Prédiction du prix de Status jusqu'à $0.015826 d'ici 2026
| Année | Prix min. | Prix max. |
|---|---|---|
| 2026 | $0.0053019 | $0.015826 |
| 2027 | $0.005104 | $0.0134083 |
| 2028 | $0.009211 | $0.022561 |
| 2029 | $0.020234 | $0.066562 |
| 2030 | $0.0172086 | $0.049755 |
| 2031 | $0.020345 | $0.04542 |
| 2032 | $0.031056 | $0.084253 |
| 2033 | $0.072168 | $0.22442 |
| 2034 | $0.05802 | $0.129972 |
| 2035 | $0.068597 | $0.153139 |
Calculateur de profit d’investissement
Si vous ouvrez une position short de $10,000.00 sur Status aujourd’hui et la fermez le Apr 06, 2026, notre prévision indique que vous pourriez gagner environ $3,954.66, soit un rendement de 39.55% sur les 90 prochains jours.
Prévision du prix à long terme de Status pour 2027, 2028, 2029, 2030, 2031, 2032 et 2037
[
'name' => 'Status'
'name_with_ticker' => 'Status <small>SNT</small>'
'name_lang' => 'Status'
'name_lang_with_ticker' => 'Status <small>SNT</small>'
'name_with_lang' => 'Status'
'name_with_lang_with_ticker' => 'Status <small>SNT</small>'
'image' => '/uploads/coins/status.png?1717138196'
'price_for_sd' => 0.01534
'ticker' => 'SNT'
'marketcap' => '$60.69M'
'low24h' => '$0.0148'
'high24h' => '$0.01565'
'volume24h' => '$4.39M'
'current_supply' => '3.96B'
'max_supply' => '6.8B'
'algo' => null
'proof' => null
'ico_price_and_roi' => ''
'price' => '$0.01534'
'change_24h_pct' => '3.5702%'
'ath_price' => '$0.6849'
'ath_days' => 2925
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '3 janv. 2018'
'ath_pct' => '-97.76%'
'fdv' => '$104.27M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.756648'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.015477'
'next_week_prediction_price_date' => '13 janvier 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.013562'
'next_month_prediction_price_date' => '5 février 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.0053019'
'current_year_max_price_prediction' => '$0.015826'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.0172086'
'grand_prediction_max_price' => '$0.049755'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.015636492943162
107 => 0.015694873931765
108 => 0.015826409280094
109 => 0.014702454130164
110 => 0.015207076994893
111 => 0.015503495651153
112 => 0.014164265378367
113 => 0.015477023374614
114 => 0.014682888571578
115 => 0.014413347291923
116 => 0.014776249115615
117 => 0.014634825921989
118 => 0.014513238564757
119 => 0.014445390730286
120 => 0.014711865777593
121 => 0.01469943439813
122 => 0.014263429500158
123 => 0.013694678884587
124 => 0.013885570259775
125 => 0.013816217633553
126 => 0.013564874769458
127 => 0.013734249512605
128 => 0.012988408862381
129 => 0.011705228789094
130 => 0.012552936850376
131 => 0.012520301012146
201 => 0.012503844542592
202 => 0.013140873721716
203 => 0.013079638064907
204 => 0.012968494748177
205 => 0.013562833535287
206 => 0.013345891883007
207 => 0.014014454937451
208 => 0.014454813805056
209 => 0.014343124552114
210 => 0.014757284195535
211 => 0.013889968011513
212 => 0.01417805565716
213 => 0.014237430121655
214 => 0.013555499486911
215 => 0.013089656975675
216 => 0.013058590591169
217 => 0.012250883873739
218 => 0.012682354282609
219 => 0.013062030386957
220 => 0.01288019499703
221 => 0.012822631344757
222 => 0.013116711560187
223 => 0.013139564111552
224 => 0.012618523518612
225 => 0.012726864357094
226 => 0.013178663663729
227 => 0.012715480173764
228 => 0.011815590313356
301 => 0.011592405186024
302 => 0.01156262817592
303 => 0.010957332409559
304 => 0.011607319483433
305 => 0.011323582707117
306 => 0.012219903783812
307 => 0.01170792999187
308 => 0.011685859824968
309 => 0.011652497530707
310 => 0.011131494460148
311 => 0.011245561021128
312 => 0.011624735642653
313 => 0.011760029419321
314 => 0.011745917169986
315 => 0.01162287748015
316 => 0.011679204420091
317 => 0.011497755720932
318 => 0.011433682408731
319 => 0.011231449410671
320 => 0.010934222771815
321 => 0.010975553958945
322 => 0.01038667021379
323 => 0.010065815095004
324 => 0.009977006626926
325 => 0.0098582482318513
326 => 0.0099904207036537
327 => 0.010385001980129
328 => 0.0099090532456122
329 => 0.0090930725242045
330 => 0.0091421143559246
331 => 0.0092522967911491
401 => 0.009046972552038
402 => 0.0088526503912764
403 => 0.0090215977442033
404 => 0.0086758559556591
405 => 0.0092940780344938
406 => 0.0092773568598086
407 => 0.0095077918202013
408 => 0.0096518875299362
409 => 0.0093197935705372
410 => 0.0092362728378259
411 => 0.0092838500429839
412 => 0.008497504821256
413 => 0.0094435306394157
414 => 0.0094517119099757
415 => 0.0093816589044474
416 => 0.0098853884473471
417 => 0.01094841490005
418 => 0.010548461588403
419 => 0.010393587577481
420 => 0.010099171969505
421 => 0.010491463286464
422 => 0.010461341434019
423 => 0.010325118993891
424 => 0.010242731237062
425 => 0.010394533205166
426 => 0.010223921293296
427 => 0.010193274705822
428 => 0.010007589729548
429 => 0.0099413086411459
430 => 0.0098922367620193
501 => 0.0098382134448041
502 => 0.0099573754208089
503 => 0.0096873387061186
504 => 0.0093617009002277
505 => 0.0093346276401178
506 => 0.0094093792915867
507 => 0.0093763072504177
508 => 0.0093344693039084
509 => 0.0092545892701355
510 => 0.0092308905704819
511 => 0.0093078998473814
512 => 0.0092209608636817
513 => 0.0093492440699421
514 => 0.0093143581360729
515 => 0.0091194881453432
516 => 0.0088766079867829
517 => 0.0088744458439133
518 => 0.0088221177121548
519 => 0.0087554699687731
520 => 0.0087369300912581
521 => 0.0090073694693723
522 => 0.0095671708884994
523 => 0.0094572684750121
524 => 0.009536684232009
525 => 0.0099273311557703
526 => 0.010051506065671
527 => 0.0099633696558674
528 => 0.0098427231021111
529 => 0.0098480309381848
530 => 0.010260316734566
531 => 0.010286030493966
601 => 0.010351000868397
602 => 0.010434506160167
603 => 0.0099775909681429
604 => 0.0098265102737301
605 => 0.0097549198590796
606 => 0.0095344490909331
607 => 0.009772207912644
608 => 0.0096336760290809
609 => 0.0096523687130965
610 => 0.009640195078109
611 => 0.0096468427059898
612 => 0.0092939052288233
613 => 0.0094224970956551
614 => 0.0092086881762445
615 => 0.0089224220343313
616 => 0.0089214623698458
617 => 0.0089915256025261
618 => 0.0089498492501532
619 => 0.008837699257515
620 => 0.0088536296346362
621 => 0.0087140627683238
622 => 0.0088705755791463
623 => 0.0088750638065309
624 => 0.0088147978490538
625 => 0.0090559274287317
626 => 0.0091547184142687
627 => 0.0091150500700354
628 => 0.0091519351774896
629 => 0.0094618354164721
630 => 0.0095123626773216
701 => 0.0095348035489475
702 => 0.0095047357538146
703 => 0.0091575995849663
704 => 0.0091729965501917
705 => 0.0090600238354147
706 => 0.0089645737961996
707 => 0.0089683912971987
708 => 0.0090174650249918
709 => 0.0092317728724005
710 => 0.0096827711031345
711 => 0.0096998861563154
712 => 0.0097206301000521
713 => 0.0096362540558044
714 => 0.0096108054334893
715 => 0.0096443787351697
716 => 0.0098137499582729
717 => 0.010249418727933
718 => 0.010095424287396
719 => 0.0099702244101738
720 => 0.010080058456143
721 => 0.010063150365673
722 => 0.0099204290664127
723 => 0.0099164233548905
724 => 0.0096424955508498
725 => 0.0095412306787302
726 => 0.0094566061720428
727 => 0.0093641984199188
728 => 0.0093094160069238
729 => 0.0093935866914456
730 => 0.009412837522874
731 => 0.0092287968501154
801 => 0.0092037127864721
802 => 0.0093540043726405
803 => 0.0092878666490029
804 => 0.0093558909379008
805 => 0.0093716731564267
806 => 0.0093691318557487
807 => 0.0093000764764018
808 => 0.0093440903159365
809 => 0.0092399844642799
810 => 0.0091267849867968
811 => 0.0090545707727391
812 => 0.0089915542931484
813 => 0.0090265194985646
814 => 0.00890187492565
815 => 0.008861998618175
816 => 0.0093291794174449
817 => 0.0096742908969055
818 => 0.009669272839315
819 => 0.0096387267042724
820 => 0.0095933413436564
821 => 0.0098104297364559
822 => 0.009734800481224
823 => 0.009789827083441
824 => 0.0098038336631644
825 => 0.0098462273614753
826 => 0.00986137946476
827 => 0.0098155792848214
828 => 0.0096618682869265
829 => 0.0092788350945757
830 => 0.0091005321095581
831 => 0.0090416891546311
901 => 0.009043827984284
902 => 0.0089848295143007
903 => 0.0090022072078367
904 => 0.0089787862616677
905 => 0.0089344326557591
906 => 0.009023780788385
907 => 0.0090340773283346
908 => 0.0090132224065491
909 => 0.0090181344955888
910 => 0.0088454646504579
911 => 0.008858592363764
912 => 0.0087854955878865
913 => 0.0087717908236042
914 => 0.0085870085394502
915 => 0.0082596399384509
916 => 0.0084410339218435
917 => 0.0082219354977591
918 => 0.0081389596046754
919 => 0.0085317545771345
920 => 0.0084923288563362
921 => 0.0084248491602785
922 => 0.0083250326258082
923 => 0.0082880097022203
924 => 0.0080630701385338
925 => 0.0080497795091053
926 => 0.0081612656307475
927 => 0.0081098186216128
928 => 0.0080375675362818
929 => 0.0077758814291878
930 => 0.0074816596035217
1001 => 0.0074905403110261
1002 => 0.0075841267995788
1003 => 0.0078562421369033
1004 => 0.0077499219669675
1005 => 0.0076727854637957
1006 => 0.0076583401154663
1007 => 0.0078391538931928
1008 => 0.0080950432703334
1009 => 0.0082151008408856
1010 => 0.008096127434671
1011 => 0.0079594571915947
1012 => 0.0079677756760219
1013 => 0.0080231148261688
1014 => 0.0080289301883958
1015 => 0.0079399719100812
1016 => 0.0079650131443506
1017 => 0.0079269732196768
1018 => 0.00769352227217
1019 => 0.0076892998848106
1020 => 0.0076320072573873
1021 => 0.0076302724593985
1022 => 0.0075328034078359
1023 => 0.0075191668137505
1024 => 0.0073256360959244
1025 => 0.0074530186004626
1026 => 0.0073675771043
1027 => 0.0072387966159717
1028 => 0.0072165948112436
1029 => 0.007215927398184
1030 => 0.0073481561649069
1031 => 0.0074514734303361
1101 => 0.0073690633957065
1102 => 0.0073503002282727
1103 => 0.0075506417680163
1104 => 0.0075251464809302
1105 => 0.0075030677267407
1106 => 0.0080721311832297
1107 => 0.0076216730528434
1108 => 0.0074252475967437
1109 => 0.007182133794638
1110 => 0.0072612928744898
1111 => 0.0072779728557035
1112 => 0.0066933279861958
1113 => 0.0064561376354494
1114 => 0.0063747428454031
1115 => 0.006327898992978
1116 => 0.0063492463247562
1117 => 0.0061357471894312
1118 => 0.0062792221393194
1119 => 0.0060943499347605
1120 => 0.0060633555080401
1121 => 0.0063939299110627
1122 => 0.0064399274080556
1123 => 0.0062436877955815
1124 => 0.0063697053950973
1125 => 0.0063240096617372
1126 => 0.0060975190380923
1127 => 0.0060888687622213
1128 => 0.0059752237288067
1129 => 0.0057973912575274
1130 => 0.0057161170462706
1201 => 0.005673788731393
1202 => 0.0056912542190739
1203 => 0.0056824231340497
1204 => 0.0056247943306906
1205 => 0.0056857263496004
1206 => 0.0055300702201345
1207 => 0.0054680866951745
1208 => 0.0054400901749569
1209 => 0.0053019364008234
1210 => 0.005521800492732
1211 => 0.0055651164886129
1212 => 0.0056085178303866
1213 => 0.0059862968791724
1214 => 0.0059674241054876
1215 => 0.0061380247881848
1216 => 0.0061313955593698
1217 => 0.0060827374811167
1218 => 0.0058774570528322
1219 => 0.0059592781727746
1220 => 0.0057074454834172
1221 => 0.0058961356572421
1222 => 0.0058100253417985
1223 => 0.0058670216729714
1224 => 0.0057645371303705
1225 => 0.0058212563077289
1226 => 0.0055753883181537
1227 => 0.0053458002489444
1228 => 0.0054381931900878
1229 => 0.0055386348835251
1230 => 0.0057564180669647
1231 => 0.0056267081995803
]
'min_raw' => 0.0053019364008234
'max_raw' => 0.015826409280094
'avg_raw' => 0.010564172840459
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.0053019'
'max' => '$0.015826'
'avg' => '$0.010564'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.010043763599177
'max_diff' => 0.00048070928009398
'year' => 2026
]
1 => [
'items' => [
101 => 0.0056733567727649
102 => 0.0055170918614735
103 => 0.0051946727146143
104 => 0.005196497571971
105 => 0.0051469004105096
106 => 0.0051040412217029
107 => 0.005641606938182
108 => 0.0055747521436814
109 => 0.0054682277783839
110 => 0.0056108148744446
111 => 0.0056485171658046
112 => 0.0056495904970364
113 => 0.0057536183616166
114 => 0.0058091380515911
115 => 0.0058189236375853
116 => 0.005982613730173
117 => 0.0060374804900839
118 => 0.0062634689091224
119 => 0.0058044275937913
120 => 0.0057949739399826
121 => 0.0056128213672958
122 => 0.0054972973259796
123 => 0.0056207313972399
124 => 0.0057300771339454
125 => 0.0056162190441353
126 => 0.005631086506989
127 => 0.0054782413239667
128 => 0.0055328762848629
129 => 0.0055799352733107
130 => 0.0055539520658893
131 => 0.005515053946778
201 => 0.0057211120304979
202 => 0.0057094854258663
203 => 0.0059013714506811
204 => 0.0060509603289256
205 => 0.0063190503409501
206 => 0.0060392844375541
207 => 0.0060290886560656
208 => 0.0061287540555705
209 => 0.0060374652318306
210 => 0.0060951566172511
211 => 0.0063097553668535
212 => 0.0063142895002723
213 => 0.0062383369236062
214 => 0.0062337152024134
215 => 0.0062483027255923
216 => 0.006333742304484
217 => 0.0063038870903262
218 => 0.0063384362999912
219 => 0.0063816406157135
220 => 0.0065603519837913
221 => 0.0066034386896104
222 => 0.0064987603323657
223 => 0.006508211615991
224 => 0.0064690590368964
225 => 0.0064312381360713
226 => 0.0065162539978271
227 => 0.0066716221561767
228 => 0.0066706556189272
301 => 0.0067066980117389
302 => 0.0067291521238693
303 => 0.006632762637191
304 => 0.0065700166257032
305 => 0.0065940774391401
306 => 0.006632551203802
307 => 0.0065816009157966
308 => 0.0062671121357582
309 => 0.0063625079420008
310 => 0.0063466294152254
311 => 0.0063240164622025
312 => 0.0064199376830534
313 => 0.0064106858473009
314 => 0.0061335574472118
315 => 0.0061512983082446
316 => 0.0061346363277308
317 => 0.0061884745954915
318 => 0.0060345577886894
319 => 0.0060819015618162
320 => 0.006111595132501
321 => 0.0061290848737511
322 => 0.0061922698119744
323 => 0.0061848557887517
324 => 0.0061918089458811
325 => 0.006285495529061
326 => 0.006759330117432
327 => 0.00678511988862
328 => 0.0066581216231249
329 => 0.0067088549252601
330 => 0.006611458079314
331 => 0.0066768412344998
401 => 0.0067215747287259
402 => 0.0065194326700745
403 => 0.0065074631292523
404 => 0.0064096642918769
405 => 0.0064622158474732
406 => 0.006378602543929
407 => 0.0063991183239495
408 => 0.0063417544144785
409 => 0.0064449980304859
410 => 0.0065604404356181
411 => 0.0065896057461132
412 => 0.0065128843706562
413 => 0.0064573330386403
414 => 0.0063598031993667
415 => 0.0065219974956729
416 => 0.0065694280506944
417 => 0.0065217483631591
418 => 0.0065106999377355
419 => 0.0064897631915217
420 => 0.0065151417674191
421 => 0.0065691697337055
422 => 0.0065436911425447
423 => 0.0065605202008814
424 => 0.0064963851845515
425 => 0.0066327945461219
426 => 0.0068494454409962
427 => 0.0068501420090492
428 => 0.0068246632805494
429 => 0.006814237933794
430 => 0.0068403806554135
501 => 0.0068545620094614
502 => 0.0069391027774234
503 => 0.0070298183896993
504 => 0.0074531485698687
505 => 0.0073342791492602
506 => 0.0077098828691316
507 => 0.0080069366455109
508 => 0.0080960100844597
509 => 0.008014066711856
510 => 0.0077337428606725
511 => 0.0077199888351779
512 => 0.0081389110185232
513 => 0.0080205463138766
514 => 0.0080064672088923
515 => 0.0078566893188821
516 => 0.0079452266022307
517 => 0.0079258621995988
518 => 0.0078952945427053
519 => 0.0080642175117737
520 => 0.0083804262300123
521 => 0.0083311421358882
522 => 0.008294353845848
523 => 0.0081331582678017
524 => 0.0082302340101213
525 => 0.0081956671976447
526 => 0.0083441881606857
527 => 0.0082562076323223
528 => 0.008019649584824
529 => 0.0080573222335936
530 => 0.0080516280885189
531 => 0.0081688131906644
601 => 0.0081336371317134
602 => 0.0080447593984532
603 => 0.0083793454629896
604 => 0.0083576193050241
605 => 0.0083884220297281
606 => 0.0084019823417486
607 => 0.0086056389831642
608 => 0.0086890705928665
609 => 0.0087080110289448
610 => 0.0087872646053298
611 => 0.008706039127766
612 => 0.009030998950805
613 => 0.0092470782711945
614 => 0.0094980655211671
615 => 0.00986482535239
616 => 0.010002730441648
617 => 0.0099778191216141
618 => 0.010255892239875
619 => 0.010755583452172
620 => 0.010078821002338
621 => 0.010791453505321
622 => 0.010565842282614
623 => 0.01003092213215
624 => 0.0099964795807541
625 => 0.010358733717199
626 => 0.011162178526167
627 => 0.010960924714116
628 => 0.011162507705306
629 => 0.010927350438372
630 => 0.010915672898008
701 => 0.011151086641732
702 => 0.011701143685679
703 => 0.01143983220268
704 => 0.011065178115596
705 => 0.011341816863235
706 => 0.011102166778323
707 => 0.010562168063179
708 => 0.010960770819119
709 => 0.010694236507775
710 => 0.010772025389568
711 => 0.011332240868027
712 => 0.011264834259513
713 => 0.011352064652614
714 => 0.011198105292007
715 => 0.011054282972037
716 => 0.010785827931427
717 => 0.010706351628575
718 => 0.010728316019426
719 => 0.010706340744114
720 => 0.010556142616122
721 => 0.010523707344683
722 => 0.010469647137928
723 => 0.010486402656511
724 => 0.010384753651942
