Predicción del precio de Zenko Protocol - Pronóstico de ZENKO
Predicción de precio de Zenko Protocol hasta $0.005364 para el año 2026
| Año | Precio min. | Precio max. |
|---|---|---|
| 2026 | $0.001796 | $0.005364 |
| 2027 | $0.001729 | $0.004544 |
| 2028 | $0.003121 | $0.007646 |
| 2029 | $0.006858 | $0.02256 |
| 2030 | $0.005832 | $0.016863 |
| 2031 | $0.006895 | $0.015394 |
| 2032 | $0.010525 | $0.028555 |
| 2033 | $0.02446 | $0.076062 |
| 2034 | $0.019664 | $0.044051 |
| 2035 | $0.023249 | $0.0519035 |
Calculadora de ganancias de inversión
Si abres una posición corta de $10,000.00 en Zenko Protocol hoy y la cierras el Apr 06, 2026, nuestra previsión indica que podrías obtener una ganancia de alrededor de $3,955.14, equivalente a un ROI del 39.55% en los próximos 90 días.
Predicción del precio a largo plazo de Zenko Protocol para 2027, 2028, 2029, 2030, 2031, 2032 y 2037
[
'name' => 'Zenko Protocol'
'name_with_ticker' => 'Zenko Protocol <small>ZENKO</small>'
'name_lang' => 'Zenko Protocol'
'name_lang_with_ticker' => 'Zenko Protocol <small>ZENKO</small>'
'name_with_lang' => 'Zenko Protocol'
'name_with_lang_with_ticker' => 'Zenko Protocol <small>ZENKO</small>'
'image' => '/uploads/coins/zenko-protocol.png?1750501014'
'price_for_sd' => 0.005201
'ticker' => 'ZENKO'
'marketcap' => '$1.04M'
'low24h' => '$0.003655'
'high24h' => '$0.007184'
'volume24h' => '$10.62K'
'current_supply' => '200.4M'
'max_supply' => '1000M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.005201'
'change_24h_pct' => '10.8165%'
'ath_price' => '$0.07683'
'ath_days' => 142
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '17 ago. 2025'
'ath_pct' => '-93.33%'
'fdv' => '$5.2M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.25645'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.005245'
'next_week_prediction_price_date' => '13 de enero de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.004596'
'next_month_prediction_price_date' => '5 de febrero de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.001796'
'current_year_max_price_prediction' => '$0.005364'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.005832'
'grand_prediction_max_price' => '$0.016863'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0052996682987161
107 => 0.005319455336364
108 => 0.0053640365425357
109 => 0.0049830950169061
110 => 0.0051541265780582
111 => 0.0052545915967449
112 => 0.0048006869873695
113 => 0.0052456193620322
114 => 0.0049764636724633
115 => 0.0048851081888408
116 => 0.0050081063123687
117 => 0.0049601738240103
118 => 0.0049189642852099
119 => 0.0048959686544895
120 => 0.0049862849016009
121 => 0.0049820715407219
122 => 0.0048342966308195
123 => 0.0046415302849278
124 => 0.0047062289979487
125 => 0.0046827233489545
126 => 0.0045975358447106
127 => 0.0046549419369925
128 => 0.0044021545591416
129 => 0.0039672470142936
130 => 0.0042545602599985
131 => 0.0042434990125756
201 => 0.0042379214300373
202 => 0.0044538293934297
203 => 0.0044330748245937
204 => 0.0043954050789271
205 => 0.0045968440102905
206 => 0.0045233160906069
207 => 0.0047499118137151
208 => 0.0048991624122466
209 => 0.004861307632708
210 => 0.0050016785420176
211 => 0.0047077195256236
212 => 0.004805360919281
213 => 0.0048254846751887
214 => 0.004594358285146
215 => 0.0044364705287314
216 => 0.0044259412154307
217 => 0.0041521856040808
218 => 0.0042984236419858
219 => 0.0044271070636011
220 => 0.0043654776908843
221 => 0.0043459676726073
222 => 0.0044456401247778
223 => 0.0044533855279483
224 => 0.0042767895148405
225 => 0.004313509418034
226 => 0.004466637518527
227 => 0.0043096509827879
228 => 0.0040046517874517
301 => 0.0039290077700645
302 => 0.0039189154637493
303 => 0.0037137628891926
304 => 0.0039340626650123
305 => 0.0038378959092001
306 => 0.0041416855385563
307 => 0.0039681625315245
308 => 0.0039606823015074
309 => 0.0039493748367254
310 => 0.0037727915410583
311 => 0.0038114520603555
312 => 0.0039399655146628
313 => 0.0039858205629673
314 => 0.0039810375057498
315 => 0.0039393357286264
316 => 0.0039584265886458
317 => 0.0038969282768267
318 => 0.0038752119429466
319 => 0.0038066692196731
320 => 0.0037059303518715
321 => 0.0037199387093067
322 => 0.0035203486524333
323 => 0.0034116013964025
324 => 0.003381501589199
325 => 0.0033412508690489
326 => 0.003386048015143
327 => 0.0035197832388793
328 => 0.0033584701855429
329 => 0.0030819102703927
330 => 0.0030985319925284
331 => 0.0031358760671337
401 => 0.0030662856311625
402 => 0.0030004241237983
403 => 0.0030576853609385
404 => 0.0029405032790644
405 => 0.0031500369618842
406 => 0.0031443696629753
407 => 0.0032224708624544
408 => 0.0032713091452867
409 => 0.0031587527149401
410 => 0.0031304450770929
411 => 0.0031465703941211
412 => 0.0028800548232328
413 => 0.0032006908543743
414 => 0.0032034637280863
415 => 0.0031797206999036
416 => 0.0033504494879596
417 => 0.0037107404824022
418 => 0.0035751845176212
419 => 0.0035226931508573
420 => 0.0034229070242681
421 => 0.0035558661132343
422 => 0.0035456569296865
423 => 0.0034994871299659
424 => 0.0034715634910364
425 => 0.0035230136519496
426 => 0.0034651882467255
427 => 0.0034548012150114
428 => 0.0033918671040258
429 => 0.0033694024897235
430 => 0.0033527705836362
501 => 0.0033344604892514
502 => 0.003374847994873
503 => 0.0032833245937155
504 => 0.0031729563440693
505 => 0.0031637804183122
506 => 0.0031891159560831
507 => 0.0031779068666284
508 => 0.0031637267535043
509 => 0.0031366530558264
510 => 0.0031286208680633
511 => 0.0031547215816296
512 => 0.0031252553977794
513 => 0.0031687343571565
514 => 0.0031569104860065
515 => 0.0030908633029204
516 => 0.0030085440589961
517 => 0.0030078112450547
518 => 0.0029900756989818
519 => 0.0029674868145008
520 => 0.0029612031036019
521 => 0.0030528629792611
522 => 0.0032425961787265
523 => 0.0032053470117408
524 => 0.0032322633523361
525 => 0.0033646651079839
526 => 0.0034067516446446
527 => 0.0033768796177971
528 => 0.0033359889450218
529 => 0.0033377879271002
530 => 0.0034775237344218
531 => 0.003486238885321
601 => 0.0035082592600291
602 => 0.0035365616644861
603 => 0.0033816996396592
604 => 0.0033304939396574
605 => 0.0033062298382125
606 => 0.0032315057971512
607 => 0.0033120892690807
608 => 0.0032651367309157
609 => 0.0032714722324412
610 => 0.0032673462287614
611 => 0.0032695993057697
612 => 0.0031499783929495
613 => 0.0031935619664911
614 => 0.0031210958223051
615 => 0.0030240717899464
616 => 0.003023746531369
617 => 0.0030474930258349
618 => 0.0030333676817261
619 => 0.0029953567439253
620 => 0.0030007560182333
621 => 0.0029534526939114
622 => 0.0030064994982603
623 => 0.0030080206907985
624 => 0.0029875947816452
625 => 0.003069320702793
626 => 0.0031028038793693
627 => 0.0030893591083992
628 => 0.003101860558397
629 => 0.0032068948827989
630 => 0.0032240200606453
701 => 0.0032316259334189
702 => 0.0032214350714873
703 => 0.0031037803930329
704 => 0.0031089988783286
705 => 0.0030707090957476
706 => 0.0030383582643445
707 => 0.0030396521279429
708 => 0.0030562846605978
709 => 0.0031289199061868
710 => 0.0032817764984474
711 => 0.003287577294387
712 => 0.0032946080282869
713 => 0.0032660105001522
714 => 0.0032573852120253
715 => 0.0032687641934404
716 => 0.0033261690926757
717 => 0.0034738300787869
718 => 0.0034216368243495
719 => 0.0033792028960555
720 => 0.0034164288912743
721 => 0.0034106982410973
722 => 0.0033623257864815
723 => 0.0033609681327899
724 => 0.003268125926773
725 => 0.0032338042771233
726 => 0.003205122537745
727 => 0.0031738028270997
728 => 0.003155235452783
729 => 0.0031837633784542
730 => 0.0031902880525877
731 => 0.0031279112445248
801 => 0.003119409516076
802 => 0.0031703477640371
803 => 0.0031479317402787
804 => 0.0031709871766049
805 => 0.0031763362355984
806 => 0.0031754749139012
807 => 0.0031520700106335
808 => 0.0031669875980321
809 => 0.0031317030566876
810 => 0.0030933364175423
811 => 0.0030688608920936
812 => 0.0030475027499324
813 => 0.0030593534885459
814 => 0.0030171077692479
815 => 0.0030035925134061
816 => 0.0031619338550778
817 => 0.0032789023066269
818 => 0.0032772015390168
819 => 0.0032668485535921
820 => 0.0032514661172775
821 => 0.003325043771648
822 => 0.0032994107880969
823 => 0.0033180609253378
824 => 0.0033228081680093
825 => 0.0033371766417982
826 => 0.0033423121361657
827 => 0.003326789105357
828 => 0.0032746919179846
829 => 0.0031448706803045
830 => 0.0030844385437187
831 => 0.0030644949320685
901 => 0.0030652198444737
902 => 0.0030452235241875
903 => 0.003051113336684
904 => 0.0030431752877629
905 => 0.0030281425435265
906 => 0.0030584252589505
907 => 0.0030619150598001
908 => 0.0030548467121687
909 => 0.0030565115639138
910 => 0.0029979886644561
911 => 0.0030024380333968
912 => 0.0029776633817364
913 => 0.002973018433213
914 => 0.0029103902711913
915 => 0.0027994354040726
916 => 0.0028609151711059
917 => 0.0027866562578931
918 => 0.0027585332822532
919 => 0.0028916630749122
920 => 0.0028783005361749
921 => 0.0028554296784126
922 => 0.0028215989130778
923 => 0.0028090507531305
924 => 0.0027328121055559
925 => 0.0027283075195398
926 => 0.0027660934518945
927 => 0.0027486565442474
928 => 0.0027241685220375
929 => 0.0026354753879043
930 => 0.0025357549398511
1001 => 0.0025387648733574
1002 => 0.0025704840925183
1003 => 0.0026627120001479
1004 => 0.002626676961078
1005 => 0.0026005331267783
1006 => 0.0025956371724948
1007 => 0.002656920290728
1008 => 0.0027436487422381
1009 => 0.002784339791247
1010 => 0.0027440161974847
1011 => 0.0026976946241472
1012 => 0.0027005140036827
1013 => 0.0027192700726285
1014 => 0.0027212410702782
1015 => 0.0026910904879701
1016 => 0.0026995777002818
1017 => 0.0026866848486933
1018 => 0.0026075614422937
1019 => 0.002606130350775
1020 => 0.0025867121908072
1021 => 0.0025861242166406
1022 => 0.0025530890824485
1023 => 0.0025484672388139
1024 => 0.002482873974786
1025 => 0.0025260476598039
1026 => 0.0024970890186141
1027 => 0.0024534415156882
1028 => 0.0024459166697321
1029 => 0.0024456904637761
1030 => 0.0024905066898779
1031 => 0.0025255239561086
1101 => 0.0024975927665758
1102 => 0.0024912333761426
1103 => 0.0025591350284475
1104 => 0.0025504939242544
1105 => 0.0025430107837523
1106 => 0.0027358831606514
1107 => 0.0025832096243165
1108 => 0.0025166352481738
1109 => 0.0024342368155659
1110 => 0.002461066160712
1111 => 0.0024667194979394
1112 => 0.0022685661209513
1113 => 0.0021881753205857
1114 => 0.0021605882273637
1115 => 0.0021447114651901
1116 => 0.0021519467050804
1117 => 0.002079585555851
1118 => 0.0021282134448761
1119 => 0.0020655548061791
1120 => 0.0020550498814927
1121 => 0.0021670912893988
1122 => 0.0021826811967725
1123 => 0.0021161698085116
1124 => 0.0021588808869908
1125 => 0.0021433932562059
1126 => 0.0020666289086984
1127 => 0.0020636970752639
1128 => 0.0020251794240819
1129 => 0.0019649067584691
1130 => 0.0019373605329525
1201 => 0.0019230142195361
1202 => 0.0019289337880558
1203 => 0.0019259406730705
1204 => 0.0019064085731702
1205 => 0.0019270602301733
1206 => 0.0018743037803843
1207 => 0.0018532957369908
1208 => 0.0018438068911728
1209 => 0.0017969825054371
1210 => 0.0018715009260414
1211 => 0.0018861819936588
1212 => 0.0019008919875146
1213 => 0.0020289324410898
1214 => 0.0020225359018678
1215 => 0.0020803575011942
1216 => 0.0020781106601715
1217 => 0.0020616190033958
1218 => 0.001992043416205
1219 => 0.0020197750051936
1220 => 0.0019344214847323
1221 => 0.0019983741457371
1222 => 0.0019691888219815
1223 => 0.0019885065584176
1224 => 0.0019537715264954
1225 => 0.0019729953273355
1226 => 0.0018896634194226
1227 => 0.0018118492563251
1228 => 0.0018431639470925
1229 => 0.001877206597226
1230 => 0.0019510197366214
1231 => 0.0019070572397427
]
'min_raw' => 0.0017969825054371
'max_raw' => 0.0053640365425357
'avg_raw' => 0.0035805095239864
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.001796'
'max' => '$0.005364'
'avg' => '$0.00358'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0034041274945629
'max_diff' => 0.00016292654253567
'year' => 2026
]
1 => [
'items' => [
101 => 0.0019228678160263
102 => 0.0018699050321346
103 => 0.0017606276808948
104 => 0.0017612461788354
105 => 0.0017444362390836
106 => 0.0017299099968467
107 => 0.0019121068613519
108 => 0.0018894478011445
109 => 0.0018533435542484
110 => 0.0019016705234445
111 => 0.0019144489411521
112 => 0.0019148127247399
113 => 0.0019500708339657
114 => 0.0019688880931799
115 => 0.0019722047166751
116 => 0.0020276841133438
117 => 0.0020462800753162
118 => 0.0021228742108816
119 => 0.0019672915802045
120 => 0.0019640874583097
121 => 0.0019023505830074
122 => 0.0018631960806692
123 => 0.0019050315252806
124 => 0.0019420920180985
125 => 0.0019035021558249
126 => 0.0019085411771614
127 => 0.0018567374399667
128 => 0.0018752548384214
129 => 0.0018912045165336
130 => 0.0018823980417588
131 => 0.0018692143227827
201 => 0.0019390534803198
202 => 0.0019351128813497
203 => 0.0020001487104435
204 => 0.0020508487899788
205 => 0.0021417123962295
206 => 0.00204689148628
207 => 0.0020434358354425
208 => 0.0020772153766833
209 => 0.0020462749038445
210 => 0.0020658282146498
211 => 0.0021385620555658
212 => 0.0021400988070118
213 => 0.0021143562402978
214 => 0.0021127898027737
215 => 0.002117733944304
216 => 0.0021466919356742
217 => 0.0021365731237002
218 => 0.0021482828690934
219 => 0.0021629260850136
220 => 0.0022234966346545
221 => 0.0022380999891122
222 => 0.002202621408751
223 => 0.0022058247273208
224 => 0.0021925547643569
225 => 0.0021797361464059
226 => 0.0022085505275509
227 => 0.0022612093754415
228 => 0.0022608817874817
301 => 0.0022730976166506
302 => 0.0022807079770214
303 => 0.0022480387391856
304 => 0.0022267722666357
305 => 0.0022349271854321
306 => 0.0022479670781787
307 => 0.0022306985239617
308 => 0.002124109007762
309 => 0.0021564414580123
310 => 0.0021510597573146
311 => 0.002143395561084
312 => 0.0021759060898301
313 => 0.0021727703700226
314 => 0.0020788433876765
315 => 0.002084856288341
316 => 0.0020792090520813
317 => 0.0020974564277522
318 => 0.0020452894856755
319 => 0.0020613356857086
320 => 0.0020713997119455
321 => 0.0020773275007146
322 => 0.0020987427384713
323 => 0.0020962299074943
324 => 0.0020985865373696
325 => 0.0021303396815495
326 => 0.0022909361884487
327 => 0.002299677101983
328 => 0.0022566336469012
329 => 0.0022738286582117
330 => 0.002240817996631
331 => 0.0022629782749024
401 => 0.0022781397744856
402 => 0.0022096278732577
403 => 0.0022055710431056
404 => 0.002172424134782
405 => 0.0021902354057782
406 => 0.0021618963929475
407 => 0.0021688497954396
408 => 0.002149407475885
409 => 0.002184399780156
410 => 0.0022235266135854
411 => 0.0022334115968751
412 => 0.0022074084615927
413 => 0.0021885804779581
414 => 0.0021555247410192
415 => 0.0022104971682438
416 => 0.0022265727812187
417 => 0.0022104127298925
418 => 0.0022066680928961
419 => 0.0021995720125544
420 => 0.0022081735598859
421 => 0.002226485229978
422 => 0.002217849784526
423 => 0.002223553648384
424 => 0.0022018164011562
425 => 0.0022480495540627
426 => 0.0023214789274924
427 => 0.0023217150149349
428 => 0.0023130795229346
429 => 0.0023095460656624
430 => 0.0023184066045001
501 => 0.0023232130833413
502 => 0.0023518664411975
503 => 0.0023826126357774
504 => 0.002526091710266
505 => 0.0024858033602904
506 => 0.0026131065307851
507 => 0.0027137868103986
508 => 0.0027439764240396
509 => 0.0027162034000209
510 => 0.0026211933851224
511 => 0.0026165317405222
512 => 0.0027585168149743
513 => 0.0027183995281132
514 => 0.0027136277044932
515 => 0.0026628635632999
516 => 0.0026928714580064
517 => 0.0026863082912448
518 => 0.0026759480114306
519 => 0.0027332009841624
520 => 0.0028403734381084
521 => 0.002823669606104
522 => 0.0028112009703812
523 => 0.0027565670382091
524 => 0.0027894688683072
525 => 0.0027777531568023
526 => 0.0028280912884016
527 => 0.0027982720943683
528 => 0.0027180956002088
529 => 0.0027308639711689
530 => 0.0027289340575847
531 => 0.0027686515423928
601 => 0.0027567293393019
602 => 0.0027266060560867
603 => 0.0028400071343119
604 => 0.0028326434990619
605 => 0.002843083450285
606 => 0.0028476794396797
607 => 0.0029167046776442
608 => 0.0029449821090771
609 => 0.0029514015810784
610 => 0.0029782629538846
611 => 0.0029507332456529
612 => 0.0030608717069291
613 => 0.0031341073569203
614 => 0.0032191743330573
615 => 0.003343480049041
616 => 0.0033902201481431
617 => 0.0033817769675947
618 => 0.0034760241427721
619 => 0.0036453842215687
620 => 0.0034160094817095
621 => 0.0036575416397467
622 => 0.003581075347135
623 => 0.0033997751429225
624 => 0.0033881015471602
625 => 0.0035108801503915
626 => 0.003783191275356
627 => 0.0037149804270796
628 => 0.003783302843868
629 => 0.0037036011155256
630 => 0.0036996432529344
701 => 0.00377943190882
702 => 0.0039658624523497
703 => 0.0038772962893631
704 => 0.0037503149774078
705 => 0.0038440760021076
706 => 0.0037628515253394
707 => 0.0035798300458812
708 => 0.0037149282675295
709 => 0.0036245919340891
710 => 0.0036509568787307
711 => 0.0038408304151068
712 => 0.003817984328867
713 => 0.0038475492799519
714 => 0.0037953679151364
715 => 0.0037466222921528
716 => 0.0036556349669563
717 => 0.0036286981055866
718 => 0.0036361424849824
719 => 0.0036286944165219
720 => 0.0035777878442911
721 => 0.0035667945748648
722 => 0.003548471977528
723 => 0.0035541509165961
724 => 0.003519699073138
725 => 0.0035847168198575
