Predicción del precio de Boson - Pronóstico de BOSON
Predicción de precio de Boson hasta $0.0415058 para el año 2026
| Año | Precio min. | Precio max. |
|---|---|---|
| 2026 | $0.0139046 | $0.0415058 |
| 2027 | $0.013385 | $0.035164 |
| 2028 | $0.024157 | $0.059168 |
| 2029 | $0.053066 | $0.174564 |
| 2030 | $0.04513 | $0.130486 |
| 2031 | $0.053358 | $0.119119 |
| 2032 | $0.081447 | $0.22096 |
| 2033 | $0.189267 | $0.588557 |
| 2034 | $0.152161 | $0.34086 |
| 2035 | $0.1799021 | $0.401618 |
Calculadora de ganancias de inversión
Si abres una posición corta de $10,000.00 en Boson hoy y la cierras el Apr 06, 2026, nuestra previsión indica que podrías obtener una ganancia de alrededor de $3,954.55, equivalente a un ROI del 39.55% en los próximos 90 días.
Predicción del precio a largo plazo de Boson Protocol para 2027, 2028, 2029, 2030, 2031, 2032 y 2037
[
'name' => 'Boson'
'name_with_ticker' => 'Boson <small>BOSON</small>'
'name_lang' => 'Boson Protocol'
'name_lang_with_ticker' => 'Boson Protocol <small>BOSON</small>'
'name_with_lang' => 'Boson Protocol/Boson'
'name_with_lang_with_ticker' => 'Boson Protocol/Boson <small>BOSON</small>'
'image' => '/uploads/coins/boson-protocol.png?1717209480'
'price_for_sd' => 0.04024
'ticker' => 'BOSON'
'marketcap' => '$5.82M'
'low24h' => '$0.03894'
'high24h' => '$0.04052'
'volume24h' => '$106.32K'
'current_supply' => '144.7M'
'max_supply' => '200M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.04024'
'change_24h_pct' => '1.0043%'
'ath_price' => '$5.36'
'ath_days' => 1733
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '9 abr. 2021'
'ath_pct' => '-99.25%'
'fdv' => '$8.05M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$1.98'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.040589'
'next_week_prediction_price_date' => '13 de enero de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.035569'
'next_month_prediction_price_date' => '5 de febrero de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.0139046'
'current_year_max_price_prediction' => '$0.0415058'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.04513'
'grand_prediction_max_price' => '$0.130486'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.041007754044562
107 => 0.041160862112349
108 => 0.041505822406967
109 => 0.038558174458479
110 => 0.039881581848953
111 => 0.040658959704353
112 => 0.037146738272406
113 => 0.040589534379296
114 => 0.03850686246562
115 => 0.037799972337436
116 => 0.038751706769343
117 => 0.038380814935637
118 => 0.038061943916516
119 => 0.037884008408946
120 => 0.038582857136643
121 => 0.038550255008191
122 => 0.037406802848987
123 => 0.035915216120377
124 => 0.036415841586164
125 => 0.036233959661055
126 => 0.035574796101225
127 => 0.036018992752839
128 => 0.034062975501911
129 => 0.03069774948662
130 => 0.032920920871982
131 => 0.032835331191991
201 => 0.032792172994156
202 => 0.034462824846312
203 => 0.034302230219223
204 => 0.03401074939851
205 => 0.03556944282737
206 => 0.035000498758451
207 => 0.036753850318778
208 => 0.037908721056078
209 => 0.037615808480944
210 => 0.03870196999135
211 => 0.036427374985774
212 => 0.037182904205714
213 => 0.037338617730826
214 => 0.035550208792408
215 => 0.034328505486322
216 => 0.034247031804243
217 => 0.032128766632577
218 => 0.033260326789242
219 => 0.034256052899966
220 => 0.033779177364397
221 => 0.033628212816087
222 => 0.034399457953187
223 => 0.034459390305607
224 => 0.033092926319073
225 => 0.03337705745216
226 => 0.034561931510004
227 => 0.033347201665976
228 => 0.030987180004023
301 => 0.030401862002007
302 => 0.030323769790987
303 => 0.028736340947362
304 => 0.030440975749709
305 => 0.029696856977112
306 => 0.032047519263833
307 => 0.030704833572513
308 => 0.030646953075952
309 => 0.030559458216177
310 => 0.029193092634609
311 => 0.02949223985991
312 => 0.030486650798218
313 => 0.030841467823847
314 => 0.030804457501144
315 => 0.030481777642121
316 => 0.030629498829194
317 => 0.03015363741616
318 => 0.029985600847019
319 => 0.029455231212711
320 => 0.028675734368628
321 => 0.02878412818573
322 => 0.027239740971158
323 => 0.026398276849826
324 => 0.026165370671361
325 => 0.025853918795697
326 => 0.026200549989459
327 => 0.027235365916221
328 => 0.0259871583601
329 => 0.023847194056709
330 => 0.023975809557664
331 => 0.024264770402027
401 => 0.023726293780225
402 => 0.023216670848607
403 => 0.023659746640634
404 => 0.022753015554636
405 => 0.02437434452181
406 => 0.02433049211697
407 => 0.024934823293622
408 => 0.025312723980507
409 => 0.024441785244038
410 => 0.024222746507085
411 => 0.024347520926409
412 => 0.022285277713436
413 => 0.024766294026487
414 => 0.024787749958589
415 => 0.02460403124166
416 => 0.025925095835575
417 => 0.028712954179115
418 => 0.027664049728933
419 => 0.027257882222518
420 => 0.026485757495916
421 => 0.027514567849883
422 => 0.02743557126664
423 => 0.027078318758651
424 => 0.026862251327123
425 => 0.027260362194702
426 => 0.026812920984932
427 => 0.026732548248795
428 => 0.026245576914205
429 => 0.02607175030354
430 => 0.025943056001241
501 => 0.02580137621965
502 => 0.026113886513438
503 => 0.025405697073563
504 => 0.024551690033741
505 => 0.024480688588864
506 => 0.02467672982068
507 => 0.024589996169155
508 => 0.02448027334151
509 => 0.0242707825823
510 => 0.024208631149105
511 => 0.024410593155402
512 => 0.024182589825409
513 => 0.024519021158797
514 => 0.02442753045171
515 => 0.023916470799168
516 => 0.023279501253583
517 => 0.023273830888539
518 => 0.023136596844782
519 => 0.022961808656781
520 => 0.022913186581491
521 => 0.023622432033268
522 => 0.025090548892515
523 => 0.024802322423986
524 => 0.025010595586135
525 => 0.026035093408383
526 => 0.026360750458351
527 => 0.026129606797894
528 => 0.02581320309914
529 => 0.025827123256109
530 => 0.026908370476665
531 => 0.026975806539527
601 => 0.027146195714679
602 => 0.027365193956724
603 => 0.026166903145489
604 => 0.02577068386666
605 => 0.025582933190942
606 => 0.025004733778386
607 => 0.025628272273756
608 => 0.025264963095085
609 => 0.025313985915696
610 => 0.025282059739462
611 => 0.025299493590524
612 => 0.024373891327321
613 => 0.02471113214381
614 => 0.024150403877466
615 => 0.023399651673533
616 => 0.023397134888897
617 => 0.02358088042722
618 => 0.023471581391062
619 => 0.023177460495096
620 => 0.023219238980157
621 => 0.022853215489639
622 => 0.023263680858975
623 => 0.023275451537051
624 => 0.023117400011657
625 => 0.023749778546425
626 => 0.024008864548091
627 => 0.023904831648285
628 => 0.02400156532251
629 => 0.024814299535018
630 => 0.024946810673736
701 => 0.025005663368361
702 => 0.024926808554052
703 => 0.024016420611958
704 => 0.024056800188458
705 => 0.023760521648368
706 => 0.023510197503056
707 => 0.023520209156091
708 => 0.023648908306643
709 => 0.024210945045207
710 => 0.02539371822764
711 => 0.025438603605317
712 => 0.025493005992461
713 => 0.025271724143498
714 => 0.025204983420469
715 => 0.025293031661387
716 => 0.025737219081449
717 => 0.026879789721557
718 => 0.026475928947616
719 => 0.026147583851934
720 => 0.026435631022049
721 => 0.026391288417998
722 => 0.026016992214989
723 => 0.026006486967203
724 => 0.025288092883894
725 => 0.025022518948336
726 => 0.02480058548992
727 => 0.024558239947049
728 => 0.024414569385739
729 => 0.024635312665013
730 => 0.024685799264741
731 => 0.024203140226675
801 => 0.024137355583273
802 => 0.024531505372677
803 => 0.024358054745745
804 => 0.024536453016913
805 => 0.024577842946096
806 => 0.024571178214207
807 => 0.024390075839012
808 => 0.024505505092411
809 => 0.024232480497007
810 => 0.023935607256475
811 => 0.023746220624871
812 => 0.023580955670306
813 => 0.023672654272354
814 => 0.023345765499555
815 => 0.023241187202166
816 => 0.0244664002586
817 => 0.025371478316648
818 => 0.025358318123233
819 => 0.025278208830351
820 => 0.025159182670704
821 => 0.025728511576503
822 => 0.025530168769813
823 => 0.025674479733776
824 => 0.025711212930816
825 => 0.025822393254927
826 => 0.025862130664525
827 => 0.025742016613315
828 => 0.025338899186758
829 => 0.024334368887034
830 => 0.023866757320835
831 => 0.023712437715303
901 => 0.023718046939869
902 => 0.023563319485645
903 => 0.023608893655312
904 => 0.023547470649305
905 => 0.023431150335747
906 => 0.023665471820774
907 => 0.023692475189068
908 => 0.023637781754529
909 => 0.023650664038294
910 => 0.023197825760186
911 => 0.023232254070957
912 => 0.023040552861643
913 => 0.023004611195889
914 => 0.022520007232077
915 => 0.021661461065715
916 => 0.022137178982973
917 => 0.021562578634988
918 => 0.02134496877659
919 => 0.022375100000969
920 => 0.022271703397434
921 => 0.022094733357605
922 => 0.02183295778491
923 => 0.021735862678608
924 => 0.021145943549295
925 => 0.021111087980039
926 => 0.021403467829683
927 => 0.021268544589248
928 => 0.021079061260251
929 => 0.020392771850241
930 => 0.019621155330775
1001 => 0.019644445583289
1002 => 0.019889882441696
1003 => 0.020603523209183
1004 => 0.020324691415215
1005 => 0.020122395749465
1006 => 0.020084511852256
1007 => 0.020558708141144
1008 => 0.021229795237115
1009 => 0.021544654287817
1010 => 0.021232638530983
1011 => 0.020874211629653
1012 => 0.020896027414347
1013 => 0.021041158056269
1014 => 0.021056409234699
1015 => 0.020823110168814
1016 => 0.020888782489303
1017 => 0.020789020229277
1018 => 0.020176779423642
1019 => 0.020165705928904
1020 => 0.020015452161485
1021 => 0.020010902537122
1022 => 0.019755283396183
1023 => 0.019719520511353
1024 => 0.019211973192045
1025 => 0.019546042374609
1026 => 0.019321966306365
1027 => 0.01898423081732
1028 => 0.018926005091708
1029 => 0.018924254756087
1030 => 0.019271033587062
1031 => 0.019541990062064
1101 => 0.019325864205507
1102 => 0.019276656537393
1103 => 0.019802065695097
1104 => 0.019735202590568
1105 => 0.019677299573267
1106 => 0.021169706748218
1107 => 0.01998835001526
1108 => 0.019473211050206
1109 => 0.018835628758714
1110 => 0.019043228767793
1111 => 0.019086973139984
1112 => 0.017553702661794
1113 => 0.016931655019749
1114 => 0.01671819171037
1115 => 0.016595340557894
1116 => 0.016651325370745
1117 => 0.016091409533993
1118 => 0.016467682236443
1119 => 0.015982842450324
1120 => 0.015901557482375
1121 => 0.016768511080082
1122 => 0.016889142608533
1123 => 0.016374491030881
1124 => 0.016704980658256
1125 => 0.01658514052522
1126 => 0.015991153636882
1127 => 0.015968467706819
1128 => 0.0156704259659
1129 => 0.015204048353614
1130 => 0.014990901270218
1201 => 0.014879892418557
1202 => 0.014925696834271
1203 => 0.014902536720048
1204 => 0.014751401308634
1205 => 0.014911199624917
1206 => 0.014502980960037
1207 => 0.01434042499844
1208 => 0.014267002241857
1209 => 0.013904684680586
1210 => 0.014481293043919
1211 => 0.014594892155416
1212 => 0.014708715092256
1213 => 0.015699466047224
1214 => 0.015649970929347
1215 => 0.016097382689856
1216 => 0.01607999709158
1217 => 0.015952388009893
1218 => 0.01541402628493
1219 => 0.015628607673125
1220 => 0.014968159513612
1221 => 0.015463012180829
1222 => 0.015237182089053
1223 => 0.015386658799635
1224 => 0.015117886196237
1225 => 0.015266636052306
1226 => 0.014621830719001
1227 => 0.014019720571418
1228 => 0.014262027271496
1229 => 0.014525442365614
1230 => 0.015096593406579
1231 => 0.014756420558474
]
'min_raw' => 0.013904684680586
'max_raw' => 0.041505822406967
'avg_raw' => 0.027705253543776
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.0139046'
'max' => '$0.0415058'
'avg' => '$0.0277052'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.026340445319414
'max_diff' => 0.0012606924069667
'year' => 2026
]
1 => [
'items' => [
101 => 0.014878759578012
102 => 0.014468944341864
103 => 0.013623378451756
104 => 0.013628164262866
105 => 0.013498092372327
106 => 0.013385691268094
107 => 0.014795493502156
108 => 0.014620162308675
109 => 0.014340794998643
110 => 0.014714739244737
111 => 0.014813616038697
112 => 0.014816430922017
113 => 0.015089250991069
114 => 0.015234855110828
115 => 0.01526051846802
116 => 0.015689806741341
117 => 0.015833698508109
118 => 0.016426368331102
119 => 0.015222501618546
120 => 0.015197708775827
121 => 0.014720001407143
122 => 0.014417031841669
123 => 0.014740745992493
124 => 0.015027512538735
125 => 0.014728912043094
126 => 0.014767902964024
127 => 0.014367056195183
128 => 0.01451034005345
129 => 0.01463375541461
130 => 0.014565612706197
131 => 0.014463599773558
201 => 0.015004000952186
202 => 0.014973509399838
203 => 0.015476743401145
204 => 0.015869050291772
205 => 0.016572134373022
206 => 0.015838429481636
207 => 0.015811690359181
208 => 0.016073069570268
209 => 0.015833658492314
210 => 0.015984958029391
211 => 0.016547757678517
212 => 0.016559648748255
213 => 0.016360458009366
214 => 0.016348337234802
215 => 0.016386593995114
216 => 0.016610665035186
217 => 0.016532367728777
218 => 0.016622975353999
219 => 0.016736281576772
220 => 0.017204964155004
221 => 0.017317961937898
222 => 0.017043435908098
223 => 0.017068222534851
224 => 0.016965542263798
225 => 0.016866354408541
226 => 0.017089314221936
227 => 0.017496777663203
228 => 0.017494242854282
301 => 0.017588766452698
302 => 0.017647653871436
303 => 0.017394865961989
304 => 0.017230310328208
305 => 0.017293411429147
306 => 0.017394311463711
307 => 0.017260690907834
308 => 0.016435922937902
309 => 0.016686104853598
310 => 0.016644462349555
311 => 0.016585158359898
312 => 0.016836718210729
313 => 0.016812454649432
314 => 0.016085666787798
315 => 0.016132193388642
316 => 0.016088496224496
317 => 0.016229690701451
318 => 0.015826033527198
319 => 0.015950195755325
320 => 0.016028069140858
321 => 0.016073937163189
322 => 0.016239643911844
323 => 0.01622020013747
324 => 0.016238435259529
325 => 0.016484134622825
326 => 0.017726797688536
327 => 0.017794433097421
328 => 0.017461371607582
329 => 0.017594423103425
330 => 0.01733899332657
331 => 0.017510465047004
401 => 0.017627781643215
402 => 0.01709765050362
403 => 0.017066259578056
404 => 0.016809775551649
405 => 0.016947595539442
406 => 0.016728314029256
407 => 0.016782118041714
408 => 0.016631677332332
409 => 0.016902440656774
410 => 0.017205196125866
411 => 0.017281684113535
412 => 0.017080477148128
413 => 0.016934790044988
414 => 0.01667901148419
415 => 0.017104376931194
416 => 0.017228766750676
417 => 0.017103723564427
418 => 0.017074748325926
419 => 0.017019840301323
420 => 0.017086397322912
421 => 0.017228089297005
422 => 0.017161269978663
423 => 0.017205405315632
424 => 0.017037206923265
425 => 0.017394949645306
426 => 0.01796313118338
427 => 0.017964957979932
428 => 0.017898138301409
429 => 0.017870797128608
430 => 0.01793935817373
501 => 0.017976549728187
502 => 0.018198263576166
503 => 0.018436171368516
504 => 0.019546383228115
505 => 0.019234640180524
506 => 0.020219686189159
507 => 0.020998729689773
508 => 0.021232330772164
509 => 0.021017428768145
510 => 0.020282260621173
511 => 0.020246189764578
512 => 0.021344841356139
513 => 0.021034421960092
514 => 0.020997498560679
515 => 0.020604695973988
516 => 0.020836890952269
517 => 0.020786106504424
518 => 0.020705940769041
519 => 0.021148952612759
520 => 0.021978231236259
521 => 0.021848980385861
522 => 0.021752500621813
523 => 0.021329754380592
524 => 0.021584342041598
525 => 0.02149368825182
526 => 0.021883194463026
527 => 0.021652459612126
528 => 0.021032070227861
529 => 0.021130869282136
530 => 0.021115936003838
531 => 0.021423261813016
601 => 0.021331010233397
602 => 0.021097922402332
603 => 0.021975396852078
604 => 0.021918418542081
605 => 0.021999200758601
606 => 0.022034763588587
607 => 0.022568866823313
608 => 0.022787671829183
609 => 0.022837344396236
610 => 0.023045192228826
611 => 0.022832172952816
612 => 0.023684401937025
613 => 0.024251084482585
614 => 0.024909315420469
615 => 0.025871167736515
616 => 0.026232833104979
617 => 0.026167501493307
618 => 0.026896766941864
619 => 0.028207240742261
620 => 0.026432385716247
621 => 0.028301312368325
622 => 0.027709631768073
623 => 0.026306767708755
624 => 0.026216439802016
625 => 0.027166475630573
626 => 0.029273563660751
627 => 0.028745762007586
628 => 0.029274426955176
629 => 0.02865771121212
630 => 0.028627086077389
701 => 0.029244474448071
702 => 0.030687036028258
703 => 0.030001729095123
704 => 0.029019173562321
705 => 0.029744677277485
706 => 0.029116178817211
707 => 0.027699995880571
708 => 0.028745358407609
709 => 0.028046354255989
710 => 0.028250360828537
711 => 0.029719563586221
712 => 0.029542785223388
713 => 0.029771552794129
714 => 0.02936778401966
715 => 0.028990600315815
716 => 0.028286558922558
717 => 0.028078126974835
718 => 0.02813573006659
719 => 0.028078098429604
720 => 0.027684193740551
721 => 0.027599130060454
722 => 0.027457353533567
723 => 0.027501296007589
724 => 0.027234714658855
725 => 0.027737808742432
726 => 0.027831187437594
727 => 0.028197297357057
728 => 0.028235308103418
729 => 0.029254919017873
