836664
112 => 0.014807031934327
113 => 0.015079678936567
114 => 0.015225190690537
115 => 0.015250837767858
116 => 0.015679853716811
117 => 0.015823654204043
118 => 0.016415948059544
119 => 0.015212845034847
120 => 0.015188067919777
121 => 0.014710663590719
122 => 0.014407886217766
123 => 0.014731395016482
124 => 0.01501797964879
125 => 0.014719568574096
126 => 0.014758534760649
127 => 0.014357942273954
128 => 0.014501135238319
129 => 0.014624472309406
130 => 0.01455637282817
131 => 0.014454424608707
201 => 0.014994482977109
202 => 0.014964010767457
203 => 0.015466925536001
204 => 0.015858983561861
205 => 0.016561621632958
206 => 0.015828382176418
207 => 0.015801660016258
208 => 0.016062873418184
209 => 0.015823614213632
210 => 0.015974817771962
211 => 0.016537260402113
212 => 0.016549143928602
213 => 0.016350079548842
214 => 0.016337966463243
215 => 0.016376198954902
216 => 0.016600127852716
217 => 0.01652188021518
218 => 0.016612430362325
219 => 0.016725664707882
220 => 0.017194049971477
221 => 0.017306976072819
222 => 0.017032624192029
223 => 0.017057395095076
224 => 0.016954779960533
225 => 0.016855655026329
226 => 0.017078473402387
227 => 0.017485678364139
228 => 0.017483145163206
301 => 0.017577608799399
302 => 0.017636458862168
303 => 0.017383831311883
304 => 0.017219380066021
305 => 0.017282441137989
306 => 0.017383277165358
307 => 0.017249741373347
308 => 0.01642549660526
309 => 0.016675519814938
310 => 0.016633903727337
311 => 0.016574637357905
312 => 0.016826037628608
313 => 0.016801789459204
314 => 0.016075462644511
315 => 0.016121959730626
316 => 0.016078290286321
317 => 0.016219395194799
318 => 0.015815994085507
319 => 0.015940077549778
320 => 0.016017901535358
321 => 0.016063740460736
322 => 0.016229342091249
323 => 0.016209910651276
324 => 0.016228134205658
325 => 0.016473677706499
326 => 0.017715552473401
327 => 0.017783144976921
328 => 0.017450294768791
329 => 0.017583261861759
330 => 0.017327994119967
331 => 0.017499357065177
401 => 0.017616599240143
402 => 0.017086804395846
403 => 0.017055433383507
404 => 0.01679911206094
405 => 0.016936844620906
406 => 0.016717702214679
407 => 0.016771472095891
408 => 0.016621126820449
409 => 0.0168917183828
410 => 0.017194281795186
411 => 0.017270721261746
412 => 0.017069641934486
413 => 0.016924047249777
414 => 0.016668430945297
415 => 0.017093526556427
416 => 0.017217837467676
417 => 0.017092873604131
418 => 0.017063916746434
419 => 0.017009043553421
420 => 0.017075558353734
421 => 0.017217160443756
422 => 0.017150383513081
423 => 0.01719449085225
424 => 0.01702639915863
425 => 0.017383914942114
426 => 0.017951736047146
427 => 0.017953561684847
428 => 0.01788678439422
429 => 0.017859460565632
430 => 0.0179279781182
501 => 0.017965146079731
502 => 0.018186719280766
503 => 0.018424476153343
504 => 0.019533983736206
505 => 0.019222438446704
506 => 0.020206859579121
507 => 0.020985408883778
508 => 0.021218861778409
509 => 0.021004096100156
510 => 0.020269394316265
511 => 0.020233346341667
512 => 0.021331300989893
513 => 0.02102107851226
514 => 0.020984178535666
515 => 0.020591625128193
516 => 0.020823672810695
517 => 0.020772920578597
518 => 0.020692805697348
519 => 0.021135536510979
520 => 0.021964289071245
521 => 0.021835120212735
522 => 0.021738701651829
523 => 0.021316223584957
524 => 0.021570649745106
525 => 0.021480053462689
526 => 0.021869312585774
527 => 0.021638724104404
528 => 0.02101872827188
529 => 0.021117464651742
530 => 0.021102540846556
531 => 0.021409671699776
601 => 0.021317478641096
602 => 0.021084538672203
603 => 0.021961456485091
604 => 0.021904514319995
605 => 0.02198524529131
606 => 0.022020785561571
607 => 0.02255454998125
608 => 0.022773216185437
609 => 0.022822857242078
610 => 0.023030573223803
611 => 0.022817689079227
612 => 0.023669377441355
613 => 0.024235700504776
614 => 0.024893513885657
615 => 0.025854756038694
616 => 0.026216191980223
617 => 0.026150901812473
618 => 0.0268797046424
619 => 0.028189347127403
620 => 0.026415618002804
621 => 0.028283359077957
622 => 0.027692053817671
623 => 0.026290079682661
624 => 0.026199809076555
625 => 0.027149242238039
626 => 0.029254993610654
627 => 0.028727526775049
628 => 0.029255856357437
629 => 0.028639531835703
630 => 0.028608926128408
701 => 0.029225922851079
702 => 0.030667569324341
703 => 0.029982697124204
704 => 0.029000764887755
705 => 0.029725808370591
706 => 0.029097708606152
707 => 0.027682424042815
708 => 0.0287271234311
709 => 0.028028562701479
710 => 0.028232439859914
711 => 0.02970071061051
712 => 0.029524044389236
713 => 0.029752666838416
714 => 0.029349154199704
715 => 0.028972209767044
716 => 0.028268614991222
717 => 0.028060315264905
718 => 0.02811788181542
719 => 0.028060286737782
720 => 0.027666631927079
721 => 0.027581622208188
722 => 0.027439935619009
723 => 0.027483850217574
724 => 0.027217437978043
725 => 0.027720212917616
726 => 0.027813532376838
727 => 0.028179410049908
728 => 0.028217396683679
729 => 0.029236360795238
730 => 0.028675132485587
731 => 0.029051652889822
801 => 0.02901797336092
802 => 0.026320464713324
803 => 0.026692157604642
804 => 0.027270395099879
805 => 0.027009899892057
806 => 0.026641620614688
807 => 0.026344215352328
808 => 0.025893615968601
809 => 0.026527825948201
810 => 0.027361744630663
811 => 0.028238546237642
812 => 0.02929196591811
813 => 0.029056854908586
814 => 0.028218853289459
815 => 0.028256445429932
816 => 0.028488825250377
817 => 0.028187872268968
818 => 0.02809911535945
819 => 0.028476631413965
820 => 0.028479231159553
821 => 0.028132948383059
822 => 0.027748118446064
823 => 0.027746505994577
824 => 0.027678029224305
825 => 0.028651713701012
826 => 0.029187141712597
827 => 0.029248527671239
828 => 0.029183009948482
829 => 0.029208225119666
830 => 0.028896671357076
831 => 0.029608790869958
901 => 0.0302623021563
902 => 0.030087147171328
903 => 0.029824564949107
904 => 0.029615405561435
905 => 0.030037875866773
906 => 0.030019063929106
907 => 0.030256594305324
908 => 0.030245818555417
909 => 0.030165946023864
910 => 0.030087150023827
911 => 0.030399567257277
912 => 0.030309596111311
913 => 0.030219485215304
914 => 0.030038754018075
915 => 0.030063318389406
916 => 0.029800781505708
917 => 0.029679319930439
918 => 0.027852829265459
919 => 0.027364731277473
920 => 0.027518296840644
921 => 0.027568854611368
922 => 0.027356433741482
923 => 0.027660990702455
924 => 0.027613525822693
925 => 0.027798183903821
926 => 0.027682817551654
927 => 0.027687552226988
928 => 0.028026820070011
929 => 0.028125310968189
930 => 0.028075217702457
1001 => 0.028110301308679
1002 => 0.028918788206208
1003 => 0.028803847223335
1004 => 0.028742787117042
1005 => 0.028759701183778
1006 => 0.028966286920251
1007 => 0.0290241196473
1008 => 0.028779078318958
1009 => 0.028894641225971
1010 => 0.029386693416917
1011 => 0.029558883836006
1012 => 0.030108432997648
1013 => 0.029874974746325
1014 => 0.030303497470464
1015 => 0.031620630230307
1016 => 0.032672847017524
1017 => 0.031705184975302
1018 => 0.033637447106026
1019 => 0.035141990341335
1020 => 0.035084243466016
1021 => 0.034821891552228
1022 => 0.03310900907918
1023 => 0.031532789089842
1024 => 0.032851364040759
1025 => 0.032854725359476
1026 => 0.032741458601806
1027 => 0.032037968497747
1028 => 0.032716978671088
1029 => 0.032770876032846
1030 => 0.032740707842727
1031 => 0.032201343629364
1101 => 0.031377834166728
1102 => 0.031538745944524
1103 => 0.031802322719065
1104 => 0.031303316896983
1105 => 0.031143854300999
1106 => 0.031440325605934
1107 => 0.032395617922682
1108 => 0.032215025443833
1109 => 0.032210309444378
1110 => 0.032982960652027
1111 => 0.032429909135917
1112 => 0.031540775557353
1113 => 0.031316257602534
1114 => 0.030519370116344
1115 => 0.031069783141471
1116 => 0.031089591526364
1117 => 0.030788135937587
1118 => 0.031565237016965
1119 => 0.031558075893713
1120 => 0.032295817712351
1121 => 0.033706102986414
1122 => 0.03328901223495
1123 => 0.032803981070342
1124 => 0.03285671740639
1125 => 0.033435104848472
1126 => 0.033085398597688
1127 => 0.033211155403709
1128 => 0.033434914500484
1129 => 0.033569913919195
1130 => 0.032837293067561
1201 => 0.032666484101739
1202 => 0.032317068903468
1203 => 0.032225913000383
1204 => 0.032510504388587
1205 => 0.032435524612557
1206 => 0.031087926708316
1207 => 0.030947095229359
1208 => 0.030951414329757
1209 => 0.030597286879748
1210 => 0.030057157518157
1211 => 0.03147658523097
1212 => 0.031362585320753
1213 => 0.031236738242765
1214 => 0.031252153791745
1215 => 0.031868279253009
1216 => 0.031510895370394
1217 => 0.032461058996391
1218 => 0.032265733919419
1219 => 0.032065399491252
1220 => 0.032037707170943
1221 => 0.031960595507829
1222 => 0.031696150923024
1223 => 0.031376818196217
1224 => 0.031165967069852
1225 => 0.028748957195152
1226 => 0.029197540168797
1227 => 0.02971359399035
1228 => 0.029891733701595
1229 => 0.029587013398618
1230 => 0.031708183137878
1231 => 0.032095741289341
]
'min_raw' => 0.013377199887943
'max_raw' => 0.035141990341335
'avg_raw' => 0.024259595114639
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.013377'
'max' => '$0.035141'
'avg' => '$0.024259'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00051866418254993
'max_diff' => -0.0063375023296847
'year' => 2027
]
2 => [
'items' => [
101 => 0.030921802368767
102 => 0.030702206328338
103 => 0.03172257981773
104 => 0.031107169868041
105 => 0.031384288930704
106 => 0.030785309093249
107 => 0.032002389879681
108 => 0.031993117763256
109 => 0.031519645848318
110 => 0.031919821068628
111 => 0.031850280776271
112 => 0.031315732150415
113 => 0.032019336024578
114 => 0.032019685003321
115 => 0.03156397857936
116 => 0.031031813243137
117 => 0.030936674650205
118 => 0.030865000500502
119 => 0.031366661483582
120 => 0.031816449152358
121 => 0.032653392492131
122 => 0.032863819933034
123 => 0.033685132243823
124 => 0.033196080751719
125 => 0.033412870943891
126 => 0.03364822736434
127 => 0.033761065887249
128 => 0.033577201569418
129 => 0.034853037653708
130 => 0.03496075730983
131 => 0.034996874778756
201 => 0.034566670029544
202 => 0.034948792537519
203 => 0.034770010070605
204 => 0.035235152382316
205 => 0.035308092636028
206 => 0.035246314836059
207 => 0.035269467223871
208 => 0.034180766198837
209 => 0.034124311307334
210 => 0.033354544855828
211 => 0.033668230374643
212 => 0.033081810332557
213 => 0.033267770168698
214 => 0.033349739492579
215 => 0.033306923369502
216 => 0.033685965683227
217 => 0.033363702283332
218 => 0.032513196186001
219 => 0.031662458368852
220 => 0.031651778048554
221 => 0.031427793798068
222 => 0.031265894209729
223 => 0.03129708181414
224 => 0.031406990999946
225 => 0.031259506088046
226 => 0.031290979471675
227 => 0.031813647345969
228 => 0.031918464660661
229 => 0.031562254470566
301 => 0.03013201915645
302 => 0.029781035822892
303 => 0.030033315682751
304 => 0.029912742158642
305 => 0.024141917515829
306 => 0.025497687165806
307 => 0.024692134877377
308 => 0.025063370433564
309 => 0.024241110143831
310 => 0.024633535852446
311 => 0.024561069153157
312 => 0.02674110663018
313 => 0.02670706834352
314 => 0.026723360670078
315 => 0.025945685474024
316 => 0.02718454317752
317 => 0.027794849030144
318 => 0.027681897659588
319 => 0.027710325086115
320 => 0.027221847713806
321 => 0.0267280901988
322 => 0.026180437125922
323 => 0.027197908843364
324 => 0.027084783357206
325 => 0.027344252521187
326 => 0.028004155660329
327 => 0.028101328904296
328 => 0.028231930729621
329 => 0.028185119272113
330 => 0.029300358105374
331 => 0.029165295324084
401 => 0.02949075776678
402 => 0.028821256829258
403 => 0.02806365296884
404 => 0.02820764869477
405 => 0.028193780748422
406 => 0.028017225874531
407 => 0.027857840028684
408 => 0.027592507502031
409 => 0.028432058878184
410 => 0.028397974625513
411 => 0.028949759057646
412 => 0.028852225799519
413 => 0.028200874831306
414 => 0.028224137958562
415 => 0.028380593669231
416 => 0.02892208867024
417 => 0.02908284125433
418 => 0.029008374252496
419 => 0.029184632122317
420 => 0.029323939156011
421 => 0.02920212694094
422 => 0.030926731027117
423 => 0.030210555171559
424 => 0.030559614300438
425 => 0.0306428628459
426 => 0.030429623447228
427 => 0.030475867437269
428 => 0.030545914481449
429 => 0.030971226417093
430 => 0.032087368001223
501 => 0.032581699511002
502 => 0.034068920248058
503 => 0.032540652160542
504 => 0.032449971056831
505 => 0.032717864421338
506 => 0.033591020432293
507 => 0.034298631367798
508 => 0.034533386738159
509 => 0.034564413535741
510 => 0.03500483021678
511 => 0.035257268845068
512 => 0.034951352047594
513 => 0.034692119592558
514 => 0.033763581115738
515 => 0.033871061972757
516 => 0.034611498493975
517 => 0.035657408691689
518 => 0.036554908449736
519 => 0.036240635315493
520 => 0.038638317487516
521 => 0.038876037881219
522 => 0.03884319260923
523 => 0.039384755043622
524 => 0.038309863898625
525 => 0.037850327109103
526 => 0.03474816859175
527 => 0.035619748599725
528 => 0.036886641327415
529 => 0.036718963324301
530 => 0.035798911961313
531 => 0.036554210508275
601 => 0.03630448518828
602 => 0.036107516467287
603 => 0.037009868362421
604 => 0.036017695387148
605 => 0.036876743643014
606 => 0.03577500536915
607 => 0.036242070888697
608 => 0.035976941910385
609 => 0.036148512852339
610 => 0.035145512631448
611 => 0.035686707204187
612 => 0.035122997157939
613 => 0.03512272988598
614 => 0.035110285955466
615 => 0.035773488325002
616 => 0.035795115330463
617 => 0.035305007777332
618 => 0.035234375622007
619 => 0.035495539720055
620 => 0.035189784960227
621 => 0.035332845687953
622 => 0.035194118123931
623 => 0.035162887627221
624 => 0.034914037715998
625 => 0.034806826331972
626 => 0.034848866678145
627 => 0.034705361303371
628 => 0.034618894124254
629 => 0.035093085457192
630 => 0.034839744156827
701 => 0.035054257269485
702 => 0.034809792503898
703 => 0.033962371118144
704 => 0.033475010117879
705 => 0.031874309676194
706 => 0.032328266335793
707 => 0.03262924007076
708 => 0.032529768253149
709 => 0.03274347220786
710 => 0.032756591895048
711 => 0.032687114560917
712 => 0.032606668708592
713 => 0.032567512116614
714 => 0.03285935327282
715 => 0.033028776886919
716 => 0.032659446811573
717 => 0.032572917942396
718 => 0.032946331039844
719 => 0.033174112813573
720 => 0.034855925451269
721 => 0.034731331338885
722 => 0.035044038110608
723 => 0.035008832126989
724 => 0.03533659864185
725 => 0.035872358369185
726 => 0.034783009042738
727 => 0.034972082418944
728 => 0.03492572599344
729 => 0.035431833291782
730 => 0.035433413303524
731 => 0.035129976696233
801 => 0.035294474603742
802 => 0.035202656384535
803 => 0.035368584316619
804 => 0.034729667308553
805 => 0.035507799257549
806 => 0.035948949930915
807 => 0.035955075308442
808 => 0.036164177226429
809 => 0.036376636885471
810 => 0.036784434699664
811 => 0.036365263625766
812 => 0.035611215669304
813 => 0.0356656554962
814 => 0.035223557455222
815 => 0.035230989203162
816 => 0.03519131795022
817 => 0.035310374366613
818 => 0.034755793496828
819 => 0.034885952518486
820 => 0.034703729125954
821 => 0.034971686300876
822 => 0.034683408675568
823 => 0.034925703638968
824 => 0.035030270112966
825 => 0.035416122653175
826 => 0.034626417941652
827 => 0.033016156576547
828 => 0.033354653038024
829 => 0.032853990183176
830 => 0.03290032843655
831 => 0.032993939083044
901 => 0.032690516350259
902 => 0.032748399845725
903 => 0.032746331839947
904 => 0.03272851088338
905 => 0.032649578911841
906 => 0.032535111936895
