Prédiction du prix de Across Protocol jusqu'à $0.0565094 d'ici 2026
| Année | Prix min. | Prix max. |
|---|---|---|
| 2026 | $0.01893 | $0.0565094 |
| 2027 | $0.018224 | $0.047875 |
| 2028 | $0.032889 | $0.080556 |
| 2029 | $0.072249 | $0.237666 |
| 2030 | $0.061444 | $0.177654 |
| 2031 | $0.072646 | $0.162178 |
| 2032 | $0.110889 | $0.300833 |
| 2033 | $0.257683 | $0.8013098 |
| 2034 | $0.207165 | $0.464075 |
| 2035 | $0.244933 | $0.546796 |
Calculateur de profit d’investissement
Si vous ouvrez une position short de $10,000.00 sur Across Protocol aujourd’hui et la fermez le Apr 06, 2026, notre prévision indique que vous pourriez gagner environ $3,954.52, soit un rendement de 39.55% sur les 90 prochains jours.
Prévision du prix à long terme de Across Protocol pour 2027, 2028, 2029, 2030, 2031, 2032 et 2037
[
'name' => 'Across Protocol'
'name_with_ticker' => 'Across Protocol <small>ACX</small>'
'name_lang' => 'Across Protocol'
'name_lang_with_ticker' => 'Across Protocol <small>ACX</small>'
'name_with_lang' => 'Across Protocol'
'name_with_lang_with_ticker' => 'Across Protocol <small>ACX</small>'
'image' => '/uploads/coins/across-protocol.png?1717131587'
'price_for_sd' => 0.05479
'ticker' => 'ACX'
'marketcap' => '$36.15M'
'low24h' => '$0.05209'
'high24h' => '$0.0558'
'volume24h' => '$2.08M'
'current_supply' => '660.73M'
'max_supply' => '1B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.05479'
'change_24h_pct' => '3.8223%'
'ath_price' => '$1.69'
'ath_days' => 396
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '6 déc. 2024'
'ath_pct' => '-96.76%'
'fdv' => '$54.71M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$2.70'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.055261'
'next_week_prediction_price_date' => '13 janvier 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.048427'
'next_month_prediction_price_date' => '5 février 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.01893'
'current_year_max_price_prediction' => '$0.0565094'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.061444'
'grand_prediction_max_price' => '$0.177654'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.055831298528882
107 => 0.056039752330827
108 => 0.056509409390526
109 => 0.052496241237224
110 => 0.05429803591763
111 => 0.055356421487038
112 => 0.050574596980056
113 => 0.055261900191273
114 => 0.052426380908168
115 => 0.051463963075412
116 => 0.05275973189831
117 => 0.05225476952785
118 => 0.051820632534114
119 => 0.051578376632189
120 => 0.052529846246939
121 => 0.052485459052159
122 => 0.050928670090133
123 => 0.048897902352007
124 => 0.049579494662601
125 => 0.0493318657862
126 => 0.048434426793363
127 => 0.049039192317338
128 => 0.04637611101458
129 => 0.041794418048107
130 => 0.04482122476281
131 => 0.044704695996826
201 => 0.044645936908858
202 => 0.046920498500165
203 => 0.046701851886225
204 => 0.046305006140931
205 => 0.048427138410041
206 => 0.047652531585109
207 => 0.050039687299229
208 => 0.051612022444099
209 => 0.051213227391647
210 => 0.052692016195153
211 => 0.049595197172814
212 => 0.050623836229221
213 => 0.050835837313114
214 => 0.04840095162725
215 => 0.046737625176314
216 => 0.046626700265346
217 => 0.043742721419927
218 => 0.045283319640486
219 => 0.046638982320292
220 => 0.045989725100339
221 => 0.04578418966051
222 => 0.0468342256474
223 => 0.046915822436532
224 => 0.045055406997094
225 => 0.045442246278648
226 => 0.047055430389407
227 => 0.045401598178061
228 => 0.042188472343373
301 => 0.04139157271143
302 => 0.041285251610755
303 => 0.039123996606019
304 => 0.041444825355361
305 => 0.040431721411929
306 => 0.04363210463038
307 => 0.0418040629
308 => 0.041725259674664
309 => 0.041606137041649
310 => 0.039745855578753
311 => 0.040153138992073
312 => 0.041507011088963
313 => 0.041990087905594
314 => 0.041939699035888
315 => 0.041500376377086
316 => 0.041701496040589
317 => 0.041053619529709
318 => 0.040824840849333
319 => 0.040102752403535
320 => 0.039041481870235
321 => 0.039189058047041
322 => 0.037086403424034
323 => 0.035940765589092
324 => 0.035623668135644
325 => 0.035199632168479
326 => 0.035671564126452
327 => 0.037080446867671
328 => 0.035381035370614
329 => 0.032467513558765
330 => 0.032642621184057
331 => 0.033036036028166
401 => 0.032302910068867
402 => 0.031609067874988
403 => 0.03221230736937
404 => 0.03097780976941
405 => 0.03318521916524
406 => 0.033125514927276
407 => 0.03394830064476
408 => 0.034462805439165
409 => 0.033277038460966
410 => 0.032978821272604
411 => 0.03314869933631
412 => 0.030340993351302
413 => 0.03371885116518
414 => 0.033748063019823
415 => 0.033497933385338
416 => 0.035296538391568
417 => 0.039092155953683
418 => 0.037664091948453
419 => 0.037111102402165
420 => 0.036059868870438
421 => 0.037460575135393
422 => 0.037353022748666
423 => 0.036866630067856
424 => 0.036572458256864
425 => 0.037114478838416
426 => 0.036505295908533
427 => 0.036395869915099
428 => 0.035732867451541
429 => 0.035496205736741
430 => 0.035320990824878
501 => 0.035128096423177
502 => 0.035553573407038
503 => 0.034589386585451
504 => 0.033426671799017
505 => 0.033330004645274
506 => 0.033596911155823
507 => 0.033478824893758
508 => 0.033329439293682
509 => 0.03304422150039
510 => 0.032959603473834
511 => 0.03323457100931
512 => 0.032924148693361
513 => 0.033382193730122
514 => 0.033257630824911
515 => 0.032561832562072
516 => 0.031694610309063
517 => 0.031686890211951
518 => 0.03150004860007
519 => 0.031262077715515
520 => 0.031195879659468
521 => 0.032161504221725
522 => 0.034160318166884
523 => 0.033767903161885
524 => 0.034051463219304
525 => 0.035446298052101
526 => 0.0358896741013
527 => 0.035574976283515
528 => 0.035144198500816
529 => 0.035163150537021
530 => 0.036635248625807
531 => 0.036727061577893
601 => 0.036959043287831
602 => 0.037257205343126
603 => 0.035625754570821
604 => 0.035086309352359
605 => 0.03483069028057
606 => 0.034043482476492
607 => 0.034892418603094
608 => 0.034397779877192
609 => 0.034464523540581
610 => 0.03442105664224
611 => 0.034444792507953
612 => 0.033184602149326
613 => 0.033643749282355
614 => 0.032880328120644
615 => 0.03185819288316
616 => 0.031854766327438
617 => 0.032104932478754
618 => 0.031956123862948
619 => 0.031555683704036
620 => 0.031612564338585
621 => 0.031114230127317
622 => 0.031673071134465
623 => 0.031689096694921
624 => 0.031473912466893
625 => 0.032334884143603
626 => 0.032687624942038
627 => 0.032545986073457
628 => 0.032677687181438
629 => 0.03378420977699
630 => 0.033964621241031
701 => 0.034044748096045
702 => 0.0339373887251
703 => 0.032697912383212
704 => 0.032752888429635
705 => 0.032349510678163
706 => 0.032008698985068
707 => 0.03202232966547
708 => 0.03219755117814
709 => 0.032962753800572
710 => 0.034573077608324
711 => 0.034634188219696
712 => 0.034708256063402
713 => 0.034406984919534
714 => 0.034316118659767
715 => 0.034435994710971
716 => 0.035040747666359
717 => 0.036596336456443
718 => 0.036046487483745
719 => 0.035599451710033
720 => 0.035991622603558
721 => 0.035931250968437
722 => 0.035421653612149
723 => 0.035407350911625
724 => 0.034429270656778
725 => 0.03406769665637
726 => 0.033765538358285
727 => 0.033435589384819
728 => 0.033239984573358
729 => 0.033540522464559
730 => 0.033609259036136
731 => 0.032952127684522
801 => 0.032862563109481
802 => 0.033399190756374
803 => 0.033163040936472
804 => 0.033405926882475
805 => 0.033462278505385
806 => 0.033453204596209
807 => 0.033206637062596
808 => 0.033363791855771
809 => 0.032992073919814
810 => 0.032587886494689
811 => 0.032330040099226
812 => 0.032105034920823
813 => 0.032229880871179
814 => 0.031784827854131
815 => 0.03164244643683
816 => 0.033310551347938
817 => 0.034542798380924
818 => 0.034524881021041
819 => 0.034415813700724
820 => 0.034253761786231
821 => 0.035028892559455
822 => 0.034758852497293
823 => 0.034955329205118
824 => 0.035005340773361
825 => 0.035156710727912
826 => 0.035210812475977
827 => 0.035047279417245
828 => 0.034498442498261
829 => 0.033130793078002
830 => 0.032494148580972
831 => 0.032284045292799
901 => 0.032291682148281
902 => 0.03208102358166
903 => 0.032143071970585
904 => 0.03205944568417
905 => 0.031901077729071
906 => 0.032220102096221
907 => 0.032256866682617
908 => 0.032182402583267
909 => 0.032199941574304
910 => 0.031583410635718
911 => 0.031630284143944
912 => 0.031369286493745
913 => 0.031320352580706
914 => 0.030660573248669
915 => 0.02949167852542
916 => 0.030139359669456
917 => 0.029357051925211
918 => 0.029060780128569
919 => 0.030463284734155
920 => 0.030322512171177
921 => 0.03008157073572
922 => 0.029725168136084
923 => 0.029592974945018
924 => 0.028789810963376
925 => 0.028742355750628
926 => 0.029140425507181
927 => 0.028956730011276
928 => 0.0286987519641
929 => 0.027764381628045
930 => 0.026713840010932
1001 => 0.026745549258884
1002 => 0.027079707001266
1003 => 0.028051315704552
1004 => 0.027671691375177
1005 => 0.027396269568528
1006 => 0.027344691343291
1007 => 0.027990300818452
1008 => 0.02890397348517
1009 => 0.029332648258121
1010 => 0.028907844577173
1011 => 0.028419852981555
1012 => 0.028449554768845
1013 => 0.02864714745305
1014 => 0.02866791165035
1015 => 0.028350279287949
1016 => 0.028439690937423
1017 => 0.028303866465899
1018 => 0.027470311934875
1019 => 0.027455235576639
1020 => 0.027250667851843
1021 => 0.027244473622436
1022 => 0.026896452890748
1023 => 0.026847762384631
1024 => 0.026156746098515
1025 => 0.026611575110627
1026 => 0.026306499688897
1027 => 0.025846679068334
1028 => 0.025767405820032
1029 => 0.025765022770463
1030 => 0.026237155733772
1031 => 0.026606057962061
1101 => 0.026311806606472
1102 => 0.026244811276628
1103 => 0.026960146125293
1104 => 0.026869113245379
1105 => 0.026790279358472
1106 => 0.028822164119115
1107 => 0.027213768781121
1108 => 0.026512416609759
1109 => 0.025644360114534
1110 => 0.0259270036865
1111 => 0.025986560840011
1112 => 0.023899041447938
1113 => 0.023052135090558
1114 => 0.022761508743698
1115 => 0.022594249172227
1116 => 0.02267047145926
1117 => 0.02190815640541
1118 => 0.022420444729124
1119 => 0.021760344329378
1120 => 0.021649676349208
1121 => 0.022830017634703
1122 => 0.022994255229126
1123 => 0.022293566626697
1124 => 0.022743522140637
1125 => 0.022580362016433
1126 => 0.021771659856129
1127 => 0.021740773382015
1128 => 0.02133499506523
1129 => 0.020700030573627
1130 => 0.020409834762592
1201 => 0.020258698264609
1202 => 0.020321060129269
1203 => 0.020289528062192
1204 => 0.020083759995408
1205 => 0.020301322446917
1206 => 0.019745540286323
1207 => 0.019524223351733
1208 => 0.019424259626893
1209 => 0.018930970969739
1210 => 0.019716012589733
1211 => 0.019870675678566
1212 => 0.020025643501461
1213 => 0.021374532598741
1214 => 0.021307145911362
1215 => 0.02191628874662
1216 => 0.021892618576184
1217 => 0.021718881172109
1218 => 0.02098591164273
1219 => 0.021278060233214
1220 => 0.020378872281674
1221 => 0.021052605033805
1222 => 0.020745141541485
1223 => 0.020948651317771
1224 => 0.020582722390271
1225 => 0.020785242567585
1226 => 0.01990735203455
1227 => 0.019087590207056
1228 => 0.019417486296779
1229 => 0.019776121074502
1230 => 0.020553732651049
1231 => 0.020090593611214
]
'min_raw' => 0.018930970969739
'max_raw' => 0.056509409390526
'avg_raw' => 0.037720190180132
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.01893'
'max' => '$0.0565094'
'avg' => '$0.03772'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.035862029030261
'max_diff' => 0.0017164093905257
'year' => 2026
]
1 => [
'items' => [
101 => 0.020257155923164
102 => 0.019699200060324
103 => 0.018547977743072
104 => 0.018554493536366
105 => 0.018377403063598
106 => 0.018224371039494
107 => 0.020143790701226
108 => 0.019905080524755
109 => 0.019524727100164
110 => 0.020033845273623
111 => 0.020168464199478
112 => 0.020172296611045
113 => 0.020543736088159
114 => 0.020741973403679
115 => 0.020776913589749
116 => 0.021361381632468
117 => 0.021557287611068
118 => 0.022364196611269
119 => 0.020725154352464
120 => 0.020691399355746
121 => 0.020041009610395
122 => 0.019628522151639
123 => 0.020069252979595
124 => 0.020459680327406
125 => 0.020053141276404
126 => 0.020106226693957
127 => 0.019560481233447
128 => 0.019755559555869
129 => 0.019923587287026
130 => 0.019830812250094
131 => 0.019691923529445
201 => 0.02042766973726
202 => 0.020386156052802
203 => 0.021071299836252
204 => 0.021605418410553
205 => 0.022562654380815
206 => 0.021563728744007
207 => 0.021527323923431
208 => 0.02188318688407
209 => 0.021557233130303
210 => 0.021763224651143
211 => 0.022529465962192
212 => 0.022545655433667
213 => 0.022274460927501
214 => 0.022257958717155
215 => 0.022310044588607
216 => 0.022615113164573
217 => 0.02250851283032
218 => 0.022631873435908
219 => 0.022786137762161
220 => 0.02342424042226
221 => 0.023578084813324
222 => 0.023204322702211
223 => 0.023238069236007
224 => 0.023098271946452
225 => 0.022963229516396
226 => 0.023266785177798
227 => 0.023821539115413
228 => 0.023818088019959
301 => 0.02394678015061
302 => 0.024026954281862
303 => 0.023682788219476
304 => 0.023458748768199
305 => 0.023544659749819
306 => 0.023682033280328
307 => 0.02350011136535
308 => 0.022377205031677
309 => 0.022717823081779
310 => 0.02266112758287
311 => 0.022580386298016
312 => 0.022922880381315
313 => 0.022889845991461
314 => 0.021900337762701
315 => 0.021963682869054
316 => 0.021904189988424
317 => 0.02209642365684
318 => 0.021546851881352
319 => 0.021715896458069
320 => 0.021821919631892
321 => 0.021884368095782
322 => 0.022109974768666
323 => 0.022083502429545
324 => 0.022108329210897
325 => 0.02244284434883
326 => 0.024134707124762
327 => 0.024226791482771
328 => 0.023773334425662
329 => 0.023954481575932
330 => 0.023606718659941
331 => 0.023840174235255
401 => 0.023999898610756
402 => 0.023278134871097
403 => 0.023235396706642
404 => 0.022886198449391
405 => 0.023073837813237
406 => 0.022775290093609
407 => 0.02284854326125
408 => 0.02264372101843
409 => 0.023012360275804
410 => 0.023424556246298
411 => 0.023528693226557
412 => 0.023254753665285
413 => 0.023056403369427
414 => 0.02270816559055
415 => 0.023287292777808
416 => 0.023456647215943
417 => 0.023286403231041
418 => 0.023246953979834
419 => 0.023172197720081
420 => 0.023262813873736
421 => 0.023455724875302
422 => 0.023364751609471
423 => 0.023424841054295
424 => 0.023195842054591
425 => 0.023682902152763
426 => 0.024456470806057
427 => 0.024458957955768
428 => 0.024367984199557
429 => 0.024330759698572
430 => 0.024424104293194
501 => 0.024474739906581
502 => 0.024776599209118
503 => 0.025100506267345
504 => 0.02661203917637
505 => 0.026187606784012
506 => 0.027528728702394
507 => 0.028589382016948
508 => 0.028907425569234
509 => 0.028614840466236
510 => 0.027613922634017
511 => 0.027564812830037
512 => 0.029060606647982
513 => 0.028637976382716
514 => 0.028587705857461
515 => 0.028052912402139
516 => 0.028369041569692
517 => 0.028299899483413
518 => 0.028190755317675
519 => 0.028793907747618
520 => 0.029922955252681
521 => 0.029746982610876
522 => 0.029615627196905
523 => 0.02904006600987
524 => 0.02938668240071
525 => 0.029263258942932
526 => 0.02979356444401
527 => 0.029479423212876
528 => 0.028634774542788
529 => 0.028769287627498
530 => 0.028748956245347
531 => 0.02916737464932
601 => 0.029041775830231
602 => 0.028724431060131
603 => 0.029919096291052
604 => 0.029841521376033
605 => 0.029951504869435
606 => 0.029999923004583
607 => 0.030727094678282
608 => 0.031024993646099
609 => 0.031092621927248
610 => 0.031375602906341
611 => 0.031085581102699
612 => 0.032245875099308
613 => 0.033017402902022
614 => 0.033913572147332
615 => 0.035223116282314
616 => 0.035715516991028
617 => 0.035626569210306
618 => 0.036619450627829
619 => 0.038403636464604
620 => 0.035987204179744
621 => 0.038531713243257
622 => 0.037726151051519
623 => 0.035816177586352
624 => 0.035693197812303
625 => 0.036986654018162
626 => 0.039855415392211
627 => 0.039136823205234
628 => 0.0398565907516
629 => 0.03901694367606
630 => 0.038975248121658
701 => 0.039815810967269
702 => 0.041779831872734
703 => 0.04084679916077
704 => 0.039509067979163
705 => 0.040496827866259
706 => 0.039641138839195
707 => 0.037713031968939
708 => 0.039136273711331
709 => 0.038184592489785
710 => 0.038462343664389
711 => 0.040462636040181
712 => 0.040221955569409
713 => 0.040533418385
714 => 0.039983694667882
715 => 0.039470166032621
716 => 0.038511626699769
717 => 0.03822785045873
718 => 0.038306276002554
719 => 0.038227811594925
720 => 0.037691517647626
721 => 0.037575705020768
722 => 0.037382678902136
723 => 0.037442505767624
724 => 0.037079560192814
725 => 0.037764513480863
726 => 0.037891646846912
727 => 0.03839009872959
