Prédiction du prix de Yieldwatch jusqu'à $0.014194 d'ici 2026
| Année | Prix min. | Prix max. |
|---|---|---|
| 2026 | $0.004755 | $0.014194 |
| 2027 | $0.004577 | $0.012025 |
| 2028 | $0.008261 | $0.020235 |
| 2029 | $0.018148 | $0.059699 |
| 2030 | $0.015434 | $0.044625 |
| 2031 | $0.018248 | $0.040737 |
| 2032 | $0.027854 | $0.075566 |
| 2033 | $0.064727 | $0.20128 |
| 2034 | $0.052037 | $0.116571 |
| 2035 | $0.061524 | $0.137349 |
Calculateur de profit d’investissement
Si vous ouvrez une position short de $10,000.00 sur Yieldwatch aujourd’hui et la fermez le Apr 06, 2026, notre prévision indique que vous pourriez gagner environ $3,955.00, soit un rendement de 39.55% sur les 90 prochains jours.
Prévision du prix à long terme de Yieldwatch pour 2027, 2028, 2029, 2030, 2031, 2032 et 2037
[
'name' => 'Yieldwatch'
'name_with_ticker' => 'Yieldwatch <small>WATCH</small>'
'name_lang' => 'Yieldwatch'
'name_lang_with_ticker' => 'Yieldwatch <small>WATCH</small>'
'name_with_lang' => 'Yieldwatch'
'name_with_lang_with_ticker' => 'Yieldwatch <small>WATCH</small>'
'image' => '/uploads/coins/yieldwatch.png?1717400748'
'price_for_sd' => 0.01376
'ticker' => 'WATCH'
'marketcap' => '$134.87K'
'low24h' => '$0.0136'
'high24h' => '$0.01383'
'volume24h' => '$11.11'
'current_supply' => '9.8M'
'max_supply' => '20M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.01376'
'change_24h_pct' => '0.6903%'
'ath_price' => '$3.61'
'ath_days' => 1769
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '4 mars 2021'
'ath_pct' => '-99.62%'
'fdv' => '$275.25K'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.678632'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.013881'
'next_week_prediction_price_date' => '13 janvier 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.012164'
'next_month_prediction_price_date' => '5 février 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.004755'
'current_year_max_price_prediction' => '$0.014194'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.015434'
'grand_prediction_max_price' => '$0.044625'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.014024249948431
107 => 0.014076611406935
108 => 0.014194584446589
109 => 0.013186517739384
110 => 0.013639110095635
111 => 0.013904965702764
112 => 0.012703820397846
113 => 0.013881222922062
114 => 0.013168969540757
115 => 0.012927220045456
116 => 0.013252703892805
117 => 0.01312586252095
118 => 0.013016811757804
119 => 0.012955959558238
120 => 0.01319495897339
121 => 0.013183809365007
122 => 0.012792759934031
123 => 0.012282651892536
124 => 0.012453860894987
125 => 0.012391659059304
126 => 0.01216623158259
127 => 0.012318142483678
128 => 0.011649203755635
129 => 0.010498329442448
130 => 0.011258632265973
131 => 0.011229361434317
201 => 0.01121460175367
202 => 0.011785948312323
203 => 0.011731026523916
204 => 0.011631342940163
205 => 0.012164400815401
206 => 0.011969827520299
207 => 0.012569456568571
208 => 0.012964411041338
209 => 0.012864237811605
210 => 0.013235694402223
211 => 0.01245780520461
212 => 0.012716188792559
213 => 0.012769441291932
214 => 0.012157822963965
215 => 0.011740012407729
216 => 0.011712149207017
217 => 0.010987723280344
218 => 0.011374705763011
219 => 0.011715234333335
220 => 0.011552147574234
221 => 0.011500519178381
222 => 0.011764277455961
223 => 0.011784773733066
224 => 0.011317456442978
225 => 0.011414626505601
226 => 0.011819841819918
227 => 0.011404416119356
228 => 0.010597311842565
301 => 0.010397138822832
302 => 0.010370432052078
303 => 0.0098275469466382
304 => 0.010410515341175
305 => 0.010156034014378
306 => 0.010959937476575
307 => 0.010500752130389
308 => 0.010480957567877
309 => 0.010451035183409
310 => 0.0099837515468552
311 => 0.010086056965836
312 => 0.010426135760084
313 => 0.010547479705133
314 => 0.010534822537523
315 => 0.010424469188463
316 => 0.010474988386562
317 => 0.010312248447429
318 => 0.010254781587782
319 => 0.010073400371232
320 => 0.0098068200907427
321 => 0.0098438897137766
322 => 0.009315724423603
323 => 0.0090279519416629
324 => 0.0089483003114422
325 => 0.0088417868226404
326 => 0.008960331293424
327 => 0.0093142281976964
328 => 0.0088873534477273
329 => 0.0081555066306872
330 => 0.0081994918713976
331 => 0.0082983136479387
401 => 0.0081141599211259
402 => 0.0079398738735483
403 => 0.008091401451643
404 => 0.007781308307497
405 => 0.0083357869229213
406 => 0.0083207898302824
407 => 0.008527465169385
408 => 0.0086567035003308
409 => 0.0083588509889073
410 => 0.0082839418877631
411 => 0.0083266135162037
412 => 0.0076213465503084
413 => 0.0084698298118534
414 => 0.0084771675303333
415 => 0.0084143375298505
416 => 0.0088661286726415
417 => 0.0098195489011217
418 => 0.0094608338599276
419 => 0.0093219285537578
420 => 0.0090578694651897
421 => 0.0094097125224294
422 => 0.0093826964652401
423 => 0.0092605196090947
424 => 0.0091866266652829
425 => 0.0093227766799374
426 => 0.0091697561717617
427 => 0.009142269483771
428 => 0.0089757300603588
429 => 0.0089162830632616
430 => 0.008872270873264
501 => 0.008823817776625
502 => 0.0089306932340511
503 => 0.0086884993868863
504 => 0.0083964373497612
505 => 0.0083721555515293
506 => 0.0084391997313252
507 => 0.0084095376726177
508 => 0.008372013541004
509 => 0.0083003697546644
510 => 0.0082791145736848
511 => 0.0083481836003208
512 => 0.0082702086962231
513 => 0.0083852649147321
514 => 0.0083539759896486
515 => 0.0081791985975969
516 => 0.0079613612562221
517 => 0.0079594220469546
518 => 0.0079124893490802
519 => 0.0078527135019589
520 => 0.0078360852287758
521 => 0.0080786402216606
522 => 0.0085807217978722
523 => 0.008482151170668
524 => 0.0085533785507473
525 => 0.0089037467644079
526 => 0.0090151182835909
527 => 0.0089360694172538
528 => 0.0088278624534899
529 => 0.0088326230107359
530 => 0.0092023989623926
531 => 0.0092254614349211
601 => 0.0092837328627647
602 => 0.0093586281150474
603 => 0.0089488244025738
604 => 0.0088133212927314
605 => 0.0087491124018618
606 => 0.0085513738699513
607 => 0.0087646179237963
608 => 0.0086403697456416
609 => 0.0086571350697969
610 => 0.0086462166304469
611 => 0.0086521788366336
612 => 0.0083356319348479
613 => 0.0084509649886433
614 => 0.0082592014174949
615 => 0.0080024515221982
616 => 0.0080015908065211
617 => 0.0080644299796576
618 => 0.0080270507805789
619 => 0.0079264643169652
620 => 0.0079407521493668
621 => 0.0078155757031649
622 => 0.0079559508363284
623 => 0.0079599762928612
624 => 0.0079059242203081
625 => 0.0081221914809818
626 => 0.0082107963541372
627 => 0.0081752181220751
628 => 0.0082083000905314
629 => 0.0084862472252481
630 => 0.0085315647358906
701 => 0.0085516917806113
702 => 0.008524724207008
703 => 0.0082133804539193
704 => 0.0082271898733046
705 => 0.0081258655165487
706 => 0.0080402571123875
707 => 0.008043680999597
708 => 0.0080876948476494
709 => 0.0082799059034721
710 => 0.0086844027389905
711 => 0.008699753098215
712 => 0.0087183581813968
713 => 0.008642681957931
714 => 0.0086198572848097
715 => 0.0086499689202046
716 => 0.0088018766641921
717 => 0.009192624624278
718 => 0.0090545081980049
719 => 0.0089422173935345
720 => 0.0090407267024385
721 => 0.0090255619664742
722 => 0.0088975563336848
723 => 0.0088939636419084
724 => 0.0086482799067092
725 => 0.008557456223754
726 => 0.0084815571562419
727 => 0.0083986773559139
728 => 0.0083495434321234
729 => 0.0084250354700346
730 => 0.0084423013923004
731 => 0.0082772367320326
801 => 0.0082547390287729
802 => 0.0083895343935158
803 => 0.0083302159791702
804 => 0.0083912264393506
805 => 0.0084053813894504
806 => 0.0084031021164682
807 => 0.0083411668792149
808 => 0.0083806425525048
809 => 0.0082872708169096
810 => 0.008185743078431
811 => 0.0081209747066832
812 => 0.0080644557120555
813 => 0.0080958157351782
814 => 0.0079840229788598
815 => 0.0079482582261698
816 => 0.0083672690826249
817 => 0.0086767969074141
818 => 0.0086722962502552
819 => 0.0086448996572754
820 => 0.0086041938773034
821 => 0.0087988987828465
822 => 0.0087310674870027
823 => 0.0087804204222235
824 => 0.0087929828155733
825 => 0.0088310053966925
826 => 0.0088445952012913
827 => 0.0088035173730675
828 => 0.0086656551643142
829 => 0.0083221156476464
830 => 0.0081621970752703
831 => 0.0081094212827317
901 => 0.008111339582555
902 => 0.0080584243097615
903 => 0.0080740102290954
904 => 0.0080530041630742
905 => 0.0080132237559434
906 => 0.0080933594071361
907 => 0.0081025942944209
908 => 0.0080838896758828
909 => 0.0080882952906655
910 => 0.0079334290380171
911 => 0.0079452031828541
912 => 0.0078796432482155
913 => 0.0078673515508076
914 => 0.0077016217449976
915 => 0.0074080073710859
916 => 0.0075706982360699
917 => 0.0073741905489666
918 => 0.0072997701102833
919 => 0.0076520648922575
920 => 0.0076167042672835
921 => 0.0075561822482222
922 => 0.0074666575681366
923 => 0.0074334519934527
924 => 0.0072317054332811
925 => 0.0072197851702301
926 => 0.0073197762130665
927 => 0.0072736337872792
928 => 0.0072088323459707
929 => 0.0069741280943678
930 => 0.0067102428076591
1001 => 0.0067182078457411
1002 => 0.0068021448456828
1003 => 0.0070462029934601
1004 => 0.0069508452528747
1005 => 0.006881662117976
1006 => 0.0068687061964468
1007 => 0.0070308766794428
1008 => 0.0072603818886488
1009 => 0.0073680605979186
1010 => 0.0072613542672832
1011 => 0.0071387757801262
1012 => 0.0071462365646654
1013 => 0.0071958698217146
1014 => 0.007201085575254
1015 => 0.0071212995813868
1016 => 0.0071437588713113
1017 => 0.0071096411561955
1018 => 0.0069002608015063
1019 => 0.0068964737748423
1020 => 0.0068450884590873
1021 => 0.006843532532148
1022 => 0.006756113291381
1023 => 0.006743882735297
1024 => 0.0065703065267854
1025 => 0.0066845549128649
1026 => 0.0066079230937922
1027 => 0.0064924208668311
1028 => 0.0064725082393675
1029 => 0.0064719096417408
1030 => 0.0065905046030045
1031 => 0.0066831690616932
1101 => 0.0066092561370939
1102 => 0.0065924275969045
1103 => 0.006772112379076
1104 => 0.0067492458526815
1105 => 0.0067294435882972
1106 => 0.0072398322143995
1107 => 0.0068358197907184
1108 => 0.0066596473137704
1109 => 0.0064416004193014
1110 => 0.0065125975876284
1111 => 0.0065275577341603
1112 => 0.0060031942588691
1113 => 0.0057904600622487
1114 => 0.0057174577026877
1115 => 0.0056754438126585
1116 => 0.005694590069922
1117 => 0.0055031043417312
1118 => 0.0056317859179571
1119 => 0.0054659754632295
1120 => 0.0054381768009005
1121 => 0.0057346664339272
1122 => 0.0057759212342956
1123 => 0.0055999154390623
1124 => 0.005712939652352
1125 => 0.0056719555014591
1126 => 0.0054688178075709
1127 => 0.0054610594418441
1128 => 0.0053591320876862
1129 => 0.0051996355154541
1130 => 0.0051267413020796
1201 => 0.0050887773628576
1202 => 0.005104442024083
1203 => 0.0050965214920209
1204 => 0.0050448346626612
1205 => 0.0050994841205773
1206 => 0.0049598773383168
1207 => 0.0049042847927323
1208 => 0.0048791749296291
1209 => 0.0047552658749062
1210 => 0.004952460283577
1211 => 0.0049913100662749
1212 => 0.0050302363950459
1213 => 0.0053690635108647
1214 => 0.0053521366656739
1215 => 0.0055051471024909
1216 => 0.0054992013982843
1217 => 0.0054555603430994
1218 => 0.0052714459098792
1219 => 0.0053448306414366
1220 => 0.0051189638442224
1221 => 0.0052881986061446
1222 => 0.0052109669282159
1223 => 0.0052620864981488
1224 => 0.0051701689021437
1225 => 0.0052210398949574
1226 => 0.0050005227909845
1227 => 0.0047946070220539
1228 => 0.0048774735385276
1229 => 0.0049675589188701
1230 => 0.0051628869767808
1231 => 0.0050465511969107
]
'min_raw' => 0.0047552658749062
'max_raw' => 0.014194584446589
'avg_raw' => 0.0094749251607475
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.004755'
'max' => '$0.014194'
'avg' => '$0.009474'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0090081741250938
'max_diff' => 0.00043114444658873
'year' => 2026
]
1 => [
'items' => [
101 => 0.0050883899424948
102 => 0.0049482371485093
103 => 0.0046590619018508
104 => 0.0046606986023425
105 => 0.0046162152906693
106 => 0.0045777752147138
107 => 0.005059913760679
108 => 0.0049999522110057
109 => 0.004904411329175
110 => 0.0050322965961491
111 => 0.0050661114905492
112 => 0.0050670741530546
113 => 0.0051603759426425
114 => 0.0052101711244708
115 => 0.0052189477410927
116 => 0.0053657601229278
117 => 0.0054149696968168
118 => 0.0056176569672659
119 => 0.0052059463511923
120 => 0.0051974674419879
121 => 0.0050340962041154
122 => 0.0049304835822596
123 => 0.0050411906489783
124 => 0.0051392619970695
125 => 0.0050371435542734
126 => 0.0050504780670646
127 => 0.0049133924009942
128 => 0.0049623940761342
129 => 0.0050046009200034
130 => 0.0049812967816224
131 => 0.0049464093585332
201 => 0.005131221264917
202 => 0.0051207934528751
203 => 0.005292894548907
204 => 0.0054270596603314
205 => 0.0056675075248862
206 => 0.0054165876433926
207 => 0.0054074431255948
208 => 0.0054968322538953
209 => 0.005414956011807
210 => 0.005466698970535
211 => 0.0056591709342921
212 => 0.0056632375635929
213 => 0.005595116283248
214 => 0.0055909710971481
215 => 0.0056040545342035
216 => 0.0056806846336907
217 => 0.0056539077223248
218 => 0.0056848946420659
219 => 0.0057236442596907
220 => 0.0058839291076844
221 => 0.0059225732418939
222 => 0.0058286880304512
223 => 0.0058371648138564
224 => 0.0058020491675701
225 => 0.0057681278932554
226 => 0.0058443779641107
227 => 0.0059837264672976
228 => 0.0059828595874915
301 => 0.006015185731683
302 => 0.0060353246517101
303 => 0.0059488736643633
304 => 0.0058925972504915
305 => 0.0059141772085312
306 => 0.0059486840313871
307 => 0.0059029871109504
308 => 0.0056209245491428
309 => 0.005706484312169
310 => 0.0056922429839428
311 => 0.0056719616007439
312 => 0.0057579926040809
313 => 0.005749694703935
314 => 0.0055011403788196
315 => 0.005517052020281
316 => 0.0055021080184379
317 => 0.005550395145648
318 => 0.0054123483484728
319 => 0.0054548106135245
320 => 0.005481442548106
321 => 0.0054971289621706
322 => 0.0055537990460469
323 => 0.0055471494657876
324 => 0.0055533856988015
325 => 0.0056374124728425
326 => 0.0060623910614354
327 => 0.0060855217083501
328 => 0.0059716179433054
329 => 0.0060171202507883
330 => 0.0059297657706819
331 => 0.0059884074184015
401 => 0.0060285285444349
402 => 0.0058472288907388
403 => 0.0058364935018719
404 => 0.0057487784787524
405 => 0.005795911563744
406 => 0.0057209194365336
407 => 0.0057393198814378
408 => 0.0056878706333638
409 => 0.0057804690364539
410 => 0.0058840084394458
411 => 0.0059101665815365
412 => 0.0058413557714841
413 => 0.0057915322101529
414 => 0.0057040584493566
415 => 0.0058495292630407
416 => 0.0058920693621047
417 => 0.0058493058180102
418 => 0.0058393965704416
419 => 0.0058206185642048
420 => 0.0058433804132341
421 => 0.0058918376795892
422 => 0.0058689861276414
423 => 0.0058840799802954
424 => 0.0058265577786913
425 => 0.0059489022832374
426 => 0.0061432148002649
427 => 0.0061438395467804
428 => 0.0061209878716542
429 => 0.0061116374585388
430 => 0.0061350846639739
501 => 0.0061478038110677
502 => 0.0062236277739627
503 => 0.006304989907109
504 => 0.006684671481423
505 => 0.006578058414676
506 => 0.0069149344947653
507 => 0.0071813597362317
508 => 0.0072612490167836
509 => 0.0071877546377569
510 => 0.0069363343371951
511 => 0.0069239984577856
512 => 0.007299726533738
513 => 0.0071935661428453
514 => 0.0071809387021482
515 => 0.0070466040675287
516 => 0.007126012474257
517 => 0.0071086446908545
518 => 0.0070812287950926
519 => 0.0072327345034926
520 => 0.0075163396646097
521 => 0.0074721371406172
522 => 0.0074391420069529
523 => 0.007294566935975
524 => 0.0073816334207149
525 => 0.0073506307131477
526 => 0.0074838380196607
527 => 0.0074049289621855
528 => 0.0071927618734727
529 => 0.0072265501816621
530 => 0.0072214431468519
531 => 0.0073265455613571
601 => 0.007294996425325
602 => 0.0072152826716961
603 => 0.0075153703330008
604 => 0.0074958843094509
605 => 0.0075235110357195
606 => 0.0075356731750078
607 => 0.0077183312463062
608 => 0.0077931604137108
609 => 0.0078101479447807
610 => 0.0078812298663195
611 => 0.0078083793618186
612 => 0.0080998333213517
613 => 0.0082936331976312
614 => 0.0085187417267803
615 => 0.0088476857913356
616 => 0.0089713718025111
617 => 0.0089490290316628
618 => 0.0091984306672219
619 => 0.0096465998624348
620 => 0.009039616839663
621 => 0.0096787714365116
622 => 0.009476422470544
623 => 0.0089966567123373
624 => 0.0089657654535755
625 => 0.0092906683952281
626 => 0.010011271849064
627 => 0.009830768856895
628 => 0.010011567087296
629 => 0.0098006563478698
630 => 0.009790182851962
701 => 0.010001323623444
702 => 0.010494665544695
703 => 0.010260297290554
704 => 0.009924272928789
705 => 0.010172388088398
706 => 0.0099574477751706
707 => 0.0094731270914639
708 => 0.0098306308296587
709 => 0.0095915782610481
710 => 0.0096613465093021
711 => 0.010163799452136
712 => 0.010103342984728
713 => 0.010181579251672
714 => 0.010043494288316
715 => 0.0099145011585426
716 => 0.0096737259026641
717 => 0.0096024442194752
718 => 0.0096221439122623
719 => 0.0096024344572858
720 => 0.0094677229144606
721 => 0.0094386319696135
722 => 0.0093901457870315
723 => 0.0094051736824476