730 => 0.028693334460057
731 => 0.029070093866318
801 => 0.029036392958825
802 => 0.026337172026776
803 => 0.026709100855785
804 => 0.027287705396026
805 => 0.027027044834927
806 => 0.026658531786711
807 => 0.026360937741858
808 => 0.025910052333351
809 => 0.026544664887337
810 => 0.027379112912307
811 => 0.02825647108238
812 => 0.029310559436939
813 => 0.029075299187142
814 => 0.0282367656338
815 => 0.028274381636454
816 => 0.028506908963508
817 => 0.028205764947638
818 => 0.028116951698328
819 => 0.028494707386873
820 => 0.02849730878269
821 => 0.02815080619796
822 => 0.027765731984338
823 => 0.027764118509322
824 => 0.027695598272384
825 => 0.028669900810053
826 => 0.029205668692674
827 => 0.029267093616984
828 => 0.02920153430586
829 => 0.029226765482755
830 => 0.028915013956698
831 => 0.029627585498222
901 => 0.030281511610746
902 => 0.030106245443496
903 => 0.029843496543234
904 => 0.029634204388474
905 => 0.030056942863235
906 => 0.030038118984406
907 => 0.030275800136626
908 => 0.030265017546648
909 => 0.030185094314797
910 => 0.030106248297806
911 => 0.030418863842825
912 => 0.030328835586311
913 => 0.030238667491049
914 => 0.030057821571956
915 => 0.030082401535894
916 => 0.029819698002934
917 => 0.029698159328091
918 => 0.02787050927051
919 => 0.027382101454936
920 => 0.027535764496174
921 => 0.027586354359208
922 => 0.027373798651959
923 => 0.027678548935073
924 => 0.02763105392626
925 => 0.027815829221901
926 => 0.027700389639196
927 => 0.027705127319937
928 => 0.028044610518359
929 => 0.028143163935126
930 => 0.028093038871935
1001 => 0.028128144748007
1002 => 0.028937144844834
1003 => 0.028822130901432
1004 => 0.028761032036313
1005 => 0.028777956839508
1006 => 0.028984673709405
1007 => 0.029042543146654
1008 => 0.028797346274619
1009 => 0.028912982536937
1010 => 0.02940534706546
1011 => 0.029577646785024
1012 => 0.030127544781316
1013 => 0.029893938338834
1014 => 0.03032273307426
1015 => 0.031640701904063
1016 => 0.032693586601816
1017 => 0.031725310321462
1018 => 0.033658798984827
1019 => 0.035164297251732
1020 => 0.03510651372071
1021 => 0.034843995275073
1022 => 0.033130025523943
1023 => 0.031552805005104
1024 => 0.032872216941434
1025 => 0.032875580393799
1026 => 0.03276224173834
1027 => 0.032058305083286
1028 => 0.032737746268615
1029 => 0.032791677842538
1030 => 0.032761490502704
1031 => 0.032221783919741
1101 => 0.031397751722006
1102 => 0.031558765640989
1103 => 0.031822509724879
1104 => 0.031323187151297
1105 => 0.031163623334016
1106 => 0.031460282828599
1107 => 0.032416181531609
1108 => 0.032235474418949
1109 => 0.032230755425943
1110 => 0.033003897085643
1111 => 0.03245049451171
1112 => 0.031560796542146
1113 => 0.031336136071156
1114 => 0.03053874274857
1115 => 0.031089505156698
1116 => 0.031109326115263
1117 => 0.030807679172987
1118 => 0.03158527352904
1119 => 0.031578107860156
1120 => 0.032316317971583
1121 => 0.033727498445574
1122 => 0.033310142939441
1123 => 0.032824803893959
1124 => 0.032877573705195
1125 => 0.033456328287461
1126 => 0.033106400055341
1127 => 0.033232236687398
1128 => 0.033456137818647
1129 => 0.033591222930283
1130 => 0.032858137036472
1201 => 0.032687219647073
1202 => 0.032337582652215
1203 => 0.03224636888654
1204 => 0.032531140923437
1205 => 0.032456113552859
1206 => 0.031107660240446
1207 => 0.030966739366576
1208 => 0.030971061208589
1209 => 0.030616708970819
1210 => 0.030076236753938
1211 => 0.031496565469981
1212 => 0.031382493196595
1213 => 0.03125656623527
1214 => 0.031271991569503
1215 => 0.031888508125731
1216 => 0.031530897388286
1217 => 0.032481664145029
1218 => 0.032286215082508
1219 => 0.032085753489029
1220 => 0.032058043590601
1221 => 0.031980882979691
1222 => 0.031716270534683
1223 => 0.031396735106593
1224 => 0.031185750139283
1225 => 0.028767206030973
1226 => 0.029216073749452
1227 => 0.029732455143981
1228 => 0.029910707932104
1229 => 0.029605794203302
1230 => 0.031728310387167
1231 => 0.032116114547034
]
'min_raw' => 0.013385691268094
'max_raw' => 0.035164297251732
'avg_raw' => 0.024274994259913
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.013385'
'max' => '$0.035164'
'avg' => '$0.024274'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00051899341249206
'max_diff' => -0.0063415251552342
'year' => 2027
]
2 => [
'items' => [
101 => 0.030941430450958
102 => 0.030721695018617
103 => 0.03174271620553
104 => 0.031126915615058
105 => 0.031404210583241
106 => 0.030804850534267
107 => 0.032022703881154
108 => 0.032013425879113
109 => 0.031539653420709
110 => 0.031940082658298
111 => 0.031870498224187
112 => 0.031335610285499
113 => 0.032039660782873
114 => 0.032040009983135
115 => 0.031584014292623
116 => 0.031051511156396
117 => 0.030956312172802
118 => 0.030884592526847
119 => 0.031386571946831
120 => 0.031836645125139
121 => 0.032674119727368
122 => 0.032884680740274
123 => 0.033706514391487
124 => 0.033217152466544
125 => 0.033434080269574
126 => 0.033669586086073
127 => 0.033782496234943
128 => 0.033598515206452
129 => 0.034875161147012
130 => 0.034982949179817
131 => 0.035019089574853
201 => 0.034588611746664
202 => 0.034970976812686
203 => 0.034792080860894
204 => 0.03525751842873
205 => 0.035330504982372
206 => 0.035268687968009
207 => 0.035291855052149
208 => 0.034202462957658
209 => 0.034145972230557
210 => 0.033375717158143
211 => 0.03368960179359
212 => 0.033102809512504
213 => 0.033288887389467
214 => 0.033370908744617
215 => 0.033328065443357
216 => 0.033707348359929
217 => 0.033384880398462
218 => 0.03253383442951
219 => 0.031682556593652
220 => 0.031671869493859
221 => 0.031447743065979
222 => 0.031285740709425
223 => 0.03131694811064
224 => 0.031426927062966
225 => 0.031279348532785
226 => 0.031310841894621
227 => 0.031833841540261
228 => 0.031938725389331
229 => 0.031582289089425
301 => 0.03015114591179
302 => 0.029799939786247
303 => 0.030052379784567
304 => 0.029931729724588
305 => 0.024157241963466
306 => 0.025513872208754
307 => 0.024707808583814
308 => 0.025079279787391
309 => 0.024256497555491
310 => 0.024649172362265
311 => 0.024576659663642
312 => 0.026758080952457
313 => 0.026724021059479
314 => 0.026740323727838
315 => 0.025962154890681
316 => 0.027201798977859
317 => 0.027812492231363
318 => 0.027699469163214
319 => 0.027727914634481
320 => 0.027239127193764
321 => 0.026745056258701
322 => 0.026197055554744
323 => 0.027215173127762
324 => 0.027101975833489
325 => 0.027361609699451
326 => 0.0280219317221
327 => 0.028119166648255
328 => 0.028249851375066
329 => 0.028203010203276
330 => 0.029318956951271
331 => 0.029183808436835
401 => 0.029509477471744
402 => 0.028839551558367
403 => 0.028081466797429
404 => 0.028225553926825
405 => 0.028211677177589
406 => 0.028035010232818
407 => 0.027875523214392
408 => 0.027610022263902
409 => 0.028450106558001
410 => 0.028416000669835
411 => 0.02896813535549
412 => 0.02887054018665
413 => 0.028218775763549
414 => 0.028242053657427
415 => 0.028398608680728
416 => 0.028940447403886
417 => 0.029101302028113
418 => 0.029026787757222
419 => 0.029203157509394
420 => 0.029342552970337
421 => 0.029220663433118
422 => 0.030946362237848
423 => 0.030229731778823
424 => 0.030579012478269
425 => 0.030662313867006
426 => 0.030448939111397
427 => 0.030495212455511
428 => 0.030565303963113
429 => 0.030990885871947
430 => 0.032107735943845
501 => 0.032602381238034
502 => 0.034090546010968
503 => 0.032561307832146
504 => 0.032470569167232
505 => 0.032738632581108
506 => 0.033612342841059
507 => 0.034320402943319
508 => 0.034555307328205
509 => 0.034586353820517
510 => 0.035027050062712
511 => 0.03527964893024
512 => 0.034973537947448
513 => 0.034714140940687
514 => 0.033785013060012
515 => 0.033892562142131
516 => 0.034633468666641
517 => 0.035680042771687
518 => 0.036578112231294
519 => 0.03626363960742
520 => 0.038662843744502
521 => 0.038900715034823
522 => 0.0388678489138
523 => 0.039409755113147
524 => 0.038334181664722
525 => 0.037874353177266
526 => 0.03477022551783
527 => 0.03564235877441
528 => 0.036910055681439
529 => 0.036742271242174
530 => 0.035821635862654
531 => 0.036577413846803
601 => 0.036327530009881
602 => 0.03613043626001
603 => 0.037033360936671
604 => 0.036040558164581
605 => 0.036900151714333
606 => 0.035797714095419
607 => 0.036265076091877
608 => 0.035999778818931
609 => 0.036171458668138
610 => 0.035167821777672
611 => 0.035709359881859
612 => 0.035145292012126
613 => 0.035145024570512
614 => 0.035132572741024
615 => 0.035796196088305
616 => 0.035817836821835
617 => 0.035327418165515
618 => 0.03525674117536
619 => 0.035518071051273
620 => 0.035212122208982
621 => 0.035355273746671
622 => 0.035216458123228
623 => 0.035185207802486
624 => 0.034936199930015
625 => 0.03482892049194
626 => 0.03487098752386
627 => 0.034727391056877
628 => 0.034640868991408
629 => 0.035115361324474
630 => 0.034861859211883
701 => 0.035076508489987
702 => 0.034831888546689
703 => 0.033983929247381
704 => 0.033496258887342
705 => 0.031894542376819
706 => 0.03234878719228
707 => 0.032649951974881
708 => 0.032550417016028
709 => 0.03276425662256
710 => 0.032777384637668
711 => 0.032707863201748
712 => 0.0326273662852
713 => 0.032588184837983
714 => 0.032880211244781
715 => 0.033049742403084
716 => 0.03268017788988
717 => 0.032593594095194
718 => 0.032967244222258
719 => 0.033195170583917
720 => 0.034878050777646
721 => 0.034753377577263
722 => 0.035066282844344
723 => 0.035031054513194
724 => 0.035359029082813
725 => 0.035895128891745
726 => 0.034805088084322
727 => 0.034994281477715
728 => 0.034947895626769
729 => 0.03545432418438
730 => 0.035455905199059
731 => 0.035152275980788
801 => 0.035316878305834
802 => 0.035225001803622
803 => 0.035391035060973
804 => 0.034751712490663
805 => 0.035530338370694
806 => 0.035971769071128
807 => 0.035977898336832
808 => 0.036187132985427
809 => 0.036399727506454
810 => 0.036807784176483
811 => 0.0363883470274
812 => 0.035633820427582
813 => 0.035688294810983
814 => 0.03524591614158
815 => 0.035253352606935
816 => 0.035213656172064
817 => 0.035332788161319
818 => 0.034777855262931
819 => 0.034908096904999
820 => 0.03472575784341
821 => 0.034993885108205
822 => 0.03470542449431
823 => 0.034947873258107
824 => 0.035052506107257
825 => 0.035438603573208
826 => 0.034648397584663
827 => 0.033037114081778
828 => 0.033375825409009
829 => 0.032874844750834
830 => 0.032921212418116
831 => 0.033014882485385
901 => 0.032711267150427
902 => 0.032769187388318
903 => 0.032767118069842
904 => 0.032749285801153
905 => 0.03267030372635
906 => 0.032555764091758
907 => 0.033012054742532
908 => 0.033089587415505
909 => 0.033261932943258
910 => 0.033774716330764
911 => 0.033723477178088
912 => 0.033807050361996
913 => 0.033624610570768
914 => 0.032929675276781
915 => 0.032967413606679
916 => 0.032496816028135
917 => 0.033249898705127
918 => 0.03307155878701
919 => 0.03295658188163
920 => 0.032925209367743
921 => 0.033439263846083
922 => 0.033593077002819
923 => 0.033497230965558
924 => 0.033300647946861
925 => 0.033678145457313
926 => 0.033779147865768
927 => 0.033801758580196
928 => 0.034470611790749
929 => 0.033839140044634
930 => 0.033991141570213
1001 => 0.035177014082034
1002 => 0.034101591353033
1003 => 0.034671266757374
1004 => 0.034643384110779
1005 => 0.034934810770875
1006 => 0.034619478618544
1007 => 0.034623387538495
1008 => 0.034882154669708
1009 => 0.034518762902817
1010 => 0.034428781990945
1011 => 0.034304474005649
1012 => 0.034575895943826
1013 => 0.034738601120404
1014 => 0.036049885349845
1015 => 0.036897034763889
1016 => 0.036860257773627
1017 => 0.037196330620975
1018 => 0.03704492672517
1019 => 0.036556003607288
1020 => 0.03739053575169
1021 => 0.037126454862894
1022 => 0.037148225370508
1023 => 0.037147415071127
1024 => 0.037323005775825
1025 => 0.037198583668895
1026 => 0.036953334924468
1027 => 0.037116142486298
1028 => 0.037599622740165
1029 => 0.039100360283155
1030 => 0.039940192894339
1031 => 0.039049801305436
1101 => 0.039663981500643
1102 => 0.039295692238299
1103 => 0.039228763123674
1104 => 0.039614513673824
1105 => 0.040000939429247
1106 => 0.039976325779191
1107 => 0.039695800523936
1108 => 0.039537338925308
1109 => 0.040737263238654
1110 => 0.04162134703255
1111 => 0.041561058444779
1112 => 0.0418271526643
1113 => 0.042608413522799
1114 => 0.04267984222462
1115 => 0.04267084384996
1116 => 0.042493800359682
1117 => 0.043263053134416
1118 => 0.043904777332814
1119 => 0.042452819906961
1120 => 0.043005706287207
1121 => 0.043253914796187
1122 => 0.043618358527515
1123 => 0.044233236190126
1124 => 0.044901156419967
1125 => 0.044995607663839
1126 => 0.044928589986404
1127 => 0.044488078640164
1128 => 0.045218924925602
1129 => 0.045647037539157
1130 => 0.045901968803346
1201 => 0.046548432072812
1202 => 0.043255447647438
1203 => 0.040924509599213
1204 => 0.040560499963829
1205 => 0.041300727871354
1206 => 0.041495920067361
1207 => 0.041417238337901
1208 => 0.038793555645008
1209 => 0.040546686817435
1210 => 0.04243290855151
1211 => 0.042505366010196
1212 => 0.04344964804931
1213 => 0.043757144988675
1214 => 0.044517415800038
1215 => 0.044469860653788
1216 => 0.044654974497804
1217 => 0.04461242003079
1218 => 0.046020661614934
1219 => 0.047574161208143
1220 => 0.047520368457056
1221 => 0.04729703451036
1222 => 0.047628723505301
1223 => 0.049232101568627
1224 => 0.049084488210166
1225 => 0.049227882014235
1226 => 0.051118355113324
1227 => 0.053576239058803
1228 => 0.052434305198615
1229 => 0.054911973092607
1230 => 0.056471533696343
1231 => 0.059168632498929
]
'min_raw' => 0.024157241963466
'max_raw' => 0.059168632498929
'avg_raw' => 0.041662937231197
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.024157'
'max' => '$0.059168'
'avg' => '$0.041662'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.010771550695372
'max_diff' => 0.024004335247196
'year' => 2028
]
3 => [
'items' => [
101 => 0.058830942445353
102 => 0.059880903216975
103 => 0.058226406771412
104 => 0.054427348503502
105 => 0.053826132990394
106 => 0.055029781672837
107 => 0.057988834508303
108 => 0.054936590568673
109 => 0.05555405554241
110 => 0.055376225588434
111 => 0.055366749785916
112 => 0.05572840262718
113 => 0.055203806318383
114 => 0.053066506583269
115 => 0.054046018456685
116 => 0.053667781882336
117 => 0.054087463560981
118 => 0.05635231249074
119 => 0.055350968791638
120 => 0.054296134547192
121 => 0.055619130776186
122 => 0.057303759606523
123 => 0.057198338561889
124 => 0.056993777672722
125 => 0.058146876694497
126 => 0.060051458452156
127 => 0.060566259248022
128 => 0.060946274670891
129 => 0.060998672377292
130 => 0.06153840131821
131 => 0.058636142773687
201 => 0.063242101619131
202 => 0.064037423474694
203 => 0.063887935928561
204 => 0.06477190269876
205 => 0.064511817250895
206 => 0.064134994243095
207 => 0.065536269598983
208 => 0.063929820480548
209 => 0.061649668203248
210 => 0.060398731567624
211 => 0.062046065839594
212 => 0.063052035395443
213 => 0.063716917280179
214 => 0.063918110136768
215 => 0.058861436842828
216 => 0.056136170393352
217 => 0.057883034942223
218 => 0.060014330253996
219 => 0.058624303320618
220 => 0.058678789744738
221 => 0.056696976630394
222 => 0.060189676739755
223 => 0.059680819712053
224 => 0.062320770871925
225 => 0.06169072534069
226 => 0.063843503029252
227 => 0.063276604516416
228 => 0.065629768548326
301 => 0.066568509390028
302 => 0.068144801366591
303 => 0.069304328161213
304 => 0.069985224473229
305 => 0.069944346012633
306 => 0.072642396422033
307 => 0.071051450358311
308 => 0.069052847145079
309 => 0.069016698718464
310 => 0.070051803643024
311 => 0.072221099597732
312 => 0.072783566476816
313 => 0.073097908729081
314 => 0.072616482627405
315 => 0.070889624699366
316 => 0.070143976201408
317 => 0.070779290325185
318 => 0.07000235574497
319 => 0.071343562799762
320 => 0.07318532655236
321 => 0.072805009620572
322 => 0.074076352103239
323 => 0.07539205782367
324 => 0.077273576095928
325 => 0.077765474644716
326 => 0.078578564240636
327 => 0.079415500520856
328 => 0.079684301897998
329 => 0.08019752713113
330 => 0.080194822180816
331 => 0.081741460964902
401 => 0.083447451439165
402 => 0.084091423349429
403 => 0.085572201248263
404 => 0.083036420989157
405 => 0.084959839444633
406 => 0.086694811037759
407 => 0.084626306379951
408 => 0.087477258150967
409 => 0.08758795414784
410 => 0.08925933227628
411 => 0.0875650703458
412 => 0.086559023019757
413 => 0.089463443953942
414 => 0.090868801755592
415 => 0.090445496548554
416 => 0.087224123021838
417 => 0.085349145458079
418 => 0.080441967517561
419 => 0.086254731762416
420 => 0.089085959665428
421 => 0.087216790825544
422 => 0.088159490865323
423 => 0.093302556610844
424 => 0.095260703057892
425 => 0.094853422285383
426 => 0.094922246031525
427 => 0.095978826311479
428 => 0.10066428514219
429 => 0.097856649602742
430 => 0.10000298177255