907 => 0.032991113134005
908 => 0.03306859662316
909 => 0.033240832821379
910 => 0.03375329091835
911 => 0.033702084269868
912 => 0.033785604438085
913 => 0.033603280379814
914 => 0.032908785926695
915 => 0.032946500316813
916 => 0.03247620126771
917 => 0.033228806217317
918 => 0.03305057943135
919 => 0.032935675463004
920 => 0.032904322850662
921 => 0.033418051232135
922 => 0.033571766815577
923 => 0.033475981579445
924 => 0.033279523265636
925 => 0.033656781305836
926 => 0.033757719642154
927 => 0.033780316013194
928 => 0.034448744928373
929 => 0.033817673764233
930 => 0.03396957886575
1001 => 0.035154699104557
1002 => 0.034079958583373
1003 => 0.034649272607018
1004 => 0.034621407648127
1005 => 0.034912649438088
1006 => 0.03459751732064
1007 => 0.034601423760918
1008 => 0.034860026739975
1009 => 0.034496865495182
1010 => 0.034406941663824
1011 => 0.034282712534848
1012 => 0.034553962293134
1013 => 0.034716564255656
1014 => 0.036027016655595
1015 => 0.036873628669846
1016 => 0.036836875009527
1017 => 0.037172734664874
1018 => 0.037021426814018
1019 => 0.036532813850612
1020 => 0.037366816599143
1021 => 0.037102903233351
1022 => 0.037124659930572
1023 => 0.037123850145215
1024 => 0.03729932946176
1025 => 0.037174986283545
1026 => 0.036929893115717
1027 => 0.03709259739854
1028 => 0.03757577095068
1029 => 0.039075556482098
1030 => 0.039914856334994
1031 => 0.039025029577097
1101 => 0.03963882015944
1102 => 0.039270764525981
1103 => 0.039203877868675
1104 => 0.039589383713153
1105 => 0.03997556433458
1106 => 0.0399509662985
1107 => 0.039670618997938
1108 => 0.039512257921401
1109 => 0.040711421047798
1110 => 0.041594944012116
1111 => 0.041534693669163
1112 => 0.041800619088498
1113 => 0.04258138434443
1114 => 0.042652767734564
1115 => 0.042643775068135
1116 => 0.042466843887603
1117 => 0.043235608677248
1118 => 0.043876925789899
1119 => 0.042425889431343
1120 => 0.04297842508122
1121 => 0.043226476136037
1122 => 0.04359068867794
1123 => 0.04420517628524
1124 => 0.044872672811555
1125 => 0.044967064139103
1126 => 0.044900088975167
1127 => 0.044459857072792
1128 => 0.045190239736776
1129 => 0.045618080771757
1130 => 0.04587285031712
1201 => 0.046518903494551
1202 => 0.043228008014905
1203 => 0.040898548626293
1204 => 0.04053476990496
1205 => 0.041274528239683
1206 => 0.041469596613087
1207 => 0.041390964796363
1208 => 0.038768946469299
1209 => 0.040520965521108
1210 => 0.042405990706908
1211 => 0.042478402201302
1212 => 0.043422085223331
1213 => 0.043729387098178
1214 => 0.044489175622273
1215 => 0.044441650643223
1216 => 0.044626647057964
1217 => 0.044584119585906
1218 => 0.045991467834443
1219 => 0.047543981945816
1220 => 0.047490223318832
1221 => 0.047267031046809
1222 => 0.047598509630701
1223 => 0.049200870571161
1224 => 0.049053350853074
1225 => 0.049196653693496
1226 => 0.051085927547404
1227 => 0.053542252303556
1228 => 0.05240104284335
1229 => 0.054877138997821
1230 => 0.056435710274844
1231 => 0.059131098139176
]
'min_raw' => 0.024141917515829
'max_raw' => 0.059131098139176
'avg_raw' => 0.041636507827503
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.024141'
'max' => '$0.059131'
'avg' => '$0.041636'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.010764717627887
'max_diff' => 0.023989107797841
'year' => 2028
]
3 => [
'items' => [
101 => 0.058793622303497
102 => 0.059842917019412
103 => 0.058189470124298
104 => 0.054392821836367
105 => 0.053791987711816
106 => 0.05499487284471
107 => 0.057952048568116
108 => 0.054901740857485
109 => 0.055518814134617
110 => 0.05534109698929
111 => 0.055331627197865
112 => 0.05569305062014
113 => 0.055168787095552
114 => 0.053032843183174
115 => 0.05401173369102
116 => 0.053633737055758
117 => 0.054053152504097
118 => 0.056316564698699
119 => 0.055315856214458
120 => 0.054261691117266
121 => 0.055583848087107
122 => 0.057267408252141
123 => 0.057162054082662
124 => 0.056957622959245
125 => 0.058109990498279
126 => 0.060013364060753
127 => 0.060527838286316
128 => 0.060907612641663
129 => 0.060959977108925
130 => 0.06149936366606
131 => 0.058598946205431
201 => 0.063201983203453
202 => 0.063996800536681
203 => 0.063847407819837
204 => 0.064730813834693
205 => 0.064470893375275
206 => 0.064094309409849
207 => 0.065494695849244
208 => 0.063889265801836
209 => 0.061610559967563
210 => 0.06036041687919
211 => 0.062006706144126
212 => 0.063012037550644
213 => 0.063676497659267
214 => 0.063877562886658
215 => 0.05882409735647
216 => 0.056100559713746
217 => 0.057846316117309
218 => 0.059976259415328
219 => 0.058587114262867
220 => 0.058641566122844
221 => 0.056661010196358
222 => 0.060151494667858
223 => 0.059642960439956
224 => 0.062281236913894
225 => 0.061651591059897
226 => 0.063803003107091
227 => 0.063236464213396
228 => 0.065588135486362
301 => 0.066526280826107
302 => 0.068101572862201
303 => 0.069260364096544
304 => 0.069940828473494
305 => 0.069899975944659
306 => 0.072596314812143
307 => 0.071006377984893
308 => 0.069009042610528
309 => 0.068972917115118
310 => 0.070007365407963
311 => 0.072175285242735
312 => 0.072737395313941
313 => 0.073051538159279
314 => 0.072570417456253
315 => 0.070844654982072
316 => 0.070099479495535
317 => 0.070734390599876
318 => 0.0699579488778
319 => 0.071298305121174
320 => 0.073138900527972
321 => 0.072758824854971
322 => 0.074029360845683
323 => 0.075344231931786
324 => 0.077224556639469
325 => 0.077716143146279
326 => 0.078528716948676
327 => 0.079365122307932
328 => 0.079633753167569
329 => 0.080146652829875
330 => 0.08014394959548
331 => 0.08168960724997
401 => 0.083394515507905
402 => 0.084038078906558
403 => 0.085517917455469
404 => 0.082983745800187
405 => 0.084905944111185
406 => 0.086639815103449
407 => 0.084572622627361
408 => 0.087421765861574
409 => 0.087532391637062
410 => 0.089202709505947
411 => 0.087509522351647
412 => 0.086504113224269
413 => 0.089406691702822
414 => 0.090811157998228
415 => 0.090388121320126
416 => 0.087168791311871
417 => 0.085295003163507
418 => 0.080390938152499
419 => 0.086200014997881
420 => 0.089029446876172
421 => 0.087161463766847
422 => 0.088103565793102
423 => 0.093243368970743
424 => 0.095200273243177
425 => 0.094793250834304
426 => 0.094862030921244
427 => 0.095917940946325
428 => 0.1006004274978
429 => 0.09779457301697
430 => 0.099939543634206
501 => 0.10107722831532
502 => 0.102133973251
503 => 0.099538941676644
504 => 0.096162843726994
505 => 0.09509349178739
506 => 0.086975729660548
507 => 0.086553164888192
508 => 0.086315966476445
509 => 0.084820464042764
510 => 0.083645408782483
511 => 0.082710961212503
512 => 0.08025869173921
513 => 0.081086260699321
514 => 0.077177854987308
515 => 0.07967831445646
516 => 0.073440404568331
517 => 0.078635521283658
518 => 0.075808055448478
519 => 0.077706622712352
520 => 0.077699998790024
521 => 0.074204134515933
522 => 0.072187792959463
523 => 0.073472684276433
524 => 0.074850189763024
525 => 0.075073685393739
526 => 0.076859657213677
527 => 0.077358083559285
528 => 0.07584782846279
529 => 0.073311137750979
530 => 0.073900353147578
531 => 0.072175852528257
601 => 0.069153731524857
602 => 0.07132427159067
603 => 0.072065389401048
604 => 0.072392709246661
605 => 0.06942080033276
606 => 0.06848696202873
607 => 0.067989794351327
608 => 0.072927501629828
609 => 0.073198000380789
610 => 0.071814090526207
611 => 0.078069494296633
612 => 0.076653703767741
613 => 0.078235488665615
614 => 0.0738468880262
615 => 0.07401453848066
616 => 0.071936904607516
617 => 0.073100240748931
618 => 0.072278032260253
619 => 0.073006254685016
620 => 0.073442748203846
621 => 0.075520041157716
622 => 0.07865924063239
623 => 0.075209762862023
624 => 0.073706776000042
625 => 0.074639220596096
626 => 0.077122443431499
627 => 0.080884653140973
628 => 0.078657349271438
629 => 0.079645788906665
630 => 0.079861718994344
701 => 0.078219387580219
702 => 0.080945208242809
703 => 0.082405997680418
704 => 0.083904465375623
705 => 0.085205542889257
706 => 0.083305944426147
707 => 0.085338787078419
708 => 0.083700674745722
709 => 0.082231118638353
710 => 0.082233347348362
711 => 0.08131147333542
712 => 0.079525226271745
713 => 0.079195814907256
714 => 0.080909454425394
715 => 0.082283631036675
716 => 0.082396814804242
717 => 0.08315762958399
718 => 0.08360787193363
719 => 0.088020859034893
720 => 0.089795798953164
721 => 0.091966161887334
722 => 0.092811640565145
723 => 0.095356228264476
724 => 0.093301267035958
725 => 0.092856663247856
726 => 0.086684325817572
727 => 0.087695045726
728 => 0.089313305819359
729 => 0.086711010330469
730 => 0.088361567852316
731 => 0.088687422870717
801 => 0.086622585325537
802 => 0.087725504274781
803 => 0.084796478538267
804 => 0.078723085389342
805 => 0.080951969665555
806 => 0.082593178727183
807 => 0.080250971036622
808 => 0.084449287665997
809 => 0.081996717761962
810 => 0.081219370846501
811 => 0.0781866633851
812 => 0.079617984567266
813 => 0.081553866960691
814 => 0.080357716712038
815 => 0.082839908080855
816 => 0.086355353035358
817 => 0.088860668458303
818 => 0.089052995467852
819 => 0.087442245493995
820 => 0.090023482606769
821 => 0.090042284101135
822 => 0.087130638093263
823 => 0.085347271125554
824 => 0.084942086398254
825 => 0.085954317288194
826 => 0.087183352456711
827 => 0.089121198366055
828 => 0.090292198063714
829 => 0.09334554422496
830 => 0.094171692149898
831 => 0.095079378247005
901 => 0.096292326792765
902 => 0.097748782515574
903 => 0.094562140310139
904 => 0.094688751545605
905 => 0.091721394445968
906 => 0.088550347822952
907 => 0.090956776933279
908 => 0.094102862881183
909 => 0.093381147288617
910 => 0.093299939541142
911 => 0.093436508447245
912 => 0.092892358459478
913 => 0.090431188231951
914 => 0.089195203951427
915 => 0.090789939006522
916 => 0.091637469714813
917 => 0.092951915930928
918 => 0.092789882690198
919 => 0.096175754981692
920 => 0.097491402570703
921 => 0.0971548036177
922 => 0.097216745925759
923 => 0.099598663042144
924 => 0.10224784475418
925 => 0.10472915301782
926 => 0.10725324635826
927 => 0.10421035331932
928 => 0.10266535989369
929 => 0.10425939873735
930 => 0.10341357928919
1001 => 0.10827390872469
1002 => 0.1086104273895
1003 => 0.11347040536787
1004 => 0.11808310318475
1005 => 0.11518595033103
1006 => 0.11791783498146
1007 => 0.12087259096472
1008 => 0.12657279464831
1009 => 0.12465316658326
1010 => 0.12318276156984
1011 => 0.1217932359371
1012 => 0.12468461819784
1013 => 0.12840433528533
1014 => 0.12920552671897
1015 => 0.13050376292015
1016 => 0.12913882629538
1017 => 0.13078274211708
1018 => 0.13658648734087
1019 => 0.13501826415033
1020 => 0.13279113511529
1021 => 0.13737263457187
1022 => 0.13903066141507
1023 => 0.15066756211609
1024 => 0.16535962994751
1025 => 0.15927701739198
1026 => 0.15550134349408
1027 => 0.15638871642027
1028 => 0.16175376223443
1029 => 0.16347684467189
1030 => 0.15879291262473
1031 => 0.16044735660863
1101 => 0.16956350562127
1102 => 0.17445402708548
1103 => 0.16781204205243
1104 => 0.14948706877118
1105 => 0.13259060651324
1106 => 0.13707230916165
1107 => 0.13656422316475
1108 => 0.14635838801608
1109 => 0.13498086254588
1110 => 0.13517243089551
1111 => 0.14516912870377
1112 => 0.14250218111531
1113 => 0.13818206757885
1114 => 0.13262214812298
1115 => 0.12234412277848
1116 => 0.11324058910693
1117 => 0.13109471505544
1118 => 0.13032481267892
1119 => 0.12920987994458
1120 => 0.13169104209654
1121 => 0.14373886121628
1122 => 0.14346111999058
1123 => 0.14169427201753
1124 => 0.14303441063281
1125 => 0.13794713480012
1126 => 0.13925824161732
1127 => 0.13258793002729
1128 => 0.1356031894428
1129 => 0.13817279855546
1130 => 0.13868868562854
1201 => 0.13985100554604
1202 => 0.12991910911113
1203 => 0.13437823902525
1204 => 0.13699756008582
1205 => 0.12516337224244
1206 => 0.13676363624197
1207 => 0.12974621689067
1208 => 0.12736439936474
1209 => 0.13057120288281
1210 => 0.1293215084331
1211 => 0.12824709452976
1212 => 0.12764755311092
1213 => 0.1300022756926
1214 => 0.12989242506967
1215 => 0.12603964189408
1216 => 0.12101384330106
1217 => 0.12270066627509
1218 => 0.12208782767457
1219 => 0.11986682152855
1220 => 0.12136351150567
1221 => 0.11477284630392
1222 => 0.10343394937727
1223 => 0.11092477200682
1224 => 0.11063638348403
1225 => 0.11049096491346
1226 => 0.11612011108843
1227 => 0.11557899857021
1228 => 0.11459687405104
1229 => 0.11984878404157
1230 => 0.11793176624687
1231 => 0.12383956338393
]
'min_raw' => 0.053032843183174
'max_raw' => 0.17445402708548
'avg_raw' => 0.11374343513433
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.053032'
'max' => '$0.174454'
'avg' => '$0.113743'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.028890925667345
'max_diff' => 0.1153229289463
'year' => 2029
]
4 => [
'items' => [
101 => 0.12773082067077
102 => 0.12674387195384
103 => 0.13040361824018
104 => 0.12273952726951
105 => 0.12528523086001
106 => 0.12580989684182
107 => 0.11978397628752
108 => 0.11566753127024
109 => 0.1153930113185
110 => 0.10825566293961
111 => 0.11206837683295
112 => 0.11542340727827
113 => 0.11381660805584
114 => 0.11330794342378
115 => 0.11590660071307
116 => 0.11610853864044
117 => 0.11150433249593
118 => 0.11246169274962
119 => 0.11645404415541
120 => 0.11236109573751
121 => 0.10440916554087
122 => 0.10243697690806
123 => 0.1021738505898
124 => 0.096825118601381
125 => 0.10256876798289
126 => 0.10006151110763
127 => 0.10798190553504
128 => 0.10345781871603
129 => 0.10326279437544
130 => 0.10296798648079
131 => 0.098364111905022
201 => 0.099372067845622
202 => 0.1027226669082
203 => 0.10391819840093
204 => 0.10379349467154
205 => 0.10270624714488
206 => 0.10320398349498
207 => 0.10160060128848
208 => 0.10103441365985
209 => 0.099247369761725
210 => 0.096620908914955
211 => 0.096986134404719
212 => 0.091782428216403
213 => 0.088947172903417
214 => 0.088162411600848
215 => 0.087112995989619
216 => 0.088280945886524
217 => 0.091767686770582
218 => 0.087561937511065
219 => 0.08035147540463
220 => 0.080784836463256
221 => 0.081758470095936
222 => 0.079944110262668
223 => 0.078226970948157
224 => 0.079719884266208
225 => 0.076664716417869
226 => 0.082127672534171
227 => 0.081979914880983
228 => 0.0840161670942
301 => 0.085289477391227
302 => 0.082354909395684
303 => 0.081616873480721
304 => 0.082037292279746
305 => 0.075088706026307
306 => 0.083448319353667
307 => 0.083520613636863
308 => 0.082901586093011
309 => 0.087352822115725
310 => 0.096746318498984
311 => 0.093212107307085
312 => 0.091843553911483
313 => 0.089241932906038
314 => 0.092708438426824
315 => 0.092442264888738
316 => 0.091238527206195
317 => 0.090510502899903
318 => 0.09185191000669
319 => 0.090344287714677
320 => 0.090073477324342
321 => 0.088432661003519
322 => 0.087846964229371
323 => 0.087413337655052
324 => 0.086935957403995
325 => 0.087988939282081
326 => 0.085602743815035
327 => 0.082725226003403
328 => 0.08248599153254
329 => 0.083146538940302
330 => 0.082854295884338
331 => 0.082484592385222
401 => 0.081778727722651
402 => 0.081569312755679
403 => 0.082249809804641
404 => 0.081481568311806
405 => 0.082615150482764
406 => 0.082306878856225
407 => 0.080584898609666
408 => 0.07843867366371
409 => 0.078419567759832
410 => 0.07795716711574
411 => 0.077368230373087
412 => 0.077204401644329
413 => 0.079594155270636
414 => 0.084540873757784
415 => 0.083569714553816
416 => 0.084271476607081
417 => 0.087723451349716
418 => 0.088820730315897
419 => 0.088041907696178
420 => 0.08697580725862
421 => 0.087022710267321
