Predicción del precio de Boson - Pronóstico de BOSON
Predicción de precio de Boson hasta $0.041331 para el año 2026
| Año | Precio min. | Precio max. |
|---|---|---|
| 2026 | $0.013846 | $0.041331 |
| 2027 | $0.013329 | $0.035016 |
| 2028 | $0.024056 | $0.05892 |
| 2029 | $0.052844 | $0.173833 |
| 2030 | $0.044941 | $0.129939 |
| 2031 | $0.053135 | $0.11862 |
| 2032 | $0.0811065 | $0.220034 |
| 2033 | $0.188474 | $0.586091 |
| 2034 | $0.151524 | $0.339432 |
| 2035 | $0.179148 | $0.399936 |
Calculadora de ganancias de inversión
Si abres una posición corta de $10,000.00 en Boson hoy y la cierras el Apr 06, 2026, nuestra previsión indica que podrías obtener una ganancia de alrededor de $3,954.56, equivalente a un ROI del 39.55% en los próximos 90 días.
Predicción del precio a largo plazo de Boson Protocol para 2027, 2028, 2029, 2030, 2031, 2032 y 2037
[
'name' => 'Boson'
'name_with_ticker' => 'Boson <small>BOSON</small>'
'name_lang' => 'Boson Protocol'
'name_lang_with_ticker' => 'Boson Protocol <small>BOSON</small>'
'name_with_lang' => 'Boson Protocol/Boson'
'name_with_lang_with_ticker' => 'Boson Protocol/Boson <small>BOSON</small>'
'image' => '/uploads/coins/boson-protocol.png?1717209480'
'price_for_sd' => 0.04007
'ticker' => 'BOSON'
'marketcap' => '$5.8M'
'low24h' => '$0.03894'
'high24h' => '$0.04052'
'volume24h' => '$95.18K'
'current_supply' => '144.7M'
'max_supply' => '200M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.04007'
'change_24h_pct' => '2.1062%'
'ath_price' => '$5.36'
'ath_days' => 1733
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '9 abr. 2021'
'ath_pct' => '-99.25%'
'fdv' => '$8.02M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$1.97'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.040419'
'next_week_prediction_price_date' => '13 de enero de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.03542'
'next_month_prediction_price_date' => '5 de febrero de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.013846'
'current_year_max_price_prediction' => '$0.041331'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.044941'
'grand_prediction_max_price' => '$0.129939'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.04083594897375
107 => 0.040988415583769
108 => 0.041331930641279
109 => 0.038396632085639
110 => 0.039714494961283
111 => 0.040488615933672
112 => 0.036991109217658
113 => 0.040419481471238
114 => 0.038345535068235
115 => 0.037641606509427
116 => 0.038589353578327
117 => 0.038220015623862
118 => 0.037902480538866
119 => 0.037725290505493
120 => 0.038421211353866
121 => 0.038388745814484
122 => 0.037250084234129
123 => 0.03576474662034
124 => 0.036263274678072
125 => 0.036082154760973
126 => 0.035425752816469
127 => 0.035868088472791
128 => 0.033920266103299
129 => 0.030569138955584
130 => 0.032782996197165
131 => 0.032697765101577
201 => 0.03265478771826
202 => 0.034318440248788
203 => 0.034158518444972
204 => 0.033868258805087
205 => 0.035420421970558
206 => 0.03485386153562
207 => 0.036599867297671
208 => 0.03774989961713
209 => 0.037458214221267
210 => 0.038539825176307
211 => 0.036274759757637
212 => 0.037027123631068
213 => 0.037182184782651
214 => 0.035401268518032
215 => 0.034184683629863
216 => 0.034103551287905
217 => 0.031994160747544
218 => 0.033120980147799
219 => 0.034112534589069
220 => 0.033637656959433
221 => 0.033487324888457
222 => 0.034255338836029
223 => 0.03431502009735
224 => 0.032954281014494
225 => 0.033237221758823
226 => 0.034417131697657
227 => 0.033207491055701
228 => 0.030857356882059
301 => 0.030274491113848
302 => 0.030196726076022
303 => 0.028615947884968
304 => 0.030313440991561
305 => 0.029572439760546
306 => 0.031913253770765
307 => 0.030576193362165
308 => 0.030518555360299
309 => 0.030431427066822
310 => 0.029070785976658
311 => 0.029368679902152
312 => 0.030358924681019
313 => 0.030712255174024
314 => 0.030675399908852
315 => 0.030354071941376
316 => 0.030501174239421
317 => 0.030027306483579
318 => 0.029859973916287
319 => 0.029331826305464
320 => 0.028555595222056
321 => 0.028663534915106
322 => 0.027125618026962
323 => 0.026287679282875
324 => 0.026055748882367
325 => 0.025745601857768
326 => 0.026090780814065
327 => 0.027121261301647
328 => 0.025878283204992
329 => 0.023747284443051
330 => 0.023875361099689
331 => 0.024163111320854
401 => 0.023626890687372
402 => 0.023119402859368
403 => 0.023560622352028
404 => 0.022657690084134
405 => 0.024272226371619
406 => 0.024228557689728
407 => 0.024830356975448
408 => 0.025206674418973
409 => 0.024339384545867
410 => 0.024121263488181
411 => 0.024245515155688
412 => 0.02219191186581
413 => 0.024662533774357
414 => 0.024683899815217
415 => 0.024500950801675
416 => 0.025816480696083
417 => 0.028592659097347
418 => 0.027548149111274
419 => 0.027143683274185
420 => 0.026374793422216
421 => 0.027399293497802
422 => 0.027320627876688
423 => 0.026964872104959
424 => 0.026749709904191
425 => 0.027146152856339
426 => 0.02670058623518
427 => 0.026620550226669
428 => 0.026135619095122
429 => 0.025962520744121
430 => 0.025834365616283
501 => 0.025693279412797
502 => 0.026004480421197
503 => 0.025299257994261
504 => 0.024448828881185
505 => 0.024378124902203
506 => 0.024573344804529
507 => 0.024486974530162
508 => 0.024377711394558
509 => 0.024169098312646
510 => 0.024107207267556
511 => 0.024308323138832
512 => 0.024081275045945
513 => 0.02441629687495
514 => 0.024325189475064
515 => 0.023816270945386
516 => 0.023181970031635
517 => 0.023176323423012
518 => 0.023039664331606
519 => 0.022865608431869
520 => 0.022817190062422
521 => 0.023523464077018
522 => 0.024985430150229
523 => 0.024698411228174
524 => 0.024905811814241
525 => 0.025926017425784
526 => 0.02625031011104
527 => 0.026020134844338
528 => 0.025705056742685
529 => 0.025718918580109
530 => 0.026795635834087
531 => 0.026862789368489
601 => 0.027032464685373
602 => 0.027250545417807
603 => 0.02605727493608
604 => 0.025662715647729
605 => 0.025475751567592
606 => 0.024899974564977
607 => 0.025520900698908
608 => 0.025159113631374
609 => 0.025207931067191
610 => 0.025176138648073
611 => 0.025193499458705
612 => 0.024271775075822
613 => 0.024607602996537
614 => 0.024049223943452
615 => 0.02330161707236
616 => 0.023299110831984
617 => 0.023482086554549
618 => 0.023373245434927
619 => 0.023080356780583
620 => 0.023121960231537
621 => 0.02275747022397
622 => 0.02316621591776
623 => 0.023177937281695
624 => 0.023020547925058
625 => 0.023650277062377
626 => 0.023908277603746
627 => 0.023804680557601
628 => 0.02390100895882
629 => 0.024710338160198
630 => 0.024842294133532
701 => 0.024900900260364
702 => 0.024822375814232
703 => 0.023915802010915
704 => 0.023956012414141
705 => 0.023660975155286
706 => 0.023411699761814
707 => 0.023421669470276
708 => 0.023549829426053
709 => 0.024109511469416
710 => 0.025287329334614
711 => 0.025332026661625
712 => 0.025386201125875
713 => 0.025165846353866
714 => 0.025099385246117
715 => 0.025187064602306
716 => 0.025629391065753
717 => 0.026767174820203
718 => 0.026365006051358
719 => 0.026038036582158
720 => 0.026324876956982
721 => 0.026280720129607
722 => 0.025907992068701
723 => 0.025897530833441
724 => 0.025182146516193
725 => 0.024917685222619
726 => 0.024696681571124
727 => 0.024455351353138
728 => 0.024312282710453
729 => 0.024532101169152
730 => 0.024582376251472
731 => 0.024101739349758
801 => 0.024036230316069
802 => 0.024428728785276
803 => 0.024256004842796
804 => 0.024433655700985
805 => 0.024474872223945
806 => 0.024468235414452
807 => 0.024287891781284
808 => 0.02440283743514
809 => 0.024130956696821
810 => 0.023835327229065
811 => 0.023646734047003
812 => 0.023482161482399
813 => 0.023573475906255
814 => 0.023247956658563
815 => 0.023143816499818
816 => 0.024363896433973
817 => 0.025265182599403
818 => 0.025252077541609
819 => 0.025172303872636
820 => 0.02505377638204
821 => 0.025620720041554
822 => 0.025423208206976
823 => 0.025566914569297
824 => 0.025603493869845
825 => 0.025714208395623
826 => 0.025753779322354
827 => 0.025634168497998
828 => 0.025232739962229
829 => 0.024232418217772
830 => 0.023766765745411
831 => 0.023613092673476
901 => 0.023618678397774
902 => 0.023464599185861
903 => 0.023509982419115
904 => 0.023448816749412
905 => 0.023332983768559
906 => 0.023566323546096
907 => 0.023593213781747
908 => 0.023538749489467
909 => 0.023551577801935
910 => 0.023100636723862
911 => 0.023134920794635
912 => 0.02294402273196
913 => 0.022908231646519
914 => 0.022425657967473
915 => 0.021570708744868
916 => 0.02204443360612
917 => 0.021472240589524
918 => 0.021255542423999
919 => 0.022281357836112
920 => 0.022178394420426
921 => 0.022002165809894
922 => 0.021741486965655
923 => 0.021644798646606
924 => 0.021057351027868
925 => 0.021022641488642
926 => 0.021313796390908
927 => 0.021179438421541
928 => 0.020990748947207
929 => 0.020307334798313
930 => 0.019538951024308
1001 => 0.019562143700557
1002 => 0.01980655228278
1003 => 0.02051720319858
1004 => 0.020239539591391
1005 => 0.020038091458553
1006 => 0.020000366278781
1007 => 0.020472575886641
1008 => 0.021140851412733
1009 => 0.021454391337754
1010 => 0.021143682794408
1011 => 0.020786757549547
1012 => 0.02080848193537
1013 => 0.020953004541549
1014 => 0.020968191824019
1015 => 0.020735870182123
1016 => 0.020801267363485
1017 => 0.020701923064953
1018 => 0.020092247288235
1019 => 0.020081220186737
1020 => 0.01993159591878
1021 => 0.019927065355411
1022 => 0.019672517150094
1023 => 0.019636904096562
1024 => 0.019131483184934
1025 => 0.019464152759523
1026 => 0.019241015474825
1027 => 0.018904694954021
1028 => 0.018846713169468
1029 => 0.018844970167009
1030 => 0.019190296141982
1031 => 0.019460117424447
1101 => 0.019244897043426
1102 => 0.019195895534539
1103 => 0.019719103451048
1104 => 0.019652520474526
1105 => 0.019594860046272
1106 => 0.021081014669082
1107 => 0.019904607319037
1108 => 0.019391626567433
1109 => 0.01875671547492
1110 => 0.018963445728142
1111 => 0.019007006829995
1112 => 0.01748016010383
1113 => 0.016860718577181
1114 => 0.016648149588396
1115 => 0.016525813130067
1116 => 0.016581563390332
1117 => 0.016023993363104
1118 => 0.016398689642758
1119 => 0.0159158811294
1120 => 0.01583493671094
1121 => 0.016698258141323
1122 => 0.01681838427491
1123 => 0.016305888868763
1124 => 0.016634993884979
1125 => 0.016515655831197
1126 => 0.015924157495617
1127 => 0.015901566609965
1128 => 0.015604773537342
1129 => 0.015140349849151
1130 => 0.014928095761497
1201 => 0.014817551989772
1202 => 0.014863164504441
1203 => 0.014840101421258
1204 => 0.014689599203022
1205 => 0.014848728032236
1206 => 0.014442219630165
1207 => 0.014280344709
1208 => 0.014207229562579
1209 => 0.01384642995799
1210 => 0.014420622577203
1211 => 0.014533745756676
1212 => 0.014647091823758
1213 => 0.015633691953061
1214 => 0.015584404198704
1215 => 0.016029941493981
1216 => 0.016012628733977
1217 => 0.015885554280139
1218 => 0.015349448062126
1219 => 0.015563130445452
1220 => 0.014905449283192
1221 => 0.015398228727929
1222 => 0.015173344768313
1223 => 0.01532219523497
1224 => 0.015054548674615
1225 => 0.015202675331971
1226 => 0.014560571459122
1227 => 0.013960983897302
1228 => 0.014202275435231
1229 => 0.014464586931993
1230 => 0.015033345092702
1231 => 0.014694597424337
]
'min_raw' => 0.01384642995799
'max_raw' => 0.041331930641279
'avg_raw' => 0.027589180299634
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.013846'
'max' => '$0.041331'
'avg' => '$0.027589'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.02623009004201
'max_diff' => 0.0012554106412788
'year' => 2026
]
1 => [
'items' => [
101 => 0.014816423895348
102 => 0.014408325610965
103 => 0.01356630228277
104 => 0.013571068043364
105 => 0.013441541098796
106 => 0.013329610907446
107 => 0.014733506668981
108 => 0.014558910038727
109 => 0.014280713159058
110 => 0.014653090737599
111 => 0.014751553279792
112 => 0.014754356369947
113 => 0.015026033438794
114 => 0.015171027539138
115 => 0.015196583377764
116 => 0.015624073115567
117 => 0.015767362036952
118 => 0.016357548825132
119 => 0.015158725802741
120 => 0.015134036831503
121 => 0.01465833085378
122 => 0.014356630602095
123 => 0.014678988528129
124 => 0.01496455364435
125 => 0.014667204157951
126 => 0.014706031723485
127 => 0.014306864332339
128 => 0.014449547892102
129 => 0.014572446195321
130 => 0.014504588975912
131 => 0.01440300343413
201 => 0.014941140561362
202 => 0.014910776755667
203 => 0.015411902420264
204 => 0.015802565711658
205 => 0.016502704169252
206 => 0.01577207318971
207 => 0.01574544609282
208 => 0.016005730236037
209 => 0.015767322188806
210 => 0.01591798784509
211 => 0.016478429602743
212 => 0.01649027085395
213 => 0.016291914639648
214 => 0.016279844645981
215 => 0.016317941126717
216 => 0.016541073404309
217 => 0.016463104130356
218 => 0.016553332148115
219 => 0.016666163665943
220 => 0.017132882663251
221 => 0.017245407033433
222 => 0.016972031151089
223 => 0.016996713932404
224 => 0.016894463848072
225 => 0.016795691547797
226 => 0.017017717254279
227 => 0.017423473596803
228 => 0.017420949407655
301 => 0.017515076992344
302 => 0.01757371769781
303 => 0.017321988862329
304 => 0.017158122646756
305 => 0.017220959380885
306 => 0.017321436687163
307 => 0.017188375944658
308 => 0.016367063402188
309 => 0.016616197161925
310 => 0.016574729122286
311 => 0.016515673591155
312 => 0.016766179513065
313 => 0.016742017605784
314 => 0.016018274676576
315 => 0.016064606350726
316 => 0.016021092259136
317 => 0.016161695191207
318 => 0.015759729169055
319 => 0.015883371210186
320 => 0.015960918339312
321 => 0.016006594194112
322 => 0.016171606701877
323 => 0.016152244388658
324 => 0.016170403113301
325 => 0.016415073100629
326 => 0.017652529935934
327 => 0.017719881981185
328 => 0.017388215877516
329 => 0.017520709944107
330 => 0.017266350309519
331 => 0.01743710363628
401 => 0.017553928725785
402 => 0.017026018610483
403 => 0.016994759199564
404 => 0.016739349732283
405 => 0.016876592312868
406 => 0.016658229499066
407 => 0.016711808095566
408 => 0.016561997668854
409 => 0.016831626609977
410 => 0.017133113662254
411 => 0.017209281197744
412 => 0.017008917204057
413 => 0.016863840467996
414 => 0.016609133510722
415 => 0.017032716857184
416 => 0.017156585536158
417 => 0.017032066227746
418 => 0.017003212383186
419 => 0.016948534399883
420 => 0.017014812575823
421 => 0.01715591092073
422 => 0.017089371546949
423 => 0.017133321975604
424 => 0.016965828263056
425 => 0.017322072195048
426 => 0.017887873293821
427 => 0.017889692436872
428 => 0.017823152704419
429 => 0.017795926079518
430 => 0.017864199882983
501 => 0.017901235620625
502 => 0.018122020581757
503 => 0.018358931641512
504 => 0.019464492184997
505 => 0.019154055208359
506 => 0.02013497429263
507 => 0.020910753931887
508 => 0.021143376324967
509 => 0.020929374669062
510 => 0.020197286564354
511 => 0.020161366829326
512 => 0.021255415537386
513 => 0.020946296666754
514 => 0.0209095279607
515 => 0.020518371049999
516 => 0.020749593229949
517 => 0.020699021547369
518 => 0.020619191672366
519 => 0.021060347484634
520 => 0.02188615178295
521 => 0.021757442438714
522 => 0.021661366883896
523 => 0.021240391769859
524 => 0.021493912816705
525 => 0.021403638827799
526 => 0.021791513173429
527 => 0.021561745003546
528 => 0.020943954787282
529 => 0.021042339915485
530 => 0.021027469201281
531 => 0.02133350744586
601 => 0.021241642361173
602 => 0.021009531069114
603 => 0.021883329273635
604 => 0.021826589678554
605 => 0.021907033451901
606 => 0.021942447288735
607 => 0.022474312857775
608 => 0.022692201163611
609 => 0.022741665623708
610 => 0.022948642662165
611 => 0.022736515846439
612 => 0.023585174353201
613 => 0.024149482739601
614 => 0.024804955969448
615 => 0.025762778532851
616 => 0.026122928677044
617 => 0.026057870777074
618 => 0.026784080913168
619 => 0.028089064384984
620 => 0.026321645247634
621 => 0.028182741890893
622 => 0.027593540181031
623 => 0.026196553526235
624 => 0.026106604055057
625 => 0.027052659637033
626 => 0.029150919863381
627 => 0.028625329474952
628 => 0.029151779540969
629 => 0.028537647574918
630 => 0.028507150746493
701 => 0.029121952522146
702 => 0.030558470382061
703 => 0.029876034593882
704 => 0.028897595551408
705 => 0.029620059714173
706 => 0.028994194395484
707 => 0.027583944663805
708 => 0.028624927565887
709 => 0.027928851944751
710 => 0.028132003816414
711 => 0.029595051238608
712 => 0.029419013502026
713 => 0.029646822633818
714 => 0.029244745479008
715 => 0.028869142014667
716 => 0.028168050255796
717 => 0.027960491549401
718 => 0.028017853308668
719 => 0.027960463123761
720 => 0.027568208728039
721 => 0.027483501428629
722 => 0.027342318885169
723 => 0.027386077258889
724 => 0.027120612772773
725 => 0.027621599105836
726 => 0.027714586583929
727 => 0.02807916265834
728 => 0.02811701415582
729 => 0.029132353333637