501 => 0.10114138861624
502 => 0.10219880433676
503 => 0.099602125526832
504 => 0.096223884547897
505 => 0.095153853820959
506 => 0.087030938821709
507 => 0.086608105819966
508 => 0.086370756842937
509 => 0.084874305116445
510 => 0.083698503972048
511 => 0.082763463247326
512 => 0.080309637158859
513 => 0.081137731430896
514 => 0.077226844799186
515 => 0.079728891472842
516 => 0.073487021976974
517 => 0.078685436371287
518 => 0.075856175759361
519 => 0.077755948167549
520 => 0.077749320040586
521 => 0.074251236713722
522 => 0.072233615253923
523 => 0.073519322175109
524 => 0.074897702054162
525 => 0.075121339552112
526 => 0.076908445044701
527 => 0.077407187773978
528 => 0.075895974020196
529 => 0.073357673105552
530 => 0.073947262515544
531 => 0.072221667243348
601 => 0.069197627902888
602 => 0.071369545751868
603 => 0.072111133997996
604 => 0.072438661614837
605 => 0.069464866236759
606 => 0.068530435164729
607 => 0.068032951902616
608 => 0.072973793465565
609 => 0.073244463919703
610 => 0.07185967560739
611 => 0.078119050090062
612 => 0.076702360866698
613 => 0.078285149826482
614 => 0.073893763456371
615 => 0.074061520329495
616 => 0.071982567646796
617 => 0.073146642233439
618 => 0.072323911835475
619 => 0.073052596510448
620 => 0.073489367100147
621 => 0.075567978647167
622 => 0.078709170776234
623 => 0.075257503397629
624 => 0.073753562491984
625 => 0.074686598971361
626 => 0.077171398070054
627 => 0.080935995899098
628 => 0.078707278214712
629 => 0.079696345276962
630 => 0.079912412429533
701 => 0.078269038520679
702 => 0.080996589439202
703 => 0.082458306135022
704 => 0.083957725005282
705 => 0.085259628397566
706 => 0.083358824135572
707 => 0.085392957165493
708 => 0.083753805016194
709 => 0.082283316085837
710 => 0.082285546210553
711 => 0.081363087024125
712 => 0.079575706113084
713 => 0.079246085649745
714 => 0.08096081292651
715 => 0.082335861817199
716 => 0.082449117429876
717 => 0.083210415148324
718 => 0.083660943296112
719 => 0.088076731607747
720 => 0.089852798196003
721 => 0.092024538800903
722 => 0.092870554159105
723 => 0.095416757074002
724 => 0.093360491427733
725 => 0.092915605420645
726 => 0.086739350005732
727 => 0.087750711483923
728 => 0.089369998792376
729 => 0.086766051457027
730 => 0.08841765669525
731 => 0.088743718555057
801 => 0.086677570322985
802 => 0.08778118936673
803 => 0.084850304386786
804 => 0.078773056059612
805 => 0.081003355153863
806 => 0.08264560599779
807 => 0.080301911555438
808 => 0.084502893129853
809 => 0.082048766419942
810 => 0.081270926071757
811 => 0.078236293553381
812 => 0.079668523288337
813 => 0.081605634512419
814 => 0.080408724989288
815 => 0.082892491966655
816 => 0.086410168403064
817 => 0.088917074112903
818 => 0.089109523204933
819 => 0.087497750783145
820 => 0.090080626375254
821 => 0.090099439804153
822 => 0.087185945584897
823 => 0.085401446598006
824 => 0.084996004673567
825 => 0.086008878092388
826 => 0.087238693409586
827 => 0.089177769395958
828 => 0.090349512403403
829 => 0.093404796722351
830 => 0.094231469057192
831 => 0.095139731321791
901 => 0.096353449805003
902 => 0.097810830035132
903 => 0.094622165060313
904 => 0.094748856664178
905 => 0.091779615989698
906 => 0.088606556496831
907 => 0.091014513124467
908 => 0.094162596098056
909 => 0.093440422385592
910 => 0.09335916309027
911 => 0.093495818685553
912 => 0.092951323290344
913 => 0.090488590797754
914 => 0.089251821957496
915 => 0.09084756929481
916 => 0.09169563798605
917 => 0.0930109185668
918 => 0.092848782473018
919 => 0.096236803998209
920 => 0.097553286714445
921 => 0.09721647410016
922 => 0.097278455727037
923 => 0.099661884801372
924 => 0.10231274812161
925 => 0.10479563143323
926 => 0.10732132698014
927 => 0.10427650241877
928 => 0.10273052828518
929 => 0.10432557896912
930 => 0.10347922262426
1001 => 0.10834263722746
1002 => 0.10867936950258
1003 => 0.11354243242555
1004 => 0.1181580582222
1005 => 0.11525906635685
1006 => 0.11799268511242
1007 => 0.12094931667177
1008 => 0.12665313864595
1009 => 0.12473229206792
1010 => 0.12326095369266
1011 => 0.12187054603749
1012 => 0.12476376364689
1013 => 0.12848584188112
1014 => 0.12928754188315
1015 => 0.13058660215941
1016 => 0.12922079912045
1017 => 0.1308657584426
1018 => 0.13667318768155
1019 => 0.13510396903759
1020 => 0.13287542629868
1021 => 0.1374598339314
1022 => 0.13911891323224
1023 => 0.15076320063215
1024 => 0.16546459447606
1025 => 0.15937812089013
1026 => 0.15560005032606
1027 => 0.15648798652565
1028 => 0.16185643788386
1029 => 0.16358061407398
1030 => 0.15889370883004
1031 => 0.16054920299731
1101 => 0.16967113862355
1102 => 0.1745647644203
1103 => 0.16791856328669
1104 => 0.14958195795122
1105 => 0.13267477040806
1106 => 0.13715931788508
1107 => 0.1366509093729
1108 => 0.14645129121865
1109 => 0.13506654369191
1110 => 0.13525823364244
1111 => 0.14526127700598
1112 => 0.14259263653217
1113 => 0.13826978073824
1114 => 0.13270633203931
1115 => 0.12242178256263
1116 => 0.11331247028526
1117 => 0.13117792941052
1118 => 0.13040753832681
1119 => 0.12929189787203
1120 => 0.13177463497923
1121 => 0.14383010163455
1122 => 0.14355218410841
1123 => 0.14178421460186
1124 => 0.14312520389041
1125 => 0.13803469883237
1126 => 0.13934663789447
1127 => 0.13267209222317
1128 => 0.13568926562025
1129 => 0.1382605058312
1130 => 0.13877672037141
1201 => 0.13993977808907
1202 => 0.13000157723253
1203 => 0.13446353764687
1204 => 0.13708452136114
1205 => 0.12524282158786
1206 => 0.13685044903059
1207 => 0.12982857526612
1208 => 0.12744524584546
1209 => 0.13065408493061
1210 => 0.12940359721843
1211 => 0.1283285013146
1212 => 0.12772857932777
1213 => 0.13008479660525
1214 => 0.12997487625297
1215 => 0.12611964746493
1216 => 0.12109065867017
1217 => 0.12277855238062
1218 => 0.12216532477153
1219 => 0.11994290880823
1220 => 0.12144054883196
1221 => 0.1148457001057
1222 => 0.10349960564257
1223 => 0.11099518318518
1224 => 0.11070661160341
1225 => 0.1105611007262
1226 => 0.11619382008693
1227 => 0.11565236408935
1228 => 0.11466961615177
1229 => 0.11992485987167
1230 => 0.11800662522091
1231 => 0.12391817242164
]
'min_raw' => 0.053066506583269
'max_raw' => 0.1745647644203
'avg_raw' => 0.11381563550178
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.053066'
'max' => '$0.174564'
'avg' => '$0.113815'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.028909264619803
'max_diff' => 0.11539613192137
'year' => 2029
]
4 => [
'items' => [
101 => 0.12781189974295
102 => 0.12682432454539
103 => 0.13048639391109
104 => 0.12281743804264
105 => 0.12536475755704
106 => 0.12588975657852
107 => 0.11986001097992
108 => 0.11574095298685
109 => 0.11546625877941
110 => 0.10832437986059
111 => 0.11213951393179
112 => 0.11549667403347
113 => 0.11388885487092
114 => 0.11337986735628
115 => 0.11598017418263
116 => 0.11618224029316
117 => 0.11157511155909
118 => 0.11253307951169
119 => 0.11652796512298
120 => 0.11243241864411
121 => 0.10447544083939
122 => 0.10250200032999
123 => 0.10223870698831
124 => 0.096886579811286
125 => 0.1026338750612
126 => 0.10012502666668
127 => 0.10805044868436
128 => 0.10352349013275
129 => 0.10332834199751
130 => 0.10303334696908
131 => 0.098426550014226
201 => 0.099435145770119
202 => 0.10278787167618
203 => 0.10398416205062
204 => 0.10385937916365
205 => 0.10277144149017
206 => 0.10326949378594
207 => 0.10166509380832
208 => 0.10109854678352
209 => 0.099310368532226
210 => 0.09668224049967
211 => 0.097047697821843
212 => 0.091840688502243
213 => 0.089003633468023
214 => 0.088218374026336
215 => 0.08716829228266
216 => 0.088336983553445
217 => 0.091825937699066
218 => 0.087617518776534
219 => 0.080402479720115
220 => 0.080836115861234
221 => 0.081810367522603
222 => 0.079994855996962
223 => 0.078276626702275
224 => 0.079770487669656
225 => 0.076713380507272
226 => 0.082179804317675
227 => 0.082031952873079
228 => 0.084069497628216
301 => 0.085343616178231
302 => 0.082407185421226
303 => 0.081668681026792
304 => 0.082089366693015
305 => 0.075136369719253
306 => 0.083501289437733
307 => 0.08357362961082
308 => 0.082954209129862
309 => 0.087408270642031
310 => 0.096807729689331
311 => 0.093271275103372
312 => 0.091901852997784
313 => 0.089298580574018
314 => 0.092767286511664
315 => 0.092500944015895
316 => 0.091296442242634
317 => 0.090567955811892
318 => 0.091910214397148
319 => 0.090401635119061
320 => 0.09013065282773
321 => 0.088488794973907
322 => 0.087902726419865
323 => 0.087468824594513
324 => 0.086991141319114
325 => 0.088044791593389
326 => 0.085657081452644
327 => 0.082777737093017
328 => 0.082538350764452
329 => 0.083199317464682
330 => 0.082906888903014
331 => 0.082536950729004
401 => 0.081830638008153
402 => 0.08162109011186
403 => 0.082302019116626
404 => 0.081533289970872
405 => 0.082667591700275
406 => 0.082359124393655
407 => 0.080636051094064
408 => 0.078488463799331
409 => 0.078469345767691
410 => 0.07800665160779
411 => 0.077417341028624
412 => 0.077253408307099
413 => 0.0796446788657
414 => 0.084594537357298
415 => 0.083622761695323
416 => 0.084324969202676
417 => 0.087779135138539
418 => 0.088877110619156
419 => 0.088097793629988
420 => 0.087031016469037
421 => 0.087077949250134
422 => 0.090723449744511
423 => 0.090950815138683
424 => 0.091525294138901
425 => 0.092263662001926
426 => 0.088223540869855
427 => 0.086887659908135
428 => 0.086254645396618
429 => 0.084305205708593
430 => 0.086407509279801
501 => 0.085182587018472
502 => 0.085347870880829
503 => 0.085240229548639
504 => 0.085299008994689
505 => 0.082178276340813
506 => 0.083315307299006
507 => 0.08142477280023
508 => 0.078893559328824
509 => 0.07888507381371
510 => 0.079504584724869
511 => 0.079136075393447
512 => 0.078144426257833
513 => 0.078285285337095
514 => 0.07705121158387
515 => 0.078435124234363
516 => 0.078474809897302
517 => 0.07794192814463
518 => 0.080074036525858
519 => 0.080947563069282
520 => 0.080596808884241
521 => 0.080922953220621
522 => 0.083663143361382
523 => 0.084109913917204
524 => 0.084308339886093
525 => 0.084042475374184
526 => 0.080973038866156
527 => 0.081109181427539
528 => 0.08011025764412
529 => 0.079266272311126
530 => 0.079300027298325
531 => 0.079733945469898
601 => 0.081628891574119
602 => 0.085616693937278
603 => 0.085768028121914
604 => 0.085951449568423
605 => 0.085205382365239
606 => 0.084980361357857
607 => 0.085277222149443
608 => 0.086774831048359
609 => 0.090627087733219
610 => 0.089265442937216
611 => 0.088158404522802
612 => 0.089129575667656
613 => 0.088980071482197
614 => 0.087718105701226
615 => 0.087682686524862
616 => 0.085260570716312
617 => 0.0843651696508
618 => 0.08361690550085
619 => 0.082799820583035
620 => 0.082315425254819
621 => 0.083059676632698
622 => 0.083229895728542
623 => 0.081602577083523
624 => 0.081380779565356
625 => 0.082709683098991
626 => 0.082124882200356
627 => 0.082726364426967
628 => 0.082865913462959
629 => 0.082843442854078
630 => 0.082232843551947
701 => 0.082622021338792
702 => 0.081701499853421
703 => 0.080700570995938
704 => 0.080062040744934
705 => 0.079504838412187
706 => 0.079814006651185
707 => 0.078711878331047
708 => 0.078359285299975
709 => 0.082490176661386
710 => 0.085541710524627
711 => 0.085497340013715
712 => 0.08522724593971
713 => 0.08482594093232
714 => 0.086745473087494
715 => 0.086076746466888
716 => 0.086563300957358
717 => 0.08668714949581
718 => 0.087062001720911
719 => 0.087195979171747
720 => 0.086791006261997
721 => 0.085431867713602
722 => 0.082045023674017
723 => 0.08046843863098
724 => 0.079948139306676
725 => 0.079967051198926
726 => 0.079445376784285
727 => 0.079599033279204
728 => 0.079391941326031
729 => 0.078999759267646
730 => 0.07978979051422
731 => 0.079880834255737
801 => 0.079696431522616
802 => 0.079739865041743
803 => 0.078213089170941
804 => 0.078329166624415
805 => 0.077682832613061
806 => 0.077561652777605
807 => 0.075927776679643
808 => 0.073033128337976
809 => 0.074637044509572
810 => 0.072699739319026
811 => 0.071966052488402
812 => 0.075439211832863
813 => 0.075090602965124
814 => 0.074493936120187
815 => 0.073611341500259
816 => 0.073283978570399
817 => 0.07129502503908
818 => 0.071177507053795
819 => 0.07216328613018
820 => 0.071708383005015
821 => 0.071069526731998
822 => 0.068755654070953
823 => 0.066154095103028
824 => 0.066232619815453
825 => 0.067060127319424
826 => 0.069466216991813
827 => 0.068526116131037
828 => 0.067844062170129
829 => 0.067716333965718
830 => 0.069315119861033
831 => 0.071577736858903
901 => 0.072639306131102
902 => 0.071587323222691
903 => 0.070378861900291
904 => 0.070452415341515
905 => 0.070941733433455
906 => 0.070993153846333
907 => 0.070206569757282
908 => 0.070427988570907
909 => 0.070091633146049
910 => 0.068027420524562
911 => 0.067990085463929
912 => 0.067483494396691
913 => 0.067468155020507
914 => 0.066606317240071
915 => 0.066485740176985
916 => 0.064774508954115
917 => 0.065900846527093
918 => 0.065145358418517
919 => 0.064006659637262
920 => 0.063810347538173
921 => 0.06380444615942
922 => 0.06497363519938
923 => 0.065887183872426
924 => 0.065158500457618
925 => 0.064992593369
926 => 0.066764047027096
927 => 0.066538613401944
928 => 0.066343389336454
929 => 0.071375144323344
930 => 0.067392117618483
1001 => 0.065655290631947
1002 => 0.06350563742161
1003 => 0.064205575346388
1004 => 0.064353062551367
1005 => 0.059183534084621
1006 => 0.057086257029486
1007 => 0.056366550578382
1008 => 0.055952349340616
1009 => 0.056141106045878
1010 => 0.054253310710194
1011 => 0.055521940397026
1012 => 0.053887269207691
1013 => 0.053613211263119
1014 => 0.056536205846552
1015 => 0.05694292346695
1016 => 0.055207739741072
1017 => 0.056322008593814
1018 => 0.055917959218314
1019 => 0.053915290953442
1020 => 0.053838803756354
1021 => 0.052833935218234
1022 => 0.051261510536968
1023 => 0.050542870263842
1024 => 0.050168596170077
1025 => 0.050323028955621
1026 => 0.050244943013529
1027 => 0.04973537942201
1028 => 0.050274150602121
1029 => 0.04889781287256
1030 => 0.048349744098743
1031 => 0.048102194148708
1101 => 0.046880615194679
1102 => 0.048824690549166
1103 => 0.049207697884816
1104 => 0.049591459863234
1105 => 0.052931845879933
1106 => 0.052764969634372
1107 => 0.054273449622219
1108 => 0.054214832863808
1109 => 0.053784589935518
1110 => 0.05196946579259
1111 => 0.052692941924485
1112 => 0.050466194843668
1113 => 0.052134625160699
1114 => 0.051373223239322
1115 => 0.05187719440518
1116 => 0.05097100880772
1117 => 0.051472529332841
1118 => 0.049298523132734
1119 => 0.047268466732167
1120 => 0.048085420688796
1121 => 0.048973543069669
1122 => 0.050899218680775
1123 => 0.049752302173279
1124 => 0.050164776719089
1125 => 0.04878305603803
1126 => 0.045932171604004
1127 => 0.045948307300295
1128 => 0.045509760840014
1129 => 0.045130792669499
1130 => 0.049884039330888
1201 => 0.049292897970835
1202 => 0.048350991580257
1203 => 0.049611770713917
1204 => 0.049945140728112
1205 => 0.049954631303753
1206 => 0.050874463214252
1207 => 0.051365377669773
1208 => 0.051451903470304
1209 => 0.052899278855757
1210 => 0.053384419993618
1211 => 0.055382647680724
1212 => 0.051323727008051
1213 => 0.051240136207844
1214 => 0.049629512461863
1215 => 0.048608029419207
1216 => 0.04969945427971
1217 => 0.050666307711765
1218 => 0.04965955529309
1219 => 0.049791015905266
1220 => 0.048439533037889
1221 => 0.048922624569797
1222 => 0.049338728076533
1223 => 0.049108980177547
1224 => 0.048765036452841
1225 => 0.050587036756188
1226 => 0.050484232358596
1227 => 0.052180920928678
1228 => 0.053503611000421
1229 => 0.055874108068117
1230 => 0.05340037080117
1231 => 0.053310217982947
]
'min_raw' => 0.045130792669499
'max_raw' => 0.13048639391109
'avg_raw' => 0.087808593290296
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.04513'
'max' => '$0.130486'
'avg' => '$0.0878085'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0079357139137695
'max_diff' => -0.044078370509204
'year' => 2030
]
5 => [
'items' => [
101 => 0.05419147624204
102 => 0.05338428507757
103 => 0.053894402030223
104 => 0.055791920340667
105 => 0.055832011912496
106 => 0.05516042642928
107 => 0.055119560391592
108 => 0.055248545729984
109 => 0.056004016885729
110 => 0.055740032050628
111 => 0.056045521985085
112 => 0.056427541825952
113 => 0.058007737860833
114 => 0.058388717775114
115 => 0.057463134098849
116 => 0.057546703941495
117 => 0.057200510238731
118 => 0.056866091459656
119 => 0.057617816037076
120 => 0.058991607477495
121 => 0.058983061192244
122 => 0.059301754103731
123 => 0.059500297147393
124 => 0.058648005061605
125 => 0.058093194253405
126 => 0.058305944020798
127 => 0.058646135531946
128 => 0.058195624498719
129 => 0.055414861704633
130 => 0.056258367500543
131 => 0.056117966890778
201 => 0.055918019349174
202 => 0.0567661709496
203 => 0.056684364658659
204 => 0.054233948640451
205 => 0.054390816323582
206 => 0.054243488283824