422 => 0.090665898193007
423 => 0.090893119355107
424 => 0.091467233927408
425 => 0.092205133397573
426 => 0.088167575166715
427 => 0.086832541637739
428 => 0.086199928686871
429 => 0.084251725650217
430 => 0.086352695598943
501 => 0.085128550382324
502 => 0.085293729394801
503 => 0.085186156346232
504 => 0.085244898504808
505 => 0.082126145526601
506 => 0.083262455195029
507 => 0.081373119980383
508 => 0.078843512215803
509 => 0.078835032083581
510 => 0.079454150000269
511 => 0.079085874437337
512 => 0.078094854366716
513 => 0.078235624090265
514 => 0.077002333187112
515 => 0.07838536793536
516 => 0.078425028423203
517 => 0.077892484710716
518 => 0.080023240562409
519 => 0.080896212973379
520 => 0.080545681293628
521 => 0.080871618736282
522 => 0.083610070603261
523 => 0.084056557744611
524 => 0.084254857839513
525 => 0.083989161982072
526 => 0.080921672609363
527 => 0.081057728807015
528 => 0.080059438703352
529 => 0.079215988762977
530 => 0.07924972233728
531 => 0.07968336524745
601 => 0.081577109268983
602 => 0.085562381919992
603 => 0.085713620103902
604 => 0.085896925194729
605 => 0.085151331268577
606 => 0.084926453006077
607 => 0.085223125480319
608 => 0.086719784352357
609 => 0.090569597310158
610 => 0.089208816290509
611 => 0.088102480139716
612 => 0.089073035210046
613 => 0.088923625864431
614 => 0.087662460627187
615 => 0.087627063919419
616 => 0.085206484610232
617 => 0.08431165155355
618 => 0.083563862074293
619 => 0.082747295484483
620 => 0.082263207438484
621 => 0.083006986691221
622 => 0.083177097806459
623 => 0.081550811471313
624 => 0.081329154653167
625 => 0.082657215180276
626 => 0.082072785257382
627 => 0.082673885926243
628 => 0.082813346437565
629 => 0.082790890083194
630 => 0.082180678122344
701 => 0.082569609029407
702 => 0.081649671488318
703 => 0.080649377582535
704 => 0.080011252391158
705 => 0.079454403526658
706 => 0.079763375640928
707 => 0.078661946469632
708 => 0.078309577110345
709 => 0.082437847989317
710 => 0.085487446074004
711 => 0.085443103710079
712 => 0.085173180973617
713 => 0.084772130539063
714 => 0.08669044501508
715 => 0.086022142609545
716 => 0.086508388448106
717 => 0.086632158421694
718 => 0.087006772854612
719 => 0.087140665315182
720 => 0.086735949305047
721 => 0.085377672943136
722 => 0.081992977390296
723 => 0.080417392473637
724 => 0.079897423207698
725 => 0.079916323102952
726 => 0.07939497961898
727 => 0.079548538639986
728 => 0.079341578058176
729 => 0.078949644785369
730 => 0.079739174865772
731 => 0.079830160852556
801 => 0.079645875097609
802 => 0.07968928106414
803 => 0.078163473722648
804 => 0.078279477540943
805 => 0.077633553539628
806 => 0.077512450576111
807 => 0.075879610947823
808 => 0.072986798862422
809 => 0.074589697569798
810 => 0.072653621332954
811 => 0.071920399925719
812 => 0.075391356028246
813 => 0.075042968304888
814 => 0.074446679963004
815 => 0.073564645227977
816 => 0.073237489964873
817 => 0.071249798151025
818 => 0.07113235471474
819 => 0.072117508449876
820 => 0.071662893898181
821 => 0.071024442891606
822 => 0.068712038064533
823 => 0.066112129427976
824 => 0.066190604327271
825 => 0.06701758689154
826 => 0.069422150230945
827 => 0.068482645734871
828 => 0.067801024443398
829 => 0.067673377264966
830 => 0.069271148950514
831 => 0.071532330629081
901 => 0.072593226481576
902 => 0.07154191091164
903 => 0.070334216191746
904 => 0.070407722973428
905 => 0.070896730660336
906 => 0.070948118454033
907 => 0.070162033344406
908 => 0.070383311698246
909 => 0.070047169644646
910 => 0.067984266482173
911 => 0.0679469551055
912 => 0.067440685400622
913 => 0.067425355755163
914 => 0.066564064692269
915 => 0.066443564118746
916 => 0.064733418436739
917 => 0.065859041503434
918 => 0.065104032648158
919 => 0.063966056214673
920 => 0.063769868648611
921 => 0.063763971013472
922 => 0.064932418363787
923 => 0.065845387515842
924 => 0.065117166350443
925 => 0.064951364507056
926 => 0.066721694421436
927 => 0.066496403802916
928 => 0.066301303580246
929 => 0.071329866610623
930 => 0.067349366588413
1001 => 0.065613641379731
1002 => 0.063465351828711
1003 => 0.064164845739139
1004 => 0.06431223938377
1005 => 0.059145990271862
1006 => 0.057050043650576
1007 => 0.056330793754233
1008 => 0.055916855270187
1009 => 0.056105492235279
1010 => 0.054218894446103
1011 => 0.055486719361877
1012 => 0.053853085146592
1013 => 0.053579201054094
1014 => 0.056500341399469
1015 => 0.056906801013473
1016 => 0.055172718023026
1017 => 0.056286280025428
1018 => 0.055882486963687
1019 => 0.053881089116398
1020 => 0.053804650439918
1021 => 0.052800419352684
1022 => 0.05122899215862
1023 => 0.050510807763911
1024 => 0.050136771095585
1025 => 0.050291105914766
1026 => 0.050213069507464
1027 => 0.049703829163963
1028 => 0.050242258567858
1029 => 0.048866793935297
1030 => 0.048319072835739
1031 => 0.048071679922102
1101 => 0.046850875891913
1102 => 0.04879371799796
1103 => 0.049176482368131
1104 => 0.049560000902353
1105 => 0.052898267903534
1106 => 0.052731497518
1107 => 0.054239020582759
1108 => 0.054180441008619
1109 => 0.053750471010295
1110 => 0.051936498313999
1111 => 0.052659515499788
1112 => 0.050434180983747
1113 => 0.052101552911203
1114 => 0.051340633994629
1115 => 0.051844285460094
1116 => 0.050938674712765
1117 => 0.051439877092088
1118 => 0.049267249999921
1119 => 0.047238481390942
1120 => 0.048054917102643
1121 => 0.04894247609201
1122 => 0.050866930126783
1123 => 0.049720741180073
1124 => 0.050132954067513
1125 => 0.048752109898195
1126 => 0.045903033958255
1127 => 0.045919159418667
1128 => 0.0454808911558
1129 => 0.04510216338847
1130 => 0.049852394768574
1201 => 0.049261628406413
1202 => 0.048320319525899
1203 => 0.049580298868595
1204 => 0.049913457405365
1205 => 0.049922941960541
1206 => 0.050842190364198
1207 => 0.051332793402015
1208 => 0.051419264313825
1209 => 0.052865721538656
1210 => 0.053350554921188
1211 => 0.055347515007645
1212 => 0.051291169161909
1213 => 0.051207631388568
1214 => 0.049598029361842
1215 => 0.04857719430969
1216 => 0.049667926811225
1217 => 0.05063416690775
1218 => 0.049628053135025
1219 => 0.049759430353522
1220 => 0.048408804816153
1221 => 0.048891589892924
1222 => 0.049307429439212
1223 => 0.049077827283671
1224 => 0.048734101743955
1225 => 0.050554946238692
1226 => 0.050452207056352
1227 => 0.052147819310885
1228 => 0.053469670317689
1229 => 0.055838663631014
1230 => 0.053366495610145
1231 => 0.053276399981487
]
'min_raw' => 0.04510216338847
'max_raw' => 0.13040361824018
'avg_raw' => 0.087752890814327
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.0451021'
'max' => '$0.1304036'
'avg' => '$0.087752'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0079306797947041
'max_diff' => -0.044050408845294
'year' => 2030
]
5 => [
'items' => [
101 => 0.054157099203416
102 => 0.053350420090725
103 => 0.053860213444329
104 => 0.055756528040374
105 => 0.055796594179615
106 => 0.055125434725023
107 => 0.055084594611216
108 => 0.05521349812615
109 => 0.055968490039348
110 => 0.055704672666319
111 => 0.056009968809427
112 => 0.056391746311245
113 => 0.057970939929069
114 => 0.058351678163991
115 => 0.057426681643271
116 => 0.057510198472345
117 => 0.057164224381874
118 => 0.056830017745521
119 => 0.057581265457083
120 => 0.058954185415772
121 => 0.058945644551964
122 => 0.059264135296629
123 => 0.059462552392036
124 => 0.058610800968359
125 => 0.058056342111313
126 => 0.058268956918238
127 => 0.05860893262466
128 => 0.058158707378724
129 => 0.055379708596186
130 => 0.056222679303679
131 => 0.05608236775879
201 => 0.055882547056402
202 => 0.056730160621286
203 => 0.056648406225186
204 => 0.054199544658931
205 => 0.054356312831091
206 => 0.054209078250713
207 => 0.054684823301276
208 => 0.053324728296733
209 => 0.053743084359751
210 => 0.054005473360631
211 => 0.054160022497917
212 => 0.054718359957128
213 => 0.054652845500597
214 => 0.054714287486524
215 => 0.055542154542911
216 => 0.059729222024448
217 => 0.059957114869224
218 => 0.058834887153653
219 => 0.059283194991061
220 => 0.058422541977384
221 => 0.059000304111339
222 => 0.059395594289824
223 => 0.057609353983181
224 => 0.057503584424825
225 => 0.05663937919001
226 => 0.057103754132113
227 => 0.056364900209488
228 => 0.056546189118087
301 => 0.05603928952516
302 => 0.056951607869726
303 => 0.057971721538889
304 => 0.058229442537229
305 => 0.057551489546462
306 => 0.057060606901868
307 => 0.056198778684756
308 => 0.057632018216908
309 => 0.058051141133292
310 => 0.057629816742654
311 => 0.057532186675223
312 => 0.057347177873856
313 => 0.057571437167026
314 => 0.058048858499878
315 => 0.057823715415893
316 => 0.057972426389376
317 => 0.057405693508549
318 => 0.058611082933522
319 => 0.06052553143314
320 => 0.06053168669811
321 => 0.06030654240052
322 => 0.060214418204748
323 => 0.060445429916974
324 => 0.06057074429426
325 => 0.061317793811296
326 => 0.062119407706842
327 => 0.06586018998581
328 => 0.064809793290858
329 => 0.068128837868892
330 => 0.070753771206118
331 => 0.071540873939528
401 => 0.070816776460836
402 => 0.068339678101206
403 => 0.068218139838061
404 => 0.071919970591299
405 => 0.07087403384892
406 => 0.070749623001557
407 => 0.069426101781059
408 => 0.070208466743666
409 => 0.070037352049742
410 => 0.069767239134166
411 => 0.071259936982803
412 => 0.074054134101395
413 => 0.073618632276648
414 => 0.073293550366822
415 => 0.071869136067888
416 => 0.072726951630298
417 => 0.072421499938899
418 => 0.073733914249584
419 => 0.07295646908547
420 => 0.070866109849389
421 => 0.071199006447649
422 => 0.071148689796517
423 => 0.072184202911338
424 => 0.071873367577284
425 => 0.071087994208814
426 => 0.074044583839412
427 => 0.073852599354216
428 => 0.07412478946046
429 => 0.074244615962987
430 => 0.076044239970178
501 => 0.07678148834438
502 => 0.076948856632673
503 => 0.077649185567328
504 => 0.076931431810793
505 => 0.079802958586688
506 => 0.081712356334426
507 => 0.083930220075132
508 => 0.087171115105879
509 => 0.088389721617395
510 => 0.088169591258413
511 => 0.090626800882902
512 => 0.095042351957406
513 => 0.089062100376007
514 => 0.095359319812405
515 => 0.093365692843736
516 => 0.088638839164839
517 => 0.088334485513863
518 => 0.091535565705111
519 => 0.098635253476749
520 => 0.096856862213946
521 => 0.098638162287764
522 => 0.096560181132331
523 => 0.096456991853364
524 => 0.098537239381186
525 => 0.10339785111833
526 => 0.10108875667932
527 => 0.097778103587812
528 => 0.10022263831111
529 => 0.098104956102781
530 => 0.093333225385478
531 => 0.096855502311663
601 => 0.094500256039795
602 => 0.095187642113704
603 => 0.10013801946073
604 => 0.099542376961262
605 => 0.10031319351058
606 => 0.098952722476812
607 => 0.097681828004679
608 => 0.095309609094579
609 => 0.094607312024277
610 => 0.094801401668507
611 => 0.094607215843089
612 => 0.093279981164705
613 => 0.092993364962275
614 => 0.092515658734615
615 => 0.092663719869697
616 => 0.09176549240381
617 => 0.093460633215204
618 => 0.093775266287328
619 => 0.095008848406849
620 => 0.095136922994749
621 => 0.098572431638671
622 => 0.096680211208976
623 => 0.097949676039667
624 => 0.097836123156543
625 => 0.088741284417135
626 => 0.089994472950984
627 => 0.091944041037427
628 => 0.091065763257062
629 => 0.089824083960974
630 => 0.088821361354752
701 => 0.087302134072675
702 => 0.089440417298023
703 => 0.092252032358286
704 => 0.095208230192548
705 => 0.09875990819266
706 => 0.097967215009125
707 => 0.095141834042832
708 => 0.095268578569038
709 => 0.096052063357909
710 => 0.095037379369221
711 => 0.094738129251973
712 => 0.096010950987097
713 => 0.096019716210857
714 => 0.094852199653215
715 => 0.09355471865267
716 => 0.093549282159903
717 => 0.093318407948036
718 => 0.096601253141732
719 => 0.09840648606518
720 => 0.098613453110575
721 => 0.098392555533998
722 => 0.098477570244111
723 => 0.09742714498155
724 => 0.099828105637829
725 => 0.10203146456643
726 => 0.10144091730567
727 => 0.10055560301054
728 => 0.099850407531964
729 => 0.10127479566235
730 => 0.1012113699011
731 => 0.10201222014836
801 => 0.10197588895521
802 => 0.10170659313855
803 => 0.10144092692307
804 => 0.10249426343792
805 => 0.10219091943771
806 => 0.10188710426048
807 => 0.10127775641077
808 => 0.10136057690374
809 => 0.10047541547062
810 => 0.10006589928942
811 => 0.093907758490937
812 => 0.092262102046527
813 => 0.092779859064364
814 => 0.092950318118191
815 => 0.092234126324618
816 => 0.093260961382025
817 => 0.093100930226016
818 => 0.093723517838954
819 => 0.093334552128002
820 => 0.093350515416456
821 => 0.094494380636132
822 => 0.094826449575755
823 => 0.094657556632938
824 => 0.094775843460775
825 => 0.097501713482547
826 => 0.097114181933867
827 => 0.096908313522421
828 => 0.096965340479322
829 => 0.097661858713196
830 => 0.097856845790196
831 => 0.097030671843451
901 => 0.09742030025279
902 => 0.099079288568551
903 => 0.09965984058846
904 => 0.10151268395523
905 => 0.10072556316136
906 => 0.1021703574443
907 => 0.10661116250338
908 => 0.11015878486492
909 => 0.10689624472956
910 => 0.11341100140953
911 => 0.11848367397123
912 => 0.11828897634933
913 => 0.11740443855517
914 => 0.11162933570765
915 => 0.10631499996543
916 => 0.11076066747241
917 => 0.11077200039315
918 => 0.11039011361163
919 => 0.10801824760968
920 => 0.11030757781608
921 => 0.11048929653424
922 => 0.11038758237498
923 => 0.10856907827242
924 => 0.10579255862355
925 => 0.10633508391689
926 => 0.1072237514146
927 => 0.10554131844597
928 => 0.10500367917029
929 => 0.10600325287384
930 => 0.10922408761614
1001 => 0.10861520746513
1002 => 0.10859930714371
1003 => 0.11120435463508
1004 => 0.1093397028357
1005 => 0.10634192689824
1006 => 0.10558494893823
1007 => 0.10289818714163
1008 => 0.10475394308446
1009 => 0.1048207284371
1010 => 0.10380434987258
1011 => 0.10642440041717
1012 => 0.10640025619015
1013 => 0.10888760423918
1014 => 0.11364247950366
1015 => 0.11223622891475
1016 => 0.11060091247948
1017 => 0.1107787167184
1018 => 0.1127287903611
1019 => 0.11154973132087
1020 => 0.11197372917243
1021 => 0.11272814858957
1022 => 0.11318330855511
1023 => 0.11071322620387
1024 => 0.1101373318501
1025 => 0.10895925411374
1026 => 0.10865191562219
1027 => 0.10961143535705
1028 => 0.10935863580725
1029 => 0.10481511538682
1030 => 0.10434029222297
1031 => 0.10435485437152
1101 => 0.10316088894942
1102 => 0.10133980509619
1103 => 0.10612550473122
1104 => 0.1057411460747
1105 => 0.1053168438649
1106 => 0.10536881846457
1107 => 0.10744612847372
1108 => 0.10624118376174
1109 => 0.1094447267651
1110 => 0.10878617463093
1111 => 0.10811073311946
1112 => 0.10801736652812
1113 => 0.10775737917217
1114 => 0.10686578579157
1115 => 0.10578913320804
1116 => 0.10507823391434
1117 => 0.09692911637155
1118 => 0.098441545186256
1119 => 0.10018145667535
1120 => 0.10078206714913
1121 => 0.099754681372752
1122 => 0.10690635324401
1123 => 0.10821303261011
1124 => 0.1042550155776
1125 => 0.10351463219559
1126 => 0.10695489265527
1127 => 0.10487999504334
1128 => 0.10581432131095
1129 => 0.10379481896953
1130 => 0.10789829181486
1201 => 0.10786703022697
1202 => 0.106270686609
1203 => 0.10761990530362
1204 => 0.10738544535279
1205 => 0.10558317733972
1206 => 0.10795542692552
1207 => 0.10795660353171
1208 => 0.10642015750692
1209 => 0.10462592492125
1210 => 0.10430515851282
1211 => 0.10406350411296
1212 => 0.10575488914227
1213 => 0.10727137967072
1214 => 0.11009319257428
1215 => 0.11080266338286
1216 => 0.11357177518088
1217 => 0.11192290393077
1218 => 0.11265382719948
