Prédiction du prix de Status jusqu'à $0.015901 d'ici 2026
| Année | Prix min. | Prix max. |
|---|---|---|
| 2026 | $0.005326 | $0.015901 |
| 2027 | $0.005128 | $0.013471 |
| 2028 | $0.009254 | $0.022667 |
| 2029 | $0.020329 | $0.066876 |
| 2030 | $0.017289 | $0.049989 |
| 2031 | $0.020441 | $0.045634 |
| 2032 | $0.0312029 | $0.08465 |
| 2033 | $0.0725087 | $0.225478 |
| 2034 | $0.058293 | $0.130584 |
| 2035 | $0.068921 | $0.153861 |
Calculateur de profit d’investissement
Si vous ouvrez une position short de $10,000.00 sur Status aujourd’hui et la fermez le Apr 06, 2026, notre prévision indique que vous pourriez gagner environ $3,954.48, soit un rendement de 39.54% sur les 90 prochains jours.
Prévision du prix à long terme de Status pour 2027, 2028, 2029, 2030, 2031, 2032 et 2037
[
'name' => 'Status'
'name_with_ticker' => 'Status <small>SNT</small>'
'name_lang' => 'Status'
'name_lang_with_ticker' => 'Status <small>SNT</small>'
'name_with_lang' => 'Status'
'name_with_lang_with_ticker' => 'Status <small>SNT</small>'
'image' => '/uploads/coins/status.png?1717138196'
'price_for_sd' => 0.01541
'ticker' => 'SNT'
'marketcap' => '$61.06M'
'low24h' => '$0.01494'
'high24h' => '$0.01565'
'volume24h' => '$3.54M'
'current_supply' => '3.96B'
'max_supply' => '6.8B'
'algo' => null
'proof' => null
'ico_price_and_roi' => ''
'price' => '$0.01541'
'change_24h_pct' => '3.0229%'
'ath_price' => '$0.6849'
'ath_days' => 2925
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '3 janv. 2018'
'ath_pct' => '-97.75%'
'fdv' => '$104.92M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.760215'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.015549'
'next_week_prediction_price_date' => '13 janvier 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.013626'
'next_month_prediction_price_date' => '5 février 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.005326'
'current_year_max_price_prediction' => '$0.015901'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.017289'
'grand_prediction_max_price' => '$0.049989'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.015710193558616
107 => 0.015768849718564
108 => 0.015901005041984
109 => 0.014771752272786
110 => 0.015278753613036
111 => 0.015576569400832
112 => 0.014231026836939
113 => 0.015549972350593
114 => 0.014752094494435
115 => 0.014481282766331
116 => 0.01484589508149
117 => 0.014703805307676
118 => 0.014581644863942
119 => 0.014513477237355
120 => 0.014781208280815
121 => 0.01476871830763
122 => 0.014330658356173
123 => 0.013759227007105
124 => 0.013951018124447
125 => 0.013881338613465
126 => 0.013628811076832
127 => 0.013798984146232
128 => 0.013049628071216
129 => 0.01176039989229
130 => 0.012612103517416
131 => 0.012579313854323
201 => 0.0125627798193
202 => 0.013202811554222
203 => 0.013141287270954
204 => 0.013029620094374
205 => 0.013626760221564
206 => 0.013408796042472
207 => 0.014080510283615
208 => 0.014522944726585
209 => 0.014410729040593
210 => 0.014826840772678
211 => 0.013955436604427
212 => 0.014244882114453
213 => 0.014304536432915
214 => 0.013619391605086
215 => 0.01315135340458
216 => 0.013120140592633
217 => 0.012308626852592
218 => 0.012742130942212
219 => 0.013123596601459
220 => 0.01294090415361
221 => 0.012883069182403
222 => 0.013178535507426
223 => 0.013201495771378
224 => 0.012677999320048
225 => 0.012786850809256
226 => 0.013240779614308
227 => 0.01277541296803
228 => 0.011871281591523
301 => 0.011647044509554
302 => 0.01161712714931
303 => 0.011008978398545
304 => 0.011662029103603
305 => 0.011376954970174
306 => 0.012277500741962
307 => 0.011763113826841
308 => 0.011740939635022
309 => 0.011707420091841
310 => 0.011183961339749
311 => 0.011298565538918
312 => 0.011679527351668
313 => 0.0118154588183
314 => 0.011801280052676
315 => 0.011677660430953
316 => 0.011734252860743
317 => 0.01155194892628
318 => 0.011487573612692
319 => 0.011284387415186
320 => 0.010985759836471
321 => 0.01102728583288
322 => 0.01043562645929
323 => 0.010113259030818
324 => 0.010024031975351
325 => 0.0099047138277257
326 => 0.010037509277619
327 => 0.010433950362622
328 => 0.0099557583044401
329 => 0.0091359315619594
330 => 0.0091852045460993
331 => 0.0092959063121813
401 => 0.0090896143034529
402 => 0.0088943762299675
403 => 0.0090641198946975
404 => 0.0087167484963235
405 => 0.0093378844860884
406 => 0.0093210844982787
407 => 0.0095526055844711
408 => 0.0096973804709582
409 => 0.0093637212290316
410 => 0.0092798068319976
411 => 0.0093276082862448
412 => 0.0085375567265925
413 => 0.0094880415168047
414 => 0.0094962613487402
415 => 0.0094258781573038
416 => 0.0099319819651662
417 => 0.011000018857492
418 => 0.010598180416915
419 => 0.010442576427092
420 => 0.010146773128693
421 => 0.010540913460748
422 => 0.010510649632793
423 => 0.010373785125565
424 => 0.010291009044551
425 => 0.010443526511873
426 => 0.010272110442513
427 => 0.010241319406258
428 => 0.010054759227527
429 => 0.0099881657316673
430 => 0.0099388625584963
501 => 0.0098845846092647
502 => 0.010004308240047
503 => 0.0097329987417386
504 => 0.0094058260835764
505 => 0.0093786252171074
506 => 0.0094537292009529
507 => 0.0094205012789353
508 => 0.0093784661346005
509 => 0.0092982095964751
510 => 0.0092743991960229
511 => 0.0093517714463284
512 => 0.0092644226868159
513 => 0.0093933105396098
514 => 0.00935826017534
515 => 0.0091624716897597
516 => 0.0089184467465452
517 => 0.0089162744126909
518 => 0.0088636996389565
519 => 0.0087967377599355
520 => 0.0087781104970721
521 => 0.0090498245567075
522 => 0.0096122645284353
523 => 0.0095018441039373
524 => 0.0095816341769774
525 => 0.0099741223651968
526 => 0.0100988825577
527 => 0.010010330728168
528 => 0.0098891155222663
529 => 0.0098944483761484
530 => 0.010308677429054
531 => 0.01033451238698
601 => 0.010399788990986
602 => 0.010483687874299
603 => 0.010024619070786
604 => 0.0098728262767863
605 => 0.0098008984298458
606 => 0.0095793885008491
607 => 0.009818267968446
608 => 0.009679083132516
609 => 0.009697863922114
610 => 0.0096856329082503
611 => 0.0096923118688774
612 => 0.0093377108659204
613 => 0.0094669088341179
614 => 0.0092520921536315
615 => 0.0089644767327643
616 => 0.0089635125450226
617 => 0.0090339060118154
618 => 0.0089920332232704
619 => 0.0088793546259437
620 => 0.008895360088866
621 => 0.0087551353919273
622 => 0.0089123859059244
623 => 0.0089168952879965
624 => 0.0088563452746142
625 => 0.009098611387816
626 => 0.0091978680120651
627 => 0.0091580126961499
628 => 0.0091950716568544
629 => 0.0095064325710935
630 => 0.0095571979857436
701 => 0.0095797446295561
702 => 0.0095495351137052
703 => 0.0092007627627934
704 => 0.0092162322996509
705 => 0.0091027271023896
706 => 0.0090068271715868
707 => 0.00901066266589
708 => 0.009059967696441
709 => 0.009275285656559
710 => 0.0097284096099403
711 => 0.0097456053327419
712 => 0.0097664470504119
713 => 0.0096816733104397
714 => 0.0096561047392887
715 => 0.0096898362844451
716 => 0.0098600058172095
717 => 0.010297728056057
718 => 0.010143007782363
719 => 0.010017217791485
720 => 0.010127569526223
721 => 0.010110581741626
722 => 0.0099671877437213
723 => 0.0099631631517886
724 => 0.009687944223976
725 => 0.0095862020527954
726 => 0.0095011786792874
727 => 0.0094083353750081
728 => 0.0093532947520955
729 => 0.0094378621644049
730 => 0.0094572037321723
731 => 0.0092722956071724
801 => 0.0092470933129939
802 => 0.0093980932793879
803 => 0.0093316438240241
804 => 0.009399988736733
805 => 0.0094158453427333
806 => 0.0094132920639586
807 => 0.0093439112008874
808 => 0.0093881324940419
809 => 0.0092835359527296
810 => 0.009169802923945
811 => 0.0090972483373985
812 => 0.0090339348376673
813 => 0.0090690648471204
814 => 0.0089438327779065
815 => 0.0089037685185414
816 => 0.0093731513149317
817 => 0.0097198894333407
818 => 0.0097148477237757
819 => 0.009684157613421
820 => 0.0096385583346954
821 => 0.0098566699459503
822 => 0.0097806842218684
823 => 0.0098359701849577
824 => 0.0098500427829085
825 => 0.0098926362985102
826 => 0.0099078598193014
827 => 0.0098618437660553
828 => 0.0097074082709738
829 => 0.0093225697005169
830 => 0.0091434263071173
831 => 0.0090843060034262
901 => 0.00908645491418
902 => 0.0090271783624321
903 => 0.0090446379635105
904 => 0.0090211066256985
905 => 0.0089765439647245
906 => 0.0090663132283795
907 => 0.0090766582997572
908 => 0.0090557050809573
909 => 0.0090606403225023
910 => 0.008887156620076
911 => 0.0089003462091847
912 => 0.0088269049009756
913 => 0.0088131355410346
914 => 0.0086274823091484
915 => 0.0082985706979958
916 => 0.008480819658797
917 => 0.008260688542231
918 => 0.0081773215528568
919 => 0.0085719679143276
920 => 0.0085323563654221
921 => 0.0084645586124223
922 => 0.0083642716054458
923 => 0.008327074179029
924 => 0.0081010743913942
925 => 0.0080877211182788
926 => 0.0081997327155381
927 => 0.0081480432174867
928 => 0.0080754515858787
929 => 0.0078125320546903
930 => 0.0075169234519693
1001 => 0.007525846017556
1002 => 0.007619873614088
1003 => 0.0078932715323537
1004 => 0.0077864502358553
1005 => 0.0077089501596125
1006 => 0.007694436724976
1007 => 0.0078761027453856
1008 => 0.0081331982244732
1009 => 0.008253821671074
1010 => 0.0081342874988812
1011 => 0.0079969730780429
1012 => 0.0080053307705856
1013 => 0.0080609307547597
1014 => 0.008066773526955
1015 => 0.0079773959551398
1016 => 0.0080025552180737
1017 => 0.0079643359970659
1018 => 0.0077297847082887
1019 => 0.0077255424192449
1020 => 0.0076679797503285
1021 => 0.0076662367755906
1022 => 0.0075683083160831
1023 => 0.0075546074476505
1024 => 0.0073601645474658
1025 => 0.0074881474531947
1026 => 0.0074023032394359
1027 => 0.0072729157606985
1028 => 0.007250609310595
1029 => 0.0072499387517691
1030 => 0.0073827907619216
1031 => 0.0074865950001059
1101 => 0.0074037965362873
1102 => 0.0073849449310566
1103 => 0.0075862307550994
1104 => 0.0075606152992289
1105 => 0.0075384324796471
1106 => 0.0081101781441688
1107 => 0.0076575968368293
1108 => 0.0074602455543914
1109 => 0.0072159858663823
1110 => 0.0072955180524623
1111 => 0.0073122766526403
1112 => 0.0067248761340966
1113 => 0.0064865678168796
1114 => 0.0064047893828701
1115 => 0.0063577247379204
1116 => 0.0063791726876246
1117 => 0.0061646672513516
1118 => 0.0063088184521195
1119 => 0.0061230748760002
1120 => 0.0060919343610019
1121 => 0.0064240668843169
1122 => 0.0064702811846461
1123 => 0.006273116621784
1124 => 0.0063997281891848
1125 => 0.0063538170748128
1126 => 0.0061262589164964
1127 => 0.0061175678686532
1128 => 0.006003387183866
1129 => 0.0058247165219114
1130 => 0.0057430592350243
1201 => 0.0057005314110324
1202 => 0.0057180792200622
1203 => 0.0057092065108449
1204 => 0.0056513060814703
1205 => 0.0057125252956808
1206 => 0.0055561355008986
1207 => 0.0054938598244982
1208 => 0.0054657313462528
1209 => 0.0053269264019228
1210 => 0.0055478267951907
1211 => 0.0055913469554943
1212 => 0.0056349528639577
1213 => 0.0060145125261139
1214 => 0.0059955507980171
1215 => 0.0061669555852765
1216 => 0.0061602951104368
1217 => 0.006111407688537
1218 => 0.005905159697132
1219 => 0.0059873664704891
1220 => 0.0057343467998652
1221 => 0.0059239263407618
1222 => 0.0058374101553275
1223 => 0.005894675131439
1224 => 0.0057917075410158
1225 => 0.0058486940569836
1226 => 0.0056016671999938
1227 => 0.0053709969966983
1228 => 0.0054638254201874
1229 => 0.005564740532738
1230 => 0.00578355020944
1231 => 0.0056532289711369
]
'min_raw' => 0.0053269264019228
'max_raw' => 0.015901005041984
'avg_raw' => 0.010613965721953
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.005326'
'max' => '$0.015901'
'avg' => '$0.010613'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.010091103598077
'max_diff' => 0.00048297504198358
'year' => 2026
]
1 => [
'items' => [
101 => 0.0057000974164223
102 => 0.0055430959703992
103 => 0.0052191571420076
104 => 0.0052209906005966
105 => 0.0051711596692396
106 => 0.005128098469112
107 => 0.005668197933043
108 => 0.0056010280269942
109 => 0.0054940015726853
110 => 0.00563726073484
111 => 0.0056751407311423
112 => 0.005676219121384
113 => 0.0057807373080379
114 => 0.0058365186829909
115 => 0.0058463503920967
116 => 0.0060108120170615
117 => 0.0060659373844484
118 => 0.006292990971081
119 => 0.005831786023049
120 => 0.0058222878106486
121 => 0.0056392766850393
122 => 0.0055232081358865
123 => 0.0056472239979008
124 => 0.0057570851217921
125 => 0.0056426903763953
126 => 0.0056576279151393
127 => 0.0055040623158382
128 => 0.0055589547916553
129 => 0.005606235586644
130 => 0.0055801299106879
131 => 0.0055410484502527
201 => 0.0057480777624727
202 => 0.0057363963573229
203 => 0.0059291868124455
204 => 0.0060794807587913
205 => 0.0063488343788996
206 => 0.0060677498345949
207 => 0.0060575059965905
208 => 0.0061576411562462
209 => 0.0060659220542771
210 => 0.0061238853606858
211 => 0.0063394955941279
212 => 0.0063440510986064
213 => 0.0062677405291559
214 => 0.0062630970240697
215 => 0.0062777533036789
216 => 0.00636359559113
217 => 0.0063335996582275
218 => 0.0063683117111864
219 => 0.0064117196649413
220 => 0.0065912733662625
221 => 0.0066345631557749
222 => 0.0065293914104423
223 => 0.0065388872414877
224 => 0.0064995501217044
225 => 0.0064615509568864
226 => 0.006546967530065
227 => 0.0067030679964157
228 => 0.0067020969035162
301 => 0.0067383091775501
302 => 0.0067608691242746
303 => 0.0066640253180429
304 => 0.0066009835612315
305 => 0.0066251577822442
306 => 0.0066638128880895
307 => 0.0066126224523991
308 => 0.0062966513696009
309 => 0.0063924968118109
310 => 0.0063765434436245
311 => 0.0063538239073312
312 => 0.0064501972406243
313 => 0.0064409017975238
314 => 0.0061624671880615
315 => 0.0061802916683804
316 => 0.0061635511537462
317 => 0.0062176431813163
318 => 0.0060630009072735
319 => 0.0061105678292374
320 => 0.006140401356781
321 => 0.0061579735336962
322 => 0.0062214562860682
323 => 0.0062140073177925
324 => 0.0062209932477413
325 => 0.0063151214106837
326 => 0.0067911893579616
327 => 0.0068171006859472
328 => 0.006689503830323
329 => 0.0067404762574082
330 => 0.0066426203438491
331 => 0.006708311674199
401 => 0.0067532560140455
402 => 0.0065501611845787
403 => 0.0065381352268522
404 => 0.0064398754271286
405 => 0.0064926746777806
406 => 0.0064086672735928
407 => 0.0064292797521263
408 => 0.0063716454651833
409 => 0.0064753757068086
410 => 0.0065913622349957
411 => 0.0066206650124625
412 => 0.0065435820205861
413 => 0.0064877688544509
414 => 0.0063897793207173
415 => 0.0065527380991554
416 => 0.0066003922120495
417 => 0.0065524877923874
418 => 0.0065413872916194
419 => 0.0065203518627223
420 => 0.0065458500573008
421 => 0.0066001326775164
422 => 0.0065745339962654
423 => 0.0065914423762224
424 => 0.0065270050676718
425 => 0.0066640573773724
426 => 0.0068817294286115
427 => 0.0068824292798492
428 => 0.0068568304606117
429 => 0.0068463559753139
430 => 0.0068726219173179
501 => 0.0068868701133697
502 => 0.0069718093534604
503 => 0.0070629525422064
504 => 0.007488278035195
505 => 0.0073688483387313
506 => 0.0077462224188376
507 => 0.0080446763203104
508 => 0.0081341695955546
509 => 0.0080518399933139
510 => 0.007770194871406
511 => 0.0077563760180662
512 => 0.0081772727376999
513 => 0.0080583501361124
514 => 0.0080442046710621
515 => 0.0078937208220677
516 => 0.0079826754146107
517 => 0.0079632197403364
518 => 0.0079325080066903
519 => 0.0081022271726316
520 => 0.0084199263003393
521 => 0.0083704099119225
522 => 0.0083334482249685
523 => 0.0081714928721215
524 => 0.0082690261685731
525 => 0.0082342964298339
526 => 0.0083835174274941
527 => 0.00829512221413
528 => 0.0080574491804417
529 => 0.0080952993944372
530 => 0.0080895784107358
531 => 0.0082073158499163
601 => 0.0081719739930972
602 => 0.0080826773459753
603 => 0.0084188404392591
604 => 0.0083970118778186
605 => 0.0084279597872374
606 => 0.0084415840140594
607 => 0.0086462005650831
608 => 0.0087300254190382
609 => 0.0087490551284466
610 => 0.008828682256457
611 => 0.008747073932963
612 => 0.0090735654126876
613 => 0.0092906631953984
614 => 0.0095428334417668
615 => 0.0099113219486833
616 => 0.010049877035993
617 => 0.010024848299629
618 => 0.010304232080072
619 => 0.010806278523176
620 => 0.010126326239838
621 => 0.010842317645246
622 => 0.010615643032812
623 => 0.010078201604433
624 => 0.010043596712464
625 => 0.010407558287585
626 => 0.011214790031201
627 => 0.011012587634972
628 => 0.011215120761884
629 => 0.01097885511116
630 => 0.010967122530199
701 => 0.011203645866583
702 => 0.011756295534261
703 => 0.01149375239291
704 => 0.011117332421564
705 => 0.011395275070663
706 => 0.011154495425636
707 => 0.010611951495411
708 => 0.01101243301461
709 => 0.010744642427779
710 => 0.010822797957547
711 => 0.011385653940222
712 => 0.011317929619254
713 => 0.01140557116169
714 => 0.01125088613327
715 => 0.011106385925135
716 => 0.010836665555926
717 => 0.010756814651657
718 => 0.010778882568862
719 => 0.010756803715893
720 => 0.010605897648178
721 => 0.010573309497223
722 => 0.010518994484578
723 => 0.010535828978162
724 => 0.010433700863972
725 => 0.010626437716193
