Prédiction du prix de KeyFi jusqu'à $0.015397 d'ici 2026
| Année | Prix min. | Prix max. |
|---|---|---|
| 2026 | $0.005158 | $0.015397 |
| 2027 | $0.004965 | $0.013044 |
| 2028 | $0.008961 | $0.021949 |
| 2029 | $0.019686 | $0.064758 |
| 2030 | $0.016742 | $0.0484067 |
| 2031 | $0.019794 | $0.044189 |
| 2032 | $0.030214 | $0.081969 |
| 2033 | $0.070212 | $0.218337 |
| 2034 | $0.056447 | $0.126449 |
| 2035 | $0.066738 | $0.148989 |
Calculateur de profit d’investissement
Si vous ouvrez une position short de $10,000.00 sur KeyFi aujourd’hui et la fermez le Apr 06, 2026, notre prévision indique que vous pourriez gagner environ $3,954.44, soit un rendement de 39.54% sur les 90 prochains jours.
Prévision du prix à long terme de KeyFi pour 2027, 2028, 2029, 2030, 2031, 2032 et 2037
[
'name' => 'KeyFi'
'name_with_ticker' => 'KeyFi <small>KEYFI</small>'
'name_lang' => 'KeyFi'
'name_lang_with_ticker' => 'KeyFi <small>KEYFI</small>'
'name_with_lang' => 'KeyFi'
'name_with_lang_with_ticker' => 'KeyFi <small>KEYFI</small>'
'image' => '/uploads/coins/keyfi.jpg?1717591050'
'price_for_sd' => 0.01492
'ticker' => 'KEYFI'
'marketcap' => '$48.28K'
'low24h' => '$0.004964'
'high24h' => '$0.01496'
'volume24h' => '$9.73'
'current_supply' => '3.23M'
'max_supply' => '8.99M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.01492'
'change_24h_pct' => '1.4117%'
'ath_price' => '$2.57'
'ath_days' => 1713
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '29 avr. 2021'
'ath_pct' => '-99.42%'
'fdv' => '$134.28K'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.736141'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.0150575'
'next_week_prediction_price_date' => '13 janvier 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.013195'
'next_month_prediction_price_date' => '5 février 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.005158'
'current_year_max_price_prediction' => '$0.015397'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.016742'
'grand_prediction_max_price' => '$0.0484067'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.01521270166743
107 => 0.015269500373246
108 => 0.015397470757662
109 => 0.01430397783405
110 => 0.014794924053486
111 => 0.015083308961965
112 => 0.013780375453924
113 => 0.015057554155762
114 => 0.014284942555052
115 => 0.014022706573534
116 => 0.014375772775684
117 => 0.014238182533338
118 => 0.014119890522539
119 => 0.014053881547999
120 => 0.014313134400363
121 => 0.014301039944926
122 => 0.013876851959648
123 => 0.013323516024966
124 => 0.013509233727278
125 => 0.013441760744916
126 => 0.013197229952645
127 => 0.013362014181875
128 => 0.012636387831737
129 => 0.011387985411101
130 => 0.012212718289773
131 => 0.012180966971081
201 => 0.012164956516389
202 => 0.012784720480769
203 => 0.012725144475981
204 => 0.012617013443922
205 => 0.013195244041444
206 => 0.012984182095049
207 => 0.013634625281389
208 => 0.01406304923194
209 => 0.013954387060017
210 => 0.014357321856263
211 => 0.013513512288042
212 => 0.013793791978842
213 => 0.013851557234664
214 => 0.013188108765627
215 => 0.012734891847154
216 => 0.012704667445742
217 => 0.011918851766248
218 => 0.012338628159351
219 => 0.012708014013755
220 => 0.012531106854996
221 => 0.012475103333484
222 => 0.012761213179207
223 => 0.012783446364585
224 => 0.012276527381803
225 => 0.01238193189036
226 => 0.012821486213083
227 => 0.012370856249208
228 => 0.011495355839384
301 => 0.011278219633008
302 => 0.011249249660463
303 => 0.01066035904748
304 => 0.011292729712595
305 => 0.011016682970792
306 => 0.011888711320599
307 => 0.011390613403971
308 => 0.011369141398321
309 => 0.011336683312522
310 => 0.010829800835163
311 => 0.010940775883643
312 => 0.011309673846767
313 => 0.011441300795942
314 => 0.011427571026755
315 => 0.011307866045496
316 => 0.011362666372928
317 => 0.01118613542457
318 => 0.011123798672531
319 => 0.01092704673602
320 => 0.01063787574346
321 => 0.010678086743564
322 => 0.010105163341597
323 => 0.0097930042648582
324 => 0.0097066027466075
325 => 0.0095910630254346
326 => 0.0097196532655534
327 => 0.010103540321583
328 => 0.0096404910858291
329 => 0.0088466256502566
330 => 0.0088943383156154
331 => 0.0090015345086591
401 => 0.008801775112096
402 => 0.0086127196077843
403 => 0.0087770880302254
404 => 0.0084407167798302
405 => 0.0090421833672367
406 => 0.009025915381638
407 => 0.0092501049309789
408 => 0.0093902952570145
409 => 0.0090672019426596
410 => 0.0089859448478365
411 => 0.0090322325819768
412 => 0.0082671994438403
413 => 0.0091875854021023
414 => 0.0091955449380893
415 => 0.0091273905585949
416 => 0.009617467667641
417 => 0.010651683226612
418 => 0.010262569732103
419 => 0.010111893226011
420 => 0.0098254570777868
421 => 0.0102071162384
422 => 0.010177810769675
423 => 0.010045280326333
424 => 0.0099651255006796
425 => 0.010112813224627
426 => 0.0099468253572949
427 => 0.0099170093752804
428 => 0.0097363569643813
429 => 0.0096718722728513
430 => 0.009624130374452
501 => 0.0095715712353364
502 => 0.0096875035993039
503 => 0.0094247856103809
504 => 0.0091079734703019
505 => 0.0090816339688091
506 => 0.0091543596482232
507 => 0.0091221839488725
508 => 0.0090814799239395
509 => 0.0090037648552608
510 => 0.0089807084545036
511 => 0.0090556305715892
512 => 0.0089710478696303
513 => 0.0090958542538289
514 => 0.0090619138231791
515 => 0.008872325336574
516 => 0.0086360278876162
517 => 0.0086339243446698
518 => 0.0085830144468973
519 => 0.0085181730377297
520 => 0.0085001356410697
521 => 0.0087632453801482
522 => 0.0093078746658288
523 => 0.0092009509051754
524 => 0.0092782142802352
525 => 0.0096582736151565
526 => 0.009779083048945
527 => 0.0096933353743702
528 => 0.0095759586687259
529 => 0.0095811226480774
530 => 0.009982234383609
531 => 0.01000725123054
601 => 0.010070460731996
602 => 0.010151702804368
603 => 0.0097071712505959
604 => 0.0095601852518708
605 => 0.0094905351312021
606 => 0.0092760397175314
607 => 0.0095073546317283
608 => 0.009372577337118
609 => 0.0093907633988089
610 => 0.009378919702275
611 => 0.0093853871614498
612 => 0.0090420152450676
613 => 0.0091671219243007
614 => 0.0089591078052362
615 => 0.0086806002504897
616 => 0.0086796665955088
617 => 0.0087478309249717
618 => 0.0087072841145367
619 => 0.00859817369021
620 => 0.0086136723109989
621 => 0.0084778880844727
622 => 0.008630158974552
623 => 0.008634525558828
624 => 0.008575892971896
625 => 0.0088104872873967
626 => 0.0089066007698681
627 => 0.0088680075451178
628 => 0.008903892966338
629 => 0.0092053940701624
630 => 0.0092545519055012
701 => 0.0092763845687744
702 => 0.0092471316922619
703 => 0.0089094038530425
704 => 0.0089243835188416
705 => 0.0088144726703726
706 => 0.0087216095855362
707 => 0.0087253236219269
708 => 0.0087730673188889
709 => 0.0089815668436524
710 => 0.009420341801799
711 => 0.0094369929907203
712 => 0.0094571747174425
713 => 0.0093750854923404
714 => 0.0093503265965616
715 => 0.0093829899709071
716 => 0.0095477707754957
717 => 0.0099716317424495
718 => 0.0098218109680059
719 => 0.0097000043462839
720 => 0.0098068615923635
721 => 0.0097904117569043
722 => 0.0096515585910997
723 => 0.0096476614452003
724 => 0.0093811578259787
725 => 0.0092826375059463
726 => 0.009200306552409
727 => 0.0091104033004503
728 => 0.0090571056391049
729 => 0.0091389950702853
730 => 0.0091577241520835
731 => 0.0089786714796252
801 => 0.0089542672619915
802 => 0.0091004855394413
803 => 0.0090361403271025
804 => 0.0091023209736775
805 => 0.00911767545137
806 => 0.0091152030268179
807 => 0.0090480192351355
808 => 0.0090908401805043
809 => 0.0089895558791689
810 => 0.0088794244138768
811 => 0.0088091674004531
812 => 0.0087478588380005
813 => 0.0087818763917238
814 => 0.0086606100240602
815 => 0.0086218144724348
816 => 0.0090763334077152
817 => 0.0094120914321087
818 => 0.0094072093774593
819 => 0.0093774911253433
820 => 0.0093333358308261
821 => 0.0095445405406754
822 => 0.0094709610429354
823 => 0.009524496275314
824 => 0.009538123238821
825 => 0.0095793679531778
826 => 0.0095941093934574
827 => 0.0095495505223439
828 => 0.0094000055084794
829 => 0.0090273535522424
830 => 0.0088538830606593
831 => 0.0087966349090573
901 => 0.0087987157706383
902 => 0.0087413163188588
903 => 0.0087582230298709
904 => 0.008735436854727
905 => 0.0086922853515724
906 => 0.0087792119080017
907 => 0.0087892293838533
908 => 0.0087689396868877
909 => 0.0087737186450208
910 => 0.0086057286199887
911 => 0.0086185005367367
912 => 0.0085473848813069
913 => 0.0085340515532259
914 => 0.0083542773690479
915 => 0.0080357813430918
916 => 0.0082122590586288
917 => 0.0079990987947821
918 => 0.0079183717729584
919 => 0.0083005209386445
920 => 0.0082621637615775
921 => 0.008196512947903
922 => 0.0080994017116499
923 => 0.0080633822094862
924 => 0.0078445391167285
925 => 0.0078316086993259
926 => 0.0079400732453572
927 => 0.0078900205894009
928 => 0.0078197277040151
929 => 0.0075651339986233
930 => 0.007278886380684
1001 => 0.0072875263969812
1002 => 0.0073785764384214
1003 => 0.0076433167136799
1004 => 0.0075398781080832
1005 => 0.0074648322129015
1006 => 0.0074507783726053
1007 => 0.0076266916076198
1008 => 0.0078756456901276
1009 => 0.0079924493756066
1010 => 0.0078767004706776
1011 => 0.0077437343610587
1012 => 0.0077518273920456
1013 => 0.0078056667014595
1014 => 0.0078113244516321
1015 => 0.0077247771834071
1016 => 0.0077491397324589
1017 => 0.0077121307926911
1018 => 0.0074850069976489
1019 => 0.007480899048414
1020 => 0.0074251592062447
1021 => 0.0074234714259762
1022 => 0.007328644049491
1023 => 0.00731537704401
1024 => 0.0071270915323883
1025 => 0.0072510216263188
1026 => 0.0071678958259322
1027 => 0.0070426056373556
1028 => 0.0070210055616203
1029 => 0.0070203562372608
1030 => 0.0071490012465555
1031 => 0.0072495183344844
1101 => 0.0071693418348192
1102 => 0.0071510872000016
1103 => 0.0073459989418346
1104 => 0.0073211946460264
1105 => 0.007299714285827
1106 => 0.0078533545825913
1107 => 0.0074151050866113
1108 => 0.0072240032919573
1109 => 0.0069874785318264
1110 => 0.0070644921863864
1111 => 0.0070807200949682
1112 => 0.006511920683646
1113 => 0.0062811588333121
1114 => 0.0062019700623543
1115 => 0.0061563958051033
1116 => 0.0061771645664181
1117 => 0.0059694518354521
1118 => 0.0061090382259127
1119 => 0.0059291765584163
1120 => 0.00589902216454
1121 => 0.0062206371066087
1122 => 0.0062653879469503
1123 => 0.0060744669590566
1124 => 0.0061970691405847
1125 => 0.0061526118852648
1126 => 0.0059322597704712
1127 => 0.0059238439404865
1128 => 0.0058132789950345
1129 => 0.0056402662649942
1130 => 0.0055611948048144
1201 => 0.0055200137018229
1202 => 0.0055370058275209
1203 => 0.0055284140888004
1204 => 0.0054723471819729
1205 => 0.0055316277782702
1206 => 0.0053801903511643
1207 => 0.0053198867474764
1208 => 0.0052926490087236
1209 => 0.0051582395757541
1210 => 0.0053721447557548
1211 => 0.0054142867709214
1212 => 0.0054565118188762
1213 => 0.0058240520330581
1214 => 0.0058056907626154
1215 => 0.0059716677051157
1216 => 0.0059652181463422
1217 => 0.0059178788336929
1218 => 0.0057181620605645
1219 => 0.0057977656067243
1220 => 0.0055527582647821
1221 => 0.005736334424245
1222 => 0.0056525579313899
1223 => 0.0057080095077391
1224 => 0.0056083025735961
1225 => 0.0056634845077493
1226 => 0.0054242802060831
1227 => 0.0052009145948825
1228 => 0.0052908034372783
1229 => 0.0053885228889985
1230 => 0.0056004035587812
1231 => 0.0054742091798362
]
'min_raw' => 0.0051582395757541
'max_raw' => 0.015397470757662
'avg_raw' => 0.010277855166708
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.005158'
'max' => '$0.015397'
'avg' => '$0.010277'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0097715504242459
'max_diff' => 0.00046768075766204
'year' => 2026
]
1 => [
'items' => [
101 => 0.0055195934504426
102 => 0.0053675637411463
103 => 0.0050538830257285
104 => 0.0050556584245122
105 => 0.005007405480351
106 => 0.0049657078915505
107 => 0.0054887041223014
108 => 0.0054236612736606
109 => 0.0053200240069491
110 => 0.0054587466068237
111 => 0.0054954270640543
112 => 0.005496471305105
113 => 0.0055976797330249
114 => 0.0056516946891484
115 => 0.0056612150592794
116 => 0.0058204687073643
117 => 0.0058738484295959
118 => 0.006093711950887
119 => 0.0056471118975029
120 => 0.0056379144632967
121 => 0.0054606987182885
122 => 0.0053483056911342
123 => 0.0054683943650142
124 => 0.0055747765363331
125 => 0.0054640043088905
126 => 0.0054784688232652
127 => 0.005329766158347
128 => 0.0053829203639445
129 => 0.0054287039264499
130 => 0.0054034249342678
131 => 0.0053655810594543
201 => 0.0055660544114513
202 => 0.0055547429192702
203 => 0.0057414283135122
204 => 0.0058869629283245
205 => 0.0061477869754924
206 => 0.0058756034852076
207 => 0.0058656840369903
208 => 0.0059626482344445
209 => 0.0058738335848825
210 => 0.0059299613776282
211 => 0.0061387439203487
212 => 0.0061431551664812
213 => 0.0060692611101928
214 => 0.0060647646501522
215 => 0.0060789568119748
216 => 0.0061620807470537
217 => 0.0061330346899966
218 => 0.0061666475225793
219 => 0.0062086808844219
220 => 0.006382548690779
221 => 0.0064244676302651
222 => 0.0063226263397923
223 => 0.0063318214680534
224 => 0.0062937300298106
225 => 0.0062569341777524
226 => 0.0063396458795766
227 => 0.0064908031403628
228 => 0.0064898627988885
301 => 0.0065249283453136
302 => 0.0065467738902378
303 => 0.006452996819507
304 => 0.0063919513947397
305 => 0.0064153600950168
306 => 0.006452791116535
307 => 0.0064032217192211
308 => 0.0060972564362213
309 => 0.0061900667579455
310 => 0.0061746185822177
311 => 0.006152618501419
312 => 0.0062459399975937
313 => 0.0062369389116284
314 => 0.005967321441173
315 => 0.0059845814768598
316 => 0.0059683710811101
317 => 0.0060207501861122
318 => 0.0058710049413188
319 => 0.0059170655700677
320 => 0.0059459543646274
321 => 0.0059629700865572
322 => 0.0060244425419575
323 => 0.0060172294588287
324 => 0.0060239941665826
325 => 0.0061151415898148
326 => 0.0065761339785044
327 => 0.0066012247770984
328 => 0.0064776685082931
329 => 0.0065270268006412
330 => 0.0064322696728048
331 => 0.006495880767539
401 => 0.0065394018630095
402 => 0.0063427384012037
403 => 0.0063310932673309
