Prédiction du prix de Status jusqu'à $0.01586 d'ici 2026
| Année | Prix min. | Prix max. |
|---|---|---|
| 2026 | $0.005313 | $0.01586 |
| 2027 | $0.005115 | $0.013437 |
| 2028 | $0.009231 | $0.02261 |
| 2029 | $0.020278 | $0.0667077 |
| 2030 | $0.017246 | $0.049863 |
| 2031 | $0.02039 | $0.045519 |
| 2032 | $0.031124 | $0.084437 |
| 2033 | $0.072326 | $0.2249099 |
| 2034 | $0.058146 | $0.130255 |
| 2035 | $0.068747 | $0.153473 |
Calculateur de profit d’investissement
Si vous ouvrez une position short de $10,000.00 sur Status aujourd’hui et la fermez le Apr 06, 2026, notre prévision indique que vous pourriez gagner environ $3,954.81, soit un rendement de 39.55% sur les 90 prochains jours.
Prévision du prix à long terme de Status pour 2027, 2028, 2029, 2030, 2031, 2032 et 2037
[
'name' => 'Status'
'name_with_ticker' => 'Status <small>SNT</small>'
'name_lang' => 'Status'
'name_lang_with_ticker' => 'Status <small>SNT</small>'
'name_with_lang' => 'Status'
'name_with_lang_with_ticker' => 'Status <small>SNT</small>'
'image' => '/uploads/coins/status.png?1717138196'
'price_for_sd' => 0.01537
'ticker' => 'SNT'
'marketcap' => '$60.85M'
'low24h' => '$0.0148'
'high24h' => '$0.01565'
'volume24h' => '$3.58M'
'current_supply' => '3.96B'
'max_supply' => '6.8B'
'algo' => null
'proof' => null
'ico_price_and_roi' => ''
'price' => '$0.01537'
'change_24h_pct' => '2.9451%'
'ath_price' => '$0.6849'
'ath_days' => 2925
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '3 janv. 2018'
'ath_pct' => '-97.75%'
'fdv' => '$104.55M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.758299'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.01551'
'next_week_prediction_price_date' => '13 janvier 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.013592'
'next_month_prediction_price_date' => '5 février 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.005313'
'current_year_max_price_prediction' => '$0.01586'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.017246'
'grand_prediction_max_price' => '$0.049863'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.015670607371551
107 => 0.015729115731046
108 => 0.015860938052499
109 => 0.014734530748648
110 => 0.015240254558496
111 => 0.015537319916869
112 => 0.01419516782041
113 => 0.01551078988527
114 => 0.014714922503518
115 => 0.014444793160625
116 => 0.014808486733996
117 => 0.01466675499475
118 => 0.014544902368113
119 => 0.014476906508755
120 => 0.014743962929644
121 => 0.014731504428408
122 => 0.014294548290416
123 => 0.013724556821016
124 => 0.013915864667479
125 => 0.013846360733339
126 => 0.013594469509827
127 => 0.013764213781012
128 => 0.013016745916325
129 => 0.011730766305132
130 => 0.012580323826907
131 => 0.012547616786459
201 => 0.01253112441352
202 => 0.013169543411088
203 => 0.013108174155304
204 => 0.012996788355127
205 => 0.013592423822257
206 => 0.013375008864327
207 => 0.014045030535261
208 => 0.014486350142023
209 => 0.014374417214554
210 => 0.014789480437796
211 => 0.013920272013874
212 => 0.014208988185712
213 => 0.014268492188584
214 => 0.013585073773051
215 => 0.013118214924517
216 => 0.0130870807619
217 => 0.012277611855655
218 => 0.012710023611567
219 => 0.013090528062355
220 => 0.012908295958765
221 => 0.012850606718798
222 => 0.013145328534521
223 => 0.013168230943724
224 => 0.012646053586801
225 => 0.012754630794511
226 => 0.013207415800123
227 => 0.012743221774097
228 => 0.01184136860719
301 => 0.011617696552702
302 => 0.011587854577539
303 => 0.010981238226112
304 => 0.011632643388912
305 => 0.011348287578777
306 => 0.012246564175888
307 => 0.011733473401172
308 => 0.011711355083376
309 => 0.011677920001975
310 => 0.011155780249296
311 => 0.01127009567142
312 => 0.011650097545292
313 => 0.011785686494916
314 => 0.011771543456623
315 => 0.0116482353288
316 => 0.011704685158278
317 => 0.011522840589106
318 => 0.011458627486965
319 => 0.0112559532734
320 => 0.01095807816964
321 => 0.010999499529792
322 => 0.010409331005983
323 => 0.010087775871598
324 => 0.0099987736484284
325 => 0.0098797561559475
326 => 0.010012216990898
327 => 0.010407659132706
328 => 0.0099306720119547
329 => 0.0091129110501831
330 => 0.0091620598773825
331 => 0.0092724826996817
401 => 0.0090667105008472
402 => 0.008871964383802
403 => 0.0090412803323209
404 => 0.008694784232466
405 => 0.0093143550979444
406 => 0.0092975974423605
407 => 0.0095285351470056
408 => 0.0096729452330389
409 => 0.0093401267380526
410 => 0.0092564237866005
411 => 0.0093041047918347
412 => 0.0085160439860654
413 => 0.0094641337664029
414 => 0.0094723328861935
415 => 0.0094021270447161
416 => 0.0099069555837578
417 => 0.010972301261106
418 => 0.010571475363857
419 => 0.010416263461415
420 => 0.010121205521414
421 => 0.010514352707659
422 => 0.010484165137807
423 => 0.01034764549864
424 => 0.010265077994904
425 => 0.010417211152195
426 => 0.010246227013133
427 => 0.010215513563428
428 => 0.010029423474776
429 => 0.0099629977796867
430 => 0.0099138188395259
501 => 0.0098596776586316
502 => 0.0099790996125427
503 => 0.0097084737537138
504 => 0.0093821254977463
505 => 0.0093549931713996
506 => 0.0094299079099412
507 => 0.0093967637148829
508 => 0.0093548344897452
509 => 0.0092747801802122
510 => 0.0092510297766635
511 => 0.0093282070661391
512 => 0.0092410784060366
513 => 0.0093696414901616
514 => 0.0093346794449995
515 => 0.0091393843027753
516 => 0.0088959742480416
517 => 0.0088938073879846
518 => 0.0088413650909647
519 => 0.0087745719409578
520 => 0.0087559916146461
521 => 0.0090270210153972
522 => 0.0095880437637248
523 => 0.0094779015740915
524 => 0.0095574905939272
525 => 0.0099489897993704
526 => 0.010073435623989
527 => 0.0099851069253356
528 => 0.0098641971547421
529 => 0.0098695165710207
530 => 0.010282701859016
531 => 0.010308471718604
601 => 0.010373583840114
602 => 0.010457271316936
603 => 0.0099993592645134
604 => 0.0098479489545309
605 => 0.0097762023497371
606 => 0.0095552505764023
607 => 0.0097935281209704
608 => 0.0096546939998123
609 => 0.0096734274660055
610 => 0.0096612272715714
611 => 0.0096678894027059
612 => 0.0093141819152606
613 => 0.0094430543333675
614 => 0.0092287789430483
615 => 0.0089418882489523
616 => 0.0089409264907489
617 => 0.0090111425816911
618 => 0.0089693753032427
619 => 0.0088569806308731
620 => 0.0088729457635954
621 => 0.0087330744016467
622 => 0.0088899286793887
623 => 0.0088944266988227
624 => 0.0088340292579818
625 => 0.0090756849145625
626 => 0.0091746914342359
627 => 0.0091349365448358
628 => 0.0091719021252172
629 => 0.009482478479333
630 => 0.0095331159764502
701 => 0.0095556058077444
702 => 0.0095254724131418
703 => 0.0091775788908373
704 => 0.009193009447909
705 => 0.0090797902584525
706 => 0.0089841319741059
707 => 0.0089879578038181
708 => 0.0090371385966788
709 => 0.0092519140035166
710 => 0.009703896185505
711 => 0.0097210485789168
712 => 0.0097418377801025
713 => 0.0096572776510649
714 => 0.0096317735070157
715 => 0.0096654200561947
716 => 0.0098351607996554
717 => 0.010271780075999
718 => 0.010117449662918
719 => 0.0099919766347874
720 => 0.010102050307743
721 => 0.010085105328578
722 => 0.0099420726515958
723 => 0.009938058200738
724 => 0.0096635327632964
725 => 0.009562046959716
726 => 0.0094772378261635
727 => 0.0093846284663226
728 => 0.0093297265335151
729 => 0.0094140808547897
730 => 0.0094333736861162
731 => 0.0092489314883882
801 => 0.0092237926983752
802 => 0.0093744121785012
803 => 0.0093081301609579
804 => 0.0093763028597161
805 => 0.0093921195106026
806 => 0.0093895726655215
807 => 0.0093203666267651
808 => 0.0093644764921147
809 => 0.0092601435107792
810 => 0.009146697063884
811 => 0.0090743252987283
812 => 0.0090111713349083
813 => 0.0090462128245655
814 => 0.0089212963122606
815 => 0.0088813330059016
816 => 0.0093495330622376
817 => 0.0096953974778519
818 => 0.0096903684722715
819 => 0.0096597556941562
820 => 0.0096142713154522
821 => 0.0098318333340485
822 => 0.0097560390770594
823 => 0.0098111857318411
824 => 0.0098252228699808
825 => 0.0098677090594143
826 => 0.0098828942203254
827 => 0.0098369941172797
828 => 0.0096829477652329
829 => 0.00929907890222
830 => 0.0091203869102533
831 => 0.0090614155765537
901 => 0.0090635590725312
902 => 0.0090044318844851
903 => 0.0090218474912594
904 => 0.0089983754471751
905 => 0.0089539250741769
906 => 0.0090434681392908
907 => 0.0090537871433938
908 => 0.0090328867220363
909 => 0.0090378095278722
910 => 0.0088647629657187
911 => 0.0088779193200019
912 => 0.0088046630675246
913 => 0.0087909284033024
914 => 0.0086057429761915
915 => 0.0082776601490075
916 => 0.008459449883038
917 => 0.008239873447834
918 => 0.0081567165246963
919 => 0.0085503684652753
920 => 0.0085108567286464
921 => 0.0084432298108768
922 => 0.0083431955048109
923 => 0.0083060918076199
924 => 0.0080806614890905
925 => 0.0080673418632478
926 => 0.0081790712162416
927 => 0.0081275119642073
928 => 0.0080551032473353
929 => 0.0077928462147792
930 => 0.0074979824798666
1001 => 0.0075068825625762
1002 => 0.0076006732305171
1003 => 0.00787338224695
1004 => 0.0077668301163158
1005 => 0.0076895253229958
1006 => 0.0076750484589806
1007 => 0.0078562567214994
1008 => 0.0081127043772683
1009 => 0.0082330238796621
1010 => 0.0081137909069474
1011 => 0.007976822487852
1012 => 0.0079851591208718
1013 => 0.0080406190054751
1014 => 0.0080464470551864
1015 => 0.0079572946949362
1016 => 0.0079823905621337
1017 => 0.0079442676450465
1018 => 0.0077103073732519
1019 => 0.0077060757738312
1020 => 0.0076486581500138
1021 => 0.0076469195671838
1022 => 0.0075492378655729
1023 => 0.0075355715202758
1024 => 0.0073416185728718
1025 => 0.0074692789901967
1026 => 0.0073836510847279
1027 => 0.0072545896336055
1028 => 0.0072323393907858
1029 => 0.0072316705216187
1030 => 0.007364187774309
1031 => 0.0074677304489437
1101 => 0.007385140618804
1102 => 0.0073663365154178
1103 => 0.0075671151440365
1104 => 0.0075415642334069
1105 => 0.0075194373095874
1106 => 0.0080897423024367
1107 => 0.0076383013991429
1108 => 0.007441447397961
1109 => 0.0071978031899373
1110 => 0.0072771349726306
1111 => 0.0072938513448704
1112 => 0.006707930944743
1113 => 0.0064702231113831
1114 => 0.0063886507408047
1115 => 0.0063417046882728
1116 => 0.006363098593923
1117 => 0.0061491336635511
1118 => 0.0062929216354143
1119 => 0.0061076460917176
1120 => 0.0060765840438781
1121 => 0.0064078796672434
1122 => 0.0064539775178337
1123 => 0.0062573097657358
1124 => 0.0063836023001996
1125 => 0.0063378068716055
1126 => 0.0061108221091412
1127 => 0.006102152960802
1128 => 0.0059882599858976
1129 => 0.0058100395341979
1130 => 0.005728588005478
1201 => 0.0056861673421261
1202 => 0.0057036709345874
1203 => 0.0056948205826202
1204 => 0.0056370660494256
1205 => 0.0056981310048579
1206 => 0.0055421352775102
1207 => 0.0054800165219373
1208 => 0.0054519589211893
1209 => 0.0053135037343891
1210 => 0.0055338475078892
1211 => 0.0055772580070864
1212 => 0.0056207540383772
1213 => 0.0059993572947621
1214 => 0.0059804433459948
1215 => 0.0061514162313845
1216 => 0.0061447725394572
1217 => 0.006096008302967
1218 => 0.0058902800105421
1219 => 0.0059722796411485
1220 => 0.0057198975237142
1221 => 0.0059089993664118
1222 => 0.0058227011824863
1223 => 0.0058798218636184
1224 => 0.0057771137285787
1225 => 0.0058339566512247
1226 => 0.0055875522468694
1227 => 0.005357463281086
1228 => 0.0054500577976329
1229 => 0.0055507186265867
1230 => 0.0057689769516609
1231 => 0.0056389840938388
]
'min_raw' => 0.0053135037343891
'max_raw' => 0.015860938052499
'avg_raw' => 0.010587220893444
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.005313'
'max' => '$0.01586'
'avg' => '$0.010587'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.010065676265611
'max_diff' => 0.00048175805249912
'year' => 2026
]
1 => [
'items' => [
101 => 0.0056857344410858
102 => 0.005529128603722
103 => 0.0052060060289946
104 => 0.0052078348676766
105 => 0.0051581294991627
106 => 0.0051151768036641
107 => 0.0056539153372964
108 => 0.0055869146844434
109 => 0.0054801579129506
110 => 0.0056230560939391
111 => 0.0056608406410915
112 => 0.0056619163140302
113 => 0.0057661711381434
114 => 0.0058218119564614
115 => 0.005831618891851
116 => 0.0059956661101679
117 => 0.0060506525739125
118 => 0.0062771340361012
119 => 0.0058170912217679
120 => 0.0058076169427463
121 => 0.0056250669643932
122 => 0.0055092908821207
123 => 0.0056329942517971
124 => 0.0057425785501366
125 => 0.0056284720540076
126 => 0.0056433719534825
127 => 0.0054901933052726
128 => 0.0055449474642824
129 => 0.0055921091222033
130 => 0.0055660692267335
131 => 0.00552708624287
201 => 0.0057335938873556
202 => 0.0057219419167437
203 => 0.005914246582879
204 => 0.00606416182197
205 => 0.0063328367309756
206 => 0.0060524604570885
207 => 0.0060422424312733
208 => 0.0061421252726398
209 => 0.0060506372823699
210 => 0.0061084545341624
211 => 0.0063235214778606
212 => 0.0063280655034829
213 => 0.0062519472196632
214 => 0.0062473154151751
215 => 0.0062619347642255
216 => 0.0063475607482405
217 => 0.006317640398405
218 => 0.0063522649847253
219 => 0.0063955635601093
220 => 0.0065746648261131
221 => 0.0066178455350022
222 => 0.0065129387990325
223 => 0.0065224107026996
224 => 0.0064831727036926
225 => 0.0064452692883026
226 => 0.0065304706307501
227 => 0.0066861777587096
228 => 0.0066852091127478
301 => 0.0067213301399203
302 => 0.006743833240606
303 => 0.0066472334591863
304 => 0.0065843505535545
305 => 0.006608463860917
306 => 0.0066470215645091
307 => 0.0065959601173098
308 => 0.0062807852112325
309 => 0.0063763891442854
310 => 0.0063604759750319
311 => 0.0063378136869074
312 => 0.0064339441808755
313 => 0.0064246721602204
314 => 0.0061469391439303
315 => 0.0061647187105306
316 => 0.006148020378263
317 => 0.006201976105977
318 => 0.0060477234960058
319 => 0.0060951705599257
320 => 0.0061249289136277
321 => 0.0061424568125726
322 => 0.0062057796025545
323 => 0.0061983494040191
324 => 0.0062053177309811
325 => 0.0062992087119275
326 => 0.0067740770740604
327 => 0.0067999231112733
328 => 0.0066726477712929
329 => 0.00672349175922
330 => 0.0066258824207579
331 => 0.0066914082235932
401 => 0.0067362393137183
402 => 0.0065336562379661
403 => 0.0065216605829734
404 => 0.0064236483760498
405 => 0.0064763145843554
406 => 0.0063925188601069
407 => 0.0064130793997875
408 => 0.0063555903384049
409 => 0.0064590592029356
410 => 0.0065747534709169
411 => 0.006603982411914
412 => 0.0065270936520008
413 => 0.0064714211226074
414 => 0.0063736785006638
415 => 0.0065362266592923
416 => 0.0065837606944407
417 => 0.0065359769832416
418 => 0.006524904453262
419 => 0.0065039220289584
420 => 0.0065293559737683
421 => 0.0065835018138768
422 => 0.0065579676355983
423 => 0.0065748334102056
424 => 0.006510558469314
425 => 0.0066472654377335
426 => 0.0068643890039073
427 => 0.0068650870916759
428 => 0.0068395527757586
429 => 0.0068291046838298
430 => 0.0068553044415127
501 => 0.0068695167352854
502 => 0.0069542419474181
503 => 0.0070451554756379
504 => 0.0074694092431595
505 => 0.0073502804829183
506 => 0.0077267036644331
507 => 0.0080244055285786
508 => 0.0081136733007111
509 => 0.0080315511507224
510 => 0.0077506157117628
511 => 0.0077368316788541
512 => 0.0081566678325428
513 => 0.0080380448894117
514 => 0.0080239350677813
515 => 0.0078738304045541
516 => 0.0079625608513456
517 => 0.0079431542010352
518 => 0.0079125198541144
519 => 0.008081811365576
520 => 0.0083987099622748
521 => 0.0083493183441231
522 => 0.0083124497923841
523 => 0.0081509025309377
524 => 0.0082481900652156
525 => 0.0082135478376792
526 => 0.0083623928316762
527 => 0.0082742203545527
528 => 0.0080371462039486
529 => 0.0080749010438389
530 => 0.0080691944757417
531 => 0.0081866352428109
601 => 0.0081513824395957
602 => 0.0080623108001267
603 => 0.0083976268373226
604 => 0.0083758532789929
605 => 0.008406723206576
606 => 0.0084203131033823
607 => 0.0086244140662922
608 => 0.008708027700294
609 => 0.0087270094590751
610 => 0.0088064359444662
611 => 0.0087250332557627
612 => 0.0090507020497104
613 => 0.0092672527943847
614 => 0.0095187876279233
615 => 0.0098863476259128
616 => 0.010024553585277
617 => 0.0099995879157513
618 => 0.010278267711323
619 => 0.01077904910926
620 => 0.010100810154163
621 => 0.010814997420773
622 => 0.010588893977853
623 => 0.010052806782116
624 => 0.010018289086763
625 => 0.010381333559817
626 => 0.011186531259314
627 => 0.010984838368067
628 => 0.011186861156629
629 => 0.010951190842699
630 => 0.010939487825227
701 => 0.011175415175508
702 => 0.01172667228917
703 => 0.011464790698033
704 => 0.011089319221138
705 => 0.011366561516694
706 => 0.01112638858272
707 => 0.010585211742304
708 => 0.010984684137314
709 => 0.01071756832309
710 => 0.010795526918338
711 => 0.011356964629358
712 => 0.011289410958588
713 => 0.011376831663866
714 => 0.011222536407249
715 => 0.01107840030744
716 => 0.010809359573459
717 => 0.010729709875676
718 => 0.010751722186647
719 => 0.010729698967467
720 => 0.010579173149417
721 => 0.010546667113341
722 => 0.010492488962425
723 => 0.010509281036836
724 => 0.010407410262737
725 => 0.010599661461037
