Prédiction du prix de Polytrade jusqu'à $0.059922 d'ici 2026
| Année | Prix min. | Prix max. |
|---|---|---|
| 2026 | $0.020074 | $0.059922 |
| 2027 | $0.019324 | $0.050766 |
| 2028 | $0.034875 | $0.085421 |
| 2029 | $0.076612 | $0.252019 |
| 2030 | $0.065155 | $0.188383 |
| 2031 | $0.077033 | $0.171972 |
| 2032 | $0.117586 | $0.31900068 |
| 2033 | $0.273245 | $0.8497017 |
| 2034 | $0.219676 | $0.4921016 |
| 2035 | $0.259725 | $0.579818 |
Calculateur de profit d’investissement
Si vous ouvrez une position short de $10,000.00 sur Polytrade aujourd’hui et la fermez le Apr 06, 2026, notre prévision indique que vous pourriez gagner environ $3,954.60, soit un rendement de 39.55% sur les 90 prochains jours.
Prévision du prix à long terme de Polytrade pour 2027, 2028, 2029, 2030, 2031, 2032 et 2037
[
'name' => 'Polytrade'
'name_with_ticker' => 'Polytrade <small>TRADE</small>'
'name_lang' => 'Polytrade'
'name_lang_with_ticker' => 'Polytrade <small>TRADE</small>'
'name_with_lang' => 'Polytrade'
'name_with_lang_with_ticker' => 'Polytrade <small>TRADE</small>'
'image' => '/uploads/coins/polytrade.png?1717089557'
'price_for_sd' => 0.0581
'ticker' => 'TRADE'
'marketcap' => '$5.84M'
'low24h' => '$0.05694'
'high24h' => '$0.05969'
'volume24h' => '$407.36K'
'current_supply' => '100M'
'max_supply' => '100M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.0581'
'change_24h_pct' => '0.2704%'
'ath_price' => '$3.03'
'ath_days' => 645
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '1 avr. 2024'
'ath_pct' => '-98.09%'
'fdv' => '$5.84M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$2.86'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.058599'
'next_week_prediction_price_date' => '13 janvier 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.051351'
'next_month_prediction_price_date' => '5 février 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.020074'
'current_year_max_price_prediction' => '$0.059922'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.065155'
'grand_prediction_max_price' => '$0.188383'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.059203002338348
107 => 0.05942404485839
108 => 0.059922064942754
109 => 0.05566653784909
110 => 0.057577144578434
111 => 0.058699447032282
112 => 0.053628843716081
113 => 0.058599217507954
114 => 0.055592458590082
115 => 0.054571919453353
116 => 0.055945940955151
117 => 0.055410483439621
118 => 0.054950128510888
119 => 0.054693242550754
120 => 0.055702172296455
121 => 0.055655104517886
122 => 0.054004299629094
123 => 0.05185089194708
124 => 0.052573646248361
125 => 0.052311062834848
126 => 0.051359426670341
127 => 0.05200071454423
128 => 0.04917680729599
129 => 0.044318421649318
130 => 0.047528020023886
131 => 0.047404453977837
201 => 0.047342146374144
202 => 0.049754070845849
203 => 0.04952221996046
204 => 0.049101408333188
205 => 0.051351698134802
206 => 0.050530312086544
207 => 0.053061630344383
208 => 0.054728920264396
209 => 0.054306041609502
210 => 0.055874135837986
211 => 0.052590297047704
212 => 0.053681056569091
213 => 0.053905860594722
214 => 0.051323929907953
215 => 0.049560153632657
216 => 0.049442529863617
217 => 0.046384384865596
218 => 0.048018021239055
219 => 0.049455553643232
220 => 0.048767087178652
221 => 0.048549139263317
222 => 0.04966258789563
223 => 0.049749112390403
224 => 0.047776344740116
225 => 0.048186545604037
226 => 0.049897151396809
227 => 0.048143442727022
228 => 0.04473627324831
301 => 0.043891248109786
302 => 0.043778506179404
303 => 0.041486730983938
304 => 0.043947716730187
305 => 0.042873430501632
306 => 0.046267087825713
307 => 0.044328648962747
308 => 0.044245086737674
309 => 0.044118770178561
310 => 0.042146144595783
311 => 0.042578024231515
312 => 0.044013657917817
313 => 0.04452590819066
314 => 0.04447247629046
315 => 0.044006622529547
316 => 0.044219887995735
317 => 0.043532885622527
318 => 0.04329029078583
319 => 0.042524594750245
320 => 0.041399233106864
321 => 0.04155572154562
322 => 0.039326085663191
323 => 0.03811126169871
324 => 0.037775014436465
325 => 0.037325370544649
326 => 0.037825802910502
327 => 0.039319769384875
328 => 0.037517728854113
329 => 0.034428256762567
330 => 0.034613939299474
331 => 0.035031112830262
401 => 0.034253712715517
402 => 0.033517968749157
403 => 0.034157638435112
404 => 0.032848588382134
405 => 0.035189305275104
406 => 0.035125995442932
407 => 0.03599846995167
408 => 0.036544046166962
409 => 0.03528666962311
410 => 0.034970442822638
411 => 0.035150579979894
412 => 0.032173314030941
413 => 0.035755163805583
414 => 0.035786139791173
415 => 0.03552090459648
416 => 0.037428129024271
417 => 0.041452967445128
418 => 0.039938661332451
419 => 0.039352276235479
420 => 0.038237557737488
421 => 0.039722853950625
422 => 0.039608806375687
423 => 0.039093039990556
424 => 0.03878110287154
425 => 0.039355856577841
426 => 0.038709884526812
427 => 0.038593850196322
428 => 0.03789080840015
429 => 0.037639854465281
430 => 0.037454058162667
501 => 0.037249514689458
502 => 0.037700686622301
503 => 0.036678271665868
504 => 0.035445339456984
505 => 0.035342834484326
506 => 0.035625859726163
507 => 0.035500642125401
508 => 0.035342234990628
509 => 0.035039792630731
510 => 0.034950064443208
511 => 0.03524163752273
512 => 0.034912468515717
513 => 0.035398175316328
514 => 0.035266089941945
515 => 0.034528271777809
516 => 0.033608677170025
517 => 0.033600490849101
518 => 0.033402365699292
519 => 0.033150023532693
520 => 0.033079827714752
521 => 0.034103767238345
522 => 0.036223291408251
523 => 0.035807178097783
524 => 0.036107862609603
525 => 0.037586932809358
526 => 0.038057084748667
527 => 0.037723382038304
528 => 0.037266589186473
529 => 0.037286685753691
530 => 0.038847685208998
531 => 0.038945042830265
601 => 0.039191034130447
602 => 0.039507202468314
603 => 0.037777226873394
604 => 0.037205204058744
605 => 0.036934147914546
606 => 0.036099399902344
607 => 0.036999604067618
608 => 0.036475093651098
609 => 0.036545868026114
610 => 0.036499776121538
611 => 0.036524945418158
612 => 0.035188650997028
613 => 0.035675526450521
614 => 0.034866001578042
615 => 0.033782138647225
616 => 0.033778505158629
617 => 0.034043779075439
618 => 0.033885983769551
619 => 0.033461360658695
620 => 0.033521676367428
621 => 0.032993247291759
622 => 0.033585837224731
623 => 0.03360283058362
624 => 0.033374651180834
625 => 0.03428761773423
626 => 0.034661660876066
627 => 0.034511468305076
628 => 0.034651122964902
629 => 0.035824469484472
630 => 0.03601577616386
701 => 0.036100741953834
702 => 0.035986899051079
703 => 0.034672569585338
704 => 0.034730865686104
705 => 0.034303127578753
706 => 0.033941733951973
707 => 0.033956187801784
708 => 0.034141991103832
709 => 0.034953405021095
710 => 0.036660977774512
711 => 0.036725778912284
712 => 0.036804319781647
713 => 0.036484854594469
714 => 0.036388500837147
715 => 0.03651561631407
716 => 0.037156890860344
717 => 0.038806423097699
718 => 0.038223368236464
719 => 0.03774933555849
720 => 0.038165190015366
721 => 0.038101172481305
722 => 0.03756080006886
723 => 0.037545633615009
724 => 0.036508486188018
725 => 0.036125076398964
726 => 0.035804670481505
727 => 0.035454795584048
728 => 0.035247378016923
729 => 0.035566065669625
730 => 0.0356389533064
731 => 0.034942137184058
801 => 0.034847163721407
802 => 0.035416198808732
803 => 0.035165787682567
804 => 0.035423341735725
805 => 0.035483096485315
806 => 0.035473474594363
807 => 0.035212016619111
808 => 0.035378662135748
809 => 0.034984495809484
810 => 0.03455589913154
811 => 0.034282481153528
812 => 0.034043887704081
813 => 0.034176273216967
814 => 0.033704343036168
815 => 0.033553363073252
816 => 0.035322206384354
817 => 0.036628869956535
818 => 0.0366098705507
819 => 0.03649421655393
820 => 0.036322378174285
821 => 0.037144319812557
822 => 0.036857971781025
823 => 0.037066313899144
824 => 0.037119345712296
825 => 0.037279857038548
826 => 0.037337226041268
827 => 0.037163817069713
828 => 0.036581835381052
829 => 0.035131592346067
830 => 0.034456500298425
831 => 0.034233708678156
901 => 0.034241806730411
902 => 0.034018426297914
903 => 0.034084221846493
904 => 0.033995545291216
905 => 0.033827613348685
906 => 0.034165903892735
907 => 0.034204888726542
908 => 0.03412592767129
909 => 0.034144525858234
910 => 0.033490762045453
911 => 0.033540466288238
912 => 0.0332637067483
913 => 0.033211817670947
914 => 0.032512193654192
915 => 0.031272708296387
916 => 0.031959503504366
917 => 0.031129951471148
918 => 0.030815787546404
919 => 0.032302990703628
920 => 0.032153716755238
921 => 0.031898224643418
922 => 0.031520298560816
923 => 0.03138012210055
924 => 0.030528454302449
925 => 0.030478133225466
926 => 0.03090024278317
927 => 0.030705453746193
928 => 0.0304318961659
929 => 0.029441098340165
930 => 0.028327113542153
1001 => 0.028360737740946
1002 => 0.02871507557877
1003 => 0.02974536063121
1004 => 0.029342810437109
1005 => 0.029050755652558
1006 => 0.028996062570546
1007 => 0.029680660999648
1008 => 0.030649511204631
1009 => 0.031104074044008
1010 => 0.030653616075464
1011 => 0.030136154215581
1012 => 0.030167649721305
1013 => 0.030377175210649
1014 => 0.030399193377049
1015 => 0.030062378902203
1016 => 0.03015719020397
1017 => 0.030013163166859
1018 => 0.029129269505961
1019 => 0.029113282672492
1020 => 0.028896360913397
1021 => 0.028889792608742
1022 => 0.028520754582853
1023 => 0.028469123611991
1024 => 0.027736376212581
1025 => 0.028218672769836
1026 => 0.027895173560935
1027 => 0.027407583947372
1028 => 0.02732352331421
1029 => 0.027320996350071
1030 => 0.027821641860158
1031 => 0.028212822435561
1101 => 0.027900800968176
1102 => 0.027829759728334
1103 => 0.028588294310803
1104 => 0.028491763870987
1105 => 0.028408169132662
1106 => 0.030562761295217
1107 => 0.028857233473632
1108 => 0.028113525995296
1109 => 0.027193046764635
1110 => 0.027492759443597
1111 => 0.02755591330875
1112 => 0.025342326687864
1113 => 0.024444274871455
1114 => 0.024136097330432
1115 => 0.023958736798583
1116 => 0.0240395622201
1117 => 0.02323121025436
1118 => 0.023774436144245
1119 => 0.023074471670205
1120 => 0.02295712034825
1121 => 0.024208743536793
1122 => 0.024382899591602
1123 => 0.023639895755741
1124 => 0.024117024499759
1125 => 0.023944010984592
1126 => 0.023086470552092
1127 => 0.023053718815211
1128 => 0.022623435170186
1129 => 0.021950124585054
1130 => 0.021642403580313
1201 => 0.021482139809288
1202 => 0.021548267764692
1203 => 0.021514831446891
1204 => 0.021296636856044
1205 => 0.021527338105429
1206 => 0.020937991745587
1207 => 0.020703309276412
1208 => 0.020597308649677
1209 => 0.020074229833806
1210 => 0.020906680844062
1211 => 0.021070684180024
1212 => 0.02123501065322
1213 => 0.022665360411951
1214 => 0.022593904180131
1215 => 0.023239833715185
1216 => 0.023214734081241
1217 => 0.023030504514479
1218 => 0.022253270276603
1219 => 0.022563061990952
1220 => 0.021609571246506
1221 => 0.022323991343313
1222 => 0.021997959846027
1223 => 0.022213759766123
1224 => 0.021825732051896
1225 => 0.022040482610221
1226 => 0.021109575455103
1227 => 0.020240307451871
1228 => 0.020590126271886
1229 => 0.020970419335878
1230 => 0.021794991595482
1231 => 0.021303883160235
]
'min_raw' => 0.020074229833806
'max_raw' => 0.059922064942754
'avg_raw' => 0.03999814738828
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.020074'
'max' => '$0.059922'
'avg' => '$0.039998'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.038027770166194
'max_diff' => 0.001820064942754
'year' => 2026
]
1 => [
'items' => [
101 => 0.021480504324416
102 => 0.020888852990436
103 => 0.019668107291588
104 => 0.019675016579671
105 => 0.019487231449294
106 => 0.01932495767957
107 => 0.021360292871765
108 => 0.021107166766728
109 => 0.020703843446677
110 => 0.021243707737997
111 => 0.021386456425421
112 => 0.021390520279871
113 => 0.021784391330904
114 => 0.021994600381446
115 => 0.022031650637702
116 => 0.02265141524665
117 => 0.022859152168676
118 => 0.023714791150474
119 => 0.021976765612156
120 => 0.021940972119934
121 => 0.021251304735699
122 => 0.020813906777408
123 => 0.021281253748114
124 => 0.021695259364936
125 => 0.02126416904425
126 => 0.021320460339318
127 => 0.020741756805171
128 => 0.020948616088097
129 => 0.021126791169507
130 => 0.021028413362199
131 => 0.02088113702312
201 => 0.021661315625614
202 => 0.021617294891317
203 => 0.022343815142188
204 => 0.022910189631704
205 => 0.023925233968466
206 => 0.022865982287596
207 => 0.022827378946201
208 => 0.023204732800508
209 => 0.022859094397767
210 => 0.023077525937267
211 => 0.023890041270514
212 => 0.02390720843916
213 => 0.023619636245682
214 => 0.023602137451575
215 => 0.023657368837027
216 => 0.023980860786744
217 => 0.023867822759609
218 => 0.023998633226382
219 => 0.024162213718122
220 => 0.024838851988651
221 => 0.025001987184928
222 => 0.024605653233877
223 => 0.024641437752094
224 => 0.024493197974791
225 => 0.024350000207355
226 => 0.024671887876197
227 => 0.025260143917722
228 => 0.025256484407418
301 => 0.025392948374988
302 => 0.025477964296256
303 => 0.025113013726717
304 => 0.024875444325551
305 => 0.024966543550892
306 => 0.025112213196094
307 => 0.024919304848239
308 => 0.023728585161435
309 => 0.024089773450943
310 => 0.024029654058364
311 => 0.023944036732563
312 => 0.02430721435065
313 => 0.024272184983408
314 => 0.023222919436578
315 => 0.023290090012553
316 => 0.023227004301779
317 => 0.02343084713941
318 => 0.02284808621558
319 => 0.023027339550796
320 => 0.023139765562247
321 => 0.023205985346689
322 => 0.023445216615426
323 => 0.023417145587236
324 => 0.0234434716809
325 => 0.023798188497723
326 => 0.025592224433101
327 => 0.025689869850746
328 => 0.025209028102127
329 => 0.025401114896516
330 => 0.025032350256052
331 => 0.025279904429704
401 => 0.025449274708122
402 => 0.024683922987982
403 => 0.024638603826207
404 => 0.024268317162895
405 => 0.02446728824165
406 => 0.024150710948824
407 => 0.02422838794308
408 => 0.024011196295381
409 => 0.024402098018813
410 => 0.024839186885595
411 => 0.024949612794507
412 => 0.024659129769503
413 => 0.024448800915636
414 => 0.024079532734877
415 => 0.024693633949158
416 => 0.024873215858608
417 => 0.024692690681838
418 => 0.024650859053827
419 => 0.024571588194334
420 => 0.024667676741406
421 => 0.024872237816962
422 => 0.02477577059138
423 => 0.024839488893411
424 => 0.024596660432096
425 => 0.025113134540541
426 => 0.025933419721014
427 => 0.025936057071999
428 => 0.025839589326422
429 => 0.025800116803359
430 => 0.025899098564473
501 => 0.025952792109433
502 => 0.026272880974726
503 => 0.026616349080088
504 => 0.028219164860939
505 => 0.027769100603447
506 => 0.029191214116155
507 => 0.030315921266379
508 => 0.030653171763248
509 => 0.030342917174991
510 => 0.029281552988185
511 => 0.029229477397675
512 => 0.030815603589164
513 => 0.030367450290887
514 => 0.030314143882069
515 => 0.029747053754843
516 => 0.030082274255512
517 => 0.030008956614628
518 => 0.02989322113167
519 => 0.030532798495284
520 => 0.031730030224504
521 => 0.031543430431937
522 => 0.031404142342901
523 => 0.030793822482898
524 => 0.031161371358496
525 => 0.031030494243831
526 => 0.031592825385102
527 => 0.031259712874173
528 => 0.030364055088881
529 => 0.030506691543316
530 => 0.030485132330173
531 => 0.030928819408954
601 => 0.030795635560894
602 => 0.030459126046315
603 => 0.03172593821661
604 => 0.03164367848065
605 => 0.031760303979047
606 => 0.031811646130205
607 => 0.032582732374529
608 => 0.032898621736821
609 => 0.032970334152483
610 => 0.0332704046149
611 => 0.03296286812602
612 => 0.034193233351341
613 => 0.035011354432378
614 => 0.035961644168129
615 => 0.037350272885862
616 => 0.037872410129263
617 => 0.037778090709712
618 => 0.038830933155296
619 => 0.040722867626639
620 => 0.038160504758847
621 => 0.040858679080535
622 => 0.040004468242209
623 => 0.037979149711135
624 => 0.037848743074671
625 => 0.039220312298346
626 => 0.042262320827811
627 => 0.041500332193355
628 => 0.042263567168242
629 => 0.041373213028424
630 => 0.041328999440888
701 => 0.042220324654979
702 => 0.04430295460131
703 => 0.043313575180024
704 => 0.041895057173824
705 => 0.042942468795018
706 => 0.04203510391537
707 => 0.039990556886086
708 => 0.041499749515007
709 => 0.040490595383379
710 => 0.040785120208573
711 => 0.042906212092906
712 => 0.04265099670567
713 => 0.042981269049062
714 => 0.042398347007707
715 => 0.041853805902713
716 => 0.040837379492089
717 => 0.040536465741119
718 => 0.040619627476145
719 => 0.040536424530293
720 => 0.03996774329499
721 => 0.03984493663637
722 => 0.039640253491722
723 => 0.039703693357008
724 => 0.039318829162902
725 => 0.040045147414179
726 => 0.04017995848191
727 => 0.040708512335274
728 => 0.04076338854974
729 => 0.042235403507864
