Predicción del precio de BORA - Pronóstico de BORA
Predicción de precio de BORA hasta $0.051542 para el año 2026
| Año | Precio min. | Precio max. |
|---|---|---|
| 2026 | $0.017267 | $0.051542 |
| 2027 | $0.016622 | $0.043667 |
| 2028 | $0.029998 | $0.073476 |
| 2029 | $0.065898 | $0.216777 |
| 2030 | $0.056044 | $0.16204 |
| 2031 | $0.066261 | $0.147924 |
| 2032 | $0.101143 | $0.274392 |
| 2033 | $0.235035 | $0.73088 |
| 2034 | $0.188956 | $0.423286 |
| 2035 | $0.2234056 | $0.498737 |
Calculadora de ganancias de inversión
Si abres una posición corta de $10,000.00 en BORA hoy y la cierras el Apr 06, 2026, nuestra previsión indica que podrías obtener una ganancia de alrededor de $3,954.43, equivalente a un ROI del 39.54% en los próximos 90 días.
Predicción del precio a largo plazo de BORA para 2027, 2028, 2029, 2030, 2031, 2032 y 2037
[
'name' => 'BORA'
'name_with_ticker' => 'BORA <small>BORA</small>'
'name_lang' => 'BORA'
'name_lang_with_ticker' => 'BORA <small>BORA</small>'
'name_with_lang' => 'BORA'
'name_with_lang_with_ticker' => 'BORA <small>BORA</small>'
'image' => '/uploads/coins/bora.jpeg?1717130501'
'price_for_sd' => 0.04997
'ticker' => 'BORA'
'marketcap' => '$57.6M'
'low24h' => '$0.04249'
'high24h' => '$0.05321'
'volume24h' => '$39.74M'
'current_supply' => '1.15B'
'max_supply' => '1.21B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.04997'
'change_24h_pct' => '16.9741%'
'ath_price' => '$1.61'
'ath_days' => 1503
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '25 nov. 2021'
'ath_pct' => '-96.91%'
'fdv' => '$60.25M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$2.46'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.050404'
'next_week_prediction_price_date' => '13 de enero de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.04417'
'next_month_prediction_price_date' => '5 de febrero de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.017267'
'current_year_max_price_prediction' => '$0.051542'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.056044'
'grand_prediction_max_price' => '$0.16204'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.05092414994654
107 => 0.051114282236974
108 => 0.051542659995717
109 => 0.047882218949487
110 => 0.049525649514342
111 => 0.050491011002574
112 => 0.046129472678589
113 => 0.050404797413324
114 => 0.047818498814619
115 => 0.046940670225317
116 => 0.048122550775689
117 => 0.047661970775793
118 => 0.047265991138047
119 => 0.047045027696391
120 => 0.047912870333188
121 => 0.047872384436885
122 => 0.046452425442088
123 => 0.044600146818308
124 => 0.045221832323421
125 => 0.044995968151081
126 => 0.044177407253461
127 => 0.044729018465037
128 => 0.042300001853301
129 => 0.038121005022105
130 => 0.040881778334928
131 => 0.040775491565527
201 => 0.040721896956675
202 => 0.042796541799091
203 => 0.042597112567693
204 => 0.042235146559888
205 => 0.04417075946387
206 => 0.043464234716249
207 => 0.04564157751025
208 => 0.047075716296082
209 => 0.046711972310466
210 => 0.048060786770334
211 => 0.045236154701831
212 => 0.046174384170419
213 => 0.046367751963565
214 => 0.044146874301092
215 => 0.042629741656332
216 => 0.042528566205505
217 => 0.039898067273248
218 => 0.041303258570214
219 => 0.042539768760778
220 => 0.041947576336565
221 => 0.041760105906305
222 => 0.042717851677129
223 => 0.04279227672606
224 => 0.041095377723223
225 => 0.041448216759715
226 => 0.042919614196499
227 => 0.041411141319525
228 => 0.038480424927212
301 => 0.037753566741594
302 => 0.037656590460978
303 => 0.035685293413732
304 => 0.037802138881164
305 => 0.036878079106699
306 => 0.0397971728623
307 => 0.038129802164514
308 => 0.038057925146264
309 => 0.037949272491113
310 => 0.036252495689294
311 => 0.036623981973101
312 => 0.037858858959435
313 => 0.038299476980044
314 => 0.038253516910617
315 => 0.037852807388517
316 => 0.03803625015577
317 => 0.037445317086752
318 => 0.037236646320873
319 => 0.036578023984345
320 => 0.035610031098712
321 => 0.035744636446505
322 => 0.03382678925095
323 => 0.032781844310957
324 => 0.03249261732372
325 => 0.032105850908759
326 => 0.032536303619436
327 => 0.03382135623081
328 => 0.032271310142373
329 => 0.02961386484684
330 => 0.029773581837168
331 => 0.030132418494035
401 => 0.029463728757905
402 => 0.028830870041534
403 => 0.029381089349968
404 => 0.028255094745768
405 => 0.030268489562449
406 => 0.030214032875132
407 => 0.03096450195529
408 => 0.031433785672289
409 => 0.030352238637014
410 => 0.030080232482457
411 => 0.030235179550083
412 => 0.027674249671077
413 => 0.030755219348381
414 => 0.03078186370209
415 => 0.030553718569374
416 => 0.032194239808272
417 => 0.035656251313751
418 => 0.0343537033263
419 => 0.033849317375837
420 => 0.032890479315304
421 => 0.034168074100794
422 => 0.034069974754852
423 => 0.033626332309429
424 => 0.033358015974188
425 => 0.033852397048897
426 => 0.033296756687958
427 => 0.033196948411158
428 => 0.032592218846223
429 => 0.032376357904983
430 => 0.032216543057761
501 => 0.032040602614052
502 => 0.032428683391247
503 => 0.031549241293844
504 => 0.030488720337149
505 => 0.030400549494595
506 => 0.030643996942945
507 => 0.030536289569581
508 => 0.030400033833129
509 => 0.030139884525201
510 => 0.03006270378275
511 => 0.030313503752945
512 => 0.030030365209141
513 => 0.030448151553878
514 => 0.030334536785282
515 => 0.029699893923608
516 => 0.02890889394308
517 => 0.028901852384075
518 => 0.02873143273577
519 => 0.028514377690889
520 => 0.028453997942949
521 => 0.029334751414498
522 => 0.031157884741871
523 => 0.030799960045825
524 => 0.031058597320316
525 => 0.032330836728097
526 => 0.032735243378257
527 => 0.03244820511687
528 => 0.032055289440935
529 => 0.032072575736595
530 => 0.033415287544929
531 => 0.033499030833411
601 => 0.033710623106797
602 => 0.033982578974066
603 => 0.032494520377036
604 => 0.032002488310494
605 => 0.031769336220466
606 => 0.031051318024395
607 => 0.03182563909063
608 => 0.031374475365069
609 => 0.031435352765595
610 => 0.031395706278639
611 => 0.031417355941401
612 => 0.030267926777565
613 => 0.030686718352648
614 => 0.02999039613311
615 => 0.029058098846986
616 => 0.029054973459578
617 => 0.029283151899572
618 => 0.02914742243484
619 => 0.028782177935171
620 => 0.028834059192443
621 => 0.02837952478671
622 => 0.02888924789891
623 => 0.028903864933891
624 => 0.028707593770889
625 => 0.029492892553467
626 => 0.029814630105432
627 => 0.029685440221408
628 => 0.029805565798775
629 => 0.030814833432878
630 => 0.030979388094671
701 => 0.031052472405569
702 => 0.030954549110782
703 => 0.029824013358388
704 => 0.029874157426416
705 => 0.029506233526339
706 => 0.02919537660164
707 => 0.029207809248398
708 => 0.029367630116265
709 => 0.030065577219611
710 => 0.031534365752372
711 => 0.03159010520352
712 => 0.031657663044346
713 => 0.031382871353857
714 => 0.031299991550603
715 => 0.031409331404187
716 => 0.03196093115186
717 => 0.033379795460746
718 => 0.032878274051225
719 => 0.032470529338638
720 => 0.032828231378762
721 => 0.032773165953446
722 => 0.032308358347896
723 => 0.032295312746498
724 => 0.031403198343466
725 => 0.031073403961128
726 => 0.030797803090564
727 => 0.030496854134651
728 => 0.030318441505685
729 => 0.030592564390866
730 => 0.030655259538033
731 => 0.030055885058738
801 => 0.029974192531975
802 => 0.030463654670164
803 => 0.030248260632135
804 => 0.030469798741763
805 => 0.030521197483516
806 => 0.03051292110228
807 => 0.03028802498873
808 => 0.030431367065008
809 => 0.03009232032228
810 => 0.029723657912737
811 => 0.029488474263929
812 => 0.029283245337759
813 => 0.029397118273973
814 => 0.028991182048747
815 => 0.028861314880415
816 => 0.030382805994864
817 => 0.031506747839893
818 => 0.031490405280336
819 => 0.031390924152001
820 => 0.031243115374305
821 => 0.031950118019128
822 => 0.031703812434636
823 => 0.031883020326874
824 => 0.03192863625678
825 => 0.032066701937967
826 => 0.032116048551845
827 => 0.031966888811279
828 => 0.031466290503609
829 => 0.030218847116357
830 => 0.029638158852181
831 => 0.029446522052875
901 => 0.02945348768656
902 => 0.029261344413579
903 => 0.029317939218729
904 => 0.029241663049966
905 => 0.029097214439515
906 => 0.029388198979323
907 => 0.029421732236828
908 => 0.02935381296823
909 => 0.029369810414698
910 => 0.028807467879409
911 => 0.028850221561023
912 => 0.02861216362892
913 => 0.028567530636482
914 => 0.0279657409142
915 => 0.026899583190363
916 => 0.027490338063803
917 => 0.026776789249393
918 => 0.026506557501347
919 => 0.027785792566938
920 => 0.02765739284681
921 => 0.027437628339968
922 => 0.027112550831412
923 => 0.026991976421338
924 => 0.026259404474949
925 => 0.026216120216237
926 => 0.026579202653974
927 => 0.026411652601862
928 => 0.02617634887253
929 => 0.025324102617246
930 => 0.024365895657269
1001 => 0.024394817902317
1002 => 0.024699605708211
1003 => 0.025585817360085
1004 => 0.025239559136081
1005 => 0.02498834482171
1006 => 0.024941299932103
1007 => 0.025530165220683
1008 => 0.026363532975114
1009 => 0.026754530479941
1010 => 0.026367063827429
1011 => 0.025921962999708
1012 => 0.025949054224693
1013 => 0.026129280007433
1014 => 0.026148219188944
1015 => 0.025858504307203
1016 => 0.025940057349398
1017 => 0.025816170820936
1018 => 0.025055879424444
1019 => 0.025042128163992
1020 => 0.024855540393938
1021 => 0.024849890590415
1022 => 0.024532458247052
1023 => 0.02448804726791
1024 => 0.023857766083397
1025 => 0.024272619067711
1026 => 0.023994357466592
1027 => 0.023574951598431
1028 => 0.023502645868677
1029 => 0.023500472271128
1030 => 0.023931108320294
1031 => 0.024267586834747
1101 => 0.023999197946278
1102 => 0.023938090998873
1103 => 0.024590553328342
1104 => 0.024507521549591
1105 => 0.02443561656469
1106 => 0.026288914033163
1107 => 0.024821884472262
1108 => 0.024182175848589
1109 => 0.023390414949422
1110 => 0.023648216290596
1111 => 0.023702538821071
1112 => 0.021798496584202
1113 => 0.021026026885838
1114 => 0.020760944395265
1115 => 0.020608385674225
1116 => 0.020677908599115
1117 => 0.019982595268928
1118 => 0.020449857326235
1119 => 0.019847774755666
1120 => 0.019746833653364
1121 => 0.020823431873259
1122 => 0.020973234226162
1123 => 0.020334130848735
1124 => 0.020744538678481
1125 => 0.02059571909432
1126 => 0.019858095733256
1127 => 0.019829923946454
1128 => 0.019459810472587
1129 => 0.018880654554076
1130 => 0.018615964758489
1201 => 0.018478112014805
1202 => 0.018534992743545
1203 => 0.018506232106515
1204 => 0.018318549495448
1205 => 0.018516989854088
1206 => 0.018010056738981
1207 => 0.017808191887908
1208 => 0.017717014217907
1209 => 0.017267081900269
1210 => 0.017983124303442
1211 => 0.018124193677331
1212 => 0.018265541001466
1213 => 0.019495872956141
1214 => 0.019434409048568
1215 => 0.019990012838896
1216 => 0.019968423097293
1217 => 0.019809955896107
1218 => 0.019141408840892
1219 => 0.019407879781395
1220 => 0.018587723645304
1221 => 0.01920224038766
1222 => 0.018921800609281
1223 => 0.019107423416493
1224 => 0.018773656872193
1225 => 0.018958377058691
1226 => 0.018157646459209
1227 => 0.017409935491996
1228 => 0.017710836212246
1229 => 0.01803794970733
1230 => 0.018747215111639
1231 => 0.018324782488145
]
'min_raw' => 0.017267081900269
'max_raw' => 0.051542659995717
'avg_raw' => 0.034404870947993
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.017267'
'max' => '$0.051542'
'avg' => '$0.0344048'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.032710028099731
'max_diff' => 0.0015655499957172
'year' => 2026
]
1 => [
'items' => [
101 => 0.0184767052335
102 => 0.017967789468123
103 => 0.016917750879548
104 => 0.016923693983926
105 => 0.016762168423407
106 => 0.016622586756002
107 => 0.018373303956567
108 => 0.018155574597933
109 => 0.017808651360665
110 => 0.01827302189993
111 => 0.018395808841063
112 => 0.018399304412659
113 => 0.018738097170969
114 => 0.018918910926811
115 => 0.018950780134969
116 => 0.019483877860272
117 => 0.019662565186064
118 => 0.020398552992225
119 => 0.018903570142903
120 => 0.018872781954922
121 => 0.018279556545723
122 => 0.017903323612686
123 => 0.018305317536529
124 => 0.018661429275411
125 => 0.018290621930107
126 => 0.018339041541234
127 => 0.017841262976236
128 => 0.018019195390564
129 => 0.018172454755868
130 => 0.018087833942517
131 => 0.017961152489235
201 => 0.018632232173867
202 => 0.018594367228078
203 => 0.019219292058463
204 => 0.019706465652551
205 => 0.020579567825854
206 => 0.019668440192167
207 => 0.019635235079791
208 => 0.019959820379533
209 => 0.019662515493746
210 => 0.019850401918947
211 => 0.020549296418041
212 => 0.020564062957503
213 => 0.020316704395898
214 => 0.020301652604944
215 => 0.020349160522507
216 => 0.020627415879553
217 => 0.020530184907877
218 => 0.020642703049887
219 => 0.020783408709409
220 => 0.021365426975156
221 => 0.021505749608615
222 => 0.021164838358255
223 => 0.021195618827141
224 => 0.021068108661284
225 => 0.020944935438763
226 => 0.021221810854985
227 => 0.02172780612013
228 => 0.021724658349847
301 => 0.021842039416218
302 => 0.02191516684813
303 => 0.021601250377812
304 => 0.021396902298663
305 => 0.021475262355215
306 => 0.021600561792101
307 => 0.021434629436576
308 => 0.020410418070934
309 => 0.020721098372394
310 => 0.020669385978741
311 => 0.020595741241736
312 => 0.020908132687274
313 => 0.020878001770268
314 => 0.019975463825738
315 => 0.020033241376669
316 => 0.019978977469975
317 => 0.020154315253855
318 => 0.019653046678007
319 => 0.019807233515842
320 => 0.019903938055121
321 => 0.019960897771675
322 => 0.020166675325513
323 => 0.020142529704646
324 => 0.020165174399818
325 => 0.020470288188899
326 => 0.022013449031665
327 => 0.022097439871544
328 => 0.021683838257772
329 => 0.021849063944543
330 => 0.021531866756829
331 => 0.021744803353978
401 => 0.021890489165744
402 => 0.021232162996143
403 => 0.021193181192881
404 => 0.020874674819539
405 => 0.02104582210345
406 => 0.020773514468823
407 => 0.020840329237444
408 => 0.020653509319574
409 => 0.020989747976266
410 => 0.021365715040652
411 => 0.021460699168505
412 => 0.021210836821361
413 => 0.021029920015298
414 => 0.020712289701552
415 => 0.021240515992165
416 => 0.021394985456945
417 => 0.021239704629826
418 => 0.02120372266923
419 => 0.021135536918917
420 => 0.021218188598493
421 => 0.021394144183066
422 => 0.021311166778771
423 => 0.021365974816181
424 => 0.021157103095375
425 => 0.021601354297226
426 => 0.022306932120638
427 => 0.022309200668713
428 => 0.022226222817139
429 => 0.022192270068058
430 => 0.02227741037929
501 => 0.022323595505495
502 => 0.022598923659956
503 => 0.022894361739251
504 => 0.024273042345587
505 => 0.023885914348207
506 => 0.025109161800224
507 => 0.026076591715968
508 => 0.026366681647116
509 => 0.026099812560246
510 => 0.025186867830047
511 => 0.02514207440615
512 => 0.026506399268391
513 => 0.026120915004771
514 => 0.026075062878214
515 => 0.025587273720039
516 => 0.025875617526383
517 => 0.025812552506187
518 => 0.025713001286561
519 => 0.026263141182862
520 => 0.027292953957409
521 => 0.027132447978973
522 => 0.027012637711728
523 => 0.026487663996907
524 => 0.026803815430354
525 => 0.026691239960385
526 => 0.027174935621528
527 => 0.026888405027038
528 => 0.026117994582339
529 => 0.026240684984964
530 => 0.026222140577426
531 => 0.026603783170483
601 => 0.026489223536999
602 => 0.026199770970372
603 => 0.027289434169301
604 => 0.027218677502187
605 => 0.027318994278928
606 => 0.027363156826448
607 => 0.028026415613617
608 => 0.028298131516806
609 => 0.028359815783887
610 => 0.028617924876654
611 => 0.028353393794527
612 => 0.029411706730502
613 => 0.030115423078654
614 => 0.030932825829944
615 => 0.032127270946727
616 => 0.032576393359872
617 => 0.032495263415876
618 => 0.033400878071407
619 => 0.035028247476713
620 => 0.03282420130096
621 => 0.03514506727587
622 => 0.0344103079039
623 => 0.032668206650715
624 => 0.032556035868035
625 => 0.033735807062903
626 => 0.03635242602435
627 => 0.035696992651954
628 => 0.036353498078545
629 => 0.035587649626088
630 => 0.035549618795346
701 => 0.036316302528615
702 => 0.038107700861153
703 => 0.037256674662926
704 => 0.036036519927584
705 => 0.036937463196451
706 => 0.036156982758595
707 => 0.034398341889387
708 => 0.035696491454407
709 => 0.034828455809449
710 => 0.035081794757961
711 => 0.036906276573104
712 => 0.036686750094126
713 => 0.036970837685528
714 => 0.03646943052257
715 => 0.036001037167715
716 => 0.03512674618753
717 => 0.034867911730322
718 => 0.034939444262406
719 => 0.034867876282351
720 => 0.034378718514087
721 => 0.034273084940603
722 => 0.034097024356884
723 => 0.034151592893694
724 => 0.033820547487962
725 => 0.03444529856605
726 => 0.034561257871431
727 => 0.035015899606147
728 => 0.035063102019261