725 => 0.01057658632532
726 => 0.010612192159923
727 => 0.01075179198209
728 => 0.010766285698732
729 => 0.011155069216389
730 => 0.010940933788105
731 => 0.011084594320961
801 => 0.011071743970717
802 => 0.01004251547383
803 => 0.010184334079741
804 => 0.010404959325409
805 => 0.010305567951286
806 => 0.010165051802276
807 => 0.010051577477951
808 => 0.0098796522732539
809 => 0.010121633697334
810 => 0.010439813538145
811 => 0.010774355264572
812 => 0.011176285228832
813 => 0.01108657913979
814 => 0.010766841463467
815 => 0.010781184662058
816 => 0.010869848671909
817 => 0.010755020723177
818 => 0.010721155719388
819 => 0.010865196140421
820 => 0.010866188067637
821 => 0.0107340646352
822 => 0.010587233618379
823 => 0.010586618391058
824 => 0.010560491229834
825 => 0.010931998402312
826 => 0.011136289783563
827 => 0.011159711461192
828 => 0.011134713318045
829 => 0.011144334111201
830 => 0.011025461457704
831 => 0.011297169093007
901 => 0.011546514888262
902 => 0.011479684888637
903 => 0.011379497218757
904 => 0.011299692914005
905 => 0.011460885530655
906 => 0.011453707877176
907 => 0.011544337070265
908 => 0.011540225606566
909 => 0.011509750417667
910 => 0.011479685977002
911 => 0.011598888085908
912 => 0.011564559792871
913 => 0.011530178178512
914 => 0.011461220587355
915 => 0.011470593069257
916 => 0.01137042269819
917 => 0.01132407930105
918 => 0.010627185801424
919 => 0.010440953086672
920 => 0.01049954568985
921 => 0.010518835896172
922 => 0.010437787180048
923 => 0.010553990219263
924 => 0.010535880098691
925 => 0.010606335983771
926 => 0.010562318205612
927 => 0.010564124710581
928 => 0.010693571610567
929 => 0.01073115059634
930 => 0.010712037620876
1001 => 0.010725423693736
1002 => 0.01103390009289
1003 => 0.01099004461345
1004 => 0.01096674726407
1005 => 0.010973200789065
1006 => 0.011052023122858
1007 => 0.01107408907278
1008 => 0.010980594092413
1009 => 0.011024686865642
1010 => 0.011212428297844
1011 => 0.01127812717387
1012 => 0.011487806448896
1013 => 0.011398730966113
1014 => 0.011562232869857
1015 => 0.01206478198006
1016 => 0.012466252983044
1017 => 0.012097043657209
1018 => 0.012834294027164
1019 => 0.013408349192459
1020 => 0.013386315999076
1021 => 0.013286216202872
1022 => 0.01263266965923
1023 => 0.012031266385941
1024 => 0.012534365760979
1025 => 0.012535648264749
1026 => 0.012492431582257
1027 => 0.012224016478927
1028 => 0.012483091318485
1029 => 0.012503655738427
1030 => 0.01249214513178
1031 => 0.01228635190139
1101 => 0.01197214367553
1102 => 0.012033539210755
1103 => 0.012134106349888
1104 => 0.011943711775006
1105 => 0.011882869171917
1106 => 0.011995987146838
1107 => 0.0123604768311
1108 => 0.012291572167635
1109 => 0.012289772788407
1110 => 0.012584576158833
1111 => 0.012373560568157
1112 => 0.01203431360507
1113 => 0.011948649272773
1114 => 0.011644598603526
1115 => 0.011854607483766
1116 => 0.011862165329494
1117 => 0.011747145612026
1118 => 0.012043646821233
1119 => 0.012040914510392
1120 => 0.012322398280153
1121 => 0.01286048952746
1122 => 0.012701349467769
1123 => 0.012516286892738
1124 => 0.012536408325872
1125 => 0.012757090783429
1126 => 0.012623661131899
1127 => 0.012671643364894
1128 => 0.012757018156572
1129 => 0.012808526888129
1130 => 0.012528997012076
1201 => 0.012463825226508
1202 => 0.012330506625425
1203 => 0.012295726290912
1204 => 0.01240431150971
1205 => 0.012375703140929
1206 => 0.011861530121826
1207 => 0.011807796180498
1208 => 0.011809444123764
1209 => 0.011674327573386
1210 => 0.01146824240237
1211 => 0.012009821927093
1212 => 0.011966325511857
1213 => 0.011918308835792
1214 => 0.01192419060463
1215 => 0.012159271920479
1216 => 0.012022912885396
1217 => 0.012385445728971
1218 => 0.012310919875067
1219 => 0.012234482714221
1220 => 0.01222391677026
1221 => 0.012194494984647
1222 => 0.012093596734414
1223 => 0.011971756034214
1224 => 0.011891306250282
1225 => 0.010969101443815
1226 => 0.011140257291676
1227 => 0.011337156493295
1228 => 0.011405125308669
1229 => 0.011288859946672
1230 => 0.012098187599552
1231 => 0.012246059560608
]
'min_raw' => 0.0051040412217029
'max_raw' => 0.013408349192459
'avg_raw' => 0.0092561952070809
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.005104'
'max' => '$0.0134083'
'avg' => '$0.009256'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00019789517912054
'max_diff' => -0.002418060087635
'year' => 2027
]
2 => [
'items' => [
101 => 0.011798145745119
102 => 0.011714359358442
103 => 0.012103680621114
104 => 0.011868872307134
105 => 0.011974606476541
106 => 0.01174606703578
107 => 0.012210441535386
108 => 0.012206903779739
109 => 0.012026251611019
110 => 0.012178937586969
111 => 0.01215240464123
112 => 0.011948448787671
113 => 0.012216907299734
114 => 0.012217040451806
115 => 0.01204316666713
116 => 0.011840120152493
117 => 0.011803820231421
118 => 0.011776473117101
119 => 0.011967880762827
120 => 0.012139496259469
121 => 0.01245883015163
122 => 0.012539118279305
123 => 0.012852488186706
124 => 0.012665891664553
125 => 0.012748607485994
126 => 0.012838407211035
127 => 0.012881460501496
128 => 0.012811307475057
129 => 0.01329809992945
130 => 0.013339200127536
131 => 0.013352980668439
201 => 0.013188836991725
202 => 0.013334634994953
203 => 0.013266420937565
204 => 0.013443894964478
205 => 0.013471725158
206 => 0.013448153974175
207 => 0.013456987716868
208 => 0.013041596233118
209 => 0.01302005599332
210 => 0.012726353295261
211 => 0.012846039315661
212 => 0.012622292037224
213 => 0.012693244604069
214 => 0.012724519819473
215 => 0.012708183421799
216 => 0.012852806183679
217 => 0.012729847291602
218 => 0.012405338559098
219 => 0.012080741414407
220 => 0.012076666361667
221 => 0.011991205663085
222 => 0.011929433230918
223 => 0.011941332792848
224 => 0.011983268401174
225 => 0.011926995857128
226 => 0.01193900445749
227 => 0.012138427236398
228 => 0.01217842005249
229 => 0.012042508837208
301 => 0.011496805695957
302 => 0.011362888776302
303 => 0.011459145602462
304 => 0.011413141039291
305 => 0.0092112955778441
306 => 0.0097285865085757
307 => 0.0094212298030751
308 => 0.0095628739137719
309 => 0.0092491423070888
310 => 0.0093988714738803
311 => 0.0093712219640076
312 => 0.010203010472873
313 => 0.010190023239394
314 => 0.010196239540791
315 => 0.0098995192786286
316 => 0.010372202713087
317 => 0.010605063570048
318 => 0.010561967222815
319 => 0.010572813644939
320 => 0.010386436176932
321 => 0.010198044082083
322 => 0.0099890882555586
323 => 0.010377302353519
324 => 0.010334139572862
325 => 0.010433139462212
326 => 0.010684924054857
327 => 0.01072200029256
328 => 0.010771831132024
329 => 0.010753970323277
330 => 0.011179487249442
331 => 0.011127954342032
401 => 0.01125213382186
402 => 0.010996687210334
403 => 0.010707625122178
404 => 0.010762566374985
405 => 0.01075727509053
406 => 0.010689910966364
407 => 0.010629097647122
408 => 0.010527860604629
409 => 0.010848189587339
410 => 0.010835184815631
411 => 0.0110457169532
412 => 0.011008503352885
413 => 0.010759981822265
414 => 0.01076885781735
415 => 0.010828553149955
416 => 0.011035159377689
417 => 0.011096494172905
418 => 0.011068081451992
419 => 0.011135332254907
420 => 0.011188484547494
421 => 0.011142007364509
422 => 0.011800026263882
423 => 0.011526770939944
424 => 0.011659953683533
425 => 0.011691716983121
426 => 0.011610355959137
427 => 0.01162800025192
428 => 0.011654726547703
429 => 0.011817003382152
430 => 0.012242864750927
501 => 0.012431475852221
502 => 0.012998921656372
503 => 0.012415814325852
504 => 0.012381215149997
505 => 0.012483429274546
506 => 0.012816580031821
507 => 0.013086567429333
508 => 0.013176137825035
509 => 0.013187976031473
510 => 0.013356016048336
511 => 0.013452333452241
512 => 0.013335611570397
513 => 0.013236701996825
514 => 0.012882420181399
515 => 0.012923429266212
516 => 0.013205941193821
517 => 0.013605005931438
518 => 0.013947444991922
519 => 0.013827534768147
520 => 0.014742365132129
521 => 0.014833066825971
522 => 0.014820534784619
523 => 0.015027166741412
524 => 0.014617044387043
525 => 0.014441709134804
526 => 0.013258087369303
527 => 0.013590636806104
528 => 0.014074016942439
529 => 0.014010039768812
530 => 0.013658996193018
531 => 0.013947178693891
601 => 0.013851896546803
602 => 0.013776743564134
603 => 0.014121033946862
604 => 0.013742472528383
605 => 0.014070240502705
606 => 0.013649874685312
607 => 0.013828082507948
608 => 0.013726923128877
609 => 0.013792385644764
610 => 0.013409693114512
611 => 0.013616184714499
612 => 0.013401102385071
613 => 0.013401000408042
614 => 0.013396252453699
615 => 0.013649295860451
616 => 0.01365754759686
617 => 0.013470548136943
618 => 0.013443598593289
619 => 0.013543245181008
620 => 0.013426585124272
621 => 0.013481169630569
622 => 0.013428238433361
623 => 0.013416322505968
624 => 0.013321374369173
625 => 0.013280468101188
626 => 0.01329650850289
627 => 0.013241754342488
628 => 0.013208762980302
629 => 0.01338968964138
630 => 0.013293027824927
701 => 0.013374874831682
702 => 0.013281599837568
703 => 0.012958268069988
704 => 0.012772316551282
705 => 0.012161572815194
706 => 0.012334778981123
707 => 0.012449614848329
708 => 0.012411661594903
709 => 0.012493199869222
710 => 0.012498205657039
711 => 0.012471696732873
712 => 0.012441002794693
713 => 0.012426062683068
714 => 0.012537414034916
715 => 0.012602057242578
716 => 0.012461140163909
717 => 0.012428125264016
718 => 0.012570600210796
719 => 0.012657509846027
720 => 0.013299201762263
721 => 0.013251663152471
722 => 0.013370975734069
723 => 0.013357542968382
724 => 0.013482601561881
725 => 0.013687019508548
726 => 0.013271380666818
727 => 0.013343521198032
728 => 0.013325834005747
729 => 0.013518938133291
730 => 0.013519540983299
731 => 0.01340376541257
801 => 0.013466529227706
802 => 0.013431496187932
803 => 0.013494805625803
804 => 0.013251028245354
805 => 0.013547922780599
806 => 0.013716242850621
807 => 0.013718579974957
808 => 0.013798362352276
809 => 0.013879425868317
810 => 0.014035020228213
811 => 0.013875086426069
812 => 0.013587381085253
813 => 0.013608152481577
814 => 0.013439470945524
815 => 0.01344230651262
816 => 0.013427170033235
817 => 0.013472595747291
818 => 0.01326099663508
819 => 0.013310658523778
820 => 0.013241131588781
821 => 0.013343370060054
822 => 0.013233378365589
823 => 0.013325825476447
824 => 0.013365722584823
825 => 0.013512943773653
826 => 0.013211633676297
827 => 0.012597241990888
828 => 0.01272639457194
829 => 0.012535367759847
830 => 0.012553048018597
831 => 0.012588764955063
901 => 0.012472994678121
902 => 0.012495079998621
903 => 0.012494290955561
904 => 0.012487491408743
905 => 0.01245737508845
906 => 0.012413700465693
907 => 0.012587686720417
908 => 0.012617250375439
909 => 0.012682966718392
910 => 0.012878493979197
911 => 0.012858956194992
912 => 0.012890823131645
913 => 0.012821257787857
914 => 0.012556274955377
915 => 0.012570664798052
916 => 0.012391223229319
917 => 0.01267837799404
918 => 0.012610375955496
919 => 0.012566534598868
920 => 0.012554572078524
921 => 0.01275058401359
922 => 0.012809233856672
923 => 0.012772687210308
924 => 0.012697728972378
925 => 0.012841670948616
926 => 0.012880183749033
927 => 0.012888805344749
928 => 0.013143842928506
929 => 0.012903059112567
930 => 0.012961018170249
1001 => 0.01341319819314
1002 => 0.013003133308955
1003 => 0.013220353823646
1004 => 0.013209722009813
1005 => 0.013320844674787
1006 => 0.013200606707857
1007 => 0.013202097201561
1008 => 0.013300766599957
1009 => 0.01316220322503
1010 => 0.013127892984777
1011 => 0.013080493633602
1012 => 0.013183988382822
1013 => 0.013246028804315
1014 => 0.013746029037876
1015 => 0.014069051991538
1016 => 0.014055028713207
1017 => 0.014183175226674
1018 => 0.01412544404867
1019 => 0.013939014846178
1020 => 0.014257226762212
1021 => 0.014156531197427
1022 => 0.014164832417443
1023 => 0.014164523445619
1024 => 0.014231477193242
1025 => 0.01418403432683
1026 => 0.014090519567222
1027 => 0.014152599028801
1028 => 0.014336952835877
1029 => 0.014909192709707
1030 => 0.015229425724272
1031 => 0.014889914280134
1101 => 0.015124104728061
1102 => 0.014983673909893
1103 => 0.014958153452777
1104 => 0.015105242360614
1105 => 0.015252588728112
1106 => 0.015243203401498
1107 => 0.015136237505014
1108 => 0.015075815184249
1109 => 0.015533353240042
1110 => 0.015870459485592
1111 => 0.015847471099635
1112 => 0.015948934359028
1113 => 0.016246833626747
1114 => 0.016274069802392
1115 => 0.016270638670277
1116 => 0.01620313096714
1117 => 0.016496451483318
1118 => 0.016741144618396
1119 => 0.016187504884349
1120 => 0.016398323647398
1121 => 0.016492966982287
1122 => 0.016631931477316
1123 => 0.016866387873584
1124 => 0.017121069706419
1125 => 0.017157084510026
1126 => 0.0171315302834
1127 => 0.01696356076843
1128 => 0.017242236668904
1129 => 0.017405478475648
1130 => 0.017502685235841
1201 => 0.017749185406029
1202 => 0.016493551467303
1203 => 0.015604751356416
1204 => 0.015465952384672
1205 => 0.015748205551714
1206 => 0.015822633460936
1207 => 0.015792631664053
1208 => 0.014792206333079
1209 => 0.015460685352347
1210 => 0.016179912569767
1211 => 0.016207541016333
1212 => 0.016567601199705
1213 => 0.016684851554777
1214 => 0.016974747196559
1215 => 0.016956614145235
1216 => 0.017027199120762
1217 => 0.01701097285725
1218 => 0.017547943488921
1219 => 0.018140301836565
1220 => 0.01811979035057
1221 => 0.018034631829631
1222 => 0.018161106754912
1223 => 0.018772484050659
1224 => 0.018716198226388
1225 => 0.018770875110252
1226 => 0.019491723397652
1227 => 0.020428928710745
1228 => 0.019993502748938
1229 => 0.020938251795614
1230 => 0.021532921241501
1231 => 0.022561340558194
]
'min_raw' => 0.0092112955778441
'max_raw' => 0.022561340558194
'avg_raw' => 0.015886318068019
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.009211'
'max' => '$0.022561'
'avg' => '$0.015886'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0041072543561412
'max_diff' => 0.0091529913657354
'year' => 2028
]
3 => [
'items' => [
101 => 0.022432577394672
102 => 0.022832933487772
103 => 0.022202064458285
104 => 0.020753461646917
105 => 0.020524214706989
106 => 0.020983172886182
107 => 0.022111476785242
108 => 0.020947638581108
109 => 0.021183081534018
110 => 0.021115273947741
111 => 0.021111660769632
112 => 0.021249561082196
113 => 0.021049529486425
114 => 0.020234564780257
115 => 0.020608058302477
116 => 0.020463834516916
117 => 0.020623861559591
118 => 0.021487461508738
119 => 0.021105643385568
120 => 0.020703429009195
121 => 0.021207895095683
122 => 0.021850253777136
123 => 0.02181005612528
124 => 0.021732055879365
125 => 0.022171739181629
126 => 0.022897967181849
127 => 0.023094263692088
128 => 0.023239165762841
129 => 0.023259145310258
130 => 0.023464947065865
131 => 0.022358299157244
201 => 0.02411457780896
202 => 0.024417838615892
203 => 0.024360838153061
204 => 0.024697899776802
205 => 0.024598727696669
206 => 0.02445504291218
207 => 0.024989357280871
208 => 0.024376808974113
209 => 0.023507373770356
210 => 0.023030384422097
211 => 0.023658522473518
212 => 0.024042104462524
213 => 0.02429562775686
214 => 0.024372343752543
215 => 0.022444205084167
216 => 0.021405045281386
217 => 0.022071134800977
218 => 0.022883809985922
219 => 0.022353784705558
220 => 0.022374560693078
221 => 0.021618883931473
222 => 0.022950670611457
223 => 0.022756640494272
224 => 0.023763269085459
225 => 0.023523029093473
226 => 0.02434389563249
227 => 0.024127733962533
228 => 0.025025008969086
301 => 0.025382956261952
302 => 0.02598400547672
303 => 0.026426139725813
304 => 0.026685769413562
305 => 0.026670182220956
306 => 0.027698964390812
307 => 0.027092327488159
308 => 0.026330248565087
309 => 0.026316464961697
310 => 0.026711156434698
311 => 0.02753832148379
312 => 0.027752793346258
313 => 0.027872653858587
314 => 0.02768908331158
315 => 0.027030622431809
316 => 0.026746302362396
317 => 0.026988551299081
318 => 0.026692301666204
319 => 0.027203711645516
320 => 0.027905986778389
321 => 0.027760969740548
322 => 0.028245739955882
323 => 0.02874742612944
324 => 0.029464859889763
325 => 0.029652423641206
326 => 0.029962459389932
327 => 0.030281588016809
328 => 0.030384083531004
329 => 0.030579779270092
330 => 0.030578747856949
331 => 0.031168490138536
401 => 0.031818994137924
402 => 0.032064544338491
403 => 0.032629173484977
404 => 0.031662265858585
405 => 0.032395676400238
406 => 0.033057231067265
407 => 0.032268498320537
408 => 0.033355582660742
409 => 0.033397791682286
410 => 0.034035097794742
411 => 0.03338906595669
412 => 0.033005454313461
413 => 0.034112926753722
414 => 0.034648797782509
415 => 0.034487389067575
416 => 0.033259060777198
417 => 0.032544121026719
418 => 0.030672985798138
419 => 0.032889426303419
420 => 0.033968989819085
421 => 0.033256264968495
422 => 0.033615721926404
423 => 0.035576802534444
424 => 0.036323455059419
425 => 0.036168156553719
426 => 0.036194399444752
427 => 0.036597279594526
428 => 0.038383872048779
429 => 0.037313304437302
430 => 0.038131713262873
501 => 0.038565794352963
502 => 0.038968993061041
503 => 0.037978864466262
