Prédiction du prix de Zenko Protocol jusqu'à $0.005481 d'ici 2026
| Année | Prix min. | Prix max. |
|---|---|---|
| 2026 | $0.001836 | $0.005481 |
| 2027 | $0.001767 | $0.004643 |
| 2028 | $0.00319 | $0.007813 |
| 2029 | $0.0070079 | $0.023052 |
| 2030 | $0.005959 | $0.017231 |
| 2031 | $0.007046 | $0.01573 |
| 2032 | $0.010755 | $0.029179 |
| 2033 | $0.024994 | $0.077724 |
| 2034 | $0.020094 | $0.045013 |
| 2035 | $0.023757 | $0.053037 |
Calculateur de profit d’investissement
Si vous ouvrez une position short de $10,000.00 sur Zenko Protocol aujourd’hui et la fermez le Apr 06, 2026, notre prévision indique que vous pourriez gagner environ $3,954.54, soit un rendement de 39.55% sur les 90 prochains jours.
Prévision du prix à long terme de Zenko Protocol pour 2027, 2028, 2029, 2030, 2031, 2032 et 2037
[
'name' => 'Zenko Protocol'
'name_with_ticker' => 'Zenko Protocol <small>ZENKO</small>'
'name_lang' => 'Zenko Protocol'
'name_lang_with_ticker' => 'Zenko Protocol <small>ZENKO</small>'
'name_with_lang' => 'Zenko Protocol'
'name_with_lang_with_ticker' => 'Zenko Protocol <small>ZENKO</small>'
'image' => '/uploads/coins/zenko-protocol.png?1750501014'
'price_for_sd' => 0.005314
'ticker' => 'ZENKO'
'marketcap' => '$1.06M'
'low24h' => '$0.003655'
'high24h' => '$0.007184'
'volume24h' => '$10.77K'
'current_supply' => '200.4M'
'max_supply' => '1000M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.005314'
'change_24h_pct' => '15.4088%'
'ath_price' => '$0.07683'
'ath_days' => 142
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '17 août 2025'
'ath_pct' => '-93.13%'
'fdv' => '$5.28M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.262052'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.00536'
'next_week_prediction_price_date' => '13 janvier 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.004697'
'next_month_prediction_price_date' => '5 février 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.001836'
'current_year_max_price_prediction' => '$0.005481'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.005959'
'grand_prediction_max_price' => '$0.017231'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.005415441337952
107 => 0.0054356606301027
108 => 0.0054812157277409
109 => 0.0050919524061597
110 => 0.005266720209379
111 => 0.0053693799202417
112 => 0.0049055596117718
113 => 0.0053602116840392
114 => 0.0050851761977637
115 => 0.0049918250228274
116 => 0.0051175100817971
117 => 0.0050685304920839
118 => 0.0050264207170265
119 => 0.0050029227390067
120 => 0.0050952119749602
121 => 0.0050909065717935
122 => 0.0049399034692047
123 => 0.0047429260775516
124 => 0.0048090381557528
125 => 0.0047850190179383
126 => 0.0046979705639679
127 => 0.0047566307116735
128 => 0.0044983211083993
129 => 0.0040539128617308
130 => 0.0043475025620727
131 => 0.0043361996779737
201 => 0.004330500251266
202 => 0.0045511247968496
203 => 0.0045299168374661
204 => 0.0044914241835159
205 => 0.0046972636161918
206 => 0.004622129454334
207 => 0.0048536752373447
208 => 0.0050061862654779
209 => 0.0049675045355284
210 => 0.0051109418946374
211 => 0.004810561244507
212 => 0.0049103356473004
213 => 0.0049308990134347
214 => 0.0046947235895442
215 => 0.0045333867219045
216 => 0.0045226273922079
217 => 0.0042428914973104
218 => 0.0043923241544154
219 => 0.0045238187087242
220 => 0.0044608430215999
221 => 0.0044409068004015
222 => 0.0045427566308654
223 => 0.0045506712349772
224 => 0.0043702174224749
225 => 0.0044077394843232
226 => 0.0045642127197543
227 => 0.0044037967602593
228 => 0.0040921347547587
301 => 0.0040148382683303
302 => 0.0040045254921838
303 => 0.0037948912905281
304 => 0.0040200035891609
305 => 0.0039217360381732
306 => 0.0042321620543175
307 => 0.004054848378744
308 => 0.0040472047405823
309 => 0.0040356502604231
310 => 0.0038552094431783
311 => 0.0038947145145427
312 => 0.0040260353885504
313 => 0.0040728921558319
314 => 0.0040680046111183
315 => 0.004025391844626
316 => 0.0040448997509135
317 => 0.0039820579877563
318 => 0.0039598672532473
319 => 0.0038898271910944
320 => 0.0037868876487908
321 => 0.003801202023513
322 => 0.0035972518546131
323 => 0.0034861289781417
324 => 0.0034553716305103
325 => 0.0034142416198197
326 => 0.0034600173746606
327 => 0.0035966740894096
328 => 0.003431837098083
329 => 0.0031492356384241
330 => 0.0031662204676791
331 => 0.0032043803361739
401 => 0.0031332696736866
402 => 0.0030659693995079
403 => 0.0031244815276625
404 => 0.0030047395637358
405 => 0.0032188505804405
406 => 0.0032130594774778
407 => 0.0032928668239688
408 => 0.0033427719955413
409 => 0.0032277567320579
410 => 0.0031988307043262
411 => 0.0032153082843368
412 => 0.0029429705910238
413 => 0.0032706110242753
414 => 0.0032734444723476
415 => 0.0032491827697162
416 => 0.0034236411856591
417 => 0.0037918028582432
418 => 0.0036532856277481
419 => 0.0035996475693949
420 => 0.0034976815812564
421 => 0.0036335452063097
422 => 0.0036231129997083
423 => 0.00357593460516
424 => 0.0035474009649317
425 => 0.0035999750719416
426 => 0.0035408864512613
427 => 0.0035302725113404
428 => 0.0034659635835002
429 => 0.0034430082221311
430 => 0.0034260129864527
501 => 0.0034073029018881
502 => 0.003448572686175
503 => 0.0033550499254886
504 => 0.00324227064425
505 => 0.0032328942673038
506 => 0.0032587832684319
507 => 0.0032473293126421
508 => 0.0032328394301701
509 => 0.0032051742984463
510 => 0.0031969666448359
511 => 0.0032236375372823
512 => 0.0031935276547199
513 => 0.0032379564266109
514 => 0.0032258742590127
515 => 0.0031583842529634
516 => 0.0030742667174254
517 => 0.0030735178949166
518 => 0.0030553949098653
519 => 0.0030323125635935
520 => 0.0030258915829133
521 => 0.0031195537994329
522 => 0.0033134317845543
523 => 0.0032753688969679
524 => 0.0033028732340907
525 => 0.0034381673506915
526 => 0.0034811732819229
527 => 0.0034506486905862
528 => 0.0034088647472897
529 => 0.0034107030287376
530 => 0.0035534914118416
531 => 0.003562396948148
601 => 0.0035848983653594
602 => 0.0036138190453757
603 => 0.0034555740074495
604 => 0.003403249701682
605 => 0.0033784555427674
606 => 0.0033020991298575
607 => 0.0033844429748768
608 => 0.0033364647426991
609 => 0.0033429386453896
610 => 0.0033387225077695
611 => 0.0033410248040041
612 => 0.0032187907320477
613 => 0.0032633264034349
614 => 0.0031892772119181
615 => 0.003090133656889
616 => 0.0030898012929283
617 => 0.0031140665375651
618 => 0.0030996326205561
619 => 0.0030607913210145
620 => 0.0030663085442886
621 => 0.0030179718629123
622 => 0.0030721774925716
623 => 0.0030737319160732
624 => 0.0030528597960537
625 => 0.0031363710474793
626 => 0.0031705856753271
627 => 0.0031568471988061
628 => 0.0031696217471904
629 => 0.0032769505817908
630 => 0.003294449864916
701 => 0.0033022218905425
702 => 0.0032918084057991
703 => 0.0031715835212606
704 => 0.0031769160061255
705 => 0.0031377897703457
706 => 0.0031047322241329
707 => 0.0031060543526174
708 => 0.003123050228551
709 => 0.0031972722155479
710 => 0.0033534680115578
711 => 0.0033593955278387
712 => 0.0033665798504891
713 => 0.0033373575997188
714 => 0.0033285438892673
715 => 0.0033401714483646
716 => 0.0033988303769611
717 => 0.0035497170670551
718 => 0.0034963836333927
719 => 0.0034530227216408
720 => 0.0034910619312651
721 => 0.0034852060931046
722 => 0.0034357769259229
723 => 0.0034343896138291
724 => 0.0033395192385468
725 => 0.0033044478208989
726 => 0.0032751395192621
727 => 0.0032431356189874
728 => 0.0032241626341241
729 => 0.0032533137619416
730 => 0.0032599809697794
731 => 0.0031962415193321
801 => 0.0031875540677614
802 => 0.0032396050789084
803 => 0.0032166993695599
804 => 0.003240258459659
805 => 0.0032457243706482
806 => 0.0032448442330883
807 => 0.0032209280418246
808 => 0.003236171508945
809 => 0.0032001161649089
810 => 0.0031609113936072
811 => 0.0031359011920603
812 => 0.0031140764740888
813 => 0.0031261860960795
814 => 0.0030830175048124
815 => 0.003069207003654
816 => 0.0032310073652735
817 => 0.0033505310320488
818 => 0.0033487931105973
819 => 0.0033382139607185
820 => 0.0033224954899008
821 => 0.0033976804729165
822 => 0.003371487528205
823 => 0.0033905450839764
824 => 0.0033953960317633
825 => 0.0034100783897022
826 => 0.0034153260706741
827 => 0.0033994639340283
828 => 0.0033462286660483
829 => 0.0032135714396994
830 => 0.0031518191427326
831 => 0.0031314398561677
901 => 0.0031321806045286
902 => 0.0031117474578898
903 => 0.0031177659353243
904 => 0.0031096544770505
905 => 0.0030942933374523
906 => 0.0031252375889958
907 => 0.0031288036257206
908 => 0.003121580867654
909 => 0.0031232820886464
910 => 0.0030634807367359
911 => 0.00306802730364
912 => 0.0030427114413685
913 => 0.0030379650223798
914 => 0.0029739687270618
915 => 0.0028605900134945
916 => 0.0029234128267488
917 => 0.002847531702562
918 => 0.0028187943710457
919 => 0.0029548324288715
920 => 0.0029411779809742
921 => 0.0029178075016198
922 => 0.00288323769182
923 => 0.0028704154130917
924 => 0.002792511306579
925 => 0.002787908316364
926 => 0.0028265196951395
927 => 0.002808701872371
928 => 0.0027836789010669
929 => 0.0026930482355414
930 => 0.0025911493607085
1001 => 0.0025942250472262
1002 => 0.0026266371834146
1003 => 0.0027208798407544
1004 => 0.0026840576041172
1005 => 0.0026573426489504
1006 => 0.0026523397408963
1007 => 0.0027149616094912
1008 => 0.00280358467324
1009 => 0.0028451646319217
1010 => 0.0028039601556703
1011 => 0.0027566266719592
1012 => 0.0027595076417905
1013 => 0.0027786734433805
1014 => 0.0027806874981378
1015 => 0.0027498782662026
1016 => 0.0027585508845263
1017 => 0.0027453763842518
1018 => 0.0026645245003858
1019 => 0.0026630621461908
1020 => 0.0026432197899773
1021 => 0.002642618971317
1022 => 0.0026088621734901
1023 => 0.0026041393641244
1024 => 0.0025371131931481
1025 => 0.0025812300218587
1026 => 0.0025516387693971
1027 => 0.0025070377720667
1028 => 0.0024993485433158
1029 => 0.0024991173958145
1030 => 0.0025449126474723
1031 => 0.0025806948776797
1101 => 0.0025521535219028
1102 => 0.0025456552084433
1103 => 0.0026150401952162
1104 => 0.0026062103231911
1105 => 0.002598563710964
1106 => 0.0027956494499076
1107 => 0.0026396407087418
1108 => 0.0025716119929258
1109 => 0.0024874135388009
1110 => 0.0025148289800294
1111 => 0.0025206058163129
1112 => 0.0023181237120545
1113 => 0.0022359767475744
1114 => 0.0022077870050079
1115 => 0.0021915634096164
1116 => 0.0021989567057594
1117 => 0.0021250148028494
1118 => 0.0021747049844911
1119 => 0.0021106775467245
1120 => 0.0020999431384196
1121 => 0.0022144321286238
1122 => 0.0022303626027757
1123 => 0.0021623982508332
1124 => 0.0022060423672094
1125 => 0.0021902164039128
1126 => 0.0021117751133751
1127 => 0.0021087792330516
1128 => 0.0020694201508045
1129 => 0.0020078308085078
1130 => 0.0019796828264156
1201 => 0.00196502311295
1202 => 0.001971071996438
1203 => 0.0019680134958476
1204 => 0.0019480547106454
1205 => 0.0019691575100524
1206 => 0.0019152485778463
1207 => 0.001893781606668
1208 => 0.0018840854738167
1209 => 0.0018362381936013
1210 => 0.001912384494206
1211 => 0.001927386274691
1212 => 0.0019424176133178
1213 => 0.0020732551537332
1214 => 0.0020667188799571
1215 => 0.0021258036115987
1216 => 0.0021235076875769
1217 => 0.0021066557650036
1218 => 0.0020355602756733
1219 => 0.0020638976705651
1220 => 0.001976679573697
1221 => 0.0020420293021247
1222 => 0.0020122064151402
1223 => 0.0020319461540361
1224 => 0.0019964523236407
1225 => 0.0020160960748859
1226 => 0.0019309437533733
1227 => 0.0018514297136704
1228 => 0.0018834284844064
1229 => 0.0019182148076997
1230 => 0.0019936404199899
1231 => 0.0019487175475577
]
'min_raw' => 0.0018362381936013
'max_raw' => 0.0054812157277409
'avg_raw' => 0.0036587269606711
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.001836'
'max' => '$0.005481'
'avg' => '$0.003658'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0034784918063987
'max_diff' => 0.00016648572774092
'year' => 2026
]
1 => [
'items' => [
101 => 0.0019648735112062
102 => 0.0019107537374593
103 => 0.0017990891856704
104 => 0.0017997211949068
105 => 0.0017825440363586
106 => 0.0017677004634667
107 => 0.0019538774798519
108 => 0.0019307234248414
109 => 0.0018938304685098
110 => 0.0019432131566274
111 => 0.0019562707231743
112 => 0.0019566424537372
113 => 0.0019926707882361
114 => 0.0020118991168166
115 => 0.0020152881930693
116 => 0.0020719795558471
117 => 0.002090981752873
118 => 0.0021692491131314
119 => 0.0020102677274774
120 => 0.0020069936104605
121 => 0.0019439080723205
122 => 0.0019038982266892
123 => 0.0019466475806808
124 => 0.0019845176724486
125 => 0.0019450848016342
126 => 0.0019502339020892
127 => 0.0018972984948048
128 => 0.0019162204120665
129 => 0.0019325185162699
130 => 0.0019235196610871
131 => 0.0019100479393289
201 => 0.0019814127567884
202 => 0.0019773860741064
203 => 0.0020438426327948
204 => 0.0020956502726464
205 => 0.002188498824984
206 => 0.0020916065203153
207 => 0.0020880753796211
208 => 0.0021225928463193
209 => 0.0020909764684287
210 => 0.0021109569278953
211 => 0.0021852796640673
212 => 0.0021868499863664
213 => 0.0021605450646108
214 => 0.0021589444077313
215 => 0.0021639965556988
216 => 0.0021935871441453
217 => 0.0021832472833152
218 => 0.002195212832041
219 => 0.0022101759339457
220 => 0.0022720696676473
221 => 0.0022869920373025
222 => 0.002250738415402
223 => 0.002254011711545
224 => 0.00224045186177
225 => 0.0022273532167918
226 => 0.0022567970577993
227 => 0.0023106062559608
228 => 0.0023102715117317
301 => 0.0023227541998038
302 => 0.0023305308110605
303 => 0.0022971479027192
304 => 0.0022754168569126
305 => 0.0022837499226572
306 => 0.0022970746762535
307 => 0.0022794288846525
308 => 0.0021705108845656
309 => 0.0022035496480832
310 => 0.0021980503823209
311 => 0.0021902187591417
312 => 0.0022234394913399
313 => 0.0022202352706769
314 => 0.0021242564217611
315 => 0.0021304006762661
316 => 0.002124630074228
317 => 0.0021432760699672
318 => 0.0020899695234679
319 => 0.002106366258146
320 => 0.0021166501364263
321 => 0.0021227074197379
322 => 0.0021445904805773
323 => 0.0021420227559611
324 => 0.0021444308672099
325 => 0.0021768776695209
326 => 0.0023409824612119
327 => 0.0023499143229468
328 => 0.0023059305690891
329 => 0.0023235012112141
330 => 0.0022897694206111
331 => 0.0023124137976262
401 => 0.0023279065052752
402 => 0.002257897938486
403 => 0.0022537524855126
404 => 0.0022198814718108
405 => 0.0022380818360219
406 => 0.0022091237479096
407 => 0.0022162290498214
408 => 0.0021963620062468
409 => 0.0022321187291922
410 => 0.0022721003014781
411 => 0.0022822012255577
412 => 0.0022556300430256
413 => 0.0022363907557461
414 => 0.0022026129050985
415 => 0.0022587862235139
416 => 0.0022752130136694
417 => 0.0022586999405783
418 => 0.0022548735007253
419 => 0.0022476224041182
420 => 0.0022564118551487
421 => 0.0022751235498424
422 => 0.0022662994601756
423 => 0.002272127926861
424 => 0.0022499158221451
425 => 0.0022971589538509
426 => 0.0023721924166787
427 => 0.0023724336615309
428 => 0.0023636095242989
429 => 0.0023599988774623
430 => 0.0023690529777557
501 => 0.0023739644557462
502 => 0.002403243755857
503 => 0.0024346616114147
504 => 0.002581275034618
505 => 0.0025401065720656
506 => 0.0026701907232032
507 => 0.0027730703974401
508 => 0.0028039195133608
509 => 0.0027755397782768
510 => 0.0026784542375976
511 => 0.0026736907578009
512 => 0.0028187775440336
513 => 0.002777783881527
514 => 0.0027729078158126
515 => 0.0027210347148545
516 => 0.0027516981421293
517 => 0.002744991600779
518 => 0.0027344049971622
519 => 0.0027929086803697
520 => 0.0029024223526743
521 => 0.0028853536198329
522 => 0.0028726126025625
523 => 0.0028167851737382
524 => 0.0028504057553981
525 => 0.0028384341102288
526 => 0.0028898718952697
527 => 0.0028594012908979
528 => 0.0027774733142152
529 => 0.00279052061454
530 => 0.0027885485413435
531 => 0.0028291336679865
601 => 0.002816951020353
602 => 0.0027861696838685
603 => 0.002902048046848
604 => 0.0028945235505054
605 => 0.0029051915659798
606 => 0.002909887956311
607 => 0.0029804210738508
608 => 0.0030093162352988
609 => 0.0030158759428285
610 => 0.0030433241113722
611 => 0.0030151930073905
612 => 0.0031277374804546
613 => 0.0032025729878901
614 => 0.0032894982807765
615 => 0.0034165194969997
616 => 0.0034642806493115
617 => 0.0034556530246399
618 => 0.0035519590611071
619 => 0.0037250188678759
620 => 0.0034906333595571
621 => 0.0037374418689493
622 => 0.003659305144417
623 => 0.0034740443761705
624 => 0.0034621157667764
625 => 0.0035875765099547
626 => 0.003865836363175
627 => 0.0037961354259404
628 => 0.0038659503689386
629 => 0.0037845075294922
630 => 0.0037804632060595
701 => 0.0038619948720105
702 => 0.0040524980535648
703 => 0.0039619971329133
704 => 0.0038322418714233
705 => 0.0039280511372921
706 => 0.0038450522844676
707 => 0.0036580326391379
708 => 0.0037960821269473
709 => 0.0037037723658722
710 => 0.0037307132616107
711 => 0.00392473464935
712 => 0.0039013894826602
713 => 0.003931600290061
714 => 0.0038782790057532
715 => 0.003828468518215
716 => 0.0037354935442496
717 => 0.0037079682380692
718 => 0.0037155752424407
719 => 0.0037079644684156
720 => 0.0036559458249661
721 => 0.0036447124038659
722 => 0.0036259895432181
723 => 0.0036317925406232
724 => 0.0035965880850393
725 => 0.0036630261663378
726 => 0.0036753576596772
727 => 0.0037237057547701
728 => 0.0037287254143912
