Prédiction du prix de Across Protocol jusqu'à $0.0563093 d'ici 2026
| Année | Prix min. | Prix max. |
|---|---|---|
| 2026 | $0.018863 | $0.0563093 |
| 2027 | $0.018159 | $0.047706 |
| 2028 | $0.032773 | $0.080271 |
| 2029 | $0.071993 | $0.236825 |
| 2030 | $0.061227 | $0.177025 |
| 2031 | $0.072389 | $0.1616044 |
| 2032 | $0.110497 | $0.299767 |
| 2033 | $0.256771 | $0.798472 |
| 2034 | $0.206431 | $0.462432 |
| 2035 | $0.244066 | $0.54486 |
Calculateur de profit d’investissement
Si vous ouvrez une position short de $10,000.00 sur Across Protocol aujourd’hui et la fermez le Apr 06, 2026, notre prévision indique que vous pourriez gagner environ $3,954.43, soit un rendement de 39.54% sur les 90 prochains jours.
Prévision du prix à long terme de Across Protocol pour 2027, 2028, 2029, 2030, 2031, 2032 et 2037
[
'name' => 'Across Protocol'
'name_with_ticker' => 'Across Protocol <small>ACX</small>'
'name_lang' => 'Across Protocol'
'name_lang_with_ticker' => 'Across Protocol <small>ACX</small>'
'name_with_lang' => 'Across Protocol'
'name_with_lang_with_ticker' => 'Across Protocol <small>ACX</small>'
'image' => '/uploads/coins/across-protocol.png?1717131587'
'price_for_sd' => 0.05459
'ticker' => 'ACX'
'marketcap' => '$36.21M'
'low24h' => '$0.05209'
'high24h' => '$0.0558'
'volume24h' => '$2.04M'
'current_supply' => '660.73M'
'max_supply' => '1B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.05459'
'change_24h_pct' => '4.117%'
'ath_price' => '$1.69'
'ath_days' => 396
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '6 déc. 2024'
'ath_pct' => '-96.77%'
'fdv' => '$54.81M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$2.69'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.0550662'
'next_week_prediction_price_date' => '13 janvier 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.048255'
'next_month_prediction_price_date' => '5 février 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.018863'
'current_year_max_price_prediction' => '$0.0563093'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.061227'
'grand_prediction_max_price' => '$0.177025'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.055633622330926
107 => 0.055841338081705
108 => 0.056309332274439
109 => 0.052310373137284
110 => 0.054105788386594
111 => 0.055160426637906
112 => 0.050395532650413
113 => 0.055066240004075
114 => 0.052240760155587
115 => 0.051281749857727
116 => 0.052572930883796
117 => 0.052069756382222
118 => 0.051637156493167
119 => 0.051395758322065
120 => 0.05234385916516
121 => 0.052299629127604
122 => 0.050748352129856
123 => 0.048724774524433
124 => 0.049403953590483
125 => 0.04915720146845
126 => 0.048262939946542
127 => 0.04886556423876
128 => 0.046211911837006
129 => 0.041646440804639
130 => 0.04466253081278
131 => 0.044546414628342
201 => 0.044487863582698
202 => 0.046754371865211
203 => 0.04653649939109
204 => 0.046141058717148
205 => 0.048255677368456
206 => 0.047483813115094
207 => 0.049862516869866
208 => 0.051429285007672
209 => 0.051031901928285
210 => 0.052505454934739
211 => 0.049419600504416
212 => 0.050444597563179
213 => 0.050655848036405
214 => 0.048229583302543
215 => 0.046572146022331
216 => 0.046461613851909
217 => 0.043587846016948
218 => 0.045122989598141
219 => 0.046473852421032
220 => 0.045826893960057
221 => 0.045622086238647
222 => 0.046668404469958
223 => 0.046749712357641
224 => 0.044895883901855
225 => 0.045281353540925
226 => 0.046888826014842
227 => 0.045240849358932
228 => 0.042039099911956
301 => 0.041245021781457
302 => 0.041139077121085
303 => 0.03898547425204
304 => 0.041298085879169
305 => 0.040288568929789
306 => 0.043477620877012
307 => 0.041656051507987
308 => 0.041577527293213
309 => 0.041458826425584
310 => 0.039605131471983
311 => 0.040010972858361
312 => 0.041360051438072
313 => 0.041841417873771
314 => 0.041791207410809
315 => 0.041353440217044
316 => 0.041553847796619
317 => 0.04090826515618
318 => 0.0406802964892
319 => 0.03996076466849
320 => 0.038903251667785
321 => 0.039050305336637
322 => 0.036955095368912
323 => 0.035813513777286
324 => 0.035497539038528
325 => 0.035075004412366
326 => 0.035545265448874
327 => 0.036949159902323
328 => 0.035255765338641
329 => 0.032352559137025
330 => 0.032527046776565
331 => 0.032919068696765
401 => 0.032188538441956
402 => 0.031497152864535
403 => 0.032098256530217
404 => 0.030868129790302
405 => 0.033067723636284
406 => 0.033008230787041
407 => 0.033828103350852
408 => 0.034340786490482
409 => 0.033159217836773
410 => 0.032862056515666
411 => 0.033031333109397
412 => 0.030233568083291
413 => 0.033599466259699
414 => 0.0336285746869
415 => 0.033379330660962
416 => 0.035171567529452
417 => 0.038953746334662
418 => 0.037530738530352
419 => 0.036979706897885
420 => 0.035932195361762
421 => 0.037327942288565
422 => 0.03722077070163
423 => 0.036736100141895
424 => 0.036442969875103
425 => 0.036983071379532
426 => 0.036376045321665
427 => 0.036267006761712
428 => 0.035606351723517
429 => 0.035370527932771
430 => 0.035195933386518
501 => 0.035003721946399
502 => 0.035427692487195
503 => 0.034466919463783
504 => 0.033308321383289
505 => 0.033211996489101
506 => 0.033477957990925
507 => 0.033360289824873
508 => 0.033211433139192
509 => 0.03292722518752
510 => 0.032842906759401
511 => 0.033116900745302
512 => 0.032807577510062
513 => 0.033264000793367
514 => 0.03313987891536
515 => 0.032446544194634
516 => 0.031582392427218
517 => 0.031574699663868
518 => 0.031388519583072
519 => 0.031151391257814
520 => 0.031085427582489
521 => 0.032047633256108
522 => 0.034039370204108
523 => 0.03364834458299
524 => 0.033930900668165
525 => 0.035320796951192
526 => 0.035762603183926
527 => 0.035449019584685
528 => 0.03501976701305
529 => 0.035038651947709
530 => 0.036505537928576
531 => 0.036597025807883
601 => 0.036828186163786
602 => 0.037125292547029
603 => 0.035499618086476
604 => 0.034962082826811
605 => 0.034707368799461
606 => 0.033922948181957
607 => 0.034768878566794
608 => 0.0342759911579
609 => 0.034342498508791
610 => 0.034299185509275
611 => 0.034322837335823
612 => 0.033067108804976
613 => 0.033524630282468
614 => 0.032763912088388
615 => 0.031745395821139
616 => 0.031741981397474
617 => 0.031991261810952
618 => 0.031842980066671
619 => 0.031443957705485
620 => 0.031500636948559
621 => 0.031004067138528
622 => 0.031560929514184
623 => 0.031576898334568
624 => 0.031362475987442
625 => 0.032220399309339
626 => 0.032571891194319
627 => 0.032430753812069
628 => 0.032561988619337
629 => 0.033664593462922
630 => 0.033844366162448
701 => 0.03392420932046
702 => 0.033817230065916
703 => 0.032582142211797
704 => 0.032636923610127
705 => 0.032234974057215
706 => 0.031895369041406
707 => 0.031908951461045
708 => 0.032083552584732
709 => 0.032846045932098
710 => 0.034450668230191
711 => 0.03451156247344
712 => 0.034585368072668
713 => 0.034285163608885
714 => 0.034194619070038
715 => 0.034314070688306
716 => 0.034916682456437
717 => 0.03646676353157
718 => 0.035918861353184
719 => 0.035473408353551
720 => 0.035864190727495
721 => 0.03580403284408
722 => 0.035296239767301
723 => 0.035281987706893
724 => 0.034307370441286
725 => 0.033947076629153
726 => 0.03364598815221
727 => 0.033317207395502
728 => 0.033122295142094
729 => 0.033421768949363
730 => 0.033490262152355
731 => 0.032835457438856
801 => 0.032746209975993
802 => 0.033280937639977
803 => 0.033045623931714
804 => 0.033287649916162
805 => 0.033343802020614
806 => 0.033334760238505
807 => 0.033089065701471
808 => 0.03324566407266
809 => 0.032875262240577
810 => 0.032472505880743
811 => 0.032215572415777
812 => 0.031991363890315
813 => 0.032115767811317
814 => 0.031672290548203
815 => 0.031530413246299
816 => 0.033192612068076
817 => 0.034420496209371
818 => 0.034402642287661
819 => 0.034293961130908
820 => 0.03413248297714
821 => 0.034904869323704
822 => 0.034635785364913
823 => 0.03483156642765
824 => 0.034881400925022
825 => 0.035032234939377
826 => 0.035086145134887
827 => 0.034923191081017
828 => 0.034376297373069
829 => 0.033013490249955
830 => 0.032379099855319
831 => 0.032169740458481
901 => 0.032177350274926
902 => 0.031967437565657
903 => 0.032029266266164
904 => 0.031945936066833
905 => 0.031788128829039
906 => 0.032106023659073
907 => 0.032142658076839
908 => 0.032068457624949
909 => 0.032085934517464
910 => 0.031471586467242
911 => 0.031518294015206
912 => 0.031258220452831
913 => 0.03120945979512
914 => 0.030552016476631
915 => 0.029387260339996
916 => 0.030032648305306
917 => 0.029253110398493
918 => 0.028957887581256
919 => 0.030355426481488
920 => 0.0302151523376
921 => 0.029975063978968
922 => 0.029619923257753
923 => 0.029488198109668
924 => 0.028687877809015
925 => 0.02864059061611
926 => 0.029037250967579
927 => 0.028854205863626
928 => 0.028597141213073
929 => 0.027666079106996
930 => 0.026619257035696
1001 => 0.02665085401394
1002 => 0.026983828638003
1003 => 0.027951997265213
1004 => 0.027573717033075
1005 => 0.027299270384393
1006 => 0.027247874776931
1007 => 0.027891198408312
1008 => 0.028801636127184
1009 => 0.029228793134983
1010 => 0.028805493513206
1011 => 0.028319229699778
1012 => 0.028348826324972
1013 => 0.028545719412864
1014 => 0.028566410092483
1015 => 0.02824990233867
1016 => 0.028338997417413
1017 => 0.028203653845777
1018 => 0.027373050596468
1019 => 0.027358027617559
1020 => 0.027154184184892
1021 => 0.027148011886763
1022 => 0.026801223356669
1023 => 0.026752705244073
1024 => 0.026064135569011
1025 => 0.026517354214318
1026 => 0.026213358942093
1027 => 0.025755166361615
1028 => 0.025676173788038
1029 => 0.02567379917589
1030 => 0.026144260506054
1031 => 0.026511856599759
1101 => 0.026218647070005
1102 => 0.026151888943708
1103 => 0.026864691079059
1104 => 0.02677398051
1105 => 0.026695425742215
1106 => 0.028720116415228
1107 => 0.027117415758955
1108 => 0.026418546793865
1109 => 0.025553563737949
1110 => 0.025835206582578
1111 => 0.025894552868136
1112 => 0.023814424543573
1113 => 0.022970516741361
1114 => 0.022680919385637
1115 => 0.022514252013112
1116 => 0.022590204427648
1117 => 0.021830588425145
1118 => 0.022341062941716
1119 => 0.021683299692291
1120 => 0.021573023542978
1121 => 0.022749185714181
1122 => 0.022912841809265
1123 => 0.022214634063676
1124 => 0.02266299646591
1125 => 0.022500414026157
1126 => 0.021694575155307
1127 => 0.021663798037791
1128 => 0.021259456419004
1129 => 0.02062674008157
1130 => 0.020337571737316
1201 => 0.020186970352954
1202 => 0.020249111419304
1203 => 0.02021769099461
1204 => 0.020012651469883
1205 => 0.020229443620156
1206 => 0.019675629260908
1207 => 0.01945509592067
1208 => 0.01935548612722
1209 => 0.018863944007022
1210 => 0.019646206110029
1211 => 0.019800321599
1212 => 0.019954740743093
1213 => 0.021298853965993
1214 => 0.021231705867801
1215 => 0.021838691973003
1216 => 0.02181510560913
1217 => 0.021641983339404
1218 => 0.020911608960659
1219 => 0.021202723170355
1220 => 0.020306718882104
1221 => 0.020978066217231
1222 => 0.020671691329614
1223 => 0.020874480559542
1224 => 0.020509847239363
1225 => 0.020711650374091
1226 => 0.019836868098743
1227 => 0.019020008718541
1228 => 0.019348736778746
1229 => 0.019706101774803
1230 => 0.02048096014116
1231 => 0.0200194608906
]
'min_raw' => 0.018863944007022
'max_raw' => 0.056309332274439
'avg_raw' => 0.03758663814073
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.018863'
'max' => '$0.0563093'
'avg' => '$0.037586'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.035735055992978
'max_diff' => 0.0017103322744385
'year' => 2026
]
1 => [
'items' => [
101 => 0.020185433472321
102 => 0.019629453107033
103 => 0.018482306805504
104 => 0.018488799528991
105 => 0.018312336062442
106 => 0.018159845863255
107 => 0.020072469631089
108 => 0.019834604631451
109 => 0.01945559788553
110 => 0.019962913476075
111 => 0.020097055770396
112 => 0.020100874612933
113 => 0.020470998972084
114 => 0.020668534408911
115 => 0.020703350885819
116 => 0.021285749562009
117 => 0.021480961916243
118 => 0.022285013975848
119 => 0.0206517749072
120 => 0.020618139423363
121 => 0.019970052446808
122 => 0.019559025440427
123 => 0.019998195817584
124 => 0.02038724081901
125 => 0.019982141159461
126 => 0.020035038622878
127 => 0.019491225427791
128 => 0.019685613056246
129 => 0.019853045868712
130 => 0.019760599310914
131 => 0.019622202339426
201 => 0.020355343565504
202 => 0.020313976864325
203 => 0.020996694828893
204 => 0.021528922303903
205 => 0.022482769086163
206 => 0.021487380243718
207 => 0.021451104317987
208 => 0.021805707310849
209 => 0.021480907628373
210 => 0.021686169815994
211 => 0.022449698174396
212 => 0.022465830325457
213 => 0.022195596010086
214 => 0.022179152227437
215 => 0.022231053683743
216 => 0.022535042134443
217 => 0.022428819229147
218 => 0.022551743064391
219 => 0.022705461202639
220 => 0.023341304597576
221 => 0.023494604287458
222 => 0.023122165517822
223 => 0.0231557925687
224 => 0.023016490245183
225 => 0.022881925946119
226 => 0.023184406838877
227 => 0.02373719661567
228 => 0.023733757739159
301 => 0.023861994222677
302 => 0.02394188448954
303 => 0.023598936980913
304 => 0.023375690763326
305 => 0.023461297568675
306 => 0.023598184714701
307 => 0.023416906912137
308 => 0.022297976338666
309 => 0.022637388397095
310 => 0.022580893634171
311 => 0.022500438221769
312 => 0.022841719671115
313 => 0.022808802242764
314 => 0.021822797465109
315 => 0.021885918291889
316 => 0.021826636051648
317 => 0.022018189097874
318 => 0.021470563135253
319 => 0.021639009193038
320 => 0.021744656981397
321 => 0.021806884340365
322 => 0.022031692230657
323 => 0.022005313619454
324 => 0.022030052499147
325 => 0.022363383253368
326 => 0.024049255822913
327 => 0.024141014147205
328 => 0.02368916259936
329 => 0.023869668380346
330 => 0.023523136753127
331 => 0.023755765756039
401 => 0.023914924611696
402 => 0.023195716347472
403 => 0.023153129501688
404 => 0.022805167615175
405 => 0.022992142623418
406 => 0.022694651941324
407 => 0.022767645748928
408 => 0.022563548699382
409 => 0.022930882753247
410 => 0.023341619303408
411 => 0.023445387576457
412 => 0.023172417925116
413 => 0.022974769907969
414 => 0.022627765099163
415 => 0.023204841829714
416 => 0.023373596651822
417 => 0.023203955432475
418 => 0.023164645855218
419 => 0.023090154277348
420 => 0.023180449595608
421 => 0.023372677576819
422 => 0.023282026410773
423 => 0.023341903103014
424 => 0.023113714896768
425 => 0.023599050510808
426 => 0.024369880268281
427 => 0.024372358611994
428 => 0.024281706957305
429 => 0.024244614253323
430 => 0.024337628352237
501 => 0.024388084685259
502 => 0.024688875225277
503 => 0.02501163545874
504 => 0.02651781663699
505 => 0.026094886989219
506 => 0.027431260533681
507 => 0.028488158500964
508 => 0.028805075988806
509 => 0.028513526812112
510 => 0.027516152827819
511 => 0.027467216901926
512 => 0.028957714714894
513 => 0.028536580813606
514 => 0.028486488276084
515 => 0.027953588309536
516 => 0.028268598190711
517 => 0.028199700908782
518 => 0.028090943178686
519 => 0.02869196008819
520 => 0.02981701008963
521 => 0.029641660496254
522 => 0.029510770159032
523 => 0.028937246802929
524 => 0.029282635964382
525 => 0.029159649499482
526 => 0.029688077401831
527 => 0.029375048418591
528 => 0.028533390310107
529 => 0.028667427138024
530 => 0.028647167741129
531 => 0.029064104693633
601 => 0.028938950569503
602 => 0.028622729389741
603 => 0.029813164791034
604 => 0.029735864537624
605 => 0.029845458623662
606 => 0.029893705329645
607 => 0.030618302380588
608 => 0.030915146607839
609 => 0.030982535444415
610 => 0.031264514501548
611 => 0.030975519548597
612 => 0.03213170541031
613 => 0.032900501543035
614 => 0.033793497813081
615 => 0.035098405378389
616 => 0.035589062694014
617 => 0.03550042984165
618 => 0.036489795864962
619 => 0.038267664616482
620 => 0.035859787947545
621 => 0.038395287926717
622 => 0.037592577907066
623 => 0.03568936689061
624 => 0.035566822538535
625 => 0.036855699135613
626 => 0.039714303378157
627 => 0.03899825543742
628 => 0.039715474576071
629 => 0.038878800353498
630 => 0.038837252426303
701 => 0.039674839176572
702 => 0.041631906273053
703 => 0.040702177055078
704 => 0.039369182242154
705 => 0.040353444868321
706 => 0.039500785492329
707 => 0.037579505273888
708 => 0.038997707889055
709 => 0.038049396188378
710 => 0.038326163957658
711 => 0.040319374101762
712 => 0.040079545783844
713 => 0.040389905834734
714 => 0.039842128468449
715 => 0.039330418031776
716 => 0.03837527250161
717 => 0.038092500998233
718 => 0.038170648868714
719 => 0.03809246227203
720 => 0.037558067126143
721 => 0.037442664545268
722 => 0.037250321854575
723 => 0.037309936897168
724 => 0.036948276366826
725 => 0.03763080451046
726 => 0.037757487748336