726 => 0.010635344977554
727 => 0.010775249367258
728 => 0.010789774705112
729 => 0.011179406439022
730 => 0.01096480382748
731 => 0.011108777787201
801 => 0.011095899401108
802 => 0.010064425417206
803 => 0.010206553431416
804 => 0.010427660019298
805 => 0.01032805180116
806 => 0.010187229085446
807 => 0.010073507192071
808 => 0.0099012068949466
809 => 0.010143716254415
810 => 0.01046259027412
811 => 0.010797861876474
812 => 0.011200668738836
813 => 0.011110766936345
814 => 0.010790331682368
815 => 0.010804706173784
816 => 0.010893563623559
817 => 0.010778485152549
818 => 0.01074454626485
819 => 0.010888900941556
820 => 0.010889895032879
821 => 0.010757483344284
822 => 0.010610331983494
823 => 0.01060971541392
824 => 0.010583531250581
825 => 0.010955848947188
826 => 0.011160586034757
827 => 0.011184058811897
828 => 0.011159006129835
829 => 0.011168647912855
830 => 0.011049515912672
831 => 0.011321816337593
901 => 0.011571706135221
902 => 0.011504730331339
903 => 0.01140432408015
904 => 0.011324345664858
905 => 0.011485889958447
906 => 0.011478696645348
907 => 0.011569523565837
908 => 0.011565403132082
909 => 0.011534861454895
910 => 0.011504731422079
911 => 0.01162419359645
912 => 0.011589790408735
913 => 0.011555333783367
914 => 0.011486225746146
915 => 0.011495618676167
916 => 0.011395229761533
917 => 0.011348785256139
918 => 0.010650371330962
919 => 0.010463732308822
920 => 0.010522452744575
921 => 0.0105417850367
922 => 0.01046055949508
923 => 0.010577016056634
924 => 0.010558866424873
925 => 0.010629476024872
926 => 0.010585362212306
927 => 0.010587172658561
928 => 0.010716901975264
929 => 0.01075456294781
930 => 0.010735408273212
1001 => 0.010748823550717
1002 => 0.011057972958586
1003 => 0.011014021798829
1004 => 0.010990673621187
1005 => 0.010997141225958
1006 => 0.011076135527906
1007 => 0.011098249619523
1008 => 0.011004550659414
1009 => 0.011048739630668
1010 => 0.011236890661856
1011 => 0.011302732874345
1012 => 0.011512869610557
1013 => 0.011423599790132
1014 => 0.01158745840903
1015 => 0.012091103940003
1016 => 0.012493450839764
1017 => 0.012123436003055
1018 => 0.012862294845897
1019 => 0.013437602438056
1020 => 0.013415521174444
1021 => 0.013315202988647
1022 => 0.012660230590318
1023 => 0.012057515224287
1024 => 0.012561712220618
1025 => 0.012562997522451
1026 => 0.012519686553316
1027 => 0.012250685843747
1028 => 0.012510325911715
1029 => 0.012530935197437
1030 => 0.012519399477884
1031 => 0.012313157264564
1101 => 0.011998263524756
1102 => 0.012059793007765
1103 => 0.012160579556102
1104 => 0.011969769593824
1105 => 0.011908794249292
1106 => 0.01202215901581
1107 => 0.012387443914016
1108 => 0.012318388919962
1109 => 0.012316585614994
1110 => 0.012612032163434
1111 => 0.012400556196106
1112 => 0.01206056909159
1113 => 0.011974717863821
1114 => 0.011670003841557
1115 => 0.011880470902089
1116 => 0.01188804523691
1117 => 0.011772774578778
1118 => 0.012069922670205
1119 => 0.012067184398231
1120 => 0.012349282286384
1121 => 0.012888547497404
1122 => 0.012729060238876
1123 => 0.012543593909372
1124 => 0.012563759241813
1125 => 0.012784923166404
1126 => 0.012651202408915
1127 => 0.012699289325642
1128 => 0.012784850381097
1129 => 0.012836471490214
1130 => 0.012556331758615
1201 => 0.012491017786546
1202 => 0.012357408321784
1203 => 0.012322552106367
1204 => 0.012431374227562
1205 => 0.01240270344337
1206 => 0.011887408643398
1207 => 0.011833557469727
1208 => 0.011835209008342
1209 => 0.011699797671665
1210 => 0.011493262880787
1211 => 0.012036023979662
1212 => 0.011992432667486
1213 => 0.011944311232543
1214 => 0.011950205833746
1215 => 0.012185800030888
1216 => 0.012049143498753
1217 => 0.012412467286997
1218 => 0.012337778838647
1219 => 0.012261174913422
1220 => 0.012250585917543
1221 => 0.012221099941871
1222 => 0.012119981560044
1223 => 0.011997875037715
1224 => 0.011917249734988
1225 => 0.010993032937089
1226 => 0.011164562198857
1227 => 0.011361890979137
1228 => 0.011430008083345
1229 => 0.011313489063038
1230 => 0.012124582441158
1231 => 0.012272777017231
]
'min_raw' => 0.0051151768036641
'max_raw' => 0.013437602438056
'avg_raw' => 0.0092763896208603
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.005115'
'max' => '$0.013437'
'avg' => '$0.009276'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00019832693072503
'max_diff' => -0.0024233356144427
'year' => 2027
]
2 => [
'items' => [
101 => 0.011823885979813
102 => 0.011739916794813
103 => 0.012130087446947
104 => 0.011894766847288
105 => 0.012000731698905
106 => 0.011771693649383
107 => 0.012237081283498
108 => 0.012233535809464
109 => 0.012052489508537
110 => 0.012205508602329
111 => 0.012178917769168
112 => 0.011974516941318
113 => 0.012243561154324
114 => 0.012243694596897
115 => 0.012069441468541
116 => 0.011865951963535
117 => 0.011829572846248
118 => 0.011802166068218
119 => 0.011993991311576
120 => 0.012165981224949
121 => 0.012486011813821
122 => 0.012566475107602
123 => 0.012880528699976
124 => 0.012693525076709
125 => 0.012776421360801
126 => 0.012866417003578
127 => 0.012909564224206
128 => 0.012839258143601
129 => 0.013327112642173
130 => 0.013368302509328
131 => 0.013382113115495
201 => 0.013217611323458
202 => 0.01336372741691
203 => 0.013295364535641
204 => 0.013473225760949
205 => 0.013501116672124
206 => 0.013477494062607
207 => 0.013486347078042
208 => 0.013070049326941
209 => 0.013048462092401
210 => 0.012754118617685
211 => 0.012874065759309
212 => 0.01264983032726
213 => 0.012720937692644
214 => 0.012752281141769
215 => 0.012735909102671
216 => 0.012880847390729
217 => 0.012757620236944
218 => 0.012432403517683
219 => 0.012107098193346
220 => 0.012103014249987
221 => 0.012017367100204
222 => 0.01195545989797
223 => 0.011967385421396
224 => 0.012009412521421
225 => 0.011953017206515
226 => 0.011965052006265
227 => 0.01216490986957
228 => 0.012204989938735
229 => 0.012068782203419
301 => 0.011521888491444
302 => 0.011387679402747
303 => 0.011484146234221
304 => 0.011438041302036
305 => 0.0092313920332646
306 => 0.0097498115472711
307 => 0.0094417842759117
308 => 0.0095837374142074
309 => 0.0092693213334247
310 => 0.0094193771671329
311 => 0.0093916673338086
312 => 0.010225270571182
313 => 0.010212255003215
314 => 0.010218484866832
315 => 0.0099211172445376
316 => 0.010394831941264
317 => 0.010628200835101
318 => 0.010585010463763
319 => 0.010595880549729
320 => 0.010409096458523
321 => 0.010220293345125
322 => 0.010010881635776
323 => 0.010399942707677
324 => 0.010356685757976
325 => 0.010455901637232
326 => 0.010708235553019
327 => 0.010745392680642
328 => 0.010795332236978
329 => 0.010777432460972
330 => 0.011203877745353
331 => 0.011152232407638
401 => 0.011276682812154
402 => 0.01102067888799
403 => 0.010730986147683
404 => 0.010786047266846
405 => 0.010780744438297
406 => 0.010713233344565
407 => 0.010652287347769
408 => 0.010550829434532
409 => 0.01087185728496
410 => 0.010858824140499
411 => 0.011069815599961
412 => 0.011032520810039
413 => 0.010783457075359
414 => 0.010792352435369
415 => 0.010852178006394
416 => 0.01105923499079
417 => 0.011120703601273
418 => 0.011092228891797
419 => 0.011159626417043
420 => 0.011212894672979
421 => 0.011166316089856
422 => 0.011825770601339
423 => 0.011551919111163
424 => 0.011685392422028
425 => 0.011717225020199
426 => 0.011635686489352
427 => 0.011653369277017
428 => 0.011680153882058
429 => 0.011842784758904
430 => 0.012269575237373
501 => 0.012458597835026
502 => 0.013027281646275
503 => 0.012442902139613
504 => 0.01240822747809
505 => 0.012510664605102
506 => 0.0128445422036
507 => 0.013115118637654
508 => 0.013204884450759
509 => 0.013216748484833
510 => 0.013385155117736
511 => 0.013481682659119
512 => 0.013364706122968
513 => 0.013265580756534
514 => 0.01291052599786
515 => 0.012951624552959
516 => 0.013234752842111
517 => 0.013634688226712
518 => 0.013977874392884
519 => 0.013857702558735
520 => 0.014774528825191
521 => 0.014865428404611
522 => 0.01485286902187
523 => 0.015059951791459
524 => 0.014648934665498
525 => 0.014473216881067
526 => 0.013287012785877
527 => 0.013620287751989
528 => 0.014104722487786
529 => 0.014040605733966
530 => 0.013688796279853
531 => 0.013977607513865
601 => 0.013882117487938
602 => 0.013806800542605
603 => 0.014151842070085
604 => 0.013772454737096
605 => 0.014100937808923
606 => 0.013679654871583
607 => 0.013858251493551
608 => 0.013756871413176
609 => 0.013822476749854
610 => 0.013438949292169
611 => 0.013645891398733
612 => 0.013430339820173
613 => 0.013430237620659
614 => 0.013425479307616
615 => 0.013679074783889
616 => 0.013687344523266
617 => 0.013499937083138
618 => 0.013472928743162
619 => 0.0135727927317
620 => 0.013455878155542
621 => 0.013510581749875
622 => 0.013457535071687
623 => 0.013445593147092
624 => 0.013350437860176
625 => 0.013309442346223
626 => 0.013325517743568
627 => 0.013270644124993
628 => 0.013237580784937
629 => 0.013418902177086
630 => 0.013322029471745
701 => 0.013404055045642
702 => 0.013310576551733
703 => 0.012986539365204
704 => 0.012800182152599
705 => 0.012188105945508
706 => 0.012361689998561
707 => 0.01247677640532
708 => 0.012438740348573
709 => 0.012520456516467
710 => 0.012525473225504
711 => 0.012498906466324
712 => 0.012468145562606
713 => 0.012453172855861
714 => 0.012564767145031
715 => 0.012629551385985
716 => 0.012488326865896
717 => 0.01245523993678
718 => 0.01259802572381
719 => 0.012685124971413
720 => 0.013328216878876
721 => 0.013280574553212
722 => 0.013400147441295
723 => 0.013386685369092
724 => 0.013512016805258
725 => 0.013716880734373
726 => 0.013300335085627
727 => 0.013372633007185
728 => 0.013354907226422
729 => 0.013548432652844
730 => 0.013549036818101
731 => 0.013433008657649
801 => 0.013495909405772
802 => 0.013460799933761
803 => 0.013524247495014
804 => 0.013279938260906
805 => 0.013577480536497
806 => 0.013746167833557
807 => 0.01374851005684
808 => 0.013828466496861
809 => 0.013909706870687
810 => 0.014065640693701
811 => 0.013905357960997
812 => 0.013617024928071
813 => 0.013637841641738
814 => 0.013468792090031
815 => 0.013471633843536
816 => 0.013456464340612
817 => 0.013501989160795
818 => 0.013289928398854
819 => 0.01333969863582
820 => 0.013270020012613
821 => 0.013372481539466
822 => 0.013262249874069
823 => 0.013354898678514
824 => 0.013394882831155
825 => 0.0135424252152
826 => 0.013240457743983
827 => 0.01262472562877
828 => 0.012754159984418
829 => 0.012562716405566
830 => 0.012580435237666
831 => 0.012616230098439
901 => 0.012500207243324
902 => 0.012522340747779
903 => 0.012521549983249
904 => 0.012514735601733
905 => 0.012484553576102
906 => 0.012440783667606
907 => 0.012615149511388
908 => 0.012644777665988
909 => 0.012710637383512
910 => 0.01290659122979
911 => 0.012887010819637
912 => 0.01291894728098
913 => 0.012849230165184
914 => 0.012583669214714
915 => 0.012598090451977
916 => 0.012418257392225
917 => 0.012706038647854
918 => 0.012637888247994
919 => 0.01259395124186
920 => 0.012581962622663
921 => 0.012778402200624
922 => 0.012837180001163
923 => 0.012800553620299
924 => 0.012725431844583
925 => 0.012869687861716
926 => 0.012908284686228
927 => 0.01291692509184
928 => 0.013172519095852
929 => 0.012931209957369
930 => 0.012989295465409
1001 => 0.013442462017892
1002 => 0.013031502487499
1003 => 0.01324919691624
1004 => 0.01323854190678
1005 => 0.013349907010146
1006 => 0.0132294067178
1007 => 0.013230900463342
1008 => 0.013329785130605
1009 => 0.013190919449378
1010 => 0.013156534353833
1011 => 0.01310903159061
1012 => 0.013212752136255
1013 => 0.013274927912493
1014 => 0.013776019005893
1015 => 0.014099746704759
1016 => 0.01408569283158
1017 => 0.014214118924687
1018 => 0.014156261793494
1019 => 0.013969425854933
1020 => 0.014288332019841
1021 => 0.014187416765664
1022 => 0.014195736096606
1023 => 0.014195426450693
1024 => 0.014262526272556
1025 => 0.014214979899158
1026 => 0.014121261116654
1027 => 0.014183476018152
1028 => 0.014368232033369
1029 => 0.014941720373608
1030 => 0.015262652046515
1031 => 0.014922399883925
1101 => 0.015157101269522
1102 => 0.015016364070818
1103 => 0.014990787935245
1104 => 0.015138197749695
1105 => 0.015285865585513
1106 => 0.015276459782757
1107 => 0.015169260516781
1108 => 0.015108706371512
1109 => 0.015567242646617
1110 => 0.015905084363153
1111 => 0.015882045823005
1112 => 0.015983730446684
1113 => 0.016282279646793
1114 => 0.016309575244111
1115 => 0.016306136626231
1116 => 0.016238481640278
1117 => 0.016532442099299
1118 => 0.016777669085956
1119 => 0.016222821465771
1120 => 0.016434100176048
1121 => 0.016528949996067
1122 => 0.016668217672528
1123 => 0.01690318558669
1124 => 0.017158423063631
1125 => 0.017194516441407
1126 => 0.017168906462648
1127 => 0.017000570485453
1128 => 0.017279854378339
1129 => 0.017443452332778
1130 => 0.017540871170774
1201 => 0.017787909134982
1202 => 0.016529535756265
1203 => 0.015638796533594
1204 => 0.015499694741543
1205 => 0.015782563705585
1206 => 0.015857153995566
1207 => 0.015827086743203
1208 => 0.014824478765619
1209 => 0.015494416218036
1210 => 0.016215212586895
1211 => 0.016242901310958
1212 => 0.01660374704435
1213 => 0.016721253206709
1214 => 0.017011781319221
1215 => 0.016993608706681
1216 => 0.017064347678766
1217 => 0.017048086014112
1218 => 0.017586228164629
1219 => 0.018179878871532
1220 => 0.018159322635245
1221 => 0.018073978322372
1222 => 0.018200729180357
1223 => 0.018813440329357
1224 => 0.018757031705253
1225 => 0.018811827878694
1226 => 0.019534248854252
1227 => 0.020473498885663
1228 => 0.020037122946911
1229 => 0.020983933170208
1230 => 0.021579900017521
1231 => 0.022610563055825
]
'min_raw' => 0.0092313920332646
'max_raw' => 0.022610563055825
'avg_raw' => 0.015920977544545
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.009231'
'max' => '$0.02261'
'avg' => '$0.01592'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0041162152296005
'max_diff' => 0.0091729606177685
'year' => 2028
]
3 => [
'items' => [
101 => 0.022481518967307
102 => 0.022882748524764
103 => 0.022250503116545
104 => 0.020798739861396
105 => 0.020568992769143
106 => 0.021028952265958
107 => 0.022159717806686
108 => 0.020993340435027
109 => 0.021229297058221
110 => 0.021161341534867
111 => 0.02115772047382
112 => 0.021295921646069
113 => 0.021095453637634
114 => 0.020278710907761
115 => 0.020653019287767
116 => 0.020508480846482
117 => 0.020668857023142
118 => 0.02153434110441
119 => 0.021151689961518
120 => 0.020748598066536
121 => 0.021254164756096
122 => 0.021897924883469
123 => 0.021857639531646
124 => 0.021779469111139
125 => 0.022220111678667
126 => 0.022947924104065
127 => 0.023144648878063
128 => 0.023289867084367
129 => 0.023309890221535
130 => 0.023516140978672
131 => 0.022407078675662
201 => 0.024167189033279
202 => 0.024471111469973
203 => 0.024413986648169
204 => 0.024751783645542
205 => 0.024652395199832
206 => 0.024508396935568
207 => 0.025043877027886
208 => 0.024429992313058
209 => 0.023558660246296
210 => 0.023080630241477
211 => 0.023710138713404
212 => 0.024094557570392
213 => 0.024348633981229
214 => 0.024425517349631
215 => 0.022493172025149
216 => 0.021451745068038
217 => 0.022119287807562
218 => 0.02293373602112
219 => 0.022402554374713
220 => 0.022423375689592
221 => 0.021666050253897
222 => 0.023000742517728
223 => 0.022806289081417
224 => 0.023815113852983
225 => 0.023574349724924
226 => 0.024397007163784
227 => 0.024180373889879
228 => 0.025079606498055
301 => 0.025438334731207
302 => 0.026040695266261
303 => 0.026483794127895
304 => 0.026743990254577
305 => 0.026728369055102
306 => 0.027759395738212
307 => 0.027151435324511
308 => 0.026387693759634
309 => 0.026373880084299
310 => 0.026769432663051
311 => 0.027598402353563
312 => 0.027813342133295
313 => 0.02793346414754
314 => 0.027749493101245
315 => 0.027089595645088
316 => 0.026804655269275
317 => 0.027047432724985
318 => 0.026750536758756
319 => 0.027263062490762
320 => 0.027966869790395
321 => 0.027821536366177
322 => 0.028307364213735
323 => 0.028810144925377
324 => 0.02952914392432
325 => 0.0297171168871
326 => 0.030027829046603
327 => 0.030347653922359
328 => 0.03045037305293
329 => 0.030646495745064
330 => 0.030645462081667
331 => 0.031236491014993
401 => 0.031888414231093
402 => 0.032134500153114
403 => 0.032700361161543
404 => 0.031731344014742
405 => 0.032466354651858
406 => 0.033129352645045
407 => 0.032338899105368
408 => 0.033428355157759
409 => 0.033470656267513
410 => 0.034109352802605
411 => 0.033461911504839
412 => 0.03307746292893
413 => 0.034187351562477
414 => 0.034724391711086
415 => 0.034562630847747
416 => 0.033331622690621
417 => 0.03261512314275
418 => 0.030739905623531
419 => 0.032961181778414
420 => 0.034043100597944
421 => 0.033328820782251
422 => 0.033689061974111
423 => 0.035654421108302
424 => 0.036402702619022
425 => 0.036247065295675
426 => 0.036273365441312
427 => 0.036677124562226
428 => 0.038467614858569
429 => 0.03739471156976
430 => 0.038214905933135
501 => 0.038649934066038
502 => 0.03905401244026
503 => 0.038061723663453