1219 => 0.11344734780309
1220 => 0.11382779076121
1221 => 0.11320787937664
1222 => 0.11750944981086
1223 => 0.11787263415222
1224 => 0.11799440672035
1225 => 0.11654394137244
1226 => 0.11783229408702
1227 => 0.11722951651763
1228 => 0.11879777629676
1229 => 0.11904369945468
1230 => 0.11883541128889
1231 => 0.11891347118085
]
'min_raw' => 0.053324728296733
'max_raw' => 0.11904369945468
'avg_raw' => 0.086184213875704
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.053324'
'max' => '$0.119043'
'avg' => '$0.086184'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0082225649082633
'max_diff' => -0.011359918785509
'year' => 2031
]
6 => [
'items' => [
101 => 0.11524283966427
102 => 0.11505249805601
103 => 0.11245717672138
104 => 0.11351478934889
105 => 0.11153763323446
106 => 0.11216460980531
107 => 0.11244097510369
108 => 0.11229661755541
109 => 0.11357458518002
110 => 0.11248805162756
111 => 0.10962051093997
112 => 0.10675218899284
113 => 0.10671617954727
114 => 0.10596100100868
115 => 0.10541514524313
116 => 0.10552029642885
117 => 0.10589086292241
118 => 0.10539360724487
119 => 0.10549972195517
120 => 0.10726193318486
121 => 0.10761533207946
122 => 0.10641434455375
123 => 0.10159220633637
124 => 0.1004088415224
125 => 0.10125942068354
126 => 0.10085289862883
127 => 0.081396160439473
128 => 0.085967232471185
129 => 0.083251256688881
130 => 0.084502903285404
131 => 0.08173059531019
201 => 0.083053685985073
202 => 0.082809359448957
203 => 0.090159508008095
204 => 0.090044745548143
205 => 0.090099676264628
206 => 0.087477690045585
207 => 0.091654585287204
208 => 0.093712274079521
209 => 0.093331450647677
210 => 0.093427295700953
211 => 0.091780360135812
212 => 0.090115622200921
213 => 0.088269171629796
214 => 0.091699648562758
215 => 0.091318238088007
216 => 0.092193056489929
217 => 0.094417965996511
218 => 0.094745592372964
219 => 0.095185925545376
220 => 0.095028097448116
221 => 0.098788203037946
222 => 0.098332829441042
223 => 0.099430148789655
224 => 0.097172879635738
225 => 0.094618565326127
226 => 0.095104056969558
227 => 0.095057300220218
228 => 0.094462033136226
229 => 0.093924652628987
301 => 0.093030065490454
302 => 0.095860671570758
303 => 0.095745754133192
304 => 0.097606133870487
305 => 0.097277293681156
306 => 0.095081218415954
307 => 0.095159651673676
308 => 0.095687153025588
309 => 0.097512841227461
310 => 0.098054829788108
311 => 0.097803759092306
312 => 0.098398024806338
313 => 0.098867708196545
314 => 0.098457009808776
315 => 0.10427163289333
316 => 0.10185699599452
317 => 0.10303387321806
318 => 0.10331455150132
319 => 0.10259559998079
320 => 0.10275151482187
321 => 0.10298768332185
322 => 0.10442165220721
323 => 0.10818480148462
324 => 0.10985147468296
325 => 0.11486574323238
326 => 0.10971308067505
327 => 0.10940734300273
328 => 0.11031056418489
329 => 0.11325447063763
330 => 0.1156402303105
331 => 0.11643172443177
401 => 0.11653633344604
402 => 0.11802122903508
403 => 0.11887234349505
404 => 0.11784092365394
405 => 0.11696690333275
406 => 0.11383627102967
407 => 0.11419865024318
408 => 0.11669508367009
409 => 0.1202214429248
410 => 0.12324742602049
411 => 0.12218783220654
412 => 0.13027178505034
413 => 0.13107327595482
414 => 0.13096253582712
415 => 0.13278845138536
416 => 0.1291643808435
417 => 0.12761502047379
418 => 0.11715587644674
419 => 0.1200944692954
420 => 0.12436588657844
421 => 0.12380054848403
422 => 0.12069853107778
423 => 0.12324507286213
424 => 0.1224031065105
425 => 0.12173901271575
426 => 0.1247813551304
427 => 0.12143617467296
428 => 0.12433251584444
429 => 0.1206179283332
430 => 0.12219267234183
501 => 0.12129877148073
502 => 0.12187723489023
503 => 0.11849554961826
504 => 0.12032022490525
505 => 0.11841963712735
506 => 0.11841873600127
507 => 0.11837678042074
508 => 0.12061281351294
509 => 0.1206857304718
510 => 0.1190332986382
511 => 0.11879515739515
512 => 0.11967569038561
513 => 0.11864481686573
514 => 0.11912715609744
515 => 0.11865942642969
516 => 0.11855413062959
517 => 0.11771511577976
518 => 0.11735364511325
519 => 0.11749538707554
520 => 0.11701154868527
521 => 0.11672001855393
522 => 0.11831878773991
523 => 0.117464629858
524 => 0.11818787579416
525 => 0.11736364576899
526 => 0.11450650540185
527 => 0.112863333763
528 => 0.10746646046653
529 => 0.10899700703861
530 => 0.11001176099936
531 => 0.10967638482138
601 => 0.11039690262503
602 => 0.11044113656637
603 => 0.11020688888359
604 => 0.10993566007593
605 => 0.10980364089225
606 => 0.1107876037261
607 => 0.11135882726981
608 => 0.11011360513498
609 => 0.1098218670113
610 => 0.11108085534021
611 => 0.11184883749356
612 => 0.11751918622195
613 => 0.11709910847317
614 => 0.11815342118652
615 => 0.11803472175475
616 => 0.11913980944353
617 => 0.12094616076979
618 => 0.11727334345973
619 => 0.11791081754829
620 => 0.1177545236232
621 => 0.11946089971485
622 => 0.11946622683475
623 => 0.118443169128
624 => 0.11899778530804
625 => 0.11868821377144
626 => 0.11924765137918
627 => 0.11709349807872
628 => 0.1197170242722
629 => 0.12120439456761
630 => 0.12122504670561
701 => 0.12193004842113
702 => 0.12264637099505
703 => 0.12402128979714
704 => 0.1226080252559
705 => 0.12006569992474
706 => 0.12024924760199
707 => 0.11875868319053
708 => 0.11878373984758
709 => 0.11864998544853
710 => 0.11905139246865
711 => 0.11718158434657
712 => 0.1176204245755
713 => 0.11700604568515
714 => 0.11790948200857
715 => 0.11693753386794
716 => 0.11775444825354
717 => 0.11810700142122
718 => 0.1194079301999
719 => 0.11674538562958
720 => 0.11131627701227
721 => 0.11245754146521
722 => 0.11076952169492
723 => 0.11092575435141
724 => 0.11124136918175
725 => 0.11021835825387
726 => 0.11041351650013
727 => 0.11040654407426
728 => 0.11034645947498
729 => 0.11008033482208
730 => 0.10969440142422
731 => 0.11123184129726
801 => 0.11149308229067
802 => 0.11207378865812
803 => 0.11380157691073
804 => 0.11362893012024
805 => 0.11391052419858
806 => 0.11329580590666
807 => 0.11095426936991
808 => 0.11108142606933
809 => 0.10949577999005
810 => 0.11203324012285
811 => 0.11143233607057
812 => 0.11104492931895
813 => 0.11093922179747
814 => 0.11267129290297
815 => 0.11318955572463
816 => 0.1128666091135
817 => 0.11220423619221
818 => 0.11347618801406
819 => 0.11381650866224
820 => 0.11389269390483
821 => 0.11614634866058
822 => 0.1140186481707
823 => 0.11453080682613
824 => 0.11852652245373
825 => 0.11490295975057
826 => 0.11682244172952
827 => 0.11672849307515
828 => 0.11771043510386
829 => 0.11664794516806
830 => 0.1166611160042
831 => 0.11753301400317
901 => 0.11630859051124
902 => 0.11600540603554
903 => 0.11558655885379
904 => 0.11650109635191
905 => 0.11704932022106
906 => 0.12146760198032
907 => 0.12432201349493
908 => 0.12419809596311
909 => 0.12533047024008
910 => 0.12482032525694
911 => 0.12317293253695
912 => 0.12598483103184
913 => 0.12509502869322
914 => 0.12516838291691
915 => 0.12516565266904
916 => 0.12575729343635
917 => 0.12533806172963
918 => 0.12451171300244
919 => 0.12506028185163
920 => 0.12668933521677
921 => 0.13174596684762
922 => 0.13457572489971
923 => 0.13157561185974
924 => 0.1336450496616
925 => 0.13240412439657
926 => 0.13217861136158
927 => 0.1334783712314
928 => 0.13478040615881
929 => 0.13469747216279
930 => 0.13375226166572
1001 => 0.13321833623976
1002 => 0.1372613984433
1003 => 0.1402402578031
1004 => 0.14003711956529
1005 => 0.1409337056829
1006 => 0.14356611025456
1007 => 0.14380678433823
1008 => 0.14377646493552
1009 => 0.14317992910741
1010 => 0.14577187326914
1011 => 0.14793411868978
1012 => 0.14304184829878
1013 => 0.14490476081915
1014 => 0.14574108226884
1015 => 0.14696905028237
1016 => 0.14904083815254
1017 => 0.15129134929413
1018 => 0.15160959624515
1019 => 0.15138378480388
1020 => 0.14989951220901
1021 => 0.15236204835433
1022 => 0.15380454427467
1023 => 0.1546635175843
1024 => 0.156841730978
1025 => 0.14574624710539
1026 => 0.13789231213903
1027 => 0.13666580678183
1028 => 0.13915995365563
1029 => 0.1398176402958
1030 => 0.13955252763582
1031 => 0.13071220978265
1101 => 0.13661926433788
1102 => 0.14297475836007
1103 => 0.14321889876902
1104 => 0.14640059196364
1105 => 0.14743668168982
1106 => 0.14999836174554
1107 => 0.14983812796059
1108 => 0.15046185628893
1109 => 0.15031847194771
1110 => 0.15506344482557
1111 => 0.16029785454514
1112 => 0.16011660358095
1113 => 0.15936409525304
1114 => 0.16048169844173
1115 => 0.16588417022576
1116 => 0.16538679719673
1117 => 0.1658699527283
1118 => 0.17223977143163
1119 => 0.18052144184212
1120 => 0.17667377447034
1121 => 0.18502210553065
1122 => 0.1902769374071
1123 => 0.19936462577767
1124 => 0.19822680243587
1125 => 0.20176457282999
1126 => 0.19618986118314
1127 => 0.18338919640686
1128 => 0.18136344220704
1129 => 0.18541905341535
1130 => 0.19538937783023
1201 => 0.18510505241815
1202 => 0.18718555805468
1203 => 0.1865863722914
1204 => 0.18655444422845
1205 => 0.18777300853043
1206 => 0.18600541745437
1207 => 0.17880393342694
1208 => 0.1821043311181
1209 => 0.18082988907143
1210 => 0.18224397753816
1211 => 0.18987522977865
1212 => 0.1865012712568
1213 => 0.18294708003216
1214 => 0.18740482456603
1215 => 0.19308106520486
1216 => 0.19272585626687
1217 => 0.19203660246134
1218 => 0.19592189007492
1219 => 0.2023392469301
1220 => 0.20407383270103
1221 => 0.20535426845509
1222 => 0.20553081891243
1223 => 0.20734939834858
1224 => 0.19757043837938
1225 => 0.213089898992
1226 => 0.21576968112335
1227 => 0.21526599314824
1228 => 0.21824445820477
1229 => 0.21736811822877
1230 => 0.21609843909709
1231 => 0.22081993974936
]
'min_raw' => 0.081396160439473
'max_raw' => 0.22081993974936
'avg_raw' => 0.15110805009442
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.081396'
'max' => '$0.220819'
'avg' => '$0.151108'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.02807143214274
'max_diff' => 0.10177624029469
'year' => 2032
]
7 => [
'items' => [
101 => 0.21540712025698
102 => 0.20772430444257
103 => 0.20350935973792
104 => 0.2090599389349
105 => 0.21244948396197
106 => 0.21468975760931
107 => 0.21536766306139
108 => 0.19832955120466
109 => 0.18914695389089
110 => 0.19503289349033
111 => 0.20221414602749
112 => 0.19753054615895
113 => 0.19771413440657
114 => 0.19103655182243
115 => 0.20280496391593
116 => 0.20109040526183
117 => 0.2099855385923
118 => 0.20786264363508
119 => 0.21511627955898
120 => 0.21320615412441
121 => 0.22113497800966
122 => 0.22429800052182
123 => 0.22960920760489
124 => 0.2335161531557
125 => 0.23581038631109
126 => 0.23567264915789
127 => 0.24476354390198
128 => 0.23940296088306
129 => 0.23266880521889
130 => 0.23254700558891
131 => 0.23603472023111
201 => 0.24334401331338
202 => 0.24523920666372
203 => 0.24629836119953
204 => 0.2446762291585
205 => 0.23885770048791
206 => 0.23634528930856
207 => 0.23848593642493
208 => 0.23586810894952
209 => 0.24038721360474
210 => 0.24659290952503
211 => 0.24531145785747
212 => 0.24959515865614
213 => 0.25402833832431
214 => 0.26036798435634
215 => 0.26202540258552
216 => 0.2647650518924
217 => 0.26758505095708
218 => 0.26849075865556
219 => 0.27022003567653
220 => 0.27021092153304
221 => 0.27542221422952
222 => 0.28117043145404
223 => 0.28334025038476
224 => 0.28832962937144
225 => 0.27978549270545
226 => 0.28626631851457
227 => 0.29211218562
228 => 0.2851425018601
301 => 0.29474858719508
302 => 0.29512156972078
303 => 0.3007531630336
304 => 0.29504446432832
305 => 0.29165465725994
306 => 0.30144090325194
307 => 0.30617615942361
308 => 0.30474986172791
309 => 0.29389566583864
310 => 0.28757805827272
311 => 0.27104366069722
312 => 0.29062936885822
313 => 0.3001689959805
314 => 0.29387096050899
315 => 0.29704732326598
316 => 0.31437652852899
317 => 0.3209743679102
318 => 0.31960206344128
319 => 0.31983396030647
320 => 0.32339403467732
321 => 0.3391813650064
322 => 0.32972123072576
323 => 0.33695314891884
324 => 0.34078893225183
325 => 0.34435182158204
326 => 0.33560249144979
327 => 0.32421974150091
328 => 0.32061434677677
329 => 0.29324474500206
330 => 0.29182003836954
331 => 0.29102030736367
401 => 0.28597811649587
402 => 0.28201633564609
403 => 0.27886578042286
404 => 0.27059778268166
405 => 0.2733879892097
406 => 0.26021052647547
407 => 0.26864100015222
408 => 0.24760945144744
409 => 0.26512515016463
410 => 0.25559215169396
411 => 0.26199330377784
412 => 0.26197097076124
413 => 0.2501844202877
414 => 0.24338618395359
415 => 0.247718284737
416 => 0.2523626406594
417 => 0.25311617178232
418 => 0.25913770046581
419 => 0.26081817968905
420 => 0.25572624918857
421 => 0.24717361934761
422 => 0.24916020019495
423 => 0.24334592595612
424 => 0.23315663399541
425 => 0.24047476136956
426 => 0.24297349181045
427 => 0.24407707352268
428 => 0.2340570751274
429 => 0.23090857408686
430 => 0.22923233855135
501 => 0.24588016338053
502 => 0.24679216880502
503 => 0.24212622010879
504 => 0.26321675065913
505 => 0.25844331404363
506 => 0.26377641226351
507 => 0.24897993880541
508 => 0.2495451840176
509 => 0.24254029635853
510 => 0.24646256538085
511 => 0.24369043205651
512 => 0.24614568480446
513 => 0.2476173531782
514 => 0.25462109140414
515 => 0.26520512160491
516 => 0.25357496646727
517 => 0.24850754132691
518 => 0.25165134338371
519 => 0.26002370254635
520 => 0.27270825525094
521 => 0.26519874474941
522 => 0.26853133799023
523 => 0.26925936135659
524 => 0.26372212632996
525 => 0.2729124210046
526 => 0.27783757458256
527 => 0.28288976303661
528 => 0.28727643671217
529 => 0.28087180786806
530 => 0.28772567879873
531 => 0.2822026686997
601 => 0.27724795768257
602 => 0.27725547193397
603 => 0.27414730933615
604 => 0.26812485264918
605 => 0.26701421923504
606 => 0.27279187451293
607 => 0.27742500689981
608 => 0.2778066138744
609 => 0.28037175402272
610 => 0.28188977753944
611 => 0.29676847165627
612 => 0.30275280551307
613 => 0.31007033567552
614 => 0.3129209260672
615 => 0.32150018115294
616 => 0.31457173589818
617 => 0.31307272318535
618 => 0.2922622566003
619 => 0.29566996933778
620 => 0.30112604622585
621 => 0.29235222529859
622 => 0.29791719522174
623 => 0.29901583816675
624 => 0.29205409422083
625 => 0.29577266246154
626 => 0.28589724769284
627 => 0.26542037866047
628 => 0.27293521761345
629 => 0.27846866855029
630 => 0.27057175179385
701 => 0.28472666942689
702 => 0.27645765876247
703 => 0.27383677936437
704 => 0.26361179442138
705 => 0.26843759371871
706 => 0.27496455636713
707 => 0.27093165229126
708 => 0.27930053379229
709 => 0.29115310189693
710 => 0.29959994776092
711 => 0.30024839170146
712 => 0.29481763570563
713 => 0.30352045684757
714 => 0.3035838473985
715 => 0.29376702959833
716 => 0.28775428335599
717 => 0.2863881747588
718 => 0.28980098187594
719 => 0.29394475975509
720 => 0.30047834253452
721 => 0.30442644977177
722 => 0.31472101953223
723 => 0.31750643494097
724 => 0.32056676198998
725 => 0.32465630269738
726 => 0.32956684485332
727 => 0.31882285817344
728 => 0.31924973679353
729 => 0.30924508515784
730 => 0.29855368007294
731 => 0.30666712382992
801 => 0.31727437225599
802 => 0.31484105774708
803 => 0.31456726015672
804 => 0.31502771175858
805 => 0.31319307208349
806 => 0.30489506482796
807 => 0.30072785753251
808 => 0.30610461811161
809 => 0.30896212706732
810 => 0.31339387425665
811 => 0.31284756787273
812 => 0.32426327269756
813 => 0.32869907039949
814 => 0.32756420352885
815 => 0.32777304634515
816 => 0.33580384620318
817 => 0.34473574730527
818 => 0.35310165135554
819 => 0.36161180827942
820 => 0.35135248195061
821 => 0.34614342874812
