Prédiction du prix de Ren jusqu'à $0.006459 d'ici 2026
| Année | Prix min. | Prix max. |
|---|---|---|
| 2026 | $0.002164 | $0.006459 |
| 2027 | $0.002083 | $0.005472 |
| 2028 | $0.003759 | $0.0092086 |
| 2029 | $0.008258 | $0.027168 |
| 2030 | $0.007023 | $0.020308 |
| 2031 | $0.0083043 | $0.018538 |
| 2032 | $0.012676 | $0.034388 |
| 2033 | $0.029456 | $0.091599 |
| 2034 | $0.023681 | $0.053049 |
| 2035 | $0.027998 | $0.0625053 |
Calculateur de profit d’investissement
Si vous ouvrez une position short de $10,000.00 sur Ren aujourd’hui et la fermez le Apr 06, 2026, notre prévision indique que vous pourriez gagner environ $3,955.45, soit un rendement de 39.55% sur les 90 prochains jours.
Prévision du prix à long terme de REN pour 2027, 2028, 2029, 2030, 2031, 2032 et 2037
[
'name' => 'Ren'
'name_with_ticker' => 'Ren <small>REN</small>'
'name_lang' => 'REN'
'name_lang_with_ticker' => 'REN <small>REN</small>'
'name_with_lang' => 'REN/Ren'
'name_with_lang_with_ticker' => 'REN/Ren <small>REN</small>'
'image' => '/uploads/coins/republic-protocol.png?1717202765'
'price_for_sd' => 0.006263
'ticker' => 'REN'
'marketcap' => '$6.26M'
'low24h' => '$0.006146'
'high24h' => '$0.006557'
'volume24h' => '$615.82K'
'current_supply' => '1B'
'max_supply' => '1B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '0.00005814 ETH'
'price' => '$0.006263'
'change_24h_pct' => '-1.2238%'
'ath_price' => '$1.8'
'ath_days' => 1781
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '20 févr. 2021'
'ath_pct' => '-99.66%'
'fdv' => '$6.26M'
'new_prediction' => true
'change_24h_pct_is_increased' => false
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.308833'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.006317'
'next_week_prediction_price_date' => '13 janvier 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.005535'
'next_month_prediction_price_date' => '5 février 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.002164'
'current_year_max_price_prediction' => '$0.006459'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.007023'
'grand_prediction_max_price' => '$0.020308'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0063821798409043
107 => 0.0064060085836989
108 => 0.006459695957941
109 => 0.0060009432231661
110 => 0.0062069097328074
111 => 0.0063278957607695
112 => 0.0057812764849271
113 => 0.0063170908552011
114 => 0.0059929573586864
115 => 0.0058829415816475
116 => 0.0060310633319538
117 => 0.0059733401418063
118 => 0.005923713132537
119 => 0.0058960204086644
120 => 0.0060047846744883
121 => 0.0059997106914863
122 => 0.005821751242364
123 => 0.0055896103955391
124 => 0.0056675244834971
125 => 0.0056392175648935
126 => 0.0055366296402089
127 => 0.005605761514933
128 => 0.0053013397254889
129 => 0.0047775978592181
130 => 0.0051235977787238
131 => 0.0051102771581983
201 => 0.0051035602972873
202 => 0.0053635696740605
203 => 0.0053385757719207
204 => 0.005293211594796
205 => 0.0055357964915209
206 => 0.005447249740989
207 => 0.0057201299618901
208 => 0.0058998665241617
209 => 0.0058542795181009
210 => 0.0060233226236596
211 => 0.0056693194667193
212 => 0.0057869051153134
213 => 0.0058111393545219
214 => 0.0055328030315508
215 => 0.0053426650834156
216 => 0.0053299850500063
217 => 0.0050003120505631
218 => 0.0051764207058382
219 => 0.0053313890346089
220 => 0.0052571712311558
221 => 0.0052336760917764
222 => 0.0053537076633919
223 => 0.0053630351445074
224 => 0.0051503675865937
225 => 0.0051945879061897
226 => 0.0053789939899211
227 => 0.0051899413460169
228 => 0.004822642940485
301 => 0.0047315478576153
302 => 0.004719394094345
303 => 0.0044723370047603
304 => 0.0047376352666408
305 => 0.0046218254657786
306 => 0.0049876672390878
307 => 0.0047787003802223
308 => 0.0047696922365934
309 => 0.0047560751062909
310 => 0.0045434228634856
311 => 0.0045899801899049
312 => 0.0047447438338038
313 => 0.0047999652454841
314 => 0.0047942051998302
315 => 0.0047439854075176
316 => 0.0047669757712714
317 => 0.0046929157992469
318 => 0.0046667636817
319 => 0.0045842204050155
320 => 0.0044629045914514
321 => 0.0044797742994006
322 => 0.0042394159287208
323 => 0.0041084559315902
324 => 0.0040722079304095
325 => 0.0040237355883224
326 => 0.0040776830104282
327 => 0.0042387350236561
328 => 0.0040444721266126
329 => 0.0037114220155894
330 => 0.0037314388947516
331 => 0.0037764108791645
401 => 0.0036926058837306
402 => 0.0036132914887725
403 => 0.0036822489202083
404 => 0.0035411311976457
405 => 0.0037934642817383
406 => 0.0037866393789689
407 => 0.0038806935485454
408 => 0.0039395075509674
409 => 0.003803960316644
410 => 0.0037698705537704
411 => 0.0037892896319965
412 => 0.0034683355254494
413 => 0.0038544647506907
414 => 0.0038578040122649
415 => 0.0038292112273417
416 => 0.0040348131193803
417 => 0.00446869724042
418 => 0.0043054525811366
419 => 0.004242239314966
420 => 0.0041220708497673
421 => 0.0042821881947472
422 => 0.0042698936808724
423 => 0.0042142932265748
424 => 0.0041806658983316
425 => 0.0042426252816898
426 => 0.0041729884450594
427 => 0.0041604797557082
428 => 0.0040846907078286
429 => 0.0040576374659176
430 => 0.0040376083226272
501 => 0.0040155582038875
502 => 0.00406419527128
503 => 0.0039539772778294
504 => 0.0038210651825311
505 => 0.0038100149799358
506 => 0.0038405255608451
507 => 0.0038270269000384
508 => 0.0038099503535412
509 => 0.0037773465757574
510 => 0.0037676737313585
511 => 0.0037991057830581
512 => 0.0037636208292917
513 => 0.0038159808115395
514 => 0.0038017417935781
515 => 0.0037222037967297
516 => 0.0036230700039187
517 => 0.0036221875052225
518 => 0.0036008292921733
519 => 0.0035736263966264
520 => 0.0035660591734032
521 => 0.0036764415176707
522 => 0.0039049296668387
523 => 0.003860071975899
524 => 0.003892486254804
525 => 0.0040519324254257
526 => 0.0041026155683527
527 => 0.0040666418739992
528 => 0.0040173988624072
529 => 0.0040195653050047
530 => 0.0041878435824879
531 => 0.0041983388922401
601 => 0.0042248571540689
602 => 0.0042589406145788
603 => 0.004072446434705
604 => 0.0040107814459038
605 => 0.0039815611531665
606 => 0.0038915739612118
607 => 0.0039886174328161
608 => 0.0039320743577281
609 => 0.0039397039503439
610 => 0.0039347351681438
611 => 0.0039374484592127
612 => 0.0037933937494987
613 => 0.0038458797144259
614 => 0.0037586116179142
615 => 0.0036417694329886
616 => 0.0036413777370146
617 => 0.0036699746962449
618 => 0.0036529641058956
619 => 0.0036071890446479
620 => 0.0036136911760459
621 => 0.0035567256631348
622 => 0.0036206078207072
623 => 0.003622439732405
624 => 0.003597841622055
625 => 0.0036962608998343
626 => 0.0037365833582429
627 => 0.0037203923550679
628 => 0.0037354473542982
629 => 0.0038619360154779
630 => 0.0038825591863374
701 => 0.003891718636543
702 => 0.0038794461866621
703 => 0.0037377593348261
704 => 0.003744043749204
705 => 0.0036979328862732
706 => 0.0036589740661396
707 => 0.0036605322146328
708 => 0.0036805621124736
709 => 0.0037680338510822
710 => 0.0039521129682434
711 => 0.0039590986361795
712 => 0.0039675654695045
713 => 0.0039331266032824
714 => 0.0039227395116942
715 => 0.0039364427666348
716 => 0.0040055732046204
717 => 0.0041833954598501
718 => 0.0041205411985028
719 => 0.0040694397056426
720 => 0.0041142694917445
721 => 0.0041073682975616
722 => 0.0040491152735415
723 => 0.004047480305175
724 => 0.0039356741274619
725 => 0.0038943419292649
726 => 0.00385980165079
727 => 0.0038220845683923
728 => 0.0037997246176589
729 => 0.0038340796644013
730 => 0.0038419370700682
731 => 0.0037668191599425
801 => 0.0037565808663626
802 => 0.0038179237733039
803 => 0.0037909290470531
804 => 0.0038186937924391
805 => 0.0038251354515302
806 => 0.0038240981960526
807 => 0.0037959126015221
808 => 0.0038138772589693
809 => 0.0037713854885846
810 => 0.0037251820703488
811 => 0.003695707168089
812 => 0.003669986406589
813 => 0.0036842577799686
814 => 0.0036333829397199
815 => 0.0036171070544161
816 => 0.0038077912372438
817 => 0.003948651693299
818 => 0.0039466035264811
819 => 0.0039341358377229
820 => 0.0039156113812064
821 => 0.0040042180252445
822 => 0.0039733492422074
823 => 0.00399580886104
824 => 0.0040015257766602
825 => 0.0040188291584175
826 => 0.0040250136301198
827 => 0.0040063198612436
828 => 0.0039435812896435
829 => 0.0037872427342203
830 => 0.0037144667146429
831 => 0.0036904494160019
901 => 0.0036913223991922
902 => 0.0036672416256363
903 => 0.0036743344926731
904 => 0.0036647750159389
905 => 0.0036466716796901
906 => 0.0036831399499691
907 => 0.0036873425783934
908 => 0.0036788304483468
909 => 0.0036808353631164
910 => 0.0036103585619096
911 => 0.0036157167600378
912 => 0.0035858816319732
913 => 0.0035802879051289
914 => 0.0035048672994233
915 => 0.0033712487640243
916 => 0.0034452864033004
917 => 0.0033558593463224
918 => 0.0033219919648037
919 => 0.0034823148814545
920 => 0.0034662229072883
921 => 0.0034386804425287
922 => 0.0033979393967967
923 => 0.0033828281466313
924 => 0.0032910169742667
925 => 0.0032855922804099
926 => 0.0033310963765439
927 => 0.0033100978018784
928 => 0.0032806078502659
929 => 0.0031737982348738
930 => 0.0030537088637248
1001 => 0.0030573336069849
1002 => 0.0030955318016053
1003 => 0.0032065982041922
1004 => 0.0031632026392332
1005 => 0.0031317186589487
1006 => 0.0031258226558464
1007 => 0.0031996234787904
1008 => 0.0033040671050066
1009 => 0.0033530697176329
1010 => 0.0033045096167518
1011 => 0.003248726387521
1012 => 0.0032521216542097
1013 => 0.0032747088423832
1014 => 0.0032770824364946
1015 => 0.003240773288874
1016 => 0.0032509941012472
1017 => 0.0032354677526417
1018 => 0.0031401825799093
1019 => 0.0031384591732871
1020 => 0.0031150746552176
1021 => 0.0031143665813041
1022 => 0.0030745836825264
1023 => 0.0030690177799813
1024 => 0.0029900264198089
1025 => 0.0030420187722822
1026 => 0.0030071450319642
1027 => 0.0029545820794211
1028 => 0.0029455202065905
1029 => 0.0029452477957507
1030 => 0.0029992181951513
1031 => 0.0030413880967421
1101 => 0.0030077516756077
1102 => 0.0030000933145301
1103 => 0.0030818645749332
1104 => 0.0030714584366853
1105 => 0.003062446788075
1106 => 0.0032947153238267
1107 => 0.0031108566536394
1108 => 0.0030306837791517
1109 => 0.0029314546225573
1110 => 0.0029637641363013
1111 => 0.0029705722255727
1112 => 0.0027319439913629
1113 => 0.0026351325464633
1114 => 0.002601910506836
1115 => 0.0025827907533399
1116 => 0.0025915038650988
1117 => 0.0025043622098393
1118 => 0.0025629228433636
1119 => 0.0024874655358096
1120 => 0.0024748148726388
1121 => 0.0026097418859122
1122 => 0.002628516191577
1123 => 0.0025484191708913
1124 => 0.0025998544247013
1125 => 0.0025812032866663
1126 => 0.002488759034772
1127 => 0.0024852283443235
1128 => 0.0024388430682956
1129 => 0.0023662590932711
1130 => 0.0023330862689969
1201 => 0.0023158095740952
1202 => 0.0023229382751277
1203 => 0.0023193337857438
1204 => 0.0022958120543434
1205 => 0.0023206820238541
1206 => 0.0022571495287351
1207 => 0.0022318503772626
1208 => 0.0022204233374783
1209 => 0.0021640345912662
1210 => 0.0022537741626789
1211 => 0.0022714539887566
1212 => 0.0022891686495532
1213 => 0.002443362677475
1214 => 0.0024356595795878
1215 => 0.002505291832927
1216 => 0.0025025860516077
1217 => 0.0024827258049877
1218 => 0.0023989386913496
1219 => 0.0024323347414841
1220 => 0.0023295468900688
1221 => 0.0024065625372436
1222 => 0.0023714158121234
1223 => 0.002394679394126
1224 => 0.0023528493760926
1225 => 0.0023759998351914
1226 => 0.0022756465313979
1227 => 0.0021819380283246
1228 => 0.002219649065483
1229 => 0.0022606452756545
1230 => 0.0023495355049462
1231 => 0.0022965932177085
]
'min_raw' => 0.0021640345912662
'max_raw' => 0.006459695957941
'avg_raw' => 0.0043118652746036
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.002164'
'max' => '$0.006459'
'avg' => '$0.004311'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0040994554087338
'max_diff' => 0.00019620595794104
'year' => 2026
]
1 => [
'items' => [
101 => 0.0023156332661687
102 => 0.0022518522910927
103 => 0.002120253921376
104 => 0.0021209987538571
105 => 0.0021007552117025
106 => 0.0020832618356754
107 => 0.002302674276262
108 => 0.0022753868708776
109 => 0.002231907961685
110 => 0.0022901062094225
111 => 0.0023054947498547
112 => 0.0023059328399671
113 => 0.0023483927792021
114 => 0.0023710536563833
115 => 0.0023750477342043
116 => 0.0024418593659984
117 => 0.002464253743709
118 => 0.0025564930161283
119 => 0.0023691310392772
120 => 0.0023652724426609
121 => 0.0022909251781179
122 => 0.002243772967561
123 => 0.0022941537303152
124 => 0.0023387842084555
125 => 0.0022923119714807
126 => 0.0022983802645471
127 => 0.0022359950833297
128 => 0.0022582948501193
129 => 0.0022775024133815
130 => 0.0022668971259165
131 => 0.0022510204972797
201 => 0.0023351250182073
202 => 0.0023303795115283
203 => 0.0024086995749706
204 => 0.0024697556651454
205 => 0.0025791790938203
206 => 0.0024649900416257
207 => 0.0024608285387034
208 => 0.0025015078972953
209 => 0.0024642475159112
210 => 0.0024877947907613
211 => 0.0025753852638024
212 => 0.0025772359124745
213 => 0.0025462351627908
214 => 0.0025443487643551
215 => 0.002550302797443
216 => 0.0025851757552091
217 => 0.0025729900722279
218 => 0.0025870916530775
219 => 0.0026047258958611
220 => 0.0026776686007779
221 => 0.002695254839987
222 => 0.0026525293961285
223 => 0.0026563870253324
224 => 0.0026404065364897
225 => 0.0026249695845026
226 => 0.0026596695981838
227 => 0.0027230845552168
228 => 0.0027226900540604
301 => 0.0027374010914814
302 => 0.0027465659459219
303 => 0.0027072236815798
304 => 0.0026816133141483
305 => 0.0026914339586516
306 => 0.0027071373830781
307 => 0.0026863415497555
308 => 0.0025579800329213
309 => 0.0025969167173634
310 => 0.0025904357491656
311 => 0.0025812060623393
312 => 0.0026203571996343
313 => 0.0026165809769324
314 => 0.0025034684462121
315 => 0.0025107095434361
316 => 0.0025039088013175
317 => 0.0025258833904035
318 => 0.0024630608159861
319 => 0.0024823846167604
320 => 0.0024945043234567
321 => 0.0025016429238087
322 => 0.0025274324432645
323 => 0.0025244063408179
324 => 0.0025272443364876
325 => 0.0025654833856597
326 => 0.0027588833743156
327 => 0.0027694097089851
328 => 0.0027175741872464
329 => 0.0027382814557705
330 => 0.002698528028386
331 => 0.002725214770514
401 => 0.0027434731617083
402 => 0.0026609670027881
403 => 0.0026560815235174
404 => 0.0026161640195969
405 => 0.0026376134251608
406 => 0.0026034858786418
407 => 0.0026118595848267
408 => 0.0025884459723272
409 => 0.0026305858132225
410 => 0.0026777047032126
411 => 0.0026896087956055
412 => 0.0026582942535539
413 => 0.0026356204613796
414 => 0.0025958127515331
415 => 0.0026620138601805
416 => 0.0026813730817912
417 => 0.0026619121744309
418 => 0.0026574026569662
419 => 0.0026488571295193
420 => 0.0026592156310114
421 => 0.0026812676473128
422 => 0.0026708683236618
423 => 0.0026777372601458
424 => 0.0026515599574856
425 => 0.0027072367055064
426 => 0.0027956647807024
427 => 0.0027959490914237
428 => 0.0027855497117165
429 => 0.0027812945095981
430 => 0.0027919649042648
501 => 0.0027977531556489
502 => 0.0028322592553851
503 => 0.0028692856751857
504 => 0.0030420718205026
505 => 0.0029935541623126
506 => 0.0031468603095315
507 => 0.0032681055676698
508 => 0.003304461719173
509 => 0.0032710157704792
510 => 0.0031565989867125
511 => 0.0031509851534468
512 => 0.0033219721339144
513 => 0.0032736604802324
514 => 0.0032679139627534
515 => 0.0032067807256707
516 => 0.0032429180402853
517 => 0.0032350142794767
518 => 0.003222537806375
519 => 0.0032914852853125
520 => 0.0034205488108995
521 => 0.0034004330500867
522 => 0.0033854175677832
523 => 0.0033196240952705
524 => 0.0033592464612272
525 => 0.0033451376956265
526 => 0.0034057579062912
527 => 0.0033698478363955
528 => 0.00327329447194
529 => 0.0032886709134736
530 => 0.0032863467952689
531 => 0.0033341769832327
601 => 0.0033198195480242
602 => 0.0032835432756158
603 => 0.0034201076858
604 => 0.0034112399526138
605 => 0.0034238123708258
606 => 0.0034293471381377
607 => 0.003512471488082
608 => 0.0035465248745716
609 => 0.0035542555894932
610 => 0.0035866036728749
611 => 0.0035534507397102
612 => 0.0036860861100098
613 => 0.0037742808917706
614 => 0.0038767236692477
615 => 0.0040264201011646
616 => 0.0040827073443347
617 => 0.0040725395576636
618 => 0.0041860376838812
619 => 0.0043899912937726
620 => 0.0041137644134795
621 => 0.0044046319891594
622 => 0.0043125466729268
623 => 0.0040942140446834
624 => 0.0040801559973971
625 => 0.0042280133881375
626 => 0.0045559468500531
627 => 0.0044738032372338
628 => 0.0045560812075765
629 => 0.00446009958472
630 => 0.0044553332881486
701 => 0.0045514195943894
702 => 0.004775930486313
703 => 0.0046692737772251
704 => 0.0045163552314494
705 => 0.0046292679059741
706 => 0.0045314524977261
707 => 0.0043110470061346
708 => 0.0044737404235612
709 => 0.0043649519685698
710 => 0.0043967022232486
711 => 0.0046253593745791
712 => 0.0045978467411793
713 => 0.0046334506363999
714 => 0.0045706106932516
715 => 0.0045119082774016
716 => 0.0044023358589188
717 => 0.004369896867661
718 => 0.0043788618378121
719 => 0.0043698924250671
720 => 0.0043085876639485
721 => 0.0042953489066218
722 => 0.0042732837310741
723 => 0.0042801226516244
724 => 0.0042386336661999
725 => 0.0043169319537578
726 => 0.0043314648058907
727 => 0.00438844377004
728 => 0.0043943595151184
729 => 0.0045530451192295
