Prédiction du prix de BORA jusqu'à $0.057327 d'ici 2026
| Année | Prix min. | Prix max. |
|---|---|---|
| 2026 | $0.0192049 | $0.057327 |
| 2027 | $0.018488 | $0.048568 |
| 2028 | $0.033365 | $0.081722 |
| 2029 | $0.073294 | $0.2411063 |
| 2030 | $0.062334 | $0.180225 |
| 2031 | $0.073698 | $0.164525 |
| 2032 | $0.112494 | $0.305186 |
| 2033 | $0.261412 | $0.8129069 |
| 2034 | $0.210163 | $0.470792 |
| 2035 | $0.248478 | $0.55471 |
Calculateur de profit d’investissement
Si vous ouvrez une position short de $10,000.00 sur BORA aujourd’hui et la fermez le Apr 06, 2026, notre prévision indique que vous pourriez gagner environ $3,954.59, soit un rendement de 39.55% sur les 90 prochains jours.
Prévision du prix à long terme de BORA pour 2027, 2028, 2029, 2030, 2031, 2032 et 2037
[
'name' => 'BORA'
'name_with_ticker' => 'BORA <small>BORA</small>'
'name_lang' => 'BORA'
'name_lang_with_ticker' => 'BORA <small>BORA</small>'
'name_with_lang' => 'BORA'
'name_with_lang_with_ticker' => 'BORA <small>BORA</small>'
'image' => '/uploads/coins/bora.jpeg?1717130501'
'price_for_sd' => 0.05558
'ticker' => 'BORA'
'marketcap' => '$63.24M'
'low24h' => '$0.04256'
'high24h' => '$0.05486'
'volume24h' => '$54.78M'
'current_supply' => '1.15B'
'max_supply' => '1.21B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.05558'
'change_24h_pct' => '30.0189%'
'ath_price' => '$1.61'
'ath_days' => 1503
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '25 nov. 2021'
'ath_pct' => '-96.69%'
'fdv' => '$66.15M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$2.74'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.0560616'
'next_week_prediction_price_date' => '13 janvier 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.049128'
'next_month_prediction_price_date' => '5 février 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.0192049'
'current_year_max_price_prediction' => '$0.057327'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.062334'
'grand_prediction_max_price' => '$0.180225'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.056639325461764
107 => 0.056850796142963
108 => 0.057327250385665
109 => 0.053256001047804
110 => 0.055083872474903
111 => 0.056157575689932
112 => 0.051306545502772
113 => 0.056061686420384
114 => 0.053185129654544
115 => 0.052208783083785
116 => 0.053523305117432
117 => 0.053011034602505
118 => 0.052570614495305
119 => 0.05232485250811
120 => 0.053290092411117
121 => 0.053245062815931
122 => 0.051665742989618
123 => 0.049605584657505
124 => 0.050297041416154
125 => 0.050045828693295
126 => 0.049135401378568
127 => 0.049748919463281
128 => 0.047047296312603
129 => 0.042399294100014
130 => 0.045469906733808
131 => 0.045351691487591
201 => 0.045292081999814
202 => 0.047599562528611
203 => 0.0473777515184
204 => 0.046975162362889
205 => 0.049128007513013
206 => 0.048342190073364
207 => 0.050763894260488
208 => 0.052358985264134
209 => 0.051954418589821
210 => 0.053454609388494
211 => 0.050312971183327
212 => 0.051356497374436
213 => 0.051571566676159
214 => 0.049101441738038
215 => 0.047414042542854
216 => 0.047301512254294
217 => 0.044375794587777
218 => 0.045938689349663
219 => 0.047313972063142
220 => 0.046655318369636
221 => 0.046446808286991
222 => 0.047512041078904
223 => 0.047594818789938
224 => 0.045707478205984
225 => 0.046099916077691
226 => 0.047736447240078
227 => 0.046058679691306
228 => 0.042799051405813
301 => 0.041990618523125
302 => 0.0418827586742
303 => 0.039690224578727
304 => 0.042044641874018
305 => 0.041016875630163
306 => 0.044263576879972
307 => 0.042409078538489
308 => 0.042329134821526
309 => 0.042208288168144
310 => 0.040321083499728
311 => 0.040734261383997
312 => 0.042107727600078
313 => 0.042597795819181
314 => 0.042546677688918
315 => 0.042100996866328
316 => 0.042305027264654
317 => 0.041647774262741
318 => 0.041415684548228
319 => 0.040683145567917
320 => 0.039606515635918
321 => 0.039756227631318
322 => 0.037623142020483
323 => 0.036460923768278
324 => 0.036139237073859
325 => 0.035709064181868
326 => 0.036187826246655
327 => 0.037617099256956
328 => 0.035893092769349
329 => 0.032937404571341
330 => 0.033115046468289
331 => 0.033514155068378
401 => 0.03277041883248
402 => 0.032066534902252
403 => 0.032678504871677
404 => 0.031426140818032
405 => 0.033665497281021
406 => 0.033604928964422
407 => 0.034439622572949
408 => 0.034961573615999
409 => 0.033758645445427
410 => 0.033456112263591
411 => 0.033628448913331
412 => 0.030780107977762
413 => 0.034206852350988
414 => 0.034236486978627
415 => 0.033982737305083
416 => 0.035807372894963
417 => 0.039657923107723
418 => 0.038209191229659
419 => 0.03764819845832
420 => 0.036581750789921
421 => 0.038002728988666
422 => 0.037893620033715
423 => 0.037400187961087
424 => 0.037101758703959
425 => 0.037651623760557
426 => 0.037033624338359
427 => 0.036922614660644
428 => 0.036250016793411
429 => 0.036009929956062
430 => 0.035832179219821
501 => 0.035636493124646
502 => 0.036068127888665
503 => 0.035089986727116
504 => 0.03391044437465
505 => 0.033812378190867
506 => 0.034083147546358
507 => 0.033963352262961
508 => 0.033811804657139
509 => 0.03352245900609
510 => 0.033436616332315
511 => 0.033715563377138
512 => 0.033400648427156
513 => 0.033865322590159
514 => 0.033738956929417
515 => 0.033033088620724
516 => 0.032153315362174
517 => 0.032145483534786
518 => 0.031955937829349
519 => 0.031714522875087
520 => 0.031647366757637
521 => 0.032626966467775
522 => 0.034654708550807
523 => 0.034256614260152
524 => 0.034544278183495
525 => 0.035959299974888
526 => 0.036409092851183
527 => 0.036089840521517
528 => 0.035652828242045
529 => 0.035672054564467
530 => 0.037165457816037
531 => 0.037258599544992
601 => 0.0374939386454
602 => 0.037796415896246
603 => 0.036141353705285
604 => 0.03559410128411
605 => 0.035334782726549
606 => 0.034536181938172
607 => 0.035397404421579
608 => 0.034895606961722
609 => 0.034963316582899
610 => 0.034919220603281
611 => 0.034943299989909
612 => 0.033664871335252
613 => 0.034130663544777
614 => 0.033356193654557
615 => 0.032319265409876
616 => 0.032315789262806
617 => 0.032569575981677
618 => 0.032418613710617
619 => 0.032012378120792
620 => 0.032070081968948
621 => 0.031564535540252
622 => 0.032131464458606
623 => 0.032147721951415
624 => 0.031929423437022
625 => 0.03280285565686
626 => 0.033160701549981
627 => 0.0330170127914
628 => 0.033150619963634
629 => 0.034273156875217
630 => 0.034456179371524
701 => 0.034537465874597
702 => 0.034428552728878
703 => 0.033171137877708
704 => 0.033226909573298
705 => 0.032817693876158
706 => 0.032471949734163
707 => 0.032485777686654
708 => 0.032663535119232
709 => 0.033439812252635
710 => 0.035073441715845
711 => 0.035135436759806
712 => 0.03521057656161
713 => 0.034904945225434
714 => 0.034812763889946
715 => 0.034934374865477
716 => 0.035547880199702
717 => 0.037125982484402
718 => 0.036568175739081
719 => 0.036114670172356
720 => 0.036512516818597
721 => 0.036451271445833
722 => 0.035934298864543
723 => 0.035919789166017
724 => 0.034927553496389
725 => 0.034560746561441
726 => 0.034254215231574
727 => 0.033919491021564
728 => 0.033721055289812
729 => 0.03402594276121
730 => 0.034095674133241
731 => 0.033429032348509
801 => 0.033338171536576
802 => 0.03388256560845
803 => 0.033642998074475
804 => 0.033889399224158
805 => 0.033946566404474
806 => 0.033937361171771
807 => 0.033687225152145
808 => 0.033846654391891
809 => 0.033469556711748
810 => 0.033059519622832
811 => 0.032797941506316
812 => 0.032569679906355
813 => 0.032696332708655
814 => 0.032244838594341
815 => 0.032100396540391
816 => 0.033792643352737
817 => 0.035042724267736
818 => 0.035024547596145
819 => 0.034913901782499
820 => 0.034749504547104
821 => 0.035535853517965
822 => 0.035261905260061
823 => 0.035461225506829
824 => 0.035511960875076
825 => 0.035665521554244
826 => 0.035720406298061
827 => 0.035554506482342
828 => 0.034997726437836
829 => 0.033610283503984
830 => 0.032964425072945
831 => 0.032751281033079
901 => 0.03275902841411
902 => 0.032545321059445
903 => 0.032608267453086
904 => 0.032523430872561
905 => 0.032362770913222
906 => 0.032686412408894
907 => 0.032723709076341
908 => 0.032648167284023
909 => 0.032665960110767
910 => 0.032040506334697
911 => 0.032088058226877
912 => 0.031823283248614
913 => 0.0317736411321
914 => 0.031104313043646
915 => 0.029918501314292
916 => 0.030575556121884
917 => 0.0297819263102
918 => 0.029481366675061
919 => 0.030904169241194
920 => 0.030761359325955
921 => 0.030516930829043
922 => 0.030155370138747
923 => 0.030021263761681
924 => 0.029206475867542
925 => 0.029158333852032
926 => 0.029562164733491
927 => 0.02937581067667
928 => 0.029114099003093
929 => 0.028166205850684
930 => 0.027100460110738
1001 => 0.027132628275588
1002 => 0.027471622166561
1003 => 0.028457292624117
1004 => 0.028072174124077
1005 => 0.027792766233573
1006 => 0.027740441534652
1007 => 0.028395394690827
1008 => 0.029322290623742
1009 => 0.029757169457338
1010 => 0.029326217740711
1011 => 0.028831163612737
1012 => 0.028861295263647
1013 => 0.029061747637933
1014 => 0.029082812348226
1015 => 0.028760583003302
1016 => 0.028851288676429
1017 => 0.028713498464649
1018 => 0.027867880189294
1019 => 0.027852585636177
1020 => 0.027645057273968
1021 => 0.027638773397638
1022 => 0.027285715883144
1023 => 0.027236320696295
1024 => 0.02653530357221
1025 => 0.026996715166158
1026 => 0.026687224494133
1027 => 0.026220749049923
1028 => 0.026140328507516
1029 => 0.0261379109689
1030 => 0.026616876948104
1031 => 0.026991118169824
1101 => 0.026692608216878
1102 => 0.026624643286964
1103 => 0.027350330927684
1104 => 0.027257980560612
1105 => 0.027178005738325
1106 => 0.029239297259233
1107 => 0.027607624175851
1108 => 0.026896121578853
1109 => 0.026015502004389
1110 => 0.026302236178304
1111 => 0.026362655281749
1112 => 0.024244923948773
1113 => 0.023385760610731
1114 => 0.023090928130002
1115 => 0.022921247869024
1116 => 0.022998573294662
1117 => 0.022225225520616
1118 => 0.022744928014767
1119 => 0.022075274211903
1120 => 0.021963004572611
1121 => 0.023160428526319
1122 => 0.023327043074228
1123 => 0.022616213649765
1124 => 0.023072681213101
1125 => 0.022907159729261
1126 => 0.02208675350433
1127 => 0.022055420021037
1128 => 0.02164376901604
1129 => 0.020999614904561
1130 => 0.020705219190653
1201 => 0.020551895346788
1202 => 0.020615159752989
1203 => 0.020583171333291
1204 => 0.020374425256962
1205 => 0.020595136414037
1206 => 0.020031310611858
1207 => 0.019806790634378
1208 => 0.019705380169374
1209 => 0.019204952317338
1210 => 0.020001355571203
1211 => 0.020158257045038
1212 => 0.020315467663246
1213 => 0.021683878762499
1214 => 0.02161551681107
1215 => 0.022233475558368
1216 => 0.022209462817801
1217 => 0.022033210972804
1218 => 0.021289633430781
1219 => 0.021586010186036
1220 => 0.020673808600535
1221 => 0.021357292052071
1222 => 0.021045378747741
1223 => 0.02125183385012
1224 => 0.020880608960736
1225 => 0.021086060142021
1226 => 0.020195464205145
1227 => 0.019363838250313
1228 => 0.019698508811212
1229 => 0.020062333985131
1230 => 0.020851199663117
1231 => 0.020381357773309
]
'min_raw' => 0.019204952317338
'max_raw' => 0.057327250385665
'avg_raw' => 0.038266101351502
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.0192049'
'max' => '$0.057327'
'avg' => '$0.038266'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.036381047682662
'max_diff' => 0.0017412503856653
'year' => 2026
]
1 => [
'items' => [
101 => 0.020550330683573
102 => 0.019984299719913
103 => 0.018816416163131
104 => 0.01882302625723
105 => 0.018643372815746
106 => 0.018488126012471
107 => 0.020435324766272
108 => 0.02019315982058
109 => 0.019807301673384
110 => 0.020323788136799
111 => 0.020460355355468
112 => 0.020464243232193
113 => 0.020841058423456
114 => 0.02104216475858
115 => 0.021077610621791
116 => 0.021670537466873
117 => 0.021869278724451
118 => 0.022687865837497
119 => 0.021025102291097
120 => 0.020990858770071
121 => 0.020331056160521
122 => 0.019912598914478
123 => 0.020359708286163
124 => 0.020755786152961
125 => 0.020343363403905
126 => 0.020397217108212
127 => 0.019843573263782
128 => 0.020041474886801
129 => 0.020211934424774
130 => 0.020117816687054
131 => 0.019976917878338
201 => 0.020723312284696
202 => 0.020681197787146
203 => 0.02137625741788
204 => 0.021918106104228
205 => 0.022889195817203
206 => 0.021875813077662
207 => 0.021838881382802
208 => 0.022199894624093
209 => 0.021869223455205
210 => 0.022078196219561
211 => 0.022855527074159
212 => 0.022871950850215
213 => 0.022596831440441
214 => 0.022580090399353
215 => 0.022632930091477
216 => 0.022942413818662
217 => 0.022834270694909
218 => 0.022959416655565
219 => 0.023115913595669
220 => 0.023763251293263
221 => 0.023919322220602
222 => 0.023540150780667
223 => 0.02357438571629
224 => 0.023432565189266
225 => 0.023295568337167
226 => 0.023603517253903
227 => 0.024166299951989
228 => 0.024162798910033
301 => 0.024293353557056
302 => 0.024374688020579
303 => 0.024025540962674
304 => 0.023798259066471
305 => 0.023885413407798
306 => 0.024024775097554
307 => 0.023840220290079
308 => 0.022701062524242
309 => 0.023046610220717
310 => 0.022989094187605
311 => 0.022907184362264
312 => 0.023254635243111
313 => 0.023221122758041
314 => 0.022217293721415
315 => 0.022281555599424
316 => 0.022221201699059
317 => 0.022416217498386
318 => 0.021858691962054
319 => 0.022030183062038
320 => 0.022137740672319
321 => 0.022201092931071
322 => 0.022429964730733
323 => 0.022403109266671
324 => 0.02242829535738
325 => 0.022767651816365
326 => 0.024484000332834
327 => 0.024577417395676
328 => 0.024117397612557
329 => 0.024301166442424
330 => 0.023948370474905
331 => 0.024185204771428
401 => 0.024347240782171
402 => 0.023615031207359
403 => 0.023571674508339
404 => 0.023217422426365
405 => 0.023407777429354
406 => 0.023104908932589
407 => 0.023179222267805
408 => 0.022971435704022
409 => 0.02334541014894
410 => 0.023763571688112
411 => 0.023869215806607
412 => 0.023591311613501
413 => 0.023390090662913
414 => 0.023036812959982
415 => 0.023624321653263
416 => 0.023796127099181
417 => 0.023623419232395
418 => 0.023583399045919
419 => 0.023507560864863
420 => 0.023599488474541
421 => 0.023795191409825
422 => 0.023702901519611
423 => 0.023763860618036
424 => 0.023531547395588
425 => 0.024025656544878
426 => 0.024810420787792
427 => 0.024812943933155
428 => 0.024720653545463
429 => 0.024682890307244
430 => 0.024777585845665
501 => 0.024828954290643
502 => 0.025135182297703
503 => 0.02546377714994
504 => 0.026997185948163
505 => 0.026566610893656
506 => 0.027927142402337
507 => 0.029003146182798
508 => 0.029325792668616
509 => 0.029028973083354
510 => 0.028013569316052
511 => 0.027963748762989
512 => 0.029481190683751
513 => 0.029052443837892
514 => 0.029001445764839
515 => 0.028458912430152
516 => 0.028779616825013
517 => 0.028709474069407
518 => 0.028598750298182
519 => 0.029210631943115
520 => 0.030356019759377
521 => 0.030177500326833
522 => 0.030044243851718
523 => 0.029460352768139
524 => 0.029811985617248
525 => 0.029686775894764
526 => 0.03022475632261
527 => 0.02990606863488
528 => 0.029049195658851
529 => 0.029185655504574
530 => 0.029165029873412
531 => 0.029589503901176
601 => 0.029462087334134
602 => 0.029140149743734
603 => 0.03035210494834
604 => 0.030273407318602
605 => 0.030384982564788
606 => 0.030434101438738
607 => 0.031171797214735
608 => 0.03147400757053
609 => 0.031542614612232
610 => 0.031829691076449
611 => 0.031535471888282
612 => 0.032712558415676
613 => 0.033495252271491
614 => 0.034404391462077
615 => 0.035732888173101
616 => 0.036232415225727
617 => 0.036142180134763
618 => 0.037149431179138
619 => 0.038959438915947
620 => 0.036508034448474
621 => 0.039089369305198
622 => 0.038272148492503
623 => 0.036334532646779
624 => 0.036209773029304
625 => 0.037521948976212
626 => 0.040432228934197
627 => 0.039703236812844
628 => 0.040433421304153
629 => 0.039581622309008
630 => 0.039539323309373
701 => 0.04039205132821
702 => 0.042384496824007
703 => 0.041437960654656
704 => 0.040080868955702
705 => 0.041082924347524
706 => 0.040214851231279
707 => 0.038258839542012
708 => 0.039702679366307
709 => 0.038737224793992
710 => 0.039018995764581
711 => 0.041048237675059
712 => 0.040804073919682
713 => 0.041120044428095
714 => 0.040562364751135
715 => 0.040041403994841
716 => 0.039068992056164
717 => 0.038781108820451
718 => 0.038860669389848
719 => 0.038781069394184
720 => 0.038237013851422
721 => 0.038119525108762
722 => 0.037923705390363
723 => 0.037984398109232
724 => 0.037616199749563
725 => 0.038311066127922
726 => 0.038440039450888
727 => 0.038945705254011
728 => 0.038998205155173
729 => 0.040406477219169