730 => 0.041424642405136
731 => 0.041968570950592
801 => 0.041919916861832
802 => 0.038023044505006
803 => 0.038559999133381
804 => 0.039395332029487
805 => 0.039019015692058
806 => 0.038486992435395
807 => 0.038057355130358
808 => 0.037406410680556
809 => 0.038322602493371
810 => 0.039527297301086
811 => 0.040793941598113
812 => 0.042315731727168
813 => 0.041976085885953
814 => 0.040765492790185
815 => 0.040819799112123
816 => 0.041155499425589
817 => 0.04072073701806
818 => 0.04059251709651
819 => 0.041137883977319
820 => 0.041141639619299
821 => 0.040641392926645
822 => 0.040085460271938
823 => 0.040083130893816
824 => 0.039984208047583
825 => 0.04139081118301
826 => 0.042164300683878
827 => 0.042252980008612
828 => 0.042158331858763
829 => 0.042194758175189
830 => 0.041744681677313
831 => 0.042773423085419
901 => 0.043717497933478
902 => 0.043464465706981
903 => 0.043085134428811
904 => 0.042782978794679
905 => 0.043393287442224
906 => 0.043366111358863
907 => 0.043709252263273
908 => 0.043693685409771
909 => 0.0435783000298
910 => 0.043464469827756
911 => 0.043915793712079
912 => 0.043785819681434
913 => 0.043655643765219
914 => 0.043394556036315
915 => 0.043430042194881
916 => 0.043050776413605
917 => 0.042875310709165
918 => 0.040236727515483
919 => 0.039531611867938
920 => 0.039753455604608
921 => 0.03982649232289
922 => 0.039519625089448
923 => 0.03995959387448
924 => 0.039891025205375
925 => 0.040157785785532
926 => 0.039991125356448
927 => 0.039997965158591
928 => 0.040488077944778
929 => 0.040630359771697
930 => 0.040557994086171
1001 => 0.040608676531762
1002 => 0.041776632098705
1003 => 0.041610586166203
1004 => 0.041522377573979
1005 => 0.041546811956853
1006 => 0.041845249645457
1007 => 0.041928795904172
1008 => 0.041574804535304
1009 => 0.041741748911262
1010 => 0.042452576875695
1011 => 0.042701326433868
1012 => 0.043495215616996
1013 => 0.043157957381748
1014 => 0.04377700946874
1015 => 0.045679764533743
1016 => 0.047199816940303
1017 => 0.045801913928408
1018 => 0.048593296595549
1019 => 0.050766788401979
1020 => 0.050683366166309
1021 => 0.050304367596086
1022 => 0.047829904959734
1023 => 0.045552867549603
1024 => 0.047457706031293
1025 => 0.047462561856316
1026 => 0.047298934541422
1027 => 0.046282659341616
1028 => 0.047263570367373
1029 => 0.047341431522452
1030 => 0.04729784998056
1031 => 0.046518674167652
1101 => 0.045329016717104
1102 => 0.045561472935303
1103 => 0.045942240962693
1104 => 0.045221367650313
1105 => 0.044991004947753
1106 => 0.045419293040109
1107 => 0.046799326511047
1108 => 0.046538439177356
1109 => 0.046531626354744
1110 => 0.047647813001723
1111 => 0.046848864250641
1112 => 0.045564404952643
1113 => 0.045240062039961
1114 => 0.044088863203509
1115 => 0.044884000340276
1116 => 0.044912615910273
1117 => 0.04447712742657
1118 => 0.045599742442981
1119 => 0.045589397347972
1120 => 0.04665515322686
1121 => 0.048692478187666
1122 => 0.048089940946083
1123 => 0.047389255689988
1124 => 0.04746543960522
1125 => 0.048300989117393
1126 => 0.047795796808593
1127 => 0.047977467485163
1128 => 0.048300714137066
1129 => 0.048495736867921
1130 => 0.047437378835479
1201 => 0.047190624951
1202 => 0.046685853102201
1203 => 0.046554167548862
1204 => 0.046965293687299
1205 => 0.046856976475122
1206 => 0.04491021088242
1207 => 0.044706763046281
1208 => 0.044713002500959
1209 => 0.04420142324357
1210 => 0.043421142082963
1211 => 0.045471674384872
1212 => 0.045306987943848
1213 => 0.045125186858675
1214 => 0.045147456454266
1215 => 0.046037523027537
1216 => 0.0455212394656
1217 => 0.04689386393222
1218 => 0.046611693606751
1219 => 0.04632228667716
1220 => 0.04628228182394
1221 => 0.046170884847087
1222 => 0.045788863164466
1223 => 0.045327549026758
1224 => 0.045022949474697
1225 => 0.041531290986304
1226 => 0.042179322491706
1227 => 0.042924823668742
1228 => 0.043182167687646
1229 => 0.042741962935647
1230 => 0.045806245131155
1231 => 0.046366119016432
]
'min_raw' => 0.01932495767957
'max_raw' => 0.050766788401979
'avg_raw' => 0.035045873040775
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.019324'
'max' => '$0.050766'
'avg' => '$0.035045'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00074927215423615
'max_diff' => -0.0091552765407746
'year' => 2027
]
2 => [
'items' => [
101 => 0.044670224498257
102 => 0.044352991876824
103 => 0.045827042849003
104 => 0.044938009917376
105 => 0.045338341392051
106 => 0.044473043713413
107 => 0.04623126179249
108 => 0.046217867116548
109 => 0.045533880572631
110 => 0.046111981315812
111 => 0.046011522085324
112 => 0.045239302961826
113 => 0.046255742516087
114 => 0.046256246657425
115 => 0.045597924480054
116 => 0.044829148302141
117 => 0.044691709279213
118 => 0.044588167437771
119 => 0.045312876446287
120 => 0.045962648277216
121 => 0.047171712562478
122 => 0.047475700050451
123 => 0.048662183453605
124 => 0.047955690355855
125 => 0.04826886959547
126 => 0.048608869961981
127 => 0.048771878640786
128 => 0.048506264746201
129 => 0.050349361847352
130 => 0.050504975713725
131 => 0.050557151697065
201 => 0.049935669724626
202 => 0.050487691175819
203 => 0.050229418619835
204 => 0.050901372060323
205 => 0.051006742939723
206 => 0.050917497553549
207 => 0.050950943933837
208 => 0.049378185702614
209 => 0.049296629891364
210 => 0.048184610618041
211 => 0.048637766691551
212 => 0.047790613132459
213 => 0.048059254252696
214 => 0.04817766869879
215 => 0.048115815712111
216 => 0.048663387456038
217 => 0.048197839612183
218 => 0.046969182309099
219 => 0.045740190259153
220 => 0.045724761265082
221 => 0.045401189351843
222 => 0.045167306123723
223 => 0.045212360330912
224 => 0.045371137233559
225 => 0.0451580777215
226 => 0.04520354477079
227 => 0.045958600734355
228 => 0.046110021823035
229 => 0.045595433799661
301 => 0.043529288631116
302 => 0.043022251424223
303 => 0.043386699713553
304 => 0.043212516904729
305 => 0.034875873740781
306 => 0.036834444392974
307 => 0.035670728218216
308 => 0.036207022171551
309 => 0.035019169299965
310 => 0.035586074950989
311 => 0.035481388177325
312 => 0.038630711827733
313 => 0.038581539470685
314 => 0.038605075675861
315 => 0.037481631279569
316 => 0.039271308707702
317 => 0.040152968163518
318 => 0.039989796462853
319 => 0.040030863264514
320 => 0.039325199551153
321 => 0.038611908043111
322 => 0.037820757985916
323 => 0.039290617003082
324 => 0.039127193771703
325 => 0.039502027866663
326 => 0.040455336506987
327 => 0.040595714825543
328 => 0.040784384709257
329 => 0.040716759986382
330 => 0.04232785524069
331 => 0.042132740975045
401 => 0.042602910217045
402 => 0.041635736414424
403 => 0.040541287451779
404 => 0.040749306419346
405 => 0.040729272519986
406 => 0.0404742179873
407 => 0.040243966159449
408 => 0.039860661739128
409 => 0.041073493643404
410 => 0.041024254882982
411 => 0.041821373180424
412 => 0.041680474778557
413 => 0.040739520767202
414 => 0.040773127123799
415 => 0.040999146022578
416 => 0.041781400011891
417 => 0.042013626255832
418 => 0.041906049807023
419 => 0.042160675281974
420 => 0.042361920875458
421 => 0.042185948630084
422 => 0.044677344531958
423 => 0.043642743253983
424 => 0.044147000718159
425 => 0.044267263152107
426 => 0.043959213456395
427 => 0.044026018404962
428 => 0.044127209698783
429 => 0.044741623419576
430 => 0.046354022804978
501 => 0.047068143516799
502 => 0.049216610912407
503 => 0.047008845732722
504 => 0.0468778460836
505 => 0.047264849939049
506 => 0.048526227738642
507 => 0.049548455970019
508 => 0.049887588048128
509 => 0.049932409950711
510 => 0.050568644274318
511 => 0.050933321923543
512 => 0.050491388692809
513 => 0.050116896552099
514 => 0.048775512187755
515 => 0.048930781080396
516 => 0.050000429777942
517 => 0.05151137156522
518 => 0.052807916805403
519 => 0.052353911851454
520 => 0.055817649172534
521 => 0.056161064579821
522 => 0.056113615674484
523 => 0.056895967079348
524 => 0.055343158863785
525 => 0.05467930326739
526 => 0.050197866003587
527 => 0.051456967079265
528 => 0.053287144437177
529 => 0.053044913601044
530 => 0.051715789882948
531 => 0.052806908545877
601 => 0.052446150593478
602 => 0.052161605828559
603 => 0.053465160558369
604 => 0.052031848585866
605 => 0.053272846053824
606 => 0.051681253964692
607 => 0.052355985707841
608 => 0.051972975337328
609 => 0.052220829987036
610 => 0.050771876769346
611 => 0.05155369675426
612 => 0.050739350487588
613 => 0.050738964381426
614 => 0.050720987642454
615 => 0.05167906241383
616 => 0.051710305197729
617 => 0.051002286494111
618 => 0.050900249937589
619 => 0.051277532566576
620 => 0.05083583341851
621 => 0.051042501669869
622 => 0.050842093189307
623 => 0.050796977019084
624 => 0.050437483698866
625 => 0.050282604092041
626 => 0.050343336376633
627 => 0.050136025779682
628 => 0.050011113646267
629 => 0.050696139475126
630 => 0.050330157808629
701 => 0.050640047535819
702 => 0.050286889080485
703 => 0.049062688010483
704 => 0.048358637029433
705 => 0.046046234691699
706 => 0.046702029126154
707 => 0.047136821514667
708 => 0.046993122632857
709 => 0.047301843435069
710 => 0.047320796384999
711 => 0.047220428105163
712 => 0.047104214495087
713 => 0.047047648136718
714 => 0.047469247428055
715 => 0.047714000007056
716 => 0.047180458747625
717 => 0.047055457495576
718 => 0.047594897166481
719 => 0.047923955054109
720 => 0.050353533614696
721 => 0.050173542587492
722 => 0.050625284744318
723 => 0.050574425510008
724 => 0.05104792325853
725 => 0.051821891962286
726 => 0.050248197182498
727 => 0.050521336181998
728 => 0.050454368807021
729 => 0.051185501047229
730 => 0.051187783562277
731 => 0.050749433261508
801 => 0.050987070070976
802 => 0.050854427723156
803 => 0.051094130373356
804 => 0.050171138697588
805 => 0.051295242927879
806 => 0.051932537590777
807 => 0.051941386427789
808 => 0.05224345904012
809 => 0.052550382309114
810 => 0.053139494796564
811 => 0.05253395228158
812 => 0.051444640245499
813 => 0.051523285056048
814 => 0.050884621807858
815 => 0.050895357852444
816 => 0.050838048005045
817 => 0.051010039171173
818 => 0.050208881086651
819 => 0.050396911287757
820 => 0.050133667905106
821 => 0.050520763942294
822 => 0.050104312595547
823 => 0.050454336513325
824 => 0.050605395232762
825 => 0.051162805159544
826 => 0.050021982696145
827 => 0.047695768466382
828 => 0.0481847669001
829 => 0.047461499806634
830 => 0.047528440929806
831 => 0.047663672652215
901 => 0.047225342394822
902 => 0.047308961994558
903 => 0.047305974514034
904 => 0.04728023002084
905 => 0.047166203391774
906 => 0.047000842220148
907 => 0.047659590232422
908 => 0.047771524356255
909 => 0.048020340047832
910 => 0.048760646772667
911 => 0.048686672673221
912 => 0.048807327498573
913 => 0.048543938692278
914 => 0.047540658781113
915 => 0.047595141707214
916 => 0.046915738745698
917 => 0.0480029661866
918 => 0.047745496377893
919 => 0.04757950391728
920 => 0.047534211336492
921 => 0.048276353138507
922 => 0.048498413597318
923 => 0.04836004042131
924 => 0.048076233000328
925 => 0.048621227148745
926 => 0.048767044591405
927 => 0.048799687739276
928 => 0.049765312878008
929 => 0.048853655457774
930 => 0.04907310045992
1001 => 0.050785147723323
1002 => 0.049232557101789
1003 => 0.050054998980918
1004 => 0.050014744730716
1005 => 0.050435478166163
1006 => 0.04998023230872
1007 => 0.049985875626731
1008 => 0.050359458414456
1009 => 0.049834828765107
1010 => 0.049704923086044
1011 => 0.049525459320822
1012 => 0.049917311886635
1013 => 0.050152209777872
1014 => 0.052045314267755
1015 => 0.053268346104273
1016 => 0.053215251066733
1017 => 0.053700440320105
1018 => 0.053481858117636
1019 => 0.052775998526794
1020 => 0.053980814777955
1021 => 0.053599560504435
1022 => 0.05363099064352
1023 => 0.053629820812173
1024 => 0.053883321574237
1025 => 0.053703693051311
1026 => 0.053349626794135
1027 => 0.053584672499229
1028 => 0.054282674212981
1029 => 0.056449292949777
1030 => 0.057661761498768
1031 => 0.056376300820707
1101 => 0.057262994383429
1102 => 0.056731294207017
1103 => 0.056634668468253
1104 => 0.057191577551782
1105 => 0.057749461430939
1106 => 0.057713926639635
1107 => 0.057308931591021
1108 => 0.057080160164428
1109 => 0.058812494050641
1110 => 0.060088848148465
1111 => 0.060001809355779
1112 => 0.06038597028016
1113 => 0.061513878635791
1114 => 0.061617000440422
1115 => 0.061604009463267
1116 => 0.061348411310841
1117 => 0.062458983564368
1118 => 0.06338544247692
1119 => 0.061289247723495
1120 => 0.062087451244395
1121 => 0.062445790521438
1122 => 0.06297193889461
1123 => 0.063859639392858
1124 => 0.064823917584883
1125 => 0.064960277094008
1126 => 0.064863523496881
1127 => 0.064227556108051
1128 => 0.065282680811997
1129 => 0.065900748117849
1130 => 0.066268793054265
1201 => 0.067202093776179
1202 => 0.06244800350282
1203 => 0.059082822113718
1204 => 0.058557300446002
1205 => 0.059625969422422
1206 => 0.059907768909029
1207 => 0.059794175889324
1208 => 0.056006358286984
1209 => 0.058537358370232
1210 => 0.061260501647276
1211 => 0.061365108670897
1212 => 0.062728371133626
1213 => 0.063172305273507
1214 => 0.064269910242899
1215 => 0.064201254753218
1216 => 0.064468504096556
1217 => 0.064407068100636
1218 => 0.066440150178441
1219 => 0.068682941625869
1220 => 0.068605280889685
1221 => 0.068282853083613
1222 => 0.06876171335774
1223 => 0.071076514483625
1224 => 0.070863404689886
1225 => 0.071070422701854
1226 => 0.073799703685747
1227 => 0.0773481572005
1228 => 0.075699544283989
1229 => 0.07927655993723
1230 => 0.081528101681493
1231 => 0.085421910314434
]
'min_raw' => 0.034875873740781
'max_raw' => 0.085421910314434
'avg_raw' => 0.060148892027607
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.034875'
'max' => '$0.085421'
'avg' => '$0.060148'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.015550916061211
'max_diff' => 0.034655121912455
'year' => 2028
]
3 => [
'items' => [
101 => 0.084934386296178
102 => 0.086450217422894
103 => 0.084061616554167
104 => 0.078576906143686
105 => 0.0777089297266
106 => 0.079446640494271
107 => 0.083718632853253
108 => 0.079312100252156
109 => 0.080203536058278
110 => 0.079946802486145
111 => 0.079933122245133
112 => 0.080455241402982
113 => 0.079697880332618
114 => 0.0766122550853
115 => 0.078026378952442
116 => 0.077480317815533
117 => 0.078086213358488
118 => 0.081355981713488
119 => 0.079910339182201
120 => 0.078387472209952
121 => 0.080297485344386
122 => 0.082729588416243
123 => 0.082577391776915
124 => 0.08228206668336
125 => 0.083946798773011
126 => 0.086696448464377
127 => 0.087439667726966
128 => 0.087988296992161
129 => 0.088063943698664
130 => 0.08884315178981
131 => 0.084653153497995
201 => 0.091302788393893
202 => 0.092450996647958
203 => 0.09223518108455
204 => 0.093511366234954
205 => 0.093135880190012
206 => 0.092591859822848
207 => 0.094614884738604
208 => 0.092295649922382
209 => 0.0890037880843
210 => 0.087197807574284
211 => 0.089576068394166
212 => 0.091028389287003
213 => 0.091988281012211
214 => 0.092278743668277
215 => 0.084978411137993
216 => 0.081043936799174
217 => 0.083565889741517
218 => 0.08664284638707
219 => 0.084636060848469
220 => 0.084714723042235
221 => 0.081853574238153
222 => 0.08689599456961
223 => 0.086161356340747
224 => 0.08997266077164
225 => 0.089063062381579
226 => 0.092171033190987
227 => 0.091352600317425
228 => 0.094749869417613
301 => 0.096105132039067
302 => 0.098380828910272
303 => 0.10005484079248
304 => 0.10103785258846
305 => 0.10097883624742
306 => 0.10487401871762
307 => 0.10257716570225
308 => 0.099691776988257
309 => 0.099639589409705
310 => 0.10113397311096
311 => 0.10426579138463
312 => 0.10507782629689
313 => 0.10553164303301
314 => 0.10483660690418
315 => 0.10234353757293
316 => 0.10126704287585
317 => 0.10218424754682
318 => 0.10106258505052
319 => 0.10299888920204
320 => 0.10565784837433
321 => 0.10510878381992
322 => 0.10694422430496
323 => 0.10884371211302
324 => 0.11156006498987
325 => 0.11227022021813
326 => 0.11344407980567
327 => 0.11465236691403
328 => 0.11504043616898
329 => 0.11578138078751
330 => 0.11577747564363
331 => 0.11801036212289
401 => 0.12047330505625
402 => 0.12140300899633
403 => 0.12354081194238
404 => 0.11987989931482
405 => 0.12265674359636
406 => 0.12516152664722
407 => 0.1221752210339
408 => 0.1262911476019
409 => 0.12645095970364
410 => 0.12886393270233
411 => 0.12641792229847
412 => 0.1249654891286
413 => 0.12915860926805
414 => 0.13118752802149
415 => 0.13057640118106
416 => 0.12592569575039
417 => 0.1232187857116
418 => 0.11613428001612
419 => 0.12452618304028
420 => 0.12861363420818
421 => 0.12591511023932
422 => 0.12727608876545
423 => 0.13470114630524
424 => 0.13752812747951
425 => 0.13694013515735
426 => 0.13703949618062
427 => 0.13856488390892