730 => 0.0044656437550884
731 => 0.004524280136025
801 => 0.004519035146207
802 => 0.0040989459747799
803 => 0.0041568305561244
804 => 0.0042468807995142
805 => 0.0042063132869273
806 => 0.0041489603154655
807 => 0.0041026447159382
808 => 0.0040324718466413
809 => 0.0041312388126261
810 => 0.0042611068702004
811 => 0.0043976531833734
812 => 0.0045617046317821
813 => 0.0045250902582666
814 => 0.0043945863556573
815 => 0.0044004406653951
816 => 0.0044366297046089
817 => 0.0043897616107062
818 => 0.0043759392948404
819 => 0.004434730730665
820 => 0.0044351355949723
821 => 0.0043812081887389
822 => 0.0043212777453217
823 => 0.0043210266345755
824 => 0.0043103625910288
825 => 0.0044619966943767
826 => 0.0045453801192809
827 => 0.0045549398945671
828 => 0.0045447366702359
829 => 0.0045486634863295
830 => 0.0045001445086061
831 => 0.0046110445038259
901 => 0.0047128173063124
902 => 0.0046855400211872
903 => 0.00464464749309
904 => 0.0046120746248096
905 => 0.004677866888601
906 => 0.0046749372626609
907 => 0.0047119284096673
908 => 0.0047102502775679
909 => 0.004697811546137
910 => 0.0046855404654135
911 => 0.0047341939134224
912 => 0.0047201825017463
913 => 0.0047061493264778
914 => 0.0046780036451052
915 => 0.004681829110654
916 => 0.0046409436432283
917 => 0.0046220281552055
918 => 0.0043375845999441
919 => 0.004261571987517
920 => 0.004285487102766
921 => 0.0042933605796616
922 => 0.0042602797933205
923 => 0.0043077091431769
924 => 0.0043003173292419
925 => 0.0043290745531965
926 => 0.0043111082881632
927 => 0.004311845629947
928 => 0.0043646805845984
929 => 0.0043800187967096
930 => 0.0043722176582353
1001 => 0.0043776813082153
1002 => 0.004503588815943
1003 => 0.0044856887946396
1004 => 0.0044761797650828
1005 => 0.0044788138312559
1006 => 0.0045109858989677
1007 => 0.0045199923213972
1008 => 0.0044818314766932
1009 => 0.0044998283516608
1010 => 0.0045764567611295
1011 => 0.0046032723676512
1012 => 0.004688854911447
1013 => 0.0046524979257342
1014 => 0.0047192327465037
1015 => 0.0049243528339722
1016 => 0.0050882169530725
1017 => 0.0049375207371767
1018 => 0.0052384363239347
1019 => 0.0054727422720029
1020 => 0.0054637492194591
1021 => 0.0054228925578192
1022 => 0.0051561414652894
1023 => 0.0049106731329087
1024 => 0.0051160178160811
1025 => 0.005116541281908
1026 => 0.0050989019915123
1027 => 0.0049893458738016
1028 => 0.0050950896760926
1029 => 0.0051034832351134
1030 => 0.0050987850740893
1031 => 0.0050147886555084
1101 => 0.0048865416494684
1102 => 0.0049116008074686
1103 => 0.004952648219466
1104 => 0.0048749369051678
1105 => 0.0048501034315549
1106 => 0.0048962735837629
1107 => 0.0050450434341103
1108 => 0.0050169193556672
1109 => 0.0050161849223207
1110 => 0.0051365116563657
1111 => 0.0050503836829239
1112 => 0.0049119168837015
1113 => 0.0048769521907452
1114 => 0.0047528510857896
1115 => 0.0048385681610154
1116 => 0.0048416529659536
1117 => 0.0047947065998597
1118 => 0.0049157263225739
1119 => 0.004914611104524
1120 => 0.0050295013198325
1121 => 0.0052491282607081
1122 => 0.0051841737671058
1123 => 0.0051086387580751
1124 => 0.0051168515079154
1125 => 0.0052069251028691
1126 => 0.0051524645511799
1127 => 0.0051720489452798
1128 => 0.005206895459543
1129 => 0.0052279192267883
1130 => 0.0051138265113462
1201 => 0.0050872260416912
1202 => 0.0050328108162732
1203 => 0.0050186148996699
1204 => 0.0050629349653619
1205 => 0.0050512581939031
1206 => 0.0048413937000435
1207 => 0.0048194616927601
1208 => 0.0048201343161118
1209 => 0.0047649852409877
1210 => 0.0046808696641289
1211 => 0.0049019203778338
1212 => 0.0048841669119206
1213 => 0.0048645684595614
1214 => 0.0048669691581482
1215 => 0.0049629197808637
1216 => 0.0049072635740661
1217 => 0.0050552347217104
1218 => 0.0050248163021746
1219 => 0.0049936177649569
1220 => 0.0049893051767827
1221 => 0.004977296401688
1222 => 0.0049361138436199
1223 => 0.0048863834300645
1224 => 0.0048535471034607
1225 => 0.0044771406454133
1226 => 0.0045469994945712
1227 => 0.004627365732693
1228 => 0.0046551078360451
1229 => 0.0046076530485662
1230 => 0.0049379876478699
1231 => 0.0049983429623461
]
'min_raw' => 0.0020832618356754
'max_raw' => 0.0054727422720029
'avg_raw' => 0.0037780020538391
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.002083'
'max' => '$0.005472'
'avg' => '$0.003778'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -8.0772755590799E-5
'max_diff' => -0.00098695368593812
'year' => 2027
]
2 => [
'items' => [
101 => 0.004815522777918
102 => 0.0047813245859104
103 => 0.0049402296756445
104 => 0.0048443904811777
105 => 0.0048875468645778
106 => 0.0047942663689464
107 => 0.0049838051344987
108 => 0.0049823611666695
109 => 0.0049086263059424
110 => 0.0049709465053144
111 => 0.0049601168370487
112 => 0.0048768703608889
113 => 0.004986444196277
114 => 0.0049864985435323
115 => 0.0049155303432167
116 => 0.0048326550221847
117 => 0.0048178388722119
118 => 0.0048066768934771
119 => 0.0048848017020508
120 => 0.004954848161128
121 => 0.0050851872554809
122 => 0.0051179576005817
123 => 0.0052458624391556
124 => 0.0051697013353584
125 => 0.0052034625662203
126 => 0.0052401151581386
127 => 0.0052576877585586
128 => 0.0052290541491719
129 => 0.0054277430112091
130 => 0.0054445184388344
131 => 0.0054501430946103
201 => 0.0053831463282417
202 => 0.0054426551375655
203 => 0.0054148129364075
204 => 0.0054872506090343
205 => 0.0054986097610328
206 => 0.0054889889634036
207 => 0.00549259453754
208 => 0.0053230486449083
209 => 0.0053142567959495
210 => 0.0051943793115554
211 => 0.0052432302725356
212 => 0.0051519057424705
213 => 0.0051808656917011
214 => 0.0051936309613814
215 => 0.0051869631089231
216 => 0.0052459922325741
217 => 0.0051958054186175
218 => 0.0050633541651099
219 => 0.0049308668253469
220 => 0.004929203554718
221 => 0.0048943219767542
222 => 0.004869108984766
223 => 0.0048739659015019
224 => 0.0048910823095767
225 => 0.0048681141480128
226 => 0.0048730155697978
227 => 0.0049544118294314
228 => 0.0049707352688094
229 => 0.0049152618438236
301 => 0.0046925280377287
302 => 0.0046378686030275
303 => 0.004677156720747
304 => 0.0046583795309559
305 => 0.003759675853097
306 => 0.0039708129515499
307 => 0.0038453624571876
308 => 0.0039031758166894
309 => 0.0037751233471935
310 => 0.0038362366974419
311 => 0.0038249512931533
312 => 0.0041644534994645
313 => 0.004159152639483
314 => 0.0041616898806409
315 => 0.004040580749428
316 => 0.0042335108839214
317 => 0.0043285552057161
318 => 0.0043109650312746
319 => 0.0043153920992161
320 => 0.0042393204044035
321 => 0.0041624264209312
322 => 0.0040771391593612
323 => 0.0042355923495341
324 => 0.004217975059673
325 => 0.0042583827841135
326 => 0.0043611510044086
327 => 0.0043762840152256
328 => 0.0043966229352274
329 => 0.0043893328802297
330 => 0.0045630115662371
331 => 0.0045419779313927
401 => 0.0045926629395779
402 => 0.0044884000322602
403 => 0.0043704166559041
404 => 0.0043928414385823
405 => 0.0043906817516816
406 => 0.0043631864586636
407 => 0.0043383649375245
408 => 0.0042970440982481
409 => 0.0044277893480521
410 => 0.004422481329679
411 => 0.0045084119772444
412 => 0.0044932229006014
413 => 0.0043917865293821
414 => 0.0043954093492245
415 => 0.0044197745537324
416 => 0.004504102804731
417 => 0.0045291371711325
418 => 0.0045175402551683
419 => 0.0045449892950654
420 => 0.0045666838970125
421 => 0.004547713803054
422 => 0.004816290329119
423 => 0.0047047586304067
424 => 0.0047591184043265
425 => 0.0047720828901
426 => 0.004738874632405
427 => 0.0047460763144005
428 => 0.0047569849002828
429 => 0.00482321969764
430 => 0.0049970389710982
501 => 0.0050740223440851
502 => 0.0053056306200088
503 => 0.0050676299466188
504 => 0.0050535079716046
505 => 0.0050952276159983
506 => 0.0052312061921914
507 => 0.0053414040563777
508 => 0.0053779630453955
509 => 0.0053827949193174
510 => 0.0054513820131106
511 => 0.0054906948561993
512 => 0.0054430537359044
513 => 0.0054026828746878
514 => 0.0052580794608255
515 => 0.0052748176997221
516 => 0.0053901275672067
517 => 0.005553009546746
518 => 0.0056927792301723
519 => 0.0056438367585017
520 => 0.0060172332693483
521 => 0.0060542540082108
522 => 0.0060491389391238
523 => 0.0061334776916771
524 => 0.005966082443147
525 => 0.0058945177312702
526 => 0.0054114115131116
527 => 0.0055471446547676
528 => 0.0057444407474925
529 => 0.005718327869798
530 => 0.0055750461735215
531 => 0.0056926705381573
601 => 0.0056537802447548
602 => 0.0056231058567884
603 => 0.005763631174585
604 => 0.0056091178152057
605 => 0.0057428993585362
606 => 0.005571323145422
607 => 0.0056440603235897
608 => 0.0056027711833603
609 => 0.0056294903172954
610 => 0.0054732908062722
611 => 0.0055575722708915
612 => 0.0054697844202523
613 => 0.0054697427973808
614 => 0.0054678048757123
615 => 0.0055710868926784
616 => 0.0055744549155437
617 => 0.0054981293489553
618 => 0.0054871296423805
619 => 0.0055278013227672
620 => 0.0054801854369643
621 => 0.0055024646102407
622 => 0.0054808602504267
623 => 0.0054759966539752
624 => 0.0054372426899764
625 => 0.0054205464167233
626 => 0.0054270934556758
627 => 0.005404745036501
628 => 0.0053912793055705
629 => 0.0054651262029027
630 => 0.0054256727846334
701 => 0.0054590794007113
702 => 0.0054210083454395
703 => 0.0052890374810984
704 => 0.0052131396414493
705 => 0.0049638589124145
706 => 0.005034554617937
707 => 0.0050814259438384
708 => 0.0050659349709076
709 => 0.0050992155749737
710 => 0.0051012587337695
711 => 0.005090438870132
712 => 0.0050779108541502
713 => 0.0050718129088129
714 => 0.0051172619974037
715 => 0.0051436467230766
716 => 0.00508613010845
717 => 0.005072654770386
718 => 0.0051308072433527
719 => 0.0051662802182689
720 => 0.0054281927345067
721 => 0.0054087894093375
722 => 0.0054574879478019
723 => 0.0054520052397108
724 => 0.0055030490663071
725 => 0.0055864841500613
726 => 0.0054168372959726
727 => 0.0054462821238956
728 => 0.0054390629320692
729 => 0.0055178801754553
730 => 0.005518126234286
731 => 0.0054708713596627
801 => 0.0054964889938188
802 => 0.0054821899332159
803 => 0.0055080302683593
804 => 0.0054085302661002
805 => 0.0055297105284902
806 => 0.0055984119285817
807 => 0.0055993658475886
808 => 0.005631929765984
809 => 0.0056650165930486
810 => 0.0057285238763438
811 => 0.0056632454093861
812 => 0.0055458158020599
813 => 0.0055542938404135
814 => 0.0054854449046039
815 => 0.0054866022676535
816 => 0.0054804241729909
817 => 0.0054989651001386
818 => 0.0054125989569624
819 => 0.0054328689181396
820 => 0.0054044908537907
821 => 0.0054462204355258
822 => 0.0054013263037259
823 => 0.0054390594507564
824 => 0.0054553438261411
825 => 0.0055154335218883
826 => 0.0053924510068066
827 => 0.0051416813333706
828 => 0.0051943961590153
829 => 0.0051164267912267
830 => 0.0051236431530658
831 => 0.0051382213524564
901 => 0.0050909686385415
902 => 0.0050999829672524
903 => 0.0050996609119979
904 => 0.0050968856138038
905 => 0.0050845933579282
906 => 0.0050667671549598
907 => 0.0051377812609699
908 => 0.0051498479413817
909 => 0.0051766706771917
910 => 0.0052564769449267
911 => 0.0052485024168186
912 => 0.0052615092030229
913 => 0.0052331154617689
914 => 0.0051249602572874
915 => 0.0051308336052411
916 => 0.0050575928621441
917 => 0.0051747977467231
918 => 0.0051470420830259
919 => 0.005129147826079
920 => 0.0051242652122819
921 => 0.0052042693043184
922 => 0.0052282077825662
923 => 0.0052132909293737
924 => 0.0051826960282817
925 => 0.0052414472829489
926 => 0.0052571666401813
927 => 0.0052606856245581
928 => 0.0053647815833926
929 => 0.0052665034322951
930 => 0.0052901599600651
1001 => 0.0054747214366727
1002 => 0.0053073496451324
1003 => 0.0053960102159477
1004 => 0.0053916707423736
1005 => 0.0054370264902925
1006 => 0.0053879502472092
1007 => 0.0053885586060595
1008 => 0.0054288314375471
1009 => 0.0053722755089663
1010 => 0.0053582714657018
1011 => 0.0053389249802309
1012 => 0.0053811673234797
1013 => 0.0054064896978005
1014 => 0.0056105694375915
1015 => 0.0057424142566633
1016 => 0.0057366905253514
1017 => 0.005788994715166
1018 => 0.005765431198603
1019 => 0.0056893383878798
1020 => 0.0058192195372547
1021 => 0.0057781197071344
1022 => 0.0057815079271932
1023 => 0.0057813818174734
1024 => 0.0058087096114939
1025 => 0.0057893453648748
1026 => 0.0057511764470895
1027 => 0.0057765147559842
1028 => 0.0058517604747903
1029 => 0.006085325494785
1030 => 0.0062160315742989
1031 => 0.0060774568246788
1101 => 0.0061730438313769
1102 => 0.006115725688491
1103 => 0.0061053092768616
1104 => 0.0061653449808924
1105 => 0.0062254857694756
1106 => 0.0062216550612386
1107 => 0.0061779959369908
1108 => 0.0061533340055126
1109 => 0.0063400824130193
1110 => 0.0064776754584941
1111 => 0.0064682925352282
1112 => 0.0065097057070338
1113 => 0.0066312960603162
1114 => 0.0066424127584004
1115 => 0.0066410123099562
1116 => 0.006613458413847
1117 => 0.0067331799071561
1118 => 0.0068330536831738
1119 => 0.0066070804830063
1120 => 0.0066931281194236
1121 => 0.0067317576756931
1122 => 0.0067884773251696
1123 => 0.0068841728811533
1124 => 0.0069881236369444
1125 => 0.0070028234135752
1126 => 0.0069923932186066
1127 => 0.0069238349008161
1128 => 0.0070375790581931
1129 => 0.0071042077179558
1130 => 0.0071438835600747
1201 => 0.0072444948942577
1202 => 0.0067319962386815
1203 => 0.0063692242174289
1204 => 0.0063125721278188
1205 => 0.0064277763797743
1206 => 0.0064581548222783
1207 => 0.0064459093101963
1208 => 0.0060375764184872
1209 => 0.0063104223396504
1210 => 0.0066039816092853
1211 => 0.0066152584163898
1212 => 0.0067622203248039
1213 => 0.0068100771463557
1214 => 0.0069284007453667
1215 => 0.0069209995720325
1216 => 0.006949809485452
1217 => 0.006943186585275
1218 => 0.0071623561364697
1219 => 0.0074041326984306
1220 => 0.0073957607448923
1221 => 0.00736100250354
1222 => 0.007412624419109
1223 => 0.0076621637414037
1224 => 0.007639190159393
1225 => 0.0076615070374314
1226 => 0.0079557279618367
1227 => 0.0083382570160022
1228 => 0.0081605338650532
1229 => 0.0085461419641534
1230 => 0.0087888618223299
1231 => 0.0092086207193445
]
'min_raw' => 0.003759675853097
'max_raw' => 0.0092086207193445
'avg_raw' => 0.0064841482862208
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.003759'
'max' => '$0.0092086'
'avg' => '$0.006484'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0016764140174216
'max_diff' => 0.0037358784473416
'year' => 2028
]
3 => [
'items' => [
101 => 0.0091560648380821
102 => 0.0093194738963568
103 => 0.0090619788418791
104 => 0.0084707181484616
105 => 0.0083771488804733
106 => 0.0085644769245372
107 => 0.009025004641665
108 => 0.0085499732678458
109 => 0.0086460714960872
110 => 0.0086183951998888
111 => 0.0086169204476811
112 => 0.0086732057411993
113 => 0.0085915609873077
114 => 0.0082589255723422
115 => 0.0084113704227881
116 => 0.0083525041450279
117 => 0.0084178206689745
118 => 0.0087703070101307
119 => 0.0086144643964807
120 => 0.0084502968626263
121 => 0.0086561993817719
122 => 0.0089183840444262
123 => 0.0089019769994284
124 => 0.00887014047452
125 => 0.0090496012985227
126 => 0.0093460180026874
127 => 0.0094261382467243
128 => 0.0094852813728861
129 => 0.0094934362107525
130 => 0.00957743610898
131 => 0.0091257474855109
201 => 0.0098425889311429
202 => 0.0099663676464583
203 => 0.0099431023780811
204 => 0.01008067721075
205 => 0.010040199205042
206 => 0.0099815529255759
207 => 0.010199638298361
208 => 0.0099496210170449
209 => 0.0095947529625165
210 => 0.009400065329308
211 => 0.0096564457097204
212 => 0.009813008261596
213 => 0.0099164861491373
214 => 0.0099477984953842
215 => 0.0091608107875582
216 => 0.0087366680613792
217 => 0.0090085386860537
218 => 0.0093402396116648
219 => 0.0091239048701211
220 => 0.0091323847824138
221 => 0.0088239482927426
222 => 0.0093675293970398
223 => 0.0092883342023804
224 => 0.0096991990123672
225 => 0.0096011428280678
226 => 0.009936187130932
227 => 0.0098479587374305
228 => 0.010214189866072
301 => 0.010360289378599
302 => 0.010605613198706
303 => 0.010786074399424
304 => 0.010892044668158
305 => 0.010885682610708
306 => 0.011305589609611
307 => 0.011057985122791
308 => 0.010746935531448
309 => 0.010741309625689
310 => 0.010902406616653
311 => 0.011240021714911
312 => 0.011327560397789
313 => 0.011376482579271
314 => 0.011301556555338
315 => 0.011032799630868
316 => 0.01091675175351
317 => 0.01101562790725
318 => 0.010894710867751
319 => 0.011103447601255
320 => 0.011390087720115
321 => 0.011330897669068
322 => 0.01152876113545
323 => 0.01173352900731
324 => 0.012026356260772
325 => 0.012102912148189
326 => 0.012229456118929
327 => 0.012359711432349
328 => 0.012401545928541
329 => 0.012481420962252
330 => 0.012480999981397
331 => 0.012721708771696
401 => 0.012987218021527
402 => 0.013087441616785
403 => 0.013317900247719
404 => 0.012923247918478
405 => 0.013222596243646
406 => 0.013492615926123
407 => 0.01317068732907
408 => 0.013614390900365
409 => 0.013631618904584
410 => 0.01389174131427
411 => 0.01362805741863
412 => 0.013471482763107
413 => 0.013923507926824
414 => 0.014142228664888
415 => 0.014076348198575
416 => 0.013574994597012
417 => 0.013283185296835
418 => 0.012519464072462
419 => 0.013424124853034
420 => 0.013864758729934
421 => 0.01357385346172
422 => 0.013720569158058
423 => 0.014521002424553
424 => 0.014825755588218
425 => 0.014762369060561
426 => 0.014773080340304
427 => 0.014937519615757