730 => 0.03963082463137
731 => 0.040151199353888
801 => 0.040104652140749
802 => 0.036376526657521
803 => 0.03689022945558
804 => 0.037689389800542
805 => 0.037329369148373
806 => 0.036820384178064
807 => 0.036409351524492
808 => 0.035786595024085
809 => 0.036663112839429
810 => 0.03781564055933
811 => 0.03902743516011
812 => 0.04048332697302
813 => 0.040158388868827
814 => 0.039000218275365
815 => 0.039052172962143
816 => 0.039373336392393
817 => 0.038957400569445
818 => 0.038834732975226
819 => 0.039356483748636
820 => 0.039360076759463
821 => 0.038881492327639
822 => 0.038349633311692
823 => 0.038347404802996
824 => 0.038252765628257
825 => 0.039598458407952
826 => 0.040338453371898
827 => 0.040423292601953
828 => 0.040332743015752
829 => 0.040367591957696
830 => 0.039937005192852
831 => 0.040921198850747
901 => 0.041824392277896
902 => 0.041582317145507
903 => 0.041219412109048
904 => 0.040930340767633
905 => 0.041514221124289
906 => 0.04148822185112
907 => 0.041816503671239
908 => 0.04180161091163
909 => 0.041691222082828
910 => 0.04158232108784
911 => 0.042014101223359
912 => 0.041889755478506
913 => 0.041765216590367
914 => 0.041515434784252
915 => 0.04154938428014
916 => 0.041186541904352
917 => 0.041018674418775
918 => 0.038494350206114
919 => 0.037819768291818
920 => 0.038032005494437
921 => 0.038101879492275
922 => 0.037808300578673
923 => 0.038229217326543
924 => 0.038163617897249
925 => 0.038418826902251
926 => 0.038259383395813
927 => 0.038265927012933
928 => 0.038734816368428
929 => 0.038870936943126
930 => 0.038801704920207
1001 => 0.038850192655925
1002 => 0.039967572060147
1003 => 0.039808716440648
1004 => 0.039724327558899
1005 => 0.039747703855868
1006 => 0.040033218250531
1007 => 0.040113146692529
1008 => 0.039774484267313
1009 => 0.039934199424829
1010 => 0.040614246294661
1011 => 0.040852224211783
1012 => 0.041611735487355
1013 => 0.041289081598256
1014 => 0.041881326775832
1015 => 0.04370168654044
1016 => 0.045155915879723
1017 => 0.043818546480749
1018 => 0.046489053467353
1019 => 0.0485684262179
1020 => 0.048488616428358
1021 => 0.048126029692541
1022 => 0.045758719099029
1023 => 0.043580284596266
1024 => 0.045402637559042
1025 => 0.045407283111514
1026 => 0.045250741375847
1027 => 0.044278474100084
1028 => 0.045216908582162
1029 => 0.045291398103456
1030 => 0.045249703779894
1031 => 0.044504268739168
1101 => 0.043366127211403
1102 => 0.043588517341602
1103 => 0.043952796911505
1104 => 0.043263139689
1105 => 0.043042752418605
1106 => 0.043452494284663
1107 => 0.044772767950209
1108 => 0.044523177861562
1109 => 0.044516660055675
1110 => 0.045584512297576
1111 => 0.044820160549312
1112 => 0.043591322393336
1113 => 0.043281024552568
1114 => 0.042179676259513
1115 => 0.042940381448394
1116 => 0.042967757873885
1117 => 0.042551127416153
1118 => 0.043625129658799
1119 => 0.043615232539059
1120 => 0.044634837824313
1121 => 0.046583940183463
1122 => 0.04600749470636
1123 => 0.04533715133358
1124 => 0.045410036244807
1125 => 0.046209403825676
1126 => 0.045726087938495
1127 => 0.045899891701323
1128 => 0.046209140752864
1129 => 0.046395718383881
1130 => 0.04538319059497
1201 => 0.045147121932572
1202 => 0.044664208298147
1203 => 0.044538225144936
1204 => 0.044931548223851
1205 => 0.044827921488866
1206 => 0.042965456991329
1207 => 0.042770819088682
1208 => 0.042776788355277
1209 => 0.042287362094542
1210 => 0.041540869571161
1211 => 0.043502607351855
1212 => 0.043345052353563
1213 => 0.043171123829236
1214 => 0.043192429081044
1215 => 0.044043952962181
1216 => 0.043550026108135
1217 => 0.044863211602636
1218 => 0.044593260142936
1219 => 0.044316385446915
1220 => 0.044278112930115
1221 => 0.044171539793986
1222 => 0.043806060856081
1223 => 0.043364723076682
1224 => 0.043073313646699
1225 => 0.039732854992335
1226 => 0.040352824688031
1227 => 0.041066043310913
1228 => 0.041312243521488
1229 => 0.040891101024764
1230 => 0.043822690128746
1231 => 0.044358319707538
]
'min_raw' => 0.018488126012471
'max_raw' => 0.0485684262179
'avg_raw' => 0.033528276115185
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.018488'
'max' => '$0.048568'
'avg' => '$0.033528'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00071682630486679
'max_diff' => -0.0087588241677653
'year' => 2027
]
2 => [
'items' => [
101 => 0.042735862775122
102 => 0.042432367327547
103 => 0.043842587239762
104 => 0.042992052240323
105 => 0.043375048098492
106 => 0.042547220540666
107 => 0.044229302227072
108 => 0.044216487582879
109 => 0.043562119815329
110 => 0.044115186971545
111 => 0.044019077942839
112 => 0.043280298344911
113 => 0.044252722858064
114 => 0.04425320516849
115 => 0.043623390419405
116 => 0.042887904676651
117 => 0.042756417197245
118 => 0.042657359044369
119 => 0.043350685865259
120 => 0.043972320524893
121 => 0.04512902851017
122 => 0.045419852380372
123 => 0.046554957307013
124 => 0.045879057590454
125 => 0.046178675180438
126 => 0.046503952457862
127 => 0.046659902346334
128 => 0.0464057903718
129 => 0.048169075550702
130 => 0.048317950845463
131 => 0.04836786744403
201 => 0.047773297602717
202 => 0.048301414782607
203 => 0.048054326243539
204 => 0.048697181979021
205 => 0.048797989966739
206 => 0.04871260918749
207 => 0.048744607233938
208 => 0.047239954398566
209 => 0.047161930211376
210 => 0.046098064882696
211 => 0.046531597867829
212 => 0.0457211287319
213 => 0.04597813684366
214 => 0.046091423570461
215 => 0.046032249013345
216 => 0.04655610917234
217 => 0.046110721019635
218 => 0.044935268456052
219 => 0.043759495641205
220 => 0.043744734771279
221 => 0.043435174543243
222 => 0.043211419197158
223 => 0.043254522414961
224 => 0.043406423776542
225 => 0.043202590413881
226 => 0.043246088596418
227 => 0.043968448253414
228 => 0.044113312330991
229 => 0.043621007593335
301 => 0.041644333032412
302 => 0.041159252137049
303 => 0.041507918665064
304 => 0.041341278521673
305 => 0.033365638321487
306 => 0.035239396682177
307 => 0.034126073091077
308 => 0.034639143823411
309 => 0.033502728730644
310 => 0.034045085577531
311 => 0.033944932071611
312 => 0.036957880067061
313 => 0.036910837028287
314 => 0.036933354041486
315 => 0.035858558333725
316 => 0.037570737080071
317 => 0.038414217898477
318 => 0.038258112047505
319 => 0.038297400527027
320 => 0.037622294279894
321 => 0.036939890545667
322 => 0.036182999783228
323 => 0.037589209265314
324 => 0.037432862775703
325 => 0.03779146537118
326 => 0.038703492738243
327 => 0.038837792232498
328 => 0.039018292114708
329 => 0.038953595755792
330 => 0.040494925500138
331 => 0.040308260298076
401 => 0.0407580697278
402 => 0.039832777603734
403 => 0.03878572173582
404 => 0.038984732825475
405 => 0.038965566457195
406 => 0.038721556590858
407 => 0.038501275393947
408 => 0.038134569264934
409 => 0.039294881719429
410 => 0.039247775152756
411 => 0.040010375711801
412 => 0.039875578655483
413 => 0.038975370922958
414 => 0.039007522018235
415 => 0.039223753585264
416 => 0.039972133507642
417 => 0.040194303622194
418 => 0.040091385573185
419 => 0.04033498496134
420 => 0.040527515985391
421 => 0.040359163893701
422 => 0.042742674488889
423 => 0.041752874711988
424 => 0.042235296236267
425 => 0.042350350927215
426 => 0.042055640755691
427 => 0.042119552839115
428 => 0.042216362230501
429 => 0.042804169897775
430 => 0.044346747300222
501 => 0.045029944331086
502 => 0.047085376306789
503 => 0.044973214328235
504 => 0.044847887377423
505 => 0.045218132744346
506 => 0.046424888903654
507 => 0.047402851425932
508 => 0.047727298014582
509 => 0.047770178987302
510 => 0.048378862356412
511 => 0.048727748312313
512 => 0.04830495218544
513 => 0.047946676736515
514 => 0.04666337854925
515 => 0.046811923808731
516 => 0.047835253341308
517 => 0.049280766579882
518 => 0.050521167318597
519 => 0.050086822212229
520 => 0.053400568773958
521 => 0.053729113210112
522 => 0.053683718992149
523 => 0.054432192111677
524 => 0.052946625393315
525 => 0.052311516839715
526 => 0.048024139955172
527 => 0.049228717979898
528 => 0.050979642881224
529 => 0.050747901404902
530 => 0.049476332939202
531 => 0.050520202719892
601 => 0.05017506672557
602 => 0.049902843647142
603 => 0.051149950342458
604 => 0.049778705302639
605 => 0.050965963663004
606 => 0.049443292535221
607 => 0.050088806264089
608 => 0.049722381451597
609 => 0.049959503212615
610 => 0.048573294242898
611 => 0.049321258954637
612 => 0.04854217645181
613 => 0.048541807065264
614 => 0.048524608775833
615 => 0.049441195885429
616 => 0.049471085758166
617 => 0.048793726499289
618 => 0.048696108447744
619 => 0.049057053547996
620 => 0.048634481367273
621 => 0.048832200230996
622 => 0.048640470070236
623 => 0.048597307572593
624 => 0.048253381447887
625 => 0.048105208616918
626 => 0.048163311001885
627 => 0.047964977608161
628 => 0.047845474564411
629 => 0.048500836612583
630 => 0.048150703107474
701 => 0.048447173631304
702 => 0.048109308051837
703 => 0.046938118752379
704 => 0.046264555401158
705 => 0.044052287383787
706 => 0.044679683849203
707 => 0.045095648354863
708 => 0.044958172088224
709 => 0.045253524305218
710 => 0.04527165653259
711 => 0.045175634516086
712 => 0.045064453322156
713 => 0.045010336465657
714 => 0.045413679176893
715 => 0.045647833196658
716 => 0.045137395957893
717 => 0.045017807654627
718 => 0.04553388788503
719 => 0.045848696527446
720 => 0.048173066667352
721 => 0.048000869819771
722 => 0.048433050115274
723 => 0.048384393246348
724 => 0.048837387047755
725 => 0.049577840463592
726 => 0.048072291635164
727 => 0.048333602853818
728 => 0.048269535377561
729 => 0.048969007283936
730 => 0.048971190958878
731 => 0.048551822609793
801 => 0.048779168995306
802 => 0.048652270479835
803 => 0.048881593248655
804 => 0.047998570025888
805 => 0.049073996994752
806 => 0.049683694787114
807 => 0.049692160441553
808 => 0.049981152356272
809 => 0.050274784878909
810 => 0.050838386936109
811 => 0.050259066323429
812 => 0.049216924936944
813 => 0.049292164178952
814 => 0.04868115706536
815 => 0.048691428205327
816 => 0.04863660005522
817 => 0.048801143460962
818 => 0.04803467805037
819 => 0.048214565950247
820 => 0.047962721836997
821 => 0.0483330553939
822 => 0.047934637705002
823 => 0.048269504482284
824 => 0.04841402188235
825 => 0.048947294199828
826 => 0.04785587295012
827 => 0.045630391139244
828 => 0.046098214397249
829 => 0.045406267051935
830 => 0.045470309413173
831 => 0.04559968517514
901 => 0.04518033600149
902 => 0.045260334608611
903 => 0.045257476495423
904 => 0.045232846820047
905 => 0.045123757903947
906 => 0.044965557393018
907 => 0.045595779537011
908 => 0.04570286655996
909 => 0.0459409077467
910 => 0.046649156853559
911 => 0.04657838606612
912 => 0.046693816156685
913 => 0.046441832917093
914 => 0.045481998192953
915 => 0.045534121836378
916 => 0.044884139167643
917 => 0.0459242862285
918 => 0.045677965675219
919 => 0.045519161212108
920 => 0.045475829943036
921 => 0.046185834662439
922 => 0.046398279202446
923 => 0.046265898021737
924 => 0.045994380357926
925 => 0.046515774539433
926 => 0.04665527762655
927 => 0.04668650722308
928 => 0.047610317745292
929 => 0.046738137969017
930 => 0.046948080309888
1001 => 0.048585990522678
1002 => 0.047100631975836
1003 => 0.047887459525547
1004 => 0.047848948411441
1005 => 0.048251462761081
1006 => 0.047815930486258
1007 => 0.047821329430785
1008 => 0.048178734904581
1009 => 0.047676823375051
1010 => 0.047552543021942
1011 => 0.047380850604234
1012 => 0.047755734717057
1013 => 0.047980460788145
1014 => 0.049791587877998
1015 => 0.050961658575473
1016 => 0.050910862720653
1017 => 0.051375041747846
1018 => 0.051165924844703
1019 => 0.050490631202203
1020 => 0.051643275106664
1021 => 0.051278530346623
1022 => 0.051308599461476
1023 => 0.051307480287519
1024 => 0.051550003666406
1025 => 0.051378153625524
1026 => 0.051039419554899
1027 => 0.051264287039037
1028 => 0.051932063075329
1029 => 0.054004860381851
1030 => 0.055164825215492
1031 => 0.053935029042371
1101 => 0.054783325974963
1102 => 0.05427465009451
1103 => 0.054182208555235
1104 => 0.054715001717554
1105 => 0.055248727463773
1106 => 0.055214731441099
1107 => 0.054827273956464
1108 => 0.054608409054764
1109 => 0.056265727415561
1110 => 0.057486811352114
1111 => 0.057403541613892
1112 => 0.057771067157636
1113 => 0.058850133521206
1114 => 0.058948789826191
1115 => 0.058936361399352
1116 => 0.058691831453726
1117 => 0.059754312423134
1118 => 0.060640652740389
1119 => 0.058635229836463
1120 => 0.059398868625364
1121 => 0.059741690680607
1122 => 0.060245055168424
1123 => 0.061094315433056
1124 => 0.062016837335605
1125 => 0.062147292047564
1126 => 0.062054728186596
1127 => 0.061446300193145
1128 => 0.06245573466689
1129 => 0.063047037707459
1130 => 0.063399145136388
1201 => 0.064292030991062
1202 => 0.05974380783291
1203 => 0.056524349420212
1204 => 0.056021584499526
1205 => 0.057043976735995
1206 => 0.057313573415326
1207 => 0.057204899331933
1208 => 0.053581106188088
1209 => 0.056002505978585
1210 => 0.058607728556082
1211 => 0.058707805765387
1212 => 0.060012034660317
1213 => 0.060436745050655
1214 => 0.061486820260263
1215 => 0.061421137769997
1216 => 0.061676814373191
1217 => 0.061618038749818
1218 => 0.063563081956194
1219 => 0.065708753454538
1220 => 0.065634455673368
1221 => 0.065325990009048
1222 => 0.065784114121775
1223 => 0.067998677052197
1224 => 0.067794795585212
1225 => 0.067992849063806
1226 => 0.070603943566072
1227 => 0.073998737842879
1228 => 0.07242151506953
1229 => 0.075843634654072
1230 => 0.077997677533776
1231 => 0.081722871962035
]
'min_raw' => 0.033365638321487
'max_raw' => 0.081722871962035
'avg_raw' => 0.057544255141761
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.033365'
'max' => '$0.081722'
'avg' => '$0.057544'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.014877512309016
'max_diff' => 0.033154445744135
'year' => 2028
]
3 => [
'items' => [
101 => 0.081256459272647
102 => 0.082706650126829
103 => 0.080421483215378
104 => 0.075174278078258
105 => 0.074343887779814
106 => 0.07600635018613
107 => 0.080093351791348
108 => 0.075877635961178
109 => 0.076730469783061
110 => 0.076484853584986
111 => 0.076471765741592
112 => 0.076971275491827
113 => 0.076246710546434
114 => 0.073294702612156
115 => 0.074647590452144
116 => 0.074125175486115
117 => 0.07470483383954
118 => 0.077833010903686
119 => 0.0764499692572
120 => 0.074993047231806
121 => 0.076820350768529
122 => 0.079147136100397
123 => 0.079001530055964
124 => 0.078718993471159
125 => 0.080311637406571
126 => 0.082942218586983
127 => 0.083653254109517
128 => 0.08417812599577
129 => 0.084250496961102
130 => 0.084995962882317
131 => 0.080987404742342
201 => 0.087349089457557
202 => 0.08844757666988
203 => 0.088241106601594
204 => 0.089462028906684
205 => 0.089102802592717
206 => 0.088582340024661
207 => 0.09051776157585
208 => 0.088298956947877
209 => 0.085149643118205
210 => 0.083421867264882
211 => 0.08569714188424
212 => 0.08708657269814
213 => 0.088004898081731
214 => 0.088282782787939
215 => 0.081298577699846
216 => 0.077534478519137
217 => 0.079947222938487
218 => 0.082890937648818
219 => 0.080971052258494
220 => 0.081046308130971
221 => 0.078309056101373
222 => 0.083133123715988
223 => 0.082430297641333
224 => 0.086076560559919
225 => 0.08520635065131
226 => 0.088179736514305
227 => 0.087396744367567
228 => 0.090646900992176
301 => 0.091943476464211
302 => 0.094120628477615
303 => 0.095722150361278
304 => 0.096662594643597
305 => 0.096606133896404
306 => 0.10033264267043
307 => 0.098135250640688
308 => 0.095374808365792
309 => 0.095324880674123
310 => 0.096754552844061
311 => 0.099750753500847
312 => 0.10052762473821
313 => 0.10096178977716
314 => 0.1002968509066
315 => 0.097911739346822
316 => 0.096881860268098
317 => 0.09775934708164
318 => 0.096686256111979
319 => 0.098538712181762
320 => 0.10108253002884
321 => 0.10055724170276
322 => 0.10231320182121
323 => 0.1041304358114
324 => 0.10672916203447
325 => 0.10740856529973
326 => 0.10853159306182
327 => 0.10968755752441
328 => 0.11005882215568
329 => 0.11076768153342
330 => 0.11076394549459
331 => 0.11290014094115
401 => 0.11525643067118
402 => 0.11614587549603
403 => 0.1181911048265
404 => 0.11468872127145
405 => 0.11734531943043
406 => 0.1197416374688
407 => 0.11688464831486
408 => 0.12082234227047
409 => 0.12097523400376
410 => 0.12328371765501
411 => 0.12094362722251
412 => 0.11955408899353
413 => 0.12356563379529
414 => 0.12550669396238
415 => 0.12492203084318
416 => 0.12047271563769
417 => 0.11788302334799
418 => 0.1111052991115
419 => 0.11913380624552
420 => 0.12304425787573
421 => 0.12046258851266
422 => 0.12176463237266
423 => 0.12886816148365
424 => 0.13157272544966
425 => 0.13101019505106
426 => 0.13110525342839