428 => 0.14532929314258
429 => 0.141275902332
430 => 0.14437456772903
501 => 0.14601808868255
502 => 0.1475446825386
503 => 0.14379585051309
504 => 0.13891867512919
505 => 0.13737386895521
506 => 0.12564679521271
507 => 0.12503635009631
508 => 0.1246936887541
509 => 0.12253325746185
510 => 0.12083575025808
511 => 0.11948582950524
512 => 0.11594323432932
513 => 0.11713875620722
514 => 0.11149259889389
515 => 0.11510481025543
516 => 0.10609340685211
517 => 0.11359837138169
518 => 0.10951376039711
519 => 0.112256466818
520 => 0.11224689777367
521 => 0.10719670567695
522 => 0.10428386027038
523 => 0.10614003873309
524 => 0.10813000938874
525 => 0.10845287543255
526 => 0.11103292433115
527 => 0.11175296052078
528 => 0.10957121725092
529 => 0.10590666554634
530 => 0.10675785732778
531 => 0.1042666108961
601 => 0.099900797348985
602 => 0.10303640085832
603 => 0.10410703375915
604 => 0.10457988624078
605 => 0.10028661003426
606 => 0.098937569438614
607 => 0.098219351545038
608 => 0.10535245750073
609 => 0.10574322514706
610 => 0.10374400261946
611 => 0.11278067801825
612 => 0.1107354000615
613 => 0.11302047664446
614 => 0.10668062059539
615 => 0.10692281163421
616 => 0.10392142217988
617 => 0.10560199972139
618 => 0.10441422168259
619 => 0.10546622566383
620 => 0.1060967925126
621 => 0.10909768946846
622 => 0.11363263680452
623 => 0.10864945553435
624 => 0.10647821209446
625 => 0.10782523931303
626 => 0.11141255030525
627 => 0.11684751008953
628 => 0.11362990450848
629 => 0.11505782322686
630 => 0.11536975994315
701 => 0.11299721670991
702 => 0.1169349891427
703 => 0.11904527337984
704 => 0.12120998834534
705 => 0.12308954969596
706 => 0.12034535358502
707 => 0.12328203678879
708 => 0.12091558852092
709 => 0.11879263978572
710 => 0.11879585942263
711 => 0.11746410266971
712 => 0.11488365614877
713 => 0.11440778221915
714 => 0.11688333849726
715 => 0.11886850019624
716 => 0.11903200762206
717 => 0.12013109513991
718 => 0.12078152381147
719 => 0.12715660900768
720 => 0.12972072101107
721 => 0.13285606863265
722 => 0.13407746322977
723 => 0.13775342307289
724 => 0.13478478695271
725 => 0.13414250385451
726 => 0.12522582767239
727 => 0.12668593289769
728 => 0.1290237022426
729 => 0.12526437662784
730 => 0.12764880345292
731 => 0.12811953981726
801 => 0.12513663618197
802 => 0.12672993389724
803 => 0.12249860754534
804 => 0.11372486815611
805 => 0.11694475682274
806 => 0.11931567868419
807 => 0.11593208085535
808 => 0.12199704900023
809 => 0.11845401981635
810 => 0.11733104966045
811 => 0.11294994271452
812 => 0.11501765654873
813 => 0.1178142691163
814 => 0.11608628769065
815 => 0.1196721086066
816 => 0.12475058732708
817 => 0.12836981369194
818 => 0.12864765295212
819 => 0.12632073286885
820 => 0.1300496371525
821 => 0.13007679814926
822 => 0.12587057888429
823 => 0.12329429300483
824 => 0.12270895543246
825 => 0.12417124345042
826 => 0.12594673105749
827 => 0.12874618015755
828 => 0.13043782861833
829 => 0.13484875062304
830 => 0.13604221964648
831 => 0.13735348026603
901 => 0.13910572883155
902 => 0.14120975250176
903 => 0.13660626849346
904 => 0.13678917349508
905 => 0.13250247292613
906 => 0.12792151859315
907 => 0.13139789190786
908 => 0.13594278757428
909 => 0.13490018348674
910 => 0.13478286922842
911 => 0.13498015927065
912 => 0.13419406983691
913 => 0.13063861646194
914 => 0.12885309003535
915 => 0.13115687466203
916 => 0.13238123366145
917 => 0.13428010769423
918 => 0.13404603138932
919 => 0.13893732697357
920 => 0.14083793653251
921 => 0.14035167927567
922 => 0.14044116231336
923 => 0.14388212513487
924 => 0.14770918348038
925 => 0.15129372864577
926 => 0.1549400819478
927 => 0.15054426072261
928 => 0.14831233380102
929 => 0.1506151126674
930 => 0.14939322578694
1001 => 0.15641455023725
1002 => 0.15690069150824
1003 => 0.16392150823687
1004 => 0.17058509933566
1005 => 0.16639981715715
1006 => 0.17034634974223
1007 => 0.17461484649852
1008 => 0.18284946928005
1009 => 0.18007633802476
1010 => 0.17795216294371
1011 => 0.17594482775605
1012 => 0.18012177362607
1013 => 0.18549534775951
1014 => 0.1866527641604
1015 => 0.18852822089694
1016 => 0.18655640745841
1017 => 0.18893123955699
1018 => 0.19731544041909
1019 => 0.19504995533676
1020 => 0.19183260232496
1021 => 0.19845112367837
1022 => 0.20084634082732
1023 => 0.21765722916361
1024 => 0.23888167011134
1025 => 0.23009461219179
1026 => 0.22464020178453
1027 => 0.22592211761058
1028 => 0.23367256495203
1029 => 0.2361617626512
1030 => 0.22939526522695
1031 => 0.23178530650913
1101 => 0.2449546689576
1102 => 0.25201960938747
1103 => 0.24242447133562
1104 => 0.21595186599924
1105 => 0.19154291488806
1106 => 0.19801726787214
1107 => 0.19728327716631
1108 => 0.21143211420577
1109 => 0.19499592426679
1110 => 0.1952726675524
1111 => 0.20971408755796
1112 => 0.2058613642891
1113 => 0.19962044601305
1114 => 0.19158848049809
1115 => 0.17674064937681
1116 => 0.16358951129029
1117 => 0.18938192160418
1118 => 0.18826970597099
1119 => 0.18665905291301
1120 => 0.19024338700268
1121 => 0.20764789591115
1122 => 0.20724666564791
1123 => 0.20469424342267
1124 => 0.2066302331845
1125 => 0.19928105764743
1126 => 0.20117510752095
1127 => 0.1915390483855
1128 => 0.1958949495521
1129 => 0.19960705580537
1130 => 0.20035231609438
1201 => 0.20203142557947
1202 => 0.18768361887177
1203 => 0.19412536285405
1204 => 0.19790928393386
1205 => 0.18081339083507
1206 => 0.19757135309478
1207 => 0.18743385547797
1208 => 0.18399303652673
1209 => 0.18862564595116
1210 => 0.1868203135531
1211 => 0.18526819476992
1212 => 0.18440208582012
1213 => 0.18780376289898
1214 => 0.18764507059736
1215 => 0.18207926665928
1216 => 0.17481890231325
1217 => 0.17725571890111
1218 => 0.17637040058947
1219 => 0.17316189281972
1220 => 0.17532403965982
1221 => 0.16580303921347
1222 => 0.14942265280407
1223 => 0.16024403781092
1224 => 0.15982742625956
1225 => 0.15961735182354
1226 => 0.16774932357508
1227 => 0.16696762212767
1228 => 0.1655488263462
1229 => 0.17313583552256
1230 => 0.17036647511351
1231 => 0.17890099135081
]
'min_raw' => 0.0766122550853
'max_raw' => 0.25201960938747
'avg_raw' => 0.16431593223639
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.076612'
'max' => '$0.252019'
'avg' => '$0.164315'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.04173638134452
'max_diff' => 0.16659769907304
'year' => 2029
]
4 => [
'items' => [
101 => 0.1845223757226
102 => 0.18309661081318
103 => 0.18838354998536
104 => 0.17731185823362
105 => 0.18098943011438
106 => 0.1817473725821
107 => 0.17304221300702
108 => 0.16709551815193
109 => 0.16669894140238
110 => 0.15638819202869
111 => 0.16189611111866
112 => 0.16674285198465
113 => 0.16442163923212
114 => 0.16368681261893
115 => 0.16744088242128
116 => 0.16773260579635
117 => 0.16108128192917
118 => 0.16246430278119
119 => 0.1682317296422
120 => 0.16231897842199
121 => 0.15083146864353
122 => 0.14798240739123
123 => 0.14760229010156
124 => 0.13987541002341
125 => 0.14817279528743
126 => 0.14455076426358
127 => 0.15599271686931
128 => 0.14945713490534
129 => 0.14917539902938
130 => 0.14874951393119
131 => 0.14209866905453
201 => 0.14355478139928
202 => 0.14839512060538
203 => 0.15012220816445
204 => 0.14994205878243
205 => 0.14837140030264
206 => 0.14909043971161
207 => 0.14677416324537
208 => 0.14595623781601
209 => 0.14337464017284
210 => 0.13958040482195
211 => 0.14010801651889
212 => 0.13259064347307
213 => 0.12849477966052
214 => 0.12736109853983
215 => 0.12584509276544
216 => 0.12753233542598
217 => 0.13256934769974
218 => 0.12649364223582
219 => 0.11607727137912
220 => 0.11670331301624
221 => 0.11810984270142
222 => 0.11548878393822
223 => 0.11300817178763
224 => 0.11516486279414
225 => 0.11075130914557
226 => 0.11864319957385
227 => 0.11842974605453
228 => 0.12137135477497
301 => 0.12321080307574
302 => 0.11897147027091
303 => 0.11790528953487
304 => 0.11851263453734
305 => 0.10847457452437
306 => 0.12055103111634
307 => 0.12065546881443
308 => 0.1197612098374
309 => 0.12619155015385
310 => 0.13976157389502
311 => 0.13465598511065
312 => 0.1326789468161
313 => 0.12892059557297
314 => 0.13392837545563
315 => 0.13354385609418
316 => 0.13180491371705
317 => 0.13075319594154
318 => 0.13269101819035
319 => 0.13051307831998
320 => 0.13012186047347
321 => 0.12775150597287
322 => 0.12690539726041
323 => 0.12627897205427
324 => 0.12558933945357
325 => 0.12711049712497
326 => 0.12366335371662
327 => 0.11950643669379
328 => 0.11916083402181
329 => 0.12011507338485
330 => 0.11969289350147
331 => 0.11915881278695
401 => 0.11813910725471
402 => 0.11783658240585
403 => 0.11881964140044
404 => 0.11770982511145
405 => 0.11934741950068
406 => 0.11890208443904
407 => 0.11641447898584
408 => 0.11331400156165
409 => 0.1132864008091
410 => 0.11261840803386
411 => 0.11176761880121
412 => 0.11153094870011
413 => 0.11498323229307
414 => 0.12212935601236
415 => 0.12072640093402
416 => 0.12174017975874
417 => 0.1267269682026
418 => 0.12831211829094
419 => 0.12718701630457
420 => 0.12564690731236
421 => 0.12571466429184
422 => 0.13097768294091
423 => 0.1313059309583
424 => 0.13213530780143
425 => 0.13320129142671
426 => 0.1273685579254
427 => 0.12543994306845
428 => 0.12452605835375
429 => 0.12171164715037
430 => 0.12474674834384
501 => 0.12297832485439
502 => 0.12321694560107
503 => 0.12306154352676
504 => 0.12314640356757
505 => 0.11864099362964
506 => 0.12028252821365
507 => 0.11755315858686
508 => 0.11389883904272
509 => 0.11388658848224
510 => 0.1147809780136
511 => 0.11424896012288
512 => 0.11281731365839
513 => 0.11302067228149
514 => 0.11123903675913
515 => 0.11323699509145
516 => 0.11329428938739
517 => 0.11252496659992
518 => 0.11560309707598
519 => 0.11686420964354
520 => 0.11635782490433
521 => 0.11682868034032
522 => 0.12078470005148
523 => 0.12142970387765
524 => 0.12171617197067
525 => 0.12133234267577
526 => 0.11690098911847
527 => 0.11709753849231
528 => 0.11565538959965
529 => 0.11443692575527
530 => 0.11448565791904
531 => 0.11511210672427
601 => 0.11784784539743
602 => 0.1236050461545
603 => 0.12382352771477
604 => 0.12408833373937
605 => 0.12301123455646
606 => 0.12268637113644
607 => 0.12311494984181
608 => 0.12527705174693
609 => 0.13083856485183
610 => 0.12887275467959
611 => 0.12727452040989
612 => 0.12867660274528
613 => 0.12846076315963
614 => 0.12663885984348
615 => 0.12658772508543
616 => 0.12309091012401
617 => 0.1217982172514
618 => 0.12071794633066
619 => 0.1195383186864
620 => 0.1188389958774
621 => 0.11991347354855
622 => 0.12015921930479
623 => 0.11780985509817
624 => 0.117489645438
625 => 0.11940818696368
626 => 0.11856390836867
627 => 0.11943226984074
628 => 0.11963373715093
629 => 0.1196012962738
630 => 0.11871977245583
701 => 0.11928162944998
702 => 0.11795267016117
703 => 0.11650762653782
704 => 0.11558577873552
705 => 0.11478134426264
706 => 0.1152276912622
707 => 0.11363654570852
708 => 0.11312750622247
709 => 0.11909128494255
710 => 0.12349679240449
711 => 0.12343273458122
712 => 0.12304279905641
713 => 0.12246343396206
714 => 0.12523466758163
715 => 0.12426922520114
716 => 0.12497166519836
717 => 0.12515046565896
718 => 0.12569164080196
719 => 0.12588506440001
720 => 0.12530040394539
721 => 0.1233382120494
722 => 0.11844861640421
723 => 0.11617249643217
724 => 0.11542133892962
725 => 0.11544864207818
726 => 0.1146954993541
727 => 0.11491733363983
728 => 0.11461835444251
729 => 0.11405216017363
730 => 0.11519273036159
731 => 0.11532417045061
801 => 0.11505794773994
802 => 0.1151206528257
803 => 0.11291644248658
804 => 0.11308402381137
805 => 0.11215090969973
806 => 0.11197596205266
807 => 0.10961713083398
808 => 0.10543811941204
809 => 0.10775369740625
810 => 0.10495680480878
811 => 0.10389757920228
812 => 0.10891178848007
813 => 0.1084085009411
814 => 0.10754709144821
815 => 0.10627288727476
816 => 0.10580027255217
817 => 0.10292881510932
818 => 0.10275915408497
819 => 0.10418232592951
820 => 0.10352558109161
821 => 0.10260326261047
822 => 0.099262718565712
823 => 0.095506841043279
824 => 0.095620207377077
825 => 0.096814882136377
826 => 0.10028856012288
827 => 0.098931334038317
828 => 0.097946650941588
829 => 0.097762249397036
830 => 0.10007042079789
831 => 0.10333696690695
901 => 0.10486955725648
902 => 0.10335080676556
903 => 0.10160614797693
904 => 0.10171233727342
905 => 0.10241876708935
906 => 0.10249300287462
907 => 0.10135740935705
908 => 0.10167707228047
909 => 0.1011914750692
910 => 0.098211365879999
911 => 0.098157465154794
912 => 0.097426098299012
913 => 0.097403952801282
914 => 0.096159715331584
915 => 0.095985637908566
916 => 0.093515128892664
917 => 0.095141225408321
918 => 0.094050525239517
919 => 0.09240658281497
920 => 0.092123166521338
921 => 0.092114646685316
922 => 0.093802607976527
923 => 0.095121500597854
924 => 0.094069498435923
925 => 0.093829977935856
926 => 0.09638743023984
927 => 0.096061971122463
928 => 0.0957801256258
929 => 0.10304448353068
930 => 0.097294177404051
1001 => 0.094786715716843
1002 => 0.091683255724864
1003 => 0.092693757947256
1004 => 0.09290668561288
1005 => 0.08544342377288
1006 => 0.082415579373882
1007 => 0.081376537278055
1008 => 0.080778553862007
1009 => 0.081051062413703
1010 => 0.078325647323879
1011 => 0.080157171338446
1012 => 0.077797192244261
1013 => 0.077401534069084
1014 => 0.081621469034797
1015 => 0.082208648332773
1016 => 0.079703559025297
1017 => 0.081312231897817
1018 => 0.080728904752015
1019 => 0.07783764731228
1020 => 0.077727222544732
1021 => 0.076276491194086
1022 => 0.074006377547268
1023 => 0.072968874695392
1024 => 0.072428534202122
1025 => 0.072651489220671
1026 => 0.072538756340756
1027 => 0.071803098043854
1028 => 0.072580923413204
1029 => 0.070593901014148
1030 => 0.069802652684316
1031 => 0.069445264170553
1101 => 0.067681667422648
1102 => 0.070488334123598
1103 => 0.07104128282114
1104 => 0.071595320998432
1105 => 0.076417845073823
1106 => 0.076176925399328
1107 => 0.078354721924122
1108 => 0.07827009675588
1109 => 0.077648953909044
1110 => 0.075028454411281
1111 => 0.076072938805177
1112 => 0.07285817818968
1113 => 0.075266895425284
1114 => 0.074167657469391
1115 => 0.074895241966662
1116 => 0.073586979436919
1117 => 0.074311025937715
1118 => 0.071172407470372
1119 => 0.068241609707121
1120 => 0.069421048282374
1121 => 0.070703232898835
1122 => 0.073483335841887
1123 => 0.071827529464356
1124 => 0.072423020050687
1125 => 0.070428226270398
1126 => 0.066312396916989
1127 => 0.066335692064152
1128 => 0.065702561386346
1129 => 0.06515544404213
1130 => 0.072017718745181
1201 => 0.071164286409347
1202 => 0.069804453676659
1203 => 0.071624643826967
1204 => 0.072105930993011
1205 => 0.072119632562018
1206 => 0.073447596309776
1207 => 0.074156330800004
1208 => 0.074281248325738
1209 => 0.07637082797539
1210 => 0.077071227511731
1211 => 0.079956074077669
1212 => 0.074096199630161
1213 => 0.073975519372112
1214 => 0.071650257635126
1215 => 0.070175539880596
1216 => 0.071751232821455
1217 => 0.07314708166352
1218 => 0.071693630549563
1219 => 0.071883420581018
1220 => 0.06993228121185
1221 => 0.070629721726687
1222 => 0.071230451453448
1223 => 0.070898763807592
1224 => 0.070402211347881
1225 => 0.073032637976521
1226 => 0.072884218997408
1227 => 0.075333732747243
1228 => 0.077243303881649
1229 => 0.080665596731175
1230 => 0.077094255734534
1231 => 0.076964101873821
]
'min_raw' => 0.06515544404213
'max_raw' => 0.18838354998536
'avg_raw' => 0.12676949701374
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.065155'
'max' => '$0.188383'
'avg' => '$0.126769'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.011456811043171
'max_diff' => -0.063636059402113
'year' => 2030
]
5 => [
'items' => [
101 => 0.078236376739621
102 => 0.077071032733078
103 => 0.077807489918905
104 => 0.080546942092954
105 => 0.08060482240062
106 => 0.079635252672659
107 => 0.079576254266598
108 => 0.079762470738784
109 => 0.080853146432739
110 => 0.080472030832192
111 => 0.080913067453812
112 => 0.081464590502539
113 => 0.083745923673004
114 => 0.084295945376986
115 => 0.082959677789867
116 => 0.08308032779143
117 => 0.082580527032482
118 => 0.082097725761824
119 => 0.083182992510801
120 => 0.085166338825527
121 => 0.085154000531039
122 => 0.085614098325313
123 => 0.085900735439489
124 => 0.084670279114252
125 => 0.083869297291656
126 => 0.084176444690237
127 => 0.084667580069368
128 => 0.084017176106142
129 => 0.080002581548688
130 => 0.081220353084126
131 => 0.081017656354644
201 => 0.080728991563096
202 => 0.081953470258728
203 => 0.081835366301399
204 => 0.078297694252882
205 => 0.078524164539479
206 => 0.078311466661103
207 => 0.078998737020028
208 => 0.077033917878267
209 => 0.077638283013014
210 => 0.078017335159956
211 => 0.078240599786521