504 => 0.036770770544444
505 => 0.036361871501129
506 => 0.033257799731497
507 => 0.033096219315587
508 => 0.033005519331749
509 => 0.032433668763419
510 => 0.031984350859765
511 => 0.031627036580675
512 => 0.030689337209267
513 => 0.031005783220663
514 => 0.029511286135708
515 => 0.030467412408938
516 => 0.028082158975455
517 => 0.030068668913048
518 => 0.028987501869539
519 => 0.029713476461361
520 => 0.029710943604401
521 => 0.028374194210403
522 => 0.027603185057194
523 => 0.028094502097744
524 => 0.028621232966009
525 => 0.02870669327725
526 => 0.029389613597038
527 => 0.029580201978968
528 => 0.029002710284
529 => 0.028032729899778
530 => 0.028258034220136
531 => 0.027598619272333
601 => 0.026443019940339
602 => 0.027272991555406
603 => 0.027556380356065
604 => 0.027681540994741
605 => 0.026545141773204
606 => 0.02618806046537
607 => 0.025997953373282
608 => 0.027886035030568
609 => 0.027989468405857
610 => 0.027460288633871
611 => 0.029852231382134
612 => 0.029310861070492
613 => 0.029915704347543
614 => 0.028237590214591
615 => 0.02830169643435
616 => 0.027507250310839
617 => 0.027952087055096
618 => 0.027637690782013
619 => 0.027916148642122
620 => 0.028083055135348
621 => 0.028877370898068
622 => 0.030077738723131
623 => 0.028758726611214
624 => 0.02818401414545
625 => 0.028540562526904
626 => 0.029490097852113
627 => 0.030928692475623
628 => 0.03007701550409
629 => 0.030454975281644
630 => 0.030537542678779
701 => 0.029909547610766
702 => 0.030951847549544
703 => 0.031510424554365
704 => 0.032083408980086
705 => 0.032580915302281
706 => 0.031854546400255
707 => 0.032631865246315
708 => 0.032005483471639
709 => 0.031443554265597
710 => 0.031444406480248
711 => 0.031091900080822
712 => 0.030408874513269
713 => 0.03028291411912
714 => 0.030938175996527
715 => 0.031463633968677
716 => 0.031506913204037
717 => 0.031797833736425
718 => 0.031969997510772
719 => 0.033657436544676
720 => 0.03433613848334
721 => 0.035166042366768
722 => 0.035489336700183
723 => 0.036462336736329
724 => 0.035676560183942
725 => 0.035506552484066
726 => 0.033146372662261
727 => 0.033532851975862
728 => 0.034151642646644
729 => 0.033156576292508
730 => 0.033787716861505
731 => 0.03391231737921
801 => 0.033122764318561
802 => 0.033544498722827
803 => 0.032424497180632
804 => 0.03010215169614
805 => 0.030954432983946
806 => 0.031581998886551
807 => 0.030686384965216
808 => 0.032291738254163
809 => 0.031353924003979
810 => 0.031056681909693
811 => 0.029897034525427
812 => 0.030444343451879
813 => 0.031184586611615
814 => 0.030727202401402
815 => 0.031676343314178
816 => 0.033020579973305
817 => 0.033978563067275
818 => 0.034052105113907
819 => 0.033436186164366
820 => 0.034423200211747
821 => 0.034430389531534
822 => 0.033317033654018
823 => 0.032635109378231
824 => 0.032480174747991
825 => 0.032867231831054
826 => 0.033337190584571
827 => 0.03407818455398
828 => 0.034525951690656
829 => 0.035693490905768
830 => 0.036009393541404
831 => 0.036356474762274
901 => 0.036820282309241
902 => 0.037377202187189
903 => 0.036158693199706
904 => 0.036207106833363
905 => 0.035072448135624
906 => 0.033859902590572
907 => 0.034780073513331
908 => 0.035983074589629
909 => 0.035707104813528
910 => 0.035676052576165
911 => 0.035728273826236
912 => 0.035520201627387
913 => 0.034579098783505
914 => 0.034106482826923
915 => 0.034716277988103
916 => 0.035040356977411
917 => 0.035542975227168
918 => 0.035481016918901
919 => 0.036775707553017
920 => 0.037278785184022
921 => 0.037150076398106
922 => 0.037173761912264
923 => 0.038084559933079
924 => 0.039097554652125
925 => 0.040046357882937
926 => 0.041011521281367
927 => 0.039847979133591
928 => 0.039257204188254
929 => 0.039866733131943
930 => 0.039543308494681
1001 => 0.04140180239437
1002 => 0.041530480479668
1003 => 0.043388839989095
1004 => 0.045152644452875
1005 => 0.044044830471014
1006 => 0.045089449158871
1007 => 0.0462192894388
1008 => 0.048398934648762
1009 => 0.04766490682289
1010 => 0.047102653011955
1011 => 0.046571325877411
1012 => 0.047676933298589
1013 => 0.049099279583424
1014 => 0.049405639350114
1015 => 0.049902059210591
1016 => 0.049380134426632
1017 => 0.050008735340781
1018 => 0.052227972788964
1019 => 0.051628315240714
1020 => 0.050776705122438
1021 => 0.052528579949948
1022 => 0.053162576639783
1023 => 0.05761229743569
1024 => 0.063230253749319
1025 => 0.060904382945987
1026 => 0.059460639882976
1027 => 0.059799953748827
1028 => 0.061851441214742
1029 => 0.062510313877836
1030 => 0.060719270852519
1031 => 0.06135189752778
1101 => 0.064837732706953
1102 => 0.066707771441597
1103 => 0.064168007660241
1104 => 0.057160900115972
1105 => 0.050700026948956
1106 => 0.052413741449759
1107 => 0.05221945940812
1108 => 0.055964554441346
1109 => 0.051614013606508
1110 => 0.051687265556583
1111 => 0.055509805188972
1112 => 0.05449001714997
1113 => 0.052838091131372
1114 => 0.050712087837022
1115 => 0.046781974115914
1116 => 0.043300962793799
1117 => 0.050128027625496
1118 => 0.049833632175741
1119 => 0.049407303937535
1120 => 0.050356051298129
1121 => 0.054962899174535
1122 => 0.054856696420073
1123 => 0.054181088681304
1124 => 0.054693531196627
1125 => 0.052748257480812
1126 => 0.053249598810437
1127 => 0.050699003513636
1128 => 0.051851979110059
1129 => 0.052834546840054
1130 => 0.053031811859014
1201 => 0.053476260019333
1202 => 0.049678499151153
1203 => 0.051383582284565
1204 => 0.05238515888076
1205 => 0.047859999381481
1206 => 0.052295711026956
1207 => 0.049612388583694
1208 => 0.0487016286443
1209 => 0.049927846919196
1210 => 0.049449988464932
1211 => 0.049039153826747
1212 => 0.048809901039604
1213 => 0.049710300407915
1214 => 0.049668295701173
1215 => 0.04819506757463
1216 => 0.046273301540014
1217 => 0.046918309301051
1218 => 0.046683971934486
1219 => 0.045834703087934
1220 => 0.046407007749398
1221 => 0.043886867657069
1222 => 0.039551097613701
1223 => 0.042415440112578
1224 => 0.042305166042176
1225 => 0.042249560855349
1226 => 0.044402035078643
1227 => 0.044195124348103
1228 => 0.043819579346097
1229 => 0.045827805909466
1230 => 0.045094776199377
1231 => 0.04735380104235
]
'min_raw' => 0.020278710907761
'max_raw' => 0.066707771441597
'avg_raw' => 0.043493241174679
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.020278'
'max' => '$0.0667077'
'avg' => '$0.043493'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.011047318874497
'max_diff' => 0.044097208385772
'year' => 2029
]
4 => [
'items' => [
101 => 0.048841740908498
102 => 0.048464351228631
103 => 0.04986376586458
104 => 0.046933168977132
105 => 0.047906595708003
106 => 0.048107217608125
107 => 0.045803024705403
108 => 0.044228977502528
109 => 0.044124006499548
110 => 0.041394825566828
111 => 0.042852731991908
112 => 0.044135629313712
113 => 0.043521221053422
114 => 0.043326717753138
115 => 0.044320392931666
116 => 0.04439761000329
117 => 0.042637052587165
118 => 0.04300312822358
119 => 0.044529724482441
120 => 0.042964661914699
121 => 0.039924000997096
122 => 0.039169875049104
123 => 0.039069260746343
124 => 0.037024011364906
125 => 0.039220269350943
126 => 0.038261543883983
127 => 0.041290146146813
128 => 0.039560224777004
129 => 0.039485651324302
130 => 0.039372922612995
131 => 0.037612491982204
201 => 0.037997914409145
202 => 0.039279117257787
203 => 0.039736264867965
204 => 0.039688580626924
205 => 0.03927283866487
206 => 0.039463163206155
207 => 0.038850061545211
208 => 0.038633562588125
209 => 0.037950232326829
210 => 0.036945925617527
211 => 0.037085580625227
212 => 0.035095786242955
213 => 0.034011640657112
214 => 0.03371156344776
215 => 0.033310287662324
216 => 0.033756888615479
217 => 0.035090149405474
218 => 0.033481954025684
219 => 0.030724815848824
220 => 0.030890524551188
221 => 0.031262822806045
222 => 0.030569047471119
223 => 0.029912447340761
224 => 0.030483307882455
225 => 0.029315072090209
226 => 0.031403998520226
227 => 0.031347498914442
228 => 0.032126121509209
301 => 0.03261301019666
302 => 0.031490889404169
303 => 0.031208679059395
304 => 0.031369438897523
305 => 0.028712436870224
306 => 0.031908987758146
307 => 0.031936631662965
308 => 0.031699927766808
309 => 0.03340199243219
310 => 0.036993879763429
311 => 0.035642467266084
312 => 0.035119159500453
313 => 0.034124351055452
314 => 0.035449874242535
315 => 0.03534809474315
316 => 0.034887809248202
317 => 0.034609427144679
318 => 0.035122354706081
319 => 0.034545869743503
320 => 0.034442317203477
321 => 0.033814901477193
322 => 0.033590942608506
323 => 0.033425132378189
324 => 0.033242591606788
325 => 0.033645231062174
326 => 0.032732797084638
327 => 0.031632491154736
328 => 0.03154101262214
329 => 0.031793592893513
330 => 0.03168184492582
331 => 0.031540477615863
401 => 0.031270568922059
402 => 0.031190492778294
403 => 0.031450701398108
404 => 0.031156941037443
405 => 0.031590400451559
406 => 0.031472523475323
407 => 0.030814072268242
408 => 0.02999339827436
409 => 0.029986092554393
410 => 0.029809279688586
411 => 0.029584081919989
412 => 0.029521437052592
413 => 0.030435231599893
414 => 0.032326758965237
415 => 0.031955406883006
416 => 0.03222374682011
417 => 0.033543713724863
418 => 0.033963291511095
419 => 0.033665485136672
420 => 0.033257829403466
421 => 0.033275764186839
422 => 0.034668847232989
423 => 0.034755732113787
424 => 0.034975262177439
425 => 0.035257420348419
426 => 0.033713537893277
427 => 0.033203047462041
428 => 0.03296114877479
429 => 0.032216194444632
430 => 0.03301956382215
501 => 0.032551474889577
502 => 0.032614636078776
503 => 0.032573502271451
504 => 0.032595964111706
505 => 0.031403414622716
506 => 0.031837916977948
507 => 0.031115472539257
508 => 0.030148200534044
509 => 0.030144957899113
510 => 0.030381696352056
511 => 0.030240875056669
512 => 0.029861928571629
513 => 0.029915756131252
514 => 0.029444170068936
515 => 0.029973015217559
516 => 0.029988180604122
517 => 0.029784546415513
518 => 0.030599305333534
519 => 0.030933112727027
520 => 0.030799076341817
521 => 0.030923708376927
522 => 0.031970838238577
523 => 0.032141566095505
524 => 0.032217392131903
525 => 0.032115795288154
526 => 0.030942847988554
527 => 0.030994873189049
528 => 0.030613146787084
529 => 0.030290628202762
530 => 0.030303527254748
531 => 0.030469343731571
601 => 0.031193474010864
602 => 0.032717363493827
603 => 0.032775193985756
604 => 0.03284528622901
605 => 0.03256018585016
606 => 0.032474196847855
607 => 0.032587638537539
608 => 0.033159931305037
609 => 0.034632023679013
610 => 0.034111687916306
611 => 0.033688646841717
612 => 0.034059767915186
613 => 0.034002636734869
614 => 0.033520392078201
615 => 0.033506857076854
616 => 0.032581275397766
617 => 0.032239108925482
618 => 0.031953169010525
619 => 0.031640930088043
620 => 0.031455824388452
621 => 0.03174023087206
622 => 0.031805277999859
623 => 0.031183418252876
624 => 0.031098661067213
625 => 0.031606485160374
626 => 0.031383010710565
627 => 0.031612859724094
628 => 0.031666186666841
629 => 0.031657599800835
630 => 0.031424266809356
701 => 0.031572986300035
702 => 0.031221220369166
703 => 0.030838727752881
704 => 0.030594721293823
705 => 0.030381793295535
706 => 0.030499938124433
707 => 0.030078773381805
708 => 0.029944034304266
709 => 0.031522603482887
710 => 0.032688709507613
711 => 0.032671753864185
712 => 0.032568540745453
713 => 0.032415186987035
714 => 0.033148712522427
715 => 0.032893166893203
716 => 0.033079097690015
717 => 0.033126424881295
718 => 0.033269670035261
719 => 0.033320867865467
720 => 0.033166112463406
721 => 0.032646734432307
722 => 0.031352493759791
723 => 0.030750021232999
724 => 0.030551195264184
725 => 0.030558422210526
726 => 0.0303590707679
727 => 0.030417788702058
728 => 0.030338651066662
729 => 0.030188783530673
730 => 0.030490684226401
731 => 0.030525475469185
801 => 0.030455008239357
802 => 0.030471605822932
803 => 0.029888167256907
804 => 0.02993252482392
805 => 0.029685536254104
806 => 0.029639228874755
807 => 0.029014863278017
808 => 0.027908709120155
809 => 0.028521625900593
810 => 0.027781308618965
811 => 0.027500939246776
812 => 0.028828164248338
813 => 0.028694947669673
814 => 0.028466938794852
815 => 0.028129666147779
816 => 0.028004568442202
817 => 0.027244514384238
818 => 0.027199606335762
819 => 0.027576309650075
820 => 0.027402474032089
821 => 0.027158342987741
822 => 0.026274125092276
823 => 0.02527997142329
824 => 0.025309978673529
825 => 0.025626200458747
826 => 0.026545657947586
827 => 0.026186409999921
828 => 0.025925771491994
829 => 0.025876961734224
830 => 0.026487918042864
831 => 0.027352549218892
901 => 0.027758214821652
902 => 0.027356212529564
903 => 0.026894413941754
904 => 0.026922521482026
905 => 0.027109508355051
906 => 0.027129158031554
907 => 0.026828574624552
908 => 0.026913187092946
909 => 0.026784653016329
910 => 0.025995839625389
911 => 0.025981572492501
912 => 0.02578798496503
913 => 0.025782123211635
914 => 0.025452782534735
915 => 0.025406705497412
916 => 0.024752779593878
917 => 0.025183195603854
918 => 0.024894495142217
919 => 0.024459355448975
920 => 0.024384337201846
921 => 0.02438208206275
922 => 0.024828873232254
923 => 0.025177974588904
924 => 0.02489951721035
925 => 0.024836117862923
926 => 0.025513057027227
927 => 0.025426910348132
928 => 0.025352307879622
929 => 0.027275130980436
930 => 0.025753066456384
1001 => 0.025089359447492
1002 => 0.024267895989445
1003 => 0.024535368633563
1004 => 0.02459172904967
1005 => 0.022616257512984
1006 => 0.02181480895658
1007 => 0.021539782013974
1008 => 0.021381500120194
1009 => 0.021453631166768
1010 => 0.020732233465465
1011 => 0.021217024651558
1012 => 0.020592355220459
1013 => 0.020487627357485
1014 => 0.021604613681983
1015 => 0.021760035803697
1016 => 0.021096956746595
1017 => 0.021522760844003
1018 => 0.021368358359163
1019 => 0.020603063384945
1020 => 0.020573834746059
1021 => 0.020189836629415
1022 => 0.019588953933555
1023 => 0.019314334417712
1024 => 0.019171310189504
1025 => 0.019230324773549
1026 => 0.01920048519398
1027 => 0.019005761753022
1028 => 0.019211646513681
1029 => 0.018685696027654
1030 => 0.018476258306247
1031 => 0.018381660146406
1101 => 0.017914848817477
1102 => 0.018657753233743
1103 => 0.018804114762611
1104 => 0.018950764668904
1105 => 0.020227251981041
1106 => 0.020163482282242
1107 => 0.020739929302279
1108 => 0.020717529631099
1109 => 0.020553117603161
1110 => 0.019859490301761
1111 => 0.020135957781381
1112 => 0.019285033851695
1113 => 0.019922603917019
1114 => 0.019631643564767
1115 => 0.019824229929243
1116 => 0.019477942281103
1117 => 0.01966959216345
1118 => 0.01883882251076
1119 => 0.018063061498323
1120 => 0.018375250375604
1121 => 0.018714635388336
1122 => 0.019450508569633
1123 => 0.019012228573675
1124 => 0.019169850633423
1125 => 0.01864184311888
1126 => 0.017552412798489
1127 => 0.017558578855791
1128 => 0.017390993735528
1129 => 0.017246175723793
1130 => 0.019062570303458
1201 => 0.018836672924528
1202 => 0.01847673501592
1203 => 0.018958526209955
1204 => 0.019085919448713
1205 => 0.019089546155126
1206 => 0.019441048573463
1207 => 0.01962864547714
1208 => 0.019661710244505
1209 => 0.020214806894471
1210 => 0.020400197596019
1211 => 0.021163795658218
1212 => 0.01961272919053
1213 => 0.019580785997336
1214 => 0.018965306000086
1215 => 0.018574958855476
1216 => 0.018992033403034
1217 => 0.019361504515817
1218 => 0.018976786497457
1219 => 0.019027022548814
1220 => 0.018510570041783
1221 => 0.018695177511697
1222 => 0.018854186334099
1223 => 0.018766391008475
1224 => 0.018634957156675
1225 => 0.019331212097961
1226 => 0.019291926665529
1227 => 0.019940295273687
1228 => 0.02044574496903
1229 => 0.021351601183026
1230 => 0.020406293000369
1231 => 0.020371842212933
]
'min_raw' => 0.017246175723793
'max_raw' => 0.04986376586458
'avg_raw' => 0.033554970794187
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.017246'
'max' => '$0.049863'
'avg' => '$0.033554'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.003032535183968
'max_diff' => -0.016844005577016
'year' => 2030
]
5 => [
'items' => [
101 => 0.020708604186197
102 => 0.020400146039515
103 => 0.020595080940605
104 => 0.021320194156778
105 => 0.021335514656417
106 => 0.02107887654811
107 => 0.021063260095897
108 => 0.02111255025191
109 => 0.021401244235232
110 => 0.021300365686789
111 => 0.02141710489698
112 => 0.021563089066897
113 => 0.02216694148968
114 => 0.02231252826448
115 => 0.021958827879804
116 => 0.021990763064325
117 => 0.021858469411163
118 => 0.021730675399844
119 => 0.022017937674473
120 => 0.022542915127513
121 => 0.022539649270024
122 => 0.022661433835026
123 => 0.022737304610104
124 => 0.022411611702667
125 => 0.022199597595985
126 => 0.022280897295295
127 => 0.022410897284968
128 => 0.022238740050739
129 => 0.02117610585009
130 => 0.021498441185232
131 => 0.021444788824072
201 => 0.02136838133743
202 => 0.02169249200946
203 => 0.021661230744469
204 => 0.020724834489347
205 => 0.02078477953947
206 => 0.020728479946389
207 => 0.020910395449445
208 => 0.020390322005354
209 => 0.020550293094009
210 => 0.020650625461177