822 => 0.35151784200175
823 => 0.34866610267903
824 => 0.36505304270821
825 => 0.36618763888159
826 => 0.38257339394848
827 => 0.39812542668638
828 => 0.38835747356731
829 => 0.39756821340032
830 => 0.40753037949236
831 => 0.42674901418709
901 => 0.42027685414163
902 => 0.41531928097848
903 => 0.41063439829412
904 => 0.42038289545609
905 => 0.43292418131891
906 => 0.43562545417482
907 => 0.44000254816704
908 => 0.43540056903981
909 => 0.44094314600719
910 => 0.46051087823378
911 => 0.455223504257
912 => 0.4477145832222
913 => 0.46316142851011
914 => 0.46875158177172
915 => 0.50798620494765
916 => 0.55752153740871
917 => 0.5370135845033
918 => 0.52428363634741
919 => 0.52727547612245
920 => 0.54536410266041
921 => 0.55117359540009
922 => 0.53538139148139
923 => 0.54095946488271
924 => 0.57169519774803
925 => 0.58818393230991
926 => 0.56579001604238
927 => 0.50400608921588
928 => 0.4470384870399
929 => 0.46214886042153
930 => 0.46043581300953
1001 => 0.49345752361256
1002 => 0.45509740213631
1003 => 0.45574328820195
1004 => 0.48944785280965
1005 => 0.48045605281484
1006 => 0.46589048840597
1007 => 0.4471448317793
1008 => 0.41249175174154
1009 => 0.38179855237947
1010 => 0.44199498455015
1011 => 0.43939920493485
1012 => 0.43564013137889
1013 => 0.44400554280342
1014 => 0.4846256061175
1015 => 0.48368918218379
1016 => 0.47773213088526
1017 => 0.48225050179216
1018 => 0.46509839613999
1019 => 0.46951888431274
1020 => 0.44702946308066
1021 => 0.45719562071875
1022 => 0.46585923724648
1023 => 0.46759858653145
1024 => 0.47151742928388
1025 => 0.43803134703072
1026 => 0.45306561486266
1027 => 0.46189683869354
1028 => 0.42199704814297
1029 => 0.46110814812196
1030 => 0.4374484288385
1031 => 0.42941796475663
1101 => 0.44022992670967
1102 => 0.43601649462159
1103 => 0.4323940331333
1104 => 0.43037263738104
1105 => 0.43831174896666
1106 => 0.4379413799219
1107 => 0.42495145245267
1108 => 0.40800662160625
1109 => 0.41369386303342
1110 => 0.41162763490475
1111 => 0.40413935761774
1112 => 0.40918555237114
1113 => 0.38696466449789
1114 => 0.34873478185321
1115 => 0.37399061334126
1116 => 0.37301829130203
1117 => 0.37252800243856
1118 => 0.39150706178191
1119 => 0.38968266314745
1120 => 0.38637136176133
1121 => 0.40407854297103
1122 => 0.39761518363429
1123 => 0.41753373415114
1124 => 0.4306533797726
1125 => 0.42732581326692
1126 => 0.43966490338667
1127 => 0.41382488558929
1128 => 0.42240790298
1129 => 0.42417685096868
1130 => 0.40386003910352
1201 => 0.38998115732676
1202 => 0.38905559414309
1203 => 0.36499152576992
1204 => 0.3778463568565
1205 => 0.38915807624363
1206 => 0.38374064048208
1207 => 0.38202564216126
1208 => 0.39078719664456
1209 => 0.39146804446555
1210 => 0.37594464199392
1211 => 0.37917244892999
1212 => 0.39263294043168
1213 => 0.37883327908021
1214 => 0.35202279123619
1215 => 0.34537341956688
1216 => 0.34448627081395
1217 => 0.32645264747846
1218 => 0.34581776237703
1219 => 0.33736437077099
1220 => 0.36406853356728
1221 => 0.34881525899534
1222 => 0.34815772081487
1223 => 0.34716375541522
1224 => 0.33164147085077
1225 => 0.33503986467774
1226 => 0.34633664334858
1227 => 0.35036746124566
1228 => 0.34994701391547
1229 => 0.34628128297016
1230 => 0.34795943582534
1231 => 0.34255352077157
]
'min_raw' => 0.18914695389089
'max_raw' => 0.58818393230991
'avg_raw' => 0.3886654431004
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.189146'
'max' => '$0.588183'
'avg' => '$0.388665'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.10775079345142
'max_diff' => 0.36736399256054
'year' => 2033
]
8 => [
'items' => [
101 => 0.34064457965169
102 => 0.33461943638174
103 => 0.32576414026321
104 => 0.32699552350118
105 => 0.30945086477611
106 => 0.29989160353717
107 => 0.29724572601527
108 => 0.29370754801416
109 => 0.29764537263523
110 => 0.30940116296231
111 => 0.29522118569781
112 => 0.27091060928757
113 => 0.27237171635304
114 => 0.27565439012255
115 => 0.26953714927012
116 => 0.26374769418441
117 => 0.2687811556681
118 => 0.25848044396242
119 => 0.27689918191995
120 => 0.27640100667611
121 => 0.28326637317956
122 => 0.28755942774568
123 => 0.27766532686371
124 => 0.27517698724839
125 => 0.276594458582
126 => 0.25316681489373
127 => 0.2813518348765
128 => 0.28159558009971
129 => 0.27950848551649
130 => 0.29451613854245
131 => 0.32618696743158
201 => 0.31427112764735
202 => 0.30965695432473
203 => 0.30088540746549
204 => 0.31257297285251
205 => 0.31167555018521
206 => 0.30761706454624
207 => 0.30516247976854
208 => 0.30968512748312
209 => 0.30460207366678
210 => 0.30368901752838
211 => 0.29815689074459
212 => 0.29618217317851
213 => 0.29472017090835
214 => 0.29311065006229
215 => 0.2966608519811
216 => 0.28861562736511
217 => 0.27891387516131
218 => 0.27810727943998
219 => 0.2803343611432
220 => 0.27934904327626
221 => 0.27810256211711
222 => 0.27572269012536
223 => 0.27501663294333
224 => 0.27731097625469
225 => 0.27472079642469
226 => 0.27854274785825
227 => 0.27750338854654
228 => 0.27169761192044
301 => 0.26446146467051
302 => 0.26439704778165
303 => 0.26283803172632
304 => 0.26085239038021
305 => 0.26030003038305
306 => 0.26835725158141
307 => 0.28503545832969
308 => 0.28176112726934
309 => 0.28412716702738
310 => 0.29576574088136
311 => 0.29946529352541
312 => 0.29683943868737
313 => 0.29324500662938
314 => 0.29340314339788
315 => 0.30568640584859
316 => 0.30645249786069
317 => 0.3083881652246
318 => 0.31087604480676
319 => 0.2972631353381
320 => 0.2927619765861
321 => 0.29062907785462
322 => 0.28406057529735
323 => 0.29114414216451
324 => 0.28701685109959
325 => 0.28757376367259
326 => 0.28721107362883
327 => 0.28740912691772
328 => 0.27689403350731
329 => 0.28072518088902
330 => 0.27435515530367
331 => 0.26582640611382
401 => 0.26579781475597
402 => 0.26788521403751
403 => 0.26664354726491
404 => 0.263302253906
405 => 0.26377686885717
406 => 0.25961874247157
407 => 0.26428174068569
408 => 0.26441545878946
409 => 0.2626199504818
410 => 0.2698039426004
411 => 0.27274723003297
412 => 0.27156538800135
413 => 0.27266430884549
414 => 0.28189719050761
415 => 0.28340255307741
416 => 0.28407113569224
417 => 0.28317532355859
418 => 0.27283306897323
419 => 0.27329179194275
420 => 0.26992598715987
421 => 0.2670822367981
422 => 0.26719597189906
423 => 0.26865802924668
424 => 0.27504291943227
425 => 0.28847954441799
426 => 0.28898945451416
427 => 0.28960748042583
428 => 0.28709365844811
429 => 0.28633546568559
430 => 0.28733571764551
501 => 0.29238180752597
502 => 0.30536172069855
503 => 0.30077375248411
504 => 0.29704366290979
505 => 0.3003159570914
506 => 0.29981221305123
507 => 0.29556010640212
508 => 0.29544076393056
509 => 0.28727961179018
510 => 0.28426261966433
511 => 0.28174139522602
512 => 0.27898828395762
513 => 0.27735614731258
514 => 0.27986385099219
515 => 0.280437392494
516 => 0.27495425457137
517 => 0.2742069231334
518 => 0.27868457192278
519 => 0.27671412563414
520 => 0.27874077850672
521 => 0.27921097935746
522 => 0.27913526619085
523 => 0.2770778939612
524 => 0.27838920166866
525 => 0.27528756802089
526 => 0.27191500727925
527 => 0.26976352364404
528 => 0.26788606881943
529 => 0.26892778987444
530 => 0.26521424452409
531 => 0.26402620662761
601 => 0.27794496012273
602 => 0.28822689298139
603 => 0.28807738960553
604 => 0.28716732625415
605 => 0.2858151567136
606 => 0.29228288790193
607 => 0.29002965968229
608 => 0.2916690714756
609 => 0.29208637058289
610 => 0.29334940929822
611 => 0.29380083707711
612 => 0.29243630879257
613 => 0.28785678520656
614 => 0.27644504783826
615 => 0.27113285328792
616 => 0.26937974060471
617 => 0.26944346292111
618 => 0.26768571696585
619 => 0.26820345192632
620 => 0.26750566987522
621 => 0.26618423948205
622 => 0.26884619527136
623 => 0.26915296087824
624 => 0.26853162858901
625 => 0.26867797483568
626 => 0.26353360885538
627 => 0.26392472382788
628 => 0.26174694596047
629 => 0.26133863886384
630 => 0.25583340605584
701 => 0.24608008814023
702 => 0.25148437304296
703 => 0.24495675683791
704 => 0.24248464967153
705 => 0.25418722050562
706 => 0.25301260697267
707 => 0.25100217919648
708 => 0.24802833750564
709 => 0.24692531069483
710 => 0.24022366896823
711 => 0.23982770022316
712 => 0.24314921482241
713 => 0.24161645012119
714 => 0.2394638679773
715 => 0.23166743365588
716 => 0.2229016601679
717 => 0.22316624376981
718 => 0.22595447322332
719 => 0.23406162640338
720 => 0.23089402140076
721 => 0.22859588762728
722 => 0.22816551625315
723 => 0.23355251504383
724 => 0.24117624694379
725 => 0.24475313137986
726 => 0.24120854753531
727 => 0.23713672046863
728 => 0.23738455371515
729 => 0.23903327727299
730 => 0.23920653480722
731 => 0.2365561939774
801 => 0.23730224939654
802 => 0.23616892299414
803 => 0.22921370095456
804 => 0.22908790304311
805 => 0.22738097938649
806 => 0.22732929441654
807 => 0.22442539146457
808 => 0.22401911536786
809 => 0.21825323980241
810 => 0.22204835656027
811 => 0.21950279149167
812 => 0.2156660244952
813 => 0.21500456441884
814 => 0.21498468013021
815 => 0.21892418195019
816 => 0.22200232118781
817 => 0.21954707268589
818 => 0.218988060195
819 => 0.22495685110182
820 => 0.22419726805219
821 => 0.22353947402999
822 => 0.24049362536997
823 => 0.22707309163545
824 => 0.22122097290992
825 => 0.21397786469986
826 => 0.21633625725598
827 => 0.21683320521955
828 => 0.19941483564275
829 => 0.19234820527477
830 => 0.18992320403282
831 => 0.1885275815336
901 => 0.18916358423162
902 => 0.18280278806736
903 => 0.1870773482876
904 => 0.18156943647407
905 => 0.18064601713424
906 => 0.19049484575617
907 => 0.19186525272289
908 => 0.18601867085079
909 => 0.18977312288831
910 => 0.18841170638872
911 => 0.18166385381345
912 => 0.18140613547892
913 => 0.17802030025513
914 => 0.1727221237568
915 => 0.17030071492801
916 => 0.16903962418634
917 => 0.16955997480452
918 => 0.16929686960898
919 => 0.16757993023684
920 => 0.16939528256401
921 => 0.16475780752346
922 => 0.16291112759563
923 => 0.16207702511488
924 => 0.15796099909328
925 => 0.16451142689872
926 => 0.16580194369651
927 => 0.16709500321105
928 => 0.17835020347589
929 => 0.17778792547753
930 => 0.18287064474226
1001 => 0.18267313961815
1002 => 0.18122346574926
1003 => 0.17510753015617
1004 => 0.1775452330775
1005 => 0.17004236238877
1006 => 0.17566402325438
1007 => 0.17309853200149
1008 => 0.17479662808113
1009 => 0.17174329821879
1010 => 0.17343313703351
1011 => 0.16610797310428
1012 => 0.15926783809501
1013 => 0.16202050809873
1014 => 0.16501297519877
1015 => 0.1715014063381
1016 => 0.16763695027991
1017 => 0.1690267548097
1018 => 0.16437114228538
1019 => 0.15476528383775
1020 => 0.15481965195337
1021 => 0.1533419999062
1022 => 0.15206509279672
1023 => 0.1680808295453
1024 => 0.16608901950929
1025 => 0.16291533089854
1026 => 0.16716343922139
1027 => 0.1682867064885
1028 => 0.16831868432847
1029 => 0.17141799450127
1030 => 0.17307209689608
1031 => 0.17336363961245
1101 => 0.17824047113439
1102 => 0.17987512073358
1103 => 0.18660801108837
1104 => 0.17293175786445
1105 => 0.17265010442921
1106 => 0.16722321881728
1107 => 0.16378140216652
1108 => 0.16745888294796
1109 => 0.17071662889412
1110 => 0.16732444606476
1111 => 0.16776739352938
1112 => 0.16321366523248
1113 => 0.16484140882579
1114 => 0.16624344088909
1115 => 0.16546932119137
1116 => 0.16431042653607
1117 => 0.17044953087738
1118 => 0.1701031385511
1119 => 0.17582001365113
1120 => 0.18027672660926
1121 => 0.18826395296296
1122 => 0.17992886587934
1123 => 0.17962510217705
1124 => 0.18259444109224
1125 => 0.17987466614326
1126 => 0.18159347002757
1127 => 0.1879870270846
1128 => 0.18812211287038
1129 => 0.18585925191036
1130 => 0.1857215566153
1201 => 0.18615616381565
1202 => 0.18870167176285
1203 => 0.18781219307054
1204 => 0.18884152033213
1205 => 0.19012870983436
1206 => 0.19545307137263
1207 => 0.19673675691397
1208 => 0.19361806656317
1209 => 0.19389964938335
1210 => 0.19273317358218
1211 => 0.19160637257416
1212 => 0.19413925668413
1213 => 0.19876815217906
1214 => 0.19873935606043
1215 => 0.19981316984238
1216 => 0.20048214693258
1217 => 0.19761040754027
1218 => 0.19574101079266
1219 => 0.1964578564585
1220 => 0.19760410828904
1221 => 0.19608614243865
1222 => 0.18671655401983
1223 => 0.18955868861447
1224 => 0.18908561844464
1225 => 0.1884119089955
1226 => 0.191269697308
1227 => 0.19099405665364
1228 => 0.18273754890895
1229 => 0.1832661037466
1230 => 0.18276969207926
1231 => 0.18437369973269
]
'min_raw' => 0.15206509279672
'max_raw' => 0.34064457965169
'avg_raw' => 0.2463548362242
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.152065'
'max' => '$0.340644'
'avg' => '$0.246354'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.037081861094178
'max_diff' => -0.24753935265821
'year' => 2034
]
9 => [
'items' => [
101 => 0.17978804446607
102 => 0.18119856114123
103 => 0.18208322397711
104 => 0.18260429718374
105 => 0.18448677090935
106 => 0.18426588434508
107 => 0.18447304029038
108 => 0.18726425187082
109 => 0.20138124221654
110 => 0.20214959885367
111 => 0.19836592975919
112 => 0.19987743093286
113 => 0.19697567920838
114 => 0.19892364458107
115 => 0.20025639301611
116 => 0.19423395911095
117 => 0.19387734966036
118 => 0.1909636213743
119 => 0.19252929391322
120 => 0.19003819632795
121 => 0.19064942454048
122 => 0.18894037717233
123 => 0.19201632216707
124 => 0.19545570662471
125 => 0.19632463096412
126 => 0.19403886512258
127 => 0.192383820014
128 => 0.18947810600908
129 => 0.19431037315732
130 => 0.19572347533214
131 => 0.19430295073317
201 => 0.19397378414452
202 => 0.19335001405381
203 => 0.19410611991801
204 => 0.19571577927422
205 => 0.19495669364757
206 => 0.19545808307734
207 => 0.19354730360161
208 => 0.1976113582055
209 => 0.20406605498449
210 => 0.20408680789009
211 => 0.20332771817169
212 => 0.20301711501373
213 => 0.20379598713023
214 => 0.20421849330242
215 => 0.20673722290644
216 => 0.20943992012217
217 => 0.22205222874878
218 => 0.2185107429554
219 => 0.22970113347853
220 => 0.23855127949198
221 => 0.24120505131143
222 => 0.23876370610715
223 => 0.23041199604218
224 => 0.23000222130245
225 => 0.24248320214056
226 => 0.23895675338866
227 => 0.23853729353069
228 => 0.23407494933048
301 => 0.23671274742488
302 => 0.23613582228747
303 => 0.23522511773393
304 => 0.24025785274744
305 => 0.24967868341739
306 => 0.24821035860949
307 => 0.24711432225402
308 => 0.24231180999573
309 => 0.24520399505517
310 => 0.24417414335166
311 => 0.24859903982997
312 => 0.24597782917968
313 => 0.23893003707101
314 => 0.24005242119414
315 => 0.23988277509185
316 => 0.24337407985568
317 => 0.24232607682509
318 => 0.23967813568028
319 => 0.24964648404233
320 => 0.24899919494657
321 => 0.24991690289348
322 => 0.25032090631277
323 => 0.25638846429875
324 => 0.2588741486654
325 => 0.25943844253467
326 => 0.26179965043326
327 => 0.25937969353114
328 => 0.26906124653966
329 => 0.27549891435605
330 => 0.28297659680415
331 => 0.29390350067237
401 => 0.29801211760634
402 => 0.29726993273202
403 => 0.30555458653788
404 => 0.32044192526951
405 => 0.30027908953499
406 => 0.32151060452263
407 => 0.31478895200717
408 => 0.29885203481038
409 => 0.29782588522682
410 => 0.3086185505839
411 => 0.33255564359035
412 => 0.32655967328449
413 => 0.33256545084977
414 => 0.32555939230422
415 => 0.32521148244573
416 => 0.33222518222403
417 => 0.34861307405289
418 => 0.34082780093594
419 => 0.3296657028955
420 => 0.33790762238708
421 => 0.33076770896983
422 => 0.31467948570484
423 => 0.326555088279
424 => 0.31861421103535
425 => 0.3209317811753