212 => 0.07904718471166
213 => 0.078952541280263
214 => 0.079041301543079
215 => 0.080237254056534
216 => 0.08628597146825
217 => 0.086615189811227
218 => 0.084993998284457
219 => 0.085641632322813
220 => 0.084398316591164
221 => 0.085232962771311
222 => 0.085804006490053
223 => 0.083223569730449
224 => 0.083070773012442
225 => 0.081822325674496
226 => 0.082493170558237
227 => 0.081425808112752
228 => 0.08168770152212
301 => 0.080955424718069
302 => 0.082273377170504
303 => 0.083747052801433
304 => 0.08411936146302
305 => 0.083139977663342
306 => 0.082430839247837
307 => 0.081185825794927
308 => 0.083256310914051
309 => 0.083861783859773
310 => 0.083253130622425
311 => 0.083112092367995
312 => 0.082844825130702
313 => 0.083168794375841
314 => 0.083858486324079
315 => 0.0835332403379
316 => 0.083748071041868
317 => 0.082929357930803
318 => 0.084670686446495
319 => 0.087436335202943
320 => 0.087445227215925
321 => 0.087119979476549
322 => 0.086986895109157
323 => 0.087320619027439
324 => 0.087501650563036
325 => 0.088580852520262
326 => 0.089738879217668
327 => 0.09514288452783
328 => 0.093625461461213
329 => 0.098420216458103
330 => 0.10221224513963
331 => 0.1033493087359
401 => 0.10230326373031
402 => 0.098724800272412
403 => 0.098549223783206
404 => 0.1038969589776
405 => 0.1023859788434
406 => 0.10220625256433
407 => 0.10029426860742
408 => 0.10142448792978
409 => 0.10117729238466
410 => 0.10078708212348
411 => 0.10294346185877
412 => 0.10698001222188
413 => 0.10635087799326
414 => 0.10588125847629
415 => 0.10382352245712
416 => 0.10506273915264
417 => 0.104621477823
418 => 0.1065174165265
419 => 0.10539430443873
420 => 0.10237453168279
421 => 0.10285544044748
422 => 0.10278275205515
423 => 0.1042786740185
424 => 0.10382963537617
425 => 0.10269507005342
426 => 0.10696621573157
427 => 0.10668887128859
428 => 0.10708208229897
429 => 0.10725518594619
430 => 0.10985495705445
501 => 0.11092000009411
502 => 0.11116178351032
503 => 0.11217349202461
504 => 0.11113661128084
505 => 0.11528487353936
506 => 0.11804322588347
507 => 0.12124719407466
508 => 0.12592905274746
509 => 0.12768947491805
510 => 0.12737147040986
511 => 0.13092120222226
512 => 0.13729999138304
513 => 0.12866080607581
514 => 0.1377578891819
515 => 0.13487785770139
516 => 0.12804935487065
517 => 0.12760967979111
518 => 0.13223402118863
519 => 0.14249036533198
520 => 0.13992126745056
521 => 0.14249456745576
522 => 0.13949267631082
523 => 0.13934360711355
524 => 0.1423487723032
525 => 0.14937050457183
526 => 0.1460347427767
527 => 0.14125211028103
528 => 0.14478353168983
529 => 0.14172428764791
530 => 0.13483095459296
531 => 0.13991930290983
601 => 0.13651686929816
602 => 0.13750988030936
603 => 0.1446612896873
604 => 0.14380081319066
605 => 0.14491434945529
606 => 0.14294898709454
607 => 0.14111302874041
608 => 0.13768607613236
609 => 0.13667152441184
610 => 0.13695191000765
611 => 0.13667138546667
612 => 0.13475403697778
613 => 0.13433998575416
614 => 0.13364988224146
615 => 0.1338637741765
616 => 0.13256617767571
617 => 0.13501501036981
618 => 0.13546953529688
619 => 0.13725159151594
620 => 0.13743661050435
621 => 0.14239961170847
622 => 0.13966607404509
623 => 0.14149996711197
624 => 0.1413359264548
625 => 0.12819734923282
626 => 0.13000772925136
627 => 0.13282411243166
628 => 0.13155533562646
629 => 0.12976158207194
630 => 0.12831302990169
701 => 0.12611832524169
702 => 0.12920732990506
703 => 0.13326904255838
704 => 0.13753962224009
705 => 0.14267044390819
706 => 0.14152530424122
707 => 0.13744370509793
708 => 0.13762680265389
709 => 0.13875863969859
710 => 0.13729280788746
711 => 0.13686050546992
712 => 0.13869924798487
713 => 0.13871191039402
714 => 0.13702529374362
715 => 0.1351509279843
716 => 0.13514307432333
717 => 0.13480954904069
718 => 0.13955200971767
719 => 0.14215988357316
720 => 0.14245887210789
721 => 0.14213975926256
722 => 0.14226257313159
723 => 0.14074510879566
724 => 0.14421358227752
725 => 0.14739659654096
726 => 0.14654348072318
727 => 0.14526453883476
728 => 0.14424580001845
729 => 0.14630349823404
730 => 0.14621187217162
731 => 0.14736879568817
801 => 0.14731631095474
802 => 0.14692728109022
803 => 0.14654349461666
804 => 0.14806516460308
805 => 0.14762694808426
806 => 0.14718805089415
807 => 0.14630777538759
808 => 0.14642741944876
809 => 0.14514869838769
810 => 0.14455710351455
811 => 0.13566093605706
812 => 0.13328358942176
813 => 0.13403155106857
814 => 0.13427779946352
815 => 0.13324317516119
816 => 0.13472656063756
817 => 0.13449537658236
818 => 0.13539477850299
819 => 0.13483287123047
820 => 0.13485593210094
821 => 0.13650838157815
822 => 0.13698809469141
823 => 0.13674410873024
824 => 0.13691498813409
825 => 0.14085283187209
826 => 0.14029299641771
827 => 0.13999559499049
828 => 0.14007797721831
829 => 0.14108418072169
830 => 0.14136586276596
831 => 0.14017235615094
901 => 0.14073522077016
902 => 0.14313182688067
903 => 0.14397050338319
904 => 0.14664715619168
905 => 0.14551006650493
906 => 0.14759724383705
907 => 0.15401251538483
908 => 0.15913747820021
909 => 0.15442435059714
910 => 0.16383569214752
911 => 0.17116377152125
912 => 0.17088250762933
913 => 0.16960468748899
914 => 0.16126186394907
915 => 0.15358467334314
916 => 0.16000696927573
917 => 0.16002334102882
918 => 0.15947166011256
919 => 0.15604521732235
920 => 0.1593524273307
921 => 0.15961494165114
922 => 0.15946800343989
923 => 0.15684095778635
924 => 0.1528299446326
925 => 0.15361368700183
926 => 0.15489747299055
927 => 0.1524669982881
928 => 0.15169031435301
929 => 0.1531343175585
930 => 0.15778719675663
1001 => 0.15690759689652
1002 => 0.15688462698943
1003 => 0.16064792819938
1004 => 0.15795421670429
1005 => 0.153623572503
1006 => 0.152530027728
1007 => 0.14864868047676
1008 => 0.15132954084807
1009 => 0.15142602024019
1010 => 0.14995774041255
1011 => 0.15374271531886
1012 => 0.15370783610877
1013 => 0.15730110646314
1014 => 0.16417008980998
1015 => 0.16213859343218
1016 => 0.15977618417097
1017 => 0.16003304356017
1018 => 0.16285015707666
1019 => 0.16114686593614
1020 => 0.16175938130604
1021 => 0.16284922996129
1022 => 0.16350676271442
1023 => 0.15993843471584
1024 => 0.15910648676652
1025 => 0.15740461323625
1026 => 0.15696062619917
1027 => 0.15834676667882
1028 => 0.1579815676355
1029 => 0.15141791152087
1030 => 0.15073197293706
1031 => 0.15075300969413
1101 => 0.14902818451052
1102 => 0.14639741210004
1103 => 0.15331092491952
1104 => 0.15275567308557
1105 => 0.15214271803396
1106 => 0.15221780153031
1107 => 0.15521872312455
1108 => 0.15347803704972
1109 => 0.15810593627251
1110 => 0.15715457931969
1111 => 0.15617882365082
1112 => 0.15604394449514
1113 => 0.15566836181019
1114 => 0.15438034903534
1115 => 0.15282499621213
1116 => 0.15179801755589
1117 => 0.14002564718246
1118 => 0.14221053064704
1119 => 0.14472403991465
1120 => 0.14559169324157
1121 => 0.14410751218609
1122 => 0.1544389535496
1123 => 0.15632660744295
1124 => 0.15060878067135
1125 => 0.14953920873972
1126 => 0.15450907450737
1127 => 0.15151163790809
1128 => 0.15286138342521
1129 => 0.14994397188853
1130 => 0.155871926897
1201 => 0.15582676581188
1202 => 0.15352065742465
1203 => 0.15546976444199
1204 => 0.15513105913256
1205 => 0.15252746844306
1206 => 0.1559544653658
1207 => 0.15595616511352
1208 => 0.15373658592993
1209 => 0.15114460337185
1210 => 0.15068121811036
1211 => 0.15033211956288
1212 => 0.15277552658266
1213 => 0.15496627767626
1214 => 0.15904272232819
1215 => 0.16006763736762
1216 => 0.16406794899898
1217 => 0.16168595819415
1218 => 0.16274186386599
1219 => 0.16388819883974
1220 => 0.16443779398124
1221 => 0.16354225819108
1222 => 0.16975638874853
1223 => 0.17028105176362
1224 => 0.17045696673427
1225 => 0.1683615968737
1226 => 0.17022277573731
1227 => 0.16935199178279
1228 => 0.17161752972169
1229 => 0.17197279499835
1230 => 0.17167189794795
1231 => 0.17178466475424
]
'min_raw' => 0.077033917878267
'max_raw' => 0.17197279499835
'avg_raw' => 0.12450335643831
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.077033'
'max' => '$0.171972'
'avg' => '$0.1245033'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.011878473836137
'max_diff' => -0.016410754987013
'year' => 2031
]
6 => [
'items' => [
101 => 0.1664820005712
102 => 0.16620702945952
103 => 0.16245777884081
104 => 0.163985626181
105 => 0.16112938881014
106 => 0.16203513110294
107 => 0.16243437367538
108 => 0.16222583201236
109 => 0.16407200837725
110 => 0.16250238131818
111 => 0.15835987743871
112 => 0.15421624493684
113 => 0.15416422500611
114 => 0.15307327970955
115 => 0.15228472607674
116 => 0.15243662948186
117 => 0.15297195689459
118 => 0.15225361187434
119 => 0.15240690720543
120 => 0.15495263110291
121 => 0.15546315787528
122 => 0.15372818842709
123 => 0.14676203573769
124 => 0.14505252439444
125 => 0.14628128724688
126 => 0.14569401774588
127 => 0.11758644327279
128 => 0.1241899009697
129 => 0.12026635063843
130 => 0.12207450314495
131 => 0.11806957425516
201 => 0.11998093623767
202 => 0.11962797747127
203 => 0.13024614203737
204 => 0.13008035400248
205 => 0.13015970796148
206 => 0.126371936743
207 => 0.13240595914323
208 => 0.13537853555402
209 => 0.13482839077294
210 => 0.13496685036193
211 => 0.13258765588447
212 => 0.13018274376468
213 => 0.12751532611051
214 => 0.13247105840917
215 => 0.13192006557473
216 => 0.13318384489597
217 => 0.13639799153471
218 => 0.13687128683662
219 => 0.13750740052207
220 => 0.13727939904749
221 => 0.14271131918047
222 => 0.1420534778114
223 => 0.14363868623697
224 => 0.14037779223552
225 => 0.13668778114597
226 => 0.13738913161854
227 => 0.13732158592813
228 => 0.13646165176384
229 => 0.13568534165057
301 => 0.134393004036
302 => 0.13848215147849
303 => 0.13831613955998
304 => 0.14100367955283
305 => 0.14052863075372
306 => 0.13735613860913
307 => 0.13746944478672
308 => 0.13823148328409
309 => 0.14086890722429
310 => 0.14165187421925
311 => 0.14128917271134
312 => 0.14214766027752
313 => 0.14282617384647
314 => 0.1422328711352
315 => 0.15063278636208
316 => 0.14714455591984
317 => 0.14884469516643
318 => 0.14925016835895
319 => 0.14821155730251
320 => 0.14843679485078
321 => 0.14877796836284
322 => 0.15084950711949
323 => 0.15628582422151
324 => 0.15869353205973
325 => 0.16593723988522
326 => 0.15849360544067
327 => 0.15805193097756
328 => 0.15935674149595
329 => 0.16360956481386
330 => 0.16705607866564
331 => 0.16819948614444
401 => 0.16835060631836
402 => 0.17049571476086
403 => 0.1717252509162
404 => 0.17023524217399
405 => 0.16897261577538
406 => 0.16445004473853
407 => 0.1649735446506
408 => 0.16857993991486
409 => 0.17367418564125
410 => 0.17804557844043
411 => 0.17651486904058
412 => 0.18819310124902
413 => 0.18935095027118
414 => 0.18919097297406
415 => 0.19182872535759
416 => 0.18659332404521
417 => 0.18435508855305
418 => 0.16924560993418
419 => 0.17349075711846
420 => 0.17966132785956
421 => 0.17884462968352
422 => 0.17436339627151
423 => 0.17804217902304
424 => 0.17682585839921
425 => 0.17586649585801
426 => 0.18026152164085
427 => 0.17542901025491
428 => 0.17961311986181
429 => 0.17424695601189
430 => 0.17652186119218
501 => 0.17523051498706
502 => 0.17606617424321
503 => 0.17118092730709
504 => 0.17381688797115
505 => 0.17107126267723
506 => 0.17106996089335
507 => 0.17100935106281
508 => 0.17423956704515
509 => 0.17434490427236
510 => 0.17195776978083
511 => 0.17161374640655
512 => 0.17288578113121
513 => 0.17139656161505
514 => 0.17209335805363
515 => 0.17141766686934
516 => 0.17126555455152
517 => 0.17005349772338
518 => 0.16953131031563
519 => 0.16973607345332
520 => 0.16903711130174
521 => 0.16861596132284
522 => 0.17092557373181
523 => 0.1696916409912
524 => 0.17073645584223
525 => 0.16954575745333
526 => 0.16541827807483
527 => 0.16304452103695
528 => 0.15524809510851
529 => 0.15745915183038
530 => 0.15892508472448
531 => 0.15844059391173
601 => 0.15948146765058
602 => 0.15954536884452
603 => 0.15920697018157
604 => 0.15881514788142
605 => 0.15862443045484
606 => 0.16004588190071
607 => 0.16087108230889
608 => 0.15907221070206
609 => 0.15865076025347
610 => 0.1604695187664
611 => 0.16157896040862
612 => 0.1697704541534
613 => 0.16916360183861
614 => 0.17068668205998
615 => 0.17051520660062
616 => 0.17211163731832
617 => 0.17472112683981
618 => 0.16941530501789
619 => 0.17033621222466
620 => 0.17011042704441
621 => 0.17257549043829
622 => 0.17258318609714
623 => 0.17110525745346
624 => 0.17190646654785
625 => 0.17145925361138
626 => 0.17226742783203
627 => 0.16915549695596
628 => 0.17294549285084
629 => 0.17509417630129
630 => 0.17512401077309
701 => 0.17614246967559
702 => 0.17717728290571
703 => 0.17916351678766
704 => 0.17712188792077
705 => 0.17344919633778
706 => 0.17371435280735
707 => 0.17156105507604
708 => 0.17159725239993
709 => 0.17140402824817
710 => 0.17198390847282
711 => 0.16928274805578
712 => 0.16991670500665
713 => 0.16902916156298
714 => 0.17033428287854
715 => 0.16893018808728
716 => 0.17011031816396
717 => 0.17061962318312
718 => 0.17249896966839
719 => 0.16865260708336
720 => 0.16080961339662
721 => 0.16245830575668
722 => 0.16001976025416
723 => 0.16024545692462
724 => 0.1607014001183
725 => 0.15922353905226
726 => 0.1595054683709
727 => 0.15949539587173
728 => 0.15940859651551
729 => 0.15902414777453
730 => 0.15846662103924
731 => 0.16068763595494
801 => 0.16106502966844
802 => 0.16190392914434
803 => 0.16439992495369
804 => 0.1641505161127
805 => 0.16455731228023
806 => 0.16366927853058
807 => 0.16028665026332
808 => 0.16047034325255
809 => 0.1581796887334
810 => 0.16184535195819
811 => 0.16097727452217
812 => 0.16041761935199
813 => 0.16026491225364
814 => 0.16276709515382
815 => 0.16351578749446
816 => 0.16304925267065
817 => 0.16209237613601
818 => 0.16392986195767
819 => 0.16442149564625
820 => 0.16453155429836
821 => 0.1677872268714
822 => 0.16471351022919
823 => 0.16545338437508
824 => 0.17122567125497
825 => 0.16599100357605
826 => 0.16876392379259
827 => 0.16862820377757
828 => 0.17004673592985
829 => 0.16851184273724
830 => 0.16853086957791
831 => 0.16979043002945
901 => 0.16802160453819
902 => 0.16758361847151
903 => 0.1669785438573
904 => 0.16829970214121
905 => 0.16909167678157
906 => 0.17547441074154
907 => 0.17959794796772
908 => 0.17941893434167
909 => 0.18105478378425
910 => 0.1803178186277
911 => 0.17793796373564
912 => 0.18200008584401
913 => 0.18071466044251
914 => 0.18082062935082
915 => 0.18081668518276
916 => 0.18167138070092
917 => 0.18106575059461
918 => 0.17987199148842
919 => 0.18066446449351
920 => 0.18301782600435
921 => 0.19032273234395
922 => 0.19441065470872
923 => 0.19007663428464
924 => 0.19306618353833
925 => 0.19127351927143
926 => 0.190947738847
927 => 0.19282539670426
928 => 0.19470634115305
929 => 0.19458653312321
930 => 0.19322106404096
1001 => 0.19244974520389
1002 => 0.19829042984894
1003 => 0.20259374680195
1004 => 0.20230028943556
1005 => 0.20359551481337
1006 => 0.20739833658243
1007 => 0.20774601894648
1008 => 0.20770221895999
1009 => 0.2068404519438
1010 => 0.21058482383424
1011 => 0.21370844474121
1012 => 0.20664097777839
1013 => 0.20933217667789
1014 => 0.2105403425689
1015 => 0.21231428854355
1016 => 0.21530723275066
1017 => 0.21855836399883
1018 => 0.21901810960416
1019 => 0.21869189809633
1020 => 0.21654768964306
1021 => 0.22010511624887
1022 => 0.22218897332263
1023 => 0.22342986252184
1024 => 0.22657655106674
1025 => 0.21054780379013
1026 => 0.19920185978731
1027 => 0.19743002679386
1028 => 0.20103311885994
1029 => 0.20198322550365
1030 => 0.2016002387069
1031 => 0.18882934720363
1101 => 0.19736279069309
1102 => 0.20654405837543
1103 => 0.206896748259
1104 => 0.21149308283204
1105 => 0.21298983777914
1106 => 0.21669048956577
1107 => 0.21645901278894
1108 => 0.21736006260876
1109 => 0.21715292685919
1110 => 0.22400760502977
1111 => 0.23156933298147
1112 => 0.23130749438733
1113 => 0.23022040652796
1114 => 0.23183491737514
1115 => 0.23963943098531
1116 => 0.23892091643687
1117 => 0.23961889211776
1118 => 0.24882085350727
1119 => 0.26078471227737
1120 => 0.25522629872687
1121 => 0.26728645674103
1122 => 0.27487768692944
1123 => 0.28800593459244
1124 => 0.28636221332705
1125 => 0.29147294380272
1126 => 0.28341960920702
1127 => 0.26492752512783
1128 => 0.26200108203745
1129 => 0.26785989521374
1130 => 0.28226321571303
1201 => 0.26740628339415
1202 => 0.27041182145255
1203 => 0.26954622628954
1204 => 0.26950010240185
1205 => 0.27126046359573
1206 => 0.26870696786974
1207 => 0.25830356691693
1208 => 0.26307138426597
1209 => 0.26123030101811
1210 => 0.26327312014346
1211 => 0.27429737244028
1212 => 0.26942328771451
1213 => 0.26428883539439
1214 => 0.27072857803
1215 => 0.27892858334077
1216 => 0.27841544174525
1217 => 0.27741973257339
