Predicción del precio de Boson - Pronóstico de BOSON
Predicción de precio de Boson hasta $0.04152 para el año 2026
| Año | Precio min. | Precio max. |
|---|---|---|
| 2026 | $0.0139095 | $0.04152 |
| 2027 | $0.01339 | $0.035176 |
| 2028 | $0.024165 | $0.059189 |
| 2029 | $0.053084 | $0.174625 |
| 2030 | $0.045146 | $0.130531 |
| 2031 | $0.053377 | $0.11916 |
| 2032 | $0.081476 | $0.221036 |
| 2033 | $0.189332 | $0.588761 |
| 2034 | $0.152214 | $0.340978 |
| 2035 | $0.179964 | $0.401758 |
Calculadora de ganancias de inversión
Si abres una posición corta de $10,000.00 en Boson hoy y la cierras el Apr 06, 2026, nuestra previsión indica que podrías obtener una ganancia de alrededor de $3,954.65, equivalente a un ROI del 39.55% en los próximos 90 días.
Predicción del precio a largo plazo de Boson Protocol para 2027, 2028, 2029, 2030, 2031, 2032 y 2037
[
'name' => 'Boson'
'name_with_ticker' => 'Boson <small>BOSON</small>'
'name_lang' => 'Boson Protocol'
'name_lang_with_ticker' => 'Boson Protocol <small>BOSON</small>'
'name_with_lang' => 'Boson Protocol/Boson'
'name_with_lang_with_ticker' => 'Boson Protocol/Boson <small>BOSON</small>'
'image' => '/uploads/coins/boson-protocol.png?1717209480'
'price_for_sd' => 0.04025
'ticker' => 'BOSON'
'marketcap' => '$5.82M'
'low24h' => '$0.03894'
'high24h' => '$0.04052'
'volume24h' => '$93.73K'
'current_supply' => '144.7M'
'max_supply' => '200M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.04025'
'change_24h_pct' => '2.204%'
'ath_price' => '$5.36'
'ath_days' => 1733
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '9 abr. 2021'
'ath_pct' => '-99.25%'
'fdv' => '$8.04M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$1.98'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.040603'
'next_week_prediction_price_date' => '13 de enero de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.035581'
'next_month_prediction_price_date' => '5 de febrero de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.0139095'
'current_year_max_price_prediction' => '$0.04152'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.045146'
'grand_prediction_max_price' => '$0.130531'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.041021958200229
107 => 0.041175119301178
108 => 0.041520199082215
109 => 0.038571530135351
110 => 0.039895395924121
111 => 0.040673043045574
112 => 0.037159605059804
113 => 0.04060359367316
114 => 0.038520200369182
115 => 0.037813065390295
116 => 0.038765129481417
117 => 0.038394109179194
118 => 0.038075127710386
119 => 0.037897130569994
120 => 0.038596221363035
121 => 0.038563607941945
122 => 0.037419759716854
123 => 0.035927656336441
124 => 0.036428455207532
125 => 0.03624651028265
126 => 0.035587118403517
127 => 0.036031468914774
128 => 0.034074774143846
129 => 0.03070838249061
130 => 0.032932323932103
131 => 0.032846704605788
201 => 0.032803531458933
202 => 0.034474761986988
203 => 0.034314111733564
204 => 0.034022529950507
205 => 0.03558176327541
206 => 0.035012622137173
207 => 0.036766581018702
208 => 0.037921851777026
209 => 0.037628837743621
210 => 0.038715375475732
211 => 0.03643999260205
212 => 0.037195783520171
213 => 0.037351550980915
214 => 0.035562522578214
215 => 0.034340396101819
216 => 0.034258894199106
217 => 0.03213989530844
218 => 0.033271847411872
219 => 0.034267918419532
220 => 0.033790877705096
221 => 0.033639860866091
222 => 0.034411373145009
223 => 0.034471326256637
224 => 0.033104388957978
225 => 0.033388618507644
226 => 0.034573902978981
227 => 0.033358752380093
228 => 0.030997913260178
301 => 0.030412392517284
302 => 0.030334273256894
303 => 0.028746294563931
304 => 0.030451519813101
305 => 0.029707143294643
306 => 0.032058619797452
307 => 0.030715469030269
308 => 0.030657568485217
309 => 0.030570043319208
310 => 0.029203204459601
311 => 0.029502455302714
312 => 0.030497210682411
313 => 0.030852150608608
314 => 0.030815127466369
315 => 0.030492335838363
316 => 0.030640108192704
317 => 0.030164081952072
318 => 0.029995987178876
319 => 0.029465433836559
320 => 0.028685666992454
321 => 0.028794098354715
322 => 0.027249176199449
323 => 0.026407420614036
324 => 0.026174433762153
325 => 0.025862874006626
326 => 0.026209625265569
327 => 0.027244799629092
328 => 0.025996159722191
329 => 0.023855454183714
330 => 0.023984114234162
331 => 0.024273175168005
401 => 0.023734512030118
402 => 0.023224712576678
403 => 0.023667941840107
404 => 0.022760896683032
405 => 0.024382787241778
406 => 0.024338919647459
407 => 0.024943460150721
408 => 0.02532149173383
409 => 0.024450251323941
410 => 0.024231136716939
411 => 0.024355954355291
412 => 0.022292996828055
413 => 0.024774872508871
414 => 0.024796335872821
415 => 0.024612553519896
416 => 0.025934075700616
417 => 0.028722899695039
418 => 0.027673631928151
419 => 0.027267323734527
420 => 0.026494931561436
421 => 0.02752409827197
422 => 0.027445074326103
423 => 0.027087698073949
424 => 0.026871555801565
425 => 0.027269804565717
426 => 0.026822208372463
427 => 0.026741807797033
428 => 0.026254667786621
429 => 0.026080780966362
430 => 0.025952042087276
501 => 0.025810313231023
502 => 0.026122931771286
503 => 0.025414497030656
504 => 0.02456019418217
505 => 0.024489168144004
506 => 0.024685277280055
507 => 0.02459851358596
508 => 0.024488752752817
509 => 0.024279189430761
510 => 0.024217016469719
511 => 0.024419048431073
512 => 0.0241909661259
513 => 0.024527513991469
514 => 0.024435991594077
515 => 0.023924754922066
516 => 0.023287564744681
517 => 0.023281892415551
518 => 0.023144610837035
519 => 0.022969762106371
520 => 0.022921123189497
521 => 0.023630614307808
522 => 0.025099239689428
523 => 0.024810913385789
524 => 0.025019258689036
525 => 0.026044111374088
526 => 0.02636988122427
527 => 0.026138657500892
528 => 0.025822144207075
529 => 0.025836069185671
530 => 0.026917690925735
531 => 0.026985150346918
601 => 0.027155598541015
602 => 0.027374672639083
603 => 0.026175966767096
604 => 0.025779610246898
605 => 0.025591794538605
606 => 0.025013394850891
607 => 0.025637149325849
608 => 0.025273714305121
609 => 0.025322754106125
610 => 0.025290816871387
611 => 0.02530825676114
612 => 0.024382333890312
613 => 0.024719691519369
614 => 0.024158769029474
615 => 0.02340775678201
616 => 0.023405239125617
617 => 0.023589048309226
618 => 0.023479711414362
619 => 0.02318548864159
620 => 0.02322728159777
621 => 0.022861131325019
622 => 0.023271738870246
623 => 0.023283513625419
624 => 0.023125407354562
625 => 0.023758004930908
626 => 0.024017180674087
627 => 0.023913111739644
628 => 0.02400987892022
629 => 0.024822894645421
630 => 0.024955451682991
701 => 0.025014324762854
702 => 0.024935442635026
703 => 0.024024739355203
704 => 0.024065132918272
705 => 0.023768751754018
706 => 0.023518340902101
707 => 0.023528356022945
708 => 0.023657099751963
709 => 0.024219331167303
710 => 0.025402514035532
711 => 0.025447414960486
712 => 0.025501836191383
713 => 0.025280477695408
714 => 0.025213713854906
715 => 0.025301792593737
716 => 0.025746133870244
717 => 0.026889100270901
718 => 0.02648509960875
719 => 0.026156640781776
720 => 0.026444787724896
721 => 0.026400429761573
722 => 0.026026003910851
723 => 0.026015495024285
724 => 0.025296852105564
725 => 0.02503118618122
726 => 0.024809175850089
727 => 0.024566746364219
728 => 0.024423026038686
729 => 0.024643845778425
730 => 0.024694349865566
731 => 0.024211523645358
801 => 0.024145716215648
802 => 0.024540002529597
803 => 0.024366491823304
804 => 0.024544951887585
805 => 0.024586356153301
806 => 0.024579689112899
807 => 0.024398524007951
808 => 0.024513993243424
809 => 0.024240874078495
810 => 0.023943898007807
811 => 0.023754445776971
812 => 0.023589123578375
813 => 0.023680853942738
814 => 0.023353851943084
815 => 0.023249237422145
816 => 0.024474874864586
817 => 0.02538026642114
818 => 0.025367101669333
819 => 0.025286964628409
820 => 0.025167897240801
821 => 0.025737423349216
822 => 0.025539011841078
823 => 0.025683372791085
824 => 0.025720118711671
825 => 0.025831337546124
826 => 0.025871088719859
827 => 0.025750933063866
828 => 0.025347676006579
829 => 0.024342797760349
830 => 0.023875024224111
831 => 0.023720651165769
901 => 0.023726262333243
902 => 0.02357148128494
903 => 0.023617071240465
904 => 0.023555626958921
905 => 0.023439266354646
906 => 0.02367366900332
907 => 0.023700681724968
908 => 0.023645969345864
909 => 0.02365885609176
910 => 0.023205860960745
911 => 0.023240301196703
912 => 0.023048533586439
913 => 0.023012579471307
914 => 0.022527807651676
915 => 0.0216689641044
916 => 0.022144846799551
917 => 0.021570047423041
918 => 0.021352362189525
919 => 0.022382850227991
920 => 0.022279417810218
921 => 0.022102386471982
922 => 0.021840520226167
923 => 0.021743391488324
924 => 0.021153268024407
925 => 0.021118400381973
926 => 0.021410881505364
927 => 0.02127591153058
928 => 0.021086362568856
929 => 0.020399835443764
930 => 0.019627951653841
1001 => 0.01965124997357
1002 => 0.019896771845737
1003 => 0.020610659802195
1004 => 0.02033173142722
1005 => 0.020129365690841
1006 => 0.020091468671509
1007 => 0.020565829211233
1008 => 0.021237148756549
1009 => 0.021552116867284
1010 => 0.02123999303527
1011 => 0.020881441982993
1012 => 0.02090326532418
1013 => 0.021048446236064
1014 => 0.021063702697156
1015 => 0.020830322821767
1016 => 0.020896017889659
1017 => 0.020796221074249
1018 => 0.020183768202288
1019 => 0.020172690871943
1020 => 0.020022385060028
1021 => 0.020017833859778
1022 => 0.019762126178167
1023 => 0.019726350905886
1024 => 0.019218627783702
1025 => 0.019552812680251
1026 => 0.01932865899714
1027 => 0.018990806524184
1028 => 0.018932560630502
1029 => 0.018930809688604
1030 => 0.019277708635899
1031 => 0.019548758964077
1101 => 0.019332558246426
1102 => 0.019283333533892
1103 => 0.019808924681409
1104 => 0.019742038417017
1105 => 0.019684115343425
1106 => 0.021177039454364
1107 => 0.019995273526234
1108 => 0.019479956128729
1109 => 0.018842152993197
1110 => 0.019049824910209
1111 => 0.019093584434458
1112 => 0.017559782866159
1113 => 0.016937519760923
1114 => 0.016723982512696
1115 => 0.016601088807368
1116 => 0.016657093012088
1117 => 0.016096983233193
1118 => 0.016473386267971
1119 => 0.015988378544349
1120 => 0.015907065421132
1121 => 0.016774319311896
1122 => 0.016894992624372
1123 => 0.01638016278309
1124 => 0.016710766884574
1125 => 0.016590885241635
1126 => 0.015996692609714
1127 => 0.01597399882176
1128 => 0.015675853845943
1129 => 0.015209314691033
1130 => 0.014996093778322
1201 => 0.014885046475714
1202 => 0.014930866757039
1203 => 0.014907698620677
1204 => 0.014756510859386
1205 => 0.01491636452618
1206 => 0.014508004463616
1207 => 0.014345392196322
1208 => 0.014271944007761
1209 => 0.013909500947907
1210 => 0.014486309035295
1211 => 0.014599947494948
1212 => 0.01471380985747
1213 => 0.015704903986093
1214 => 0.01565539172423
1215 => 0.016102958458022
1216 => 0.016085566837769
1217 => 0.015957913555191
1218 => 0.015419365353941
1219 => 0.015634021068261
1220 => 0.014973344144489
1221 => 0.015468368217442
1222 => 0.015242459903246
1223 => 0.015391988389169
1224 => 0.015123122689039
1225 => 0.015271924068684
1226 => 0.01462689538944
1227 => 0.014024576684561
1228 => 0.014266967314184
1229 => 0.014530473649314
1230 => 0.015101822524042
1231 => 0.01476153184778
]
'min_raw' => 0.013909500947907
'max_raw' => 0.041520199082215
'avg_raw' => 0.027714850015061
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.0139095'
'max' => '$0.04152'
'avg' => '$0.027714'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.026349569052093
'max_diff' => 0.0012611290822154
'year' => 2026
]
1 => [
'items' => [
101 => 0.014883913242779
102 => 0.014473956055931
103 => 0.013628097280981
104 => 0.013632884749787
105 => 0.013502767805296
106 => 0.013390327767871
107 => 0.014800618325443
108 => 0.014625226401215
109 => 0.014345762324684
110 => 0.014719836096581
111 => 0.01481874713922
112 => 0.014821562997551
113 => 0.015094477565286
114 => 0.015240132119009
115 => 0.015265804365405
116 => 0.015695241334445
117 => 0.015839182942057
118 => 0.016432058052431
119 => 0.015227774347757
120 => 0.01520297291736
121 => 0.014725100081681
122 => 0.014422025574423
123 => 0.014745851852485
124 => 0.015032717728152
125 => 0.014734013804074
126 => 0.014773018230575
127 => 0.014372032617506
128 => 0.014515366106052
129 => 0.014638824215493
130 => 0.014570657903992
131 => 0.014468609636388
201 => 0.015009197997723
202 => 0.014978695883794
203 => 0.015482104193942
204 => 0.015874546970776
205 => 0.0165778745844
206 => 0.015843915554286
207 => 0.015817167170005
208 => 0.016078636916921
209 => 0.015839142912401
210 => 0.015990494856206
211 => 0.016553489446362
212 => 0.016565384634896
213 => 0.016366124900855
214 => 0.01635399992793
215 => 0.016392269939515
216 => 0.016616418592712
217 => 0.016538094165893
218 => 0.01662873317554
219 => 0.016742078645018
220 => 0.017210923564262
221 => 0.017323960487025
222 => 0.017049339367636
223 => 0.017074134579915
224 => 0.016971418742745
225 => 0.016872196531065
226 => 0.017095233572682
227 => 0.01750283815004
228 => 0.017500302463119
301 => 0.017594858802365
302 => 0.017653766618369
303 => 0.017400891148925
304 => 0.017236278516806
305 => 0.017299401474534
306 => 0.017400336458581
307 => 0.017266669619576
308 => 0.01644161596873
309 => 0.016691884541765
310 => 0.016650227613704
311 => 0.01659090308249
312 => 0.016842550067946
313 => 0.016818278102302
314 => 0.016091238497841
315 => 0.016137781214445
316 => 0.016094068914592
317 => 0.01623531229811
318 => 0.01583151530617
319 => 0.015955720541277
320 => 0.016033620900384
321 => 0.016079504810357
322 => 0.01624526895607
323 => 0.016225818446813
324 => 0.016244059885105
325 => 0.016489844353086
326 => 0.017732937849092
327 => 0.017800596685348
328 => 0.017467419830565
329 => 0.017600517412428
330 => 0.017344999160492
331 => 0.01751653027484
401 => 0.017633887506859
402 => 0.017103572741864
403 => 0.017072170943195
404 => 0.016815598076541
405 => 0.016953465802051
406 => 0.016734108337724
407 => 0.016787930986672
408 => 0.016637438168041
409 => 0.016908295278755
410 => 0.017211155615474
411 => 0.017287670096846
412 => 0.017086393437911
413 => 0.016940655872064
414 => 0.016684788715375
415 => 0.01711030149932
416 => 0.017234734404613
417 => 0.017109647906242
418 => 0.017080662631375
419 => 0.017025735587878
420 => 0.01709231566331
421 => 0.017234056716287
422 => 0.017167214253249
423 => 0.017211364877699
424 => 0.017043108225224
425 => 0.017400974861228
426 => 0.017969353204497
427 => 0.01797118063381
428 => 0.017904337810466
429 => 0.017876987167302
430 => 0.017945571960415
501 => 0.017982776397183
502 => 0.018204567041809
503 => 0.018442557240021
504 => 0.019553153651821
505 => 0.019241302623511
506 => 0.020226689829735
507 => 0.021006003173344
508 => 0.02123968516985
509 => 0.021024708728652
510 => 0.020289285936113
511 => 0.020253202585392
512 => 0.021352234724939
513 => 0.021041707806656
514 => 0.021004771617815
515 => 0.020611832973219
516 => 0.020844108378573
517 => 0.020793306340148
518 => 0.020713112837172
519 => 0.021156278130142
520 => 0.021985843996944
521 => 0.021856548376983
522 => 0.021760035194534
523 => 0.021337142523606
524 => 0.021591818368003
525 => 0.021501133177808
526 => 0.021890774305129
527 => 0.021659959532912
528 => 0.021039355259838
529 => 0.021138188535864
530 => 0.021123250085017
531 => 0.021430682344884
601 => 0.02133839881141
602 => 0.021105230244009
603 => 0.021983008630997
604 => 0.021926010585006
605 => 0.022006820782653
606 => 0.022042395930796
607 => 0.022576684166766
608 => 0.022795564961726
609 => 0.022845254734229
610 => 0.023053174560593
611 => 0.022840081499539
612 => 0.023692605676534
613 => 0.024259484508071
614 => 0.024917943442219
615 => 0.025880128922085
616 => 0.026241919563228
617 => 0.026176565322168
618 => 0.026906083371732
619 => 0.028217011090523
620 => 0.026441541294994
621 => 0.028311115300864
622 => 0.027719229755875
623 => 0.026315879776274
624 => 0.026225520581997
625 => 0.027175885481411
626 => 0.029283703359081
627 => 0.028755718887397
628 => 0.029284566952531
629 => 0.028667637593133
630 => 0.02863700185055
701 => 0.029254604070557
702 => 0.030697665321348
703 => 0.03001212101344
704 => 0.029029225145692
705 => 0.029754980158883
706 => 0.029126264001001
707 => 0.027709590530721
708 => 0.028755315147622
709 => 0.028056068876822
710 => 0.028260146112618
711 => 0.029729857768806
712 => 0.029553018173959
713 => 0.029781864984596
714 => 0.029377956353784
715 => 0.029000642002061
716 => 0.028296356744838
717 => 0.028087852601017
718 => 0.028145475645176
719 => 0.028087824045898
720 => 0.027693782917198
721 => 0.027608689772972
722 => 0.027466864137912
723 => 0.02751082183261
724 => 0.027244148146145
725 => 0.027747416490099
726 => 0.027840827529523
727 => 0.028207064261155
728 => 0.028245088173577
729 => 0.029265052258121