729 => 0.0038633741710329
730 => 0.0037892118985551
731 => 0.0038389663537957
801 => 0.0038345158470119
802 => 0.0034780595387782
803 => 0.0035271760730122
804 => 0.0036035859866627
805 => 0.0035691634241343
806 => 0.0035204979743583
807 => 0.0034811980143879
808 => 0.0034216545564054
809 => 0.0035054608300849
810 => 0.0036156571681698
811 => 0.0037315201753767
812 => 0.0038707219868909
813 => 0.0038396537630486
814 => 0.0037289178943372
815 => 0.003733885424515
816 => 0.003764592741423
817 => 0.0037248239759732
818 => 0.0037130953906635
819 => 0.0037629814139062
820 => 0.0037633249515314
821 => 0.0037175661806655
822 => 0.0036667136806147
823 => 0.0036665006067827
824 => 0.0036574518955756
825 => 0.0037861172751141
826 => 0.0038568702243232
827 => 0.0038649819359259
828 => 0.0038563242415016
829 => 0.0038596562444739
830 => 0.003818486662264
831 => 0.0039125881187355
901 => 0.0039989449208632
902 => 0.003975799453149
903 => 0.0039411011067233
904 => 0.0039134622024964
905 => 0.0039692886056901
906 => 0.0039668027438348
907 => 0.0039981906695326
908 => 0.0039967667319175
909 => 0.003986212153065
910 => 0.0039757998300862
911 => 0.0040170835137413
912 => 0.0040051944758443
913 => 0.0039932869709876
914 => 0.0039694046470498
915 => 0.0039726506515163
916 => 0.0039379582962493
917 => 0.0039219080252887
918 => 0.0036805504600248
919 => 0.0036160518320004
920 => 0.0036363444133675
921 => 0.0036430252580502
922 => 0.0036149553724767
923 => 0.0036552003778271
924 => 0.0036489282363733
925 => 0.0036733294696902
926 => 0.0036580846384922
927 => 0.0036587102916822
928 => 0.0037035420896948
929 => 0.003716556951386
930 => 0.003709937487687
1001 => 0.0037145735331598
1002 => 0.0038214092443281
1003 => 0.0038062206226137
1004 => 0.0037981519700484
1005 => 0.0038003870419511
1006 => 0.0038276858567381
1007 => 0.0038353280344184
1008 => 0.0038029475905806
1009 => 0.0038182183950836
1010 => 0.0038832395425039
1011 => 0.0039059932642228
1012 => 0.0039786122215434
1013 => 0.0039477623977746
1014 => 0.0040043885844514
1015 => 0.0041784381770063
1016 => 0.0043174810348548
1017 => 0.0041896114765882
1018 => 0.0044449459780259
1019 => 0.004643760512954
1020 => 0.0046361296799605
1021 => 0.0046014617671327
1022 => 0.004375116704875
1023 => 0.0041668306039706
1024 => 0.0043410707716721
1025 => 0.0043415149456924
1026 => 0.0043265475607609
1027 => 0.0042335864184136
1028 => 0.0043233127145122
1029 => 0.0043304348620584
1030 => 0.0043264483533644
1031 => 0.0042551752634857
1101 => 0.0041463544287097
1102 => 0.0041676177593447
1103 => 0.0042024475286849
1104 => 0.0041365075090728
1105 => 0.00411543567736
1106 => 0.0041546122215941
1107 => 0.0042808472098732
1108 => 0.0042569832165686
1109 => 0.0042563600312614
1110 => 0.0043584603145269
1111 => 0.004285378546329
1112 => 0.0041678859580386
1113 => 0.0041382175299584
1114 => 0.0040329145973217
1115 => 0.0041056477079701
1116 => 0.004108265243138
1117 => 0.0040684300617503
1118 => 0.004171118363464
1119 => 0.0041701720726858
1120 => 0.0042676593320263
1121 => 0.0044540183573428
1122 => 0.004398902823386
1123 => 0.0043348094539473
1124 => 0.0043417781803217
1125 => 0.004418207908366
1126 => 0.0043719967500694
1127 => 0.0043886146047885
1128 => 0.0044181827552526
1129 => 0.0044360219545635
1130 => 0.0043392113940705
1201 => 0.0043166402214352
1202 => 0.0042704675236285
1203 => 0.0042584219286249
1204 => 0.0042960286275636
1205 => 0.0042861205910575
1206 => 0.0041080452494428
1207 => 0.0040894353854422
1208 => 0.0040900061234023
1209 => 0.004043210735522
1210 => 0.0039718365368246
1211 => 0.0041594036694694
1212 => 0.0041443394037177
1213 => 0.0041277096202093
1214 => 0.0041297466738009
1215 => 0.004211163208842
1216 => 0.0041639375068846
1217 => 0.0042894947756787
1218 => 0.0042636839758116
1219 => 0.004237211226321
1220 => 0.0042335518859617
1221 => 0.0042233621359567
1222 => 0.0041884176917504
1223 => 0.0041462201755358
1224 => 0.0041183577202447
1225 => 0.0037989673013603
1226 => 0.0038582443052967
1227 => 0.0039264370950565
1228 => 0.0039499769728161
1229 => 0.0039097103829983
1230 => 0.0041900076621442
1231 => 0.0042412206760559
]
'min_raw' => 0.0017677004634667
'max_raw' => 0.004643760512954
'avg_raw' => 0.0032057304882103
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.001767'
'max' => '$0.004643'
'avg' => '$0.0032057'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -6.8537730134651E-5
'max_diff' => -0.00083745521478695
'year' => 2027
]
2 => [
'items' => [
101 => 0.004086093116375
102 => 0.0040570750837753
103 => 0.0041919100795305
104 => 0.0041105880941822
105 => 0.0041472073792051
106 => 0.0040680565146636
107 => 0.0042288849606967
108 => 0.0042276597173993
109 => 0.0041650938194172
110 => 0.0042179740879589
111 => 0.0042087848399803
112 => 0.0041381480952515
113 => 0.0042311242714971
114 => 0.0042311703865205
115 => 0.0041709520700127
116 => 0.0041006302598161
117 => 0.00408805838108
118 => 0.0040785871592466
119 => 0.0041448780392306
120 => 0.004204314234938
121 => 0.0043149102596671
122 => 0.0043427167279807
123 => 0.0044512472249902
124 => 0.004386622598275
125 => 0.0044152698582688
126 => 0.0044463705113944
127 => 0.0044612813081915
128 => 0.0044369849649681
129 => 0.0046055774997586
130 => 0.0046198118752367
131 => 0.0046245845382077
201 => 0.0045677360840515
202 => 0.0046182308168885
203 => 0.0045946060036039
204 => 0.0046560712046084
205 => 0.004665709732953
206 => 0.0046575462423457
207 => 0.0046606056633761
208 => 0.0045167416766936
209 => 0.0045092815700411
210 => 0.0044075624864896
211 => 0.0044490137649064
212 => 0.0043715225867177
213 => 0.0043960958375689
214 => 0.0044069274924016
215 => 0.004401269650608
216 => 0.004451357357995
217 => 0.0044087725744735
218 => 0.0042963843291734
219 => 0.0041839654637711
220 => 0.0041825541364904
221 => 0.0041529562335878
222 => 0.0041315623709155
223 => 0.0041356835878542
224 => 0.0041502072938851
225 => 0.0041307182267183
226 => 0.0041348772073192
227 => 0.0042039439964355
228 => 0.004217794848431
229 => 0.0041707242414731
301 => 0.003981728962281
302 => 0.0039353490467085
303 => 0.0039686860102683
304 => 0.0039527530888622
305 => 0.0031901802424416
306 => 0.0033693354213052
307 => 0.0032628874975594
308 => 0.0033119435982549
309 => 0.0032032878326668
310 => 0.003255144059142
311 => 0.0032455681075982
312 => 0.0035336443336238
313 => 0.0035291464195903
314 => 0.0035312993330138
315 => 0.0034285351659231
316 => 0.0035922412744498
317 => 0.0036728887901913
318 => 0.0036579630813917
319 => 0.0036617195607348
320 => 0.0035971707998089
321 => 0.0035319243061162
322 => 0.0034595559032475
323 => 0.0035940074507726
324 => 0.0035790587338522
325 => 0.0036133457120889
326 => 0.003700547151454
327 => 0.0037133878946466
328 => 0.0037306459837154
329 => 0.0037244601872986
330 => 0.0038718309538975
331 => 0.0038539833816787
401 => 0.003896990895629
402 => 0.0038085211764454
403 => 0.0037084092915664
404 => 0.0037274372879778
405 => 0.0037256047389099
406 => 0.0037022742859736
407 => 0.0036812125962378
408 => 0.0036461508169219
409 => 0.0037570914748444
410 => 0.0037525874867342
411 => 0.0038255018189252
412 => 0.0038126135024584
413 => 0.0037265421707871
414 => 0.0037296162252361
415 => 0.0037502907187459
416 => 0.0038218453768407
417 => 0.0038430876711759
418 => 0.0038332473940808
419 => 0.0038565386000717
420 => 0.0038749470196279
421 => 0.0038588504141469
422 => 0.0040867444030211
423 => 0.0039921069301271
424 => 0.0040382325759323
425 => 0.0040492332706688
426 => 0.004021055222421
427 => 0.0040271660321057
428 => 0.004036422243682
429 => 0.0040926241478214
430 => 0.0042401142064352
501 => 0.0043054365493965
502 => 0.0045019620411431
503 => 0.0043000124381445
504 => 0.0042880295844531
505 => 0.0043234297600179
506 => 0.0044388110280092
507 => 0.0045323167085047
508 => 0.0045633379371972
509 => 0.0045674379046735
510 => 0.0046256357919529
511 => 0.0046589937356151
512 => 0.0046185690376808
513 => 0.0045843133388238
514 => 0.0044616136774918
515 => 0.004475816497391
516 => 0.0045736598422382
517 => 0.004711869329779
518 => 0.0048304674483353
519 => 0.0047889385207786
520 => 0.0051057749231824
521 => 0.0051371879583201
522 => 0.0051328476925691
523 => 0.0052044112614991
524 => 0.0050623721508403
525 => 0.0050016476791555
526 => 0.0045917198097354
527 => 0.0047068928203019
528 => 0.0048743035550342
529 => 0.0048521461165343
530 => 0.00473056796607
531 => 0.004830375220406
601 => 0.0047973758208611
602 => 0.0047713478252937
603 => 0.0048905871187632
604 => 0.0047594786175133
605 => 0.0048729956474414
606 => 0.0047274088823753
607 => 0.0047891282214216
608 => 0.0047540933395504
609 => 0.0047767652018347
610 => 0.0046442259581829
611 => 0.0047157409168491
612 => 0.0046412507007831
613 => 0.0046412153827217
614 => 0.0046395710070735
615 => 0.004727208415935
616 => 0.0047300662686917
617 => 0.0046653020911302
618 => 0.004655968561337
619 => 0.0046904795128835
620 => 0.0046500762270551
621 => 0.004668980670199
622 => 0.0046506488233797
623 => 0.0046465219385329
624 => 0.0046136382179421
625 => 0.0045994710069549
626 => 0.004605026335427
627 => 0.0045860631353834
628 => 0.0045746371214283
629 => 0.0046372980853092
630 => 0.0046038208600437
701 => 0.0046321672204062
702 => 0.0045998629651772
703 => 0.0044878823422594
704 => 0.0044234811018457
705 => 0.0042119600857632
706 => 0.0042719471835332
707 => 0.0043117186914159
708 => 0.0042985742082979
709 => 0.004326813644275
710 => 0.0043285473162928
711 => 0.0043193663877897
712 => 0.0043087360487328
713 => 0.0043035617875746
714 => 0.0043421264910555
715 => 0.0043645145994544
716 => 0.004315710294306
717 => 0.0043042761284545
718 => 0.0043536199755191
719 => 0.0043837196937235
720 => 0.004605959101374
721 => 0.0045894948882314
722 => 0.0046308168322806
723 => 0.0046261646155176
724 => 0.0046694765959831
725 => 0.0047402733790355
726 => 0.0045963237239981
727 => 0.004621308406708
728 => 0.0046151827394881
729 => 0.0046820611679587
730 => 0.0046822699551124
731 => 0.004642172996419
801 => 0.0046639102082255
802 => 0.0046517770929243
803 => 0.0046737032721625
804 => 0.0045892749986271
805 => 0.0046920995223243
806 => 0.0047503944013946
807 => 0.004751203825847
808 => 0.0047788351358696
809 => 0.0048069101471501
810 => 0.0048607976864848
811 => 0.0048054072529256
812 => 0.0047057652551025
813 => 0.0047129590855036
814 => 0.0046545390186375
815 => 0.004655521070516
816 => 0.0046502788006239
817 => 0.0046660112471896
818 => 0.0045927273859361
819 => 0.0046099269616946
820 => 0.0045858474549121
821 => 0.0046212560625629
822 => 0.0045831622539832
823 => 0.0046151797855059
824 => 0.0046289974907131
825 => 0.0046799851204018
826 => 0.0045756313396214
827 => 0.0043628469164803
828 => 0.0044075767819863
829 => 0.0043414177974478
830 => 0.0043475410633518
831 => 0.0043599110349886
901 => 0.004319815909711
902 => 0.0043274647960714
903 => 0.0043271915240262
904 => 0.0043248366131744
905 => 0.0043144063225425
906 => 0.0042992803375561
907 => 0.0043595376062091
908 => 0.0043697764903432
909 => 0.0043925362614439
910 => 0.0044602539021393
911 => 0.0044534873129419
912 => 0.0044645239006659
913 => 0.0044404310916321
914 => 0.0043486586596631
915 => 0.0043536423442495
916 => 0.0042914957175988
917 => 0.0043909470324757
918 => 0.0043673956484197
919 => 0.0043522119179079
920 => 0.0043480688963615
921 => 0.0044159543959901
922 => 0.0044362668014538
923 => 0.0044236094734837
924 => 0.0043976489245436
925 => 0.0044475008530559
926 => 0.0044608391260417
927 => 0.0044638250734667
928 => 0.0045521531326312
929 => 0.0044687616307716
930 => 0.0044888347941095
1001 => 0.0046454398843341
1002 => 0.0045034206775256
1003 => 0.0045786514187783
1004 => 0.0045749692654758
1005 => 0.0046134547670312
1006 => 0.0045718123310407
1007 => 0.0045723285389428
1008 => 0.0046065010570903
1009 => 0.0045585119183983
1010 => 0.0045466291327853
1011 => 0.0045302131495672
1012 => 0.0045660568483573
1013 => 0.0045875435247108
1014 => 0.0047607103558959
1015 => 0.0048725840262084
1016 => 0.0048677272951343
1017 => 0.0049121087257318
1018 => 0.0048921144847603
1019 => 0.0048275478064492
1020 => 0.0049377552532587
1021 => 0.0049028810058128
1022 => 0.0049057559964
1023 => 0.0049056489891068
1024 => 0.0049288373148987
1025 => 0.0049124062608963
1026 => 0.0048800189668444
1027 => 0.0049015191640877
1028 => 0.0049653670634394
1029 => 0.0051635529021198
1030 => 0.0052744603230585
1031 => 0.0051568761361199
1101 => 0.0052379841337551
1102 => 0.0051893482369085
1103 => 0.0051805096476589
1104 => 0.0052314514640078
1105 => 0.0052824824472626
1106 => 0.0052792319942423
1107 => 0.0052421861208693
1108 => 0.0052212598470051
1109 => 0.0053797206035207
1110 => 0.0054964717896129
1111 => 0.0054885101414313
1112 => 0.0055236502672382
1113 => 0.0056268227634505
1114 => 0.0056362555635043
1115 => 0.0056350672475079
1116 => 0.0056116870683636
1117 => 0.0057132737895262
1118 => 0.0057980192195683
1119 => 0.00560627523241
1120 => 0.0056792888326068
1121 => 0.0057120669900864
1122 => 0.0057601950501076
1123 => 0.0058413951545627
1124 => 0.005929600005265
1125 => 0.0059420731382713
1126 => 0.005933222853509
1127 => 0.0058750493833972
1128 => 0.0059715641835383
1129 => 0.0060281002899104
1130 => 0.0060617662474492
1201 => 0.0061471375142865
1202 => 0.005712269416828
1203 => 0.0054044481631001
1204 => 0.0053563774293377
1205 => 0.0054541311567318
1206 => 0.0054799080350742
1207 => 0.0054695174077358
1208 => 0.0051230366007811
1209 => 0.0053545532795949
1210 => 0.0056036457595234
1211 => 0.0056132144161385
1212 => 0.0057379153198688
1213 => 0.0057785230457861
1214 => 0.0058789236182101
1215 => 0.0058726435350689
1216 => 0.0058970894767321
1217 => 0.0058914697780884
1218 => 0.006077440696669
1219 => 0.0062825942368121
1220 => 0.0062754904220652
1221 => 0.0062459971734032
1222 => 0.0062897996770125
1223 => 0.0065015401160297
1224 => 0.0064820464494764
1225 => 0.0065009828860663
1226 => 0.0067506367968357
1227 => 0.0070752223936906
1228 => 0.0069244197960904
1229 => 0.0072516180406044
1230 => 0.0074575719914922
1231 => 0.0078137480535168
]
'min_raw' => 0.0031901802424416
'max_raw' => 0.0078137480535168
'avg_raw' => 0.0055019641479792
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.00319'
'max' => '$0.007813'
'avg' => '$0.0055019'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0014224797789749
'max_diff' => 0.0031699875405628
'year' => 2028
]
3 => [
'items' => [
101 => 0.0077691530563472
102 => 0.0079078097835527
103 => 0.0076893187041569
104 => 0.0071876190215317
105 => 0.007108223126327
106 => 0.0072671757191511
107 => 0.0076579451582418
108 => 0.0072548689988837
109 => 0.0073364107809544
110 => 0.0073129267422324
111 => 0.0073116753776096
112 => 0.0073594348755924
113 => 0.0072901572328005
114 => 0.0070079076532563
115 => 0.0071372609722542
116 => 0.0070873114437326
117 => 0.0071427341696114
118 => 0.0074418277631085
119 => 0.0073095913559227
120 => 0.0071702910429658
121 => 0.0073450045486278
122 => 0.0075674748794096
123 => 0.0075535530859269
124 => 0.0075265389877122
125 => 0.0076788160449362
126 => 0.0079303331304788
127 => 0.0079983171880235
128 => 0.0080485016294301
129 => 0.008055421216027
130 => 0.008126697258474
131 => 0.0077434280143609
201 => 0.0083516861478207
202 => 0.0084567155246773
203 => 0.0084369743548499
204 => 0.0085537100869143
205 => 0.0085193634732413
206 => 0.0084696006188476
207 => 0.0086546515845719
208 => 0.0084425055852119
209 => 0.008141391047559
210 => 0.0079761936568324
211 => 0.0081937389070346
212 => 0.0083265862000501
213 => 0.0084143898100587
214 => 0.0084409591293948
215 => 0.0077731801147538
216 => 0.0074132842625843
217 => 0.0076439733776106
218 => 0.0079254300192549
219 => 0.0077418645085055
220 => 0.0077490599289914
221 => 0.0074873437508302
222 => 0.0079485860937479
223 => 0.0078813869640435
224 => 0.0082300161678231
225 => 0.008146813010417
226 => 0.0084311065923915
227 => 0.0083562425645422
228 => 0.0086669989585534
301 => 0.008790968097518
302 => 0.0089991315760953
303 => 0.0091522574783146
304 => 0.0092421759369295
305 => 0.0092367775699499
306 => 0.0095930793001805
307 => 0.0093829806180978
308 => 0.0091190471569446
309 => 0.0091142734333318
310 => 0.0092509683128291
311 => 0.0095374432798467
312 => 0.0096117220707531
313 => 0.0096532337815707
314 => 0.0095896571514204
315 => 0.0093616100899279
316 => 0.0092631405250003
317 => 0.0093470394472566
318 => 0.0092444382748537
319 => 0.0094215566832255
320 => 0.0096647780883706
321 => 0.0096145538300098
322 => 0.0097824459956683
323 => 0.0099561967243538
324 => 0.010204668070008
325 => 0.010269627680629
326 => 0.010377003446793
327 => 0.010487528381278
328 => 0.010523026011504
329 => 0.010590802001873
330 => 0.010590444788948
331 => 0.010794692297776
401 => 0.011019983625032
402 => 0.011105025885565
403 => 0.011300575874402
404 => 0.010965703371407
405 => 0.011219708011667
406 => 0.01144882655533
407 => 0.011175661982126
408 => 0.011552155707105
409 => 0.011566774105293
410 => 0.011787494562167
411 => 0.011563752094202
412 => 0.011430894530936
413 => 0.011814449337978
414 => 0.012000039427242
415 => 0.011944138181974
416 => 0.011518726945294
417 => 0.0112711193588
418 => 0.010623082545009
419 => 0.011390710144051
420 => 0.011764599155541
421 => 0.011517758663079
422 => 0.011642250649623
423 => 0.012321438561544
424 => 0.012580029344243
425 => 0.012526244269127
