Prédiction du prix de BORA jusqu'à $0.0550088 d'ici 2026
| Année | Prix min. | Prix max. |
|---|---|---|
| 2026 | $0.018428 | $0.0550088 |
| 2027 | $0.01774 | $0.0466042 |
| 2028 | $0.032016 | $0.078417 |
| 2029 | $0.07033 | $0.231355 |
| 2030 | $0.059813 | $0.172937 |
| 2031 | $0.070717 | $0.157872 |
| 2032 | $0.107945 | $0.292844 |
| 2033 | $0.25084 | $0.780031 |
| 2034 | $0.201664 | $0.451752 |
| 2035 | $0.238429 | $0.532276 |
Calculateur de profit d’investissement
Si vous ouvrez une position short de $10,000.00 sur BORA aujourd’hui et la fermez le Apr 06, 2026, notre prévision indique que vous pourriez gagner environ $3,954.59, soit un rendement de 39.55% sur les 90 prochains jours.
Prévision du prix à long terme de BORA pour 2027, 2028, 2029, 2030, 2031, 2032 et 2037
[
'name' => 'BORA'
'name_with_ticker' => 'BORA <small>BORA</small>'
'name_lang' => 'BORA'
'name_lang_with_ticker' => 'BORA <small>BORA</small>'
'name_with_lang' => 'BORA'
'name_with_lang_with_ticker' => 'BORA <small>BORA</small>'
'image' => '/uploads/coins/bora.jpeg?1717130501'
'price_for_sd' => 0.05333
'ticker' => 'BORA'
'marketcap' => '$61.49M'
'low24h' => '$0.04256'
'high24h' => '$0.05331'
'volume24h' => '$47.75M'
'current_supply' => '1.15B'
'max_supply' => '1.21B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.05333'
'change_24h_pct' => '25.147%'
'ath_price' => '$1.61'
'ath_days' => 1503
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '25 nov. 2021'
'ath_pct' => '-96.86%'
'fdv' => '$64.31M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$2.62'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.053794'
'next_week_prediction_price_date' => '13 janvier 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.047141'
'next_month_prediction_price_date' => '5 février 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.018428'
'current_year_max_price_prediction' => '$0.0550088'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.059813'
'grand_prediction_max_price' => '$0.172937'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.054348727044212
107 => 0.054551645462407
108 => 0.055008831019872
109 => 0.051102230487673
110 => 0.052856179434864
111 => 0.053886460118548
112 => 0.049231614507733
113 => 0.053794448787292
114 => 0.051034225263809
115 => 0.050097363942772
116 => 0.051358724289454
117 => 0.050867170935639
118 => 0.05044456222701
119 => 0.050208739306256
120 => 0.051134943133598
121 => 0.051091734617999
122 => 0.049576285388052
123 => 0.047599443645199
124 => 0.048262936621718
125 => 0.048021883403069
126 => 0.047148275442199
127 => 0.047736981727998
128 => 0.045144617182773
129 => 0.040684588722098
130 => 0.043631020137586
131 => 0.043517585733191
201 => 0.043460386962654
202 => 0.04567454873801
203 => 0.045461708172713
204 => 0.045075400462558
205 => 0.047141180598156
206 => 0.046387143059999
207 => 0.048710909079011
208 => 0.050241491670895
209 => 0.049853286416434
210 => 0.051292806742049
211 => 0.04827822215983
212 => 0.049279546233902
213 => 0.049485917737793
214 => 0.047115689191945
215 => 0.04549653152144
216 => 0.045388552164566
217 => 0.04258115589758
218 => 0.044080844322893
219 => 0.045400508075844
220 => 0.044768491548225
221 => 0.044568413996537
222 => 0.045590566816583
223 => 0.045669996844847
224 => 0.043858983782801
225 => 0.044235550745725
226 => 0.045805897580169
227 => 0.044195982034592
228 => 0.041068179107748
301 => 0.040292440736632
302 => 0.04018894293823
303 => 0.038085078951177
304 => 0.040344279283927
305 => 0.039358077795877
306 => 0.042473476480119
307 => 0.040693977459898
308 => 0.040617266813776
309 => 0.040501307421158
310 => 0.038690424777974
311 => 0.039086892989236
312 => 0.040404813707282
313 => 0.040875062666921
314 => 0.040826011847794
315 => 0.040398355176775
316 => 0.040594134210811
317 => 0.039963461728243
318 => 0.039740758148335
319 => 0.039037844390702
320 => 0.038004755351862
321 => 0.038148412719016
322 => 0.036101593010624
323 => 0.034986377000547
324 => 0.034677699907269
325 => 0.034264923997634
326 => 0.034724324044617
327 => 0.036095794627559
328 => 0.034441510130816
329 => 0.031605355395715
330 => 0.031775813127867
331 => 0.032158781042658
401 => 0.031445122867031
402 => 0.030769705296591
403 => 0.031356926075729
404 => 0.0301552099261
405 => 0.032304002698074
406 => 0.032245883875514
407 => 0.033046820940452
408 => 0.033547663324041
409 => 0.032393383779516
410 => 0.032103085595571
411 => 0.032268452634463
412 => 0.029535303841216
413 => 0.032823464374069
414 => 0.032851900522901
415 => 0.032608412952515
416 => 0.034359256925693
417 => 0.038054083811026
418 => 0.036663941312697
419 => 0.036125636120064
420 => 0.03510231755537
421 => 0.03646582878418
422 => 0.036361132395896
423 => 0.03588765562315
424 => 0.035601295393656
425 => 0.036128922896783
426 => 0.035535916507023
427 => 0.035429396264697
428 => 0.034783999491364
429 => 0.034553622206966
430 => 0.034383060037182
501 => 0.034195287847342
502 => 0.034609466508214
503 => 0.033670883172938
504 => 0.032539043681054
505 => 0.032444943473977
506 => 0.032704762419091
507 => 0.032589811877124
508 => 0.032444393135006
509 => 0.032166749153866
510 => 0.032084378115587
511 => 0.032352044029248
512 => 0.032049864818617
513 => 0.032495746704456
514 => 0.032374491503278
515 => 0.031697169806285
516 => 0.030852976195222
517 => 0.030845461101328
518 => 0.030663580972579
519 => 0.030431929282758
520 => 0.030367489082122
521 => 0.031307471979602
522 => 0.033253208446065
523 => 0.032871213820171
524 => 0.033147244085763
525 => 0.034505039795283
526 => 0.034936642220998
527 => 0.034630301042289
528 => 0.034210962342572
529 => 0.034229411117179
530 => 0.035662418396571
531 => 0.035751793302824
601 => 0.035977614857488
602 => 0.036267859372395
603 => 0.034679730938231
604 => 0.034154610410748
605 => 0.033905779172249
606 => 0.033139475267481
607 => 0.033965868330842
608 => 0.033484364482501
609 => 0.033549335802156
610 => 0.033507023144997
611 => 0.033530128716975
612 => 0.032303402066701
613 => 0.032750356783206
614 => 0.032007207878724
615 => 0.031012214918001
616 => 0.031008879352707
617 => 0.031252402470238
618 => 0.03110754539087
619 => 0.030717738714906
620 => 0.030773108913391
621 => 0.030288007711401
622 => 0.030832008982354
623 => 0.030847608992274
624 => 0.030638138871008
625 => 0.031476247886619
626 => 0.031819621834147
627 => 0.031681744113045
628 => 0.03180994796568
629 => 0.032887087421479
630 => 0.033062708151663
701 => 0.033140707279157
702 => 0.03303619878122
703 => 0.0318296360976
704 => 0.031883152283319
705 => 0.031490486021058
706 => 0.031158724407599
707 => 0.031171993132277
708 => 0.031342561727586
709 => 0.032087444787015
710 => 0.03365500727233
711 => 0.033714495122774
712 => 0.033786596132896
713 => 0.033493325089667
714 => 0.033404871736803
715 => 0.033521564540978
716 => 0.034110258591942
717 => 0.035624539519898
718 => 0.035089291504535
719 => 0.034654126536414
720 => 0.035035883533089
721 => 0.034977115035762
722 => 0.034481049775789
723 => 0.034467126876138
724 => 0.033515019040593
725 => 0.033163046452238
726 => 0.032868911812717
727 => 0.03254772446494
728 => 0.03235731383888
729 => 0.03264987110059
730 => 0.032716782407779
731 => 0.032077100842024
801 => 0.031989914608317
802 => 0.032512292383397
803 => 0.032282413400791
804 => 0.032518849635126
805 => 0.032573704869604
806 => 0.03256487191343
807 => 0.032324851854156
808 => 0.032477833482436
809 => 0.032115986325535
810 => 0.031722531890091
811 => 0.031471532473355
812 => 0.031252502192011
813 => 0.031374032922215
814 => 0.030940798059673
815 => 0.03080219750785
816 => 0.03242600674897
817 => 0.033625532094277
818 => 0.033608090520692
819 => 0.033501919427102
820 => 0.033344170718048
821 => 0.034098718291318
822 => 0.033835849004446
823 => 0.03402710837411
824 => 0.034075791910819
825 => 0.034223142313897
826 => 0.034275807417802
827 => 0.034116616895534
828 => 0.033582354059319
829 => 0.032251021867655
830 => 0.031631283138574
831 => 0.031426759035412
901 => 0.031434193098115
902 => 0.031229128461639
903 => 0.031289529187433
904 => 0.031208123554144
905 => 0.031053960978833
906 => 0.031364513817609
907 => 0.031400302139278
908 => 0.031327815395877
909 => 0.031344888648007
910 => 0.030744729372145
911 => 0.030790358178411
912 => 0.030536291186892
913 => 0.030488656688805
914 => 0.029846397458389
915 => 0.028708542134741
916 => 0.02933902443833
917 => 0.028577490474822
918 => 0.028289086023719
919 => 0.029654347839147
920 => 0.029517313419346
921 => 0.029282770060078
922 => 0.0289358315486
923 => 0.028807148679893
924 => 0.02802531230567
925 => 0.027979117241746
926 => 0.028366616460169
927 => 0.0281877989039
928 => 0.027936671331396
929 => 0.027027112720177
930 => 0.02600446769666
1001 => 0.026035334921803
1002 => 0.026360619276796
1003 => 0.027306427409512
1004 => 0.026936883809413
1005 => 0.026668775687517
1006 => 0.026618567095587
1007 => 0.027247032742405
1008 => 0.028136443300276
1009 => 0.028553734834589
1010 => 0.028140211597417
1011 => 0.027665178368226
1012 => 0.027694091439794
1013 => 0.027886437151658
1014 => 0.027906649966353
1015 => 0.027597452168354
1016 => 0.027684489537354
1017 => 0.027552271814979
1018 => 0.026740851896818
1019 => 0.026726175883539
1020 => 0.026527040349709
1021 => 0.026521010604886
1022 => 0.026182231385154
1023 => 0.026134833830443
1024 => 0.025462167127235
1025 => 0.025904918388309
1026 => 0.025607944087865
1027 => 0.025160333767941
1028 => 0.025083165580072
1029 => 0.025080845811161
1030 => 0.025540441525887
1031 => 0.025899547744793
1101 => 0.025613110082967
1102 => 0.02554789377973
1103 => 0.026244233278537
1104 => 0.026155617730039
1105 => 0.026078877236548
1106 => 0.028056806339959
1107 => 0.026491121114876
1108 => 0.025808392990552
1109 => 0.024963387290147
1110 => 0.025238525407087
1111 => 0.025296501050947
1112 => 0.023264414665197
1113 => 0.022439997471579
1114 => 0.022157088558235
1115 => 0.021994270478861
1116 => 0.022068468722173
1117 => 0.021326396553424
1118 => 0.021825081323564
1119 => 0.021182509551227
1120 => 0.021074780302485
1121 => 0.022223778230792
1122 => 0.022383654580167
1123 => 0.021701572404043
1124 => 0.022139579580189
1125 => 0.021980752089363
1126 => 0.02119352459997
1127 => 0.021163458300329
1128 => 0.020768455218536
1129 => 0.020150351883198
1130 => 0.019867862073023
1201 => 0.019720738927194
1202 => 0.019781444804536
1203 => 0.019750750055321
1204 => 0.019550446053968
1205 => 0.019762231246211
1206 => 0.019221207595713
1207 => 0.019005767618761
1208 => 0.018908458379341
1209 => 0.018428268749364
1210 => 0.019192463991955
1211 => 0.019343020081823
1212 => 0.019493872813698
1213 => 0.020806942853131
1214 => 0.020741345584659
1215 => 0.021334312944486
1216 => 0.02131127132328
1217 => 0.021142147426823
1218 => 0.020428641527201
1219 => 0.020713032261771
1220 => 0.019837721784898
1221 => 0.020493563909498
1222 => 0.020194264952452
1223 => 0.020392370631053
1224 => 0.02003615875846
1225 => 0.020233301116381
1226 => 0.019378722515994
1227 => 0.018580729043198
1228 => 0.018901864911532
1229 => 0.019250976326754
1230 => 0.020007938826887
1231 => 0.019557098206613
]
'min_raw' => 0.018428268749364
'max_raw' => 0.055008831019872
'avg_raw' => 0.036718549884618
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.018428'
'max' => '$0.0550088'
'avg' => '$0.036718'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.034909731250636
'max_diff' => 0.0016708310198722
'year' => 2026
]
1 => [
'items' => [
101 => 0.019719237541835
102 => 0.019176097910638
103 => 0.018055445711313
104 => 0.018061788481059
105 => 0.017889400554928
106 => 0.017740432217702
107 => 0.019608882675196
108 => 0.019376511324976
109 => 0.01900625799041
110 => 0.019501856792009
111 => 0.019632900981362
112 => 0.019636631625206
113 => 0.019998207717596
114 => 0.02019118094292
115 => 0.020225193310277
116 => 0.020794141104021
117 => 0.020984844899881
118 => 0.021770326845616
119 => 0.02017480851298
120 => 0.02014194986288
121 => 0.019508830883493
122 => 0.019107296817552
123 => 0.019536324264516
124 => 0.019916384014439
125 => 0.019520640399336
126 => 0.019572316160865
127 => 0.01904106269103
128 => 0.019230960808697
129 => 0.01939452664967
130 => 0.01930421520624
131 => 0.019169014604303
201 => 0.01988522344909
202 => 0.019844812139222
203 => 0.020511762281058
204 => 0.021031697610681
205 => 0.021963514670924
206 => 0.020991114991839
207 => 0.020955676882594
208 => 0.021302090084911
209 => 0.020984791865824
210 => 0.021185313387525
211 => 0.021931207553727
212 => 0.021946967122094
213 => 0.021682974046886
214 => 0.021666910044268
215 => 0.02171761280213
216 => 0.022014580438596
217 => 0.021910810821521
218 => 0.022030895649526
219 => 0.02218106356575
220 => 0.022802221737129
221 => 0.022951980869328
222 => 0.022588143819293
223 => 0.0226209942312
224 => 0.022484909186937
225 => 0.022353452739319
226 => 0.022648947635892
227 => 0.023188970367344
228 => 0.023185610913959
301 => 0.023310885691114
302 => 0.023388930839449
303 => 0.023053903930254
304 => 0.022835813731648
305 => 0.022919443391234
306 => 0.023053169038127
307 => 0.022876077966255
308 => 0.021782989834095
309 => 0.022114562946652
310 => 0.022059372967626
311 => 0.021980775726162
312 => 0.022314175054817
313 => 0.022282017876235
314 => 0.02131878553076
315 => 0.021380448540318
316 => 0.021322535462605
317 => 0.021509664464594
318 => 0.020974686285612
319 => 0.021139241970334
320 => 0.021242449753178
321 => 0.021303239930152
322 => 0.021522855733599
323 => 0.021497086353861
324 => 0.021521253872773
325 => 0.021846886132862
326 => 0.023493822360895
327 => 0.023583461466027
328 => 0.023142045728395
329 => 0.023318382609039
330 => 0.02297985435884
331 => 0.023207110641141
401 => 0.023362593617807
402 => 0.022659995943908
403 => 0.022618392669481
404 => 0.022278467192773
405 => 0.022461123889593
406 => 0.022170503951471
407 => 0.022241811918832
408 => 0.022042428625573
409 => 0.022401278856622
410 => 0.022802529174622
411 => 0.022903900850804
412 => 0.02263723561402
413 => 0.022444152408492
414 => 0.022105161905147
415 => 0.022668910667105
416 => 0.022833767985034
417 => 0.022668044741796
418 => 0.022629643045214
419 => 0.02255687189958
420 => 0.022645081787771
421 => 0.022832870136676
422 => 0.022744312619239
423 => 0.022802806419689
424 => 0.022579888370919
425 => 0.023054014838101
426 => 0.023807041772735
427 => 0.023809462877462
428 => 0.023720904882667
429 => 0.023684668859205
430 => 0.023775534736014
501 => 0.023824825746669
502 => 0.024118669330315
503 => 0.024433975202811
504 => 0.025905370131024
505 => 0.025492208323064
506 => 0.02679771743705
507 => 0.027830205647071
508 => 0.028139803716019
509 => 0.027854988060302
510 => 0.026880649087533
511 => 0.026832843369199
512 => 0.02828891714982
513 => 0.02787750961439
514 => 0.027828573997139
515 => 0.027307981707614
516 => 0.027615716227333
517 => 0.027548410173677
518 => 0.027442164275257
519 => 0.028029300301908
520 => 0.029128366529803
521 => 0.028957066751208
522 => 0.028829199412854
523 => 0.028268921957813
524 => 0.028606334128248
525 => 0.02848618811706
526 => 0.029002411627665
527 => 0.028696612255733
528 => 0.027874392797679
529 => 0.028005333956445
530 => 0.027985542463715
531 => 0.028392849981666
601 => 0.028270586374771
602 => 0.027961668532208
603 => 0.02912461004092
604 => 0.029049095087965
605 => 0.029156158026133
606 => 0.029203290442547
607 => 0.029911152445572
608 => 0.030201140859154
609 => 0.030266973305998
610 => 0.030542439870392
611 => 0.030260119446932
612 => 0.031389602431824
613 => 0.032140642709617
614 => 0.033013014640454
615 => 0.034287784502876
616 => 0.034767109763427
617 => 0.034680523945382
618 => 0.035647039906323
619 => 0.037383847603691
620 => 0.035031582438253
621 => 0.037508523369205
622 => 0.036724352468124
623 => 0.034865097368292
624 => 0.034745383259041
625 => 0.036004492399042
626 => 0.038797075286802
627 => 0.038097564946631
628 => 0.038798219435126
629 => 0.037980868756843
630 => 0.037940280406493
701 => 0.038758522537043
702 => 0.040670389875128
703 => 0.039762133368079
704 => 0.038459924951593
705 => 0.039421455381719
706 => 0.038588488737703
707 => 0.036711581756051
708 => 0.038097030044257
709 => 0.037170620229229
710 => 0.037440995863909
711 => 0.039388171502038
712 => 0.039153882177671
713 => 0.03945707425801
714 => 0.03892194817213
715 => 0.03842205602628
716 => 0.037488970213573
717 => 0.037212729505005
718 => 0.037289072498754
719 => 0.037212691673209
720 => 0.036690638736501
721 => 0.036577901454523
722 => 0.036390001045428
723 => 0.036448239239201
724 => 0.036094931497898
725 => 0.036761696202841
726 => 0.036885453607589
727 => 0.037370669356284
728 => 0.037421046064955
729 => 0.038772365018458
730 => 0.038028081246861