504 => 0.036690721712333
505 => 0.036282712829609
506 => 0.033185398528376
507 => 0.033024169868042
508 => 0.032933667335269
509 => 0.032363061667969
510 => 0.031914721915518
511 => 0.03155818549858
512 => 0.030622527469751
513 => 0.030938284587951
514 => 0.029447040977004
515 => 0.03040108579286
516 => 0.028021024982452
517 => 0.030003210349248
518 => 0.028924396973011
519 => 0.029648791140562
520 => 0.029646263797553
521 => 0.028312424465712
522 => 0.027543093775623
523 => 0.028033341234146
524 => 0.028558925425575
525 => 0.028644199692356
526 => 0.029325633315695
527 => 0.029515806792602
528 => 0.028939572279223
529 => 0.027971703512347
530 => 0.028196517352156
531 => 0.027538537930334
601 => 0.026385454302405
602 => 0.027213619094893
603 => 0.027496390966883
604 => 0.027621279134713
605 => 0.026487353819193
606 => 0.026131049866341
607 => 0.025941356631522
608 => 0.027825327993338
609 => 0.027928536197363
610 => 0.027400508433401
611 => 0.029787243996157
612 => 0.029247052230968
613 => 0.02985057878288
614 => 0.028176117852581
615 => 0.028240084515079
616 => 0.027447367876248
617 => 0.027891236224648
618 => 0.027577524382544
619 => 0.02785537604849
620 => 0.028021919191433
621 => 0.028814505753263
622 => 0.030012260414635
623 => 0.028696119751359
624 => 0.028122658416887
625 => 0.028478430603524
626 => 0.029425898819649
627 => 0.030861361667083
628 => 0.03001153877002
629 => 0.030388675740808
630 => 0.030471063391269
701 => 0.029844435449129
702 => 0.030884466333123
703 => 0.031441827333051
704 => 0.03201356438937
705 => 0.032509987655662
706 => 0.031785200036309
707 => 0.032560826683241
708 => 0.031935808522348
709 => 0.031375102618837
710 => 0.031375952978243
711 => 0.031024213974364
712 => 0.030342675332383
713 => 0.030216989150123
714 => 0.030870824542655
715 => 0.031395138609024
716 => 0.031438323626825
717 => 0.031728610834196
718 => 0.031900399813322
719 => 0.033584165344552
720 => 0.034261389770052
721 => 0.03508948697835
722 => 0.035412077509984
723 => 0.036382959355095
724 => 0.035598893414
725 => 0.035429255815638
726 => 0.03307421403243
727 => 0.033459851992498
728 => 0.034077295575096
729 => 0.033084395449688
730 => 0.033714162045154
731 => 0.033838491311379
801 => 0.033050657083365
802 => 0.033471473384855
803 => 0.032353910051435
804 => 0.030036620241356
805 => 0.030887046139114
806 => 0.031513245850126
807 => 0.030619581652644
808 => 0.03222144013705
809 => 0.031285667479531
810 => 0.030989072472107
811 => 0.02983194960439
812 => 0.030378067056209
813 => 0.031116698729442
814 => 0.030660310230532
815 => 0.031607384892848
816 => 0.032948695190273
817 => 0.033904592784627
818 => 0.033977974732494
819 => 0.033363396619489
820 => 0.034348261967764
821 => 0.034355435636625
822 => 0.033244503500477
823 => 0.032564063752782
824 => 0.032409466410449
825 => 0.032795680882193
826 => 0.033264616550014
827 => 0.034003997398432
828 => 0.034450789759877
829 => 0.035615787278167
830 => 0.03593100220352
831 => 0.036277327839289
901 => 0.036740125691547
902 => 0.037295833172116
903 => 0.036079976841075
904 => 0.036128285079747
905 => 0.034996096498958
906 => 0.033786190628118
907 => 0.03470435836719
908 => 0.035904740547289
909 => 0.03562937154887
910 => 0.03559838691127
911 => 0.035650494477292
912 => 0.035442875245194
913 => 0.034503821153145
914 => 0.034032234066908
915 => 0.034640701722851
916 => 0.034964075202205
917 => 0.035465599267552
918 => 0.035403775840609
919 => 0.036695647973191
920 => 0.037197630419727
921 => 0.037069201828863
922 => 0.037092835780388
923 => 0.038001651022034
924 => 0.039012440482855
925 => 0.03995917819833
926 => 0.040922240465842
927 => 0.039761231313396
928 => 0.039171742466873
929 => 0.039779944484872
930 => 0.039457223933059
1001 => 0.041311671948913
1002 => 0.041440069905992
1003 => 0.043294383824147
1004 => 0.045054348540071
1005 => 0.043948946235042
1006 => 0.044991290820271
1007 => 0.046118671472796
1008 => 0.048293571662437
1009 => 0.047561141792477
1010 => 0.047000111990727
1011 => 0.04646994153895
1012 => 0.047573142086909
1013 => 0.0489923919678
1014 => 0.049298084798738
1015 => 0.049793423968506
1016 => 0.049272635398686
1017 => 0.049899867868054
1018 => 0.052114274104835
1019 => 0.051515921992553
1020 => 0.050666165803209
1021 => 0.052414226853312
1022 => 0.053046843351929
1023 => 0.057486877243056
1024 => 0.063092603439255
1025 => 0.060771795984846
1026 => 0.059331195905906
1027 => 0.059669771095947
1028 => 0.061716792536992
1029 => 0.062374230854643
1030 => 0.06058708687469
1031 => 0.061218336341213
1101 => 0.064696582964832
1102 => 0.066562550682891
1103 => 0.064028315888867
1104 => 0.057036462601365
1105 => 0.050589654555743
1106 => 0.052299638352992
1107 => 0.052105779257359
1108 => 0.055842721334334
1109 => 0.051501651492563
1110 => 0.051574743975404
1111 => 0.055388962057041
1112 => 0.054371394065113
1113 => 0.05272306423845
1114 => 0.050601689187628
1115 => 0.046680131202741
1116 => 0.043206697934793
1117 => 0.050018900457149
1118 => 0.049725145897198
1119 => 0.049299745762403
1120 => 0.050246427729287
1121 => 0.054843246640111
1122 => 0.054737275085766
1123 => 0.054063138124183
1124 => 0.054574465067973
1125 => 0.052633426152974
1126 => 0.053133676078004
1127 => 0.05058863334841
1128 => 0.05173909895256
1129 => 0.052719527662945
1130 => 0.05291636324205
1201 => 0.053359843852447
1202 => 0.049570350592415
1203 => 0.051271721812492
1204 => 0.052271118007363
1205 => 0.047755809640592
1206 => 0.052181864878775
1207 => 0.049504383945619
1208 => 0.048595606702492
1209 => 0.049819155538065
1210 => 0.049342337366902
1211 => 0.048932397103038
1212 => 0.048703643392134
1213 => 0.049602082618822
1214 => 0.04956016935503
1215 => 0.048090148400629
1216 => 0.046172565991333
1217 => 0.04681616959039
1218 => 0.046582342369037
1219 => 0.045734922354541
1220 => 0.046305981126428
1221 => 0.043791327301266
1222 => 0.039464996095407
1223 => 0.042323103009106
1224 => 0.042213069001951
1225 => 0.042157584865898
1226 => 0.04430537321927
1227 => 0.044098912927002
1228 => 0.043724185474869
1229 => 0.045728040191017
1230 => 0.044996606263974
1231 => 0.047250713279615
]
'min_raw' => 0.020234564780257
'max_raw' => 0.066562550682891
'avg_raw' => 0.043398557731574
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.020234'
'max' => '$0.066562'
'avg' => '$0.043398'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.011023269202413
'max_diff' => 0.044001210124697
'year' => 2029
]
4 => [
'items' => [
101 => 0.048735413946617
102 => 0.04835884583243
103 => 0.049755213985927
104 => 0.046830996917416
105 => 0.04780230452835
106 => 0.048002489680789
107 => 0.04570331293487
108 => 0.044132692384154
109 => 0.044027949899807
110 => 0.041304710309709
111 => 0.042759442917517
112 => 0.044039547411463
113 => 0.043426476698985
114 => 0.043232396826381
115 => 0.044223908804726
116 => 0.044300957777169
117 => 0.042544233040179
118 => 0.042909511741236
119 => 0.044432784647178
120 => 0.042871129172322
121 => 0.039837087679651
122 => 0.039084603440563
123 => 0.038984208172032
124 => 0.036943411235348
125 => 0.039134888035562
126 => 0.038178249684342
127 => 0.04120025877356
128 => 0.039474103389158
129 => 0.03939969228056
130 => 0.039287208976177
131 => 0.037530610748513
201 => 0.03791519412273
202 => 0.03919360783233
203 => 0.039649760246276
204 => 0.039602179812355
205 => 0.039187342907717
206 => 0.039377253118352
207 => 0.038765486160793
208 => 0.038549458515251
209 => 0.037867615842835
210 => 0.03686549547823
211 => 0.03700484646129
212 => 0.035019383799949
213 => 0.033937598365572
214 => 0.033638174415039
215 => 0.033237772194599
216 => 0.033683400911268
217 => 0.03501375923369
218 => 0.033409064845586
219 => 0.030657928873406
220 => 0.030823276833041
221 => 0.031194764606093
222 => 0.030502499598649
223 => 0.029847328866501
224 => 0.030416946662422
225 => 0.029251254083424
226 => 0.031335632985102
227 => 0.031279256377216
228 => 0.032056183934635
301 => 0.032542012680448
302 => 0.031422334710274
303 => 0.031140738728707
304 => 0.031301148597631
305 => 0.028649930781706
306 => 0.031839522877044
307 => 0.031867106601936
308 => 0.031630918002852
309 => 0.033329277326012
310 => 0.036913345229437
311 => 0.035564874715371
312 => 0.035042706174588
313 => 0.034050063396856
314 => 0.035372700960887
315 => 0.03527114303233
316 => 0.034811859564692
317 => 0.034534083490414
318 => 0.035045894424352
319 => 0.034470664451738
320 => 0.034367337342394
321 => 0.033741287480773
322 => 0.033517816163628
323 => 0.033352366897063
324 => 0.033170223511285
325 => 0.033571986433008
326 => 0.032661538796069
327 => 0.031563628198202
328 => 0.031472348811547
329 => 0.031724379223468
330 => 0.03161287452765
331 => 0.031471814969962
401 => 0.031202493859051
402 => 0.031122592038579
403 => 0.031382234192261
404 => 0.031089113338832
405 => 0.031521629125186
406 => 0.031404008763488
407 => 0.030746990984354
408 => 0.029928103572417
409 => 0.029920813756777
410 => 0.029744385807119
411 => 0.029519678287111
412 => 0.029457169795656
413 => 0.030368975040443
414 => 0.032256384609116
415 => 0.031885840948903
416 => 0.032153596718249
417 => 0.033470690095807
418 => 0.033889354474153
419 => 0.033592196415012
420 => 0.03318542813575
421 => 0.033203323875653
422 => 0.034593374223026
423 => 0.034680069958121
424 => 0.034899122111603
425 => 0.035180666032957
426 => 0.03364014456225
427 => 0.03313076545292
428 => 0.032889393371642
429 => 0.032146060784059
430 => 0.032947681251248
501 => 0.032480611333828
502 => 0.032543635023068
503 => 0.032502590762772
504 => 0.032525003704294
505 => 0.03133505035872
506 => 0.03176860681574
507 => 0.031047735116286
508 => 0.030082568832361
509 => 0.030079333256547
510 => 0.030315556337187
511 => 0.030175041605412
512 => 0.02979692007517
513 => 0.029850630453858
514 => 0.029380071019838
515 => 0.029907764888901
516 => 0.029922897260886
517 => 0.029719706377618
518 => 0.030532691590631
519 => 0.030865772295736
520 => 0.030732027703598
521 => 0.030856388418616
522 => 0.031901238710889
523 => 0.032071594898544
524 => 0.032147255864002
525 => 0.032045880193445
526 => 0.0308754863639
527 => 0.030927398307139
528 => 0.030546502911765
529 => 0.030224686440442
530 => 0.03023755741159
531 => 0.030403012911063
601 => 0.031125566781098
602 => 0.032646138803708
603 => 0.032703843400443
604 => 0.032773783055047
605 => 0.032489303330918
606 => 0.032403501524017
607 => 0.032516696254645
608 => 0.033087743158459
609 => 0.03455663083279
610 => 0.034037427824972
611 => 0.03361530769774
612 => 0.033985620852092
613 => 0.03392861404459
614 => 0.03344741921965
615 => 0.033433913683583
616 => 0.032510346967231
617 => 0.032168925380792
618 => 0.031883607948201
619 => 0.031572048760212
620 => 0.031387346030014
621 => 0.031671133369488
622 => 0.031736038891699
623 => 0.031115532914184
624 => 0.031030960242297
625 => 0.031537678818088
626 => 0.031314690865255
627 => 0.031544039504578
628 => 0.031597250356218
629 => 0.031588682183554
630 => 0.031355857150793
701 => 0.031504252883733
702 => 0.031153252736434
703 => 0.030771592794764
704 => 0.030528117530234
705 => 0.030315653069623
706 => 0.030433540700877
707 => 0.030013292820889
708 => 0.029878847066162
709 => 0.031453979748422
710 => 0.032617547196338
711 => 0.032600628464822
712 => 0.032497640037863
713 => 0.032344620125841
714 => 0.033076548798792
715 => 0.032821559484512
716 => 0.033007085515721
717 => 0.033054309677167
718 => 0.033197242990856
719 => 0.033248329364966
720 => 0.033093910860637
721 => 0.032575663499475
722 => 0.031284240348941
723 => 0.030683079386237
724 => 0.030484686255417
725 => 0.03049189746892
726 => 0.030292980008229
727 => 0.030351570115258
728 => 0.030272604760051
729 => 0.03012306348106
730 => 0.030424306948296
731 => 0.030459022451617
801 => 0.030388708626773
802 => 0.030405270077922
803 => 0.029823101639639
804 => 0.029867362641599
805 => 0.029620911758274
806 => 0.02957470518866
807 => 0.028951698816547
808 => 0.027847952722132
809 => 0.028459535201664
810 => 0.0277208295679
811 => 0.027441070551177
812 => 0.028765406224891
813 => 0.028632479654604
814 => 0.028404967148064
815 => 0.028068428733129
816 => 0.027943603361395
817 => 0.027185203917647
818 => 0.027140393632606
819 => 0.027516276875435
820 => 0.027342819692222
821 => 0.027099220113619
822 => 0.026216927133211
823 => 0.025224937706066
824 => 0.025254879631448
825 => 0.025570413011604
826 => 0.02648786886988
827 => 0.026129402993904
828 => 0.025869331887961
829 => 0.025820628387527
830 => 0.026430254663147
831 => 0.027293003563802
901 => 0.027697786045071
902 => 0.02729665889956
903 => 0.026835865633017
904 => 0.026863911984041
905 => 0.027050491792417
906 => 0.027070098692181
907 => 0.026770169645975
908 => 0.026854597915638
909 => 0.026726343653737
910 => 0.025939247485193
911 => 0.025925011411413
912 => 0.025731845318012
913 => 0.025725996325473
914 => 0.025397372613058
915 => 0.025351395884023
916 => 0.024698893556989
917 => 0.025128372564601
918 => 0.024840300594955
919 => 0.024406108187389
920 => 0.024331253252668
921 => 0.02432900302294
922 => 0.024774821541864
923 => 0.025123162915639
924 => 0.024845311730201
925 => 0.024782050401196
926 => 0.025457515889841
927 => 0.025371556749406
928 => 0.025297116688166
929 => 0.027215753862461
930 => 0.025697002825881
1001 => 0.025034740686654
1002 => 0.024215065529191
1003 => 0.024481955893622
1004 => 0.024538193614842
1005 => 0.022567022618696
1006 => 0.021767318791053
1007 => 0.021492890573609
1008 => 0.021334953254625
1009 => 0.021406927274138
1010 => 0.020687100033356
1011 => 0.021170835844005
1012 => 0.02054752629897
1013 => 0.02044302642532
1014 => 0.021557581105079
1015 => 0.021712664877633
1016 => 0.021051029323164
1017 => 0.0214759064582
1018 => 0.021321840102802
1019 => 0.020558211152113
1020 => 0.020529046143071
1021 => 0.02014588397847
1022 => 0.019546309385686
1023 => 0.019272287708049
1024 => 0.019129574839171
1025 => 0.019188460950288
1026 => 0.019158686330562
1027 => 0.018964386796523
1028 => 0.019169823352415
1029 => 0.018645017844357
1030 => 0.018436036062402
1031 => 0.018341643839834
1101 => 0.017875848744755
1102 => 0.018617135881045
1103 => 0.018763178785384
1104 => 0.018909509439359
1105 => 0.020183217878031
1106 => 0.020119587003898
1107 => 0.020694779116571
1108 => 0.020672428208783
1109 => 0.020508374100754
1110 => 0.019816256804571
1111 => 0.020092122423025
1112 => 0.01924305092846
1113 => 0.019879233023438
1114 => 0.019588906082889
1115 => 0.019781073192796
1116 => 0.019435539402174
1117 => 0.019626772068645
1118 => 0.018797810975837
1119 => 0.018023738771171
1120 => 0.018335248022905
1121 => 0.018673894204944
1122 => 0.019408165413047
1123 => 0.018970839539107
1124 => 0.019128118460498
1125 => 0.018601260402011
1126 => 0.017514201737789
1127 => 0.017520354371775
1128 => 0.017353134079145
1129 => 0.01720863133175
1130 => 0.019021071676499
1201 => 0.018795666069187
1202 => 0.018436511734293
1203 => 0.018917254083775
1204 => 0.019044369991385
1205 => 0.019047988802571
1206 => 0.019398726010997
1207 => 0.019585914522007
1208 => 0.019618907308393
1209 => 0.020170799884031
1210 => 0.020355786995745
1211 => 0.021117722728541
1212 => 0.019570032884661
1213 => 0.019538159230812
1214 => 0.018924019114512
1215 => 0.018534521743583
1216 => 0.018950688332729
1217 => 0.019319355118307
1218 => 0.018935474619194
1219 => 0.018985601308219
1220 => 0.018470273102349
1221 => 0.018654478687502
1222 => 0.018813141352607
1223 => 0.018725537154696
1224 => 0.018594389430333
1225 => 0.01928912864611
1226 => 0.019249928736851
1227 => 0.019896885866569
1228 => 0.020401235213532
1229 => 0.021305119406519
1230 => 0.020361869130588
1231 => 0.020327493341453
]
'min_raw' => 0.01720863133175
'max_raw' => 0.049755213985927
'avg_raw' => 0.033481922658838
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.0172086'
'max' => '$0.049755'
'avg' => '$0.033481'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0030259334485075
'max_diff' => -0.016807336696964
'year' => 2030
]
5 => [
'items' => [
101 => 0.0206635221943
102 => 0.020355735551478
103 => 0.020550246085308
104 => 0.021273780752398
105 => 0.021289067899783
106 => 0.021032988484714
107 => 0.021017406029034
108 => 0.0210665888819
109 => 0.021354654387334
110 => 0.021253995448377
111 => 0.021370480520911
112 => 0.021516146887798
113 => 0.022118684742501
114 => 0.022263954579388
115 => 0.021911024189528
116 => 0.021942889852138
117 => 0.021810884198175
118 => 0.021683368390472
119 => 0.021970005304
120 => 0.022493839897334
121 => 0.022490581149516
122 => 0.02261210059328
123 => 0.022687806200024
124 => 0.022362822315989
125 => 0.022151269757471
126 => 0.022232392469846
127 => 0.022362109453556
128 => 0.02219032700031
129 => 0.021130006121505
130 => 0.021451639742575
131 => 0.021398104180948
201 => 0.021321863031045
202 => 0.02164526812415
203 => 0.021614074913968
204 => 0.02067971716458
205 => 0.02073953171618
206 => 0.020683354685575
207 => 0.020864874164198
208 => 0.020345932903937
209 => 0.02050555574047
210 => 0.020605669687173
211 => 0.020664637570893