724 => 0.0093140054740604
725 => 0.0094860587196001
726 => 0.0095179933181003
727 => 0.0096431993221541
728 => 0.00965619862485
729 => 0.010004895563944
730 => 0.0098128391495051
731 => 0.0099416871736638
801 => 0.0099301617936184
802 => 0.0090070546910946
803 => 0.0091342507051795
804 => 0.0093321277867874
805 => 0.0092429844297391
806 => 0.0091169565792058
807 => 0.0090151823327143
808 => 0.0088609839423287
809 => 0.0090780152156787
810 => 0.009363388261431
811 => 0.0096634361562275
812 => 0.010023924041909
813 => 0.0099434673423662
814 => 0.0096566970859548
815 => 0.0096695613901716
816 => 0.0097490834569228
817 => 0.0096460951551384
818 => 0.0096157218943717
819 => 0.0097449106373066
820 => 0.0097458002891783
821 => 0.0096272998014233
822 => 0.0094956081946439
823 => 0.009495056402003
824 => 0.0094716231525667
825 => 0.0098048250708872
826 => 0.0099880524354499
827 => 0.010009059157511
828 => 0.0099866385156823
829 => 0.0099952673308789
830 => 0.0098886513645793
831 => 0.010132343847557
901 => 0.010355980168627
902 => 0.010296040857287
903 => 0.010206183308714
904 => 0.010134607443149
905 => 0.010279179858074
906 => 0.010272742276015
907 => 0.010354026900458
908 => 0.010350339360371
909 => 0.01032300639844
910 => 0.010296041833433
911 => 0.010402953285749
912 => 0.010372164504427
913 => 0.010341327899624
914 => 0.010279480367844
915 => 0.010287886474592
916 => 0.010198044441191
917 => 0.010156479405648
918 => 0.0095314409995474
919 => 0.0093644103137182
920 => 0.0094169615677032
921 => 0.0094342628050077
922 => 0.0093615708364792
923 => 0.0094657924463145
924 => 0.0094495496188197
925 => 0.0095127409588658
926 => 0.0094732617530541
927 => 0.0094748819934315
928 => 0.0095909819198697
929 => 0.0096246862224391
930 => 0.0096075439421252
1001 => 0.0096195498076541
1002 => 0.0098962199114076
1003 => 0.0098568862700657
1004 => 0.0098359910570514
1005 => 0.0098417791738568
1006 => 0.0099124743172397
1007 => 0.0099322650975752
1008 => 0.0098484101706203
1009 => 0.0098879566389318
1010 => 0.010056340481808
1011 => 0.010115265297115
1012 => 0.010303325022057
1013 => 0.010223433908407
1014 => 0.010370077505119
1015 => 0.010820809926927
1016 => 0.011180886173778
1017 => 0.010849745176393
1018 => 0.011510979348302
1019 => 0.012025844999541
1020 => 0.012006083598293
1021 => 0.011916304862942
1022 => 0.011330144007418
1023 => 0.010790750048998
1024 => 0.011241975999094
1025 => 0.011243126266836
1026 => 0.01120436555755
1027 => 0.010963626121111
1028 => 0.011195988346995
1029 => 0.01121443241667
1030 => 0.011204108642326
1031 => 0.011019534280851
1101 => 0.010737723345924
1102 => 0.010792788528048
1103 => 0.010882986419668
1104 => 0.010712222993581
1105 => 0.010657653732025
1106 => 0.010759108371484
1107 => 0.011086016358735
1108 => 0.011024216297394
1109 => 0.011022602448039
1110 => 0.011287009317759
1111 => 0.011097751061613
1112 => 0.010793483076338
1113 => 0.010716651397255
1114 => 0.010443950696529
1115 => 0.010632306041847
1116 => 0.010639084615402
1117 => 0.010535924317716
1118 => 0.010801853965946
1119 => 0.010799403377422
1120 => 0.011051864000012
1121 => 0.011534473890524
1122 => 0.011391742398109
1123 => 0.011225761201573
1124 => 0.011243807959796
1125 => 0.011441736354306
1126 => 0.011322064328719
1127 => 0.011365099223503
1128 => 0.011441671215839
1129 => 0.01148786899999
1130 => 0.0112371608096
1201 => 0.011178708737661
1202 => 0.011059136312364
1203 => 0.011027942098529
1204 => 0.011125331343973
1205 => 0.011099672718611
1206 => 0.010638514902543
1207 => 0.010590321344906
1208 => 0.010591799372514
1209 => 0.010470614380357
1210 => 0.010285778179586
1211 => 0.010771516679214
1212 => 0.010732505079788
1213 => 0.01068943929328
1214 => 0.010694714606397
1215 => 0.010905557225881
1216 => 0.010783257858773
1217 => 0.011108410770701
1218 => 0.011041569107
1219 => 0.010973013206841
1220 => 0.010963536693176
1221 => 0.010937148520529
1222 => 0.010846653657918
1223 => 0.010737375673416
1224 => 0.010665220882552
1225 => 0.0098381025027112
1226 => 0.0099916108628834
1227 => 0.010168208238534
1228 => 0.010229168944939
1229 => 0.010124891438281
1230 => 0.01085077116946
1231 => 0.010983396391097
]
'min_raw' => 0.0045777752147138
'max_raw' => 0.012025844999541
'avg_raw' => 0.0083018101071275
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.004577'
'max' => '$0.012025'
'avg' => '$0.0083018'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00017749066019242
'max_diff' => -0.0021687394470476
'year' => 2027
]
2 => [
'items' => [
101 => 0.010581665943828
102 => 0.01050651857969
103 => 0.010855697818142
104 => 0.01064510005193
105 => 0.01073993221316
106 => 0.010534956950999
107 => 0.010951450858924
108 => 0.010948277873164
109 => 0.01078625233604
110 => 0.010923195210514
111 => 0.010899398016076
112 => 0.010716471583713
113 => 0.01095724995311
114 => 0.010957369376178
115 => 0.010801423319434
116 => 0.010619312466139
117 => 0.010586755346836
118 => 0.010562227930875
119 => 0.010733899972391
120 => 0.01088782058801
121 => 0.01117422869352
122 => 0.011246238496134
123 => 0.0115272975497
124 => 0.011359940567819
125 => 0.011434127750251
126 => 0.011514668431199
127 => 0.011553282595431
128 => 0.011490362886965
129 => 0.011926963285675
130 => 0.011963825736417
131 => 0.011976185397292
201 => 0.011828966199351
202 => 0.011959731304205
203 => 0.011898550642129
204 => 0.012057725728373
205 => 0.012082686414346
206 => 0.012061545601329
207 => 0.012069468517034
208 => 0.011696907098323
209 => 0.011677587823345
210 => 0.011414168138184
211 => 0.011521513606987
212 => 0.011320836398262
213 => 0.011384473208353
214 => 0.011412523707887
215 => 0.011397871718782
216 => 0.011527582758733
217 => 0.01141730187656
218 => 0.01112625249665
219 => 0.01083512382053
220 => 0.01083146893715
221 => 0.010754819895575
222 => 0.010699416677489
223 => 0.010710089302828
224 => 0.010747701026571
225 => 0.010697230615731
226 => 0.010708001036799
227 => 0.010886861789461
228 => 0.010922731037831
229 => 0.01080083331685
301 => 0.010311396377354
302 => 0.010191287324743
303 => 0.010277619329894
304 => 0.010236358191925
305 => 0.0082615399758839
306 => 0.0087254942228501
307 => 0.0084498283637004
308 => 0.0085768678743729
309 => 0.0082954844155091
310 => 0.0084297753506496
311 => 0.0084049767184489
312 => 0.0091510014181663
313 => 0.0091393532686036
314 => 0.0091449286213929
315 => 0.0088788025062557
316 => 0.0093027486337807
317 => 0.0095115997408092
318 => 0.0094729469592904
319 => 0.0094826750316572
320 => 0.0093155145177502
321 => 0.0091465471005623
322 => 0.0089591362310019
323 => 0.0093073224619616
324 => 0.009268610096816
325 => 0.0093574023341906
326 => 0.0095832259938338
327 => 0.0096164793855369
328 => 0.0096611722812085
329 => 0.0096451530595672
330 => 0.010026795909503
331 => 0.0099805764422148
401 => 0.01009195206013
402 => 0.0098628439639899
403 => 0.0096035864060671
404 => 0.0096528627920601
405 => 0.0096481170798333
406 => 0.0095876987163113
407 => 0.0095331557192111
408 => 0.0094423569964336
409 => 0.0097296575909844
410 => 0.0097179937115181
411 => 0.0099068183623003
412 => 0.0098734417711297
413 => 0.0096505447266555
414 => 0.0096585055382049
415 => 0.00971204582171
416 => 0.0098973493542333
417 => 0.0099523600591128
418 => 0.0099268769088151
419 => 0.0099871936353814
420 => 0.010034865516748
421 => 0.0099931804897119
422 => 0.010583352566606
423 => 0.010338271973626
424 => 0.010457722549384
425 => 0.010486210807859
426 => 0.01041323873282
427 => 0.010429063762962
428 => 0.010453034371564
429 => 0.010598579213072
430 => 0.010980530990929
501 => 0.011149694833308
502 => 0.011658632599502
503 => 0.011135648131073
504 => 0.011104616397041
505 => 0.011196291457181
506 => 0.01149509180247
507 => 0.011737241417438
508 => 0.01181757641467
509 => 0.01182819401074
510 => 0.011978907806116
511 => 0.012065294142979
512 => 0.011960607187191
513 => 0.011871895953341
514 => 0.011554143324936
515 => 0.011590924056886
516 => 0.011844306826321
517 => 0.01220222491232
518 => 0.012509355865136
519 => 0.012401809310054
520 => 0.013222313609294
521 => 0.013303663259105
522 => 0.01329242336785
523 => 0.013477749976568
524 => 0.01310991439937
525 => 0.012952657563638
526 => 0.011891076329015
527 => 0.012189337354608
528 => 0.012622877271564
529 => 0.012565496637864
530 => 0.012250648361615
531 => 0.012509117024486
601 => 0.012423659201478
602 => 0.012356255070824
603 => 0.012665046460285
604 => 0.012325517643122
605 => 0.012619490211887
606 => 0.012242467351688
607 => 0.012402300573659
608 => 0.012311571506605
609 => 0.012370284332325
610 => 0.012027050352867
611 => 0.012212251076649
612 => 0.012019345393874
613 => 0.012019253931464
614 => 0.012014995527825
615 => 0.012241948208134
616 => 0.012249349126891
617 => 0.012081630753236
618 => 0.012057459915339
619 => 0.012146832171493
620 => 0.012042200666167
621 => 0.012091157088967
622 => 0.012043683506341
623 => 0.012032996202946
624 => 0.011947837951195
625 => 0.011911149434865
626 => 0.011925535947465
627 => 0.011876427363208
628 => 0.011846837664858
629 => 0.012009109392061
630 => 0.011922414154239
701 => 0.01199582210348
702 => 0.011912164480498
703 => 0.011622170711352
704 => 0.011455392228088
705 => 0.010907620880608
706 => 0.011062968155246
707 => 0.011165963559048
708 => 0.011131923578706
709 => 0.011205054628205
710 => 0.011209544280698
711 => 0.011185768631023
712 => 0.011158239474549
713 => 0.011144839803635
714 => 0.011244709972483
715 => 0.011302687966974
716 => 0.011176300525721
717 => 0.011146689716583
718 => 0.011274474397732
719 => 0.011352422979414
720 => 0.01192795151103
721 => 0.011885314498475
722 => 0.011992325032896
723 => 0.011980277288931
724 => 0.012092441377119
725 => 0.012275782257227
726 => 0.011902998985052
727 => 0.011967701271226
728 => 0.01195183776485
729 => 0.012125031367827
730 => 0.012125572059351
731 => 0.012021733842704
801 => 0.012078026224531
802 => 0.012046605361296
803 => 0.012103387107946
804 => 0.011884745055178
805 => 0.012151027474498
806 => 0.012301992447392
807 => 0.012304088596188
808 => 0.012375644795207
809 => 0.012448350037667
810 => 0.012587901419277
811 => 0.012444458025376
812 => 0.012186417323681
813 => 0.012205047028877
814 => 0.012053757859887
815 => 0.01205630105815
816 => 0.012042725266506
817 => 0.012083467239167
818 => 0.011893685627057
819 => 0.011938226992089
820 => 0.01187586882021
821 => 0.011967565716738
822 => 0.011868915014114
823 => 0.011951830114987
824 => 0.011987613523844
825 => 0.01211965507289
826 => 0.01184941236996
827 => 0.011298369204863
828 => 0.011414205158919
829 => 0.011242874684152
830 => 0.011258731971893
831 => 0.011290766216798
901 => 0.011186932748108
902 => 0.011206740901766
903 => 0.011206033215129
904 => 0.011199934754019
905 => 0.011172923658574
906 => 0.011133752226196
907 => 0.011289799156458
908 => 0.011316314570684
909 => 0.011375255051942
910 => 0.011550621944456
911 => 0.011533098656458
912 => 0.011561679866217
913 => 0.011499287245789
914 => 0.011261626186608
915 => 0.011274532325544
916 => 0.011113592566213
917 => 0.011371139460454
918 => 0.011310148956445
919 => 0.011270827981743
920 => 0.01126009888949
921 => 0.011435900482611
922 => 0.011488503074625
923 => 0.01145572466931
924 => 0.011388495203711
925 => 0.011517595652269
926 => 0.011552137485992
927 => 0.011559870128709
928 => 0.011788611370997
929 => 0.011572654223155
930 => 0.01162463725507
1001 => 0.012030194030861
1002 => 0.011662409998228
1003 => 0.011857233402876
1004 => 0.011847697811031
1005 => 0.011947362872385
1006 => 0.011839522366995
1007 => 0.011840859179305
1008 => 0.011929355001891
1009 => 0.011805078579375
1010 => 0.011774305989456
1011 => 0.011731793876882
1012 => 0.011824617519414
1013 => 0.01188026109506
1014 => 0.012328707449062
1015 => 0.012618424245386
1016 => 0.012605846875183
1017 => 0.01272078049498
1018 => 0.01266900184659
1019 => 0.012501794932423
1020 => 0.012787196746196
1021 => 0.012696883670599
1022 => 0.012704328970821
1023 => 0.012704051856375
1024 => 0.012764102156341
1025 => 0.012721551015286
1026 => 0.012637678348481
1027 => 0.01269335693888
1028 => 0.012858702446902
1029 => 0.013371939977224
1030 => 0.013659154498685
1031 => 0.013354649302395
1101 => 0.013564692909309
1102 => 0.01343874159135
1103 => 0.01341585249015
1104 => 0.013547775397392
1105 => 0.01367992921822
1106 => 0.01367151159115
1107 => 0.013575574703403
1108 => 0.013521382389823
1109 => 0.013931744744008
1110 => 0.014234092736231
1111 => 0.014213474630128
1112 => 0.014304476245099
1113 => 0.014571659801229
1114 => 0.014596087717148
1115 => 0.014593010361211
1116 => 0.014532463222816
1117 => 0.014795540131995
1118 => 0.015015003518029
1119 => 0.014518448309653
1120 => 0.014707530032618
1121 => 0.014792414909889
1122 => 0.014917051093932
1123 => 0.015127333227862
1124 => 0.015355755399891
1125 => 0.015388056799538
1126 => 0.015365137410724
1127 => 0.015214486847953
1128 => 0.015464429114231
1129 => 0.015610839431949
1130 => 0.01569802342561
1201 => 0.0159191075275
1202 => 0.014792939129993
1203 => 0.013995781164036
1204 => 0.013871293436552
1205 => 0.01412444412563
1206 => 0.014191197943501
1207 => 0.014164289563219
1208 => 0.013267015798103
1209 => 0.013866569475873
1210 => 0.014511638821249
1211 => 0.014536418561932
1212 => 0.014859353763991
1213 => 0.014964514703342
1214 => 0.015224519869084
1215 => 0.015208256475175
1216 => 0.015271563595448
1217 => 0.015257010384823
1218 => 0.015738615203813
1219 => 0.016269896838167
1220 => 0.016251500244541
1221 => 0.016175122223764
1222 => 0.016288556609006
1223 => 0.016836896191258
1224 => 0.016786413869487
1225 => 0.016835453145014
1226 => 0.017481976415555
1227 => 0.01832254863412
1228 => 0.017932018446525
1229 => 0.018779356581572
1230 => 0.019312711022118
1231 => 0.020235092377166
]
'min_raw' => 0.0082615399758839
'max_raw' => 0.020235092377166
'avg_raw' => 0.014248316176525
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.008261'
'max' => '$0.020235'
'avg' => '$0.014248'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0036837647611701
'max_diff' => 0.0082092473776248
'year' => 2028
]
3 => [
'items' => [
101 => 0.02011960568869
102 => 0.020478681981463
103 => 0.019912860413519
104 => 0.018613619722114
105 => 0.018408009909405
106 => 0.018819645961317
107 => 0.019831613028085
108 => 0.0187877755171
109 => 0.018998942486075
110 => 0.018938126384804
111 => 0.018934885753219
112 => 0.019058567480215
113 => 0.018879160684403
114 => 0.018148225123597
115 => 0.018483208583684
116 => 0.018353855382517
117 => 0.018497382403132
118 => 0.019271938538341
119 => 0.018929488807853
120 => 0.018568745835141
121 => 0.019021197578196
122 => 0.019597324126392
123 => 0.019561271162405
124 => 0.0194913133433
125 => 0.019885661906723
126 => 0.020537010200209
127 => 0.020713067026609
128 => 0.020843028576534
129 => 0.02086094807855
130 => 0.021045530086227
131 => 0.020052986110296
201 => 0.021628178890435
202 => 0.021900171169742
203 => 0.021849047894157
204 => 0.022151355865423
205 => 0.022062409191464
206 => 0.021933539416202
207 => 0.022412761853408
208 => 0.021863372000408
209 => 0.021083582270335
210 => 0.020655774201924
211 => 0.0212191463767
212 => 0.021563178104855
213 => 0.021790561192639
214 => 0.021859367177614
215 => 0.020130034473737
216 => 0.019198020059537
217 => 0.019795430613473
218 => 0.020524312720348
219 => 0.02004893713339
220 => 0.020067570956394
221 => 0.0193898102959
222 => 0.02058427949983
223 => 0.020410255383885
224 => 0.021313092805253
225 => 0.021097623408921
226 => 0.0218338522781
227 => 0.021639978543129
228 => 0.022444737577659
301 => 0.022765777744514
302 => 0.023304854150576
303 => 0.023701400949311
304 => 0.02393426081426
305 => 0.023920280781404
306 => 0.024842987576655
307 => 0.024298899616416
308 => 0.023615396906668
309 => 0.023603034499073
310 => 0.023957030237759
311 => 0.024698908192057
312 => 0.024891266351722
313 => 0.024998768320991
314 => 0.024834125312884
315 => 0.02424355682718
316 => 0.023988552349303
317 => 0.024205823552645
318 => 0.023940119541285
319 => 0.024398799208271
320 => 0.025028664359733
321 => 0.024898599696713
322 => 0.025333386364805
323 => 0.025783344825389
324 => 0.026426805632923
325 => 0.026595030115298
326 => 0.026873098787658
327 => 0.027159322792317
328 => 0.027251250228661
329 => 0.027426768228048
330 => 0.027425843161553
331 => 0.027954778466432
401 => 0.028538210487477
402 => 0.028758442568939
403 => 0.029264854096592
404 => 0.028397642102262
405 => 0.029055432361775
406 => 0.029648775641414
407 => 0.028941367322756
408 => 0.029916364885027
409 => 0.029954221830978
410 => 0.030525816769001
411 => 0.029946395794974
412 => 0.029602337470174
413 => 0.030595620962175
414 => 0.031076239555817
415 => 0.030931473324008
416 => 0.029829795151952
417 => 0.029188571202616
418 => 0.027510364444341
419 => 0.029498272842655
420 => 0.03046652503539
421 => 0.029827287612686
422 => 0.030149681786477
423 => 0.031908559862024
424 => 0.032578226754271
425 => 0.032438940722008
426 => 0.032462477768617
427 => 0.03282381786836
428 => 0.034426198864245
429 => 0.03346601502861
430 => 0.034200039593551