726 => 0.010662211374356
727 => 0.010802469182483
728 => 0.01081703121341
729 => 0.011207647212598
730 => 0.01099250248428
731 => 0.011136840142738
801 => 0.011123929224007
802 => 0.010089849589851
803 => 0.010232336639676
804 => 0.010454001774304
805 => 0.010354141931614
806 => 0.010212963477655
807 => 0.010098954306573
808 => 0.009926218754348
809 => 0.010169340727012
810 => 0.010489020267927
811 => 0.010825138814119
812 => 0.01122896322401
813 => 0.011138834316757
814 => 0.010817589597671
815 => 0.010832000401099
816 => 0.010921082317454
817 => 0.010805713141829
818 => 0.010771688519664
819 => 0.010916407856852
820 => 0.010917404459391
821 => 0.010784658280004
822 => 0.01063713519391
823 => 0.010636517066793
824 => 0.010610266758526
825 => 0.010983524982685
826 => 0.01118877926531
827 => 0.011212311338029
828 => 0.011187195369322
829 => 0.01119686150886
830 => 0.011077428564271
831 => 0.011350416858863
901 => 0.011600937913726
902 => 0.011533792919421
903 => 0.011433133027735
904 => 0.011352952575569
905 => 0.011514904953062
906 => 0.011507693468629
907 => 0.011598749830861
908 => 0.011594618988304
909 => 0.011564000158488
910 => 0.011533794012916
911 => 0.011653557965761
912 => 0.011619067870692
913 => 0.011584524202979
914 => 0.011515241589009
915 => 0.01152465824691
916 => 0.011424015735573
917 => 0.01137745390474
918 => 0.010677275686475
919 => 0.010490165187571
920 => 0.010549033959511
921 => 0.010568415087761
922 => 0.010486984358849
923 => 0.010603735106271
924 => 0.010585539625955
925 => 0.010656327595864
926 => 0.010612102345521
927 => 0.010613917365222
928 => 0.010743974396663
929 => 0.010781730506193
930 => 0.010762527444157
1001 => 0.010775976610564
1002 => 0.011085906973887
1003 => 0.011041844787238
1004 => 0.011018437628772
1005 => 0.011024921571635
1006 => 0.011104115424446
1007 => 0.011126285379409
1008 => 0.011032349722375
1009 => 0.011076650321268
1010 => 0.011265276648769
1011 => 0.011331285188069
1012 => 0.011541952759618
1013 => 0.011452457430906
1014 => 0.011616729980023
1015 => 0.01212164779137
1016 => 0.012525011076729
1017 => 0.01215406152982
1018 => 0.012894786835377
1019 => 0.013471547736487
1020 => 0.013449410692457
1021 => 0.013348839088628
1022 => 0.012692212136696
1023 => 0.012087974225772
1024 => 0.012593444895557
1025 => 0.012594733444245
1026 => 0.012551313065431
1027 => 0.012281632821741
1028 => 0.012541928777516
1029 => 0.01256259012523
1030 => 0.012551025264806
1031 => 0.012344262054268
1101 => 0.012028572848005
1102 => 0.012090257763256
1103 => 0.012191298912775
1104 => 0.012000006937344
1105 => 0.011938877560404
1106 => 0.012052528702475
1107 => 0.012418736362382
1108 => 0.012349506925573
1109 => 0.0123476990652
1110 => 0.012643891953718
1111 => 0.012431881767965
1112 => 0.01209103580758
1113 => 0.012004967707376
1114 => 0.011699483934074
1115 => 0.01191048266439
1116 => 0.01191807613306
1117 => 0.011802514284821
1118 => 0.012100413014667
1119 => 0.012097667825427
1120 => 0.012380478333041
1121 => 0.012921105804822
1122 => 0.012761215658754
1123 => 0.012575280814876
1124 => 0.012595497087819
1125 => 0.012817219703997
1126 => 0.012683161148821
1127 => 0.012731369539952
1128 => 0.012817146734823
1129 => 0.012868898246217
1130 => 0.01258805084174
1201 => 0.012522571877272
1202 => 0.012388624895965
1203 => 0.01235368062878
1204 => 0.01246277765016
1205 => 0.012434034439481
1206 => 0.011917437931422
1207 => 0.011863450722014
1208 => 0.01186510643265
1209 => 0.011729353027642
1210 => 0.011522296500454
1211 => 0.012066428691201
1212 => 0.012022727261159
1213 => 0.011974484264615
1214 => 0.011980393756421
1215 => 0.012216583098073
1216 => 0.012079581352067
1217 => 0.012443822947969
1218 => 0.012368945825956
1219 => 0.012292148388301
1220 => 0.01228153264311
1221 => 0.012251972181662
1222 => 0.012150598360394
1223 => 0.012028183379592
1224 => 0.011947354405862
1225 => 0.011020802904643
1226 => 0.011192765473767
1227 => 0.011390592734663
1228 => 0.011458881912381
1229 => 0.011342068548427
1230 => 0.012155210863989
1231 => 0.012303779800677
]
'min_raw' => 0.005128098469112
'max_raw' => 0.013471547736487
'avg_raw' => 0.0092998231027995
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.005128'
'max' => '$0.013471'
'avg' => '$0.009299'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00019882793281088
'max_diff' => -0.0024294573054965
'year' => 2027
]
2 => [
'items' => [
101 => 0.011853754800538
102 => 0.011769573497412
103 => 0.012160729776207
104 => 0.011924814723183
105 => 0.012031047257115
106 => 0.011801430624844
107 => 0.012267993894435
108 => 0.012264439464028
109 => 0.012082935814348
110 => 0.012236341456174
111 => 0.012209683450779
112 => 0.012004766277314
113 => 0.012274490134338
114 => 0.012274623914006
115 => 0.012099930597418
116 => 0.011895927048929
117 => 0.011859456032807
118 => 0.011831980021352
119 => 0.012024289842607
120 => 0.012196714227007
121 => 0.012517553258746
122 => 0.012598219814272
123 => 0.012913066750769
124 => 0.012725590729704
125 => 0.012808696421621
126 => 0.012898919406215
127 => 0.01294217562287
128 => 0.012871691939088
129 => 0.013360778827636
130 => 0.013402072746265
131 => 0.01341591823999
201 => 0.013251000892988
202 => 0.013397486096511
203 => 0.013328950520863
204 => 0.013507261048969
205 => 0.01353522241656
206 => 0.013511540132965
207 => 0.013520415512378
208 => 0.013103066133842
209 => 0.013081424366871
210 => 0.012786337338599
211 => 0.012906587483793
212 => 0.012681785601092
213 => 0.012753072593812
214 => 0.012784495220956
215 => 0.012768081823755
216 => 0.01291338624658
217 => 0.012789847803446
218 => 0.012463809540414
219 => 0.012137682448476
220 => 0.012133588188494
221 => 0.012047724681808
222 => 0.011985661093159
223 => 0.011997616742157
224 => 0.012039750008625
225 => 0.011983212231118
226 => 0.011995277432487
227 => 0.012195640165232
228 => 0.012235821482362
229 => 0.012099269666899
301 => 0.011550994423483
302 => 0.011416446303504
303 => 0.01151315682394
304 => 0.011466935424127
305 => 0.009254711844886
306 => 0.0097744409604525
307 => 0.009465635568316
308 => 0.0096079473004654
309 => 0.0092927369598627
310 => 0.0094431718559877
311 => 0.0094153920236763
312 => 0.010251101061605
313 => 0.010238052614457
314 => 0.010244298215598
315 => 0.0099461794003189
316 => 0.010421090767867
317 => 0.010655049184781
318 => 0.010611749708412
319 => 0.010622647253764
320 => 0.010435391319329
321 => 0.010246111262365
322 => 0.010036170549199
323 => 0.010426214444804
324 => 0.010382848221884
325 => 0.010482314734588
326 => 0.010735286081801
327 => 0.010772537073623
328 => 0.010822602784394
329 => 0.010804657791003
330 => 0.011232180336935
331 => 0.011180404535738
401 => 0.011305169319708
402 => 0.011048518693155
403 => 0.010758094147708
404 => 0.010813294359104
405 => 0.010807978134855
406 => 0.010740296498481
407 => 0.010679196543413
408 => 0.01057748233303
409 => 0.010899321145551
410 => 0.01088625507751
411 => 0.011097779531461
412 => 0.011060390529586
413 => 0.010810697624425
414 => 0.010819615455381
415 => 0.010879592154323
416 => 0.011087172194164
417 => 0.011148796083116
418 => 0.011120249442466
419 => 0.011187817223464
420 => 0.011241220042605
421 => 0.011194523795344
422 => 0.011855644182886
423 => 0.011581100904826
424 => 0.011714911388293
425 => 0.011746824400143
426 => 0.011665079891348
427 => 0.011682807348254
428 => 0.011709659615024
429 => 0.011872701320638
430 => 0.012300569932667
501 => 0.012490070028335
502 => 0.013060190415921
503 => 0.012474334683358
504 => 0.0124395724287
505 => 0.012542268326491
506 => 0.012876989347375
507 => 0.013148249296056
508 => 0.013238241870395
509 => 0.013250135874709
510 => 0.013418967926763
511 => 0.013515739310468
512 => 0.01339846727492
513 => 0.013299091503686
514 => 0.012943139826102
515 => 0.012984342202007
516 => 0.013268185713559
517 => 0.013669131391926
518 => 0.014013184495253
519 => 0.013892709089929
520 => 0.014811851390169
521 => 0.014902980594878
522 => 0.014890389485347
523 => 0.015097995375519
524 => 0.014685939961733
525 => 0.014509778289142
526 => 0.01332057767339
527 => 0.013654694539553
528 => 0.014140353026518
529 => 0.014076074304642
530 => 0.01372337612972
531 => 0.01401291694206
601 => 0.013917185694722
602 => 0.013841678488054
603 => 0.014187591639595
604 => 0.013807245920146
605 => 0.014136558787017
606 => 0.01371421162895
607 => 0.013893259411433
608 => 0.013791623230529
609 => 0.013857394295636
610 => 0.013472897992945
611 => 0.013680362864757
612 => 0.013464266772196
613 => 0.013464164314512
614 => 0.013459393981291
615 => 0.013713630075872
616 => 0.013721920705789
617 => 0.013534039847764
618 => 0.013506963280872
619 => 0.013607079540075
620 => 0.013489869621039
621 => 0.013544711404445
622 => 0.01349153072279
623 => 0.013479558631193
624 => 0.013384162968463
625 => 0.013343063894
626 => 0.01335917990009
627 => 0.013304167662936
628 => 0.013271020800171
629 => 0.013452800235993
630 => 0.013355682816395
701 => 0.01343791559858
702 => 0.013344200964676
703 => 0.013019345214042
704 => 0.012832517236565
705 => 0.012218894837762
706 => 0.012392917388866
707 => 0.012508294520288
708 => 0.012470162379041
709 => 0.012552084973619
710 => 0.012557114355578
711 => 0.012530480484979
712 => 0.012499641874835
713 => 0.0124846313449
714 => 0.012596507537145
715 => 0.012661455432322
716 => 0.012519874158973
717 => 0.01248670364756
718 => 0.012629850131832
719 => 0.012717169404545
720 => 0.013361885853798
721 => 0.013314123176831
722 => 0.013433998123067
723 => 0.013420502043752
724 => 0.013546150084984
725 => 0.013751531529574
726 => 0.013333933627167
727 => 0.013406414183576
728 => 0.013388643624965
729 => 0.013582657924189
730 => 0.013583263615653
731 => 0.013466942351536
801 => 0.013530001995911
802 => 0.013494803832372
803 => 0.013558411671204
804 => 0.01331348527716
805 => 0.013611779186935
806 => 0.013780892612143
807 => 0.013783240752216
808 => 0.013863399173597
809 => 0.013944844772183
810 => 0.014101172506252
811 => 0.013940484876527
812 => 0.013651423473277
813 => 0.013672292772929
814 => 0.013502816177966
815 => 0.013505665110146
816 => 0.013490457286896
817 => 0.013536097109262
818 => 0.01332350065162
819 => 0.013373396615297
820 => 0.013303541973959
821 => 0.013406262333228
822 => 0.013295752206938
823 => 0.013388635055464
824 => 0.013428720213772
825 => 0.013576635310902
826 => 0.013273905026826
827 => 0.012656617484557
828 => 0.01278637880983
829 => 0.012594451617219
830 => 0.012612215209614
831 => 0.012648100493305
901 => 0.012531784547927
902 => 0.012553973964768
903 => 0.012553181202654
904 => 0.012546349607039
905 => 0.012516091337312
906 => 0.01247221085979
907 => 0.012647017176538
908 => 0.012676720176078
909 => 0.012742746264632
910 => 0.012939195118247
911 => 0.012919565245188
912 => 0.012951582382583
913 => 0.012881689151418
914 => 0.012615457356149
915 => 0.012629915023512
916 => 0.012449627679828
917 => 0.012738135911913
918 => 0.012669813354433
919 => 0.01262576535716
920 => 0.012613746453003
921 => 0.012810682265328
922 => 0.012869608546967
923 => 0.012832889642645
924 => 0.01275757809862
925 => 0.012902198527007
926 => 0.012940892852597
927 => 0.012949555085105
928 => 0.01320579475599
929 => 0.01296387603624
930 => 0.013022108276549
1001 => 0.013476419592314
1002 => 0.013064421919591
1003 => 0.013282666275477
1004 => 0.013271984349945
1005 => 0.01338363077743
1006 => 0.013262826084176
1007 => 0.013264323603132
1008 => 0.013363458067155
1009 => 0.01322424159143
1010 => 0.013189769634235
1011 => 0.013142146872263
1012 => 0.013246129430785
1013 => 0.013308462271893
1014 => 0.013810819192793
1015 => 0.014135364673954
1016 => 0.014121275298689
1017 => 0.014250025814405
1018 => 0.014192022527856
1019 => 0.014004714615092
1020 => 0.014324426382413
1021 => 0.014223256201924
1022 => 0.014231596548682
1023 => 0.014231286120559
1024 => 0.014298555446133
1025 => 0.014250888963821
1026 => 0.014156933434318
1027 => 0.014219305499523
1028 => 0.014404528234759
1029 => 0.014979465288259
1030 => 0.015301207680301
1031 => 0.014960095992267
1101 => 0.015195390267005
1102 => 0.015054297546085
1103 => 0.015028656801549
1104 => 0.015176438994195
1105 => 0.015324479860006
1106 => 0.015315050296852
1107 => 0.015207580230255
1108 => 0.015146873116587
1109 => 0.015606567719659
1110 => 0.015945262872508
1111 => 0.015922166133725
1112 => 0.016024107627252
1113 => 0.01632341100518
1114 => 0.016350775555066
1115 => 0.016347328250747
1116 => 0.01627950235866
1117 => 0.016574205403685
1118 => 0.016820051868652
1119 => 0.016263802624321
1120 => 0.016475615054725
1121 => 0.016570704478903
1122 => 0.016710323965359
1123 => 0.016945885441951
1124 => 0.017201767685127
1125 => 0.017237952239918
1126 => 0.017212277566704
1127 => 0.017043516348845
1128 => 0.017323505752638
1129 => 0.017487516978821
1130 => 0.017585181910682
1201 => 0.017832843927988
1202 => 0.016571291718815
1203 => 0.015678302361949
1204 => 0.015538849178952
1205 => 0.015822432710302
1206 => 0.015897211425983
1207 => 0.015867068219457
1208 => 0.014861927511264
1209 => 0.015533557321142
1210 => 0.016256174524332
1211 => 0.016283933194058
1212 => 0.016645690475188
1213 => 0.016763493474856
1214 => 0.017054755502777
1215 => 0.017036536983628
1216 => 0.017107454652436
1217 => 0.0170911519085
1218 => 0.017630653482767
1219 => 0.018225803835942
1220 => 0.018205195671674
1221 => 0.018119635766905
1222 => 0.018246706815618
1223 => 0.018860965760283
1224 => 0.018804414639957
1225 => 0.018859349236341
1226 => 0.019583595150218
1227 => 0.020525217861038
1228 => 0.020087739574487
1229 => 0.021036941575316
1230 => 0.021634413919802
1231 => 0.022667680559796
]
'min_raw' => 0.009254711844886
'max_raw' => 0.022667680559796
'avg_raw' => 0.015961196202341
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.009254'
'max' => '$0.022667'
'avg' => '$0.015961'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0041266133757741
'max_diff' => 0.0091961328233087
'year' => 2028
]
3 => [
'items' => [
101 => 0.022538310487523
102 => 0.022940553608012
103 => 0.022306711057806
104 => 0.020851280441818
105 => 0.020620952975674
106 => 0.021082074395716
107 => 0.022215696411319
108 => 0.021046372604226
109 => 0.02128292528747
110 => 0.021214798098782
111 => 0.021211167890419
112 => 0.021349718178521
113 => 0.021148743759332
114 => 0.02032993782095
115 => 0.020705191757257
116 => 0.020560288191274
117 => 0.020721069501008
118 => 0.021588739918385
119 => 0.021205122144183
120 => 0.020801011981639
121 => 0.021307855804694
122 => 0.021953242161875
123 => 0.021912855043514
124 => 0.021834487153386
125 => 0.022276242846825
126 => 0.023005893830113
127 => 0.023203115558921
128 => 0.023348700607106
129 => 0.023368774325571
130 => 0.023575546101508
131 => 0.022463682149094
201 => 0.024228238796267
202 => 0.02453292898434
203 => 0.024475659857097
204 => 0.024814310177817
205 => 0.024714670662731
206 => 0.024570308638334
207 => 0.025107141429664
208 => 0.024491705954576
209 => 0.023618172778861
210 => 0.023138935202137
211 => 0.02377003390216
212 => 0.024155423855955
213 => 0.024410142100009
214 => 0.024487219686754
215 => 0.02254999298265
216 => 0.021505935232656
217 => 0.022175164280255
218 => 0.022991669906048
219 => 0.022459146419117
220 => 0.022480020331604
221 => 0.02172078178395
222 => 0.023058845670615
223 => 0.022863901017217
224 => 0.023875274223899
225 => 0.023633901891347
226 => 0.024458637480115
227 => 0.024241456959693
228 => 0.025142961157565
301 => 0.025502595589348
302 => 0.026106477772941
303 => 0.026550695965435
304 => 0.026811549384608
305 => 0.026795888723757
306 => 0.027829519927176
307 => 0.027220023718844
308 => 0.026454352833951
309 => 0.026440504263304
310 => 0.026837056064231
311 => 0.027668119850298
312 => 0.027883602598539
313 => 0.028004028058108
314 => 0.027819592274737
315 => 0.027158027823579
316 => 0.026872367647777
317 => 0.027115758393933
318 => 0.02681811242619
319 => 0.027331932871222
320 => 0.028037518088377
321 => 0.027891817531221
322 => 0.028378872649145
323 => 0.028882923456505
324 => 0.029603738749367
325 => 0.029792186558634
326 => 0.030103683621324
327 => 0.030424316420287
328 => 0.030527295034017
329 => 0.030723913160016
330 => 0.030722876885439
331 => 0.031315398842063
401 => 0.031968968909098
402 => 0.032215676479221
403 => 0.032782966933185
404 => 0.031811501911
405 => 0.032548369289714
406 => 0.0332130421103
407 => 0.032420591772353
408 => 0.033512799945965
409 => 0.033555207914349
410 => 0.034195517887895
411 => 0.033546441061158
412 => 0.033161021313369
413 => 0.034273713683747
414 => 0.034812110472292
415 => 0.034649940977964
416 => 0.033415823118832
417 => 0.032697513591012
418 => 0.030817559005146
419 => 0.033044446420098
420 => 0.034129098320725
421 => 0.033413014132442
422 => 0.033774165344882
423 => 0.035744489256282
424 => 0.036494661032718
425 => 0.036338630547316
426 => 0.036364997130868
427 => 0.036769776204852
428 => 0.038564789534803
429 => 0.037489175939413
430 => 0.038311442230616
501 => 0.038747569306569
502 => 0.03915266844034
503 => 0.038157873000695