426 => 0.33762232402511
427 => 0.33561407375172
428 => 0.33821293556445
429 => 0.33362601248904
430 => 0.32934110304522
501 => 0.32134300136678
502 => 0.31897515776145
503 => 0.31962954454787
504 => 0.31897483347985
505 => 0.31449996909712
506 => 0.31353362255972
507 => 0.31192300266078
508 => 0.31242220111501
509 => 0.30939376450153
510 => 0.3151090500981
511 => 0.31616985746774
512 => 0.32032896570966
513 => 0.32076077812465
514 => 0.33234383537718
515 => 0.32596408208786
516 => 0.33024417139574
517 => 0.32986131992228
518 => 0.299197436131
519 => 0.3034226487677
520 => 0.30999575368564
521 => 0.30703457882974
522 => 0.3028481703917
523 => 0.29946742111697
524 => 0.29434524026638
525 => 0.30155461145081
526 => 0.31103416792718
527 => 0.32100119532054
528 => 0.33297592566815
529 => 0.33030330525579
530 => 0.32077733606614
531 => 0.32120466408526
601 => 0.3238462377521
602 => 0.32042515984127
603 => 0.31941621717799
604 => 0.32370762452354
605 => 0.32373717708741
606 => 0.31980081349992
607 => 0.31542626571935
608 => 0.31540793620442
609 => 0.31462952767999
610 => 0.32569786945147
611 => 0.33178433829021
612 => 0.33248214213374
613 => 0.33173737053173
614 => 0.33202400356241
615 => 0.32848242145134
616 => 0.3365774279337
617 => 0.34400620639509
618 => 0.34201513507473
619 => 0.33903023611806
620 => 0.33665262032685
621 => 0.34145504435604
622 => 0.34124119997374
623 => 0.34394132249595
624 => 0.34381882934168
625 => 0.34291087969421
626 => 0.34201516750048
627 => 0.3455665651019
628 => 0.34454381962639
629 => 0.34351948554467
630 => 0.34146502672607
701 => 0.34174426180046
702 => 0.33875987822868
703 => 0.33737916583227
704 => 0.31661656418252
705 => 0.31106811858413
706 => 0.31281377251841
707 => 0.31338848711946
708 => 0.31097379648451
709 => 0.31443584257189
710 => 0.31389628635639
711 => 0.31599538396109
712 => 0.3146839589099
713 => 0.31473778025144
714 => 0.3185944017017
715 => 0.31971399531595
716 => 0.31914456096751
717 => 0.31954337326609
718 => 0.32873383435866
719 => 0.3274272446857
720 => 0.32673314496323
721 => 0.32692541532992
722 => 0.32927377518478
723 => 0.32993118772844
724 => 0.32714568458537
725 => 0.32845934397044
726 => 0.3340527389039
727 => 0.33601011057187
728 => 0.34225710134433
729 => 0.33960326863278
730 => 0.34447449343002
731 => 0.35944697773383
801 => 0.37140803421282
802 => 0.36040815236318
803 => 0.38237310935549
804 => 0.39947597905994
805 => 0.39881954243436
806 => 0.39583726150489
807 => 0.37636609904968
808 => 0.35844844505972
809 => 0.3734373234461
810 => 0.3734755331796
811 => 0.37218797523323
812 => 0.36419106340926
813 => 0.37190970003607
814 => 0.37252237738153
815 => 0.37217944099213
816 => 0.36604822744644
817 => 0.35668699759986
818 => 0.35851615950426
819 => 0.36151236401757
820 => 0.35583992380014
821 => 0.3540272354454
822 => 0.35739736797493
823 => 0.36825663718009
824 => 0.36620375524032
825 => 0.36615014619653
826 => 0.3749332456923
827 => 0.36864644196483
828 => 0.35853923109367
829 => 0.35598702705097
830 => 0.34692842207002
831 => 0.353185232796
901 => 0.35341040427525
902 => 0.34998361298368
903 => 0.35881729632085
904 => 0.35873589237376
905 => 0.36712215998215
906 => 0.38315355391113
907 => 0.37841228186934
908 => 0.37289869833368
909 => 0.3734981777391
910 => 0.38007298717525
911 => 0.37609770730185
912 => 0.37752724566096
913 => 0.38007082339773
914 => 0.38160542699981
915 => 0.37327737189697
916 => 0.37133570387557
917 => 0.36736373253667
918 => 0.36632751935471
919 => 0.36956260713234
920 => 0.36871027580027
921 => 0.35339147948432
922 => 0.35179058003633
923 => 0.35183967733684
924 => 0.34781413955624
925 => 0.34167422820105
926 => 0.35780954864742
927 => 0.35651365660192
928 => 0.35508309207775
929 => 0.35525832806927
930 => 0.3622621237983
1001 => 0.3581995685753
1002 => 0.36900053747534
1003 => 0.36678018297634
1004 => 0.3645028847626
1005 => 0.36418809278126
1006 => 0.36331152725892
1007 => 0.36030545792717
1008 => 0.35667544857231
1009 => 0.35427860197021
1010 => 0.32680328322148
1011 => 0.33190254256467
1012 => 0.33776877562689
1013 => 0.33979377577252
1014 => 0.33632987289768
1015 => 0.3604422339254
1016 => 0.36484779463766
1017 => 0.35150306387262
1018 => 0.34900680960825
1019 => 0.3606058879394
1020 => 0.35361022577605
1021 => 0.35676037201986
1022 => 0.34995147887863
1023 => 0.36378662407196
1024 => 0.36368122344579
1025 => 0.35829903948466
1026 => 0.362848024513
1027 => 0.3620575264193
1028 => 0.35598105398292
1029 => 0.3639792590866
1030 => 0.36398322609654
1031 => 0.35880299105272
1101 => 0.35275361062081
1102 => 0.35167212427957
1103 => 0.3508573695987
1104 => 0.35655999231373
1105 => 0.36167294600839
1106 => 0.37118688522544
1107 => 0.37357891559023
1108 => 0.38291516935047
1109 => 0.37735588481019
1110 => 0.37982024364211
1111 => 0.382495653759
1112 => 0.38377834375398
1113 => 0.38168826924009
1114 => 0.39619131428511
1115 => 0.39741581564872
1116 => 0.39782638036405
1117 => 0.39293603517533
1118 => 0.39727980630246
1119 => 0.39524749964265
1120 => 0.40053499698041
1121 => 0.40136414407712
1122 => 0.40066188598397
1123 => 0.40092507035966
1124 => 0.38854927992621
1125 => 0.38790752990474
1126 => 0.37915722282549
1127 => 0.38272303763929
1128 => 0.37605691775884
1129 => 0.37817081304158
1130 => 0.37910259794027
1201 => 0.37861588638752
1202 => 0.38292464345875
1203 => 0.37926131972729
1204 => 0.36959320609378
1205 => 0.35992245838917
1206 => 0.35980105002936
1207 => 0.35725491286161
1208 => 0.35541452203761
1209 => 0.35576904660169
1210 => 0.35701843740685
1211 => 0.35534190517275
1212 => 0.35569967832724
1213 => 0.36164109652179
1214 => 0.36283260556845
1215 => 0.35878339227526
1216 => 0.3425252166044
1217 => 0.33853541951423
1218 => 0.34140320654153
1219 => 0.34003258905162
1220 => 0.27443283782013
1221 => 0.2898445263171
1222 => 0.28068742434369
1223 => 0.28490743823104
1224 => 0.27556040833625
1225 => 0.28002130092186
1226 => 0.27919753694701
1227 => 0.30397907598513
1228 => 0.30359214633894
1229 => 0.30377734908471
1230 => 0.29493713948597
1231 => 0.30901983341461
]
'min_raw' => 0.17978804446607
'max_raw' => 0.40136414407712
'avg_raw' => 0.2905760942716
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.179788'
'max' => '$0.401364'
'avg' => '$0.290576'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.027722951669359
'max_diff' => 0.060719564425426
'year' => 2035
]
10 => [
'items' => [
101 => 0.31595747484115
102 => 0.31467350205244
103 => 0.31499665034125
104 => 0.30944389209801
105 => 0.30383111192223
106 => 0.29760567490662
107 => 0.30917176739435
108 => 0.3078858153495
109 => 0.31083532666945
110 => 0.31833676440911
111 => 0.31944137961147
112 => 0.32092599364534
113 => 0.32039386519622
114 => 0.33307132371452
115 => 0.33153599983939
116 => 0.33523568863563
117 => 0.3276251480857
118 => 0.31901309905431
119 => 0.32064996802608
120 => 0.32049232438123
121 => 0.31848533984733
122 => 0.31667352394847
123 => 0.31365736095282
124 => 0.32320094697917
125 => 0.32281349481514
126 => 0.329085894987
127 => 0.32797718732978
128 => 0.32057296624807
129 => 0.32083740945251
130 => 0.32261591708945
131 => 0.32877135232755
201 => 0.3305987046002
202 => 0.32975220222011
203 => 0.33175581056528
204 => 0.33333938090761
205 => 0.3319546826192
206 => 0.3515590903128
207 => 0.34341797342388
208 => 0.34738589715001
209 => 0.34833222357833
210 => 0.34590822833129
211 => 0.34643390610361
212 => 0.34723016469006
213 => 0.35206489090354
214 => 0.36475261142703
215 => 0.37037191647865
216 => 0.38727787297806
217 => 0.36990531141861
218 => 0.36887449551048
219 => 0.371919768787
220 => 0.3818453549294
221 => 0.38988911023491
222 => 0.39255768792513
223 => 0.3929103845203
224 => 0.39791681367084
225 => 0.40078640549555
226 => 0.3973089014898
227 => 0.39436208095478
228 => 0.38380693557117
229 => 0.38502872239003
301 => 0.39344562198428
302 => 0.40533498841408
303 => 0.41553730168859
304 => 0.41196480716637
305 => 0.43922041858281
306 => 0.44192270112556
307 => 0.44154933305341
308 => 0.44770553483936
309 => 0.43548672798294
310 => 0.43026295132359
311 => 0.39499921700229
312 => 0.40490688795754
313 => 0.41930826954812
314 => 0.4174021926922
315 => 0.40694352443109
316 => 0.41552936785086
317 => 0.41269061951214
318 => 0.41045158091761
319 => 0.42070905077814
320 => 0.40943054131285
321 => 0.41919575778859
322 => 0.40667176665022
323 => 0.41198112602043
324 => 0.40896727685708
325 => 0.41091760662923
326 => 0.39951601863305
327 => 0.40566803875788
328 => 0.39926007436989
329 => 0.39925703616043
330 => 0.3991155799914
331 => 0.40665452167661
401 => 0.40690036629431
402 => 0.40132907699823
403 => 0.40052616717077
404 => 0.40349494562497
405 => 0.40001928357941
406 => 0.40164552397497
407 => 0.40006854074431
408 => 0.39971352860274
409 => 0.39688473145838
410 => 0.39566600786919
411 => 0.39614390079115
412 => 0.39451260587782
413 => 0.39352969168602
414 => 0.39892005361906
415 => 0.39604020068482
416 => 0.39847867485398
417 => 0.39569972577824
418 => 0.38606667755126
419 => 0.38052660964829
420 => 0.36233067453156
421 => 0.36749101915868
422 => 0.37091233298522
423 => 0.36978158878596
424 => 0.37221086486589
425 => 0.37236000268743
426 => 0.37157022027031
427 => 0.37065575340867
428 => 0.37021064151362
429 => 0.37352814090602
430 => 0.37545406096521
501 => 0.37125570759899
502 => 0.37027209214649
503 => 0.37451685919718
504 => 0.37710616464598
505 => 0.39622414127489
506 => 0.39480781981597
507 => 0.39836250873881
508 => 0.39796230531724
509 => 0.40168818561473
510 => 0.40777842522663
511 => 0.39539526523786
512 => 0.39754455363446
513 => 0.39701759775393
514 => 0.40277076388228
515 => 0.40278872463895
516 => 0.39933941415305
517 => 0.40120934132613
518 => 0.40016559927688
519 => 0.40205178223007
520 => 0.39478890397939
521 => 0.40363430570946
522 => 0.40864907850531
523 => 0.40871870863044
524 => 0.41109567113598
525 => 0.41351080270598
526 => 0.41814643744098
527 => 0.41338151736922
528 => 0.40480989001573
529 => 0.40542873382447
530 => 0.40040319184335
531 => 0.400487672112
601 => 0.40003670981715
602 => 0.40139008161083
603 => 0.39508589298141
604 => 0.3965654734521
605 => 0.39449405212872
606 => 0.39754005076904
607 => 0.39426305975367
608 => 0.39701734363985
609 => 0.39820600125917
610 => 0.40259217346443
611 => 0.39361521855266
612 => 0.37531059980114
613 => 0.37915845258476
614 => 0.37346717607547
615 => 0.37399392538462
616 => 0.37505804282064
617 => 0.37160889005295
618 => 0.37226687970573
619 => 0.37224337168513
620 => 0.37204079226366
621 => 0.37114353441618
622 => 0.36984233302029
623 => 0.37502591889288
624 => 0.37590671114143
625 => 0.37786460320289
626 => 0.38368996192691
627 => 0.38310787121896
628 => 0.38405728531434
629 => 0.38198471967487
630 => 0.37409006576038
701 => 0.37451878345026
702 => 0.36917266698769
703 => 0.37772789098523
704 => 0.37570190101917
705 => 0.37439573210821
706 => 0.37403933181928
707 => 0.37987913048084
708 => 0.381626489768
709 => 0.38053765272116
710 => 0.37830441617164
711 => 0.38259289054384
712 => 0.38374030536963
713 => 0.3839971692341
714 => 0.39159552358824
715 => 0.38442183283531
716 => 0.38614861149989
717 => 0.39962044571028
718 => 0.3874033510675
719 => 0.3938750185735
720 => 0.39355826412601
721 => 0.3968689502328
722 => 0.39328669123357
723 => 0.39333109762717
724 => 0.39627076260469
725 => 0.39214253331513
726 => 0.39112032568762
727 => 0.3897081531714
728 => 0.39279158019727
729 => 0.39463995524786
730 => 0.4095365006738
731 => 0.41916034838395
801 => 0.41874255177376
802 => 0.42256043070842
803 => 0.4208404412806
804 => 0.41528614170786
805 => 0.42476665380385
806 => 0.4217666230952
807 => 0.42201394198179
808 => 0.42200473676047
809 => 0.42399949491449
810 => 0.42258602594547
811 => 0.41979993351792
812 => 0.42164947169282
813 => 0.42714193885026
814 => 0.44419072543644
815 => 0.45373145227644
816 => 0.44361636170098
817 => 0.45059361573348
818 => 0.44640974956379
819 => 0.44564941662152
820 => 0.45003164776895
821 => 0.45442154943189
822 => 0.45414193167403
823 => 0.45095508849068
824 => 0.44915492163956
825 => 0.46278638813639
826 => 0.47282982044529
827 => 0.47214492569385
828 => 0.47516782838701
829 => 0.48404316418899
830 => 0.48485461366539
831 => 0.48475238968232
901 => 0.48274112748906
902 => 0.4914800481941
903 => 0.49877020959293
904 => 0.48227557840227
905 => 0.48855651802909
906 => 0.49137623418681
907 => 0.49551641407843
908 => 0.5025015915303
909 => 0.51008934696985
910 => 0.51116233878451
911 => 0.51040099974462
912 => 0.50539667106243
913 => 0.51369928360513
914 => 0.51856275931242
915 => 0.52145884779745
916 => 0.52880284633231
917 => 0.49139364779386
918 => 0.46491355771053
919 => 0.46077830926688
920 => 0.46918749958765
921 => 0.4714049360132
922 => 0.47051109017049
923 => 0.44070534131725
924 => 0.46062138816761
925 => 0.48204937998982
926 => 0.48287251642396
927 => 0.49359981716833
928 => 0.49709306601762
929 => 0.50572994917629
930 => 0.50518970978315
1001 => 0.50729265338946
1002 => 0.50680922307227
1003 => 0.5228072304134
1004 => 0.54045540823774
1005 => 0.53984430795745
1006 => 0.53730717359144
1007 => 0.54107525077066
1008 => 0.55929006157906
1009 => 0.55761313368622
1010 => 0.55924212629373
1011 => 0.58071841477858
1012 => 0.6086406447753
1013 => 0.59566796559577
1014 => 0.62381494662747
1015 => 0.64153197917958
1016 => 0.67217175500309
1017 => 0.66833550416591
1018 => 0.68026334404894
1019 => 0.66146781451765
1020 => 0.61830947951055
1021 => 0.61147950779221
1022 => 0.62515328413476
1023 => 0.65876892900534
1024 => 0.62409460784986
1025 => 0.63110917785968
1026 => 0.62908898122496
1027 => 0.62898133353158
1028 => 0.63308980815314
1029 => 0.62713025143094
1030 => 0.60284994524091
1031 => 0.61397746648306
1101 => 0.60968059614401
1102 => 0.61444829413809
1103 => 0.64017759386393
1104 => 0.62880205714524
1105 => 0.61681885328566
1106 => 0.63184845021138
1107 => 0.65098629182767
1108 => 0.64978868009333
1109 => 0.64746481276584
1110 => 0.66056433121716
1111 => 0.68220089789994
1112 => 0.68804917493154
1113 => 0.6923662534735
1114 => 0.69296150566679
1115 => 0.69909297320493
1116 => 0.66612252692361
1117 => 0.71844747191317
1118 => 0.72748254446543
1119 => 0.725784325291
1120 => 0.73582642817886
1121 => 0.73287178676569
1122 => 0.72859097492704
1123 => 0.74450984402085
1124 => 0.72626014519129
1125 => 0.70035699527593
1126 => 0.68614601492615
1127 => 0.70486018021783
1128 => 0.71628826792709
1129 => 0.72384150694002
1130 => 0.72612711250154
1201 => 0.66868192881361
1202 => 0.63772216086176
1203 => 0.65756701716443
1204 => 0.68177911147251
1205 => 0.66598802751723
1206 => 0.6666070081118
1207 => 0.64409307221543
1208 => 0.68377109523298
1209 => 0.67799034102402
1210 => 0.70798090408606
1211 => 0.700823415522
1212 => 0.72527955547214
1213 => 0.71883943420876
1214 => 0.7455720175107
1215 => 0.75623636874564
1216 => 0.77414347424284
1217 => 0.78731601394161
1218 => 0.79505118120327
1219 => 0.79458679077476
1220 => 0.82523737711046
1221 => 0.80716379719822
1222 => 0.78445912121272
1223 => 0.78404846525648
1224 => 0.79580753867711
1225 => 0.82045133062252
1226 => 0.82684110732137
1227 => 0.83041212078666
1228 => 0.8249429893567
1229 => 0.8053254137071
1230 => 0.79685464400498
1231 => 0.80407198521301
]
'min_raw' => 0.29760567490662
'max_raw' => 0.83041212078666
'avg_raw' => 0.56400889784664
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.2976056'
'max' => '$0.830412'
'avg' => '$0.5640088'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.11781763044055