727 => 0.038254174813149
728 => 0.038305742511915
729 => 0.039689008917522
730 => 0.038927129026161
731 => 0.039438263834831
801 => 0.039392543126556
802 => 0.035730615244378
803 => 0.036235196597079
804 => 0.03702016683553
805 => 0.03666653880711
806 => 0.036166591511138
807 => 0.035762857264163
808 => 0.035151158596049
809 => 0.036012112724787
810 => 0.037144175851813
811 => 0.038334453501004
812 => 0.039764494106428
813 => 0.039445325690805
814 => 0.038307719886602
815 => 0.038358752051957
816 => 0.038674212817764
817 => 0.03826566246341
818 => 0.038145172988061
819 => 0.038657659414093
820 => 0.038661188626452
821 => 0.038191102068808
822 => 0.037668686884919
823 => 0.037666497946223
824 => 0.037573539210182
825 => 0.03889533750613
826 => 0.039622192920021
827 => 0.039705525721837
828 => 0.039616583958497
829 => 0.039650814113234
830 => 0.039227872963058
831 => 0.04019459101306
901 => 0.041081747094247
902 => 0.040843970313164
903 => 0.040487509116358
904 => 0.040203570603605
905 => 0.040777083423255
906 => 0.040751545800189
907 => 0.041073998559816
908 => 0.041059370240062
909 => 0.040950941505061
910 => 0.040843974185495
911 => 0.041268087516536
912 => 0.041145949688248
913 => 0.041023622146177
914 => 0.040778275533145
915 => 0.040811622212632
916 => 0.040455222563878
917 => 0.040290335778626
918 => 0.037810834147153
919 => 0.03714823029117
920 => 0.037356698952807
921 => 0.037425332249105
922 => 0.037136966201831
923 => 0.037550409038462
924 => 0.037485974410317
925 => 0.037736651855431
926 => 0.037580039470873
927 => 0.037586466897764
928 => 0.038047030527467
929 => 0.038180734108548
930 => 0.03811273138809
1001 => 0.038160358162502
1002 => 0.039257897076817
1003 => 0.03910186214052
1004 => 0.039018971690504
1005 => 0.039041932911642
1006 => 0.039322377635749
1007 => 0.039400886846785
1008 => 0.039068237802882
1009 => 0.039225117015008
1010 => 0.039893088789303
1011 => 0.040126841106378
1012 => 0.040872866295004
1013 => 0.040555941535336
1014 => 0.04113767064789
1015 => 0.042925707613814
1016 => 0.044354115264941
1017 => 0.043040492557522
1018 => 0.045663581302199
1019 => 0.047706032149662
1020 => 0.047627639484257
1021 => 0.047271490936262
1022 => 0.04494621494779
1023 => 0.042806461315286
1024 => 0.044596456087614
1025 => 0.044601019152405
1026 => 0.044447257013994
1027 => 0.043492253578068
1028 => 0.044414024964514
1029 => 0.044487191829788
1030 => 0.044446237841874
1031 => 0.043714038946674
1101 => 0.042596106566678
1102 => 0.042814547877777
1103 => 0.04317235920144
1104 => 0.042494947718485
1105 => 0.042278473703872
1106 => 0.042680940082904
1107 => 0.043977770613346
1108 => 0.043732612313594
1109 => 0.043726210239625
1110 => 0.044775101409264
1111 => 0.044024321696684
1112 => 0.042817303122256
1113 => 0.042512515013594
1114 => 0.041430722557715
1115 => 0.042177920460203
1116 => 0.042204810782503
1117 => 0.041795578127488
1118 => 0.042850510096801
1119 => 0.042840788712987
1120 => 0.043842289611947
1121 => 0.045756783184199
1122 => 0.045190573228377
1123 => 0.044532132653224
1124 => 0.04460372340032
1125 => 0.045388897194942
1126 => 0.044914163194939
1127 => 0.045084880851303
1128 => 0.045388638793323
1129 => 0.045571903501629
1130 => 0.044577354429079
1201 => 0.044345477465486
1202 => 0.04387113857573
1203 => 0.043747392413348
1204 => 0.044133731541648
1205 => 0.044031944830904
1206 => 0.042202550755038
1207 => 0.042011368895458
1208 => 0.042017232170146
1209 => 0.041536496294029
1210 => 0.040803258693121
1211 => 0.042730163328967
1212 => 0.042575405919695
1213 => 0.042404565717131
1214 => 0.042425492667145
1215 => 0.043261896660708
1216 => 0.042776740105027
1217 => 0.044066608323901
1218 => 0.043801450195088
1219 => 0.043529491760805
1220 => 0.04349189882113
1221 => 0.043387218026334
1222 => 0.043028228630971
1223 => 0.042594727364152
1224 => 0.042308492278562
1225 => 0.039027347708533
1226 => 0.03963630905519
1227 => 0.040336863575946
1228 => 0.040578692189215
1229 => 0.040165027612188
1230 => 0.043044562629788
1231 => 0.043570681425393
]
'min_raw' => 0.018159845863255
'max_raw' => 0.047706032149662
'avg_raw' => 0.032932939006459
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.018159'
'max' => '$0.047706'
'avg' => '$0.032932'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00070409814376681
'max_diff' => -0.0086033001247764
'year' => 2027
]
2 => [
'items' => [
101 => 0.041977033275625
102 => 0.041678926775028
103 => 0.043064106442337
104 => 0.042228673771622
105 => 0.042604869052091
106 => 0.041791740623535
107 => 0.043443954814088
108 => 0.043431367710172
109 => 0.042788619073097
110 => 0.0433318658198
111 => 0.043237463328915
112 => 0.042511801700677
113 => 0.043466959582043
114 => 0.043467433328435
115 => 0.042848801739811
116 => 0.042126375480165
117 => 0.041997222727888
118 => 0.041899923478277
119 => 0.042580939401239
120 => 0.043191536148286
121 => 0.044327705314769
122 => 0.044613365237936
123 => 0.045728314935516
124 => 0.045064416676523
125 => 0.045358714175813
126 => 0.045678215742215
127 => 0.04583139654243
128 => 0.045581796648615
129 => 0.047313772460562
130 => 0.047460004285458
131 => 0.047509034551445
201 => 0.046925022052509
202 => 0.047443761841391
203 => 0.047201060673029
204 => 0.047832501688781
205 => 0.047931519702694
206 => 0.047847654967578
207 => 0.047879084848087
208 => 0.046401149034061
209 => 0.046324510265371
210 => 0.045279535216247
211 => 0.045705370272831
212 => 0.044909292045353
213 => 0.045161736651801
214 => 0.045273011828942
215 => 0.045214887991214
216 => 0.045729446348012
217 => 0.045291966627407
218 => 0.044137385716403
219 => 0.042982490240603
220 => 0.042967991468662
221 => 0.042663927875482
222 => 0.042444145589638
223 => 0.042486483455087
224 => 0.042635687615144
225 => 0.042435473572617
226 => 0.0424781993897
227 => 0.043187732633903
228 => 0.043330024465869
229 => 0.042846461223842
301 => 0.040904885029264
302 => 0.04042841736104
303 => 0.040770892872195
304 => 0.040607211636111
305 => 0.032773189053266
306 => 0.034613676455406
307 => 0.033520121338101
308 => 0.034024081848207
309 => 0.032907845248164
310 => 0.033440571860677
311 => 0.033342196707407
312 => 0.036301645986066
313 => 0.036255438256169
314 => 0.036277555451212
315 => 0.035221844105765
316 => 0.036903620944749
317 => 0.037732124690371
318 => 0.03757879069697
319 => 0.037617381559658
320 => 0.036954262681033
321 => 0.036283975891463
322 => 0.035540524685433
323 => 0.036921765132891
324 => 0.036768194773695
325 => 0.037120429924821
326 => 0.038016263088104
327 => 0.038148177924336
328 => 0.038325472801981
329 => 0.038261925209054
330 => 0.039775886686972
331 => 0.039592535962556
401 => 0.040034358454794
402 => 0.039125496067109
403 => 0.038097032005433
404 => 0.038292509400534
405 => 0.038273683355456
406 => 0.038034006194082
407 => 0.037817636369484
408 => 0.037457441573348
409 => 0.038597151207122
410 => 0.038550881077345
411 => 0.039299940695294
412 => 0.039167537131844
413 => 0.038283313730482
414 => 0.038314893942245
415 => 0.038527286043281
416 => 0.039262377530021
417 => 0.03948060273213
418 => 0.039379512123742
419 => 0.039618786095496
420 => 0.039807898486784
421 => 0.039642535700216
422 => 0.041983724038766
423 => 0.041011499413518
424 => 0.041485354931168
425 => 0.041598366680009
426 => 0.041308889461735
427 => 0.041371666704976
428 => 0.041466757122713
429 => 0.042044127518595
430 => 0.04355931450086
501 => 0.044230380501079
502 => 0.04624931567255
503 => 0.044174657811451
504 => 0.044051556199761
505 => 0.044415227390144
506 => 0.045600556061789
507 => 0.046561153617897
508 => 0.046879839245461
509 => 0.04692195881207
510 => 0.047519834235199
511 => 0.04786252527802
512 => 0.047447236433146
513 => 0.04709532261967
514 => 0.04583481102095
515 => 0.045980718670761
516 => 0.046985877688304
517 => 0.048405724004155
518 => 0.049624099852986
519 => 0.049197467095411
520 => 0.052452373879921
521 => 0.052775084592504
522 => 0.052730496406511
523 => 0.053465679435567
524 => 0.052006490840312
525 => 0.051382659445393
526 => 0.047171410380535
527 => 0.048354599593143
528 => 0.050074434599935
529 => 0.049846807987735
530 => 0.048597817834482
531 => 0.049623152381955
601 => 0.049284144715385
602 => 0.04901675530332
603 => 0.050241718035978
604 => 0.048894821192724
605 => 0.050060998273601
606 => 0.04856536410482
607 => 0.04919941591791
608 => 0.048839497443165
609 => 0.049072408806274
610 => 0.047710813736696
611 => 0.048445497385389
612 => 0.047680248481495
613 => 0.047679885653876
614 => 0.047662992741909
615 => 0.048563304683707
616 => 0.048592663823806
617 => 0.047927331938522
618 => 0.047831447219415
619 => 0.048185983281169
620 => 0.047770914405997
621 => 0.047965122520277
622 => 0.047776796771935
623 => 0.047734400679236
624 => 0.047396581399511
625 => 0.04725103956527
626 => 0.047308110268627
627 => 0.047113298536106
628 => 0.046995917420614
629 => 0.047639642683597
630 => 0.047295726243388
701 => 0.047586932556679
702 => 0.047255066209518
703 => 0.046104672862971
704 => 0.045443069484184
705 => 0.043270083094077
706 => 0.04388633933873
707 => 0.044294917866498
708 => 0.044159882665508
709 => 0.04444999052892
710 => 0.044467800795576
711 => 0.044373483771881
712 => 0.044264276741201
713 => 0.044211120798194
714 => 0.044607301647523
715 => 0.044837297965393
716 => 0.044335924187835
717 => 0.044218459326718
718 => 0.044725375897434
719 => 0.045034594712734
720 => 0.047317692709868
721 => 0.047148553435931
722 => 0.047573059821607
723 => 0.047525266917161
724 => 0.04797021723852
725 => 0.048697522963906
726 => 0.047218707066318
727 => 0.047475378372533
728 => 0.047412448495655
729 => 0.048099500390307
730 => 0.048101645291328
731 => 0.047689723359697
801 => 0.047913032921504
802 => 0.047788387650281
803 => 0.0480136385022
804 => 0.047146294477808
805 => 0.048202625875516
806 => 0.048801497709525
807 => 0.048809813045521
808 => 0.0490936735419
809 => 0.049382092246313
810 => 0.049935686833458
811 => 0.049366652793742
812 => 0.048343015950639
813 => 0.048416919224384
814 => 0.047816761317807
815 => 0.047826850080644
816 => 0.04777299547395
817 => 0.047934617202624
818 => 0.047181761358474
819 => 0.047358455120309
820 => 0.047111082819023
821 => 0.047474840633461
822 => 0.047083497356446
823 => 0.047412418148963
824 => 0.047554369459116
825 => 0.048078172849574
826 => 0.047006131169784
827 => 0.044820165613852
828 => 0.045279682075979
829 => 0.044600021134253
830 => 0.044662926342062
831 => 0.044790004873124
901 => 0.044378101776443
902 => 0.044456679906731
903 => 0.044453872542971
904 => 0.044429680198751
905 => 0.044322528294852
906 => 0.044167136834839
907 => 0.044786168584559
908 => 0.044891354141461
909 => 0.045125168604722
910 => 0.045820841849521
911 => 0.04575132768726
912 => 0.045864708170022
913 => 0.045617199212758
914 => 0.044674407572716
915 => 0.044725605694678
916 => 0.044087164293422
917 => 0.04510884222268
918 => 0.044866895403542
919 => 0.044710910715286
920 => 0.044668348847908
921 => 0.045365746532122
922 => 0.045574418849608
923 => 0.045444388264829
924 => 0.045177691741849
925 => 0.04568982790772
926 => 0.045826853940417
927 => 0.045857529015812
928 => 0.046764936109366
929 => 0.045908242992306
930 => 0.04611445754038
1001 => 0.04772328457791
1002 => 0.046264300457825
1003 => 0.047037156885463
1004 => 0.046999329585081
1005 => 0.047394696781424
1006 => 0.046966897935077
1007 => 0.046972201014489
1008 => 0.047323260300349
1009 => 0.046830260847235
1010 => 0.046708187249577
1011 => 0.046539543448721
1012 => 0.046907771018181
1013 => 0.047128506792572
1014 => 0.048907475021603
1015 => 0.050056769628364
1016 => 0.050006875718435
1017 => 0.050462812657695
1018 => 0.050257408890655
1019 => 0.049594105944106
1020 => 0.050726283192688
1021 => 0.050368014938928
1022 => 0.050397550138472
1023 => 0.05039645083687
1024 => 0.050634667905266
1025 => 0.050465869280034
1026 => 0.050133149862878
1027 => 0.050354024539351
1028 => 0.051009943364334
1029 => 0.053045935523129
1030 => 0.054185303708499
1031 => 0.052977344127737
1101 => 0.053810578471323
1102 => 0.053310934776925
1103 => 0.053220134654541
1104 => 0.053743467397847
1105 => 0.054267716165843
1106 => 0.054234323785711
1107 => 0.053853746100618
1108 => 0.053638767423111
1109 => 0.05526665799234
1110 => 0.056466060033355
1111 => 0.056384268855051
1112 => 0.056745268516169
1113 => 0.057805174686509
1114 => 0.057902079223549
1115 => 0.057889871479207
1116 => 0.057649683473212
1117 => 0.058693298744121
1118 => 0.059563900963776
1119 => 0.057594086889523
1120 => 0.058344166302239
1121 => 0.058680901116657
1122 => 0.059175327728939
1123 => 0.060009508299381
1124 => 0.06091564965435
1125 => 0.061043787977277
1126 => 0.060952867705177
1127 => 0.060355243123188
1128 => 0.06134675380631
1129 => 0.061927557510696
1130 => 0.062273412825201
1201 => 0.06315044435795
1202 => 0.058682980676232
1203 => 0.055520687834961
1204 => 0.055026850143734
1205 => 0.056031088508052
1206 => 0.056295898156071
1207 => 0.056189153718998
1208 => 0.05262970562306
1209 => 0.055008110386154
1210 => 0.05756707392929
1211 => 0.057665374140689
1212 => 0.058946444795787
1213 => 0.059363613913948
1214 => 0.060395043705071
1215 => 0.060330527490808
1216 => 0.060581664231314
1217 => 0.060523932243754
1218 => 0.062434438738644
1219 => 0.064542011115466
1220 => 0.064469032585727
1221 => 0.064166044120894
1222 => 0.064616033658381
1223 => 0.066791274212444
1224 => 0.066591012919746
1225 => 0.066785549707386
1226 => 0.069350280911812
1227 => 0.072684796306325
1228 => 0.071135579125701
1229 => 0.074496934632419
1230 => 0.076612729746099
1231 => 0.08027177861791
]
'min_raw' => 0.032773189053266
'max_raw' => 0.08027177861791
'avg_raw' => 0.056522483835588
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.032773'
'max' => '$0.080271'
'avg' => '$0.056522'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.014613343190011
'max_diff' => 0.032565746468247
'year' => 2028
]
3 => [
'items' => [
101 => 0.079813647677963
102 => 0.081238088552418
103 => 0.078993497680647
104 => 0.0738394633324
105 => 0.073023817667939
106 => 0.074656760943628
107 => 0.078671192646634
108 => 0.074530332203151
109 => 0.075368022877799
110 => 0.075126767907146
111 => 0.075113912455027
112 => 0.075604552775488
113 => 0.074892853400582
114 => 0.071993262114941
115 => 0.073322127713752
116 => 0.072808988888684
117 => 0.07337835467213
118 => 0.07645098698108
119 => 0.075092502994888
120 => 0.073661450469711
121 => 0.07545630791226
122 => 0.077741778216557
123 => 0.0775987575923
124 => 0.077321237803256
125 => 0.078885602323631
126 => 0.081469474195493
127 => 0.082167884379619
128 => 0.082683436499174
129 => 0.082754522426136
130 => 0.083486751653503
131 => 0.079549370552425
201 => 0.085798095478954
202 => 0.086877077656223
203 => 0.086674273726125
204 => 0.087873517005649
205 => 0.087520669210948
206 => 0.087009448116548
207 => 0.088910503800954
208 => 0.086731096866066
209 => 0.083637703101695
210 => 0.081940606102171
211 => 0.084175480332055
212 => 0.085540240037883
213 => 0.086442259388415
214 => 0.086715209898871
215 => 0.079855018239015
216 => 0.076157755418025
217 => 0.078527658497075
218 => 0.08141910381549
219 => 0.079533308427689
220 => 0.079607228036607
221 => 0.076918579391913
222 => 0.081656989561566
223 => 0.08096664305615
224 => 0.084548161947451
225 => 0.083693403720557
226 => 0.08661399334265
227 => 0.085844904215536
228 => 0.089037350182993
301 => 0.090310903311435
302 => 0.092449397226807
303 => 0.094022482056191
304 => 0.094946227556323
305 => 0.094890769341377
306 => 0.09855110922108
307 => 0.096392734676554
308 => 0.093681307558807
309 => 0.09363226639669
310 => 0.095036552922191
311 => 0.097979552232446
312 => 0.098742629134697
313 => 0.099169085022189
314 => 0.098515952985458
315 => 0.096173192109472
316 => 0.095161599841288
317 => 0.09602350576243
318 => 0.094969468885294
319 => 0.096789032245745
320 => 0.099287681377406
321 => 0.098771720212448
322 => 0.10049650102968
323 => 0.10228146772329
324 => 0.10483405026301
325 => 0.10550138986076
326 => 0.10660447683917
327 => 0.10773991568516
328 => 0.10810458804155
329 => 0.1088008607211
330 => 0.10879719102039
331 => 0.11089545560476
401 => 0.11320990641916
402 => 0.11408355802194
403 => 0.1160924717091
404 => 0.11265227742057
405 => 0.11526170430652
406 => 0.11761547267584
407 => 0.11480921299146
408 => 0.11867698819173
409 => 0.11882716513819
410 => 0.12109465873144
411 => 0.11879611957547
412 => 0.11743125436185
413 => 0.12137156909274
414 => 0.12327816327227
415 => 0.12270388158901
416 => 0.11833356962369
417 => 0.11578986060837
418 => 0.10913248347045
419 => 0.1170184342676
420 => 0.12085945086456
421 => 0.11832362231862
422 => 0.11960254673685
423 => 0.12657994367009