426 => 0.012535333061444
427 => 0.012674863954034
428 => 0.013293620772842
429 => 0.012922847344342
430 => 0.013206289737815
501 => 0.013356626561286
502 => 0.013496267781288
503 => 0.013153353079024
504 => 0.012707226089796
505 => 0.012565918945171
506 => 0.011493215240798
507 => 0.011437376354469
508 => 0.011406032295482
509 => 0.011208412437269
510 => 0.011053137361349
511 => 0.010929656855984
512 => 0.010605607135504
513 => 0.010714964403587
514 => 0.010198496783576
515 => 0.01052891446437
516 => 0.0097046196722853
517 => 0.010391116869186
518 => 0.01001748765611
519 => 0.010268369623965
520 => 0.010267494320413
521 => 0.0098055410753927
522 => 0.0095390960843829
523 => 0.0097088852028485
524 => 0.0098909126157207
525 => 0.0099204459510454
526 => 0.010156449243236
527 => 0.010222312689212
528 => 0.010022743373033
529 => 0.0096875379948896
530 => 0.0097653985590116
531 => 0.0095375182425361
601 => 0.0091381667532025
602 => 0.00942498796485
603 => 0.0095229213371449
604 => 0.0095661742934914
605 => 0.0091734579695603
606 => 0.0090500579742949
607 => 0.0089843608522419
608 => 0.0096368432489905
609 => 0.0096725877075801
610 => 0.0094897140036785
611 => 0.01031632048611
612 => 0.010129233981082
613 => 0.010338255444505
614 => 0.0097583335289134
615 => 0.0097804873270574
616 => 0.0095059429985555
617 => 0.0096596694774579
618 => 0.0095510205570054
619 => 0.0096472498971172
620 => 0.0097049293668119
621 => 0.009979428645291
622 => 0.010394251210012
623 => 0.0099384276068304
624 => 0.0097398187354102
625 => 0.0098630345622206
626 => 0.010191174546209
627 => 0.010688323419127
628 => 0.010394001280306
629 => 0.010524616447601
630 => 0.01055315005099
701 => 0.010336127802221
702 => 0.010696325338996
703 => 0.010889358125194
704 => 0.011087369821325
705 => 0.011259297828915
706 => 0.01100827959552
707 => 0.011276905087303
708 => 0.011060440359708
709 => 0.010866249121344
710 => 0.010866543629294
711 => 0.010744724628787
712 => 0.010508684965122
713 => 0.010465155629644
714 => 0.010691600729949
715 => 0.010873188255963
716 => 0.010888144674352
717 => 0.010988680859057
718 => 0.01104817713756
719 => 0.011631321548163
720 => 0.011865867054132
721 => 0.01215266485911
722 => 0.012264388767188
723 => 0.012600637675264
724 => 0.012329089373192
725 => 0.012270338189919
726 => 0.011454708325106
727 => 0.011588267669776
728 => 0.011802109067154
729 => 0.011458234490986
730 => 0.011676343760548
731 => 0.011719403150546
801 => 0.011446549764473
802 => 0.011592292547273
803 => 0.011205242925879
804 => 0.010402687834073
805 => 0.010697218812236
806 => 0.010914092750219
807 => 0.010604586900354
808 => 0.011159364156707
809 => 0.010835274736473
810 => 0.010732553949294
811 => 0.010331803535905
812 => 0.010520942304727
813 => 0.010776755197764
814 => 0.010618692571308
815 => 0.010946696254427
816 => 0.011411236945112
817 => 0.01174229630517
818 => 0.011767710932054
819 => 0.011554861942792
820 => 0.011895953806469
821 => 0.011898438288318
822 => 0.011513685272688
823 => 0.011278026192929
824 => 0.011224483954176
825 => 0.011358242964154
826 => 0.011520651095542
827 => 0.011776723453043
828 => 0.011931462615619
829 => 0.012334940284307
830 => 0.012444109772843
831 => 0.012564053942623
901 => 0.012724336342861
902 => 0.01291679645991
903 => 0.012495704680566
904 => 0.012512435441973
905 => 0.012120320607461
906 => 0.011701289671829
907 => 0.01201928191903
908 => 0.012435014481509
909 => 0.012339644972333
910 => 0.012328913954328
911 => 0.012346960550076
912 => 0.012275055054634
913 => 0.011949829163691
914 => 0.011786502757282
915 => 0.01199723549056
916 => 0.012109230559663
917 => 0.012282925144844
918 => 0.012261513620973
919 => 0.012708932218964
920 => 0.012882785556907
921 => 0.012838306433458
922 => 0.012846491662622
923 => 0.013161244826651
924 => 0.013511315078976
925 => 0.013839202066117
926 => 0.01417274279251
927 => 0.013770646428527
928 => 0.013566486692752
929 => 0.013777127426711
930 => 0.01366535848829
1001 => 0.014307615961282
1002 => 0.014352084475226
1003 => 0.014994295505693
1004 => 0.015603830246673
1005 => 0.015220992396813
1006 => 0.015581991245835
1007 => 0.015972440933722
1008 => 0.016725681729833
1009 => 0.016472016729034
1010 => 0.016277713313858
1011 => 0.016094097525385
1012 => 0.016476172833013
1013 => 0.016967706612473
1014 => 0.017073578280717
1015 => 0.017245130829362
1016 => 0.017064764300909
1017 => 0.017281995917709
1018 => 0.018048918981421
1019 => 0.017841689599789
1020 => 0.017547390564086
1021 => 0.018152802666813
1022 => 0.018371898953309
1023 => 0.01990963143356
1024 => 0.021851082210438
1025 => 0.021047308840557
1026 => 0.020548380772268
1027 => 0.020665640703048
1028 => 0.021374592804507
1029 => 0.021602285718481
1030 => 0.020983337887846
1031 => 0.021201960725333
1101 => 0.022406594054405
1102 => 0.023052841186188
1103 => 0.022175150778657
1104 => 0.019753637753987
1105 => 0.017520892155916
1106 => 0.018113116830369
1107 => 0.018045976931157
1108 => 0.019340205162177
1109 => 0.017836747247572
1110 => 0.017862061623021
1111 => 0.019183053123247
1112 => 0.018830635238515
1113 => 0.01825976339952
1114 => 0.017525060152105
1115 => 0.016166893247434
1116 => 0.01496392694468
1117 => 0.017323220890974
1118 => 0.017221483845912
1119 => 0.017074153528077
1120 => 0.017402021207614
1121 => 0.018994053592576
1122 => 0.018957352093197
1123 => 0.018723875879415
1124 => 0.018900965529804
1125 => 0.018228718727591
1126 => 0.018401972035297
1127 => 0.017520538477606
1128 => 0.017918983257599
1129 => 0.018258538564945
1130 => 0.018326709320097
1201 => 0.01848030151234
1202 => 0.017167873046132
1203 => 0.017757114896584
1204 => 0.01810323927923
1205 => 0.016539436726324
1206 => 0.018072327930767
1207 => 0.017145026586425
1208 => 0.016830286582556
1209 => 0.017254042533923
1210 => 0.017088904427559
1211 => 0.016946928380943
1212 => 0.016867703307472
1213 => 0.017178862909918
1214 => 0.017164346942548
1215 => 0.01665522943947
1216 => 0.015991106410989
1217 => 0.016214007898443
1218 => 0.016133025698338
1219 => 0.015839535758248
1220 => 0.016037312541758
1221 => 0.015166403679719
1222 => 0.013668050248483
1223 => 0.014657908420964
1224 => 0.014619799958082
1225 => 0.014600583943016
1226 => 0.015344435001965
1227 => 0.015272930886211
1228 => 0.015143150215947
1229 => 0.015837152234464
1230 => 0.01558383216206
1231 => 0.016364504935491
]
'min_raw' => 0.0070079076532563
'max_raw' => 0.023052841186188
'avg_raw' => 0.015030374419722
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.0070079'
'max' => '$0.023052'
'avg' => '$0.01503'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.0038177274108148
'max_diff' => 0.015239093132671
'year' => 2029
]
4 => [
'items' => [
101 => 0.016878706514822
102 => 0.016748288361625
103 => 0.017231897432338
104 => 0.016219143098516
105 => 0.01655553946356
106 => 0.016624870288171
107 => 0.015828588357282
108 => 0.015284629843854
109 => 0.01524835401259
110 => 0.014305204912407
111 => 0.014809027548891
112 => 0.0152523706194
113 => 0.015040043693438
114 => 0.014972827331765
115 => 0.015316221146102
116 => 0.015342905786445
117 => 0.014734493158711
118 => 0.014861001409939
119 => 0.015388561847807
120 => 0.014847708240485
121 => 0.013796918029394
122 => 0.013536307528732
123 => 0.013501537283939
124 => 0.012794740936865
125 => 0.013553722768544
126 => 0.013222406859567
127 => 0.01426902984625
128 => 0.013671204409409
129 => 0.013645433349685
130 => 0.01360647661312
131 => 0.012998107799803
201 => 0.013131301906065
202 => 0.013574059401312
203 => 0.013732040263637
204 => 0.013715561565397
205 => 0.01357188964804
206 => 0.013637661916087
207 => 0.013425786524131
208 => 0.013350968913426
209 => 0.013114823953837
210 => 0.012767756099951
211 => 0.012816018013724
212 => 0.012128385779932
213 => 0.011753727243557
214 => 0.011650026698609
215 => 0.01151135399596
216 => 0.011665690149367
217 => 0.01212643780421
218 => 0.011570678379402
219 => 0.010617867827558
220 => 0.010675133365234
221 => 0.010803792026101
222 => 0.010564037462737
223 => 0.010337129889589
224 => 0.010534407614848
225 => 0.010130689223352
226 => 0.010852579464926
227 => 0.010833054356965
228 => 0.011102130397631
301 => 0.011270389167855
302 => 0.010882607176912
303 => 0.010785081054864
304 => 0.010840636366297
305 => 0.0099224308192819
306 => 0.011027093415114
307 => 0.011036646583115
308 => 0.010954846558795
309 => 0.011543045288444
310 => 0.012784328071788
311 => 0.01231730755821
312 => 0.012136463099583
313 => 0.011792677651536
314 => 0.012250751349098
315 => 0.012215578436188
316 => 0.012056513185078
317 => 0.011960310024893
318 => 0.012137567297284
319 => 0.011938345887225
320 => 0.01190256024774
321 => 0.011685738207621
322 => 0.011608342604073
323 => 0.011551041980413
324 => 0.011487959624008
325 => 0.011627103583095
326 => 0.01131178506589
327 => 0.010931541845196
328 => 0.010899928735684
329 => 0.0109872153105
330 => 0.010948597498865
331 => 0.01089974384846
401 => 0.010806468925335
402 => 0.010778796248147
403 => 0.010868719024133
404 => 0.010767201452869
405 => 0.010916996159217
406 => 0.01087626028761
407 => 0.010648713020213
408 => 0.010365104876248
409 => 0.010362580168878
410 => 0.010301477259471
411 => 0.010223653517458
412 => 0.010202004732796
413 => 0.010517793435079
414 => 0.011171466598044
415 => 0.011043134915081
416 => 0.011135867707982
417 => 0.011592021268035
418 => 0.01173701876776
419 => 0.011634102976909
420 => 0.011493225494824
421 => 0.01149942338907
422 => 0.011980844391872
423 => 0.012010870029293
424 => 0.01208673512842
425 => 0.012184243220273
426 => 0.011650709026589
427 => 0.011474293976527
428 => 0.011390698738674
429 => 0.011133257761514
430 => 0.01141088578406
501 => 0.011249123824539
502 => 0.011270951039454
503 => 0.011256736037107
504 => 0.011264498389603
505 => 0.010852377681891
506 => 0.011002532807355
507 => 0.010752870788206
508 => 0.010418601370444
509 => 0.010417480782145
510 => 0.010499292748584
511 => 0.010450627789644
512 => 0.010319671636426
513 => 0.010338273339895
514 => 0.010175302843876
515 => 0.010358060908788
516 => 0.01036330175615
517 => 0.01029292994626
518 => 0.01057449396101
519 => 0.010689850967588
520 => 0.010643530734808
521 => 0.010686601016576
522 => 0.011048467675891
523 => 0.011107467730709
524 => 0.011133671657734
525 => 0.011098561866875
526 => 0.01069321527482
527 => 0.010711194119845
528 => 0.010579277284206
529 => 0.010467821459146
530 => 0.010472279107639
531 => 0.010529581889964
601 => 0.010779826501137
602 => 0.011306451532627
603 => 0.011326436567614
604 => 0.011350659013023
605 => 0.011252134154319
606 => 0.011222418114178
607 => 0.011261621241485
608 => 0.011459393914683
609 => 0.011968118924908
610 => 0.011788301529693
611 => 0.01164210718836
612 => 0.011770359039421
613 => 0.011750615672221
614 => 0.011583961784034
615 => 0.011579284364451
616 => 0.011259422270548
617 => 0.01114117653734
618 => 0.011042361552131
619 => 0.010934458167914
620 => 0.010870489424796
621 => 0.010968774487499
622 => 0.010991253444214
623 => 0.010776351436885
624 => 0.010747061087376
625 => 0.010922554705543
626 => 0.010845326507249
627 => 0.010924757624362
628 => 0.010943186324879
629 => 0.010940218879647
630 => 0.010859583771026
701 => 0.010910978184688
702 => 0.010789415074966
703 => 0.010657233451333
704 => 0.010572909810661
705 => 0.010499326250267
706 => 0.010540154686275
707 => 0.010394608766884
708 => 0.01034804569801
709 => 0.01089356691375
710 => 0.011296549301159
711 => 0.011290689777647
712 => 0.011255021435218
713 => 0.011202025513428
714 => 0.011455516932913
715 => 0.011367205591086
716 => 0.011431459470925
717 => 0.011447814780071
718 => 0.011497317374951
719 => 0.011515010297729
720 => 0.011461529996569
721 => 0.011282043573807
722 => 0.01083478047334
723 => 0.010626578292708
724 => 0.010557868105219
725 => 0.010560365590035
726 => 0.010491473809545
727 => 0.010511765526412
728 => 0.010484417178518
729 => 0.010432626023883
730 => 0.01053695672842
731 => 0.01054897987021
801 => 0.010524627837112
802 => 0.010530363622463
803 => 0.0103287391893
804 => 0.010344068257048
805 => 0.010258714059903
806 => 0.010242711176898
807 => 0.010026943199155
808 => 0.0096446789505137
809 => 0.0098564904515493
810 => 0.0096006519435024
811 => 0.0095037620239191
812 => 0.0099624238337526
813 => 0.0099163869093437
814 => 0.0098375917065255
815 => 0.0097210371791984
816 => 0.0096778059712431
817 => 0.0094151468370446
818 => 0.0093996275341641
819 => 0.0095298084934661
820 => 0.0094697344600016
821 => 0.0093853677652017
822 => 0.0090798001487513
823 => 0.0087362409779001
824 => 0.0087466108697321
825 => 0.0088558906498343
826 => 0.0091736363488675
827 => 0.0090494876071988
828 => 0.0089594162706755
829 => 0.0089425486168791
830 => 0.009153682618966
831 => 0.0094524814658598
901 => 0.009592671199575
902 => 0.0094537474310888
903 => 0.0092941592860386
904 => 0.0093038726769676
905 => 0.009368491515142
906 => 0.009375282041373
907 => 0.0092714065648717
908 => 0.0093006469030528
909 => 0.0092562281555632
910 => 0.0089836303842106
911 => 0.0089786999549437
912 => 0.008911800065621
913 => 0.00890977436356
914 => 0.0087959609628624
915 => 0.0087800376813499
916 => 0.0085540542662853
917 => 0.0087027972344216
918 => 0.0086030282607521
919 => 0.0084526528843104
920 => 0.008426728112732
921 => 0.0084259487827932
922 => 0.00858035067108
923 => 0.0087009929584598
924 => 0.0086047637847639
925 => 0.0085828542672375
926 => 0.0088167905944475
927 => 0.008787020064433
928 => 0.0087612389774399
929 => 0.0094257273063749
930 => 0.0088997329433519
1001 => 0.0086703693783653
1002 => 0.0083864884117346
1003 => 0.0084789214859216
1004 => 0.0084983984927773
1005 => 0.0078157159414209
1006 => 0.0075387517153583
1007 => 0.0074437080301503
1008 => 0.0073890090455927
1009 => 0.0074139360597222
1010 => 0.0071646357716023
1011 => 0.0073321696882651
1012 => 0.0071162967115821
1013 => 0.0070801049045297
1014 => 0.0074661125283692
1015 => 0.0075198232342026
1016 => 0.0072906766765089
1017 => 0.0074378258620062
1018 => 0.0073844675218182
1019 => 0.0071199972341743
1020 => 0.007109896414498
1021 => 0.0069771945207384
1022 => 0.0067695417531547
1023 => 0.0066746388663013
1024 => 0.0066252126188434
1025 => 0.0066456068518429
1026 => 0.0066352949035646
1027 => 0.0065680024657776
1028 => 0.0066391520273288
1029 => 0.0064573942985942
1030 => 0.0063850169064906
1031 => 0.0063523257176201
1101 => 0.0061910052717836
1102 => 0.0064477378406373
1103 => 0.0064983173909332
1104 => 0.006548996598568
1105 => 0.006990124500864
1106 => 0.0069680869974798
1107 => 0.0071672952953735
1108 => 0.0071595544272379
1109 => 0.0071027369937182
1110 => 0.0068630335877125
1111 => 0.006958575093044
1112 => 0.0066645131900801
1113 => 0.0068848443620464
1114 => 0.0067842944164107
1115 => 0.0068508483242828
1116 => 0.0067311783970048
1117 => 0.0067974086758107
1118 => 0.006510311678686
1119 => 0.0062422245423347
1120 => 0.0063501106319538
1121 => 0.0064673951496407
1122 => 0.0067216978675252
1123 => 0.0065702372667051
1124 => 0.0066247082261194
1125 => 0.0064422396304099
1126 => 0.0060657547978836
1127 => 0.0060678856611495
1128 => 0.0060099716718333
1129 => 0.0059599255294832
1130 => 0.0065876343386902
1201 => 0.0065095688256575
1202 => 0.0063851816476016
1203 => 0.0065516788283794
1204 => 0.0065957033256426
1205 => 0.0065969566411885
1206 => 0.0067184286863697
1207 => 0.006783258338658
1208 => 0.0067946848458616
1209 => 0.0069858237335315
1210 => 0.0070498909674955
1211 => 0.0073137748370591
1212 => 0.0067777579956009
1213 => 0.0067667190814868
1214 => 0.006554021785156
1215 => 0.0064191257972118
1216 => 0.0065632582288591
1217 => 0.0066909398872596
1218 => 0.0065579892101938
1219 => 0.0065753497618766
1220 => 0.0063968743403851
1221 => 0.0064606709055192
1222 => 0.0065156211017381
1223 => 0.0064852808332092
1224 => 0.006439859982736
1225 => 0.0066804714473332
1226 => 0.0066668952055367
1227 => 0.0068909581330033
1228 => 0.0070656312078572
1229 => 0.0073786765845423
1230 => 0.0070519974145468
1231 => 0.0070400919271601
]
'min_raw' => 0.0059599255294832
'max_raw' => 0.017231897432338
'avg_raw' => 0.011595911480911
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.005959'
'max' => '$0.017231'
'avg' => '$0.011595'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0010479821237732
'max_diff' => -0.00582094375385
'year' => 2030
]
5 => [
'items' => [
101 => 0.0071564699760656
102 => 0.0070498731506226
103 => 0.0071172386647052
104 => 0.0073678229587568
105 => 0.0073731174100246
106 => 0.0072844285297746
107 => 0.0072790318033513
108 => 0.0072960654729534
109 => 0.0073958322078495
110 => 0.0073609706451547
111 => 0.007401313328092
112 => 0.0074517624708541
113 => 0.0076604415153114
114 => 0.0077107533264505
115 => 0.0075885217090658
116 => 0.0075995578555462
117 => 0.0075538398753114
118 => 0.0075096768792492
119 => 0.0076089488449095
120 => 0.0077903703133489
121 => 0.0077892416998095
122 => 0.007831327954158
123 => 0.0078575473419558
124 => 0.0077449945357628
125 => 0.0076717267976126
126 => 0.0076998223105667
127 => 0.007744747647621
128 => 0.0076852536292485
129 => 0.0073180289875436
130 => 0.007429421485436
131 => 0.0074108803269718
201 => 0.007384475462637
202 => 0.0074964814806404
203 => 0.0074856782269635
204 => 0.0071620788368149
205 => 0.0071827946198566
206 => 0.0071633386321945
207 => 0.0072262049086513