428 => 0.015666733921477
429 => 0.015229771806434
430 => 0.015563812970726
501 => 0.015740987199791
502 => 0.015905556497775
503 => 0.015501426314589
504 => 0.014975658884116
505 => 0.01480912626867
506 => 0.013544928665913
507 => 0.013479121690557
508 => 0.013442182241135
509 => 0.013209284237715
510 => 0.01302629020316
511 => 0.012880766552748
512 => 0.012498869037027
513 => 0.012627748237864
514 => 0.012019083306011
515 => 0.01240848555965
516 => 0.011437041631684
517 => 0.012246089001506
518 => 0.011805761300982
519 => 0.012101429509309
520 => 0.012100397950783
521 => 0.011555979037564
522 => 0.011241969570152
523 => 0.011442068624218
524 => 0.01165659069406
525 => 0.011691396178153
526 => 0.011969529641302
527 => 0.012047150712408
528 => 0.011811955243175
529 => 0.011416910615518
530 => 0.011508670472514
531 => 0.011240110059578
601 => 0.010769468265936
602 => 0.011107491418747
603 => 0.011222907384946
604 => 0.011273881650722
605 => 0.01081105950025
606 => 0.010665630732213
607 => 0.010588205676377
608 => 0.011357166087763
609 => 0.011399291474929
610 => 0.01118377203826
611 => 0.012157940328398
612 => 0.011937456041637
613 => 0.01218379100991
614 => 0.011500344227273
615 => 0.011526452814753
616 => 0.011202898155132
617 => 0.011384067144589
618 => 0.01125602274219
619 => 0.011369430480588
620 => 0.011437406611386
621 => 0.011760908178871
622 => 0.012249782869759
623 => 0.011712587832516
624 => 0.011478524262014
625 => 0.01162373598473
626 => 0.012010453938099
627 => 0.012596351433181
628 => 0.012249488323806
629 => 0.012403420281629
630 => 0.012437047566457
701 => 0.012181283551175
702 => 0.012605781817242
703 => 0.012833273886645
704 => 0.013066633677002
705 => 0.013269253444376
706 => 0.012973424645042
707 => 0.013290003865722
708 => 0.013034896897609
709 => 0.012806039574738
710 => 0.012806386656829
711 => 0.01266282111512
712 => 0.012384644787636
713 => 0.012333344804858
714 => 0.012600213793745
715 => 0.012814217450246
716 => 0.012831843816403
717 => 0.012950327236547
718 => 0.013020444504112
719 => 0.013707689046049
720 => 0.013984104486001
721 => 0.014322100053698
722 => 0.014453768375702
723 => 0.014850042819229
724 => 0.014530019022244
725 => 0.014460779860722
726 => 0.013499547681108
727 => 0.013656949396671
728 => 0.013908964730293
729 => 0.013503703321137
730 => 0.013760748406928
731 => 0.013811494551823
801 => 0.013489932693529
802 => 0.013661692775911
803 => 0.013205548920418
804 => 0.012259725559312
805 => 0.012606834789021
806 => 0.01286242401779
807 => 0.012497666674412
808 => 0.013151480094359
809 => 0.012769535791874
810 => 0.012648477784547
811 => 0.012176187337665
812 => 0.012399090248466
813 => 0.012700569626988
814 => 0.012514290421801
815 => 0.012900847742527
816 => 0.013448315999747
817 => 0.013838474482141
818 => 0.013868426005802
819 => 0.013617580240211
820 => 0.014019562180446
821 => 0.014022490180027
822 => 0.013569052909297
823 => 0.013291325105724
824 => 0.013228224764408
825 => 0.013385861788566
826 => 0.013577262237294
827 => 0.013879047398627
828 => 0.014061409851169
829 => 0.01453691440983
830 => 0.014665572309619
831 => 0.01480692833485
901 => 0.014995823577142
902 => 0.015222640747259
903 => 0.014726377691751
904 => 0.014746095148096
905 => 0.014283981862037
906 => 0.013790147542133
907 => 0.014164906233623
908 => 0.014654853370686
909 => 0.014542458956101
910 => 0.01452981228845
911 => 0.014551080475545
912 => 0.014466338757406
913 => 0.014083055106936
914 => 0.013890572457153
915 => 0.014138924182935
916 => 0.014270912072324
917 => 0.014475613778213
918 => 0.014450379972233
919 => 0.014977669583245
920 => 0.015182558381674
921 => 0.01513013905935
922 => 0.015139785476199
923 => 0.01551072685899
924 => 0.015923289966568
925 => 0.016309709759311
926 => 0.016702792569606
927 => 0.016228915899512
928 => 0.015988310551088
929 => 0.016236553854275
930 => 0.016104832463327
1001 => 0.01686174264682
1002 => 0.01691414946568
1003 => 0.017671004915951
1004 => 0.018389350862929
1005 => 0.017938170644136
1006 => 0.018363613268854
1007 => 0.018823764154333
1008 => 0.019711469869211
1009 => 0.019412521814304
1010 => 0.019183532289358
1011 => 0.018967138294753
1012 => 0.019417419845946
1013 => 0.019996699868132
1014 => 0.020121471236636
1015 => 0.020323648519943
1016 => 0.020111083827608
1017 => 0.020367094586293
1018 => 0.021270925061281
1019 => 0.021026702088607
1020 => 0.020679866206608
1021 => 0.021393353561809
1022 => 0.021651561862044
1023 => 0.023463802937833
1024 => 0.025751832155962
1025 => 0.024804573035647
1026 => 0.024216578731806
1027 => 0.02435477134062
1028 => 0.025190282156404
1029 => 0.025458621712646
1030 => 0.024729182296588
1031 => 0.024986832629976
1101 => 0.026406511298565
1102 => 0.027168123355519
1103 => 0.02613375188403
1104 => 0.023279962017961
1105 => 0.020648637430247
1106 => 0.021346583201
1107 => 0.021267457810375
1108 => 0.022792725431254
1109 => 0.021020877451479
1110 => 0.0210507108273
1111 => 0.022607519367292
1112 => 0.022192189539278
1113 => 0.021519408409319
1114 => 0.02065354947704
1115 => 0.019052929158465
1116 => 0.017635215105704
1117 => 0.020415678843216
1118 => 0.02029578019091
1119 => 0.020122149174385
1120 => 0.020508546212823
1121 => 0.022384780550765
1122 => 0.022341527276497
1123 => 0.022066372013622
1124 => 0.022275074855406
1125 => 0.021482821792091
1126 => 0.021687003445774
1127 => 0.020648220614989
1128 => 0.021117793837907
1129 => 0.021517964923176
1130 => 0.021598305193178
1201 => 0.021779315923768
1202 => 0.020232599049381
1203 => 0.020927029516759
1204 => 0.021334942357008
1205 => 0.019491977304766
1206 => 0.02129851286351
1207 => 0.020205674149732
1208 => 0.019834748276389
1209 => 0.020334151099078
1210 => 0.020139533333391
1211 => 0.019972212406792
1212 => 0.019878844454811
1213 => 0.020245550770715
1214 => 0.02022844348277
1215 => 0.019628440775322
1216 => 0.018845761702696
1217 => 0.019108454490034
1218 => 0.019013015737636
1219 => 0.018667133387101
1220 => 0.018900216329367
1221 => 0.017873837012206
1222 => 0.016108004743584
1223 => 0.017274567629141
1224 => 0.017229656227023
1225 => 0.017207009861506
1226 => 0.018083649628571
1227 => 0.017999380942489
1228 => 0.017846432452087
1229 => 0.018664324368132
1230 => 0.018365782816577
1231 => 0.019285817533233
]
'min_raw' => 0.0082589255723422
'max_raw' => 0.027168123355519
'avg_raw' => 0.01771352446393
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.008258'
'max' => '$0.027168'
'avg' => '$0.017713'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.0044992497192452
'max_diff' => 0.017959502636174
'year' => 2029
]
4 => [
'items' => [
101 => 0.019891811901738
102 => 0.019738112128021
103 => 0.020308052760624
104 => 0.019114506401289
105 => 0.019510954625092
106 => 0.019592662054564
107 => 0.018654231708846
108 => 0.0180131683417
109 => 0.017970416723769
110 => 0.016858901189112
111 => 0.017452663815886
112 => 0.01797515035588
113 => 0.017724919849816
114 => 0.01764570434702
115 => 0.018050399171059
116 => 0.018081847424863
117 => 0.017364823905383
118 => 0.017513915800264
119 => 0.018135653786387
120 => 0.017498249598229
121 => 0.016259877380023
122 => 0.015952743948072
123 => 0.015911766686658
124 => 0.015078796460148
125 => 0.015973268072611
126 => 0.015582807243422
127 => 0.016816268324391
128 => 0.016111721970126
129 => 0.016081350384952
130 => 0.01603543927942
131 => 0.015318467395896
201 => 0.015475438672448
202 => 0.015997235103105
203 => 0.016183417948021
204 => 0.016163997551945
205 => 0.01599467801593
206 => 0.016072191632462
207 => 0.015822493266079
208 => 0.015734319575887
209 => 0.015456019155558
210 => 0.015046994420127
211 => 0.015103871818283
212 => 0.01429348679025
213 => 0.01385194601659
214 => 0.013729733349854
215 => 0.013566305464277
216 => 0.013748192964395
217 => 0.014291191071286
218 => 0.013636220150901
219 => 0.01251331844877
220 => 0.012580806754399
221 => 0.012732432939691
222 => 0.012449878546508
223 => 0.012182464526352
224 => 0.012414959320892
225 => 0.011939171066748
226 => 0.012789929677099
227 => 0.012766919040913
228 => 0.013084029240292
301 => 0.01328232475572
302 => 0.012825317791593
303 => 0.012710381775994
304 => 0.01277585455403
305 => 0.011693735375506
306 => 0.012995597017089
307 => 0.013006855570626
308 => 0.012910452999973
309 => 0.013603654133647
310 => 0.015066524740554
311 => 0.014516133974402
312 => 0.014303006034099
313 => 0.013897849663787
314 => 0.014437696471423
315 => 0.014396244659518
316 => 0.014208783845954
317 => 0.014095406960997
318 => 0.014304307347855
319 => 0.014069521891267
320 => 0.014027347971791
321 => 0.013771819905442
322 => 0.013680608011542
323 => 0.013613078356549
324 => 0.013538734841728
325 => 0.013702718110173
326 => 0.01333111045008
327 => 0.012882988041155
328 => 0.012845731511605
329 => 0.012948600065321
330 => 0.012903088387965
331 => 0.012845513619203
401 => 0.012735587706082
402 => 0.012702975035855
403 => 0.012808950392676
404 => 0.012689310393572
405 => 0.012865845729378
406 => 0.012817837886184
407 => 0.012549669976645
408 => 0.012215433472882
409 => 0.012212458066913
410 => 0.012140447360435
411 => 0.012048730898853
412 => 0.01202321747743
413 => 0.012395379257777
414 => 0.01316574300523
415 => 0.013014502168363
416 => 0.013123789172784
417 => 0.013661373069211
418 => 0.013832254824173
419 => 0.013710967002057
420 => 0.013544940750437
421 => 0.013552245062911
422 => 0.01411960702426
423 => 0.014154992693849
424 => 0.01424440086505
425 => 0.014359315631791
426 => 0.013730537483738
427 => 0.013522629668683
428 => 0.013424111411623
429 => 0.013120713311243
430 => 0.013447902151116
501 => 0.013257263225745
502 => 0.013282986929931
503 => 0.013266234333834
504 => 0.013275382384108
505 => 0.012789691872729
506 => 0.012966651967934
507 => 0.012672421487681
508 => 0.012278479903544
509 => 0.01227715927322
510 => 0.012373575917841
511 => 0.012316223524836
512 => 0.012161889709927
513 => 0.0121838120999
514 => 0.011991748895915
515 => 0.01220713205028
516 => 0.012213308468469
517 => 0.012130374222039
518 => 0.012462201688486
519 => 0.012598151672235
520 => 0.012543562574611
521 => 0.012594321555622
522 => 0.013020786907946
523 => 0.013090319368362
524 => 0.013121201094223
525 => 0.013079823672615
526 => 0.012602116559389
527 => 0.012623304901228
528 => 0.012467838907499
529 => 0.012336486525401
530 => 0.012341739931832
531 => 0.012409272130845
601 => 0.012704189204646
602 => 0.013324824800148
603 => 0.013348377467319
604 => 0.01337692398701
605 => 0.013260810945097
606 => 0.013225790140604
607 => 0.013271991621367
608 => 0.013505069719568
609 => 0.014104609868228
610 => 0.013892692337752
611 => 0.013720400086781
612 => 0.01387154684054
613 => 0.013848278982526
614 => 0.013651874844946
615 => 0.013646362434948
616 => 0.013269400100731
617 => 0.013130045708787
618 => 0.013013590748384
619 => 0.012886424971758
620 => 0.012811036836738
621 => 0.012926867275423
622 => 0.012953359067215
623 => 0.012700093788662
624 => 0.012665574667042
625 => 0.01287239656062
626 => 0.012781381956354
627 => 0.012874992733895
628 => 0.012896711237263
629 => 0.012893214058001
630 => 0.012798184358186
701 => 0.012858753455022
702 => 0.012715489484489
703 => 0.012559711434088
704 => 0.012460334743247
705 => 0.012373615400083
706 => 0.012421732331828
707 => 0.012250204255962
708 => 0.012195328972314
709 => 0.012838234007862
710 => 0.013313154870015
711 => 0.01330624933259
712 => 0.013264213649475
713 => 0.013201757150994
714 => 0.013500500637687
715 => 0.013396424380487
716 => 0.013472148553462
717 => 0.013491423533618
718 => 0.013549763093296
719 => 0.013570614471427
720 => 0.013507587124503
721 => 0.013296059650086
722 => 0.012768953295268
723 => 0.012523583864203
724 => 0.012442607865001
725 => 0.012445551188776
726 => 0.012364361179467
727 => 0.012388275275889
728 => 0.012356044832659
729 => 0.012295008170561
730 => 0.012417963489941
731 => 0.012432132945091
801 => 0.012403433704341
802 => 0.012410193414465
803 => 0.012172575958664
804 => 0.01219064149775
805 => 0.012090050280458
806 => 0.012071190639861
807 => 0.011816904802026
808 => 0.01136640058098
809 => 0.011616023650943
810 => 0.011314514084743
811 => 0.011200327843408
812 => 0.011740867750285
813 => 0.011686612535878
814 => 0.011593751192987
815 => 0.011456389912853
816 => 0.011405441277886
817 => 0.011095893500208
818 => 0.01107760376613
819 => 0.01123102400324
820 => 0.011160225842682
821 => 0.011060798411897
822 => 0.010700682336394
823 => 0.010295792637193
824 => 0.010308013712166
825 => 0.010436801592241
826 => 0.010811269722971
827 => 0.010664958545931
828 => 0.01055880810826
829 => 0.010538929322155
830 => 0.01078775394932
831 => 0.011139892927129
901 => 0.011305108656851
902 => 0.011141384886372
903 => 0.01095330783436
904 => 0.010964755213051
905 => 0.011040909494965
906 => 0.011048912233231
907 => 0.010926493407004
908 => 0.010960953589515
909 => 0.010908605421176
910 => 0.010587344808711
911 => 0.01058153422296
912 => 0.010502691687633
913 => 0.010500304366998
914 => 0.010366173546216
915 => 0.010347407717186
916 => 0.010081082831364
917 => 0.010256378677718
918 => 0.010138799427429
919 => 0.0099615797631017
920 => 0.0099310270261736
921 => 0.009930108574008
922 => 0.01011207354368
923 => 0.010254252311102
924 => 0.010140844768828
925 => 0.010115024069764
926 => 0.010390721583301
927 => 0.010355636561665
928 => 0.010325253159202
929 => 0.01110836274396
930 => 0.010488470400821
1001 => 0.010218161956994
1002 => 0.0098836039275778
1003 => 0.0099925377089439
1004 => 0.010015491657248
1005 => 0.0092109399051185
1006 => 0.0088845333594801
1007 => 0.0087725229333882
1008 => 0.0087080593495774
1009 => 0.0087374362142027
1010 => 0.0084436320394589
1011 => 0.0086410733039593
1012 => 0.0083866637232798
1013 => 0.0083440111291585
1014 => 0.0087989269747127
1015 => 0.0088622258570418
1016 => 0.0085921731596048
1017 => 0.0087655907089197
1018 => 0.0087027070948539
1019 => 0.0083910248453408
1020 => 0.0083791208759888
1021 => 0.008222729679344
1022 => 0.0079780077398978
1023 => 0.0078661632468046
1024 => 0.0078079136637232
1025 => 0.0078319485769643
1026 => 0.0078197957893491
1027 => 0.0077404906296978
1028 => 0.0078243414682691
1029 => 0.007610137225278
1030 => 0.0075248393697581
1031 => 0.007486312307315
1101 => 0.0072961937125242
1102 => 0.0075987569429592
1103 => 0.007658365710946
1104 => 0.0077180919266199
1105 => 0.0082379678572414
1106 => 0.0082119963249017
1107 => 0.0084467663286035
1108 => 0.008437643597974
1109 => 0.0083706833898963
1110 => 0.0080881892864362
1111 => 0.0082007864011022
1112 => 0.007854229983637
1113 => 0.0081138936151477
1114 => 0.0079953939775387
1115 => 0.0080738287684722
1116 => 0.0079327959421938
1117 => 0.0080108493313589
1118 => 0.0076725011611752
1119 => 0.0073565564005448
1120 => 0.007483701795225
1121 => 0.007621923380082
1122 => 0.0079216229942566
1123 => 0.0077431243765223
1124 => 0.0078073192292396
1125 => 0.0075922772187253
1126 => 0.0071485841273208
1127 => 0.0071510953820332
1128 => 0.0070828428663001
1129 => 0.0070238627276762
1130 => 0.0077636270900013
1201 => 0.0076716256976022
1202 => 0.0075250335196588
1203 => 0.0077212529751776
1204 => 0.0077731365136383
1205 => 0.0077746135650386
1206 => 0.007917770214628
1207 => 0.0079941729441761
1208 => 0.0080076392564073
1209 => 0.0082328993376403
1210 => 0.0083084035456173
1211 => 0.008619394692519
1212 => 0.0079876907063701
1213 => 0.0079746811784797
1214 => 0.0077240141853127
1215 => 0.0075650372153578
1216 => 0.0077348994744562
1217 => 0.0078853742475068
1218 => 0.0077286898559581
1219 => 0.0077491495297064
1220 => 0.0075388135356375
1221 => 0.0076139987562887
1222 => 0.0076787583968565
1223 => 0.0076430019297307
1224 => 0.0075894727678108
1225 => 0.0078730370321083
1226 => 0.0078570372250193
1227 => 0.0081210987870475
1228 => 0.0083269536578719
1229 => 0.0086958823873489
1230 => 0.00831088602545
1231 => 0.0082968552278004
]
'min_raw' => 0.0070238627276762
'max_raw' => 0.020308052760624
'avg_raw' => 0.01366595774415
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.007023'
'max' => '$0.020308'
'avg' => '$0.013665'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0012350628446661
'max_diff' => -0.0068600705948942
'year' => 2030
]
5 => [
'items' => [
101 => 0.0084340085254354
102 => 0.008308382548162
103 => 0.0083877738293374
104 => 0.0086830912245671
105 => 0.0086893308157733
106 => 0.0085848096238111
107 => 0.0085784494997813
108 => 0.0085985239380342
109 => 0.008716100549895
110 => 0.0086750156689465
111 => 0.008722560133322
112 => 0.0087820152140503
113 => 0.0090279466363743
114 => 0.0090872398696998
115 => 0.0089431880527358
116 => 0.0089561943189278
117 => 0.0089023149850725
118 => 0.0088502682236743
119 => 0.0089672617424783
120 => 0.009181069697606
121 => 0.0091797396094138
122 => 0.0092293388991706
123 => 0.0092602388457865
124 => 0.009127593654768
125 => 0.0090412465129138
126 => 0.0090743575015121
127 => 0.0091273026933442
128 => 0.0090571880893784
129 => 0.0086244082734569
130 => 0.0087556860235258
131 => 0.0087338349867603
201 => 0.0087027164532294
202 => 0.0088347172460645
203 => 0.0088219854475775
204 => 0.0084406186529893
205 => 0.0084650325178373
206 => 0.008442103340972
207 => 0.0085161922022921
208 => 0.0083043815065118
209 => 0.008369533049967
210 => 0.0084103954872643
211 => 0.0084344637767525
212 => 0.0085214149421643