404 => 0.006235945043121
405 => 0.0062870723093405
406 => 0.0062057251526047
407 => 0.0062256848994649
408 => 0.0061698757071843
409 => 0.0062703211417901
410 => 0.0063826347453219
411 => 0.0064110095969727
412 => 0.0063363675784213
413 => 0.0062823218378413
414 => 0.0061874353211566
415 => 0.0063452337130872
416 => 0.0063913787717065
417 => 0.0063449913327388
418 => 0.0063342423495444
419 => 0.0063138730458141
420 => 0.0063385637936227
421 => 0.0063911274558071
422 => 0.0063663394034194
423 => 0.0063827123487308
424 => 0.0063203155649117
425 => 0.0064530278636195
426 => 0.0066638069329214
427 => 0.006664484622095
428 => 0.0066396964360904
429 => 0.0066295536444463
430 => 0.0066549878275599
501 => 0.0066687848285342
502 => 0.0067510343128921
503 => 0.0068392912865721
504 => 0.0072511480732022
505 => 0.007135500335588
506 => 0.0075009241781562
507 => 0.0077899269932803
508 => 0.0078765863009746
509 => 0.0077968638155314
510 => 0.0075241374993542
511 => 0.007510756245173
512 => 0.0079183245036223
513 => 0.0078031678028016
514 => 0.0077894702796645
515 => 0.0076437517758169
516 => 0.0077298894591786
517 => 0.0077110498842639
518 => 0.0076813106935973
519 => 0.0078456553930485
520 => 0.0081532939992686
521 => 0.0081053456374726
522 => 0.0080695544096524
523 => 0.007912727668014
524 => 0.0080071723950012
525 => 0.0079735424366906
526 => 0.0081180380796916
527 => 0.0080324420617482
528 => 0.0078022953775331
529 => 0.0078389469955678
530 => 0.0078334071772346
531 => 0.0079474162459744
601 => 0.0079131935534178
602 => 0.0078267246472584
603 => 0.0081522425239571
604 => 0.0081311052036698
605 => 0.008161073091173
606 => 0.0081742658820396
607 => 0.0083724028773178
608 => 0.0084535732646065
609 => 0.0084720003636087
610 => 0.00854910595359
611 => 0.0084700819062884
612 => 0.0087862344386857
613 => 0.0089964574247181
614 => 0.0092406422409708
615 => 0.009597461888207
616 => 0.0097316293763341
617 => 0.0097073932204906
618 => 0.0099779298046988
619 => 0.01046407803283
620 => 0.0098056576769058
621 => 0.010498975910464
622 => 0.010279479362463
623 => 0.0097590569957283
624 => 0.0097255479306872
625 => 0.010077983999668
626 => 0.010859653279953
627 => 0.010663853990861
628 => 0.010859973537447
629 => 0.010631189668852
630 => 0.010619828621434
701 => 0.010848862015605
702 => 0.011384011025044
703 => 0.01112978179042
704 => 0.010765281843021
705 => 0.011034422931933
706 => 0.010801268012885
707 => 0.010275904724318
708 => 0.010663704266835
709 => 0.010404393756649
710 => 0.010480074349226
711 => 0.01102510647211
712 => 0.010959526765109
713 => 0.011044392978486
714 => 0.010894606333211
715 => 0.010754681987337
716 => 0.010493502804846
717 => 0.010416180524889
718 => 0.010437549621305
719 => 0.010416169935426
720 => 0.010270042583183
721 => 0.010238486395379
722 => 0.010185891366531
723 => 0.010202192765215
724 => 0.010103298723762
725 => 0.010289932212535
726 => 0.01032457303266
727 => 0.010460389321849
728 => 0.010474490219545
729 => 0.01085273665171
730 => 0.010644404873047
731 => 0.010784171816675
801 => 0.010771669745699
802 => 0.009770336126474
803 => 0.0099083110643619
804 => 0.010122956768795
805 => 0.010026259169893
806 => 0.0098895513887997
807 => 0.0097791525257592
808 => 0.0096118869593895
809 => 0.0098473100320042
810 => 0.01015686633804
811 => 0.010482341078312
812 => 0.0108733776528
813 => 0.010786102841541
814 => 0.010475030921551
815 => 0.010488985380644
816 => 0.010575246355877
817 => 0.010463530555314
818 => 0.010430583384777
819 => 0.010570719920583
820 => 0.010571684963888
821 => 0.010443142434035
822 => 0.010300290935138
823 => 0.010299692382141
824 => 0.010274273337695
825 => 0.01063571166039
826 => 0.010834466192337
827 => 0.010857253079115
828 => 0.0108329324533
829 => 0.010842292496925
830 => 0.010726641614043
831 => 0.010990985237108
901 => 0.011233573086508
902 => 0.011168554360735
903 => 0.011071082047845
904 => 0.010993440655726
905 => 0.011150264516231
906 => 0.011143281396586
907 => 0.011231454293272
908 => 0.011227454261367
909 => 0.011197805032562
910 => 0.011168555419602
911 => 0.011284526828761
912 => 0.011251128925367
913 => 0.011217679145804
914 => 0.011150590491987
915 => 0.011159708954265
916 => 0.011062253471345
917 => 0.011017166105686
918 => 0.0103391603059
919 => 0.010157975001718
920 => 0.010214979586781
921 => 0.010233746976307
922 => 0.010154894899731
923 => 0.010267948522104
924 => 0.01025032923481
925 => 0.01031887557473
926 => 0.010276050797484
927 => 0.01027780834128
928 => 0.010403746879955
929 => 0.010440307373513
930 => 0.01042171241141
1001 => 0.010434735685469
1002 => 0.010734851539378
1003 => 0.010692184662117
1004 => 0.010669518733954
1005 => 0.010675797350957
1006 => 0.010752483386187
1007 => 0.010773951289149
1008 => 0.010682990275776
1009 => 0.010725888015522
1010 => 0.010908541146828
1011 => 0.010972459405513
1012 => 0.011176455804731
1013 => 0.011089794508596
1014 => 0.011248865068264
1015 => 0.011737793737534
1016 => 0.012128383789838
1017 => 0.011769181035923
1018 => 0.012486449925635
1019 => 0.013044946642387
1020 => 0.013023510608173
1021 => 0.012926123787346
1022 => 0.012290290123727
1023 => 0.011705186506719
1024 => 0.012194650527158
1025 => 0.012195898271605
1026 => 0.012153852878165
1027 => 0.011892712550547
1028 => 0.012144765760819
1029 => 0.012164772829327
1030 => 0.012153574191272
1031 => 0.011953358514362
1101 => 0.011647666181764
1102 => 0.01170739773183
1103 => 0.011805239229328
1104 => 0.011620004862689
1105 => 0.011560811258802
1106 => 0.011670863430472
1107 => 0.012025474457873
1108 => 0.011958437297265
1109 => 0.011956686686083
1110 => 0.012243500087346
1111 => 0.012038203590248
1112 => 0.011708151137963
1113 => 0.011624808540904
1114 => 0.011328998467645
1115 => 0.011533315538884
1116 => 0.011540668546539
1117 => 0.011428766174692
1118 => 0.011717231398709
1119 => 0.011714573140886
1120 => 0.011988427938709
1121 => 0.01251193545698
1122 => 0.012357108523586
1123 => 0.012177061645173
1124 => 0.012196637733015
1125 => 0.012411339098739
1126 => 0.012281525751867
1127 => 0.012328207536493
1128 => 0.012411268440267
1129 => 0.012461381145801
1130 => 0.012189427285879
1201 => 0.012126021832074
1202 => 0.011996316525881
1203 => 0.011962478832559
1204 => 0.012068121098064
1205 => 0.012040288093499
1206 => 0.011540050554718
1207 => 0.01148777294862
1208 => 0.011489376228164
1209 => 0.011357921701966
1210 => 0.011157421996812
1211 => 0.01168432325074
1212 => 0.011642005706072
1213 => 0.011595290411875
1214 => 0.01160101276886
1215 => 0.01182972274485
1216 => 0.011697059408645
1217 => 0.012049766631039
1218 => 0.011977260629464
1219 => 0.01190289512254
1220 => 0.011892615544254
1221 => 0.011863991168655
1222 => 0.011765827534065
1223 => 0.011647289046577
1224 => 0.011569019669509
1225 => 0.010671809109057
1226 => 0.010838326170243
1227 => 0.01102988887063
1228 => 0.011096015547164
1229 => 0.010982901291126
1230 => 0.011770293974332
1231 => 0.011914158205059
]
'min_raw' => 0.0049657078915505
'max_raw' => 0.013044946642387
'avg_raw' => 0.0090053272669689
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.004965'
'max' => '$0.013044'
'avg' => '$0.0090053'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00019253168420353
'max_diff' => -0.0023525241152747
'year' => 2027
]
2 => [
'items' => [
101 => 0.011478384066157
102 => 0.011396868517309
103 => 0.011775638120144
104 => 0.011547193746934
105 => 0.011650062234202
106 => 0.011427716830782
107 => 0.011879505524713
108 => 0.011876063651819
109 => 0.011700307645769
110 => 0.011848855418557
111 => 0.011823041587454
112 => 0.011624613489491
113 => 0.011885796049349
114 => 0.01188592559264
115 => 0.011716764258082
116 => 0.011519220853496
117 => 0.011483904758523
118 => 0.01145729882501
119 => 0.011643518805532
120 => 0.011810483057772
121 => 0.012121162137244
122 => 0.012199274239376
123 => 0.012504150974214
124 => 0.012322611722797
125 => 0.012403085721623
126 => 0.012490451631092
127 => 0.012532338060866
128 => 0.012464086371299
129 => 0.012937685432773
130 => 0.012977671704262
131 => 0.012991078755212
201 => 0.012831383816358
202 => 0.012973230299126
203 => 0.012906865027301
204 => 0.013079529027787
205 => 0.013106604947748
206 => 0.013083672606795
207 => 0.013092266931155
208 => 0.012688133680786
209 => 0.012667177239782
210 => 0.012381434679686
211 => 0.012497876885027
212 => 0.012280193763362
213 => 0.012349223323627
214 => 0.012379650896053
215 => 0.012363757258967
216 => 0.012504460352609
217 => 0.01238483397927
218 => 0.012069120311634
219 => 0.01175332062802
220 => 0.011749356020237
221 => 0.011666211537869
222 => 0.011606113305788
223 => 0.011617690357386
224 => 0.011658489397236
225 => 0.011603741991423
226 => 0.011615425126217
227 => 0.01180944300812
228 => 0.011848351910663
229 => 0.011716124257131
301 => 0.011185211147843
302 => 0.011054923739128
303 => 0.011148571744801
304 => 0.011103814029793
305 => 0.008961644539196
306 => 0.0094649154857627
307 => 0.0091658889787793
308 => 0.0093036941507453
309 => 0.0089984655196538
310 => 0.0091441366208139
311 => 0.0091172364874865
312 => 0.0099264812766957
313 => 0.009913846032392
314 => 0.0099198938551979
315 => 0.0096312155151526
316 => 0.010091087949316
317 => 0.010317637646863
318 => 0.010275709327272
319 => 0.010286261782003
320 => 0.010104935647771
321 => 0.0099216494885366
322 => 0.0097183569304076
323 => 0.010096049375692
324 => 0.010054056423201
325 => 0.010150373147627
326 => 0.010395333696407
327 => 0.01043140506773
328 => 0.010479885356587
329 => 0.010462508624094
330 => 0.010876492889985
331 => 0.010826356663829
401 => 0.010947170543687
402 => 0.010698647226648
403 => 0.010417419503368
404 => 0.010470871699537
405 => 0.01046572382321
406 => 0.010400185449117
407 => 0.010341020335405
408 => 0.010242527090741
409 => 0.010554174291115
410 => 0.010541521983914
411 => 0.010746348130793
412 => 0.010710143119757
413 => 0.010468357195191
414 => 0.010476992626788
415 => 0.010535070054326
416 => 0.010736076694151
417 => 0.010795749150426
418 => 0.010768106491143
419 => 0.010833534615298
420 => 0.010885246336911
421 => 0.010840028811365
422 => 0.011480213617772
423 => 0.011214364252623
424 => 0.011343937383428
425 => 0.011374839811636
426 => 0.01129568389159
427 => 0.011312849976287
428 => 0.011338851917125
429 => 0.011496730610191
430 => 0.011911049983366
501 => 0.012094549213378
502 => 0.01264661570056
503 => 0.012079312156758
504 => 0.012045650712204
505 => 0.012145094557356
506 => 0.012469216027505
507 => 0.012731886035879
508 => 0.012819028831453
509 => 0.012830546190459
510 => 0.012994031868099
511 => 0.013087738809695
512 => 0.012974180406733
513 => 0.012877951550283
514 => 0.012533271730846
515 => 0.012573169358478
516 => 0.012848024448288
517 => 0.013236273451528
518 => 0.013569431486733
519 => 0.013452771154534
520 => 0.014342807139851
521 => 0.014431050572324
522 => 0.014418858183208
523 => 0.014619889854765
524 => 0.014220882926112
525 => 0.014050299733717
526 => 0.012898757321292
527 => 0.013222293768379
528 => 0.013692572994849
529 => 0.013630329775769
530 => 0.013288800430907
531 => 0.013569172406099
601 => 0.013476472663058
602 => 0.013403356529606
603 => 0.01373831571121
604 => 0.013370014331671
605 => 0.013688898906852
606 => 0.013279926140744
607 => 0.013453304049105
608 => 0.013354886362973
609 => 0.013418574667518
610 => 0.013046254140515
611 => 0.013247149259316
612 => 0.013037896243091
613 => 0.013037797029916
614 => 0.013033177757985
615 => 0.013279363003604
616 => 0.013287391095625
617 => 0.013105459827147
618 => 0.013079240689059
619 => 0.013176186584578
620 => 0.013062688331096
621 => 0.013115793449551
622 => 0.013064296831035
623 => 0.013052703857522
624 => 0.012960329072192
625 => 0.012920531474774
626 => 0.012936137138179
627 => 0.012882866963706
628 => 0.012850769756719
629 => 0.01302679281564
630 => 0.012932750796009
701 => 0.013012379527379
702 => 0.012921632538035
703 => 0.012607063936388
704 => 0.012426152207078
705 => 0.011831961279092
706 => 0.012000473089177
707 => 0.012112196593602
708 => 0.012075271976056
709 => 0.012154600342475
710 => 0.012159470459894
711 => 0.012133679999315
712 => 0.012103817949926
713 => 0.012089282755759
714 => 0.012197616184622
715 => 0.012260507386413
716 => 0.012123409541938
717 => 0.012091289435181
718 => 0.012229902925324
719 => 0.012314457074236
720 => 0.012938757402935
721 => 0.012892507218122
722 => 0.013008586105863
723 => 0.012995517404479
724 => 0.013117186571649
725 => 0.013316064238746
726 => 0.012911690334468
727 => 0.012981875662053
728 => 0.012964667840545
729 => 0.013152538323636
730 => 0.013153124834778
731 => 0.013040487095338
801 => 0.013101549841227
802 => 0.013067466291641
803 => 0.013129059872411
804 => 0.012891889518706
805 => 0.013180737408561
806 => 0.013344495549162
807 => 0.013346769331103
808 => 0.013424389390083
809 => 0.013503255865457
810 => 0.013654633197115
811 => 0.013499034033837
812 => 0.013219126286373
813 => 0.013239334721644
814 => 0.01307522491172
815 => 0.013077983627273
816 => 0.013063257387443
817 => 0.013107451941713
818 => 0.012901587738093
819 => 0.012949903655207
820 => 0.01288226108831
821 => 0.012981728620323
822 => 0.012874717998449
823 => 0.012964659542413
824 => 0.013003475331178
825 => 0.013146706427368
826 => 0.012853562649084
827 => 0.012255822641074
828 => 0.012381474837655
829 => 0.012195625369145
830 => 0.012212826445035
831 => 0.012247575355862
901 => 0.012134942766734
902 => 0.012156429515279
903 => 0.012155661857421
904 => 0.012149046596724
905 => 0.012119746510214
906 => 0.01207725558793
907 => 0.012246526344293
908 => 0.012275288744256
909 => 0.012339223996467
910 => 0.01252945193935
911 => 0.012510443681972
912 => 0.0125414469384
913 => 0.012473767003693
914 => 0.012215965923095
915 => 0.01222996576209
916 => 0.012055387545491
917 => 0.012334759638963
918 => 0.012268600639697
919 => 0.012225947502481
920 => 0.012214309198813
921 => 0.012405008679972
922 => 0.012462068953583
923 => 0.012426512820241
924 => 0.012353586153419
925 => 0.012493626912551
926 => 0.01253109591185
927 => 0.012539483838989
928 => 0.012787609214019
929 => 0.012553351291124
930 => 0.012609739501489