504 => 0.036863658750164
505 => 0.036453726769603
506 => 0.033341813672394
507 => 0.033179825081331
508 => 0.03308889597641
509 => 0.032515600832063
510 => 0.032065147887363
511 => 0.031706930981492
512 => 0.030766862847862
513 => 0.031084108246973
514 => 0.029585835849436
515 => 0.030544377433866
516 => 0.028153098510345
517 => 0.030144626655091
518 => 0.029060728429579
519 => 0.029788536936661
520 => 0.029785997681343
521 => 0.028445871467908
522 => 0.02767291463572
523 => 0.02816547281312
524 => 0.02869353427861
525 => 0.028779210474774
526 => 0.029463855948597
527 => 0.029654925783935
528 => 0.029075975262662
529 => 0.02810354456978
530 => 0.028329418040954
531 => 0.027668337317036
601 => 0.026509818776472
602 => 0.027341887018098
603 => 0.027625991699247
604 => 0.027751468511529
605 => 0.026612198583638
606 => 0.026254215237541
607 => 0.026063627907851
608 => 0.027956479128428
609 => 0.028060173791162
610 => 0.02752965723567
611 => 0.029927642372135
612 => 0.029384904481948
613 => 0.029991275679298
614 => 0.028308922390938
615 => 0.028373190552143
616 => 0.027576737544526
617 => 0.028022698009782
618 => 0.027707507526916
619 => 0.027986668811257
620 => 0.028153996934066
621 => 0.028950319251581
622 => 0.030153719376806
623 => 0.028831375252353
624 => 0.028255210981012
625 => 0.028612660054481
626 => 0.029564594041218
627 => 0.031006822759727
628 => 0.030152994330811
629 => 0.030531908888617
630 => 0.030614684862762
701 => 0.029985103389727
702 => 0.031030036326663
703 => 0.031590024376588
704 => 0.032164456242611
705 => 0.032663219336663
706 => 0.031935015523294
707 => 0.032714297987515
708 => 0.032086333883226
709 => 0.031522985163942
710 => 0.031523839531409
711 => 0.031170442650591
712 => 0.030485691663133
713 => 0.030359413075081
714 => 0.031016330237356
715 => 0.031543115591214
716 => 0.031586504156089
717 => 0.031878159595194
718 => 0.032050758279766
719 => 0.033742460025106
720 => 0.034422876461572
721 => 0.03525487680046
722 => 0.035578987821426
723 => 0.036554445794303
724 => 0.035766684258382
725 => 0.035596247094833
726 => 0.033230105122505
727 => 0.03361756073792
728 => 0.034237914562105
729 => 0.033240334528575
730 => 0.033873069448578
731 => 0.033997984724945
801 => 0.033206437140764
802 => 0.033629236906227
803 => 0.032506406080552
804 => 0.030178194020464
805 => 0.031032628292241
806 => 0.031661779515735
807 => 0.030763903146022
808 => 0.032373311786118
809 => 0.031433128483512
810 => 0.031135135513344
811 => 0.029972558694551
812 => 0.030521250201336
813 => 0.031263363320767
814 => 0.030804823692869
815 => 0.03175636227083
816 => 0.033103994663292
817 => 0.034064397759057
818 => 0.034138125583377
819 => 0.03352065073481
820 => 0.034510158120311
821 => 0.034517365601344
822 => 0.033401197228244
823 => 0.032717550314571
824 => 0.032562224297379
825 => 0.032950259141784
826 => 0.033421405078075
827 => 0.034164270903832
828 => 0.034613169164096
829 => 0.035783657749623
830 => 0.036100358400329
831 => 0.036448316397818
901 => 0.036913295588734
902 => 0.037471622325647
903 => 0.036250035210841
904 => 0.036298571144235
905 => 0.035161046136952
906 => 0.033945437529083
907 => 0.034867932934704
908 => 0.036073972963131
909 => 0.035797306048054
910 => 0.035766175368316
911 => 0.035818528536705
912 => 0.035609930717834
913 => 0.034666450514074
914 => 0.034192640662245
915 => 0.03480397625289
916 => 0.035128873911901
917 => 0.035632761846973
918 => 0.035570647023191
919 => 0.036868608230325
920 => 0.037372956707107
921 => 0.037243922784458
922 => 0.037267668131601
923 => 0.038180766957992
924 => 0.039196320646036
925 => 0.040147520689
926 => 0.041115122227697
927 => 0.039948640806667
928 => 0.039356373479641
929 => 0.039967442180291
930 => 0.039643200526312
1001 => 0.041506389246401
1002 => 0.041635392390877
1003 => 0.043498446381215
1004 => 0.045266706466389
1005 => 0.044156093988561
1006 => 0.045203351532068
1007 => 0.046336045949531
1008 => 0.048521197253863
1009 => 0.047785315169113
1010 => 0.047221641024938
1011 => 0.046688971682346
1012 => 0.047797372025403
1013 => 0.049223311359619
1014 => 0.049530445034732
1015 => 0.050028118922508
1016 => 0.049504875682179
1017 => 0.050135064531803
1018 => 0.052359908089991
1019 => 0.051758735721332
1020 => 0.050904974314554
1021 => 0.052661274627496
1022 => 0.053296872883306
1023 => 0.057757834307966
1024 => 0.063389982379725
1025 => 0.061058236095338
1026 => 0.059610845931638
1027 => 0.059951016952661
1028 => 0.062007686768223
1029 => 0.062668223837545
1030 => 0.060872656382347
1031 => 0.06150688116273
1101 => 0.065001522058249
1102 => 0.066876284777191
1103 => 0.064330105190642
1104 => 0.057305296694301
1105 => 0.05082810244108
1106 => 0.052546146028892
1107 => 0.052351373203134
1108 => 0.056105928880038
1109 => 0.05174439795916
1110 => 0.051817834954098
1111 => 0.055650030866257
1112 => 0.054627666697363
1113 => 0.052971567678265
1114 => 0.050840193796668
1115 => 0.046900152048313
1116 => 0.043410347195603
1117 => 0.050254658165827
1118 => 0.049959519031219
1119 => 0.049532113827137
1120 => 0.050483257858747
1121 => 0.055101743289301
1122 => 0.054995272251549
1123 => 0.054317957831367
1124 => 0.054831694849499
1125 => 0.052881507095104
1126 => 0.053384114884362
1127 => 0.050827076420417
1128 => 0.051982964597479
1129 => 0.052968014433562
1130 => 0.053165777772068
1201 => 0.053611348671767
1202 => 0.049803994118507
1203 => 0.051513384534864
1204 => 0.052517491256252
1205 => 0.047980900559305
1206 => 0.052427817444424
1207 => 0.049737716546334
1208 => 0.048824655897562
1209 => 0.05005397177454
1210 => 0.049574906181733
1211 => 0.049163033716713
1212 => 0.048933201804364
1213 => 0.049835875709774
1214 => 0.049793764893158
1215 => 0.048316815182452
1216 => 0.046390194493008
1217 => 0.047036831635554
1218 => 0.046801902299411
1219 => 0.045950488078744
1220 => 0.046524238463329
1221 => 0.043997732138041
1222 => 0.039651009321756
1223 => 0.042522587557915
1224 => 0.042412034919499
1225 => 0.042356289266046
1226 => 0.044514200945927
1227 => 0.044306767529399
1228 => 0.043930273847208
1229 => 0.04594357347702
1230 => 0.045208692029437
1231 => 0.047473423491043
]
'min_raw' => 0.02032993782095
'max_raw' => 0.066876284777191
'avg_raw' => 0.04360311129907
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.020329'
'max' => '$0.066876'
'avg' => '$0.0436031'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.011075225976064
'max_diff' => 0.044208604217395
'year' => 2029
]
4 => [
'items' => [
101 => 0.048965122105304
102 => 0.048586779085332
103 => 0.04998972884205
104 => 0.047051728849295
105 => 0.048027614594787
106 => 0.048228743294414
107 => 0.045918729672105
108 => 0.044340706201715
109 => 0.044235470027025
110 => 0.041499394794399
111 => 0.04296098409884
112 => 0.044247122202073
113 => 0.043631161858973
114 => 0.04343616721564
115 => 0.044432352559253
116 => 0.044509764692202
117 => 0.042744759857189
118 => 0.043111760252822
119 => 0.044642212911352
120 => 0.043073196772564
121 => 0.040024854712231
122 => 0.039268823734642
123 => 0.039167955265817
124 => 0.037117539293022
125 => 0.039319345339668
126 => 0.038358197995574
127 => 0.041394450939254
128 => 0.039660159541575
129 => 0.039585397705705
130 => 0.039472384225611
131 => 0.03770750649621
201 => 0.038093902555118
202 => 0.039378341904709
203 => 0.039836644334888
204 => 0.03978883963666
205 => 0.039372047451173
206 => 0.039562852779367
207 => 0.03894820233627
208 => 0.038731156471969
209 => 0.038046100021069
210 => 0.037039256289919
211 => 0.037179264086067
212 => 0.035184443199667
213 => 0.034097558907599
214 => 0.033796723660459
215 => 0.033394434195214
216 => 0.03384216332601
217 => 0.035178792122732
218 => 0.033566534212268
219 => 0.030802431111519
220 => 0.030968558417676
221 => 0.031341797150972
222 => 0.030646269240696
223 => 0.029988010444853
224 => 0.030560313061615
225 => 0.0293891261393
226 => 0.031483329495122
227 => 0.031426687163284
228 => 0.032207276669668
301 => 0.032695395307319
302 => 0.031570439877819
303 => 0.031287516629503
304 => 0.031448682569889
305 => 0.028784968576882
306 => 0.031989594407812
307 => 0.032017308145073
308 => 0.031780006301147
309 => 0.033486370624395
310 => 0.037087331574826
311 => 0.035732505216955
312 => 0.035207875501344
313 => 0.034210554028466
314 => 0.035539425675987
315 => 0.035437389067084
316 => 0.034975940825392
317 => 0.03469685548901
318 => 0.035211078778517
319 => 0.034633137532783
320 => 0.034529323404286
321 => 0.033900322736479
322 => 0.033675798115779
323 => 0.033509569025195
324 => 0.033326567129795
325 => 0.033730223709816
326 => 0.032815484794044
327 => 0.031712399334584
328 => 0.03162068971418
329 => 0.031873908039308
330 => 0.031761877780326
331 => 0.031620153356401
401 => 0.031349562834779
402 => 0.031269284407265
403 => 0.031530150351128
404 => 0.031235647909936
405 => 0.031670202304293
406 => 0.03155202755402
407 => 0.03089191300537
408 => 0.030069165872045
409 => 0.030061841696788
410 => 0.029884582176488
411 => 0.02965881552624
412 => 0.029596012408982
413 => 0.030512115331513
414 => 0.032408420964498
415 => 0.032036130793995
416 => 0.032305148596015
417 => 0.033628449925247
418 => 0.03404908762475
419 => 0.033750528948993
420 => 0.033341843419318
421 => 0.03335982350851
422 => 0.03475642568093
423 => 0.034843530045316
424 => 0.035063614673189
425 => 0.035346485615913
426 => 0.033798703093707
427 => 0.033286923090904
428 => 0.033044413333102
429 => 0.03229757714216
430 => 0.033102975945195
501 => 0.032633704553282
502 => 0.032697025296644
503 => 0.032655787579461
504 => 0.032678306161525
505 => 0.031482744122604
506 => 0.031918344092696
507 => 0.031194074656415
508 => 0.030224359184294
509 => 0.030221108358005
510 => 0.030458444846012
511 => 0.030317267815968
512 => 0.029937364058112
513 => 0.02999132759382
514 => 0.029518550237916
515 => 0.030048731324737
516 => 0.030063935021228
517 => 0.029859786423643
518 => 0.030676603538783
519 => 0.031011254177315
520 => 0.030876879197098
521 => 0.031001826070487
522 => 0.032051601131369
523 => 0.03222276027119
524 => 0.03229877785496
525 => 0.032196924363108
526 => 0.0310210140315
527 => 0.031073170655064
528 => 0.030690479957818
529 => 0.030367146645597
530 => 0.030380078282426
531 => 0.030546313635296
601 => 0.031272273170853
602 => 0.032800012215783
603 => 0.032857988795775
604 => 0.032928258102022
605 => 0.032642437518992
606 => 0.032556231296216
607 => 0.032669959555772
608 => 0.033243698016344
609 => 0.03471950910541
610 => 0.034197858900425
611 => 0.033773749163804
612 => 0.034145807741985
613 => 0.034088532240166
614 => 0.033605069364782
615 => 0.033591500172093
616 => 0.032663580341801
617 => 0.032320549508254
618 => 0.03203388726833
619 => 0.031720859585839
620 => 0.031535286282876
621 => 0.031820411217785
622 => 0.031885622663898
623 => 0.031262192010588
624 => 0.031177220716197
625 => 0.031686327645376
626 => 0.031462288667263
627 => 0.031692718312151
628 => 0.031746179966354
629 => 0.031737571408701
630 => 0.031503648984839
701 => 0.031652744162142
702 => 0.03130008962041
703 => 0.030916630773276
704 => 0.030672007919135
705 => 0.030458542034384
706 => 0.030576985313954
707 => 0.030154756649175
708 => 0.030019677201529
709 => 0.031602234070819
710 => 0.032771285845517
711 => 0.032754287369718
712 => 0.032650813519942
713 => 0.032497072368079
714 => 0.033232450893491
715 => 0.032976259719595
716 => 0.033162660204093
717 => 0.033210106950602
718 => 0.033353713962237
719 => 0.033405041125457
720 => 0.0332498947892
721 => 0.03272920473519
722 => 0.031431694626324
723 => 0.030827700168085
724 => 0.030628371936543
725 => 0.030635617139181
726 => 0.030435762106406
727 => 0.030494628370433
728 => 0.030415290822094
729 => 0.030265044699355
730 => 0.030567708039257
731 => 0.030602587169677
801 => 0.030531941929586
802 => 0.030548581441022
803 => 0.029963669026047
804 => 0.030008138646595
805 => 0.029760526148459
806 => 0.029714101790072
807 => 0.029088158956873
808 => 0.027979210495997
809 => 0.028593675591554
810 => 0.027851488162988
811 => 0.027570410537816
812 => 0.028900988298844
813 => 0.028767435196119
814 => 0.028538850338392
815 => 0.028200725692555
816 => 0.02807531197235
817 => 0.027313337909538
818 => 0.027268316416933
819 => 0.027645971337493
820 => 0.027471696585967
821 => 0.027226948831815
822 => 0.026340497275958
823 => 0.025343832233151
824 => 0.02537391528598
825 => 0.025690935892484
826 => 0.02661271606195
827 => 0.026252560602781
828 => 0.025991263684846
829 => 0.025942330626673
830 => 0.026554830298001
831 => 0.027421645655578
901 => 0.027828336027453
902 => 0.027425318220295
903 => 0.026962353063452
904 => 0.026990531607375
905 => 0.027177990835885
906 => 0.027197690150271
907 => 0.026896347426753
908 => 0.026981173638299
909 => 0.02685231486629
910 => 0.02606150882033
911 => 0.026047205646631
912 => 0.025853129089483
913 => 0.025847252528463
914 => 0.025517079890087
915 => 0.025470886455602
916 => 0.02481530864206
917 => 0.025246811944206
918 => 0.024957382184066
919 => 0.024521143265958
920 => 0.024445935512048
921 => 0.024443674676149
922 => 0.024891594503809
923 => 0.025241577740228
924 => 0.02496241693866
925 => 0.024898857435447
926 => 0.025577506644535
927 => 0.025491142346654
928 => 0.025416351421678
929 => 0.027344031847621
930 => 0.025818122371708
1001 => 0.025152738744342
1002 => 0.024329200152553
1003 => 0.024597348470681
1004 => 0.024653851261229
1005 => 0.022673389401965
1006 => 0.021869916272312
1007 => 0.021594194572462
1008 => 0.021435512836065
1009 => 0.021507826095941
1010 => 0.020784606041255
1011 => 0.021270621878959
1012 => 0.020644374443871
1013 => 0.020539382023393
1014 => 0.021659190014502
1015 => 0.021815004754641
1016 => 0.021150250665361
1017 => 0.02157713040459
1018 => 0.021422337877073
1019 => 0.020655109658706
1020 => 0.020625807184113
1021 => 0.020240839033513
1022 => 0.019638438422345
1023 => 0.019363125178476
1024 => 0.019219739650689
1025 => 0.019278903313982
1026 => 0.019248988355383
1027 => 0.019053773015268
1028 => 0.019260177870168
1029 => 0.018732898758273
1030 => 0.01852293196734
1031 => 0.018428094839068
1101 => 0.017960104278208
1102 => 0.018704885376883
1103 => 0.018851616635827
1104 => 0.018998637000679
1105 => 0.020278348901648
1106 => 0.020214418111504
1107 => 0.020792321318849
1108 => 0.020769865062908
1109 => 0.020605037706761
1110 => 0.019909658203965
1111 => 0.020186824079832
1112 => 0.019333750595054
1113 => 0.019972931253208
1114 => 0.019681235893649
1115 => 0.019874308758722
1116 => 0.019527146338642
1117 => 0.019719280355899
1118 => 0.018886412060694
1119 => 0.018108691365404
1120 => 0.018421668876271
1121 => 0.018761911223903
1122 => 0.019499643325708
1123 => 0.019060256172031
1124 => 0.019218276407561
1125 => 0.018688935070803
1126 => 0.017596752694194
1127 => 0.017602934327835
1128 => 0.01743492586368
1129 => 0.017289742021013
1130 => 0.019110725072197
1201 => 0.0188842570443
1202 => 0.018523409881249
1203 => 0.019006418148489
1204 => 0.019134133200719
1205 => 0.01913776906871
1206 => 0.01949015943224
1207 => 0.019678230232426
1208 => 0.019711378526104
1209 => 0.020265872377016
1210 => 0.020451731401891
1211 => 0.021217258421599
1212 => 0.019662273739007
1213 => 0.019630249852755
1214 => 0.019013215065335
1215 => 0.018621881848219
1216 => 0.019040009985511
1217 => 0.019410414434969
1218 => 0.019024724564078
1219 => 0.019075087518859
1220 => 0.018557330379208
1221 => 0.018742404193895
1222 => 0.01890181469524
1223 => 0.018813797586113
1224 => 0.018682031713676
1225 => 0.019380045494151
1226 => 0.019340660821118
1227 => 0.019990667300764
1228 => 0.020497393834057
1229 => 0.021405538369921
1230 => 0.020457842204102
1231 => 0.020423304389068
]
'min_raw' => 0.017289742021013
'max_raw' => 0.04998972884205
'avg_raw' => 0.033639735431531
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.017289'
'max' => '$0.049989'
'avg' => '$0.033639'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0030401957999369
'max_diff' => -0.016886555935141
'year' => 2030
]
5 => [
'items' => [
101 => 0.020760917071061
102 => 0.020451679715149
103 => 0.020647107049575
104 => 0.02137405200505
105 => 0.021389411206455
106 => 0.021132124793719
107 => 0.021116468892121
108 => 0.021165883562092
109 => 0.021455306827551
110 => 0.021354173445521
111 => 0.02147120755559
112 => 0.021617560502321
113 => 0.022222938342365
114 => 0.022368892890102
115 => 0.022014299007857
116 => 0.022046314865204
117 => 0.021913687019425
118 => 0.021785570182224
119 => 0.02207355812229
120 => 0.022599861743178
121 => 0.022596587635668
122 => 0.022718679845834
123 => 0.0227947422813
124 => 0.022468226627171
125 => 0.022255676942647
126 => 0.022337182016582
127 => 0.022467510404752
128 => 0.02229491827682
129 => 0.021229599710769
130 => 0.021552749310896
131 => 0.021498961416226
201 => 0.021422360913386
202 => 0.021747290335155
203 => 0.021715950099755
204 => 0.020777188374269
205 => 0.020837284854129
206 => 0.020780843040255
207 => 0.020963218087792
208 => 0.020441830864078
209 => 0.020602206062496
210 => 0.02070279188352
211 => 0.020762037704839