213 => 0.0085112122264899
214 => 0.0085207807270328
215 => 0.0086497063510819
216 => 0.009301767915591
217 => 0.0093372581878545
218 => 0.0091624911072719
219 => 0.0092323071088364
220 => 0.0090982756529137
221 => 0.0091882518672073
222 => 0.009249811307879
223 => 0.0089716360326834
224 => 0.0089551642982289
225 => 0.00882057964681
226 => 0.0088928978152182
227 => 0.0087778344094203
228 => 0.0088060669444561
301 => 0.008727126315228
302 => 0.008869203730916
303 => 0.0090280683582536
304 => 0.0090682038368733
305 => 0.0089626246720348
306 => 0.0088861783986857
307 => 0.0087519639256526
308 => 0.0089751655854712
309 => 0.0090404365527495
310 => 0.0089748227448668
311 => 0.0089596185918904
312 => 0.0089308067494733
313 => 0.0089657311604615
314 => 0.0090400810730441
315 => 0.0090050190272974
316 => 0.0090281781262268
317 => 0.0089399195226671
318 => 0.0091276375658456
319 => 0.0094257789952202
320 => 0.0094267375686667
321 => 0.0093916753339226
322 => 0.0093773286228917
323 => 0.0094133046034934
324 => 0.0094328200971579
325 => 0.0095491598215575
326 => 0.0096739969810173
327 => 0.010256557533497
328 => 0.010092976861514
329 => 0.010609859240356
330 => 0.011018646093243
331 => 0.011141223396341
401 => 0.011028458045199
402 => 0.010642693870405
403 => 0.010623766439604
404 => 0.01120026098218
405 => 0.01103737486878
406 => 0.01101800008389
407 => 0.010811885106879
408 => 0.010933724586129
409 => 0.01090707650474
410 => 0.010865011204598
411 => 0.011097472443595
412 => 0.011532619131039
413 => 0.011464797439021
414 => 0.011414171692088
415 => 0.011192344405958
416 => 0.011325933979126
417 => 0.01127836529086
418 => 0.011482750563485
419 => 0.01136167725567
420 => 0.011036140846268
421 => 0.011087983592447
422 => 0.011080147665655
423 => 0.011241410483772
424 => 0.011193003388563
425 => 0.011070695403409
426 => 0.011531131846968
427 => 0.011501233665405
428 => 0.011543622451185
429 => 0.011562283305602
430 => 0.011842542854996
501 => 0.011957356225078
502 => 0.011983420870177
503 => 0.01209248469177
504 => 0.011980707262941
505 => 0.012427896674212
506 => 0.012725251538481
507 => 0.013070644515072
508 => 0.013575356486751
509 => 0.013765132856949
510 => 0.013730851454295
511 => 0.014113518311024
512 => 0.014801162146359
513 => 0.013869843933906
514 => 0.014850524273036
515 => 0.014540052200166
516 => 0.013803928500546
517 => 0.013756530812619
518 => 0.014255042328574
519 => 0.015360692891005
520 => 0.015083739965301
521 => 0.015361145886776
522 => 0.015037537144093
523 => 0.01502146724243
524 => 0.015345428932452
525 => 0.016102383079423
526 => 0.015742782538199
527 => 0.015227206984685
528 => 0.015607899950156
529 => 0.015278108471994
530 => 0.014534995968873
531 => 0.015083528184618
601 => 0.014716740313248
602 => 0.014823788513629
603 => 0.015594722063673
604 => 0.015501961299294
605 => 0.015622002317815
606 => 0.015410133062146
607 => 0.015212213768636
608 => 0.014842782709619
609 => 0.014733412385776
610 => 0.014763638408554
611 => 0.01473339740726
612 => 0.014526704124987
613 => 0.014482068730359
614 => 0.014407674450459
615 => 0.014430732348573
616 => 0.014290849337545
617 => 0.014554837480659
618 => 0.014603836006276
619 => 0.01479594456205
620 => 0.014815889909606
621 => 0.015350909502941
622 => 0.015056229701571
623 => 0.01525392635376
624 => 0.015236242504395
625 => 0.01381988253324
626 => 0.014015044440615
627 => 0.014318655123311
628 => 0.014181878922291
629 => 0.013988509374751
630 => 0.013832353097293
701 => 0.013595760369145
702 => 0.013928760090652
703 => 0.014366619313862
704 => 0.014826994742084
705 => 0.0153801056541
706 => 0.015256657737459
707 => 0.01481665471832
708 => 0.014836392932336
709 => 0.014958406804683
710 => 0.014800387753864
711 => 0.01475378485088
712 => 0.014952004281449
713 => 0.014953369309728
714 => 0.014771549294521
715 => 0.01456948962033
716 => 0.014568642982917
717 => 0.01453268841556
718 => 0.015043933381752
719 => 0.015325066420461
720 => 0.015357297870281
721 => 0.015322896987082
722 => 0.015336136521703
723 => 0.015172551400822
724 => 0.015546458477496
725 => 0.015889592586629
726 => 0.01579762531539
727 => 0.015659753301885
728 => 0.015549931602313
729 => 0.015771754813155
730 => 0.015761877374758
731 => 0.015886595609529
801 => 0.015880937669993
802 => 0.015838999618529
803 => 0.01579762681313
804 => 0.015961665309968
805 => 0.015914424857256
806 => 0.015867111027073
807 => 0.015772215897257
808 => 0.01578511372144
809 => 0.015647265513482
810 => 0.015583490624976
811 => 0.014624469319197
812 => 0.014368187489368
813 => 0.01444881897013
814 => 0.014475364947193
815 => 0.014363830766417
816 => 0.014523742130869
817 => 0.014498820114107
818 => 0.014595777102435
819 => 0.014535202585511
820 => 0.014537688584815
821 => 0.014715825323241
822 => 0.014767539176253
823 => 0.014741237093229
824 => 0.014759658170597
825 => 0.015184164123482
826 => 0.015123812951918
827 => 0.015091752594868
828 => 0.015100633532875
829 => 0.015209103905348
830 => 0.015239469687377
831 => 0.015110807735152
901 => 0.015171485455607
902 => 0.015429843488156
903 => 0.015520254177749
904 => 0.01580880169934
905 => 0.015686221583645
906 => 0.015911222691146
907 => 0.016602799387073
908 => 0.017155278705247
909 => 0.016647195892081
910 => 0.017661753802091
911 => 0.018451732664722
912 => 0.018421411960195
913 => 0.018283660872955
914 => 0.017384290940524
915 => 0.016556677319851
916 => 0.017249011255875
917 => 0.017250776157458
918 => 0.017191304058353
919 => 0.016821927958527
920 => 0.017178450570748
921 => 0.017206750041006
922 => 0.017190909863098
923 => 0.01690771007341
924 => 0.016475316338626
925 => 0.016559805039398
926 => 0.016698199254786
927 => 0.016436190132999
928 => 0.016352462342895
929 => 0.016508128234562
930 => 0.017009716171787
1001 => 0.016914893877756
1002 => 0.016912417684452
1003 => 0.017318107669229
1004 => 0.017027721193507
1005 => 0.016560870712485
1006 => 0.016442984809026
1007 => 0.016024569269206
1008 => 0.016313570372905
1009 => 0.016323971008128
1010 => 0.016165688057152
1011 => 0.01657371450161
1012 => 0.016569954466092
1013 => 0.016957314848384
1014 => 0.017697802413409
1015 => 0.017478803803251
1016 => 0.017224132246618
1017 => 0.017251822106101
1018 => 0.017555511520225
1019 => 0.01737189396789
1020 => 0.017437924119937
1021 => 0.017555411575681
1022 => 0.017626294674781
1023 => 0.017241623118969
1024 => 0.017151937778342
1025 => 0.016968473046695
1026 => 0.01692061052274
1027 => 0.017070038718549
1028 => 0.017030669668329
1029 => 0.016323096875011
1030 => 0.016249151581211
1031 => 0.016251419377802
1101 => 0.016065480420636
1102 => 0.015781878880494
1103 => 0.016527166795018
1104 => 0.016467309745184
1105 => 0.016401232194735
1106 => 0.016409326317632
1107 => 0.016732830541176
1108 => 0.016545181754166
1109 => 0.017044076809464
1110 => 0.016941518984253
1111 => 0.016836330937811
1112 => 0.016821790745687
1113 => 0.016781302322029
1114 => 0.016642452452228
1115 => 0.016474782890859
1116 => 0.016364072923155
1117 => 0.015094992269989
1118 => 0.015330526257314
1119 => 0.015601486640133
1120 => 0.015695021078477
1121 => 0.015535023949304
1122 => 0.016648770114081
1123 => 0.016852262270711
1124 => 0.016235871254814
1125 => 0.016120569662819
1126 => 0.016656329267257
1127 => 0.016333200731833
1128 => 0.016478705491549
1129 => 0.016164203787891
1130 => 0.016803246969125
1201 => 0.016798378530774
1202 => 0.01654977629983
1203 => 0.016759893203069
1204 => 0.016723380220408
1205 => 0.016442708913952
1206 => 0.016812144750164
1207 => 0.01681232798573
1208 => 0.016573053743524
1209 => 0.016293633812495
1210 => 0.016243680128431
1211 => 0.016206046737822
1212 => 0.016469449984428
1213 => 0.016705616511695
1214 => 0.01714506386829
1215 => 0.01725555137475
1216 => 0.017686791468033
1217 => 0.017430008989182
1218 => 0.017543837336167
1219 => 0.017667414108821
1220 => 0.017726661358017
1221 => 0.017630121144835
1222 => 0.018300014515207
1223 => 0.018356574040669
1224 => 0.018375537960318
1225 => 0.018149653684941
1226 => 0.018350291790349
1227 => 0.018256419865264
1228 => 0.018500648535962
1229 => 0.018538946709996
1230 => 0.018506509519087
1231 => 0.018518665964021
]
'min_raw' => 0.0083043815065118
'max_raw' => 0.018538946709996
'avg_raw' => 0.013421664108254
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.0083043'
'max' => '$0.018538'
'avg' => '$0.013421'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0012805187788356
'max_diff' => -0.0017691060506283
'year' => 2031
]
6 => [
'items' => [
101 => 0.017947030149697
102 => 0.017917387817105
103 => 0.017513212508891
104 => 0.017677916934501
105 => 0.017370009905312
106 => 0.017467650396062
107 => 0.017510689394032
108 => 0.017488208263934
109 => 0.017687229075605
110 => 0.017518020728419
111 => 0.017071452079767
112 => 0.016624761763785
113 => 0.016619153930734
114 => 0.016501548255275
115 => 0.016416540892472
116 => 0.016432916326346
117 => 0.0164906254912
118 => 0.016413186730901
119 => 0.016429712216656
120 => 0.016704145388916
121 => 0.016759181004445
122 => 0.016572148479074
123 => 0.015821185901048
124 => 0.015636897800753
125 => 0.015769360432653
126 => 0.015706051826291
127 => 0.012676009630902
128 => 0.013387873099458
129 => 0.012964907999041
130 => 0.013159829777002
131 => 0.012728091935758
201 => 0.012934139862919
202 => 0.012896090334438
203 => 0.014040745726303
204 => 0.014022873506781
205 => 0.01403142799249
206 => 0.013623100101036
207 => 0.014273577519432
208 => 0.014594026086145
209 => 0.014534719584909
210 => 0.014549645753562
211 => 0.014293164723345
212 => 0.014033911289502
213 => 0.013746359332552
214 => 0.014280595326069
215 => 0.014221197403302
216 => 0.01435743486743
217 => 0.014703925097203
218 => 0.014754947099726
219 => 0.01482352118853
220 => 0.01479894225913
221 => 0.015384512074863
222 => 0.015313595706463
223 => 0.015484483750274
224 => 0.015132954078848
225 => 0.014735164888128
226 => 0.014810771608575
227 => 0.014803490073405
228 => 0.014710787773335
229 => 0.014627100281831
301 => 0.014487784187282
302 => 0.014928600925338
303 => 0.014910704570799
304 => 0.015200425748552
305 => 0.015149214716183
306 => 0.014807214908556
307 => 0.014819429498591
308 => 0.014901578486714
309 => 0.015185897072566
310 => 0.015270302186733
311 => 0.015231202374889
312 => 0.015323748729332
313 => 0.015396893594466
314 => 0.015332934598235
315 => 0.016238459107277
316 => 0.015862422198174
317 => 0.016045699971223
318 => 0.01608941064016
319 => 0.015977446680815
320 => 0.016001727654468
321 => 0.016038506713383
322 => 0.016261821957039
323 => 0.016847865773178
324 => 0.01710742059001
325 => 0.01788830406266
326 => 0.01708586817565
327 => 0.017038254950924
328 => 0.01717891564477
329 => 0.017637376908126
330 => 0.018008916701
331 => 0.01813217788494
401 => 0.018148468885219
402 => 0.01837971506054
403 => 0.018512261055749
404 => 0.018351635692478
405 => 0.018215522515283
406 => 0.017727982009558
407 => 0.017784416150624
408 => 0.018173191419526
409 => 0.0187223593856
410 => 0.01919360263168
411 => 0.019028589671388
412 => 0.020287522077419
413 => 0.020412340083199
414 => 0.02039509427065
415 => 0.020679448263227
416 => 0.020115063495645
417 => 0.019873778073063
418 => 0.018244951729142
419 => 0.018702585492821
420 => 0.019367783044217
421 => 0.019279741653927
422 => 0.018796657411322
423 => 0.019193236168962
424 => 0.019062114829522
425 => 0.018958693988876
426 => 0.019432484908992
427 => 0.018911532330066
428 => 0.019362586143734
429 => 0.018784104962151
430 => 0.019029343436691
501 => 0.018890134217692
502 => 0.018980219643224
503 => 0.018453582086308
504 => 0.018737742928616
505 => 0.018441760061034
506 => 0.018441619726616
507 => 0.01843508588841
508 => 0.018783308419531
509 => 0.018794663943769
510 => 0.018537326967136
511 => 0.018500240688444
512 => 0.018637368098474
513 => 0.018476827815054
514 => 0.018551943603238
515 => 0.018479102995756
516 => 0.018462705040755
517 => 0.018332043345417
518 => 0.018275750694448
519 => 0.018297824493376
520 => 0.018222475237811
521 => 0.018177074585832
522 => 0.018426054556013
523 => 0.018293034601769
524 => 0.01840566734025
525 => 0.018277308119366
526 => 0.017832359136328
527 => 0.017576464270933
528 => 0.016735996888768
529 => 0.016974352395753
530 => 0.017132382343481
531 => 0.0170801534467
601 => 0.017192361326886
602 => 0.017199249979415
603 => 0.017162770053743
604 => 0.017120530973182
605 => 0.017099971324732
606 => 0.01725320610007
607 => 0.017342164044799
608 => 0.017148242762904
609 => 0.017102809719803
610 => 0.017298874842486
611 => 0.01741847445406
612 => 0.018301530788704
613 => 0.018236111123199
614 => 0.018400301645655
615 => 0.018381816312535
616 => 0.018553914137671
617 => 0.0188352213478
618 => 0.018263245134875
619 => 0.018362520427989
620 => 0.018338180418719
621 => 0.018603918257639
622 => 0.018604747862166
623 => 0.018445424753144
624 => 0.018531796395267
625 => 0.018483586114116
626 => 0.018570708608166
627 => 0.018235237403682
628 => 0.018643805118865
629 => 0.018875436685852
630 => 0.018878652890384
701 => 0.018988444414794
702 => 0.019099998962291
703 => 0.019314118201858
704 => 0.019094027292913
705 => 0.018698105173139
706 => 0.018726689471366
707 => 0.018494560477405
708 => 0.018498462607731
709 => 0.018477632730236
710 => 0.0185401447606
711 => 0.01824895527899
712 => 0.018317296868303
713 => 0.018221618243057
714 => 0.018362312441343
715 => 0.018210948741572
716 => 0.018338168681229
717 => 0.018393072589778
718 => 0.018595669194318
719 => 0.018181025058355
720 => 0.017335537596186
721 => 0.017513269311279
722 => 0.017250390144132
723 => 0.017274720611903
724 => 0.017323872028966
725 => 0.017164556204923
726 => 0.017194948643531
727 => 0.017193862811756
728 => 0.017184505700129
729 => 0.017143061501227
730 => 0.017082959213333
731 => 0.017322388229793
801 => 0.01736307188527
802 => 0.017453506611757
803 => 0.017722579015321
804 => 0.017695692337041
805 => 0.017739545624834
806 => 0.017643814143808
807 => 0.017279161320743
808 => 0.017298963723433
809 => 0.017052027444576
810 => 0.017447191895918
811 => 0.017353611737924
812 => 0.017293280001291
813 => 0.017276817927981
814 => 0.017546557309989
815 => 0.017627267560733
816 => 0.017576974348733
817 => 0.017473821503633
818 => 0.017671905460625
819 => 0.017724904371025
820 => 0.017736768872539
821 => 0.018087735665497
822 => 0.017756384017511
823 => 0.017836143652533
824 => 0.018458405556587
825 => 0.017894099875883
826 => 0.01819302518047
827 => 0.018178394342343
828 => 0.018331314413089
829 => 0.018165850433139
830 => 0.018167901557477
831 => 0.018303684220597
901 => 0.018113001958778
902 => 0.018065786349181
903 => 0.018000558322687
904 => 0.018142981332217
905 => 0.018228357485191
906 => 0.018916426576289
907 => 0.019360950588901
908 => 0.019341652629165
909 => 0.019517999856886
910 => 0.019438553815642
911 => 0.019182001591658
912 => 0.019619904954788
913 => 0.019481334008039
914 => 0.019492757628525
915 => 0.0194923324408
916 => 0.019584470006306
917 => 0.019519182096861
918 => 0.019390492925679
919 => 0.019475922803182
920 => 0.019729618997625
921 => 0.020517099769526
922 => 0.020957784442214
923 => 0.02049056999889
924 => 0.020812848265644
925 => 0.02061959614508
926 => 0.020584476486021
927 => 0.020786891053719
928 => 0.020989659921323
929 => 0.020976744421051
930 => 0.020829544635467
1001 => 0.020746395211647
1002 => 0.021376030505913
1003 => 0.021839935065171
1004 => 0.021808299884285
1005 => 0.021947927284403
1006 => 0.022357877649662
1007 => 0.022395358373396
1008 => 0.02239063666369
1009 => 0.022297736779206
1010 => 0.022701386152586
1011 => 0.023038117561394
1012 => 0.022276233140084
1013 => 0.022566348753919
1014 => 0.022696590999911
1015 => 0.022887825258161
1016 => 0.02321046950641
1017 => 0.02356094673717
1018 => 0.023610508060386
1019 => 0.023575341929837
1020 => 0.023344192774817
1021 => 0.023727689142777
1022 => 0.023952332321031
1023 => 0.024086102192814
1024 => 0.024425320330471
1025 => 0.022697395331683
1026 => 0.021474284134096
1027 => 0.021283277658653
1028 => 0.021671696837425
1029 => 0.021774119877282
1030 => 0.021732833278343
1031 => 0.020356110425054
1101 => 0.02127602949775
1102 => 0.022265785070977
1103 => 0.022303805613452
1104 => 0.022799297948223
1105 => 0.022960650563341
1106 => 0.023359586838497
1107 => 0.023334633265867
1108 => 0.023431767900405
1109 => 0.023409438330062
1110 => 0.024148383773844
1111 => 0.024963550332796
1112 => 0.02493532370693
1113 => 0.024818133869468
1114 => 0.024992180761936
1115 => 0.025833520009332
1116 => 0.025756062973618
1117 => 0.025831305886039
1118 => 0.026823292274521
1119 => 0.028113015687966
1120 => 0.027513809676307
1121 => 0.028813914304721
1122 => 0.029632261252723
1123 => 0.031047507680637
1124 => 0.030870311857627
1125 => 0.031421256906456
1126 => 0.030553094352554
1127 => 0.028559617644193
1128 => 0.028244142324373
1129 => 0.028875731903761
1130 => 0.030428433255076
1201 => 0.028826831812613
1202 => 0.029150833698493
1203 => 0.029057521133563
1204 => 0.029052548903531
1205 => 0.029242318700341
1206 => 0.028967047712341
1207 => 0.027845544186922
1208 => 0.028359522643559
1209 => 0.028161050878179
1210 => 0.028381270098919
1211 => 0.029569702407937
1212 => 0.029044268155432
1213 => 0.028490765853231
1214 => 0.029184980572185
1215 => 0.030068954467473
1216 => 0.03001363696976
1217 => 0.029906297903275