726 => 0.0035967846865831
727 => 0.0036440991806154
728 => 0.0036490115283456
729 => 0.0037807817207461
730 => 0.00370820491308
731 => 0.0037568957016425
801 => 0.003752540339218
802 => 0.003403704468098
803 => 0.0034517709733334
804 => 0.0035265473713794
805 => 0.0034928607054167
806 => 0.0034452356412113
807 => 0.003406775848371
808 => 0.0033485053295023
809 => 0.0034305199658238
810 => 0.0035383604913024
811 => 0.0036517465420357
812 => 0.0037879724526435
813 => 0.0037575684152403
814 => 0.0036491998933937
815 => 0.0036540612261205
816 => 0.0036841120721735
817 => 0.0036451934961276
818 => 0.0036337156482708
819 => 0.0036825351921323
820 => 0.0036828713855002
821 => 0.0036380908602923
822 => 0.0035883255012733
823 => 0.0035881169826019
824 => 0.0035792617176408
825 => 0.0037051764474901
826 => 0.0037744168174921
827 => 0.0037823551143264
828 => 0.0037738825068661
829 => 0.0037771432772118
830 => 0.003736853831515
831 => 0.0038289435569138
901 => 0.0039134541956696
902 => 0.0038908035391765
903 => 0.003856846985113
904 => 0.0038297989542321
905 => 0.0038844318826998
906 => 0.0038819991643953
907 => 0.0039127160689655
908 => 0.0039113225727447
909 => 0.003900993633059
910 => 0.0038908039080555
911 => 0.0039312050159002
912 => 0.0039195701456628
913 => 0.0039079172032584
914 => 0.0038845454432901
915 => 0.0038877220536336
916 => 0.0038537713626479
917 => 0.0038380642195199
918 => 0.0036018664735819
919 => 0.0035387467178832
920 => 0.0035586054779471
921 => 0.0035651434973927
922 => 0.0035376736988224
923 => 0.0035770583335599
924 => 0.0035709202799547
925 => 0.0035947998558912
926 => 0.0035798809335767
927 => 0.0035804932113524
928 => 0.0036243665808296
929 => 0.0036371032066395
930 => 0.0036306252559554
1001 => 0.0036351621905634
1002 => 0.0037397139336838
1003 => 0.0037248500191886
1004 => 0.0037169538608619
1005 => 0.0037191411506817
1006 => 0.0037458563626636
1007 => 0.0037533351634221
1008 => 0.0037216469590825
1009 => 0.0037365912994364
1010 => 0.0038002224039439
1011 => 0.0038224896893129
1012 => 0.0038935561753074
1013 => 0.0038633658689509
1014 => 0.0039187814828742
1015 => 0.0040891101874995
1016 => 0.004225180542604
1017 => 0.0041000446207046
1018 => 0.0043499204993989
1019 => 0.0045444847135283
1020 => 0.0045370170149263
1021 => 0.0045030902438415
1022 => 0.0042815840588125
1023 => 0.0040777507648776
1024 => 0.0042482659704729
1025 => 0.0042487006487988
1026 => 0.0042340532414157
1027 => 0.0041430794521406
1028 => 0.004230887550746
1029 => 0.0042378574387411
1030 => 0.0042339561549067
1031 => 0.0041642067639688
1101 => 0.0040577123358489
1102 => 0.0040785210921919
1103 => 0.0041126062595689
1104 => 0.0040480759268135
1105 => 0.0040274545754674
1106 => 0.0040657935909924
1107 => 0.004189329887265
1108 => 0.0041659760660517
1109 => 0.0041653662033996
1110 => 0.0042652837541115
1111 => 0.0041937643513588
1112 => 0.0040787835572483
1113 => 0.004049749390325
1114 => 0.0039466976575058
1115 => 0.0040178758564217
1116 => 0.0040204374330846
1117 => 0.0039814538609619
1118 => 0.0040819468592753
1119 => 0.0040810207986044
1120 => 0.0041764239440941
1121 => 0.0043587989264853
1122 => 0.0043048616700644
1123 => 0.0042421385092037
1124 => 0.0042489582559138
1125 => 0.0043237540447551
1126 => 0.0042785308033999
1127 => 0.0042947933962989
1128 => 0.0043237294293731
1129 => 0.004341187256568
1130 => 0.0042464463432412
1201 => 0.004224357704363
1202 => 0.0041791721012769
1203 => 0.004167384020861
1204 => 0.004204186751746
1205 => 0.0041944905324175
1206 => 0.004020222142485
1207 => 0.0040020101261169
1208 => 0.0040025686626581
1209 => 0.0039567736815663
1210 => 0.0038869253433465
1211 => 0.0040704826057606
1212 => 0.0040557403887065
1213 => 0.0040394661220358
1214 => 0.0040414596268432
1215 => 0.0041211356131243
1216 => 0.0040749195173475
1217 => 0.0041977925826393
1218 => 0.0041725335743177
1219 => 0.0041466267677437
1220 => 0.0041430456579346
1221 => 0.0041330737476684
1222 => 0.0040988763569815
1223 => 0.0040575809527824
1224 => 0.0040303141499835
1225 => 0.0037177517617599
1226 => 0.0037757615229224
1227 => 0.0038424964653838
1228 => 0.003865533100098
1229 => 0.0038261273423328
1230 => 0.004100432336479
1231 => 0.0041505505021782
]
'min_raw' => 0.0017299099968467
'max_raw' => 0.0045444847135283
'avg_raw' => 0.0031371973551875
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.001729'
'max' => '$0.004544'
'avg' => '$0.003137'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -6.7072508590396E-5
'max_diff' => -0.0008195518290074
'year' => 2027
]
2 => [
'items' => [
101 => 0.0039987393091482
102 => 0.0039703416333425
103 => 0.0041022940833771
104 => 0.0040227106254753
105 => 0.0040585470516955
106 => 0.0039810882996845
107 => 0.0041384785036924
108 => 0.0041372794540386
109 => 0.0040760511098605
110 => 0.0041278008870862
111 => 0.0041188080897938
112 => 0.0040496814400155
113 => 0.0041406699417894
114 => 0.0041407150709511
115 => 0.0040817841208987
116 => 0.0040129656728813
117 => 0.0040006625597949
118 => 0.0039913938167751
119 => 0.0040562675090969
120 => 0.0041144330587779
121 => 0.0042226647262715
122 => 0.0042498767390004
123 => 0.0043560870362876
124 => 0.0042928439755386
125 => 0.0043208788052339
126 => 0.0043513145786369
127 => 0.0043659066076448
128 => 0.0043421296794278
129 => 0.0045071179890172
130 => 0.0045210480574578
131 => 0.0045257186889113
201 => 0.004470085559214
202 => 0.0045195007994813
203 => 0.004496381045021
204 => 0.004556532223274
205 => 0.0045659646960728
206 => 0.0045579757271822
207 => 0.00456096974293
208 => 0.0044201813266277
209 => 0.0044128807045243
210 => 0.0043133362041169
211 => 0.0043539013238287
212 => 0.0042780667768642
213 => 0.004302114692889
214 => 0.0043127147851358
215 => 0.004307177898496
216 => 0.0043561948148338
217 => 0.0043145204224523
218 => 0.004204534849053
219 => 0.0040945193101578
220 => 0.0040931381546836
221 => 0.0040641730052281
222 => 0.0040432365074035
223 => 0.0040472696196466
224 => 0.0040614828332387
225 => 0.0040424104095913
226 => 0.0040464804781729
227 => 0.0041140707353527
228 => 0.0041276254793984
229 => 0.0040815611629506
301 => 0.0038966062853634
302 => 0.0038512178944793
303 => 0.0038838421697559
304 => 0.0038682498674461
305 => 0.0031219795475528
306 => 0.0032973046896276
307 => 0.003193132443686
308 => 0.0032411398073505
309 => 0.0031348069195164
310 => 0.003185554546975
311 => 0.00317618331319
312 => 0.0034581009533982
313 => 0.0034536991972114
314 => 0.0034558060849623
315 => 0.0033552388431462
316 => 0.0035154451900574
317 => 0.0035943685973797
318 => 0.0035797619751628
319 => 0.0035834381472875
320 => 0.0035202693304447
321 => 0.0034564176971895
322 => 0.0033855964092136
323 => 0.0035171736084971
324 => 0.0035025444700344
325 => 0.0035360984502699
326 => 0.0036214356693377
327 => 0.00363400189901
328 => 0.0036508910391237
329 => 0.0036448374846438
330 => 0.0037890577117983
331 => 0.0037715916906942
401 => 0.0038136797762379
402 => 0.0037271013910438
403 => 0.0036291297301009
404 => 0.0036477509399112
405 => 0.0036459575676642
406 => 0.0036231258806224
407 => 0.0036025144544348
408 => 0.0035682022370658
409 => 0.0036767711700741
410 => 0.0036723634696641
411 => 0.0037437190159105
412 => 0.0037311062300007
413 => 0.0036468749588224
414 => 0.003649883295151
415 => 0.0036701158027175
416 => 0.0037401407424159
417 => 0.0037609289121798
418 => 0.0037512990036798
419 => 0.00377409228281
420 => 0.0037921071612776
421 => 0.0037763546741836
422 => 0.0039993766723798
423 => 0.0039067623896893
424 => 0.0039519019466666
425 => 0.003962667465028
426 => 0.0039350918161198
427 => 0.003941071986958
428 => 0.0039501303162789
429 => 0.0040051307181128
430 => 0.0041494676870194
501 => 0.0042133935480131
502 => 0.0044057176548592
503 => 0.0042080853951485
504 => 0.0041963587147409
505 => 0.0042310020940155
506 => 0.0043439167043084
507 => 0.0044354233904207
508 => 0.0044657814373516
509 => 0.0044697937544102
510 => 0.0045267474686173
511 => 0.0045593922754769
512 => 0.0045198317896811
513 => 0.0044863084201248
514 => 0.0043662318714477
515 => 0.0043801310589147
516 => 0.004475882677401
517 => 0.0046111374782551
518 => 0.0047272001682515
519 => 0.0046865590594079
520 => 0.0049966220317332
521 => 0.0050273635089455
522 => 0.0050231160307857
523 => 0.0050931496908207
524 => 0.0049541471377581
525 => 0.0048947208532762
526 => 0.0044935565531293
527 => 0.0046062673581914
528 => 0.0047700991326227
529 => 0.0047484153829391
530 => 0.0046294363691112
531 => 0.0047271099120004
601 => 0.0046948159841872
602 => 0.0046693444234445
603 => 0.0047860345811115
604 => 0.0046577289593892
605 => 0.0047688191858973
606 => 0.0046263448213194
607 => 0.0046867447045697
608 => 0.0046524588096232
609 => 0.0046746459855749
610 => 0.0045449402083201
611 => 0.004614926297297
612 => 0.0045420285569257
613 => 0.0045419939939052
614 => 0.0045403847722462
615 => 0.0046261486405149
616 => 0.0046289453971801
617 => 0.0045655657689475
618 => 0.0045564317743433
619 => 0.0045902049397154
620 => 0.0045506654082707
621 => 0.0045691657061748
622 => 0.0045512257634477
623 => 0.0045471871044668
624 => 0.0045150063825859
625 => 0.0045011420427723
626 => 0.0045065786076532
627 => 0.0044880208089732
628 => 0.0044768390640036
629 => 0.0045381604417313
630 => 0.0045053989033087
701 => 0.0045331392661014
702 => 0.0045015256215862
703 => 0.0043919389562873
704 => 0.0043289145062159
705 => 0.0041219154541555
706 => 0.0041806201285383
707 => 0.0042195413883885
708 => 0.0042066779122402
709 => 0.0042343136365112
710 => 0.0042360102455334
711 => 0.00422702558986
712 => 0.0042166225095959
713 => 0.0042115588654498
714 => 0.0042492991203492
715 => 0.0042712086085969
716 => 0.0042234476575137
717 => 0.0042122579349216
718 => 0.0042605468934212
719 => 0.0042900031302102
720 => 0.004507491432631
721 => 0.0044913791967098
722 => 0.0045318177470056
723 => 0.0045272649868224
724 => 0.0045696510298987
725 => 0.0046389342966501
726 => 0.0044980620434384
727 => 0.0045225125956
728 => 0.0045165178848557
729 => 0.0045819665648644
730 => 0.0045821708884994
731 => 0.0045429311354302
801 => 0.0045642036421613
802 => 0.0045523299124847
803 => 0.0045737873468412
804 => 0.0044911640079759
805 => 0.0045917903160755
806 => 0.0046488389485519
807 => 0.0046496310688692
808 => 0.0046766716678971
809 => 0.0047041464825953
810 => 0.0047568819968565
811 => 0.0047026757177248
812 => 0.0046051638984419
813 => 0.0046122039368328
814 => 0.0045550327928654
815 => 0.0045559938501243
816 => 0.0045508636511569
817 => 0.0045662597644415
818 => 0.0044945425890433
819 => 0.004511374466763
820 => 0.004487809739388
821 => 0.0045224613704848
822 => 0.0044851819435445
823 => 0.0045165149940247
824 => 0.0045300372999048
825 => 0.004579934899717
826 => 0.0044778120274818
827 => 0.0042695765778835
828 => 0.0043133501939998
829 => 0.0042486055774204
830 => 0.004254597938185
831 => 0.0042667034606065
901 => 0.0042274655017578
902 => 0.0042349508677759
903 => 0.0042346834378281
904 => 0.0042323788710146
905 => 0.0042221715624762
906 => 0.004207368945641
907 => 0.0042663380151071
908 => 0.0042763580090971
909 => 0.0042986312145223
910 => 0.0043649011658082
911 => 0.0043582792349217
912 => 0.0043690798789388
913 => 0.0043455021336924
914 => 0.0042556916421644
915 => 0.0042605687839456
916 => 0.0041997507477822
917 => 0.0042970759606001
918 => 0.0042740280655747
919 => 0.0042591689377165
920 => 0.0042551144870115
921 => 0.0043215487086885
922 => 0.0043414268690431
923 => 0.0043290401334839
924 => 0.004303634577473
925 => 0.0043524207554923
926 => 0.0043654738786066
927 => 0.0043683959914912
928 => 0.0044548357451196
929 => 0.0043732270134932
930 => 0.0043928710463167
1001 => 0.0045461281827692
1002 => 0.0044071451080459
1003 => 0.0044807675424193
1004 => 0.0044771641073693
1005 => 0.0045148268535474
1006 => 0.0044740746628896
1007 => 0.0044745798351338
1008 => 0.0045080218022445
1009 => 0.0044610585907281
1010 => 0.0044494298391115
1011 => 0.0044333648020399
1012 => 0.0044684422227582
1013 => 0.0044894695500635
1014 => 0.0046589343652742
1015 => 0.0047684163644349
1016 => 0.0047636634621131
1017 => 0.0048070960922739
1018 => 0.0047875292945892
1019 => 0.0047243429434046
1020 => 0.004832194340122
1021 => 0.0047980656455065
1022 => 0.0048008791736243
1023 => 0.0048007744539672
1024 => 0.0048234670523042
1025 => 0.0048073872666363
1026 => 0.0047756923585288
1027 => 0.00479673291767
1028 => 0.0048592158561819
1029 => 0.0050531648145333
1030 => 0.0051617012211087
1031 => 0.0050466307865751
1101 => 0.0051260048314618
1102 => 0.0050784086883938
1103 => 0.0050697590533357
1104 => 0.0051196118192204
1105 => 0.0051695518457724
1106 => 0.0051663708819777
1107 => 0.0051301169871497
1108 => 0.0051096380818699
1109 => 0.0052647112135852
1110 => 0.0053789664554312
1111 => 0.0053711750139141
1112 => 0.0054055639028578
1113 => 0.0055065307444047
1114 => 0.0055157618870381
1115 => 0.0055145989752416
1116 => 0.0054917186250547
1117 => 0.0055911335927587
1118 => 0.0056740673078574
1119 => 0.0054864224850632
1120 => 0.0055578751771322
1121 => 0.0055899525926639
1122 => 0.0056370517556047
1123 => 0.0057165159382222
1124 => 0.0058028351173783
1125 => 0.0058150415957526
1126 => 0.0058063805152123
1127 => 0.0057494506961747
1128 => 0.0058439021720093
1129 => 0.0058992296313935
1130 => 0.0059321758673104
1201 => 0.0060157220398648
1202 => 0.0055901506918617
1203 => 0.0052889101394768
1204 => 0.0052418670772556
1205 => 0.0053375309941595
1206 => 0.0053627568061416
1207 => 0.0053525883129621
1208 => 0.00501351468366
1209 => 0.0052400819247702
1210 => 0.00548384922589
1211 => 0.0054932133206996
1212 => 0.0056152483285741
1213 => 0.005654987929522
1214 => 0.0057532421063551
1215 => 0.0057470962808425
1216 => 0.0057710196093359
1217 => 0.0057655200504096
1218 => 0.005947515223135
1219 => 0.0061482829251958
1220 => 0.0061413309780756
1221 => 0.0061124682455287
1222 => 0.0061553343251881
1223 => 0.0063625481092893
1224 => 0.0063434711845825
1225 => 0.0063620027919666
1226 => 0.006606319521479
1227 => 0.0069239660234948
1228 => 0.0067763873321211
1229 => 0.0070965906277775
1230 => 0.0072981416291458
1231 => 0.0076467032452499
]
'min_raw' => 0.0031219795475528
'max_raw' => 0.0076467032452499
'avg_raw' => 0.0053843413964013
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.003121'
'max' => '$0.007646'
'avg' => '$0.005384'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.001392069550706
'max_diff' => 0.0031022185317216
'year' => 2028
]
3 => [
'items' => [
101 => 0.0076030616142115
102 => 0.0077387540934975
103 => 0.0075249339863695
104 => 0.0070339598002304
105 => 0.0069562612559002
106 => 0.0071118157092898
107 => 0.0074942311541665
108 => 0.0070997720860296
109 => 0.0071795706417691
110 => 0.0071565886523478
111 => 0.0071553640397987
112 => 0.0072021025199385
113 => 0.0071343059167805
114 => 0.0068580903591392
115 => 0.0069846783214577
116 => 0.0069357966299533
117 => 0.006990034511049
118 => 0.0072827339859186
119 => 0.0071533245709947
120 => 0.0070170022647397
121 => 0.007187980689125
122 => 0.0074056949779285
123 => 0.0073920708090054
124 => 0.0073656342268337
125 => 0.0075146558563611
126 => 0.0077607959290998
127 => 0.0078273266016902
128 => 0.0078764381840367
129 => 0.0078832098414952
130 => 0.0079529621218804
131 => 0.0075778865304113
201 => 0.0081731411266972
202 => 0.0082759251518994
203 => 0.0082566060151228
204 => 0.0083708461333221
205 => 0.0083372337925558
206 => 0.0082885347844001
207 => 0.0084696296713159
208 => 0.0082620189970707
209 => 0.0079673417824367
210 => 0.007805676034434
211 => 0.0080185705326078
212 => 0.0081485777736485
213 => 0.0082345042899628
214 => 0.0082605056018813
215 => 0.0076070025808737
216 => 0.0072548006974898
217 => 0.0074805580667361
218 => 0.0077559976381579
219 => 0.0075763564496847
220 => 0.0075833980441671
221 => 0.0073272769182782
222 => 0.0077786586746746
223 => 0.0077128961494858
224 => 0.0080540722464973
225 => 0.0079726478328363
226 => 0.0082508636955694
227 => 0.0081776001348828
228 => 0.0084817130791821
301 => 0.0086030319661924
302 => 0.0088067452592597
303 => 0.0089565975869022
304 => 0.0090445937399122
305 => 0.0090393107809507
306 => 0.0093879953786856
307 => 0.0091823882535133
308 => 0.0089240972464182
309 => 0.0089194255769976
310 => 0.009053198149584
311 => 0.0093335487630121
312 => 0.0094062395981385
313 => 0.009446863858308
314 => 0.0093846463897177
315 => 0.0091614745913386
316 => 0.0090651101403052
317 => 0.0091472154445326
318 => 0.0090468077128518
319 => 0.0092201396271666
320 => 0.00945816136722
321 => 0.0094090108191389
322 => 0.0095733137323119
323 => 0.0097433499622754
324 => 0.0099865094079281
325 => 0.01005008029119
326 => 0.010155160543838
327 => 0.010263322640877
328 => 0.010298061391396
329 => 0.010364388444937
330 => 0.010364038868625
331 => 0.010563919908798
401 => 0.010784394885909
402 => 0.010867619085761
403 => 0.011058988544312
404 => 0.01073127505293
405 => 0.010979849500645
406 => 0.011204069874705
407 => 0.010936745101229
408 => 0.011305190022782
409 => 0.011319495904172
410 => 0.011535497728433
411 => 0.011316538498602
412 => 0.011186521206871
413 => 0.011561876256414
414 => 0.011743498741314
415 => 0.011688792570769
416 => 0.011272475911747
417 => 0.011030161759534
418 => 0.010395978884284
419 => 0.011147195894679
420 => 0.011513091787142
421 => 0.011271528329779
422 => 0.011393358886766