1218 => 0.28303249304153
1219 => 0.29230312895039
1220 => 0.29480894458412
1221 => 0.29665868645579
1222 => 0.29691373460825
1223 => 0.29954088909012
1224 => 0.28541401731293
1225 => 0.30783372562713
1226 => 0.31170498992105
1227 => 0.31097735268126
1228 => 0.31528010001625
1229 => 0.31401412260013
1230 => 0.31217991994995
1231 => 0.31900068969651
]
'min_raw' => 0.11758644327279
'max_raw' => 0.31900068969651
'avg_raw' => 0.21829356648465
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.117586'
'max' => '$0.31900068'
'avg' => '$0.218293'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.040552525394522
'max_diff' => 0.14702789469816
'year' => 2032
]
7 => [
'items' => [
101 => 0.31118122758981
102 => 0.30008248557226
103 => 0.29399349619321
104 => 0.30201196859231
105 => 0.30690856988032
106 => 0.31014491184936
107 => 0.31112422697374
108 => 0.28651064615494
109 => 0.27324529122539
110 => 0.28174823164763
111 => 0.29212240580436
112 => 0.28535638825168
113 => 0.28562160332998
114 => 0.27597504037799
115 => 0.29297591257604
116 => 0.29049902849663
117 => 0.30334910748216
118 => 0.30028233300394
119 => 0.31076107357945
120 => 0.30800167000508
121 => 0.31945579996611
122 => 0.32402516251576
123 => 0.33169783340111
124 => 0.33734188133776
125 => 0.3406561742396
126 => 0.34045719652537
127 => 0.35359007617661
128 => 0.34584607587414
129 => 0.33611778637351
130 => 0.3359418323088
131 => 0.34098025129211
201 => 0.35153939525838
202 => 0.35427722765954
203 => 0.35580730246982
204 => 0.35346393963558
205 => 0.34505838232476
206 => 0.34142890529508
207 => 0.34452132488044
208 => 0.34073956146219
209 => 0.34726794609749
210 => 0.35623281258946
211 => 0.35438160310979
212 => 0.36056991885149
213 => 0.36697417461434
214 => 0.37613254798834
215 => 0.37852688592189
216 => 0.38248463547753
217 => 0.38655845982328
218 => 0.38786686241049
219 => 0.39036500892296
220 => 0.39035184245772
221 => 0.39788017511769
222 => 0.4061841591747
223 => 0.40931872091855
224 => 0.41652647280778
225 => 0.40418345028722
226 => 0.41354577465549
227 => 0.42199082558984
228 => 0.41192228771732
301 => 0.42579942150614
302 => 0.4263382391649
303 => 0.43447374609837
304 => 0.42622685124676
305 => 0.42132987140889
306 => 0.43546726871337
307 => 0.44230790994516
308 => 0.44024745313516
309 => 0.42456727507375
310 => 0.41544073888754
311 => 0.39155483331086
312 => 0.41984872026077
313 => 0.43362984725007
314 => 0.42453158528413
315 => 0.42912021940546
316 => 0.45415431930182
317 => 0.46368568370442
318 => 0.46170322653794
319 => 0.46203822916505
320 => 0.46718118039019
321 => 0.48998785839745
322 => 0.47632156828084
323 => 0.48676893500886
324 => 0.49231018065062
325 => 0.49745719841967
326 => 0.48481774951057
327 => 0.46837401219022
328 => 0.46316559031973
329 => 0.42362694243876
330 => 0.42156878410891
331 => 0.42041347746979
401 => 0.41312943253147
402 => 0.40740616847779
403 => 0.40285481641112
404 => 0.39091070943943
405 => 0.39494149491944
406 => 0.37590508133541
407 => 0.3880839041374
408 => 0.35770132840702
409 => 0.38300484029839
410 => 0.36923328918543
411 => 0.3784805153731
412 => 0.37844825267208
413 => 0.36142117742483
414 => 0.35160031576822
415 => 0.35785855104947
416 => 0.3645678760503
417 => 0.36565644145881
418 => 0.37435525645369
419 => 0.37678290873836
420 => 0.36942700897956
421 => 0.35707171705673
422 => 0.3599415695762
423 => 0.35154215829851
424 => 0.33682251311304
425 => 0.34739441926559
426 => 0.35100413283997
427 => 0.35259838799527
428 => 0.33812330751803
429 => 0.3335749229628
430 => 0.33115340119023
501 => 0.3552031659374
502 => 0.35652066633952
503 => 0.34978014800647
504 => 0.38024793003403
505 => 0.37335213260607
506 => 0.38105642784449
507 => 0.35968116054043
508 => 0.36049772453706
509 => 0.35037833044146
510 => 0.35604451495684
511 => 0.35203983837102
512 => 0.35558674324232
513 => 0.35771274339774
514 => 0.36783047700034
515 => 0.38312036856379
516 => 0.3663192249968
517 => 0.35899872614785
518 => 0.36354032246169
519 => 0.37563519193001
520 => 0.39395953829948
521 => 0.38311115643691
522 => 0.38792548409005
523 => 0.38897720050773
524 => 0.3809780053512
525 => 0.39425448003484
526 => 0.40136945067568
527 => 0.40866793831747
528 => 0.41500501063785
529 => 0.40575276185616
530 => 0.41565399431034
531 => 0.40767534875508
601 => 0.4005176788748
602 => 0.40052853410545
603 => 0.39603842323267
604 => 0.3873382676263
605 => 0.38573382544815
606 => 0.3940803362776
607 => 0.4007734475453
608 => 0.40132472424715
609 => 0.40503037454942
610 => 0.40722334022707
611 => 0.42871738506033
612 => 0.43736246770034
613 => 0.44793351110949
614 => 0.45205152826872
615 => 0.46444528352713
616 => 0.45443631958438
617 => 0.45227081727603
618 => 0.42220762098556
619 => 0.42713046769395
620 => 0.43501242025814
621 => 0.42233759148024
622 => 0.43037685299639
623 => 0.43196397351452
624 => 0.42190690564845
625 => 0.42727882013597
626 => 0.41301260791876
627 => 0.38343133300507
628 => 0.39428741245007
629 => 0.40228114103842
630 => 0.39087310472322
701 => 0.41132156826624
702 => 0.39937599800638
703 => 0.39558982572249
704 => 0.38081861777519
705 => 0.38779005933038
706 => 0.39721903385521
707 => 0.39139302383481
708 => 0.40348286940695
709 => 0.42060531498113
710 => 0.43280778935656
711 => 0.43374454382038
712 => 0.42589917029927
713 => 0.43847143143535
714 => 0.43856300663228
715 => 0.42438144471158
716 => 0.41569531699842
717 => 0.41372181050622
718 => 0.41865201665247
719 => 0.42463819708029
720 => 0.43407673517242
721 => 0.43978024606509
722 => 0.45465197756471
723 => 0.45867584170255
724 => 0.46309684843066
725 => 0.4690046768074
726 => 0.47609853950978
727 => 0.4605775717708
728 => 0.46119424875378
729 => 0.44674133849767
730 => 0.43129633113203
731 => 0.44301716647521
801 => 0.45834059952902
802 => 0.45482538705558
803 => 0.45442985384305
804 => 0.45509503099477
805 => 0.45244467558591
806 => 0.44045721629838
807 => 0.43443718928965
808 => 0.4422045600036
809 => 0.44633257185216
810 => 0.45273475822882
811 => 0.45194555362414
812 => 0.4684368981858
813 => 0.47484493601009
814 => 0.47320548571923
815 => 0.47350718402833
816 => 0.48510863042141
817 => 0.49801182482996
818 => 0.51009736912002
819 => 0.52239130385808
820 => 0.50757048569091
821 => 0.50004538824661
822 => 0.50780936796949
823 => 0.5036896910426
824 => 0.52736257664005
825 => 0.52900163587649
826 => 0.55267280965486
827 => 0.57513957228147
828 => 0.56102860120956
829 => 0.57433461135828
830 => 0.58872614618904
831 => 0.61648975181997
901 => 0.6071399461789
902 => 0.59997814158797
903 => 0.59321027085513
904 => 0.60729313548094
905 => 0.6254105158428
906 => 0.62931282604663
907 => 0.63563605937407
908 => 0.62898795269845
909 => 0.6369948649243
910 => 0.66526278349707
911 => 0.65762454237089
912 => 0.64677701206318
913 => 0.66909181889662
914 => 0.67716746074303
915 => 0.73384654446758
916 => 0.805406228966
917 => 0.77578004969743
918 => 0.7573901241946
919 => 0.76171219290263
920 => 0.78784336723326
921 => 0.79623587106624
922 => 0.77342215257864
923 => 0.78148034362885
924 => 0.8258817685794
925 => 0.8497017084971
926 => 0.81735103064412
927 => 0.72809679349425
928 => 0.64580031064437
929 => 0.66762904375508
930 => 0.66515434284478
1001 => 0.71285813476357
1002 => 0.65744237284617
1003 => 0.65837543215521
1004 => 0.70706568797169
1005 => 0.69407596248216
1006 => 0.67303427078747
1007 => 0.64595393827987
1008 => 0.595893439012
1009 => 0.55155345877014
1010 => 0.63851437091202
1011 => 0.6347644582523
1012 => 0.62933402901512
1013 => 0.64141886164866
1014 => 0.70009937857758
1015 => 0.69874660273207
1016 => 0.69014093299524
1017 => 0.69666825764373
1018 => 0.67188999921744
1019 => 0.67827592060435
1020 => 0.64578727446102
1021 => 0.66047349936352
1022 => 0.6729891247674
1023 => 0.67550182186423
1024 => 0.68116305672488
1025 => 0.63278842467798
1026 => 0.65450721426246
1027 => 0.66726496836796
1028 => 0.60962497118824
1029 => 0.66612561095044
1030 => 0.63194632995789
1031 => 0.62034536863344
1101 => 0.63596453474637
1102 => 0.62987773052203
1103 => 0.62464465367907
1104 => 0.62172450688503
1105 => 0.63319349865391
1106 => 0.63265845647948
1107 => 0.61389295991022
1108 => 0.58941413461511
1109 => 0.5976300318742
1110 => 0.59464511937553
1111 => 0.58382741141896
1112 => 0.59111724044665
1113 => 0.55901652270675
1114 => 0.50378890628538
1115 => 0.54027396136098
1116 => 0.53886932642867
1117 => 0.53816104580068
1118 => 0.56557855631714
1119 => 0.56294299531057
1120 => 0.55815942627616
1121 => 0.58373955742232
1122 => 0.57440246545266
1123 => 0.60317718280762
1124 => 0.62213007268963
1125 => 0.61732300675379
1126 => 0.63514829129509
1127 => 0.59781930955327
1128 => 0.6102184999091
1129 => 0.6127739558569
1130 => 0.58342390257468
1201 => 0.56337420568578
1202 => 0.56203711948656
1203 => 0.52727370809963
1204 => 0.54584404186208
1205 => 0.56218516708041
1206 => 0.55435903622337
1207 => 0.55188151699304
1208 => 0.56453862543243
1209 => 0.56552219115897
1210 => 0.54309678836016
1211 => 0.54775973972218
1212 => 0.56720502205297
1213 => 0.5472697684989
1214 => 0.50853882724853
1215 => 0.49893301832128
1216 => 0.4976514263402
1217 => 0.47159971068319
1218 => 0.49957492440576
1219 => 0.48736299392674
1220 => 0.52594033598858
1221 => 0.50390516509729
1222 => 0.50295527292131
1223 => 0.50151937157842
1224 => 0.4790955837296
1225 => 0.48400496816243
1226 => 0.50032450973752
1227 => 0.5061475060243
1228 => 0.50554011980519
1229 => 0.50024453508071
1230 => 0.50266882664979
1231 => 0.49485933882659
]
'min_raw' => 0.27324529122539
'max_raw' => 0.8497017084971
'avg_raw' => 0.56147349986125
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.273245'
'max' => '$0.8497017'
'avg' => '$0.561473'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.1556588479526
'max_diff' => 0.5307010188006
'year' => 2033
]
8 => [
'items' => [
101 => 0.49210164613578
102 => 0.48339760944046
103 => 0.47060508004985
104 => 0.47238395972276
105 => 0.44703861165256
106 => 0.43322912084448
107 => 0.42940683579497
108 => 0.42429551648247
109 => 0.42998417291202
110 => 0.44696681146595
111 => 0.42648214630215
112 => 0.391362624711
113 => 0.39347336779938
114 => 0.39821558083373
115 => 0.3893784982171
116 => 0.3810149411606
117 => 0.3882863754644
118 => 0.37340577119376
119 => 0.40001383076691
120 => 0.39929415732368
121 => 0.40921199650118
122 => 0.41541382487342
123 => 0.40112061834119
124 => 0.39752591555127
125 => 0.39957362163054
126 => 0.36572960146187
127 => 0.40644621801296
128 => 0.40679833700369
129 => 0.40378328042744
130 => 0.42546362175639
131 => 0.47121590422853
201 => 0.45400205518121
202 => 0.44733633253875
203 => 0.43466478892281
204 => 0.45154886842924
205 => 0.45025243455581
206 => 0.44438946892225
207 => 0.4408435290135
208 => 0.44737703201982
209 => 0.44003395568795
210 => 0.4387149374045
211 => 0.43072312171285
212 => 0.42787040711538
213 => 0.42575837079725
214 => 0.42343322633539
215 => 0.42856191562835
216 => 0.41693963095524
217 => 0.40292429498609
218 => 0.40175907144829
219 => 0.40497635608365
220 => 0.40355294713118
221 => 0.40175225671385
222 => 0.39831424831832
223 => 0.3972942646688
224 => 0.40060871670404
225 => 0.39686689360081
226 => 0.40238815741728
227 => 0.40088667916466
228 => 0.39249954370012
301 => 0.38204606759605
302 => 0.38195300973181
303 => 0.37970082545233
304 => 0.37683233015423
305 => 0.37603438038458
306 => 0.38767399554901
307 => 0.41176765059502
308 => 0.40703748959719
309 => 0.41045551568452
310 => 0.42726882108943
311 => 0.43261326528392
312 => 0.42881990538477
313 => 0.42362732039056
314 => 0.4238557677775
315 => 0.44160040260507
316 => 0.44270711371325
317 => 0.4455034156451
318 => 0.44909745386235
319 => 0.42943198563423
320 => 0.42292952599244
321 => 0.41984829987143
322 => 0.41035931600331
323 => 0.42059237158108
324 => 0.41463000831904
325 => 0.41543453482642
326 => 0.41491058588306
327 => 0.41519669743541
328 => 0.40000639327198
329 => 0.40554094173025
330 => 0.39633868147505
331 => 0.38401788799553
401 => 0.38397658437556
402 => 0.38699208112482
403 => 0.38519834566196
404 => 0.38037144965256
405 => 0.38105708744839
406 => 0.37505017889495
407 => 0.38178643490537
408 => 0.38197960662426
409 => 0.37938578113391
410 => 0.38976391294216
411 => 0.39401584201175
412 => 0.39230853050887
413 => 0.39389605248537
414 => 0.40723404914204
415 => 0.40940872457467
416 => 0.41037457175085
417 => 0.409080464485
418 => 0.39413984657934
419 => 0.39480252651587
420 => 0.38994022083667
421 => 0.38583208491489
422 => 0.38599638880743
423 => 0.38810850469151
424 => 0.39733223863125
425 => 0.41674304293862
426 => 0.41747966877297
427 => 0.4183724807731
428 => 0.41474096567723
429 => 0.4136456659754
430 => 0.41509064900296
501 => 0.4223803265292
502 => 0.44113135625484
503 => 0.43450349001063
504 => 0.42911493158521
505 => 0.43384215006923
506 => 0.43311443183677
507 => 0.42697175760514
508 => 0.42679935319827
509 => 0.41500959741601
510 => 0.41065119314306
511 => 0.40700898431168
512 => 0.40303178735008
513 => 0.4006739716744
514 => 0.40429664816031
515 => 0.40512519713489
516 => 0.39720415168489
517 => 0.39612454245932
518 => 0.40259303916143
519 => 0.3997464949327
520 => 0.40267423626285
521 => 0.40335349736515
522 => 0.40324412068297
523 => 0.40027200158464
524 => 0.40216634166805
525 => 0.39768566264084
526 => 0.39281359717498
527 => 0.38970552294817
528 => 0.38699331595905
529 => 0.38849820603101
530 => 0.38313354770655
531 => 0.38141728553932
601 => 0.40152458187179
602 => 0.41637805786245
603 => 0.41616208243893
604 => 0.41484738759258
605 => 0.41289401772702
606 => 0.42223742535674
607 => 0.41898236896588
608 => 0.4213506944593
609 => 0.42195353269568
610 => 0.42377814247395
611 => 0.42443028363917
612 => 0.42245906009671
613 => 0.41584339312353
614 => 0.39935778002512
615 => 0.39168368262575
616 => 0.38915110266175
617 => 0.38924315713339
618 => 0.38670388385638
619 => 0.3874518136387
620 => 0.38644378440089
621 => 0.38453482089295
622 => 0.38838033291371
623 => 0.38882349235068
624 => 0.38792590389459
625 => 0.38813731846917
626 => 0.38070566941777
627 => 0.38127068155446
628 => 0.37812462217912
629 => 0.37753477397256
630 => 0.36958180983045
701 => 0.35549198105211
702 => 0.36329911392808
703 => 0.35386919526291
704 => 0.35029794217783
705 => 0.36720369883881
706 => 0.36550682976275
707 => 0.36260252751578
708 => 0.3583064591829
709 => 0.35671300564877
710 => 0.34703168640146
711 => 0.3464596624125
712 => 0.35125798564908
713 => 0.34904372457562
714 => 0.34593406342224
715 => 0.334671185946
716 => 0.32200798265212
717 => 0.3223902051615
718 => 0.32641813452201
719 => 0.33812988237797
720 => 0.33355389987536
721 => 0.33023397206636
722 => 0.32961224938439
723 => 0.33739441041375
724 => 0.34840779868342
725 => 0.35357503404888
726 => 0.34845446073298
727 => 0.34257222181893
728 => 0.34293024644596
729 => 0.34531202389171
730 => 0.34556231502474
731 => 0.34173358219562
801 => 0.34281134806009
802 => 0.34117412315899
803 => 0.33112647696301
804 => 0.33094474690476
805 => 0.32847889248809
806 => 0.32840422739634
807 => 0.32420919389737
808 => 0.32362227971196
809 => 0.31529278607942
810 => 0.32077528401239
811 => 0.31709791224301
812 => 0.31155524558226
813 => 0.31059968776079
814 => 0.3105709625388
815 => 0.31626204188181
816 => 0.32070878043676
817 => 0.31716188169936
818 => 0.3163543216106
819 => 0.3249769506091
820 => 0.32387964247203
821 => 0.32292938070221
822 => 0.34742167055977
823 => 0.3280341119803
824 => 0.3195800298365
825 => 0.30911649779688
826 => 0.31252347659069
827 => 0.31324137708148
828 => 0.28807846871961
829 => 0.27786987993104
830 => 0.27436667696136
831 => 0.27235053412429
901 => 0.27326931573227
902 => 0.26408038847452
903 => 0.27025549956256
904 => 0.26229866527804
905 => 0.26096467611646
906 => 0.27519248147981
907 => 0.27717219747848
908 => 0.26872611397858
909 => 0.27414986688223
910 => 0.27218313868356
911 => 0.26243506236434
912 => 0.26206275755095
913 => 0.25717151551541
914 => 0.2495176688609
915 => 0.24601965555966
916 => 0.24419785986123
917 => 0.24494956827249
918 => 0.2445694814971
919 => 0.24208915818707
920 => 0.24471165072587
921 => 0.23801226597798
922 => 0.23534451699075
923 => 0.23413955666453
924 => 0.22819346709858
925 => 0.23765633983604
926 => 0.23952064497545
927 => 0.2413886233719
928 => 0.25764809998996
929 => 0.25683582248693
930 => 0.26417841551917
1001 => 0.2638930958561
1002 => 0.26179886938118
1003 => 0.25296367236704
1004 => 0.25648522442463
1005 => 0.24564643456207
1006 => 0.25376759289317
1007 => 0.25006143537853
1008 => 0.25251453730941
1009 => 0.24810363885041
1010 => 0.25054481217916
1011 => 0.23996274088517
1012 => 0.2300813516046
1013 => 0.23405791110684
1014 => 0.23838088606051