424 => 0.12923648466927
425 => 0.12868394271206
426 => 0.12877731320722
427 => 0.13021073451075
428 => 0.13656731397012
429 => 0.1327583042137
430 => 0.13567014945161
501 => 0.13721458166636
502 => 0.13864913637956
503 => 0.13512632339961
504 => 0.13054319547311
505 => 0.12909152647216
506 => 0.11807148414545
507 => 0.11749784308472
508 => 0.11717584097424
509 => 0.11514566321572
510 => 0.11355049961001
511 => 0.11228196628613
512 => 0.10895295602813
513 => 0.11007639926608
514 => 0.10477065173328
515 => 0.10816508098062
516 => 0.09969697980652
517 => 0.1067494660953
518 => 0.10291111844552
519 => 0.10548846566032
520 => 0.10547947353869
521 => 0.10073376016757
522 => 0.097996531735614
523 => 0.099740800226978
524 => 0.10161079450992
525 => 0.10191419479092
526 => 0.1043386911906
527 => 0.10501531602138
528 => 0.10296511119553
529 => 0.099521497231839
530 => 0.10032137021513
531 => 0.097980322335138
601 => 0.093877725972552
602 => 0.096824282304622
603 => 0.097830366187327
604 => 0.098274710145264
605 => 0.094240277809037
606 => 0.092972571577207
607 => 0.092297655416466
608 => 0.099000702679464
609 => 0.099367910739805
610 => 0.097489222385115
611 => 0.10598107189285
612 => 0.10405910481494
613 => 0.10620641293434
614 => 0.10024879012577
615 => 0.10047637934006
616 => 0.097655945227345
617 => 0.099235199868991
618 => 0.098119033590029
619 => 0.099107611700444
620 => 0.099700161343767
621 => 0.102520132651
622 => 0.10678166563784
623 => 0.10209892297545
624 => 0.10005858493934
625 => 0.10132439918165
626 => 0.10469542931597
627 => 0.10980271252931
628 => 0.10677909807336
629 => 0.10812092682461
630 => 0.10841405671295
701 => 0.10618455535342
702 => 0.10988491742457
703 => 0.11186797152018
704 => 0.11390217468706
705 => 0.11566841629978
706 => 0.11308966920912
707 => 0.115849298245
708 => 0.11362552438218
709 => 0.11163056933772
710 => 0.11163359486104
711 => 0.11038213042001
712 => 0.10795726037084
713 => 0.10751007712959
714 => 0.10983638082358
715 => 0.11170185608438
716 => 0.11185550556189
717 => 0.11288832851784
718 => 0.11349954250426
719 => 0.11949027047624
720 => 0.12189979082447
721 => 0.1248461066964
722 => 0.12599386277378
723 => 0.12944819707337
724 => 0.12665854157914
725 => 0.1260549820652
726 => 0.11767589695854
727 => 0.11904797167535
728 => 0.12124479568248
729 => 0.11771212177727
730 => 0.11995279026068
731 => 0.12039514568316
801 => 0.11759208286977
802 => 0.11908931983159
803 => 0.11511310236081
804 => 0.10686833631296
805 => 0.10989409620607
806 => 0.11212207394717
807 => 0.10894247500295
808 => 0.11464178304299
809 => 0.11131236494359
810 => 0.11025709924634
811 => 0.10614013153197
812 => 0.10808318181653
813 => 0.1107111851482
814 => 0.10908738462741
815 => 0.11245701452293
816 => 0.11722930910247
817 => 0.12063033041489
818 => 0.12089141860061
819 => 0.11870478974745
820 => 0.12220887643952
821 => 0.12223439988557
822 => 0.11828177578231
823 => 0.11586081552736
824 => 0.11531076826369
825 => 0.11668489417145
826 => 0.11835333670111
827 => 0.12098400554924
828 => 0.12257366363864
829 => 0.1267186488463
830 => 0.12784016299745
831 => 0.12907236702772
901 => 0.13071897160982
902 => 0.13269614259137
903 => 0.12837020504414
904 => 0.12854208260745
905 => 0.12451382946015
906 => 0.12020906326232
907 => 0.12347584420979
908 => 0.12774672573695
909 => 0.12676698079571
910 => 0.12665673947545
911 => 0.12684213479774
912 => 0.12610343910753
913 => 0.12276234587804
914 => 0.12108446977454
915 => 0.1232493580199
916 => 0.12439989977422
917 => 0.12618428969738
918 => 0.12596432597545
919 => 0.13056072278803
920 => 0.13234674360157
921 => 0.13188980304933
922 => 0.13197389110783
923 => 0.13520739647928
924 => 0.13880371947343
925 => 0.14217215053407
926 => 0.14559866328643
927 => 0.14146786842439
928 => 0.13937050554545
929 => 0.14153444866833
930 => 0.14038622998762
1001 => 0.14698423511073
1002 => 0.14744106666996
1003 => 0.1540385946822
1004 => 0.16030043438483
1005 => 0.15636748506012
1006 => 0.16007607912939
1007 => 0.16408722598143
1008 => 0.17182537904412
1009 => 0.16921944132411
1010 => 0.16722333387084
1011 => 0.16533702197261
1012 => 0.16926213758924
1013 => 0.17431173612477
1014 => 0.17539937128487
1015 => 0.17716175575285
1016 => 0.17530882397889
1017 => 0.17754047620688
1018 => 0.18541918920935
1019 => 0.18329029140876
1020 => 0.18026691429452
1021 => 0.18648640153033
1022 => 0.18873720978333
1023 => 0.20453456086028
1024 => 0.22447936915096
1025 => 0.21622208755395
1026 => 0.21109652640587
1027 => 0.2123011548556
1028 => 0.21958432366899
1029 => 0.22192344633563
1030 => 0.21556490458377
1031 => 0.21781084902571
1101 => 0.23018622371719
1102 => 0.23682521518961
1103 => 0.22780857303455
1104 => 0.20293201493395
1105 => 0.17999469226487
1106 => 0.18607870311781
1107 => 0.18538896509592
1108 => 0.19868476134248
1109 => 0.18323951790029
1110 => 0.18349957618832
1111 => 0.19707031542076
1112 => 0.19344987485492
1113 => 0.18758522480924
1114 => 0.18003751070041
1115 => 0.16608486309119
1116 => 0.15372661400534
1117 => 0.17796398639748
1118 => 0.17691882682713
1119 => 0.17540528088529
1120 => 0.17877351359608
1121 => 0.19512869555012
1122 => 0.19475165566952
1123 => 0.19235312031659
1124 => 0.19417238824207
1125 => 0.18726629834587
1126 => 0.18904615496087
1127 => 0.17999105887577
1128 => 0.18408434048045
1129 => 0.18757264190419
1130 => 0.18827297006019
1201 => 0.1898508451553
1202 => 0.17636807522597
1203 => 0.18242144309092
1204 => 0.1859772295877
1205 => 0.1699120568346
1206 => 0.18565967277584
1207 => 0.17613337019796
1208 => 0.17290000002276
1209 => 0.17725330699954
1210 => 0.17555681903696
1211 => 0.17409827830785
1212 => 0.1732843875201
1213 => 0.17648097570688
1214 => 0.17633185104722
1215 => 0.17110161234261
1216 => 0.16427897916425
1217 => 0.16656887880421
1218 => 0.16573693679709
1219 => 0.16272187164063
1220 => 0.16475366151572
1221 => 0.15580668717112
1222 => 0.14041388283448
1223 => 0.15058284087361
1224 => 0.1501913470508
1225 => 0.14999393811251
1226 => 0.15763562902956
1227 => 0.15690105677169
1228 => 0.15556780093071
1229 => 0.16269738535156
1230 => 0.1600949911315
1231 => 0.16811495691651
]
'min_raw' => 0.071993262114941
'max_raw' => 0.23682521518961
'avg_raw' => 0.15440923865227
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.071993'
'max' => '$0.236825'
'avg' => '$0.1544092'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.039220073061675
'max_diff' => 0.1565534365717
'year' => 2029
]
4 => [
'items' => [
101 => 0.17339742508138
102 => 0.17205762028483
103 => 0.17702580712627
104 => 0.16662163346696
105 => 0.17007748261359
106 => 0.17078972833311
107 => 0.1626094073865
108 => 0.15702124187769
109 => 0.156648574948
110 => 0.14695946605237
111 => 0.15213530981666
112 => 0.15668983813827
113 => 0.15450857251789
114 => 0.15381804898594
115 => 0.15734578395441
116 => 0.15761991917447
117 => 0.15136960710562
118 => 0.15266924490638
119 => 0.15808895058233
120 => 0.15253268222887
121 => 0.14173776042939
122 => 0.13906047057165
123 => 0.13870327075238
124 => 0.13144224831964
125 => 0.1392393798819
126 => 0.13583572300484
127 => 0.1465878342974
128 => 0.14044628599182
129 => 0.14018153611932
130 => 0.13978132785668
131 => 0.13353146589977
201 => 0.13489978846888
202 => 0.13944830109004
203 => 0.14107126163593
204 => 0.14090197355447
205 => 0.13942601089676
206 => 0.14010169904331
207 => 0.13792507209793
208 => 0.13715645982094
209 => 0.13473050805131
210 => 0.13116502913623
211 => 0.13166083084773
212 => 0.12459668415865
213 => 0.1207477621198
214 => 0.11968243122743
215 => 0.1182578262349
216 => 0.11984334415206
217 => 0.12457667231865
218 => 0.11886727431816
219 => 0.10907891191403
220 => 0.10966720917307
221 => 0.11098893844713
222 => 0.10852590468904
223 => 0.10619484994377
224 => 0.10822151292033
225 => 0.104074054732
226 => 0.11149013895447
227 => 0.11128955465959
228 => 0.11405381225015
301 => 0.11578235924981
302 => 0.11179861803934
303 => 0.11079671789809
304 => 0.11136744575237
305 => 0.10193458563313
306 => 0.1132829463344
307 => 0.11338108742899
308 => 0.11254074379388
309 => 0.11858339552597
310 => 0.13133527543103
311 => 0.12653750526757
312 => 0.12467966364691
313 => 0.12114790536795
314 => 0.1258537635796
315 => 0.12549242709177
316 => 0.123858326461
317 => 0.12287001730081
318 => 0.12469100723168
319 => 0.12264437649638
320 => 0.12227674537866
321 => 0.12004930079193
322 => 0.11925420441674
323 => 0.11866554671424
324 => 0.11801749242411
325 => 0.11944693870308
326 => 0.11620762537561
327 => 0.11230133105649
328 => 0.11197656495055
329 => 0.11287327272279
330 => 0.11247654628562
331 => 0.111974665577
401 => 0.11101643862517
402 => 0.11073215315785
403 => 0.11165594301096
404 => 0.11061303812709
405 => 0.11215190109321
406 => 0.1117334155156
407 => 0.10939578909758
408 => 0.10648224108059
409 => 0.10645630439186
410 => 0.10582858525078
411 => 0.1050290905464
412 => 0.10480668940961
413 => 0.10805083301727
414 => 0.11476611319608
415 => 0.11344774301395
416 => 0.11440040058255
417 => 0.11908653294024
418 => 0.12057611349983
419 => 0.11951884450128
420 => 0.11807158948655
421 => 0.11813526136226
422 => 0.12308096986146
423 => 0.12338942763403
424 => 0.12416880091305
425 => 0.12517051582746
426 => 0.11968944088274
427 => 0.11787710322527
428 => 0.11701831709849
429 => 0.11437358822008
430 => 0.11722570157353
501 => 0.11556389726214
502 => 0.11578813143907
503 => 0.11564209863718
504 => 0.11572184242171
505 => 0.11148806600779
506 => 0.11303063161228
507 => 0.11046581710929
508 => 0.10703181840373
509 => 0.10702030643595
510 => 0.1078607727542
511 => 0.10736083050065
512 => 0.10601549875106
513 => 0.10620659677631
514 => 0.10453237699239
515 => 0.1064098773708
516 => 0.10646371736364
517 => 0.10574077744981
518 => 0.10863332582788
519 => 0.10981840525847
520 => 0.10934255072031
521 => 0.10978501803554
522 => 0.1135025272471
523 => 0.11410864345488
524 => 0.11437784023659
525 => 0.11401715221084
526 => 0.1098529672796
527 => 0.11003766658878
528 => 0.10868246560792
529 => 0.10753746358665
530 => 0.10758325766276
531 => 0.10817193754153
601 => 0.11074273709776
602 => 0.11615283320694
603 => 0.11635814239955
604 => 0.11660698313029
605 => 0.11559482282104
606 => 0.1152895455867
607 => 0.11569228505753
608 => 0.1177240327068
609 => 0.12295023927481
610 => 0.12110294882708
611 => 0.11960107293828
612 => 0.12091862299559
613 => 0.12071579649156
614 => 0.11900373668022
615 => 0.11895568486351
616 => 0.11566969470691
617 => 0.11445493896439
618 => 0.11343979814305
619 => 0.11233129086707
620 => 0.11167413059637
621 => 0.11268382744617
622 => 0.1129147570621
623 => 0.11070703725353
624 => 0.11040613320143
625 => 0.11220900485405
626 => 0.11141562825756
627 => 0.11223163576184
628 => 0.11242095650242
629 => 0.11239047150276
630 => 0.1115620952173
701 => 0.11209007755912
702 => 0.11084124192162
703 => 0.10948332073489
704 => 0.10861705161923
705 => 0.1078611169219
706 => 0.10828055342716
707 => 0.10678533887198
708 => 0.10630698964305
709 => 0.11191120902169
710 => 0.1160511061322
711 => 0.11599091038863
712 => 0.11562448428076
713 => 0.11508004941129
714 => 0.11768420390502
715 => 0.11677696855112
716 => 0.11743705807313
717 => 0.11760507856036
718 => 0.11811362597065
719 => 0.1182953879587
720 => 0.11774597698899
721 => 0.11590208666974
722 => 0.11130728730601
723 => 0.10916839579877
724 => 0.10846252597532
725 => 0.10848818300277
726 => 0.10778044764783
727 => 0.10798890742833
728 => 0.10770795384336
729 => 0.10717589572339
730 => 0.10824770033755
731 => 0.10837121583478
801 => 0.10812104383073
802 => 0.10817996839404
803 => 0.10610865105031
804 => 0.10626612880928
805 => 0.10538927263598
806 => 0.10522487267415
807 => 0.10300825662464
808 => 0.099081199989294
809 => 0.10125717057388
810 => 0.098628904095464
811 => 0.097633539755351
812 => 0.10234543973053
813 => 0.10187249566079
814 => 0.10106302099723
815 => 0.099865639260517
816 => 0.099421518726991
817 => 0.096723182956763
818 => 0.096563750884396
819 => 0.097901118953316
820 => 0.097283969605535
821 => 0.096417258188515
822 => 0.093278117293197
823 => 0.089748683593026
824 => 0.089855215011205
825 => 0.090977862203781
826 => 0.094242110325795
827 => 0.092966712112458
828 => 0.092041396075174
829 => 0.091868112196289
830 => 0.094037122734912
831 => 0.097106727068822
901 => 0.098546916743766
902 => 0.097119732515107
903 => 0.095480260118279
904 => 0.095580047206491
905 => 0.096243885998957
906 => 0.09631364606987
907 => 0.095246518080021
908 => 0.095546908358426
909 => 0.095090588057266
910 => 0.092290151211353
911 => 0.092239500189092
912 => 0.09155222782396
913 => 0.091531417489884
914 => 0.090362195748669
915 => 0.090198613544625
916 => 0.087877052810756
917 => 0.089405111116122
918 => 0.088380169831544
919 => 0.086835341556479
920 => 0.086569012579576
921 => 0.086561006408929
922 => 0.08814719963014
923 => 0.089386575524805
924 => 0.088397999124005
925 => 0.088172919440291
926 => 0.090576181605883
927 => 0.090270344589091
928 => 0.090005491704986
929 => 0.096831877668435
930 => 0.091428260508825
1001 => 0.089071974999551
1002 => 0.086155624235342
1003 => 0.087105202749685
1004 => 0.087305292894868
1005 => 0.080291995018682
1006 => 0.077446700943764
1007 => 0.076470303239897
1008 => 0.075908372557085
1009 => 0.076164451425524
1010 => 0.073603353038389
1011 => 0.075324453511201
1012 => 0.0731067587922
1013 => 0.072734955055556
1014 => 0.076700467932788
1015 => 0.077252245883465
1016 => 0.074898189721906
1017 => 0.076409874864701
1018 => 0.075861716817929
1019 => 0.073144774802987
1020 => 0.073041007602489
1021 => 0.071677741604521
1022 => 0.069544494298016
1023 => 0.068569543036276
1024 => 0.068061779954246
1025 => 0.068271292897997
1026 => 0.068165356742435
1027 => 0.067474051669416
1028 => 0.068204981540008
1029 => 0.06633775776172
1030 => 0.065594214207961
1031 => 0.065258372834808
1101 => 0.063601104258187
1102 => 0.066238555554272
1103 => 0.066758166685337
1104 => 0.067278801610846
1105 => 0.071810573184841
1106 => 0.071584178683658
1107 => 0.073630674715761
1108 => 0.073551151643218
1109 => 0.072967457823825
1110 => 0.070504949612777
1111 => 0.071486461495712
1112 => 0.068465520480849
1113 => 0.070729014893206
1114 => 0.069696050569193
1115 => 0.070379768616189
1116 => 0.06915038191932
1117 => 0.0698307752775
1118 => 0.066881385760815
1119 => 0.064127287329164
1120 => 0.065235616935206
1121 => 0.066440497969837
1122 => 0.069052987050896
1123 => 0.067497010106784
1124 => 0.068056598253889
1125 => 0.066182071635012
1126 => 0.062314387788212
1127 => 0.062336278458756
1128 => 0.061741319560998
1129 => 0.061227188207915
1130 => 0.067675732776293
1201 => 0.066873754322811
1202 => 0.065595906617533
1203 => 0.067306356550697
1204 => 0.067758626661516
1205 => 0.067771502155754
1206 => 0.069019402273888
1207 => 0.069685406790634
1208 => 0.06980279297334
1209 => 0.071766390771889
1210 => 0.072424562853482
1211 => 0.075135480509563
1212 => 0.069628900960503
1213 => 0.069515496578395
1214 => 0.067330426088951
1215 => 0.065944619839948
1216 => 0.06742531342843
1217 => 0.068737005812993
1218 => 0.067371184027668
1219 => 0.06754953151876
1220 => 0.065716027363701
1221 => 0.066371418824746
1222 => 0.066935930241761
1223 => 0.066624240217733
1224 => 0.066157625165794
1225 => 0.068629461995801
1226 => 0.068489991274646
1227 => 0.070791822558031
1228 => 0.072586264648965
1229 => 0.07580222567081
1230 => 0.072446202692675
1231 => 0.072323895876369
]
'min_raw' => 0.061227188207915
'max_raw' => 0.17702580712627
'avg_raw' => 0.11912649766709
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.061227'
'max' => '$0.177025'
'avg' => '$0.119126'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.010766073907027
'max_diff' => -0.059799408063337
'year' => 2030
]
5 => [
'items' => [
101 => 0.073519464624394
102 => 0.072424379818136
103 => 0.073116435614649
104 => 0.075690724782851
105 => 0.075745115456463
106 => 0.074834001595031
107 => 0.074778560233761
108 => 0.074953549617343
109 => 0.075978467902674
110 => 0.075620329961221
111 => 0.076034776254013
112 => 0.076553047689376
113 => 0.078696838088574
114 => 0.079213698696052
115 => 0.07795799538138
116 => 0.078071371331181
117 => 0.077601703821667
118 => 0.077148010892393
119 => 0.07816784634087
120 => 0.080031615667877
121 => 0.080020021255623
122 => 0.08045237951299
123 => 0.08072173512548
124 => 0.079565463656312
125 => 0.078812773447164
126 => 0.079101402768274
127 => 0.079562927338258
128 => 0.078951736570501
129 => 0.075179184020805
130 => 0.076323535472793
131 => 0.076133059435255
201 => 0.075861798395124
202 => 0.077012452629105
203 => 0.076901469221198
204 => 0.073577085272678
205 => 0.073789901547125
206 => 0.073590027335196