729 => 0.036329272779025
730 => 0.035631887201682
731 => 0.036099753656338
801 => 0.036057903276904
802 => 0.032705963267385
803 => 0.033167831026279
804 => 0.033886352317032
805 => 0.033562659449481
806 => 0.033105033467229
807 => 0.032735475950207
808 => 0.032175558522724
809 => 0.032963631549645
810 => 0.033999863777823
811 => 0.035089382578611
812 => 0.036398368029658
813 => 0.036106217715255
814 => 0.035064912006115
815 => 0.035111624219553
816 => 0.035400380742446
817 => 0.035026414809003
818 => 0.034916124954548
819 => 0.03538522861006
820 => 0.035388459069121
821 => 0.034958166067401
822 => 0.034479974138778
823 => 0.034477970497137
824 => 0.034392880862224
825 => 0.035602786883111
826 => 0.036268112859303
827 => 0.036344391410247
828 => 0.036262978705069
829 => 0.036294311224137
830 => 0.035907172698049
831 => 0.036792056566323
901 => 0.037604113509797
902 => 0.03738646490188
903 => 0.037060178698039
904 => 0.036800276020608
905 => 0.037325240090903
906 => 0.037301864267223
907 => 0.037597020900818
908 => 0.037583630891011
909 => 0.037484380816535
910 => 0.037386468446412
911 => 0.037774679926438
912 => 0.037662881254676
913 => 0.037550908928697
914 => 0.037326331286842
915 => 0.03735685511821
916 => 0.037030625252283
917 => 0.036879696389042
918 => 0.03461008841488
919 => 0.034003575002603
920 => 0.034194396468824
921 => 0.034257219850182
922 => 0.033993264435891
923 => 0.034371708695401
924 => 0.034312728558428
925 => 0.034542185769164
926 => 0.03439883086577
927 => 0.03440471420101
928 => 0.034826290405403
929 => 0.034948675771052
930 => 0.034886429586312
1001 => 0.034930024680429
1002 => 0.035934655224029
1003 => 0.035791828887005
1004 => 0.035715955242096
1005 => 0.035736972760266
1006 => 0.035993677403677
1007 => 0.036065540688278
1008 => 0.035761050901679
1009 => 0.035904650045274
1010 => 0.036516076973255
1011 => 0.036730041794282
1012 => 0.037412914794057
1013 => 0.037122818206653
1014 => 0.03765530304792
1015 => 0.039291979912515
1016 => 0.040599470641379
1017 => 0.039397048132776
1018 => 0.041798088348394
1019 => 0.043667642565014
1020 => 0.043595885960275
1021 => 0.043269885939039
1022 => 0.041141448168087
1023 => 0.039182827998037
1024 => 0.040821296937689
1025 => 0.04082547373197
1026 => 0.040684727796968
1027 => 0.039810566882525
1028 => 0.040654308891999
1029 => 0.04072128206869
1030 => 0.040683794899348
1031 => 0.040013577775824
1101 => 0.038990280105031
1102 => 0.039190230020476
1103 => 0.039517752060841
1104 => 0.038897684510174
1105 => 0.038699535356518
1106 => 0.039067932332583
1107 => 0.040254984148024
1108 => 0.040030578878438
1109 => 0.040024718749956
1110 => 0.04098481965589
1111 => 0.040297594609985
1112 => 0.039192752029238
1113 => 0.038913764706516
1114 => 0.037923547659232
1115 => 0.038607494100823
1116 => 0.03863210811565
1117 => 0.038257517639354
1118 => 0.039223147981903
1119 => 0.039214249528301
1120 => 0.040130971823442
1121 => 0.041883400546583
1122 => 0.04136512114137
1123 => 0.040762418581747
1124 => 0.040827949061107
1125 => 0.041546656676685
1126 => 0.041112109645807
1127 => 0.041268375787881
1128 => 0.041546420149163
1129 => 0.041714171215778
1130 => 0.040803812264163
1201 => 0.04059156404504
1202 => 0.040157378677714
1203 => 0.040044107819833
1204 => 0.040397742741944
1205 => 0.040304572434074
1206 => 0.038630039403014
1207 => 0.038455041384254
1208 => 0.03846040832365
1209 => 0.038020367484776
1210 => 0.037349199583592
1211 => 0.039112988754551
1212 => 0.03897133179991
1213 => 0.038814953485363
1214 => 0.038834108936612
1215 => 0.039599710035364
1216 => 0.039155622734306
1217 => 0.040336301608647
1218 => 0.040093589526538
1219 => 0.03984465279536
1220 => 0.039810242156312
1221 => 0.039714422753093
1222 => 0.039385822366622
1223 => 0.038989017654138
1224 => 0.03872701281232
1225 => 0.035723622217213
1226 => 0.036281034041745
1227 => 0.036922285536183
1228 => 0.037143642982409
1229 => 0.036764995753171
1230 => 0.039400773667115
1231 => 0.03988235569098
]
'min_raw' => 0.016622586756002
'max_raw' => 0.043667642565014
'avg_raw' => 0.030145114660508
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.016622'
'max' => '$0.043667'
'avg' => '$0.030145'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00064449514426693
'max_diff' => -0.007875017430703
'year' => 2027
]
2 => [
'items' => [
101 => 0.038423612327873
102 => 0.038150741004735
103 => 0.039418663065632
104 => 0.038653951065743
105 => 0.038998300832469
106 => 0.03825400498606
107 => 0.039766356683799
108 => 0.039754835097744
109 => 0.039166496129311
110 => 0.039663756196659
111 => 0.039577345022988
112 => 0.038913111776643
113 => 0.039787414062479
114 => 0.039787847705505
115 => 0.039221584239981
116 => 0.03856031248326
117 => 0.038442092711701
118 => 0.038353029994422
119 => 0.038976396863662
120 => 0.039535305649405
121 => 0.040575296334435
122 => 0.04083677470222
123 => 0.041857342179288
124 => 0.041249643937223
125 => 0.041519028696921
126 => 0.041811483960374
127 => 0.041951697768359
128 => 0.041723226892534
129 => 0.043308588266753
130 => 0.043442441340955
131 => 0.04348732111891
201 => 0.042952746183459
202 => 0.043427573844961
203 => 0.043205417706783
204 => 0.043783406261569
205 => 0.043874042247088
206 => 0.043797276791822
207 => 0.043826046084217
208 => 0.042473219828232
209 => 0.042403068650133
210 => 0.041446552359041
211 => 0.041836339817872
212 => 0.041107650846586
213 => 0.041338725625709
214 => 0.041440581186585
215 => 0.041387377621836
216 => 0.041858377815962
217 => 0.041457931431972
218 => 0.040401087585141
219 => 0.039343955801911
220 => 0.039330684373494
221 => 0.039052360234895
222 => 0.038851182860297
223 => 0.038889936759795
224 => 0.039026510556378
225 => 0.038843244942962
226 => 0.038882353953387
227 => 0.039531824108412
228 => 0.039662070716193
229 => 0.039219441852318
301 => 0.03744222309282
302 => 0.037006089151424
303 => 0.037319573579588
304 => 0.037169748213908
305 => 0.029998887788529
306 => 0.031683575078596
307 => 0.030682591097413
308 => 0.031143890569
309 => 0.030122145127758
310 => 0.030609775606586
311 => 0.03051972806256
312 => 0.033228655371466
313 => 0.033186359197545
314 => 0.033206604137738
315 => 0.032240260394452
316 => 0.033779672216598
317 => 0.034538041835645
318 => 0.034397687802513
319 => 0.034433011888844
320 => 0.033826027051391
321 => 0.033212481077767
322 => 0.03253196416897
323 => 0.033796280471083
324 => 0.033655710080887
325 => 0.033978127980367
326 => 0.034798127477483
327 => 0.034918875518309
328 => 0.035081162109684
329 => 0.035022993919022
330 => 0.036408796210596
331 => 0.036240966409268
401 => 0.036645387942538
402 => 0.035813462165066
403 => 0.034872059180737
404 => 0.035050989111276
405 => 0.035033756720101
406 => 0.034814368602032
407 => 0.034616314818544
408 => 0.034286611070345
409 => 0.035329842516621
410 => 0.035287489225067
411 => 0.035973139785018
412 => 0.035851944388492
413 => 0.03504257186895
414 => 0.035071478766825
415 => 0.035265891547218
416 => 0.035938756399922
417 => 0.036138508500338
418 => 0.036045975368681
419 => 0.036264994427756
420 => 0.036438098161923
421 => 0.036286733591616
422 => 0.038429736707541
423 => 0.037539812404153
424 => 0.037973555317571
425 => 0.038077000446659
426 => 0.037812027923716
427 => 0.037869490975988
428 => 0.037956531842435
429 => 0.038485026939154
430 => 0.039871950994232
501 => 0.040486210217115
502 => 0.042334239396175
503 => 0.040435204539556
504 => 0.040322523670152
505 => 0.040655409530435
506 => 0.041740398292299
507 => 0.042619679775977
508 => 0.042911388171078
509 => 0.042949942251072
510 => 0.04349720659269
511 => 0.04381088830743
512 => 0.043430754307137
513 => 0.043108630543577
514 => 0.041954823205979
515 => 0.042088379547019
516 => 0.043008450295334
517 => 0.044308104419226
518 => 0.04542334286349
519 => 0.045032825230292
520 => 0.048012199109104
521 => 0.048307591859537
522 => 0.048266778132618
523 => 0.048939726778441
524 => 0.047604060760092
525 => 0.047033037659938
526 => 0.043178277357518
527 => 0.044261307768869
528 => 0.045835556075912
529 => 0.045627198409347
530 => 0.044483937208994
531 => 0.04542247559735
601 => 0.045112165455351
602 => 0.044867410971576
603 => 0.045988678709739
604 => 0.044755798772489
605 => 0.045823257155434
606 => 0.044454230737864
607 => 0.045034609081946
608 => 0.044705158264103
609 => 0.044918353319221
610 => 0.043672019383292
611 => 0.044344510922073
612 => 0.043644041524332
613 => 0.043643709410634
614 => 0.043628246509855
615 => 0.044452345649941
616 => 0.044479219493313
617 => 0.043870208983645
618 => 0.043782441054669
619 => 0.044106965089125
620 => 0.043727032437757
621 => 0.043904800534064
622 => 0.043732416852299
623 => 0.043693609654577
624 => 0.043384387300634
625 => 0.043251165808309
626 => 0.043303405388144
627 => 0.043125084770817
628 => 0.043017640148738
629 => 0.043606873070182
630 => 0.043292069689843
701 => 0.043558624937229
702 => 0.043254851590878
703 => 0.042201840824681
704 => 0.041596243197654
705 => 0.039607203474456
706 => 0.040171292672559
707 => 0.040545284394493
708 => 0.040421680132625
709 => 0.040687229915618
710 => 0.040703532515588
711 => 0.040617199574177
712 => 0.040517237087958
713 => 0.040468580877939
714 => 0.040831224404136
715 => 0.041041751177113
716 => 0.040582819467153
717 => 0.040475298188647
718 => 0.04093930348573
719 => 0.041222346448904
720 => 0.043312176660878
721 => 0.043157355288712
722 => 0.043545926550688
723 => 0.043502179389702
724 => 0.043909463976509
725 => 0.04457520214463
726 => 0.043221570305521
727 => 0.043456513987723
728 => 0.043398911222489
729 => 0.044027803109058
730 => 0.044029766440882
731 => 0.043652714339404
801 => 0.043857120400587
802 => 0.043743026544822
803 => 0.043949209562899
804 => 0.043155287554897
805 => 0.044122198862058
806 => 0.04467037526683
807 => 0.044677986696743
808 => 0.044937817962008
809 => 0.045201821575929
810 => 0.045708553522982
811 => 0.045187689096955
812 => 0.044250704699662
813 => 0.044318351946705
814 => 0.043768998337401
815 => 0.043778233070823
816 => 0.043728937340081
817 => 0.043876877538846
818 => 0.043187752109127
819 => 0.043349488470078
820 => 0.04312305661762
821 => 0.043456021769097
822 => 0.043097806307219
823 => 0.043398883444691
824 => 0.043528818356359
825 => 0.044008280977713
826 => 0.043026989288206
827 => 0.041026069105692
828 => 0.041446686786869
829 => 0.040824560197603
830 => 0.040882140382042
831 => 0.040998461518428
901 => 0.040621426657493
902 => 0.040693353027226
903 => 0.040690783311161
904 => 0.040668638886386
905 => 0.04057055755728
906 => 0.040428320225276
907 => 0.040994949977638
908 => 0.041091231414069
909 => 0.04130525312051
910 => 0.041942036546569
911 => 0.041878406865918
912 => 0.041982189515029
913 => 0.041755632574734
914 => 0.040892649708721
915 => 0.040939513830282
916 => 0.040355117483478
917 => 0.04129030879202
918 => 0.041068843146235
919 => 0.040926062803679
920 => 0.040887103864361
921 => 0.041525465753365
922 => 0.041716473635652
923 => 0.041597450341473
924 => 0.041353330092648
925 => 0.041822113138065
926 => 0.041947539704649
927 => 0.041975618087354
928 => 0.042806211763599
929 => 0.042022039047111
930 => 0.042210797213976
1001 => 0.043683434548463
1002 => 0.042347955696145
1003 => 0.04305538862895
1004 => 0.043020763468192
1005 => 0.04338266221839
1006 => 0.042991077207643
1007 => 0.042995931373162
1008 => 0.043317272946193
1009 => 0.042866006661129
1010 => 0.042754266782775
1011 => 0.042599898941125
1012 => 0.042936955475933
1013 => 0.043139005624794
1014 => 0.044767381435134
1015 => 0.045819386471573
1016 => 0.045773716158475
1017 => 0.046191057328944
1018 => 0.046003041309241
1019 => 0.045395887985499
1020 => 0.046432224674667
1021 => 0.046104284384045
1022 => 0.046131319383156
1023 => 0.046130313139139
1024 => 0.046348364763365
1025 => 0.046193855203463
1026 => 0.045889301000816
1027 => 0.046091478293483
1028 => 0.046691872572998
1029 => 0.048555514838959
1030 => 0.049598433740967
1031 => 0.048492729811531
1101 => 0.049255429576091
1102 => 0.048798081495068
1103 => 0.048714967743819
1104 => 0.049193999559033
1105 => 0.049673869856025
1106 => 0.049643304192643
1107 => 0.049294942998639
1108 => 0.049098162599484
1109 => 0.050588249708155
1110 => 0.051686120506852
1111 => 0.0516112530786
1112 => 0.051941693558712
1113 => 0.05291187702846
1114 => 0.053000578446199
1115 => 0.052989404106342
1116 => 0.052769548387441
1117 => 0.053724820007652
1118 => 0.054521724399637
1119 => 0.052718658140758
1120 => 0.053405242168269
1121 => 0.053713471858574
1122 => 0.05416604449157
1123 => 0.054929610383415
1124 => 0.055759045467809
1125 => 0.055876336683036
1126 => 0.055793112952931
1127 => 0.055246078218361
1128 => 0.056153655984924
1129 => 0.056685293755259
1130 => 0.057001871881179
1201 => 0.057804661334935
1202 => 0.053715375380207
1203 => 0.050820775530752
1204 => 0.050368741965731
1205 => 0.051287969995543
1206 => 0.051530363096298
1207 => 0.051432654741319
1208 => 0.048174519445252
1209 => 0.050351588557683
1210 => 0.05269393186949
1211 => 0.05278391081559
1212 => 0.053956536853569
1213 => 0.0543383919591
1214 => 0.055282509619282
1215 => 0.055223454802582
1216 => 0.055453332428643
1217 => 0.055400487543337
1218 => 0.057149266701395
1219 => 0.059078429808951
1220 => 0.059011629024899
1221 => 0.058734289003366
1222 => 0.059146186228843
1223 => 0.061137289297524
1224 => 0.060953980433736
1225 => 0.061132049380694
1226 => 0.063479672112319
1227 => 0.066531915608872
1228 => 0.065113842064486
1229 => 0.068190653616133
1230 => 0.070127343393122
1231 => 0.073476648104964
]
'min_raw' => 0.029998887788529
'max_raw' => 0.073476648104964
'avg_raw' => 0.051737767946746
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.029998'
'max' => '$0.073476'
'avg' => '$0.051737'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.013376301032527
'max_diff' => 0.02980900553995
'year' => 2028
]
3 => [
'items' => [
101 => 0.073057298659368
102 => 0.074361158405355
103 => 0.07230657563088
104 => 0.067588838281
105 => 0.066842238286609
106 => 0.068336950382304
107 => 0.072011554217697
108 => 0.068221224030722
109 => 0.068988002891011
110 => 0.068767170527664
111 => 0.068755403309498
112 => 0.069204510166146
113 => 0.06855305724674
114 => 0.06589892085894
115 => 0.067115295924545
116 => 0.066645595096586
117 => 0.067166763183723
118 => 0.069979292403927
119 => 0.068735806193352
120 => 0.067425894483128
121 => 0.069068814460428
122 => 0.071160816160085
123 => 0.071029902453409
124 => 0.070775875144774
125 => 0.072207813783117
126 => 0.074572956895004
127 => 0.075212245574233
128 => 0.075684155407557
129 => 0.075749223800591
130 => 0.076419468688617
131 => 0.07281539300224
201 => 0.078535153675748
202 => 0.079522798338863
203 => 0.079337162075875
204 => 0.080434887552486
205 => 0.08011190887066
206 => 0.079643963434496
207 => 0.08138409180783
208 => 0.079389175048921
209 => 0.076557641862686
210 => 0.075004206755341
211 => 0.077049895416728
212 => 0.078299126097542
213 => 0.079124788111566
214 => 0.079374632938131
215 => 0.073095167138286
216 => 0.069710883347309
217 => 0.071880170456433
218 => 0.074526850445762
219 => 0.072800690561265
220 => 0.072868352760685
221 => 0.07040730239223
222 => 0.074744598794616
223 => 0.074112691191193
224 => 0.077391028955577
225 => 0.076608627337803
226 => 0.079281984520319
227 => 0.078577999980207
228 => 0.081500200446967
301 => 0.082665945328577
302 => 0.084623412418503
303 => 0.086063333178177
304 => 0.086908882189553
305 => 0.086858118598484
306 => 0.090208605032399
307 => 0.088232940239399
308 => 0.085751039630952
309 => 0.085706149879241
310 => 0.08699156137316
311 => 0.089685431228991
312 => 0.090383912488396
313 => 0.090774268223838
314 => 0.090176424826628
315 => 0.088031982290998
316 => 0.087106022876684
317 => 0.087894967125307
318 => 0.086930156103993
319 => 0.088595690604941
320 => 0.090882825213715
321 => 0.090410540961313
322 => 0.091989316408279
323 => 0.093623182903868
324 => 0.095959685374095
325 => 0.096570533640249
326 => 0.097580242595721
327 => 0.098619564783016
328 => 0.098953367059056
329 => 0.099590699176781
330 => 0.099587340121925
331 => 0.10150798335609
401 => 0.10362651232074
402 => 0.10442620796084
403 => 0.10626506398977
404 => 0.10311608748143
405 => 0.10550462233584
406 => 0.10765914056342
407 => 0.10509043511214
408 => 0.10863079714513
409 => 0.10876826138024
410 => 0.11084380812531
411 => 0.10873984387253
412 => 0.10749051661533
413 => 0.1110972775952
414 => 0.11284247562146
415 => 0.11231680777306
416 => 0.1083164494913
417 => 0.10598806938788
418 => 0.099894249546257
419 => 0.10711264238209
420 => 0.11062851096902
421 => 0.10830734424103
422 => 0.10947800572443
423 => 0.11586475518954
424 => 0.11829641587446
425 => 0.11779064745059