1015 => 0.24775419723359
1016 => 0.24217153042704
1017 => 0.24417926851468
1018 => 0.23745368201238
1019 => 0.22357687598934
1020 => 0.22365541720441
1021 => 0.22152077292042
1022 => 0.21967612859588
1023 => 0.24281276686593
1024 => 0.23993536016093
1025 => 0.23535058916218
1026 => 0.24148748733556
1027 => 0.24311018061827
1028 => 0.2431563764148
1029 => 0.24763369890583
1030 => 0.2500232467219
1031 => 0.25044441488137
1101 => 0.25748957855996
1102 => 0.25985102449707
1103 => 0.26957748610769
1104 => 0.24982051028454
1105 => 0.2494136283689
1106 => 0.24157384607807
1107 => 0.23660173220716
1108 => 0.24191429096864
1109 => 0.24662049279471
1110 => 0.24172008088729
1111 => 0.24235997122906
1112 => 0.23578156862171
1113 => 0.23813303801122
1114 => 0.24015844022661
1115 => 0.23904013217091
1116 => 0.23736597088481
1117 => 0.24623463791379
1118 => 0.24573423296343
1119 => 0.25399293959059
1120 => 0.26043119199224
1121 => 0.27196969127127
1122 => 0.25992866575803
1123 => 0.25948984292959
1124 => 0.26377940646702
1125 => 0.25985036778725
1126 => 0.26233338460706
1127 => 0.27156963887431
1128 => 0.27176478637268
1129 => 0.26849581434166
1130 => 0.26829689709649
1201 => 0.26892473893368
1202 => 0.2726020281844
1203 => 0.27131707032851
1204 => 0.2728040560905
1205 => 0.27466355455539
1206 => 0.28235522861721
1207 => 0.28420966519347
1208 => 0.27970434572828
1209 => 0.28011112563206
1210 => 0.27842601247829
1211 => 0.27679821428616
1212 => 0.28045726690124
1213 => 0.28714425747416
1214 => 0.28710265805286
1215 => 0.28865390988926
1216 => 0.28962032693207
1217 => 0.28547175752381
1218 => 0.28277119138617
1219 => 0.28380676028483
1220 => 0.28546265750555
1221 => 0.28326977513377
1222 => 0.26973428929328
1223 => 0.2738400910471
1224 => 0.27315668487182
1225 => 0.27218343137318
1226 => 0.27631184678588
1227 => 0.27591365104798
1228 => 0.26398614274404
1229 => 0.26474970312695
1230 => 0.26403257737991
1231 => 0.26634975737871
]
'min_raw' => 0.21967612859588
'max_raw' => 0.49210164613578
'avg_raw' => 0.35588888736583
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.219676'
'max' => '$0.4921016'
'avg' => '$0.355888'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.053569162629513
'max_diff' => -0.35760006236132
'year' => 2034
]
9 => [
'items' => [
101 => 0.25972523246297
102 => 0.2617628917102
103 => 0.26304089248819
104 => 0.26379364476449
105 => 0.26651310215356
106 => 0.26619400521681
107 => 0.26649326663994
108 => 0.27052550403779
109 => 0.29091917709936
110 => 0.29202915972799
111 => 0.28656319930751
112 => 0.28874674268419
113 => 0.2845548168894
114 => 0.28736888475891
115 => 0.28929419852564
116 => 0.2805940758303
117 => 0.28007891102761
118 => 0.27586968366392
119 => 0.27813148402634
120 => 0.27453279702052
121 => 0.27541578893502
122 => 0.27294686656423
123 => 0.27739043527412
124 => 0.28235903555254
125 => 0.28361430019884
126 => 0.28031223933983
127 => 0.2779213296615
128 => 0.27372367988095
129 => 0.28070446501673
130 => 0.282745859326
131 => 0.28069374244147
201 => 0.28021822211968
202 => 0.27931711196915
203 => 0.28040939689794
204 => 0.28273474145418
205 => 0.28163815190383
206 => 0.28236246862126
207 => 0.27960212020658
208 => 0.28547313087291
209 => 0.2947977087467
210 => 0.29482768878929
211 => 0.29373109332791
212 => 0.2932823900916
213 => 0.29440756358195
214 => 0.29501792404343
215 => 0.29865652878969
216 => 0.30256089665084
217 => 0.32078087784965
218 => 0.31566478003746
219 => 0.33183063126858
220 => 0.34461572071933
221 => 0.34844941002141
222 => 0.34492259625251
223 => 0.33285755686388
224 => 0.33226558847216
225 => 0.35029585104703
226 => 0.34520147603128
227 => 0.34459551633333
228 => 0.33814912893215
301 => 0.34195974228686
302 => 0.34112630524786
303 => 0.33981068410866
304 => 0.34708106893982
305 => 0.36069058031201
306 => 0.35856941033547
307 => 0.35698605534622
308 => 0.35004825469104
309 => 0.35422636029934
310 => 0.35273861691856
311 => 0.35913090662764
312 => 0.35534425581054
313 => 0.34516288113008
314 => 0.3467842986062
315 => 0.34653922461652
316 => 0.3515828299579
317 => 0.3500688648244
318 => 0.34624359862593
319 => 0.36064406448169
320 => 0.35970897832861
321 => 0.36103471670322
322 => 0.36161834773554
323 => 0.37038365753726
324 => 0.3739745245044
325 => 0.37478971417292
326 => 0.37820076006408
327 => 0.37470484424375
328 => 0.3886910000708
329 => 0.39799097758097
330 => 0.40879338003149
331 => 0.42457859342376
401 => 0.43051397968064
402 => 0.42944180527892
403 => 0.44140997391879
404 => 0.46291650692719
405 => 0.43378889049523
406 => 0.46446034132546
407 => 0.45475011411154
408 => 0.43172734006685
409 => 0.43024494483905
410 => 0.44583623472201
411 => 0.48041621507639
412 => 0.47175432220051
413 => 0.48043038283009
414 => 0.47030929724959
415 => 0.46980670004331
416 => 0.47993882429414
417 => 0.50361308487953
418 => 0.4923663310918
419 => 0.47624135171991
420 => 0.48814778555565
421 => 0.4778333306787
422 => 0.4545919770068
423 => 0.47174769861427
424 => 0.46027615614218
425 => 0.46362416209627
426 => 0.48773563810945
427 => 0.48483448152449
428 => 0.48858884678529
429 => 0.48196249036882
430 => 0.47577242859534
501 => 0.46421821861512
502 => 0.46079758665565
503 => 0.4617429262678
504 => 0.46079711819228
505 => 0.45433264389702
506 => 0.45293664128845
507 => 0.45060990911388
508 => 0.45133106070633
509 => 0.44695612350863
510 => 0.45521253390883
511 => 0.45674499643434
512 => 0.46275332339612
513 => 0.46337712783315
514 => 0.48011023289851
515 => 0.47089391981692
516 => 0.47707701833024
517 => 0.47652394380163
518 => 0.43222631339156
519 => 0.43833013602076
520 => 0.44782576854675
521 => 0.44354799896482
522 => 0.43750023361989
523 => 0.4326163388432
524 => 0.42521673885263
525 => 0.43563153374262
526 => 0.44932588153301
527 => 0.46372443909223
528 => 0.48102336256877
529 => 0.47716244423048
530 => 0.46340104775072
531 => 0.46401837394409
601 => 0.46783444156264
602 => 0.46289228727032
603 => 0.4614347494872
604 => 0.46763419825325
605 => 0.46767689044975
606 => 0.46199034465713
607 => 0.45567078963554
608 => 0.45564431046926
609 => 0.45451980669282
610 => 0.47050934397332
611 => 0.47930197275303
612 => 0.48031003347259
613 => 0.47923412223479
614 => 0.47964819776883
615 => 0.47453196081427
616 => 0.48622616131946
617 => 0.49695791613958
618 => 0.49408157659728
619 => 0.48976953472763
620 => 0.48633478568237
621 => 0.49327245888012
622 => 0.49296353521353
623 => 0.4968641836234
624 => 0.49668722768029
625 => 0.49537558633086
626 => 0.49408162344013
627 => 0.49921204003895
628 => 0.49773456245046
629 => 0.49625478993118
630 => 0.49328687960193
701 => 0.49369026790745
702 => 0.48937897057262
703 => 0.48738436715398
704 => 0.45739031746046
705 => 0.4493749272985
706 => 0.45189673221177
707 => 0.45272697586785
708 => 0.44923866779736
709 => 0.45424000549762
710 => 0.45346055231476
711 => 0.4564929486844
712 => 0.454598439084
713 => 0.45467619041883
714 => 0.46024753920158
715 => 0.46186492545543
716 => 0.46104230975281
717 => 0.46161844159331
718 => 0.47489515668745
719 => 0.47300763236651
720 => 0.47200492269077
721 => 0.47228268012359
722 => 0.47567516548613
723 => 0.4766248761648
724 => 0.47260088528427
725 => 0.47449862264594
726 => 0.48257894747322
727 => 0.485406603856
728 => 0.49443112567774
729 => 0.49059734840978
730 => 0.49763441250712
731 => 0.51926394843039
801 => 0.53654311837595
802 => 0.52065247960212
803 => 0.55238347471811
804 => 0.57709060595681
805 => 0.57614230510799
806 => 0.57183404529028
807 => 0.54370563324808
808 => 0.51782144911585
809 => 0.53947466824297
810 => 0.53952986675155
811 => 0.53766983602525
812 => 0.52611734493145
813 => 0.53726783437666
814 => 0.53815291973619
815 => 0.53765750729804
816 => 0.52880023946268
817 => 0.5152768285748
818 => 0.51791927069182
819 => 0.52224764478386
820 => 0.5140531296342
821 => 0.51143448552071
822 => 0.51630304314512
823 => 0.53199055021526
824 => 0.52902491787519
825 => 0.52894747322973
826 => 0.54163570600438
827 => 0.53255366962974
828 => 0.51795260034919
829 => 0.5142656377914
830 => 0.50117940454685
831 => 0.51021811246043
901 => 0.51054339946693
902 => 0.50559299151602
903 => 0.51835429867115
904 => 0.51823670097913
905 => 0.53035166285301
906 => 0.55351091978399
907 => 0.54666158791168
908 => 0.53869656014937
909 => 0.5395625795134
910 => 0.54906067441885
911 => 0.54331790941859
912 => 0.54538304775266
913 => 0.54905754858464
914 => 0.5512744661693
915 => 0.53924359918939
916 => 0.53643862859348
917 => 0.53070064316516
918 => 0.52920370987148
919 => 0.53387717927586
920 => 0.53264588520391
921 => 0.51051606035361
922 => 0.50820337052757
923 => 0.50827429742277
924 => 0.50245892889279
925 => 0.4935890960362
926 => 0.51689848719312
927 => 0.5150264168685
928 => 0.51295979611686
929 => 0.51321294536696
930 => 0.52333076203961
1001 => 0.51746191740748
1002 => 0.53306520274672
1003 => 0.52985763635866
1004 => 0.52656780799601
1005 => 0.52611305350567
1006 => 0.52484675026101
1007 => 0.5205041252644
1008 => 0.5152601446297
1009 => 0.51179761438884
1010 => 0.47210624575417
1011 => 0.47947273289869
1012 => 0.48794720488204
1013 => 0.49087255865137
1014 => 0.4858685386006
1015 => 0.52070171447587
1016 => 0.52706607136912
1017 => 0.50778801920275
1018 => 0.5041818827601
1019 => 0.5209381321807
1020 => 0.51083206541189
1021 => 0.51538282665908
1022 => 0.50554656997598
1023 => 0.52553308416366
1024 => 0.52538082041212
1025 => 0.51760561497721
1026 => 0.52417716536849
1027 => 0.52303519677009
1028 => 0.51425700898357
1029 => 0.52581136837386
1030 => 0.52581709919196
1031 => 0.51833363300841
1101 => 0.50959458284742
1102 => 0.50803224708579
1103 => 0.50685523695968
1104 => 0.51509335432009
1105 => 0.52247962458551
1106 => 0.53622364233778
1107 => 0.53967921495051
1108 => 0.55316654490847
1109 => 0.54513549660468
1110 => 0.54869555629826
1111 => 0.55256050469684
1112 => 0.55441350308789
1113 => 0.55139414164705
1114 => 0.57234551667826
1115 => 0.57411445466444
1116 => 0.57470756426995
1117 => 0.56764287849101
1118 => 0.57391797297301
1119 => 0.57098206407417
1120 => 0.57862048340997
1121 => 0.57981828509405
1122 => 0.57880378968066
1123 => 0.5791839908412
1124 => 0.56130568832789
1125 => 0.56037860402702
1126 => 0.54773774380169
1127 => 0.55288898778003
1128 => 0.54325898406807
1129 => 0.54631275744517
1130 => 0.54765883165237
1201 => 0.54695571887556
1202 => 0.5531802313857
1203 => 0.54788812416819
1204 => 0.5339213831182
1205 => 0.51995083683894
1206 => 0.51977544801057
1207 => 0.51609724977586
1208 => 0.51343858614778
1209 => 0.51395073908371
1210 => 0.51575563283108
1211 => 0.51333368244207
1212 => 0.51385052835357
1213 => 0.5224336142107
1214 => 0.52415489086758
1215 => 0.5183053202413
1216 => 0.49481845008774
1217 => 0.48905471323971
1218 => 0.49319757298621
1219 => 0.49121755286172
1220 => 0.39645090311751
1221 => 0.41871492178133
1222 => 0.40548639790592
1223 => 0.41158271032283
1224 => 0.39807981295569
1225 => 0.40452410332678
1226 => 0.40333407820304
1227 => 0.43913396137425
1228 => 0.43857499543966
1229 => 0.43884254285273
1230 => 0.42607180773588
1231 => 0.44641593554027
]
'min_raw' => 0.25972523246297
'max_raw' => 0.57981828509405
'avg_raw' => 0.41977175877851
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.259725'
'max' => '$0.579818'
'avg' => '$0.419771'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.040049103867097
'max_diff' => 0.087716638958271
'year' => 2035
]
10 => [
'items' => [
101 => 0.45643818444789
102 => 0.4545833329086
103 => 0.45505015907983
104 => 0.44702853878901
105 => 0.43892020967154
106 => 0.42992682481736
107 => 0.44663542226046
108 => 0.44477771145006
109 => 0.44903863166587
110 => 0.45987535146292
111 => 0.46147109961774
112 => 0.46361580132028
113 => 0.46284707843018
114 => 0.48116117640307
115 => 0.47894321829824
116 => 0.48428785918077
117 => 0.47329352738653
118 => 0.46085239736978
119 => 0.46321704945478
120 => 0.46298931444366
121 => 0.46008998637007
122 => 0.45747260262295
123 => 0.45311539612728
124 => 0.46690224222478
125 => 0.46634252145096
126 => 0.4754037501749
127 => 0.47380208998187
128 => 0.46310581122004
129 => 0.46348783090856
130 => 0.46605709690627
131 => 0.47494935585971
201 => 0.47758918374825
202 => 0.47636631029132
203 => 0.47926076105838
204 => 0.48154841692841
205 => 0.47954805541429
206 => 0.50786895606506
207 => 0.49610814358855
208 => 0.50184028175839
209 => 0.50320736293618
210 => 0.4997056132459
211 => 0.50046501736546
212 => 0.50161530768137
213 => 0.50859964522963
214 => 0.52692856789061
215 => 0.53504632296796
216 => 0.55946898964115
217 => 0.53437225641339
218 => 0.53288312012426
219 => 0.53728237988598
220 => 0.55162107062496
221 => 0.56324123270417
222 => 0.56709631084908
223 => 0.56760582306633
224 => 0.57483820594692
225 => 0.57898367293812
226 => 0.57396000443467
227 => 0.569702971378
228 => 0.55445480737143
229 => 0.55621982387456
301 => 0.5683790372985
302 => 0.58555464243391
303 => 0.60029309845723
304 => 0.59513220484492
305 => 0.6345061800838
306 => 0.63840994890047
307 => 0.63787057427396
308 => 0.64676394059703
309 => 0.6291124195483
310 => 0.62156605231786
311 => 0.57062339024423
312 => 0.58493620036274
313 => 0.60574071043185
314 => 0.60298715551129
315 => 0.58787836419296
316 => 0.60028163708418
317 => 0.59618072718014
318 => 0.59294616939191
319 => 0.60776430566966
320 => 0.59147115613679
321 => 0.60557817380165
322 => 0.58748577772805
323 => 0.59515577937222
324 => 0.59080191548275
325 => 0.59361939900872
326 => 0.57714844788653
327 => 0.58603577330233
328 => 0.57677870593042
329 => 0.57677431687518
330 => 0.57656996659987
331 => 0.5874608653108
401 => 0.58781601712677
402 => 0.57976762652416
403 => 0.57860772769883
404 => 0.58289648158365
405 => 0.57787547401095
406 => 0.58022477185237
407 => 0.5779466318493
408 => 0.57743377454964
409 => 0.57334724033046
410 => 0.57158664902724
411 => 0.57227702224208
412 => 0.56992042254804
413 => 0.56850048599044
414 => 0.57628750547928
415 => 0.57212721509386
416 => 0.57564988131075
417 => 0.57163535856069
418 => 0.55771927366466
419 => 0.54971598608103
420 => 0.5234297917342
421 => 0.53088452384304
422 => 0.53582701894368
423 => 0.5341935243424
424 => 0.53770290282444
425 => 0.53791835016124
426 => 0.53677741544285
427 => 0.53545635920175
428 => 0.53481334208257
429 => 0.53960586487488
430 => 0.54238808566472
501 => 0.53632306444908
502 => 0.53490211483692
503 => 0.54103418614493
504 => 0.54477474610043
505 => 0.57239293917278
506 => 0.57034689422439
507 => 0.5754820655288
508 => 0.57490392404555
509 => 0.58028640166951
510 => 0.58908447777993
511 => 0.57119552906668
512 => 0.57430043201
513 => 0.57353918151098
514 => 0.58185031484868
515 => 0.58187626129977
516 => 0.57689332169192
517 => 0.5795946540923
518 => 0.57808684445358
519 => 0.58081166026344
520 => 0.57031956804669
521 => 0.58309780381532
522 => 0.59034224008481
523 => 0.59044282908944
524 => 0.59387663438578
525 => 0.59736557943945
526 => 0.6040623056469
527 => 0.59717881138018
528 => 0.58479607528901
529 => 0.5856900688388
530 => 0.57843007519922
531 => 0.57855211700393
601 => 0.57790064828581
602 => 0.57985575494914
603 => 0.5707486040141
604 => 0.57288603413544
605 => 0.56989361944879
606 => 0.57429392708488
607 => 0.56955992346536
608 => 0.57353881441294
609 => 0.57525597184359
610 => 0.58159231973044
611 => 0.56862403973054
612 => 0.54218083893539
613 => 0.54773952033535
614 => 0.5395177939198
615 => 0.54027874600188
616 => 0.54181599031231
617 => 0.53683327854718
618 => 0.53778382292867
619 => 0.53774986279449
620 => 0.53745721270483
621 => 0.53616101693326
622 => 0.53428127661997
623 => 0.54176958347457
624 => 0.5430419927284
625 => 0.54587040088151
626 => 0.55428582501759
627 => 0.55344492569703
628 => 0.55481646737744
629 => 0.55182239958998
630 => 0.54041763221935
701 => 0.54103696595757
702 => 0.53331386431786
703 => 0.54567290380868
704 => 0.54274612012591
705 => 0.54085920364576
706 => 0.540344341002
707 => 0.54878062534678
708 => 0.5513048938453
709 => 0.54973193911438
710 => 0.54650576307085
711 => 0.55270097480776
712 => 0.55435855211356
713 => 0.55472962254323
714 => 0.565706349927
715 => 0.55534309966775
716 => 0.557837637007
717 => 0.57729930523074
718 => 0.55965025767844
719 => 0.56899935178762
720 => 0.56854176228132
721 => 0.57332444247148
722 => 0.56814944290975
723 => 0.5682135932315
724 => 0.57246028923354
725 => 0.56649657059433
726 => 0.5650198699913
727 => 0.56297981868454
728 => 0.56743419607907
729 => 0.57010439387292
730 => 0.59162422704723
731 => 0.60552702070146
801 => 0.60492346376292
802 => 0.61043884436993
803 => 0.60795411489137
804 => 0.59993026796661
805 => 0.61362599626329
806 => 0.60929209477661
807 => 0.60964937634948