207 => 0.074235861804353
208 => 0.072389502637354
209 => 0.072957430281704
210 => 0.073313629176249
211 => 0.073523433061585
212 => 0.074281388559291
213 => 0.074192451229924
214 => 0.074275860090024
215 => 0.075399708000288
216 => 0.081083745072373
217 => 0.081393114669085
218 => 0.079869665628258
219 => 0.080478253471365
220 => 0.07930989789613
221 => 0.080094222821087
222 => 0.08063083801505
223 => 0.078205977138701
224 => 0.07806239261482
225 => 0.07688921482052
226 => 0.07751961411499
227 => 0.076516603510174
228 => 0.076762707228775
301 => 0.076074579776632
302 => 0.07731307218568
303 => 0.078697899141259
304 => 0.079047761118712
305 => 0.078127424881085
306 => 0.077461040791929
307 => 0.076291089851937
308 => 0.078236744339201
309 => 0.078805713004023
310 => 0.078233755789022
311 => 0.078101220804795
312 => 0.077850067249168
313 => 0.0781545042189
314 => 0.078802614278483
315 => 0.078496977543097
316 => 0.078698855991445
317 => 0.077929503522493
318 => 0.079565846430281
319 => 0.082164752775215
320 => 0.082173108684078
321 => 0.081867470301196
322 => 0.081742409659992
323 => 0.082056013188516
324 => 0.08222613023805
325 => 0.083240266544246
326 => 0.084328475205767
327 => 0.089406670206447
328 => 0.087980733370982
329 => 0.092486410078758
330 => 0.096049815365712
331 => 0.097118324802442
401 => 0.096135346397905
402 => 0.092772630375433
403 => 0.092607639484687
404 => 0.097632956924344
405 => 0.09621307457352
406 => 0.096044184085918
407 => 0.094247474642812
408 => 0.095309552450482
409 => 0.095077260454203
410 => 0.094710576173964
411 => 0.096736946646015
412 => 0.10053013127436
413 => 0.099938927877768
414 => 0.099497621967352
415 => 0.097563947930129
416 => 0.09872845160227
417 => 0.098313794149219
418 => 0.10009542571565
419 => 0.099040026643666
420 => 0.09620231756822
421 => 0.096654232091696
422 => 0.096585926120599
423 => 0.097991658165574
424 => 0.097569692298087
425 => 0.096503530512662
426 => 0.10051716658167
427 => 0.10025654338036
428 => 0.10062604749305
429 => 0.10078871463076
430 => 0.10323174417776
501 => 0.10423257521494
502 => 0.10445978138239
503 => 0.10541049346066
504 => 0.10443612679981
505 => 0.10833428815489
506 => 0.11092633799201
507 => 0.11393713726348
508 => 0.11833672422565
509 => 0.11999100962188
510 => 0.11969217777198
511 => 0.12302789439491
512 => 0.12902210301749
513 => 0.12090377871559
514 => 0.12945239391833
515 => 0.12674600104365
516 => 0.12032919222372
517 => 0.11991602538492
518 => 0.12426156281846
519 => 0.13389954660357
520 => 0.13148534097851
521 => 0.13390349537911
522 => 0.13108258982298
523 => 0.13094250808565
524 => 0.13376649029263
525 => 0.14036487864647
526 => 0.13723023167645
527 => 0.13273594659795
528 => 0.13605445676109
529 => 0.13317965614416
530 => 0.12670192574818
531 => 0.13148349488097
601 => 0.12828619577312
602 => 0.12921933763056
603 => 0.1359395847929
604 => 0.13513098687476
605 => 0.13617738745498
606 => 0.13433051781995
607 => 0.13260525035623
608 => 0.12938491051514
609 => 0.12843152664903
610 => 0.12869500765047
611 => 0.12843139608094
612 => 0.1266296455363
613 => 0.12624055767773
614 => 0.12559206086712
615 => 0.12579305714541
616 => 0.12457369341703
617 => 0.12687488470589
618 => 0.12730200608713
619 => 0.12897662120373
620 => 0.12915048530046
621 => 0.13381426456354
622 => 0.13124553331706
623 => 0.13296886001078
624 => 0.13281470945072
625 => 0.12046826392831
626 => 0.12216949518769
627 => 0.1248160771515
628 => 0.12362379556416
629 => 0.12193818835059
630 => 0.12057697014908
701 => 0.1185145853821
702 => 0.12141735233704
703 => 0.12523418220793
704 => 0.12924728640471
705 => 0.13406876814814
706 => 0.13299266955124
707 => 0.12915715215727
708 => 0.12932921066572
709 => 0.13039280866241
710 => 0.12901535261863
711 => 0.12860911394018
712 => 0.13033699770621
713 => 0.13034889669207
714 => 0.12876396704258
715 => 0.12700260777624
716 => 0.1269952276166
717 => 0.12668181074786
718 => 0.13113834598766
719 => 0.13358898976302
720 => 0.13386995212245
721 => 0.13357007875764
722 => 0.13368548811421
723 => 0.13225951249758
724 => 0.13551886989726
725 => 0.13850997856424
726 => 0.13770829754578
727 => 0.13650646373342
728 => 0.13554914521372
729 => 0.13748278372655
730 => 0.13739668184741
731 => 0.13848385383942
801 => 0.13843453343806
802 => 0.13806895838775
803 => 0.13770831060161
804 => 0.13913823830786
805 => 0.1387264420924
806 => 0.13831400624367
807 => 0.13748680300828
808 => 0.13759923366636
809 => 0.13639760736756
810 => 0.13584168005905
811 => 0.12748186719526
812 => 0.12524785203329
813 => 0.12595071868082
814 => 0.12618212063111
815 => 0.12520987436966
816 => 0.12660382575901
817 => 0.12638657991154
818 => 0.12723175641948
819 => 0.12670372683062
820 => 0.12672539734913
821 => 0.1282782197822
822 => 0.1287290107407
823 => 0.12849973482088
824 => 0.128660311816
825 => 0.13236074089333
826 => 0.1318346582116
827 => 0.13155518727214
828 => 0.13163260263231
829 => 0.13257814159966
830 => 0.13284284088601
831 => 0.13172129140968
901 => 0.13225022062631
902 => 0.13450233409965
903 => 0.13529044635673
904 => 0.137805722366
905 => 0.1367371884118
906 => 0.13869852872981
907 => 0.14472702019717
908 => 0.14954299632119
909 => 0.14511402564891
910 => 0.1539579524898
911 => 0.16084421812139
912 => 0.16057991177677
913 => 0.15937913208171
914 => 0.15153930174099
915 => 0.14432497297618
916 => 0.15036006532453
917 => 0.15037545001605
918 => 0.14985703023107
919 => 0.14663716947063
920 => 0.14974498605606
921 => 0.14999167325068
922 => 0.14985359402111
923 => 0.14738493432545
924 => 0.14361574725475
925 => 0.1443522373862
926 => 0.14555862324552
927 => 0.14327468313538
928 => 0.14254482588138
929 => 0.14390176937759
930 => 0.14827412405279
1001 => 0.14744755572877
1002 => 0.1474259706894
1003 => 0.15096238049909
1004 => 0.14843107428036
1005 => 0.14436152688533
1006 => 0.14333391249735
1007 => 0.13968657370401
1008 => 0.14220580359994
1009 => 0.142296466199
1010 => 0.14091670973091
1011 => 0.14447348651844
1012 => 0.14444071019419
1013 => 0.14781734039759
1014 => 0.15427218914211
1015 => 0.15236317274454
1016 => 0.15014319437456
1017 => 0.1503845675767
1018 => 0.15303183584435
1019 => 0.15143123701847
1020 => 0.15200682351603
1021 => 0.15303096462525
1022 => 0.15364885438444
1023 => 0.15029566274914
1024 => 0.14951387337725
1025 => 0.14791460669316
1026 => 0.147497387867
1027 => 0.1487999572114
1028 => 0.14845677620961
1029 => 0.14228884635861
1030 => 0.14164426337115
1031 => 0.14166403181112
1101 => 0.14004319724088
1102 => 0.13757103547641
1103 => 0.14406772898835
1104 => 0.14354595357817
1105 => 0.14296995390754
1106 => 0.14304051058059
1107 => 0.14586050504075
1108 => 0.14422476584072
1109 => 0.14857364659638
1110 => 0.14767964745233
1111 => 0.14676272060362
1112 => 0.14663597338285
1113 => 0.14628303477461
1114 => 0.14507267696431
1115 => 0.14361109717714
1116 => 0.14264603560177
1117 => 0.13158342760172
1118 => 0.1336365832983
1119 => 0.13599855177619
1120 => 0.13681389382976
1121 => 0.13541919482717
1122 => 0.14512774818172
1123 => 0.14690159443355
1124 => 0.14152849843164
1125 => 0.14052341155175
1126 => 0.14519364151024
1127 => 0.14237692193288
1128 => 0.14364529058609
1129 => 0.1409037713184
1130 => 0.14647432681576
1201 => 0.14643188851611
1202 => 0.14426481661093
1203 => 0.14609641094572
1204 => 0.14577812635673
1205 => 0.14333150751304
1206 => 0.14655188899706
1207 => 0.1465534862661
1208 => 0.14446772667358
1209 => 0.14203201610099
1210 => 0.14159656857953
1211 => 0.14126851736625
1212 => 0.14356461009753
1213 => 0.1456232796607
1214 => 0.1494539533303
1215 => 0.1504170757054
1216 => 0.15417620645409
1217 => 0.151937827122
1218 => 0.15293007168805
1219 => 0.15400729352606
1220 => 0.15452375328872
1221 => 0.15368220982022
1222 => 0.15952168719289
1223 => 0.16001471800011
1224 => 0.16018002696507
1225 => 0.15821098805045
1226 => 0.15995995546592
1227 => 0.15914167153194
1228 => 0.16127061900235
1229 => 0.16160446514947
1230 => 0.16132170933978
1231 => 0.16142767737628
]
'min_raw' => 0.072389502637354
'max_raw' => 0.16160446514947
'avg_raw' => 0.11699698389341
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.072389'
'max' => '$0.1616044'
'avg' => '$0.116996'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.011162314429439
'max_diff' => -0.015421341976797
'year' => 2031
]
6 => [
'items' => [
101 => 0.15644471359311
102 => 0.15618632063372
103 => 0.15266311429777
104 => 0.1540988469219
105 => 0.15141481359755
106 => 0.15226594821331
107 => 0.15264112024203
108 => 0.15244515166505
109 => 0.15418002109031
110 => 0.15270502766843
111 => 0.14881227751672
112 => 0.14491846678783
113 => 0.14486958316596
114 => 0.14384441153251
115 => 0.14310340021108
116 => 0.14324614528037
117 => 0.14374919752311
118 => 0.14307416190023
119 => 0.14321821497555
120 => 0.14561045584641
121 => 0.14609020269238
122 => 0.14445983546058
123 => 0.13791367576404
124 => 0.13630723175471
125 => 0.13746191185145
126 => 0.13691004913613
127 => 0.11049709504408
128 => 0.11670242681912
129 => 0.11301542939155
130 => 0.11471456743677
131 => 0.11095109780657
201 => 0.11274722277444
202 => 0.11241554407686
203 => 0.12239353394201
204 => 0.12223774135454
205 => 0.1223123110218
206 => 0.11875290651321
207 => 0.12442313454376
208 => 0.12721649276641
209 => 0.12669951650222
210 => 0.1268296282901
211 => 0.12459387669333
212 => 0.12233395798437
213 => 0.11982736033713
214 => 0.12448430894087
215 => 0.12396653575289
216 => 0.12515412115719
217 => 0.12817448521227
218 => 0.12861924529263
219 => 0.12921700735094
220 => 0.12900275220464
221 => 0.13410717902885
222 => 0.13348899926035
223 => 0.13497863463999
224 => 0.13191434164516
225 => 0.12844680325615
226 => 0.12910586894153
227 => 0.12904239561616
228 => 0.12823430733286
229 => 0.12750480136277
301 => 0.1262903794596
302 => 0.13013299006186
303 => 0.12997698708884
304 => 0.13250249388842
305 => 0.13205608603013
306 => 0.12907486509793
307 => 0.12918133998675
308 => 0.12989743478414
309 => 0.13237584705413
310 => 0.13311160855903
311 => 0.13277077451493
312 => 0.13357750341628
313 => 0.13421510904691
314 => 0.13365757686674
315 => 0.14155105680671
316 => 0.13827313360413
317 => 0.13987077056542
318 => 0.14025179756687
319 => 0.1392758049148
320 => 0.13948746277336
321 => 0.13980806675576
322 => 0.14175471135619
323 => 0.14686327005387
324 => 0.14912581592594
325 => 0.15593279681411
326 => 0.14893794298742
327 => 0.14852289730893
328 => 0.14974904011802
329 => 0.15374545849148
330 => 0.15698418021868
331 => 0.15805865106193
401 => 0.15820066012144
402 => 0.16021643885285
403 => 0.16137184562965
404 => 0.15997167029461
405 => 0.15878516830264
406 => 0.15453526544145
407 => 0.15502720326973
408 => 0.15841616707534
409 => 0.16320327805974
410 => 0.16731111729836
411 => 0.16587269516964
412 => 0.17684684064395
413 => 0.17793488234237
414 => 0.17778455016025
415 => 0.18026327107155
416 => 0.17534351484535
417 => 0.17324022374286
418 => 0.15904170350068
419 => 0.16303090853862
420 => 0.16882945233906
421 => 0.16806199332365
422 => 0.16385093582025
423 => 0.16730792283362
424 => 0.16616493481702
425 => 0.16526341274571
426 => 0.16939346012304
427 => 0.16485230337867
428 => 0.16878415082673
429 => 0.16374151580484
430 => 0.16587926576076
501 => 0.16466577549445
502 => 0.16545105241653
503 => 0.16086033957591
504 => 0.16333737679145
505 => 0.160757286684
506 => 0.16075606338535
507 => 0.16069910775323
508 => 0.16373457232278
509 => 0.16383355871341
510 => 0.16159034581019
511 => 0.16126706378526
512 => 0.16246240687038
513 => 0.16106297317855
514 => 0.16171775939503
515 => 0.16108280598601
516 => 0.16093986459947
517 => 0.15980088331209
518 => 0.15931017885654
519 => 0.15950259671746
520 => 0.15884577535994
521 => 0.15845001673378
522 => 0.16062038140139
523 => 0.15946084311174
524 => 0.16044266552838
525 => 0.15932375496875
526 => 0.15544512348297
527 => 0.15321448149972
528 => 0.14588810617241
529 => 0.14796585712689
530 => 0.14934340815931
531 => 0.14888812755131
601 => 0.14986624646749
602 => 0.14992629502499
603 => 0.1496082985946
604 => 0.14924009946607
605 => 0.14906088049299
606 => 0.15039663188697
607 => 0.1511720805305
608 => 0.14948166383466
609 => 0.14908562285427
610 => 0.15079472746423
611 => 0.15183728028898
612 => 0.15953490458713
613 => 0.15896463971612
614 => 0.16039589263352
615 => 0.16023475551939
616 => 0.16173493659329
617 => 0.16418709862529
618 => 0.15920116757894
619 => 0.16006655280806
620 => 0.15985438033455
621 => 0.1621708237658
622 => 0.16217805544934
623 => 0.16078923189738
624 => 0.16154213567599
625 => 0.1611218854416
626 => 0.16188133441536
627 => 0.1589570234811
628 => 0.16251851853917
629 => 0.16453765673943
630 => 0.1645656924753
701 => 0.16552274795735
702 => 0.16649517175603
703 => 0.16836165455733
704 => 0.16644311656373
705 => 0.16299185347917
706 => 0.16324102352636
707 => 0.16121754924265
708 => 0.16125156421093
709 => 0.16106998964445
710 => 0.16161490858675
711 => 0.15907660254548
712 => 0.15967233789987
713 => 0.1588383049151
714 => 0.16006473978324
715 => 0.15874529860207
716 => 0.15985427801856
717 => 0.16033287677146
718 => 0.16209891647317
719 => 0.1584844531022
720 => 0.15111431761114
721 => 0.15266360944561
722 => 0.15037208512817
723 => 0.1505841744282
724 => 0.15101262856802
725 => 0.1496238685194
726 => 0.14988880017182
727 => 0.1498793349489
728 => 0.1497977687713
729 => 0.1494364986462
730 => 0.14891258548968
731 => 0.15099969425328
801 => 0.1513543347022
802 => 0.15214265648948
803 => 0.15448816740468
804 => 0.15425379555329
805 => 0.1546360657669
806 => 0.15380157203696
807 => 0.15062288419895
808 => 0.15079550224168
809 => 0.14864295248279
810 => 0.15208761095256
811 => 0.15127187035965
812 => 0.15074595709269
813 => 0.15060245678525
814 => 0.15295378176833
815 => 0.15365733505577
816 => 0.15321892786074
817 => 0.15231974191336
818 => 0.15404644475279
819 => 0.15450843758888
820 => 0.15461186074724
821 => 0.1576712471163
822 => 0.15478284645973
823 => 0.155478113206
824 => 0.16090238588775
825 => 0.15598331906387
826 => 0.15858905846876
827 => 0.1584615210845
828 => 0.15979452919063
829 => 0.15835217551221
830 => 0.1583700552147
831 => 0.15955367610715
901 => 0.15789149403086
902 => 0.15747991437345
903 => 0.15691132002452
904 => 0.15815282498379
905 => 0.15889705105843
906 => 0.1648949666462
907 => 0.16876989365408
908 => 0.16860167285328
909 => 0.17013889607649
910 => 0.16944636293508
911 => 0.16720999074046
912 => 0.17102720538014
913 => 0.1698192789491
914 => 0.16991885893645
915 => 0.16991515256434
916 => 0.17071831804223
917 => 0.17014920169211
918 => 0.16902741494744
919 => 0.16977210934015
920 => 0.17198358545337
921 => 0.17884807516518
922 => 0.1826895345503
923 => 0.17861681448672
924 => 0.18142612225068
925 => 0.17974153865101
926 => 0.17943539969893
927 => 0.18119985258091
928 => 0.18296739390409
929 => 0.1828548091631
930 => 0.18157166492672
1001 => 0.18084684930617
1002 => 0.18633539601602
1003 => 0.19037926373688
1004 => 0.19010349906875
1005 => 0.1913206346304
1006 => 0.19489418228398
1007 => 0.19522090269627
1008 => 0.19517974343391
1009 => 0.1943699328023
1010 => 0.19788855455106
1011 => 0.20082385071814
1012 => 0.19418248503877
1013 => 0.19671143014761
1014 => 0.19784675508449
1015 => 0.19951374892757
1016 => 0.20232624696144
1017 => 0.20538136580449
1018 => 0.20581339310657
1019 => 0.20550684906133
1020 => 0.20349191605834
1021 => 0.20683486355155
1022 => 0.20879308379131
1023 => 0.20995915913101
1024 => 0.21291613217606
1025 => 0.19785376646479
1026 => 0.18719187536621
1027 => 0.18552686711159
1028 => 0.18891272687057
1029 => 0.18980555108729
1030 => 0.18944565476504
1031 => 0.17744472699685
1101 => 0.18546368471054
1102 => 0.19409140895736
1103 => 0.19442283498319
1104 => 0.19874205413835
1105 => 0.20014856894605
1106 => 0.20362610649895
1107 => 0.20340858557818
1108 => 0.2042553106326
1109 => 0.20406066320583
1110 => 0.21050206924065
1111 => 0.21760789665511
1112 => 0.2173618444469
1113 => 0.21634029768373
1114 => 0.21785746882664
1115 => 0.22519144422511
1116 => 0.22451624929498
1117 => 0.22517214365663
1118 => 0.23381931397617
1119 => 0.2450618654372
1120 => 0.23983857154984
1121 => 0.25117161632308
1122 => 0.25830516726895
1123 => 0.2706419060069
1124 => 0.26909728555719
1125 => 0.2738998874167
1126 => 0.26633209258019
1127 => 0.24895490593189
1128 => 0.2462048996276
1129 => 0.25171048189004
1130 => 0.2652454186554
1201 => 0.25128421856455
1202 => 0.25410855115982
1203 => 0.25329514318238
1204 => 0.25325180012802
1205 => 0.25490602822387
1206 => 0.25250648409211
1207 => 0.24273030962957
1208 => 0.2472106727744
1209 => 0.24548058939947
1210 => 0.24740024589021
1211 => 0.25775984024417
1212 => 0.2531796166384