211 => 0.020709721996228
212 => 0.020923219203708
213 => 0.020898167770586
214 => 0.020921661971452
215 => 0.021238221968971
216 => 0.022839273806153
217 => 0.022926415525129
218 => 0.022497297830305
219 => 0.022668721885415
220 => 0.022339625185923
221 => 0.022560550005048
222 => 0.022711701155411
223 => 0.022028678171614
224 => 0.021988233983296
225 => 0.02165777898466
226 => 0.021835346782999
227 => 0.021552823648265
228 => 0.021622144943289
301 => 0.021428316559079
302 => 0.02177716905981
303 => 0.022167240361825
304 => 0.022265787777096
305 => 0.022006551954847
306 => 0.021818848135065
307 => 0.021489302061011
308 => 0.022037344526577
309 => 0.0221976088448
310 => 0.02203650272634
311 => 0.021999170918454
312 => 0.021928427209968
313 => 0.022014179530637
314 => 0.022196736010904
315 => 0.022110645746099
316 => 0.022167509882718
317 => 0.021950802431969
318 => 0.022411719520571
319 => 0.023143766783009
320 => 0.02314612043466
321 => 0.023060029705796
322 => 0.023024803234395
323 => 0.023113137546632
324 => 0.023161055287357
325 => 0.023446712255388
326 => 0.023753233563161
327 => 0.025183634760812
328 => 0.024781983828355
329 => 0.026051120865859
330 => 0.027054843485706
331 => 0.027355816011927
401 => 0.027078935449655
402 => 0.026131742002917
403 => 0.026085268173595
404 => 0.02750077507778
405 => 0.027100829543025
406 => 0.027053257294281
407 => 0.026547168942238
408 => 0.026846329838557
409 => 0.026780898962107
410 => 0.026677613122641
411 => 0.02724839127309
412 => 0.028316837017014
413 => 0.028150309728003
414 => 0.028026004831734
415 => 0.027481336960898
416 => 0.027809348675115
417 => 0.027692549986333
418 => 0.02819439127562
419 => 0.027897111612992
420 => 0.027097799562241
421 => 0.02722509264089
422 => 0.027205852548131
423 => 0.027601812293757
424 => 0.027482955006445
425 => 0.027182643755192
426 => 0.028313185185616
427 => 0.028239774113526
428 => 0.028343854229642
429 => 0.028389673515541
430 => 0.029077814161866
501 => 0.02935972336662
502 => 0.029423721691615
503 => 0.029691513632491
504 => 0.029417058784173
505 => 0.030515073860437
506 => 0.031245189815196
507 => 0.032093257068073
508 => 0.033332511263514
509 => 0.033798482304742
510 => 0.033714308806889
511 => 0.03465389719446
512 => 0.036342316641048
513 => 0.034055586650804
514 => 0.036463518883145
515 => 0.035701195339301
516 => 0.03389373993046
517 => 0.03377736111063
518 => 0.035001390898486
519 => 0.037716171159449
520 => 0.03703614949486
521 => 0.037717283431281
522 => 0.036922704513887
523 => 0.036883246973401
524 => 0.037678692506796
525 => 0.039537294353052
526 => 0.038654342284544
527 => 0.037388413985609
528 => 0.038323155741517
529 => 0.037513395926284
530 => 0.035688780425062
531 => 0.037035629495109
601 => 0.036135029878022
602 => 0.036397872724797
603 => 0.038290799165831
604 => 0.038063037248384
605 => 0.038357782259747
606 => 0.037837565029511
607 => 0.037351600105744
608 => 0.036444510487304
609 => 0.036175965970261
610 => 0.036250182013552
611 => 0.036175929192476
612 => 0.035668420887543
613 => 0.035558824517413
614 => 0.035376159099002
615 => 0.035432774750262
616 => 0.035089310322997
617 => 0.035737498660618
618 => 0.035857808127897
619 => 0.036329505545596
620 => 0.036378478736297
621 => 0.037692149330396
622 => 0.036968601642504
623 => 0.037454019899644
624 => 0.037410599521792
625 => 0.033932912969853
626 => 0.034412107492822
627 => 0.035157583791037
628 => 0.03482174772916
629 => 0.034346954111203
630 => 0.033963532807879
701 => 0.033382610326503
702 => 0.034200247563412
703 => 0.035275353583922
704 => 0.036405745199172
705 => 0.037763836658704
706 => 0.037460726454864
707 => 0.036380356624005
708 => 0.036428821225407
709 => 0.036728410321154
710 => 0.036340415221622
711 => 0.036225987892206
712 => 0.036712689763244
713 => 0.036716041411543
714 => 0.036269606158757
715 => 0.035773475072074
716 => 0.035771396264705
717 => 0.035683114529888
718 => 0.036938409638392
719 => 0.037628695023419
720 => 0.037707835130362
721 => 0.037623368263666
722 => 0.037655876208287
723 => 0.037254214352141
724 => 0.038172294246168
725 => 0.039014815145619
726 => 0.038789001546732
727 => 0.038450474860707
728 => 0.038180822049633
729 => 0.038725479914133
730 => 0.038701227156798
731 => 0.039007456460561
801 => 0.038993564130477
802 => 0.038890590733488
803 => 0.038789005224237
804 => 0.039191780285711
805 => 0.039075787536376
806 => 0.038959614618263
807 => 0.038726612045804
808 => 0.038758280965164
809 => 0.038419812730544
810 => 0.038263221837956
811 => 0.03590847052752
812 => 0.035279204033653
813 => 0.035477184082524
814 => 0.035542364255162
815 => 0.035268506670604
816 => 0.035661148098619
817 => 0.035599955347973
818 => 0.035838020544175
819 => 0.035689287745177
820 => 0.035695391791128
821 => 0.036132783239803
822 => 0.03625975983815
823 => 0.036195178515404
824 => 0.036240409060137
825 => 0.037282727872891
826 => 0.037134543469196
827 => 0.037055823458158
828 => 0.037077629439198
829 => 0.037343964243424
830 => 0.037418523447266
831 => 0.037102610861405
901 => 0.037251597063166
902 => 0.0378859614011
903 => 0.038107953017465
904 => 0.038816443694881
905 => 0.038515464262697
906 => 0.039067925036555
907 => 0.040766001107639
908 => 0.042122541771147
909 => 0.040875010915571
910 => 0.043366125089692
911 => 0.04530581480335
912 => 0.045231366281417
913 => 0.04489313651401
914 => 0.042684851344329
915 => 0.040652754407513
916 => 0.042352689782554
917 => 0.042357023267419
918 => 0.042210997311105
919 => 0.041304042637766
920 => 0.042179437254411
921 => 0.042248922900114
922 => 0.042210029416245
923 => 0.041514669394664
924 => 0.040452983165722
925 => 0.040660434113539
926 => 0.041000242997949
927 => 0.040356913888202
928 => 0.040151331256953
929 => 0.040533548482141
930 => 0.041765132019821
1001 => 0.0415323082861
1002 => 0.041526228317498
1003 => 0.042522346982984
1004 => 0.041809340994359
1005 => 0.040663050734341
1006 => 0.040373597325976
1007 => 0.039346232725459
1008 => 0.040055837114383
1009 => 0.040081374513056
1010 => 0.039692731441223
1011 => 0.040694586977686
1012 => 0.040685354702545
1013 => 0.041636467427899
1014 => 0.043454637737149
1015 => 0.042916915309976
1016 => 0.042291602631209
1017 => 0.042359591457431
1018 => 0.043105261070363
1019 => 0.042654412200403
1020 => 0.04281654059747
1021 => 0.043105015669617
1022 => 0.043279059843075
1023 => 0.042334549179257
1024 => 0.042114338562354
1025 => 0.041663864923593
1026 => 0.041546344759729
1027 => 0.041913246139059
1028 => 0.041816580588423
1029 => 0.040079228193583
1030 => 0.039897665201785
1031 => 0.039903233479531
1101 => 0.039446684703805
1102 => 0.038750338236562
1103 => 0.040580295175791
1104 => 0.04043332402334
1105 => 0.040271079245697
1106 => 0.040290953305203
1107 => 0.041085275589527
1108 => 0.040624528550382
1109 => 0.041849500068903
1110 => 0.04159768275071
1111 => 0.041339407268498
1112 => 0.041303705729593
1113 => 0.04120429170397
1114 => 0.04086336401978
1115 => 0.040451673354543
1116 => 0.040179839517319
1117 => 0.037063778056445
1118 => 0.037642100938288
1119 => 0.038307408698058
1120 => 0.038537070270677
1121 => 0.038144218258615
1122 => 0.040878876211677
1123 => 0.041378524571522
1124 => 0.039865057098298
1125 => 0.039581949128527
1126 => 0.040897436723043
1127 => 0.040104036891732
1128 => 0.040461304787191
1129 => 0.039689087012299
1130 => 0.041258173913047
1201 => 0.041246220099803
1202 => 0.040635809855977
1203 => 0.04115172441415
1204 => 0.041062071563633
1205 => 0.040372919901728
1206 => 0.041280021249947
1207 => 0.041280471160899
1208 => 0.040692964572679
1209 => 0.040006885499369
1210 => 0.039884230765525
1211 => 0.039791826899919
1212 => 0.040438579100712
1213 => 0.041018455101601
1214 => 0.042097460575803
1215 => 0.042368748188555
1216 => 0.043427601801766
1217 => 0.042797106029745
1218 => 0.043076596639195
1219 => 0.043380023232113
1220 => 0.043525497098901
1221 => 0.043288455239528
1222 => 0.044933290742379
1223 => 0.045072165255277
1224 => 0.045118728678192
1225 => 0.044564099401193
1226 => 0.045056740011767
1227 => 0.044826249784621
1228 => 0.045425921323624
1229 => 0.04551995747793
1230 => 0.045440312200666
1231 => 0.045470160760302
]
'min_raw' => 0.020390322005354
'max_raw' => 0.04551995747793
'avg_raw' => 0.032955139741642
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.02039'
'max' => '$0.045519'
'avg' => '$0.032955'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0031441462815609
'max_diff' => -0.0043438083866505
'year' => 2031
]
6 => [
'items' => [
101 => 0.044066583827485
102 => 0.04399380095906
103 => 0.043001401383652
104 => 0.043405811546078
105 => 0.042649786131306
106 => 0.042889529578255
107 => 0.042995206205311
108 => 0.042940006732433
109 => 0.04342867628989
110 => 0.043013207337456
111 => 0.041916716462565
112 => 0.040819926849467
113 => 0.0408061575493
114 => 0.040517392204117
115 => 0.04030866774956
116 => 0.040348875484405
117 => 0.040490572786378
118 => 0.040300432044777
119 => 0.040341008212378
120 => 0.041014842952141
121 => 0.041149975703631
122 => 0.040690741814294
123 => 0.03884685148147
124 => 0.038394356168746
125 => 0.03871960082616
126 => 0.038564154828355
127 => 0.031124282755362
128 => 0.032872170341729
129 => 0.031833634890563
130 => 0.032312239807179
131 => 0.03125216403899
201 => 0.031758087758901
202 => 0.03166466212121
203 => 0.034475213636335
204 => 0.034431330740214
205 => 0.034452335160356
206 => 0.033449739460245
207 => 0.035046901633961
208 => 0.035833721152828
209 => 0.035688101800409
210 => 0.035724751054167
211 => 0.035094995449817
212 => 0.034458432571183
213 => 0.033752386372454
214 => 0.035064132939746
215 => 0.034918289113724
216 => 0.035252802377666
217 => 0.036103563792137
218 => 0.036228841642146
219 => 0.036397216343
220 => 0.036336865998471
221 => 0.037774656048223
222 => 0.037600530186354
223 => 0.038020123414029
224 => 0.037156988310087
225 => 0.036180269010439
226 => 0.036365911417943
227 => 0.036348032561258
228 => 0.036120414195268
229 => 0.035914930511956
301 => 0.035572858073911
302 => 0.03665522588508
303 => 0.036611283728583
304 => 0.037322656165112
305 => 0.037196914177052
306 => 0.036357178406505
307 => 0.03638716973383
308 => 0.036588875823431
309 => 0.037286982902578
310 => 0.037494228614424
311 => 0.037398224143383
312 => 0.037625459605296
313 => 0.037805057249255
314 => 0.037648014304243
315 => 0.039871411231352
316 => 0.038948101812523
317 => 0.039398116398914
318 => 0.039505442226129
319 => 0.039230529376538
320 => 0.039290148129723
321 => 0.039380454295661
322 => 0.039928775651474
323 => 0.041367729547191
324 => 0.042005032432314
325 => 0.043922389606176
326 => 0.041952113299389
327 => 0.041835205257158
328 => 0.04218057918281
329 => 0.043306270816736
330 => 0.044218538155194
331 => 0.044521189861326
401 => 0.044561190280527
402 => 0.045128985001135
403 => 0.045454434346244
404 => 0.04506003978757
405 => 0.044725831693925
406 => 0.043528739785927
407 => 0.04366730643385
408 => 0.044621893228113
409 => 0.045970303299891
410 => 0.047127379419633
411 => 0.046722211690673
412 => 0.049813355458794
413 => 0.050119829737213
414 => 0.050077484901435
415 => 0.050775678917162
416 => 0.049389905980683
417 => 0.048797461202253
418 => 0.044798091277194
419 => 0.045921751093956
420 => 0.047555056627847
421 => 0.047338882515855
422 => 0.046152732378762
423 => 0.047126479618389
424 => 0.046804528329077
425 => 0.046550591989425
426 => 0.047713923589351
427 => 0.046434792708204
428 => 0.047542296318824
429 => 0.046121911482546
430 => 0.04672406246273
501 => 0.046382252443612
502 => 0.046603445416642
503 => 0.045310355816024
504 => 0.046008075576542
505 => 0.045281328380097
506 => 0.0452809838073
507 => 0.045264940822659
508 => 0.046119955676386
509 => 0.04614783768007
510 => 0.04551598041131
511 => 0.045424919907416
512 => 0.045761618317054
513 => 0.045367432660821
514 => 0.045551869648397
515 => 0.045373019069286
516 => 0.045332756036758
517 => 0.045011933343388
518 => 0.04487371410588
519 => 0.044927913430378
520 => 0.044742903194201
521 => 0.044631427834791
522 => 0.045242765567878
523 => 0.044916152478383
524 => 0.045192707427622
525 => 0.044877538158947
526 => 0.043785024161008
527 => 0.043156707807668
528 => 0.041093050141662
529 => 0.041678300895782
530 => 0.042066322751249
531 => 0.041938081530332
601 => 0.042213593295626
602 => 0.042230507480402
603 => 0.042140935796994
604 => 0.042037223262452
605 => 0.0419867417363
606 => 0.042362989673501
607 => 0.042581414264969
608 => 0.042105265935508
609 => 0.041993711043938
610 => 0.042475123293893
611 => 0.042768784488263
612 => 0.044937013753517
613 => 0.044776384326259
614 => 0.045179532666744
615 => 0.045134144350421
616 => 0.045556708037817
617 => 0.04624742107797
618 => 0.044843008340935
619 => 0.045086765831145
620 => 0.045027002123728
621 => 0.045679486610423
622 => 0.04568152359577
623 => 0.045290326551979
624 => 0.045502400815865
625 => 0.045384026779717
626 => 0.045597944662247
627 => 0.044774239022327
628 => 0.04577742357822
629 => 0.046346164577627
630 => 0.046354061546956
701 => 0.046623640266867
702 => 0.046897547859244
703 => 0.047423289630486
704 => 0.04688288520659
705 => 0.045910750255312
706 => 0.045980935258817
707 => 0.045410972892573
708 => 0.045420554062922
709 => 0.045369409024711
710 => 0.045522899134401
711 => 0.044807921469906
712 => 0.044975725298686
713 => 0.044740798955736
714 => 0.045086255147156
715 => 0.044714601391142
716 => 0.045026973303859
717 => 0.045161782666095
718 => 0.045659232114982
719 => 0.044641127703078
720 => 0.042565143887595
721 => 0.043001540854481
722 => 0.042356075462215
723 => 0.04241581574173
724 => 0.042536500613943
725 => 0.042145321457466
726 => 0.04221994611305
727 => 0.042217279995227
728 => 0.042194304832181
729 => 0.042092544025525
730 => 0.041944970723112
731 => 0.042532857339257
801 => 0.042632750731063
802 => 0.042854801366874
803 => 0.043515473440661
804 => 0.04344945672077
805 => 0.04355713272992
806 => 0.043322076606519
807 => 0.042426719321137
808 => 0.042475341529427
809 => 0.041869021812931
810 => 0.04283929640853
811 => 0.042609522577294
812 => 0.042461385893528
813 => 0.042420965426886
814 => 0.043083275178956
815 => 0.043281448637209
816 => 0.043157960236952
817 => 0.042904681925292
818 => 0.04339105115869
819 => 0.043521183047276
820 => 0.043550314778051
821 => 0.04441206780758
822 => 0.04359847719952
823 => 0.043794316545275
824 => 0.045322199216051
825 => 0.043936620467054
826 => 0.044670592432491
827 => 0.044634668324189
828 => 0.045010143545449
829 => 0.044603868396745
830 => 0.044608904664129
831 => 0.044942301223714
901 => 0.044474105884164
902 => 0.044358174133845
903 => 0.044198015251099
904 => 0.04454771631228
905 => 0.044757346282839
906 => 0.0464468098893
907 => 0.047538280427974
908 => 0.047490896813341
909 => 0.047923894352674
910 => 0.047728824995402
911 => 0.047098894584074
912 => 0.048174108984381
913 => 0.047833866159242
914 => 0.047861915364352
915 => 0.047860871371536
916 => 0.048087103105709
917 => 0.047926797188214
918 => 0.047610817769765
919 => 0.047820579653874
920 => 0.048443497458429
921 => 0.050377053437221
922 => 0.051459096979163
923 => 0.050311913057342
924 => 0.051103225165209
925 => 0.050628719873823
926 => 0.050542488147068
927 => 0.051039490628314
928 => 0.051537363046611
929 => 0.051505650725927
930 => 0.051144220916275
1001 => 0.050940058387744
1002 => 0.052486045453242
1003 => 0.053625102387899
1004 => 0.05354742634129
1005 => 0.053890263149418
1006 => 0.054896842621627
1007 => 0.054988871633701
1008 => 0.054977278093442
1009 => 0.054749174584782
1010 => 0.055740282796033
1011 => 0.056567082702748
1012 => 0.054696375213071
1013 => 0.055408716135781
1014 => 0.055728508926177
1015 => 0.056198059620723
1016 => 0.056990270348256
1017 => 0.057850821321875
1018 => 0.057972512665006
1019 => 0.057886166833587
1020 => 0.057318610333634
1021 => 0.058260235477476
1022 => 0.058811817402912
1023 => 0.059140271816781
1024 => 0.059973177560749
1025 => 0.05573048385758
1026 => 0.052727294378917
1027 => 0.052258302975242
1028 => 0.053212015436791
1029 => 0.053463501807188
1030 => 0.053362127966618
1031 => 0.049981765170341
1101 => 0.052240506064702
1102 => 0.054670721346706
1103 => 0.054764075813051
1104 => 0.055980692396627
1105 => 0.056376872627038
1106 => 0.057356408442398
1107 => 0.057295138210448
1108 => 0.057533639593669
1109 => 0.057478812255935
1110 => 0.059293196088288
1111 => 0.061294730893979
1112 => 0.061225424108149
1113 => 0.060937679798746
1114 => 0.061365029165905
1115 => 0.063430827582884
1116 => 0.063240641968394
1117 => 0.063425391092899
1118 => 0.065861083849814
1119 => 0.069027830907058
1120 => 0.067556558962762
1121 => 0.070748795734787
1122 => 0.072758139569577
1123 => 0.076233091961815
1124 => 0.075798010807805
1125 => 0.077150784273725
1126 => 0.075019124737951
1127 => 0.070124403564344
1128 => 0.06934979520238
1129 => 0.070900580759239
1130 => 0.074713035727334
1201 => 0.070780512984918
1202 => 0.07157605721398
1203 => 0.071346940422491
1204 => 0.071334731762356
1205 => 0.071800686663491