1218 => 0.030511362600955
1219 => 0.0315107522142
1220 => 0.031780883210787
1221 => 0.031980288389883
1222 => 0.032007782995102
1223 => 0.032290994516662
1224 => 0.030768094786743
1225 => 0.033184975768963
1226 => 0.033602304349602
1227 => 0.03352386387294
1228 => 0.033987707026449
1229 => 0.033851232604122
1230 => 0.03365350257835
1231 => 0.034388792638931
]
'min_raw' => 0.012676009630902
'max_raw' => 0.034388792638931
'avg_raw' => 0.023532401134917
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.012676'
'max' => '$0.034388'
'avg' => '$0.023532'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0043716281243904
'max_diff' => 0.015849845928935
'year' => 2032
]
7 => [
'items' => [
101 => 0.033545841919323
102 => 0.032349379497384
103 => 0.031692976549365
104 => 0.032557380901832
105 => 0.033085242476329
106 => 0.03343412539877
107 => 0.0335396971603
108 => 0.030886313157637
109 => 0.029456286343625
110 => 0.030372917136116
111 => 0.031491269965433
112 => 0.030761882280309
113 => 0.030790472896652
114 => 0.029750557737378
115 => 0.031583279382137
116 => 0.031316267254111
117 => 0.032701526646646
118 => 0.032370923375216
119 => 0.033500548634369
120 => 0.033203080445769
121 => 0.034437854265426
122 => 0.034930438972253
123 => 0.035757565359704
124 => 0.036366002897323
125 => 0.036723289056969
126 => 0.03670183893609
127 => 0.038117584699863
128 => 0.037282768885356
129 => 0.036234043471354
130 => 0.036215075337301
131 => 0.036758225089766
201 => 0.037896517965077
202 => 0.038191660746157
203 => 0.038356605296662
204 => 0.038103986975803
205 => 0.037197854240943
206 => 0.036806590720228
207 => 0.037139958575873
208 => 0.036732278335046
209 => 0.037436048805586
210 => 0.038402475978898
211 => 0.038202912589277
212 => 0.038870023080567
213 => 0.039560412256982
214 => 0.040547699786573
215 => 0.04080581330596
216 => 0.041232465138328
217 => 0.041671630021661
218 => 0.041812677946362
219 => 0.042081982199216
220 => 0.042080562832872
221 => 0.042892129325116
222 => 0.043787312298185
223 => 0.044125223146984
224 => 0.044902230511287
225 => 0.043571632629505
226 => 0.044580906407643
227 => 0.045491296619285
228 => 0.044405891877983
301 => 0.045901869446998
302 => 0.045959954866045
303 => 0.046836975731466
304 => 0.045947947067494
305 => 0.045420044684708
306 => 0.046944079083568
307 => 0.047681511322544
308 => 0.047459390730742
309 => 0.045769042059683
310 => 0.044785186630662
311 => 0.042210247201374
312 => 0.045260374184471
313 => 0.046746002064513
314 => 0.045765194642375
315 => 0.046259856855941
316 => 0.048958573498395
317 => 0.049986070066878
318 => 0.049772357963377
319 => 0.049808471790868
320 => 0.05036289028884
321 => 0.052821487232691
322 => 0.051348238954104
323 => 0.052474482061524
324 => 0.053071837344728
325 => 0.053626694222739
326 => 0.052264141094661
327 => 0.050491479494911
328 => 0.049930003154999
329 => 0.045667672673845
330 => 0.045445799861938
331 => 0.04532125592918
401 => 0.044536024050232
402 => 0.043919046886492
403 => 0.043428403738992
404 => 0.042140809601507
405 => 0.042575334825186
406 => 0.040523178511816
407 => 0.041836075397156
408 => 0.038560784369971
409 => 0.041288544063209
410 => 0.039803948478194
411 => 0.040800814485461
412 => 0.040797336513872
413 => 0.038961790137838
414 => 0.037903085295017
415 => 0.038577733226271
416 => 0.039301009362196
417 => 0.039418358481856
418 => 0.040356104871521
419 => 0.040617809732085
420 => 0.039824831786744
421 => 0.038492911243463
422 => 0.038802286007794
423 => 0.037896815825292
424 => 0.036310014158865
425 => 0.037449682818592
426 => 0.037838815806717
427 => 0.03801067910269
428 => 0.036450241909162
429 => 0.035959918664216
430 => 0.035698874682817
501 => 0.038291478396909
502 => 0.038433507080839
503 => 0.037706868253021
504 => 0.040991344657479
505 => 0.040247966490944
506 => 0.041078502035037
507 => 0.038774213490644
508 => 0.038862240416175
509 => 0.037771353291398
510 => 0.038382177188169
511 => 0.037950466545704
512 => 0.038332828653589
513 => 0.038562014924518
514 => 0.039652723045453
515 => 0.041300998197921
516 => 0.039489807624095
517 => 0.038700645954353
518 => 0.039190237415847
519 => 0.040494083995416
520 => 0.042469478306141
521 => 0.041300005115676
522 => 0.041818997458662
523 => 0.041932374197242
524 => 0.041070047962844
525 => 0.042501273504413
526 => 0.043268278899395
527 => 0.044055067725243
528 => 0.044738214417405
529 => 0.043740806966342
530 => 0.044808175911722
531 => 0.043948064957729
601 => 0.043176456515361
602 => 0.043177626726862
603 => 0.042693585479564
604 => 0.041755694569802
605 => 0.041582733096214
606 => 0.042482500524446
607 => 0.043204028793596
608 => 0.04326345731773
609 => 0.043662932440992
610 => 0.043899337704018
611 => 0.04621643065904
612 => 0.047148384613548
613 => 0.048287960268135
614 => 0.048731889208561
615 => 0.050067956161911
616 => 0.048988973587029
617 => 0.048755528919834
618 => 0.045514667515177
619 => 0.046045358388634
620 => 0.04689504568109
621 => 0.045528678545671
622 => 0.046395323998733
623 => 0.046566418169228
624 => 0.045482249913256
625 => 0.046061351022916
626 => 0.044523430167173
627 => 0.041334520669924
628 => 0.042504823672281
629 => 0.043366560601748
630 => 0.042136755752002
701 => 0.04434113334515
702 => 0.043053381462823
703 => 0.042645225939117
704 => 0.041052865723189
705 => 0.041804398449541
706 => 0.042820857222845
707 => 0.042192803876959
708 => 0.043496108872357
709 => 0.045341936324587
710 => 0.046657382887971
711 => 0.046758366541143
712 => 0.045912622528962
713 => 0.047267932705948
714 => 0.047277804660962
715 => 0.045749009244717
716 => 0.044812630564635
717 => 0.044599883358363
718 => 0.045131367591177
719 => 0.045776687567216
720 => 0.046794177308614
721 => 0.047409025049503
722 => 0.049012221867695
723 => 0.049446000959442
724 => 0.04992259266767
725 => 0.050559466165302
726 => 0.051324196090222
727 => 0.049651010550596
728 => 0.049717489331293
729 => 0.048159442123624
730 => 0.046494445235658
731 => 0.047757970328832
801 => 0.049409861308458
802 => 0.049030915692554
803 => 0.048988276569608
804 => 0.049059983747297
805 => 0.048774271128112
806 => 0.047482003540545
807 => 0.046833034848091
808 => 0.047670370030927
809 => 0.048115376415103
810 => 0.048805542508324
811 => 0.048720464969696
812 => 0.050498258707407
813 => 0.05118905559619
814 => 0.051012320191173
815 => 0.051044843759071
816 => 0.052295498529452
817 => 0.053686483850886
818 => 0.054989325161089
819 => 0.056314631300163
820 => 0.05471692302193
821 => 0.05390570529119
822 => 0.054742674919679
823 => 0.054298567053603
824 => 0.056850542583029
825 => 0.057027235831744
826 => 0.059579026824293
827 => 0.062000980337842
828 => 0.060479794729786
829 => 0.061914204242478
830 => 0.063465635079577
831 => 0.066458596874924
901 => 0.065450672635917
902 => 0.064678618465024
903 => 0.063949031004069
904 => 0.065467186691569
905 => 0.067420269730409
906 => 0.067840945110578
907 => 0.068522599936816
908 => 0.067805923235813
909 => 0.068669081382822
910 => 0.071716408932671
911 => 0.070892994129198
912 => 0.06972361273773
913 => 0.072129185169887
914 => 0.072999752481659
915 => 0.079109849795312
916 => 0.086824100049331
917 => 0.083630349789669
918 => 0.08164788594182
919 => 0.082113811970736
920 => 0.084930795019652
921 => 0.085835520568392
922 => 0.08337616464932
923 => 0.084244850736909
924 => 0.089031396486857
925 => 0.091599224710931
926 => 0.088111769077298
927 => 0.0784900172986
928 => 0.069618322737907
929 => 0.071971495633016
930 => 0.071704718854167
1001 => 0.076847265128743
1002 => 0.070873355958456
1003 => 0.07097394126794
1004 => 0.076222829953423
1005 => 0.074822516440869
1006 => 0.072554187889136
1007 => 0.069634884046618
1008 => 0.0642382808908
1009 => 0.05945835898028
1010 => 0.068832886597083
1011 => 0.068428639919774
1012 => 0.06784323082503
1013 => 0.069145995417503
1014 => 0.075471850482373
1015 => 0.075326019048333
1016 => 0.074398313868823
1017 => 0.075101970071063
1018 => 0.072430833554756
1019 => 0.073119246255656
1020 => 0.069616917416162
1021 => 0.071200116321786
1022 => 0.072549321074823
1023 => 0.072820193904312
1024 => 0.073430484220263
1025 => 0.068215620289943
1026 => 0.070556941094296
1027 => 0.071932247714761
1028 => 0.065718562369416
1029 => 0.071809423134005
1030 => 0.068124841110942
1031 => 0.066874238631749
1101 => 0.068558010115634
1102 => 0.067901842730842
1103 => 0.067337708544841
1104 => 0.067022911975996
1105 => 0.068259287922683
1106 => 0.068201609506982
1107 => 0.06617865848797
1108 => 0.063539801349703
1109 => 0.064425488422838
1110 => 0.064103710005807
1111 => 0.062937543512246
1112 => 0.063723398925427
1113 => 0.060262889398102
1114 => 0.054309262617972
1115 => 0.058242410833446
1116 => 0.058090988905592
1117 => 0.058014635103131
1118 => 0.060970287282827
1119 => 0.060686169524247
1120 => 0.060170493010335
1121 => 0.06292807270867
1122 => 0.061921519024096
1123 => 0.065023480306077
1124 => 0.067066632628666
1125 => 0.066548423110604
1126 => 0.068470017745411
1127 => 0.064445892864167
1128 => 0.065782545729849
1129 => 0.066058028032945
1130 => 0.06289404460324
1201 => 0.060732654703294
1202 => 0.060588514638617
1203 => 0.056840962409985
1204 => 0.058842874561335
1205 => 0.06060447440977
1206 => 0.05976080478804
1207 => 0.059493724189714
1208 => 0.06085818104385
1209 => 0.060964211027199
1210 => 0.058546716170287
1211 => 0.059049389903144
1212 => 0.061145622931716
1213 => 0.058996570209204
1214 => 0.054821311815134
1215 => 0.05378579000594
1216 => 0.053647632308141
1217 => 0.050839215033338
1218 => 0.053854988524771
1219 => 0.052538522578056
1220 => 0.056697222730045
1221 => 0.054321795506785
1222 => 0.054219395586897
1223 => 0.054064603089183
1224 => 0.051647282326504
1225 => 0.052176521944782
1226 => 0.053935795041407
1227 => 0.054563523501913
1228 => 0.054498046280655
1229 => 0.053927173643466
1230 => 0.05418851621343
1231 => 0.053346640737788
]
'min_raw' => 0.029456286343625
'max_raw' => 0.091599224710931
'avg_raw' => 0.060527755527278
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.029456'
'max' => '$0.091599'
'avg' => '$0.060527'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.016780276712723
'max_diff' => 0.057210432072
'year' => 2033
]
8 => [
'items' => [
101 => 0.053049356985216
102 => 0.05211104768776
103 => 0.05073199223506
104 => 0.050923758353996
105 => 0.048191488652709
106 => 0.046702803106919
107 => 0.046290754568404
108 => 0.045739746042009
109 => 0.046352992447638
110 => 0.048183748475937
111 => 0.045975468289251
112 => 0.042189526802022
113 => 0.042417068336335
114 => 0.042928286606248
115 => 0.041975634742313
116 => 0.041074029703108
117 => 0.041857902135168
118 => 0.040253748817844
119 => 0.043122140870714
120 => 0.043044558904259
121 => 0.044113718081395
122 => 0.044782285256212
123 => 0.043241454369451
124 => 0.04285393956828
125 => 0.043074685610593
126 => 0.039426245249051
127 => 0.043815562666724
128 => 0.043853521666022
129 => 0.043528493668453
130 => 0.045865669688392
131 => 0.050797840073945
201 => 0.048942159178806
202 => 0.048223583447956
203 => 0.046857570458335
204 => 0.048677701661179
205 => 0.048537943983271
206 => 0.047905906762243
207 => 0.047523648678889
208 => 0.048227970918141
209 => 0.047436375359056
210 => 0.047294183045053
211 => 0.04643265232896
212 => 0.046125125060464
213 => 0.045897444113883
214 => 0.045646789763166
215 => 0.046199670801676
216 => 0.044946769630853
217 => 0.043435893642257
218 => 0.04331028065171
219 => 0.043657109162617
220 => 0.043503663364887
221 => 0.043309546012265
222 => 0.042938923121396
223 => 0.04282896722678
224 => 0.043186270541265
225 => 0.042782895931288
226 => 0.043378097141261
227 => 0.043216235346134
228 => 0.042312088516235
301 => 0.041185186808151
302 => 0.041175155019192
303 => 0.040932365894675
304 => 0.040623137441013
305 => 0.040537117159392
306 => 0.041791886585337
307 => 0.044389221744955
308 => 0.043879302704159
309 => 0.04424777146974
310 => 0.046060273109453
311 => 0.046636412876892
312 => 0.046227482516582
313 => 0.045667713417664
314 => 0.04569234041714
315 => 0.047605240881774
316 => 0.047724546137341
317 => 0.048025992028827
318 => 0.048413435187985
319 => 0.046293465761938
320 => 0.045592490047819
321 => 0.045260328865817
322 => 0.044237400987807
323 => 0.045340541005033
324 => 0.04469778855816
325 => 0.044784517822794
326 => 0.044728035275424
327 => 0.044758878565621
328 => 0.043121339096677
329 => 0.043717972412619
330 => 0.04272595380593
331 => 0.041397752250888
401 => 0.041393299653548
402 => 0.041718375102483
403 => 0.041525007505253
404 => 0.041004660273043
405 => 0.041078573141409
406 => 0.040431018639749
407 => 0.041157197982263
408 => 0.041178022207411
409 => 0.040898403605288
410 => 0.042017183075868
411 => 0.042475547937802
412 => 0.042291496983873
413 => 0.042462634432232
414 => 0.043900492142451
415 => 0.044134925687347
416 => 0.044239045582179
417 => 0.044099538716347
418 => 0.042488915831662
419 => 0.042560353805496
420 => 0.042036189353349
421 => 0.041593325626374
422 => 0.041611037852939
423 => 0.041838727376858
424 => 0.04283306088163
425 => 0.04492557712326
426 => 0.04500498658502
427 => 0.045101233169211
428 => 0.044709749941649
429 => 0.044591674854226
430 => 0.044747446372302
501 => 0.045533285453381
502 => 0.047554676923146
503 => 0.046840182173534
504 => 0.046259286820327
505 => 0.046768888653353
506 => 0.046690439445549
507 => 0.046028249183199
508 => 0.046009663708028
509 => 0.044738708879543
510 => 0.044268865817694
511 => 0.043876229788069
512 => 0.043447481493741
513 => 0.043193305133091
514 => 0.04358383554414
515 => 0.043673154469767
516 => 0.042819252900705
517 => 0.042702869272117
518 => 0.043400183726158
519 => 0.043093321633437
520 => 0.043408936905614
521 => 0.043482162356057
522 => 0.04347037137201
523 => 0.043149972104323
524 => 0.043354185043103
525 => 0.042871160564082
526 => 0.042345943991076
527 => 0.042010888539648
528 => 0.04171850821962
529 => 0.041880737814415
530 => 0.041302418930923
531 => 0.041117403080835
601 => 0.043285002294381
602 => 0.044886231139047
603 => 0.044862948637489
604 => 0.04472122239703
605 => 0.044510645951826
606 => 0.045517880474815
607 => 0.045166980107296
608 => 0.045422289443373
609 => 0.045487276384704
610 => 0.045683972283297
611 => 0.045754274160461
612 => 0.04554177305988
613 => 0.044828593411506
614 => 0.043051417534844
615 => 0.042224137366864
616 => 0.041951121131989
617 => 0.041961044753595
618 => 0.041687306968703
619 => 0.041767935014421
620 => 0.041659267824811
621 => 0.041453478457106
622 => 0.041868030900859
623 => 0.041915804208178
624 => 0.041819042714273
625 => 0.041841833548905
626 => 0.041040689706749
627 => 0.041101598933075
628 => 0.04076244862092
629 => 0.040698862025909
630 => 0.039841519569979
701 => 0.038322613135521
702 => 0.039164234744026
703 => 0.038147674190859
704 => 0.037762687305969
705 => 0.039585155341295
706 => 0.039402230097943
707 => 0.039089141597016
708 => 0.038626018450785
709 => 0.038454241570875
710 => 0.037410579626496
711 => 0.037348914511103
712 => 0.03786618155198
713 => 0.037627480610687
714 => 0.037292254085996
715 => 0.036078097594935
716 => 0.034712983705582
717 => 0.034754187913102
718 => 0.035188405242458
719 => 0.036450950689746
720 => 0.035957652341232
721 => 0.03559975872944
722 => 0.035532736014193
723 => 0.03637166561706
724 => 0.037558926766301
725 => 0.038115963134054
726 => 0.037563957011057
727 => 0.036929842099078
728 => 0.036968437735565
729 => 0.03722519721396
730 => 0.037252179004756
731 => 0.036839435385124
801 => 0.036955620296391
802 => 0.036779124792005
803 => 0.035695972207378
804 => 0.035676381411836
805 => 0.035410558299373
806 => 0.035402509281173
807 => 0.034950277854191
808 => 0.034887007551428
809 => 0.033989074604671
810 => 0.034580096789418
811 => 0.034183670137947
812 => 0.033586161666586
813 => 0.033483150980909
814 => 0.033480054355309
815 => 0.034093561954947
816 => 0.034572927595915
817 => 0.034190566149274
818 => 0.034103509859639
819 => 0.035033043275113
820 => 0.034914751675108
821 => 0.034812311912404
822 => 0.037452620552381
823 => 0.035362610237987
824 => 0.034451246447293
825 => 0.033323260693019
826 => 0.033690538542408
827 => 0.033767929381709
828 => 0.031055326977395
829 => 0.029954824519798
830 => 0.029577173547911
831 => 0.029359830074389
901 => 0.0294588762245
902 => 0.028468294936599
903 => 0.029133981944771
904 => 0.028276222281201
905 => 0.028132416082212
906 => 0.029666196616708
907 => 0.029879613217867
908 => 0.028969111693981
909 => 0.029553801069123
910 => 0.029341784573906
911 => 0.028290926108713
912 => 0.028250791044934
913 => 0.027723507206561
914 => 0.026898410101778
915 => 0.026521318584581
916 => 0.026324926048367
917 => 0.026405961436423
918 => 0.026364987464498
919 => 0.026097604581824
920 => 0.026380313538346
921 => 0.025658108977839
922 => 0.025370521302647
923 => 0.025240624621747
924 => 0.024599626505753
925 => 0.025619739561455
926 => 0.025820714684474
927 => 0.026022085790569
928 => 0.027774883787238
929 => 0.02768731895268
930 => 0.028478862411279
1001 => 0.028448104488033
1002 => 0.028222343471487
1003 => 0.027269894878563
1004 => 0.027649523911938
1005 => 0.026481084754658
1006 => 0.027356558817432
1007 => 0.026957029015853
1008 => 0.027221477389627
1009 => 0.026745975369232
1010 => 0.027009137820316
1011 => 0.025868373341827
1012 => 0.024803143522803