207 => 0.054719535320761
208 => 0.053358576975323
209 => 0.053777198596185
210 => 0.054039754152456
211 => 0.054194401392147
212 => 0.054753093264513
213 => 0.054687537221689
214 => 0.054749018208847
215 => 0.055577410766381
216 => 0.059767136052391
217 => 0.059995173555601
218 => 0.058872233488998
219 => 0.059320825896592
220 => 0.058459626570386
221 => 0.059037755447602
222 => 0.059433296542512
223 => 0.057645922392792
224 => 0.057540085695608
225 => 0.056675331893437
226 => 0.057140001604565
227 => 0.056400678683225
228 => 0.056582082667704
301 => 0.056074861312587
302 => 0.056987758765034
303 => 0.058008519966792
304 => 0.058266404557437
305 => 0.057588021225746
306 => 0.057096826985961
307 => 0.056234451710341
308 => 0.057668601012984
309 => 0.058087989973985
310 => 0.057666398141311
311 => 0.057568706101717
312 => 0.057383579863212
313 => 0.057607981508364
314 => 0.058085705891635
315 => 0.057860419894669
316 => 0.058009225264694
317 => 0.057442132641591
318 => 0.058648287205749
319 => 0.060563950930537
320 => 0.060570110102655
321 => 0.060344822891313
322 => 0.060252640218312
323 => 0.06048379856872
324 => 0.060609192491204
325 => 0.061356716209232
326 => 0.062158838941333
327 => 0.065901995738486
328 => 0.064850932288329
329 => 0.068172083680158
330 => 0.070798683233559
331 => 0.071586285592346
401 => 0.070861728481817
402 => 0.068383057746502
403 => 0.068261442335104
404 => 0.071965622881456
405 => 0.070919022214895
406 => 0.070794532395863
407 => 0.069470171050233
408 => 0.070253032630844
409 => 0.070081809319278
410 => 0.06981152494544
411 => 0.071305170306635
412 => 0.07410114108415
413 => 0.073665362818026
414 => 0.073340074557537
415 => 0.071914756090062
416 => 0.072773116163887
417 => 0.072467470582402
418 => 0.07378071796794
419 => 0.073002779308738
420 => 0.070911093185485
421 => 0.071244201094901
422 => 0.071193852504513
423 => 0.07223002292696
424 => 0.071918990285472
425 => 0.071133118389367
426 => 0.074091584759993
427 => 0.073899478409739
428 => 0.074171841292774
429 => 0.074291743856987
430 => 0.076092510202762
501 => 0.076830226556531
502 => 0.076997701084379
503 => 0.077698474563428
504 => 0.07698026520183
505 => 0.079853614722819
506 => 0.081764224489684
507 => 0.083983496052977
508 => 0.087226448290909
509 => 0.088445828331357
510 => 0.088225558241298
511 => 0.090684327616796
512 => 0.095102681529193
513 => 0.089118633892566
514 => 0.095419850584337
515 => 0.093424958130768
516 => 0.088695104009937
517 => 0.088390557165872
518 => 0.091593669291235
519 => 0.098697863697171
520 => 0.09691834357359
521 => 0.098700774354597
522 => 0.096621474169167
523 => 0.096518219389242
524 => 0.098599787385676
525 => 0.10346348446971
526 => 0.10115292429804
527 => 0.097840169719364
528 => 0.10028625614809
529 => 0.098167229708916
530 => 0.093392470063299
531 => 0.096916982808089
601 => 0.094560241507992
602 => 0.095248063910618
603 => 0.10020158358461
604 => 0.099605562992048
605 => 0.10037686882884
606 => 0.099015534215488
607 => 0.097743833023848
608 => 0.095370108311881
609 => 0.094667365447881
610 => 0.094861578293451
611 => 0.09466726920564
612 => 0.093339192044951
613 => 0.093052393908547
614 => 0.092574384449627
615 => 0.092722539568756
616 => 0.091823741939386
617 => 0.093519958767074
618 => 0.093834791557304
619 => 0.09506915671175
620 => 0.095197312596934
621 => 0.098635001981979
622 => 0.09674158043672
623 => 0.098011851079431
624 => 0.097898226116896
625 => 0.088797614290907
626 => 0.090051598305151
627 => 0.092002403909452
628 => 0.091123568628969
629 => 0.08988110115815
630 => 0.088877742058573
701 => 0.087357550423979
702 => 0.089497190956976
703 => 0.092310590732464
704 => 0.095268665058057
705 => 0.09882259753955
706 => 0.098029401182015
707 => 0.09520222676238
708 => 0.095329051741592
709 => 0.096113033859295
710 => 0.095097705784583
711 => 0.094798265713792
712 => 0.096071895391783
713 => 0.096080666179401
714 => 0.094912408522949
715 => 0.093614103926696
716 => 0.093608663983033
717 => 0.093377643220264
718 => 0.096662572249648
719 => 0.098468951072023
720 => 0.098676049492884
721 => 0.098455011698226
722 => 0.098540080372713
723 => 0.097488988336814
724 => 0.099891473039219
725 => 0.10209623058326
726 => 0.10150530846368
727 => 0.1006194322019
728 => 0.099913789089819
729 => 0.10133908137213
730 => 0.10127561535042
731 => 0.1020769739495
801 => 0.10204061969457
802 => 0.10177115293832
803 => 0.10150531808719
804 => 0.10255932322334
805 => 0.10225578667093
806 => 0.10195177864242
807 => 0.10134204399994
808 => 0.10142491706447
809 => 0.10053919376172
810 => 0.10012941763393
811 => 0.093967367862345
812 => 0.092320666812592
813 => 0.092838752484535
814 => 0.093009319739827
815 => 0.09229267333267
816 => 0.093320160189176
817 => 0.093160027450968
818 => 0.093783010260819
819 => 0.093393797647993
820 => 0.093409771069386
821 => 0.094554362374828
822 => 0.094886642100237
823 => 0.094717641950068
824 => 0.09483600386226
825 => 0.097563604171296
826 => 0.097175826631099
827 => 0.096969827541562
828 => 0.097026890697186
829 => 0.097723851056555
830 => 0.097918961904554
831 => 0.097092263531388
901 => 0.097482139263259
902 => 0.099142180646969
903 => 0.099723101181063
904 => 0.10157712066821
905 => 0.1007895002375
906 => 0.10223521162549
907 => 0.10667883555281
908 => 0.11022870982135
909 => 0.10696409873924
910 => 0.11348299075965
911 => 0.11855888327705
912 => 0.11836406206789
913 => 0.11747896279997
914 => 0.11170019411849
915 => 0.10638248502121
916 => 0.11083097448294
917 => 0.11084231459742
918 => 0.11046018540748
919 => 0.10808681382768
920 => 0.11037759722109
921 => 0.11055943128795
922 => 0.11045765256409
923 => 0.10863799413852
924 => 0.10585971205177
925 => 0.10640258172125
926 => 0.10729181331411
927 => 0.10560831239569
928 => 0.10507033184533
929 => 0.10607054004343
930 => 0.10929341925934
1001 => 0.10868415261244
1002 => 0.10866824219805
1003 => 0.11127494328276
1004 => 0.10940910786741
1005 => 0.10640942904629
1006 => 0.10565197058306
1007 => 0.10296350332374
1008 => 0.10482043723574
1009 => 0.1048872649814
1010 => 0.1038702412552
1011 => 0.10649195491654
1012 => 0.1064677953636
1013 => 0.10895672229446
1014 => 0.113714615788
1015 => 0.11230747256024
1016 => 0.11067111808311
1017 => 0.11084903518596
1018 => 0.11280034666742
1019 => 0.11162053920162
1020 => 0.11204480619223
1021 => 0.11279970448852
1022 => 0.11325515337374
1023 => 0.11078350310034
1024 => 0.11020724318891
1025 => 0.10902841764987
1026 => 0.10872088407055
1027 => 0.1096810128751
1028 => 0.10942805285695
1029 => 0.10488164836815
1030 => 0.10440652380311
1031 => 0.1044210951952
1101 => 0.10322637188547
1102 => 0.1014041320717
1103 => 0.10619286950202
1104 => 0.10580826686803
1105 => 0.10538369532598
1106 => 0.10543570291731
1107 => 0.10751433153044
1108 => 0.10630862196156
1109 => 0.10951419846234
1110 => 0.10885522830223
1111 => 0.10817935804403
1112 => 0.10808593218684
1113 => 0.10782577979998
1114 => 0.10693362046698
1115 => 0.10585628446192
1116 => 0.10514493391414
1117 => 0.096990643595614
1118 => 0.098504032447407
1119 => 0.10024504837166
1120 => 0.10084604009203
1121 => 0.099818002166978
1122 => 0.10697421367023
1123 => 0.10828172247084
1124 => 0.10432119302709
1125 => 0.10358033967552
1126 => 0.10702278389262
1127 => 0.10494656920802
1128 => 0.10588148855336
1129 => 0.10386070430226
1130 => 0.1079667818891
1201 => 0.10793550045745
1202 => 0.1063381435362
1203 => 0.10768821866781
1204 => 0.10745360988998
1205 => 0.10565019786001
1206 => 0.10802395326714
1207 => 0.1080251306202
1208 => 0.10648770931304
1209 => 0.10469233781107
1210 => 0.1043713677913
1211 => 0.10412955999766
1212 => 0.10582201865922
1213 => 0.10733947180299
1214 => 0.11016307589501
1215 => 0.11087299705093
1216 => 0.11364386658458
1217 => 0.11199394868848
1218 => 0.11272533592181
1219 => 0.11351936022463
1220 => 0.11390004467468
1221 => 0.11327973979198
1222 => 0.11758404071315
1223 => 0.11794745559127
1224 => 0.11806930545637
1225 => 0.11661791940363
1226 => 0.1179070899196
1227 => 0.11730392972802
1228 => 0.11887318498379
1229 => 0.11911926424515
1230 => 0.1189108438653
1231 => 0.11898895330696
]
'min_raw' => 0.053358576975323
'max_raw' => 0.11911926424515
'avg_raw' => 0.086238920610237
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.053358'
'max' => '$0.119119'
'avg' => '$0.086238'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0082277843058234
'max_diff' => -0.011367129665941
'year' => 2031
]
6 => [
'items' => [
101 => 0.11531599180145
102 => 0.11512552937097
103 => 0.11252856061684
104 => 0.11358684457997
105 => 0.11160843343576
106 => 0.11223580798949
107 => 0.11251234871492
108 => 0.1123678995335
109 => 0.11364667836741
110 => 0.11255945512133
111 => 0.10969009421888
112 => 0.10681995156096
113 => 0.10678391925786
114 => 0.10602826135826
115 => 0.10548205910249
116 => 0.10558727703452
117 => 0.10595807875077
118 => 0.10546050743266
119 => 0.10556668950089
120 => 0.10733001932083
121 => 0.10768364254073
122 => 0.10648189267001
123 => 0.10165669352738
124 => 0.10047257755469
125 => 0.10132369663382
126 => 0.10091691653308
127 => 0.0814478278846
128 => 0.086021801473487
129 => 0.083304101684437
130 => 0.084556542782586
131 => 0.081782475042915
201 => 0.083106405569633
202 => 0.08286192394355
203 => 0.090216738120763
204 => 0.090101902813602
205 => 0.090156868398191
206 => 0.0875332178337
207 => 0.091712764422809
208 => 0.093771759364239
209 => 0.093390694198956
210 => 0.093486600091331
211 => 0.091838619108906
212 => 0.090172824456408
213 => 0.088325201822829
214 => 0.09175785630296
215 => 0.091376203722135
216 => 0.092251577428282
217 => 0.094477899229857
218 => 0.094805733572113
219 => 0.095246346252673
220 => 0.095088417971638
221 => 0.098850910345417
222 => 0.098395247693228
223 => 0.09949326358191
224 => 0.097234561592225
225 => 0.094678625892934
226 => 0.095164425709536
227 => 0.095117639280642
228 => 0.094521994341856
229 => 0.093984272724205
301 => 0.093089117732942
302 => 0.095921520583309
303 => 0.095806530200159
304 => 0.097668090841659
305 => 0.097339041916038
306 => 0.095141572658815
307 => 0.095220055703234
308 => 0.095747891894615
309 => 0.097574738979714
310 => 0.098117071575806
311 => 0.097865841509079
312 => 0.09846048444227
313 => 0.098930465971119
314 => 0.098519506886331
315 => 0.10433782089092
316 => 0.10192165126478
317 => 0.10309927552896
318 => 0.103380131977
319 => 0.10266072409112
320 => 0.1028167379015
321 => 0.10305305631301
322 => 0.10448793543183
323 => 0.10825347342521
324 => 0.1099212045696
325 => 0.11493865600189
326 => 0.109782722714
327 => 0.10947679097007
328 => 0.11038058548554
329 => 0.11332636062747
330 => 0.11571363469741
331 => 0.11650563123156
401 => 0.11661030664798
402 => 0.11809614479697
403 => 0.11894779951474
404 => 0.11791572496426
405 => 0.11704114984545
406 => 0.11390853032612
407 => 0.11427113956532
408 => 0.11676915764114
409 => 0.12029775530578
410 => 0.12332565919005
411 => 0.12226539278288
412 => 0.13035447703814
413 => 0.1311564767011
414 => 0.13104566627943
415 => 0.13287274086521
416 => 0.12924636988971
417 => 0.12769602604005
418 => 0.11723024291299
419 => 0.12017070107795
420 => 0.12444482970777
421 => 0.12387913275645
422 => 0.12077514629769
423 => 0.12332330453798
424 => 0.12248080373546
425 => 0.12181628839713
426 => 0.12486056198468
427 => 0.1215132581233
428 => 0.12441143779119
429 => 0.12069449238929
430 => 0.12227023599052
501 => 0.12137576771232
502 => 0.12195459831023
503 => 0.11857076646233
504 => 0.12039659998958
505 => 0.11849480578481
506 => 0.11849390408674
507 => 0.11845192187426
508 => 0.12068937432232
509 => 0.12076233756633
510 => 0.11910885682661
511 => 0.11887056441979
512 => 0.1197516563419
513 => 0.11872012845945
514 => 0.11920277386329
515 => 0.11873474729705
516 => 0.11862938465884
517 => 0.11778983723163
518 => 0.11742813711615
519 => 0.1175699690513
520 => 0.11708582353728
521 => 0.11679410835277
522 => 0.1183938923817
523 => 0.11753919231015
524 => 0.11826289733761
525 => 0.11743814411996
526 => 0.11457919013972
527 => 0.11293497547279
528 => 0.10753467642928
529 => 0.10906619453897
530 => 0.11008159263016
531 => 0.10974600356708
601 => 0.11046697873031
602 => 0.11051124074981
603 => 0.11027684437478
604 => 0.11000544340052
605 => 0.10987334041567
606 => 0.11085792783482
607 => 0.11142951397133
608 => 0.11018350141289
609 => 0.10989157810402
610 => 0.11115136559483
611 => 0.11191983523648
612 => 0.11759378330458
613 => 0.11717343890508
614 => 0.11822842085939
615 => 0.11810964608135
616 => 0.11921543524128
617 => 0.12102293317639
618 => 0.11734778448994
619 => 0.11798566322483
620 => 0.1178292700898
621 => 0.11953672932951
622 => 0.11954205983088
623 => 0.11851835272276
624 => 0.11907332095382
625 => 0.118763552912
626 => 0.11932334563123
627 => 0.11716782494935
628 => 0.1197930164658
629 => 0.12128133089202
630 => 0.12130199613928
701 => 0.12200744536531
702 => 0.12272422263583
703 => 0.12410001418844
704 => 0.12268585255614
705 => 0.12014191344549
706 => 0.1203255776324
707 => 0.11883406706262
708 => 0.11885913962476
709 => 0.11872530032308
710 => 0.11912696214238
711 => 0.11725596713129
712 => 0.1176950859207
713 => 0.11708031704405
714 => 0.11798432683735
715 => 0.11701176173793
716 => 0.1178291946723
717 => 0.11818197162844
718 => 0.11948372619136
719 => 0.11681949153056
720 => 0.11138693670436
721 => 0.11252892559219
722 => 0.1108398343258
723 => 0.11099616615333
724 => 0.11131198132496
725 => 0.11028832102541
726 => 0.11048360315132
727 => 0.1104766262996
728 => 0.11041650356071
729 => 0.11015020998115
730 => 0.10976403160623
731 => 0.11130244739251
801 => 0.11156385421259
802 => 0.11214492919219
803 => 0.11387381418456
804 => 0.11370105780391
805 => 0.11398283062835
806 => 0.11336772213469
807 => 0.11102469927218
808 => 0.11115193668623
809 => 0.1095652840941
810 => 0.11210435491813
811 => 0.1115030694329
812 => 0.11111541676898
813 => 0.11100964214806
814 => 0.11274281271192
815 => 0.11326140450874
816 => 0.11293825290236
817 => 0.11227545952983
818 => 0.11354821874236
819 => 0.11388875541423
820 => 0.11396498901655
821 => 0.11622007431377
822 => 0.11409102323379
823 => 0.11460350698969
824 => 0.11860175895827
825 => 0.11497589614383
826 => 0.11689659654303
827 => 0.11680258825333
828 => 0.1177851535846
829 => 0.11672198921723
830 => 0.11673516841376
831 => 0.11760761986319
901 => 0.11638241914991
902 => 0.11607904222327
903 => 0.11565992917194
904 => 0.11657504718657
905 => 0.11712361904912
906 => 0.12154470537962
907 => 0.12440092877515
908 => 0.1242769325848
909 => 0.12541002565349
910 => 0.1248995568481
911 => 0.12325111842064
912 => 0.12606480181067
913 => 0.12517443465655
914 => 0.12524783544294
915 => 0.125245103462
916 => 0.12583711978224
917 => 0.12541762196185
918 => 0.1245907486973
919 => 0.12513966575887
920 => 0.1267697531903
921 => 0.13182959459463
922 => 0.13466114887848
923 => 0.13165913147134
924 => 0.13372988288017
925 => 0.13248816991904
926 => 0.13226251373625
927 => 0.13356309864832
928 => 0.13486596006211
929 => 0.13478297342248
930 => 0.13383716293874
1001 => 0.13330289859553
1002 => 0.13734852719401
1003 => 0.1403292774299
1004 => 0.14012601024701
1005 => 0.14102316548623
1006 => 0.14365724101655
1007 => 0.14389806787173
1008 => 0.14386772922332
1009 => 0.14327081473507
1010 => 0.1458644041726
1011 => 0.14802802211125
1012 => 0.14313264627755
1013 => 0.14499674130985
1014 => 0.14583359362724
1015 => 0.14706234111206
1016 => 0.14913544408094
1017 => 0.15138738376855
1018 => 0.15170583273164
1019 => 0.15147987795314
1020 => 0.14999466319378
1021 => 0.15245876247119
1022 => 0.15390217403766
1023 => 0.1547616925936
1024 => 0.15694128864123
1025 => 0.14583876174225
1026 => 0.13797984137176
1027 => 0.13675255747173
1028 => 0.13924828754301
1029 => 0.13990639165973
1030 => 0.13964111071547
1031 => 0.13079518133671
1101 => 0.13670598548425
1102 => 0.14306551375248
1103 => 0.14330980913326
1104 => 0.1464935219558
1105 => 0.14753026935562
1106 => 0.15009357547655
1107 => 0.14993323998077
1108 => 0.15055736423011
1109 => 0.15041388887351
1110 => 0.15516187369474
1111 => 0.16039960603512
1112 => 0.16021824001914
1113 => 0.15946525402518
1114 => 0.16058356662941
1115 => 0.16598946771419
1116 => 0.1654917789701
1117 => 0.16597524119196
1118 => 0.17234910323416
1119 => 0.18063603056031
1120 => 0.17678592082341
1121 => 0.18513955111325
1122 => 0.1903977185738
1123 => 0.19949117549214
1124 => 0.19835262989974
1125 => 0.20189264594718
1126 => 0.19631439566772
1127 => 0.18350560547568
1128 => 0.18147856539771
1129 => 0.18553675096664
1130 => 0.19551340419588
1201 => 0.18522255065255
1202 => 0.18730437692153
1203 => 0.18670481081601
1204 => 0.18667286248624
1205 => 0.18789220029036
1206 => 0.1861234872091
1207 => 0.17891743193067
1208 => 0.18221992459922
1209 => 0.18094467358117
1210 => 0.18235965966196