1001 => 0.013049664222027
1002 => 0.01265071320596
1003 => 0.01286204645684
1004 => 0.012851702793935
1005 => 0.012959813733957
1006 => 0.012842834541331
1007 => 0.012844284638622
1008 => 0.012940279829293
1009 => 0.012805471896819
1010 => 0.012772091556931
1011 => 0.012725976856449
1012 => 0.012826666617878
1013 => 0.012887025576049
1014 => 0.013373474450132
1015 => 0.013687742607554
1016 => 0.013674099398017
1017 => 0.013798772794167
1018 => 0.013742606287324
1019 => 0.013561229820752
1020 => 0.013870817332687
1021 => 0.013772850890219
1022 => 0.013780927124707
1023 => 0.013780626526856
1024 => 0.013845765646722
1025 => 0.013799608610384
1026 => 0.01370862835384
1027 => 0.013769025294005
1028 => 0.013948382613993
1029 => 0.014505113238592
1030 => 0.014816667071817
1031 => 0.014486357306633
1101 => 0.014714200559633
1102 => 0.014577575796685
1103 => 0.014552747013022
1104 => 0.01469584941339
1105 => 0.014839202295567
1106 => 0.014830071336704
1107 => 0.014726004505496
1108 => 0.014667219793144
1109 => 0.015112357329392
1110 => 0.015440327083379
1111 => 0.015417961744894
1112 => 0.015516675075368
1113 => 0.015806500466728
1114 => 0.015832998468304
1115 => 0.015829660329155
1116 => 0.015763982267469
1117 => 0.016049353003846
1118 => 0.016287414292752
1119 => 0.01574877969381
1120 => 0.015953884697843
1121 => 0.016045962942223
1122 => 0.016181161123358
1123 => 0.016409263116779
1124 => 0.0166570423827
1125 => 0.016692081087662
1126 => 0.016667219449735
1127 => 0.016503802363196
1128 => 0.016774925392588
1129 => 0.016933742904588
1130 => 0.01702831509851
1201 => 0.017268134446984
1202 => 0.016046531586113
1203 => 0.015181820363588
1204 => 0.015046783219609
1205 => 0.015321386561963
1206 => 0.015393797273421
1207 => 0.015364608606428
1208 => 0.01439129750937
1209 => 0.015041658938114
1210 => 0.0157413931515
1211 => 0.015768272792394
1212 => 0.016118574370368
1213 => 0.016232646923503
1214 => 0.016514685608849
1215 => 0.01649704401229
1216 => 0.016565715943956
1217 => 0.016549929456098
1218 => 0.017072346730449
1219 => 0.017648650563775
1220 => 0.017628694994561
1221 => 0.017545844500003
1222 => 0.017668891612531
1223 => 0.018263698928995
1224 => 0.018208938602888
1225 => 0.018262133595228
1226 => 0.018963444943211
1227 => 0.019875249455964
1228 => 0.019451624716114
1229 => 0.020370768506854
1230 => 0.020949320801407
1231 => 0.021949867171411
]
'min_raw' => 0.008961644539196
'max_raw' => 0.021949867171411
'avg_raw' => 0.015455755855304
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.008961'
'max' => '$0.021949'
'avg' => '$0.015455'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0039959366476455
'max_diff' => 0.0089049205290239
'year' => 2028
]
3 => [
'items' => [
101 => 0.021824593838092
102 => 0.022214099197586
103 => 0.021600328426117
104 => 0.020190986671284
105 => 0.019967952943838
106 => 0.020414472114298
107 => 0.021512195924171
108 => 0.020379900885058
109 => 0.020608962696766
110 => 0.020542992879584
111 => 0.02053947762838
112 => 0.020673640469275
113 => 0.020479030271094
114 => 0.019686153313999
115 => 0.020049524150982
116 => 0.019909209220322
117 => 0.020064899097061
118 => 0.020905093150429
119 => 0.02053362333171
120 => 0.020142310053448
121 => 0.020633103743757
122 => 0.02125805276653
123 => 0.021218944579826
124 => 0.021143058351667
125 => 0.021570825046527
126 => 0.022277370302554
127 => 0.022468346646129
128 => 0.022609321478617
129 => 0.022628759526227
130 => 0.022828983497298
131 => 0.021752328741916
201 => 0.023461007489161
202 => 0.023756049107513
203 => 0.023700593511485
204 => 0.024028519853033
205 => 0.023932035604661
206 => 0.023792245066685
207 => 0.024312078069973
208 => 0.023716131480064
209 => 0.022870260323278
210 => 0.022406198677231
211 => 0.023017312487531
212 => 0.023390498366548
213 => 0.023637150493499
214 => 0.023711787278083
215 => 0.021835906385734
216 => 0.020824910625881
217 => 0.021472947316857
218 => 0.02226359680495
219 => 0.021747936644089
220 => 0.021768149546121
221 => 0.02103295366984
222 => 0.022328645326588
223 => 0.022139873950682
224 => 0.023119220182813
225 => 0.022885491344771
226 => 0.023684110179072
227 => 0.023473807075369
228 => 0.024346763500953
301 => 0.02469500945347
302 => 0.025279768607901
303 => 0.025709919822299
304 => 0.025962512842875
305 => 0.025947348105372
306 => 0.026948247494236
307 => 0.026358052093384
308 => 0.025616627571538
309 => 0.025603217541102
310 => 0.025987211807033
311 => 0.026791958444742
312 => 0.027000617539312
313 => 0.02711722950738
314 => 0.026938634218992
315 => 0.026298019411053
316 => 0.026021405184975
317 => 0.026257088519879
318 => 0.025968868053792
319 => 0.026466417438638
320 => 0.027149659014846
321 => 0.027008572331189
322 => 0.027480203961757
323 => 0.0279682930823
324 => 0.02866628244613
325 => 0.028848762712307
326 => 0.029150395653193
327 => 0.029460875030625
328 => 0.029560592639003
329 => 0.029750984493952
330 => 0.029749981034896
331 => 0.030323739704635
401 => 0.030956613285183
402 => 0.031195508410783
403 => 0.031744834579347
404 => 0.030804132766367
405 => 0.031517665897516
406 => 0.032161290642704
407 => 0.031393934687957
408 => 0.03245155610057
409 => 0.0324926211434
410 => 0.03311265453547
411 => 0.032484131908582
412 => 0.032110917179051
413 => 0.033188374119033
414 => 0.033709721592715
415 => 0.033552687490776
416 => 0.032357650221287
417 => 0.031662087272884
418 => 0.029841664872843
419 => 0.031998033842087
420 => 0.033048338264861
421 => 0.032354930186566
422 => 0.032704644888119
423 => 0.034612574904417
424 => 0.035338991125303
425 => 0.035187901629392
426 => 0.035213433267056
427 => 0.035605394274459
428 => 0.037343565238154
429 => 0.03630201290622
430 => 0.037098240637762
501 => 0.037520556955559
502 => 0.037912827887473
503 => 0.036949534457193
504 => 0.035696303857991
505 => 0.035299353120181
506 => 0.03228598441876
507 => 0.032129125491454
508 => 0.032041075822245
509 => 0.031485935112756
510 => 0.031049746580936
511 => 0.030702873265791
512 => 0.02979257410171
513 => 0.030099773347475
514 => 0.028648946474131
515 => 0.029577134093549
516 => 0.027261579372252
517 => 0.029190042151228
518 => 0.028140467537075
519 => 0.02884522866226
520 => 0.028842769817087
521 => 0.027545081140902
522 => 0.02679660139455
523 => 0.027273561820193
524 => 0.027784901257648
525 => 0.027867864361023
526 => 0.028530829289008
527 => 0.028715848550025
528 => 0.028155231551419
529 => 0.027213594647465
530 => 0.027432315423803
531 => 0.026792169024999
601 => 0.025670337083971
602 => 0.026476056369324
603 => 0.02675116435832
604 => 0.026872667718816
605 => 0.025769474848085
606 => 0.025422827696618
607 => 0.025238275661829
608 => 0.027071186301156
609 => 0.027171597283541
610 => 0.026657880500981
611 => 0.028979929070775
612 => 0.02845437796434
613 => 0.029041547313375
614 => 0.027412468805873
615 => 0.027474701798704
616 => 0.026703469926112
617 => 0.027135308241031
618 => 0.026830098838845
619 => 0.027100419972695
620 => 0.027262449345749
621 => 0.028033554666781
622 => 0.029198846935351
623 => 0.027918377245915
624 => 0.027360458265564
625 => 0.027706588063118
626 => 0.028628377326457
627 => 0.030024935245939
628 => 0.029198144849258
629 => 0.029565060387493
630 => 0.029645215109662
701 => 0.029035570480594
702 => 0.030047413713001
703 => 0.030589668721447
704 => 0.03114591015625
705 => 0.031628879008558
706 => 0.030923735095178
707 => 0.031678340160904
708 => 0.031070261683655
709 => 0.030524752427565
710 => 0.03052557973993
711 => 0.030183373814966
712 => 0.029520306714627
713 => 0.02939802696805
714 => 0.030034141651973
715 => 0.030544245388195
716 => 0.030586259975142
717 => 0.03086867961359
718 => 0.031035812646471
719 => 0.032673943575037
720 => 0.033332813385836
721 => 0.034138466918714
722 => 0.034452314373915
723 => 0.03539688269353
724 => 0.034634067061352
725 => 0.034469027100996
726 => 0.032177813323552
727 => 0.032552999451252
728 => 0.033153708641777
729 => 0.032187718796848
730 => 0.032800417013243
731 => 0.032921376619882
801 => 0.032154894831558
802 => 0.032564305872425
803 => 0.031477031529797
804 => 0.029222546544842
805 => 0.030049923599268
806 => 0.03065915160343
807 => 0.029789708124219
808 => 0.031348151908595
809 => 0.030437741222572
810 => 0.030149184742523
811 => 0.029023423036038
812 => 0.029554739226957
813 => 0.03027335198289
814 => 0.029829332847423
815 => 0.030750739223326
816 => 0.032055696381708
817 => 0.032985686564314
818 => 0.033057079662801
819 => 0.032459158279888
820 => 0.033417331111889
821 => 0.033424310354909
822 => 0.032343487486161
823 => 0.0316814894971
824 => 0.03153108216113
825 => 0.031906829175479
826 => 0.032363055417624
827 => 0.033082397044066
828 => 0.033517080123364
829 => 0.034650503056081
830 => 0.034957174803892
831 => 0.035294114077672
901 => 0.035744368855666
902 => 0.036285015159603
903 => 0.0351021118256
904 => 0.035149110780268
905 => 0.034047607574055
906 => 0.032870493426678
907 => 0.033763776335187
908 => 0.034931624909617
909 => 0.034663719156285
910 => 0.034633574286217
911 => 0.034684269596182
912 => 0.034482277407153
913 => 0.033568674222357
914 => 0.03310986842241
915 => 0.033701844958184
916 => 0.034016454141103
917 => 0.034504385547007
918 => 0.034444237702247
919 => 0.035701096603848
920 => 0.036189473967569
921 => 0.036064526139084
922 => 0.036087519546563
923 => 0.036971703435637
924 => 0.037955097766574
925 => 0.038876176327808
926 => 0.039813137001539
927 => 0.038683594339159
928 => 0.038110082235708
929 => 0.038701800333045
930 => 0.038387826381562
1001 => 0.040192013837503
1002 => 0.040316931862462
1003 => 0.042120988855114
1004 => 0.043833253764251
1005 => 0.042757810853234
1006 => 0.04377190507931
1007 => 0.044868730665127
1008 => 0.046984685173705
1009 => 0.046272106135393
1010 => 0.045726281759583
1011 => 0.045210480361847
1012 => 0.04628378118937
1013 => 0.047664565557579
1014 => 0.047961973285503
1015 => 0.048443887423236
1016 => 0.047937213633067
1017 => 0.048547446405038
1018 => 0.050701836239965
1019 => 0.050119701089243
1020 => 0.049292975592322
1021 => 0.050993659457197
1022 => 0.051609130336654
1023 => 0.055928827293288
1024 => 0.061382623138818
1025 => 0.059124715847214
1026 => 0.057723159929103
1027 => 0.05805255881521
1028 => 0.060044100435357
1029 => 0.060683720395377
1030 => 0.058945012853821
1031 => 0.059559153751453
1101 => 0.062943130478409
1102 => 0.064758525421448
1103 => 0.062292975248731
1104 => 0.055490620107342
1105 => 0.049218538006724
1106 => 0.050882176615346
1107 => 0.050693571625844
1108 => 0.054329232459264
1109 => 0.050105817358423
1110 => 0.050176928837169
1111 => 0.053887771286392
1112 => 0.052897782140885
1113 => 0.051294126513393
1114 => 0.049230246467516
1115 => 0.045414973316915
1116 => 0.042035679490664
1117 => 0.048663252888831
1118 => 0.048377459872442
1119 => 0.047963589232558
1120 => 0.048884613556138
1121 => 0.053356846234129
1122 => 0.053253746795696
1123 => 0.052597880770186
1124 => 0.053095349369998
1125 => 0.051206917862621
1126 => 0.051693609660858
1127 => 0.049217544476874
1128 => 0.050336829349651
1129 => 0.051290685788655
1130 => 0.05148218659087
1201 => 0.051913647676536
1202 => 0.04822685993934
1203 => 0.04988211939494
1204 => 0.050854429248268
1205 => 0.046461497957995
1206 => 0.05076759512101
1207 => 0.048162681167197
1208 => 0.047278534246779
1209 => 0.048468921597623
1210 => 0.04800502648931
1211 => 0.047606196716016
1212 => 0.047383642849753
1213 => 0.048257731941956
1214 => 0.048216954641042
1215 => 0.046786775232817
1216 => 0.044921164496357
1217 => 0.045547324696098
1218 => 0.045319834825249
1219 => 0.044495382186515
1220 => 0.04505096372023
1221 => 0.042604463819127
1222 => 0.038395387897277
1223 => 0.041176032378733
1224 => 0.041068980590956
1225 => 0.041015000225147
1226 => 0.043104577701593
1227 => 0.042903713041987
1228 => 0.04253914171793
1229 => 0.044488686548248
1230 => 0.043777076460104
1231 => 0.045970091075341
]
'min_raw' => 0.019686153313999
'max_raw' => 0.064758525421448
'avg_raw' => 0.042222339367724
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.019686'
'max' => '$0.064758'
'avg' => '$0.042222'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.010724508774803
'max_diff' => 0.042808658250037
'year' => 2029
]
4 => [
'items' => [
101 => 0.047414552336229
102 => 0.047048190237041
103 => 0.048406713034593
104 => 0.045561750162434
105 => 0.046506732708466
106 => 0.046701492301514
107 => 0.044464629467662
108 => 0.042936576984434
109 => 0.042834673304876
110 => 0.040185240877561
111 => 0.041600546294761
112 => 0.04284595649258
113 => 0.04224950165556
114 => 0.042060681872741
115 => 0.043025321193149
116 => 0.043100281929922
117 => 0.04139116918752
118 => 0.041746547847227
119 => 0.043228535934991
120 => 0.041709205549805
121 => 0.038757394792598
122 => 0.038025304912834
123 => 0.03792763062778
124 => 0.03594214481108
125 => 0.038074226659224
126 => 0.037143515796268
127 => 0.040083620260718
128 => 0.038404248358721
129 => 0.038331853992544
130 => 0.038222419290123
131 => 0.036513429628302
201 => 0.036887589752282
202 => 0.038131354990586
203 => 0.038575144439632
204 => 0.038528853564236
205 => 0.038125259862385
206 => 0.038310022992358
207 => 0.037714836574972
208 => 0.037504663863259
209 => 0.036841300972533
210 => 0.035866340781843
211 => 0.036001914976137
212 => 0.034070263726167
213 => 0.033017797604693
214 => 0.032726488853549
215 => 0.032336938616889
216 => 0.032770489589334
217 => 0.034064791600875
218 => 0.032503588773466
219 => 0.029827016031519
220 => 0.029987882613968
221 => 0.030349302063014
222 => 0.029675799310746
223 => 0.029038385478525
224 => 0.029592565090622
225 => 0.028458465935224
226 => 0.030486352527721
227 => 0.030431503878481
228 => 0.031187374596498
301 => 0.031660036068503
302 => 0.0305707044015
303 => 0.030296740433115
304 => 0.030452802760476
305 => 0.027873440122341
306 => 0.030976585639916
307 => 0.031003421771213
308 => 0.030773634522361
309 => 0.032425963711601
310 => 0.035912893675296
311 => 0.034600970361521
312 => 0.034092954001336
313 => 0.033127214529265
314 => 0.034414005035863
315 => 0.034315199602016
316 => 0.033868363959308
317 => 0.033598116368386