426 => 0.11787611398856
427 => 0.11918819395638
428 => 0.12500667910931
429 => 0.12152010793424
430 => 0.12418546095825
501 => 0.12559915459154
502 => 0.12691227202414
503 => 0.1236876706247
504 => 0.11949251158283
505 => 0.11816372861347
506 => 0.10807654995513
507 => 0.10755146849957
508 => 0.10725672436697
509 => 0.10539840430328
510 => 0.10393827376993
511 => 0.10277712375864
512 => 0.099729919380267
513 => 0.10075826140635
514 => 0.095901653628199
515 => 0.099008739177046
516 => 0.09125747589623
517 => 0.097712958286525
518 => 0.094199532716255
519 => 0.096558703493414
520 => 0.096550472568819
521 => 0.092206491192294
522 => 0.089700973390892
523 => 0.091297586850157
524 => 0.093009283217823
525 => 0.093287000194639
526 => 0.095506259215164
527 => 0.096125606704979
528 => 0.094248954896269
529 => 0.091096848193563
530 => 0.091829010688702
531 => 0.089686136141297
601 => 0.085930830921448
602 => 0.088627956691682
603 => 0.089548874013889
604 => 0.089955603566878
605 => 0.086262692182875
606 => 0.085102299249015
607 => 0.084484515787667
608 => 0.090620139707484
609 => 0.090956263036199
610 => 0.089236608563442
611 => 0.097009609844633
612 => 0.09525034025967
613 => 0.097215875417587
614 => 0.091762574616433
615 => 0.09197089805088
616 => 0.089389218058591
617 => 0.090834786346354
618 => 0.089813105273404
619 => 0.090717998714087
620 => 0.091260388111416
621 => 0.093841644475422
622 => 0.097742432087873
623 => 0.093456090851953
624 => 0.091588470593926
625 => 0.092747131698111
626 => 0.095832798905131
627 => 0.10050774267616
628 => 0.097740081871701
629 => 0.098968322738793
630 => 0.09923663872762
701 => 0.097195868114781
702 => 0.10058298879958
703 => 0.10239817429149
704 => 0.10426017900647
705 => 0.1058769055283
706 => 0.10351645337695
707 => 0.10604247553642
708 => 0.10400694757882
709 => 0.10218086857184
710 => 0.10218363797992
711 => 0.10103811194409
712 => 0.098818510904083
713 => 0.098409182417517
714 => 0.10053856089712
715 => 0.10224612078487
716 => 0.10238676359589
717 => 0.10333215648734
718 => 0.10389163026218
719 => 0.10937523382334
720 => 0.11158078453839
721 => 0.11427769020381
722 => 0.11532828694976
723 => 0.11849020649531
724 => 0.11593669966373
725 => 0.11538423239841
726 => 0.10771444983691
727 => 0.10897037630169
728 => 0.11098123575067
729 => 0.10774760816858
730 => 0.10979860059095
731 => 0.11020350994108
801 => 0.1076377307407
802 => 0.1090082242724
803 => 0.10536859977522
804 => 0.097821765955965
805 => 0.100591390583
806 => 0.10263076655407
807 => 0.099720325590112
808 => 0.10493717836839
809 => 0.10188960067302
810 => 0.10092366485312
811 => 0.097155204838688
812 => 0.09893377290417
813 => 0.10133931167938
814 => 0.099852968390197
815 => 0.10293735389081
816 => 0.10730566633524
817 => 0.11041878592065
818 => 0.11065777258666
819 => 0.10865624525605
820 => 0.11186370557692
821 => 0.1118870684237
822 => 0.1082690400789
823 => 0.10605301786297
824 => 0.10554953295296
825 => 0.1068073369722
826 => 0.10833454325498
827 => 0.11074252190654
828 => 0.11219761297407
829 => 0.11599171875754
830 => 0.11701829499701
831 => 0.11814619104571
901 => 0.11965340799705
902 => 0.12146320838961
903 => 0.11750346816267
904 => 0.11766079602376
905 => 0.11397354075077
906 => 0.11003317968567
907 => 0.11302342256114
908 => 0.11693276734547
909 => 0.1160359593325
910 => 0.11593505011092
911 => 0.11610475143174
912 => 0.11542858747697
913 => 0.11237032296937
914 => 0.1108344816794
915 => 0.11281610877836
916 => 0.11386925538938
917 => 0.11550259393904
918 => 0.1153012504872
919 => 0.11950855518337
920 => 0.12114338656601
921 => 0.12072512673995
922 => 0.12080209661393
923 => 0.12376188074248
924 => 0.12705376941945
925 => 0.13013705756841
926 => 0.13327351070384
927 => 0.12949239403123
928 => 0.12757257617174
929 => 0.1295533381543
930 => 0.12850231796511
1001 => 0.13454179172503
1002 => 0.1349599517845
1003 => 0.14099898882173
1004 => 0.14673075408521
1005 => 0.14313073501846
1006 => 0.14652539084999
1007 => 0.15019698790214
1008 => 0.15728009431088
1009 => 0.1548947532591
1010 => 0.1530676193965
1011 => 0.15134098672499
1012 => 0.15493383521919
1013 => 0.15955597740982
1014 => 0.16055154256735
1015 => 0.16216473845772
1016 => 0.16046866023121
1017 => 0.16251139963815
1018 => 0.16972316736985
1019 => 0.16777448406871
1020 => 0.16500704051462
1021 => 0.17070003851326
1022 => 0.172760312358
1023 => 0.18722039317416
1024 => 0.20547684252071
1025 => 0.19791855261293
1026 => 0.19322687816268
1027 => 0.19432953294649
1028 => 0.20099617022804
1029 => 0.20313728253438
1030 => 0.19731700120007
1031 => 0.1993728229629
1101 => 0.21070060300003
1102 => 0.21677759355125
1103 => 0.20852422413397
1104 => 0.18575350524507
1105 => 0.16475786250183
1106 => 0.17032685240345
1107 => 0.16969550177449
1108 => 0.18186578825504
1109 => 0.16772800861645
1110 => 0.16796605256721
1111 => 0.18038800768362
1112 => 0.17707404302479
1113 => 0.171705844698
1114 => 0.16479705629042
1115 => 0.15202552193343
1116 => 0.14071341779286
1117 => 0.16289905903452
1118 => 0.1619423738422
1119 => 0.16055695191094
1120 => 0.16364005850066
1121 => 0.17861074894531
1122 => 0.17826562607516
1123 => 0.17607013045853
1124 => 0.17773539453353
1125 => 0.17141391585422
1126 => 0.17304310484727
1127 => 0.16475453668475
1128 => 0.16850131565539
1129 => 0.17169432695537
1130 => 0.17233537124718
1201 => 0.17377967676916
1202 => 0.16143824421797
1203 => 0.16697918510803
1204 => 0.17023396876499
1205 => 0.1555287377928
1206 => 0.1699432936296
1207 => 0.16122340733446
1208 => 0.1582637469576
1209 => 0.16224853974944
1210 => 0.16069566212312
1211 => 0.15936058912804
1212 => 0.15861559545733
1213 => 0.16154158749813
1214 => 0.16140508647211
1215 => 0.15661759558277
1216 => 0.15037250888074
1217 => 0.15246856496592
1218 => 0.15170704813954
1219 => 0.14894721292312
1220 => 0.15080700863522
1221 => 0.14261740954022
1222 => 0.12852762995561
1223 => 0.13783576993082
1224 => 0.13747741666709
1225 => 0.13729671870148
1226 => 0.14429152863477
1227 => 0.1436191390574
1228 => 0.14239874539043
1229 => 0.14892479943638
1230 => 0.1465427019218
1231 => 0.15388376516899
]
'min_raw' => 0.06589892085894
'max_raw' => 0.21677759355125
'avg_raw' => 0.1413382572051
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.065898'
'max' => '$0.216777'
'avg' => '$0.141338'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.035900033070411
'max_diff' => 0.14330094544629
'year' => 2029
]
4 => [
'items' => [
101 => 0.15871906421379
102 => 0.15749267597049
103 => 0.16204029809316
104 => 0.15251685386469
105 => 0.15568016002312
106 => 0.15633211303822
107 => 0.14884426894247
108 => 0.14372915030784
109 => 0.14338803021153
110 => 0.13451911940586
111 => 0.1392568199709
112 => 0.14342580040877
113 => 0.14142918230498
114 => 0.14079711266059
115 => 0.1440262193946
116 => 0.14427714864327
117 => 0.13855593518149
118 => 0.13974555662746
119 => 0.14470647581527
120 => 0.13962055419234
121 => 0.12973943925957
122 => 0.12728878613914
123 => 0.12696182383838
124 => 0.12031545821202
125 => 0.1274525504989
126 => 0.1243370184535
127 => 0.13417894685512
128 => 0.12855729013543
129 => 0.12831495175011
130 => 0.12794862173738
131 => 0.12222782028488
201 => 0.12348031222708
202 => 0.12764378620286
203 => 0.12912936062231
204 => 0.12897440303941
205 => 0.127623382909
206 => 0.12824187300636
207 => 0.12624950090654
208 => 0.12554595285045
209 => 0.1233253616593
210 => 0.12006170606229
211 => 0.12051553739021
212 => 0.11404938167058
213 => 0.11052627684967
214 => 0.10955112786902
215 => 0.10824711789781
216 => 0.10969841926511
217 => 0.11403106386386
218 => 0.10880497525593
219 => 0.099845212905138
220 => 0.10038370988911
221 => 0.10159355273092
222 => 0.099339018599128
223 => 0.097205291252098
224 => 0.099060394065569
225 => 0.095264024643076
226 => 0.10205232583825
227 => 0.10186872131492
228 => 0.10439898021475
301 => 0.10598120303096
302 => 0.10233469169032
303 => 0.10141760394937
304 => 0.10194001880593
305 => 0.093305664920446
306 => 0.10369336929391
307 => 0.10378320259269
308 => 0.10301399534915
309 => 0.10854512724363
310 => 0.12021754074428
311 => 0.11582590926359
312 => 0.11412533681651
313 => 0.11089254735148
314 => 0.11520004736958
315 => 0.11486929857566
316 => 0.11337352709679
317 => 0.11246887983928
318 => 0.11413572014924
319 => 0.11226233987877
320 => 0.11192582930514
321 => 0.10988694135609
322 => 0.10915915112178
323 => 0.10862032420645
324 => 0.10802712871671
325 => 0.10933557015196
326 => 0.10637046971988
327 => 0.10279484927117
328 => 0.10249757511961
329 => 0.10331837518868
330 => 0.1029552322595
331 => 0.10249583653098
401 => 0.10161872497626
402 => 0.10135850471449
403 => 0.1022040943243
404 => 0.10124947295576
405 => 0.10265806878596
406 => 0.10227500866131
407 => 0.10013526594382
408 => 0.097468354283617
409 => 0.097444613175804
410 => 0.096870031433225
411 => 0.096138215195107
412 => 0.09593464065935
413 => 0.098904162480921
414 => 0.10505098378126
415 => 0.10384421567904
416 => 0.10471622930747
417 => 0.10900567329572
418 => 0.1103691585515
419 => 0.10940138901286
420 => 0.10807664637895
421 => 0.10813492833166
422 => 0.1126619749386
423 => 0.11294432128249
424 => 0.11365771940511
425 => 0.11457463759896
426 => 0.10955754414614
427 => 0.10789862368121
428 => 0.10711253513152
429 => 0.10469168665304
430 => 0.10730236418922
501 => 0.10578123418925
502 => 0.10598648659545
503 => 0.10585281569665
504 => 0.10592580904618
505 => 0.10205042836972
506 => 0.10346241340421
507 => 0.10111471442537
508 => 0.09797140903429
509 => 0.097960871572434
510 => 0.098730191113784
511 => 0.098272569747112
512 => 0.09704112241592
513 => 0.097216043697048
514 => 0.095683549213541
515 => 0.097402116274054
516 => 0.097451398628021
517 => 0.096789656698743
518 => 0.099437346372017
519 => 0.10052210699147
520 => 0.10008653427773
521 => 0.10049154604872
522 => 0.10389436234192
523 => 0.10444916987299
524 => 0.10469557872977
525 => 0.10436542350461
526 => 0.10055374328392
527 => 0.10072280751023
528 => 0.099482326393492
529 => 0.09843425056853
530 => 0.098476168105095
531 => 0.099015015319446
601 => 0.10136819270749
602 => 0.10632031579323
603 => 0.10650824524438
604 => 0.10673602122146
605 => 0.10580954185164
606 => 0.10553010680848
607 => 0.10589875375871
608 => 0.10775851081945
609 => 0.1125423108988
610 => 0.1108513964515
611 => 0.10947665668518
612 => 0.11068267408742
613 => 0.11049701716142
614 => 0.10892988586748
615 => 0.10888590171155
616 => 0.10587807571629
617 => 0.10476615093073
618 => 0.10383694335378
619 => 0.10282227293734
620 => 0.10222074230241
621 => 0.10314496674844
622 => 0.10335634781435
623 => 0.10133551491042
624 => 0.10106008285285
625 => 0.10271033862491
626 => 0.10198412258736
627 => 0.10273105379127
628 => 0.10290434823763
629 => 0.10287644384046
630 => 0.10211819089188
701 => 0.10260147870987
702 => 0.10145835894528
703 => 0.10021538789232
704 => 0.099422449800363
705 => 0.098730506147156
706 => 0.099114436701956
707 => 0.097745794377043
708 => 0.097307938151975
709 => 0.10243775167146
710 => 0.10622720007309
711 => 0.10617209999254
712 => 0.10583669242281
713 => 0.10533834480913
714 => 0.1077220535875
715 => 0.10689161711287
716 => 0.10749582903345
717 => 0.10764962632593
718 => 0.10811512440949
719 => 0.10828149996345
720 => 0.10777859748413
721 => 0.10609079533917
722 => 0.10188495286533
723 => 0.0999271218403
724 => 0.099281004991786
725 => 0.099304490112079
726 => 0.098656665652208
727 => 0.098847478989096
728 => 0.098590308560678
729 => 0.098103289985463
730 => 0.099084364677319
731 => 0.099197424396212
801 => 0.098968429840164
802 => 0.099022366347837
803 => 0.097126389228607
804 => 0.097270536251137
805 => 0.096467907312376
806 => 0.096317424062195
807 => 0.094288447997905
808 => 0.090693822795233
809 => 0.092685594096225
810 => 0.090279814450054
811 => 0.089368709244538
812 => 0.093681739581517
813 => 0.093248830960525
814 => 0.092507879582239
815 => 0.091411858065957
816 => 0.091005333024156
817 => 0.088535415560363
818 => 0.088389479660105
819 => 0.089613637448542
820 => 0.089048730749876
821 => 0.088255387798052
822 => 0.085381980046429
823 => 0.082151318380994
824 => 0.082248831749458
825 => 0.083276445116636
826 => 0.086264369574249
827 => 0.085096935797042
828 => 0.084249949196919
829 => 0.084091334067039
830 => 0.086076734500746
831 => 0.088886492068691
901 => 0.090204767454789
902 => 0.088898396583785
903 => 0.087397708067178
904 => 0.087489048023663
905 => 0.088096691833135
906 => 0.08816054660589
907 => 0.087183752654851
908 => 0.087458714430465
909 => 0.087041022350276
910 => 0.084477646825151
911 => 0.084431283490453
912 => 0.083802189796574
913 => 0.083783141089541
914 => 0.082712895781475
915 => 0.08256316106462
916 => 0.080438124046209
917 => 0.081836829846932
918 => 0.080898651431158
919 => 0.07948459526467
920 => 0.079240811448577
921 => 0.079233483012688
922 => 0.080685402518498
923 => 0.081819863322158
924 => 0.080914971446369
925 => 0.080708945106844
926 => 0.082908767404114
927 => 0.082628819964961
928 => 0.082386387288122
929 => 0.088634909096173
930 => 0.083688716506863
1001 => 0.081531894219122
1002 => 0.078862417068597
1003 => 0.07973161228948
1004 => 0.079914764493655
1005 => 0.073495153156067
1006 => 0.07089071763592
1007 => 0.069996973511487
1008 => 0.069482611132189
1009 => 0.069717012527392
1010 => 0.067372715089441
1011 => 0.068948121738845
1012 => 0.066918158316109
1013 => 0.066577828342215
1014 => 0.070207654406279
1015 => 0.070712723497958
1016 => 0.068557941840191
1017 => 0.06994166049194
1018 => 0.069439904873688
1019 => 0.066952956212644
1020 => 0.066857973066548
1021 => 0.065610109648908
1022 => 0.063657445034274
1023 => 0.062765024908399
1024 => 0.062300244758497
1025 => 0.062492022106731
1026 => 0.06239505361098
1027 => 0.061762268584188
1028 => 0.062431324108004
1029 => 0.060722163717483
1030 => 0.060041562278336
1031 => 0.059734150398107
1101 => 0.058217172175917
1102 => 0.060631359130698
1103 => 0.061106984373916
1104 => 0.061583546745791
1105 => 0.065731696830013
1106 => 0.065524466974356
1107 => 0.067397723944465
1108 => 0.067324932623305
1109 => 0.066790649390679
1110 => 0.064536596317555
1111 => 0.065435021697869
1112 => 0.062669808023566
1113 => 0.064741694124607
1114 => 0.063796171832124
1115 => 0.064422012086408
1116 => 0.063296694879464
1117 => 0.063919491884996
1118 => 0.061219772763616
1119 => 0.058698813034145
1120 => 0.059713320820686
1121 => 0.060816206807695
1122 => 0.063207544637653
1123 => 0.061783283554239
1124 => 0.062295501697109
1125 => 0.060579656662776
1126 => 0.057039378250044
1127 => 0.057059415841387
1128 => 0.056514821136746
1129 => 0.056044211799807
1130 => 0.061946877072682
1201 => 0.061212787338671
1202 => 0.060043111422813
1203 => 0.061608769117262
1204 => 0.062022753862003
1205 => 0.062034539425692
1206 => 0.063176802864088
1207 => 0.063786429065922
1208 => 0.063893878326267
1209 => 0.065691254526818
1210 => 0.066293711321277
1211 => 0.068775145594778
1212 => 0.063734706541918
1213 => 0.063630902016577
1214 => 0.061630801131786
1215 => 0.060362305530308
1216 => 0.061717656110865
1217 => 0.062918311701434
1218 => 0.0616681088478
1219 => 0.061831358947262
1220 => 0.060153063761584
1221 => 0.060752975319336
1222 => 0.061269699969685
1223 => 0.060984394989433
1224 => 0.060557279625079
1225 => 0.062819871635103
1226 => 0.062692207326728
1227 => 0.064799185023228
1228 => 0.06644172480907
1229 => 0.069385449744408
1230 => 0.066313519314532
1231 => 0.06620156595985
]
'min_raw' => 0.056044211799807
'max_raw' => 0.16204029809316
'avg_raw' => 0.10904225494648
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.056044'
'max' => '$0.16204'
'avg' => '$0.109042'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.009854709059133
'max_diff' => -0.05473729545809
'year' => 2030
]
5 => [
'items' => [
101 => 0.067295927959751
102 => 0.066293543780157
103 => 0.066927015980535
104 => 0.069283387579485
105 => 0.069333173998249
106 => 0.068499187337773
107 => 0.06844843917369
108 => 0.068608615434649
109 => 0.069546772798099
110 => 0.069218951788645
111 => 0.069598314560197
112 => 0.070072713515032
113 => 0.072035028733216
114 => 0.072508136288933
115 => 0.071358730206684
116 => 0.071462508706557
117 => 0.071032599279893
118 => 0.070617312160485
119 => 0.071550816957101
120 => 0.073256815320999
121 => 0.073246202393718
122 => 0.073641960854273
123 => 0.073888515096559
124 => 0.072830123799933
125 => 0.072141149983956
126 => 0.072405346385545
127 => 0.072827802185134
128 => 0.072268349663455
129 => 0.068815149536036
130 => 0.069862629863417
131 => 0.069688277917769
201 => 0.069439979545247
202 => 0.070493229114354
203 => 0.070391640623994
204 => 0.067348670930823
205 => 0.067543471977689
206 => 0.067360517427684