808 => 0.6096360783115
809 => 0.6125177439239
810 => 0.61047581973674
811 => 0.60645097756463
812 => 0.60912285562999
813 => 0.61705737827024
814 => 0.64168638000646
815 => 0.65546909566892
816 => 0.64085664321749
817 => 0.65093611724996
818 => 0.6448920245143
819 => 0.64379363306805
820 => 0.65012428762771
821 => 0.65646602316014
822 => 0.6560620820228
823 => 0.65145830767798
824 => 0.64885775236704
825 => 0.66855002843143
826 => 0.6830589619865
827 => 0.68206954998717
828 => 0.6864364927782
829 => 0.69925797187711
830 => 0.70043020724191
831 => 0.70028253252947
901 => 0.69737702486771
902 => 0.71000143612004
903 => 0.72053294209212
904 => 0.6967044837922
905 => 0.70577804877538
906 => 0.70985146442834
907 => 0.71583244713485
908 => 0.72592336748982
909 => 0.73688478347975
910 => 0.73843484788654
911 => 0.73733500301251
912 => 0.73010565450847
913 => 0.74209976668155
914 => 0.74912563629599
915 => 0.75330938086723
916 => 0.76391866099116
917 => 0.70987662045666
918 => 0.67162297810265
919 => 0.66564911945977
920 => 0.67779719592044
921 => 0.68100054680402
922 => 0.67970928007951
923 => 0.63665132774107
924 => 0.66542242825176
925 => 0.69637771325843
926 => 0.6975668318249
927 => 0.71306369474372
928 => 0.71811010854796
929 => 0.73058711441787
930 => 0.72980667430358
1001 => 0.73284462668038
1002 => 0.73214625403896
1003 => 0.7552572800694
1004 => 0.78075217380156
1005 => 0.77986936670041
1006 => 0.77620417408452
1007 => 0.78164761012733
1008 => 0.80796107265777
1009 => 0.80553855069261
1010 => 0.80789182443183
1011 => 0.83891687971698
1012 => 0.87925386485033
1013 => 0.8605132854888
1014 => 0.90117495024688
1015 => 0.92676931282986
1016 => 0.97103211641064
1017 => 0.96549019540343
1018 => 0.98272138002197
1019 => 0.95556900016669
1020 => 0.89322164761763
1021 => 0.88335494042066
1022 => 0.90310833809381
1023 => 0.95167013876489
1024 => 0.9015789541739
1025 => 0.91171233557776
1026 => 0.90879392105174
1027 => 0.90863841114411
1028 => 0.91457359181378
1029 => 0.90596430269422
1030 => 0.87088851003957
1031 => 0.88696353911025
1101 => 0.88075619839976
1102 => 0.88764370570595
1103 => 0.92481274201339
1104 => 0.90837942506272
1105 => 0.89106826058944
1106 => 0.91278030249385
1107 => 0.94042719290523
1108 => 0.93869710018952
1109 => 0.9353399971984
1110 => 0.95426381098716
1111 => 0.98552040720899
1112 => 0.99396893956857
1113 => 1.0002054734338
1114 => 1.0010653860867
1115 => 1.0099230208444
1116 => 0.96229328634088
1117 => 1.0378828982163
1118 => 1.0509351360663
1119 => 1.0484818563103
1120 => 1.0629888693584
1121 => 1.0587205381123
1122 => 1.0525363958172
1123 => 1.0755330972287
1124 => 1.0491692347986
1125 => 1.011749051197
1126 => 0.99121959838585
1127 => 1.0182544379113
1128 => 1.0347636710236
1129 => 1.0456752239264
1130 => 1.0489770532418
1201 => 0.96599064704592
1202 => 0.92126557674342
1203 => 0.94993383403335
1204 => 0.98491108650449
1205 => 0.96209898593736
1206 => 0.96299317709057
1207 => 0.93046911659641
1208 => 0.98778874417514
1209 => 0.97943775657086
1210 => 1.0227626950345
1211 => 1.0124228507658
1212 => 1.0477526562184
1213 => 1.038449134412
1214 => 1.0770675332775
1215 => 1.0924734581363
1216 => 1.118342403715
1217 => 1.1373717053883
1218 => 1.1485460753034
1219 => 1.1478752080477
1220 => 1.1921536287002
1221 => 1.1660441910116
1222 => 1.1332445837527
1223 => 1.1326513423389
1224 => 1.1496387237123
1225 => 1.1852396148104
1226 => 1.1944704079003
1227 => 1.1996291619496
1228 => 1.1917283505456
1229 => 1.1633884272148
1230 => 1.1511513920073
1231 => 1.1615777005452
]
'min_raw' => 0.42992682481736
'max_raw' => 1.1996291619496
'avg_raw' => 0.81477799338346
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.429926'
'max' => '$1.19'
'avg' => '$0.814777'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.17020159235439
'max_diff' => 0.61981087685551
'year' => 2036
]
11 => [
'items' => [
101 => 1.1488272211463
102 => 1.1708381257414
103 => 1.2010637990261
104 => 1.1948223170181
105 => 1.2156866555956
106 => 1.2372790510309
107 => 1.2681571462786
108 => 1.2762298237889
109 => 1.289573652737
110 => 1.303308835944
111 => 1.3077202066165
112 => 1.3161428819983
113 => 1.3160984903415
114 => 1.341480789516
115 => 1.3694782515299
116 => 1.3800466452974
117 => 1.4043480840211
118 => 1.3627327218307
119 => 1.3942984520949
120 => 1.4227715309347
121 => 1.3888247525347
122 => 1.4356124779742
123 => 1.4374291393298
124 => 1.4648585689589
125 => 1.4370535871869
126 => 1.4205430777673
127 => 1.4682082998209
128 => 1.4912719993322
129 => 1.4843250253408
130 => 1.4314582102517
131 => 1.4006874563055
201 => 1.320154457993
202 => 1.4155492732608
203 => 1.4620133050728
204 => 1.4313378796342
205 => 1.4468087799425
206 => 1.5312129955681
207 => 1.5633486561101
208 => 1.5566646633626
209 => 1.557794148109
210 => 1.575133967234
211 => 1.6520282744468
212 => 1.6059514231688
213 => 1.6411754495042
214 => 1.6598581460628
215 => 1.6772116758244
216 => 1.6345968913692
217 => 1.5791556829286
218 => 1.5615951249519
219 => 1.4282878131209
220 => 1.4213485886158
221 => 1.417453391621
222 => 1.3928947255558
223 => 1.3735983412132
224 => 1.3582531399552
225 => 1.3179827493892
226 => 1.3315728240555
227 => 1.267390226577
228 => 1.3084519779522
301 => 1.2060150026335
302 => 1.29132755961
303 => 1.2448958135337
304 => 1.2760734822462
305 => 1.2759647062971
306 => 1.2185567333086
307 => 1.1854450125627
308 => 1.2065450897494
309 => 1.2291660474199
310 => 1.2328362216959
311 => 1.262164883783
312 => 1.270349882954
313 => 1.2455489533447
314 => 1.203892224008
315 => 1.213568132144
316 => 1.1852489305931
317 => 1.1356206191575
318 => 1.1712645388578
319 => 1.1834349401959
320 => 1.1888100827594
321 => 1.1400063383125
322 => 1.1246711422265
323 => 1.116506812505
324 => 1.197592273451
325 => 1.2020343180417
326 => 1.1793081898739
327 => 1.2820324441724
328 => 1.2587827816949
329 => 1.2847583509879
330 => 1.2126901448988
331 => 1.2154432474241
401 => 1.1813250037172
402 => 1.2004289404112
403 => 1.1869268937045
404 => 1.1988855311151
405 => 1.2060534890717
406 => 1.2401661343105
407 => 1.2917170712228
408 => 1.2350708426683
409 => 1.2103892696981
410 => 1.2257015787544
411 => 1.2664802756036
412 => 1.3282620887533
413 => 1.2916860118938
414 => 1.307917853702
415 => 1.3114637890327
416 => 1.2844939440765
417 => 1.3292565054062
418 => 1.3532451256732
419 => 1.3778524863217
420 => 1.3992183680901
421 => 1.3680237653512
422 => 1.4014064618525
423 => 1.3745059013117
424 => 1.3503733175777
425 => 1.3504099167458
426 => 1.3352711944487
427 => 1.3059380123963
428 => 1.3005285235741
429 => 1.3286693675704
430 => 1.3512356595075
501 => 1.3530943273967
502 => 1.3655881861111
503 => 1.3729819230013
504 => 1.4454505958229
505 => 1.4745980955241
506 => 1.5102391064247
507 => 1.5241232887878
508 => 1.5659096999459
509 => 1.5321637792094
510 => 1.5248626369862
511 => 1.4235024717476
512 => 1.4401001931271
513 => 1.4666747464976
514 => 1.4239406763446
515 => 1.4510456078297
516 => 1.4563966954658
517 => 1.4224885889932
518 => 1.440600373743
519 => 1.3925008432176
520 => 1.2927655095474
521 => 1.3293675393435
522 => 1.3563189533834
523 => 1.317855962463
524 => 1.3867993849645
525 => 1.3465240608203
526 => 1.333758716623
527 => 1.2839565577359
528 => 1.3074612596697
529 => 1.3392517055902
530 => 1.3196089060474
531 => 1.3603706644799
601 => 1.4181001851842
602 => 1.4592416794905
603 => 1.4624000125674
604 => 1.4359487879945
605 => 1.478337044182
606 => 1.4786457963521
607 => 1.4308316702114
608 => 1.4015457841804
609 => 1.3948919692561
610 => 1.4115145034942
611 => 1.4316973287484
612 => 1.4635200189037
613 => 1.4827498040847
614 => 1.5328908851468
615 => 1.5464576240248
616 => 1.5613633568734
617 => 1.581282012717
618 => 1.6051994660958
619 => 1.5528694397244
620 => 1.5549486092276
621 => 1.5062196132291
622 => 1.4541456925599
623 => 1.493663307242
624 => 1.5453273316308
625 => 1.5334755473524
626 => 1.5321419795111
627 => 1.5343846707193
628 => 1.5254488124164
629 => 1.4850322564908
630 => 1.464735315126
701 => 1.4909235477886
702 => 1.5048414279446
703 => 1.5264268462999
704 => 1.5237659878747
705 => 1.5793677074532
706 => 1.6009728543727
707 => 1.5954453332544
708 => 1.5964625301674
709 => 1.6355776166688
710 => 1.6790816374895
711 => 1.7198288938492
712 => 1.7612787531537
713 => 1.7113093299466
714 => 1.6859379385276
715 => 1.712114738227
716 => 1.6982249598414
717 => 1.7780397464212
718 => 1.7835659490724
719 => 1.8633749641347
720 => 1.9391232229096
721 => 1.8915470987441
722 => 1.9364092409565
723 => 1.9849313054233
724 => 2.078538240201
725 => 2.0470147176995
726 => 2.0228681935
727 => 2.0000498448066
728 => 2.0475312061267
729 => 2.1086152189318
730 => 2.1217721302346
731 => 2.1430913528722
801 => 2.1206767970593
802 => 2.1476726606535
803 => 2.2429799217247
804 => 2.2172270584828
805 => 2.1806538527
806 => 2.255889781909
807 => 2.2831173722174
808 => 2.474214860202
809 => 2.7154833326261
810 => 2.6155966007883
811 => 2.5535936830119
812 => 2.5681658394183
813 => 2.6562689180943
814 => 2.6845648307131
815 => 2.6076467860292
816 => 2.6348155397599
817 => 2.7845180439892
818 => 2.8648286344768
819 => 2.7557560654433
820 => 2.4548291733606
821 => 2.1773608356753
822 => 2.2509579333916
823 => 2.2426143064944
824 => 2.403450971521
825 => 2.2166128612115
826 => 2.2197587358161
827 => 2.3839213327464
828 => 2.3401255663448
829 => 2.2691820337122
830 => 2.1778788019744
831 => 2.0090963335803
901 => 1.8596009944763
902 => 2.1527957811796
903 => 2.1401526888369
904 => 2.1218436175232
905 => 2.1625884744833
906 => 2.360433934252
907 => 2.3558729560411
908 => 2.3268583396947
909 => 2.3488656704703
910 => 2.2653240422233
911 => 2.2868546220301
912 => 2.177316883273
913 => 2.2268325158913
914 => 2.2690298207535
915 => 2.2775015544464
916 => 2.2965888030339
917 => 2.1334903536788
918 => 2.2067167691203
919 => 2.249730427805
920 => 2.0553931530174
921 => 2.2458890047244
922 => 2.1306511725368
923 => 2.0915377214782
924 => 2.1441988305233
925 => 2.1236767451138
926 => 2.106033061176
927 => 2.0961875823818
928 => 2.13485608887
929 => 2.1330521568234
930 => 2.0697829749751
1001 => 1.9872509064356
1002 => 2.0149513776602
1003 => 2.004887536771
1004 => 1.9684148791272
1005 => 1.9929930466537
1006 => 1.8847632355931
1007 => 1.6985594709594
1008 => 1.821571381452
1009 => 1.8168355567092
1010 => 1.8144475391213
1011 => 1.906887590057
1012 => 1.8980016121144
1013 => 1.8818734751368
1014 => 1.9681186732438
1015 => 1.9366380157731
1016 => 2.033653984322
1017 => 2.0975549758077
1018 => 2.0813476173864
1019 => 2.141446808739
1020 => 2.0155895405702
1021 => 2.0573942765387
1022 => 2.0660101746829
1023 => 1.9670544208866
1024 => 1.8994554680006
1025 => 1.8949473885275
1026 => 1.7777401199326
1027 => 1.840351296752
1028 => 1.8954465413265
1029 => 1.869060194739
1030 => 1.8607070656791
1031 => 1.9033813904736
1101 => 1.906697550991
1102 => 1.8310887397632
1103 => 1.8468102058371
1104 => 1.9123713328416
1105 => 1.8451582336491
1106 => 1.7145741611155
1107 => 1.6821875056611
1108 => 1.677866528819
1109 => 1.5900313506087
1110 => 1.6843517368414
1111 => 1.6431783606216
1112 => 1.7732445627671
1113 => 1.6989514456607
1114 => 1.69574881787
1115 => 1.690907576241
1116 => 1.6153042099298
1117 => 1.6318565423074
1118 => 1.6868790161218
1119 => 1.7065116546513
1120 => 1.7044638096072
1121 => 1.6866093759827
1122 => 1.6947830442665
1123 => 1.6684528108296
1124 => 1.6591550573866
1125 => 1.6298087899718
1126 => 1.5866778839855
1127 => 1.5926755010001
1128 => 1.5072218904258
1129 => 1.4606622280185
1130 => 1.4477751271106
1201 => 1.4305419571876
1202 => 1.4497216595091
1203 => 1.5069798110837
1204 => 1.4379143322903
1205 => 1.319506413279
1206 => 1.3266229309689
1207 => 1.3426116333049
1208 => 1.3128167922776
1209 => 1.2846184757367
1210 => 1.3091346241672
1211 => 1.2589636279382
1212 => 1.3486745585044
1213 => 1.3462481292446
1214 => 1.379686816473
1215 => 1.4005967138278
1216 => 1.3524061700846
1217 => 1.3402863786542
1218 => 1.3471903626668
1219 => 1.233082885754
1220 => 1.3703618011994
1221 => 1.3715489949608
1222 => 1.3613835212095
1223 => 1.4344803056732
1224 => 1.5887373203503
1225 => 1.5306996264547
1226 => 1.5082256771798
1227 => 1.4655026831797
1228 => 1.5224285360444
1229 => 1.518057518726
1230 => 1.4982901207533
1231 => 1.4863347367813
]
'min_raw' => 1.116506812505
'max_raw' => 2.8648286344768
'avg_raw' => 1.9906677234909
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$1.11'
'max' => '$2.86'
'avg' => '$1.99'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.68657998768766
'max_diff' => 1.6651994725273
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.035045873040775
]
1 => [
'year' => 2028
'avg' => 0.060148892027607
]
2 => [
'year' => 2029
'avg' => 0.16431593223639
]
3 => [
'year' => 2030
'avg' => 0.12676949701374
]
4 => [
'year' => 2031
'avg' => 0.12450335643831
]
5 => [
'year' => 2032
'avg' => 0.21829356648465
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.035045873040775
'min' => '$0.035045'
'max_raw' => 0.21829356648465
'max' => '$0.218293'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.21829356648465
]
1 => [
'year' => 2033
'avg' => 0.56147349986125
]
2 => [
'year' => 2034
'avg' => 0.35588888736583
]
3 => [
'year' => 2035
'avg' => 0.41977175877851
]
4 => [
'year' => 2036
'avg' => 0.81477799338346
]
5 => [
'year' => 2037
'avg' => 1.9906677234909
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.21829356648465
'min' => '$0.218293'
'max_raw' => 1.9906677234909
'max' => '$1.99'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 1.9906677234909
]
]
]
]
'prediction_2025_max_price' => '$0.059922'
'last_price' => 0.058102
'sma_50day_nextmonth' => '$0.054448'
'sma_200day_nextmonth' => '$0.0843045'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'augmenter'
'sma_200day_date_nextmonth' => '4 févr. 2026'
'sma_50day_date_nextmonth' => '4 févr. 2026'
'daily_sma3' => '$0.057588'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.055196'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.053421'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.056758'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.052306'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.062873'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.095377'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.057118'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.056017'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.055087'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.055477'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.057003'
'daily_ema50_action' => 'BUY'
'daily_ema100' => '$0.067997'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.108051'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.0762079'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.149324'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.5111091'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.360546'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.057021'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.056725'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.059984'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.0809058'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.18021'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.30598'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.351349'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '53.47'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 104.68
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0.01
'momentum_10_action' => 'BUY'
'vwma_10' => '0.053285'
'vwma_10_action' => 'BUY'
'hma_9' => '0.058795'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 99.93
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 33.4
'cci_20_action' => 'NEUTRAL'
'adx_14' => 15.51
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '-0.003128'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0.07
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 64.01
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.002555'
'ichimoku_cloud_action' => 'NEUTRAL'
'sell_signals' => 14
'buy_signals' => 20
'sell_pct' => 41.18
'buy_pct' => 58.82
'overall_action' => 'bullish'
'overall_action_label' => 'Haussier'
'overall_action_dir' => 1
'last_updated' => 1767681854
'last_updated_date' => '6 janvier 2026'
]
Prévision du prix de Polytrade pour 2026
La prévision du prix de Polytrade pour 2026 suggère que le prix moyen pourrait varier entre $0.020074 à la baisse et $0.059922 à la hausse. Sur le marché des cryptomonnaies, comparé au prix moyen d'aujourd'hui, Polytrade pourrait potentiellement gagner 3.13% d'ici 2026 si TRADE atteint l'objectif de prix prévu.