730 => 0.028703273180154
731 => 0.029080163087327
801 => 0.029046450506604
802 => 0.026346294625661
803 => 0.026718352282378
804 => 0.027297157238105
805 => 0.027036406390101
806 => 0.026667765697326
807 => 0.026370068572647
808 => 0.025919026987664
809 => 0.026553859357041
810 => 0.027388596415876
811 => 0.028266258482915
812 => 0.029320711949766
813 => 0.029085370211156
814 => 0.028246546208815
815 => 0.028284175240799
816 => 0.028516783110044
817 => 0.028215534784718
818 => 0.028126690772514
819 => 0.028504577307059
820 => 0.02850717960394
821 => 0.028160556998577
822 => 0.027775349403982
823 => 0.027773735370096
824 => 0.027705191399302
825 => 0.028679831413266
826 => 0.029215784873727
827 => 0.029277231074237
828 => 0.029211649054855
829 => 0.029236888971258
830 => 0.028925029461544
831 => 0.029637847821684
901 => 0.030292000439378
902 => 0.030116673563904
903 => 0.029853833653384
904 => 0.02964446900457
905 => 0.030067353906347
906 => 0.030048523507354
907 => 0.030286286986933
908 => 0.030275500662111
909 => 0.030195549746665
910 => 0.030116676419203
911 => 0.030429400247154
912 => 0.030339340806895
913 => 0.03024914147945
914 => 0.030068232919434
915 => 0.030092821397313
916 => 0.02983002686981
917 => 0.029708446096727
918 => 0.02788016298263
919 => 0.027391585993669
920 => 0.027545302260298
921 => 0.027595909646513
922 => 0.027383280314789
923 => 0.027688136156488
924 => 0.027640624696481
925 => 0.027825463994092
926 => 0.027709984425734
927 => 0.0277147237475
928 => 0.028054324535201
929 => 0.028152912088636
930 => 0.02810276966326
1001 => 0.028137887699211
1002 => 0.028947168015318
1003 => 0.028832114233696
1004 => 0.028770994205315
1005 => 0.028787924870878
1006 => 0.028994713342809
1007 => 0.029052602824718
1008 => 0.028807321022049
1009 => 0.028922997338145
1010 => 0.029415532410571
1011 => 0.029587891810849
1012 => 0.030137980279332
1013 => 0.029904292920877
1014 => 0.030333236181072
1015 => 0.031651661525377
1016 => 0.032704910918503
1017 => 0.031736299249212
1018 => 0.033670457629186
1019 => 0.035176477366536
1020 => 0.035118673820609
1021 => 0.034856064444538
1022 => 0.033141501013171
1023 => 0.031563734180927
1024 => 0.032883603131618
1025 => 0.032886967749006
1026 => 0.032773589835608
1027 => 0.032069409352867
1028 => 0.032749085881209
1029 => 0.032803036135806
1030 => 0.032772838339762
1031 => 0.032232944814683
1101 => 0.031408627190889
1102 => 0.031569696881441
1103 => 0.031833532320297
1104 => 0.031334036792704
1105 => 0.031174417706137
1106 => 0.031471179956839
1107 => 0.032427409761473
1108 => 0.032246640055969
1109 => 0.03224191942841
1110 => 0.033015328886841
1111 => 0.032461734626812
1112 => 0.031571728486055
1113 => 0.031346990197775
1114 => 0.030549320676233
1115 => 0.031100273855964
1116 => 0.031120101680059
1117 => 0.030818350254126
1118 => 0.031596213951223
1119 => 0.031589045800314
1120 => 0.032327511610975
1121 => 0.033739180885868
1122 => 0.033321680817256
1123 => 0.032836173661339
1124 => 0.03288896175084
1125 => 0.033467916800564
1126 => 0.033117867361243
1127 => 0.033243747580254
1128 => 0.033467726265776
1129 => 0.033602858167829
1130 => 0.032869518349697
1201 => 0.032698541758392
1202 => 0.03234878365721
1203 => 0.032257538297156
1204 => 0.032542408972626
1205 => 0.032467355614269
1206 => 0.031118435228221
1207 => 0.030977465542557
1208 => 0.030981788881558
1209 => 0.030627313904212
1210 => 0.030086654480017
1211 => 0.031507475165705
1212 => 0.031393363380271
1213 => 0.031267392800703
1214 => 0.031282823477922
1215 => 0.031899553581498
1216 => 0.031541818975807
1217 => 0.032492915056585
1218 => 0.032297398294942
1219 => 0.032096867266116
1220 => 0.032069147769607
1221 => 0.031991960432013
1222 => 0.031727256331257
1223 => 0.031407610223343
1224 => 0.031196552175627
1225 => 0.028777170338508
1226 => 0.02922619353458
1227 => 0.02974275379191
1228 => 0.029921068322755
1229 => 0.029616048978755
1230 => 0.031739300354073
1231 => 0.032127238840502
]
'min_raw' => 0.013390327767871
'max_raw' => 0.035176477366536
'avg_raw' => 0.024283402567204
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.01339'
'max' => '$0.035176'
'avg' => '$0.024283'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00051917318003586
'max_diff' => -0.0063437217156794
'year' => 2027
]
2 => [
'items' => [
101 => 0.030952147860505
102 => 0.030732336316796
103 => 0.031753711162284
104 => 0.031137697272458
105 => 0.031415088289327
106 => 0.030815520635629
107 => 0.032033795819286
108 => 0.032024514603556
109 => 0.031550578041121
110 => 0.031951145978314
111 => 0.031881537441733
112 => 0.031346464229998
113 => 0.032050758594491
114 => 0.032051107915709
115 => 0.031594954278634
116 => 0.031062266695402
117 => 0.030967034737039
118 => 0.030895290249027
119 => 0.031397443543293
120 => 0.03184767261674
121 => 0.032685437301171
122 => 0.032896071247635
123 => 0.03371818956338
124 => 0.033228658134569
125 => 0.033445661076468
126 => 0.033681248466839
127 => 0.033794197725223
128 => 0.033610152969878
129 => 0.034887241111629
130 => 0.034995066479762
131 => 0.035031219393012
201 => 0.034600592457069
202 => 0.034983089965675
203 => 0.034804132048384
204 => 0.035269730833234
205 => 0.035342742667762
206 => 0.035280904241388
207 => 0.035304079350081
208 => 0.034214309914883
209 => 0.034157799620676
210 => 0.033387277749379
211 => 0.033701271107343
212 => 0.033114275574723
213 => 0.033300417904841
214 => 0.033382467670328
215 => 0.033339609529121
216 => 0.03371902382069
217 => 0.033396444163637
218 => 0.032545103411668
219 => 0.031693530712481
220 => 0.031682839910919
221 => 0.03145863585073
222 => 0.031296577380235
223 => 0.031327795590985
224 => 0.031437812637525
225 => 0.03129018298949
226 => 0.031321687259911
227 => 0.031844868060763
228 => 0.031949788239219
229 => 0.031593228477865
301 => 0.030161589584701
302 => 0.029810261809325
303 => 0.030062789247133
304 => 0.02994209739671
305 => 0.024165609484032
306 => 0.02552270963526
307 => 0.024716366808167
308 => 0.025087966680941
309 => 0.024264899455942
310 => 0.024657710276361
311 => 0.024585172460984
312 => 0.026767349344645
313 => 0.026733277654092
314 => 0.026749585969326
315 => 0.025971147592137
316 => 0.027211221063904
317 => 0.027822125847696
318 => 0.027709063630921
319 => 0.027737518955053
320 => 0.027248562209456
321 => 0.02675432013943
322 => 0.026206129620461
323 => 0.027224599846309
324 => 0.027111363343061
325 => 0.027371087140304
326 => 0.028031637883521
327 => 0.028128906489649
328 => 0.028259636482684
329 => 0.028212779086175
330 => 0.029329112372807
331 => 0.029193917045991
401 => 0.029519698885266
402 => 0.028849540924751
403 => 0.02809119358045
404 => 0.028235330618359
405 => 0.028221449062531
406 => 0.028044720924339
407 => 0.027885178663228
408 => 0.027619585749232
409 => 0.028459961029472
410 => 0.028425843327799
411 => 0.028978169260384
412 => 0.028880540286791
413 => 0.028228550107281
414 => 0.028251836064093
415 => 0.028408445314502
416 => 0.028950471718301
417 => 0.02911138205892
418 => 0.029036841977977
419 => 0.02921327282063
420 => 0.029352716564998
421 => 0.029230784808009
422 => 0.030957081355654
423 => 0.030240202672096
424 => 0.030589604354453
425 => 0.0306729345969
426 => 0.030459485933117
427 => 0.030505775305268
428 => 0.030575891090978
429 => 0.03100162041173
430 => 0.032118857335155
501 => 0.032613673963252
502 => 0.034102354202701
503 => 0.032572586330468
504 => 0.032481816235739
505 => 0.0327499725007
506 => 0.033623985394064
507 => 0.034332290752279
508 => 0.034567276502715
509 => 0.034598333748827
510 => 0.035039182638203
511 => 0.035291869000248
512 => 0.034985651987556
513 => 0.034726165131557
514 => 0.033796715422063
515 => 0.033904301756744
516 => 0.034645464914465
517 => 0.035692401529038
518 => 0.036590782059532
519 => 0.036276200509475
520 => 0.03867623567644
521 => 0.03891418935998
522 => 0.038881311854878
523 => 0.039423405758238
524 => 0.038347459755572
525 => 0.03788747199396
526 => 0.034782269135125
527 => 0.035654704478879
528 => 0.036922840487357
529 => 0.036754997931369
530 => 0.03583404366464
531 => 0.036590083433136
601 => 0.036340113042122
602 => 0.036142951023448
603 => 0.037046188452732
604 => 0.036053041796285
605 => 0.036912933089741
606 => 0.035810113611448
607 => 0.036277637491498
608 => 0.036012248325596
609 => 0.036183987640807
610 => 0.035180003113292
611 => 0.035721728793992
612 => 0.035157465543946
613 => 0.035157198009696
614 => 0.035144741867177
615 => 0.03580859507853
616 => 0.035830243307919
617 => 0.035339654781703
618 => 0.035268953310642
619 => 0.035530373705295
620 => 0.035224318889266
621 => 0.0353675200114
622 => 0.035228656305374
623 => 0.03519739516023
624 => 0.034948301037081
625 => 0.034840984439843
626 => 0.034883066042828
627 => 0.034739419837286
628 => 0.034652867802537
629 => 0.035127524488982
630 => 0.034873934569011
701 => 0.035088658196755
702 => 0.034843953522658
703 => 0.033995700509487
704 => 0.033507861231499
705 => 0.031905589922714
706 => 0.032359992078274
707 => 0.032661261177523
708 => 0.032561691742019
709 => 0.032775605417739
710 => 0.032788737980094
711 => 0.032719192463525
712 => 0.032638667664671
713 => 0.03259947264589
714 => 0.03289160020401
715 => 0.03306119008406
716 => 0.032691497562094
717 => 0.032604883776745
718 => 0.032978663327737
719 => 0.033206668637916
720 => 0.034890131743165
721 => 0.034765415358814
722 => 0.035078429009181
723 => 0.035043188475736
724 => 0.035371276648305
725 => 0.035907562150049
726 => 0.034817143777219
727 => 0.035006402702912
728 => 0.034960000784959
729 => 0.035466604757934
730 => 0.03546818632024
731 => 0.035164451931696
801 => 0.035329111271253
802 => 0.035237202945105
803 => 0.03540329371261
804 => 0.034763749695465
805 => 0.035542645273837
806 => 0.035984228875851
807 => 0.035990360264594
808 => 0.036199667387324
809 => 0.03641233554627
810 => 0.036820533557872
811 => 0.036400951125276
812 => 0.035646163174562
813 => 0.035700656426653
814 => 0.035258124527315
815 => 0.035265563568493
816 => 0.035225853383678
817 => 0.035345026637551
818 => 0.034789901522997
819 => 0.034920188277815
820 => 0.034737786058112
821 => 0.035006006196109
822 => 0.034717445666001
823 => 0.034959978408549
824 => 0.035064647500145
825 => 0.035450878701498
826 => 0.034660399003526
827 => 0.03304855738859
828 => 0.033387386037741
829 => 0.032886231851232
830 => 0.032932615579221
831 => 0.033026318091677
901 => 0.032722597591255
902 => 0.032780537891402
903 => 0.032778467856162
904 => 0.032760629410779
905 => 0.032681619978377
906 => 0.032567040669854
907 => 0.033023489369357
908 => 0.03310104889789
909 => 0.033273454122224
910 => 0.033786415126262
911 => 0.033735158225505
912 => 0.033818760357268
913 => 0.033636257373036
914 => 0.032941081369229
915 => 0.032978832770828
916 => 0.032508072187959
917 => 0.033261415715706
918 => 0.033083014024687
919 => 0.032967997293915
920 => 0.032936613913301
921 => 0.033450846448451
922 => 0.033604712882575
923 => 0.033508833646421
924 => 0.033312182535825
925 => 0.033689810802851
926 => 0.033790848196249
927 => 0.033813466742516
928 => 0.034482551628647
929 => 0.033850861155044
930 => 0.034002915330504
1001 => 0.035189198601659
1002 => 0.034113403370623
1003 => 0.034683276097599
1004 => 0.034655383793088
1005 => 0.034946911396768
1006 => 0.034631470020534
1007 => 0.034635380294445
1008 => 0.034894237056722
1009 => 0.034530719419167
1010 => 0.034440707339948
1011 => 0.034316356297187
1012 => 0.034587872249765
1013 => 0.034750633783726
1014 => 0.036062372212274
1015 => 0.036909815059656
1016 => 0.03687302533068
1017 => 0.037209214586037
1018 => 0.037057758247358
1019 => 0.0365686657776
1020 => 0.037403486985004
1021 => 0.037139314624579
1022 => 0.037161092673003
1023 => 0.037160282092953
1024 => 0.037335933618287
1025 => 0.037211468414362
1026 => 0.036966134721334
1027 => 0.03712899867601
1028 => 0.037612646396468
1029 => 0.039113903760896
1030 => 0.039954027271044
1031 => 0.039063327270695
1101 => 0.039677720203987
1102 => 0.039309303374598
1103 => 0.039242351077246
1104 => 0.039628235242635
1105 => 0.040014794847173
1106 => 0.039990172671507
1107 => 0.039709550248668
1108 => 0.039551033762537
1109 => 0.040751373702443
1110 => 0.041635763722908
1111 => 0.041575454252538
1112 => 0.04184164064106
1113 => 0.042623172110596
1114 => 0.042694625553699
1115 => 0.042685624062206
1116 => 0.04250851924808
1117 => 0.043278038474523
1118 => 0.043919984951624
1119 => 0.042467524600659
1120 => 0.043020602488205
1121 => 0.04326889697098
1122 => 0.043633466937349
1123 => 0.044248557579633
1124 => 0.044916709161889
1125 => 0.045011193121529
1126 => 0.04494415223069
1127 => 0.044503488301314
1128 => 0.045234587735325
1129 => 0.045662848637377
1130 => 0.045917868203972
1201 => 0.046564555393648
1202 => 0.043270430353177
1203 => 0.040938684920893
1204 => 0.04057454920083
1205 => 0.041315033506508
1206 => 0.041510293312664
1207 => 0.041431584329638
1208 => 0.038806992852583
1209 => 0.040560731269875
1210 => 0.042447606348367
1211 => 0.042520088904672
1212 => 0.043464698021662
1213 => 0.04377230147099
1214 => 0.044532835622915
1215 => 0.044485264004641
1216 => 0.044670441967893
1217 => 0.044627872760977
1218 => 0.046036602128057
1219 => 0.047590639818281
1220 => 0.047536828434606
1221 => 0.047313417130097
1222 => 0.047645221014581
1223 => 0.049249154451693
1224 => 0.049101489963313
1225 => 0.049244933435743
1226 => 0.051136061351825
1227 => 0.053594796652541
1228 => 0.05245246725237
1229 => 0.05493099335431
1230 => 0.056491094154458
1231 => 0.059189127170881
]
'min_raw' => 0.024165609484032
'max_raw' => 0.059189127170881
'avg_raw' => 0.041677368327457
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.024165'
'max' => '$0.059189'
'avg' => '$0.041677'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.010775281716161
'max_diff' => 0.024012649804345
'year' => 2028
]
3 => [
'items' => [
101 => 0.058851320149132
102 => 0.059901644603345
103 => 0.058246575077749
104 => 0.054446200902243
105 => 0.053844777141721
106 => 0.055048842740761
107 => 0.058008920524997
108 => 0.054955619357313
109 => 0.055573298206907
110 => 0.055395406656671
111 => 0.055385927571949
112 => 0.055747705681552
113 => 0.055222927664495
114 => 0.053084887617242
115 => 0.054064738771349
116 => 0.053686371184431
117 => 0.054106198231288
118 => 0.056371831653335
119 => 0.055370141111493
120 => 0.054314941496395
121 => 0.055638395981268
122 => 0.057323608328813
123 => 0.057218150768722
124 => 0.057013519024303
125 => 0.058167017453419
126 => 0.06007225891499
127 => 0.060587238026173
128 => 0.060967385077763
129 => 0.06101980093354
130 => 0.061559716824319
131 => 0.058656453003279
201 => 0.063264007248372
202 => 0.064059604585383
203 => 0.063910065260156
204 => 0.064794338216389
205 => 0.064534162680825
206 => 0.064157209150085
207 => 0.065558969875966
208 => 0.063951964320001
209 => 0.061671022249682
210 => 0.060419652317986
211 => 0.062067557189176
212 => 0.063073875190057
213 => 0.063738987374794
214 => 0.063940249920023
215 => 0.058881825109174
216 => 0.056155614689228
217 => 0.057903084312347
218 => 0.060035117856464
219 => 0.058644609449292
220 => 0.058699114746273
221 => 0.056716615176827
222 => 0.060210525078268
223 => 0.059701491794036
224 => 0.062342357373098
225 => 0.061712093608384
226 => 0.063865616970298
227 => 0.063298522096679
228 => 0.065652501211224
301 => 0.066591567211456
302 => 0.068168405179799
303 => 0.069328333608197
304 => 0.070009465767247
305 => 0.06996857314728
306 => 0.072667558100132
307 => 0.071076060968787
308 => 0.069076765484744
309 => 0.069040604537134
310 => 0.070076067998556
311 => 0.072246115348169
312 => 0.072808777053019
313 => 0.073123228186309
314 => 0.072641635329553
315 => 0.070914179257105
316 => 0.070168272483423
317 => 0.0708038066656
318 => 0.070026602972873
319 => 0.071368274591361
320 => 0.073210676289139
321 => 0.072830227624194
322 => 0.074102010471055
323 => 0.075418171922098
324 => 0.0773003419096
325 => 0.077792410840885
326 => 0.078605782072595
327 => 0.079443008248556
328 => 0.079711902732396
329 => 0.080225305735105
330 => 0.080222599847858
331 => 0.081769774352531
401 => 0.083476355743191
402 => 0.084120550710715
403 => 0.085601841517418
404 => 0.083065182921559
405 => 0.084989267605552
406 => 0.086724840153477
407 => 0.084655619012583
408 => 0.087507558288614
409 => 0.087618292628069
410 => 0.089290249683974
411 => 0.087595400899599
412 => 0.086589005101586
413 => 0.089494432061291
414 => 0.090900276647001
415 => 0.090476824816642
416 => 0.087254335479219
417 => 0.085378708465769
418 => 0.08046983079014
419 => 0.086284608444657
420 => 0.089116817020783
421 => 0.087247000743218
422 => 0.088190027312905
423 => 0.09333487449972
424 => 0.095293699204273
425 => 0.094886277358944
426 => 0.094955124944071
427 => 0.096012071199464
428 => 0.10069915296681
429 => 0.097890544926113
430 => 0.10003762053669