501 => 0.034589363576073
502 => 0.034950989388301
503 => 0.034062950686481
504 => 0.032907625383292
505 => 0.032541685362515
506 => 0.02976372804899
507 => 0.029619123306764
508 => 0.02953795228298
509 => 0.029026180459894
510 => 0.028624067993048
511 => 0.028304293229933
512 => 0.027465108758693
513 => 0.027748308883218
514 => 0.026410823987472
515 => 0.027266499426216
516 => 0.025131841237903
517 => 0.02690964800884
518 => 0.025942068610374
519 => 0.02659177215348
520 => 0.026589505399023
521 => 0.02539319518747
522 => 0.024703188423803
523 => 0.025142887589077
524 => 0.025614279997613
525 => 0.025690761829944
526 => 0.026301934392212
527 => 0.026472499517231
528 => 0.025955679225499
529 => 0.025087605191681
530 => 0.025289238991076
531 => 0.024699102321294
601 => 0.02366491050678
602 => 0.024407685123221
603 => 0.024661301034768
604 => 0.024773312269487
605 => 0.023756303397645
606 => 0.023436737129775
607 => 0.023266602730182
608 => 0.024956322117377
609 => 0.025048888759733
610 => 0.024575304729834
611 => 0.026715949452059
612 => 0.026231455623255
613 => 0.026772753933899
614 => 0.025270942837207
615 => 0.025328314043557
616 => 0.024617332602792
617 => 0.025015434701824
618 => 0.024734068969658
619 => 0.024983271986343
620 => 0.025132643247042
621 => 0.025843508022749
622 => 0.026917764942701
623 => 0.025737328530509
624 => 0.025222995481557
625 => 0.025542084812408
626 => 0.026391861749566
627 => 0.02767931730864
628 => 0.02691711770521
629 => 0.027255368946224
630 => 0.027329261794635
701 => 0.026767244025229
702 => 0.027700039705452
703 => 0.028199932488502
704 => 0.028712719045676
705 => 0.029157957245316
706 => 0.028507900818323
707 => 0.029203554377134
708 => 0.028642980408116
709 => 0.028140087606835
710 => 0.028140850287629
711 => 0.027825378287294
712 => 0.027214111534614
713 => 0.027101384566906
714 => 0.027687804488773
715 => 0.028158057731937
716 => 0.028196790041405
717 => 0.028457146399305
718 => 0.028611222610026
719 => 0.030121378931546
720 => 0.030728776296729
721 => 0.031471490297432
722 => 0.031760819257773
723 => 0.032631595698227
724 => 0.031928373001556
725 => 0.031776226347653
726 => 0.029664007531915
727 => 0.030009883244663
728 => 0.030563663632816
729 => 0.029673139166545
730 => 0.030237971969917
731 => 0.030349481930097
801 => 0.029642879485945
802 => 0.030020306381856
803 => 0.029017972445592
804 => 0.026939613083449
805 => 0.027702353513553
806 => 0.028263987205762
807 => 0.027462466678045
808 => 0.028899161200849
809 => 0.028059873920022
810 => 0.027793860144893
811 => 0.026756045567361
812 => 0.02724585409881
813 => 0.027908327150977
814 => 0.027498995825496
815 => 0.028348419787277
816 => 0.029551430650254
817 => 0.030408767831747
818 => 0.030474583534944
819 => 0.029923373164374
820 => 0.03080669130099
821 => 0.030813125309275
822 => 0.029816738842712
823 => 0.029206457679845
824 => 0.029067800515599
825 => 0.029414193297224
826 => 0.029834778081751
827 => 0.030497923063364
828 => 0.030898647687149
829 => 0.03194352497806
830 => 0.032226238814001
831 => 0.032536855606221
901 => 0.032951935431297
902 => 0.033450345185585
903 => 0.032359853017687
904 => 0.032403180304449
905 => 0.031387729096595
906 => 0.030302573850569
907 => 0.031126071415791
908 => 0.03220268493703
909 => 0.031955708605706
910 => 0.031927918723163
911 => 0.031974653597329
912 => 0.031788441509004
913 => 0.030946211134849
914 => 0.030523248313589
915 => 0.031068978262338
916 => 0.031359009442452
917 => 0.031808822509432
918 => 0.031753373554525
919 => 0.03291204370867
920 => 0.033362267894204
921 => 0.033247081281365
922 => 0.033268278390248
923 => 0.034083387772647
924 => 0.034989957045905
925 => 0.035839078802663
926 => 0.036702841924265
927 => 0.035661541767925
928 => 0.035132833767001
929 => 0.035678325467126
930 => 0.035388879892688
1001 => 0.037052120018542
1002 => 0.037167279156176
1003 => 0.038830399010838
1004 => 0.040408897793541
1005 => 0.039417470989869
1006 => 0.040352341810888
1007 => 0.041363480824957
1008 => 0.043314132034488
1009 => 0.042657221331855
1010 => 0.042154038028741
1011 => 0.041678532238662
1012 => 0.042667984303398
1013 => 0.043940898577797
1014 => 0.044215072120681
1015 => 0.044659338002508
1016 => 0.044192246750014
1017 => 0.044754806715229
1018 => 0.046740890593812
1019 => 0.046204233198171
1020 => 0.045442093424381
1021 => 0.047009915900998
1022 => 0.047577304760531
1023 => 0.051559536920581
1024 => 0.056587269520451
1025 => 0.054505755210233
1026 => 0.053213692107833
1027 => 0.053517357585044
1028 => 0.055353315331027
1029 => 0.055942966688651
1030 => 0.054340091033617
1031 => 0.054906253812606
1101 => 0.058025866388727
1102 => 0.059699438446661
1103 => 0.057426502801271
1104 => 0.051155563501576
1105 => 0.045373471076503
1106 => 0.046907142358647
1107 => 0.046733271630613
1108 => 0.050084906164061
1109 => 0.04619143409677
1110 => 0.046256990181017
1111 => 0.049677932967174
1112 => 0.048765284081634
1113 => 0.047286909770298
1114 => 0.045384264845042
1115 => 0.041867049727354
1116 => 0.038751754212818
1117 => 0.044861566126533
1118 => 0.044598099926841
1119 => 0.044216561826185
1120 => 0.045065633582461
1121 => 0.049188485017716
1122 => 0.049093439947766
1123 => 0.048488811705162
1124 => 0.048947416898228
1125 => 0.047206514062629
1126 => 0.047655184362984
1127 => 0.045372555163521
1128 => 0.046404398892694
1129 => 0.047283737842997
1130 => 0.047460278156106
1201 => 0.047858032495912
1202 => 0.044459265211601
1203 => 0.045985211939692
1204 => 0.046881562680572
1205 => 0.042831817423754
1206 => 0.046801512237769
1207 => 0.044400100234756
1208 => 0.043585024932935
1209 => 0.044682416448831
1210 => 0.044254761907838
1211 => 0.04388708964621
1212 => 0.04368192220681
1213 => 0.044487725421402
1214 => 0.044450133738298
1215 => 0.043131683279561
1216 => 0.041411818403054
1217 => 0.04198906150825
1218 => 0.04177934367645
1219 => 0.041019299199866
1220 => 0.041531477408963
1221 => 0.039276103783557
1222 => 0.035395850685167
1223 => 0.037959264737331
1224 => 0.03786057608478
1225 => 0.03781081279099
1226 => 0.03973714760363
1227 => 0.039551974959501
1228 => 0.039215884797189
1229 => 0.04101312664047
1230 => 0.040357109191358
1231 => 0.042378800392369
]
'min_raw' => 0.018148225123597
'max_raw' => 0.059699438446661
'avg_raw' => 0.038923831785129
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.018148'
'max' => '$0.059699'
'avg' => '$0.038923'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.0098866851477129
'max_diff' => 0.039464346069495
'year' => 2029
]
4 => [
'items' => [
101 => 0.043710416972144
102 => 0.043372675934229
103 => 0.044625067763769
104 => 0.042002360023527
105 => 0.042873518330064
106 => 0.043053062849668
107 => 0.040990948955102
108 => 0.039582271494149
109 => 0.039488328767602
110 => 0.037045876178021
111 => 0.038350614636587
112 => 0.039498730486379
113 => 0.038948872091718
114 => 0.03877480335052
115 => 0.039664082798394
116 => 0.039733187427657
117 => 0.038157594557076
118 => 0.038485210207407
119 => 0.039851421930857
120 => 0.038450785177314
121 => 0.035729576757894
122 => 0.035054679446228
123 => 0.034964635704026
124 => 0.033134260668007
125 => 0.035099779311741
126 => 0.034241777751126
127 => 0.03695219440067
128 => 0.035404018946707
129 => 0.035337280197185
130 => 0.035236394788838
131 => 0.033660915383496
201 => 0.034005845246326
202 => 0.035152444644676
203 => 0.035561564227374
204 => 0.035518889703081
205 => 0.035146825682099
206 => 0.035317154685628
207 => 0.034768465618701
208 => 0.034574712089194
209 => 0.033963172653963
210 => 0.033064378626253
211 => 0.03318936144843
212 => 0.031408615297287
213 => 0.030438370282793
214 => 0.030169819250404
215 => 0.029810701586375
216 => 0.030210382546132
217 => 0.03140357066718
218 => 0.029964332644215
219 => 0.027496860004652
220 => 0.027645159314658
221 => 0.027978343833783
222 => 0.027357456686631
223 => 0.026769839108959
224 => 0.027280724917823
225 => 0.026235224232323
226 => 0.028104687596687
227 => 0.028054123851791
228 => 0.028750944187187
301 => 0.029186680243103
302 => 0.02818244970544
303 => 0.027929888440946
304 => 0.028073758815472
305 => 0.025695901999789
306 => 0.028556622555297
307 => 0.028581362185455
308 => 0.028369526452177
309 => 0.029892771833147
310 => 0.033107294699143
311 => 0.031897861893073
312 => 0.031429532955262
313 => 0.030539239302138
314 => 0.031725502734519
315 => 0.031634416211505
316 => 0.031222488410895
317 => 0.030973353191793
318 => 0.031432392471891
319 => 0.030916473145026
320 => 0.030823799857406
321 => 0.030262300563961
322 => 0.030061870862791
323 => 0.029913480691381
324 => 0.029750117693175
325 => 0.030110455759693
326 => 0.029293882294543
327 => 0.028309174745255
328 => 0.028227306967215
329 => 0.028453351100272
330 => 0.028353343398401
331 => 0.028226828168815
401 => 0.027985276141161
402 => 0.027913612814499
403 => 0.028146483860048
404 => 0.027883586026848
405 => 0.02827150610052
406 => 0.028166013305078
407 => 0.027576739125208
408 => 0.026842285319845
409 => 0.026835747140409
410 => 0.026677510272789
411 => 0.026475971830803
412 => 0.026419908446817
413 => 0.027237699539977
414 => 0.028930502628391
415 => 0.02859816487679
416 => 0.028838312961664
417 => 0.030019603855949
418 => 0.030395100708585
419 => 0.030128581936714
420 => 0.029763754603615
421 => 0.029779805154742
422 => 0.031026530592685
423 => 0.031104287328985
424 => 0.031300753516341
425 => 0.031553268088432
426 => 0.030171586260245
427 => 0.029714728064887
428 => 0.029498243306398
429 => 0.028831554040399
430 => 0.029550521256161
501 => 0.029131609848782
502 => 0.029188135309689
503 => 0.02915132302912
504 => 0.029171425023546
505 => 0.028104165043577
506 => 0.028493018486744
507 => 0.027846474218113
508 => 0.026980824020415
509 => 0.026977922057416
510 => 0.027189788716937
511 => 0.02706376213751
512 => 0.026724627852714
513 => 0.026772800277201
514 => 0.026350759149291
515 => 0.02682404371143
516 => 0.026837615819179
517 => 0.026655375482771
518 => 0.027384535651431
519 => 0.027683273167468
520 => 0.027563318674078
521 => 0.027674856840438
522 => 0.028611975010784
523 => 0.028764766161883
524 => 0.028832625898384
525 => 0.028741702841165
526 => 0.0276919856403
527 => 0.0277385450619
528 => 0.027396922918857
529 => 0.02710828820724
530 => 0.027119832082015
531 => 0.027268227843672
601 => 0.027916280838126
602 => 0.029280070160143
603 => 0.029331824967997
604 => 0.029394553304909
605 => 0.029139405633949
606 => 0.029062450654953
607 => 0.029163974136014
608 => 0.029676141700728
609 => 0.030993575729309
610 => 0.030527906555148
611 => 0.030149310267983
612 => 0.030481441280653
613 => 0.030430312314581
614 => 0.029998732386564
615 => 0.029986619375406
616 => 0.029158279509091
617 => 0.028852061120901
618 => 0.02859616211568
619 => 0.028316727082391
620 => 0.028151068627911
621 => 0.028405595304414
622 => 0.028463808566801
623 => 0.027907281540262
624 => 0.027831428962983
625 => 0.028285900946325
626 => 0.028085904770879
627 => 0.028291605796992
628 => 0.02833933019952
629 => 0.028331645471527
630 => 0.028122826494947
701 => 0.028255921483548
702 => 0.027941112157982
703 => 0.027598804299261
704 => 0.02738043321193
705 => 0.027189875475513
706 => 0.027295607982958
707 => 0.026918690899909
708 => 0.0267981075392
709 => 0.028210831896142
710 => 0.029254426567961
711 => 0.029239252288124
712 => 0.029146882762124
713 => 0.029009640382961
714 => 0.029666101565862
715 => 0.029437403616095
716 => 0.029603800482904
717 => 0.029646155469161
718 => 0.029774351256056
719 => 0.029820170231071
720 => 0.029681673465252
721 => 0.029216861403208
722 => 0.0280585939376
723 => 0.027519417305676
724 => 0.027341480036444
725 => 0.027347947718229
726 => 0.027169540181579
727 => 0.027222089196788
728 => 0.027151265778601
729 => 0.02701714335858
730 => 0.027287326301469
731 => 0.027318462368708
801 => 0.027255398441392
802 => 0.027270252279223
803 => 0.026748109896002
804 => 0.026787807247365
805 => 0.026566767350482
806 => 0.026525325034492
807 => 0.025966555423319
808 => 0.024976614062174
809 => 0.025525137672181
810 => 0.024862598285384
811 => 0.024611684580494
812 => 0.025799471034356
813 => 0.025680250218456
814 => 0.025476196005679
815 => 0.025174357296357
816 => 0.025062402382971
817 => 0.024382199769857
818 => 0.024342009770734
819 => 0.024679136552809
820 => 0.024523564142706
821 => 0.024305081559042
822 => 0.023513759788235
823 => 0.022624052120215
824 => 0.022650906802209
825 => 0.022933906257807
826 => 0.023756765342634
827 => 0.023435260062585
828 => 0.023202004293062
829 => 0.023158322499073
830 => 0.023705091604876
831 => 0.024478884441255
901 => 0.024841930727446
902 => 0.024482162883711
903 => 0.024068880956104
904 => 0.024094035512073
905 => 0.024261377503498
906 => 0.024278962780708
907 => 0.024009958731905
908 => 0.024085681795943
909 => 0.023970651537407
910 => 0.023264711053103
911 => 0.023251942828304
912 => 0.023078693648627
913 => 0.02307344773232
914 => 0.022778707658658
915 => 0.02273747148491
916 => 0.02215224717921
917 => 0.022537443589444
918 => 0.022279074061178
919 => 0.021889650238871
920 => 0.021822513425122
921 => 0.021820495211431
922 => 0.022220346403367
923 => 0.022532771095462
924 => 0.02228356850974
925 => 0.02222682991156
926 => 0.022832649699842
927 => 0.022755553609613
928 => 0.022688788892692
929 => 0.024409599779792
930 => 0.023047443686104
1001 => 0.022453465880104
1002 => 0.021718305551854
1003 => 0.021957677461732
1004 => 0.022008116640249
1005 => 0.020240188573416
1006 => 0.019522940376883
1007 => 0.019276807824761
1008 => 0.019135155061211
1009 => 0.019199708004324
1010 => 0.018554100502622
1011 => 0.018987959421129
1012 => 0.018428917896498
1013 => 0.018335192765616
1014 => 0.01933482826361
1015 => 0.01947392170337
1016 => 0.018880505876409
1017 => 0.019261574902614
1018 => 0.019123393976456
1019 => 0.018438501058892
1020 => 0.018412343187172
1021 => 0.018068687996288
1022 => 0.017530934167312
1023 => 0.017285166237609
1024 => 0.017157168165964
1025 => 0.017209982664957
1026 => 0.017183278038116
1027 => 0.017009012284271
1028 => 0.017193266747138
1029 => 0.016722572733712
1030 => 0.016535138584927
1031 => 0.01645047892836
1101 => 0.016032710899308
1102 => 0.016697565615815
1103 => 0.016828550370586
1104 => 0.016959793205787
1105 => 0.018102172482924
1106 => 0.018045102442569
1107 => 0.018560987813145
1108 => 0.018540941456297
1109 => 0.018393802591819
1110 => 0.017773047925758
1111 => 0.018020469671762
1112 => 0.017258943995438
1113 => 0.017829530810853
1114 => 0.017569138816573
1115 => 0.017741492015656
1116 => 0.017431585423243
1117 => 0.017603100527214
1118 => 0.016859611715156
1119 => 0.016165352323627
1120 => 0.016444742569474
1121 => 0.016748471718859
1122 => 0.017407033903474
1123 => 0.017014799699337
1124 => 0.017155861951162
1125 => 0.016683327021084
1126 => 0.015708352487404
1127 => 0.015713870737383
1128 => 0.015563892146351
1129 => 0.015434288746467
1130 => 0.017059852516027
1201 => 0.016857687964921
1202 => 0.016535565211378
1203 => 0.016966739317645
1204 => 0.017080748594996
1205 => 0.017083994278844
1206 => 0.017398567776562
1207 => 0.017566455708685
1208 => 0.017596046684389
1209 => 0.01809103487986
1210 => 0.018256948393929
1211 => 0.018940322677421
1212 => 0.017552211590612
1213 => 0.017523624356251
1214 => 0.016972806821548
1215 => 0.016623469632959
1216 => 0.016996726237722
1217 => 0.017327380634934
1218 => 0.016983081175365
1219 => 0.017028039416227
1220 => 0.016565845522055
1221 => 0.016731058090977
1222 => 0.01687336141187
1223 => 0.016794789882275
1224 => 0.016677164499568
1225 => 0.017300270745096
1226 => 0.01726511264875
1227 => 0.017845363509737
1228 => 0.018297710550013
1229 => 0.019108397312893
1230 => 0.018262403413771
1231 => 0.018231572033566
]
'min_raw' => 0.015434288746467
'max_raw' => 0.044625067763769
'avg_raw' => 0.030029678255118
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.015434'
'max' => '$0.044625'
'avg' => '$0.030029'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0027139363771302
'max_diff' => -0.015074370682893
'year' => 2030
]
5 => [
'items' => [
101 => 0.01853295372058
102 => 0.018256902253963
103 => 0.018431357251892
104 => 0.019080289915663
105 => 0.019094000840274
106 => 0.018864325187515
107 => 0.018850349403171
108 => 0.01889446112466
109 => 0.019152824855224
110 => 0.019062544629049
111 => 0.019167019192394
112 => 0.019297666233628
113 => 0.01983807778937
114 => 0.019968369185904
115 => 0.019651828640669
116 => 0.01968040870775
117 => 0.0195620138546
118 => 0.01944764590994
119 => 0.019704728347438
120 => 0.020174551554935
121 => 0.020171628809145
122 => 0.020280618661226
123 => 0.020348518436152
124 => 0.020057042896497
125 => 0.019867303038034
126 => 0.01994006137323
127 => 0.020056403535678
128 => 0.019902333177968
129 => 0.018951339557855
130 => 0.01923981027249
131 => 0.019191794640077
201 => 0.019123414540621
202 => 0.019413474074865
203 => 0.019385497125182
204 => 0.018547478864547
205 => 0.018601126074649
206 => 0.018550741329078
207 => 0.018713544749767
208 => 0.018248110334971
209 => 0.018391274826213
210 => 0.018481066253037