212 => 0.020976074236686
213 => 0.020950959520074
214 => 0.020974513070638
215 => 0.021291872743817
216 => 0.022896969066067
217 => 0.022984330917442
218 => 0.022554129210177
219 => 0.022725986306876
220 => 0.02239605826223
221 => 0.022617541168926
222 => 0.022769074148632
223 => 0.022084325751457
224 => 0.022043779395357
225 => 0.021712489620308
226 => 0.021890505980207
227 => 0.021607269151779
228 => 0.021676765562272
301 => 0.021482447539946
302 => 0.0218321812918
303 => 0.022223237969503
304 => 0.022322034329587
305 => 0.022062143640713
306 => 0.021873965654338
307 => 0.021543587099944
308 => 0.022093013998867
309 => 0.022253683167593
310 => 0.022092170072123
311 => 0.022054743958771
312 => 0.021983821541598
313 => 0.022069790484846
314 => 0.022252808128795
315 => 0.022166500387714
316 => 0.022223508171245
317 => 0.022006253286597
318 => 0.022468334717439
319 => 0.023202231235569
320 => 0.023204590832879
321 => 0.023118282626567
322 => 0.023082967168081
323 => 0.023171524625377
324 => 0.023219563413142
325 => 0.023505941991377
326 => 0.023813237615648
327 => 0.025247252210537
328 => 0.024844586650594
329 => 0.02611692970909
330 => 0.027123187875291
331 => 0.027424920700998
401 => 0.027147340698974
402 => 0.026197754506627
403 => 0.02615116327779
404 => 0.027570245954106
405 => 0.027169290099943
406 => 0.027121597676921
407 => 0.02661423087359
408 => 0.02691414749296
409 => 0.026848551328792
410 => 0.026745004574579
411 => 0.027317224591964
412 => 0.028388369382076
413 => 0.028221421421405
414 => 0.028096802513257
415 => 0.027550758733771
416 => 0.027879599052315
417 => 0.027762505313403
418 => 0.028265614325292
419 => 0.027967583691878
420 => 0.027166252464996
421 => 0.0272938671041
422 => 0.027274578408124
423 => 0.027671538404487
424 => 0.027552380866731
425 => 0.027251310986467
426 => 0.028384708325631
427 => 0.028311111806713
428 => 0.028415454844033
429 => 0.028461389875976
430 => 0.029151268863624
501 => 0.029433890211198
502 => 0.02949805020508
503 => 0.029766518626556
504 => 0.029491370466185
505 => 0.030592159284983
506 => 0.031324119616676
507 => 0.032174329208271
508 => 0.033416713936386
509 => 0.033883862086859
510 => 0.033799475954757
511 => 0.034741437876473
512 => 0.03643412251116
513 => 0.034141615915133
514 => 0.03655563092739
515 => 0.035791381645653
516 => 0.033979360346912
517 => 0.033862687537601
518 => 0.035089809399108
519 => 0.037811447581829
520 => 0.037129708085622
521 => 0.037812562663418
522 => 0.037015976526463
523 => 0.036976419310608
524 => 0.03777387425276
525 => 0.039637171192104
526 => 0.038751988660863
527 => 0.037482862446667
528 => 0.038419965493439
529 => 0.037608160109533
530 => 0.035778935369572
531 => 0.037129186772278
601 => 0.036226312112235
602 => 0.036489818937492
603 => 0.038387527180432
604 => 0.038159189903928
605 => 0.038454679483187
606 => 0.037933148110105
607 => 0.037445955569697
608 => 0.036536574513632
609 => 0.036267351614876
610 => 0.036341755138467
611 => 0.036267314744185
612 => 0.03575852440096
613 => 0.035648651174783
614 => 0.035465524317498
615 => 0.035522282987961
616 => 0.035177950920613
617 => 0.035827776674333
618 => 0.035948390060468
619 => 0.036421279053055
620 => 0.036470375957014
621 => 0.037787365070214
622 => 0.037061989597766
623 => 0.037548634090589
624 => 0.037505104026676
625 => 0.034018632342985
626 => 0.034499037379597
627 => 0.035246396857161
628 => 0.034909712425541
629 => 0.034433719411253
630 => 0.034049329531085
701 => 0.033466939556747
702 => 0.034286642261819
703 => 0.035364464153324
704 => 0.03649771129886
705 => 0.037859233490927
706 => 0.037555357587523
707 => 0.036472258588534
708 => 0.036520845618424
709 => 0.036821191518915
710 => 0.036432216288477
711 => 0.036317499899322
712 => 0.036805431248635
713 => 0.036808791363675
714 => 0.03636122835183
715 => 0.03586384396733
716 => 0.035861759908598
717 => 0.035773255161539
718 => 0.03703172132435
719 => 0.037723750468615
720 => 0.037803090494745
721 => 0.037718410252709
722 => 0.03775100031703
723 => 0.037348323805803
724 => 0.038268722900457
725 => 0.039113372127747
726 => 0.038886988091535
727 => 0.038547606238865
728 => 0.038277272246369
729 => 0.03882330599424
730 => 0.038798991970984
731 => 0.039105994853603
801 => 0.039092067429512
802 => 0.03898883390705
803 => 0.038886991778329
804 => 0.039290784306998
805 => 0.039174498543451
806 => 0.039058032155994
807 => 0.038824440985837
808 => 0.0388561899054
809 => 0.038516866651792
810 => 0.038359880188297
811 => 0.035999180440532
812 => 0.035368324329839
813 => 0.035566804504523
814 => 0.035632149331565
815 => 0.035357599943727
816 => 0.035751233239935
817 => 0.035689885907682
818 => 0.03592855249049
819 => 0.03577944397125
820 => 0.035785563436891
821 => 0.036224059798688
822 => 0.036351357158014
823 => 0.036286612693645
824 => 0.036331957497179
825 => 0.037376909355769
826 => 0.037228350617157
827 => 0.037149431748155
828 => 0.03717129281421
829 => 0.0374383004181
830 => 0.037513047969115
831 => 0.037196337343049
901 => 0.037345699905184
902 => 0.037981666737824
903 => 0.038204219136642
904 => 0.038914499562459
905 => 0.038612759813344
906 => 0.039166616181836
907 => 0.040868981835027
908 => 0.042228949313539
909 => 0.040978267017266
910 => 0.04347567410074
911 => 0.045420263746993
912 => 0.045345627157487
913 => 0.045006542973494
914 => 0.042792679360825
915 => 0.0407554490576
916 => 0.042459678711615
917 => 0.042464023143482
918 => 0.042317628304795
919 => 0.041408382534722
920 => 0.042285988522901
921 => 0.042355649699246
922 => 0.042316657964895
923 => 0.041619541364819
924 => 0.040555173165188
925 => 0.040763148163658
926 => 0.041103815453728
927 => 0.040458861202984
928 => 0.040252759240716
929 => 0.040635942001076
930 => 0.041870636694255
1001 => 0.041637224814609
1002 => 0.04163112948714
1003 => 0.042629764490308
1004 => 0.041914957346962
1005 => 0.040765771394417
1006 => 0.040475586785499
1007 => 0.039445626915616
1008 => 0.040157023866335
1009 => 0.040182625776116
1010 => 0.039793000936508
1011 => 0.040797387302806
1012 => 0.040788131705622
1013 => 0.041741647077241
1014 => 0.043564410343757
1015 => 0.043025329553115
1016 => 0.042398437245422
1017 => 0.042466597821107
1018 => 0.043214151101729
1019 => 0.042762163323283
1020 => 0.042924701279783
1021 => 0.043213905081065
1022 => 0.043388388914905
1023 => 0.042441492282571
1024 => 0.042220725382272
1025 => 0.041769113782914
1026 => 0.041651296746371
1027 => 0.042019124970863
1028 => 0.041922215229272
1029 => 0.040180474034735
1030 => 0.039998452388949
1031 => 0.040004034732958
1101 => 0.039546332649973
1102 => 0.038848227112333
1103 => 0.040682806783534
1104 => 0.040535464361011
1105 => 0.040372809729942
1106 => 0.040392733994154
1107 => 0.041189062849748
1108 => 0.040727151897932
1109 => 0.041955217869051
1110 => 0.041702764424431
1111 => 0.041443836501551
1112 => 0.041408044775471
1113 => 0.041308379615855
1114 => 0.040966590699757
1115 => 0.040553860045239
1116 => 0.040281339517009
1117 => 0.037157406440891
1118 => 0.037737190248736
1119 => 0.038404178670704
1120 => 0.038634420401179
1121 => 0.038240575988959
1122 => 0.040982142077661
1123 => 0.041483052620455
1124 => 0.039965761912746
1125 => 0.039681938771905
1126 => 0.041000749475524
1127 => 0.04020534540319
1128 => 0.040563515808258
1129 => 0.039789347301237
1130 => 0.041362397939069
1201 => 0.04135041392879
1202 => 0.040738461701713
1203 => 0.04125567953357
1204 => 0.041165800207179
1205 => 0.040474907649981
1206 => 0.041384300465455
1207 => 0.041384751512946
1208 => 0.040795760799373
1209 => 0.040107948592567
1210 => 0.039984984015389
1211 => 0.039892346724452
1212 => 0.040540732713457
1213 => 0.041122073563748
1214 => 0.042203804759522
1215 => 0.042475777683438
1216 => 0.043537306111748
1217 => 0.042905217617571
1218 => 0.043185414260123
1219 => 0.043489607351849
1220 => 0.043635448706353
1221 => 0.043397808045467
1222 => 0.045046798637165
1223 => 0.04518602396687
1224 => 0.045232705015626
1225 => 0.044676674666047
1226 => 0.045170559756997
1227 => 0.044939487278696
1228 => 0.045540673673451
1229 => 0.045634947376482
1230 => 0.045555100903899
1231 => 0.04558502486525
]
'min_raw' => 0.020441830864078
'max_raw' => 0.045634947376482
'avg_raw' => 0.03303838912028
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.020441'
'max' => '$0.045634'
'avg' => '$0.033038'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0031520888430653
'max_diff' => -0.0043547814655677
'year' => 2031
]
6 => [
'items' => [
101 => 0.044177902297111
102 => 0.04410493556879
103 => 0.043110029050651
104 => 0.04351546081077
105 => 0.042757525568077
106 => 0.042997874641133
107 => 0.043103818222406
108 => 0.043048479307795
109 => 0.043538383314183
110 => 0.043121864827977
111 => 0.0420226040609
112 => 0.040923043800963
113 => 0.040909239717582
114 => 0.040619744909991
115 => 0.040410493187721
116 => 0.040450802493034
117 => 0.040592857742582
118 => 0.040402236678375
119 => 0.040442915347157
120 => 0.041118452289485
121 => 0.04125392640556
122 => 0.040793532425983
123 => 0.03894498416345
124 => 0.038491345783092
125 => 0.038817412054853
126 => 0.038661573378309
127 => 0.03120290712838
128 => 0.032955210127841
129 => 0.031914051188149
130 => 0.032393865128978
131 => 0.031331111458353
201 => 0.031838313213668
202 => 0.031744651569503
203 => 0.03456230293822
204 => 0.034518309187651
205 => 0.034539366667951
206 => 0.033534238268245
207 => 0.035135435101186
208 => 0.035924242238269
209 => 0.035778255030617
210 => 0.035814996865612
211 => 0.035183650408874
212 => 0.034545479481707
213 => 0.033837649709678
214 => 0.035152709935705
215 => 0.035006497687397
216 => 0.035341855979508
217 => 0.036194766538533
218 => 0.036320360858241
219 => 0.036489160897582
220 => 0.036428658099483
221 => 0.037870080211766
222 => 0.037695514483159
223 => 0.038116167663113
224 => 0.037250852156914
225 => 0.036271665525146
226 => 0.036457776891823
227 => 0.036439852870599
228 => 0.036211659508183
229 => 0.036005656743809
301 => 0.035662720182045
302 => 0.036747822208528
303 => 0.036703769047881
304 => 0.037416938512546
305 => 0.037290878882308
306 => 0.036449021819554
307 => 0.036479088909245
308 => 0.036681304537168
309 => 0.037381175134268
310 => 0.037588944378312
311 => 0.037492697386298
312 => 0.037720506877365
313 => 0.037900558210563
314 => 0.037743118552696
315 => 0.039972132097245
316 => 0.039046490267266
317 => 0.039497641654624
318 => 0.03960523860217
319 => 0.03932963128355
320 => 0.0393894006422
321 => 0.039479934934381
322 => 0.040029641428067
323 => 0.041472230326355
324 => 0.042111143129373
325 => 0.044033343820653
326 => 0.042058090315178
327 => 0.041940886946574
328 => 0.042287133335974
329 => 0.043415668627362
330 => 0.044330240483103
331 => 0.044633656730568
401 => 0.044673758196527
402 => 0.045242987247503
403 => 0.045569258724029
404 => 0.045173867868504
405 => 0.044838815517595
406 => 0.043638699584868
407 => 0.043777616271888
408 => 0.044734614488408
409 => 0.046086430836157
410 => 0.047246429895045
411 => 0.046840238654671
412 => 0.049939191092395
413 => 0.05024643956851
414 => 0.050203987763644
415 => 0.050903945516937
416 => 0.049514671920567
417 => 0.048920730542211
418 => 0.044911257638867
419 => 0.046037755980433
420 => 0.047675187476825
421 => 0.047458467278225
422 => 0.046269320756875
423 => 0.047245527820775
424 => 0.046922763236632
425 => 0.046668185417604
426 => 0.047834455758911
427 => 0.046552093610899
428 => 0.047662394933443
429 => 0.046238422002684
430 => 0.046842094102042
501 => 0.046499420622112
502 => 0.046721172360109
503 => 0.045424816230913
504 => 0.046124298530961
505 => 0.045395715467546
506 => 0.04539537002431
507 => 0.045379286512803
508 => 0.046236461255879
509 => 0.046264413693477
510 => 0.045630960263225
511 => 0.045539669727523
512 => 0.045877218685319
513 => 0.045482037259952
514 => 0.045666940161639
515 => 0.045487637780481
516 => 0.045447273037796
517 => 0.04512563990059
518 => 0.044987071501594
519 => 0.045041407741308
520 => 0.044855930142912
521 => 0.044744173180861
522 => 0.045357055240169
523 => 0.045029617079473
524 => 0.045306870645918
525 => 0.044990905214764
526 => 0.043895631370798
527 => 0.043265727800822
528 => 0.04119685704151
529 => 0.041783586222425
530 => 0.042172588276386
531 => 0.042044023099873
601 => 0.042320230847143
602 => 0.042337187759559
603 => 0.042247389805317
604 => 0.042143415278135
605 => 0.042092806228454
606 => 0.042470004621555
607 => 0.042688980984663
608 => 0.042211629836678
609 => 0.042099793141557
610 => 0.04258242150745
611 => 0.042876824531839
612 => 0.04505053105316
613 => 0.044889495853081
614 => 0.045293662603717
615 => 0.04524815963004
616 => 0.045671790773519
617 => 0.046364248653229
618 => 0.044956288169511
619 => 0.045200661425874
620 => 0.045140746746816
621 => 0.045794879502295
622 => 0.045796921633356
623 => 0.045404736370093
624 => 0.045617346363787
625 => 0.045498673297957
626 => 0.045713131567539
627 => 0.044887345129805
628 => 0.045893063872827
629 => 0.046463241593036
630 => 0.046471158511235
701 => 0.046741418225404
702 => 0.047016017747386
703 => 0.047543087617254
704 => 0.047001318054783
705 => 0.046026727352102
706 => 0.046097089652927
707 => 0.045525687480534
708 => 0.045535292854284
709 => 0.045484018616419
710 => 0.045637896463997
711 => 0.044921112664046
712 => 0.045089340389208
713 => 0.044853820588842
714 => 0.045200149451824
715 => 0.044827556845467
716 => 0.045140717854144
717 => 0.045275867764037
718 => 0.045774573841112
719 => 0.044753897552398
720 => 0.042672669505998
721 => 0.043110168873802
722 => 0.042463072943987
723 => 0.042522964135959
724 => 0.042643953875356
725 => 0.042251786544591
726 => 0.042326599712688
727 => 0.042323926859872
728 => 0.04230089365829
729 => 0.042198875789338
730 => 0.042050929695736
731 => 0.042640301397239
801 => 0.042740447133986
802 => 0.042963058701341
803 => 0.043625399726924
804 => 0.043559216239391
805 => 0.043667164253484
806 => 0.043431514344822
807 => 0.042533895259361
808 => 0.042582640294278
809 => 0.041974788927786
810 => 0.042947514575264
811 => 0.04271716030259
812 => 0.042568649404454
813 => 0.042528126829954
814 => 0.043192109670828
815 => 0.043390783743473
816 => 0.043266983393921
817 => 0.043013065265158
818 => 0.04350066313654
819 => 0.043631123756819
820 => 0.043660329078497
821 => 0.044524259018966
822 => 0.043708613165104
823 => 0.043904947228951
824 => 0.045436689549056
825 => 0.044047610630713
826 => 0.044783436713916
827 => 0.044747421856197
828 => 0.045123845581367
829 => 0.044716544123748
830 => 0.044721593113461
831 => 0.04505583188026
901 => 0.044586453812571
902 => 0.044470229202132
903 => 0.044309665735228
904 => 0.044660250191117
905 => 0.044870409716851
906 => 0.046564141149107
907 => 0.047658368897881
908 => 0.047610865585486
909 => 0.048044956938299
910 => 0.047849394808036
911 => 0.047217873102733
912 => 0.048295803647818
913 => 0.047954701320823
914 => 0.047982821382221
915 => 0.047981774752132
916 => 0.0482085779799
917 => 0.048047867106816
918 => 0.047731089479333
919 => 0.047941381251849
920 => 0.048565872635536
921 => 0.050504313052235
922 => 0.05158908999034
923 => 0.050439008118475
924 => 0.051232319193478
925 => 0.050756615234115
926 => 0.050670165673731
927 => 0.051168423654061
928 => 0.051667553769026
929 => 0.051635761338502
930 => 0.051273418505652
1001 => 0.051068740233484
1002 => 0.052618632682591
1003 => 0.053760567037364
1004 => 0.053682694769994
1005 => 0.054026397632749
1006 => 0.055035519868128
1007 => 0.055127781358599
1008 => 0.055116158531406
1009 => 0.054887478800782
1010 => 0.055881090692593
1011 => 0.056709979213681
1012 => 0.054834546050335
1013 => 0.055548686447714
1014 => 0.055869287080264
1015 => 0.056340023926769
1016 => 0.057134235891479
1017 => 0.057996960739474
1018 => 0.058118959492277
1019 => 0.058032395538985
1020 => 0.057463405310444
1021 => 0.058407409133568
1022 => 0.05896038443354
1023 => 0.059289668570059
1024 => 0.060124678352614
1025 => 0.055871267000625
1026 => 0.052860491037427
1027 => 0.052390314894641
1028 => 0.053346436569759
1029 => 0.05359855823056
1030 => 0.053496928305225
1031 => 0.05010802623087
1101 => 0.052372473026569
1102 => 0.054808827378647
1103 => 0.054902417671676
1104 => 0.056122107602093
1105 => 0.056519288640216
1106 => 0.057501298902616
1107 => 0.05743987389333
1108 => 0.057678977765028
1109 => 0.057624011925627
1110 => 0.059442979150065
1111 => 0.061449570117867
1112 => 0.06138008825322
1113 => 0.061091617060692
1114 => 0.061520045973244
1115 => 0.063591062891372
1116 => 0.06340039684092
1117 => 0.063585612668038
1118 => 0.06602745833191
1119 => 0.069202205043438
1120 => 0.067727216456575
1121 => 0.070927517273536
1122 => 0.072941936997156
1123 => 0.076425667614269
1124 => 0.075989487383272
1125 => 0.077345678147718
1126 => 0.075208633736225
1127 => 0.070301547799502
1128 => 0.069524982666446
1129 => 0.071079685728586
1130 => 0.074901771501153
1201 => 0.07095931464596
1202 => 0.071756868533099
1203 => 0.071527172959948
1204 => 0.071514933458998
1205 => 0.071982065428606