1211 => 0.18999575595535
1212 => 0.18661965576224
1213 => 0.18306320846091
1214 => 0.18752378261561
1215 => 0.19320362633413
1216 => 0.19284819192188
1217 => 0.19215850060207
1218 => 0.19604625446079
1219 => 0.20246768483039
1220 => 0.20420337165589
1221 => 0.20548462018592
1222 => 0.20566128271134
1223 => 0.20748101651832
1224 => 0.19769584920624
1225 => 0.21322516103143
1226 => 0.21590664419506
1227 => 0.21540263649639
1228 => 0.2183829921787
1229 => 0.21750609593264
1230 => 0.2162356108529
1231 => 0.2209601085492
]
'min_raw' => 0.0814478278846
'max_raw' => 0.2209601085492
'avg_raw' => 0.1512039682169
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.081447'
'max' => '$0.22096'
'avg' => '$0.1512039'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.028089250909277
'max_diff' => 0.10184084430405
'year' => 2032
]
7 => [
'items' => [
101 => 0.2155438531877
102 => 0.20785616058963
103 => 0.20363854038502
104 => 0.20919264289617
105 => 0.21258433948827
106 => 0.21482603518323
107 => 0.21550437094605
108 => 0.19845544388988
109 => 0.18926701778344
110 => 0.19515669357215
111 => 0.20234250451808
112 => 0.19765593166362
113 => 0.19783963644666
114 => 0.19115781516587
115 => 0.20293369743712
116 => 0.20121805044096
117 => 0.21011883009197
118 => 0.20799458759504
119 => 0.21525282787416
120 => 0.21334148995855
121 => 0.2212753467848
122 => 0.22444037707339
123 => 0.22975495552556
124 => 0.2336643810692
125 => 0.23596007052383
126 => 0.23582224593989
127 => 0.24491891126704
128 => 0.2395549255369
129 => 0.23281649526547
130 => 0.23269461832133
131 => 0.2361845468432
201 => 0.24349847960991
202 => 0.24539487596292
203 => 0.24645470281311
204 => 0.24483154109921
205 => 0.23900931902946
206 => 0.23649531305907
207 => 0.23863731898361
208 => 0.23601782980257
209 => 0.24053980302789
210 => 0.24674943810761
211 => 0.24546717301921
212 => 0.24975359296182
213 => 0.25418958665789
214 => 0.26053325687622
215 => 0.26219172717672
216 => 0.26493311551746
217 => 0.26775490461925
218 => 0.2686611872294
219 => 0.27039156193514
220 => 0.27038244200631
221 => 0.27559704264973
222 => 0.28134890864215
223 => 0.28352010489829
224 => 0.28851265096882
225 => 0.27996309078272
226 => 0.28644803039415
227 => 0.29229760825222
228 => 0.28532350038004
301 => 0.29493568332311
302 => 0.29530890260512
303 => 0.30094407065705
304 => 0.29523174826885
305 => 0.29183978946911
306 => 0.30163224742891
307 => 0.30637050937612
308 => 0.30494330631637
309 => 0.29408222056193
310 => 0.28776060279896
311 => 0.27121570976428
312 => 0.29081385025005
313 => 0.30035953279507
314 => 0.2940574995502
315 => 0.29723587855153
316 => 0.31457608378994
317 => 0.32117811124958
318 => 0.31980493568963
319 => 0.32003697975487
320 => 0.32359931393682
321 => 0.33939666551284
322 => 0.32993052626874
323 => 0.33716703503138
324 => 0.34100525318591
325 => 0.34457040411406
326 => 0.33581552021205
327 => 0.32442554489032
328 => 0.32081786158729
329 => 0.2934308865435
330 => 0.29200527555687
331 => 0.29120503690964
401 => 0.28615964543485
402 => 0.2821953497847
403 => 0.27904279469884
404 => 0.2707695487209
405 => 0.27356152637477
406 => 0.26037569904658
407 => 0.26881152409413
408 => 0.2477666252954
409 => 0.26529344236753
410 => 0.25575439268175
411 => 0.26215960799383
412 => 0.26213726080101
413 => 0.25034322863611
414 => 0.24354067701857
415 => 0.24787552766854
416 => 0.25252283166618
417 => 0.25327684110439
418 => 0.25930219204437
419 => 0.26098373797723
420 => 0.25588857529678
421 => 0.24733051654455
422 => 0.24931835840416
423 => 0.24350039346673
424 => 0.23330463369869
425 => 0.24062740636498
426 => 0.24312772291284
427 => 0.24423200514027
428 => 0.23420564639932
429 => 0.23105514680007
430 => 0.22937784724869
501 => 0.24603623953671
502 => 0.24694882387045
503 => 0.24227991339265
504 => 0.26338383147655
505 => 0.2586073648499
506 => 0.26394384833461
507 => 0.24913798259097
508 => 0.24970358660112
509 => 0.24269425248356
510 => 0.24661901122552
511 => 0.24384511824758
512 => 0.24630192950439
513 => 0.24777453204191
514 => 0.25478271599671
515 => 0.26537346457089
516 => 0.2537359270162
517 => 0.24866528525102
518 => 0.25181108288377
519 => 0.26018875652814
520 => 0.27288136094459
521 => 0.26536708366758
522 => 0.26870179232242
523 => 0.26943027781264
524 => 0.26388952794223
525 => 0.27308565629556
526 => 0.27801393618931
527 => 0.28306933159648
528 => 0.28745878977956
529 => 0.28105009550033
530 => 0.28790831702934
531 => 0.28238180111603
601 => 0.27742394502107
602 => 0.27743146404226
603 => 0.27432132849117
604 => 0.26829504895864
605 => 0.26718371055313
606 => 0.27296503328518
607 => 0.27760110662299
608 => 0.27798295582838
609 => 0.28054972423824
610 => 0.28206871134337
611 => 0.29695684993655
612 => 0.30294498243986
613 => 0.31026715751537
614 => 0.31311955736245
615 => 0.32170425826024
616 => 0.31477141506996
617 => 0.31327145083612
618 => 0.29244777449235
619 => 0.29585765032708
620 => 0.30131719054256
621 => 0.29253780029963
622 => 0.29810630267169
623 => 0.29920564299695
624 => 0.29223947997865
625 => 0.29596040863686
626 => 0.28607872529912
627 => 0.26558885826413
628 => 0.27310846737491
629 => 0.2786454307535
630 => 0.27074350130959
701 => 0.28490740399089
702 => 0.27663314444677
703 => 0.27401060140579
704 => 0.26377912599881
705 => 0.2686079885453
706 => 0.27513909428208
707 => 0.27110363025929
708 => 0.27947782403455
709 => 0.29133791573623
710 => 0.29979012336352
711 => 0.30043897891367
712 => 0.29500477566325
713 => 0.30371312105266
714 => 0.30377655184171
715 => 0.29395350266781
716 => 0.28793693974377
717 => 0.28656996398847
718 => 0.28998493743659
719 => 0.29413134564149
720 => 0.3006690757115
721 => 0.30461968906959
722 => 0.31492079346406
723 => 0.3177079769574
724 => 0.32077024659534
725 => 0.32486238320061
726 => 0.32977604239753
727 => 0.31902523580944
728 => 0.3194523853972
729 => 0.30944138315743
730 => 0.29874319154129
731 => 0.30686178542953
801 => 0.31747576696711
802 => 0.31504090787498
803 => 0.31476693648746
804 => 0.31522768036795
805 => 0.31339187612755
806 => 0.30508860158629
807 => 0.30091874909291
808 => 0.30629892265219
809 => 0.30915824545497
810 => 0.31359280576293
811 => 0.31304615260276
812 => 0.32446910371905
813 => 0.32890771711073
814 => 0.32777212986616
815 => 0.3279811052486
816 => 0.33601700277842
817 => 0.34495457353996
818 => 0.35332578797448
819 => 0.3618413468493
820 => 0.35157550825779
821 => 0.34636314852992
822 => 0.35174097327372
823 => 0.3488874237663
824 => 0.36528476565374
825 => 0.36642008202922
826 => 0.38281623820221
827 => 0.39837814282834
828 => 0.38860398935315
829 => 0.39782057584271
830 => 0.4077890655705
831 => 0.42701989958457
901 => 0.42054363123753
902 => 0.41558291117976
903 => 0.41089505469519
904 => 0.42064973986331
905 => 0.4331989864972
906 => 0.43590197402695
907 => 0.44028184644586
908 => 0.4356769461427
909 => 0.44122304134472
910 => 0.46080319448559
911 => 0.45551246426813
912 => 0.44799877683202
913 => 0.46345542723884
914 => 0.46904912893486
915 => 0.50830865688184
916 => 0.55787543264511
917 => 0.53735446200612
918 => 0.52461643332291
919 => 0.52761017221355
920 => 0.54571028078105
921 => 0.5515234611842
922 => 0.53572123292498
923 => 0.54130284709284
924 => 0.57205808992991
925 => 0.58855729096568
926 => 0.56614915982078
927 => 0.50432601471135
928 => 0.44732225148744
929 => 0.46244221640733
930 => 0.46072808161255
1001 => 0.49377075324631
1002 => 0.45538628210221
1003 => 0.45603257815381
1004 => 0.48975853724416
1005 => 0.48076102956817
1006 => 0.46618621944678
1007 => 0.44742866373077
1008 => 0.41275358712583
1009 => 0.38204090479078
1010 => 0.44227554755813
1011 => 0.43967812023241
1012 => 0.43591666054761
1013 => 0.44428738204369
1014 => 0.48493322955791
1015 => 0.48399621121494
1016 => 0.47803537858791
1017 => 0.48255661759914
1018 => 0.46539362438824
1019 => 0.46981691853278
1020 => 0.4473132218001
1021 => 0.45748583256067
1022 => 0.46615494845014
1023 => 0.46789540181341
1024 => 0.4718167321106
1025 => 0.43830939405977
1026 => 0.45335320512083
1027 => 0.46219003470473
1028 => 0.42226491715805
1029 => 0.46140084349988
1030 => 0.4377261058514
1031 => 0.42969054431088
1101 => 0.44050936932046
1102 => 0.43629326269257
1103 => 0.43266850179201
1104 => 0.43064582292819
1105 => 0.43858997398508
1106 => 0.43821936984297
1107 => 0.42522119682062
1108 => 0.40826560998628
1109 => 0.41395646147605
1110 => 0.4118889217778
1111 => 0.40439589119341
1112 => 0.40944528909532
1113 => 0.38721029617709
1114 => 0.34895614653563
1115 => 0.37422800954507
1116 => 0.3732550703097
1117 => 0.37276447022795
1118 => 0.39175557681655
1119 => 0.38993002011744
1120 => 0.38661661683263
1121 => 0.40433503794368
1122 => 0.39786757589175
1123 => 0.41779877001009
1124 => 0.43092674352524
1125 => 0.42759706479635
1126 => 0.43994398734035
1127 => 0.41408756720047
1128 => 0.42267603279142
1129 => 0.42444610364661
1130 => 0.40411639537753
1201 => 0.39022870377045
1202 => 0.38930255307154
1203 => 0.36522320966665
1204 => 0.37808620055187
1205 => 0.38940510022414
1206 => 0.38398422566322
1207 => 0.38226813872125
1208 => 0.39103525473391
1209 => 0.39171653473336
1210 => 0.37618327854699
1211 => 0.37941313438239
1212 => 0.39288217013484
1213 => 0.37907374923941
1214 => 0.35224624303233
1215 => 0.34559265057369
1216 => 0.34470493868966
1217 => 0.32665986823874
1218 => 0.34603727543716
1219 => 0.33757851791282
1220 => 0.36429963158074
1221 => 0.34903667476183
1222 => 0.34837871919905
1223 => 0.34738412286482
1224 => 0.33185198529524
1225 => 0.33525253630414
1226 => 0.34655648577627
1227 => 0.35058986229603
1228 => 0.35016914808054
1229 => 0.34650109025701
1230 => 0.34818030834512
1231 => 0.34277096180493
]
'min_raw' => 0.18926701778344
'max_raw' => 0.58855729096568
'avg_raw' => 0.38891215437456
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.189267'
'max' => '$0.588557'
'avg' => '$0.388912'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.10781918989884
'max_diff' => 0.36759718241648
'year' => 2033
]
8 => [
'items' => [
101 => 0.34086080895578
102 => 0.33483184113491
103 => 0.32597092398311
104 => 0.32720308886023
105 => 0.30964729339742
106 => 0.30008196427269
107 => 0.29743440723998
108 => 0.29389398332681
109 => 0.29783430754168
110 => 0.30959756003464
111 => 0.2954085818149
112 => 0.27108257389824
113 => 0.27254460842353
114 => 0.27582936591991
115 => 0.26970824205625
116 => 0.26391511202627
117 => 0.26895176857584
118 => 0.25864451833746
119 => 0.27707494786775
120 => 0.27657645639964
121 => 0.28344618079842
122 => 0.28774196044591
123 => 0.27784157913362
124 => 0.27535166000705
125 => 0.27677003110206
126 => 0.25332751636228
127 => 0.28153042721318
128 => 0.28177432715737
129 => 0.27968590775926
130 => 0.29470308712018
131 => 0.32639401954743
201 => 0.31447061600349
202 => 0.3098535137645
203 => 0.3010763990331
204 => 0.31277138327919
205 => 0.31187339095927
206 => 0.30781232913509
207 => 0.30535618627254
208 => 0.30988170480624
209 => 0.30479542444452
210 => 0.30388178872992
211 => 0.2983461503449
212 => 0.29637017929695
213 => 0.29490724899872
214 => 0.29329670648493
215 => 0.29684916194816
216 => 0.28879883050404
217 => 0.27909091996615
218 => 0.27828381224598
219 => 0.28051230762302
220 => 0.27952636431065
221 => 0.27827909192872
222 => 0.27589770927719
223 => 0.27519120391467
224 => 0.27748700359518
225 => 0.27489517960932
226 => 0.27871955708442
227 => 0.27767953802365
228 => 0.27187007609294
301 => 0.26462933558899
302 => 0.26456487781054
303 => 0.26300487214616
304 => 0.26101797038415
305 => 0.26046525976811
306 => 0.26852759540961
307 => 0.28521638890212
308 => 0.28193997941056
309 => 0.28430752104816
310 => 0.29595348266309
311 => 0.29965538365419
312 => 0.29702786201504
313 => 0.29343114833689
314 => 0.2935893854851
315 => 0.30588044492261
316 => 0.3066470232232
317 => 0.30858391928128
318 => 0.31107337808267
319 => 0.29745182761364
320 => 0.29294781168297
321 => 0.29081355906173
322 => 0.28424088704802
323 => 0.2913289503165
324 => 0.28719903939109
325 => 0.28775630547277
326 => 0.28739338520601
327 => 0.28759156421222
328 => 0.27706979618709
329 => 0.2809033754476
330 => 0.27452930639207
331 => 0.26599514344955
401 => 0.2659665339429
402 => 0.26805525823274
403 => 0.26681280329335
404 => 0.2634693889979
405 => 0.2639443052181
406 => 0.25978353939882
407 => 0.26444949752165
408 => 0.26458330050502
409 => 0.26278665247127
410 => 0.26997520473763
411 => 0.27292036046646
412 => 0.27173776824272
413 => 0.2728373866435
414 => 0.28207612901704
415 => 0.28358244713851
416 => 0.28425145414628
417 => 0.28335507338232
418 => 0.27300625389429
419 => 0.27346526804516
420 => 0.27009732676673
421 => 0.26725177129136
422 => 0.26736557858741
423 => 0.26882856399806
424 => 0.27521750708936
425 => 0.28866266117622
426 => 0.28917289494553
427 => 0.28979131315851
428 => 0.28727589549423
429 => 0.28651722145738
430 => 0.28751810834237
501 => 0.29256740130478
502 => 0.30555555367375
503 => 0.30096467317703
504 => 0.29723221587188
505 => 0.30050658719176
506 => 0.30000252339243
507 => 0.29574771765425
508 => 0.29562829942825
509 => 0.287461966873
510 => 0.28444305966572
511 => 0.28192023484203
512 => 0.27916537599457
513 => 0.27753220332609
514 => 0.28004149880858
515 => 0.28061540437453
516 => 0.27512878594709
517 => 0.27438098012918
518 => 0.27886147117392
519 => 0.27688977411467
520 => 0.27891771343584
521 => 0.27938821275369
522 => 0.279312451527
523 => 0.27725377334918
524 => 0.27856591342906
525 => 0.27546231097237
526 => 0.27208760944674
527 => 0.26993476012473
528 => 0.26805611355725
529 => 0.26909849586046
530 => 0.26538259328098
531 => 0.26419380125946
601 => 0.27812138989408
602 => 0.28840984936529
603 => 0.2882602510899
604 => 0.28734961006202
605 => 0.28599658221139
606 => 0.29246841889001
607 => 0.29021376039964
608 => 0.29185421283441
609 => 0.29227177682863
610 => 0.2935356172769
611 => 0.2939873316064
612 => 0.29262193716688
613 => 0.28803950665894
614 => 0.27662052551758
615 => 0.27130495897132
616 => 0.2695507334733
617 => 0.2696144962384
618 => 0.26785563452729
619 => 0.26837369812787
620 => 0.26767547314905
621 => 0.26635320395793
622 => 0.26901684946397
623 => 0.26932380979497
624 => 0.26870208310566
625 => 0.26884852224783
626 => 0.26370089080333
627 => 0.26409225404199
628 => 0.26191309379711
629 => 0.26150452752136
630 => 0.2559958001835
701 => 0.24623629120167
702 => 0.25164400655606
703 => 0.24511224684781
704 => 0.24263857047398
705 => 0.25434856969207
706 => 0.2531732105554
707 => 0.25116150662974
708 => 0.24818577724787
709 => 0.24708205027409
710 => 0.24037615457895
711 => 0.23997993448672
712 => 0.24330355746765
713 => 0.24176981982083
714 => 0.23961587129283
715 => 0.23181448806669
716 => 0.22304315037128
717 => 0.22330790192165
718 => 0.22609790124601
719 => 0.23421020056429
720 => 0.23104058487644
721 => 0.22874099232775
722 => 0.22831034776888
723 => 0.2337007660386
724 => 0.24132933721779
725 => 0.24490849213541
726 => 0.2413616583126
727 => 0.23728724659205
728 => 0.23753523715448
729 => 0.23918500726455
730 => 0.23935837477663
731 => 0.23670635160285
801 => 0.23745288059195
802 => 0.23631883479346
803 => 0.22935919782139
804 => 0.22923332005781
805 => 0.22752531290556
806 => 0.2274735951278
807 => 0.22456784887947
808 => 0.22416131489285
809 => 0.2183917793506
810 => 0.22218930511627
811 => 0.21964212421171
812 => 0.2158029217693
813 => 0.21514104182115
814 => 0.21512114491066
815 => 0.21906314738906
816 => 0.22214324052216
817 => 0.21968643351409
818 => 0.21912706618155
819 => 0.22509964586876
820 => 0.22433958066229
821 => 0.22368136909538
822 => 0.2406462823396
823 => 0.22721722971811
824 => 0.22136139627162
825 => 0.21411369038897
826 => 0.21647357997047
827 => 0.21697084337928
828 => 0.1995414172287
829 => 0.1924703012101
830 => 0.1900437606619
831 => 0.18864725227017
901 => 0.18928365868053
902 => 0.18291882490461
903 => 0.18719609846666
904 => 0.18168469042272
905 => 0.18076068492848
906 => 0.19061576524349
907 => 0.19198704209678
908 => 0.18613674901832
909 => 0.18989358425111
910 => 0.18853130357179
911 => 0.18177916769494
912 => 0.18152128576979
913 => 0.17813330133584
914 => 0.17283176173976
915 => 0.17040881588506
916 => 0.16914692464695
917 => 0.16966760556556
918 => 0.16940433336001
919 => 0.16768630413461
920 => 0.16950280878416
921 => 0.16486239003611
922 => 0.16301453790025
923 => 0.16217990596032
924 => 0.15806126722889
925 => 0.16461585301755
926 => 0.16590718899041
927 => 0.16720106929405
928 => 0.17846341396766
929 => 0.17790077905482
930 => 0.18298672465256
1001 => 0.18278909415908
1002 => 0.18133850008775
1003 => 0.17521868231195
1004 => 0.17765793260212
1005 => 0.17015029935264
1006 => 0.17577552865259
1007 => 0.17320840891528
1008 => 0.17490758288712
1009 => 0.17185231487742
1010 => 0.17354322634291
1011 => 0.16621341265498
1012 => 0.15936893576646