731 => 0.038527411059218
801 => 0.038482746300926
802 => 0.03490539306406
803 => 0.035398320776845
804 => 0.036165161608702
805 => 0.035819700853379
806 => 0.035331300170719
807 => 0.034936890433083
808 => 0.034339319350099
809 => 0.035180389174063
810 => 0.036286306554772
811 => 0.037449093954772
812 => 0.038846106827023
813 => 0.038534309816959
814 => 0.037422977770867
815 => 0.037472831314626
816 => 0.037781006305499
817 => 0.037381891691668
818 => 0.037264185000407
819 => 0.037764835213628
820 => 0.037768282916494
821 => 0.03730905331867
822 => 0.036798703658818
823 => 0.036796565275108
824 => 0.036705753482531
825 => 0.037997023973003
826 => 0.03870709218059
827 => 0.038788500356258
828 => 0.038701612761742
829 => 0.038735052348426
830 => 0.038321879303716
831 => 0.039266270361263
901 => 0.040132936986263
902 => 0.039900651817131
903 => 0.03955242332732
904 => 0.039275042562228
905 => 0.039835309724163
906 => 0.039810361909384
907 => 0.040125367409357
908 => 0.040111076940318
909 => 0.040005152438634
910 => 0.039900655600029
911 => 0.040314973753311
912 => 0.040195656778911
913 => 0.040076154472295
914 => 0.039836474301487
915 => 0.039869050817366
916 => 0.039520882454113
917 => 0.039359803838172
918 => 0.036937567936058
919 => 0.036290267354172
920 => 0.036493921294252
921 => 0.036560969459198
922 => 0.036279263416423
923 => 0.036683157517418
924 => 0.036620211049607
925 => 0.036865098933405
926 => 0.036712103615404
927 => 0.036718382596622
928 => 0.037168309204822
929 => 0.037298924813307
930 => 0.037232492660634
1001 => 0.037279019463205
1002 => 0.038351209990719
1003 => 0.038198778784429
1004 => 0.038117802744155
1005 => 0.038140233660711
1006 => 0.038414201328515
1007 => 0.03849089731742
1008 => 0.038165931023098
1009 => 0.038319187006108
1010 => 0.038971731530684
1011 => 0.039200085183465
1012 => 0.039928880427168
1013 => 0.03961927525434
1014 => 0.040187568948464
1015 => 0.041934310018601
1016 => 0.043329727650715
1017 => 0.042046443928151
1018 => 0.044608950704165
1019 => 0.046604229799056
1020 => 0.046527647664083
1021 => 0.046179724602252
1022 => 0.043908152399957
1023 => 0.041817817792171
1024 => 0.04356647145188
1025 => 0.043570929129672
1026 => 0.043420718229499
1027 => 0.042487771229272
1028 => 0.043388253696171
1029 => 0.043459730724321
1030 => 0.043419722595833
1031 => 0.042704434318169
1101 => 0.041612321325546
1102 => 0.041825717590155
1103 => 0.042175265024751
1104 => 0.041513498807827
1105 => 0.041302024403691
1106 => 0.041695195555632
1107 => 0.042962074927648
1108 => 0.042722578720901
1109 => 0.042716324507063
1110 => 0.043740990841724
1111 => 0.043007550882942
1112 => 0.041828409200442
1113 => 0.041530660374642
1114 => 0.040473852630697
1115 => 0.04120379350366
1116 => 0.041230062776189
1117 => 0.040830281619882
1118 => 0.041860849237956
1119 => 0.041851352375928
1120 => 0.042829722949542
1121 => 0.044700000027085
1122 => 0.04414686706451
1123 => 0.04350363360973
1124 => 0.043573570921194
1125 => 0.044340610607957
1126 => 0.043876840903527
1127 => 0.044043615722757
1128 => 0.044340358174294
1129 => 0.044519390263006
1130 => 0.043547810958776
1201 => 0.043321289346949
1202 => 0.042857905627435
1203 => 0.04273701746448
1204 => 0.043114433835206
1205 => 0.043014997955837
1206 => 0.041227854945553
1207 => 0.041041088557408
1208 => 0.041046816415892
1209 => 0.040577183452645
1210 => 0.039860880458867
1211 => 0.041743281958285
1212 => 0.04159209877369
1213 => 0.041425204238546
1214 => 0.041445647866814
1215 => 0.042262734557205
1216 => 0.041788783012911
1217 => 0.043048860872547
1218 => 0.042789826746014
1219 => 0.04252414937156
1220 => 0.04248742466568
1221 => 0.042385161543043
1222 => 0.042034463245091
1223 => 0.041610973976614
1224 => 0.041331349679553
1225 => 0.03812598531251
1226 => 0.038720882294286
1227 => 0.039405257045254
1228 => 0.039641500466829
1229 => 0.039237389746678
1230 => 0.042050419999407
1231 => 0.042564387733614
]
'min_raw' => 0.017740432217702
'max_raw' => 0.046604229799056
'avg_raw' => 0.032172331008379
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.01774'
'max' => '$0.0466042'
'avg' => '$0.032172'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00068783653166238
'max_diff' => -0.0084046012208158
'year' => 2027
]
2 => [
'items' => [
101 => 0.041007545941414
102 => 0.040716324407525
103 => 0.042069512434686
104 => 0.041253374633799
105 => 0.041620881435566
106 => 0.04082653274562
107 => 0.042440587957176
108 => 0.042428291560746
109 => 0.04180038762836
110 => 0.042331087732312
111 => 0.042238865529362
112 => 0.041529963536158
113 => 0.042463061414806
114 => 0.042463524219712
115 => 0.0418591803366
116 => 0.041153438989012
117 => 0.04102726910493
118 => 0.040932217045813
119 => 0.04159750445582
120 => 0.042193999067332
121 => 0.043303927655802
122 => 0.043582990074196
123 => 0.044672189271426
124 => 0.044023624181622
125 => 0.044311124685608
126 => 0.044623247152114
127 => 0.044772890140481
128 => 0.044529054921223
129 => 0.046221029606796
130 => 0.046363884111023
131 => 0.046411781990604
201 => 0.045841257646417
202 => 0.04634801679694
203 => 0.046110920972509
204 => 0.046727778440561
205 => 0.046824509567983
206 => 0.046742581744366
207 => 0.046773285731007
208 => 0.045329483821659
209 => 0.045254615075997
210 => 0.044233774416458
211 => 0.044649774530893
212 => 0.043872082256361
213 => 0.044118696487733
214 => 0.044227401691096
215 => 0.044170620261825
216 => 0.044673294553202
217 => 0.044245918715958
218 => 0.04311800361438
219 => 0.041989781213086
220 => 0.041975617299868
221 => 0.041678576256387
222 => 0.041463869987731
223 => 0.041505230032188
224 => 0.041650988223531
225 => 0.041455398256676
226 => 0.041497137292767
227 => 0.042190283397629
228 => 0.042329288905667
229 => 0.041856893876395
301 => 0.039960159667593
302 => 0.039494696335155
303 => 0.039829262147972
304 => 0.039669361238244
305 => 0.032016270585965
306 => 0.03381425071482
307 => 0.032745951975891
308 => 0.033238273184851
309 => 0.032147816807021
310 => 0.032668239746237
311 => 0.032572136632167
312 => 0.035463235473265
313 => 0.035418094941438
314 => 0.03543970132524
315 => 0.034408372331239
316 => 0.036051307422316
317 => 0.036860676326215
318 => 0.036710883682759
319 => 0.036748583263961
320 => 0.036100779554222
321 => 0.035445973481179
322 => 0.034719692772241
323 => 0.036069032558438
324 => 0.035919009008211
325 => 0.036263109055662
326 => 0.03713825235981
327 => 0.037267120535692
328 => 0.03744032067093
329 => 0.037378240751672
330 => 0.038857236288388
331 => 0.038678120170165
401 => 0.039109738479858
402 => 0.038221866869859
403 => 0.037217155865598
404 => 0.037408118581031
405 => 0.037389727335909
406 => 0.037155585677026
407 => 0.036944213056568
408 => 0.03659233719737
409 => 0.037705724483699
410 => 0.037660522993158
411 => 0.038392282584032
412 => 0.038262936968412
413 => 0.037399135291057
414 => 0.037429986136952
415 => 0.037637472902005
416 => 0.038355586964894
417 => 0.038568772111693
418 => 0.038470016257736
419 => 0.03870376403893
420 => 0.038888508754521
421 => 0.038726965130829
422 => 0.041014082176957
423 => 0.04006431172216
424 => 0.040527223233368
425 => 0.040637624901158
426 => 0.040354833350611
427 => 0.040416160711918
428 => 0.040509054953594
429 => 0.041073090598488
430 => 0.042553283335718
501 => 0.043208850623025
502 => 0.045181157152008
503 => 0.043154414885752
504 => 0.043034156387165
505 => 0.043389428350986
506 => 0.044547381073348
507 => 0.045485792993853
508 => 0.045797118366168
509 => 0.045838265153541
510 => 0.046422332248521
511 => 0.046757108615158
512 => 0.046351411140701
513 => 0.046007625009395
514 => 0.044776225759362
515 => 0.044918763575543
516 => 0.045900707781072
517 => 0.047287761807609
518 => 0.048477998460752
519 => 0.048061219068756
520 => 0.051240951629284
521 => 0.051556209124617
522 => 0.051512650732257
523 => 0.052230854223233
524 => 0.050805366553244
525 => 0.050195942956801
526 => 0.046081955473122
527 => 0.047237818148667
528 => 0.048917932429006
529 => 0.048695563003898
530 => 0.047475419103932
531 => 0.04847707287219
601 => 0.048145894811795
602 => 0.047884680934971
603 => 0.049081352343504
604 => 0.047765562973269
605 => 0.048904806423512
606 => 0.047443714914612
607 => 0.048063122881912
608 => 0.04771151696228
609 => 0.047939049083483
610 => 0.046608900952177
611 => 0.047326616596309
612 => 0.046579041621751
613 => 0.046578687173876
614 => 0.046562184414878
615 => 0.04744170305719
616 => 0.047470384128541
617 => 0.046820418522993
618 => 0.046726748324862
619 => 0.047073096141889
620 => 0.046667613556788
621 => 0.046857336306279
622 => 0.046673360065596
623 => 0.046631943138686
624 => 0.046301926018555
625 => 0.046159745569193
626 => 0.046215498186927
627 => 0.046025185760157
628 => 0.045910515639127
629 => 0.0465393736416
630 => 0.046203400178938
701 => 0.046487880889909
702 => 0.04616367921543
703 => 0.045039854963739
704 => 0.044393531752365
705 => 0.042270731919484
706 => 0.042872755318764
707 => 0.043271897455325
708 => 0.043139980981572
709 => 0.043423388612091
710 => 0.043440787538864
711 => 0.043348648829183
712 => 0.043241964007073
713 => 0.04319003573571
714 => 0.043577066526412
715 => 0.043801750927272
716 => 0.043311956708562
717 => 0.043197204776067
718 => 0.043692413773463
719 => 0.043994490975802
720 => 0.046224859315353
721 => 0.046059626424764
722 => 0.046474328554825
723 => 0.046427639459103
724 => 0.046862313358636
725 => 0.047572821477478
726 => 0.046128159810679
727 => 0.046378903123393
728 => 0.046317426653624
729 => 0.046988610630565
730 => 0.046990705993679
731 => 0.046588297671377
801 => 0.046806449751226
802 => 0.046684683244943
803 => 0.046904731779527
804 => 0.046057419638772
805 => 0.047089354364517
806 => 0.04767439485761
807 => 0.047682518145424
808 => 0.047959822695981
809 => 0.048241580179744
810 => 0.048782389133922
811 => 0.048226497311537
812 => 0.047226502038044
813 => 0.047298698466825
814 => 0.046712401603861
815 => 0.04672225736005
816 => 0.046669646561101
817 => 0.046827535529105
818 => 0.046092067388382
819 => 0.046264680290977
820 => 0.046023021216525
821 => 0.04637837780376
822 => 0.045996072858443
823 => 0.046317397007809
824 => 0.046456069858611
825 => 0.046967775663484
826 => 0.045920493495008
827 => 0.043785014258716
828 => 0.044233917884367
829 => 0.04356995416141
830 => 0.043631406531858
831 => 0.043755550100235
901 => 0.043353160177877
902 => 0.043429923494299
903 => 0.043427180968461
904 => 0.043403547362424
905 => 0.043298870202582
906 => 0.043147067611067
907 => 0.043751802413289
908 => 0.043854558640218
909 => 0.044082973003877
910 => 0.044762579215182
911 => 0.044694670528455
912 => 0.044805432414012
913 => 0.044563639839742
914 => 0.0436426225959
915 => 0.043692638263388
916 => 0.043068942088363
917 => 0.044067023690421
918 => 0.04383066479302
919 => 0.04367828267426
920 => 0.043636703801346
921 => 0.044317994624999
922 => 0.044521847517361
923 => 0.0443948200749
924 => 0.044134283084429
925 => 0.04463459112698
926 => 0.044768452452864
927 => 0.044798419067114
928 => 0.045684868993962
929 => 0.044847961770795
930 => 0.045049413657554
1001 => 0.046621083771068
1002 => 0.045195795853761
1003 => 0.045950802651272
1004 => 0.0459138489974
1005 => 0.046300084926969
1006 => 0.045882166377793
1007 => 0.045887346979081
1008 => 0.046230298318651
1009 => 0.045748685013825
1010 => 0.045629430786607
1011 => 0.04546468192582
1012 => 0.045824405036132
1013 => 0.046040042771886
1014 => 0.047777924553604
1015 => 0.048900675441632
1016 => 0.048851933864538
1017 => 0.049297340638769
1018 => 0.049096680807519
1019 => 0.048448697281026
1020 => 0.049554726147578
1021 => 0.049204732335987
1022 => 0.049233585400572
1023 => 0.049232511488067
1024 => 0.049465226775785
1025 => 0.049300326666394
1026 => 0.048975291624136
1027 => 0.049191065053937
1028 => 0.049831835000034
1029 => 0.051820804573942
1030 => 0.052933858297843
1031 => 0.051753797342172
1101 => 0.052567787587748
1102 => 0.052079683494783
1103 => 0.051990980461252
1104 => 0.05250222648888
1105 => 0.053014367385002
1106 => 0.052981746223965
1107 => 0.052609958232107
1108 => 0.052399944629277
1109 => 0.053990237989623
1110 => 0.055161939047585
1111 => 0.055082036890616
1112 => 0.055434699025906
1113 => 0.056470125962546
1114 => 0.056564792425239
1115 => 0.056552866626824
1116 => 0.056318225921614
1117 => 0.057337738207914
1118 => 0.058188233293758
1119 => 0.05626391337778
1120 => 0.056996669210587
1121 => 0.057325626911852
1122 => 0.057808634414662
1123 => 0.058623549033359
1124 => 0.059508762454692
1125 => 0.05963394133834
1126 => 0.05954512093003
1127 => 0.058961298882848
1128 => 0.059929909971262
1129 => 0.06049729963013
1130 => 0.060835167187505
1201 => 0.061691943097205
1202 => 0.057327658442625
1203 => 0.054238400845091
1204 => 0.053755968661816
1205 => 0.054737013477215
1206 => 0.05499570717135
1207 => 0.054891428067619
1208 => 0.051414187778582
1209 => 0.053737661711326
1210 => 0.056237524299721
1211 => 0.056333554202752
1212 => 0.057585037684165
1213 => 0.057992572005754
1214 => 0.059000180243981
1215 => 0.058937154074337
1216 => 0.059182490645797
1217 => 0.059126092016655
1218 => 0.060992474101023
1219 => 0.063051370700503
1220 => 0.062980077658153
1221 => 0.062684086912219
1222 => 0.063123683643853
1223 => 0.065248685579284
1224 => 0.065053049453532
1225 => 0.065243093285455
1226 => 0.067748590327189
1227 => 0.071006092884242
1228 => 0.069492655898582
1229 => 0.072776378677704
1230 => 0.074843308104497
1231 => 0.078417848823643
]
'min_raw' => 0.032016270585965
'max_raw' => 0.078417848823643
'avg_raw' => 0.055217059704804
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.032016'
'max' => '$0.078417'
'avg' => '$0.055217'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.014275838368264
'max_diff' => 0.031813619024586
'year' => 2028
]
3 => [
'items' => [
101 => 0.077970298720621
102 => 0.079361841191393
103 => 0.077169090629688
104 => 0.072134092112009
105 => 0.071337284323386
106 => 0.072932513694596
107 => 0.076854229443509
108 => 0.072809004909461
109 => 0.073627348564187
110 => 0.073391665536573
111 => 0.07337910698962
112 => 0.073858415647521
113 => 0.073163153440177
114 => 0.070330530132177
115 => 0.07162870470148
116 => 0.071127417156809
117 => 0.071683633061083
118 => 0.074685300895564
119 => 0.073358191995116
120 => 0.071960190574067
121 => 0.073713594597413
122 => 0.075946280454124
123 => 0.075806562985734
124 => 0.075535452699684
125 => 0.077063687187272
126 => 0.079587882830074
127 => 0.080270162769284
128 => 0.080773807871809
129 => 0.080843252022294
130 => 0.081558569931584
131 => 0.077712125250009
201 => 0.083816531743373
202 => 0.084870594113951
203 => 0.084672474074691
204 => 0.085844020037864
205 => 0.085499321496246
206 => 0.084999907390986
207 => 0.086857056937586
208 => 0.084727984846649
209 => 0.081706035056287
210 => 0.080048133633905
211 => 0.082231391965991
212 => 0.08356463164418
213 => 0.084445818261494
214 => 0.084712464799465
215 => 0.078010713801216
216 => 0.07439884170931
217 => 0.076714010310024
218 => 0.079538675787297
219 => 0.077696434090662
220 => 0.077768646477345
221 => 0.075142093950545
222 => 0.079771067404803
223 => 0.079096664908312
224 => 0.082595466253102
225 => 0.081760449232533
226 => 0.084613585906524
227 => 0.083862259401239
228 => 0.086980973718575
301 => 0.088225113295579
302 => 0.090314217280233
303 => 0.091850970675527
304 => 0.092753381662652
305 => 0.092699204291843
306 => 0.096275006202201
307 => 0.094166480744666
308 => 0.091517675828708
309 => 0.091469767304651
310 => 0.092841620904482
311 => 0.095716649700071
312 => 0.0964621028368
313 => 0.096878709443644
314 => 0.096240661923082
315 => 0.093952008658309
316 => 0.092963779782316
317 => 0.093805779416409
318 => 0.092776086217766
319 => 0.094553625559508
320 => 0.096994566737635
321 => 0.096490522036879
322 => 0.0981754679009
323 => 0.099919209608688
324 => 0.10241283856717
325 => 0.10306476551572
326 => 0.10414237597113
327 => 0.10525159110634
328 => 0.10560784111358
329 => 0.10628803291529
330 => 0.10628444796874
331 => 0.10833425174539
401 => 0.11059524878817
402 => 0.11144872282962
403 => 0.11341123932709
404 => 0.11005049859995
405 => 0.11259965904689
406 => 0.11489906557966
407 => 0.11215761831789
408 => 0.11593606469295
409 => 0.11608277320355
410 => 0.11829789753325
411 => 0.11605244465863
412 => 0.11471910190942
413 => 0.11856841246668
414 => 0.1204309725932
415 => 0.11986995432508
416 => 0.11560057760377
417 => 0.11311561722979
418 => 0.10661199661802
419 => 0.11431581616816
420 => 0.11806812194754
421 => 0.11559086003829
422 => 0.1168402468516
423 => 0.12365649618995
424 => 0.12625168261854
425 => 0.12571190198312
426 => 0.12580311602496
427 => 0.12720343151585