1206 => 0.071304466142725
1207 => 0.068543804754263
1208 => 0.069808999599916
1209 => 0.069320447110363
1210 => 0.069862532521523
1211 => 0.072787943912523
1212 => 0.071494549803465
1213 => 0.070132064176377
1214 => 0.07184092351251
1215 => 0.074016888675184
1216 => 0.07388072068589
1217 => 0.073616497872853
1218 => 0.075105908035681
1219 => 0.07756597726844
1220 => 0.078230924096696
1221 => 0.078721774251075
1222 => 0.078789454194383
1223 => 0.079486599673301
1224 => 0.075737872729875
1225 => 0.081687198663228
1226 => 0.082714482905106
1227 => 0.082521396044202
1228 => 0.08366317924432
1229 => 0.083327237662601
1230 => 0.08284051101831
1231 => 0.084650480254749
]
'min_raw' => 0.03120290712838
'max_raw' => 0.084650480254749
'avg_raw' => 0.057926693691565
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.0312029'
'max' => '$0.08465'
'avg' => '$0.057926'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.010761076264302
'max_diff' => 0.039015532878267
'year' => 2032
]
7 => [
'items' => [
101 => 0.082575496582158
102 => 0.079630318492095
103 => 0.07801453554287
104 => 0.080142328871903
105 => 0.081441698008189
106 => 0.082300498351876
107 => 0.082560370816975
108 => 0.076028875731237
109 => 0.072508762133348
110 => 0.07476511459141
111 => 0.077518020315374
112 => 0.075722580199581
113 => 0.075792958052903
114 => 0.073233132281144
115 => 0.077744508095673
116 => 0.077087238586139
117 => 0.08049715396429
118 => 0.079683350293014
119 => 0.082464003911744
120 => 0.081731764624081
121 => 0.08477124896822
122 => 0.085983781563851
123 => 0.088019812507544
124 => 0.089517525157862
125 => 0.090397010672806
126 => 0.090344209661356
127 => 0.093829169429508
128 => 0.091774210409449
129 => 0.089192697563601
130 => 0.089146006140788
131 => 0.090483008223973
201 => 0.09328499780172
202 => 0.094011512931939
203 => 0.094417535776715
204 => 0.093795697656184
205 => 0.09156518692015
206 => 0.090602063693276
207 => 0.091422672586938
208 => 0.090419138425716
209 => 0.092151519929941
210 => 0.094530449751965
211 => 0.094039210151025
212 => 0.09568135048621
213 => 0.097380792974925
214 => 0.099811072060526
215 => 0.10044643700648
216 => 0.10149667110137
217 => 0.10257770696894
218 => 0.10292490655487
219 => 0.10358781829411
220 => 0.10358432442202
221 => 0.10558205356734
222 => 0.10778561067916
223 => 0.1086174024764
224 => 0.11053006184889
225 => 0.10725469970107
226 => 0.10973909951484
227 => 0.11198009033543
228 => 0.10930828869392
301 => 0.11299074480679
302 => 0.11313372623303
303 => 0.11529257601386
304 => 0.11310416817542
305 => 0.1118046985866
306 => 0.11555621859903
307 => 0.11737146096127
308 => 0.11682469518883
309 => 0.11266378066341
310 => 0.11024194993959
311 => 0.10390355179911
312 => 0.11141165819494
313 => 0.11506863780588
314 => 0.11265430996968
315 => 0.11387195649719
316 => 0.1205150411281
317 => 0.12304429764767
318 => 0.12251822997244
319 => 0.12260712674974
320 => 0.12397186765845
321 => 0.13002388042421
322 => 0.12639737409041
323 => 0.1291697023
324 => 0.130640135186
325 => 0.13200595519862
326 => 0.12865193291946
327 => 0.12428839921464
328 => 0.12290628492164
329 => 0.11241425264757
330 => 0.11186809680312
331 => 0.11156152297741
401 => 0.10962861837206
402 => 0.10810988481938
403 => 0.10690213151133
404 => 0.10373262616534
405 => 0.1048022411778
406 => 0.099750711183468
407 => 0.10298250105861
408 => 0.094920137214197
409 => 0.10163471339826
410 => 0.097980274855592
411 => 0.10043413205119
412 => 0.1004255707746
413 => 0.095907241681377
414 => 0.09330116375553
415 => 0.09496185803995
416 => 0.096742254138925
417 => 0.097031117416011
418 => 0.099339447431425
419 => 0.099983652721339
420 => 0.09803168061783
421 => 0.094753062643837
422 => 0.095514610821881
423 => 0.093285731006009
424 => 0.089379704861317
425 => 0.092185081031108
426 => 0.093142959799158
427 => 0.093566013632279
428 => 0.089724885529108
429 => 0.088517919684144
430 => 0.087875341195709
501 => 0.094257221240538
502 => 0.094606835035674
503 => 0.092818161429352
504 => 0.10090313573892
505 => 0.099073257049403
506 => 0.10111767987675
507 => 0.095445508306894
508 => 0.095662192899455
509 => 0.092976895977701
510 => 0.094480482822278
511 => 0.093417796103397
512 => 0.09435900786397
513 => 0.094923166312497
514 => 0.097608022603449
515 => 0.10166537014436
516 => 0.097206994605648
517 => 0.095264416538318
518 => 0.096469581045816
519 => 0.099679092944005
520 => 0.10454166776165
521 => 0.10166292560117
522 => 0.10294046248778
523 => 0.10321954746384
524 => 0.10109686957153
525 => 0.1046199339233
526 => 0.10650797273074
527 => 0.10844470987258
528 => 0.11012632446671
529 => 0.10767113446837
530 => 0.11029853970425
531 => 0.10818131488359
601 => 0.10628194534477
602 => 0.10628482590434
603 => 0.10509332364728
604 => 0.10278463788528
605 => 0.10235888080917
606 => 0.10457372288627
607 => 0.10634981648578
608 => 0.10649610406155
609 => 0.10747944073722
610 => 0.10806136925271
611 => 0.11376505979797
612 => 0.11605913131868
613 => 0.11886427854964
614 => 0.11995704148554
615 => 0.1232458661454
616 => 0.12058987312728
617 => 0.12001523233084
618 => 0.11203761947238
619 => 0.11334395313103
620 => 0.115435519361
621 => 0.11207210862914
622 => 0.11420541858807
623 => 0.11462657916364
624 => 0.11195782121949
625 => 0.11338332014769
626 => 0.10959761762538
627 => 0.10174788811422
628 => 0.10462867291621
629 => 0.10674990019216
630 => 0.10372264732394
701 => 0.10914888091935
702 => 0.10597898727311
703 => 0.10497428316898
704 => 0.1010545742559
705 => 0.10290452597944
706 => 0.10540661217429
707 => 0.10386061380462
708 => 0.10706879255451
709 => 0.11161242925439
710 => 0.11485049534496
711 => 0.11509907385217
712 => 0.11301721428951
713 => 0.11635340752492
714 => 0.11637770805044
715 => 0.11261446845214
716 => 0.11030950515199
717 => 0.10978581264052
718 => 0.11109409921015
719 => 0.11268260062872
720 => 0.11518722462549
721 => 0.11670071645105
722 => 0.12064710043806
723 => 0.12171487879325
724 => 0.12288804347543
725 => 0.12445575328141
726 => 0.12633819085604
727 => 0.12221952460999
728 => 0.1223831668981
729 => 0.11854792191658
730 => 0.11444941262407
731 => 0.11755967029069
801 => 0.12162591844956
802 => 0.12069311662911
803 => 0.1205881573689
804 => 0.1207646697313
805 => 0.12006136762114
806 => 0.11688035824249
807 => 0.11528287524669
808 => 0.11734403587264
809 => 0.11843945101363
810 => 0.12013834436706
811 => 0.11992891990196
812 => 0.12430508673257
813 => 0.12600553283452
814 => 0.12557048595545
815 => 0.12565054505119
816 => 0.12872912149489
817 => 0.13215313165783
818 => 0.13536016901335
819 => 0.13862250515685
820 => 0.13468963160471
821 => 0.13269276096086
822 => 0.13475302174856
823 => 0.13365981837433
824 => 0.1399416892278
825 => 0.14037663233611
826 => 0.14665804893881
827 => 0.15261986127195
828 => 0.14887535376247
829 => 0.15240625568759
830 => 0.15622521399826
831 => 0.16359260418321
901 => 0.16111152635683
902 => 0.15921105962527
903 => 0.15741512774694
904 => 0.16115217688959
905 => 0.16595983091081
906 => 0.16699535353984
907 => 0.16867329579896
908 => 0.16690914468251
909 => 0.1690338703874
910 => 0.17653508577745
911 => 0.174508191164
912 => 0.17162967497333
913 => 0.17755116409939
914 => 0.1796941279949
915 => 0.19473457089252
916 => 0.21372375134048
917 => 0.20586210594534
918 => 0.20098212895487
919 => 0.20212903930224
920 => 0.20906324517751
921 => 0.21129029202395
922 => 0.20523641098623
923 => 0.20737474411346
924 => 0.21915716988073
925 => 0.2254780632794
926 => 0.21689344103477
927 => 0.19320880873288
928 => 0.17137049608489
929 => 0.17716299999117
930 => 0.17650630981052
1001 => 0.18916505640991
1002 => 0.17445985039781
1003 => 0.17470744835345
1004 => 0.18762796442667
1005 => 0.18418099225205
1006 => 0.17859733878402
1007 => 0.17141126293445
1008 => 0.15812713709494
1009 => 0.14636101638363
1010 => 0.16943708867427
1011 => 0.16844200647599
1012 => 0.16700097998995
1013 => 0.17020782849928
1014 => 0.18577937458074
1015 => 0.18542040004339
1016 => 0.18313678718716
1017 => 0.18486888741177
1018 => 0.17829369324007
1019 => 0.1799882704925
1020 => 0.17136703678459
1021 => 0.17526419447509
1022 => 0.17858535877143
1023 => 0.17925213167459
1024 => 0.1807544050717
1025 => 0.16791764337437
1026 => 0.17368097250895
1027 => 0.1770663884246
1028 => 0.1617709561552
1029 => 0.1767640469072
1030 => 0.16769418391244
1031 => 0.16461573618725
1101 => 0.16876046049457
1102 => 0.16714525740113
1103 => 0.1657566006293
1104 => 0.16498170629046
1105 => 0.16802513438523
1106 => 0.16788315482693
1107 => 0.16290351575995
1108 => 0.15640777959313
1109 => 0.15858796186598
1110 => 0.15779588120694
1111 => 0.15492527871811
1112 => 0.15685971819771
1113 => 0.14834142572697
1114 => 0.13368614627337
1115 => 0.14336787278377
1116 => 0.14299513684481
1117 => 0.14280718648216
1118 => 0.15008273637145
1119 => 0.14938336012509
1120 => 0.14811398538964
1121 => 0.15490196565564
1122 => 0.15242426154733
1123 => 0.16005996178864
1124 => 0.16508932781369
1125 => 0.16381371790679
1126 => 0.16854386096238
1127 => 0.1586381888622
1128 => 0.1619284557873
1129 => 0.16260657524045
1130 => 0.15481820303283
1201 => 0.14949778672833
1202 => 0.14914297561801
1203 => 0.13991810694453
1204 => 0.14484595732936
1205 => 0.14918226173971
1206 => 0.14710550843797
1207 => 0.14644807038388
1208 => 0.14980677882131
1209 => 0.15006777923229
1210 => 0.14411694220234
1211 => 0.14535430965937
1212 => 0.1505143376504
1213 => 0.14522429019327
1214 => 0.13494659210841
1215 => 0.13239758088307
1216 => 0.13205749579801
1217 => 0.12514437519026
1218 => 0.13256791800172
1219 => 0.12932734262594
1220 => 0.13956428140997
1221 => 0.13371699687833
1222 => 0.13346493212899
1223 => 0.13308389929051
1224 => 0.12713349080601
1225 => 0.12843625209592
1226 => 0.13276682903976
1227 => 0.13431202768077
1228 => 0.13415085080307
1229 => 0.1327456068502
1230 => 0.13338892033581
1231 => 0.13131658345338
]
'min_raw' => 0.072508762133348
'max_raw' => 0.2254780632794
'avg_raw' => 0.14899341270637
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.0725087'
'max' => '$0.225478'
'avg' => '$0.148993'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.041305855004968
'max_diff' => 0.14082758302465
'year' => 2033
]
8 => [
'items' => [
101 => 0.13058479816824
102 => 0.12827508251491
103 => 0.12488043857976
104 => 0.1253524846395
105 => 0.11862680674706
106 => 0.11496230047251
107 => 0.11394801343313
108 => 0.1125916664141
109 => 0.11410121643803
110 => 0.11860775374662
111 => 0.11317191363724
112 => 0.10385254704955
113 => 0.1044126568609
114 => 0.1056710573089
115 => 0.1033260363992
116 => 0.10110667091085
117 => 0.10303622914016
118 => 0.099087490661913
119 => 0.10614824348868
120 => 0.10595726991224
121 => 0.10858908193204
122 => 0.11023480799823
123 => 0.10644194222579
124 => 0.10548804674102
125 => 0.10603142896128
126 => 0.097050531259287
127 => 0.1078551509881
128 => 0.10794858978818
129 => 0.1071485100535
130 => 0.11290163650388
131 => 0.12504252775933
201 => 0.12047463610281
202 => 0.11870581038815
203 => 0.11534327141158
204 => 0.11982365495005
205 => 0.11947963139917
206 => 0.11792382643502
207 => 0.11698287073829
208 => 0.11871661046079
209 => 0.11676804120022
210 => 0.11641802461792
211 => 0.11429730495099
212 => 0.11354030451649
213 => 0.11297985153184
214 => 0.11236284786472
215 => 0.11372380420666
216 => 0.1106396980871
217 => 0.10692056844557
218 => 0.10661136305741
219 => 0.10746510631972
220 => 0.10708738847986
221 => 0.10660955468972
222 => 0.10569723985404
223 => 0.10542657553081
224 => 0.10630610327363
225 => 0.10531316773165
226 => 0.10677829821184
227 => 0.10637986379059
228 => 0.1041542415021
301 => 0.10138029209972
302 => 0.10135559813148
303 => 0.10075795528293
304 => 0.099996767259092
305 => 0.099785022164484
306 => 0.10287372712806
307 => 0.1092672539655
308 => 0.10801205166318
309 => 0.10891906396491
310 => 0.11338066678637
311 => 0.11479887615823
312 => 0.11379226473821
313 => 0.1124143529414
314 => 0.11247497406744
315 => 0.1171837157994
316 => 0.11747739424537
317 => 0.11821942493406
318 => 0.11917314406687
319 => 0.11395468723053
320 => 0.11222918521974
321 => 0.11141154663982
322 => 0.10889353627962
323 => 0.1116089945752
324 => 0.11002681331388
325 => 0.11024030362104
326 => 0.11010126777843
327 => 0.11017719075006
328 => 0.10614626986436
329 => 0.10761492557615
330 => 0.10517300060485
331 => 0.10190353718722
401 => 0.10189257679942
402 => 0.10269277333904
403 => 0.10221678512558
404 => 0.10093591308194
405 => 0.10111785491019
406 => 0.099523853046498
407 => 0.10131139559678
408 => 0.10136265592099
409 => 0.10067435467103
410 => 0.10342831060307
411 => 0.10455660859544
412 => 0.10410355396788
413 => 0.10452482107502
414 => 0.10806421098574
415 => 0.1086412859756
416 => 0.10889758456666
417 => 0.10855417840769
418 => 0.10458951462524
419 => 0.10476536432304
420 => 0.10347509591867
421 => 0.1023849550821
422 => 0.10242855499853
423 => 0.10298902909691
424 => 0.10543665235592
425 => 0.11058753120923
426 => 0.11078300329647
427 => 0.11101992116853
428 => 0.11005625711749
429 => 0.10976560681867
430 => 0.11014904958602
501 => 0.11208344886298
502 => 0.1170592489876
503 => 0.11530046890105
504 => 0.11387055331363
505 => 0.11512497478627
506 => 0.11493186643304
507 => 0.11330183759438
508 => 0.11325608811386
509 => 0.11012754162074
510 => 0.10897098921578
511 => 0.10800448745976
512 => 0.10694909277335
513 => 0.10632341942609
514 => 0.10728473805093
515 => 0.10750460299442
516 => 0.10540266302024
517 => 0.1051161763687
518 => 0.10683266592513
519 => 0.10607730286853
520 => 0.10685421250435
521 => 0.10703446220407
522 => 0.10700543785091
523 => 0.10621675206692
524 => 0.10671943686669
525 => 0.10553043745768
526 => 0.10423757918233
527 => 0.10341281615057
528 => 0.10269310101642
529 => 0.10309244080294
530 => 0.10166886738057
531 => 0.10121343759189
601 => 0.10654913856729
602 => 0.11049067824627
603 => 0.11043336669832
604 => 0.11008449738949
605 => 0.10956614836212
606 => 0.11204552840303
607 => 0.11118176197355
608 => 0.1118102242211
609 => 0.11197019423958
610 => 0.11245437530563
611 => 0.11262742841997
612 => 0.11210434171531
613 => 0.1103487988448
614 => 0.10597415292349
615 => 0.10393774343799
616 => 0.10326569438869
617 => 0.10329012209523
618 => 0.1026162968988
619 => 0.10281476861788
620 => 0.10254727653448
621 => 0.10204071124182
622 => 0.10306116182358
623 => 0.10317875924697
624 => 0.10294057388771
625 => 0.10299667516225
626 => 0.10102460211788
627 => 0.10117453454833
628 => 0.10033969172311
629 => 0.10018316875757
630 => 0.098072758793503
701 => 0.094333861633349
702 => 0.096405573603603
703 => 0.093903236870322
704 => 0.092955564032839
705 => 0.097441699852118
706 => 0.096991416241901
707 => 0.09622072643479
708 => 0.095080715584243
709 => 0.094657874470463
710 => 0.092088825718363
711 => 0.091937032612747
712 => 0.093210322544439
713 => 0.092622743052194
714 => 0.091797558911328
715 => 0.088808825600684
716 => 0.085448499823928
717 => 0.085549926936873
718 => 0.086618784045376
719 => 0.089726630243366
720 => 0.088512340967526
721 => 0.08763136016554
722 => 0.087466378943514
723 => 0.089531464348757
724 => 0.092453992845943
725 => 0.093825177828933
726 => 0.092466375154297
727 => 0.090905455804806
728 => 0.091000461733006
729 => 0.091632493609913
730 => 0.091698911223726
731 => 0.09068291319231
801 => 0.090968910686911
802 => 0.090534454340452
803 => 0.087868196544182
804 => 0.087819972395442
805 => 0.087165629733022
806 => 0.087145816497256
807 => 0.086032616395054
808 => 0.085876872005567
809 => 0.083666545636227
810 => 0.085121389146011
811 => 0.08414555650236
812 => 0.082674746532728
813 => 0.082421178339582
814 => 0.082413555773504
815 => 0.083923748745224
816 => 0.085103741661859
817 => 0.084162531528987
818 => 0.083948236226324
819 => 0.086236349416537
820 => 0.085945166156467
821 => 0.085693003331178
822 => 0.092192312473593
823 => 0.087047602139955
824 => 0.084804214784689
825 => 0.082027596924843
826 => 0.082931677700931
827 => 0.083122180804163
828 => 0.076444915374222
829 => 0.073735949620895
830 => 0.072806334659574
831 => 0.072271328106507
901 => 0.072515137310929
902 => 0.070076750402944
903 => 0.071715386732307
904 => 0.069603949781706
905 => 0.069249960505728
906 => 0.073025471330248
907 => 0.073550811605266
908 => 0.07130954678161
909 => 0.072748801626213
910 => 0.072226907812421
911 => 0.069640144308033
912 => 0.069541348969109
913 => 0.068243401971741
914 => 0.066212366252923
915 => 0.065284128429459
916 => 0.064800694111669
917 => 0.065000168533136
918 => 0.064899308161624
919 => 0.064241126012925
920 => 0.064937034391947
921 => 0.063159276052742
922 => 0.062451358357697
923 => 0.062131608358412
924 => 0.060553745508414
925 => 0.063064826981554
926 => 0.063559541665534
927 => 0.064055231090266
928 => 0.068369869111015
929 => 0.068154321988539
930 => 0.070102763000017
1001 => 0.070027050165264
1002 => 0.069471323226139
1003 => 0.067126802682614
1004 => 0.068061286784202
1005 => 0.065185089970585
1006 => 0.06734013218572