1013 => 0.16212335306914
1014 => 0.16511771968298
1015 => 0.1716102694522
1016 => 0.16774336037202
1017 => 0.16913404710127
1018 => 0.16447547935643
1019 => 0.15486352344471
1020 => 0.15491792607132
1021 => 0.15343933606214
1022 => 0.15216161841654
1023 => 0.1681875213965
1024 => 0.1661944470289
1025 => 0.16301874387127
1026 => 0.16726954874519
1027 => 0.1683935290232
1028 => 0.16842552716158
1029 => 0.17152680466844
1030 => 0.17318195702979
1031 => 0.17347368480732
1101 => 0.17835361197189
1102 => 0.17998929918966
1103 => 0.18672646334854
1104 => 0.17304152891583
1105 => 0.17275969669681
1106 => 0.16732936628708
1107 => 0.1638853648911
1108 => 0.16756518000913
1109 => 0.17082499385886
1110 => 0.16743065779009
1111 => 0.16787388642232
1112 => 0.16331726757744
1113 => 0.16494604440564
1114 => 0.16634896643002
1115 => 0.1655743553481
1116 => 0.16441472506687
1117 => 0.17055772629761
1118 => 0.17021111409355
1119 => 0.1759316180666
1120 => 0.18039115999075
1121 => 0.18838345635731
1122 => 0.18004307845097
1123 => 0.17973912193007
1124 => 0.18271034567809
1125 => 0.17998884431079
1126 => 0.18170873923189
1127 => 0.18810635469605
1128 => 0.18824152622957
1129 => 0.18597722888431
1130 => 0.18583944618507
1201 => 0.18627432925893
1202 => 0.18882145300583
1203 => 0.18793140970346
1204 => 0.1889613903461
1205 => 0.19024939691136
1206 => 0.19557713816872
1207 => 0.19686163854889
1208 => 0.19374096856217
1209 => 0.19402273012131
1210 => 0.19285551388198
1211 => 0.19172799761995
1212 => 0.19426248951646
1213 => 0.19889432327288
1214 => 0.19886550887548
1215 => 0.19994000427699
1216 => 0.20060940601052
1217 => 0.19773584373816
1218 => 0.19586526036266
1219 => 0.19658256105714
1220 => 0.19772954048838
1221 => 0.19621061108618
1222 => 0.18683507517926
1223 => 0.18967901386187
1224 => 0.18920564340359
1225 => 0.18853150630718
1226 => 0.19139110864407
1227 => 0.19111529302263
1228 => 0.18285354433466
1229 => 0.18338243468048
1230 => 0.18288570790833
1231 => 0.1844907337299
]
'min_raw' => 0.15216161841654
'max_raw' => 0.34086080895578
'avg_raw' => 0.24651121368616
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.152161'
'max' => '$0.34086'
'avg' => '$0.246511'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.037105399366905
'max_diff' => -0.24769648200991
'year' => 2034
]
9 => [
'items' => [
101 => 0.17990216764918
102 => 0.18131357967115
103 => 0.18219880406016
104 => 0.1827202080259
105 => 0.1846038766802
106 => 0.18438284990484
107 => 0.18459013734551
108 => 0.18738312068976
109 => 0.20150907200882
110 => 0.20227791637196
111 => 0.19849184553624
112 => 0.20000430615817
113 => 0.19710071250284
114 => 0.19904991437605
115 => 0.20038350879334
116 => 0.19435725205708
117 => 0.19400041624324
118 => 0.19108483842403
119 => 0.1926515047973
120 => 0.19015882595013
121 => 0.19077044214902
122 => 0.18906030993718
123 => 0.19213820743457
124 => 0.19557977509357
125 => 0.19644925099586
126 => 0.19416203422985
127 => 0.19250593855633
128 => 0.18959838010545
129 => 0.19443371460842
130 => 0.19584771377124
131 => 0.19442628747278
201 => 0.19409691194065
202 => 0.19347274590243
203 => 0.19422933171628
204 => 0.19584001282813
205 => 0.19508044536039
206 => 0.19558215305469
207 => 0.19367016068275
208 => 0.19773679500684
209 => 0.20419558900233
210 => 0.20421635508114
211 => 0.20345678351905
212 => 0.20314598320104
213 => 0.2039253497184
214 => 0.20434812408278
215 => 0.20686845248855
216 => 0.20957286528225
217 => 0.22219317976272
218 => 0.21864944595761
219 => 0.22984693975054
220 => 0.23870270352816
221 => 0.24135815986945
222 => 0.23891526498434
223 => 0.23055825354496
224 => 0.23014821869451
225 => 0.24263712202417
226 => 0.23910843480553
227 => 0.23868870868906
228 => 0.23422353194832
301 => 0.236863004425
302 => 0.23628571307562
303 => 0.23537443043857
304 => 0.24041036005683
305 => 0.24983717074167
306 => 0.24836791389237
307 => 0.24727118181123
308 => 0.24246562108558
309 => 0.24535964200326
310 => 0.24432913658579
311 => 0.24875684183414
312 => 0.2461339673307
313 => 0.23908170152929
314 => 0.24020479810274
315 => 0.24003504431502
316 => 0.24352856523741
317 => 0.24247989697102
318 => 0.23983027500548
319 => 0.24980495092757
320 => 0.24915725095526
321 => 0.25007554143117
322 => 0.25047980129775
323 => 0.25655121075802
324 => 0.25903847295046
325 => 0.2596031250138
326 => 0.26196583172486
327 => 0.25954433871845
328 => 0.26923203723933
329 => 0.27567379146282
330 => 0.28315622048306
331 => 0.29409006036894
401 => 0.29820128530971
402 => 0.29745862932231
403 => 0.3057485419376
404 => 0.32064533063286
405 => 0.30046969623311
406 => 0.32171468824632
407 => 0.31498876906016
408 => 0.29904173566391
409 => 0.29801493471637
410 => 0.30881445088117
411 => 0.3327667383198
412 => 0.32676696198102
413 => 0.33277655180453
414 => 0.32576604605725
415 => 0.32541791535772
416 => 0.33243606718813
417 => 0.34883436147943
418 => 0.3410441465425
419 => 0.32987496319135
420 => 0.3381221143661
421 => 0.33097766878072
422 => 0.31487923327245
423 => 0.32676237406513
424 => 0.31881645622943
425 => 0.32113549748211
426 => 0.33783663490668
427 => 0.33582710986602
428 => 0.33842762134564
429 => 0.33383778665135
430 => 0.3295501572964
501 => 0.32154697870184
502 => 0.31917763207192
503 => 0.31983243424027
504 => 0.31917730758449
505 => 0.31469960271384
506 => 0.31373264277335
507 => 0.31212100050904
508 => 0.31262051583704
509 => 0.30959015687758
510 => 0.3153090703382
511 => 0.31637055107139
512 => 0.32053229937023
513 => 0.32096438588468
514 => 0.33255479565817
515 => 0.32617099272386
516 => 0.33045379888322
517 => 0.33007070438899
518 => 0.29938735623324
519 => 0.30361525088763
520 => 0.31019252818343
521 => 0.30722947367696
522 => 0.30304040785279
523 => 0.29965751259627
524 => 0.29453208036385
525 => 0.30174602780578
526 => 0.31123160157414
527 => 0.32120495568903
528 => 0.33318728717802
529 => 0.33051297027939
530 => 0.32098095433658
531 => 0.32140855360863
601 => 0.32405180405435
602 => 0.32062855456252
603 => 0.31961897145761
604 => 0.32391310283894
605 => 0.32394267416175
606 => 0.32000381190787
607 => 0.31562648731687
608 => 0.31560814616701
609 => 0.31482924353598
610 => 0.32590461110497
611 => 0.33199494342195
612 => 0.33269319020703
613 => 0.33194794584997
614 => 0.33223476082531
615 => 0.32869093064138
616 => 0.33679107555166
617 => 0.34422456954264
618 => 0.34223223435962
619 => 0.33924544069314
620 => 0.33686631567432
621 => 0.34167178811487
622 => 0.3414578079916
623 => 0.34415964445747
624 => 0.34403707354881
625 => 0.34312854756655
626 => 0.34223226680594
627 => 0.34578591871076
628 => 0.34476252403208
629 => 0.34373753973879
630 => 0.34168177682135
701 => 0.34196118914444
702 => 0.33897491119
703 => 0.33759332236549
704 => 0.31681754134001
705 => 0.31126557378178
706 => 0.31301233579632
707 => 0.31358741520616
708 => 0.31117119180978
709 => 0.31463543548333
710 => 0.31409553677635
711 => 0.31619596681503
712 => 0.31488370931693
713 => 0.31493756482239
714 => 0.3187966343215
715 => 0.31991693861475
716 => 0.31934714280924
717 => 0.31974620825996
718 => 0.32894250313684
719 => 0.32763508408631
720 => 0.32694054377353
721 => 0.32713293618675
722 => 0.32948278669858
723 => 0.33014061654481
724 => 0.32735334526144
725 => 0.3286678385117
726 => 0.33426478393727
727 => 0.33622339807654
728 => 0.34247435422097
729 => 0.33981883694893
730 => 0.34469315382986
731 => 0.35967514214475
801 => 0.37164379108543
802 => 0.36063692689425
803 => 0.38261582647554
804 => 0.39972955248547
805 => 0.39907269917681
806 => 0.39608852519936
807 => 0.376605003129
808 => 0.35867597563691
809 => 0.37367436844077
810 => 0.37371260242847
811 => 0.3724242271852
812 => 0.36442223920039
813 => 0.37214577534865
814 => 0.37275884160033
815 => 0.37241568752686
816 => 0.36628058210056
817 => 0.35691341007161
818 => 0.35874373306422
819 => 0.3617418394637
820 => 0.35606579857897
821 => 0.35425195959285
822 => 0.35762423136503
823 => 0.36849039365572
824 => 0.36643620861806
825 => 0.36638256554511
826 => 0.37517124024626
827 => 0.36888044587494
828 => 0.35876681929867
829 => 0.35621299520581
830 => 0.34714864013821
831 => 0.35340942246953
901 => 0.35363473687978
902 => 0.35020577038056
903 => 0.35904506103196
904 => 0.35896360541248
905 => 0.3673551963312
906 => 0.38339676643018
907 => 0.37865248479419
908 => 0.37313540142791
909 => 0.37373526136195
910 => 0.38031424425793
911 => 0.37633644101545
912 => 0.37776688679567
913 => 0.38031207910692
914 => 0.38184765682186
915 => 0.37351431535997
916 => 0.3715714148354
917 => 0.36759692222756
918 => 0.36656005129359
919 => 0.36979719259217
920 => 0.36894432022988
921 => 0.35361580007605
922 => 0.3520138844329
923 => 0.35206301289867
924 => 0.34803491984701
925 => 0.34189111109014
926 => 0.35803667367544
927 => 0.35673995904284
928 => 0.35530848644619
929 => 0.35548383367141
930 => 0.3624920751658
1001 => 0.35842694117437
1002 => 0.36923476615294
1003 => 0.3670130022503
1004 => 0.36473425848705
1005 => 0.36441926668673
1006 => 0.36354214475116
1007 => 0.36053416727139
1008 => 0.35690185371314
1009 => 0.35450348567637
1010 => 0.3270107265531
1011 => 0.33211322272836
1012 => 0.33798317947083
1013 => 0.34000946501596
1014 => 0.33654336337633
1015 => 0.36067103009026
1016 => 0.36507938729888
1017 => 0.35172618576395
1018 => 0.34922834696439
1019 => 0.36083478798611
1020 => 0.35383468522031
1021 => 0.35698683106713
1022 => 0.35017361587789
1023 => 0.36401754313909
1024 => 0.36391207560828
1025 => 0.3585264752244
1026 => 0.36307834778986
1027 => 0.36228734791552
1028 => 0.35620701834627
1029 => 0.36421030043172
1030 => 0.36421426995979
1031 => 0.35903074668335
1101 => 0.35297752631562
1102 => 0.35189535348456
1103 => 0.35108008162581
1104 => 0.35678632416695
1105 => 0.36190252338638
1106 => 0.37142250172038
1107 => 0.37381605046265
1108 => 0.38315823055131
1109 => 0.37759541717101
1110 => 0.380061340292
1111 => 0.38273844866597
1112 => 0.38402195286784
1113 => 0.38193055164752
1114 => 0.39644280271994
1115 => 0.39766808135434
1116 => 0.39807890668183
1117 => 0.39318545727247
1118 => 0.39753198567408
1119 => 0.39549838897685
1120 => 0.40078924263359
1121 => 0.40161891604398
1122 => 0.40091621218187
1123 => 0.40117956361783
1124 => 0.38879591746404
1125 => 0.38815376008202
1126 => 0.37939789861288
1127 => 0.38296597688162
1128 => 0.37629562558066
1129 => 0.37841086269043
1130 => 0.37934323905369
1201 => 0.37885621855342
1202 => 0.38316771067343
1203 => 0.37950206159177
1204 => 0.36982781097676
1205 => 0.36015092461864
1206 => 0.36002943919303
1207 => 0.35748168582617
1208 => 0.35564012678623
1209 => 0.35599487639014
1210 => 0.35724506026503
1211 => 0.35556746382671
1212 => 0.35592546408313
1213 => 0.36187065368283
1214 => 0.36306291905789
1215 => 0.35901113546526
1216 => 0.34274263967126
1217 => 0.33875030999698
1218 => 0.34161991739552
1219 => 0.3402484298854
1220 => 0.27460703821868
1221 => 0.29002850951825
1222 => 0.28086559493573
1223 => 0.28508828754078
1224 => 0.27573532447726
1225 => 0.28019904868197
1226 => 0.27937476181046
1227 => 0.30417203130566
1228 => 0.30378485605003
1229 => 0.30397017635604
1230 => 0.29512435530043
1231 => 0.30921598843224
]
'min_raw' => 0.17990216764918
'max_raw' => 0.40161891604398
'avg_raw' => 0.29076054184658
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.1799021'
'max' => '$0.401618'
'avg' => '$0.29076'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.027740549232639
'max_diff' => 0.060758107088201
'year' => 2035
]
10 => [
'items' => [
101 => 0.3161580336317
102 => 0.31487324582183
103 => 0.31519659923391
104 => 0.3096403162933
105 => 0.30402397332034
106 => 0.29779458461433
107 => 0.30936801885438
108 => 0.308081250532
109 => 0.31103263409891
110 => 0.31853883348974
111 => 0.31964414986332
112 => 0.32112970627842
113 => 0.32059724005272
114 => 0.33328274577974
115 => 0.33174644733453
116 => 0.33544848456425
117 => 0.32783311310849
118 => 0.3192155974486
119 => 0.32085350544773
120 => 0.32069576173619
121 => 0.31868750323847
122 => 0.31687453726204
123 => 0.31385645971127
124 => 0.32340610367333
125 => 0.32301840556817
126 => 0.329294787241
127 => 0.32818537581481
128 => 0.32077645479167
129 => 0.32104106585544
130 => 0.32282070242703
131 => 0.32898004492083
201 => 0.33080855713301
202 => 0.32996151742272
203 => 0.33196639758861
204 => 0.33355097312619
205 => 0.33216539587958
206 => 0.35178224776776
207 => 0.34363596318165
208 => 0.34760640560743
209 => 0.34855333273078
210 => 0.34612779881606
211 => 0.34665381027031
212 => 0.34745057429395
213 => 0.35228836942309
214 => 0.36498414366926
215 => 0.37060701565983
216 => 0.38752370347108
217 => 0.37014011441517
218 => 0.36910864418104
219 => 0.37215585049087
220 => 0.38208773704934
221 => 0.39013659825031
222 => 0.39280686986062
223 => 0.3931597903353
224 => 0.39816939739253
225 => 0.40104081073409
226 => 0.39756109933003
227 => 0.39461240825607
228 => 0.38405056283412
229 => 0.38527312520066
301 => 0.39369536754936
302 => 0.4055922809345
303 => 0.41580107028182
304 => 0.41222630806462
305 => 0.43949922039303
306 => 0.44220321825054
307 => 0.44182961317735
308 => 0.44798972270558
309 => 0.43576315977653
310 => 0.43053606724586
311 => 0.39524994873532
312 => 0.40516390873471
313 => 0.41957443182028
314 => 0.41766714505322
315 => 0.40720183799409
316 => 0.41579313140797
317 => 0.41295258113076
318 => 0.41071212127258
319 => 0.42097610221739
320 => 0.40969043354747
321 => 0.41946184864222
322 => 0.40692990771086
323 => 0.41224263727731
324 => 0.40922687502758
325 => 0.41117844280107
326 => 0.3997696174743
327 => 0.40592554268705
328 => 0.39951351074664
329 => 0.39951047060863
330 => 0.39936892464816
331 => 0.40691265179074
401 => 0.40715865246203
402 => 0.40158382670573
403 => 0.4007804072191
404 => 0.40375107015037
405 => 0.40027320187571
406 => 0.40190047455198
407 => 0.40032249030734
408 => 0.39996725281644
409 => 0.39713666005027
410 => 0.39591716285783
411 => 0.39639535912955
412 => 0.39476302872708
413 => 0.39377949061562
414 => 0.3991732741625
415 => 0.39629159319801
416 => 0.39873161522557
417 => 0.39595090216983
418 => 0.38631173921965
419 => 0.3807681546747
420 => 0.36256066941268
421 => 0.36772428964668
422 => 0.37114777520396
423 => 0.3700163132477
424 => 0.3724471313474
425 => 0.37259636383644
426 => 0.37180608009297
427 => 0.37089103275965
428 => 0.37044563832308
429 => 0.37376524354845
430 => 0.37569238611455
501 => 0.37149136777997
502 => 0.37050712796267
503 => 0.37475458944351
504 => 0.37734553849315
505 => 0.39647565054715
506 => 0.39505843005674
507 => 0.39861537537219
508 => 0.39821491791545
509 => 0.40194316327186
510 => 0.40803726875556
511 => 0.39564624836851
512 => 0.39779690105846
513 => 0.39726961068471
514 => 0.40302642872235
515 => 0.40304440087989
516 => 0.39959290089193
517 => 0.4014640150296
518 => 0.40041961044928
519 => 0.40230699068565
520 => 0.39503950221305
521 => 0.40389051869578
522 => 0.40890847469458
523 => 0.40897814901849
524 => 0.41135662033696
525 => 0.4137732849483
526 => 0.41841186222263
527 => 0.41364391754571
528 => 0.40506684922199
529 => 0.4056860858512
530 => 0.40065735383123
531 => 0.400741887725
601 => 0.40029063917502
602 => 0.40164487004193
603 => 0.39533667973333
604 => 0.39681719939013
605 => 0.3947444632007
606 => 0.39779239533478
607 => 0.39451332419974
608 => 0.39726935640932
609 => 0.39845876854706
610 => 0.40284772494154
611 => 0.39386507177173
612 => 0.37554883388633
613 => 0.37939912915276
614 => 0.37370424001955
615 => 0.3742313236908
616 => 0.37529611659147
617 => 0.37184477442184
618 => 0.37250318174351
619 => 0.37247965880084
620 => 0.37227695078902
621 => 0.37137912339354
622 => 0.37007709604036
623 => 0.37526397227255
624 => 0.37614532361732
625 => 0.37810445848041
626 => 0.38393351493908
627 => 0.38335105474024
628 => 0.38430107149058
629 => 0.38222719025869
630 => 0.37432752509311
701 => 0.37475651491804
702 => 0.3694070049271
703 => 0.3779676594826
704 => 0.37594038348874
705 => 0.37463338546729
706 => 0.37427675894788
707 => 0.38012026451005
708 => 0.38186873295997
709 => 0.38077920475733
710 => 0.3785445506271
711 => 0.38283574717333
712 => 0.38398389033806
713 => 0.38424091725075
714 => 0.39184409477535
715 => 0.38466585041361
716 => 0.38639372517709
717 => 0.3998741108382
718 => 0.38764926120964
719 => 0.39412503670457
720 => 0.3938080811924
721 => 0.39712086880731
722 => 0.39353633591495
723 => 0.39358077049617
724 => 0.39652230147054
725 => 0.39239145172495
726 => 0.39136859523567
727 => 0.38995552632157
728 => 0.39304091059942
729 => 0.39489045893406
730 => 0.40979646016773
731 => 0.41942641676092
801 => 0.41900835494801
802 => 0.42282865733912
803 => 0.42110757612196
804 => 0.41554975087348
805 => 0.42503628086805
806 => 0.4220343458445
807 => 0.42228182172049
808 => 0.42227261065602
809 => 0.42426863501298
810 => 0.42285426882313
811 => 0.42006640788123
