Prédiction du prix de Across Protocol jusqu'à $0.056578 d'ici 2026
| Année | Prix min. | Prix max. |
|---|---|---|
| 2026 | $0.018954 | $0.056578 |
| 2027 | $0.018246 | $0.047934 |
| 2028 | $0.032929 | $0.080655 |
| 2029 | $0.072337 | $0.237957 |
| 2030 | $0.061519 | $0.177872 |
| 2031 | $0.072735 | $0.162376 |
| 2032 | $0.111025 | $0.30120095 |
| 2033 | $0.257998 | $0.802289 |
| 2034 | $0.207418 | $0.464643 |
| 2035 | $0.245232 | $0.547465 |
Calculateur de profit d’investissement
Si vous ouvrez une position short de $10,000.00 sur Across Protocol aujourd’hui et la fermez le Apr 06, 2026, notre prévision indique que vous pourriez gagner environ $3,954.43, soit un rendement de 39.54% sur les 90 prochains jours.
Prévision du prix à long terme de Across Protocol pour 2027, 2028, 2029, 2030, 2031, 2032 et 2037
[
'name' => 'Across Protocol'
'name_with_ticker' => 'Across Protocol <small>ACX</small>'
'name_lang' => 'Across Protocol'
'name_lang_with_ticker' => 'Across Protocol <small>ACX</small>'
'name_with_lang' => 'Across Protocol'
'name_with_lang_with_ticker' => 'Across Protocol <small>ACX</small>'
'image' => '/uploads/coins/across-protocol.png?1717131587'
'price_for_sd' => 0.05485
'ticker' => 'ACX'
'marketcap' => '$36.15M'
'low24h' => '$0.05209'
'high24h' => '$0.0558'
'volume24h' => '$2.41M'
'current_supply' => '660.73M'
'max_supply' => '1B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.05485'
'change_24h_pct' => '3.9002%'
'ath_price' => '$1.69'
'ath_days' => 396
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '6 déc. 2024'
'ath_pct' => '-96.76%'
'fdv' => '$54.71M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$2.70'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.055329'
'next_week_prediction_price_date' => '13 janvier 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.048486'
'next_month_prediction_price_date' => '5 février 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.018954'
'current_year_max_price_prediction' => '$0.056578'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.061519'
'grand_prediction_max_price' => '$0.177872'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.05589956814364
107 => 0.056108276839545
108 => 0.05657850818835
109 => 0.052560432797512
110 => 0.054364430683503
111 => 0.055424110429779
112 => 0.050636438784623
113 => 0.055329473554892
114 => 0.052490487044369
115 => 0.051526892382551
116 => 0.052824245650745
117 => 0.052318665820413
118 => 0.051883997970936
119 => 0.051641445842387
120 => 0.052594078898894
121 => 0.052549637428165
122 => 0.050990944849611
123 => 0.048957693921324
124 => 0.049640119672044
125 => 0.049392187999032
126 => 0.048493651632214
127 => 0.049099156653755
128 => 0.04643281897797
129 => 0.041845523590954
130 => 0.044876031436274
131 => 0.044759360180787
201 => 0.044700529243151
202 => 0.046977872131824
203 => 0.046758958160318
204 => 0.046361627158423
205 => 0.048486354336774
206 => 0.047710800335062
207 => 0.050100875024833
208 => 0.051675132795855
209 => 0.05127585010322
210 => 0.052756447145914
211 => 0.049655841383034
212 => 0.050685738242751
213 => 0.050897998558164
214 => 0.048460135533206
215 => 0.046794775193411
216 => 0.046683714645245
217 => 0.043796209316833
218 => 0.045338691356142
219 => 0.04669601171849
220 => 0.04604596059724
221 => 0.045840173831978
222 => 0.046891493786001
223 => 0.046973190350376
224 => 0.045110500024831
225 => 0.045497812327243
226 => 0.047112969013613
227 => 0.045457114522812
228 => 0.042240059729481
301 => 0.041442185661473
302 => 0.041335734553064
303 => 0.039171836800434
304 => 0.04149550342188
305 => 0.040481160671225
306 => 0.043685457266852
307 => 0.041855180236417
308 => 0.041776280651764
309 => 0.041657012357507
310 => 0.039794456172329
311 => 0.040202237605262
312 => 0.041557765195198
313 => 0.042041432710399
314 => 0.041990982225993
315 => 0.041551122370502
316 => 0.041752487959899
317 => 0.04110381923603
318 => 0.040874760808761
319 => 0.040151789404813
320 => 0.039089221166957
321 => 0.039236977797541
322 => 0.037131752082246
323 => 0.035984713379767
324 => 0.035667228184649
325 => 0.035242673713116
326 => 0.035715182741905
327 => 0.037125788242302
328 => 0.035424298732171
329 => 0.032507214312665
330 => 0.032682536056747
331 => 0.033076431962207
401 => 0.032342409548264
402 => 0.031647718935299
403 => 0.032251696061242
404 => 0.031015688937452
405 => 0.033225797518023
406 => 0.033166020274676
407 => 0.033989812081316
408 => 0.034504946003917
409 => 0.033317729088909
410 => 0.033019147245361
411 => 0.033189233033234
412 => 0.030378093830461
413 => 0.033760082034599
414 => 0.033789329609028
415 => 0.033538894120046
416 => 0.035339698431578
417 => 0.039139957213861
418 => 0.03771014699491
419 => 0.03715648126189
420 => 0.036103962298692
421 => 0.037506381324762
422 => 0.037398697424704
423 => 0.036911709990739
424 => 0.036617178471183
425 => 0.037159861826794
426 => 0.036549933997812
427 => 0.036440374200031
428 => 0.035776561027714
429 => 0.035539609926772
430 => 0.035364180764929
501 => 0.035171050495054
502 => 0.035597047745334
503 => 0.034631681931594
504 => 0.033467545396202
505 => 0.033370760039416
506 => 0.033637992918958
507 => 0.033519762262908
508 => 0.033370193996521
509 => 0.033084627443494
510 => 0.032999905947375
511 => 0.033275209708736
512 => 0.032964407813366
513 => 0.033423012940239
514 => 0.033298297721509
515 => 0.032601648647734
516 => 0.031733365969288
517 => 0.031725636432166
518 => 0.031538566353364
519 => 0.031300304481835
520 => 0.031234025479868
521 => 0.032200830792324
522 => 0.034202088855059
523 => 0.033809194011297
524 => 0.034093100801398
525 => 0.035489641215817
526 => 0.035933559418125
527 => 0.035618476792905
528 => 0.035187172262055
529 => 0.035206147472505
530 => 0.036680045619181
531 => 0.036771970838669
601 => 0.037004236212115
602 => 0.03730276285518
603 => 0.035669317171085
604 => 0.035129212327677
605 => 0.034873280688995
606 => 0.034085110299862
607 => 0.034935084491919
608 => 0.034439840929731
609 => 0.0345066662062
610 => 0.034463146157234
611 => 0.034486911046782
612 => 0.033225179747633
613 => 0.033684888318398
614 => 0.032920533657557
615 => 0.031897148569529
616 => 0.031893717823869
617 => 0.032144189874335
618 => 0.031995199297745
619 => 0.03159426948704
620 => 0.031651219674316
621 => 0.031152276107981
622 => 0.031711800456933
623 => 0.031727845613187
624 => 0.031512398261343
625 => 0.032374422720386
626 => 0.0327275948446
627 => 0.032585782782287
628 => 0.032717644932266
629 => 0.033825520565869
630 => 0.034006152634149
701 => 0.034086377466995
702 => 0.033978886818736
703 => 0.032737894865093
704 => 0.032792938135342
705 => 0.032389067140036
706 => 0.03204783870788
707 => 0.032061486055659
708 => 0.032236921826378
709 => 0.033003060126283
710 => 0.034615353012112
711 => 0.034676538348558
712 => 0.034750696761233
713 => 0.034449057227851
714 => 0.034358079858281
715 => 0.034478102491995
716 => 0.03508359492958
717 => 0.036641085868641
718 => 0.036090564549455
719 => 0.035642982147581
720 => 0.036035632581373
721 => 0.035975187124787
722 => 0.03546496664104
723 => 0.035450646451403
724 => 0.034471370215736
725 => 0.034109354088451
726 => 0.033806826316054
727 => 0.033476473886284
728 => 0.033280629892403
729 => 0.033581535276508
730 => 0.03365035589806
731 => 0.032992421016789
801 => 0.032902746923624
802 => 0.033440030750182
803 => 0.033203592170074
804 => 0.033446775113109
805 => 0.033503195641878
806 => 0.033494110637271
807 => 0.033247241604841
808 => 0.033404588564372
809 => 0.033032416097695
810 => 0.032627734438681
811 => 0.032369572752789
812 => 0.032144292441669
813 => 0.032269291051647
814 => 0.031823693830921
815 => 0.03168113831191
816 => 0.033351282954901
817 => 0.034585036759759
818 => 0.034567097490816
819 => 0.034457896804733
820 => 0.034295646735763
821 => 0.035071725326441
822 => 0.03480135506363
823 => 0.034998072020017
824 => 0.035048144741602
825 => 0.035199699788901
826 => 0.035253867691714
827 => 0.035090134667386
828 => 0.034540626639436
829 => 0.03317130487944
830 => 0.032533881903749
831 => 0.032323521704651
901 => 0.032331167898357
902 => 0.032120251741826
903 => 0.032182376002524
904 => 0.032098647459229
905 => 0.03194008585434
906 => 0.03225950031936
907 => 0.032296309860902
908 => 0.032221754708047
909 => 0.032239315145481
910 => 0.031622030322769
911 => 0.031668961147168
912 => 0.031407644353236
913 => 0.031358650604595
914 => 0.030698064504991
915 => 0.029527740476056
916 => 0.030176213594188
917 => 0.029392949256604
918 => 0.029096315183569
919 => 0.030500534749252
920 => 0.030359590051846
921 => 0.030118353997073
922 => 0.029761515594065
923 => 0.029629160759288
924 => 0.028825014681635
925 => 0.028777501441415
926 => 0.02917605795127
927 => 0.028992137835464
928 => 0.028733844336877
929 => 0.027798331467789
930 => 0.026746505265266
1001 => 0.026778253286777
1002 => 0.027112819631877
1003 => 0.028085616402674
1004 => 0.027705527874769
1005 => 0.02742976928676
1006 => 0.027378127992499
1007 => 0.028024526908552
1008 => 0.028939316799526
1009 => 0.029368515749101
1010 => 0.028943192625038
1011 => 0.028454604321138
1012 => 0.028484342427296
1013 => 0.028682176724661
1014 => 0.028702966312087
1015 => 0.028384945553937
1016 => 0.028474466534539
1017 => 0.028338475979035
1018 => 0.027503902190923
1019 => 0.027488807397558
1020 => 0.027283989530635
1021 => 0.027277787727025
1022 => 0.026929341441178
1023 => 0.026880591397092
1024 => 0.026188730147365
1025 => 0.026644115317084
1026 => 0.026338666854031
1027 => 0.025878283972201
1028 => 0.025798913789845
1029 => 0.025796527826321
1030 => 0.026269238106231
1031 => 0.026638591422238
1101 => 0.026343980260819
1102 => 0.026276903010162
1103 => 0.026993112558787
1104 => 0.026901968365329
1105 => 0.026823038081612
1106 => 0.028857407398293
1107 => 0.027247045340323
1108 => 0.026544835566795
1109 => 0.025675717626035
1110 => 0.025958706810019
1111 => 0.026018336789061
1112 => 0.023928264811817
1113 => 0.023080322870951
1114 => 0.022789341150864
1115 => 0.022621877057076
1116 => 0.022698192547497
1117 => 0.021934945347048
1118 => 0.022447860088693
1119 => 0.021786952528784
1120 => 0.021676149225586
1121 => 0.02285793381344
1122 => 0.023022372234954
1123 => 0.022320826841761
1124 => 0.022771332554073
1125 => 0.022607972920291
1126 => 0.021798281891979
1127 => 0.021767357650382
1128 => 0.021361083154391
1129 => 0.020725342238409
1130 => 0.0204347915806
1201 => 0.020283470275336
1202 => 0.020345908395081
1203 => 0.0203143377711
1204 => 0.02010831809443
1205 => 0.020326146577809
1206 => 0.019769684815719
1207 => 0.019548097258338
1208 => 0.019448011299461
1209 => 0.018954119456862
1210 => 0.019740121013136
1211 => 0.019894973221509
1212 => 0.020050130536568
1213 => 0.021400669033762
1214 => 0.021333199947024
1215 => 0.021943087632354
1216 => 0.021919388518414
1217 => 0.021745438671032
1218 => 0.02101157287829
1219 => 0.021304078703377
1220 => 0.020403791239257
1221 => 0.021078347820973
1222 => 0.020770508367234
1223 => 0.020974266992005
1224 => 0.020607890612492
1225 => 0.020810658428225
1226 => 0.019931694424752
1227 => 0.019110930205666
1228 => 0.019441229687028
1229 => 0.019800302997595
1230 => 0.020578865425082
1231 => 0.020115160066271
]
'min_raw' => 0.018954119456862
'max_raw' => 0.05657850818835
'avg_raw' => 0.037766313822606
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.018954'
'max' => '$0.056578'
'avg' => '$0.037766'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.035905880543138
'max_diff' => 0.0017185081883496
'year' => 2026
]
1 => [
'items' => [
101 => 0.020281926047941
102 => 0.019723287925636
103 => 0.018570657912232
104 => 0.018577181672933
105 => 0.018399874656781
106 => 0.018246655507577
107 => 0.02016842220483
108 => 0.019929420137391
109 => 0.019548601622744
110 => 0.020058342337725
111 => 0.020193125873439
112 => 0.020196962971218
113 => 0.020568856638556
114 => 0.02076733635548
115 => 0.020802319265848
116 => 0.021387501986699
117 => 0.021583647515982
118 => 0.022391543191543
119 => 0.0207504967382
120 => 0.020716700466414
121 => 0.020065515434933
122 => 0.01965252359314
123 => 0.02009379333967
124 => 0.020484698095769
125 => 0.020077661935348
126 => 0.020130812264896
127 => 0.019584399475606
128 => 0.019779716336666
129 => 0.019947949529433
130 => 0.019855061048677
131 => 0.019716002497132
201 => 0.020452648363588
202 => 0.020411083916864
203 => 0.021097065483123
204 => 0.021631837169035
205 => 0.022590243632061
206 => 0.021590096525034
207 => 0.021553647189229
208 => 0.021909945293378
209 => 0.021583592968599
210 => 0.02178983637256
211 => 0.022557014631172
212 => 0.022573223898873
213 => 0.022301697780423
214 => 0.022285175391439
215 => 0.022337324952657
216 => 0.022642766561577
217 => 0.022536035878148
218 => 0.022659547327102
219 => 0.022814000285294
220 => 0.023452883207074
221 => 0.023606915716587
222 => 0.02323269657517
223 => 0.023266484373686
224 => 0.023126516142251
225 => 0.022991308584481
226 => 0.023295235428869
227 => 0.023850667710685
228 => 0.023847212395286
301 => 0.023976061888607
302 => 0.024056334055499
303 => 0.023711747152381
304 => 0.023487433749264
305 => 0.023573449781452
306 => 0.023710991290106
307 => 0.023528846923933
308 => 0.022404567518438
309 => 0.022745602070819
310 => 0.022688837245565
311 => 0.022607997231565
312 => 0.022950910111126
313 => 0.022917835327351
314 => 0.021927117143828
315 => 0.02199053970756
316 => 0.02193097407999
317 => 0.022123442808648
318 => 0.021573199025623
319 => 0.021742450307333
320 => 0.021848603124589
321 => 0.021911127949457
322 => 0.022137010490556
323 => 0.022110505781484
324 => 0.022135362920625
325 => 0.022470287098294
326 => 0.024164218656843
327 => 0.024256415614126
328 => 0.023802404077014
329 => 0.023983772731109
330 => 0.023635584576211
331 => 0.023869325617252
401 => 0.024029245301153
402 => 0.02330659900039
403 => 0.023263808576395
404 => 0.022914183325125
405 => 0.023102052131371
406 => 0.022803139352388
407 => 0.022876482092825
408 => 0.022671409396658
409 => 0.023040499420193
410 => 0.023453199417297
411 => 0.023557463734582
412 => 0.023283189204415
413 => 0.023084596369003
414 => 0.022735932770565
415 => 0.023315768105242
416 => 0.023485329627263
417 => 0.023314877470751
418 => 0.023275379981634
419 => 0.023200532311128
420 => 0.02329125926876
421 => 0.023484406158799
422 => 0.02339332165232
423 => 0.023453484573552
424 => 0.02322420555755
425 => 0.023711861224985
426 => 0.024486375785598
427 => 0.024488865976556
428 => 0.024397780979098
429 => 0.024360510960591
430 => 0.024453969695484
501 => 0.024504667225285
502 => 0.024806895636527
503 => 0.0251311987631
504 => 0.026644579950279
505 => 0.026219628568812
506 => 0.027562390389527
507 => 0.028624340653911
508 => 0.028942773104743
509 => 0.028649830233383
510 => 0.02764768849492
511 => 0.027598518640261
512 => 0.029096141490853
513 => 0.028672994440089
514 => 0.028622662444843
515 => 0.028087215052678
516 => 0.028403730777897
517 => 0.028334504145786
518 => 0.028225226520316
519 => 0.028829116475358
520 => 0.029959544561569
521 => 0.029783356743246
522 => 0.029651840709985
523 => 0.029075575735978
524 => 0.029422615963772
525 => 0.029299041585772
526 => 0.029829995535897
527 => 0.029515470177913
528 => 0.028669788685003
529 => 0.028804466250151
530 => 0.028784110007113
531 => 0.029203040046388
601 => 0.02907728764708
602 => 0.028759554832894
603 => 0.029955680881264
604 => 0.029878011108886
605 => 0.029988129088336
606 => 0.030036606428402
607 => 0.03076466727594
608 => 0.031062930509827
609 => 0.031130641485753
610 => 0.031413968489439
611 => 0.031123592051796
612 => 0.032285304837261
613 => 0.033057776051775
614 => 0.033955041118439
615 => 0.035266186542948
616 => 0.035759189351337
617 => 0.035670132806698
618 => 0.036664228303665
619 => 0.038450595814213
620 => 0.036031208754782
621 => 0.038578829203094
622 => 0.037772281982851
623 => 0.035859973032819
624 => 0.035736842881079
625 => 0.037031880704403
626 => 0.039904149953766
627 => 0.039184679083809
628 => 0.039905326750366
629 => 0.039064652967873
630 => 0.039022906428817
701 => 0.039864497101169
702 => 0.04183091957984
703 => 0.040896745970468
704 => 0.039557379032667
705 => 0.040546346736682
706 => 0.039689611386823
707 => 0.037759146858468
708 => 0.039184128917994
709 => 0.038231283995941
710 => 0.038509374800218
711 => 0.040512113101388
712 => 0.040271138330403
713 => 0.04058298199772
714 => 0.040032586087275
715 => 0.03951842951745
716 => 0.038558718098103
717 => 0.038274594860036
718 => 0.038353116301354
719 => 0.038274555948709
720 => 0.037737606229788
721 => 0.03762165198911
722 => 0.037428389841242
723 => 0.03748828986206
724 => 0.037124900483233
725 => 0.037810691321157
726 => 0.037937980143844