423 => 0.012058026901994
424 => 0.012311089448125
425 => 0.012258454207571
426 => 0.012267348696775
427 => 0.012403896653257
428 => 0.013009425490634
429 => 0.012646578575229
430 => 0.012923961446442
501 => 0.013071084321154
502 => 0.013207740246435
503 => 0.012872156484495
504 => 0.012435566940917
505 => 0.012297280705684
506 => 0.01124750960464
507 => 0.011192864459906
508 => 0.011162190484249
509 => 0.010968795406654
510 => 0.010816839851034
511 => 0.010695999151458
512 => 0.010378877069681
513 => 0.010485896463064
514 => 0.0099804700532337
515 => 0.010303823959031
516 => 0.0094971512049944
517 => 0.010168972244966
518 => 0.009803330596864
519 => 0.010048849129664
520 => 0.010047992538632
521 => 0.0095959150780257
522 => 0.0093351662333637
523 => 0.0095013255456792
524 => 0.009679461518224
525 => 0.0097083634804481
526 => 0.0099393214186771
527 => 0.010003776814813
528 => 0.0098084739553874
529 => 0.0094804347051685
530 => 0.0095566307412156
531 => 0.0093336221231252
601 => 0.0089428080978242
602 => 0.0092234975537536
603 => 0.0093193372750521
604 => 0.009361665555846
605 => 0.0089773448472566
606 => 0.0088565829366092
607 => 0.0087922903086712
608 => 0.0094308237277824
609 => 0.009465804029889
610 => 0.0092868398585953
611 => 0.010095774882922
612 => 0.0099126879731135
613 => 0.010117240908751
614 => 0.0095497167495934
615 => 0.0095713969367459
616 => 0.0093027219048224
617 => 0.0094531619698274
618 => 0.0093468357807915
619 => 0.0094410078992527
620 => 0.0094974542787722
621 => 0.0097660852237667
622 => 0.01017203957885
623 => 0.0097259607186371
624 => 0.0095315977712752
625 => 0.0096521794506798
626 => 0.0099733043530021
627 => 0.010459825018102
628 => 0.010171794992222
629 => 0.01029961782664
630 => 0.010327541429519
701 => 0.010115158751886
702 => 0.010467655870366
703 => 0.01065656193984
704 => 0.010850340478518
705 => 0.011018592954101
706 => 0.010772941068889
707 => 0.01103582379888
708 => 0.010823986723556
709 => 0.010633946967676
710 => 0.01063423517954
711 => 0.010515020464639
712 => 0.010284026932496
713 => 0.010241428181093
714 => 0.010463032265524
715 => 0.010640737755253
716 => 0.010655374430539
717 => 0.01075376132049
718 => 0.010811985668498
719 => 0.011382663431137
720 => 0.011612194748165
721 => 0.011892861297821
722 => 0.012002196736412
723 => 0.012331257207646
724 => 0.01206551415214
725 => 0.012008018970478
726 => 0.011209825902123
727 => 0.011340529972351
728 => 0.011549799799852
729 => 0.0112132766845
730 => 0.011426723144247
731 => 0.011468861996815
801 => 0.011201841757812
802 => 0.011344468804727
803 => 0.010965693654093
804 => 0.010180295842061
805 => 0.010468530242648
806 => 0.01068076778013
807 => 0.010377878645444
808 => 0.010920795695942
809 => 0.010603634763123
810 => 0.01050310997383
811 => 0.01011092693112
812 => 0.010296022230769
813 => 0.010546366273854
814 => 0.010391682760847
815 => 0.010712674276184
816 => 0.011167283867212
817 => 0.011491265734248
818 => 0.0115161370391
819 => 0.011307838403696
820 => 0.011641638296276
821 => 0.011644069664076
822 => 0.011267542021632
823 => 0.011036920937151
824 => 0.010984523341526
825 => 0.011115422808551
826 => 0.011274358926894
827 => 0.011524956887529
828 => 0.011676387986732
829 => 0.012071239980603
830 => 0.012178075608851
831 => 0.012295455573757
901 => 0.012452311405512
902 => 0.012640657048543
903 => 0.012228567504114
904 => 0.012244940589945
905 => 0.011861208511941
906 => 0.011451135753847
907 => 0.01176232986095
908 => 0.012169174759569
909 => 0.012075844090302
910 => 0.012065342483437
911 => 0.012083003273281
912 => 0.012012634996548
913 => 0.011694361888857
914 => 0.01153452712667
915 => 0.011740754748088
916 => 0.011850355550737
917 => 0.01202033683745
918 => 0.011999383055993
919 => 0.012437236595909
920 => 0.012607373241517
921 => 0.012563845007013
922 => 0.012571855249727
923 => 0.012879879519814
924 => 0.013222465858174
925 => 0.013543343172297
926 => 0.013869753358224
927 => 0.013476253139082
928 => 0.013276457995522
929 => 0.013482595584412
930 => 0.01337321607815
1001 => 0.0140017431652
1002 => 0.014045261017012
1003 => 0.014673742654399
1004 => 0.015270246566481
1005 => 0.01489559314678
1006 => 0.015248874446797
1007 => 0.015630976976213
1008 => 0.016368114749358
1009 => 0.016119872680182
1010 => 0.015929723145643
1011 => 0.015750032754299
1012 => 0.016123939933639
1013 => 0.016604965546547
1014 => 0.016708573856361
1015 => 0.016876458899681
1016 => 0.016699948304637
1017 => 0.016912535874363
1018 => 0.01766306341121
1019 => 0.017460264245664
1020 => 0.017172256828996
1021 => 0.017764726237906
1022 => 0.017979138613824
1023 => 0.019483996956648
1024 => 0.021383942777061
1025 => 0.020597352731693
1026 => 0.020109090907431
1027 => 0.020223844017858
1028 => 0.020917639914248
1029 => 0.021140465136187
1030 => 0.020534749370496
1031 => 0.020748698418948
1101 => 0.021927578710923
1102 => 0.02256001016456
1103 => 0.021701083303645
1104 => 0.019331338159914
1105 => 0.017146324912283
1106 => 0.017725888817983
1107 => 0.017660184257039
1108 => 0.018926744062455
1109 => 0.017455427552636
1110 => 0.01748020074926
1111 => 0.018772951670142
1112 => 0.018428067887812
1113 => 0.017869400329815
1114 => 0.017150403803715
1115 => 0.015821272226089
1116 => 0.014644023322209
1117 => 0.016952879526948
1118 => 0.016853317449017
1119 => 0.0167091368059
1120 => 0.017029995225182
1121 => 0.018587992631965
1122 => 0.018552075748993
1123 => 0.018323590864481
1124 => 0.01849689463561
1125 => 0.017839019340825
1126 => 0.018008568783833
1127 => 0.017145978795021
1128 => 0.017535905494904
1129 => 0.017868201680146
1130 => 0.017934915059063
1201 => 0.018085223708231
1202 => 0.016800852758083
1203 => 0.017377497607549
1204 => 0.017716222432295
1205 => 0.016185851351178
1206 => 0.01768597191654
1207 => 0.016778494717308
1208 => 0.016470483326039
1209 => 0.016885180086968
1210 => 0.016723572355928
1211 => 0.016584631518704
1212 => 0.016507100144227
1213 => 0.016811607677042
1214 => 0.016797402036671
1215 => 0.01629916861062
1216 => 0.01564924341693
1217 => 0.015867379645
1218 => 0.015788128708304
1219 => 0.015500913090144
1220 => 0.015694461738238
1221 => 0.014842171444762
1222 => 0.013375850293032
1223 => 0.014344546960497
1224 => 0.014307253192538
1225 => 0.014288447983596
1226 => 0.015016396756386
1227 => 0.014946421278518
1228 => 0.014819415100986
1229 => 0.015498580522094
1230 => 0.015250676007326
1231 => 0.016014659308193
]
'min_raw' => 0.0068580903591392
'max_raw' => 0.02256001016456
'avg_raw' => 0.01470905026185
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.006858'
'max' => '$0.02256'
'avg' => '$0.014709'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.0037361108115864
'max_diff' => 0.01491330691931
'year' => 2029
]
4 => [
'items' => [
101 => 0.016517868121486
102 => 0.016390238089335
103 => 0.016863508410457
104 => 0.015872405063121
105 => 0.016201609838942
106 => 0.01626945848698
107 => 0.015490199726222
108 => 0.014957870132099
109 => 0.014922369817173
110 => 0.0139993836605
111 => 0.01449243541531
112 => 0.014926300555676
113 => 0.014718512822736
114 => 0.014652733433969
115 => 0.01498878606537
116 => 0.015014900232926
117 => 0.014419494445193
118 => 0.014543298162512
119 => 0.015059580244387
120 => 0.014530289178692
121 => 0.013501963097253
122 => 0.013246924011335
123 => 0.013212897095971
124 => 0.012521210867558
125 => 0.013263966942573
126 => 0.012939734011204
127 => 0.013963981956493
128 => 0.013378937023295
129 => 0.01335371690554
130 => 0.013315592998565
131 => 0.012720230088572
201 => 0.012850576728574
202 => 0.013283868812293
203 => 0.013438472309149
204 => 0.013422345897798
205 => 0.013281745444701
206 => 0.013346111612138
207 => 0.013138765760165
208 => 0.013065547624302
209 => 0.012834451047286
210 => 0.01249480292113
211 => 0.012542033076255
212 => 0.011869101264573
213 => 0.011502452298374
214 => 0.011400968696886
215 => 0.011265260583685
216 => 0.011416297289378
217 => 0.0118671949333
218 => 0.011323316711458
219 => 0.010390875648733
220 => 0.010446916945405
221 => 0.010572825100217
222 => 0.010338196086691
223 => 0.010116139416309
224 => 0.010309199675179
225 => 0.0099141121047485
226 => 0.01062056954555
227 => 0.0106014618516
228 => 0.010864785498496
301 => 0.011029447178845
302 => 0.010649955315493
303 => 0.010554514138115
304 => 0.010608881770309
305 => 0.0097103059155358
306 => 0.010791352680622
307 => 0.010800701617938
308 => 0.010720650340735
309 => 0.011296274369569
310 => 0.012511020612046
311 => 0.012053984212572
312 => 0.011877005904697
313 => 0.011540570012057
314 => 0.011988850863413
315 => 0.0119544298883
316 => 0.011798765185069
317 => 0.011704618686852
318 => 0.011878086496507
319 => 0.011683124105553
320 => 0.011648103502929
321 => 0.011435916753822
322 => 0.011360175738272
323 => 0.011304100105696
324 => 0.011242366344108
325 => 0.011378535639077
326 => 0.011069958102115
327 => 0.010697843842767
328 => 0.010666906568434
329 => 0.0107523271029
330 => 0.01071453487521
331 => 0.010666725633788
401 => 0.010575444771842
402 => 0.010548363690009
403 => 0.010636364068092
404 => 0.010537016771977
405 => 0.010683609119121
406 => 0.010643744112023
407 => 0.010421061422981
408 => 0.010143516344744
409 => 0.010141045611377
410 => 0.010081248979536
411 => 0.010005088978403
412 => 0.0099839030083922
413 => 0.010292940678665
414 => 0.010932639407412
415 => 0.010807051240266
416 => 0.010897801561822
417 => 0.011344203324984
418 => 0.011486101021724
419 => 0.011385385397609
420 => 0.011247519639451
421 => 0.01125358503313
422 => 0.011724714063557
423 => 0.011754097803286
424 => 0.011828341034028
425 => 0.011923764566665
426 => 0.01140163643784
427 => 0.011228992845216
428 => 0.011147184733129
429 => 0.010895247411625
430 => 0.011166940213394
501 => 0.011008636452849
502 => 0.011029997038573
503 => 0.011016085929098
504 => 0.011023682335536
505 => 0.010620372076298
506 => 0.010767317137401
507 => 0.010522992472853
508 => 0.010195869173754
509 => 0.010194772541752
510 => 0.010274835505771
511 => 0.010227210921908
512 => 0.010099054391274
513 => 0.010117258421568
514 => 0.0099577719610046
515 => 0.010136622965476
516 => 0.010141751772325
517 => 0.010072884393523
518 => 0.010348429042595
519 => 0.010461319910143
520 => 0.010415989926133
521 => 0.010458139437624
522 => 0.010812269995607
523 => 0.010870008728358
524 => 0.010895652459439
525 => 0.010861293256934
526 => 0.010464612294137
527 => 0.010482206781655
528 => 0.010353110106376
529 => 0.010244037019637
530 => 0.010248399371094
531 => 0.010304477116186
601 => 0.010549371917921
602 => 0.011064738590834
603 => 0.011084296379342
604 => 0.011108000989556
605 => 0.011011582426834
606 => 0.010982501665716
607 => 0.011020866696012
608 => 0.011214411321666
609 => 0.011712260645701
610 => 0.011536287444349
611 => 0.011393218492463
612 => 0.011518728534379
613 => 0.011499407247207
614 => 0.011336316139212
615 => 0.011331738715003
616 => 0.011018714735381
617 => 0.010902996897326
618 => 0.010806294410517
619 => 0.010700697819404
620 => 0.010638096620562
621 => 0.010734280513719
622 => 0.010756278908098
623 => 0.010545971144705
624 => 0.010517306973668
625 => 0.010689048833064
626 => 0.010613471643925
627 => 0.010691204657178
628 => 0.010709239383034
629 => 0.010706335376796
630 => 0.010627424111351
701 => 0.010677719798778
702 => 0.010558755504147
703 => 0.010429399701596
704 => 0.010346878758719
705 => 0.010274868291244
706 => 0.010314823883872
707 => 0.010172389491757
708 => 0.010126821863081
709 => 0.010660680751567
710 => 0.011055048052441
711 => 0.0110493137957
712 => 0.011014407982518
713 => 0.010962545024516
714 => 0.011210617223254
715 => 0.011124193829574
716 => 0.011187074069392
717 => 0.011203079729501
718 => 0.011251524042055
719 => 0.011268838719864
720 => 0.011216501737709
721 => 0.011040852433174
722 => 0.010603151066506
723 => 0.01039939989877
724 => 0.010332158619673
725 => 0.010334602712458
726 => 0.010267183722515
727 => 0.010287041636561
728 => 0.010260277950406
729 => 0.010209594003661
730 => 0.010311694292984
731 => 0.010323460400199
801 => 0.010299628972663
802 => 0.010305242136558
803 => 0.010107928095098
804 => 0.010122929453127
805 => 0.010039399985343
806 => 0.010023739217096
807 => 0.0098125839962812
808 => 0.0094384919151691
809 => 0.0096457752421021
810 => 0.0093954061316134
811 => 0.0093005875557602
812 => 0.0097494439465352
813 => 0.0097043912142397
814 => 0.0096272805205019
815 => 0.0095132177331869
816 => 0.0094709107358403
817 => 0.0092138668127301
818 => 0.0091986792864767
819 => 0.0093260771955399
820 => 0.0092672874440016
821 => 0.0091847243674219
822 => 0.008885689273335
823 => 0.0085494748204642
824 => 0.0085596230214277
825 => 0.0086665665833936
826 => 0.0089775194131137
827 => 0.0088560247630035
828 => 0.0087678790003581
829 => 0.0087513719486664
830 => 0.0089579922604403
831 => 0.0092504032898939
901 => 0.0093875960025856
902 => 0.0092516421909128
903 => 0.0090954657723362
904 => 0.0091049715072831
905 => 0.0091682089032407
906 => 0.0091748542594272
907 => 0.009073199466129
908 => 0.0091018146949961
909 => 0.0090583455457157
910 => 0.0087915754568194
911 => 0.0087867504318483
912 => 0.0087212807497844
913 => 0.0087192983538308
914 => 0.0086079180924625
915 => 0.0085923352239617
916 => 0.0083711829547162
917 => 0.0085167460480443
918 => 0.0084191099674452
919 => 0.0082719493639593
920 => 0.0082465788204502
921 => 0.0082458161512765
922 => 0.0083969171865477
923 => 0.0085149803444719
924 => 0.0084208083888689
925 => 0.0083993672600248
926 => 0.0086283024215128
927 => 0.0085991683354231
928 => 0.0085739384047641
929 => 0.0092242210893986
930 => 0.0087094716023198
1001 => 0.0084850114450799
1002 => 0.0082071993766677
1003 => 0.0082976563869927
1004 => 0.0083167170081582
1005 => 0.0076486290630161
1006 => 0.007377585866877
1007 => 0.0072845740560095
1008 => 0.0072310444438612
1009 => 0.0072554385602997
1010 => 0.0070114678935785
1011 => 0.0071754202165176
1012 => 0.0069641622414641
1013 => 0.0069287441544535
1014 => 0.0073064995836903
1015 => 0.0073590620448534
1016 => 0.0071348142556549
1017 => 0.0072788176387397
1018 => 0.0072266000102364
1019 => 0.0069677836530992
1020 => 0.0069578987719808
1021 => 0.0068280338218043
1022 => 0.0066248203215874
1023 => 0.0065319462990422
1024 => 0.0064835767017314
1025 => 0.0065035349402865
1026 => 0.0064934434441408
1027 => 0.0064275896056396
1028 => 0.006497218109078
1029 => 0.0063193460552768
1030 => 0.0062485159702407
1031 => 0.0062165236640753
1101 => 0.0060586519783934
1102 => 0.0063098960361706
1103 => 0.006359394280642
1104 => 0.0064089900519458
1105 => 0.0068406873806738
1106 => 0.0068191210020946
1107 => 0.0070140705611988
1108 => 0.0070064951798212
1109 => 0.0069508924075912
1110 => 0.0067163134577649
1111 => 0.006809812446198
1112 => 0.00652203709277
1113 => 0.0067376579543802
1114 => 0.0066392575976838
1115 => 0.0067043886947993
1116 => 0.0065872771095513
1117 => 0.0066520914962464
1118 => 0.00637113215067
1119 => 0.0061087762669754
1120 => 0.0062143559332198
1121 => 0.0063291331049268
1122 => 0.0065779992578671
1123 => 0.006429776630277
1124 => 0.0064830830920765
1125 => 0.0063045153684423
1126 => 0.0059360791492362
1127 => 0.0059381644582249
1128 => 0.0058814885727194
1129 => 0.0058325123328278
1130 => 0.0064468017820858
1201 => 0.0063704051785915
1202 => 0.0062486771894635
1203 => 0.0064116149401893
1204 => 0.006454698267651
1205 => 0.0064559247894158
1206 => 0.0065747999663133
1207 => 0.0066382436695331
1208 => 0.0066494258972063
1209 => 0.0068364785565227
1210 => 0.0068991761406413
1211 => 0.0071574186163317
1212 => 0.0066328609145714
1213 => 0.0066220579938984
1214 => 0.0064139078084856
1215 => 0.0062818956701726
1216 => 0.0064229467925372
1217 => 0.006547898831554
1218 => 0.0064177904166403
1219 => 0.0064347798288895
1220 => 0.006260119912116
1221 => 0.0063225526138496
1222 => 0.0063763280671757
1223 => 0.0063466364226241
1224 => 0.0063021865936384
1225 => 0.0065376541892889
1226 => 0.0065243681847373
1227 => 0.0067436410231836
1228 => 0.0069145798811036
1229 => 0.0072209328734722
1230 => 0.0069012375553929
1231 => 0.0068895865873283
]
'min_raw' => 0.0058325123328278
'max_raw' => 0.016863508410457
'avg_raw' => 0.011348010371642
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.005832'
'max' => '$0.016863'
'avg' => '$0.011348'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0010255780263114
'max_diff' => -0.0056965017541036
'year' => 2030
]
5 => [
'items' => [
101 => 0.0070034766690339
102 => 0.0068991587046632
103 => 0.0069650840572118
104 => 0.0072103112799746
105 => 0.0072154925447676
106 => 0.0071286996838025
107 => 0.007123418330325
108 => 0.0071400878486833
109 => 0.0072377217383702
110 => 0.0072036054573272
111 => 0.0072430856814687
112 => 0.0072924563063003
113 => 0.0074966741433151
114 => 0.0075459103724432
115 => 0.00742629186172
116 => 0.0074370920739266
117 => 0.0073923514673146
118 => 0.0073491326019256
119 => 0.0074462822997117
120 => 0.007623825281898
121 => 0.0076227207962203
122 => 0.0076639073171451
123 => 0.0076895661784737
124 => 0.0075794195622169
125 => 0.0075077181652371
126 => 0.0075352130433176
127 => 0.0075791779521289
128 => 0.0075209558159344
129 => 0.0071615818202247
130 => 0.0072705929336233
131 => 0.0072524481539827
201 => 0.0072266077812938
202 => 0.0073362192987741
203 => 0.007325647000514
204 => 0.0070089656217619