428 => 0.13341320157033
429 => 0.12969216341234
430 => 0.13253675765948
501 => 0.13404552019122
502 => 0.13544694291494
503 => 0.13200549162967
504 => 0.1275282140725
505 => 0.12611007232682
506 => 0.11534454516291
507 => 0.11478415272172
508 => 0.11446958746284
509 => 0.11248629800179
510 => 0.11092797575411
511 => 0.10968874004596
512 => 0.10643661548066
513 => 0.10753411205433
514 => 0.10235090426839
515 => 0.10566693692823
516 => 0.097394412148943
517 => 0.10428401660454
518 => 0.10053431813123
519 => 0.10305213980824
520 => 0.1030433553656
521 => 0.098407247382142
522 => 0.095733237050389
523 => 0.097437220507821
524 => 0.099264026036564
525 => 0.099560419087491
526 => 0.10192892014001
527 => 0.10258991787301
528 => 0.10058706388299
529 => 0.097222982460336
530 => 0.09800438184829
531 => 0.095717402016733
601 => 0.091709557829338
602 => 0.094588061494971
603 => 0.09557090920529
604 => 0.096004990745766
605 => 0.092063736291478
606 => 0.090825308573144
607 => 0.090165980047317
608 => 0.096714216002441
609 => 0.097072943149869
610 => 0.095237644344718
611 => 0.10353336897418
612 => 0.10165579099652
613 => 0.10375350561534
614 => 0.097933478044074
615 => 0.098155810935003
616 => 0.095400516612688
617 => 0.096943297324351
618 => 0.095852909643491
619 => 0.096818655888905
620 => 0.097397520206485
621 => 0.10015236241211
622 => 0.10431547247736
623 => 0.099740880852484
624 => 0.097747665772167
625 => 0.098984245197728
626 => 0.10227741916253
627 => 0.10726674629368
628 => 0.10431296421247
629 => 0.10562380254164
630 => 0.10591016240142
701 => 0.1037321528497
702 => 0.10734705261253
703 => 0.10928430676282
704 => 0.11127152866277
705 => 0.11299697775779
706 => 0.11047778853598
707 => 0.11317368211491
708 => 0.11100126777957
709 => 0.10905238754071
710 => 0.10905534318757
711 => 0.10783278214514
712 => 0.10546391607282
713 => 0.10502706082416
714 => 0.10729963699643
715 => 0.10912202787283
716 => 0.10927212871408
717 => 0.11028109794108
718 => 0.1108781955364
719 => 0.11673056368544
720 => 0.11908443456832
721 => 0.1219627033274
722 => 0.1230839512194
723 => 0.1264585053847
724 => 0.12373327882833
725 => 0.12314365892038
726 => 0.1149580943236
727 => 0.11629848006776
728 => 0.11844456697215
729 => 0.1149934825062
730 => 0.1171824012697
731 => 0.11761454020125
801 => 0.11487621597663
802 => 0.116338873261
803 => 0.11245448916136
804 => 0.10440014143593
805 => 0.10735601940401
806 => 0.10953254052627
807 => 0.10642637652168
808 => 0.11199405527476
809 => 0.10874153228743
810 => 0.10771063864908
811 => 0.10368875502577
812 => 0.10558692927948
813 => 0.10815423713685
814 => 0.10656793936257
815 => 0.10985974542802
816 => 0.1145218207093
817 => 0.11784429318613
818 => 0.1180993513676
819 => 0.11596322415337
820 => 0.11938638164676
821 => 0.11941131561195
822 => 0.1155499799754
823 => 0.11318493339801
824 => 0.11264758983953
825 => 0.11398997940103
826 => 0.11561988814747
827 => 0.11818979995944
828 => 0.11974274384435
829 => 0.12379199787842
830 => 0.12488760991883
831 => 0.12609135538242
901 => 0.12769993054313
902 => 0.12963143745377
903 => 0.12540541029404
904 => 0.1255733182314
905 => 0.12163810025358
906 => 0.11743275547695
907 => 0.12062408795879
908 => 0.12479633065362
909 => 0.12383921356951
910 => 0.12373151834542
911 => 0.12391263184018
912 => 0.12319099681528
913 => 0.11992706834269
914 => 0.11828794389704
915 => 0.12040283261718
916 => 0.12152680184907
917 => 0.12326998010731
918 => 0.12305509659295
919 => 0.1275453365825
920 => 0.12929010806463
921 => 0.12884372085652
922 => 0.12892586684572
923 => 0.13208469227297
924 => 0.13559795581006
925 => 0.13888859072851
926 => 0.14223596590361
927 => 0.13820057447975
928 => 0.13615165158306
929 => 0.13826561700894
930 => 0.13714391719775
1001 => 0.14358953703064
1002 => 0.14403581776301
1003 => 0.15048097150422
1004 => 0.15659818987927
1005 => 0.15275607461925
1006 => 0.15637901625678
1007 => 0.16029752302052
1008 => 0.16785695832259
1009 => 0.165311206457
1010 => 0.16336120042497
1011 => 0.16151845414706
1012 => 0.16535291662365
1013 => 0.17028589134276
1014 => 0.17134840684981
1015 => 0.17307008788339
1016 => 0.17125995079372
1017 => 0.17344006153817
1018 => 0.18113681045529
1019 => 0.1790570809568
1020 => 0.17610353073575
1021 => 0.18217937480219
1022 => 0.18437819915059
1023 => 0.19981069996091
1024 => 0.21929486971875
1025 => 0.21122829549905
1026 => 0.20622111257415
1027 => 0.20739791933347
1028 => 0.21451287854826
1029 => 0.21679797763054
1030 => 0.21058629060403
1031 => 0.2127803634743
1101 => 0.22486992070601
1102 => 0.23135558028138
1103 => 0.22254718343773
1104 => 0.19824516589218
1105 => 0.17583759585383
1106 => 0.18178109245403
1107 => 0.18110728438774
1108 => 0.19409600543023
1109 => 0.17900748009607
1110 => 0.17926153216602
1111 => 0.19251884620437
1112 => 0.18898202210684
1113 => 0.18325282003105
1114 => 0.1758794253693
1115 => 0.16224902338061
1116 => 0.15017619622735
1117 => 0.17385379048094
1118 => 0.17283276956182
1119 => 0.1713541799641
1120 => 0.17464462111371
1121 => 0.19062206932823
1122 => 0.19025373743293
1123 => 0.18791059783964
1124 => 0.18968784856967
1125 => 0.18294125938519
1126 => 0.18468000903501
1127 => 0.17583404638026
1128 => 0.17983279094024
1129 => 0.18324052773651
1130 => 0.18392468135077
1201 => 0.18546611437744
1202 => 0.17229473793299
1203 => 0.17820829926525
1204 => 0.18168196252219
1205 => 0.16598782555438
1206 => 0.18137173989483
1207 => 0.17206545357275
1208 => 0.16890676021931
1209 => 0.17315952469352
1210 => 0.17150221824197
1211 => 0.17007736347523
1212 => 0.16928227003328
1213 => 0.17240503090265
1214 => 0.17225935037558
1215 => 0.16714990749153
1216 => 0.16048484753682
1217 => 0.16272186043075
1218 => 0.16190913267428
1219 => 0.15896370244085
1220 => 0.16094856678558
1221 => 0.15220822872824
1222 => 0.13717093138383
1223 => 0.14710503061442
1224 => 0.14672257860026
1225 => 0.14652972895191
1226 => 0.15399492996536
1227 => 0.15327732313941
1228 => 0.15197485972348
1229 => 0.15893978167881
1230 => 0.15639749147369
1231 => 0.16423223084695
]
'min_raw' => 0.070330530132177
'max_raw' => 0.23135558028138
'avg_raw' => 0.15084305520678
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.07033'
'max' => '$0.231355'
'avg' => '$0.150843'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.038314259546212
'max_diff' => 0.15293773145774
'year' => 2029
]
4 => [
'items' => [
101 => 0.16939269691736
102 => 0.16808383579831
103 => 0.17293727908022
104 => 0.1627733966897
105 => 0.16614943071565
106 => 0.16684522664941
107 => 0.15885383562302
108 => 0.15339473249093
109 => 0.15303067255035
110 => 0.14356534003006
111 => 0.1486216442609
112 => 0.15307098273996
113 => 0.15094009489111
114 => 0.15026551945662
115 => 0.15371177905384
116 => 0.15397958293976
117 => 0.14787362596017
118 => 0.14914324776674
119 => 0.15443778175718
120 => 0.14900983909456
121 => 0.13846423315047
122 => 0.13584877707193
123 => 0.13549982701863
124 => 0.12840650269919
125 => 0.13602355435339
126 => 0.13269850718204
127 => 0.14320229135615
128 => 0.13720258616882
129 => 0.13694395086966
130 => 0.13655298568142
131 => 0.13044746841814
201 => 0.13178418867293
202 => 0.13622765038811
203 => 0.13781312758727
204 => 0.13764774932596
205 => 0.13620587500158
206 => 0.13686595768369
207 => 0.13473960137657
208 => 0.13398874070824
209 => 0.13161881789851
210 => 0.12813568607609
211 => 0.12862003691929
212 => 0.12171904136805
213 => 0.11795901272818
214 => 0.11691828635705
215 => 0.11552658355862
216 => 0.11707548289131
217 => 0.12169949171472
218 => 0.11612195603549
219 => 0.1065596623321
220 => 0.10713437247703
221 => 0.10842557553971
222 => 0.10601942717457
223 => 0.10374220967968
224 => 0.10572206553499
225 => 0.10167039563537
226 => 0.10891520049
227 => 0.10871924882201
228 => 0.11141966405609
301 => 0.11310828912006
302 => 0.10921655504647
303 => 0.10823779445133
304 => 0.10879534096851
305 => 0.099580338989724
306 => 0.11066660179827
307 => 0.11076247625941
308 => 0.1099415409161
309 => 0.11584463361168
310 => 0.12830200042016
311 => 0.12361503793039
312 => 0.12180010439017
313 => 0.11834991440348
314 => 0.12294708770873
315 => 0.12259409652596
316 => 0.12099773652955
317 => 0.12003225302278
318 => 0.12181118598735
319 => 0.11981182354189
320 => 0.11945268310788
321 => 0.11727668282642
322 => 0.11649994972765
323 => 0.11592488746395
324 => 0.11529180041607
325 => 0.11668823268823
326 => 0.11352373344355
327 => 0.10970765757415
328 => 0.10939039215613
329 => 0.11026638986956
330 => 0.10987882609173
331 => 0.10938853664987
401 => 0.10845244058297
402 => 0.10817472087645
403 => 0.10907717519219
404 => 0.10805835688607
405 => 0.10956167879466
406 => 0.10915285841812
407 => 0.10686922102762
408 => 0.1040229633282
409 => 0.10399762566445
410 => 0.10338440411191
411 => 0.10260337426627
412 => 0.10238610963076
413 => 0.10555532759712
414 => 0.11211551394078
415 => 0.11082759238957
416 => 0.11175824770183
417 => 0.11633615073474
418 => 0.11779132844656
419 => 0.11675847777449
420 => 0.1153446480711
421 => 0.11540684940274
422 => 0.12023833349458
423 => 0.12053966723097
424 => 0.12130104036888
425 => 0.12227962001511
426 => 0.11692513411974
427 => 0.11515465359859
428 => 0.11431570170515
429 => 0.11173205458859
430 => 0.11451829649863
501 => 0.11289487265642
502 => 0.11311392799679
503 => 0.11297126791901
504 => 0.11304916996811
505 => 0.10891317541939
506 => 0.11042011445147
507 => 0.10791453603501
508 => 0.10455984779974
509 => 0.10454860170847
510 => 0.10536965690147
511 => 0.10488126114478
512 => 0.10356700072134
513 => 0.10375368521135
514 => 0.10211813264016
515 => 0.10395227090613
516 => 0.10400486742874
517 => 0.10329862429015
518 => 0.10612436735119
519 => 0.10728207658888
520 => 0.10681721222587
521 => 0.10724946046594
522 => 0.11088111134464
523 => 0.1114732288979
524 => 0.11173620840197
525 => 0.11138385070463
526 => 0.10731584037728
527 => 0.10749627393382
528 => 0.10617237221552
529 => 0.10505381477289
530 => 0.10509855120453
531 => 0.10567363513234
601 => 0.10818506037328
602 => 0.11347020673623
603 => 0.11367077417731
604 => 0.11391386776687
605 => 0.11292508396909
606 => 0.1126268573143
607 => 0.1130202952508
608 => 0.11500511834494
609 => 0.12011062221726
610 => 0.11830599616364
611 => 0.11683880709137
612 => 0.11812592745908
613 => 0.11792778536726
614 => 0.11625526670909
615 => 0.11620832468085
616 => 0.11299822663926
617 => 0.11181152648369
618 => 0.11081983101072
619 => 0.1097369254431
620 => 0.10909494272329
621 => 0.11008131995684
622 => 0.11030691610063
623 => 0.10815018504055
624 => 0.10785623056645
625 => 0.10961746370639
626 => 0.10884241066689
627 => 0.10963957193841
628 => 0.10982452019132
629 => 0.10979473926288
630 => 0.10898549487537
701 => 0.10950128311596
702 => 0.1082812901631
703 => 0.10695473106389
704 => 0.10610846900615
705 => 0.10536999312039
706 => 0.10577974246228
707 => 0.10431906087572
708 => 0.10385175943847
709 => 0.10932654566565
710 => 0.11337082911554
711 => 0.11331202363246
712 => 0.1129540603778
713 => 0.11242219959156
714 => 0.11496620941567
715 => 0.11407992726203
716 => 0.11472477158015
717 => 0.11488891152315
718 => 0.1153857136948
719 => 0.11556327776957
720 => 0.11502655580942
721 => 0.11322525135608
722 => 0.10873657192124
723 => 0.10664707952737
724 => 0.10595751223414
725 => 0.10598257669557
726 => 0.10529118695654
727 => 0.1054948322206
728 => 0.1052203674444
729 => 0.10470059755845
730 => 0.10574764813649
731 => 0.10586831096166
801 => 0.10562391684542
802 => 0.10568148050699
803 => 0.10365800160664
804 => 0.10381184231267
805 => 0.10295523771237
806 => 0.10279463467634
807 => 0.10062921283988
808 => 0.096792854173683
809 => 0.098918569279104
810 => 0.096351004352532
811 => 0.095378628609881
812 => 0.099981704140134
813 => 0.099519683026338
814 => 0.09872890371527
815 => 0.097559176301351
816 => 0.097125313025152
817 => 0.094489297103387
818 => 0.094333547220131
819 => 0.095640027889374
820 => 0.095037132013773
821 => 0.094190437869906
822 => 0.091123797508828
823 => 0.087675878413246
824 => 0.087779949417895
825 => 0.088876668331384
826 => 0.09206552648505
827 => 0.090819584436607
828 => 0.089915639184923
829 => 0.089746357411777
830 => 0.091865273218095
831 => 0.094863983010619
901 => 0.096270910552922
902 => 0.094876688087525
903 => 0.093275080389545
904 => 0.093372562828986
905 => 0.094021069825681
906 => 0.094089218741639
907 => 0.093046736778186
908 => 0.093340189344525
909 => 0.092894408062391
910 => 0.090158649156782
911 => 0.090109167953365
912 => 0.089437768597857
913 => 0.089417438892203
914 => 0.088275221100066
915 => 0.088115416935167
916 => 0.085847474181214
917 => 0.087340240969829
918 => 0.0863389713818
919 => 0.084829821937022
920 => 0.084569644003909
921 => 0.084561822741066
922 => 0.086111381781212
923 => 0.087322133470248
924 => 0.086356388894964
925 => 0.086136507575345
926 => 0.088484264812443
927 => 0.08818549130374
928 => 0.087926755372086
929 => 0.094595481438836
930 => 0.089316664389819
1001 => 0.087014798852104
1002 => 0.084165803136773
1003 => 0.085093450507568
1004 => 0.08528891943857
1005 => 0.078437598313274
1006 => 0.075658018186019
1007 => 0.074704171032613
1008 => 0.074155218510408
1009 => 0.074405383068089
1010 => 0.071903434941328
1011 => 0.073584785460914
1012 => 0.07141830986755
1013 => 0.071055093184001
1014 => 0.074929019919762
1015 => 0.075468054193891
1016 => 0.073168366515633
1017 => 0.074645138290691
1018 => 0.074109640316392
1019 => 0.071455447873436
1020 => 0.071354077245033
1021 => 0.070022296776533
1022 => 0.067938318226846
1023 => 0.066985884109029
1024 => 0.066489848151058
1025 => 0.066694522254865
1026 => 0.066591032764849
1027 => 0.065915693839508
1028 => 0.066629742401526
1029 => 0.064805643390806
1030 => 0.064079272466973
1031 => 0.063751187572355
1101 => 0.062132194709119
1102 => 0.064708732323921
1103 => 0.065216342692403
1104 => 0.065724953210119
1105 => 0.070152060523692
1106 => 0.069930894753181
1107 => 0.071930125606499
1108 => 0.071852439171889
1109 => 0.07128222614713
1110 => 0.068876591191162
1111 => 0.069835434408291
1112 => 0.066884264023289
1113 => 0.069095481535812
1114 => 0.068086374205748
1115 => 0.068754301332447
1116 => 0.067553308134081
1117 => 0.06821798735785
1118 => 0.065336715941873
1119 => 0.062646225234216
1120 => 0.063728957235297
1121 => 0.064906010745896
1122 => 0.06745816266453
1123 => 0.065938122036588
1124 => 0.066484786125496
1125 => 0.064653552938117
1126 => 0.060875195806657
1127 => 0.060896580897692
1128 => 0.060315362969002
1129 => 0.059813105819406
1130 => 0.066112716987892
1201 => 0.065329260756975
1202 => 0.064080925789226
1203 => 0.065751871750418
1204 => 0.066193696384035
1205 => 0.066206274510222
1206 => 0.06742535355015
1207 => 0.068075976252291
1208 => 0.068190651323504
1209 => 0.070108898532776
1210 => 0.070751869695031
1211 => 0.073400176915677
1212 => 0.068020775461662
1213 => 0.06790999022873
1214 => 0.065775385386774
1215 => 0.064421585249238
1216 => 0.065868081240418
1217 => 0.067149479222209
1218 => 0.065815201993951
1219 => 0.065989430431832
1220 => 0.064198272267351
1221 => 0.064838527029328
1222 => 0.065390000681973
1223 => 0.065085509345106
1224 => 0.064629671076267
1225 => 0.067044419200572
1226 => 0.066908169647925
1227 => 0.069156838616097
1228 => 0.070909836880648
1229 => 0.074051523156645
1230 => 0.070773009747832
1231 => 0.070653527688305
]
'min_raw' => 0.059813105819406
'max_raw' => 0.17293727908022
'avg_raw' => 0.11637519244981
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.059813'
'max' => '$0.172937'
'avg' => '$0.116375'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.010517424312771
'max_diff' => -0.058418301201162
'year' => 2030
]
5 => [
'items' => [
101 => 0.071821483985713
102 => 0.070751690887008
103 => 0.071427763197387
104 => 0.073942597455406
105 => 0.073995731940454
106 => 0.073105660855982
107 => 0.073051499949602
108 => 0.073222447837686
109 => 0.074223694957651
110 => 0.073873828448719
111 => 0.074278702830392
112 => 0.07478500444433
113 => 0.076879282587014
114 => 0.077384205957069
115 => 0.076157503940586
116 => 0.076268261397874
117 => 0.075809441169986
118 => 0.075366226578847
119 => 0.076362508253435
120 => 0.078183232595711
121 => 0.078171905964073
122 => 0.078594278621657
123 => 0.078857413288208
124 => 0.077727846673023
125 => 0.076992540341853
126 => 0.077274503577981
127 => 0.07772536893291
128 => 0.077128294019989
129 => 0.073442871065435
130 => 0.074560792964117
131 => 0.074374716096588
201 => 0.074109720009507
202 => 0.075233799123266
203 => 0.075125378950535
204 => 0.071877773847031
205 => 0.072085674988929
206 => 0.07189041700406
207 => 0.072521335499195
208 => 0.070717619217773