727 => 0.038437041525474
728 => 0.038488855733688
729 => 0.039878734577836
730 => 0.039113212666444
731 => 0.039626790856588
801 => 0.039580851589276
802 => 0.035901418566394
803 => 0.036408411973035
804 => 0.037197134610472
805 => 0.036841816131395
806 => 0.036339478933699
807 => 0.035933814712943
808 => 0.035319191937201
809 => 0.036184261691273
810 => 0.037321736427965
811 => 0.03851770397013
812 => 0.039954580609143
813 => 0.039633886470404
814 => 0.038490842560834
815 => 0.038542118675623
816 => 0.038859087440842
817 => 0.038448584090234
818 => 0.038327518638162
819 => 0.038842454906814
820 => 0.038846000989892
821 => 0.038373667274031
822 => 0.037848754785008
823 => 0.037846555382512
824 => 0.037753152275144
825 => 0.039081269173177
826 => 0.039811599179332
827 => 0.039895330337552
828 => 0.039805963405249
829 => 0.039840357190645
830 => 0.039415394251788
831 => 0.040386733511171
901 => 0.041278130471079
902 => 0.041039217043905
903 => 0.040681051853027
904 => 0.04039575602692
905 => 0.040972010414106
906 => 0.040946350713353
907 => 0.041270344896271
908 => 0.041255646648653
909 => 0.041146699590975
910 => 0.041039220934748
911 => 0.041465361657854
912 => 0.04134263997321
913 => 0.041219727667893
914 => 0.040973208222647
915 => 0.041006714309511
916 => 0.040648610960903
917 => 0.040482935966142
918 => 0.037991581554842
919 => 0.037325810248788
920 => 0.037535275454697
921 => 0.037604236839244
922 => 0.03731449231364
923 => 0.037729911534094
924 => 0.037665168888624
925 => 0.037917044648967
926 => 0.037759683609079
927 => 0.037766141761046
928 => 0.038228907026445
929 => 0.038363249751734
930 => 0.038294921957373
1001 => 0.038342776402404
1002 => 0.039445561890038
1003 => 0.039288781058791
1004 => 0.039205494366949
1005 => 0.039228565349781
1006 => 0.039510350685858
1007 => 0.039589235195051
1008 => 0.039254995986485
1009 => 0.039412625129459
1010 => 0.040083790014124
1011 => 0.040318659739114
1012 => 0.041068251157419
1013 => 0.040749811399998
1014 => 0.041334321356495
1015 => 0.043130905688636
1016 => 0.04456614156733
1017 => 0.043246239339652
1018 => 0.045881867254686
1019 => 0.04793408164491
1020 => 0.047855314238472
1021 => 0.047497463190962
1022 => 0.045161071668634
1023 => 0.043011089356153
1024 => 0.044809640853615
1025 => 0.044814225731257
1026 => 0.044659728562569
1027 => 0.043700159916717
1028 => 0.044626337653679
1029 => 0.044699854279056
1030 => 0.044658704518493
1031 => 0.043923005487546
1101 => 0.042799729047198
1102 => 0.043019214574898
1103 => 0.043378736346654
1104 => 0.042698086628621
1105 => 0.042480577801689
1106 => 0.042884968093704
1107 => 0.044187997872638
1108 => 0.043941667640868
1109 => 0.043935234963018
1110 => 0.044989140154805
1111 => 0.044234771484461
1112 => 0.043021982990292
1113 => 0.0427157379008
1114 => 0.041628774144513
1115 => 0.042379543882612
1116 => 0.042406562748917
1117 => 0.041995373836041
1118 => 0.043055348704381
1119 => 0.043045580849364
1120 => 0.044051869230415
1121 => 0.045975514670327
1122 => 0.045406598056902
1123 => 0.04474500993344
1124 => 0.044816942906309
1125 => 0.045605870072978
1126 => 0.045128866698554
1127 => 0.045300400437783
1128 => 0.04560561043612
1129 => 0.045789751206054
1130 => 0.044790447883281
1201 => 0.044557462476539
1202 => 0.044080856101111
1203 => 0.043956518394041
1204 => 0.044344704342109
1205 => 0.044242431059605
1206 => 0.042404291917826
1207 => 0.042212196150201
1208 => 0.042218087453144
1209 => 0.041735053511794
1210 => 0.040998310809806
1211 => 0.04293442664201
1212 => 0.04277892944476
1213 => 0.042607272573524
1214 => 0.04262829956079
1215 => 0.043468701822496
1216 => 0.042981226069375
1217 => 0.044277260254752
1218 => 0.044010834588592
1219 => 0.043737576109411
1220 => 0.043699803463932
1221 => 0.043594622262765
1222 => 0.043233916787763
1223 => 0.04279834325166
1224 => 0.042510739874391
1225 => 0.039213910424918
1226 => 0.039825782793966
1227 => 0.040529686180634
1228 => 0.040772670808996
1229 => 0.040357028788158
1230 => 0.043250328868114
1231 => 0.043778962673255
]
'min_raw' => 0.018246655507577
'max_raw' => 0.04793408164491
'avg_raw' => 0.033090368576244
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.018246'
'max' => '$0.047934'
'avg' => '$0.03309'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00070746394928565
'max_diff' => -0.0086444265434391
'year' => 2027
]
2 => [
'items' => [
101 => 0.042177696395552
102 => 0.041878164854266
103 => 0.043269966106094
104 => 0.042430539810458
105 => 0.042808533419984
106 => 0.041991517987639
107 => 0.043651630269801
108 => 0.04363898299566
109 => 0.042993161822562
110 => 0.043539005455672
111 => 0.043444151691867
112 => 0.042715021178027
113 => 0.043674745007617
114 => 0.043675221018662
115 => 0.043053632180919
116 => 0.042327752501729
117 => 0.042197982359602
118 => 0.042100217989675
119 => 0.042784489378047
120 => 0.0433980049652
121 => 0.04453960536948
122 => 0.044826630834872
123 => 0.045946910334666
124 => 0.045279838437958
125 => 0.045575542769741
126 => 0.045896571651824
127 => 0.046050484703341
128 => 0.045799691645324
129 => 0.047539946833942
130 => 0.047686877691903
131 => 0.04773614233763
201 => 0.047149338079463
202 => 0.047670557603962
203 => 0.047426696249425
204 => 0.048061155747294
205 => 0.048160647097746
206 => 0.048076381463421
207 => 0.048107961588418
208 => 0.046622960786985
209 => 0.046545955661427
210 => 0.045495985310415
211 => 0.045923855989441
212 => 0.045123972263376
213 => 0.045377623632627
214 => 0.045489430739313
215 => 0.045431029051778
216 => 0.045948047155661
217 => 0.04550847614754
218 => 0.044348375984943
219 => 0.043187959753832
220 => 0.043173391673305
221 => 0.042867874562701
222 => 0.042647041649985
223 => 0.042689581903443
224 => 0.04283949930524
225 => 0.042638328178058
226 => 0.042681258237677
227 => 0.04339418326885
228 => 0.043537155299503
229 => 0.043051280476565
301 => 0.041100422951069
302 => 0.040621677620957
303 => 0.040965790270309
304 => 0.040801326587612
305 => 0.032929854969179
306 => 0.034779140466741
307 => 0.033680357819891
308 => 0.034186727416118
309 => 0.033065154862072
310 => 0.033600428071517
311 => 0.03350158265478
312 => 0.036475179010524
313 => 0.036428750393477
314 => 0.036450973315509
315 => 0.035390215345378
316 => 0.037080031594515
317 => 0.037912495842667
318 => 0.037758428865652
319 => 0.037797204204524
320 => 0.037130915413863
321 => 0.036457424447438
322 => 0.035710419316157
323 => 0.037098262517453
324 => 0.036943958044742
325 => 0.037297876988144
326 => 0.038197992509265
327 => 0.038330537938957
328 => 0.038508680340605
329 => 0.038444828970654
330 => 0.039966027649724
331 => 0.039781800452496
401 => 0.040225734992032
402 => 0.039312527962812
403 => 0.038279147526842
404 => 0.038475559363968
405 => 0.038456643324609
406 => 0.038215820432743
407 => 0.037998416293886
408 => 0.037636499655925
409 => 0.038781657452018
410 => 0.0387351661368
411 => 0.039487806489932
412 => 0.039354769996758
413 => 0.038466319735787
414 => 0.038498050910668
415 => 0.038711458311222
416 => 0.039450063761185
417 => 0.039669332146827
418 => 0.039567758294263
419 => 0.039808176069138
420 => 0.039998192475777
421 => 0.039832039204268
422 => 0.042184419142598
423 => 0.041207546984846
424 => 0.041683667677501
425 => 0.041797219657234
426 => 0.04150635864889
427 => 0.041569435986648
428 => 0.041664980965806
429 => 0.042245111369624
430 => 0.04376754141133
501 => 0.044441815313269
502 => 0.046470401615343
503 => 0.044385826252059
504 => 0.044262136176832
505 => 0.044627545827273
506 => 0.045818540734258
507 => 0.046783730241906
508 => 0.047103939284712
509 => 0.047146260195794
510 => 0.047746993647191
511 => 0.048091322858517
512 => 0.047674048805333
513 => 0.047320452735675
514 => 0.046053915504118
515 => 0.046200520637337
516 => 0.047210484623901
517 => 0.048637118241505
518 => 0.049861318301339
519 => 0.049432646108065
520 => 0.052703112347341
521 => 0.053027365716309
522 => 0.052982564385084
523 => 0.053721261814964
524 => 0.052255097849768
525 => 0.051628284349059
526 => 0.047396904219421
527 => 0.048585749440096
528 => 0.05031380578678
529 => 0.050085091049418
530 => 0.048830130339378
531 => 0.049860366301105
601 => 0.049519738073701
602 => 0.049251070458069
603 => 0.050481888889059
604 => 0.049128553464951
605 => 0.050300305230677
606 => 0.048797521470914
607 => 0.049434604246535
608 => 0.049072965250866
609 => 0.049306990001872
610 => 0.0479388860894
611 => 0.048677081751725
612 => 0.047908174722885
613 => 0.047907810160839
614 => 0.04789083649556
615 => 0.048795452205135
616 => 0.048824951690947
617 => 0.048156439314773
618 => 0.04806009623724
619 => 0.04841632709033
620 => 0.04799927405837
621 => 0.048194410547124
622 => 0.048005184543826
623 => 0.047962585784774
624 => 0.047623151625069
625 => 0.047476914056131
626 => 0.04753425757499
627 => 0.047338514582516
628 => 0.047220572349217
629 => 0.047867374816794
630 => 0.047521814350305
701 => 0.04781441271927
702 => 0.047480959948976
703 => 0.046325067368681
704 => 0.045660301322411
705 => 0.043476927389532
706 => 0.04409612952843
707 => 0.04450666118713
708 => 0.044370980476378
709 => 0.044662475144537
710 => 0.04468037054974
711 => 0.044585602661686
712 => 0.044475873587836
713 => 0.044422463543085
714 => 0.044820538258633
715 => 0.045051634029587
716 => 0.044547863531285
717 => 0.044429837152031
718 => 0.044939176939746
719 => 0.045249873916016
720 => 0.047543885823245
721 => 0.047373938011597
722 => 0.04780047366826
723 => 0.047752452299043
724 => 0.048199529619686
725 => 0.048930312089963
726 => 0.047444426997897
727 => 0.047702325271839
728 => 0.047639094570809
729 => 0.048329430784671
730 => 0.048331585938978
731 => 0.047917694893917
801 => 0.04814207194406
802 => 0.048016830830132
803 => 0.048243158450351
804 => 0.04737166825496
805 => 0.048433049241393
806 => 0.04903478386682
807 => 0.049043138952678
808 => 0.04932835638947
809 => 0.04961815382393
810 => 0.050174394763338
811 => 0.04960264056603
812 => 0.048574110424221
813 => 0.048648366978327
814 => 0.048045340132509
815 => 0.048055477122733
816 => 0.048001365074468
817 => 0.048163759404677
818 => 0.047407304678215
819 => 0.047584843090536
820 => 0.047336288273624
821 => 0.047701784962209
822 => 0.047308570944058
823 => 0.047639064079051
824 => 0.047781693960092
825 => 0.048308001291738
826 => 0.047230834923247
827 => 0.045034419780141
828 => 0.045496132872181
829 => 0.044813222942273
830 => 0.044876428856307
831 => 0.045004114861803
901 => 0.044590242741729
902 => 0.044669196499629
903 => 0.044666375715808
904 => 0.044642067724747
905 => 0.044534403601816
906 => 0.044378269322868
907 => 0.045000260234599
908 => 0.045105948610791
909 => 0.045340880779044
910 => 0.046039879555756
911 => 0.045970033094436
912 => 0.04608395557075
913 => 0.045835263444604
914 => 0.044887964970773
915 => 0.044939407835492
916 => 0.044297914488125
917 => 0.045324476351878
918 => 0.045081372952587
919 => 0.044924642609583
920 => 0.044881877283397
921 => 0.045582608742875
922 => 0.04579227857817
923 => 0.045661626407233
924 => 0.045393654992909
925 => 0.045908239327048
926 => 0.046045920386294
927 => 0.046076742097977
928 => 0.046988486876313
929 => 0.046127698502865
930 => 0.046334898819854
1001 => 0.047951416545067
1002 => 0.046485458032497
1003 => 0.047262008951382
1004 => 0.047224000824878
1005 => 0.047621257997929
1006 => 0.04719141414162
1007 => 0.047196742571382
1008 => 0.047549480028519
1009 => 0.047054123886506
1010 => 0.046931466739534
1011 => 0.046762016769479
1012 => 0.04713200457989
1013 => 0.047353795539122
1014 => 0.04914126778302
1015 => 0.050296056371216
1016 => 0.050245923953064
1017 => 0.050704040411018
1018 => 0.050497654750844
1019 => 0.049831181012356
1020 => 0.05096877041614
1021 => 0.050608789530021
1022 => 0.050638465916896
1023 => 0.050637361360294
1024 => 0.050876717179488
1025 => 0.050707111644951
1026 => 0.050372801726726
1027 => 0.050594732252034
1028 => 0.051253786570585
1029 => 0.053299511397624
1030 => 0.054444326113084
1031 => 0.053230592114281
1101 => 0.054067809574109
1102 => 0.053565777429296
1103 => 0.05347454325442
1104 => 0.054000377689077
1105 => 0.054527132527302
1106 => 0.05449358052133
1107 => 0.054111183557939
1108 => 0.053895177216283
1109 => 0.055530849602736
1110 => 0.056735985154121
1111 => 0.056653802988848
1112 => 0.057016528339292
1113 => 0.05808150118687
1114 => 0.058178868957378
1115 => 0.058166602856266
1116 => 0.057925266677786
1117 => 0.058973870750425
1118 => 0.059848634716254
1119 => 0.05786940432534
1120 => 0.058623069348172
1121 => 0.058961413858492
1122 => 0.059458203981934
1123 => 0.060296372191873
1124 => 0.061206845181004
1125 => 0.061335596044496
1126 => 0.061244241145552
1127 => 0.060643759734392
1128 => 0.061640010143302
1129 => 0.062223590267894
1130 => 0.062571098877095
1201 => 0.06345232289011
1202 => 0.058963503359001
1203 => 0.055786093786076
1204 => 0.055289895398913
1205 => 0.056298934331246
1206 => 0.056565009850768
1207 => 0.056457755142479
1208 => 0.052881291790712
1209 => 0.055271066059532
1210 => 0.057842262234855
1211 => 0.057941032351475
1212 => 0.059228226918019
1213 => 0.059647390232773
1214 => 0.060683750575289
1215 => 0.060618925953694
1216 => 0.060871263205002
1217 => 0.060813255240798
1218 => 0.062732894543892
1219 => 0.0648505417644
1220 => 0.06477721437486
1221 => 0.064472777532047
1222 => 0.064924918157819
1223 => 0.067110557030251
1224 => 0.066909338427027
1225 => 0.067104805160299
1226 => 0.069681796568105
1227 => 0.073032251971006
1228 => 0.071475629056136
1229 => 0.074853052875227
1230 => 0.076978962139801
1231 => 0.08065550238976
]
'min_raw' => 0.032929854969179
'max_raw' => 0.08065550238976
'avg_raw' => 0.056792678679469
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.032929'
'max' => '$0.080655'
'avg' => '$0.056792'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.014683199461602
'max_diff' => 0.03272142074485
'year' => 2028
]
3 => [
'items' => [
101 => 0.080195181443123
102 => 0.081626431582733
103 => 0.079371110876761
104 => 0.074192438660332
105 => 0.073372893958921
106 => 0.075013643205323
107 => 0.079047265125631
108 => 0.074886610096611
109 => 0.075728305190133
110 => 0.075485896946575
111 => 0.075472980041444
112 => 0.075965965773426
113 => 0.07525086425678
114 => 0.072337412033658
115 => 0.073672630018433
116 => 0.073157038232077
117 => 0.073729125758953
118 => 0.076816446194657
119 => 0.075451468237505
120 => 0.074013574841451
121 => 0.075817012254191
122 => 0.07811340780894
123 => 0.077969703502144
124 => 0.077690857083218
125 => 0.079262699746779
126 => 0.081858923320294
127 => 0.082560672119744
128 => 0.083078688736875
129 => 0.083150114476415
130 => 0.083885843984526
131 => 0.079929640991704
201 => 0.086208236743812
202 => 0.087292376787494
203 => 0.087088603392283
204 => 0.088293579423248
205 => 0.087939044907646
206 => 0.087425380019301
207 => 0.089335523334133
208 => 0.087145698164295
209 => 0.084037517027034
210 => 0.08233230738228
211 => 0.08457786499783
212 => 0.085949148674486
213 => 0.086855479954733
214 => 0.087129735252515
215 => 0.080236749768171
216 => 0.076521812894611
217 => 0.078903044838725
218 => 0.081808312154394
219 => 0.079913502085075
220 => 0.079987775052442
221 => 0.077286273840919
222 => 0.082047335067447
223 => 0.081353688493569
224 => 0.084952328145884
225 => 0.084093483911972
226 => 0.087028034850048
227 => 0.086255269240541
228 => 0.089462976080862
301 => 0.090742617184661
302 => 0.092891333758175
303 => 0.094471938416502
304 => 0.095400099704021
305 => 0.095344376381764
306 => 0.099022213811031
307 => 0.096853521572845
308 => 0.094129133000168
309 => 0.094079857406224
310 => 0.095490856852898
311 => 0.098447924604333
312 => 0.099214649248694
313 => 0.099643143726392
314 => 0.098986889517797
315 => 0.09663292952482
316 => 0.0956165015347
317 => 0.096482527631036
318 => 0.095423452133688
319 => 0.097251713566211
320 => 0.099762307008636
321 => 0.099243879390738
322 => 0.10097690519036
323 => 0.10277040457334
324 => 0.10533518924209
325 => 0.10600571892821
326 => 0.10711407900139
327 => 0.10825494559402
328 => 0.10862136119635
329 => 0.10932096227329
330 => 0.10931727503028
331 => 0.11142556996423
401 => 0.11375108456483
402 => 0.11462891249077
403 => 0.11664742940275
404 => 0.11319078992825
405 => 0.11581269067667
406 => 0.11817771078219
407 => 0.11535803631406
408 => 0.11924430066848
409 => 0.1193951955069
410 => 0.1216735284164
411 => 0.11936400153685
412 => 0.11799261184804
413 => 0.12195176249433
414 => 0.12386747077999
415 => 0.12329044385379
416 => 0.11889924045414
417 => 0.11634337172796
418 => 0.10965417028131
419 => 0.11757781834687
420 => 0.12143719618362
421 => 0.1188892455979
422 => 0.1201742836679
423 => 0.12718503470285