211 => 0.018533954093246
212 => 0.018725021237614
213 => 0.018702601713511
214 => 0.018723627608517
215 => 0.019006929743759
216 => 0.020439774726257
217 => 0.02051776131726
218 => 0.020133726820905
219 => 0.020287141027453
220 => 0.019992619298879
221 => 0.020190333708395
222 => 0.020325604885984
223 => 0.01971434044561
224 => 0.019678145332525
225 => 0.01938240800801
226 => 0.019541320494786
227 => 0.019288479302113
228 => 0.019350517686786
301 => 0.019177052954832
302 => 0.019489254935865
303 => 0.019838345261942
304 => 0.019926539264304
305 => 0.019694538813995
306 => 0.019526555198397
307 => 0.019231631306649
308 => 0.019722096311433
309 => 0.019865523225482
310 => 0.019721342950912
311 => 0.019687933230893
312 => 0.019624621871827
313 => 0.019701365035011
314 => 0.019864742091706
315 => 0.019787696488869
316 => 0.019838586466911
317 => 0.019644646348131
318 => 0.020057139387029
319 => 0.020712277604654
320 => 0.020714383981149
321 => 0.020637337963008
322 => 0.020605812392365
323 => 0.020684866282521
324 => 0.02072774977497
325 => 0.020983395559731
326 => 0.021257713672156
327 => 0.022537836608477
328 => 0.022178383210453
329 => 0.02331418443441
330 => 0.024212455737231
331 => 0.024481808024303
401 => 0.024234016594201
402 => 0.023386335497252
403 => 0.023344744218559
404 => 0.024611537659129
405 => 0.024253610489353
406 => 0.024211036191423
407 => 0.023758117591858
408 => 0.024025848579261
409 => 0.023967291884939
410 => 0.023874857278261
411 => 0.024385669351923
412 => 0.025341863953309
413 => 0.025192832057547
414 => 0.025081586660751
415 => 0.02459414171504
416 => 0.024887692447128
417 => 0.024783164654025
418 => 0.025232282388171
419 => 0.024966234991639
420 => 0.024250898839011
421 => 0.024364818479095
422 => 0.024347599754671
423 => 0.024701959883192
424 => 0.024595589768369
425 => 0.024326829282573
426 => 0.025338595784113
427 => 0.025272897295244
428 => 0.025366042731695
429 => 0.025407048233439
430 => 0.026022892673601
501 => 0.026275184435911
502 => 0.026332459082944
503 => 0.026572116744194
504 => 0.026326496182009
505 => 0.027309153555241
506 => 0.027962563368792
507 => 0.028721532491394
508 => 0.029830590371183
509 => 0.030247606393343
510 => 0.030172276181506
511 => 0.031013151208459
512 => 0.032524184940294
513 => 0.030477699300817
514 => 0.032632653648441
515 => 0.031950419982128
516 => 0.030332856232158
517 => 0.030228704196484
518 => 0.031324137148265
519 => 0.0337537020038
520 => 0.033145123563385
521 => 0.033754697420111
522 => 0.033043597136818
523 => 0.033008285014129
524 => 0.033720160866557
525 => 0.035383497598088
526 => 0.034593308666183
527 => 0.033460379070021
528 => 0.03429691665349
529 => 0.033572230380791
530 => 0.031939309381483
531 => 0.033144658194921
601 => 0.032338675769733
602 => 0.032573904289785
603 => 0.034267959466692
604 => 0.034064126265893
605 => 0.034327905302174
606 => 0.033862342207437
607 => 0.033427432864392
608 => 0.032615642278807
609 => 0.032375311107207
610 => 0.032441729996827
611 => 0.032375278193304
612 => 0.031921088821409
613 => 0.031823006669792
614 => 0.03165953212002
615 => 0.031710199718629
616 => 0.031402819738891
617 => 0.031982909268602
618 => 0.032090578997048
619 => 0.032512719781319
620 => 0.032556547837941
621 => 0.033732203913339
622 => 0.033084672303107
623 => 0.03351909241244
624 => 0.033480233788941
625 => 0.030367913743502
626 => 0.030796763985532
627 => 0.031463920381509
628 => 0.031163367329431
629 => 0.030738455632374
630 => 0.030395316654677
701 => 0.029875426015704
702 => 0.030607162106443
703 => 0.031569317254307
704 => 0.032580949680288
705 => 0.033796359755323
706 => 0.033525094375508
707 => 0.032558228434357
708 => 0.032601601334181
709 => 0.032869715534286
710 => 0.032522483284406
711 => 0.032420077715138
712 => 0.032855646581613
713 => 0.032858646105012
714 => 0.032459113437106
715 => 0.032015105990435
716 => 0.032013245583022
717 => 0.03193423874649
718 => 0.033057652277522
719 => 0.033675416129671
720 => 0.033746241759744
721 => 0.033670649000458
722 => 0.033699741653338
723 => 0.03334027847927
724 => 0.034161904699696
725 => 0.034915910169971
726 => 0.03471382059696
727 => 0.034410859598291
728 => 0.034169536570273
729 => 0.034656972560915
730 => 0.034635267803547
731 => 0.034909324589968
801 => 0.034896891791107
802 => 0.034804736801631
803 => 0.034713823888105
804 => 0.035074283313906
805 => 0.034970476788077
806 => 0.034866509022041
807 => 0.034657985750586
808 => 0.034686327526382
809 => 0.034383418838201
810 => 0.034243279418889
811 => 0.032135918793934
812 => 0.031572763174951
813 => 0.031749943396772
814 => 0.031808275726278
815 => 0.031563189679193
816 => 0.031914580113274
817 => 0.031859816286337
818 => 0.032072870301181
819 => 0.031939763402436
820 => 0.03194522615599
821 => 0.032336665163815
822 => 0.032450301573087
823 => 0.032392505178173
824 => 0.032432983792026
825 => 0.033365796363321
826 => 0.033233180245349
827 => 0.033162730575814
828 => 0.033182245615737
829 => 0.03342059922743
830 => 0.033487325225079
831 => 0.033204602484287
901 => 0.033337936163245
902 => 0.033905654045687
903 => 0.034104323174493
904 => 0.034738379667048
905 => 0.034469021199555
906 => 0.0349634403242
907 => 0.036483116153457
908 => 0.037697138359436
909 => 0.036580673367228
910 => 0.038810070543714
911 => 0.040545976033638
912 => 0.040479349089633
913 => 0.040176653815247
914 => 0.038200371566403
915 => 0.036381767176308
916 => 0.037903106970644
917 => 0.037906985178646
918 => 0.037776300741103
919 => 0.036964630923257
920 => 0.037748056390838
921 => 0.037810241859472
922 => 0.037775434533488
923 => 0.037153129187205
924 => 0.036202983944685
925 => 0.036388640050747
926 => 0.036692748539759
927 => 0.036117007726383
928 => 0.035933023651143
929 => 0.036275085051416
930 => 0.037377278154419
1001 => 0.037168914932866
1002 => 0.03716347372709
1003 => 0.03805493994865
1004 => 0.037416842524464
1005 => 0.036390981768798
1006 => 0.036131938398551
1007 => 0.035212508946698
1008 => 0.035847562143988
1009 => 0.035870416577995
1010 => 0.035522604431926
1011 => 0.036419204807549
1012 => 0.036410942477244
1013 => 0.037262131092544
1014 => 0.038889284033153
1015 => 0.038408054841282
1016 => 0.037848437648722
1017 => 0.037909283554055
1018 => 0.038576612955065
1019 => 0.038173130365566
1020 => 0.03831822551793
1021 => 0.038576393336174
1022 => 0.038732152390867
1023 => 0.037886872223081
1024 => 0.037689796981545
1025 => 0.037286650201375
1026 => 0.037181476731519
1027 => 0.037509831372035
1028 => 0.0374233215252
1029 => 0.035868495751314
1030 => 0.035706007806974
1031 => 0.035710991080247
1101 => 0.035302407418324
1102 => 0.034679219262576
1103 => 0.036316920527251
1104 => 0.036185390196083
1105 => 0.036040190890112
1106 => 0.036057976976598
1107 => 0.036768847588747
1108 => 0.036356506733874
1109 => 0.037452782477892
1110 => 0.037227421141987
1111 => 0.036996280138183
1112 => 0.03696432941073
1113 => 0.036875359844289
1114 => 0.036570250096845
1115 => 0.036201811742554
1116 => 0.035958536827467
1117 => 0.033169849462273
1118 => 0.033687413616205
1119 => 0.034282823997846
1120 => 0.034488357275632
1121 => 0.03413677838151
1122 => 0.036584132574484
1123 => 0.037031287768832
1124 => 0.03567682551794
1125 => 0.035423460933127
1126 => 0.036600743114483
1127 => 0.035890698042232
1128 => 0.03621043129479
1129 => 0.035519342887498
1130 => 0.036923581176746
1201 => 0.036912883233724
1202 => 0.036366602823047
1203 => 0.036828315285385
1204 => 0.036748081382868
1205 => 0.036131332144642
1206 => 0.036943133227673
1207 => 0.036943535870882
1208 => 0.036417752852766
1209 => 0.035803753396308
1210 => 0.035693984795513
1211 => 0.035611288900151
1212 => 0.036190093173882
1213 => 0.036709047275835
1214 => 0.037674692199937
1215 => 0.037917478277014
1216 => 0.038865088499029
1217 => 0.038300832750123
1218 => 0.038550960015278
1219 => 0.038822508544265
1220 => 0.038952698894928
1221 => 0.038740560704922
1222 => 0.04021258943164
1223 => 0.040336873757969
1224 => 0.040378545217532
1225 => 0.039882185413159
1226 => 0.040323069093901
1227 => 0.040116794220215
1228 => 0.040653464136736
1229 => 0.040737620832192
1230 => 0.040666343105103
1231 => 0.040693055768563
]
'min_raw' => 0.018248110334971
'max_raw' => 0.040737620832192
'avg_raw' => 0.029492865583581
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.018248'
'max' => '$0.040737'
'avg' => '$0.029492'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0028138215885038
'max_diff' => -0.0038874469315763
'year' => 2031
]
6 => [
'items' => [
101 => 0.039436938933972
102 => 0.039371802649554
103 => 0.038483664789658
104 => 0.038845587532349
105 => 0.038168990312297
106 => 0.038383546260499
107 => 0.038478120478102
108 => 0.038428720273866
109 => 0.038866050101197
110 => 0.038494230407384
111 => 0.037512937102597
112 => 0.036531376445105
113 => 0.036519053750612
114 => 0.036260626155479
115 => 0.036073830337573
116 => 0.036109813839039
117 => 0.036236624391609
118 => 0.036066459877729
119 => 0.036102773104325
120 => 0.036705814619584
121 => 0.036826750294774
122 => 0.03641576361786
123 => 0.034765592804956
124 => 0.034360636748329
125 => 0.034651711131205
126 => 0.034512596323781
127 => 0.027854358830994
128 => 0.029418612966892
129 => 0.028489186276393
130 => 0.028917508856241
131 => 0.027968804879116
201 => 0.028421576142835
202 => 0.028337965822986
203 => 0.030853240183864
204 => 0.030813967634366
205 => 0.030832765325553
206 => 0.029935502548036
207 => 0.03136486651596
208 => 0.032069022604825
209 => 0.031938702053284
210 => 0.031971500928461
211 => 0.031407907585049
212 => 0.030838222141072
213 => 0.03020635330974
214 => 0.031380287497007
215 => 0.031249766055107
216 => 0.031549135282692
217 => 0.032310515517683
218 => 0.032422631649488
219 => 0.032573316867603
220 => 0.032519306943413
221 => 0.033806042457423
222 => 0.033650210296522
223 => 0.034025720968321
224 => 0.033253267026368
225 => 0.032379162069046
226 => 0.032545300844789
227 => 0.032529300344682
228 => 0.032325595613792
229 => 0.032141700090998
301 => 0.031835565857789
302 => 0.032804219871004
303 => 0.032764894287037
304 => 0.033401529780466
305 => 0.033288998273055
306 => 0.032537485325435
307 => 0.03256432575738
308 => 0.032744840561281
309 => 0.033369604358663
310 => 0.033555076790889
311 => 0.033469158570483
312 => 0.033672520625281
313 => 0.033833249701654
314 => 0.033692705722645
315 => 0.035682512084391
316 => 0.034856205754179
317 => 0.035258941710122
318 => 0.035354991862556
319 => 0.035108961416813
320 => 0.035162316610805
321 => 0.035243135191283
322 => 0.035733849786044
323 => 0.037021626872108
324 => 0.037591974577332
325 => 0.039307893788955
326 => 0.037544615140036
327 => 0.037439989482182
328 => 0.037749078347991
329 => 0.038756504573709
330 => 0.03957292890692
331 => 0.039843783958896
401 => 0.039879581925344
402 => 0.040387724008954
403 => 0.04067898157499
404 => 0.04032602219454
405 => 0.040026926075996
406 => 0.038955600904548
407 => 0.039079609710265
408 => 0.039933907408037
409 => 0.041140653224024
410 => 0.042176166674644
411 => 0.041813565955524
412 => 0.044579953486192
413 => 0.044854229510178
414 => 0.044816333432069
415 => 0.045441175032454
416 => 0.044200991702469
417 => 0.04367078930148
418 => 0.04009159405171
419 => 0.041097201923419
420 => 0.042558912022226
421 => 0.042365449209517
422 => 0.04130391626414
423 => 0.042175361406715
424 => 0.04188723438997
425 => 0.041659976657463
426 => 0.042701088386157
427 => 0.041556343273946
428 => 0.042547492314047
429 => 0.041276333417993
430 => 0.041815222285066
501 => 0.041509322900994
502 => 0.041707277292107
503 => 0.040550039966532
504 => 0.041174457137064
505 => 0.040524062159345
506 => 0.040523753787441
507 => 0.04050939628226
508 => 0.041274583089254
509 => 0.041299535803559
510 => 0.040734061597057
511 => 0.040652567929533
512 => 0.04095389273093
513 => 0.040601120305585
514 => 0.040766180303081
515 => 0.04060611980476
516 => 0.040570086815198
517 => 0.04028296982386
518 => 0.040159271929546
519 => 0.040207777061209
520 => 0.040042204040735
521 => 0.039942440306861
522 => 0.040489550764576
523 => 0.040197251717392
524 => 0.040444751743437
525 => 0.040162694226765
526 => 0.039184959987372
527 => 0.038622654686945
528 => 0.036775805344742
529 => 0.037299569527181
530 => 0.037646825722012
531 => 0.037532057551692
601 => 0.037778623990925
602 => 0.037793761167764
603 => 0.037713599904922
604 => 0.037620783431845
605 => 0.037575605505824
606 => 0.037912324752805
607 => 0.038107801609126
608 => 0.037681677526851
609 => 0.037581842616484
610 => 0.038012677590619
611 => 0.038275486675956
612 => 0.040215921302417
613 => 0.040072167637767
614 => 0.040432961125806
615 => 0.04039234131588
616 => 0.040770510370254
617 => 0.041388656947989
618 => 0.040131792118953
619 => 0.040349940394157
620 => 0.040296455474857
621 => 0.040880389799284
622 => 0.040882212778507
623 => 0.040532114981329
624 => 0.040721908676867
625 => 0.040615971042736
626 => 0.040807414665942
627 => 0.040070247719934
628 => 0.040968037487917
629 => 0.041477026434069
630 => 0.04148409374608
701 => 0.041725350466969
702 => 0.041970481268041
703 => 0.042440988494303
704 => 0.041957359076868
705 => 0.041087356835278
706 => 0.041150168187031
707 => 0.040640086191107
708 => 0.040648660761613
709 => 0.040602889032254
710 => 0.040740253437594
711 => 0.040100391482235
712 => 0.04025056580422
713 => 0.040040320874021
714 => 0.040349483362739
715 => 0.040016875631269
716 => 0.040296429682809
717 => 0.04041707594409
718 => 0.040862263245545
719 => 0.039951121104873
720 => 0.038093240601143
721 => 0.038483789607651
722 => 0.037906136950063
723 => 0.037959600902802
724 => 0.038067606596058
725 => 0.037717524806949
726 => 0.037784309379966
727 => 0.037781923365062
728 => 0.037761361977649
729 => 0.037670292183502
730 => 0.037538222964379
731 => 0.038064346084604
801 => 0.038153744654913
802 => 0.038352466602568
803 => 0.038943728324406
804 => 0.038884647335483
805 => 0.038981010879663
806 => 0.038770649803775
807 => 0.037969358949782
808 => 0.03801287289828
809 => 0.037470253263241
810 => 0.038338590598525
811 => 0.038132956856037
812 => 0.038000383444528
813 => 0.037964209560914
814 => 0.038556936906197
815 => 0.038734290217769
816 => 0.038623775535735
817 => 0.038397106698657
818 => 0.038832377874474
819 => 0.038948838078506
820 => 0.038974909223302
821 => 0.03974612629188
822 => 0.039018011690282
823 => 0.039193276111724
824 => 0.040560639096374
825 => 0.03932062955249
826 => 0.039977490263398
827 => 0.039945340349737
828 => 0.040281368062483
829 => 0.039917776269378
830 => 0.039922283425414
831 => 0.040220653269844
901 => 0.039801646634628
902 => 0.039697894699244
903 => 0.039554562143598
904 => 0.039867523535135
905 => 0.040055129735335
906 => 0.041567097927379
907 => 0.042543898333565
908 => 0.042501492851804
909 => 0.042888999575358
910 => 0.042714424247242
911 => 0.042150674462112
912 => 0.043112926603368
913 => 0.042808429763535
914 => 0.042833532113047
915 => 0.042832597802344
916 => 0.043035061581257
917 => 0.042891597438365
918 => 0.042608814886431
919 => 0.042796539141314
920 => 0.043354013065666
921 => 0.045084429232247
922 => 0.04605279304403
923 => 0.045026132514864
924 => 0.04573430920035
925 => 0.045309655538212
926 => 0.04523248333545
927 => 0.045677270627781
928 => 0.046122836461388
929 => 0.046094455844021
930 => 0.045770997928881
1001 => 0.04558828476006
1002 => 0.046971850087779
1003 => 0.047991237452822
1004 => 0.047921722068586
1005 => 0.048228540366991
1006 => 0.049129368380642
1007 => 0.049211728804666
1008 => 0.049201353284271
1009 => 0.048997214379906
1010 => 0.049884196546645
1011 => 0.050624132675104
1012 => 0.048949962121686
1013 => 0.049587464351926
1014 => 0.04987365964212
1015 => 0.05029387923844
1016 => 0.051002860134415
1017 => 0.051773001435339
1018 => 0.051881907859459
1019 => 0.051804633539894
1020 => 0.051296704649425
1021 => 0.052139402450593
1022 => 0.052633035058821
1023 => 0.05292698198044
1024 => 0.053672382465562
1025 => 0.049875427086799
1026 => 0.047187753348785
1027 => 0.046768034284114
1028 => 0.047621549506758
1029 => 0.047846614664313
1030 => 0.047755891181511
1031 => 0.044730670036769
1101 => 0.046752107120871
1102 => 0.048927003456107
1103 => 0.049010550081888
1104 => 0.050099348662245
1105 => 0.050453906111371
1106 => 0.051330531680651
1107 => 0.051275698512613
1108 => 0.051489142888573
1109 => 0.051440075722881
1110 => 0.05306383999468
1111 => 0.054855093117801
1112 => 0.054793067717983
1113 => 0.05453555388839
1114 => 0.054918005837969
1115 => 0.056766771023381
1116 => 0.056596566350967
1117 => 0.056761905692218
1118 => 0.058941704037658
1119 => 0.06177575195943
1120 => 0.060459052166008
1121 => 0.063315911847575
1122 => 0.065114153581497
1123 => 0.068224026718649
1124 => 0.06783465528543
1125 => 0.06904530607642
1126 => 0.067137599155696
1127 => 0.062757118454535
1128 => 0.06206389061577
1129 => 0.063451750304303
1130 => 0.066863667923193
1201 => 0.0633442968765
1202 => 0.064056261055608
1203 => 0.063851215324128
1204 => 0.063840289308486
1205 => 0.064257290886234
1206 => 0.063652408348371