1206 => 0.071124794776822
1207 => 0.068371089639901
1208 => 0.069633096476465
1209 => 0.069145775030322
1210 => 0.069686494507039
1211 => 0.072604534513203
1212 => 0.071314399469092
1213 => 0.069955347002182
1214 => 0.071659900393573
1215 => 0.073830382608908
1216 => 0.073694557732604
1217 => 0.07343100070218
1218 => 0.074916657883283
1219 => 0.077370528289753
1220 => 0.078033799600172
1221 => 0.078523412921538
1222 => 0.078590922326469
1223 => 0.079286311154126
1224 => 0.075547030167269
1225 => 0.081481365124958
1226 => 0.082506060839456
1227 => 0.082313460514416
1228 => 0.083452366675293
1229 => 0.083117271591503
1230 => 0.082631771389898
1231 => 0.084437179907176
]
'min_raw' => 0.031124282755362
'max_raw' => 0.084437179907176
'avg_raw' => 0.057780731331269
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.031124'
'max' => '$0.084437'
'avg' => '$0.05778'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.010733960750007
'max_diff' => 0.038917222429246
'year' => 2032
]
7 => [
'items' => [
101 => 0.082367424731071
102 => 0.079429667833522
103 => 0.077817956297283
104 => 0.079940388061263
105 => 0.081236483076865
106 => 0.082093119435052
107 => 0.082352337079446
108 => 0.07583729990591
109 => 0.072326056209902
110 => 0.074576723162553
111 => 0.077322692177522
112 => 0.075531776170743
113 => 0.075601976687556
114 => 0.073048601106337
115 => 0.077548609259083
116 => 0.076892995922253
117 => 0.080294319073483
118 => 0.079482566006119
119 => 0.082256212997342
120 => 0.08152581878952
121 => 0.0845576443104
122 => 0.085767121594079
123 => 0.087798022193483
124 => 0.089291960941657
125 => 0.090169230349079
126 => 0.090116562384412
127 => 0.093592740830503
128 => 0.091542959849268
129 => 0.088967951840552
130 => 0.08892137806972
131 => 0.09025501120558
201 => 0.093049940393958
202 => 0.093774624867939
203 => 0.09417962462562
204 => 0.093559353398589
205 => 0.091334463052584
206 => 0.09037376668163
207 => 0.091192307823736
208 => 0.090191302344982
209 => 0.091919318633843
210 => 0.094292254082813
211 => 0.093802252296204
212 => 0.095440254803663
213 => 0.097135415075993
214 => 0.099559570399837
215 => 0.1001933343677
216 => 0.1012409221067
217 => 0.10231923400477
218 => 0.10266555872511
219 => 0.10332680007449
220 => 0.10332331500618
221 => 0.10531601031921
222 => 0.10751401495811
223 => 0.10834371082538
224 => 0.11025155072245
225 => 0.1069844417574
226 => 0.10946258143723
227 => 0.11169792546031
228 => 0.10903285616358
301 => 0.11270603330761
302 => 0.11284865445252
303 => 0.11500206441295
304 => 0.11281917087462
305 => 0.1115229756596
306 => 0.11526504267755
307 => 0.11707571103354
308 => 0.11653032298901
309 => 0.11237989304101
310 => 0.10996416479096
311 => 0.10364173800141
312 => 0.11113092564215
313 => 0.11477869047935
314 => 0.11237044621132
315 => 0.11358502454091
316 => 0.12021137007883
317 => 0.12273425343557
318 => 0.12220951133365
319 => 0.12229818411088
320 => 0.12365948617661
321 => 0.12969624921877
322 => 0.12607888087283
323 => 0.12884422343309
324 => 0.13031095115587
325 => 0.13167332960641
326 => 0.12832775871602
327 => 0.12397522014381
328 => 0.12259658847085
329 => 0.11213099378017
330 => 0.11158621412674
331 => 0.11128041279876
401 => 0.10935237868231
402 => 0.10783747199976
403 => 0.10663276196092
404 => 0.10347124306214
405 => 0.10453816288312
406 => 0.099499361618739
407 => 0.10272300810354
408 => 0.094680959619474
409 => 0.10137861656776
410 => 0.097733386395903
411 => 0.10018106041816
412 => 0.10017252071408
413 => 0.095665576803353
414 => 0.093066065613167
415 => 0.094722575318043
416 => 0.096498485215574
417 => 0.09678662062157
418 => 0.09908913415971
419 => 0.099731716195841
420 => 0.097784662627075
421 => 0.094514306039802
422 => 0.095273935286133
423 => 0.093050671750736
424 => 0.089154487921549
425 => 0.091952795168514
426 => 0.092908260295513
427 => 0.093330248127243
428 => 0.089498798810974
429 => 0.08829487425099
430 => 0.08765391491716
501 => 0.094019714046352
502 => 0.094368446892628
503 => 0.092584280345224
504 => 0.1006488823211
505 => 0.098823614518135
506 => 0.10086288585552
507 => 0.095205006894086
508 => 0.095421145489757
509 => 0.092742614917881
510 => 0.094242413058654
511 => 0.093182404073506
512 => 0.094121244190174
513 => 0.094683981085121
514 => 0.097362072136487
515 => 0.10140919606569
516 => 0.096962054639879
517 => 0.095024371436414
518 => 0.0962264991979
519 => 0.099427923841281
520 => 0.10427824605392
521 => 0.1014067576822
522 => 0.10268107546054
523 => 0.10295945720465
524 => 0.10084212798763
525 => 0.10435631500227
526 => 0.10623959637263
527 => 0.10817145336844
528 => 0.10984883066851
529 => 0.10739982720187
530 => 0.11002061196203
531 => 0.10790872207613
601 => 0.10601413852531
602 => 0.10601701182651
603 => 0.10482851188963
604 => 0.10252564350131
605 => 0.10210095923816
606 => 0.10431022040676
607 => 0.10608183864617
608 => 0.10622775760985
609 => 0.10720861649621
610 => 0.10778907868152
611 => 0.11347839719755
612 => 0.11576668816921
613 => 0.11856476705423
614 => 0.11965477647103
615 => 0.12293531402559
616 => 0.12028601351805
617 => 0.11971282068836
618 => 0.11175530963665
619 => 0.11305835162558
620 => 0.11514464757471
621 => 0.11178971188842
622 => 0.11391764638162
623 => 0.1143377457264
624 => 0.11167571245758
625 => 0.11309761944612
626 => 0.1093214560506
627 => 0.10149150610865
628 => 0.10436503197487
629 => 0.10648091423075
630 => 0.10346128936521
701 => 0.10887385006108
702 => 0.10571194384048
703 => 0.10470977136682
704 => 0.10079993924677
705 => 0.10264522950419
706 => 0.10514101099937
707 => 0.10359890820109
708 => 0.10679900305542
709 => 0.11133119080327
710 => 0.11456109768883
711 => 0.11480904983359
712 => 0.11273243609313
713 => 0.116060222865
714 => 0.1160844621586
715 => 0.11233070508553
716 => 0.11003154977928
717 => 0.10950917685624
718 => 0.11081416683524
719 => 0.1123986655842
720 => 0.11489697848661
721 => 0.11640665665002
722 => 0.12034309662875
723 => 0.12140818442042
724 => 0.12257839298902
725 => 0.12414215251562
726 => 0.12601984676703
727 => 0.12191155864215
728 => 0.12207478858816
729 => 0.11824920756939
730 => 0.11416102560702
731 => 0.11726344611738
801 => 0.12131944823697
802 => 0.12038899686926
803 => 0.12028430208299
804 => 0.12046036967358
805 => 0.11975883972802
806 => 0.11658584578417
807 => 0.11499238808956
808 => 0.11704835505002
809 => 0.11814100998894
810 => 0.11983562250968
811 => 0.11962672574757
812 => 0.12399186561291
813 => 0.1256880269696
814 => 0.12525407631172
815 => 0.12533393367638
816 => 0.12840475279344
817 => 0.13182013521373
818 => 0.13501909154975
819 => 0.13827320733311
820 => 0.13435024374596
821 => 0.13235840477117
822 => 0.13441347416077
823 => 0.13332302541545
824 => 0.13958906735416
825 => 0.14002291450275
826 => 0.1462885033353
827 => 0.15223529322983
828 => 0.14850022104489
829 => 0.15202222588395
830 => 0.15583156127066
831 => 0.16318038727401
901 => 0.1607055612109
902 => 0.15880988323202
903 => 0.15701847670183
904 => 0.16074610931338
905 => 0.16554164911775
906 => 0.1665745624605
907 => 0.16824827667902
908 => 0.16648857083028
909 => 0.16860794269985
910 => 0.17609025669861
911 => 0.17406846940793
912 => 0.17119720643664
913 => 0.17710377472959
914 => 0.1792413388336
915 => 0.19424388316659
916 => 0.21318521511117
917 => 0.20534337931062
918 => 0.20047569877476
919 => 0.20161971916361
920 => 0.20853645238523
921 => 0.21075788756987
922 => 0.20471926096338
923 => 0.20685220596761
924 => 0.21860494264743
925 => 0.22490990880322
926 => 0.21634691789373
927 => 0.1927219655876
928 => 0.17093868062125
929 => 0.17671658870843
930 => 0.17606155324071
1001 => 0.18868840261941
1002 => 0.1740202504497
1003 => 0.17426722451366
1004 => 0.18715518376546
1005 => 0.18371689719263
1006 => 0.17814731328714
1007 => 0.17097934474743
1008 => 0.15772869194493
1009 => 0.14599221923598
1010 => 0.16901014496649
1011 => 0.1680175701536
1012 => 0.16658017473321
1013 => 0.16977894269887
1014 => 0.18531125195402
1015 => 0.18495318195251
1016 => 0.18267532329183
1017 => 0.18440305900983
1018 => 0.17784443286229
1019 => 0.17953474015765
1020 => 0.17093523003761
1021 => 0.17482256775914
1022 => 0.1781353634615
1023 => 0.17880045624553
1024 => 0.18029894424843
1025 => 0.16749452833016
1026 => 0.17324333515956
1027 => 0.17662022058148
1028 => 0.16136332939312
1029 => 0.17631864089733
1030 => 0.16727163193628
1031 => 0.16420094121339
1101 => 0.16833522173902
1102 => 0.16672408859746
1103 => 0.16533893093126
1104 => 0.16456598915349
1105 => 0.16760174848763
1106 => 0.16746012668617
1107 => 0.16249303520003
1108 => 0.1560136668409
1109 => 0.15818835554024
1110 => 0.15739827074796
1111 => 0.15453490153775
1112 => 0.15646446666091
1113 => 0.14796763838906
1114 => 0.13334928697405
1115 => 0.14300661769102
1116 => 0.14263482096357
1117 => 0.14244734419395
1118 => 0.14970456131874
1119 => 0.14900694734468
1120 => 0.1477407711507
1121 => 0.154511647219
1122 => 0.15204018637293
1123 => 0.15965664635109
1124 => 0.16467333949446
1125 => 0.16340094384028
1126 => 0.16811916798939
1127 => 0.15823845597562
1128 => 0.16152043216124
1129 => 0.16219684290447
1130 => 0.15442809565933
1201 => 0.14912108561837
1202 => 0.14876716855298
1203 => 0.13956554449299
1204 => 0.14448097779292
1205 => 0.14880635568241
1206 => 0.14673483533623
1207 => 0.14607905387954
1208 => 0.14942929912013
1209 => 0.14968964186824
1210 => 0.14375379962158
1211 => 0.14498804918833
1212 => 0.15013507505863
1213 => 0.14485835734231
1214 => 0.13460655676645
1215 => 0.1320639684814
1216 => 0.13172474033497
1217 => 0.12482903925071
1218 => 0.13223387638847
1219 => 0.12900146654054
1220 => 0.13921261051993
1221 => 0.13338005984236
1222 => 0.13312863024002
1223 => 0.13274855751939
1224 => 0.12681314273833
1225 => 0.1281126213601
1226 => 0.13243228621502
1227 => 0.13397359129976
1228 => 0.13381282055188
1229 => 0.13241111750065
1230 => 0.13305280997962
1231 => 0.13098569492436
]
'min_raw' => 0.072326056209902
'max_raw' => 0.22490990880322
'avg_raw' => 0.14861798250656
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.072326'
'max' => '$0.2249099'
'avg' => '$0.148617'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.04120177345454
'max_diff' => 0.14047272889604
'year' => 2033
]
8 => [
'items' => [
101 => 0.13025575357507
102 => 0.12795185789051
103 => 0.12456576770165
104 => 0.12503662431051
105 => 0.11832789362767
106 => 0.11467262109237
107 => 0.11366088983032
108 => 0.11230796050354
109 => 0.11381370679779
110 => 0.11830888863655
111 => 0.11288674563298
112 => 0.10359086177245
113 => 0.10414956023188
114 => 0.10540478979117
115 => 0.10306567781162
116 => 0.10085190462976
117 => 0.10277660080229
118 => 0.098837812265113
119 => 0.1058807735681
120 => 0.10569028120253
121 => 0.10831546164248
122 => 0.1099570408457
123 => 0.10617373224984
124 => 0.10522224036914
125 => 0.10576425338728
126 => 0.096805985546286
127 => 0.10758338004097
128 => 0.1076765833961
129 => 0.10687851968407
130 => 0.11261714953777
131 => 0.12472744845261
201 => 0.1201710668652
202 => 0.11840669819719
203 => 0.11505263206957
204 => 0.11952172603989
205 => 0.11917856935169
206 => 0.11762668466937
207 => 0.11668809997133
208 => 0.11841747105605
209 => 0.11647381175583
210 => 0.11612467713732
211 => 0.11400930121138
212 => 0.1132542082493
213 => 0.11269516748129
214 => 0.11207971852592
215 => 0.11343724556114
216 => 0.11036091070177
217 => 0.1066511524382
218 => 0.10634272617872
219 => 0.10719431819825
220 => 0.10681755212318
221 => 0.10634092236771
222 => 0.10543090636213
223 => 0.10516092405268
224 => 0.10603823558157
225 => 0.1050478020159
226 => 0.10650924069376
227 => 0.10611181023847
228 => 0.1038917960222
301 => 0.1011248363542
302 => 0.10110020460926
303 => 0.10050406768751
304 => 0.099744797687882
305 => 0.099533586143729
306 => 0.10261450825905
307 => 0.10899192483353
308 => 0.10773988536132
309 => 0.10864461219416
310 => 0.11309497277068
311 => 0.11450960857095
312 => 0.1135055335874
313 => 0.11213109382128
314 => 0.11219156219559
315 => 0.11688843894764
316 => 0.11718137738936
317 => 0.11792153832606
318 => 0.11887285429918
319 => 0.11366754681123
320 => 0.11194639268102
321 => 0.11113081436812
322 => 0.10861914883294
323 => 0.11132776477871
324 => 0.10974957026161
325 => 0.10996252262077
326 => 0.1098238371175
327 => 0.10989956878016
328 => 0.10587880491688
329 => 0.10734375994353
330 => 0.10490798807902
331 => 0.10164676298067
401 => 0.10163583021061
402 => 0.10243401043326
403 => 0.10195922160403
404 => 0.10068157707252
405 => 0.10086306044791
406 => 0.099273075113724
407 => 0.1010561134551
408 => 0.10110724461471
409 => 0.10042067773053
410 => 0.10316769430728
411 => 0.10429314924013
412 => 0.10384123620928
413 => 0.10426144181718
414 => 0.10779191325401
415 => 0.10836753414348
416 => 0.1086231869192
417 => 0.10828064606723
418 => 0.10432597235407
419 => 0.10450137894982
420 => 0.10321436173431
421 => 0.10212696780974
422 => 0.10217045786409
423 => 0.10272951969264
424 => 0.10517097548644
425 => 0.11030887527281
426 => 0.11050385481395
427 => 0.11074017570576
428 => 0.10977893987339
429 => 0.10948902194857
430 => 0.10987149852558
501 => 0.11180102354741
502 => 0.11676428576447
503 => 0.11500993741182
504 => 0.11358362489306
505 => 0.11483488550311
506 => 0.1146422637399
507 => 0.1130163422107
508 => 0.11297070800867
509 => 0.10985004475558
510 => 0.10869640660497
511 => 0.10773234021801
512 => 0.10667960489103
513 => 0.10605550810119
514 => 0.1070144044173
515 => 0.10723371535012
516 => 0.10513707179631
517 => 0.10485130702729
518 => 0.10656347141253
519 => 0.10581001170251
520 => 0.10658496369917
521 => 0.10676475920981
522 => 0.10673580799155
523 => 0.10594910951999
524 => 0.10645052766608
525 => 0.10526452427064
526 => 0.10397492371005
527 => 0.10315223889735
528 => 0.10243433728497
529 => 0.10283267082421
530 => 0.10141268448965
531 => 0.10095840228255
601 => 0.10628065848045
602 => 0.11021226635773
603 => 0.11015509922211
604 => 0.1098071089862
605 => 0.10929006608287
606 => 0.11176319863857
607 => 0.11090160870801
608 => 0.11152848737074
609 => 0.11168805430042
610 => 0.11217101533807
611 => 0.11234363239713
612 => 0.1118218637544
613 => 0.11007074446073
614 => 0.10570712167235
615 => 0.10367584348498
616 => 0.10300548784953
617 => 0.10302985400369
618 => 0.10235772669661
619 => 0.10255569831118
620 => 0.10228888024823
621 => 0.10178359138722
622 => 0.1028014706609
623 => 0.102918771765
624 => 0.10268118657977
625 => 0.1027371464916
626 => 0.10077004263186
627 => 0.10091959726599
628 => 0.10008685805867
629 => 0.099930729496116
630 => 0.097825637294899
701 => 0.09409616132245
702 => 0.096162653040179
703 => 0.09366662163787
704 => 0.092721336724768
705 => 0.097196168481427
706 => 0.096747019485571
707 => 0.095978271645041
708 => 0.09484113336781
709 => 0.094419357719414
710 => 0.091856782397709
711 => 0.091705371776894
712 => 0.092975453301686
713 => 0.092389354378831
714 => 0.091566249518124
715 => 0.088585047149444
716 => 0.085233188644863
717 => 0.085334360184085
718 => 0.086400524010848
719 => 0.089500539128941
720 => 0.088289309591496
721 => 0.087410548664822
722 => 0.087245983158712
723 => 0.089305865008897
724 => 0.092221029385497
725 => 0.093588759287871
726 => 0.092233380493193
727 => 0.090676394312644
728 => 0.090771160847075
729 => 0.091401600144487
730 => 0.091467850400713
731 => 0.090454412457941
801 => 0.090739689302585
802 => 0.09030632768931
803 => 0.087646788268563
804 => 0.087598685633933
805 => 0.086945991769215
806 => 0.086926228458388
807 => 0.085815833372389
808 => 0.085660481424059
809 => 0.083455724584642
810 => 0.084906902212965
811 => 0.083933528450131
812 => 0.082466424593882
813 => 0.08221349533608
814 => 0.082205891977169
815 => 0.083712279599118
816 => 0.08488929919654
817 => 0.083950460703473
818 => 0.083736705377221
819 => 0.086019053032055
820 => 0.085728603488917
821 => 0.085477076057758
822 => 0.091960008389375
823 => 0.086828261579382
824 => 0.084590527060357
825 => 0.081820905658804
826 => 0.082722708352793
827 => 0.082912731430655
828 => 0.076252291221701
829 => 0.073550151458434
830 => 0.072622878919669
831 => 0.072089220463901
901 => 0.072332415323456
902 => 0.069900172607133
903 => 0.071534679938083
904 => 0.069428563338106
905 => 0.069075466036224
906 => 0.072841463414764
907 => 0.07336547994935
908 => 0.071129862613629
909 => 0.072565490856732
910 => 0.072044912099058
911 => 0.069464666662292
912 => 0.069366120265608
913 => 0.068071443805452
914 => 0.066045525844069
915 => 0.065119626973081
916 => 0.064637410802048
917 => 0.064836382592422
918 => 0.064735776366572
919 => 0.064079252690225
920 => 0.064773407535201
921 => 0.063000128750872
922 => 0.062293994850674
923 => 0.061975050550137
924 => 0.060401163562926
925 => 0.062905917670298
926 => 0.063399385783511
927 => 0.063893826181348
928 => 0.068197592275715
929 => 0.067982588283957
930 => 0.069926119658258
1001 => 0.069850597602977
1002 => 0.069296270971906
1003 => 0.066957658097721
1004 => 0.067889787507605
1005 => 0.065020838069055