501 => 0.10117642169869
502 => 0.10223420368403
503 => 0.099636625443463
504 => 0.096257214318495
505 => 0.095186812957189
506 => 0.087061084364466
507 => 0.086638104902964
508 => 0.086400673713633
509 => 0.084903703650213
510 => 0.083727495234975
511 => 0.082792130633359
512 => 0.080337454595204
513 => 0.081165835700311
514 => 0.077253594426197
515 => 0.079756507752057
516 => 0.073512476214203
517 => 0.078712691221327
518 => 0.075882450617712
519 => 0.077782881063963
520 => 0.077776250641167
521 => 0.074276955657599
522 => 0.072258635339499
523 => 0.073544787600394
524 => 0.074923644918967
525 => 0.075147359879872
526 => 0.07693508438526
527 => 0.077433999867704
528 => 0.075922262663762
529 => 0.073383082539267
530 => 0.073972876169655
531 => 0.072246683190404
601 => 0.069221596391322
602 => 0.071394266543371
603 => 0.072136111658844
604 => 0.072463752723821
605 => 0.06948892729049
606 => 0.068554172552735
607 => 0.068056516973707
608 => 0.072999069932082
609 => 0.073269834140324
610 => 0.071884566168756
611 => 0.078146108756744
612 => 0.076728928824373
613 => 0.078312266026345
614 => 0.073919358579621
615 => 0.074087173559921
616 => 0.072007500775177
617 => 0.073171978570848
618 => 0.072348963197739
619 => 0.073077900272551
620 => 0.073514822149674
621 => 0.075594153680577
622 => 0.078736433847334
623 => 0.075283570889456
624 => 0.073779109052801
625 => 0.074712468714847
626 => 0.077198128491575
627 => 0.080964030291901
628 => 0.078734540630271
629 => 0.079723950282913
630 => 0.079940092276243
701 => 0.078296149139951
702 => 0.081024644820232
703 => 0.082486867821554
704 => 0.083986806056494
705 => 0.085289160398577
706 => 0.08338769774111
707 => 0.085422535348565
708 => 0.083782815434148
709 => 0.082311817159787
710 => 0.082314048056967
711 => 0.081391269351605
712 => 0.079603269332365
713 => 0.079273534695976
714 => 0.080988855915369
715 => 0.082364381091798
716 => 0.08247767593365
717 => 0.083239237348356
718 => 0.083689921548873
719 => 0.088107239389399
720 => 0.089883921166828
721 => 0.092056414013404
722 => 0.092902722412133
723 => 0.095449807273954
724 => 0.093392829383915
725 => 0.092947789278408
726 => 0.086769394548738
727 => 0.087781106339601
728 => 0.089400954532441
729 => 0.086796105248811
730 => 0.088448282565618
731 => 0.088774457365856
801 => 0.086707593466911
802 => 0.087811594779255
803 => 0.084879694607246
804 => 0.078800341259125
805 => 0.081031412878384
806 => 0.082674232560745
807 => 0.08032972631581
808 => 0.084532163014935
809 => 0.082077186251208
810 => 0.081299076476773
811 => 0.078263392830539
812 => 0.079696118657383
813 => 0.081633900852846
814 => 0.08043657674741
815 => 0.082921204045309
816 => 0.086440098925032
817 => 0.088947872970135
818 => 0.089140388722164
819 => 0.087528058018974
820 => 0.090111828260592
821 => 0.090130648206036
822 => 0.08721614481848
823 => 0.085431027721625
824 => 0.085025445361301
825 => 0.086038669616496
826 => 0.087268910913818
827 => 0.089208658552121
828 => 0.090380807424761
829 => 0.093437150024882
830 => 0.094264108700265
831 => 0.095172685566307
901 => 0.096386824454067
902 => 0.097844709487645
903 => 0.094654940031619
904 => 0.094781675518581
905 => 0.091811406366494
906 => 0.088637247797804
907 => 0.091046038486988
908 => 0.094195211885099
909 => 0.093472788028045
910 => 0.093391500586346
911 => 0.093528203516027
912 => 0.092983519519966
913 => 0.090519933992712
914 => 0.089282736763786
915 => 0.090879036831776
916 => 0.09172739927477
917 => 0.093043135438874
918 => 0.092880943184827
919 => 0.096270138243811
920 => 0.097587076959794
921 => 0.097250147681261
922 => 0.097312150777167
923 => 0.099696405417261
924 => 0.10234818693641
925 => 0.10483193026249
926 => 0.10735850065303
927 => 0.10431262143351
928 => 0.10276611180955
929 => 0.10436171498287
930 => 0.10351506547937
1001 => 0.10838016465905
1002 => 0.10871701357059
1003 => 0.11358176094823
1004 => 0.11819898549295
1005 => 0.11529898948258
1006 => 0.11803355510167
1007 => 0.12099121077112
1008 => 0.12669700841982
1009 => 0.12477549650412
1010 => 0.12330364849062
1011 => 0.12191275922978
1012 => 0.12480697898413
1013 => 0.12853034646182
1014 => 0.12933232415454
1015 => 0.13063183439581
1016 => 0.12926555827367
1017 => 0.13091108737241
1018 => 0.13672052817309
1019 => 0.13515076598739
1020 => 0.13292145133184
1021 => 0.13750744689935
1022 => 0.13916710086763
1023 => 0.15081542158452
1024 => 0.16552190765773
1025 => 0.15943332585543
1026 => 0.15565394665343
1027 => 0.15654219041397
1028 => 0.16191250128194
1029 => 0.16363727468758
1030 => 0.158948746006
1031 => 0.16060481359889
1101 => 0.16972990885668
1102 => 0.17462522969438
1103 => 0.16797672646748
1104 => 0.14963376974793
1105 => 0.13272072593857
1106 => 0.1372068267611
1107 => 0.13669824214774
1108 => 0.14650201862342
1109 => 0.13511332767842
1110 => 0.13530508402601
1111 => 0.14531159221683
1112 => 0.1426420273865
1113 => 0.13831767425339
1114 => 0.13275229850205
1115 => 0.12246418669076
1116 => 0.11335171915427
1117 => 0.13122336646926
1118 => 0.13045270853956
1119 => 0.12933668165224
1120 => 0.13182027872325
1121 => 0.14387992111872
1122 => 0.14360190732825
1123 => 0.14183332543717
1124 => 0.14317477921399
1125 => 0.13808251092048
1126 => 0.13939490440851
1127 => 0.13271804682602
1128 => 0.13573626530351
1129 => 0.13830839613373
1130 => 0.13882478947895
1201 => 0.13998825005342
1202 => 0.13004660682957
1203 => 0.13451011276577
1204 => 0.13713200432934
1205 => 0.12528620285991
1206 => 0.13689785092144
1207 => 0.1298735449392
1208 => 0.1274893899873
1209 => 0.13069934054151
1210 => 0.12944841968875
1211 => 0.12837295139609
1212 => 0.1277728216099
1213 => 0.13012985502759
1214 => 0.13001989660139
1215 => 0.12616333244957
1216 => 0.12113260172717
1217 => 0.12282108008572
1218 => 0.12220764006849
1219 => 0.11998445431072
1220 => 0.12148261308298
1221 => 0.11488548005074
1222 => 0.10353545555789
1223 => 0.11103362939852
1224 => 0.1107449578621
1225 => 0.11059939658322
1226 => 0.11623406699015
1227 => 0.11569242344449
1228 => 0.11470933510532
1229 => 0.11996639912242
1230 => 0.11804750003869
1231 => 0.12396109486527
]
'min_raw' => 0.053084887617242
'max_raw' => 0.17462522969438
'avg_raw' => 0.11385505865581
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.053084'
'max' => '$0.174625'
'avg' => '$0.113855'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.028919278133209
'max_diff' => 0.1154361025235
'year' => 2029
]
4 => [
'items' => [
101 => 0.12785617088538
102 => 0.12686825361417
103 => 0.13053159143763
104 => 0.12285997921685
105 => 0.12540818106493
106 => 0.12593336193417
107 => 0.11990152776849
108 => 0.11578104302718
109 => 0.1155062536719
110 => 0.10836190096824
111 => 0.11217835651533
112 => 0.11553667946111
113 => 0.11392830338647
114 => 0.11341913957011
115 => 0.11602034708375
116 => 0.11622248318539
117 => 0.11161375864645
118 => 0.11257205841742
119 => 0.11656832776645
120 => 0.1124713626832
121 => 0.10451162876188
122 => 0.10253750469746
123 => 0.10227412015694
124 => 0.096920139124489
125 => 0.10266942510709
126 => 0.1001597077044
127 => 0.10808787490847
128 => 0.10355934832112
129 => 0.10336413259099
130 => 0.10306903538298
131 => 0.09846064273817
201 => 0.099469587848751
202 => 0.102823475063
203 => 0.10402017980529
204 => 0.10389535369636
205 => 0.10280703918595
206 => 0.10330526399574
207 => 0.10170030829036
208 => 0.10113356502653
209 => 0.099344767390854
210 => 0.096715729034371
211 => 0.097081312942669
212 => 0.091872500033171
213 => 0.089034462307452
214 => 0.088248930869709
215 => 0.08719848540154
216 => 0.088367581480467
217 => 0.091857744120651
218 => 0.087647867497279
219 => 0.080430329315017
220 => 0.080864115657858
221 => 0.081838704777899
222 => 0.080022564400254
223 => 0.078303739949921
224 => 0.07979811835685
225 => 0.076739952281901
226 => 0.082208269537496
227 => 0.082060366880514
228 => 0.084098617394929
301 => 0.085373177270704
302 => 0.082435729400703
303 => 0.081696969205101
304 => 0.082117800587295
305 => 0.075162395253123
306 => 0.08353021239002
307 => 0.083602577620101
308 => 0.082982942585942
309 => 0.08743854688397
310 => 0.09684126169064
311 => 0.093303582157044
312 => 0.091933685714706
313 => 0.089329511576432
314 => 0.092799418995122
315 => 0.092532984244354
316 => 0.091328065259006
317 => 0.090599326497091
318 => 0.091942050010269
319 => 0.090432948194545
320 => 0.090161872041096
321 => 0.088519445484961
322 => 0.087933173930068
323 => 0.087499121810967
324 => 0.087021273076919
325 => 0.088075288311745
326 => 0.085686751122377
327 => 0.082806409423187
328 => 0.082566940176628
329 => 0.083228135820728
330 => 0.082935605968441
331 => 0.08256553965624
401 => 0.081858982284686
402 => 0.081649361805756
403 => 0.082330526668881
404 => 0.081561531252791
405 => 0.082696225878579
406 => 0.082387651725882
407 => 0.080663981592791
408 => 0.078515650422542
409 => 0.078496525768849
410 => 0.078033671342188
411 => 0.077444156639207
412 => 0.077280167135107
413 => 0.079672265975579
414 => 0.084623838985862
415 => 0.083651726722844
416 => 0.084354177458946
417 => 0.087809539839526
418 => 0.08890789563394
419 => 0.088128308707048
420 => 0.08706116203869
421 => 0.087108111076236
422 => 0.09075487428928
423 => 0.090982318437667
424 => 0.091556996424377
425 => 0.092295620041279
426 => 0.088254099502905
427 => 0.086917755822327
428 => 0.086284522048944
429 => 0.084334407119238
430 => 0.086437438880708
501 => 0.085212092334098
502 => 0.085377433447034
503 => 0.085269754830329
504 => 0.085328554636246
505 => 0.082206741031378
506 => 0.0833441658313
507 => 0.081452976494262
508 => 0.078920886267936
509 => 0.078912397813632
510 => 0.079532123309315
511 => 0.079163486334622
512 => 0.078171493714244
513 => 0.078312401583895
514 => 0.07707790037552
515 => 0.078462292381958
516 => 0.07850199179111
517 => 0.077968925460289
518 => 0.08010177235549
519 => 0.080975601468691
520 => 0.080624725790357
521 => 0.080950983095736
522 => 0.083692122376196
523 => 0.084139047683202
524 => 0.084337542382346
525 => 0.084071585781002
526 => 0.081001086089803
527 => 0.08113727580788
528 => 0.080138006019925
529 => 0.079293728349559
530 => 0.07932749502872
531 => 0.079761563499703
601 => 0.081657165970264
602 => 0.085646349617691
603 => 0.085797736221056
604 => 0.085981221200593
605 => 0.085234895576655
606 => 0.085009796627101
607 => 0.085306760244531
608 => 0.086804887881193
609 => 0.090658478900373
610 => 0.089296362461505
611 => 0.088188940594099
612 => 0.089160448130605
613 => 0.089010892160288
614 => 0.087748489263
615 => 0.087713057818237
616 => 0.085290103043722
617 => 0.084394391831594
618 => 0.083645868499918
619 => 0.082828500562424
620 => 0.082343937450656
621 => 0.083088446620327
622 => 0.083258724676205
623 => 0.081630842364926
624 => 0.08140896802113
625 => 0.082738331856801
626 => 0.082153328396401
627 => 0.08275501896281
628 => 0.082894616335423
629 => 0.082872137943232
630 => 0.082261327143355
701 => 0.082650639732557
702 => 0.081729799399427
703 => 0.080728523842895
704 => 0.080089772419499
705 => 0.079532377084505
706 => 0.079841652412367
707 => 0.078739142339983
708 => 0.078386427178683
709 => 0.082518749387146
710 => 0.085571340232487
711 => 0.085526954352637
712 => 0.085256766724172
713 => 0.084855322713833
714 => 0.086775519751396
715 => 0.086106561499061
716 => 0.086593284520967
717 => 0.086717175957744
718 => 0.087092158023151
719 => 0.087226181880737
720 => 0.086821068697559
721 => 0.085461459374405
722 => 0.082073442208881
723 => 0.080496311072552
724 => 0.079975831528367
725 => 0.079994749971267
726 => 0.079472894860444
727 => 0.079626604578487
728 => 0.079419440893359
729 => 0.079027122992007
730 => 0.079817427887481
731 => 0.079908503164485
801 => 0.079724036558441
802 => 0.079767485121953
803 => 0.078240180410627
804 => 0.078356298070698
805 => 0.077709740183906
806 => 0.077588518374504
807 => 0.075954076338929
808 => 0.073058425356746
809 => 0.074662897088517
810 => 0.072724920859404
811 => 0.071990979896307
812 => 0.07546534226437
813 => 0.075116612646428
814 => 0.074519739129632
815 => 0.073636838798951
816 => 0.073309362477999
817 => 0.071319720018299
818 => 0.071202161327451
819 => 0.072188281855343
820 => 0.071733221162056
821 => 0.07109414360372
822 => 0.068779469469679
823 => 0.066177009380749
824 => 0.066255561292353
825 => 0.06708335542615
826 => 0.069490278513415
827 => 0.068549852023028
828 => 0.067867561814102
829 => 0.067739789367539
830 => 0.069339129046016
831 => 0.071602529763083
901 => 0.072664466738795
902 => 0.07161211944737
903 => 0.070403239541384
904 => 0.070476818459851
905 => 0.070966306040478
906 => 0.07101774426422
907 => 0.070230887720285
908 => 0.070452383228364
909 => 0.070115911297618
910 => 0.06805098367971
911 => 0.068013635687058
912 => 0.067506869148167
913 => 0.067491524458771
914 => 0.066629388157281
915 => 0.066508769329035
916 => 0.064796945374493
917 => 0.065923673085253
918 => 0.065167923292735
919 => 0.064028830092056
920 => 0.063832449994909
921 => 0.063826546572053
922 => 0.064996140592571
923 => 0.065910005698152
924 => 0.06518106988394
925 => 0.065015105328871
926 => 0.066787172578325
927 => 0.066561660868081
928 => 0.066366369181403
929 => 0.071399867054066
930 => 0.067415460719117
1001 => 0.065678032135116
1002 => 0.063527634333675
1003 => 0.064227814701071
1004 => 0.064375352992271
1005 => 0.059204033918145
1006 => 0.057106030413818
1007 => 0.056386074672727
1008 => 0.05597172996505
1009 => 0.056160552051352
1010 => 0.054272102826191
1011 => 0.055541171937566
1012 => 0.053905934535217
1013 => 0.05363178166319
1014 => 0.056555788705634
1015 => 0.056962647203788
1016 => 0.055226862449633
1017 => 0.056341517259826
1018 => 0.055937327930789
1019 => 0.053933965987064
1020 => 0.053857452296547
1021 => 0.052852235694763
1022 => 0.05127926636126
1023 => 0.050560377167447
1024 => 0.050185973433627
1025 => 0.050340459711185
1026 => 0.050262346721894
1027 => 0.049752606629107
1028 => 0.050291564427332
1029 => 0.048914749965606
1030 => 0.048366491353199
1031 => 0.048118855657478
1101 => 0.046896853576213
1102 => 0.048841602314298
1103 => 0.049224742314999
1104 => 0.049608637219861
1105 => 0.052950180270493
1106 => 0.052783246222786
1107 => 0.054292248713879
1108 => 0.054233611651952
1109 => 0.053803219697273
1110 => 0.051987466836522
1111 => 0.052711193564135
1112 => 0.050483675188647
1113 => 0.052152683412089
1114 => 0.05139101775836
1115 => 0.051895163488396
1116 => 0.050988664008803
1117 => 0.051490358249256
1118 => 0.049315599022723
1119 => 0.047284839456674
1120 => 0.048102076387619
1121 => 0.048990506393936
1122 => 0.050916849015387
1123 => 0.049769535242033
1124 => 0.050182152659668
1125 => 0.048799953381911
1126 => 0.045948081466195
1127 => 0.045964222751526
1128 => 0.0455255243887
1129 => 0.045146424952208
1130 => 0.049901318030405
1201 => 0.049309971912395
1202 => 0.048367739266813
1203 => 0.049628955105761
1204 => 0.049962440591766
1205 => 0.049971934454727
1206 => 0.050892084974132
1207 => 0.051383169471284
1208 => 0.051469725242389
1209 => 0.052917601965839
1210 => 0.053402911145584
1211 => 0.055401830973427
1212 => 0.051341504382717
1213 => 0.051257884628553
1214 => 0.049646702999046
1215 => 0.048624866137839
1216 => 0.049716669043153
1217 => 0.050683857371301
1218 => 0.049676756236429
1219 => 0.049808262383578
1220 => 0.048456311393197
1221 => 0.048939570257052
1222 => 0.049355817892602
1223 => 0.049125990414156
1224 => 0.048781927555147
1225 => 0.050604558958064
1226 => 0.050501718951361
1227 => 0.052198995215872
1228 => 0.053522143437448
1229 => 0.055893461591548
1230 => 0.053418867478133
1231 => 0.05332868343302
]
'min_raw' => 0.045146424952208
'max_raw' => 0.13053159143763
'avg_raw' => 0.087839008194919
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.045146'
'max' => '$0.130531'
'avg' => '$0.087839'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0079384626650335
'max_diff' => -0.044093638256753
'year' => 2030
]
5 => [
'items' => [
101 => 0.054210246939981
102 => 0.053402776182804
103 => 0.053913069828397
104 => 0.055811245396134
105 => 0.055851350854775
106 => 0.055179532749583
107 => 0.055138652556827
108 => 0.055267682572814
109 => 0.056023415406628
110 => 0.055759339133169
111 => 0.056064934882409
112 => 0.056447087046282
113 => 0.05802783042522
114 => 0.0584089423023
115 => 0.057483038024848
116 => 0.057566636814191
117 => 0.057220323197783
118 => 0.05688578858363
119 => 0.057637773541389
120 => 0.059012040831996
121 => 0.059003491586506
122 => 0.059322294885988
123 => 0.059520906700456
124 => 0.058668319400025
125 => 0.058113316417948
126 => 0.058326139877033
127 => 0.058666449222803
128 => 0.058215782142775
129 => 0.055434056155543
130 => 0.056277854122725
131 => 0.056137404881373
201 => 0.055937388082477
202 => 0.056785833463376
203 => 0.056703998836592
204 => 0.054252734049867
205 => 0.054409656068404
206 => 0.054262276997556