209 => 0.071272430197724
210 => 0.071620402443319
211 => 0.071825360769224
212 => 0.07256581078363
213 => 0.072478927520682
214 => 0.072560409998016
215 => 0.073658301897825
216 => 0.079211062376055
217 => 0.079513286877409
218 => 0.078025022899321
219 => 0.078619555003858
220 => 0.077478183373025
221 => 0.078244393795329
222 => 0.078768615506634
223 => 0.076399758395282
224 => 0.076259490050904
225 => 0.075113407573341
226 => 0.075729247379354
227 => 0.074749401967539
228 => 0.074989821758061
301 => 0.074317587064341
302 => 0.075527475672444
303 => 0.076880319133986
304 => 0.077222100817778
305 => 0.076323020353986
306 => 0.075672026845911
307 => 0.074529096696324
308 => 0.076429815006947
309 => 0.076985642964314
310 => 0.07642689547931
311 => 0.076297421478161
312 => 0.076052068479938
313 => 0.076349474276593
314 => 0.076982615805888
315 => 0.076684037952961
316 => 0.076881253885084
317 => 0.076129670120016
318 => 0.077728220606574
319 => 0.080267103491353
320 => 0.080275266414977
321 => 0.079976686952603
322 => 0.079854514669584
323 => 0.080160875317296
324 => 0.080327063401109
325 => 0.081317777558874
326 => 0.08238085332195
327 => 0.087341764051933
328 => 0.085948760170359
329 => 0.090350375295899
330 => 0.09383148138201
331 => 0.094875312886914
401 => 0.09391503701847
402 => 0.090629985145604
403 => 0.090468804828554
404 => 0.095378059239741
405 => 0.093990970010484
406 => 0.093825980160345
407 => 0.09207076690962
408 => 0.093108315328189
409 => 0.092881388269131
410 => 0.092523172804756
411 => 0.094502742911136
412 => 0.098208321432838
413 => 0.097630772269536
414 => 0.097199658610865
415 => 0.095310644053869
416 => 0.096448252743857
417 => 0.096043172078812
418 => 0.097783655686389
419 => 0.096752631753692
420 => 0.093980461445333
421 => 0.094421938704132
422 => 0.094355210304593
423 => 0.095728476038671
424 => 0.095316255751852
425 => 0.094274717677693
426 => 0.098195656168299
427 => 0.097941052232125
428 => 0.098302022403057
429 => 0.098460932635675
430 => 0.10084753880022
501 => 0.10182525498296
502 => 0.10204721367377
503 => 0.10297596842808
504 => 0.1020241054094
505 => 0.10583223615095
506 => 0.10836442088349
507 => 0.11130568375537
508 => 0.11560365934811
509 => 0.11721973792948
510 => 0.11692780779872
511 => 0.12018648384102
512 => 0.12604225225273
513 => 0.11811142601755
514 => 0.12646260530075
515 => 0.12381871835869
516 => 0.11755010998056
517 => 0.11714648550305
518 => 0.12139165987676
519 => 0.13080704805475
520 => 0.12844860010461
521 => 0.13081090563071
522 => 0.12805515075327
523 => 0.12791830429628
524 => 0.13067706476727
525 => 0.13712305897994
526 => 0.13406080875398
527 => 0.12967032216051
528 => 0.13291218913759
529 => 0.13010378394141
530 => 0.12377566101131
531 => 0.12844679664391
601 => 0.12532334127268
602 => 0.12623493160202
603 => 0.13279997021344
604 => 0.13201004739878
605 => 0.13303228066583
606 => 0.13122806570598
607 => 0.12954264443489
608 => 0.12639668047138
609 => 0.12546531563593
610 => 0.12572271136945
611 => 0.12546518808339
612 => 0.1237050501587
613 => 0.12332494854145
614 => 0.1226914291934
615 => 0.12288778332977
616 => 0.12169658161281
617 => 0.12394462536755
618 => 0.12436188209812
619 => 0.12599782087153
620 => 0.126167669462
621 => 0.13072373565981
622 => 0.12821433095964
623 => 0.12989785628409
624 => 0.12974726593312
625 => 0.1176859697322
626 => 0.11934790993097
627 => 0.12193336733469
628 => 0.12076862227882
629 => 0.11912194527818
630 => 0.11779216531094
701 => 0.11577741268358
702 => 0.11861313831669
703 => 0.12234181597843
704 => 0.12626223488076
705 => 0.13097236131588
706 => 0.12992111592748
707 => 0.12617418234335
708 => 0.1263422670468
709 => 0.12738130054461
710 => 0.12603565775879
711 => 0.12563880143119
712 => 0.12732677857934
713 => 0.12733840275027
714 => 0.12579007809882
715 => 0.12406939858915
716 => 0.12406218887918
717 => 0.12375601058022
718 => 0.12810961919248
719 => 0.13050366372974
720 => 0.13077813707774
721 => 0.13048518948653
722 => 0.13059793338771
723 => 0.12920489162065
724 => 0.13238897200645
725 => 0.13531099904137
726 => 0.13452783337601
727 => 0.13335375671007
728 => 0.13241854809446
729 => 0.13430752794753
730 => 0.1342234146482
731 => 0.13528547768434
801 => 0.13523729637025
802 => 0.1348801645174
803 => 0.13452784613031
804 => 0.13592474871087
805 => 0.13552246320124
806 => 0.13511955283109
807 => 0.13431145440128
808 => 0.13442128839899
809 => 0.13324741445394
810 => 0.13270432665415
811 => 0.12453758919506
812 => 0.12235517009015
813 => 0.12304180356779
814 => 0.12326786113706
815 => 0.12231806954575
816 => 0.12367982670624
817 => 0.12346759829524
818 => 0.12429325489299
819 => 0.12377742049656
820 => 0.12379859052012
821 => 0.12531554949254
822 => 0.12575592913583
823 => 0.12553194849495
824 => 0.12568881685822
825 => 0.12930378207968
826 => 0.12878984962527
827 => 0.12851683325192
828 => 0.12859246065317
829 => 0.12951616177298
830 => 0.12977474765431
831 => 0.12867910110459
901 => 0.12919581435129
902 => 0.13139591377511
903 => 0.1321658240586
904 => 0.1346230081056
905 => 0.13357915264947
906 => 0.13549519451621
907 => 0.14138445398774
908 => 0.14608920195937
909 => 0.14176252129273
910 => 0.15040219179657
911 => 0.15712941457094
912 => 0.15687121255608
913 => 0.1556981656619
914 => 0.14803940138576
915 => 0.14099169231311
916 => 0.14688740021391
917 => 0.14690242958582
918 => 0.14639598304849
919 => 0.14325048710095
920 => 0.14628652660778
921 => 0.14652751639855
922 => 0.14639262620008
923 => 0.1439809818321
924 => 0.14029884662858
925 => 0.14101832703356
926 => 0.14219685061392
927 => 0.13996565961052
928 => 0.1392526588923
929 => 0.14057826288141
930 => 0.14484963513485
1001 => 0.14404215695271
1002 => 0.1440210704341
1003 => 0.14747580452133
1004 => 0.14500296049315
1005 => 0.14102740198556
1006 => 0.14002352103122
1007 => 0.13646041993855
1008 => 0.13892146655459
1009 => 0.13901003524098
1010 => 0.13766214516066
1011 => 0.14113677583693
1012 => 0.14110475650355
1013 => 0.14440340120014
1014 => 0.15070917094566
1015 => 0.14884424454383
1016 => 0.14667553804191
1017 => 0.14691133657038
1018 => 0.1494974644273
1019 => 0.14793383248945
1020 => 0.14849612543633
1021 => 0.14949661332958
1022 => 0.15010023251629
1023 => 0.14682448505858
1024 => 0.14606075162907
1025 => 0.14449842106631
1026 => 0.14409083818477
1027 => 0.14536332382904
1028 => 0.14502806881936
1029 => 0.13900259138584
1030 => 0.1383728954686
1031 => 0.13839220734338
1101 => 0.13680880701907
1102 => 0.13439374146487
1103 => 0.14074038954524
1104 => 0.1402306648831
1105 => 0.13966796830566
1106 => 0.13973689542569
1107 => 0.14249176024952
1108 => 0.14089379952769
1109 => 0.14514224000728
1110 => 0.14426888836449
1111 => 0.14337313854751
1112 => 0.1432493186376
1113 => 0.14290453137985
1114 => 0.14172212758333
1115 => 0.14029430394758
1116 => 0.1393515311073
1117 => 0.12854442135242
1118 => 0.13055015806086
1119 => 0.13285757531527
1120 => 0.13365408650509
1121 => 0.132291598998
1122 => 0.14177592689457
1123 => 0.14350880499453
1124 => 0.13825980419691
1125 => 0.13727793046296
1126 => 0.1418402983731
1127 => 0.13908863279649
1128 => 0.14032770763715
1129 => 0.13764950556935
1130 => 0.14309140540485
1201 => 0.14304994724577
1202 => 0.14093292529888
1203 => 0.14272221775166
1204 => 0.14241128415566
1205 => 0.14002117159162
1206 => 0.14316717623629
1207 => 0.14316873661535
1208 => 0.14113114901949
1209 => 0.13875169279281
1210 => 0.13832630221973
1211 => 0.13800582756609
1212 => 0.14024889051781
1213 => 0.14226001374645
1214 => 0.14600221547522
1215 => 0.14694309390235
1216 => 0.15061540504127
1217 => 0.14842872255963
1218 => 0.14939805058146
1219 => 0.15045039326898
1220 => 0.150954925052
1221 => 0.15013281758624
1222 => 0.15583742836855
1223 => 0.15631907230333
1224 => 0.15648056334846
1225 => 0.1545570006893
1226 => 0.15626557454608
1227 => 0.15546618942051
1228 => 0.15754596744166
1229 => 0.15787210319132
1230 => 0.15759587781397
1231 => 0.15769939844862
]
'min_raw' => 0.070717619217773
'max_raw' => 0.15787210319132
'avg_raw' => 0.11429486120454
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.070717'
'max' => '$0.157872'
'avg' => '$0.114294'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.010904513398367
'max_diff' => -0.015065175888907
'year' => 2031
]
6 => [
'items' => [
101 => 0.15283151950822
102 => 0.15257909430505
103 => 0.1491372587486
104 => 0.15053983217862
105 => 0.14791778837829
106 => 0.14874926547742
107 => 0.14911577266011
108 => 0.14892433010697
109 => 0.15061913157594
110 => 0.14917820410225
111 => 0.14537535958876
112 => 0.14157147899283
113 => 0.14152372437052
114 => 0.14052222975368
115 => 0.13979833257859
116 => 0.13993778085614
117 => 0.14042921477477
118 => 0.13976976954586
119 => 0.13991049562017
120 => 0.14224748610663
121 => 0.14271615288203
122 => 0.14112344005927
123 => 0.13472846824854
124 => 0.13315912612562
125 => 0.13428713812217
126 => 0.1337480210411
127 => 0.10794509158521
128 => 0.11400710712061
129 => 0.11040526333607
130 => 0.11206515866485
131 => 0.10838860885377
201 => 0.1101432511281
202 => 0.10981923276931
203 => 0.11956677436215
204 => 0.11941457990748
205 => 0.11948742733898
206 => 0.11601022963061
207 => 0.12154949999624
208 => 0.12427834376407
209 => 0.12377330740847
210 => 0.1239004141786
211 => 0.121716298743
212 => 0.11950857435063
213 => 0.11705986823315
214 => 0.12160926153021
215 => 0.12110344665631
216 => 0.12226360399059
217 => 0.12521421074108
218 => 0.12564869879335
219 => 0.12623265514175
220 => 0.12602334835969
221 => 0.1310098850719
222 => 0.13040598257383
223 => 0.13186121383959
224 => 0.12886769271726
225 => 0.12548023941971
226 => 0.12612408354738
227 => 0.12606207618042
228 => 0.12527265123025
229 => 0.1245599936828
301 => 0.12337361965633
302 => 0.12712748262641
303 => 0.12697508264518
304 => 0.12944226119564
305 => 0.12900616342195
306 => 0.12609379575804
307 => 0.12619781153891
308 => 0.12689736765355
309 => 0.12931853935371
310 => 0.13003730796025
311 => 0.12970434570372
312 => 0.13049244266777
313 => 0.13111532237484
314 => 0.13057066676895
315 => 0.13828184157139
316 => 0.13507962417218
317 => 0.13664036265167
318 => 0.13701258958262
319 => 0.13605913812608
320 => 0.13626590760646
321 => 0.13657910702794
322 => 0.13848079258441
323 => 0.14347136574174
324 => 0.14568165662114
325 => 0.15233142578565
326 => 0.14549812273234
327 => 0.14509266280818
328 => 0.1462904870385
329 => 0.15019460548762
330 => 0.15335852679543
331 => 0.15440818202423
401 => 0.15454691129064
402 => 0.15651613427963
403 => 0.15764485617308
404 => 0.15627701881306
405 => 0.15511791986898
406 => 0.15096617132394
407 => 0.15144674752287
408 => 0.15475744096896
409 => 0.15943399046045
410 => 0.16344695643619
411 => 0.16204175561747
412 => 0.17276244594713
413 => 0.17382535860322
414 => 0.17367849844223
415 => 0.17609997165542
416 => 0.17129384045168
417 => 0.16923912624768
418 => 0.15536853021702
419 => 0.15926560192737
420 => 0.16493022452537
421 => 0.16418049048328
422 => 0.16006669013682
423 => 0.16344383574974
424 => 0.162327245797
425 => 0.16144654497391
426 => 0.16548120617672
427 => 0.16104493044949
428 => 0.16488596928142
429 => 0.15995979724901
430 => 0.16204817445645
501 => 0.16086271055007
502 => 0.16162985098249
503 => 0.15714516368981
504 => 0.15956499209331
505 => 0.15704449087257
506 => 0.15704329582681
507 => 0.15698765562266
508 => 0.15995301413125
509 => 0.16004971436576
510 => 0.1578583099475
511 => 0.15754249433466
512 => 0.158710230181
513 => 0.15734311733544
514 => 0.15798278083137
515 => 0.1573624920911
516 => 0.15722285203038
517 => 0.1561101762688
518 => 0.15563080495705
519 => 0.15581877880027
520 => 0.15517712716622
521 => 0.15479050884716
522 => 0.15691074750796
523 => 0.15577798952168
524 => 0.15673713610053
525 => 0.15564406751998
526 => 0.1518550155925
527 => 0.14967589176051
528 => 0.1425187239148
529 => 0.1445484878374
530 => 0.14589422341803
531 => 0.14544945781666
601 => 0.14640498642984
602 => 0.14646364812621
603 => 0.1461529960336
604 => 0.14579330070736
605 => 0.14561822091495
606 => 0.14692312224743
607 => 0.14768066139189
608 => 0.14602928598717
609 => 0.14564239183504
610 => 0.14731202354415
611 => 0.14833049792219
612 => 0.15585034049833
613 => 0.15529324627152
614 => 0.15669144345659
615 => 0.15653402791064
616 => 0.15799956131088
617 => 0.16039508903965
618 => 0.15552431136698
619 => 0.15636970995213
620 => 0.15616243774216
621 => 0.15842538138098
622 => 0.15843244604401
623 => 0.15707569829012
624 => 0.15781121325822
625 => 0.15740066898082
626 => 0.15814257797847
627 => 0.15528580593847
628 => 0.1587650459137
629 => 0.16073755078239
630 => 0.1607649390144
701 => 0.16169989066739
702 => 0.16264985569558
703 => 0.16447323084266
704 => 0.16259900275236
705 => 0.15922744887034
706 => 0.15947086417057
707 => 0.15749412336315
708 => 0.15752735273325
709 => 0.15734997175142
710 => 0.1578823054305
711 => 0.15540262324531
712 => 0.15598459969786
713 => 0.15516982925624
714 => 0.15636793880031
715 => 0.1550789709855
716 => 0.15616233778922
717 => 0.15662988298753
718 => 0.15835513483482
719 => 0.15482414988489
720 => 0.14762423254533
721 => 0.14913774246067
722 => 0.14689914241225
723 => 0.14710633336968
724 => 0.14752489207789
725 => 0.1461682063607
726 => 0.14642701924146
727 => 0.14641777262412
728 => 0.14633809027132
729 => 0.14598516391859
730 => 0.14547335088278
731 => 0.1475122564897
801 => 0.147858706283
802 => 0.14862882125746
803 => 0.15092016104747
804 => 0.15069120216893
805 => 0.15106464359924
806 => 0.15024942305367
807 => 0.14714414911268
808 => 0.1473127804276
809 => 0.14520994522843
810 => 0.1485750470336
811 => 0.14777814650896
812 => 0.14726437955658
813 => 0.14712419348361
814 => 0.14942121306176
815 => 0.15010851732091
816 => 0.14968023542988
817 => 0.1488018167764
818 => 0.15048864027225
819 => 0.15093996307837
820 => 0.15104099761052
821 => 0.15402972542884
822 => 0.15120803429493
823 => 0.15188724339606
824 => 0.15718623891428
825 => 0.15238078119065
826 => 0.15492633932136
827 => 0.1548017474973
828 => 0.15610396889998
829 => 0.15469492733329
830 => 0.15471239409223
831 => 0.15586867847769
901 => 0.1542448855953
902 => 0.15384281164217
903 => 0.15328734935563
904 => 0.15450018093711
905 => 0.15522721861855
906 => 0.16108660838065
907 => 0.16487204138759
908 => 0.16470770575739
909 => 0.16620942579402
910 => 0.16553288716334
911 => 0.163348165463
912 => 0.16707721900705
913 => 0.16589719043549
914 => 0.16599447055719
915 => 0.1659908497862
916 => 0.16677546562641
917 => 0.16621949339464
918 => 0.16512361505644
919 => 0.16585111023984
920 => 0.16801151085023
921 => 0.17471746063408
922 => 0.17847019897514
923 => 0.17449154107387
924 => 0.17723596601782
925 => 0.17559028899005
926 => 0.17529122051945
927 => 0.17701492219566
928 => 0.17874164098347
929 => 0.17863165646149
930 => 0.17737814728953
1001 => 0.17667007176491
1002 => 0.18203185686006
1003 => 0.18598232878253
1004 => 0.18571293308172
1005 => 0.18690195809293
1006 => 0.19039297230101
1007 => 0.19071214688939
1008 => 0.1906719382274
1009 => 0.18988083070769
1010 => 0.19331818756103
1011 => 0.19618569112262
1012 => 0.18969771217417
1013 => 0.19216824962386
1014 => 0.19327735348077
1015 => 0.194905846999
1016 => 0.19765338853146
1017 => 0.20063794738511
1018 => 0.20105999673104
1019 => 0.20076053252318
1020 => 0.19879213572995
1021 => 0.20205787564081
1022 => 0.20397086948956
1023 => 0.20511001354841
1024 => 0.20799869334615
1025 => 0.19328420292861
1026 => 0.18286855525345
1027 => 0.18124200146519
1028 => 0.18454966255467
1029 => 0.18542186640587
1030 => 0.1850702821271
1031 => 0.17334652371945
1101 => 0.18118027830346
1102 => 0.18960873955507
1103 => 0.18993251107774
1104 => 0.1941519750111
1105 => 0.19552600542948
1106 => 0.19892322695362
1107 => 0.19871072982232
1108 => 0.19953789920185
1109 => 0.19934774728607
1110 => 0.20564038479016
1111 => 0.21258209842287
1112 => 0.21234172895307
1113 => 0.21134377548774
1114 => 0.2128259065601
1115 => 0.21999049894831
1116 => 0.21933089809146
1117 => 0.21997164413922
1118 => 0.22841910234365
1119 => 0.23940199964632
1120 => 0.23429934118437
1121 => 0.24537064179638
1122 => 0.25233943866722
1123 => 0.26439125226828
1124 => 0.26288230584899
1125 => 0.26757398844359
1126 => 0.26018097683185
1127 => 0.24320512779712
1128 => 0.24051863470644
1129 => 0.24589706190683
1130 => 0.25911940035974
1201 => 0.24548064341464
1202 => 0.24823974618148
1203 => 0.24744512439901
1204 => 0.24740278238115
1205 => 0.24901880498553
1206 => 0.24667467991181
1207 => 0.23712429266144
1208 => 0.2415011788575
1209 => 0.23981105290186
1210 => 0.24168637365688
1211 => 0.25180670633059
1212 => 0.24733226601694
1213 => 0.24261880662053