730 => 0.028573121576577
731 => 0.02894830252096
801 => 0.028914742805954
802 => 0.026226830463078
803 => 0.026597201068275
804 => 0.027173381501263
805 => 0.026913812997196
806 => 0.026546843862121
807 => 0.026250496609908
808 => 0.025801500219743
809 => 0.026433454016688
810 => 0.027264406058878
811 => 0.028138088470889
812 => 0.029187760642981
813 => 0.028953486033701
814 => 0.028118465579769
815 => 0.028155923987349
816 => 0.028387477123672
817 => 0.028087594773313
818 => 0.027999153613793
819 => 0.028375326666461
820 => 0.028377917163533
821 => 0.028032866277452
822 => 0.027649405361219
823 => 0.027647798645978
824 => 0.027579565479728
825 => 0.028549786103613
826 => 0.029083309346381
827 => 0.029144476926349
828 => 0.029079192280892
829 => 0.029104317749873
830 => 0.028793872330289
831 => 0.029503458499729
901 => 0.030154644939606
902 => 0.02998011306315
903 => 0.029718464969174
904 => 0.029510049659642
905 => 0.029931017039758
906 => 0.029912272024986
907 => 0.030148957394136
908 => 0.030138219978631
909 => 0.030058631591172
910 => 0.029980115905502
911 => 0.030291421724175
912 => 0.030201770647815
913 => 0.030111980318572
914 => 0.029931892067063
915 => 0.029956369051393
916 => 0.029694766134649
917 => 0.029573736655228
918 => 0.027753743675068
919 => 0.027267382080783
920 => 0.027420401339148
921 => 0.027470779252146
922 => 0.027259114063023
923 => 0.027562587571899
924 => 0.027515291546998
925 => 0.027699292712636
926 => 0.027584336772748
927 => 0.027589054604619
928 => 0.027927115512641
929 => 0.028025256032453
930 => 0.027975340971985
1001 => 0.028010299769349
1002 => 0.028815910499405
1003 => 0.028701378415572
1004 => 0.028640535528744
1005 => 0.028657389424203
1006 => 0.028863240238221
1007 => 0.028920867227109
1008 => 0.028676697625816
1009 => 0.028791849421313
1010 => 0.029282151151601
1011 => 0.029453729008527
1012 => 0.030001323165792
1013 => 0.029768695435076
1014 => 0.030195693702698
1015 => 0.03150814080293
1016 => 0.032556614361027
1017 => 0.031592394746998
1018 => 0.033517782914141
1019 => 0.035016973782791
1020 => 0.034959432340219
1021 => 0.03469801373536
1022 => 0.032991224789454
1023 => 0.031420612154642
1024 => 0.032734496315398
1025 => 0.032737845676326
1026 => 0.032624981861691
1027 => 0.031923994402215
1028 => 0.03260058901758
1029 => 0.032654294641117
1030 => 0.032624233773414
1031 => 0.032086788331785
1101 => 0.031266208478939
1102 => 0.031426547817995
1103 => 0.031689186926202
1104 => 0.031191956302109
1105 => 0.031033060989445
1106 => 0.031328477606757
1107 => 0.032280371500232
1108 => 0.032100421473617
1109 => 0.032095722251187
1110 => 0.032865624775736
1111 => 0.032314540723522
1112 => 0.031428570210538
1113 => 0.031204850971494
1114 => 0.030410798388226
1115 => 0.030959253335807
1116 => 0.030978991252975
1117 => 0.030678608083259
1118 => 0.031452944649254
1119 => 0.03144580900148
1120 => 0.032180926326105
1121 => 0.033586194553329
1122 => 0.033170587589489
1123 => 0.032687281908452
1124 => 0.032739830636594
1125 => 0.033316160482995
1126 => 0.03296769830153
1127 => 0.03309300773155
1128 => 0.033315970812165
1129 => 0.033450489974562
1130 => 0.032720475399257
1201 => 0.03255027408112
1202 => 0.032202101916757
1203 => 0.032111270298016
1204 => 0.032394849261039
1205 => 0.032320136223275
1206 => 0.030977332357466
1207 => 0.030837001882199
1208 => 0.03084130561753
1209 => 0.03048843796512
1210 => 0.029950230097255
1211 => 0.031364608239283
1212 => 0.031251013880268
1213 => 0.031125614499422
1214 => 0.031140975208057
1215 => 0.031754908821788
1216 => 0.031398796321433
1217 => 0.032345579769317
1218 => 0.032150949555348
1219 => 0.031951327810797
1220 => 0.031923734005073
1221 => 0.031846896664348
1222 => 0.031583392833087
1223 => 0.031265196122713
1224 => 0.031055095092797
1225 => 0.02864668365699
1226 => 0.029093670810391
1227 => 0.029607888786217
1228 => 0.029785394770874
1229 => 0.029481758501079
1230 => 0.031595382243703
1231 => 0.031981561668865
]
'min_raw' => 0.013329610907446
'max_raw' => 0.035016973782791
'avg_raw' => 0.024173292345118
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.013329'
'max' => '$0.035016'
'avg' => '$0.024173'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00051681905054366
'max_diff' => -0.0063149568584883
'year' => 2027
]
2 => [
'items' => [
101 => 0.030811799000188
102 => 0.030592984165973
103 => 0.031609727707805
104 => 0.030996507060237
105 => 0.031272640280289
106 => 0.030675791295333
107 => 0.031888542353997
108 => 0.031879303222844
109 => 0.031407515669799
110 => 0.031806267278971
111 => 0.031736974374082
112 => 0.031204327388655
113 => 0.031905428213501
114 => 0.031905775950763
115 => 0.031451690688503
116 => 0.030921418514228
117 => 0.030826618373938
118 => 0.030755199202836
119 => 0.031255075542273
120 => 0.031703263105139
121 => 0.032537229044514
122 => 0.032746907896215
123 => 0.033565298413515
124 => 0.033077986707174
125 => 0.033294005674852
126 => 0.033528524822015
127 => 0.033640961925321
128 => 0.033457751699192
129 => 0.034729049035534
130 => 0.034836385482266
131 => 0.034872374464398
201 => 0.034443700155457
202 => 0.034824463274268
203 => 0.034646316820525
204 => 0.035109804402653
205 => 0.035182485173637
206 => 0.035120927146307
207 => 0.035143997170206
208 => 0.034059169165855
209 => 0.034002915110906
210 => 0.033235887080068
211 => 0.033548456672219
212 => 0.032964122801543
213 => 0.03314942109124
214 => 0.033231098811752
215 => 0.033188435005726
216 => 0.033566128887984
217 => 0.033245011930303
218 => 0.032397531482466
219 => 0.031549820139148
220 => 0.031539177813763
221 => 0.031315990380416
222 => 0.031154666744923
223 => 0.031185743400382
224 => 0.031295261587613
225 => 0.031148301348788
226 => 0.031179662766814
227 => 0.03170047126609
228 => 0.031804915696384
229 => 0.031449972713173
301 => 0.030024825417554
302 => 0.029675090696497
303 => 0.029926473078452
304 => 0.029806328490976
305 => 0.024056033380776
306 => 0.025406979921585
307 => 0.024604293360846
308 => 0.024974208257867
309 => 0.02415487313403
310 => 0.024545902800159
311 => 0.024473693898942
312 => 0.026645975959147
313 => 0.026612058762654
314 => 0.026628293129757
315 => 0.025853384489489
316 => 0.027087834994499
317 => 0.027695969702671
318 => 0.02758342015317
319 => 0.027611746449994
320 => 0.027125006821035
321 => 0.026633005833326
322 => 0.026087301019547
323 => 0.027101153112394
324 => 0.026988430066702
325 => 0.027246976177048
326 => 0.027904531730904
327 => 0.02800135928402
328 => 0.028131496497336
329 => 0.02808485157016
330 => 0.029196122975295
331 => 0.029061540675729
401 => 0.029385845295714
402 => 0.028718726087353
403 => 0.027963817379556
404 => 0.028107300845083
405 => 0.028093482233532
406 => 0.027917555448218
407 => 0.027758736612655
408 => 0.027494347998372
409 => 0.028330912696116
410 => 0.028296949697135
411 => 0.028846771172984
412 => 0.028749584886447
413 => 0.028100551079432
414 => 0.028123731448822
415 => 0.028279630573074
416 => 0.028819199222136
417 => 0.028979379933813
418 => 0.028905177846067
419 => 0.029080808683893
420 => 0.029219620137064
421 => 0.029098241265232
422 => 0.030816710124985
423 => 0.030103082043185
424 => 0.030450899404862
425 => 0.030533851796163
426 => 0.030321370990146
427 => 0.030367450468604
428 => 0.030437248322562
429 => 0.03086104722397
430 => 0.031973218168465
501 => 0.032465791108978
502 => 0.033947721103633
503 => 0.032424889783215
504 => 0.032334531274764
505 => 0.0326014716168
506 => 0.033471521401883
507 => 0.034176615033073
508 => 0.034410535268366
509 => 0.034441451689062
510 => 0.034880301601195
511 => 0.035131842186763
512 => 0.034827013678963
513 => 0.034568703435478
514 => 0.033643468205962
515 => 0.03375056670311
516 => 0.034488369143993
517 => 0.035530558548087
518 => 0.036424865478126
519 => 0.036111710360969
520 => 0.038500862851813
521 => 0.038737737562468
522 => 0.038705009136531
523 => 0.039244644979085
524 => 0.038173577726544
525 => 0.037715675725132
526 => 0.034624553042065
527 => 0.035493032430751
528 => 0.036755418226212
529 => 0.036588336732479
530 => 0.035671558424146
531 => 0.036424170019569
601 => 0.036175333089782
602 => 0.035979065079005
603 => 0.0368782068848
604 => 0.035889563534619
605 => 0.036745555752522
606 => 0.035647736878955
607 => 0.036113140827166
608 => 0.035848955037106
609 => 0.036019915620668
610 => 0.035020483542464
611 => 0.03555975283202
612 => 0.034998048167065
613 => 0.034997781845918
614 => 0.034985382184306
615 => 0.035646225231646
616 => 0.035667775299695
617 => 0.035179411289232
618 => 0.035109030405645
619 => 0.035369265420382
620 => 0.035064598373784
621 => 0.035207150167335
622 => 0.03506891612239
623 => 0.035037796727219
624 => 0.034789832091963
625 => 0.034683002109166
626 => 0.03472489289809
627 => 0.034581898039309
628 => 0.034495738464543
629 => 0.034968242876281
630 => 0.034715802829863
701 => 0.034929552818667
702 => 0.034685957729025
703 => 0.033841551018999
704 => 0.033355923790624
705 => 0.031760917791927
706 => 0.032213259514559
707 => 0.032513162544645
708 => 0.032414044594991
709 => 0.032626988304403
710 => 0.032640061318704
711 => 0.03257083114807
712 => 0.032490671479409
713 => 0.032451654185813
714 => 0.032742457126009
715 => 0.03291127802077
716 => 0.032543261825899
717 => 0.032457040780534
718 => 0.03282912547228
719 => 0.033056096919298
720 => 0.034731926559843
721 => 0.034607775687213
722 => 0.034919370014136
723 => 0.034884289274729
724 => 0.035210889770214
725 => 0.035744743548663
726 => 0.034659269549212
727 => 0.03484767030265
728 => 0.034801478788715
729 => 0.035305785625784
730 => 0.035307360016682
731 => 0.035005002875865
801 => 0.035168915587086
802 => 0.035077424008392
803 => 0.035242761656921
804 => 0.034606117576618
805 => 0.035381481344945
806 => 0.035821062638248
807 => 0.035827166224932
808 => 0.036035524269225
809 => 0.036247228109511
810 => 0.036653575195422
811 => 0.036235895309831
812 => 0.03548452985597
813 => 0.035538776014843
814 => 0.035098250724158
815 => 0.035105656033882
816 => 0.035066125910212
817 => 0.035184758787035
818 => 0.034632150821775
819 => 0.034761846806685
820 => 0.034580271668313
821 => 0.03484727559376
822 => 0.034560023507309
823 => 0.034801456513769
824 => 0.034905650995726
825 => 0.035290130877294
826 => 0.03450323551619
827 => 0.032898702606766
828 => 0.033235994877408
829 => 0.032737113115393
830 => 0.032783286521844
831 => 0.032876564151319
901 => 0.03257422083565
902 => 0.032631898412346
903 => 0.032629837763436
904 => 0.032612080204378
905 => 0.03253342903092
906 => 0.032419369268744
907 => 0.032873748255507
908 => 0.032950956099514
909 => 0.033122579572712
910 => 0.033633214615637
911 => 0.033582190133245
912 => 0.033665413181011
913 => 0.033483737735015
914 => 0.032791713924726
915 => 0.032829294147052
916 => 0.032360668172468
917 => 0.033110595752927
918 => 0.032933003003314
919 => 0.032818507802329
920 => 0.03278726672595
921 => 0.033299167534378
922 => 0.033452336279322
923 => 0.033356891796245
924 => 0.033161132376894
925 => 0.033537048333125
926 => 0.033637627584391
927 => 0.03366014356953
928 => 0.034326194569236
929 => 0.03369736842151
930 => 0.033848733125262
1001 => 0.035029637334975
1002 => 0.033958720170407
1003 => 0.034526008876781
1004 => 0.034498243046632
1005 => 0.03478844875281
1006 => 0.034474437708256
1007 => 0.034478330251492
1008 => 0.034736013258341
1009 => 0.034374143948597
1010 => 0.034284540018525
1011 => 0.034160752830886
1012 => 0.034431037626432
1013 => 0.034593061137432
1014 => 0.035898851642938
1015 => 0.036742451860776
1016 => 0.036705828950482
1017 => 0.037040493795351
1018 => 0.036889724217559
1019 => 0.036402849479864
1020 => 0.037233885289061
1021 => 0.036970910787016
1022 => 0.03699259008545
1023 => 0.03699178318088
1024 => 0.03716663823511
1025 => 0.037042737403957
1026 => 0.036798516147597
1027 => 0.036960641614898
1028 => 0.037442096291866
1029 => 0.038936546382011
1030 => 0.039772860451285
1031 => 0.038886199224933
1101 => 0.039497806266004
1102 => 0.039131059979233
1103 => 0.03906441126917
1104 => 0.039448545688367
1105 => 0.039833352484015
1106 => 0.039808841954698
1107 => 0.039529491981105
1108 => 0.039371694269266
1109 => 0.040566591409424
1110 => 0.041446971267752
1111 => 0.041386935263555
1112 => 0.041651914661324
1113 => 0.042429902368677
1114 => 0.042501031814578
1115 => 0.042492071139286
1116 => 0.04231576938603
1117 => 0.043081799318389
1118 => 0.043720834964977
1119 => 0.042274960623999
1120 => 0.042825530645159
1121 => 0.043072699265915
1122 => 0.043435616132812
1123 => 0.044047917719195
1124 => 0.044713039646982
1125 => 0.044807095180262
1126 => 0.044740358278428
1127 => 0.044301692487615
1128 => 0.045029476837555
1129 => 0.045455795841106
1130 => 0.045709659051584
1201 => 0.046353413914545
1202 => 0.043074225695171
1203 => 0.040753053287268
1204 => 0.040390568697638
1205 => 0.041127695364653
1206 => 0.04132206978827
1207 => 0.041243717701835
1208 => 0.038631027124978
1209 => 0.04037681342246
1210 => 0.04225513268867
1211 => 0.042327286581381
1212 => 0.043267612479849
1213 => 0.043573821137651
1214 => 0.044330906737251
1215 => 0.044283550826864
1216 => 0.044467889122503
1217 => 0.04442551294063
1218 => 0.045827854590707
1219 => 0.047374845680493
1220 => 0.047321278298184
1221 => 0.047098880025859
1222 => 0.047429179384802
1223 => 0.0490258399751
1224 => 0.04887884505391
1225 => 0.049021638098849
1226 => 0.050904190918658
1227 => 0.053351777374427
1228 => 0.05221462773206
1229 => 0.054681915250002
1230 => 0.056234941957254
1231 => 0.058920741061489
]
'min_raw' => 0.024056033380776
'max_raw' => 0.058920741061489
'avg_raw' => 0.041488387221133
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.024056'
'max' => '$0.05892'
'avg' => '$0.041488'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.01072642247333
'max_diff' => 0.023903767278698
'year' => 2028
]
3 => [
'items' => [
101 => 0.058584465785799
102 => 0.059630027667773
103 => 0.057982462859547
104 => 0.054199321032074
105 => 0.053600624356591
106 => 0.054799230262322
107 => 0.057745885923308
108 => 0.0547064295893
109 => 0.055321307647074
110 => 0.05514422272507
111 => 0.055134786622139
112 => 0.055494924291615
113 => 0.054972525818522
114 => 0.05284418046145
115 => 0.053819588596178
116 => 0.053442936672413
117 => 0.053860860063091
118 => 0.056116220237862
119 => 0.055119071743524
120 => 0.054068656806506
121 => 0.055386110243262
122 => 0.05706368119437
123 => 0.056958701819135
124 => 0.056754997953203
125 => 0.057903265979872
126 => 0.059799868348965
127 => 0.060312512348166
128 => 0.06069093566783
129 => 0.060743113850097
130 => 0.061280581556011
131 => 0.058390482242013
201 => 0.062977144076342
202 => 0.063769133871154
203 => 0.063620272614343
204 => 0.064500535939252
205 => 0.064241540138939
206 => 0.063866295859481
207 => 0.06526170046684
208 => 0.063661981687848
209 => 0.061391382280063
210 => 0.060145686537588
211 => 0.061786119178688
212 => 0.062787874149398
213 => 0.063449970461456
214 => 0.063650320405434
215 => 0.058614832424701
216 => 0.055900983684052
217 => 0.057640529612469
218 => 0.059762895702184
219 => 0.058378692391224
220 => 0.05843295054037
221 => 0.056459440381171
222 => 0.05993750756065
223 => 0.059430782427749
224 => 0.062059673313618
225 => 0.061432267405538
226 => 0.063576025870008
227 => 0.063011502421144
228 => 0.0653548076953
301 => 0.066289615611619
302 => 0.067859303594353
303 => 0.069013972464231
304 => 0.06969201610992
305 => 0.06965130891271
306 => 0.072338055636931
307 => 0.070753774961439
308 => 0.068763545046735
309 => 0.068727548066673
310 => 0.069758316341274
311 => 0.071918523867372
312 => 0.072478634249148
313 => 0.072791659540898
314 => 0.072312250410095
315 => 0.070592627283267
316 => 0.06985010273579
317 => 0.070482755163248
318 => 0.06970907560891
319 => 0.071044663575839
320 => 0.07287871112063
321 => 0.072499987555241
322 => 0.073766003652926
323 => 0.075076197125254
324 => 0.076949832635153
325 => 0.077439670337962
326 => 0.078249353433847
327 => 0.079082783306554
328 => 0.079350458520103
329 => 0.079861533557508
330 => 0.079858839939787
331 => 0.081398998964325
401 => 0.083097842063145
402 => 0.083739116004641
403 => 0.08521369007306
404 => 0.082688533656131
405 => 0.084603893805278
406 => 0.086331596604383
407 => 0.084271758102464
408 => 0.087110765596542
409 => 0.087220997824208
410 => 0.088885373588232
411 => 0.087198209895579
412 => 0.086196377480499
413 => 0.089088630124664
414 => 0.090488100074072
415 => 0.090066568336046
416 => 0.086858690996082
417 => 0.084991568791891
418 => 0.080104949842549
419 => 0.085893361074274
420 => 0.088712727334977
421 => 0.086851389518576
422 => 0.087790140045614
423 => 0.092911658530252
424 => 0.094861601175438
425 => 0.094456026736367
426 => 0.094524562140247
427 => 0.095576715797626
428 => 0.10024254454605
429 => 0.097446671806931
430 => 0.099584011756634