207 => 0.054738488926387
208 => 0.053377059175853
209 => 0.053795825797748
210 => 0.054058472297307
211 => 0.054213173103293
212 => 0.054772058493849
213 => 0.054706479743899
214 => 0.054767982026676
215 => 0.055596661520598
216 => 0.059787838032396
217 => 0.060015954522624
218 => 0.058892625495057
219 => 0.059341373284885
220 => 0.05847987565877
221 => 0.059058204786713
222 => 0.059453882888085
223 => 0.057665889632509
224 => 0.057560016275894
225 => 0.056694962942624
226 => 0.057159793604798
227 => 0.056420214598772
228 => 0.056601681417476
301 => 0.056094284372388
302 => 0.057007498031802
303 => 0.058028612802082
304 => 0.0582865867181
305 => 0.057607968409812
306 => 0.057116604031487
307 => 0.056253930048635
308 => 0.057688576108061
309 => 0.058108110335883
310 => 0.057686372473363
311 => 0.057588646595463
312 => 0.057403456233429
313 => 0.05762793560622
314 => 0.058105825462379
315 => 0.057880461431454
316 => 0.058029318344283
317 => 0.057462029293161
318 => 0.058668601641897
319 => 0.060584928909139
320 => 0.060591090214654
321 => 0.060365724968933
322 => 0.060273510365946
323 => 0.060504748784362
324 => 0.060630186140457
325 => 0.061377968783741
326 => 0.062180369352959
327 => 0.065924822694706
328 => 0.064873395180016
329 => 0.06819569694334
330 => 0.070823206291238
331 => 0.071611081457614
401 => 0.070886273376939
402 => 0.068406744086315
403 => 0.068285086550097
404 => 0.071990550140555
405 => 0.070943586955266
406 => 0.070819054015785
407 => 0.069494233941431
408 => 0.070277366687533
409 => 0.070106084068096
410 => 0.069835706073883
411 => 0.071329868799945
412 => 0.074126808038306
413 => 0.073690878828477
414 => 0.073365477895514
415 => 0.071939665730058
416 => 0.072798323120339
417 => 0.072492571670159
418 => 0.073806273934797
419 => 0.073028065815294
420 => 0.070935655179421
421 => 0.071268878469859
422 => 0.071218512439862
423 => 0.072255041768236
424 => 0.071943901392098
425 => 0.071157757287796
426 => 0.074117248404055
427 => 0.07392507551252
428 => 0.074197532735878
429 => 0.07431747683162
430 => 0.076118866922003
501 => 0.07685683880398
502 => 0.077024371341205
503 => 0.077725387552289
504 => 0.077006929419262
505 => 0.079881274203338
506 => 0.081792545762081
507 => 0.084012586030695
508 => 0.087256661553711
509 => 0.088476463959741
510 => 0.08825611757312
511 => 0.090715738610548
512 => 0.095135622940502
513 => 0.089149502565533
514 => 0.095452901855812
515 => 0.093457318416754
516 => 0.08872582598176
517 => 0.088421173649578
518 => 0.091625395260312
519 => 0.09873205039802
520 => 0.096951913889039
521 => 0.098734962063632
522 => 0.09665494165579
523 => 0.096551651110752
524 => 0.098633940115116
525 => 0.10349932187348
526 => 0.10118796137619
527 => 0.097874059334478
528 => 0.10032099303205
529 => 0.09820123261019
530 => 0.093424819096155
531 => 0.0969505526522
601 => 0.094592995030383
602 => 0.095281055679086
603 => 0.10023629113991
604 => 0.09964006409934
605 => 0.10041163709898
606 => 0.099049830950197
607 => 0.097777689270115
608 => 0.09540314235376
609 => 0.094700156075576
610 => 0.094894436192069
611 => 0.094700059799998
612 => 0.09337152262351
613 => 0.093084625146739
614 => 0.092606450116186
615 => 0.092754656552888
616 => 0.09185554760041
617 => 0.093552351959125
618 => 0.093867293800291
619 => 0.095102086510823
620 => 0.095230286786298
621 => 0.098669166908956
622 => 0.096775089525429
623 => 0.098045800161072
624 => 0.097932135841428
625 => 0.088828371769967
626 => 0.090082790135824
627 => 0.092034271454928
628 => 0.091155131765842
629 => 0.089912233932479
630 => 0.088908527292073
701 => 0.087387809097585
702 => 0.089528190753521
703 => 0.092342565026865
704 => 0.095301663962295
705 => 0.098856827445372
706 => 0.098063356342614
707 => 0.095235202653899
708 => 0.095362071562407
709 => 0.096146325233729
710 => 0.095130645472407
711 => 0.094831101682369
712 => 0.096105172516786
713 => 0.096113946342406
714 => 0.094945284028005
715 => 0.093646529728495
716 => 0.093641087900558
717 => 0.093409987117439
718 => 0.096696053971713
719 => 0.098503058482732
720 => 0.098710228637787
721 => 0.098489114280651
722 => 0.098574212420998
723 => 0.097522756310663
724 => 0.099926073179264
725 => 0.1021315944013
726 => 0.1015404675997
727 => 0.10065428449049
728 => 0.099948396959639
729 => 0.10137418293086
730 => 0.10131069492596
731 => 0.10211233109748
801 => 0.10207596425026
802 => 0.10180640415684
803 => 0.10154047722654
804 => 0.10259484744616
805 => 0.10229120575558
806 => 0.10198709242558
807 => 0.10137714658485
808 => 0.10146004835474
809 => 0.10057401825753
810 => 0.10016410019259
811 => 0.093999916026756
812 => 0.092352644597118
813 => 0.092870909722184
814 => 0.093041536058104
815 => 0.09232464142089
816 => 0.093352484175533
817 => 0.093192295970976
818 => 0.093815494567939
819 => 0.093426147140694
820 => 0.093442126094918
821 => 0.094587113860821
822 => 0.094919508680389
823 => 0.094750449992402
824 => 0.094868852902475
825 => 0.097597397990377
826 => 0.097209486132838
827 => 0.09700341568989
828 => 0.097060498610897
829 => 0.097757700381522
830 => 0.097952878811492
831 => 0.097125894088766
901 => 0.097515904864745
902 => 0.099176521249129
903 => 0.099757643000916
904 => 0.10161230467836
905 => 0.1008244114338
906 => 0.10227062358341
907 => 0.10671578668125
908 => 0.11026689054569
909 => 0.10700114867638
910 => 0.11352229869308
911 => 0.1185999493845
912 => 0.11840506069369
913 => 0.11751965484747
914 => 0.11173888453162
915 => 0.10641933350054
916 => 0.1108693638181
917 => 0.11088070786054
918 => 0.11049844630972
919 => 0.10812425264785
920 => 0.11041582951665
921 => 0.11059772656672
922 => 0.11049591258901
923 => 0.10867562387505
924 => 0.10589637945441
925 => 0.10643943716163
926 => 0.10732897676413
927 => 0.10564489271919
928 => 0.10510672582458
929 => 0.1061072804721
930 => 0.10933127602026
1001 => 0.10872179833721
1002 => 0.10870588241182
1003 => 0.11131348639864
1004 => 0.10944700470023
1005 => 0.10644628685843
1006 => 0.10568856602877
1007 => 0.10299916754538
1008 => 0.10485674465716
1009 => 0.10492359555043
1010 => 0.10390621955029
1011 => 0.10652884131376
1012 => 0.10650467339251
1013 => 0.10899446243119
1014 => 0.11375400395109
1015 => 0.11234637332084
1016 => 0.11070945204764
1017 => 0.11088743077694
1018 => 0.11283941814843
1019 => 0.11165920202409
1020 => 0.11208361597116
1021 => 0.11283877574709
1022 => 0.11329438238947
1023 => 0.11082187599249
1024 => 0.1102454164777
1025 => 0.10906618262024
1026 => 0.10875854251827
1027 => 0.10971900388965
1028 => 0.10946595625189
1029 => 0.10491797699171
1030 => 0.10444268785431
1031 => 0.1044572642936
1101 => 0.10326212715882
1102 => 0.10143925616251
1103 => 0.10622965230284
1104 => 0.10584491645122
1105 => 0.10542019784722
1106 => 0.1054722234528
1107 => 0.10755157205573
1108 => 0.10634544485641
1109 => 0.10955213169616
1110 => 0.10889293328374
1111 => 0.10821682891942
1112 => 0.10812337070163
1113 => 0.10786312820388
1114 => 0.10697065984713
1115 => 0.10589295067732
1116 => 0.10518135373385
1117 => 0.097024238954151
1118 => 0.098538152009508
1119 => 0.10027977098218
1120 => 0.10088097087245
1121 => 0.09985257685838
1122 => 0.10701126711094
1123 => 0.10831922880294
1124 => 0.10435732752165
1125 => 0.10361621755528
1126 => 0.10705985415696
1127 => 0.10498292031869
1128 => 0.10591816349889
1129 => 0.10389667929397
1130 => 0.10800417913293
1201 => 0.1079728868661
1202 => 0.10637497665665
1203 => 0.10772551942366
1204 => 0.10749082938267
1205 => 0.10568679269168
1206 => 0.10806137031383
1207 => 0.10806254807471
1208 => 0.10652459423968
1209 => 0.10472860086175
1210 => 0.10440751966525
1211 => 0.10416562811488
1212 => 0.10585867300572
1213 => 0.10737665176083
1214 => 0.11020123388526
1215 => 0.11091140094175
1216 => 0.11368323024176
1217 => 0.11203274085152
1218 => 0.1127643814208
1219 => 0.11355868075562
1220 => 0.11393949706613
1221 => 0.11331897732389
1222 => 0.11762476915725
1223 => 0.11798830991404
1224 => 0.11811020198517
1225 => 0.11665831320523
1226 => 0.11794793026062
1227 => 0.11734456114803
1228 => 0.11891435995822
1229 => 0.11916052445586
1230 => 0.11895203188391
1231 => 0.11903016838091
]
'min_raw' => 0.053377059175853
'max_raw' => 0.11916052445586
'avg_raw' => 0.086268791815854
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.053377'
'max' => '$0.11916'
'avg' => '$0.086268'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0082306342236451
'max_diff' => -0.011371066981774
'year' => 2031
]
6 => [
'items' => [
101 => 0.11535593464486
102 => 0.11516540624252
103 => 0.11256753795733
104 => 0.11362618848602
105 => 0.11164709206507
106 => 0.1122746839271
107 => 0.11255132043997
108 => 0.11240682122464
109 => 0.11368604299852
110 => 0.11259844316298
111 => 0.109728088379
112 => 0.10685695156878
113 => 0.10682090678491
114 => 0.10606498714255
115 => 0.10551859569472
116 => 0.10562385007185
117 => 0.1059947802254
118 => 0.10549703655988
119 => 0.10560325540716
120 => 0.10736719600455
121 => 0.10772094171151
122 => 0.1065187755819
123 => 0.10169190509976
124 => 0.10050737897615
125 => 0.10135879286363
126 => 0.10095187186349
127 => 0.081476039564391
128 => 0.086051597473961
129 => 0.083332956335359
130 => 0.084585831250691
131 => 0.081810802636889
201 => 0.083135191743107
202 => 0.082890625434135
203 => 0.090247987152121
204 => 0.090133112068615
205 => 0.090188096692035
206 => 0.087563537354511
207 => 0.091744531643739
208 => 0.093804239774304
209 => 0.093423042616693
210 => 0.093518981728694
211 => 0.091870429923044
212 => 0.09020405827707
213 => 0.088355795668927
214 => 0.091789639142694
215 => 0.091407854366074
216 => 0.092283531281813
217 => 0.094510624230752
218 => 0.094838572127386
219 => 0.095279337426182
220 => 0.095121354442374
221 => 0.098885150058152
222 => 0.098429329574758
223 => 0.099527725791234
224 => 0.097268241438422
225 => 0.094711420420991
226 => 0.095197388507628
227 => 0.095150585872977
228 => 0.094554734616297
229 => 0.094016826744077
301 => 0.093121361691433
302 => 0.09595474562189
303 => 0.09583971540868
304 => 0.097701920852552
305 => 0.097372757951849
306 => 0.095174527541129
307 => 0.095253037770294
308 => 0.095781056792157
309 => 0.097608536655641
310 => 0.09815105710344
311 => 0.097899740016318
312 => 0.09849458892033
313 => 0.098964733240118
314 => 0.098553631808426
315 => 0.10437396114499
316 => 0.1019569546125
317 => 0.10313498677901
318 => 0.10341594050936
319 => 0.1026962834369
320 => 0.10285235128693
321 => 0.10308875155378
322 => 0.10452412768216
323 => 0.10829096997248
324 => 0.1099592787811
325 => 0.11497846814475
326 => 0.10982074895853
327 => 0.10951471124678
328 => 0.11041881881617
329 => 0.11336561430778
330 => 0.1157537152753
331 => 0.11654598613908
401 => 0.1166506978127
402 => 0.11813705062231
403 => 0.11898900033395
404 => 0.11795656829626
405 => 0.11708169024447
406 => 0.1139479856568
407 => 0.11431072049562
408 => 0.11680960382824
409 => 0.12033942371905
410 => 0.12336837640053
411 => 0.12230774274114
412 => 0.13039962887166
413 => 0.13120190632911
414 => 0.13109105752523
415 => 0.13291876496819
416 => 0.12929113790005
417 => 0.12774025704646
418 => 0.11727084880956
419 => 0.12021232548251
420 => 0.12448793457352
421 => 0.12392204167762
422 => 0.12081698006837
423 => 0.12336602093286
424 => 0.12252322830718
425 => 0.12185848279581
426 => 0.12490381085067
427 => 0.12155534755917
428 => 0.12445453109075
429 => 0.12073629822329
430 => 0.12231258762635
501 => 0.12141780952463
502 => 0.12199684061632
503 => 0.11861183668584
504 => 0.12043830264041
505 => 0.11853584969727
506 => 0.11853494768687
507 => 0.11849295093271
508 => 0.12073117838354
509 => 0.12080416690035
510 => 0.11915011343242
511 => 0.11891173848651
512 => 0.11979313559888
513 => 0.11876125041857
514 => 0.11924406299983
515 => 0.11877587431981
516 => 0.11867047518637
517 => 0.11783063695898
518 => 0.11746881155878
519 => 0.11761069262129
520 => 0.11712637941025
521 => 0.11683456318222
522 => 0.11843490134004
523 => 0.11757990521978
524 => 0.11830386092224
525 => 0.11747882202879
526 => 0.11461887777175
527 => 0.11297409358616
528 => 0.10757192400158
529 => 0.1091039725944
530 => 0.11011972239646
531 => 0.10978401709294
601 => 0.1105052419856
602 => 0.11054951933647
603 => 0.11031504177184
604 => 0.11004354679045
605 => 0.10991139804811
606 => 0.11089632650601
607 => 0.11146811062699
608 => 0.11022166647807
609 => 0.10992964205359
610 => 0.11118986590621
611 => 0.1119586017283
612 => 0.11763451512329
613 => 0.11721402512603
614 => 0.11826937250216
615 => 0.11815055658323
616 => 0.11925672876343
617 => 0.12106485277482
618 => 0.11738843110025
619 => 0.11802653078185
620 => 0.1178700834758
621 => 0.11957813414064
622 => 0.11958346648838
623 => 0.11855940479135
624 => 0.11911456525081
625 => 0.11880468991237
626 => 0.1193646765311
627 => 0.11720840922576
628 => 0.11983451004899
629 => 0.12132333999356
630 => 0.12134401239879
701 => 0.12204970597643
702 => 0.12276673152233
703 => 0.12414299961793
704 => 0.12272834815212
705 => 0.12018352787867
706 => 0.1203672556827
707 => 0.11887522848749
708 => 0.1189003097342
709 => 0.11876642407361
710 => 0.11916822501946
711 => 0.11729658193814
712 => 0.11773585282834
713 => 0.1171208710097
714 => 0.11802519393148
715 => 0.11705229195757
716 => 0.11787000803217
717 => 0.11822290718225
718 => 0.11952511264341
719 => 0.11685995515217
720 => 0.11142551861223
721 => 0.1125679030591
722 => 0.11087822672981
723 => 0.11103461270714
724 => 0.11135053726998
725 => 0.11032652239772
726 => 0.11052187216493
727 => 0.11051489289659
728 => 0.11045474933255
729 => 0.11018836351494
730 => 0.10980205137658
731 => 0.11134100003519
801 => 0.11160249740067
802 => 0.11218377365146
803 => 0.11391325749037
804 => 0.11374044127082
805 => 0.11402231169498
806 => 0.11340699014169
807 => 0.11106315570921
808 => 0.11119043719542
809 => 0.10960323502282
810 => 0.11214318532339
811 => 0.11154169156651
812 => 0.1111539046285
813 => 0.11104809336964
814 => 0.11278186426447
815 => 0.11330063568973
816 => 0.11297737215096
817 => 0.11231434920185
818 => 0.11358754926929
819 => 0.11392820389534
820 => 0.11400446390325
821 => 0.11626033031086
822 => 0.11413054177589
823 => 0.11464320304453
824 => 0.11864283991688
825 => 0.11501572118582
826 => 0.11693708687206
827 => 0.11684304602003
828 => 0.11782595168964
829 => 0.11676241906625
830 => 0.11677560282775
831 => 0.11764835647457
901 => 0.11642273137956
902 => 0.11611924937003
903 => 0.11569999114745
904 => 0.11661542613821
905 => 0.1171641880136
906 => 0.12158680570811
907 => 0.12444401843463
908 => 0.12431997929481
909 => 0.12545346484123
910 => 0.12494281922103
911 => 0.12329380981189
912 => 0.12610846779801
913 => 0.12521779224091
914 => 0.12529121845167
915 => 0.12528848552443
916 => 0.1258807069057
917 => 0.12546106378078
918 => 0.12463390410608
919 => 0.12518301130007
920 => 0.1268136633568
921 => 0.13187525737541
922 => 0.13470779244543
923 => 0.13170473520756
924 => 0.1337762038777
925 => 0.13253406081538
926 => 0.1323083264704
927 => 0.13360936187558
928 => 0.13491267457101
929 => 0.13482965918668
930 => 0.13388352109565
1001 => 0.13334907169539
1002 => 0.13739610160784
1003 => 0.14037788430798
1004 => 0.14017454671795
1005 => 0.1410720127114
1006 => 0.14370700062572
1007 => 0.14394791089786
1008 => 0.14391756174083
1009 => 0.14332044049494
1010 => 0.14591492829301
1011 => 0.14807929565983
1012 => 0.14318222417901
1013 => 0.14504696489153
1014 => 0.14588410707558
1015 => 0.14711328017065
1016 => 0.14918710121537
1017 => 0.1514398209238
1018 => 0.15175838019038
1019 => 0.15153234714628
1020 => 0.15004661794221
1021 => 0.15251157072771
1022 => 0.1539554822592
1023 => 0.15481529853287
1024 => 0.15699564954312
1025 => 0.14588927698071
1026 => 0.1380276344585
1027 => 0.13679992545516
1028 => 0.13929651999072
1029 => 0.13995485205978
1030 => 0.13968947922822
1031 => 0.1308404858202
1101 => 0.13675333733621
1102 => 0.14311506840075
1103 => 0.14335944839991
1104 => 0.14654426398834
1105 => 0.14758137049394
1106 => 0.15014556448595
1107 => 0.1499851734536
1108 => 0.15060951388541
1109 => 0.15046598883221
1110 => 0.15521561824766
1111 => 0.1604551648197
1112 => 0.16027373598265
1113 => 0.15952048917142
1114 => 0.16063918913376
1115 => 0.16604696270004
1116 => 0.16554910156787
1117 => 0.16603273125007
1118 => 0.17240880105347
1119 => 0.18069859878325
1120 => 0.17684715545568
1121 => 0.18520367925354
1122 => 0.190463668024
1123 => 0.19956027470952
1124 => 0.19842133475076
1125 => 0.20196257697945
1126 => 0.19638239452064
1127 => 0.18356916765427
1128 => 0.1815414254556
1129 => 0.18560101668794
1130 => 0.19558112560352
1201 => 0.185286707542
1202 => 0.18736925490836
1203 => 0.18676948112675
1204 => 0.1867375217308
1205 => 0.18795728188587
1206 => 0.18618795616253
1207 => 0.17897940487003
1208 => 0.18228304144712
1209 => 0.18100734871105
1210 => 0.18242282491092