1214 => 0.248530530704
1215 => 0.25605818695106
1216 => 0.25558711975161
1217 => 0.25467305249388
1218 => 0.25982560176671
1219 => 0.26833610361013
1220 => 0.27063645806044
1221 => 0.27233453268698
1222 => 0.27256866848878
1223 => 0.27498041276185
1224 => 0.26201185596773
1225 => 0.28259328865616
1226 => 0.28614713353084
1227 => 0.28547915798618
1228 => 0.28942910699574
1229 => 0.28826693179659
1230 => 0.28658312227273
1231 => 0.29284463163113
]
'min_raw' => 0.10794509158521
'max_raw' => 0.29284463163113
'avg_raw' => 0.20039486160817
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.107945'
'max' => '$0.292844'
'avg' => '$0.200394'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.03722747236744
'max_diff' => 0.13497252843982
'year' => 2032
]
7 => [
'items' => [
101 => 0.28566631642947
102 => 0.27547760172547
103 => 0.26988787132893
104 => 0.27724887922579
105 => 0.28174398988462
106 => 0.28471497208738
107 => 0.28561398950682
108 => 0.26301856811491
109 => 0.25084088918419
110 => 0.25864664176141
111 => 0.26817019862988
112 => 0.26195895212847
113 => 0.26220242123188
114 => 0.25334681600773
115 => 0.26895372319336
116 => 0.26667992809117
117 => 0.27847638110364
118 => 0.27566106291976
119 => 0.28528061241576
120 => 0.28274746264725
121 => 0.29326242570983
122 => 0.29745712915675
123 => 0.30450068909759
124 => 0.30968196046253
125 => 0.31272450210994
126 => 0.31254183932172
127 => 0.324597905117
128 => 0.31748886432438
129 => 0.30855823361657
130 => 0.30839670668285
131 => 0.31302200687444
201 => 0.32271536718687
202 => 0.32522871448322
203 => 0.32663333274474
204 => 0.32448211098211
205 => 0.31676575671126
206 => 0.31343387405991
207 => 0.3162727346128
208 => 0.31280105210269
209 => 0.3187941500972
210 => 0.32702395370033
211 => 0.32532453180045
212 => 0.33100544442017
213 => 0.33688459133213
214 => 0.34529203546525
215 => 0.3474900526884
216 => 0.35112329157517
217 => 0.35486308784645
218 => 0.35606420961844
219 => 0.35835752376739
220 => 0.35834543686981
221 => 0.3652564934155
222 => 0.372879602803
223 => 0.3757571501214
224 => 0.38237391151116
225 => 0.37104293951016
226 => 0.37963761193374
227 => 0.38739022159841
228 => 0.37814724075361
301 => 0.39088653650984
302 => 0.39138117449619
303 => 0.3988496208288
304 => 0.3912789196895
305 => 0.38678346151953
306 => 0.39976168081363
307 => 0.40604143231997
308 => 0.40414992005995
309 => 0.3897554183657
310 => 0.38137720097042
311 => 0.35944979000955
312 => 0.38542375548637
313 => 0.39807491639916
314 => 0.38972265491523
315 => 0.39393504978569
316 => 0.41691651032529
317 => 0.4256663625594
318 => 0.42384645446079
319 => 0.42415398897121
320 => 0.42887525041569
321 => 0.44981192370664
322 => 0.43726618376241
323 => 0.44685693186986
324 => 0.45194383008404
325 => 0.45666882464129
326 => 0.44506573135856
327 => 0.42997027748102
328 => 0.42518891357395
329 => 0.38889218711574
330 => 0.38700278487489
331 => 0.38594220614236
401 => 0.37925540725558
402 => 0.37400141499894
403 => 0.36982324528823
404 => 0.35885848026023
405 => 0.36255876658313
406 => 0.34508321965282
407 => 0.35626345528348
408 => 0.32837206042087
409 => 0.35160084285972
410 => 0.33895847266139
411 => 0.34744748423411
412 => 0.34741786687245
413 => 0.3317869051235
414 => 0.32277129259656
415 => 0.32851639179161
416 => 0.33467559417526
417 => 0.33567490403996
418 => 0.34366047070199
419 => 0.34588907070818
420 => 0.33913630864603
421 => 0.32779407325689
422 => 0.33042861584894
423 => 0.32271790367502
424 => 0.30920517717847
425 => 0.31891025325786
426 => 0.32222399293344
427 => 0.32368752915376
428 => 0.31039931459152
429 => 0.3062238690749
430 => 0.30400089691723
501 => 0.32607873162316
502 => 0.32728820524625
503 => 0.32110036718821
504 => 0.34906998196543
505 => 0.34273959672546
506 => 0.34981218802054
507 => 0.33018955872268
508 => 0.33093916958724
509 => 0.32164950241105
510 => 0.32685109529393
511 => 0.32317477709947
512 => 0.32643085799213
513 => 0.32838253945387
514 => 0.33767068228709
515 => 0.35170689853113
516 => 0.33628334348007
517 => 0.32956307967495
518 => 0.33373229354345
519 => 0.34483545948784
520 => 0.3616573242542
521 => 0.35169844174094
522 => 0.35611802468753
523 => 0.3570835069478
524 => 0.34974019568039
525 => 0.36192808261502
526 => 0.36845967023751
527 => 0.37515972761656
528 => 0.38097719970744
529 => 0.37248357736195
530 => 0.38157297078456
531 => 0.37424852417986
601 => 0.36767773838807
602 => 0.36768770355782
603 => 0.36356575364676
604 => 0.35557895629499
605 => 0.35410606832386
606 => 0.36176821755489
607 => 0.36791253562994
608 => 0.3684186110959
609 => 0.37182042128872
610 => 0.37383357751939
611 => 0.39356524533317
612 => 0.40150148535679
613 => 0.41120576943234
614 => 0.41498613498325
615 => 0.42636367995543
616 => 0.41717538835137
617 => 0.41518744366577
618 => 0.38758924112987
619 => 0.39210844524904
620 => 0.39934412708218
621 => 0.38770855485823
622 => 0.39508864729478
623 => 0.39654563387349
624 => 0.38731318256647
625 => 0.39224463372022
626 => 0.37914816152922
627 => 0.35199236583636
628 => 0.36195831477852
629 => 0.3692966077021
630 => 0.35882395889517
701 => 0.37759577653411
702 => 0.36662966819841
703 => 0.36315393832203
704 => 0.34959387688708
705 => 0.35599370390974
706 => 0.36464956159459
707 => 0.35930124789682
708 => 0.37039980187304
709 => 0.38611831417961
710 => 0.39732026210286
711 => 0.39818020856926
712 => 0.39097810652684
713 => 0.40251952101302
714 => 0.40260358761751
715 => 0.38958482492902
716 => 0.3816109052711
717 => 0.37979921394755
718 => 0.38432517407679
719 => 0.38982052521201
720 => 0.39848516231157
721 => 0.40372102104264
722 => 0.41737336372838
723 => 0.4210672962158
724 => 0.42512580808913
725 => 0.4305492315506
726 => 0.43706144195333
727 => 0.4228130963325
728 => 0.42337920966626
729 => 0.41011134750592
730 => 0.39593273398369
731 => 0.40669253425793
801 => 0.42075954180026
802 => 0.41753255472739
803 => 0.41716945276033
804 => 0.41778008955284
805 => 0.41534704668344
806 => 0.40434248395792
807 => 0.39881606144937
808 => 0.40594655642614
809 => 0.40973609716448
810 => 0.41561334436696
811 => 0.41488884959561
812 => 0.43002800721893
813 => 0.43591062608698
814 => 0.43440560044908
815 => 0.43468256138692
816 => 0.44533276185703
817 => 0.45717797516058
818 => 0.46827258053292
819 => 0.47955848964205
820 => 0.46595288571446
821 => 0.45904479911703
822 => 0.46617218114276
823 => 0.46239029191474
824 => 0.48412214920014
825 => 0.48562681584765
826 => 0.50735710167242
827 => 0.52798173051442
828 => 0.51502777066737
829 => 0.52724277134398
830 => 0.54045429047935
831 => 0.56594145438321
901 => 0.55735827422963
902 => 0.55078369274756
903 => 0.54457074501516
904 => 0.55749890296862
905 => 0.57413077164337
906 => 0.57771311685786
907 => 0.58351788466652
908 => 0.57741488108895
909 => 0.58476527667434
910 => 0.61071540301825
911 => 0.60370344981203
912 => 0.59374534903146
913 => 0.61423048150335
914 => 0.62164397131099
915 => 0.67367572525579
916 => 0.73936796393563
917 => 0.71217094576368
918 => 0.69528887894206
919 => 0.69925656509312
920 => 0.72324514683638
921 => 0.73094951793279
922 => 0.71000638143677
923 => 0.71740385130418
924 => 0.75816463757681
925 => 0.78003149164948
926 => 0.75033336670848
927 => 0.66839741784097
928 => 0.59284873101011
929 => 0.61288764475936
930 => 0.61061585382008
1001 => 0.65440823365838
1002 => 0.60353621704707
1003 => 0.60439277133824
1004 => 0.64909073121465
1005 => 0.63716608183666
1006 => 0.617849677038
1007 => 0.59298976214195
1008 => 0.5470339101928
1009 => 0.50632953054769
1010 => 0.58616019269053
1011 => 0.58271774937629
1012 => 0.57773258131576
1013 => 0.58882653338295
1014 => 0.64269561554801
1015 => 0.6414537588469
1016 => 0.63355370011531
1017 => 0.6395458250353
1018 => 0.61679922856803
1019 => 0.62266154440802
1020 => 0.59283676371212
1021 => 0.60631881017953
1022 => 0.61780823270874
1023 => 0.62011490438529
1024 => 0.62531195345412
1025 => 0.58090373817552
1026 => 0.60084172307891
1027 => 0.61255342127311
1028 => 0.5596395427565
1029 => 0.61150748402593
1030 => 0.58013068994688
1031 => 0.56948093477282
1101 => 0.58381942711614
1102 => 0.57823170270531
1103 => 0.57342770537906
1104 => 0.57074699232786
1105 => 0.58127559862314
1106 => 0.58078442655506
1107 => 0.56355758314156
1108 => 0.54108586816462
1109 => 0.54862811331978
1110 => 0.54588794494599
1111 => 0.5359572212706
1112 => 0.54264932998766
1113 => 0.51318066999643
1114 => 0.46248137212918
1115 => 0.49597488126178
1116 => 0.4946854175941
1117 => 0.49403521154033
1118 => 0.51920465796088
1119 => 0.51678519644547
1120 => 0.51239385010357
1121 => 0.53587657075129
1122 => 0.52730506182771
1123 => 0.5537204326287
1124 => 0.57111930427729
1125 => 0.56670638763267
1126 => 0.58307011051422
1127 => 0.54880187141496
1128 => 0.56018440584062
1129 => 0.56253033041023
1130 => 0.53558679762363
1201 => 0.51718105027138
1202 => 0.51595359676387
1203 => 0.48404056732329
1204 => 0.50108825005748
1205 => 0.51608950538251
1206 => 0.50890506822626
1207 => 0.50663069005154
1208 => 0.51824999489372
1209 => 0.51915291439257
1210 => 0.4985662541316
1211 => 0.5028468726946
1212 => 0.52069776369594
1213 => 0.50239707604204
1214 => 0.46684182933087
1215 => 0.45802363655675
1216 => 0.45684712708915
1217 => 0.43293148890606
1218 => 0.45861291036375
1219 => 0.44740228167816
1220 => 0.48281652337198
1221 => 0.46258809844686
1222 => 0.46171609147837
1223 => 0.4603979250499
1224 => 0.43981274732315
1225 => 0.44431959298901
1226 => 0.45930103439433
1227 => 0.46464658146577
1228 => 0.46408899711144
1229 => 0.45922761715835
1230 => 0.46145313200658
1231 => 0.45428397325965
]
'min_raw' => 0.25084088918419
'max_raw' => 0.78003149164948
'avg_raw' => 0.51543619041684
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.25084'
'max' => '$0.780031'
'avg' => '$0.515436'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.14289579759898
'max_diff' => 0.48718686001835
'year' => 2033
]
8 => [
'items' => [
101 => 0.45175239409298
102 => 0.44376203387724
103 => 0.43201841175345
104 => 0.43365143443758
105 => 0.41038424612447
106 => 0.39770704704834
107 => 0.39419816542687
108 => 0.38950594227638
109 => 0.39472816451725
110 => 0.41031833310335
111 => 0.39151328214974
112 => 0.35927334131072
113 => 0.36121101668933
114 => 0.36556439796408
115 => 0.35745190075908
116 => 0.34977410298482
117 => 0.35644932523011
118 => 0.34278883728499
119 => 0.3672152026685
120 => 0.36655453793897
121 => 0.37565917643764
122 => 0.38135249373685
123 => 0.36823124059554
124 => 0.36493128091414
125 => 0.36681108792347
126 => 0.3357420653811
127 => 0.37312017445828
128 => 0.37344342189774
129 => 0.37067558107188
130 => 0.39057827023583
131 => 0.43257915217619
201 => 0.41677673090867
202 => 0.41065755576317
203 => 0.39902499933849
204 => 0.41452469010152
205 => 0.41333455568376
206 => 0.40795231650158
207 => 0.40469712145059
208 => 0.41069491814177
209 => 0.40395392806588
210 => 0.40274306101823
211 => 0.39540652414581
212 => 0.39278771427352
213 => 0.3908488517019
214 => 0.38871435451924
215 => 0.39342252342062
216 => 0.3827531932789
217 => 0.36988702705532
218 => 0.36881734454767
219 => 0.37177083199872
220 => 0.37046413366291
221 => 0.36881108857876
222 => 0.36565497533308
223 => 0.36471862395277
224 => 0.36776131168566
225 => 0.36432629463495
226 => 0.36939484940833
227 => 0.3680164829659
228 => 0.36031704006535
301 => 0.35072068351241
302 => 0.35063525581005
303 => 0.34856773653189
304 => 0.34593443987756
305 => 0.34520191698999
306 => 0.35588715663132
307 => 0.37800528290656
308 => 0.37366296547683
309 => 0.3768007348384
310 => 0.39223545453286
311 => 0.39714168778551
312 => 0.39365935963328
313 => 0.38889253407786
314 => 0.38910225021025
315 => 0.40539193614934
316 => 0.40640790388003
317 => 0.40897492657186
318 => 0.41227427617139
319 => 0.39422125313687
320 => 0.38825195444881
321 => 0.38542336956632
322 => 0.37671242292837
323 => 0.38610643205727
324 => 0.38063294522944
325 => 0.38137150560345
326 => 0.38089051719098
327 => 0.38115316938848
328 => 0.36720837500156
329 => 0.37228912515934
330 => 0.36384139259434
331 => 0.35253082699228
401 => 0.35249291001039
402 => 0.35526115491782
403 => 0.35361449452544
404 => 0.34918337374907
405 => 0.34981279354105
406 => 0.34429841385664
407 => 0.35048233907581
408 => 0.35065967192394
409 => 0.34827852387388
410 => 0.35780571389124
411 => 0.3617090114148
412 => 0.36014168875912
413 => 0.36159904387911
414 => 0.37384340837042
415 => 0.37583977404158
416 => 0.3767264278002
417 => 0.37553842922276
418 => 0.36182284838472
419 => 0.36243119271804
420 => 0.35796756564294
421 => 0.35419627112992
422 => 0.3543471031326
423 => 0.35628603874627
424 => 0.36475348428821
425 => 0.38257272424805
426 => 0.38324895137883
427 => 0.38406855838827
428 => 0.38073480477939
429 => 0.37972931279122
430 => 0.38105581626312
501 => 0.3877477859009
502 => 0.40496134866133
503 => 0.3988769259266
504 => 0.39393019553357
505 => 0.39826981171719
506 => 0.39760176182076
507 => 0.39196274839322
508 => 0.39180448006763
509 => 0.38098141039853
510 => 0.37698036797123
511 => 0.37363679744615
512 => 0.36998570571888
513 => 0.36782121615725
514 => 0.37114685586683
515 => 0.37190746901622
516 => 0.364635899669
517 => 0.36364481163635
518 => 0.36958293213301
519 => 0.36696978669788
520 => 0.3696574715808
521 => 0.37028103752818
522 => 0.37018062904871
523 => 0.36745220509658
524 => 0.36919122116089
525 => 0.36507792974316
526 => 0.36060534312277
527 => 0.35775211151095
528 => 0.35526228850339
529 => 0.35664378701735
530 => 0.35171899706674
531 => 0.35014345764511
601 => 0.36860208164741
602 => 0.38223766566155
603 => 0.3820393988697
604 => 0.3808325007644
605 => 0.37903929499025
606 => 0.38761660172934
607 => 0.3846284395701
608 => 0.38680257721025
609 => 0.38735598648794
610 => 0.38903098969528
611 => 0.38962965937052
612 => 0.38782006380913
613 => 0.38174684008163
614 => 0.36661294397748
615 => 0.35956807448783
616 => 0.35724315021466
617 => 0.35732765679633
618 => 0.35499658801989
619 => 0.35568319224572
620 => 0.35475781509027
621 => 0.35300537463061
622 => 0.35653557875721
623 => 0.35694240189667
624 => 0.35611841007073
625 => 0.35631248997468
626 => 0.34949018958736
627 => 0.35000887426855
628 => 0.34712077205242
629 => 0.34657928770349
630 => 0.33927841679695
701 => 0.32634386570785
702 => 0.33351086259846
703 => 0.32485413818686
704 => 0.32157570548141
705 => 0.33709529600813
706 => 0.33553755956568
707 => 0.33287139190797
708 => 0.32892757426418
709 => 0.32746477393711
710 => 0.31857726221612
711 => 0.31805214061062
712 => 0.32245703140254
713 => 0.3204243258651
714 => 0.31756963744476
715 => 0.30723024536139
716 => 0.29560534540461
717 => 0.29595622806279
718 => 0.29965389245009
719 => 0.31040535035414
720 => 0.30620456974892
721 => 0.30315685522142
722 => 0.30258610990439
723 => 0.30973018248336
724 => 0.31984054191209
725 => 0.32458409634951
726 => 0.31988337796592
727 => 0.3144834457915
728 => 0.31481211464208
729 => 0.31699860125875
730 => 0.31722837008691
731 => 0.31371356936336
801 => 0.31470296517898
802 => 0.31319998246281
803 => 0.30397618030796
804 => 0.30380935097597
805 => 0.30154568117327
806 => 0.30147713815129
807 => 0.29762607111799
808 => 0.29708728021887
809 => 0.28944075288121
810 => 0.29447372033067
811 => 0.29109787000822
812 => 0.2860096672897
813 => 0.28513245922317
814 => 0.28510608928943
815 => 0.29033053578004
816 => 0.29441266963161
817 => 0.29115659436991
818 => 0.29041524914919
819 => 0.29833087658924
820 => 0.29732354084495
821 => 0.29645119458701
822 => 0.31893527011664
823 => 0.30113736988065
824 => 0.29337646950912
825 => 0.28377088154435
826 => 0.28689850942126
827 => 0.28755754656934
828 => 0.26445783905144
829 => 0.25508629058831
830 => 0.25187032831512
831 => 0.25001949655986
901 => 0.25086294383202
902 => 0.2424274510422
903 => 0.24809624170713
904 => 0.24079181798561
905 => 0.23956720757804
906 => 0.25262842203659
907 => 0.25444581372599
908 => 0.24669225615967
909 => 0.25167129530419
910 => 0.24986582649657
911 => 0.24091703136535
912 => 0.24057525321421
913 => 0.23608506238272
914 => 0.22905878320372
915 => 0.22584758507867
916 => 0.22417516521425
917 => 0.22486523824512
918 => 0.22451631620413
919 => 0.22223936386668
920 => 0.2246468284468
921 => 0.21849675127764
922 => 0.21604774099433
923 => 0.21494157986597
924 => 0.2094830323931
925 => 0.21817000884952
926 => 0.21988145264708
927 => 0.22159626851761
928 => 0.23652256991609
929 => 0.23577689407951
930 => 0.24251744048331
1001 => 0.24225551524513
1002 => 0.24033300222115
1003 => 0.23222223601104
1004 => 0.23545504286188
1005 => 0.22550496586471
1006 => 0.23296024009046
1007 => 0.22955796427352
1008 => 0.23180992721437
1009 => 0.22776069479541