812 => 0.42191712007849
813 => 0.42741307366261
814 => 0.44447268222418
815 => 0.45401946518499
816 => 0.44389795390265
817 => 0.45087963685277
818 => 0.44669311491069
819 => 0.44593229933558
820 => 0.45031731217057
821 => 0.45471000039005
822 => 0.45443020514059
823 => 0.45124133906028
824 => 0.44944002952599
825 => 0.46308014880256
826 => 0.47312995633217
827 => 0.47244462683341
828 => 0.47546944835982
829 => 0.48435041791557
830 => 0.48516238247182
831 => 0.48506009360052
901 => 0.48304755472813
902 => 0.4917920225954
903 => 0.49908681153454
904 => 0.48258171012701
905 => 0.48886663667536
906 => 0.49168814269059
907 => 0.49583095062408
908 => 0.50282056202309
909 => 0.51041313390528
910 => 0.51148680681773
911 => 0.51072498450637
912 => 0.50571747925078
913 => 0.51402536200249
914 => 0.51889192487461
915 => 0.52178985169566
916 => 0.52913851194477
917 => 0.49170556735119
918 => 0.46520866862979
919 => 0.46107079527459
920 => 0.46948532345623
921 => 0.47170416743312
922 => 0.47080975420823
923 => 0.44098508570465
924 => 0.46091377456727
925 => 0.4823553681317
926 => 0.48317902706415
927 => 0.49391313712508
928 => 0.49740860336696
929 => 0.50605096891797
930 => 0.50551038659969
1001 => 0.50761466508129
1002 => 0.5071309278994
1003 => 0.52313909021788
1004 => 0.54079847049028
1005 => 0.54018698230484
1006 => 0.53764823745438
1007 => 0.54141870647764
1008 => 0.55964507941295
1009 => 0.55796708706474
1010 => 0.55959711369998
1011 => 0.58108703458408
1012 => 0.60902698863901
1013 => 0.59604607485497
1014 => 0.62421092260902
1015 => 0.64193920131576
1016 => 0.67259842620084
1017 => 0.66875974024537
1018 => 0.68069515150534
1019 => 0.66188769122712
1020 => 0.61870196081349
1021 => 0.6118676536672
1022 => 0.6255501096463
1023 => 0.65918709255638
1024 => 0.6244907613506
1025 => 0.63150978396493
1026 => 0.62948830497981
1027 => 0.62938058895542
1028 => 0.63349167149345
1029 => 0.6275283318524
1030 => 0.60323261337043
1031 => 0.61436719797515
1101 => 0.6100676001326
1102 => 0.61483832449516
1103 => 0.64058395628353
1104 => 0.62920119877068
1105 => 0.61721038839104
1106 => 0.63224952558095
1107 => 0.65139951523193
1108 => 0.65020114329542
1109 => 0.64787580085796
1110 => 0.66098363442693
1111 => 0.68263393524799
1112 => 0.68848592456196
1113 => 0.69280574343489
1114 => 0.69340137347352
1115 => 0.6995367330535
1116 => 0.66654535828226
1117 => 0.71890351732282
1118 => 0.72794432502417
1119 => 0.7262450278794
1120 => 0.73629350514411
1121 => 0.73333698822757
1122 => 0.72905345907879
1123 => 0.74498243291576
1124 => 0.72672114981358
1125 => 0.70080155748166
1126 => 0.68658155649695
1127 => 0.70530760088837
1128 => 0.71674294274932
1129 => 0.72430097629506
1130 => 0.72658803267932
1201 => 0.66910638479135
1202 => 0.63812696465808
1203 => 0.65798441778374
1204 => 0.68221188108524
1205 => 0.66641077350035
1206 => 0.66703014700222
1207 => 0.64450192004419
1208 => 0.68420512928755
1209 => 0.67842070565734
1210 => 0.70843030568332
1211 => 0.70126827379503
1212 => 0.72573993765026
1213 => 0.71929572842241
1214 => 0.74604528063631
1215 => 0.75671640122965
1216 => 0.77463487353317
1217 => 0.78781577470094
1218 => 0.79555585197712
1219 => 0.79509116676976
1220 => 0.82576120902916
1221 => 0.80767615663845
1222 => 0.78495706851614
1223 => 0.78454615188981
1224 => 0.79631268956032
1225 => 0.82097212452576
1226 => 0.82736595723211
1227 => 0.83093923745226
1228 => 0.82546663440832
1229 => 0.80583660620558
1230 => 0.79736045955415
1231 => 0.80458238207878
]
'min_raw' => 0.29779458461433
'max_raw' => 0.83093923745226
'avg_raw' => 0.5643669110333
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.297794'
'max' => '$0.830939'
'avg' => '$0.564366'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.11789241696516
'max_diff' => 0.42932032140828
'year' => 2036
]
11 => [
'items' => [
101 => 0.79575059141803
102 => 0.81099673986128
103 => 0.83193295807544
104 => 0.827609711805
105 => 0.84206167590979
106 => 0.85701793836729
107 => 0.87840606540929
108 => 0.88399771381812
109 => 0.89324049600657
110 => 0.90275435497428
111 => 0.90580995006901
112 => 0.91164402920034
113 => 0.91161328072354
114 => 0.92919467086461
115 => 0.94858748864054
116 => 0.95590782840619
117 => 0.97274054605142
118 => 0.94391510697275
119 => 0.9657795336367
120 => 0.98550179378968
121 => 0.96198810218195
122 => 0.99439624807571
123 => 0.99565458294233
124 => 1.0146539454643
125 => 0.99539445171084
126 => 0.98395822579853
127 => 1.0169741814976
128 => 1.0329495624675
129 => 1.0281376477074
130 => 0.9915187387895
131 => 0.9702049631404
201 => 0.91442270114643
202 => 0.98049920009268
203 => 1.0126831352515
204 => 0.99143539017251
205 => 1.0021515168828
206 => 1.0606152294986
207 => 1.0828744260176
208 => 1.0782446687452
209 => 1.0790270215119
210 => 1.0910376799206
211 => 1.144299553695
212 => 1.1123838043288
213 => 1.136782198859
214 => 1.1497230193428
215 => 1.1617431746079
216 => 1.1322254722858
217 => 1.0938233752659
218 => 1.0816598191293
219 => 0.98932272067169
220 => 0.98451617369727
221 => 0.98181811322725
222 => 0.96480722361202
223 => 0.95144132404926
224 => 0.94081226447292
225 => 0.91291843803872
226 => 0.9223317856284
227 => 0.87787484818633
228 => 0.90631682130464
301 => 0.8353624756968
302 => 0.89445536313878
303 => 0.86229379112801
304 => 0.88388942175053
305 => 0.88381407662972
306 => 0.84404967375272
307 => 0.82111439603519
308 => 0.83572964765117
309 => 0.85139835754361
310 => 0.85394055300779
311 => 0.87425544437852
312 => 0.87992489389296
313 => 0.86274619718291
314 => 0.83389210459518
315 => 0.84059425221153
316 => 0.82097857722766
317 => 0.78660286132448
318 => 0.81129210062856
319 => 0.8197220924362
320 => 0.82344525706449
321 => 0.78964068855136
322 => 0.77901855919165
323 => 0.77336342664883
324 => 0.82952835929973
325 => 0.83260520109551
326 => 0.81686364344669
327 => 0.88801697669508
328 => 0.87191278598106
329 => 0.88990511263114
330 => 0.83998610256393
331 => 0.84189307597336
401 => 0.81826061661992
402 => 0.83149321473634
403 => 0.8221408408942
404 => 0.83042415157562
405 => 0.83538913384469
406 => 0.85901771534409
407 => 0.89472516358439
408 => 0.85548839321183
409 => 0.83839237047961
410 => 0.848998646831
411 => 0.8772445584335
412 => 0.92003856039291
413 => 0.89470364992339
414 => 0.90594685297508
415 => 0.90840299266659
416 => 0.88972196763573
417 => 0.92072735643213
418 => 0.93734339617545
419 => 0.95438801474714
420 => 0.96918737947357
421 => 0.94758001927041
422 => 0.97070299198121
423 => 0.95206995773046
424 => 0.93535419975986
425 => 0.93537955066474
426 => 0.92489351151152
427 => 0.90457548932621
428 => 0.90082853430085
429 => 0.92032066753102
430 => 0.93595151246973
501 => 0.93723894372558
502 => 0.94589298262547
503 => 0.95101435370273
504 => 1.0012107524262
505 => 1.0214001592392
506 => 1.0460873837242
507 => 1.0557044489569
508 => 1.0846483673985
509 => 1.0612738025468
510 => 1.0562165684082
511 => 0.98600808975255
512 => 0.99750472419926
513 => 1.0159119452087
514 => 0.98631161804719
515 => 1.005086212575
516 => 1.0087927152351
517 => 0.98530581025695
518 => 0.99785118101504
519 => 0.96453439572476
520 => 0.89545137845945
521 => 0.92080426557878
522 => 0.93947252418813
523 => 0.91283061737289
524 => 0.96058520415503
525 => 0.93268796041167
526 => 0.92384587344889
527 => 0.88934973977545
528 => 0.90563058699136
529 => 0.92765066597015
530 => 0.91404481727021
531 => 0.94227899625106
601 => 0.98226612346843
602 => 1.0107633315981
603 => 1.0129509933871
604 => 0.99462919772436
605 => 1.023989992202
606 => 1.0242038535359
607 => 0.99108475742271
608 => 0.97079949546129
609 => 0.9661906412631
610 => 0.97770446266927
611 => 0.99168436742505
612 => 1.0137267808058
613 => 1.0270465495657
614 => 1.0617774422317
615 => 1.0711746259745
616 => 1.0814992818596
617 => 1.0952962061281
618 => 1.1118629511713
619 => 1.0756158561622
620 => 1.07705602082
621 => 1.0433032278227
622 => 1.007233527865
623 => 1.0346059339813
624 => 1.0703917137798
625 => 1.0621824163543
626 => 1.0612587026932
627 => 1.0628121328544
628 => 1.0566225906861
629 => 1.0286275208541
630 => 1.0145685720429
701 => 1.0327082028297
702 => 1.0423486092908
703 => 1.0573000389802
704 => 1.0554569596846
705 => 1.0939702368982
706 => 1.1089353318423
707 => 1.1051066201631
708 => 1.1058111952552
709 => 1.1329047848254
710 => 1.1630384286492
711 => 1.1912625625747
712 => 1.2199733638585
713 => 1.1853613723093
714 => 1.1677875375714
715 => 1.1859192491629
716 => 1.1762983077701
717 => 1.2315830907695
718 => 1.2354108891947
719 => 1.290691674475
720 => 1.3431597224195
721 => 1.3102054815683
722 => 1.3412798463994
723 => 1.3748893054943
724 => 1.4397274050267
725 => 1.417892214136
726 => 1.4011668001148
727 => 1.3853613646814
728 => 1.4182499667761
729 => 1.4605606279627
730 => 1.4696739391358
731 => 1.4844409847891
801 => 1.4689152419131
802 => 1.4876142891027
803 => 1.5536301424598
804 => 1.5357920761447
805 => 1.5104591543649
806 => 1.5625723303604
807 => 1.5814318861683
808 => 1.7137981256542
809 => 1.8809159707819
810 => 1.8117280855441
811 => 1.7687809324979
812 => 1.7788745321839
813 => 1.8399003119284
814 => 1.8594998555209
815 => 1.8062215396686
816 => 1.8250403415314
817 => 1.9287337900191
818 => 1.9843619982486
819 => 1.9088114196078
820 => 1.7003703695173
821 => 1.5081782019322
822 => 1.5591562193018
823 => 1.5533768941642
824 => 1.6647825685431
825 => 1.5353666441625
826 => 1.5375456764234
827 => 1.6512551021678
828 => 1.6209193768523
829 => 1.5717793869473
830 => 1.50853697824
831 => 1.3916275365299
901 => 1.2880775837463
902 => 1.4911628872849
903 => 1.4824054797096
904 => 1.4697234557656
905 => 1.4979459277148
906 => 1.6349862404114
907 => 1.6318270176475
908 => 1.6117296542735
909 => 1.6269733272627
910 => 1.5691070973702
911 => 1.5840205424031
912 => 1.5081477577109
913 => 1.5424454251191
914 => 1.5716739545988
915 => 1.5775420146277
916 => 1.5907630535032
917 => 1.4777907238572
918 => 1.5285119831749
919 => 1.5583059710848
920 => 1.4236956497934
921 => 1.555645157838
922 => 1.4758241269388
923 => 1.4487316701799
924 => 1.485208094046
925 => 1.4709931961909
926 => 1.4587720617419
927 => 1.4519524587336
928 => 1.4787367186648
929 => 1.4774872009249
930 => 1.4336629530766
1001 => 1.3764960082634
1002 => 1.3956831113837
1003 => 1.38871225694
1004 => 1.3634489811781
1005 => 1.3804733787421
1006 => 1.3055065477206
1007 => 1.176530011385
1008 => 1.2617358619465
1009 => 1.258455529386
1010 => 1.2568014369577
1011 => 1.3208312787379
1012 => 1.3146762868706
1013 => 1.3035049163614
1014 => 1.363243810198
1015 => 1.3414383103461
1016 => 1.4086377228676
1017 => 1.4528996021398
1018 => 1.4416733578346
1019 => 1.4833018692263
1020 => 1.3961251434871
1021 => 1.4250817548545
1022 => 1.4310496723252
1023 => 1.3625066415211
1024 => 1.3156833196601
1025 => 1.312560737917
1026 => 1.2313755504613
1027 => 1.2747440222962
1028 => 1.3129064828016
1029 => 1.2946296257461
1030 => 1.2888437188079
1031 => 1.318402662545
1101 => 1.3206996456286
1102 => 1.268328187899
1103 => 1.2792178723493
1104 => 1.3246296667668
1105 => 1.2780736116447
1106 => 1.1876228014308
1107 => 1.1651897499175
1108 => 1.1621967673225
1109 => 1.1013565524306
1110 => 1.1666888336875
1111 => 1.1381695421226
1112 => 1.2282616424625
1113 => 1.176801517922
1114 => 1.1745831748051
1115 => 1.1712298238237
1116 => 1.1188621375886
1117 => 1.130327332734
1118 => 1.1684393875959
1119 => 1.1820381981336
1120 => 1.1806197307827
1121 => 1.1682526177351
1122 => 1.1739142187584
1123 => 1.1556762292297
1124 => 1.1492360155361
1125 => 1.128908929599
1126 => 1.0990337287722
1127 => 1.1031880586824
1128 => 1.043997468573
1129 => 1.0117472935991
1130 => 1.0028208702168
1201 => 0.990884083809
1202 => 1.0041691620041
1203 => 1.0438297890682
1204 => 0.99599065835747
1205 => 0.91397382427883
1206 => 0.91890317575684
1207 => 0.92997796499034
1208 => 0.90934016852077
1209 => 0.88980822616129
1210 => 0.90678966536629
1211 => 0.87203805155835
1212 => 0.93417753149124
1213 => 0.93249683270293
1214 => 0.95565858814225
1215 => 0.97014210914553
1216 => 0.93676228232858
1217 => 0.92836734615277
1218 => 0.93314948332709
1219 => 0.8541114081778
1220 => 0.94919949117596
1221 => 0.95002181686635
1222 => 0.94298056505685
1223 => 0.99361203373818
1224 => 1.1004602250069
1225 => 1.0602596374931
1226 => 1.0446927549385
1227 => 1.015100099823
1228 => 1.0545305557264
1229 => 1.051502911924
1230 => 1.0378107584495
1231 => 1.029529701306
]
'min_raw' => 0.77336342664883
'max_raw' => 1.9843619982486
'avg_raw' => 1.3788627124487
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.773363'
'max' => '$1.98'
'avg' => '$1.37'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.4755688420345
'max_diff' => 1.1534227607964
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.024274994259913
]
1 => [
'year' => 2028
'avg' => 0.041662937231197
]
2 => [
'year' => 2029
'avg' => 0.11381563550178
]
3 => [
'year' => 2030
'avg' => 0.087808593290296
]
4 => [
'year' => 2031
'avg' => 0.086238920610237
]
5 => [
'year' => 2032
'avg' => 0.1512039682169
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.024274994259913
'min' => '$0.024274'
'max_raw' => 0.1512039682169
'max' => '$0.1512039'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.1512039682169
]
1 => [
'year' => 2033
'avg' => 0.38891215437456
]
2 => [
'year' => 2034
'avg' => 0.24651121368616
]
3 => [
'year' => 2035
'avg' => 0.29076054184658
]
4 => [
'year' => 2036
'avg' => 0.5643669110333
]
5 => [
'year' => 2037
'avg' => 1.3788627124487
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.1512039682169
'min' => '$0.1512039'
'max_raw' => 1.3788627124487
'max' => '$1.37'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 1.3788627124487
]
]
]
]
'prediction_2025_max_price' => '$0.0415058'
'last_price' => 0.04024513
'sma_50day_nextmonth' => '$0.036815'
'sma_200day_nextmonth' => '$0.062644'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 feb. 2026'
'sma_50day_date_nextmonth' => '4 feb. 2026'
'daily_sma3' => '$0.039875'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.039566'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.039139'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.036221'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.038152'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.051248'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.0706021'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.039941'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.039652'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.038933'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.037974'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.040979'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.0509066'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.073075'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.060218'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.092642'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.226512'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.253334'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.038914'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.038919'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.043532'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.058386'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.105529'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.195892'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.410837'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '56.42'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 88.34
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.039182'
'vwma_10_action' => 'BUY'
'hma_9' => '0.039994'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 73.54
'stochastic_fast_14_action' => 'NEUTRAL'
'cci_20' => 69.22
'cci_20_action' => 'NEUTRAL'
'adx_14' => 14.12
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.002927'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'NEUTRAL'
'williams_percent_r_14' => -26.46
'williams_percent_r_14_action' => 'NEUTRAL'
'ultimate_oscillator' => 63.14
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.009764'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 15
'buy_signals' => 19
'sell_pct' => 44.12
'buy_pct' => 55.88
'overall_action' => 'bullish'
'overall_action_label' => 'Alcista'
'overall_action_dir' => 1
'last_updated' => 1767702920
'last_updated_date' => '6 de enero de 2026'
]
Predicción de precio de Boson Protocol para 2026
La previsión del precio de Boson Protocol para 2026 sugiere que el precio medio podría oscilar entre $0.0139046 en el extremo inferior y $0.0415058 en el extremo superior. En el mercado de criptomonedas, en comparación con el precio medio de hoy, Boson Protocol podría potencialmente ganar 3.13% para 2026 si BOSON alcanza el objetivo de precio previsto.