728 => 0.0384418496576
729 => 0.03983003105584
730 => 0.03906544406913
731 => 0.039578395031079
801 => 0.039532511868961
802 => 0.035857572502888
803 => 0.036363946723268
804 => 0.037151706101196
805 => 0.036796821569222
806 => 0.036295097871203
807 => 0.035889929084329
808 => 0.03527605694158
809 => 0.036140070194129
810 => 0.037276155743665
811 => 0.038470662661963
812 => 0.039905784457105
813 => 0.039585481979089
814 => 0.038443834058253
815 => 0.038495047550007
816 => 0.038811629204267
817 => 0.038401627197525
818 => 0.038280709601546
819 => 0.038795016983395
820 => 0.038798558735676
821 => 0.038326801876521
822 => 0.037802530458165
823 => 0.037800333741779
824 => 0.037707044706744
825 => 0.03903353958815
826 => 0.039762977649164
827 => 0.039846606547311
828 => 0.039757348757998
829 => 0.03979170053859
830 => 0.039367256602956
831 => 0.040337409574874
901 => 0.041227717880091
902 => 0.04098909623563
903 => 0.040631368468518
904 => 0.04034642107151
905 => 0.040921971684654
906 => 0.040896343321851
907 => 0.041219941813733
908 => 0.041205261516946
909 => 0.041096447515281
910 => 0.040989100121721
911 => 0.041414720403186
912 => 0.041292148597377
913 => 0.041169386403698
914 => 0.040923168030323
915 => 0.040956633196519
916 => 0.040598967196149
917 => 0.040433494538695
918 => 0.037945182795013
919 => 0.03728022458917
920 => 0.0374894339772
921 => 0.03755831113986
922 => 0.037268920476509
923 => 0.037683832349392
924 => 0.037619168773503
925 => 0.037870736920358
926 => 0.037713568064023
927 => 0.037720018328709
928 => 0.038182218423259
929 => 0.038316397077047
930 => 0.038248152730776
1001 => 0.038295948731625
1002 => 0.039397387397755
1003 => 0.039240798041457
1004 => 0.039157613066865
1005 => 0.039180655873323
1006 => 0.039462097067631
1007 => 0.039540885235918
1008 => 0.039207054230541
1009 => 0.039364490862531
1010 => 0.040034836059859
1011 => 0.040269418940672
1012 => 0.041018094890056
1013 => 0.040700044040104
1014 => 0.04128384014011
1015 => 0.04307823032077
1016 => 0.044511713359437
1017 => 0.043193423115886
1018 => 0.045825832163435
1019 => 0.047875540203601
1020 => 0.047796868995052
1021 => 0.047439454987648
1022 => 0.045105916878226
1023 => 0.042958560318843
1024 => 0.044754915262343
1025 => 0.044759494540517
1026 => 0.044605186057762
1027 => 0.043646789324037
1028 => 0.044571835928874
1029 => 0.04464526276909
1030 => 0.044604163264342
1031 => 0.043869362735674
1101 => 0.042747458142237
1102 => 0.042966675614335
1103 => 0.043325758305546
1104 => 0.042645939858586
1105 => 0.042428696673131
1106 => 0.0428325930871
1107 => 0.044134031488069
1108 => 0.043888002097085
1109 => 0.043881577275404
1110 => 0.044934195342731
1111 => 0.044180747975721
1112 => 0.042969440648689
1113 => 0.042663569573433
1114 => 0.041577933315718
1115 => 0.042327786145825
1116 => 0.042354772014244
1117 => 0.041944085282504
1118 => 0.043002765613546
1119 => 0.042993009687919
1120 => 0.043998069098471
1121 => 0.045919365208371
1122 => 0.045351143407434
1123 => 0.0446903632753
1124 => 0.044762208397109
1125 => 0.045550172054478
1126 => 0.045073751239772
1127 => 0.045245075486464
1128 => 0.045549912734712
1129 => 0.045733828615263
1130 => 0.044735745732202
1201 => 0.044503044868338
1202 => 0.044027020567776
1203 => 0.043902834713174
1204 => 0.044290546573408
1205 => 0.044188398196299
1206 => 0.042352503956498
1207 => 0.042160642793619
1208 => 0.04216652690157
1209 => 0.041684082885012
1210 => 0.040948239959929
1211 => 0.042881991232148
1212 => 0.042726683942157
1213 => 0.042555236713837
1214 => 0.042576238021042
1215 => 0.043415613907401
1216 => 0.042928733503814
1217 => 0.044223184854878
1218 => 0.043957084571869
1219 => 0.043684159820688
1220 => 0.043646433306584
1221 => 0.043541380562225
1222 => 0.043181115613414
1223 => 0.042746074039158
1224 => 0.042458821909178
1225 => 0.039166018846383
1226 => 0.039777143941483
1227 => 0.040480187657591
1228 => 0.040722875531121
1229 => 0.040307741129959
1230 => 0.043197507649846
1231 => 0.043725495839513
]
'min_raw' => 0.018224371039494
'max_raw' => 0.047875540203601
'avg_raw' => 0.033049955621548
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.018224'
'max' => '$0.047875'
'avg' => '$0.033049'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00070659993024443
'max_diff' => -0.0086338691869242
'year' => 2027
]
2 => [
'items' => [
101 => 0.042126185173195
102 => 0.041827019446952
103 => 0.043217120905053
104 => 0.042378719792826
105 => 0.042756251762326
106 => 0.041940234143214
107 => 0.043598318945921
108 => 0.043585687117776
109 => 0.042940654679979
110 => 0.043485831679414
111 => 0.043391093759615
112 => 0.042662853725987
113 => 0.043621405453925
114 => 0.043621880883623
115 => 0.043001051186458
116 => 0.042276058017266
117 => 0.042146446362189
118 => 0.042048801390964
119 => 0.04273223708515
120 => 0.04334500339151
121 => 0.044485209569995
122 => 0.044771884493896
123 => 0.045890795806915
124 => 0.045224538598815
125 => 0.045519881789691
126 => 0.045840518602231
127 => 0.045994243681191
128 => 0.045743756914368
129 => 0.047481886745756
130 => 0.047628638158447
131 => 0.047677842637728
201 => 0.047091755038061
202 => 0.047612338002076
203 => 0.047368774473109
204 => 0.048002459111584
205 => 0.048101828954188
206 => 0.048017666232687
207 => 0.048049207789176
208 => 0.0465660206052
209 => 0.046489109525275
210 => 0.045440421493138
211 => 0.045867769617744
212 => 0.045068862782121
213 => 0.04532220436935
214 => 0.045433874927072
215 => 0.045375544564966
216 => 0.045891931239521
217 => 0.045452897075322
218 => 0.044294213732099
219 => 0.043135214706375
220 => 0.043120664417707
221 => 0.042815520432266
222 => 0.0425949572207
223 => 0.042637445520148
224 => 0.042787179829238
225 => 0.042586254390454
226 => 0.042629132019997
227 => 0.043341186362561
228 => 0.043483983782823
229 => 0.042998702354219
301 => 0.041050227392598
302 => 0.040572066749637
303 => 0.04091575913746
304 => 0.040751496312705
305 => 0.032889638048236
306 => 0.034736665030881
307 => 0.033639224316903
308 => 0.034144975488723
309 => 0.033024772700647
310 => 0.033559392185975
311 => 0.033460667488213
312 => 0.036430632218805
313 => 0.036384260304589
314 => 0.036406456085977
315 => 0.035346993609539
316 => 0.037034746102046
317 => 0.037866193669472
318 => 0.037712314853002
319 => 0.037751042835918
320 => 0.037085567777466
321 => 0.036412899339199
322 => 0.035666806518231
323 => 0.03705295475973
324 => 0.036898838737615
325 => 0.037252325443153
326 => 0.038151341661687
327 => 0.038283725214897
328 => 0.038461650052912
329 => 0.038397876664036
330 => 0.039917217517523
331 => 0.039733215315232
401 => 0.040176607681707
402 => 0.039264515943608
403 => 0.038232397565408
404 => 0.038428569526612
405 => 0.038409676589232
406 => 0.038169147812091
407 => 0.037952009186856
408 => 0.037590534554267
409 => 0.038734293779957
410 => 0.038687859244143
411 => 0.039439580404718
412 => 0.039306706387757
413 => 0.038419341182701
414 => 0.038451033604597
415 => 0.038664180372709
416 => 0.039401883770809
417 => 0.039620884366043
418 => 0.039519434564666
419 => 0.039759558719582
420 => 0.039949343060978
421 => 0.039783392710891
422 => 0.042132899709813
423 => 0.041157220596804
424 => 0.041632759807753
425 => 0.041746173107525
426 => 0.041455667324984
427 => 0.041518667626985
428 => 0.041614095917962
429 => 0.042193517813996
430 => 0.043714088526267
501 => 0.044387538943856
502 => 0.046413647752633
503 => 0.044331618261558
504 => 0.044208079247852
505 => 0.044573042626937
506 => 0.045762582983088
507 => 0.046726593713904
508 => 0.047046411688429
509 => 0.047088680913382
510 => 0.047688680694687
511 => 0.048032589379998
512 => 0.047615824939676
513 => 0.047262660713559
514 => 0.045997670291963
515 => 0.046144096377718
516 => 0.047152826904801
517 => 0.048577718188239
518 => 0.049800423144099
519 => 0.049372274484127
520 => 0.052638746533866
521 => 0.052962603895255
522 => 0.052917857279473
523 => 0.053655652545157
524 => 0.052191279192168
525 => 0.051565231212868
526 => 0.047339018827829
527 => 0.048526412123062
528 => 0.050252358010847
529 => 0.050023922600633
530 => 0.048770494562259
531 => 0.049799472306534
601 => 0.049459260085168
602 => 0.049190920590758
603 => 0.05042023583482
604 => 0.049068553226487
605 => 0.050238873942845
606 => 0.048737925518698
607 => 0.049374230231141
608 => 0.049013032901762
609 => 0.04924677184055
610 => 0.047880338780468
611 => 0.048617632891401
612 => 0.047849664921455
613 => 0.047849300804645
614 => 0.047832347869144
615 => 0.048735858780094
616 => 0.048765322238463
617 => 0.048097626310141
618 => 0.0480014008955
619 => 0.048357196687212
620 => 0.047940652998182
621 => 0.048135551168585
622 => 0.047946556265218
623 => 0.047904009531629
624 => 0.047564989919657
625 => 0.047418930949282
626 => 0.047476204435042
627 => 0.047280700501637
628 => 0.047162902310074
629 => 0.047808914843905
630 => 0.04746377640715
701 => 0.04775601742849
702 => 0.047422971900916
703 => 0.046268491001315
704 => 0.04560453682754
705 => 0.04342382942863
706 => 0.044042275341802
707 => 0.044452305622063
708 => 0.044316790616883
709 => 0.044607929285356
710 => 0.04462580283507
711 => 0.044531150686142
712 => 0.044421555623374
713 => 0.044368210807806
714 => 0.044765799358463
715 => 0.044996612894334
716 => 0.044493457646185
717 => 0.044375575411434
718 => 0.044884293147275
719 => 0.045194610672262
720 => 0.047485820924409
721 => 0.047316080668418
722 => 0.047742095401112
723 => 0.047694132679939
724 => 0.048140663989271
725 => 0.048870553961818
726 => 0.047386483567185
727 => 0.0476440668724
728 => 0.047580913394429
729 => 0.048270406507191
730 => 0.048272559029428
731 => 0.047859173465592
801 => 0.048083276486162
802 => 0.047958188328025
803 => 0.048184239536458
804 => 0.047313813683814
805 => 0.04837389841567
806 => 0.048974898148281
807 => 0.048983243030151
808 => 0.04926811213358
809 => 0.04955755564117
810 => 0.050113117248771
811 => 0.049542061329465
812 => 0.048514787321807
813 => 0.048588953187085
814 => 0.04798666281226
815 => 0.047996787422274
816 => 0.047942741460542
817 => 0.048104937460089
818 => 0.047349406584642
819 => 0.047526728170976
820 => 0.047278476911715
821 => 0.047643527222645
822 => 0.047250793433062
823 => 0.047580882939909
824 => 0.047723338628424
825 => 0.048249003185895
826 => 0.047173152350519
827 => 0.044979419668488
828 => 0.045440568874689
829 => 0.044758492976229
830 => 0.044821621697478
831 => 0.044949151761261
901 => 0.044535785099299
902 => 0.044614642431721
903 => 0.044611825092896
904 => 0.044587546788955
905 => 0.044480014155201
906 => 0.044324070561574
907 => 0.044945301841677
908 => 0.045050861141652
909 => 0.045285506389467
910 => 0.045983651485573
911 => 0.045913890327077
912 => 0.046027673670946
913 => 0.045779285270145
914 => 0.044833143722996
915 => 0.04488452376103
916 => 0.044243813863431
917 => 0.045269121996873
918 => 0.045026315497468
919 => 0.044869776567752
920 => 0.044827063470456
921 => 0.045526939133218
922 => 0.045736352900723
923 => 0.045605860294049
924 => 0.045338216150683
925 => 0.045852172027834
926 => 0.045989684938502
927 => 0.046020469007919
928 => 0.046931100280966
929 => 0.046071363180231
930 => 0.04627831044543
1001 => 0.047892853932809
1002 => 0.046428685781528
1003 => 0.047204288306107
1004 => 0.04716632659857
1005 => 0.047563098605186
1006 => 0.04713377971312
1007 => 0.047139101635321
1008 => 0.047491408297533
1009 => 0.046996657129298
1010 => 0.046874149782342
1011 => 0.046704906759936
1012 => 0.047074442707727
1013 => 0.047295962795755
1014 => 0.049081252016679
1015 => 0.050234630272476
1016 => 0.050184559080573
1017 => 0.050642116045222
1018 => 0.050435982441906
1019 => 0.049770322661503
1020 => 0.050906522738089
1021 => 0.050546981493227
1022 => 0.050576621636611
1023 => 0.050575518428994
1024 => 0.050814581925186
1025 => 0.050645183528286
1026 => 0.050311281899608
1027 => 0.050532941383261
1028 => 0.051191190804996
1029 => 0.053234417207619
1030 => 0.054377833771677
1031 => 0.053165582094747
1101 => 0.054001777068796
1102 => 0.053500358051101
1103 => 0.053409235299662
1104 => 0.053934427537688
1105 => 0.054460539055203
1106 => 0.05442702802598
1107 => 0.054045098080389
1108 => 0.053829355545239
1109 => 0.05546303030045
1110 => 0.056666694031166
1111 => 0.056584612234195
1112 => 0.056946894591594
1113 => 0.058010566797888
1114 => 0.058107815654058
1115 => 0.05809556453342
1116 => 0.057854523096535
1117 => 0.058901846518922
1118 => 0.059775542143779
1119 => 0.057798728968253
1120 => 0.058551473547109
1121 => 0.058889404840473
1122 => 0.059385588238828
1123 => 0.060222732801846
1124 => 0.061132093838913
1125 => 0.06126068746019
1126 => 0.061169444132123
1127 => 0.06056969608324
1128 => 0.061564729780932
1129 => 0.062147597184629
1130 => 0.062494681384846
1201 => 0.063374829167295
1202 => 0.058891491789095
1203 => 0.055717962756479
1204 => 0.055222370371721
1205 => 0.056230176974334
1206 => 0.056495927538336
1207 => 0.05638880381921
1208 => 0.052816708368364
1209 => 0.055203564028435
1210 => 0.057771620026147
1211 => 0.057870269515756
1212 => 0.059155892043729
1213 => 0.059574543438285
1214 => 0.060609638083701
1215 => 0.060544892631804
1216 => 0.060796921706009
1217 => 0.060738984586385
1218 => 0.062656279452123
1219 => 0.064771340410076
1220 => 0.064698102574584
1221 => 0.064394037537613
1222 => 0.064845625968308
1223 => 0.067028595540622
1224 => 0.066827622683778
1225 => 0.067022850695375
1226 => 0.069596694847907
1227 => 0.07294305837126
1228 => 0.071388336545258
1229 => 0.074761635548529
1230 => 0.076884948460191
1231 => 0.080556998586258
]
'min_raw' => 0.032889638048236
'max_raw' => 0.080556998586258
'avg_raw' => 0.056723318317247
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.032889'
'max' => '$0.080556'
'avg' => '$0.056723'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.014665267008742
'max_diff' => 0.032681458382657
'year' => 2028
]
3 => [
'items' => [
101 => 0.080097239825247
102 => 0.081526741992576
103 => 0.079274175688487
104 => 0.074101828135537
105 => 0.073283284336332
106 => 0.074922029751171
107 => 0.078950725447115
108 => 0.074795151786795
109 => 0.075635818926047
110 => 0.075393706733388
111 => 0.075380805603552
112 => 0.075873189256714
113 => 0.075158961086798
114 => 0.072249067035366
115 => 0.073582654331024
116 => 0.073067692232049
117 => 0.07363908107383
118 => 0.076722630994237
119 => 0.075359320071776
120 => 0.073923182761349
121 => 0.075724417653006
122 => 0.078018008641547
123 => 0.077874479839463
124 => 0.077595973973036
125 => 0.079165896959994
126 => 0.081758949790173
127 => 0.08245984155044
128 => 0.082977225518768
129 => 0.083048564026727
130 => 0.083783394995336
131 => 0.079832023675873
201 => 0.086102951438274
202 => 0.087185767431957
203 => 0.086982242903269
204 => 0.088185747308385
205 => 0.08783164578244
206 => 0.087318608228173
207 => 0.08922641870301
208 => 0.087039267945976
209 => 0.083934882800989
210 => 0.082231755712673
211 => 0.084474570849911
212 => 0.08584417979076
213 => 0.086749404177172
214 => 0.087023324529549
215 => 0.080138757383292
216 => 0.076428357527058
217 => 0.078806681295083
218 => 0.081708400435212
219 => 0.079815904479539
220 => 0.079890086738032
221 => 0.07719188484443
222 => 0.081947131431838
223 => 0.081254332001971
224 => 0.084848576669658
225 => 0.083990781334099
226 => 0.086921748332823
227 => 0.086149926494659
228 => 0.089353715792903
301 => 0.090631794083105
302 => 0.092777886449357
303 => 0.094356560730139
304 => 0.095283588463041
305 => 0.095227933195151
306 => 0.098901278916292
307 => 0.09673523528146
308 => 0.094014173978822
309 => 0.093964958564696
310 => 0.095374234771069
311 => 0.09832769108358
312 => 0.099093479334373
313 => 0.099521450495811
314 => 0.098865997764285
315 => 0.09651491264042
316 => 0.095499726004207
317 => 0.096364694431049
318 => 0.095306912372606
319 => 0.097132940966705
320 => 0.099640468245064
321 => 0.09912267377792
322 => 0.1008535830495
323 => 0.10264489204861
324 => 0.10520654437007
325 => 0.10587625514461
326 => 0.1069832615881
327 => 0.10812273485113
328 => 0.10848870295355
329 => 0.1091874496143
330 => 0.10918376687449
331 => 0.11128948696774
401 => 0.11361216143931
402 => 0.1144889172823
403 => 0.11650496899864
404 => 0.11305255108528
405 => 0.11567124973108
406 => 0.11803338145987
407 => 0.11521715063355
408 => 0.11909866873
409 => 0.11924937928198
410 => 0.12152492968501
411 => 0.11921822340883
412 => 0.1178485085853
413 => 0.12180282395829
414 => 0.12371619260751
415 => 0.12313987039885
416 => 0.11875402993444
417 => 0.11620128266661
418 => 0.10952025067852
419 => 0.11743422166752
420 => 0.12128888608256
421 => 0.11874404728483
422 => 0.12002751594997
423 => 0.12702970482088
424 => 0.12969568498477