1007 => 0.066356660915447
1008 => 0.067007619559957
1009 => 0.065837137222553
1010 => 0.066484930476104
1011 => 0.06367685686981
1012 => 0.061054717246915
1013 => 0.062109942776196
1014 => 0.0632570936062
1015 => 0.065744408894246
1016 => 0.064262984428591
1017 => 0.064795760685302
1018 => 0.063011049410991
1019 => 0.059328680274514
1020 => 0.059349522083923
1021 => 0.058783069817048
1022 => 0.058293572355084
1023 => 0.064433143849127
1024 => 0.06366959108158
1025 => 0.06245296967781
1026 => 0.064081465773369
1027 => 0.064512065988743
1028 => 0.064524324571522
1029 => 0.065712433285274
1030 => 0.066346527118784
1031 => 0.06645828890526
1101 => 0.068327803637136
1102 => 0.068954440315765
1103 => 0.071535468110097
1104 => 0.066292728687178
1105 => 0.066184757918843
1106 => 0.064104382053062
1107 => 0.062784974789543
1108 => 0.064194722997198
1109 => 0.065443567459359
1110 => 0.064143187131642
1111 => 0.064312989349915
1112 => 0.062567335004932
1113 => 0.063191324292592
1114 => 0.063728787927559
1115 => 0.063432032098983
1116 => 0.062987774260459
1117 => 0.065341176455096
1118 => 0.065208388280217
1119 => 0.067399930508346
1120 => 0.069108394393861
1121 => 0.072170267101153
1122 => 0.068975043312059
1123 => 0.06885859665732
1124 => 0.069996881386024
1125 => 0.068954266050304
1126 => 0.069613162952621
1127 => 0.072064108623683
1128 => 0.072115893243563
1129 => 0.07124843413986
1130 => 0.071195649174565
1201 => 0.071362254184394
1202 => 0.072338064930775
1203 => 0.071997086672354
1204 => 0.072391675345512
1205 => 0.072885114523453
1206 => 0.074926188177291
1207 => 0.075418284125209
1208 => 0.074222746094264
1209 => 0.074330689792587
1210 => 0.073883525750761
1211 => 0.073451570889306
1212 => 0.074422542335915
1213 => 0.076197011739085
1214 => 0.076185972857023
1215 => 0.076597615267802
1216 => 0.076854065079488
1217 => 0.075753194754997
1218 => 0.075036568653878
1219 => 0.075311368701151
1220 => 0.075750779961106
1221 => 0.075168873551784
1222 => 0.071577077628178
1223 => 0.072666599066588
1224 => 0.07248524942436
1225 => 0.072226985480958
1226 => 0.073322507712299
1227 => 0.073216841920542
1228 => 0.070051741220815
1229 => 0.070254360698468
1230 => 0.070064063182348
1231 => 0.07067895338814
]
'min_raw' => 0.058293572355084
'max_raw' => 0.13058479816824
'avg_raw' => 0.09443918526166
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.058293'
'max' => '$0.130584'
'avg' => '$0.094439'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.014215189778264
'max_diff' => -0.094893265111162
'year' => 2034
]
9 => [
'items' => [
101 => 0.068921059961294
102 => 0.069461776139799
103 => 0.069800908258058
104 => 0.070000659681048
105 => 0.070722298791721
106 => 0.070637622771211
107 => 0.070717035211396
108 => 0.071787035506863
109 => 0.077198729821575
110 => 0.077493276402894
111 => 0.076042821311127
112 => 0.076622249511327
113 => 0.075509874073962
114 => 0.076256619157332
115 => 0.076767523178106
116 => 0.074458846149423
117 => 0.074322141278974
118 => 0.073205174672486
119 => 0.07380536925859
120 => 0.07285041651658
121 => 0.07308472851664
122 => 0.072429571737518
123 => 0.073608723499525
124 => 0.074927198391107
125 => 0.075260297216872
126 => 0.074384057614346
127 => 0.073749602395112
128 => 0.072635708032681
129 => 0.07448813918216
130 => 0.075029846502083
131 => 0.07448529382422
201 => 0.074359109070048
202 => 0.074119989188903
203 => 0.074409839483225
204 => 0.075026896247681
205 => 0.074735903672813
206 => 0.074928109395143
207 => 0.074195619383302
208 => 0.075753559188882
209 => 0.078227942538776
210 => 0.078235898085848
211 => 0.077944903942421
212 => 0.077825835408487
213 => 0.078124413058644
214 => 0.078286379185558
215 => 0.079251924556389
216 => 0.080287993208314
217 => 0.085122873534684
218 => 0.083765258486126
219 => 0.088055051939999
220 => 0.091447721602048
221 => 0.092465034890233
222 => 0.091529154533392
223 => 0.088327558387904
224 => 0.088170472806985
225 => 0.092955009127372
226 => 0.091603158471216
227 => 0.09144236013722
228 => 0.089731737536569
301 => 0.090742927358284
302 => 0.090521765311015
303 => 0.090172650199784
304 => 0.092101929939523
305 => 0.095713369384324
306 => 0.095150492678988
307 => 0.094730331329553
308 => 0.092889306603458
309 => 0.093998014696326
310 => 0.093603224980361
311 => 0.095299492139893
312 => 0.094294661051504
313 => 0.091592916872914
314 => 0.09202317853842
315 => 0.091958145353245
316 => 0.093296523695843
317 => 0.092894775737987
318 => 0.091879697616649
319 => 0.095701025876916
320 => 0.095452890075039
321 => 0.095804689910359
322 => 0.095959563077638
323 => 0.098285538250305
324 => 0.099238415855643
325 => 0.099454735754526
326 => 0.1003598957814
327 => 0.099432214548475
328 => 0.10314360090568
329 => 0.10561145626782
330 => 0.10847799726562
331 => 0.11266678411699
401 => 0.11424180672155
402 => 0.11395729298552
403 => 0.11713318337026
404 => 0.12284018779558
405 => 0.11511084174937
406 => 0.12324986190434
407 => 0.12067314209279
408 => 0.11456378577279
409 => 0.11417041525037
410 => 0.11830774228135
411 => 0.1274839354331
412 => 0.12518540312411
413 => 0.12748769500853
414 => 0.12480194923192
415 => 0.12466857931687
416 => 0.12735725433086
417 => 0.1336394900531
418 => 0.13065503534755
419 => 0.12637608770882
420 => 0.12953559605746
421 => 0.12679853752718
422 => 0.12063117860401
423 => 0.12518364547977
424 => 0.12213954052674
425 => 0.12302797218556
426 => 0.12942622802039
427 => 0.12865637295066
428 => 0.12965263669755
429 => 0.12789425726104
430 => 0.12625165359636
501 => 0.12318561187488
502 => 0.12227790807518
503 => 0.12252876474966
504 => 0.12227778376307
505 => 0.12056236159828
506 => 0.12019191634513
507 => 0.11957449136028
508 => 0.11976585718051
509 => 0.11860491757495
510 => 0.120795850473
511 => 0.12120250692531
512 => 0.12279688517987
513 => 0.12296241881941
514 => 0.12740273956381
515 => 0.12495708551435
516 => 0.12659784139834
517 => 0.12645107674868
518 => 0.11469619404944
519 => 0.11631591317119
520 => 0.11883568782876
521 => 0.117700532761
522 => 0.11609568908056
523 => 0.11479969176232
524 => 0.11283612330267
525 => 0.11559980820264
526 => 0.11923375996097
527 => 0.12305458183293
528 => 0.12764504896193
529 => 0.12662051013767
530 => 0.12296876624302
531 => 0.12313258080653
601 => 0.12414521797952
602 => 0.12283376083271
603 => 0.12244698651744
604 => 0.12409208112792
605 => 0.12410340999038
606 => 0.12259442004809
607 => 0.12091745386948
608 => 0.12091042731996
609 => 0.12061202738605
610 => 0.12485503391726
611 => 0.12718825849309
612 => 0.12745575893053
613 => 0.12717025358232
614 => 0.12728013325954
615 => 0.12592248128796
616 => 0.1290256710958
617 => 0.13187346493714
618 => 0.13111019535342
619 => 0.12996594574226
620 => 0.12905449581244
621 => 0.13089548671625
622 => 0.13081351028929
623 => 0.13184859194229
624 => 0.13180163465959
625 => 0.13145357563108
626 => 0.1311102077837
627 => 0.132471622486
628 => 0.13207955691539
629 => 0.13168688235866
630 => 0.13089931341966
701 => 0.1310063571186
702 => 0.12986230507827
703 => 0.12933301425615
704 => 0.12137375023777
705 => 0.1192467748156
706 => 0.11991596458199
707 => 0.12013627922859
708 => 0.11921061679907
709 => 0.12053777893984
710 => 0.12033094212601
711 => 0.12113562317312
712 => 0.12063289339008
713 => 0.12065352559573
714 => 0.12213194669437
715 => 0.12256113862895
716 => 0.12234284814702
717 => 0.12249573131801
718 => 0.12601885946545
719 => 0.12551798330618
720 => 0.1252519028294
721 => 0.1253256089399
722 => 0.12622584371829
723 => 0.12647786030524
724 => 0.12541004831743
725 => 0.12591363462383
726 => 0.12805784120186
727 => 0.12880819215259
728 => 0.13120295219843
729 => 0.13018561556749
730 => 0.13205298098288
731 => 0.13779262563799
801 => 0.14237785094169
802 => 0.13816108825995
803 => 0.14658127060528
804 => 0.15313759036454
805 => 0.15288594789205
806 => 0.15174270189162
807 => 0.14427850615449
808 => 0.13740984195229
809 => 0.14315577121631
810 => 0.14317041877167
811 => 0.14267683835208
812 => 0.13961125275676
813 => 0.1425701626184
814 => 0.14280503013804
815 => 0.14267356678335
816 => 0.14032318949507
817 => 0.1367345977982
818 => 0.1374358000259
819 => 0.138584383579
820 => 0.13640987529335
821 => 0.13571498813798
822 => 0.1370069155675
823 => 0.14116977492918
824 => 0.14038281048066
825 => 0.14036225965853
826 => 0.14372922729418
827 => 0.14131920510415
828 => 0.13744464443155
829 => 0.13646626676254
830 => 0.13299368515172
831 => 0.13539220963922
901 => 0.13547852826552
902 => 0.13416488091604
903 => 0.13755123967403
904 => 0.13752003378192
905 => 0.14073487742965
906 => 0.14688045104398
907 => 0.14506290252091
908 => 0.1429492913373
909 => 0.14317909947704
910 => 0.14569952755516
911 => 0.14417561920335
912 => 0.14472362727173
913 => 0.14569869807932
914 => 0.14628698250718
915 => 0.14309445440105
916 => 0.14235012338324
917 => 0.14082748334549
918 => 0.14043025498106
919 => 0.14167041352089
920 => 0.14134367556109
921 => 0.13547127351922
922 => 0.13485757483211
923 => 0.13487639609468
924 => 0.13333322156616
925 => 0.13097951000583
926 => 0.13716492345355
927 => 0.13666814818889
928 => 0.13611974674406
929 => 0.13618692279192
930 => 0.13887180112646
1001 => 0.13731443610282
1002 => 0.14145494626527
1003 => 0.140603781851
1004 => 0.13973078828124
1005 => 0.13961011397787
1006 => 0.13927408593382
1007 => 0.13812172074026
1008 => 0.13673017052261
1009 => 0.13581134853491
1010 => 0.12527879006274
1011 => 0.1272335716501
1012 => 0.12948236968241
1013 => 0.13025864575167
1014 => 0.12893077181853
1015 => 0.13817415329662
1016 => 0.13986300816411
1017 => 0.13474735660921
1018 => 0.13379042707397
1019 => 0.13823688943764
1020 => 0.13555512907443
1021 => 0.13676272560178
1022 => 0.13415256242964
1023 => 0.13945621248198
1024 => 0.13941580755462
1025 => 0.13735256789589
1026 => 0.13909640392699
1027 => 0.13879336950289
1028 => 0.13646397700972
1029 => 0.13953005837887
1030 => 0.13953157911698
1031 => 0.13754575580415
1101 => 0.13522674892739
1102 => 0.13481216527032
1103 => 0.1344998321762
1104 => 0.13668591080699
1105 => 0.13864594207167
1106 => 0.14229307432228
1107 => 0.14321005002381
1108 => 0.1467890672334
1109 => 0.14465793674427
1110 => 0.14560263928734
1111 => 0.14662824753418
1112 => 0.14711996184321
1113 => 0.14631873976349
1114 => 0.15187842667225
1115 => 0.15234783459175
1116 => 0.1525052230068
1117 => 0.15063052786239
1118 => 0.15229569592849
1119 => 0.15151661893493
1120 => 0.15354356083834
1121 => 0.15386141121009
1122 => 0.15359220325307
1123 => 0.15369309397799
1124 => 0.14894888199735
1125 => 0.14870286957844
1126 => 0.14534847279038
1127 => 0.14671541427597
1128 => 0.14415998268788
1129 => 0.14497033636832
1130 => 0.14532753254933
1201 => 0.14514095353508
1202 => 0.14679269909662
1203 => 0.14538837793998
1204 => 0.14168214351585
1205 => 0.13797489933062
1206 => 0.13792835789973
1207 => 0.13695230594406
1208 => 0.13624679915294
1209 => 0.13638270479011
1210 => 0.13686165398194
1211 => 0.13621896175523
1212 => 0.13635611272712
1213 => 0.13863373269266
1214 => 0.13909049313351
1215 => 0.13753824268769
1216 => 0.13130573315904
1217 => 0.12977625968764
1218 => 0.1308756148881
1219 => 0.13035019390982
1220 => 0.10520277990074
1221 => 0.11111079180531
1222 => 0.10760045174874
1223 => 0.10921817794979
1224 => 0.10563502975018
1225 => 0.10734509587992
1226 => 0.10702930910738
1227 => 0.11652921741914
1228 => 0.11638088941755
1229 => 0.11645188618257
1230 => 0.11306302560714
1231 => 0.11846157252139
]
'min_raw' => 0.068921059961294
'max_raw' => 0.15386141121009
'avg_raw' => 0.11139123558569
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.068921'
'max' => '$0.153861'
'avg' => '$0.111391'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.01062748760621
'max_diff' => 0.023276613041854
'year' => 2035
]
10 => [
'items' => [
101 => 0.12112109085682
102 => 0.12062888479372
103 => 0.12075276245564
104 => 0.11862413379755
105 => 0.11647249596093
106 => 0.11408599846544
107 => 0.11851981583206
108 => 0.11802685102868
109 => 0.1191575349245
110 => 0.12203318242256
111 => 0.12245663244018
112 => 0.12302575355806
113 => 0.1228217641501
114 => 0.12768161943853
115 => 0.12709305889675
116 => 0.12851132046203
117 => 0.12559384881848
118 => 0.12229245272485
119 => 0.12291994019148
120 => 0.12285950810251
121 => 0.12209013824917
122 => 0.12139558554643
123 => 0.12023935098538
124 => 0.12389784822707
125 => 0.12374931992025
126 => 0.12615382056227
127 => 0.12572880171772
128 => 0.12289042185406
129 => 0.12299179514618
130 => 0.12367357925396
131 => 0.12603324183549
201 => 0.12673375034777
202 => 0.12640924689444
203 => 0.12717732249873
204 => 0.12778437813939
205 => 0.1272535593408
206 => 0.13476883413101
207 => 0.13164796807498
208 => 0.13316905647584
209 => 0.13353182709667
210 => 0.13260259777966
211 => 0.13280411434531
212 => 0.1331093570323
213 => 0.13496273085504
214 => 0.13982652004396
215 => 0.1419806591668
216 => 0.14846149300122
217 => 0.14180178789972
218 => 0.14140662855959
219 => 0.1425740224356
220 => 0.14637895796234
221 => 0.14946250082734
222 => 0.15048548988951
223 => 0.15062069478179
224 => 0.15253989026945
225 => 0.15363993733211
226 => 0.1523068494574
227 => 0.1511771970637
228 => 0.14713092240709
229 => 0.14759928971623
301 => 0.15082587601871
302 => 0.15538361921595
303 => 0.15929463703154
304 => 0.15792513490525
305 => 0.16837346941099
306 => 0.16940937909962
307 => 0.16926624987562
308 => 0.17162620631034
309 => 0.16694217338419
310 => 0.1649396585594
311 => 0.15142144073332
312 => 0.15521950854151
313 => 0.16074022315341
314 => 0.16000953587291
315 => 0.15600024535262
316 => 0.15929159562516
317 => 0.15820337229502
318 => 0.15734504540411
319 => 0.16127720728622
320 => 0.15695363377253
321 => 0.16069709220025
322 => 0.15589606804558
323 => 0.15793139067561
324 => 0.15677604311333
325 => 0.15752369458019
326 => 0.15315293938191
327 => 0.15551129279282
328 => 0.15305482412647
329 => 0.15305365944048
330 => 0.15299943275852
331 => 0.15588945725083
401 => 0.15598370084577
402 => 0.15384796837937
403 => 0.15354017596455
404 => 0.15467824584268
405 => 0.15334586407637
406 => 0.15396927711891
407 => 0.15336474662234
408 => 0.15322865407421
409 => 0.15214424549641
410 => 0.15167705246466
411 => 0.15186025089049
412 => 0.15123490021786
413 => 0.15085810381769
414 => 0.1529244784707
415 => 0.15182049785091
416 => 0.15275527760741
417 => 0.15168997809627
418 => 0.14799718586176
419 => 0.14587342199712
420 => 0.13889807978816
421 => 0.14087627818574
422 => 0.14218782576992
423 => 0.14175435930117
424 => 0.1426856130053
425 => 0.14274278441941
426 => 0.14244002434719
427 => 0.14208946696952
428 => 0.14191883502512
429 => 0.1431905857426
430 => 0.14392887983927
501 => 0.14231945711624
502 => 0.14194239189045
503 => 0.1435696071221
504 => 0.14456220747339
505 => 0.15189101077336
506 => 0.15134806935318
507 => 0.15271074577097
508 => 0.1525573293183
509 => 0.15398563129552
510 => 0.15632030138283
511 => 0.15157326431131
512 => 0.15239718580674
513 => 0.15219517928319
514 => 0.15440063353837
515 => 0.15440751872582
516 => 0.15308523872923
517 => 0.15380206816692
518 => 0.15340195363999
519 => 0.15412501466888
520 => 0.1513408180395
521 => 0.15473166899864
522 => 0.15665406299086
523 => 0.15668075543331
524 => 0.15759195492856
525 => 0.15851778638885
526 => 0.16029483925395
527 => 0.15846822534894
528 => 0.1551823247511
529 => 0.15541955616087
530 => 0.15349303384262
531 => 0.15352541903084
601 => 0.15335254435803
602 => 0.15387135426454
603 => 0.15145466763876
604 => 0.15202185915943
605 => 0.15122778770903
606 => 0.15239545965048
607 => 0.15113923766457
608 => 0.15219508186952
609 => 0.15265074922659
610 => 0.154332171584
611 => 0.15089089021525
612 => 0.14387388455012
613 => 0.1453489442139
614 => 0.14316721510773
615 => 0.14336914244293
616 => 0.14377706779654
617 => 0.14245484826062
618 => 0.14270708608015
619 => 0.14269807437027
620 => 0.14262041632301
621 => 0.14227645595517
622 => 0.14177764537133
623 => 0.14376475321157
624 => 0.14410240155496
625 => 0.14485295199654
626 => 0.14708608100747
627 => 0.14686293875847
628 => 0.14722689302467
629 => 0.14643238290507
630 => 0.14340599748867
701 => 0.14357034477716
702 => 0.14152093145621
703 => 0.14480054389022
704 => 0.14402388837707
705 => 0.14352317351531
706 => 0.14338654882619
707 => 0.14562521333199
708 => 0.1462950568389
709 => 0.14587765531692
710 => 0.1450215526178
711 => 0.14666552288416
712 => 0.1471053799739
713 => 0.14720384775498
714 => 0.15011664786694
715 => 0.14736664092407
716 => 0.14802859492794
717 => 0.153192971103
718 => 0.14850959454742
719 => 0.15099048356067
720 => 0.1508690569534
721 => 0.15213819582387
722 => 0.15076495052263
723 => 0.15078197354396
724 => 0.15190888288202
725 => 0.15032634195588
726 => 0.14993448256724
727 => 0.14939313162839
728 => 0.15057515159845
729 => 0.15128371911233
730 => 0.15699425288873
731 => 0.16068351814027
801 => 0.16052335740595
802 => 0.16198692670925
803 => 0.16132757533336
804 => 0.15919835581249
805 => 0.16283267390395