1207 => 0.061188008072823
1208 => 0.062317428196304
1209 => 0.061881304847419
1210 => 0.062365216218157
1211 => 0.064976686305798
1212 => 0.06382209313038
1213 => 0.062605823011611
1214 => 0.064131295652494
1215 => 0.066073746533609
1216 => 0.065952191448389
1217 => 0.065716323776977
1218 => 0.067045897491094
1219 => 0.069241963738269
1220 => 0.069835551620371
1221 => 0.070273726059569
1222 => 0.070334142911717
1223 => 0.070956474037701
1224 => 0.067610042725645
1225 => 0.07292091516033
1226 => 0.07383795611991
1227 => 0.073665590426962
1228 => 0.074684842858552
1229 => 0.07438495293724
1230 => 0.073950459492546
1231 => 0.075566191397826
]
'min_raw' => 0.027854358830994
'max_raw' => 0.075566191397826
'avg_raw' => 0.05171027511441
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.027854'
'max' => '$0.075566'
'avg' => '$0.05171'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0096062484960238
'max_diff' => 0.034828570565633
'year' => 2032
]
7 => [
'items' => [
101 => 0.073713885151263
102 => 0.07108476963314
103 => 0.069642384861889
104 => 0.071541833482533
105 => 0.072701760473539
106 => 0.073468398429381
107 => 0.073700382611604
108 => 0.067869816662332
109 => 0.064727464993686
110 => 0.066741676386153
111 => 0.069199153298407
112 => 0.067596391317316
113 => 0.067659216552545
114 => 0.06537409916595
115 => 0.069401335482179
116 => 0.068814601025293
117 => 0.071858580425532
118 => 0.071132110312204
119 => 0.073614357346499
120 => 0.072960698513212
121 => 0.075673999784613
122 => 0.076756409121475
123 => 0.078573942861626
124 => 0.079910928079574
125 => 0.080696031372006
126 => 0.080648896715176
127 => 0.083759867096696
128 => 0.08192543655174
129 => 0.079620959445193
130 => 0.079579278724867
131 => 0.080772800073042
201 => 0.083274093392223
202 => 0.08392264235755
203 => 0.08428509275249
204 => 0.08372998735565
205 => 0.081738844473922
206 => 0.080879079072916
207 => 0.081611624104375
208 => 0.080715784479212
209 => 0.082262255000447
210 => 0.084385889334382
211 => 0.083947367242185
212 => 0.085413280849494
213 => 0.08693034721445
214 => 0.08909982025205
215 => 0.089667000839433
216 => 0.090604528782431
217 => 0.091569552997662
218 => 0.091879492767462
219 => 0.092471263956673
220 => 0.0924681450304
221 => 0.094251487339882
222 => 0.096218569132756
223 => 0.096961096971518
224 => 0.098668498793526
225 => 0.095744633007833
226 => 0.097962418793231
227 => 0.099962917086438
228 => 0.097577840550412
301 => 0.10086511290376
302 => 0.10099275024013
303 => 0.10291992248116
304 => 0.10096636421334
305 => 0.099806347549895
306 => 0.10315527219201
307 => 0.1047757113362
308 => 0.1042876218784
309 => 0.1005732370046
310 => 0.098411305690584
311 => 0.092753114436406
312 => 0.099455486392652
313 => 0.10272001626167
314 => 0.10056478266089
315 => 0.10165175712667
316 => 0.10758193735932
317 => 0.10983976604118
318 => 0.10937015345877
319 => 0.10944951025471
320 => 0.11066779362896
321 => 0.11607033303125
322 => 0.11283300619151
323 => 0.11530782126017
324 => 0.11662045424898
325 => 0.11783970092281
326 => 0.11484561643874
327 => 0.1109503565168
328 => 0.10971656418764
329 => 0.1003504871543
330 => 0.099862942169907
331 => 0.09958926839604
401 => 0.097863793963736
402 => 0.096508043707168
403 => 0.095429900767366
404 => 0.09260053173259
405 => 0.093555360724828
406 => 0.089045937018606
407 => 0.091930906501683
408 => 0.084733757382711
409 => 0.090727757033432
410 => 0.087465495537267
411 => 0.0896560163937
412 => 0.089648373872791
413 => 0.085614930470827
414 => 0.083288524492391
415 => 0.084771000926926
416 => 0.086360333343873
417 => 0.086618197181367
418 => 0.08867880814576
419 => 0.089253880373237
420 => 0.087511384676425
421 => 0.084584612464413
422 => 0.085264434896696
423 => 0.083274747912499
424 => 0.079787898004897
425 => 0.082292214483095
426 => 0.083147298235775
427 => 0.083524951934005
428 => 0.080096035517297
429 => 0.07901859553377
430 => 0.078444975527137
501 => 0.084141982413504
502 => 0.084454077311005
503 => 0.082857355689618
504 => 0.090074688825644
505 => 0.088441184055552
506 => 0.09026620910213
507 => 0.085202748136528
508 => 0.085396179164269
509 => 0.082999055597591
510 => 0.084341284619076
511 => 0.083392640408751
512 => 0.084232845778305
513 => 0.08473646141252
514 => 0.087133191634808
515 => 0.09075512384265
516 => 0.086775200063508
517 => 0.085041090279377
518 => 0.086116922236448
519 => 0.088982004509606
520 => 0.093322750814302
521 => 0.090752941636261
522 => 0.091893379311286
523 => 0.092142514208738
524 => 0.090247632060358
525 => 0.093392617821945
526 => 0.095078041241398
527 => 0.096806936920522
528 => 0.098308088596149
529 => 0.09611637796705
530 => 0.098461822509563
531 => 0.096571808234993
601 => 0.09487627004462
602 => 0.094878841476167
603 => 0.093815205601485
604 => 0.091754277067544
605 => 0.091374210225569
606 => 0.093351365934675
607 => 0.094936857576036
608 => 0.095067446261611
609 => 0.09594525589977
610 => 0.096464734601475
611 => 0.10155633207523
612 => 0.10360421469907
613 => 0.10610832680708
614 => 0.10708381959717
615 => 0.11001970316183
616 => 0.10764873874256
617 => 0.10713576567639
618 => 0.10001427246872
619 => 0.10118041658252
620 => 0.10304752582489
621 => 0.10004506041243
622 => 0.10194943364436
623 => 0.10232539726049
624 => 0.099943037786618
625 => 0.10121555891729
626 => 0.097836120070451
627 => 0.09082878637457
628 => 0.093400418987501
629 => 0.095294006192796
630 => 0.092591623773221
701 => 0.097435539663666
702 => 0.094605823999189
703 => 0.093708939983856
704 => 0.090209875677803
705 => 0.091861299338924
706 => 0.094094873486698
707 => 0.092714784344239
708 => 0.095578676536269
709 => 0.099634711652334
710 => 0.10252528381711
711 => 0.10274718605554
712 => 0.10088874180689
713 => 0.10386691057579
714 => 0.10388860328393
715 => 0.10052921674643
716 => 0.098471611197355
717 => 0.098004118887366
718 => 0.099172006334985
719 => 0.10059003730031
720 => 0.10282587690512
721 => 0.10417694795191
722 => 0.10769982468922
723 => 0.10865301412555
724 => 0.10970028032709
725 => 0.11109975093728
726 => 0.11278017422172
727 => 0.10910350374192
728 => 0.10924958471426
729 => 0.10582592007043
730 => 0.10216724339534
731 => 0.10494372293125
801 => 0.10857360058486
802 => 0.10774090264046
803 => 0.10764720711124
804 => 0.10780477700242
805 => 0.10717694994572
806 => 0.10433731143661
807 => 0.10291126275441
808 => 0.10475122937826
809 => 0.10572908975135
810 => 0.10724566591162
811 => 0.10705871588883
812 => 0.11096525320929
813 => 0.11248321548447
814 => 0.11209485577721
815 => 0.11216632330974
816 => 0.11491452150162
817 => 0.11797108310106
818 => 0.12083395638775
819 => 0.12374619405825
820 => 0.1202353778799
821 => 0.11845280194157
822 => 0.12029196529355
823 => 0.11931607933089
824 => 0.12492380953893
825 => 0.12531207661161
826 => 0.13091940131693
827 => 0.13624142017007
828 => 0.13289875548228
829 => 0.13605073772595
830 => 0.13945986350735
831 => 0.1460366202504
901 => 0.14382179995244
902 => 0.14212528231485
903 => 0.14052208134485
904 => 0.14385808806244
905 => 0.14814980741061
906 => 0.14907420265263
907 => 0.15057207609086
908 => 0.14899724532181
909 => 0.15089395552122
910 => 0.15759017598181
911 => 0.15578079810418
912 => 0.15321119064595
913 => 0.15849721358773
914 => 0.16041020474147
915 => 0.17383657849965
916 => 0.19078792998519
917 => 0.1837699591616
918 => 0.1794136782029
919 => 0.18043750756056
920 => 0.18662756728362
921 => 0.18861561800399
922 => 0.18321141082384
923 => 0.18512026816142
924 => 0.19563825976621
925 => 0.20128082480461
926 => 0.19361746358488
927 => 0.17247455391295
928 => 0.15297982560902
929 => 0.15815070541428
930 => 0.15756448811544
1001 => 0.16886475794861
1002 => 0.1557376450402
1003 => 0.15595867195522
1004 => 0.16749261940135
1005 => 0.16441555996464
1006 => 0.15943111775717
1007 => 0.15301621755325
1008 => 0.14115768121984
1009 => 0.1306542448896
1010 => 0.15125390233013
1011 => 0.15036560764325
1012 => 0.14907922529875
1013 => 0.15194193000533
1014 => 0.16584241146759
1015 => 0.16552196037841
1016 => 0.16348341404468
1017 => 0.16502963347189
1018 => 0.15916005801572
1019 => 0.16067278125852
1020 => 0.15297673754445
1021 => 0.15645567071839
1022 => 0.15942042338282
1023 => 0.16001564137412
1024 => 0.16135669790109
1025 => 0.14989751670768
1026 => 0.15504235263964
1027 => 0.15806446174373
1028 => 0.14441046286618
1029 => 0.15779456608688
1030 => 0.14969803785748
1031 => 0.14694995457066
1101 => 0.15064988668393
1102 => 0.14920801954108
1103 => 0.14796838684095
1104 => 0.14727665049468
1105 => 0.14999347229206
1106 => 0.1498667293079
1107 => 0.145421481535
1108 => 0.13962283702673
1109 => 0.14156905245772
1110 => 0.14086197414578
1111 => 0.13829943112836
1112 => 0.14002627571948
1113 => 0.13242212607626
1114 => 0.11933958184442
1115 => 0.12798231129314
1116 => 0.12764957561085
1117 => 0.12748179519147
1118 => 0.13397656750469
1119 => 0.13335224500667
1120 => 0.13221909355937
1121 => 0.1382786199134
1122 => 0.13606681128205
1123 => 0.14288308431623
1124 => 0.14737272258544
1125 => 0.14623400509579
1126 => 0.15045653158828
1127 => 0.14161388933045
1128 => 0.14455106038327
1129 => 0.14515640726652
1130 => 0.13820384629879
1201 => 0.13345439188847
1202 => 0.13313765742704
1203 => 0.12490275799468
1204 => 0.12930177480166
1205 => 0.13317272754812
1206 => 0.13131884158064
1207 => 0.1307319566666
1208 => 0.13373022441261
1209 => 0.13396321549491
1210 => 0.12865099412736
1211 => 0.12975557316584
1212 => 0.13436185137731
1213 => 0.12963950677341
1214 => 0.12046476259863
1215 => 0.11818929919252
1216 => 0.11788571042903
1217 => 0.11171447320239
1218 => 0.11834135653787
1219 => 0.1154485443725
1220 => 0.12458690334168
1221 => 0.11936712170849
1222 => 0.11914210735493
1223 => 0.11880196515709
1224 => 0.11349012634552
1225 => 0.11465308146029
1226 => 0.11851892138484
1227 => 0.11989829662172
1228 => 0.11975441648362
1229 => 0.1184999766602
1230 => 0.11907425278759
1231 => 0.1172243092902
]
'min_raw' => 0.064727464993686
'max_raw' => 0.20128082480461
'avg_raw' => 0.13300414489915
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.064727'
'max' => '$0.20128'
'avg' => '$0.1330041'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.036873106162692
'max_diff' => 0.12571463340678
'year' => 2033
]
8 => [
'items' => [
101 => 0.11657105573803
102 => 0.11450920783583
103 => 0.11147886101961
104 => 0.1119002493306
105 => 0.1058963393543
106 => 0.10262509054758
107 => 0.10171965199225
108 => 0.10050886171518
109 => 0.10185641397584
110 => 0.10587933103168
111 => 0.10102683955287
112 => 0.092707583275143
113 => 0.093207584752757
114 => 0.094330939621186
115 => 0.092237575255606
116 => 0.090256381566338
117 => 0.091978868739832
118 => 0.088453890184141
119 => 0.094756916438857
120 => 0.094586437242694
121 => 0.096935815653923
122 => 0.098404930188563
123 => 0.095019096817696
124 => 0.09416756888119
125 => 0.094652637893611
126 => 0.086635527622875
127 => 0.096280646704903
128 => 0.096364058095247
129 => 0.095649839130601
130 => 0.10078556728214
131 => 0.11162355555566
201 => 0.10754586841009
202 => 0.10596686469858
203 => 0.10296517748876
204 => 0.1069647474733
205 => 0.1066576429015
206 => 0.10526879956186
207 => 0.10442882277659
208 => 0.10597650575854
209 => 0.10423704772768
210 => 0.10392459326823
211 => 0.10203145919775
212 => 0.1013556964667
213 => 0.10085538864352
214 => 0.10030459888943
215 => 0.10151950383869
216 => 0.098766369389601
217 => 0.095446359137092
218 => 0.095170336207604
219 => 0.095932459784103
220 => 0.09559527683493
221 => 0.095168721905368
222 => 0.09435431237951
223 => 0.094112694470295
224 => 0.0948978354589
225 => 0.094011457059328
226 => 0.095319356671427
227 => 0.094963680346322
228 => 0.09297690130708
301 => 0.090500639024373
302 => 0.090478595095921
303 => 0.089945088448996
304 => 0.089265587520875
305 => 0.089076565907547
306 => 0.091833805674487
307 => 0.097541209474811
308 => 0.096420709542209
309 => 0.097230385576966
310 => 0.10121319030214
311 => 0.10247920415716
312 => 0.10158061751005
313 => 0.10035057668508
314 => 0.10040469223881
315 => 0.10460811409643
316 => 0.10487027636167
317 => 0.10553267582917
318 => 0.10638404633898
319 => 0.1017256095893
320 => 0.10018528028683
321 => 0.099455386809101
322 => 0.097207597402026
323 => 0.099631645566657
324 => 0.098219256509218
325 => 0.098409836047147
326 => 0.098285720873056
327 => 0.098353496150741
328 => 0.094755154614562
329 => 0.096066201147083
330 => 0.093886332005111
331 => 0.090967731925805
401 => 0.090957947754946
402 => 0.091672270989579
403 => 0.091247363578148
404 => 0.090103948659358
405 => 0.090266365351806
406 => 0.088843424223087
407 => 0.090439136168013
408 => 0.090484895476862
409 => 0.089870459459049
410 => 0.092328873876022
411 => 0.093336088268531
412 => 0.092931653319111
413 => 0.093307712034339
414 => 0.096467271373163
415 => 0.09698241740663
416 => 0.097211211246059
417 => 0.096904657810599
418 => 0.093365462978968
419 => 0.093522441319569
420 => 0.092370638413002
421 => 0.091397486330952
422 => 0.091436407310724
423 => 0.091936733981813
424 => 0.094121689898229
425 => 0.09871980081414
426 => 0.098894295762223
427 => 0.099105788729677
428 => 0.098245540543193
429 => 0.097986081458683
430 => 0.098328374963223
501 => 0.10005518366605
502 => 0.10449700447372
503 => 0.10292696834105
504 => 0.10165050452613
505 => 0.10277030742399
506 => 0.10259792254517
507 => 0.10114282068591
508 => 0.10110198082309
509 => 0.098309175130967
510 => 0.097276738455698
511 => 0.096413957093297
512 => 0.095471822369033
513 => 0.094913293323848
514 => 0.095771447784164
515 => 0.095967717862623
516 => 0.094091348137169
517 => 0.093835605877014
518 => 0.095367889899074
519 => 0.094693588830271
520 => 0.095387124201396
521 => 0.095548030356534
522 => 0.095522120759573
523 => 0.094818073000759
524 => 0.095266812047221
525 => 0.094205410426791
526 => 0.093051295581942
527 => 0.092315042214824
528 => 0.091672563502176
529 => 0.092029048033035
530 => 0.090758245772026
531 => 0.090351690552533
601 => 0.095114789355228
602 => 0.09863334165272
603 => 0.098582180508815
604 => 0.09827075020287
605 => 0.097808027939567
606 => 0.10002133265037
607 => 0.099250261545553
608 => 0.099811280199457
609 => 0.099954082992754
610 => 0.10038630403861
611 => 0.10054078591186
612 => 0.10007383439636
613 => 0.098506688077039
614 => 0.094601508449088
615 => 0.092783636790445
616 => 0.092183708864046
617 => 0.092205515104745
618 => 0.091604001638914
619 => 0.091781174312544
620 => 0.091542388213394
621 => 0.091090185110165
622 => 0.092001125765685
623 => 0.092106103190235
624 => 0.091893478756306
625 => 0.091943559507613
626 => 0.090183120007767
627 => 0.090316962399467
628 => 0.089571710954614
629 => 0.089431985292845
630 => 0.087548054536724
701 => 0.084210398122127
702 => 0.086059783769961
703 => 0.083825985970351
704 => 0.082980012896079
705 => 0.086984717853878
706 => 0.08658275654934
707 => 0.08589477352435
708 => 0.084877103242165
709 => 0.084499639435242
710 => 0.082206288834899
711 => 0.082070785446881
712 => 0.083207431930086
713 => 0.082682908687705
714 => 0.081946279402915
715 => 0.079278282804319
716 => 0.076278571284181
717 => 0.076369113719459
718 => 0.077323266142398
719 => 0.080097592997079
720 => 0.079013615498613
721 => 0.078227177386268
722 => 0.078079901168068
723 => 0.079923371382482
724 => 0.082532267954827
725 => 0.0837563038558
726 => 0.082543321452459
727 => 0.08114991257911
728 => 0.081234722920796
729 => 0.081798928128328
730 => 0.081858218118208
731 => 0.080951252186405
801 => 0.081206557783624
802 => 0.080818725235815
803 => 0.078438597605793
804 => 0.078395548644432
805 => 0.077811426939282
806 => 0.077793739966195
807 => 0.076800003229747
808 => 0.07666097259094
809 => 0.074687847985214
810 => 0.075986564575874
811 => 0.075115453672541
812 => 0.073802484066928
813 => 0.073576127612032
814 => 0.073569323063664
815 => 0.074917449273997
816 => 0.075970810936189
817 => 0.075130607019659
818 => 0.074939308874534
819 => 0.076981872587713
820 => 0.076721937736829
821 => 0.076496835832364
822 => 0.082298669881401
823 => 0.077706065508832
824 => 0.075703427865698
825 => 0.073224783491747
826 => 0.074031842598315
827 => 0.074201901810234
828 => 0.068241208900111
829 => 0.06582295652883
830 => 0.064993103444925
831 => 0.064515511262737
901 => 0.064733156017386
902 => 0.062556445250521
903 => 0.064019230885327
904 => 0.062134383354003
905 => 0.061818382531552
906 => 0.065188723405363
907 => 0.065657686648708
908 => 0.063656943757139
909 => 0.064941744584378
910 => 0.064475857944354
911 => 0.062166693655087
912 => 0.0620785005643
913 => 0.060919843094996
914 => 0.05910676851583
915 => 0.058278144781866
916 => 0.057846590346776
917 => 0.058024658117523
918 => 0.05793462160367
919 => 0.057347072447734
920 => 0.057968299233527
921 => 0.056381321504456
922 => 0.055749374185591
923 => 0.055463938242726
924 => 0.054055404165145
925 => 0.056297008260524
926 => 0.056738632506298
927 => 0.05718112688826
928 => 0.061032738379501
929 => 0.06084032275394
930 => 0.062579666298804
1001 => 0.062512078607098
1002 => 0.062015989652606