424 => 0.12985427478445
425 => 0.12929909150687
426 => 0.12939290834169
427 => 0.13083318183958
428 => 0.13722014770235
429 => 0.13339292970867
430 => 0.13631869446172
501 => 0.1378705095371
502 => 0.13931192186272
503 => 0.13577226875406
504 => 0.13116723206752
505 => 0.12970862364261
506 => 0.11863590212676
507 => 0.11805951888547
508 => 0.11773597750594
509 => 0.11569609487379
510 => 0.11409330589581
511 => 0.11281870859277
512 => 0.10947378464264
513 => 0.11060259828454
514 => 0.10527148764791
515 => 0.10868214331026
516 => 0.10017356201003
517 => 0.10725976135072
518 => 0.10340306521953
519 => 0.10599273294612
520 => 0.10598369783938
521 => 0.10121529849984
522 => 0.098464985274745
523 => 0.10021759190557
524 => 0.10209652533589
525 => 0.10240137596347
526 => 0.10483746220107
527 => 0.10551732150649
528 => 0.10345731607148
529 => 0.099997240574712
530 => 0.10080093719669
531 => 0.098448698388353
601 => 0.094326490354296
602 => 0.097287132131203
603 => 0.098298025404069
604 => 0.098744493462686
605 => 0.094690775299983
606 => 0.093417009042758
607 => 0.092738866575346
608 => 0.09947395646432
609 => 0.099842919892044
610 => 0.097955250829638
611 => 0.10648769398784
612 => 0.10455653931661
613 => 0.10671411222875
614 => 0.1007280101522
615 => 0.10095668731288
616 => 0.098122770658293
617 => 0.099709574622481
618 => 0.098588072725672
619 => 0.099581376543277
620 => 0.100176758756
621 => 0.10301021039275
622 => 0.10729211481698
623 => 0.10258698720551
624 => 0.10053689572652
625 => 0.10180876094993
626 => 0.10519590564431
627 => 0.11032760324105
628 => 0.10728953497874
629 => 0.10863777808381
630 => 0.10893230922311
701 => 0.10669215016188
702 => 0.11041020110097
703 => 0.11240273480462
704 => 0.1144466620878
705 => 0.11622134687825
706 => 0.11363027258397
707 => 0.11640309349476
708 => 0.11416868930945
709 => 0.11216419776676
710 => 0.11216723775301
711 => 0.11090979092734
712 => 0.10847332925409
713 => 0.10802400833952
714 => 0.11036143248011
715 => 0.11223582528598
716 => 0.11239020925521
717 => 0.11342796942231
718 => 0.11404210519943
719 => 0.12006147069225
720 => 0.12248250928827
721 => 0.12544290945557
722 => 0.12659615215974
723 => 0.13006699923891
724 => 0.12726400833406
725 => 0.12665756362016
726 => 0.11823842391152
727 => 0.11961705756716
728 => 0.12182438306821
729 => 0.11827482189603
730 => 0.12052620146342
731 => 0.12097067148076
801 => 0.11815420916565
802 => 0.1196586033803
803 => 0.11566337836799
804 => 0.10737919980456
805 => 0.11041942375987
806 => 0.11265805191929
807 => 0.10946325351493
808 => 0.11518980599898
809 => 0.11184447225784
810 => 0.11078416206623
811 => 0.10664751398091
812 => 0.10859985264299
813 => 0.11124041863826
814 => 0.10960885585193
815 => 0.11299459361395
816 => 0.11778970122825
817 => 0.12120698046779
818 => 0.12146931673528
819 => 0.11927223512418
820 => 0.12279307242756
821 => 0.12281871788353
822 => 0.11884719902228
823 => 0.11641466583327
824 => 0.11586198917464
825 => 0.11724268382655
826 => 0.11891910202427
827 => 0.12156234627798
828 => 0.1231596034216
829 => 0.12732440293243
830 => 0.1284512782659
831 => 0.12968937261014
901 => 0.13134384846819
902 => 0.13333047093468
903 => 0.12898385407647
904 => 0.12915655326736
905 => 0.12510904383201
906 => 0.12078369952877
907 => 0.12406609669315
908 => 0.12835739434658
909 => 0.12737296592342
910 => 0.12726219761577
911 => 0.12744847918467
912 => 0.12670625230204
913 => 0.12334918762009
914 => 0.12166329075315
915 => 0.12383852782966
916 => 0.12499456952716
917 => 0.12678748938256
918 => 0.12656647416643
919 => 0.1311848431684
920 => 0.13297940171033
921 => 0.13252027684181
922 => 0.13260476686708
923 => 0.13585372938796
924 => 0.13946724391128
925 => 0.14285177710762
926 => 0.14629466964401
927 => 0.14214412831301
928 => 0.14003673939492
929 => 0.14221102683098
930 => 0.14105731931209
1001 => 0.14768686492746
1002 => 0.14814588028195
1003 => 0.15477494650571
1004 => 0.16106671972659
1005 => 0.15711496969538
1006 => 0.16084129198408
1007 => 0.16487161335081
1008 => 0.17264675716333
1009 => 0.17002836226013
1010 => 0.16802271279976
1011 => 0.16612738375094
1012 => 0.17007126262652
1013 => 0.17514499979496
1014 => 0.17623783418539
1015 => 0.17800864339276
1016 => 0.17614685403546
1017 => 0.17838917424695
1018 => 0.18630554991895
1019 => 0.1841664753326
1020 => 0.18112864554657
1021 => 0.18737786384282
1022 => 0.18963943165101
1023 => 0.20551229892113
1024 => 0.22555244952511
1025 => 0.21725569558434
1026 => 0.21210563267873
1027 => 0.21331601962267
1028 => 0.22063400422134
1029 => 0.22298430861321
1030 => 0.2165953710776
1031 => 0.21885205182422
1101 => 0.23128658461006
1102 => 0.2379573125021
1103 => 0.22889756802643
1104 => 0.20390209233276
1105 => 0.18085512221196
1106 => 0.18696821650659
1107 => 0.18627518132498
1108 => 0.19963453556381
1109 => 0.18411545911115
1110 => 0.18437676055772
1111 => 0.19801237209442
1112 => 0.19437462470999
1113 => 0.1884819398347
1114 => 0.18089814533278
1115 => 0.1668787997799
1116 => 0.15446147446534
1117 => 0.17881470894643
1118 => 0.17776455319212
1119 => 0.17624377203552
1120 => 0.17962810593382
1121 => 0.19606147068407
1122 => 0.19568262843696
1123 => 0.1932726273479
1124 => 0.19510059193318
1125 => 0.18816148880482
1126 => 0.18994985368144
1127 => 0.18085147145414
1128 => 0.18496432020289
1129 => 0.1884692967795
1130 => 0.18917297271932
1201 => 0.19075839054232
1202 => 0.17721116882904
1203 => 0.18329347365277
1204 => 0.18686625790182
1205 => 0.17072428868562
1206 => 0.1865471830708
1207 => 0.17697534183886
1208 => 0.17372651516051
1209 => 0.17810063228254
1210 => 0.17639603458612
1211 => 0.17493052158407
1212 => 0.17411274014822
1213 => 0.17732460900895
1214 => 0.17717477148758
1215 => 0.17191953063454
1216 => 0.16506428317278
1217 => 0.16736512923678
1218 => 0.16652921029118
1219 => 0.16349973219665
1220 => 0.16554123465178
1221 => 0.15655149102012
1222 => 0.14108510434806
1223 => 0.15130267313186
1224 => 0.15090930784826
1225 => 0.15071095523457
1226 => 0.15838917578274
1227 => 0.15765109204372
1228 => 0.15631146283006
1229 => 0.16347512885559
1230 => 0.16086029439137
1231 => 0.16891859807762
]
'min_raw' => 0.072337412033658
'max_raw' => 0.2379573125021
'avg_raw' => 0.15514736226788
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.072337'
'max' => '$0.237957'
'avg' => '$0.155147'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.039407557064479
'max_diff' => 0.15730181011234
'year' => 2029
]
4 => [
'items' => [
101 => 0.17422631806378
102 => 0.17288010858854
103 => 0.17787204488997
104 => 0.16741813608303
105 => 0.17089050525067
106 => 0.17160615572363
107 => 0.16338673032882
108 => 0.15777185167146
109 => 0.15739740327932
110 => 0.14766197746539
111 => 0.15286256335358
112 => 0.15743886372032
113 => 0.1552471709799
114 => 0.15455334653325
115 => 0.15809794515905
116 => 0.15837339082971
117 => 0.15209320034825
118 => 0.15339905081712
119 => 0.15884466435185
120 => 0.15326183532805
121 => 0.14241531048474
122 => 0.13972522235866
123 => 0.13936631501448
124 => 0.13207058266297
125 => 0.1399049869104
126 => 0.13648505950742
127 => 0.14728856919642
128 => 0.14111766240245
129 => 0.14085164694419
130 => 0.14044952556306
131 => 0.13416978734521
201 => 0.13554465091674
202 => 0.14011490682612
203 => 0.14174562562221
204 => 0.14157552829169
205 => 0.14009251007887
206 => 0.14077142822242
207 => 0.13858439633129
208 => 0.1378121098514
209 => 0.13537456128674
210 => 0.13179203828667
211 => 0.13229021008272
212 => 0.12519229460143
213 => 0.12132497353234
214 => 0.12025455003089
215 => 0.11882313498867
216 => 0.12041623216876
217 => 0.12517218709868
218 => 0.11943549642107
219 => 0.10960034263638
220 => 0.11019145213712
221 => 0.11151949968331
222 => 0.1090446918669
223 => 0.10670249396354
224 => 0.10873884501199
225 => 0.10457156069887
226 => 0.11202309608312
227 => 0.11182155293366
228 => 0.11459902452505
301 => 0.1163358345106
302 => 0.11233304979282
303 => 0.11132636026098
304 => 0.1118998163698
305 => 0.10242186428018
306 => 0.11382447363331
307 => 0.1139230838725
308 => 0.11307872313654
309 => 0.11915026060102
310 => 0.13196309841108
311 => 0.12714239343173
312 => 0.12527567075714
313 => 0.12172702958819
314 => 0.12645538324836
315 => 0.12609231946106
316 => 0.12445040732707
317 => 0.12345737374535
318 => 0.12528706856774
319 => 0.12323065430853
320 => 0.12286126580109
321 => 0.12062317334466
322 => 0.11982427616444
323 => 0.11923280449721
324 => 0.1185816523084
325 => 0.1200179317799
326 => 0.11676313353919
327 => 0.1128381659327
328 => 0.11251184734495
329 => 0.11341284165593
330 => 0.11301421874446
331 => 0.11250993889182
401 => 0.11154713132067
402 => 0.11126148688143
403 => 0.11218969273395
404 => 0.11114180244422
405 => 0.11268802164826
406 => 0.11226753558097
407 => 0.10991873459026
408 => 0.10699125891832
409 => 0.10696519824425
410 => 0.10633447841275
411 => 0.10553116187798
412 => 0.1053076975954
413 => 0.10856734920653
414 => 0.11531473048842
415 => 0.11399005809163
416 => 0.1149472696562
417 => 0.11965580316675
418 => 0.12115250437921
419 => 0.12009018130992
420 => 0.11863600797143
421 => 0.11869998421827
422 => 0.12366933472407
423 => 0.12397926701959
424 => 0.12476236594242
425 => 0.12576886936197
426 => 0.12026159319451
427 => 0.11844059200605
428 => 0.11757770061765
429 => 0.11492032912239
430 => 0.11778607645422
501 => 0.1161163282075
502 => 0.1163416342927
503 => 0.11619490340914
504 => 0.11627502839346
505 => 0.11202101322712
506 => 0.11357095276928
507 => 0.11099387766472
508 => 0.10754346338996
509 => 0.10753189639144
510 => 0.10837638039699
511 => 0.10787404826583
512 => 0.10652228541701
513 => 0.10671429694954
514 => 0.10503207388052
515 => 0.10691854928776
516 => 0.1069726466523
517 => 0.10624625086351
518 => 0.10915262651179
519 => 0.11034337098627
520 => 0.10986524171718
521 => 0.11030982416216
522 => 0.11404510421026
523 => 0.11465411783979
524 => 0.11492460146485
525 => 0.11456218923949
526 => 0.11037809822449
527 => 0.11056368045313
528 => 0.10920200119509
529 => 0.10805152571226
530 => 0.10809753869813
531 => 0.10868903264764
601 => 0.11127212141584
602 => 0.1167080794471
603 => 0.11691437008076
604 => 0.11716440034667
605 => 0.11614740160007
606 => 0.11584066504673
607 => 0.11624532973601
608 => 0.11828678976346
609 => 0.12353797920505
610 => 0.12168185814124
611 => 0.12017280282412
612 => 0.12149665117562
613 => 0.12129285509858
614 => 0.11957261111516
615 => 0.119524329596
616 => 0.11622263139657
617 => 0.11500206874827
618 => 0.11398207524181
619 => 0.11286826896038
620 => 0.11220796726161
621 => 0.11322249077267
622 => 0.11345452430313
623 => 0.11123625091538
624 => 0.11093390844943
625 => 0.11274539838263
626 => 0.11194822920218
627 => 0.11276813747311
628 => 0.11295836322501
629 => 0.11292773249769
630 => 0.112095396319
701 => 0.11262590257867
702 => 0.11137109712302
703 => 0.11000668465569
704 => 0.10913627450743
705 => 0.10837672620992
706 => 0.10879816775058
707 => 0.1072958056103
708 => 0.10681516972505
709 => 0.11244617899467
710 => 0.11660586608569
711 => 0.11654538258796
712 => 0.11617720485069
713 => 0.11563016741521
714 => 0.11824677056777
715 => 0.11733519835005
716 => 0.11799844330284
717 => 0.11816726697963
718 => 0.11867824540284
719 => 0.11886087626905
720 => 0.11830883894606
721 => 0.1164561342644
722 => 0.11183937034758
723 => 0.10969025428159
724 => 0.10898101018345
725 => 0.10900678985937
726 => 0.10829567131193
727 => 0.10850512759425
728 => 0.10822283096479
729 => 0.10768822944349
730 => 0.10876515761311
731 => 0.10888926355238
801 => 0.10863789564926
802 => 0.10869710189009
803 => 0.10661588301287
804 => 0.10677411356394
805 => 0.10589306574864
806 => 0.10572787990446
807 => 0.103500667749
808 => 0.09955483857603
809 => 0.10174121096876
810 => 0.099100380568823
811 => 0.098100258081257
812 => 0.10283468238644
813 => 0.10235947749869
814 => 0.10154613329746
815 => 0.10034302770805
816 => 0.099896784141884
817 => 0.09718554949739
818 => 0.097025355290719
819 => 0.098369116390024
820 => 0.097749016878691
821 => 0.09687816231473
822 => 0.093724015361174
823 => 0.09017770988321
824 => 0.090284750554309
825 => 0.09141276434549
826 => 0.094692616576734
827 => 0.093411121567968
828 => 0.092481382235646
829 => 0.092307270006564
830 => 0.094486649082168
831 => 0.09757092706818
901 => 0.099018001292386
902 => 0.097583994684495
903 => 0.095936685105749
904 => 0.09603694920691
905 => 0.096703961352823
906 => 0.096774054898315
907 => 0.095701825708712
908 => 0.096003651944967
909 => 0.095545150292526
910 => 0.092731326497826
911 => 0.092680433348112
912 => 0.091989875609855
913 => 0.091968965795985
914 => 0.090794154815509
915 => 0.090629790638255
916 => 0.08829713213059
917 => 0.089832495024276
918 => 0.088802654205361
919 => 0.087250441176366
920 => 0.086982839065103
921 => 0.086974794622499
922 => 0.088568570334795
923 => 0.089813870827136
924 => 0.088820568727319
925 => 0.088594413093543
926 => 0.091009163590885
927 => 0.090701864579159
928 => 0.09043574561687
929 => 0.097294763803189
930 => 0.091865315692854
1001 => 0.089497766414685
1002 => 0.086567474597536
1003 => 0.087521592389013
1004 => 0.087722639026584
1005 => 0.080675815431141
1006 => 0.077816919976096
1007 => 0.076835854791127
1008 => 0.076271237906952
1009 => 0.076528540911083
1010 => 0.073955199686551
1011 => 0.075684527548572
1012 => 0.073456231567246
1013 => 0.073082650494475
1014 => 0.077067119741987
1015 => 0.077621535360847
1016 => 0.07525622608736
1017 => 0.076775137549726
1018 => 0.076224359139024
1019 => 0.073494429306249
1020 => 0.073390166066641
1021 => 0.072020383238228
1022 => 0.069876938353983
1023 => 0.068897326525579
1024 => 0.068387136179966
1025 => 0.068597650659977
1026 => 0.068491208097034
1027 => 0.067796598373306
1028 => 0.068531022313317
1029 => 0.066654872631512
1030 => 0.065907774711052
1031 => 0.065570327912921
1101 => 0.063905137083172
1102 => 0.066555196207025
1103 => 0.067077291238989
1104 => 0.06760041495945
1105 => 0.072153849794326
1106 => 0.071926373057849
1107 => 0.073982651969938
1108 => 0.073902748752668
1109 => 0.073316264697431
1110 => 0.070841984940327
1111 => 0.071828188751713
1112 => 0.068792806710368
1113 => 0.071067121321659
1114 => 0.070029219110715
1115 => 0.070716205540103
1116 => 0.069480941996994
1117 => 0.070164587844532
1118 => 0.067201099339517
1119 => 0.064433835470942
1120 => 0.065547463233125
1121 => 0.0667581039694
1122 => 0.069383081551167
1123 => 0.067819666559061
1124 => 0.068381929709488
1125 => 0.066498442277272
1126 => 0.062612269713022
1127 => 0.062634265027699
1128 => 0.062036462043561
1129 => 0.0615198729846
1130 => 0.067999243577857
1201 => 0.067193431420894
1202 => 0.065909475210862
1203 => 0.067628101620382
1204 => 0.068082533721327
1205 => 0.068095470764385
1206 => 0.069349336228603
1207 => 0.070018524451623
1208 => 0.070136471776359
1209 => 0.072109456175861
1210 => 0.072770774522281
1211 => 0.075494651197909
1212 => 0.069961748506258
1213 => 0.069847802016351
1214 => 0.067652286218426
1215 => 0.066259855389651
1216 => 0.067747627148549
1217 => 0.069065589825835
1218 => 0.067693238992616
1219 => 0.067872439039527
1220 => 0.066030170171114
1221 => 0.066688694604765
1222 => 0.067255904559846
1223 => 0.06694272456171
1224 => 0.066473878946418
1225 => 0.068957531916146
1226 => 0.068817394482079
1227 => 0.071130229226425
1228 => 0.072933249302042
1229 => 0.076164583605939
1230 => 0.072792517806556
1231 => 0.072669626326079
]
'min_raw' => 0.0615198729846
'max_raw' => 0.17787204488997
'avg_raw' => 0.11969595893728
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.061519'
'max' => '$0.177872'
'avg' => '$0.119695'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.010817539049057
'max_diff' => -0.060085267612129
'year' => 2030
]
5 => [
'items' => [
101 => 0.073870910260156
102 => 0.07277059061197
103 => 0.07346595464788
104 => 0.076052549709467
105 => 0.076107200387215
106 => 0.075191731121512
107 => 0.075136024733496
108 => 0.07531185062011
109 => 0.076341668329835
110 => 0.075981818378955
111 => 0.076398245852399
112 => 0.076918994784505
113 => 0.079073033160665
114 => 0.079592364520695
115 => 0.078330658558261
116 => 0.078444576479946
117 => 0.077972663815393
118 => 0.077516802094483
119 => 0.078541512669831
120 => 0.080414191387016
121 => 0.080402541549909
122 => 0.080836966612623
123 => 0.081107609827723
124 => 0.079945811025574
125 => 0.0791895227259
126 => 0.07947953178387
127 => 0.079943262583139
128 => 0.079329150135674
129 => 0.075538563625366
130 => 0.07668838542899
131 => 0.076496998857453
201 => 0.076224441106183
202 => 0.077380595821035
203 => 0.07726908187833
204 => 0.073928806352847
205 => 0.074142639954491
206 => 0.073941810282402