'max_diff' => 0.42904797670954
'year' => 2036
]
11 => [
'items' => [
101 => 0.79524579710878
102 => 0.81048227396768
103 => 0.83140521103078
104 => 0.82708470726551
105 => 0.84152750358668
106 => 0.85647427835261
107 => 0.87784883756956
108 => 0.8834369388465
109 => 0.89267385776083
110 => 0.90218168149347
111 => 0.90523533823336
112 => 0.91106571644385
113 => 0.91103498747273
114 => 0.92860522463976
115 => 0.94798574033994
116 => 0.95530143635679
117 => 0.9721234759577
118 => 0.94331632265572
119 => 0.965166879348
120 => 0.98487662843935
121 => 0.96137785303507
122 => 0.99376544041741
123 => 0.99502297704362
124 => 1.0140102870831
125 => 0.99476301082962
126 => 0.98333403962981
127 => 1.0163290512457
128 => 1.0322942980335
129 => 1.0274854357715
130 => 0.99088975651509
131 => 0.96958950152532
201 => 0.91384262570475
202 => 0.97987720820004
203 => 1.0120407270783
204 => 0.99080646077133
205 => 1.0015157895731
206 => 1.0599424150038
207 => 1.082187491124
208 => 1.0775606707958
209 => 1.0783425272673
210 => 1.0903455665651
211 => 1.1435736530058
212 => 1.1116781497931
213 => 1.1360610668975
214 => 1.1489936782105
215 => 1.1610062083403
216 => 1.1315072309407
217 => 1.0931294947698
218 => 1.0809736547367
219 => 0.98869513146875
220 => 0.98389163358734
221 => 0.98119528466562
222 => 0.96419518612031
223 => 0.95083776538258
224 => 0.94021544848271
225 => 0.9123393168451
226 => 0.92174669296037
227 => 0.87731795733086
228 => 0.90574188792891
301 => 0.83483255309488
302 => 0.89388795422692
303 => 0.86174678431035
304 => 0.88332871547533
305 => 0.88325341815064
306 => 0.8435142403184
307 => 0.82059351188024
308 => 0.83519949212913
309 => 0.85085826238009
310 => 0.85339884517089
311 => 0.87370084953698
312 => 0.87936670256543
313 => 0.86219890337583
314 => 0.83336311474149
315 => 0.84006101076694
316 => 0.82045777923107
317 => 0.78610386999187
318 => 0.81077744736917
319 => 0.8192020915064
320 => 0.82292289429879
321 => 0.78913977013518
322 => 0.77852437905566
323 => 0.77287283391668
324 => 0.82900213764228
325 => 0.8320770276051
326 => 0.81634545580965
327 => 0.88745365205393
328 => 0.87135967723409
329 => 0.88934059022742
330 => 0.83945324690665
331 => 0.84135901060372
401 => 0.81774154279553
402 => 0.83096574664835
403 => 0.82161930560116
404 => 0.82989736166117
405 => 0.83485919433183
406 => 0.85847278674595
407 => 0.89415758352125
408 => 0.8549457034832
409 => 0.83786052582615
410 => 0.8484600739539
411 => 0.8766880674102
412 => 0.91945492246089
413 => 0.89413608350771
414 => 0.90537215429337
415 => 0.90782673590204
416 => 0.88915756141233
417 => 0.92014328155376
418 => 0.9367487807051
419 => 0.95378258681048
420 => 0.96857256337538
421 => 0.94697891007057
422 => 0.97008721443533
423 => 0.95146600028217
424 => 0.93476084616106
425 => 0.93478618098427
426 => 0.92430679378074
427 => 0.90400166058612
428 => 0.9002570824884
429 => 0.91973685064083
430 => 0.93535777995817
501 => 0.93664439451595
502 => 0.94529294361835
503 => 0.95041106589002
504 => 1.0005756219021
505 => 1.0207522213132
506 => 1.0454237851496
507 => 1.055034749677
508 => 1.083960307183
509 => 1.0606005702779
510 => 1.0555465442589
511 => 0.98538260322707
512 => 0.99687194464037
513 => 1.0152674887996
514 => 0.98568593897475
515 => 1.0044486236045
516 => 1.0081527749984
517 => 0.98468076923122
518 => 0.99721818167695
519 => 0.96392253130482
520 => 0.89488333771285
521 => 0.92022014191213
522 => 0.93887655807888
523 => 0.9122515518894
524 => 0.959975844954
525 => 0.93209629817504
526 => 0.92325982030037
527 => 0.88878556967943
528 => 0.90505608893692
529 => 0.92706219920406
530 => 0.91346498154388
531 => 0.94168124982126
601 => 0.98164301070592
602 => 1.0101221412763
603 => 1.0123084152948
604 => 0.99399824229154
605 => 1.0233404113832
606 => 1.0235541370514
607 => 0.99045605044979
608 => 0.97018365669722
609 => 0.96557772618315
610 => 0.97708424365316
611 => 0.99105528008205
612 => 1.0130837105831
613 => 1.0263950297815
614 => 1.0611038904728
615 => 1.0704951129949
616 => 1.0808132193058
617 => 1.0946013913234
618 => 1.1111576270453
619 => 1.0749335258329
620 => 1.0763727769042
621 => 1.042641395412
622 => 1.0065945767182
623 => 1.0339496188074
624 => 1.0697126974503
625 => 1.061508607695
626 => 1.0605854800032
627 => 1.0621379247265
628 => 1.0559523089715
629 => 1.0279749981611
630 => 1.0139249678194
701 => 1.0320530915052
702 => 1.0416873824543
703 => 1.0566293275179
704 => 1.0547874174026
705 => 1.0932762632386
706 => 1.1082318648881
707 => 1.1044055819999
708 => 1.105109710136
709 => 1.1321861125499
710 => 1.162300640721
711 => 1.1905068703152
712 => 1.2191994585443
713 => 1.1846094235434
714 => 1.1670467369867
715 => 1.1851669465009
716 => 1.1755521082723
717 => 1.2308018206802
718 => 1.2346271908938
719 => 1.2898729081187
720 => 1.3423076723028
721 => 1.3093743363851
722 => 1.3404289888054
723 => 1.374017127321
724 => 1.4388140959965
725 => 1.4169927565314
726 => 1.4002779524852
727 => 1.3844825434268
728 => 1.4173502822267
729 => 1.4596341031178
730 => 1.4687416331484
731 => 1.4834993111421
801 => 1.4679834172147
802 => 1.4866706024306
803 => 1.552644577808
804 => 1.5348178272926
805 => 1.5095009757676
806 => 1.5615810931201
807 => 1.5804286851337
808 => 1.7127109564452
809 => 1.8797227882842
810 => 1.810578793244
811 => 1.7676588842599
812 => 1.777746080945
813 => 1.8387331482253
814 => 1.858320258603
815 => 1.8050757405146
816 => 1.8238826044358
817 => 1.9275102736916
818 => 1.9831031934736
819 => 1.9076005412844
820 => 1.6992917183728
821 => 1.5072214702855
822 => 1.5581671491142
823 => 1.5523914901635
824 => 1.6637264929638
825 => 1.5343926651885
826 => 1.5365703151532
827 => 1.6502076079056
828 => 1.6198911264356
829 => 1.5707823090959
830 => 1.5075800189991
831 => 1.390744740251
901 => 1.2872604756711
902 => 1.4902169495152
903 => 1.4814650973107
904 => 1.4687911183666
905 => 1.4969956870388
906 => 1.6339490665045
907 => 1.6307918478329
908 => 1.6107072334719
909 => 1.6259412364471
910 => 1.568111714719
911 => 1.5830156992221
912 => 1.5071910453769
913 => 1.5414669556322
914 => 1.5706769436298
915 => 1.5765412811816
916 => 1.5897539331262
917 => 1.4768532688861
918 => 1.5275423525406
919 => 1.5573174402627
920 => 1.422792510707
921 => 1.554658314936
922 => 1.474887919503
923 => 1.4478126491819
924 => 1.4842659337736
925 => 1.4700600533162
926 => 1.4578466714963
927 => 1.4510313945882
928 => 1.4777986635902
929 => 1.4765499384974
930 => 1.4327534911071
1001 => 1.3756228108581
1002 => 1.3947977424003
1003 => 1.3878313100051
1004 => 1.3625840603171
1005 => 1.3795976582423
1006 => 1.3046783833648
1007 => 1.1757836649031
1008 => 1.2609354640709
1009 => 1.2576572124302
1010 => 1.2560041692962
1011 => 1.3199933929479
1012 => 1.3138423055763
1013 => 1.3026780217654
1014 => 1.3623790194898
1015 => 1.3405873522286
1016 => 1.407744135965
1017 => 1.4519779371621
1018 => 1.440758814365
1019 => 1.4823609181914
1020 => 1.3952394940951
1021 => 1.4241777364751
1022 => 1.4301418681229
1023 => 1.361642318445
1024 => 1.3148486995421
1025 => 1.3117280986476
1026 => 1.2305944120279
1027 => 1.2739353725319
1028 => 1.3120736242046
1029 => 1.2938083613013
1030 => 1.2880261247253
1031 => 1.3175663173779
1101 => 1.3198618433417
1102 => 1.2675236080992
1103 => 1.2784063845425
1104 => 1.3237893714219
1105 => 1.2772628497139
1106 => 1.1868694180992
1107 => 1.1644505972718
1108 => 1.1614595133126
1109 => 1.1006578931696
1110 => 1.1659487300793
1111 => 1.1374475300826
1112 => 1.2274824793754
1113 => 1.1760549992065
1114 => 1.1738380633232
1115 => 1.1704868395818
1116 => 1.1181523734414
1117 => 1.1296102954973
1118 => 1.167698173502
1119 => 1.1812883574647
1120 => 1.1798707899363
1121 => 1.167511522121
1122 => 1.1731695316372
1123 => 1.1549431116044
1124 => 1.1485069833408
1125 => 1.128192792144
1126 => 1.0983365430234
1127 => 1.1024882375826
1128 => 1.0433351957621
1129 => 1.0111054790887
1130 => 1.0021847182944
1201 => 0.99025550413589
1202 => 1.003532154776
1203 => 1.0431676226268
1204 => 0.99535883926513
1205 => 0.91339403358779
1206 => 0.91832025807023
1207 => 0.9293880218731
1208 => 0.90876331724703
1209 => 0.88924376521872
1210 => 0.90621443203603
1211 => 0.87148486334759
1212 => 0.93358492432662
1213 => 0.93190529171055
1214 => 0.95505235420152
1215 => 0.96952668740266
1216 => 0.93616803549505
1217 => 0.92777842475167
1218 => 0.93255752831764
1219 => 0.85356959195679
1220 => 0.94859735464392
1221 => 0.94941915868176
1222 => 0.94238237357814
1223 => 0.99298172355602
1224 => 1.0997621343424
1225 => 1.0595870485725
1226 => 1.044030041064
1227 => 1.0144561584182
1228 => 1.0538616011203
1229 => 1.0508358779414
1230 => 1.0371524102552
1231 => 1.0288766063036
]
'min_raw' => 0.77287283391668
'max_raw' => 1.9831031934736
'avg_raw' => 1.3779880136951
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.772872'
'max' => '$1.98'
'avg' => '$1.37'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.47526715901006
'max_diff' => 1.152691072687
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.024259595114639
]
1 => [
'year' => 2028
'avg' => 0.041636507827503
]
2 => [
'year' => 2029
'avg' => 0.11374343513433
]
3 => [
'year' => 2030
'avg' => 0.087752890814327
]
4 => [
'year' => 2031
'avg' => 0.086184213875704
]
5 => [
'year' => 2032
'avg' => 0.15110805009442
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.024259595114639
'min' => '$0.024259'
'max_raw' => 0.15110805009442
'max' => '$0.151108'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.15110805009442
]
1 => [
'year' => 2033
'avg' => 0.3886654431004
]
2 => [
'year' => 2034
'avg' => 0.2463548362242
]
3 => [
'year' => 2035
'avg' => 0.2905760942716
]
4 => [
'year' => 2036
'avg' => 0.56400889784664
]
5 => [
'year' => 2037
'avg' => 1.3779880136951
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.15110805009442
'min' => '$0.151108'
'max_raw' => 1.3779880136951
'max' => '$1.37'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 1.3779880136951
]
]
]
]
'prediction_2025_max_price' => '$0.041479'
'last_price' => 0.0402196
'sma_50day_nextmonth' => '$0.03680072'
'sma_200day_nextmonth' => '$0.062641'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'augmenter'
'sma_200day_date_nextmonth' => '4 févr. 2026'
'sma_50day_date_nextmonth' => '4 févr. 2026'
'daily_sma3' => '$0.039867'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.039561'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.039137'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.03622'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.038151'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.051247'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.070602'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.039929'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.039644'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.038928'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.037971'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.040978'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.0509061'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.073075'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.060217'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.092641'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.226512'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.253334'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.0389014'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.038911'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.043527'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.058384'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.105528'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.195891'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.410837'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '56.34'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 88.13
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.039179'
'vwma_10_action' => 'BUY'
'hma_9' => '0.039986'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 72.77
'stochastic_fast_14_action' => 'NEUTRAL'
'cci_20' => 68.78
'cci_20_action' => 'NEUTRAL'
'adx_14' => 14.11
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.002923'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'NEUTRAL'
'williams_percent_r_14' => -27.23
'williams_percent_r_14_action' => 'NEUTRAL'
'ultimate_oscillator' => 62.9
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.009764'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 15
'buy_signals' => 19
'sell_pct' => 44.12
'buy_pct' => 55.88
'overall_action' => 'bullish'
'overall_action_label' => 'Haussier'
'overall_action_dir' => 1
'last_updated' => 1767707401
'last_updated_date' => '6 janvier 2026'
]
Prévision du prix de Boson Protocol pour 2026
La prévision du prix de Boson Protocol pour 2026 suggère que le prix moyen pourrait varier entre $0.013895 à la baisse et $0.041479 à la hausse. Sur le marché des cryptomonnaies, comparé au prix moyen d'aujourd'hui, Boson Protocol pourrait potentiellement gagner 3.13% d'ici 2026 si BOSON atteint l'objectif de prix prévu.
Prévision du prix de Boson Protocol de 2027 à 2032
La prévision du prix de BOSON pour 2027-2032 se situe actuellement dans une fourchette de prix comprise entre $0.024259 à la baisse et $0.151108 à la hausse. Compte tenu de la volatilité des prix sur le marché, si Boson Protocol atteint l'objectif de prix le plus élevé, il pourrait gagner 275.71% d'ici 2032 par rapport au prix actuel.
| Prévision du Prix de Boson Protocol | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2027 | $0.013377 | $0.024259 | $0.035141 |
| 2028 | $0.024141 | $0.041636 | $0.059131 |
| 2029 | $0.053032 | $0.113743 | $0.174454 |
| 2030 | $0.0451021 | $0.087752 | $0.1304036 |
| 2031 | $0.053324 | $0.086184 | $0.119043 |
| 2032 | $0.081396 | $0.151108 | $0.220819 |
Prévision du prix de Boson Protocol de 2032 à 2037
La prévision du prix de Boson Protocol pour 2032-2037 est actuellement estimée entre $0.151108 à la baisse et $1.37 à la hausse. Par rapport au prix actuel, Boson Protocol pourrait potentiellement gagner 3326.16% d'ici 2037 s'il atteint l'objectif de prix le plus élevé. Veuillez noter que ces informations sont à titre général seulement et ne doivent pas être considérées comme un conseil en investissement à long terme.
| Prévision du Prix de Boson Protocol | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2032 | $0.081396 | $0.151108 | $0.220819 |
| 2033 | $0.189146 | $0.388665 | $0.588183 |
| 2034 | $0.152065 | $0.246354 | $0.340644 |
| 2035 | $0.179788 | $0.290576 | $0.401364 |
| 2036 | $0.2976056 | $0.5640088 | $0.830412 |
| 2037 | $0.772872 | $1.37 | $1.98 |
Boson Protocol Histogramme des prix potentiels
Prévision du prix de Boson Protocol basée sur l'analyse technique
Au 6 janvier 2026, le sentiment global de prévision du prix pour Boson Protocol est Haussier, avec 19 indicateurs techniques montrant des signaux haussiers et 15 indiquant des signaux baissiers. La prévision du prix de BOSON a été mise à jour pour la dernière fois le 6 janvier 2026.
Moyennes Mobiles Simples sur 50 et 200 jours de Boson Protocol et Indice de Force Relative sur 14 jours - RSI (14)
Selon nos indicateurs techniques, le SMA sur 200 jours de Boson Protocol devrait augmenter au cours du prochain mois, atteignant $0.062641 d'ici le 4 févr. 2026. Le SMA à court terme sur 50 jours pour Boson Protocol devrait atteindre $0.03680072 d'ici le 4 févr. 2026.