205 => 0.0070292385361594
206 => 0.0070101984848324
207 => 0.0070717207858979
208 => 0.0068958362985067
209 => 0.0069499371822281
210 => 0.0069838687493339
211 => 0.0070038547030338
212 => 0.0070760576722946
213 => 0.0070675854872154
214 => 0.0070755310293746
215 => 0.0071825889719111
216 => 0.0077240513074116
217 => 0.0077535219076636
218 => 0.0076083978936572
219 => 0.0076663720748082
220 => 0.007555074324558
221 => 0.0076297892499311
222 => 0.007680907304318
223 => 0.0074499146459801
224 => 0.0074362367598833
225 => 0.0073244796442271
226 => 0.0073845315879341
227 => 0.0072889846276086
228 => 0.0073124285095817
301 => 0.007246877371784
302 => 0.0073648563687185
303 => 0.0074967752193739
304 => 0.0075301031306827
305 => 0.0074424317445972
306 => 0.0073789518832453
307 => 0.0072675021582778
308 => 0.0074528455347179
309 => 0.0075070455862261
310 => 0.007452560844921
311 => 0.0074399355398455
312 => 0.0074160106095409
313 => 0.0074450113269101
314 => 0.0075067504011055
315 => 0.0074776353938566
316 => 0.0074968663690849
317 => 0.0074235777224102
318 => 0.0075794560253301
319 => 0.0078270282845235
320 => 0.0078278242698189
321 => 0.0077987091056293
322 => 0.0077867958077379
323 => 0.0078166697330523
324 => 0.0078328751120428
325 => 0.0079294819085687
326 => 0.0080331448502255
327 => 0.0085168945672531
328 => 0.0083810595824675
329 => 0.0088102711098139
330 => 0.0091497217018033
331 => 0.0092515080919656
401 => 0.009157869402436
402 => 0.0088375365038182
403 => 0.0088218194435832
404 => 0.0093005320351796
405 => 0.0091652738016279
406 => 0.0091491852651351
407 => 0.0089780304188626
408 => 0.0090792041309497
409 => 0.0090570759559874
410 => 0.0090221455492621
411 => 0.0092151779441025
412 => 0.009576517355123
413 => 0.0095201992192959
414 => 0.0094781603434242
415 => 0.0092939582266868
416 => 0.0094048890439949
417 => 0.0093653887046914
418 => 0.0095351072298743
419 => 0.0094345697352816
420 => 0.0091642490874786
421 => 0.0092072985416297
422 => 0.0092007917032383
423 => 0.009334701976255
424 => 0.0092945054361527
425 => 0.0091929426836519
426 => 0.0095752823362988
427 => 0.0095504553259408
428 => 0.0095856543503837
429 => 0.0096011500495094
430 => 0.0098338734584952
501 => 0.0099292127928382
502 => 0.009950856490884
503 => 0.010041421484701
504 => 0.009948603151335
505 => 0.01031994266315
506 => 0.010566861770245
507 => 0.010853671019477
508 => 0.011272776419664
509 => 0.011430363927077
510 => 0.011401897154374
511 => 0.011719658085612
512 => 0.012290667415618
513 => 0.011517314465749
514 => 0.012331656999808
515 => 0.012073845555562
516 => 0.011462579259084
517 => 0.011423220915947
518 => 0.011837177548869
519 => 0.012755293518843
520 => 0.01252531588155
521 => 0.01275566967987
522 => 0.012486949738167
523 => 0.012473605528112
524 => 0.012742618552096
525 => 0.013371182145771
526 => 0.01307257514377
527 => 0.012644448784961
528 => 0.012960570625922
529 => 0.012686716631586
530 => 0.012069646935441
531 => 0.012525140021985
601 => 0.012220564766709
602 => 0.01230945601831
603 => 0.012949627902749
604 => 0.012872600727928
605 => 0.01297228102467
606 => 0.012796347910008
607 => 0.012631998638808
608 => 0.012325228519376
609 => 0.012234409010597
610 => 0.01225950825548
611 => 0.012234396572657
612 => 0.012062761510198
613 => 0.012025696934801
614 => 0.011963921018637
615 => 0.011983067958197
616 => 0.011866911162627
617 => 0.012086123035086
618 => 0.012126810690302
619 => 0.012286334810325
620 => 0.012302897133667
621 => 0.012747169537246
622 => 0.012502471763049
623 => 0.012666636156169
624 => 0.012651951747673
625 => 0.01147582725325
626 => 0.011637886831547
627 => 0.01189000067828
628 => 0.011776423732059
629 => 0.011615852503015
630 => 0.011486182626277
701 => 0.011289719503594
702 => 0.011566237576031
703 => 0.011929829436867
704 => 0.012312118423275
705 => 0.012771413591879
706 => 0.012668904257032
707 => 0.012303532219577
708 => 0.012319922542273
709 => 0.012421241067824
710 => 0.012290024371477
711 => 0.01225132600607
712 => 0.012415924506671
713 => 0.012417058006083
714 => 0.012266077338868
715 => 0.012098289956429
716 => 0.01209758692117
717 => 0.012067730777099
718 => 0.012492261079871
719 => 0.012725709821541
720 => 0.012752474343552
721 => 0.012723908355961
722 => 0.012734902270842
723 => 0.012599063591756
724 => 0.012909550530437
725 => 0.013194484049347
726 => 0.013118115779562
727 => 0.013003628886766
728 => 0.012912434562218
729 => 0.013096633294896
730 => 0.013088431215285
731 => 0.013191995403629
801 => 0.01318729713383
802 => 0.013152472392536
803 => 0.013118117023263
804 => 0.013254332179077
805 => 0.013215104401751
806 => 0.013175815692852
807 => 0.013097016172355
808 => 0.013107726335912
809 => 0.012993259210892
810 => 0.012940301481198
811 => 0.012143944289968
812 => 0.011931131626749
813 => 0.011998086822799
814 => 0.01202013021183
815 => 0.01192751386807
816 => 0.012060301913835
817 => 0.01203960703756
818 => 0.012120118695048
819 => 0.012069818506859
820 => 0.012071882844128
821 => 0.012219804972461
822 => 0.012262747395622
823 => 0.012240906532614
824 => 0.012256203124404
825 => 0.012608706625904
826 => 0.012558591900418
827 => 0.012531969451327
828 => 0.012539344051666
829 => 0.01262941625406
830 => 0.01265463155297
831 => 0.01254779255964
901 => 0.012598178446523
902 => 0.012812715157952
903 => 0.012887790865226
904 => 0.01312739648446
905 => 0.013025607758759
906 => 0.013212445370096
907 => 0.013786720489711
908 => 0.014245491192075
909 => 0.01382358669468
910 => 0.014666060665474
911 => 0.015322047497451
912 => 0.015296869630237
913 => 0.015182483152833
914 => 0.014435659584939
915 => 0.013748421403252
916 => 0.014323325323908
917 => 0.014324790872232
918 => 0.01427540611559
919 => 0.013968681633462
920 => 0.014264732768476
921 => 0.014288232232474
922 => 0.014275078781647
923 => 0.014039913840353
924 => 0.013680860440743
925 => 0.013751018615574
926 => 0.013865939137136
927 => 0.013648370614888
928 => 0.013578844289087
929 => 0.013708106956675
930 => 0.014124618204586
1001 => 0.014045879165854
1002 => 0.014043822971343
1003 => 0.014380701969589
1004 => 0.014139569309883
1005 => 0.013751903534837
1006 => 0.013654012813954
1007 => 0.013306566701912
1008 => 0.01354654896906
1009 => 0.013555185503622
1010 => 0.013423749668465
1011 => 0.013762568828475
1012 => 0.013759446550268
1013 => 0.014081104916121
1014 => 0.014695994902268
1015 => 0.014514141676466
1016 => 0.014302666160433
1017 => 0.014325659412606
1018 => 0.014577838636759
1019 => 0.014425365321144
1020 => 0.014480195788521
1021 => 0.01457775564428
1022 => 0.014636615927534
1023 => 0.014317190323654
1024 => 0.014242716935496
1025 => 0.014090370519933
1026 => 0.014050626183794
1027 => 0.014174709160457
1028 => 0.014142017680023
1029 => 0.013554459636335
1030 => 0.013493056551627
1031 => 0.013494939696572
1101 => 0.013340538720517
1102 => 0.013105040171554
1103 => 0.013723916297342
1104 => 0.013674211883275
1105 => 0.013619342056962
1106 => 0.013626063297602
1107 => 0.013894696448149
1108 => 0.013738875654533
1109 => 0.014153150772887
1110 => 0.014067988262804
1111 => 0.013980641655684
1112 => 0.013968567693937
1113 => 0.013934946702258
1114 => 0.013819647811972
1115 => 0.013680417473561
1116 => 0.013588485544218
1117 => 0.012534659629913
1118 => 0.012730243589784
1119 => 0.012955245107578
1120 => 0.013032914729883
1121 => 0.012900055466356
1122 => 0.013824893905482
1123 => 0.013993870800276
1124 => 0.013482028763856
1125 => 0.013386284017215
1126 => 0.013831170915132
1127 => 0.013562849730477
1128 => 0.013683674743498
1129 => 0.013422517153095
1130 => 0.013953169214541
1201 => 0.013949126534918
1202 => 0.013742690897695
1203 => 0.013917168884666
1204 => 0.013886849040737
1205 => 0.013653783714741
1206 => 0.013960557801086
1207 => 0.013960709957206
1208 => 0.013762020144677
1209 => 0.013529993942435
1210 => 0.013488513137689
1211 => 0.013457262923474
1212 => 0.013675989106474
1213 => 0.013872098318212
1214 => 0.014237008941661
1215 => 0.014328756142458
1216 => 0.014686851575128
1217 => 0.014473623180324
1218 => 0.01456814456597
1219 => 0.014670760900957
1220 => 0.01471995894554
1221 => 0.014639793372004
1222 => 0.015196062976901
1223 => 0.015243029175214
1224 => 0.015258776535253
1225 => 0.015071205554297
1226 => 0.015237812486921
1227 => 0.015159862620588
1228 => 0.015362666517689
1229 => 0.015394468758285
1230 => 0.015367533391898
1231 => 0.015377627925027
]
'min_raw' => 0.0068958362985067
'max_raw' => 0.015394468758285
'avg_raw' => 0.011145152528396
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.006895'
'max' => '$0.015394'
'avg' => '$0.011145'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0010633239656789
'max_diff' => -0.0014690396521721
'year' => 2031
]
6 => [
'items' => [
101 => 0.01490294994993
102 => 0.014878335392796
103 => 0.014542714159697
104 => 0.014679482292972
105 => 0.014423800823282
106 => 0.014504880051131
107 => 0.014540619002216
108 => 0.014521951002337
109 => 0.014687214958022
110 => 0.014546706834494
111 => 0.014175882794831
112 => 0.013804957724406
113 => 0.013800301062296
114 => 0.013702643038624
115 => 0.013632054174469
116 => 0.01364565209398
117 => 0.01369357293594
118 => 0.013629268928019
119 => 0.013642991448405
120 => 0.013870876719488
121 => 0.0139165774854
122 => 0.013761268426388
123 => 0.013137680143466
124 => 0.012984650014684
125 => 0.013094645036533
126 => 0.013042074500676
127 => 0.010525972014226
128 => 0.011117092971541
129 => 0.010765868971275
130 => 0.010927729149637
131 => 0.010569220394379
201 => 0.010740319563442
202 => 0.010708723794458
203 => 0.011659228801281
204 => 0.011644387972976
205 => 0.011651491492126
206 => 0.011312422014963
207 => 0.011852568898824
208 => 0.012118664676867
209 => 0.012069417430261
210 => 0.012081811901242
211 => 0.01186883382495
212 => 0.011653553585452
213 => 0.011414774668456
214 => 0.011858396382268
215 => 0.011809073220567
216 => 0.011922202807595
217 => 0.012209923199736
218 => 0.012252291120423
219 => 0.012309234035478
220 => 0.012288824053903
221 => 0.01277507261889
222 => 0.012716184709298
223 => 0.012858087628205
224 => 0.012566182557813
225 => 0.012235864262782
226 => 0.012298646971748
227 => 0.012292600492008
228 => 0.01221562186509
229 => 0.012146129002654
301 => 0.012030442966192
302 => 0.01239649070387
303 => 0.012381629834202
304 => 0.012622210040257
305 => 0.012579685151966
306 => 0.012295693540349
307 => 0.012305836356316
308 => 0.012374051668165
309 => 0.012610145641343
310 => 0.012680234407086
311 => 0.012647766498239
312 => 0.012724615630203
313 => 0.012785354050715
314 => 0.012732243440674
315 => 0.013484177678491
316 => 0.013171922158277
317 => 0.013324113326169
318 => 0.013360410022949
319 => 0.013267436797385
320 => 0.013287599360888
321 => 0.013318140150626
322 => 0.013503577845414
323 => 0.013990220013368
324 => 0.01420575051687
325 => 0.014854184670742
326 => 0.014187853708883
327 => 0.014148316387158
328 => 0.014265118959106
329 => 0.014645818451155
330 => 0.014954339632176
331 => 0.015056693906934
401 => 0.015070221714028
402 => 0.015262245137859
403 => 0.015372309383373
404 => 0.015238928443488
405 => 0.015125902062502
406 => 0.01472105559516
407 => 0.014767917676116
408 => 0.015090750943007
409 => 0.015546771947275
410 => 0.015938085409836
411 => 0.015801061073898
412 => 0.016846460032998
413 => 0.016950107069721
414 => 0.016935786400556
415 => 0.017171909774958
416 => 0.016703252962459
417 => 0.016502893095318
418 => 0.015150339648975
419 => 0.015530351997459
420 => 0.016082722263324
421 => 0.016009613987354
422 => 0.015608467935384
423 => 0.015937781104584
424 => 0.015828899872272
425 => 0.01574302072686
426 => 0.016136449740481
427 => 0.015703858378832
428 => 0.016078406833576
429 => 0.015598044566159
430 => 0.015801686989523
501 => 0.015686089700946
502 => 0.015760895313726
503 => 0.015323583229943
504 => 0.015559546215202
505 => 0.015313766393982
506 => 0.015313649862345
507 => 0.01530822425917
508 => 0.01559738312888
509 => 0.01560681258924
510 => 0.015393123747629
511 => 0.015362327847106
512 => 0.015476196432125
513 => 0.015342886141298
514 => 0.015405261187331
515 => 0.015344775417899
516 => 0.015331158797175
517 => 0.015222659246568
518 => 0.015175914656909
519 => 0.015194244414974
520 => 0.01513167550106
521 => 0.01509397546721
522 => 0.015300724773541
523 => 0.015190266959412
524 => 0.015283795529338
525 => 0.01517720791966
526 => 0.014807728826508
527 => 0.014595237492866
528 => 0.013897325736632
529 => 0.014095252644943
530 => 0.014226478389924
531 => 0.014183108281991
601 => 0.014276284055835
602 => 0.014282004291607
603 => 0.014251711897715
604 => 0.014216637186285
605 => 0.014199564756514
606 => 0.014326808660848
607 => 0.014400678030147
608 => 0.014239648649007
609 => 0.014201921718046
610 => 0.014364731313054
611 => 0.014464045071958
612 => 0.015197322068118
613 => 0.015142998539789
614 => 0.015279339935441
615 => 0.015263989986619
616 => 0.01540689749015
617 => 0.015640490861206
618 => 0.015165530224116
619 => 0.015247966967812
620 => 0.015227755382
621 => 0.01544842017613
622 => 0.015449109067531
623 => 0.015316809500426
624 => 0.015388531242069
625 => 0.015348498133467
626 => 0.01542084337151
627 => 0.015142273015948
628 => 0.015481541639211
629 => 0.015673885086613
630 => 0.015676555775567
701 => 0.015767725043104
702 => 0.015860358299089
703 => 0.016038159767297
704 => 0.015855399512643
705 => 0.015526631605873
706 => 0.015550367586828
707 => 0.01535761108338
708 => 0.015360851355027
709 => 0.015343554531029
710 => 0.015395463601891
711 => 0.015153664137902
712 => 0.015210413988798
713 => 0.015130963865217
714 => 0.015247794258759
715 => 0.015122104068064
716 => 0.015227745635361
717 => 0.015273337033733
718 => 0.015441570275239
719 => 0.015097255881507
720 => 0.014395175524652
721 => 0.014542761327564
722 => 0.014324470332442
723 => 0.014344673995133
724 => 0.014385488609158
725 => 0.014253195091392
726 => 0.014278432525534
727 => 0.014277530866793
728 => 0.014269760858882
729 => 0.014235346205493
730 => 0.014185438149348
731 => 0.014384256484142
801 => 0.014418039593453
802 => 0.014493135260609
803 => 0.01471656902819
804 => 0.014694242725878
805 => 0.014730657851258
806 => 0.014651163837014
807 => 0.014348361494459
808 => 0.014364805118486
809 => 0.014159752863381
810 => 0.014487891613426
811 => 0.014410184026196
812 => 0.01436008543919
813 => 0.014346415575566
814 => 0.014570403192239
815 => 0.014637423797723
816 => 0.014595661053971
817 => 0.014510004448121
818 => 0.014674490453455
819 => 0.014718499969375
820 => 0.014728352076981
821 => 0.01501978974137
822 => 0.014744640204952
823 => 0.014810871433119
824 => 0.01532758856874
825 => 0.014858997428822
826 => 0.015107220606466
827 => 0.015095071373612
828 => 0.01522205395188
829 => 0.01508465509585
830 => 0.015086358319341
831 => 0.015199110246299
901 => 0.015040770499804
902 => 0.015001563351836
903 => 0.014947398957724
904 => 0.015065664930702
905 => 0.015136560032793
906 => 0.015707922488932
907 => 0.016077048692891
908 => 0.016061023950876
909 => 0.016207460095833
910 => 0.016141489271329
911 => 0.01592845207678
912 => 0.016292080590757
913 => 0.016177013314071
914 => 0.016186499320554
915 => 0.016186146250919
916 => 0.016262655930559
917 => 0.016208441810525
918 => 0.016101580214973
919 => 0.016172519929122
920 => 0.016383185518734
921 => 0.0170370979729
922 => 0.017403036045439
923 => 0.017015068041448
924 => 0.017282683175502
925 => 0.017122209456092
926 => 0.017093046607595
927 => 0.017261128688384
928 => 0.017429504974606
929 => 0.017418780133084
930 => 0.017296547595505
1001 => 0.017227501536563
1002 => 0.017750341427001
1003 => 0.018135560951931
1004 => 0.018109291562876
1005 => 0.018225236102905
1006 => 0.01856565285846
1007 => 0.018596776300346
1008 => 0.018592855462033
1009 => 0.018515712763922
1010 => 0.018850897268468
1011 => 0.01913051407917
1012 => 0.018497856458176
1013 => 0.018738764198154
1014 => 0.018846915444193
1015 => 0.019005713560407
1016 => 0.019273632600114
1017 => 0.019564663739251
1018 => 0.019605818733319
1019 => 0.01957661729558
1020 => 0.019384674435982
1021 => 0.01970312418115
1022 => 0.019889664573303
1023 => 0.02000074510793
1024 => 0.020282426861704
1025 => 0.01884758334947
1026 => 0.01783192979516
1027 => 0.017673320826439
1028 => 0.017995858401322
1029 => 0.01808090898763
1030 => 0.018046625202934
1031 => 0.016903414788377
1101 => 0.0176673020602
1102 => 0.018489180535215
1103 => 0.018520752234645
1104 => 0.018932201783906
1105 => 0.019066186623033
1106 => 0.019397457440113
1107 => 0.019376736360309
1108 => 0.019457395532598
1109 => 0.019438853385711
1110 => 0.020052462817052
1111 => 0.020729365141703
1112 => 0.020705926166618
1113 => 0.020608613448705
1114 => 0.02075313942909
1115 => 0.021451775169392
1116 => 0.021387455985835
1117 => 0.021449936593966
1118 => 0.022273667505166
1119 => 0.023344634864083
1120 => 0.022847063002501
1121 => 0.023926650769687
1122 => 0.024606194042642
1123 => 0.025781393867132
1124 => 0.025634253061124
1125 => 0.026091749728784
1126 => 0.025370840309159
1127 => 0.023715486561867
1128 => 0.023453520494919
1129 => 0.023977983194987
1130 => 0.025267323566783
1201 => 0.023937377278306
1202 => 0.024206423680339
1203 => 0.024128938298454
1204 => 0.024124809431745
1205 => 0.024282391480713
1206 => 0.024053810499758
1207 => 0.023122530462416