318 => 0.034096055840903
319 => 0.033536416157289
320 => 0.033435889492242
321 => 0.032826807276147
322 => 0.032609392636476
323 => 0.03244842749279
324 => 0.0322712206857
325 => 0.032662094744956
326 => 0.031776322702918
327 => 0.030708168453524
328 => 0.030619362985276
329 => 0.030864562690965
330 => 0.030756080074169
331 => 0.030618843612243
401 => 0.0303568218323
402 => 0.0302790855674
403 => 0.030531690716049
404 => 0.030246514231019
405 => 0.030667307669048
406 => 0.030552875137467
407 => 0.029913664318233
408 => 0.02911697097131
409 => 0.029109878729402
410 => 0.028938232454647
411 => 0.028719615116555
412 => 0.028658800774386
413 => 0.029545893629424
414 => 0.031382149290898
415 => 0.031021648366677
416 => 0.031282147230048
417 => 0.03256354381263
418 => 0.032970861253294
419 => 0.032681756981753
420 => 0.032286013223694
421 => 0.032303423940615
422 => 0.033655800161687
423 => 0.033740146207736
424 => 0.033953261455039
425 => 0.034227174774183
426 => 0.032728405604438
427 => 0.032232832047502
428 => 0.031998001802851
429 => 0.031274815540069
430 => 0.032054709923175
501 => 0.031600298864546
502 => 0.031661614441247
503 => 0.031621682591483
504 => 0.031643488081634
505 => 0.03048578569209
506 => 0.030907591595794
507 => 0.030206257470286
508 => 0.029267249804681
509 => 0.029264101921728
510 => 0.029493922717593
511 => 0.029357216315324
512 => 0.02898934290186
513 => 0.029041597583929
514 => 0.028583791584044
515 => 0.02909718352116
516 => 0.029111905764912
517 => 0.028914221904474
518 => 0.029705173018037
519 => 0.030029226334618
520 => 0.02989910658288
521 => 0.030020096785964
522 => 0.031036628807643
523 => 0.031202367881578
524 => 0.031275978230111
525 => 0.031177350114579
526 => 0.030038677125246
527 => 0.030089182114334
528 => 0.029718610014991
529 => 0.029405515640971
530 => 0.029418037773968
531 => 0.029579008981634
601 => 0.030281979686346
602 => 0.031761340092027
603 => 0.031817480738024
604 => 0.031885524838711
605 => 0.031608755284993
606 => 0.031525278939263
607 => 0.031635405786353
608 => 0.032190975773652
609 => 0.033620052616764
610 => 0.033114921415575
611 => 0.032704241886173
612 => 0.033064518551865
613 => 0.033009056783124
614 => 0.032540903640195
615 => 0.032527764140705
616 => 0.031629228581811
617 => 0.031297060444352
618 => 0.031019475886338
619 => 0.030716360795514
620 => 0.030536664009164
621 => 0.030812759943727
622 => 0.030875906350632
623 => 0.030272217764381
624 => 0.03018993724078
625 => 0.030682922371837
626 => 0.030465977995997
627 => 0.03068911066651
628 => 0.030740879360065
629 => 0.030732543408069
630 => 0.030506028563789
701 => 0.030650402370763
702 => 0.030308915277367
703 => 0.029937599353001
704 => 0.029700722927055
705 => 0.029494016828319
706 => 0.029608709385727
707 => 0.029199851360601
708 => 0.029069049449678
709 => 0.030601491773474
710 => 0.031733523394594
711 => 0.031717063206489
712 => 0.031616866044617
713 => 0.031467993386329
714 => 0.032180084811428
715 => 0.031932006397641
716 => 0.032112504171316
717 => 0.032158448430184
718 => 0.032297507864252
719 => 0.032347209659369
720 => 0.032196976314409
721 => 0.031692774859265
722 => 0.030436352771083
723 => 0.029851484897388
724 => 0.029658468757323
725 => 0.029665484527425
726 => 0.029471958268249
727 => 0.029528960424815
728 => 0.029452135244437
729 => 0.02930664693881
730 => 0.029599725892829
731 => 0.029633500512061
801 => 0.02956509238216
802 => 0.029581204973162
803 => 0.029014814875077
804 => 0.0290578762841
805 => 0.028818104886682
806 => 0.028773150640153
807 => 0.028167029426764
808 => 0.027093197838571
809 => 0.027688204777785
810 => 0.026969520065851
811 => 0.026697343275592
812 => 0.027985785868505
813 => 0.027856461968011
814 => 0.027635115666114
815 => 0.027307698352997
816 => 0.027186256086651
817 => 0.026448411320281
818 => 0.026404815515236
819 => 0.026770511304933
820 => 0.026601755280811
821 => 0.026364757910041
822 => 0.025506377457147
823 => 0.024541273628094
824 => 0.024570404046267
825 => 0.024877385617894
826 => 0.025769975939504
827 => 0.025421225458881
828 => 0.025168202983739
829 => 0.025120819479973
830 => 0.025713923233694
831 => 0.026553289304288
901 => 0.026947101084853
902 => 0.026556845570555
903 => 0.026108541048578
904 => 0.026135827267587
905 => 0.026317350258217
906 => 0.026336425757935
907 => 0.026044625600577
908 => 0.026126765635644
909 => 0.026001987411335
910 => 0.025236223679074
911 => 0.02522237344142
912 => 0.025034442671915
913 => 0.025028752202903
914 => 0.024709035082447
915 => 0.024664304447195
916 => 0.024029486699088
917 => 0.024447325663297
918 => 0.024167061223636
919 => 0.023744636605368
920 => 0.023671810441957
921 => 0.023669621199545
922 => 0.02410335683009
923 => 0.024442257209921
924 => 0.024171936543555
925 => 0.02411038976777
926 => 0.024767548313663
927 => 0.024683918898565
928 => 0.024611496364442
929 => 0.026478133278914
930 => 0.025000544505615
1001 => 0.024356231462638
1002 => 0.023558771720225
1003 => 0.023818428633496
1004 => 0.023873142160275
1005 => 0.021955395232696
1006 => 0.021177365543017
1007 => 0.02091037507295
1008 => 0.020756718282735
1009 => 0.020826741611536
1010 => 0.020126423637045
1011 => 0.020597048898093
1012 => 0.019990632728588
1013 => 0.019888965084322
1014 => 0.020973312315945
1015 => 0.02112419289856
1016 => 0.020480489458199
1017 => 0.020893851273032
1018 => 0.020743960532815
1019 => 0.020001027993295
1020 => 0.019972653434927
1021 => 0.019599876001937
1022 => 0.019016551503243
1023 => 0.018749956554654
1024 => 0.018611111590745
1025 => 0.018668401728889
1026 => 0.018639434081936
1027 => 0.018450400591101
1028 => 0.018650269260356
1029 => 0.018139687401845
1030 => 0.017936369591749
1031 => 0.017844535653865
1101 => 0.017391364866441
1102 => 0.018112561115197
1103 => 0.018254645861592
1104 => 0.018397010558831
1105 => 0.019636198051783
1106 => 0.019574291746543
1107 => 0.020133894596323
1108 => 0.020112149458624
1109 => 0.019952541660902
1110 => 0.019279182616519
1111 => 0.019547571530139
1112 => 0.018721512170915
1113 => 0.019340452009422
1114 => 0.019057993714673
1115 => 0.01924495257584
1116 => 0.018908783686061
1117 => 0.019094833429738
1118 => 0.018288339425959
1119 => 0.017535246672908
1120 => 0.017838313180884
1121 => 0.018167781134913
1122 => 0.018882151606121
1123 => 0.018456678446898
1124 => 0.018609694683876
1125 => 0.018097115904608
1126 => 0.017039519472089
1127 => 0.017045505353042
1128 => 0.01688281718289
1129 => 0.016742230851016
1130 => 0.018505549157423
1201 => 0.018286252652084
1202 => 0.017936832371644
1203 => 0.018404545302424
1204 => 0.018528216024924
1205 => 0.018531736756533
1206 => 0.018872968037412
1207 => 0.019055083233186
1208 => 0.019087181825774
1209 => 0.019624116619027
1210 => 0.019804090079384
1211 => 0.020545375291798
1212 => 0.019039632031193
1213 => 0.019008622239623
1214 => 0.018411126982519
1215 => 0.018032186044438
1216 => 0.018437073392748
1217 => 0.018795748310716
1218 => 0.018422272012023
1219 => 0.018471040132117
1220 => 0.017969678715257
1221 => 0.018148891830537
1222 => 0.01830325430803
1223 => 0.018218024420966
1224 => 0.018090431154857
1225 => 0.018766341057717
1226 => 0.018728203572085
1227 => 0.01935762641273
1228 => 0.019848306527472
1229 => 0.020727693012652
1230 => 0.019810007371913
1231 => 0.019776563259694
]
'min_raw' => 0.016742230851016
'max_raw' => 0.048406713034593
'avg_raw' => 0.032574471942805
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.016742'
'max' => '$0.0484067'
'avg' => '$0.032574'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0029439224629826
'max_diff' => -0.016351812386855
'year' => 2030
]
5 => [
'items' => [
101 => 0.020103484821235
102 => 0.019804040029396
103 => 0.019993278801356
104 => 0.02069720372087
105 => 0.020712076545189
106 => 0.020462937575294
107 => 0.020447777446334
108 => 0.020495627310784
109 => 0.020775885461431
110 => 0.020677954652132
111 => 0.020791282663957
112 => 0.020933001078085
113 => 0.021519208526281
114 => 0.021660541157445
115 => 0.021317176136284
116 => 0.0213481781532
117 => 0.021219750209705
118 => 0.021095690425486
119 => 0.021374558702933
120 => 0.021884195961137
121 => 0.021881025534204
122 => 0.021999251472174
123 => 0.022072905252093
124 => 0.021756729310818
125 => 0.02155091039916
126 => 0.021629834466488
127 => 0.021756035768887
128 => 0.021588909085018
129 => 0.02055732577157
130 => 0.020870242251073
131 => 0.02081815764805
201 => 0.02074398283964
202 => 0.021058622779492
203 => 0.021028274989724
204 => 0.020119240863993
205 => 0.020177434279369
206 => 0.020122779798325
207 => 0.020299379607832
208 => 0.019794503060132
209 => 0.019949799685809
210 => 0.020047200273618
211 => 0.020104569968104
212 => 0.020311828643356
213 => 0.020287509229986
214 => 0.020310316914475
215 => 0.020617626815612
216 => 0.02217189483954
217 => 0.022256490218784
218 => 0.021839911632083
219 => 0.022006326560821
220 => 0.021686846288589
221 => 0.02190131553567
222 => 0.022048049947594
223 => 0.021384985355512
224 => 0.021345722973623
225 => 0.021024924092662
226 => 0.021197303240313
227 => 0.020923035621901
228 => 0.020990331301985
301 => 0.020802166713738
302 => 0.021140825509387
303 => 0.02151949866518
304 => 0.02161516645859
305 => 0.021363505681704
306 => 0.021181286693986
307 => 0.020861370178218
308 => 0.021393398473744
309 => 0.021548979760625
310 => 0.021392581271477
311 => 0.021356340324167
312 => 0.021287663794501
313 => 0.021370910374591
314 => 0.021548132431523
315 => 0.021464557782252
316 => 0.021519760310491
317 => 0.021309385197441
318 => 0.021756833978211
319 => 0.022467490326487
320 => 0.022469775202851
321 => 0.022386200103081
322 => 0.022352002972905
323 => 0.022437756097031
324 => 0.022484273649091
325 => 0.02276158352808
326 => 0.023059148076747
327 => 0.024447751987793
328 => 0.02405783756616
329 => 0.025289889564456
330 => 0.026264282733179
331 => 0.02655646063943
401 => 0.026287670713712
402 => 0.025368154897577
403 => 0.025323039064856
404 => 0.026697183903725
405 => 0.026308925046924
406 => 0.026262742891337
407 => 0.025771442781874
408 => 0.026061861995269
409 => 0.025998343053106
410 => 0.02589807529545
411 => 0.02645217492383
412 => 0.027489399963343
413 => 0.0273277387139
414 => 0.02720706609044
415 => 0.026678313781713
416 => 0.026996740772671
417 => 0.026883355020258
418 => 0.027370532168999
419 => 0.02708193921838
420 => 0.02630598360422
421 => 0.026429557093359
422 => 0.026410879209071
423 => 0.026795268744186
424 => 0.026679884546879
425 => 0.026388348592696
426 => 0.027485854840919
427 => 0.027414588889809
428 => 0.027515627714818
429 => 0.027560108130316
430 => 0.028228140843379
501 => 0.028501812471259
502 => 0.028563940722083
503 => 0.028823907602046
504 => 0.028557472509286
505 => 0.029623402845328
506 => 0.030332184320037
507 => 0.031155470476472
508 => 0.032358512829481
509 => 0.032810867882976
510 => 0.032729153991436
511 => 0.033641286973355
512 => 0.035280369666286
513 => 0.033060459466845
514 => 0.035398030297219
515 => 0.034657982360876
516 => 0.032903342016699
517 => 0.032790363864385
518 => 0.033978626677255
519 => 0.036614079230142
520 => 0.035953928256699
521 => 0.036615159000642
522 => 0.035843798214494
523 => 0.035805493649923
524 => 0.036577695728969
525 => 0.038381987977204
526 => 0.037524836362951
527 => 0.036295899341721
528 => 0.037203327313819
529 => 0.036417229225893
530 => 0.034645930218795
531 => 0.035953423451691
601 => 0.035079139962117
602 => 0.035334302363841
603 => 0.037171916219072
604 => 0.036950809658288
605 => 0.037236942021859
606 => 0.036731925889543
607 => 0.036260161188226
608 => 0.03537957733951
609 => 0.035118879874164
610 => 0.035190927274673
611 => 0.035118844171051
612 => 0.034626165600677
613 => 0.034519771710313
614 => 0.034342443898484
615 => 0.034397405202275
616 => 0.034063977036954
617 => 0.034693224874688
618 => 0.034810018818285
619 => 0.035267932919673
620 => 0.035315475080751
621 => 0.036590759335118
622 => 0.035888354198094
623 => 0.036359588206751
624 => 0.03631743660159
625 => 0.032941370393492
626 => 0.033406562529684
627 => 0.034130255508264
628 => 0.033804232802356
629 => 0.033343312973767
630 => 0.032971095499223
701 => 0.032407147964099
702 => 0.033200893290133
703 => 0.034244583988463
704 => 0.035341944799212
705 => 0.036660351911399
706 => 0.036366098791909
707 => 0.035317298095315
708 => 0.035364346528415
709 => 0.035655181428962
710 => 0.035278523807616
711 => 0.035167440121851
712 => 0.035639920236344
713 => 0.035643173947222
714 => 0.03520978383327
715 => 0.034728150031165
716 => 0.034726131967948
717 => 0.034640429884895
718 => 0.035859044424681
719 => 0.036529159205737
720 => 0.036605986785441
721 => 0.036523988097493
722 => 0.036555546138072
723 => 0.036165621111948
724 => 0.037056874092994
725 => 0.037874775964187
726 => 0.037655560790783
727 => 0.037326926082576
728 => 0.037065152708298
729 => 0.03759389530308
730 => 0.037570351227652
731 => 0.037867632304864
801 => 0.037854145918023
802 => 0.037754181473064
803 => 0.037655564360828
804 => 0.038046570063671
805 => 0.037933966700611
806 => 0.037821188433427
807 => 0.037594994353101
808 => 0.037625737885303
809 => 0.037297159920512
810 => 0.037145144719296
811 => 0.034859200828462
812 => 0.034248321925459
813 => 0.034440516863931
814 => 0.034503792428015
815 => 0.034237937146566
816 => 0.034619105327545
817 => 0.034559700670297
818 => 0.034790809441089
819 => 0.034646422714674
820 => 0.034652348396291
821 => 0.035076958972181
822 => 0.035200225228784
823 => 0.035137531015795
824 => 0.035181439893541
825 => 0.036193301448413
826 => 0.036049447092821
827 => 0.035973027333537
828 => 0.03599419612912
829 => 0.036252748450947
830 => 0.036325128984624
831 => 0.036018447577341
901 => 0.03616308030192
902 => 0.036778908086551
903 => 0.036994412958338
904 => 0.037682201060876
905 => 0.037390016450459
906 => 0.037926333948332
907 => 0.039574791092686
908 => 0.040891692724154
909 => 0.039680615560594
910 => 0.042098937700374
911 => 0.043981948373899
912 => 0.043909675287931
913 => 0.04358132882218
914 => 0.0414375712328
915 => 0.039464853537428
916 => 0.041115115655625
917 => 0.041119322513143
918 => 0.040977563533645