501 => 0.1007176491592
502 => 0.10177063475701
503 => 0.099184834928315
504 => 0.095820747344125
505 => 0.094755199591422
506 => 0.086666316155693
507 => 0.086245254644623
508 => 0.08600890005899
509 => 0.084518717829593
510 => 0.083347842792553
511 => 0.082416719491295
512 => 0.079973173891841
513 => 0.080797798800623
514 => 0.076903297122695
515 => 0.079394861283568
516 => 0.073179142569563
517 => 0.078355777815666
518 => 0.075538370603935
519 => 0.077430183772688
520 => 0.077423583414762
521 => 0.073940155571176
522 => 0.07193098708828
523 => 0.073211307443588
524 => 0.074583912496435
525 => 0.074806613048262
526 => 0.076586231327936
527 => 0.077082884537026
528 => 0.075578002126962
529 => 0.07305033561497
530 => 0.073637454895771
531 => 0.071919089134794
601 => 0.068907719234666
602 => 0.071070537670412
603 => 0.07180901897679
604 => 0.072135174392038
605 => 0.069173837953432
606 => 0.06824332175068
607 => 0.067747922732122
608 => 0.072668064267617
609 => 0.072937600727523
610 => 0.071558614090029
611 => 0.077791764452379
612 => 0.076381010555101
613 => 0.077957168301457
614 => 0.073584179974931
615 => 0.073751234018014
616 => 0.07168099126399
617 => 0.072840188872573
618 => 0.07202090536551
619 => 0.072746537161214
620 => 0.073181477867666
621 => 0.075251380915225
622 => 0.078379412783538
623 => 0.074942206425104
624 => 0.073444566393032
625 => 0.074373693845882
626 => 0.076848082691805
627 => 0.080596908455013
628 => 0.078377528151044
629 => 0.079362451442424
630 => 0.079577613365403
701 => 0.077941124495182
702 => 0.080657248133922
703 => 0.082112840857672
704 => 0.083605977799765
705 => 0.084902426769838
706 => 0.083009586070308
707 => 0.085035196946861
708 => 0.083402912148813
709 => 0.081938583942464
710 => 0.081940804723904
711 => 0.08102221024964
712 => 0.0792423177054
713 => 0.078914078211791
714 => 0.080621621509622
715 => 0.081990909529531
716 => 0.082103690649298
717 => 0.082861798853678
718 => 0.083310439479894
719 => 0.087707727514173
720 => 0.089476353137835
721 => 0.091638995072078
722 => 0.092481465985287
723 => 0.095017001391507
724 => 0.092969350624867
725 => 0.092526328501177
726 => 0.086375948972998
727 => 0.087383073276187
728 => 0.088995576458633
729 => 0.086402538556555
730 => 0.088047224270373
731 => 0.088371920069487
801 => 0.086314428120881
802 => 0.08741342346961
803 => 0.084494817652797
804 => 0.078443030414715
805 => 0.080663985503113
806 => 0.082299356013573
807 => 0.079965480655417
808 => 0.084148861901462
809 => 0.08170501694004
810 => 0.080930435412515
811 => 0.077908516715388
812 => 0.079334746016114
813 => 0.081263741566983
814 => 0.080071846586349
815 => 0.082545207635097
816 => 0.086048146501422
817 => 0.088544549341181
818 => 0.08873619215326
819 => 0.087131172373296
820 => 0.089703226813788
821 => 0.089721961422411
822 => 0.086820673506385
823 => 0.085043650812258
824 => 0.084639907517264
825 => 0.085648537426693
826 => 0.086873200340094
827 => 0.088804152421733
828 => 0.089970986323692
829 => 0.09301347029912
830 => 0.093836679228019
831 => 0.094741136259526
901 => 0.095949769777839
902 => 0.097401044203847
903 => 0.094225738380841
904 => 0.094351899200699
905 => 0.091395098383418
906 => 0.088235332662023
907 => 0.090633200974204
908 => 0.093768094817327
909 => 0.093048946705964
910 => 0.092968027852573
911 => 0.093104110918959
912 => 0.092561896728173
913 => 0.090109482038646
914 => 0.088877894734493
915 => 0.090466956568281
916 => 0.091311472211934
917 => 0.092621242325735
918 => 0.092459785513316
919 => 0.095833612667428
920 => 0.097144579880278
921 => 0.096809178367781
922 => 0.096870900317969
923 => 0.099244343836878
924 => 0.10188410116579
925 => 0.10435658225098
926 => 0.10687169620637
927 => 0.10383962816658
928 => 0.10230013100794
929 => 0.10388849910704
930 => 0.10304568863576
1001 => 0.10788872759757
1002 => 0.1082240491075
1003 => 0.11306673786247
1004 => 0.11766302614759
1005 => 0.11477617982677
1006 => 0.11749834588089
1007 => 0.12044259040988
1008 => 0.12612251579277
1009 => 0.124209716746
1010 => 0.12274454265355
1011 => 0.12135996021586
1012 => 0.12424105647242
1013 => 0.12794754077985
1014 => 0.12874588199941
1015 => 0.1300394997649
1016 => 0.12867941886054
1017 => 0.13031748650185
1018 => 0.13610058507907
1019 => 0.13453794079468
1020 => 0.13231873470325
1021 => 0.13688393561527
1022 => 0.13853606407857
1023 => 0.15013156686035
1024 => 0.16477136810868
1025 => 0.15871039426175
1026 => 0.15494815220856
1027 => 0.15583236833264
1028 => 0.16117832815998
1029 => 0.16289528078424
1030 => 0.15822801168244
1031 => 0.15987657003234
1101 => 0.16896028862298
1102 => 0.17383341220628
1103 => 0.16721505583235
1104 => 0.1489552730845
1105 => 0.13211891947557
1106 => 0.13658467860355
1107 => 0.13607840010707
1108 => 0.14583772251574
1109 => 0.1345006722453
1110 => 0.13469155909637
1111 => 0.14465269395715
1112 => 0.14199523395338
1113 => 0.13769048908903
1114 => 0.132150348877
1115 => 0.12190888729411
1116 => 0.11283773916587
1117 => 0.13062834960601
1118 => 0.1298611861337
1119 => 0.12875021973855
1120 => 0.13122255523185
1121 => 0.14322751460261
1122 => 0.14295076143286
1123 => 0.14119019896757
1124 => 0.1425255700806
1125 => 0.13745639207649
1126 => 0.13876283467119
1127 => 0.13211625251114
1128 => 0.13512078523327
1129 => 0.13768125303991
1130 => 0.13819530486047
1201 => 0.13935348986032
1202 => 0.12945692584398
1203 => 0.13390019253946
1204 => 0.13651019544527
1205 => 0.12471810736411
1206 => 0.13627710377836
1207 => 0.12928464868232
1208 => 0.12691130439957
1209 => 0.13010669981196
1210 => 0.12886145111213
1211 => 0.12779085940347
1212 => 0.12719345083494
1213 => 0.12953979656287
1214 => 0.12943033673018
1215 => 0.1255912597132
1216 => 0.12058334024534
1217 => 0.12226416239811
1218 => 0.12165350395222
1219 => 0.1194403989678
1220 => 0.12093176451598
1221 => 0.11436454540462
1222 => 0.10306598625788
1223 => 0.11053016051444
1224 => 0.11024279792503
1225 => 0.11009789667658
1226 => 0.11570701733577
1227 => 0.11516782980882
1228 => 0.11418919916767
1229 => 0.11942242564863
1230 => 0.11751222758625
1231 => 0.12339900791523
]
'min_raw' => 0.05284418046145
'max_raw' => 0.17383341220628
'avg_raw' => 0.11333879633386
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.052844'
'max' => '$0.173833'
'avg' => '$0.113338'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.028788147080673
'max_diff' => 0.11491267114479
'year' => 2029
]
4 => [
'items' => [
101 => 0.12727642217298
102 => 0.126292984496
103 => 0.12993971134658
104 => 0.12230288514572
105 => 0.12483953247336
106 => 0.12536233197195
107 => 0.11935784844618
108 => 0.11525604755648
109 => 0.11498250420109
110 => 0.10787054672131
111 => 0.11166969700129
112 => 0.11501279202815
113 => 0.11341170894494
114 => 0.11290485387179
115 => 0.11549426651706
116 => 0.11569548605641
117 => 0.11110765923479
118 => 0.11206161370859
119 => 0.11603976244605
120 => 0.11196137456728
121 => 0.10403773311972
122 => 0.10207256048781
123 => 0.1018103702334
124 => 0.09648066619585
125 => 0.10220388271991
126 => 0.099705545334492
127 => 0.10759776320036
128 => 0.10308977068219
129 => 0.10289544013474
130 => 0.10260168101018
131 => 0.098014184577764
201 => 0.099018554745855
202 => 0.10235723415449
203 => 0.1035485125804
204 => 0.10342425248072
205 => 0.10234087280398
206 => 0.10283683847219
207 => 0.10123916024898
208 => 0.10067498681557
209 => 0.098894300271588
210 => 0.096277182979153
211 => 0.09664110919038
212 => 0.091455915028076
213 => 0.08863074604937
214 => 0.087848776511193
215 => 0.086803094163986
216 => 0.087966889114765
217 => 0.0914412260245
218 => 0.087250438589666
219 => 0.080065627482201
220 => 0.080497446872082
221 => 0.081467616832817
222 => 0.079659711529304
223 => 0.077948680885519
224 => 0.079436283209986
225 => 0.076391984028062
226 => 0.081835505844642
227 => 0.081688273834797
228 => 0.083717282142886
301 => 0.084986062677377
302 => 0.082061934317952
303 => 0.081326523943241
304 => 0.081745447115214
305 => 0.074821580245387
306 => 0.083151454503367
307 => 0.083223491601856
308 => 0.082606666229606
309 => 0.087042067115965
310 => 0.096402146422413
311 => 0.09288050807901
312 => 0.091516823270361
313 => 0.088924457452274
314 => 0.092378630985424
315 => 0.092113404351579
316 => 0.090913948929119
317 => 0.090188514547087
318 => 0.091525149639014
319 => 0.090022890667311
320 => 0.089753043676678
321 => 0.088118064509859
322 => 0.087534451334117
323 => 0.087102367373108
324 => 0.086626685387729
325 => 0.087675921314908
326 => 0.085298214665439
327 => 0.082430933535636
328 => 0.082192550134105
329 => 0.082850747664616
330 => 0.082559544254408
331 => 0.082191155964211
401 => 0.081487802393643
402 => 0.081279132414027
403 => 0.081957208615498
404 => 0.081191700118336
405 => 0.082321249605303
406 => 0.082014074645672
407 => 0.080298220291306
408 => 0.07815963047512
409 => 0.078140592539912
410 => 0.077679836872005
411 => 0.077092995253847
412 => 0.076929749340793
413 => 0.07931100149148
414 => 0.084240122178522
415 => 0.083272417843794
416 => 0.083971683399964
417 => 0.087411377847763
418 => 0.088504753277497
419 => 0.087728701295488
420 => 0.086666393477713
421 => 0.086713129630391
422 => 0.090343357026176
423 => 0.090569769855924
424 => 0.091141842033148
425 => 0.09187711644846
426 => 0.087853921707832
427 => 0.086523637519908
428 => 0.085893275070312
429 => 0.083952002706527
430 => 0.086045498518755
501 => 0.084825708161398
502 => 0.084990299554578
503 => 0.084883109193848
504 => 0.084941642378987
505 => 0.081833984269354
506 => 0.082966251550803
507 => 0.081083637588544
508 => 0.078563028826414
509 => 0.078554578862004
510 => 0.079171494285592
511 => 0.078804528851739
512 => 0.077817034304785
513 => 0.077957303244337
514 => 0.076728399735948
515 => 0.078106514380272
516 => 0.07814603377714
517 => 0.077615384572663
518 => 0.079738560325418
519 => 0.080608427163668
520 => 0.080259142489674
521 => 0.080583920419819
522 => 0.083312630327825
523 => 0.08375752910479
524 => 0.083955123753155
525 => 0.083690373100621
526 => 0.080633796227774
527 => 0.080769368409653
528 => 0.079774629692579
529 => 0.078934180299635
530 => 0.078967793867777
531 => 0.079399894106523
601 => 0.081286901191473
602 => 0.085257996356607
603 => 0.085408696515291
604 => 0.08559134950385
605 => 0.084848408005344
606 => 0.084624329740402
607 => 0.084919946811368
608 => 0.086411281365128
609 => 0.09024739873078
610 => 0.088891458648094
611 => 0.087789058254406
612 => 0.088756160604683
613 => 0.088607282778256
614 => 0.087350604097869
615 => 0.087315333312809
616 => 0.084903365140669
617 => 0.084011715425287
618 => 0.083266586184289
619 => 0.082452924505211
620 => 0.081970558587667
621 => 0.082711691868403
622 => 0.082881197818539
623 => 0.081260696947416
624 => 0.081039828666638
625 => 0.082363164658938
626 => 0.081780813827665
627 => 0.082379776099235
628 => 0.082518740484042
629 => 0.082496364017467
630 => 0.081888322867051
701 => 0.082275870164278
702 => 0.081359205272927
703 => 0.080362469882197
704 => 0.07972661480172
705 => 0.079171746910067
706 => 0.079479619865468
707 => 0.078382108994846
708 => 0.078030993178805
709 => 0.082144577860068
710 => 0.085183327092605
711 => 0.085139142475287
712 => 0.084870179980725
713 => 0.084470556270857
714 => 0.086382046401649
715 => 0.085716121461532
716 => 0.086200637495358
717 => 0.08632396716104
718 => 0.086697248914542
719 => 0.086830665056768
720 => 0.086427388811492
721 => 0.085073944476301
722 => 0.081701289874631
723 => 0.080131310053247
724 => 0.079613190562108
725 => 0.079632023221561
726 => 0.079112534401129
727 => 0.079265547140602
728 => 0.079059322814748
729 => 0.078668783832602
730 => 0.07945550518383
731 => 0.079546167490743
801 => 0.079362537326746
802 => 0.079405788877876
803 => 0.077885409549453
804 => 0.078001000687703
805 => 0.077357374541317
806 => 0.077236702397898
807 => 0.075609671546774
808 => 0.072727150552115
809 => 0.074324346996239
810 => 0.072395158291543
811 => 0.071664545297095
812 => 0.075123153579178
813 => 0.074776005234518
814 => 0.074181838170218
815 => 0.073302941246853
816 => 0.072976949828617
817 => 0.070996329167757
818 => 0.070879303532913
819 => 0.071860952613691
820 => 0.071407955339395
821 => 0.070771775602798
822 => 0.068467597085352
823 => 0.065876937544453
824 => 0.065955133271687
825 => 0.066779173870713
826 => 0.069175183049395
827 => 0.068239020811904
828 => 0.067559824367381
829 => 0.067432631289892
830 => 0.069024718951412
831 => 0.071277856545141
901 => 0.072334978293006
902 => 0.071287402746137
903 => 0.070084004363366
904 => 0.070157249646914
905 => 0.070644517703894
906 => 0.070695722687084
907 => 0.069912434051252
908 => 0.070132925214099
909 => 0.0697979789756
910 => 0.067742414528193
911 => 0.067705235885605
912 => 0.067200767219757
913 => 0.067185492109043
914 => 0.06632726506283
915 => 0.066207193166421
916 => 0.064503131275505
917 => 0.065624749972481
918 => 0.064872427038174
919 => 0.063738498921135
920 => 0.063543009286354
921 => 0.063537132631872
922 => 0.064701423266384
923 => 0.065611144558533
924 => 0.064885514017714
925 => 0.064720302009326
926 => 0.066484334029045
927 => 0.066259844875027
928 => 0.066065438715447
929 => 0.071076112786252
930 => 0.067109773271436
1001 => 0.065380222852232
1002 => 0.06323957577575
1003 => 0.063936581257932
1004 => 0.064083450554168
1005 => 0.058935580215867
1006 => 0.056847089860744
1007 => 0.056130398673965
1008 => 0.055717932763447
1009 => 0.055905898658291
1010 => 0.054026012383195
1011 => 0.055289327050508
1012 => 0.053661504439106
1013 => 0.053388594680912
1014 => 0.056299343158625
1015 => 0.056704356804952
1016 => 0.054976442761841
1017 => 0.056086043301392
1018 => 0.05568368672115
1019 => 0.053689408785645
1020 => 0.053613242037424
1021 => 0.052612583471646
1022 => 0.051046746581884
1023 => 0.05033111710625
1024 => 0.04995841106196
1025 => 0.05011219683973
1026 => 0.050034438044567
1027 => 0.049527009308052
1028 => 0.050063523265769
1029 => 0.048692951806676
1030 => 0.048147179208221
1031 => 0.047900666387326
1101 => 0.046684205330231
1102 => 0.048620135834757
1103 => 0.049001538532358
1104 => 0.049383692711095
1105 => 0.052710083929262
1106 => 0.052543906824286
1107 => 0.054046066921733
1108 => 0.053987695742641
1109 => 0.053559255349469
1110 => 0.0517517358057
1111 => 0.052472180879909
1112 => 0.050254762923518
1113 => 0.05191620322621
1114 => 0.051157991255467
1115 => 0.05165985099621
1116 => 0.050757461931487
1117 => 0.051256881298636
1118 => 0.049091983261067
1119 => 0.047070431934523
1120 => 0.047883963201086
1121 => 0.048768364726426
1122 => 0.05068597257468
1123 => 0.049543861160181
1124 => 0.049954607612849
1125 => 0.048578675754538
1126 => 0.045739735315336
1127 => 0.045755803409914
1128 => 0.045319094273022
1129 => 0.04494171381817
1130 => 0.049675046395057
1201 => 0.049086381666207
1202 => 0.048148421463318
1203 => 0.049403918467941
1204 => 0.049735891803381
1205 => 0.049745342617541
1206 => 0.050661320823046
1207 => 0.051150178555523
1208 => 0.051236341849702
1209 => 0.052677653347084
1210 => 0.053160761949648
1211 => 0.05515061791152
1212 => 0.051108702392381
1213 => 0.051025461802121
1214 => 0.049421585885499
1215 => 0.048404382422903
1216 => 0.049491234676839
1217 => 0.050454037403698
1218 => 0.049451502850025
1219 => 0.049582412698075
1220 => 0.048236591969851
1221 => 0.04871765955344
1222 => 0.049132019763229
1223 => 0.048903234410351
1224 => 0.048560731663757
1225 => 0.050375098559753
1226 => 0.05027272486892
1227 => 0.051962305034587
1228 => 0.053279453596761
1229 => 0.055640019288645
1230 => 0.053176645930091
1231 => 0.053086870813883
]
'min_raw' => 0.04494171381817
'max_raw' => 0.12993971134658
'avg_raw' => 0.087440712582377
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.044941'
'max' => '$0.129939'
'avg' => '$0.08744'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0079024666432799
'max_diff' => -0.043893700859695
'year' => 2030
]
5 => [
'items' => [
101 => 0.053964436975198
102 => 0.053160627598841
103 => 0.053668607378142
104 => 0.055558175892863
105 => 0.055598099498036
106 => 0.054929327672728
107 => 0.05488863284638
108 => 0.055017077790993
109 => 0.055769383843492
110 => 0.055506504992719
111 => 0.055810715054112
112 => 0.056191134394114
113 => 0.05776471007882
114 => 0.058144093849087
115 => 0.05722238797527
116 => 0.057305607695773
117 => 0.056960864397573
118 => 0.056627846691133
119 => 0.05737642186188
120 => 0.058744457699701
121 => 0.058735947219755
122 => 0.059053304943313
123 => 0.059251016175956
124 => 0.058402294831984
125 => 0.057849808445406
126 => 0.058061666881642
127 => 0.05840043313486
128 => 0.057951809551501
129 => 0.055182696972352
130 => 0.05602266883727
131 => 0.055882856446422
201 => 0.055683746600087
202 => 0.056528344805571
203 => 0.056446881248241
204 => 0.0540067314323
205 => 0.05416294190647
206 => 0.05401623110862