427 => 0.13256458705314
428 => 0.139036076015
429 => 0.13515820982111
430 => 0.13812269322547
501 => 0.1396950445339
502 => 0.14115553205725
503 => 0.13756903629171
504 => 0.13290305799682
505 => 0.13142514680638
506 => 0.12020589237365
507 => 0.11962188145767
508 => 0.11929405843319
509 => 0.11722718063534
510 => 0.1156031808517
511 => 0.11431171592851
512 => 0.11092252630597
513 => 0.11206627831287
514 => 0.1066646174334
515 => 0.11012040864098
516 => 0.10149922744968
517 => 0.10867920332558
518 => 0.10477146888977
519 => 0.10739540746524
520 => 0.10738625279074
521 => 0.10255474995282
522 => 0.09976803994681
523 => 0.10154384002302
524 => 0.1034476386679
525 => 0.10375652359288
526 => 0.1062248482302
527 => 0.10691370458002
528 => 0.10482643768045
529 => 0.1013205726319
530 => 0.10213490512241
531 => 0.099751537524881
601 => 0.095574777485125
602 => 0.098574599464912
603 => 0.099598870581673
604 => 0.10005124705827
605 => 0.095943883263304
606 => 0.094653260383718
607 => 0.093966143592002
608 => 0.10079036354403
609 => 0.10116420971781
610 => 0.099251559836242
611 => 0.10789691866584
612 => 0.10594020770057
613 => 0.1081263332546
614 => 0.10206101298432
615 => 0.10229271638669
616 => 0.099421296569667
617 => 0.10102909979886
618 => 0.099892756298382
619 => 0.10089920518656
620 => 0.10150246650039
621 => 0.10437341514567
622 => 0.10871198494744
623 => 0.10394459115576
624 => 0.1018673694104
625 => 0.10315606609848
626 => 0.10658803520133
627 => 0.1117876440714
628 => 0.10870937096844
629 => 0.11007545629907
630 => 0.1103738851709
701 => 0.10810408054864
702 => 0.11187133500544
703 => 0.11389023727396
704 => 0.1159612132485
705 => 0.11775938365976
706 => 0.11513401990253
707 => 0.11794353545388
708 => 0.11567956186575
709 => 0.11364854351191
710 => 0.11365162372838
711 => 0.11237753624657
712 => 0.10990883120521
713 => 0.10945356411886
714 => 0.11182192099598
715 => 0.1137211189272
716 => 0.11387754596536
717 => 0.1149290395244
718 => 0.1155513025814
719 => 0.12165032646554
720 => 0.12410340432552
721 => 0.12710298149831
722 => 0.12827148585402
723 => 0.1317882650327
724 => 0.12894818022707
725 => 0.1283337100144
726 => 0.11980315405662
727 => 0.12120003211681
728 => 0.12343656866987
729 => 0.11984003372061
730 => 0.12212120733769
731 => 0.12257155933156
801 => 0.11971782483926
802 => 0.12124212773419
803 => 0.11719403116958
804 => 0.10880022239038
805 => 0.11188067971411
806 => 0.1141489331751
807 => 0.11091185581263
808 => 0.11671419169266
809 => 0.11332458685607
810 => 0.1122502448526
811 => 0.10805885366647
812 => 0.11003702896488
813 => 0.11271253938072
814 => 0.11105938500521
815 => 0.11448992855678
816 => 0.11934849311837
817 => 0.12281099555747
818 => 0.12307680350068
819 => 0.12085064640198
820 => 0.12441807735979
821 => 0.12444406219967
822 => 0.12041998550588
823 => 0.11795526093708
824 => 0.11739527032923
825 => 0.11879423666027
826 => 0.1204928400496
827 => 0.12317106416711
828 => 0.12478945890983
829 => 0.12900937406858
830 => 0.13015116211609
831 => 0.1314056410118
901 => 0.13308201168342
902 => 0.13509492448733
903 => 0.13069078586757
904 => 0.13086577050528
905 => 0.126764697602
906 => 0.12238211305151
907 => 0.12570794842846
908 => 0.13005603576648
909 => 0.12905857972693
910 => 0.1289463455463
911 => 0.12913509230695
912 => 0.128383043027
913 => 0.12498155200602
914 => 0.12327334450974
915 => 0.12547736799015
916 => 0.12664870838018
917 => 0.12846535517351
918 => 0.12824141511147
919 => 0.13292090215746
920 => 0.13473920932319
921 => 0.13427400854045
922 => 0.13435961668016
923 => 0.13765157495004
924 => 0.141312909589
925 => 0.14474223263405
926 => 0.14823068732833
927 => 0.14402521903767
928 => 0.14188994159691
929 => 0.14409300286961
930 => 0.14292402754798
1001 => 0.14964130648666
1002 => 0.1501063963061
1003 => 0.15682318950905
1004 => 0.16319822607951
1005 => 0.15919417983025
1006 => 0.1629698150971
1007 => 0.16705347247026
1008 => 0.17493151009261
1009 => 0.17227846417411
1010 => 0.17024627257907
1011 => 0.16832586134123
1012 => 0.17232193227047
1013 => 0.17746281368215
1014 => 0.17857011029947
1015 => 0.1803643538394
1016 => 0.17847792614683
1017 => 0.18074992051934
1018 => 0.18877105901923
1019 => 0.18660367659201
1020 => 0.18352564512125
1021 => 0.18985756360858
1022 => 0.19214906029444
1023 => 0.2082319841019
1024 => 0.22853733976127
1025 => 0.22013078918613
1026 => 0.21491257196646
1027 => 0.21613897679085
1028 => 0.22355380529798
1029 => 0.22593521287958
1030 => 0.21946172615238
1031 => 0.22174827110283
1101 => 0.23434735858795
1102 => 0.2411063647966
1103 => 0.23192672650961
1104 => 0.20660046854555
1105 => 0.18324850206478
1106 => 0.18944249512824
1107 => 0.18874028853682
1108 => 0.20227643627142
1109 => 0.18655198523792
1110 => 0.18681674466573
1111 => 0.20063280560044
1112 => 0.19694691741031
1113 => 0.19097625059518
1114 => 0.18329209454007
1115 => 0.16908722137378
1116 => 0.1565055690782
1117 => 0.1811810866113
1118 => 0.18011703342576
1119 => 0.17857612672924
1120 => 0.18200524783882
1121 => 0.19865608657391
1122 => 0.19827223084756
1123 => 0.19583033656144
1124 => 0.19768249185559
1125 => 0.19065155881708
1126 => 0.19246359035247
1127 => 0.18324480299398
1128 => 0.18741207989059
1129 => 0.19096344022576
1130 => 0.19167642839183
1201 => 0.19328282713608
1202 => 0.17955632574793
1203 => 0.1857191218823
1204 => 0.18933918723534
1205 => 0.17298360027121
1206 => 0.18901588986828
1207 => 0.17931737789747
1208 => 0.17602555726781
1209 => 0.18045756008125
1210 => 0.17873040427459
1211 => 0.17724549713402
1212 => 0.17641689343563
1213 => 0.17967126715952
1214 => 0.17951944673548
1215 => 0.17419465967648
1216 => 0.1672486920241
1217 => 0.16957998676186
1218 => 0.16873300552762
1219 => 0.16566343627202
1220 => 0.16773195532909
1221 => 0.15862324425528
1222 => 0.14295218028238
1223 => 0.15330496516055
1224 => 0.1529063942044
1225 => 0.15270541665456
1226 => 0.16048524836054
1227 => 0.15973739705327
1228 => 0.15838003960758
1229 => 0.16563850733808
1230 => 0.16298906897628
1231 => 0.17115401372115
]
'min_raw' => 0.073294702612156
'max_raw' => 0.2411063647966
'avg_raw' => 0.15720053370438
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.073294'
'max' => '$0.2411063'
'avg' => '$0.15720053'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.03992906429067
'max_diff' => 0.15938349283457
'year' => 2029
]
4 => [
'items' => [
101 => 0.17653197440564
102 => 0.17516794961725
103 => 0.18022594763496
104 => 0.16963369508406
105 => 0.17315201649406
106 => 0.17387713766047
107 => 0.16554893897298
108 => 0.15985975477597
109 => 0.15948035105148
110 => 0.14961608967173
111 => 0.15488549847926
112 => 0.15952236016693
113 => 0.15730166325353
114 => 0.15659865695219
115 => 0.1601901636823
116 => 0.16046925451441
117 => 0.1541059539657
118 => 0.15542908564929
119 => 0.16094676472224
120 => 0.15529005429356
121 => 0.14429998994905
122 => 0.14157430204208
123 => 0.14121064503089
124 => 0.13381836325017
125 => 0.14175644554141
126 => 0.1382912598939
127 => 0.14923773983507
128 => 0.14298516919983
129 => 0.14271563337659
130 => 0.14230819044747
131 => 0.13594534814748
201 => 0.13733840623146
202 => 0.14196914347132
203 => 0.1436214426875
204 => 0.14344909434236
205 => 0.14194645033256
206 => 0.14263435306546
207 => 0.14041837868158
208 => 0.13963587200511
209 => 0.13716606568875
210 => 0.13353613270512
211 => 0.13404089715016
212 => 0.12684905008595
213 => 0.12293055010516
214 => 0.12184596095547
215 => 0.12039560301641
216 => 0.12200978274394
217 => 0.12682867648683
218 => 0.12101606824757
219 => 0.11105075912843
220 => 0.11164969118655
221 => 0.11299531369662
222 => 0.11048775505128
223 => 0.10811456123692
224 => 0.11017786071521
225 => 0.10595542787108
226 => 0.11350557453293
227 => 0.11330136422476
228 => 0.11611559200236
301 => 0.11787538638546
302 => 0.11381963007261
303 => 0.11279961832786
304 => 0.11338066337462
305 => 0.10377728304554
306 => 0.11533079094752
307 => 0.11543070616363
308 => 0.11457517142304
309 => 0.12072705770631
310 => 0.13370945658546
311 => 0.12882495591134
312 => 0.1269335296155
313 => 0.1233379268445
314 => 0.1281288540511
315 => 0.12776098559174
316 => 0.12609734490854
317 => 0.12509116983247
318 => 0.12694507826114
319 => 0.12486145006186
320 => 0.124487173183
321 => 0.12221946251434
322 => 0.12140999297989
323 => 0.12081069396249
324 => 0.12015092463024
325 => 0.12160621137291
326 => 0.11830834015511
327 => 0.11433143076075
328 => 0.11400079377537
329 => 0.11491371156192
330 => 0.1145098134001
331 => 0.11399886006636
401 => 0.11302331100238
402 => 0.1127338864344
403 => 0.11367437587148
404 => 0.11261261813096
405 => 0.11417929951404
406 => 0.11375324886628
407 => 0.11137336458137
408 => 0.10840714761636
409 => 0.10838074206352
410 => 0.10774167548398
411 => 0.10692772811063
412 => 0.10670130657196
413 => 0.11000409538816
414 => 0.11684076939353
415 => 0.11549856669853
416 => 0.11646844570014
417 => 0.12123929046349
418 => 0.12275579854945
419 => 0.1216794170305
420 => 0.12020599961903
421 => 0.12027082250742
422 => 0.12530593583617
423 => 0.12561996967829
424 => 0.12641343188617
425 => 0.12743325505568
426 => 0.1218530973261
427 => 0.12000799758017
428 => 0.11913368695831
429 => 0.11644114864377
430 => 0.11934482037521
501 => 0.11765297520492
502 => 0.11788126292005
503 => 0.11773259024609
504 => 0.11781377557928
505 => 0.11350346411306
506 => 0.11507391506805
507 => 0.11246273576141
508 => 0.10896665978845
509 => 0.10895493971591
510 => 0.1098105993574
511 => 0.10930161952068
512 => 0.10793196786712
513 => 0.10812652041993
514 => 0.10642203533946
515 => 0.1083334757694
516 => 0.10838828904147
517 => 0.10765228035908
518 => 0.11059711806935
519 => 0.11180362048201
520 => 0.11131916380043
521 => 0.11176962970977
522 => 0.11555434128019
523 => 0.11617141440472
524 => 0.11644547752507
525 => 0.1160782692502
526 => 0.11183880728958
527 => 0.11202684545512
528 => 0.11064714616169
529 => 0.10948144564786
530 => 0.10952806755512
531 => 0.11012738914969
601 => 0.11274466170289
602 => 0.11825255749447
603 => 0.11846157811354
604 => 0.11871491720142
605 => 0.117684459813
606 => 0.11737366400451
607 => 0.11778368389912
608 => 0.11985215996703
609 => 0.12517284199948
610 => 0.12329215761281
611 => 0.12176313193185
612 => 0.12310449967642
613 => 0.12289800662613
614 => 0.12115499747444
615 => 0.12110607701282
616 => 0.11776068517699
617 => 0.11652396998617
618 => 0.11549047820619
619 => 0.11436193216244
620 => 0.1136928922385
621 => 0.11472084163488
622 => 0.11495594582417
623 => 0.11270831650351
624 => 0.11240197293237
625 => 0.11423743555408
626 => 0.11342971688721
627 => 0.11426047556654
628 => 0.11445321870626
629 => 0.11442218262152
630 => 0.11357883156741
701 => 0.11411635838021
702 => 0.11284494722348
703 => 0.11146247855033
704 => 0.1105805496677
705 => 0.10981094974671
706 => 0.11023796851228
707 => 0.10871572458356
708 => 0.10822872811404
709 => 0.11393425639077
710 => 0.11814899147355
711 => 0.11808770755623
712 => 0.11771465747047
713 => 0.11716038071349
714 => 0.11981161116988
715 => 0.1188879754919
716 => 0.11955999761998
717 => 0.11973105545625
718 => 0.12024879600733
719 => 0.12043384375304
720 => 0.11987450094159
721 => 0.11799727814839
722 => 0.11331941742874
723 => 0.1111418606361
724 => 0.11042323062445
725 => 0.1104493514605
726 => 0.10972882219367
727 => 0.10994105035461
728 => 0.10965501790027
729 => 0.10911334163044
730 => 0.11020452152903
731 => 0.11033026984729
801 => 0.11007557542033
802 => 0.11013556517796
803 => 0.10802680410415
804 => 0.1081871286286
805 => 0.10729442130339
806 => 0.10712704944166
807 => 0.10487036306044
808 => 0.10087231602419
809 => 0.10308762218209
810 => 0.10041184386253
811 => 0.09939848606826
812 => 0.10419556425688
813 => 0.10371407065698
814 => 0.10288996291419
815 => 0.1016709358035
816 => 0.10121878679021
817 => 0.098471672518446
818 => 0.098309358351985
819 => 0.099670902363395
820 => 0.099042596649998
821 => 0.098160217470408
822 => 0.094964329527274
823 => 0.091371093357057
824 => 0.091479550570759
825 => 0.092622492141969
826 => 0.095945748906934
827 => 0.094647294995936
828 => 0.093705251785466
829 => 0.093528835409859
830 => 0.09573705570327
831 => 0.098862150054901
901 => 0.10032837440464
902 => 0.098875390603944
903 => 0.097206281047907
904 => 0.097307872012674
905 => 0.097983711187715
906 => 0.09805473232916
907 => 0.096968313595415
908 => 0.09727413410523
909 => 0.096809564786007
910 => 0.093958503731466
911 => 0.093906937077801
912 => 0.093207240715447
913 => 0.093186054187671
914 => 0.091995696127869
915 => 0.091829156806746
916 => 0.089465628629438
917 => 0.091021310033165
918 => 0.089977840624484
919 => 0.088405086096053
920 => 0.088133942622545
921 => 0.088125791722316
922 => 0.089740658961537
923 => 0.091002439369253
924 => 0.089995992221596
925 => 0.089766843715233
926 => 0.092213550261811
927 => 0.091902184551534
928 => 0.091632543854527
929 => 0.098582332132047
930 => 0.093081032411648
1001 => 0.090682151730344
1002 => 0.087713081352144
1003 => 0.088679825638638
1004 => 0.088883532864231
1005 => 0.081743453819822
1006 => 0.078846724640745
1007 => 0.077852676347422
1008 => 0.077280587500835
1009 => 0.077541295572065
1010 => 0.074933899558451
1011 => 0.076686112801949
1012 => 0.074428328251858
1013 => 0.074049803324569
1014 => 0.078087001785966
1015 => 0.078648754366898
1016 => 0.076252143333795
1017 => 0.07779115559313
1018 => 0.077233088354024
1019 => 0.074467031487735
1020 => 0.07436138846118
1021 => 0.072973478357276
1022 => 0.07080166779702
1023 => 0.069809092093526
1024 => 0.069292150049209
1025 => 0.069505450411694
1026 => 0.069397599221323
1027 => 0.068693797250795
1028 => 0.069437940326432
1029 => 0.067536962269327
1030 => 0.066779977489766
1031 => 0.066438065026752
1101 => 0.064750837584857
1102 => 0.067435966758361
1103 => 0.067964971031908
1104 => 0.068495017607291
1105 => 0.073108711167835
1106 => 0.072878224075712
1107 => 0.07496171513673
1108 => 0.074880754505393
1109 => 0.074286509104473
1110 => 0.071779485506617
1111 => 0.072778740429324
1112 => 0.069703189095927
1113 => 0.07200760127207
1114 => 0.070955963789431
1115 => 0.071652041581338
1116 => 0.070400430948686
1117 => 0.071093123950532
1118 => 0.068090417569931
1119 => 0.065286532600944
1120 => 0.066414897762969
1121 => 0.067641559738299
1122 => 0.070301275448472
1123 => 0.068717170713671
1124 => 0.069286874677937
1125 => 0.067378461764937
1126 => 0.063440860814219
1127 => 0.063463147207978
1128 => 0.06285743308701
1129 => 0.062334007650784
1130 => 0.0688991241983
1201 => 0.068082648176483
1202 => 0.066781700493456
1203 => 0.068523070664793
1204 => 0.068983516577355
1205 => 0.068996624825176
1206 => 0.070267083550914
1207 => 0.070945127600582
1208 => 0.071064635803148
1209 => 0.073063730058174
1210 => 0.073733800083768
1211 => 0.076493723687331
1212 => 0.070887600300198
1213 => 0.070772145878252
1214 => 0.068547575314208
1215 => 0.067136717493422
1216 => 0.068644177956239
1217 => 0.069979582137421
1218 => 0.068589070044542
1219 => 0.06877064156856
1220 => 0.066903992692883
1221 => 0.067571231831944
1222 => 0.068145948065323
1223 => 0.06782862354151
1224 => 0.067353573370682
1225 => 0.069870094223312
1226 => 0.069728102254482
1227 => 0.072071544327016
1228 => 0.073898425003706
1229 => 0.077172521770319
1230 => 0.073755831111834
1231 => 0.073631313324124
]
'min_raw' => 0.062334007650784
'max_raw' => 0.18022594763496
'avg_raw' => 0.12127997764287
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.062334'
'max' => '$0.180225'
'avg' => '$0.121279'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.010960694961373
'max_diff' => -0.060880417161645
'year' => 2030
]
5 => [
'items' => [
101 => 0.074848494672276
102 => 0.073733613739646
103 => 0.074438180004686
104 => 0.077059005252469
105 => 0.077114379160113
106 => 0.076186794861837
107 => 0.076130351272988
108 => 0.076308503984132
109 => 0.077351949977802
110 => 0.076987337885757
111 => 0.07740927622952
112 => 0.077936916589346
113 => 0.08011946083246
114 => 0.080645664860506
115 => 0.079367261877862
116 => 0.079482687353524
117 => 0.079004529545068
118 => 0.0785426350934
119 => 0.079580906366483
120 => 0.081478367525314
121 => 0.081466563517923
122 => 0.081906737625397
123 => 0.082180962447755
124 => 0.081003788765358
125 => 0.080237491983994
126 => 0.0805313389307
127 => 0.081001206597637
128 => 0.080378967179031
129 => 0.076538217238054
130 => 0.07770325542209
131 => 0.077509336100809
201 => 0.077233171405911
202 => 0.078404626308933
203 => 0.078291636625754
204 => 0.074907156943663
205 => 0.075123820351993
206 => 0.074920332963135
207 => 0.075577842346138
208 => 0.073698106075202
209 => 0.074276300291925