919 => 0.040097110686843
920 => 0.040946925683069
921 => 0.041014380911394
922 => 0.040976623921325
923 => 0.040301582788013
924 => 0.039270919745901
925 => 0.039472308837271
926 => 0.039802188277161
927 => 0.039177657677388
928 => 0.038978082309118
929 => 0.0393491308895
930 => 0.040544726726535
1001 => 0.040318706259159
1002 => 0.040312803951335
1003 => 0.041279815358366
1004 => 0.040587643885055
1005 => 0.03947484899865
1006 => 0.039193853613871
1007 => 0.03819650929908
1008 => 0.038885378569725
1009 => 0.038910169748405
1010 => 0.038532883088946
1011 => 0.03950546373172
1012 => 0.039496501229877
1013 => 0.040419821800666
1014 => 0.042184863948644
1015 => 0.041662854133038
1016 => 0.041055813511994
1017 => 0.041121815658912
1018 => 0.041845696303424
1019 => 0.041408021541164
1020 => 0.04156541243725
1021 => 0.041845458073453
1022 => 0.042014416558916
1023 => 0.041097505132977
1024 => 0.040883729218648
1025 => 0.04044641872308
1026 => 0.040332332577573
1027 => 0.04068851285143
1028 => 0.040594671933304
1029 => 0.038908086145833
1030 => 0.038731828546968
1031 => 0.038737234115887
1101 => 0.038294026002948
1102 => 0.037618027248581
1103 => 0.03939451161327
1104 => 0.039251835056902
1105 => 0.039094331180961
1106 => 0.039113624507059
1107 => 0.039884736159129
1108 => 0.039437452458857
1109 => 0.040626629484388
1110 => 0.040382170437872
1111 => 0.040131441939242
1112 => 0.040096783623354
1113 => 0.040000274542532
1114 => 0.039669308994944
1115 => 0.039269648208287
1116 => 0.039005757538911
1117 => 0.035980749493103
1118 => 0.036542173390742
1119 => 0.037188040409578
1120 => 0.037410991116331
1121 => 0.037029618504711
1122 => 0.039684367910145
1123 => 0.040169416208319
1124 => 0.038700173274231
1125 => 0.038425337910057
1126 => 0.039702386070865
1127 => 0.038932169917109
1128 => 0.039278998203984
1129 => 0.03852934515269
1130 => 0.040052582277161
1201 => 0.040040977762393
1202 => 0.039448404117103
1203 => 0.039949243304333
1204 => 0.039862210170504
1205 => 0.039193195984417
1206 => 0.040073791220159
1207 => 0.040074227984409
1208 => 0.03950388873448
1209 => 0.038837857353879
1210 => 0.038718786673986
1211 => 0.038629082911582
1212 => 0.039256936577374
1213 => 0.039819868210875
1214 => 0.040867344418234
1215 => 0.041130704824185
1216 => 0.042158618021506
1217 => 0.041546545760686
1218 => 0.041817869466245
1219 => 0.04211242972971
1220 => 0.04225365275211
1221 => 0.042023537415554
1222 => 0.043620309716946
1223 => 0.043755126223022
1224 => 0.043800329031351
1225 => 0.04326190639546
1226 => 0.043740151715519
1227 => 0.043516396568084
1228 => 0.044098545300739
1229 => 0.044189833655268
1230 => 0.04411251566666
1231 => 0.044141492031276
]
'min_raw' => 0.019794503060132
'max_raw' => 0.044189833655268
'avg_raw' => 0.0319921683577
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.019794'
'max' => '$0.044189'
'avg' => '$0.031992'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0030522722091154
'max_diff' => -0.0042168793793252
'year' => 2031
]
6 => [
'items' => [
101 => 0.042778928561975
102 => 0.042708272457996
103 => 0.041744871466726
104 => 0.042137464491769
105 => 0.041403530648924
106 => 0.041636268630846
107 => 0.041738857315669
108 => 0.041685270808574
109 => 0.042159661112363
110 => 0.041756332442606
111 => 0.040691881769745
112 => 0.03962714108801
113 => 0.03961377413607
114 => 0.039333446708803
115 => 0.039130821323419
116 => 0.039169854161166
117 => 0.039307410972518
118 => 0.039122826271478
119 => 0.039162216776127
120 => 0.039816361610856
121 => 0.039947545692314
122 => 0.039501730926592
123 => 0.037711720311456
124 => 0.0372724472166
125 => 0.037588188006018
126 => 0.037437284244987
127 => 0.030214810245941
128 => 0.031911623379546
129 => 0.030903434633887
130 => 0.03136805439242
131 => 0.030338954752313
201 => 0.030830095040306
202 => 0.030739399362685
203 => 0.033467824669171
204 => 0.033425224060836
205 => 0.033445614717672
206 => 0.032472315539331
207 => 0.034022807558381
208 => 0.034786635680854
209 => 0.034645271424012
210 => 0.034680849761886
211 => 0.034069496040538
212 => 0.033451533958048
213 => 0.032766118904883
214 => 0.034039535353802
215 => 0.033897953182626
216 => 0.034222691743647
217 => 0.035048593336459
218 => 0.035170210483295
219 => 0.035333665161963
220 => 0.035275078295157
221 => 0.036670855151068
222 => 0.036501817364185
223 => 0.036909149795082
224 => 0.03607123608034
225 => 0.035123057176609
226 => 0.035303274987905
227 => 0.035285918563457
228 => 0.035064951359459
229 => 0.034865472047801
301 => 0.034533395196837
302 => 0.035584135491412
303 => 0.035541477354329
304 => 0.036232063009037
305 => 0.036109995286576
306 => 0.035294797160945
307 => 0.035323912121481
308 => 0.035519724223261
309 => 0.036197432143267
310 => 0.036398621995798
311 => 0.036305422840076
312 => 0.036526018328711
313 => 0.036700368008525
314 => 0.036547913964161
315 => 0.038706341735237
316 => 0.037810012039627
317 => 0.038246876896645
318 => 0.038351066590887
319 => 0.03808418687996
320 => 0.038142063533014
321 => 0.038229730891947
322 => 0.038762029928359
323 => 0.040158936621872
324 => 0.040777617087363
325 => 0.04263894779295
326 => 0.040726244287152
327 => 0.040612752376672
328 => 0.04094803424355
329 => 0.042040832409595
330 => 0.042926442681862
331 => 0.043220250701255
401 => 0.04325908228126
402 => 0.043810285657629
403 => 0.04412622515363
404 => 0.04374335506965
405 => 0.043418912761646
406 => 0.042256800685636
407 => 0.042391318322761
408 => 0.043318011447824
409 => 0.044627020068929
410 => 0.045750285644972
411 => 0.045356957189999
412 => 0.048357775654823
413 => 0.048655294548366
414 => 0.048614187057216
415 => 0.049291979373455
416 => 0.047946699655726
417 => 0.047371566512829
418 => 0.043489060871213
419 => 0.04457988659116
420 => 0.046165465837051
421 => 0.045955608478241
422 => 0.04480411844722
423 => 0.045749412136526
424 => 0.045436868480775
425 => 0.045190352332035
426 => 0.046319690598917
427 => 0.045077936783822
428 => 0.046153078392854
429 => 0.044774198158354
430 => 0.04535875388125
501 => 0.045026931781155
502 => 0.045241661346504
503 => 0.043986356695124
504 => 0.04466368861421
505 => 0.043958177460429
506 => 0.043957842956282
507 => 0.043942268758459
508 => 0.044772299502168
509 => 0.044799366774921
510 => 0.044185972801213
511 => 0.044097573146587
512 => 0.044424433001874
513 => 0.044041765716065
514 => 0.044220813330616
515 => 0.044047188885911
516 => 0.044008102366318
517 => 0.043696654328175
518 => 0.0435624739499
519 => 0.043615089533624
520 => 0.043435485421182
521 => 0.043327267446872
522 => 0.043920741479562
523 => 0.04360367224457
524 => 0.043872146071886
525 => 0.043566186261561
526 => 0.042505596258629
527 => 0.041895639732407
528 => 0.039892283533614
529 => 0.040460432866436
530 => 0.04083711646189
531 => 0.040712622535839
601 => 0.04098008366175
602 => 0.040996503602651
603 => 0.040909549264175
604 => 0.040808867279759
605 => 0.040759860857808
606 => 0.041125114576819
607 => 0.04133715665458
608 => 0.04087492170007
609 => 0.040766626517583
610 => 0.041233971577284
611 => 0.041519051793725
612 => 0.04362392393919
613 => 0.043467988212007
614 => 0.043859356286397
615 => 0.043815294247253
616 => 0.044225510339037
617 => 0.044896040278848
618 => 0.043532665428092
619 => 0.043769300160228
620 => 0.043711282788602
621 => 0.044344701239041
622 => 0.044346678702303
623 => 0.043966912699667
624 => 0.044172790010696
625 => 0.044057874943628
626 => 0.044265542001522
627 => 0.043465905595301
628 => 0.044439776422662
629 => 0.044991898426926
630 => 0.044999564641491
701 => 0.045261266089601
702 => 0.045527169917606
703 => 0.04603754916012
704 => 0.045512935717541
705 => 0.044569207204432
706 => 0.044637341354854
707 => 0.044084033672914
708 => 0.044093334875011
709 => 0.044043684329271
710 => 0.044192689354555
711 => 0.043498603819071
712 => 0.043661504306931
713 => 0.043433442669983
714 => 0.043768804398769
715 => 0.043408010615875
716 => 0.043711254810869
717 => 0.043842124952724
718 => 0.044325038593601
719 => 0.043336683878473
720 => 0.041321361708594
721 => 0.041745006862122
722 => 0.041118402403446
723 => 0.041176397031748
724 => 0.041293555410694
725 => 0.040913806772692
726 => 0.040986250845568
727 => 0.040983662633504
728 => 0.0409613588202
729 => 0.040862571532867
730 => 0.040719310421766
731 => 0.041290018594949
801 => 0.041386993034552
802 => 0.041602555201196
803 => 0.042243921991917
804 => 0.042179834325053
805 => 0.042284363968679
806 => 0.042056176343553
807 => 0.04118698200122
808 => 0.041234183435828
809 => 0.040645580789905
810 => 0.041587503308181
811 => 0.041364443623083
812 => 0.041220635593012
813 => 0.041181396239635
814 => 0.041824352854575
815 => 0.042016735550875
816 => 0.041896855564864
817 => 0.041650978216095
818 => 0.042123135412843
819 => 0.04224946475998
820 => 0.042277745241957
821 => 0.043114317267431
822 => 0.042324500325025
823 => 0.042514617113167
824 => 0.043997854023024
825 => 0.042652762818486
826 => 0.043365287628643
827 => 0.043330413246986
828 => 0.043694916829338
829 => 0.043300513314171
830 => 0.04330540241843
831 => 0.043629056905947
901 => 0.043174542549624
902 => 0.043061998403149
903 => 0.04290651947085
904 => 0.043246002031442
905 => 0.043449506473041
906 => 0.04508960281479
907 => 0.04614917984904
908 => 0.046103180815548
909 => 0.046523525875086
910 => 0.046334156575844
911 => 0.045722633155497
912 => 0.046766429066694
913 => 0.046436128366115
914 => 0.046463357954555
915 => 0.046462344467914
916 => 0.04668196555841
917 => 0.046526343887816
918 => 0.046219597600838
919 => 0.046423230101384
920 => 0.047027945828053
921 => 0.048905001998578
922 => 0.04995542749929
923 => 0.048841765064482
924 => 0.049609954499478
925 => 0.049149314572363
926 => 0.049065602594756
927 => 0.049548082328687
928 => 0.050031406579522
929 => 0.050000620914212
930 => 0.049649752327081
1001 => 0.049451555565171
1002 => 0.050952367847139
1003 => 0.052058140770823
1004 => 0.051982734470623
1005 => 0.052315553356261
1006 => 0.053292719898196
1007 => 0.05338205976054
1008 => 0.053370804991338
1009 => 0.053149366820866
1010 => 0.054111514182511
1011 => 0.054914154438966
1012 => 0.053098110282366
1013 => 0.053789636123436
1014 => 0.054100084353063
1015 => 0.054555914459995
1016 => 0.055324976256386
1017 => 0.056160381350833
1018 => 0.056278516790939
1019 => 0.056194694042883
1020 => 0.0556437219262
1021 => 0.056557832149
1022 => 0.057093296478994
1023 => 0.057412153233622
1024 => 0.058220720910653
1025 => 0.05410200157564
1026 => 0.051186567316685
1027 => 0.050731280157768
1028 => 0.051657124498709
1029 => 0.051901262267945
1030 => 0.051802850639288
1031 => 0.048521264321148
1101 => 0.050714003284943
1102 => 0.053073206039258
1103 => 0.053163832625206
1104 => 0.05434489885262
1105 => 0.054729502429806
1106 => 0.055680415548763
1107 => 0.055620935674266
1108 => 0.0558524678864
1109 => 0.055799242640409
1110 => 0.057560608954896
1111 => 0.059503657565203
1112 => 0.059436375970344
1113 => 0.059157039743505
1114 => 0.059571901674266
1115 => 0.061577336069846
1116 => 0.061392707807133
1117 => 0.061572058437761
1118 => 0.06393657861148
1119 => 0.067010791186388
1120 => 0.065582510799447
1121 => 0.068681468262499
1122 => 0.070632097716814
1123 => 0.0740055096592
1124 => 0.07358314186961
1125 => 0.07489638638354
1126 => 0.072827015375424
1127 => 0.068075321251907
1128 => 0.067323347468105
1129 => 0.068828818026284
1130 => 0.072529870491898
1201 => 0.068712258713215
1202 => 0.069484556603974
1203 => 0.06926213475948
1204 => 0.069250282844619
1205 => 0.069702622229646
1206 => 0.069046480359229
1207 => 0.06637324034148
1208 => 0.067598370488112
1209 => 0.067125288902916
1210 => 0.06765020819226
1211 => 0.070482981103666
1212 => 0.069230544674661
1213 => 0.067911204636379
1214 => 0.069565949829377
1215 => 0.071673009092204
1216 => 0.071541153110286
1217 => 0.07128529739384
1218 => 0.072727542671277
1219 => 0.075109709331386
1220 => 0.075753599407292
1221 => 0.076228905897573
1222 => 0.076294442632214
1223 => 0.076969511729868
1224 => 0.073339495052466
1225 => 0.079100424744943
1226 => 0.080095178160363
1227 => 0.079908205746569
1228 => 0.081013832302185
1229 => 0.080688528922484
1230 => 0.080217215363834
1231 => 0.081969868627999
]
'min_raw' => 0.030214810245941
'max_raw' => 0.081969868627999
'avg_raw' => 0.05609233943697
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.030214'
'max' => '$0.081969'
'avg' => '$0.056092'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.010420307185809
'max_diff' => 0.037780034972731
'year' => 2032
]
7 => [
'items' => [
101 => 0.07996059309246
102 => 0.077108679430517
103 => 0.07554406319112
104 => 0.077604476069151
105 => 0.078862698315264
106 => 0.07969430318198
107 => 0.079945946312179
108 => 0.0736212829138
109 => 0.070212640123987
110 => 0.072397541072088
111 => 0.07506327102258
112 => 0.073324686787995
113 => 0.073392835998415
114 => 0.070914071771796
115 => 0.075282586654825
116 => 0.074646130781361
117 => 0.077948064978763
118 => 0.077160031882876
119 => 0.07985263104051
120 => 0.07914357944348
121 => 0.082086812980209
122 => 0.083260948522877
123 => 0.085232504838621
124 => 0.086682789690161
125 => 0.087534424694514
126 => 0.087483295723255
127 => 0.090857897893374
128 => 0.088868012893274
129 => 0.086368248353264
130 => 0.086323035499391
131 => 0.0876176989766
201 => 0.090330958451251
202 => 0.091034467156708
203 => 0.091427632548636
204 => 0.090825486064713
205 => 0.088665608513447
206 => 0.087732984337638
207 => 0.088527607156151
208 => 0.087555851731827
209 => 0.089233374220626
210 => 0.091536970897215
211 => 0.091061287292908
212 => 0.092651426263635
213 => 0.094297052810839
214 => 0.096650372683055
215 => 0.097265617640834
216 => 0.098282594160374
217 => 0.099329397058363
218 => 0.099665601937069
219 => 0.10030752136876
220 => 0.1003041381365
221 => 0.10223860555007
222 => 0.10437238301272
223 => 0.1051778346078
224 => 0.10702992613784
225 => 0.10385828429768
226 => 0.10626401106664
227 => 0.10843403683149
228 => 0.10584684265497
301 => 0.10941268708837
302 => 0.10955114074734
303 => 0.11164162661805
304 => 0.10952251869945
305 => 0.10826419918181