1208 => 0.023549330615462
1209 => 0.023384522579745
1210 => 0.023567389382627
1211 => 0.024554246097774
1212 => 0.024117933220282
1213 => 0.023658313047023
1214 => 0.024234778742171
1215 => 0.024968817667198
1216 => 0.024922882830465
1217 => 0.024833750047929
1218 => 0.025336186876239
1219 => 0.026166065316429
1220 => 0.02639037812409
1221 => 0.026555961252833
1222 => 0.026578792368736
1223 => 0.026813967052004
1224 => 0.025549373508424
1225 => 0.027556315939151
1226 => 0.027902859456271
1227 => 0.02783772363781
1228 => 0.028222892172309
1229 => 0.028109565818677
1230 => 0.027945373712624
1231 => 0.028555947767502
]
'min_raw' => 0.010525972014226
'max_raw' => 0.028555947767502
'avg_raw' => 0.019540959890864
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.010525'
'max' => '$0.028555'
'avg' => '$0.01954'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0036301357157189
'max_diff' => 0.013161479009217
'year' => 2032
]
7 => [
'items' => [
101 => 0.02785597388437
102 => 0.026862449081525
103 => 0.026317381724992
104 => 0.027035170389404
105 => 0.027473498879388
106 => 0.02776320612834
107 => 0.027850871366827
108 => 0.025647540305376
109 => 0.024460067065596
110 => 0.025221223797887
111 => 0.026149887543512
112 => 0.025544214734427
113 => 0.025567955961853
114 => 0.024704425704113
115 => 0.026226290810271
116 => 0.026004567865204
117 => 0.027154866896433
118 => 0.026880338800904
119 => 0.02781836300652
120 => 0.027571349796566
121 => 0.028596687820759
122 => 0.029005722918529
123 => 0.029692556508913
124 => 0.030197794093915
125 => 0.030494479267483
126 => 0.030476667402501
127 => 0.031652281868145
128 => 0.030959063090595
129 => 0.030088216926872
130 => 0.030072466067255
131 => 0.030523489635433
201 => 0.03146871130206
202 => 0.031713793527801
203 => 0.031850761057258
204 => 0.031640990518021
205 => 0.030888551218428
206 => 0.030563651743818
207 => 0.03084047550943
208 => 0.030501943831824
209 => 0.031086344482584
210 => 0.031888851397321
211 => 0.031723136892884
212 => 0.03227709563591
213 => 0.032850384656783
214 => 0.033670213704651
215 => 0.033884547375946
216 => 0.034238832784216
217 => 0.03460350884602
218 => 0.034720632968776
219 => 0.034944259260599
220 => 0.034943080639656
221 => 0.035616993521848
222 => 0.03636034030025
223 => 0.036640936500579
224 => 0.037286151991072
225 => 0.036181243074651
226 => 0.037019329180035
227 => 0.037775303825747
228 => 0.036873999687953
301 => 0.038116237464972
302 => 0.038164470742883
303 => 0.038892735974143
304 => 0.038154499643524
305 => 0.037716137266936
306 => 0.038981673022922
307 => 0.03959402591124
308 => 0.039409580237786
309 => 0.038005939555589
310 => 0.03718896047357
311 => 0.03505076863243
312 => 0.037583549231274
313 => 0.038817192778748
314 => 0.038002744716828
315 => 0.038413504945646
316 => 0.040654479564625
317 => 0.041507697607171
318 => 0.041330234218766
319 => 0.041360222610111
320 => 0.041820603578866
321 => 0.043862186330755
322 => 0.042638822622305
323 => 0.043574038338852
324 => 0.044070073382737
325 => 0.044530818375831
326 => 0.043399374292743
327 => 0.04192738216486
328 => 0.041461140467934
329 => 0.037921763908087
330 => 0.037737523987413
331 => 0.037634104536899
401 => 0.036982059530374
402 => 0.036469730765404
403 => 0.036062307909953
404 => 0.034993108670485
405 => 0.035353932027132
406 => 0.033649851598644
407 => 0.034740061867889
408 => 0.032020308357561
409 => 0.034285399898874
410 => 0.033052613554012
411 => 0.033880396428904
412 => 0.033877508372436
413 => 0.03235329765096
414 => 0.031474164716279
415 => 0.032034382438623
416 => 0.032634980307115
417 => 0.032732425290624
418 => 0.033511116104331
419 => 0.033728431972534
420 => 0.033069954746372
421 => 0.031963947511289
422 => 0.03222084776666
423 => 0.031468958640803
424 => 0.030151301868737
425 => 0.031097665966515
426 => 0.031420796278189
427 => 0.031563509032151
428 => 0.030267744930727
429 => 0.029860587717652
430 => 0.029643820633791
501 => 0.031796680637304
502 => 0.031914619168104
503 => 0.031311228969707
504 => 0.034038609882264
505 => 0.033421319583126
506 => 0.034110984087058
507 => 0.032197536761186
508 => 0.032270633025833
509 => 0.031364776397411
510 => 0.031871995579966
511 => 0.031513509410174
512 => 0.031831017282453
513 => 0.032021330191963
514 => 0.032927038178226
515 => 0.034295741629218
516 => 0.032791755607778
517 => 0.032136447360759
518 => 0.032542996911616
519 => 0.033625691940021
520 => 0.035266030330192
521 => 0.034294916988324
522 => 0.034725880598871
523 => 0.034820026975539
524 => 0.034103963949815
525 => 0.035292432595332
526 => 0.035929342597566
527 => 0.036582680469904
528 => 0.037149955438344
529 => 0.036321722956485
530 => 0.037208050434536
531 => 0.036493826945088
601 => 0.035853094639986
602 => 0.03585406636641
603 => 0.035452125631815
604 => 0.034673314810743
605 => 0.034529690146236
606 => 0.035276843788798
607 => 0.03587599025442
608 => 0.035925338827047
609 => 0.036257057095672
610 => 0.036453364550074
611 => 0.038377444470262
612 => 0.039151325330985
613 => 0.040097612198662
614 => 0.040466244263428
615 => 0.041575694616464
616 => 0.040679723351236
617 => 0.04048587433208
618 => 0.037794710674059
619 => 0.038235388572299
620 => 0.038940956406472
621 => 0.037806345227768
622 => 0.038525994869162
623 => 0.038668068952637
624 => 0.03776779157408
625 => 0.038248668620657
626 => 0.036971601755057
627 => 0.034323578197067
628 => 0.03529538060253
629 => 0.036010954278103
630 => 0.034989742413462
701 => 0.036820225154474
702 => 0.035750894926008
703 => 0.035411968580488
704 => 0.034089696070647
705 => 0.034713757796356
706 => 0.03555781021608
707 => 0.035036283952316
708 => 0.036118529257188
709 => 0.037651277233168
710 => 0.038743604717571
711 => 0.038827460058339
712 => 0.038125166666125
713 => 0.039250596309124
714 => 0.039258793835414
715 => 0.037989304600596
716 => 0.037211749512816
717 => 0.037035087360883
718 => 0.037476424053068
719 => 0.038012288272628
720 => 0.038857196793099
721 => 0.039367757316643
722 => 0.040699028381667
723 => 0.041059232161329
724 => 0.041454986908217
725 => 0.041983837296302
726 => 0.042618857781655
727 => 0.041229469111439
728 => 0.041284672113451
729 => 0.039990892621143
730 => 0.038608303686863
731 => 0.039657516345838
801 => 0.041029222326536
802 => 0.040714551458963
803 => 0.040679144558219
804 => 0.040738689144215
805 => 0.040501437586255
806 => 0.039428357582556
807 => 0.038889463522534
808 => 0.039584774346499
809 => 0.039954301104712
810 => 0.040527404880581
811 => 0.040456757743452
812 => 0.041933011523237
813 => 0.042506639102465
814 => 0.04235988062079
815 => 0.042386887713359
816 => 0.043425413045526
817 => 0.04458046680392
818 => 0.045662327071423
819 => 0.046762841802508
820 => 0.045436128340364
821 => 0.044762505064599
822 => 0.045457512337609
823 => 0.045088731695614
824 => 0.047207854651962
825 => 0.047354578127664
826 => 0.049473547847303
827 => 0.05148470243346
828 => 0.050221532271472
829 => 0.051412644839793
830 => 0.052700930195265
831 => 0.055186241662737
901 => 0.054349276194804
902 => 0.053708173763289
903 => 0.053102335063291
904 => 0.054362989223801
905 => 0.055984800661856
906 => 0.056334123312096
907 => 0.056900159457008
908 => 0.05630504166224
909 => 0.057021795495963
910 => 0.0595522514866
911 => 0.058868499940977
912 => 0.057897462827647
913 => 0.059895014804678
914 => 0.060617921099879
915 => 0.065691656068565
916 => 0.072097456052069
917 => 0.069445412796148
918 => 0.067799203966297
919 => 0.068186102089907
920 => 0.070525283393869
921 => 0.071276554186798
922 => 0.069234341193045
923 => 0.069955685347346
924 => 0.073930362558535
925 => 0.076062649359426
926 => 0.073166717479492
927 => 0.065176956277079
928 => 0.057810031559938
929 => 0.059764071731868
930 => 0.059542544217297
1001 => 0.06381283902964
1002 => 0.058852192692746
1003 => 0.058935717254772
1004 => 0.063294317241514
1005 => 0.062131517490372
1006 => 0.060247930813663
1007 => 0.05782378382718
1008 => 0.053342523916211
1009 => 0.049373347043888
1010 => 0.057157816937355
1011 => 0.056822136440409
1012 => 0.056336021335768
1013 => 0.057417817897998
1014 => 0.062670714930873
1015 => 0.062549618652297
1016 => 0.06177926591186
1017 => 0.062363571675904
1018 => 0.060145499188149
1019 => 0.060717146972815
1020 => 0.057808864601424
1021 => 0.059123529693893
1022 => 0.060243889482616
1023 => 0.060468818297412
1024 => 0.060975594402298
1025 => 0.056645248071958
1026 => 0.058589446441992
1027 => 0.059731480837635
1028 => 0.054571727890552
1029 => 0.059629489111742
1030 => 0.056569866376498
1031 => 0.055531384466165
1101 => 0.05692956354884
1102 => 0.056384691800548
1103 => 0.055916243067308
1104 => 0.05565484062519
1105 => 0.056681509032113
1106 => 0.056633613723796
1107 => 0.054953784942319
1108 => 0.052762516775464
1109 => 0.053497978298186
1110 => 0.053230778231993
1111 => 0.052262410722613
1112 => 0.052914973502796
1113 => 0.050041417273335
1114 => 0.045097613135003
1115 => 0.048363641581601
1116 => 0.048237903039163
1117 => 0.048174499964276
1118 => 0.050628830075499
1119 => 0.050392902866334
1120 => 0.049964692671495
1121 => 0.052254546306578
1122 => 0.051418718926895
1123 => 0.05399454196538
1124 => 0.055691145612316
1125 => 0.055260832048074
1126 => 0.056856495978414
1127 => 0.053514921846246
1128 => 0.054624858732268
1129 => 0.054853615186171
1130 => 0.052226289868166
1201 => 0.050431503475515
1202 => 0.050311811685188
1203 => 0.04719989941713
1204 => 0.048862257832248
1205 => 0.050325064444487
1206 => 0.049624493595603
1207 => 0.049402713793805
1208 => 0.05053573870302
1209 => 0.050623784442168
1210 => 0.048616332258923
1211 => 0.049033745135562
1212 => 0.050774426220267
1213 => 0.048989884438355
1214 => 0.045522811259347
1215 => 0.044662929174916
1216 => 0.044548205054082
1217 => 0.042216136642997
1218 => 0.044720390607484
1219 => 0.043627216642152
1220 => 0.047080540100402
1221 => 0.045108020261595
1222 => 0.045022988873769
1223 => 0.044894451459678
1224 => 0.042887143841725
1225 => 0.043326616639002
1226 => 0.04478749115075
1227 => 0.045308747634472
1228 => 0.045254376312691
1229 => 0.044780332068666
1230 => 0.044997347096081
1231 => 0.044298266079728
]
'min_raw' => 0.024460067065596
'max_raw' => 0.076062649359426
'avg_raw' => 0.050261358212511
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.02446'
'max' => '$0.076062'
'avg' => '$0.050261'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.013934095051371
'max_diff' => 0.047506701591924
'year' => 2033
]
8 => [
'items' => [
101 => 0.044051406022741
102 => 0.04327224777868
103 => 0.04212710040787
104 => 0.042286340173378
105 => 0.040017503587695
106 => 0.038781320999543
107 => 0.038439161951767
108 => 0.03798161257327
109 => 0.038490843371561
110 => 0.040011076258712
111 => 0.038177352861409
112 => 0.035033562717473
113 => 0.035222509861882
114 => 0.035647017996456
115 => 0.034855949896079
116 => 0.034107270328384
117 => 0.034758186470201
118 => 0.033426121142363
119 => 0.035807991727308
120 => 0.035743568803101
121 => 0.03663138286328
122 => 0.037186551214888
123 => 0.035907067902319
124 => 0.035585281309298
125 => 0.035768585577068
126 => 0.032738974346138
127 => 0.036383798990902
128 => 0.036415319585785
129 => 0.036145421115692
130 => 0.038086177717693
131 => 0.042181779485079
201 => 0.040640849354989
202 => 0.040044154633758
203 => 0.038909837532518
204 => 0.040421247720835
205 => 0.040305195000045
206 => 0.03978036058494
207 => 0.039462939093102
208 => 0.040047797924488
209 => 0.039390468611548
210 => 0.039272394204742
211 => 0.038556991765721
212 => 0.038301625643728
213 => 0.038112562733422
214 => 0.037904423046113
215 => 0.038363527331138
216 => 0.037323136621074
217 => 0.036068527415495
218 => 0.035964220235111
219 => 0.036252221530933
220 => 0.036124802396706
221 => 0.035963610201318
222 => 0.035655850402239
223 => 0.0355645446441
224 => 0.035861244062796
225 => 0.035526287717739
226 => 0.036020534050886
227 => 0.035886126396167
228 => 0.035135336162854
301 => 0.034199573554
302 => 0.034191243303952
303 => 0.033989634784833
304 => 0.03373285602369
305 => 0.033661426046643
306 => 0.03470336812829
307 => 0.036860157054598
308 => 0.036436727780779
309 => 0.036742698825891
310 => 0.038247773537167
311 => 0.038726191528706
312 => 0.038386621770262
313 => 0.037921797741155
314 => 0.037942247639414
315 => 0.039530692058677
316 => 0.039629761388681
317 => 0.039880077624623
318 => 0.040201804727169
319 => 0.038441413287013
320 => 0.037859333360892
321 => 0.03758351159933
322 => 0.036734087330177
323 => 0.037650118580326
324 => 0.037116386399233
325 => 0.03718840510535
326 => 0.037141502828513
327 => 0.037167114643184
328 => 0.035807325945937
329 => 0.036302761478824
330 => 0.035479003814098
331 => 0.034376084772167
401 => 0.034372387400805
402 => 0.034642325273813
403 => 0.034481755664278
404 => 0.03404966697364
405 => 0.034111043132744
406 => 0.033573323395964
407 => 0.034176332044519
408 => 0.034193624174891
409 => 0.033961432999094
410 => 0.034890451021352
411 => 0.035271070463078
412 => 0.035118237257151
413 => 0.035260347277928
414 => 0.036454323178775
415 => 0.036648993347434
416 => 0.036735452977162
417 => 0.036619608527032
418 => 0.035282170965583
419 => 0.035341492008657
420 => 0.034906233554711
421 => 0.034538486027533
422 => 0.034553194000038
423 => 0.03474226403284
424 => 0.035567943954896
425 => 0.037305538674374
426 => 0.037371479123813
427 => 0.037451400872152
428 => 0.037126318956206
429 => 0.037028271139742
430 => 0.037157621517947
501 => 0.037810170736193
502 => 0.039488704490906
503 => 0.03889539855649
504 => 0.038413031596453
505 => 0.038836197465604
506 => 0.038771054396932
507 => 0.038221181339673
508 => 0.038205748234365
509 => 0.037150366032433
510 => 0.036760215262268
511 => 0.03643417607644
512 => 0.036078149796984
513 => 0.035867085484414
514 => 0.036191376195537
515 => 0.036265545318065
516 => 0.035556478010564
517 => 0.035459834756645
518 => 0.036038874426232
519 => 0.035784060656421
520 => 0.036046142937749
521 => 0.036106948275117
522 => 0.036097157215335
523 => 0.035831102374478
524 => 0.036000677796171
525 => 0.035599581371001
526 => 0.035163449251364
527 => 0.034885224131027
528 => 0.034642435812326
529 => 0.034777148882481
530 => 0.034296921385013
531 => 0.034143286943503
601 => 0.035943229458869
602 => 0.037272866347613
603 => 0.037253532900656
604 => 0.037135845514468
605 => 0.036960985930608
606 => 0.037797378668501
607 => 0.037505996162819
608 => 0.037718001281525
609 => 0.037771965482063
610 => 0.037935298864113
611 => 0.037993676509217
612 => 0.037817218719831
613 => 0.037225004826146
614 => 0.035749264109092
615 => 0.035062302821617
616 => 0.034835594154505
617 => 0.034843834583974
618 => 0.034616526752336
619 => 0.034683479095976
620 => 0.034593243459525
621 => 0.034422358994433
622 => 0.034766597248302
623 => 0.034806267500259
624 => 0.034725918178465
625 => 0.034744843352435
626 => 0.034079585285626
627 => 0.034130163411581
628 => 0.033848537979107
629 => 0.033795736605563
630 => 0.033083812036199
701 => 0.031822534466454
702 => 0.032521404675269
703 => 0.031677267739043
704 => 0.031357580290533
705 => 0.032870930950183
706 => 0.032719032517767
707 => 0.032459048430134
708 => 0.032074477779091
709 => 0.031931836783757
710 => 0.031065195250758
711 => 0.031013989445635
712 => 0.03144352039068
713 => 0.031245306638799
714 => 0.03096693946174
715 => 0.029958721764063
716 => 0.028825151262466
717 => 0.028859366630539
718 => 0.029219934316268
719 => 0.030268333491703
720 => 0.02985870579637
721 => 0.029561516203471
722 => 0.029505861526207
723 => 0.030202496333122
724 => 0.031188380534411
725 => 0.03165093534374
726 => 0.031192557575693
727 => 0.030665997876573
728 => 0.030698047125616
729 => 0.030911256421181
730 => 0.030933661703527
731 => 0.030590925470612
801 => 0.030687403712588
802 => 0.03054084444087
803 => 0.029641410460864
804 => 0.029625142552301
805 => 0.029404406948276
806 => 0.029397723161912
807 => 0.029022196834387
808 => 0.028969658105275
809 => 0.028224027789156
810 => 0.028714803921202
811 => 0.028385617058729
812 => 0.027889454809651
813 => 0.027803916250895
814 => 0.027801344858528
815 => 0.028310792548482
816 => 0.02870885072833
817 => 0.028391343405139
818 => 0.028319053142269
819 => 0.029090924022968
820 => 0.02899269641764
821 => 0.028907631944926
822 => 0.031100105417458
823 => 0.02936459158311
824 => 0.028607808491668
825 => 0.027671145706797
826 => 0.027976127832615
827 => 0.028040392047644
828 => 0.025787886896187
829 => 0.024874045836772
830 => 0.024560450022555
831 => 0.024379971197879
901 => 0.024462217664594
902 => 0.023639653528256
903 => 0.024192430231831
904 => 0.023480159219377
905 => 0.023360744666209
906 => 0.024634373469922
907 => 0.024811591477528
908 => 0.024055524399765
909 => 0.02454104185983
910 => 0.024364986479613
911 => 0.023492369061544
912 => 0.023459041494713
913 => 0.023021192748311
914 => 0.022336044244417
915 => 0.022022912993148
916 => 0.021859831518757
917 => 0.021927122113485
918 => 0.021893097929665
919 => 0.021671067115389
920 => 0.021905824476039
921 => 0.021306116428018
922 => 0.02106730785112
923 => 0.020959443557252
924 => 0.020427168146726
925 => 0.021274255028822
926 => 0.021441141815915
927 => 0.021608357421531
928 => 0.023063855105483
929 => 0.022991142554387
930 => 0.02364842860385
1001 => 0.023622887676639
1002 => 0.023435419048004