1211 => 0.19006156617482
1212 => 0.1866842965772
1213 => 0.18312661740321
1214 => 0.1875887365996
1215 => 0.19327054768712
1216 => 0.19291499016046
1217 => 0.19222505994722
1218 => 0.19611416043567
1219 => 0.20253781504307
1220 => 0.20427410307112
1221 => 0.20555579539657
1222 => 0.20573251911389
1223 => 0.20755288323537
1224 => 0.19776432656333
1225 => 0.21329901738982
1226 => 0.21598142935839
1227 => 0.21547724708288
1228 => 0.21845863509279
1229 => 0.21758143510976
1230 => 0.21631050996281
1231 => 0.22103664411793
]
'min_raw' => 0.081476039564391
'max_raw' => 0.22103664411793
'avg_raw' => 0.15125634184116
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.081476'
'max' => '$0.221036'
'avg' => '$0.151256'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.028098980388538
'max_diff' => 0.10187611966207
'year' => 2032
]
7 => [
'items' => [
101 => 0.21561851268845
102 => 0.20792815724808
103 => 0.20370907615551
104 => 0.20926510248177
105 => 0.21265797388062
106 => 0.21490044604811
107 => 0.21557901677105
108 => 0.19852418435333
109 => 0.18933257558455
110 => 0.19522429142333
111 => 0.20241259137115
112 => 0.19772439519417
113 => 0.19790816360838
114 => 0.19122402789629
115 => 0.203003989066
116 => 0.20128774780864
117 => 0.21019161048779
118 => 0.20806663220145
119 => 0.21532738657034
120 => 0.21341538661064
121 => 0.2213519915449
122 => 0.22451811812818
123 => 0.22983453742976
124 => 0.23374531710972
125 => 0.23604180173908
126 => 0.23590392941583
127 => 0.24500374562149
128 => 0.23963790192838
129 => 0.23289713761757
130 => 0.23277521845803
131 => 0.23626635581196
201 => 0.24358282195905
202 => 0.24547987518074
203 => 0.2465400691309
204 => 0.24491634519061
205 => 0.23909210643522
206 => 0.2365772296702
207 => 0.23871997753699
208 => 0.23609958102433
209 => 0.24062312055859
210 => 0.24683490651502
211 => 0.24555219727908
212 => 0.24984010194032
213 => 0.25427763216397
214 => 0.26062349968574
215 => 0.26228254444273
216 => 0.2650248823382
217 => 0.26784764884372
218 => 0.2687542453696
219 => 0.27048521943789
220 => 0.27047609635011
221 => 0.27569250321289
222 => 0.28144636152121
223 => 0.28361830983047
224 => 0.2886125852057
225 => 0.28006006364591
226 => 0.28654724949329
227 => 0.29239885351243
228 => 0.2854223299675
301 => 0.29503784235268
302 => 0.29541119090937
303 => 0.30104831085567
304 => 0.29533400984859
305 => 0.29194087615128
306 => 0.30173672599636
307 => 0.30647662917001
308 => 0.30504893175949
309 => 0.29418408397135
310 => 0.28786027654341
311 => 0.27130965273313
312 => 0.29091458157015
313 => 0.30046357052304
314 => 0.29415935439683
315 => 0.29733883431654
316 => 0.31468504580865
317 => 0.32128936006082
318 => 0.31991570886401
319 => 0.32014783330405
320 => 0.32371140139774
321 => 0.33951422481796
322 => 0.33004480671798
323 => 0.33728382204308
324 => 0.34112336966931
325 => 0.34468975548486
326 => 0.33593183908968
327 => 0.3245379185389
328 => 0.32092898561622
329 => 0.2935325243456
330 => 0.29210641955966
331 => 0.29130590372792
401 => 0.28625876464399
402 => 0.28229309585176
403 => 0.27913944879234
404 => 0.27086333714969
405 => 0.27365628188128
406 => 0.26046588728164
407 => 0.26890463430761
408 => 0.24785244603337
409 => 0.26538533399731
410 => 0.25584298020113
411 => 0.26225041413448
412 => 0.26222805920111
413 => 0.25042994185103
414 => 0.24362503398394
415 => 0.24796138612783
416 => 0.25261029984614
417 => 0.25336457045611
418 => 0.25939200844096
419 => 0.26107413682319
420 => 0.25597720929398
421 => 0.24741618622435
422 => 0.24940471662728
423 => 0.24358473647879
424 => 0.23338544513087
425 => 0.24071075423949
426 => 0.24321193684028
427 => 0.24431660156601
428 => 0.23428676992186
429 => 0.23113517906103
430 => 0.22945729853113
501 => 0.24612146090832
502 => 0.24703436134056
503 => 0.2423638336581
504 => 0.26347506166045
505 => 0.25869694057411
506 => 0.26403527249563
507 => 0.249224278336
508 => 0.24979007825855
509 => 0.24277831626667
510 => 0.24670443445601
511 => 0.24392958066448
512 => 0.24638724290497
513 => 0.2478603555186
514 => 0.25487096694933
515 => 0.26546538391855
516 => 0.25382381538487
517 => 0.24875141726442
518 => 0.2518983045301
519 => 0.26027888001056
520 => 0.27297588085722
521 => 0.26545900080504
522 => 0.2687948645273
523 => 0.26952360234837
524 => 0.26398093328791
525 => 0.27318024697146
526 => 0.27811023390957
527 => 0.28316738039101
528 => 0.28755835898282
529 => 0.28114744487729
530 => 0.28800804193865
531 => 0.2824796117656
601 => 0.27752003838178
602 => 0.27752756000738
603 => 0.27441634717589
604 => 0.26838798027685
605 => 0.26727625692893
606 => 0.27305958218002
607 => 0.27769726134845
608 => 0.27807924281774
609 => 0.28064690029795
610 => 0.28216641354576
611 => 0.29705970905237
612 => 0.30304991570893
613 => 0.31037462701977
614 => 0.31322801487345
615 => 0.32181568931687
616 => 0.31488044474699
617 => 0.31337996095957
618 => 0.29254907176674
619 => 0.2959601287051
620 => 0.30142155998145
621 => 0.29263912875692
622 => 0.29820955993187
623 => 0.29930928104367
624 => 0.29234070510454
625 => 0.29606292260802
626 => 0.28617781647936
627 => 0.26568085221928
628 => 0.27320306595205
629 => 0.27874194720914
630 => 0.27083728071614
701 => 0.28500608945201
702 => 0.2767289638921
703 => 0.2741055124617
704 => 0.26387049310376
705 => 0.26870102825868
706 => 0.27523439622232
707 => 0.27119753440634
708 => 0.27957462881235
709 => 0.29143882858073
710 => 0.29989396386098
711 => 0.30054304415997
712 => 0.29510695862483
713 => 0.30381832038752
714 => 0.30388177314756
715 => 0.29405532149228
716 => 0.28803667456734
717 => 0.28666922532265
718 => 0.2900853816401
719 => 0.29423322606673
720 => 0.30077322065812
721 => 0.30472520241905
722 => 0.31502987488238
723 => 0.31781802379285
724 => 0.32088135413152
725 => 0.32497490816007
726 => 0.32989026933706
727 => 0.31913573891348
728 => 0.31956303645616
729 => 0.30954856663233
730 => 0.29884666940532
731 => 0.30696807539029
801 => 0.31758573337029
802 => 0.31515003089821
803 => 0.31487596461321
804 => 0.31533686808493
805 => 0.31350042796359
806 => 0.3051942773564
807 => 0.30102298052072
808 => 0.30640501765006
809 => 0.30926533085739
810 => 0.31370142719643
811 => 0.31315458468801
812 => 0.32458149245542
813 => 0.32902164328208
814 => 0.32788566269586
815 => 0.32809471046262
816 => 0.33613339144504
817 => 0.34507405797833
818 => 0.35344817201161
819 => 0.36196668048284
820 => 0.35169728603773
821 => 0.34648312086671
822 => 0.351862808367
823 => 0.34900827045476
824 => 0.36541129200943
825 => 0.36654700163275
826 => 0.38294883706226
827 => 0.3985161319791
828 => 0.38873859295889
829 => 0.39795837186492
830 => 0.40793031445139
831 => 0.42716780959008
901 => 0.42068929801061
902 => 0.41572685967195
903 => 0.41103737942025
904 => 0.42079544339002
905 => 0.43334903679824
906 => 0.43605296058155
907 => 0.44043435008889
908 => 0.43582785475274
909 => 0.44137587099632
910 => 0.46096280625802
911 => 0.45567024345165
912 => 0.44815395344467
913 => 0.46361595768452
914 => 0.46921159691191
915 => 0.5084847234687
916 => 0.55806866803859
917 => 0.53754058940092
918 => 0.52479814855356
919 => 0.52779292440743
920 => 0.5458993024419
921 => 0.55171449639886
922 => 0.53590679460628
923 => 0.54149034211865
924 => 0.57225623787411
925 => 0.58876115385881
926 => 0.56634526104564
927 => 0.50450070180132
928 => 0.44747719376705
929 => 0.46260239589977
930 => 0.46088766736759
1001 => 0.49394178423317
1002 => 0.45554401757908
1003 => 0.45619053749297
1004 => 0.48992817849042
1005 => 0.48092755428189
1006 => 0.46634769577694
1007 => 0.44758364286918
1008 => 0.41289655560436
1009 => 0.38217323509293
1010 => 0.442428741774
1011 => 0.43983041475838
1012 => 0.43606765218928
1013 => 0.44444127311338
1014 => 0.48510119942706
1015 => 0.48416385652219
1016 => 0.47820095919797
1017 => 0.48272376426383
1018 => 0.46555482618145
1019 => 0.46997965245473
1020 => 0.44746816095204
1021 => 0.45764429527419
1022 => 0.46631641394873
1023 => 0.46805747016556
1024 => 0.4719801587226
1025 => 0.43846121449004
1026 => 0.45351023638596
1027 => 0.46235012684715
1028 => 0.42241118014552
1029 => 0.46156066228437
1030 => 0.43787772424388
1031 => 0.42983937936714
1101 => 0.44066195177226
1102 => 0.43644438478068
1103 => 0.43281836834518
1104 => 0.43079498887129
1105 => 0.43874189160188
1106 => 0.4383711590909
1107 => 0.4253684837963
1108 => 0.40840702393135
1109 => 0.41409984660297
1110 => 0.41203159075587
1111 => 0.40453596475568
1112 => 0.40958711165447
1113 => 0.38734441703913
1114 => 0.3490770170281
1115 => 0.37435763363755
1116 => 0.3733843573981
1117 => 0.37289358738361
1118 => 0.39189127206069
1119 => 0.39006508303015
1120 => 0.38675053205762
1121 => 0.40447509042777
1122 => 0.39800538819371
1123 => 0.41794348602552
1124 => 0.43107600677286
1125 => 0.42774517471879
1126 => 0.44009637395665
1127 => 0.41423099773944
1128 => 0.42282243818002
1129 => 0.4245931221476
1130 => 0.40425637212879
1201 => 0.39036387014041
1202 => 0.3894373986439
1203 => 0.36534971470074
1204 => 0.37821716103419
1205 => 0.38953998131651
1206 => 0.38411722908762
1207 => 0.38240054773208
1208 => 0.39117070047482
1209 => 0.39185221645421
1210 => 0.3763135799003
1211 => 0.37954455448448
1212 => 0.39301825560535
1213 => 0.37920505178619
1214 => 0.35236825313959
1215 => 0.34571235602746
1216 => 0.34482433666018
1217 => 0.32677301580624
1218 => 0.34615713489891
1219 => 0.33769544745286
1220 => 0.36442581670833
1221 => 0.34915757314745
1222 => 0.3484993896838
1223 => 0.34750444884395
1224 => 0.33196693129429
1225 => 0.33536866017691
1226 => 0.34667652508069
1227 => 0.35071129867058
1228 => 0.35029043872922
1229 => 0.34662111037368
1230 => 0.34830091010485
1231 => 0.34288968988973
]
'min_raw' => 0.18933257558455
'max_raw' => 0.58876115385881
'avg_raw' => 0.38904686472168
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.189332'
'max' => '$0.588761'
'avg' => '$0.389046'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.10785653602016
'max_diff' => 0.36772450974088
'year' => 2033
]
8 => [
'items' => [
101 => 0.34097887540697
102 => 0.33494781928843
103 => 0.32608383291595
104 => 0.32731642458703
105 => 0.30975454819495
106 => 0.30018590585722
107 => 0.29753743177082
108 => 0.29399578153513
109 => 0.29793747058891
110 => 0.30970479760567
111 => 0.29551090464577
112 => 0.27117647075185
113 => 0.27263901169273
114 => 0.27592490695459
115 => 0.26980166287249
116 => 0.2640065262337
117 => 0.26904492736683
118 => 0.2587341069308
119 => 0.27717092034376
120 => 0.27667225620951
121 => 0.28354436012497
122 => 0.28784162773307
123 => 0.2779378171533
124 => 0.27544703557524
125 => 0.27686589796181
126 => 0.25341526326676
127 => 0.28162794296615
128 => 0.28187192739174
129 => 0.27978278461254
130 => 0.2948051655837
131 => 0.32650707503097
201 => 0.31457954149055
202 => 0.30996083999209
203 => 0.30118068506727
204 => 0.31287972019058
205 => 0.31198141682649
206 => 0.30791894834263
207 => 0.30546195472792
208 => 0.30998904079856
209 => 0.30490099866473
210 => 0.30398704648744
211 => 0.29844949068287
212 => 0.29647283520337
213 => 0.29500939817928
214 => 0.2933982978101
215 => 0.29695198376331
216 => 0.28889886386701
217 => 0.27918759072916
218 => 0.27838020344518
219 => 0.28060947072247
220 => 0.2796231859017
221 => 0.27837548149291
222 => 0.27599327398445
223 => 0.2752865239045
224 => 0.27758311879794
225 => 0.27499039706305
226 => 0.27881609921574
227 => 0.27777571991597
228 => 0.27196424571944
301 => 0.26472099718726
302 => 0.26465651708209
303 => 0.26309597106714
304 => 0.26110838108744
305 => 0.26055547902498
306 => 0.26862060727664
307 => 0.2853151813886
308 => 0.28203763702312
309 => 0.28440599872343
310 => 0.29605599423526
311 => 0.29975917748088
312 => 0.29713074572784
313 => 0.29353278622967
314 => 0.29369107818763
315 => 0.30598639496929
316 => 0.30675323879522
317 => 0.30869080575015
318 => 0.31118112684359
319 => 0.2975548581785
320 => 0.2930492821589
321 => 0.29091429028097
322 => 0.28433934164279
323 => 0.29142986005557
324 => 0.28729851862271
325 => 0.28785597772872
326 => 0.28749293175462
327 => 0.28769117940554
328 => 0.27716576687867
329 => 0.28100067400406
330 => 0.27462439711562
331 => 0.26608727813266
401 => 0.26605865871633
402 => 0.26814810649288
403 => 0.26690522119529
404 => 0.26356064881698
405 => 0.26403572953738
406 => 0.25987352252322
407 => 0.26454109682809
408 => 0.26467494615777
409 => 0.2628776758059
410 => 0.27006871802369
411 => 0.27301489388765
412 => 0.27183189204079
413 => 0.27293189132443
414 => 0.28217383378873
415 => 0.28368067366463
416 => 0.28434991240125
417 => 0.28345322115132
418 => 0.273100817067
419 => 0.27355999020996
420 => 0.27019088235308
421 => 0.26734434124186
422 => 0.26745818795817
423 => 0.26892168011378
424 => 0.27531283619001
425 => 0.28876264737322
426 => 0.28927305787594
427 => 0.28989169029496
428 => 0.28737540134706
429 => 0.28661646452274
430 => 0.28761769809224
501 => 0.29266874001518
502 => 0.30566139118548
503 => 0.3010689205119
504 => 0.29733517036821
505 => 0.30061067585604
506 => 0.30010643746045
507 => 0.29585015795409
508 => 0.29573069836432
509 => 0.28756153717674
510 => 0.28454158428849
511 => 0.28201788561552
512 => 0.27926207254745
513 => 0.27762833418501
514 => 0.28013849883053
515 => 0.28071260318435
516 => 0.27522408431676
517 => 0.27447601947588
518 => 0.27895806246106
519 => 0.27698568245069
520 => 0.27901432420403
521 => 0.27948498649217
522 => 0.27940919902351
523 => 0.27734980776628
524 => 0.27866240234171
525 => 0.27555772486754
526 => 0.27218185442187
527 => 0.27002825940169
528 => 0.26814896211365
529 => 0.26919170547445
530 => 0.26547451579062
531 => 0.26428531199851
601 => 0.27821772483386
602 => 0.28850974799402
603 => 0.28836009790118
604 => 0.28744914144791
605 => 0.28609564493913
606 => 0.29256972331515
607 => 0.29031428386223
608 => 0.2919553045125
609 => 0.29237301314142
610 => 0.29363729135535
611 => 0.29408916214845
612 => 0.29272329476726
613 => 0.28813927700936
614 => 0.27671634059199
615 => 0.27139893285408
616 => 0.26964409973214
617 => 0.26970788458322
618 => 0.26794841364231
619 => 0.26846665668837
620 => 0.26776818986025
621 => 0.26644546266508
622 => 0.2691100307975
623 => 0.26941709745259
624 => 0.26879515541127
625 => 0.26894164527663
626 => 0.26379223080938
627 => 0.26418372960739
628 => 0.26200381455084
629 => 0.261595106757
630 => 0.25608447132096
701 => 0.24632158186664
702 => 0.25173117033094
703 => 0.24519714816931
704 => 0.24272261497011
705 => 0.25443667026627
706 => 0.25326090401185
707 => 0.25124850327759
708 => 0.24827174317057
709 => 0.24716763389081
710 => 0.24045941542554
711 => 0.24006305809165
712 => 0.24338783230018
713 => 0.24185356340144
714 => 0.23969886879454
715 => 0.23189478334623
716 => 0.22312040745844
717 => 0.22338525071274
718 => 0.22617621642957
719 => 0.23429132566429
720 => 0.23112061209347
721 => 0.2288202230181
722 => 0.22838942929372
723 => 0.23378171468204
724 => 0.24141292822522
725 => 0.2449933228809
726 => 0.24144526051532
727 => 0.23736943751099
728 => 0.23761751397172
729 => 0.23926785552473
730 => 0.23944128308738
731 => 0.23678834131294
801 => 0.23753512888275
802 => 0.23640069027652
803 => 0.2294386426441
804 => 0.22931272127932
805 => 0.22760412251214
806 => 0.22755238682051
807 => 0.2246456340876
808 => 0.22423895928683
809 => 0.21846742530836
810 => 0.2222662664508
811 => 0.21971820326056
812 => 0.21587767100553
813 => 0.21521556179718
814 => 0.21519565799485
815 => 0.21913902589348
816 => 0.22222018590097
817 => 0.21976252791068
818 => 0.21920296682599
819 => 0.22517761527931
820 => 0.22441728680349
821 => 0.22375884724703
822 => 0.24072963675231
823 => 0.22729593261166
824 => 0.22143807083731
825 => 0.21418785451378
826 => 0.21654856150748
827 => 0.21704599715706
828 => 0.19961053384867
829 => 0.19253696855591
830 => 0.19010958750912
831 => 0.18871259539856
901 => 0.18934922224566
902 => 0.18298218383572
903 => 0.1872609389483
904 => 0.18174762187765
905 => 0.18082329632886
906 => 0.19068179022012
907 => 0.1920535420526
908 => 0.18620122256534
909 => 0.18995935908062
910 => 0.18859660653818
911 => 0.18184213187464
912 => 0.18158416062505
913 => 0.17819500267015
914 => 0.17289162674103
915 => 0.17046784163285
916 => 0.16920551330425
917 => 0.16972637457492
918 => 0.16946301117785
919 => 0.1677443868661
920 => 0.16956152071165
921 => 0.16491949462783
922 => 0.1630710024379
923 => 0.1622360814004
924 => 0.15811601606596
925 => 0.16467287221443
926 => 0.16596465547678
927 => 0.1672589839512
928 => 0.1785252296455
929 => 0.17796239984869
930 => 0.1830501071026
1001 => 0.18285240815441
1002 => 0.1814013116302
1003 => 0.17527937408836
1004 => 0.17771946927949
1005 => 0.17020923555617
1006 => 0.17583641330794
1007 => 0.17326840437859
1008 => 0.17496816690574
1009 => 0.17191184062052
1010 => 0.17360333777938
1011 => 0.16627098521028
1012 => 0.15942413755024