1010 => 0.23000170720477
1011 => 0.22028729946186
1012 => 0.21121612219693
1013 => 0.21486662873251
1014 => 0.21883514682275
1015 => 0.22743990520198
1016 => 0.22231498209902
1017 => 0.22415809824164
1018 => 0.21798396769778
1019 => 0.20524497283259
1020 => 0.20531707416008
1021 => 0.20335745733416
1022 => 0.20166406228782
1023 => 0.22290364116717
1024 => 0.22026216378547
1025 => 0.21605331528574
1026 => 0.22168702625562
1027 => 0.22317666885507
1028 => 0.22321907688569
1029 => 0.22732928698219
1030 => 0.22952290684748
1031 => 0.22990954185643
1101 => 0.23637704625024
1102 => 0.2385448684146
1103 => 0.24747382110791
1104 => 0.22933679352788
1105 => 0.22896327338027
1106 => 0.22176630412227
1107 => 0.21720187243926
1108 => 0.22207883466464
1109 => 0.2263991574246
1110 => 0.22190054859327
1111 => 0.22248797193583
1112 => 0.21644895712961
1113 => 0.21860762076078
1114 => 0.22046695268333
1115 => 0.21944033888217
1116 => 0.21790344833317
1117 => 0.2260449402266
1118 => 0.22558556534721
1119 => 0.23316710977045
1120 => 0.23907746580982
1121 => 0.24966988043487
1122 => 0.23861614357856
1123 => 0.2382133014729
1124 => 0.24215114767371
1125 => 0.23854426555086
1126 => 0.24082369054716
1127 => 0.2493026298282
1128 => 0.24948177645427
1129 => 0.24648083965019
1130 => 0.24629823237294
1201 => 0.24687459511281
1202 => 0.25025036968262
1203 => 0.24907077032085
1204 => 0.25043583256609
1205 => 0.25214286380633
1206 => 0.25920386878222
1207 => 0.26090625317699
1208 => 0.25677034168281
1209 => 0.2571437681829
1210 => 0.25559682375077
1211 => 0.25410249481249
1212 => 0.25746152803653
1213 => 0.26360022727542
1214 => 0.26356203874606
1215 => 0.26498609765022
1216 => 0.26587327454997
1217 => 0.26206486184305
1218 => 0.25958572521007
1219 => 0.26053638394672
1220 => 0.26205650796927
1221 => 0.26004342821392
1222 => 0.24761776741463
1223 => 0.25138691914685
1224 => 0.2507595479965
1225 => 0.24986609518747
1226 => 0.25365600640021
1227 => 0.25329046021819
1228 => 0.24234093287118
1229 => 0.24304188608628
1230 => 0.24238356015782
1231 => 0.24451074591349
]
'min_raw' => 0.20166406228782
'max_raw' => 0.45175239409298
'avg_raw' => 0.3267082281904
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.201664'
'max' => '$0.451752'
'avg' => '$0.3267082'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.049176826896372
'max_diff' => -0.32827909755651
'year' => 2034
]
9 => [
'items' => [
101 => 0.23842939053922
102 => 0.2402999744938
103 => 0.24147318721447
104 => 0.24216421851999
105 => 0.24466069744013
106 => 0.2443677644531
107 => 0.24464248831436
108 => 0.24834410750693
109 => 0.26706562714064
110 => 0.2680845981476
111 => 0.2630668122382
112 => 0.26507131873755
113 => 0.26122310459617
114 => 0.26380643653008
115 => 0.26557388662973
116 => 0.25758711949049
117 => 0.25711419497419
118 => 0.25325009788417
119 => 0.2553264447867
120 => 0.25202282757014
121 => 0.25283341967946
122 => 0.25056693347566
123 => 0.2546461573896
124 => 0.25920736357271
125 => 0.26035970438205
126 => 0.25732839182658
127 => 0.25513352176319
128 => 0.25128005296702
129 => 0.2576884574552
130 => 0.25956247022013
131 => 0.25767861406394
201 => 0.25724208342948
202 => 0.25641485866597
203 => 0.2574175830736
204 => 0.25955226394415
205 => 0.25854558786697
206 => 0.2592105151513
207 => 0.25667649801347
208 => 0.26206612258613
209 => 0.2706261434913
210 => 0.27065366535822
211 => 0.26964698385467
212 => 0.26923507147268
213 => 0.27026798778586
214 => 0.27082830251331
215 => 0.27416856446567
216 => 0.27775279862246
217 => 0.29447885550832
218 => 0.28978224566517
219 => 0.30462259837188
220 => 0.31635939058427
221 => 0.31987874138105
222 => 0.31664110424627
223 => 0.3055653225019
224 => 0.30502189180972
225 => 0.32157378581023
226 => 0.31689711763031
227 => 0.31634084283135
228 => 0.31042301881145
301 => 0.31392118574397
302 => 0.31315608532082
303 => 0.31194833687287
304 => 0.31862259569571
305 => 0.33111621239686
306 => 0.32916896506959
307 => 0.32771543526998
308 => 0.32134649080429
309 => 0.32518201792788
310 => 0.32381626018385
311 => 0.32968442218348
312 => 0.32620825301061
313 => 0.31686168726922
314 => 0.31835015867022
315 => 0.31812517921235
316 => 0.32275524051314
317 => 0.32136541103583
318 => 0.31785379270094
319 => 0.3310735105732
320 => 0.33021509562651
321 => 0.33143213175994
322 => 0.33196790870397
323 => 0.34001451801526
324 => 0.34331095638731
325 => 0.34405930561005
326 => 0.34719066710781
327 => 0.34398139448338
328 => 0.3568207731537
329 => 0.36535821077094
330 => 0.3752748838959
331 => 0.38976580868191
401 => 0.39521453045
402 => 0.39423026763221
403 => 0.40521712142233
404 => 0.42496025345913
405 => 0.3982209190946
406 => 0.42637750310862
407 => 0.41746345369318
408 => 0.39632840288606
409 => 0.39496755477996
410 => 0.40928045656953
411 => 0.44102509517304
412 => 0.43307342324757
413 => 0.44103810125971
414 => 0.43174688128977
415 => 0.43128549390571
416 => 0.44058684744416
417 => 0.46231996697712
418 => 0.45199537654081
419 => 0.43719254445693
420 => 0.44812272531009
421 => 0.4386539911146
422 => 0.41731828284033
423 => 0.43306734275391
424 => 0.4225363948971
425 => 0.4256098853377
426 => 0.44774437137244
427 => 0.44508109145215
428 => 0.44852762228209
429 => 0.44244458557867
430 => 0.43676207009085
501 => 0.42615523294367
502 => 0.42301507137515
503 => 0.42388289906151
504 => 0.42301464132284
505 => 0.41708021342087
506 => 0.41579867428046
507 => 0.41366271956759
508 => 0.41432474124736
509 => 0.41030852149157
510 => 0.41788795796408
511 => 0.41929476816314
512 => 0.42481044995529
513 => 0.42538310633652
514 => 0.44074420161682
515 => 0.43228356846915
516 => 0.43795969164053
517 => 0.43745196575834
518 => 0.39678646352413
519 => 0.40238981093724
520 => 0.41110686108475
521 => 0.40717984180898
522 => 0.40162795533403
523 => 0.39714450933218
524 => 0.3903516301835
525 => 0.39991247713958
526 => 0.41248397420411
527 => 0.4257019402482
528 => 0.44158246037474
529 => 0.43803811315213
530 => 0.4254050649707
531 => 0.42597177428367
601 => 0.42947494826456
602 => 0.42493801966239
603 => 0.42359999084624
604 => 0.42929112365206
605 => 0.4293303153559
606 => 0.42411003069296
607 => 0.4183086395921
608 => 0.41828433155156
609 => 0.41725203003996
610 => 0.43193052543542
611 => 0.44000221373964
612 => 0.44092761979555
613 => 0.43993992653883
614 => 0.4403200504732
615 => 0.43562331289648
616 => 0.44635866222259
617 => 0.45621048038024
618 => 0.45356998266059
619 => 0.44961150120998
620 => 0.44645838006826
621 => 0.45282720752724
622 => 0.45254361366595
623 => 0.45612443334317
624 => 0.45596198667879
625 => 0.45475789170279
626 => 0.45357002566262
627 => 0.4582797802416
628 => 0.4569234465592
629 => 0.45556500611596
630 => 0.45284044584021
701 => 0.45321075883184
702 => 0.44925296086885
703 => 0.44742190243466
704 => 0.41988717690795
705 => 0.4125289985241
706 => 0.41484403123319
707 => 0.41560620011083
708 => 0.41240391144841
709 => 0.41699517078985
710 => 0.41627962788483
711 => 0.41906338674965
712 => 0.41732421506767
713 => 0.41739559128015
714 => 0.42251012436635
715 => 0.42399489508006
716 => 0.4232397287115
717 => 0.42376862135045
718 => 0.43595672898343
719 => 0.43422396983176
720 => 0.43330347606761
721 => 0.43355845913104
722 => 0.43667278194724
723 => 0.43754462230006
724 => 0.43385057346205
725 => 0.4355927082491
726 => 0.44301049706252
727 => 0.44560630333673
728 => 0.45389087090632
729 => 0.45037143935632
730 => 0.45683150828378
731 => 0.47668755776703
801 => 0.49254994402837
802 => 0.47796223808161
803 => 0.50709149038784
804 => 0.52977279165131
805 => 0.52890224553113
806 => 0.5249472360279
807 => 0.49912517755303
808 => 0.47536333435925
809 => 0.495241125172
810 => 0.49529179774869
811 => 0.49358427788913
812 => 0.48297901869047
813 => 0.49321523785725
814 => 0.49402775176222
815 => 0.49357296004032
816 => 0.48544193267805
817 => 0.47302735676091
818 => 0.47545313517883
819 => 0.47942660971191
820 => 0.47190399346716
821 => 0.46950006176557
822 => 0.47396942816554
823 => 0.48837065793572
824 => 0.48564818886831
825 => 0.4855770941986
826 => 0.49722497137553
827 => 0.48888760508607
828 => 0.47548373201309
829 => 0.4720990772868
830 => 0.46008583318508
831 => 0.46838342367585
901 => 0.46868203918569
902 => 0.46413753367322
903 => 0.47585249358923
904 => 0.47574453817123
905 => 0.4868661490698
906 => 0.50812649202159
907 => 0.50183876245281
908 => 0.49452681706735
909 => 0.495321828269
910 => 0.50404113889629
911 => 0.49876924464853
912 => 0.50066505457698
913 => 0.50403826936091
914 => 0.50607341359226
915 => 0.4950290023332
916 => 0.49245402175345
917 => 0.48718651518266
918 => 0.48581232104101
919 => 0.49010259523279
920 => 0.48897225956088
921 => 0.46865694170839
922 => 0.46653387795944
923 => 0.46659898929358
924 => 0.46126044455068
925 => 0.4531178824202
926 => 0.47451604953197
927 => 0.47279747724574
928 => 0.47090030644867
929 => 0.47113269904621
930 => 0.48042091813825
1001 => 0.47503328199856
1002 => 0.48935719569214
1003 => 0.486412629653
1004 => 0.48339254660582
1005 => 0.48297507913472
1006 => 0.48181260482293
1007 => 0.47782604787017
1008 => 0.47301204079478
1009 => 0.46983341634146
1010 => 0.43339649127458
1011 => 0.44015897262315
1012 => 0.44793859099511
1013 => 0.45062408408225
1014 => 0.44603036232624
1015 => 0.47800743600416
1016 => 0.48384995550387
1017 => 0.46615258284114
1018 => 0.46284212699491
1019 => 0.47822446893831
1020 => 0.46894703633162
1021 => 0.47312466366635
1022 => 0.46409491840864
1023 => 0.48244266364533
1024 => 0.48230288456751
1025 => 0.47516519726781
1026 => 0.48119792169674
1027 => 0.48014958736916
1028 => 0.47209115598715
1029 => 0.4826981302937
1030 => 0.48270339122063
1031 => 0.47583352238137
1101 => 0.4678110195848
1102 => 0.46637678556782
1103 => 0.46529628289827
1104 => 0.47285892624565
1105 => 0.47963956862315
1106 => 0.49225666302386
1107 => 0.49542890033097
1108 => 0.50781035372841
1109 => 0.50043780107226
1110 => 0.50370595817419
1111 => 0.50725400501738
1112 => 0.50895506914911
1113 => 0.50618327643059
1114 => 0.52541676996635
1115 => 0.52704066611979
1116 => 0.52758514445339
1117 => 0.52109971864916
1118 => 0.52686029469612
1119 => 0.52416511193397
1120 => 0.53117722873775
1121 => 0.53227681818778
1122 => 0.53134550504263
1123 => 0.53169453208991
1124 => 0.5152821383779
1125 => 0.51443106918166
1126 => 0.50282668030179
1127 => 0.50755555454565
1128 => 0.49871515080759
1129 => 0.50151853389918
1130 => 0.50275423845434
1201 => 0.50210877652034
1202 => 0.50782291800025
1203 => 0.50296473042034
1204 => 0.49014317463699
1205 => 0.47731812562933
1206 => 0.4771571175861
1207 => 0.4737805085633
1208 => 0.47133983869661
1209 => 0.47180999830035
1210 => 0.47346690206781
1211 => 0.47124353643756
1212 => 0.47171800422227
1213 => 0.47959733081082
1214 => 0.48117747356537
1215 => 0.47580753108379
1216 => 0.45424643714123
1217 => 0.44895529060582
1218 => 0.45275846180748
1219 => 0.45094079092868
1220 => 0.36394441276517
1221 => 0.38438292137917
1222 => 0.3722390535869
1223 => 0.37783550657807
1224 => 0.36543976220148
1225 => 0.37135566113462
1226 => 0.37026321061571
1227 => 0.40312772764758
1228 => 0.40261459341779
1229 => 0.40286020361913
1230 => 0.39113658877519
1231 => 0.40981262555242
]
'min_raw' => 0.23842939053922
'max_raw' => 0.53227681818778
'avg_raw' => 0.3853531043635
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.238429'
'max' => '$0.532276'
'avg' => '$0.385353'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.036765328251406
'max_diff' => 0.080524424094802
'year' => 2035
]
10 => [
'items' => [
101 => 0.41901311283744
102 => 0.41731034750403
103 => 0.41773889685381
104 => 0.41037499917262
105 => 0.40293150224537
106 => 0.39467551860708
107 => 0.4100141157366
108 => 0.40830872557439
109 => 0.4122202770265
110 => 0.42216845369057
111 => 0.4236333604938
112 => 0.42560221009296
113 => 0.42489651766392
114 => 0.441708974338
115 => 0.43967287490261
116 => 0.44457928871612
117 => 0.43448642325122
118 => 0.4230653879541
119 => 0.42523615338231
120 => 0.42502709121538
121 => 0.42236548987998
122 => 0.41996271520262
123 => 0.41596277234238
124 => 0.42861918343233
125 => 0.4281053562554
126 => 0.43642362099117
127 => 0.43495328689981
128 => 0.42513403598593
129 => 0.42548473245328
130 => 0.42784333473523
131 => 0.43600648416311
201 => 0.4384298627029
202 => 0.43730725720833
203 => 0.43996438114578
204 => 0.44206446356627
205 => 0.44022811916435
206 => 0.4662268833878
207 => 0.45543038385471
208 => 0.46069252260557
209 => 0.46194751169133
210 => 0.45873288353774
211 => 0.45943002127705
212 => 0.46048599499344
213 => 0.46689766061853
214 => 0.48372372644916
215 => 0.49117587646664
216 => 0.51359603747685
217 => 0.49055707914663
218 => 0.489190042704
219 => 0.49322859072594
220 => 0.50639159865399
221 => 0.51705898024121
222 => 0.5205979661297
223 => 0.52106570153716
224 => 0.52770507433129
225 => 0.53151063899992
226 => 0.52689887984125
227 => 0.52299089682558
228 => 0.50899298674016
229 => 0.51061328294759
301 => 0.52177551704635
302 => 0.53754283016316
303 => 0.5510728251267
304 => 0.5463350924584
305 => 0.58248064839953
306 => 0.58606433262974
307 => 0.58556918334351
308 => 0.59373334934364
309 => 0.57752914243687
310 => 0.57060153004251
311 => 0.52383584711106
312 => 0.53697509646738
313 => 0.55607376704785
314 => 0.55354598638018
315 => 0.53967602129572
316 => 0.55106230351444
317 => 0.54729764253096
318 => 0.54432829821737
319 => 0.55793144015366
320 => 0.54297422680844
321 => 0.55592455740305
322 => 0.53931562446144
323 => 0.54635673402215
324 => 0.54235985969534
325 => 0.54494632722328
326 => 0.52982589090516
327 => 0.53798451131458
328 => 0.52948646547308
329 => 0.52948243629287
330 => 0.52929484145991
331 => 0.53929275470633
401 => 0.53961878629836
402 => 0.53223031330325
403 => 0.53116551891501
404 => 0.53510262184965
405 => 0.53049330544208
406 => 0.53264997557849
407 => 0.53055862878348
408 => 0.53008782256942
409 => 0.52633635855471
410 => 0.52472012470852
411 => 0.52535389164483
412 => 0.52319051836197
413 => 0.52188700770641
414 => 0.52903554038164
415 => 0.52521636774425
416 => 0.52845019740031
417 => 0.52476484036539
418 => 0.51198978724873
419 => 0.5046427191076
420 => 0.48051182801829
421 => 0.48735531879694
422 => 0.49189256026329
423 => 0.49039300198573
424 => 0.49361463341795
425 => 0.49381241542288
426 => 0.49276503020362
427 => 0.49155229229807
428 => 0.49096199855427
429 => 0.49536156450202
430 => 0.49791566061727
501 => 0.4923479331449
502 => 0.49104349249891
503 => 0.49667277237613
504 => 0.50010662984931
505 => 0.52546030411341
506 => 0.52358202203264
507 => 0.52829614146114
508 => 0.52776540395755
509 => 0.53270655213673
510 => 0.54078324112467
511 => 0.52436107413443
512 => 0.52721139448813
513 => 0.52651256176091
514 => 0.53414223423288
515 => 0.53416605323753
516 => 0.52959168346018
517 => 0.53207152352716
518 => 0.53068734483262
519 => 0.53318874281662
520 => 0.52355693643031
521 => 0.53528743691958
522 => 0.54193787480024
523 => 0.54203021613667
524 => 0.54518247091096
525 => 0.54838534432793
526 => 0.55453298094031
527 => 0.54821389007944
528 => 0.53684646077184
529 => 0.53766715245127
530 => 0.5310024328074
531 => 0.5311144679487
601 => 0.53051641558412
602 => 0.5323112157495
603 => 0.52395079413624
604 => 0.5259129683783
605 => 0.52316591294894
606 => 0.52720542292611
607 => 0.5228595779456
608 => 0.52651222476261
609 => 0.52808858604167
610 => 0.53390539309804
611 => 0.52200043081387
612 => 0.49772540682137
613 => 0.50282831117081
614 => 0.49528071481351
615 => 0.4959792735921
616 => 0.49739047349967
617 => 0.49281631288337
618 => 0.49368891858059
619 => 0.49365774296465
620 => 0.49338908834894
621 => 0.49219917251018
622 => 0.49047355912629
623 => 0.49734787173189
624 => 0.49851595139836
625 => 0.50111244780245
626 => 0.50883785988069
627 => 0.50806590903631
628 => 0.50932499289143
629 => 0.50657641990517
630 => 0.49610677200984
701 => 0.49667532426155
702 => 0.48958546857227
703 => 0.5009311442523
704 => 0.49824433849567
705 => 0.49651213734566
706 => 0.49603949021315
707 => 0.50378405209367
708 => 0.50610134638946
709 => 0.50465736409216
710 => 0.50169571427271
711 => 0.50738295745923
712 => 0.50890462381041
713 => 0.50924526878955
714 => 0.51932197329535
715 => 0.5098084446332
716 => 0.51209844553852
717 => 0.52996437889225
718 => 0.51376244267069
719 => 0.52234496963354
720 => 0.52192489960003
721 => 0.52631542997734
722 => 0.52156474795911
723 => 0.52162363835636
724 => 0.52552213189113
725 => 0.52004740081857
726 => 0.51869178041368
727 => 0.51681900053347
728 => 0.52090814688763
729 => 0.52335940519076
730 => 0.54311474686319
731 => 0.55587759853661
801 => 0.55532352948584
802 => 0.56038668343608