1006 => 0.067170450058015
1007 => 0.066189456916197
1008 => 0.066838775289976
1009 => 0.065671242307243
1010 => 0.066317403266143
1011 => 0.063516405379614
1012 => 0.060900872964277
1013 => 0.06195343956036
1014 => 0.063097699825893
1015 => 0.065578747633661
1016 => 0.064101056027554
1017 => 0.064632489806816
1018 => 0.062852275607229
1019 => 0.059179185220434
1020 => 0.059199974513127
1021 => 0.058634949579743
1022 => 0.058146685542307
1023 => 0.064270786684266
1024 => 0.063509157899552
1025 => 0.062295602110619
1026 => 0.063919994758895
1027 => 0.064349509957677
1028 => 0.064361737651559
1029 => 0.065546852596099
1030 => 0.066179348654443
1031 => 0.066290828826121
1101 => 0.068155632797457
1102 => 0.06878069049129
1103 => 0.07135521467071
1104 => 0.066125685782897
1105 => 0.066017987076839
1106 => 0.06394285329467
1107 => 0.062626770643451
1108 => 0.064032966599757
1109 => 0.065278664252153
1110 => 0.063981560593099
1111 => 0.064150934947618
1112 => 0.0624096792626
1113 => 0.063032096236299
1114 => 0.06356820558267
1115 => 0.063272197512655
1116 => 0.06282905910489
1117 => 0.065176531250405
1118 => 0.065044077672138
1119 => 0.067230097702193
1120 => 0.068934256639414
1121 => 0.071988414109761
1122 => 0.068801241572624
1123 => 0.068685088337507
1124 => 0.069820504842338
1125 => 0.068780516664938
1126 => 0.069437753293883
1127 => 0.071882523127999
1128 => 0.071934177262176
1129 => 0.071068903962118
1130 => 0.071016252003174
1201 => 0.071182437205503
1202 => 0.072155789126243
1203 => 0.071815670057053
1204 => 0.072209264454681
1205 => 0.072701460275846
1206 => 0.074737390878889
1207 => 0.075228246854672
1208 => 0.074035721313163
1209 => 0.074143393017419
1210 => 0.073697355729337
1211 => 0.07326648929788
1212 => 0.074235014112806
1213 => 0.076005012248485
1214 => 0.075994001181946
1215 => 0.076404606345576
1216 => 0.076660409960881
1217 => 0.075562313584302
1218 => 0.074847493221271
1219 => 0.075121600833659
1220 => 0.075559904875153
1221 => 0.074979464740316
1222 => 0.071396719342077
1223 => 0.072483495429241
1224 => 0.072302602747701
1225 => 0.072044989571887
1226 => 0.073137751331321
1227 => 0.073032351793813
1228 => 0.069875226442571
1229 => 0.070077335364289
1230 => 0.069887517355506
1231 => 0.070500858174995
]
'min_raw' => 0.058146685542307
'max_raw' => 0.13025575357507
'avg_raw' => 0.094201219558687
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.058146'
'max' => '$0.130255'
'avg' => '$0.0942012'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.014179370667594
'max_diff' => -0.094654155228151
'year' => 2034
]
9 => [
'items' => [
101 => 0.068747394247873
102 => 0.069286747942096
103 => 0.069625025522986
104 => 0.069824273616901
105 => 0.070544094357818
106 => 0.070459631702011
107 => 0.070538844040542
108 => 0.071606148173693
109 => 0.07700420622462
110 => 0.077298010614188
111 => 0.075851210346047
112 => 0.076429178516296
113 => 0.075319606017163
114 => 0.076064469469321
115 => 0.076574086125807
116 => 0.074271226448794
117 => 0.074134866044156
118 => 0.073020713944622
119 => 0.073619396174111
120 => 0.072666849700218
121 => 0.072900571286251
122 => 0.072247065356223
123 => 0.07342324591854
124 => 0.074738398547192
125 => 0.07507065803814
126 => 0.074196626364159
127 => 0.073563769830703
128 => 0.072452682233855
129 => 0.074300445669615
130 => 0.074840788007801
131 => 0.074297607481343
201 => 0.074171740684634
202 => 0.073933223332306
203 => 0.074222343268474
204 => 0.074837845187383
205 => 0.074547585848961
206 => 0.0747393072557
207 => 0.074008662955468
208 => 0.075562677099894
209 => 0.078030825555113
210 => 0.078038761055979
211 => 0.077748500152952
212 => 0.077629731645191
213 => 0.077927556946202
214 => 0.078089114954567
215 => 0.079052227366215
216 => 0.080085685356005
217 => 0.084908382861309
218 => 0.083554188700156
219 => 0.08783317283042
220 => 0.09121729372091
221 => 0.092232043606296
222 => 0.091298521459412
223 => 0.088104992622799
224 => 0.08794830286254
225 => 0.092720783217538
226 => 0.091372338923803
227 => 0.091211945765778
228 => 0.089505633552903
301 => 0.090514275401591
302 => 0.090293670633399
303 => 0.089945435214455
304 => 0.091869853599151
305 => 0.095472193021289
306 => 0.094910734639824
307 => 0.094491632003365
308 => 0.092655246249344
309 => 0.093761160644872
310 => 0.093367365711019
311 => 0.09505935865529
312 => 0.094057059517337
313 => 0.091362123132047
314 => 0.091791300634031
315 => 0.091726431317991
316 => 0.093061437245396
317 => 0.092660701602873
318 => 0.091648181252211
319 => 0.095459880616768
320 => 0.09521237006182
321 => 0.095563283439947
322 => 0.095717766361355
323 => 0.098037880594884
324 => 0.098988357160986
325 => 0.099204131981926
326 => 0.10010701120723
327 => 0.099181667524296
328 => 0.10288370201488
329 => 0.10534533893142
330 => 0.10820465688466
331 => 0.11238288892656
401 => 0.11395394282512
402 => 0.1136701460003
403 => 0.11683803384896
404 => 0.12253065789481
405 => 0.11482078807832
406 => 0.12293929971611
407 => 0.12036907266431
408 => 0.1142751105609
409 => 0.11388273124453
410 => 0.11800963313332
411 => 0.12716270432306
412 => 0.1248699638033
413 => 0.1271664544252
414 => 0.12448747612948
415 => 0.12435444227689
416 => 0.12703634242897
417 => 0.13330274831706
418 => 0.13032581377234
419 => 0.12605764812819
420 => 0.12920919521981
421 => 0.12647903346713
422 => 0.12032721491418
423 => 0.12486821058784
424 => 0.12183177610097
425 => 0.12271796910998
426 => 0.12910010276583
427 => 0.12833218755932
428 => 0.12932594094357
429 => 0.12757199223143
430 => 0.12593352756196
501 => 0.12287521158241
502 => 0.12196979499402
503 => 0.12222001956558
504 => 0.12196967099515
505 => 0.12025857131197
506 => 0.1198890594983
507 => 0.11927319028684
508 => 0.11946407390784
509 => 0.1183060596114
510 => 0.12049147184675
511 => 0.12089710361542
512 => 0.12248746439205
513 => 0.1226525809237
514 => 0.12708171304926
515 => 0.12464222150305
516 => 0.12627884304781
517 => 0.12613244821237
518 => 0.11440718519819
519 => 0.11602282298867
520 => 0.11853624837559
521 => 0.11740395364565
522 => 0.11580315381368
523 => 0.1145104221199
524 => 0.11255180141523
525 => 0.11530852244508
526 => 0.11893331745473
527 => 0.12274451170697
528 => 0.1273234118817
529 => 0.12630145466697
530 => 0.12265891235322
531 => 0.12282231414054
601 => 0.12383239969349
602 => 0.12252424712647
603 => 0.12213844739628
604 => 0.12377939673492
605 => 0.12379069705117
606 => 0.12228550942729
607 => 0.12061276882977
608 => 0.12060575998559
609 => 0.12030811195302
610 => 0.12454042705324
611 => 0.12686777242305
612 => 0.12713459881899
613 => 0.12684981288064
614 => 0.12695941568556
615 => 0.12560518469443
616 => 0.12870055515543
617 => 0.13154117319086
618 => 0.13077982687641
619 => 0.1296384605193
620 => 0.12872930724021
621 => 0.13056565925717
622 => 0.13048388939254
623 => 0.13151636287042
624 => 0.13146952390961
625 => 0.13112234191229
626 => 0.13077983927538
627 => 0.13213782351599
628 => 0.13174674586326
629 => 0.1313550607589
630 => 0.13056947631814
701 => 0.13067625029081
702 => 0.1295350810067
703 => 0.12900712387951
704 => 0.12106791543289
705 => 0.11894629951483
706 => 0.11961380307212
707 => 0.11983356257491
708 => 0.11891023260844
709 => 0.12023405059635
710 => 0.1200277349652
711 => 0.12083038839538
712 => 0.12032892537936
713 => 0.12034950559646
714 => 0.12182420140336
715 => 0.12225231186991
716 => 0.12203457143135
717 => 0.12218706937081
718 => 0.12570132002039
719 => 0.12520170595743
720 => 0.12493629594416
721 => 0.12500981633168
722 => 0.12590778271903
723 => 0.12615916428034
724 => 0.1250940429408
725 => 0.12559636032192
726 => 0.12773516397717
727 => 0.1284836242107
728 => 0.13087234999485
729 => 0.12985757682553
730 => 0.13172023689617
731 => 0.13744541892571
801 => 0.14201909048337
802 => 0.13781295310398
803 => 0.14621191846606
804 => 0.15275171776047
805 => 0.15250070937095
806 => 0.15136034409568
807 => 0.14391495646856
808 => 0.1370635997696
809 => 0.14279505057225
810 => 0.14280966121903
811 => 0.14231732451211
812 => 0.1392594635094
813 => 0.14221091757752
814 => 0.14244519328334
815 => 0.14231406118702
816 => 0.13996960632577
817 => 0.13639005708032
818 => 0.13708949243465
819 => 0.13823518181314
820 => 0.13606615280382
821 => 0.13537301660924
822 => 0.13666168866952
823 => 0.14081405855323
824 => 0.14002907707975
825 => 0.14000857804112
826 => 0.14336706166859
827 => 0.14096311219745
828 => 0.13709831455437
829 => 0.13612240217908
830 => 0.13265857070013
831 => 0.13505105144038
901 => 0.13513715256297
902 => 0.1338268153121
903 => 0.1372046412006
904 => 0.13717351394038
905 => 0.14038025689849
906 => 0.14651034503672
907 => 0.14469737633093
908 => 0.14258909097652
909 => 0.14281832005096
910 => 0.14533239721195
911 => 0.14381232876962
912 => 0.14435895597977
913 => 0.1453315698262
914 => 0.14591837190839
915 => 0.1427338882617
916 => 0.1419914327922
917 => 0.14047262946805
918 => 0.14007640203059
919 => 0.14131343564724
920 => 0.14098752099429
921 => 0.13512991609702
922 => 0.13451776379385
923 => 0.13453653763104
924 => 0.13299725155846
925 => 0.13064947082679
926 => 0.13681929841091
927 => 0.13632377490922
928 => 0.13577675531384
929 => 0.13584376209302
930 => 0.13852187513243
1001 => 0.13696843432162
1002 => 0.1410985113211
1003 => 0.14024949165148
1004 => 0.13937869783099
1005 => 0.13925832759997
1006 => 0.13892314627172
1007 => 0.13777368478166
1008 => 0.13638564096049
1009 => 0.13546913419945
1010 => 0.12496311542765
1011 => 0.126912971401
1012 => 0.12915610296337
1013 => 0.12993042298991
1014 => 0.1286058950032
1015 => 0.13782598521967
1016 => 0.13951058454922
1017 => 0.13440782329632
1018 => 0.13345330501027
1019 => 0.13788856327959
1020 => 0.13521356035492
1021 => 0.1364181140081
1022 => 0.13381452786553
1023 => 0.13910481390155
1024 => 0.13906451078561
1025 => 0.13700647003107
1026 => 0.13874591198395
1027 => 0.13844364113908
1028 => 0.13612011819593
1029 => 0.13917847372324
1030 => 0.13917999062943
1031 => 0.13719917114885
1101 => 0.13488600765267
1102 => 0.13447246865404
1103 => 0.13416092256971
1104 => 0.13634149276948
1105 => 0.13829658519213
1106 => 0.14193452748216
1107 => 0.14284919260925
1108 => 0.14641919149299
1109 => 0.14429343097781
1110 => 0.14523575308098
1111 => 0.14625877702357
1112 => 0.14674925232211
1113 => 0.1459500491435
1114 => 0.15149572688011
1115 => 0.15196395199625
1116 => 0.15212094382757
1117 => 0.15025097249718
1118 => 0.1519119447108
1119 => 0.15113483081767
1120 => 0.15315666527915
1121 => 0.15347371473878
1122 => 0.15320518512583
1123 => 0.15330582162861
1124 => 0.148573564005
1125 => 0.14832817148257
1126 => 0.14498222702695
1127 => 0.14634572412459
1128 => 0.14379673165468
1129 => 0.14460504342442
1130 => 0.14496133955064
1201 => 0.14477523067393
1202 => 0.14642281420472
1203 => 0.14502203162447
1204 => 0.14132513608522
1205 => 0.13762723332926
1206 => 0.13758080917241
1207 => 0.13660721665017
1208 => 0.13590348757895
1209 => 0.1360390507642
1210 => 0.13651679311079
1211 => 0.13587572032528
1212 => 0.13601252570728
1213 => 0.13828440657803
1214 => 0.13874001608435
1215 => 0.13719167696376
1216 => 0.13097487197034
1217 => 0.12944925243127
1218 => 0.1305458375016
1219 => 0.13002174046711
1220 => 0.10493769233773
1221 => 0.11083081736878
1222 => 0.10732932258695
1223 => 0.10894297247845
1224 => 0.10536885301387
1225 => 0.10707461015802
1226 => 0.10675961909777
1227 => 0.11623558975746
1228 => 0.11608763550938
1229 => 0.11615845337837
1230 => 0.11277813197645
1231 => 0.11816307575543
]
'min_raw' => 0.068747394247873
'max_raw' => 0.15347371473878
'avg_raw' => 0.11111055449333
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.068747'
'max' => '$0.153473'
'avg' => '$0.11111'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.010600708705566
'max_diff' => 0.023217961163716
'year' => 2035
]
10 => [
'items' => [
101 => 0.12081589269728
102 => 0.12032492688378
103 => 0.12044849240159
104 => 0.1183252274134
105 => 0.11617901122468
106 => 0.11379852717109
107 => 0.11822117230594
108 => 0.11772944966401
109 => 0.11885728448837
110 => 0.12172568599552
111 => 0.12214806901344
112 => 0.12271575607292
113 => 0.12251228067282
114 => 0.12735989020885
115 => 0.12677281270848
116 => 0.12818750057065
117 => 0.12527738030554
118 => 0.12198430299441
119 => 0.12261020933245
120 => 0.12254992951888
121 => 0.12178249830613
122 => 0.12108969572143
123 => 0.11993637461383
124 => 0.12358565325769
125 => 0.12343749920912
126 => 0.12583594104531
127 => 0.12541199315355
128 => 0.12258076537467
129 => 0.12268188322867
130 => 0.12336194939243
131 => 0.12571566615006
201 => 0.12641440953698
202 => 0.12609072376005
203 => 0.12685686398496
204 => 0.12746238998067
205 => 0.12693290872718
206 => 0.13442924669954
207 => 0.13131624453055
208 => 0.13283350012759
209 => 0.13319535664729
210 => 0.13226846878109
211 => 0.13246947756991
212 => 0.13277395111334
213 => 0.13462265484704
214 => 0.139474188371
215 => 0.14162289954326
216 => 0.14808740312054
217 => 0.14144447899191
218 => 0.14105031536527
219 => 0.14221476766884
220 => 0.1460101156059
221 => 0.14908588862998
222 => 0.15010629998768
223 => 0.15024116419375
224 => 0.15215552373644
225 => 0.15325279892562
226 => 0.15192307013531
227 => 0.15079626421392
228 => 0.14676018526781
229 => 0.1472273723957
301 => 0.15044582841968
302 => 0.15499208711966
303 => 0.15889325004185
304 => 0.15752719875575
305 => 0.16794920578674
306 => 0.16898250521378
307 => 0.16883973664354
308 => 0.17119374651391
309 => 0.16652151630699
310 => 0.16452404737334
311 => 0.15103989244391
312 => 0.15482838996755
313 => 0.16033519360881
314 => 0.15960634749744
315 => 0.15560715949587
316 => 0.15889021629913
317 => 0.1578047350493
318 => 0.15694857095089
319 => 0.16087082466126
320 => 0.15655814558941
321 => 0.16029217133605
322 => 0.15550324469243
323 => 0.15753343876296
324 => 0.15638100241909
325 => 0.15712676997086
326 => 0.15276702810175
327 => 0.15511943898757
328 => 0.15266916007489
329 => 0.15266799832365
330 => 0.15261390828084
331 => 0.15549665055541
401 => 0.15559065667749
402 => 0.153460305781
403 => 0.15315328893448
404 => 0.15428849113011
405 => 0.15295946666896
406 => 0.15358130884955
407 => 0.15297830163513
408 => 0.15284255200988
409 => 0.15176087590006
410 => 0.15129486009065
411 => 0.15147759689727
412 => 0.15085382196899
413 => 0.15047797501178
414 => 0.15253914286112
415 => 0.15143794402649
416 => 0.1523703683463
417 => 0.15130775315255
418 => 0.14762426593161
419 => 0.14550585347867
420 => 0.13854808757776
421 => 0.14052130135617
422 => 0.1418295441327
423 => 0.14139716990286
424 => 0.14232607705517
425 => 0.14238310441005
426 => 0.14208110722575
427 => 0.14173143317456
428 => 0.14156123118463
429 => 0.1428297773737
430 => 0.14356621113375
501 => 0.14196084379736
502 => 0.14158472869192
503 => 0.14320784370377
504 => 0.14419794292336
505 => 0.15150827927209
506 => 0.1509667059433
507 => 0.15232594872017
508 => 0.15217291884277
509 => 0.15359762181728
510 => 0.1559264090562
511 => 0.15119133346032
512 => 0.15201317885717
513 => 0.15181168134505
514 => 0.15401157834695
515 => 0.15401844618527
516 => 0.15269949803962
517 => 0.15341452122686
518 => 0.15301541489938
519 => 0.1537366539756
520 => 0.15095947290132
521 => 0.15434177967162
522 => 0.15625932965935
523 => 0.15628595484279
524 => 0.15719485831836
525 => 0.15811835688967
526 => 0.15989093197753
527 => 0.15806892073254
528 => 0.15479129987201
529 => 0.15502793351149
530 => 0.15310626560019
531 => 0.15313856918496
601 => 0.1529661301178
602 => 0.15348363273896
603 => 0.15107303562496
604 => 0.15163879794938
605 => 0.1508467273821
606 => 0.15201145705045
607 => 0.15075840046401
608 => 0.15181158417685
609 => 0.15226610335371
610 => 0.15394328890145
611 => 0.15051067879493
612 => 0.14351135442047
613 => 0.14498269726259
614 => 0.14280646562761
615 => 0.14300788415093
616 => 0.14341478162355
617 => 0.14209589378623
618 => 0.14234749602265
619 => 0.14233850702027
620 => 0.14226104465399
621 => 0.14191795098963
622 => 0.14142039729731
623 => 0.14340249806858
624 => 0.14373929561338
625 => 0.1444879548351
626 => 0.14671545685853
627 => 0.14649287687827
628 => 0.14685591406082
629 => 0.14606340592968
630 => 0.14304464633016
701 => 0.14320857950011
702 => 0.14116433024405
703 => 0.14443567878552
704 => 0.14366098027121
705 => 0.14316152709932
706 => 0.14302524667397
707 => 0.14525827024407
708 => 0.1459264258946
709 => 0.14551007613144
710 => 0.14465613062036
711 => 0.14629595844797
712 => 0.14673470719586
713 => 0.14683292686008
714 => 0.14973838736481
715 => 0.14699530982665
716 => 0.14765559585393
717 => 0.15280695895182
718 => 0.14813538346155
719 => 0.15061002118731
720 => 0.15048890054803
721 => 0.15175484147135
722 => 0.15038505644227
723 => 0.15040203656938
724 => 0.15152610634702
725 => 0.14994755307137
726 => 0.14955668108108
727 => 0.14901669422596
728 => 0.15019573576908
729 => 0.15090251785072
730 => 0.15659866235449
731 => 0.16027863147967
801 => 0.16011887431471
802 => 0.16157875574949
803 => 0.16092106579214
804 => 0.15879721143002