208 => 0.0070464781653844
209 => 0.0071017609011352
210 => 0.0071364337147546
211 => 0.0071568562683456
212 => 0.0072306365357922
213 => 0.007221979272976
214 => 0.0072300983881802
215 => 0.0073394950475351
216 => 0.0078927858101521
217 => 0.007922900205594
218 => 0.007774605908615
219 => 0.0078338465552825
220 => 0.0077201174681863
221 => 0.0077964645662726
222 => 0.0078486993117773
223 => 0.0076126605410057
224 => 0.0075986838568795
225 => 0.0074844853693852
226 => 0.0075458491680317
227 => 0.0074482149521718
228 => 0.0074721709736439
301 => 0.0074051878491595
302 => 0.0075257441370245
303 => 0.0076605447994107
304 => 0.007694600770169
305 => 0.0076050141731213
306 => 0.0075401475728144
307 => 0.0074262631910619
308 => 0.0076156554559952
309 => 0.0076710395258865
310 => 0.0076153645470538
311 => 0.007602463437936
312 => 0.0075780158594695
313 => 0.0076076501072788
314 => 0.0076707378923475
315 => 0.0076409868579576
316 => 0.0076606379403179
317 => 0.0075857482784685
318 => 0.007745031795425
319 => 0.0079980123540178
320 => 0.0079988257278801
321 => 0.0079690745331211
322 => 0.0079569009852241
323 => 0.0079874275165004
324 => 0.0080039869074539
325 => 0.0081027041119929
326 => 0.0082086316055302
327 => 0.0087029489980826
328 => 0.0085641466522969
329 => 0.0090027344500426
330 => 0.0093496004545617
331 => 0.0094536104027049
401 => 0.0093579261444594
402 => 0.0090305954657636
403 => 0.0090145350610533
404 => 0.0095037052904727
405 => 0.0093654922952458
406 => 0.0093490522992537
407 => 0.009174158517709
408 => 0.0092775424036182
409 => 0.0092549308312197
410 => 0.0092192373579928
411 => 0.0094164866105236
412 => 0.0097857196026988
413 => 0.0097281711782233
414 => 0.0096852139489468
415 => 0.0094969878749189
416 => 0.0096103420132994
417 => 0.0095699787757776
418 => 0.0097434048593146
419 => 0.0096406710892854
420 => 0.0093644451958707
421 => 0.0094084350798495
422 => 0.0094017860973814
423 => 0.0095386216854214
424 => 0.0094975470383599
425 => 0.0093937656133182
426 => 0.0097844576044724
427 => 0.0097590882397098
428 => 0.0097950561986989
429 => 0.0098108904065919
430 => 0.010048697736842
501 => 0.01014611979106
502 => 0.010168236302981
503 => 0.010260779719596
504 => 0.01016593373847
505 => 0.01054538528701
506 => 0.010797698425177
507 => 0.011090773119074
508 => 0.011519034017908
509 => 0.011680064077505
510 => 0.011650975438563
511 => 0.011975677964385
512 => 0.012559161185556
513 => 0.011768914079985
514 => 0.012601046201021
515 => 0.012337602778928
516 => 0.011712983164292
517 => 0.011672765024891
518 => 0.012095764679905
519 => 0.01303393720252
520 => 0.01279893562627
521 => 0.013034321580912
522 => 0.012759731361561
523 => 0.012746095642742
524 => 0.013020985346855
525 => 0.013663280123973
526 => 0.013358149951424
527 => 0.012920671028087
528 => 0.013243698657153
529 => 0.01296386223006
530 => 0.012333312438536
531 => 0.012798755924993
601 => 0.012487527120667
602 => 0.012578360231603
603 => 0.013232516886506
604 => 0.013153807027104
605 => 0.013255664873507
606 => 0.01307588844069
607 => 0.012907948904298
608 => 0.012594477288268
609 => 0.012501673796726
610 => 0.012527321343068
611 => 0.012501661087075
612 => 0.01232627659886
613 => 0.012288402335328
614 => 0.012225276903465
615 => 0.012244842114369
616 => 0.012126147834471
617 => 0.012350148464128
618 => 0.012391724954879
619 => 0.012554733933041
620 => 0.012571658065915
621 => 0.013025635749808
622 => 0.012775592470305
623 => 0.012943343089894
624 => 0.012928337895548
625 => 0.011726520565353
626 => 0.01189212038973
627 => 0.012149741748373
628 => 0.012033683675502
629 => 0.011869604713869
630 => 0.011737102154993
701 => 0.011536347229213
702 => 0.011818905932091
703 => 0.012190440579607
704 => 0.012581080797702
705 => 0.013050409423982
706 => 0.012945660738184
707 => 0.012572307025492
708 => 0.012589055400308
709 => 0.01269258726318
710 => 0.012558504093899
711 => 0.012518960349664
712 => 0.012687154559957
713 => 0.012688312821046
714 => 0.012534033930296
715 => 0.012362581175967
716 => 0.012361862782666
717 => 0.01233135442107
718 => 0.012765158731314
719 => 0.013003707239386
720 => 0.013031056441396
721 => 0.013001866420183
722 => 0.013013100500837
723 => 0.012874294380048
724 => 0.013191564010496
725 => 0.013482721998109
726 => 0.013404685437745
727 => 0.01328769754021
728 => 0.013194511044922
729 => 0.013382733660965
730 => 0.013374352404163
731 => 0.013480178987088
801 => 0.013475378082002
802 => 0.013439792582504
803 => 0.013404686708616
804 => 0.013543877530393
805 => 0.013503792809058
806 => 0.013463645825078
807 => 0.013383124902511
808 => 0.013394069033199
809 => 0.013277101335273
810 => 0.013222986726135
811 => 0.012409232843801
812 => 0.012191771216266
813 => 0.012260189071128
814 => 0.012282714005418
815 => 0.01218807442643
816 => 0.012323763271785
817 => 0.012302616308967
818 => 0.012384886770734
819 => 0.01233348775799
820 => 0.012335597191402
821 => 0.012486750728458
822 => 0.012530631243318
823 => 0.012508313259301
824 => 0.012523944010291
825 => 0.012884148069526
826 => 0.01283293857098
827 => 0.012805734545521
828 => 0.012813270246488
829 => 0.012905310106485
830 => 0.012931076242094
831 => 0.012821903314964
901 => 0.01287338989852
902 => 0.013092613236679
903 => 0.013169328998068
904 => 0.013414168882768
905 => 0.013310156548066
906 => 0.013501075689961
907 => 0.014087896043014
908 => 0.014556688745913
909 => 0.014125567602649
910 => 0.014986445701132
911 => 0.01565676278643
912 => 0.015631034900225
913 => 0.015514149611689
914 => 0.01475101143138
915 => 0.01404876030011
916 => 0.014636223190575
917 => 0.014637720754296
918 => 0.01458725717101
919 => 0.014273832189246
920 => 0.014576350661032
921 => 0.014600363478737
922 => 0.014586922686346
923 => 0.014346620487692
924 => 0.013979723445617
925 => 0.014051414249411
926 => 0.014168845248478
927 => 0.013946523868571
928 => 0.013875478716763
929 => 0.014007565170867
930 => 0.014433175247296
1001 => 0.014352716127738
1002 => 0.014350615014965
1003 => 0.014694853248409
1004 => 0.014448452964524
1005 => 0.014052318500032
1006 => 0.013952289323376
1007 => 0.013597253133976
1008 => 0.01384247789459
1009 => 0.01385130309716
1010 => 0.013716996001907
1011 => 0.014063216780603
1012 => 0.014060026295177
1013 => 0.014388711396386
1014 => 0.015017033861413
1015 => 0.014831207990634
1016 => 0.014615112720715
1017 => 0.014638608268227
1018 => 0.014896296432482
1019 => 0.014740492285925
1020 => 0.014796520543332
1021 => 0.014896211627004
1022 => 0.014956357732973
1023 => 0.014629954169174
1024 => 0.014553853884765
1025 => 0.014398179410435
1026 => 0.014357566845884
1027 => 0.014484360456971
1028 => 0.014450954820134
1029 => 0.013850561373057
1030 => 0.013787816917279
1031 => 0.01378974120016
1101 => 0.013631967282772
1102 => 0.013391324188676
1103 => 0.014023719871907
1104 => 0.013972929648171
1105 => 0.013916861172019
1106 => 0.013923729240425
1107 => 0.014198230772637
1108 => 0.014039006021294
1109 => 0.014462331119163
1110 => 0.014375308205358
1111 => 0.014286053482182
1112 => 0.014273715760674
1113 => 0.014239360307106
1114 => 0.014121542673722
1115 => 0.013979270801668
1116 => 0.013885330588359
1117 => 0.012808483491963
1118 => 0.013008340049323
1119 => 0.013238256801067
1120 => 0.013317623142435
1121 => 0.013181861523541
1122 => 0.014126903369912
1123 => 0.014299571621894
1124 => 0.01377654822377
1125 => 0.013678711900885
1126 => 0.014133317502953
1127 => 0.013859134751631
1128 => 0.013982599227763
1129 => 0.013715736561824
1130 => 0.014257980896308
1201 => 0.014253849902987
1202 => 0.014042904609729
1203 => 0.0142211941271
1204 => 0.014190211935967
1205 => 0.013952055219414
1206 => 0.014265530889016
1207 => 0.014265686369037
1208 => 0.014062656110622
1209 => 0.013825561217832
1210 => 0.013783174250933
1211 => 0.013751241365262
1212 => 0.013974745695409
1213 => 0.01417513897894
1214 => 0.014548021197882
1215 => 0.014641772647187
1216 => 0.015007690795211
1217 => 0.014789804354294
1218 => 0.014886390591451
1219 => 0.014991248614842
1220 => 0.015041521407282
1221 => 0.014959604589788
1222 => 0.015528026091589
1223 => 0.015576018282326
1224 => 0.015592109648749
1225 => 0.015400441116529
1226 => 0.015570687633719
1227 => 0.015491034926298
1228 => 0.015698269142848
1229 => 0.015730766114102
1230 => 0.015703242335563
1231 => 0.015713557387169
]
'min_raw' => 0.0070464781653844
'max_raw' => 0.015730766114102
'avg_raw' => 0.011388622139743
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.007046'
'max' => '$0.01573'
'avg' => '$0.011388'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0010865526359013
'max_diff' => -0.0015011313182356
'year' => 2031
]
6 => [
'items' => [
101 => 0.015228509911806
102 => 0.015203357641379
103 => 0.014860404649386
104 => 0.015000160528604
105 => 0.014738893611079
106 => 0.014821744041974
107 => 0.014858263722484
108 => 0.014839187913859
109 => 0.015008062116327
110 => 0.014864484545509
111 => 0.014485559729783
112 => 0.014106531676245
113 => 0.014101773287782
114 => 0.014001981891686
115 => 0.013929850990015
116 => 0.013943745960658
117 => 0.013992713649554
118 => 0.013927004898918
119 => 0.013941027192384
120 => 0.014173890693979
121 => 0.014220589808518
122 => 0.014061887970794
123 => 0.013424677191769
124 => 0.013268304068274
125 => 0.013380701968429
126 => 0.013326983011507
127 => 0.010755915418664
128 => 0.011359949612417
129 => 0.011001053005552
130 => 0.011166449074034
131 => 0.010800108574251
201 => 0.010974945462298
202 => 0.010942659473097
203 => 0.011913928581982
204 => 0.011898763550783
205 => 0.011906022248702
206 => 0.011559545684591
207 => 0.012111492259084
208 => 0.012383400989036
209 => 0.012333077919739
210 => 0.012345743152113
211 => 0.012128112498001
212 => 0.011908129389151
213 => 0.011664134266279
214 => 0.012117447045867
215 => 0.012067046403084
216 => 0.012182647344049
217 => 0.012476653085079
218 => 0.012519946547265
219 => 0.012578133399481
220 => 0.012557277554984
221 => 0.01305414838367
222 => 0.012993974047857
223 => 0.013138976883829
224 => 0.012840695048843
225 => 0.012503160839385
226 => 0.012567315057778
227 => 0.012561136490651
228 => 0.012482476239696
229 => 0.012411465282272
301 => 0.012293252045373
302 => 0.012667296219188
303 => 0.012652110708816
304 => 0.012897946470514
305 => 0.012854492611713
306 => 0.012564297107675
307 => 0.012574661496873
308 => 0.012644366995188
309 => 0.012885618520742
310 => 0.012957238399182
311 => 0.01292406121793
312 => 0.013002589145068
313 => 0.013064654416837
314 => 0.013010383587629
315 => 0.013778744082168
316 => 0.013459667234929
317 => 0.013615183070151
318 => 0.013652272680499
319 => 0.013557268423503
320 => 0.013577871444998
321 => 0.013609079408576
322 => 0.013798568052273
323 => 0.014295841082317
324 => 0.014516079922271
325 => 0.015178679338666
326 => 0.014497792152485
327 => 0.014457391124649
328 => 0.014576745288127
329 => 0.014965761288822
330 => 0.015281022218971
331 => 0.015385612457341
401 => 0.015399435783938
402 => 0.015595654024147
403 => 0.015708122660182
404 => 0.015571827968734
405 => 0.015456332488381
406 => 0.015042642013583
407 => 0.015090527812483
408 => 0.015420413480839
409 => 0.015886396417561
410 => 0.01628625825453
411 => 0.016146240575815
412 => 0.017214476627331
413 => 0.017320387868486
414 => 0.017305754359479
415 => 0.017547035928535
416 => 0.017068141150095
417 => 0.016863404354162
418 => 0.015481303922162
419 => 0.01586961776841
420 => 0.016434054748804
421 => 0.016359349397919
422 => 0.015949440175313
423 => 0.016285947301627
424 => 0.016174687522117
425 => 0.016086932317845
426 => 0.016488955920799
427 => 0.016046914455132
428 => 0.01642964504704
429 => 0.015938789104076
430 => 0.016146880164778
501 => 0.016028757614492
502 => 0.016105197381082
503 => 0.015658332067516
504 => 0.015899449743674
505 => 0.015648300779466
506 => 0.015648181702157
507 => 0.015642637574852
508 => 0.015938113217477
509 => 0.015947748667575
510 => 0.015729391721236
511 => 0.015697923073892
512 => 0.015814279156509
513 => 0.015678056657471
514 => 0.015741794307396
515 => 0.015679987205957
516 => 0.015666073125566
517 => 0.015555203365726
518 => 0.015507437624759
519 => 0.015526167802564
520 => 0.015462232049648
521 => 0.01542370844586
522 => 0.015634974260433
523 => 0.015522103458145
524 => 0.015617675191187
525 => 0.015508759139272
526 => 0.015131208650867
527 => 0.014914075372461
528 => 0.014200917498813
529 => 0.01440316818711
530 => 0.014537260602694
531 => 0.014492943060144
601 => 0.014588154290155
602 => 0.014593999486404
603 => 0.014563045344964
604 => 0.014527204414647
605 => 0.014509759031897
606 => 0.014639782622184
607 => 0.014715265692739
608 => 0.014550718570523
609 => 0.014512167482047
610 => 0.014678533707503
611 => 0.014780017008924
612 => 0.015529312688078
613 => 0.015473802443973
614 => 0.015613122263341
615 => 0.015597436989717
616 => 0.015743466355802
617 => 0.015982162652737
618 => 0.015496826340534
619 => 0.015581063942666
620 => 0.015560410827953
621 => 0.015785896118845
622 => 0.01578660005931
623 => 0.015651410363595
624 => 0.015724698890845
625 => 0.0156837912455
626 => 0.015757716889638
627 => 0.01547306107082
628 => 0.015819741131444
629 => 0.016016286386248
630 => 0.016019015417301
701 => 0.016112176308199
702 => 0.016206833168866
703 => 0.016388518770041
704 => 0.016201766056059
705 => 0.015865816103616
706 => 0.015890070605071
707 => 0.015693103270873
708 => 0.015696414327346
709 => 0.015678739648401
710 => 0.015731782690402
711 => 0.01548470103567
712 => 0.015542690606176
713 => 0.015461504867881
714 => 0.015580887460726
715 => 0.015452451525474
716 => 0.015560400868396
717 => 0.015606988226224
718 => 0.015778896579561
719 => 0.015427060521912
720 => 0.014709642983158
721 => 0.014860452847651
722 => 0.014637393212206
723 => 0.014658038230715
724 => 0.014699744453732
725 => 0.014564560939506
726 => 0.014590349693898
727 => 0.014589428338119
728 => 0.014581488591767
729 => 0.014546322138682
730 => 0.014495323824238
731 => 0.01469848541253
801 => 0.014733006525244
802 => 0.014809742682546
803 => 0.015038057436046
804 => 0.015015243408138
805 => 0.0150524540342
806 => 0.014971223446436
807 => 0.014661806284706
808 => 0.014678609125239
809 => 0.014469077434547
810 => 0.014804384486124
811 => 0.014724979350474
812 => 0.014673786342959
813 => 0.014659817856559
814 => 0.014888698558171
815 => 0.014957183251359
816 => 0.014914508186401
817 => 0.014826980383142
818 => 0.014995059640671
819 => 0.015040030559292
820 => 0.015050097889507
821 => 0.015347902107848
822 => 0.01506674183712
823 => 0.015134419908777
824 => 0.015662424904288
825 => 0.015183597233069
826 => 0.015437242929645
827 => 0.015424828292706
828 => 0.015554584848172
829 => 0.015414184467848
830 => 0.01541592489883
831 => 0.015531139929613
901 => 0.015369341198018
902 => 0.015329277556695
903 => 0.015273929923148
904 => 0.015394779456145
905 => 0.015467223285623
906 => 0.016051067347086
907 => 0.016428257237315
908 => 0.016411882429412
909 => 0.016561517521284
910 => 0.016494105541896
911 => 0.016276414478068
912 => 0.016647986579425
913 => 0.016530405619318
914 => 0.016540098850809
915 => 0.016539738068248
916 => 0.016617919127613
917 => 0.016562520681864
918 => 0.01645332465876
919 => 0.016525814074862
920 => 0.016741081725244
921 => 0.017409279117248
922 => 0.017783211230252
923 => 0.017386767934522
924 => 0.017660229211329
925 => 0.017496249889461
926 => 0.017466449968715
927 => 0.01763820385918
928 => 0.017810258382093
929 => 0.017799299252795
930 => 0.017674396504258
1001 => 0.017603842110899
1002 => 0.018138103614868
1003 => 0.018531738390086
1004 => 0.018504895137377
1005 => 0.01862337252494
1006 => 0.018971225799193
1007 => 0.019003029143152
1008 => 0.018999022652805
1009 => 0.018920194746468
1010 => 0.019262701469426
1011 => 0.01954842660355
1012 => 0.018901948363708
1013 => 0.019148118814418
1014 => 0.019258632660858
1015 => 0.019420899775413
1016 => 0.019694671596794
1017 => 0.019992060409203
1018 => 0.02003411444798
1019 => 0.020004275094997
1020 => 0.019808139178973
1021 => 0.020133545566097
1022 => 0.020324160995955
1023 => 0.020437668122279
1024 => 0.020725503308853
1025 => 0.01925931515675
1026 => 0.018221474308413
1027 => 0.018059400473342
1028 => 0.018388983990198
1029 => 0.018475892535214
1030 => 0.018440859809692
1031 => 0.017272675578527
1101 => 0.018053250225126
1102 => 0.018893082912286
1103 => 0.018925344306126
1104 => 0.019345782109392
1105 => 0.019482693892463
1106 => 0.019821201432135
1107 => 0.019800027693363
1108 => 0.019882448892442
1109 => 0.01986350168611
1110 => 0.020490515622179
1111 => 0.021182205106134
1112 => 0.021158254098743
1113 => 0.021058815551726
1114 => 0.021206498750838
1115 => 0.021920396424229
1116 => 0.021854672166441
1117 => 0.021918517684503
1118 => 0.022760243274942
1119 => 0.023854606276581
1120 => 0.023346164790071
1121 => 0.024449336515701
1122 => 0.025143724640365
1123 => 0.0263445971009
1124 => 0.026194241954419
1125 => 0.026661732790896
1126 => 0.025925074862153
1127 => 0.024233559354629
1128 => 0.023965870550702
1129 => 0.024501790315124
1130 => 0.025819296761669
1201 => 0.024460297348515
1202 => 0.024735221159831
1203 => 0.024656043083677
1204 => 0.024651824020484
1205 => 0.024812848502395
1206 => 0.024579274092911
1207 => 0.023627649929442
1208 => 0.024063773675603
1209 => 0.023895365352828
1210 => 0.024082226942619