207 => 0.067951681007728
208 => 0.066261619006801
209 => 0.066781470695545
210 => 0.067107516801418
211 => 0.067299560462582
212 => 0.067993353852276
213 => 0.067911945205729
214 => 0.067988293376504
215 => 0.069017005818756
216 => 0.074219880340188
217 => 0.074503061320894
218 => 0.07310857460332
219 => 0.073665644541957
220 => 0.072596192077578
221 => 0.073314122681624
222 => 0.073805312567453
223 => 0.071585719923778
224 => 0.071454290052457
225 => 0.070380423577332
226 => 0.070957458594158
227 => 0.070039354392102
228 => 0.070264625049365
301 => 0.069634748652915
302 => 0.070768400759385
303 => 0.072035999966146
304 => 0.072356245584784
305 => 0.071513817236556
306 => 0.070903843593706
307 => 0.06983293081467
308 => 0.071613882633055
309 => 0.072134687218274
310 => 0.071611147068282
311 => 0.07148983137595
312 => 0.071259938358195
313 => 0.071538604266441
314 => 0.072131850804654
315 => 0.071852086692776
316 => 0.072036875817481
317 => 0.071332650227825
318 => 0.072830474171492
319 => 0.075209379064996
320 => 0.075217027633219
321 => 0.074937262013308
322 => 0.074822787949275
323 => 0.075109844452901
324 => 0.075265560830443
325 => 0.076193848926008
326 => 0.077189939037178
327 => 0.081838256957844
328 => 0.080533027886266
329 => 0.084657292075152
330 => 0.087919049579881
331 => 0.08889710803618
401 => 0.087997340277591
402 => 0.084919283379959
403 => 0.084768259223915
404 => 0.08936817575108
405 => 0.088068488642632
406 => 0.087913894996652
407 => 0.086269279793514
408 => 0.087241451068124
409 => 0.087028822949474
410 => 0.086693179062063
411 => 0.088548014131981
412 => 0.092020099800599
413 => 0.091478942688132
414 => 0.091074994007231
415 => 0.089305008475216
416 => 0.09037093510607
417 => 0.089991379049303
418 => 0.0916221927414
419 => 0.090656134837148
420 => 0.088058642234507
421 => 0.088472301492926
422 => 0.088409777728182
423 => 0.089696512376111
424 => 0.08931026657352
425 => 0.088334357036203
426 => 0.092008232589247
427 => 0.091769671546002
428 => 0.092107896562677
429 => 0.092256793674973
430 => 0.094493016983163
501 => 0.095409126121363
502 => 0.095617098934483
503 => 0.09648733176135
504 => 0.095595446748986
505 => 0.099163622701677
506 => 0.10153625150138
507 => 0.10429218194659
508 => 0.10831933705132
509 => 0.10983358462396
510 => 0.10956004935347
511 => 0.11261339239259
512 => 0.11810018196188
513 => 0.11066908639874
514 => 0.11849404807083
515 => 0.11601675554898
516 => 0.11014313954424
517 => 0.10976494791892
518 => 0.11374262887141
519 => 0.12256474238643
520 => 0.1203549030105
521 => 0.122568356892
522 => 0.11998624536471
523 => 0.11985802176363
524 => 0.1224429494985
525 => 0.12848277404809
526 => 0.12561347980402
527 => 0.12149964292533
528 => 0.12453723605816
529 => 0.12190579177053
530 => 0.11597641129561
531 => 0.12035321318798
601 => 0.11742657040669
602 => 0.11828072035916
603 => 0.12443208818017
604 => 0.12369193932944
605 => 0.12464976047822
606 => 0.12295923122117
607 => 0.1213800103231
608 => 0.11843227724236
609 => 0.11755959879864
610 => 0.1178007757248
611 => 0.11755947928333
612 => 0.11591024971572
613 => 0.11555409874762
614 => 0.11496049819745
615 => 0.11514447982916
616 => 0.11402833713089
617 => 0.11613472900939
618 => 0.1165256939035
619 => 0.11805855025416
620 => 0.11821769648555
621 => 0.12248667960331
622 => 0.12013539543939
623 => 0.12171283985666
624 => 0.12157173838049
625 => 0.11027043861342
626 => 0.11182765800911
627 => 0.11425020270644
628 => 0.11315884960398
629 => 0.11161593165439
630 => 0.11036994268407
701 => 0.10848214198512
702 => 0.11113918521689
703 => 0.11463291452162
704 => 0.11830630322625
705 => 0.1227196390649
706 => 0.1217346338826
707 => 0.11822379898259
708 => 0.11838129247154
709 => 0.11935485524881
710 => 0.11809400299474
711 => 0.11772215305026
712 => 0.11930376877659
713 => 0.11931466049485
714 => 0.11786389759746
715 => 0.11625164012381
716 => 0.11624488470613
717 => 0.11595799906125
718 => 0.12003728168361
719 => 0.12228047466392
720 => 0.12253765312402
721 => 0.12226316450446
722 => 0.12236880428007
723 => 0.12106353971021
724 => 0.12404698745272
725 => 0.12678489413364
726 => 0.12605107665631
727 => 0.12495097993949
728 => 0.1240746999167
729 => 0.12584465293152
730 => 0.12576583970994
731 => 0.12676098090728
801 => 0.12671583555436
802 => 0.12638120699884
803 => 0.12605108860695
804 => 0.12735997071592
805 => 0.12698303368854
806 => 0.12660551117384
807 => 0.12584833197482
808 => 0.12595124520338
809 => 0.12485133843377
810 => 0.12434247123383
811 => 0.11669032948997
812 => 0.11464542717507
813 => 0.11528879507116
814 => 0.1155006084876
815 => 0.11461066437954
816 => 0.11588661562261
817 => 0.11568775997295
818 => 0.11646139097913
819 => 0.11597805991362
820 => 0.11599789598914
821 => 0.11741926959577
822 => 0.11783190040072
823 => 0.11762203304298
824 => 0.11776901694651
825 => 0.12115619896532
826 => 0.12067464999823
827 => 0.12041883670709
828 => 0.120489698737
829 => 0.1213551963648
830 => 0.12159748844617
831 => 0.12057087987185
901 => 0.12105503441026
902 => 0.12311650298641
903 => 0.12383790031905
904 => 0.12614025431446
905 => 0.12516217341613
906 => 0.12695748323537
907 => 0.13247565355348
908 => 0.13688394983193
909 => 0.13282989839372
910 => 0.14092517311595
911 => 0.14722850568539
912 => 0.14698657328262
913 => 0.14588744145043
914 => 0.13871126490289
915 => 0.13210764025307
916 => 0.13763185267736
917 => 0.13764593503089
918 => 0.13717140028446
919 => 0.13422410572945
920 => 0.13706884082258
921 => 0.13729464556371
922 => 0.13716825495501
923 => 0.13490857112998
924 => 0.13145845158854
925 => 0.13213259668852
926 => 0.13323686011447
927 => 0.13114625907566
928 => 0.13047818536978
929 => 0.13172026149524
930 => 0.13572248956831
1001 => 0.13496589153442
1002 => 0.1349461337021
1003 => 0.13818318093856
1004 => 0.13586615371577
1005 => 0.13214109981714
1006 => 0.13120047458031
1007 => 0.12786188867065
1008 => 0.13016786185009
1009 => 0.13025084971957
1010 => 0.12898789177566
1011 => 0.13224358189373
1012 => 0.13221358013614
1013 => 0.13530437335771
1014 => 0.14121280914845
1015 => 0.13946539394866
1016 => 0.13743334018954
1017 => 0.1376542807759
1018 => 0.14007745368038
1019 => 0.13861234802667
1020 => 0.13913921023483
1021 => 0.14007665621133
1022 => 0.14064224064443
1023 => 0.13757290187982
1024 => 0.13685729219035
1025 => 0.13539340591056
1026 => 0.13501150530489
1027 => 0.13620381013479
1028 => 0.13588967993687
1029 => 0.13024387491048
1030 => 0.12965385687226
1031 => 0.12967195188314
1101 => 0.12818832347221
1102 => 0.12592543403392
1103 => 0.13187217236764
1104 => 0.13139456605489
1105 => 0.13086732564941
1106 => 0.13093190959069
1107 => 0.1335131871477
1108 => 0.13201591580699
1109 => 0.1359966570642
1110 => 0.13517833633375
1111 => 0.13433902876438
1112 => 0.13422301089236
1113 => 0.1338999490845
1114 => 0.13279204993937
1115 => 0.13145419514721
1116 => 0.13057082753043
1117 => 0.12044468644899
1118 => 0.12232403933265
1119 => 0.1244860635169
1120 => 0.12523238560153
1121 => 0.12395575003185
1122 => 0.13284245929285
1123 => 0.13446614670929
1124 => 0.12954789161437
1125 => 0.12862788689714
1126 => 0.13290277464895
1127 => 0.13032449475083
1128 => 0.13148549403108
1129 => 0.12897604861984
1130 => 0.13407504795779
1201 => 0.13403620212599
1202 => 0.13205257621741
1203 => 0.13372912325206
1204 => 0.13343778194699
1205 => 0.13119827318166
1206 => 0.13414604438019
1207 => 0.13414750643793
1208 => 0.13223830962866
1209 => 0.13000878573236
1210 => 0.1296101995187
1211 => 0.12930991834924
1212 => 0.13141164327097
1213 => 0.13329604326386
1214 => 0.13680244446827
1215 => 0.1376840370411
1216 => 0.14112495154378
1217 => 0.13907605449252
1218 => 0.13998430401768
1219 => 0.14097033735699
1220 => 0.14144307800003
1221 => 0.14067277249086
1222 => 0.14601792905043
1223 => 0.14646922403543
1224 => 0.14662053934021
1225 => 0.1448181826225
1226 => 0.14641909723467
1227 => 0.14567008230436
1228 => 0.14761881107069
1229 => 0.14792439662387
1230 => 0.14766557653185
1231 => 0.14776257420976
]
'min_raw' => 0.066261619006801
'max_raw' => 0.14792439662387
'avg_raw' => 0.10709300781533
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.066261'
'max' => '$0.147924'
'avg' => '$0.107093'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.010217407206994
'max_diff' => -0.014115901469295
'year' => 2031
]
6 => [
'items' => [
101 => 0.1432014260364
102 => 0.14296490644164
103 => 0.13973994498438
104 => 0.14105414061593
105 => 0.1385973148738
106 => 0.13937639962473
107 => 0.13971981275956
108 => 0.13954043322645
109 => 0.14112844326513
110 => 0.13977831032323
111 => 0.13621508750716
112 => 0.13265089389342
113 => 0.13260614834593
114 => 0.13166775908067
115 => 0.13098947551646
116 => 0.13112013699433
117 => 0.13158060508478
118 => 0.13096271227395
119 => 0.13109457103311
120 => 0.13328430500533
121 => 0.13372344053699
122 => 0.13223108641908
123 => 0.12623906928998
124 => 0.12476861325666
125 => 0.125825547893
126 => 0.12532040121214
127 => 0.10114334463449
128 => 0.10682338545406
129 => 0.10344849807503
130 => 0.10500380145039
131 => 0.10155891535925
201 => 0.10320299556389
202 => 0.10289939398229
203 => 0.11203273153553
204 => 0.11189012703213
205 => 0.11195838426145
206 => 0.10870028886299
207 => 0.11389052329966
208 => 0.11644741941795
209 => 0.11597420599604
210 => 0.11609330361936
211 => 0.11404681186156
212 => 0.11197819877507
213 => 0.10968378850489
214 => 0.11394651918921
215 => 0.11347257630435
216 => 0.11455963076295
217 => 0.11732431631801
218 => 0.11773142676801
219 => 0.11827858734132
220 => 0.11808246922533
221 => 0.122754798405
222 => 0.12218894851232
223 => 0.12355248394755
224 => 0.1207475881056
225 => 0.11757358221728
226 => 0.11817685697058
227 => 0.11811875676061
228 => 0.11737907440335
229 => 0.11671132224464
301 => 0.11559970303841
302 => 0.11911703069562
303 => 0.11897423361613
304 => 0.1212859523496
305 => 0.12087733360862
306 => 0.1181484776504
307 => 0.11824593927481
308 => 0.11890141553737
309 => 0.12117002636618
310 => 0.12184350451898
311 => 0.12153152260514
312 => 0.12226996065424
313 => 0.1228535919797
314 => 0.12234325576297
315 => 0.12956854038801
316 => 0.12656809846661
317 => 0.12803049298216
318 => 0.12837926545719
319 => 0.12748589209629
320 => 0.12767963278897
321 => 0.1279730971472
322 => 0.12975495526413
323 => 0.13443106654778
324 => 0.13650208440394
325 => 0.14273284380641
326 => 0.13633011520094
327 => 0.13595020378262
328 => 0.13707255170191
329 => 0.14073066706403
330 => 0.14369522597573
331 => 0.14467874119624
401 => 0.1448087289687
402 => 0.14665386890524
403 => 0.14771146870704
404 => 0.14642982038495
405 => 0.14534375762614
406 => 0.14145361563117
407 => 0.1419039101596
408 => 0.14500599292483
409 => 0.14938786754248
410 => 0.15314797182078
411 => 0.15183131435538
412 => 0.16187648140104
413 => 0.16287241868279
414 => 0.16273481235296
415 => 0.16500370569612
416 => 0.16050041446204
417 => 0.15857517021231
418 => 0.14557857672193
419 => 0.14923008936857
420 => 0.15453777744627
421 => 0.15383528502638
422 => 0.14998070006944
423 => 0.15314504777244
424 => 0.15209881546353
425 => 0.15127360863327
426 => 0.1550540410969
427 => 0.15089730031153
428 => 0.1544963107772
429 => 0.14988054262799
430 => 0.15183732873578
501 => 0.1507265623019
502 => 0.15144536431503
503 => 0.14724326243379
504 => 0.14951061460865
505 => 0.14714893312896
506 => 0.14714781338444
507 => 0.14709567913488
508 => 0.14987418692244
509 => 0.14996479396164
510 => 0.14791147250854
511 => 0.14761555680824
512 => 0.14870971224795
513 => 0.14742874278781
514 => 0.14802810033588
515 => 0.14744689671737
516 => 0.14731605554082
517 => 0.14627349078528
518 => 0.14582432522268
519 => 0.14600045461335
520 => 0.14539923420208
521 => 0.1450369771572
522 => 0.14702361709077
523 => 0.14596223551509
524 => 0.14686094514194
525 => 0.14583675209595
526 => 0.14228645277885
527 => 0.14024463809785
528 => 0.13353845180077
529 => 0.13544031791562
530 => 0.13670125711739
531 => 0.13628451671873
601 => 0.13717983635218
602 => 0.13723480170619
603 => 0.13694372416665
604 => 0.13660669366521
605 => 0.13644264585606
606 => 0.1376653238236
607 => 0.1383751295372
608 => 0.13682780923548
609 => 0.1364652937381
610 => 0.13802971999303
611 => 0.1389840191048
612 => 0.14603002757176
613 => 0.14550803650622
614 => 0.14681813164515
615 => 0.14667063503755
616 => 0.14804382345768
617 => 0.15028840617185
618 => 0.14572454191874
619 => 0.14651667094653
620 => 0.14632245920184
621 => 0.14844281210524
622 => 0.14844943161556
623 => 0.14717817413049
624 => 0.14786734343694
625 => 0.14748266803645
626 => 0.14817782847714
627 => 0.1455010649973
628 => 0.14876107397698
629 => 0.15060928899813
630 => 0.15063495146549
701 => 0.15151099071717
702 => 0.15240109733365
703 => 0.15410957947203
704 => 0.15235344869409
705 => 0.14919434038045
706 => 0.14942241779684
707 => 0.14757023374843
708 => 0.14760136929691
709 => 0.14743516529899
710 => 0.14793395600798
711 => 0.14561052150848
712 => 0.1461558269415
713 => 0.14539239614197
714 => 0.14651501139706
715 => 0.14530726295754
716 => 0.14632236554706
717 => 0.14676045017351
718 => 0.14837699187642
719 => 0.14506849843365
720 => 0.13832225633852
721 => 0.13974039821719
722 => 0.13764285498599
723 => 0.13783699059795
724 => 0.13822917543056
725 => 0.13695797607318
726 => 0.13720048085047
727 => 0.13719181687335
728 => 0.13711715539915
729 => 0.13678646735024
730 => 0.1363069042547
731 => 0.13821733602561
801 => 0.1385419556107
802 => 0.13926354473648
803 => 0.14141050451624
804 => 0.14119597260544
805 => 0.14154588305279
806 => 0.14078203051089
807 => 0.13787242352659
808 => 0.13803042918437
809 => 0.13606009609987
810 => 0.1392131588896
811 => 0.1384664720026
812 => 0.13798507810906
813 => 0.13785372532513
814 => 0.14000600700291
815 => 0.14065000341378
816 => 0.14024870806752
817 => 0.13942563960467
818 => 0.14100617437168
819 => 0.14142905879792
820 => 0.14152372702558
821 => 0.14432413159524
822 => 0.14168023853241
823 => 0.14231664987067
824 => 0.14728174946015
825 => 0.1427790892694
826 => 0.14516424879374
827 => 0.1450475076468
828 => 0.14626767455006
829 => 0.14494741834673
830 => 0.14496378450468
831 => 0.14604721005351
901 => 0.14452573426701
902 => 0.14414899546571
903 => 0.14362853350997
904 => 0.14476494314961
905 => 0.14544616933319
906 => 0.15093635206732
907 => 0.15448326049631
908 => 0.15432927984711
909 => 0.15573637474117
910 => 0.15510246560388
911 => 0.1530554057828
912 => 0.15654948728504
913 => 0.15544381369915
914 => 0.15553496408618
915 => 0.15553157146422
916 => 0.15626674773918
917 => 0.15574580797045
918 => 0.15471898221293
919 => 0.15540063707073
920 => 0.1574249083023
921 => 0.16370830831734
922 => 0.16722458220973
923 => 0.16349662421385
924 => 0.16606811972006
925 => 0.16452613873387
926 => 0.16424591491872
927 => 0.16586100412865
928 => 0.16747892033843
929 => 0.16737586607031
930 => 0.16620134198293
1001 => 0.16553788312841
1002 => 0.17056181584985
1003 => 0.17426336389855
1004 => 0.17401094313712
1005 => 0.17512504628644
1006 => 0.17839608759074
1007 => 0.17869515061358
1008 => 0.17865747554659
1009 => 0.17791621664047
1010 => 0.18113698160295
1011 => 0.18382380039861
1012 => 0.17774463662074
1013 => 0.18005950260526
1014 => 0.18109872052603
1015 => 0.18262460075579
1016 => 0.18519901647061
1017 => 0.18799551476696
1018 => 0.1883909702881
1019 => 0.18811037567156
1020 => 0.18626600987121
1021 => 0.18932597167623
1022 => 0.19111842553668
1023 => 0.192185790791
1024 => 0.19489245148331
1025 => 0.18110513838212
1026 => 0.17134579289517
1027 => 0.16982173017073
1028 => 0.17292097165169
1029 => 0.17373821691423
1030 => 0.17340878637364
1031 => 0.16242375574721
1101 => 0.16976389625788
1102 => 0.17766127027082
1103 => 0.17796464056973
1104 => 0.18191823112691
1105 => 0.18320568227548
1106 => 0.18638884088297
1107 => 0.1861897334454
1108 => 0.1869647819112
1109 => 0.18678661169088
1110 => 0.19268274271814
1111 => 0.19918705082513
1112 => 0.19896182731782
1113 => 0.19802675607196
1114 => 0.1994154963254
1115 => 0.20612863933583
1116 => 0.20551060070335
1117 => 0.2061109725904
1118 => 0.21402614653586
1119 => 0.22431699858532
1120 => 0.21953586462369
1121 => 0.22990954958619
1122 => 0.23643923438467
1123 => 0.24773164906164
1124 => 0.24631778312777
1125 => 0.25071383729394
1126 => 0.24378666802341
1127 => 0.22788048716639
1128 => 0.22536327315935
1129 => 0.23040279934745
1130 => 0.24279198273113
1201 => 0.23001261987334
1202 => 0.23259786833559
1203 => 0.23185331660455
1204 => 0.23181364260694
1205 => 0.23332783772976
1206 => 0.231131418729
1207 => 0.22218281259165
1208 => 0.22628390604993
1209 => 0.224700276915
1210 => 0.22645743150757
1211 => 0.23594007013801