806 => 0.16168262359348
807 => 0.16177743234377
808 => 0.16177390355735
809 => 0.16253858647466
810 => 0.16199673854558
811 => 0.16092870065782
812 => 0.16163771405096
813 => 0.16374323035166
814 => 0.17027881755415
815 => 0.17393621873767
816 => 0.17005863741053
817 => 0.17273334108711
818 => 0.17112947197553
819 => 0.17083800124698
820 => 0.17251791281492
821 => 0.17420076484568
822 => 0.17409357444649
823 => 0.17287191028757
824 => 0.17218182320277
825 => 0.17740739380497
826 => 0.1812575052094
827 => 0.18099495342309
828 => 0.18215377162144
829 => 0.18555609769269
830 => 0.1858671637493
831 => 0.18582797657594
901 => 0.18505696689823
902 => 0.18840699876324
903 => 0.19120165428323
904 => 0.18487850043445
905 => 0.18728627464391
906 => 0.18836720206017
907 => 0.18995432420396
908 => 0.19263206529309
909 => 0.19554080235163
910 => 0.19595212966438
911 => 0.19566027325216
912 => 0.193741882971
913 => 0.19692465776891
914 => 0.19878905260027
915 => 0.19989925705642
916 => 0.20271455083683
917 => 0.1883738774999
918 => 0.17822283613431
919 => 0.17663760444226
920 => 0.17986123542421
921 => 0.18071128120617
922 => 0.18036862881733
923 => 0.16894270886805
924 => 0.17657744933838
925 => 0.18479178813724
926 => 0.18510733434445
927 => 0.18921960410088
928 => 0.19055872770121
929 => 0.19386964386266
930 => 0.19366254515529
1001 => 0.19446870055242
1002 => 0.19428337938729
1003 => 0.20041615438072
1004 => 0.20718151592437
1005 => 0.20694725296664
1006 => 0.20597465220062
1007 => 0.20741913019124
1008 => 0.21440170832449
1009 => 0.21375886442352
1010 => 0.214383332516
1011 => 0.22261618565596
1012 => 0.23332006584762
1013 => 0.22834703884659
1014 => 0.23913707648884
1015 => 0.24592883322932
1016 => 0.25767447423123
1017 => 0.25620386212929
1018 => 0.26077635397783
1019 => 0.25357115954081
1020 => 0.23702657670335
1021 => 0.2344083331392
1022 => 0.23965012305911
1023 => 0.25253655209083
1024 => 0.23924428354999
1025 => 0.24193329216392
1026 => 0.24115885750221
1027 => 0.24111759117022
1028 => 0.24269255921986
1029 => 0.24040798591905
1030 => 0.23110022330463
1031 => 0.23536591605983
1101 => 0.23371872723165
1102 => 0.23554640604257
1103 => 0.24540963479303
1104 => 0.24104886625245
1105 => 0.23645515083501
1106 => 0.24221668939553
1107 => 0.24955310786253
1108 => 0.24909400797967
1109 => 0.24820316231807
1110 => 0.25322481266934
1111 => 0.26151910784414
1112 => 0.26376102250071
1113 => 0.26541595806626
1114 => 0.26564414572039
1115 => 0.2679946203757
1116 => 0.25535552575819
1117 => 0.27541409351116
1118 => 0.27887765405534
1119 => 0.27822664822291
1120 => 0.28207624999887
1121 => 0.28094359950141
1122 => 0.27930256663802
1123 => 0.28540500428668
1124 => 0.27840905196381
1125 => 0.2684791784074
1126 => 0.26303145338372
1127 => 0.27020545715034
1128 => 0.27458637091239
1129 => 0.27748187623065
1130 => 0.27835805439045
1201 => 0.25633666269446
1202 => 0.24446835393269
1203 => 0.25207580377855
1204 => 0.26135741762863
1205 => 0.25530396592461
1206 => 0.25554124977071
1207 => 0.2469106184599
1208 => 0.26212103699278
1209 => 0.25990500695229
1210 => 0.27140177472242
1211 => 0.26865797882675
1212 => 0.27803314664134
1213 => 0.27556435075967
1214 => 0.28581218443596
1215 => 0.28990032273845
1216 => 0.29676494321625
1217 => 0.30181458598375
1218 => 0.30477983280111
1219 => 0.30460181050455
1220 => 0.316351595675
1221 => 0.30942315786621
1222 => 0.30071940707096
1223 => 0.30056198367906
1224 => 0.30506977954902
1225 => 0.31451688303906
1226 => 0.31696637952426
1227 => 0.31833531389303
1228 => 0.31623874325431
1229 => 0.30871842057849
1230 => 0.30547118337597
1231 => 0.30823792355403
]
'min_raw' => 0.11408599846544
'max_raw' => 0.31833531389303
'avg_raw' => 0.21621065617924
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.114085'
'max' => '$0.318335'
'avg' => '$0.21621'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.045164938504144
'max_diff' => 0.16447390268294
'year' => 2036
]
11 => [
'items' => [
101 => 0.30485443806495
102 => 0.31069528325746
103 => 0.31871601124399
104 => 0.31705976263217
105 => 0.32259635342282
106 => 0.32832614242481
107 => 0.33651999803858
108 => 0.33866217531361
109 => 0.34220311288954
110 => 0.34584790079257
111 => 0.34701850843723
112 => 0.34925356164912
113 => 0.34924178181544
114 => 0.35597726510588
115 => 0.3634067117558
116 => 0.36621115587405
117 => 0.37265982048603
118 => 0.36161670832618
119 => 0.36999303575356
120 => 0.37754869276613
121 => 0.36854052699257
122 => 0.38095618487799
123 => 0.38143825673919
124 => 0.38871696950132
125 => 0.38133859968427
126 => 0.37695734723949
127 => 0.38960585888417
128 => 0.39572607524465
129 => 0.3938826162689
130 => 0.37985380244066
131 => 0.37168843106849
201 => 0.35031807920503
202 => 0.3756321841178
203 => 0.38796194619825
204 => 0.37982187133552
205 => 0.3839272516164
206 => 0.40632487525487
207 => 0.41485244019766
208 => 0.41307876630174
209 => 0.41337848799299
210 => 0.41797980724987
211 => 0.43838459082767
212 => 0.42615757152867
213 => 0.43550466964508
214 => 0.44046233678255
215 => 0.44506729431363
216 => 0.43375897402908
217 => 0.4190470154911
218 => 0.41438712065611
219 => 0.37901250131376
220 => 0.37717109875281
221 => 0.37613746369514
222 => 0.3696205408671
223 => 0.36450002465966
224 => 0.36042800005892
225 => 0.34974179149711
226 => 0.35334807318978
227 => 0.33631648712732
228 => 0.34721269232773
301 => 0.32002986973002
302 => 0.34266853213133
303 => 0.33034733743997
304 => 0.33862068829775
305 => 0.338591823356
306 => 0.32335796135855
307 => 0.314571387681
308 => 0.3201705344069
309 => 0.32617326415788
310 => 0.32714718686436
311 => 0.33492988267379
312 => 0.33710186578571
313 => 0.33052065555639
314 => 0.31946656615127
315 => 0.32203417900314
316 => 0.31451935508851
317 => 0.30134991523165
318 => 0.31080843685321
319 => 0.31403799199665
320 => 0.31546434753169
321 => 0.30251371595285
322 => 0.29844434633889
323 => 0.29627784810173
324 => 0.31779480224151
325 => 0.31897354956107
326 => 0.31294291161615
327 => 0.34020196697573
328 => 0.33403240321598
329 => 0.34092531751544
330 => 0.32180119504928
331 => 0.32253176228154
401 => 0.3134780962284
402 => 0.31854754425197
403 => 0.31496462178485
404 => 0.31813798294893
405 => 0.32004008254642
406 => 0.32909226298205
407 => 0.34277189349119
408 => 0.32774016908858
409 => 0.3211906315081
410 => 0.32525392778703
411 => 0.33607502123274
412 => 0.35246953172457
413 => 0.34276365154314
414 => 0.34707095635112
415 => 0.34801191083302
416 => 0.34085515411844
417 => 0.35273341155293
418 => 0.35909906621087
419 => 0.36562891070328
420 => 0.37129859171395
421 => 0.36302074721865
422 => 0.37187922741102
423 => 0.36474085610823
424 => 0.35833699909836
425 => 0.35834671110605
426 => 0.35432947805834
427 => 0.34654558282446
428 => 0.34511011311695
429 => 0.35257760781524
430 => 0.35856583138888
501 => 0.35905905016407
502 => 0.36237443842047
503 => 0.3643364510394
504 => 0.38356684193169
505 => 0.39130146423071
506 => 0.40075921396904
507 => 0.40444354050169
508 => 0.4155320424608
509 => 0.40657717656472
510 => 0.40463973499936
511 => 0.37774265626791
512 => 0.38214705140338
513 => 0.38919891297619
514 => 0.37785893886789
515 => 0.38505154233737
516 => 0.38647151462242
517 => 0.37747361088698
518 => 0.38227978004855
519 => 0.36951601968527
520 => 0.34305010858777
521 => 0.35276287567767
522 => 0.35991474153788
523 => 0.34970814713665
524 => 0.3680030725511
525 => 0.3573155548079
526 => 0.35392812477463
527 => 0.34071255250884
528 => 0.34694979390427
529 => 0.35538575220027
530 => 0.35017331075876
531 => 0.36098990940192
601 => 0.37630909776214
602 => 0.38722646366107
603 => 0.38806456345331
604 => 0.38104542858701
605 => 0.39229363700578
606 => 0.39237556792416
607 => 0.37968754287751
608 => 0.37191619818366
609 => 0.37015053231816
610 => 0.37456151182935
611 => 0.37991725526766
612 => 0.38836176994006
613 => 0.39346461329854
614 => 0.40677012243847
615 => 0.4103702117129
616 => 0.41432561834662
617 => 0.4196112614115
618 => 0.42595803112196
619 => 0.41207166031728
620 => 0.41262339171678
621 => 0.39969259549336
622 => 0.38587418526486
623 => 0.39636063613914
624 => 0.41007027570315
625 => 0.40692526923936
626 => 0.40657139176553
627 => 0.40716651551908
628 => 0.40479528335169
629 => 0.39407028814056
630 => 0.38868426268755
701 => 0.39563360964357
702 => 0.39932687827085
703 => 0.40505481582488
704 => 0.40434872661925
705 => 0.41910327862286
706 => 0.42483645137697
707 => 0.42336966045017
708 => 0.423639585281
709 => 0.43401922070029
710 => 0.44556351002137
711 => 0.45637626037371
712 => 0.46737545445055
713 => 0.45411549668507
714 => 0.44738290789226
715 => 0.45432922098079
716 => 0.45064340947958
717 => 0.47182317564826
718 => 0.47328961670469
719 => 0.4944678513352
720 => 0.51456851785682
721 => 0.50194364935544
722 => 0.51384833171568
723 => 0.52672421629127
724 => 0.55156388667457
725 => 0.54319875955962
726 => 0.53679120328782
727 => 0.53073609357205
728 => 0.54333581566896
729 => 0.55954515686117
730 => 0.56303649370283
731 => 0.56869379317964
801 => 0.56274583452144
802 => 0.56990949557909
803 => 0.59520036698476
804 => 0.58836655028225
805 => 0.57866143197383
806 => 0.5986261459875
807 => 0.60585129837819
808 => 0.65656120169771
809 => 0.72058454936024
810 => 0.69407846302799
811 => 0.6776252798955
812 => 0.68149216820636
813 => 0.70487132744562
814 => 0.71237997137585
815 => 0.69196888878871
816 => 0.69917842822079
817 => 0.73890369931786
818 => 0.76021503272215
819 => 0.73127137946519
820 => 0.65141698805118
821 => 0.57778759225616
822 => 0.5973174235959
823 => 0.5951033468032
824 => 0.6377831947685
825 => 0.58820356601399
826 => 0.58903835980817
827 => 0.63260078183065
828 => 0.62097907448404
829 => 0.60215339697834
830 => 0.57792504053569
831 => 0.53313668279974
901 => 0.49346638533726
902 => 0.57126897418507
903 => 0.56791398507913
904 => 0.56305546367219
905 => 0.57386757731641
906 => 0.62636813210071
907 => 0.62515782438522
908 => 0.61745846420369
909 => 0.62329836104233
910 => 0.60112963482704
911 => 0.60684302034523
912 => 0.57777592898368
913 => 0.59091546822806
914 => 0.60211300552945
915 => 0.60436107692508
916 => 0.60942609656879
917 => 0.56614605827218
918 => 0.58557752483219
919 => 0.59699169095401
920 => 0.54542207316474
921 => 0.59597232541928
922 => 0.56539264909483
923 => 0.55501344765899
924 => 0.56898767503654
925 => 0.56354190503712
926 => 0.55885995177797
927 => 0.5562473414132
928 => 0.56650847172008
929 => 0.56602977772656
930 => 0.54924057694493
1001 => 0.52733974894068
1002 => 0.53469038568908
1003 => 0.5320198304458
1004 => 0.52234139373566
1005 => 0.52886349149939
1006 => 0.50014347370608
1007 => 0.45073217582933
1008 => 0.4833747927157
1009 => 0.48211808747391
1010 => 0.48148439970395
1011 => 0.5060144241184
1012 => 0.5036564282749
1013 => 0.49937664272939
1014 => 0.52226279211787
1015 => 0.51390903972893
1016 => 0.53965333620005
1017 => 0.55661019489264
1018 => 0.55230938703129
1019 => 0.56825739459127
1020 => 0.53485972951356
1021 => 0.54595309417063
1022 => 0.54823942125171
1023 => 0.52198038058694
1024 => 0.50404222555672
1025 => 0.50284595512614
1026 => 0.47174366633377
1027 => 0.48835825795775
1028 => 0.50297841102834
1029 => 0.49597649227724
1030 => 0.49375989397701
1031 => 0.50508401397135
1101 => 0.50596399507944
1102 => 0.48590033255879
1103 => 0.4900722033304
1104 => 0.50746959796379
1105 => 0.48963383362275
1106 => 0.45498185696368
1107 => 0.44638768765117
1108 => 0.44524106704292
1109 => 0.42193299825523
1110 => 0.44696199113926
1111 => 0.43603616501007
1112 => 0.47055071884067
1113 => 0.4508361907979
1114 => 0.4499863368969
1115 => 0.44870165807908
1116 => 0.42863944042932
1117 => 0.43303179107418
1118 => 0.44763263359155
1119 => 0.45284237869202
1120 => 0.45229895959586
1121 => 0.44756108149776
1122 => 0.44973005782921
1123 => 0.44274302934416
1124 => 0.44027576416367
1125 => 0.43248839657928
1126 => 0.42104311754544
1127 => 0.42263465379307
1128 => 0.39995856120686
1129 => 0.38760342245457
1130 => 0.38418368288605
1201 => 0.37961066421427
1202 => 0.38470021751337
1203 => 0.39989432268567
1204 => 0.38156700823864
1205 => 0.35014611313085
1206 => 0.35203456246543
1207 => 0.35627734743458
1208 => 0.34837094571339
1209 => 0.34088820001828
1210 => 0.34739384030583
1211 => 0.33408039283432
1212 => 0.35788621395577
1213 => 0.35724233320948
1214 => 0.36611567118145
1215 => 0.37166435151455
1216 => 0.35887643975334
1217 => 0.35566031452759
1218 => 0.35749236562092
1219 => 0.3272126419924
1220 => 0.36364117176254
1221 => 0.36395620720072
1222 => 0.36125868251546
1223 => 0.38065575001339
1224 => 0.42158961253108
1225 => 0.40618864689112
1226 => 0.40022492749867
1227 => 0.38888789257419
1228 => 0.40399381848454
1229 => 0.40283391906378
1230 => 0.3975884140043
1231 => 0.39441591617736
]
'min_raw' => 0.29627784810173
'max_raw' => 0.76021503272215
'avg_raw' => 0.52824644041194
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.296277'
'max' => '$0.760215'
'avg' => '$0.528246'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.18219184963629
'max_diff' => 0.44187971882912
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0092998231027995
]
1 => [
'year' => 2028
'avg' => 0.015961196202341
]
2 => [
'year' => 2029
'avg' => 0.04360311129907
]
3 => [
'year' => 2030
'avg' => 0.033639735431531
]
4 => [
'year' => 2031
'avg' => 0.03303838912028
]
5 => [
'year' => 2032
'avg' => 0.057926693691565
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0092998231027995
'min' => '$0.009299'
'max_raw' => 0.057926693691565
'max' => '$0.057926'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.057926693691565
]
1 => [
'year' => 2033
'avg' => 0.14899341270637
]
2 => [
'year' => 2034
'avg' => 0.09443918526166
]
3 => [
'year' => 2035
'avg' => 0.11139123558569
]
4 => [
'year' => 2036
'avg' => 0.21621065617924
]
5 => [
'year' => 2037
'avg' => 0.52824644041194
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.057926693691565
'min' => '$0.057926'
'max_raw' => 0.52824644041194
'max' => '$0.528246'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.52824644041194
]
]
]
]
'prediction_2025_max_price' => '$0.015901'
'last_price' => 0.01541803
'sma_50day_nextmonth' => '$0.014113'
'sma_200day_nextmonth' => '$0.020118'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'augmenter'
'sma_200day_date_nextmonth' => '4 févr. 2026'
'sma_50day_date_nextmonth' => '4 févr. 2026'
'daily_sma3' => '$0.014979'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.01468'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.014379'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.0140022'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.014911'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.016998'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.022359'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.01504'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.0148063'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.014504'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.0144091'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.0152067'
'daily_ema50_action' => 'BUY'
'daily_ema100' => '$0.017319'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.0208032'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.019223'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.024224'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.029417'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.031153'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.014939'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.014977'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.015933'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.0187051'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.023391'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.027553'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.03337'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '62.09'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 120.3
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.014448'
'vwma_10_action' => 'BUY'
'hma_9' => '0.0151072'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 228.18
'cci_20_action' => 'SELL'
'adx_14' => 17.75
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.000226'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 72.42
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '-0.001127'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 14
'buy_signals' => 21
'sell_pct' => 40
'buy_pct' => 60
'overall_action' => 'bullish'
'overall_action_label' => 'Haussier'
'overall_action_dir' => 1
'last_updated' => 1767701190
'last_updated_date' => '6 janvier 2026'
]
Prévision du prix de Status pour 2026
La prévision du prix de Status pour 2026 suggère que le prix moyen pourrait varier entre $0.005326 à la baisse et $0.015901 à la hausse. Sur le marché des cryptomonnaies, comparé au prix moyen d'aujourd'hui, Status pourrait potentiellement gagner 3.13% d'ici 2026 si SNT atteint l'objectif de prix prévu.