1213 => 0.24835472313687
1214 => 0.25440621031737
1215 => 0.26211183301475
1216 => 0.26162962899468
1217 => 0.26069395165011
1218 => 0.265968315851
1219 => 0.27468002026715
1220 => 0.27703475896438
1221 => 0.27877297893015
1222 => 0.27901265009597
1223 => 0.28148141205865
1224 => 0.26820625677719
1225 => 0.28927426913903
1226 => 0.29291213288182
1227 => 0.29222836527218
1228 => 0.29627169771759
1229 => 0.2950820467427
1230 => 0.29335842913062
1231 => 0.29976797109806
]
'min_raw' => 0.11049709504408
'max_raw' => 0.29976797109806
'avg_raw' => 0.20513253307107
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.110497'
'max' => '$0.299767'
'avg' => '$0.205132'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.038107592406724
'max_diff' => 0.13816350594859
'year' => 2032
]
7 => [
'items' => [
101 => 0.29241994845575
102 => 0.28199035540532
103 => 0.2762684743839
104 => 0.28380350888389
105 => 0.28840489151657
106 => 0.29144611273387
107 => 0.29236638443667
108 => 0.26923676929217
109 => 0.25677118955656
110 => 0.26476148324893
111 => 0.27451019301423
112 => 0.26815210220222
113 => 0.2684013273246
114 => 0.25933636070355
115 => 0.27531224141577
116 => 0.27298468997431
117 => 0.28506003096999
118 => 0.28217815393071
119 => 0.29202512575065
120 => 0.2894320880625
121 => 0.30019564253124
122 => 0.30448951582042
123 => 0.31169959736097
124 => 0.31700336269252
125 => 0.32011783514006
126 => 0.31993085389641
127 => 0.3322719453576
128 => 0.32499483488783
129 => 0.31585306905455
130 => 0.31568772335252
131 => 0.3204223734174
201 => 0.33034490106558
202 => 0.33291766811785
203 => 0.33435549391673
204 => 0.33215341365466
205 => 0.32425463179494
206 => 0.32084397783564
207 => 0.32374995382512
208 => 0.32019619490335
209 => 0.32633097981097
210 => 0.33475534980847
211 => 0.33301575071756
212 => 0.33883096966322
213 => 0.3448491094931
214 => 0.35345531974141
215 => 0.35570530178736
216 => 0.35942443655016
217 => 0.36325264789321
218 => 0.36448216620341
219 => 0.36682969815471
220 => 0.36681732550255
221 => 0.3738917710449
222 => 0.38169510355546
223 => 0.38464068093063
224 => 0.39141387368476
225 => 0.3798150184543
226 => 0.38861288338465
227 => 0.39654877777667
228 => 0.38708727732398
301 => 0.40012775145114
302 => 0.40063408351114
303 => 0.40827909647215
304 => 0.40052941122891
305 => 0.39592767286934
306 => 0.40921271908852
307 => 0.41564093447895
308 => 0.4137047036888
309 => 0.39896989177226
310 => 0.39039359923102
311 => 0.36794778740732
312 => 0.39453582109941
313 => 0.40748607672725
314 => 0.39893635373874
315 => 0.40324833670646
316 => 0.42677311761316
317 => 0.43572983106567
318 => 0.4338668972797
319 => 0.43418170242303
320 => 0.43901458242615
321 => 0.46044623387564
322 => 0.44760389154531
323 => 0.45742138106346
324 => 0.46262854210429
325 => 0.46746524347725
326 => 0.45558783356043
327 => 0.44013549777244
328 => 0.43524109438345
329 => 0.39808625228415
330 => 0.39615218139758
331 => 0.39506652880061
401 => 0.38822164274528
402 => 0.38284343727787
403 => 0.37856648861022
404 => 0.36734249810133
405 => 0.37113026541438
406 => 0.35324156717208
407 => 0.36468612237097
408 => 0.33613532803853
409 => 0.35991327795002
410 => 0.34697202086392
411 => 0.35566172694324
412 => 0.35563140937735
413 => 0.33963090541149
414 => 0.33040214864598
415 => 0.33628307164555
416 => 0.34258788792934
417 => 0.34361082315943
418 => 0.3517851820439
419 => 0.3540664699013
420 => 0.34715406119024
421 => 0.3355436762862
422 => 0.33824050389472
423 => 0.33034749752057
424 => 0.31651530744998
425 => 0.32644982784555
426 => 0.32984190989862
427 => 0.33134004657591
428 => 0.31773767627925
429 => 0.31346351621022
430 => 0.31118798925314
501 => 0.33378778109215
502 => 0.33502584870524
503 => 0.32869171975156
504 => 0.35732258324891
505 => 0.35084253705826
506 => 0.35808233630308
507 => 0.33799579505606
508 => 0.33876312798181
509 => 0.32925383745436
510 => 0.33457840473871
511 => 0.33081517220095
512 => 0.33414823232053
513 => 0.33614605481349
514 => 0.34565378495993
515 => 0.36002184095581
516 => 0.34423364713091
517 => 0.3373545049903
518 => 0.34162228608457
519 => 0.35298794954023
520 => 0.37020751147316
521 => 0.36001318423288
522 => 0.36453725355122
523 => 0.36552556143544
524 => 0.35800864194297
525 => 0.37048467101687
526 => 0.37717067635265
527 => 0.3840291343533
528 => 0.38998414126564
529 => 0.38128971540712
530 => 0.39059399737273
531 => 0.38309638853531
601 => 0.37637025831959
602 => 0.37638045908271
603 => 0.3721610593453
604 => 0.36398544067551
605 => 0.3624777311563
606 => 0.37032102647793
607 => 0.37661060656304
608 => 0.37712864650391
609 => 0.38061088120932
610 => 0.38267163183811
611 => 0.40286978945491
612 => 0.41099365553631
613 => 0.42092736520373
614 => 0.42479710495239
615 => 0.43644363421738
616 => 0.42703811595104
617 => 0.42500317291064
618 => 0.39675250246447
619 => 0.4013785481674
620 => 0.4087852936848
621 => 0.39687463696998
622 => 0.40442920720027
623 => 0.40592063939141
624 => 0.39646991741248
625 => 0.40151795636301
626 => 0.38811186154963
627 => 0.36031405718812
628 => 0.37051561791955
629 => 0.37802740042609
630 => 0.36730716059315
701 => 0.38652277556313
702 => 0.37529740998847
703 => 0.37173950801388
704 => 0.35785886392736
705 => 0.36440999362121
706 => 0.37327049033528
707 => 0.36779573350929
708 => 0.3791566759621
709 => 0.39524680032796
710 => 0.40671358113454
711 => 0.40759385818128
712 => 0.4002214863373
713 => 0.41203575926713
714 => 0.41212181334749
715 => 0.39879526521992
716 => 0.39063282869431
717 => 0.38877830594178
718 => 0.3934112673782
719 => 0.39903653785389
720 => 0.40790602154279
721 => 0.41326566477759
722 => 0.42724077179883
723 => 0.43102203506106
724 => 0.43517649697886
725 => 0.44072813928965
726 => 0.44739430929562
727 => 0.43280910882782
728 => 0.43338860603262
729 => 0.41980706930285
730 => 0.40529324951771
731 => 0.41630742956146
801 => 0.43070700481369
802 => 0.42740372634071
803 => 0.42703204003264
804 => 0.42765711330563
805 => 0.42516654921199
806 => 0.41390182012108
807 => 0.40824474369257
808 => 0.41554381555947
809 => 0.41942294741242
810 => 0.42543914262049
811 => 0.42469751957462
812 => 0.44019459233841
813 => 0.44621628620727
814 => 0.44467567923281
815 => 0.44495918799289
816 => 0.45586117710886
817 => 0.46798643117089
818 => 0.47934333166817
819 => 0.49089605864424
820 => 0.47696879536398
821 => 0.46989738998445
822 => 0.47719327530491
823 => 0.47332197585686
824 => 0.49556761078741
825 => 0.49710785028433
826 => 0.51935187660228
827 => 0.54046410634739
828 => 0.52720389310937
829 => 0.5397076769397
830 => 0.55323153860066
831 => 0.57932126191213
901 => 0.57053516094836
902 => 0.56380514530587
903 => 0.55744531304291
904 => 0.57067911438718
905 => 0.58770418840145
906 => 0.59137122627999
907 => 0.59731322855952
908 => 0.59106593971607
909 => 0.59859011101171
910 => 0.62515374197371
911 => 0.61797601440412
912 => 0.60778248737802
913 => 0.62875192282429
914 => 0.63634067999567
915 => 0.68960255208746
916 => 0.75684786574153
917 => 0.72900786433221
918 => 0.71172667706621
919 => 0.71578816598896
920 => 0.74034387813791
921 => 0.74823039352081
922 => 0.72679212606522
923 => 0.73436448455805
924 => 0.77608892435143
925 => 0.79847274762028
926 => 0.76807250907264
927 => 0.68419945661066
928 => 0.60686467179911
929 => 0.62737733916188
930 => 0.62505183926512
1001 => 0.66987954459324
1002 => 0.61780482797542
1003 => 0.61868163265021
1004 => 0.66443632745115
1005 => 0.65222975931231
1006 => 0.63245668222652
1007 => 0.60700903714404
1008 => 0.5599667115868
1009 => 0.51830001196845
1010 => 0.60001800518787
1011 => 0.59649417672572
1012 => 0.59139115091041
1013 => 0.60274738265732
1014 => 0.6578900204977
1015 => 0.65661880421618
1016 => 0.64853197481338
1017 => 0.65466576364136
1018 => 0.63138139938854
1019 => 0.63738231023161
1020 => 0.60685242157408
1021 => 0.62065320628806
1022 => 0.63241425808363
1023 => 0.63477546335694
1024 => 0.64009537940384
1025 => 0.59463727925017
1026 => 0.61504663163946
1027 => 0.62703521407047
1028 => 0.57287036249883
1029 => 0.62596454910817
1030 => 0.59384595486164
1031 => 0.58294442156927
1101 => 0.59762189997964
1102 => 0.5919020723688
1103 => 0.58698450046855
1104 => 0.5842404108536
1105 => 0.595017931104
1106 => 0.5945151469024
1107 => 0.5768810319462
1108 => 0.55387804784432
1109 => 0.56159860435613
1110 => 0.55879365379478
1111 => 0.54862815111466
1112 => 0.55547847253359
1113 => 0.52531312387295
1114 => 0.4734152093607
1115 => 0.5077005613636
1116 => 0.50638061260678
1117 => 0.50571503458868
1118 => 0.53147952904133
1119 => 0.52900286738773
1120 => 0.5245077022349
1121 => 0.54854559388147
1122 => 0.53977144007521
1123 => 0.56681131465549
1124 => 0.5846215248835
1125 => 0.58010427946973
1126 => 0.59685486827339
1127 => 0.56177647038482
1128 => 0.57342810706236
1129 => 0.57582949323313
1130 => 0.54824897002986
1201 => 0.52940807986365
1202 => 0.52815160729144
1203 => 0.49548410017782
1204 => 0.51293481879501
1205 => 0.52829072901833
1206 => 0.52093643968813
1207 => 0.51860829138934
1208 => 0.53050229613413
1209 => 0.53142656216806
1210 => 0.51035319864508
1211 => 0.51473501822814
1212 => 0.5330079343064
1213 => 0.51427458762644
1214 => 0.47787875510211
1215 => 0.46885208542432
1216 => 0.46764776129477
1217 => 0.4431667172144
1218 => 0.46945529065489
1219 => 0.45797962385815
1220 => 0.49423111776945
1221 => 0.47352445886798
1222 => 0.47263183618861
1223 => 0.47128250608947
1224 => 0.4502106601503
1225 => 0.45482405522531
1226 => 0.47015968309454
1227 => 0.47563160788649
1228 => 0.47506084130053
1229 => 0.47008453015166
1230 => 0.47236265991278
1231 => 0.46502401019918
]
'min_raw' => 0.25677118955656
'max_raw' => 0.79847274762028
'avg_raw' => 0.52762196858842
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.256771'
'max' => '$0.798472'
'avg' => '$0.527621'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.14627409451248
'max_diff' => 0.49870477652222
'year' => 2033
]
8 => [
'items' => [
101 => 0.46243258024453
102 => 0.45425331447867
103 => 0.4422320533827
104 => 0.44390368346878
105 => 0.42008641970359
106 => 0.40710951032646
107 => 0.40351767284379
108 => 0.39871451764873
109 => 0.40406020200377
110 => 0.42001894838783
111 => 0.40076931441174
112 => 0.36776716716457
113 => 0.36975065244705
114 => 0.37420695497471
115 => 0.36590266469581
116 => 0.35804335087308
117 => 0.36487638659566
118 => 0.35089294174741
119 => 0.37589678747793
120 => 0.37522050352338
121 => 0.38454039098427
122 => 0.39036830787691
123 => 0.37693684624988
124 => 0.37355886997322
125 => 0.37548311878087
126 => 0.34367957230761
127 => 0.38194136272916
128 => 0.38227225228158
129 => 0.37943897504488
130 => 0.39981219724411
131 => 0.44280605065184
201 => 0.42663003357611
202 => 0.42036619084168
203 => 0.40845862122469
204 => 0.4243247507378
205 => 0.42310647954137
206 => 0.41759699517549
207 => 0.41426484184036
208 => 0.42040443652973
209 => 0.41350407811446
210 => 0.41226458413391
211 => 0.40475459919452
212 => 0.4020738762537
213 => 0.40008917571097
214 => 0.39790421542608
215 => 0.40272369335638
216 => 0.3918021223112
217 => 0.37863177828552
218 => 0.37753680668489
219 => 0.38056011954514
220 => 0.37922252866365
221 => 0.37753040281435
222 => 0.374299673745
223 => 0.37334118544373
224 => 0.37645580743045
225 => 0.37293958080119
226 => 0.37812796473144
227 => 0.37671701138879
228 => 0.36883554071259
301 => 0.35901231015588
302 => 0.358924862799
303 => 0.35680846388888
304 => 0.35411291167414
305 => 0.35336307071388
306 => 0.36430092738599
307 => 0.38694196335475
308 => 0.38249698624001
309 => 0.38570893774498
310 => 0.40150856016423
311 => 0.40653078502008
312 => 0.40296612877531
313 => 0.39808660744905
314 => 0.39830128162341
315 => 0.41497608312681
316 => 0.41601607004285
317 => 0.41864378146719
318 => 0.42202113323862
319 => 0.40354130638607
320 => 0.39743088344052
321 => 0.39453542605556
322 => 0.38561853799292
323 => 0.39523463729227
324 => 0.38963174803297
325 => 0.390387769216
326 => 0.38989540942875
327 => 0.39016427116581
328 => 0.37588979839346
329 => 0.38109066602751
330 => 0.37244321486104
331 => 0.3608652484711
401 => 0.360826435068
402 => 0.36366012593945
403 => 0.36197453572678
404 => 0.35743865580497
405 => 0.35808295613911
406 => 0.35243820724734
407 => 0.35876833085605
408 => 0.35894985615088
409 => 0.35651241375736
410 => 0.3662648425653
411 => 0.37026042060514
412 => 0.36865604380665
413 => 0.37014785325201
414 => 0.38268169510699
415 => 0.38472525821921
416 => 0.38563287396346
417 => 0.38441678910221
418 => 0.37037694887243
419 => 0.37099967548863
420 => 0.36643052076454
421 => 0.36257006650835
422 => 0.36272446443318
423 => 0.36470923974479
424 => 0.37337686993611
425 => 0.39161738668903
426 => 0.39230960096616
427 => 0.39314858486335
428 => 0.38973601571394
429 => 0.38870675220458
430 => 0.39006461644887
501 => 0.39691479550046
502 => 0.41453531582662
503 => 0.40830704710837
504 => 0.40324336769166
505 => 0.40768557969828
506 => 0.40700173597907
507 => 0.40122940679293
508 => 0.40106739673802
509 => 0.38998845150454
510 => 0.3858928177071
511 => 0.38247019955309
512 => 0.37873278987861
513 => 0.37651712814448
514 => 0.37992139156836
515 => 0.38069998689146
516 => 0.3732565054188
517 => 0.37224198639869
518 => 0.37832049404797
519 => 0.37564556946113
520 => 0.37839679573363
521 => 0.37903510382843
522 => 0.37893232152369
523 => 0.37613939304189
524 => 0.37791952236986
525 => 0.37370898582712
526 => 0.36913065973902
527 => 0.36620997293462
528 => 0.36366128632488
529 => 0.3650754457865
530 => 0.36003422552115
531 => 0.35842143769855
601 => 0.37731645460772
602 => 0.39127440675419
603 => 0.39107145260203
604 => 0.38983602139629
605 => 0.38800042122263
606 => 0.39678050991451
607 => 0.39372170257768
608 => 0.39594724048713
609 => 0.39651373329062
610 => 0.39822833639006
611 => 0.39884115962299
612 => 0.39698878217996
613 => 0.39077197723231
614 => 0.37528029037884
615 => 0.36806886832954
616 => 0.36568897893754
617 => 0.36577548339689
618 => 0.36338930423522
619 => 0.36409214093938
620 => 0.36314488631208
621 => 0.36135101521349
622 => 0.36496467930116
623 => 0.36538112042365
624 => 0.36453764804552
625 => 0.36473631632471
626 => 0.35775272528555
627 => 0.35828367254469
628 => 0.35532729073626
629 => 0.35477300478689
630 => 0.34729952901677
701 => 0.33405918339238
702 => 0.34139562013974
703 => 0.33253423620804
704 => 0.32917829584123
705 => 0.34506479558191
706 => 0.34347023163086
707 => 0.34074103128695
708 => 0.33670397516311
709 => 0.33520659177682
710 => 0.32610896433571
711 => 0.32557142797254
712 => 0.33008045778896
713 => 0.32799969567492
714 => 0.32507751762058
715 => 0.31449368492419
716 => 0.30259395278688
717 => 0.30295313090105
718 => 0.30673821429155
719 => 0.31774385473745
720 => 0.31344376061572
721 => 0.31032399299251
722 => 0.30973975429656
723 => 0.31705272476301
724 => 0.32740211008771
725 => 0.33225781012762
726 => 0.32744595885787
727 => 0.32191836320766
728 => 0.32225480234248
729 => 0.32449298117903
730 => 0.3247281821286
731 => 0.32113028560633
801 => 0.32214307240255
802 => 0.32060455664792
803 => 0.31116268830167
804 => 0.31099191484377
805 => 0.30867472808091
806 => 0.30860456458664
807 => 0.30466245185368
808 => 0.3041109230318
809 => 0.29628361893137
810 => 0.30143557419353
811 => 0.29797991309346
812 => 0.29277141670761
813 => 0.29187346996749
814 => 0.29184647660418
815 => 0.29719443779397
816 => 0.30137308015329
817 => 0.29804002579779
818 => 0.29728115392959
819 => 0.30538392011129
820 => 0.30435276925632
821 => 0.30345979926612
822 => 0.32647543614494
823 => 0.30825676362281
824 => 0.30031238251769
825 => 0.29047970230305
826 => 0.29368127256162
827 => 0.29435589045595
828 => 0.27071006701356
829 => 0.26111695938789
830 => 0.25782496635939
831 => 0.25593037782954
901 => 0.25679376561334
902 => 0.24815884359094
903 => 0.25396165399842
904 => 0.24648454141881
905 => 0.2452309791622
906 => 0.25860098269106
907 => 0.26046134057567
908 => 0.25252447587202
909 => 0.25762122787344
910 => 0.25577307474758
911 => 0.24661271505337
912 => 0.2462628566921
913 => 0.24166651019975
914 => 0.2344741179673
915 => 0.23118700171942
916 => 0.22947504303747
917 => 0.23018143055505
918 => 0.22982425941035
919 => 0.22749347609129
920 => 0.22995785718188
921 => 0.22366238184798
922 => 0.22115547284393
923 => 0.22002316020665
924 => 0.21443556349378
925 => 0.2233279146795
926 => 0.22507981988597
927 => 0.22683517688689
928 => 0.24211436114681
929 => 0.24135105627971
930 => 0.24825096053373
1001 => 0.24798284294253
1002 => 0.24601487847825
1003 => 0.23771236011786
1004 => 0.24102159595815
1005 => 0.23083628241118
1006 => 0.23846781185457
1007 => 0.2349851005169
1008 => 0.23729030364801