1212 => 0.23174756956163
1213 => 0.22733111077549
1214 => 0.23287033018397
1215 => 0.23992365997326
1216 => 0.23948227527109
1217 => 0.23862580446441
1218 => 0.24345368555835
1219 => 0.25142793068909
1220 => 0.25358333710482
1221 => 0.25517441405557
1222 => 0.25539379668561
1223 => 0.2576535741206
1224 => 0.24550218131545
1225 => 0.26478675376712
1226 => 0.26811666670396
1227 => 0.26749078108258
1228 => 0.27119183916772
1229 => 0.27010289399229
1230 => 0.26852518328336
1231 => 0.27439214758594
]
'min_raw' => 0.10114334463449
'max_raw' => 0.27439214758594
'avg_raw' => 0.18776774611021
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.101143'
'max' => '$0.274392'
'avg' => '$0.187767'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.034881725627686
'max_diff' => 0.12646775096207
'year' => 2032
]
7 => [
'items' => [
101 => 0.26766614645264
102 => 0.25811943462391
103 => 0.25288191970212
104 => 0.25977910184941
105 => 0.26399097030827
106 => 0.26677474743444
107 => 0.26761711671081
108 => 0.24644545934833
109 => 0.2350351102639
110 => 0.2423490132071
111 => 0.25127247957642
112 => 0.24545261100921
113 => 0.24568073883857
114 => 0.23738313569628
115 => 0.25200663333729
116 => 0.24987611273397
117 => 0.26092925739282
118 => 0.25829133571296
119 => 0.26730474610165
120 => 0.26493121307403
121 => 0.27478361596924
122 => 0.27871400622729
123 => 0.28531374318697
124 => 0.29016853656026
125 => 0.29301936408646
126 => 0.29284821109498
127 => 0.30414461003041
128 => 0.2974835182443
129 => 0.28911561706216
130 => 0.28896426813016
131 => 0.29329812272647
201 => 0.30238069302539
202 => 0.30473567135788
203 => 0.30605178297369
204 => 0.30403611221991
205 => 0.29680597449083
206 => 0.29368403767705
207 => 0.29634401829361
208 => 0.2930910905743
209 => 0.29870655642815
210 => 0.30641779044427
211 => 0.30482545111346
212 => 0.31014840275949
213 => 0.31565709772228
214 => 0.32353477893005
215 => 0.32559429650745
216 => 0.32899860074645
217 => 0.33250274806407
218 => 0.33362818574308
219 => 0.33577699547509
220 => 0.33576567018712
221 => 0.34224125294613
222 => 0.34938402126143
223 => 0.35208025094498
224 => 0.35828008243135
225 => 0.34766308827896
226 => 0.35571620030279
227 => 0.36298030893075
228 => 0.35431973916044
301 => 0.36625631693485
302 => 0.36671978720097
303 => 0.37371763796204
304 => 0.3666239755897
305 => 0.36241178151678
306 => 0.37457222797645
307 => 0.38045628496781
308 => 0.37868395911597
309 => 0.36519647187294
310 => 0.35734617579195
311 => 0.33680043673899
312 => 0.3611377521571
313 => 0.37299174856804
314 => 0.36516577288595
315 => 0.36911273981017
316 => 0.39064611154043
317 => 0.39884462531274
318 => 0.39713939176004
319 => 0.39742754815991
320 => 0.4018513173779
321 => 0.42146874630467
322 => 0.4097135281633
323 => 0.41869995197275
324 => 0.42346631875832
325 => 0.42789358586127
326 => 0.41702161710857
327 => 0.40287734550226
328 => 0.39839726094841
329 => 0.36438763383749
330 => 0.36261728505004
331 => 0.36162353462858
401 => 0.35535807879011
402 => 0.35043514675386
403 => 0.34652024842189
404 => 0.33624638611119
405 => 0.33971351304866
406 => 0.32333912084711
407 => 0.33381487670483
408 => 0.30768095137764
409 => 0.32944606096391
410 => 0.3176003013542
411 => 0.32555441034144
412 => 0.3255266592045
413 => 0.31088062270645
414 => 0.30243309450936
415 => 0.30781618825926
416 => 0.31358729206967
417 => 0.31452363424659
418 => 0.32200602097801
419 => 0.32409419428138
420 => 0.31776693168467
421 => 0.30713938386343
422 => 0.30960792083375
423 => 0.30238306968645
424 => 0.28972179595069
425 => 0.29881534379234
426 => 0.30192028084056
427 => 0.30329159792541
428 => 0.2908406893634
429 => 0.28692834357085
430 => 0.28484544349865
501 => 0.30553212791989
502 => 0.30666539119004
503 => 0.3008674560727
504 => 0.32707467258585
505 => 0.32114317235187
506 => 0.32777011136607
507 => 0.30938392697767
508 => 0.31008630398159
509 => 0.30138198964045
510 => 0.30625582404899
511 => 0.30281115498005
512 => 0.30586206639295
513 => 0.30769077011447
514 => 0.31639365616328
515 => 0.32954543394295
516 => 0.31509373520326
517 => 0.30879692311024
518 => 0.31270342991813
519 => 0.323106972341
520 => 0.33886887165919
521 => 0.32953751002504
522 => 0.33367860986148
523 => 0.33458325595103
524 => 0.32770265534779
525 => 0.33912256921782
526 => 0.34524259383598
527 => 0.35152047273356
528 => 0.35697137907816
529 => 0.34901294984835
530 => 0.35752960992026
531 => 0.35066668529519
601 => 0.34450993243039
602 => 0.34451926968309
603 => 0.34065704867519
604 => 0.33317350880123
605 => 0.33179342923037
606 => 0.33897277744281
607 => 0.34472993482239
608 => 0.3452041218791
609 => 0.34839158001786
610 => 0.35027788491095
611 => 0.36876623717037
612 => 0.37620240539278
613 => 0.38529521113568
614 => 0.38883737141499
615 => 0.39949800392098
616 => 0.39088867735816
617 => 0.38902599540109
618 => 0.36316678800788
619 => 0.36740123176985
620 => 0.37418098479583
621 => 0.36327858363814
622 => 0.37019364778587
623 => 0.37155882792972
624 => 0.36290812421865
625 => 0.36752883884557
626 => 0.35525759074288
627 => 0.32981291361814
628 => 0.33915089641721
629 => 0.34602679488835
630 => 0.33621403997786
701 => 0.35380302334885
702 => 0.34352790237383
703 => 0.34027118231754
704 => 0.32756555627343
705 => 0.33356212268185
706 => 0.34167256461181
707 => 0.33666125443917
708 => 0.34706047549941
709 => 0.36178854589165
710 => 0.37228464592492
711 => 0.37309040615488
712 => 0.36634211701758
713 => 0.37715629342711
714 => 0.37723506289615
715 => 0.36503662772899
716 => 0.35756515411027
717 => 0.35586761958398
718 => 0.3601083936519
719 => 0.36525747626042
720 => 0.37337614440386
721 => 0.37828208552927
722 => 0.39107417807423
723 => 0.39453535153886
724 => 0.39833813181427
725 => 0.40341981899621
726 => 0.40952168737598
727 => 0.3961711467406
728 => 0.39670158860857
729 => 0.38426975001971
730 => 0.37098454758153
731 => 0.38106636020825
801 => 0.39424698909035
802 => 0.3912233382615
803 => 0.39088311577567
804 => 0.39145527562698
805 => 0.38917554164523
806 => 0.37886438933665
807 => 0.37368619319851
808 => 0.38036738731543
809 => 0.38391814464284
810 => 0.38942505959907
811 => 0.38874621609385
812 => 0.4029314376216
813 => 0.40844338576846
814 => 0.40703319356293
815 => 0.40729270286692
816 => 0.41727182170184
817 => 0.42837065420859
818 => 0.4387661754711
819 => 0.44934094619736
820 => 0.43659264734653
821 => 0.43011984739585
822 => 0.43679812471243
823 => 0.43325453676469
824 => 0.45361704420886
825 => 0.45502690004439
826 => 0.4753879350475
827 => 0.4947129818124
828 => 0.48257526618354
829 => 0.49402058532684
830 => 0.50639963113087
831 => 0.53028081891466
901 => 0.52223847501939
902 => 0.51607816563522
903 => 0.51025670303357
904 => 0.52237024257644
905 => 0.53795411767981
906 => 0.54131073511658
907 => 0.54674973769069
908 => 0.5410312915336
909 => 0.54791853006363
910 => 0.57223350848059
911 => 0.56566338667808
912 => 0.55633275751872
913 => 0.57552709774356
914 => 0.58247345485482
915 => 0.63122662689711
916 => 0.69277952049359
917 => 0.66729621836656
918 => 0.65147791039529
919 => 0.65519558798382
920 => 0.67767262102831
921 => 0.68489153065684
922 => 0.66526804577914
923 => 0.67219939238541
924 => 0.71039179366093
925 => 0.73088079158631
926 => 0.7030539803641
927 => 0.62628091182936
928 => 0.55549263645155
929 => 0.57426887471933
930 => 0.57214023199427
1001 => 0.61317320256572
1002 => 0.56550669144597
1003 => 0.56630927324565
1004 => 0.60819076219385
1005 => 0.59701749897296
1006 => 0.57891824351856
1007 => 0.5556247810462
1008 => 0.51256466128155
1009 => 0.47442511238573
1010 => 0.54922555078398
1011 => 0.54600001986448
1012 => 0.54132897309613
1013 => 0.55172388221903
1014 => 0.60219861027337
1015 => 0.60103500442096
1016 => 0.5936327376649
1017 => 0.59924729175879
1018 => 0.57793398503993
1019 => 0.58342690947635
1020 => 0.55548142322706
1021 => 0.56811395011834
1022 => 0.57887941064514
1023 => 0.58104073623126
1024 => 0.58591031313682
1025 => 0.54430031163916
1026 => 0.56298198070615
1027 => 0.57395571104733
1028 => 0.52437599813813
1029 => 0.57297567953405
1030 => 0.54357597408698
1031 => 0.53359727248949
1101 => 0.54703227959654
1102 => 0.54179664426095
1103 => 0.53729535244623
1104 => 0.53478355427161
1105 => 0.5446487407234
1106 => 0.54418851798398
1107 => 0.52804715819866
1108 => 0.50699141236471
1109 => 0.51405841179788
1110 => 0.51149090465034
1111 => 0.50218592753262
1112 => 0.50845635862274
1113 => 0.48084455349442
1114 => 0.43333987790789
1115 => 0.46472292170792
1116 => 0.4635147086598
1117 => 0.46290547285284
1118 => 0.48648896290494
1119 => 0.48422195450012
1120 => 0.48010731204676
1121 => 0.50211035889723
1122 => 0.49407895081406
1123 => 0.51882985808864
1124 => 0.535132406408
1125 => 0.53099755282202
1126 => 0.54633017831343
1127 => 0.51422122119149
1128 => 0.52488652875963
1129 => 0.52708463386795
1130 => 0.50183884471454
1201 => 0.48459286511171
1202 => 0.48344275489076
1203 => 0.45354060290185
1204 => 0.46951409113259
1205 => 0.48357009974779
1206 => 0.47683836241144
1207 => 0.47470729547568
1208 => 0.48559445427843
1209 => 0.48644047975961
1210 => 0.46715100913088
1211 => 0.47116190089269
1212 => 0.48788798629468
1213 => 0.47074044645527
1214 => 0.43742557758202
1215 => 0.42916302948736
1216 => 0.42806065326256
1217 => 0.40565196751888
1218 => 0.42971517245996
1219 => 0.41921093864938
1220 => 0.45239368739696
1221 => 0.43343987927499
1222 => 0.43262281848935
1223 => 0.43138771127509
1224 => 0.41209962976436
1225 => 0.41632249379368
1226 => 0.43035993698751
1227 => 0.43536865486218
1228 => 0.43484620455263
1229 => 0.43029114585776
1230 => 0.4323764284026
1231 => 0.42565900676506
]
'min_raw' => 0.2350351102639
'max_raw' => 0.73088079158631
'avg_raw' => 0.48295795092511
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.235035'
'max' => '$0.73088'
'avg' => '$0.482957'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.13389176562942
'max_diff' => 0.45648864400037
'year' => 2033
]
8 => [
'items' => [
101 => 0.42328694537381
102 => 0.41580006713612
103 => 0.40479642442963
104 => 0.40632654843723
105 => 0.38452545297593
106 => 0.3726470590969
107 => 0.3693592762259
108 => 0.36496271556489
109 => 0.36985587945136
110 => 0.38446369321165
111 => 0.36684357059617
112 => 0.33663510627983
113 => 0.33845068645796
114 => 0.34252975606762
115 => 0.33492843683576
116 => 0.32773442611316
117 => 0.33398903476792
118 => 0.32118931020593
119 => 0.34407654162953
120 => 0.34345750616025
121 => 0.35198845069807
122 => 0.35732302539017
123 => 0.34502855781394
124 => 0.34193653246629
125 => 0.34369789062903
126 => 0.31458656367278
127 => 0.34960943421427
128 => 0.34991231345307
129 => 0.34731887752716
130 => 0.36596747488069
131 => 0.40532183194001
201 => 0.39051513978895
202 => 0.38478154105342
203 => 0.37388196566594
204 => 0.38840500271701
205 => 0.38728986006615
206 => 0.38224676209371
207 => 0.37919668070456
208 => 0.38481654918468
209 => 0.37850031680754
210 => 0.37736574791415
211 => 0.37049149484332
212 => 0.36803769925562
213 => 0.3662210066909
214 => 0.36422100668168
215 => 0.36863250833308
216 => 0.35863546520962
217 => 0.34658001122495
218 => 0.34557773066795
219 => 0.34834511540725
220 => 0.34712075366767
221 => 0.34557186889498
222 => 0.34261462605026
223 => 0.34173727526972
224 => 0.34458823967637
225 => 0.34136966708282
226 => 0.34611884626933
227 => 0.34482733231467
228 => 0.3376130403506
301 => 0.3286213614904
302 => 0.32854131668786
303 => 0.32660407422674
304 => 0.32413670468614
305 => 0.32345033892572
306 => 0.33346228907254
307 => 0.354186726244
308 => 0.35011802333349
309 => 0.35305807816378
310 => 0.36752023804958
311 => 0.37211732378496
312 => 0.36885442121793
313 => 0.36438795893712
314 => 0.3645844606098
315 => 0.37984771431341
316 => 0.38079966472462
317 => 0.38320493630289
318 => 0.38629639001065
319 => 0.36938090915219
320 => 0.36378774298255
321 => 0.36113739055433
322 => 0.35297533089088
323 => 0.3617774124758
324 => 0.35664881647898
325 => 0.35734083929674
326 => 0.35689015852883
327 => 0.35713626070301
328 => 0.34407014418191
329 => 0.34883075030733
330 => 0.34091531928907
331 => 0.33031744570445
401 => 0.33028191791611
402 => 0.33287573246194
403 => 0.33133283007411
404 => 0.32718091942008
405 => 0.32777067873202
406 => 0.32260376658553
407 => 0.32839803541657
408 => 0.32856419431375
409 => 0.32633308519785
410 => 0.33525995578708
411 => 0.33891730195112
412 => 0.33744873813604
413 => 0.33881426359896
414 => 0.35028709630851
415 => 0.35215766863496
416 => 0.35298845329929
417 => 0.35187531190696
418 => 0.33902396591992
419 => 0.33959397776258
420 => 0.33541160906989
421 => 0.33187794825171
422 => 0.33201927615283
423 => 0.33383603715712
424 => 0.3417699390145
425 => 0.35846636774428
426 => 0.35909998500965
427 => 0.35986794761919
428 => 0.3567442577391
429 => 0.35580212298158
430 => 0.35704504191236
501 => 0.36331534268675
502 => 0.37944425864854
503 => 0.37374322253357
504 => 0.36910819143018
505 => 0.37317436330326
506 => 0.37254840801511
507 => 0.36726471544397
508 => 0.36711641979138
509 => 0.35697532444866
510 => 0.35322639240202
511 => 0.35009350418115
512 => 0.34667247203008
513 => 0.34464436949689
514 => 0.34776045674399
515 => 0.34847314276586
516 => 0.34165976354019
517 => 0.34073112512803
518 => 0.34629507768072
519 => 0.34384658960734
520 => 0.34636492031039
521 => 0.34694919463534
522 => 0.34685511301205
523 => 0.34429861025638
524 => 0.34592804887683
525 => 0.34207394078042
526 => 0.3378831770939
527 => 0.3352097309557
528 => 0.33287679461895
529 => 0.33417124328963
530 => 0.32955677013563
531 => 0.32808050730267
601 => 0.34537603173575
602 => 0.35815242159268
603 => 0.35796664782416
604 => 0.35683579778539
605 => 0.35515558401234
606 => 0.36319242458385
607 => 0.36039255003044
608 => 0.36242969270539
609 => 0.36294823101478
610 => 0.36451769030354
611 => 0.36507863709969
612 => 0.36338306627913
613 => 0.3576925235088
614 => 0.3435122319657
615 => 0.33691126797343
616 => 0.33473283990822
617 => 0.33481202163097
618 => 0.33262783623485
619 => 0.33327117672233
620 => 0.33240410866786
621 => 0.33076209153897
622 => 0.33406985335901
623 => 0.33445104209484
624 => 0.33367897096123
625 => 0.33386082166257
626 => 0.3274684024322
627 => 0.32795440418268
628 => 0.32524828467788
629 => 0.32474091989349
630 => 0.31790008543416
701 => 0.30578055559463
702 => 0.31249595159695
703 => 0.30438469755372
704 => 0.30131284274199
705 => 0.31585452564927
706 => 0.31439494400888
707 => 0.31189677470542
708 => 0.3082014616415
709 => 0.30683083408039
710 => 0.29850333490708
711 => 0.29801130183044
712 => 0.30213863528213
713 => 0.30023401290705
714 => 0.29755920175554
715 => 0.28787130690602
716 => 0.27697890554341
717 => 0.27730767867335
718 => 0.28077234888647
719 => 0.29084634480553
720 => 0.28691026031805
721 => 0.28405458586102
722 => 0.28351980387648
723 => 0.29021372005496
724 => 0.29968701386629
725 => 0.30413167136957
726 => 0.29972715077008
727 => 0.29466747466161
728 => 0.29497543370205
729 => 0.29702414723002
730 => 0.29723943805456
731 => 0.29394610905106
801 => 0.29487316187476
802 => 0.29346488386407
803 => 0.28482228431195
804 => 0.28466596709203
805 => 0.2825449337812
806 => 0.2824807097355
807 => 0.27887230295721
808 => 0.27836746190519
809 => 0.27120275123227
810 => 0.27591858549393
811 => 0.27275545146362
812 => 0.26798786237206
813 => 0.26716592821566
814 => 0.26714121988241
815 => 0.27203646786603
816 => 0.27586138167109
817 => 0.27281047553434
818 => 0.27211584334633
819 => 0.27953269780826
820 => 0.27858883547185
821 => 0.27777145677578
822 => 0.29883878430948
823 => 0.28216235066249
824 => 0.27489047373484
825 => 0.26589014514491
826 => 0.26882069751739
827 => 0.26943820796104
828 => 0.24779404013341
829 => 0.23901300394135
830 => 0.23599968322661
831 => 0.23426547455317
901 => 0.23505577522248
902 => 0.22715181273681
903 => 0.23246340624665
904 => 0.22561924283938
905 => 0.22447179657131
906 => 0.23671000857267
907 => 0.23841288427806
908 => 0.23114788747685
909 => 0.23581319151937
910 => 0.23412148742098
911 => 0.22573656637706
912 => 0.22541632406848
913 => 0.22120906543287
914 => 0.21462552035394
915 => 0.21161666359277
916 => 0.21004962486746
917 => 0.2106962155865
918 => 0.21036927953295
919 => 0.20823580063548
920 => 0.21049156804599
921 => 0.20472901445958
922 => 0.20243431918942
923 => 0.20139785857242
924 => 0.19628326058427
925 => 0.20442286045546
926 => 0.20602646417006
927 => 0.20763322747936
928 => 0.22161900510291
929 => 0.22092031517623
930 => 0.22723613183758
1001 => 0.22699071081616
1002 => 0.2251893375949
1003 => 0.2175896402859
1004 => 0.22061874418169
1005 => 0.21129563321772
1006 => 0.21828114186185
1007 => 0.21509324743849
1008 => 0.21720331155058