425 => 0.12914117974729
426 => 0.12923488200449
427 => 0.13067339650996
428 => 0.13705256203163
429 => 0.13323001818314
430 => 0.13615220972732
501 => 0.13770212958561
502 => 0.13914178152796
503 => 0.13560645136422
504 => 0.13100703876551
505 => 0.12955021172529
506 => 0.11849101321968
507 => 0.1179153339098
508 => 0.1175921876683
509 => 0.11555479632555
510 => 0.11395396481861
511 => 0.11268092416923
512 => 0.10934008534313
513 => 0.11046752037558
514 => 0.10514292057404
515 => 0.10854941083484
516 => 0.10005122098461
517 => 0.10712876601695
518 => 0.10327678003233
519 => 0.10586328502217
520 => 0.10585426094993
521 => 0.10109168521148
522 => 0.098344730917957
523 => 0.10009519710685
524 => 0.10197183581352
525 => 0.1022763141299
526 => 0.10470942519838
527 => 0.10538845419805
528 => 0.10333096462823
529 => 0.099875114888994
530 => 0.10067782996388
531 => 0.098328463922585
601 => 0.094211290302278
602 => 0.097168316275337
603 => 0.098177974953794
604 => 0.098623897745186
605 => 0.0945751303502
606 => 0.093302919731678
607 => 0.092625605473258
608 => 0.099352469860545
609 => 0.099720982676718
610 => 0.097835619006714
611 => 0.10635764157265
612 => 0.10442884540239
613 => 0.10658378329111
614 => 0.10060499198449
615 => 0.10083338986392
616 => 0.098002934244985
617 => 0.099587800260474
618 => 0.098467668043342
619 => 0.099459758748373
620 => 0.10005441382643
621 => 0.10288440499544
622 => 0.10716107997023
623 => 0.10246169868668
624 => 0.10041411096506
625 => 0.10168442287148
626 => 0.10506743087803
627 => 0.11019286118095
628 => 0.10715850328272
629 => 0.10850509979122
630 => 0.10879927122241
701 => 0.1065618480463
702 => 0.11027535816488
703 => 0.11226545840593
704 => 0.11430688946003
705 => 0.1160794068447
706 => 0.11349149700499
707 => 0.11626093149578
708 => 0.1140292561672
709 => 0.11202721269111
710 => 0.11203024896465
711 => 0.11077433784691
712 => 0.1083408518013
713 => 0.10789207963812
714 => 0.11022664910468
715 => 0.11209875273231
716 => 0.11225294815386
717 => 0.11328944091427
718 => 0.11390282665316
719 => 0.11991484075174
720 => 0.12233292255618
721 => 0.12528970721471
722 => 0.12644154147445
723 => 0.12990814964086
724 => 0.12710858200234
725 => 0.12650287793364
726 => 0.11809402044083
727 => 0.11947097038421
728 => 0.12167560009946
729 => 0.11813037397282
730 => 0.1203790039516
731 => 0.12082293114191
801 => 0.11800990854564
802 => 0.11951246545784
803 => 0.11552211977611
804 => 0.10724805860173
805 => 0.11028456956023
806 => 0.11252046370423
807 => 0.10932956707699
808 => 0.11504912577656
809 => 0.11170787765993
810 => 0.11064886241515
811 => 0.10651726637907
812 => 0.10846722066838
813 => 0.11110456176534
814 => 0.10947499159123
815 => 0.11285659438369
816 => 0.11764584577834
817 => 0.12105895152701
818 => 0.12132096740569
819 => 0.11912656906962
820 => 0.12264310640764
821 => 0.12266872054306
822 => 0.11870205206029
823 => 0.1162724897011
824 => 0.11572048802125
825 => 0.11709949644382
826 => 0.11877386724782
827 => 0.12141388333229
828 => 0.12300918976084
829 => 0.12716890284136
830 => 0.12829440193262
831 => 0.12953098420392
901 => 0.13118343946623
902 => 0.13316763568946
903 => 0.12882632731338
904 => 0.12899881558838
905 => 0.12495624933808
906 => 0.120636187537
907 => 0.12391457594071
908 => 0.12820063267284
909 => 0.12721740652282
910 => 0.12710677349545
911 => 0.12729282756044
912 => 0.12655150715249
913 => 0.12319854242193
914 => 0.12151470452492
915 => 0.12368728500493
916 => 0.12484191483962
917 => 0.12663264501893
918 => 0.1264118997266
919 => 0.13102462835811
920 => 0.13281699522264
921 => 0.13235843107899
922 => 0.13244281791739
923 => 0.13568781251102
924 => 0.13929691388318
925 => 0.14267731358107
926 => 0.14611600134532
927 => 0.14197052903125
928 => 0.13986571384736
929 => 0.14203734584669
930 => 0.14088504733991
1001 => 0.14750649635382
1002 => 0.14796495111719
1003 => 0.15458592132496
1004 => 0.16087001046261
1005 => 0.15692308666641
1006 => 0.16064485803287
1007 => 0.16467025720618
1008 => 0.17243590530897
1009 => 0.16982070822675
1010 => 0.16781750824713
1011 => 0.16592449394577
1012 => 0.16986355619933
1013 => 0.17493109686047
1014 => 0.17602259658258
1015 => 0.17779124311738
1016 => 0.17593172754584
1017 => 0.17817130923283
1018 => 0.18607801670997
1019 => 0.18394155455521
1020 => 0.18090743484202
1021 => 0.18714902102697
1022 => 0.18940782680375
1023 => 0.20526130869095
1024 => 0.22527698444822
1025 => 0.2169903632547
1026 => 0.21184659007229
1027 => 0.21305549878208
1028 => 0.22036454599526
1029 => 0.22271197998256
1030 => 0.21633084519604
1031 => 0.21858476987978
1101 => 0.23100411648814
1102 => 0.23766669748318
1103 => 0.2286180175879
1104 => 0.20365306863269
1105 => 0.18063424555887
1106 => 0.18673987398916
1107 => 0.18604768520488
1108 => 0.19939072379052
1109 => 0.1838906006394
1110 => 0.18415158296098
1111 => 0.19777054145405
1112 => 0.19413723681616
1113 => 0.18825174862127
1114 => 0.18067721613597
1115 => 0.16667499227743
1116 => 0.15427283212503
1117 => 0.1785963242308
1118 => 0.1775474510218
1119 => 0.17602852718086
1120 => 0.17940872782413
1121 => 0.19582202266118
1122 => 0.19544364309053
1123 => 0.19303658531304
1124 => 0.19486231742243
1125 => 0.18793168895521
1126 => 0.18971786971869
1127 => 0.18063059925969
1128 => 0.1847384250251
1129 => 0.18823912100691
1130 => 0.18894193755395
1201 => 0.19052541912113
1202 => 0.17699474250182
1203 => 0.1830696190641
1204 => 0.18663803990547
1205 => 0.17051578472386
1206 => 0.18631935475754
1207 => 0.17675920352492
1208 => 0.17351434460791
1209 => 0.177883119662
1210 => 0.17618060377465
1211 => 0.17471688058979
1212 => 0.17390009790268
1213 => 0.1771080441383
1214 => 0.17695838961208
1215 => 0.17170956693508
1216 => 0.16486269172231
1217 => 0.16716072778474
1218 => 0.16632582973906
1219 => 0.16330005151752
1220 => 0.16533906070498
1221 => 0.15636029616233
1222 => 0.14091279844228
1223 => 0.1511178886058
1224 => 0.1507250037355
1225 => 0.15052689336799
1226 => 0.1581957365779
1227 => 0.15745855425358
1228 => 0.15612056111644
1229 => 0.16327547822429
1230 => 0.1606638372327
1231 => 0.16871229938875
]
'min_raw' => 0.072249067035366
'max_raw' => 0.23766669748318
'avg_raw' => 0.15495788225927
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.072249'
'max' => '$0.237666'
'avg' => '$0.154957'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.039359428987131
'max_diff' => 0.15710969889692
'year' => 2029
]
4 => [
'items' => [
101 => 0.17401353710662
102 => 0.17266897174429
103 => 0.17765481144105
104 => 0.16721366989423
105 => 0.1706817982902
106 => 0.17139657474598
107 => 0.1631871876578
108 => 0.15757916639873
109 => 0.15720517531687
110 => 0.14748163928657
111 => 0.15267587374832
112 => 0.15724658512263
113 => 0.15505756907586
114 => 0.15436459199045
115 => 0.15790486163142
116 => 0.15817997090289
117 => 0.15190745035877
118 => 0.15321170600478
119 => 0.15865066886312
120 => 0.15307465809569
121 => 0.14224138001076
122 => 0.13955457726391
123 => 0.13919610824988
124 => 0.13190928610741
125 => 0.1397341222709
126 => 0.13631837159296
127 => 0.14710868705759
128 => 0.14094531673382
129 => 0.14067962615773
130 => 0.14027799588364
131 => 0.13400592705079
201 => 0.13537911151441
202 => 0.13994378581341
203 => 0.14157251302803
204 => 0.14140262343578
205 => 0.1399214164191
206 => 0.14059950540632
207 => 0.1384151445166
208 => 0.13764380122289
209 => 0.13520922961328
210 => 0.13163108191472
211 => 0.13212864529826
212 => 0.12503939843413
213 => 0.12117680048775
214 => 0.12010768428441
215 => 0.11867801741587
216 => 0.12026916896141
217 => 0.12501931548848
218 => 0.11928963097703
219 => 0.10946648877278
220 => 0.11005687635708
221 => 0.11138330197134
222 => 0.10891151661435
223 => 0.10657217921517
224 => 0.10860604328731
225 => 0.10444384843918
226 => 0.11188628333362
227 => 0.11168498632691
228 => 0.11445906581847
301 => 0.11619375465438
302 => 0.11219585849978
303 => 0.11119039842836
304 => 0.11176315418065
305 => 0.10229677742442
306 => 0.11368546087841
307 => 0.11378395068585
308 => 0.11294062115969
309 => 0.11900474351279
310 => 0.13180193312501
311 => 0.12698711562713
312 => 0.12512267276333
313 => 0.12157836551633
314 => 0.12630094448281
315 => 0.1259383241019
316 => 0.12429841721969
317 => 0.12330659642051
318 => 0.12513405665388
319 => 0.12308015387399
320 => 0.12271121649725
321 => 0.12047585740201
322 => 0.11967793590737
323 => 0.1190871865989
324 => 0.11843682965611
325 => 0.11987135501305
326 => 0.1166205318267
327 => 0.11270035774608
328 => 0.11237443768815
329 => 0.11327433162329
330 => 0.11287619554621
331 => 0.11237253156579
401 => 0.11141089986244
402 => 0.11112560427806
403 => 0.11205267652154
404 => 0.11100606601032
405 => 0.11255039683145
406 => 0.11213042429982
407 => 0.10978449187758
408 => 0.10686059150403
409 => 0.10683456265762
410 => 0.1062046131183
411 => 0.10540227766643
412 => 0.10517908629866
413 => 0.10843475692806
414 => 0.1151738976969
415 => 0.11385084311001
416 => 0.11480688564112
417 => 0.11950966866416
418 => 0.12100454196956
419 => 0.1199435163054
420 => 0.11849111893508
421 => 0.11855501704834
422 => 0.12351829853329
423 => 0.12382785231142
424 => 0.12460999484292
425 => 0.12561526902936
426 => 0.12011471884628
427 => 0.11829594162937
428 => 0.11743410408208
429 => 0.11477997800954
430 => 0.1176422254312
501 => 0.11597451643225
502 => 0.11619954735326
503 => 0.11605299567074
504 => 0.11613302279918
505 => 0.11188420302139
506 => 0.11343224963702
507 => 0.11085832188995
508 => 0.10741212157357
509 => 0.10740056870172
510 => 0.10824402134692
511 => 0.10774230270925
512 => 0.10639219075564
513 => 0.1065839677863
514 => 0.10490379920042
515 => 0.10678797067306
516 => 0.106842001969
517 => 0.10611649332053
518 => 0.10901931943968
519 => 0.11020860966917
520 => 0.10973106433484
521 => 0.11017510381548
522 => 0.11390582200132
523 => 0.11451409184826
524 => 0.11478424513422
525 => 0.11442227551949
526 => 0.11024329449534
527 => 0.11042865007416
528 => 0.10906863382214
529 => 0.10791956340416
530 => 0.10796552019479
531 => 0.10855629175833
601 => 0.11113622582461
602 => 0.11656554497166
603 => 0.11677158366451
604 => 0.11702130857082
605 => 0.11600555187518
606 => 0.1156991899363
607 => 0.11610336041241
608 => 0.11814232722401
609 => 0.12338710343751
610 => 0.12153324923684
611 => 0.12002603691472
612 => 0.12134826846274
613 => 0.12114472127992
614 => 0.11942657821424
615 => 0.11937835566084
616 => 0.11608068979424
617 => 0.11486161780758
618 => 0.11384287000957
619 => 0.11273042400922
620 => 0.11207092873069
621 => 0.11308421321376
622 => 0.11331596336386
623 => 0.11110039913245
624 => 0.1107984259145
625 => 0.11260770349215
626 => 0.11181150788689
627 => 0.1126304148116
628 => 0.11282040824259
629 => 0.11278981492428
630 => 0.11195849526991
701 => 0.11248835362729
702 => 0.1112350806537
703 => 0.10987233453042
704 => 0.10900298740586
705 => 0.10824436673751
706 => 0.1086652935756
707 => 0.10716476625602
708 => 0.10668471736683
709 => 0.112308849538
710 => 0.11646345644245
711 => 0.11640304681266
712 => 0.11603531872737
713 => 0.11548894938356
714 => 0.11810235690338
715 => 0.11719189798021
716 => 0.11785433291821
717 => 0.11802295041223
718 => 0.11853330478231
719 => 0.11871571260318
720 => 0.11816434947815
721 => 0.11631390748723
722 => 0.11170278198059
723 => 0.10955629060975
724 => 0.10884791270473
725 => 0.10887366089618
726 => 0.10816341083111
727 => 0.10837261130645
728 => 0.1080906594432
729 => 0.10755671082568
730 => 0.1086323237531
731 => 0.10875627812296
801 => 0.10850521721308
802 => 0.10856435114589
803 => 0.10648567404164
804 => 0.10664371134722
805 => 0.10576373954731
806 => 0.10559875544304
807 => 0.10337426336075
808 => 0.099433253191695
809 => 0.10161695538847
810 => 0.098979350209761
811 => 0.097980449162346
812 => 0.10270909135983
813 => 0.10223446683532
814 => 0.10142211596368
815 => 0.10022047971577
816 => 0.099774781142659
817 => 0.097066857703436
818 => 0.096906859140437
819 => 0.098248979116999
820 => 0.097629636927344
821 => 0.096759845929839
822 => 0.093609551106176
823 => 0.090067576697607
824 => 0.090174486640945
825 => 0.091301122799534
826 => 0.094576969378217
827 => 0.093297039447205
828 => 0.092368435596751
829 => 0.09219453600929
830 => 0.094371253429807
831 => 0.097451764616237
901 => 0.098897071542357
902 => 0.097464816273196
903 => 0.095819518538084
904 => 0.095919660187645
905 => 0.096585857717923
906 => 0.096655865658829
907 => 0.095584945972611
908 => 0.095886403591333
909 => 0.095428461902632
910 => 0.092618074604364
911 => 0.092567243609973
912 => 0.091877529243361
913 => 0.091856644966449
914 => 0.090683268771531
915 => 0.090519105330695
916 => 0.088189295676839
917 => 0.08972278344632
918 => 0.088694200362274
919 => 0.087143883036395
920 => 0.086876607745063
921 => 0.086868573127062
922 => 0.088460402376128
923 => 0.089704181994737
924 => 0.088712093005395
925 => 0.08848621357336
926 => 0.09089801495872
927 => 0.090591091248375
928 => 0.090325297294662
929 => 0.097175938626835
930 => 0.091753121450211
1001 => 0.08938846363762
1002 => 0.086461750558198
1003 => 0.087414703094626
1004 => 0.087615504195837
1005 => 0.080577286819514
1006 => 0.077721882906493
1007 => 0.076742015887171
1008 => 0.076178088564265
1009 => 0.076435077326667
1010 => 0.073864878899475
1011 => 0.075592094749706
1012 => 0.073366520165223
1013 => 0.072993395343488
1014 => 0.076972998396331
1015 => 0.07752673691263
1016 => 0.075164316369025
1017 => 0.076681372799164
1018 => 0.076131267048934
1019 => 0.073404671253687
1020 => 0.07330053534979
1021 => 0.071932425424212
1022 => 0.069791598308965
1023 => 0.068813182871237
1024 => 0.068303615616275
1025 => 0.06851387299694
1026 => 0.068407560431294
1027 => 0.067713799027863
1028 => 0.068447326022851
1029 => 0.066573467664937
1030 => 0.065827282168113
1031 => 0.06549024749057
1101 => 0.063827090342659
1102 => 0.066473912974326
1103 => 0.066995370376557
1104 => 0.067517855210958
1105 => 0.072065728978864
1106 => 0.071838530057577
1107 => 0.073892297655647
1108 => 0.073812492023423
1109 => 0.073226724235624
1110 => 0.070755466293025
1111 => 0.071740465663007
1112 => 0.068708790705089
1113 => 0.07098032771742
1114 => 0.069943693086646
1115 => 0.070629840505995
1116 => 0.069396085578587
1117 => 0.070078896495907
1118 => 0.067119027271421
1119 => 0.064355143036079
1120 => 0.065467410735191
1121 => 0.066676572927366
1122 => 0.069298344648798
1123 => 0.06773683904066
1124 => 0.068298415504411
1125 => 0.066417228357611
1126 => 0.06253580193922
1127 => 0.062557770391227
1128 => 0.061960697498228
1129 => 0.061444739344608
1130 => 0.067916196743739
1201 => 0.067111368717555
1202 => 0.065828980591118
1203 => 0.067545508058432
1204 => 0.067999385165744
1205 => 0.068012306408913
1206 => 0.069264640539078
1207 => 0.069933011488841
1208 => 0.070050814765622
1209 => 0.072021389577907
1210 => 0.072681900262474
1211 => 0.075402450293237
1212 => 0.069876304883401
1213 => 0.069762497555267
1214 => 0.067569663120055
1215 => 0.066178932853903
1216 => 0.0676648876112
1217 => 0.068981240673113
1218 => 0.067610565879009
1219 => 0.067789547070595
1220 => 0.065949528147755
1221 => 0.066607248331733
1222 => 0.067173765558652
1223 => 0.06686096804429
1224 => 0.066392695025721
1225 => 0.068873314733529
1226 => 0.068733348447987
1227 => 0.071043358549098
1228 => 0.072844176613321
1229 => 0.076071564519143
1230 => 0.072703616991881
1231 => 0.072580875597609
]
'min_raw' => 0.061444739344608
'max_raw' => 0.17765481144105
'avg_raw' => 0.11954977539283
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.061444'
'max' => '$0.177654'
'avg' => '$0.119549'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.010804327690758
'max_diff' => -0.060011886042133
'year' => 2030
]
5 => [
'items' => [
101 => 0.07378069241496
102 => 0.072681716576771
103 => 0.07337623137115
104 => 0.075959667448612
105 => 0.076014251382003
106 => 0.07509990017027
107 => 0.075044261815939
108 => 0.075219872968059
109 => 0.076248432971138
110 => 0.075889022501606
111 => 0.076304941396109
112 => 0.07682505434246
113 => 0.078976462011891
114 => 0.079495159117434
115 => 0.078234994064579
116 => 0.078348772859382
117 => 0.07787743653731
118 => 0.077422131556015
119 => 0.078445590662013
120 => 0.080315982294364
121 => 0.080304346685092
122 => 0.08073824118858
123 => 0.081008553869676
124 => 0.079848173961434
125 => 0.07909280930952
126 => 0.079382464182165
127 => 0.079845628631388
128 => 0.079232266193657
129 => 0.075446309090862
130 => 0.076594726627974
131 => 0.07640357379505
201 => 0.076131348915987
202 => 0.077286091630003
203 => 0.077174713878223
204 => 0.0738385177997
205 => 0.074052090248385
206 => 0.073851505847678
207 => 0.074499635082069