805 => 0.16242237184972
806 => 0.16127521940977
807 => 0.16136978926313
808 => 0.16136626936847
809 => 0.16212902545523
810 => 0.16158854286219
811 => 0.16052319619191
812 => 0.16123042302929
813 => 0.16333063389808
814 => 0.16984975287714
815 => 0.17349793822467
816 => 0.16963012753843
817 => 0.17229809155775
818 => 0.17069826383894
819 => 0.17040752755168
820 => 0.1720832061168
821 => 0.17376181773543
822 => 0.17365489743216
823 => 0.1724363115947
824 => 0.17174796337558
825 => 0.17696036670428
826 => 0.18080077668589
827 => 0.18053888647158
828 => 0.18169478470629
829 => 0.18508853767397
830 => 0.18539881991344
831 => 0.18535973148302
901 => 0.1845906645779
902 => 0.18793225510909
903 => 0.19071986871991
904 => 0.18441264780984
905 => 0.18681435496481
906 => 0.18789255868485
907 => 0.18947568163449
908 => 0.19214667541276
909 => 0.19504808310206
910 => 0.19545837396165
911 => 0.19516725296255
912 => 0.19325369659743
913 => 0.19642845151206
914 => 0.19828814848388
915 => 0.1993955554722
916 => 0.20220375533961
917 => 0.18789921730396
918 => 0.17777375430066
919 => 0.17619251703923
920 => 0.17940802518942
921 => 0.18025592904543
922 => 0.17991414006425
923 => 0.16851701088721
924 => 0.1761325135128
925 => 0.18432615400829
926 => 0.18464090510937
927 => 0.18874281286236
928 => 0.19007856216961
929 => 0.1933811355601
930 => 0.19317455869533
1001 => 0.1939786827605
1002 => 0.1937938285634
1003 => 0.19991115033042
1004 => 0.2066594646705
1005 => 0.20642579200323
1006 => 0.20545564197441
1007 => 0.20689648020237
1008 => 0.21386146379465
1009 => 0.21322023971706
1010 => 0.2138431342891
1011 => 0.22205524247368
1012 => 0.2327321512724
1013 => 0.22777165519128
1014 => 0.23853450434302
1015 => 0.24530914736992
1016 => 0.25702519197378
1017 => 0.25555828548664
1018 => 0.26011925567461
1019 => 0.25293221672203
1020 => 0.2364293225467
1021 => 0.23381767637291
1022 => 0.23904625815025
1023 => 0.25190021625228
1024 => 0.23864144126626
1025 => 0.24132367417767
1026 => 0.24055119091874
1027 => 0.24051002856871
1028 => 0.24208102804982
1029 => 0.23980221136465
1030 => 0.23051790223797
1031 => 0.23477284639795
1101 => 0.23312980811858
1102 => 0.23495288158616
1103 => 0.24479125719799
1104 => 0.24044147682242
1105 => 0.23585933654422
1106 => 0.24160635731141
1107 => 0.24892428963864
1108 => 0.24846634658519
1109 => 0.24757774565615
1110 => 0.25258674256751
1111 => 0.26086013796669
1112 => 0.26309640349789
1113 => 0.26474716899458
1114 => 0.26497478166667
1115 => 0.26731933364961
1116 => 0.25471208673416
1117 => 0.27472011136604
1118 => 0.27817494450944
1119 => 0.27752557906665
1120 => 0.28136548070393
1121 => 0.28023568423334
1122 => 0.27859878640709
1123 => 0.28468584727269
1124 => 0.27770752319076
1125 => 0.26780267070303
1126 => 0.2623686727325
1127 => 0.26952459960821
1128 => 0.27389447444378
1129 => 0.27678268373385
1130 => 0.27765665411992
1201 => 0.25569075142397
1202 => 0.24385234815567
1203 => 0.25144062892308
1204 => 0.26069885517449
1205 => 0.25466065681987
1206 => 0.25489734276355
1207 => 0.24628845872048
1208 => 0.261460550388
1209 => 0.25925010424942
1210 => 0.27071790272659
1211 => 0.26798102058518
1212 => 0.27733256506594
1213 => 0.27486998999977
1214 => 0.28509200141872
1215 => 0.28916983852364
1216 => 0.29601716168749
1217 => 0.30105408048043
1218 => 0.30401185553655
1219 => 0.30383428181651
1220 => 0.31555446014654
1221 => 0.30864348045716
1222 => 0.29996166117446
1223 => 0.29980463445442
1224 => 0.30430107168327
1225 => 0.31372437057761
1226 => 0.31616769487749
1227 => 0.31753317983669
1228 => 0.3154418920888
1229 => 0.30794051895036
1230 => 0.30470146406201
1231 => 0.30746123267134
]
'min_raw' => 0.11379852717109
'max_raw' => 0.31753317983669
'avg_raw' => 0.21566585350389
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.113798'
'max' => '$0.317533'
'avg' => '$0.215665'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.045051132923218
'max_diff' => 0.16405946509791
'year' => 2036
]
11 => [
'items' => [
101 => 0.30408627281175
102 => 0.30991240037589
103 => 0.31791291791515
104 => 0.31626084268077
105 => 0.32178348249635
106 => 0.32749883370682
107 => 0.33567204263028
108 => 0.33780882209593
109 => 0.34134083729819
110 => 0.34497644114787
111 => 0.34614409912212
112 => 0.34837352049794
113 => 0.34836177034682
114 => 0.35508028172024
115 => 0.3624910078201
116 => 0.36528838536409
117 => 0.37172080077821
118 => 0.36070551480026
119 => 0.36906073574902
120 => 0.37659735418955
121 => 0.36761188698644
122 => 0.37999626018058
123 => 0.38047711732811
124 => 0.38773748935599
125 => 0.38037771138676
126 => 0.37600749872187
127 => 0.38862413893567
128 => 0.39472893371468
129 => 0.39289011984478
130 => 0.37889665550134
131 => 0.37075185904555
201 => 0.34943535570682
202 => 0.37468567471596
203 => 0.3869843685434
204 => 0.37886480485548
205 => 0.38295984049285
206 => 0.40530102711061
207 => 0.41380710448995
208 => 0.41203789985701
209 => 0.41233686631639
210 => 0.41692659127406
211 => 0.43727995934403
212 => 0.42508374940912
213 => 0.43440729492109
214 => 0.4393524698421
215 => 0.44394582390632
216 => 0.43266599806905
217 => 0.41799111038832
218 => 0.41334295744995
219 => 0.37805747426582
220 => 0.376220711629
221 => 0.37518968110135
222 => 0.36868917946667
223 => 0.36358156581907
224 => 0.35951980181296
225 => 0.34886052011551
226 => 0.3524577147819
227 => 0.33546904452117
228 => 0.34633779371248
301 => 0.31922346577056
302 => 0.3418050837872
303 => 0.32951493576092
304 => 0.3377674396181
305 => 0.33773864740957
306 => 0.32254317134979
307 => 0.31377873788
308 => 0.3193637760038
309 => 0.3253513802134
310 => 0.32632284885168
311 => 0.33408593400188
312 => 0.33625244420035
313 => 0.32968781715431
314 => 0.31866158159132
315 => 0.32122272463094
316 => 0.31372683639805
317 => 0.30059058059507
318 => 0.31002526884979
319 => 0.31324668623391
320 => 0.31466944767084
321 => 0.30175144879779
322 => 0.29769233308848
323 => 0.29553129394412
324 => 0.31699403015409
325 => 0.31816980729306
326 => 0.31215436521195
327 => 0.33934473382617
328 => 0.33319071599233
329 => 0.3400662616837
330 => 0.32099032774473
331 => 0.32171905411035
401 => 0.31268820127824
402 => 0.31774487542241
403 => 0.31417098112152
404 => 0.31733634612259
405 => 0.31923365285294
406 => 0.32826302381097
407 => 0.34190818469946
408 => 0.32691433689283
409 => 0.32038130268762
410 => 0.32443436036535
411 => 0.33522818706684
412 => 0.35158138704542
413 => 0.34189996351928
414 => 0.34619641487895
415 => 0.34713499836522
416 => 0.33999627508283
417 => 0.35184460195542
418 => 0.35819421658207
419 => 0.36470760732141
420 => 0.37036300199931
421 => 0.36210601582759
422 => 0.3709421746238
423 => 0.36382179042605
424 => 0.35743406970888
425 => 0.35744375724447
426 => 0.35343664672888
427 => 0.3456723651765
428 => 0.3442405125328
429 => 0.35168919080842
430 => 0.35766232539302
501 => 0.35815430136679
502 => 0.36146133558356
503 => 0.36341840436788
504 => 0.38260033896024
505 => 0.39031547173457
506 => 0.39974939005103
507 => 0.40342443290179
508 => 0.41448499430681
509 => 0.40555269267738
510 => 0.40362013303304
511 => 0.37679082894653
512 => 0.38118412598769
513 => 0.3882182184407
514 => 0.37690681854026
515 => 0.38408129825173
516 => 0.38549769252303
517 => 0.3765224615
518 => 0.38131652018624
519 => 0.36858492165493
520 => 0.342185698756
521 => 0.35187399183712
522 => 0.35900783658902
523 => 0.34882696053135
524 => 0.3670757868104
525 => 0.35641519923042
526 => 0.35303630476601
527 => 0.33985403279751
528 => 0.34607555773446
529 => 0.35449025929535
530 => 0.34929095204477
531 => 0.36008029526962
601 => 0.37536088268875
602 => 0.38625073925833
603 => 0.38708672722585
604 => 0.38008527901534
605 => 0.39130514445533
606 => 0.39138686892605
607 => 0.37873081487525
608 => 0.37097905223833
609 => 0.36921783545738
610 => 0.37361770028309
611 => 0.37895994844136
612 => 0.38738318481848
613 => 0.39247317014876
614 => 0.40574515237053
615 => 0.40933617022219
616 => 0.41328161011258
617 => 0.41855393453474
618 => 0.42488471179978
619 => 0.41103333155522
620 => 0.41158367271454
621 => 0.39868545921623
622 => 0.38490186830235
623 => 0.39536189565712
624 => 0.40903698998435
625 => 0.40589990823605
626 => 0.4055469224546
627 => 0.4061405466289
628 => 0.40377528943819
629 => 0.39307731882514
630 => 0.38770486495611
701 => 0.39463670110632
702 => 0.39832066351963
703 => 0.40403416794738
704 => 0.40332985792921
705 => 0.41804723174953
706 => 0.42376595818582
707 => 0.42230286324531
708 => 0.42257210792571
709 => 0.43292558897664
710 => 0.44444078926105
711 => 0.45522629389191
712 => 0.46619777245062
713 => 0.45297122682399
714 => 0.44625560265472
715 => 0.45318441258212
716 => 0.44950788850458
717 => 0.470634286382
718 => 0.47209703233373
719 => 0.49322190253212
720 => 0.51327191985314
721 => 0.50067886320718
722 => 0.51255354842059
723 => 0.52539698863619
724 => 0.55017406858515
725 => 0.54183001972653
726 => 0.53543860906873
727 => 0.52939875688019
728 => 0.54196673048501
729 => 0.55813522774934
730 => 0.56161776720013
731 => 0.56726081154288
801 => 0.56132784041512
802 => 0.56847345064318
803 => 0.59370059468848
804 => 0.58688399768128
805 => 0.5772033341084
806 => 0.5971177414915
807 => 0.60432468810814
808 => 0.65490681377099
809 => 0.71876883686373
810 => 0.69232953996268
811 => 0.67591781518542
812 => 0.6797749597994
813 => 0.70309520876696
814 => 0.71058493258763
815 => 0.69022528138041
816 => 0.69741665437963
817 => 0.73704182664552
818 => 0.75829946023843
819 => 0.72942873853816
820 => 0.64977556239656
821 => 0.5763316962721
822 => 0.5958123167887
823 => 0.59360381897615
824 => 0.63617612323494
825 => 0.58672142409706
826 => 0.58755411439689
827 => 0.63100676882289
828 => 0.61941434558912
829 => 0.60063610459581
830 => 0.5764687982126
831 => 0.53179329715795
901 => 0.49222296000534
902 => 0.56982950366601
903 => 0.56648296838502
904 => 0.5616366893694
905 => 0.5724215588965
906 => 0.62478982398144
907 => 0.6235825659717
908 => 0.61590260646219
909 => 0.6217277880621
910 => 0.59961492209701
911 => 0.60531391115681
912 => 0.57632006238847
913 => 0.58942649292184
914 => 0.60059581492438
915 => 0.60283822168102
916 => 0.60789047860388
917 => 0.56471949635968
918 => 0.58410199995388
919 => 0.59548740492048
920 => 0.54404773107678
921 => 0.59447060795975
922 => 0.56396798560557
923 => 0.55361493744455
924 => 0.56755395288299
925 => 0.56212190501049
926 => 0.55745174923027
927 => 0.55484572206145
928 => 0.56508099660644
929 => 0.56460350881512
930 => 0.54785661307833
1001 => 0.52601097028048
1002 => 0.53334308506222
1003 => 0.53067925902307
1004 => 0.5210252098168
1005 => 0.52753087334748
1006 => 0.49888322359933
1007 => 0.4495964311829
1008 => 0.48215679594848
1009 => 0.48090325732386
1010 => 0.48027116630588
1011 => 0.50473938052483
1012 => 0.50238732630542
1013 => 0.49811832486582
1014 => 0.52094680625757
1015 => 0.51261410346318
1016 => 0.5382935300438
1017 => 0.55520766123098
1018 => 0.55091769044708
1019 => 0.56682551258171
1020 => 0.533512002178
1021 => 0.54457741402806
1022 => 0.54685798007436
1023 => 0.52066510634077
1024 => 0.50277215146406
1025 => 0.50157889536841
1026 => 0.47055497741326
1027 => 0.48712770396859
1028 => 0.50171101751124
1029 => 0.49472674203516
1030 => 0.49251572906872
1031 => 0.50381131480403
1101 => 0.50468907855582
1102 => 0.48467597199393
1103 => 0.48883733058081
1104 => 0.50619088765638
1105 => 0.48840006546714
1106 => 0.45383540406776
1107 => 0.44526289014688
1108 => 0.44411915876705
1109 => 0.42086982111897
1110 => 0.44583574651814
1111 => 0.4349374510362
1112 => 0.46936503588202
1113 => 0.44970018405693
1114 => 0.44885247159839
1115 => 0.44757102988493
1116 => 0.42755936455318
1117 => 0.43194064745316
1118 => 0.4465046991009
1119 => 0.4517013168046
1120 => 0.45115926700347
1121 => 0.44643332730243
1122 => 0.44859683829684
1123 => 0.44162741556666
1124 => 0.43916636734464
1125 => 0.43139862219131
1126 => 0.41998218271028
1127 => 0.42156970864121
1128 => 0.3989507547554
1129 => 0.38662674819967
1130 => 0.38321562561284
1201 => 0.37865412992911
1202 => 0.383730858688
1203 => 0.39888667810097
1204 => 0.38060554440247
1205 => 0.34926382294883
1206 => 0.35114751381189
1207 => 0.35537960790834
1208 => 0.3474931285577
1209 => 0.34002923771436
1210 => 0.34651848523804
1211 => 0.33323858468752
1212 => 0.3569844204444
1213 => 0.35634216213411
1214 => 0.36519314127164
1215 => 0.37072784016672
1216 => 0.35797215109361
1217 => 0.35476412978678
1218 => 0.35659156451959
1219 => 0.32638813904738
1220 => 0.36272487703987
1221 => 0.36303911865895
1222 => 0.36034839113481
1223 => 0.37969658234488
1224 => 0.42052730065033
1225 => 0.40516514201198
1226 => 0.39921644986351
1227 => 0.3879079817408
1228 => 0.40297584408391
1229 => 0.40181886735123
1230 => 0.39658657979565
1231 => 0.3934220759563
]
'min_raw' => 0.29553129394412
'max_raw' => 0.75829946023843
'avg_raw' => 0.52691537709127
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.295531'
'max' => '$0.758299'
'avg' => '$0.526915'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.18173276677303
'max_diff' => 0.44076628040174
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0092763896208603
]
1 => [
'year' => 2028
'avg' => 0.015920977544545
]
2 => [
'year' => 2029
'avg' => 0.043493241174679
]
3 => [
'year' => 2030
'avg' => 0.033554970794187
]
4 => [
'year' => 2031
'avg' => 0.032955139741642
]
5 => [
'year' => 2032
'avg' => 0.057780731331269
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0092763896208603
'min' => '$0.009276'
'max_raw' => 0.057780731331269
'max' => '$0.05778'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.057780731331269
]
1 => [
'year' => 2033
'avg' => 0.14861798250656
]
2 => [
'year' => 2034
'avg' => 0.094201219558687
]
3 => [
'year' => 2035
'avg' => 0.11111055449333
]
4 => [
'year' => 2036
'avg' => 0.21566585350389
]
5 => [
'year' => 2037
'avg' => 0.52691537709127
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.057780731331269
'min' => '$0.05778'
'max_raw' => 0.52691537709127
'max' => '$0.526915'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.52691537709127
]
]
]
]
'prediction_2025_max_price' => '$0.01586'
'last_price' => 0.01537918
'sma_50day_nextmonth' => '$0.014091'
'sma_200day_nextmonth' => '$0.020112'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'augmenter'
'sma_200day_date_nextmonth' => '4 févr. 2026'
'sma_50day_date_nextmonth' => '4 févr. 2026'
'daily_sma3' => '$0.014966'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.014672'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.014375'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.01400044'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.014911'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.016998'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.022359'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.01502'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.014793'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.014497'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.0144055'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.0152051'
'daily_ema50_action' => 'BUY'
'daily_ema100' => '$0.017318'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.0208029'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.019221'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.024223'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.029416'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.031153'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.014919'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.014964'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.015926'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.0187016'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.023389'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.027552'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.033369'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '61.72'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 119.65
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.014443'
'vwma_10_action' => 'BUY'
'hma_9' => '0.015095'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 223.47
'cci_20_action' => 'SELL'
'adx_14' => 17.69
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.000219'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 72.07
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '-0.001127'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 14
'buy_signals' => 21
'sell_pct' => 40
'buy_pct' => 60
'overall_action' => 'bullish'
'overall_action_label' => 'Haussier'
'overall_action_dir' => 1
'last_updated' => 1767675682
'last_updated_date' => '6 janvier 2026'
]
Prévision du prix de Status pour 2026
La prévision du prix de Status pour 2026 suggère que le prix moyen pourrait varier entre $0.005313 à la baisse et $0.01586 à la hausse. Sur le marché des cryptomonnaies, comparé au prix moyen d'aujourd'hui, Status pourrait potentiellement gagner 3.13% d'ici 2026 si SNT atteint l'objectif de prix prévu.