1009 => 0.21340922602023
1010 => 0.21550902960667
1011 => 0.20640673810057
1012 => 0.19790714636487
1013 => 0.20132763019787
1014 => 0.20504608730411
1015 => 0.21310864975569
1016 => 0.20830665407422
1017 => 0.21003363330484
1018 => 0.20424854197511
1019 => 0.19231224613224
1020 => 0.19237980427043
1021 => 0.19054366520135
1022 => 0.18895697296496
1023 => 0.20885822104339
1024 => 0.20638318625266
1025 => 0.20243954223818
1026 => 0.20771826646575
1027 => 0.20911404493614
1028 => 0.20915378078695
1029 => 0.21300500171979
1030 => 0.21506039902202
1031 => 0.21542267170514
1101 => 0.22148265105409
1102 => 0.2235138761988
1103 => 0.23188020510012
1104 => 0.21488601292119
1105 => 0.2145360287166
1106 => 0.20779254894094
1107 => 0.20351572745702
1108 => 0.20808538656693
1109 => 0.21213348071763
1110 => 0.20791833451022
1111 => 0.20846874361832
1112 => 0.20281025422498
1113 => 0.20483289792642
1114 => 0.20657507116164
1115 => 0.20561314550136
1116 => 0.2041730962302
1117 => 0.21180158316113
1118 => 0.2113711540322
1119 => 0.21847497644044
1120 => 0.22401291400687
1121 => 0.23393788815067
1122 => 0.22358066023101
1123 => 0.22320320167937
1124 => 0.22689291956795
1125 => 0.22351331132222
1126 => 0.22564910707341
1127 => 0.23359377843588
1128 => 0.23376163682272
1129 => 0.23094979256984
1130 => 0.23077869159151
1201 => 0.23131873703848
1202 => 0.23448180008941
1203 => 0.2333765286683
1204 => 0.23465557673885
1205 => 0.23625504593656
1206 => 0.24287112869914
1207 => 0.24446624385455
1208 => 0.24059094099928
1209 => 0.24094083745718
1210 => 0.23949136780987
1211 => 0.23809119829237
1212 => 0.24123857488938
1213 => 0.24699046748226
1214 => 0.24695468525697
1215 => 0.2482890125377
1216 => 0.24912028737943
1217 => 0.24555184722834
1218 => 0.24322892390516
1219 => 0.24411968051872
1220 => 0.24554401974195
1221 => 0.24365778650539
1222 => 0.23201508118106
1223 => 0.23554673423756
1224 => 0.23495889447995
1225 => 0.23412173918135
1226 => 0.23767284363913
1227 => 0.2373303309512
1228 => 0.22707074617732
1229 => 0.2277275315074
1230 => 0.22711068746858
1231 => 0.22910383675242
]
'min_raw' => 0.18895697296496
'max_raw' => 0.42328694537381
'avg_raw' => 0.30612195916939
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.188956'
'max' => '$0.423286'
'avg' => '$0.306121'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.046078137298941
'max_diff' => -0.3075938462125
'year' => 2034
]
9 => [
'items' => [
101 => 0.22340567471993
102 => 0.22515839098342
103 => 0.22625767819318
104 => 0.22690516680486
105 => 0.22924433965732
106 => 0.22896986472171
107 => 0.22922727790994
108 => 0.2326956537314
109 => 0.25023750843351
110 => 0.25119227288103
111 => 0.24649066355277
112 => 0.24836886374427
113 => 0.24476313009383
114 => 0.24718368324968
115 => 0.24883976424354
116 => 0.24135625267838
117 => 0.24091312769108
118 => 0.23729251189523
119 => 0.23923802574176
120 => 0.23614257332454
121 => 0.2369020890734
122 => 0.2347784168262
123 => 0.23860060405223
124 => 0.24287440327877
125 => 0.24395413374084
126 => 0.24111382774832
127 => 0.23905725902445
128 => 0.23544660182119
129 => 0.24145120521896
130 => 0.24320713423944
131 => 0.24144198207134
201 => 0.24103295774465
202 => 0.24025785738467
203 => 0.24119739895016
204 => 0.24319757107289
205 => 0.24225432683719
206 => 0.2428773562727
207 => 0.24050301052971
208 => 0.24555302853051
209 => 0.2535736724688
210 => 0.25359946015057
211 => 0.25265621083043
212 => 0.25227025353121
213 => 0.25323808457483
214 => 0.25376309321349
215 => 0.25689288133869
216 => 0.26025126869329
217 => 0.27592339709801
218 => 0.271522726155
219 => 0.28542797081476
220 => 0.29642521397059
221 => 0.29972280634186
222 => 0.296689176524
223 => 0.28631129279056
224 => 0.28580210430429
225 => 0.30131104403154
226 => 0.29692905820416
227 => 0.29640783493335
228 => 0.2908628999526
301 => 0.29414064327978
302 => 0.29342375273254
303 => 0.29229210593222
304 => 0.2985458118709
305 => 0.31025219111592
306 => 0.30842764212886
307 => 0.3070657009484
308 => 0.30109807115077
309 => 0.30469191720732
310 => 0.30341221746217
311 => 0.30891061968485
312 => 0.30565348801266
313 => 0.29689586035171
314 => 0.29829054142223
315 => 0.29807973818413
316 => 0.30241805388657
317 => 0.30111579919631
318 => 0.29782545205542
319 => 0.31021217998431
320 => 0.30940785477121
321 => 0.31054820402904
322 => 0.31105022103881
323 => 0.3185898040505
324 => 0.32167852997064
325 => 0.32237972483027
326 => 0.32531377556377
327 => 0.32230672297516
328 => 0.33433707732175
329 => 0.34233656097159
330 => 0.35162837288055
331 => 0.36520620748313
401 => 0.37031159889569
402 => 0.36938935563359
403 => 0.37968391486758
404 => 0.39818300897587
405 => 0.37312855146222
406 => 0.39951095606107
407 => 0.39115859136458
408 => 0.37135528492184
409 => 0.37008018545257
410 => 0.38349121449671
411 => 0.41323558615291
412 => 0.4057849584109
413 => 0.41324777271078
414 => 0.40454200341925
415 => 0.40410968859594
416 => 0.41282495292793
417 => 0.43318864308395
418 => 0.42351461721234
419 => 0.40964452895692
420 => 0.41988598628224
421 => 0.41101388814491
422 => 0.3910225678976
423 => 0.40577926105628
424 => 0.3959118805875
425 => 0.39879170678709
426 => 0.4195314728704
427 => 0.41703600934464
428 => 0.42026537022067
429 => 0.41456563280157
430 => 0.40924117928603
501 => 0.39930269140016
502 => 0.39636039509868
503 => 0.39717353994368
504 => 0.39635999214448
505 => 0.39079949951176
506 => 0.38959871165714
507 => 0.38759734595839
508 => 0.38821765287489
509 => 0.38445449984105
510 => 0.39155634712299
511 => 0.39287451255979
512 => 0.39804264476668
513 => 0.39857921739702
514 => 0.41297239202944
515 => 0.40504487330937
516 => 0.41036333729583
517 => 0.40988760381756
518 => 0.37178448262133
519 => 0.37703475653548
520 => 0.38520253511919
521 => 0.38152296193839
522 => 0.37632090634827
523 => 0.37211996754266
524 => 0.36575511568413
525 => 0.37471352244886
526 => 0.38649287472414
527 => 0.39887796120961
528 => 0.41375783111888
529 => 0.41043681737591
530 => 0.39859979239188
531 => 0.39913079268571
601 => 0.40241322756126
602 => 0.39816217615676
603 => 0.39690845810719
604 => 0.4022409859534
605 => 0.40227770814197
606 => 0.39738635974437
607 => 0.39195052110775
608 => 0.39192774474538
609 => 0.39096048976396
610 => 0.40471407593168
611 => 0.41227715767951
612 => 0.41314425281339
613 => 0.41221879526835
614 => 0.41257496714734
615 => 0.40817417651941
616 => 0.41823307888094
617 => 0.42746412241022
618 => 0.42499000555189
619 => 0.42128095266482
620 => 0.41832651338808
621 => 0.42429403355172
622 => 0.42402830927258
623 => 0.42738349729797
624 => 0.42723128658864
625 => 0.4261030630507
626 => 0.4249900458443
627 => 0.42940303325791
628 => 0.4281321637532
629 => 0.42685932023713
630 => 0.42430643770305
701 => 0.42465341683832
702 => 0.42094500437153
703 => 0.41922932307898
704 => 0.39342959293409
705 => 0.38653506200887
706 => 0.38870422178906
707 => 0.38941836551091
708 => 0.38641785681667
709 => 0.39071981551677
710 => 0.39004935981026
711 => 0.39265771076081
712 => 0.39102812632834
713 => 0.39109500504187
714 => 0.39588726539373
715 => 0.39727847896161
716 => 0.39657089651252
717 => 0.39706646300536
718 => 0.40848658366727
719 => 0.40686300770405
720 => 0.40600051533266
721 => 0.40623943161391
722 => 0.40915751729318
723 => 0.4099744219618
724 => 0.40651313947797
725 => 0.40814550030678
726 => 0.41509588553842
727 => 0.41752812701176
728 => 0.42529067425252
729 => 0.42199300621637
730 => 0.42804601861646
731 => 0.44665091511032
801 => 0.46151379379054
802 => 0.44784527632177
803 => 0.4751390602418
804 => 0.4963911860843
805 => 0.4955754940972
806 => 0.49186969438603
807 => 0.46767471413134
808 => 0.44541013257413
809 => 0.4640354004508
810 => 0.46408288008894
811 => 0.4624829530604
812 => 0.45254594369466
813 => 0.46213716667419
814 => 0.4628984831241
815 => 0.46247234836254
816 => 0.45485366658037
817 => 0.44322134766676
818 => 0.44549427493864
819 => 0.44921737617644
820 => 0.442168768813
821 => 0.43991631167019
822 => 0.44410405804617
823 => 0.45759784942117
824 => 0.45504692632593
825 => 0.45498031141483
826 => 0.46589424217597
827 => 0.45808222312466
828 => 0.44552294383046
829 => 0.44235156017213
830 => 0.43109528468508
831 => 0.43887003425746
901 => 0.43914983365345
902 => 0.43489168276867
903 => 0.44586846930675
904 => 0.44576731628638
905 => 0.45618814142521
906 => 0.47610884520749
907 => 0.47021731286077
908 => 0.46336610173844
909 => 0.46411101835091
910 => 0.47228091497891
911 => 0.46734120897703
912 => 0.46911756169616
913 => 0.47227822625632
914 => 0.47418513366036
915 => 0.46383664372111
916 => 0.46142391569078
917 => 0.45648832089319
918 => 0.45520071633773
919 => 0.45922065531581
920 => 0.45816154342163
921 => 0.43912631759766
922 => 0.43713703058805
923 => 0.43719803918059
924 => 0.43219588240951
925 => 0.42456639267842
926 => 0.44461623615855
927 => 0.44300595312972
928 => 0.44122832529189
929 => 0.44144607455902
930 => 0.45014903206151
1001 => 0.44510087720018
1002 => 0.45852222427533
1003 => 0.4557631987993
1004 => 0.45293341473057
1005 => 0.45254225237494
1006 => 0.45145302693431
1007 => 0.44771766761545
1008 => 0.44320699677764
1009 => 0.44022866118289
1010 => 0.40608766954224
1011 => 0.41242403900173
1012 => 0.41971345448663
1013 => 0.42222973150152
1014 => 0.41792546554648
1015 => 0.44788762627017
1016 => 0.45336200175695
1017 => 0.43677976132281
1018 => 0.433677901186
1019 => 0.44809098370433
1020 => 0.4393981330181
1021 => 0.44331252314984
1022 => 0.43485175274194
1023 => 0.45204338501061
1024 => 0.45191241357658
1025 => 0.44522448033345
1026 => 0.45087707571355
1027 => 0.44989479816272
1028 => 0.44234413800287
1029 => 0.45228275440554
1030 => 0.45228768383528
1031 => 0.44585069349697
1101 => 0.4383336980202
1102 => 0.43698983677246
1103 => 0.43597741784465
1104 => 0.443063530156
1105 => 0.44941691629667
1106 => 0.46123899276644
1107 => 0.46421134367655
1108 => 0.47581262715932
1109 => 0.46890462770157
1110 => 0.47196685438762
1111 => 0.47529133463374
1112 => 0.47688521271744
1113 => 0.47428807391226
1114 => 0.49230964243979
1115 => 0.4938312149901
1116 => 0.49434138510467
1117 => 0.4882646135944
1118 => 0.4936622089816
1119 => 0.4911368528495
1120 => 0.49770712794109
1121 => 0.49873743096893
1122 => 0.49786480095844
1123 => 0.4981918354017
1124 => 0.482813605886
1125 => 0.48201616355899
1126 => 0.47114298084625
1127 => 0.4755738831722
1128 => 0.46729052365251
1129 => 0.46991726228427
1130 => 0.47107510364466
1201 => 0.47047031302491
1202 => 0.47582439974164
1203 => 0.47127233226476
1204 => 0.45925867776411
1205 => 0.44724175015132
1206 => 0.44709088741392
1207 => 0.44392704248986
1208 => 0.44164016209687
1209 => 0.442080696392
1210 => 0.44363319670783
1211 => 0.44154992795622
1212 => 0.44199449896878
1213 => 0.44937733993848
1214 => 0.45085791604295
1215 => 0.44582633994156
1216 => 0.42562383584153
1217 => 0.42066609066124
1218 => 0.42422961958047
1219 => 0.42252648227774
1220 => 0.34101184803799
1221 => 0.36016250222896
1222 => 0.34878383380345
1223 => 0.35402764772129
1224 => 0.34241297375075
1225 => 0.34795610494671
1226 => 0.34693249101755
1227 => 0.37772617624758
1228 => 0.37724537520804
1229 => 0.37747550922224
1230 => 0.3664906131134
1231 => 0.38398985088721
]
'min_raw' => 0.22340567471993
'max_raw' => 0.49873743096893
'avg_raw' => 0.36107155284443
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.2234056'
'max' => '$0.498737'
'avg' => '$0.361071'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.034448701754971
'max_diff' => 0.075450485595121
'year' => 2035
]
10 => [
'items' => [
101 => 0.39261060466683
102 => 0.39101513257616
103 => 0.39141667852828
104 => 0.38451678868537
105 => 0.37754231523833
106 => 0.3698065508218
107 => 0.38417864493834
108 => 0.38258071341241
109 => 0.38624579341528
110 => 0.39556712378836
111 => 0.39693972509408
112 => 0.39878451516853
113 => 0.39812328924794
114 => 0.41387637328879
115 => 0.41196857086925
116 => 0.41656582578813
117 => 0.40710892362542
118 => 0.39640754117092
119 => 0.39844152412097
120 => 0.39824563520663
121 => 0.39575174449615
122 => 0.39350037147212
123 => 0.38975246970753
124 => 0.4016113854758
125 => 0.40112993515253
126 => 0.40892405626146
127 => 0.40754636964741
128 => 0.39834584126163
129 => 0.39867443993285
130 => 0.40088442391596
131 => 0.40853320371467
201 => 0.41080388232757
202 => 0.40975201352318
203 => 0.4122417089618
204 => 0.41420946272343
205 => 0.41248882853819
206 => 0.43684938010479
207 => 0.42673318068261
208 => 0.43166374589292
209 => 0.432839656643
210 => 0.4298275859834
211 => 0.4304807962553
212 => 0.43147023182809
213 => 0.43747789087471
214 => 0.45324372654317
215 => 0.46022630783906
216 => 0.48123374818224
217 => 0.45964650166466
218 => 0.45836560379322
219 => 0.46214967816295
220 => 0.47448326950779
221 => 0.48447848685746
222 => 0.48779447709026
223 => 0.48823273994056
224 => 0.49445375806017
225 => 0.49801952963121
226 => 0.49369836283143
227 => 0.49003662641364
228 => 0.47692074107656
229 => 0.4784389405177
301 => 0.48889782914119
302 => 0.50367162534732
303 => 0.5163490794437
304 => 0.51190987687303
305 => 0.54577785889863
306 => 0.54913573097816
307 => 0.54867178162977
308 => 0.55632151394532
309 => 0.54113835313985
310 => 0.53464725773562
311 => 0.49082833538964
312 => 0.50313966521825
313 => 0.52103490614317
314 => 0.51866640390305
315 => 0.50567040160221
316 => 0.51633922081058
317 => 0.51281177553547
318 => 0.51002953309315
319 => 0.52277552508564
320 => 0.5087607833134
321 => 0.52089509837328
322 => 0.50533271379557
323 => 0.51193015477644
324 => 0.50818512819339
325 => 0.51060861936582
326 => 0.49644093949183
327 => 0.50408547565085
328 => 0.49612290165472
329 => 0.49611912635788
330 => 0.49594335209559
331 => 0.50531128509059
401 => 0.50561677304923
402 => 0.49869385641177
403 => 0.49769615596803
404 => 0.50138517742451
405 => 0.49706629945522
406 => 0.49908707527436
407 => 0.49712750669619
408 => 0.49668636653441
409 => 0.49317128667157
410 => 0.49165689361753
411 => 0.49225072615512
412 => 0.49022366956266
413 => 0.48900229464386
414 => 0.49570038988268
415 => 0.49212186779697
416 => 0.49515193004982
417 => 0.49169879168836
418 => 0.47972870966678
419 => 0.47284458891484
420 => 0.45023421360327
421 => 0.45664648799355
422 => 0.46089783254828
423 => 0.4594927631983
424 => 0.46251139585171
425 => 0.46269671538031
426 => 0.46171532713337
427 => 0.46057900526703
428 => 0.46002590662504
429 => 0.46414825075724
430 => 0.4665414102777
501 => 0.46132451185
502 => 0.46010226554056
503 => 0.46537683788382
504 => 0.46859432396618
505 => 0.49235043344913
506 => 0.49059050412741
507 => 0.49500758135623
508 => 0.49451028624584
509 => 0.49914008687724
510 => 0.50670785420984
511 => 0.49132046724164
512 => 0.49399118556351
513 => 0.49333638710688
514 => 0.50048530495899
515 => 0.5005076231002
516 => 0.49622148973292
517 => 0.49854507216589
518 => 0.49724811219596
519 => 0.49959189415628
520 => 0.49056699919834
521 => 0.50155834707991
522 => 0.50778973306195
523 => 0.50787625586235
524 => 0.5108298833625
525 => 0.51383093996522
526 => 0.5195912067772
527 => 0.51367028925022
528 => 0.5030191350089
529 => 0.50378811394211
530 => 0.49754334610753
531 => 0.49764832178304
601 => 0.49708795340008
602 => 0.4987696610999
603 => 0.49093603946782
604 => 0.49277457480725
605 => 0.4902006145656
606 => 0.49398559027663
607 => 0.48991358209046
608 => 0.49333607134324
609 => 0.49481310424742
610 => 0.50026338746211
611 => 0.48910857082816
612 => 0.46636314459685
613 => 0.47114450895231
614 => 0.46407249550252
615 => 0.46472703727235
616 => 0.46604931581696
617 => 0.46176337843126
618 => 0.46258100021904
619 => 0.46255178901527
620 => 0.4623000626423
621 => 0.46118512479752
622 => 0.45956824433887
623 => 0.46600939843659
624 => 0.46710387603192
625 => 0.46953676414924
626 => 0.47677538894263
627 => 0.47605207962725
628 => 0.47723182713046
629 => 0.47465644495495
630 => 0.4648465018651
701 => 0.46537922897194
702 => 0.45873611341328
703 => 0.46936688474865
704 => 0.46684937777711
705 => 0.4652263246552
706 => 0.46478345957341
707 => 0.47204002751756
708 => 0.47421130637921
709 => 0.47285831110173
710 => 0.47008327831444
711 => 0.47541216163083
712 => 0.47683794599876
713 => 0.47715712653783
714 => 0.48659888606244
715 => 0.47768481601039
716 => 0.47983052127016
717 => 0.49657070118826
718 => 0.48138966798946
719 => 0.48943139985231
720 => 0.48903779892477
721 => 0.49315167682844
722 => 0.48870034086158
723 => 0.48875552050576
724 => 0.49240836538599
725 => 0.48727860354576
726 => 0.48600840237411
727 => 0.48425362855284
728 => 0.48808511299447
729 => 0.4903819146341
730 => 0.50889244903454
731 => 0.52085109844014
801 => 0.52033194193075
802 => 0.52507606060632