208 => 0.072646715471135
209 => 0.073216661063854
210 => 0.0735741255967
211 => 0.073784674952718
212 => 0.0745453236017
213 => 0.074456070262115
214 => 0.074539775488794
215 => 0.075667616631435
216 => 0.081371850102575
217 => 0.081682318944728
218 => 0.080153456817325
219 => 0.08076420708175
220 => 0.079591700130454
221 => 0.080378811901973
222 => 0.080917333785575
223 => 0.07848385694538
224 => 0.078339762240038
225 => 0.07716241593547
226 => 0.077795055151242
227 => 0.076788480670579
228 => 0.077035458839653
301 => 0.076344886347753
302 => 0.077587779341562
303 => 0.078977526834686
304 => 0.07932863193424
305 => 0.078405025577562
306 => 0.077736273706701
307 => 0.076562165722031
308 => 0.07851473346724
309 => 0.079085723779363
310 => 0.078511734298208
311 => 0.078378728393507
312 => 0.078126682444434
313 => 0.078432201133101
314 => 0.079082614043497
315 => 0.078775891326195
316 => 0.078978487084731
317 => 0.078206400969028
318 => 0.079848558095467
319 => 0.082456698818885
320 => 0.082465084417785
321 => 0.082158360047133
322 => 0.082032855043131
323 => 0.082347572861011
324 => 0.08251829436681
325 => 0.083536034080457
326 => 0.084628109341738
327 => 0.089724348076372
328 => 0.088293344632616
329 => 0.092815030814582
330 => 0.096391097517051
331 => 0.097463403558677
401 => 0.096476932456279
402 => 0.093102268103099
403 => 0.092936690970245
404 => 0.097979864260436
405 => 0.096554936813987
406 => 0.096385446228314
407 => 0.094582352755611
408 => 0.095648204315449
409 => 0.095415086944214
410 => 0.095047099769226
411 => 0.097080670297534
412 => 0.10088733278843
413 => 0.10029402874057
414 => 0.099851154791427
415 => 0.097910610064938
416 => 0.09907925142664
417 => 0.098663120621589
418 => 0.10045108264322
419 => 0.099391933549816
420 => 0.096544141587125
421 => 0.096997661843629
422 => 0.096929113169214
423 => 0.098339840031251
424 => 0.097916374843661
425 => 0.096846424794964
426 => 0.10087432202988
427 => 0.10061277278778
428 => 0.10098358981459
429 => 0.10114683493769
430 => 0.10359854500507
501 => 0.10460293217371
502 => 0.10483094564526
503 => 0.10578503577337
504 => 0.10480720701371
505 => 0.10871921923242
506 => 0.11132047908562
507 => 0.11434197626472
508 => 0.11875719574527
509 => 0.12041735911302
510 => 0.12011746546018
511 => 0.12346503448012
512 => 0.12948054159669
513 => 0.12133337143837
514 => 0.12991236139795
515 => 0.12719635222595
516 => 0.12075674333805
517 => 0.12034210844367
518 => 0.12470308634795
519 => 0.13437531561108
520 => 0.13195253188218
521 => 0.13437927841732
522 => 0.13154834967985
523 => 0.1314077702071
524 => 0.1342417865273
525 => 0.14086362013363
526 => 0.13771783520298
527 => 0.13320758112679
528 => 0.13653788254933
529 => 0.13365286725228
530 => 0.12715212032309
531 => 0.13195067922513
601 => 0.12874201954242
602 => 0.12967847701957
603 => 0.13642260242051
604 => 0.13561113140952
605 => 0.13666125003793
606 => 0.13480781814518
607 => 0.13307642049797
608 => 0.12984463821419
609 => 0.1288878668049
610 => 0.12915228400139
611 => 0.12888773577287
612 => 0.1270795832867
613 => 0.12668911292947
614 => 0.12603831189385
615 => 0.12624002234782
616 => 0.1250163260023
617 => 0.12732569383486
618 => 0.12775433285467
619 => 0.12943489817791
620 => 0.12960938004483
621 => 0.13428973054873
622 => 0.13171187214128
623 => 0.13344132212258
624 => 0.13328662383804
625 => 0.12089630918925
626 => 0.12260358522718
627 => 0.12525957096947
628 => 0.12406305299267
629 => 0.12237145651557
630 => 0.12100540166265
701 => 0.11893568887418
702 => 0.12184876987863
703 => 0.12567916162785
704 => 0.1297065251007
705 => 0.13454513843003
706 => 0.13346521626259
707 => 0.12961607059018
708 => 0.12978874045324
709 => 0.1308561176036
710 => 0.12947376721245
711 => 0.12906608509541
712 => 0.13080010834111
713 => 0.1308120496062
714 => 0.12922148841855
715 => 0.1274538707281
716 => 0.12744646434543
717 => 0.12713193385058
718 => 0.13160430395615
719 => 0.1340636553066
720 => 0.13434561597549
721 => 0.13404467710704
722 => 0.13416049653367
723 => 0.13272945417095
724 => 0.13600039264969
725 => 0.13900212926007
726 => 0.13819759972574
727 => 0.13699149558317
728 => 0.13603077553976
729 => 0.13797128461564
730 => 0.13788487680113
731 => 0.13897591170944
801 => 0.13892641606387
802 => 0.13855954206011
803 => 0.13819761282797
804 => 0.13963262132278
805 => 0.13921936192181
806 => 0.13880546061484
807 => 0.13797531817858
808 => 0.13808814832288
809 => 0.13688225243119
810 => 0.13632434981365
811 => 0.12793483304145
812 => 0.12569288002455
813 => 0.12639824408283
814 => 0.12663046824558
815 => 0.12565476741949
816 => 0.12705367176713
817 => 0.12683565400636
818 => 0.1276838335774
819 => 0.12715392780509
820 => 0.12717567532282
821 => 0.12873401521138
822 => 0.12918640791068
823 => 0.12895631733256
824 => 0.12911746488643
825 => 0.13283104224928
826 => 0.1323030903018
827 => 0.13202262635218
828 => 0.13210031678295
829 => 0.13304921541915
830 => 0.13331485522934
831 => 0.13218932068738
901 => 0.13272012928401
902 => 0.13498024491881
903 => 0.13577115747952
904 => 0.13829537071376
905 => 0.13722304006754
906 => 0.13919134937805
907 => 0.14524126115247
908 => 0.15007434929993
909 => 0.14562964170371
910 => 0.15450499259645
911 => 0.16141572635992
912 => 0.16115048088765
913 => 0.15994543460783
914 => 0.15207774794949
915 => 0.14483778538588
916 => 0.15089432149539
917 => 0.15090976085147
918 => 0.15038949902839
919 => 0.14715819752751
920 => 0.15027705674041
921 => 0.15052462045869
922 => 0.15038605060896
923 => 0.14790861932442
924 => 0.14412603965877
925 => 0.14486514667122
926 => 0.14607581903499
927 => 0.14378376367766
928 => 0.14305131311046
929 => 0.14441307806931
930 => 0.1488009685017
1001 => 0.14797146323278
1002 => 0.14794980149791
1003 => 0.15149877680335
1004 => 0.14895847640146
1005 => 0.1448744691776
1006 => 0.14384320349214
1007 => 0.14018290505255
1008 => 0.14271108622231
1009 => 0.14280207096177
1010 => 0.14141741197248
1011 => 0.14498682662329
1012 => 0.1449539338389
1013 => 0.14834256181258
1014 => 0.15482034578772
1015 => 0.15290454631388
1016 => 0.1506766799642
1017 => 0.15091891080844
1018 => 0.15357558529313
1019 => 0.15196929925371
1020 => 0.15254693091291
1021 => 0.15357471097843
1022 => 0.15419479621031
1023 => 0.15082969008615
1024 => 0.15004512287697
1025 => 0.14844017371267
1026 => 0.1480214724335
1027 => 0.14932867003946
1028 => 0.14898426965426
1029 => 0.14279442404673
1030 => 0.14214755074077
1031 => 0.14216738942154
1101 => 0.14054079573655
1102 => 0.13805984993972
1103 => 0.14457962736421
1104 => 0.14405599799279
1105 => 0.14347795169245
1106 => 0.14354875906595
1107 => 0.14637877347017
1108 => 0.14473722219657
1109 => 0.14910155530239
1110 => 0.14820437961969
1111 => 0.14728419476609
1112 => 0.14715699718981
1113 => 0.14680280452765
1114 => 0.14558814609984
1115 => 0.14412137305861
1116 => 0.14315288244708
1117 => 0.13205096702469
1118 => 0.13411141795022
1119 => 0.13648177892402
1120 => 0.13730001803355
1121 => 0.13590036341627
1122 => 0.14564341299513
1123 => 0.14742356203955
1124 => 0.14203137446775
1125 => 0.14102271633464
1126 => 0.14570954045441
1127 => 0.14288281256924
1128 => 0.14415568796285
1129 => 0.14140442758748
1130 => 0.1469947762636
1201 => 0.14695218717308
1202 => 0.14477741527432
1203 => 0.14661551759096
1204 => 0.14629610207996
1205 => 0.14384078996249
1206 => 0.14707261403718
1207 => 0.1470742169816
1208 => 0.14498104631266
1209 => 0.14253668122533
1210 => 0.14209968648104
1211 => 0.1417704696432
1212 => 0.1440747208021
1213 => 0.14614070518597
1214 => 0.14998498992339
1215 => 0.15095153444432
1216 => 0.15472402205606
1217 => 0.15247768936236
1218 => 0.1534734595506
1219 => 0.15455450895023
1220 => 0.15507280378668
1221 => 0.15422827016391
1222 => 0.16008849624279
1223 => 0.16058327887653
1224 => 0.16074917521377
1225 => 0.15877313995217
1226 => 0.16052832176128
1227 => 0.15970713031831
1228 => 0.16184364231938
1229 => 0.1621786746815
1230 => 0.1618949141899
1231 => 0.16200125874977
]
'min_raw' => 0.072646715471135
'max_raw' => 0.1621786746815
'avg_raw' => 0.11741269507632
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.072646'
'max' => '$0.162178'
'avg' => '$0.117412'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.011201976126527
'max_diff' => -0.015476136759551
'year' => 2031
]
6 => [
'items' => [
101 => 0.15700058960617
102 => 0.15674127853044
103 => 0.15320555361303
104 => 0.15464638765163
105 => 0.15195281747744
106 => 0.15280697632652
107 => 0.15318348140847
108 => 0.15298681652014
109 => 0.15472785024637
110 => 0.15324761590938
111 => 0.14934103412102
112 => 0.14543338798706
113 => 0.14538433067295
114 => 0.14435551642156
115 => 0.14361187215454
116 => 0.14375512442256
117 => 0.14425996409978
118 => 0.14358252995475
119 => 0.14372709487637
120 => 0.14612783580637
121 => 0.14660928727858
122 => 0.14497312706078
123 => 0.1384037076895
124 => 0.13679155569764
125 => 0.13795033857903
126 => 0.1373965149969
127 => 0.11088971096083
128 => 0.11711709138812
129 => 0.11341699340008
130 => 0.11512216878629
131 => 0.11134532687623
201 => 0.11314783379696
202 => 0.11281497658571
203 => 0.12282842003122
204 => 0.12267207388486
205 => 0.12274690851147
206 => 0.11917485680285
207 => 0.12486523216645
208 => 0.12766851568984
209 => 0.12714970251664
210 => 0.12728027661494
211 => 0.12503658099338
212 => 0.12276863238956
213 => 0.12025312835313
214 => 0.12492662392712
215 => 0.12440701099852
216 => 0.1255988161059
217 => 0.12862991205399
218 => 0.12907625244636
219 => 0.12967613846005
220 => 0.12946112202694
221 => 0.13458368579146
222 => 0.13396330951981
223 => 0.13545823784005
224 => 0.13238305686484
225 => 0.12890319769253
226 => 0.12956460515602
227 => 0.12950090629858
228 => 0.12868994673326
229 => 0.12795784869815
301 => 0.12673911173702
302 => 0.13059537582116
303 => 0.1304388185417
304 => 0.13297329891808
305 => 0.13252530489293
306 => 0.12953349115022
307 => 0.12964034436334
308 => 0.13035898357346
309 => 0.13284620208496
310 => 0.13358457788192
311 => 0.13324253279358
312 => 0.13405212814682
313 => 0.13469199930415
314 => 0.13413248611255
315 => 0.14205401299675
316 => 0.1387644427475
317 => 0.14036775639831
318 => 0.14075013725675
319 => 0.13977067672845
320 => 0.13998308664519
321 => 0.1403048297908
322 => 0.14225839116723
323 => 0.14738510148651
324 => 0.14965568658822
325 => 0.15648685389541
326 => 0.14946714610359
327 => 0.14905062569366
328 => 0.15028112520718
329 => 0.15429174356899
330 => 0.15754197305302
331 => 0.15862026168311
401 => 0.15876277532618
402 => 0.1607857164795
403 => 0.16194522862296
404 => 0.16054007821485
405 => 0.15934936036936
406 => 0.15508435684414
407 => 0.1555780426154
408 => 0.15897904801478
409 => 0.16378316845963
410 => 0.16790560358484
411 => 0.16646207048536
412 => 0.17747520905885
413 => 0.17856711676377
414 => 0.17841625042456
415 => 0.18090377867403
416 => 0.17596654167515
417 => 0.17385577720366
418 => 0.15960680708278
419 => 0.16361018647881
420 => 0.16942933354117
421 => 0.16865914760678
422 => 0.16443312746385
423 => 0.16790239776961
424 => 0.16675534851241
425 => 0.16585062317214
426 => 0.16999534534555
427 => 0.16543805306009
428 => 0.16938387106447
429 => 0.16432331865959
430 => 0.16646866442296
501 => 0.16525086240897
502 => 0.16603892956023
503 => 0.16143190509685
504 => 0.16391774366809
505 => 0.16132848603961
506 => 0.16132725839436
507 => 0.1612701003887
508 => 0.16431635050609
509 => 0.16441568861305
510 => 0.16216450517367
511 => 0.16184007446997
512 => 0.16303966482259
513 => 0.16163525869288
514 => 0.16229237148174
515 => 0.16165516196984
516 => 0.16151171268703
517 => 0.16036868439567
518 => 0.15987623637954
519 => 0.16006933793549
520 => 0.15941018277436
521 => 0.1590130179471
522 => 0.16119109430807
523 => 0.16002743597175
524 => 0.16101274697882
525 => 0.1598898607301
526 => 0.15599744777382
527 => 0.15375887992114
528 => 0.14640647267358
529 => 0.14849160624835
530 => 0.14987405196566
531 => 0.14941715366433
601 => 0.15039874801174
602 => 0.1504590099325
603 => 0.15013988360398
604 => 0.14977037619818
605 => 0.14959052042808
606 => 0.15093101798536
607 => 0.15170922193644
608 => 0.15001279888812
609 => 0.14961535070339
610 => 0.15133052806731
611 => 0.15237678526848
612 => 0.16010176060079
613 => 0.15952946947683
614 => 0.16096580789151
615 => 0.16080409822842
616 => 0.16230960971366
617 => 0.16477048471539
618 => 0.1597668377654
619 => 0.16063529786282
620 => 0.1604223715026
621 => 0.16274704567115
622 => 0.16275430305016
623 => 0.16136054476003
624 => 0.16211612374026
625 => 0.16169438028172
626 => 0.16245652771334
627 => 0.15952182617996
628 => 0.16309597586617
629 => 0.16512228842513
630 => 0.16515042377697
701 => 0.16611087984811
702 => 0.16708675884225
703 => 0.16895987359035
704 => 0.16703451868856
705 => 0.16357099264976
706 => 0.16382104804264
707 => 0.16179038399334
708 => 0.16182451982288
709 => 0.16164230008953
710 => 0.16218915522617
711 => 0.15964183013012
712 => 0.16023968223864
713 => 0.15940268578569
714 => 0.16063347839599
715 => 0.15930934900462
716 => 0.16042226882307
717 => 0.16090256812283
718 => 0.16267488287907
719 => 0.1590475766741
720 => 0.1516512537751
721 => 0.15320605052022
722 => 0.15090638400755
723 => 0.15111922689874
724 => 0.15154920341265
725 => 0.15015550885151
726 => 0.15042138185341
727 => 0.15041188299886
728 => 0.15033002700207
729 => 0.14996747321968
730 => 0.14944169850613
731 => 0.15153622313998
801 => 0.15189212368976
802 => 0.15268324652518
803 => 0.15503709145963
804 => 0.15480188684319
805 => 0.15518551533115
806 => 0.15434805649592
807 => 0.15115807421222
808 => 0.15133130559769
809 => 0.149171107445
810 => 0.15262800540163
811 => 0.15180936633667
812 => 0.15128158440594
813 => 0.15113757421627
814 => 0.15349725387703
815 => 0.15420330701498
816 => 0.15376334208087
817 => 0.15286096116519
818 => 0.15459379928826
819 => 0.15505743366742
820 => 0.15516122430674
821 => 0.15823148122206
822 => 0.15533281756201
823 => 0.15603055471522
824 => 0.16147410080675
825 => 0.15653755565975
826 => 0.15915255372221
827 => 0.15902456317484
828 => 0.16036230769689
829 => 0.1589148290782
830 => 0.15893277231046
831 => 0.16012059881938
901 => 0.15845251071325
902 => 0.15803946863979
903 => 0.15746885397358
904 => 0.15871477022174
905 => 0.15946164066456
906 => 0.16548086791782
907 => 0.16936956323354
908 => 0.16920074471418
909 => 0.1707434299661
910 => 0.17004843613073
911 => 0.16780411770622
912 => 0.17163489559139
913 => 0.17042267718197
914 => 0.17052261099479
915 => 0.17051889145329
916 => 0.17132491072158
917 => 0.17075377219941
918 => 0.16962799954606
919 => 0.17037533997097
920 => 0.17259467385385
921 => 0.17948355432381
922 => 0.18333866310032
923 => 0.17925147193485
924 => 0.18207076167112
925 => 0.180380192445
926 => 0.18007296572654
927 => 0.1818436880248
928 => 0.18361750973803
929 => 0.18350452496334
930 => 0.18221682148628
1001 => 0.18148943046636
1002 => 0.18699747896308
1003 => 0.19105571526831
1004 => 0.19077897075906
1005 => 0.19200043102077
1006 => 0.19558667612752
1007 => 0.19591455743579
1008 => 0.19587325192721
1009 => 0.19506056389378
1010 => 0.19859168793414
1011 => 0.20153741373283
1012 => 0.19487245009486
1013 => 0.19741038099742
1014 => 0.1985497399466
1015 => 0.20022265691657
1016 => 0.20304514825836
1017 => 0.20611112248439
1018 => 0.20654468485665
1019 => 0.20623705160566
1020 => 0.20421495918578
1021 => 0.20756978476858
1022 => 0.20953496291465
1023 => 0.21070518152833
1024 => 0.21367266122681
1025 => 0.19855677623959
1026 => 0.1878570015374
1027 => 0.18618607721104
1028 => 0.18958396753456
1029 => 0.1904799641152
1030 => 0.19011878901703
1031 => 0.17807521980876
1101 => 0.18612267031163
1102 => 0.19478105040386
1103 => 0.19511365404556
1104 => 0.19944822015792
1105 => 0.20085973256398
1106 => 0.20434962642899
1107 => 0.20413133261754
1108 => 0.20498106623733
1109 => 0.20478572719348
1110 => 0.21125002069457
1111 => 0.21838109638315
1112 => 0.21813416990748
1113 => 0.21710899340619
1114 => 0.21863155532918
1115 => 0.2259915896523
1116 => 0.22531399563398
1117 => 0.22597222050546
1118 => 0.23465011576578
1119 => 0.24593261402041
1120 => 0.24069076083683
1121 => 0.25206407394257
1122 => 0.25922297166922
1123 => 0.2716035450436
1124 => 0.27005343628152
1125 => 0.27487310264333
1126 => 0.26727841807993
1127 => 0.24983948718339
1128 => 0.24707970961547
1129 => 0.25260485419515
1130 => 0.26618788300857
1201 => 0.25217707627992
1202 => 0.25501144423341
1203 => 0.25419514607213
1204 => 0.25415164901216
1205 => 0.25581175487592
1206 => 0.25340368473523
1207 => 0.24359277377851
1208 => 0.24808905645392
1209 => 0.24635282578372
1210 => 0.24827930315687
1211 => 0.25867570700011