Prévision du prix de Status de 2027 à 2032
La prévision du prix de SNT pour 2027-2032 se situe actuellement dans une fourchette de prix comprise entre $0.009276 à la baisse et $0.05778 à la hausse. Compte tenu de la volatilité des prix sur le marché, si Status atteint l'objectif de prix le plus élevé, il pourrait gagner 275.71% d'ici 2032 par rapport au prix actuel.
| Prévision du Prix de Status | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2027 | $0.005115 | $0.009276 | $0.013437 |
| 2028 | $0.009231 | $0.01592 | $0.02261 |
| 2029 | $0.020278 | $0.043493 | $0.0667077 |
| 2030 | $0.017246 | $0.033554 | $0.049863 |
| 2031 | $0.02039 | $0.032955 | $0.045519 |
| 2032 | $0.031124 | $0.05778 | $0.084437 |
Prévision du prix de Status de 2032 à 2037
La prévision du prix de Status pour 2032-2037 est actuellement estimée entre $0.05778 à la baisse et $0.526915 à la hausse. Par rapport au prix actuel, Status pourrait potentiellement gagner 3326.16% d'ici 2037 s'il atteint l'objectif de prix le plus élevé. Veuillez noter que ces informations sont à titre général seulement et ne doivent pas être considérées comme un conseil en investissement à long terme.
| Prévision du Prix de Status | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2032 | $0.031124 | $0.05778 | $0.084437 |
| 2033 | $0.072326 | $0.148617 | $0.2249099 |
| 2034 | $0.058146 | $0.0942012 | $0.130255 |
| 2035 | $0.068747 | $0.11111 | $0.153473 |
| 2036 | $0.113798 | $0.215665 | $0.317533 |
| 2037 | $0.295531 | $0.526915 | $0.758299 |
Status Histogramme des prix potentiels
Prévision du prix de Status basée sur l'analyse technique
Au 6 janvier 2026, le sentiment global de prévision du prix pour Status est Haussier, avec 21 indicateurs techniques montrant des signaux haussiers et 14 indiquant des signaux baissiers. La prévision du prix de SNT a été mise à jour pour la dernière fois le 6 janvier 2026.
Moyennes Mobiles Simples sur 50 et 200 jours de Status et Indice de Force Relative sur 14 jours - RSI (14)
Selon nos indicateurs techniques, le SMA sur 200 jours de Status devrait augmenter au cours du prochain mois, atteignant $0.020112 d'ici le 4 févr. 2026. Le SMA à court terme sur 50 jours pour Status devrait atteindre $0.014091 d'ici le 4 févr. 2026.
Le Relative Strength Index (RSI), un oscillateur de momentum, est un outil couramment utilisé pour identifier si une cryptomonnaie est survendue (en dessous de 30) ou surachetée (au-dessus de 70). Actuellement, le RSI est à 61.72, ce qui suggère que le marché de SNT est dans un état NEUTRAL.
Moyennes Mobiles et Oscillateurs Populaires de SNT pour le Samedi 19 Octobre 2024
Les moyennes mobiles (MA) sont des indicateurs largement utilisés sur les marchés financiers, conçus pour lisser les mouvements de prix sur une période donnée. En tant qu'indicateurs retardés, ils sont basés sur des données historiques de prix. Le tableau ci-dessous met en évidence deux types : la moyenne mobile simple (SMA) et la moyenne mobile exponentielle (EMA).
Moyenne Mobile Simple Quotidienne (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 3 | $0.014966 | BUY |
| SMA 5 | $0.014672 | BUY |
| SMA 10 | $0.014375 | BUY |
| SMA 21 | $0.01400044 | BUY |
| SMA 50 | $0.014911 | BUY |
| SMA 100 | $0.016998 | SELL |
| SMA 200 | $0.022359 | SELL |
Moyenne Mobile Exponentielle Quotidienne (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 3 | $0.01502 | BUY |
| EMA 5 | $0.014793 | BUY |
| EMA 10 | $0.014497 | BUY |
| EMA 21 | $0.0144055 | BUY |
| EMA 50 | $0.0152051 | BUY |
| EMA 100 | $0.017318 | SELL |
| EMA 200 | $0.0208029 | SELL |
Moyenne Mobile Simple Hebdomadaire (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 21 | $0.019221 | SELL |
| SMA 50 | $0.024223 | SELL |
| SMA 100 | $0.029416 | SELL |
| SMA 200 | $0.031153 | SELL |
Moyenne Mobile Exponentielle Hebdomadaire (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 21 | $0.0187016 | SELL |
| EMA 50 | $0.023389 | SELL |
| EMA 100 | $0.027552 | SELL |
| EMA 200 | $0.033369 | SELL |
Oscillateurs de Status
Un oscillateur est un outil d'analyse technique qui établit des limites hautes et basses entre deux extrêmes, créant un indicateur de tendance qui fluctue à l'intérieur de ces limites. Les traders utilisent cet indicateur pour identifier les conditions de surachat ou de survente à court terme.
| Période | Valeur | Action |
|---|---|---|
| RSI (14) | 61.72 | NEUTRAL |
| Stoch RSI (14) | 119.65 | SELL |
| Stochastique Rapide (14) | 100 | SELL |
| Indice de Canal des Matières Premières (20) | 223.47 | SELL |
| Indice Directionnel Moyen (14) | 17.69 | NEUTRAL |
| Oscillateur Impressionnant (5, 34) | 0.000219 | BUY |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Plage de Pourcentage de Williams (14) | -0 | SELL |
| Oscillateur Ultime (7, 14, 28) | 72.07 | SELL |
| VWMA (10) | 0.014443 | BUY |
| Moyenne Mobile de Hull (9) | 0.015095 | BUY |
| Nuage Ichimoku B/L (9, 26, 52, 26) | -0.001127 | SELL |
Prévision du cours de Status basée sur les flux monétaires mondiaux
Définitions des flux monétaires mondiaux utilisés pour la prédiction du cours de Status
M0 : le total de toutes les devises physiques, plus les comptes à la banque centrale qui peuvent être échangés contre des devises physiques.
M1 : M0 plus le montant des comptes à vue, y compris les comptes de "chèques" et les comptes "courants".
M2 : M1 plus la plupart des comptes d'épargne, comptes du marché monétaire et comptes de certificats de dépôt (CD) de moins de 100 000 $.
Prédictions du cours de Status par des sociétés Internet ou des niches technologiques
| Comparaison | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Action Facebook | $0.02161 | $0.030366 | $0.042669 | $0.059957 | $0.08425 | $0.118386 |
| Action Amazon.com | $0.032089 | $0.066956 | $0.1397093 | $0.291511 | $0.608256 | $1.26 |
| Action Apple | $0.021814 | $0.030941 | $0.043888 | $0.062252 | $0.08830047 | $0.125247 |
| Action Netflix | $0.024265 | $0.038287 | $0.060412 | $0.095321 | $0.1504016 | $0.23731 |
| Action Google | $0.019915 | $0.025791 | $0.033399 | $0.043252 | $0.056011 | $0.072534 |
| Action Tesla | $0.034863 | $0.079032 | $0.179161 | $0.406145 | $0.92070048 | $2.08 |
| Action Kodak | $0.011532 | $0.008648 | $0.006485 | $0.004863 | $0.003646 | $0.002734 |
| Action Nokia | $0.010188 | $0.006749 | $0.004471 | $0.002961 | $0.001962 | $0.001299 |
Ce calcul montre la valeur potentielle des cryptomonnaies si l'on suppose que leur capitalisation se comportera comme celle de certaines sociétés Internet ou niches technologiques. En extrapolant les données, vous pourrez obtenir une potentielle image des cours futurs pour 2024, 2025, 2026, 2027, 2028, 2029 et 2030.
Aperçu des prévisions relatives à Status
Vous vous posez peut-être des questions telles que : "Devrais-je investir dans Status maintenant ?", "Devrais-je acheter SNT aujourd'hui ?", " Status sera-t-il un bon ou un mauvais investissement à court ou à long terme ?".
Nous mettons régulièrement à jour les prévisions de Status avec de nouvelles valeurs. Regardez nos prévisions similaires. Nous faisons une prévision des cours futurs pour une grande quantité de devises numériques comme Status en utilisant des méthodes d'analyse technique.
Si vous souhaitez trouver des cryptomonnaies ayant un bon rendement, vous devriez consulter un maximum d'informations disponibles à propos de Status afin de prendre une décision responsable concernant cet investissement.
Le cours de Status est de $0.01537 USD actuellement, mais ce cours peut subir une hausse ou une baisse, ce qui pourrait causer la perte de votre investissement, car les cryptomonnaies sont des actifs à haut risque.
Prévision à court terme de Status
basée sur l'historique des cours sur 4 heures
Prévision à long terme de Status
basée sur l'historique des cours sur 1 mois
Prévision du cours de Status basée sur le modèle de croissance du Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si Status présente 1 % de la précédente croissance annuelle moyenne du Bitcoin | $0.015778 | $0.016189 | $0.0166098 | $0.017041 |
| Si Status présente 2 % de la précédente croissance annuelle moyenne du Bitcoin | $0.016178 | $0.017019 | $0.0179045 | $0.018835 |
| Si Status présente 5 % de la précédente croissance annuelle moyenne du Bitcoin | $0.017377 | $0.019636 | $0.022188 | $0.025072 |
| Si Status présente 10 % de la précédente croissance annuelle moyenne du Bitcoin | $0.019376 | $0.024413 | $0.030759 | $0.038754 |
| Si Status présente 20 % de la précédente croissance annuelle moyenne du Bitcoin | $0.023374 | $0.035525 | $0.053994 | $0.082063 |
| Si Status présente 50 % de la précédente croissance annuelle moyenne du Bitcoin | $0.035366 | $0.081331 | $0.187035 | $0.430118 |
| Si Status présente 100 % de la précédente croissance annuelle moyenne du Bitcoin | $0.055354 | $0.199239 | $0.717125 | $2.58 |
Boîte à questions
Est-ce que SNT est un bon investissement ?
La décision d'acquérir Status dépend entièrement de votre tolérance individuelle au risque. Comme vous pouvez le discerner, la valeur de Status a connu une hausse de 2.9451% au cours des 24 heures précédentes, et Status a enregistré une déclin de sur une période de 30 jours précédents. Par conséquent, la détermination de si investir ou non dans Status dépendra de la mesure dans laquelle cet investissement s'aligne avec vos aspirations de trading.
Est-ce que Status peut monter ?
Il semble que la valeur moyenne de Status pourrait potentiellement s'envoler jusqu'à $0.01586 pour la fin de cette année. En regardant les perspectives de Status sur une période de cinq ans plus longue, la monnaie numérique pourrait potentiellement croître jusqu'à $0.049863. Cependant, compte tenu de l'imprévisibilité du marché, il est essentiel de mener des recherches approfondies avant d'investir des fonds dans un projet, un réseau ou un actif particulier.
Quel sera le prix de Status la semaine prochaine ?
Basé sur notre nouveau pronostic expérimental de Status, le prix de Status va augmenter de 0.86% durant la prochaine semaine et atteindre $0.01551 d'ici 13 janvier 2026.
Quel sera le prix de Status le mois prochain ?
Basé sur notre nouveau pronostic expérimental de Status, le prix de Status va diminuer de -11.62% durant le prochain mois et atteindre $0.013592 d'ici 5 février 2026.
Jusqu'où le prix de Status peut-il monter cette année en 2026 ?
Selon notre prédiction la plus récente sur la valeur de Status en 2026, SNT devrait fluctuer dans la fourchette de $0.005313 et $0.01586. Cependant, il est crucial de garder à l'esprit que le marché des cryptomonnaies est exceptionnellement instable, et cette prévision de prix de Status ne prend pas en compte les fluctuations de prix soudaines et extrêmes.
Où sera Status dans 5 ans ?
L'avenir de Status semble suivre une tendance haussière, avec un prix maximum de $0.049863 prévue après une période de cinq ans. Selon la prévision de Status pour 2030, la valeur de Status pourrait potentiellement atteindre son point le plus élevé d'environ $0.049863, tandis que son point le plus bas devrait être autour de $0.017246.
Combien vaudra Status en 2026 ?
Basé sur notre nouvelle simulation expérimentale de prédiction de prix de Status, il est attendu que la valeur de SNT en 2026 augmente de 3.13% jusqu'à $0.01586 si le meilleur scénario se produit. Le prix sera entre $0.01586 et $0.005313 durant 2026.
Combien vaudra Status en 2027 ?
Selon notre dernière simulation expérimentale pour la prédiction de prix de Status, le valeur de SNT pourrait diminuer de -12.62% jusqu'à $0.013437 en 2027, en supposant les conditions les plus favorables. Il est prévu que le prix fluctue entre $0.013437 et $0.005115 tout au long de l'année.
Combien vaudra Status en 2028 ?
Notre nouveau modèle expérimental de prédiction de prix de Status suggère que la valeur de SNT en 2028 pourrait augmenter de 47.02%, atteignant $0.02261 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.02261 et $0.009231 durant l'année.
Combien vaudra Status en 2029 ?
Basé sur notre modèle de prévision expérimental, la valeur de Status pourrait connaître un 333.75% croissance en 2029, atteignant potentiellement $0.0667077 sous des conditions optimales. Le range de prix prévu pour 2029 se situe entre $0.0667077 et $0.020278.
Combien vaudra Status en 2030 ?
En utilisant notre nouvelle simulation expérimentale pour les prédictions de prix de Status, il est prévu que la valeur de SNT en 2030 augmente de 224.23%, atteignant $0.049863 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.049863 et $0.017246 au cours de 2030.
Combien vaudra Status en 2031 ?
Notre simulation expérimentale indique que le prix de Status pourrait augmenter de 195.98% en 2031, atteignant potentiellement $0.045519 dans des conditions idéales. Il est probable que le prix fluctue entre $0.045519 et $0.02039 durant l'année.
Combien vaudra Status en 2032 ?
Basé sur les résultats de notre dernière prédiction expérimentale de prix de Status, SNT pourrait connaître une 449.04% hausse en valeur, atteignant $0.084437 si le scénario le plus positif se réalise en 2032. Il est prévu que le prix reste dans une fourchette de $0.084437 et $0.031124 tout au long de l'année.
Combien vaudra Status en 2033 ?
Selon notre prédiction expérimentale de prix de Status, la valeur de SNT est anticipée à augmenter de 1362.43% en 2033, avec le prix potentiel le plus élevé étant $0.2249099. Tout au long de l'année, le prix de SNT pourrait osciller entre $0.2249099 et $0.072326.
Combien vaudra Status en 2034 ?
Les résultats de notre nouvelle simulation de prédiction de prix de Status suggèrent que SNT pourrait augmenter de 746.96% en 2034, atteignant potentiellement $0.130255 dans les meilleures circonstances. La fourchette de prix prévue pour l'année est entre $0.130255 et $0.058146.
Combien vaudra Status en 2035 ?
Basé sur notre prédiction expérimentale pour le prix de Status, SNT pourrait augmenter de 897.93%, avec la valeur potentiellement atteignant $0.153473 en 2035. La fourchette de prix attendue pour l'année se situe entre $0.153473 et $0.068747.
Combien vaudra Status en 2036 ?
Notre récente simulation de prédiction de prix de Status suggère que la valeur de SNT pourrait augmenter de 1964.7% en 2036, pouvant atteindre $0.317533 si les conditions sont optimales. La fourchette de prix attendue pour 2036 est entre $0.317533 et $0.113798.
Combien vaudra Status en 2037 ?
Selon la simulation expérimentale, la valeur de Status pourrait augmenter de 4830.69% en 2037, avec un maximum de $0.758299 sous des conditions favorables. Il est prévu que le prix chute entre $0.758299 et $0.295531 au cours de l'année.
Prévisions liées
Prévision du cours de Bluzelle
Prévision du cours de SMARDEX
Prévision du cours de Slerf [OLD]
Prévision du cours de ConstitutionDAO
Prévision du cours de Victoria VR
Prévision du cours de Dent
Prévision du cours de Bone ShibaSwap
Prévision du cours de Milady Meme Coin
Prévision du cours de tBTC
Prévision du cours de inSure DeFi
Prévision du cours de Dione
Prévision du cours de Nexera
Prévision du cours de LooksRare
Prévision du cours de Virtuals Protocol
Prévision du cours de Autonolas
Prévision du cours de Covalent
Prévision du cours de OpSec
Prévision du cours de Horizen
Prévision du cours de Hiveterminal token
Prévision du cours de Ark
Prévision du cours de Escoin Token
Prévision du cours de MVL
Prévision du cours de Nym
Prévision du cours de Constellation
Prévision du cours de Alchemy Pay
Comment lire et prédire les mouvements de prix de Status ?
Les traders de Status utilisent des indicateurs et des modèles graphiques pour prédire la direction du marché. Ils identifient également des niveaux clés de support et de résistance pour évaluer quand une tendance baissière pourrait ralentir ou une tendance haussière pourrait s'arrêter.
Indicateurs de prédiction du prix de Status
Les moyennes mobiles sont des outils populaires pour la prédiction du prix de Status. Une moyenne mobile simple (SMA) calcule le prix de clôture moyen de SNT sur une période spécifique, comme une SMA de 12 jours. Une moyenne mobile exponentielle (EMA) donne plus de poids aux prix récents, réagissant plus rapidement aux changements de prix.
Les moyennes mobiles couramment utilisées sur le marché des cryptomonnaies incluent les moyennes sur 50 jours, 100 jours et 200 jours, qui aident à identifier les niveaux clés de résistance et de support. Un mouvement de prix de SNT au-dessus de ces moyennes est considéré comme haussier, tandis qu'une chute en dessous indique une faiblesse.
Les traders utilisent également le RSI et les niveaux de retracement de Fibonacci pour évaluer la direction future de SNT.
Comment lire les graphiques de Status et prédire les mouvements de prix ?
La plupart des traders préfèrent les graphiques en chandeliers aux simples graphiques linéaires parce qu'ils fournissent des informations plus détaillées. Les chandeliers peuvent représenter l'action des prix de Status dans différentes périodes, comme 5 minutes pour les tendances à court terme et hebdomadaire pour les tendances à long terme. Les options populaires incluent les graphiques de 1 heure, 4 heures et 1 jour.
Par exemple, un graphique en chandeliers de 1 heure montre les prix d'ouverture, de clôture, les plus hauts et les plus bas de SNT au sein de chaque heure. La couleur du chandelier est cruciale : le vert indique que le prix a clôturé plus haut qu'il n'a ouvert, tandis que le rouge signifie le contraire. Certains graphiques utilisent des chandeliers creux et pleins pour transmettre la même information.
Qu'est-ce qui affecte le prix de Status ?
L'action du prix de Status est déterminée par l'offre et la demande, influencée par des facteurs tels que les réductions de récompenses de bloc, les hard forks et les mises à jour de protocole. Les événements du monde réel, tels que les réglementations, l'adoption par les entreprises et les gouvernements et les piratages d'échanges de cryptomonnaies, impactent également le prix de SNT. La capitalisation boursière de Status peut changer rapidement.
Les traders surveillent souvent l'activité des « baleines » de SNT, de grands détenteurs de Status, car leurs actions peuvent influencer significativement les mouvements de prix sur le marché relativement petit de Status.
Modèles de prédiction de prix haussiers et baissiers
Les traders identifient souvent des modèles de chandeliers pour obtenir un avantage dans les prédictions de prix des cryptomonnaies. Certaines formations indiquent des tendances haussières, tandis que d'autres suggèrent des mouvements baissiers.
Modèles de chandeliers haussiers couramment suivis :
- Marteau
- Englobante haussière
- Ligne pénétrante
- Étoile du matin
- Trois soldats blancs
Modèles de chandeliers baissiers courants :
- Harami baissier
- Nuage sombre
- Étoile du soir
- Étoile filante
- Pendu