207 => 0.074590732038806
208 => 0.072735546707544
209 => 0.073306189220577
210 => 0.073664090855309
211 => 0.073874897667697
212 => 0.074636476425625
213 => 0.074547113948491
214 => 0.074630921528575
215 => 0.075760141777244
216 => 0.081471350293418
217 => 0.081782198771883
218 => 0.080251467176436
219 => 0.080862964256471
220 => 0.079689023582514
221 => 0.080477097821661
222 => 0.081016278201169
223 => 0.078579825744595
224 => 0.078435554842562
225 => 0.07725676889785
226 => 0.077890181694689
227 => 0.076882376390926
228 => 0.077129656560936
301 => 0.076438239648089
302 => 0.07768265243148
303 => 0.079074099285508
304 => 0.079425633710737
305 => 0.078500897983046
306 => 0.077831328373143
307 => 0.076655784708094
308 => 0.078610740021769
309 => 0.079182428531671
310 => 0.078607737185402
311 => 0.078474568643217
312 => 0.078222214496408
313 => 0.078528106768418
314 => 0.07917931499327
315 => 0.078872217220357
316 => 0.079075060709732
317 => 0.078302030499532
318 => 0.079946195629319
319 => 0.082557525545308
320 => 0.082565921397983
321 => 0.082258821969699
322 => 0.082133163500195
323 => 0.082448266149966
324 => 0.082619196411279
325 => 0.083638180600694
326 => 0.084731591234058
327 => 0.089834061567532
328 => 0.088401308315757
329 => 0.092928523542934
330 => 0.096508963002307
331 => 0.097582580242531
401 => 0.09659490289912
402 => 0.093216112060592
403 => 0.09305033246268
404 => 0.098099672464138
405 => 0.096673002639303
406 => 0.096503304803265
407 => 0.094698006536835
408 => 0.095765161402835
409 => 0.095531758979424
410 => 0.095163321835631
411 => 0.097199378981307
412 => 0.10101069619794
413 => 0.10041666666742
414 => 0.099973251179123
415 => 0.098030333585723
416 => 0.099200403943305
417 => 0.098783764300191
418 => 0.10057391261306
419 => 0.099513468409156
420 => 0.096662194212211
421 => 0.097116269025998
422 => 0.097047636531365
423 => 0.098460088407542
424 => 0.098036105413525
425 => 0.0969648470471
426 => 0.10099766953003
427 => 0.10073580046973
428 => 0.10110707092564
429 => 0.10127051566225
430 => 0.10372522364131
501 => 0.10473083895843
502 => 0.1049591312412
503 => 0.10591438801539
504 => 0.10493536358244
505 => 0.10885215934683
506 => 0.11145659997878
507 => 0.11448179179608
508 => 0.11890241013607
509 => 0.1205646035249
510 => 0.12026434316693
511 => 0.12361600554048
512 => 0.12963886832249
513 => 0.12148173593541
514 => 0.13007121614607
515 => 0.12735188588169
516 => 0.12090440274351
517 => 0.12048926084025
518 => 0.12485557127824
519 => 0.1345396275879
520 => 0.13211388131799
521 => 0.1345435952398
522 => 0.13170920488816
523 => 0.13156845351708
524 => 0.1344059352269
525 => 0.14103586590497
526 => 0.13788623435906
527 => 0.13337046521664
528 => 0.13670483887825
529 => 0.13381629583085
530 => 0.12730759989277
531 => 0.13211202639553
601 => 0.12889944321533
602 => 0.12983704577763
603 => 0.13658941778674
604 => 0.13577695452204
605 => 0.13682835721863
606 => 0.13497265897915
607 => 0.13323914420672
608 => 0.13000341015148
609 => 0.12904546881749
610 => 0.12931020933909
611 => 0.12904533762523
612 => 0.12723497415926
613 => 0.12684402634115
614 => 0.12619242951648
615 => 0.12639438661875
616 => 0.125169193957
617 => 0.12748138564745
618 => 0.12791054880016
619 => 0.12959316909168
620 => 0.12976786431222
621 => 0.13445393787351
622 => 0.13187292730222
623 => 0.13360449202717
624 => 0.13344960458005
625 => 0.1210441392536
626 => 0.12275350292124
627 => 0.12541273636021
628 => 0.12421475530046
629 => 0.12252109036636
630 => 0.12115336512351
701 => 0.11908112152351
702 => 0.1219977645966
703 => 0.12583284008731
704 => 0.12986512815551
705 => 0.13470965806346
706 => 0.13362841538455
707 => 0.12977456303866
708 => 0.12994744403966
709 => 0.13101612636165
710 => 0.12963208565464
711 => 0.12922390503046
712 => 0.13096004861192
713 => 0.1309720044786
714 => 0.12937949837829
715 => 0.12760971927333
716 => 0.12760230383426
717 => 0.12728738873657
718 => 0.13176522758445
719 => 0.13422758619021
720 => 0.13450989163607
721 => 0.13420858478441
722 => 0.13432454583317
723 => 0.13289175361485
724 => 0.1361666917446
725 => 0.13917209883028
726 => 0.13836658553016
727 => 0.13715900658282
728 => 0.13619711178638
729 => 0.13813999368558
730 => 0.13805348021298
731 => 0.13914584922125
801 => 0.1390962930532
802 => 0.1387289704418
803 => 0.13836659864841
804 => 0.13980336184856
805 => 0.13938959712063
806 => 0.13897518970179
807 => 0.1381440321807
808 => 0.13825700029188
809 => 0.13704962985007
810 => 0.13649104503818
811 => 0.12809126969967
812 => 0.12584657525864
813 => 0.12655280182476
814 => 0.12678530994749
815 => 0.1258084160501
816 => 0.1272090309555
817 => 0.12699074660611
818 => 0.12783996331751
819 => 0.12730940958493
820 => 0.12733118369518
821 => 0.12889142909671
822 => 0.12934437497454
823 => 0.12911400304535
824 => 0.12927534764787
825 => 0.13299346591345
826 => 0.13246486839481
827 => 0.13218406149837
828 => 0.13226184692776
829 => 0.13321190586197
830 => 0.13347787049225
831 => 0.13235095966473
901 => 0.13288241732558
902 => 0.13514529659347
903 => 0.13593717626935
904 => 0.13846447607097
905 => 0.13739083419607
906 => 0.13936155032358
907 => 0.14541885983291
908 => 0.15025785780289
909 => 0.14580771528965
910 => 0.15469391881885
911 => 0.16161310291652
912 => 0.16134753310635
913 => 0.16014101331531
914 => 0.15226370617614
915 => 0.14501489070263
916 => 0.15107883264718
917 => 0.15109429088226
918 => 0.15057339289138
919 => 0.14733814020694
920 => 0.15046081311078
921 => 0.150708679546
922 => 0.15056994025528
923 => 0.14808947960758
924 => 0.14430227466429
925 => 0.14504228544492
926 => 0.1462544381994
927 => 0.14395958015361
928 => 0.14322623395762
929 => 0.14458966406078
930 => 0.14898291993509
1001 => 0.14815240036045
1002 => 0.14813071213796
1003 => 0.15168402707339
1004 => 0.14914062043298
1005 => 0.1450516193507
1006 => 0.14401909265013
1007 => 0.14035431845642
1008 => 0.14288559104549
1009 => 0.14297668703964
1010 => 0.14159033491158
1011 => 0.14516411418527
1012 => 0.14513118118011
1013 => 0.14852395271364
1014 => 0.15500965761894
1015 => 0.15309151553628
1016 => 0.15086092498742
1017 => 0.15110345202765
1018 => 0.15376337505121
1019 => 0.15215512487103
1020 => 0.15273346284894
1021 => 0.15376249966742
1022 => 0.15438334312955
1023 => 0.15101412220769
1024 => 0.15022859564234
1025 => 0.14862168397199
1026 => 0.14820247071162
1027 => 0.14951126673781
1028 => 0.14916644522535
1029 => 0.14296903077407
1030 => 0.14232136648182
1031 => 0.14234122942101
1101 => 0.1407126467634
1102 => 0.13822866730591
1103 => 0.14475641700948
1104 => 0.14423214735249
1105 => 0.14365339422641
1106 => 0.14372428818204
1107 => 0.14655776308239
1108 => 0.14491420454627
1109 => 0.14928387428849
1110 => 0.14838560155378
1111 => 0.14746429151293
1112 => 0.14733693840149
1113 => 0.14698231263824
1114 => 0.14576616894562
1115 => 0.14429760235788
1116 => 0.14332792749159
1117 => 0.13221243682541
1118 => 0.13427540723722
1119 => 0.13664866665033
1120 => 0.1374679062895
1121 => 0.13606654019705
1122 => 0.14582150342038
1123 => 0.14760382920245
1124 => 0.14220504815033
1125 => 0.14119515664626
1126 => 0.14588771173926
1127 => 0.14305752737665
1128 => 0.14433195922184
1129 => 0.14157733464949
1130 => 0.14717451911414
1201 => 0.14713187794636
1202 => 0.14495444677147
1203 => 0.14679479669009
1204 => 0.14647499060294
1205 => 0.14401667616926
1206 => 0.1472524520665
1207 => 0.14725405697098
1208 => 0.14515832680658
1209 => 0.14271097278889
1210 => 0.14227344369444
1211 => 0.14194382429555
1212 => 0.14425089305574
1213 => 0.14631940369212
1214 => 0.15016838915914
1215 => 0.15113611555519
1216 => 0.15491321610416
1217 => 0.15266413663094
1218 => 0.15366112443097
1219 => 0.15474349572043
1220 => 0.15526242431948
1221 => 0.15441685801457
1222 => 0.16028424988373
1223 => 0.16077963752973
1224 => 0.16094573672235
1225 => 0.15896728519657
1226 => 0.16072461321381
1227 => 0.15990241763113
1228 => 0.16204154212474
1229 => 0.16237698415905
1230 => 0.16209287668969
1231 => 0.16219935128597
]
'min_raw' => 0.072735546707544
'max_raw' => 0.16237698415905
'avg_raw' => 0.1175562654333
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.072735'
'max' => '$0.162376'
'avg' => '$0.117556'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.011215673722944
'max_diff' => -0.015495060730913
'year' => 2031
]
6 => [
'items' => [
101 => 0.15719256740449
102 => 0.15693293924735
103 => 0.15339289090232
104 => 0.15483548676964
105 => 0.15213862294111
106 => 0.15299382624191
107 => 0.15337079170823
108 => 0.15317388634123
109 => 0.15491704897552
110 => 0.15343500463177
111 => 0.14952364593797
112 => 0.14561122159711
113 => 0.1455621042965
114 => 0.14453203202757
115 => 0.14378747844429
116 => 0.14393090587889
117 => 0.14443636286594
118 => 0.14375810036533
119 => 0.14390284205862
120 => 0.14630651857605
121 => 0.14678855875939
122 => 0.14515039787116
123 => 0.13857294551943
124 => 0.13695882221402
125 => 0.13811902203649
126 => 0.13756452124779
127 => 0.11102530511764
128 => 0.11726030028566
129 => 0.11355567787725
130 => 0.11526293832453
131 => 0.11148147815287
201 => 0.11328618915009
202 => 0.1129529249264
203 => 0.12297861264966
204 => 0.12282207532574
205 => 0.12289700145893
206 => 0.11932058190287
207 => 0.12501791536604
208 => 0.12782462669948
209 => 0.12730517912987
210 => 0.12743591289208
211 => 0.12518947371557
212 => 0.12291875190063
213 => 0.12040017194628
214 => 0.12507938219557
215 => 0.12455913389263
216 => 0.12575239632014
217 => 0.12878719864366
218 => 0.12923408481389
219 => 0.12983470435855
220 => 0.1296194250068
221 => 0.13474825255999
222 => 0.1341271177022
223 => 0.13562387399677
224 => 0.13254493273967
225 => 0.12906081845148
226 => 0.12972303467339
227 => 0.12965925792601
228 => 0.12884730673237
229 => 0.12811431349954
301 => 0.12689408628644
302 => 0.13075506574834
303 => 0.13059831703316
304 => 0.13313589653142
305 => 0.13268735470637
306 => 0.12969188262189
307 => 0.1297988664934
308 => 0.130518384444
309 => 0.13300864428633
310 => 0.13374792295735
311 => 0.13340545962177
312 => 0.1342160449352
313 => 0.1348566985167
314 => 0.13429650116136
315 => 0.14222771436136
316 => 0.13893412167846
317 => 0.14053939583544
318 => 0.14092224426305
319 => 0.13994158606615
320 => 0.14015425571432
321 => 0.14047639228229
322 => 0.14243234244218
323 => 0.14756532162046
324 => 0.14983868315715
325 => 0.15667820350596
326 => 0.14964991212825
327 => 0.14923288240385
328 => 0.1504648865524
329 => 0.15448040903391
330 => 0.15773461284633
331 => 0.15881421999043
401 => 0.15895690789689
402 => 0.16098232267015
403 => 0.16214325264643
404 => 0.16073638404298
405 => 0.15954421020683
406 => 0.15527399150383
407 => 0.15576828094612
408 => 0.15917344504026
409 => 0.16398343988639
410 => 0.16811091585904
411 => 0.16666561763048
412 => 0.17769222289286
413 => 0.17878546576498
414 => 0.17863441494883
415 => 0.18112498490788
416 => 0.17618171073492
417 => 0.17406836525456
418 => 0.15980197172196
419 => 0.16381024638599
420 => 0.16963650900787
421 => 0.1688653813025
422 => 0.16463419365004
423 => 0.16810770612379
424 => 0.16695925427319
425 => 0.16605342264931
426 => 0.17020321292239
427 => 0.16564034805315
428 => 0.16959099094039
429 => 0.16452425057334
430 => 0.16667221963104
501 => 0.16545292850832
502 => 0.16624195929542
503 => 0.16162930143656
504 => 0.16411817965126
505 => 0.16152575592015
506 => 0.16152452677376
507 => 0.16146729887621
508 => 0.16451727389929
509 => 0.1646167334753
510 => 0.16236279732498
511 => 0.16203796991262
512 => 0.16323902710506
513 => 0.16183290369009
514 => 0.16249081998592
515 => 0.16185283130446
516 => 0.16170920661417
517 => 0.16056478064619
518 => 0.16007173047253
519 => 0.16026506814996
520 => 0.1596051069845
521 => 0.15920745651047
522 => 0.16138819618821
523 => 0.16022311494918
524 => 0.16120963077871
525 => 0.16008537148273
526 => 0.15618819894643
527 => 0.15394689380894
528 => 0.14658549615594
529 => 0.14867317939855
530 => 0.15005731554826
531 => 0.14959985855904
601 => 0.15058265318424
602 => 0.1506429887923
603 => 0.15032347224124
604 => 0.14995351300772
605 => 0.14977343731287
606 => 0.15111557400903
607 => 0.1518947295354
608 => 0.15019623212824
609 => 0.14979829795024
610 => 0.15151557260549
611 => 0.15256310915316
612 => 0.16029753046118
613 => 0.15972453954883
614 => 0.16116263429504
615 => 0.16100072689598
616 => 0.16250807929646
617 => 0.16497196341661
618 => 0.15996219808752
619 => 0.160831720124
620 => 0.16061853340085
621 => 0.16294605014362
622 => 0.16295331639684
623 => 0.16155785384146
624 => 0.16231435673153
625 => 0.16189209757186
626 => 0.16265517694512
627 => 0.15971688690586
628 => 0.16329540700487
629 => 0.16532419730627
630 => 0.16535236706157
701 => 0.16631399756296
702 => 0.16729106984625
703 => 0.16916647500897
704 => 0.16723876581414
705 => 0.16377100463135
706 => 0.16402136578795
707 => 0.16198821867528
708 => 0.16202239624557
709 => 0.16183995369686
710 => 0.16238747751917
711 => 0.15983703759492
712 => 0.16043562074739
713 => 0.15959760082863
714 => 0.16082989843236
715 => 0.15950414991684
716 => 0.16061843059576
717 => 0.16109931719779
718 => 0.16287379911204
719 => 0.15924205749532
720 => 0.15183669049153
721 => 0.15339338841712
722 => 0.15109090990918
723 => 0.15130401306125
724 => 0.15173451534353
725 => 0.15033911659507
726 => 0.15060531470221
727 => 0.15059580423261
728 => 0.15051384814362
729 => 0.15015085103629
730 => 0.14962443341387
731 => 0.15172151919879
801 => 0.15207785493805
802 => 0.15286994514575
803 => 0.15522666832397
804 => 0.15499117610311
805 => 0.15537527368582
806 => 0.15453679081938
807 => 0.15134290787659
808 => 0.15151635108662
809 => 0.14935351147834
810 => 0.15281463647424
811 => 0.1519949963906
812 => 0.15146656909659
813 => 0.15132238281358
814 => 0.15368494785271
815 => 0.15439186434109
816 => 0.15395136142494
817 => 0.15304787709238
818 => 0.15478283410206
819 => 0.15524703540589
820 => 0.15535095295873
821 => 0.15842496413488
822 => 0.15552275603547
823 => 0.15622134637047
824 => 0.16167154874269
825 => 0.1567289672676
826 => 0.15934716290767
827 => 0.15921901585553
828 => 0.16055839615008
829 => 0.15910914757779
830 => 0.15912711275075
831 => 0.16031639171483
901 => 0.15864626389737
902 => 0.15823271676271
903 => 0.15766140435805
904 => 0.15890884409258
905 => 0.15965662779658
906 => 0.16568321526421
907 => 0.16957666561407
908 => 0.16940764066614
909 => 0.1709522122888
910 => 0.17025636862614
911 => 0.16800930588512
912 => 0.17184476798393
913 => 0.17063106729332
914 => 0.1707311233036
915 => 0.1707273992139
916 => 0.17153440406961
917 => 0.17096256716843
918 => 0.16983541793836
919 => 0.17058367219913
920 => 0.17280571984783
921 => 0.17970302393014
922 => 0.18356284667172
923 => 0.17947065775456
924 => 0.18229339487303
925 => 0.18060075844602
926 => 0.18029315605566
927 => 0.18206604356469
928 => 0.18384203427862
929 => 0.18372891134796
930 => 0.18243963328778
1001 => 0.18171135282581
1002 => 0.18722613647573
1003 => 0.19128933512711
1004 => 0.19101225221911
1005 => 0.19223520606281
1006 => 0.19582583637245
1007 => 0.19615411860872
1008 => 0.19611276259243
1009 => 0.19529908081713
1010 => 0.19883452265923
1011 => 0.20178385044409
1012 => 0.19511073699567
1013 => 0.19765177123936
1014 => 0.19879252337836
1015 => 0.20046748596433
1016 => 0.20329342860317
1017 => 0.20636315185322
1018 => 0.20679724437858
1019 => 0.2064892349586
1020 => 0.2044646699566
1021 => 0.20782359776622
1022 => 0.20979117890055
1023 => 0.21096282843874
1024 => 0.21393393672372
1025 => 0.19879956827521
1026 => 0.18808671006044
1027 => 0.18641374255466
1028 => 0.18981578776387
1029 => 0.19071287995474
1030 => 0.19035126321746
1031 => 0.17829296732628
1101 => 0.18635025812231
1102 => 0.1950192255426
1103 => 0.19535223588669
1104 => 0.19969210223685
1105 => 0.20110534061759
1106 => 0.20459950186875
1107 => 0.20438094113114
1108 => 0.20523171379155
1109 => 0.20503613589025
1110 => 0.21150833382556
1111 => 0.21864812927891
1112 => 0.21840090086552
1113 => 0.21737447079488
1114 => 0.21889889448212
1115 => 0.22626792853696
1116 => 0.22558950596755
1117 => 0.22624853570583
1118 => 0.23493704215704
1119 => 0.24623333646925
1120 => 0.24098507363182
1121 => 0.25237229384209
1122 => 0.25953994535385
1123 => 0.27193565749443
1124 => 0.27038365328426
1125 => 0.27520921305665
1126 => 0.267605241835
1127 => 0.25014498689396
1128 => 0.24738183471437
1129 => 0.25291373535207
1130 => 0.26651337327488
1201 => 0.25248543435688
1202 => 0.25532326812996
1203 => 0.2545059718124
1204 => 0.25446242156492
1205 => 0.25612455737946
1206 => 0.2537135426893
1207 => 0.2438906351083
1208 => 0.24839241576592
1209 => 0.24665406206075
1210 => 0.24858289509949