1212 => 0.2540792090417
1213 => 0.24923717183169
1214 => 0.25531016102712
1215 => 0.26304316317839
1216 => 0.26255924580131
1217 => 0.26162024382799
1218 => 0.26691334878704
1219 => 0.27565600744516
1220 => 0.2780191129496
1221 => 0.27976350912141
1222 => 0.28000403188169
1223 => 0.28248156579662
1224 => 0.26915924151711
1225 => 0.29030211229024
1226 => 0.29395290201274
1227 => 0.29326670485464
1228 => 0.29732440398248
1229 => 0.29613052596518
1230 => 0.29440078403183
1231 => 0.30083310024682
]
'min_raw' => 0.11088971096083
'max_raw' => 0.30083310024682
'avg_raw' => 0.20586140560382
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.110889'
'max' => '$0.300833'
'avg' => '$0.205861'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.038242995489691
'max_diff' => 0.13865442556532
'year' => 2032
]
7 => [
'items' => [
101 => 0.29345896876749
102 => 0.28299231750991
103 => 0.27725010562312
104 => 0.28481191344667
105 => 0.28942964561379
106 => 0.29248167283332
107 => 0.29340521442587
108 => 0.27019341562714
109 => 0.25768354346
110 => 0.26570222809316
111 => 0.27548557676566
112 => 0.26910489452126
113 => 0.26935500518501
114 => 0.26025782911829
115 => 0.27629047498845
116 => 0.27395465334095
117 => 0.2860729001802
118 => 0.28318078331701
119 => 0.29306274318679
120 => 0.29046049197253
121 => 0.30126229127299
122 => 0.30557142146098
123 => 0.31280712170918
124 => 0.31812973226636
125 => 0.32125527099085
126 => 0.32106762536943
127 => 0.33345256693307
128 => 0.32614959958989
129 => 0.31697535142962
130 => 0.31680941822478
131 => 0.32156089134709
201 => 0.33151867550846
202 => 0.33410058406163
203 => 0.33554351871241
204 => 0.33333361406582
205 => 0.32540676642319
206 => 0.32198399380113
207 => 0.3249002952424
208 => 0.32133390918037
209 => 0.32749049207462
210 => 0.33594479536357
211 => 0.33419901516634
212 => 0.34003489662369
213 => 0.3460744199794
214 => 0.35471120963005
215 => 0.35696918626412
216 => 0.36070153577708
217 => 0.36454334943887
218 => 0.36577723644725
219 => 0.36813310959891
220 => 0.36812069298451
221 => 0.37522027529558
222 => 0.38305133444045
223 => 0.38600737797821
224 => 0.39280463709608
225 => 0.38116456906109
226 => 0.38999369437709
227 => 0.39795778641947
228 => 0.38846266756557
301 => 0.40154947682672
302 => 0.40205760797498
303 => 0.40972978503266
304 => 0.40195256377343
305 => 0.39733447461546
306 => 0.41066672497696
307 => 0.41711778096494
308 => 0.41517467040093
309 => 0.40038750306558
310 => 0.39178073742496
311 => 0.36925517162236
312 => 0.39593767734757
313 => 0.40893394754695
314 => 0.40035384586543
315 => 0.40468115007888
316 => 0.42828951873437
317 => 0.43727805698971
318 => 0.43540850386722
319 => 0.43572442756946
320 => 0.44057447965853
321 => 0.46208228159394
322 => 0.4491943081273
323 => 0.45904668093939
324 => 0.46427234395356
325 => 0.46912623099048
326 => 0.45720661851456
327 => 0.44169937781727
328 => 0.43678758373875
329 => 0.39950072384852
330 => 0.39755978086261
331 => 0.39647027074803
401 => 0.38960106358984
402 => 0.3842037483977
403 => 0.37991160296745
404 => 0.36864773161534
405 => 0.37244895754226
406 => 0.35449669755966
407 => 0.3659819173075
408 => 0.33732967690279
409 => 0.36119211411775
410 => 0.34820487443353
411 => 0.3569254565908
412 => 0.35689503130118
413 => 0.34083767468656
414 => 0.33157612649974
415 => 0.33747794546923
416 => 0.3438051638915
417 => 0.3448317337932
418 => 0.35303513763497
419 => 0.35532453131563
420 => 0.34838756158165
421 => 0.33673592290609
422 => 0.33944233282484
423 => 0.33152128118912
424 => 0.31763994287637
425 => 0.3276097623975
426 => 0.33101389712403
427 => 0.33251735694855
428 => 0.31886665500044
429 => 0.31457730807718
430 => 0.31229369576635
501 => 0.33497378870276
502 => 0.33621625539123
503 => 0.32985962014593
504 => 0.3585922142156
505 => 0.3520891432633
506 => 0.35935466680808
507 => 0.33919675449196
508 => 0.33996681388866
509 => 0.33042373515333
510 => 0.33576722157637
511 => 0.33199061760117
512 => 0.33533552067875
513 => 0.33734044179189
514 => 0.3468819546019
515 => 0.3613010628673
516 => 0.3454567707695
517 => 0.33855318580805
518 => 0.3428361310909
519 => 0.35424217877906
520 => 0.37152292489146
521 => 0.36129237538549
522 => 0.36583251953024
523 => 0.36682433904892
524 => 0.35928071059874
525 => 0.37180106923253
526 => 0.37851083113959
527 => 0.38539365846665
528 => 0.39136982458228
529 => 0.38264450587561
530 => 0.39198184761706
531 => 0.38445759843615
601 => 0.37770756907829
602 => 0.37771780608653
603 => 0.37348341406815
604 => 0.36527874596481
605 => 0.36376567928437
606 => 0.37163684323531
607 => 0.37794877132198
608 => 0.37846865195129
609 => 0.38196325965864
610 => 0.38403133250253
611 => 0.40430125778133
612 => 0.41245398941008
613 => 0.4224229953224
614 => 0.42630648494764
615 => 0.43799439641152
616 => 0.42855545865868
617 => 0.42651328510215
618 => 0.39816223497748
619 => 0.40280471784714
620 => 0.41023778085443
621 => 0.39828480344871
622 => 0.4058662164165
623 => 0.40736294793262
624 => 0.39787864585032
625 => 0.40294462138498
626 => 0.389490892322
627 => 0.36159431739607
628 => 0.37183212609509
629 => 0.3793705993067
630 => 0.36861226854668
701 => 0.38789616002912
702 => 0.3766309087254
703 => 0.37306036488955
704 => 0.3591304003951
705 => 0.36570480742297
706 => 0.37459678706462
707 => 0.36910257744967
708 => 0.38050388736041
709 => 0.39665118281231
710 => 0.40815870713941
711 => 0.40904211196774
712 => 0.40164354476967
713 => 0.41349979592161
714 => 0.41358615576748
715 => 0.4002122560339
716 => 0.39202081691326
717 => 0.39015970471012
718 => 0.39480912788611
719 => 0.40045438595264
720 => 0.40935538450144
721 => 0.41473407150604
722 => 0.4287588345789
723 => 0.43255353334494
724 => 0.43672275680805
725 => 0.44229412509565
726 => 0.44898398119444
727 => 0.43434695690402
728 => 0.43492851316591
729 => 0.42129871881007
730 => 0.40673332883063
731 => 0.41778664422354
801 => 0.43223738373883
802 => 0.42892236812737
803 => 0.42854936115146
804 => 0.42917665542144
805 => 0.42667724190869
806 => 0.41537248722311
807 => 0.40969531019152
808 => 0.4170203169646
809 => 0.42091323206594
810 => 0.42695080389026
811 => 0.42620654572523
812 => 0.44175868235679
813 => 0.44780177237962
814 => 0.44625569135338
815 => 0.44654020747072
816 => 0.45748093330144
817 => 0.46964927055708
818 => 0.48104652415052
819 => 0.49264030002919
820 => 0.47866355069468
821 => 0.47156701934867
822 => 0.47888882825294
823 => 0.47500377338641
824 => 0.4973284510316
825 => 0.49887416327459
826 => 0.52119722659149
827 => 0.54238447186015
828 => 0.52907714271583
829 => 0.54162535472366
830 => 0.55519726908086
831 => 0.58137969383965
901 => 0.5725623742897
902 => 0.56580844569945
903 => 0.55942601581641
904 => 0.57270683922081
905 => 0.58979240636423
906 => 0.59347247388339
907 => 0.59943558915843
908 => 0.59316610258177
909 => 0.60071700860207
910 => 0.62737502488993
911 => 0.62017179357213
912 => 0.60994204712364
913 => 0.63098599071981
914 => 0.638601712101
915 => 0.69205283313848
916 => 0.75953708140397
917 => 0.73159815949659
918 => 0.71425556908531
919 => 0.71833148920371
920 => 0.74297445218429
921 => 0.75088898976511
922 => 0.72937454831574
923 => 0.73697381275095
924 => 0.77884650693214
925 => 0.80130986392347
926 => 0.77080160789789
927 => 0.6866305394983
928 => 0.60902097038203
929 => 0.62960652291611
930 => 0.62727276010281
1001 => 0.67225974627552
1002 => 0.61999999888747
1003 => 0.62087991900589
1004 => 0.6667971884106
1005 => 0.65454724815471
1006 => 0.63470391379398
1007 => 0.60916584868281
1008 => 0.56195637333972
1009 => 0.52014162449472
1010 => 0.6021499763413
1011 => 0.59861362708716
1012 => 0.59349246930958
1013 => 0.60488905177645
1014 => 0.66022762125918
1015 => 0.65895188811914
1016 => 0.65083632476693
1017 => 0.65699190804228
1018 => 0.633624810284
1019 => 0.63964704343524
1020 => 0.60900867662976
1021 => 0.62285849799706
1022 => 0.63466133891053
1023 => 0.63703093396796
1024 => 0.64236975262686
1025 => 0.59675013172319
1026 => 0.61723200218724
1027 => 0.62926318219313
1028 => 0.57490587322841
1029 => 0.62818871296697
1030 => 0.59595599561775
1031 => 0.58501572723025
1101 => 0.59974535734326
1102 => 0.59400520616318
1103 => 0.58907016125154
1104 => 0.58631632139602
1105 => 0.59713213610105
1106 => 0.59662756541737
1107 => 0.57893079330076
1108 => 0.55584607548735
1109 => 0.56359406451556
1110 => 0.56077914746382
1111 => 0.55057752493682
1112 => 0.55745218677142
1113 => 0.52717965523856
1114 => 0.47509733816555
1115 => 0.5095045121485
1116 => 0.50817987337796
1117 => 0.50751193044227
1118 => 0.53336797074601
1119 => 0.53088250907115
1120 => 0.52637137179356
1121 => 0.55049467436304
1122 => 0.54168934442097
1123 => 0.56882529650576
1124 => 0.58669878959214
1125 => 0.58216549359851
1126 => 0.59897560023634
1127 => 0.56377256253403
1128 => 0.57546559955801
1129 => 0.5778755182828
1130 => 0.55019699655389
1201 => 0.53128916133938
1202 => 0.53002822429567
1203 => 0.4972446436939
1204 => 0.51475736783155
1205 => 0.53016784034692
1206 => 0.52278741991303
1207 => 0.52045099928745
1208 => 0.53238726555573
1209 => 0.53331481567198
1210 => 0.51216657472408
1211 => 0.51656396369484
1212 => 0.534901806708
1213 => 0.51610189710097
1214 => 0.47957674368229
1215 => 0.47051800063471
1216 => 0.4693093973264
1217 => 0.44474136772338
1218 => 0.47112334916121
1219 => 0.45960690727045
1220 => 0.49598720921521
1221 => 0.47520697585584
1222 => 0.47431118152864
1223 => 0.47295705701862
1224 => 0.45181033904678
1225 => 0.45644012633858
1226 => 0.47183024443303
1227 => 0.47732161195122
1228 => 0.47674881732962
1229 => 0.47175482445831
1230 => 0.47404104882142
1231 => 0.46667632357449
]
'min_raw' => 0.25768354346
'max_raw' => 0.80130986392347
'avg_raw' => 0.52949670369173
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.257683'
'max' => '$0.8013098'
'avg' => '$0.529496'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.14679383249917
'max_diff' => 0.50047676367666
'year' => 2033
]
8 => [
'items' => [
101 => 0.4640756858063
102 => 0.45586735764812
103 => 0.44380338286412
104 => 0.4454809525505
105 => 0.42157906179269
106 => 0.40855604313847
107 => 0.40495144321562
108 => 0.40013122155217
109 => 0.40549590007862
110 => 0.42151135073928
111 => 0.40219331937513
112 => 0.36907390960363
113 => 0.37106444256362
114 => 0.37553657913019
115 => 0.36720278222453
116 => 0.35931554285588
117 => 0.36617285757497
118 => 0.35213972704932
119 => 0.37723241591014
120 => 0.3765537289979
121 => 0.38590673168375
122 => 0.39175535620615
123 => 0.3782761701967
124 => 0.37488619136692
125 => 0.37681727737431
126 => 0.34490072721937
127 => 0.38329846861699
128 => 0.38363053387909
129 => 0.38078718950226
130 => 0.40123280139923
131 => 0.44437941964809
201 => 0.42814592629417
202 => 0.4218598270076
203 => 0.40990994766871
204 => 0.42583245237415
205 => 0.42460985244254
206 => 0.41908079189454
207 => 0.41573679882339
208 => 0.42189820858941
209 => 0.41497333196808
210 => 0.41372943384401
211 => 0.40619276458663
212 => 0.40350251655834
213 => 0.40151076402006
214 => 0.39931804018097
215 => 0.40415464257726
216 => 0.39319426523924
217 => 0.37997712462863
218 => 0.3788782623983
219 => 0.3819123176292
220 => 0.38056997404837
221 => 0.37887183577367
222 => 0.37562962734683
223 => 0.37466773336541
224 => 0.37779342216041
225 => 0.37426470174984
226 => 0.37947152093499
227 => 0.37805555422308
228 => 0.3701460792737
301 => 0.3602879450241
302 => 0.36020018695114
303 => 0.35807626809764
304 => 0.35537113810438
305 => 0.35461863282524
306 => 0.36559535365593
307 => 0.38831683726985
308 => 0.38385606635741
309 => 0.38707943049984
310 => 0.40293519179982
311 => 0.40797526151771
312 => 0.40439793941254
313 => 0.39950108027538
314 => 0.39971651722544
315 => 0.41645056727719
316 => 0.41749424945252
317 => 0.42013129760493
318 => 0.4235206497105
319 => 0.4049751607321
320 => 0.39884302636232
321 => 0.39593728090006
322 => 0.38698870954131
323 => 0.39663897655919
324 => 0.39101617923351
325 => 0.39177488669485
326 => 0.39128077746533
327 => 0.39155059451617
328 => 0.37722540199221
329 => 0.38244474923799
330 => 0.37376657213284
331 => 0.36214746716015
401 => 0.3621085158461
402 => 0.36495227532739
403 => 0.3632606959116
404 => 0.35870869919818
405 => 0.3593552888465
406 => 0.3536904831536
407 => 0.36004309882224
408 => 0.36022526910887
409 => 0.35777916604713
410 => 0.36756624697669
411 => 0.37157602201903
412 => 0.36996594458319
413 => 0.371463054694
414 => 0.384041431528
415 => 0.386092255785
416 => 0.38700309645011
417 => 0.38578269062212
418 => 0.37169296433207
419 => 0.37231790360718
420 => 0.36773251386017
421 => 0.36385834272042
422 => 0.36401328924866
423 => 0.36600511682148
424 => 0.37470354465117
425 => 0.39300887321841
426 => 0.39370354705651
427 => 0.39454551201336
428 => 0.39112081739617
429 => 0.39008789672971
430 => 0.39145058570822
501 => 0.39832510466962
502 => 0.41600823385204
503 => 0.40975783498249
504 => 0.40467616340829
505 => 0.40913415938768
506 => 0.40844788584958
507 => 0.40265504654673
508 => 0.40249246084115
509 => 0.39137415013624
510 => 0.38726396382031
511 => 0.38382918449261
512 => 0.38007849513395
513 => 0.37785496075789
514 => 0.38127132013782
515 => 0.38205268194919
516 => 0.37458275245723
517 => 0.37356462866981
518 => 0.37966473434257
519 => 0.37698030527085
520 => 0.37974130714176
521 => 0.38038188325924
522 => 0.38027873575061
523 => 0.37747588349501
524 => 0.37926233794047
525 => 0.37503684060926
526 => 0.37044224691075
527 => 0.36751118238441
528 => 0.36495343983588
529 => 0.36637262405867
530 => 0.36131349143721
531 => 0.35969497309139
601 => 0.37865712737085
602 => 0.3926646746146
603 => 0.39246099933007
604 => 0.39122117841658
605 => 0.38937905602761
606 => 0.398190341943
607 => 0.3951206661173
608 => 0.39735411176049
609 => 0.3979226174141
610 => 0.39964331280464
611 => 0.40025831350798
612 => 0.39839935423701
613 => 0.39216045987088
614 => 0.37661372828674
615 => 0.36937668276673
616 => 0.3669883372026
617 => 0.36707514902774
618 => 0.36468049134526
619 => 0.36538582535378
620 => 0.36443520496159
621 => 0.36263495991854
622 => 0.36626146400022
623 => 0.36667938481241
624 => 0.36583291542625
625 => 0.36603228960933
626 => 0.35902388462373
627 => 0.35955671843333
628 => 0.35658983207223
629 => 0.35603357664587
630 => 0.34853354628136
701 => 0.33524615534385
702 => 0.34260865976148
703 => 0.33371578974976
704 => 0.33034792512736
705 => 0.34629087243942
706 => 0.34469064271781
707 => 0.34195174503756
708 => 0.33790034453218
709 => 0.33639764067524
710 => 0.32726768773872
711 => 0.32672824141283
712 => 0.33125329261763
713 => 0.32916513718412
714 => 0.32623257610916
715 => 0.31561113716462
716 => 0.30366912315338
717 => 0.30402957749155
718 => 0.30782810995946
719 => 0.3188728554118
720 => 0.31455748228753
721 => 0.31142662957268
722 => 0.31084031497227
723 => 0.3181792697291
724 => 0.32856542826858
725 => 0.3334383814781
726 => 0.32860943284125
727 => 0.3230621966563
728 => 0.32339983121946
729 => 0.32564596270522
730 => 0.32588199936578
731 => 0.32227131887447
801 => 0.3232877042831
802 => 0.32174372190717
803 => 0.31226830491608
804 => 0.31209692466959
805 => 0.30977150452824
806 => 0.30970109173054
807 => 0.30574497196686
808 => 0.30519148346455
809 => 0.29733636755447
810 => 0.30250662863397
811 => 0.29903868895273
812 => 0.29381168584883
813 => 0.29291054854354
814 => 0.29288345926799
815 => 0.29825042271918
816 => 0.30244391254124
817 => 0.29909901524824
818 => 0.29833744697273
819 => 0.30646900373007
820 => 0.30543418901191
821 => 0.30453804613983
822 => 0.32763546168775
823 => 0.30935205496776
824 => 0.30137944605747
825 => 0.29151182857362
826 => 0.29472477458321
827 => 0.29540178951542
828 => 0.2716719482385
829 => 0.26204475458782
830 => 0.25874106452005
831 => 0.25683974417872
901 => 0.25770619973354
902 => 0.24904059629074
903 => 0.25486402512015
904 => 0.24736034502391
905 => 0.24610232863669
906 => 0.25951983817636
907 => 0.26138680624485
908 => 0.25342174044315
909 => 0.25853660211487
910 => 0.25668188217081
911 => 0.24748897408229
912 => 0.24713787261177
913 => 0.2425251944793
914 => 0.23530724639246
915 => 0.23200845043338
916 => 0.23029040885643
917 => 0.23099930629504
918 => 0.23064086605746
919 => 0.22830180104892
920 => 0.23077493852574
921 => 0.22445709424342
922 => 0.22194127774387
923 => 0.22080494179752
924 => 0.21519749135542
925 => 0.22412143865334
926 => 0.22587956869195
927 => 0.22764116278986
928 => 0.24297463672076
929 => 0.24220861969512
930 => 0.24913304054149
1001 => 0.24886397028059
1002 => 0.24688901328703
1003 => 0.23855699459584
1004 => 0.24187798874219
1005 => 0.23165648495679
1006 => 0.23931513058751
1007 => 0.23582004455434
1008 => 0.23813343848395