1013 => 0.16217950892059
1014 => 0.16517491271509
1015 => 0.17166971135625
1016 => 0.1678014628665
1017 => 0.16919263129808
1018 => 0.16453244993106
1019 => 0.15491716465588
1020 => 0.15497158612632
1021 => 0.15349248396711
1022 => 0.1522143237491
1023 => 0.16824577773828
1024 => 0.16625201301494
1025 => 0.16307520986578
1026 => 0.16732748712207
1027 => 0.16845185672135
1028 => 0.16848386594316
1029 => 0.17158621766219
1030 => 0.17324194333076
1031 => 0.17353377215618
1101 => 0.17841538961681
1102 => 0.18005164339953
1103 => 0.18679114115923
1104 => 0.1731014665757
1105 => 0.17281953673639
1106 => 0.1673873253834
1107 => 0.16394213106347
1108 => 0.16762322078598
1109 => 0.17088416376126
1110 => 0.16748865197148
1111 => 0.16793203412806
1112 => 0.16337383697379
1113 => 0.16500317797333
1114 => 0.16640658593807
1115 => 0.16563170654845
1116 => 0.1644716745976
1117 => 0.17061680362459
1118 => 0.17027007136193
1119 => 0.17599255678778
1120 => 0.18045364339608
1121 => 0.18844870811278
1122 => 0.18010544128875
1123 => 0.1798013794842
1124 => 0.18277363239672
1125 => 0.18005118836309
1126 => 0.18177167901677
1127 => 0.18817151046979
1128 => 0.18830672882367
1129 => 0.18604164717717
1130 => 0.18590381675313
1201 => 0.18633885046062
1202 => 0.1888868564734
1203 => 0.18799650488022
1204 => 0.1890268422848
1205 => 0.1903152949863
1206 => 0.19564488165237
1207 => 0.19692982695433
1208 => 0.19380807603833
1209 => 0.19408993519328
1210 => 0.19292231465672
1211 => 0.19179440784864
1212 => 0.19432977763564
1213 => 0.19896321575419
1214 => 0.19893439137613
1215 => 0.20000925895847
1216 => 0.20067889255759
1217 => 0.19780433494844
1218 => 0.1959331036453
1219 => 0.19665065279646
1220 => 0.19779802951536
1221 => 0.19627857399048
1222 => 0.18689979061062
1223 => 0.18974471436907
1224 => 0.189271179946
1225 => 0.18859680934379
1226 => 0.19145740218206
1227 => 0.19118149102434
1228 => 0.18291688065406
1229 => 0.1834459541955
1230 => 0.18294905536846
1231 => 0.18455463713457
]
'min_raw' => 0.1522143237491
'max_raw' => 0.34097887540697
'avg_raw' => 0.24659659957803
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.152214'
'max' => '$0.340978'
'avg' => '$0.246596'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.037118251835444
'max_diff' => -0.24778227845184
'year' => 2034
]
9 => [
'items' => [
101 => 0.17996448167865
102 => 0.18137638258172
103 => 0.18226191359238
104 => 0.18278349816063
105 => 0.18466781927502
106 => 0.184446715941
107 => 0.18465407518133
108 => 0.18744802595165
109 => 0.20157887017978
110 => 0.20234798085316
111 => 0.19856059860839
112 => 0.20007358311237
113 => 0.19716898371808
114 => 0.19911886075059
115 => 0.20045291709473
116 => 0.19442457299985
117 => 0.19406761358618
118 => 0.19115102587697
119 => 0.19271823490793
120 => 0.19022469265335
121 => 0.19083652070222
122 => 0.18912579613937
123 => 0.19220475975063
124 => 0.19564751949059
125 => 0.1965172965596
126 => 0.1942292875536
127 => 0.19257261824611
128 => 0.18966405268295
129 => 0.19450106203609
130 => 0.19591555097614
131 => 0.19449363232785
201 => 0.19416414270751
202 => 0.19353976047234
203 => 0.19429660835035
204 => 0.19590784736559
205 => 0.19514801680092
206 => 0.19564989827538
207 => 0.19373724363266
208 => 0.19780528654662
209 => 0.20426631772182
210 => 0.20428709099353
211 => 0.20352725633309
212 => 0.2032163483609
213 => 0.20399598483314
214 => 0.20441890563697
215 => 0.20694010702732
216 => 0.20964545656826
217 => 0.22227014243934
218 => 0.21872518116524
219 => 0.22992655351598
220 => 0.23878538472927
221 => 0.24144176086039
222 => 0.23899801981191
223 => 0.23063811369336
224 => 0.23022793681615
225 => 0.24272116601858
226 => 0.23919125654275
227 => 0.23877138504268
228 => 0.23430466166601
301 => 0.23694504839607
302 => 0.23636755708607
303 => 0.23545595880139
304 => 0.24049363275142
305 => 0.24992370866961
306 => 0.24845394290307
307 => 0.24735683093882
308 => 0.24254960567596
309 => 0.24544462901683
310 => 0.24441376665567
311 => 0.24884300556066
312 => 0.246219222553
313 => 0.23916451400671
314 => 0.24028799959533
315 => 0.24011818700875
316 => 0.24361291800753
317 => 0.24256388650625
318 => 0.23991334677177
319 => 0.24989147769531
320 => 0.24924355337441
321 => 0.25016216192532
322 => 0.25056656181834
323 => 0.25664007427711
324 => 0.25912819800075
325 => 0.25969304564675
326 => 0.26205657074581
327 => 0.25963423898916
328 => 0.26932529310902
329 => 0.27576927861004
330 => 0.28325429937393
331 => 0.2941919264939
401 => 0.29830457546972
402 => 0.29756166224313
403 => 0.30585444629608
404 => 0.32075639490099
405 => 0.3005737721192
406 => 0.32182612291566
407 => 0.31509787402369
408 => 0.29914531693686
409 => 0.29811816032876
410 => 0.30892141720096
411 => 0.33288200116855
412 => 0.32688014664336
413 => 0.33289181805245
414 => 0.32587888402502
415 => 0.32553063274091
416 => 0.3325512154999
417 => 0.34895518978832
418 => 0.34116227649767
419 => 0.3299892243948
420 => 0.33823923219562
421 => 0.33109231193637
422 => 0.31498830029526
423 => 0.32687555713832
424 => 0.31892688701695
425 => 0.32124673153291
426 => 0.33795365385258
427 => 0.33594343275805
428 => 0.33854484499584
429 => 0.33395342048695
430 => 0.32966430599446
501 => 0.32165835528039
502 => 0.31928818796256
503 => 0.31994321693952
504 => 0.31928786336273
505 => 0.3148086075167
506 => 0.31384131264322
507 => 0.3122291121426
508 => 0.31272880049138
509 => 0.30969739188432
510 => 0.31541828624682
511 => 0.31648013465285
512 => 0.32064332448688
513 => 0.32107556066631
514 => 0.33266998509479
515 => 0.32628397095597
516 => 0.33056826058222
517 => 0.33018503339275
518 => 0.29949105722131
519 => 0.30372041632249
520 => 0.31029997183793
521 => 0.3073358909966
522 => 0.30314537417506
523 => 0.29976130716037
524 => 0.2946340995945
525 => 0.30185054578417
526 => 0.31133940514008
527 => 0.32131621379857
528 => 0.33330269569536
529 => 0.33062745247402
530 => 0.32109213485714
531 => 0.32151988223988
601 => 0.32416404824758
602 => 0.32073961301979
603 => 0.3197296802182
604 => 0.32402529898922
605 => 0.32405488055486
606 => 0.32011465396846
607 => 0.31573581317153
608 => 0.31571746566871
609 => 0.31493829324348
610 => 0.32601749706853
611 => 0.33210993893846
612 => 0.33280842758038
613 => 0.33206292508759
614 => 0.33234983940913
615 => 0.32880478172281
616 => 0.33690773233953
617 => 0.34434380112418
618 => 0.34235077584146
619 => 0.33936294761741
620 => 0.33698299852366
621 => 0.34179013547084
622 => 0.34157608122972
623 => 0.34427885355043
624 => 0.344156240186
625 => 0.34324739951095
626 => 0.34235080829902
627 => 0.34590569110824
628 => 0.34488194194886
629 => 0.34385660262426
630 => 0.34180012763719
701 => 0.34207963674236
702 => 0.33909232440899
703 => 0.33771025703345
704 => 0.31692727974877
705 => 0.31137338911492
706 => 0.3131207561682
707 => 0.3136960347725
708 => 0.31127897445115
709 => 0.31474441806012
710 => 0.31420433234447
711 => 0.31630548992447
712 => 0.31499277789015
713 => 0.31504665204993
714 => 0.31890705824316
715 => 0.3200277505844
716 => 0.31945775741455
717 => 0.31985696109249
718 => 0.32905644135729
719 => 0.32774856944645
720 => 0.32705378856067
721 => 0.32724624761425
722 => 0.32959691206099
723 => 0.33025496976455
724 => 0.32746673303365
725 => 0.32878168159455
726 => 0.33438056567503
727 => 0.33633985823381
728 => 0.34259297956764
729 => 0.33993654248466
730 => 0.34481254771837
731 => 0.35979972545412
801 => 0.37177252006326
802 => 0.36076184334403
803 => 0.38274835591751
804 => 0.39986800973388
805 => 0.39921092890613
806 => 0.39622572127852
807 => 0.37673545055814
808 => 0.35880021285767
809 => 0.37380380076453
810 => 0.37384204799562
811 => 0.3725532264884
812 => 0.36454846679648
813 => 0.37227467820244
814 => 0.37288795680637
815 => 0.37254468387211
816 => 0.36640745338447
817 => 0.35703703677964
818 => 0.35886799375462
819 => 0.36186713863014
820 => 0.35618913169361
821 => 0.35437466443482
822 => 0.35774810428544
823 => 0.36861803036823
824 => 0.36656313380747
825 => 0.36650947215378
826 => 0.37530119105245
827 => 0.36900821769269
828 => 0.35889108798561
829 => 0.35633637930603
830 => 0.34726888455148
831 => 0.35353183547575
901 => 0.3537572279298
902 => 0.35032707371438
903 => 0.35916942609553
904 => 0.35908794226167
905 => 0.36748243983711
906 => 0.38352956637203
907 => 0.37878364142452
908 => 0.37326464706572
909 => 0.37386471477764
910 => 0.38044597648404
911 => 0.37646679542076
912 => 0.37789773667495
913 => 0.38044381058307
914 => 0.3819799201873
915 => 0.37364369224497
916 => 0.37170011874374
917 => 0.36772424946183
918 => 0.36668701937929
919 => 0.36992528195018
920 => 0.36907211417225
921 => 0.3537382845668
922 => 0.35213581405641
923 => 0.35218495953916
924 => 0.34815547124746
925 => 0.34200953441461
926 => 0.35816068945651
927 => 0.35686352567137
928 => 0.35543155724509
929 => 0.35560696520661
930 => 0.36261763419686
1001 => 0.35855109213525
1002 => 0.36936266069919
1003 => 0.36714012722794
1004 => 0.36486059415955
1005 => 0.36454549325322
1006 => 0.36366806750251
1007 => 0.36065904812758
1008 => 0.35702547641832
1009 => 0.35462627764127
1010 => 0.32712399564996
1011 => 0.33222825921413
1012 => 0.33810024917645
1013 => 0.34012723658092
1014 => 0.33665993436232
1015 => 0.36079595835262
1016 => 0.36520584251616
1017 => 0.35184801573517
1018 => 0.34934931174092
1019 => 0.3609597729705
1020 => 0.3539572455279
1021 => 0.35711048320653
1022 => 0.35029490807413
1023 => 0.36414363055765
1024 => 0.36403812649528
1025 => 0.35865066066161
1026 => 0.36320410989245
1027 => 0.36241283603371
1028 => 0.35633040037624
1029 => 0.36433645461704
1030 => 0.36434042552005
1031 => 0.35915510678875
1101 => 0.35309978972282
1102 => 0.35201724205163
1103 => 0.35120168780121
1104 => 0.35690990685531
1105 => 0.36202787821008
1106 => 0.3715511540486
1107 => 0.37394553186185
1108 => 0.38329094786975
1109 => 0.37772620765709
1110 => 0.38019298491792
1111 => 0.38287102058148
1112 => 0.3841549693601
1113 => 0.38206284372584
1114 => 0.39658012151279
1115 => 0.39780582455591
1116 => 0.39821679218398
1117 => 0.39332164779476
1118 => 0.3976696817352
1119 => 0.39563538064621
1120 => 0.40092806693462
1121 => 0.40175802772506
1122 => 0.40105508046227
1123 => 0.4013185231172
1124 => 0.38893058754932
1125 => 0.38828820773856
1126 => 0.37952931343765
1127 => 0.38309862760775
1128 => 0.37642596584843
1129 => 0.37854193562834
1130 => 0.37947463494563
1201 => 0.3789874457525
1202 => 0.38330043127557
1203 => 0.37963351249623
1204 => 0.36995591094028
1205 => 0.36027567272826
1206 => 0.36015414522286
1207 => 0.35760550937203
1208 => 0.35576331245783
1209 => 0.35611818493895
1210 => 0.35736880184917
1211 => 0.35569062432951
1212 => 0.35604874858909
1213 => 0.36199599746759
1214 => 0.36318867581633
1215 => 0.35913548877778
1216 => 0.34286135794592
1217 => 0.33886764541922
1218 => 0.34173824678465
1219 => 0.34036628422238
1220 => 0.27470215586677
1221 => 0.29012896881414
1222 => 0.28096288040588
1223 => 0.28518703565585
1224 => 0.27583083293811
1225 => 0.28029610327562
1226 => 0.27947153088984
1227 => 0.30427738959663
1228 => 0.30389008023226
1229 => 0.30407546472903
1230 => 0.29522657968168
1231 => 0.30932309383552
]
'min_raw' => 0.17996448167865
'max_raw' => 0.40175802772506
'avg_raw' => 0.29086125470186
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.179964'
'max' => '$0.401758'
'avg' => '$0.290861'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.02775015792955
'max_diff' => 0.060779152318091
'year' => 2035
]
10 => [
'items' => [
101 => 0.31626754360195
102 => 0.31498231077073
103 => 0.31530577618509
104 => 0.30974756867413
105 => 0.30412928032737
106 => 0.29789773390245
107 => 0.30947517691755
108 => 0.30818796288781
109 => 0.31114036874704
110 => 0.31864916811505
111 => 0.31975486734514
112 => 0.32124093832328
113 => 0.32070828766335
114 => 0.33339818736177
115 => 0.33186135677764
116 => 0.33556467630906
117 => 0.32794666706139
118 => 0.31932616648958
119 => 0.32096464182289
120 => 0.3208068434725
121 => 0.3187978893596
122 => 0.31698429541288
123 => 0.31396517246852
124 => 0.3235181242106
125 => 0.32313029181561
126 => 0.32940884748466
127 => 0.32829905178352
128 => 0.32088756447823
129 => 0.32115226719727
130 => 0.32293252019459
131 => 0.3290939961449
201 => 0.33092314171222
202 => 0.33007580860659
203 => 0.33208138321749
204 => 0.33366650761609
205 => 0.33228045043695
206 => 0.35190409715758
207 => 0.3437549908833
208 => 0.34772680858027
209 => 0.34867406369769
210 => 0.34624768963305
211 => 0.34677388328573
212 => 0.34757092329035
213 => 0.35241039412197
214 => 0.36511056589632
215 => 0.37073538552218
216 => 0.3876579328903
217 => 0.37026832255352
218 => 0.3692364950415
219 => 0.37228475683447
220 => 0.38222008357312
221 => 0.39027173271701
222 => 0.39294292924882
223 => 0.39329597196714
224 => 0.39830731423861
225 => 0.40117972217261
226 => 0.39769880547546
227 => 0.3947490930418
228 => 0.38418358923622
229 => 0.38540657507063
301 => 0.393831734693
302 => 0.40573276889903
303 => 0.41594509433938
304 => 0.41236909390564
305 => 0.43965145295216
306 => 0.44235638741318
307 => 0.44198265293167
308 => 0.44814489618209
309 => 0.43591409824902
310 => 0.43068519517208
311 => 0.39538685435062
312 => 0.40530424832084
313 => 0.41971976288468
314 => 0.41781181547675
315 => 0.40734288347268
316 => 0.41593715271568
317 => 0.4130956185363
318 => 0.41085438263366
319 => 0.42112191878861
320 => 0.4098323410191
321 => 0.41960714071035
322 => 0.40707085899897
323 => 0.41238542877441
324 => 0.40936862193305
325 => 0.41132086568535
326 => 0.39990808860031
327 => 0.40606614608589
328 => 0.3996518931631
329 => 0.39964885197205
330 => 0.39950725698327
331 => 0.40705359710179
401 => 0.40729968298213
402 => 0.40172292623266
403 => 0.40091922845975
404 => 0.40389092036126
405 => 0.40041184743193
406 => 0.40203968375854
407 => 0.40046115293596
408 => 0.40010579239885
409 => 0.39727421917956
410 => 0.39605429958096
411 => 0.39653266148903
412 => 0.39489976568433
413 => 0.39391588689758
414 => 0.39931153872871
415 => 0.39642885961531
416 => 0.39886972681115
417 => 0.3960880505795
418 => 0.38644554884195
419 => 0.38090004412508
420 => 0.36268625220324
421 => 0.36785166099813
422 => 0.37127633237315
423 => 0.37014447850414
424 => 0.37257613858408
425 => 0.37272542276386
426 => 0.37193486528403
427 => 0.37101950099908
428 => 0.37057395228798
429 => 0.37389470734929
430 => 0.37582251743385
501 => 0.37162004396182
502 => 0.37063546322618
503 => 0.37488439593132
504 => 0.37747624242693
505 => 0.39661298071775
506 => 0.39519526933431
507 => 0.39875344669492
508 => 0.3983528505288
509 => 0.40208238726483
510 => 0.40817860360841
511 => 0.39578329125301
512 => 0.39793468888026
513 => 0.39740721586508
514 => 0.4031660279339
515 => 0.40318400631658
516 => 0.39973131080733
517 => 0.40160307305648
518 => 0.40055830671811
519 => 0.40244634070018
520 => 0.39517633493445
521 => 0.40403041720848
522 => 0.4090501113134
523 => 0.40911980977092
524 => 0.41149910493789
525 => 0.41391660662702
526 => 0.41855679059929
527 => 0.4137871944145
528 => 0.4052071551889
529 => 0.40582660630763
530 => 0.40079613244898
531 => 0.40088069562337
601 => 0.40042929077113
602 => 0.40178399071289
603 => 0.39547361539028
604 => 0.3969546478655
605 => 0.39488119372728
606 => 0.3979301815959
607 => 0.39464997466501
608 => 0.39740696150162
609 => 0.39859678562474
610 => 0.40298726225414
611 => 0.39400149769706
612 => 0.3756789154824
613 => 0.37953054440376
614 => 0.37383368269015
615 => 0.37436094893122
616 => 0.375426110652
617 => 0.37197357301574
618 => 0.37263220839477
619 => 0.37260867730429
620 => 0.37240589907901
621 => 0.37150776069649
622 => 0.37020528235057
623 => 0.37539395519902
624 => 0.3762756118239
625 => 0.37823542528685
626 => 0.38406650079844
627 => 0.3834838388486
628 => 0.3844341846632
629 => 0.3823595850859
630 => 0.37445718365552
701 => 0.37488632207279
702 => 0.36953495913296
703 => 0.37809857890498
704 => 0.37607060070871
705 => 0.37476314997279
706 => 0.37440639992605
707 => 0.38025192954597
708 => 0.3820010036257
709 => 0.38091109803521
710 => 0.37867566987148
711 => 0.38296835279085
712 => 0.38411689364632
713 => 0.3843740095873
714 => 0.39197982068011
715 => 0.38479908993736
716 => 0.38652756319747
717 => 0.40001261815834
718 => 0.38778353411921
719 => 0.39426155267585
720 => 0.39394448737749
721 => 0.39725842246687
722 => 0.39367264797364
723 => 0.393717097946
724 => 0.39665964779996
725 => 0.39252736722173
726 => 0.39150415643817
727 => 0.39009059806905
728 => 0.39317705105402
729 => 0.39502724003025
730 => 0.40993840436457
731 => 0.41957169655625
801 => 0.41915348993621
802 => 0.4229751155934
803 => 0.42125343823276
804 => 0.4156936878797
805 => 0.42518350379305
806 => 0.4221805289673
807 => 0.42242809056332
808 => 0.42241887630835
809 => 0.42441559204286
810 => 0.42300073594865
811 => 0.42021190935497