Prévision du prix de Polytrade de 2027 à 2032
La prévision du prix de TRADE pour 2027-2032 se situe actuellement dans une fourchette de prix comprise entre $0.035045 à la baisse et $0.218293 à la hausse. Compte tenu de la volatilité des prix sur le marché, si Polytrade atteint l'objectif de prix le plus élevé, il pourrait gagner 275.71% d'ici 2032 par rapport au prix actuel.
| Prévision du Prix de Polytrade | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2027 | $0.019324 | $0.035045 | $0.050766 |
| 2028 | $0.034875 | $0.060148 | $0.085421 |
| 2029 | $0.076612 | $0.164315 | $0.252019 |
| 2030 | $0.065155 | $0.126769 | $0.188383 |
| 2031 | $0.077033 | $0.1245033 | $0.171972 |
| 2032 | $0.117586 | $0.218293 | $0.31900068 |
Prévision du prix de Polytrade de 2032 à 2037
La prévision du prix de Polytrade pour 2032-2037 est actuellement estimée entre $0.218293 à la baisse et $1.99 à la hausse. Par rapport au prix actuel, Polytrade pourrait potentiellement gagner 3326.16% d'ici 2037 s'il atteint l'objectif de prix le plus élevé. Veuillez noter que ces informations sont à titre général seulement et ne doivent pas être considérées comme un conseil en investissement à long terme.
| Prévision du Prix de Polytrade | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2032 | $0.117586 | $0.218293 | $0.31900068 |
| 2033 | $0.273245 | $0.561473 | $0.8497017 |
| 2034 | $0.219676 | $0.355888 | $0.4921016 |
| 2035 | $0.259725 | $0.419771 | $0.579818 |
| 2036 | $0.429926 | $0.814777 | $1.19 |
| 2037 | $1.11 | $1.99 | $2.86 |
Polytrade Histogramme des prix potentiels
Prévision du prix de Polytrade basée sur l'analyse technique
Au 6 janvier 2026, le sentiment global de prévision du prix pour Polytrade est Haussier, avec 20 indicateurs techniques montrant des signaux haussiers et 14 indiquant des signaux baissiers. La prévision du prix de TRADE a été mise à jour pour la dernière fois le 6 janvier 2026.
Moyennes Mobiles Simples sur 50 et 200 jours de Polytrade et Indice de Force Relative sur 14 jours - RSI (14)
Selon nos indicateurs techniques, le SMA sur 200 jours de Polytrade devrait augmenter au cours du prochain mois, atteignant $0.0843045 d'ici le 4 févr. 2026. Le SMA à court terme sur 50 jours pour Polytrade devrait atteindre $0.054448 d'ici le 4 févr. 2026.
Le Relative Strength Index (RSI), un oscillateur de momentum, est un outil couramment utilisé pour identifier si une cryptomonnaie est survendue (en dessous de 30) ou surachetée (au-dessus de 70). Actuellement, le RSI est à 53.47, ce qui suggère que le marché de TRADE est dans un état NEUTRAL.
Moyennes Mobiles et Oscillateurs Populaires de TRADE pour le Samedi 19 Octobre 2024
Les moyennes mobiles (MA) sont des indicateurs largement utilisés sur les marchés financiers, conçus pour lisser les mouvements de prix sur une période donnée. En tant qu'indicateurs retardés, ils sont basés sur des données historiques de prix. Le tableau ci-dessous met en évidence deux types : la moyenne mobile simple (SMA) et la moyenne mobile exponentielle (EMA).
Moyenne Mobile Simple Quotidienne (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 3 | $0.057588 | BUY |
| SMA 5 | $0.055196 | BUY |
| SMA 10 | $0.053421 | BUY |
| SMA 21 | $0.056758 | BUY |
| SMA 50 | $0.052306 | BUY |
| SMA 100 | $0.062873 | SELL |
| SMA 200 | $0.095377 | SELL |
Moyenne Mobile Exponentielle Quotidienne (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 3 | $0.057118 | BUY |
| EMA 5 | $0.056017 | BUY |
| EMA 10 | $0.055087 | BUY |
| EMA 21 | $0.055477 | BUY |
| EMA 50 | $0.057003 | BUY |
| EMA 100 | $0.067997 | SELL |
| EMA 200 | $0.108051 | SELL |
Moyenne Mobile Simple Hebdomadaire (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 21 | $0.0762079 | SELL |
| SMA 50 | $0.149324 | SELL |
| SMA 100 | $0.5111091 | SELL |
| SMA 200 | $0.360546 | SELL |
Moyenne Mobile Exponentielle Hebdomadaire (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 21 | $0.0809058 | SELL |
| EMA 50 | $0.18021 | SELL |
| EMA 100 | $0.30598 | SELL |
| EMA 200 | $0.351349 | SELL |
Oscillateurs de Polytrade
Un oscillateur est un outil d'analyse technique qui établit des limites hautes et basses entre deux extrêmes, créant un indicateur de tendance qui fluctue à l'intérieur de ces limites. Les traders utilisent cet indicateur pour identifier les conditions de surachat ou de survente à court terme.
| Période | Valeur | Action |
|---|---|---|
| RSI (14) | 53.47 | NEUTRAL |
| Stoch RSI (14) | 104.68 | SELL |
| Stochastique Rapide (14) | 99.93 | SELL |
| Indice de Canal des Matières Premières (20) | 33.4 | NEUTRAL |
| Indice Directionnel Moyen (14) | 15.51 | NEUTRAL |
| Oscillateur Impressionnant (5, 34) | -0.003128 | NEUTRAL |
| Momentum (10) | 0.01 | BUY |
| MACD (12, 26) | 0 | BUY |
| Plage de Pourcentage de Williams (14) | -0.07 | SELL |
| Oscillateur Ultime (7, 14, 28) | 64.01 | NEUTRAL |
| VWMA (10) | 0.053285 | BUY |
| Moyenne Mobile de Hull (9) | 0.058795 | BUY |
| Nuage Ichimoku B/L (9, 26, 52, 26) | -0.002555 | NEUTRAL |
Prévision du cours de Polytrade basée sur les flux monétaires mondiaux
Définitions des flux monétaires mondiaux utilisés pour la prédiction du cours de Polytrade
M0 : le total de toutes les devises physiques, plus les comptes à la banque centrale qui peuvent être échangés contre des devises physiques.
M1 : M0 plus le montant des comptes à vue, y compris les comptes de "chèques" et les comptes "courants".
M2 : M1 plus la plupart des comptes d'épargne, comptes du marché monétaire et comptes de certificats de dépôt (CD) de moins de 100 000 $.
Prédictions du cours de Polytrade par des sociétés Internet ou des niches technologiques
| Comparaison | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Action Facebook | $0.081643 | $0.114722 | $0.1612036 | $0.226518 | $0.318295 | $0.447258 |
| Action Amazon.com | $0.121233 | $0.25296 | $0.527816 | $1.10 | $2.29 | $4.79 |
| Action Apple | $0.082413 | $0.116896 | $0.1658093 | $0.235187 | $0.333596 | $0.47318 |
| Action Netflix | $0.091675 | $0.14465 | $0.228235 | $0.360119 | $0.568211 | $0.896549 |
| Action Google | $0.075241 | $0.097437 | $0.126181 | $0.1634045 | $0.2116081 | $0.274031 |
| Action Tesla | $0.131712 | $0.298583 | $0.676865 | $1.53 | $3.47 | $7.88 |
| Action Kodak | $0.04357 | $0.032673 | $0.0245013 | $0.018373 | $0.013778 | $0.010332 |
| Action Nokia | $0.03849 | $0.025498 | $0.016891 | $0.011189 | $0.007412 | $0.00491 |
Ce calcul montre la valeur potentielle des cryptomonnaies si l'on suppose que leur capitalisation se comportera comme celle de certaines sociétés Internet ou niches technologiques. En extrapolant les données, vous pourrez obtenir une potentielle image des cours futurs pour 2024, 2025, 2026, 2027, 2028, 2029 et 2030.
Aperçu des prévisions relatives à Polytrade
Vous vous posez peut-être des questions telles que : "Devrais-je investir dans Polytrade maintenant ?", "Devrais-je acheter TRADE aujourd'hui ?", " Polytrade sera-t-il un bon ou un mauvais investissement à court ou à long terme ?".
Nous mettons régulièrement à jour les prévisions de Polytrade avec de nouvelles valeurs. Regardez nos prévisions similaires. Nous faisons une prévision des cours futurs pour une grande quantité de devises numériques comme Polytrade en utilisant des méthodes d'analyse technique.
Si vous souhaitez trouver des cryptomonnaies ayant un bon rendement, vous devriez consulter un maximum d'informations disponibles à propos de Polytrade afin de prendre une décision responsable concernant cet investissement.
Le cours de Polytrade est de $0.0581 USD actuellement, mais ce cours peut subir une hausse ou une baisse, ce qui pourrait causer la perte de votre investissement, car les cryptomonnaies sont des actifs à haut risque.
Prévision à court terme de Polytrade
basée sur l'historique des cours sur 4 heures
Prévision à long terme de Polytrade
basée sur l'historique des cours sur 1 mois
Prévision du cours de Polytrade basée sur le modèle de croissance du Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si Polytrade présente 1 % de la précédente croissance annuelle moyenne du Bitcoin | $0.059612 | $0.061161 | $0.062751 | $0.064382 |
| Si Polytrade présente 2 % de la précédente croissance annuelle moyenne du Bitcoin | $0.061122 | $0.064300056 | $0.067642 | $0.071159 |
| Si Polytrade présente 5 % de la précédente croissance annuelle moyenne du Bitcoin | $0.065653 | $0.074185 | $0.083827 | $0.094722 |
| Si Polytrade présente 10 % de la précédente croissance annuelle moyenne du Bitcoin | $0.0732045 | $0.092232 | $0.116207 | $0.146413 |
| Si Polytrade présente 20 % de la précédente croissance annuelle moyenne du Bitcoin | $0.0883071 | $0.134214 | $0.203988 | $0.310034 |
| Si Polytrade présente 50 % de la précédente croissance annuelle moyenne du Bitcoin | $0.133614 | $0.307268 | $0.706614 | $1.62 |
| Si Polytrade présente 100 % de la précédente croissance annuelle moyenne du Bitcoin | $0.209127 | $0.752718 | $2.70 | $9.75 |
Boîte à questions
Est-ce que TRADE est un bon investissement ?
La décision d'acquérir Polytrade dépend entièrement de votre tolérance individuelle au risque. Comme vous pouvez le discerner, la valeur de Polytrade a connu une hausse de 0.2704% au cours des 24 heures précédentes, et Polytrade a enregistré une déclin de sur une période de 30 jours précédents. Par conséquent, la détermination de si investir ou non dans Polytrade dépendra de la mesure dans laquelle cet investissement s'aligne avec vos aspirations de trading.
Est-ce que Polytrade peut monter ?
Il semble que la valeur moyenne de Polytrade pourrait potentiellement s'envoler jusqu'à $0.059922 pour la fin de cette année. En regardant les perspectives de Polytrade sur une période de cinq ans plus longue, la monnaie numérique pourrait potentiellement croître jusqu'à $0.188383. Cependant, compte tenu de l'imprévisibilité du marché, il est essentiel de mener des recherches approfondies avant d'investir des fonds dans un projet, un réseau ou un actif particulier.
Quel sera le prix de Polytrade la semaine prochaine ?
Basé sur notre nouveau pronostic expérimental de Polytrade, le prix de Polytrade va augmenter de 0.86% durant la prochaine semaine et atteindre $0.058599 d'ici 13 janvier 2026.
Quel sera le prix de Polytrade le mois prochain ?
Basé sur notre nouveau pronostic expérimental de Polytrade, le prix de Polytrade va diminuer de -11.62% durant le prochain mois et atteindre $0.051351 d'ici 5 février 2026.
Jusqu'où le prix de Polytrade peut-il monter cette année en 2026 ?
Selon notre prédiction la plus récente sur la valeur de Polytrade en 2026, TRADE devrait fluctuer dans la fourchette de $0.020074 et $0.059922. Cependant, il est crucial de garder à l'esprit que le marché des cryptomonnaies est exceptionnellement instable, et cette prévision de prix de Polytrade ne prend pas en compte les fluctuations de prix soudaines et extrêmes.
Où sera Polytrade dans 5 ans ?
L'avenir de Polytrade semble suivre une tendance haussière, avec un prix maximum de $0.188383 prévue après une période de cinq ans. Selon la prévision de Polytrade pour 2030, la valeur de Polytrade pourrait potentiellement atteindre son point le plus élevé d'environ $0.188383, tandis que son point le plus bas devrait être autour de $0.065155.
Combien vaudra Polytrade en 2026 ?
Basé sur notre nouvelle simulation expérimentale de prédiction de prix de Polytrade, il est attendu que la valeur de TRADE en 2026 augmente de 3.13% jusqu'à $0.059922 si le meilleur scénario se produit. Le prix sera entre $0.059922 et $0.020074 durant 2026.
Combien vaudra Polytrade en 2027 ?
Selon notre dernière simulation expérimentale pour la prédiction de prix de Polytrade, le valeur de TRADE pourrait diminuer de -12.62% jusqu'à $0.050766 en 2027, en supposant les conditions les plus favorables. Il est prévu que le prix fluctue entre $0.050766 et $0.019324 tout au long de l'année.
Combien vaudra Polytrade en 2028 ?
Notre nouveau modèle expérimental de prédiction de prix de Polytrade suggère que la valeur de TRADE en 2028 pourrait augmenter de 47.02%, atteignant $0.085421 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.085421 et $0.034875 durant l'année.
Combien vaudra Polytrade en 2029 ?
Basé sur notre modèle de prévision expérimental, la valeur de Polytrade pourrait connaître un 333.75% croissance en 2029, atteignant potentiellement $0.252019 sous des conditions optimales. Le range de prix prévu pour 2029 se situe entre $0.252019 et $0.076612.
Combien vaudra Polytrade en 2030 ?
En utilisant notre nouvelle simulation expérimentale pour les prédictions de prix de Polytrade, il est prévu que la valeur de TRADE en 2030 augmente de 224.23%, atteignant $0.188383 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.188383 et $0.065155 au cours de 2030.
Combien vaudra Polytrade en 2031 ?
Notre simulation expérimentale indique que le prix de Polytrade pourrait augmenter de 195.98% en 2031, atteignant potentiellement $0.171972 dans des conditions idéales. Il est probable que le prix fluctue entre $0.171972 et $0.077033 durant l'année.
Combien vaudra Polytrade en 2032 ?
Basé sur les résultats de notre dernière prédiction expérimentale de prix de Polytrade, TRADE pourrait connaître une 449.04% hausse en valeur, atteignant $0.31900068 si le scénario le plus positif se réalise en 2032. Il est prévu que le prix reste dans une fourchette de $0.31900068 et $0.117586 tout au long de l'année.
Combien vaudra Polytrade en 2033 ?
Selon notre prédiction expérimentale de prix de Polytrade, la valeur de TRADE est anticipée à augmenter de 1362.43% en 2033, avec le prix potentiel le plus élevé étant $0.8497017. Tout au long de l'année, le prix de TRADE pourrait osciller entre $0.8497017 et $0.273245.
Combien vaudra Polytrade en 2034 ?
Les résultats de notre nouvelle simulation de prédiction de prix de Polytrade suggèrent que TRADE pourrait augmenter de 746.96% en 2034, atteignant potentiellement $0.4921016 dans les meilleures circonstances. La fourchette de prix prévue pour l'année est entre $0.4921016 et $0.219676.
Combien vaudra Polytrade en 2035 ?
Basé sur notre prédiction expérimentale pour le prix de Polytrade, TRADE pourrait augmenter de 897.93%, avec la valeur potentiellement atteignant $0.579818 en 2035. La fourchette de prix attendue pour l'année se situe entre $0.579818 et $0.259725.
Combien vaudra Polytrade en 2036 ?
Notre récente simulation de prédiction de prix de Polytrade suggère que la valeur de TRADE pourrait augmenter de 1964.7% en 2036, pouvant atteindre $1.19 si les conditions sont optimales. La fourchette de prix attendue pour 2036 est entre $1.19 et $0.429926.
Combien vaudra Polytrade en 2037 ?
Selon la simulation expérimentale, la valeur de Polytrade pourrait augmenter de 4830.69% en 2037, avec un maximum de $2.86 sous des conditions favorables. Il est prévu que le prix chute entre $2.86 et $1.11 au cours de l'année.
Prévisions liées
Prévision du cours de Agoras: Tau Net
Prévision du cours de Commune AI
Prévision du cours de Krypton DAO
Prévision du cours de DIMO
Prévision du cours de Clover Finance
Prévision du cours de Alethea Artificial Liquid Intelligence Token
Prévision du cours de Cobak Token
Prévision du cours de ELYSIA
Prévision du cours de Snek
Prévision du cours de Gods Unchained
Prévision du cours de TRAC (Ordinals)
Prévision du cours de Numbers Protocol
Prévision du cours de DexTools
Prévision du cours de H2O Dao
Prévision du cours de Bitrise Token
Prévision du cours de Stratos
Prévision du cours de Linear
Prévision du cours de sETH2
Prévision du cours de Verus Coin
Prévision du cours de StrikeCoin
Prévision du cours de Wrapped NXM
Prévision du cours de Carry
Prévision du cours de e-Radix
Prévision du cours de Flamingo Finance
Prévision du cours de Swarm Markets
Comment lire et prédire les mouvements de prix de Polytrade ?
Les traders de Polytrade utilisent des indicateurs et des modèles graphiques pour prédire la direction du marché. Ils identifient également des niveaux clés de support et de résistance pour évaluer quand une tendance baissière pourrait ralentir ou une tendance haussière pourrait s'arrêter.
Indicateurs de prédiction du prix de Polytrade
Les moyennes mobiles sont des outils populaires pour la prédiction du prix de Polytrade. Une moyenne mobile simple (SMA) calcule le prix de clôture moyen de TRADE sur une période spécifique, comme une SMA de 12 jours. Une moyenne mobile exponentielle (EMA) donne plus de poids aux prix récents, réagissant plus rapidement aux changements de prix.
Les moyennes mobiles couramment utilisées sur le marché des cryptomonnaies incluent les moyennes sur 50 jours, 100 jours et 200 jours, qui aident à identifier les niveaux clés de résistance et de support. Un mouvement de prix de TRADE au-dessus de ces moyennes est considéré comme haussier, tandis qu'une chute en dessous indique une faiblesse.
Les traders utilisent également le RSI et les niveaux de retracement de Fibonacci pour évaluer la direction future de TRADE.
Comment lire les graphiques de Polytrade et prédire les mouvements de prix ?
La plupart des traders préfèrent les graphiques en chandeliers aux simples graphiques linéaires parce qu'ils fournissent des informations plus détaillées. Les chandeliers peuvent représenter l'action des prix de Polytrade dans différentes périodes, comme 5 minutes pour les tendances à court terme et hebdomadaire pour les tendances à long terme. Les options populaires incluent les graphiques de 1 heure, 4 heures et 1 jour.
Par exemple, un graphique en chandeliers de 1 heure montre les prix d'ouverture, de clôture, les plus hauts et les plus bas de TRADE au sein de chaque heure. La couleur du chandelier est cruciale : le vert indique que le prix a clôturé plus haut qu'il n'a ouvert, tandis que le rouge signifie le contraire. Certains graphiques utilisent des chandeliers creux et pleins pour transmettre la même information.
Qu'est-ce qui affecte le prix de Polytrade ?
L'action du prix de Polytrade est déterminée par l'offre et la demande, influencée par des facteurs tels que les réductions de récompenses de bloc, les hard forks et les mises à jour de protocole. Les événements du monde réel, tels que les réglementations, l'adoption par les entreprises et les gouvernements et les piratages d'échanges de cryptomonnaies, impactent également le prix de TRADE. La capitalisation boursière de Polytrade peut changer rapidement.
Les traders surveillent souvent l'activité des « baleines » de TRADE, de grands détenteurs de Polytrade, car leurs actions peuvent influencer significativement les mouvements de prix sur le marché relativement petit de Polytrade.
Modèles de prédiction de prix haussiers et baissiers
Les traders identifient souvent des modèles de chandeliers pour obtenir un avantage dans les prédictions de prix des cryptomonnaies. Certaines formations indiquent des tendances haussières, tandis que d'autres suggèrent des mouvements baissiers.
Modèles de chandeliers haussiers couramment suivis :
- Marteau
- Englobante haussière
- Ligne pénétrante
- Étoile du matin
- Trois soldats blancs
Modèles de chandeliers baissiers courants :
- Harami baissier
- Nuage sombre
- Étoile du soir
- Étoile filante
- Pendu