210 => 0.074638938284419
211 => 0.074852534847915
212 => 0.075624192099796
213 => 0.075533647027722
214 => 0.075618563690984
215 => 0.076762727685562
216 => 0.082549516540466
217 => 0.082864478690009
218 => 0.081313489873667
219 => 0.081933079313894
220 => 0.080743603077974
221 => 0.081542106443945
222 => 0.082088422167156
223 => 0.079619726464438
224 => 0.079473546326625
225 => 0.07827916069916
226 => 0.0789209558819
227 => 0.077899813599453
228 => 0.078150366197525
301 => 0.077449799290534
302 => 0.078710680241638
303 => 0.080120541066064
304 => 0.080476727587405
305 => 0.079539754197696
306 => 0.078861323713991
307 => 0.077670223273499
308 => 0.079651049851441
309 => 0.080230303907428
310 => 0.079648007276481
311 => 0.079513076423658
312 => 0.079257382701373
313 => 0.079567323055583
314 => 0.080227149165438
315 => 0.079915987357105
316 => 0.080121515213474
317 => 0.079338254964401
318 => 0.081004178458829
319 => 0.083650065894304
320 => 0.083658572855055
321 => 0.083347409369444
322 => 0.083220087975243
323 => 0.083539360594459
324 => 0.083712552893135
325 => 0.084745021999093
326 => 0.085852902485169
327 => 0.091022897307562
328 => 0.089571183449503
329 => 0.094158310420298
330 => 0.097786132290307
331 => 0.098873957443699
401 => 0.097873209488707
402 => 0.094449704794022
403 => 0.094281731321009
404 => 0.099397892701269
405 => 0.097952342776309
406 => 0.097780399212437
407 => 0.095951210196073
408 => 0.097032487454211
409 => 0.096795996256476
410 => 0.096422683331306
411 => 0.098485685017407
412 => 0.10234744000836
413 => 0.10174554927771
414 => 0.10129626576819
415 => 0.099327636213926
416 => 0.10051319091492
417 => 0.1000910375937
418 => 0.10190487616678
419 => 0.10083039837753
420 => 0.09794139131389
421 => 0.098401475211067
422 => 0.098331934455569
423 => 0.099763078276005
424 => 0.099333484424284
425 => 0.098248049361285
426 => 0.10233424094962
427 => 0.10206890639647
428 => 0.10244509012892
429 => 0.10261069784181
430 => 0.10509789065486
501 => 0.10611681396908
502 => 0.10634812740017
503 => 0.10731602574231
504 => 0.10632404520768
505 => 0.11029267461635
506 => 0.11293158159717
507 => 0.1159968078523
508 => 0.12047592726619
509 => 0.12216011759999
510 => 0.12185588369079
511 => 0.12525190091092
512 => 0.13135446836628
513 => 0.1230893870526
514 => 0.13179253774509
515 => 0.12903722071855
516 => 0.12250441361467
517 => 0.12208377785392
518 => 0.12650787067212
519 => 0.13632008273972
520 => 0.13386223490598
521 => 0.13632410289828
522 => 0.13345220311544
523 => 0.13330958908495
524 => 0.13618462113603
525 => 0.14290229023321
526 => 0.1397109774532
527 => 0.13513544804106
528 => 0.13851394775586
529 => 0.13558717863751
530 => 0.12899234866277
531 => 0.13386035543606
601 => 0.13060525793961
602 => 0.13155526843958
603 => 0.1383969992179
604 => 0.13757378406968
605 => 0.13863910069914
606 => 0.13675884473232
607 => 0.13500238917016
608 => 0.13172383442728
609 => 0.1307532159987
610 => 0.13102146001317
611 => 0.13075308307029
612 => 0.12891876182312
613 => 0.12852264032444
614 => 0.12786242047217
615 => 0.12806705021126
616 => 0.12682564373485
617 => 0.12916843424351
618 => 0.12960327680652
619 => 0.13130816436621
620 => 0.1314851714484
621 => 0.13623325903458
622 => 0.13361809218048
623 => 0.13537257188885
624 => 0.13521563470993
625 => 0.12264599935382
626 => 0.12437798420306
627 => 0.12707240910169
628 => 0.12585857433707
629 => 0.12414249597347
630 => 0.12275667068457
701 => 0.12065700366398
702 => 0.12361224467493
703 => 0.12749807234949
704 => 0.13158372245082
705 => 0.13649236334517
706 => 0.13539681184043
707 => 0.13149195882368
708 => 0.13166712767751
709 => 0.13274995260551
710 => 0.13134759593873
711 => 0.13093401358045
712 => 0.13269313274047
713 => 0.13270524682734
714 => 0.13109166600174
715 => 0.12929846619627
716 => 0.12929095262361
717 => 0.12897187003848
718 => 0.13350896719849
719 => 0.13600391188423
720 => 0.13628995327165
721 => 0.1359846590198
722 => 0.13610215466064
723 => 0.13465040132036
724 => 0.13796867895216
725 => 0.14101385865075
726 => 0.14019768544075
727 => 0.13897412577311
728 => 0.13799950156321
729 => 0.1399680949509
730 => 0.1398804365862
731 => 0.14098726166264
801 => 0.14093704968384
802 => 0.14056486604043
803 => 0.1401976987326
804 => 0.14165347560543
805 => 0.14123423524512
806 => 0.14081434368873
807 => 0.1399721868902
808 => 0.14008664998587
809 => 0.13886330158305
810 => 0.13829732463529
811 => 0.12978638930962
812 => 0.12751198928777
813 => 0.12822756183432
814 => 0.12846314689648
815 => 0.12747332509225
816 => 0.12889247529516
817 => 0.12867130223929
818 => 0.12953175721778
819 => 0.12899418230383
820 => 0.12901624456581
821 => 0.13059713776467
822 => 0.1310560777859
823 => 0.13082265718701
824 => 0.13098613697328
825 => 0.13475345964756
826 => 0.13421786683547
827 => 0.13393334382881
828 => 0.13401215864612
829 => 0.13497479036171
830 => 0.13524427468433
831 => 0.13410245067306
901 => 0.13464094147758
902 => 0.13693376697857
903 => 0.13773612614124
904 => 0.14029687143422
905 => 0.13920902132014
906 => 0.14120581728558
907 => 0.14734328732541
908 => 0.15224632307386
909 => 0.14773728877306
910 => 0.15674108952725
911 => 0.16375183993288
912 => 0.1634827556553
913 => 0.1622602691605
914 => 0.15427871621412
915 => 0.14693397219462
916 => 0.15307816244124
917 => 0.15309382524574
918 => 0.15256603385454
919 => 0.14928796685277
920 => 0.1524519642285
921 => 0.15270311085024
922 => 0.15256253552734
923 => 0.15004924924292
924 => 0.14621192561956
925 => 0.14696172947031
926 => 0.14818992347342
927 => 0.14586469599742
928 => 0.14512164492834
929 => 0.14650311823701
930 => 0.15095451307897
1001 => 0.15011300266927
1002 => 0.15009102743166
1003 => 0.15369136582029
1004 => 0.15111430053569
1005 => 0.14697118689807
1006 => 0.14592499606362
1007 => 0.1422117233999
1008 => 0.14477649405496
1009 => 0.14486879558486
1010 => 0.14346409690841
1011 => 0.14708517045393
1012 => 0.14705180162373
1013 => 0.15048947202953
1014 => 0.15706100671539
1015 => 0.1551174805432
1016 => 0.15285737105999
1017 => 0.15310310762685
1018 => 0.15579823123581
1019 => 0.15416869797815
1020 => 0.15475468949911
1021 => 0.15579734426746
1022 => 0.15642640377687
1023 => 0.15301259564412
1024 => 0.15221667366706
1025 => 0.15058849663265
1026 => 0.15016373563573
1027 => 0.15148985185723
1028 => 0.15114046708525
1029 => 0.14486103799868
1030 => 0.14420480272072
1031 => 0.14422492851981
1101 => 0.14257479371109
1102 => 0.14005794205006
1103 => 0.14667207794183
1104 => 0.14614087026495
1105 => 0.14555445810188
1106 => 0.14562629024584
1107 => 0.14849726246259
1108 => 0.1468319535893
1109 => 0.1512594501677
1110 => 0.15034928997391
1111 => 0.1494157876055
1112 => 0.14928674914301
1113 => 0.14892743037385
1114 => 0.14769519261778
1115 => 0.14620719148132
1116 => 0.14522468424257
1117 => 0.13396209466601
1118 => 0.13605236577995
1119 => 0.13845703216233
1120 => 0.13928711336143
1121 => 0.1378672020305
1122 => 0.14775125937159
1123 => 0.14955717189295
1124 => 0.14408694506898
1125 => 0.14306368897811
1126 => 0.14781834387055
1127 => 0.14495070573748
1128 => 0.14624200301322
1129 => 0.14345092460493
1130 => 0.14912218044984
1201 => 0.14907897498226
1202 => 0.14687272836746
1203 => 0.14873743289856
1204 => 0.14841339459816
1205 => 0.1459225476038
1206 => 0.14920114474241
1207 => 0.14920277088569
1208 => 0.14707930648688
1209 => 0.14459956495521
1210 => 0.14415624573823
1211 => 0.14382226425979
1212 => 0.14615986404296
1213 => 0.14825574869906
1214 => 0.15215567043019
1215 => 0.15313620341325
1216 => 0.15696328892392
1217 => 0.15468444583973
1218 => 0.15569462746299
1219 => 0.15679132251396
1220 => 0.15731711845102
1221 => 0.15646036218735
1222 => 0.16240540127665
1223 => 0.16290734472708
1224 => 0.16307564202422
1225 => 0.16107100829269
1226 => 0.16285159223665
1227 => 0.16201851597601
1228 => 0.16418594897094
1229 => 0.16452583013972
1230 => 0.16423796288139
1231 => 0.16434584652902
]
'min_raw' => 0.073698106075202
'max_raw' => 0.16452583013972
'avg_raw' => 0.11911196810746
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.073698'
'max' => '$0.164525'
'avg' => '$0.119111'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.011364098424418
'max_diff' => -0.015700117495234
'year' => 2031
]
6 => [
'items' => [
101 => 0.15927280444306
102 => 0.15900974044847
103 => 0.15542284421612
104 => 0.1568845309438
105 => 0.15415197766687
106 => 0.1550184984594
107 => 0.15540045256824
108 => 0.15520094141749
109 => 0.15696717251829
110 => 0.15546551526543
111 => 0.15150239487984
112 => 0.14753819474475
113 => 0.14748842744122
114 => 0.14644472351959
115 => 0.14569031674816
116 => 0.14583564225636
117 => 0.14634778830234
118 => 0.14566054988894
119 => 0.14580720704831
120 => 0.14824269306541
121 => 0.14873111241705
122 => 0.14707127262242
123 => 0.14040677633326
124 => 0.13877129222728
125 => 0.1399468457696
126 => 0.13938500689172
127 => 0.11249457911537
128 => 0.11881208625007
129 => 0.1150584380329
130 => 0.11678829182842
131 => 0.11295678900119
201 => 0.11478538297661
202 => 0.11444770843891
203 => 0.12460607296288
204 => 0.12444746407322
205 => 0.1245233817553
206 => 0.12089963298675
207 => 0.12667236317056
208 => 0.12951621763976
209 => 0.12898989586425
210 => 0.12912235971599
211 => 0.12684619186937
212 => 0.12454542003552
213 => 0.12199350998553
214 => 0.12673464343279
215 => 0.1262075103273
216 => 0.12741656401479
217 => 0.13049152795856
218 => 0.13094432807993
219 => 0.1315528960349
220 => 0.13133476774386
221 => 0.13653146858913
222 => 0.13590211382783
223 => 0.13741867772483
224 => 0.13429899072671
225 => 0.13076876876493
226 => 0.13143974854822
227 => 0.13137512779941
228 => 0.13055243149883
229 => 0.1298097380639
301 => 0.12857336274733
302 => 0.13248543719809
303 => 0.13232661411967
304 => 0.13489777514756
305 => 0.13444329746096
306 => 0.13140818424025
307 => 0.1315165839027
308 => 0.13224562372774
309 => 0.13476883888626
310 => 0.13551790093889
311 => 0.13517090555115
312 => 0.13599221789588
313 => 0.13664134968555
314 => 0.13607373885445
315 => 0.14410991123752
316 => 0.14077273218409
317 => 0.14239925003479
318 => 0.14278716495818
319 => 0.14179352903889
320 => 0.14200901309035
321 => 0.14233541271242
322 => 0.14431724730206
323 => 0.14951815471372
324 => 0.15182160120257
325 => 0.15875163361433
326 => 0.1516303320372
327 => 0.15120778347249
328 => 0.15245609157677
329 => 0.15652475422091
330 => 0.15982202314393
331 => 0.1609159174697
401 => 0.16106049366308
402 => 0.16311271213895
403 => 0.16428900549771
404 => 0.16286351883728
405 => 0.16165556814723
406 => 0.15732883871185
407 => 0.15782966942529
408 => 0.16127989639096
409 => 0.16615354519732
410 => 0.17033564288991
411 => 0.16887121803879
412 => 0.18004374593005
413 => 0.18115145643479
414 => 0.1809984066596
415 => 0.18352193603881
416 => 0.1785132441289
417 => 0.17637193129857
418 => 0.16191674079724
419 => 0.16597805970856
420 => 0.17188142525905
421 => 0.17110009269196
422 => 0.16681291083178
423 => 0.17033239067803
424 => 0.16916874057655
425 => 0.16825092146162
426 => 0.17245562875509
427 => 0.16783238036607
428 => 0.17183530481977
429 => 0.16670151280295
430 => 0.16887790740815
501 => 0.16764248056987
502 => 0.16844195314246
503 => 0.16376825281904
504 => 0.16629006806589
505 => 0.16366333701381
506 => 0.16366209160128
507 => 0.16360410636772
508 => 0.16669444380179
509 => 0.16679521959457
510 => 0.16451145556155
511 => 0.16418232948529
512 => 0.16539928109117
513 => 0.16397454948082
514 => 0.16464117243415
515 => 0.16399474081097
516 => 0.16384921543666
517 => 0.16268964449506
518 => 0.16219006945035
519 => 0.16238596569785
520 => 0.16171727081371
521 => 0.16131435795827
522 => 0.1635239568596
523 => 0.16234345730159
524 => 0.16334302837159
525 => 0.1622038909814
526 => 0.15825514448845
527 => 0.15598417862311
528 => 0.14852536254693
529 => 0.1506406735335
530 => 0.15204312690605
531 => 0.15157961607479
601 => 0.15257541669521
602 => 0.15263655076575
603 => 0.15231280583306
604 => 0.15193795067531
605 => 0.1517554919153
606 => 0.15311539002672
607 => 0.15390485665247
608 => 0.15218388186439
609 => 0.15178068155053
610 => 0.15352068207891
611 => 0.15458208139605
612 => 0.16241885760509
613 => 0.16183828391107
614 => 0.16329540995122
615 => 0.16313135992052
616 => 0.16465866014899
617 => 0.16715515053729
618 => 0.16207908754818
619 => 0.16296011656604
620 => 0.16274410859679
621 => 0.1651024269647
622 => 0.16510978937723
623 => 0.16369585970892
624 => 0.1644623739205
625 => 0.16403452671582
626 => 0.1648077044417
627 => 0.16183052999543
628 => 0.16545640710486
629 => 0.16751204577955
630 => 0.16754058832455
701 => 0.16851494474179
702 => 0.16950494729263
703 => 0.17140517097792
704 => 0.1694519510854
705 => 0.16593829864087
706 => 0.16619197299834
707 => 0.16413191985571
708 => 0.16416654972122
709 => 0.16398169278515
710 => 0.16453646236567
711 => 0.16195227072095
712 => 0.16255877533475
713 => 0.16170966532374
714 => 0.1629582707667
715 => 0.16161497771195
716 => 0.16274400443121
717 => 0.16323125493541
718 => 0.16502921978567
719 => 0.16134941684168
720 => 0.15384604953813
721 => 0.15542334831488
722 => 0.15309039952993
723 => 0.15330632282214
724 => 0.15374252223634
725 => 0.15232865721935
726 => 0.15259837810858
727 => 0.15258874178042
728 => 0.15250570111031
729 => 0.15213790021333
730 => 0.15160451614552
731 => 0.1537293541047
801 => 0.15409040547915
802 => 0.15489297795975
803 => 0.1572808892719
804 => 0.15704228062099
805 => 0.1574314612304
806 => 0.15658188214521
807 => 0.15334573235925
808 => 0.15352147086221
809 => 0.15133000891423
810 => 0.15483693735066
811 => 0.15400645040772
812 => 0.15347103007297
813 => 0.153324935674
814 => 0.15571876615642
815 => 0.15643503775545
816 => 0.15598870536213
817 => 0.15507326460184
818 => 0.15683118148737
819 => 0.15730152588538
820 => 0.15740681865046
821 => 0.16052151032449
822 => 0.15758089531513
823 => 0.15828873057508
824 => 0.16381105921274
825 => 0.15880306916764
826 => 0.16145591318604
827 => 0.16132607027607
828 => 0.16268317550854
829 => 0.16121474803608
830 => 0.16123295095449
831 => 0.16243796846265
901 => 0.1607457386985
902 => 0.16032671881101
903 => 0.15974784583753
904 => 0.16101179379748
905 => 0.16176947343603
906 => 0.16787581486832
907 => 0.17182078991659
908 => 0.17164952814561
909 => 0.17321454014373
910 => 0.17250948790471
911 => 0.17023268824153
912 => 0.17411890764044
913 => 0.1728891452163
914 => 0.17299052533639
915 => 0.17298675196325
916 => 0.17380443646761
917 => 0.17322503205659
918 => 0.17208296648782
919 => 0.17284112291034
920 => 0.17509257643933
921 => 0.18208115727636
922 => 0.18599205969913
923 => 0.18184571603983
924 => 0.18470580837426
925 => 0.1829907721287
926 => 0.18267909902498
927 => 0.18447544837016
928 => 0.18627494198708
929 => 0.18616032202311
930 => 0.18485398206225
1001 => 0.1841160637655
1002 => 0.1897038283292
1003 => 0.19382079807465
1004 => 0.19354004833853
1005 => 0.19477918636908
1006 => 0.19841733395186
1007 => 0.19874996057208
1008 => 0.19870805726327
1009 => 0.19788360747905
1010 => 0.20146583624747
1011 => 0.20445419450939
1012 => 0.19769277117465
1013 => 0.20026743266699
1014 => 0.20142328116131
1015 => 0.20312040967578
1016 => 0.20598374995144
1017 => 0.20909409695431
1018 => 0.20953393412373
1019 => 0.20922184860388
1020 => 0.20717049114487
1021 => 0.21057386994957
1022 => 0.2125674894343
1023 => 0.21375464421429
1024 => 0.21676507121263
1025 => 0.20143041928812
1026 => 0.1905757904743
1027 => 0.18888068344228
1028 => 0.19232775024868
1029 => 0.19323671427568
1030 => 0.19287031201614
1031 => 0.18065244042651
1101 => 0.18881635887691
1102 => 0.19760004868777
1103 => 0.19793746598611
1104 => 0.20233476476372
1105 => 0.20376670549708
1106 => 0.20730710738018
1107 => 0.20708565427844
1108 => 0.20794768579688
1109 => 0.2077495196791
1110 => 0.21430736864797
1111 => 0.22154164991064
1112 => 0.22129114975412
1113 => 0.22025113623048
1114 => 0.22179573366174
1115 => 0.22926228719751
1116 => 0.22857488659702
1117 => 0.22924263772775
1118 => 0.23804612514294
1119 => 0.24949191106416
1120 => 0.24417419436563
1121 => 0.25571210946968
1122 => 0.26297461542907
1123 => 0.27553436852872
1124 => 0.27396182558255
1125 => 0.27885124529652
1126 => 0.2711466455093
1127 => 0.25345532704134
1128 => 0.25065560817414
1129 => 0.25626071624645
1130 => 0.27004032750378
1201 => 0.25582674725048
1202 => 0.25870213602392
1203 => 0.25787402386373
1204 => 0.25782989728596
1205 => 0.25951402928354
1206 => 0.25707110798264
1207 => 0.24711820712961
1208 => 0.25167956293774
1209 => 0.24991820440592
1210 => 0.25187256301495
1211 => 0.26241943038907
1212 => 0.25775640891705
1213 => 0.25284429458939
1214 => 0.25900517604171