1003 => 0.059923071956274
1004 => 0.060757271647361
1005 => 0.05818973466161
1006 => 0.060113507946879
1007 => 0.059235578158175
1008 => 0.0598166790022
1009 => 0.058771807288893
1010 => 0.059350082436733
1011 => 0.05684335799815
1012 => 0.054502613987966
1013 => 0.055444597708242
1014 => 0.056468641741086
1015 => 0.05868903012586
1016 => 0.057366585121695
1017 => 0.057842186352375
1018 => 0.056249001844282
1019 => 0.052961807133432
1020 => 0.052980412298507
1021 => 0.052474749007672
1022 => 0.052037782096341
1023 => 0.05751848383865
1024 => 0.056836871939921
1025 => 0.055750812586456
1026 => 0.057204546189352
1027 => 0.057588936427813
1028 => 0.057599879477513
1029 => 0.05866048598789
1030 => 0.059226531872603
1031 => 0.059326299913167
1101 => 0.060995187173167
1102 => 0.061554576169563
1103 => 0.063858620278027
1104 => 0.059178506834028
1105 => 0.059082122977483
1106 => 0.05722500320238
1107 => 0.056047188481108
1108 => 0.05730564918401
1109 => 0.058420473569764
1110 => 0.057259643903607
1111 => 0.057411223751555
1112 => 0.055852904768007
1113 => 0.056409930478902
1114 => 0.056889716060592
1115 => 0.056624806662876
1116 => 0.056228224472735
1117 => 0.058329070683422
1118 => 0.058210532706932
1119 => 0.06016688899657
1120 => 0.061692008624723
1121 => 0.064425295646116
1122 => 0.061572968149817
1123 => 0.061469017998877
1124 => 0.062485147398445
1125 => 0.061554420605447
1126 => 0.062142607811025
1127 => 0.064330529593959
1128 => 0.06437675693355
1129 => 0.063602389434831
1130 => 0.06355526910216
1201 => 0.063703994850941
1202 => 0.064575086206916
1203 => 0.064270700121205
1204 => 0.064622943405703
1205 => 0.065063429026709
1206 => 0.066885464317221
1207 => 0.067324750857292
1208 => 0.066257512308877
1209 => 0.066353872000436
1210 => 0.065954695486975
1211 => 0.065569095976639
1212 => 0.066435867363588
1213 => 0.068019909109671
1214 => 0.068010054868181
1215 => 0.068377521763901
1216 => 0.068606450595674
1217 => 0.067623720463556
1218 => 0.066983999283536
1219 => 0.067229309090472
1220 => 0.067621564813915
1221 => 0.06710210584605
1222 => 0.063895764459582
1223 => 0.064868363614355
1224 => 0.064706475557332
1225 => 0.064475927277871
1226 => 0.065453883248882
1227 => 0.065359557009739
1228 => 0.06253411993544
1229 => 0.062714995249829
1230 => 0.062545119562386
1231 => 0.063094022661809
]
'min_raw' => 0.052037782096341
'max_raw' => 0.11657105573803
'avg_raw' => 0.084304418917186
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.052037'
'max' => '$0.116571'
'avg' => '$0.0843044'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.012689682897345
'max_diff' => -0.084709769066578
'year' => 2034
]
9 => [
'items' => [
101 => 0.061524778036731
102 => 0.062007467114381
103 => 0.062310205178955
104 => 0.062488520224732
105 => 0.063132716441849
106 => 0.063057127451055
107 => 0.06312801772405
108 => 0.06408319065254
109 => 0.068914127549074
110 => 0.069177064785491
111 => 0.067882265668598
112 => 0.068399512377014
113 => 0.067406511806276
114 => 0.068073119741938
115 => 0.068529195961512
116 => 0.066468275223671
117 => 0.066346240872841
118 => 0.065349141835518
119 => 0.065884926379599
120 => 0.065032454645694
121 => 0.065241621390999
122 => 0.064656772936297
123 => 0.065709383712595
124 => 0.066886366119673
125 => 0.067183718356145
126 => 0.066401512640174
127 => 0.065835144151943
128 => 0.064840787659988
129 => 0.066494424666789
130 => 0.066977998521253
131 => 0.066491884659196
201 => 0.066379241455559
202 => 0.06616578278821
203 => 0.066424527720922
204 => 0.066975364874189
205 => 0.066715600245073
206 => 0.066887179359068
207 => 0.066233296708134
208 => 0.067624045788121
209 => 0.069832890029134
210 => 0.069839991824551
211 => 0.069580225795207
212 => 0.069473935132737
213 => 0.069740470842764
214 => 0.069885055531587
215 => 0.070746983143526
216 => 0.071671865811848
217 => 0.075987889666982
218 => 0.074775967439309
219 => 0.078605400564992
220 => 0.08163398497775
221 => 0.08254212501919
222 => 0.081706678912356
223 => 0.078848662910787
224 => 0.078708435010865
225 => 0.08297951754044
226 => 0.081772741097862
227 => 0.081629198879948
228 => 0.08010215219975
301 => 0.081004825916158
302 => 0.080807397932955
303 => 0.080495748202962
304 => 0.082217986773072
305 => 0.085441863631021
306 => 0.084939392189384
307 => 0.084564320567181
308 => 0.082920865900397
309 => 0.08391059268869
310 => 0.083558169936347
311 => 0.085072401733418
312 => 0.084175404361174
313 => 0.081763598579412
314 => 0.082147686599574
315 => 0.082089632468004
316 => 0.083284382381945
317 => 0.082925748113296
318 => 0.082019603371176
319 => 0.0854308447704
320 => 0.085209337728256
321 => 0.085523384070457
322 => 0.085661636982499
323 => 0.087737999509391
324 => 0.088588618800469
325 => 0.08878172427173
326 => 0.089589746808997
327 => 0.088761619934911
328 => 0.092074717875708
329 => 0.094277734681714
330 => 0.096836652068097
331 => 0.10057591814176
401 => 0.1019819167756
402 => 0.101727935707
403 => 0.10456300456839
404 => 0.10965756029228
405 => 0.10275769107772
406 => 0.11002327011484
407 => 0.10772307167683
408 => 0.10226934255911
409 => 0.10191818669918
410 => 0.10561151537679
411 => 0.11380296291403
412 => 0.11175109821258
413 => 0.11380631902962
414 => 0.11140879477706
415 => 0.11128973749
416 => 0.11368987662805
417 => 0.11929793254887
418 => 0.11663375539572
419 => 0.11281400416364
420 => 0.1156344490315
421 => 0.11319111866711
422 => 0.10768561151104
423 => 0.11174952919031
424 => 0.1090321031719
425 => 0.10982519255038
426 => 0.11553681785448
427 => 0.11484957998681
428 => 0.11573892942409
429 => 0.11416925094561
430 => 0.11270292373113
501 => 0.10996591509442
502 => 0.10915562176999
503 => 0.10937955769356
504 => 0.10915551079846
505 => 0.10762417962063
506 => 0.10729348879858
507 => 0.10674232294059
508 => 0.1069131522868
509 => 0.10587679922453
510 => 0.10783261157451
511 => 0.10819562758122
512 => 0.10961890470832
513 => 0.1097666740612
514 => 0.11373048060109
515 => 0.11154728256798
516 => 0.11301196029684
517 => 0.11288094573469
518 => 0.10238754140625
519 => 0.10383343993862
520 => 0.10608280430703
521 => 0.105069468708
522 => 0.10363684925499
523 => 0.10247993223448
524 => 0.10072708464758
525 => 0.10319418396569
526 => 0.10643815722224
527 => 0.10984894657636
528 => 0.11394678650156
529 => 0.11303219633437
530 => 0.10977234030935
531 => 0.10991857506931
601 => 0.1108225408141
602 => 0.10965182304065
603 => 0.10930655551413
604 => 0.1107751063579
605 => 0.11078521946046
606 => 0.10943816717613
607 => 0.10794116507007
608 => 0.10793489257659
609 => 0.10766851551114
610 => 0.11145618266524
611 => 0.11353901662366
612 => 0.11377781018034
613 => 0.11352294391469
614 => 0.11362103182506
615 => 0.11240907663677
616 => 0.11517924680305
617 => 0.11772142888906
618 => 0.11704006978421
619 => 0.11601861562513
620 => 0.11520497818753
621 => 0.11684840266168
622 => 0.11677522355684
623 => 0.11769922514629
624 => 0.1176573070969
625 => 0.11734660011582
626 => 0.11704008088053
627 => 0.1182553950011
628 => 0.11790540405172
629 => 0.11755486946973
630 => 0.11685181870139
701 => 0.11694737497725
702 => 0.11592609718664
703 => 0.11545360735021
704 => 0.10834849387195
705 => 0.10644977538428
706 => 0.10704715087248
707 => 0.10724382239404
708 => 0.10641749767493
709 => 0.10760223505673
710 => 0.10741759499072
711 => 0.10813592147673
712 => 0.10768714227438
713 => 0.10770556032939
714 => 0.10902532427367
715 => 0.10940845736137
716 => 0.1092135927807
717 => 0.10935006925343
718 => 0.11249511196445
719 => 0.11204798746375
720 => 0.11181046148427
721 => 0.11187625780387
722 => 0.11267988364701
723 => 0.11290485500674
724 => 0.11195163554709
725 => 0.11240117935476
726 => 0.11431527983221
727 => 0.11498510667061
728 => 0.11712287240367
729 => 0.11621471152451
730 => 0.11788168012249
731 => 0.12300537328121
801 => 0.12709853390899
802 => 0.12333429423866
803 => 0.13085086247073
804 => 0.13670358902706
805 => 0.1364789516336
806 => 0.1354583933825
807 => 0.1287952198009
808 => 0.12266366812879
809 => 0.12779297146195
810 => 0.12780604711099
811 => 0.12736543540572
812 => 0.12462883394588
813 => 0.12727020760685
814 => 0.12747987025599
815 => 0.12736251492627
816 => 0.12526436900331
817 => 0.12206088798113
818 => 0.12268684050481
819 => 0.12371216350769
820 => 0.12177101315845
821 => 0.12115069800343
822 => 0.12230398189641
823 => 0.12602010289585
824 => 0.12531759174693
825 => 0.12529924634176
826 => 0.12830488694793
827 => 0.12615349693175
828 => 0.12269473577071
829 => 0.1218213529621
830 => 0.11872143237266
831 => 0.12086255856532
901 => 0.12093961388522
902 => 0.11976694095128
903 => 0.12278989171633
904 => 0.12276203469285
905 => 0.12563187653743
906 => 0.13111793628088
907 => 0.12949543846214
908 => 0.1276086500262
909 => 0.12781379624415
910 => 0.13006374391111
911 => 0.12870337419036
912 => 0.12919257262678
913 => 0.13006300345069
914 => 0.13058815597833
915 => 0.12773823487706
916 => 0.12707378194087
917 => 0.12571454442472
918 => 0.12535994472812
919 => 0.12646701532361
920 => 0.12617534133508
921 => 0.12093313768396
922 => 0.12038529823507
923 => 0.12040209968883
924 => 0.11902453134626
925 => 0.11692340896954
926 => 0.12244503312405
927 => 0.12200156942936
928 => 0.12151201983179
929 => 0.12157198686416
930 => 0.12396873676442
1001 => 0.1225785007835
1002 => 0.12627467099398
1003 => 0.12551484951575
1004 => 0.12473554148368
1005 => 0.12462781737534
1006 => 0.12432785027043
1007 => 0.12329915145484
1008 => 0.1220569358198
1009 => 0.12123671745867
1010 => 0.11183446330699
1011 => 0.11357946698715
1012 => 0.11558693465908
1013 => 0.116279904455
1014 => 0.11509453166702
1015 => 0.12334595719744
1016 => 0.12485357215456
1017 => 0.12028690811015
1018 => 0.1194326717231
1019 => 0.12340196079276
1020 => 0.1210079942579
1021 => 0.12208599724196
1022 => 0.11975594442653
1023 => 0.12449043185951
1024 => 0.12445436299771
1025 => 0.12261254045303
1026 => 0.12416923625554
1027 => 0.12389872205145
1028 => 0.12181930893471
1029 => 0.1245563529643
1030 => 0.12455771050399
1031 => 0.12278499634941
1101 => 0.12071485431389
1102 => 0.12034476181251
1103 => 0.12006594682765
1104 => 0.12201742584736
1105 => 0.12376711583431
1106 => 0.1270228551151
1107 => 0.12784142532475
1108 => 0.1310363593483
1109 => 0.12913393169579
1110 => 0.12997725323358
1111 => 0.13089279805798
1112 => 0.13133174391484
1113 => 0.13061650519622
1114 => 0.13557955282211
1115 => 0.13599858610559
1116 => 0.13613908434091
1117 => 0.13446557260573
1118 => 0.13595204271687
1119 => 0.13525657257858
1120 => 0.13706599267123
1121 => 0.1373497328456
1122 => 0.13710941501226
1123 => 0.13719947862214
1124 => 0.13296439301504
1125 => 0.13274478148445
1126 => 0.12975036268201
1127 => 0.13097061047763
1128 => 0.12868941571171
1129 => 0.12941280607089
1130 => 0.1297316696485
1201 => 0.12956511341091
1202 => 0.13103960145715
1203 => 0.12978598539984
1204 => 0.12647748651104
1205 => 0.12316808622393
1206 => 0.1231265393991
1207 => 0.12225523271927
1208 => 0.12162543757753
1209 => 0.12174675846501
1210 => 0.12217430909663
1211 => 0.12160058755758
1212 => 0.12172302013636
1213 => 0.12375621670807
1214 => 0.12416395978043
1215 => 0.12277828950504
1216 => 0.11721462339809
1217 => 0.11584928578004
1218 => 0.11683066338407
1219 => 0.11636162809816
1220 => 0.093912915527928
1221 => 0.099186907559843
1222 => 0.096053280582326
1223 => 0.09749740006481
1224 => 0.094298778369537
1225 => 0.095825328296648
1226 => 0.095543430265788
1227 => 0.10402385338434
1228 => 0.10389144324178
1229 => 0.10395482097003
1230 => 0.10092963687075
1231 => 0.10574883728361
]
'min_raw' => 0.061524778036731
'max_raw' => 0.1373497328456
'avg_raw' => 0.099437255441164
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.061524'
'max' => '$0.137349'
'avg' => '$0.099437'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0094869959403903
'max_diff' => 0.020778677107566
'year' => 2035
]
10 => [
'items' => [
101 => 0.10812294869983
102 => 0.10768356386161
103 => 0.10779414755922
104 => 0.10589395325307
105 => 0.10397321900454
106 => 0.10184282912403
107 => 0.10580083019787
108 => 0.10536076804379
109 => 0.10637011229588
110 => 0.10893715891602
111 => 0.1093151662821
112 => 0.10982321201548
113 => 0.10964111378522
114 => 0.11397943240771
115 => 0.11345403339738
116 => 0.11472009384467
117 => 0.11211571144836
118 => 0.10916860555669
119 => 0.10972875403855
120 => 0.10967480723532
121 => 0.10898800251291
122 => 0.10836798591864
123 => 0.10733583297776
124 => 0.11060171761258
125 => 0.11046912866061
126 => 0.11261558967518
127 => 0.11223618184124
128 => 0.10970240346939
129 => 0.10979289785963
130 => 0.11040151612412
131 => 0.11250795088661
201 => 0.11313328414113
202 => 0.11284360486241
203 => 0.11352925422845
204 => 0.11407116353119
205 => 0.11359730969349
206 => 0.12030608076596
207 => 0.11752013128279
208 => 0.11887798367637
209 => 0.11920182347131
210 => 0.11837231464619
211 => 0.11855220540788
212 => 0.11882469089453
213 => 0.12047916941137
214 => 0.12482099976676
215 => 0.12674396687532
216 => 0.13252930829897
217 => 0.12658429122595
218 => 0.12623153851577
219 => 0.12727365320674
220 => 0.130670261063
221 => 0.13342289270335
222 => 0.13433609942158
223 => 0.13445679476479
224 => 0.13617003127703
225 => 0.13715202649588
226 => 0.13596199930185
227 => 0.13495357585596
228 => 0.13134152824289
229 => 0.13175963258938
301 => 0.13463995692258
302 => 0.13870858469348
303 => 0.14219989058948
304 => 0.140977356949
305 => 0.15030442565166
306 => 0.15122916641587
307 => 0.1511013971427
308 => 0.15320809422345
309 => 0.14902672953957
310 => 0.14723911512708
311 => 0.13517160845105
312 => 0.13856208559982
313 => 0.14349034325128
314 => 0.14283806987109
315 => 0.13925903743189
316 => 0.14219717557244
317 => 0.1412257352191
318 => 0.14045951990732
319 => 0.14396970078872
320 => 0.14011011271934
321 => 0.14345184090786
322 => 0.13916603994033
323 => 0.14098294137969
324 => 0.13995158024908
325 => 0.14061899729945
326 => 0.13671729086054
327 => 0.13882255694641
328 => 0.1366297048699
329 => 0.1366286651725
330 => 0.13658025784137
331 => 0.13916013858479
401 => 0.13924426840321
402 => 0.13733773263584
403 => 0.13706297104608
404 => 0.13807890865181
405 => 0.13688951178998
406 => 0.13744602309566
407 => 0.1369063679505
408 => 0.13678488021045
409 => 0.13581684522828
410 => 0.13539978914129
411 => 0.13556332757921
412 => 0.13500508658075
413 => 0.13466872618671
414 => 0.13651334729293
415 => 0.13552784064768
416 => 0.13636230426539
417 => 0.1354113276553
418 => 0.13211482840396
419 => 0.13021897682467
420 => 0.12399219532453
421 => 0.12575810283367
422 => 0.1269289013392
423 => 0.12654195244011
424 => 0.1273732684047
425 => 0.12742430445326
426 => 0.12715403515891
427 => 0.12684109793969
428 => 0.12668877740788
429 => 0.12782404985807
430 => 0.12848311372691
501 => 0.12704640663249
502 => 0.12670980626194
503 => 0.12816239645717
504 => 0.12904847563713
505 => 0.13559078645706
506 => 0.13510611094013
507 => 0.13632255137485
508 => 0.1361855988497
509 => 0.13746062221945
510 => 0.13954474656389
511 => 0.1353071390413
512 => 0.13604264118178
513 => 0.13586231304216
514 => 0.13783108838596
515 => 0.13783723468768
516 => 0.13665685552145
517 => 0.13729675821693
518 => 0.13693958208713
519 => 0.13758504762893
520 => 0.13509963780311
521 => 0.13812659868755
522 => 0.13984269045597
523 => 0.13986651839184
524 => 0.14067993227033
525 => 0.14150640788063
526 => 0.14309275584374
527 => 0.14146216549693
528 => 0.13852889219779
529 => 0.13874066505557
530 => 0.13702088799353
531 => 0.13704979775664
601 => 0.13689547517543
602 => 0.13735860885851
603 => 0.13520126960228
604 => 0.13570759281369
605 => 0.13499873735269
606 => 0.13604110026844
607 => 0.13491969007986
608 => 0.13586222608247
609 => 0.13626899337563
610 => 0.13776997344447
611 => 0.13469799410328
612 => 0.12843402027188
613 => 0.12975078351458
614 => 0.12780318724911
615 => 0.1279834446985
616 => 0.12834759343403
617 => 0.12716726824012
618 => 0.1273924370908
619 => 0.12738439247496
620 => 0.12731506832175
621 => 0.12700802015249
622 => 0.12656273955944
623 => 0.12833660039202
624 => 0.12863801391342
625 => 0.12930801883427
626 => 0.13130149901002
627 => 0.13110230333096
628 => 0.13142719974805
629 => 0.13071795269376
630 => 0.12801634463518
701 => 0.12816305495059
702 => 0.12633357496656
703 => 0.12926123491784
704 => 0.12856792639816
705 => 0.12812094588527
706 => 0.12799898311109
707 => 0.12999740473861
708 => 0.13059536381099
709 => 0.13022275584463
710 => 0.1294585260349
711 => 0.13092607319383
712 => 0.13131872690272
713 => 0.13140662758763
714 => 0.134006839779
715 => 0.13155195056437
716 => 0.13214286679783
717 => 0.13675302656681
718 => 0.13257224781491
719 => 0.13478689956228
720 => 0.13467850388374
721 => 0.13581144477797
722 => 0.13458556966235
723 => 0.1346007658536
724 => 0.13560674061562
725 => 0.13419403049087
726 => 0.133844223597
727 => 0.13336096787848
728 => 0.13441613906031
729 => 0.13504866646254
730 => 0.14014637278426
731 => 0.14343972355174
801 => 0.14329675050933
802 => 0.14460325648265
803 => 0.14401466357544