Le Relative Strength Index (RSI), un oscillateur de momentum, est un outil couramment utilisé pour identifier si une cryptomonnaie est survendue (en dessous de 30) ou surachetée (au-dessus de 70). Actuellement, le RSI est à 56.34, ce qui suggère que le marché de BOSON est dans un état NEUTRAL.
Moyennes Mobiles et Oscillateurs Populaires de BOSON pour le Samedi 19 Octobre 2024
Les moyennes mobiles (MA) sont des indicateurs largement utilisés sur les marchés financiers, conçus pour lisser les mouvements de prix sur une période donnée. En tant qu'indicateurs retardés, ils sont basés sur des données historiques de prix. Le tableau ci-dessous met en évidence deux types : la moyenne mobile simple (SMA) et la moyenne mobile exponentielle (EMA).
Moyenne Mobile Simple Quotidienne (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 3 | $0.039867 | BUY |
| SMA 5 | $0.039561 | BUY |
| SMA 10 | $0.039137 | BUY |
| SMA 21 | $0.03622 | BUY |
| SMA 50 | $0.038151 | BUY |
| SMA 100 | $0.051247 | SELL |
| SMA 200 | $0.070602 | SELL |
Moyenne Mobile Exponentielle Quotidienne (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 3 | $0.039929 | BUY |
| EMA 5 | $0.039644 | BUY |
| EMA 10 | $0.038928 | BUY |
| EMA 21 | $0.037971 | BUY |
| EMA 50 | $0.040978 | SELL |
| EMA 100 | $0.0509061 | SELL |
| EMA 200 | $0.073075 | SELL |
Moyenne Mobile Simple Hebdomadaire (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 21 | $0.060217 | SELL |
| SMA 50 | $0.092641 | SELL |
| SMA 100 | $0.226512 | SELL |
| SMA 200 | $0.253334 | SELL |
Moyenne Mobile Exponentielle Hebdomadaire (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 21 | $0.058384 | SELL |
| EMA 50 | $0.105528 | SELL |
| EMA 100 | $0.195891 | SELL |
| EMA 200 | $0.410837 | SELL |
Oscillateurs de Boson Protocol
Un oscillateur est un outil d'analyse technique qui établit des limites hautes et basses entre deux extrêmes, créant un indicateur de tendance qui fluctue à l'intérieur de ces limites. Les traders utilisent cet indicateur pour identifier les conditions de surachat ou de survente à court terme.
| Période | Valeur | Action |
|---|---|---|
| RSI (14) | 56.34 | NEUTRAL |
| Stoch RSI (14) | 88.13 | SELL |
| Stochastique Rapide (14) | 72.77 | NEUTRAL |
| Indice de Canal des Matières Premières (20) | 68.78 | NEUTRAL |
| Indice Directionnel Moyen (14) | 14.11 | NEUTRAL |
| Oscillateur Impressionnant (5, 34) | 0.002923 | BUY |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | NEUTRAL |
| Plage de Pourcentage de Williams (14) | -27.23 | NEUTRAL |
| Oscillateur Ultime (7, 14, 28) | 62.9 | NEUTRAL |
| VWMA (10) | 0.039179 | BUY |
| Moyenne Mobile de Hull (9) | 0.039986 | BUY |
| Nuage Ichimoku B/L (9, 26, 52, 26) | -0.009764 | SELL |
Prévision du cours de Boson Protocol basée sur les flux monétaires mondiaux
Définitions des flux monétaires mondiaux utilisés pour la prédiction du cours de Boson Protocol
M0 : le total de toutes les devises physiques, plus les comptes à la banque centrale qui peuvent être échangés contre des devises physiques.
M1 : M0 plus le montant des comptes à vue, y compris les comptes de "chèques" et les comptes "courants".
M2 : M1 plus la plupart des comptes d'épargne, comptes du marché monétaire et comptes de certificats de dépôt (CD) de moins de 100 000 $.
Prédictions du cours de Boson Protocol par des sociétés Internet ou des niches technologiques
| Comparaison | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Action Facebook | $0.056515 | $0.079413 | $0.111589 | $0.1568012 | $0.220331 | $0.3096031 |
| Action Amazon.com | $0.08392 | $0.1751052 | $0.365367 | $0.762361 | $1.59 | $3.31 |
| Action Apple | $0.057048 | $0.080918 | $0.114777 | $0.1628027 | $0.230923 | $0.327546 |
| Action Netflix | $0.06346 | $0.10013 | $0.157989 | $0.249283 | $0.393329 | $0.620613 |
| Action Google | $0.052084 | $0.067448 | $0.087345 | $0.113112 | $0.14648 | $0.189691 |
| Action Tesla | $0.091174 | $0.206686 | $0.468542 | $1.06 | $2.40 | $5.45 |
| Action Kodak | $0.03016 | $0.022617 | $0.01696 | $0.012718 | $0.009537 | $0.007152 |
| Action Nokia | $0.026643 | $0.01765 | $0.011692 | $0.007745 | $0.005131 | $0.003399 |
Ce calcul montre la valeur potentielle des cryptomonnaies si l'on suppose que leur capitalisation se comportera comme celle de certaines sociétés Internet ou niches technologiques. En extrapolant les données, vous pourrez obtenir une potentielle image des cours futurs pour 2024, 2025, 2026, 2027, 2028, 2029 et 2030.
Aperçu des prévisions relatives à Boson Protocol
Vous vous posez peut-être des questions telles que : "Devrais-je investir dans Boson Protocol maintenant ?", "Devrais-je acheter BOSON aujourd'hui ?", " Boson Protocol sera-t-il un bon ou un mauvais investissement à court ou à long terme ?".
Nous mettons régulièrement à jour les prévisions de Boson Protocol/Boson avec de nouvelles valeurs. Regardez nos prévisions similaires. Nous faisons une prévision des cours futurs pour une grande quantité de devises numériques comme Boson Protocol en utilisant des méthodes d'analyse technique.
Si vous souhaitez trouver des cryptomonnaies ayant un bon rendement, vous devriez consulter un maximum d'informations disponibles à propos de Boson Protocol afin de prendre une décision responsable concernant cet investissement.
Le cours de Boson Protocol est de $0.04021 USD actuellement, mais ce cours peut subir une hausse ou une baisse, ce qui pourrait causer la perte de votre investissement, car les cryptomonnaies sont des actifs à haut risque.
Prévision à court terme de Boson Protocol
basée sur l'historique des cours sur 4 heures
Prévision à long terme de Boson Protocol
basée sur l'historique des cours sur 1 mois
Prévision du cours de Boson Protocol basée sur le modèle de croissance du Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si Boson Protocol présente 1 % de la précédente croissance annuelle moyenne du Bitcoin | $0.041265 | $0.042337 | $0.043438 | $0.044567 |
| Si Boson Protocol présente 2 % de la précédente croissance annuelle moyenne du Bitcoin | $0.04231 | $0.04451 | $0.046823 | $0.049258 |
| Si Boson Protocol présente 5 % de la précédente croissance annuelle moyenne du Bitcoin | $0.045446 | $0.051353 | $0.058027 | $0.065569 |
| Si Boson Protocol présente 10 % de la précédente croissance annuelle moyenne du Bitcoin | $0.050673 | $0.063845 | $0.080441 | $0.10135 |
| Si Boson Protocol présente 20 % de la précédente croissance annuelle moyenne du Bitcoin | $0.061128 | $0.0929067 | $0.1412056 | $0.214613 |
| Si Boson Protocol présente 50 % de la précédente croissance annuelle moyenne du Bitcoin | $0.092491 | $0.212698 | $0.489135 | $1.12 |
| Si Boson Protocol présente 100 % de la précédente croissance annuelle moyenne du Bitcoin | $0.144763 | $0.521049 | $1.87 | $6.75 |
Boîte à questions
Est-ce que BOSON est un bon investissement ?
La décision d'acquérir Boson Protocol dépend entièrement de votre tolérance individuelle au risque. Comme vous pouvez le discerner, la valeur de Boson Protocol a connu une hausse de 2.1921% au cours des 24 heures précédentes, et Boson Protocol a enregistré une déclin de sur une période de 30 jours précédents. Par conséquent, la détermination de si investir ou non dans Boson Protocol dépendra de la mesure dans laquelle cet investissement s'aligne avec vos aspirations de trading.
Est-ce que Boson Protocol peut monter ?
Il semble que la valeur moyenne de Boson Protocol pourrait potentiellement s'envoler jusqu'à $0.041479 pour la fin de cette année. En regardant les perspectives de Boson Protocol sur une période de cinq ans plus longue, la monnaie numérique pourrait potentiellement croître jusqu'à $0.1304036. Cependant, compte tenu de l'imprévisibilité du marché, il est essentiel de mener des recherches approfondies avant d'investir des fonds dans un projet, un réseau ou un actif particulier.
Quel sera le prix de Boson Protocol la semaine prochaine ?
Basé sur notre nouveau pronostic expérimental de Boson Protocol, le prix de Boson Protocol va augmenter de 0.86% durant la prochaine semaine et atteindre $0.040563 d'ici 13 janvier 2026.
Quel sera le prix de Boson Protocol le mois prochain ?
Basé sur notre nouveau pronostic expérimental de Boson Protocol, le prix de Boson Protocol va diminuer de -11.62% durant le prochain mois et atteindre $0.035546 d'ici 5 février 2026.
Jusqu'où le prix de Boson Protocol peut-il monter cette année en 2026 ?
Selon notre prédiction la plus récente sur la valeur de Boson Protocol en 2026, BOSON devrait fluctuer dans la fourchette de $0.013895 et $0.041479. Cependant, il est crucial de garder à l'esprit que le marché des cryptomonnaies est exceptionnellement instable, et cette prévision de prix de Boson Protocol ne prend pas en compte les fluctuations de prix soudaines et extrêmes.
Où sera Boson Protocol dans 5 ans ?
L'avenir de Boson Protocol semble suivre une tendance haussière, avec un prix maximum de $0.1304036 prévue après une période de cinq ans. Selon la prévision de Boson Protocol pour 2030, la valeur de Boson Protocol pourrait potentiellement atteindre son point le plus élevé d'environ $0.1304036, tandis que son point le plus bas devrait être autour de $0.0451021.
Combien vaudra Boson Protocol en 2026 ?
Basé sur notre nouvelle simulation expérimentale de prédiction de prix de Boson Protocol, il est attendu que la valeur de BOSON en 2026 augmente de 3.13% jusqu'à $0.041479 si le meilleur scénario se produit. Le prix sera entre $0.041479 et $0.013895 durant 2026.
Combien vaudra Boson Protocol en 2027 ?
Selon notre dernière simulation expérimentale pour la prédiction de prix de Boson Protocol, le valeur de BOSON pourrait diminuer de -12.62% jusqu'à $0.035141 en 2027, en supposant les conditions les plus favorables. Il est prévu que le prix fluctue entre $0.035141 et $0.013377 tout au long de l'année.
Combien vaudra Boson Protocol en 2028 ?
Notre nouveau modèle expérimental de prédiction de prix de Boson Protocol suggère que la valeur de BOSON en 2028 pourrait augmenter de 47.02%, atteignant $0.059131 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.059131 et $0.024141 durant l'année.
Combien vaudra Boson Protocol en 2029 ?
Basé sur notre modèle de prévision expérimental, la valeur de Boson Protocol pourrait connaître un 333.75% croissance en 2029, atteignant potentiellement $0.174454 sous des conditions optimales. Le range de prix prévu pour 2029 se situe entre $0.174454 et $0.053032.
Combien vaudra Boson Protocol en 2030 ?
En utilisant notre nouvelle simulation expérimentale pour les prédictions de prix de Boson Protocol, il est prévu que la valeur de BOSON en 2030 augmente de 224.23%, atteignant $0.1304036 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.1304036 et $0.0451021 au cours de 2030.
Combien vaudra Boson Protocol en 2031 ?
Notre simulation expérimentale indique que le prix de Boson Protocol pourrait augmenter de 195.98% en 2031, atteignant potentiellement $0.119043 dans des conditions idéales. Il est probable que le prix fluctue entre $0.119043 et $0.053324 durant l'année.
Combien vaudra Boson Protocol en 2032 ?
Basé sur les résultats de notre dernière prédiction expérimentale de prix de Boson Protocol, BOSON pourrait connaître une 449.04% hausse en valeur, atteignant $0.220819 si le scénario le plus positif se réalise en 2032. Il est prévu que le prix reste dans une fourchette de $0.220819 et $0.081396 tout au long de l'année.
Combien vaudra Boson Protocol en 2033 ?
Selon notre prédiction expérimentale de prix de Boson Protocol, la valeur de BOSON est anticipée à augmenter de 1362.43% en 2033, avec le prix potentiel le plus élevé étant $0.588183. Tout au long de l'année, le prix de BOSON pourrait osciller entre $0.588183 et $0.189146.
Combien vaudra Boson Protocol en 2034 ?
Les résultats de notre nouvelle simulation de prédiction de prix de Boson Protocol suggèrent que BOSON pourrait augmenter de 746.96% en 2034, atteignant potentiellement $0.340644 dans les meilleures circonstances. La fourchette de prix prévue pour l'année est entre $0.340644 et $0.152065.
Combien vaudra Boson Protocol en 2035 ?
Basé sur notre prédiction expérimentale pour le prix de Boson Protocol, BOSON pourrait augmenter de 897.93%, avec la valeur potentiellement atteignant $0.401364 en 2035. La fourchette de prix attendue pour l'année se situe entre $0.401364 et $0.179788.
Combien vaudra Boson Protocol en 2036 ?
Notre récente simulation de prédiction de prix de Boson Protocol suggère que la valeur de BOSON pourrait augmenter de 1964.7% en 2036, pouvant atteindre $0.830412 si les conditions sont optimales. La fourchette de prix attendue pour 2036 est entre $0.830412 et $0.2976056.
Combien vaudra Boson Protocol en 2037 ?
Selon la simulation expérimentale, la valeur de Boson Protocol pourrait augmenter de 4830.69% en 2037, avec un maximum de $1.98 sous des conditions favorables. Il est prévu que le prix chute entre $1.98 et $0.772872 au cours de l'année.
Prévisions liées
Prévision du cours de Ultra
Prévision du cours de TOMI
Prévision du cours de Alchemix
Prévision du cours de Shardus
Prévision du cours de Agoric
Prévision du cours de Orchid Protocol
Prévision du cours de Polytrade
Prévision du cours de Agoras: Tau Net
Prévision du cours de Commune AI
Prévision du cours de Krypton DAO
Prévision du cours de DIMO
Prévision du cours de Clover Finance
Prévision du cours de Alethea Artificial Liquid Intelligence Token
Prévision du cours de Cobak Token
Prévision du cours de ELYSIA
Prévision du cours de Snek
Prévision du cours de Gods Unchained
Prévision du cours de TRAC (Ordinals)
Prévision du cours de Numbers Protocol
Prévision du cours de DexTools
Prévision du cours de H2O Dao
Prévision du cours de Bitrise Token
Prévision du cours de Stratos
Prévision du cours de Linear
Prévision du cours de sETH2
Comment lire et prédire les mouvements de prix de Boson Protocol ?
Les traders de Boson Protocol utilisent des indicateurs et des modèles graphiques pour prédire la direction du marché. Ils identifient également des niveaux clés de support et de résistance pour évaluer quand une tendance baissière pourrait ralentir ou une tendance haussière pourrait s'arrêter.
Indicateurs de prédiction du prix de Boson Protocol
Les moyennes mobiles sont des outils populaires pour la prédiction du prix de Boson Protocol. Une moyenne mobile simple (SMA) calcule le prix de clôture moyen de BOSON sur une période spécifique, comme une SMA de 12 jours. Une moyenne mobile exponentielle (EMA) donne plus de poids aux prix récents, réagissant plus rapidement aux changements de prix.
Les moyennes mobiles couramment utilisées sur le marché des cryptomonnaies incluent les moyennes sur 50 jours, 100 jours et 200 jours, qui aident à identifier les niveaux clés de résistance et de support. Un mouvement de prix de BOSON au-dessus de ces moyennes est considéré comme haussier, tandis qu'une chute en dessous indique une faiblesse.
Les traders utilisent également le RSI et les niveaux de retracement de Fibonacci pour évaluer la direction future de BOSON.
Comment lire les graphiques de Boson Protocol et prédire les mouvements de prix ?
La plupart des traders préfèrent les graphiques en chandeliers aux simples graphiques linéaires parce qu'ils fournissent des informations plus détaillées. Les chandeliers peuvent représenter l'action des prix de Boson Protocol dans différentes périodes, comme 5 minutes pour les tendances à court terme et hebdomadaire pour les tendances à long terme. Les options populaires incluent les graphiques de 1 heure, 4 heures et 1 jour.
Par exemple, un graphique en chandeliers de 1 heure montre les prix d'ouverture, de clôture, les plus hauts et les plus bas de BOSON au sein de chaque heure. La couleur du chandelier est cruciale : le vert indique que le prix a clôturé plus haut qu'il n'a ouvert, tandis que le rouge signifie le contraire. Certains graphiques utilisent des chandeliers creux et pleins pour transmettre la même information.
Qu'est-ce qui affecte le prix de Boson Protocol ?
L'action du prix de Boson Protocol est déterminée par l'offre et la demande, influencée par des facteurs tels que les réductions de récompenses de bloc, les hard forks et les mises à jour de protocole. Les événements du monde réel, tels que les réglementations, l'adoption par les entreprises et les gouvernements et les piratages d'échanges de cryptomonnaies, impactent également le prix de BOSON. La capitalisation boursière de Boson Protocol peut changer rapidement.
Les traders surveillent souvent l'activité des « baleines » de BOSON, de grands détenteurs de Boson Protocol, car leurs actions peuvent influencer significativement les mouvements de prix sur le marché relativement petit de Boson Protocol.
Modèles de prédiction de prix haussiers et baissiers
Les traders identifient souvent des modèles de chandeliers pour obtenir un avantage dans les prédictions de prix des cryptomonnaies. Certaines formations indiquent des tendances haussières, tandis que d'autres suggèrent des mouvements baissiers.
Modèles de chandeliers haussiers couramment suivis :
- Marteau
- Englobante haussière
- Ligne pénétrante
- Étoile du matin
- Trois soldats blancs
Modèles de chandeliers baissiers courants :
- Harami baissier
- Nuage sombre
- Étoile du soir
- Étoile filante
- Pendu