306 => 0.11189692048061
307 => 0.11365467988744
308 => 0.11312522844898
309 => 0.10909607686006
310 => 0.10675093781687
311 => 0.1006132565973
312 => 0.10788360512998
313 => 0.11142477982127
314 => 0.1090869060731
315 => 0.11026599360568
316 => 0.11669871286305
317 => 0.11914787586853
318 => 0.11863846708433
319 => 0.11872454878328
320 => 0.12004607268558
321 => 0.1259064374449
322 => 0.12239477103893
323 => 0.12507930842666
324 => 0.1265031773773
325 => 0.12782574621173
326 => 0.12457793515654
327 => 0.12035258069356
328 => 0.11901423356682
329 => 0.1088544506033
330 => 0.10832558977834
331 => 0.10802872417118
401 => 0.10615702851045
402 => 0.10468638842171
403 => 0.10351688082177
404 => 0.10044774363501
405 => 0.10148348734008
406 => 0.096591923243101
407 => 0.09972137260596
408 => 0.091914318196238
409 => 0.098416265096529
410 => 0.09487755100595
411 => 0.097253702344363
412 => 0.09724541217619
413 => 0.092870164202703
414 => 0.090346612480692
415 => 0.09195471785606
416 => 0.093678734470018
417 => 0.093958450365345
418 => 0.096193682906779
419 => 0.096817488262931
420 => 0.094927328911104
421 => 0.091752534346433
422 => 0.092489966714451
423 => 0.090331668437291
424 => 0.086549333724311
425 => 0.089265872548402
426 => 0.090193418340727
427 => 0.090603075403736
428 => 0.086883583617597
429 => 0.085714838544297
430 => 0.085092608473993
501 => 0.09127239466422
502 => 0.091610937301799
503 => 0.089878905302839
504 => 0.097707854176152
505 => 0.095935921928002
506 => 0.097915604383126
507 => 0.092423052456454
508 => 0.092632875336755
509 => 0.090032613232619
510 => 0.091488586261358
511 => 0.090459551452847
512 => 0.091370958028842
513 => 0.091917251372624
514 => 0.094517086799335
515 => 0.098445951040929
516 => 0.094128758083456
517 => 0.092247695288543
518 => 0.093414696067008
519 => 0.096522572925625
520 => 0.10123116545572
521 => 0.098443583908648
522 => 0.099680665263034
523 => 0.099950912505048
524 => 0.097895453074116
525 => 0.10130695317681
526 => 0.10313520379683
527 => 0.1050106106298
528 => 0.10663897383517
529 => 0.10426153189963
530 => 0.10680573556357
531 => 0.10475555652284
601 => 0.10291633397969
602 => 0.10291912332109
603 => 0.10176535215302
604 => 0.099529775130364
605 => 0.09911750042748
606 => 0.10126220549644
607 => 0.10298205585741
608 => 0.10312371097067
609 => 0.10407590849961
610 => 0.10463940918882
611 => 0.11016248198513
612 => 0.11238390755306
613 => 0.11510022468809
614 => 0.11615838329543
615 => 0.11934306133267
616 => 0.11677117517069
617 => 0.11621473142163
618 => 0.10848974420354
619 => 0.10975471042774
620 => 0.11178004340377
621 => 0.10852314119834
622 => 0.11058889601213
623 => 0.11099671977105
624 => 0.10841247290766
625 => 0.10979283081611
626 => 0.10612700945887
627 => 0.098525855928983
628 => 0.1013154154336
629 => 0.10336947018457
630 => 0.10043808079181
701 => 0.1056924828179
702 => 0.10262296962713
703 => 0.10165008130828
704 => 0.097854497116688
705 => 0.099645866749684
706 => 0.10206871982825
707 => 0.1005716783126
708 => 0.10367826423949
709 => 0.10807801840818
710 => 0.11121354523868
711 => 0.11145425205473
712 => 0.1094383183667
713 => 0.11266886496728
714 => 0.1126923959724
715 => 0.10904832620978
716 => 0.10681635377044
717 => 0.10630924493611
718 => 0.1075761022288
719 => 0.10911430085689
720 => 0.11153961137327
721 => 0.11300517572373
722 => 0.11682659027445
723 => 0.11786055548333
724 => 0.11899656976923
725 => 0.12051463518902
726 => 0.12233746194946
727 => 0.1183492207712
728 => 0.11850768102822
729 => 0.11479388606398
730 => 0.11082516353261
731 => 0.11383692922567
801 => 0.11777441223094
802 => 0.116871149279
803 => 0.11676951374492
804 => 0.1169404365219
805 => 0.11625940575394
806 => 0.11317912883067
807 => 0.11163223304335
808 => 0.11362812326419
809 => 0.11468885008972
810 => 0.116333944891
811 => 0.11613115223301
812 => 0.12036873977084
813 => 0.12201533815005
814 => 0.12159406782273
815 => 0.12167159170139
816 => 0.12465267941515
817 => 0.12796826206031
818 => 0.13107374273716
819 => 0.13423277106515
820 => 0.13042443911678
821 => 0.12849080301866
822 => 0.13048582189627
823 => 0.12942723679789
824 => 0.13551018076994
825 => 0.13593135061258
826 => 0.14201385471855
827 => 0.14778687540622
828 => 0.1441609445467
829 => 0.14758003403171
830 => 0.15127805807221
831 => 0.15841214642911
901 => 0.15600963645076
902 => 0.15416935145948
903 => 0.15243029103491
904 => 0.15604899971037
905 => 0.16070441061107
906 => 0.16170714153011
907 => 0.16333194869165
908 => 0.16162366263326
909 => 0.16368110502906
910 => 0.17094478077221
911 => 0.16898207146817
912 => 0.16619470873517
913 => 0.17192868312355
914 => 0.17400378616445
915 => 0.18856794604534
916 => 0.20695579951042
917 => 0.19934310743472
918 => 0.1946176638033
919 => 0.1957282551457
920 => 0.20244287676303
921 => 0.20459940011507
922 => 0.19873722624603
923 => 0.20080784516035
924 => 0.21221715895699
925 => 0.21833788975428
926 => 0.21002511520774
927 => 0.18709049992328
928 => 0.16594373721826
929 => 0.17155281093876
930 => 0.17091691604868
1001 => 0.18317480038229
1002 => 0.16893526150038
1003 => 0.16917501881582
1004 => 0.18168638321612
1005 => 0.1783485656932
1006 => 0.17294172878145
1007 => 0.16598321311128
1008 => 0.15311975331016
1009 => 0.1417262282402
1010 => 0.16407155467451
1011 => 0.16310798356633
1012 => 0.16171258980843
1013 => 0.16481788761925
1014 => 0.17989633233441
1015 => 0.17954872537956
1016 => 0.17733742728345
1017 => 0.17901467739986
1018 => 0.17264769872666
1019 => 0.17428861410415
1020 => 0.165940387463
1021 => 0.16971413455754
1022 => 0.17293012813778
1023 => 0.17357578646261
1024 => 0.17503048763658
1025 => 0.16260022537732
1026 => 0.1681810481984
1027 => 0.1714592587534
1028 => 0.15664818420358
1029 => 0.17116649143079
1030 => 0.16238384216622
1031 => 0.15940287909487
1101 => 0.16341635315843
1102 => 0.16185229841263
1103 => 0.16050761598656
1104 => 0.15975726008824
1105 => 0.16270431248955
1106 => 0.16256682897254
1107 => 0.15774487924577
1108 => 0.15145484239502
1109 => 0.15356598522555
1110 => 0.15279898724315
1111 => 0.15001928761021
1112 => 0.1518924695406
1113 => 0.14364392431486
1114 => 0.12945273097605
1115 => 0.13882786798368
1116 => 0.13846693540707
1117 => 0.13828493683495
1118 => 0.14533009318643
1119 => 0.14465286396265
1120 => 0.14342368629003
1121 => 0.14999671279832
1122 => 0.14759746970311
1123 => 0.15499137158978
1124 => 0.15986147357993
1125 => 0.15862625818393
1126 => 0.16320661264491
1127 => 0.15361462169246
1128 => 0.15680069632298
1129 => 0.15745734188862
1130 => 0.14991560267152
1201 => 0.14476366703909
1202 => 0.14442009166878
1203 => 0.13548734526262
1204 => 0.14025914629018
1205 => 0.14445813372389
1206 => 0.14244714459773
1207 => 0.14181052551698
1208 => 0.1450628743347
1209 => 0.14531560969232
1210 => 0.13955321675487
1211 => 0.14075140071782
1212 => 0.14574802702482
1213 => 0.14062549855491
1214 => 0.13067326249814
1215 => 0.12820497035563
1216 => 0.12787565468417
1217 => 0.12118145063097
1218 => 0.12836991343919
1219 => 0.12523195678458
1220 => 0.13514472425801
1221 => 0.12948260464042
1222 => 0.12923852198044
1223 => 0.12886955524074
1224 => 0.12310757727807
1225 => 0.12436908425909
1226 => 0.12856252559695
1227 => 0.1300587927088
1228 => 0.12990271979048
1229 => 0.12854197544667
1230 => 0.12916491723913
1231 => 0.12715820467832
]
'min_raw' => 0.070212640123987
'max_raw' => 0.21833788975428
'avg_raw' => 0.14427526493913
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.070212'
'max' => '$0.218337'
'avg' => '$0.144275'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.039997829878046
'max_diff' => 0.13636802112628
'year' => 2033
]
8 => [
'items' => [
101 => 0.12644959270699
102 => 0.12421301840639
103 => 0.12092587205393
104 => 0.12138296991548
105 => 0.11487027286263
106 => 0.11132180985324
107 => 0.11033964206023
108 => 0.1090262462398
109 => 0.11048799361296
110 => 0.11485182321015
111 => 0.10958811887784
112 => 0.10056386700602
113 => 0.1011062399201
114 => 0.10232479082606
115 => 0.10005402927432
116 => 0.097904944036179
117 => 0.099773399289949
118 => 0.09594970480725
119 => 0.10278686603637
120 => 0.10260193998605
121 => 0.10515041088505
122 => 0.10674402203809
123 => 0.10307126426808
124 => 0.10214757562112
125 => 0.10267375065374
126 => 0.093977249433915
127 => 0.10443972120112
128 => 0.10453020109143
129 => 0.10375545733869
130 => 0.10932640056216
131 => 0.12108282838443
201 => 0.11665958733648
202 => 0.11494677470954
203 => 0.11169071665368
204 => 0.11602922068752
205 => 0.11569609126892
206 => 0.11418955370247
207 => 0.11327839508159
208 => 0.1149572327782
209 => 0.1130703685121
210 => 0.11273143584235
211 => 0.11067787262602
212 => 0.10994484398897
213 => 0.1094021387688
214 => 0.10880467364652
215 => 0.11012253282725
216 => 0.10713609054489
217 => 0.10353473391691
218 => 0.10323532008051
219 => 0.10406202800754
220 => 0.103696271291
221 => 0.10323356897807
222 => 0.10235014425322
223 => 0.10208805100873
224 => 0.10293972690373
225 => 0.10197823447407
226 => 0.10339696892924
227 => 0.10301115165959
228 => 0.10085600775427
301 => 0.098169900511769
302 => 0.09814598852301
303 => 0.097567271123712
304 => 0.096830187504962
305 => 0.096625147704414
306 => 0.099616043200022
307 => 0.10580710736596
308 => 0.10459165333058
309 => 0.10546994343588
310 => 0.10979026147831
311 => 0.1111635606675
312 => 0.11018882543139
313 => 0.10885454772114
314 => 0.10891324916882
315 => 0.11347288001806
316 => 0.11375725860117
317 => 0.11447579153668
318 => 0.11539930941619
319 => 0.11034610451967
320 => 0.10867524367262
321 => 0.10788349710746
322 => 0.10544522413123
323 => 0.10807469249436
324 => 0.10654261388423
325 => 0.10674934363199
326 => 0.10661471061256
327 => 0.10668822934502
328 => 0.10278495491047
329 => 0.10420710296435
330 => 0.10184250599462
331 => 0.098676576090612
401 => 0.098665962783456
402 => 0.099440819642292
403 => 0.098979904462504
404 => 0.097739593564908
405 => 0.09791577387381
406 => 0.096372248982203
407 => 0.098103185742071
408 => 0.098152822814754
409 => 0.097486317877443
410 => 0.10015306477926
411 => 0.1012456331608
412 => 0.10080692533314
413 => 0.1012148522501
414 => 0.10464216093319
415 => 0.1052009617925
416 => 0.10544914422189
417 => 0.10511661264438
418 => 0.10127749716123
419 => 0.10144777825809
420 => 0.10019836855263
421 => 0.099142749011075
422 => 0.099184968256742
423 => 0.099727693922038
424 => 0.10209780873282
425 => 0.10708557562622
426 => 0.10727485773381
427 => 0.10750427316997
428 => 0.10657112529617
429 => 0.10628967896841
430 => 0.10666097932219
501 => 0.10853412232302
502 => 0.11335235467454
503 => 0.11164926956259
504 => 0.11026463485648
505 => 0.11147933278858
506 => 0.11129233956305
507 => 0.10971392855626
508 => 0.10966962781636
509 => 0.1066401524458
510 => 0.10552022437912
511 => 0.10458432866143
512 => 0.1035623549699
513 => 0.1029564947087
514 => 0.10388737142848
515 => 0.1041002739481
516 => 0.10206489573136
517 => 0.1017874812014
518 => 0.10344961498988
519 => 0.10271817188016
520 => 0.10347047925742
521 => 0.10364502102212
522 => 0.10361691577797
523 => 0.10285320516572
524 => 0.10333997153578
525 => 0.10218862395853
526 => 0.10093670639508
527 => 0.10013806098682
528 => 0.099441136943173
529 => 0.099827830908052
530 => 0.098449337530787
531 => 0.09800832975581
601 => 0.1031750660422
602 => 0.10699178968872
603 => 0.10693629301532
604 => 0.10659847128852
605 => 0.10609653672715
606 => 0.1084974026835
607 => 0.10766098899114
608 => 0.10826954983704
609 => 0.10842445411353
610 => 0.10889330270431
611 => 0.10906087577662
612 => 0.10855435356513
613 => 0.10685440315689
614 => 0.102618288366
615 => 0.10064636549566
616 => 0.099995598103479
617 => 0.1000192522622
618 => 0.099366764967817
619 => 0.099558951718443
620 => 0.099299930259038
621 => 0.098809406278946
622 => 0.099797542434542
623 => 0.099911415921349
624 => 0.099680773135285
625 => 0.099735097860794
626 => 0.097825474101007
627 => 0.097970658647979
628 => 0.09716225264128
629 => 0.097010686260503
630 => 0.094967106271531
701 => 0.09134660809941
702 => 0.093352715537026
703 => 0.090929619853779
704 => 0.090011956802642
705 => 0.094356030960839
706 => 0.093920006401218
707 => 0.093173721890466
708 => 0.092069811559744
709 => 0.09166036047993
710 => 0.089172665335439
711 => 0.089025679034965
712 => 0.090258647921994
713 => 0.089689675204499
714 => 0.088890622022318
715 => 0.085996532395179
716 => 0.082742617454129
717 => 0.082840832692819
718 => 0.083875842494327
719 => 0.086885273082301
720 => 0.085709436487902
721 => 0.084856353547495
722 => 0.084696596756336
723 => 0.086696287471189
724 => 0.089526268780864
725 => 0.090854032694101
726 => 0.089538258980873
727 => 0.088026768985405
728 => 0.088118766377859
729 => 0.088730783814296
730 => 0.088795098193405
731 => 0.087811273590038
801 => 0.0880882144531
802 => 0.087667515958105
803 => 0.085085690070869
804 => 0.085038993027627
805 => 0.084405371317333
806 => 0.084386185503762
807 => 0.083308236910209
808 => 0.083157424450464
809 => 0.081017092091161
810 => 0.082425865331578
811 => 0.081480934205821
812 => 0.080056700112587
813 => 0.079811161618087
814 => 0.079803780434446
815 => 0.081266150395281
816 => 0.082408776687152
817 => 0.081497371687313
818 => 0.081289862435694
819 => 0.083505518354518
820 => 0.083223555942696
821 => 0.08297937831252
822 => 0.08927287499409
823 => 0.084291081282957
824 => 0.08211873487406
825 => 0.079430043675654
826 => 0.080305495087413
827 => 0.080489965562928
828 => 0.074024147903779
829 => 0.071400966484728
830 => 0.070500789474217
831 => 0.069982724878032
901 => 0.070218813419959
902 => 0.067857642474322
903 => 0.069444388399953
904 => 0.067399813945843
905 => 0.06705703438499
906 => 0.070712986783112
907 => 0.071221691201547
908 => 0.06905140011043
909 => 0.070445078329139
910 => 0.069939711233459
911 => 0.067434862306574
912 => 0.067339195501988
913 => 0.066082350360174
914 => 0.064115631086412
915 => 0.063216787604179
916 => 0.062748662114515
917 => 0.062941819815134
918 => 0.062844153370978
919 => 0.06220681375873
920 => 0.062880684931509
921 => 0.061159222547852
922 => 0.060473722355915
923 => 0.060164097822701