1215 => 0.26685009523907
1216 => 0.26635917429437
1217 => 0.26540658247263
1218 => 0.27077629269572
1219 => 0.27964548080679
1220 => 0.28204278671393
1221 => 0.28381242892382
1222 => 0.28405643268621
1223 => 0.28656982308636
1224 => 0.27305468944884
1225 => 0.29450355362483
1226 => 0.29820717995511
1227 => 0.2975110517046
1228 => 0.30162747649828
1229 => 0.30041631990036
1230 => 0.29866154401463
1231 => 0.30518695290128
]
'min_raw' => 0.11249457911537
'max_raw' => 0.30518695290128
'avg_raw' => 0.20884076600832
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.112494'
'max' => '$0.305186'
'avg' => '$0.20884'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.038796473040169
'max_diff' => 0.14066112276156
'year' => 2032
]
7 => [
'items' => [
101 => 0.29770609818607
102 => 0.28708796673126
103 => 0.28126264981233
104 => 0.2889338970461
105 => 0.29361846004212
106 => 0.29671465818833
107 => 0.2976515658766
108 => 0.27410383080047
109 => 0.26141290761169
110 => 0.26954764387397
111 => 0.27947258354345
112 => 0.27299955590785
113 => 0.27325328633611
114 => 0.26402445000948
115 => 0.2802891307778
116 => 0.27791950359736
117 => 0.29021313360131
118 => 0.28727916013832
119 => 0.29730413817058
120 => 0.29466422548109
121 => 0.30562235545965
122 => 0.30999385018762
123 => 0.31733427020471
124 => 0.32273391305017
125 => 0.32590468660773
126 => 0.32571432525661
127 => 0.33827850976478
128 => 0.33086984911948
129 => 0.32156282526174
130 => 0.32139449056344
131 => 0.32621473010091
201 => 0.33631662980332
202 => 0.33893590541949
203 => 0.34039972316077
204 => 0.33815783533413
205 => 0.33011626518715
206 => 0.32664395596937
207 => 0.3296024640254
208 => 0.32598446290037
209 => 0.332230147874
210 => 0.34080680734911
211 => 0.33903576108328
212 => 0.34495610321983
213 => 0.35108303449301
214 => 0.35984482139135
215 => 0.3621354769346
216 => 0.36592184344177
217 => 0.36981925833426
218 => 0.37107100295945
219 => 0.37346097184248
220 => 0.37344837552674
221 => 0.38065070761922
222 => 0.38859510295489
223 => 0.39159392828093
224 => 0.39848956176196
225 => 0.38668103107751
226 => 0.39563793724829
227 => 0.40371729082023
228 => 0.39408475241911
301 => 0.40736096251145
302 => 0.4078764476648
303 => 0.41565966146818
304 => 0.40776988319511
305 => 0.40308495804163
306 => 0.41661016141788
307 => 0.42315458129173
308 => 0.42118334876547
309 => 0.40618217190888
310 => 0.3974508435476
311 => 0.37459927307868
312 => 0.4016679454135
313 => 0.41485230610379
314 => 0.4061480275998
315 => 0.41053795937957
316 => 0.43448800372983
317 => 0.44360662996788
318 => 0.44171001945437
319 => 0.44203051541029
320 => 0.44695076061357
321 => 0.46876983747342
322 => 0.45569534085675
323 => 0.46569030362815
324 => 0.47099159584258
325 => 0.47591573149557
326 => 0.46382361062089
327 => 0.44809193903146
328 => 0.44310905826844
329 => 0.40528255864516
330 => 0.4033135250676
331 => 0.4022082468527
401 => 0.39523962405243
402 => 0.38976419539786
403 => 0.38540993124211
404 => 0.37398304180407
405 => 0.37783928154955
406 => 0.35962720476249
407 => 0.37127864609448
408 => 0.34221173179637
409 => 0.36641952175186
410 => 0.35324432227223
411 => 0.36209111437695
412 => 0.36206024875271
413 => 0.34577049960994
414 => 0.33637491226278
415 => 0.34236214620212
416 => 0.34878093625232
417 => 0.34982236334256
418 => 0.3581444921902
419 => 0.36046701946801
420 => 0.3534296533878
421 => 0.34160938460493
422 => 0.34435496345156
423 => 0.33631927319509
424 => 0.32223703510897
425 => 0.33235114435471
426 => 0.33580454593719
427 => 0.33732976481197
428 => 0.32348150101025
429 => 0.31913007586331
430 => 0.31681341362708
501 => 0.33982174764718
502 => 0.34108219612318
503 => 0.33463356351051
504 => 0.36378199440418
505 => 0.35718480677156
506 => 0.36455548170741
507 => 0.34410583094903
508 => 0.3448870351471
509 => 0.33520584275789
510 => 0.34062666359834
511 => 0.33679540214952
512 => 0.34018871484403
513 => 0.34222265248196
514 => 0.35190225628276
515 => 0.3665300472787
516 => 0.35045644626127
517 => 0.34345294811976
518 => 0.34779787897758
519 => 0.35936900242025
520 => 0.3768998467508
521 => 0.36652123406599
522 => 0.37112708613524
523 => 0.37213325991227
524 => 0.36448045515562
525 => 0.37718201657803
526 => 0.38398888653159
527 => 0.39097132662068
528 => 0.39703398370651
529 => 0.38818238650195
530 => 0.39765486433745
531 => 0.39002171931947
601 => 0.38317399913832
602 => 0.38318438430322
603 => 0.37888870940435
604 => 0.37056529799792
605 => 0.36903033323054
606 => 0.37701541379516
607 => 0.38341869221805
608 => 0.38394609689859
609 => 0.38749128084583
610 => 0.3895892841875
611 => 0.41015256903314
612 => 0.41842329230648
613 => 0.42853657616833
614 => 0.43247627018597
615 => 0.44433333672058
616 => 0.43475779251002
617 => 0.43268606328707
618 => 0.40392469829099
619 => 0.40863437019786
620 => 0.4161750093365
621 => 0.404049040653
622 => 0.41174017676943
623 => 0.41325856995935
624 => 0.40363700487719
625 => 0.40877629851086
626 => 0.39512785831421
627 => 0.36682754597811
628 => 0.37721352291573
629 => 0.38486109782386
630 => 0.37394706549077
701 => 0.39351004601644
702 => 0.38208175665524
703 => 0.37845953758237
704 => 0.36432796956476
705 => 0.37099752569513
706 => 0.38001819586031
707 => 0.3744444704637
708 => 0.38601078756075
709 => 0.40239177719427
710 => 0.41406584591191
711 => 0.41496203595056
712 => 0.40745639186698
713 => 0.4194842344113
714 => 0.41957184411314
715 => 0.40600438858796
716 => 0.3976943976227
717 => 0.39580635019102
718 => 0.40052306284886
719 => 0.40625002276866
720 => 0.4152798423685
721 => 0.42073637323627
722 => 0.43496411181908
723 => 0.43881372993835
724 => 0.44304329312015
725 => 0.44869529388001
726 => 0.45548196993547
727 => 0.4406331090918
728 => 0.44122308201486
729 => 0.42739602839371
730 => 0.41261983859945
731 => 0.42383312477524
801 => 0.43849300480913
802 => 0.43513001213163
803 => 0.4347516067557
804 => 0.43538797963711
805 => 0.43285239298334
806 => 0.4213840285216
807 => 0.41562468768466
808 => 0.42305570672886
809 => 0.42700496263424
810 => 0.43312991413217
811 => 0.43237488457801
812 => 0.44815210186492
813 => 0.45428265142433
814 => 0.45271419450603
815 => 0.45300282832602
816 => 0.46410189547012
817 => 0.47644634083161
818 => 0.48800854290568
819 => 0.49977011146355
820 => 0.4855910815052
821 => 0.47839184453334
822 => 0.48581961942708
823 => 0.48187833751496
824 => 0.50452611244215
825 => 0.50609419523993
826 => 0.52874033247521
827 => 0.55023421336336
828 => 0.53673429188039
829 => 0.54946410978901
830 => 0.56323244573447
831 => 0.58979379960526
901 => 0.58084887006127
902 => 0.5739971942155
903 => 0.5675223936483
904 => 0.580995425783
905 => 0.59832826638735
906 => 0.60206159424165
907 => 0.60811101160661
908 => 0.60175078893491
909 => 0.60941097658742
910 => 0.6364548050578
911 => 0.62914732388263
912 => 0.61876952587766
913 => 0.64011803113813
914 => 0.64784397220168
915 => 0.70206867269242
916 => 0.77052959697263
917 => 0.74218632478196
918 => 0.72459274110153
919 => 0.72872765059182
920 => 0.75372726259041
921 => 0.76175634451634
922 => 0.73993053205116
923 => 0.74763977799307
924 => 0.79011848108937
925 => 0.81290694242057
926 => 0.78195715103412
927 => 0.69656790408542
928 => 0.61783511871326
929 => 0.63871859877749
930 => 0.63635106022804
1001 => 0.68198912737888
1002 => 0.62897304287334
1003 => 0.62986569776909
1004 => 0.67644751181705
1005 => 0.66402028244352
1006 => 0.64388976241769
1007 => 0.61798209378722
1008 => 0.5700893721545
1009 => 0.52766945301706
1010 => 0.61086468316952
1011 => 0.60727715356464
1012 => 0.60208187905467
1013 => 0.61364340028919
1014 => 0.66978286560898
1015 => 0.66848866922765
1016 => 0.66025565215437
1017 => 0.66650032304197
1018 => 0.64279504141855
1019 => 0.64890443225213
1020 => 0.6178226470378
1021 => 0.63187291204469
1022 => 0.64384657136279
1023 => 0.64625046074395
1024 => 0.65166654626535
1025 => 0.60538668848147
1026 => 0.62616498592119
1027 => 0.63837028900385
1028 => 0.58322628564369
1029 => 0.6372802693589
1030 => 0.60458105912084
1031 => 0.59348245604039
1101 => 0.60842526295845
1102 => 0.60260203657013
1103 => 0.59759556847277
1104 => 0.59480187325241
1105 => 0.60577422147561
1106 => 0.60526234831621
1107 => 0.58730945698202
1108 => 0.56389064209004
1109 => 0.57175076506419
1110 => 0.56889510869864
1111 => 0.55854584164287
1112 => 0.56551999806319
1113 => 0.53480934272792
1114 => 0.48197325642455
1115 => 0.51687839344965
1116 => 0.51553458364366
1117 => 0.51485697380256
1118 => 0.5410872195698
1119 => 0.53856578667401
1120 => 0.53398936127821
1121 => 0.5584617920016
1122 => 0.54952902558692
1123 => 0.57705770685251
1124 => 0.59518987677749
1125 => 0.59059097197026
1126 => 0.6076443654251
1127 => 0.57193184642229
1128 => 0.58379411269745
1129 => 0.58623890933637
1130 => 0.55815980600523
1201 => 0.53897832427885
1202 => 0.5376991381326
1203 => 0.50444109219005
1204 => 0.52220727188299
1205 => 0.53784077479831
1206 => 0.53035354011071
1207 => 0.52798330528339
1208 => 0.54009232097496
1209 => 0.5410332952009
1210 => 0.51957898312946
1211 => 0.52404001397882
1212 => 0.5426432542053
1213 => 0.52357126005611
1214 => 0.48651749081678
1215 => 0.47732764373699
1216 => 0.47610154873406
1217 => 0.4511779545977
1218 => 0.47794175326183
1219 => 0.46625863791972
1220 => 0.50316545930021
1221 => 0.48208448086293
1222 => 0.48117572201652
1223 => 0.47980199973422
1224 => 0.45834923268035
1225 => 0.46304602527068
1226 => 0.47865887918264
1227 => 0.48422972134981
1228 => 0.48364863687121
1229 => 0.47858236768091
1230 => 0.48090167977273
1231 => 0.47343036742306
]
'min_raw' => 0.26141290761169
'max_raw' => 0.81290694242057
'avg_raw' => 0.53715992501613
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.261412'
'max' => '$0.8129069'
'avg' => '$0.537159'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.14891832849632
'max_diff' => 0.50771998951929
'year' => 2033
]
8 => [
'items' => [
101 => 0.47079209153047
102 => 0.46246496709851
103 => 0.45022639461036
104 => 0.45192824317836
105 => 0.42768042868265
106 => 0.41446893241646
107 => 0.41081216437471
108 => 0.40592218132241
109 => 0.41136450097221
110 => 0.42761173767076
111 => 0.40801412316876
112 => 0.37441538771791
113 => 0.37643472896796
114 => 0.38097158920904
115 => 0.37251718016413
116 => 0.36451579152788
117 => 0.37147234977392
118 => 0.35723612263909
119 => 0.3826919692439
120 => 0.38200345993243
121 => 0.39149182536771
122 => 0.39742509499525
123 => 0.38375082942262
124 => 0.38031178861025
125 => 0.38227082255267
126 => 0.34989235528655
127 => 0.38884581381826
128 => 0.38918268494522
129 => 0.3862981898358
130 => 0.40703970395082
131 => 0.45081076817402
201 => 0.43434233312627
202 => 0.4279652573147
203 => 0.41584243153529
204 => 0.43199537710419
205 => 0.4307550829097
206 => 0.42514600219463
207 => 0.42175361267675
208 => 0.42800419437978
209 => 0.42097909643162
210 => 0.41971719580335
211 => 0.41207145095746
212 => 0.40934226790671
213 => 0.40732168942783
214 => 0.40509723106053
215 => 0.41000383191831
216 => 0.39888482885749
217 => 0.38547640117546
218 => 0.3843616354949
219 => 0.38743960155014
220 => 0.38607783069832
221 => 0.38435511585997
222 => 0.38106598408011
223 => 0.3800901689422
224 => 0.38326109474219
225 => 0.37968130439046
226 => 0.38496348005571
227 => 0.38352702055087
228 => 0.37550307452609
301 => 0.36550226693391
302 => 0.36541323876893
303 => 0.36325858117781
304 => 0.36051430078058
305 => 0.3597509047547
306 => 0.37088648784185
307 => 0.39393681157232
308 => 0.38941148147653
309 => 0.39268149624522
310 => 0.4087667324546
311 => 0.41387974534563
312 => 0.41025064990392
313 => 0.40528292023046
314 => 0.40550147512443
315 => 0.42247771125272
316 => 0.42353649827656
317 => 0.42621171150818
318 => 0.42965011652598
319 => 0.41083622514654
320 => 0.40461534253237
321 => 0.40166754322835
322 => 0.39258946231386
323 => 0.4023793942843
324 => 0.39667522017181
325 => 0.39744490814192
326 => 0.39694364784165
327 => 0.39721736986067
328 => 0.38268485381599
329 => 0.38797973885611
330 => 0.37917596551706
331 => 0.367388701286
401 => 0.36734918624315
402 => 0.3702341024647
403 => 0.36851804140934
404 => 0.36390016523334
405 => 0.36455611274838
406 => 0.35880932229621
407 => 0.36525387715827
408 => 0.36543868393199
409 => 0.36295717927282
410 => 0.37288590521502
411 => 0.3769537123346
412 => 0.37532033280896
413 => 0.37683911007283
414 => 0.38959952937265
415 => 0.39168003449464
416 => 0.39260405743938
417 => 0.39136598910302
418 => 0.377072347113
419 => 0.37770633091651
420 => 0.37305457842118
421 => 0.36912433775221
422 => 0.36928152676758
423 => 0.37130218136695
424 => 0.38012649851222
425 => 0.39869675372253
426 => 0.39940148133308
427 => 0.40025563175542
428 => 0.39678137272615
429 => 0.39573350295874
430 => 0.39711591366009
501 => 0.40408992513945
502 => 0.42202897609001
503 => 0.41568811737515
504 => 0.41053290053863
505 => 0.41505541554074
506 => 0.41435920980481
507 => 0.40848253275686
508 => 0.40831759400501
509 => 0.3970383718627
510 => 0.39286870025215
511 => 0.38938421055986
512 => 0.38557923878079
513 => 0.38332352396635
514 => 0.38678932712538
515 => 0.38758199731403
516 => 0.38000395813494
517 => 0.37897109939664
518 => 0.38515948977363
519 => 0.38243620989516
520 => 0.38523717078426
521 => 0.38588701773672
522 => 0.38578237741013
523 => 0.38293896045031
524 => 0.38475126962859
525 => 0.3804646181466
526 => 0.37580352849417
527 => 0.37283004369207
528 => 0.37023528382672
529 => 0.37167500740834
530 => 0.36654265572298
531 => 0.364900713125
601 => 0.38413730005723
602 => 0.39834757365224
603 => 0.39814095064628
604 => 0.39688318623664
605 => 0.3950144034521
606 => 0.40395321203883
607 => 0.40083910986433
608 => 0.40310487938822
609 => 0.4036816128261
610 => 0.40542721124156
611 => 0.40605111263583
612 => 0.40416524929496
613 => 0.39783606158419
614 => 0.38206432757007
615 => 0.37472254281152
616 => 0.3722996315541
617 => 0.37238769977654
618 => 0.36995838504769
619 => 0.37067392710958
620 => 0.36970954871963
621 => 0.36788324935726
622 => 0.37156223856909
623 => 0.3719862078036
624 => 0.37112748776091
625 => 0.37132974741709
626 => 0.36421991222774
627 => 0.36476045755544
628 => 0.36175063248165
629 => 0.3611863265643
630 => 0.35357775087321
701 => 0.34009805615577
702 => 0.34756711553486
703 => 0.3385455421136
704 => 0.33512893555982
705 => 0.35130261959406
706 => 0.34967923030519
707 => 0.346900693513
708 => 0.34279065849955
709 => 0.34126620653321
710 => 0.33200411896857
711 => 0.33145686542393
712 => 0.33604740611837
713 => 0.33392902953875
714 => 0.33095402652901
715 => 0.32017886719896
716 => 0.30806402057934
717 => 0.30842969164758
718 => 0.31228319895254
719 => 0.323487791158
720 => 0.31910996314191
721 => 0.31593379868646
722 => 0.3153389985591
723 => 0.32278416745135
724 => 0.333320641245
725 => 0.33826411900866
726 => 0.33336528268052
727 => 0.32773776327884
728 => 0.3280802843094
729 => 0.33035892327364
730 => 0.33059837601056
731 => 0.3269354393984
801 => 0.32796653459895
802 => 0.326400206704
803 => 0.31678765530388
804 => 0.31661379473078
805 => 0.31425471959386
806 => 0.31418328773627
807 => 0.3101699124295
808 => 0.30960841348093
809 => 0.30163961321487
810 => 0.30688470168174
811 => 0.30336657171767
812 => 0.29806392001885
813 => 0.29714974086728
814 => 0.29712225953809
815 => 0.30256689718155
816 => 0.30682107792086
817 => 0.30342777109464
818 => 0.3026551809068
819 => 0.31090442285218
820 => 0.30985463162112
821 => 0.30894551918545
822 => 0.33237721558183
823 => 0.31382919948603
824 => 0.30574120578451
825 => 0.29573077771053
826 => 0.29899022356838
827 => 0.29967703670185
828 => 0.27560376169922
829 => 0.26583723702879
830 => 0.26248573380562
831 => 0.26055689631738
901 => 0.26143589178159
902 => 0.25264487407912
903 => 0.25855258336519
904 => 0.25094030512108
905 => 0.24966408190096
906 => 0.26327577838175
907 => 0.26516976642868
908 => 0.25708942500453
909 => 0.26227831228728
910 => 0.26039674962763
911 => 0.25107079578301
912 => 0.25071461294322
913 => 0.24603517712712
914 => 0.23871276619224
915 => 0.23536622790849
916 => 0.23362332171433
917 => 0.23434247877861
918 => 0.23397885096034
919 => 0.23160593347882
920 => 0.23411486381274
921 => 0.22770558357116
922 => 0.22515335653589
923 => 0.22400057479527
924 => 0.21831196967646
925 => 0.22736507015466
926 => 0.22914864499682
927 => 0.2309357340324
928 => 0.24649112398957
929 => 0.24571402066638
930 => 0.2527386562433
1001 => 0.25246569182226
1002 => 0.25046215196417
1003 => 0.2420095468692
1004 => 0.24537860460686
1005 => 0.23500916855817
1006 => 0.24277865509896
1007 => 0.23923298590326
1008 => 0.24157986077727
1009 => 0.23735996814462
1010 => 0.23969543096263