803 => 0.52293879169183
804 => 0.51603698658388
805 => 0.52781752631768
806 => 0.52408967062719
807 => 0.52439699052097
808 => 0.52438555205918
809 => 0.52686425019855
810 => 0.52510786539746
811 => 0.52164585066529
812 => 0.52394409760996
813 => 0.53076906939733
814 => 0.551953991241
815 => 0.56380935416761
816 => 0.55124028350679
817 => 0.55991026014206
818 => 0.55471136358944
819 => 0.55376656943206
820 => 0.55921195546525
821 => 0.56466687292584
822 => 0.56431941826585
823 => 0.56035942830258
824 => 0.55812253045335
825 => 0.57506107038347
826 => 0.58754109806349
827 => 0.58669004384288
828 => 0.590446320395
829 => 0.60147486452926
830 => 0.60248317639069
831 => 0.60235615227193
901 => 0.59985694611693
902 => 0.61071598005454
903 => 0.61977477721182
904 => 0.59927845210106
905 => 0.60708318438664
906 => 0.61058698016241
907 => 0.6157315918906
908 => 0.62441141421309
909 => 0.63384000346449
910 => 0.63517330936385
911 => 0.63422726502369
912 => 0.62800885695831
913 => 0.63832573182365
914 => 0.64436911515928
915 => 0.64796781163528
916 => 0.65709350713242
917 => 0.61060861841228
918 => 0.5777043037273
919 => 0.57256581984517
920 => 0.58301512888037
921 => 0.58577052834128
922 => 0.58465983027356
923 => 0.5476230325662
924 => 0.57237082877018
925 => 0.59899737663187
926 => 0.60002021077526
927 => 0.61335001736968
928 => 0.61769074880406
929 => 0.62842299029026
930 => 0.62775168566322
1001 => 0.63036481567785
1002 => 0.62976410234059
1003 => 0.6496433197537
1004 => 0.67157304865271
1005 => 0.6708136918732
1006 => 0.66766103388319
1007 => 0.67234326860643
1008 => 0.69497709896278
1009 => 0.6928933385633
1010 => 0.6949175342971
1011 => 0.72160409587402
1012 => 0.75630042204313
1013 => 0.74018049508339
1014 => 0.775156098202
1015 => 0.79717138638812
1016 => 0.83524455088271
1017 => 0.8304776031737
1018 => 0.84529920671766
1019 => 0.82194377188256
1020 => 0.76831497258902
1021 => 0.75982800981802
1022 => 0.77681912420969
1023 => 0.81859012097291
1024 => 0.77550360687126
1025 => 0.78421995255803
1026 => 0.78170964441386
1027 => 0.78157588076098
1028 => 0.78668109533531
1029 => 0.77927571532515
1030 => 0.74910486496134
1031 => 0.76293198788514
1101 => 0.75759267169128
1102 => 0.76351704108076
1103 => 0.79548841927997
1104 => 0.78135311087563
1105 => 0.76646271173087
1106 => 0.7851385767025
1107 => 0.80891937053485
1108 => 0.80743121119501
1109 => 0.80454356007339
1110 => 0.82082109825349
1111 => 0.84770682245582
1112 => 0.85497392567212
1113 => 0.86033835269701
1114 => 0.86107801655101
1115 => 0.86869701394568
1116 => 0.82772774471997
1117 => 0.89274702714663
1118 => 0.90397406110028
1119 => 0.90186384402987
1120 => 0.91434221976355
1121 => 0.91067076507686
1122 => 0.90535140326945
1123 => 0.92513228303396
1124 => 0.90245510061863
1125 => 0.87026769515795
1126 => 0.85260904792753
1127 => 0.87586337908299
1128 => 0.89006398765531
1129 => 0.89944968659328
1130 => 0.90228979342091
1201 => 0.83090807246541
1202 => 0.79243728388213
1203 => 0.81709661829552
1204 => 0.84718270817621
1205 => 0.8275606149716
1206 => 0.82832976387568
1207 => 0.80035381556128
1208 => 0.84965795883795
1209 => 0.84247475987565
1210 => 0.8797412087989
1211 => 0.87084727168143
1212 => 0.90123661410312
1213 => 0.89323408178572
1214 => 0.9264521460197
1215 => 0.93970373118582
1216 => 0.96195520512428
1217 => 0.9783234799332
1218 => 0.98793524397621
1219 => 0.98735818971589
1220 => 1.0254447874161
1221 => 1.0029864513967
1222 => 0.97477348833284
1223 => 0.97426320484177
1224 => 0.9888750981933
1225 => 1.0194976180809
1226 => 1.0274375919482
1227 => 1.0318749541489
1228 => 1.0250789794729
1229 => 1.0007020653272
1230 => 0.9901762373929
1231 => 0.99914454775555
]
'min_raw' => 0.3698065508218
'max_raw' => 1.0318749541489
'avg_raw' => 0.70084075248536
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.3698065'
'max' => '$1.03'
'avg' => '$0.70084'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.14640087610186
'max_diff' => 0.53313752317999
'year' => 2036
]
11 => [
'items' => [
101 => 0.98817707483772
102 => 1.0071100100233
103 => 1.0331089738898
104 => 1.0277402906624
105 => 1.0456869937736
106 => 1.0642599434455
107 => 1.0908200956396
108 => 1.0977639029427
109 => 1.1092417523654
110 => 1.1210562296986
111 => 1.1248507214089
112 => 1.1320955834455
113 => 1.1320573994464
114 => 1.1538902788291
115 => 1.1779726208963
116 => 1.1870631475192
117 => 1.2079663122338
118 => 1.1721703751942
119 => 1.1993220046329
120 => 1.2238134540359
121 => 1.1946137383937
122 => 1.2348587437453
123 => 1.236421366106
124 => 1.2600151085213
125 => 1.2360983305693
126 => 1.2218966241664
127 => 1.2628964184204
128 => 1.2827349273785
129 => 1.2767594070292
130 => 1.231285402123
131 => 1.2048175807958
201 => 1.1355461871211
202 => 1.2176011452303
203 => 1.2575677217494
204 => 1.2311818983451
205 => 1.2444893728985
206 => 1.3170906390991
207 => 1.3447325006844
208 => 1.3389831867059
209 => 1.3399547261265
210 => 1.3548697729026
211 => 1.4210113041744
212 => 1.3813777654876
213 => 1.4116761207733
214 => 1.4277462591679
215 => 1.4426730993074
216 => 1.4060174976011
217 => 1.3583290983589
218 => 1.3432241804961
219 => 1.2285583482153
220 => 1.2225894936766
221 => 1.2192389947492
222 => 1.1981145729496
223 => 1.1815165638813
224 => 1.1683172108256
225 => 1.1336781667469
226 => 1.1453678272836
227 => 1.0901604207526
228 => 1.1254801630208
301 => 1.0373678091678
302 => 1.1107503957293
303 => 1.0708115901606
304 => 1.0976294239493
305 => 1.0975358590536
306 => 1.0481557244468
307 => 1.0196742933427
308 => 1.0378237697561
309 => 1.0572814491785
310 => 1.0604383922013
311 => 1.0856657814698
312 => 1.0927062035537
313 => 1.0713733959535
314 => 1.0355418764826
315 => 1.0438647212257
316 => 1.0195056311596
317 => 0.97681726277759
318 => 1.007476794217
319 => 1.0179453062548
320 => 1.0225687975487
321 => 0.98058969003721
322 => 0.96739894304634
323 => 0.96037630002948
324 => 1.0301229008539
325 => 1.0339437770911
326 => 1.0143956340441
327 => 1.1027550942476
328 => 1.0827566270846
329 => 1.1050998146491
330 => 1.0431095103012
331 => 1.0454776234083
401 => 1.0161304198913
402 => 1.03256289288
403 => 1.0209489506149
404 => 1.0312353114514
405 => 1.0374009137245
406 => 1.0667433016541
407 => 1.1110854386661
408 => 1.0623605273799
409 => 1.0411303857789
410 => 1.0543014462253
411 => 1.0893777158561
412 => 1.1425200598681
413 => 1.1110587226236
414 => 1.1250207298446
415 => 1.1280708072959
416 => 1.1048723819739
417 => 1.1433754188996
418 => 1.1640095091862
419 => 1.1851758161969
420 => 1.2035539275078
421 => 1.1767215277197
422 => 1.2054360417664
423 => 1.1822972122389
424 => 1.1615392901044
425 => 1.1615707713038
426 => 1.148549023524
427 => 1.1233177463549
428 => 1.1186647117277
429 => 1.142870385472
430 => 1.1622810435291
501 => 1.1638797982975
502 => 1.1746265359536
503 => 1.1809863445982
504 => 1.2433211150564
505 => 1.2683926753949
506 => 1.2990497047966
507 => 1.310992345484
508 => 1.3469354122795
509 => 1.317908466689
510 => 1.3116283044224
511 => 1.224442181264
512 => 1.2387189040469
513 => 1.2615773147213
514 => 1.2248191080367
515 => 1.2481337296052
516 => 1.252736529774
517 => 1.2235700782393
518 => 1.239149140212
519 => 1.1977757704825
520 => 1.1119872650658
521 => 1.14347092603
522 => 1.1666534977854
523 => 1.1335691095
524 => 1.1928715949589
525 => 1.1582283072056
526 => 1.1472480481589
527 => 1.1044101428727
528 => 1.1246279851856
529 => 1.1519729064054
530 => 1.1350769242799
531 => 1.1701386241349
601 => 1.2197953417433
602 => 1.2551836758198
603 => 1.2579003526915
604 => 1.2351480247146
605 => 1.271608775501
606 => 1.2718743522654
607 => 1.2307464764318
608 => 1.2055558814846
609 => 1.1998325253112
610 => 1.2141305911625
611 => 1.2314910826746
612 => 1.2588637391476
613 => 1.2754044621738
614 => 1.3185338953045
615 => 1.3302034832919
616 => 1.343024822492
617 => 1.360158085618
618 => 1.3807309608793
619 => 1.3357186810221
620 => 1.3375071028142
621 => 1.2955922910487
622 => 1.2508003034851
623 => 1.2847918386458
624 => 1.3292312491639
625 => 1.3190367992899
626 => 1.3178897154253
627 => 1.3198187923109
628 => 1.3121325100255
629 => 1.2773677401155
630 => 1.2599090903056
701 => 1.2824352027369
702 => 1.2944068289722
703 => 1.3129737772277
704 => 1.3106850089545
705 => 1.3585114737159
706 => 1.3770953917249
707 => 1.3723408302475
708 => 1.3732157839843
709 => 1.406861079856
710 => 1.4442815685483
711 => 1.4793307942769
712 => 1.5149843720874
713 => 1.4720025924541
714 => 1.4501790955039
715 => 1.4726953737392
716 => 1.4607479195679
717 => 1.5294015350808
718 => 1.5341549624633
719 => 1.6028036135384
720 => 1.6679593579379
721 => 1.627036202267
722 => 1.6656248948453
723 => 1.7073617120509
724 => 1.7878788039952
725 => 1.7607634800539
726 => 1.739993566866
727 => 1.7203660992631
728 => 1.7612077435721
729 => 1.8137498665146
730 => 1.8250669365542
731 => 1.8434049134718
801 => 1.8241247730041
802 => 1.8473455785597
803 => 1.92932522591
804 => 1.9071736015416
805 => 1.8757147338871
806 => 1.9404297920612
807 => 1.963849920041
808 => 2.1282246434194
809 => 2.3357545216657
810 => 2.2498357893571
811 => 2.1965032596329
812 => 2.2090376691826
813 => 2.2848205553885
814 => 2.3091596132092
815 => 2.2429976638761
816 => 2.2663671828903
817 => 2.395135530299
818 => 2.4642156173006
819 => 2.370395580459
820 => 2.1115498197696
821 => 1.8728822070538
822 => 1.9361876052887
823 => 1.9290107377241
824 => 2.0673562628362
825 => 1.9066452926265
826 => 1.9093512531985
827 => 2.0505576172596
828 => 2.012886180218
829 => 1.9518632768038
830 => 1.8733277417807
831 => 1.7281475416326
901 => 1.5995573897121
902 => 1.8517522901716
903 => 1.8408771874771
904 => 1.8251284271756
905 => 1.8601755890328
906 => 2.030354658701
907 => 2.0264314803292
908 => 2.0014742211514
909 => 2.0204040822746
910 => 1.9485447806244
911 => 1.9670645588656
912 => 1.8728444008845
913 => 1.9154358472733
914 => 1.9517323490599
915 => 1.9590194091724
916 => 1.9754375276925
917 => 1.8351465025256
918 => 1.8981330540975
919 => 1.9351317521042
920 => 1.7679702884858
921 => 1.9318275074335
922 => 1.8327043478968
923 => 1.7990604587702
924 => 1.8443575232339
925 => 1.8267052131595
926 => 1.811528793536
927 => 1.8030600906222
928 => 1.8363212555097
929 => 1.834769582412
930 => 1.7803478609421
1001 => 1.7093569437977
1002 => 1.7331838257887
1003 => 1.7245272961832
1004 => 1.6931549161781
1005 => 1.7142961123859
1006 => 1.6212009836011
1007 => 1.4610356531906
1008 => 1.5668457764565
1009 => 1.56277220181
1010 => 1.5607181207514
1011 => 1.6402315040087
1012 => 1.6325881268944
1013 => 1.6187153225877
1014 => 1.6929001312478
1015 => 1.6658216781604
1016 => 1.7492710900898
1017 => 1.8042362699561
1018 => 1.7902953224047
1019 => 1.8419903397387
1020 => 1.7337327490263
1021 => 1.7696915781203
1022 => 1.7771026429598
1023 => 1.6919847022243
1024 => 1.6338386779176
1025 => 1.6299610010095
1026 => 1.5291438078773
1027 => 1.5829995386806
1028 => 1.6303903530859
1029 => 1.6076938306615
1030 => 1.6005087897013
1031 => 1.6372156057219
1101 => 1.6400680396993
1102 => 1.5750322427267
1103 => 1.5885552443331
1104 => 1.644948409044
1105 => 1.5871342812724
1106 => 1.4748108748964
1107 => 1.4469531171225
1108 => 1.4432363787151
1109 => 1.3676839302058
1110 => 1.448814705704
1111 => 1.4133989480295
1112 => 1.5252769021775
1113 => 1.4613728147816
1114 => 1.4586180372975
1115 => 1.4544537870922
1116 => 1.3894226736279
1117 => 1.4036603545337
1118 => 1.4509885743247
1119 => 1.4678758163366
1120 => 1.4661143386417
1121 => 1.4507566402279
1122 => 1.4577873159176
1123 => 1.4351390598712
1124 => 1.4271414892786
1125 => 1.4018989565831
1126 => 1.3647994069483
1127 => 1.3699583268698
1128 => 1.2964544114181
1129 => 1.256405577132
1130 => 1.2453205876368
1201 => 1.2304972764101
1202 => 1.2469949200832
1203 => 1.2962461840609
1204 => 1.2368387104652
1205 => 1.134988763935
1206 => 1.1411101192653
1207 => 1.1548629872459
1208 => 1.1292346087485
1209 => 1.1049794993274
1210 => 1.1260673490898
1211 => 1.0829121840808
1212 => 1.160078082761
1213 => 1.1579909614566
1214 => 1.1867536365774
1215 => 1.2047395275999
1216 => 1.1632878717943
1217 => 1.1528628924564
1218 => 1.1588014344762
1219 => 1.0606505631553
1220 => 1.1787326164046
1221 => 1.1797537949046
1222 => 1.1710098446125
1223 => 1.2338848925934
1224 => 1.3665708550524
1225 => 1.3166490586948
1226 => 1.2973178302509
1227 => 1.260569150848
1228 => 1.3095345842317
1229 => 1.3057748029276
1230 => 1.2887716460156
1231 => 1.2784880836622
]
'min_raw' => 0.96037630002948
'max_raw' => 2.4642156173006
'avg_raw' => 1.712295958665
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.960376'
'max' => '$2.46'
'avg' => '$1.71'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.59056974920768
'max_diff' => 1.4323406631516
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.030145114660508
]
1 => [
'year' => 2028
'avg' => 0.051737767946746
]
2 => [
'year' => 2029
'avg' => 0.1413382572051
]
3 => [
'year' => 2030
'avg' => 0.10904225494648
]
4 => [
'year' => 2031
'avg' => 0.10709300781533
]
5 => [
'year' => 2032
'avg' => 0.18776774611021
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.030145114660508
'min' => '$0.030145'
'max_raw' => 0.18776774611021
'max' => '$0.187767'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.18776774611021
]
1 => [
'year' => 2033
'avg' => 0.48295795092511
]
2 => [
'year' => 2034
'avg' => 0.30612195916939
]
3 => [
'year' => 2035
'avg' => 0.36107155284443
]
4 => [
'year' => 2036
'avg' => 0.70084075248536
]
5 => [
'year' => 2037
'avg' => 1.712295958665
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.18776774611021
'min' => '$0.187767'
'max_raw' => 1.712295958665
'max' => '$1.71'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 1.712295958665
]
]
]
]
'prediction_2025_max_price' => '$0.051542'
'last_price' => 0.04997711
'sma_50day_nextmonth' => '$0.043539'
'sma_200day_nextmonth' => '$0.06625'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 feb. 2026'
'sma_50day_date_nextmonth' => '4 feb. 2026'
'daily_sma3' => '$0.044124'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.042534'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.040916'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.039971'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.04450063'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.05426'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.074958'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.045525'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.043788'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.042016'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.0417013'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.045517'
'daily_ema50_action' => 'BUY'
'daily_ema100' => '$0.054345'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.067683'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.062449'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.080878'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.1046067'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.178496'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.045298'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.044935'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.048689'
'weekly_ema10_action' => 'BUY'
'weekly_ema21' => '$0.059599'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.078417'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.1055037'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.128993'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '71.31'
'rsi_14_action' => 'SELL'
'stoch_rsi_14' => 149.78
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0.01
'momentum_10_action' => 'BUY'
'vwma_10' => '0.047439'
'vwma_10_action' => 'BUY'
'hma_9' => '0.044119'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 401.49
'cci_20_action' => 'SELL'
'adx_14' => 24.5
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.000078'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 84.41
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '-0.007656'
'ichimoku_cloud_action' => 'NEUTRAL'
'sell_signals' => 14
'buy_signals' => 22
'sell_pct' => 38.89
'buy_pct' => 61.11
'overall_action' => 'bullish'
'overall_action_label' => 'Alcista'
'overall_action_dir' => 1
'last_updated' => 1767688952
'last_updated_date' => '6 de enero de 2026'
]
Predicción de precio de BORA para 2026
La previsión del precio de BORA para 2026 sugiere que el precio medio podría oscilar entre $0.017267 en el extremo inferior y $0.051542 en el extremo superior. En el mercado de criptomonedas, en comparación con el precio medio de hoy, BORA podría potencialmente ganar 3.13% para 2026 si BORA alcanza el objetivo de precio previsto.