1211 => 0.025090641875143
1212 => 0.024644797595865
1213 => 0.024175136865093
1214 => 0.02476419564754
1215 => 0.025514269900153
1216 => 0.025467331601438
1217 => 0.025376251683243
1218 => 0.025889664413318
1219 => 0.026737671827587
1220 => 0.026966884824095
1221 => 0.027136085172063
1222 => 0.027159415041384
1223 => 0.027399727194829
1224 => 0.026107508179297
1225 => 0.028158292943484
1226 => 0.028512406820473
1227 => 0.028445848088115
1228 => 0.028839430758999
1229 => 0.028723628752996
1230 => 0.028555849815077
1231 => 0.029179762065862
]
'min_raw' => 0.010755915418664
'max_raw' => 0.029179762065862
'avg_raw' => 0.019967838742263
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.010755'
'max' => '$0.029179'
'avg' => '$0.019967'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0037094372532792
'max_diff' => 0.01344899595176
'year' => 2032
]
7 => [
'items' => [
101 => 0.028464497017459
102 => 0.027449268330617
103 => 0.026892293794068
104 => 0.027625762793649
105 => 0.028073666717153
106 => 0.028369702718549
107 => 0.028459283033702
108 => 0.026207819462997
109 => 0.024994405470282
110 => 0.025772189927793
111 => 0.026721140645772
112 => 0.026102236710145
113 => 0.026126496572682
114 => 0.025244102205571
115 => 0.02679921296763
116 => 0.026572646410139
117 => 0.027748074111195
118 => 0.027467548856941
119 => 0.028426064517313
120 => 0.028173655220579
121 => 0.029221392099307
122 => 0.029639362706574
123 => 0.030341200408108
124 => 0.030857475078349
125 => 0.031160641439476
126 => 0.031142440468302
127 => 0.032343736627967
128 => 0.031635374252704
129 => 0.03074550416118
130 => 0.030729409218728
131 => 0.031190285548685
201 => 0.032156155901029
202 => 0.032406592030549
203 => 0.032546551661826
204 => 0.032332198614496
205 => 0.031563322024936
206 => 0.031231325011857
207 => 0.03151419608588
208 => 0.031168269069739
209 => 0.031765436149577
210 => 0.032585474098199
211 => 0.03241613950459
212 => 0.032982199662964
213 => 0.033568012375616
214 => 0.034405750865204
215 => 0.034624766727748
216 => 0.034986791620107
217 => 0.035359434153327
218 => 0.035479116891999
219 => 0.035707628375497
220 => 0.035706424007183
221 => 0.036395058743301
222 => 0.037154644182482
223 => 0.037441370101329
224 => 0.038100680541559
225 => 0.036971634517658
226 => 0.037828028896333
227 => 0.038600518062839
228 => 0.037679524632541
301 => 0.03894889951226
302 => 0.038998186462374
303 => 0.039742360892936
304 => 0.038987997540991
305 => 0.03854005899062
306 => 0.039833240801504
307 => 0.040458970744946
308 => 0.040270495793622
309 => 0.038836192107892
310 => 0.038001365842618
311 => 0.035816464480435
312 => 0.038404574524655
313 => 0.03966516743099
314 => 0.038832927476801
315 => 0.039252660901187
316 => 0.041542590365615
317 => 0.042414447243716
318 => 0.04223310710781
319 => 0.042263750605666
320 => 0.042734188751767
321 => 0.044820370566601
322 => 0.043570282065837
323 => 0.044525927884749
324 => 0.045032798981262
325 => 0.045503609103937
326 => 0.044347448243715
327 => 0.042843299951942
328 => 0.042366873048088
329 => 0.038750177615014
330 => 0.03856191291121
331 => 0.038456234227961
401 => 0.03778994507862
402 => 0.037266424319196
403 => 0.036850101174223
404 => 0.035757544917197
405 => 0.036126250581618
406 => 0.034384943942132
407 => 0.035498970221957
408 => 0.032719802780019
409 => 0.035034376009071
410 => 0.033774659031229
411 => 0.034620525101871
412 => 0.034617573954836
413 => 0.033060066336702
414 => 0.032161728446918
415 => 0.032734184314122
416 => 0.033347902445369
417 => 0.033447476147368
418 => 0.034243177724211
419 => 0.03446524093076
420 => 0.033792379047777
421 => 0.032662210712074
422 => 0.032924723040063
423 => 0.03215640864297
424 => 0.030809967214851
425 => 0.031777004955138
426 => 0.03210719415732
427 => 0.032253024519467
428 => 0.030928954014755
429 => 0.030512902315206
430 => 0.030291399881377
501 => 0.032491289836881
502 => 0.032611804774614
503 => 0.031995233314076
504 => 0.034782194781415
505 => 0.034151419567751
506 => 0.034856150025093
507 => 0.032900902797822
508 => 0.032975595874993
509 => 0.032049950503376
510 => 0.032568250059835
511 => 0.032201932638904
512 => 0.03252637657761
513 => 0.032720846936737
514 => 0.033646340419057
515 => 0.035044943657999
516 => 0.033508102555286
517 => 0.032838478878864
518 => 0.03325390964161
519 => 0.034360256507627
520 => 0.036036428642498
521 => 0.035044101002546
522 => 0.035484479158341
523 => 0.035580682194321
524 => 0.034848976530587
525 => 0.036063407674014
526 => 0.036714231189797
527 => 0.03738184144804
528 => 0.037961508729257
529 => 0.037115183229833
530 => 0.038020872830212
531 => 0.037291046888043
601 => 0.036636317569899
602 => 0.036637310524014
603 => 0.036226589258673
604 => 0.035430765052864
605 => 0.035284002859179
606 => 0.03604747832475
607 => 0.036659713346742
608 => 0.036710139955562
609 => 0.037049104721508
610 => 0.03724970057838
611 => 0.039215812672571
612 => 0.040006599221387
613 => 0.040973558044455
614 => 0.041350243000854
615 => 0.042483929670582
616 => 0.041568385611247
617 => 0.041370301894968
618 => 0.03862034886029
619 => 0.039070653515663
620 => 0.039791634716852
621 => 0.038632237574744
622 => 0.039367608204976
623 => 0.039512785944664
624 => 0.038592841703504
625 => 0.039084223671151
626 => 0.037779258849679
627 => 0.03507338832505
628 => 0.036066420081422
629 => 0.036797625704987
630 => 0.035754105123156
701 => 0.037624575376263
702 => 0.036531885268742
703 => 0.036185554963032
704 => 0.034834396964792
705 => 0.035472091529121
706 => 0.036334582558282
707 => 0.035801663377605
708 => 0.036907550695728
709 => 0.038473782067565
710 => 0.039589971813827
711 => 0.039675659002762
712 => 0.038958023774821
713 => 0.040108038807483
714 => 0.040116415411496
715 => 0.038819193756703
716 => 0.038024652716103
717 => 0.03784413131995
718 => 0.038295109160845
719 => 0.038842679514793
720 => 0.03970604534651
721 => 0.040227759236678
722 => 0.041588112366571
723 => 0.041956184919139
724 => 0.042360585061786
725 => 0.042900988364748
726 => 0.043549881086517
727 => 0.04213014075277
728 => 0.042186549682957
729 => 0.040864507141815
730 => 0.039451715086526
731 => 0.040523848149475
801 => 0.041925519509395
802 => 0.04160397455072
803 => 0.041567794174301
804 => 0.041628639531838
805 => 0.041386205133673
806 => 0.040289683335814
807 => 0.039739016953519
808 => 0.040449517076657
809 => 0.040827116271382
810 => 0.041412739692291
811 => 0.041340549244653
812 => 0.04284905228555
813 => 0.043435210952478
814 => 0.043285246482334
815 => 0.043312843553937
816 => 0.044374055821824
817 => 0.045554342118662
818 => 0.046659835988146
819 => 0.047784391834251
820 => 0.04642869586961
821 => 0.045740357066467
822 => 0.046450547007478
823 => 0.046073710228131
824 => 0.04823912613931
825 => 0.048389054838763
826 => 0.050554314165725
827 => 0.052609403101296
828 => 0.051318638561607
829 => 0.052535771385222
830 => 0.053852199768258
831 => 0.05639180370194
901 => 0.05553655444142
902 => 0.054881446911325
903 => 0.054262373460843
904 => 0.055550567036154
905 => 0.057207807491398
906 => 0.057564761212606
907 => 0.058143162607779
908 => 0.057535044264312
909 => 0.058267455826979
910 => 0.060853190481143
911 => 0.060154502152677
912 => 0.059162252406501
913 => 0.061203441579368
914 => 0.061942140006106
915 => 0.067126712424326
916 => 0.073672449266332
917 => 0.070962471232116
918 => 0.069280300415834
919 => 0.069675650459285
920 => 0.072065931966811
921 => 0.072833614523285
922 => 0.070746788698742
923 => 0.071483890859085
924 => 0.075545396232866
925 => 0.077724263557206
926 => 0.07476506906983
927 => 0.066600768842513
928 => 0.059072911173298
929 => 0.061069638011022
930 => 0.060843271153272
1001 => 0.065206851994286
1002 => 0.060137838667115
1003 => 0.060223187851335
1004 => 0.064677002923028
1005 => 0.063488801419621
1006 => 0.061564067157452
1007 => 0.05908696386345
1008 => 0.054507809320165
1009 => 0.050451924442006
1010 => 0.058406448702579
1011 => 0.058063435152099
1012 => 0.057566700699244
1013 => 0.058672129471791
1014 => 0.064039777809845
1015 => 0.06391603614227
1016 => 0.063128854786716
1017 => 0.063725924907006
1018 => 0.061459397878574
1019 => 0.062043533501662
1020 => 0.059071718722182
1021 => 0.060415103116455
1022 => 0.061559937542168
1023 => 0.061789780002693
1024 => 0.062307626802303
1025 => 0.057882682597653
1026 => 0.059869352636004
1027 => 0.061036335157727
1028 => 0.055763865669396
1029 => 0.060932115388224
1030 => 0.057805654163662
1031 => 0.056744486266174
1101 => 0.058173209041902
1102 => 0.057616434386722
1103 => 0.057137752233103
1104 => 0.056870639366581
1105 => 0.057919735690697
1106 => 0.057870794093236
1107 => 0.056154268886159
1108 => 0.053915131728047
1109 => 0.054666659655481
1110 => 0.054393622513833
1111 => 0.053404100690005
1112 => 0.054070918923944
1113 => 0.051134588890662
1114 => 0.046082785685555
1115 => 0.049420161623766
1116 => 0.049291676280511
1117 => 0.049226888144096
1118 => 0.051734833923365
1119 => 0.051493752804842
1120 => 0.051056188214049
1121 => 0.053396064473153
1122 => 0.052541978162803
1123 => 0.055174070923258
1124 => 0.05690773744838
1125 => 0.056468023539372
1126 => 0.058098545285786
1127 => 0.054683973341056
1128 => 0.055818157172247
1129 => 0.056051910887945
1130 => 0.053367190763325
1201 => 0.051533196657333
1202 => 0.051410890159527
1203 => 0.048230997119692
1204 => 0.049929670314372
1205 => 0.051424432429817
1206 => 0.050708557374745
1207 => 0.050481932718468
1208 => 0.051639708938496
1209 => 0.051729678066475
1210 => 0.049678372414055
1211 => 0.050104903815595
1212 => 0.051883610664961
1213 => 0.050060084966682
1214 => 0.046517272406158
1215 => 0.045638605907932
1216 => 0.045521375600032
1217 => 0.043138362368924
1218 => 0.045697322604851
1219 => 0.044580267885998
1220 => 0.048109030358483
1221 => 0.046093420159332
1222 => 0.046006531232196
1223 => 0.045875185874995
1224 => 0.043824027945944
1225 => 0.044273101174519
1226 => 0.045765888982088
1227 => 0.046298532489287
1228 => 0.046242973407666
1229 => 0.045758573507443
1230 => 0.045980329301237
1231 => 0.045265976624588
]
'min_raw' => 0.024994405470282
'max_raw' => 0.077724263557206
'avg_raw' => 0.051359334513744
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.024994'
'max' => '$0.077724'
'avg' => '$0.051359'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.014238490051618
'max_diff' => 0.048544501491345
'year' => 2033
]
8 => [
'items' => [
101 => 0.045013723826499
102 => 0.044217544608129
103 => 0.043047381107248
104 => 0.043210099519076
105 => 0.040891699433896
106 => 0.039628512020684
107 => 0.03927887839325
108 => 0.038811333694449
109 => 0.039331688811068
110 => 0.040885131697746
111 => 0.039011349995119
112 => 0.03579888269647
113 => 0.035991957454897
114 => 0.036425739112671
115 => 0.035617389863161
116 => 0.03485235513811
117 => 0.035517490762313
118 => 0.034156326018667
119 => 0.0365902293689
120 => 0.036524399104211
121 => 0.037431607761604
122 => 0.037998903952868
123 => 0.036691469896328
124 => 0.036362653766786
125 => 0.036549962378033
126 => 0.033454168269206
127 => 0.037178615336133
128 => 0.037210824509029
129 => 0.036935030015939
130 => 0.038918183099676
131 => 0.043103254667317
201 => 0.041528662399457
202 => 0.040918932681038
203 => 0.039759836040614
204 => 0.04130426349363
205 => 0.04118567556206
206 => 0.040649375962362
207 => 0.040325020291108
208 => 0.040922655560681
209 => 0.040250966667471
210 => 0.040130312885474
211 => 0.039399282239182
212 => 0.039138337558231
213 => 0.038945144504961
214 => 0.038732457936069
215 => 0.039201591508854
216 => 0.038138473113262
217 => 0.036856456546959
218 => 0.036749870741082
219 => 0.037044163522228
220 => 0.036913960874092
221 => 0.036749247380896
222 => 0.036434764465334
223 => 0.036341464102151
224 => 0.036644645019594
225 => 0.036302371440347
226 => 0.036807414751133
227 => 0.03667007091592
228 => 0.035902879417048
301 => 0.034946674758782
302 => 0.034938162531616
303 => 0.034732149806483
304 => 0.034469761626804
305 => 0.034396771237846
306 => 0.035461474895257
307 => 0.037665379602197
308 => 0.037232700373255
309 => 0.037545355458917
310 => 0.039083309034261
311 => 0.039572178227985
312 => 0.039225190453781
313 => 0.038750212187177
314 => 0.038771108820352
315 => 0.040394253343039
316 => 0.040495486875929
317 => 0.040751271354367
318 => 0.041080026693846
319 => 0.039281178909673
320 => 0.038686383251485
321 => 0.038404536070629
322 => 0.037536555842178
323 => 0.038472598103562
324 => 0.03792720636318
325 => 0.038000798342192
326 => 0.037952871469317
327 => 0.037979042782708
328 => 0.03658954904331
329 => 0.037095807532306
330 => 0.036254054603902
331 => 0.035127041923969
401 => 0.035123263782285
402 => 0.03539909853906
403 => 0.035235021232315
404 => 0.034793493418677
405 => 0.034856210360652
406 => 0.034306743955085
407 => 0.034922925530698
408 => 0.034940595413483
409 => 0.034703331943234
410 => 0.035652644677138
411 => 0.036041578878784
412 => 0.035885406979991
413 => 0.036030621442042
414 => 0.037250680148647
415 => 0.037449602952717
416 => 0.037537951322182
417 => 0.037419576211015
418 => 0.036052921875506
419 => 0.036113538806749
420 => 0.035668771985255
421 => 0.035292990889465
422 => 0.035308020162585
423 => 0.035501220493943
424 => 0.036344937672037
425 => 0.038120490733489
426 => 0.038187871674259
427 => 0.038269539340113
428 => 0.037937355900206
429 => 0.037837166196162
430 => 0.037969342276952
501 => 0.038636146652689
502 => 0.040351348542706
503 => 0.039745081640291
504 => 0.039252177211522
505 => 0.039684587281633
506 => 0.039618021140681
507 => 0.039056135921255
508 => 0.039040365674563
509 => 0.037961928292913
510 => 0.037563254547748
511 => 0.037230092926075
512 => 0.036866289132613
513 => 0.036650614049035
514 => 0.036981988999983
515 => 0.037057778371978
516 => 0.036333221250288
517 => 0.036234466791932
518 => 0.036826155778156
519 => 0.036565775515708
520 => 0.036833583072756
521 => 0.036895716723202
522 => 0.03688571177442
523 => 0.036613844875941
524 => 0.036787124729844
525 => 0.036377266218153
526 => 0.035931606645447
527 => 0.035647303603633
528 => 0.035399211492325
529 => 0.035536867414877
530 => 0.035046149185956
531 => 0.034889158548318
601 => 0.036728421414262
602 => 0.038087104668743
603 => 0.038067348876125
604 => 0.037947090569342
605 => 0.037768411118969
606 => 0.038623075137968
607 => 0.038325327283295
608 => 0.038541963725236
609 => 0.038597106791913
610 => 0.038764008246714
611 => 0.03882366117114
612 => 0.038643348601903
613 => 0.038038197596217
614 => 0.03653021882608
615 => 0.03582825063787
616 => 0.035596589443556
617 => 0.035605009887982
618 => 0.035372736440192
619 => 0.035441151380332
620 => 0.035348944516006
621 => 0.035174327022209
622 => 0.035526085276694
623 => 0.035566622138669
624 => 0.035484517558874
625 => 0.035503856159645
626 => 0.034824065306267
627 => 0.034875748328421
628 => 0.034587970693505
629 => 0.03453401585617
630 => 0.033806539054769
701 => 0.032517708451638
702 => 0.033231845715586
703 => 0.032369268323632
704 => 0.032042597195118
705 => 0.033589007509717
706 => 0.033433790804877
707 => 0.03316812727727
708 => 0.032775155550809
709 => 0.032629398514882
710 => 0.031743824905656
711 => 0.031691500492472
712 => 0.032130414685703
713 => 0.031927870887642
714 => 0.03164342268583
715 => 0.030613180132917
716 => 0.029454846401857
717 => 0.029489809216172
718 => 0.029858253624457
719 => 0.030929555433043
720 => 0.030510979282719
721 => 0.030207297483051
722 => 0.030150427010614
723 => 0.030862280039556
724 => 0.031869701213327
725 => 0.032342360688283
726 => 0.031873969503484
727 => 0.031335906930359
728 => 0.031368656306043
729 => 0.031586523230491
730 => 0.031609417963778
731 => 0.0312591945424
801 => 0.031357780384073
802 => 0.031208019475694
803 => 0.03028893705741
804 => 0.030272313770905
805 => 0.030046756123252
806 => 0.030039926327324
807 => 0.029656196500674
808 => 0.029602510045327
809 => 0.028840591183778
810 => 0.029342088485752
811 => 0.029005710425378
812 => 0.028498709344831
813 => 0.028411302167445
814 => 0.028408674602145
815 => 0.028929251348499
816 => 0.029336005243376
817 => 0.029011561865754
818 => 0.02893769239774
819 => 0.029726425057841
820 => 0.029626051637386
821 => 0.02953912890261
822 => 0.031779497696708
823 => 0.030006070978023
824 => 0.029232755705017
825 => 0.028275631206086
826 => 0.028587275769179
827 => 0.028652943857634
828 => 0.026351231972362
829 => 0.025417427747167
830 => 0.02509698132675
831 => 0.024912559881353
901 => 0.024996603049839
902 => 0.024156069722853
903 => 0.024720922019726
904 => 0.023993091207069
905 => 0.023871068002761
906 => 0.025172519656727
907 => 0.025353609051406
908 => 0.02458102543364
909 => 0.025077149186172
910 => 0.024897247816868
911 => 0.024005567777351
912 => 0.023971512158596
913 => 0.023524098458835
914 => 0.022823982655073
915 => 0.022504010946139
916 => 0.022337366902004
917 => 0.022406127482442
918 => 0.022371360028864
919 => 0.022144478876658
920 => 0.022384364590931
921 => 0.021771555718583
922 => 0.021527530287878
923 => 0.021417309662175
924 => 0.020873406516003
925 => 0.021738998296389
926 => 0.021909530781563
927 => 0.022080399268413
928 => 0.023567692789571
929 => 0.023493391808301
930 => 0.024165036492929
1001 => 0.02413893761556
1002 => 0.023947373671582
1003 => 0.023139196902676
1004 => 0.023461321758396