1011 => 0.22957159675816
1012 => 0.22011810282423
1013 => 0.22392246474794
1014 => 0.22805824124056
1015 => 0.23702565845283
1016 => 0.23168473874079
1017 => 0.23360553543178
1018 => 0.22717118805446
1019 => 0.2138952915346
1020 => 0.21397043166714
1021 => 0.21192822421869
1022 => 0.21016345881605
1023 => 0.23229820761781
1024 => 0.22954540170571
1025 => 0.22515916576312
1026 => 0.23103031687437
1027 => 0.23258274241588
1028 => 0.23262693778859
1029 => 0.23691037808301
1030 => 0.239196450936
1031 => 0.23959938118474
1101 => 0.24633946703787
1102 => 0.24859865491195
1103 => 0.25790393003308
1104 => 0.23900249362632
1105 => 0.23861323098196
1106 => 0.23111293601073
1107 => 0.226356130365
1108 => 0.23143863856292
1109 => 0.23594104699471
1110 => 0.23125283839112
1111 => 0.23186501946127
1112 => 0.22557148245166
1113 => 0.22782112579415
1114 => 0.22975882170039
1115 => 0.22868893991347
1116 => 0.22708727509558
1117 => 0.2355719008481
1118 => 0.23509316501162
1119 => 0.24299424357307
1120 => 0.24915369932327
1121 => 0.26019254516204
1122 => 0.24867293406123
1123 => 0.24825311364641
1124 => 0.2523569255426
1125 => 0.24859802663973
1126 => 0.25097352099356
1127 => 0.25980981629664
1128 => 0.25999651329234
1129 => 0.25686909806884
1130 => 0.25667879456827
1201 => 0.25727944887211
1202 => 0.26079749989085
1203 => 0.25956818476611
1204 => 0.26099077935091
1205 => 0.26276975566273
1206 => 0.27012835595876
1207 => 0.27190248957771
1208 => 0.26759226466648
1209 => 0.26798142971643
1210 => 0.26636928728131
1211 => 0.26481197788907
1212 => 0.26831258197605
1213 => 0.27471000474956
1214 => 0.27467020671451
1215 => 0.27615428444983
1216 => 0.27707885258418
1217 => 0.27310992932633
1218 => 0.27052630622683
1219 => 0.27151703172339
1220 => 0.27310122336758
1221 => 0.27100329972438
1222 => 0.25805394314578
1223 => 0.26198195072363
1224 => 0.26132813819291
1225 => 0.26039702964286
1226 => 0.26434667163677
1227 => 0.26396571903124
1228 => 0.25255470948625
1229 => 0.25328520529439
1230 => 0.25259913335582
1231 => 0.25481597214645
]
'min_raw' => 0.21016345881605
'max_raw' => 0.47079209153047
'avg_raw' => 0.34047777517326
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.210163'
'max' => '$0.470792'
'avg' => '$0.340477'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.051249448795638
'max_diff' => -0.3421148508901
'year' => 2034
]
9 => [
'items' => [
101 => 0.24847831007
102 => 0.25042773223991
103 => 0.25165039155018
104 => 0.25237054727684
105 => 0.25497224357694
106 => 0.25466696454479
107 => 0.25495326700367
108 => 0.25881089579437
109 => 0.27832145843938
110 => 0.27938337531652
111 => 0.27415410823564
112 => 0.27624309729172
113 => 0.27223269511573
114 => 0.27492490496383
115 => 0.27676684656718
116 => 0.26844346664664
117 => 0.26795061010603
118 => 0.26392365557369
119 => 0.26608751284101
120 => 0.26264466034186
121 => 0.26348941591928
122 => 0.26112740568034
123 => 0.26537855383889
124 => 0.27013199804178
125 => 0.27133290576663
126 => 0.26817383456583
127 => 0.26588645882352
128 => 0.26187058052842
129 => 0.26854907563285
130 => 0.27050207112483
131 => 0.26853881737894
201 => 0.26808388858808
202 => 0.26722179935143
203 => 0.26826678489499
204 => 0.27049143469196
205 => 0.26944233093054
206 => 0.27013528244779
207 => 0.26749446583255
208 => 0.27311124320508
209 => 0.28203203742374
210 => 0.28206071923585
211 => 0.28101160981938
212 => 0.28058233684953
213 => 0.28165878677612
214 => 0.28224271670301
215 => 0.28572375837843
216 => 0.28945905478698
217 => 0.30689005328819
218 => 0.30199549866032
219 => 0.31746131750534
220 => 0.32969277222651
221 => 0.3333604506807
222 => 0.32998635908045
223 => 0.31844377398085
224 => 0.31787743968906
225 => 0.33512693498158
226 => 0.33025316248451
227 => 0.3296734427542
228 => 0.32350620427563
301 => 0.32715180604381
302 => 0.32635445945935
303 => 0.32509580886827
304 => 0.33205136308714
305 => 0.34507153965825
306 => 0.3430422230372
307 => 0.34152743231687
308 => 0.33489006032936
309 => 0.33888724077655
310 => 0.33746392138025
311 => 0.34357940476754
312 => 0.33995672788345
313 => 0.33021623886436
314 => 0.33176744384572
315 => 0.33153298233338
316 => 0.33635818364325
317 => 0.33490977797888
318 => 0.33125015788133
319 => 0.3450270381102
320 => 0.34413244413917
321 => 0.34540077385744
322 => 0.34595913182382
323 => 0.35434487604327
324 => 0.3577802471361
325 => 0.35856013651881
326 => 0.36182347335586
327 => 0.35847894172547
328 => 0.37185945285765
329 => 0.38075671198608
330 => 0.39109133631253
331 => 0.4061930001386
401 => 0.41187136543541
402 => 0.41084561956962
403 => 0.42229552872964
404 => 0.44287076097303
405 => 0.41500446227441
406 => 0.44434774246871
407 => 0.43505799874366
408 => 0.4130321834869
409 => 0.41161398065167
410 => 0.42653011846852
411 => 0.45961267652122
412 => 0.45132587094829
413 => 0.45962623076647
414 => 0.44994342013899
415 => 0.4494625869782
416 => 0.45915595826673
417 => 0.48180504864056
418 => 0.47104531479241
419 => 0.45561859792611
420 => 0.46700944559389
421 => 0.45714163917088
422 => 0.43490670947472
423 => 0.45131953418424
424 => 0.44034474571132
425 => 0.44354777243956
426 => 0.46661514543306
427 => 0.46383961808578
428 => 0.46743140748007
429 => 0.46109199321265
430 => 0.455169980653
501 => 0.44411610443599
502 => 0.44084359663765
503 => 0.44174800006062
504 => 0.44084314846023
505 => 0.43465860630718
506 => 0.43332305501806
507 => 0.43109707769103
508 => 0.43178700114319
509 => 0.42760151253573
510 => 0.43550039430409
511 => 0.436966496365
512 => 0.44271464380394
513 => 0.4433114355398
514 => 0.45931994433749
515 => 0.45050272670378
516 => 0.45641807753442
517 => 0.45588895287868
518 => 0.41350954969163
519 => 0.41934905753417
520 => 0.42843349919864
521 => 0.42434097054247
522 => 0.41855509252685
523 => 0.41388268581009
524 => 0.40680351185609
525 => 0.41676731325286
526 => 0.42986865255746
527 => 0.44364370712507
528 => 0.46019353261072
529 => 0.45649980422352
530 => 0.44333431964943
531 => 0.44392491367003
601 => 0.44757573351521
602 => 0.44284759010375
603 => 0.44145316830738
604 => 0.44738416137319
605 => 0.44742500486282
606 => 0.44198470445271
607 => 0.43593880611134
608 => 0.43591347357654
609 => 0.43483766436314
610 => 0.45013480420813
611 => 0.45854668440759
612 => 0.45951109291604
613 => 0.45848177203097
614 => 0.45887791678734
615 => 0.45398322904241
616 => 0.46517103375277
617 => 0.4754380697142
618 => 0.47268628475331
619 => 0.46856096790764
620 => 0.46527495433789
621 => 0.47191220438729
622 => 0.47161665809059
623 => 0.47534839611184
624 => 0.47517910291964
625 => 0.47392425978085
626 => 0.47268632956771
627 => 0.47759458293355
628 => 0.47618108478833
629 => 0.47476539109006
630 => 0.47192600064633
701 => 0.47231192096492
702 => 0.46818731641337
703 => 0.46627908561876
704 => 0.43758387295372
705 => 0.4299155744865
706 => 0.4323281772869
707 => 0.43312246877199
708 => 0.42978521545186
709 => 0.43456997944289
710 => 0.43382427904321
711 => 0.43672536307822
712 => 0.43491289172357
713 => 0.43498727618018
714 => 0.44031736797458
715 => 0.44186471629833
716 => 0.44107772245224
717 => 0.44162890596547
718 => 0.45433069738785
719 => 0.45252490882801
720 => 0.4515656196463
721 => 0.45183134930553
722 => 0.45507692934343
723 => 0.45598551455194
724 => 0.45213577517833
725 => 0.453951334522
726 => 0.46168175577857
727 => 0.46438696571442
728 => 0.47302069725522
729 => 0.46935293464435
730 => 0.47608527165365
731 => 0.49677818039743
801 => 0.51330910774234
802 => 0.4981065837865
803 => 0.52846352665451
804 => 0.55210076112208
805 => 0.55119352469334
806 => 0.54707182612484
807 => 0.5201614631119
808 => 0.49539814585649
809 => 0.51611371224663
810 => 0.51616652048556
811 => 0.51438703496092
812 => 0.50333480319713
813 => 0.51400244125264
814 => 0.51484919962231
815 => 0.51437524010652
816 => 0.50590151992655
817 => 0.492963715417
818 => 0.49549173144944
819 => 0.4996326732807
820 => 0.49179300650316
821 => 0.48928775794558
822 => 0.49394549165717
823 => 0.50895368015327
824 => 0.5061164690546
825 => 0.50604237800674
826 => 0.51818117025161
827 => 0.50949241471961
828 => 0.49552361782744
829 => 0.49199631238637
830 => 0.47947675434823
831 => 0.48812405767831
901 => 0.48843525873066
902 => 0.48369921907008
903 => 0.49590792134409
904 => 0.49579541600334
905 => 0.50738576178699
906 => 0.52954214979024
907 => 0.52298941560804
908 => 0.51536929868959
909 => 0.51619781668155
910 => 0.52528461409669
911 => 0.51979052894809
912 => 0.52176624027365
913 => 0.52528162362097
914 => 0.52740254167647
915 => 0.51589264921244
916 => 0.51320914269728
917 => 0.50771963015006
918 => 0.50628751879309
919 => 0.51075861222037
920 => 0.50958063706834
921 => 0.48840910348724
922 => 0.48619656043072
923 => 0.48626441596748
924 => 0.48070087125116
925 => 0.47221513015504
926 => 0.49451515109836
927 => 0.49272414732802
928 => 0.49074701777824
929 => 0.49098920486675
930 => 0.50066888814041
1001 => 0.49505418300596
1002 => 0.50998179683796
1003 => 0.50691312819925
1004 => 0.5037657597891
1005 => 0.50333069760363
1006 => 0.50211922928658
1007 => 0.49796465365989
1008 => 0.49294775393939
1009 => 0.4896351621875
1010 => 0.45166255510122
1011 => 0.45871005009994
1012 => 0.46681755069658
1013 => 0.46961622741378
1014 => 0.46482889722648
1015 => 0.49815368663481
1016 => 0.50424244678537
1017 => 0.48579919512932
1018 => 0.48234921577748
1019 => 0.49837986670676
1020 => 0.48871142452903
1021 => 0.49306512344965
1022 => 0.48365480772925
1023 => 0.50277584276481
1024 => 0.50263017251434
1025 => 0.49519165801734
1026 => 0.50147863953345
1027 => 0.50038612178001
1028 => 0.49198805723315
1029 => 0.5030420763903
1030 => 0.50304755904589
1031 => 0.49588815056979
1101 => 0.48752752886573
1102 => 0.48603284717412
1103 => 0.48490680530172
1104 => 0.49278818617666
1105 => 0.4998546076247
1106 => 0.51300346602506
1107 => 0.51630940143607
1108 => 0.52921268743386
1109 => 0.52152940887177
1110 => 0.52493530674323
1111 => 0.52863289067637
1112 => 0.53040564838807
1113 => 0.52751703482829
1114 => 0.54756114918726
1115 => 0.54925348657495
1116 => 0.54982091266238
1117 => 0.54306215007747
1118 => 0.54906551316095
1119 => 0.54625673838468
1120 => 0.55356439005243
1121 => 0.55471032314271
1122 => 0.553739758583
1123 => 0.55410349583318
1124 => 0.53699938025187
1125 => 0.53611244162758
1126 => 0.52401897055111
1127 => 0.5289471494052
1128 => 0.51973415525125
1129 => 0.52265569060182
1130 => 0.52394347554694
1201 => 0.52327080977276
1202 => 0.52922578124343
1203 => 0.52416283897307
1204 => 0.5108009018968
1205 => 0.49743532436972
1206 => 0.49726753043123
1207 => 0.49374860979039
1208 => 0.49120507468952
1209 => 0.49169504978671
1210 => 0.49342178593763
1211 => 0.4911047136454
1212 => 0.49159917849749
1213 => 0.49981058964435
1214 => 0.50145732958875
1215 => 0.49586106383486
1216 => 0.47339124929568
1217 => 0.4678771004465
1218 => 0.47184056128896
1219 => 0.46994628228583
1220 => 0.37928332760817
1221 => 0.40058324398707
1222 => 0.38792755695155
1223 => 0.39375987979768
1224 => 0.38084170050868
1225 => 0.38700693276517
1226 => 0.38586843948563
1227 => 0.42011807471256
1228 => 0.41958331376732
1229 => 0.41983927553289
1230 => 0.40762155355765
1231 => 0.42708471641151
]
'min_raw' => 0.24847831007
'max_raw' => 0.55471032314271
'avg_raw' => 0.40159431660635
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.248478'
'max' => '$0.55471'
'avg' => '$0.401594'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.03831485125394
'max_diff' => 0.08391823161224
'year' => 2035
]
10 => [
'items' => [
101 => 0.43667297030602
102 => 0.43489843969326
103 => 0.43534505081773
104 => 0.42767079200588
105 => 0.41991357913329
106 => 0.41130963623108
107 => 0.4272946986639
108 => 0.42551743259548
109 => 0.42959384151628
110 => 0.43996129713982
111 => 0.44148794436252
112 => 0.44353977371156
113 => 0.44280433894909
114 => 0.46032537867097
115 => 0.45820346515311
116 => 0.46331666621498
117 => 0.45279842369122
118 => 0.44089603387485
119 => 0.4431582890605
120 => 0.44294041569422
121 => 0.44016663767799
122 => 0.43766259490894
123 => 0.43349406920814
124 => 0.44668390135119
125 => 0.44614841825364
126 => 0.45481726717191
127 => 0.4532849639209
128 => 0.44305186779245
129 => 0.44341734482261
130 => 0.44587535349268
131 => 0.45438254956487
201 => 0.45690806457317
202 => 0.45573814539695
203 => 0.45850725730941
204 => 0.46069585045923
205 => 0.45878211091286
206 => 0.48587662717001
207 => 0.47462509499696
208 => 0.48010901349045
209 => 0.48141689573802
210 => 0.47806678286266
211 => 0.47879330238678
212 => 0.4798937815011
213 => 0.48657567518733
214 => 0.50411089764152
215 => 0.51187712830018
216 => 0.53524221641584
217 => 0.51123225095513
218 => 0.5098075989678
219 => 0.5140163568955
220 => 0.52773413706515
221 => 0.53885110944708
222 => 0.54253925053969
223 => 0.54302669926965
224 => 0.54994589714237
225 => 0.55391185232761
226 => 0.54910572452765
227 => 0.54503303443974
228 => 0.53044516406575
229 => 0.53213374978299
301 => 0.5437664308849
302 => 0.56019827810284
303 => 0.57429851245816
304 => 0.5693611018297
305 => 0.60703005965609
306 => 0.61076478296068
307 => 0.61024876495805
308 => 0.61875702044726
309 => 0.60186986597728
310 => 0.59465028026816
311 => 0.54591359626374
312 => 0.55960661652547
313 => 0.57951022563879
314 => 0.57687590833794
315 => 0.56242137537485
316 => 0.57428754739873
317 => 0.57036421983813
318 => 0.56726972861207
319 => 0.58144619281528
320 => 0.5658585880868
321 => 0.57935472735773
322 => 0.56204578914308
323 => 0.56938365550556
324 => 0.56521832766556
325 => 0.56791380526142
326 => 0.55215609831367
327 => 0.56065857448596
328 => 0.55180236735135
329 => 0.55179816835606
330 => 0.55160266709271
331 => 0.56202195551214
401 => 0.56236172813343
402 => 0.5546618582488
403 => 0.55355218670385
404 => 0.55765522400793
405 => 0.55285164191203
406 => 0.55509920774131
407 => 0.55291971839136
408 => 0.55242906943162
409 => 0.54851949504335
410 => 0.5468351429009
411 => 0.54749562077636
412 => 0.54524106928772
413 => 0.54388262046513
414 => 0.55133243743023
415 => 0.54735230075053
416 => 0.55072242440087
417 => 0.5468817431578
418 => 0.53356826866414
419 => 0.5259115486954
420 => 0.50076362953663
421 => 0.50789554821416
422 => 0.51262401767587
423 => 0.51106125854698
424 => 0.51441866986333
425 => 0.51462478765039
426 => 0.51353325900669
427 => 0.51226940867076
428 => 0.51165423622254
429 => 0.51623922765025
430 => 0.51890096949776
501 => 0.51309858284511
502 => 0.51173916483641
503 => 0.51760569810079
504 => 0.52118428000307
505 => 0.54760651813807
506 => 0.54564907339432
507 => 0.55056187557199
508 => 0.55000876943988
509 => 0.55515816879284
510 => 0.56357526043639
511 => 0.54646095966921
512 => 0.5494314105144
513 => 0.54870312456489
514 => 0.55665435959483
515 => 0.55667918248269
516 => 0.55191201988859
517 => 0.55449637606923
518 => 0.5530538593473
519 => 0.55566068203166
520 => 0.54562293052637
521 => 0.55784782835149
522 => 0.56477855766332
523 => 0.56487479084654
524 => 0.56815990153468
525 => 0.57149776425461
526 => 0.57790450107894
527 => 0.57131908384184
528 => 0.55947255930975
529 => 0.56032784011693
530 => 0.55338222711824
531 => 0.55349898412757
601 => 0.55287572606133
602 => 0.55474617043481
603 => 0.54603338788214
604 => 0.54807826053239
605 => 0.54521542684728
606 => 0.54942518727307
607 => 0.54489618095325
608 => 0.54870277336335
609 => 0.55034557245702
610 => 0.55640753647957
611 => 0.54400082393828
612 => 0.51870269720599
613 => 0.52402067015526
614 => 0.51615497044553
615 => 0.5168829709005
616 => 0.51835364767994
617 => 0.51358670306226
618 => 0.51449608587163
619 => 0.51446359631845
620 => 0.51418361890143
621 => 0.51294355249824
622 => 0.51114521087394
623 => 0.51830925040476
624 => 0.51952656032152
625 => 0.52223248947368
626 => 0.53028349918123
627 => 0.52947901345556
628 => 0.53079116305192
629 => 0.52792674785048
630 => 0.51701584290635
701 => 0.51760835753876
702 => 0.51021969057816
703 => 0.52204354464751
704 => 0.51924349993664
705 => 0.51743829289617
706 => 0.51694572543006
707 => 0.52501669203343
708 => 0.52743165173806
709 => 0.52592681091205
710 => 0.52284033847469
711 => 0.52876727798809
712 => 0.53035307696438
713 => 0.53070807887315
714 => 0.54120947931297
715 => 0.53129499050173
716 => 0.53368150650014
717 => 0.55230042305869
718 => 0.53541563497494
719 => 0.54435988379861
720 => 0.54392210936232
721 => 0.54849768440363
722 => 0.5435467786579
723 => 0.54360815106823
724 => 0.54767095172861
725 => 0.54196548093106
726 => 0.54055272612537
727 => 0.53860101547965
728 => 0.54286250427267
729 => 0.54541707407353
730 => 0.56600503054366
731 => 0.57930578934824
801 => 0.57872836833028
802 => 0.5840049155476