1009 => 0.23314534056648
1010 => 0.23543933427713
1011 => 0.22549526160183
1012 => 0.2162096264545
1013 => 0.21994643710237
1014 => 0.22400877763274
1015 => 0.2328169669677
1016 => 0.22757088206578
1017 => 0.22945757257294
1018 => 0.22313747520213
1019 => 0.21009730907958
1020 => 0.21017111500368
1021 => 0.20816516954118
1022 => 0.20643173978876
1023 => 0.22817345802405
1024 => 0.22546953167579
1025 => 0.22116117892096
1026 => 0.22692808029043
1027 => 0.22845294054554
1028 => 0.22849635117331
1029 => 0.2327037335472
1030 => 0.23494921427436
1031 => 0.23534498998499
1101 => 0.24196539705682
1102 => 0.24418447018202
1103 => 0.25332451832972
1104 => 0.23475870092296
1105 => 0.23437635013104
1106 => 0.22700923241913
1107 => 0.22233688989672
1108 => 0.22732915170901
1109 => 0.231751614163
1110 => 0.22714665065515
1111 => 0.22774796167319
1112 => 0.22156617440323
1113 => 0.22377587247212
1114 => 0.22567916212751
1115 => 0.22462827745
1116 => 0.22305505222436
1117 => 0.23138902267487
1118 => 0.23091878740096
1119 => 0.23867957228162
1120 => 0.24472965907515
1121 => 0.25557249619153
1122 => 0.2442574304107
1123 => 0.24384506444034
1124 => 0.24787600794625
1125 => 0.24418385306557
1126 => 0.24651716750131
1127 => 0.25519656316303
1128 => 0.25537994511655
1129 => 0.25230806112079
1130 => 0.25212113670048
1201 => 0.25271112562459
1202 => 0.2561667091811
1203 => 0.2549592221071
1204 => 0.25635655671896
1205 => 0.25810394504784
1206 => 0.26533188405341
1207 => 0.26707451567757
1208 => 0.26284082428175
1209 => 0.26322307921216
1210 => 0.2616395624127
1211 => 0.26010990502582
1212 => 0.263548351443
1213 => 0.26983217985322
1214 => 0.26979308848281
1215 => 0.27125081453381
1216 => 0.27215896578713
1217 => 0.26826051580054
1218 => 0.26572276820924
1219 => 0.26669590211682
1220 => 0.26825196442713
1221 => 0.26619129208167
1222 => 0.25347186776916
1223 => 0.2573301285856
1224 => 0.25668792532643
1225 => 0.25577334979079
1226 => 0.25965286087677
1227 => 0.2592786725684
1228 => 0.24807027998488
1229 => 0.24878780491254
1230 => 0.24811391505225
1231 => 0.25029139105574
]
'min_raw' => 0.20643173978876
'max_raw' => 0.46243258024453
'avg_raw' => 0.33443216001664
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.206431'
'max' => '$0.462432'
'avg' => '$0.334432'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.050339449767801
'max_diff' => -0.33604016737575
'year' => 2034
]
9 => [
'items' => [
101 => 0.24406626221552
102 => 0.24598106991989
103 => 0.24718201936186
104 => 0.24788938780931
105 => 0.25044488768858
106 => 0.25014502927322
107 => 0.25042624806847
108 => 0.25421537976248
109 => 0.27337950759781
110 => 0.27442256879262
111 => 0.26928615398765
112 => 0.27133805039094
113 => 0.26739885799705
114 => 0.27004326424136
115 => 0.27185249983308
116 => 0.26367691209009
117 => 0.26319280684308
118 => 0.25923735600093
119 => 0.26136279123531
120 => 0.25798107095321
121 => 0.25881082682289
122 => 0.25649075707446
123 => 0.26066642070035
124 => 0.26533546146661
125 => 0.26651504555018
126 => 0.2634120676692
127 => 0.26116530718716
128 => 0.25722073590961
129 => 0.26378064585468
130 => 0.26569896343225
131 => 0.26377056974909
201 => 0.26332371879647
202 => 0.2624769370487
203 => 0.26350336754726
204 => 0.26568851586274
205 => 0.26465804027051
206 => 0.26533868755382
207 => 0.26274476199028
208 => 0.2682618063497
209 => 0.27702420054149
210 => 0.27705237307161
211 => 0.27602189192473
212 => 0.27560024124146
213 => 0.27665757743298
214 => 0.27723113894267
215 => 0.28065037030375
216 => 0.28431934178237
217 => 0.30144083077542
218 => 0.29663318517891
219 => 0.31182438877548
220 => 0.32383865848946
221 => 0.32744121265634
222 => 0.32412703233608
223 => 0.31278940048899
224 => 0.31223312218154
225 => 0.3291763307858
226 => 0.32438909830698
227 => 0.32381967223647
228 => 0.31776194090679
301 => 0.32134281038725
302 => 0.32055962170369
303 => 0.31932332005179
304 => 0.32615536957498
305 => 0.33894435638112
306 => 0.33695107285302
307 => 0.33546317916506
308 => 0.32894366214375
309 => 0.33286986757742
310 => 0.33147182102401
311 => 0.33747871623976
312 => 0.33392036458297
313 => 0.32435283031258
314 => 0.32587649168015
315 => 0.32564619332962
316 => 0.33038571706433
317 => 0.32896302968138
318 => 0.32536839078478
319 => 0.33890064501456
320 => 0.33802193569523
321 => 0.33926774460912
322 => 0.33981618822093
323 => 0.34805303290553
324 => 0.35142740462318
325 => 0.35219344607978
326 => 0.35539883822827
327 => 0.35211369300308
328 => 0.36525661617269
329 => 0.37399589316965
330 => 0.38414701312071
331 => 0.39898052773302
401 => 0.40455806644493
402 => 0.40355053399924
403 => 0.41479713548573
404 => 0.43500702835905
405 => 0.40763553117189
406 => 0.43645778417316
407 => 0.42733299164187
408 => 0.40569827269819
409 => 0.4043052518548
410 => 0.41895653470771
411 => 0.45145166994175
412 => 0.4433120071224
413 => 0.45146498351417
414 => 0.44195410348233
415 => 0.44148180812476
416 => 0.45100306129971
417 => 0.47324998831947
418 => 0.46268130720597
419 => 0.44752851128284
420 => 0.45871709998886
421 => 0.4490245089967
422 => 0.42718438870598
423 => 0.44330578287564
424 => 0.43252586570526
425 => 0.43567201862749
426 => 0.45832980112798
427 => 0.45560355679246
428 => 0.45913156940605
429 => 0.45290471948724
430 => 0.44708785977896
501 => 0.43623025916779
502 => 0.43301585890007
503 => 0.43390420349206
504 => 0.43301541868061
505 => 0.42694069092516
506 => 0.42562885404475
507 => 0.42344240177117
508 => 0.42412007475655
509 => 0.42000890481305
510 => 0.42776753190748
511 => 0.42920760146499
512 => 0.43485368324851
513 => 0.43543987818943
514 => 0.45116413558958
515 => 0.44250347884899
516 => 0.44831379511571
517 => 0.44779406574
518 => 0.40616716265991
519 => 0.41190298262707
520 => 0.42082611849651
521 => 0.41680625788235
522 => 0.41112311547645
523 => 0.40653367327286
524 => 0.39958019903988
525 => 0.40936708049316
526 => 0.42223578888542
527 => 0.43576624987086
528 => 0.45202221219394
529 => 0.44839407064369
530 => 0.43546235596264
531 => 0.43604246323661
601 => 0.43962845814049
602 => 0.43498426891797
603 => 0.43361460685091
604 => 0.43944028760506
605 => 0.43948040586668
606 => 0.43413670489716
607 => 0.4281981591565
608 => 0.42817327643301
609 => 0.42711656957801
610 => 0.44214208928435
611 => 0.45040460587144
612 => 0.45135189008244
613 => 0.45034084609648
614 => 0.45072995679978
615 => 0.44592218044987
616 => 0.45691133148396
617 => 0.46699606318724
618 => 0.46429313966189
619 => 0.46024107305418
620 => 0.45701340682716
621 => 0.46353280407552
622 => 0.46324250557853
623 => 0.46690798185354
624 => 0.46674169467689
625 => 0.46550913287114
626 => 0.46429318368056
627 => 0.46911428477655
628 => 0.46772588508542
629 => 0.46633532882608
630 => 0.46354635536447
701 => 0.46392542317784
702 => 0.45987405621656
703 => 0.45799970848233
704 => 0.42981401574858
705 => 0.42228187765604
706 => 0.42465164163076
707 => 0.42543182946213
708 => 0.42215383331156
709 => 0.42685363774336
710 => 0.42612117820099
711 => 0.42897074980585
712 => 0.42719046118115
713 => 0.4272635248473
714 => 0.43249897409499
715 => 0.43401884728479
716 => 0.43324582751358
717 => 0.43378722406377
718 => 0.4462634790537
719 => 0.44448975456231
720 => 0.4435474987779
721 => 0.44380851006967
722 => 0.44699646071352
723 => 0.44788891283815
724 => 0.44410753047461
725 => 0.44589085225717
726 => 0.45348401007006
727 => 0.45614118556906
728 => 0.46462161424528
729 => 0.46101897741602
730 => 0.46763177323459
731 => 0.48795725311265
801 => 0.50419465285547
802 => 0.48926206901305
803 => 0.51907998582035
804 => 0.54229751118096
805 => 0.54140638388681
806 => 0.53735787130915
807 => 0.51092533595594
808 => 0.48660172283702
809 => 0.50694945804617
810 => 0.50700132860776
811 => 0.50525344010778
812 => 0.49439745475048
813 => 0.50487567534906
814 => 0.50570739844887
815 => 0.505241854686
816 => 0.49691859616576
817 => 0.48421051880065
818 => 0.48669364669896
819 => 0.49076106085081
820 => 0.48306059730987
821 => 0.480599832621
822 => 0.48517486235725
823 => 0.49991656141274
824 => 0.49712972859915
825 => 0.49705695313191
826 => 0.5089802057095
827 => 0.5004457300629
828 => 0.48672496689383
829 => 0.48326029323901
830 => 0.47096303584822
831 => 0.47945679532937
901 => 0.47976247061195
902 => 0.47511052534824
903 => 0.48710244661365
904 => 0.48699193894805
905 => 0.49837648342762
906 => 0.52013945663292
907 => 0.51370307456524
908 => 0.50621826249691
909 => 0.50703206910007
910 => 0.51595751889083
911 => 0.51056098819913
912 => 0.51250161826181
913 => 0.5159545815148
914 => 0.51803783997758
915 => 0.5067323202668
916 => 0.5040964628167
917 => 0.49870442353404
918 => 0.49729774113237
919 => 0.50168944461951
920 => 0.50053238591182
921 => 0.47973677978808
922 => 0.47756352324249
923 => 0.47763017391804
924 => 0.47216541700144
925 => 0.46383035101168
926 => 0.48573440677184
927 => 0.48397520454724
928 => 0.48203318144271
929 => 0.48227106819198
930 => 0.49177887640014
1001 => 0.48626386748359
1002 => 0.50092642258043
1003 => 0.49791224204927
1004 => 0.49482075916103
1005 => 0.49439342205701
1006 => 0.49320346489796
1007 => 0.48912265903603
1008 => 0.48419484073934
1009 => 0.48094106825955
1010 => 0.44364271302075
1011 => 0.45056507079852
1012 => 0.45852861242908
1013 => 0.46127759508806
1014 => 0.45657527002607
1015 => 0.48930833549049
1016 => 0.4952889819745
1017 => 0.4771732136665
1018 => 0.47378449307802
1019 => 0.48953049944811
1020 => 0.48003373273595
1021 => 0.48431012620494
1022 => 0.47506690258715
1023 => 0.49384841937027
1024 => 0.49370533568003
1025 => 0.4863989014516
1026 => 0.49257424962917
1027 => 0.49150113091546
1028 => 0.48325218466652
1029 => 0.49410992567975
1030 => 0.49411531098383
1031 => 0.48708302689454
1101 => 0.47887085864319
1102 => 0.47740271692261
1103 => 0.47629666935323
1104 => 0.48403810630482
1105 => 0.49097905446877
1106 => 0.50389443819491
1107 => 0.50714167252561
1108 => 0.51981584429895
1109 => 0.51226899210215
1110 => 0.5156144139329
1111 => 0.51924634256898
1112 => 0.52098762271687
1113 => 0.51815030015813
1114 => 0.53783850581936
1115 => 0.53950079360821
1116 => 0.54005814432507
1117 => 0.53341939215054
1118 => 0.53931615790082
1119 => 0.53655725648662
1120 => 0.54373515152148
1121 => 0.54486073711491
1122 => 0.54390740616114
1123 => 0.54426468479466
1124 => 0.52746427450027
1125 => 0.52659308459728
1126 => 0.51471434845322
1127 => 0.51955502123511
1128 => 0.51050561548885
1129 => 0.51337527527019
1130 => 0.51464019395869
1201 => 0.51397947221932
1202 => 0.51982870561131
1203 => 0.51485566230868
1204 => 0.50173098338905
1205 => 0.48860272865942
1206 => 0.48843791411533
1207 => 0.48498147637797
1208 => 0.482483104972
1209 => 0.48296437993927
1210 => 0.48466045569764
1211 => 0.48238452596562
1212 => 0.48287021096652
1213 => 0.49093581808355
1214 => 0.49255331806959
1215 => 0.48705642111898
1216 => 0.46498558666381
1217 => 0.45956934852802
1218 => 0.46346243309136
1219 => 0.46160178941684
1220 => 0.37254867060193
1221 => 0.39347037992391
1222 => 0.3810394106789
1223 => 0.3867681732284
1224 => 0.37407937261313
1225 => 0.38013513334375
1226 => 0.37901685545778
1227 => 0.41265834492914
1228 => 0.4121330793434
1229 => 0.41238449618286
1230 => 0.40038371537247
1231 => 0.41950128506012
]
'min_raw' => 0.24406626221552
'max_raw' => 0.54486073711491
'avg_raw' => 0.39446349966521
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.244066'
'max' => '$0.54486'
'avg' => '$0.394463'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.037634522426761
'max_diff' => 0.082428156870377
'year' => 2035
]
10 => [
'items' => [
101 => 0.42891928733383
102 => 0.42717626576498
103 => 0.42761494674194
104 => 0.42007695413826
105 => 0.4124574804285
106 => 0.40400631145577
107 => 0.41970753881104
108 => 0.41796183035802
109 => 0.42196585746316
110 => 0.43214922574996
111 => 0.43364876541305
112 => 0.43566416192706
113 => 0.43494178574248
114 => 0.45215171716002
115 => 0.45006748091057
116 => 0.45508989059604
117 => 0.44475841282188
118 => 0.43306736504755
119 => 0.4352894510203
120 => 0.43507544627224
121 => 0.43235092020618
122 => 0.42989133989553
123 => 0.42579683166076
124 => 0.43875246158878
125 => 0.43822648667346
126 => 0.44674140917352
127 => 0.44523631391209
128 => 0.43518491939697
129 => 0.43554390691846
130 => 0.437958270524
131 => 0.44631441052949
201 => 0.44879508181251
202 => 0.44764593603656
203 => 0.45036587885145
204 => 0.45251561075134
205 => 0.45063585208022
206 => 0.477249270803
207 => 0.46619752386822
208 => 0.47158406842667
209 => 0.4728687275645
210 => 0.46957810019643
211 => 0.47029171944403
212 => 0.47137265815455
213 => 0.47793590633528
214 => 0.4951597686527
215 => 0.5027881000263
216 => 0.52573831133898
217 => 0.50215467329722
218 => 0.50075531781462
219 => 0.50488934390202
220 => 0.51836354746915
221 => 0.52928312389273
222 => 0.5329057773579
223 => 0.53338457081682
224 => 0.54018090954694
225 => 0.54407644416283
226 => 0.53935565526365
227 => 0.53535528095879
228 => 0.52102643674353
229 => 0.52268503947759
301 => 0.5341111675581
302 => 0.55025124646741
303 => 0.56410111326059
304 => 0.5592513726262
305 => 0.59625147028322
306 => 0.59991987883407
307 => 0.59941302338619
308 => 0.60777020399741
309 => 0.59118290239437
310 => 0.58409150959524
311 => 0.53622020728968
312 => 0.5496700905925
313 => 0.56922028585709
314 => 0.56663274420435
315 => 0.55243486982499
316 => 0.56409034289972
317 => 0.56023667900087
318 => 0.55719713439519
319 => 0.57112187747853
320 => 0.55581105046147
321 => 0.56906754864542
322 => 0.55206595260359
323 => 0.55927352583291
324 => 0.55518215867686
325 => 0.55782977464592
326 => 0.54235186579045
327 => 0.55070336970387
328 => 0.54200441577046
329 => 0.54200029133366
330 => 0.54180826144344
331 => 0.55204254216903
401 => 0.55237628169606
402 => 0.54481313277671
403 => 0.54372316485884
404 => 0.54775334752652
405 => 0.54303505912919
406 => 0.54524271657374
407 => 0.5431019268242
408 => 0.54261998995965
409 => 0.5387798350281
410 => 0.53712539069633
411 => 0.5377741409486
412 => 0.53555962188394
413 => 0.53422529404482
414 => 0.54154283005169
415 => 0.53763336575178
416 => 0.54094364857812
417 => 0.53717116350651
418 => 0.5240940866548
419 => 0.5165733214698
420 => 0.49187193554259
421 => 0.49887721794957
422 => 0.50352172743289
423 => 0.50198671707636
424 => 0.50528451329234
425 => 0.50548697119641
426 => 0.50441482402954
427 => 0.50317341496087
428 => 0.50256916568047
429 => 0.50707274476444
430 => 0.50968722400619
501 => 0.50398786609506
502 => 0.50265258627898
503 => 0.5084149517973
504 => 0.51192999143467
505 => 0.53788306918685
506 => 0.53596038135963
507 => 0.54078595049752
508 => 0.54024266546699
509 => 0.54530063069694
510 => 0.55356826619233
511 => 0.53675785156297
512 => 0.53967555828223
513 => 0.53896020397435
514 => 0.54677025473174
515 => 0.54679463685771
516 => 0.54211212128769
517 => 0.54465058894333
518 => 0.54323368593717
519 => 0.54579422117524
520 => 0.53593470269149
521 => 0.54794253193544
522 => 0.55475019734933
523 => 0.55484472179021
524 => 0.55807150116742
525 => 0.56135009589713
526 => 0.56764307297537
527 => 0.56117458818193
528 => 0.54953841373283
529 => 0.55037850794344
530 => 0.54355622312145
531 => 0.54367090696185
601 => 0.54305871563384
602 => 0.54489594789282
603 => 0.53633787185581
604 => 0.53834643519605
605 => 0.53553443475758
606 => 0.53966944554245
607 => 0.5352208574797
608 => 0.53895985900885
609 => 0.54057348811896
610 => 0.54652781427425
611 => 0.53434139866525
612 => 0.50949247229068
613 => 0.51471601787873
614 => 0.50698998365336
615 => 0.507705057536
616 => 0.50914962058211
617 => 0.50446731911806
618 => 0.50536055468113
619 => 0.50532864202121
620 => 0.50505363595868
621 => 0.50383558850882
622 => 0.50206917872318
623 => 0.50910601163692
624 => 0.51030170667065
625 => 0.51295958861536
626 => 0.52086764242428
627 => 0.52007744136402
628 => 0.52136629207843
629 => 0.51855273820545
630 => 0.5078355702307
701 => 0.50841756401358
702 => 0.50116009221526
703 => 0.51277399874446
704 => 0.51002367238227
705 => 0.50825051908463
706 => 0.50776669777922
707 => 0.51569435412394
708 => 0.51806643315307
709 => 0.51658831268642
710 => 0.51355664448566
711 => 0.51937834366337
712 => 0.52093598476555
713 => 0.52128468316474
714 => 0.53159961790755
715 => 0.52186117343223
716 => 0.52420531380925
717 => 0.5424936278664
718 => 0.5259086506314
719 => 0.53469408296191
720 => 0.53426408176651
721 => 0.53875841166398
722 => 0.53389541553526
723 => 0.53395569820052
724 => 0.53794635867719
725 => 0.53234219575712
726 => 0.53095452620658
727 => 0.5290374706612
728 => 0.53322329131047
729 => 0.53573250148132
730 => 0.55595489264659
731 => 0.56901947959243
801 => 0.56845231141771