212 => 0.020877670001544
213 => 0.020852673104618
214 => 0.020876116159334
215 => 0.021191987015513
216 => 0.022789553412281
217 => 0.022876505426425
218 => 0.022448321907573
219 => 0.022619372777808
220 => 0.02229099251167
221 => 0.022511436384285
222 => 0.022662258483261
223 => 0.02198072241941
224 => 0.021940366276841
225 => 0.021610630668533
226 => 0.021787811907258
227 => 0.021505903816665
228 => 0.02157507420137
301 => 0.021381667775568
302 => 0.021729760835176
303 => 0.022118982964011
304 => 0.022217315844602
305 => 0.021958644370733
306 => 0.021771349176371
307 => 0.021442520513945
308 => 0.021989369907985
309 => 0.022149285335736
310 => 0.021988529940321
311 => 0.021951279402629
312 => 0.021880689701012
313 => 0.021966255341526
314 => 0.022148414401973
315 => 0.022062511553016
316 => 0.022119251898165
317 => 0.021903016212845
318 => 0.022362929899177
319 => 0.023093383517328
320 => 0.023095732045152
321 => 0.023009828733146
322 => 0.022974678948686
323 => 0.023062820959853
324 => 0.023110634385136
325 => 0.023395669486768
326 => 0.023701523507118
327 => 0.025128810765528
328 => 0.024728034214749
329 => 0.025994408380109
330 => 0.026995945926805
331 => 0.02729626324513
401 => 0.027019985443292
402 => 0.026074854007441
403 => 0.026028481350211
404 => 0.027440906739572
405 => 0.027041831873896
406 => 0.02699436318847
407 => 0.026489376575142
408 => 0.026787886207428
409 => 0.026722597771975
410 => 0.026619536782593
411 => 0.027189072366632
412 => 0.028255192137161
413 => 0.028089027372916
414 => 0.027964993084569
415 => 0.02742151093887
416 => 0.027748808581713
417 => 0.02763226416007
418 => 0.028133012956365
419 => 0.027836380462384
420 => 0.027038808489288
421 => 0.027165824454835
422 => 0.027146626247163
423 => 0.027541724000649
424 => 0.027423125461982
425 => 0.02712346797905
426 => 0.028251548255688
427 => 0.028178296997235
428 => 0.028282150534152
429 => 0.02832787007288
430 => 0.029014512658265
501 => 0.029295808155385
502 => 0.029359667158003
503 => 0.029626876124092
504 => 0.029353018755505
505 => 0.030448643486851
506 => 0.03117717000172
507 => 0.032023391038373
508 => 0.033259947415695
509 => 0.033724904052354
510 => 0.033640913797607
511 => 0.034578456730269
512 => 0.036263200539855
513 => 0.033981448690193
514 => 0.036384138928414
515 => 0.035623474939386
516 => 0.033819954305161
517 => 0.033703828838429
518 => 0.034925193951231
519 => 0.037634064219389
520 => 0.036955522940968
521 => 0.03763517406984
522 => 0.036842324926215
523 => 0.036802953283577
524 => 0.037596667156607
525 => 0.039451222884031
526 => 0.038570192974914
527 => 0.037307020562797
528 => 0.038239727414764
529 => 0.037431730421646
530 => 0.035611087052032
531 => 0.03695500407324
601 => 0.036056365033712
602 => 0.036318635679725
603 => 0.038207441278345
604 => 0.037980175191559
605 => 0.038274278552133
606 => 0.037755193818745
607 => 0.037270286825612
608 => 0.036365171913263
609 => 0.036097212009342
610 => 0.036171266486599
611 => 0.036097175311621
612 => 0.035590771836597
613 => 0.035481414054381
614 => 0.035299146292946
615 => 0.035355638693682
616 => 0.03501292197787
617 => 0.035659699229494
618 => 0.035779746786777
619 => 0.036250417333762
620 => 0.03629928391134
621 => 0.037610094685117
622 => 0.036888122138201
623 => 0.037372483654783
624 => 0.037329157801752
625 => 0.033859042066058
626 => 0.034337193397346
627 => 0.035081046816677
628 => 0.034745941859538
629 => 0.034272181852627
630 => 0.033889595245642
701 => 0.03330993741457
702 => 0.034125794680461
703 => 0.03519856022836
704 => 0.036326491015967
705 => 0.037681625952324
706 => 0.037379175610039
707 => 0.036301157710944
708 => 0.036349516806405
709 => 0.036648453705941
710 => 0.03626130325976
711 => 0.036147125035107
712 => 0.036632767371199
713 => 0.036636111723064
714 => 0.036190648346039
715 => 0.035695597321412
716 => 0.035693523039543
717 => 0.035605433491337
718 => 0.036857995861149
719 => 0.037546778516207
720 => 0.03762574633758
721 => 0.037541463352645
722 => 0.037573900528475
723 => 0.037173113077787
724 => 0.038089194340233
725 => 0.0389298810977
726 => 0.038704559088046
727 => 0.038366769364163
728 => 0.038097703578933
729 => 0.038641175740079
730 => 0.038616975780248
731 => 0.038922538432272
801 => 0.038908676345361
802 => 0.038805927118278
803 => 0.038704562757544
804 => 0.039106460990146
805 => 0.038990720753445
806 => 0.038874800740188
807 => 0.038642305407134
808 => 0.038673905384235
809 => 0.038336173984511
810 => 0.038179923985461
811 => 0.03583029889592
812 => 0.035202402295781
813 => 0.035399951348198
814 => 0.035464989625613
815 => 0.035191728220561
816 => 0.035583514880311
817 => 0.035522455344393
818 => 0.035760002280013
819 => 0.035611593267727
820 => 0.035617684025358
821 => 0.036054123286355
822 => 0.036180823460568
823 => 0.036116382729367
824 => 0.036161514808601
825 => 0.037201564525483
826 => 0.03705370271466
827 => 0.036975154074655
828 => 0.036996912584748
829 => 0.037262667586328
830 => 0.037337064477086
831 => 0.03702183962317
901 => 0.03717050148657
902 => 0.037803484832927
903 => 0.038024993180398
904 => 0.038731941495485
905 => 0.038431617286232
906 => 0.038982875370044
907 => 0.040677254781951
908 => 0.042030842298321
909 => 0.040786027278898
910 => 0.043271718374379
911 => 0.045207185443422
912 => 0.045132898993623
913 => 0.044795405541975
914 => 0.042591927740925
915 => 0.040564254616395
916 => 0.042260489284613
917 => 0.042264813335616
918 => 0.0421191052733
919 => 0.04121412501228
920 => 0.042087613921875
921 => 0.042156948299473
922 => 0.042118139485517
923 => 0.041424293241232
924 => 0.040364918270429
925 => 0.040571917603938
926 => 0.040910986734899
927 => 0.04026905813276
928 => 0.040063923048551
929 => 0.040445308198642
930 => 0.041674210616987
1001 => 0.041441893733346
1002 => 0.041435827000648
1003 => 0.042429777146556
1004 => 0.041718323349953
1005 => 0.040574528528438
1006 => 0.040285705251205
1007 => 0.039260577191701
1008 => 0.039968636793781
1009 => 0.039994118598326
1010 => 0.03960632159046
1011 => 0.040605996118355
1012 => 0.040596783941591
1013 => 0.041545826123909
1014 => 0.043360038332536
1015 => 0.042823486510484
1016 => 0.04219953511811
1017 => 0.042267375934756
1018 => 0.043011422247966
1019 => 0.042561554862074
1020 => 0.042723330310628
1021 => 0.043011177381449
1022 => 0.043184842666116
1023 => 0.04224238817285
1024 => 0.04202265694766
1025 => 0.041573163976102
1026 => 0.041455899650006
1027 => 0.041822002296361
1028 => 0.041725547183644
1029 => 0.039991976951324
1030 => 0.039810809216553
1031 => 0.039816365372331
1101 => 0.039360810489192
1102 => 0.038665979946707
1103 => 0.040491953126183
1104 => 0.040345301925393
1105 => 0.040183410349622
1106 => 0.040203241143913
1107 => 0.04099583421315
1108 => 0.040536090206083
1109 => 0.041758394999432
1110 => 0.041507125879765
1111 => 0.041249412655303
1112 => 0.041213788837546
1113 => 0.041114591233187
1114 => 0.040774405738039
1115 => 0.040363611310668
1116 => 0.040092369247314
1117 => 0.036983091356028
1118 => 0.037560155246813
1119 => 0.038224014652133
1120 => 0.0384531762586
1121 => 0.038061179473238
1122 => 0.040789884160374
1123 => 0.041288444801166
1124 => 0.0397782720999
1125 => 0.039495780447438
1126 => 0.040808404266079
1127 => 0.040016731641703
1128 => 0.040373221775985
1129 => 0.039602685095346
1130 => 0.041168356142359
1201 => 0.041156428352197
1202 => 0.040547346952624
1203 => 0.041062138380734
1204 => 0.040972680701705
1205 => 0.040285029301689
1206 => 0.041190155918281
1207 => 0.04119060484979
1208 => 0.040604377245273
1209 => 0.039919791744922
1210 => 0.039797404026646
1211 => 0.039705201321403
1212 => 0.040350545562624
1213 => 0.040929159191363
1214 => 0.042005815703964
1215 => 0.04227651273196
1216 => 0.043333061253549
1217 => 0.042703938051356
1218 => 0.042982820218379
1219 => 0.043285586260973
1220 => 0.043430743435645
1221 => 0.04319421760908
1222 => 0.044835472355829
1223 => 0.044974044543201
1224 => 0.045020506598982
1225 => 0.044467084732794
1226 => 0.044958652879969
1227 => 0.044728664422932
1228 => 0.04532703049551
1229 => 0.045420861936011
1230 => 0.045341390044057
1231 => 0.0453711736243
]
'min_raw' => 0.020345932903937
'max_raw' => 0.045420861936011
'avg_raw' => 0.032883397419974
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.020345'
'max' => '$0.04542'
'avg' => '$0.032883'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0031373015721871
'max_diff' => -0.0043343520499158
'year' => 2031
]
6 => [
'items' => [
101 => 0.043970652235128
102 => 0.04389802781276
103 => 0.042907788660586
104 => 0.043311318434575
105 => 0.042556938863788
106 => 0.042796160396655
107 => 0.042901606968957
108 => 0.042846527663627
109 => 0.043334133402546
110 => 0.042919568913193
111 => 0.04182546506508
112 => 0.040731063129105
113 => 0.040717323804279
114 => 0.040429187092336
115 => 0.040220917024472
116 => 0.04026103722832
117 => 0.040402426059641
118 => 0.040212699248564
119 => 0.040253187083101
120 => 0.040925554905442
121 => 0.041060393477104
122 => 0.040602159325764
123 => 0.038762283085261
124 => 0.038310772840862
125 => 0.038635309450699
126 => 0.038480201854031
127 => 0.031056526152821
128 => 0.032800608641883
129 => 0.031764334050328
130 => 0.032241897058818
131 => 0.031184129042844
201 => 0.031688951382438
202 => 0.031595729129476
203 => 0.034400162160733
204 => 0.034356374796322
205 => 0.03437733349049
206 => 0.033376920410261
207 => 0.03497060561124
208 => 0.035755712248309
209 => 0.035610409904724
210 => 0.035646979374189
211 => 0.035018594728344
212 => 0.034383417627442
213 => 0.033678908469487
214 => 0.034987799405004
215 => 0.034842273076488
216 => 0.035176058115384
217 => 0.036024967448524
218 => 0.036149972572522
219 => 0.036317980726851
220 => 0.036257761763159
221 => 0.037692421788367
222 => 0.037518674993122
223 => 0.037937354779297
224 => 0.037076098693824
225 => 0.036101505681935
226 => 0.036286743951649
227 => 0.036268904016683
228 => 0.036041781168847
229 => 0.03583674481717
301 => 0.035495417060261
302 => 0.036575428590125
303 => 0.036531582094345
304 => 0.037241405895045
305 => 0.03711593764341
306 => 0.036278029951708
307 => 0.036307955988839
308 => 0.036509222970511
309 => 0.037205810292102
310 => 0.037412604836432
311 => 0.037316809364161
312 => 0.037543550141489
313 => 0.037722756806923
314 => 0.037566055739553
315 => 0.039784612400203
316 => 0.03886331299747
317 => 0.039312347916002
318 => 0.039419440098204
319 => 0.039145125725399
320 => 0.039204614690399
321 => 0.039294724262602
322 => 0.039841851939754
323 => 0.04127767327727
324 => 0.04191358877369
325 => 0.043826771920186
326 => 0.041860784844083
327 => 0.041744131307051
328 => 0.042088753364331
329 => 0.043211994402327
330 => 0.044122275762958
331 => 0.04442426860567
401 => 0.044464181945193
402 => 0.045030740594227
403 => 0.045355481446159
404 => 0.044961945472262
405 => 0.044628464939318
406 => 0.043433979063441
407 => 0.043572244056051
408 => 0.044524752744337
409 => 0.045870227369023
410 => 0.047024784569779
411 => 0.046620498878455
412 => 0.049704913322037
413 => 0.050010720415415
414 => 0.049968467763038
415 => 0.05066514183195
416 => 0.049282385680366
417 => 0.048691230635925
418 => 0.044700567215706
419 => 0.045821780859742
420 => 0.047451530737917
421 => 0.047235827230292
422 => 0.046052259305422
423 => 0.047023886727375
424 => 0.046702636316078
425 => 0.046449252787997
426 => 0.047610051850951
427 => 0.046333705598236
428 => 0.047438798207692
429 => 0.046021505505346
430 => 0.046622345621438
501 => 0.046281279712178
502 => 0.046501991154935
503 => 0.045211716570451
504 => 0.045907917416594
505 => 0.045182752326356
506 => 0.045182408503684
507 => 0.045166400444124
508 => 0.046019553956915
509 => 0.046047375262338
510 => 0.045416893527342
511 => 0.045326031259354
512 => 0.04566199668695
513 => 0.04526866916072
514 => 0.045452704634669
515 => 0.045274243407746
516 => 0.045234068026597
517 => 0.044913943754324
518 => 0.044776025415829
519 => 0.04483010675007
520 => 0.044645499275465
521 => 0.04453426659447
522 => 0.045144273464189
523 => 0.044818371401305
524 => 0.045094324298958
525 => 0.04477984114405
526 => 0.043689705515351
527 => 0.043062756987312
528 => 0.041003591840326
529 => 0.041587568521624
530 => 0.041974745665493
531 => 0.041846783621754
601 => 0.042121695606443
602 => 0.04213857296956
603 => 0.042049196280942
604 => 0.041945709525385
605 => 0.041895337895956
606 => 0.042270766753015
607 => 0.042488715840892
608 => 0.042013604071642
609 => 0.041902292031627
610 => 0.042382656261978
611 => 0.042675678164995
612 => 0.044839187262087
613 => 0.044678907520132
614 => 0.045081178219128
615 => 0.045035888711768
616 => 0.045457532491064
617 => 0.046146741870256
618 => 0.044745386496385
619 => 0.044988613334066
620 => 0.044928979730395
621 => 0.045580043778509
622 => 0.045582076329401
623 => 0.045191730909496
624 => 0.045403343494258
625 => 0.045285227154731
626 => 0.045498679344636
627 => 0.04467676688646
628 => 0.045677767540551
629 => 0.046245270408363
630 => 0.046253150186234
701 => 0.046522142041595
702 => 0.0467954533456
703 => 0.04732005059324
704 => 0.046780822613089
705 => 0.045810803969583
706 => 0.045880836182503
707 => 0.045312114606732
708 => 0.045321674919168
709 => 0.045270641222126
710 => 0.045423797188587
711 => 0.044710376008391
712 => 0.044877814533417
713 => 0.044643399617862
714 => 0.04498810376182
715 => 0.044617259084558
716 => 0.044928950973266
717 => 0.045063466859682
718 => 0.045559833376479
719 => 0.044543945346444
720 => 0.042472480883628
721 => 0.042907927827791
722 => 0.042263867593754
723 => 0.042323477820525
724 => 0.042443899965498
725 => 0.042053572393966
726 => 0.042128034593979
727 => 0.042125374280212
728 => 0.042102449133386
729 => 0.042000909856865
730 => 0.041853657816975
731 => 0.042440264622109
801 => 0.042539940549085
802 => 0.042761507787517
803 => 0.0434207415986
804 => 0.043354868595069
805 => 0.043462310196872
806 => 0.043227765783394
807 => 0.042334357663176
808 => 0.04238287402242
809 => 0.041777874245226
810 => 0.04274603658299
811 => 0.042516762962289
812 => 0.04236894876751
813 => 0.042328616294975
814 => 0.042989484219165
815 => 0.043187226259919
816 => 0.043064006690096
817 => 0.042811279757501
818 => 0.043296590180094
819 => 0.043426438775577
820 => 0.043455507087474
821 => 0.044315384107266
822 => 0.043503564660838
823 => 0.043698977670385
824 => 0.045223534187763
825 => 0.043840971800919
826 => 0.044573345932051
827 => 0.044537500029423
828 => 0.04491215785272
829 => 0.04450676715247
830 => 0.044511792456056
831 => 0.044844463221625
901 => 0.044377287128872
902 => 0.044261607758394
903 => 0.044101797536591
904 => 0.044450737309359
905 => 0.044659910921945
906 => 0.0463456966183
907 => 0.047434791059313
908 => 0.047387510597346
909 => 0.047819565514405
910 => 0.0476249208171
911 => 0.046996361744828
912 => 0.048069235436584
913 => 0.04772973330957
914 => 0.047757721452426
915 => 0.047756679732351
916 => 0.047982418967024
917 => 0.047822462030562
918 => 0.047507170489551
919 => 0.047716475728514
920 => 0.048338037460242
921 => 0.050267384147371
922 => 0.051347072113932
923 => 0.050202385576088
924 => 0.050991975021929
925 => 0.05051850271391
926 => 0.050432458710962
927 => 0.050928379233152
928 => 0.051425167798568
929 => 0.051393524514627
930 => 0.05103288152651
1001 => 0.050829163453501
1002 => 0.052371784952892
1003 => 0.053508362195772
1004 => 0.053430855247518
1005 => 0.053772945710501
1006 => 0.054777333890279
1007 => 0.054869162558035
1008 => 0.054857594256555
1009 => 0.054629987322191
1010 => 0.055618937921468
1011 => 0.056443937910315
1012 => 0.054577302893082
1013 => 0.055288093071598
1014 => 0.055607189682963
1015 => 0.056075718180145
1016 => 0.056866204289385
1017 => 0.057724881870106
1018 => 0.05784630829494
1019 => 0.05776015043573
1020 => 0.057193829488753
1021 => 0.058133404743731
1022 => 0.058683785892346
1023 => 0.059011525271098
1024 => 0.05984261780498
1025 => 0.055609160315001
1026 => 0.052612508687105
1027 => 0.052144538263235
1028 => 0.053096174522203
1029 => 0.053347113414535
1030 => 0.053245960261687
1031 => 0.049872956410843
1101 => 0.052126780096019
1102 => 0.054551704874391
1103 => 0.054644856110945
1104 => 0.055858824157784
1105 => 0.056254141916066
1106 => 0.057231545312201
1107 => 0.057170408463655
1108 => 0.057408390636728
1109 => 0.057353682656416
1110 => 0.059164116631188
1111 => 0.061161294157408
1112 => 0.061092138250311
1113 => 0.060805020351385
1114 => 0.061231439392167
1115 => 0.063292740629777
1116 => 0.063102969043497
1117 => 0.063287315974863
1118 => 0.065717706303853
1119 => 0.068877559450532
1120 => 0.067409490419831
1121 => 0.070594777790969
1122 => 0.072599747346273
1123 => 0.076067134874448
1124 => 0.075633000878677
1125 => 0.076982829398531
1126 => 0.074855810419748
1127 => 0.069971744903001
1128 => 0.069198822839525
1129 => 0.070746232384109
1130 => 0.074550387755455
1201 => 0.070626425993626
1202 => 0.071420238347465
1203 => 0.071191620336157
1204 => 0.071179438253898
1205 => 0.071644378785601
1206 => 0.070969958294699