1009 => 0.23397374760818
1010 => 0.23627589228826
1011 => 0.22629648654643
1012 => 0.21697785787875
1013 => 0.22072794608235
1014 => 0.22480472083428
1015 => 0.23364420723934
1016 => 0.22837948206067
1017 => 0.23027287631622
1018 => 0.22393032251049
1019 => 0.21084382234835
1020 => 0.21091789051807
1021 => 0.20890481757303
1022 => 0.20716522863505
1023 => 0.22898419907895
1024 => 0.22627066519737
1025 => 0.22194700409561
1026 => 0.22773439629578
1027 => 0.22926467465177
1028 => 0.22930823952525
1029 => 0.23353057148028
1030 => 0.23578403080157
1031 => 0.236181212774
1101 => 0.24282514333476
1102 => 0.24505210122316
1103 => 0.25422462559462
1104 => 0.2355928405222
1105 => 0.23520913116962
1106 => 0.2278158367725
1107 => 0.22312689258248
1108 => 0.22813689279275
1109 => 0.23257506904583
1110 => 0.22795374328005
1111 => 0.22855719086355
1112 => 0.22235343859917
1113 => 0.22457098812001
1114 => 0.22648104050354
1115 => 0.22542642184504
1116 => 0.22384760666916
1117 => 0.23221118920537
1118 => 0.23173928310153
1119 => 0.23952764343718
1120 => 0.24559922726981
1121 => 0.25648059092332
1122 => 0.24512532069257
1123 => 0.24471148951225
1124 => 0.24875675568049
1125 => 0.24505148191399
1126 => 0.24739308703271
1127 => 0.25610332213762
1128 => 0.25628735567998
1129 => 0.25320455673165
1130 => 0.25301696813548
1201 => 0.25360905339563
1202 => 0.25707691525778
1203 => 0.25586513776652
1204 => 0.25726743735786
1205 => 0.25902103446961
1206 => 0.26627465563359
1207 => 0.2680234791392
1208 => 0.26377474468158
1209 => 0.26415835783204
1210 => 0.26256921451453
1211 => 0.26103412198171
1212 => 0.26448478581322
1213 => 0.27079094178826
1214 => 0.27075171151923
1215 => 0.27221461713129
1216 => 0.27312599520823
1217 => 0.26921369333245
1218 => 0.26666692867065
1219 => 0.26764352029683
1220 => 0.26920511157449
1221 => 0.26713711729209
1222 => 0.25437249859293
1223 => 0.25824446849925
1224 => 0.25759998337719
1225 => 0.25668215819129
1226 => 0.26057545387316
1227 => 0.26019993600689
1228 => 0.24895171800237
1229 => 0.24967179242427
1230 => 0.24899550811293
1231 => 0.25118072107762
]
'min_raw' => 0.20716522863505
'max_raw' => 0.4640756858063
'avg_raw' => 0.33562045722068
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.207165'
'max' => '$0.464075'
'avg' => '$0.33562'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.050518314824944
'max_diff' => -0.33723417811717
'year' => 2034
]
9 => [
'items' => [
101 => 0.24493347324264
102 => 0.24685508460082
103 => 0.24806030123069
104 => 0.24877018308459
105 => 0.25133476311142
106 => 0.25103383924554
107 => 0.2513160572614
108 => 0.25511865241717
109 => 0.27435087382198
110 => 0.27539764119954
111 => 0.27024297579526
112 => 0.27230216295299
113 => 0.26834897390488
114 => 0.27100277619694
115 => 0.2728184403259
116 => 0.26461380325926
117 => 0.26412797789983
118 => 0.26015847263428
119 => 0.26229145991971
120 => 0.25889772378137
121 => 0.25973042792187
122 => 0.2574021145512
123 => 0.26159261505584
124 => 0.26627824575798
125 => 0.26746202111451
126 => 0.26434801779883
127 => 0.26209327417546
128 => 0.25813468713154
129 => 0.26471790560844
130 => 0.26664303931103
131 => 0.26470779370065
201 => 0.26425935500678
202 => 0.26340956449219
203 => 0.26443964208166
204 => 0.26663255461944
205 => 0.26559841756336
206 => 0.26628148330805
207 => 0.26367834106363
208 => 0.26921498846717
209 => 0.27800851701074
210 => 0.2780367896429
211 => 0.27700264701243
212 => 0.27657949812896
213 => 0.27764059122484
214 => 0.27821619070104
215 => 0.28164757120191
216 => 0.28532957919158
217 => 0.30251190389343
218 => 0.29768717587333
219 => 0.31293235652988
220 => 0.32498931509026
221 => 0.32860466977561
222 => 0.32527871358067
223 => 0.31390079710238
224 => 0.31334254223874
225 => 0.33034595308973
226 => 0.32554171071877
227 => 0.32497026137572
228 => 0.31889100584454
301 => 0.32248459879391
302 => 0.32169862730105
303 => 0.32045793284854
304 => 0.32731425786409
305 => 0.34014868622485
306 => 0.33814832020432
307 => 0.3366551397643
308 => 0.33011245773444
309 => 0.33405261367735
310 => 0.33264959961479
311 => 0.33867783840226
312 => 0.3351068432864
313 => 0.32550531385771
314 => 0.32703438906628
315 => 0.32680327242458
316 => 0.33155963653374
317 => 0.33013189408839
318 => 0.32652448279768
319 => 0.34010481954399
320 => 0.33922298801349
321 => 0.34047322350899
322 => 0.34102361583893
323 => 0.34928972750403
324 => 0.35267608896716
325 => 0.35344485230589
326 => 0.35666163378526
327 => 0.35336481585226
328 => 0.36655443817561
329 => 0.37532476738484
330 => 0.38551195607837
331 => 0.4003981768178
401 => 0.40599553352107
402 => 0.40498442113262
403 => 0.41627098380317
404 => 0.43655268603596
405 => 0.40908393302993
406 => 0.43800859664462
407 => 0.42885138209551
408 => 0.40713979113082
409 => 0.40574182063554
410 => 0.42044516211358
411 => 0.4530557583677
412 => 0.44488717387237
413 => 0.45306911924562
414 => 0.4435244453581
415 => 0.44305047185076
416 => 0.45260555573902
417 => 0.47493153006444
418 => 0.46432529653907
419 => 0.44911866002528
420 => 0.46034700378559
421 => 0.45061997328625
422 => 0.42870225114684
423 => 0.44488092750975
424 => 0.43406270736805
425 => 0.43722003913361
426 => 0.45995832878267
427 => 0.45722239761405
428 => 0.46076294588665
429 => 0.45451397085778
430 => 0.4486764428079
501 => 0.43778026320227
502 => 0.43455444159621
503 => 0.43544594263522
504 => 0.43455399981257
505 => 0.42845768746428
506 => 0.4271411893931
507 => 0.42494696826403
508 => 0.42562704914257
509 => 0.42150127147789
510 => 0.4292874663603
511 => 0.43073265274219
512 => 0.43639879606285
513 => 0.4369870738591
514 => 0.45276720235462
515 => 0.44407577275358
516 => 0.44990673411188
517 => 0.44938515804486
518 => 0.40761034714233
519 => 0.41336654750242
520 => 0.42232138886754
521 => 0.41828724497056
522 => 0.41258390934451
523 => 0.40797816003296
524 => 0.40099997886393
525 => 0.41082163485525
526 => 0.42373606806716
527 => 0.43731460519742
528 => 0.45362832785843
529 => 0.44998729487316
530 => 0.43700963149986
531 => 0.4375917999986
601 => 0.44119053658293
602 => 0.43652984572652
603 => 0.43515531700547
604 => 0.44100169744398
605 => 0.44104195825295
606 => 0.43567927015935
607 => 0.42971962370487
608 => 0.42969465256862
609 => 0.4286341910454
610 => 0.44371309910726
611 => 0.45200497389172
612 => 0.45295562397273
613 => 0.45194098756688
614 => 0.45233148085001
615 => 0.44750662161193
616 => 0.45853481906263
617 => 0.46865538361908
618 => 0.46594285612363
619 => 0.46187639179943
620 => 0.45863725709776
621 => 0.46517981892909
622 => 0.46488848894969
623 => 0.46856698931667
624 => 0.46840011129197
625 => 0.46716316997396
626 => 0.4659429002987
627 => 0.47078113162807
628 => 0.46938779870483
629 => 0.46799230155071
630 => 0.46519341836819
701 => 0.46557383307722
702 => 0.46150807088543
703 => 0.45962706325889
704 => 0.43134122172405
705 => 0.42378232059941
706 => 0.42616050476884
707 => 0.42694346474694
708 => 0.4236538212905
709 => 0.42837032496697
710 => 0.42763526286501
711 => 0.4304949595068
712 => 0.4287083451986
713 => 0.42878166847301
714 => 0.43403572020709
715 => 0.43556099377782
716 => 0.43478522732928
717 => 0.43532854755812
718 => 0.44784913291066
719 => 0.44606910605931
720 => 0.44512350227178
721 => 0.4453854409833
722 => 0.44858471898525
723 => 0.4494803421517
724 => 0.44568552386115
725 => 0.44747518210456
726 => 0.45509531976352
727 => 0.45776193668172
728 => 0.46627249783588
729 => 0.46265706019443
730 => 0.46929335245779
731 => 0.48969105239658
801 => 0.50598614652117
802 => 0.49100050454096
803 => 0.52092436973304
804 => 0.54422439110859
805 => 0.54333009747998
806 => 0.53926719981395
807 => 0.512740744941
808 => 0.48833070567975
809 => 0.5087507400268
810 => 0.50880279489377
811 => 0.50704869583373
812 => 0.49615413722125
813 => 0.50666958880934
814 => 0.50750426716989
815 => 0.50703706924687
816 => 0.49868423670233
817 => 0.4859310052683
818 => 0.48842295616359
819 => 0.49250482256449
820 => 0.48477699790105
821 => 0.48230748967567
822 => 0.48689877530981
823 => 0.50169285425536
824 => 0.49889611932696
825 => 0.49882308527549
826 => 0.51078870329933
827 => 0.50222390313625
828 => 0.48845438764471
829 => 0.4849774033855
830 => 0.47263645164255
831 => 0.48116039096837
901 => 0.48146715236983
902 => 0.47679867791362
903 => 0.4888332086174
904 => 0.48872230829833
905 => 0.50014730409805
906 => 0.52198760503466
907 => 0.51552835335177
908 => 0.50801694640915
909 => 0.50883364461253
910 => 0.51779080812075
911 => 0.51237510259153
912 => 0.51432262805948
913 => 0.5177878603077
914 => 0.51987852095993
915 => 0.50853283071812
916 => 0.50588760759565
917 => 0.50047640943424
918 => 0.49906472883873
919 => 0.50347203683284
920 => 0.50231086688888
921 => 0.48144137026187
922 => 0.47926039174757
923 => 0.47932727924488
924 => 0.47384310507078
925 => 0.46547842310267
926 => 0.48746030788566
927 => 0.48569485490131
928 => 0.48374593144179
929 => 0.48398466344518
930 => 0.49352625459427
1001 => 0.48799164986589
1002 => 0.50270630364017
1003 => 0.49968141318716
1004 => 0.49657894570798
1005 => 0.49615009019889
1006 => 0.4949559049095
1007 => 0.49086059921539
1008 => 0.48591527150003
1009 => 0.4826499377854
1010 => 0.44521905482785
1011 => 0.45216600897934
1012 => 0.46015784649584
1013 => 0.46291659678126
1014 => 0.45819756351834
1015 => 0.49104693541145
1016 => 0.49704883220075
1017 => 0.47886869533193
1018 => 0.47546793401388
1019 => 0.4912698887573
1020 => 0.48173937833661
1021 => 0.48603096659549
1022 => 0.47675490015307
1023 => 0.49560315102026
1024 => 0.49545955892811
1025 => 0.48812716363372
1026 => 0.49432445392646
1027 => 0.49324752223027
1028 => 0.4849692660018
1029 => 0.49586558650836
1030 => 0.49587099094739
1031 => 0.48881371989656
1101 => 0.48057237234448
1102 => 0.4790990140541
1103 => 0.47798903650015
1104 => 0.48575798016007
1105 => 0.49272359075271
1106 => 0.5056848651443
1107 => 0.50894363747862
1108 => 0.52166284284826
1109 => 0.51408917533751
1110 => 0.51744648404961
1111 => 0.52109131757691
1112 => 0.52283878480422
1113 => 0.51999138073159
1114 => 0.53974954210444
1115 => 0.54141773629873
1116 => 0.54197706738225
1117 => 0.53531472653537
1118 => 0.54123244454769
1119 => 0.53846374026394
1120 => 0.54566713964205
1121 => 0.54679672464215
1122 => 0.54584000633321
1123 => 0.54619855444153
1124 => 0.52933844928832
1125 => 0.52846416389198
1126 => 0.51654322047651
1127 => 0.52140109303348
1128 => 0.51231953313211
1129 => 0.51519938932727
1130 => 0.51646880249781
1201 => 0.51580573309608
1202 => 0.52167574985916
1203 => 0.51668503644535
1204 => 0.50351372319705
1205 => 0.49033882143327
1206 => 0.49017342127367
1207 => 0.4867047021956
1208 => 0.48419745362974
1209 => 0.48468043865295
1210 => 0.48638254087145
1211 => 0.48409852435455
1212 => 0.48458593508101
1213 => 0.49268020074089
1214 => 0.49430344799331
1215 => 0.48878701958592
1216 => 0.46663776351344
1217 => 0.46120228051604
1218 => 0.46510919790426
1219 => 0.4632419430304
1220 => 0.37387240257681
1221 => 0.39486845046925
1222 => 0.38239331176998
1223 => 0.38814242963613
1224 => 0.37540854344568
1225 => 0.38148582137592
1226 => 0.38036357004886
1227 => 0.41412459374168
1228 => 0.41359746179349
1229 => 0.41384977196189
1230 => 0.40180635023359
1231 => 0.4209918480613
]
'min_raw' => 0.24493347324264
'max_raw' => 0.54679672464215
'avg_raw' => 0.39586509894239
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.244933'
'max' => '$0.546796'
'avg' => '$0.395865'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.037768244607584
'max_diff' => 0.082721038835849
'year' => 2035
]
10 => [
'items' => [
101 => 0.43044331417942
102 => 0.42869409934358
103 => 0.42913433903241
104 => 0.4215695625945
105 => 0.41392301553359
106 => 0.40544181804788
107 => 0.42119883466864
108 => 0.41944692340165
109 => 0.42346517753034
110 => 0.43368472914371
111 => 0.43518959693908
112 => 0.43721215451692
113 => 0.43648721160072
114 => 0.45375829297878
115 => 0.45166665106563
116 => 0.45670690626987
117 => 0.44633871890967
118 => 0.43460613075423
119 => 0.43683611219537
120 => 0.43662134705021
121 => 0.43388714025636
122 => 0.43141882061752
123 => 0.42730976386359
124 => 0.44031142745899
125 => 0.43978358366085
126 => 0.44832876120156
127 => 0.44681831806782
128 => 0.43673120915252
129 => 0.43709147222079
130 => 0.4395144144915
131 => 0.44790024535508
201 => 0.4503897309063
202 => 0.44923650201013
203 => 0.4519661092677
204 => 0.45412347954903
205 => 0.45223704175958
206 => 0.47894502271303
207 => 0.46785400694722
208 => 0.47325969086068
209 => 0.47454891462191
210 => 0.47124659506699
211 => 0.47196274993125
212 => 0.4730475294101
213 => 0.47963409798401
214 => 0.49691915976094
215 => 0.50457459595854
216 => 0.52760635347161
217 => 0.50393891855115
218 => 0.50253459090855
219 => 0.5066833059291
220 => 0.5202053857484
221 => 0.53116376137757
222 => 0.53479928677762
223 => 0.53527978147522
224 => 0.54210026881088
225 => 0.54600964495712
226 => 0.5412720822517
227 => 0.53725749390236
228 => 0.52287773674404
229 => 0.5245422327899
301 => 0.53600895994452
302 => 0.55220638743728
303 => 0.56610546528118
304 => 0.56123849265201
305 => 0.59837005826532
306 => 0.60205150132703
307 => 0.60154284493121
308 => 0.60992972009798
309 => 0.59328348084937
310 => 0.58616689106489
311 => 0.538125493471
312 => 0.55162316661174
313 => 0.57124282721235
314 => 0.56864609156191
315 => 0.55439776959871
316 => 0.56609465665129
317 => 0.56222729999623
318 => 0.55917695534561
319 => 0.57315117552851
320 => 0.55778594640809
321 => 0.57108954729809
322 => 0.55402754154853
323 => 0.56126072457302
324 => 0.55715482005862
325 => 0.55981184348017
326 => 0.54427893884972
327 => 0.55266011714837
328 => 0.54393025427774
329 => 0.54392611518608
330 => 0.54373340297936
331 => 0.55400404793251
401 => 0.5543389732957
402 => 0.54674895115724
403 => 0.54565511038866
404 => 0.54969961301526
405 => 0.54496455969643
406 => 0.54718006134224
407 => 0.54503166498431
408 => 0.54454801571199
409 => 0.540694216024
410 => 0.53903389315599
411 => 0.53968494853379
412 => 0.53746256088731
413 => 0.53612349194303
414 => 0.54346702846247
415 => 0.53954367313755
416 => 0.54286571799009
417 => 0.53907982860514
418 => 0.52595628656342
419 => 0.51840879875629
420 => 0.49361964439248
421 => 0.5006498178192
422 => 0.50531083007436
423 => 0.50377036555184
424 => 0.50707987942686
425 => 0.50728305670003
426 => 0.50620710000276
427 => 0.50496127998591
428 => 0.50435488369987
429 => 0.50887446480481
430 => 0.51149823375833
501 => 0.50577862501047
502 => 0.50443860070668
503 => 0.51022144093902
504 => 0.51374897014011
505 => 0.53979426381353
506 => 0.53786474433301
507 => 0.54270745958004
508 => 0.54216224416074
509 => 0.54723818124466
510 => 0.5555351931258
511 => 0.53866504809044
512 => 0.54159312194285
513 => 0.54087522585334
514 => 0.54871302711617
515 => 0.54873749587619
516 => 0.54403834249191
517 => 0.54658582977659
518 => 0.54516389226094
519 => 0.54773352553809
520 => 0.53783897442398
521 => 0.54988946963018
522 => 0.55672132389534
523 => 0.55681618419844
524 => 0.56005442889918
525 => 0.56334467306161
526 => 0.56966001021153
527 => 0.56316854173615
528 => 0.55149102188067
529 => 0.55233410109608
530 => 0.54548757547745
531 => 0.54560266681002
601 => 0.54498830025687
602 => 0.54683206053024
603 => 0.53824357612035
604 => 0.54025927624493
605 => 0.53743728426659
606 => 0.54158698748342
607 => 0.53712259279263
608 => 0.54087487966211
609 => 0.5424942422847
610 => 0.54846972522443
611 => 0.53624000910391
612 => 0.51130279005519
613 => 0.51654489583379
614 => 0.50879140962872
615 => 0.5095090242966
616 => 0.51095872013325
617 => 0.5062597816157
618 => 0.50715619100428
619 => 0.50712416495298
620 => 0.50684818174479
621 => 0.50562580635476
622 => 0.50385312019961
623 => 0.51091495623768
624 => 0.51211489978946
625 => 0.5147822256635
626 => 0.52271837820021
627 => 0.52192536941443
628 => 0.52321879964566
629 => 0.52039524871319
630 => 0.50964000072622
701 => 0.51022406243697
702 => 0.50294080354494
703 => 0.51459597635863
704 => 0.51183587759558
705 => 0.51005642396754
706 => 0.50957088355861
707 => 0.51752670828244
708 => 0.51990721573208
709 => 0.51842384323938
710 => 0.51538140297995
711 => 0.52122378769477
712 => 0.52278696337403
713 => 0.52313690076092
714 => 0.53348848630942
715 => 0.52371543940131
716 => 0.52606790892782
717 => 0.54442120463165
718 => 0.52777729800996
719 => 0.53659394655088
720 => 0.53616241748442
721 => 0.54067271653884
722 => 0.5357924413162
723 => 0.53585293817654
724 => 0.53985777818274
725 => 0.53423370267073
726 => 0.53284110248241
727 => 0.53091723529623
728 => 0.53511792891398
729 => 0.53763605475679
730 => 0.55793029969018
731 => 0.57104130744716