924 => 0.058636200873527
925 => 0.061067764378519
926 => 0.061546813021033
927 => 0.062026805537357
928 => 0.066204812687155
929 => 0.065996091256877
930 => 0.067882831335133
1001 => 0.067809516085184
1002 => 0.067271387251703
1003 => 0.065001110221141
1004 => 0.065906002181726
1005 => 0.063120885378479
1006 => 0.065207684257005
1007 => 0.06425535639565
1008 => 0.064885701249126
1009 => 0.063752284366673
1010 => 0.064379564067058
1011 => 0.061660413225706
1012 => 0.059121308429535
1013 => 0.060143118320604
1014 => 0.061253942530331
1015 => 0.063662492449763
1016 => 0.062227979987854
1017 => 0.062743884914079
1018 => 0.06101568977267
1019 => 0.057449929561406
1020 => 0.057470111376961
1021 => 0.056921596852767
1022 => 0.056447600219432
1023 => 0.062392751000436
1024 => 0.061653377521893
1025 => 0.060475282650642
1026 => 0.06205220945144
1027 => 0.062469173926765
1028 => 0.062481044319195
1029 => 0.063631529406685
1030 => 0.064245543504115
1031 => 0.064353766150076
1101 => 0.066164079293118
1102 => 0.066770872380058
1103 => 0.069270167228592
1104 => 0.064193448697826
1105 => 0.064088897020512
1106 => 0.062074400045401
1107 => 0.060796774215848
1108 => 0.062161880179007
1109 => 0.063371177706819
1110 => 0.062111976290494
1111 => 0.062276401412273
1112 => 0.060586026391392
1113 => 0.06119025592182
1114 => 0.061710699791932
1115 => 0.061423341277133
1116 => 0.060993151672169
1117 => 0.063272029100185
1118 => 0.063143445904704
1119 => 0.065265588956838
1120 => 0.066919951221882
1121 => 0.06988486415347
1122 => 0.066790822944952
1123 => 0.066678063785613
1124 => 0.067780302655284
1125 => 0.06677070363303
1126 => 0.067408735364921
1127 => 0.06978206737753
1128 => 0.069832212143109
1129 => 0.068992222711782
1130 => 0.068941109278548
1201 => 0.069102438437312
1202 => 0.070047348359216
1203 => 0.069717167798353
1204 => 0.070099261102532
1205 => 0.070577074630228
1206 => 0.072553513969517
1207 => 0.073030026803016
1208 => 0.071872347661192
1209 => 0.071976873125715
1210 => 0.07154386934767
1211 => 0.071125593123599
1212 => 0.072065816990972
1213 => 0.073784094588743
1214 => 0.073773405272986
1215 => 0.074172012277125
1216 => 0.074420341138465
1217 => 0.073354331877757
1218 => 0.072660399047283
1219 => 0.07292649705058
1220 => 0.073351993552713
1221 => 0.072788514269637
1222 => 0.069310459105502
1223 => 0.070365478863276
1224 => 0.070189871987752
1225 => 0.06993978644248
1226 => 0.071000616967149
1227 => 0.070898297275131
1228 => 0.067833425253494
1229 => 0.068029628416366
1230 => 0.067845357017673
1231 => 0.068440775605231
]
'min_raw' => 0.056447600219432
'max_raw' => 0.12644959270699
'avg_raw' => 0.091448596463211
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.056447'
'max' => '$0.126449'
'avg' => '$0.091448'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.013765039904555
'max_diff' => -0.091888297047286
'year' => 2034
]
9 => [
'items' => [
101 => 0.066738549075305
102 => 0.067262142491239
103 => 0.06759053537333
104 => 0.067783961303715
105 => 0.068482748397665
106 => 0.068400753797561
107 => 0.068477651498197
108 => 0.069513768285573
109 => 0.074754091443774
110 => 0.075039310671154
111 => 0.073634786881505
112 => 0.074195866432463
113 => 0.073118716389233
114 => 0.073841814429532
115 => 0.074336539744005
116 => 0.072100971178108
117 => 0.071968595316355
118 => 0.070886999491733
119 => 0.071468187823166
120 => 0.070543475398937
121 => 0.070770367482775
122 => 0.070135957436267
123 => 0.071277769210202
124 => 0.072554492193073
125 => 0.072877042837865
126 => 0.072028550958202
127 => 0.071414186918986
128 => 0.070335566050218
129 => 0.072129336593612
130 => 0.072653889764668
131 => 0.072126581339114
201 => 0.072004392454996
202 => 0.071772844740384
203 => 0.072053516397248
204 => 0.072651032935445
205 => 0.072369255170429
206 => 0.072555374348507
207 => 0.071846079966937
208 => 0.073354684771179
209 => 0.075750712265833
210 => 0.075758415886019
211 => 0.075476636602116
212 => 0.075361338590162
213 => 0.075650461235243
214 => 0.075807298409768
215 => 0.076742268027934
216 => 0.077745527679059
217 => 0.08242730271438
218 => 0.081112679018888
219 => 0.085266628350268
220 => 0.088551862948577
221 => 0.089536961158712
222 => 0.08863071715784
223 => 0.085530505385198
224 => 0.085378394205291
225 => 0.090011419469267
226 => 0.088702377626194
227 => 0.088546671264297
228 => 0.086890218643763
301 => 0.087869387298146
302 => 0.087655228749895
303 => 0.087317169004486
304 => 0.08918535458757
305 => 0.092682431225026
306 => 0.092137379035702
307 => 0.091730522860615
308 => 0.089947797535434
309 => 0.091021396367309
310 => 0.090639108386709
311 => 0.092281660157313
312 => 0.091308648875384
313 => 0.088692460346754
314 => 0.089109096993009
315 => 0.089046123202084
316 => 0.090342119356945
317 => 0.089953093479858
318 => 0.08897015965594
319 => 0.092670478597261
320 => 0.092430200467467
321 => 0.092770859920287
322 => 0.092920828746662
323 => 0.09517314767931
324 => 0.096095850679849
325 => 0.096305320415161
326 => 0.097181816901261
327 => 0.096283512384117
328 => 0.099877370932963
329 => 0.10226707716049
330 => 0.10504284391691
331 => 0.10909898520382
401 => 0.1106241318491
402 => 0.11034862775869
403 => 0.11342394779032
404 => 0.11895022952663
405 => 0.11146564730004
406 => 0.11934693055863
407 => 0.11685180727275
408 => 0.11093591484728
409 => 0.11055500111887
410 => 0.11456131215432
411 => 0.1234469244378
412 => 0.12122117934057
413 => 0.12345056495943
414 => 0.12084986821424
415 => 0.12072072170045
416 => 0.12332425492338
417 => 0.12940755220997
418 => 0.1265176056981
419 => 0.12237415872938
420 => 0.12543361549191
421 => 0.12278323090485
422 => 0.11681117263427
423 => 0.12121947735524
424 => 0.11827176952962
425 => 0.1191320673819
426 => 0.12532771079292
427 => 0.12458223458606
428 => 0.12554694982697
429 => 0.12384425267777
430 => 0.12225366504971
501 => 0.11928471512337
502 => 0.11840575541764
503 => 0.11864866825864
504 => 0.1184056350421
505 => 0.11674453484436
506 => 0.11638582041482
507 => 0.1157879473166
508 => 0.11597325318961
509 => 0.11484907685102
510 => 0.11697062986862
511 => 0.11736440880375
512 => 0.11890829816712
513 => 0.11906858988248
514 => 0.12336829978359
515 => 0.12100009182375
516 => 0.12258889018444
517 => 0.12244677310471
518 => 0.1110641301747
519 => 0.11263255794054
520 => 0.11507253934446
521 => 0.11397333102931
522 => 0.11241930764683
523 => 0.11116435044401
524 => 0.10926296195578
525 => 0.11193912974003
526 => 0.11545800579761
527 => 0.11915783438633
528 => 0.12360293601331
529 => 0.12261084107686
530 => 0.11907473630337
531 => 0.11923336338038
601 => 0.12021393355302
602 => 0.11894400608526
603 => 0.11856947968308
604 => 0.1201624793766
605 => 0.12017344949
606 => 0.11871224446247
607 => 0.11708838247208
608 => 0.11708157843105
609 => 0.1167926278745
610 => 0.12090127187634
611 => 0.12316061064659
612 => 0.1234196401955
613 => 0.12314317589411
614 => 0.12324957603124
615 => 0.12193491658196
616 => 0.12493983823286
617 => 0.12769745149567
618 => 0.12695835223342
619 => 0.12585033737016
620 => 0.12496775016235
621 => 0.12675044273629
622 => 0.12667106224219
623 => 0.12767336614951
624 => 0.12762789585469
625 => 0.12729085874921
626 => 0.12695836427008
627 => 0.12827666729636
628 => 0.12789701719609
629 => 0.12751677739435
630 => 0.12675414826017
701 => 0.12685780222543
702 => 0.12574997867656
703 => 0.12523744881229
704 => 0.11753022938484
705 => 0.11547060851316
706 => 0.11611860716684
707 => 0.11633194514891
708 => 0.11543559550608
709 => 0.11672073064057
710 => 0.11652044369115
711 => 0.11729964304738
712 => 0.11681283311851
713 => 0.1168328119678
714 => 0.11826441616978
715 => 0.11868001696009
716 => 0.11846863904383
717 => 0.11861668089077
718 => 0.12202824276894
719 => 0.12154322776547
720 => 0.12128557321158
721 => 0.12135694528385
722 => 0.12222867248844
723 => 0.12247270851118
724 => 0.12143871073471
725 => 0.12192635006356
726 => 0.12400265643517
727 => 0.12472924615647
728 => 0.12704817176401
729 => 0.12606305095031
730 => 0.12787128283888
731 => 0.13342917119267
801 => 0.1378691969863
802 => 0.13378596577465
803 => 0.14193950771078
804 => 0.14828820966418
805 => 0.14804453590889
806 => 0.14693749287519
807 => 0.13970966449022
808 => 0.13305850904952
809 => 0.13862248299864
810 => 0.13863666671248
811 => 0.13815871641581
812 => 0.13519020817156
813 => 0.13805541876352
814 => 0.1382828487754
815 => 0.13815554844727
816 => 0.13587960013644
817 => 0.13240464773136
818 => 0.13308364511346
819 => 0.13419585667649
820 => 0.13209020815603
821 => 0.13141732586799
822 => 0.13266834206254
823 => 0.13669937690094
824 => 0.13593733311493
825 => 0.13591743307202
826 => 0.1391777795454
827 => 0.13684407509727
828 => 0.13309220944489
829 => 0.13214481388664
830 => 0.12878219789697
831 => 0.13110476873826
901 => 0.13118835392805
902 => 0.12991630561437
903 => 0.13319542915489
904 => 0.13316521145419
905 => 0.13627825122278
906 => 0.142229214056
907 => 0.14046922151712
908 => 0.13842254168105
909 => 0.13864507252751
910 => 0.14108568666021
911 => 0.13961003564178
912 => 0.14014069003661
913 => 0.14108488345123
914 => 0.14165453878128
915 => 0.13856310789201
916 => 0.13784234747149
917 => 0.13636792460364
918 => 0.13598327519882
919 => 0.13718416185985
920 => 0.13686777065262
921 => 0.1311813289165
922 => 0.13058706411602
923 => 0.13060528936903
924 => 0.12911098227246
925 => 0.12683180527538
926 => 0.13282134634111
927 => 0.13234030236996
928 => 0.13180926705565
929 => 0.13187431585161
930 => 0.13447417262386
1001 => 0.13296612440004
1002 => 0.1369755177673
1003 => 0.13615130702439
1004 => 0.13530595838595
1005 => 0.13518910545417
1006 => 0.13486371835013
1007 => 0.13374784489916
1008 => 0.13240036065352
1009 => 0.13151063483746
1010 => 0.1213116090117
1011 => 0.12320448887996
1012 => 0.12538207462696
1013 => 0.1261337685007
1014 => 0.12484794411404
1015 => 0.13379861708314
1016 => 0.13543399128543
1017 => 0.13048033615388
1018 => 0.12955370953518
1019 => 0.13385936657
1020 => 0.13126252903284
1021 => 0.13243188481681
1022 => 0.12990437721527
1023 => 0.13504007752944
1024 => 0.1350009520977
1025 => 0.13300304868044
1026 => 0.13469166296766
1027 => 0.13439822468049
1028 => 0.13214259664302
1029 => 0.13511158496152
1030 => 0.13511305754269
1031 => 0.13319011894173
1101 => 0.13094454764121
1102 => 0.1305430925307
1103 => 0.13024065003284
1104 => 0.1323575025024
1105 => 0.13425546580738
1106 => 0.13778710497295
1107 => 0.13867504296885
1108 => 0.14214072408022
1109 => 0.14007707971935
1110 => 0.14099186653586
1111 => 0.14198499702967
1112 => 0.14246114030957
1113 => 0.14168529038623
1114 => 0.14706891968345
1115 => 0.14752346294628
1116 => 0.14767586737052
1117 => 0.14586053786214
1118 => 0.14747297534874
1119 => 0.14671856924708
1120 => 0.14868132434356
1121 => 0.1489891094044
1122 => 0.14872842640764
1123 => 0.148826122244
1124 => 0.14423214437611
1125 => 0.1439939223885
1126 => 0.14074574868392
1127 => 0.14206940347782
1128 => 0.13959489428504
1129 => 0.14037958664034
1130 => 0.14072547155374
1201 => 0.14054480090378
1202 => 0.14214424093387
1203 => 0.14078439016428
1204 => 0.13719552040316
1205 => 0.13360567285687
1206 => 0.13356060524515
1207 => 0.13261546175228
1208 => 0.13193229611861
1209 => 0.13206389805626
1210 => 0.13252768044964
1211 => 0.13190534024279
1212 => 0.13203814807937
1213 => 0.1342436430606
1214 => 0.13468593935021
1215 => 0.13318284374179
1216 => 0.1271476979783
1217 => 0.12566665806993
1218 => 0.12673120018577
1219 => 0.12622241761969
1220 => 0.10187134227488
1221 => 0.10759226622253
1222 => 0.10419308747706
1223 => 0.10575958543167
1224 => 0.1022899041456
1225 => 0.10394581791689
1226 => 0.10364003110762
1227 => 0.11283910752101
1228 => 0.11269547659573
1229 => 0.11276422511888
1230 => 0.10948267898553
1231 => 0.11471027107965
]
'min_raw' => 0.066738549075305
'max_raw' => 0.1489891094044
'avg_raw' => 0.10786382923985
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.066738'
'max' => '$0.148989'
'avg' => '$0.107863'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.010290948855873
'max_diff' => 0.022539516697408
'year' => 2035
]
10 => [
'items' => [
101 => 0.11728557092334
102 => 0.11680895146166
103 => 0.1169289063118
104 => 0.11486768455693
105 => 0.11278418225108
106 => 0.11047325754518
107 => 0.11476667000981
108 => 0.11428931583474
109 => 0.11538419456574
110 => 0.11816877944852
111 => 0.11857882015011
112 => 0.11912991901128
113 => 0.11893238929944
114 => 0.12363834841917
115 => 0.12306842571885
116 => 0.12444177544867
117 => 0.12161669085815
118 => 0.11841983948448
119 => 0.11902745641767
120 => 0.11896893802086
121 => 0.11822393166514
122 => 0.11755137323868
123 => 0.1164317529508
124 => 0.1199743972143
125 => 0.11983057232683
126 => 0.12215893007683
127 => 0.12174737022805
128 => 0.11899887283217
129 => 0.11909703595436
130 => 0.11975723012668
131 => 0.12204216969503
201 => 0.12272049532947
202 => 0.12240626786899
203 => 0.12315002096041
204 => 0.12373785307861
205 => 0.12322384362404
206 => 0.13050113355083
207 => 0.12747909540234
208 => 0.12895201576871
209 => 0.12930329859714
210 => 0.1284034950188
211 => 0.12859863019539
212 => 0.12889420681678
213 => 0.13068889018197
214 => 0.13539865862806
215 => 0.13748458301235
216 => 0.1437601894402
217 => 0.13731137602971
218 => 0.13692873012977
219 => 0.13805915635259
220 => 0.14174360166614
221 => 0.14472949853042
222 => 0.14572009278082
223 => 0.14585101616394
224 => 0.14770943683116
225 => 0.14877464890012
226 => 0.14748377568085
227 => 0.14638989578757
228 => 0.14247175378723
229 => 0.14292528939252
301 => 0.14604969996332
302 => 0.15046311392144
303 => 0.15425028223496
304 => 0.15292414788771
305 => 0.16304161685232
306 => 0.164044722574
307 => 0.16390612579756
308 => 0.1661913499137
309 => 0.16165564542095
310 => 0.15971654387516
311 => 0.14662640503656
312 => 0.15030420011038
313 => 0.15565009123952
314 => 0.15494254250251
315 => 0.15106021346846
316 => 0.15424733714025
317 => 0.15319357438379
318 => 0.1523624279771
319 => 0.15617007079178
320 => 0.1519834111077
321 => 0.15560832610654
322 => 0.15095933512558
323 => 0.1529302055577