1003 => 0.022644519740886
1004 => 0.022959758108279
1005 => 0.021989503412363
1006 => 0.022716484201449
1007 => 0.022384720528754
1008 => 0.022604314569987
1009 => 0.022209464683853
1010 => 0.022427990913792
1011 => 0.021480716864226
1012 => 0.020596165685247
1013 => 0.020952134901327
1014 => 0.021339114149223
1015 => 0.022178183759141
1016 => 0.021678440821648
1017 => 0.021858167279343
1018 => 0.02125611373191
1019 => 0.020013905295461
1020 => 0.020020936060308
1021 => 0.019829849355342
1022 => 0.019664722543136
1023 => 0.021735842309629
1024 => 0.021478265827108
1025 => 0.021067851412986
1026 => 0.021617207415508
1027 => 0.021762465862027
1028 => 0.02176660116579
1029 => 0.0221673971243
1030 => 0.022381301999203
1031 => 0.022419003660522
1101 => 0.023049664761007
1102 => 0.023261054043268
1103 => 0.024131736579972
1104 => 0.022363153665038
1105 => 0.022326730863753
1106 => 0.021624937981052
1107 => 0.021179849839937
1108 => 0.021655413546864
1109 => 0.022076698070282
1110 => 0.021638028465521
1111 => 0.021695309455082
1112 => 0.021106431351314
1113 => 0.021316927564121
1114 => 0.021498235259492
1115 => 0.021398127806882
1116 => 0.021248262105069
1117 => 0.022042157543627
1118 => 0.021997362851682
1119 => 0.022736656535645
1120 => 0.023312988829692
1121 => 0.024345879332345
1122 => 0.023268004247027
1123 => 0.023228722194752
1124 => 0.023612710556774
1125 => 0.023260995256651
1126 => 0.023483267185529
1127 => 0.024310067888292
1128 => 0.024327536884286
1129 => 0.024034908693858
1130 => 0.024017102241877
1201 => 0.02407330468685
1202 => 0.02440248416251
1203 => 0.024287458739051
1204 => 0.024420569071165
1205 => 0.024587025579732
1206 => 0.025275560275261
1207 => 0.02544156365933
1208 => 0.025038261498929
1209 => 0.025074675168431
1210 => 0.024923829089549
1211 => 0.024778113667445
1212 => 0.025105660656306
1213 => 0.025704259216403
1214 => 0.025700535365828
1215 => 0.025839398596677
1216 => 0.025925909239091
1217 => 0.02555454223219
1218 => 0.02531279596624
1219 => 0.02540549686732
1220 => 0.025553727626909
1221 => 0.025357427629789
1222 => 0.024145773112563
1223 => 0.024513311692299
1224 => 0.024452135300913
1225 => 0.024365012680275
1226 => 0.024734575564292
1227 => 0.024698930322574
1228 => 0.023631216944123
1229 => 0.023699568490424
1230 => 0.023635373628041
1231 => 0.023842800361433
]
'min_raw' => 0.019664722543136
'max_raw' => 0.044051406022741
'avg_raw' => 0.031858064282938
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.019664'
'max' => '$0.044051'
'avg' => '$0.031858'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0047953445224602
'max_diff' => -0.032011243336685
'year' => 2034
]
9 => [
'items' => [
101 => 0.023249793532331
102 => 0.023432198439001
103 => 0.023546601086524
104 => 0.023613985124798
105 => 0.023857422476711
106 => 0.023828857913208
107 => 0.023855646863338
108 => 0.024216600191146
109 => 0.02604217825898
110 => 0.026141540445301
111 => 0.025652244699843
112 => 0.025847708699221
113 => 0.025472460563692
114 => 0.025724367151017
115 => 0.025896715240331
116 => 0.025117907365353
117 => 0.025071791417418
118 => 0.02469499449935
119 => 0.024897463820251
120 => 0.024575320572638
121 => 0.02465436325751
122 => 0.024433353019791
123 => 0.024831127444986
124 => 0.02527590106025
125 => 0.025388268440109
126 => 0.0250926782409
127 => 0.02487865145633
128 => 0.024502890927431
129 => 0.02512778906136
130 => 0.025310528319147
131 => 0.025126829209834
201 => 0.025084262112301
202 => 0.025003597539393
203 => 0.025101375482769
204 => 0.025309533081903
205 => 0.025211369802219
206 => 0.025276208377865
207 => 0.025029110588751
208 => 0.025554665170121
209 => 0.026389372326935
210 => 0.026392056046932
211 => 0.026293892238111
212 => 0.02625372572251
213 => 0.026354447747439
214 => 0.026409085314129
215 => 0.026734801873487
216 => 0.027084308718799
217 => 0.028715304664084
218 => 0.028257327529183
219 => 0.029704444160224
220 => 0.030848925530799
221 => 0.03119210545173
222 => 0.030876396072337
223 => 0.029796371339718
224 => 0.029743380173806
225 => 0.031357393099019
226 => 0.030901360521171
227 => 0.03084711689712
228 => 0.030270056383262
301 => 0.030611170617287
302 => 0.030536563930462
303 => 0.030418793625424
304 => 0.03106961582172
305 => 0.032287896873888
306 => 0.03209801634694
307 => 0.031956279341878
308 => 0.031335229044717
309 => 0.031709240040213
310 => 0.031576061888426
311 => 0.032148279745449
312 => 0.031809310563126
313 => 0.030897905625873
314 => 0.031043049866161
315 => 0.031021111606231
316 => 0.031472599441024
317 => 0.031337073999636
318 => 0.030994648088694
319 => 0.032283732921695
320 => 0.032200026922907
321 => 0.032318702891334
322 => 0.032370947722811
323 => 0.033155590944436
324 => 0.033477034166554
325 => 0.03355000740563
326 => 0.03385535360533
327 => 0.033542410114017
328 => 0.034794407204197
329 => 0.03562691221311
330 => 0.03659390962128
331 => 0.038006952739015
401 => 0.038538270022663
402 => 0.038442292311009
403 => 0.039513645476038
404 => 0.041438843298752
405 => 0.038831429834492
406 => 0.041577042543652
407 => 0.040707813259555
408 => 0.038646886263728
409 => 0.03851418686193
410 => 0.039909870551358
411 => 0.043005362644934
412 => 0.042229976984274
413 => 0.0430066308981
414 => 0.04210062285322
415 => 0.042055631917357
416 => 0.042962628109608
417 => 0.045081874150594
418 => 0.044075099795271
419 => 0.042631641885717
420 => 0.04369746874344
421 => 0.042774150881662
422 => 0.040693657318678
423 => 0.042229384061472
424 => 0.041202487323546
425 => 0.041502190384506
426 => 0.043660574588266
427 => 0.043400872090493
428 => 0.043736951170415
429 => 0.043143780391074
430 => 0.042589665348723
501 => 0.041555368473053
502 => 0.041249164158386
503 => 0.041333788014883
504 => 0.041249122223006
505 => 0.040670442626747
506 => 0.040545476823031
507 => 0.040337195008628
508 => 0.040401750252148
509 => 0.040010119506075
510 => 0.040749207638955
511 => 0.04088638890924
512 => 0.041424235617514
513 => 0.041480076647005
514 => 0.04297797207378
515 => 0.042152956443822
516 => 0.042706448156821
517 => 0.042656938648344
518 => 0.038691552801005
519 => 0.039237947983872
520 => 0.040087967420161
521 => 0.039705034816287
522 => 0.039163657706839
523 => 0.038726466664155
524 => 0.03806407752941
525 => 0.038996377516507
526 => 0.040222252860489
527 => 0.041511166868731
528 => 0.043059712596642
529 => 0.042714095217231
530 => 0.041482217883493
531 => 0.041537479000798
601 => 0.041879081483526
602 => 0.041436675230535
603 => 0.041306200989731
604 => 0.041861156326408
605 => 0.041864977998814
606 => 0.041355936138165
607 => 0.040790229263731
608 => 0.040787858931272
609 => 0.040687196857046
610 => 0.042118530412603
611 => 0.042905619144014
612 => 0.042995857598613
613 => 0.042899545377037
614 => 0.042936612128626
615 => 0.042478622538135
616 => 0.043525450929404
617 => 0.044486124181831
618 => 0.04422864322839
619 => 0.043842642676108
620 => 0.04353517464391
621 => 0.044156213531478
622 => 0.044128559647421
623 => 0.044477733539044
624 => 0.044461892994394
625 => 0.044344478947735
626 => 0.044228647421615
627 => 0.044687906329679
628 => 0.044555647139629
629 => 0.044423182514526
630 => 0.044157504429562
701 => 0.044193614493754
702 => 0.04380768058991
703 => 0.043629129906858
704 => 0.040944156036742
705 => 0.040226643284595
706 => 0.040452387402739
707 => 0.040526708227876
708 => 0.040214445758624
709 => 0.040662149925884
710 => 0.040592375705653
711 => 0.04086382638002
712 => 0.040694235783694
713 => 0.040701195840922
714 => 0.041199925624191
715 => 0.041344709002022
716 => 0.041271071007512
717 => 0.041322644534704
718 => 0.04251113470102
719 => 0.042342169405146
720 => 0.042252409959316
721 => 0.042277273939238
722 => 0.042580958658248
723 => 0.042665973799
724 => 0.042305758673726
725 => 0.042475638209184
726 => 0.043198963710242
727 => 0.043452086698934
728 => 0.044259933772912
729 => 0.04391674597755
730 => 0.044546682028758
731 => 0.046482890689147
801 => 0.048029668142514
802 => 0.046607187673116
803 => 0.049447647485303
804 => 0.051659352888851
805 => 0.051574463951675
806 => 0.051188801956899
807 => 0.04867083415619
808 => 0.046353762645192
809 => 0.048292091352195
810 => 0.04829703255069
811 => 0.04813052839574
812 => 0.047096385389426
813 => 0.048094542460755
814 => 0.048173772544303
815 => 0.048129424766496
816 => 0.047336549748231
817 => 0.046125976143139
818 => 0.04636251932787
819 => 0.046749981889811
820 => 0.0460164344269
821 => 0.045782021565292
822 => 0.046217839673893
823 => 0.047622136426114
824 => 0.047356662259644
825 => 0.047349729656292
826 => 0.048485540719019
827 => 0.047672545121475
828 => 0.046365502894946
829 => 0.046035457494979
830 => 0.044864018670315
831 => 0.045673135639032
901 => 0.045702254318293
902 => 0.045259109223502
903 => 0.046401461677076
904 => 0.04639093469811
905 => 0.047475428336054
906 => 0.049548572854595
907 => 0.048935442007217
908 => 0.048222437540162
909 => 0.0482999608952
910 => 0.049150200756026
911 => 0.048636126327083
912 => 0.048820991075985
913 => 0.049149920941087
914 => 0.049348372495573
915 => 0.048271406770506
916 => 0.048020314542767
917 => 0.04750666796621
918 => 0.047372667162054
919 => 0.047791021581072
920 => 0.047680799972341
921 => 0.045699807006054
922 => 0.045492782218937
923 => 0.045499131373594
924 => 0.044978557702895
925 => 0.044184557903081
926 => 0.046271141969726
927 => 0.046103560067449
928 => 0.045918562617145
929 => 0.045941223749226
930 => 0.046846939171661
1001 => 0.046321578486924
1002 => 0.047718335972221
1003 => 0.047431204623617
1004 => 0.047136709439368
1005 => 0.047096001234362
1006 => 0.046982645713574
1007 => 0.046593907455061
1008 => 0.046124482648359
1009 => 0.045814527730094
1010 => 0.042261480084239
1011 => 0.042920905060182
1012 => 0.043679513386527
1013 => 0.04394138194085
1014 => 0.043493437657929
1015 => 0.046611595025603
1016 => 0.047181312423989
1017 => 0.045455601262531
1018 => 0.045132791164545
1019 => 0.046632758401885
1020 => 0.045728094794232
1021 => 0.046135464761365
1022 => 0.045254953711882
1023 => 0.047044084185991
1024 => 0.047030454009392
1025 => 0.046334441845619
1026 => 0.046922706560354
1027 => 0.046820481089685
1028 => 0.046034685070988
1029 => 0.047068995321383
1030 => 0.047069508326363
1031 => 0.046399611751341
1101 => 0.045617319210932
1102 => 0.045477463781632
1103 => 0.045372101502588
1104 => 0.046109552099545
1105 => 0.046770747998829
1106 => 0.048001069643032
1107 => 0.048310401736106
1108 => 0.049517745488777
1109 => 0.048798831068562
1110 => 0.049117516519543
1111 => 0.049463494657392
1112 => 0.049629369299602
1113 => 0.049359085471445
1114 => 0.051234587281858
1115 => 0.051392937098547
1116 => 0.051446030422362
1117 => 0.050813621764283
1118 => 0.051375348669747
1119 => 0.05111253525312
1120 => 0.051796302751513
1121 => 0.051903526226043
1122 => 0.051812711757702
1123 => 0.051846746180925
1124 => 0.050246336246929
1125 => 0.050163346549016
1126 => 0.049031776129297
1127 => 0.049492899439479
1128 => 0.048630851513309
1129 => 0.048904215790775
1130 => 0.049024712159572
1201 => 0.048961771694621
1202 => 0.049518970659573
1203 => 0.049045237711136
1204 => 0.047794978571304
1205 => 0.046544378799205
1206 => 0.046528678537783
1207 => 0.046199417692709
1208 => 0.045961422408852
1209 => 0.046007268743859
1210 => 0.046168837208255
1211 => 0.045952031755986
1212 => 0.045998298191543
1213 => 0.04676662929344
1214 => 0.046920712616438
1215 => 0.046397077280648
1216 => 0.044294605847232
1217 => 0.043778654083821
1218 => 0.044149509979593
1219 => 0.043972264747593
1220 => 0.03548904954586
1221 => 0.037482055124197
1222 => 0.036297878885623
1223 => 0.036843601777687
1224 => 0.035634864479054
1225 => 0.036211737273311
1226 => 0.036105209932233
1227 => 0.039309903924878
1228 => 0.039259867036095
1229 => 0.039283817046862
1230 => 0.03814062063153
1231 => 0.039961763562319
]
'min_raw' => 0.023249793532331
'max_raw' => 0.051903526226043
'avg_raw' => 0.037576659879187
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.023249'
'max' => '$0.0519035'
'avg' => '$0.037576'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0035850709891948
'max_diff' => 0.007852120203302
'year' => 2035
]
10 => [
'items' => [
101 => 0.040858924056207
102 => 0.040692883525942
103 => 0.040734672350207
104 => 0.040016601896336
105 => 0.03929076953848
106 => 0.038485709748818
107 => 0.039981411329612
108 => 0.039815114846305
109 => 0.040196539147424
110 => 0.041166608537526
111 => 0.041309454940154
112 => 0.04150144195389
113 => 0.041432628276032
114 => 0.043072049261674
115 => 0.042873504563064
116 => 0.043351940161504
117 => 0.042367761836517
118 => 0.041254070642731
119 => 0.041465746929361
120 => 0.041445360800765
121 => 0.041185821985633
122 => 0.040951521948095
123 => 0.040561478399222
124 => 0.041795633903441
125 => 0.041745529443803
126 => 0.042556662405291
127 => 0.042413286775422
128 => 0.041455789229194
129 => 0.041489986441376
130 => 0.041719979127916
131 => 0.042515986442042
201 => 0.042752295609185
202 => 0.042642827787672
203 => 0.042901930001521
204 => 0.043106713826899
205 => 0.042927647697081
206 => 0.045462846478254
207 => 0.044410055190869
208 => 0.044923178339066
209 => 0.045045555186414
210 => 0.04473208946524
211 => 0.044800068955797
212 => 0.044903039360688
213 => 0.045528255495513
214 => 0.04716900354104
215 => 0.047895679681455
216 => 0.050081920703461
217 => 0.047835339343814
218 => 0.04770203650321
219 => 0.048095844529427
220 => 0.04937939944646
221 => 0.050419600148532
222 => 0.050764694732027
223 => 0.050810304678127
224 => 0.051457725058218
225 => 0.051828814346412
226 => 0.051379111195229
227 => 0.050998034860484
228 => 0.049633066730364
229 => 0.04979106550811
301 => 0.050879520406933
302 => 0.052417027061193
303 => 0.053736367720851
304 => 0.053274380605503
305 => 0.056799016183534
306 => 0.05714846940425
307 => 0.057100186268322
308 => 0.057896292710726
309 => 0.056316183546812
310 => 0.055640656266065
311 => 0.051080427889456
312 => 0.052361666053985
313 => 0.054224020970607
314 => 0.05397753131392
315 => 0.052625039392579
316 => 0.053735341734448
317 => 0.053368241057862
318 => 0.053078693523217
319 => 0.054405166910976
320 => 0.052946654932612
321 => 0.054209471197919
322 => 0.052589896275501
323 => 0.053276490923731
324 => 0.052886746594549
325 => 0.053138958940798
326 => 0.05166453071817
327 => 0.052460096397379
328 => 0.051631432570338
329 => 0.051631039675789
330 => 0.051612746875878
331 => 0.052587666193533
401 => 0.052619458277481
402 => 0.051898991428713
403 => 0.051795160899998
404 => 0.05217907678444
405 => 0.051729611831488
406 => 0.051939913654075
407 => 0.051735981659456
408 => 0.051690072272002
409 => 0.051324258461932
410 => 0.051166655814293
411 => 0.051228455873352
412 => 0.05101750041167
413 => 0.050890392115413
414 => 0.051587461836483
415 => 0.051215045604228
416 => 0.051530383707689
417 => 0.051171016139954
418 => 0.049925291581185
419 => 0.049208862214139
420 => 0.046855804001354
421 => 0.04752312839154
422 => 0.047965565152631
423 => 0.04781933980573
424 => 0.048133488432571
425 => 0.048152774606849
426 => 0.048050641685897
427 => 0.047932384847472
428 => 0.04787482395854
429 => 0.048303835665887
430 => 0.048552891401873
501 => 0.048009969600646
502 => 0.047882770618902
503 => 0.048431694535476
504 => 0.048766537807484
505 => 0.051238832395803
506 => 0.051055676827294
507 => 0.051515361361786
508 => 0.051463607937636
509 => 0.051945430563274
510 => 0.052733006922756
511 => 0.051131643974115
512 => 0.051409585211034
513 => 0.051341440438342
514 => 0.052085427198077
515 => 0.052087749843532
516 => 0.051641692616176
517 => 0.051883507475578
518 => 0.051748533054903
519 => 0.051992450075949
520 => 0.051053230673011
521 => 0.05219709852332
522 => 0.052845597885228
523 => 0.052854602299498
524 => 0.053161985850233
525 => 0.053474305340235
526 => 0.054073775403999
527 => 0.05345758644552
528 => 0.052349122494001
529 => 0.052429150010984
530 => 0.05177925800178
531 => 0.051790182803867
601 => 0.051731865354133
602 => 0.051906880410718
603 => 0.051091636635981
604 => 0.051282972720426
605 => 0.051015101081741
606 => 0.051409002910406
607 => 0.050985229657067
608 => 0.05134140757687
609 => 0.051495122159571
610 => 0.052062332278978
611 => 0.050901452261246
612 => 0.048534339320423
613 => 0.049031935159055
614 => 0.048295951828409
615 => 0.048364069887747
616 => 0.048501679208517
617 => 0.048055642376932
618 => 0.048140732148163
619 => 0.048137692142767
620 => 0.048111495018609
621 => 0.047995463611954
622 => 0.047827195116191
623 => 0.048497525013002
624 => 0.048611427124705
625 => 0.048864617409536
626 => 0.049617939956581
627 => 0.049542665269562
628 => 0.049665441407206
629 => 0.049397421788087
630 => 0.048376502549179
701 => 0.048431943375642
702 => 0.047740595381265
703 => 0.048846938086957
704 => 0.048584941531239
705 => 0.048416030647379
706 => 0.04836994174777
707 => 0.0491251316357
708 => 0.049351096286319
709 => 0.049210290279977
710 => 0.048921493053001
711 => 0.049476069104031
712 => 0.049624450259601
713 => 0.049657667328247
714 => 0.050640269761262
715 => 0.049712583888901
716 => 0.049935887098783
717 => 0.051678034997568
718 => 0.050098147253346
719 => 0.050935049027161
720 => 0.05089408704036
721 => 0.051322217668632
722 => 0.050858967832645
723 => 0.050864710369562
724 => 0.051244861363386
725 => 0.050711007853153