1207 => 0.068222247888835
1208 => 0.069481507375484
1209 => 0.068995246813081
1210 => 0.069534789160193
1211 => 0.072446476683364
1212 => 0.071159150223409
1213 => 0.069803056371756
1214 => 0.071503899003045
1215 => 0.073669656145615
1216 => 0.073534126955873
1217 => 0.073271143680966
1218 => 0.074753566632258
1219 => 0.07720209503862
1220 => 0.077863922427876
1221 => 0.07835246987616
1222 => 0.078419832315201
1223 => 0.079113707302851
1224 => 0.075382566615245
1225 => 0.081303982708965
1226 => 0.082326447692532
1227 => 0.082134266652453
1228 => 0.083270693449784
1229 => 0.082936327857644
1230 => 0.082451884574987
1231 => 0.084253362773668
]
'min_raw' => 0.031056526152821
'max_raw' => 0.084253362773668
'avg_raw' => 0.057654944463245
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.031056'
'max' => '$0.084253'
'avg' => '$0.057654'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.010710593248885
'max_diff' => 0.038832500837657
'year' => 2032
]
7 => [
'items' => [
101 => 0.082188113390674
102 => 0.079256751899182
103 => 0.077648549009194
104 => 0.079766360304757
105 => 0.081059633761529
106 => 0.081914405248815
107 => 0.082173058584401
108 => 0.075672204445629
109 => 0.07216860461873
110 => 0.074414371938919
111 => 0.077154363064129
112 => 0.075367345826199
113 => 0.075437393518655
114 => 0.072889576557235
115 => 0.077379788331179
116 => 0.076725602244341
117 => 0.080119520820092
118 => 0.079309534914091
119 => 0.082077143761456
120 => 0.081348339599272
121 => 0.084373564929606
122 => 0.085580409218583
123 => 0.08760688861009
124 => 0.089097575099737
125 => 0.089972934718747
126 => 0.089920381410613
127 => 0.093388992323559
128 => 0.09134367365223
129 => 0.088774271356441
130 => 0.088727798975271
131 => 0.090058528832972
201 => 0.092847373546805
202 => 0.093570480405062
203 => 0.093974598490776
204 => 0.093355677575054
205 => 0.091135630746635
206 => 0.090177025782017
207 => 0.090993784985331
208 => 0.089994958664596
209 => 0.091719213115352
210 => 0.094086982757118
211 => 0.093598047689269
212 => 0.095232484315845
213 => 0.096923954276604
214 => 0.099342832289158
215 => 0.099975216572433
216 => 0.10102052374527
217 => 0.10209648819163
218 => 0.10244205897375
219 => 0.10310186082113
220 => 0.1030983833397
221 => 0.10508674061656
222 => 0.10727996026724
223 => 0.10810784991222
224 => 0.11001153650075
225 => 0.10675153993103
226 => 0.1092242847773
227 => 0.11145476252546
228 => 0.1087954950023
301 => 0.1124606757531
302 => 0.11260298641618
303 => 0.11475170846962
304 => 0.11257356702312
305 => 0.11128019358507
306 => 0.11501411423866
307 => 0.11682084082554
308 => 0.11627664007394
309 => 0.11213524548379
310 => 0.10972477619955
311 => 0.1034161131379
312 => 0.11088899704839
313 => 0.11452882081418
314 => 0.11212581921956
315 => 0.11333775344963
316 => 0.11994967363791
317 => 0.12246706475548
318 => 0.12194346500092
319 => 0.12203194474025
320 => 0.12339028329341
321 => 0.12941390448882
322 => 0.12580441104209
323 => 0.12856373353698
324 => 0.13002726823879
325 => 0.13138668083351
326 => 0.12804839314764
327 => 0.12370532991752
328 => 0.12232969948314
329 => 0.11188688806896
330 => 0.11134329438402
331 => 0.11103815877608
401 => 0.10911432193037
402 => 0.1076027131529
403 => 0.10640062573061
404 => 0.10324598936086
405 => 0.10431058653033
406 => 0.099282754580718
407 => 0.10249938328666
408 => 0.094474842093828
409 => 0.10115791844974
410 => 0.097520623831414
411 => 0.099962969342897
412 => 0.099954448229491
413 => 0.0954573157965
414 => 0.09286346366191
415 => 0.094516367196306
416 => 0.096288410992824
417 => 0.096575919136938
418 => 0.0988734201742
419 => 0.09951460332908
420 => 0.097571788435814
421 => 0.094308551313853
422 => 0.09506652687077
423 => 0.092848103311442
424 => 0.088960401354149
425 => 0.091752616772641
426 => 0.09270600188156
427 => 0.09312707105881
428 => 0.089303962689399
429 => 0.088102659036009
430 => 0.087463095050859
501 => 0.093815036031901
502 => 0.094163009697539
503 => 0.092382727225619
504 => 0.10042977281201
505 => 0.098608478560686
506 => 0.10064331046734
507 => 0.094997748533704
508 => 0.095213416602326
509 => 0.092540717108801
510 => 0.09403725023533
511 => 0.092979548857013
512 => 0.093916345147735
513 => 0.094477856981838
514 => 0.097150117911676
515 => 0.10118843137705
516 => 0.096750971240807
517 => 0.094817506313846
518 => 0.096017017080313
519 => 0.099211472321095
520 => 0.10405123553204
521 => 0.10118599830185
522 => 0.10245754192972
523 => 0.10273531764537
524 => 0.10062259778868
525 => 0.1041291345267
526 => 0.10600831605167
527 => 0.10793596745445
528 => 0.10960969315592
529 => 0.10716602109421
530 => 0.10978110048687
531 => 0.10767380812004
601 => 0.10578334901912
602 => 0.10578621606523
603 => 0.10460030345602
604 => 0.10230244834107
605 => 0.10187868860245
606 => 0.1040831402777
607 => 0.1058509017589
608 => 0.1059965030615
609 => 0.10697522664836
610 => 0.10755442518541
611 => 0.1132313582307
612 => 0.11551466766358
613 => 0.11830665521725
614 => 0.11939429171721
615 => 0.12266768764281
616 => 0.12002415458067
617 => 0.11945220957407
618 => 0.11151202177822
619 => 0.11281222708497
620 => 0.11489398123224
621 => 0.11154634913735
622 => 0.11366965118286
623 => 0.11408883598433
624 => 0.11143259787975
625 => 0.11285140942068
626 => 0.10908346661628
627 => 0.10127056223359
628 => 0.10413783252272
629 => 0.10624910856826
630 => 0.10323605733281
701 => 0.10863683505117
702 => 0.10548181220279
703 => 0.10448182142766
704 => 0.10058050089141
705 => 0.10242177400892
706 => 0.10491212226484
707 => 0.10337337657674
708 => 0.10656650492338
709 => 0.11108882623844
710 => 0.11431170171645
711 => 0.11455911407704
712 => 0.11248702106057
713 => 0.11580756334339
714 => 0.1158317498688
715 => 0.11208616460897
716 => 0.10979201449283
717 => 0.10927077875951
718 => 0.11057292781563
719 => 0.11215397715974
720 => 0.1146468513121
721 => 0.11615324295275
722 => 0.1200811134232
723 => 0.12114388255163
724 => 0.12231154361231
725 => 0.12387189888271
726 => 0.12574550545171
727 => 0.12164616094322
728 => 0.12180903554268
729 => 0.11799178269567
730 => 0.1139125005792
731 => 0.11700816721591
801 => 0.12105533954412
802 => 0.1201269137403
803 => 0.12002244687135
804 => 0.12019813116823
805 => 0.1194981284317
806 => 0.11633204199769
807 => 0.11474205321129
808 => 0.11679354439515
809 => 0.11788382065801
810 => 0.11957474405962
811 => 0.11936630205931
812 => 0.12372193914994
813 => 0.12541440801573
814 => 0.12498140205503
815 => 0.12506108557267
816 => 0.12812521961134
817 => 0.13153316684956
818 => 0.1347251591564
819 => 0.13797219083018
820 => 0.13405776741363
821 => 0.13207026461079
822 => 0.13412086017778
823 => 0.13303278530571
824 => 0.13928518626459
825 => 0.13971808894134
826 => 0.14597003778046
827 => 0.15190388169701
828 => 0.14817694064888
829 => 0.15169127819216
830 => 0.15549232077335
831 => 0.16282514860941
901 => 0.16035571016622
902 => 0.15846415901977
903 => 0.15667665232628
904 => 0.16039616999673
905 => 0.16518127005901
906 => 0.16621193478131
907 => 0.16788200537566
908 => 0.16612613035222
909 => 0.16824088841467
910 => 0.17570691364688
911 => 0.17368952772471
912 => 0.17082451540425
913 => 0.1767182252804
914 => 0.17885113597336
915 => 0.19382102023056
916 => 0.21272111748035
917 => 0.20489635311421
918 => 0.20003926936858
919 => 0.20118079926037
920 => 0.20808247496732
921 => 0.21029907415616
922 => 0.20427359345334
923 => 0.20640189510215
924 => 0.21812904643711
925 => 0.22442028687625
926 => 0.21587593733358
927 => 0.19230241581916
928 => 0.17056655239157
929 => 0.17633188215126
930 => 0.17567827267552
1001 => 0.18827763379301
1002 => 0.17364141373766
1003 => 0.17388785014671
1004 => 0.18674775270915
1005 => 0.18331695118004
1006 => 0.17775949208673
1007 => 0.17060712799321
1008 => 0.15738532145273
1009 => 0.14567439868247
1010 => 0.16864221509939
1011 => 0.16765180109122
1012 => 0.16621753483627
1013 => 0.16940933918285
1014 => 0.18490783508034
1015 => 0.18455054458617
1016 => 0.18227764475345
1017 => 0.18400161924415
1018 => 0.17745727102322
1019 => 0.17914389857179
1020 => 0.17056310931976
1021 => 0.17444198442709
1022 => 0.1777475682755
1023 => 0.17841121317307
1024 => 0.17990643901385
1025 => 0.16712989791368
1026 => 0.17286618976812
1027 => 0.17623572381474
1028 => 0.16101204640741
1029 => 0.17593480066025
1030 => 0.16690748675837
1031 => 0.16384348083436
1101 => 0.16796876115895
1102 => 0.16636113540449
1103 => 0.16497899318376
1104 => 0.16420773407638
1105 => 0.16723688465618
1106 => 0.16709557116101
1107 => 0.16213929287966
1108 => 0.15567402990539
1109 => 0.15784398437458
1110 => 0.15705561957249
1111 => 0.15419848382864
1112 => 0.15612384834811
1113 => 0.14764551740906
1114 => 0.1330589896937
1115 => 0.14269529669989
1116 => 0.14232430936244
1117 => 0.14213724072396
1118 => 0.14937865911115
1119 => 0.14868256382117
1120 => 0.14741914405367
1121 => 0.15417528013383
1122 => 0.15170919958171
1123 => 0.15930907876167
1124 => 0.16431485071896
1125 => 0.16304522503084
1126 => 0.16775317775166
1127 => 0.15789397574286
1128 => 0.16116880716766
1129 => 0.16184374538559
1130 => 0.15409191046333
1201 => 0.14879645361936
1202 => 0.1484433070205
1203 => 0.13926171461197
1204 => 0.14416644716538
1205 => 0.14848240884076
1206 => 0.14641539813041
1207 => 0.1457610442897
1208 => 0.14910399614985
1209 => 0.14936377213983
1210 => 0.14344085203846
1211 => 0.14467241468202
1212 => 0.14980823563592
1213 => 0.14454300517114
1214 => 0.13431352244859
1215 => 0.13177646929973
1216 => 0.1314379796425
1217 => 0.12455729028658
1218 => 0.13194600732253
1219 => 0.12872063433103
1220 => 0.13890954896527
1221 => 0.13308969557044
1222 => 0.13283881332258
1223 => 0.13245956800852
1224 => 0.12653707444218
1225 => 0.1278337241391
1226 => 0.13214398521702
1227 => 0.13368193492818
1228 => 0.13352151417326
1229 => 0.13212286258628
1230 => 0.13276315812054
1231 => 0.13070054311093
]
'min_raw' => 0.07216860461873
'max_raw' => 0.22442028687625
'avg_raw' => 0.14829444574749
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.072168'
'max' => '$0.22442'
'avg' => '$0.148294'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.041112078465909
'max_diff' => 0.14016692410258
'year' => 2033
]
8 => [
'items' => [
101 => 0.12997219082141
102 => 0.12767331064663
103 => 0.12429459187155
104 => 0.12476442344011
105 => 0.11807029745683
106 => 0.11442298233698
107 => 0.11341345358265
108 => 0.11206346954124
109 => 0.11356593787229
110 => 0.11805133383899
111 => 0.11264099467331
112 => 0.10336534766493
113 => 0.10392282985506
114 => 0.10517532681836
115 => 0.10284130701336
116 => 0.10063235314736
117 => 0.10255285931576
118 => 0.098622645399608
119 => 0.1056502743933
120 => 0.10546019672373
121 => 0.10807966222691
122 => 0.1097176677629
123 => 0.10594259531304
124 => 0.10499317480078
125 => 0.10553400787332
126 => 0.096595241904811
127 => 0.10734917434445
128 => 0.10744217479876
129 => 0.10664584844679
130 => 0.11237198548048
131 => 0.12445592064851
201 => 0.11990945816313
202 => 0.11814893047124
203 => 0.11480216604201
204 => 0.11926153093275
205 => 0.11891912128607
206 => 0.11737061500878
207 => 0.11643407358064
208 => 0.11815967987791
209 => 0.11622025186397
210 => 0.11587187730075
211 => 0.11376110648289
212 => 0.11300765733487
213 => 0.11244983358135
214 => 0.11183572443935
215 => 0.11319029618013
216 => 0.11012065840676
217 => 0.10641897617239
218 => 0.10611122134736
219 => 0.10696095947735
220 => 0.10658501361039
221 => 0.10610942146318
222 => 0.10520138653434
223 => 0.10493199196805
224 => 0.10580739361683
225 => 0.10481911619445
226 => 0.10627737336543
227 => 0.10588080810397
228 => 0.10366562679011
301 => 0.10090469070787
302 => 0.10088011258548
303 => 0.1002852734354
304 => 0.099527656343116
305 => 0.099316904599973
306 => 0.10239111964298
307 => 0.10875465277849
308 => 0.10750533895755
309 => 0.10840809622801
310 => 0.11284876850697
311 => 0.11426032468878
312 => 0.11325843554547
313 => 0.11188698789228
314 => 0.11194732462881
315 => 0.11663397642519
316 => 0.11692627714897
317 => 0.11766482677816
318 => 0.11861407176578
319 => 0.11342009607152
320 => 0.1117026888407
321 => 0.11088888601661
322 => 0.10838268829975
323 => 0.11108540767223
324 => 0.10951064883587
325 => 0.10972313760431
326 => 0.10958475401511
327 => 0.10966032081227
328 => 0.10564831002778
329 => 0.10711007589257
330 => 0.1046796066282
331 => 0.10142548111619
401 => 0.10141457214643
402 => 0.10221101475538
403 => 0.10173725952678
404 => 0.10046239638796
405 => 0.10064348467965
406 => 0.099056960694437
407 => 0.10083611741639
408 => 0.10088713726505
409 => 0.10020206501578
410 => 0.10294310142227
411 => 0.10406610627448
412 => 0.10361517704434
413 => 0.10403446787761
414 => 0.10755725358712
415 => 0.10813162136769
416 => 0.10838671759521
417 => 0.10804492244411
418 => 0.10409885793351
419 => 0.10427388267451
420 => 0.10298966725574
421 => 0.10190464055417
422 => 0.10194803593202
423 => 0.10250588070023
424 => 0.10494202152015
425 => 0.11006873625733
426 => 0.11026329133402
427 => 0.11049909776255
428 => 0.10953995451091
429 => 0.10925066772845
430 => 0.10963231166577
501 => 0.1115576361712
502 => 0.11651009351967
503 => 0.11475956432922
504 => 0.11333635684877
505 => 0.1145848935031
506 => 0.11439269107152
507 => 0.11277030912329
508 => 0.11272477426551
509 => 0.10961090459996
510 => 0.10845977788399
511 => 0.10749781023978
512 => 0.10644736668511
513 => 0.10582462853471
514 => 0.10678143736315
515 => 0.10700027086284
516 => 0.10490819163731
517 => 0.10462304896936
518 => 0.1063314860256
519 => 0.10557966657411
520 => 0.1063529315242
521 => 0.10653233562556
522 => 0.10650344743321
523 => 0.10571846157994
524 => 0.1062187881542
525 => 0.10503536665154
526 => 0.10374857351155
527 => 0.10292767965829
528 => 0.10221134089554
529 => 0.10260880727497
530 => 0.10119191220682
531 => 0.10073861895805
601 => 0.10604928876854
602 => 0.10997233765688
603 => 0.10991529497234
604 => 0.10956806230043
605 => 0.10905214498354
606 => 0.11151989360602
607 => 0.11066017933014
608 => 0.11128569329737
609 => 0.11144491285477
610 => 0.11192682250116
611 => 0.11209906377821
612 => 0.11157843100971
613 => 0.10983112384868
614 => 0.10547700053236
615 => 0.10345014437489
616 => 0.10278124808296
617 => 0.10280556119276
618 => 0.10213489708607
619 => 0.10233243772255
620 => 0.10206620051428
621 => 0.10156201165152
622 => 0.10257767503346
623 => 0.10269472077667
624 => 0.10245765280705
625 => 0.10251349089588
626 => 0.10055066936051
627 => 0.10069989841882
628 => 0.099868972059037
629 => 0.099713183383544
630 => 0.097612673903051
701 => 0.09389131688464
702 => 0.095953309913706
703 => 0.09346271229469
704 => 0.092519485237656
705 => 0.09698457542375
706 => 0.09653640421139
707 => 0.095769329911173
708 => 0.094634667148859
709 => 0.094213809693027
710 => 0.091656813018673
711 => 0.091505732014105
712 => 0.092773048610633
713 => 0.092188225607037
714 => 0.091366912620196
715 => 0.088392200237022
716 => 0.085047638624912
717 => 0.085148589916817
718 => 0.086212432737848
719 => 0.089305699218748
720 => 0.088097106490607
721 => 0.087220258599337
722 => 0.087056051347253
723 => 0.089111448898252
724 => 0.092020267052016
725 => 0.093385019448623
726 => 0.092032591271732
727 => 0.090478994602022
728 => 0.090573554832634
729 => 0.091202621683162
730 => 0.091268727714626
731 => 0.090257495994963
801 => 0.090542151800725
802 => 0.090109733602301
803 => 0.087455983916755
804 => 0.087407986000075
805 => 0.086756713029748
806 => 0.086736992743039
807 => 0.085629014952856
808 => 0.08547400120092
809 => 0.083274044049068
810 => 0.084722062508501
811 => 0.083750807750294
812 => 0.082286897733841
813 => 0.082034519095223
814 => 0.08202693228859
815 => 0.083530040551198
816 => 0.0847044978133
817 => 0.083767703142644
818 => 0.083554413155137
819 => 0.085831792209598
820 => 0.085541974966147
821 => 0.085290995102439
822 => 0.091759814290543
823 => 0.086639239134903
824 => 0.084406376094832
825 => 0.081642784073553
826 => 0.082542623570922
827 => 0.08273223297441
828 => 0.076086292338139
829 => 0.073390035049703
830 => 0.072464781154624
831 => 0.071932284456836
901 => 0.07217494988869
902 => 0.069748002089661
903 => 0.07137895114862
904 => 0.069277419499452
905 => 0.068925090879493
906 => 0.072682889798022
907 => 0.073205765564792
908 => 0.070975015098982
909 => 0.072407518023728
910 => 0.071888072549935
911 => 0.069313444227815
912 => 0.069215112363594
913 => 0.067923254374116
914 => 0.065901746773581
915 => 0.064977863555847
916 => 0.064496697154529
917 => 0.064695235789459
918 => 0.064594848580256
919 => 0.063939754135681
920 => 0.064632397826993
921 => 0.062862979415824
922 => 0.062158382747324
923 => 0.061840132778681
924 => 0.060269672094845
925 => 0.062768973429864
926 => 0.063261367278231
927 => 0.063754731294588
928 => 0.068049128223055
929 => 0.067834592288348
930 => 0.069773892654857
1001 => 0.069698535008759
1002 => 0.069145415129647
1003 => 0.066811893343481
1004 => 0.06774199353642
1005 => 0.064879289712214
1006 => 0.067024222062248