803 => 0.58162778269856
804 => 0.57395139367306
805 => 0.58705405370368
806 => 0.58290782383141
807 => 0.58324963398441
808 => 0.58323691179345
809 => 0.5859937921888
810 => 0.58404028976432
811 => 0.58018973596274
812 => 0.58274591327405
813 => 0.59033684603851
814 => 0.61389933425767
815 => 0.62708521482656
816 => 0.61310552769074
817 => 0.62274852868156
818 => 0.61696616423964
819 => 0.61591533661011
820 => 0.62197185384451
821 => 0.62803897221059
822 => 0.62765252299955
823 => 0.62324810661575
824 => 0.62076016355847
825 => 0.63959970191025
826 => 0.65348035284468
827 => 0.65253378550802
828 => 0.65671162589186
829 => 0.66897789447456
830 => 0.67009936834788
831 => 0.66995808841663
901 => 0.66717839840791
902 => 0.67925613280384
903 => 0.68933159132444
904 => 0.66653498048386
905 => 0.6752156314624
906 => 0.67911265535978
907 => 0.68483464263601
908 => 0.69448859428744
909 => 0.70497534636511
910 => 0.70645828809027
911 => 0.70540606997097
912 => 0.69848977507673
913 => 0.70996450433308
914 => 0.71668613161593
915 => 0.72068870684117
916 => 0.73083857164736
917 => 0.67913672205266
918 => 0.64253958316088
919 => 0.63682441145384
920 => 0.64844643785814
921 => 0.65151107353703
922 => 0.6502757227376
923 => 0.6090823156486
924 => 0.63660753669069
925 => 0.66622236014565
926 => 0.66735998612473
927 => 0.68218578596304
928 => 0.68701367412046
929 => 0.69895038625231
930 => 0.69820374165845
1001 => 0.70111014110798
1002 => 0.70044201020635
1003 => 0.72255225585931
1004 => 0.74694314021778
1005 => 0.74609856145071
1006 => 0.74259208324434
1007 => 0.74779980132418
1008 => 0.77297380786814
1009 => 0.77065618875081
1010 => 0.77290755830897
1011 => 0.80258913076913
1012 => 0.84117939712179
1013 => 0.82325034400159
1014 => 0.86215123032638
1015 => 0.88663727622045
1016 => 0.92898336068986
1017 => 0.92368142235542
1018 => 0.94016644228944
1019 => 0.91418984618887
1020 => 0.85454233080571
1021 => 0.84510288317481
1022 => 0.86400089637676
1023 => 0.91045981779259
1024 => 0.86253773960811
1025 => 0.87223231361098
1026 => 0.86944027564597
1027 => 0.86929149980821
1028 => 0.87496966842038
1029 => 0.86673318869507
1030 => 0.83317628857973
1031 => 0.84855521815054
1101 => 0.84261667488639
1102 => 0.84920593138569
1103 => 0.88476543109629
1104 => 0.86904372864163
1105 => 0.85248219223305
1106 => 0.87325403418855
1107 => 0.89970372697721
1108 => 0.89804855273717
1109 => 0.89483682290231
1110 => 0.91294117582066
1111 => 0.94284426276408
1112 => 0.95092694700455
1113 => 0.95689341926766
1114 => 0.95771609498837
1115 => 0.96619016620178
1116 => 0.92062294954639
1117 => 0.99293929262761
1118 => 1.0054263273791
1119 => 1.0030792823804
1120 => 1.0169580959719
1121 => 1.0128745969417
1122 => 1.0069582475284
1123 => 1.0289591191793
1124 => 1.0037368952104
1125 => 0.96793712367622
1126 => 0.94829666097338
1127 => 0.97416080661141
1128 => 0.98995513781825
1129 => 1.0003941860378
1130 => 1.0035530357217
1201 => 0.92416020286211
1202 => 0.8813718692792
1203 => 0.9087987005366
1204 => 0.94226132756942
1205 => 0.92043706296365
1206 => 0.9212925328174
1207 => 0.89017686680541
1208 => 0.94501437357955
1209 => 0.93702501009859
1210 => 0.97847384197077
1211 => 0.96858174559681
1212 => 1.0023816589542
1213 => 0.99348100900875
1214 => 1.0304271093037
1215 => 1.045165908987
1216 => 1.0699146475664
1217 => 1.0881199204109
1218 => 1.0988104048366
1219 => 1.0981685882506
1220 => 1.1405296135233
1221 => 1.1155507969015
1222 => 1.0841715161695
1223 => 1.0836039639814
1224 => 1.0998557381204
1225 => 1.1339149982591
1226 => 1.142746068871
1227 => 1.1476814325863
1228 => 1.1401227512551
1229 => 1.1130100360601
1230 => 1.1013029031035
1231 => 1.1112777195708
]
'min_raw' => 0.41130963623108
'max_raw' => 1.1476814325863
'avg_raw' => 0.77949553440868
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.4113096'
'max' => '$1.14'
'avg' => '$0.779495'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.16283132616108
'max_diff' => 0.59297110944357
'year' => 2036
]
11 => [
'items' => [
101 => 1.099079376177
102 => 1.1201371391254
103 => 1.149053945349
104 => 1.1430827392132
105 => 1.1630435860717
106 => 1.1837009626279
107 => 1.2132419388841
108 => 1.2209650439766
109 => 1.2337310430112
110 => 1.24687144943
111 => 1.2510917938279
112 => 1.2591497407793
113 => 1.2591072714214
114 => 1.2833904369219
115 => 1.3101755204561
116 => 1.3202862694141
117 => 1.3435353791332
118 => 1.3037220934853
119 => 1.3339209279913
120 => 1.3611610326415
121 => 1.3286842568998
122 => 1.3734459261415
123 => 1.3751839203261
124 => 1.4014255690708
125 => 1.3748246307764
126 => 1.3590290785304
127 => 1.404630246013
128 => 1.4266952145345
129 => 1.4200490664451
130 => 1.3694715513244
131 => 1.3400332681525
201 => 1.2629876028708
202 => 1.354251521522
203 => 1.398703514092
204 => 1.3693564314025
205 => 1.3841573928932
206 => 1.4649066395588
207 => 1.4956507245626
208 => 1.4892561697992
209 => 1.4903367442908
210 => 1.5069256945142
211 => 1.5804902355065
212 => 1.5364086573312
213 => 1.570107372141
214 => 1.5879810489664
215 => 1.6045831161126
216 => 1.5638136863387
217 => 1.5107732572247
218 => 1.4939731268386
219 => 1.3664384423968
220 => 1.3597997082165
221 => 1.3560731855469
222 => 1.3325779872421
223 => 1.314117197251
224 => 1.2994364916449
225 => 1.2609099361046
226 => 1.2739115176405
227 => 1.2125082292264
228 => 1.2517918771548
301 => 1.1537907462116
302 => 1.2354090001804
303 => 1.1909878952718
304 => 1.2208154725162
305 => 1.2207114069091
306 => 1.1657893803603
307 => 1.1341115016404
308 => 1.1542978788822
309 => 1.175939277682
310 => 1.1794505218269
311 => 1.2075091602692
312 => 1.21533972314
313 => 1.1916127520674
314 => 1.1517598906011
315 => 1.1610168013727
316 => 1.133923910639
317 => 1.0864446617412
318 => 1.1205450872078
319 => 1.132188471752
320 => 1.1373308536756
321 => 1.0906404654132
322 => 1.0759693317235
323 => 1.0681585432499
324 => 1.1457327477892
325 => 1.1499824378278
326 => 1.128240422745
327 => 1.2265163925815
328 => 1.2042735138772
329 => 1.2291242590275
330 => 1.1601768337466
331 => 1.1628107182423
401 => 1.1301699021828
402 => 1.148446578116
403 => 1.1355292126512
404 => 1.1469700033142
405 => 1.1538275660655
406 => 1.1864630260883
407 => 1.2357816447108
408 => 1.1815883766576
409 => 1.1579755937049
410 => 1.1726248314454
411 => 1.2116376820024
412 => 1.2707441476273
413 => 1.2357519303489
414 => 1.2512808821707
415 => 1.2546732673087
416 => 1.2288713017699
417 => 1.2716955029003
418 => 1.2946453401892
419 => 1.318187124448
420 => 1.338627796094
421 => 1.3087840181201
422 => 1.3407211384897
423 => 1.3149854571325
424 => 1.2918978904491
425 => 1.2919329047577
426 => 1.2774497369217
427 => 1.2493867742429
428 => 1.2442115333619
429 => 1.271133789986
430 => 1.2927228902514
501 => 1.2945010719541
502 => 1.306453907149
503 => 1.3135274718934
504 => 1.3828580224332
505 => 1.4107433433927
506 => 1.4448409860198
507 => 1.4581239394609
508 => 1.4981008671164
509 => 1.4658162512673
510 => 1.4588312715486
511 => 1.36186032141
512 => 1.3777393090627
513 => 1.4031631003893
514 => 1.3622795503648
515 => 1.3882107527593
516 => 1.3933301214099
517 => 1.3608903429792
518 => 1.3782178302791
519 => 1.3322011612525
520 => 1.2367846823466
521 => 1.2718017287175
522 => 1.2975860614569
523 => 1.2607886394525
524 => 1.3267465941385
525 => 1.2882153186595
526 => 1.2760027541601
527 => 1.2283571859541
528 => 1.2508440601012
529 => 1.2812578793662
530 => 1.2624656750464
531 => 1.3014623206736
601 => 1.3566919709072
602 => 1.3960519086462
603 => 1.3990734759315
604 => 1.3737676728763
605 => 1.4143203837717
606 => 1.4146157659982
607 => 1.3688721424455
608 => 1.3408544277211
609 => 1.3344887439859
610 => 1.3503914700222
611 => 1.3697003152354
612 => 1.4001449824581
613 => 1.4185420572416
614 => 1.4665118712225
615 => 1.4794911274834
616 => 1.4937513950495
617 => 1.5128075102215
618 => 1.535689262373
619 => 1.4856252913243
620 => 1.487614426225
621 => 1.4409955495672
622 => 1.3911765940352
623 => 1.4289829712635
624 => 1.4784097803179
625 => 1.4670712157091
626 => 1.4657953955647
627 => 1.4679409711645
628 => 1.4593920637324
629 => 1.4207256722539
630 => 1.4013076525179
701 => 1.4263618520426
702 => 1.4396770440558
703 => 1.4603277456615
704 => 1.4577821108052
705 => 1.5109761004182
706 => 1.531645676279
707 => 1.5263575142728
708 => 1.5273306633487
709 => 1.5647519431371
710 => 1.606372102535
711 => 1.6453548740749
712 => 1.6850098236343
713 => 1.6372042341814
714 => 1.6129315040961
715 => 1.6379747657411
716 => 1.6246864586028
717 => 1.701045012987
718 => 1.7063319136198
719 => 1.7826849464113
720 => 1.8551530664806
721 => 1.8096371386663
722 => 1.8525566085127
723 => 1.8989775144274
724 => 1.9885309734572
725 => 1.9583725189847
726 => 1.9352716155019
727 => 1.9134413733334
728 => 1.9588666418327
729 => 2.0173055240705
730 => 2.0298926995839
731 => 2.0502887325867
801 => 2.0288447977925
802 => 2.0546716552802
803 => 2.1458518111078
804 => 2.1212141281337
805 => 2.0862246576053
806 => 2.158202633596
807 => 2.1842511832997
808 => 2.3670735468519
809 => 2.5978943328518
810 => 2.5023330117968
811 => 2.4430150160735
812 => 2.4569561521101
813 => 2.5412440893806
814 => 2.5683146996664
815 => 2.4947274491105
816 => 2.520719710046
817 => 2.6639396233036
818 => 2.7407725117213
819 => 2.6364231292164
820 => 2.348527321442
821 => 2.0830742386123
822 => 2.1534843496868
823 => 2.1455020281711
824 => 2.2993739579182
825 => 2.120626527543
826 => 2.1236361758472
827 => 2.2806900141483
828 => 2.238790742674
829 => 2.1709192889389
830 => 2.0835697753356
831 => 1.9220961205878
901 => 1.7790744015518
902 => 2.0595729285163
903 => 2.0474773219801
904 => 2.0299610912472
905 => 2.0689415672891
906 => 2.258219694147
907 => 2.2538562206895
908 => 2.226098028816
909 => 2.2471523727026
910 => 2.1672283606593
911 => 2.1878265983988
912 => 2.0830321894877
913 => 2.1304036389166
914 => 2.1707736672818
915 => 2.1788785481645
916 => 2.1971392586389
917 => 2.0411034869641
918 => 2.1111589674765
919 => 2.1523099989668
920 => 1.9663881416066
921 => 2.1486349216311
922 => 2.0383872513275
923 => 2.0009675361621
924 => 2.0513482529598
925 => 2.0317148386268
926 => 2.0148351818962
927 => 2.0054160434111
928 => 2.0424100815106
929 => 2.0406842654158
930 => 1.9801548388517
1001 => 1.901196669394
1002 => 1.9276976227776
1003 => 1.9180695779656
1004 => 1.8831763015243
1005 => 1.9066901568154
1006 => 1.8031470382031
1007 => 1.6250064843335
1008 => 1.7426915908125
1009 => 1.7381608422298
1010 => 1.7358762333414
1011 => 1.8243133382829
1012 => 1.8158121512339
1013 => 1.8003824134961
1014 => 1.8828929222906
1015 => 1.8527754766577
1016 => 1.9455903475357
1017 => 2.0067242243855
1018 => 1.9912186957427
1019 => 2.0487154024055
1020 => 1.9283081512191
1021 => 1.9683026101628
1022 => 1.9765454127212
1023 => 1.8818747554199
1024 => 1.8172030505711
1025 => 1.8128901851691
1026 => 1.7007583612711
1027 => 1.7606582765009
1028 => 1.8133677230763
1029 => 1.788123988585
1030 => 1.7801325763801
1031 => 1.8209589682088
1101 => 1.8241315285082
1102 => 1.7517968174672
1103 => 1.766837494435
1104 => 1.8295596176953
1105 => 1.7652570578572
1106 => 1.6403276878553
1107 => 1.6093434768111
1108 => 1.6052096119055
1109 => 1.521177974165
1110 => 1.6114139899499
1111 => 1.5720235508849
1112 => 1.6964574759212
1113 => 1.625381485293
1114 => 1.6223175413948
1115 => 1.6176859408098
1116 => 1.5453564389033
1117 => 1.5611920030412
1118 => 1.61383183006
1119 => 1.6326143133704
1120 => 1.6306551464808
1121 => 1.6135738661901
1122 => 1.6213935888369
1123 => 1.5962035376196
1124 => 1.5873084062492
1125 => 1.5592329248455
1126 => 1.5179697232319
1127 => 1.5237076244982
1128 => 1.4419544249975
1129 => 1.3974109429389
1130 => 1.3850818941787
1201 => 1.3685949749102
1202 => 1.3869441355801
1203 => 1.4417228284551
1204 => 1.3756481028999
1205 => 1.2623676205385
1206 => 1.269175970549
1207 => 1.2844723116052
1208 => 1.2559676812423
1209 => 1.2289904408161
1210 => 1.252444962634
1211 => 1.2044465289073
1212 => 1.2902726930059
1213 => 1.2879513357921
1214 => 1.3199420223136
1215 => 1.3399464551105
1216 => 1.2938427140257
1217 => 1.2822477478206
1218 => 1.2888527675329
1219 => 1.1796865045528
1220 => 1.311020809636
1221 => 1.3121565941602
1222 => 1.3024313175097
1223 => 1.3723627804748
1224 => 1.5199399795014
1225 => 1.4644155009485
1226 => 1.4429147446166
1227 => 1.4020417911127
1228 => 1.4565025748608
1229 => 1.4523208363896
1230 => 1.4334094291452
1231 => 1.4219717510366
]
'min_raw' => 1.0681585432499
'max_raw' => 2.7407725117213
'avg_raw' => 1.9044655274856
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$1.06'
'max' => '$2.74'
'avg' => '$1.90'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.6568489070188
'max_diff' => 1.593091079135
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.033528276115185
]
1 => [
'year' => 2028
'avg' => 0.057544255141761
]
2 => [
'year' => 2029
'avg' => 0.15720053370438
]
3 => [
'year' => 2030
'avg' => 0.12127997764287
]
4 => [
'year' => 2031
'avg' => 0.11911196810746
]
5 => [
'year' => 2032
'avg' => 0.20884076600832
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.033528276115185
'min' => '$0.033528'
'max_raw' => 0.20884076600832
'max' => '$0.20884'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.20884076600832
]
1 => [
'year' => 2033
'avg' => 0.53715992501613
]
2 => [
'year' => 2034
'avg' => 0.34047777517326
]
3 => [
'year' => 2035
'avg' => 0.40159431660635
]
4 => [
'year' => 2036
'avg' => 0.77949553440868
]
5 => [
'year' => 2037
'avg' => 1.9044655274856
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.20884076600832
'min' => '$0.20884'
'max_raw' => 1.9044655274856
'max' => '$1.90'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 1.9044655274856
]
]
]
]
'prediction_2025_max_price' => '$0.057327'
'last_price' => 0.055586
'sma_50day_nextmonth' => '$0.046747'
'sma_200day_nextmonth' => '$0.067052'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'augmenter'
'sma_200day_date_nextmonth' => '4 févr. 2026'
'sma_50day_date_nextmonth' => '4 févr. 2026'
'daily_sma3' => '$0.045994'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.043655'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.041476'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.040239'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.044612'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.054316'
'daily_sma100_action' => 'BUY'
'daily_sma200' => '$0.074986'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.048329'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.045657'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.043036'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.042211'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.045737'
'daily_ema50_action' => 'BUY'
'daily_ema100' => '$0.054456'
'daily_ema100_action' => 'BUY'
'daily_ema200' => '$0.067739'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.062716'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.080991'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.104662'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.178524'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.0481025'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.046805'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.0497097'
'weekly_ema10_action' => 'BUY'
'weekly_ema21' => '$0.0601098'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.078637'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.105614'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.129049'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '77.68'
'rsi_14_action' => 'SELL'
'stoch_rsi_14' => 161
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0.02
'momentum_10_action' => 'BUY'
'vwma_10' => '0.052467'
'vwma_10_action' => 'BUY'
'hma_9' => '0.0458026'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 510.89
'cci_20_action' => 'SELL'
'adx_14' => 25.42
'adx_14_action' => 'SELL'
'ao_5_34' => '0.001035'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 87.73
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '-0.007656'
'ichimoku_cloud_action' => 'NEUTRAL'
'sell_signals' => 12
'buy_signals' => 24
'sell_pct' => 33.33
'buy_pct' => 66.67
'overall_action' => 'bullish'
'overall_action_label' => 'Haussier'
'overall_action_dir' => 1
'last_updated' => 1767694393
'last_updated_date' => '6 janvier 2026'
]
Prévision du prix de BORA pour 2026
La prévision du prix de BORA pour 2026 suggère que le prix moyen pourrait varier entre $0.0192049 à la baisse et $0.057327 à la hausse. Sur le marché des cryptomonnaies, comparé au prix moyen d'aujourd'hui, BORA pourrait potentiellement gagner 3.13% d'ici 2026 si BORA atteint l'objectif de prix prévu.