207 => 0.054490283710679
208 => 0.053135027202622
209 => 0.053551894976708
210 => 0.053813350536723
211 => 0.053967349870168
212 => 0.054523701060902
213 => 0.05445841967005
214 => 0.054519643077987
215 => 0.055344565022577
216 => 0.059516737139285
217 => 0.059743819262219
218 => 0.05862558383751
219 => 0.059072296833463
220 => 0.058214705566626
221 => 0.058790412329416
222 => 0.05918429627515
223 => 0.057404410463904
224 => 0.057299017177525
225 => 0.056437886326468
226 => 0.056900609268882
227 => 0.056164383796545
228 => 0.056345027775383
301 => 0.055839931462294
302 => 0.056749004262181
303 => 0.057765488908087
304 => 0.058022293071838
305 => 0.057346751878153
306 => 0.056857615533591
307 => 0.055998853244069
308 => 0.05742699407031
309 => 0.057844625969706
310 => 0.057424800427734
311 => 0.05732751767629
312 => 0.057143167038089
313 => 0.057366628535666
314 => 0.057842351456691
315 => 0.057618009312359
316 => 0.05776619125109
317 => 0.057201474505197
318 => 0.058402575794064
319 => 0.06031021370155
320 => 0.060316347069353
321 => 0.060092003715733
322 => 0.060000207248976
323 => 0.060230397144084
324 => 0.060355265719296
325 => 0.061099657630466
326 => 0.061898419809033
327 => 0.065625894369166
328 => 0.064579234428411
329 => 0.067886471606614
330 => 0.070502066823573
331 => 0.071286369463022
401 => 0.07056484793902
402 => 0.068096561781235
403 => 0.067975455886753
404 => 0.07166411749002
405 => 0.070621901635692
406 => 0.070497933376124
407 => 0.069179120541991
408 => 0.06995870226511
409 => 0.06978819630649
410 => 0.069519044309371
411 => 0.07100643193095
412 => 0.073790688778536
413 => 0.073356736238245
414 => 0.073032810797396
415 => 0.071613463808875
416 => 0.072468227718592
417 => 0.072163862662266
418 => 0.073471608099079
419 => 0.072696928672419
420 => 0.070614005825548
421 => 0.070945718154316
422 => 0.070895580503135
423 => 0.071927409811641
424 => 0.071617680264805
425 => 0.070835100838134
426 => 0.073781172491319
427 => 0.073589870985073
428 => 0.073861092783317
429 => 0.073980493006717
430 => 0.075773714906405
501 => 0.076508340542006
502 => 0.07667511342272
503 => 0.077372950958556
504 => 0.076657750589113
505 => 0.079519061996106
506 => 0.081421667119606
507 => 0.083631640877717
508 => 0.086861006523263
509 => 0.088075277879291
510 => 0.087855930627346
511 => 0.090304398803559
512 => 0.094704241689823
513 => 0.088745264670982
514 => 0.095020081941348
515 => 0.093033547239799
516 => 0.088323509198661
517 => 0.088020238276512
518 => 0.091209930722637
519 => 0.098284361571622
520 => 0.096512296881482
521 => 0.09828726003463
522 => 0.096216671233764
523 => 0.096113849047508
524 => 0.098186696158213
525 => 0.10303001641739
526 => 0.1007291365114
527 => 0.097430260967264
528 => 0.099866099332865
529 => 0.097755950714383
530 => 0.093001195283533
531 => 0.09651094181701
601 => 0.0941640742619
602 => 0.094849014980823
603 => 0.09978178151146
604 => 0.099188257992012
605 => 0.099956332384976
606 => 0.098600701185402
607 => 0.097334327881581
608 => 0.094970548067884
609 => 0.094270749397984
610 => 0.094464148574226
611 => 0.094270653558957
612 => 0.092948140477452
613 => 0.092662543903418
614 => 0.092186537101089
615 => 0.0923340715132
616 => 0.09143903946412
617 => 0.093128149863792
618 => 0.093441663638361
619 => 0.094670857327124
620 => 0.094798476293585
621 => 0.098221763220315
622 => 0.096336274307072
623 => 0.097601223055356
624 => 0.097488074133151
625 => 0.088425590005097
626 => 0.089674320358968
627 => 0.09161695291642
628 => 0.090741799582464
629 => 0.089504537522592
630 => 0.088505382071451
701 => 0.086991559394082
702 => 0.08912223574209
703 => 0.091923848567551
704 => 0.094869529818204
705 => 0.098408572832184
706 => 0.097618699630465
707 => 0.094803369870765
708 => 0.094929663507185
709 => 0.095710361072823
710 => 0.094699286791469
711 => 0.094401101247383
712 => 0.095669394958016
713 => 0.095678128999759
714 => 0.094514765846653
715 => 0.093221900595185
716 => 0.093216483442575
717 => 0.092986430558673
718 => 0.096257597130744
719 => 0.09805640799314
720 => 0.098262638759585
721 => 0.098042527019397
722 => 0.098127239292273
723 => 0.097080550885538
724 => 0.099472970197529
725 => 0.10166849074396
726 => 0.10108004433706
727 => 0.10019787952053
728 => 0.099495192753357
729 => 0.10091451366642
730 => 0.10085131354038
731 => 0.10164931478732
801 => 0.10161311284128
802 => 0.10134477503628
803 => 0.10108005392025
804 => 0.10212964322258
805 => 0.1018273783594
806 => 0.1015246439954
807 => 0.10091746388207
808 => 0.10099998974367
809 => 0.10011797724533
810 => 0.099709917905459
811 => 0.093573684504997
812 => 0.091933882433183
813 => 0.092449797546225
814 => 0.092619650197168
815 => 0.091906006234051
816 => 0.092929188357068
817 => 0.092769726507014
818 => 0.093390099283513
819 => 0.093002517306211
820 => 0.093018423805754
821 => 0.094158219759807
822 => 0.094489107374308
823 => 0.094320815262982
824 => 0.094438681289039
825 => 0.097154854111367
826 => 0.096768701194349
827 => 0.096563565153497
828 => 0.096620389238737
829 => 0.097314429630244
830 => 0.097508723046666
831 => 0.096685488188532
901 => 0.097073730506692
902 => 0.098726817022131
903 => 0.09930530374594
904 => 0.10115155567896
905 => 0.1003672350433
906 => 0.10180688951466
907 => 0.10623189654522
908 => 0.10976689834843
909 => 0.10651596460007
910 => 0.1130075452319
911 => 0.11806217191572
912 => 0.11786816692467
913 => 0.11698677584672
914 => 0.1112322177514
915 => 0.10593678759646
916 => 0.11036663977691
917 => 0.11037793238113
918 => 0.10999740415019
919 => 0.10763397598918
920 => 0.10991516197321
921 => 0.11009623423257
922 => 0.10999488191833
923 => 0.10818284708864
924 => 0.10541620482371
925 => 0.10595680009987
926 => 0.10684230619007
927 => 0.1051658584254
928 => 0.10463013178504
929 => 0.10562614953564
930 => 0.1088355262566
1001 => 0.10822881217816
1002 => 0.10821296842164
1003 => 0.11080874853604
1004 => 0.10895073017854
1005 => 0.10596361873753
1006 => 0.10520933370351
1007 => 0.10253212998004
1008 => 0.10438128412772
1009 => 0.10444783189351
1010 => 0.10343506906472
1011 => 0.10604579885943
1012 => 0.10602174052476
1013 => 0.10850023990899
1014 => 0.11323819984977
1015 => 0.11183695195443
1016 => 0.11020745310749
1017 => 0.11038462481326
1018 => 0.11232776112846
1019 => 0.1111528965548
1020 => 0.11157538604694
1021 => 0.11232712164002
1022 => 0.11278066238786
1023 => 0.11031936727924
1024 => 0.10974552165206
1025 => 0.10857163489131
1026 => 0.10826538974706
1027 => 0.10922149601974
1028 => 0.10896959579662
1029 => 0.10444223881148
1030 => 0.10396910481655
1031 => 0.1039836151607
1101 => 0.10279389723417
1102 => 0.10097929183118
1103 => 0.10574796648576
1104 => 0.10536497517344
1105 => 0.10494218240581
1106 => 0.10499397210742
1107 => 0.10706389214959
1108 => 0.10586323399167
1109 => 0.10905538048852
1110 => 0.10839917113347
1111 => 0.10772613248457
1112 => 0.10763309804204
1113 => 0.10737403558317
1114 => 0.10648561401882
1115 => 0.10541279159401
1116 => 0.10470442130287
1117 => 0.096584293997124
1118 => 0.098091342392462
1119 => 0.099825064199515
1120 => 0.10042353801986
1121 => 0.099399807137035
1122 => 0.10652603715379
1123 => 0.10782806804791
1124 => 0.10388413154024
1125 => 0.10314638204952
1126 => 0.10657440388758
1127 => 0.10450688766061
1128 => 0.10543789009102
1129 => 0.10342557206757
1130 => 0.10751444693343
1201 => 0.10748329655769
1202 => 0.10589263188345
1203 => 0.10723705077372
1204 => 0.10700342490701
1205 => 0.10520756840742
1206 => 0.10757137878768
1207 => 0.10757255120814
1208 => 0.10604157104321
1209 => 0.10425372138522
1210 => 0.1039340960935
1211 => 0.1036933013718
1212 => 0.10537866935046
1213 => 0.10688976501012
1214 => 0.10970153940037
1215 => 0.11040848628819
1216 => 0.11316774705547
1217 => 0.11152474161452
1218 => 0.11225306464601
1219 => 0.11304376232427
1220 => 0.11342285186818
1221 => 0.11280514579945
1222 => 0.11709141352808
1223 => 0.11745330585222
1224 => 0.11757464521815
1225 => 0.11612933985647
1226 => 0.11741310929558
1227 => 0.116812476089
1228 => 0.11837515683181
1229 => 0.11862020512559
1230 => 0.1184126579386
1231 => 0.11849044013487
]
'min_raw' => 0.053135027202622
'max_raw' => 0.11862020512559
'avg_raw' => 0.085877616164107
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.053135'
'max' => '$0.11862'
'avg' => '$0.085877'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0081933133844521
'max_diff' => -0.011319506220993
'year' => 2031
]
6 => [
'items' => [
101 => 0.11483286677793
102 => 0.11464320230414
103 => 0.11205711374598
104 => 0.11311096394883
105 => 0.11114084150696
106 => 0.11176558762779
107 => 0.11204096976505
108 => 0.11189712576434
109 => 0.11317054705812
110 => 0.11208787881563
111 => 0.10923053931655
112 => 0.10637242133724
113 => 0.10633653999418
114 => 0.1055840479802
115 => 0.10504013407988
116 => 0.10514491119346
117 => 0.10551415940803
118 => 0.10501867270239
119 => 0.10512440991285
120 => 0.10688035212985
121 => 0.10723249381866
122 => 0.10603577876944
123 => 0.10123079516165
124 => 0.10005164013191
125 => 0.10089919338363
126 => 0.10049411751873
127 => 0.081106596081904
128 => 0.085661406664315
129 => 0.082955092882999
130 => 0.084202286784939
131 => 0.081439841210771
201 => 0.082758225030942
202 => 0.082514767679025
203 => 0.089838768308899
204 => 0.089724414112897
205 => 0.089779149415033
206 => 0.087166490831974
207 => 0.091328526896198
208 => 0.093378895523411
209 => 0.092999426859308
210 => 0.093094930946731
211 => 0.091453854304619
212 => 0.089795038624145
213 => 0.087955156744596
214 => 0.091373429860524
215 => 0.090993376241901
216 => 0.091865082504047
217 => 0.094082076962935
218 => 0.094408537818549
219 => 0.094847304519134
220 => 0.094690037890515
221 => 0.09843676701942
222 => 0.097983013400195
223 => 0.099076429068702
224 => 0.096827190080937
225 => 0.094281962666556
226 => 0.094765727188276
227 => 0.094719136774646
228 => 0.094125987335145
229 => 0.093590518542667
301 => 0.092699113870587
302 => 0.095519650156116
303 => 0.095405141533827
304 => 0.097258903026963
305 => 0.096931232676573
306 => 0.094742969882131
307 => 0.094821124115931
308 => 0.095346748897876
309 => 0.097165942269668
310 => 0.097706002722546
311 => 0.097455825203085
312 => 0.098047976834969
313 => 0.098515989340843
314 => 0.098106752000059
315 => 0.10390068974038
316 => 0.10149464283867
317 => 0.1026673333574
318 => 0.10294701313622
319 => 0.1022306192638
320 => 0.10238597944258
321 => 0.10262130778033
322 => 0.10405017536512
323 => 0.10779993735379
324 => 0.10946068141307
325 => 0.1144571118551
326 => 0.10932277973762
327 => 0.10901812971775
328 => 0.1099181377181
329 => 0.11285157131345
330 => 0.11522884371907
331 => 0.11601752212415
401 => 0.11612175899504
402 => 0.11760137211332
403 => 0.11844945875956
404 => 0.11742170816307
405 => 0.11655079714252
406 => 0.11343130196834
407 => 0.11379239202886
408 => 0.11627994447001
409 => 0.11979375880926
410 => 0.1228089770624
411 => 0.12175315272111
412 => 0.12980834714929
413 => 0.13060698677433
414 => 0.13049664060126
415 => 0.1323160605206
416 => 0.12870488249913
417 => 0.12716103393167
418 => 0.11673909799042
419 => 0.11966723688467
420 => 0.12392345873103
421 => 0.12336013180965
422 => 0.12026914973569
423 => 0.12280663227532
424 => 0.1219676611933
425 => 0.12130592989197
426 => 0.12433744926629
427 => 0.12100416918628
428 => 0.1238902067124
429 => 0.12018883373291
430 => 0.12175797563777
501 => 0.12086725480172
502 => 0.12144366034528
503 => 0.1180740053155
504 => 0.11989218937582
505 => 0.11799836288095
506 => 0.11799746496061
507 => 0.11795565863577
508 => 0.12018373710847
509 => 0.12025639466747
510 => 0.11860984130971
511 => 0.11837254724686
512 => 0.11924994776807
513 => 0.11822274154929
514 => 0.1187033648739
515 => 0.11823729914017
516 => 0.11813237792667
517 => 0.11729634784657
518 => 0.11693616310093
519 => 0.11707740082051
520 => 0.11659528367055
521 => 0.11630479064876
522 => 0.11789787226213
523 => 0.11704675302084
524 => 0.11776742603164
525 => 0.11694612817964
526 => 0.1140991520022
527 => 0.11246182589632
528 => 0.10708415181195
529 => 0.10860925351129
530 => 0.10962039751579
531 => 0.10928621442834
601 => 0.11000416901187
602 => 0.11004824559232
603 => 0.10981483123853
604 => 0.10954456731907
605 => 0.10941301778961
606 => 0.1103934802057
607 => 0.11096267163908
608 => 0.109721879344
609 => 0.10943117906979
610 => 0.11068568858614
611 => 0.1114509386664
612 => 0.11710111530219
613 => 0.11668253196718
614 => 0.11773309399522
615 => 0.11761481683305
616 => 0.11871597320609
617 => 0.12051589849262
618 => 0.11685614711809
619 => 0.11749135341203
620 => 0.11733561549781
621 => 0.11903592120857
622 => 0.1190412293774
623 => 0.11802181116723
624 => 0.11857445431714
625 => 0.11826598407183
626 => 0.11882343149735
627 => 0.11667694153154
628 => 0.11929113461062
629 => 0.12077321363158
630 => 0.12079379230023
701 => 0.12149628599365
702 => 0.12221006027187
703 => 0.12358008784226
704 => 0.12217185094651
705 => 0.11963856986016
706 => 0.11982146457215
707 => 0.11833620279811
708 => 0.11836117031687
709 => 0.11822789174501
710 => 0.1186278707719
711 => 0.11676471443517
712 => 0.11720199350338
713 => 0.11658980024719
714 => 0.11749002262345
715 => 0.11652153215868
716 => 0.11733554039627
717 => 0.11768683936682
718 => 0.11898314013106
719 => 0.11633006748181
720 => 0.11092027275278
721 => 0.11205747719224
722 => 0.1103754625008
723 => 0.11053113936437
724 => 0.11084563140458
725 => 0.10982625980687
726 => 0.11002072378362
727 => 0.11001377616195
728 => 0.10995390531179
729 => 0.10968872738923
730 => 0.10930416693765
731 => 0.11083613741525
801 => 0.1110964490518
802 => 0.11167508957406
803 => 0.11339673127268
804 => 0.11322469866788
805 => 0.11350529098387
806 => 0.11289275953352
807 => 0.11055955294157
808 => 0.11068625728491
809 => 0.10910625209318
810 => 0.11163468528897
811 => 0.11103591893452
812 => 0.1106498903706
813 => 0.1105445589004
814 => 0.11227046821579
815 => 0.11278688733327
816 => 0.11246508959485
817 => 0.11180507304503
818 => 0.11307249993707
819 => 0.11341160990494
820 => 0.11348752412085
821 => 0.11573316156855
822 => 0.11361303030825
823 => 0.1141233669749
824 => 0.11810486796605
825 => 0.11449419597666
826 => 0.11640684945703
827 => 0.11631323502213
828 => 0.11729168382203
829 => 0.11623297366176
830 => 0.11624609764305
831 => 0.1171148938915
901 => 0.11589482624879
902 => 0.1155927203426
903 => 0.11517536319693
904 => 0.1160866472558
905 => 0.11663292083525
906 => 0.12103548469195
907 => 0.12387974172468
908 => 0.12375626502569
909 => 0.12488461091572
910 => 0.1243762807578
911 => 0.12273474858715
912 => 0.12553664383892
913 => 0.12465000694499
914 => 0.12472310021326
915 => 0.12472037967816
916 => 0.12530991570149
917 => 0.12489217539878
918 => 0.12406876638198
919 => 0.12461538371422
920 => 0.12623864177171
921 => 0.13127728458981
922 => 0.13409697586395
923 => 0.13110753563459
924 => 0.1331696114746
925 => 0.13193310076335
926 => 0.1317083899841
927 => 0.13300352599784
928 => 0.13430092897572
929 => 0.13421829001485
930 => 0.13327644207529
1001 => 0.13274441607274
1002 => 0.13677309520584
1003 => 0.13974135736435
1004 => 0.13953894178462
1005 => 0.14043233832447
1006 => 0.14305537819718
1007 => 0.14329519609013
1008 => 0.14326498454777
1009 => 0.14267057087767
1010 => 0.14525329427712
1011 => 0.14740784757564
1012 => 0.14253298128731
1013 => 0.14438926655322
1014 => 0.14522261281486
1015 => 0.14644621236965
1016 => 0.14851062991767
1017 => 0.15075313493454
1018 => 0.15107024973174
1019 => 0.15084524160778
1020 => 0.14936624926739
1021 => 0.15182002501549
1022 => 0.15325738930061
1023 => 0.1541133068389
1024 => 0.1562837713049
1025 => 0.14522775927767
1026 => 0.13740176444534
1027 => 0.13617962234354
1028 => 0.13866489636592
1029 => 0.13932024330594
1030 => 0.13905607377615
1031 => 0.13024720508405
1101 => 0.13613324547292
1102 => 0.142466130019
1103 => 0.1427094019059
1104 => 0.14587977632405
1105 => 0.14691218019263
1106 => 0.14946474714971
1107 => 0.14930508339156
1108 => 0.14992659282539
1109 => 0.1497837185696
1110 => 0.1545118113512
1111 => 0.15972759981788
1112 => 0.15954699364847
1113 => 0.15879716234598
1114 => 0.15991078969542
1115 => 0.16529404235089
1116 => 0.16479843871124
1117 => 0.16527987543174
1118 => 0.17162703369937
1119 => 0.17987924232003
1120 => 0.17604526290753
1121 => 0.18436389503479
1122 => 0.18960003300715
1123 => 0.19865539220358
1124 => 0.19752161663361
1125 => 0.20104680151748
1126 => 0.19549192173724
1127 => 0.18273679493539
1128 => 0.18071824729433
1129 => 0.1847594307895
1130 => 0.19469428607944
1201 => 0.18444654684127
1202 => 0.18651965114247
1203 => 0.18592259696426
1204 => 0.18589078248442
1205 => 0.18710501178107
1206 => 0.18534370885634
1207 => 0.17816784388864
1208 => 0.1814565005157
1209 => 0.18018659225773
1210 => 0.18159565014788