803 => 0.55810568620832
804 => 0.55073974446323
805 => 0.5633125088412
806 => 0.55933396012521
807 => 0.55966194684742
808 => 0.55964973916523
809 => 0.5622951262506
810 => 0.56042062705445
811 => 0.55672579672545
812 => 0.55917859752835
813 => 0.56646253902065
814 => 0.58907211691137
815 => 0.60172473623608
816 => 0.58831041334093
817 => 0.59756343364906
818 => 0.59201491865243
819 => 0.59100658842352
820 => 0.59681816896986
821 => 0.60263992191862
822 => 0.60226910142391
823 => 0.59804280773343
824 => 0.59565548166592
825 => 0.61373311446207
826 => 0.62705240636184
827 => 0.62614411994794
828 => 0.63015300078833
829 => 0.6419231989257
830 => 0.64299931833446
831 => 0.64286375202328
901 => 0.64019647778723
902 => 0.65178576640685
903 => 0.66145375486746
904 => 0.63957908086654
905 => 0.64790867036558
906 => 0.65164809145432
907 => 0.65713867104882
908 => 0.66640219915273
909 => 0.67646484770305
910 => 0.67788781653939
911 => 0.67687815205468
912 => 0.67024156483723
913 => 0.68125223495336
914 => 0.6877020272754
915 => 0.6915427310023
916 => 0.70128211662157
917 => 0.65167118484591
918 => 0.6165541015118
919 => 0.61107006185235
920 => 0.62222207214905
921 => 0.62516276832868
922 => 0.62397737738599
923 => 0.58444990738792
924 => 0.61086195790321
925 => 0.63927910346938
926 => 0.64037072176304
927 => 0.65459693900796
928 => 0.65922957849525
929 => 0.67068354805033
930 => 0.66996709913608
1001 => 0.67275595845028
1002 => 0.67211484799025
1003 => 0.69333091467319
1004 => 0.71673538684086
1005 => 0.71592496439135
1006 => 0.71256029460811
1007 => 0.71755740299768
1008 => 0.74171332645038
1009 => 0.73948943610964
1010 => 0.74164975614514
1011 => 0.77013095126405
1012 => 0.80716055632141
1013 => 0.78995658706071
1014 => 0.82728425004764
1015 => 0.85078003524352
1016 => 0.89141356623026
1017 => 0.88632604802636
1018 => 0.90214438345688
1019 => 0.87721832864429
1020 => 0.81998306840778
1021 => 0.81092536938757
1022 => 0.82905911220349
1023 => 0.87363914945168
1024 => 0.82765512818366
1025 => 0.83695763579647
1026 => 0.83427851297817
1027 => 0.83413575390872
1028 => 0.83958428694646
1029 => 0.83168090559884
1030 => 0.79948110819749
1031 => 0.81423808559193
1101 => 0.80853970793168
1102 => 0.81486248278792
1103 => 0.84898389097639
1104 => 0.83389800306349
1105 => 0.81800624562527
1106 => 0.83793803611609
1107 => 0.8633180547172
1108 => 0.86172981876542
1109 => 0.85864797718784
1110 => 0.87602015680067
1111 => 0.90471390795003
1112 => 0.91246971358487
1113 => 0.91819489074404
1114 => 0.91898429594663
1115 => 0.9271156601459
1116 => 0.88339126547881
1117 => 0.95278300273758
1118 => 0.96476503885412
1119 => 0.96251291266872
1120 => 0.97583044153109
1121 => 0.97191208670669
1122 => 0.96623500533716
1123 => 0.98734612130364
1124 => 0.96314393042728
1125 => 0.92879196744939
1126 => 0.90994580115493
1127 => 0.93476395320834
1128 => 0.94991953263321
1129 => 0.95993640655716
1130 => 0.96296750655419
1201 => 0.88678546576942
1202 => 0.84572757103612
1203 => 0.87204521083045
1204 => 0.904154547726
1205 => 0.88321289649111
1206 => 0.88403376957173
1207 => 0.8541764782799
1208 => 0.90679625549573
1209 => 0.89912999655737
1210 => 0.93890256149096
1211 => 0.92941051967478
1212 => 0.96184350241605
1213 => 0.95330281111266
1214 => 0.98875474320941
1215 => 1.0028974787456
1216 => 1.0266453328518
1217 => 1.0441143510034
1218 => 1.0543724925912
1219 => 1.0537566322476
1220 => 1.094404499804
1221 => 1.0704358724343
1222 => 1.0403256274862
1223 => 1.0397810281517
1224 => 1.0553755506758
1225 => 1.0880573917379
1226 => 1.0965313176239
1227 => 1.1012670861599
1228 => 1.0940140917937
1229 => 1.0679978646309
1230 => 1.0567641896473
1231 => 1.0663356062042
]
'min_raw' => 0.39467551860708
'max_raw' => 1.1012670861599
'avg_raw' => 0.74797130238351
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.394675'
'max' => '$1.10'
'avg' => '$0.747971'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.15624612806785
'max_diff' => 0.56899026797217
'year' => 2036
]
11 => [
'items' => [
101 => 1.0546305862363
102 => 1.0748367345495
103 => 1.102584091984
104 => 1.0968543723987
105 => 1.1160079659247
106 => 1.1358299202073
107 => 1.1641762050912
108 => 1.1715869736197
109 => 1.183836692191
110 => 1.1964456764239
111 => 1.2004953423378
112 => 1.2082274111051
113 => 1.208186659286
114 => 1.2314877689444
115 => 1.2571896144728
116 => 1.2668914661607
117 => 1.2892003391538
118 => 1.2509971759493
119 => 1.2799747140863
120 => 1.3061131788406
121 => 1.274949823598
122 => 1.3179012486694
123 => 1.3195689551749
124 => 1.3447493434156
125 => 1.319224195955
126 => 1.304067444872
127 => 1.3478244173324
128 => 1.3689970379743
129 => 1.3626196723285
130 => 1.3140876048743
131 => 1.2858398599777
201 => 1.2119100630001
202 => 1.2994831010496
203 => 1.3421373733429
204 => 1.3139771406136
205 => 1.3281795240193
206 => 1.4056631227429
207 => 1.4351638604454
208 => 1.429027913229
209 => 1.4300647873023
210 => 1.4459828498903
211 => 1.5165723056426
212 => 1.474273467505
213 => 1.5066093443539
214 => 1.5237601768389
215 => 1.5396908258773
216 => 1.5005701867724
217 => 1.4496748100934
218 => 1.4335541078566
219 => 1.3111771604461
220 => 1.3048069088773
221 => 1.3012310936333
222 => 1.2786860843291
223 => 1.2609718826138
224 => 1.2468848917237
225 => 1.2099164208964
226 => 1.2223921945798
227 => 1.1634721680005
228 => 1.2011671130084
301 => 1.1071293279141
302 => 1.1854467896885
303 => 1.1428221559027
304 => 1.171443451104
305 => 1.1713435941013
306 => 1.1186427152459
307 => 1.0882459481613
308 => 1.1076159512075
309 => 1.1283821320657
310 => 1.1317513750441
311 => 1.1586752705796
312 => 1.1661891510964
313 => 1.143421742341
314 => 1.105180603837
315 => 1.114063148124
316 => 1.0880659436848
317 => 1.0425068428733
318 => 1.0752281844617
319 => 1.0864006891359
320 => 1.0913351036835
321 => 1.0465329605334
322 => 1.0324551544538
323 => 1.0249602486213
324 => 1.0993972097575
325 => 1.1034750345205
326 => 1.0826123064868
327 => 1.1769138154843
328 => 1.1555704796744
329 => 1.1794162150183
330 => 1.1132571503323
331 => 1.1157845156983
401 => 1.08446375423
402 => 1.1020012877982
403 => 1.0896063243333
404 => 1.1005844283952
405 => 1.1071646587055
406 => 1.1384802807451
407 => 1.1858043637892
408 => 1.1338027710963
409 => 1.1111449324835
410 => 1.1252017281264
411 => 1.1626368273062
412 => 1.2193529188311
413 => 1.1857758511306
414 => 1.2006767836005
415 => 1.2039319744488
416 => 1.1791734878171
417 => 1.2202657995483
418 => 1.2422875032384
419 => 1.264877214475
420 => 1.2844912277923
421 => 1.2558543870487
422 => 1.2864999115742
423 => 1.26180502847
424 => 1.2396511654153
425 => 1.2396847636809
426 => 1.2257873217704
427 => 1.1988592768785
428 => 1.1938933322501
429 => 1.2197268033367
430 => 1.2404428007093
501 => 1.2421490694759
502 => 1.2536185100477
503 => 1.2604060068335
504 => 1.3269327024887
505 => 1.353690289819
506 => 1.3864089611112
507 => 1.3991547275027
508 => 1.4375149147313
509 => 1.4065359480822
510 => 1.3998334537808
511 => 1.306784187086
512 => 1.3220209992946
513 => 1.3464166057742
514 => 1.3071864616514
515 => 1.3320689585628
516 => 1.3369812905365
517 => 1.3058534363657
518 => 1.3224801682335
519 => 1.2783244978751
520 => 1.1867668367395
521 => 1.2203677293983
522 => 1.2451092963334
523 => 1.2098000297038
524 => 1.27309052348
525 => 1.236117523597
526 => 1.224398857651
527 => 1.1786801637898
528 => 1.2002576274184
529 => 1.2294414559356
530 => 1.2114092428962
531 => 1.2488287925033
601 => 1.3018248541764
602 => 1.3395930036946
603 => 1.3424923732457
604 => 1.3182099833749
605 => 1.3571226681109
606 => 1.3574061045373
607 => 1.3135124371921
608 => 1.2866278103441
609 => 1.2805195665585
610 => 1.2957791571267
611 => 1.3143071171522
612 => 1.343520546079
613 => 1.3611736093468
614 => 1.4072034358879
615 => 1.4196577871714
616 => 1.4333413433086
617 => 1.4516267941603
618 => 1.4735831662011
619 => 1.4255438741527
620 => 1.4274525647823
621 => 1.3827190411761
622 => 1.3349148557667
623 => 1.3711922736166
624 => 1.4186201716727
625 => 1.4077401594554
626 => 1.4065159358225
627 => 1.4085747404018
628 => 1.400371566498
629 => 1.3632689149548
630 => 1.3446361956248
701 => 1.3686771572742
702 => 1.3814538584508
703 => 1.4012694077303
704 => 1.3988267230261
705 => 1.4498694499353
706 => 1.4697031101603
707 => 1.4646288111446
708 => 1.4655626042833
709 => 1.5014704987415
710 => 1.5414074624008
711 => 1.5788136990143
712 => 1.6168649295327
713 => 1.5709926859779
714 => 1.5477015897075
715 => 1.5717320558251
716 => 1.5589811522498
717 => 1.6322516263574
718 => 1.6373247150119
719 => 1.7105898908302
720 => 1.7801272669366
721 => 1.7364520868957
722 => 1.777635814501
723 => 1.8221793736647
724 => 1.9081111262235
725 => 1.8791723350772
726 => 1.8570056745878
727 => 1.8360582875339
728 => 1.8796464746891
729 => 1.935721981126
730 => 1.947800108128
731 => 1.9673712880709
801 => 1.946794585411
802 => 1.9715769573154
803 => 2.0590696200639
804 => 2.0354283302701
805 => 2.001853898236
806 => 2.0709209525913
807 => 2.0959160510711
808 => 2.271344742237
809 => 2.4928307114318
810 => 2.4011340658299
811 => 2.3442149988725
812 => 2.3575923297458
813 => 2.4384715079225
814 => 2.4644473329761
815 => 2.3938360860766
816 => 2.4187771722095
817 => 2.5562050089548
818 => 2.6299306341559
819 => 2.5298013324604
820 => 2.2535485602683
821 => 1.9988308879772
822 => 2.0663934847551
823 => 2.0587339829919
824 => 2.2063830491031
825 => 2.0348644933272
826 => 2.0377524259227
827 => 2.1884547183579
828 => 2.1482499304275
829 => 2.0831233230205
830 => 1.9993063842847
831 => 1.844363020903
901 => 1.7071253630405
902 => 1.9762800140539
903 => 1.9646735760762
904 => 1.9478657339068
905 => 1.9852697678564
906 => 2.1668931393951
907 => 2.1627061328236
908 => 2.1360705332456
909 => 2.1562734007701
910 => 2.0795816626641
911 => 2.0993468698124
912 => 1.9987905393965
913 => 2.0442462003478
914 => 2.0829835905709
915 => 2.090760695175
916 => 2.108282908957
917 => 1.9585575106626
918 => 2.02577981879
919 => 2.0652666269364
920 => 1.8868637911887
921 => 2.0617401764826
922 => 1.9559511245873
923 => 1.9200447314758
924 => 1.9683879594928
925 => 1.9495485565192
926 => 1.9333515441294
927 => 1.9243133329159
928 => 1.9598112641242
929 => 1.9581552432042
930 => 1.9000737378958
1001 => 1.824308781926
1002 => 1.8497379880493
1003 => 1.8404993190646
1004 => 1.8070171908521
1005 => 1.8295801026198
1006 => 1.7302244580232
1007 => 1.5592882355518
1008 => 1.6722139400345
1009 => 1.6678664232514
1010 => 1.6656742081452
1011 => 1.7505347540267
1012 => 1.7423773706061
1013 => 1.7275716398204
1014 => 1.8067452719954
1015 => 1.7778458312159
1016 => 1.8669070981337
1017 => 1.9255686086474
1018 => 1.91069015208
1019 => 1.9658615862538
1020 => 1.8503238255986
1021 => 1.8887008351179
1022 => 1.8966102835916
1023 => 1.8057682816642
1024 => 1.7437120194178
1025 => 1.7395735742192
1026 => 1.6319765673637
1027 => 1.6894540199332
1028 => 1.7400317996158
1029 => 1.7158089681421
1030 => 1.708140743334
1031 => 1.7473160408434
1101 => 1.7503602969736
1102 => 1.680950934589
1103 => 1.6953833389374
1104 => 1.7555688642578
1105 => 1.6938668181195
1106 => 1.5739898214447
1107 => 1.5442586688402
1108 => 1.5402919850289
1109 => 1.4596587411581
1110 => 1.5462454466223
1111 => 1.5084480293077
1112 => 1.6278496177218
1113 => 1.5596480707832
1114 => 1.5567080384074
1115 => 1.5522637482624
1116 => 1.4828593843454
1117 => 1.4980545291658
1118 => 1.5485655048347
1119 => 1.5665883900002
1120 => 1.5647084554203
1121 => 1.5483179734977
1122 => 1.555821452189
1123 => 1.5316501329391
1124 => 1.5231147370294
1125 => 1.4961746796929
1126 => 1.4565802377891
1127 => 1.4620860877826
1128 => 1.3836391379218
1129 => 1.3408970761428
1130 => 1.3290666367737
1201 => 1.3132464788213
1202 => 1.3308535657103
1203 => 1.3834169075691
1204 => 1.3200143653523
1205 => 1.2113151538928
1206 => 1.2178481617159
1207 => 1.2325258906271
1208 => 1.205174039904
1209 => 1.1792878086613
1210 => 1.2017937865105
1211 => 1.1557364976587
1212 => 1.2380916939436
1213 => 1.2358642166818
1214 => 1.2665611410457
1215 => 1.2857565578147
1216 => 1.2415173367521
1217 => 1.2303912922904
1218 => 1.2367291928663
1219 => 1.1319778141948
1220 => 1.2580007186048
1221 => 1.2590905699153
1222 => 1.2497586013265
1223 => 1.3168619074041
1224 => 1.458470813274
1225 => 1.4051918466807
1226 => 1.3845606204505
1227 => 1.3453406443055
1228 => 1.3975989338669
1229 => 1.3935863125849
1230 => 1.3754397174063
1231 => 1.3644646000214
]
'min_raw' => 1.0249602486213
'max_raw' => 2.6299306341559
'avg_raw' => 1.8274454413886
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$1.02'
'max' => '$2.62'
'avg' => '$1.82'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.63028473001419
'max_diff' => 1.5286635479959
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.032172331008379
]
1 => [
'year' => 2028
'avg' => 0.055217059704804
]
2 => [
'year' => 2029
'avg' => 0.15084305520678
]
3 => [
'year' => 2030
'avg' => 0.11637519244981
]
4 => [
'year' => 2031
'avg' => 0.11429486120454
]
5 => [
'year' => 2032
'avg' => 0.20039486160817
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.032172331008379
'min' => '$0.032172'
'max_raw' => 0.20039486160817
'max' => '$0.200394'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.20039486160817
]
1 => [
'year' => 2033
'avg' => 0.51543619041684
]
2 => [
'year' => 2034
'avg' => 0.3267082281904
]
3 => [
'year' => 2035
'avg' => 0.3853531043635
]
4 => [
'year' => 2036
'avg' => 0.74797130238351
]
5 => [
'year' => 2037
'avg' => 1.8274454413886
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.20039486160817
'min' => '$0.200394'
'max_raw' => 1.8274454413886
'max' => '$1.82'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 1.8274454413886
]
]
]
]
'prediction_2025_max_price' => '$0.0550088'
'last_price' => 0.053338
'sma_50day_nextmonth' => '$0.045461'
'sma_200day_nextmonth' => '$0.06673'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'augmenter'
'sma_200day_date_nextmonth' => '4 févr. 2026'
'sma_50day_date_nextmonth' => '4 févr. 2026'
'daily_sma3' => '$0.045244'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.0432062'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.041252'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.040132'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.044567'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.054293'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.074974'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.0472056'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.0449083'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.042628'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.0420069'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.045649'
'daily_ema50_action' => 'BUY'
'daily_ema100' => '$0.054412'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.067717'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.0626092'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.080946'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.10464'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.178513'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.046978'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.046055'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.049301'
'weekly_ema10_action' => 'BUY'
'weekly_ema21' => '$0.0599054'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.078548'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.10557'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.129026'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '75.50'
'rsi_14_action' => 'SELL'
'stoch_rsi_14' => 157.16
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0.02
'momentum_10_action' => 'BUY'
'vwma_10' => '0.050371'
'vwma_10_action' => 'BUY'
'hma_9' => '0.045128'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 471.75
'cci_20_action' => 'SELL'
'adx_14' => 25.1
'adx_14_action' => 'SELL'
'ao_5_34' => '0.000651'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 86.61
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '-0.007656'
'ichimoku_cloud_action' => 'NEUTRAL'
'sell_signals' => 14
'buy_signals' => 22
'sell_pct' => 38.89
'buy_pct' => 61.11
'overall_action' => 'bullish'
'overall_action_label' => 'Haussier'
'overall_action_dir' => 1
'last_updated' => 1767693441
'last_updated_date' => '6 janvier 2026'
]
Prévision du prix de BORA pour 2026
La prévision du prix de BORA pour 2026 suggère que le prix moyen pourrait varier entre $0.018428 à la baisse et $0.0550088 à la hausse. Sur le marché des cryptomonnaies, comparé au prix moyen d'aujourd'hui, BORA pourrait potentiellement gagner 3.13% d'ici 2026 si BORA atteint l'objectif de prix prévu.