1005 => 0.022469871521807
1006 => 0.023212733451123
1007 => 0.022873722289239
1008 => 0.023098113436275
1009 => 0.02269463792137
1010 => 0.022917937930414
1011 => 0.021949970360136
1012 => 0.021046095862681
1013 => 0.021409841346199
1014 => 0.021805274286124
1015 => 0.02266267365432
1016 => 0.022152013664013
1017 => 0.02233566630672
1018 => 0.021720460696735
1019 => 0.02045111579854
1020 => 0.020458300152814
1021 => 0.020263039094408
1022 => 0.020094305031365
1023 => 0.022210669106836
1024 => 0.021947465779286
1025 => 0.021528085724035
1026 => 0.02208944259349
1027 => 0.022237874259705
1028 => 0.022242099900571
1029 => 0.022651651381807
1030 => 0.022870229080759
1031 => 0.022908754347569
1101 => 0.023553192452239
1102 => 0.02376919960458
1103 => 0.024658902494597
1104 => 0.02285168429012
1105 => 0.022814465820472
1106 => 0.022097342035842
1107 => 0.021642530794351
1108 => 0.022128483350655
1109 => 0.022558970976401
1110 => 0.022110718486353
1111 => 0.022169250798427
1112 => 0.021567508454113
1113 => 0.021782603027596
1114 => 0.021967871450648
1115 => 0.021865577117013
1116 => 0.02171243754846
1117 => 0.022523675900306
1118 => 0.022477902653226
1119 => 0.023233346456754
1120 => 0.023822268923908
1121 => 0.024877723267532
1122 => 0.023776301637881
1123 => 0.023736161455942
1124 => 0.024128538173083
1125 => 0.023769139533749
1126 => 0.023996267067789
1127 => 0.024841129510421
1128 => 0.024858980122517
1129 => 0.024559959370694
1130 => 0.02454176393077
1201 => 0.024599194137087
1202 => 0.02493556464928
1203 => 0.024818026456698
1204 => 0.024954044628857
1205 => 0.025124137435926
1206 => 0.02582771340382
1207 => 0.025997343187734
1208 => 0.025585230755782
1209 => 0.02562243989416
1210 => 0.025468298531871
1211 => 0.025319399907285
1212 => 0.025654102270456
1213 => 0.026265777417742
1214 => 0.026261972218397
1215 => 0.026403868963301
1216 => 0.026492269459841
1217 => 0.026112789815575
1218 => 0.025865762521011
1219 => 0.025960488504502
1220 => 0.026111957414968
1221 => 0.025911369178285
1222 => 0.024673245659971
1223 => 0.025048813243791
1224 => 0.024986300433527
1225 => 0.024897274589893
1226 => 0.025274910699602
1227 => 0.025238486775571
1228 => 0.024147448838698
1229 => 0.024217293547552
1230 => 0.024151696326776
1231 => 0.024363654367033
]
'min_raw' => 0.020094305031365
'max_raw' => 0.045013723826499
'avg_raw' => 0.032554014428932
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.020094'
'max' => '$0.045013'
'avg' => '$0.032554'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.004900100438917
'max_diff' => -0.032710539730708
'year' => 2034
]
9 => [
'items' => [
101 => 0.023757693103988
102 => 0.02394408270729
103 => 0.024060984519186
104 => 0.024129840584475
105 => 0.024378595907345
106 => 0.02434940734133
107 => 0.024376781505099
108 => 0.024745619979945
109 => 0.026611078415635
110 => 0.026712611202388
111 => 0.026212626626546
112 => 0.026412360602835
113 => 0.026028915045379
114 => 0.026286324616961
115 => 0.026462437708344
116 => 0.025666616512987
117 => 0.025619493146634
118 => 0.025234464972963
119 => 0.025441357304384
120 => 0.025112176729009
121 => 0.025192946127958
122 => 0.024967107847146
123 => 0.025373571788655
124 => 0.025828061633371
125 => 0.025942883716495
126 => 0.025640836249812
127 => 0.025422133978036
128 => 0.025038164833804
129 => 0.025676714077972
130 => 0.025863445336403
131 => 0.025675733258166
201 => 0.025632236268048
202 => 0.025549809550373
203 => 0.025649723485859
204 => 0.025862428357867
205 => 0.02576212066827
206 => 0.025828375664443
207 => 0.025575879940888
208 => 0.026112915439127
209 => 0.026965857054961
210 => 0.026968599401726
211 => 0.026868291171434
212 => 0.026827247204769
213 => 0.026930169536262
214 => 0.026986000679001
215 => 0.02731883262632
216 => 0.027675974566402
217 => 0.029342600167531
218 => 0.028874618367844
219 => 0.030353347749166
220 => 0.031522830700813
221 => 0.03187350750272
222 => 0.031550901345584
223 => 0.030447283108863
224 => 0.030393134333081
225 => 0.032042405914343
226 => 0.031576411151212
227 => 0.031520982556921
228 => 0.030931315961749
301 => 0.031279881951124
302 => 0.031203645456094
303 => 0.03108330241907
304 => 0.031748342045481
305 => 0.032993236857624
306 => 0.032799208326602
307 => 0.032654375028918
308 => 0.032019757678808
309 => 0.032401939070491
310 => 0.032265851597115
311 => 0.032850569745983
312 => 0.032504195667687
313 => 0.031572880782563
314 => 0.031721195747673
315 => 0.031698778239065
316 => 0.032160128977697
317 => 0.032021642937389
318 => 0.031671736617073
319 => 0.032988981942493
320 => 0.032903447357964
321 => 0.033024715842898
322 => 0.033078101980319
323 => 0.033879885997436
324 => 0.034208351255022
325 => 0.034282918619088
326 => 0.034594935209379
327 => 0.034275155362081
328 => 0.035554502750444
329 => 0.036405194111715
330 => 0.037393315904009
331 => 0.038837227424651
401 => 0.03938015151334
402 => 0.039282077136244
403 => 0.040376834372059
404 => 0.042344088789734
405 => 0.039679715500012
406 => 0.042485307043693
407 => 0.041597089153076
408 => 0.039491140512779
409 => 0.039355542247848
410 => 0.040781715117623
411 => 0.043944829278733
412 => 0.043152505057118
413 => 0.043946125237317
414 => 0.043020325141498
415 => 0.042974351363484
416 => 0.043901161193087
417 => 0.046066702877729
418 => 0.045037935197472
419 => 0.043562944463639
420 => 0.044652054668104
421 => 0.043708566616605
422 => 0.041582623970902
423 => 0.043151899181719
424 => 0.042102569538631
425 => 0.042408819713916
426 => 0.044614354547682
427 => 0.044348978761362
428 => 0.044692399601996
429 => 0.044086270807165
430 => 0.043520050935054
501 => 0.04246315949572
502 => 0.042150266044652
503 => 0.0422367385378
504 => 0.042150223193179
505 => 0.041558902146205
506 => 0.041431206422411
507 => 0.04121837462161
508 => 0.041284340096171
509 => 0.040884154044526
510 => 0.041639387806638
511 => 0.041779565847983
512 => 0.042329161998779
513 => 0.04238622289437
514 => 0.043916840351325
515 => 0.043073801977016
516 => 0.043639384902934
517 => 0.043588793842567
518 => 0.039536782805609
519 => 0.040095114175306
520 => 0.040963702572518
521 => 0.040572404676918
522 => 0.040019201002145
523 => 0.039572459373862
524 => 0.038895600125335
525 => 0.039848266519706
526 => 0.041100921523526
527 => 0.042417992292462
528 => 0.044000366523444
529 => 0.043647199015955
530 => 0.042388410906891
531 => 0.042444879221918
601 => 0.042793944125954
602 => 0.042341873359336
603 => 0.042208548864791
604 => 0.04277562738774
605 => 0.042779532545867
606 => 0.042259370494296
607 => 0.041681305562626
608 => 0.041678883449455
609 => 0.041576022378309
610 => 0.043038623897547
611 => 0.043842906847435
612 => 0.043935116591473
613 => 0.043836700396973
614 => 0.043874576884237
615 => 0.043406582356863
616 => 0.044476279066974
617 => 0.045457938550213
618 => 0.045194832838609
619 => 0.044800399974234
620 => 0.044486215199299
621 => 0.04512082089057
622 => 0.0450925628981
623 => 0.045449364611008
624 => 0.045433178024324
625 => 0.045313199028264
626 => 0.045194837123437
627 => 0.045664128697054
628 => 0.045528980260444
629 => 0.045393621900984
630 => 0.045122139988757
701 => 0.045159038889466
702 => 0.044764674129486
703 => 0.044582222946616
704 => 0.041838594917845
705 => 0.041105407857925
706 => 0.041336083432375
707 => 0.041412027820972
708 => 0.04109294387289
709 => 0.041550428288499
710 => 0.041479129826922
711 => 0.041756510432712
712 => 0.04158321507268
713 => 0.041590327174704
714 => 0.04209995187809
715 => 0.042247898097582
716 => 0.042172651456276
717 => 0.042225351624543
718 => 0.043439804758898
719 => 0.043267148359218
720 => 0.043175428088057
721 => 0.043200835229996
722 => 0.043511154043993
723 => 0.043598026369133
724 => 0.043229942223105
725 => 0.043403532834241
726 => 0.044142659624529
727 => 0.044401312170176
728 => 0.045226806935617
729 => 0.044876122087259
730 => 0.045519819303706
731 => 0.047498325094514
801 => 0.049078892422398
802 => 0.047625337387969
803 => 0.050527848001593
804 => 0.052787868854718
805 => 0.052701125490114
806 => 0.052307038579147
807 => 0.049734064923627
808 => 0.047366376204941
809 => 0.049347048355495
810 => 0.049352097496136
811 => 0.049181956001832
812 => 0.048125221793183
813 => 0.049145183941975
814 => 0.049226144833388
815 => 0.049180828263436
816 => 0.048370632623309
817 => 0.047133613630018
818 => 0.047375324180302
819 => 0.047771250992429
820 => 0.047021678938088
821 => 0.046782145248553
822 => 0.047227483950547
823 => 0.048662458038373
824 => 0.048391184499308
825 => 0.048384100450901
826 => 0.049544723688903
827 => 0.048713967928665
828 => 0.047378372924406
829 => 0.047041117571497
830 => 0.045844088271097
831 => 0.046670880672555
901 => 0.046700635459173
902 => 0.046247809710508
903 => 0.047415117238245
904 => 0.047404360293876
905 => 0.048512545060665
906 => 0.050630978119575
907 => 0.050004453222296
908 => 0.049275872932475
909 => 0.049355089811319
910 => 0.050223903448316
911 => 0.049698598890301
912 => 0.049887502071917
913 => 0.050223617520726
914 => 0.05042640431627
915 => 0.049325911912151
916 => 0.049069334490115
917 => 0.048544467131065
918 => 0.048407539034203
919 => 0.048835032546432
920 => 0.048722403109528
921 => 0.046698134684574
922 => 0.046486587371243
923 => 0.046493075225323
924 => 0.045961129447427
925 => 0.045149784454519
926 => 0.047281950652988
927 => 0.047110707867604
928 => 0.046921669085679
929 => 0.046944825257825
930 => 0.047870326338763
1001 => 0.047333488972894
1002 => 0.04876075909597
1003 => 0.048467355266333
1004 => 0.048166426735579
1005 => 0.048124829246122
1006 => 0.048008997435798
1007 => 0.047611767059077
1008 => 0.047132087509342
1009 => 0.046815361521476
1010 => 0.043184696352914
1011 => 0.043858526689592
1012 => 0.044633707070371
1013 => 0.044901296231476
1014 => 0.0444435664548
1015 => 0.047629841020556
1016 => 0.048212004087425
1017 => 0.046448594184321
1018 => 0.046118732191002
1019 => 0.047651466717922
1020 => 0.046727040429014
1021 => 0.047143309530306
1022 => 0.046243563420337
1023 => 0.048071778052341
1024 => 0.048057850119942
1025 => 0.047346633335993
1026 => 0.047947748891584
1027 => 0.047843290271073
1028 => 0.047040328273644
1029 => 0.048097233379877
1030 => 0.048097757591623
1031 => 0.047413226900258
1101 => 0.046613844915781
1102 => 0.046470934297516
1103 => 0.046363270343993
1104 => 0.047116830797659
1105 => 0.047792470744094
1106 => 0.049049669179062
1107 => 0.049365758735911
1108 => 0.050599477319566
1109 => 0.049864857971667
1110 => 0.050190505213677
1111 => 0.050544041360494
1112 => 0.05071353959014
1113 => 0.050437351320709
1114 => 0.052353824099953
1115 => 0.05251563312173
1116 => 0.052569886287089
1117 => 0.05192366244884
1118 => 0.052497660467778
1119 => 0.052229105803533
1120 => 0.052927810433263
1121 => 0.053037376240713
1122 => 0.052944577899719
1123 => 0.052979355816383
1124 => 0.051343984388263
1125 => 0.051259181752444
1126 => 0.050102891795724
1127 => 0.050574088499951
1128 => 0.049693208846444
1129 => 0.049972544858637
1130 => 0.050095673511201
1201 => 0.050031358090591
1202 => 0.05060072925463
1203 => 0.050116647450353
1204 => 0.048839075978448
1205 => 0.047561156433049
1206 => 0.047545113194127
1207 => 0.047208659534978
1208 => 0.046965465163974
1209 => 0.047012313027613
1210 => 0.04717741100954
1211 => 0.046955869369132
1212 => 0.04700314651056
1213 => 0.047788262064198
1214 => 0.047945711389292
1215 => 0.0474106370632
1216 => 0.04526223643308
1217 => 0.044735013529594
1218 => 0.045113970897335
1219 => 0.044932853683535
1220 => 0.036264319788058
1221 => 0.038300863244619
1222 => 0.037090818277212
1223 => 0.037648462669685
1224 => 0.036413320097587
1225 => 0.037002794872361
1226 => 0.036893940405632
1227 => 0.040168642018081
1228 => 0.040117512056608
1229 => 0.040141985263428
1230 => 0.038973815337305
1231 => 0.040834741748889
]
'min_raw' => 0.023757693103988
'max_raw' => 0.053037376240713
'avg_raw' => 0.038397534672351
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.023757'
'max' => '$0.053037'
'avg' => '$0.038397'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0036633880726236
'max_diff' => 0.0080236524142143
'year' => 2035
]
10 => [
'items' => [
101 => 0.041751501015984
102 => 0.041581833274402
103 => 0.041624534989611
104 => 0.040890778044785
105 => 0.040149089634567
106 => 0.039326443042608
107 => 0.040854818728276
108 => 0.040684889442273
109 => 0.041074646085737
110 => 0.042065906968444
111 => 0.042211873898856
112 => 0.042408054933581
113 => 0.042337737997749
114 => 0.044012972687079
115 => 0.043810090712647
116 => 0.044298977897901
117 => 0.043293299865873
118 => 0.042155279712799
119 => 0.042371580139217
120 => 0.042350748668775
121 => 0.042085540140797
122 => 0.041846121740013
123 => 0.041447557558424
124 => 0.042708673605372
125 => 0.042657474596934
126 => 0.043486327031205
127 => 0.043339819312404
128 => 0.042361404909736
129 => 0.042396349171537
130 => 0.04263136612579
131 => 0.043444762487836
201 => 0.043686233908339
202 => 0.04357437472539
203 => 0.043839137114382
204 => 0.044048394511409
205 => 0.043865416621665
206 => 0.046455997674222
207 => 0.045380207806519
208 => 0.04590454030274
209 => 0.046029590513542
210 => 0.045709277028095
211 => 0.045778741553522
212 => 0.045883961381595
213 => 0.046522835573496
214 => 0.048199426312782
215 => 0.048941976938272
216 => 0.051175977131863
217 => 0.048880318445629
218 => 0.048744103559568
219 => 0.049146514454776
220 => 0.050458109061351
221 => 0.051521033298162
222 => 0.051873666589083
223 => 0.051920272899819
224 => 0.052581836396205
225 => 0.052961032254904
226 => 0.052501505186896
227 => 0.052112104111249
228 => 0.050717317792522
229 => 0.050878768106792
301 => 0.051991000669537
302 => 0.053562094674585
303 => 0.054910256775388
304 => 0.05443817739588
305 => 0.058039809825424
306 => 0.058396896969464
307 => 0.058347559072167
308 => 0.059161056727982
309 => 0.057546429547106
310 => 0.056856145145352
311 => 0.052196297043694
312 => 0.053505524287526
313 => 0.055408562974656
314 => 0.055156688668385
315 => 0.053774651105422
316 => 0.054909208375966
317 => 0.054534088261438
318 => 0.054238215463362
319 => 0.055593666109113
320 => 0.054103292445266
321 => 0.055393695357283
322 => 0.053738740275113
323 => 0.05444033381472
324 => 0.054042075389378
325 => 0.054299797399291
326 => 0.052793159795463
327 => 0.053606104874928
328 => 0.052759338607442
329 => 0.052758937129979
330 => 0.052740244717692
331 => 0.053736461476253
401 => 0.053768948068985
402 => 0.053032742379208
403 => 0.052926643637617
404 => 0.053318946293881
405 => 0.052859662627624
406 => 0.053074558564368
407 => 0.05286617160663
408 => 0.052819259313142
409 => 0.052445454177162
410 => 0.052284408646596
411 => 0.052347558748763
412 => 0.052131994893958
413 => 0.052002109874152
414 => 0.052714407318094
415 => 0.052333855527793
416 => 0.052656082298349
417 => 0.052288864225039
418 => 0.051015926393649
419 => 0.050283846385743
420 => 0.047879384823646
421 => 0.048561287139931
422 => 0.049013389081108
423 => 0.048863969392246
424 => 0.049184980701665
425 => 0.049204688188917
426 => 0.049100324139902
427 => 0.048979483941005
428 => 0.048920665615065
429 => 0.049359049227677
430 => 0.049613545670112
501 => 0.049058763559248
502 => 0.0489287858729
503 => 0.049489701217342
504 => 0.049831859253422
505 => 0.052358161949842
506 => 0.052171005286241
507 => 0.052640731784239
508 => 0.052587847789105
509 => 0.053080195992307
510 => 0.053884977222666
511 => 0.052248631960975
512 => 0.052532644917842
513 => 0.052463011499635
514 => 0.053223250900756
515 => 0.053225624285184
516 => 0.052769822787437
517 => 0.0530169201739
518 => 0.052878997191539
519 => 0.053128242662075
520 => 0.052168505694895
521 => 0.053337361723717
522 => 0.05400002777264
523 => 0.054009228891373
524 => 0.054323327339319
525 => 0.054642469553789
526 => 0.055255035243033
527 => 0.054625385429186
528 => 0.053492706709249
529 => 0.053574482454298
530 => 0.05291039333523
531 => 0.052921556793299
601 => 0.052861965379231
602 => 0.053040803698682
603 => 0.052207750649063
604 => 0.052403266534726
605 => 0.052129543149858
606 => 0.052532049896661
607 => 0.05209901917385
608 => 0.052462977920293
609 => 0.052620050449834
610 => 0.05319965146537
611 => 0.052013411632596
612 => 0.049594588312193
613 => 0.05010305429954
614 => 0.049350993165113
615 => 0.049420599286403
616 => 0.04956121472914
617 => 0.049105434072718
618 => 0.049192382658664
619 => 0.049189276243326
620 => 0.049162506834166
621 => 0.049043940682347
622 => 0.04887199630461
623 => 0.049556969783825
624 => 0.049673360125528
625 => 0.04993208143742
626 => 0.05070186056927
627 => 0.050624941481356
628 => 0.050750399705086
629 => 0.050476525107102
630 => 0.049433303543512
701 => 0.049489955493505
702 => 0.048783504769303
703 => 0.049914015904084
704 => 0.04964629594535
705 => 0.049473695146333
706 => 0.049426599419186
707 => 0.050198286684612
708 => 0.050429187609143
709 => 0.05028530564816
710 => 0.049990199548476
711 => 0.050556890500155
712 => 0.050708513092053
713 => 0.050742455798753
714 => 0.051746523512917
715 => 0.050798572030174
716 => 0.051026753373898
717 => 0.052806959080393
718 => 0.051192558156197
719 => 0.05204774233118
720 => 0.052005885515978
721 => 0.052443368802045
722 => 0.051969999117341
723 => 0.051975867101911
724 => 0.052364322622254
725 => 0.051818806902255
726 => 0.051683729538378