1013 => 0.025231823097975
1014 => 0.025697846821643
1015 => 0.026708304995192
1016 => 0.026106484443125
1017 => 0.026322921871003
1018 => 0.0255978927188
1019 => 0.024101950483468
1020 => 0.024110417354061
1021 => 0.023880299232028
1022 => 0.023681443576796
1023 => 0.026175610773073
1024 => 0.025865421655268
1025 => 0.025371175892593
1026 => 0.026032743486479
1027 => 0.026207672458792
1028 => 0.026212652440713
1029 => 0.026695315079682
1030 => 0.026952912216621
1031 => 0.026998314828497
1101 => 0.02775779491953
1102 => 0.02801236262826
1103 => 0.029060890992748
1104 => 0.026931056899283
1105 => 0.026887194367704
1106 => 0.026042053099231
1107 => 0.02550605114561
1108 => 0.026078753611565
1109 => 0.026586089814718
1110 => 0.026057817449257
1111 => 0.026126798667748
1112 => 0.025417636178555
1113 => 0.025671128399245
1114 => 0.025889470048793
1115 => 0.025768914623441
1116 => 0.025588437316742
1117 => 0.026544494031645
1118 => 0.026490549564974
1119 => 0.027380851557541
1120 => 0.028074905626854
1121 => 0.029318774596067
1122 => 0.028020732482337
1123 => 0.027973426668463
1124 => 0.028435848587177
1125 => 0.028012291833874
1126 => 0.028279965081279
1127 => 0.029275648297698
1128 => 0.029296685515084
1129 => 0.028944285018947
1130 => 0.028922841416731
1201 => 0.028990523786853
1202 => 0.029386941542678
1203 => 0.029248420998106
1204 => 0.029408720479196
1205 => 0.029609177434893
1206 => 0.030438352395642
1207 => 0.03063826367152
1208 => 0.030152582913249
1209 => 0.030196434447784
1210 => 0.030014776511956
1211 => 0.029839297222113
1212 => 0.030233749038987
1213 => 0.030954617487295
1214 => 0.030950133002091
1215 => 0.031117360470418
1216 => 0.031221541797799
1217 => 0.030774319275289
1218 => 0.030483193857962
1219 => 0.030594829867757
1220 => 0.030773338278534
1221 => 0.030536941996018
1222 => 0.029077794630917
1223 => 0.029520406730794
1224 => 0.029446734434749
1225 => 0.029341816126322
1226 => 0.029786866015367
1227 => 0.029743939867862
1228 => 0.028458135093729
1229 => 0.028540448143586
1230 => 0.02846314082292
1231 => 0.02871293659158
]
'min_raw' => 0.023681443576796
'max_raw' => 0.053049356985216
'avg_raw' => 0.038365400281006
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.023681'
'max' => '$0.053049'
'avg' => '$0.038365'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0057748427668295
'max_diff' => -0.038549867725715
'year' => 2034
]
9 => [
'items' => [
101 => 0.027998802042606
102 => 0.028218465020101
103 => 0.028356235580373
104 => 0.028437383498777
105 => 0.028730545423699
106 => 0.028696146255472
107 => 0.028728407123104
108 => 0.029163088865885
109 => 0.031361559956112
110 => 0.0314812178869
111 => 0.030891978472868
112 => 0.03112736799654
113 => 0.030675471585119
114 => 0.030978832673549
115 => 0.031186384625717
116 => 0.030248497263817
117 => 0.030192961661084
118 => 0.029739200112425
119 => 0.029983025866306
120 => 0.029595081560188
121 => 0.029690269523194
122 => 0.029424115680293
123 => 0.029903139606813
124 => 0.030438762789456
125 => 0.030574082357792
126 => 0.030218114832237
127 => 0.029960370884332
128 => 0.029507857417946
129 => 0.030260397397467
130 => 0.030480463020719
131 => 0.030259241486433
201 => 0.030207979623152
202 => 0.030110838484865
203 => 0.030228588574856
204 => 0.030479264496073
205 => 0.030361050360885
206 => 0.030439132879842
207 => 0.030141562835921
208 => 0.030774467324553
209 => 0.031779671969259
210 => 0.031782903866559
211 => 0.031664689094153
212 => 0.031616318156256
213 => 0.031737613686618
214 => 0.031803411536036
215 => 0.032195659039429
216 => 0.0326165562384
217 => 0.034580699814163
218 => 0.034029176157736
219 => 0.035771881185577
220 => 0.037150134600673
221 => 0.037563412536143
222 => 0.03718321628174
223 => 0.035882585433227
224 => 0.035818770278811
225 => 0.037762461878671
226 => 0.037213279974995
227 => 0.037147956535036
228 => 0.036453025499556
301 => 0.036863815810408
302 => 0.036773969943494
303 => 0.036632143847161
304 => 0.037415903144364
305 => 0.038883030582054
306 => 0.038654365012256
307 => 0.038483676771892
308 => 0.037735770589219
309 => 0.038186177162082
310 => 0.038025796008455
311 => 0.038714895224831
312 => 0.038306688114467
313 => 0.03720911938194
314 => 0.037383910820229
315 => 0.037357491445963
316 => 0.037901200296255
317 => 0.037737992395081
318 => 0.037325622483865
319 => 0.038878016099969
320 => 0.038777212293406
321 => 0.038920129044154
322 => 0.03898304541768
323 => 0.039927960055559
324 => 0.040315061348802
325 => 0.04040294011953
326 => 0.040770656408622
327 => 0.040393791003275
328 => 0.041901521325143
329 => 0.042904074010681
330 => 0.044068590545823
331 => 0.045770262196203
401 => 0.046410106478088
402 => 0.04629452433559
403 => 0.047584712359998
404 => 0.04990315156059
405 => 0.046763147184743
406 => 0.050069579417036
407 => 0.049022801146888
408 => 0.046540908699104
409 => 0.046381104085056
410 => 0.048061870466059
411 => 0.051789648531355
412 => 0.050855882406107
413 => 0.051791175838223
414 => 0.050700106368624
415 => 0.050645925573203
416 => 0.051738185029398
417 => 0.054290308784759
418 => 0.053077890453516
419 => 0.051339591478506
420 => 0.052623124390725
421 => 0.051511209396798
422 => 0.049005753710067
423 => 0.050855168372749
424 => 0.049618517456111
425 => 0.049979437937565
426 => 0.052578694226397
427 => 0.052265944832946
428 => 0.052670671507886
429 => 0.051956339520158
430 => 0.051289040803804
501 => 0.050043478195477
502 => 0.049674728512646
503 => 0.049776637658757
504 => 0.049674678011535
505 => 0.048977797179487
506 => 0.048827305830157
507 => 0.048576480321429
508 => 0.048654221634771
509 => 0.048182596296772
510 => 0.049072650752342
511 => 0.049237852702429
512 => 0.049885560110811
513 => 0.049952807242636
514 => 0.051756663155442
515 => 0.050763129631236
516 => 0.051429677696831
517 => 0.05137005536405
518 => 0.046594698834203
519 => 0.047252700830689
520 => 0.048276345444819
521 => 0.047815194933671
522 => 0.047163236003508
523 => 0.046636744211576
524 => 0.045839055310248
525 => 0.046961787120608
526 => 0.048438060062014
527 => 0.049990247960652
528 => 0.051855100017484
529 => 0.05143888674767
530 => 0.049955385848613
531 => 0.050021934615247
601 => 0.050433312904601
602 => 0.049900540642228
603 => 0.049743415701104
604 => 0.050411726350509
605 => 0.050416328638654
606 => 0.049803309763115
607 => 0.049122051464224
608 => 0.049119196967076
609 => 0.048997973632963
610 => 0.050721671730464
611 => 0.051669531398555
612 => 0.05177820198195
613 => 0.051662217002451
614 => 0.051706855017781
615 => 0.051155316361581
616 => 0.052415970175946
617 => 0.053572870781747
618 => 0.053262796705816
619 => 0.052797951586368
620 => 0.052427680058753
621 => 0.053175572501308
622 => 0.053142270028133
623 => 0.053562766264214
624 => 0.053543690126041
625 => 0.053402293057511
626 => 0.053262801755551
627 => 0.05381586900044
628 => 0.0536565945159
629 => 0.053497072634093
630 => 0.05317712707855
701 => 0.053220612993281
702 => 0.052755848135897
703 => 0.052540826646678
704 => 0.049307419357516
705 => 0.048443347275221
706 => 0.04871520194212
707 => 0.048804703557167
708 => 0.048428658279613
709 => 0.048967810609519
710 => 0.048883784290007
711 => 0.049210681545476
712 => 0.049006450332488
713 => 0.049014832052708
714 => 0.04961543250342
715 => 0.049789789369399
716 => 0.04970111006013
717 => 0.049763218008593
718 => 0.051194469466805
719 => 0.050990991278292
720 => 0.050882897546115
721 => 0.050912840248654
722 => 0.051278555682605
723 => 0.051380936036788
724 => 0.050947143281972
725 => 0.051151722452869
726 => 0.052022794597588
727 => 0.052327620549826
728 => 0.053300478664612
729 => 0.052887191246277
730 => 0.053645798189291
731 => 0.055977497303953
801 => 0.057840219898051
802 => 0.056127183220252
803 => 0.059547836048021
804 => 0.062211304937944
805 => 0.062109076565709
806 => 0.061644639157606
807 => 0.058612350638412
808 => 0.055821993534175
809 => 0.05815624573669
810 => 0.058162196225598
811 => 0.057961681891256
812 => 0.056716304581679
813 => 0.057918345460395
814 => 0.058013759100176
815 => 0.057960352834433
816 => 0.057005524971121
817 => 0.055547679305531
818 => 0.055832538858998
819 => 0.056299144618554
820 => 0.055415762571556
821 => 0.055133468481534
822 => 0.055658306903532
823 => 0.05734944565364
824 => 0.057029745669032
825 => 0.057021397010425
826 => 0.05838920911847
827 => 0.057410150841437
828 => 0.055836131850214
829 => 0.05543867129617
830 => 0.054027954090825
831 => 0.055002341489359
901 => 0.055037407957164
902 => 0.054503745936985
903 => 0.055879435581972
904 => 0.055866758359708
905 => 0.057172770933242
906 => 0.059669376457916
907 => 0.058931007353773
908 => 0.058072364419985
909 => 0.058165722714474
910 => 0.059189632777111
911 => 0.058570553379647
912 => 0.05879317864735
913 => 0.059189295807105
914 => 0.059428283124621
915 => 0.058131336117289
916 => 0.057828955729734
917 => 0.05721039157789
918 => 0.05704901973672
919 => 0.057552827331633
920 => 0.057420091830158
921 => 0.055034460756329
922 => 0.054785149035588
923 => 0.054792795070128
924 => 0.054165888894198
925 => 0.053209706501183
926 => 0.055722496739342
927 => 0.055520684516741
928 => 0.055297899442015
929 => 0.055325189342475
930 => 0.056415906418497
1001 => 0.055783235431872
1002 => 0.05746529494255
1003 => 0.057119514074492
1004 => 0.056764865231919
1005 => 0.056715841959007
1006 => 0.056579332411834
1007 => 0.056111190381611
1008 => 0.055545880749142
1009 => 0.055172614363504
1010 => 0.050893820336972
1011 => 0.051687939619697
1012 => 0.052601501468221
1013 => 0.052916859357462
1014 => 0.052377417865814
1015 => 0.056132490819636
1016 => 0.056818578833082
1017 => 0.054740373487939
1018 => 0.054351626120427
1019 => 0.05615797703233
1020 => 0.055068526615035
1021 => 0.055559106071235
1022 => 0.054498741619546
1023 => 0.056653320321645
1024 => 0.056636906041842
1025 => 0.055798726263358
1026 => 0.056507150072525
1027 => 0.056384044002229
1028 => 0.055437741096666
1029 => 0.056683319811641
1030 => 0.056683937603144
1031 => 0.055877207789953
1101 => 0.054935123984011
1102 => 0.054766701650535
1103 => 0.054639818046617
1104 => 0.055527900482778
1105 => 0.056324152418077
1106 => 0.057805779862075
1107 => 0.058178296204095
1108 => 0.059632252286819
1109 => 0.058766492231394
1110 => 0.059150272450494
1111 => 0.059566920167354
1112 => 0.059766676404529
1113 => 0.059441184335563
1114 => 0.061699776604233
1115 => 0.061890470993188
1116 => 0.061954409172304
1117 => 0.061192824567135
1118 => 0.061869289947621
1119 => 0.06155279419827
1120 => 0.06237622821303
1121 => 0.062505353180678
1122 => 0.062395988926834
1123 => 0.062436975229665
1124 => 0.060509665171334
1125 => 0.060409723977439
1126 => 0.059047018707178
1127 => 0.059602331177418
1128 => 0.058564201131124
1129 => 0.058893402862728
1130 => 0.05903851184927
1201 => 0.058962715149563
1202 => 0.059633727711301
1203 => 0.059063229955014
1204 => 0.057557592577656
1205 => 0.056051544990402
1206 => 0.056032637789744
1207 => 0.055636122043968
1208 => 0.055349513785253
1209 => 0.055404724703856
1210 => 0.055599295182285
1211 => 0.055338204995337
1212 => 0.055393921824331
1213 => 0.056319192424918
1214 => 0.056504748845138
1215 => 0.055874155627658
1216 => 0.053342232865307
1217 => 0.052720892668579
1218 => 0.053167499680276
1219 => 0.05295405029386
1220 => 0.042738051481317
1221 => 0.045138148866272
1222 => 0.043712092499738
1223 => 0.044369284883135
1224 => 0.04291365060841
1225 => 0.043608355580638
1226 => 0.043480068938831
1227 => 0.047339354509793
1228 => 0.047279097073876
1229 => 0.047307939119697
1230 => 0.045931233125118
1231 => 0.048124363156124
]
'min_raw' => 0.027998802042606
'max_raw' => 0.062505353180678
'avg_raw' => 0.045252077611642
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.027998'
'max' => '$0.0625053'
'avg' => '$0.045252'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0043173584658105
'max_diff' => 0.0094559961954621
'year' => 2035
]
10 => [
'items' => [
101 => 0.049204777871803
102 => 0.049004821862237
103 => 0.049055146481962
104 => 0.048190402781652
105 => 0.047316311728952
106 => 0.04634681022986
107 => 0.048148024181167
108 => 0.047947759937529
109 => 0.048407094059634
110 => 0.049575310060488
111 => 0.049747334304235
112 => 0.049978536632329
113 => 0.04989566705581
114 => 0.051869956572731
115 => 0.051630857085451
116 => 0.05220701805618
117 => 0.051021811225951
118 => 0.049680637196682
119 => 0.049935550533364
120 => 0.049911000329158
121 => 0.049598448052202
122 => 0.049316289831723
123 => 0.048846575892212
124 => 0.05033282030141
125 => 0.050272481492597
126 => 0.051249296671078
127 => 0.051076635100005
128 => 0.049923558870927
129 => 0.049964741214028
130 => 0.050241712262942
131 => 0.051200312225633
201 => 0.051484889961022
202 => 0.051353062215528
203 => 0.051665088710915
204 => 0.051911701730524
205 => 0.051696059509257
206 => 0.054749098613196
207 => 0.053481263920097
208 => 0.054099197727976
209 => 0.054246571300078
210 => 0.053869076994072
211 => 0.053950941991987
212 => 0.054074945156952
213 => 0.054827868092309
214 => 0.056803755734693
215 => 0.057678862921183
216 => 0.060311666068766
217 => 0.057606197451425
218 => 0.057445666140014
219 => 0.057919913489932
220 => 0.05946564764808
221 => 0.060718319999832
222 => 0.06113390368731
223 => 0.061188829932149
224 => 0.061968492557339
225 => 0.06241538063425
226 => 0.061873821007478
227 => 0.061414905927445
228 => 0.059771129073403
229 => 0.059961400720114
301 => 0.06127218368264
302 => 0.06312374182194
303 => 0.06471257132725
304 => 0.064156218610789
305 => 0.068400797113578
306 => 0.068821629734581
307 => 0.068763484273506
308 => 0.069722203612442
309 => 0.067819340964452
310 => 0.067005830316209
311 => 0.061514128576655
312 => 0.063057072761867
313 => 0.065299832749007
314 => 0.06500299505479
315 => 0.063374242802983
316 => 0.064711335772613
317 => 0.064269251022091
318 => 0.06392056043724
319 => 0.065517979603436
320 => 0.063761551611841
321 => 0.065282311036193
322 => 0.06333192134422
323 => 0.064158759983134
324 => 0.063689406382002
325 => 0.063993135683748
326 => 0.062217540391945
327 => 0.063175608511263
328 => 0.062177681608346
329 => 0.06217720846106
330 => 0.062155179169368
331 => 0.063329235745165
401 => 0.063367521687951
402 => 0.062499892104537
403 => 0.062374853126645
404 => 0.062837187763491
405 => 0.062295914989378
406 => 0.062549173113655
407 => 0.062303585919964
408 => 0.062248299069807
409 => 0.061807764041469
410 => 0.061617969438498
411 => 0.061692392792727
412 => 0.061438347516874
413 => 0.061285276048953
414 => 0.062124729401646
415 => 0.061676243338754
416 => 0.062055992480312
417 => 0.061623220405344
418 => 0.060123043843687
419 => 0.059260276438998
420 => 0.056426581980469
421 => 0.057230214213721
422 => 0.057763023215785
423 => 0.057586929843781
424 => 0.057965246545934
425 => 0.057988472118885
426 => 0.057865477502533
427 => 0.057723065493383
428 => 0.057653747203207
429 => 0.058170388946769
430 => 0.058470316868268
501 => 0.057816497727207
502 => 0.057663317050358
503 => 0.058324364300315
504 => 0.058727602740914
505 => 0.06170488882619
506 => 0.061484321856485
507 => 0.062037901666362
508 => 0.061975577075145
509 => 0.062555816908075
510 => 0.063504263807267
511 => 0.061575806071286
512 => 0.061910519653201
513 => 0.061828455612581
514 => 0.062724409289725
515 => 0.062727206359308
516 => 0.062190037373655
517 => 0.062481245395349
518 => 0.062318701066514
519 => 0.062612440637903
520 => 0.061481376050132
521 => 0.06285889062716
522 => 0.063639852627256
523 => 0.063650696285385
524 => 0.064020866075333
525 => 0.064396980020709
526 => 0.065118897986236
527 => 0.064376846120472
528 => 0.063041967051254
529 => 0.063138341008419
530 => 0.06235570189855
531 => 0.062368858203382
601 => 0.06229862881711
602 => 0.062509392491935
603 => 0.061527626824486
604 => 0.061758045264311
605 => 0.061435458099227
606 => 0.061909818411704
607 => 0.061399485130048
608 => 0.061828416038816
609 => 0.062013528399755
610 => 0.062696596996806
611 => 0.061298595342877
612 => 0.058447975334126
613 => 0.059047210220393
614 => 0.05816089475472
615 => 0.058242926625509
616 => 0.058408644059778
617 => 0.057871499635942
618 => 0.057973969864643
619 => 0.057970308907002
620 => 0.05793876075186
621 => 0.057799028741718
622 => 0.057596389681877
623 => 0.058403641327271
624 => 0.058540809112155
625 => 0.058845716106456
626 => 0.059752912501109
627 => 0.059662262188119
628 => 0.059810116609651
629 => 0.059487351237614
630 => 0.058257898785404
701 => 0.058324663968634
702 => 0.057492101063926
703 => 0.058824425601126
704 => 0.058508913564893
705 => 0.058305500902606
706 => 0.058249997873096
707 => 0.059159443032139
708 => 0.059431563277531
709 => 0.059261996201913
710 => 0.058914209182759
711 => 0.059582063073537
712 => 0.059760752600216
713 => 0.059800754595423
714 => 0.0609840636416
715 => 0.05986688842618
716 => 0.060135803604299
717 => 0.062233803058754
718 => 0.060331207057698
719 => 0.061339054592411
720 => 0.061289725700172
721 => 0.06180530639523
722 => 0.061247433034505
723 => 0.061254348543416
724 => 0.061712149272166
725 => 0.061069250713433
726 => 0.060910059989188
727 => 0.060690139143789
728 => 0.061170328264075
729 => 0.0614581799246
730 => 0.063778052904686
731 => 0.065276796648883
801 => 0.065211732230292
802 => 0.065806299220725
803 => 0.065538441345926
804 => 0.06467345761086