804 => 0.14211394181512
805 => 0.14535824209167
806 => 0.14433160973688
807 => 0.14441624406085
808 => 0.14441309396708
809 => 0.14509571473326
810 => 0.14461201535915
811 => 0.14365859424206
812 => 0.14429151967388
813 => 0.14617108193143
814 => 0.15200530085085
815 => 0.15527020705128
816 => 0.15180874939805
817 => 0.15419641653648
818 => 0.15276466706621
819 => 0.15250447559661
820 => 0.15400410700676
821 => 0.15550636332318
822 => 0.15541067609025
823 => 0.15432011514625
824 => 0.15370408494094
825 => 0.15836887204079
826 => 0.16180580771339
827 => 0.16157143174203
828 => 0.16260589105647
829 => 0.1656430955983
830 => 0.16592077951812
831 => 0.16588579772671
901 => 0.16519752915812
902 => 0.1681880514604
903 => 0.17068279777819
904 => 0.16503821487048
905 => 0.16718759814872
906 => 0.16815252555113
907 => 0.16956932525892
908 => 0.17195970384916
909 => 0.17455628901478
910 => 0.1749234746273
911 => 0.17466293886376
912 => 0.17295042114709
913 => 0.175791635619
914 => 0.17745595242198
915 => 0.17844701499093
916 => 0.18096018476872
917 => 0.16815848461426
918 => 0.15909680495916
919 => 0.15768169282877
920 => 0.16055937899245
921 => 0.16131820188469
922 => 0.16101232132831
923 => 0.15081257702462
924 => 0.1576279932859
925 => 0.16496080812656
926 => 0.16524249140842
927 => 0.16891345183958
928 => 0.17010886703372
929 => 0.17306447134459
930 => 0.17287959749022
1001 => 0.17359924010598
1002 => 0.17343380673109
1003 => 0.17890844134106
1004 => 0.18494777630696
1005 => 0.184738653341
1006 => 0.18387042748549
1007 => 0.18515989093544
1008 => 0.19139313183472
1009 => 0.19081927489836
1010 => 0.19137672803101
1011 => 0.19872607034133
1012 => 0.20828126077649
1013 => 0.20384191549392
1014 => 0.2134740173699
1015 => 0.21953691492504
1016 => 0.23002206933136
1017 => 0.22870927635922
1018 => 0.23279107002598
1019 => 0.22635910295092
1020 => 0.21159000643156
1021 => 0.20925274037354
1022 => 0.21393200621069
1023 => 0.22543552467526
1024 => 0.2135697194767
1025 => 0.21597015641431
1026 => 0.21527883041479
1027 => 0.21524199259022
1028 => 0.21664794252372
1029 => 0.21460853881577
1030 => 0.20629964122782
1031 => 0.21010756002774
1101 => 0.20863713970781
1102 => 0.21026868067986
1103 => 0.21907343440737
1104 => 0.21518064290532
1105 => 0.21107990328263
1106 => 0.21622314079646
1107 => 0.22277224955973
1108 => 0.2223624181032
1109 => 0.22156717378129
1110 => 0.2260499243863
1111 => 0.2334541150631
1112 => 0.23545543805059
1113 => 0.23693277376471
1114 => 0.2371364733999
1115 => 0.23923470624093
1116 => 0.22795197943195
1117 => 0.24585795663877
1118 => 0.24894982425975
1119 => 0.24836868129178
1120 => 0.25180516202682
1121 => 0.25079406221947
1122 => 0.24932913723532
1123 => 0.25477669016077
1124 => 0.2485315103266
1125 => 0.23966726379826
1126 => 0.2348041628379
1127 => 0.24120828647767
1128 => 0.24511906131136
1129 => 0.24770383470443
1130 => 0.24848598557142
1201 => 0.22882782539633
1202 => 0.21823316735351
1203 => 0.22502422169096
1204 => 0.23330977667618
1205 => 0.22790595275566
1206 => 0.22811777242256
1207 => 0.22041333961185
1208 => 0.23399144802468
1209 => 0.23201323183879
1210 => 0.24227622091055
1211 => 0.23982687620295
1212 => 0.24819594538402
1213 => 0.2459920889906
1214 => 0.25514017366377
1215 => 0.2587895923144
1216 => 0.26491753421548
1217 => 0.26942527322312
1218 => 0.27207230378771
1219 => 0.27191338600137
1220 => 0.28240223984368
1221 => 0.27621732918552
1222 => 0.26844762372734
1223 => 0.2683070942687
1224 => 0.27233113482307
1225 => 0.28076441988342
1226 => 0.28295104800026
1227 => 0.28417307481228
1228 => 0.28230149821061
1229 => 0.27558822096771
1230 => 0.27268946189131
1231 => 0.27515928860954
]
'min_raw' => 0.10184282912403
'max_raw' => 0.28417307481228
'avg_raw' => 0.19300795196815
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.101842'
'max' => '$0.284173'
'avg' => '$0.1930079'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.040318051087297
'max_diff' => 0.14682334196668
'year' => 2036
]
11 => [
'items' => [
101 => 0.27213890276778
102 => 0.27735293610124
103 => 0.28451291752552
104 => 0.28303440967504
105 => 0.2879768397489
106 => 0.29309173491654
107 => 0.30040626473058
108 => 0.30231855368023
109 => 0.30547949459616
110 => 0.30873314111365
111 => 0.30977812468683
112 => 0.3117733225674
113 => 0.31176280688972
114 => 0.31777546999512
115 => 0.32440762359706
116 => 0.32691110804708
117 => 0.33266773249697
118 => 0.32280971486272
119 => 0.33028713447904
120 => 0.33703195414492
121 => 0.32899050208299
122 => 0.34007377033234
123 => 0.34050410852323
124 => 0.34700170428474
125 => 0.34041514619173
126 => 0.33650406902113
127 => 0.34779520226648
128 => 0.35325862597655
129 => 0.35161299829226
130 => 0.33908969036017
131 => 0.33180058799375
201 => 0.31272360113799
202 => 0.33532111613314
203 => 0.34632770650873
204 => 0.3390611859501
205 => 0.34272599625161
206 => 0.36272001293796
207 => 0.37033243997541
208 => 0.3687491083665
209 => 0.36901666534455
210 => 0.37312419279864
211 => 0.39133923158673
212 => 0.38042435812361
213 => 0.38876836991366
214 => 0.39319400368053
215 => 0.39730477896644
216 => 0.3872100140881
217 => 0.37407687330293
218 => 0.36991705632452
219 => 0.33833867368801
220 => 0.33669488173381
221 => 0.33577217149793
222 => 0.32995461398064
223 => 0.32538360733516
224 => 0.32174857314008
225 => 0.3122091578991
226 => 0.31542843051046
227 => 0.30022459364702
228 => 0.30995146968135
301 => 0.28568577893783
302 => 0.30589496724793
303 => 0.29489602484978
304 => 0.30228151885453
305 => 0.3022557515617
306 => 0.28865671552596
307 => 0.28081307534518
308 => 0.28581134814741
309 => 0.2911698933548
310 => 0.29203929928638
311 => 0.2989867930201
312 => 0.3009256891853
313 => 0.29505074328633
314 => 0.28518292643282
315 => 0.28747499522695
316 => 0.28076662664422
317 => 0.26901046873666
318 => 0.2774539465887
319 => 0.2803369211609
320 => 0.28161020697142
321 => 0.27004937587319
322 => 0.26641671174427
323 => 0.26448271184304
324 => 0.28369056831274
325 => 0.28474281804944
326 => 0.27935935962339
327 => 0.30369310218961
328 => 0.29818562680958
329 => 0.3043388261733
330 => 0.28726701400821
331 => 0.28791918022316
401 => 0.27983711075629
402 => 0.28436252961366
403 => 0.28116410942633
404 => 0.28399692049105
405 => 0.28569489576312
406 => 0.29377563904193
407 => 0.3059872363559
408 => 0.29256864546511
409 => 0.28672197325624
410 => 0.29034921581169
411 => 0.3000090407293
412 => 0.31464416995681
413 => 0.3059798788947
414 => 0.30982494413886
415 => 0.31066491983967
416 => 0.30427619237995
417 => 0.31487973145104
418 => 0.32056225418223
419 => 0.32639134667204
420 => 0.33145258435348
421 => 0.32406307894712
422 => 0.33197090897591
423 => 0.32559859389262
424 => 0.31988196850508
425 => 0.31989063826607
426 => 0.3163045156539
427 => 0.30935595121228
428 => 0.30807452931914
429 => 0.31474064783299
430 => 0.32008624359733
501 => 0.32052653246816
502 => 0.32348612894993
503 => 0.32523758766157
504 => 0.3424042640283
505 => 0.3493088432732
506 => 0.35775163207686
507 => 0.3610405741254
508 => 0.37093911054049
509 => 0.36294523846548
510 => 0.36121571395824
511 => 0.3372051024018
512 => 0.34113683869907
513 => 0.34743192786712
514 => 0.33730890610356
515 => 0.34372963341412
516 => 0.34499722099482
517 => 0.33696492969765
518 => 0.34125532353429
519 => 0.3298613095173
520 => 0.30623559472522
521 => 0.31490603362537
522 => 0.32129039509406
523 => 0.31217912409215
524 => 0.32851072470819
525 => 0.31897014078097
526 => 0.31594623370483
527 => 0.30414889410011
528 => 0.30971678427229
529 => 0.31724743545468
530 => 0.31259436855613
531 => 0.32225018103213
601 => 0.33592538660927
602 => 0.34567115247611
603 => 0.34641931136571
604 => 0.34015343682893
605 => 0.35019454076239
606 => 0.35026767924243
607 => 0.33894127298637
608 => 0.33200391222023
609 => 0.33042772925783
610 => 0.33436534332677
611 => 0.33914633373013
612 => 0.34668462305909
613 => 0.35123985342211
614 => 0.36311747830135
615 => 0.36633122303548
616 => 0.36986215415177
617 => 0.37458056702196
618 => 0.38024623144884
619 => 0.36785008022927
620 => 0.36834260242654
621 => 0.35679947804726
622 => 0.34446399419652
623 => 0.35382508879947
624 => 0.36606347473858
625 => 0.36325597548193
626 => 0.36294007446356
627 => 0.36347133235283
628 => 0.36135456959767
629 => 0.35178053010698
630 => 0.34697250741141
701 => 0.3531760833461
702 => 0.35647300786599
703 => 0.36158625027431
704 => 0.36095593522003
705 => 0.37412709854171
706 => 0.3792450143332
707 => 0.37793563246577
708 => 0.37817659024142
709 => 0.3874423323184
710 => 0.39774774315321
711 => 0.40740012031874
712 => 0.41721893295076
713 => 0.40538197108808
714 => 0.39937189185652
715 => 0.40557275950403
716 => 0.40228249184673
717 => 0.42118934576235
718 => 0.42249841530584
719 => 0.44140390204072
720 => 0.45934746017561
721 => 0.44807743280332
722 => 0.4587045610022
723 => 0.47019866659177
724 => 0.49237266112547
725 => 0.48490523985705
726 => 0.47918531219486
727 => 0.47378000819257
728 => 0.48502758775348
729 => 0.49949741917412
730 => 0.50261408227181
731 => 0.50766426714699
801 => 0.50235461525796
802 => 0.50874950611933
803 => 0.53132628091739
804 => 0.52522583707625
805 => 0.51656222612655
806 => 0.53438442153312
807 => 0.54083420476872
808 => 0.58610216129391
809 => 0.64325482633298
810 => 0.61959324772217
811 => 0.60490574232408
812 => 0.60835765448491
813 => 0.62922787301738
814 => 0.63593072482238
815 => 0.61771006300481
816 => 0.62414590879063
817 => 0.65960805182889
818 => 0.67863235380716
819 => 0.65279479641604
820 => 0.58151000030633
821 => 0.51578216275115
822 => 0.53321614503388
823 => 0.53123967248248
824 => 0.56933932118465
825 => 0.52508034350819
826 => 0.52582555118379
827 => 0.56471306027289
828 => 0.5543385395486
829 => 0.53753314464348
830 => 0.51590486073192
831 => 0.47592297754728
901 => 0.44050990863335
902 => 0.50996309191627
903 => 0.50696814436069
904 => 0.50263101647385
905 => 0.51228282525976
906 => 0.55914926901038
907 => 0.55806884579005
908 => 0.55119574449911
909 => 0.55640893125156
910 => 0.53661924780039
911 => 0.54171949982847
912 => 0.51577175112586
913 => 0.52750121721315
914 => 0.5374970878137
915 => 0.53950390682815
916 => 0.54402537253843
917 => 0.50538994309037
918 => 0.52273611663594
919 => 0.53292536847729
920 => 0.48688995796989
921 => 0.53201539642669
922 => 0.50471738621975
923 => 0.49545203155316
924 => 0.50792661099407
925 => 0.50306525525402
926 => 0.49888574705711
927 => 0.49655350967017
928 => 0.50571346404249
929 => 0.5052861412225
930 => 0.49029867799887
1001 => 0.4707481431908
1002 => 0.47730994439682
1003 => 0.47492598050146
1004 => 0.46628618780721
1005 => 0.47210836491058
1006 => 0.44647044348372
1007 => 0.40236173221199
1008 => 0.43150129796446
1009 => 0.43037945638074
1010 => 0.42981377298276
1011 => 0.4517113512873
1012 => 0.4496064043964
1013 => 0.44578590517773
1014 => 0.46621602134299
1015 => 0.45875875411883
1016 => 0.48174029455055
1017 => 0.49687742343173
1018 => 0.49303815791264
1019 => 0.50727470078948
1020 => 0.47746111504363
1021 => 0.48736399231495
1022 => 0.48940496159578
1023 => 0.46596391688079
1024 => 0.44995079974007
1025 => 0.44888290738968
1026 => 0.42111836901114
1027 => 0.43594996130543
1028 => 0.44900114875142
1029 => 0.44275064277785
1030 => 0.44077191931518
1031 => 0.45088078835324
1101 => 0.4516663340541
1102 => 0.43375580882596
1103 => 0.43747997417346
1104 => 0.45301036276351
1105 => 0.43708864822787
1106 => 0.40615535768241
1107 => 0.39848347394094
1108 => 0.39745990322896
1109 => 0.37665314605731
1110 => 0.39899614589709
1111 => 0.38924282771185
1112 => 0.42005344299631
1113 => 0.40245458478647
1114 => 0.40169593318344
1115 => 0.40054912001546
1116 => 0.38263988460151
1117 => 0.38656086896588
1118 => 0.39959481817582
1119 => 0.40424547809187
1120 => 0.4037603761609
1121 => 0.39953094471404
1122 => 0.40146715677222
1123 => 0.39522994311184
1124 => 0.39302745315198
1125 => 0.38607578899608
1126 => 0.37585876313314
1127 => 0.37727950324404
1128 => 0.35703690157932
1129 => 0.34600765783619
1130 => 0.34295490853119
1201 => 0.33887264457737
1202 => 0.34341601110727
1203 => 0.35697955683215
1204 => 0.34061904302119
1205 => 0.31257008964891
1206 => 0.31425587953968
1207 => 0.31804334890872
1208 => 0.31098542479613
1209 => 0.30430569195024
1210 => 0.31011317771589
1211 => 0.29822846640923
1212 => 0.31947955949025
1213 => 0.3189047769779
1214 => 0.32682587031973
1215 => 0.33177909254357
1216 => 0.32036351894235
1217 => 0.31749253305264
1218 => 0.31912797709445
1219 => 0.2920977300799
1220 => 0.32461692246567
1221 => 0.32489814979181
1222 => 0.32249011068733
1223 => 0.33980557671533
1224 => 0.37634661086369
1225 => 0.36259840395738
1226 => 0.35727468270151
1227 => 0.34715428470247
1228 => 0.36063911414641
1229 => 0.35960368964123
1230 => 0.3549211073557
1231 => 0.35208906697886
]
'min_raw' => 0.26448271184304
'max_raw' => 0.67863235380716
'avg_raw' => 0.4715575328251
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.264482'
'max' => '$0.678632'
'avg' => '$0.471557'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.16263988271901
'max_diff' => 0.39445927899488
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0083018101071275
]
1 => [
'year' => 2028
'avg' => 0.014248316176525
]
2 => [
'year' => 2029
'avg' => 0.038923831785129
]
3 => [
'year' => 2030
'avg' => 0.030029678255118
]
4 => [
'year' => 2031
'avg' => 0.029492865583581
]
5 => [
'year' => 2032
'avg' => 0.05171027511441
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0083018101071275
'min' => '$0.0083018'
'max_raw' => 0.05171027511441
'max' => '$0.05171'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.05171027511441
]
1 => [
'year' => 2033
'avg' => 0.13300414489915
]
2 => [
'year' => 2034
'avg' => 0.084304418917186
]
3 => [
'year' => 2035
'avg' => 0.099437255441164
]
4 => [
'year' => 2036
'avg' => 0.19300795196815
]
5 => [
'year' => 2037
'avg' => 0.4715575328251
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.05171027511441
'min' => '$0.05171'
'max_raw' => 0.4715575328251
'max' => '$0.471557'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.4715575328251
]
]
]
]
'prediction_2025_max_price' => '$0.014194'
'last_price' => 0.01376344
'sma_50day_nextmonth' => '$0.012814'
'sma_200day_nextmonth' => '$0.014457'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'augmenter'
'sma_200day_date_nextmonth' => '4 févr. 2026'
'sma_50day_date_nextmonth' => '4 févr. 2026'
'daily_sma3' => '$0.013517'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.0134049'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.0132097'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.013057'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.01329'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.01509'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.014277'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.013571'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.013454'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.013291'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.013222'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.01359'
'daily_ema50_action' => 'BUY'
'daily_ema100' => '$0.0141084'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.014147'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.014962'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.013418'
'weekly_sma50_action' => 'BUY'
'weekly_sma100' => '$0.014255'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.023322'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.013472'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.013472'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.013818'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.014116'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.01417'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.027161'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.097618'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '61.39'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 111.65
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.013287'
'vwma_10_action' => 'BUY'
'hma_9' => '0.013593'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 242.97
'cci_20_action' => 'SELL'
'adx_14' => 12.86
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.000140'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 79.4
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '-0.001546'
'ichimoku_cloud_action' => 'NEUTRAL'
'sell_signals' => 13
'buy_signals' => 22
'sell_pct' => 37.14
'buy_pct' => 62.86
'overall_action' => 'bullish'
'overall_action_label' => 'Haussier'
'overall_action_dir' => 1
'last_updated' => 1767701873
'last_updated_date' => '6 janvier 2026'
]
Prévision du prix de Yieldwatch pour 2026
La prévision du prix de Yieldwatch pour 2026 suggère que le prix moyen pourrait varier entre $0.004755 à la baisse et $0.014194 à la hausse. Sur le marché des cryptomonnaies, comparé au prix moyen d'aujourd'hui, Yieldwatch pourrait potentiellement gagner 3.13% d'ici 2026 si WATCH atteint l'objectif de prix prévu.