812 => 0.42206326259694
813 => 0.4275611198547
814 => 0.44462663747765
815 => 0.45417672722749
816 => 0.44405171008327
817 => 0.45103581132997
818 => 0.44684783927167
819 => 0.4460867601673
820 => 0.45047329187126
821 => 0.45486750161829
822 => 0.45458760945409
823 => 0.45139763882292
824 => 0.44959570535588
825 => 0.46324054926031
826 => 0.47329383781525
827 => 0.47260827093391
828 => 0.47563414018987
829 => 0.48451818591199
830 => 0.48533043171434
831 => 0.4852281074125
901 => 0.4832148714423
902 => 0.49196236819485
903 => 0.49925968388339
904 => 0.48274886548318
905 => 0.4890359689875
906 => 0.49185845230841
907 => 0.49600269521657
908 => 0.5029947276584
909 => 0.51058992943523
910 => 0.51166397424363
911 => 0.5109018880543
912 => 0.50589264831249
913 => 0.51420340872631
914 => 0.51907165726541
915 => 0.52197058786256
916 => 0.52932179352086
917 => 0.49187588300451
918 => 0.46536980635852
919 => 0.46123049973786
920 => 0.46964794252116
921 => 0.47186755505527
922 => 0.47097283202593
923 => 0.44113783293381
924 => 0.46107342464214
925 => 0.48252244508813
926 => 0.48334638931735
927 => 0.49408421743048
928 => 0.49758089442257
929 => 0.50622625349294
930 => 0.50568548392921
1001 => 0.50779049128514
1002 => 0.50730658654766
1003 => 0.5233202937304
1004 => 0.54098579081149
1005 => 0.54037409082041
1006 => 0.53783446660633
1007 => 0.54160624163452
1008 => 0.55983892777192
1009 => 0.55816035420523
1010 => 0.55979094544471
1011 => 0.58128830994987
1012 => 0.60923794177102
1013 => 0.59625253169294
1014 => 0.62442713511128
1015 => 0.64216155449157
1016 => 0.67283139903659
1017 => 0.66899138344739
1018 => 0.68093092886305
1019 => 0.66211695410727
1020 => 0.61891626513637
1021 => 0.61207959074113
1022 => 0.62576678601257
1023 => 0.65941542001042
1024 => 0.62470707078265
1025 => 0.63172852462718
1026 => 0.6297063454476
1027 => 0.62959859211282
1028 => 0.63371109863658
1029 => 0.62774569342996
1030 => 0.6034415594623
1031 => 0.61458000083452
1101 => 0.61027891370882
1102 => 0.61505129054207
1103 => 0.6408058400332
1104 => 0.62941913979139
1105 => 0.61742417606706
1106 => 0.63246852247291
1107 => 0.65162514524586
1108 => 0.65042635822049
1109 => 0.64810021033717
1110 => 0.66121258416231
1111 => 0.6828703841564
1112 => 0.68872440046671
1113 => 0.69304571562689
1114 => 0.69364155197826
1115 => 0.6997790367076
1116 => 0.66677623447261
1117 => 0.71915252919162
1118 => 0.72819646842365
1119 => 0.72649658268091
1120 => 0.73654854051017
1121 => 0.73359099952324
1122 => 0.72930598665715
1123 => 0.74524047792927
1124 => 0.72697286953292
1125 => 0.70104429924224
1126 => 0.68681937277181
1127 => 0.70555190344016
1128 => 0.7169912062441
1129 => 0.7245518577212
1130 => 0.7268397062899
1201 => 0.66933814806318
1202 => 0.6383479973616
1203 => 0.65821232865851
1204 => 0.68244818380366
1205 => 0.66664160307358
1206 => 0.66726119111238
1207 => 0.64472516088763
1208 => 0.68444212242193
1209 => 0.6786556951986
1210 => 0.70867568986921
1211 => 0.70151117721556
1212 => 0.72599131749996
1213 => 0.71954487614424
1214 => 0.74630369379616
1215 => 0.75697851062358
1216 => 0.7749031894794
1217 => 0.7880886562123
1218 => 0.79583141447565
1219 => 0.79536656831187
1220 => 0.82604723397811
1221 => 0.80795591733554
1222 => 0.78522895983653
1223 => 0.78481790087801
1224 => 0.79658851421022
1225 => 0.82125649064448
1226 => 0.82765253802943
1227 => 0.83122705595278
1228 => 0.8257525573233
1229 => 0.80611572972414
1230 => 0.7976366471278
1231 => 0.80486107116255
]
'min_raw' => 0.29789773390245
'max_raw' => 0.83122705595278
'avg_raw' => 0.56456239492761
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.297897'
'max' => '$0.831227'
'avg' => '$0.564562'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.11793325222379
'max_diff' => 0.42946902822772
'year' => 2036
]
11 => [
'items' => [
101 => 0.79602622136988
102 => 0.81127765073307
103 => 0.83222112077824
104 => 0.82789637703337
105 => 0.84235334697066
106 => 0.85731478993817
107 => 0.87871032534215
108 => 0.88430391057113
109 => 0.89354989424965
110 => 0.90306704860226
111 => 0.90612370208581
112 => 0.91195980200979
113 => 0.91192904288242
114 => 0.92951652281817
115 => 0.94891605782622
116 => 0.95623893319149
117 => 0.97307748130823
118 => 0.94424205775142
119 => 0.96611405775673
120 => 0.98584314925319
121 => 0.96232131303614
122 => 0.9947406843764
123 => 0.99599945510167
124 => 1.0150053985718
125 => 0.99573923376663
126 => 0.98429904660511
127 => 1.0173264382822
128 => 1.0333073527616
129 => 1.0284937712634
130 => 0.99186217838626
131 => 0.97054102012881
201 => 0.91473943642481
202 => 0.98083882277123
203 => 1.013033905715
204 => 0.99177880089919
205 => 1.0024986394327
206 => 1.0609826025521
207 => 1.0832495091519
208 => 1.0786181482365
209 => 1.0794007719925
210 => 1.0914155906208
211 => 1.1446959130999
212 => 1.1127691088422
213 => 1.1371759544227
214 => 1.1501212573132
215 => 1.1621455760874
216 => 1.1326176495029
217 => 1.0942022508678
218 => 1.0820344815513
219 => 0.98966539961759
220 => 0.98485718776435
221 => 0.98215819274739
222 => 0.96514141094592
223 => 0.95177088173878
224 => 0.94113814049734
225 => 0.91323465227449
226 => 0.92265126043421
227 => 0.87817892411759
228 => 0.90663074889014
301 => 0.83565182630671
302 => 0.89476518218426
303 => 0.86259247013459
304 => 0.88419558099363
305 => 0.88412020977498
306 => 0.84434203341095
307 => 0.82139881143354
308 => 0.8360191254411
309 => 0.85169326261918
310 => 0.8542363386422
311 => 0.87455826663041
312 => 0.88022967991354
313 => 0.86304503289269
314 => 0.83418094590189
315 => 0.84088541499012
316 => 0.82126294558146
317 => 0.78687532271016
318 => 0.81157311380662
319 => 0.82000602557217
320 => 0.82373047982022
321 => 0.78991420217148
322 => 0.77928839354713
323 => 0.7736313021947
324 => 0.82981568910407
325 => 0.83289359664804
326 => 0.81714658648078
327 => 0.88832456562957
328 => 0.87221479678923
329 => 0.89021335557308
330 => 0.84027705469328
331 => 0.84218468863504
401 => 0.81854404353382
402 => 0.83178122512203
403 => 0.82242561182976
404 => 0.83071179166208
405 => 0.83567849368837
406 => 0.85931525959235
407 => 0.89503507608262
408 => 0.85578471498297
409 => 0.83868277057633
410 => 0.84929272070122
411 => 0.8775484160467
412 => 0.92035724087752
413 => 0.89501355496978
414 => 0.90626065241194
415 => 0.90871764285452
416 => 0.8900301471404
417 => 0.92104627550007
418 => 0.93766807066259
419 => 0.95471859310347
420 => 0.96952308399409
421 => 0.94790823949156
422 => 0.97103922147552
423 => 0.95239973316442
424 => 0.93567818523449
425 => 0.93570354492035
426 => 0.92521387364106
427 => 0.90488881375381
428 => 0.90114056086824
429 => 0.92063944573115
430 => 0.93627570483994
501 => 0.93756358203276
502 => 0.94622061849539
503 => 0.9513437634994
504 => 1.0015575491166
505 => 1.0217539490821
506 => 1.0464497246616
507 => 1.0560701210275
508 => 1.0850240649857
509 => 1.0616414037151
510 => 1.0565824178654
511 => 0.9863496205855
512 => 0.99785023720556
513 => 1.0162638340587
514 => 0.98665325401546
515 => 1.0054343516369
516 => 1.0091421381454
517 => 0.98564709783622
518 => 0.99819681402612
519 => 0.96486848855727
520 => 0.89576154250204
521 => 0.9211232112863
522 => 0.93979793615691
523 => 0.91314680118957
524 => 0.96091792907717
525 => 0.93301102236148
526 => 0.92416587270037
527 => 0.88965779034884
528 => 0.90594427688086
529 => 0.92797198311545
530 => 0.91436142165818
531 => 0.94260538031809
601 => 0.98260635816916
602 => 1.0111134370852
603 => 1.0133018566306
604 => 0.99497371471352
605 => 1.0243446791043
606 => 1.0245586145149
607 => 0.99142804669817
608 => 0.97113575838221
609 => 0.96652530778149
610 => 0.97804311731418
611 => 0.99202786439181
612 => 1.0140779127645
613 => 1.02740229519
614 => 1.0621452178494
615 => 1.0715456565634
616 => 1.0818738886751
617 => 1.0956755918852
618 => 1.112248075273
619 => 1.0759884250925
620 => 1.0774290885907
621 => 1.0436646043917
622 => 1.0075824107082
623 => 1.034964298005
624 => 1.0707624731858
625 => 1.0625503322458
626 => 1.0616262986313
627 => 1.0631802668654
628 => 1.0569885807801
629 => 1.0289838140911
630 => 1.014919995579
701 => 1.0330659095224
702 => 1.0427096552016
703 => 1.057666263727
704 => 1.0558225460305
705 => 1.0943491633696
706 => 1.1093194418831
707 => 1.105489404025
708 => 1.1061942231659
709 => 1.1332971973409
710 => 1.1634412787753
711 => 1.1916751889005
712 => 1.2203959349545
713 => 1.1857719545966
714 => 1.1681920326811
715 => 1.1863300246861
716 => 1.1767057508175
717 => 1.2320096832115
718 => 1.2358388074992
719 => 1.2911387407894
720 => 1.3436249624754
721 => 1.3106593070228
722 => 1.3417444353088
723 => 1.3753655359579
724 => 1.440226093937
725 => 1.4183833398316
726 => 1.4016521325065
727 => 1.3858412224288
728 => 1.4187412163891
729 => 1.4610665330288
730 => 1.4701830008462
731 => 1.4849551614691
801 => 1.469424040828
802 => 1.4881295649433
803 => 1.5541682846943
804 => 1.5363240396777
805 => 1.5109823431486
806 => 1.5631135699659
807 => 1.5819796582961
808 => 1.7143917464444
809 => 1.8815674774023
810 => 1.8123556270507
811 => 1.769393598085
812 => 1.7794906939649
813 => 1.8405376116551
814 => 1.8601439440848
815 => 1.8068471738326
816 => 1.8256724941015
817 => 1.9294018596472
818 => 1.9850493362261
819 => 1.9094725885788
820 => 1.7009593392373
821 => 1.5087006006456
822 => 1.559696275644
823 => 1.5539149486792
824 => 1.6653592114563
825 => 1.5358984603355
826 => 1.5380782473638
827 => 1.6518270594736
828 => 1.621480826551
829 => 1.5723238156683
830 => 1.5090595012255
831 => 1.392109564737
901 => 1.288523744599
902 => 1.4916793922794
903 => 1.4829189513368
904 => 1.4702325346274
905 => 1.4984647822006
906 => 1.6355525625525
907 => 1.6323922455056
908 => 1.6122879208608
909 => 1.6275368739125
910 => 1.5696506004708
911 => 1.5845692111826
912 => 1.5086701458791
913 => 1.5429796932213
914 => 1.5722183468005
915 => 1.5780884393922
916 => 1.5913140577356
917 => 1.4783025970376
918 => 1.5290414250489
919 => 1.5588457329202
920 => 1.4241887856674
921 => 1.5561839980281
922 => 1.4763353189347
923 => 1.4492334779634
924 => 1.4857225364352
925 => 1.471502714862
926 => 1.4592773472893
927 => 1.4524553821252
928 => 1.4792489195164
929 => 1.4779989689719
930 => 1.4341595413984
1001 => 1.3769727952524
1002 => 1.3961665443499
1003 => 1.3891932753604
1004 => 1.3639212489729
1005 => 1.380951543402
1006 => 1.305958745571
1007 => 1.1769375346893
1008 => 1.2621728986243
1009 => 1.2588914298311
1010 => 1.2572367644627
1011 => 1.3212887847275
1012 => 1.3151316609106
1013 => 1.3039564208921
1014 => 1.3637160069262
1015 => 1.3419029541439
1016 => 1.4091256430174
1017 => 1.4534028536004
1018 => 1.4421727207788
1019 => 1.4838156513425
1020 => 1.3966087295632
1021 => 1.4255753708439
1022 => 1.4315453554658
1023 => 1.3629785829108
1024 => 1.3161390425135
1025 => 1.3130153791788
1026 => 1.2318020710161
1027 => 1.2751855647057
1028 => 1.3133612438216
1029 => 1.2950780560775
1030 => 1.2892901450324
1031 => 1.318859327317
1101 => 1.3211571060235
1102 => 1.268767508009
1103 => 1.279660964399
1104 => 1.3250884884318
1105 => 1.2785163073484
1106 => 1.1880341670259
1107 => 1.1655933452125
1108 => 1.1625993259162
1109 => 1.1017380373541
1110 => 1.167092948231
1111 => 1.1385637782306
1112 => 1.2286870844302
1113 => 1.1772091352699
1114 => 1.1749900237693
1115 => 1.1716355112632
1116 => 1.1192496860497
1117 => 1.1307188524786
1118 => 1.1688441084916
1119 => 1.1824476293488
1120 => 1.181028670673
1121 => 1.168657273938
1122 => 1.1743208360115
1123 => 1.1560765292569
1124 => 1.1496340848194
1125 => 1.1292999580409
1126 => 1.0994144091223
1127 => 1.1035701779982
1128 => 1.0443590856112
1129 => 1.0120977399083
1130 => 1.0031682246154
1201 => 0.99122730357567
1202 => 1.0045169834204
1203 => 1.044191348026
1204 => 0.99633564692572
1205 => 0.91429040407644
1206 => 0.91922146296998
1207 => 0.93030008825922
1208 => 0.90965514332516
1209 => 0.89011643554396
1210 => 0.90710375673424
1211 => 0.87234010575568
1212 => 0.93450110939467
1213 => 0.93281982845044
1214 => 0.95598960659638
1215 => 0.97047814436274
1216 => 0.93708675553107
1217 => 0.92868891153982
1218 => 0.93347270513797
1219 => 0.85440725299256
1220 => 0.94952827234543
1221 => 0.95035088287079
1222 => 0.94330719213141
1223 => 0.99395619840482
1224 => 1.1008413994629
1225 => 1.0606268873776
1226 => 1.0450546128081
1227 => 1.0154517074682
1228 => 1.054895821187
1229 => 1.0518671286775
1230 => 1.0381702325516
1231 => 1.0298863070378
]
'min_raw' => 0.7736313021947
'max_raw' => 1.9850493362261
'avg_raw' => 1.3793403192104
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.773631'
'max' => '$1.98'
'avg' => '$1.37'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.47573356829226
'max_diff' => 1.1538222802733
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.024283402567204
]
1 => [
'year' => 2028
'avg' => 0.041677368327457
]
2 => [
'year' => 2029
'avg' => 0.11385505865581
]
3 => [
'year' => 2030
'avg' => 0.087839008194919
]
4 => [
'year' => 2031
'avg' => 0.086268791815854
]
5 => [
'year' => 2032
'avg' => 0.15125634184116
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.024283402567204
'min' => '$0.024283'
'max_raw' => 0.15125634184116
'max' => '$0.151256'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.15125634184116
]
1 => [
'year' => 2033
'avg' => 0.38904686472168
]
2 => [
'year' => 2034
'avg' => 0.24659659957803
]
3 => [
'year' => 2035
'avg' => 0.29086125470186
]
4 => [
'year' => 2036
'avg' => 0.56456239492761
]
5 => [
'year' => 2037
'avg' => 1.3793403192104
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.15125634184116
'min' => '$0.151256'
'max_raw' => 1.3793403192104
'max' => '$1.37'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 1.3793403192104
]
]
]
]
'prediction_2025_max_price' => '$0.04152'
'last_price' => 0.04025907
'sma_50day_nextmonth' => '$0.036823'
'sma_200day_nextmonth' => '$0.062646'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 feb. 2026'
'sma_50day_date_nextmonth' => '4 feb. 2026'
'daily_sma3' => '$0.03988'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.039569'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.039141'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.036222'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.038152'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.051248'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.0706022'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.039948'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.039657'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.038935'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.037975'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.040979'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.0509069'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.073075'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.060219'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.092642'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.226512'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.253334'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.038921'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.038924'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.043534'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.058387'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.10553'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.195892'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.410837'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '56.45'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 88.44
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.039172'
'vwma_10_action' => 'BUY'
'hma_9' => '0.039998'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 73.95
'stochastic_fast_14_action' => 'NEUTRAL'
'cci_20' => 69.45
'cci_20_action' => 'NEUTRAL'
'adx_14' => 14.12
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.002930'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'NEUTRAL'
'williams_percent_r_14' => -26.05
'williams_percent_r_14_action' => 'NEUTRAL'
'ultimate_oscillator' => 63.23
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.009764'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 15
'buy_signals' => 19
'sell_pct' => 44.12
'buy_pct' => 55.88
'overall_action' => 'bullish'
'overall_action_label' => 'Alcista'
'overall_action_dir' => 1
'last_updated' => 1767709294
'last_updated_date' => '6 de enero de 2026'
]
Predicción de precio de Boson Protocol para 2026
La previsión del precio de Boson Protocol para 2026 sugiere que el precio medio podría oscilar entre $0.0139095 en el extremo inferior y $0.04152 en el extremo superior. En el mercado de criptomonedas, en comparación con el precio medio de hoy, Boson Protocol podría potencialmente ganar 3.13% para 2026 si BOSON alcanza el objetivo de precio previsto.