1211 => 0.25899201149829
1212 => 0.25438989301604
1213 => 0.24954193504073
1214 => 0.25562235018976
1215 => 0.26336480813182
1216 => 0.26288029902834
1217 => 0.26194014885849
1218 => 0.26723972614124
1219 => 0.27599307518189
1220 => 0.27835907025377
1221 => 0.28010559944519
1222 => 0.28034641631284
1223 => 0.28282697971643
1224 => 0.26948836511286
1225 => 0.29065708904865
1226 => 0.29431234289816
1227 => 0.2936253066692
1228 => 0.29768796748634
1229 => 0.29649262961418
1230 => 0.29476077258019
1231 => 0.30120095412809
]
'min_raw' => 0.11102530511764
'max_raw' => 0.30120095412809
'avg_raw' => 0.20611312962287
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.111025'
'max' => '$0.30120095'
'avg' => '$0.206113'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.038289758410097
'max_diff' => 0.13882396996904
'year' => 2032
]
7 => [
'items' => [
101 => 0.29381780567927
102 => 0.28333835596872
103 => 0.27758912259749
104 => 0.28516017687815
105 => 0.28978355553396
106 => 0.29283931472334
107 => 0.29376398560771
108 => 0.27052380379436
109 => 0.25799863475655
110 => 0.26602712450843
111 => 0.2758224361025
112 => 0.26943395166237
113 => 0.26968436815743
114 => 0.26057606820998
115 => 0.2766283185419
116 => 0.27428964068922
117 => 0.28642270552599
118 => 0.28352705222877
119 => 0.2934210956003
120 => 0.29081566239507
121 => 0.30163066996215
122 => 0.3059450692853
123 => 0.31318961723151
124 => 0.31851873619135
125 => 0.32164809677437
126 => 0.3214602217029
127 => 0.33386030737408
128 => 0.32654841007978
129 => 0.31736294379627
130 => 0.31719680769097
131 => 0.32195409083827
201 => 0.33192405121811
202 => 0.33450911688758
203 => 0.33595381593567
204 => 0.33374120905318
205 => 0.32580466858862
206 => 0.3223777106552
207 => 0.325297578103
208 => 0.3217268311214
209 => 0.32789094218629
210 => 0.33635558326147
211 => 0.33460766835226
212 => 0.34045068583168
213 => 0.34649759421952
214 => 0.35514494479777
215 => 0.3574056824494
216 => 0.36114259581937
217 => 0.36498910718917
218 => 0.36622450297476
219 => 0.36858325685026
220 => 0.36857082505302
221 => 0.37567908861927
222 => 0.38351972345744
223 => 0.38647938159773
224 => 0.39328495229484
225 => 0.38163065097168
226 => 0.39047057240026
227 => 0.39844440280642
228 => 0.38893767347375
301 => 0.40204048507499
302 => 0.40254923755785
303 => 0.41023079603037
304 => 0.40244406490994
305 => 0.39782032882675
306 => 0.41116888164978
307 => 0.41762782588537
308 => 0.41568233931698
309 => 0.400877090471
310 => 0.39225980061565
311 => 0.36970669091312
312 => 0.3964218235776
313 => 0.40943398540737
314 => 0.40084339211537
315 => 0.40517598768688
316 => 0.42881322427623
317 => 0.43781275357172
318 => 0.43594091438972
319 => 0.43625722439838
320 => 0.44111320705322
321 => 0.46264730838325
322 => 0.44974357570973
323 => 0.459607995845
324 => 0.46484004871593
325 => 0.46969987100793
326 => 0.4577656834214
327 => 0.44223948071935
328 => 0.43732168057796
329 => 0.39998922691457
330 => 0.39804591057476
331 => 0.39695506822471
401 => 0.39007746151039
402 => 0.38467354656796
403 => 0.38037615277123
404 => 0.36909850813822
405 => 0.37290438214313
406 => 0.35493017042547
407 => 0.36642943411548
408 => 0.33774215821158
409 => 0.36163377403135
410 => 0.34863065375912
411 => 0.35736189930413
412 => 0.35733143681095
413 => 0.34125444551868
414 => 0.33198157245954
415 => 0.33789060807844
416 => 0.34422556332173
417 => 0.34525338849661
418 => 0.35346682332879
419 => 0.35575901644326
420 => 0.34881356429415
421 => 0.33714767818203
422 => 0.33985739745534
423 => 0.33192666008496
424 => 0.31802834789476
425 => 0.32801035835101
426 => 0.33141865559879
427 => 0.33292395382982
428 => 0.3192565600227
429 => 0.31496196815495
430 => 0.31267556347968
501 => 0.33538338926931
502 => 0.33662737522609
503 => 0.33026296718934
504 => 0.35903069501337
505 => 0.35251967221041
506 => 0.35979407992064
507 => 0.33961151883322
508 => 0.34038251984618
509 => 0.33082777198751
510 => 0.33617779233989
511 => 0.33239657039403
512 => 0.33574556356535
513 => 0.33775293626381
514 => 0.34730611628238
515 => 0.36174285600168
516 => 0.34587918975809
517 => 0.33896716320387
518 => 0.34325534560339
519 => 0.35467534042339
520 => 0.37197721715448
521 => 0.36173415789696
522 => 0.36627985365702
523 => 0.36727288595666
524 => 0.35972003327883
525 => 0.37225570160599
526 => 0.3789736681021
527 => 0.38586491163981
528 => 0.39184838531535
529 => 0.38311239742916
530 => 0.39246115672206
531 => 0.38492770701015
601 => 0.37816942382485
602 => 0.37817967335074
603 => 0.37394010358584
604 => 0.36572540294617
605 => 0.3642104861121
606 => 0.37209127479586
607 => 0.37841092100676
608 => 0.37893143733776
609 => 0.38243031819526
610 => 0.38450091984539
611 => 0.40479563086313
612 => 0.41295833152112
613 => 0.4229395273737
614 => 0.42682776566765
615 => 0.43852996892187
616 => 0.42907948938761
617 => 0.42703481869407
618 => 0.39864910136084
619 => 0.40329726098396
620 => 0.41073941302127
621 => 0.39877181970682
622 => 0.40636250310458
623 => 0.40786106479995
624 => 0.39836516546545
625 => 0.4034373355936
626 => 0.38996715552689
627 => 0.36203646911738
628 => 0.37228679644437
629 => 0.37983448757991
630 => 0.36906300170589
701 => 0.38837047322099
702 => 0.37709144694898
703 => 0.3735165371095
704 => 0.35956953927828
705 => 0.36615198538544
706 => 0.37505483799691
707 => 0.36955391015073
708 => 0.38096916140004
709 => 0.39713620150537
710 => 0.40865779704831
711 => 0.40954228208987
712 => 0.40213466804271
713 => 0.41400541682805
714 => 0.41409188227336
715 => 0.40070162915007
716 => 0.39250017366929
717 => 0.39063678572805
718 => 0.395291894144
719 => 0.40094405514138
720 => 0.40985593768819
721 => 0.41524120166484
722 => 0.42928311399263
723 => 0.43308245285536
724 => 0.43725677437792
725 => 0.44283495524515
726 => 0.44953299159248
727 => 0.43487806938395
728 => 0.43546033676349
729 => 0.42181387611411
730 => 0.40723067580984
731 => 0.4182975070192
801 => 0.43276591666658
802 => 0.4294468475073
803 => 0.42907338442445
804 => 0.42970144573978
805 => 0.42719897598435
806 => 0.41588039802638
807 => 0.41019627903394
808 => 0.4175302427076
809 => 0.42142791800299
810 => 0.42747287247312
811 => 0.42672770424117
812 => 0.44229885777551
813 => 0.44834933719172
814 => 0.44680136564244
815 => 0.44708622966152
816 => 0.458040333636
817 => 0.47022355013892
818 => 0.48163474011091
819 => 0.49324269267244
820 => 0.47924885279342
821 => 0.47214364392291
822 => 0.47947440581746
823 => 0.47558460036827
824 => 0.49793657627057
825 => 0.49948417858566
826 => 0.5218345381857
827 => 0.54304769087745
828 => 0.52972408974487
829 => 0.54228764550472
830 => 0.55587615538072
831 => 0.58209059558782
901 => 0.57326249436119
902 => 0.56650030717558
903 => 0.56011007295983
904 => 0.5734071359417
905 => 0.5905135950421
906 => 0.59419816248869
907 => 0.60016856936528
908 => 0.59389141656117
909 => 0.60145155570802
910 => 0.62814216898987
911 => 0.62093012967655
912 => 0.61068787445847
913 => 0.63175755025074
914 => 0.63938258401367
915 => 0.69289906422311
916 => 0.76046583114306
917 => 0.73249274597089
918 => 0.71512894931871
919 => 0.71920985340674
920 => 0.7438829494065
921 => 0.7518071647567
922 => 0.73026641579402
923 => 0.73787497248767
924 => 0.7797988679265
925 => 0.80228969274983
926 => 0.77174413171898
927 => 0.68747014028939
928 => 0.60976567143902
929 => 0.63037639565597
930 => 0.62803977915501
1001 => 0.67308177469156
1002 => 0.62075812492411
1003 => 0.62163912099471
1004 => 0.66761253729866
1005 => 0.65534761801265
1006 => 0.6354800195415
1007 => 0.60991072689466
1008 => 0.56264352456366
1009 => 0.52077764531565
1010 => 0.60288627565718
1011 => 0.59934560221199
1012 => 0.59421818236496
1013 => 0.60562870038975
1014 => 0.66103493698609
1015 => 0.65975764390006
1016 => 0.65163215696738
1017 => 0.65779526719106
1018 => 0.63439959652109
1019 => 0.64042919356226
1020 => 0.60975336265415
1021 => 0.62362011936048
1022 => 0.63543739259818
1023 => 0.63780988515837
1024 => 0.64315523203894
1025 => 0.59747982819583
1026 => 0.61798674356198
1027 => 0.63003263510148
1028 => 0.57560885889275
1029 => 0.62895685203161
1030 => 0.59668472103352
1031 => 0.58573107506163
1101 => 0.60047871632966
1102 => 0.59473154618496
1103 => 0.58979046677969
1104 => 0.58703325957304
1105 => 0.59786229968251
1106 => 0.5973571120179
1107 => 0.57963870057269
1108 => 0.55652575513726
1109 => 0.56428321828196
1110 => 0.56146485919489
1111 => 0.55125076228777
1112 => 0.5581338303484
1113 => 0.5278242820504
1114 => 0.47567827955691
1115 => 0.51012752607936
1116 => 0.50880126756182
1117 => 0.50813250787624
1118 => 0.53402016453062
1119 => 0.53153166367315
1120 => 0.52701501024939
1121 => 0.55116781040564
1122 => 0.5423517134476
1123 => 0.56952084693859
1124 => 0.58741619544513
1125 => 0.58287735620999
1126 => 0.59970801797612
1127 => 0.56446193456494
1128 => 0.57616926964671
1129 => 0.5785821351814
1130 => 0.55086976860085
1201 => 0.53193881318925
1202 => 0.53067633429198
1203 => 0.49785266645461
1204 => 0.51538680486994
1205 => 0.53081612106349
1206 => 0.52342667597009
1207 => 0.52108739840691
1208 => 0.53303826014979
1209 => 0.53396694445942
1210 => 0.51279284378229
1211 => 0.51719560980963
1212 => 0.53555587604258
1213 => 0.51673297820815
1214 => 0.48016316241875
1215 => 0.47109334248572
1216 => 0.46988326131671
1217 => 0.44528519032184
1218 => 0.47169943122268
1219 => 0.46016890721182
1220 => 0.49659369440524
1221 => 0.47578805131041
1222 => 0.4748911616203
1223 => 0.47353538130859
1224 => 0.45236280546979
1225 => 0.4569982539911
1226 => 0.47240719087467
1227 => 0.47790527314883
1228 => 0.47733177812317
1229 => 0.47233167867763
1230 => 0.47462069859914
1231 => 0.46724696788452
]
'min_raw' => 0.25799863475655
'max_raw' => 0.80228969274983
'avg_raw' => 0.53014416375319
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.257998'
'max' => '$0.802289'
'avg' => '$0.530144'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.1469733296389
'max_diff' => 0.50108873862175
'year' => 2033
]
8 => [
'items' => [
101 => 0.46464315009826
102 => 0.45642478492829
103 => 0.44434605850977
104 => 0.4460256795014
105 => 0.42209456189562
106 => 0.40905561890345
107 => 0.40544661133372
108 => 0.40062049558068
109 => 0.40599173394983
110 => 0.42202676804623
111 => 0.40268511490372
112 => 0.3695252072501
113 => 0.37151817420182
114 => 0.37599577922512
115 => 0.36765179188651
116 => 0.3597549081283
117 => 0.36662060786164
118 => 0.35257031784946
119 => 0.37769368964704
120 => 0.37701417284735
121 => 0.3863786122346
122 => 0.39223438836109
123 => 0.37873872021957
124 => 0.37534459617814
125 => 0.37727804348648
126 => 0.34532246628684
127 => 0.38376715982567
128 => 0.38409963113184
129 => 0.38125280995919
130 => 0.40172342242187
131 => 0.44492279966226
201 => 0.4286694562535
202 => 0.42237567042573
203 => 0.41041117896639
204 => 0.42635315345475
205 => 0.42512905854759
206 => 0.41959323715319
207 => 0.41624515510104
208 => 0.42241409893992
209 => 0.41548075469073
210 => 0.41423533554801
211 => 0.40668945057256
212 => 0.40399591295221
213 => 0.40200172493093
214 => 0.39980631986437
215 => 0.40464883638035
216 => 0.39367505686903
217 => 0.38044175455125
218 => 0.37934154864984
219 => 0.38237931387472
220 => 0.38103532889774
221 => 0.37933511416684
222 => 0.37608894121963
223 => 0.37512587104971
224 => 0.37825538188674
225 => 0.37472234661355
226 => 0.37993553261354
227 => 0.37851783448028
228 => 0.37059868795203
301 => 0.36072849933426
302 => 0.36064063395214
303 => 0.3585141180048
304 => 0.35580568022204
305 => 0.35505225479154
306 => 0.36604239778009
307 => 0.38879166485909
308 => 0.38432543938765
309 => 0.38755274500796
310 => 0.40342789447809
311 => 0.40847412711225
312 => 0.40489243071509
313 => 0.39998958377726
314 => 0.40020528416015
315 => 0.41695979633944
316 => 0.41800475471255
317 => 0.42064502740508
318 => 0.42403852395595
319 => 0.4054703578516
320 => 0.39933072520645
321 => 0.39642142664532
322 => 0.3874619131173
323 => 0.39712398032664
324 => 0.39149430753472
325 => 0.39225394273136
326 => 0.39175922931301
327 => 0.3920293762918
328 => 0.37768666715261
329 => 0.38291239653233
330 => 0.37422360789166
331 => 0.3625902952641
401 => 0.362551296321
402 => 0.3653985331057
403 => 0.36370488525378
404 => 0.35914732243192
405 => 0.35979470271968
406 => 0.3541229701934
407 => 0.3604833537384
408 => 0.36066574677992
409 => 0.35821665266266
410 => 0.36801570107753
411 => 0.37203037920837
412 => 0.37041833299571
413 => 0.3719172737487
414 => 0.38451103121979
415 => 0.38656436319174
416 => 0.38747631761818
417 => 0.38625441949756
418 => 0.37214746451659
419 => 0.3727731679574
420 => 0.36818217126948
421 => 0.36430326285551
422 => 0.36445839884987
423 => 0.36645266199746
424 => 0.37516172612492
425 => 0.39348943815381
426 => 0.39418496142793
427 => 0.395027955926
428 => 0.39159907364725
429 => 0.390564889942
430 => 0.39192924519469
501 => 0.39881217020742
502 => 0.41651692203608
503 => 0.41025888027922
504 => 0.40517099491867
505 => 0.40963444206392
506 => 0.40894732936156
507 => 0.40314740666789
508 => 0.40298462215512
509 => 0.39185271615852
510 => 0.38773750397281
511 => 0.38429852465214
512 => 0.3805432490108
513 => 0.37831699573263
514 => 0.38173753258192
515 => 0.38251984982995
516 => 0.37504078622823
517 => 0.37402141749541
518 => 0.38012898227937
519 => 0.37744127073091
520 => 0.38020564871054
521 => 0.38084700811421
522 => 0.38074373447846
523 => 0.37793745494017
524 => 0.37972609383341
525 => 0.37549542963196
526 => 0.3708952177381
527 => 0.36796056915315
528 => 0.36539969903813
529 => 0.36682061861659
530 => 0.36175529976905
531 => 0.360134802325
601 => 0.37912014322203
602 => 0.39314481866948
603 => 0.39294089433409
604 => 0.3916995573875
605 => 0.38985518248088
606 => 0.3986772426951
607 => 0.39560381331913
608 => 0.39783998998377
609 => 0.39840919079696
610 => 0.40013199022617
611 => 0.40074774294249
612 => 0.39888651056599
613 => 0.39263998738007
614 => 0.37707424550236
615 => 0.36982835063936
616 => 0.36743708464465
617 => 0.3675240026219
618 => 0.36512641679049
619 => 0.3658326132701
620 => 0.36488083047456
621 => 0.3630783841208
622 => 0.3667093226334
623 => 0.36712775447245
624 => 0.36628025003712
625 => 0.36647986801175
626 => 0.35946289326114
627 => 0.35999637861136
628 => 0.35702586438929
629 => 0.35646892878274
630 => 0.3489597275016
701 => 0.33565608895595
702 => 0.34302759612568
703 => 0.33412385205541
704 => 0.33075186926226
705 => 0.34671431135412
706 => 0.34511212489732
707 => 0.342369878137
708 => 0.33831352364417
709 => 0.33680898230511
710 => 0.32766786540884
711 => 0.32712775945664
712 => 0.33165834382135
713 => 0.32956763502493
714 => 0.32663148806141
715 => 0.31599706139199
716 => 0.30404044487789
717 => 0.30440133997384
718 => 0.30820451722622
719 => 0.31926276801583
720 => 0.31494211812265
721 => 0.3118074370514
722 => 0.31122040551492
723 => 0.3185683342277
724 => 0.32896719279496
725 => 0.33384610457336
726 => 0.32901125117572
727 => 0.32345723191949
728 => 0.32379527933677
729 => 0.32604415735602
730 => 0.32628048263842
731 => 0.32266538706502
801 => 0.32368301529339
802 => 0.32213714496062
803 => 0.31265014158189
804 => 0.31247855177438
805 => 0.31015028814664
806 => 0.31007978924931
807 => 0.30611883200595
808 => 0.3055646667068
809 => 0.29769994568719
810 => 0.30287652887886
811 => 0.2994043486567
812 => 0.29417095405739
813 => 0.29326871485588
814 => 0.293241592456
815 => 0.29861511854387
816 => 0.30281373609791
817 => 0.29946474871823
818 => 0.29870224920928
819 => 0.30684374910356
820 => 0.3058076690306
821 => 0.30491043036941
822 => 0.32803608906594
823 => 0.30973032568998
824 => 0.30174796800162
825 => 0.29186828455366
826 => 0.295085159302
827 => 0.2957630020772
828 => 0.27200414433166
829 => 0.26236517870326
830 => 0.25905744893636
831 => 0.25715380369107
901 => 0.25802131873382
902 => 0.24934511913036
903 => 0.25517566875498
904 => 0.24766281327928
905 => 0.24640325860984
906 => 0.25983717486458
907 => 0.26170642583163
908 => 0.25373162047545
909 => 0.25885273651783
910 => 0.25699574865203
911 => 0.24779159962321
912 => 0.24744006883145
913 => 0.24282175039027
914 => 0.2355949763125
915 => 0.23229214663872
916 => 0.23057200426813
917 => 0.23128176853514
918 => 0.2309228900026
919 => 0.22858096482294
920 => 0.23105712641253
921 => 0.22473155677174
922 => 0.2222126639722
923 => 0.22107493853251
924 => 0.21546063139011
925 => 0.2243954907474
926 => 0.22615577059917
927 => 0.22791951874604
928 => 0.24327174220249
929 => 0.24250478850354
930 => 0.24943767642046
1001 => 0.24916827714477
1002 => 0.24719090520553
1003 => 0.23884869825575
1004 => 0.24217375326039
1005 => 0.23193975078439
1006 => 0.23960776128394
1007 => 0.23610840151572