Prévision du prix de BORA de 2027 à 2032
La prévision du prix de BORA pour 2027-2032 se situe actuellement dans une fourchette de prix comprise entre $0.032172 à la baisse et $0.200394 à la hausse. Compte tenu de la volatilité des prix sur le marché, si BORA atteint l'objectif de prix le plus élevé, il pourrait gagner 275.71% d'ici 2032 par rapport au prix actuel.
| Prévision du Prix de BORA | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2027 | $0.01774 | $0.032172 | $0.0466042 |
| 2028 | $0.032016 | $0.055217 | $0.078417 |
| 2029 | $0.07033 | $0.150843 | $0.231355 |
| 2030 | $0.059813 | $0.116375 | $0.172937 |
| 2031 | $0.070717 | $0.114294 | $0.157872 |
| 2032 | $0.107945 | $0.200394 | $0.292844 |
Prévision du prix de BORA de 2032 à 2037
La prévision du prix de BORA pour 2032-2037 est actuellement estimée entre $0.200394 à la baisse et $1.82 à la hausse. Par rapport au prix actuel, BORA pourrait potentiellement gagner 3326.16% d'ici 2037 s'il atteint l'objectif de prix le plus élevé. Veuillez noter que ces informations sont à titre général seulement et ne doivent pas être considérées comme un conseil en investissement à long terme.
| Prévision du Prix de BORA | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2032 | $0.107945 | $0.200394 | $0.292844 |
| 2033 | $0.25084 | $0.515436 | $0.780031 |
| 2034 | $0.201664 | $0.3267082 | $0.451752 |
| 2035 | $0.238429 | $0.385353 | $0.532276 |
| 2036 | $0.394675 | $0.747971 | $1.10 |
| 2037 | $1.02 | $1.82 | $2.62 |
BORA Histogramme des prix potentiels
Prévision du prix de BORA basée sur l'analyse technique
Au 6 janvier 2026, le sentiment global de prévision du prix pour BORA est Haussier, avec 22 indicateurs techniques montrant des signaux haussiers et 14 indiquant des signaux baissiers. La prévision du prix de BORA a été mise à jour pour la dernière fois le 6 janvier 2026.
Moyennes Mobiles Simples sur 50 et 200 jours de BORA et Indice de Force Relative sur 14 jours - RSI (14)
Selon nos indicateurs techniques, le SMA sur 200 jours de BORA devrait augmenter au cours du prochain mois, atteignant $0.06673 d'ici le 4 févr. 2026. Le SMA à court terme sur 50 jours pour BORA devrait atteindre $0.045461 d'ici le 4 févr. 2026.
Le Relative Strength Index (RSI), un oscillateur de momentum, est un outil couramment utilisé pour identifier si une cryptomonnaie est survendue (en dessous de 30) ou surachetée (au-dessus de 70). Actuellement, le RSI est à 75.50, ce qui suggère que le marché de BORA est dans un état SELL.
Moyennes Mobiles et Oscillateurs Populaires de BORA pour le Samedi 19 Octobre 2024
Les moyennes mobiles (MA) sont des indicateurs largement utilisés sur les marchés financiers, conçus pour lisser les mouvements de prix sur une période donnée. En tant qu'indicateurs retardés, ils sont basés sur des données historiques de prix. Le tableau ci-dessous met en évidence deux types : la moyenne mobile simple (SMA) et la moyenne mobile exponentielle (EMA).
Moyenne Mobile Simple Quotidienne (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 3 | $0.045244 | BUY |
| SMA 5 | $0.0432062 | BUY |
| SMA 10 | $0.041252 | BUY |
| SMA 21 | $0.040132 | BUY |
| SMA 50 | $0.044567 | BUY |
| SMA 100 | $0.054293 | SELL |
| SMA 200 | $0.074974 | SELL |
Moyenne Mobile Exponentielle Quotidienne (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 3 | $0.0472056 | BUY |
| EMA 5 | $0.0449083 | BUY |
| EMA 10 | $0.042628 | BUY |
| EMA 21 | $0.0420069 | BUY |
| EMA 50 | $0.045649 | BUY |
| EMA 100 | $0.054412 | SELL |
| EMA 200 | $0.067717 | SELL |
Moyenne Mobile Simple Hebdomadaire (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 21 | $0.0626092 | SELL |
| SMA 50 | $0.080946 | SELL |
| SMA 100 | $0.10464 | SELL |
| SMA 200 | $0.178513 | SELL |
Moyenne Mobile Exponentielle Hebdomadaire (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 21 | $0.0599054 | SELL |
| EMA 50 | $0.078548 | SELL |
| EMA 100 | $0.10557 | SELL |
| EMA 200 | $0.129026 | SELL |
Oscillateurs de BORA
Un oscillateur est un outil d'analyse technique qui établit des limites hautes et basses entre deux extrêmes, créant un indicateur de tendance qui fluctue à l'intérieur de ces limites. Les traders utilisent cet indicateur pour identifier les conditions de surachat ou de survente à court terme.
| Période | Valeur | Action |
|---|---|---|
| RSI (14) | 75.50 | SELL |
| Stoch RSI (14) | 157.16 | SELL |
| Stochastique Rapide (14) | 100 | SELL |
| Indice de Canal des Matières Premières (20) | 471.75 | SELL |
| Indice Directionnel Moyen (14) | 25.1 | SELL |
| Oscillateur Impressionnant (5, 34) | 0.000651 | BUY |
| Momentum (10) | 0.02 | BUY |
| MACD (12, 26) | 0 | BUY |
| Plage de Pourcentage de Williams (14) | -0 | SELL |
| Oscillateur Ultime (7, 14, 28) | 86.61 | SELL |
| VWMA (10) | 0.050371 | BUY |
| Moyenne Mobile de Hull (9) | 0.045128 | BUY |
| Nuage Ichimoku B/L (9, 26, 52, 26) | -0.007656 | NEUTRAL |
Prévision du cours de BORA basée sur les flux monétaires mondiaux
Définitions des flux monétaires mondiaux utilisés pour la prédiction du cours de BORA
M0 : le total de toutes les devises physiques, plus les comptes à la banque centrale qui peuvent être échangés contre des devises physiques.
M1 : M0 plus le montant des comptes à vue, y compris les comptes de "chèques" et les comptes "courants".
M2 : M1 plus la plupart des comptes d'épargne, comptes du marché monétaire et comptes de certificats de dépôt (CD) de moins de 100 000 $.
Prédictions du cours de BORA par des sociétés Internet ou des niches technologiques
| Comparaison | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Action Facebook | $0.074948 | $0.105315 | $0.147985 | $0.207945 | $0.292197 | $0.410586 |
| Action Amazon.com | $0.111292 | $0.232219 | $0.484539 | $1.01 | $2.10 | $4.40 |
| Action Apple | $0.075655 | $0.107312 | $0.152214 | $0.2159039 | $0.306243 | $0.434382 |
| Action Netflix | $0.084159 | $0.132789 | $0.209521 | $0.330591 | $0.521622 | $0.823038 |
| Action Google | $0.069072 | $0.089448 | $0.115835 | $0.1500064 | $0.194257 | $0.251562 |
| Action Tesla | $0.120913 | $0.2741011 | $0.621366 | $1.40 | $3.19 | $7.23 |
| Action Kodak | $0.039997 | $0.029994 | $0.022492 | $0.016866 | $0.012648 | $0.009484 |
| Action Nokia | $0.035334 | $0.0234074 | $0.0155064 | $0.010272 | $0.006805 | $0.004508 |
Ce calcul montre la valeur potentielle des cryptomonnaies si l'on suppose que leur capitalisation se comportera comme celle de certaines sociétés Internet ou niches technologiques. En extrapolant les données, vous pourrez obtenir une potentielle image des cours futurs pour 2024, 2025, 2026, 2027, 2028, 2029 et 2030.
Aperçu des prévisions relatives à BORA
Vous vous posez peut-être des questions telles que : "Devrais-je investir dans BORA maintenant ?", "Devrais-je acheter BORA aujourd'hui ?", " BORA sera-t-il un bon ou un mauvais investissement à court ou à long terme ?".
Nous mettons régulièrement à jour les prévisions de BORA avec de nouvelles valeurs. Regardez nos prévisions similaires. Nous faisons une prévision des cours futurs pour une grande quantité de devises numériques comme BORA en utilisant des méthodes d'analyse technique.
Si vous souhaitez trouver des cryptomonnaies ayant un bon rendement, vous devriez consulter un maximum d'informations disponibles à propos de BORA afin de prendre une décision responsable concernant cet investissement.
Le cours de BORA est de $0.05333 USD actuellement, mais ce cours peut subir une hausse ou une baisse, ce qui pourrait causer la perte de votre investissement, car les cryptomonnaies sont des actifs à haut risque.
Prévision du cours de BORA basée sur le modèle de croissance du Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si BORA présente 1 % de la précédente croissance annuelle moyenne du Bitcoin | $0.054724 | $0.056146 | $0.0576063 | $0.0591037 |
| Si BORA présente 2 % de la précédente croissance annuelle moyenne du Bitcoin | $0.05611 | $0.059027 | $0.062096 | $0.065324 |
| Si BORA présente 5 % de la précédente croissance annuelle moyenne du Bitcoin | $0.06027 | $0.0681032 | $0.076954 | $0.086955 |
| Si BORA présente 10 % de la précédente croissance annuelle moyenne du Bitcoin | $0.0672022 | $0.08467 | $0.106678 | $0.134408 |
| Si BORA présente 20 % de la précédente croissance annuelle moyenne du Bitcoin | $0.081066 | $0.12321 | $0.187262 | $0.284613 |
| Si BORA présente 50 % de la précédente croissance annuelle moyenne du Bitcoin | $0.122659 | $0.282074 | $0.648676 | $1.49 |
| Si BORA présente 100 % de la précédente croissance annuelle moyenne du Bitcoin | $0.19198 | $0.690999 | $2.48 | $8.95 |
Boîte à questions
Est-ce que BORA est un bon investissement ?
La décision d'acquérir BORA dépend entièrement de votre tolérance individuelle au risque. Comme vous pouvez le discerner, la valeur de BORA a connu une hausse de 25.147% au cours des 24 heures précédentes, et BORA a enregistré une déclin de sur une période de 30 jours précédents. Par conséquent, la détermination de si investir ou non dans BORA dépendra de la mesure dans laquelle cet investissement s'aligne avec vos aspirations de trading.
Est-ce que BORA peut monter ?
Il semble que la valeur moyenne de BORA pourrait potentiellement s'envoler jusqu'à $0.0550088 pour la fin de cette année. En regardant les perspectives de BORA sur une période de cinq ans plus longue, la monnaie numérique pourrait potentiellement croître jusqu'à $0.172937. Cependant, compte tenu de l'imprévisibilité du marché, il est essentiel de mener des recherches approfondies avant d'investir des fonds dans un projet, un réseau ou un actif particulier.
Quel sera le prix de BORA la semaine prochaine ?
Basé sur notre nouveau pronostic expérimental de BORA, le prix de BORA va augmenter de 0.86% durant la prochaine semaine et atteindre $0.053794 d'ici 13 janvier 2026.
Quel sera le prix de BORA le mois prochain ?
Basé sur notre nouveau pronostic expérimental de BORA, le prix de BORA va diminuer de -11.62% durant le prochain mois et atteindre $0.047141 d'ici 5 février 2026.
Jusqu'où le prix de BORA peut-il monter cette année en 2026 ?
Selon notre prédiction la plus récente sur la valeur de BORA en 2026, BORA devrait fluctuer dans la fourchette de $0.018428 et $0.0550088. Cependant, il est crucial de garder à l'esprit que le marché des cryptomonnaies est exceptionnellement instable, et cette prévision de prix de BORA ne prend pas en compte les fluctuations de prix soudaines et extrêmes.
Où sera BORA dans 5 ans ?
L'avenir de BORA semble suivre une tendance haussière, avec un prix maximum de $0.172937 prévue après une période de cinq ans. Selon la prévision de BORA pour 2030, la valeur de BORA pourrait potentiellement atteindre son point le plus élevé d'environ $0.172937, tandis que son point le plus bas devrait être autour de $0.059813.
Combien vaudra BORA en 2026 ?
Basé sur notre nouvelle simulation expérimentale de prédiction de prix de BORA, il est attendu que la valeur de BORA en 2026 augmente de 3.13% jusqu'à $0.0550088 si le meilleur scénario se produit. Le prix sera entre $0.0550088 et $0.018428 durant 2026.
Combien vaudra BORA en 2027 ?
Selon notre dernière simulation expérimentale pour la prédiction de prix de BORA, le valeur de BORA pourrait diminuer de -12.62% jusqu'à $0.0466042 en 2027, en supposant les conditions les plus favorables. Il est prévu que le prix fluctue entre $0.0466042 et $0.01774 tout au long de l'année.
Combien vaudra BORA en 2028 ?
Notre nouveau modèle expérimental de prédiction de prix de BORA suggère que la valeur de BORA en 2028 pourrait augmenter de 47.02%, atteignant $0.078417 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.078417 et $0.032016 durant l'année.
Combien vaudra BORA en 2029 ?
Basé sur notre modèle de prévision expérimental, la valeur de BORA pourrait connaître un 333.75% croissance en 2029, atteignant potentiellement $0.231355 sous des conditions optimales. Le range de prix prévu pour 2029 se situe entre $0.231355 et $0.07033.
Combien vaudra BORA en 2030 ?
En utilisant notre nouvelle simulation expérimentale pour les prédictions de prix de BORA, il est prévu que la valeur de BORA en 2030 augmente de 224.23%, atteignant $0.172937 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.172937 et $0.059813 au cours de 2030.
Combien vaudra BORA en 2031 ?
Notre simulation expérimentale indique que le prix de BORA pourrait augmenter de 195.98% en 2031, atteignant potentiellement $0.157872 dans des conditions idéales. Il est probable que le prix fluctue entre $0.157872 et $0.070717 durant l'année.
Combien vaudra BORA en 2032 ?
Basé sur les résultats de notre dernière prédiction expérimentale de prix de BORA, BORA pourrait connaître une 449.04% hausse en valeur, atteignant $0.292844 si le scénario le plus positif se réalise en 2032. Il est prévu que le prix reste dans une fourchette de $0.292844 et $0.107945 tout au long de l'année.
Combien vaudra BORA en 2033 ?
Selon notre prédiction expérimentale de prix de BORA, la valeur de BORA est anticipée à augmenter de 1362.43% en 2033, avec le prix potentiel le plus élevé étant $0.780031. Tout au long de l'année, le prix de BORA pourrait osciller entre $0.780031 et $0.25084.
Combien vaudra BORA en 2034 ?
Les résultats de notre nouvelle simulation de prédiction de prix de BORA suggèrent que BORA pourrait augmenter de 746.96% en 2034, atteignant potentiellement $0.451752 dans les meilleures circonstances. La fourchette de prix prévue pour l'année est entre $0.451752 et $0.201664.
Combien vaudra BORA en 2035 ?
Basé sur notre prédiction expérimentale pour le prix de BORA, BORA pourrait augmenter de 897.93%, avec la valeur potentiellement atteignant $0.532276 en 2035. La fourchette de prix attendue pour l'année se situe entre $0.532276 et $0.238429.
Combien vaudra BORA en 2036 ?
Notre récente simulation de prédiction de prix de BORA suggère que la valeur de BORA pourrait augmenter de 1964.7% en 2036, pouvant atteindre $1.10 si les conditions sont optimales. La fourchette de prix attendue pour 2036 est entre $1.10 et $0.394675.
Combien vaudra BORA en 2037 ?
Selon la simulation expérimentale, la valeur de BORA pourrait augmenter de 4830.69% en 2037, avec un maximum de $2.62 sous des conditions favorables. Il est prévu que le prix chute entre $2.62 et $1.02 au cours de l'année.
Prévisions liées
Prévision du cours de TokenFi
Prévision du cours de Celer Network
Prévision du cours de Power Ledger
Prévision du cours de Entangle
Prévision du cours de Boba Network
Prévision du cours de Nano
Prévision du cours de Tectum
Prévision du cours de GXChain
Prévision du cours de ECOMI
Prévision du cours de Songbird
Prévision du cours de NodeAI
Prévision du cours de Sleepless AI
Prévision du cours de Hooked Protocol
Prévision du cours de Orbs
Prévision du cours de Status
Prévision du cours de Bluzelle
Prévision du cours de SMARDEX
Prévision du cours de Slerf [OLD]
Prévision du cours de ConstitutionDAO
Prévision du cours de Victoria VR
Prévision du cours de Dent
Prévision du cours de Bone ShibaSwap
Prévision du cours de Milady Meme Coin
Prévision du cours de tBTC
Prévision du cours de inSure DeFi
Comment lire et prédire les mouvements de prix de BORA ?
Les traders de BORA utilisent des indicateurs et des modèles graphiques pour prédire la direction du marché. Ils identifient également des niveaux clés de support et de résistance pour évaluer quand une tendance baissière pourrait ralentir ou une tendance haussière pourrait s'arrêter.
Indicateurs de prédiction du prix de BORA
Les moyennes mobiles sont des outils populaires pour la prédiction du prix de BORA. Une moyenne mobile simple (SMA) calcule le prix de clôture moyen de BORA sur une période spécifique, comme une SMA de 12 jours. Une moyenne mobile exponentielle (EMA) donne plus de poids aux prix récents, réagissant plus rapidement aux changements de prix.
Les moyennes mobiles couramment utilisées sur le marché des cryptomonnaies incluent les moyennes sur 50 jours, 100 jours et 200 jours, qui aident à identifier les niveaux clés de résistance et de support. Un mouvement de prix de BORA au-dessus de ces moyennes est considéré comme haussier, tandis qu'une chute en dessous indique une faiblesse.
Les traders utilisent également le RSI et les niveaux de retracement de Fibonacci pour évaluer la direction future de BORA.
Comment lire les graphiques de BORA et prédire les mouvements de prix ?
La plupart des traders préfèrent les graphiques en chandeliers aux simples graphiques linéaires parce qu'ils fournissent des informations plus détaillées. Les chandeliers peuvent représenter l'action des prix de BORA dans différentes périodes, comme 5 minutes pour les tendances à court terme et hebdomadaire pour les tendances à long terme. Les options populaires incluent les graphiques de 1 heure, 4 heures et 1 jour.
Par exemple, un graphique en chandeliers de 1 heure montre les prix d'ouverture, de clôture, les plus hauts et les plus bas de BORA au sein de chaque heure. La couleur du chandelier est cruciale : le vert indique que le prix a clôturé plus haut qu'il n'a ouvert, tandis que le rouge signifie le contraire. Certains graphiques utilisent des chandeliers creux et pleins pour transmettre la même information.
Qu'est-ce qui affecte le prix de BORA ?
L'action du prix de BORA est déterminée par l'offre et la demande, influencée par des facteurs tels que les réductions de récompenses de bloc, les hard forks et les mises à jour de protocole. Les événements du monde réel, tels que les réglementations, l'adoption par les entreprises et les gouvernements et les piratages d'échanges de cryptomonnaies, impactent également le prix de BORA. La capitalisation boursière de BORA peut changer rapidement.
Les traders surveillent souvent l'activité des « baleines » de BORA, de grands détenteurs de BORA, car leurs actions peuvent influencer significativement les mouvements de prix sur le marché relativement petit de BORA.
Modèles de prédiction de prix haussiers et baissiers
Les traders identifient souvent des modèles de chandeliers pour obtenir un avantage dans les prédictions de prix des cryptomonnaies. Certaines formations indiquent des tendances haussières, tandis que d'autres suggèrent des mouvements baissiers.
Modèles de chandeliers haussiers couramment suivis :
- Marteau
- Englobante haussière
- Ligne pénétrante
- Étoile du matin
- Trois soldats blancs
Modèles de chandeliers baissiers courants :
- Harami baissier
- Nuage sombre
- Étoile du soir
- Étoile filante
- Pendu