Predicción de precio de Boson Protocol 2027-2032
La predicción del precio de BOSON para 2027-2032 está actualmente dentro de un rango de precios de $0.024283 en el extremo inferior y $0.151256 en el extremo superior. Considerando la volatilidad de precios en el mercado, si Boson Protocol alcanza el objetivo de precio superior, podría ganar 275.71% para 2032 en comparación con el precio de hoy.
| Predicción de Precio de Boson Protocol | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.01339 | $0.024283 | $0.035176 |
| 2028 | $0.024165 | $0.041677 | $0.059189 |
| 2029 | $0.053084 | $0.113855 | $0.174625 |
| 2030 | $0.045146 | $0.087839 | $0.130531 |
| 2031 | $0.053377 | $0.086268 | $0.11916 |
| 2032 | $0.081476 | $0.151256 | $0.221036 |
Predicción de precio de Boson Protocol 2032-2037
La predicción de precio de Boson Protocol para 2032-2037 se estima actualmente entre $0.151256 en el extremo inferior y $1.37 en el extremo superior. Comparado con el precio actual, Boson Protocol podría potencialmente ganar 3326.16% para 2037 si alcanza el objetivo de precio superior. Tenga en cuenta que esta información es solo para fines generales y no debe considerarse como consejo de inversión a largo plazo.
| Predicción de Precio de Boson Protocol | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.081476 | $0.151256 | $0.221036 |
| 2033 | $0.189332 | $0.389046 | $0.588761 |
| 2034 | $0.152214 | $0.246596 | $0.340978 |
| 2035 | $0.179964 | $0.290861 | $0.401758 |
| 2036 | $0.297897 | $0.564562 | $0.831227 |
| 2037 | $0.773631 | $1.37 | $1.98 |
Boson Protocol Histograma de precios potenciales
Pronóstico de precio de Boson Protocol basado en análisis técnico
A fecha de 6 de enero de 2026, el sentimiento general de predicción de precio para Boson Protocol es Alcista, con 19 indicadores técnicos mostrando señales alcistas y 15 indicando señales bajistas. La predicción de precio de BOSON se actualizó por última vez el 6 de enero de 2026.
Promedios Móviles Simples de 50 y 200 días y el Índice de Fuerza Relativa de 14 días - RSI (14) de Boson Protocol
Según nuestros indicadores técnicos, se proyecta que el SMA de 200 días de Boson Protocol aumentar durante el próximo mes, alcanzando $0.062646 para el 4 feb. 2026. Se espera que el SMA de 50 días a corto plazo para Boson Protocol alcance $0.036823 para el 4 feb. 2026.
El oscilador de momento del Índice de Fuerza Relativa (RSI) es una herramienta comúnmente utilizada para identificar si una criptomoneda está sobrevendida (por debajo de 30) o sobrecomprada (por encima de 70). Actualmente, el RSI se encuentra en 56.45, lo que sugiere que el mercado de BOSON está en un estado NEUTRAL.
Promedios Móviles y Osciladores Populares de BOSON para Sáb, 19 de Oct de 2024
Los promedios móviles (MA) son indicadores ampliamente utilizados en los mercados financieros, diseñados para suavizar los movimientos de precios durante un período establecido. Como indicadores rezagados, se basan en datos históricos de precios. La tabla a continuación resalta dos tipos: el promedio móvil simple (SMA) y el promedio móvil exponencial (EMA).
Promedio Móvil Simple Diario (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 3 | $0.03988 | BUY |
| SMA 5 | $0.039569 | BUY |
| SMA 10 | $0.039141 | BUY |
| SMA 21 | $0.036222 | BUY |
| SMA 50 | $0.038152 | BUY |
| SMA 100 | $0.051248 | SELL |
| SMA 200 | $0.0706022 | SELL |
Promedio Móvil Exponencial Diario (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 3 | $0.039948 | BUY |
| EMA 5 | $0.039657 | BUY |
| EMA 10 | $0.038935 | BUY |
| EMA 21 | $0.037975 | BUY |
| EMA 50 | $0.040979 | SELL |
| EMA 100 | $0.0509069 | SELL |
| EMA 200 | $0.073075 | SELL |
Promedio Móvil Simple Semanal (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 21 | $0.060219 | SELL |
| SMA 50 | $0.092642 | SELL |
| SMA 100 | $0.226512 | SELL |
| SMA 200 | $0.253334 | SELL |
Promedio Móvil Exponencial Semanal (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 21 | $0.058387 | SELL |
| EMA 50 | $0.10553 | SELL |
| EMA 100 | $0.195892 | SELL |
| EMA 200 | $0.410837 | SELL |
Osciladores de Boson Protocol
Un oscilador es una herramienta de análisis técnico que establece límites altos y bajos entre dos extremos, creando un indicador de tendencia que fluctúa dentro de estos límites. Los traders utilizan este indicador para identificar condiciones de sobrecompra o sobreventa a corto plazo.
| Período | Valor | Acción |
|---|---|---|
| RSI (14) | 56.45 | NEUTRAL |
| Stoch RSI (14) | 88.44 | SELL |
| Estocástico Rápido (14) | 73.95 | NEUTRAL |
| Índice de Canal de Materias Primas (20) | 69.45 | NEUTRAL |
| Índice Direccional Medio (14) | 14.12 | NEUTRAL |
| Oscilador Asombroso (5, 34) | 0.002930 | BUY |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | NEUTRAL |
| Rango Percentil de Williams (14) | -26.05 | NEUTRAL |
| Oscilador Ultimate (7, 14, 28) | 63.23 | NEUTRAL |
| VWMA (10) | 0.039172 | BUY |
| Promedio Móvil de Hull (9) | 0.039998 | BUY |
| Nube Ichimoku B/L (9, 26, 52, 26) | -0.009764 | SELL |
Predicción de precios de Boson Protocol basada en flujos de dinero globales
Definiciones de flujos de dinero globales utilizadas para la predicción de precios de Boson Protocol
M0: El total de toda la moneda física, además de cuentas en el banco central que pueden cambiarse por moneda física.
M1: Medir M0 más la cantidad en cuentas a la vista, incluyendo cuentas "de cheques" o "corrientes".
M2: Medir M1 más la mayoría de cuentas de ahorro, cuentas del mercado monetario, y cuentas de certificados de depósito (CD) inferiores a 100 000 $.
Predicciones de precios de Boson Protocol por parte de empresas de Internet o nichos tecnológicos
| Comparación | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook acción | $0.05657 | $0.079491 | $0.111698 | $0.156955 | $0.220548 | $0.309907 |
| Amazon.com acción | $0.0840029 | $0.175277 | $0.365726 | $0.7631093 | $1.59 | $3.32 |
| Apple acción | $0.0571044 | $0.080998 | $0.114889 | $0.162962 | $0.231149 | $0.327868 |
| Netflix acción | $0.063522 | $0.100228 | $0.158144 | $0.249527 | $0.393715 | $0.621222 |
| Google acción | $0.052135 | $0.067515 | $0.087431 | $0.113223 | $0.146624 | $0.189877 |
| Tesla acción | $0.091264 | $0.206889 | $0.4690021 | $1.06 | $2.41 | $5.46 |
| Kodak acción | $0.03019 | $0.022639 | $0.016977 | $0.01273 | $0.009546 | $0.007159 |
| Nokia acción | $0.026669 | $0.017667 | $0.0117041 | $0.007753 | $0.005136 | $0.0034026 |
Este cálculo muestra cuánto puede costar la criptomoneda si asumimos que su capitalización se comportará como la capitalización de algunas empresas de Internet o nichos tecnológicos. Si extrapola los datos, puede obtener una imagen potencial del precio futuro en 2024, 2025, 2026, 2027, 2028, 2029 y 2030.
Resumen de pronósticos y predicciones de Boson Protocol
Podría preguntarse cosas como: "¿Debo invertir en Boson Protocol ahora?", "¿Debería comprar BOSON hoy?", "¿Será Boson Protocol una buena o mala inversión a corto plazo?, ¿Lo será a largo plazo?".
Actualizamos el pronóstico de Boson Protocol/Boson regularmente con valores actualizados. Aquí hay algunas predicciones similares. Hacemos un pronóstico de precios futuros para una gran cantidad de monedas digitales, como Boson Protocol, con métodos de análisis técnico.
Si está tratando de encontrar criptomonedas que ofrezcan un buen rendimiento, debería explorar el máximo de fuentes de información disponibles acerca de Boson Protocol a fin de tomar una decisión responsable sobre la inversión por sus propios medios.
El precio de Boson Protocol es de $0.04025 USD hoy, pero dicho precio puede subir y bajar, y su inversión puede perderse porque estos son activos de criptomonedas conllevan un alto riesgo
Pronóstico a corto plazo de Boson Protocol
basado en el historial de precios de las últimas 4 horas
Pronóstico a largo plazo de Boson Protocol
basado en el historial de precios del último mes
Predicción de precios de Boson Protocol basada en el patrón de crecimiento del Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si Boson Protocol ofrece un 1 % del crecimiento medio anterior anual del Bitcoin | $0.0413055 | $0.042379 | $0.04348 | $0.04461 |
| Si Boson Protocol ofrece un 2 % del crecimiento medio anterior anual del Bitcoin | $0.042351 | $0.044553 | $0.046869 | $0.0493065 |
| Si Boson Protocol ofrece un 5 % del crecimiento medio anterior anual del Bitcoin | $0.045491 | $0.0514037 | $0.058084 | $0.065633 |
| Si Boson Protocol ofrece un 10 % del crecimiento medio anterior anual del Bitcoin | $0.050723 | $0.0639084 | $0.08052 | $0.10145 |
| Si Boson Protocol ofrece un 20 % del crecimiento medio anterior anual del Bitcoin | $0.061188 | $0.092997 | $0.141344 | $0.214824 |
| Si Boson Protocol ofrece un 50 % del crecimiento medio anterior anual del Bitcoin | $0.092582 | $0.2129076 | $0.489615 | $1.12 |
| Si Boson Protocol ofrece un 100 % del crecimiento medio anterior anual del Bitcoin | $0.1449053 | $0.52156 | $1.87 | $6.75 |
Cuadro de preguntas
¿Es BOSON una buena inversión?
La decisión de adquirir Boson Protocol depende completamente de su tolerancia individual al riesgo. Como puede discernir, el valor de Boson Protocol ha experimentado un aumento de 2.204% durante las últimas 24 horas, y Boson Protocol ha sufrido un declive de durante el período previo de 30 días. Por lo tanto, la determinación de si invertir o no en Boson Protocol dependerá de si dicha inversión se alinea con sus aspiraciones comerciales.
¿Puede Boson Protocol subir?
Parece que el valor medio de Boson Protocol podría potencialmente aumentar hasta $0.04152 para el final de este año. Mirando las perspectivas de Boson Protocol en un horizonte de cinco años más extendido, la moneda digital podría potencialmente crecer hasta $0.130531. Sin embargo, dada la imprevisibilidad del mercado, es vital realizar una investigación exhaustiva antes de invertir cualquier fondo en un proyecto, red o activo en particular.
¿Cuál será el precio de Boson Protocol la próxima semana?
Basado en nuestro nuevo pronóstico experimental de Boson Protocol, el precio de Boson Protocol aumentará en un 0.86% durante la próxima semana y alcanzará $0.040603 para el 13 de enero de 2026.
¿Cuál será el precio de Boson Protocol el próximo mes?
Basado en nuestro nuevo pronóstico experimental de Boson Protocol, el precio de Boson Protocol disminuirá en un -11.62% durante el próximo mes y alcanzará $0.035581 para el 5 de febrero de 2026.
¿Hasta qué punto puede subir el precio de Boson Protocol este año en 2026?
Según nuestra predicción más reciente sobre el valor de Boson Protocol en 2026, se anticipa que BOSON fluctúe dentro del rango de $0.0139095 y $0.04152. Sin embargo, es crucial tener en cuenta que el mercado de criptomonedas es excepcionalmente inestable, y esta predicción de precios proyectada de Boson Protocol no considera fluctuaciones de precios repentinas y extremas.
¿Dónde estará Boson Protocol en 5 años?
El futuro de Boson Protocol parece estar en una tendencia alcista, con un precio máximo de $0.130531 proyectada después de un período de cinco años. Basado en el pronóstico de Boson Protocol para 2030, el valor de Boson Protocol podría potencialmente alcanzar su punto más alto de aproximadamente $0.130531, mientras que su punto más bajo se anticipa que esté alrededor de $0.045146.
¿Cuánto será Boson Protocol en 2026?
Basado en nuestra nueva simulación experimental de predicción de precios de Boson Protocol, se espera que el valor de BOSON en 2026 crezca en un 3.13% hasta $0.04152 si ocurre lo mejor. El precio estará entre $0.04152 y $0.0139095 durante 2026.
¿Cuánto será Boson Protocol en 2027?
Según nuestra última simulación experimental para la predicción de precios de Boson Protocol, el valor de BOSON podría disminuir en un -12.62% hasta $0.035176 en 2027, asumiendo las condiciones más favorables. Se proyecta que el precio fluctúe entre $0.035176 y $0.01339 a lo largo del año.
¿Cuánto será Boson Protocol en 2028?
Nuestro nuevo modelo experimental de predicción de precios de Boson Protocol sugiere que el valor de BOSON en 2028 podría aumentar en un 47.02% , alcanzando $0.059189 en el mejor escenario. Se espera que el precio oscile entre $0.059189 y $0.024165 durante el año.
¿Cuánto será Boson Protocol en 2029?
Basado en nuestro modelo de pronóstico experimental, el valor de Boson Protocol podría experimentar un 333.75% crecimiento en 2029, potencialmente alcanzando $0.174625 bajo condiciones óptimas. El rango de precios previsto para 2029 se encuentra entre $0.174625 y $0.053084.
¿Cuánto será Boson Protocol en 2030?
Usando nuestra nueva simulación experimental para las predicciones de precios de Boson Protocol, se espera que el valor de BOSON en 2030 aumente en un 224.23% , alcanzando $0.130531 en el mejor escenario. Se pronostica que el precio oscile entre $0.130531 y $0.045146 durante el transcurso de 2030.
¿Cuánto será Boson Protocol en 2031?
Nuestra simulación experimental indica que el precio de Boson Protocol podría crecer en un 195.98% en 2031, potencialmente alcanzando $0.11916 bajo condiciones ideales. Es probable que el precio fluctúe entre $0.11916 y $0.053377 durante el año.
¿Cuánto será Boson Protocol en 2032?
Basado en los hallazgos de nuestra última predicción experimental de precios de Boson Protocol, BOSON podría experimentar un 449.04% aumento en valor, alcanzando $0.221036 si se desarrolla el escenario más positivo en 2032. Se espera que el precio se mantenga dentro de un rango de $0.221036 y $0.081476 a lo largo del año.
¿Cuánto será Boson Protocol en 2033?
Según nuestra predicción experimental de precios de Boson Protocol, se anticipa que el valor de BOSON aumente en un 1362.43% en 2033, con el precio potencial más alto siendo $0.588761. A lo largo del año, el precio de BOSON podría oscilar entre $0.588761 y $0.189332.
¿Cuánto será Boson Protocol en 2034?
Los resultados de nuestra nueva simulación de predicción de precios de Boson Protocol sugieren que BOSON podría aumentar en un 746.96% en 2034, alcanzando potencialmente $0.340978 bajo las mejores circunstancias. El rango de precios previsto para el año está entre $0.340978 y $0.152214.
¿Cuánto será Boson Protocol en 2035?
Basado en nuestra predicción experimental para el precio de Boson Protocol, BOSON podría crecer en un 897.93% , con el valor potencialmente alcanzando $0.401758 en 2035. El rango de precios esperado para el año está entre $0.401758 y $0.179964.
¿Cuánto será Boson Protocol en 2036?
Nuestra reciente simulación de predicción de precios de Boson Protocol sugiere que el valor de BOSON podría aumentar en un 1964.7% en 2036, posiblemente alcanzando $0.831227 si las condiciones son óptimas. El rango de precios esperado para 2036 está entre $0.831227 y $0.297897.
¿Cuánto será Boson Protocol en 2037?
Según la simulación experimental, el valor de Boson Protocol podría aumentar en un 4830.69% en 2037, con un máximo de $1.98 bajo condiciones favorables. Se espera que el precio caiga entre $1.98 y $0.773631 durante el transcurso del año.
Predicciones relacionadas
Predicción de precios de Ultra
Predicción de precios de TOMI
Predicción de precios de Alchemix
Predicción de precios de Shardus
Predicción de precios de Agoric
Predicción de precios de Orchid Protocol
Predicción de precios de Polytrade
Predicción de precios de Agoras: Tau Net
Predicción de precios de Commune AI
Predicción de precios de Krypton DAO
Predicción de precios de DIMO
Predicción de precios de Clover Finance
Predicción de precios de Alethea Artificial Liquid Intelligence Token
Predicción de precios de Cobak Token
Predicción de precios de ELYSIA
Predicción de precios de Snek
Predicción de precios de Gods Unchained
Predicción de precios de TRAC (Ordinals)
Predicción de precios de Numbers Protocol
Predicción de precios de DexTools
Predicción de precios de H2O Dao
Predicción de precios de Bitrise Token
Predicción de precios de Stratos
Predicción de precios de Linear
Predicción de precios de sETH2
¿Cómo leer y predecir los movimientos de precio de Boson Protocol?
Los traders de Boson Protocol utilizan indicadores y patrones de gráficos para predecir la dirección del mercado. También identifican niveles clave de soporte y resistencia para estimar cuándo una tendencia bajista podría desacelerar o una tendencia alcista podría estancarse.
Indicadores de predicción de precio de Boson Protocol
Las medias móviles son herramientas populares para la predicción de precios de Boson Protocol. Una media móvil simple (SMA) calcula el precio de cierre promedio de BOSON durante un período específico, como una SMA de 12 días. Una media móvil exponencial (EMA) da más peso a los precios recientes, reaccionando más rápido a los cambios de precio.
Las medias móviles comúnmente utilizadas en el mercado de criptomonedas incluyen las de 50 días, 100 días y 200 días, que ayudan a identificar niveles clave de resistencia y soporte. Un movimiento de precio de BOSON por encima de estas medias se considera alcista, mientras que una caída por debajo indica debilidad.
Los traders también utilizan RSI y niveles de retroceso de Fibonacci para evaluar la dirección futura de BOSON.
¿Cómo leer gráficos de Boson Protocol y predecir movimientos de precio?
La mayoría de los traders prefieren gráficos de velas sobre gráficos lineales simples porque proporcionan información más detallada. Las velas pueden representar la acción del precio de Boson Protocol en diferentes marcos de tiempo, como 5 minutos para tendencias a corto plazo y semanal para tendencias a largo plazo. Las opciones populares incluyen gráficos de 1 hora, 4 horas y 1 día.
Por ejemplo, un gráfico de velas de 1 hora muestra los precios de apertura, cierre, máximo y mínimo de BOSON dentro de cada hora. El color de la vela es crucial: el verde indica que el precio cerró más alto de lo que abrió, mientras que el rojo significa lo contrario. Algunos gráficos usan velas huecas y llenas para transmitir la misma información.
¿Qué afecta el precio de Boson Protocol?
La acción del precio de Boson Protocol está impulsada por la oferta y la demanda, influenciada por factores como reducciones a la mitad de recompensas de bloque, hard forks y actualizaciones de protocolo. Los eventos del mundo real, como regulaciones, adopción por empresas y gobiernos y hacks de exchanges de criptomonedas, también impactan el precio de BOSON. La capitalización de mercado de Boson Protocol puede cambiar rápidamente.
Los traders a menudo monitorean la actividad de las "ballenas" de BOSON, grandes poseedores de Boson Protocol, ya que sus acciones pueden influir significativamente en los movimientos de precios en el relativamente pequeño mercado de Boson Protocol.
Patrones de predicción de precios alcistas y bajistas
Los traders a menudo identifican patrones de velas para obtener una ventaja en las predicciones de precios de criptomonedas. Ciertas formaciones indican tendencias alcistas, mientras que otras sugieren movimientos bajistas.
Patrones de velas alcistas comúnmente seguidos:
- Martillo
- Envolvente Alcista
- Línea Penetrante
- Estrella de la Mañana
- Tres Soldados Blancos
Patrones de velas bajistas comunes:
- Harami Bajista
- Cubierta de Nube Oscura
- Estrella de la Tarde
- Estrella Fugaz
- Hombre Colgado