727 => 0.051497121127625
728 => 0.051904573765572
729 => 0.052148823194524
730 => 0.054117294210436
731 => 0.055389016259899
801 => 0.055333807451804
802 => 0.055838312611238
803 => 0.055611028416175
804 => 0.054877067795776
805 => 0.056129849077836
806 => 0.055733416661597
807 => 0.055766098068326
808 => 0.055764881664735
809 => 0.056028474564811
810 => 0.055841694837173
811 => 0.055473532821452
812 => 0.055717935948889
813 => 0.05644372586166
814 => 0.058696600020855
815 => 0.059957338246953
816 => 0.058620701996615
817 => 0.059542695783826
818 => 0.058989828051476
819 => 0.058889355538118
820 => 0.059468435771292
821 => 0.060048529607757
822 => 0.060011580138189
823 => 0.059590461801063
824 => 0.059352582737903
825 => 0.061153882699483
826 => 0.06248104982683
827 => 0.062390545926187
828 => 0.062790000710183
829 => 0.063962812310668
830 => 0.064070039505263
831 => 0.064056531343333
901 => 0.063790757553529
902 => 0.064945542883038
903 => 0.065908885121428
904 => 0.063729238600132
905 => 0.064559219461774
906 => 0.064931824610878
907 => 0.065478919516729
908 => 0.066401960326652
909 => 0.067404627470712
910 => 0.067546415598568
911 => 0.067445810136668
912 => 0.066784524202021
913 => 0.067881654555358
914 => 0.06852432778547
915 => 0.068907024986686
916 => 0.069877481414229
917 => 0.064934125693429
918 => 0.061434972813525
919 => 0.060888529562948
920 => 0.061999743400816
921 => 0.062292761628098
922 => 0.062174646348094
923 => 0.058236031652702
924 => 0.060867793571692
925 => 0.063699348111699
926 => 0.06380811965345
927 => 0.06522565506119
928 => 0.06568726269669
929 => 0.066828564500535
930 => 0.066757175761961
1001 => 0.067035064589119
1002 => 0.066971182760119
1003 => 0.069085204022293
1004 => 0.071417283409665
1005 => 0.071336530916039
1006 => 0.071001266912193
1007 => 0.071499191128911
1008 => 0.073906146977495
1009 => 0.073684553053639
1010 => 0.073899812675339
1011 => 0.076737749270907
1012 => 0.080427470536917
1013 => 0.078713224566897
1014 => 0.082432645060851
1015 => 0.084773823103787
1016 => 0.088822648446716
1017 => 0.088315715572896
1018 => 0.089891893567246
1019 => 0.087408199928675
1020 => 0.081705137297215
1021 => 0.08080260580534
1022 => 0.082609496707812
1023 => 0.087051561677703
1024 => 0.082469600273943
1025 => 0.083396525098364
1026 => 0.083129570686573
1027 => 0.083115345820452
1028 => 0.083658251103584
1029 => 0.082870738674366
1030 => 0.079662271366951
1031 => 0.081132693026323
1101 => 0.080564892608192
1102 => 0.081194909504433
1103 => 0.084594850854718
1104 => 0.083091655739279
1105 => 0.081508161794818
1106 => 0.083494214606608
1107 => 0.086023142317806
1108 => 0.08586488656656
1109 => 0.085557804263369
1110 => 0.08728881112815
1111 => 0.090147927331345
1112 => 0.090920734952209
1113 => 0.091491205738575
1114 => 0.091569864021832
1115 => 0.092380093225229
1116 => 0.088023286594514
1117 => 0.094937650608188
1118 => 0.096131570267898
1119 => 0.095907162854773
1120 => 0.097234154308721
1121 => 0.096843719760445
1122 => 0.096278041357298
1123 => 0.098381605070983
1124 => 0.095970039022081
1125 => 0.092547124623389
1126 => 0.090669246086696
1127 => 0.093142188027954
1128 => 0.094652327377699
1129 => 0.09565043342498
1130 => 0.095952459711815
1201 => 0.088361493091018
1202 => 0.084270383096719
1203 => 0.086892737698393
1204 => 0.090092191297683
1205 => 0.088005513468225
1206 => 0.088087307288537
1207 => 0.085112253073017
1208 => 0.090355417581665
1209 => 0.08959153261471
1210 => 0.093554569174563
1211 => 0.092608758694199
1212 => 0.095840461164567
1213 => 0.094989445597975
1214 => 0.098521963635258
1215 => 0.099931180719437
1216 => 0.1022974755309
1217 => 0.10403813162677
1218 => 0.1050602781797
1219 => 0.10499891233464
1220 => 0.10904916620877
1221 => 0.10666087300429
1222 => 0.10366061386197
1223 => 0.10360634863978
1224 => 0.10516022536359
1225 => 0.10841672469143
1226 => 0.109261087587
1227 => 0.10973297125552
1228 => 0.10901026499079
1229 => 0.10641794388784
1230 => 0.10529859277896
1231 => 0.10625231235445
]
'min_raw' => 0.039326443042608
'max_raw' => 0.10973297125552
'avg_raw' => 0.074529707149063
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.039326'
'max' => '$0.109732'
'avg' => '$0.074529'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.015568749938619
'max_diff' => 0.056695595014806
'year' => 2036
]
11 => [
'items' => [
101 => 0.10508599526768
102 => 0.10709938577023
103 => 0.10986420096723
104 => 0.10929327756231
105 => 0.11120178890733
106 => 0.11317689736817
107 => 0.11600139117485
108 => 0.11673981844662
109 => 0.11796041064698
110 => 0.1192168009648
111 => 0.11962031967421
112 => 0.12039076209499
113 => 0.12038670148313
114 => 0.1227084815749
115 => 0.12526947691566
116 => 0.12623619336961
117 => 0.12845910455043
118 => 0.12465244705338
119 => 0.12753984049263
120 => 0.13014434165097
121 => 0.12703914799901
122 => 0.13131893403091
123 => 0.13148510842433
124 => 0.13399414447356
125 => 0.13145075576452
126 => 0.12994049966787
127 => 0.13430055243033
128 => 0.13641024462172
129 => 0.13577478816443
130 => 0.1309389331481
131 => 0.12812425810902
201 => 0.12075771062148
202 => 0.12948370433164
203 => 0.13373388132714
204 => 0.13092792621645
205 => 0.13234308676162
206 => 0.14006374382871
207 => 0.14300327016433
208 => 0.14239186923536
209 => 0.14249518592784
210 => 0.14408130098236
211 => 0.15111500862364
212 => 0.14690024796492
213 => 0.15012227456444
214 => 0.15183122585495
215 => 0.15341859505446
216 => 0.14952051799365
217 => 0.14444917701165
218 => 0.14284287044225
219 => 0.13064892928003
220 => 0.13001418168693
221 => 0.1296578786281
222 => 0.12741143824228
223 => 0.12564635145083
224 => 0.1242426889008
225 => 0.12055905920039
226 => 0.1218021760902
227 => 0.11593123918102
228 => 0.11968725656228
301 => 0.11031709949651
302 => 0.11812084473661
303 => 0.11387362099518
304 => 0.11672551750883
305 => 0.11671556751056
306 => 0.11146432183431
307 => 0.10843551291896
308 => 0.11036558784283
309 => 0.11243478137076
310 => 0.11277050105906
311 => 0.1154532644795
312 => 0.11620196608434
313 => 0.11393336526814
314 => 0.11012292381849
315 => 0.11100800246033
316 => 0.10841757682853
317 => 0.10387795554809
318 => 0.10713839080588
319 => 0.10825164675412
320 => 0.10874332400165
321 => 0.10427912785136
322 => 0.10287638049853
323 => 0.10212956957807
324 => 0.10954665215446
325 => 0.10995297668111
326 => 0.10787416295426
327 => 0.11727059812083
328 => 0.11514389544864
329 => 0.11751994338828
330 => 0.11092769085053
331 => 0.11117952377512
401 => 0.10805864577822
402 => 0.10980612891934
403 => 0.10857106415921
404 => 0.1096649495505
405 => 0.11032061994379
406 => 0.11344098583532
407 => 0.11815647430277
408 => 0.11297490722616
409 => 0.11071722424947
410 => 0.11211787807052
411 => 0.11584800377197
412 => 0.12149933515128
413 => 0.11815363323108
414 => 0.11963839892957
415 => 0.11996275418206
416 => 0.11749575745072
417 => 0.12159029683966
418 => 0.12378459376217
419 => 0.12603548835889
420 => 0.12798987706859
421 => 0.12513643155873
422 => 0.12819002727963
423 => 0.12572936816079
424 => 0.12352190255292
425 => 0.12352525036705
426 => 0.12214047494531
427 => 0.11945729807275
428 => 0.11896247909013
429 => 0.12153658992646
430 => 0.12360078304799
501 => 0.1237707998803
502 => 0.12491364325445
503 => 0.12558996619105
504 => 0.13221885038618
505 => 0.13488504244647
506 => 0.13814521162935
507 => 0.13941523125915
508 => 0.14323753501762
509 => 0.14015071430032
510 => 0.13948286122112
511 => 0.13021120256912
512 => 0.13172943615398
513 => 0.13416027461109
514 => 0.13025128619994
515 => 0.13273063962171
516 => 0.13322011650705
517 => 0.13011846026953
518 => 0.13177518888064
519 => 0.12737540887532
520 => 0.11825237748368
521 => 0.12160045338155
522 => 0.12406576419255
523 => 0.12054746169463
524 => 0.12685388274504
525 => 0.12316980175834
526 => 0.12200212495263
527 => 0.11744660142673
528 => 0.11959663317277
529 => 0.12250458189479
530 => 0.12070780766991
531 => 0.12443638397355
601 => 0.12971704239448
602 => 0.13348035405388
603 => 0.13376925439386
604 => 0.13134969711917
605 => 0.13522705309328
606 => 0.13525529539854
607 => 0.13088162202028
608 => 0.12820277142882
609 => 0.12759413093808
610 => 0.12911463421493
611 => 0.13096080589341
612 => 0.13387170407332
613 => 0.13563069887892
614 => 0.14021722443318
615 => 0.14145820674216
616 => 0.14282167005742
617 => 0.14464367752311
618 => 0.14683146463879
619 => 0.14204471098046
620 => 0.14223489762693
621 => 0.13777753889741
622 => 0.13301421184501
623 => 0.13662898332068
624 => 0.14135481617222
625 => 0.1402707048945
626 => 0.14014872022937
627 => 0.14035386460039
628 => 0.13953648010075
629 => 0.13583948030256
630 => 0.13398287014835
701 => 0.13637837091905
702 => 0.1376514729672
703 => 0.13962594321771
704 => 0.13938254808332
705 => 0.14446857140603
706 => 0.14644484627587
707 => 0.14593923059459
708 => 0.14603227604827
709 => 0.14961022730092
710 => 0.15358964495567
711 => 0.15731689471975
712 => 0.16110841326888
713 => 0.15653758967242
714 => 0.15421680733934
715 => 0.15661126230934
716 => 0.15534073079787
717 => 0.16264158172692
718 => 0.16314707680481
719 => 0.17044739979924
720 => 0.17737627562725
721 => 0.17302437286338
722 => 0.1771280211557
723 => 0.1815664513592
724 => 0.1901289033311
725 => 0.18724537073766
726 => 0.1850366299618
727 => 0.18294938060117
728 => 0.18729261517913
729 => 0.19288011707882
730 => 0.19408361147158
731 => 0.19603373215811
801 => 0.19398341870564
802 => 0.19645279542452
803 => 0.20517078034126
804 => 0.20281510386097
805 => 0.19946966456508
806 => 0.20635167637267
807 => 0.2088422496927
808 => 0.22632239757601
809 => 0.24839180634759
810 => 0.23925492620061
811 => 0.23358336984809
812 => 0.23491632012205
813 => 0.2429753211088
814 => 0.24556361644583
815 => 0.23852773748086
816 => 0.24101292887729
817 => 0.25470657781024
818 => 0.26205278111791
819 => 0.25207565029936
820 => 0.22454914206972
821 => 0.19916844435973
822 => 0.20590054830013
823 => 0.2051373366348
824 => 0.21984945409576
825 => 0.20275892175599
826 => 0.20304668248948
827 => 0.21806303095913
828 => 0.21405692663282
829 => 0.20756755068726
830 => 0.1992158239857
831 => 0.18377688473666
901 => 0.1701021856971
902 => 0.19692141960877
903 => 0.19576492547489
904 => 0.1940901505862
905 => 0.19781718087141
906 => 0.2159145820004
907 => 0.2154973783288
908 => 0.21284334142931
909 => 0.21485640502597
910 => 0.20721465090574
911 => 0.20918410494203
912 => 0.19916442392753
913 => 0.20369373820493
914 => 0.20755362740101
915 => 0.20832855730376
916 => 0.21007451394355
917 => 0.19515550561783
918 => 0.20185370235701
919 => 0.20578826540511
920 => 0.18801176641314
921 => 0.20543688117584
922 => 0.19489579887468
923 => 0.19131799721992
924 => 0.19613503580853
925 => 0.19425783118582
926 => 0.19264392088438
927 => 0.19174333120567
928 => 0.195280432708
929 => 0.19511542269516
930 => 0.18932803811554
1001 => 0.1817786308554
1002 => 0.18431245973275
1003 => 0.18339189594684
1004 => 0.1800556540316
1005 => 0.18230387826308
1006 => 0.17240383654786
1007 => 0.1553713293362
1008 => 0.16662352532003
1009 => 0.16619032801468
1010 => 0.16597189028939
1011 => 0.17442760458339
1012 => 0.17361478276054
1013 => 0.1721395031929
1014 => 0.18002855936541
1015 => 0.17714894773966
1016 => 0.18602323224838
1017 => 0.19186840997856
1018 => 0.1903858838345
1019 => 0.19588330174193
1020 => 0.18437083403247
1021 => 0.18819481400552
1022 => 0.18898293097815
1023 => 0.17993120963682
1024 => 0.17374777046309
1025 => 0.17333540556657
1026 => 0.16261417416973
1027 => 0.16834136944317
1028 => 0.17338106427635
1029 => 0.17096744154737
1030 => 0.17020336069631
1031 => 0.17410688405548
1101 => 0.17441022125191
1102 => 0.16749410102719
1103 => 0.16893218142695
1104 => 0.17492921575494
1105 => 0.16878107154869
1106 => 0.15683623164961
1107 => 0.1538737462043
1108 => 0.15347849603646
1109 => 0.14544400055111
1110 => 0.15407171364743
1111 => 0.15030548567255
1112 => 0.16220295471886
1113 => 0.15540718420702
1114 => 0.15511423212279
1115 => 0.15467139208074
1116 => 0.14775576991567
1117 => 0.14926985165911
1118 => 0.15430288997544
1119 => 0.15609873474794
1120 => 0.15591141342525
1121 => 0.15427822534193
1122 => 0.1550258904832
1123 => 0.15261740055936
1124 => 0.15176691263888
1125 => 0.14908253881669
1126 => 0.14513725087526
1127 => 0.14568586736137
1128 => 0.13786921960866
1129 => 0.13361029505209
1130 => 0.13243148086656
1201 => 0.13085512127162
1202 => 0.13260953487734
1203 => 0.13784707602769
1204 => 0.13152949019402
1205 => 0.12069843240932
1206 => 0.12134939743741
1207 => 0.12281192258226
1208 => 0.1200865166504
1209 => 0.11750714866187
1210 => 0.11974969985715
1211 => 0.11516043789047
1212 => 0.12336651296548
1213 => 0.12314456163196
1214 => 0.12620327895965
1215 => 0.12811595767585
1216 => 0.12370785247209
1217 => 0.12259922593413
1218 => 0.12323074999442
1219 => 0.11279306401507
1220 => 0.1253502973338
1221 => 0.125458892809
1222 => 0.12452903242019
1223 => 0.13121537150133
1224 => 0.145325632484
1225 => 0.14001678471839
1226 => 0.13796103840277
1227 => 0.13405306315404
1228 => 0.13926020814036
1229 => 0.13886038064953
1230 => 0.1370522091059
1231 => 0.13595862131448
]
'min_raw' => 0.10212956957807
'max_raw' => 0.26205278111791
'avg_raw' => 0.18209117534799
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.102129'
'max' => '$0.262052'
'avg' => '$0.182091'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.062803126535459
'max_diff' => 0.15231980986239
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0032057304882103
]
1 => [
'year' => 2028
'avg' => 0.0055019641479792
]
2 => [
'year' => 2029
'avg' => 0.015030374419722
]
3 => [
'year' => 2030
'avg' => 0.011595911480911
]
4 => [
'year' => 2031
'avg' => 0.011388622139743
]
5 => [
'year' => 2032
'avg' => 0.019967838742263
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0032057304882103
'min' => '$0.0032057'
'max_raw' => 0.019967838742263
'max' => '$0.019967'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.019967838742263
]
1 => [
'year' => 2033
'avg' => 0.051359334513744
]
2 => [
'year' => 2034
'avg' => 0.032554014428932
]
3 => [
'year' => 2035
'avg' => 0.038397534672351
]
4 => [
'year' => 2036
'avg' => 0.074529707149063
]
5 => [
'year' => 2037
'avg' => 0.18209117534799
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.019967838742263
'min' => '$0.019967'
'max_raw' => 0.18209117534799
'max' => '$0.182091'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.18209117534799
]
]
]
]
'prediction_2025_max_price' => '$0.005481'
'last_price' => 0.00531473
'sma_50day_nextmonth' => '$0.004243'
'sma_200day_nextmonth' => '$0.017938'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'augmenter'
'sma_200day_date_nextmonth' => '4 févr. 2026'
'sma_50day_date_nextmonth' => '4 févr. 2026'
'daily_sma3' => '$0.0048074'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.00425'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.003722'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.003263'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.003835'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.007739'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.023668'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.004823'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.00445'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.003935'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.003666'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.004871'
'daily_ema50_action' => 'BUY'
'daily_ema100' => '$0.009952'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.023378'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.013086'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '—'
'weekly_sma50_action' => '—'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.004547'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.004313'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.005791'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.013778'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.014287'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.007143'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.003571'
'weekly_ema200_action' => 'BUY'
'rsi_14' => '59.54'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 96.34
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.004194'
'vwma_10_action' => 'BUY'
'hma_9' => '0.005065'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 183.47
'cci_20_action' => 'SELL'
'adx_14' => 17.82
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.000449'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 68.52
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '0.000040'
'ichimoku_cloud_action' => 'NEUTRAL'
'sell_signals' => 10
'buy_signals' => 22
'sell_pct' => 31.25
'buy_pct' => 68.75
'overall_action' => 'bullish'
'overall_action_label' => 'Haussier'
'overall_action_dir' => 1
'last_updated' => 1767708936
'last_updated_date' => '6 janvier 2026'
]
Prévision du prix de Zenko Protocol pour 2026
La prévision du prix de Zenko Protocol pour 2026 suggère que le prix moyen pourrait varier entre $0.001836 à la baisse et $0.005481 à la hausse. Sur le marché des cryptomonnaies, comparé au prix moyen d'aujourd'hui, Zenko Protocol pourrait potentiellement gagner 3.13% d'ici 2026 si ZENKO atteint l'objectif de prix prévu.