Prévision du prix de Status de 2027 à 2032
La prévision du prix de SNT pour 2027-2032 se situe actuellement dans une fourchette de prix comprise entre $0.009299 à la baisse et $0.057926 à la hausse. Compte tenu de la volatilité des prix sur le marché, si Status atteint l'objectif de prix le plus élevé, il pourrait gagner 275.71% d'ici 2032 par rapport au prix actuel.
| Prévision du Prix de Status | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2027 | $0.005128 | $0.009299 | $0.013471 |
| 2028 | $0.009254 | $0.015961 | $0.022667 |
| 2029 | $0.020329 | $0.0436031 | $0.066876 |
| 2030 | $0.017289 | $0.033639 | $0.049989 |
| 2031 | $0.020441 | $0.033038 | $0.045634 |
| 2032 | $0.0312029 | $0.057926 | $0.08465 |
Prévision du prix de Status de 2032 à 2037
La prévision du prix de Status pour 2032-2037 est actuellement estimée entre $0.057926 à la baisse et $0.528246 à la hausse. Par rapport au prix actuel, Status pourrait potentiellement gagner 3326.16% d'ici 2037 s'il atteint l'objectif de prix le plus élevé. Veuillez noter que ces informations sont à titre général seulement et ne doivent pas être considérées comme un conseil en investissement à long terme.
| Prévision du Prix de Status | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2032 | $0.0312029 | $0.057926 | $0.08465 |
| 2033 | $0.0725087 | $0.148993 | $0.225478 |
| 2034 | $0.058293 | $0.094439 | $0.130584 |
| 2035 | $0.068921 | $0.111391 | $0.153861 |
| 2036 | $0.114085 | $0.21621 | $0.318335 |
| 2037 | $0.296277 | $0.528246 | $0.760215 |
Status Histogramme des prix potentiels
Prévision du prix de Status basée sur l'analyse technique
Au 6 janvier 2026, le sentiment global de prévision du prix pour Status est Haussier, avec 21 indicateurs techniques montrant des signaux haussiers et 14 indiquant des signaux baissiers. La prévision du prix de SNT a été mise à jour pour la dernière fois le 6 janvier 2026.
Moyennes Mobiles Simples sur 50 et 200 jours de Status et Indice de Force Relative sur 14 jours - RSI (14)
Selon nos indicateurs techniques, le SMA sur 200 jours de Status devrait augmenter au cours du prochain mois, atteignant $0.020118 d'ici le 4 févr. 2026. Le SMA à court terme sur 50 jours pour Status devrait atteindre $0.014113 d'ici le 4 févr. 2026.
Le Relative Strength Index (RSI), un oscillateur de momentum, est un outil couramment utilisé pour identifier si une cryptomonnaie est survendue (en dessous de 30) ou surachetée (au-dessus de 70). Actuellement, le RSI est à 62.09, ce qui suggère que le marché de SNT est dans un état NEUTRAL.
Moyennes Mobiles et Oscillateurs Populaires de SNT pour le Samedi 19 Octobre 2024
Les moyennes mobiles (MA) sont des indicateurs largement utilisés sur les marchés financiers, conçus pour lisser les mouvements de prix sur une période donnée. En tant qu'indicateurs retardés, ils sont basés sur des données historiques de prix. Le tableau ci-dessous met en évidence deux types : la moyenne mobile simple (SMA) et la moyenne mobile exponentielle (EMA).
Moyenne Mobile Simple Quotidienne (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 3 | $0.014979 | BUY |
| SMA 5 | $0.01468 | BUY |
| SMA 10 | $0.014379 | BUY |
| SMA 21 | $0.0140022 | BUY |
| SMA 50 | $0.014911 | BUY |
| SMA 100 | $0.016998 | SELL |
| SMA 200 | $0.022359 | SELL |
Moyenne Mobile Exponentielle Quotidienne (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 3 | $0.01504 | BUY |
| EMA 5 | $0.0148063 | BUY |
| EMA 10 | $0.014504 | BUY |
| EMA 21 | $0.0144091 | BUY |
| EMA 50 | $0.0152067 | BUY |
| EMA 100 | $0.017319 | SELL |
| EMA 200 | $0.0208032 | SELL |
Moyenne Mobile Simple Hebdomadaire (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 21 | $0.019223 | SELL |
| SMA 50 | $0.024224 | SELL |
| SMA 100 | $0.029417 | SELL |
| SMA 200 | $0.031153 | SELL |
Moyenne Mobile Exponentielle Hebdomadaire (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 21 | $0.0187051 | SELL |
| EMA 50 | $0.023391 | SELL |
| EMA 100 | $0.027553 | SELL |
| EMA 200 | $0.03337 | SELL |
Oscillateurs de Status
Un oscillateur est un outil d'analyse technique qui établit des limites hautes et basses entre deux extrêmes, créant un indicateur de tendance qui fluctue à l'intérieur de ces limites. Les traders utilisent cet indicateur pour identifier les conditions de surachat ou de survente à court terme.
| Période | Valeur | Action |
|---|---|---|
| RSI (14) | 62.09 | NEUTRAL |
| Stoch RSI (14) | 120.3 | SELL |
| Stochastique Rapide (14) | 100 | SELL |
| Indice de Canal des Matières Premières (20) | 228.18 | SELL |
| Indice Directionnel Moyen (14) | 17.75 | NEUTRAL |
| Oscillateur Impressionnant (5, 34) | 0.000226 | BUY |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Plage de Pourcentage de Williams (14) | -0 | SELL |
| Oscillateur Ultime (7, 14, 28) | 72.42 | SELL |
| VWMA (10) | 0.014448 | BUY |
| Moyenne Mobile de Hull (9) | 0.0151072 | BUY |
| Nuage Ichimoku B/L (9, 26, 52, 26) | -0.001127 | SELL |
Prévision du cours de Status basée sur les flux monétaires mondiaux
Définitions des flux monétaires mondiaux utilisés pour la prédiction du cours de Status
M0 : le total de toutes les devises physiques, plus les comptes à la banque centrale qui peuvent être échangés contre des devises physiques.
M1 : M0 plus le montant des comptes à vue, y compris les comptes de "chèques" et les comptes "courants".
M2 : M1 plus la plupart des comptes d'épargne, comptes du marché monétaire et comptes de certificats de dépôt (CD) de moins de 100 000 $.
Prédictions du cours de Status par des sociétés Internet ou des niches technologiques
| Comparaison | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Action Facebook | $0.021664 | $0.030442 | $0.042777 | $0.0601091 | $0.084463 | $0.118685 |
| Action Amazon.com | $0.03217 | $0.067125 | $0.140062 | $0.292248 | $0.609793 | $1.27 |
| Action Apple | $0.021869 | $0.031019 | $0.043999 | $0.0624097 | $0.088523 | $0.125563 |
| Action Netflix | $0.024327 | $0.038384 | $0.060564 | $0.095561 | $0.150781 | $0.2379096 |
| Action Google | $0.019966 | $0.025856 | $0.033483 | $0.043361 | $0.056152 | $0.072717 |
| Action Tesla | $0.034951 | $0.079232 | $0.179613 | $0.407171 | $0.923026 | $2.09 |
| Action Kodak | $0.011561 | $0.00867 | $0.0065017 | $0.004875 | $0.003656 | $0.002741 |
| Action Nokia | $0.010213 | $0.006766 | $0.004482 | $0.002969 | $0.001967 | $0.0013031 |
Ce calcul montre la valeur potentielle des cryptomonnaies si l'on suppose que leur capitalisation se comportera comme celle de certaines sociétés Internet ou niches technologiques. En extrapolant les données, vous pourrez obtenir une potentielle image des cours futurs pour 2024, 2025, 2026, 2027, 2028, 2029 et 2030.
Aperçu des prévisions relatives à Status
Vous vous posez peut-être des questions telles que : "Devrais-je investir dans Status maintenant ?", "Devrais-je acheter SNT aujourd'hui ?", " Status sera-t-il un bon ou un mauvais investissement à court ou à long terme ?".
Nous mettons régulièrement à jour les prévisions de Status avec de nouvelles valeurs. Regardez nos prévisions similaires. Nous faisons une prévision des cours futurs pour une grande quantité de devises numériques comme Status en utilisant des méthodes d'analyse technique.
Si vous souhaitez trouver des cryptomonnaies ayant un bon rendement, vous devriez consulter un maximum d'informations disponibles à propos de Status afin de prendre une décision responsable concernant cet investissement.
Le cours de Status est de $0.01541 USD actuellement, mais ce cours peut subir une hausse ou une baisse, ce qui pourrait causer la perte de votre investissement, car les cryptomonnaies sont des actifs à haut risque.
Prévision à court terme de Status
basée sur l'historique des cours sur 4 heures
Prévision à long terme de Status
basée sur l'historique des cours sur 1 mois
Prévision du cours de Status basée sur le modèle de croissance du Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si Status présente 1 % de la précédente croissance annuelle moyenne du Bitcoin | $0.015818 | $0.016229 | $0.016651 | $0.017084 |
| Si Status présente 2 % de la précédente croissance annuelle moyenne du Bitcoin | $0.016219 | $0.017062 | $0.017949 | $0.018882 |
| Si Status présente 5 % de la précédente croissance annuelle moyenne du Bitcoin | $0.017421 | $0.019686 | $0.022244 | $0.025135 |
| Si Status présente 10 % de la précédente croissance annuelle moyenne du Bitcoin | $0.019425 | $0.024475 | $0.030836 | $0.038852 |
| Si Status présente 20 % de la précédente croissance annuelle moyenne du Bitcoin | $0.023433 | $0.035615 | $0.05413 | $0.082271 |
| Si Status présente 50 % de la précédente croissance annuelle moyenne du Bitcoin | $0.035456 | $0.081537 | $0.1875081 | $0.431205 |
| Si Status présente 100 % de la précédente croissance annuelle moyenne du Bitcoin | $0.055494 | $0.199742 | $0.718936 | $2.58 |
Boîte à questions
Est-ce que SNT est un bon investissement ?
La décision d'acquérir Status dépend entièrement de votre tolérance individuelle au risque. Comme vous pouvez le discerner, la valeur de Status a connu une hausse de 3.0229% au cours des 24 heures précédentes, et Status a enregistré une déclin de sur une période de 30 jours précédents. Par conséquent, la détermination de si investir ou non dans Status dépendra de la mesure dans laquelle cet investissement s'aligne avec vos aspirations de trading.
Est-ce que Status peut monter ?
Il semble que la valeur moyenne de Status pourrait potentiellement s'envoler jusqu'à $0.015901 pour la fin de cette année. En regardant les perspectives de Status sur une période de cinq ans plus longue, la monnaie numérique pourrait potentiellement croître jusqu'à $0.049989. Cependant, compte tenu de l'imprévisibilité du marché, il est essentiel de mener des recherches approfondies avant d'investir des fonds dans un projet, un réseau ou un actif particulier.
Quel sera le prix de Status la semaine prochaine ?
Basé sur notre nouveau pronostic expérimental de Status, le prix de Status va augmenter de 0.86% durant la prochaine semaine et atteindre $0.015549 d'ici 13 janvier 2026.
Quel sera le prix de Status le mois prochain ?
Basé sur notre nouveau pronostic expérimental de Status, le prix de Status va diminuer de -11.62% durant le prochain mois et atteindre $0.013626 d'ici 5 février 2026.
Jusqu'où le prix de Status peut-il monter cette année en 2026 ?
Selon notre prédiction la plus récente sur la valeur de Status en 2026, SNT devrait fluctuer dans la fourchette de $0.005326 et $0.015901. Cependant, il est crucial de garder à l'esprit que le marché des cryptomonnaies est exceptionnellement instable, et cette prévision de prix de Status ne prend pas en compte les fluctuations de prix soudaines et extrêmes.
Où sera Status dans 5 ans ?
L'avenir de Status semble suivre une tendance haussière, avec un prix maximum de $0.049989 prévue après une période de cinq ans. Selon la prévision de Status pour 2030, la valeur de Status pourrait potentiellement atteindre son point le plus élevé d'environ $0.049989, tandis que son point le plus bas devrait être autour de $0.017289.
Combien vaudra Status en 2026 ?
Basé sur notre nouvelle simulation expérimentale de prédiction de prix de Status, il est attendu que la valeur de SNT en 2026 augmente de 3.13% jusqu'à $0.015901 si le meilleur scénario se produit. Le prix sera entre $0.015901 et $0.005326 durant 2026.
Combien vaudra Status en 2027 ?
Selon notre dernière simulation expérimentale pour la prédiction de prix de Status, le valeur de SNT pourrait diminuer de -12.62% jusqu'à $0.013471 en 2027, en supposant les conditions les plus favorables. Il est prévu que le prix fluctue entre $0.013471 et $0.005128 tout au long de l'année.
Combien vaudra Status en 2028 ?
Notre nouveau modèle expérimental de prédiction de prix de Status suggère que la valeur de SNT en 2028 pourrait augmenter de 47.02%, atteignant $0.022667 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.022667 et $0.009254 durant l'année.
Combien vaudra Status en 2029 ?
Basé sur notre modèle de prévision expérimental, la valeur de Status pourrait connaître un 333.75% croissance en 2029, atteignant potentiellement $0.066876 sous des conditions optimales. Le range de prix prévu pour 2029 se situe entre $0.066876 et $0.020329.
Combien vaudra Status en 2030 ?
En utilisant notre nouvelle simulation expérimentale pour les prédictions de prix de Status, il est prévu que la valeur de SNT en 2030 augmente de 224.23%, atteignant $0.049989 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.049989 et $0.017289 au cours de 2030.
Combien vaudra Status en 2031 ?
Notre simulation expérimentale indique que le prix de Status pourrait augmenter de 195.98% en 2031, atteignant potentiellement $0.045634 dans des conditions idéales. Il est probable que le prix fluctue entre $0.045634 et $0.020441 durant l'année.
Combien vaudra Status en 2032 ?
Basé sur les résultats de notre dernière prédiction expérimentale de prix de Status, SNT pourrait connaître une 449.04% hausse en valeur, atteignant $0.08465 si le scénario le plus positif se réalise en 2032. Il est prévu que le prix reste dans une fourchette de $0.08465 et $0.0312029 tout au long de l'année.
Combien vaudra Status en 2033 ?
Selon notre prédiction expérimentale de prix de Status, la valeur de SNT est anticipée à augmenter de 1362.43% en 2033, avec le prix potentiel le plus élevé étant $0.225478. Tout au long de l'année, le prix de SNT pourrait osciller entre $0.225478 et $0.0725087.
Combien vaudra Status en 2034 ?
Les résultats de notre nouvelle simulation de prédiction de prix de Status suggèrent que SNT pourrait augmenter de 746.96% en 2034, atteignant potentiellement $0.130584 dans les meilleures circonstances. La fourchette de prix prévue pour l'année est entre $0.130584 et $0.058293.
Combien vaudra Status en 2035 ?
Basé sur notre prédiction expérimentale pour le prix de Status, SNT pourrait augmenter de 897.93%, avec la valeur potentiellement atteignant $0.153861 en 2035. La fourchette de prix attendue pour l'année se situe entre $0.153861 et $0.068921.
Combien vaudra Status en 2036 ?
Notre récente simulation de prédiction de prix de Status suggère que la valeur de SNT pourrait augmenter de 1964.7% en 2036, pouvant atteindre $0.318335 si les conditions sont optimales. La fourchette de prix attendue pour 2036 est entre $0.318335 et $0.114085.
Combien vaudra Status en 2037 ?
Selon la simulation expérimentale, la valeur de Status pourrait augmenter de 4830.69% en 2037, avec un maximum de $0.760215 sous des conditions favorables. Il est prévu que le prix chute entre $0.760215 et $0.296277 au cours de l'année.
Prévisions liées
Prévision du cours de Bluzelle
Prévision du cours de SMARDEX
Prévision du cours de Slerf [OLD]
Prévision du cours de ConstitutionDAO
Prévision du cours de Victoria VR
Prévision du cours de Dent
Prévision du cours de Bone ShibaSwap
Prévision du cours de Milady Meme Coin
Prévision du cours de tBTC
Prévision du cours de inSure DeFi
Prévision du cours de Dione
Prévision du cours de Nexera
Prévision du cours de LooksRare
Prévision du cours de Virtuals Protocol
Prévision du cours de Autonolas
Prévision du cours de Covalent
Prévision du cours de OpSec
Prévision du cours de Horizen
Prévision du cours de Hiveterminal token
Prévision du cours de Ark
Prévision du cours de Escoin Token
Prévision du cours de MVL
Prévision du cours de Nym
Prévision du cours de Constellation
Prévision du cours de Alchemy Pay
Comment lire et prédire les mouvements de prix de Status ?
Les traders de Status utilisent des indicateurs et des modèles graphiques pour prédire la direction du marché. Ils identifient également des niveaux clés de support et de résistance pour évaluer quand une tendance baissière pourrait ralentir ou une tendance haussière pourrait s'arrêter.
Indicateurs de prédiction du prix de Status
Les moyennes mobiles sont des outils populaires pour la prédiction du prix de Status. Une moyenne mobile simple (SMA) calcule le prix de clôture moyen de SNT sur une période spécifique, comme une SMA de 12 jours. Une moyenne mobile exponentielle (EMA) donne plus de poids aux prix récents, réagissant plus rapidement aux changements de prix.
Les moyennes mobiles couramment utilisées sur le marché des cryptomonnaies incluent les moyennes sur 50 jours, 100 jours et 200 jours, qui aident à identifier les niveaux clés de résistance et de support. Un mouvement de prix de SNT au-dessus de ces moyennes est considéré comme haussier, tandis qu'une chute en dessous indique une faiblesse.
Les traders utilisent également le RSI et les niveaux de retracement de Fibonacci pour évaluer la direction future de SNT.
Comment lire les graphiques de Status et prédire les mouvements de prix ?
La plupart des traders préfèrent les graphiques en chandeliers aux simples graphiques linéaires parce qu'ils fournissent des informations plus détaillées. Les chandeliers peuvent représenter l'action des prix de Status dans différentes périodes, comme 5 minutes pour les tendances à court terme et hebdomadaire pour les tendances à long terme. Les options populaires incluent les graphiques de 1 heure, 4 heures et 1 jour.
Par exemple, un graphique en chandeliers de 1 heure montre les prix d'ouverture, de clôture, les plus hauts et les plus bas de SNT au sein de chaque heure. La couleur du chandelier est cruciale : le vert indique que le prix a clôturé plus haut qu'il n'a ouvert, tandis que le rouge signifie le contraire. Certains graphiques utilisent des chandeliers creux et pleins pour transmettre la même information.
Qu'est-ce qui affecte le prix de Status ?
L'action du prix de Status est déterminée par l'offre et la demande, influencée par des facteurs tels que les réductions de récompenses de bloc, les hard forks et les mises à jour de protocole. Les événements du monde réel, tels que les réglementations, l'adoption par les entreprises et les gouvernements et les piratages d'échanges de cryptomonnaies, impactent également le prix de SNT. La capitalisation boursière de Status peut changer rapidement.
Les traders surveillent souvent l'activité des « baleines » de SNT, de grands détenteurs de Status, car leurs actions peuvent influencer significativement les mouvements de prix sur le marché relativement petit de Status.
Modèles de prédiction de prix haussiers et baissiers
Les traders identifient souvent des modèles de chandeliers pour obtenir un avantage dans les prédictions de prix des cryptomonnaies. Certaines formations indiquent des tendances haussières, tandis que d'autres suggèrent des mouvements baissiers.
Modèles de chandeliers haussiers couramment suivis :
- Marteau
- Englobante haussière
- Ligne pénétrante
- Étoile du matin
- Trois soldats blancs
Modèles de chandeliers baissiers courants :
- Harami baissier
- Nuage sombre
- Étoile du soir
- Étoile filante
- Pendu