726 => 0.05057881821642
727 => 0.050396199180034
728 => 0.050794941164999
729 => 0.051033968951437
730 => 0.052960357363561
731 => 0.054204892131778
801 => 0.054150863595263
802 => 0.05464458328183
803 => 0.054422158041077
804 => 0.053703888265874
805 => 0.054929887188479
806 => 0.054541929831393
807 => 0.054573912564543
808 => 0.054572722165618
809 => 0.054830679892259
810 => 0.054647893201455
811 => 0.054287601871212
812 => 0.05452678007032
813 => 0.055237053813899
814 => 0.057441765307828
815 => 0.058675551068373
816 => 0.057367489855856
817 => 0.058269772964613
818 => 0.057728724615703
819 => 0.057630400035912
820 => 0.058197100506409
821 => 0.058764792911061
822 => 0.058728633359086
823 => 0.058316517824636
824 => 0.05808372421627
825 => 0.059846515410399
826 => 0.061145309933868
827 => 0.061056740854597
828 => 0.061447655966294
829 => 0.062595394824787
830 => 0.062700329682076
831 => 0.062687110301958
901 => 0.062427018309347
902 => 0.063557116268258
903 => 0.064499863867763
904 => 0.062366814527838
905 => 0.063179051792815
906 => 0.063543691269713
907 => 0.064079090205458
908 => 0.06498239795334
909 => 0.065963629758087
910 => 0.066102386693937
911 => 0.066003932007821
912 => 0.065356783255664
913 => 0.066430458804948
914 => 0.067059392760928
915 => 0.067433908538817
916 => 0.06838361823806
917 => 0.063545943158985
918 => 0.060121596289963
919 => 0.059586835078197
920 => 0.060674293030769
921 => 0.060961047020548
922 => 0.060845456846827
923 => 0.056991043117747
924 => 0.059566542387603
925 => 0.062337563047839
926 => 0.062444009236735
927 => 0.063831240118559
928 => 0.064282979358196
929 => 0.065399882046572
930 => 0.065330019479314
1001 => 0.06560196751013
1002 => 0.065539451367329
1003 => 0.067608278405937
1004 => 0.06989050185331
1005 => 0.069811475712354
1006 => 0.069483379089752
1007 => 0.069970658523103
1008 => 0.07232615769872
1009 => 0.072109301080735
1010 => 0.072319958813305
1011 => 0.075097225091473
1012 => 0.078708066314614
1013 => 0.077030468043934
1014 => 0.080670373575411
1015 => 0.082961501164375
1016 => 0.086923769422474
1017 => 0.086427673921977
1018 => 0.087970155878387
1019 => 0.085539559437833
1020 => 0.079958418705733
1021 => 0.07907518182113
1022 => 0.080843444431226
1023 => 0.085190545513604
1024 => 0.080706538748123
1025 => 0.081613647476797
1026 => 0.081352400101914
1027 => 0.081338479339536
1028 => 0.081869778219658
1029 => 0.081099101483355
1030 => 0.077959225817561
1031 => 0.079398212331791
1101 => 0.078842550532839
1102 => 0.079459098726108
1103 => 0.082786355041363
1104 => 0.081315295712505
1105 => 0.079765654208708
1106 => 0.081709248547448
1107 => 0.084184112032138
1108 => 0.084029239523024
1109 => 0.083728722123654
1110 => 0.08542272296932
1111 => 0.088220716070681
1112 => 0.088977002362733
1113 => 0.089535277441932
1114 => 0.089612254143219
1115 => 0.090405162007227
1116 => 0.086141496583946
1117 => 0.092908043109387
1118 => 0.094076438772256
1119 => 0.093856828812675
1120 => 0.095155451418348
1121 => 0.094773363704883
1122 => 0.094219778555798
1123 => 0.096278371610739
1124 => 0.093918360793143
1125 => 0.090568622554665
1126 => 0.088730889906726
1127 => 0.091150964503196
1128 => 0.092628819610296
1129 => 0.093605587826851
1130 => 0.093901157299001
1201 => 0.086472472793656
1202 => 0.082468823859006
1203 => 0.085035116924188
1204 => 0.088166171579797
1205 => 0.086124103417243
1206 => 0.086204148623069
1207 => 0.083292696069339
1208 => 0.088423770527981
1209 => 0.087676216138486
1210 => 0.091554529633587
1211 => 0.090628938992571
1212 => 0.093791553092564
1213 => 0.092958730809295
1214 => 0.096415729544676
1215 => 0.097794819934724
1216 => 0.10011052733789
1217 => 0.10181397113029
1218 => 0.10281426590687
1219 => 0.1027542119605
1220 => 0.1067178782102
1221 => 0.1043806427027
1222 => 0.10144452406117
1223 => 0.10139141893828
1224 => 0.10291207638785
1225 => 0.10609895723016
1226 => 0.10692526906534
1227 => 0.10738706465367
1228 => 0.10667980863492
1229 => 0.10414290700271
1230 => 0.1030474857403
1231 => 0.10398081639328
]
'min_raw' => 0.038485709748818
'max_raw' => 0.10738706465367
'avg_raw' => 0.072936387201244
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.038485'
'max' => '$0.107387'
'avg' => '$0.072936'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.015235916216487
'max_diff' => 0.055483538427626
'year' => 2036
]
11 => [
'items' => [
101 => 0.10283943320671
102 => 0.1048097808023
103 => 0.10751548889458
104 => 0.10695677087305
105 => 0.10882448145133
106 => 0.11075736541096
107 => 0.11352147628448
108 => 0.11424411722155
109 => 0.11543861521095
110 => 0.11666814601419
111 => 0.11706303817141
112 => 0.11781700982738
113 => 0.11781303602458
114 => 0.12008518035799
115 => 0.12259142592019
116 => 0.1235374756002
117 => 0.1257128646739
118 => 0.12198758711991
119 => 0.12481325293751
120 => 0.127362074236
121 => 0.12432326440838
122 => 0.12851155580387
123 => 0.12867417766789
124 => 0.13112957474094
125 => 0.12864055941024
126 => 0.12716259005209
127 => 0.13142943221028
128 => 0.13349402272636
129 => 0.13287215126072
130 => 0.12813967870163
131 => 0.12538517668695
201 => 0.11817611361076
202 => 0.12671556023285
203 => 0.1308748755834
204 => 0.12812890707969
205 => 0.12951381386952
206 => 0.13706941625726
207 => 0.13994610045748
208 => 0.13934777025338
209 => 0.13944887820852
210 => 0.14100108478745
211 => 0.1478844235742
212 => 0.14375976741863
213 => 0.14691291250164
214 => 0.14858532928416
215 => 0.15013876319657
216 => 0.14632402047553
217 => 0.14136109624517
218 => 0.13978912981203
219 => 0.12785587462912
220 => 0.12723469687335
221 => 0.12688601097543
222 => 0.1246875957116
223 => 0.12296024351085
224 => 0.12158658890834
225 => 0.11798170902337
226 => 0.11919825016219
227 => 0.11345282402244
228 => 0.11712854406125
301 => 0.10795870521406
302 => 0.11559561948923
303 => 0.11143919425714
304 => 0.11423012201379
305 => 0.11422038472977
306 => 0.10908140186532
307 => 0.10611734379694
308 => 0.10800615696098
309 => 0.110031114607
310 => 0.11035965717229
311 => 0.11298506761716
312 => 0.11371776323932
313 => 0.1114976612979
314 => 0.10776868068586
315 => 0.10863483783305
316 => 0.10609979115
317 => 0.10165721934712
318 => 0.10484795197581
319 => 0.10593740838186
320 => 0.10641857439573
321 => 0.10204981526041
322 => 0.10067705628972
323 => 0.099946210932292
324 => 0.10720472874202
325 => 0.10760236673282
326 => 0.10556799455157
327 => 0.1147635497179
328 => 0.11268231237653
329 => 0.11500756440237
330 => 0.10855624315057
331 => 0.10880269231024
401 => 0.10574853344263
402 => 0.10745865832953
403 => 0.10624999717937
404 => 0.10732049713845
405 => 0.10796215040008
406 => 0.11101580811028
407 => 0.11563048735513
408 => 0.11055969347889
409 => 0.10835027597191
410 => 0.109720986167
411 => 0.11337136804662
412 => 0.11890188345385
413 => 0.11562770702078
414 => 0.11708073092265
415 => 0.11739815200468
416 => 0.11498389551953
417 => 0.11899090053412
418 => 0.12113828707429
419 => 0.12334106132547
420 => 0.12525366848744
421 => 0.1224612248495
422 => 0.12544953982316
423 => 0.123041485463
424 => 0.12088121176185
425 => 0.12088448800533
426 => 0.11952931675603
427 => 0.11690350169796
428 => 0.11641926111402
429 => 0.11893834178452
430 => 0.12095840592443
501 => 0.12112478808245
502 => 0.12224319938495
503 => 0.12290506367321
504 => 0.1293922334591
505 => 0.13200142681166
506 => 0.13519189905367
507 => 0.1364347677971
508 => 0.14017535712171
509 => 0.13715452744628
510 => 0.13650095194409
511 => 0.12742750578003
512 => 0.12891328208109
513 => 0.13129215329518
514 => 0.12746673249015
515 => 0.12989308150045
516 => 0.13037209419218
517 => 0.12733674615501
518 => 0.12895805669131
519 => 0.12465233659198
520 => 0.11572434028712
521 => 0.11900083994621
522 => 0.12141344655316
523 => 0.11797035945279
524 => 0.12414195981434
525 => 0.12053663829081
526 => 0.11939392445381
527 => 0.11493579036876
528 => 0.11703985804759
529 => 0.11988563971054
530 => 0.11812727750046
531 => 0.1217761431058
601 => 0.12694390991986
602 => 0.13062676829739
603 => 0.13090949243338
604 => 0.12854166122898
605 => 0.13233612584533
606 => 0.13236376437755
607 => 0.12808359278946
608 => 0.12546201152385
609 => 0.12486638274444
610 => 0.12635438021529
611 => 0.12816108384438
612 => 0.13100975191078
613 => 0.1327311423621
614 => 0.13721961570421
615 => 0.13843406789597
616 => 0.13976838265581
617 => 0.1415514386624
618 => 0.14369245456448
619 => 0.13900803365883
620 => 0.13919415443426
621 => 0.13483208654714
622 => 0.13017059142594
623 => 0.13370808515936
624 => 0.13833288764274
625 => 0.1372719528431
626 => 0.13715257600521
627 => 0.13735333473417
628 => 0.13655342454213
629 => 0.13293546038961
630 => 0.13111854144186
701 => 0.13346283042991
702 => 0.13470871569476
703 => 0.13664097508793
704 => 0.13640278333267
705 => 0.14138007601997
706 => 0.14331410145273
707 => 0.14281929498542
708 => 0.14291035128359
709 => 0.14641181194851
710 => 0.15030615633821
711 => 0.15395372376317
712 => 0.15766418601451
713 => 0.15319107894872
714 => 0.1509199110436
715 => 0.15326317658841
716 => 0.15201980690648
717 => 0.15916457790625
718 => 0.15965926634849
719 => 0.16680352069999
720 => 0.17358426880155
721 => 0.16932540240868
722 => 0.1733413215936
723 => 0.17768486561478
724 => 0.18606426674627
725 => 0.18324237923607
726 => 0.18108085762788
727 => 0.17903823015252
728 => 0.18328861367075
729 => 0.18875666416541
730 => 0.18993442986962
731 => 0.19184286025157
801 => 0.18983637905672
802 => 0.19225296464927
803 => 0.2007845736925
804 => 0.19847925761842
805 => 0.19520533819518
806 => 0.20194022415037
807 => 0.20437755319634
808 => 0.22148400488013
809 => 0.24308160676319
810 => 0.2341400577661
811 => 0.22858974976163
812 => 0.22989420379775
813 => 0.23778091688048
814 => 0.24031387881089
815 => 0.23342841511969
816 => 0.23586047729856
817 => 0.24926137901918
818 => 0.2564505328399
819 => 0.24668669631919
820 => 0.21974865859794
821 => 0.19491055757185
822 => 0.20149874043823
823 => 0.2007518449563
824 => 0.21514944205858
825 => 0.19842427659247
826 => 0.19870588548484
827 => 0.21340120964788
828 => 0.20948074910282
829 => 0.20313010511447
830 => 0.194956924301
831 => 0.1798480436396
901 => 0.16646568669548
902 => 0.19271157043564
903 => 0.19157980020372
904 => 0.18994082918895
905 => 0.19358818182713
906 => 0.21129869091903
907 => 0.21089040636114
908 => 0.20829310831244
909 => 0.21026313599084
910 => 0.2027847497375
911 => 0.20471210015468
912 => 0.19490662308974
913 => 0.19933910823599
914 => 0.20311647948469
915 => 0.2038748426878
916 => 0.2055834737074
917 => 0.19098340871953
918 => 0.1975384092637
919 => 0.2013888579629
920 => 0.18399239065937
921 => 0.20104498573822
922 => 0.19072925407031
923 => 0.18722793980513
924 => 0.19194199820011
925 => 0.19010492505902
926 => 0.18852551744885
927 => 0.18764418086472
928 => 0.19110566507835
929 => 0.19094418270242
930 => 0.18528052268377
1001 => 0.17789250906976
1002 => 0.1803721689419
1003 => 0.17947128526342
1004 => 0.17620636659628
1005 => 0.17840652757015
1006 => 0.16871813211723
1007 => 0.15204975129946
1008 => 0.16306139423399
1009 => 0.16263745795938
1010 => 0.16242369006574
1011 => 0.17069863539158
1012 => 0.16990319033397
1013 => 0.16845944976539
1014 => 0.17617985116855
1015 => 0.17336180080234
1016 => 0.18204636801482
1017 => 0.18776658566354
1018 => 0.18631575343817
1019 => 0.19169564578501
1020 => 0.18042929529715
1021 => 0.18417152500169
1022 => 0.18494279335729
1023 => 0.17608458261364
1024 => 0.17003333498283
1025 => 0.16962978575513
1026 => 0.1591377562766
1027 => 0.16474251373533
1028 => 0.16967446835838
1029 => 0.16731244482908
1030 => 0.16656469874315
1031 => 0.17038477132984
1101 => 0.17068162368653
1102 => 0.16391335849488
1103 => 0.16532069515131
1104 => 0.17118952295886
1105 => 0.16517281574842
1106 => 0.15348333646208
1107 => 0.15058418397937
1108 => 0.15019738359619
1109 => 0.1423346521284
1110 => 0.1507779192111
1111 => 0.14709220686401
1112 => 0.15873532800685
1113 => 0.15208483965337
1114 => 0.15179815039261
1115 => 0.15136477752681
1116 => 0.14459699974714
1117 => 0.14607871296617
1118 => 0.15100415337753
1119 => 0.15276160600536
1120 => 0.15257828929789
1121 => 0.15098001603245
1122 => 0.15171169734889
1123 => 0.14935469689398
1124 => 0.14852239097662
1125 => 0.14589540455768
1126 => 0.14203446024536
1127 => 0.14257134823254
1128 => 0.13492180727879
1129 => 0.13075393137533
1130 => 0.12960031825697
1201 => 0.12805765858229
1202 => 0.12977456577208
1203 => 0.13490013709038
1204 => 0.1287176106299
1205 => 0.1181181026672
1206 => 0.11875515115644
1207 => 0.12018640997037
1208 => 0.11751926863934
1209 => 0.11499504320572
1210 => 0.11718965242337
1211 => 0.11269850116873
1212 => 0.12072914414277
1213 => 0.12051193775594
1214 => 0.12350526484503
1215 => 0.12537705370309
1216 => 0.12106318638409
1217 => 0.1199782604193
1218 => 0.12059628355598
1219 => 0.1103817377702
1220 => 0.12267051853355
1221 => 0.1227767924199
1222 => 0.12186681088427
1223 => 0.12841020726721
1224 => 0.14221881457174
1225 => 0.13702346105384
1226 => 0.13501166314131
1227 => 0.13118723383899
1228 => 0.13628305881219
1229 => 0.1358917789615
1230 => 0.13412226308821
1231 => 0.13305205436682
]
'min_raw' => 0.099946210932292
'max_raw' => 0.2564505328399
'avg_raw' => 0.17819837188609
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.099946'
'max' => '$0.25645'
'avg' => '$0.178198'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.061460501183473
'max_diff' => 0.14906346818623
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0031371973551875
]
1 => [
'year' => 2028
'avg' => 0.0053843413964013
]
2 => [
'year' => 2029
'avg' => 0.01470905026185
]
3 => [
'year' => 2030
'avg' => 0.011348010371642
]
4 => [
'year' => 2031
'avg' => 0.011145152528396
]
5 => [
'year' => 2032
'avg' => 0.019540959890864
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0031371973551875
'min' => '$0.003137'
'max_raw' => 0.019540959890864
'max' => '$0.01954'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.019540959890864
]
1 => [
'year' => 2033
'avg' => 0.050261358212511
]
2 => [
'year' => 2034
'avg' => 0.031858064282938
]
3 => [
'year' => 2035
'avg' => 0.037576659879187
]
4 => [
'year' => 2036
'avg' => 0.072936387201244
]
5 => [
'year' => 2037
'avg' => 0.17819837188609
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.019540959890864
'min' => '$0.01954'
'max_raw' => 0.17819837188609
'max' => '$0.178198'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.17819837188609
]
]
]
]
'prediction_2025_max_price' => '$0.005364'
'last_price' => 0.00520111
'sma_50day_nextmonth' => '$0.004178'
'sma_200day_nextmonth' => '$0.017922'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 feb. 2026'
'sma_50day_date_nextmonth' => '4 feb. 2026'
'daily_sma3' => '$0.004769'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.004227'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.003711'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.003258'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.003833'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.007738'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.023667'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.004767'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.004412'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.003914'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.003655'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.004866'
'daily_ema50_action' => 'BUY'
'daily_ema100' => '$0.009949'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.023377'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.013081'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '—'
'weekly_sma50_action' => '—'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.00449'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.004275'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.005771'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.013768'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.014285'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.007142'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.003571'
'weekly_ema200_action' => 'BUY'
'rsi_14' => '59.02'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 95.38
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.004184'
'vwma_10_action' => 'BUY'
'hma_9' => '0.005031'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 175.51
'cci_20_action' => 'SELL'
'adx_14' => 17.74
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.000430'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 67.99
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '0.000040'
'ichimoku_cloud_action' => 'NEUTRAL'
'sell_signals' => 10
'buy_signals' => 22
'sell_pct' => 31.25
'buy_pct' => 68.75
'overall_action' => 'bullish'
'overall_action_label' => 'Alcista'
'overall_action_dir' => 1
'last_updated' => 1767702240
'last_updated_date' => '6 de enero de 2026'
]
Predicción de precio de Zenko Protocol para 2026
La previsión del precio de Zenko Protocol para 2026 sugiere que el precio medio podría oscilar entre $0.001796 en el extremo inferior y $0.005364 en el extremo superior. En el mercado de criptomonedas, en comparación con el precio medio de hoy, Zenko Protocol podría potencialmente ganar 3.13% para 2026 si ZENKO alcanza el objetivo de precio previsto.