Prévision du prix de Zenko Protocol de 2027 à 2032
La prévision du prix de ZENKO pour 2027-2032 se situe actuellement dans une fourchette de prix comprise entre $0.0032057 à la baisse et $0.019967 à la hausse. Compte tenu de la volatilité des prix sur le marché, si Zenko Protocol atteint l'objectif de prix le plus élevé, il pourrait gagner 275.71% d'ici 2032 par rapport au prix actuel.
| Prévision du Prix de Zenko Protocol | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2027 | $0.001767 | $0.0032057 | $0.004643 |
| 2028 | $0.00319 | $0.0055019 | $0.007813 |
| 2029 | $0.0070079 | $0.01503 | $0.023052 |
| 2030 | $0.005959 | $0.011595 | $0.017231 |
| 2031 | $0.007046 | $0.011388 | $0.01573 |
| 2032 | $0.010755 | $0.019967 | $0.029179 |
Prévision du prix de Zenko Protocol de 2032 à 2037
La prévision du prix de Zenko Protocol pour 2032-2037 est actuellement estimée entre $0.019967 à la baisse et $0.182091 à la hausse. Par rapport au prix actuel, Zenko Protocol pourrait potentiellement gagner 3326.16% d'ici 2037 s'il atteint l'objectif de prix le plus élevé. Veuillez noter que ces informations sont à titre général seulement et ne doivent pas être considérées comme un conseil en investissement à long terme.
| Prévision du Prix de Zenko Protocol | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2032 | $0.010755 | $0.019967 | $0.029179 |
| 2033 | $0.024994 | $0.051359 | $0.077724 |
| 2034 | $0.020094 | $0.032554 | $0.045013 |
| 2035 | $0.023757 | $0.038397 | $0.053037 |
| 2036 | $0.039326 | $0.074529 | $0.109732 |
| 2037 | $0.102129 | $0.182091 | $0.262052 |
Zenko Protocol Histogramme des prix potentiels
Prévision du prix de Zenko Protocol basée sur l'analyse technique
Au 6 janvier 2026, le sentiment global de prévision du prix pour Zenko Protocol est Haussier, avec 22 indicateurs techniques montrant des signaux haussiers et 10 indiquant des signaux baissiers. La prévision du prix de ZENKO a été mise à jour pour la dernière fois le 6 janvier 2026.
Moyennes Mobiles Simples sur 50 et 200 jours de Zenko Protocol et Indice de Force Relative sur 14 jours - RSI (14)
Selon nos indicateurs techniques, le SMA sur 200 jours de Zenko Protocol devrait augmenter au cours du prochain mois, atteignant $0.017938 d'ici le 4 févr. 2026. Le SMA à court terme sur 50 jours pour Zenko Protocol devrait atteindre $0.004243 d'ici le 4 févr. 2026.
Le Relative Strength Index (RSI), un oscillateur de momentum, est un outil couramment utilisé pour identifier si une cryptomonnaie est survendue (en dessous de 30) ou surachetée (au-dessus de 70). Actuellement, le RSI est à 59.54, ce qui suggère que le marché de ZENKO est dans un état NEUTRAL.
Moyennes Mobiles et Oscillateurs Populaires de ZENKO pour le Samedi 19 Octobre 2024
Les moyennes mobiles (MA) sont des indicateurs largement utilisés sur les marchés financiers, conçus pour lisser les mouvements de prix sur une période donnée. En tant qu'indicateurs retardés, ils sont basés sur des données historiques de prix. Le tableau ci-dessous met en évidence deux types : la moyenne mobile simple (SMA) et la moyenne mobile exponentielle (EMA).
Moyenne Mobile Simple Quotidienne (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 3 | $0.0048074 | BUY |
| SMA 5 | $0.00425 | BUY |
| SMA 10 | $0.003722 | BUY |
| SMA 21 | $0.003263 | BUY |
| SMA 50 | $0.003835 | BUY |
| SMA 100 | $0.007739 | SELL |
| SMA 200 | $0.023668 | SELL |
Moyenne Mobile Exponentielle Quotidienne (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 3 | $0.004823 | BUY |
| EMA 5 | $0.00445 | BUY |
| EMA 10 | $0.003935 | BUY |
| EMA 21 | $0.003666 | BUY |
| EMA 50 | $0.004871 | BUY |
| EMA 100 | $0.009952 | SELL |
| EMA 200 | $0.023378 | SELL |
Moyenne Mobile Simple Hebdomadaire (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 21 | $0.013086 | SELL |
| SMA 50 | — | — |
| SMA 100 | — | — |
| SMA 200 | — | — |
Moyenne Mobile Exponentielle Hebdomadaire (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 21 | $0.013778 | SELL |
| EMA 50 | $0.014287 | SELL |
| EMA 100 | $0.007143 | SELL |
| EMA 200 | $0.003571 | BUY |
Oscillateurs de Zenko Protocol
Un oscillateur est un outil d'analyse technique qui établit des limites hautes et basses entre deux extrêmes, créant un indicateur de tendance qui fluctue à l'intérieur de ces limites. Les traders utilisent cet indicateur pour identifier les conditions de surachat ou de survente à court terme.
| Période | Valeur | Action |
|---|---|---|
| RSI (14) | 59.54 | NEUTRAL |
| Stoch RSI (14) | 96.34 | SELL |
| Stochastique Rapide (14) | 100 | SELL |
| Indice de Canal des Matières Premières (20) | 183.47 | SELL |
| Indice Directionnel Moyen (14) | 17.82 | NEUTRAL |
| Oscillateur Impressionnant (5, 34) | 0.000449 | BUY |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Plage de Pourcentage de Williams (14) | -0 | SELL |
| Oscillateur Ultime (7, 14, 28) | 68.52 | NEUTRAL |
| VWMA (10) | 0.004194 | BUY |
| Moyenne Mobile de Hull (9) | 0.005065 | BUY |
| Nuage Ichimoku B/L (9, 26, 52, 26) | 0.000040 | NEUTRAL |
Prévision du cours de Zenko Protocol basée sur les flux monétaires mondiaux
Définitions des flux monétaires mondiaux utilisés pour la prédiction du cours de Zenko Protocol
M0 : le total de toutes les devises physiques, plus les comptes à la banque centrale qui peuvent être échangés contre des devises physiques.
M1 : M0 plus le montant des comptes à vue, y compris les comptes de "chèques" et les comptes "courants".
M2 : M1 plus la plupart des comptes d'épargne, comptes du marché monétaire et comptes de certificats de dépôt (CD) de moins de 100 000 $.
Prédictions du cours de Zenko Protocol par des sociétés Internet ou des niches technologiques
| Comparaison | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Action Facebook | $0.007468 | $0.010493 | $0.014745 | $0.02072 | $0.029115 | $0.040911 |
| Action Amazon.com | $0.011089 | $0.023138 | $0.04828 | $0.10074 | $0.2102011 | $0.438597 |
| Action Apple | $0.007538 | $0.010692 | $0.015166 | $0.021513 | $0.030514 | $0.043282 |
| Action Netflix | $0.008385 | $0.013231 | $0.020877 | $0.03294 | $0.051975 | $0.0820095 |
| Action Google | $0.006882 | $0.008912 | $0.011542 | $0.014947 | $0.019356 | $0.025066 |
| Action Tesla | $0.012048 | $0.027312 | $0.061914 | $0.140355 | $0.318175 | $0.721279 |
| Action Kodak | $0.003985 | $0.002988 | $0.002241 | $0.00168 | $0.00126 | $0.000945 |
| Action Nokia | $0.00352 | $0.002332 | $0.001545 | $0.001023 | $0.000678 | $0.000449 |
Ce calcul montre la valeur potentielle des cryptomonnaies si l'on suppose que leur capitalisation se comportera comme celle de certaines sociétés Internet ou niches technologiques. En extrapolant les données, vous pourrez obtenir une potentielle image des cours futurs pour 2024, 2025, 2026, 2027, 2028, 2029 et 2030.
Aperçu des prévisions relatives à Zenko Protocol
Vous vous posez peut-être des questions telles que : "Devrais-je investir dans Zenko Protocol maintenant ?", "Devrais-je acheter ZENKO aujourd'hui ?", " Zenko Protocol sera-t-il un bon ou un mauvais investissement à court ou à long terme ?".
Nous mettons régulièrement à jour les prévisions de Zenko Protocol avec de nouvelles valeurs. Regardez nos prévisions similaires. Nous faisons une prévision des cours futurs pour une grande quantité de devises numériques comme Zenko Protocol en utilisant des méthodes d'analyse technique.
Si vous souhaitez trouver des cryptomonnaies ayant un bon rendement, vous devriez consulter un maximum d'informations disponibles à propos de Zenko Protocol afin de prendre une décision responsable concernant cet investissement.
Le cours de Zenko Protocol est de $0.005314 USD actuellement, mais ce cours peut subir une hausse ou une baisse, ce qui pourrait causer la perte de votre investissement, car les cryptomonnaies sont des actifs à haut risque.
Prévision du cours de Zenko Protocol basée sur le modèle de croissance du Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si Zenko Protocol présente 1 % de la précédente croissance annuelle moyenne du Bitcoin | $0.005452 | $0.005594 | $0.00574 | $0.005889 |
| Si Zenko Protocol présente 2 % de la précédente croissance annuelle moyenne du Bitcoin | $0.005591 | $0.005881 | $0.006187 | $0.0065091 |
| Si Zenko Protocol présente 5 % de la précédente croissance annuelle moyenne du Bitcoin | $0.0060054 | $0.006785 | $0.007667 | $0.008664 |
| Si Zenko Protocol présente 10 % de la précédente croissance annuelle moyenne du Bitcoin | $0.006696 | $0.008436 | $0.010629 | $0.013392 |
| Si Zenko Protocol présente 20 % de la précédente croissance annuelle moyenne du Bitcoin | $0.008077 | $0.012276 | $0.018659 | $0.028359 |
| Si Zenko Protocol présente 50 % de la précédente croissance annuelle moyenne du Bitcoin | $0.012222 | $0.0281066 | $0.064635 | $0.14864 |
| Si Zenko Protocol présente 100 % de la précédente croissance annuelle moyenne du Bitcoin | $0.019129 | $0.068852 | $0.247823 | $0.891997 |
Boîte à questions
Est-ce que ZENKO est un bon investissement ?
La décision d'acquérir Zenko Protocol dépend entièrement de votre tolérance individuelle au risque. Comme vous pouvez le discerner, la valeur de Zenko Protocol a connu une hausse de 15.4088% au cours des 24 heures précédentes, et Zenko Protocol a enregistré une déclin de sur une période de 30 jours précédents. Par conséquent, la détermination de si investir ou non dans Zenko Protocol dépendra de la mesure dans laquelle cet investissement s'aligne avec vos aspirations de trading.
Est-ce que Zenko Protocol peut monter ?
Il semble que la valeur moyenne de Zenko Protocol pourrait potentiellement s'envoler jusqu'à $0.005481 pour la fin de cette année. En regardant les perspectives de Zenko Protocol sur une période de cinq ans plus longue, la monnaie numérique pourrait potentiellement croître jusqu'à $0.017231. Cependant, compte tenu de l'imprévisibilité du marché, il est essentiel de mener des recherches approfondies avant d'investir des fonds dans un projet, un réseau ou un actif particulier.
Quel sera le prix de Zenko Protocol la semaine prochaine ?
Basé sur notre nouveau pronostic expérimental de Zenko Protocol, le prix de Zenko Protocol va augmenter de 0.86% durant la prochaine semaine et atteindre $0.00536 d'ici 13 janvier 2026.
Quel sera le prix de Zenko Protocol le mois prochain ?
Basé sur notre nouveau pronostic expérimental de Zenko Protocol, le prix de Zenko Protocol va diminuer de -11.62% durant le prochain mois et atteindre $0.004697 d'ici 5 février 2026.
Jusqu'où le prix de Zenko Protocol peut-il monter cette année en 2026 ?
Selon notre prédiction la plus récente sur la valeur de Zenko Protocol en 2026, ZENKO devrait fluctuer dans la fourchette de $0.001836 et $0.005481. Cependant, il est crucial de garder à l'esprit que le marché des cryptomonnaies est exceptionnellement instable, et cette prévision de prix de Zenko Protocol ne prend pas en compte les fluctuations de prix soudaines et extrêmes.
Où sera Zenko Protocol dans 5 ans ?
L'avenir de Zenko Protocol semble suivre une tendance haussière, avec un prix maximum de $0.017231 prévue après une période de cinq ans. Selon la prévision de Zenko Protocol pour 2030, la valeur de Zenko Protocol pourrait potentiellement atteindre son point le plus élevé d'environ $0.017231, tandis que son point le plus bas devrait être autour de $0.005959.
Combien vaudra Zenko Protocol en 2026 ?
Basé sur notre nouvelle simulation expérimentale de prédiction de prix de Zenko Protocol, il est attendu que la valeur de ZENKO en 2026 augmente de 3.13% jusqu'à $0.005481 si le meilleur scénario se produit. Le prix sera entre $0.005481 et $0.001836 durant 2026.
Combien vaudra Zenko Protocol en 2027 ?
Selon notre dernière simulation expérimentale pour la prédiction de prix de Zenko Protocol, le valeur de ZENKO pourrait diminuer de -12.62% jusqu'à $0.004643 en 2027, en supposant les conditions les plus favorables. Il est prévu que le prix fluctue entre $0.004643 et $0.001767 tout au long de l'année.
Combien vaudra Zenko Protocol en 2028 ?
Notre nouveau modèle expérimental de prédiction de prix de Zenko Protocol suggère que la valeur de ZENKO en 2028 pourrait augmenter de 47.02%, atteignant $0.007813 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.007813 et $0.00319 durant l'année.
Combien vaudra Zenko Protocol en 2029 ?
Basé sur notre modèle de prévision expérimental, la valeur de Zenko Protocol pourrait connaître un 333.75% croissance en 2029, atteignant potentiellement $0.023052 sous des conditions optimales. Le range de prix prévu pour 2029 se situe entre $0.023052 et $0.0070079.
Combien vaudra Zenko Protocol en 2030 ?
En utilisant notre nouvelle simulation expérimentale pour les prédictions de prix de Zenko Protocol, il est prévu que la valeur de ZENKO en 2030 augmente de 224.23%, atteignant $0.017231 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.017231 et $0.005959 au cours de 2030.
Combien vaudra Zenko Protocol en 2031 ?
Notre simulation expérimentale indique que le prix de Zenko Protocol pourrait augmenter de 195.98% en 2031, atteignant potentiellement $0.01573 dans des conditions idéales. Il est probable que le prix fluctue entre $0.01573 et $0.007046 durant l'année.
Combien vaudra Zenko Protocol en 2032 ?
Basé sur les résultats de notre dernière prédiction expérimentale de prix de Zenko Protocol, ZENKO pourrait connaître une 449.04% hausse en valeur, atteignant $0.029179 si le scénario le plus positif se réalise en 2032. Il est prévu que le prix reste dans une fourchette de $0.029179 et $0.010755 tout au long de l'année.
Combien vaudra Zenko Protocol en 2033 ?
Selon notre prédiction expérimentale de prix de Zenko Protocol, la valeur de ZENKO est anticipée à augmenter de 1362.43% en 2033, avec le prix potentiel le plus élevé étant $0.077724. Tout au long de l'année, le prix de ZENKO pourrait osciller entre $0.077724 et $0.024994.
Combien vaudra Zenko Protocol en 2034 ?
Les résultats de notre nouvelle simulation de prédiction de prix de Zenko Protocol suggèrent que ZENKO pourrait augmenter de 746.96% en 2034, atteignant potentiellement $0.045013 dans les meilleures circonstances. La fourchette de prix prévue pour l'année est entre $0.045013 et $0.020094.
Combien vaudra Zenko Protocol en 2035 ?
Basé sur notre prédiction expérimentale pour le prix de Zenko Protocol, ZENKO pourrait augmenter de 897.93%, avec la valeur potentiellement atteignant $0.053037 en 2035. La fourchette de prix attendue pour l'année se situe entre $0.053037 et $0.023757.
Combien vaudra Zenko Protocol en 2036 ?
Notre récente simulation de prédiction de prix de Zenko Protocol suggère que la valeur de ZENKO pourrait augmenter de 1964.7% en 2036, pouvant atteindre $0.109732 si les conditions sont optimales. La fourchette de prix attendue pour 2036 est entre $0.109732 et $0.039326.
Combien vaudra Zenko Protocol en 2037 ?
Selon la simulation expérimentale, la valeur de Zenko Protocol pourrait augmenter de 4830.69% en 2037, avec un maximum de $0.262052 sous des conditions favorables. Il est prévu que le prix chute entre $0.262052 et $0.102129 au cours de l'année.
Prévisions liées
Comment lire et prédire les mouvements de prix de Zenko Protocol ?
Les traders de Zenko Protocol utilisent des indicateurs et des modèles graphiques pour prédire la direction du marché. Ils identifient également des niveaux clés de support et de résistance pour évaluer quand une tendance baissière pourrait ralentir ou une tendance haussière pourrait s'arrêter.
Indicateurs de prédiction du prix de Zenko Protocol
Les moyennes mobiles sont des outils populaires pour la prédiction du prix de Zenko Protocol. Une moyenne mobile simple (SMA) calcule le prix de clôture moyen de ZENKO sur une période spécifique, comme une SMA de 12 jours. Une moyenne mobile exponentielle (EMA) donne plus de poids aux prix récents, réagissant plus rapidement aux changements de prix.
Les moyennes mobiles couramment utilisées sur le marché des cryptomonnaies incluent les moyennes sur 50 jours, 100 jours et 200 jours, qui aident à identifier les niveaux clés de résistance et de support. Un mouvement de prix de ZENKO au-dessus de ces moyennes est considéré comme haussier, tandis qu'une chute en dessous indique une faiblesse.
Les traders utilisent également le RSI et les niveaux de retracement de Fibonacci pour évaluer la direction future de ZENKO.
Comment lire les graphiques de Zenko Protocol et prédire les mouvements de prix ?
La plupart des traders préfèrent les graphiques en chandeliers aux simples graphiques linéaires parce qu'ils fournissent des informations plus détaillées. Les chandeliers peuvent représenter l'action des prix de Zenko Protocol dans différentes périodes, comme 5 minutes pour les tendances à court terme et hebdomadaire pour les tendances à long terme. Les options populaires incluent les graphiques de 1 heure, 4 heures et 1 jour.
Par exemple, un graphique en chandeliers de 1 heure montre les prix d'ouverture, de clôture, les plus hauts et les plus bas de ZENKO au sein de chaque heure. La couleur du chandelier est cruciale : le vert indique que le prix a clôturé plus haut qu'il n'a ouvert, tandis que le rouge signifie le contraire. Certains graphiques utilisent des chandeliers creux et pleins pour transmettre la même information.
Qu'est-ce qui affecte le prix de Zenko Protocol ?
L'action du prix de Zenko Protocol est déterminée par l'offre et la demande, influencée par des facteurs tels que les réductions de récompenses de bloc, les hard forks et les mises à jour de protocole. Les événements du monde réel, tels que les réglementations, l'adoption par les entreprises et les gouvernements et les piratages d'échanges de cryptomonnaies, impactent également le prix de ZENKO. La capitalisation boursière de Zenko Protocol peut changer rapidement.
Les traders surveillent souvent l'activité des « baleines » de ZENKO, de grands détenteurs de Zenko Protocol, car leurs actions peuvent influencer significativement les mouvements de prix sur le marché relativement petit de Zenko Protocol.
Modèles de prédiction de prix haussiers et baissiers
Les traders identifient souvent des modèles de chandeliers pour obtenir un avantage dans les prédictions de prix des cryptomonnaies. Certaines formations indiquent des tendances haussières, tandis que d'autres suggèrent des mouvements baissiers.
Modèles de chandeliers haussiers couramment suivis :
- Marteau
- Englobante haussière
- Ligne pénétrante
- Étoile du matin
- Trois soldats blancs
Modèles de chandeliers baissiers courants :
- Harami baissier
- Nuage sombre
- Étoile du soir
- Étoile filante
- Pendu