Prévision du prix de Yieldwatch de 2027 à 2032
La prévision du prix de WATCH pour 2027-2032 se situe actuellement dans une fourchette de prix comprise entre $0.0083018 à la baisse et $0.05171 à la hausse. Compte tenu de la volatilité des prix sur le marché, si Yieldwatch atteint l'objectif de prix le plus élevé, il pourrait gagner 275.71% d'ici 2032 par rapport au prix actuel.
| Prévision du Prix de Yieldwatch | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2027 | $0.004577 | $0.0083018 | $0.012025 |
| 2028 | $0.008261 | $0.014248 | $0.020235 |
| 2029 | $0.018148 | $0.038923 | $0.059699 |
| 2030 | $0.015434 | $0.030029 | $0.044625 |
| 2031 | $0.018248 | $0.029492 | $0.040737 |
| 2032 | $0.027854 | $0.05171 | $0.075566 |
Prévision du prix de Yieldwatch de 2032 à 2037
La prévision du prix de Yieldwatch pour 2032-2037 est actuellement estimée entre $0.05171 à la baisse et $0.471557 à la hausse. Par rapport au prix actuel, Yieldwatch pourrait potentiellement gagner 3326.16% d'ici 2037 s'il atteint l'objectif de prix le plus élevé. Veuillez noter que ces informations sont à titre général seulement et ne doivent pas être considérées comme un conseil en investissement à long terme.
| Prévision du Prix de Yieldwatch | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2032 | $0.027854 | $0.05171 | $0.075566 |
| 2033 | $0.064727 | $0.1330041 | $0.20128 |
| 2034 | $0.052037 | $0.0843044 | $0.116571 |
| 2035 | $0.061524 | $0.099437 | $0.137349 |
| 2036 | $0.101842 | $0.1930079 | $0.284173 |
| 2037 | $0.264482 | $0.471557 | $0.678632 |
Yieldwatch Histogramme des prix potentiels
Prévision du prix de Yieldwatch basée sur l'analyse technique
Au 6 janvier 2026, le sentiment global de prévision du prix pour Yieldwatch est Haussier, avec 22 indicateurs techniques montrant des signaux haussiers et 13 indiquant des signaux baissiers. La prévision du prix de WATCH a été mise à jour pour la dernière fois le 6 janvier 2026.
Moyennes Mobiles Simples sur 50 et 200 jours de Yieldwatch et Indice de Force Relative sur 14 jours - RSI (14)
Selon nos indicateurs techniques, le SMA sur 200 jours de Yieldwatch devrait augmenter au cours du prochain mois, atteignant $0.014457 d'ici le 4 févr. 2026. Le SMA à court terme sur 50 jours pour Yieldwatch devrait atteindre $0.012814 d'ici le 4 févr. 2026.
Le Relative Strength Index (RSI), un oscillateur de momentum, est un outil couramment utilisé pour identifier si une cryptomonnaie est survendue (en dessous de 30) ou surachetée (au-dessus de 70). Actuellement, le RSI est à 61.39, ce qui suggère que le marché de WATCH est dans un état NEUTRAL.
Moyennes Mobiles et Oscillateurs Populaires de WATCH pour le Samedi 19 Octobre 2024
Les moyennes mobiles (MA) sont des indicateurs largement utilisés sur les marchés financiers, conçus pour lisser les mouvements de prix sur une période donnée. En tant qu'indicateurs retardés, ils sont basés sur des données historiques de prix. Le tableau ci-dessous met en évidence deux types : la moyenne mobile simple (SMA) et la moyenne mobile exponentielle (EMA).
Moyenne Mobile Simple Quotidienne (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 3 | $0.013517 | BUY |
| SMA 5 | $0.0134049 | BUY |
| SMA 10 | $0.0132097 | BUY |
| SMA 21 | $0.013057 | BUY |
| SMA 50 | $0.01329 | BUY |
| SMA 100 | $0.01509 | SELL |
| SMA 200 | $0.014277 | SELL |
Moyenne Mobile Exponentielle Quotidienne (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 3 | $0.013571 | BUY |
| EMA 5 | $0.013454 | BUY |
| EMA 10 | $0.013291 | BUY |
| EMA 21 | $0.013222 | BUY |
| EMA 50 | $0.01359 | BUY |
| EMA 100 | $0.0141084 | SELL |
| EMA 200 | $0.014147 | SELL |
Moyenne Mobile Simple Hebdomadaire (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 21 | $0.014962 | SELL |
| SMA 50 | $0.013418 | BUY |
| SMA 100 | $0.014255 | SELL |
| SMA 200 | $0.023322 | SELL |
Moyenne Mobile Exponentielle Hebdomadaire (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 21 | $0.014116 | SELL |
| EMA 50 | $0.01417 | SELL |
| EMA 100 | $0.027161 | SELL |
| EMA 200 | $0.097618 | SELL |
Oscillateurs de Yieldwatch
Un oscillateur est un outil d'analyse technique qui établit des limites hautes et basses entre deux extrêmes, créant un indicateur de tendance qui fluctue à l'intérieur de ces limites. Les traders utilisent cet indicateur pour identifier les conditions de surachat ou de survente à court terme.
| Période | Valeur | Action |
|---|---|---|
| RSI (14) | 61.39 | NEUTRAL |
| Stoch RSI (14) | 111.65 | SELL |
| Stochastique Rapide (14) | 100 | SELL |
| Indice de Canal des Matières Premières (20) | 242.97 | SELL |
| Indice Directionnel Moyen (14) | 12.86 | NEUTRAL |
| Oscillateur Impressionnant (5, 34) | 0.000140 | BUY |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Plage de Pourcentage de Williams (14) | -0 | SELL |
| Oscillateur Ultime (7, 14, 28) | 79.4 | SELL |
| VWMA (10) | 0.013287 | BUY |
| Moyenne Mobile de Hull (9) | 0.013593 | BUY |
| Nuage Ichimoku B/L (9, 26, 52, 26) | -0.001546 | NEUTRAL |
Prévision du cours de Yieldwatch basée sur les flux monétaires mondiaux
Définitions des flux monétaires mondiaux utilisés pour la prédiction du cours de Yieldwatch
M0 : le total de toutes les devises physiques, plus les comptes à la banque centrale qui peuvent être échangés contre des devises physiques.
M1 : M0 plus le montant des comptes à vue, y compris les comptes de "chèques" et les comptes "courants".
M2 : M1 plus la plupart des comptes d'épargne, comptes du marché monétaire et comptes de certificats de dépôt (CD) de moins de 100 000 $.
Prédictions du cours de Yieldwatch par des sociétés Internet ou des niches technologiques
| Comparaison | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Action Facebook | $0.019339 | $0.027175 | $0.038186 | $0.053658 | $0.075399 | $0.105948 |
| Action Amazon.com | $0.028718 | $0.059922 | $0.125031 | $0.260885 | $0.544353 | $1.13 |
| Action Apple | $0.019522 | $0.027691 | $0.039277 | $0.055712 | $0.079023 | $0.112088 |
| Action Netflix | $0.021716 | $0.034265 | $0.054065 | $0.0853065 | $0.13460038 | $0.212378 |
| Action Google | $0.017823 | $0.023081 | $0.02989 | $0.0387079 | $0.050126 | $0.064913 |
| Action Tesla | $0.03120067 | $0.070729 | $0.160338 | $0.363475 | $0.823971 | $1.86 |
| Action Kodak | $0.010321 | $0.007739 | $0.0058039 | $0.004352 | $0.003263 | $0.002447 |
| Action Nokia | $0.009117 | $0.00604 | $0.0040013 | $0.00265 | $0.001755 | $0.001163 |
Ce calcul montre la valeur potentielle des cryptomonnaies si l'on suppose que leur capitalisation se comportera comme celle de certaines sociétés Internet ou niches technologiques. En extrapolant les données, vous pourrez obtenir une potentielle image des cours futurs pour 2024, 2025, 2026, 2027, 2028, 2029 et 2030.
Aperçu des prévisions relatives à Yieldwatch
Vous vous posez peut-être des questions telles que : "Devrais-je investir dans Yieldwatch maintenant ?", "Devrais-je acheter WATCH aujourd'hui ?", " Yieldwatch sera-t-il un bon ou un mauvais investissement à court ou à long terme ?".
Nous mettons régulièrement à jour les prévisions de Yieldwatch avec de nouvelles valeurs. Regardez nos prévisions similaires. Nous faisons une prévision des cours futurs pour une grande quantité de devises numériques comme Yieldwatch en utilisant des méthodes d'analyse technique.
Si vous souhaitez trouver des cryptomonnaies ayant un bon rendement, vous devriez consulter un maximum d'informations disponibles à propos de Yieldwatch afin de prendre une décision responsable concernant cet investissement.
Le cours de Yieldwatch est de $0.01376 USD actuellement, mais ce cours peut subir une hausse ou une baisse, ce qui pourrait causer la perte de votre investissement, car les cryptomonnaies sont des actifs à haut risque.
Prévision du cours de Yieldwatch basée sur le modèle de croissance du Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si Yieldwatch présente 1 % de la précédente croissance annuelle moyenne du Bitcoin | $0.014121 | $0.014488 | $0.014864 | $0.015251 |
| Si Yieldwatch présente 2 % de la précédente croissance annuelle moyenne du Bitcoin | $0.014478 | $0.015231 | $0.016023 | $0.016856 |
| Si Yieldwatch présente 5 % de la précédente croissance annuelle moyenne du Bitcoin | $0.015552 | $0.017573 | $0.019857 | $0.022438 |
| Si Yieldwatch présente 10 % de la précédente croissance annuelle moyenne du Bitcoin | $0.017341 | $0.021848 | $0.027527 | $0.034682 |
| Si Yieldwatch présente 20 % de la précédente croissance annuelle moyenne du Bitcoin | $0.020918 | $0.031793 | $0.048321 | $0.073442 |
| Si Yieldwatch présente 50 % de la précédente croissance annuelle moyenne du Bitcoin | $0.031651 | $0.072787 | $0.167385 | $0.38493 |
| Si Yieldwatch présente 100 % de la précédente croissance annuelle moyenne du Bitcoin | $0.049539 | $0.1783069 | $0.641783 | $2.30 |
Boîte à questions
Est-ce que WATCH est un bon investissement ?
La décision d'acquérir Yieldwatch dépend entièrement de votre tolérance individuelle au risque. Comme vous pouvez le discerner, la valeur de Yieldwatch a connu une hausse de 0.6903% au cours des 24 heures précédentes, et Yieldwatch a enregistré une déclin de sur une période de 30 jours précédents. Par conséquent, la détermination de si investir ou non dans Yieldwatch dépendra de la mesure dans laquelle cet investissement s'aligne avec vos aspirations de trading.
Est-ce que Yieldwatch peut monter ?
Il semble que la valeur moyenne de Yieldwatch pourrait potentiellement s'envoler jusqu'à $0.014194 pour la fin de cette année. En regardant les perspectives de Yieldwatch sur une période de cinq ans plus longue, la monnaie numérique pourrait potentiellement croître jusqu'à $0.044625. Cependant, compte tenu de l'imprévisibilité du marché, il est essentiel de mener des recherches approfondies avant d'investir des fonds dans un projet, un réseau ou un actif particulier.
Quel sera le prix de Yieldwatch la semaine prochaine ?
Basé sur notre nouveau pronostic expérimental de Yieldwatch, le prix de Yieldwatch va augmenter de 0.86% durant la prochaine semaine et atteindre $0.013881 d'ici 13 janvier 2026.
Quel sera le prix de Yieldwatch le mois prochain ?
Basé sur notre nouveau pronostic expérimental de Yieldwatch, le prix de Yieldwatch va diminuer de -11.62% durant le prochain mois et atteindre $0.012164 d'ici 5 février 2026.
Jusqu'où le prix de Yieldwatch peut-il monter cette année en 2026 ?
Selon notre prédiction la plus récente sur la valeur de Yieldwatch en 2026, WATCH devrait fluctuer dans la fourchette de $0.004755 et $0.014194. Cependant, il est crucial de garder à l'esprit que le marché des cryptomonnaies est exceptionnellement instable, et cette prévision de prix de Yieldwatch ne prend pas en compte les fluctuations de prix soudaines et extrêmes.
Où sera Yieldwatch dans 5 ans ?
L'avenir de Yieldwatch semble suivre une tendance haussière, avec un prix maximum de $0.044625 prévue après une période de cinq ans. Selon la prévision de Yieldwatch pour 2030, la valeur de Yieldwatch pourrait potentiellement atteindre son point le plus élevé d'environ $0.044625, tandis que son point le plus bas devrait être autour de $0.015434.
Combien vaudra Yieldwatch en 2026 ?
Basé sur notre nouvelle simulation expérimentale de prédiction de prix de Yieldwatch, il est attendu que la valeur de WATCH en 2026 augmente de 3.13% jusqu'à $0.014194 si le meilleur scénario se produit. Le prix sera entre $0.014194 et $0.004755 durant 2026.
Combien vaudra Yieldwatch en 2027 ?
Selon notre dernière simulation expérimentale pour la prédiction de prix de Yieldwatch, le valeur de WATCH pourrait diminuer de -12.62% jusqu'à $0.012025 en 2027, en supposant les conditions les plus favorables. Il est prévu que le prix fluctue entre $0.012025 et $0.004577 tout au long de l'année.
Combien vaudra Yieldwatch en 2028 ?
Notre nouveau modèle expérimental de prédiction de prix de Yieldwatch suggère que la valeur de WATCH en 2028 pourrait augmenter de 47.02%, atteignant $0.020235 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.020235 et $0.008261 durant l'année.
Combien vaudra Yieldwatch en 2029 ?
Basé sur notre modèle de prévision expérimental, la valeur de Yieldwatch pourrait connaître un 333.75% croissance en 2029, atteignant potentiellement $0.059699 sous des conditions optimales. Le range de prix prévu pour 2029 se situe entre $0.059699 et $0.018148.
Combien vaudra Yieldwatch en 2030 ?
En utilisant notre nouvelle simulation expérimentale pour les prédictions de prix de Yieldwatch, il est prévu que la valeur de WATCH en 2030 augmente de 224.23%, atteignant $0.044625 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.044625 et $0.015434 au cours de 2030.
Combien vaudra Yieldwatch en 2031 ?
Notre simulation expérimentale indique que le prix de Yieldwatch pourrait augmenter de 195.98% en 2031, atteignant potentiellement $0.040737 dans des conditions idéales. Il est probable que le prix fluctue entre $0.040737 et $0.018248 durant l'année.
Combien vaudra Yieldwatch en 2032 ?
Basé sur les résultats de notre dernière prédiction expérimentale de prix de Yieldwatch, WATCH pourrait connaître une 449.04% hausse en valeur, atteignant $0.075566 si le scénario le plus positif se réalise en 2032. Il est prévu que le prix reste dans une fourchette de $0.075566 et $0.027854 tout au long de l'année.
Combien vaudra Yieldwatch en 2033 ?
Selon notre prédiction expérimentale de prix de Yieldwatch, la valeur de WATCH est anticipée à augmenter de 1362.43% en 2033, avec le prix potentiel le plus élevé étant $0.20128. Tout au long de l'année, le prix de WATCH pourrait osciller entre $0.20128 et $0.064727.
Combien vaudra Yieldwatch en 2034 ?
Les résultats de notre nouvelle simulation de prédiction de prix de Yieldwatch suggèrent que WATCH pourrait augmenter de 746.96% en 2034, atteignant potentiellement $0.116571 dans les meilleures circonstances. La fourchette de prix prévue pour l'année est entre $0.116571 et $0.052037.
Combien vaudra Yieldwatch en 2035 ?
Basé sur notre prédiction expérimentale pour le prix de Yieldwatch, WATCH pourrait augmenter de 897.93%, avec la valeur potentiellement atteignant $0.137349 en 2035. La fourchette de prix attendue pour l'année se situe entre $0.137349 et $0.061524.
Combien vaudra Yieldwatch en 2036 ?
Notre récente simulation de prédiction de prix de Yieldwatch suggère que la valeur de WATCH pourrait augmenter de 1964.7% en 2036, pouvant atteindre $0.284173 si les conditions sont optimales. La fourchette de prix attendue pour 2036 est entre $0.284173 et $0.101842.
Combien vaudra Yieldwatch en 2037 ?
Selon la simulation expérimentale, la valeur de Yieldwatch pourrait augmenter de 4830.69% en 2037, avec un maximum de $0.678632 sous des conditions favorables. Il est prévu que le prix chute entre $0.678632 et $0.264482 au cours de l'année.
Prévisions liées
Prévision du cours de Mercurial
Prévision du cours de Swingby
Prévision du cours de Qubitcoin
Prévision du cours de .Alpha
Prévision du cours de Aidi Finance
Prévision du cours de OctoFi
Prévision du cours de DarkCrypto
Prévision du cours de Archi Token
Prévision du cours de Brick Token
Prévision du cours de Italian Lira
Prévision du cours de Linked Finance World
Prévision du cours de CNNSPrévision du cours de Defi Warrior
Prévision du cours de Playcent
Prévision du cours de Radar
Prévision du cours de KeyFi
Prévision du cours de IDRX
Prévision du cours de POSTHUMAN
Prévision du cours de Rabbit Finance
Prévision du cours de Marginswap
Prévision du cours de CluCoin
Prévision du cours de GATEWAY TO MARS
Prévision du cours de NIRVANA
Prévision du cours de Evil Coin
Prévision du cours de BabyUSDT
Comment lire et prédire les mouvements de prix de Yieldwatch ?
Les traders de Yieldwatch utilisent des indicateurs et des modèles graphiques pour prédire la direction du marché. Ils identifient également des niveaux clés de support et de résistance pour évaluer quand une tendance baissière pourrait ralentir ou une tendance haussière pourrait s'arrêter.
Indicateurs de prédiction du prix de Yieldwatch
Les moyennes mobiles sont des outils populaires pour la prédiction du prix de Yieldwatch. Une moyenne mobile simple (SMA) calcule le prix de clôture moyen de WATCH sur une période spécifique, comme une SMA de 12 jours. Une moyenne mobile exponentielle (EMA) donne plus de poids aux prix récents, réagissant plus rapidement aux changements de prix.
Les moyennes mobiles couramment utilisées sur le marché des cryptomonnaies incluent les moyennes sur 50 jours, 100 jours et 200 jours, qui aident à identifier les niveaux clés de résistance et de support. Un mouvement de prix de WATCH au-dessus de ces moyennes est considéré comme haussier, tandis qu'une chute en dessous indique une faiblesse.
Les traders utilisent également le RSI et les niveaux de retracement de Fibonacci pour évaluer la direction future de WATCH.
Comment lire les graphiques de Yieldwatch et prédire les mouvements de prix ?
La plupart des traders préfèrent les graphiques en chandeliers aux simples graphiques linéaires parce qu'ils fournissent des informations plus détaillées. Les chandeliers peuvent représenter l'action des prix de Yieldwatch dans différentes périodes, comme 5 minutes pour les tendances à court terme et hebdomadaire pour les tendances à long terme. Les options populaires incluent les graphiques de 1 heure, 4 heures et 1 jour.
Par exemple, un graphique en chandeliers de 1 heure montre les prix d'ouverture, de clôture, les plus hauts et les plus bas de WATCH au sein de chaque heure. La couleur du chandelier est cruciale : le vert indique que le prix a clôturé plus haut qu'il n'a ouvert, tandis que le rouge signifie le contraire. Certains graphiques utilisent des chandeliers creux et pleins pour transmettre la même information.
Qu'est-ce qui affecte le prix de Yieldwatch ?
L'action du prix de Yieldwatch est déterminée par l'offre et la demande, influencée par des facteurs tels que les réductions de récompenses de bloc, les hard forks et les mises à jour de protocole. Les événements du monde réel, tels que les réglementations, l'adoption par les entreprises et les gouvernements et les piratages d'échanges de cryptomonnaies, impactent également le prix de WATCH. La capitalisation boursière de Yieldwatch peut changer rapidement.
Les traders surveillent souvent l'activité des « baleines » de WATCH, de grands détenteurs de Yieldwatch, car leurs actions peuvent influencer significativement les mouvements de prix sur le marché relativement petit de Yieldwatch.
Modèles de prédiction de prix haussiers et baissiers
Les traders identifient souvent des modèles de chandeliers pour obtenir un avantage dans les prédictions de prix des cryptomonnaies. Certaines formations indiquent des tendances haussières, tandis que d'autres suggèrent des mouvements baissiers.
Modèles de chandeliers haussiers couramment suivis :
- Marteau
- Englobante haussière
- Ligne pénétrante
- Étoile du matin
- Trois soldats blancs
Modèles de chandeliers baissiers courants :
- Harami baissier
- Nuage sombre
- Étoile du soir
- Étoile filante
- Pendu