Predicción de precio de Boson Protocol 2027-2032
La predicción del precio de BOSON para 2027-2032 está actualmente dentro de un rango de precios de $0.024274 en el extremo inferior y $0.1512039 en el extremo superior. Considerando la volatilidad de precios en el mercado, si Boson Protocol alcanza el objetivo de precio superior, podría ganar 275.71% para 2032 en comparación con el precio de hoy.
| Predicción de Precio de Boson Protocol | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.013385 | $0.024274 | $0.035164 |
| 2028 | $0.024157 | $0.041662 | $0.059168 |
| 2029 | $0.053066 | $0.113815 | $0.174564 |
| 2030 | $0.04513 | $0.0878085 | $0.130486 |
| 2031 | $0.053358 | $0.086238 | $0.119119 |
| 2032 | $0.081447 | $0.1512039 | $0.22096 |
Predicción de precio de Boson Protocol 2032-2037
La predicción de precio de Boson Protocol para 2032-2037 se estima actualmente entre $0.1512039 en el extremo inferior y $1.37 en el extremo superior. Comparado con el precio actual, Boson Protocol podría potencialmente ganar 3326.16% para 2037 si alcanza el objetivo de precio superior. Tenga en cuenta que esta información es solo para fines generales y no debe considerarse como consejo de inversión a largo plazo.
| Predicción de Precio de Boson Protocol | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.081447 | $0.1512039 | $0.22096 |
| 2033 | $0.189267 | $0.388912 | $0.588557 |
| 2034 | $0.152161 | $0.246511 | $0.34086 |
| 2035 | $0.1799021 | $0.29076 | $0.401618 |
| 2036 | $0.297794 | $0.564366 | $0.830939 |
| 2037 | $0.773363 | $1.37 | $1.98 |
Boson Protocol Histograma de precios potenciales
Pronóstico de precio de Boson Protocol basado en análisis técnico
A fecha de 6 de enero de 2026, el sentimiento general de predicción de precio para Boson Protocol es Alcista, con 19 indicadores técnicos mostrando señales alcistas y 15 indicando señales bajistas. La predicción de precio de BOSON se actualizó por última vez el 6 de enero de 2026.
Promedios Móviles Simples de 50 y 200 días y el Índice de Fuerza Relativa de 14 días - RSI (14) de Boson Protocol
Según nuestros indicadores técnicos, se proyecta que el SMA de 200 días de Boson Protocol aumentar durante el próximo mes, alcanzando $0.062644 para el 4 feb. 2026. Se espera que el SMA de 50 días a corto plazo para Boson Protocol alcance $0.036815 para el 4 feb. 2026.
El oscilador de momento del Índice de Fuerza Relativa (RSI) es una herramienta comúnmente utilizada para identificar si una criptomoneda está sobrevendida (por debajo de 30) o sobrecomprada (por encima de 70). Actualmente, el RSI se encuentra en 56.42, lo que sugiere que el mercado de BOSON está en un estado NEUTRAL.
Promedios Móviles y Osciladores Populares de BOSON para Sáb, 19 de Oct de 2024
Los promedios móviles (MA) son indicadores ampliamente utilizados en los mercados financieros, diseñados para suavizar los movimientos de precios durante un período establecido. Como indicadores rezagados, se basan en datos históricos de precios. La tabla a continuación resalta dos tipos: el promedio móvil simple (SMA) y el promedio móvil exponencial (EMA).
Promedio Móvil Simple Diario (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 3 | $0.039875 | BUY |
| SMA 5 | $0.039566 | BUY |
| SMA 10 | $0.039139 | BUY |
| SMA 21 | $0.036221 | BUY |
| SMA 50 | $0.038152 | BUY |
| SMA 100 | $0.051248 | SELL |
| SMA 200 | $0.0706021 | SELL |
Promedio Móvil Exponencial Diario (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 3 | $0.039941 | BUY |
| EMA 5 | $0.039652 | BUY |
| EMA 10 | $0.038933 | BUY |
| EMA 21 | $0.037974 | BUY |
| EMA 50 | $0.040979 | SELL |
| EMA 100 | $0.0509066 | SELL |
| EMA 200 | $0.073075 | SELL |
Promedio Móvil Simple Semanal (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 21 | $0.060218 | SELL |
| SMA 50 | $0.092642 | SELL |
| SMA 100 | $0.226512 | SELL |
| SMA 200 | $0.253334 | SELL |
Promedio Móvil Exponencial Semanal (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 21 | $0.058386 | SELL |
| EMA 50 | $0.105529 | SELL |
| EMA 100 | $0.195892 | SELL |
| EMA 200 | $0.410837 | SELL |
Osciladores de Boson Protocol
Un oscilador es una herramienta de análisis técnico que establece límites altos y bajos entre dos extremos, creando un indicador de tendencia que fluctúa dentro de estos límites. Los traders utilizan este indicador para identificar condiciones de sobrecompra o sobreventa a corto plazo.
| Período | Valor | Acción |
|---|---|---|
| RSI (14) | 56.42 | NEUTRAL |
| Stoch RSI (14) | 88.34 | SELL |
| Estocástico Rápido (14) | 73.54 | NEUTRAL |
| Índice de Canal de Materias Primas (20) | 69.22 | NEUTRAL |
| Índice Direccional Medio (14) | 14.12 | NEUTRAL |
| Oscilador Asombroso (5, 34) | 0.002927 | BUY |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | NEUTRAL |
| Rango Percentil de Williams (14) | -26.46 | NEUTRAL |
| Oscilador Ultimate (7, 14, 28) | 63.14 | NEUTRAL |
| VWMA (10) | 0.039182 | BUY |
| Promedio Móvil de Hull (9) | 0.039994 | BUY |
| Nube Ichimoku B/L (9, 26, 52, 26) | -0.009764 | SELL |
Predicción de precios de Boson Protocol basada en flujos de dinero globales
Definiciones de flujos de dinero globales utilizadas para la predicción de precios de Boson Protocol
M0: El total de toda la moneda física, además de cuentas en el banco central que pueden cambiarse por moneda física.
M1: Medir M0 más la cantidad en cuentas a la vista, incluyendo cuentas "de cheques" o "corrientes".
M2: Medir M1 más la mayoría de cuentas de ahorro, cuentas del mercado monetario, y cuentas de certificados de depósito (CD) inferiores a 100 000 $.
Predicciones de precios de Boson Protocol por parte de empresas de Internet o nichos tecnológicos
| Comparación | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook acción | $0.056551 | $0.079463 | $0.111659 | $0.15690078 | $0.220471 | $0.309799 |
| Amazon.com acción | $0.083973 | $0.175216 | $0.365599 | $0.762845 | $1.59 | $3.32 |
| Apple acción | $0.057084 | $0.08097 | $0.11485 | $0.162906 | $0.231069 | $0.327754 |
| Netflix acción | $0.0635005 | $0.100193 | $0.15809 | $0.249441 | $0.393579 | $0.621007 |
| Google acción | $0.052117 | $0.067491 | $0.0874013 | $0.113184 | $0.146573 | $0.189811 |
| Tesla acción | $0.091232 | $0.206817 | $0.468839 | $1.06 | $2.40 | $5.46 |
| Kodak acción | $0.030179 | $0.022631 | $0.016971 | $0.012726 | $0.009543 | $0.007156 |
| Nokia acción | $0.02666 | $0.017661 | $0.011700084 | $0.00775 | $0.005134 | $0.0034014 |
Este cálculo muestra cuánto puede costar la criptomoneda si asumimos que su capitalización se comportará como la capitalización de algunas empresas de Internet o nichos tecnológicos. Si extrapola los datos, puede obtener una imagen potencial del precio futuro en 2024, 2025, 2026, 2027, 2028, 2029 y 2030.
Resumen de pronósticos y predicciones de Boson Protocol
Podría preguntarse cosas como: "¿Debo invertir en Boson Protocol ahora?", "¿Debería comprar BOSON hoy?", "¿Será Boson Protocol una buena o mala inversión a corto plazo?, ¿Lo será a largo plazo?".
Actualizamos el pronóstico de Boson Protocol/Boson regularmente con valores actualizados. Aquí hay algunas predicciones similares. Hacemos un pronóstico de precios futuros para una gran cantidad de monedas digitales, como Boson Protocol, con métodos de análisis técnico.
Si está tratando de encontrar criptomonedas que ofrezcan un buen rendimiento, debería explorar el máximo de fuentes de información disponibles acerca de Boson Protocol a fin de tomar una decisión responsable sobre la inversión por sus propios medios.
El precio de Boson Protocol es de $0.04024 USD hoy, pero dicho precio puede subir y bajar, y su inversión puede perderse porque estos son activos de criptomonedas conllevan un alto riesgo
Pronóstico a corto plazo de Boson Protocol
basado en el historial de precios de las últimas 4 horas
Pronóstico a largo plazo de Boson Protocol
basado en el historial de precios del último mes
Predicción de precios de Boson Protocol basada en el patrón de crecimiento del Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si Boson Protocol ofrece un 1 % del crecimiento medio anterior anual del Bitcoin | $0.041291 | $0.042364 | $0.043465 | $0.044595 |
| Si Boson Protocol ofrece un 2 % del crecimiento medio anterior anual del Bitcoin | $0.042337 | $0.044538 | $0.046853 | $0.049289 |
| Si Boson Protocol ofrece un 5 % del crecimiento medio anterior anual del Bitcoin | $0.045475 | $0.051385 | $0.058064 | $0.06561 |
| Si Boson Protocol ofrece un 10 % del crecimiento medio anterior anual del Bitcoin | $0.0507061 | $0.063886 | $0.080492 | $0.101414 |
| Si Boson Protocol ofrece un 20 % del crecimiento medio anterior anual del Bitcoin | $0.061167 | $0.092965 | $0.141295 | $0.214749 |
| Si Boson Protocol ofrece un 50 % del crecimiento medio anterior anual del Bitcoin | $0.09255 | $0.212833 | $0.489445 | $1.12 |
| Si Boson Protocol ofrece un 100 % del crecimiento medio anterior anual del Bitcoin | $0.144855 | $0.52138 | $1.87 | $6.75 |
Cuadro de preguntas
¿Es BOSON una buena inversión?
La decisión de adquirir Boson Protocol depende completamente de su tolerancia individual al riesgo. Como puede discernir, el valor de Boson Protocol ha experimentado un aumento de 1.0043% durante las últimas 24 horas, y Boson Protocol ha sufrido un declive de durante el período previo de 30 días. Por lo tanto, la determinación de si invertir o no en Boson Protocol dependerá de si dicha inversión se alinea con sus aspiraciones comerciales.
¿Puede Boson Protocol subir?
Parece que el valor medio de Boson Protocol podría potencialmente aumentar hasta $0.0415058 para el final de este año. Mirando las perspectivas de Boson Protocol en un horizonte de cinco años más extendido, la moneda digital podría potencialmente crecer hasta $0.130486. Sin embargo, dada la imprevisibilidad del mercado, es vital realizar una investigación exhaustiva antes de invertir cualquier fondo en un proyecto, red o activo en particular.
¿Cuál será el precio de Boson Protocol la próxima semana?
Basado en nuestro nuevo pronóstico experimental de Boson Protocol, el precio de Boson Protocol aumentará en un 0.86% durante la próxima semana y alcanzará $0.040589 para el 13 de enero de 2026.
¿Cuál será el precio de Boson Protocol el próximo mes?
Basado en nuestro nuevo pronóstico experimental de Boson Protocol, el precio de Boson Protocol disminuirá en un -11.62% durante el próximo mes y alcanzará $0.035569 para el 5 de febrero de 2026.
¿Hasta qué punto puede subir el precio de Boson Protocol este año en 2026?
Según nuestra predicción más reciente sobre el valor de Boson Protocol en 2026, se anticipa que BOSON fluctúe dentro del rango de $0.0139046 y $0.0415058. Sin embargo, es crucial tener en cuenta que el mercado de criptomonedas es excepcionalmente inestable, y esta predicción de precios proyectada de Boson Protocol no considera fluctuaciones de precios repentinas y extremas.
¿Dónde estará Boson Protocol en 5 años?
El futuro de Boson Protocol parece estar en una tendencia alcista, con un precio máximo de $0.130486 proyectada después de un período de cinco años. Basado en el pronóstico de Boson Protocol para 2030, el valor de Boson Protocol podría potencialmente alcanzar su punto más alto de aproximadamente $0.130486, mientras que su punto más bajo se anticipa que esté alrededor de $0.04513.
¿Cuánto será Boson Protocol en 2026?
Basado en nuestra nueva simulación experimental de predicción de precios de Boson Protocol, se espera que el valor de BOSON en 2026 crezca en un 3.13% hasta $0.0415058 si ocurre lo mejor. El precio estará entre $0.0415058 y $0.0139046 durante 2026.
¿Cuánto será Boson Protocol en 2027?
Según nuestra última simulación experimental para la predicción de precios de Boson Protocol, el valor de BOSON podría disminuir en un -12.62% hasta $0.035164 en 2027, asumiendo las condiciones más favorables. Se proyecta que el precio fluctúe entre $0.035164 y $0.013385 a lo largo del año.
¿Cuánto será Boson Protocol en 2028?
Nuestro nuevo modelo experimental de predicción de precios de Boson Protocol sugiere que el valor de BOSON en 2028 podría aumentar en un 47.02% , alcanzando $0.059168 en el mejor escenario. Se espera que el precio oscile entre $0.059168 y $0.024157 durante el año.
¿Cuánto será Boson Protocol en 2029?
Basado en nuestro modelo de pronóstico experimental, el valor de Boson Protocol podría experimentar un 333.75% crecimiento en 2029, potencialmente alcanzando $0.174564 bajo condiciones óptimas. El rango de precios previsto para 2029 se encuentra entre $0.174564 y $0.053066.
¿Cuánto será Boson Protocol en 2030?
Usando nuestra nueva simulación experimental para las predicciones de precios de Boson Protocol, se espera que el valor de BOSON en 2030 aumente en un 224.23% , alcanzando $0.130486 en el mejor escenario. Se pronostica que el precio oscile entre $0.130486 y $0.04513 durante el transcurso de 2030.
¿Cuánto será Boson Protocol en 2031?
Nuestra simulación experimental indica que el precio de Boson Protocol podría crecer en un 195.98% en 2031, potencialmente alcanzando $0.119119 bajo condiciones ideales. Es probable que el precio fluctúe entre $0.119119 y $0.053358 durante el año.
¿Cuánto será Boson Protocol en 2032?
Basado en los hallazgos de nuestra última predicción experimental de precios de Boson Protocol, BOSON podría experimentar un 449.04% aumento en valor, alcanzando $0.22096 si se desarrolla el escenario más positivo en 2032. Se espera que el precio se mantenga dentro de un rango de $0.22096 y $0.081447 a lo largo del año.
¿Cuánto será Boson Protocol en 2033?
Según nuestra predicción experimental de precios de Boson Protocol, se anticipa que el valor de BOSON aumente en un 1362.43% en 2033, con el precio potencial más alto siendo $0.588557. A lo largo del año, el precio de BOSON podría oscilar entre $0.588557 y $0.189267.
¿Cuánto será Boson Protocol en 2034?
Los resultados de nuestra nueva simulación de predicción de precios de Boson Protocol sugieren que BOSON podría aumentar en un 746.96% en 2034, alcanzando potencialmente $0.34086 bajo las mejores circunstancias. El rango de precios previsto para el año está entre $0.34086 y $0.152161.
¿Cuánto será Boson Protocol en 2035?
Basado en nuestra predicción experimental para el precio de Boson Protocol, BOSON podría crecer en un 897.93% , con el valor potencialmente alcanzando $0.401618 en 2035. El rango de precios esperado para el año está entre $0.401618 y $0.1799021.
¿Cuánto será Boson Protocol en 2036?
Nuestra reciente simulación de predicción de precios de Boson Protocol sugiere que el valor de BOSON podría aumentar en un 1964.7% en 2036, posiblemente alcanzando $0.830939 si las condiciones son óptimas. El rango de precios esperado para 2036 está entre $0.830939 y $0.297794.
¿Cuánto será Boson Protocol en 2037?
Según la simulación experimental, el valor de Boson Protocol podría aumentar en un 4830.69% en 2037, con un máximo de $1.98 bajo condiciones favorables. Se espera que el precio caiga entre $1.98 y $0.773363 durante el transcurso del año.
Predicciones relacionadas
Predicción de precios de Ultra
Predicción de precios de TOMI
Predicción de precios de Alchemix
Predicción de precios de Shardus
Predicción de precios de Agoric
Predicción de precios de Orchid Protocol
Predicción de precios de Polytrade
Predicción de precios de Agoras: Tau Net
Predicción de precios de Commune AI
Predicción de precios de Krypton DAO
Predicción de precios de DIMO
Predicción de precios de Clover Finance
Predicción de precios de Alethea Artificial Liquid Intelligence Token
Predicción de precios de Cobak Token
Predicción de precios de ELYSIA
Predicción de precios de Snek
Predicción de precios de Gods Unchained
Predicción de precios de TRAC (Ordinals)
Predicción de precios de Numbers Protocol
Predicción de precios de DexTools
Predicción de precios de H2O Dao
Predicción de precios de Bitrise Token
Predicción de precios de Stratos
Predicción de precios de Linear
Predicción de precios de sETH2
¿Cómo leer y predecir los movimientos de precio de Boson Protocol?
Los traders de Boson Protocol utilizan indicadores y patrones de gráficos para predecir la dirección del mercado. También identifican niveles clave de soporte y resistencia para estimar cuándo una tendencia bajista podría desacelerar o una tendencia alcista podría estancarse.
Indicadores de predicción de precio de Boson Protocol
Las medias móviles son herramientas populares para la predicción de precios de Boson Protocol. Una media móvil simple (SMA) calcula el precio de cierre promedio de BOSON durante un período específico, como una SMA de 12 días. Una media móvil exponencial (EMA) da más peso a los precios recientes, reaccionando más rápido a los cambios de precio.
Las medias móviles comúnmente utilizadas en el mercado de criptomonedas incluyen las de 50 días, 100 días y 200 días, que ayudan a identificar niveles clave de resistencia y soporte. Un movimiento de precio de BOSON por encima de estas medias se considera alcista, mientras que una caída por debajo indica debilidad.
Los traders también utilizan RSI y niveles de retroceso de Fibonacci para evaluar la dirección futura de BOSON.
¿Cómo leer gráficos de Boson Protocol y predecir movimientos de precio?
La mayoría de los traders prefieren gráficos de velas sobre gráficos lineales simples porque proporcionan información más detallada. Las velas pueden representar la acción del precio de Boson Protocol en diferentes marcos de tiempo, como 5 minutos para tendencias a corto plazo y semanal para tendencias a largo plazo. Las opciones populares incluyen gráficos de 1 hora, 4 horas y 1 día.
Por ejemplo, un gráfico de velas de 1 hora muestra los precios de apertura, cierre, máximo y mínimo de BOSON dentro de cada hora. El color de la vela es crucial: el verde indica que el precio cerró más alto de lo que abrió, mientras que el rojo significa lo contrario. Algunos gráficos usan velas huecas y llenas para transmitir la misma información.
¿Qué afecta el precio de Boson Protocol?
La acción del precio de Boson Protocol está impulsada por la oferta y la demanda, influenciada por factores como reducciones a la mitad de recompensas de bloque, hard forks y actualizaciones de protocolo. Los eventos del mundo real, como regulaciones, adopción por empresas y gobiernos y hacks de exchanges de criptomonedas, también impactan el precio de BOSON. La capitalización de mercado de Boson Protocol puede cambiar rápidamente.
Los traders a menudo monitorean la actividad de las "ballenas" de BOSON, grandes poseedores de Boson Protocol, ya que sus acciones pueden influir significativamente en los movimientos de precios en el relativamente pequeño mercado de Boson Protocol.
Patrones de predicción de precios alcistas y bajistas
Los traders a menudo identifican patrones de velas para obtener una ventaja en las predicciones de precios de criptomonedas. Ciertas formaciones indican tendencias alcistas, mientras que otras sugieren movimientos bajistas.
Patrones de velas alcistas comúnmente seguidos:
- Martillo
- Envolvente Alcista
- Línea Penetrante
- Estrella de la Mañana
- Tres Soldados Blancos
Patrones de velas bajistas comunes:
- Harami Bajista
- Cubierta de Nube Oscura
- Estrella de la Tarde
- Estrella Fugaz
- Hombre Colgado