1007 => 0.066045364512209
1008 => 0.066693269339938
1009 => 0.065528278040459
1010 => 0.066173032326902
1011 => 0.063378132126287
1012 => 0.060768293644259
1013 => 0.061818568835361
1014 => 0.062960338081627
1015 => 0.065435984724924
1016 => 0.063961510007818
1017 => 0.064491786872151
1018 => 0.062715448143909
1019 => 0.059050353961474
1020 => 0.059071097996518
1021 => 0.058507303104967
1022 => 0.058020102003266
1023 => 0.064130871166131
1024 => 0.063370900423764
1025 => 0.062159986508314
1026 => 0.06378084290395
1027 => 0.064209423061407
1028 => 0.064221624135977
1029 => 0.065404159121874
1030 => 0.066035278255829
1031 => 0.066146515738616
1101 => 0.068007260089285
1102 => 0.068630957051818
1103 => 0.071199876571593
1104 => 0.065981732206697
1105 => 0.065874267957397
1106 => 0.063803651677398
1107 => 0.062490434097475
1108 => 0.063893568808602
1109 => 0.065136554615673
1110 => 0.063842274711234
1111 => 0.064011280343013
1112 => 0.062273815317857
1113 => 0.062894877309023
1114 => 0.063429819561899
1115 => 0.063134455892313
1116 => 0.062692282183179
1117 => 0.065034643954316
1118 => 0.064902478723399
1119 => 0.067083739855346
1120 => 0.068784188891179
1121 => 0.071831697555016
1122 => 0.068651463394083
1123 => 0.068535563020973
1124 => 0.06966850775913
1125 => 0.068630783603881
1126 => 0.069286589448978
1127 => 0.071726037094652
1128 => 0.071777578779374
1129 => 0.070914189152573
1130 => 0.070861651815318
1201 => 0.071027475237592
1202 => 0.071998708201255
1203 => 0.071659329560777
1204 => 0.072052067115554
1205 => 0.072543191441614
1206 => 0.074574689886597
1207 => 0.075064477284077
1208 => 0.073874547833851
1209 => 0.073981985140131
1210 => 0.073536918861453
1211 => 0.073106990412914
1212 => 0.074073406779222
1213 => 0.075839551683612
1214 => 0.075828564587825
1215 => 0.076238275876692
1216 => 0.076493522615425
1217 => 0.075397816760751
1218 => 0.07468455253958
1219 => 0.074958063428159
1220 => 0.075395413295288
1221 => 0.074816236760703
1222 => 0.071241290888572
1223 => 0.07232570109775
1224 => 0.072145202213993
1225 => 0.071888149854108
1226 => 0.072978532704933
1227 => 0.072873362618964
1228 => 0.069723110232129
1229 => 0.069924779168965
1230 => 0.069735374388126
1231 => 0.070347379983589
]
'min_raw' => 0.058020102003266
'max_raw' => 0.12997219082141
'avg_raw' => 0.09399614641234
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.05802'
'max' => '$0.129972'
'avg' => '$0.093996'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.014148502615464
'max_diff' => -0.094448096054837
'year' => 2034
]
9 => [
'items' => [
101 => 0.068597733293295
102 => 0.069135912831179
103 => 0.06947345399222
104 => 0.069672268329187
105 => 0.070390522042578
106 => 0.070306243259364
107 => 0.07038528315508
108 => 0.071450263800088
109 => 0.076836570445313
110 => 0.077129735231797
111 => 0.075686084603167
112 => 0.076262794554555
113 => 0.075155637560492
114 => 0.075898879467914
115 => 0.076407386704674
116 => 0.074109540282073
117 => 0.073973476729826
118 => 0.072861750105011
119 => 0.073459129021772
120 => 0.072508656212141
121 => 0.072741868993497
122 => 0.072089785725701
123 => 0.073263405779251
124 => 0.074575695361237
125 => 0.074907231533533
126 => 0.074035102599519
127 => 0.073403623775196
128 => 0.07229495498174
129 => 0.074138695893552
130 => 0.074677861923153
131 => 0.074135863883929
201 => 0.07401027109535
202 => 0.073772272987933
203 => 0.074060763518928
204 => 0.074674925509164
205 => 0.074385298056359
206 => 0.074576602091516
207 => 0.073847548381365
208 => 0.075398179484981
209 => 0.077860954857222
210 => 0.077868873082748
211 => 0.077579244068744
212 => 0.077460734116358
213 => 0.077757911060884
214 => 0.077919117362453
215 => 0.078880133108119
216 => 0.079911341291775
217 => 0.08472353993352
218 => 0.083372293811242
219 => 0.087641962725176
220 => 0.091018716488978
221 => 0.092031257295196
222 => 0.091099767397202
223 => 0.087913190774259
224 => 0.087756842122771
225 => 0.092518932935395
226 => 0.091173424163252
227 => 0.091013380176179
228 => 0.089310782552306
301 => 0.090317228618833
302 => 0.090097104100411
303 => 0.089749626779221
304 => 0.091669855764514
305 => 0.095264353004958
306 => 0.094704116901053
307 => 0.094285926638093
308 => 0.092453538639157
309 => 0.093557045493193
310 => 0.093164107838753
311 => 0.094852417366626
312 => 0.093852300202949
313 => 0.091163230610959
314 => 0.091591473806772
315 => 0.091526745709231
316 => 0.092858845369953
317 => 0.09245898211655
318 => 0.091448665991428
319 => 0.095252067404162
320 => 0.095005095672049
321 => 0.095355245122587
322 => 0.095509391739445
323 => 0.097824455155926
324 => 0.098772862563891
325 => 0.098988167649708
326 => 0.099889081334814
327 => 0.098965752096509
328 => 0.10265972737232
329 => 0.1051160053813
330 => 0.10796909868764
331 => 0.11213823484739
401 => 0.11370586861012
402 => 0.11342268960223
403 => 0.11658368105686
404 => 0.12226391243593
405 => 0.11457082676797
406 => 0.12267166465661
407 => 0.12010703290973
408 => 0.11402633717366
409 => 0.11363481205495
410 => 0.11775272980575
411 => 0.12688587504213
412 => 0.12459812574769
413 => 0.12688961698041
414 => 0.12421647073772
415 => 0.12408372649572
416 => 0.12675978823398
417 => 0.13301255234993
418 => 0.1300420984998
419 => 0.12578322452047
420 => 0.12892791079139
421 => 0.12620369251654
422 => 0.12006526628263
423 => 0.12459637634892
424 => 0.12156655208618
425 => 0.12245081588036
426 => 0.1288190558283
427 => 0.12805281234949
428 => 0.12904440236331
429 => 0.12729427194336
430 => 0.12565937416088
501 => 0.12260771604079
502 => 0.12170427051636
503 => 0.12195395035675
504 => 0.12170414678743
505 => 0.11999677211543
506 => 0.11962806471757
507 => 0.11901353623436
508 => 0.11920400430762
509 => 0.11804851097254
510 => 0.12022916563293
511 => 0.12063391435377
512 => 0.12222081296409
513 => 0.12238557004215
514 => 0.12680506008383
515 => 0.12437087923539
516 => 0.12600393790559
517 => 0.12585786176718
518 => 0.11415812428854
519 => 0.11577024488544
520 => 0.1182781986229
521 => 0.11714836886363
522 => 0.11555105392346
523 => 0.11426113646666
524 => 0.11230677961879
525 => 0.11505749935207
526 => 0.11867440329491
527 => 0.12247730069494
528 => 0.12704623274537
529 => 0.12602650029995
530 => 0.12239188768834
531 => 0.12255493375501
601 => 0.12356282038291
602 => 0.12225751562363
603 => 0.12187255576754
604 => 0.12350993281014
605 => 0.12352120852595
606 => 0.12201929764905
607 => 0.12035019855616
608 => 0.12034320497002
609 => 0.12004620490802
610 => 0.12426930638896
611 => 0.12659158519975
612 => 0.12685783072287
613 => 0.12657366475472
614 => 0.12668302895772
615 => 0.12533174608563
616 => 0.12842037802072
617 => 0.1312548121184
618 => 0.13049512323137
619 => 0.12935624159357
620 => 0.1284490675131
621 => 0.13028142184841
622 => 0.13019982999426
623 => 0.13123005580926
624 => 0.13118331881542
625 => 0.13083689262259
626 => 0.13049513560334
627 => 0.13185016355419
628 => 0.13145993726543
629 => 0.13106910484746
630 => 0.13028523059976
701 => 0.1303917721288
702 => 0.12925308713497
703 => 0.12872627935415
704 => 0.12080435431918
705 => 0.11868735709347
706 => 0.11935340751613
707 => 0.11957268860926
708 => 0.11865136870362
709 => 0.11997230478064
710 => 0.11976643829226
711 => 0.1205673443707
712 => 0.12006697302419
713 => 0.12008750843878
714 => 0.12155899387845
715 => 0.12198617236173
716 => 0.12176890593738
717 => 0.12192107189354
718 => 0.12542767212796
719 => 0.12492914570939
720 => 0.12466431348552
721 => 0.12473767382143
722 => 0.12563368536368
723 => 0.12588451967509
724 => 0.12482171707182
725 => 0.12532294092351
726 => 0.12745708846924
727 => 0.12820391932796
728 => 0.13058744492983
729 => 0.12957488089036
730 => 0.13143348600755
731 => 0.13714620449259
801 => 0.14170991930849
802 => 0.13751293856029
803 => 0.14589361963412
804 => 0.15241918198739
805 => 0.15216872003538
806 => 0.15103083730011
807 => 0.14360165805196
808 => 0.13676521654499
809 => 0.14248419015621
810 => 0.14249876899606
811 => 0.14200750409095
812 => 0.13895629995722
813 => 0.14190132880097
814 => 0.14213509449581
815 => 0.14200424787001
816 => 0.13966489681461
817 => 0.13609314013735
818 => 0.13679105284251
819 => 0.13793424809059
820 => 0.13576994099046
821 => 0.13507831373197
822 => 0.13636418039297
823 => 0.14050751069564
824 => 0.1397242381026
825 => 0.13970378368974
826 => 0.14305495600205
827 => 0.14065623985469
828 => 0.13679985575675
829 => 0.13582606791256
830 => 0.13236977708779
831 => 0.13475704947134
901 => 0.13484296315445
902 => 0.13353547846731
903 => 0.13690595093315
904 => 0.13687489143602
905 => 0.14007465341371
906 => 0.14619139653935
907 => 0.14438237461045
908 => 0.14227867892816
909 => 0.14250740897798
910 => 0.14501601307062
911 => 0.14349925377035
912 => 0.14404469098995
913 => 0.14501518748606
914 => 0.14560071211824
915 => 0.14242316099412
916 => 0.14168232182725
917 => 0.14016682489105
918 => 0.13977146002848
919 => 0.14100580066114
920 => 0.14068059551433
921 => 0.13483574244206
922 => 0.13422492277555
923 => 0.13424365574267
924 => 0.13270772064834
925 => 0.13036505096284
926 => 0.13652144702281
927 => 0.13602700226049
928 => 0.13548117350987
929 => 0.13554803441736
930 => 0.13822031728738
1001 => 0.13667025826925
1002 => 0.14079134421862
1003 => 0.13994417283861
1004 => 0.13907527470938
1005 => 0.13895516652063
1006 => 0.13862071487178
1007 => 0.1374737557239
1008 => 0.13608873363127
1009 => 0.13517422207715
1010 => 0.12469107458383
1011 => 0.12663668578093
1012 => 0.12887493411515
1013 => 0.1296475684709
1014 => 0.12832592394071
1015 => 0.13752594230547
1016 => 0.13920687431429
1017 => 0.13411522161508
1018 => 0.13316278128587
1019 => 0.13758838413489
1020 => 0.13491920460899
1021 => 0.13612113598606
1022 => 0.13352321777013
1023 => 0.1388019870168
1024 => 0.1387617716395
1025 => 0.13670821117614
1026 => 0.1384438664176
1027 => 0.13814225360701
1028 => 0.13582378890157
1029 => 0.13887548648334
1030 => 0.13887700008726
1031 => 0.13690049278953
1101 => 0.13459236497886
1102 => 0.13417972624186
1103 => 0.13386885838374
1104 => 0.13604468154951
1105 => 0.13799551779632
1106 => 0.14162554039831
1107 => 0.14253821432766
1108 => 0.14610044143406
1109 => 0.14397930863389
1110 => 0.14491957933094
1111 => 0.145940376182
1112 => 0.14642978373095
1113 => 0.14563232039298
1114 => 0.15116592536039
1115 => 0.15163313116492
1116 => 0.15178978122986
1117 => 0.14992388076933
1118 => 0.15158123709772
1119 => 0.15080581495754
1120 => 0.15282324794782
1121 => 0.15313960720057
1122 => 0.1528716621683
1123 => 0.15297207958851
1124 => 0.14825012394364
1125 => 0.14800526563315
1126 => 0.1446666051953
1127 => 0.14602713400186
1128 => 0.14348369060985
1129 => 0.14429024270983
1130 => 0.14464576319038
1201 => 0.14446005946695
1202 => 0.14610405625926
1203 => 0.14470632313944
1204 => 0.14101747562764
1205 => 0.13732762309179
1206 => 0.13728129999889
1207 => 0.13630982695751
1208 => 0.13560762988276
1209 => 0.13574289795114
1210 => 0.13621960026739
1211 => 0.13557992307754
1212 => 0.13571643063845
1213 => 0.13798336569469
1214 => 0.13843798335318
1215 => 0.13689301491905
1216 => 0.13068974371814
1217 => 0.12916744540571
1218 => 0.1302616432442
1219 => 0.12973868715277
1220 => 0.10470924622165
1221 => 0.11058954210147
1222 => 0.10709566996566
1223 => 0.10870580699117
1224 => 0.10513946827431
1225 => 0.10684151203782
1226 => 0.10652720670339
1227 => 0.11598254846754
1228 => 0.11583491631129
1229 => 0.11590558001196
1230 => 0.11253261746536
1231 => 0.11790583838801
]
'min_raw' => 0.068597733293295
'max_raw' => 0.15313960720057
'avg_raw' => 0.11086867024693
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.068597'
'max' => '$0.153139'
'avg' => '$0.110868'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.01057763129003
'max_diff' => 0.023167416379159
'year' => 2035
]
10 => [
'items' => [
101 => 0.12055288022928
102 => 0.1200629832332
103 => 0.1201862797527
104 => 0.11806763704682
105 => 0.11592609310448
106 => 0.11355079129117
107 => 0.11796380846412
108 => 0.1174731562872
109 => 0.11859853584997
110 => 0.12146069293561
111 => 0.12188215643874
112 => 0.12244860766102
113 => 0.12224557522058
114 => 0.12708263166033
115 => 0.12649683220955
116 => 0.12790844033993
117 => 0.12500465531678
118 => 0.12171874693328
119 => 0.12234329069254
120 => 0.12228314210626
121 => 0.12151738156757
122 => 0.12082608719271
123 => 0.11967527682955
124 => 0.12331661110648
125 => 0.1231687795847
126 => 0.12556200008707
127 => 0.12513897511677
128 => 0.12231391083335
129 => 0.12241480855691
130 => 0.12309339423763
131 => 0.12544198702655
201 => 0.12613920927069
202 => 0.1258162281477
203 => 0.126580700509
204 => 0.12718490829332
205 => 0.12665657970416
206 => 0.13413659838022
207 => 0.13103037312084
208 => 0.13254432569928
209 => 0.13290539446852
210 => 0.13198052440858
211 => 0.13218109560747
212 => 0.1324849063214
213 => 0.13432958548415
214 => 0.13917055736943
215 => 0.14131459086382
216 => 0.14776502141641
217 => 0.14113655872849
218 => 0.1407432531839
219 => 0.14190517051076
220 => 0.14569225609255
221 => 0.14876133325373
222 => 0.14977952320741
223 => 0.14991409381827
224 => 0.15182428585935
225 => 0.15291917231432
226 => 0.15159233830252
227 => 0.15046798540283
228 => 0.14644069287597
229 => 0.14690686295191
301 => 0.1501183124965
302 => 0.15465467413167
303 => 0.15854734434262
304 => 0.157184266908
305 => 0.16758358555148
306 => 0.16861463551757
307 => 0.16847217775009
308 => 0.17082106301366
309 => 0.16615900410764
310 => 0.16416588360218
311 => 0.15071108326169
312 => 0.1544913333432
313 => 0.15998614884297
314 => 0.15925888940707
315 => 0.1552684075143
316 => 0.15854431720427
317 => 0.1574611990136
318 => 0.156606898758
319 => 0.16052061384315
320 => 0.15621732334047
321 => 0.15994322022836
322 => 0.15516471893018
323 => 0.1571904933309
324 => 0.15604056580537
325 => 0.15678470984421
326 => 0.15243445899853
327 => 0.15478174875849
328 => 0.15233680402734
329 => 0.15233564480519
330 => 0.15228167251474
331 => 0.15515813914839
401 => 0.15525194062205
402 => 0.15312622743368
403 => 0.15281987895336
404 => 0.15395260984886
405 => 0.15262647863292
406 => 0.15324696708228
407 => 0.15264527259595
408 => 0.15250981849345
409 => 0.15143049715912
410 => 0.15096549585173
411 => 0.15114783484596
412 => 0.15052541785645
413 => 0.15015038910646
414 => 0.15220706985703
415 => 0.15110826829827
416 => 0.15203866275912
417 => 0.15097836084584
418 => 0.14730289246284
419 => 0.1451890917284
420 => 0.13824647266902
421 => 0.14021539082197
422 => 0.14152078559437
423 => 0.14108935262988
424 => 0.14201623758
425 => 0.14207314078809
426 => 0.14177180104233
427 => 0.14142288822075
428 => 0.1412530567553
429 => 0.14251884135848
430 => 0.14325367192498
501 => 0.14165179942371
502 => 0.14127650310924
503 => 0.14289608464983
504 => 0.14388402845398
505 => 0.15117845042621
506 => 0.15063805608583
507 => 0.15199433983314
508 => 0.15184164309707
509 => 0.15326324453719
510 => 0.1555869620782
511 => 0.15086219459569
512 => 0.15168225086048
513 => 0.15148119200222
514 => 0.15367629989628
515 => 0.15368315278352
516 => 0.15236707594726
517 => 0.1530805425511
518 => 0.15268230506577
519 => 0.15340197402679
520 => 0.15063083878996
521 => 0.15400578238286
522 => 0.15591915792347
523 => 0.15594572514471
524 => 0.15685264996547
525 => 0.15777413810891
526 => 0.15954285435554
527 => 0.15772480957277
528 => 0.15445432399165
529 => 0.154690442487
530 => 0.15277295798741
531 => 0.15280519124827
601 => 0.15263312757564
602 => 0.15314950360957
603 => 0.15074415429106
604 => 0.15130868496837
605 => 0.15051833871425
606 => 0.15168053280208
607 => 0.15043020408114
608 => 0.15148109504555
609 => 0.1519346247482
610 => 0.15360815911479
611 => 0.15018302169449
612 => 0.14319893463307
613 => 0.14466707440725
614 => 0.14249558036135
615 => 0.14269656040276
616 => 0.14310257207214
617 => 0.14178655541292
618 => 0.14203760991905
619 => 0.14202864048545
620 => 0.14195134675234
621 => 0.1416089999923
622 => 0.141112529459
623 => 0.14309031525809
624 => 0.14342637960504
625 => 0.14417340901875
626 => 0.14639606183905
627 => 0.14617396640854
628 => 0.14653621327035
629 => 0.14574543040494
630 => 0.14273324255186
701 => 0.14289681884436
702 => 0.14085701985581
703 => 0.14412124677252
704 => 0.14334823475295
705 => 0.1428498688752
706 => 0.14271388512813
707 => 0.14494204747486
708 => 0.14560874857116
709 => 0.14519330518859
710 => 0.14434121869052
711 => 0.14597747666358
712 => 0.14641527026899
713 => 0.14651327611204
714 => 0.14941241151896
715 => 0.14667530557591
716 => 0.14733415418089
717 => 0.15247430292037
718 => 0.1478128973057
719 => 0.15028214782154
720 => 0.15016129085815
721 => 0.15142447586717
722 => 0.15005767281781
723 => 0.1500746159797
724 => 0.15119623869215
725 => 0.14962112187824
726 => 0.1492311008042
727 => 0.14869228948379
728 => 0.14986876428988
729 => 0.15057400772875
730 => 0.15625775190181
731 => 0.15992970984783
801 => 0.15977030046929
802 => 0.16122700378726
803 => 0.16057074560064
804 => 0.15845151480388
805 => 0.16206878336129