1008 => 0.23842462422626
1009 => 0.23425984694732
1010 => 0.23656480665293
1011 => 0.22657319825411
1012 => 0.21724317491701
1013 => 0.22099784866822
1014 => 0.22507960843481
1015 => 0.23392990362182
1016 => 0.22865874082179
1017 => 0.23055445028941
1018 => 0.2242041409108
1019 => 0.21110163878653
1020 => 0.21117579752562
1021 => 0.20916026302733
1022 => 0.20741854694795
1023 => 0.22926419727832
1024 => 0.22654734533111
1025 => 0.22221839732603
1026 => 0.22801286625639
1027 => 0.22954501581217
1028 => 0.22958863395607
1029 => 0.23381612891077
1030 => 0.23607234372592
1031 => 0.23647001136608
1101 => 0.24312206601837
1102 => 0.2453517469951
1103 => 0.25453548738198
1104 => 0.23588091966215
1105 => 0.23549674111594
1106 => 0.22809440631721
1107 => 0.22339972856158
1108 => 0.22841585491961
1109 => 0.2328594581033
1110 => 0.22823248145463
1111 => 0.22883666692414
1112 => 0.22262532881117
1113 => 0.22484558991594
1114 => 0.22675797788083
1115 => 0.22570206965158
1116 => 0.22412132392587
1117 => 0.23249513331642
1118 => 0.23202265017338
1119 => 0.23982053399091
1120 => 0.24589954205869
1121 => 0.25679421126884
1122 => 0.2454250559961
1123 => 0.24501071878966
1124 => 0.24906093144437
1125 => 0.24535112692865
1126 => 0.24769559532448
1127 => 0.25641648116493
1128 => 0.25660073974054
1129 => 0.2535141711952
1130 => 0.25332635321871
1201 => 0.2539191624712
1202 => 0.25739126477911
1203 => 0.2561780055458
1204 => 0.25758201984656
1205 => 0.25933776122868
1206 => 0.26660025200406
1207 => 0.26835121394296
1208 => 0.26409728420112
1209 => 0.26448136642757
1210 => 0.26289027993114
1211 => 0.26135331031184
1212 => 0.26480819355964
1213 => 0.27112206060088
1214 => 0.27108278236171
1215 => 0.27254747679124
1216 => 0.27345996928665
1217 => 0.269542883511
1218 => 0.26699300470629
1219 => 0.26797079049302
1220 => 0.26953429125941
1221 => 0.26746376826682
1222 => 0.25468354119702
1223 => 0.25856024568593
1224 => 0.25791497249781
1225 => 0.25699602501003
1226 => 0.2608940813513
1227 => 0.26051810430781
1228 => 0.24925613216305
1229 => 0.24997708708038
1230 => 0.24929997581945
1231 => 0.25148786082744
]
'min_raw' => 0.20741854694795
'max_raw' => 0.46464315009826
'avg_raw' => 0.3360308485231
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.207418'
'max' => '$0.464643'
'avg' => '$0.33603'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.050580087808597
'max_diff' => -0.33764654265158
'year' => 2034
]
9 => [
'items' => [
101 => 0.24523297395819
102 => 0.24715693503187
103 => 0.24836362538126
104 => 0.24907437526729
105 => 0.25164209122137
106 => 0.25134079939063
107 => 0.25162336249814
108 => 0.25543060740617
109 => 0.27468634566229
110 => 0.27573439301018
111 => 0.27057342456387
112 => 0.27263512966257
113 => 0.2686771067184
114 => 0.27133415403727
115 => 0.27315203833116
116 => 0.26493736876614
117 => 0.26445094934726
118 => 0.26047659023446
119 => 0.26261218570247
120 => 0.25921429975811
121 => 0.26004802211585
122 => 0.257716861721
123 => 0.26191248630233
124 => 0.2666038465184
125 => 0.26778906937641
126 => 0.26467125830751
127 => 0.26241375761987
128 => 0.25845033007932
129 => 0.26504159841
130 => 0.26696908613515
131 => 0.26503147413753
201 => 0.26458248710003
202 => 0.26373165747525
203 => 0.26476299462705
204 => 0.26695858862305
205 => 0.26592318704079
206 => 0.2666070880273
207 => 0.26400076270236
208 => 0.26954418022939
209 => 0.27834846135837
210 => 0.27837676856185
211 => 0.27734136139839
212 => 0.27691769509526
213 => 0.27798008567873
214 => 0.27855638898872
215 => 0.28199196532654
216 => 0.28567847561641
217 => 0.30288181058882
218 => 0.29805118296883
219 => 0.31331500518733
220 => 0.3253867068029
221 => 0.32900648228588
222 => 0.32567645916514
223 => 0.3142846299534
224 => 0.31372569246468
225 => 0.33074989481325
226 => 0.32593977789192
227 => 0.32536762978979
228 => 0.31928094064262
301 => 0.32287892777971
302 => 0.32209199521355
303 => 0.32084978365979
304 => 0.3277144924794
305 => 0.34056461457294
306 => 0.33856180253698
307 => 0.33706679625991
308 => 0.33051611394359
309 => 0.33446108784588
310 => 0.33305635820027
311 => 0.33909196822127
312 => 0.33551660654996
313 => 0.32590333652536
314 => 0.32743428146253
315 => 0.32720288221511
316 => 0.33196506232988
317 => 0.330535574064
318 => 0.32692375168873
319 => 0.34052069425261
320 => 0.33963778443268
321 => 0.34088954869606
322 => 0.34144061403689
323 => 0.34971683337052
324 => 0.35310733562203
325 => 0.35387703899222
326 => 0.3570977539003
327 => 0.35379690467131
328 => 0.36700265505291
329 => 0.37578370847977
330 => 0.38598335390395
331 => 0.40088777727492
401 => 0.40649197833603
402 => 0.4054796295756
403 => 0.41677999327363
404 => 0.43708649564603
405 => 0.40958415429018
406 => 0.43854418651879
407 => 0.42937577467486
408 => 0.4076376351256
409 => 0.40623795521445
410 => 0.42095927570221
411 => 0.45360974766945
412 => 0.44543117476024
413 => 0.45362312488484
414 => 0.44406677992345
415 => 0.44359222684892
416 => 0.45315899454022
417 => 0.47551226870832
418 => 0.46489306605101
419 => 0.44966783510644
420 => 0.46090990870508
421 => 0.45117098414914
422 => 0.42922646137126
423 => 0.44542492075968
424 => 0.43459347227221
425 => 0.43775466477232
426 => 0.46052075843661
427 => 0.45778148181531
428 => 0.46132635941346
429 => 0.45506974323833
430 => 0.44922507715295
501 => 0.43831557387397
502 => 0.43508580778508
503 => 0.43597839893724
504 => 0.43508536546123
505 => 0.42898159864016
506 => 0.42766349077629
507 => 0.42546658658888
508 => 0.42614749905939
509 => 0.42201667646008
510 => 0.42981239217649
511 => 0.43125934570906
512 => 0.43693241749873
513 => 0.43752141463162
514 => 0.45332083881471
515 => 0.4446187814732
516 => 0.45045687283737
517 => 0.44993465899551
518 => 0.40810876652543
519 => 0.41387200547484
520 => 0.4228377966761
521 => 0.41879871989277
522 => 0.41308841031956
523 => 0.40847702917176
524 => 0.40149031519492
525 => 0.41132398094937
526 => 0.42425420572271
527 => 0.43784934646999
528 => 0.45418301728895
529 => 0.45053753210705
530 => 0.4375439998555
531 => 0.43812688022052
601 => 0.44173001728213
602 => 0.43706362740783
603 => 0.43568741793514
604 => 0.44154094723371
605 => 0.44158125727295
606 => 0.43621201177051
607 => 0.43024507795611
608 => 0.43022007628555
609 => 0.42915831804702
610 => 0.44425566435537
611 => 0.45255767831109
612 => 0.45350949083175
613 => 0.4524936137448
614 => 0.45288458451685
615 => 0.44805382551841
616 => 0.45909550807176
617 => 0.46922844789193
618 => 0.46651260356144
619 => 0.46244116683001
620 => 0.45919807136647
621 => 0.46574863333729
622 => 0.46545694712427
623 => 0.46913994550239
624 => 0.46897286342193
625 => 0.46773440959194
626 => 0.46651264779053
627 => 0.47135679523143
628 => 0.46996175856308
629 => 0.46856455501746
630 => 0.46576224940556
701 => 0.46614312927959
702 => 0.46207239553912
703 => 0.46018908784667
704 => 0.43186865883929
705 => 0.42430051481181
706 => 0.42668160698663
707 => 0.42746552435562
708 => 0.42417185837601
709 => 0.42889412931739
710 => 0.4281581683933
711 => 0.4310213618262
712 => 0.42923256287473
713 => 0.42930597580766
714 => 0.43456645211178
715 => 0.43609359076253
716 => 0.43531687571924
717 => 0.43586086031133
718 => 0.44839675563446
719 => 0.44661455219488
720 => 0.44566779213823
721 => 0.4459300511442
722 => 0.44913324117188
723 => 0.45002995949194
724 => 0.44623050095857
725 => 0.44802234756732
726 => 0.45565180300817
727 => 0.45832168062269
728 => 0.46684264835429
729 => 0.46322278981378
730 => 0.46986719682868
731 => 0.49028983874722
801 => 0.50660485825108
802 => 0.49160089206864
803 => 0.52156134768227
804 => 0.54488985994958
805 => 0.54399447279309
806 => 0.53992660708108
807 => 0.51336771608533
808 => 0.48892782862028
809 => 0.50937283225723
810 => 0.50942495077605
811 => 0.50766870683186
812 => 0.49676082652816
813 => 0.50728913624149
814 => 0.50812483523333
815 => 0.5076570660282
816 => 0.49929401977423
817 => 0.48652519389373
818 => 0.48902019190653
819 => 0.49310704954808
820 => 0.48536977542481
821 => 0.48289724752445
822 => 0.48749414730889
823 => 0.50230631621646
824 => 0.49950616148554
825 => 0.4994330381292
826 => 0.5114132875185
827 => 0.5028380144554
828 => 0.48905166182156
829 => 0.48557042596186
830 => 0.47321438390141
831 => 0.48174874616328
901 => 0.48205588266765
902 => 0.4773816996759
903 => 0.48943094601045
904 => 0.48931991008425
905 => 0.50075887618526
906 => 0.52262588309093
907 => 0.51615873313887
908 => 0.50863814136853
909 => 0.50945583821736
910 => 0.51842395440119
911 => 0.51300162663426
912 => 0.51495153350506
913 => 0.5184210029836
914 => 0.52051422006209
915 => 0.50915465649254
916 => 0.50650619883375
917 => 0.50108838394617
918 => 0.49967497717031
919 => 0.50408767434982
920 => 0.50292508454591
921 => 0.48203006903375
922 => 0.47984642365396
923 => 0.47991339294023
924 => 0.47442251280607
925 => 0.46604760263925
926 => 0.48805636651776
927 => 0.48628875476586
928 => 0.48433744819405
929 => 0.48457647211509
930 => 0.49412973056854
1001 => 0.48858835821442
1002 => 0.5033210048309
1003 => 0.50029241559045
1004 => 0.49718615446389
1005 => 0.49675677455717
1006 => 0.49556112903719
1007 => 0.49146081566908
1008 => 0.48650944088646
1009 => 0.48324011437423
1010 => 0.44576346153443
1011 => 0.45271891030984
1012 => 0.46072052011684
1013 => 0.46348264375777
1014 => 0.45875784013681
1015 => 0.49164737971406
1016 => 0.49765661552631
1017 => 0.47945424827824
1018 => 0.47604932856389
1019 => 0.49187060568367
1020 => 0.48232844150798
1021 => 0.48662527745202
1022 => 0.4773378683846
1023 => 0.4962091665901
1024 => 0.49606539891585
1025 => 0.48872403768631
1026 => 0.49492890592604
1027 => 0.49385065737508
1028 => 0.4855622786279
1029 => 0.4964719229801
1030 => 0.49647733402759
1031 => 0.48941143345911
1101 => 0.48116000851966
1102 => 0.47968484863045
1103 => 0.47857351381377
1104 => 0.48635195721318
1105 => 0.49332608524253
1106 => 0.50630320847218
1107 => 0.50956596558095
1108 => 0.52230072379055
1109 => 0.51471779532086
1110 => 0.51807920929611
1111 => 0.52172849966728
1112 => 0.52347810366943
1113 => 0.52062721783686
1114 => 0.54040953917196
1115 => 0.54207977320731
1116 => 0.54263978823189
1117 => 0.53596930078167
1118 => 0.5418942548845
1119 => 0.53912216507364
1120 => 0.54633437265276
1121 => 0.54746533889125
1122 => 0.54650745072254
1123 => 0.54686643725772
1124 => 0.52998571583883
1125 => 0.52911036138036
1126 => 0.51717484122682
1127 => 0.5220386539123
1128 => 0.5129459892254
1129 => 0.51582936686244
1130 => 0.51710033225102
1201 => 0.51643645205868
1202 => 0.52231364658393
1203 => 0.51731683060595
1204 => 0.50412941168745
1205 => 0.49093839986548
1206 => 0.49077279745722
1207 => 0.4872998368852
1208 => 0.48478952249608
1209 => 0.48527309810561
1210 => 0.48697728162736
1211 => 0.48469047225176
1212 => 0.48517847897622
1213 => 0.49328264217409
1214 => 0.49490787430718
1215 => 0.48938470049977
1216 => 0.46720836067284
1217 => 0.46176623125418
1218 => 0.4656779259582
1219 => 0.46380838783508
1220 => 0.37432956774339
1221 => 0.39535128926584
1222 => 0.38286089616741
1223 => 0.38861704396252
1224 => 0.37586758698064
1225 => 0.38195229610869
1226 => 0.38082867251073
1227 => 0.41463097864086
1228 => 0.41410320212419
1229 => 0.41435582081341
1230 => 0.40229767258253
1231 => 0.42150663012872
]
'min_raw' => 0.24523297395819
'max_raw' => 0.54746533889125
'avg_raw' => 0.39634915642472
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.245232'
'max' => '$0.547465'
'avg' => '$0.396349'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.037814427010239
'max_diff' => 0.082822188792996
'year' => 2035
]
10 => [
'items' => [
101 => 0.43096965334775
102 => 0.42921829960011
103 => 0.42965907760696
104 => 0.42208505108197
105 => 0.41442915394617
106 => 0.40593758578845
107 => 0.42171386983595
108 => 0.41995981636002
109 => 0.42398298394529
110 => 0.43421503186217
111 => 0.4357217397857
112 => 0.43774677051445
113 => 0.4370209411497
114 => 0.45431314132856
115 => 0.45221894178929
116 => 0.45726536013661
117 => 0.4468844947235
118 => 0.43513756014777
119 => 0.43737026837439
120 => 0.43715524061786
121 => 0.43441769047988
122 => 0.43194635261944
123 => 0.42783227137693
124 => 0.44084983319768
125 => 0.44032134396062
126 => 0.44887697040713
127 => 0.44736468032779
128 => 0.43726523705778
129 => 0.43762594064995
130 => 0.44005184565553
131 => 0.44844793057835
201 => 0.4509404602325
202 => 0.44978582118657
203 => 0.45251876616404
204 => 0.45467877444309
205 => 0.45279002994781
206 => 0.47953066899124
207 => 0.46842609130956
208 => 0.47383838520645
209 => 0.47512918540978
210 => 0.47182282783157
211 => 0.47253985839849
212 => 0.47362596432825
213 => 0.48022058685239
214 => 0.49752678452512
215 => 0.50519158166711
216 => 0.52825150204319
217 => 0.50455512696359
218 => 0.50314908213172
219 => 0.50730287013433
220 => 0.52084148453556
221 => 0.53181325989038
222 => 0.53545323075247
223 => 0.53593431299127
224 => 0.54276314030925
225 => 0.54667729677783
226 => 0.54193394105686
227 => 0.53791444373338
228 => 0.52351710323907
229 => 0.52518363460394
301 => 0.53666438308828
302 => 0.55288161653513
303 => 0.56679768994809
304 => 0.56192476606299
305 => 0.59910173555811
306 => 0.60278768022925
307 => 0.60227840185655
308 => 0.61067553235952
309 => 0.59400893835702
310 => 0.5868836465209
311 => 0.53878350467795
312 => 0.55229768255653
313 => 0.57194133376289
314 => 0.56934142286581
315 => 0.55507567828346
316 => 0.56678686810158
317 => 0.56291478250494
318 => 0.5598607079419
319 => 0.5738520155767
320 => 0.55846799810099
321 => 0.57178786642041
322 => 0.55470499752437
323 => 0.56194702516883
324 => 0.55783610002037
325 => 0.56049637240746
326 => 0.54494447439081
327 => 0.55333590105961
328 => 0.54459536345294
329 => 0.54459121930006
330 => 0.54439827144795
331 => 0.55468147518073
401 => 0.55501681008527
402 => 0.54741750698969
403 => 0.54632232869019
404 => 0.55037177686962
405 => 0.54563093360367
406 => 0.5478491443293
407 => 0.54569812094682
408 => 0.54521388027594
409 => 0.54135536822362
410 => 0.53969301513948
411 => 0.54034486661733
412 => 0.53811976147095
413 => 0.53677905513469
414 => 0.54413157121258
415 => 0.54020341847181
416 => 0.54352952546742
417 => 0.53973900675776
418 => 0.5265994174597
419 => 0.51904270070575
420 => 0.49422323456229
421 => 0.50126200437212
422 => 0.50592871603817
423 => 0.50438636786038
424 => 0.50769992855579
425 => 0.50790335427086
426 => 0.50682608191103
427 => 0.50557873852549
428 => 0.50497160074782
429 => 0.50949670832391
430 => 0.51212368557995
501 => 0.50639708298641
502 => 0.50505542012243
503 => 0.51084533151889
504 => 0.51437717412601
505 => 0.54045431556604
506 => 0.53852243670011
507 => 0.54337107354153
508 => 0.54282519144158
509 => 0.54790733529981
510 => 0.55621449263376
511 => 0.53932371905611
512 => 0.54225537331018
513 => 0.54153659938887
514 => 0.54938398458915
515 => 0.54940848326917
516 => 0.54470358383564
517 => 0.54725418614683
518 => 0.54583050990884
519 => 0.54840328529228
520 => 0.53849663528004
521 => 0.55056186563816
522 => 0.55740207378494
523 => 0.5574970500817
524 => 0.56073925445602
525 => 0.56403352187615
526 => 0.57035658131887
527 => 0.56385717518014
528 => 0.55216537624101
529 => 0.55300948636014
530 => 0.54615458891999
531 => 0.54626982098439
601 => 0.54565470319369
602 => 0.5475007179875
603 => 0.53890173171687
604 => 0.54091989660718
605 => 0.53809445394239
606 => 0.54224923134963
607 => 0.53777937766875
608 => 0.54153625277432
609 => 0.5431575955275
610 => 0.54914038519176
611 => 0.53689571477088
612 => 0.51192800289138
613 => 0.5171765186327
614 => 0.50941355158928
615 => 0.51013204374485
616 => 0.51158351224627
617 => 0.50687882794221
618 => 0.50777633344578
619 => 0.50774426823355
620 => 0.50746794755752
621 => 0.5062440774665
622 => 0.50446922369921
623 => 0.51153969483692
624 => 0.51274110566039
625 => 0.51541169309765
626 => 0.52335754983417
627 => 0.52256357136998
628 => 0.52385858318692
629 => 0.52103157966173
630 => 0.51026318033034
701 => 0.51084795622237
702 => 0.50355579147839
703 => 0.51522521605012
704 => 0.51246174228266
705 => 0.51068011276731
706 => 0.51019397864737
707 => 0.51815953162584
708 => 0.52054294992174
709 => 0.51905776358499
710 => 0.5160116030785
711 => 0.52186113176747
712 => 0.52342621887284
713 => 0.52377658415754
714 => 0.53414082745852
715 => 0.52435583022568
716 => 0.52671117631413
717 => 0.54508691413305
718 => 0.52842265560978
719 => 0.53725008500687
720 => 0.5368180282736
721 => 0.54133384244923
722 => 0.53644759970446
723 => 0.53650817053939
724 => 0.5405179075996
725 => 0.53488695505843
726 => 0.53349265202097
727 => 0.53156643236091
728 => 0.53577226251932
729 => 0.53829346748594
730 => 0.55861252789596