801 => 0.57047212402261
802 => 0.5756733950563
803 => 0.57333017481744
804 => 0.56576329855589
805 => 0.5786790336521
806 => 0.57459195465035
807 => 0.57492888847745
808 => 0.57491634778358
809 => 0.5776338980211
810 => 0.575708264618
811 => 0.57191264351827
812 => 0.57443235393849
813 => 0.58191499307358
814 => 0.60514133454432
815 => 0.61813910293944
816 => 0.60435885256645
817 => 0.61386428474883
818 => 0.6081644125712
819 => 0.60712857624001
820 => 0.61309869009647
821 => 0.61907925384692
822 => 0.6186983177907
823 => 0.61435673561322
824 => 0.61190428600473
825 => 0.6304750560711
826 => 0.64415768311119
827 => 0.64322461967655
828 => 0.64734285822855
829 => 0.65943413398958
830 => 0.66053960871236
831 => 0.66040034430634
901 => 0.65766030986155
902 => 0.66956574109885
903 => 0.67949746129313
904 => 0.65702607105479
905 => 0.66558288228545
906 => 0.66942431053013
907 => 0.67506466689373
908 => 0.68458089351261
909 => 0.69491803967515
910 => 0.69637982548358
911 => 0.69534261849961
912 => 0.68852499272801
913 => 0.69983602140687
914 => 0.70646175673068
915 => 0.71040723048876
916 => 0.720412295475
917 => 0.66944803388319
918 => 0.63337299644036
919 => 0.62773935841381
920 => 0.63919558287268
921 => 0.64221649790081
922 => 0.64099877084087
923 => 0.60039303640006
924 => 0.62752557762553
925 => 0.65671791061527
926 => 0.65783930701493
927 => 0.67245359929249
928 => 0.67721261191815
929 => 0.68897903274067
930 => 0.68824303991457
1001 => 0.6911079761402
1002 => 0.69044937691571
1003 => 0.71224419377719
1004 => 0.73628711333704
1005 => 0.73545458348448
1006 => 0.73199812933484
1007 => 0.73713155316007
1008 => 0.76194642274168
1009 => 0.75966186720078
1010 => 0.76188111831078
1011 => 0.79113924805226
1012 => 0.8291789786366
1013 => 0.81150570465367
1014 => 0.84985162384904
1015 => 0.8739883473527
1016 => 0.91573031486847
1017 => 0.91050401495197
1018 => 0.92675385658916
1019 => 0.90114784733973
1020 => 0.84235127427476
1021 => 0.83304649152299
1022 => 0.85167490222667
1023 => 0.89747103220791
1024 => 0.85023261911897
1025 => 0.85978888856342
1026 => 0.85703668232053
1027 => 0.85689002894597
1028 => 0.86248719177055
1029 => 0.85436821516512
1030 => 0.82129004389862
1031 => 0.83644957485917
1101 => 0.83059575193484
1102 => 0.8370910049008
1103 => 0.872143206312
1104 => 0.85664579252799
1105 => 0.8403205260142
1106 => 0.86079603308914
1107 => 0.88686838974314
1108 => 0.88523682852026
1109 => 0.88207091780819
1110 => 0.89991699073042
1111 => 0.92939347478919
1112 => 0.93736084998417
1113 => 0.94324220346729
1114 => 0.94405314274633
1115 => 0.9524063213164
1116 => 0.90748917487308
1117 => 0.97877383983277
1118 => 0.99108273227218
1119 => 0.9887691706449
1120 => 1.0024499865539
1121 => 0.99842474346469
1122 => 0.99259279776967
1123 => 1.0142798009785
1124 => 0.9894174018505
1125 => 0.95412835637734
1126 => 0.93476808809258
1127 => 0.96026325111824
1128 => 0.97583225751944
1129 => 0.98612238037584
1130 => 0.98923616533473
1201 => 0.91097596508875
1202 => 0.86879805766586
1203 => 0.89583361275325
1204 => 0.92881885585419
1205 => 0.90730594018218
1206 => 0.90814920574719
1207 => 0.8774774414937
1208 => 0.93153262640852
1209 => 0.9236572406421
1210 => 0.96451475592962
1211 => 0.95476378200421
1212 => 0.98808149964158
1213 => 0.97930782798935
1214 => 1.0157268484884
1215 => 1.0302553817711
1216 => 1.0546510503383
1217 => 1.0725966034447
1218 => 1.0831345754724
1219 => 1.0825019151588
1220 => 1.1242586103296
1221 => 1.0996361460552
1222 => 1.0687045278573
1223 => 1.0681450724721
1224 => 1.0841649958412
1225 => 1.1177383603715
1226 => 1.1264434453217
1227 => 1.1313084002393
1228 => 1.1238575524327
1229 => 1.0971316321707
1230 => 1.0855915153051
1231 => 1.095424029224
]
'min_raw' => 0.40544181804788
'max_raw' => 1.1313084002393
'avg_raw' => 0.76837510914357
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.405441'
'max' => '$1.13'
'avg' => '$0.768375'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.16050834480524
'max_diff' => 0.58451167559711
'year' => 2036
]
11 => [
'items' => [
101 => 1.0833997096187
102 => 1.1041570586856
103 => 1.1326613324849
104 => 1.1267753126634
105 => 1.1464513944451
106 => 1.166814069105
107 => 1.1959336084135
108 => 1.2035465342822
109 => 1.2161304112495
110 => 1.229083354237
111 => 1.233243490433
112 => 1.2411864812457
113 => 1.2411446177633
114 => 1.2650813552021
115 => 1.2914843178561
116 => 1.301450825028
117 => 1.3243682587134
118 => 1.2851229566499
119 => 1.3148909690826
120 => 1.3417424614386
121 => 1.3097290052947
122 => 1.3538520964105
123 => 1.3555652960534
124 => 1.3814325766577
125 => 1.3552111321939
126 => 1.3396409221732
127 => 1.384591535095
128 => 1.4063417207568
129 => 1.3997903878266
130 => 1.3499344207484
131 => 1.3209161094858
201 => 1.2449695916976
202 => 1.3349315226632
203 => 1.378749355011
204 => 1.3498209431482
205 => 1.3644107514266
206 => 1.4440080146322
207 => 1.4743134989198
208 => 1.4680101700393
209 => 1.4690753288585
210 => 1.4854276180966
211 => 1.5579426739486
212 => 1.5144899715963
213 => 1.547707934403
214 => 1.5653266220994
215 => 1.5816918411319
216 => 1.5415040354686
217 => 1.4892202907767
218 => 1.4726598341105
219 => 1.3469445827051
220 => 1.3404005579158
221 => 1.3367271984973
222 => 1.3135671869708
223 => 1.295369761972
224 => 1.2808984939858
225 => 1.2429215653038
226 => 1.2557376639096
227 => 1.1952103659914
228 => 1.2339335862437
301 => 1.1373305572837
302 => 1.2177844303761
303 => 1.1739970450406
304 => 1.2033990966355
305 => 1.2032965156473
306 => 1.1491580167323
307 => 1.1179320603998
308 => 1.1378304551072
309 => 1.1591631137702
310 => 1.1626242658666
311 => 1.1902826146625
312 => 1.1980014652972
313 => 1.1746129875153
314 => 1.1353286742292
315 => 1.1444535242258
316 => 1.1177471456058
317 => 1.0709452443203
318 => 1.1045591869064
319 => 1.116036464806
320 => 1.1211054845725
321 => 1.0750811898929
322 => 1.0606193572685
323 => 1.0529199989258
324 => 1.1293875157344
325 => 1.1335765789209
326 => 1.1121447393852
327 => 1.2090186863368
328 => 1.1870931285912
329 => 1.2115893484851
330 => 1.1436255397308
331 => 1.1462218487506
401 => 1.114046692518
402 => 1.1320626300635
403 => 1.1193295460871
404 => 1.1306071203468
405 => 1.1373668518589
406 => 1.169536728465
407 => 1.2181517586918
408 => 1.1647316216709
409 => 1.1414557029804
410 => 1.1558959520273
411 => 1.1943522381527
412 => 1.2526154801738
413 => 1.2181224682403
414 => 1.2334298812071
415 => 1.2367738699609
416 => 1.2113399999618
417 => 1.2535532632392
418 => 1.2761756939695
419 => 1.2993816268463
420 => 1.3195306881477
421 => 1.2901126669459
422 => 1.3215941665396
423 => 1.2962256350998
424 => 1.2734674398478
425 => 1.2735019546358
426 => 1.25922540631
427 => 1.231562794968
428 => 1.2264613850159
429 => 1.2529995638237
430 => 1.2742806700526
501 => 1.2760334838912
502 => 1.2878157977623
503 => 1.2947884497437
504 => 1.3631299180222
505 => 1.390617421914
506 => 1.4242286213612
507 => 1.4373220777693
508 => 1.4767286872937
509 => 1.4449046496544
510 => 1.4380193189285
511 => 1.3424317740261
512 => 1.358084229149
513 => 1.3831453200379
514 => 1.3428450221843
515 => 1.3684062853225
516 => 1.3734526201276
517 => 1.3414756334843
518 => 1.3585559236945
519 => 1.3131957368493
520 => 1.2191404868099
521 => 1.2536579736196
522 => 1.279074462372
523 => 1.2428019990919
524 => 1.3078189855833
525 => 1.269837404298
526 => 1.257799066468
527 => 1.2108332186159
528 => 1.2329992909208
529 => 1.2629792211008
530 => 1.2444551097906
531 => 1.2828954221687
601 => 1.3373371561529
602 => 1.3761355778514
603 => 1.3791140389075
604 => 1.3541692530478
605 => 1.3941434315835
606 => 1.3944345998334
607 => 1.3493435631457
608 => 1.3217255542425
609 => 1.3154506845109
610 => 1.3311265393611
611 => 1.3501599210717
612 => 1.3801702591269
613 => 1.3983048778908
614 => 1.4455903457686
615 => 1.4583844375958
616 => 1.4724412655875
617 => 1.4912255227497
618 => 1.5137808396576
619 => 1.464431090338
620 => 1.466391847878
621 => 1.4204380446054
622 => 1.3713298153667
623 => 1.4085968399317
624 => 1.4573185171259
625 => 1.4461417105449
626 => 1.4448840914831
627 => 1.4469990579106
628 => 1.4385721107489
629 => 1.4004573410537
630 => 1.3813163423238
701 => 1.4060131140749
702 => 1.4191383491337
703 => 1.4394944440692
704 => 1.4369851257034
705 => 1.4894202401722
706 => 1.5097949400992
707 => 1.5045822199753
708 => 1.5055414859292
709 => 1.5424289069246
710 => 1.5834553055482
711 => 1.6218819417693
712 => 1.6609711665958
713 => 1.613847580389
714 => 1.5899211294919
715 => 1.614607119405
716 => 1.6015083856767
717 => 1.6767775950167
718 => 1.6819890717621
719 => 1.7572528382815
720 => 1.8286871149511
721 => 1.7838205256529
722 => 1.8261276985255
723 => 1.8718863553416
724 => 1.9601622284144
725 => 1.9304340199461
726 => 1.9076626781599
727 => 1.8861438702022
728 => 1.9309210935476
729 => 1.9885262760478
730 => 2.0009338806228
731 => 2.021038940104
801 => 1.9999009283892
802 => 2.0253593352241
803 => 2.1152386983419
804 => 2.0909525010404
805 => 2.0564621966712
806 => 2.1274133217469
807 => 2.1530902580963
808 => 2.3333044445122
809 => 2.5608322991391
810 => 2.4666342732951
811 => 2.4081625189025
812 => 2.4219047681533
813 => 2.5049902383591
814 => 2.5316746543882
815 => 2.4591372129513
816 => 2.4847586635583
817 => 2.6259353754483
818 => 2.7016721518861
819 => 2.5988114366775
820 => 2.3150228029319
821 => 2.0533567221293
822 => 2.1227623497353
823 => 2.1148939054722
824 => 2.2665706702445
825 => 2.0903732832667
826 => 2.09333999538
827 => 2.2481532750194
828 => 2.2068517461831
829 => 2.1399485589685
830 => 2.0538451894355
831 => 1.8946751472559
901 => 1.7536938021125
902 => 2.0301906860035
903 => 2.0182676375932
904 => 2.0010012965982
905 => 2.0394256700692
906 => 2.2260035206958
907 => 2.2217022973453
908 => 2.1943401088928
909 => 2.2150940876748
910 => 2.1363102861441
911 => 2.1566146656723
912 => 2.0533152728852
913 => 2.1000109125887
914 => 2.1398050147765
915 => 2.1477942699525
916 => 2.1657944698054
917 => 2.0119847328684
918 => 2.0810407891365
919 => 2.1216047525166
920 => 1.9383352902359
921 => 2.1179821045035
922 => 2.0093072475441
923 => 1.9724213688505
924 => 2.0220833451665
925 => 2.0027300246983
926 => 1.9860911762249
927 => 1.976806412885
928 => 2.0132726872991
929 => 2.0115714920111
930 => 1.9519055892707
1001 => 1.8740738514393
1002 => 1.9001967373952
1003 => 1.8907060480241
1004 => 1.8563105654197
1005 => 1.8794889677686
1006 => 1.777423014145
1007 => 1.601823845862
1008 => 1.7178300351777
1009 => 1.7133639230795
1010 => 1.7111119068376
1011 => 1.7982873519327
1012 => 1.7899074443665
1013 => 1.7746978300776
1014 => 1.8560312289258
1015 => 1.8263434442576
1016 => 1.9178342012831
1017 => 1.9780959311113
1018 => 1.9628116071642
1019 => 2.0194880553378
1020 => 1.9007985559268
1021 => 1.9402224466349
1022 => 1.9483476558707
1023 => 1.855027587409
1024 => 1.7912785008804
1025 => 1.7870271636018
1026 => 1.6764950327264
1027 => 1.7355404048558
1028 => 1.7874978888662
1029 => 1.7626142860889
1030 => 1.754736880826
1031 => 1.794980835913
1101 => 1.7981081358895
1102 => 1.7268053650106
1103 => 1.7416314689414
1104 => 1.8034587869676
1105 => 1.7400735791597
1106 => 1.6169264743038
1107 => 1.5863842896577
1108 => 1.5823093992217
1109 => 1.4994765721301
1110 => 1.5884252644789
1111 => 1.5495967765919
1112 => 1.6722555045902
1113 => 1.6021934969895
1114 => 1.599173263873
1115 => 1.5946077385455
1116 => 1.5233101024868
1117 => 1.5389197535825
1118 => 1.5908086112416
1119 => 1.6093231402243
1120 => 1.6073919231663
1121 => 1.5905543275312
1122 => 1.5982624925905
1123 => 1.5734318072318
1124 => 1.5646635754256
1125 => 1.5369886239532
1126 => 1.4963140906891
1127 => 1.5019701340109
1128 => 1.4213832405442
1129 => 1.3774752239134
1130 => 1.3653220636083
1201 => 1.3490703497329
1202 => 1.3671577379347
1203 => 1.4211549480002
1204 => 1.3560228565141
1205 => 1.2443584541461
1206 => 1.2510696749953
1207 => 1.2661477956641
1208 => 1.2380498175496
1209 => 1.2114574393487
1210 => 1.2345773546865
1211 => 1.1872636753574
1212 => 1.2718654277673
1213 => 1.2695771874582
1214 => 1.3011114890194
1215 => 1.3208305349345
1216 => 1.275384518217
1217 => 1.2639549679116
1218 => 1.2704657592096
1219 => 1.1628568820199
1220 => 1.2923175479867
1221 => 1.2934371292019
1222 => 1.2838505951195
1223 => 1.3527844030971
1224 => 1.4982562389239
1225 => 1.4435238826948
1226 => 1.4223298600687
1227 => 1.3820400075637
1228 => 1.4357238438519
1229 => 1.4316017628232
1230 => 1.412960149159
1231 => 1.4016856430495
]
'min_raw' => 1.0529199989258
'max_raw' => 2.7016721518861
'avg_raw' => 1.877296075406
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$1.05'
'max' => '$2.70'
'avg' => '$1.87'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.64747818087794
'max_diff' => 1.5703637516469
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.033049955621548
]
1 => [
'year' => 2028
'avg' => 0.056723318317247
]
2 => [
'year' => 2029
'avg' => 0.15495788225927
]
3 => [
'year' => 2030
'avg' => 0.11954977539283
]
4 => [
'year' => 2031
'avg' => 0.11741269507632
]
5 => [
'year' => 2032
'avg' => 0.20586140560382
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.033049955621548
'min' => '$0.033049'
'max_raw' => 0.20586140560382
'max' => '$0.205861'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.20586140560382
]
1 => [
'year' => 2033
'avg' => 0.52949670369173
]
2 => [
'year' => 2034
'avg' => 0.33562045722068
]
3 => [
'year' => 2035
'avg' => 0.39586509894239
]
4 => [
'year' => 2036
'avg' => 0.76837510914357
]
5 => [
'year' => 2037
'avg' => 1.877296075406
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.20586140560382
'min' => '$0.205861'
'max_raw' => 1.877296075406
'max' => '$1.87'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 1.877296075406
]
]
]
]
'prediction_2025_max_price' => '$0.0565094'
'last_price' => 0.054793
'sma_50day_nextmonth' => '$0.050632'
'sma_200day_nextmonth' => '$0.097767'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'augmenter'
'sma_200day_date_nextmonth' => '4 févr. 2026'
'sma_50day_date_nextmonth' => '4 févr. 2026'
'daily_sma3' => '$0.054089'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.053478'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.051499'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.0510044'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.055073'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.069619'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.1128039'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.054061'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.053335'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.052348'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.05236'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.057612'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.074519'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.113923'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.089176'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.166266'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.256931'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.054129'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.055013'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.062448'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.089288'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.153821'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.176645'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.153371'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '54.53'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 104.06
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'SELL'
'vwma_10' => '0.0512091'
'vwma_10_action' => 'BUY'
'hma_9' => '0.055387'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 142.89
'cci_20_action' => 'SELL'
'adx_14' => 15.63
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.000545'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 71.49
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '-0.009857'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 17
'buy_signals' => 17
'sell_pct' => 50
'buy_pct' => 50
'overall_action' => 'neutral'
'overall_action_label' => 'Neutre'
'overall_action_dir' => 0
'last_updated' => 1767679870
'last_updated_date' => '6 janvier 2026'
]
Prévision du prix de Across Protocol pour 2026
La prévision du prix de Across Protocol pour 2026 suggère que le prix moyen pourrait varier entre $0.01893 à la baisse et $0.0565094 à la hausse. Sur le marché des cryptomonnaies, comparé au prix moyen d'aujourd'hui, Across Protocol pourrait potentiellement gagner 3.13% d'ici 2026 si ACX atteint l'objectif de prix prévu.