806 => 0.16092412823678
807 => 0.16101849221449
808 => 0.16101497998253
809 => 0.16177607557284
810 => 0.16123676959371
811 => 0.16017374215024
812 => 0.16087942937663
813 => 0.16297506815121
814 => 0.16947999520955
815 => 0.17312023857021
816 => 0.16926084798841
817 => 0.17192300393244
818 => 0.17032665898917
819 => 0.17003655562584
820 => 0.17170858629046
821 => 0.17338354362343
822 => 0.17327685608236
823 => 0.17206092306864
824 => 0.17137407336234
825 => 0.17657512944994
826 => 0.18040717897759
827 => 0.18014585889019
828 => 0.18129924077013
829 => 0.1846856056424
830 => 0.18499521240701
831 => 0.1849562090709
901 => 0.18418881640068
902 => 0.18752313239247
903 => 0.19030467745453
904 => 0.18401118716963
905 => 0.18640766588228
906 => 0.18748352238611
907 => 0.18906319892598
908 => 0.19172837803326
909 => 0.19462346944761
910 => 0.19503286711666
911 => 0.19474237987899
912 => 0.19283298926699
913 => 0.1960008328382
914 => 0.19785648130714
915 => 0.19896147750463
916 => 0.20176356400764
917 => 0.18749016650962
918 => 0.17738674632663
919 => 0.1758089513699
920 => 0.17901745945813
921 => 0.17986351745362
922 => 0.17952247253651
923 => 0.16815015455778
924 => 0.1757490784693
925 => 0.18392488166242
926 => 0.18423894756007
927 => 0.18833192558653
928 => 0.18966476700879
929 => 0.19296015079898
930 => 0.19275402364567
1001 => 0.19355639715757
1002 => 0.19337194538235
1003 => 0.19947594992876
1004 => 0.2062095733969
1005 => 0.20597640942781
1006 => 0.20500837138565
1007 => 0.20644607295327
1008 => 0.21339589399133
1009 => 0.21275606583876
1010 => 0.21337760438855
1011 => 0.22157183506717
1012 => 0.2322255005651
1013 => 0.22727580333079
1014 => 0.23801522209224
1015 => 0.24477511693045
1016 => 0.25646565606696
1017 => 0.25500194298995
1018 => 0.25955298408666
1019 => 0.25238159109597
1020 => 0.23591462321169
1021 => 0.23330866251099
1022 => 0.23852586182724
1023 => 0.25135183725938
1024 => 0.23812192621711
1025 => 0.24079831999029
1026 => 0.24002751840356
1027 => 0.2399864456627
1028 => 0.24155402512644
1029 => 0.23928016935483
1030 => 0.23001607188245
1031 => 0.23426175316038
1101 => 0.23262229172461
1102 => 0.23444139641754
1103 => 0.24425835418944
1104 => 0.23991804315144
1105 => 0.23534587805114
1106 => 0.24108038773157
1107 => 0.24838238914608
1108 => 0.24792544302052
1109 => 0.24703877654827
1110 => 0.25203686902801
1111 => 0.26029225350086
1112 => 0.26252365075105
1113 => 0.26417082258223
1114 => 0.26439793974855
1115 => 0.26673738771422
1116 => 0.25415758638603
1117 => 0.27412205416608
1118 => 0.2775693662444
1119 => 0.27692141445012
1120 => 0.28075295674011
1121 => 0.27962561980155
1122 => 0.27799228545132
1123 => 0.28406609497336
1124 => 0.27710296248749
1125 => 0.2672196725578
1126 => 0.26179750423307
1127 => 0.26893785287692
1128 => 0.2732982146299
1129 => 0.27618013637752
1130 => 0.27705220415705
1201 => 0.25513412055304
1202 => 0.24332148912312
1203 => 0.2508932504376
1204 => 0.26013132181632
1205 => 0.25410626843308
1206 => 0.25434243911877
1207 => 0.24575229635044
1208 => 0.26089135884287
1209 => 0.25868572477728
1210 => 0.27012855821125
1211 => 0.26739763417776
1212 => 0.27672882063493
1213 => 0.27427160651865
1214 => 0.28447136493436
1215 => 0.28854032471382
1216 => 0.29537274146656
1217 => 0.30039869504281
1218 => 0.30335003111396
1219 => 0.30317284396643
1220 => 0.31486750783011
1221 => 0.30797157313013
1222 => 0.29930865389994
1223 => 0.29915196902223
1224 => 0.30363861764606
1225 => 0.31304140230967
1226 => 0.31547940756799
1227 => 0.3168419199086
1228 => 0.31475518482956
1229 => 0.30727014194883
1230 => 0.30403813838296
1231 => 0.30679189906124
]
'min_raw' => 0.11355079129117
'max_raw' => 0.3168419199086
'avg_raw' => 0.21519635559989
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.11355'
'max' => '$0.316841'
'avg' => '$0.215196'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.044953057997879
'max_diff' => 0.16370231270802
'year' => 2036
]
11 => [
'items' => [
101 => 0.30342428638505
102 => 0.30923773064938
103 => 0.31722083130899
104 => 0.31557235259138
105 => 0.3210829697906
106 => 0.32678587885796
107 => 0.33494129495796
108 => 0.33707342272068
109 => 0.3405977488349
110 => 0.34422543808726
111 => 0.34539055410615
112 => 0.34761512210048
113 => 0.34760339752907
114 => 0.35430728291068
115 => 0.36170187608864
116 => 0.36449316382809
117 => 0.37091157607246
118 => 0.35992027003197
119 => 0.36825730192271
120 => 0.3757775133776
121 => 0.36681160725915
122 => 0.37916902005523
123 => 0.3796488303916
124 => 0.38689339681376
125 => 0.37954964085391
126 => 0.37518894200706
127 => 0.38777811618467
128 => 0.39386962101395
129 => 0.39203481018506
130 => 0.37807180918143
131 => 0.36994474369604
201 => 0.34867464572689
202 => 0.37386999557119
203 => 0.38614191552192
204 => 0.37804002787344
205 => 0.38212614874467
206 => 0.40441869928899
207 => 0.41290625920051
208 => 0.41114090607144
209 => 0.41143922169007
210 => 0.41601895495821
211 => 0.43632801437435
212 => 0.42415835521189
213 => 0.43346160365316
214 => 0.43839601308105
215 => 0.4429793675553
216 => 0.4317240975506
217 => 0.41708115664723
218 => 0.41244312259429
219 => 0.37723445481755
220 => 0.37540169075628
221 => 0.37437290475025
222 => 0.36788655450692
223 => 0.36279005997652
224 => 0.35873713830523
225 => 0.34810106153492
226 => 0.35169042521959
227 => 0.33473873876946
228 => 0.34558382702937
301 => 0.31852852614218
302 => 0.34106098467364
303 => 0.32879759192014
304 => 0.33703213033122
305 => 0.33700340080245
306 => 0.32184100482486
307 => 0.31309565125612
308 => 0.31866853092437
309 => 0.32464310030448
310 => 0.32561245408554
311 => 0.33335863923907
312 => 0.33552043301172
313 => 0.32897009695607
314 => 0.31796786516744
315 => 0.32052343267775
316 => 0.31304386276209
317 => 0.29993620418239
318 => 0.30935035341209
319 => 0.31256475787004
320 => 0.31398442199925
321 => 0.30109454521088
322 => 0.29704426607113
323 => 0.29488793144226
324 => 0.3163039439382
325 => 0.31747716144665
326 => 0.31147481479722
327 => 0.33860599081851
328 => 0.33246537009147
329 => 0.33932594793217
330 => 0.32029154171238
331 => 0.32101868166321
401 => 0.31200748871886
402 => 0.31705315463957
403 => 0.31348704059622
404 => 0.31664551469541
405 => 0.3185386910476
406 => 0.32754840534385
407 => 0.3411638611384
408 => 0.32620265447548
409 => 0.31968384248402
410 => 0.32372807678033
411 => 0.33449840565437
412 => 0.35081600522154
413 => 0.34115565785548
414 => 0.3454427559732
415 => 0.3463792961922
416 => 0.33925611368997
417 => 0.35107864712079
418 => 0.35741443883246
419 => 0.36391365012127
420 => 0.36955673317958
421 => 0.3613177222118
422 => 0.37013464496316
423 => 0.36302976162195
424 => 0.35665594677554
425 => 0.35666561322167
426 => 0.35266722606194
427 => 0.34491984711077
428 => 0.34349111156606
429 => 0.35092357429907
430 => 0.35688370555411
501 => 0.35737461051138
502 => 0.36067444541676
503 => 0.36262725372277
504 => 0.38176742983579
505 => 0.38946576700429
506 => 0.39887914797187
507 => 0.40254619036782
508 => 0.41358267327218
509 => 0.40466981698759
510 => 0.40274146446593
511 => 0.375970566946
512 => 0.38035429991516
513 => 0.38737307936609
514 => 0.37608630403397
515 => 0.38324516512464
516 => 0.38465847594934
517 => 0.37570278372713
518 => 0.38048640589563
519 => 0.36778252366121
520 => 0.34144077105541
521 => 0.35110797302163
522 => 0.35822628761377
523 => 0.34806757500893
524 => 0.36627667415664
525 => 0.35563929434665
526 => 0.35226775563117
527 => 0.33911418106171
528 => 0.34532216193098
529 => 0.35371854494639
530 => 0.34853055642716
531 => 0.35929641158495
601 => 0.37454373363708
602 => 0.38540988332515
603 => 0.38624405137268
604 => 0.37925784509874
605 => 0.3904532852381
606 => 0.39053483179718
607 => 0.37790632958526
608 => 0.37017144229625
609 => 0.36841405962985
610 => 0.37280434608569
611 => 0.37813496433468
612 => 0.38653986358628
613 => 0.39161876817567
614 => 0.40486185770193
615 => 0.40844505801861
616 => 0.41238190880818
617 => 0.41764275554286
618 => 0.42395975090127
619 => 0.41013852468382
620 => 0.41068766776743
621 => 0.39781753328164
622 => 0.3840639488196
623 => 0.39450120501778
624 => 0.40814652908691
625 => 0.40501627666871
626 => 0.4046640593264
627 => 0.40525639119921
628 => 0.40289628310038
629 => 0.39222160163903
630 => 0.38686084343618
701 => 0.39377758919313
702 => 0.39745353173401
703 => 0.40315459803904
704 => 0.40245182128204
705 => 0.41713715583397
706 => 0.42284343277938
707 => 0.42138352295139
708 => 0.42165218149443
709 => 0.43198312333679
710 => 0.44347325538574
711 => 0.45423528030604
712 => 0.46518287429469
713 => 0.4519851224495
714 => 0.44528411798669
715 => 0.45219784410881
716 => 0.44852932371067
717 => 0.46960973007222
718 => 0.47106929167119
719 => 0.49214817367942
720 => 0.51215454273182
721 => 0.49958890078134
722 => 0.5114377351717
723 => 0.52425321561451
724 => 0.54897635662546
725 => 0.54065047250356
726 => 0.53427297574942
727 => 0.5282462721326
728 => 0.54078688564695
729 => 0.55692018459196
730 => 0.5603951426619
731 => 0.56602590227135
801 => 0.56010584703854
802 => 0.56723590149377
803 => 0.59240812682542
804 => 0.58560636933943
805 => 0.57594678027224
806 => 0.59581783460536
807 => 0.60300909192174
808 => 0.65348110185884
809 => 0.71720409929916
810 => 0.69082235993111
811 => 0.67444636297195
812 => 0.67829511070119
813 => 0.7015645922068
814 => 0.70903801112998
815 => 0.68872268225479
816 => 0.69589839985704
817 => 0.7354373093464
818 => 0.75664866572735
819 => 0.72784079469679
820 => 0.64836102106021
821 => 0.57507703996459
822 => 0.59451525177183
823 => 0.59231156179083
824 => 0.63479118745774
825 => 0.58544414967288
826 => 0.58627502723164
827 => 0.62963308657064
828 => 0.61806589968431
829 => 0.59932853834183
830 => 0.5752138434384
831 => 0.53063559957012
901 => 0.49115140581968
902 => 0.56858900243104
903 => 0.56524975245403
904 => 0.56041402363819
905 => 0.57117541483733
906 => 0.62342967582615
907 => 0.62222504597982
908 => 0.61456180550502
909 => 0.62037430586445
910 => 0.59830957892579
911 => 0.60399616146238
912 => 0.57506543140757
913 => 0.58814332964636
914 => 0.59928833637976
915 => 0.60152586148614
916 => 0.60656711980167
917 => 0.56349011945283
918 => 0.58283042793518
919 => 0.59419104722671
920 => 0.54286335596468
921 => 0.59317646380157
922 => 0.56274024471444
923 => 0.55240973481959
924 => 0.56631840545181
925 => 0.56089818297981
926 => 0.55623819398453
927 => 0.55363784005638
928 => 0.56385083272472
929 => 0.56337438440958
930 => 0.54666394614772
1001 => 0.52486586063972
1002 => 0.53218201363397
1003 => 0.52952398666186
1004 => 0.51989095402262
1005 => 0.52638245492467
1006 => 0.49779717022547
1007 => 0.44861767363432
1008 => 0.48110715549116
1009 => 0.47985634578142
1010 => 0.47922563080607
1011 => 0.50364057847816
1012 => 0.50129364460817
1013 => 0.49703393665289
1014 => 0.51981272114552
1015 => 0.51149815838782
1016 => 0.53712168164968
1017 => 0.55399899129551
1018 => 0.54971835964556
1019 => 0.56559155094258
1020 => 0.5323505630224
1021 => 0.54339188581253
1022 => 0.54566748713696
1023 => 0.51953163448074
1024 => 0.50167763201432
1025 => 0.50048697360034
1026 => 0.46953059375667
1027 => 0.48606724199799
1028 => 0.50061880811735
1029 => 0.49364973719333
1030 => 0.49144353753385
1031 => 0.50271453312778
1101 => 0.50359038601498
1102 => 0.48362084736814
1103 => 0.48777314680587
1104 => 0.50508892572351
1105 => 0.48733683360485
1106 => 0.45284741840609
1107 => 0.44429356658332
1108 => 0.44315232507139
1109 => 0.41995360051351
1110 => 0.44486517586395
1111 => 0.43399060563477
1112 => 0.46834324269139
1113 => 0.44872120064154
1114 => 0.44787533362685
1115 => 0.44659668157243
1116 => 0.42662858101821
1117 => 0.4310003260006
1118 => 0.44553267215759
1119 => 0.450717976985
1120 => 0.45017710720956
1121 => 0.44546145573333
1122 => 0.4476202568311
1123 => 0.44066600631901
1124 => 0.43821031572298
1125 => 0.43045948071101
1126 => 0.41906789446622
1127 => 0.42065196440222
1128 => 0.39808225128062
1129 => 0.38578507370664
1130 => 0.38238137702835
1201 => 0.37782981157988
1202 => 0.38289548845701
1203 => 0.39801831411908
1204 => 0.37977697788419
1205 => 0.34850348639042
1206 => 0.35038307651663
1207 => 0.35460595747491
1208 => 0.34673664674631
1209 => 0.33928900456287
1210 => 0.34576412519506
1211 => 0.33251313457799
1212 => 0.35620727638363
1213 => 0.35556641624985
1214 => 0.36439812707909
1215 => 0.36992077710556
1216 => 0.35719285677372
1217 => 0.35399181923022
1218 => 0.35581527569404
1219 => 0.3256776021465
1220 => 0.36193523618234
1221 => 0.36224879370711
1222 => 0.35956392381371
1223 => 0.37886999460894
1224 => 0.41961182570135
1225 => 0.40428311000802
1226 => 0.39834736797868
1227 => 0.38706351804191
1228 => 0.40209857811395
1229 => 0.40094412008389
1230 => 0.39572322305676
1231 => 0.39256560824456
]
'min_raw' => 0.29488793144226
'max_raw' => 0.75664866572735
'avg_raw' => 0.52576829858481
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.294887'
'max' => '$0.756648'
'avg' => '$0.525768'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.18133714015109
'max_diff' => 0.43980674581876
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0092561952070809
]
1 => [
'year' => 2028
'avg' => 0.015886318068019
]
2 => [
'year' => 2029
'avg' => 0.043398557731574
]
3 => [
'year' => 2030
'avg' => 0.033481922658838
]
4 => [
'year' => 2031
'avg' => 0.032883397419974
]
5 => [
'year' => 2032
'avg' => 0.057654944463245
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0092561952070809
'min' => '$0.009256'
'max_raw' => 0.057654944463245
'max' => '$0.057654'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.057654944463245
]
1 => [
'year' => 2033
'avg' => 0.14829444574749
]
2 => [
'year' => 2034
'avg' => 0.09399614641234
]
3 => [
'year' => 2035
'avg' => 0.11086867024693
]
4 => [
'year' => 2036
'avg' => 0.21519635559989
]
5 => [
'year' => 2037
'avg' => 0.52576829858481
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.057654944463245
'min' => '$0.057654'
'max_raw' => 0.52576829858481
'max' => '$0.525768'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.52576829858481
]
]
]
]
'prediction_2025_max_price' => '$0.015826'
'last_price' => 0.0153457
'sma_50day_nextmonth' => '$0.014072'
'sma_200day_nextmonth' => '$0.0201081'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'augmenter'
'sma_200day_date_nextmonth' => '4 févr. 2026'
'sma_50day_date_nextmonth' => '4 févr. 2026'
'daily_sma3' => '$0.014955'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.014665'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.014372'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.013998'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.01491'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.016998'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.022359'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.0150042'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.014782'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.01449'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.0144025'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.0152038'
'daily_ema50_action' => 'BUY'
'daily_ema100' => '$0.017318'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.0208025'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.01922'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.024222'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.029416'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.031152'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.0149031'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.014953'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.01592'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.018698'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.023388'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.027552'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.033369'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '61.40'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 119.08
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.014470'
'vwma_10_action' => 'BUY'
'hma_9' => '0.015085'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 219.37
'cci_20_action' => 'SELL'
'adx_14' => 17.65
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.000213'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 71.76
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '-0.001127'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 14
'buy_signals' => 21
'sell_pct' => 40
'buy_pct' => 60
'overall_action' => 'bullish'
'overall_action_label' => 'Haussier'
'overall_action_dir' => 1
'last_updated' => 1767685507
'last_updated_date' => '6 janvier 2026'
]
Prévision du prix de Status pour 2026
La prévision du prix de Status pour 2026 suggère que le prix moyen pourrait varier entre $0.0053019 à la baisse et $0.015826 à la hausse. Sur le marché des cryptomonnaies, comparé au prix moyen d'aujourd'hui, Status pourrait potentiellement gagner 3.13% d'ici 2026 si SNT atteint l'objectif de prix prévu.