802 => 0.57363516684028
803 => 0.5713002430029
804 => 0.56376015801021
805 => 0.57663016367732
806 => 0.57255755538034
807 => 0.57289329626012
808 => 0.57288079996781
809 => 0.5755887284517
810 => 0.57366991294286
811 => 0.56988773061256
812 => 0.57239851975047
813 => 0.57985466586653
814 => 0.60299877219326
815 => 0.61595052071233
816 => 0.60221906066972
817 => 0.61169083793554
818 => 0.60601114671537
819 => 0.60497897786449
820 => 0.61092795394626
821 => 0.61688734292315
822 => 0.61650775560847
823 => 0.61218154522926
824 => 0.60973777875956
825 => 0.6282427971899
826 => 0.64187697954461
827 => 0.64094721971274
828 => 0.64505087723653
829 => 0.65709934264773
830 => 0.65820090332865
831 => 0.65806213200194
901 => 0.65533179891832
902 => 0.66719507780658
903 => 0.67709163376971
904 => 0.65469980569636
905 => 0.66322632069614
906 => 0.6670541479867
907 => 0.67267453411441
908 => 0.68215706759796
909 => 0.69245761407888
910 => 0.69391422429103
911 => 0.69288068964029
912 => 0.68608720234257
913 => 0.69735818321307
914 => 0.70396045946998
915 => 0.70789196389057
916 => 0.71786160496122
917 => 0.6670777873449
918 => 0.63113047711656
919 => 0.62551678553895
920 => 0.63693244810954
921 => 0.6399426672912
922 => 0.63872925171356
923 => 0.59826728586511
924 => 0.62530376166256
925 => 0.65439273632916
926 => 0.65551016231468
927 => 0.67007271125456
928 => 0.67481487412844
929 => 0.68653963478196
930 => 0.68580624781077
1001 => 0.68866104044822
1002 => 0.68800477305899
1003 => 0.70972242323
1004 => 0.73368021647089
1005 => 0.73285063427207
1006 => 0.72940641803795
1007 => 0.73452166647176
1008 => 0.75924867656951
1009 => 0.75697220972197
1010 => 0.75918360335537
1011 => 0.78833814181384
1012 => 0.82624318899458
1013 => 0.80863248897461
1014 => 0.84684264067553
1015 => 0.87089390573815
1016 => 0.91248808171672
1017 => 0.90728028602857
1018 => 0.92347259350486
1019 => 0.89795724484701
1020 => 0.83936884682584
1021 => 0.83009700857161
1022 => 0.84865946355692
1023 => 0.89429344784042
1024 => 0.84722228699427
1025 => 0.85674472152783
1026 => 0.85400225974156
1027 => 0.85385612560768
1028 => 0.85943347112734
1029 => 0.85134324055629
1030 => 0.81838218580515
1031 => 0.83348804295688
1101 => 0.82765494606776
1102 => 0.83412720195242
1103 => 0.86905529760059
1104 => 0.85361275393273
1105 => 0.83734528862902
1106 => 0.85774830015941
1107 => 0.88372834507302
1108 => 0.88210256055296
1109 => 0.87894785905882
1110 => 0.89673074620647
1111 => 0.92610286587731
1112 => 0.93404203179761
1113 => 0.93990256177087
1114 => 0.94071062983971
1115 => 0.94903423316035
1116 => 0.90427612028718
1117 => 0.97530839488676
1118 => 0.98757370648312
1119 => 0.98526833624808
1120 => 0.99890071388422
1121 => 0.99488972256363
1122 => 0.98907842544535
1123 => 1.0106886436885
1124 => 0.98591427232741
1125 => 0.95075017118695
1126 => 0.93145844983424
1127 => 0.95686334473026
1128 => 0.97237722753462
1129 => 0.98263091720003
1130 => 0.98573367749733
1201 => 0.90775056517952
1202 => 0.86572199278191
1203 => 0.89266182583021
1204 => 0.92553028143711
1205 => 0.90409353435672
1206 => 0.90493381425714
1207 => 0.87437064639853
1208 => 0.92823444362016
1209 => 0.92038694143081
1210 => 0.96109979667114
1211 => 0.95138334702696
1212 => 0.98458310001152
1213 => 0.9758404924058
1214 => 1.0121305677845
1215 => 1.0266076613677
1216 => 1.0509169546735
1217 => 1.0687989697858
1218 => 1.0792996310883
1219 => 1.0786692107706
1220 => 1.1202780622595
1221 => 1.0957427762391
1222 => 1.0649206744745
1223 => 1.064363199896
1224 => 1.0803264031525
1225 => 1.1137808978871
1226 => 1.1224551616286
1227 => 1.1273028916954
1228 => 1.1198784243475
1229 => 1.0932471298321
1230 => 1.0817478718841
1231 => 1.0915455728213
]
'min_raw' => 0.40400631145577
'max_raw' => 1.1273028916954
'avg_raw' => 0.76565460157557
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.4040063'
'max' => '$1.12'
'avg' => '$0.765654'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.15994004924026
'max_diff' => 0.58244215458046
'year' => 2036
]
11 => [
'items' => [
101 => 1.0795638265011
102 => 1.1002476821341
103 => 1.1286510337514
104 => 1.1227858539615
105 => 1.1423922706424
106 => 1.162682849252
107 => 1.1916992879705
108 => 1.1992852595272
109 => 1.2118245820417
110 => 1.224731663862
111 => 1.228877070687
112 => 1.2367919385603
113 => 1.2367502232997
114 => 1.2606022103677
115 => 1.2869116907384
116 => 1.2968429105124
117 => 1.3196792027722
118 => 1.2805728525565
119 => 1.3102354684164
120 => 1.3369918904256
121 => 1.3050917810685
122 => 1.349058650045
123 => 1.3507657839363
124 => 1.3765414788921
125 => 1.3504128740287
126 => 1.3348977918664
127 => 1.3796892527266
128 => 1.4013624297191
129 => 1.3948342924268
130 => 1.3451548452985
131 => 1.3162392762181
201 => 1.2405616545379
202 => 1.3302050664481
203 => 1.3738677574553
204 => 1.3450417694769
205 => 1.3595799211056
206 => 1.4388953623803
207 => 1.4690935471232
208 => 1.462812535798
209 => 1.4638739233177
210 => 1.4801683156691
211 => 1.5524266248412
212 => 1.5091277710508
213 => 1.5422281223964
214 => 1.559784429398
215 => 1.5760917057646
216 => 1.5360461889758
217 => 1.4839475600189
218 => 1.4674457372766
219 => 1.3421755930706
220 => 1.335654738044
221 => 1.3319943845155
222 => 1.3089163732852
223 => 1.2907833780576
224 => 1.2763633470176
225 => 1.2385208793828
226 => 1.2512916013323
227 => 1.1909786062593
228 => 1.2295647231457
301 => 1.1333037267011
302 => 1.2134727449511
303 => 1.1698403931556
304 => 1.1991383438979
305 => 1.1990361261078
306 => 1.1450893098674
307 => 1.1139739121013
308 => 1.1338018545873
309 => 1.1550589828763
310 => 1.1585078804236
311 => 1.1860683021181
312 => 1.1937598234038
313 => 1.1704541548254
314 => 1.1313089315103
315 => 1.1404014740789
316 => 1.1137896520164
317 => 1.0671534574607
318 => 1.1006483865804
319 => 1.11208502805
320 => 1.117136100454
321 => 1.0712747593116
322 => 1.0568641302266
323 => 1.0491920322186
324 => 1.1253888082709
325 => 1.1295630396675
326 => 1.1082070816654
327 => 1.2047380368898
328 => 1.1828901087356
329 => 1.2072995973562
330 => 1.1395764211443
331 => 1.142163537677
401 => 1.1101023007462
402 => 1.1280544510948
403 => 1.1153664498533
404 => 1.1266040947533
405 => 1.1333398927718
406 => 1.165395868769
407 => 1.2138387727048
408 => 1.1606077749276
409 => 1.1374142669142
410 => 1.1518033888405
411 => 1.1901235167065
412 => 1.2481804719948
413 => 1.213809585959
414 => 1.2290628015262
415 => 1.2323949505593
416 => 1.2070511316759
417 => 1.2491149347471
418 => 1.2716572685387
419 => 1.2947810385301
420 => 1.3148587601004
421 => 1.2855448962929
422 => 1.3169149325442
423 => 1.2916362208825
424 => 1.2689586032568
425 => 1.2689929958418
426 => 1.2547669950381
427 => 1.2272023258894
428 => 1.2221189779805
429 => 1.2485631957588
430 => 1.2697689541402
501 => 1.2715155619692
502 => 1.2832561594004
503 => 1.2902041240223
504 => 1.3583036226177
505 => 1.3856938043014
506 => 1.4191859999945
507 => 1.4322330977338
508 => 1.4715001842854
509 => 1.4397888227781
510 => 1.4329278702422
511 => 1.3376787624341
512 => 1.3532757985017
513 => 1.3782481581361
514 => 1.3380905474466
515 => 1.3635613084213
516 => 1.3685897761822
517 => 1.3367260072019
518 => 1.3537458229664
519 => 1.3085462383194
520 => 1.2148240001339
521 => 1.2492192743901
522 => 1.2745457735668
523 => 1.2384017365068
524 => 1.3031885239695
525 => 1.2653414202046
526 => 1.2533457052924
527 => 1.2065461446391
528 => 1.2286337357872
529 => 1.2585075190788
530 => 1.2400489942047
531 => 1.27835320488
601 => 1.3326021825561
602 => 1.3712632346305
603 => 1.3742311501526
604 => 1.3493746837581
605 => 1.3892073297872
606 => 1.3894974671272
607 => 1.3445660796852
608 => 1.317045855056
609 => 1.3107932021172
610 => 1.3264135550632
611 => 1.3453795472158
612 => 1.3752836307205
613 => 1.393354042085
614 => 1.4404720911179
615 => 1.4532208842059
616 => 1.467227942617
617 => 1.4859456922711
618 => 1.5084211498634
619 => 1.45924612818
620 => 1.4611999434652
621 => 1.4154088441482
622 => 1.36647448742
623 => 1.403609564423
624 => 1.4521587377321
625 => 1.441021503733
626 => 1.439768337395
627 => 1.4418758155761
628 => 1.4334787048488
629 => 1.3954988842405
630 => 1.3764256560973
701 => 1.4010349865015
702 => 1.414113750376
703 => 1.4343977725574
704 => 1.4318973386798
705 => 1.484146801474
706 => 1.5044493627741
707 => 1.4992550987979
708 => 1.5002109683765
709 => 1.5369677858335
710 => 1.5778489264619
711 => 1.6161395094019
712 => 1.6550903349874
713 => 1.6081335944675
714 => 1.5842918575207
715 => 1.6088904442611
716 => 1.5958380878865
717 => 1.6708407991954
718 => 1.6760338241954
719 => 1.7510311119547
720 => 1.8222124685492
721 => 1.7775047338186
722 => 1.8196621139889
723 => 1.8652587577847
724 => 1.9532220814556
725 => 1.9235991286303
726 => 1.900908411017
727 => 1.8794657925131
728 => 1.9240844776998
729 => 1.9814857033916
730 => 1.9938493776235
731 => 2.0138832531663
801 => 1.9928200826588
802 => 2.0181883515029
803 => 2.1077494879048
804 => 2.083549278271
805 => 2.0491810902132
806 => 2.1198810058595
807 => 2.1454670304929
808 => 2.3250431508756
809 => 2.5517654207781
810 => 2.4579009122998
811 => 2.3996361828985
812 => 2.4133297763657
813 => 2.4961210743009
814 => 2.5227110115333
815 => 2.4504303960347
816 => 2.4759611313785
817 => 2.6166379932492
818 => 2.6921066161888
819 => 2.5896100894485
820 => 2.3068262372434
821 => 2.0460866109091
822 => 2.1152465010713
823 => 2.1074059158082
824 => 2.2585456540924
825 => 2.0829721112748
826 => 2.0859283194524
827 => 2.2401934674645
828 => 2.1990381707491
829 => 2.1323718608422
830 => 2.0465733487487
831 => 1.8879668637422
901 => 1.7474846769029
902 => 2.0230025964102
903 => 2.0111217627243
904 => 1.9939165549061
905 => 2.0322048831075
906 => 2.2181221365224
907 => 2.2138361420758
908 => 2.1865708321399
909 => 2.2072513294208
910 => 2.1287464696801
911 => 2.1489789595577
912 => 2.0460453084201
913 => 2.0925756176233
914 => 2.1322288248825
915 => 2.1401897933155
916 => 2.1581262616923
917 => 2.004861103241
918 => 2.073672659757
919 => 2.1140930024392
920 => 1.9314724236963
921 => 2.1104831807674
922 => 2.0021930978166
923 => 1.9654378172006
924 => 2.01492396041
925 => 1.9956391622744
926 => 1.9790592252788
927 => 1.9698073355558
928 => 2.0061444975425
929 => 2.0044493255035
930 => 1.9449946757541
1001 => 1.8674385088375
1002 => 1.8934689041491
1003 => 1.8840118174962
1004 => 1.8497381154774
1005 => 1.8728344524155
1006 => 1.7711298733287
1007 => 1.596152431154
1008 => 1.7117478891586
1009 => 1.7072975897691
1010 => 1.7050535470119
1011 => 1.7919203388786
1012 => 1.7835701011985
1013 => 1.7684143380433
1014 => 1.8494597680017
1015 => 1.8198770958521
1016 => 1.9110439208632
1017 => 1.9710922881162
1018 => 1.9558620798196
1019 => 2.0123378594599
1020 => 1.8940685918831
1021 => 1.9333528984327
1022 => 1.9414493395669
1023 => 1.8484596799764
1024 => 1.7849363033521
1025 => 1.7807000183508
1026 => 1.6705592373447
1027 => 1.7293955535328
1028 => 1.7811690769662
1029 => 1.7563735770293
1030 => 1.7485240624938
1031 => 1.7886255299038
1101 => 1.7917417573674
1102 => 1.7206914409544
1103 => 1.7354650516075
1104 => 1.7970734639396
1105 => 1.7339126776877
1106 => 1.611201587256
1107 => 1.5807675402154
1108 => 1.5767070773294
1109 => 1.4941675280005
1110 => 1.5828012887647
1111 => 1.544110276954
1112 => 1.6663347196744
1113 => 1.5965207734954
1114 => 1.5935112338109
1115 => 1.5889618731745
1116 => 1.5179166734013
1117 => 1.5334710569936
1118 => 1.5851761970541
1119 => 1.6036251735277
1120 => 1.6017007941335
1121 => 1.5849228136601
1122 => 1.5926036872037
1123 => 1.5678609173261
1124 => 1.5591237303062
1125 => 1.5315467647185
1126 => 1.4910162436358
1127 => 1.4966522611805
1128 => 1.4163506935279
1129 => 1.372598137544
1130 => 1.3604880066971
1201 => 1.3442938336114
1202 => 1.3623171816382
1203 => 1.4161232092761
1204 => 1.3512217243592
1205 => 1.239952680779
1206 => 1.2466401398914
1207 => 1.2616648749925
1208 => 1.2336663805302
1209 => 1.2071681552571
1210 => 1.2302062122631
1211 => 1.1830600516643
1212 => 1.2673622632575
1213 => 1.2650821246881
1214 => 1.2965047759562
1215 => 1.3161540046519
1216 => 1.2708688940217
1217 => 1.2594798111621
1218 => 1.2659675503639
1219 => 1.1587396729766
1220 => 1.2877419707358
1221 => 1.2888575879637
1222 => 1.2793049959471
1223 => 1.3479947370047
1224 => 1.4929515155039
1225 => 1.4384129445596
1226 => 1.4172939614529
1227 => 1.3771467591293
1228 => 1.4306405225206
1229 => 1.4265330361248
1230 => 1.4079574249253
1231 => 1.3967228373124
]
'min_raw' => 1.0491920322186
'max_raw' => 2.6921066161888
'avg_raw' => 1.8706493242037
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$1.04'
'max' => '$2.69'
'avg' => '$1.87'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.64518572076278
'max_diff' => 1.5648037244934
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.032932939006459
]
1 => [
'year' => 2028
'avg' => 0.056522483835588
]
2 => [
'year' => 2029
'avg' => 0.15440923865227
]
3 => [
'year' => 2030
'avg' => 0.11912649766709
]
4 => [
'year' => 2031
'avg' => 0.11699698389341
]
5 => [
'year' => 2032
'avg' => 0.20513253307107
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.032932939006459
'min' => '$0.032932'
'max_raw' => 0.20513253307107
'max' => '$0.205132'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.20513253307107
]
1 => [
'year' => 2033
'avg' => 0.52762196858842
]
2 => [
'year' => 2034
'avg' => 0.33443216001664
]
3 => [
'year' => 2035
'avg' => 0.39446349966521
]
4 => [
'year' => 2036
'avg' => 0.76565460157557
]
5 => [
'year' => 2037
'avg' => 1.8706493242037
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.20513253307107
'min' => '$0.205132'
'max_raw' => 1.8706493242037
'max' => '$1.87'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 1.8706493242037
]
]
]
]
'prediction_2025_max_price' => '$0.0563093'
'last_price' => 0.054599
'sma_50day_nextmonth' => '$0.050521'
'sma_200day_nextmonth' => '$0.097739'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'augmenter'
'sma_200day_date_nextmonth' => '4 févr. 2026'
'sma_50day_date_nextmonth' => '4 févr. 2026'
'daily_sma3' => '$0.054025'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.053439'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.051479'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.050995'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.055069'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.069617'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.1128029'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.053964'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.05327'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.052313'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.052342'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.0576047'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.074515'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.113921'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.089167'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.166262'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.256929'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.054032'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.054949'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.062413'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.08927'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.153813'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.176641'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.15337'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '54.12'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 103.2
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'SELL'
'vwma_10' => '0.051180'
'vwma_10_action' => 'BUY'
'hma_9' => '0.055329'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 136.81
'cci_20_action' => 'SELL'
'adx_14' => 15.57
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.000512'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 71.14
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '-0.009857'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 17
'buy_signals' => 17
'sell_pct' => 50
'buy_pct' => 50
'overall_action' => 'neutral'
'overall_action_label' => 'Neutre'
'overall_action_dir' => 0
'last_updated' => 1767681035
'last_updated_date' => '6 janvier 2026'
]
Prévision du prix de Across Protocol pour 2026
La prévision du prix de Across Protocol pour 2026 suggère que le prix moyen pourrait varier entre $0.018863 à la baisse et $0.0563093 à la hausse. Sur le marché des cryptomonnaies, comparé au prix moyen d'aujourd'hui, Across Protocol pourrait potentiellement gagner 3.13% d'ici 2026 si ACX atteint l'objectif de prix prévu.