731 => 0.57173956758256
801 => 0.57116968816966
802 => 0.576377319234
803 => 0.57403123374308
804 => 0.56645510482682
805 => 0.57938663307638
806 => 0.5752945564601
807 => 0.57563190228447
808 => 0.57561934625604
809 => 0.57834021947032
810 => 0.57641223143364
811 => 0.57261196910941
812 => 0.57513476059105
813 => 0.58262654937705
814 => 0.60588129164494
815 => 0.61889495350241
816 => 0.60509785286069
817 => 0.61461490813281
818 => 0.60890806624306
819 => 0.60787096330785
820 => 0.6138483773236
821 => 0.61983625401131
822 => 0.61945485215261
823 => 0.6151079611582
824 => 0.61265251273374
825 => 0.63124599083935
826 => 0.64494534877593
827 => 0.64401114440632
828 => 0.64813441867426
829 => 0.660240479453
830 => 0.66134730593251
831 => 0.66120787123621
901 => 0.65846448632133
902 => 0.67038447532865
903 => 0.6803283398708
904 => 0.65782947197755
905 => 0.66639674633949
906 => 0.67024287182091
907 => 0.67589012512164
908 => 0.68541798802952
909 => 0.6957677742883
910 => 0.69723134754492
911 => 0.69619287228092
912 => 0.68936691002607
913 => 0.70069176964906
914 => 0.70732560681556
915 => 0.71127590503555
916 => 0.72129320405451
917 => 0.67026662418251
918 => 0.63414747476354
919 => 0.62850694801492
920 => 0.63997718096099
921 => 0.64300178991547
922 => 0.64178257383845
923 => 0.601127187358
924 => 0.62829290581893
925 => 0.6575209347244
926 => 0.65864370234955
927 => 0.67327586474889
928 => 0.67804069661872
929 => 0.68982150523156
930 => 0.68908461244526
1001 => 0.69195305186888
1002 => 0.69129364731983
1003 => 0.71311511453319
1004 => 0.73718743338875
1005 => 0.73635388553207
1006 => 0.73289320488584
1007 => 0.73803290577923
1008 => 0.76287811858464
1009 => 0.76059076952594
1010 => 0.76281273430054
1011 => 0.79210664041295
1012 => 0.83019288536864
1013 => 0.81249800079025
1014 => 0.85089080875949
1015 => 0.87505704626082
1016 => 0.91685005518377
1017 => 0.91161736463171
1018 => 0.92788707631415
1019 => 0.90224975644805
1020 => 0.84338128787826
1021 => 0.83406512738765
1022 => 0.85271631661261
1023 => 0.89856844536576
1024 => 0.8512722699043
1025 => 0.86084022460149
1026 => 0.85808465300503
1027 => 0.85793782030508
1028 => 0.86354182725042
1029 => 0.85541292289086
1030 => 0.82229430416802
1031 => 0.83747237195945
1101 => 0.8316113910745
1102 => 0.83811458633142
1103 => 0.8732096490113
1104 => 0.85769328523873
1105 => 0.84134805645136
1106 => 0.86184860064735
1107 => 0.88795283816014
1108 => 0.88631928189042
1109 => 0.8831494999536
1110 => 0.90101739476705
1111 => 0.93052992219691
1112 => 0.93850703977026
1113 => 0.94439558487792
1114 => 0.94520751576048
1115 => 0.95357090846309
1116 => 0.90859883805481
1117 => 0.97997066875743
1118 => 0.99229461231274
1119 => 0.98997822169947
1120 => 1.0036757662904
1121 => 0.99964560119856
1122 => 0.99380652429406
1123 => 1.0155200460219
1124 => 0.99062724555177
1125 => 0.95529504920082
1126 => 0.93591110749109
1127 => 0.96143744559244
1128 => 0.97702548952451
1129 => 0.9873281949778
1130 => 0.99044578742291
1201 => 0.91208989186154
1202 => 0.86986040997115
1203 => 0.89692902370089
1204 => 0.9299546006271
1205 => 0.90841537930748
1206 => 0.90925967600407
1207 => 0.87855040681007
1208 => 0.93267168953647
1209 => 0.92478667387486
1210 => 0.9656941490756
1211 => 0.95593125181594
1212 => 0.9892897098231
1213 => 0.98050530986615
1214 => 1.0169688629583
1215 => 1.031515161498
1216 => 1.0559406606968
1217 => 1.0739081573371
1218 => 1.0844590150278
1219 => 1.0838255811073
1220 => 1.125633335694
1221 => 1.1009807634659
1222 => 1.0700113225823
1223 => 1.069451183104
1224 => 1.085490695378
1225 => 1.1191051128791
1226 => 1.1278208422672
1227 => 1.1326917459735
1228 => 1.1252317873899
1229 => 1.0984731871021
1230 => 1.086918959167
1231 => 1.0967634961259
]
'min_raw' => 0.40593758578845
'max_raw' => 1.1326917459735
'avg_raw' => 0.76931466588098
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.405937'
'max' => '$1.13'
'avg' => '$0.769314'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.16070461183026
'max_diff' => 0.58522640708225
'year' => 2036
]
11 => [
'items' => [
101 => 1.0847244733759
102 => 1.1055072041956
103 => 1.1340463325629
104 => 1.128153115411
105 => 1.1478532567894
106 => 1.1682408306006
107 => 1.1973959768139
108 => 1.205018211646
109 => 1.2176174759759
110 => 1.230586257614
111 => 1.2347514807577
112 => 1.2427041841319
113 => 1.2426622694595
114 => 1.2666282763562
115 => 1.2930635241288
116 => 1.3030422181855
117 => 1.3259876749406
118 => 1.2866943843522
119 => 1.3164987966323
120 => 1.3433831225617
121 => 1.311330520878
122 => 1.3555075650006
123 => 1.3572228595166
124 => 1.3831217702159
125 => 1.3568682625912
126 => 1.3412790135678
127 => 1.3862845913768
128 => 1.4080613728162
129 => 1.4015020290213
130 => 1.3515850988677
131 => 1.3225313044804
201 => 1.2464919205105
202 => 1.3365638554798
203 => 1.3804352675689
204 => 1.3514714825089
205 => 1.3660791309704
206 => 1.4457737244306
207 => 1.4761162657774
208 => 1.4698052292876
209 => 1.4708716905659
210 => 1.4872439751206
211 => 1.5598477012177
212 => 1.5163418655991
213 => 1.549600446797
214 => 1.5672406783416
215 => 1.583625908501
216 => 1.5433889618346
217 => 1.4910412854198
218 => 1.4744605788933
219 => 1.3485916048985
220 => 1.3420395781808
221 => 1.3383617270375
222 => 1.3151733958209
223 => 1.2969537193032
224 => 1.2824647560831
225 => 1.2444413898229
226 => 1.2572731597481
227 => 1.1966718500226
228 => 1.2354424204065
301 => 1.1387212668148
302 => 1.2192735176105
303 => 1.1754325897638
304 => 1.2048705937149
305 => 1.2047678872924
306 => 1.1505631886908
307 => 1.1192990497606
308 => 1.1392217759054
309 => 1.1605805198006
310 => 1.1640459041381
311 => 1.1917380731185
312 => 1.1994663622398
313 => 1.1760492854031
314 => 1.1367169358899
315 => 1.1458529436064
316 => 1.1191139088558
317 => 1.0722547789574
318 => 1.1059098241323
319 => 1.1174011362629
320 => 1.1224763543454
321 => 1.0763957818978
322 => 1.0619162655768
323 => 1.0542074925824
324 => 1.130768512642
325 => 1.1349626981476
326 => 1.1135046521029
327 => 1.2104970549602
328 => 1.1885446869949
329 => 1.2130708604729
330 => 1.1450239466653
331 => 1.14762343041
401 => 1.1154089309133
402 => 1.1334468980579
403 => 1.1206982442709
404 => 1.1319896085673
405 => 1.1387576057704
406 => 1.1709668191847
407 => 1.2196412950893
408 => 1.1661558367833
409 => 1.1428514566734
410 => 1.1573093630248
411 => 1.195812672879
412 => 1.2541471582563
413 => 1.219611968822
414 => 1.2349380994474
415 => 1.2382861771769
416 => 1.2128212070503
417 => 1.2550860880277
418 => 1.2777361811028
419 => 1.3009704898215
420 => 1.3211441890713
421 => 1.2916901959858
422 => 1.3232101906514
423 => 1.297810638979
424 => 1.2750246153715
425 => 1.2750591723636
426 => 1.260765166904
427 => 1.2330687301653
428 => 1.2279610822911
429 => 1.2545317115574
430 => 1.2758388399811
501 => 1.2775937971324
502 => 1.2893905182275
503 => 1.2963716962557
504 => 1.3647967313835
505 => 1.3923178465535
506 => 1.4259701452353
507 => 1.4390796121115
508 => 1.4785344074048
509 => 1.4466714558436
510 => 1.439777705846
511 => 1.3440732780295
512 => 1.359744872723
513 => 1.3848366079113
514 => 1.3444870315009
515 => 1.370079550541
516 => 1.3751320559232
517 => 1.3431159683345
518 => 1.3602171440491
519 => 1.3148014914962
520 => 1.2206312322083
521 => 1.2551909264463
522 => 1.2806384940727
523 => 1.2443216774073
524 => 1.3094181656251
525 => 1.2713901410726
526 => 1.2593370829565
527 => 1.2123138060203
528 => 1.2345069826423
529 => 1.2645235717992
530 => 1.2459768095032
531 => 1.2844641260777
601 => 1.3389724305395
602 => 1.3778182943246
603 => 1.380800397395
604 => 1.3558251094519
605 => 1.3958481677709
606 => 1.3961396920566
607 => 1.3509935187738
608 => 1.323341739013
609 => 1.3170591964716
610 => 1.3327542195052
611 => 1.3518108749292
612 => 1.3818579091435
613 => 1.4000147026279
614 => 1.4473579904161
615 => 1.4601677266531
616 => 1.4742417431083
617 => 1.4930489693583
618 => 1.5156318665453
619 => 1.4662217731452
620 => 1.4681849282679
621 => 1.4221749334231
622 => 1.3730066554307
623 => 1.4103192495146
624 => 1.4591005027928
625 => 1.4479100293923
626 => 1.4466508725341
627 => 1.4487684251086
628 => 1.4403311736113
629 => 1.4021697977881
630 => 1.3830053937526
701 => 1.4077323643193
702 => 1.4208736487047
703 => 1.441254634746
704 => 1.438742248026
705 => 1.4912414793103
706 => 1.511641093093
707 => 1.5064219989387
708 => 1.5073824378676
709 => 1.5443149642086
710 => 1.5853915292532
711 => 1.6238651529477
712 => 1.6630021754502
713 => 1.6158209672794
714 => 1.5918652595026
715 => 1.6165814350476
716 => 1.6034666843981
717 => 1.6788279317178
718 => 1.6840457809733
719 => 1.7594015788171
720 => 1.8309232041723
721 => 1.7860017527297
722 => 1.8283606581335
723 => 1.8741752678999
724 => 1.9625590832919
725 => 1.932794523648
726 => 1.9099953374309
727 => 1.8884502166206
728 => 1.9332821928352
729 => 1.9909578140271
730 => 2.0033805904215
731 => 2.0235102340464
801 => 2.0023463751106
802 => 2.0278359120762
803 => 2.1178251782351
804 => 2.0935092841617
805 => 2.0589768056026
806 => 2.130014688574
807 => 2.1557230222686
808 => 2.336157571696
809 => 2.5639636437277
810 => 2.4696504340513
811 => 2.4111071813369
812 => 2.4248662343893
813 => 2.508053300173
814 => 2.5347703454773
815 => 2.4621442064225
816 => 2.4877969865276
817 => 2.6291463270326
818 => 2.7049757131837
819 => 2.6019892215452
820 => 2.3178535756181
821 => 2.0558675337363
822 => 2.1253580294286
823 => 2.1174799637582
824 => 2.2693421964414
825 => 2.0929293581299
826 => 2.0958996978911
827 => 2.2509022807213
828 => 2.2095502490392
829 => 2.1425652536823
830 => 2.0563565983325
831 => 1.8969919255828
901 => 1.7558381907158
902 => 2.0326731705538
903 => 2.0207355428314
904 => 2.0034480888321
905 => 2.0419194470096
906 => 2.2287254420341
907 => 2.2244189592168
908 => 2.1970233127199
909 => 2.2178026691336
910 => 2.1389225320363
911 => 2.1592517394336
912 => 2.0558260338088
913 => 2.1025787721902
914 => 2.1424215339668
915 => 2.1504205582756
916 => 2.1684427684836
917 => 2.0144449554717
918 => 2.0835854523758
919 => 2.1241990167185
920 => 1.9407054554841
921 => 2.1205719389897
922 => 2.0117641961614
923 => 1.974833214008
924 => 2.0245559161906
925 => 2.0051789307931
926 => 1.9885197366032
927 => 1.9792236200039
928 => 2.0157344847924
929 => 2.0140312093101
930 => 1.9542923480626
1001 => 1.8763654388327
1002 => 1.9025202674338
1003 => 1.8930179730002
1004 => 1.8585804321524
1005 => 1.8817871766793
1006 => 1.7795964184475
1007 => 1.6037825303231
1008 => 1.7199305701431
1009 => 1.7154589969548
1010 => 1.7132042269835
1011 => 1.8004862688122
1012 => 1.7920961144297
1013 => 1.7768679020688
1014 => 1.8583007540903
1015 => 1.828576667676
1016 => 1.9201792981292
1017 => 1.9805147150323
1018 => 1.9652117016594
1019 => 2.0219574528832
1020 => 1.9031228218595
1021 => 1.9425949194677
1022 => 1.9507300640788
1023 => 1.8572958853368
1024 => 1.7934688474495
1025 => 1.7892123117039
1026 => 1.6785450239149
1027 => 1.7376625957767
1028 => 1.7896836125637
1029 => 1.7647695825167
1030 => 1.7568825448893
1031 => 1.7971757096379
1101 => 1.8003068336265
1102 => 1.728916874865
1103 => 1.7437611079175
1104 => 1.8056640273948
1105 => 1.7422013131732
1106 => 1.6189036260163
1107 => 1.5883240948775
1108 => 1.584244221731
1109 => 1.5013101079893
1110 => 1.5903675653699
1111 => 1.5514915986318
1112 => 1.6743003117518
1113 => 1.604152633454
1114 => 1.601128707245
1115 => 1.5965575992665
1116 => 1.5251727816039
1117 => 1.5408015199302
1118 => 1.5927538264508
1119 => 1.6112909947019
1120 => 1.6093574161828
1121 => 1.5924992318063
1122 => 1.600216822286
1123 => 1.5753557743642
1124 => 1.5665768209051
1125 => 1.5388680289466
1126 => 1.4981437595168
1127 => 1.5038067189575
1128 => 1.4231212851323
1129 => 1.3791595784843
1130 => 1.3669915574901
1201 => 1.35071997128
1202 => 1.3688294764495
1203 => 1.4228927134359
1204 => 1.3576809794748
1205 => 1.2458800356698
1206 => 1.252599462892
1207 => 1.2676960208445
1208 => 1.2395636849738
1209 => 1.2129387900401
1210 => 1.236086976039
1211 => 1.188715442303
1212 => 1.2734206443763
1213 => 1.2711296060438
1214 => 1.3027024672422
1215 => 1.3224456252899
1216 => 1.2769440379133
1217 => 1.2655005117375
1218 => 1.2720192643265
1219 => 1.1642788047308
1220 => 1.2938977731197
1221 => 1.2950187233409
1222 => 1.2854204669986
1223 => 1.354438566129
1224 => 1.5000882825792
1225 => 1.4452890005044
1226 => 1.4240690621679
1227 => 1.3837299438787
1228 => 1.4374794238993
1229 => 1.4333523024562
1230 => 1.4146878941263
1231 => 1.4033996017319
]
'min_raw' => 1.0542074925824
'max_raw' => 2.7049757131837
'avg_raw' => 1.8795916028831
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$1.05'
'max' => '$2.70'
'avg' => '$1.87'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.648269906794
'max_diff' => 1.5722839672102
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.033090368576244
]
1 => [
'year' => 2028
'avg' => 0.056792678679469
]
2 => [
'year' => 2029
'avg' => 0.15514736226788
]
3 => [
'year' => 2030
'avg' => 0.11969595893728
]
4 => [
'year' => 2031
'avg' => 0.1175562654333
]
5 => [
'year' => 2032
'avg' => 0.20611312962287
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.033090368576244
'min' => '$0.03309'
'max_raw' => 0.20611312962287
'max' => '$0.206113'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.20611312962287
]
1 => [
'year' => 2033
'avg' => 0.53014416375319
]
2 => [
'year' => 2034
'avg' => 0.3360308485231
]
3 => [
'year' => 2035
'avg' => 0.39634915642472
]
4 => [
'year' => 2036
'avg' => 0.76931466588098
]
5 => [
'year' => 2037
'avg' => 1.8795916028831
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.20611312962287
'min' => '$0.206113'
'max_raw' => 1.8795916028831
'max' => '$1.87'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 1.8795916028831
]
]
]
]
'prediction_2025_max_price' => '$0.056578'
'last_price' => 0.05486
'sma_50day_nextmonth' => '$0.05067'
'sma_200day_nextmonth' => '$0.097776'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'augmenter'
'sma_200day_date_nextmonth' => '4 févr. 2026'
'sma_50day_date_nextmonth' => '4 févr. 2026'
'daily_sma3' => '$0.054112'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.053492'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.0515057'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.0510076'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.055074'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.06962'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.1128042'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.054095'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.053357'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.05236'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.052366'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.057615'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.07452'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.113923'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.089179'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.166267'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.256931'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.054163'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.055036'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.06246'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.089294'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.153823'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.176647'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.153371'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '54.67'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 104.36
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.051278'
'vwma_10_action' => 'BUY'
'hma_9' => '0.0554079'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 144.97
'cci_20_action' => 'SELL'
'adx_14' => 15.65
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.000556'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 71.61
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '-0.009857'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 16
'buy_signals' => 18
'sell_pct' => 47.06
'buy_pct' => 52.94
'overall_action' => 'bullish'
'overall_action_label' => 'Haussier'
'overall_action_dir' => 1
'last_updated' => 1767680122
'last_updated_date' => '6 janvier 2026'
]
Prévision du prix de Across Protocol pour 2026
La prévision du prix de Across Protocol pour 2026 suggère que le prix moyen pourrait varier entre $0.018954 à la baisse et $0.056578 à la hausse. Sur le marché des cryptomonnaies, comparé au prix moyen d'aujourd'hui, Across Protocol pourrait potentiellement gagner 3.13% d'ici 2026 si ACX atteint l'objectif de prix prévu.