Prévision du prix de BORA de 2027 à 2032
La prévision du prix de BORA pour 2027-2032 se situe actuellement dans une fourchette de prix comprise entre $0.033528 à la baisse et $0.20884 à la hausse. Compte tenu de la volatilité des prix sur le marché, si BORA atteint l'objectif de prix le plus élevé, il pourrait gagner 275.71% d'ici 2032 par rapport au prix actuel.
| Prévision du Prix de BORA | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2027 | $0.018488 | $0.033528 | $0.048568 |
| 2028 | $0.033365 | $0.057544 | $0.081722 |
| 2029 | $0.073294 | $0.15720053 | $0.2411063 |
| 2030 | $0.062334 | $0.121279 | $0.180225 |
| 2031 | $0.073698 | $0.119111 | $0.164525 |
| 2032 | $0.112494 | $0.20884 | $0.305186 |
Prévision du prix de BORA de 2032 à 2037
La prévision du prix de BORA pour 2032-2037 est actuellement estimée entre $0.20884 à la baisse et $1.90 à la hausse. Par rapport au prix actuel, BORA pourrait potentiellement gagner 3326.16% d'ici 2037 s'il atteint l'objectif de prix le plus élevé. Veuillez noter que ces informations sont à titre général seulement et ne doivent pas être considérées comme un conseil en investissement à long terme.
| Prévision du Prix de BORA | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2032 | $0.112494 | $0.20884 | $0.305186 |
| 2033 | $0.261412 | $0.537159 | $0.8129069 |
| 2034 | $0.210163 | $0.340477 | $0.470792 |
| 2035 | $0.248478 | $0.401594 | $0.55471 |
| 2036 | $0.4113096 | $0.779495 | $1.14 |
| 2037 | $1.06 | $1.90 | $2.74 |
BORA Histogramme des prix potentiels
Prévision du prix de BORA basée sur l'analyse technique
Au 6 janvier 2026, le sentiment global de prévision du prix pour BORA est Haussier, avec 24 indicateurs techniques montrant des signaux haussiers et 12 indiquant des signaux baissiers. La prévision du prix de BORA a été mise à jour pour la dernière fois le 6 janvier 2026.
Moyennes Mobiles Simples sur 50 et 200 jours de BORA et Indice de Force Relative sur 14 jours - RSI (14)
Selon nos indicateurs techniques, le SMA sur 200 jours de BORA devrait augmenter au cours du prochain mois, atteignant $0.067052 d'ici le 4 févr. 2026. Le SMA à court terme sur 50 jours pour BORA devrait atteindre $0.046747 d'ici le 4 févr. 2026.
Le Relative Strength Index (RSI), un oscillateur de momentum, est un outil couramment utilisé pour identifier si une cryptomonnaie est survendue (en dessous de 30) ou surachetée (au-dessus de 70). Actuellement, le RSI est à 77.68, ce qui suggère que le marché de BORA est dans un état SELL.
Moyennes Mobiles et Oscillateurs Populaires de BORA pour le Samedi 19 Octobre 2024
Les moyennes mobiles (MA) sont des indicateurs largement utilisés sur les marchés financiers, conçus pour lisser les mouvements de prix sur une période donnée. En tant qu'indicateurs retardés, ils sont basés sur des données historiques de prix. Le tableau ci-dessous met en évidence deux types : la moyenne mobile simple (SMA) et la moyenne mobile exponentielle (EMA).
Moyenne Mobile Simple Quotidienne (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 3 | $0.045994 | BUY |
| SMA 5 | $0.043655 | BUY |
| SMA 10 | $0.041476 | BUY |
| SMA 21 | $0.040239 | BUY |
| SMA 50 | $0.044612 | BUY |
| SMA 100 | $0.054316 | BUY |
| SMA 200 | $0.074986 | SELL |
Moyenne Mobile Exponentielle Quotidienne (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 3 | $0.048329 | BUY |
| EMA 5 | $0.045657 | BUY |
| EMA 10 | $0.043036 | BUY |
| EMA 21 | $0.042211 | BUY |
| EMA 50 | $0.045737 | BUY |
| EMA 100 | $0.054456 | BUY |
| EMA 200 | $0.067739 | SELL |
Moyenne Mobile Simple Hebdomadaire (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 21 | $0.062716 | SELL |
| SMA 50 | $0.080991 | SELL |
| SMA 100 | $0.104662 | SELL |
| SMA 200 | $0.178524 | SELL |
Moyenne Mobile Exponentielle Hebdomadaire (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 21 | $0.0601098 | SELL |
| EMA 50 | $0.078637 | SELL |
| EMA 100 | $0.105614 | SELL |
| EMA 200 | $0.129049 | SELL |
Oscillateurs de BORA
Un oscillateur est un outil d'analyse technique qui établit des limites hautes et basses entre deux extrêmes, créant un indicateur de tendance qui fluctue à l'intérieur de ces limites. Les traders utilisent cet indicateur pour identifier les conditions de surachat ou de survente à court terme.
| Période | Valeur | Action |
|---|---|---|
| RSI (14) | 77.68 | SELL |
| Stoch RSI (14) | 161 | SELL |
| Stochastique Rapide (14) | 100 | SELL |
| Indice de Canal des Matières Premières (20) | 510.89 | SELL |
| Indice Directionnel Moyen (14) | 25.42 | SELL |
| Oscillateur Impressionnant (5, 34) | 0.001035 | BUY |
| Momentum (10) | 0.02 | BUY |
| MACD (12, 26) | 0 | BUY |
| Plage de Pourcentage de Williams (14) | -0 | SELL |
| Oscillateur Ultime (7, 14, 28) | 87.73 | SELL |
| VWMA (10) | 0.052467 | BUY |
| Moyenne Mobile de Hull (9) | 0.0458026 | BUY |
| Nuage Ichimoku B/L (9, 26, 52, 26) | -0.007656 | NEUTRAL |
Prévision du cours de BORA basée sur les flux monétaires mondiaux
Définitions des flux monétaires mondiaux utilisés pour la prédiction du cours de BORA
M0 : le total de toutes les devises physiques, plus les comptes à la banque centrale qui peuvent être échangés contre des devises physiques.
M1 : M0 plus le montant des comptes à vue, y compris les comptes de "chèques" et les comptes "courants".
M2 : M1 plus la plupart des comptes d'épargne, comptes du marché monétaire et comptes de certificats de dépôt (CD) de moins de 100 000 $.
Prédictions du cours de BORA par des sociétés Internet ou des niches technologiques
| Comparaison | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Action Facebook | $0.0781076 | $0.109754 | $0.154223 | $0.2167091 | $0.304512 | $0.42789 |
| Action Amazon.com | $0.115983 | $0.2420064 | $0.50496 | $1.05 | $2.19 | $4.58 |
| Action Apple | $0.078844 | $0.111834 | $0.158629 | $0.2250035 | $0.31915 | $0.45269 |
| Action Netflix | $0.0877059 | $0.138386 | $0.218351 | $0.344525 | $0.5436066 | $0.857726 |
| Action Google | $0.071983 | $0.093218 | $0.120717 | $0.156328 | $0.202444 | $0.262165 |
| Action Tesla | $0.1260092 | $0.285653 | $0.647554 | $1.46 | $3.32 | $7.54 |
| Action Kodak | $0.041683 | $0.031258 | $0.02344 | $0.017577 | $0.013181 | $0.009884 |
| Action Nokia | $0.036823 | $0.024393 | $0.016159 | $0.0107053 | $0.007091 | $0.004698 |
Ce calcul montre la valeur potentielle des cryptomonnaies si l'on suppose que leur capitalisation se comportera comme celle de certaines sociétés Internet ou niches technologiques. En extrapolant les données, vous pourrez obtenir une potentielle image des cours futurs pour 2024, 2025, 2026, 2027, 2028, 2029 et 2030.
Aperçu des prévisions relatives à BORA
Vous vous posez peut-être des questions telles que : "Devrais-je investir dans BORA maintenant ?", "Devrais-je acheter BORA aujourd'hui ?", " BORA sera-t-il un bon ou un mauvais investissement à court ou à long terme ?".
Nous mettons régulièrement à jour les prévisions de BORA avec de nouvelles valeurs. Regardez nos prévisions similaires. Nous faisons une prévision des cours futurs pour une grande quantité de devises numériques comme BORA en utilisant des méthodes d'analyse technique.
Si vous souhaitez trouver des cryptomonnaies ayant un bon rendement, vous devriez consulter un maximum d'informations disponibles à propos de BORA afin de prendre une décision responsable concernant cet investissement.
Le cours de BORA est de $0.05558 USD actuellement, mais ce cours peut subir une hausse ou une baisse, ce qui pourrait causer la perte de votre investissement, car les cryptomonnaies sont des actifs à haut risque.
Prévision du cours de BORA basée sur le modèle de croissance du Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si BORA présente 1 % de la précédente croissance annuelle moyenne du Bitcoin | $0.05703 | $0.058513 | $0.060034 | $0.061594 |
| Si BORA présente 2 % de la précédente croissance annuelle moyenne du Bitcoin | $0.058475 | $0.061515 | $0.064713 | $0.068077 |
| Si BORA présente 5 % de la précédente croissance annuelle moyenne du Bitcoin | $0.06281 | $0.070973 | $0.080197 | $0.09062 |
| Si BORA présente 10 % de la précédente croissance annuelle moyenne du Bitcoin | $0.070034 | $0.088238 | $0.111174 | $0.140072 |
| Si BORA présente 20 % de la précédente croissance annuelle moyenne du Bitcoin | $0.084483 | $0.1284029 | $0.195155 | $0.2966092 |
| Si BORA présente 50 % de la précédente croissance annuelle moyenne du Bitcoin | $0.127828 | $0.293963 | $0.676015 | $1.55 |
| Si BORA présente 100 % de la précédente croissance annuelle moyenne du Bitcoin | $0.200071 | $0.720122 | $2.59 | $9.32 |
Boîte à questions
Est-ce que BORA est un bon investissement ?
La décision d'acquérir BORA dépend entièrement de votre tolérance individuelle au risque. Comme vous pouvez le discerner, la valeur de BORA a connu une hausse de 30.0189% au cours des 24 heures précédentes, et BORA a enregistré une déclin de sur une période de 30 jours précédents. Par conséquent, la détermination de si investir ou non dans BORA dépendra de la mesure dans laquelle cet investissement s'aligne avec vos aspirations de trading.
Est-ce que BORA peut monter ?
Il semble que la valeur moyenne de BORA pourrait potentiellement s'envoler jusqu'à $0.057327 pour la fin de cette année. En regardant les perspectives de BORA sur une période de cinq ans plus longue, la monnaie numérique pourrait potentiellement croître jusqu'à $0.180225. Cependant, compte tenu de l'imprévisibilité du marché, il est essentiel de mener des recherches approfondies avant d'investir des fonds dans un projet, un réseau ou un actif particulier.
Quel sera le prix de BORA la semaine prochaine ?
Basé sur notre nouveau pronostic expérimental de BORA, le prix de BORA va augmenter de 0.86% durant la prochaine semaine et atteindre $0.0560616 d'ici 13 janvier 2026.
Quel sera le prix de BORA le mois prochain ?
Basé sur notre nouveau pronostic expérimental de BORA, le prix de BORA va diminuer de -11.62% durant le prochain mois et atteindre $0.049128 d'ici 5 février 2026.
Jusqu'où le prix de BORA peut-il monter cette année en 2026 ?
Selon notre prédiction la plus récente sur la valeur de BORA en 2026, BORA devrait fluctuer dans la fourchette de $0.0192049 et $0.057327. Cependant, il est crucial de garder à l'esprit que le marché des cryptomonnaies est exceptionnellement instable, et cette prévision de prix de BORA ne prend pas en compte les fluctuations de prix soudaines et extrêmes.
Où sera BORA dans 5 ans ?
L'avenir de BORA semble suivre une tendance haussière, avec un prix maximum de $0.180225 prévue après une période de cinq ans. Selon la prévision de BORA pour 2030, la valeur de BORA pourrait potentiellement atteindre son point le plus élevé d'environ $0.180225, tandis que son point le plus bas devrait être autour de $0.062334.
Combien vaudra BORA en 2026 ?
Basé sur notre nouvelle simulation expérimentale de prédiction de prix de BORA, il est attendu que la valeur de BORA en 2026 augmente de 3.13% jusqu'à $0.057327 si le meilleur scénario se produit. Le prix sera entre $0.057327 et $0.0192049 durant 2026.
Combien vaudra BORA en 2027 ?
Selon notre dernière simulation expérimentale pour la prédiction de prix de BORA, le valeur de BORA pourrait diminuer de -12.62% jusqu'à $0.048568 en 2027, en supposant les conditions les plus favorables. Il est prévu que le prix fluctue entre $0.048568 et $0.018488 tout au long de l'année.
Combien vaudra BORA en 2028 ?
Notre nouveau modèle expérimental de prédiction de prix de BORA suggère que la valeur de BORA en 2028 pourrait augmenter de 47.02%, atteignant $0.081722 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.081722 et $0.033365 durant l'année.
Combien vaudra BORA en 2029 ?
Basé sur notre modèle de prévision expérimental, la valeur de BORA pourrait connaître un 333.75% croissance en 2029, atteignant potentiellement $0.2411063 sous des conditions optimales. Le range de prix prévu pour 2029 se situe entre $0.2411063 et $0.073294.
Combien vaudra BORA en 2030 ?
En utilisant notre nouvelle simulation expérimentale pour les prédictions de prix de BORA, il est prévu que la valeur de BORA en 2030 augmente de 224.23%, atteignant $0.180225 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.180225 et $0.062334 au cours de 2030.
Combien vaudra BORA en 2031 ?
Notre simulation expérimentale indique que le prix de BORA pourrait augmenter de 195.98% en 2031, atteignant potentiellement $0.164525 dans des conditions idéales. Il est probable que le prix fluctue entre $0.164525 et $0.073698 durant l'année.
Combien vaudra BORA en 2032 ?
Basé sur les résultats de notre dernière prédiction expérimentale de prix de BORA, BORA pourrait connaître une 449.04% hausse en valeur, atteignant $0.305186 si le scénario le plus positif se réalise en 2032. Il est prévu que le prix reste dans une fourchette de $0.305186 et $0.112494 tout au long de l'année.
Combien vaudra BORA en 2033 ?
Selon notre prédiction expérimentale de prix de BORA, la valeur de BORA est anticipée à augmenter de 1362.43% en 2033, avec le prix potentiel le plus élevé étant $0.8129069. Tout au long de l'année, le prix de BORA pourrait osciller entre $0.8129069 et $0.261412.
Combien vaudra BORA en 2034 ?
Les résultats de notre nouvelle simulation de prédiction de prix de BORA suggèrent que BORA pourrait augmenter de 746.96% en 2034, atteignant potentiellement $0.470792 dans les meilleures circonstances. La fourchette de prix prévue pour l'année est entre $0.470792 et $0.210163.
Combien vaudra BORA en 2035 ?
Basé sur notre prédiction expérimentale pour le prix de BORA, BORA pourrait augmenter de 897.93%, avec la valeur potentiellement atteignant $0.55471 en 2035. La fourchette de prix attendue pour l'année se situe entre $0.55471 et $0.248478.
Combien vaudra BORA en 2036 ?
Notre récente simulation de prédiction de prix de BORA suggère que la valeur de BORA pourrait augmenter de 1964.7% en 2036, pouvant atteindre $1.14 si les conditions sont optimales. La fourchette de prix attendue pour 2036 est entre $1.14 et $0.4113096.
Combien vaudra BORA en 2037 ?
Selon la simulation expérimentale, la valeur de BORA pourrait augmenter de 4830.69% en 2037, avec un maximum de $2.74 sous des conditions favorables. Il est prévu que le prix chute entre $2.74 et $1.06 au cours de l'année.
Prévisions liées
Prévision du cours de TokenFi
Prévision du cours de Celer Network
Prévision du cours de Power Ledger
Prévision du cours de Entangle
Prévision du cours de Boba Network
Prévision du cours de Nano
Prévision du cours de Tectum
Prévision du cours de GXChain
Prévision du cours de ECOMI
Prévision du cours de Songbird
Prévision du cours de NodeAI
Prévision du cours de Sleepless AI
Prévision du cours de Hooked Protocol
Prévision du cours de Orbs
Prévision du cours de Status
Prévision du cours de Bluzelle
Prévision du cours de SMARDEX
Prévision du cours de Slerf [OLD]
Prévision du cours de ConstitutionDAO
Prévision du cours de Victoria VR
Prévision du cours de Dent
Prévision du cours de Bone ShibaSwap
Prévision du cours de Milady Meme Coin
Prévision du cours de tBTC
Prévision du cours de inSure DeFi
Comment lire et prédire les mouvements de prix de BORA ?
Les traders de BORA utilisent des indicateurs et des modèles graphiques pour prédire la direction du marché. Ils identifient également des niveaux clés de support et de résistance pour évaluer quand une tendance baissière pourrait ralentir ou une tendance haussière pourrait s'arrêter.
Indicateurs de prédiction du prix de BORA
Les moyennes mobiles sont des outils populaires pour la prédiction du prix de BORA. Une moyenne mobile simple (SMA) calcule le prix de clôture moyen de BORA sur une période spécifique, comme une SMA de 12 jours. Une moyenne mobile exponentielle (EMA) donne plus de poids aux prix récents, réagissant plus rapidement aux changements de prix.
Les moyennes mobiles couramment utilisées sur le marché des cryptomonnaies incluent les moyennes sur 50 jours, 100 jours et 200 jours, qui aident à identifier les niveaux clés de résistance et de support. Un mouvement de prix de BORA au-dessus de ces moyennes est considéré comme haussier, tandis qu'une chute en dessous indique une faiblesse.
Les traders utilisent également le RSI et les niveaux de retracement de Fibonacci pour évaluer la direction future de BORA.
Comment lire les graphiques de BORA et prédire les mouvements de prix ?
La plupart des traders préfèrent les graphiques en chandeliers aux simples graphiques linéaires parce qu'ils fournissent des informations plus détaillées. Les chandeliers peuvent représenter l'action des prix de BORA dans différentes périodes, comme 5 minutes pour les tendances à court terme et hebdomadaire pour les tendances à long terme. Les options populaires incluent les graphiques de 1 heure, 4 heures et 1 jour.
Par exemple, un graphique en chandeliers de 1 heure montre les prix d'ouverture, de clôture, les plus hauts et les plus bas de BORA au sein de chaque heure. La couleur du chandelier est cruciale : le vert indique que le prix a clôturé plus haut qu'il n'a ouvert, tandis que le rouge signifie le contraire. Certains graphiques utilisent des chandeliers creux et pleins pour transmettre la même information.
Qu'est-ce qui affecte le prix de BORA ?
L'action du prix de BORA est déterminée par l'offre et la demande, influencée par des facteurs tels que les réductions de récompenses de bloc, les hard forks et les mises à jour de protocole. Les événements du monde réel, tels que les réglementations, l'adoption par les entreprises et les gouvernements et les piratages d'échanges de cryptomonnaies, impactent également le prix de BORA. La capitalisation boursière de BORA peut changer rapidement.
Les traders surveillent souvent l'activité des « baleines » de BORA, de grands détenteurs de BORA, car leurs actions peuvent influencer significativement les mouvements de prix sur le marché relativement petit de BORA.
Modèles de prédiction de prix haussiers et baissiers
Les traders identifient souvent des modèles de chandeliers pour obtenir un avantage dans les prédictions de prix des cryptomonnaies. Certaines formations indiquent des tendances haussières, tandis que d'autres suggèrent des mouvements baissiers.
Modèles de chandeliers haussiers couramment suivis :
- Marteau
- Englobante haussière
- Ligne pénétrante
- Étoile du matin
- Trois soldats blancs
Modèles de chandeliers baissiers courants :
- Harami baissier
- Nuage sombre
- Étoile du soir
- Étoile filante
- Pendu