Prévision du prix de Across Protocol de 2027 à 2032
La prévision du prix de ACX pour 2027-2032 se situe actuellement dans une fourchette de prix comprise entre $0.032932 à la baisse et $0.205132 à la hausse. Compte tenu de la volatilité des prix sur le marché, si Across Protocol atteint l'objectif de prix le plus élevé, il pourrait gagner 275.71% d'ici 2032 par rapport au prix actuel.
| Prévision du Prix de Across Protocol | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2027 | $0.018159 | $0.032932 | $0.047706 |
| 2028 | $0.032773 | $0.056522 | $0.080271 |
| 2029 | $0.071993 | $0.1544092 | $0.236825 |
| 2030 | $0.061227 | $0.119126 | $0.177025 |
| 2031 | $0.072389 | $0.116996 | $0.1616044 |
| 2032 | $0.110497 | $0.205132 | $0.299767 |
Prévision du prix de Across Protocol de 2032 à 2037
La prévision du prix de Across Protocol pour 2032-2037 est actuellement estimée entre $0.205132 à la baisse et $1.87 à la hausse. Par rapport au prix actuel, Across Protocol pourrait potentiellement gagner 3326.16% d'ici 2037 s'il atteint l'objectif de prix le plus élevé. Veuillez noter que ces informations sont à titre général seulement et ne doivent pas être considérées comme un conseil en investissement à long terme.
| Prévision du Prix de Across Protocol | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2032 | $0.110497 | $0.205132 | $0.299767 |
| 2033 | $0.256771 | $0.527621 | $0.798472 |
| 2034 | $0.206431 | $0.334432 | $0.462432 |
| 2035 | $0.244066 | $0.394463 | $0.54486 |
| 2036 | $0.4040063 | $0.765654 | $1.12 |
| 2037 | $1.04 | $1.87 | $2.69 |
Across Protocol Histogramme des prix potentiels
Prévision du prix de Across Protocol basée sur l'analyse technique
Au 6 janvier 2026, le sentiment global de prévision du prix pour Across Protocol est Neutre, avec 17 indicateurs techniques montrant des signaux haussiers et 17 indiquant des signaux baissiers. La prévision du prix de ACX a été mise à jour pour la dernière fois le 6 janvier 2026.
Moyennes Mobiles Simples sur 50 et 200 jours de Across Protocol et Indice de Force Relative sur 14 jours - RSI (14)
Selon nos indicateurs techniques, le SMA sur 200 jours de Across Protocol devrait augmenter au cours du prochain mois, atteignant $0.097739 d'ici le 4 févr. 2026. Le SMA à court terme sur 50 jours pour Across Protocol devrait atteindre $0.050521 d'ici le 4 févr. 2026.
Le Relative Strength Index (RSI), un oscillateur de momentum, est un outil couramment utilisé pour identifier si une cryptomonnaie est survendue (en dessous de 30) ou surachetée (au-dessus de 70). Actuellement, le RSI est à 54.12, ce qui suggère que le marché de ACX est dans un état NEUTRAL.
Moyennes Mobiles et Oscillateurs Populaires de ACX pour le Samedi 19 Octobre 2024
Les moyennes mobiles (MA) sont des indicateurs largement utilisés sur les marchés financiers, conçus pour lisser les mouvements de prix sur une période donnée. En tant qu'indicateurs retardés, ils sont basés sur des données historiques de prix. Le tableau ci-dessous met en évidence deux types : la moyenne mobile simple (SMA) et la moyenne mobile exponentielle (EMA).
Moyenne Mobile Simple Quotidienne (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 3 | $0.054025 | BUY |
| SMA 5 | $0.053439 | BUY |
| SMA 10 | $0.051479 | BUY |
| SMA 21 | $0.050995 | BUY |
| SMA 50 | $0.055069 | SELL |
| SMA 100 | $0.069617 | SELL |
| SMA 200 | $0.1128029 | SELL |
Moyenne Mobile Exponentielle Quotidienne (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 3 | $0.053964 | BUY |
| EMA 5 | $0.05327 | BUY |
| EMA 10 | $0.052313 | BUY |
| EMA 21 | $0.052342 | BUY |
| EMA 50 | $0.0576047 | SELL |
| EMA 100 | $0.074515 | SELL |
| EMA 200 | $0.113921 | SELL |
Moyenne Mobile Simple Hebdomadaire (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 21 | $0.089167 | SELL |
| SMA 50 | $0.166262 | SELL |
| SMA 100 | $0.256929 | SELL |
| SMA 200 | — | — |
Moyenne Mobile Exponentielle Hebdomadaire (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 21 | $0.08927 | SELL |
| EMA 50 | $0.153813 | SELL |
| EMA 100 | $0.176641 | SELL |
| EMA 200 | $0.15337 | SELL |
Oscillateurs de Across Protocol
Un oscillateur est un outil d'analyse technique qui établit des limites hautes et basses entre deux extrêmes, créant un indicateur de tendance qui fluctue à l'intérieur de ces limites. Les traders utilisent cet indicateur pour identifier les conditions de surachat ou de survente à court terme.
| Période | Valeur | Action |
|---|---|---|
| RSI (14) | 54.12 | NEUTRAL |
| Stoch RSI (14) | 103.2 | SELL |
| Stochastique Rapide (14) | 100 | SELL |
| Indice de Canal des Matières Premières (20) | 136.81 | SELL |
| Indice Directionnel Moyen (14) | 15.57 | NEUTRAL |
| Oscillateur Impressionnant (5, 34) | 0.000512 | BUY |
| Momentum (10) | 0 | SELL |
| MACD (12, 26) | 0 | BUY |
| Plage de Pourcentage de Williams (14) | -0 | SELL |
| Oscillateur Ultime (7, 14, 28) | 71.14 | SELL |
| VWMA (10) | 0.051180 | BUY |
| Moyenne Mobile de Hull (9) | 0.055329 | BUY |
| Nuage Ichimoku B/L (9, 26, 52, 26) | -0.009857 | SELL |
Prévision du cours de Across Protocol basée sur les flux monétaires mondiaux
Définitions des flux monétaires mondiaux utilisés pour la prédiction du cours de Across Protocol
M0 : le total de toutes les devises physiques, plus les comptes à la banque centrale qui peuvent être échangés contre des devises physiques.
M1 : M0 plus le montant des comptes à vue, y compris les comptes de "chèques" et les comptes "courants".
M2 : M1 plus la plupart des comptes d'épargne, comptes du marché monétaire et comptes de certificats de dépôt (CD) de moins de 100 000 $.
Prédictions du cours de Across Protocol par des sociétés Internet ou des niches technologiques
| Comparaison | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Action Facebook | $0.07672 | $0.1078054 | $0.151484 | $0.212861 | $0.2991055 | $0.420293 |
| Action Amazon.com | $0.113924 | $0.2377093 | $0.495994 | $1.03 | $2.15 | $4.50 |
| Action Apple | $0.077444 | $0.109849 | $0.155812 | $0.2210082 | $0.313483 | $0.444652 |
| Action Netflix | $0.086148 | $0.135929 | $0.214474 | $0.3384076 | $0.533954 | $0.842496 |
| Action Google | $0.0707054 | $0.091563 | $0.118574 | $0.153552 | $0.19885 | $0.25751 |
| Action Tesla | $0.123771 | $0.280581 | $0.636056 | $1.44 | $3.26 | $7.40 |
| Action Kodak | $0.040943 | $0.0307032 | $0.023024 | $0.017265 | $0.012947 | $0.0097091 |
| Action Nokia | $0.036169 | $0.02396 | $0.015873 | $0.010515 | $0.006965 | $0.004614 |
Ce calcul montre la valeur potentielle des cryptomonnaies si l'on suppose que leur capitalisation se comportera comme celle de certaines sociétés Internet ou niches technologiques. En extrapolant les données, vous pourrez obtenir une potentielle image des cours futurs pour 2024, 2025, 2026, 2027, 2028, 2029 et 2030.
Aperçu des prévisions relatives à Across Protocol
Vous vous posez peut-être des questions telles que : "Devrais-je investir dans Across Protocol maintenant ?", "Devrais-je acheter ACX aujourd'hui ?", " Across Protocol sera-t-il un bon ou un mauvais investissement à court ou à long terme ?".
Nous mettons régulièrement à jour les prévisions de Across Protocol avec de nouvelles valeurs. Regardez nos prévisions similaires. Nous faisons une prévision des cours futurs pour une grande quantité de devises numériques comme Across Protocol en utilisant des méthodes d'analyse technique.
Si vous souhaitez trouver des cryptomonnaies ayant un bon rendement, vous devriez consulter un maximum d'informations disponibles à propos de Across Protocol afin de prendre une décision responsable concernant cet investissement.
Le cours de Across Protocol est de $0.05459 USD actuellement, mais ce cours peut subir une hausse ou une baisse, ce qui pourrait causer la perte de votre investissement, car les cryptomonnaies sont des actifs à haut risque.
Prévision à court terme de Across Protocol
basée sur l'historique des cours sur 4 heures
Prévision à long terme de Across Protocol
basée sur l'historique des cours sur 1 mois
Prévision du cours de Across Protocol basée sur le modèle de croissance du Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si Across Protocol présente 1 % de la précédente croissance annuelle moyenne du Bitcoin | $0.056018 | $0.057474 | $0.058968 | $0.060501 |
| Si Across Protocol présente 2 % de la précédente croissance annuelle moyenne du Bitcoin | $0.057437 | $0.060423 | $0.063564 | $0.066869 |
| Si Across Protocol présente 5 % de la précédente croissance annuelle moyenne du Bitcoin | $0.061695 | $0.069713 | $0.078773 | $0.089011 |
| Si Across Protocol présente 10 % de la précédente croissance annuelle moyenne du Bitcoin | $0.068791 | $0.086672 | $0.10920088 | $0.137585 |
| Si Across Protocol présente 20 % de la précédente croissance annuelle moyenne du Bitcoin | $0.082983 | $0.126122 | $0.191689 | $0.291342 |
| Si Across Protocol présente 50 % de la précédente croissance annuelle moyenne du Bitcoin | $0.125559 | $0.288743 | $0.664012 | $1.52 |
| Si Across Protocol présente 100 % de la précédente croissance annuelle moyenne du Bitcoin | $0.196519 | $0.707336 | $2.54 | $9.16 |
Boîte à questions
Est-ce que ACX est un bon investissement ?
La décision d'acquérir Across Protocol dépend entièrement de votre tolérance individuelle au risque. Comme vous pouvez le discerner, la valeur de Across Protocol a connu une hausse de 4.117% au cours des 24 heures précédentes, et Across Protocol a enregistré une déclin de sur une période de 30 jours précédents. Par conséquent, la détermination de si investir ou non dans Across Protocol dépendra de la mesure dans laquelle cet investissement s'aligne avec vos aspirations de trading.
Est-ce que Across Protocol peut monter ?
Il semble que la valeur moyenne de Across Protocol pourrait potentiellement s'envoler jusqu'à $0.0563093 pour la fin de cette année. En regardant les perspectives de Across Protocol sur une période de cinq ans plus longue, la monnaie numérique pourrait potentiellement croître jusqu'à $0.177025. Cependant, compte tenu de l'imprévisibilité du marché, il est essentiel de mener des recherches approfondies avant d'investir des fonds dans un projet, un réseau ou un actif particulier.
Quel sera le prix de Across Protocol la semaine prochaine ?
Basé sur notre nouveau pronostic expérimental de Across Protocol, le prix de Across Protocol va augmenter de 0.86% durant la prochaine semaine et atteindre $0.0550662 d'ici 13 janvier 2026.
Quel sera le prix de Across Protocol le mois prochain ?
Basé sur notre nouveau pronostic expérimental de Across Protocol, le prix de Across Protocol va diminuer de -11.62% durant le prochain mois et atteindre $0.048255 d'ici 5 février 2026.
Jusqu'où le prix de Across Protocol peut-il monter cette année en 2026 ?
Selon notre prédiction la plus récente sur la valeur de Across Protocol en 2026, ACX devrait fluctuer dans la fourchette de $0.018863 et $0.0563093. Cependant, il est crucial de garder à l'esprit que le marché des cryptomonnaies est exceptionnellement instable, et cette prévision de prix de Across Protocol ne prend pas en compte les fluctuations de prix soudaines et extrêmes.
Où sera Across Protocol dans 5 ans ?
L'avenir de Across Protocol semble suivre une tendance haussière, avec un prix maximum de $0.177025 prévue après une période de cinq ans. Selon la prévision de Across Protocol pour 2030, la valeur de Across Protocol pourrait potentiellement atteindre son point le plus élevé d'environ $0.177025, tandis que son point le plus bas devrait être autour de $0.061227.
Combien vaudra Across Protocol en 2026 ?
Basé sur notre nouvelle simulation expérimentale de prédiction de prix de Across Protocol, il est attendu que la valeur de ACX en 2026 augmente de 3.13% jusqu'à $0.0563093 si le meilleur scénario se produit. Le prix sera entre $0.0563093 et $0.018863 durant 2026.
Combien vaudra Across Protocol en 2027 ?
Selon notre dernière simulation expérimentale pour la prédiction de prix de Across Protocol, le valeur de ACX pourrait diminuer de -12.62% jusqu'à $0.047706 en 2027, en supposant les conditions les plus favorables. Il est prévu que le prix fluctue entre $0.047706 et $0.018159 tout au long de l'année.
Combien vaudra Across Protocol en 2028 ?
Notre nouveau modèle expérimental de prédiction de prix de Across Protocol suggère que la valeur de ACX en 2028 pourrait augmenter de 47.02%, atteignant $0.080271 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.080271 et $0.032773 durant l'année.
Combien vaudra Across Protocol en 2029 ?
Basé sur notre modèle de prévision expérimental, la valeur de Across Protocol pourrait connaître un 333.75% croissance en 2029, atteignant potentiellement $0.236825 sous des conditions optimales. Le range de prix prévu pour 2029 se situe entre $0.236825 et $0.071993.
Combien vaudra Across Protocol en 2030 ?
En utilisant notre nouvelle simulation expérimentale pour les prédictions de prix de Across Protocol, il est prévu que la valeur de ACX en 2030 augmente de 224.23%, atteignant $0.177025 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.177025 et $0.061227 au cours de 2030.
Combien vaudra Across Protocol en 2031 ?
Notre simulation expérimentale indique que le prix de Across Protocol pourrait augmenter de 195.98% en 2031, atteignant potentiellement $0.1616044 dans des conditions idéales. Il est probable que le prix fluctue entre $0.1616044 et $0.072389 durant l'année.
Combien vaudra Across Protocol en 2032 ?
Basé sur les résultats de notre dernière prédiction expérimentale de prix de Across Protocol, ACX pourrait connaître une 449.04% hausse en valeur, atteignant $0.299767 si le scénario le plus positif se réalise en 2032. Il est prévu que le prix reste dans une fourchette de $0.299767 et $0.110497 tout au long de l'année.
Combien vaudra Across Protocol en 2033 ?
Selon notre prédiction expérimentale de prix de Across Protocol, la valeur de ACX est anticipée à augmenter de 1362.43% en 2033, avec le prix potentiel le plus élevé étant $0.798472. Tout au long de l'année, le prix de ACX pourrait osciller entre $0.798472 et $0.256771.
Combien vaudra Across Protocol en 2034 ?
Les résultats de notre nouvelle simulation de prédiction de prix de Across Protocol suggèrent que ACX pourrait augmenter de 746.96% en 2034, atteignant potentiellement $0.462432 dans les meilleures circonstances. La fourchette de prix prévue pour l'année est entre $0.462432 et $0.206431.
Combien vaudra Across Protocol en 2035 ?
Basé sur notre prédiction expérimentale pour le prix de Across Protocol, ACX pourrait augmenter de 897.93%, avec la valeur potentiellement atteignant $0.54486 en 2035. La fourchette de prix attendue pour l'année se situe entre $0.54486 et $0.244066.
Combien vaudra Across Protocol en 2036 ?
Notre récente simulation de prédiction de prix de Across Protocol suggère que la valeur de ACX pourrait augmenter de 1964.7% en 2036, pouvant atteindre $1.12 si les conditions sont optimales. La fourchette de prix attendue pour 2036 est entre $1.12 et $0.4040063.
Combien vaudra Across Protocol en 2037 ?
Selon la simulation expérimentale, la valeur de Across Protocol pourrait augmenter de 4830.69% en 2037, avec un maximum de $2.69 sous des conditions favorables. Il est prévu que le prix chute entre $2.69 et $1.04 au cours de l'année.
Prévisions liées
Prévision du cours de Alien Worlds
Prévision du cours de MovieBloc
Prévision du cours de REN
Prévision du cours de Moonwell
Prévision du cours de Pandora
Prévision du cours de TomoChain
Prévision du cours de NORMIE
Prévision du cours de QuarkChain
Prévision du cours de PepeFork
Prévision du cours de Star Atlas DAO
Prévision du cours de Uquid Coin
Prévision du cours de Artrade
Prévision du cours de Vaiot
Prévision du cours de HarryPotterObamaSonic10Inu (ETH)
Prévision du cours de Elastos
Prévision du cours de SWEAT
Prévision du cours de Magic Internet Money
Prévision du cours de Polymath
Prévision du cours de Neon
Prévision du cours de Rally
Prévision du cours de Cortex
Prévision du cours de Celsius Network
Prévision du cours de Loom Network
Prévision du cours de Boson Protocol
Prévision du cours de Ultra
Comment lire et prédire les mouvements de prix de Across Protocol ?
Les traders de Across Protocol utilisent des indicateurs et des modèles graphiques pour prédire la direction du marché. Ils identifient également des niveaux clés de support et de résistance pour évaluer quand une tendance baissière pourrait ralentir ou une tendance haussière pourrait s'arrêter.
Indicateurs de prédiction du prix de Across Protocol
Les moyennes mobiles sont des outils populaires pour la prédiction du prix de Across Protocol. Une moyenne mobile simple (SMA) calcule le prix de clôture moyen de ACX sur une période spécifique, comme une SMA de 12 jours. Une moyenne mobile exponentielle (EMA) donne plus de poids aux prix récents, réagissant plus rapidement aux changements de prix.
Les moyennes mobiles couramment utilisées sur le marché des cryptomonnaies incluent les moyennes sur 50 jours, 100 jours et 200 jours, qui aident à identifier les niveaux clés de résistance et de support. Un mouvement de prix de ACX au-dessus de ces moyennes est considéré comme haussier, tandis qu'une chute en dessous indique une faiblesse.
Les traders utilisent également le RSI et les niveaux de retracement de Fibonacci pour évaluer la direction future de ACX.
Comment lire les graphiques de Across Protocol et prédire les mouvements de prix ?
La plupart des traders préfèrent les graphiques en chandeliers aux simples graphiques linéaires parce qu'ils fournissent des informations plus détaillées. Les chandeliers peuvent représenter l'action des prix de Across Protocol dans différentes périodes, comme 5 minutes pour les tendances à court terme et hebdomadaire pour les tendances à long terme. Les options populaires incluent les graphiques de 1 heure, 4 heures et 1 jour.
Par exemple, un graphique en chandeliers de 1 heure montre les prix d'ouverture, de clôture, les plus hauts et les plus bas de ACX au sein de chaque heure. La couleur du chandelier est cruciale : le vert indique que le prix a clôturé plus haut qu'il n'a ouvert, tandis que le rouge signifie le contraire. Certains graphiques utilisent des chandeliers creux et pleins pour transmettre la même information.
Qu'est-ce qui affecte le prix de Across Protocol ?
L'action du prix de Across Protocol est déterminée par l'offre et la demande, influencée par des facteurs tels que les réductions de récompenses de bloc, les hard forks et les mises à jour de protocole. Les événements du monde réel, tels que les réglementations, l'adoption par les entreprises et les gouvernements et les piratages d'échanges de cryptomonnaies, impactent également le prix de ACX. La capitalisation boursière de Across Protocol peut changer rapidement.
Les traders surveillent souvent l'activité des « baleines » de ACX, de grands détenteurs de Across Protocol, car leurs actions peuvent influencer significativement les mouvements de prix sur le marché relativement petit de Across Protocol.
Modèles de prédiction de prix haussiers et baissiers
Les traders identifient souvent des modèles de chandeliers pour obtenir un avantage dans les prédictions de prix des cryptomonnaies. Certaines formations indiquent des tendances haussières, tandis que d'autres suggèrent des mouvements baissiers.
Modèles de chandeliers haussiers couramment suivis :
- Marteau
- Englobante haussière
- Ligne pénétrante
- Étoile du matin
- Trois soldats blancs
Modèles de chandeliers baissiers courants :
- Harami baissier
- Nuage sombre
- Étoile du soir
- Étoile filante
- Pendu