Prévision du prix de Across Protocol de 2027 à 2032
La prévision du prix de ACX pour 2027-2032 se situe actuellement dans une fourchette de prix comprise entre $0.03309 à la baisse et $0.206113 à la hausse. Compte tenu de la volatilité des prix sur le marché, si Across Protocol atteint l'objectif de prix le plus élevé, il pourrait gagner 275.71% d'ici 2032 par rapport au prix actuel.
| Prévision du Prix de Across Protocol | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2027 | $0.018246 | $0.03309 | $0.047934 |
| 2028 | $0.032929 | $0.056792 | $0.080655 |
| 2029 | $0.072337 | $0.155147 | $0.237957 |
| 2030 | $0.061519 | $0.119695 | $0.177872 |
| 2031 | $0.072735 | $0.117556 | $0.162376 |
| 2032 | $0.111025 | $0.206113 | $0.30120095 |
Prévision du prix de Across Protocol de 2032 à 2037
La prévision du prix de Across Protocol pour 2032-2037 est actuellement estimée entre $0.206113 à la baisse et $1.87 à la hausse. Par rapport au prix actuel, Across Protocol pourrait potentiellement gagner 3326.16% d'ici 2037 s'il atteint l'objectif de prix le plus élevé. Veuillez noter que ces informations sont à titre général seulement et ne doivent pas être considérées comme un conseil en investissement à long terme.
| Prévision du Prix de Across Protocol | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2032 | $0.111025 | $0.206113 | $0.30120095 |
| 2033 | $0.257998 | $0.530144 | $0.802289 |
| 2034 | $0.207418 | $0.33603 | $0.464643 |
| 2035 | $0.245232 | $0.396349 | $0.547465 |
| 2036 | $0.405937 | $0.769314 | $1.13 |
| 2037 | $1.05 | $1.87 | $2.70 |
Across Protocol Histogramme des prix potentiels
Prévision du prix de Across Protocol basée sur l'analyse technique
Au 6 janvier 2026, le sentiment global de prévision du prix pour Across Protocol est Haussier, avec 18 indicateurs techniques montrant des signaux haussiers et 16 indiquant des signaux baissiers. La prévision du prix de ACX a été mise à jour pour la dernière fois le 6 janvier 2026.
Moyennes Mobiles Simples sur 50 et 200 jours de Across Protocol et Indice de Force Relative sur 14 jours - RSI (14)
Selon nos indicateurs techniques, le SMA sur 200 jours de Across Protocol devrait augmenter au cours du prochain mois, atteignant $0.097776 d'ici le 4 févr. 2026. Le SMA à court terme sur 50 jours pour Across Protocol devrait atteindre $0.05067 d'ici le 4 févr. 2026.
Le Relative Strength Index (RSI), un oscillateur de momentum, est un outil couramment utilisé pour identifier si une cryptomonnaie est survendue (en dessous de 30) ou surachetée (au-dessus de 70). Actuellement, le RSI est à 54.67, ce qui suggère que le marché de ACX est dans un état NEUTRAL.
Moyennes Mobiles et Oscillateurs Populaires de ACX pour le Samedi 19 Octobre 2024
Les moyennes mobiles (MA) sont des indicateurs largement utilisés sur les marchés financiers, conçus pour lisser les mouvements de prix sur une période donnée. En tant qu'indicateurs retardés, ils sont basés sur des données historiques de prix. Le tableau ci-dessous met en évidence deux types : la moyenne mobile simple (SMA) et la moyenne mobile exponentielle (EMA).
Moyenne Mobile Simple Quotidienne (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 3 | $0.054112 | BUY |
| SMA 5 | $0.053492 | BUY |
| SMA 10 | $0.0515057 | BUY |
| SMA 21 | $0.0510076 | BUY |
| SMA 50 | $0.055074 | SELL |
| SMA 100 | $0.06962 | SELL |
| SMA 200 | $0.1128042 | SELL |
Moyenne Mobile Exponentielle Quotidienne (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 3 | $0.054095 | BUY |
| EMA 5 | $0.053357 | BUY |
| EMA 10 | $0.05236 | BUY |
| EMA 21 | $0.052366 | BUY |
| EMA 50 | $0.057615 | SELL |
| EMA 100 | $0.07452 | SELL |
| EMA 200 | $0.113923 | SELL |
Moyenne Mobile Simple Hebdomadaire (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 21 | $0.089179 | SELL |
| SMA 50 | $0.166267 | SELL |
| SMA 100 | $0.256931 | SELL |
| SMA 200 | — | — |
Moyenne Mobile Exponentielle Hebdomadaire (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 21 | $0.089294 | SELL |
| EMA 50 | $0.153823 | SELL |
| EMA 100 | $0.176647 | SELL |
| EMA 200 | $0.153371 | SELL |
Oscillateurs de Across Protocol
Un oscillateur est un outil d'analyse technique qui établit des limites hautes et basses entre deux extrêmes, créant un indicateur de tendance qui fluctue à l'intérieur de ces limites. Les traders utilisent cet indicateur pour identifier les conditions de surachat ou de survente à court terme.
| Période | Valeur | Action |
|---|---|---|
| RSI (14) | 54.67 | NEUTRAL |
| Stoch RSI (14) | 104.36 | SELL |
| Stochastique Rapide (14) | 100 | SELL |
| Indice de Canal des Matières Premières (20) | 144.97 | SELL |
| Indice Directionnel Moyen (14) | 15.65 | NEUTRAL |
| Oscillateur Impressionnant (5, 34) | 0.000556 | BUY |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Plage de Pourcentage de Williams (14) | -0 | SELL |
| Oscillateur Ultime (7, 14, 28) | 71.61 | SELL |
| VWMA (10) | 0.051278 | BUY |
| Moyenne Mobile de Hull (9) | 0.0554079 | BUY |
| Nuage Ichimoku B/L (9, 26, 52, 26) | -0.009857 | SELL |
Prévision du cours de Across Protocol basée sur les flux monétaires mondiaux
Définitions des flux monétaires mondiaux utilisés pour la prédiction du cours de Across Protocol
M0 : le total de toutes les devises physiques, plus les comptes à la banque centrale qui peuvent être échangés contre des devises physiques.
M1 : M0 plus le montant des comptes à vue, y compris les comptes de "chèques" et les comptes "courants".
M2 : M1 plus la plupart des comptes d'épargne, comptes du marché monétaire et comptes de certificats de dépôt (CD) de moins de 100 000 $.
Prédictions du cours de Across Protocol par des sociétés Internet ou des niches technologiques
| Comparaison | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Action Facebook | $0.077087 | $0.10832 | $0.1522087 | $0.213878 | $0.300535 | $0.4223023 |
| Action Amazon.com | $0.114468 | $0.238845 | $0.498365 | $1.03 | $2.16 | $4.52 |
| Action Apple | $0.077814 | $0.110374 | $0.156557 | $0.222064 | $0.314981 | $0.446777 |
| Action Netflix | $0.08656 | $0.136578 | $0.215500054 | $0.340025 | $0.5365066 | $0.846523 |
| Action Google | $0.071043 | $0.09200095 | $0.11914 | $0.154286 | $0.19980077 | $0.258741 |
| Action Tesla | $0.124363 | $0.281922 | $0.639097 | $1.44 | $3.28 | $7.44 |
| Action Kodak | $0.041139 | $0.03085 | $0.023134 | $0.017348 | $0.0130093 | $0.009755 |
| Action Nokia | $0.036342 | $0.024075 | $0.015948 | $0.010565 | $0.006999 | $0.004636 |
Ce calcul montre la valeur potentielle des cryptomonnaies si l'on suppose que leur capitalisation se comportera comme celle de certaines sociétés Internet ou niches technologiques. En extrapolant les données, vous pourrez obtenir une potentielle image des cours futurs pour 2024, 2025, 2026, 2027, 2028, 2029 et 2030.
Aperçu des prévisions relatives à Across Protocol
Vous vous posez peut-être des questions telles que : "Devrais-je investir dans Across Protocol maintenant ?", "Devrais-je acheter ACX aujourd'hui ?", " Across Protocol sera-t-il un bon ou un mauvais investissement à court ou à long terme ?".
Nous mettons régulièrement à jour les prévisions de Across Protocol avec de nouvelles valeurs. Regardez nos prévisions similaires. Nous faisons une prévision des cours futurs pour une grande quantité de devises numériques comme Across Protocol en utilisant des méthodes d'analyse technique.
Si vous souhaitez trouver des cryptomonnaies ayant un bon rendement, vous devriez consulter un maximum d'informations disponibles à propos de Across Protocol afin de prendre une décision responsable concernant cet investissement.
Le cours de Across Protocol est de $0.05485 USD actuellement, mais ce cours peut subir une hausse ou une baisse, ce qui pourrait causer la perte de votre investissement, car les cryptomonnaies sont des actifs à haut risque.
Prévision à court terme de Across Protocol
basée sur l'historique des cours sur 4 heures
Prévision à long terme de Across Protocol
basée sur l'historique des cours sur 1 mois
Prévision du cours de Across Protocol basée sur le modèle de croissance du Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si Across Protocol présente 1 % de la précédente croissance annuelle moyenne du Bitcoin | $0.056285 | $0.057749 | $0.05925 | $0.06079 |
| Si Across Protocol présente 2 % de la précédente croissance annuelle moyenne du Bitcoin | $0.057711 | $0.060712 | $0.063868 | $0.067188 |
| Si Across Protocol présente 5 % de la précédente croissance annuelle moyenne du Bitcoin | $0.061989 | $0.070046 | $0.07915 | $0.089437 |
| Si Across Protocol présente 10 % de la précédente croissance annuelle moyenne du Bitcoin | $0.069119 | $0.087086 | $0.109722 | $0.138243 |
| Si Across Protocol présente 20 % de la précédente croissance annuelle moyenne du Bitcoin | $0.083379 | $0.126725 | $0.1926061 | $0.292735 |
| Si Across Protocol présente 50 % de la précédente croissance annuelle moyenne du Bitcoin | $0.126159 | $0.290123 | $0.667186 | $1.53 |
| Si Across Protocol présente 100 % de la précédente croissance annuelle moyenne du Bitcoin | $0.197458 | $0.710717 | $2.55 | $9.20 |
Boîte à questions
Est-ce que ACX est un bon investissement ?
La décision d'acquérir Across Protocol dépend entièrement de votre tolérance individuelle au risque. Comme vous pouvez le discerner, la valeur de Across Protocol a connu une hausse de 3.9002% au cours des 24 heures précédentes, et Across Protocol a enregistré une déclin de sur une période de 30 jours précédents. Par conséquent, la détermination de si investir ou non dans Across Protocol dépendra de la mesure dans laquelle cet investissement s'aligne avec vos aspirations de trading.
Est-ce que Across Protocol peut monter ?
Il semble que la valeur moyenne de Across Protocol pourrait potentiellement s'envoler jusqu'à $0.056578 pour la fin de cette année. En regardant les perspectives de Across Protocol sur une période de cinq ans plus longue, la monnaie numérique pourrait potentiellement croître jusqu'à $0.177872. Cependant, compte tenu de l'imprévisibilité du marché, il est essentiel de mener des recherches approfondies avant d'investir des fonds dans un projet, un réseau ou un actif particulier.
Quel sera le prix de Across Protocol la semaine prochaine ?
Basé sur notre nouveau pronostic expérimental de Across Protocol, le prix de Across Protocol va augmenter de 0.86% durant la prochaine semaine et atteindre $0.055329 d'ici 13 janvier 2026.
Quel sera le prix de Across Protocol le mois prochain ?
Basé sur notre nouveau pronostic expérimental de Across Protocol, le prix de Across Protocol va diminuer de -11.62% durant le prochain mois et atteindre $0.048486 d'ici 5 février 2026.
Jusqu'où le prix de Across Protocol peut-il monter cette année en 2026 ?
Selon notre prédiction la plus récente sur la valeur de Across Protocol en 2026, ACX devrait fluctuer dans la fourchette de $0.018954 et $0.056578. Cependant, il est crucial de garder à l'esprit que le marché des cryptomonnaies est exceptionnellement instable, et cette prévision de prix de Across Protocol ne prend pas en compte les fluctuations de prix soudaines et extrêmes.
Où sera Across Protocol dans 5 ans ?
L'avenir de Across Protocol semble suivre une tendance haussière, avec un prix maximum de $0.177872 prévue après une période de cinq ans. Selon la prévision de Across Protocol pour 2030, la valeur de Across Protocol pourrait potentiellement atteindre son point le plus élevé d'environ $0.177872, tandis que son point le plus bas devrait être autour de $0.061519.
Combien vaudra Across Protocol en 2026 ?
Basé sur notre nouvelle simulation expérimentale de prédiction de prix de Across Protocol, il est attendu que la valeur de ACX en 2026 augmente de 3.13% jusqu'à $0.056578 si le meilleur scénario se produit. Le prix sera entre $0.056578 et $0.018954 durant 2026.
Combien vaudra Across Protocol en 2027 ?
Selon notre dernière simulation expérimentale pour la prédiction de prix de Across Protocol, le valeur de ACX pourrait diminuer de -12.62% jusqu'à $0.047934 en 2027, en supposant les conditions les plus favorables. Il est prévu que le prix fluctue entre $0.047934 et $0.018246 tout au long de l'année.
Combien vaudra Across Protocol en 2028 ?
Notre nouveau modèle expérimental de prédiction de prix de Across Protocol suggère que la valeur de ACX en 2028 pourrait augmenter de 47.02%, atteignant $0.080655 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.080655 et $0.032929 durant l'année.
Combien vaudra Across Protocol en 2029 ?
Basé sur notre modèle de prévision expérimental, la valeur de Across Protocol pourrait connaître un 333.75% croissance en 2029, atteignant potentiellement $0.237957 sous des conditions optimales. Le range de prix prévu pour 2029 se situe entre $0.237957 et $0.072337.
Combien vaudra Across Protocol en 2030 ?
En utilisant notre nouvelle simulation expérimentale pour les prédictions de prix de Across Protocol, il est prévu que la valeur de ACX en 2030 augmente de 224.23%, atteignant $0.177872 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.177872 et $0.061519 au cours de 2030.
Combien vaudra Across Protocol en 2031 ?
Notre simulation expérimentale indique que le prix de Across Protocol pourrait augmenter de 195.98% en 2031, atteignant potentiellement $0.162376 dans des conditions idéales. Il est probable que le prix fluctue entre $0.162376 et $0.072735 durant l'année.
Combien vaudra Across Protocol en 2032 ?
Basé sur les résultats de notre dernière prédiction expérimentale de prix de Across Protocol, ACX pourrait connaître une 449.04% hausse en valeur, atteignant $0.30120095 si le scénario le plus positif se réalise en 2032. Il est prévu que le prix reste dans une fourchette de $0.30120095 et $0.111025 tout au long de l'année.
Combien vaudra Across Protocol en 2033 ?
Selon notre prédiction expérimentale de prix de Across Protocol, la valeur de ACX est anticipée à augmenter de 1362.43% en 2033, avec le prix potentiel le plus élevé étant $0.802289. Tout au long de l'année, le prix de ACX pourrait osciller entre $0.802289 et $0.257998.
Combien vaudra Across Protocol en 2034 ?
Les résultats de notre nouvelle simulation de prédiction de prix de Across Protocol suggèrent que ACX pourrait augmenter de 746.96% en 2034, atteignant potentiellement $0.464643 dans les meilleures circonstances. La fourchette de prix prévue pour l'année est entre $0.464643 et $0.207418.
Combien vaudra Across Protocol en 2035 ?
Basé sur notre prédiction expérimentale pour le prix de Across Protocol, ACX pourrait augmenter de 897.93%, avec la valeur potentiellement atteignant $0.547465 en 2035. La fourchette de prix attendue pour l'année se situe entre $0.547465 et $0.245232.
Combien vaudra Across Protocol en 2036 ?
Notre récente simulation de prédiction de prix de Across Protocol suggère que la valeur de ACX pourrait augmenter de 1964.7% en 2036, pouvant atteindre $1.13 si les conditions sont optimales. La fourchette de prix attendue pour 2036 est entre $1.13 et $0.405937.
Combien vaudra Across Protocol en 2037 ?
Selon la simulation expérimentale, la valeur de Across Protocol pourrait augmenter de 4830.69% en 2037, avec un maximum de $2.70 sous des conditions favorables. Il est prévu que le prix chute entre $2.70 et $1.05 au cours de l'année.
Prévisions liées
Prévision du cours de Alien Worlds
Prévision du cours de MovieBloc
Prévision du cours de REN
Prévision du cours de Moonwell
Prévision du cours de Pandora
Prévision du cours de TomoChain
Prévision du cours de NORMIE
Prévision du cours de QuarkChain
Prévision du cours de PepeFork
Prévision du cours de Star Atlas DAO
Prévision du cours de Uquid Coin
Prévision du cours de Artrade
Prévision du cours de Vaiot
Prévision du cours de HarryPotterObamaSonic10Inu (ETH)
Prévision du cours de Elastos
Prévision du cours de SWEAT
Prévision du cours de Magic Internet Money
Prévision du cours de Polymath
Prévision du cours de Neon
Prévision du cours de Rally
Prévision du cours de Cortex
Prévision du cours de Celsius Network
Prévision du cours de Loom Network
Prévision du cours de Boson Protocol
Prévision du cours de Ultra
Comment lire et prédire les mouvements de prix de Across Protocol ?
Les traders de Across Protocol utilisent des indicateurs et des modèles graphiques pour prédire la direction du marché. Ils identifient également des niveaux clés de support et de résistance pour évaluer quand une tendance baissière pourrait ralentir ou une tendance haussière pourrait s'arrêter.
Indicateurs de prédiction du prix de Across Protocol
Les moyennes mobiles sont des outils populaires pour la prédiction du prix de Across Protocol. Une moyenne mobile simple (SMA) calcule le prix de clôture moyen de ACX sur une période spécifique, comme une SMA de 12 jours. Une moyenne mobile exponentielle (EMA) donne plus de poids aux prix récents, réagissant plus rapidement aux changements de prix.
Les moyennes mobiles couramment utilisées sur le marché des cryptomonnaies incluent les moyennes sur 50 jours, 100 jours et 200 jours, qui aident à identifier les niveaux clés de résistance et de support. Un mouvement de prix de ACX au-dessus de ces moyennes est considéré comme haussier, tandis qu'une chute en dessous indique une faiblesse.
Les traders utilisent également le RSI et les niveaux de retracement de Fibonacci pour évaluer la direction future de ACX.
Comment lire les graphiques de Across Protocol et prédire les mouvements de prix ?
La plupart des traders préfèrent les graphiques en chandeliers aux simples graphiques linéaires parce qu'ils fournissent des informations plus détaillées. Les chandeliers peuvent représenter l'action des prix de Across Protocol dans différentes périodes, comme 5 minutes pour les tendances à court terme et hebdomadaire pour les tendances à long terme. Les options populaires incluent les graphiques de 1 heure, 4 heures et 1 jour.
Par exemple, un graphique en chandeliers de 1 heure montre les prix d'ouverture, de clôture, les plus hauts et les plus bas de ACX au sein de chaque heure. La couleur du chandelier est cruciale : le vert indique que le prix a clôturé plus haut qu'il n'a ouvert, tandis que le rouge signifie le contraire. Certains graphiques utilisent des chandeliers creux et pleins pour transmettre la même information.
Qu'est-ce qui affecte le prix de Across Protocol ?
L'action du prix de Across Protocol est déterminée par l'offre et la demande, influencée par des facteurs tels que les réductions de récompenses de bloc, les hard forks et les mises à jour de protocole. Les événements du monde réel, tels que les réglementations, l'adoption par les entreprises et les gouvernements et les piratages d'échanges de cryptomonnaies, impactent également le prix de ACX. La capitalisation boursière de Across Protocol peut changer rapidement.
Les traders surveillent souvent l'activité des « baleines » de ACX, de grands détenteurs de Across Protocol, car leurs actions peuvent influencer significativement les mouvements de prix sur le marché relativement petit de Across Protocol.
Modèles de prédiction de prix haussiers et baissiers
Les traders identifient souvent des modèles de chandeliers pour obtenir un avantage dans les prédictions de prix des cryptomonnaies. Certaines formations indiquent des tendances haussières, tandis que d'autres suggèrent des mouvements baissiers.
Modèles de chandeliers haussiers couramment suivis :
- Marteau
- Englobante haussière
- Ligne pénétrante
- Étoile du matin
- Trois soldats blancs
Modèles de chandeliers baissiers courants :
- Harami baissier
- Nuage sombre
- Étoile du soir
- Étoile filante
- Pendu