805 => 0.066149879373088
806 => 0.065682677751409
807 => 0.06572119328545
808 => 0.065719759735349
809 => 0.066030407970291
810 => 0.065810285225342
811 => 0.065376400699911
812 => 0.065664433496435
813 => 0.066519787928503
814 => 0.069174834331119
815 => 0.070660633472709
816 => 0.069085387357171
817 => 0.070171971034283
818 => 0.069520408017367
819 => 0.069401999634873
820 => 0.070084454482002
821 => 0.070768103875999
822 => 0.070724558365099
823 => 0.070228264010842
824 => 0.069947919923125
825 => 0.072070779277477
826 => 0.073634865887798
827 => 0.073528205666743
828 => 0.073998969194714
829 => 0.075381145473006
830 => 0.075507514349895
831 => 0.075491594775963
901 => 0.075178376329362
902 => 0.07653930837361
903 => 0.077674621828243
904 => 0.075105875308726
905 => 0.076084020355997
906 => 0.076523141181582
907 => 0.077167900834819
908 => 0.078255718444095
909 => 0.079437376897139
910 => 0.079604476358625
911 => 0.079485911294255
912 => 0.078706575779788
913 => 0.079999560559227
914 => 0.080756960718798
915 => 0.081207975181027
916 => 0.082351672815592
917 => 0.076525853042306
918 => 0.072402048244744
919 => 0.071758056577142
920 => 0.073067638956933
921 => 0.07341296538676
922 => 0.073273764735899
923 => 0.068632047516314
924 => 0.071733618896606
925 => 0.075070648914272
926 => 0.075198837827733
927 => 0.076869424828583
928 => 0.077413436435735
929 => 0.078758477940263
930 => 0.07867434522794
1001 => 0.079001841430007
1002 => 0.078926555724596
1003 => 0.08141796187983
1004 => 0.084166352846448
1005 => 0.084071184806622
1006 => 0.083676071087685
1007 => 0.084262882337207
1008 => 0.087099516350232
1009 => 0.086838364546447
1010 => 0.087092051278967
1011 => 0.090436602646011
1012 => 0.094784995180052
1013 => 0.092764730276517
1014 => 0.097148123801622
1015 => 0.099907237671968
1016 => 0.10467883981303
1017 => 0.10408141172434
1018 => 0.10593896142222
1019 => 0.10301189075856
1020 => 0.096290744856227
1021 => 0.09522709778967
1022 => 0.097356546152752
1023 => 0.10259158716486
1024 => 0.097191676081351
1025 => 0.098284071060685
1026 => 0.097969461233148
1027 => 0.097952697012444
1028 => 0.098592519131694
1029 => 0.097664423776844
1030 => 0.093883196340018
1031 => 0.095616110591402
1101 => 0.094946949177566
1102 => 0.095689433655506
1103 => 0.099696316159056
1104 => 0.097924777892088
1105 => 0.096058606235919
1106 => 0.098399199629397
1107 => 0.10137957933445
1108 => 0.10119307252876
1109 => 0.10083117137194
1110 => 0.10287118924443
1111 => 0.10624070110064
1112 => 0.10715146661558
1113 => 0.10782377509892
1114 => 0.10791647508003
1115 => 0.10887134249817
1116 => 0.10373677973328
1117 => 0.11188546270608
1118 => 0.11329251515266
1119 => 0.11302804760905
1120 => 0.1145919271856
1121 => 0.11413179414238
1122 => 0.11346513355542
1123 => 0.11594421533099
1124 => 0.11310214812689
1125 => 0.10906819153698
1126 => 0.10685508316915
1127 => 0.10976948279427
1128 => 0.11154920494681
1129 => 0.11272548807804
1130 => 0.11308143064283
1201 => 0.1041353612245
1202 => 0.099313925979771
1203 => 0.10240441069377
1204 => 0.10617501533871
1205 => 0.1037158338341
1206 => 0.10381222909323
1207 => 0.10030608252918
1208 => 0.10648523151102
1209 => 0.10558498147919
1210 => 0.11025548023685
1211 => 0.10914082822524
1212 => 0.11294943865439
1213 => 0.11194650388796
1214 => 0.11610963003009
1215 => 0.11777041376032
1216 => 0.12055912812373
1217 => 0.12261051776157
1218 => 0.12381513299374
1219 => 0.12374281241359
1220 => 0.12851609810037
1221 => 0.12570145829678
1222 => 0.1221656073438
1223 => 0.12210165495553
1224 => 0.12393292226747
1225 => 0.12777075616965
1226 => 0.12876585066227
1227 => 0.12932197273036
1228 => 0.12847025242433
1229 => 0.12541516264459
1230 => 0.12409599036735
1231 => 0.12521996336766
]
'min_raw' => 0.04634681022986
'max_raw' => 0.12932197273036
'avg_raw' => 0.08783439148011
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.046346'
'max' => '$0.129321'
'avg' => '$0.087834'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.018348008187254
'max_diff' => 0.066816619549683
'year' => 2036
]
11 => [
'items' => [
101 => 0.12384544097238
102 => 0.12621825224949
103 => 0.12947662893811
104 => 0.12880378703693
105 => 0.13105299663448
106 => 0.1333806919442
107 => 0.13670940078043
108 => 0.13757964853195
109 => 0.13901813497266
110 => 0.14049881003833
111 => 0.14097436296411
112 => 0.14188234105483
113 => 0.1418775555621
114 => 0.14461380865247
115 => 0.14763198054585
116 => 0.14877127056476
117 => 0.15139100514243
118 => 0.14690480148462
119 => 0.15030763849286
120 => 0.15337708265283
121 => 0.14971756478698
122 => 0.15476135760674
123 => 0.15495719665245
124 => 0.15791413373186
125 => 0.15491671152128
126 => 0.15313685178075
127 => 0.15827524016119
128 => 0.16076154444077
129 => 0.16001264935754
130 => 0.15431352079669
131 => 0.15099638352716
201 => 0.14231479546478
202 => 0.15259851154136
203 => 0.15760740966215
204 => 0.15430054896062
205 => 0.15596833714987
206 => 0.16506724872828
207 => 0.16853152514645
208 => 0.16781097986859
209 => 0.16793274015936
210 => 0.16980200083354
211 => 0.17809133208349
212 => 0.17312417265332
213 => 0.17692137992177
214 => 0.17893540496511
215 => 0.18080614366819
216 => 0.17621220066645
217 => 0.17023554831962
218 => 0.16834249163858
219 => 0.15397174683496
220 => 0.15322368715895
221 => 0.15280377859427
222 => 0.15015631449126
223 => 0.14807613290774
224 => 0.14642189528033
225 => 0.14208068174885
226 => 0.14354571387807
227 => 0.13662672559056
228 => 0.14105324910302
301 => 0.13001037673135
302 => 0.1392072089832
303 => 0.13420179131717
304 => 0.13756279465963
305 => 0.1375510684356
306 => 0.13136239567504
307 => 0.12779289838106
308 => 0.1300675209837
309 => 0.13250609697349
310 => 0.13290174772348
311 => 0.1360634251476
312 => 0.13694578135664
313 => 0.13427220084997
314 => 0.12978153774658
315 => 0.13082461636437
316 => 0.12777176042616
317 => 0.12242174782085
318 => 0.12626422027624
319 => 0.1275762093141
320 => 0.12815565841559
321 => 0.12289453547136
322 => 0.12124137641775
323 => 0.12036124840895
324 => 0.12910239284083
325 => 0.12958125246482
326 => 0.12713133892453
327 => 0.13820518043698
328 => 0.1356988290475
329 => 0.13849903762055
330 => 0.13072996791284
331 => 0.13102675683812
401 => 0.12734875473362
402 => 0.12940819014795
403 => 0.1279526475758
404 => 0.12924180811821
405 => 0.13001452563192
406 => 0.13369192421246
407 => 0.1392491989679
408 => 0.13314264349496
409 => 0.13048192982792
410 => 0.13213262162253
411 => 0.13652863139721
412 => 0.14318881123344
413 => 0.13924585072178
414 => 0.14099566964104
415 => 0.14137792723088
416 => 0.13847053412591
417 => 0.14329601096429
418 => 0.14588202320407
419 => 0.14853473666226
420 => 0.15083801343067
421 => 0.14747518457264
422 => 0.15107389349331
423 => 0.14817396936089
424 => 0.14557243762547
425 => 0.14557638307525
426 => 0.1439444042153
427 => 0.14078223953159
428 => 0.1401990878476
429 => 0.14323271655164
430 => 0.14566539948657
501 => 0.14586576690486
502 => 0.1472126251734
503 => 0.14800968202298
504 => 0.1558219226951
505 => 0.15896407051967
506 => 0.16280622940174
507 => 0.16430296681852
508 => 0.16880760983295
509 => 0.16516974474958
510 => 0.16438266975555
511 => 0.15345587926003
512 => 0.15524514059154
513 => 0.15810992062133
514 => 0.15350311842756
515 => 0.15642507407981
516 => 0.15700193002105
517 => 0.15334658105183
518 => 0.15529906087459
519 => 0.15011385333525
520 => 0.13936222232272
521 => 0.14330798060312
522 => 0.14621338682537
523 => 0.14206701391222
524 => 0.14949922687224
525 => 0.14515748149301
526 => 0.14378135664833
527 => 0.13841260300529
528 => 0.14094644806252
529 => 0.1443735097836
530 => 0.14225598407866
531 => 0.1466501678645
601 => 0.15287350399125
602 => 0.15730862392124
603 => 0.15764909735837
604 => 0.15479761237334
605 => 0.15936713525978
606 => 0.15940041924535
607 => 0.15424597876239
608 => 0.15108891266662
609 => 0.15037162060714
610 => 0.15216355680512
611 => 0.15433929815913
612 => 0.15776983586112
613 => 0.15984283794683
614 => 0.16524812795099
615 => 0.1667106444443
616 => 0.16831750666316
617 => 0.17046477012552
618 => 0.17304311045912
619 => 0.16740184859419
620 => 0.16762598644471
621 => 0.16237292150467
622 => 0.15675926825052
623 => 0.16101933131867
624 => 0.16658879708782
625 => 0.16531115548666
626 => 0.16516739470668
627 => 0.16540916046269
628 => 0.1644458604193
629 => 0.16008889002457
630 => 0.15790084676842
701 => 0.16072398079822
702 => 0.16222435089182
703 => 0.16455129406098
704 => 0.16426444919957
705 => 0.17025840490786
706 => 0.17258747484829
707 => 0.171991599091
708 => 0.17210125457089
709 => 0.17631792444716
710 => 0.18100772857387
711 => 0.18540034901269
712 => 0.1898687111905
713 => 0.18448192618201
714 => 0.18174684896541
715 => 0.18456875050321
716 => 0.18307140982611
717 => 0.19167557349682
718 => 0.19227130712119
719 => 0.20087484861292
720 => 0.20904063397925
721 => 0.2039118504959
722 => 0.20874806231521
723 => 0.21397881969994
724 => 0.22406979935487
725 => 0.22067151241203
726 => 0.21806847787177
727 => 0.21560862280898
728 => 0.22072719070364
729 => 0.22731214652899
730 => 0.22873048294385
731 => 0.23102872978213
801 => 0.22861240424793
802 => 0.23152260220435
803 => 0.24179687979628
804 => 0.23902067929738
805 => 0.23507802829245
806 => 0.24318858369917
807 => 0.24612376217187
808 => 0.26672438185823
809 => 0.29273351518141
810 => 0.28196556320043
811 => 0.2752815479262
812 => 0.27685245006261
813 => 0.28635010508751
814 => 0.289400450441
815 => 0.28110856025311
816 => 0.28403739604714
817 => 0.30017556922904
818 => 0.30883318136655
819 => 0.29707498121138
820 => 0.26463457332024
821 => 0.23472303570693
822 => 0.24265692241607
823 => 0.24175746588043
824 => 0.25909591968628
825 => 0.23895446783363
826 => 0.2392935982272
827 => 0.25699059289601
828 => 0.25226933812167
829 => 0.24462151003986
830 => 0.23477887331552
831 => 0.21658384899688
901 => 0.20046800855207
902 => 0.23207488292074
903 => 0.23071193702459
904 => 0.2287381893897
905 => 0.23313055116935
906 => 0.25445861317765
907 => 0.25396693231616
908 => 0.25083910953314
909 => 0.2532115355467
910 => 0.24420561228917
911 => 0.2465266437737
912 => 0.23471829756655
913 => 0.24005616321228
914 => 0.24460510123561
915 => 0.24551836789197
916 => 0.24757600430131
917 => 0.22999372647006
918 => 0.23788765302773
919 => 0.24252459531947
920 => 0.22157472135199
921 => 0.24211048367012
922 => 0.22968765813006
923 => 0.22547116455718
924 => 0.23114811767227
925 => 0.2289358035223
926 => 0.22703378572761
927 => 0.22597242711735
928 => 0.23014095494262
929 => 0.22994648813711
930 => 0.22312596753858
1001 => 0.21422887645779
1002 => 0.21721503226156
1003 => 0.21613013386269
1004 => 0.2121983221105
1005 => 0.21484788850272
1006 => 0.20318053902628
1007 => 0.18310747066812
1008 => 0.19636835448023
1009 => 0.19585782487853
1010 => 0.19560039270268
1011 => 0.20556558038357
1012 => 0.20460765752405
1013 => 0.20286901815401
1014 => 0.21216639063502
1015 => 0.20877272461214
1016 => 0.21923120364636
1017 => 0.22611983435031
1018 => 0.22437265477993
1019 => 0.23085144525264
1020 => 0.21728382726009
1021 => 0.22179044571886
1022 => 0.22271925353731
1023 => 0.21205166250179
1024 => 0.2047643855507
1025 => 0.2042784072591
1026 => 0.19164327327453
1027 => 0.19839285986185
1028 => 0.20433221674182
1029 => 0.20148772570903
1030 => 0.2005872448248
1031 => 0.20518760637185
1101 => 0.20554509386349
1102 => 0.19739434116931
1103 => 0.1990891407552
1104 => 0.20615673676535
1105 => 0.19891105546933
1106 => 0.18483388028649
1107 => 0.18134254620897
1108 => 0.18087673788497
1109 => 0.17140796296555
1110 => 0.18157585384649
1111 => 0.17713729699442
1112 => 0.19115864490803
1113 => 0.18314972617778
1114 => 0.18280447769854
1115 => 0.18228258398523
1116 => 0.17413241826191
1117 => 0.17591678658526
1118 => 0.18184829865906
1119 => 0.18396472899026
1120 => 0.18374396796731
1121 => 0.18181923101398
1122 => 0.18270036573497
1123 => 0.17986192379097
1124 => 0.17885961086348
1125 => 0.17569603555645
1126 => 0.17104645381509
1127 => 0.17169300667377
1128 => 0.1624809686149
1129 => 0.15746176136056
1130 => 0.15607251094465
1201 => 0.15421474722772
1202 => 0.1562823502998
1203 => 0.16245487206851
1204 => 0.1550095012419
1205 => 0.14224493519172
1206 => 0.14301210736109
1207 => 0.14473571545023
1208 => 0.14152378317894
1209 => 0.13848395884121
1210 => 0.14112683947412
1211 => 0.13571832456636
1212 => 0.14538930863734
1213 => 0.14512773562084
1214 => 0.14873248043286
1215 => 0.15098660134063
1216 => 0.14579158242854
1217 => 0.14448504922097
1218 => 0.14522930991463
1219 => 0.13292833850972
1220 => 0.14772722863576
1221 => 0.1478552100521
1222 => 0.14675935546557
1223 => 0.15463930759321
1224 => 0.17126846440124
1225 => 0.16501190670378
1226 => 0.16258917845786
1227 => 0.15798357029137
1228 => 0.16412026971927
1229 => 0.16364906695063
1230 => 0.1615181093325
1231 => 0.16022929951607
]
'min_raw' => 0.12036124840895
'max_raw' => 0.30883318136655
'avg_raw' => 0.21459721488775
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.120361'
'max' => '$0.308833'
'avg' => '$0.214597'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.074014438179095
'max_diff' => 0.17951120863619
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0037780020538391
]
1 => [
'year' => 2028
'avg' => 0.0064841482862208
]
2 => [
'year' => 2029
'avg' => 0.01771352446393
]
3 => [
'year' => 2030
'avg' => 0.01366595774415
]
4 => [
'year' => 2031
'avg' => 0.013421664108254
]
5 => [
'year' => 2032
'avg' => 0.023532401134917
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0037780020538391
'min' => '$0.003778'
'max_raw' => 0.023532401134917
'max' => '$0.023532'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.023532401134917
]
1 => [
'year' => 2033
'avg' => 0.060527755527278
]
2 => [
'year' => 2034
'avg' => 0.038365400281006
]
3 => [
'year' => 2035
'avg' => 0.045252077611642
]
4 => [
'year' => 2036
'avg' => 0.08783439148011
]
5 => [
'year' => 2037
'avg' => 0.21459721488775
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.023532401134917
'min' => '$0.023532'
'max_raw' => 0.21459721488775
'max' => '$0.214597'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.21459721488775
]
]
]
]
'prediction_2025_max_price' => '$0.006459'
'last_price' => 0.00626349
'sma_50day_nextmonth' => '$0.005827'
'sma_200day_nextmonth' => '$0.007179'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'augmenter'
'sma_200day_date_nextmonth' => '4 févr. 2026'
'sma_50day_date_nextmonth' => '4 févr. 2026'
'daily_sma3' => '$0.006523'
'daily_sma3_action' => 'SELL'
'daily_sma5' => '$0.006758'
'daily_sma5_action' => 'SELL'
'daily_sma10' => '$0.006116'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.005932'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.006181'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.0064027'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.007635'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.006431'
'daily_ema3_action' => 'SELL'
'daily_ema5' => '$0.006423'
'daily_ema5_action' => 'SELL'
'daily_ema10' => '$0.00625'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.0061051'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.006199'
'daily_ema50_action' => 'BUY'
'daily_ema100' => '$0.006654'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.00860042'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.006844'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.009949'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.030702'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.07126'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.006288'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.006229'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.006324'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.0072095'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.013515'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.035533'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.075031'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '51.88'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 57.63
'stoch_rsi_14_action' => 'NEUTRAL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.006286'
'vwma_10_action' => 'SELL'
'hma_9' => '0.006968'
'hma_9_action' => 'SELL'
'stochastic_fast_14' => 47.66
'stochastic_fast_14_action' => 'NEUTRAL'
'cci_20' => 44.92
'cci_20_action' => 'NEUTRAL'
'adx_14' => 13.06
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.000723'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'NEUTRAL'
'williams_percent_r_14' => -52.34
'williams_percent_r_14_action' => 'NEUTRAL'
'ultimate_oscillator' => 57.88
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.000464'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 24
'buy_signals' => 9
'sell_pct' => 72.73
'buy_pct' => 27.27
'overall_action' => 'bearish'
'overall_action_label' => 'Baissier'
'overall_action_dir' => -1
'last_updated' => 1767702993
'last_updated_date' => '6 janvier 2026'
]
Prévision du prix de REN pour 2026
La prévision du prix de REN pour 2026 suggère que le prix moyen pourrait varier entre $0.002164 à la baisse et $0.006459 à la hausse. Sur le marché des cryptomonnaies, comparé au prix moyen d'aujourd'hui, REN pourrait potentiellement gagner 3.13% d'ici 2026 si REN atteint l'objectif de prix prévu.