Predicción de precio de Zenko Protocol 2027-2032
La predicción del precio de ZENKO para 2027-2032 está actualmente dentro de un rango de precios de $0.003137 en el extremo inferior y $0.01954 en el extremo superior. Considerando la volatilidad de precios en el mercado, si Zenko Protocol alcanza el objetivo de precio superior, podría ganar 275.71% para 2032 en comparación con el precio de hoy.
| Predicción de Precio de Zenko Protocol | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.001729 | $0.003137 | $0.004544 |
| 2028 | $0.003121 | $0.005384 | $0.007646 |
| 2029 | $0.006858 | $0.014709 | $0.02256 |
| 2030 | $0.005832 | $0.011348 | $0.016863 |
| 2031 | $0.006895 | $0.011145 | $0.015394 |
| 2032 | $0.010525 | $0.01954 | $0.028555 |
Predicción de precio de Zenko Protocol 2032-2037
La predicción de precio de Zenko Protocol para 2032-2037 se estima actualmente entre $0.01954 en el extremo inferior y $0.178198 en el extremo superior. Comparado con el precio actual, Zenko Protocol podría potencialmente ganar 3326.16% para 2037 si alcanza el objetivo de precio superior. Tenga en cuenta que esta información es solo para fines generales y no debe considerarse como consejo de inversión a largo plazo.
| Predicción de Precio de Zenko Protocol | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.010525 | $0.01954 | $0.028555 |
| 2033 | $0.02446 | $0.050261 | $0.076062 |
| 2034 | $0.019664 | $0.031858 | $0.044051 |
| 2035 | $0.023249 | $0.037576 | $0.0519035 |
| 2036 | $0.038485 | $0.072936 | $0.107387 |
| 2037 | $0.099946 | $0.178198 | $0.25645 |
Zenko Protocol Histograma de precios potenciales
Pronóstico de precio de Zenko Protocol basado en análisis técnico
A fecha de 6 de enero de 2026, el sentimiento general de predicción de precio para Zenko Protocol es Alcista, con 22 indicadores técnicos mostrando señales alcistas y 10 indicando señales bajistas. La predicción de precio de ZENKO se actualizó por última vez el 6 de enero de 2026.
Promedios Móviles Simples de 50 y 200 días y el Índice de Fuerza Relativa de 14 días - RSI (14) de Zenko Protocol
Según nuestros indicadores técnicos, se proyecta que el SMA de 200 días de Zenko Protocol aumentar durante el próximo mes, alcanzando $0.017922 para el 4 feb. 2026. Se espera que el SMA de 50 días a corto plazo para Zenko Protocol alcance $0.004178 para el 4 feb. 2026.
El oscilador de momento del Índice de Fuerza Relativa (RSI) es una herramienta comúnmente utilizada para identificar si una criptomoneda está sobrevendida (por debajo de 30) o sobrecomprada (por encima de 70). Actualmente, el RSI se encuentra en 59.02, lo que sugiere que el mercado de ZENKO está en un estado NEUTRAL.
Promedios Móviles y Osciladores Populares de ZENKO para Sáb, 19 de Oct de 2024
Los promedios móviles (MA) son indicadores ampliamente utilizados en los mercados financieros, diseñados para suavizar los movimientos de precios durante un período establecido. Como indicadores rezagados, se basan en datos históricos de precios. La tabla a continuación resalta dos tipos: el promedio móvil simple (SMA) y el promedio móvil exponencial (EMA).
Promedio Móvil Simple Diario (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 3 | $0.004769 | BUY |
| SMA 5 | $0.004227 | BUY |
| SMA 10 | $0.003711 | BUY |
| SMA 21 | $0.003258 | BUY |
| SMA 50 | $0.003833 | BUY |
| SMA 100 | $0.007738 | SELL |
| SMA 200 | $0.023667 | SELL |
Promedio Móvil Exponencial Diario (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 3 | $0.004767 | BUY |
| EMA 5 | $0.004412 | BUY |
| EMA 10 | $0.003914 | BUY |
| EMA 21 | $0.003655 | BUY |
| EMA 50 | $0.004866 | BUY |
| EMA 100 | $0.009949 | SELL |
| EMA 200 | $0.023377 | SELL |
Promedio Móvil Simple Semanal (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 21 | $0.013081 | SELL |
| SMA 50 | — | — |
| SMA 100 | — | — |
| SMA 200 | — | — |
Promedio Móvil Exponencial Semanal (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 21 | $0.013768 | SELL |
| EMA 50 | $0.014285 | SELL |
| EMA 100 | $0.007142 | SELL |
| EMA 200 | $0.003571 | BUY |
Osciladores de Zenko Protocol
Un oscilador es una herramienta de análisis técnico que establece límites altos y bajos entre dos extremos, creando un indicador de tendencia que fluctúa dentro de estos límites. Los traders utilizan este indicador para identificar condiciones de sobrecompra o sobreventa a corto plazo.
| Período | Valor | Acción |
|---|---|---|
| RSI (14) | 59.02 | NEUTRAL |
| Stoch RSI (14) | 95.38 | SELL |
| Estocástico Rápido (14) | 100 | SELL |
| Índice de Canal de Materias Primas (20) | 175.51 | SELL |
| Índice Direccional Medio (14) | 17.74 | NEUTRAL |
| Oscilador Asombroso (5, 34) | 0.000430 | BUY |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Rango Percentil de Williams (14) | -0 | SELL |
| Oscilador Ultimate (7, 14, 28) | 67.99 | NEUTRAL |
| VWMA (10) | 0.004184 | BUY |
| Promedio Móvil de Hull (9) | 0.005031 | BUY |
| Nube Ichimoku B/L (9, 26, 52, 26) | 0.000040 | NEUTRAL |
Predicción de precios de Zenko Protocol basada en flujos de dinero globales
Definiciones de flujos de dinero globales utilizadas para la predicción de precios de Zenko Protocol
M0: El total de toda la moneda física, además de cuentas en el banco central que pueden cambiarse por moneda física.
M1: Medir M0 más la cantidad en cuentas a la vista, incluyendo cuentas "de cheques" o "corrientes".
M2: Medir M1 más la mayoría de cuentas de ahorro, cuentas del mercado monetario, y cuentas de certificados de depósito (CD) inferiores a 100 000 $.
Predicciones de precios de Zenko Protocol por parte de empresas de Internet o nichos tecnológicos
| Comparación | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook acción | $0.0073084 | $0.010269 | $0.01443 | $0.020277 | $0.028492 | $0.040037 |
| Amazon.com acción | $0.010852 | $0.022644 | $0.047248 | $0.098586 | $0.2057073 | $0.42922 |
| Apple acción | $0.007377 | $0.010464 | $0.014842 | $0.021053 | $0.029862 | $0.042357 |
| Netflix acción | $0.0082065 | $0.012948 | $0.02043 | $0.032236 | $0.050864 | $0.080256 |
| Google acción | $0.006735 | $0.008722 | $0.011295 | $0.014627 | $0.018942 | $0.02453 |
| Tesla acción | $0.01179 | $0.026728 | $0.06059 | $0.137354 | $0.311373 | $0.705859 |
| Kodak acción | $0.00390027 | $0.002924 | $0.002193 | $0.001644 | $0.001233 | $0.000924 |
| Nokia acción | $0.003445 | $0.002282 | $0.001512 | $0.0010016 | $0.000663 | $0.000439 |
Este cálculo muestra cuánto puede costar la criptomoneda si asumimos que su capitalización se comportará como la capitalización de algunas empresas de Internet o nichos tecnológicos. Si extrapola los datos, puede obtener una imagen potencial del precio futuro en 2024, 2025, 2026, 2027, 2028, 2029 y 2030.
Resumen de pronósticos y predicciones de Zenko Protocol
Podría preguntarse cosas como: "¿Debo invertir en Zenko Protocol ahora?", "¿Debería comprar ZENKO hoy?", "¿Será Zenko Protocol una buena o mala inversión a corto plazo?, ¿Lo será a largo plazo?".
Actualizamos el pronóstico de Zenko Protocol regularmente con valores actualizados. Aquí hay algunas predicciones similares. Hacemos un pronóstico de precios futuros para una gran cantidad de monedas digitales, como Zenko Protocol, con métodos de análisis técnico.
Si está tratando de encontrar criptomonedas que ofrezcan un buen rendimiento, debería explorar el máximo de fuentes de información disponibles acerca de Zenko Protocol a fin de tomar una decisión responsable sobre la inversión por sus propios medios.
El precio de Zenko Protocol es de $0.005201 USD hoy, pero dicho precio puede subir y bajar, y su inversión puede perderse porque estos son activos de criptomonedas conllevan un alto riesgo
Predicción de precios de Zenko Protocol basada en el patrón de crecimiento del Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si Zenko Protocol ofrece un 1 % del crecimiento medio anterior anual del Bitcoin | $0.005336 | $0.005475 | $0.005617 | $0.005763 |
| Si Zenko Protocol ofrece un 2 % del crecimiento medio anterior anual del Bitcoin | $0.005471 | $0.005755 | $0.006055 | $0.006369 |
| Si Zenko Protocol ofrece un 5 % del crecimiento medio anterior anual del Bitcoin | $0.005877 | $0.00664 | $0.0075039 | $0.008479 |
| Si Zenko Protocol ofrece un 10 % del crecimiento medio anterior anual del Bitcoin | $0.006553 | $0.008256 | $0.0104024 | $0.0131064 |
| Si Zenko Protocol ofrece un 20 % del crecimiento medio anterior anual del Bitcoin | $0.0079049 | $0.012014 | $0.01826 | $0.027753 |
| Si Zenko Protocol ofrece un 50 % del crecimiento medio anterior anual del Bitcoin | $0.01196 | $0.0275057 | $0.063253 | $0.145462 |
| Si Zenko Protocol ofrece un 100 % del crecimiento medio anterior anual del Bitcoin | $0.01872 | $0.06738 | $0.242525 | $0.872928 |
Cuadro de preguntas
¿Es ZENKO una buena inversión?
La decisión de adquirir Zenko Protocol depende completamente de su tolerancia individual al riesgo. Como puede discernir, el valor de Zenko Protocol ha experimentado un aumento de 10.8165% durante las últimas 24 horas, y Zenko Protocol ha sufrido un declive de durante el período previo de 30 días. Por lo tanto, la determinación de si invertir o no en Zenko Protocol dependerá de si dicha inversión se alinea con sus aspiraciones comerciales.
¿Puede Zenko Protocol subir?
Parece que el valor medio de Zenko Protocol podría potencialmente aumentar hasta $0.005364 para el final de este año. Mirando las perspectivas de Zenko Protocol en un horizonte de cinco años más extendido, la moneda digital podría potencialmente crecer hasta $0.016863. Sin embargo, dada la imprevisibilidad del mercado, es vital realizar una investigación exhaustiva antes de invertir cualquier fondo en un proyecto, red o activo en particular.
¿Cuál será el precio de Zenko Protocol la próxima semana?
Basado en nuestro nuevo pronóstico experimental de Zenko Protocol, el precio de Zenko Protocol aumentará en un 0.86% durante la próxima semana y alcanzará $0.005245 para el 13 de enero de 2026.
¿Cuál será el precio de Zenko Protocol el próximo mes?
Basado en nuestro nuevo pronóstico experimental de Zenko Protocol, el precio de Zenko Protocol disminuirá en un -11.62% durante el próximo mes y alcanzará $0.004596 para el 5 de febrero de 2026.
¿Hasta qué punto puede subir el precio de Zenko Protocol este año en 2026?
Según nuestra predicción más reciente sobre el valor de Zenko Protocol en 2026, se anticipa que ZENKO fluctúe dentro del rango de $0.001796 y $0.005364. Sin embargo, es crucial tener en cuenta que el mercado de criptomonedas es excepcionalmente inestable, y esta predicción de precios proyectada de Zenko Protocol no considera fluctuaciones de precios repentinas y extremas.
¿Dónde estará Zenko Protocol en 5 años?
El futuro de Zenko Protocol parece estar en una tendencia alcista, con un precio máximo de $0.016863 proyectada después de un período de cinco años. Basado en el pronóstico de Zenko Protocol para 2030, el valor de Zenko Protocol podría potencialmente alcanzar su punto más alto de aproximadamente $0.016863, mientras que su punto más bajo se anticipa que esté alrededor de $0.005832.
¿Cuánto será Zenko Protocol en 2026?
Basado en nuestra nueva simulación experimental de predicción de precios de Zenko Protocol, se espera que el valor de ZENKO en 2026 crezca en un 3.13% hasta $0.005364 si ocurre lo mejor. El precio estará entre $0.005364 y $0.001796 durante 2026.
¿Cuánto será Zenko Protocol en 2027?
Según nuestra última simulación experimental para la predicción de precios de Zenko Protocol, el valor de ZENKO podría disminuir en un -12.62% hasta $0.004544 en 2027, asumiendo las condiciones más favorables. Se proyecta que el precio fluctúe entre $0.004544 y $0.001729 a lo largo del año.
¿Cuánto será Zenko Protocol en 2028?
Nuestro nuevo modelo experimental de predicción de precios de Zenko Protocol sugiere que el valor de ZENKO en 2028 podría aumentar en un 47.02% , alcanzando $0.007646 en el mejor escenario. Se espera que el precio oscile entre $0.007646 y $0.003121 durante el año.
¿Cuánto será Zenko Protocol en 2029?
Basado en nuestro modelo de pronóstico experimental, el valor de Zenko Protocol podría experimentar un 333.75% crecimiento en 2029, potencialmente alcanzando $0.02256 bajo condiciones óptimas. El rango de precios previsto para 2029 se encuentra entre $0.02256 y $0.006858.
¿Cuánto será Zenko Protocol en 2030?
Usando nuestra nueva simulación experimental para las predicciones de precios de Zenko Protocol, se espera que el valor de ZENKO en 2030 aumente en un 224.23% , alcanzando $0.016863 en el mejor escenario. Se pronostica que el precio oscile entre $0.016863 y $0.005832 durante el transcurso de 2030.
¿Cuánto será Zenko Protocol en 2031?
Nuestra simulación experimental indica que el precio de Zenko Protocol podría crecer en un 195.98% en 2031, potencialmente alcanzando $0.015394 bajo condiciones ideales. Es probable que el precio fluctúe entre $0.015394 y $0.006895 durante el año.
¿Cuánto será Zenko Protocol en 2032?
Basado en los hallazgos de nuestra última predicción experimental de precios de Zenko Protocol, ZENKO podría experimentar un 449.04% aumento en valor, alcanzando $0.028555 si se desarrolla el escenario más positivo en 2032. Se espera que el precio se mantenga dentro de un rango de $0.028555 y $0.010525 a lo largo del año.
¿Cuánto será Zenko Protocol en 2033?
Según nuestra predicción experimental de precios de Zenko Protocol, se anticipa que el valor de ZENKO aumente en un 1362.43% en 2033, con el precio potencial más alto siendo $0.076062. A lo largo del año, el precio de ZENKO podría oscilar entre $0.076062 y $0.02446.
¿Cuánto será Zenko Protocol en 2034?
Los resultados de nuestra nueva simulación de predicción de precios de Zenko Protocol sugieren que ZENKO podría aumentar en un 746.96% en 2034, alcanzando potencialmente $0.044051 bajo las mejores circunstancias. El rango de precios previsto para el año está entre $0.044051 y $0.019664.
¿Cuánto será Zenko Protocol en 2035?
Basado en nuestra predicción experimental para el precio de Zenko Protocol, ZENKO podría crecer en un 897.93% , con el valor potencialmente alcanzando $0.0519035 en 2035. El rango de precios esperado para el año está entre $0.0519035 y $0.023249.
¿Cuánto será Zenko Protocol en 2036?
Nuestra reciente simulación de predicción de precios de Zenko Protocol sugiere que el valor de ZENKO podría aumentar en un 1964.7% en 2036, posiblemente alcanzando $0.107387 si las condiciones son óptimas. El rango de precios esperado para 2036 está entre $0.107387 y $0.038485.
¿Cuánto será Zenko Protocol en 2037?
Según la simulación experimental, el valor de Zenko Protocol podría aumentar en un 4830.69% en 2037, con un máximo de $0.25645 bajo condiciones favorables. Se espera que el precio caiga entre $0.25645 y $0.099946 durante el transcurso del año.
Predicciones relacionadas
¿Cómo leer y predecir los movimientos de precio de Zenko Protocol?
Los traders de Zenko Protocol utilizan indicadores y patrones de gráficos para predecir la dirección del mercado. También identifican niveles clave de soporte y resistencia para estimar cuándo una tendencia bajista podría desacelerar o una tendencia alcista podría estancarse.
Indicadores de predicción de precio de Zenko Protocol
Las medias móviles son herramientas populares para la predicción de precios de Zenko Protocol. Una media móvil simple (SMA) calcula el precio de cierre promedio de ZENKO durante un período específico, como una SMA de 12 días. Una media móvil exponencial (EMA) da más peso a los precios recientes, reaccionando más rápido a los cambios de precio.
Las medias móviles comúnmente utilizadas en el mercado de criptomonedas incluyen las de 50 días, 100 días y 200 días, que ayudan a identificar niveles clave de resistencia y soporte. Un movimiento de precio de ZENKO por encima de estas medias se considera alcista, mientras que una caída por debajo indica debilidad.
Los traders también utilizan RSI y niveles de retroceso de Fibonacci para evaluar la dirección futura de ZENKO.
¿Cómo leer gráficos de Zenko Protocol y predecir movimientos de precio?
La mayoría de los traders prefieren gráficos de velas sobre gráficos lineales simples porque proporcionan información más detallada. Las velas pueden representar la acción del precio de Zenko Protocol en diferentes marcos de tiempo, como 5 minutos para tendencias a corto plazo y semanal para tendencias a largo plazo. Las opciones populares incluyen gráficos de 1 hora, 4 horas y 1 día.
Por ejemplo, un gráfico de velas de 1 hora muestra los precios de apertura, cierre, máximo y mínimo de ZENKO dentro de cada hora. El color de la vela es crucial: el verde indica que el precio cerró más alto de lo que abrió, mientras que el rojo significa lo contrario. Algunos gráficos usan velas huecas y llenas para transmitir la misma información.
¿Qué afecta el precio de Zenko Protocol?
La acción del precio de Zenko Protocol está impulsada por la oferta y la demanda, influenciada por factores como reducciones a la mitad de recompensas de bloque, hard forks y actualizaciones de protocolo. Los eventos del mundo real, como regulaciones, adopción por empresas y gobiernos y hacks de exchanges de criptomonedas, también impactan el precio de ZENKO. La capitalización de mercado de Zenko Protocol puede cambiar rápidamente.
Los traders a menudo monitorean la actividad de las "ballenas" de ZENKO, grandes poseedores de Zenko Protocol, ya que sus acciones pueden influir significativamente en los movimientos de precios en el relativamente pequeño mercado de Zenko Protocol.
Patrones de predicción de precios alcistas y bajistas
Los traders a menudo identifican patrones de velas para obtener una ventaja en las predicciones de precios de criptomonedas. Ciertas formaciones indican tendencias alcistas, mientras que otras sugieren movimientos bajistas.
Patrones de velas alcistas comúnmente seguidos:
- Martillo
- Envolvente Alcista
- Línea Penetrante
- Estrella de la Mañana
- Tres Soldados Blancos
Patrones de velas bajistas comunes:
- Harami Bajista
- Cubierta de Nube Oscura
- Estrella de la Tarde
- Estrella Fugaz
- Hombre Colgado