1211 => 0.18919975444133
1212 => 0.18583779867399
1213 => 0.1822962513762
1214 => 0.18673813761989
1215 => 0.19239418520581
1216 => 0.19204023991278
1217 => 0.19135343810664
1218 => 0.19522490392807
1219 => 0.20161943123202
1220 => 0.20334784626698
1221 => 0.2046237269099
1222 => 0.20479964929438
1223 => 0.20661175918967
1224 => 0.19686758757223
1225 => 0.21233183817718
1226 => 0.21500208706535
1227 => 0.21450019094485
1228 => 0.2174680602028
1229 => 0.21659483777953
1230 => 0.21532967549262
1231 => 0.22003437955037
]
'min_raw' => 0.081106596081904
'max_raw' => 0.22003437955037
'avg_raw' => 0.15057048781614
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.0811065'
'max' => '$0.220034'
'avg' => '$0.15057'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.027971568879282
'max_diff' => 0.10141417442478
'year' => 2032
]
7 => [
'items' => [
101 => 0.2146408159982
102 => 0.20698533156667
103 => 0.20278538139921
104 => 0.20831621458003
105 => 0.21169370140408
106 => 0.21392600534627
107 => 0.21460149917038
108 => 0.19762399987679
109 => 0.18847406937283
110 => 0.1943390699217
111 => 0.20149477537205
112 => 0.19682783726716
113 => 0.19701077240518
114 => 0.19035694511737
115 => 0.20208349144387
116 => 0.20037503227988
117 => 0.20923852144489
118 => 0.20712317862172
119 => 0.21435100995711
120 => 0.2124476797355
121 => 0.22034829707167
122 => 0.22350006722774
123 => 0.22879237985364
124 => 0.23268542656484
125 => 0.23497149805578
126 => 0.2348342508983
127 => 0.24389280506168
128 => 0.23855129215331
129 => 0.23184109304247
130 => 0.23171972671096
131 => 0.23519503391472
201 => 0.24247832440984
202 => 0.24436677566765
203 => 0.24542216229351
204 => 0.24380580093773
205 => 0.23800797150538
206 => 0.23550449815215
207 => 0.23763752998171
208 => 0.23502901534768
209 => 0.23953204342596
210 => 0.24571566277233
211 => 0.24443876982998
212 => 0.24870723149375
213 => 0.25312464026049
214 => 0.25944173319517
215 => 0.26109325520957
216 => 0.26382315829761
217 => 0.26663312530166
218 => 0.26753561097262
219 => 0.26925873614335
220 => 0.26924965442315
221 => 0.27444240810485
222 => 0.28017017622195
223 => 0.28233227608803
224 => 0.28730390551118
225 => 0.27879016435071
226 => 0.28524793481973
227 => 0.29107300543127
228 => 0.28412811610872
301 => 0.29370002808818
302 => 0.29407168373992
303 => 0.29968324283133
304 => 0.29399485264755
305 => 0.2906171047144
306 => 0.30036853643483
307 => 0.30508694707713
308 => 0.30366572339197
309 => 0.29285014097344
310 => 0.2865550081037
311 => 0.27007943114315
312 => 0.28959546374488
313 => 0.29910115393471
314 => 0.29282552353225
315 => 0.29599058647563
316 => 0.31325814361959
317 => 0.31983251138848
318 => 0.31846508885085
319 => 0.31869616075002
320 => 0.3222435702649
321 => 0.33797473764797
322 => 0.32854825750643
323 => 0.33575444837117
324 => 0.33957658602197
325 => 0.34312680048208
326 => 0.33440859582485
327 => 0.32306633966166
328 => 0.31947377101925
329 => 0.29220153576789
330 => 0.29078189748574
331 => 0.28998501149853
401 => 0.28496075807091
402 => 0.28101307113565
403 => 0.2778737239165
404 => 0.26963513932504
405 => 0.27241541977847
406 => 0.25928483546591
407 => 0.26768531798975
408 => 0.24672858837786
409 => 0.26418197553123
410 => 0.25468289041179
411 => 0.26106127059241
412 => 0.26103901702484
413 => 0.24929439684503
414 => 0.24252034502928
415 => 0.24683703449632
416 => 0.25146486826421
417 => 0.25221571872315
418 => 0.25821582600205
419 => 0.25989032697172
420 => 0.25481651085865
421 => 0.24629430673744
422 => 0.24827382038401
423 => 0.24248023024841
424 => 0.232327186383
425 => 0.23961927974228
426 => 0.24210912102585
427 => 0.2432087767798
428 => 0.23322442422313
429 => 0.23008712387899
430 => 0.22841685150027
501 => 0.2450054522005
502 => 0.24591421319351
503 => 0.24126486346742
504 => 0.26228036509875
505 => 0.25752390983839
506 => 0.26283803572404
507 => 0.24809420026887
508 => 0.24865743463846
509 => 0.24167746665354
510 => 0.24558578232347
511 => 0.24282351077885
512 => 0.24527002904006
513 => 0.24673646199846
514 => 0.25371528463932
515 => 0.26426166247555
516 => 0.25267288126
517 => 0.24762348332999
518 => 0.25075610140688
519 => 0.25909867615722
520 => 0.27173810395253
521 => 0.26425530830551
522 => 0.26757604594755
523 => 0.268301479393
524 => 0.26278394291104
525 => 0.27194154339275
526 => 0.27684917588711
527 => 0.28188339133487
528 => 0.28625445955265
529 => 0.27987261498027
530 => 0.2867021034742
531 => 0.2811987413151
601 => 0.27626165653126
602 => 0.27626914405094
603 => 0.27317203864674
604 => 0.2671710066657
605 => 0.26606432429605
606 => 0.27182142574155
607 => 0.27643807590131
608 => 0.27681832532073
609 => 0.27937434006122
610 => 0.2808869632556
611 => 0.29571272687202
612 => 0.30167577164369
613 => 0.30896726991583
614 => 0.31180771941916
615 => 0.32035645406666
616 => 0.31345265654452
617 => 0.31195897652368
618 => 0.29122254253864
619 => 0.29461813244202
620 => 0.30005479950301
621 => 0.29131219117603
622 => 0.29685736388845
623 => 0.2979520984447
624 => 0.29101512069048
625 => 0.29472046023812
626 => 0.28488017695619
627 => 0.2644761537607
628 => 0.27196425890337
629 => 0.27747802475731
630 => 0.26960920104131
701 => 0.2837137629867
702 => 0.27547416907546
703 => 0.27286261337586
704 => 0.26267400350487
705 => 0.26748263516841
706 => 0.27398637834634
707 => 0.26996782120368
708 => 0.27830693066409
709 => 0.29011733361928
710 => 0.29853413008681
711 => 0.29918026720781
712 => 0.29376883096076
713 => 0.30244069208198
714 => 0.30250385712297
715 => 0.29272196235263
716 => 0.28673060627162
717 => 0.28536935756409
718 => 0.28877002372402
719 => 0.29289906023978
720 => 0.2994093999978
721 => 0.303343461964
722 => 0.3136014091066
723 => 0.31637691548499
724 => 0.3194263555139
725 => 0.32350134780498
726 => 0.32839442085701
727 => 0.31768865558198
728 => 0.3181140155944
729 => 0.30814495520169
730 => 0.29749158446421
731 => 0.30557616489255
801 => 0.31614567835594
802 => 0.31372102028916
803 => 0.31344819672538
804 => 0.31390701028471
805 => 0.31207889728429
806 => 0.30381040993643
807 => 0.2996580273538
808 => 0.30501566027117
809 => 0.30786300372594
810 => 0.31227898510985
811 => 0.31173462219423
812 => 0.3231097159974
813 => 0.32752973348434
814 => 0.32639890386797
815 => 0.32660700373231
816 => 0.33460923426485
817 => 0.34350936040126
818 => 0.3518455030031
819 => 0.36032538530334
820 => 0.35010255621496
821 => 0.34491203406032
822 => 0.35026732800276
823 => 0.34742573365568
824 => 0.36375437764563
825 => 0.36488493752774
826 => 0.38121240077087
827 => 0.39670910762676
828 => 0.38697590370291
829 => 0.39615387660996
830 => 0.40608060260005
831 => 0.42523086758817
901 => 0.41878173205462
902 => 0.41384179530675
903 => 0.40917357894962
904 => 0.41888739613033
905 => 0.4313840667513
906 => 0.43407572991144
907 => 0.43843725252532
908 => 0.43385164479843
909 => 0.43937450421734
910 => 0.4588726248335
911 => 0.45360406052834
912 => 0.44612185225104
913 => 0.46151374585809
914 => 0.46708401232001
915 => 0.50617905952094
916 => 0.55553817154797
917 => 0.53510317505938
918 => 0.52241851330569
919 => 0.52539970970201
920 => 0.54342398650289
921 => 0.54921281214939
922 => 0.53347678851435
923 => 0.53903501808971
924 => 0.56966140952304
925 => 0.58609148591474
926 => 0.56377723532115
927 => 0.50221310292947
928 => 0.44544816126029
929 => 0.46050477994959
930 => 0.4587978266515
1001 => 0.49170206352647
1002 => 0.45347840701209
1003 => 0.45412199535776
1004 => 0.48770665700511
1005 => 0.47874684506446
1006 => 0.46423309720663
1007 => 0.44555412768152
1008 => 0.41102432491881
1009 => 0.3804403156771
1010 => 0.44042260087678
1011 => 0.43783605566826
1012 => 0.43409035490181
1013 => 0.4424260066304
1014 => 0.48290156530845
1015 => 0.48196847267432
1016 => 0.47603261340405
1017 => 0.48053491034429
1018 => 0.46344382278472
1019 => 0.46784858520565
1020 => 0.44543916940351
1021 => 0.45556916124595
1022 => 0.46420195722218
1023 => 0.46593511882514
1024 => 0.46984002041402
1025 => 0.4364730638769
1026 => 0.45145384775969
1027 => 0.46025365478121
1028 => 0.42049580651827
1029 => 0.45946776995228
1030 => 0.43589221939836
1031 => 0.42789032344748
1101 => 0.43866382217572
1102 => 0.43446537924375
1103 => 0.43085580455169
1104 => 0.42884159985315
1105 => 0.43675246829151
1106 => 0.43638341682332
1107 => 0.42343970062478
1108 => 0.40655515049715
1109 => 0.41222215973645
1110 => 0.41016328215131
1111 => 0.4027016441823
1112 => 0.40772988725181
1113 => 0.38558804950927
1114 => 0.3474941685058
1115 => 0.37266015314382
1116 => 0.37169129011058
1117 => 0.37120274543478
1118 => 0.39011428735353
1119 => 0.38829637896155
1120 => 0.38499685742909
1121 => 0.40264104588184
1122 => 0.39620067974876
1123 => 0.41604837062981
1124 => 0.42912134351222
1125 => 0.42580561472287
1126 => 0.43810080890595
1127 => 0.41235271618357
1128 => 0.42090519975176
1129 => 0.42266785476194
1130 => 0.40242331933517
1201 => 0.38859381125693
1202 => 0.38767154073604
1203 => 0.36369307955198
1204 => 0.37650217996913
1205 => 0.38777365825963
1206 => 0.38237549486053
1207 => 0.38066659759392
1208 => 0.38939698311444
1209 => 0.39007540884008
1210 => 0.37460723039916
1211 => 0.37782355451053
1212 => 0.39123616072435
1213 => 0.37748559124714
1214 => 0.3507704808957
1215 => 0.34414476416325
1216 => 0.34326077141495
1217 => 0.32529130214431
1218 => 0.34458752623741
1219 => 0.33616420731412
1220 => 0.36277337086594
1221 => 0.34757435935294
1222 => 0.3469191603445
1223 => 0.34592873094644
1224 => 0.33046166643577
1225 => 0.33384797058038
1226 => 0.34510456130573
1227 => 0.34912103969111
1228 => 0.34870208808948
1229 => 0.34504939787017
1230 => 0.34672158074777
1231 => 0.34133489707188
]
'min_raw' => 0.18847406937283
'max_raw' => 0.58609148591474
'avg_raw' => 0.38728277764378
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.188474'
'max' => '$0.586091'
'avg' => '$0.387282'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.10736747329093
'max_diff' => 0.36605710636437
'year' => 2033
]
8 => [
'items' => [
101 => 0.3394327469518
102 => 0.33342903794521
103 => 0.32460524427248
104 => 0.32583224690214
105 => 0.30835000276524
106 => 0.29882474830653
107 => 0.2961882834132
108 => 0.29266269237238
109 => 0.2965865083025
110 => 0.30830047776413
111 => 0.29417094533615
112 => 0.26994685305984
113 => 0.27140276228149
114 => 0.27467375803921
115 => 0.2685782790845
116 => 0.26280941980864
117 => 0.26782497490665
118 => 0.25756090766862
119 => 0.27591412152777
120 => 0.27541771852717
121 => 0.28225866169873
122 => 0.28653644385419
123 => 0.27667754093427
124 => 0.27419805351122
125 => 0.27561048223381
126 => 0.25226618167324
127 => 0.28035093430726
128 => 0.28059381241429
129 => 0.27851414260638
130 => 0.29346840636454
131 => 0.32502656724609
201 => 0.31315311769837
202 => 0.30855535915658
203 => 0.2998150168077
204 => 0.31146100403741
205 => 0.31056677392387
206 => 0.30652272622374
207 => 0.30407687355651
208 => 0.30858343208982
209 => 0.30351846108236
210 => 0.30260865311332
211 => 0.29709620670179
212 => 0.29512851413321
213 => 0.29367171289152
214 => 0.29206791786676
215 => 0.29560549005056
216 => 0.2875888860757
217 => 0.27792164755939
218 => 0.27711792127773
219 => 0.27933708020573
220 => 0.27835526757705
221 => 0.2771132207366
222 => 0.27474181506685
223 => 0.2740382696617
224 => 0.27632445091673
225 => 0.27374348557245
226 => 0.27755184053039
227 => 0.27651617870772
228 => 0.27073105595485
301 => 0.26352065107801
302 => 0.26345646335027
303 => 0.26190299344698
304 => 0.25992441595939
305 => 0.25937402096606
306 => 0.26740257884582
307 => 0.2840214533824
308 => 0.28075877065491
309 => 0.2831163932987
310 => 0.29471356328125
311 => 0.29839995487963
312 => 0.29578344144007
313 => 0.29220179646447
314 => 0.29235937066624
315 => 0.30459893578551
316 => 0.30536230244865
317 => 0.30729108373496
318 => 0.30977011276141
319 => 0.29620563080289
320 => 0.29172048478583
321 => 0.28959517377652
322 => 0.28305003846671
323 => 0.29010840576085
324 => 0.28599579740797
325 => 0.28655072878148
326 => 0.28618932899649
327 => 0.28638667771684
328 => 0.27590899143046
329 => 0.27972650962224
330 => 0.27337914520857
331 => 0.26488073678377
401 => 0.2648522471388
402 => 0.26693222056109
403 => 0.26569497098014
404 => 0.26236556417042
405 => 0.26283849069339
406 => 0.25869515671555
407 => 0.26334156645578
408 => 0.26347480886147
409 => 0.26168568801984
410 => 0.26884412330565
411 => 0.27177694008297
412 => 0.27059930241832
413 => 0.27169431388508
414 => 0.28089434985236
415 => 0.28239435714074
416 => 0.28306056129332
417 => 0.282167935984
418 => 0.27186247365381
419 => 0.27231956473037
420 => 0.26896573369531
421 => 0.2661320998887
422 => 0.26624543038051
423 => 0.26770228650372
424 => 0.27406446263726
425 => 0.28745328723952
426 => 0.28796138334607
427 => 0.28857721064942
428 => 0.28607233151669
429 => 0.28531683600179
430 => 0.28631352959588
501 => 0.29134166816553
502 => 0.30427540569299
503 => 0.2997037590355
504 => 0.29598693914105
505 => 0.29924759223593
506 => 0.29874564024982
507 => 0.29450866034039
508 => 0.29438974242603
509 => 0.28625762333542
510 => 0.28325136406702
511 => 0.28073910880773
512 => 0.27799579164867
513 => 0.27636946127996
514 => 0.27886824388024
515 => 0.27943974502565
516 => 0.2739761131989
517 => 0.27323144036972
518 => 0.27769316006013
519 => 0.27572972357406
520 => 0.27774916669087
521 => 0.27821769481643
522 => 0.2781422509971
523 => 0.27609219780639
524 => 0.27739884057668
525 => 0.27430824089599
526 => 0.2709476779363
527 => 0.26880384813849
528 => 0.26693307230214
529 => 0.26797108746628
530 => 0.26427075294022
531 => 0.26308694145231
601 => 0.2769561794065
602 => 0.28720153460269
603 => 0.28705256308053
604 => 0.28614573725176
605 => 0.2847983780131
606 => 0.29124310044504
607 => 0.28899788801605
608 => 0.29063146765192
609 => 0.29104728223037
610 => 0.292305827724
611 => 0.29275564956233
612 => 0.29139597554554
613 => 0.28683274347498
614 => 0.27546160301422
615 => 0.27016830643393
616 => 0.26842143039561
617 => 0.26848492602181
618 => 0.26673343319417
619 => 0.26724932632831
620 => 0.26655402661557
621 => 0.26523729717071
622 => 0.2678897831335
623 => 0.2681954574311
624 => 0.26757633551254
625 => 0.2677221611369
626 => 0.26259609608162
627 => 0.26298581967455
628 => 0.26081578918547
629 => 0.26040893462887
630 => 0.25492328651864
701 => 0.24520466573396
702 => 0.25058972505802
703 => 0.24408533064848
704 => 0.24162201792793
705 => 0.25328295722329
706 => 0.25211252234214
707 => 0.25010924660144
708 => 0.24714598426169
709 => 0.24604688143511
710 => 0.2393690805945
711 => 0.23897452049616
712 => 0.24228421890855
713 => 0.240756906971
714 => 0.23861198257242
715 => 0.23084328382824
716 => 0.22210869431203
717 => 0.22237233666585
718 => 0.22515064707814
719 => 0.23322895930809
720 => 0.23007262296363
721 => 0.22778266473093
722 => 0.22735382438984
723 => 0.23272165909667
724 => 0.24031826980297
725 => 0.24388242958178
726 => 0.24035045548612
727 => 0.23629311382002
728 => 0.23654006540732
729 => 0.2381829236814
730 => 0.23835556485724
731 => 0.23571465253407
801 => 0.23645805388381
802 => 0.23532875925551
803 => 0.22839828020615
804 => 0.22827292981693
805 => 0.22657207848915
806 => 0.2265205773869
807 => 0.2236270049811
808 => 0.2232221741992
809 => 0.21747681056018
810 => 0.22125842630595
811 => 0.21872191700742
812 => 0.21489879919249
813 => 0.21423969224018
814 => 0.2142198786893
815 => 0.21814536585173
816 => 0.22121255470292
817 => 0.21876604067264
818 => 0.21820901685163
819 => 0.2241565739669
820 => 0.22339969311079
821 => 0.22274423917076
822 => 0.23963807663458
823 => 0.22626528603939
824 => 0.22043398604769
825 => 0.21321664497412
826 => 0.21556664762067
827 => 0.21606182770702
828 => 0.1987054234486
829 => 0.19166393240257
830 => 0.18924755802856
831 => 0.1878569004138
901 => 0.18849064055163
902 => 0.18215247272567
903 => 0.18641182632833
904 => 0.18092350874305
905 => 0.18000337443934
906 => 0.18981716615392
907 => 0.19118269793966
908 => 0.18535691510421
909 => 0.18909801079314
910 => 0.18774143749121
911 => 0.18101759019562
912 => 0.1807607886862
913 => 0.17738699846793
914 => 0.17210767007086
915 => 0.1696948753301
916 => 0.16843827088027
917 => 0.16895677036701
918 => 0.16869460116017
919 => 0.16698376974747
920 => 0.16879266401412
921 => 0.16417168664954
922 => 0.16233157622922
923 => 0.1615004410426
924 => 0.15739905765801
925 => 0.16392618251637
926 => 0.16521210834001
927 => 0.16650056783478
928 => 0.17771572806805
929 => 0.1771554503565
930 => 0.18222008800252
1001 => 0.18202328549686
1002 => 0.18057876879853
1003 => 0.17448459045973
1004 => 0.17691362132729
1005 => 0.16943744187214
1006 => 0.17503910385073
1007 => 0.1724827392547
1008 => 0.17417479440934
1009 => 0.17113232667483
1010 => 0.17281615393952
1011 => 0.1655170490575
1012 => 0.15870124761985