Prévision du prix de Status de 2027 à 2032
La prévision du prix de SNT pour 2027-2032 se situe actuellement dans une fourchette de prix comprise entre $0.009256 à la baisse et $0.057654 à la hausse. Compte tenu de la volatilité des prix sur le marché, si Status atteint l'objectif de prix le plus élevé, il pourrait gagner 275.71% d'ici 2032 par rapport au prix actuel.
| Prévision du Prix de Status | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2027 | $0.005104 | $0.009256 | $0.0134083 |
| 2028 | $0.009211 | $0.015886 | $0.022561 |
| 2029 | $0.020234 | $0.043398 | $0.066562 |
| 2030 | $0.0172086 | $0.033481 | $0.049755 |
| 2031 | $0.020345 | $0.032883 | $0.04542 |
| 2032 | $0.031056 | $0.057654 | $0.084253 |
Prévision du prix de Status de 2032 à 2037
La prévision du prix de Status pour 2032-2037 est actuellement estimée entre $0.057654 à la baisse et $0.525768 à la hausse. Par rapport au prix actuel, Status pourrait potentiellement gagner 3326.16% d'ici 2037 s'il atteint l'objectif de prix le plus élevé. Veuillez noter que ces informations sont à titre général seulement et ne doivent pas être considérées comme un conseil en investissement à long terme.
| Prévision du Prix de Status | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2032 | $0.031056 | $0.057654 | $0.084253 |
| 2033 | $0.072168 | $0.148294 | $0.22442 |
| 2034 | $0.05802 | $0.093996 | $0.129972 |
| 2035 | $0.068597 | $0.110868 | $0.153139 |
| 2036 | $0.11355 | $0.215196 | $0.316841 |
| 2037 | $0.294887 | $0.525768 | $0.756648 |
Status Histogramme des prix potentiels
Prévision du prix de Status basée sur l'analyse technique
Au 6 janvier 2026, le sentiment global de prévision du prix pour Status est Haussier, avec 21 indicateurs techniques montrant des signaux haussiers et 14 indiquant des signaux baissiers. La prévision du prix de SNT a été mise à jour pour la dernière fois le 6 janvier 2026.
Moyennes Mobiles Simples sur 50 et 200 jours de Status et Indice de Force Relative sur 14 jours - RSI (14)
Selon nos indicateurs techniques, le SMA sur 200 jours de Status devrait augmenter au cours du prochain mois, atteignant $0.0201081 d'ici le 4 févr. 2026. Le SMA à court terme sur 50 jours pour Status devrait atteindre $0.014072 d'ici le 4 févr. 2026.
Le Relative Strength Index (RSI), un oscillateur de momentum, est un outil couramment utilisé pour identifier si une cryptomonnaie est survendue (en dessous de 30) ou surachetée (au-dessus de 70). Actuellement, le RSI est à 61.40, ce qui suggère que le marché de SNT est dans un état NEUTRAL.
Moyennes Mobiles et Oscillateurs Populaires de SNT pour le Samedi 19 Octobre 2024
Les moyennes mobiles (MA) sont des indicateurs largement utilisés sur les marchés financiers, conçus pour lisser les mouvements de prix sur une période donnée. En tant qu'indicateurs retardés, ils sont basés sur des données historiques de prix. Le tableau ci-dessous met en évidence deux types : la moyenne mobile simple (SMA) et la moyenne mobile exponentielle (EMA).
Moyenne Mobile Simple Quotidienne (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 3 | $0.014955 | BUY |
| SMA 5 | $0.014665 | BUY |
| SMA 10 | $0.014372 | BUY |
| SMA 21 | $0.013998 | BUY |
| SMA 50 | $0.01491 | BUY |
| SMA 100 | $0.016998 | SELL |
| SMA 200 | $0.022359 | SELL |
Moyenne Mobile Exponentielle Quotidienne (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 3 | $0.0150042 | BUY |
| EMA 5 | $0.014782 | BUY |
| EMA 10 | $0.01449 | BUY |
| EMA 21 | $0.0144025 | BUY |
| EMA 50 | $0.0152038 | BUY |
| EMA 100 | $0.017318 | SELL |
| EMA 200 | $0.0208025 | SELL |
Moyenne Mobile Simple Hebdomadaire (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 21 | $0.01922 | SELL |
| SMA 50 | $0.024222 | SELL |
| SMA 100 | $0.029416 | SELL |
| SMA 200 | $0.031152 | SELL |
Moyenne Mobile Exponentielle Hebdomadaire (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 21 | $0.018698 | SELL |
| EMA 50 | $0.023388 | SELL |
| EMA 100 | $0.027552 | SELL |
| EMA 200 | $0.033369 | SELL |
Oscillateurs de Status
Un oscillateur est un outil d'analyse technique qui établit des limites hautes et basses entre deux extrêmes, créant un indicateur de tendance qui fluctue à l'intérieur de ces limites. Les traders utilisent cet indicateur pour identifier les conditions de surachat ou de survente à court terme.
| Période | Valeur | Action |
|---|---|---|
| RSI (14) | 61.40 | NEUTRAL |
| Stoch RSI (14) | 119.08 | SELL |
| Stochastique Rapide (14) | 100 | SELL |
| Indice de Canal des Matières Premières (20) | 219.37 | SELL |
| Indice Directionnel Moyen (14) | 17.65 | NEUTRAL |
| Oscillateur Impressionnant (5, 34) | 0.000213 | BUY |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Plage de Pourcentage de Williams (14) | -0 | SELL |
| Oscillateur Ultime (7, 14, 28) | 71.76 | SELL |
| VWMA (10) | 0.014470 | BUY |
| Moyenne Mobile de Hull (9) | 0.015085 | BUY |
| Nuage Ichimoku B/L (9, 26, 52, 26) | -0.001127 | SELL |
Prévision du cours de Status basée sur les flux monétaires mondiaux
Définitions des flux monétaires mondiaux utilisés pour la prédiction du cours de Status
M0 : le total de toutes les devises physiques, plus les comptes à la banque centrale qui peuvent être échangés contre des devises physiques.
M1 : M0 plus le montant des comptes à vue, y compris les comptes de "chèques" et les comptes "courants".
M2 : M1 plus la plupart des comptes d'épargne, comptes du marché monétaire et comptes de certificats de dépôt (CD) de moins de 100 000 $.
Prédictions du cours de Status par des sociétés Internet ou des niches technologiques
| Comparaison | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Action Facebook | $0.021563 | $0.030299 | $0.042576 | $0.059827 | $0.084067 | $0.118128 |
| Action Amazon.com | $0.032019 | $0.066811 | $0.1394052 | $0.290877 | $0.606932 | $1.26 |
| Action Apple | $0.021766 | $0.030874 | $0.043792 | $0.062117 | $0.0881082 | $0.124974 |
| Action Netflix | $0.024213 | $0.0382044 | $0.06028 | $0.095113 | $0.150074 | $0.236793 |
| Action Google | $0.019872 | $0.025734 | $0.033326 | $0.043157 | $0.055889 | $0.072376 |
| Action Tesla | $0.034787 | $0.07886 | $0.178771 | $0.405261 | $0.918696 | $2.08 |
| Action Kodak | $0.0115076 | $0.008629 | $0.006471 | $0.004852 | $0.003639 | $0.002728 |
| Action Nokia | $0.010165 | $0.006734 | $0.004461 | $0.002955 | $0.001957 | $0.001296 |
Ce calcul montre la valeur potentielle des cryptomonnaies si l'on suppose que leur capitalisation se comportera comme celle de certaines sociétés Internet ou niches technologiques. En extrapolant les données, vous pourrez obtenir une potentielle image des cours futurs pour 2024, 2025, 2026, 2027, 2028, 2029 et 2030.
Aperçu des prévisions relatives à Status
Vous vous posez peut-être des questions telles que : "Devrais-je investir dans Status maintenant ?", "Devrais-je acheter SNT aujourd'hui ?", " Status sera-t-il un bon ou un mauvais investissement à court ou à long terme ?".
Nous mettons régulièrement à jour les prévisions de Status avec de nouvelles valeurs. Regardez nos prévisions similaires. Nous faisons une prévision des cours futurs pour une grande quantité de devises numériques comme Status en utilisant des méthodes d'analyse technique.
Si vous souhaitez trouver des cryptomonnaies ayant un bon rendement, vous devriez consulter un maximum d'informations disponibles à propos de Status afin de prendre une décision responsable concernant cet investissement.
Le cours de Status est de $0.01534 USD actuellement, mais ce cours peut subir une hausse ou une baisse, ce qui pourrait causer la perte de votre investissement, car les cryptomonnaies sont des actifs à haut risque.
Prévision à court terme de Status
basée sur l'historique des cours sur 4 heures
Prévision à long terme de Status
basée sur l'historique des cours sur 1 mois
Prévision du cours de Status basée sur le modèle de croissance du Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si Status présente 1 % de la précédente croissance annuelle moyenne du Bitcoin | $0.015744 | $0.016153 | $0.016573 | $0.0170045 |
| Si Status présente 2 % de la précédente croissance annuelle moyenne du Bitcoin | $0.016143 | $0.016982 | $0.017865 | $0.018794 |
| Si Status présente 5 % de la précédente croissance annuelle moyenne du Bitcoin | $0.01734 | $0.019593 | $0.02214 | $0.025017 |
| Si Status présente 10 % de la précédente croissance annuelle moyenne du Bitcoin | $0.019334 | $0.02436 | $0.030692 | $0.03867 |
| Si Status présente 20 % de la précédente croissance annuelle moyenne du Bitcoin | $0.023323 | $0.035448 | $0.053876 | $0.081885 |
| Si Status présente 50 % de la précédente croissance annuelle moyenne du Bitcoin | $0.035289 | $0.081154 | $0.186628 | $0.429182 |
| Si Status présente 100 % de la précédente croissance annuelle moyenne du Bitcoin | $0.055234 | $0.1988052 | $0.715564 | $2.57 |
Boîte à questions
Est-ce que SNT est un bon investissement ?
La décision d'acquérir Status dépend entièrement de votre tolérance individuelle au risque. Comme vous pouvez le discerner, la valeur de Status a connu une hausse de 3.5702% au cours des 24 heures précédentes, et Status a enregistré une déclin de sur une période de 30 jours précédents. Par conséquent, la détermination de si investir ou non dans Status dépendra de la mesure dans laquelle cet investissement s'aligne avec vos aspirations de trading.
Est-ce que Status peut monter ?
Il semble que la valeur moyenne de Status pourrait potentiellement s'envoler jusqu'à $0.015826 pour la fin de cette année. En regardant les perspectives de Status sur une période de cinq ans plus longue, la monnaie numérique pourrait potentiellement croître jusqu'à $0.049755. Cependant, compte tenu de l'imprévisibilité du marché, il est essentiel de mener des recherches approfondies avant d'investir des fonds dans un projet, un réseau ou un actif particulier.
Quel sera le prix de Status la semaine prochaine ?
Basé sur notre nouveau pronostic expérimental de Status, le prix de Status va augmenter de 0.86% durant la prochaine semaine et atteindre $0.015477 d'ici 13 janvier 2026.
Quel sera le prix de Status le mois prochain ?
Basé sur notre nouveau pronostic expérimental de Status, le prix de Status va diminuer de -11.62% durant le prochain mois et atteindre $0.013562 d'ici 5 février 2026.
Jusqu'où le prix de Status peut-il monter cette année en 2026 ?
Selon notre prédiction la plus récente sur la valeur de Status en 2026, SNT devrait fluctuer dans la fourchette de $0.0053019 et $0.015826. Cependant, il est crucial de garder à l'esprit que le marché des cryptomonnaies est exceptionnellement instable, et cette prévision de prix de Status ne prend pas en compte les fluctuations de prix soudaines et extrêmes.
Où sera Status dans 5 ans ?
L'avenir de Status semble suivre une tendance haussière, avec un prix maximum de $0.049755 prévue après une période de cinq ans. Selon la prévision de Status pour 2030, la valeur de Status pourrait potentiellement atteindre son point le plus élevé d'environ $0.049755, tandis que son point le plus bas devrait être autour de $0.0172086.
Combien vaudra Status en 2026 ?
Basé sur notre nouvelle simulation expérimentale de prédiction de prix de Status, il est attendu que la valeur de SNT en 2026 augmente de 3.13% jusqu'à $0.015826 si le meilleur scénario se produit. Le prix sera entre $0.015826 et $0.0053019 durant 2026.
Combien vaudra Status en 2027 ?
Selon notre dernière simulation expérimentale pour la prédiction de prix de Status, le valeur de SNT pourrait diminuer de -12.62% jusqu'à $0.0134083 en 2027, en supposant les conditions les plus favorables. Il est prévu que le prix fluctue entre $0.0134083 et $0.005104 tout au long de l'année.
Combien vaudra Status en 2028 ?
Notre nouveau modèle expérimental de prédiction de prix de Status suggère que la valeur de SNT en 2028 pourrait augmenter de 47.02%, atteignant $0.022561 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.022561 et $0.009211 durant l'année.
Combien vaudra Status en 2029 ?
Basé sur notre modèle de prévision expérimental, la valeur de Status pourrait connaître un 333.75% croissance en 2029, atteignant potentiellement $0.066562 sous des conditions optimales. Le range de prix prévu pour 2029 se situe entre $0.066562 et $0.020234.
Combien vaudra Status en 2030 ?
En utilisant notre nouvelle simulation expérimentale pour les prédictions de prix de Status, il est prévu que la valeur de SNT en 2030 augmente de 224.23%, atteignant $0.049755 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.049755 et $0.0172086 au cours de 2030.
Combien vaudra Status en 2031 ?
Notre simulation expérimentale indique que le prix de Status pourrait augmenter de 195.98% en 2031, atteignant potentiellement $0.04542 dans des conditions idéales. Il est probable que le prix fluctue entre $0.04542 et $0.020345 durant l'année.
Combien vaudra Status en 2032 ?
Basé sur les résultats de notre dernière prédiction expérimentale de prix de Status, SNT pourrait connaître une 449.04% hausse en valeur, atteignant $0.084253 si le scénario le plus positif se réalise en 2032. Il est prévu que le prix reste dans une fourchette de $0.084253 et $0.031056 tout au long de l'année.
Combien vaudra Status en 2033 ?
Selon notre prédiction expérimentale de prix de Status, la valeur de SNT est anticipée à augmenter de 1362.43% en 2033, avec le prix potentiel le plus élevé étant $0.22442. Tout au long de l'année, le prix de SNT pourrait osciller entre $0.22442 et $0.072168.
Combien vaudra Status en 2034 ?
Les résultats de notre nouvelle simulation de prédiction de prix de Status suggèrent que SNT pourrait augmenter de 746.96% en 2034, atteignant potentiellement $0.129972 dans les meilleures circonstances. La fourchette de prix prévue pour l'année est entre $0.129972 et $0.05802.
Combien vaudra Status en 2035 ?
Basé sur notre prédiction expérimentale pour le prix de Status, SNT pourrait augmenter de 897.93%, avec la valeur potentiellement atteignant $0.153139 en 2035. La fourchette de prix attendue pour l'année se situe entre $0.153139 et $0.068597.
Combien vaudra Status en 2036 ?
Notre récente simulation de prédiction de prix de Status suggère que la valeur de SNT pourrait augmenter de 1964.7% en 2036, pouvant atteindre $0.316841 si les conditions sont optimales. La fourchette de prix attendue pour 2036 est entre $0.316841 et $0.11355.
Combien vaudra Status en 2037 ?
Selon la simulation expérimentale, la valeur de Status pourrait augmenter de 4830.69% en 2037, avec un maximum de $0.756648 sous des conditions favorables. Il est prévu que le prix chute entre $0.756648 et $0.294887 au cours de l'année.
Prévisions liées
Prévision du cours de Bluzelle
Prévision du cours de SMARDEX
Prévision du cours de Slerf [OLD]
Prévision du cours de ConstitutionDAO
Prévision du cours de Victoria VR
Prévision du cours de Dent
Prévision du cours de Bone ShibaSwap
Prévision du cours de Milady Meme Coin
Prévision du cours de tBTC
Prévision du cours de inSure DeFi
Prévision du cours de Dione
Prévision du cours de Nexera
Prévision du cours de LooksRare
Prévision du cours de Virtuals Protocol
Prévision du cours de Autonolas
Prévision du cours de Covalent
Prévision du cours de OpSec
Prévision du cours de Horizen
Prévision du cours de Hiveterminal token
Prévision du cours de Ark
Prévision du cours de Escoin Token
Prévision du cours de MVL
Prévision du cours de Nym
Prévision du cours de Constellation
Prévision du cours de Alchemy Pay
Comment lire et prédire les mouvements de prix de Status ?
Les traders de Status utilisent des indicateurs et des modèles graphiques pour prédire la direction du marché. Ils identifient également des niveaux clés de support et de résistance pour évaluer quand une tendance baissière pourrait ralentir ou une tendance haussière pourrait s'arrêter.
Indicateurs de prédiction du prix de Status
Les moyennes mobiles sont des outils populaires pour la prédiction du prix de Status. Une moyenne mobile simple (SMA) calcule le prix de clôture moyen de SNT sur une période spécifique, comme une SMA de 12 jours. Une moyenne mobile exponentielle (EMA) donne plus de poids aux prix récents, réagissant plus rapidement aux changements de prix.
Les moyennes mobiles couramment utilisées sur le marché des cryptomonnaies incluent les moyennes sur 50 jours, 100 jours et 200 jours, qui aident à identifier les niveaux clés de résistance et de support. Un mouvement de prix de SNT au-dessus de ces moyennes est considéré comme haussier, tandis qu'une chute en dessous indique une faiblesse.
Les traders utilisent également le RSI et les niveaux de retracement de Fibonacci pour évaluer la direction future de SNT.
Comment lire les graphiques de Status et prédire les mouvements de prix ?
La plupart des traders préfèrent les graphiques en chandeliers aux simples graphiques linéaires parce qu'ils fournissent des informations plus détaillées. Les chandeliers peuvent représenter l'action des prix de Status dans différentes périodes, comme 5 minutes pour les tendances à court terme et hebdomadaire pour les tendances à long terme. Les options populaires incluent les graphiques de 1 heure, 4 heures et 1 jour.
Par exemple, un graphique en chandeliers de 1 heure montre les prix d'ouverture, de clôture, les plus hauts et les plus bas de SNT au sein de chaque heure. La couleur du chandelier est cruciale : le vert indique que le prix a clôturé plus haut qu'il n'a ouvert, tandis que le rouge signifie le contraire. Certains graphiques utilisent des chandeliers creux et pleins pour transmettre la même information.
Qu'est-ce qui affecte le prix de Status ?
L'action du prix de Status est déterminée par l'offre et la demande, influencée par des facteurs tels que les réductions de récompenses de bloc, les hard forks et les mises à jour de protocole. Les événements du monde réel, tels que les réglementations, l'adoption par les entreprises et les gouvernements et les piratages d'échanges de cryptomonnaies, impactent également le prix de SNT. La capitalisation boursière de Status peut changer rapidement.
Les traders surveillent souvent l'activité des « baleines » de SNT, de grands détenteurs de Status, car leurs actions peuvent influencer significativement les mouvements de prix sur le marché relativement petit de Status.
Modèles de prédiction de prix haussiers et baissiers
Les traders identifient souvent des modèles de chandeliers pour obtenir un avantage dans les prédictions de prix des cryptomonnaies. Certaines formations indiquent des tendances haussières, tandis que d'autres suggèrent des mouvements baissiers.
Modèles de chandeliers haussiers couramment suivis :
- Marteau
- Englobante haussière
- Ligne pénétrante
- Étoile du matin
- Trois soldats blancs
Modèles de chandeliers baissiers courants :
- Harami baissier
- Nuage sombre
- Étoile du soir
- Étoile filante
- Pendu