Prévision du prix de REN de 2027 à 2032
La prévision du prix de REN pour 2027-2032 se situe actuellement dans une fourchette de prix comprise entre $0.003778 à la baisse et $0.023532 à la hausse. Compte tenu de la volatilité des prix sur le marché, si REN atteint l'objectif de prix le plus élevé, il pourrait gagner 275.71% d'ici 2032 par rapport au prix actuel.
| Prévision du Prix de REN | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2027 | $0.002083 | $0.003778 | $0.005472 |
| 2028 | $0.003759 | $0.006484 | $0.0092086 |
| 2029 | $0.008258 | $0.017713 | $0.027168 |
| 2030 | $0.007023 | $0.013665 | $0.020308 |
| 2031 | $0.0083043 | $0.013421 | $0.018538 |
| 2032 | $0.012676 | $0.023532 | $0.034388 |
Prévision du prix de REN de 2032 à 2037
La prévision du prix de REN pour 2032-2037 est actuellement estimée entre $0.023532 à la baisse et $0.214597 à la hausse. Par rapport au prix actuel, REN pourrait potentiellement gagner 3326.16% d'ici 2037 s'il atteint l'objectif de prix le plus élevé. Veuillez noter que ces informations sont à titre général seulement et ne doivent pas être considérées comme un conseil en investissement à long terme.
| Prévision du Prix de REN | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2032 | $0.012676 | $0.023532 | $0.034388 |
| 2033 | $0.029456 | $0.060527 | $0.091599 |
| 2034 | $0.023681 | $0.038365 | $0.053049 |
| 2035 | $0.027998 | $0.045252 | $0.0625053 |
| 2036 | $0.046346 | $0.087834 | $0.129321 |
| 2037 | $0.120361 | $0.214597 | $0.308833 |
REN Histogramme des prix potentiels
Prévision du prix de REN basée sur l'analyse technique
Au 6 janvier 2026, le sentiment global de prévision du prix pour REN est Baissier, avec 9 indicateurs techniques montrant des signaux haussiers et 24 indiquant des signaux baissiers. La prévision du prix de REN a été mise à jour pour la dernière fois le 6 janvier 2026.
Moyennes Mobiles Simples sur 50 et 200 jours de REN et Indice de Force Relative sur 14 jours - RSI (14)
Selon nos indicateurs techniques, le SMA sur 200 jours de REN devrait augmenter au cours du prochain mois, atteignant $0.007179 d'ici le 4 févr. 2026. Le SMA à court terme sur 50 jours pour REN devrait atteindre $0.005827 d'ici le 4 févr. 2026.
Le Relative Strength Index (RSI), un oscillateur de momentum, est un outil couramment utilisé pour identifier si une cryptomonnaie est survendue (en dessous de 30) ou surachetée (au-dessus de 70). Actuellement, le RSI est à 51.88, ce qui suggère que le marché de REN est dans un état NEUTRAL.
Moyennes Mobiles et Oscillateurs Populaires de REN pour le Samedi 19 Octobre 2024
Les moyennes mobiles (MA) sont des indicateurs largement utilisés sur les marchés financiers, conçus pour lisser les mouvements de prix sur une période donnée. En tant qu'indicateurs retardés, ils sont basés sur des données historiques de prix. Le tableau ci-dessous met en évidence deux types : la moyenne mobile simple (SMA) et la moyenne mobile exponentielle (EMA).
Moyenne Mobile Simple Quotidienne (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 3 | $0.006523 | SELL |
| SMA 5 | $0.006758 | SELL |
| SMA 10 | $0.006116 | BUY |
| SMA 21 | $0.005932 | BUY |
| SMA 50 | $0.006181 | BUY |
| SMA 100 | $0.0064027 | SELL |
| SMA 200 | $0.007635 | SELL |
Moyenne Mobile Exponentielle Quotidienne (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 3 | $0.006431 | SELL |
| EMA 5 | $0.006423 | SELL |
| EMA 10 | $0.00625 | BUY |
| EMA 21 | $0.0061051 | BUY |
| EMA 50 | $0.006199 | BUY |
| EMA 100 | $0.006654 | SELL |
| EMA 200 | $0.00860042 | SELL |
Moyenne Mobile Simple Hebdomadaire (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 21 | $0.006844 | SELL |
| SMA 50 | $0.009949 | SELL |
| SMA 100 | $0.030702 | SELL |
| SMA 200 | $0.07126 | SELL |
Moyenne Mobile Exponentielle Hebdomadaire (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 21 | $0.0072095 | SELL |
| EMA 50 | $0.013515 | SELL |
| EMA 100 | $0.035533 | SELL |
| EMA 200 | $0.075031 | SELL |
Oscillateurs de REN
Un oscillateur est un outil d'analyse technique qui établit des limites hautes et basses entre deux extrêmes, créant un indicateur de tendance qui fluctue à l'intérieur de ces limites. Les traders utilisent cet indicateur pour identifier les conditions de surachat ou de survente à court terme.
| Période | Valeur | Action |
|---|---|---|
| RSI (14) | 51.88 | NEUTRAL |
| Stoch RSI (14) | 57.63 | NEUTRAL |
| Stochastique Rapide (14) | 47.66 | NEUTRAL |
| Indice de Canal des Matières Premières (20) | 44.92 | NEUTRAL |
| Indice Directionnel Moyen (14) | 13.06 | NEUTRAL |
| Oscillateur Impressionnant (5, 34) | 0.000723 | BUY |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | NEUTRAL |
| Plage de Pourcentage de Williams (14) | -52.34 | NEUTRAL |
| Oscillateur Ultime (7, 14, 28) | 57.88 | NEUTRAL |
| VWMA (10) | 0.006286 | SELL |
| Moyenne Mobile de Hull (9) | 0.006968 | SELL |
| Nuage Ichimoku B/L (9, 26, 52, 26) | -0.000464 | SELL |
Prévision du cours de REN basée sur les flux monétaires mondiaux
Définitions des flux monétaires mondiaux utilisés pour la prédiction du cours de REN
M0 : le total de toutes les devises physiques, plus les comptes à la banque centrale qui peuvent être échangés contre des devises physiques.
M1 : M0 plus le montant des comptes à vue, y compris les comptes de "chèques" et les comptes "courants".
M2 : M1 plus la plupart des comptes d'épargne, comptes du marché monétaire et comptes de certificats de dépôt (CD) de moins de 100 000 $.
Prédictions du cours de REN par des sociétés Internet ou des niches technologiques
| Comparaison | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Action Facebook | $0.0088012 | $0.012367 | $0.017378 | $0.024419 | $0.034312 | $0.048215 |
| Action Amazon.com | $0.013069 | $0.027269 | $0.056899 | $0.118724 | $0.247725 | $0.516893 |
| Action Apple | $0.008884 | $0.0126016 | $0.017874 | $0.025353 | $0.035962 | $0.0510096 |
| Action Netflix | $0.009882 | $0.015593 | $0.0246041 | $0.038821 | $0.061254 | $0.096649 |
| Action Google | $0.008111 | $0.0105039 | $0.0136025 | $0.017615 | $0.022811 | $0.029541 |
| Action Tesla | $0.014198 | $0.032187 | $0.072967 | $0.165411 | $0.374974 | $0.850038 |
| Action Kodak | $0.004696 | $0.003522 | $0.002641 | $0.00198 | $0.001485 | $0.001113 |
| Action Nokia | $0.004149 | $0.002748 | $0.00182 | $0.0012062 | $0.000799 | $0.000529 |
Ce calcul montre la valeur potentielle des cryptomonnaies si l'on suppose que leur capitalisation se comportera comme celle de certaines sociétés Internet ou niches technologiques. En extrapolant les données, vous pourrez obtenir une potentielle image des cours futurs pour 2024, 2025, 2026, 2027, 2028, 2029 et 2030.
Aperçu des prévisions relatives à REN
Vous vous posez peut-être des questions telles que : "Devrais-je investir dans REN maintenant ?", "Devrais-je acheter REN aujourd'hui ?", " REN sera-t-il un bon ou un mauvais investissement à court ou à long terme ?".
Nous mettons régulièrement à jour les prévisions de REN/Ren avec de nouvelles valeurs. Regardez nos prévisions similaires. Nous faisons une prévision des cours futurs pour une grande quantité de devises numériques comme REN en utilisant des méthodes d'analyse technique.
Si vous souhaitez trouver des cryptomonnaies ayant un bon rendement, vous devriez consulter un maximum d'informations disponibles à propos de REN afin de prendre une décision responsable concernant cet investissement.
Le cours de REN est de $0.006263 USD actuellement, mais ce cours peut subir une hausse ou une baisse, ce qui pourrait causer la perte de votre investissement, car les cryptomonnaies sont des actifs à haut risque.
Prévision à court terme de REN
basée sur l'historique des cours sur 4 heures
Prévision à long terme de REN
basée sur l'historique des cours sur 1 mois
Prévision du cours de REN basée sur le modèle de croissance du Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si REN présente 1 % de la précédente croissance annuelle moyenne du Bitcoin | $0.006426 | $0.006593 | $0.006764 | $0.00694 |
| Si REN présente 2 % de la précédente croissance annuelle moyenne du Bitcoin | $0.006589 | $0.006931 | $0.007292 | $0.007671 |
| Si REN présente 5 % de la précédente croissance annuelle moyenne du Bitcoin | $0.007077 | $0.007997 | $0.009036 | $0.010211 |
| Si REN présente 10 % de la précédente croissance annuelle moyenne du Bitcoin | $0.007891 | $0.009942 | $0.012527 | $0.015783 |
| Si REN présente 20 % de la précédente croissance annuelle moyenne du Bitcoin | $0.009519 | $0.014468 | $0.02199 | $0.033422 |
| Si REN présente 50 % de la précédente croissance annuelle moyenne du Bitcoin | $0.0144039 | $0.033124 | $0.076174 | $0.175174 |
| Si REN présente 100 % de la précédente croissance annuelle moyenne du Bitcoin | $0.022544 | $0.081144 | $0.292064 | $1.05 |
Boîte à questions
Est-ce que REN est un bon investissement ?
La décision d'acquérir REN dépend entièrement de votre tolérance individuelle au risque. Comme vous pouvez le discerner, la valeur de REN a connu une baisse de -1.2238% au cours des 24 heures précédentes, et REN a enregistré une déclin de sur une période de 30 jours précédents. Par conséquent, la détermination de si investir ou non dans REN dépendra de la mesure dans laquelle cet investissement s'aligne avec vos aspirations de trading.
Est-ce que REN peut monter ?
Il semble que la valeur moyenne de REN pourrait potentiellement s'envoler jusqu'à $0.006459 pour la fin de cette année. En regardant les perspectives de REN sur une période de cinq ans plus longue, la monnaie numérique pourrait potentiellement croître jusqu'à $0.020308. Cependant, compte tenu de l'imprévisibilité du marché, il est essentiel de mener des recherches approfondies avant d'investir des fonds dans un projet, un réseau ou un actif particulier.
Quel sera le prix de REN la semaine prochaine ?
Basé sur notre nouveau pronostic expérimental de REN, le prix de REN va augmenter de 0.86% durant la prochaine semaine et atteindre $0.006317 d'ici 13 janvier 2026.
Quel sera le prix de REN le mois prochain ?
Basé sur notre nouveau pronostic expérimental de REN, le prix de REN va diminuer de -11.62% durant le prochain mois et atteindre $0.005535 d'ici 5 février 2026.
Jusqu'où le prix de REN peut-il monter cette année en 2026 ?
Selon notre prédiction la plus récente sur la valeur de REN en 2026, REN devrait fluctuer dans la fourchette de $0.002164 et $0.006459. Cependant, il est crucial de garder à l'esprit que le marché des cryptomonnaies est exceptionnellement instable, et cette prévision de prix de REN ne prend pas en compte les fluctuations de prix soudaines et extrêmes.
Où sera REN dans 5 ans ?
L'avenir de REN semble suivre une tendance haussière, avec un prix maximum de $0.020308 prévue après une période de cinq ans. Selon la prévision de REN pour 2030, la valeur de REN pourrait potentiellement atteindre son point le plus élevé d'environ $0.020308, tandis que son point le plus bas devrait être autour de $0.007023.
Combien vaudra REN en 2026 ?
Basé sur notre nouvelle simulation expérimentale de prédiction de prix de REN, il est attendu que la valeur de REN en 2026 augmente de 3.13% jusqu'à $0.006459 si le meilleur scénario se produit. Le prix sera entre $0.006459 et $0.002164 durant 2026.
Combien vaudra REN en 2027 ?
Selon notre dernière simulation expérimentale pour la prédiction de prix de REN, le valeur de REN pourrait diminuer de -12.62% jusqu'à $0.005472 en 2027, en supposant les conditions les plus favorables. Il est prévu que le prix fluctue entre $0.005472 et $0.002083 tout au long de l'année.
Combien vaudra REN en 2028 ?
Notre nouveau modèle expérimental de prédiction de prix de REN suggère que la valeur de REN en 2028 pourrait augmenter de 47.02%, atteignant $0.0092086 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.0092086 et $0.003759 durant l'année.
Combien vaudra REN en 2029 ?
Basé sur notre modèle de prévision expérimental, la valeur de REN pourrait connaître un 333.75% croissance en 2029, atteignant potentiellement $0.027168 sous des conditions optimales. Le range de prix prévu pour 2029 se situe entre $0.027168 et $0.008258.
Combien vaudra REN en 2030 ?
En utilisant notre nouvelle simulation expérimentale pour les prédictions de prix de REN, il est prévu que la valeur de REN en 2030 augmente de 224.23%, atteignant $0.020308 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.020308 et $0.007023 au cours de 2030.
Combien vaudra REN en 2031 ?
Notre simulation expérimentale indique que le prix de REN pourrait augmenter de 195.98% en 2031, atteignant potentiellement $0.018538 dans des conditions idéales. Il est probable que le prix fluctue entre $0.018538 et $0.0083043 durant l'année.
Combien vaudra REN en 2032 ?
Basé sur les résultats de notre dernière prédiction expérimentale de prix de REN, REN pourrait connaître une 449.04% hausse en valeur, atteignant $0.034388 si le scénario le plus positif se réalise en 2032. Il est prévu que le prix reste dans une fourchette de $0.034388 et $0.012676 tout au long de l'année.
Combien vaudra REN en 2033 ?
Selon notre prédiction expérimentale de prix de REN, la valeur de REN est anticipée à augmenter de 1362.43% en 2033, avec le prix potentiel le plus élevé étant $0.091599. Tout au long de l'année, le prix de REN pourrait osciller entre $0.091599 et $0.029456.
Combien vaudra REN en 2034 ?
Les résultats de notre nouvelle simulation de prédiction de prix de REN suggèrent que REN pourrait augmenter de 746.96% en 2034, atteignant potentiellement $0.053049 dans les meilleures circonstances. La fourchette de prix prévue pour l'année est entre $0.053049 et $0.023681.
Combien vaudra REN en 2035 ?
Basé sur notre prédiction expérimentale pour le prix de REN, REN pourrait augmenter de 897.93%, avec la valeur potentiellement atteignant $0.0625053 en 2035. La fourchette de prix attendue pour l'année se situe entre $0.0625053 et $0.027998.
Combien vaudra REN en 2036 ?
Notre récente simulation de prédiction de prix de REN suggère que la valeur de REN pourrait augmenter de 1964.7% en 2036, pouvant atteindre $0.129321 si les conditions sont optimales. La fourchette de prix attendue pour 2036 est entre $0.129321 et $0.046346.
Combien vaudra REN en 2037 ?
Selon la simulation expérimentale, la valeur de REN pourrait augmenter de 4830.69% en 2037, avec un maximum de $0.308833 sous des conditions favorables. Il est prévu que le prix chute entre $0.308833 et $0.120361 au cours de l'année.
Prévisions liées
Prévision du cours de Moonwell
Prévision du cours de Pandora
Prévision du cours de TomoChain
Prévision du cours de NORMIE
Prévision du cours de QuarkChain
Prévision du cours de PepeFork
Prévision du cours de Star Atlas DAO
Prévision du cours de Uquid Coin
Prévision du cours de Artrade
Prévision du cours de Vaiot
Prévision du cours de HarryPotterObamaSonic10Inu (ETH)
Prévision du cours de Elastos
Prévision du cours de SWEAT
Prévision du cours de Magic Internet Money
Prévision du cours de Polymath
Prévision du cours de Neon
Prévision du cours de Rally
Prévision du cours de Cortex
Prévision du cours de Celsius Network
Prévision du cours de Loom Network
Prévision du cours de Boson Protocol
Prévision du cours de Ultra
Prévision du cours de TOMI
Prévision du cours de Alchemix
Prévision du cours de Shardus
Comment lire et prédire les mouvements de prix de REN ?
Les traders de REN utilisent des indicateurs et des modèles graphiques pour prédire la direction du marché. Ils identifient également des niveaux clés de support et de résistance pour évaluer quand une tendance baissière pourrait ralentir ou une tendance haussière pourrait s'arrêter.
Indicateurs de prédiction du prix de REN
Les moyennes mobiles sont des outils populaires pour la prédiction du prix de REN. Une moyenne mobile simple (SMA) calcule le prix de clôture moyen de REN sur une période spécifique, comme une SMA de 12 jours. Une moyenne mobile exponentielle (EMA) donne plus de poids aux prix récents, réagissant plus rapidement aux changements de prix.
Les moyennes mobiles couramment utilisées sur le marché des cryptomonnaies incluent les moyennes sur 50 jours, 100 jours et 200 jours, qui aident à identifier les niveaux clés de résistance et de support. Un mouvement de prix de REN au-dessus de ces moyennes est considéré comme haussier, tandis qu'une chute en dessous indique une faiblesse.
Les traders utilisent également le RSI et les niveaux de retracement de Fibonacci pour évaluer la direction future de REN.
Comment lire les graphiques de REN et prédire les mouvements de prix ?
La plupart des traders préfèrent les graphiques en chandeliers aux simples graphiques linéaires parce qu'ils fournissent des informations plus détaillées. Les chandeliers peuvent représenter l'action des prix de REN dans différentes périodes, comme 5 minutes pour les tendances à court terme et hebdomadaire pour les tendances à long terme. Les options populaires incluent les graphiques de 1 heure, 4 heures et 1 jour.
Par exemple, un graphique en chandeliers de 1 heure montre les prix d'ouverture, de clôture, les plus hauts et les plus bas de REN au sein de chaque heure. La couleur du chandelier est cruciale : le vert indique que le prix a clôturé plus haut qu'il n'a ouvert, tandis que le rouge signifie le contraire. Certains graphiques utilisent des chandeliers creux et pleins pour transmettre la même information.
Qu'est-ce qui affecte le prix de REN ?
L'action du prix de REN est déterminée par l'offre et la demande, influencée par des facteurs tels que les réductions de récompenses de bloc, les hard forks et les mises à jour de protocole. Les événements du monde réel, tels que les réglementations, l'adoption par les entreprises et les gouvernements et les piratages d'échanges de cryptomonnaies, impactent également le prix de REN. La capitalisation boursière de REN peut changer rapidement.
Les traders surveillent souvent l'activité des « baleines » de REN, de grands détenteurs de REN, car leurs actions peuvent influencer significativement les mouvements de prix sur le marché relativement petit de REN.
Modèles de prédiction de prix haussiers et baissiers
Les traders identifient souvent des modèles de chandeliers pour obtenir un avantage dans les prédictions de prix des cryptomonnaies. Certaines formations indiquent des tendances haussières, tandis que d'autres suggèrent des mouvements baissiers.
Modèles de chandeliers haussiers couramment suivis :
- Marteau
- Englobante haussière
- Ligne pénétrante
- Étoile du matin
- Trois soldats blancs
Modèles de chandeliers baissiers courants :
- Harami baissier
- Nuage sombre
- Étoile du soir
- Étoile filante
- Pendu