1013 => 0.16144412508401
1014 => 0.16442594657364
1015 => 0.17089129531713
1016 => 0.16704058694348
1017 => 0.16842544728605
1018 => 0.16378639696126
1019 => 0.154214711062
1020 => 0.1542688857647
1021 => 0.15279649041961
1022 => 0.15152412586822
1023 => 0.16748288712192
1024 => 0.16549816288934
1025 => 0.16233576457901
1026 => 0.1665687603861
1027 => 0.16768803166417
1028 => 0.16771989574395
1029 => 0.17080818021537
1030 => 0.17245639819137
1031 => 0.17274690375342
1101 => 0.177606386096
1102 => 0.17923522047911
1103 => 0.18594415878187
1104 => 0.17231655841156
1105 => 0.17203590694983
1106 => 0.1666283273179
1107 => 0.16319875482488
1108 => 0.16686315308062
1109 => 0.17010930969497
1110 => 0.16672919445253
1111 => 0.16717056614507
1112 => 0.16263303759766
1113 => 0.1642549905428
1114 => 0.1656520349198
1115 => 0.16488066912929
1116 => 0.16372589720637
1117 => 0.16984316187128
1118 => 0.16949800182513
1119 => 0.17519453931639
1120 => 0.17963539765414
1121 => 0.18759420969376
1122 => 0.17928877442816
1123 => 0.17898609135597
1124 => 0.18194486693855
1125 => 0.17923476750599
1126 => 0.18094745679791
1127 => 0.18731826897076
1128 => 0.18745287419298
1129 => 0.18519806329179
1130 => 0.18506085784354
1201 => 0.18549391894204
1202 => 0.18803037132237
1203 => 0.18714405692338
1204 => 0.18816972238463
1205 => 0.18945233274948
1206 => 0.19475775303401
1207 => 0.19603687190319
1208 => 0.19292927619817
1209 => 0.19320985729606
1210 => 0.19204753119697
1211 => 0.19092473874916
1212 => 0.19344861220118
1213 => 0.1980610405416
1214 => 0.19803234686428
1215 => 0.19910234058647
1216 => 0.19976893781108
1217 => 0.19690741454405
1218 => 0.19504466811833
1219 => 0.19575896362759
1220 => 0.19690113770221
1221 => 0.19538857196902
1222 => 0.18605231557516
1223 => 0.18888433936269
1224 => 0.18841295212555
1225 => 0.18774163937723
1226 => 0.19058926119498
1227 => 0.19031460112384
1228 => 0.18208746565358
1229 => 0.18261414017351
1230 => 0.18211949447553
1231 => 0.18371779592067
]
'min_raw' => 0.15152412586822
'max_raw' => 0.3394327469518
'avg_raw' => 0.24547843641001
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.151524'
'max' => '$0.339432'
'avg' => '$0.245478'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.036949943504612
'max_diff' => -0.24665873896294
'year' => 2034
]
9 => [
'items' => [
101 => 0.17914845398277
102 => 0.18055395278788
103 => 0.18143546846272
104 => 0.18195468796731
105 => 0.18383046485007
106 => 0.18361036408302
107 => 0.18381678307736
108 => 0.18659806500775
109 => 0.20066483459099
110 => 0.20143045782283
111 => 0.19766024901572
112 => 0.19916637307008
113 => 0.19627494423883
114 => 0.19821597978414
115 => 0.19954398700728
116 => 0.193542977727
117 => 0.19318763690365
118 => 0.19028427411708
119 => 0.19184437682371
120 => 0.18936214124211
121 => 0.18997119502892
122 => 0.18826822754464
123 => 0.1913332299589
124 => 0.19476037891126
125 => 0.19562621207884
126 => 0.19334857777955
127 => 0.19169942044345
128 => 0.18880404342746
129 => 0.19361911993274
130 => 0.19502719503968
131 => 0.19361172391364
201 => 0.19328372832508
202 => 0.19266217727744
203 => 0.1934155933181
204 => 0.19501952636025
205 => 0.19426314115756
206 => 0.19476274690973
207 => 0.19285876497369
208 => 0.19690836182732
209 => 0.20334009621943
210 => 0.2033607752972
211 => 0.20260438601731
212 => 0.20229488782062
213 => 0.20307098912332
214 => 0.20349199224269
215 => 0.20600176154298
216 => 0.20869484399582
217 => 0.22126228471927
218 => 0.21773339765355
219 => 0.22888397870379
220 => 0.23770264059279
221 => 0.24034697169996
222 => 0.23791431150676
223 => 0.22959231239555
224 => 0.22918399541696
225 => 0.2416205755465
226 => 0.23810667202845
227 => 0.23768870438613
228 => 0.23324223483928
301 => 0.23587064904743
302 => 0.2352957763036
303 => 0.23438831155372
304 => 0.23940314276596
305 => 0.2487904591182
306 => 0.24732735783101
307 => 0.24623522059144
308 => 0.241449793124
309 => 0.24433168932332
310 => 0.24330550128583
311 => 0.24771465632991
312 => 0.24510277055654
313 => 0.23808005075328
314 => 0.23919844202914
315 => 0.23902939943768
316 => 0.24250828399133
317 => 0.24146400919955
318 => 0.23882548802458
319 => 0.24875837429144
320 => 0.24811338790689
321 => 0.24902783113577
322 => 0.24943039732522
323 => 0.25547637015878
324 => 0.25795321177913
325 => 0.25851549819017
326 => 0.2608683061637
327 => 0.25845695818443
328 => 0.26810406936349
329 => 0.27451883537302
330 => 0.28196991619393
331 => 0.29285794793499
401 => 0.29695194858956
402 => 0.29621240401529
403 => 0.30446758541798
404 => 0.31930196289624
405 => 0.29921085583473
406 => 0.32036684035552
407 => 0.31366909991383
408 => 0.29778887781377
409 => 0.29676637872605
410 => 0.30752064950538
411 => 0.33137258703372
412 => 0.3253979472093
413 => 0.33138235940411
414 => 0.3244012246981
415 => 0.32405455251832
416 => 0.33104330127363
417 => 0.34737289367726
418 => 0.33961531643191
419 => 0.32849292721473
420 => 0.33670552632915
421 => 0.32959101293607
422 => 0.31356002303453
423 => 0.32539337851483
424 => 0.31748075069972
425 => 0.3197900761546
426 => 0.3364212429074
427 => 0.3344201369231
428 => 0.33700975336421
429 => 0.3324391481277
430 => 0.32816948211851
501 => 0.32019983344279
502 => 0.31784041336884
503 => 0.31849247219424
504 => 0.31784009024087
505 => 0.31338114505166
506 => 0.31241823626259
507 => 0.31081334609481
508 => 0.31131076866576
509 => 0.30829310562315
510 => 0.31398805926556
511 => 0.31504509284535
512 => 0.31918940518658
513 => 0.31961968144208
514 => 0.33116153232181
515 => 0.32480447481018
516 => 0.32906933783092
517 => 0.3286878483399
518 => 0.29813305037973
519 => 0.30234323195137
520 => 0.3088929532491
521 => 0.30594231268241
522 => 0.30177079726467
523 => 0.29840207490235
524 => 0.29329811605387
525 => 0.30048184012025
526 => 0.30992767336365
527 => 0.31985924336113
528 => 0.33179137397085
529 => 0.32912826132408
530 => 0.3196361804792
531 => 0.32006198829193
601 => 0.32269416464104
602 => 0.3192852571105
603 => 0.31827990372997
604 => 0.32255604452481
605 => 0.32258549195633
606 => 0.31866313186222
607 => 0.31430414640192
608 => 0.31428588209368
609 => 0.31351024273383
610 => 0.32453920921712
611 => 0.33060402562865
612 => 0.3312993470563
613 => 0.33055722495654
614 => 0.33084283829896
615 => 0.32731385525821
616 => 0.33538006400197
617 => 0.34278241481061
618 => 0.34079842666573
619 => 0.33782414639603
620 => 0.33545498890047
621 => 0.34024032845269
622 => 0.34002724481525
623 => 0.34271776173396
624 => 0.34259570434535
625 => 0.34169098470105
626 => 0.34079845897612
627 => 0.34433722258893
628 => 0.34331811549924
629 => 0.34229742545476
630 => 0.34025027531074
701 => 0.34052851701487
702 => 0.3375547502966
703 => 0.33617894974241
704 => 0.31549021041462
705 => 0.30996150324218
706 => 0.31170094706584
707 => 0.31227361713723
708 => 0.30986751669055
709 => 0.3133172466546
710 => 0.31277960989387
711 => 0.31487124002288
712 => 0.31356448032629
713 => 0.31361811020006
714 => 0.31746101183716
715 => 0.31857662253129
716 => 0.31800921392817
717 => 0.31840660746416
718 => 0.32756437377177
719 => 0.32626243225171
720 => 0.32557080176784
721 => 0.32576238813856
722 => 0.32810239377488
723 => 0.32875746759348
724 => 0.32598187379285
725 => 0.32729085987474
726 => 0.33286435647636
727 => 0.33481476485434
728 => 0.34103953214771
729 => 0.33839514036507
730 => 0.3432490359287
731 => 0.35816825607637
801 => 0.37008676146184
802 => 0.3591260113563
803 => 0.3810128286842
804 => 0.39805485545145
805 => 0.39740075407914
806 => 0.39442908252309
807 => 0.3750271881343
808 => 0.35717327565179
809 => 0.37210883156058
810 => 0.37214690536412
811 => 0.37086392786586
812 => 0.36289546481175
813 => 0.37058664262422
814 => 0.37119714038872
815 => 0.37085542398506
816 => 0.36474602204452
817 => 0.35541809448753
818 => 0.35724074920426
819 => 0.36022629481142
820 => 0.35457403412701
821 => 0.35276779435579
822 => 0.35612593774167
823 => 0.36694657542792
824 => 0.36490099655302
825 => 0.36484757822176
826 => 0.37359943210902
827 => 0.36733499349402
828 => 0.35726373871719
829 => 0.35472061406251
830 => 0.34569423479243
831 => 0.35192878710513
901 => 0.35215315754371
902 => 0.34873855695762
903 => 0.35754081473581
904 => 0.35745970038078
905 => 0.365816134098
906 => 0.38179049683214
907 => 0.37706609172101
908 => 0.37157212259057
909 => 0.37216946936629
910 => 0.37872088911845
911 => 0.37475975118193
912 => 0.37618420400194
913 => 0.3787187330385
914 => 0.38024787733508
915 => 0.37194944903421
916 => 0.37001468843756
917 => 0.36605684726552
918 => 0.36502432038034
919 => 0.3682478994319
920 => 0.36739860024254
921 => 0.35213430007715
922 => 0.3505390957801
923 => 0.35058801841846
924 => 0.34657680136571
925 => 0.34045873255785
926 => 0.35653665209399
927 => 0.3552453701449
928 => 0.35381989481038
929 => 0.35399450740521
930 => 0.3609733873446
1001 => 0.35692528453787
1002 => 0.36768782932055
1003 => 0.36547537366494
1004 => 0.36320617687013
1005 => 0.36289250475166
1006 => 0.36201905758443
1007 => 0.35902368225261
1008 => 0.3554065865453
1009 => 0.35301826665186
1010 => 0.32564069051137
1011 => 0.33072180939501
1012 => 0.33656717351208
1013 => 0.33858496978147
1014 => 0.33513338963543
1015 => 0.35915997167441
1016 => 0.36354985973883
1017 => 0.35025260244637
1018 => 0.34776522853039
1019 => 0.35932304349424
1020 => 0.35235226818562
1021 => 0.35549120788026
1022 => 0.34870653716866
1023 => 0.36249246425504
1024 => 0.36238743858839
1025 => 0.3570244015825
1026 => 0.36155720373538
1027 => 0.36076951781454
1028 => 0.35471466224347
1029 => 0.36268441397649
1030 => 0.36268836687392
1031 => 0.35752656035824
1101 => 0.35149870041266
1102 => 0.35042106142609
1103 => 0.34960920521013
1104 => 0.35529154101883
1105 => 0.36038630553671
1106 => 0.36986639920524
1107 => 0.37224991999498
1108 => 0.38155296031729
1109 => 0.37601345276216
1110 => 0.37846904471272
1111 => 0.38113493713973
1112 => 0.38241306400419
1113 => 0.38033042486663
1114 => 0.39478187577134
1115 => 0.39600202100872
1116 => 0.39641112515259
1117 => 0.39153817721769
1118 => 0.39586649551155
1119 => 0.39384141872069
1120 => 0.39911010594797
1121 => 0.39993630337918
1122 => 0.39923654354777
1123 => 0.39949879165308
1124 => 0.38716702771654
1125 => 0.38652756070119
1126 => 0.37780838257243
1127 => 0.38136151210881
1128 => 0.37471910674648
1129 => 0.37682548191123
1130 => 0.37775395201357
1201 => 0.37726897192232
1202 => 0.38156240072172
1203 => 0.37791210915268
1204 => 0.36827838953847
1205 => 0.35864204522379
1206 => 0.35852106877051
1207 => 0.35598398940806
1208 => 0.35415014571828
1209 => 0.35450340907203
1210 => 0.35574835520752
1211 => 0.35407778718569
1212 => 0.3544342875731
1213 => 0.36035456935368
1214 => 0.36154183964326
1215 => 0.35750703130282
1216 => 0.34130669359592
1217 => 0.33733109008718
1218 => 0.34018867504962
1219 => 0.33882293348962
1220 => 0.27345655137184
1221 => 0.28881341325716
1222 => 0.27968888739466
1223 => 0.28389388871135
1224 => 0.27458011059025
1225 => 0.27902513368658
1226 => 0.27820430022694
1227 => 0.30289767969595
1228 => 0.30251212654018
1229 => 0.30269667043283
1230 => 0.29388790961005
1231 => 0.30792050478466
]
'min_raw' => 0.17914845398277
'max_raw' => 0.39993630337918
'avg_raw' => 0.28954237868098
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.179148'
'max' => '$0.399936'
'avg' => '$0.289542'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.027624328114553
'max_diff' => 0.060503556427383
'year' => 2035
]
10 => [
'items' => [
101 => 0.31483346576347
102 => 0.31355406066879
103 => 0.31387605936742
104 => 0.30834305489223
105 => 0.3027502420107
106 => 0.29654695179735
107 => 0.30807189826391
108 => 0.30679052095422
109 => 0.30972953947764
110 => 0.31720429108139
111 => 0.31830497664886
112 => 0.31978430921359
113 => 0.3192540737952
114 => 0.33188643264158
115 => 0.33035657063429
116 => 0.33404309790051
117 => 0.32645963161641
118 => 0.31787821968672
119 => 0.31950926554706
120 => 0.31935218271467
121 => 0.31735233796702
122 => 0.31554696754794
123 => 0.31254153446014
124 => 0.32205116947035
125 => 0.32166509565557
126 => 0.32791518195517
127 => 0.32681041849162
128 => 0.31943253770053
129 => 0.31969604015634
130 => 0.32146822080662
131 => 0.32760175827164
201 => 0.32942260979433
202 => 0.32857911882063
203 => 0.33057559939023
204 => 0.33215353622938
205 => 0.33077376396289
206 => 0.3503084295742
207 => 0.34219627446025
208 => 0.34615008241878
209 => 0.3470930423197
210 => 0.3446776703618
211 => 0.34520147805148
212 => 0.3459949039723
213 => 0.35081243079477
214 => 0.36345501513957
215 => 0.36905432968489
216 => 0.38590014375982
217 => 0.36858938455813
218 => 0.36756223574614
219 => 0.37059667555588
220 => 0.38048695172838
221 => 0.38850209161979
222 => 0.39116117592629
223 => 0.39151261781409
224 => 0.39650123674565
225 => 0.39936062008499
226 => 0.39589548719366
227 => 0.39295914988279
228 => 0.38244155410686
229 => 0.38365899445639
301 => 0.39204595118712
302 => 0.40389302155856
303 => 0.41405904041484
304 => 0.4104992549329
305 => 0.43765790534322
306 => 0.44035057459827
307 => 0.43997853477164
308 => 0.44611283605754
309 => 0.43393749723376
310 => 0.42873230400051
311 => 0.39359401933824
312 => 0.40346644405633
313 => 0.41781659317125
314 => 0.41591729712559
315 => 0.40549583525776
316 => 0.4140511348015
317 => 0.41122248522339
318 => 0.40899141194035
319 => 0.41921239116478
320 => 0.40797400465283
321 => 0.41770448166888
322 => 0.4052250442469
323 => 0.41051551573312
324 => 0.40751238824623
325 => 0.40945577977971
326 => 0.39809475258499
327 => 0.40422488708592
328 => 0.39783971883574
329 => 0.39783669143462
330 => 0.3976957384916
331 => 0.40520786062176
401 => 0.40545283065473
402 => 0.39990136105036
403 => 0.39910130755011
404 => 0.40205952466553
405 => 0.39859622718166
406 => 0.40021668227663
407 => 0.39864530911571
408 => 0.398291559919
409 => 0.39547282613418
410 => 0.39425843811698
411 => 0.39473463094945
412 => 0.393109139318
413 => 0.39212972181346
414 => 0.39750090769836
415 => 0.39463129975308
416 => 0.39706109912478
417 => 0.3942920360756
418 => 0.3846932571238
419 => 0.37917289784338
420 => 0.36104169421072
421 => 0.36618368106925
422 => 0.36959282367623
423 => 0.36846610206496
424 => 0.37088673606935
425 => 0.37103534333765
426 => 0.37024837054738
427 => 0.3693371568737
428 => 0.36889362845064
429 => 0.37219932594016
430 => 0.37411839459749
501 => 0.36993497674529
502 => 0.36895486047475
503 => 0.37318452689616
504 => 0.37576462096982
505 => 0.39481458598011
506 => 0.39340330304157
507 => 0.39694534626701
508 => 0.39654656655691
509 => 0.40025919214891
510 => 0.40632776591919
511 => 0.3939886586443
512 => 0.396130301013
513 => 0.39560521976194
514 => 0.4013379191773
515 => 0.40135581603913
516 => 0.39791877637005
517 => 0.39978205133426
518 => 0.39874202236551
519 => 0.40062149528038
520 => 0.39338445449751
521 => 0.40219838898077
522 => 0.40719532187539
523 => 0.40726470429348
524 => 0.40963321082741
525 => 0.41203975064054
526 => 0.41665889424639
527 => 0.41191092523242
528 => 0.40336979118174
529 => 0.40398643347251
530 => 0.39897876970367
531 => 0.39906294943634
601 => 0.3986135914261
602 => 0.39996214864091
603 => 0.39368038697021
604 => 0.39515470387852
605 => 0.3930906515733
606 => 0.39612581416639
607 => 0.39286048094657
608 => 0.39560496655186
609 => 0.39678939555796
610 => 0.40115996408941
611 => 0.39221494442088
612 => 0.37397544379213
613 => 0.37780960795687
614 => 0.37213857799013
615 => 0.37266345340469
616 => 0.37372378527539
617 => 0.37028690276344
618 => 0.37094255163811
619 => 0.37091912724657
620 => 0.37071726849522
621 => 0.36982320261516
622 => 0.36852663020353
623 => 0.37369177562752
624 => 0.37456943448452
625 => 0.3765203614047
626 => 0.38232499659278
627 => 0.38174497665477
628 => 0.38269101323846
629 => 0.38062582068802
630 => 0.37275925176399
701 => 0.37318644430377
702 => 0.36785934648741
703 => 0.37638413553658
704 => 0.37436535296802
705 => 0.37306383071311
706 => 0.37270869830734
707 => 0.37852772206332
708 => 0.38026886517312
709 => 0.37918390163086
710 => 0.37695860975223
711 => 0.38123182800768
712 => 0.38237516094024
713 => 0.38263111101934
714 => 0.39020243445968
715 => 0.38305426389275
716 => 0.38477489959491
717 => 0.39819880816608
718 => 0.38602517546479
719 => 0.39247382021107
720 => 0.39215819260787
721 => 0.39545710104982
722 => 0.3918875858277
723 => 0.39193183424691
724 => 0.39486104145595
725 => 0.39074749821615
726 => 0.38972892706109
727 => 0.38832177830552
728 => 0.39139423613381
729 => 0.39323603564655
730 => 0.40807958706659
731 => 0.41766919823211
801 => 0.41725288792062
802 => 0.42105718486744
803 => 0.41934331424953
804 => 0.41380877392807
805 => 0.42325555939151
806 => 0.42026620120059
807 => 0.42051264025778
808 => 0.42050346778376
809 => 0.4224911296465
810 => 0.42108268905021
811 => 0.41830650806148