Prévision du prix de Across Protocol de 2027 à 2032
La prévision du prix de ACX pour 2027-2032 se situe actuellement dans une fourchette de prix comprise entre $0.033049 à la baisse et $0.205861 à la hausse. Compte tenu de la volatilité des prix sur le marché, si Across Protocol atteint l'objectif de prix le plus élevé, il pourrait gagner 275.71% d'ici 2032 par rapport au prix actuel.
| Prévision du Prix de Across Protocol | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2027 | $0.018224 | $0.033049 | $0.047875 |
| 2028 | $0.032889 | $0.056723 | $0.080556 |
| 2029 | $0.072249 | $0.154957 | $0.237666 |
| 2030 | $0.061444 | $0.119549 | $0.177654 |
| 2031 | $0.072646 | $0.117412 | $0.162178 |
| 2032 | $0.110889 | $0.205861 | $0.300833 |
Prévision du prix de Across Protocol de 2032 à 2037
La prévision du prix de Across Protocol pour 2032-2037 est actuellement estimée entre $0.205861 à la baisse et $1.87 à la hausse. Par rapport au prix actuel, Across Protocol pourrait potentiellement gagner 3326.16% d'ici 2037 s'il atteint l'objectif de prix le plus élevé. Veuillez noter que ces informations sont à titre général seulement et ne doivent pas être considérées comme un conseil en investissement à long terme.
| Prévision du Prix de Across Protocol | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2032 | $0.110889 | $0.205861 | $0.300833 |
| 2033 | $0.257683 | $0.529496 | $0.8013098 |
| 2034 | $0.207165 | $0.33562 | $0.464075 |
| 2035 | $0.244933 | $0.395865 | $0.546796 |
| 2036 | $0.405441 | $0.768375 | $1.13 |
| 2037 | $1.05 | $1.87 | $2.70 |
Across Protocol Histogramme des prix potentiels
Prévision du prix de Across Protocol basée sur l'analyse technique
Au 6 janvier 2026, le sentiment global de prévision du prix pour Across Protocol est Neutre, avec 17 indicateurs techniques montrant des signaux haussiers et 17 indiquant des signaux baissiers. La prévision du prix de ACX a été mise à jour pour la dernière fois le 6 janvier 2026.
Moyennes Mobiles Simples sur 50 et 200 jours de Across Protocol et Indice de Force Relative sur 14 jours - RSI (14)
Selon nos indicateurs techniques, le SMA sur 200 jours de Across Protocol devrait augmenter au cours du prochain mois, atteignant $0.097767 d'ici le 4 févr. 2026. Le SMA à court terme sur 50 jours pour Across Protocol devrait atteindre $0.050632 d'ici le 4 févr. 2026.
Le Relative Strength Index (RSI), un oscillateur de momentum, est un outil couramment utilisé pour identifier si une cryptomonnaie est survendue (en dessous de 30) ou surachetée (au-dessus de 70). Actuellement, le RSI est à 54.53, ce qui suggère que le marché de ACX est dans un état NEUTRAL.
Moyennes Mobiles et Oscillateurs Populaires de ACX pour le Samedi 19 Octobre 2024
Les moyennes mobiles (MA) sont des indicateurs largement utilisés sur les marchés financiers, conçus pour lisser les mouvements de prix sur une période donnée. En tant qu'indicateurs retardés, ils sont basés sur des données historiques de prix. Le tableau ci-dessous met en évidence deux types : la moyenne mobile simple (SMA) et la moyenne mobile exponentielle (EMA).
Moyenne Mobile Simple Quotidienne (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 3 | $0.054089 | BUY |
| SMA 5 | $0.053478 | BUY |
| SMA 10 | $0.051499 | BUY |
| SMA 21 | $0.0510044 | BUY |
| SMA 50 | $0.055073 | SELL |
| SMA 100 | $0.069619 | SELL |
| SMA 200 | $0.1128039 | SELL |
Moyenne Mobile Exponentielle Quotidienne (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 3 | $0.054061 | BUY |
| EMA 5 | $0.053335 | BUY |
| EMA 10 | $0.052348 | BUY |
| EMA 21 | $0.05236 | BUY |
| EMA 50 | $0.057612 | SELL |
| EMA 100 | $0.074519 | SELL |
| EMA 200 | $0.113923 | SELL |
Moyenne Mobile Simple Hebdomadaire (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 21 | $0.089176 | SELL |
| SMA 50 | $0.166266 | SELL |
| SMA 100 | $0.256931 | SELL |
| SMA 200 | — | — |
Moyenne Mobile Exponentielle Hebdomadaire (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 21 | $0.089288 | SELL |
| EMA 50 | $0.153821 | SELL |
| EMA 100 | $0.176645 | SELL |
| EMA 200 | $0.153371 | SELL |
Oscillateurs de Across Protocol
Un oscillateur est un outil d'analyse technique qui établit des limites hautes et basses entre deux extrêmes, créant un indicateur de tendance qui fluctue à l'intérieur de ces limites. Les traders utilisent cet indicateur pour identifier les conditions de surachat ou de survente à court terme.
| Période | Valeur | Action |
|---|---|---|
| RSI (14) | 54.53 | NEUTRAL |
| Stoch RSI (14) | 104.06 | SELL |
| Stochastique Rapide (14) | 100 | SELL |
| Indice de Canal des Matières Premières (20) | 142.89 | SELL |
| Indice Directionnel Moyen (14) | 15.63 | NEUTRAL |
| Oscillateur Impressionnant (5, 34) | 0.000545 | BUY |
| Momentum (10) | 0 | SELL |
| MACD (12, 26) | 0 | BUY |
| Plage de Pourcentage de Williams (14) | -0 | SELL |
| Oscillateur Ultime (7, 14, 28) | 71.49 | SELL |
| VWMA (10) | 0.0512091 | BUY |
| Moyenne Mobile de Hull (9) | 0.055387 | BUY |
| Nuage Ichimoku B/L (9, 26, 52, 26) | -0.009857 | SELL |
Prévision du cours de Across Protocol basée sur les flux monétaires mondiaux
Définitions des flux monétaires mondiaux utilisés pour la prédiction du cours de Across Protocol
M0 : le total de toutes les devises physiques, plus les comptes à la banque centrale qui peuvent être échangés contre des devises physiques.
M1 : M0 plus le montant des comptes à vue, y compris les comptes de "chèques" et les comptes "courants".
M2 : M1 plus la plupart des comptes d'épargne, comptes du marché monétaire et comptes de certificats de dépôt (CD) de moins de 100 000 $.
Prédictions du cours de Across Protocol par des sociétés Internet ou des niches technologiques
| Comparaison | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Action Facebook | $0.076993 | $0.108188 | $0.152022 | $0.213617 | $0.300168 | $0.421786 |
| Action Amazon.com | $0.114328 | $0.238553 | $0.497756 | $1.03 | $2.16 | $4.52 |
| Action Apple | $0.077719 | $0.110239 | $0.156366 | $0.221793 | $0.314597 | $0.446232 |
| Action Netflix | $0.086454 | $0.136412 | $0.215236 | $0.33961 | $0.535851 | $0.845489 |
| Action Google | $0.070956 | $0.091888 | $0.118995 | $0.154098 | $0.199556 | $0.258425 |
| Action Tesla | $0.124211 | $0.281578 | $0.638316 | $1.44 | $3.28 | $7.43 |
| Action Kodak | $0.041088 | $0.030812 | $0.0231059 | $0.017327 | $0.012993 | $0.009743 |
| Action Nokia | $0.036298 | $0.024045 | $0.015929 | $0.010552 | $0.00699 | $0.004631 |
Ce calcul montre la valeur potentielle des cryptomonnaies si l'on suppose que leur capitalisation se comportera comme celle de certaines sociétés Internet ou niches technologiques. En extrapolant les données, vous pourrez obtenir une potentielle image des cours futurs pour 2024, 2025, 2026, 2027, 2028, 2029 et 2030.
Aperçu des prévisions relatives à Across Protocol
Vous vous posez peut-être des questions telles que : "Devrais-je investir dans Across Protocol maintenant ?", "Devrais-je acheter ACX aujourd'hui ?", " Across Protocol sera-t-il un bon ou un mauvais investissement à court ou à long terme ?".
Nous mettons régulièrement à jour les prévisions de Across Protocol avec de nouvelles valeurs. Regardez nos prévisions similaires. Nous faisons une prévision des cours futurs pour une grande quantité de devises numériques comme Across Protocol en utilisant des méthodes d'analyse technique.
Si vous souhaitez trouver des cryptomonnaies ayant un bon rendement, vous devriez consulter un maximum d'informations disponibles à propos de Across Protocol afin de prendre une décision responsable concernant cet investissement.
Le cours de Across Protocol est de $0.05479 USD actuellement, mais ce cours peut subir une hausse ou une baisse, ce qui pourrait causer la perte de votre investissement, car les cryptomonnaies sont des actifs à haut risque.
Prévision à court terme de Across Protocol
basée sur l'historique des cours sur 4 heures
Prévision à long terme de Across Protocol
basée sur l'historique des cours sur 1 mois
Prévision du cours de Across Protocol basée sur le modèle de croissance du Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si Across Protocol présente 1 % de la précédente croissance annuelle moyenne du Bitcoin | $0.056217 | $0.057678 | $0.059177 | $0.060715 |
| Si Across Protocol présente 2 % de la précédente croissance annuelle moyenne du Bitcoin | $0.057641 | $0.060638 | $0.06379 | $0.0671066 |
| Si Across Protocol présente 5 % de la précédente croissance annuelle moyenne du Bitcoin | $0.061914 | $0.06996 | $0.079053 | $0.089327 |
| Si Across Protocol présente 10 % de la précédente croissance annuelle moyenne du Bitcoin | $0.069035 | $0.086979 | $0.109588 | $0.138074 |
| Si Across Protocol présente 20 % de la précédente croissance annuelle moyenne du Bitcoin | $0.083277 | $0.126571 | $0.19237 | $0.292377 |
| Si Across Protocol présente 50 % de la précédente croissance annuelle moyenne du Bitcoin | $0.1260053 | $0.289769 | $0.666371 | $1.53 |
| Si Across Protocol présente 100 % de la précédente croissance annuelle moyenne du Bitcoin | $0.197217 | $0.709849 | $2.55 | $9.19 |
Boîte à questions
Est-ce que ACX est un bon investissement ?
La décision d'acquérir Across Protocol dépend entièrement de votre tolérance individuelle au risque. Comme vous pouvez le discerner, la valeur de Across Protocol a connu une hausse de 3.8223% au cours des 24 heures précédentes, et Across Protocol a enregistré une déclin de sur une période de 30 jours précédents. Par conséquent, la détermination de si investir ou non dans Across Protocol dépendra de la mesure dans laquelle cet investissement s'aligne avec vos aspirations de trading.
Est-ce que Across Protocol peut monter ?
Il semble que la valeur moyenne de Across Protocol pourrait potentiellement s'envoler jusqu'à $0.0565094 pour la fin de cette année. En regardant les perspectives de Across Protocol sur une période de cinq ans plus longue, la monnaie numérique pourrait potentiellement croître jusqu'à $0.177654. Cependant, compte tenu de l'imprévisibilité du marché, il est essentiel de mener des recherches approfondies avant d'investir des fonds dans un projet, un réseau ou un actif particulier.
Quel sera le prix de Across Protocol la semaine prochaine ?
Basé sur notre nouveau pronostic expérimental de Across Protocol, le prix de Across Protocol va augmenter de 0.86% durant la prochaine semaine et atteindre $0.055261 d'ici 13 janvier 2026.
Quel sera le prix de Across Protocol le mois prochain ?
Basé sur notre nouveau pronostic expérimental de Across Protocol, le prix de Across Protocol va diminuer de -11.62% durant le prochain mois et atteindre $0.048427 d'ici 5 février 2026.
Jusqu'où le prix de Across Protocol peut-il monter cette année en 2026 ?
Selon notre prédiction la plus récente sur la valeur de Across Protocol en 2026, ACX devrait fluctuer dans la fourchette de $0.01893 et $0.0565094. Cependant, il est crucial de garder à l'esprit que le marché des cryptomonnaies est exceptionnellement instable, et cette prévision de prix de Across Protocol ne prend pas en compte les fluctuations de prix soudaines et extrêmes.
Où sera Across Protocol dans 5 ans ?
L'avenir de Across Protocol semble suivre une tendance haussière, avec un prix maximum de $0.177654 prévue après une période de cinq ans. Selon la prévision de Across Protocol pour 2030, la valeur de Across Protocol pourrait potentiellement atteindre son point le plus élevé d'environ $0.177654, tandis que son point le plus bas devrait être autour de $0.061444.
Combien vaudra Across Protocol en 2026 ?
Basé sur notre nouvelle simulation expérimentale de prédiction de prix de Across Protocol, il est attendu que la valeur de ACX en 2026 augmente de 3.13% jusqu'à $0.0565094 si le meilleur scénario se produit. Le prix sera entre $0.0565094 et $0.01893 durant 2026.
Combien vaudra Across Protocol en 2027 ?
Selon notre dernière simulation expérimentale pour la prédiction de prix de Across Protocol, le valeur de ACX pourrait diminuer de -12.62% jusqu'à $0.047875 en 2027, en supposant les conditions les plus favorables. Il est prévu que le prix fluctue entre $0.047875 et $0.018224 tout au long de l'année.
Combien vaudra Across Protocol en 2028 ?
Notre nouveau modèle expérimental de prédiction de prix de Across Protocol suggère que la valeur de ACX en 2028 pourrait augmenter de 47.02%, atteignant $0.080556 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.080556 et $0.032889 durant l'année.
Combien vaudra Across Protocol en 2029 ?
Basé sur notre modèle de prévision expérimental, la valeur de Across Protocol pourrait connaître un 333.75% croissance en 2029, atteignant potentiellement $0.237666 sous des conditions optimales. Le range de prix prévu pour 2029 se situe entre $0.237666 et $0.072249.
Combien vaudra Across Protocol en 2030 ?
En utilisant notre nouvelle simulation expérimentale pour les prédictions de prix de Across Protocol, il est prévu que la valeur de ACX en 2030 augmente de 224.23%, atteignant $0.177654 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.177654 et $0.061444 au cours de 2030.
Combien vaudra Across Protocol en 2031 ?
Notre simulation expérimentale indique que le prix de Across Protocol pourrait augmenter de 195.98% en 2031, atteignant potentiellement $0.162178 dans des conditions idéales. Il est probable que le prix fluctue entre $0.162178 et $0.072646 durant l'année.
Combien vaudra Across Protocol en 2032 ?
Basé sur les résultats de notre dernière prédiction expérimentale de prix de Across Protocol, ACX pourrait connaître une 449.04% hausse en valeur, atteignant $0.300833 si le scénario le plus positif se réalise en 2032. Il est prévu que le prix reste dans une fourchette de $0.300833 et $0.110889 tout au long de l'année.
Combien vaudra Across Protocol en 2033 ?
Selon notre prédiction expérimentale de prix de Across Protocol, la valeur de ACX est anticipée à augmenter de 1362.43% en 2033, avec le prix potentiel le plus élevé étant $0.8013098. Tout au long de l'année, le prix de ACX pourrait osciller entre $0.8013098 et $0.257683.
Combien vaudra Across Protocol en 2034 ?
Les résultats de notre nouvelle simulation de prédiction de prix de Across Protocol suggèrent que ACX pourrait augmenter de 746.96% en 2034, atteignant potentiellement $0.464075 dans les meilleures circonstances. La fourchette de prix prévue pour l'année est entre $0.464075 et $0.207165.
Combien vaudra Across Protocol en 2035 ?
Basé sur notre prédiction expérimentale pour le prix de Across Protocol, ACX pourrait augmenter de 897.93%, avec la valeur potentiellement atteignant $0.546796 en 2035. La fourchette de prix attendue pour l'année se situe entre $0.546796 et $0.244933.
Combien vaudra Across Protocol en 2036 ?
Notre récente simulation de prédiction de prix de Across Protocol suggère que la valeur de ACX pourrait augmenter de 1964.7% en 2036, pouvant atteindre $1.13 si les conditions sont optimales. La fourchette de prix attendue pour 2036 est entre $1.13 et $0.405441.
Combien vaudra Across Protocol en 2037 ?
Selon la simulation expérimentale, la valeur de Across Protocol pourrait augmenter de 4830.69% en 2037, avec un maximum de $2.70 sous des conditions favorables. Il est prévu que le prix chute entre $2.70 et $1.05 au cours de l'année.
Prévisions liées
Prévision du cours de Alien Worlds
Prévision du cours de MovieBloc
Prévision du cours de REN
Prévision du cours de Moonwell
Prévision du cours de Pandora
Prévision du cours de TomoChain
Prévision du cours de NORMIE
Prévision du cours de QuarkChain
Prévision du cours de PepeFork
Prévision du cours de Star Atlas DAO
Prévision du cours de Uquid Coin
Prévision du cours de Artrade
Prévision du cours de Vaiot
Prévision du cours de HarryPotterObamaSonic10Inu (ETH)
Prévision du cours de Elastos
Prévision du cours de SWEAT
Prévision du cours de Magic Internet Money
Prévision du cours de Polymath
Prévision du cours de Neon
Prévision du cours de Rally
Prévision du cours de Cortex
Prévision du cours de Celsius Network
Prévision du cours de Loom Network
Prévision du cours de Boson Protocol
Prévision du cours de Ultra
Comment lire et prédire les mouvements de prix de Across Protocol ?
Les traders de Across Protocol utilisent des indicateurs et des modèles graphiques pour prédire la direction du marché. Ils identifient également des niveaux clés de support et de résistance pour évaluer quand une tendance baissière pourrait ralentir ou une tendance haussière pourrait s'arrêter.
Indicateurs de prédiction du prix de Across Protocol
Les moyennes mobiles sont des outils populaires pour la prédiction du prix de Across Protocol. Une moyenne mobile simple (SMA) calcule le prix de clôture moyen de ACX sur une période spécifique, comme une SMA de 12 jours. Une moyenne mobile exponentielle (EMA) donne plus de poids aux prix récents, réagissant plus rapidement aux changements de prix.
Les moyennes mobiles couramment utilisées sur le marché des cryptomonnaies incluent les moyennes sur 50 jours, 100 jours et 200 jours, qui aident à identifier les niveaux clés de résistance et de support. Un mouvement de prix de ACX au-dessus de ces moyennes est considéré comme haussier, tandis qu'une chute en dessous indique une faiblesse.
Les traders utilisent également le RSI et les niveaux de retracement de Fibonacci pour évaluer la direction future de ACX.
Comment lire les graphiques de Across Protocol et prédire les mouvements de prix ?
La plupart des traders préfèrent les graphiques en chandeliers aux simples graphiques linéaires parce qu'ils fournissent des informations plus détaillées. Les chandeliers peuvent représenter l'action des prix de Across Protocol dans différentes périodes, comme 5 minutes pour les tendances à court terme et hebdomadaire pour les tendances à long terme. Les options populaires incluent les graphiques de 1 heure, 4 heures et 1 jour.
Par exemple, un graphique en chandeliers de 1 heure montre les prix d'ouverture, de clôture, les plus hauts et les plus bas de ACX au sein de chaque heure. La couleur du chandelier est cruciale : le vert indique que le prix a clôturé plus haut qu'il n'a ouvert, tandis que le rouge signifie le contraire. Certains graphiques utilisent des chandeliers creux et pleins pour transmettre la même information.
Qu'est-ce qui affecte le prix de Across Protocol ?
L'action du prix de Across Protocol est déterminée par l'offre et la demande, influencée par des facteurs tels que les réductions de récompenses de bloc, les hard forks et les mises à jour de protocole. Les événements du monde réel, tels que les réglementations, l'adoption par les entreprises et les gouvernements et les piratages d'échanges de cryptomonnaies, impactent également le prix de ACX. La capitalisation boursière de Across Protocol peut changer rapidement.
Les traders surveillent souvent l'activité des « baleines » de ACX, de grands détenteurs de Across Protocol, car leurs actions peuvent influencer significativement les mouvements de prix sur le marché relativement petit de Across Protocol.
Modèles de prédiction de prix haussiers et baissiers
Les traders identifient souvent des modèles de chandeliers pour obtenir un avantage dans les prédictions de prix des cryptomonnaies. Certaines formations indiquent des tendances haussières, tandis que d'autres suggèrent des mouvements baissiers.
Modèles de chandeliers haussiers couramment suivis :
- Marteau
- Englobante haussière
- Ligne pénétrante
- Étoile du matin
- Trois soldats blancs
Modèles de chandeliers baissiers courants :
- Harami baissier
- Nuage sombre
- Étoile du soir
- Étoile filante
- Pendu