Predicción de precio de BORA 2027-2032
La predicción del precio de BORA para 2027-2032 está actualmente dentro de un rango de precios de $0.030145 en el extremo inferior y $0.187767 en el extremo superior. Considerando la volatilidad de precios en el mercado, si BORA alcanza el objetivo de precio superior, podría ganar 275.71% para 2032 en comparación con el precio de hoy.
| Predicción de Precio de BORA | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.016622 | $0.030145 | $0.043667 |
| 2028 | $0.029998 | $0.051737 | $0.073476 |
| 2029 | $0.065898 | $0.141338 | $0.216777 |
| 2030 | $0.056044 | $0.109042 | $0.16204 |
| 2031 | $0.066261 | $0.107093 | $0.147924 |
| 2032 | $0.101143 | $0.187767 | $0.274392 |
Predicción de precio de BORA 2032-2037
La predicción de precio de BORA para 2032-2037 se estima actualmente entre $0.187767 en el extremo inferior y $1.71 en el extremo superior. Comparado con el precio actual, BORA podría potencialmente ganar 3326.16% para 2037 si alcanza el objetivo de precio superior. Tenga en cuenta que esta información es solo para fines generales y no debe considerarse como consejo de inversión a largo plazo.
| Predicción de Precio de BORA | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.101143 | $0.187767 | $0.274392 |
| 2033 | $0.235035 | $0.482957 | $0.73088 |
| 2034 | $0.188956 | $0.306121 | $0.423286 |
| 2035 | $0.2234056 | $0.361071 | $0.498737 |
| 2036 | $0.3698065 | $0.70084 | $1.03 |
| 2037 | $0.960376 | $1.71 | $2.46 |
BORA Histograma de precios potenciales
Pronóstico de precio de BORA basado en análisis técnico
A fecha de 6 de enero de 2026, el sentimiento general de predicción de precio para BORA es Alcista, con 22 indicadores técnicos mostrando señales alcistas y 14 indicando señales bajistas. La predicción de precio de BORA se actualizó por última vez el 6 de enero de 2026.
Promedios Móviles Simples de 50 y 200 días y el Índice de Fuerza Relativa de 14 días - RSI (14) de BORA
Según nuestros indicadores técnicos, se proyecta que el SMA de 200 días de BORA aumentar durante el próximo mes, alcanzando $0.06625 para el 4 feb. 2026. Se espera que el SMA de 50 días a corto plazo para BORA alcance $0.043539 para el 4 feb. 2026.
El oscilador de momento del Índice de Fuerza Relativa (RSI) es una herramienta comúnmente utilizada para identificar si una criptomoneda está sobrevendida (por debajo de 30) o sobrecomprada (por encima de 70). Actualmente, el RSI se encuentra en 71.31, lo que sugiere que el mercado de BORA está en un estado SELL.
Promedios Móviles y Osciladores Populares de BORA para Sáb, 19 de Oct de 2024
Los promedios móviles (MA) son indicadores ampliamente utilizados en los mercados financieros, diseñados para suavizar los movimientos de precios durante un período establecido. Como indicadores rezagados, se basan en datos históricos de precios. La tabla a continuación resalta dos tipos: el promedio móvil simple (SMA) y el promedio móvil exponencial (EMA).
Promedio Móvil Simple Diario (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 3 | $0.044124 | BUY |
| SMA 5 | $0.042534 | BUY |
| SMA 10 | $0.040916 | BUY |
| SMA 21 | $0.039971 | BUY |
| SMA 50 | $0.04450063 | BUY |
| SMA 100 | $0.05426 | SELL |
| SMA 200 | $0.074958 | SELL |
Promedio Móvil Exponencial Diario (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 3 | $0.045525 | BUY |
| EMA 5 | $0.043788 | BUY |
| EMA 10 | $0.042016 | BUY |
| EMA 21 | $0.0417013 | BUY |
| EMA 50 | $0.045517 | BUY |
| EMA 100 | $0.054345 | SELL |
| EMA 200 | $0.067683 | SELL |
Promedio Móvil Simple Semanal (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 21 | $0.062449 | SELL |
| SMA 50 | $0.080878 | SELL |
| SMA 100 | $0.1046067 | SELL |
| SMA 200 | $0.178496 | SELL |
Promedio Móvil Exponencial Semanal (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 21 | $0.059599 | SELL |
| EMA 50 | $0.078417 | SELL |
| EMA 100 | $0.1055037 | SELL |
| EMA 200 | $0.128993 | SELL |
Osciladores de BORA
Un oscilador es una herramienta de análisis técnico que establece límites altos y bajos entre dos extremos, creando un indicador de tendencia que fluctúa dentro de estos límites. Los traders utilizan este indicador para identificar condiciones de sobrecompra o sobreventa a corto plazo.
| Período | Valor | Acción |
|---|---|---|
| RSI (14) | 71.31 | SELL |
| Stoch RSI (14) | 149.78 | SELL |
| Estocástico Rápido (14) | 100 | SELL |
| Índice de Canal de Materias Primas (20) | 401.49 | SELL |
| Índice Direccional Medio (14) | 24.5 | NEUTRAL |
| Oscilador Asombroso (5, 34) | 0.000078 | BUY |
| Momentum (10) | 0.01 | BUY |
| MACD (12, 26) | 0 | BUY |
| Rango Percentil de Williams (14) | -0 | SELL |
| Oscilador Ultimate (7, 14, 28) | 84.41 | SELL |
| VWMA (10) | 0.047439 | BUY |
| Promedio Móvil de Hull (9) | 0.044119 | BUY |
| Nube Ichimoku B/L (9, 26, 52, 26) | -0.007656 | NEUTRAL |
Predicción de precios de BORA basada en flujos de dinero globales
Definiciones de flujos de dinero globales utilizadas para la predicción de precios de BORA
M0: El total de toda la moneda física, además de cuentas en el banco central que pueden cambiarse por moneda física.
M1: Medir M0 más la cantidad en cuentas a la vista, incluyendo cuentas "de cheques" o "corrientes".
M2: Medir M1 más la mayoría de cuentas de ahorro, cuentas del mercado monetario, y cuentas de certificados de depósito (CD) inferiores a 100 000 $.
Predicciones de precios de BORA por parte de empresas de Internet o nichos tecnológicos
| Comparación | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook acción | $0.070226 | $0.098679 | $0.138661 | $0.194842 | $0.273785 | $0.384714 |
| Amazon.com acción | $0.10428 | $0.217586 | $0.4540079 | $0.947314 | $1.97 | $4.12 |
| Apple acción | $0.070888 | $0.10055 | $0.142622 | $0.202299 | $0.286946 | $0.407011 |
| Netflix acción | $0.078856 | $0.124422 | $0.196319 | $0.30976 | $0.488754 | $0.771177 |
| Google acción | $0.06472 | $0.083812 | $0.108536 | $0.140554 | $0.182017 | $0.235711 |
| Tesla acción | $0.113294 | $0.256829 | $0.582213 | $1.31 | $2.99 | $6.78 |
| Kodak acción | $0.037477 | $0.0281041 | $0.021075 | $0.0158041 | $0.011851 | $0.008887 |
| Nokia acción | $0.0331077 | $0.021932 | $0.014529 | $0.009625 | $0.006376 | $0.004223 |
Este cálculo muestra cuánto puede costar la criptomoneda si asumimos que su capitalización se comportará como la capitalización de algunas empresas de Internet o nichos tecnológicos. Si extrapola los datos, puede obtener una imagen potencial del precio futuro en 2024, 2025, 2026, 2027, 2028, 2029 y 2030.
Resumen de pronósticos y predicciones de BORA
Podría preguntarse cosas como: "¿Debo invertir en BORA ahora?", "¿Debería comprar BORA hoy?", "¿Será BORA una buena o mala inversión a corto plazo?, ¿Lo será a largo plazo?".
Actualizamos el pronóstico de BORA regularmente con valores actualizados. Aquí hay algunas predicciones similares. Hacemos un pronóstico de precios futuros para una gran cantidad de monedas digitales, como BORA, con métodos de análisis técnico.
Si está tratando de encontrar criptomonedas que ofrezcan un buen rendimiento, debería explorar el máximo de fuentes de información disponibles acerca de BORA a fin de tomar una decisión responsable sobre la inversión por sus propios medios.
El precio de BORA es de $0.04997 USD hoy, pero dicho precio puede subir y bajar, y su inversión puede perderse porque estos son activos de criptomonedas conllevan un alto riesgo
Predicción de precios de BORA basada en el patrón de crecimiento del Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si BORA ofrece un 1 % del crecimiento medio anterior anual del Bitcoin | $0.051276 | $0.052609 | $0.053976 | $0.055379 |
| Si BORA ofrece un 2 % del crecimiento medio anterior anual del Bitcoin | $0.052575 | $0.0553084 | $0.058183 | $0.0612084 |
| Si BORA ofrece un 5 % del crecimiento medio anterior anual del Bitcoin | $0.056472 | $0.063811 | $0.0721053 | $0.081476 |
| Si BORA ofrece un 10 % del crecimiento medio anterior anual del Bitcoin | $0.062967 | $0.079335 | $0.099956 | $0.125938 |
| Si BORA ofrece un 20 % del crecimiento medio anterior anual del Bitcoin | $0.075958 | $0.115446 | $0.175462 | $0.266679 |
| Si BORA ofrece un 50 % del crecimiento medio anterior anual del Bitcoin | $0.11493 | $0.26430089 | $0.6078023 | $1.39 |
| Si BORA ofrece un 100 % del crecimiento medio anterior anual del Bitcoin | $0.179883 | $0.647459 | $2.33 | $8.38 |
Cuadro de preguntas
¿Es BORA una buena inversión?
La decisión de adquirir BORA depende completamente de su tolerancia individual al riesgo. Como puede discernir, el valor de BORA ha experimentado un aumento de 16.9741% durante las últimas 24 horas, y BORA ha sufrido un declive de durante el período previo de 30 días. Por lo tanto, la determinación de si invertir o no en BORA dependerá de si dicha inversión se alinea con sus aspiraciones comerciales.
¿Puede BORA subir?
Parece que el valor medio de BORA podría potencialmente aumentar hasta $0.051542 para el final de este año. Mirando las perspectivas de BORA en un horizonte de cinco años más extendido, la moneda digital podría potencialmente crecer hasta $0.16204. Sin embargo, dada la imprevisibilidad del mercado, es vital realizar una investigación exhaustiva antes de invertir cualquier fondo en un proyecto, red o activo en particular.
¿Cuál será el precio de BORA la próxima semana?
Basado en nuestro nuevo pronóstico experimental de BORA, el precio de BORA aumentará en un 0.86% durante la próxima semana y alcanzará $0.050404 para el 13 de enero de 2026.
¿Cuál será el precio de BORA el próximo mes?
Basado en nuestro nuevo pronóstico experimental de BORA, el precio de BORA disminuirá en un -11.62% durante el próximo mes y alcanzará $0.04417 para el 5 de febrero de 2026.
¿Hasta qué punto puede subir el precio de BORA este año en 2026?
Según nuestra predicción más reciente sobre el valor de BORA en 2026, se anticipa que BORA fluctúe dentro del rango de $0.017267 y $0.051542. Sin embargo, es crucial tener en cuenta que el mercado de criptomonedas es excepcionalmente inestable, y esta predicción de precios proyectada de BORA no considera fluctuaciones de precios repentinas y extremas.
¿Dónde estará BORA en 5 años?
El futuro de BORA parece estar en una tendencia alcista, con un precio máximo de $0.16204 proyectada después de un período de cinco años. Basado en el pronóstico de BORA para 2030, el valor de BORA podría potencialmente alcanzar su punto más alto de aproximadamente $0.16204, mientras que su punto más bajo se anticipa que esté alrededor de $0.056044.
¿Cuánto será BORA en 2026?
Basado en nuestra nueva simulación experimental de predicción de precios de BORA, se espera que el valor de BORA en 2026 crezca en un 3.13% hasta $0.051542 si ocurre lo mejor. El precio estará entre $0.051542 y $0.017267 durante 2026.
¿Cuánto será BORA en 2027?
Según nuestra última simulación experimental para la predicción de precios de BORA, el valor de BORA podría disminuir en un -12.62% hasta $0.043667 en 2027, asumiendo las condiciones más favorables. Se proyecta que el precio fluctúe entre $0.043667 y $0.016622 a lo largo del año.
¿Cuánto será BORA en 2028?
Nuestro nuevo modelo experimental de predicción de precios de BORA sugiere que el valor de BORA en 2028 podría aumentar en un 47.02% , alcanzando $0.073476 en el mejor escenario. Se espera que el precio oscile entre $0.073476 y $0.029998 durante el año.
¿Cuánto será BORA en 2029?
Basado en nuestro modelo de pronóstico experimental, el valor de BORA podría experimentar un 333.75% crecimiento en 2029, potencialmente alcanzando $0.216777 bajo condiciones óptimas. El rango de precios previsto para 2029 se encuentra entre $0.216777 y $0.065898.
¿Cuánto será BORA en 2030?
Usando nuestra nueva simulación experimental para las predicciones de precios de BORA, se espera que el valor de BORA en 2030 aumente en un 224.23% , alcanzando $0.16204 en el mejor escenario. Se pronostica que el precio oscile entre $0.16204 y $0.056044 durante el transcurso de 2030.
¿Cuánto será BORA en 2031?
Nuestra simulación experimental indica que el precio de BORA podría crecer en un 195.98% en 2031, potencialmente alcanzando $0.147924 bajo condiciones ideales. Es probable que el precio fluctúe entre $0.147924 y $0.066261 durante el año.
¿Cuánto será BORA en 2032?
Basado en los hallazgos de nuestra última predicción experimental de precios de BORA, BORA podría experimentar un 449.04% aumento en valor, alcanzando $0.274392 si se desarrolla el escenario más positivo en 2032. Se espera que el precio se mantenga dentro de un rango de $0.274392 y $0.101143 a lo largo del año.
¿Cuánto será BORA en 2033?
Según nuestra predicción experimental de precios de BORA, se anticipa que el valor de BORA aumente en un 1362.43% en 2033, con el precio potencial más alto siendo $0.73088. A lo largo del año, el precio de BORA podría oscilar entre $0.73088 y $0.235035.
¿Cuánto será BORA en 2034?
Los resultados de nuestra nueva simulación de predicción de precios de BORA sugieren que BORA podría aumentar en un 746.96% en 2034, alcanzando potencialmente $0.423286 bajo las mejores circunstancias. El rango de precios previsto para el año está entre $0.423286 y $0.188956.
¿Cuánto será BORA en 2035?
Basado en nuestra predicción experimental para el precio de BORA, BORA podría crecer en un 897.93% , con el valor potencialmente alcanzando $0.498737 en 2035. El rango de precios esperado para el año está entre $0.498737 y $0.2234056.
¿Cuánto será BORA en 2036?
Nuestra reciente simulación de predicción de precios de BORA sugiere que el valor de BORA podría aumentar en un 1964.7% en 2036, posiblemente alcanzando $1.03 si las condiciones son óptimas. El rango de precios esperado para 2036 está entre $1.03 y $0.3698065.
¿Cuánto será BORA en 2037?
Según la simulación experimental, el valor de BORA podría aumentar en un 4830.69% en 2037, con un máximo de $2.46 bajo condiciones favorables. Se espera que el precio caiga entre $2.46 y $0.960376 durante el transcurso del año.
Predicciones relacionadas
Predicción de precios de TokenFi
Predicción de precios de Celer Network
Predicción de precios de Power Ledger
Predicción de precios de Entangle
Predicción de precios de Boba Network
Predicción de precios de Nano
Predicción de precios de Tectum
Predicción de precios de GXChain
Predicción de precios de ECOMI
Predicción de precios de Songbird
Predicción de precios de NodeAI
Predicción de precios de Sleepless AI
Predicción de precios de Hooked Protocol
Predicción de precios de Orbs
Predicción de precios de Status
Predicción de precios de Bluzelle
Predicción de precios de SMARDEX
Predicción de precios de Slerf [OLD]
Predicción de precios de ConstitutionDAO
Predicción de precios de Victoria VR
Predicción de precios de Dent
Predicción de precios de Bone ShibaSwap
Predicción de precios de Milady Meme Coin
Predicción de precios de tBTC
Predicción de precios de inSure DeFi
¿Cómo leer y predecir los movimientos de precio de BORA?
Los traders de BORA utilizan indicadores y patrones de gráficos para predecir la dirección del mercado. También identifican niveles clave de soporte y resistencia para estimar cuándo una tendencia bajista podría desacelerar o una tendencia alcista podría estancarse.
Indicadores de predicción de precio de BORA
Las medias móviles son herramientas populares para la predicción de precios de BORA. Una media móvil simple (SMA) calcula el precio de cierre promedio de BORA durante un período específico, como una SMA de 12 días. Una media móvil exponencial (EMA) da más peso a los precios recientes, reaccionando más rápido a los cambios de precio.
Las medias móviles comúnmente utilizadas en el mercado de criptomonedas incluyen las de 50 días, 100 días y 200 días, que ayudan a identificar niveles clave de resistencia y soporte. Un movimiento de precio de BORA por encima de estas medias se considera alcista, mientras que una caída por debajo indica debilidad.
Los traders también utilizan RSI y niveles de retroceso de Fibonacci para evaluar la dirección futura de BORA.
¿Cómo leer gráficos de BORA y predecir movimientos de precio?
La mayoría de los traders prefieren gráficos de velas sobre gráficos lineales simples porque proporcionan información más detallada. Las velas pueden representar la acción del precio de BORA en diferentes marcos de tiempo, como 5 minutos para tendencias a corto plazo y semanal para tendencias a largo plazo. Las opciones populares incluyen gráficos de 1 hora, 4 horas y 1 día.
Por ejemplo, un gráfico de velas de 1 hora muestra los precios de apertura, cierre, máximo y mínimo de BORA dentro de cada hora. El color de la vela es crucial: el verde indica que el precio cerró más alto de lo que abrió, mientras que el rojo significa lo contrario. Algunos gráficos usan velas huecas y llenas para transmitir la misma información.
¿Qué afecta el precio de BORA?
La acción del precio de BORA está impulsada por la oferta y la demanda, influenciada por factores como reducciones a la mitad de recompensas de bloque, hard forks y actualizaciones de protocolo. Los eventos del mundo real, como regulaciones, adopción por empresas y gobiernos y hacks de exchanges de criptomonedas, también impactan el precio de BORA. La capitalización de mercado de BORA puede cambiar rápidamente.
Los traders a menudo monitorean la actividad de las "ballenas" de BORA, grandes poseedores de BORA, ya que sus acciones pueden influir significativamente en los movimientos de precios en el relativamente pequeño mercado de BORA.
Patrones de predicción de precios alcistas y bajistas
Los traders a menudo identifican patrones de velas para obtener una ventaja en las predicciones de precios de criptomonedas. Ciertas formaciones indican tendencias alcistas, mientras que otras sugieren movimientos bajistas.
Patrones de velas alcistas comúnmente seguidos:
- Martillo
- Envolvente Alcista
- Línea Penetrante
- Estrella de la Mañana
- Tres Soldados Blancos
Patrones de velas bajistas comunes:
- Harami Bajista
- Cubierta de Nube Oscura
- Estrella de la Tarde
- Estrella Fugaz
- Hombre Colgado