812 => 0.42014946656074
813 => 0.42562239443384
814 => 0.44261053048185
815 => 0.45211731647718
816 => 0.44203821002786
817 => 0.44899064269199
818 => 0.44482166049856
819 => 0.44406403241754
820 => 0.44843067391135
821 => 0.45280495863305
822 => 0.45252633560684
823 => 0.44935082952089
824 => 0.44755706670842
825 => 0.46114003967906
826 => 0.47114774278391
827 => 0.47046528452466
828 => 0.47347743333371
829 => 0.48232119539934
830 => 0.48312975816898
831 => 0.48302789784461
901 => 0.48102379065524
902 => 0.48973162291648
903 => 0.49699584978853
904 => 0.48055989774513
905 => 0.48681849312085
906 => 0.48962817822436
907 => 0.49375362955231
908 => 0.5007139574485
909 => 0.50827471967956
910 => 0.50934389435857
911 => 0.50858526375909
912 => 0.50359873782351
913 => 0.51187181407539
914 => 0.51671798811622
915 => 0.51960377385482
916 => 0.52692164633894
917 => 0.48964552988302
918 => 0.46325964191233
919 => 0.45913910448886
920 => 0.46751837937161
921 => 0.46972792733473
922 => 0.46883726132133
923 => 0.43913754551033
924 => 0.45898274163161
925 => 0.48033450402663
926 => 0.48115471217801
927 => 0.49184385087726
928 => 0.49532467260033
929 => 0.50393083031066
930 => 0.50339251280267
1001 => 0.50548797525126
1002 => 0.50500626472268
1003 => 0.52094735964075
1004 => 0.53853275461088
1005 => 0.5379238283012
1006 => 0.53539571971329
1007 => 0.5391503920729
1008 => 0.55730040424753
1009 => 0.55562944197451
1010 => 0.55725263949053
1011 => 0.57865252673428
1012 => 0.60647542424962
1013 => 0.5935488949805
1014 => 0.62159574398588
1015 => 0.63924974873519
1016 => 0.66978052449095
1017 => 0.66595792099909
1018 => 0.67784332795562
1019 => 0.65911466294723
1020 => 0.61610986240027
1021 => 0.60930418809795
1022 => 0.62292932039832
1023 => 0.6564253786378
1024 => 0.621874410322
1025 => 0.62886402621301
1026 => 0.62685101636619
1027 => 0.62674375162619
1028 => 0.63083761047462
1029 => 0.62489925469365
1030 => 0.60070532495217
1031 => 0.61179326037697
1101 => 0.60751167602306
1102 => 0.61226241307698
1103 => 0.63790018160398
1104 => 0.62656511301012
1105 => 0.6146245390327
1106 => 0.62960066862588
1107 => 0.64867042795446
1108 => 0.64747707668733
1109 => 0.64516147644696
1110 => 0.65821439376102
1111 => 0.67977398901791
1112 => 0.68560146098238
1113 => 0.68990318164913
1114 => 0.69049631625091
1115 => 0.69660597128033
1116 => 0.66375281635582
1117 => 0.71589161694988
1118 => 0.72489454750718
1119 => 0.72320236969564
1120 => 0.73320874810885
1121 => 0.73026461774236
1122 => 0.72599903476123
1123 => 0.74186127296388
1124 => 0.72367649688116
1125 => 0.69786549663138
1126 => 0.68370507141066
1127 => 0.70235266163023
1128 => 0.71374009426611
1129 => 0.72126646286168
1130 => 0.72354393745114
1201 => 0.66630311325167
1202 => 0.6354534837298
1203 => 0.6552277425616
1204 => 0.67935370308283
1205 => 0.66361879542697
1206 => 0.66423557401696
1207 => 0.6418017307607
1208 => 0.68133860042183
1209 => 0.67557841106962
1210 => 0.7054622836185
1211 => 0.69833025760165
1212 => 0.72269939558001
1213 => 0.71628218485156
1214 => 0.74291966780394
1215 => 0.75354608093471
1216 => 0.77138948245041
1217 => 0.78451516124106
1218 => 0.79222281088116
1219 => 0.79176007250744
1220 => 0.82230162031732
1221 => 0.80429233661424
1222 => 0.7816684318209
1223 => 0.78125923676069
1224 => 0.79297647763637
1225 => 0.81753260004375
1226 => 0.82389964530693
1227 => 0.82745795500076
1228 => 0.82200827983901
1229 => 0.80246049311631
1230 => 0.79401985791898
1231 => 0.80121152365585
]
'min_raw' => 0.29654695179735
'max_raw' => 0.82745795500076
'avg_raw' => 0.56200245339906
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.296546'
'max' => '$0.827457'
'avg' => '$0.5620024'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.11739849781458
'max_diff' => 0.42752165162158
'year' => 2036
]
11 => [
'items' => [
101 => 0.79241673444654
102 => 0.80759900800383
103 => 0.82844751235663
104 => 0.8241423786517
105 => 0.83853379516558
106 => 0.85342739723627
107 => 0.87472591711088
108 => 0.88029413888801
109 => 0.8894981977451
110 => 0.89897219768487
111 => 0.90201499113407
112 => 0.90782462795195
113 => 0.9077940082982
114 => 0.92530173988253
115 => 0.94461330998936
116 => 0.95190298064082
117 => 0.96866517634905
118 => 0.9399605036161
119 => 0.96173332761955
120 => 0.98137295987981
121 => 0.95795778065213
122 => 0.99023015018043
123 => 0.99148321315845
124 => 1.0104029764217
125 => 0.99122417176633
126 => 0.97983585878289
127 => 1.0127134916516
128 => 1.028621942561
129 => 1.0238301876798
130 => 0.98736469643586
131 => 0.9661402164534
201 => 0.91059165844286
202 => 0.97639132492547
203 => 1.0084404230666
204 => 0.98728169701417
205 => 0.99795292770541
206 => 1.0561717021986
207 => 1.0783376421391
208 => 1.0737272815831
209 => 1.0745063566241
210 => 1.0864666954757
211 => 1.1395054246228
212 => 1.1077233886897
213 => 1.1320195643104
214 => 1.1449061682532
215 => 1.1568759641735
216 => 1.1274819284861
217 => 1.0892407199408
218 => 1.0771281239378
219 => 0.98517787870117
220 => 0.98039146911693
221 => 0.97770471237424
222 => 0.96076509116088
223 => 0.94745518903992
224 => 0.93687066070836
225 => 0.90909369755862
226 => 0.91846760722035
227 => 0.87419692546244
228 => 0.90251973879452
301 => 0.8318626617559
302 => 0.89070797510005
303 => 0.85868114641491
304 => 0.88018630051818
305 => 0.88011127106142
306 => 0.84051346414198
307 => 0.81767427549599
308 => 0.83222829541574
309 => 0.84783136006924
310 => 0.85036290481426
311 => 0.87059268541919
312 => 0.87623838234834
313 => 0.85913165708061
314 => 0.83039845088463
315 => 0.8370725193493
316 => 0.81753902571157
317 => 0.78330732945645
318 => 0.80789313133496
319 => 0.81628780505768
320 => 0.81999537120765
321 => 0.78633242947761
322 => 0.77575480232801
323 => 0.77012336238845
324 => 0.8260529878284
325 => 0.82911693896399
326 => 0.81344133175527
327 => 0.88429656276075
328 => 0.86825984176534
329 => 0.88617678820925
330 => 0.83646691759041
331 => 0.83836590159126
401 => 0.81483245220429
402 => 0.82800961135534
403 => 0.81869641998704
404 => 0.82694502711516
405 => 0.83188920821747
406 => 0.85541879599697
407 => 0.89097664519639
408 => 0.85190426022532
409 => 0.83487986256656
410 => 0.84544170312521
411 => 0.87356927635595
412 => 0.91618398962452
413 => 0.8909552216685
414 => 0.90215132047512
415 => 0.90459716998459
416 => 0.88599441051358
417 => 0.91686989990091
418 => 0.93341632549561
419 => 0.95038953435543
420 => 0.9651268960299
421 => 0.94361006148796
422 => 0.96663615876492
423 => 0.94808118901302
424 => 0.93143546296806
425 => 0.93146070766342
426 => 0.92101860056016
427 => 0.90078570225742
428 => 0.89705444538205
429 => 0.91646491485355
430 => 0.9320302731914
501 => 0.93331231065714
502 => 0.94193009280996
503 => 0.94703000751778
504 => 0.9970161046523
505 => 1.0171209264265
506 => 1.0417047219272
507 => 1.0512814957415
508 => 1.0801041514591
509 => 1.0568275161055
510 => 1.0517914696298
511 => 0.98187713467765
512 => 0.99332560310939
513 => 1.0116557056815
514 => 0.98217939131767
515 => 1.0008753282692
516 => 1.0045663022575
517 => 0.98117779743484
518 => 0.99367060841828
519 => 0.96049340630658
520 => 0.8916998175396
521 => 0.9169464868309
522 => 0.93553653336629
523 => 0.90900624482408
524 => 0.95656076017204
525 => 0.92878039403022
526 => 0.919975351656
527 => 0.88562374212993
528 => 0.90183637951153
529 => 0.92376420371275
530 => 0.91021535773957
531 => 0.93833124750337
601 => 0.97815084564281
602 => 1.006528662575
603 => 1.0087071589903
604 => 0.990462123869
605 => 1.0196999090892
606 => 1.0199128744349
607 => 0.98693253326666
608 => 0.9667322579364
609 => 0.96214271287962
610 => 0.97360829626477
611 => 0.98752963115778
612 => 1.0094796961893
613 => 1.0227436607758
614 => 1.0573290457541
615 => 1.0666868592885
616 => 1.0769682592511
617 => 1.0907073802673
618 => 1.1072047176857
619 => 1.0711094826083
620 => 1.0725436135878
621 => 1.0389322304562
622 => 1.0030136472202
623 => 1.0302713745818
624 => 1.0659072271634
625 => 1.0577323232071
626 => 1.0568124795139
627 => 1.0583594014625
628 => 1.0521957908468
629 => 1.0243180084661
630 => 1.0103179606787
701 => 1.0283815941176
702 => 1.0379816113705
703 => 1.0528704009204
704 => 1.0510350433441
705 => 1.0893869662852
706 => 1.1042893638382
707 => 1.1004766928346
708 => 1.1011783160563
709 => 1.1281583949947
710 => 1.1581657916505
711 => 1.1862716784435
712 => 1.2148621936652
713 => 1.1803952116586
714 => 1.1628950038236
715 => 1.1809507512452
716 => 1.1713701175103
717 => 1.2264232807519
718 => 1.2302350423276
719 => 1.2852842245989
720 => 1.337532453709
721 => 1.3047162771292
722 => 1.3356604535709
723 => 1.3691291033084
724 => 1.4336955587446
725 => 1.411951848029
726 => 1.3952965063882
727 => 1.3795572890157
728 => 1.4123081018375
729 => 1.4544414993258
730 => 1.4635166295961
731 => 1.4782218076006
801 => 1.4627611109925
802 => 1.481381817117
803 => 1.5471210920897
804 => 1.5293577596955
805 => 1.5041309720975
806 => 1.5560258160213
807 => 1.5748063583012
808 => 1.7066180394682
809 => 1.8730357318105
810 => 1.8041377144233
811 => 1.761370491706
812 => 1.7714218034966
813 => 1.8321919111456
814 => 1.8517093409757
815 => 1.7986542386361
816 => 1.8173941977126
817 => 1.9206532146964
818 => 1.9760483643624
819 => 1.9008143105549
820 => 1.6932465399258
821 => 1.5018595758865
822 => 1.5526240170171
823 => 1.5468689047969
824 => 1.6578078367213
825 => 1.5289341100926
826 => 1.5311040131339
827 => 1.6443370446842
828 => 1.6141284131722
829 => 1.565194298952
830 => 1.5022168490741
831 => 1.3857972082657
901 => 1.2826810858
902 => 1.4849155481801
903 => 1.4761948304228
904 => 1.4635659387722
905 => 1.4916701705518
906 => 1.6281363425481
907 => 1.6249903555857
908 => 1.6049771916275
909 => 1.6201570001018
910 => 1.5625332051331
911 => 1.577384169166
912 => 1.5018292592136
913 => 1.5359832339638
914 => 1.5650893083203
915 => 1.5709327836701
916 => 1.5840984320086
917 => 1.4715994084371
918 => 1.5221081672229
919 => 1.5517773309789
920 => 1.4177309697561
921 => 1.5491276654094
922 => 1.4696410507245
923 => 1.4426620998516
924 => 1.4789857029955
925 => 1.4648303595244
926 => 1.4526604264377
927 => 1.4458693946693
928 => 1.4725414399284
929 => 1.4712971571371
930 => 1.4276565142723
1001 => 1.3707290746753
1002 => 1.3898357919835
1003 => 1.382894142459
1004 => 1.3577367090916
1005 => 1.3746897816612
1006 => 1.3000370298184
1007 => 1.1716008503854
1008 => 1.2564497246254
1009 => 1.253183135265
1010 => 1.2515359727814
1011 => 1.3152975567222
1012 => 1.3091683516563
1013 => 1.2980437844444
1014 => 1.3575323976907
1015 => 1.3358182536211
1016 => 1.402736129148
1017 => 1.4468125699469
1018 => 1.4356333588368
1019 => 1.4770874644481
1020 => 1.3902759721602
1021 => 1.4191112676257
1022 => 1.4250541820571
1023 => 1.3567983174375
1024 => 1.3101711654062
1025 => 1.3070616659542
1026 => 1.2262166099494
1027 => 1.2694033863087
1028 => 1.3074059623146
1029 => 1.2892056775268
1030 => 1.283444011081
1031 => 1.3128791153995
1101 => 1.3151664750997
1102 => 1.2630144315324
1103 => 1.2738584928304
1104 => 1.3190800311186
1105 => 1.2727190260921
1106 => 1.1826471663528
1107 => 1.1603080997965
1108 => 1.1573276565272
1109 => 1.096742336293
1110 => 1.1618009030422
1111 => 1.133401095195
1112 => 1.2231157479024
1113 => 1.1718712194253
1114 => 1.1696621702238
1115 => 1.1663228683586
1116 => 1.114174580485
1117 => 1.1255917413327
1118 => 1.1635441228733
1119 => 1.1770859601712
1120 => 1.175673435596
1121 => 1.1633581354989
1122 => 1.1689960168188
1123 => 1.1508344367193
1124 => 1.1444212047856
1125 => 1.1241792807043
1126 => 1.0944292442791
1127 => 1.0985661693116
1128 => 1.0396235626327
1129 => 1.0075085021932
1130 => 0.99861947673318
1201 => 0.98673270039016
1202 => 0.99996211975063
1203 => 1.0394565856337
1204 => 0.99181788056036
1205 => 0.91014466217867
1206 => 0.91505336176781
1207 => 0.9260817523386
1208 => 0.90553041947003
1209 => 0.88608030765256
1210 => 0.9029906018404
1211 => 0.86838458253307
1212 => 0.93026372443968
1213 => 0.92859006706539
1214 => 0.95165478458771
1215 => 0.96607762579007
1216 => 0.93283764626893
1217 => 0.92447788130982
1218 => 0.92923998336066
1219 => 0.85053304417368
1220 => 0.94522274849412
1221 => 0.94604162898916
1222 => 0.93902987703387
1223 => 0.98944922136787
1224 => 1.0958497641005
1225 => 1.0558175999725
1226 => 1.0403159360437
1227 => 1.0108472615832
1228 => 1.050112520625
1229 => 1.0470975613641
1230 => 1.0334627721967
1231 => 1.0252164091651
]
'min_raw' => 0.77012336238845
'max_raw' => 1.9760483643624
'avg_raw' => 1.3730858633754
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.770123'
'max' => '$1.97'
'avg' => '$1.37'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.4735764105911
'max_diff' => 1.1485904093616
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.024173292345118
]
1 => [
'year' => 2028
'avg' => 0.041488387221133
]
2 => [
'year' => 2029
'avg' => 0.11333879633386
]
3 => [
'year' => 2030
'avg' => 0.087440712582377
]
4 => [
'year' => 2031
'avg' => 0.085877616164107
]
5 => [
'year' => 2032
'avg' => 0.15057048781614
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.024173292345118
'min' => '$0.024173'
'max_raw' => 0.15057048781614
'max' => '$0.15057'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.15057048781614
]
1 => [
'year' => 2033
'avg' => 0.38728277764378
]
2 => [
'year' => 2034
'avg' => 0.24547843641001
]
3 => [
'year' => 2035
'avg' => 0.28954237868098
]
4 => [
'year' => 2036
'avg' => 0.56200245339906
]
5 => [
'year' => 2037
'avg' => 1.3730858633754
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.15057048781614
'min' => '$0.15057'
'max_raw' => 1.3730858633754
'max' => '$1.37'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 1.3730858633754
]
]
]
]
'prediction_2025_max_price' => '$0.041331'
'last_price' => 0.04007652
'sma_50day_nextmonth' => '$0.036718'
'sma_200day_nextmonth' => '$0.06262'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 feb. 2026'
'sma_50day_date_nextmonth' => '4 feb. 2026'
'daily_sma3' => '$0.039819'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.039532'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.039122'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.036213'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.038148'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.051246'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.0706013'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.039857'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.039596'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.0389024'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.037958'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.040972'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.0509033'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.073074'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.06021'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.092639'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.226511'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.253333'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.038829'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.038863'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.0435015'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.058371'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.105523'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.195889'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.410836'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '55.90'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 86.88
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.039158'
'vwma_10_action' => 'BUY'
'hma_9' => '0.039943'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 68.49
'stochastic_fast_14_action' => 'NEUTRAL'
'cci_20' => 66.35
'cci_20_action' => 'NEUTRAL'
'adx_14' => 14.04
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.002898'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'NEUTRAL'
'williams_percent_r_14' => -31.51
'williams_percent_r_14_action' => 'NEUTRAL'
'ultimate_oscillator' => 61.43
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.009764'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 15
'buy_signals' => 19
'sell_pct' => 44.12
'buy_pct' => 55.88
'overall_action' => 'bullish'
'overall_action_label' => 'Alcista'
'overall_action_dir' => 1
'last_updated' => 1767712703
'last_updated_date' => '6 de enero de 2026'
]
Predicción de precio de Boson Protocol para 2026
La previsión del precio de Boson Protocol para 2026 sugiere que el precio medio podría oscilar entre $0.013846 en el extremo inferior y $0.041331 en el extremo superior. En el mercado de criptomonedas, en comparación con el precio medio de hoy, Boson Protocol podría potencialmente ganar 3.13% para 2026 si BOSON alcanza el objetivo de precio previsto.
Predicción de precio de Boson Protocol 2027-2032
La predicción del precio de BOSON para 2027-2032 está actualmente dentro de un rango de precios de $0.024173 en el extremo inferior y $0.15057 en el extremo superior. Considerando la volatilidad de precios en el mercado, si Boson Protocol alcanza el objetivo de precio superior, podría ganar 275.71% para 2032 en comparación con el precio de hoy.
| Predicción de Precio de Boson Protocol | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.013329 | $0.024173 | $0.035016 |
| 2028 | $0.024056 | $0.041488 | $0.05892 |
| 2029 | $0.052844 | $0.113338 | $0.173833 |
| 2030 | $0.044941 | $0.08744 | $0.129939 |
| 2031 | $0.053135 | $0.085877 | $0.11862 |
| 2032 | $0.0811065 | $0.15057 | $0.220034 |
Predicción de precio de Boson Protocol 2032-2037
La predicción de precio de Boson Protocol para 2032-2037 se estima actualmente entre $0.15057 en el extremo inferior y $1.37 en el extremo superior. Comparado con el precio actual, Boson Protocol podría potencialmente ganar 3326.16% para 2037 si alcanza el objetivo de precio superior. Tenga en cuenta que esta información es solo para fines generales y no debe considerarse como consejo de inversión a largo plazo.
| Predicción de Precio de Boson Protocol | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.0811065 | $0.15057 | $0.220034 |
| 2033 | $0.188474 | $0.387282 | $0.586091 |
| 2034 | $0.151524 | $0.245478 | $0.339432 |
| 2035 | $0.179148 | $0.289542 | $0.399936 |
| 2036 | $0.296546 | $0.5620024 | $0.827457 |
| 2037 | $0.770123 | $1.37 | $1.97 |
Boson Protocol Histograma de precios potenciales
Pronóstico de precio de Boson Protocol basado en análisis técnico
A fecha de 6 de enero de 2026, el sentimiento general de predicción de precio para Boson Protocol es Alcista, con 19 indicadores técnicos mostrando señales alcistas y 15 indicando señales bajistas. La predicción de precio de BOSON se actualizó por última vez el 6 de enero de 2026.
Promedios Móviles Simples de 50 y 200 días y el Índice de Fuerza Relativa de 14 días - RSI (14) de Boson Protocol
Según nuestros indicadores técnicos, se proyecta que el SMA de 200 días de Boson Protocol aumentar durante el próximo mes, alcanzando $0.06262 para el 4 feb. 2026. Se espera que el SMA de 50 días a corto plazo para Boson Protocol alcance $0.036718 para el 4 feb. 2026.
El oscilador de momento del Índice de Fuerza Relativa (RSI) es una herramienta comúnmente utilizada para identificar si una criptomoneda está sobrevendida (por debajo de 30) o sobrecomprada (por encima de 70). Actualmente, el RSI se encuentra en 55.90, lo que sugiere que el mercado de BOSON está en un estado NEUTRAL.
Promedios Móviles y Osciladores Populares de BOSON para Sáb, 19 de Oct de 2024
Los promedios móviles (MA) son indicadores ampliamente utilizados en los mercados financieros, diseñados para suavizar los movimientos de precios durante un período establecido. Como indicadores rezagados, se basan en datos históricos de precios. La tabla a continuación resalta dos tipos: el promedio móvil simple (SMA) y el promedio móvil exponencial (EMA).
Promedio Móvil Simple Diario (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 3 | $0.039819 | BUY |
| SMA 5 | $0.039532 | BUY |
| SMA 10 | $0.039122 | BUY |
| SMA 21 | $0.036213 | BUY |
| SMA 50 | $0.038148 | BUY |
| SMA 100 | $0.051246 | SELL |
| SMA 200 | $0.0706013 | SELL |
Promedio Móvil Exponencial Diario (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 3 | $0.039857 | BUY |
| EMA 5 | $0.039596 | BUY |
| EMA 10 | $0.0389024 | BUY |
| EMA 21 | $0.037958 | BUY |
| EMA 50 | $0.040972 | SELL |
| EMA 100 | $0.0509033 | SELL |
| EMA 200 | $0.073074 | SELL |
Promedio Móvil Simple Semanal (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 21 | $0.06021 | SELL |
| SMA 50 | $0.092639 | SELL |
| SMA 100 | $0.226511 | SELL |
| SMA 200 | $0.253333 | SELL |
Promedio Móvil Exponencial Semanal (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 21 | $0.058371 | SELL |
| EMA 50 | $0.105523 | SELL |
| EMA 100 | $0.195889 | SELL |
| EMA 200 | $0.410836 | SELL |
Osciladores de Boson Protocol
Un oscilador es una herramienta de análisis técnico que establece límites altos y bajos entre dos extremos, creando un indicador de tendencia que fluctúa dentro de estos límites. Los traders utilizan este indicador para identificar condiciones de sobrecompra o sobreventa a corto plazo.
| Período | Valor | Acción |
|---|---|---|
| RSI (14) | 55.90 | NEUTRAL |
| Stoch RSI (14) | 86.88 | SELL |
| Estocástico Rápido (14) | 68.49 | NEUTRAL |
| Índice de Canal de Materias Primas (20) | 66.35 | NEUTRAL |
| Índice Direccional Medio (14) | 14.04 | NEUTRAL |
| Oscilador Asombroso (5, 34) | 0.002898 | BUY |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | NEUTRAL |
| Rango Percentil de Williams (14) | -31.51 | NEUTRAL |
| Oscilador Ultimate (7, 14, 28) | 61.43 | NEUTRAL |
| VWMA (10) | 0.039158 | BUY |
| Promedio Móvil de Hull (9) | 0.039943 | BUY |
| Nube Ichimoku B/L (9, 26, 52, 26) | -0.009764 | SELL |
Predicción de precios de Boson Protocol basada en flujos de dinero globales
Definiciones de flujos de dinero globales utilizadas para la predicción de precios de Boson Protocol
M0: El total de toda la moneda física, además de cuentas en el banco central que pueden cambiarse por moneda física.
M1: Medir M0 más la cantidad en cuentas a la vista, incluyendo cuentas "de cheques" o "corrientes".
M2: Medir M1 más la mayoría de cuentas de ahorro, cuentas del mercado monetario, y cuentas de certificados de depósito (CD) inferiores a 100 000 $.
Predicciones de precios de Boson Protocol por parte de empresas de Internet o nichos tecnológicos
| Comparación | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook acción | $0.056314 | $0.07913 | $0.111192 | $0.156243 | $0.219548 | $0.3085017 |
| Amazon.com acción | $0.083622 | $0.174482 | $0.364067 | $0.759649 | $1.58 | $3.30 |
| Apple acción | $0.056845 | $0.08063 | $0.114368 | $0.162223 | $0.2301017 | $0.326381 |
| Netflix acción | $0.063234 | $0.099774 | $0.157427 | $0.248396 | $0.39193 | $0.6184052 |
| Google acción | $0.051898 | $0.0672088 | $0.087035 | $0.11271 | $0.145959 | $0.189016 |
| Tesla acción | $0.09085 | $0.205951 | $0.466875 | $1.05 | $2.39 | $5.43 |
| Kodak acción | $0.030053 | $0.022536 | $0.016900092 | $0.012673 | $0.0095036 | $0.007126 |
| Nokia acción | $0.026549 | $0.017587 | $0.011651 | $0.007718 | $0.005113 | $0.003387 |
Este cálculo muestra cuánto puede costar la criptomoneda si asumimos que su capitalización se comportará como la capitalización de algunas empresas de Internet o nichos tecnológicos. Si extrapola los datos, puede obtener una imagen potencial del precio futuro en 2024, 2025, 2026, 2027, 2028, 2029 y 2030.
Resumen de pronósticos y predicciones de Boson Protocol
Podría preguntarse cosas como: "¿Debo invertir en Boson Protocol ahora?", "¿Debería comprar BOSON hoy?", "¿Será Boson Protocol una buena o mala inversión a corto plazo?, ¿Lo será a largo plazo?".
Actualizamos el pronóstico de Boson Protocol/Boson regularmente con valores actualizados. Aquí hay algunas predicciones similares. Hacemos un pronóstico de precios futuros para una gran cantidad de monedas digitales, como Boson Protocol, con métodos de análisis técnico.
Si está tratando de encontrar criptomonedas que ofrezcan un buen rendimiento, debería explorar el máximo de fuentes de información disponibles acerca de Boson Protocol a fin de tomar una decisión responsable sobre la inversión por sus propios medios.
El precio de Boson Protocol es de $0.04007 USD hoy, pero dicho precio puede subir y bajar, y su inversión puede perderse porque estos son activos de criptomonedas conllevan un alto riesgo
Pronóstico a corto plazo de Boson Protocol
basado en el historial de precios de las últimas 4 horas
Pronóstico a largo plazo de Boson Protocol
basado en el historial de precios del último mes
Predicción de precios de Boson Protocol basada en el patrón de crecimiento del Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si Boson Protocol ofrece un 1 % del crecimiento medio anterior anual del Bitcoin | $0.041118 | $0.042187 | $0.043283 | $0.0444086 |
| Si Boson Protocol ofrece un 2 % del crecimiento medio anterior anual del Bitcoin | $0.042159 | $0.044351 | $0.046657 | $0.049082 |
| Si Boson Protocol ofrece un 5 % del crecimiento medio anterior anual del Bitcoin | $0.045285 | $0.05117 | $0.057821 | $0.065335 |
| Si Boson Protocol ofrece un 10 % del crecimiento medio anterior anual del Bitcoin | $0.050493 | $0.063618 | $0.080155 | $0.10099 |
| Si Boson Protocol ofrece un 20 % del crecimiento medio anterior anual del Bitcoin | $0.06091 | $0.092576 | $0.1407033 | $0.213849 |
| Si Boson Protocol ofrece un 50 % del crecimiento medio anterior anual del Bitcoin | $0.092162 | $0.211942 | $0.487395 | $1.12 |
| Si Boson Protocol ofrece un 100 % del crecimiento medio anterior anual del Bitcoin | $0.144248 | $0.519195 | $1.86 | $6.72 |
Cuadro de preguntas
¿Es BOSON una buena inversión?
La decisión de adquirir Boson Protocol depende completamente de su tolerancia individual al riesgo. Como puede discernir, el valor de Boson Protocol ha experimentado un aumento de 2.1062% durante las últimas 24 horas, y Boson Protocol ha sufrido un declive de durante el período previo de 30 días. Por lo tanto, la determinación de si invertir o no en Boson Protocol dependerá de si dicha inversión se alinea con sus aspiraciones comerciales.
¿Puede Boson Protocol subir?
Parece que el valor medio de Boson Protocol podría potencialmente aumentar hasta $0.041331 para el final de este año. Mirando las perspectivas de Boson Protocol en un horizonte de cinco años más extendido, la moneda digital podría potencialmente crecer hasta $0.129939. Sin embargo, dada la imprevisibilidad del mercado, es vital realizar una investigación exhaustiva antes de invertir cualquier fondo en un proyecto, red o activo en particular.
¿Cuál será el precio de Boson Protocol la próxima semana?
Basado en nuestro nuevo pronóstico experimental de Boson Protocol, el precio de Boson Protocol aumentará en un 0.86% durante la próxima semana y alcanzará $0.040419 para el 13 de enero de 2026.
¿Cuál será el precio de Boson Protocol el próximo mes?
Basado en nuestro nuevo pronóstico experimental de Boson Protocol, el precio de Boson Protocol disminuirá en un -11.62% durante el próximo mes y alcanzará $0.03542 para el 5 de febrero de 2026.
¿Hasta qué punto puede subir el precio de Boson Protocol este año en 2026?
Según nuestra predicción más reciente sobre el valor de Boson Protocol en 2026, se anticipa que BOSON fluctúe dentro del rango de $0.013846 y $0.041331. Sin embargo, es crucial tener en cuenta que el mercado de criptomonedas es excepcionalmente inestable, y esta predicción de precios proyectada de Boson Protocol no considera fluctuaciones de precios repentinas y extremas.
¿Dónde estará Boson Protocol en 5 años?
El futuro de Boson Protocol parece estar en una tendencia alcista, con un precio máximo de $0.129939 proyectada después de un período de cinco años. Basado en el pronóstico de Boson Protocol para 2030, el valor de Boson Protocol podría potencialmente alcanzar su punto más alto de aproximadamente $0.129939, mientras que su punto más bajo se anticipa que esté alrededor de $0.044941.
¿Cuánto será Boson Protocol en 2026?
Basado en nuestra nueva simulación experimental de predicción de precios de Boson Protocol, se espera que el valor de BOSON en 2026 crezca en un 3.13% hasta $0.041331 si ocurre lo mejor. El precio estará entre $0.041331 y $0.013846 durante 2026.
¿Cuánto será Boson Protocol en 2027?
Según nuestra última simulación experimental para la predicción de precios de Boson Protocol, el valor de BOSON podría disminuir en un -12.62% hasta $0.035016 en 2027, asumiendo las condiciones más favorables. Se proyecta que el precio fluctúe entre $0.035016 y $0.013329 a lo largo del año.
¿Cuánto será Boson Protocol en 2028?
Nuestro nuevo modelo experimental de predicción de precios de Boson Protocol sugiere que el valor de BOSON en 2028 podría aumentar en un 47.02% , alcanzando $0.05892 en el mejor escenario. Se espera que el precio oscile entre $0.05892 y $0.024056 durante el año.
¿Cuánto será Boson Protocol en 2029?
Basado en nuestro modelo de pronóstico experimental, el valor de Boson Protocol podría experimentar un 333.75% crecimiento en 2029, potencialmente alcanzando $0.173833 bajo condiciones óptimas. El rango de precios previsto para 2029 se encuentra entre $0.173833 y $0.052844.
¿Cuánto será Boson Protocol en 2030?
Usando nuestra nueva simulación experimental para las predicciones de precios de Boson Protocol, se espera que el valor de BOSON en 2030 aumente en un 224.23% , alcanzando $0.129939 en el mejor escenario. Se pronostica que el precio oscile entre $0.129939 y $0.044941 durante el transcurso de 2030.
¿Cuánto será Boson Protocol en 2031?
Nuestra simulación experimental indica que el precio de Boson Protocol podría crecer en un 195.98% en 2031, potencialmente alcanzando $0.11862 bajo condiciones ideales. Es probable que el precio fluctúe entre $0.11862 y $0.053135 durante el año.
¿Cuánto será Boson Protocol en 2032?
Basado en los hallazgos de nuestra última predicción experimental de precios de Boson Protocol, BOSON podría experimentar un 449.04% aumento en valor, alcanzando $0.220034 si se desarrolla el escenario más positivo en 2032. Se espera que el precio se mantenga dentro de un rango de $0.220034 y $0.0811065 a lo largo del año.
¿Cuánto será Boson Protocol en 2033?
Según nuestra predicción experimental de precios de Boson Protocol, se anticipa que el valor de BOSON aumente en un 1362.43% en 2033, con el precio potencial más alto siendo $0.586091. A lo largo del año, el precio de BOSON podría oscilar entre $0.586091 y $0.188474.
¿Cuánto será Boson Protocol en 2034?
Los resultados de nuestra nueva simulación de predicción de precios de Boson Protocol sugieren que BOSON podría aumentar en un 746.96% en 2034, alcanzando potencialmente $0.339432 bajo las mejores circunstancias. El rango de precios previsto para el año está entre $0.339432 y $0.151524.
¿Cuánto será Boson Protocol en 2035?
Basado en nuestra predicción experimental para el precio de Boson Protocol, BOSON podría crecer en un 897.93% , con el valor potencialmente alcanzando $0.399936 en 2035. El rango de precios esperado para el año está entre $0.399936 y $0.179148.
¿Cuánto será Boson Protocol en 2036?
Nuestra reciente simulación de predicción de precios de Boson Protocol sugiere que el valor de BOSON podría aumentar en un 1964.7% en 2036, posiblemente alcanzando $0.827457 si las condiciones son óptimas. El rango de precios esperado para 2036 está entre $0.827457 y $0.296546.
¿Cuánto será Boson Protocol en 2037?
Según la simulación experimental, el valor de Boson Protocol podría aumentar en un 4830.69% en 2037, con un máximo de $1.97 bajo condiciones favorables. Se espera que el precio caiga entre $1.97 y $0.770123 durante el transcurso del año.
Predicciones relacionadas
Predicción de precios de Ultra
Predicción de precios de TOMI
Predicción de precios de Alchemix
Predicción de precios de Shardus
Predicción de precios de Agoric
Predicción de precios de Orchid Protocol
Predicción de precios de Polytrade
Predicción de precios de Agoras: Tau Net
Predicción de precios de Commune AI
Predicción de precios de Krypton DAO
Predicción de precios de DIMO
Predicción de precios de Clover Finance
Predicción de precios de Alethea Artificial Liquid Intelligence Token
Predicción de precios de Cobak Token
Predicción de precios de ELYSIA
Predicción de precios de Snek
Predicción de precios de Gods Unchained
Predicción de precios de TRAC (Ordinals)
Predicción de precios de Numbers Protocol
Predicción de precios de DexTools
Predicción de precios de H2O Dao
Predicción de precios de Bitrise Token
Predicción de precios de Stratos
Predicción de precios de Linear
Predicción de precios de sETH2
¿Cómo leer y predecir los movimientos de precio de Boson Protocol?
Los traders de Boson Protocol utilizan indicadores y patrones de gráficos para predecir la dirección del mercado. También identifican niveles clave de soporte y resistencia para estimar cuándo una tendencia bajista podría desacelerar o una tendencia alcista podría estancarse.
Indicadores de predicción de precio de Boson Protocol
Las medias móviles son herramientas populares para la predicción de precios de Boson Protocol. Una media móvil simple (SMA) calcula el precio de cierre promedio de BOSON durante un período específico, como una SMA de 12 días. Una media móvil exponencial (EMA) da más peso a los precios recientes, reaccionando más rápido a los cambios de precio.
Las medias móviles comúnmente utilizadas en el mercado de criptomonedas incluyen las de 50 días, 100 días y 200 días, que ayudan a identificar niveles clave de resistencia y soporte. Un movimiento de precio de BOSON por encima de estas medias se considera alcista, mientras que una caída por debajo indica debilidad.
Los traders también utilizan RSI y niveles de retroceso de Fibonacci para evaluar la dirección futura de BOSON.
¿Cómo leer gráficos de Boson Protocol y predecir movimientos de precio?
La mayoría de los traders prefieren gráficos de velas sobre gráficos lineales simples porque proporcionan información más detallada. Las velas pueden representar la acción del precio de Boson Protocol en diferentes marcos de tiempo, como 5 minutos para tendencias a corto plazo y semanal para tendencias a largo plazo. Las opciones populares incluyen gráficos de 1 hora, 4 horas y 1 día.
Por ejemplo, un gráfico de velas de 1 hora muestra los precios de apertura, cierre, máximo y mínimo de BOSON dentro de cada hora. El color de la vela es crucial: el verde indica que el precio cerró más alto de lo que abrió, mientras que el rojo significa lo contrario. Algunos gráficos usan velas huecas y llenas para transmitir la misma información.
¿Qué afecta el precio de Boson Protocol?
La acción del precio de Boson Protocol está impulsada por la oferta y la demanda, influenciada por factores como reducciones a la mitad de recompensas de bloque, hard forks y actualizaciones de protocolo. Los eventos del mundo real, como regulaciones, adopción por empresas y gobiernos y hacks de exchanges de criptomonedas, también impactan el precio de BOSON. La capitalización de mercado de Boson Protocol puede cambiar rápidamente.
Los traders a menudo monitorean la actividad de las "ballenas" de BOSON, grandes poseedores de Boson Protocol, ya que sus acciones pueden influir significativamente en los movimientos de precios en el relativamente pequeño mercado de Boson Protocol.
Patrones de predicción de precios alcistas y bajistas
Los traders a menudo identifican patrones de velas para obtener una ventaja en las predicciones de precios de criptomonedas. Ciertas formaciones indican tendencias alcistas, mientras que otras sugieren movimientos bajistas.
Patrones de velas alcistas comúnmente seguidos:
- Martillo
- Envolvente Alcista
- Línea Penetrante
- Estrella de la Mañana
- Tres Soldados Blancos
Patrones de velas bajistas comunes:
- Harami Bajista
- Cubierta de Nube Oscura
- Estrella de la Tarde
- Estrella Fugaz
- Hombre Colgado