324 => 0.15181144418015
325 => 0.15253541990166
326 => 0.14830307262696
327 => 0.15058674448197
328 => 0.14820806436978
329 => 0.14820693656569
330 => 0.14815442707038
331 => 0.15095293367369
401 => 0.15104419287355
402 => 0.1489760922654
403 => 0.14867804665796
404 => 0.14978007748068
405 => 0.1484898880096
406 => 0.14909355954277
407 => 0.14850817260537
408 => 0.14837638967563
409 => 0.14732632087042
410 => 0.1468739223569
411 => 0.14705131947092
412 => 0.14644577166627
413 => 0.14608090721034
414 => 0.14808184634659
415 => 0.14701282528375
416 => 0.14791800353679
417 => 0.14688643867484
418 => 0.14331058543193
419 => 0.14125407441797
420 => 0.13449961912387
421 => 0.1364151742664
422 => 0.13768518930768
423 => 0.13726544934412
424 => 0.13816721320366
425 => 0.13822257418082
426 => 0.13792940155768
427 => 0.13758994521783
428 => 0.13742471664471
429 => 0.13865619505956
430 => 0.13937110972903
501 => 0.13781265230769
502 => 0.137447527539
503 => 0.13902321403677
504 => 0.13998438189017
505 => 0.14708110528609
506 => 0.1465553570948
507 => 0.14787488188206
508 => 0.14772632364077
509 => 0.14910939583459
510 => 0.15137013434157
511 => 0.14677342084445
512 => 0.14757125136516
513 => 0.14737564174608
514 => 0.1495112562756
515 => 0.14951792343105
516 => 0.14823751583874
517 => 0.14893164556677
518 => 0.14854420139504
519 => 0.14924436537958
520 => 0.14654833540718
521 => 0.14983180889511
522 => 0.15169332678042
523 => 0.15171917395806
524 => 0.15260151866178
525 => 0.15349803198271
526 => 0.15521881123238
527 => 0.15345004038339
528 => 0.15026819381242
529 => 0.15049791285754
530 => 0.14863239737717
531 => 0.14866375702943
601 => 0.14849635674798
602 => 0.14899873759392
603 => 0.14665857975153
604 => 0.1472078101197
605 => 0.14643888438798
606 => 0.14756957987079
607 => 0.14635313844194
608 => 0.1473755474172
609 => 0.14781678523752
610 => 0.1494449622937
611 => 0.14611265536692
612 => 0.13931785596587
613 => 0.14074620517895
614 => 0.1386335644984
615 => 0.13882909743677
616 => 0.13922410509113
617 => 0.1379437560449
618 => 0.13818800629449
619 => 0.13817927995681
620 => 0.13810408109305
621 => 0.1377710128567
622 => 0.13728799801845
623 => 0.13921218046991
624 => 0.13953913656357
625 => 0.14026591945848
626 => 0.1424283323722
627 => 0.14221225632891
628 => 0.14256468532042
629 => 0.14179533481075
630 => 0.13886478540037
701 => 0.13902392833265
702 => 0.13703941341699
703 => 0.14021517095029
704 => 0.13946310964845
705 => 0.13897825083471
706 => 0.1388459526152
707 => 0.14101372573227
708 => 0.14166235742457
709 => 0.14125817368198
710 => 0.140429181034
711 => 0.1420210919878
712 => 0.1424470202017
713 => 0.14254236982117
714 => 0.14536293081265
715 => 0.14270000784807
716 => 0.14334099987282
717 => 0.1483418366707
718 => 0.14380676776333
719 => 0.14620909490767
720 => 0.14609151349506
721 => 0.14732046277178
722 => 0.14599070378403
723 => 0.14600718774038
724 => 0.14709841144188
725 => 0.14556598455636
726 => 0.14518653410893
727 => 0.1446623260335
728 => 0.14580691518845
729 => 0.14649304462153
730 => 0.1520227439456
731 => 0.15559518189388
801 => 0.15544009294091
802 => 0.1568573156567
803 => 0.15621884384297
804 => 0.15415704993606
805 => 0.15767628072617
806 => 0.15656264885331
807 => 0.15665445531184
808 => 0.15665103827087
809 => 0.15739150611093
810 => 0.15686681678337
811 => 0.15583260026048
812 => 0.15651916145324
813 => 0.15855800274561
814 => 0.16488662867641
815 => 0.16842821159043
816 => 0.16467342093804
817 => 0.16726342525141
818 => 0.16571034557628
819 => 0.1654281047992
820 => 0.1670548189078
821 => 0.16868438036412
822 => 0.16858058434414
823 => 0.16739760640576
824 => 0.16672937218533
825 => 0.17178946557735
826 => 0.17551765619215
827 => 0.17526341858633
828 => 0.17638554069593
829 => 0.17968012591565
830 => 0.17998134149906
831 => 0.17994339525891
901 => 0.17919680100684
902 => 0.18244074801161
903 => 0.1851469056748
904 => 0.17902398600867
905 => 0.18135551366263
906 => 0.18240221154362
907 => 0.18393907457419
908 => 0.1865320201149
909 => 0.18934864671695
910 => 0.18974694860122
911 => 0.18946433435383
912 => 0.18760669339479
913 => 0.1906886798321
914 => 0.19249403520559
915 => 0.19356908301569
916 => 0.19629522539119
917 => 0.1824086755934
918 => 0.17257908544021
919 => 0.17104405299679
920 => 0.17416560183266
921 => 0.17498872936679
922 => 0.17465692768989
923 => 0.16359283030524
924 => 0.17098580281382
925 => 0.17894001961427
926 => 0.17924557347615
927 => 0.18322762072128
928 => 0.18452433853393
929 => 0.18773040850512
930 => 0.18752986795551
1001 => 0.18831049497378
1002 => 0.18813104234085
1003 => 0.19406961184481
1004 => 0.20062073589379
1005 => 0.20039389129927
1006 => 0.19945208970785
1007 => 0.20085082567214
1008 => 0.2076122877518
1009 => 0.20698980067373
1010 => 0.20759449384675
1011 => 0.21556663869797
1012 => 0.22593156102894
1013 => 0.22111601398502
1014 => 0.231564365434
1015 => 0.23814104882782
1016 => 0.24951474271568
1017 => 0.2480907002243
1018 => 0.25251839579082
1019 => 0.24554136695808
1020 => 0.22952069846795
1021 => 0.22698536635474
1022 => 0.23206116545023
1023 => 0.24453952223728
1024 => 0.23166817758831
1025 => 0.23427203384712
1026 => 0.23352212306941
1027 => 0.23348216351098
1028 => 0.23500725732893
1029 => 0.23279502920245
1030 => 0.22378201384296
1031 => 0.22791262566818
1101 => 0.22631759807419
1102 => 0.22808740010691
1103 => 0.2376382917556
1104 => 0.2334156148929
1105 => 0.22896736784045
1106 => 0.23454645678926
1107 => 0.24165055420406
1108 => 0.24120599255514
1109 => 0.24034335714386
1110 => 0.24520598779109
1111 => 0.25323762900321
1112 => 0.2554085493491
1113 => 0.25701107836592
1114 => 0.25723204004239
1115 => 0.25950808263695
1116 => 0.24726922796942
1117 => 0.26669260464287
1118 => 0.27004648523443
1119 => 0.26941609468732
1120 => 0.27314379181196
1121 => 0.27204700875535
1122 => 0.2704579421863
1123 => 0.27636713503277
1124 => 0.26959272228156
1125 => 0.25997729625607
1126 => 0.25470208336692
1127 => 0.26164890923864
1128 => 0.26589109338768
1129 => 0.26869490725661
1130 => 0.26954333963924
1201 => 0.24821929541771
1202 => 0.23672681826801
1203 => 0.24409336435945
1204 => 0.25308105900285
1205 => 0.24721930087187
1206 => 0.24744907069283
1207 => 0.23909174404099
1208 => 0.2538204969691
1209 => 0.25167464155578
1210 => 0.26280734323601
1211 => 0.26015043463451
1212 => 0.26922872068574
1213 => 0.26683810372196
1214 => 0.27676142108104
1215 => 0.28072010103867
1216 => 0.28736734080687
1217 => 0.29225707743949
1218 => 0.29512842431592
1219 => 0.29495603941961
1220 => 0.30633374624337
1221 => 0.2996247100362
1222 => 0.29119657936157
1223 => 0.29104414106807
1224 => 0.295409189372
1225 => 0.30455713312451
1226 => 0.30692906184237
1227 => 0.30825464641119
1228 => 0.30622446750012
1229 => 0.29894228953819
1230 => 0.29579788201571
1231 => 0.29847700832712
]
'min_raw' => 0.11047325754518
'max_raw' => 0.30825464641119
'avg_raw' => 0.20936395197818
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.110473'
'max' => '$0.308254'
'avg' => '$0.209363'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.043734708469875
'max_diff' => 0.15926553700679
'year' => 2036
]
11 => [
'items' => [
101 => 0.29520066706821
102 => 0.30085655126008
103 => 0.30862328828718
104 => 0.30701948780409
105 => 0.31238075236386
106 => 0.31792909716173
107 => 0.32586347941445
108 => 0.32793782074464
109 => 0.3313666280833
110 => 0.33489599713931
111 => 0.33602953536094
112 => 0.33819381154229
113 => 0.3381824047385
114 => 0.34470459668357
115 => 0.35189877637445
116 => 0.35461441266211
117 => 0.36085886856454
118 => 0.35016545666347
119 => 0.3582765324275
120 => 0.36559292580004
121 => 0.3568700200018
122 => 0.36889251346829
123 => 0.36935931964604
124 => 0.37640753871221
125 => 0.36926281841326
126 => 0.36502030630649
127 => 0.37726827979387
128 => 0.38319468835686
129 => 0.38140960586698
130 => 0.36782503997855
131 => 0.35991823996205
201 => 0.33922461921104
202 => 0.3637371068885
203 => 0.37567642459712
204 => 0.36779412003001
205 => 0.37176949596739
206 => 0.39345785806172
207 => 0.4017153821298
208 => 0.39999787484809
209 => 0.40028810530612
210 => 0.40474371540859
211 => 0.42450234435223
212 => 0.41266251588776
213 => 0.42171362111894
214 => 0.42651429469736
215 => 0.43097342786145
216 => 0.42002320613396
217 => 0.4057771285572
218 => 0.40126479777899
219 => 0.36701038018406
220 => 0.36522728898885
221 => 0.36422638586778
222 => 0.35791583327002
223 => 0.35295746753402
224 => 0.34901439100843
225 => 0.33866658070296
226 => 0.3421586629179
227 => 0.32566641304684
228 => 0.33621757006489
301 => 0.30989554105138
302 => 0.33181730897715
303 => 0.31988628735564
304 => 0.32789764749069
305 => 0.32786969660989
306 => 0.31311824259722
307 => 0.3046099117777
308 => 0.31003175132509
309 => 0.31584439370604
310 => 0.31678747537628
311 => 0.32432371794868
312 => 0.32642692125964
313 => 0.32005411703825
314 => 0.30935007550638
315 => 0.31183638022104
316 => 0.30455952689202
317 => 0.29180712133303
318 => 0.30096612164113
319 => 0.30409340703914
320 => 0.30547459442841
321 => 0.29293406818483
322 => 0.28899356257102
323 => 0.28689567044627
324 => 0.30773125104551
325 => 0.30887267118441
326 => 0.3030330043733
327 => 0.32942885209943
328 => 0.32345465881243
329 => 0.3301292964269
330 => 0.31161077412839
331 => 0.31231820661869
401 => 0.3035512413901
402 => 0.30846015610928
403 => 0.30499069340747
404 => 0.30806356431081
405 => 0.30990543046036
406 => 0.31867095711623
407 => 0.3319173972113
408 => 0.31736167973839
409 => 0.31101954519373
410 => 0.31495416979572
411 => 0.32543259360958
412 => 0.34130794206823
413 => 0.33190941625955
414 => 0.33608032241612
415 => 0.33699147986063
416 => 0.33006135488165
417 => 0.34156346566123
418 => 0.34772754027099
419 => 0.35405060534509
420 => 0.35954074558066
421 => 0.35152503410731
422 => 0.3601029943909
423 => 0.35319067261615
424 => 0.34698960540152
425 => 0.34699900986079
426 => 0.34310898981391
427 => 0.33557158579901
428 => 0.33418157285414
429 => 0.34141259573265
430 => 0.3472111913008
501 => 0.34768879140519
502 => 0.35089919185431
503 => 0.35279907377035
504 => 0.37142049931174
505 => 0.37891019070899
506 => 0.38806844357696
507 => 0.39163609919988
508 => 0.40237346354954
509 => 0.39370216979109
510 => 0.39182608084146
511 => 0.36578074709429
512 => 0.3700456690363
513 => 0.37687422056922
514 => 0.36589334739395
515 => 0.37285818397506
516 => 0.37423319025159
517 => 0.36552022152534
518 => 0.37017419458718
519 => 0.35781462194177
520 => 0.33218680212016
521 => 0.34159199675079
522 => 0.34851738575322
523 => 0.33863400175245
524 => 0.35634958503406
525 => 0.34600050700481
526 => 0.34272034611289
527 => 0.32992326901173
528 => 0.33596299679881
529 => 0.34413181511141
530 => 0.33908443512128
531 => 0.34955850646871
601 => 0.36439258482946
602 => 0.37496423245397
603 => 0.37577579228991
604 => 0.36897893111273
605 => 0.37987094452615
606 => 0.37995028095279
607 => 0.36766404532727
608 => 0.36013879441669
609 => 0.35842904157654
610 => 0.36270033938802
611 => 0.36788648345623
612 => 0.37606358719197
613 => 0.38100483972197
614 => 0.39388900568235
615 => 0.39737509157325
616 => 0.40120524305214
617 => 0.40632350660291
618 => 0.41246929429145
619 => 0.39902266070881
620 => 0.39955692052871
621 => 0.38703560151788
622 => 0.37365477641602
623 => 0.38380915472494
624 => 0.3970846535835
625 => 0.39403923947723
626 => 0.39369656817811
627 => 0.39427284625414
628 => 0.39197670347193
629 => 0.38159133476703
630 => 0.37637586761927
701 => 0.38310515084745
702 => 0.38668146539729
703 => 0.39222801737668
704 => 0.39154428777171
705 => 0.40583161001443
706 => 0.41138323141175
707 => 0.40996288909104
708 => 0.4102242662605
709 => 0.42027521162035
710 => 0.43145392999507
711 => 0.44192427491481
712 => 0.45257515947895
713 => 0.43973510242578
714 => 0.43321571331881
715 => 0.43994205875244
716 => 0.43637296518519
717 => 0.45688203548453
718 => 0.45830203901416
719 => 0.47880962627429
720 => 0.49827376858221
721 => 0.48604868953493
722 => 0.49757638844686
723 => 0.5100445346872
724 => 0.53409761166862
725 => 0.52599738153873
726 => 0.51979273220602
727 => 0.51392936856726
728 => 0.52613009751676
729 => 0.54182614039889
730 => 0.54520691770087
731 => 0.5506850684864
801 => 0.54492546277182
802 => 0.55186227345528
803 => 0.57635226335695
804 => 0.5697348519064
805 => 0.56033706384464
806 => 0.57966955882838
807 => 0.58666591360983
808 => 0.63576999548545
809 => 0.69776592724187
810 => 0.67209920440748
811 => 0.6561670412842
812 => 0.65991147753413
813 => 0.68255029311684
814 => 0.68982116216192
815 => 0.67005643367854
816 => 0.67703766991415
817 => 0.71550496795238
818 => 0.73614143917121
819 => 0.70811433940819
820 => 0.63078868273291
821 => 0.55949089585311
822 => 0.57840227951482
823 => 0.57625831549614
824 => 0.61758662834505
825 => 0.56957702883183
826 => 0.57038538736015
827 => 0.61256832595133
828 => 0.60131464113386
829 => 0.58308511299259
830 => 0.55962399158254
831 => 0.51625393876499
901 => 0.47783987352109
902 => 0.55317870169526
903 => 0.54992995442962
904 => 0.5452252869516
905 => 0.55569501532574
906 => 0.60653304442628
907 => 0.60536106330888
908 => 0.59790551738994
909 => 0.60356048325929
910 => 0.58209377013434
911 => 0.58762623089461
912 => 0.55947960191939
913 => 0.57220305372325
914 => 0.5830460006125
915 => 0.58522288273309
916 => 0.59012750930513
917 => 0.54821801224484
918 => 0.56703414602672
919 => 0.57808686179027
920 => 0.52815028986934
921 => 0.57709977632171
922 => 0.54748846114124
923 => 0.53743793602196
924 => 0.55096964403907
925 => 0.54569632426479
926 => 0.54116263358258
927 => 0.53863275628322
928 => 0.54856894921087
929 => 0.54810541393448
930 => 0.53184787377289
1001 => 0.51064057537422
1002 => 0.51775844082266
1003 => 0.5151724535749
1004 => 0.50580050219002
1005 => 0.5121160658497
1006 => 0.48430551972608
1007 => 0.4364589205868
1008 => 0.46806784955918
1009 => 0.46685094017764
1010 => 0.46623731928502
1011 => 0.48999055580113
1012 => 0.48770723019052
1013 => 0.48356297184885
1014 => 0.50572438963561
1015 => 0.49763517403031
1016 => 0.52256423046694
1017 => 0.53898411934639
1018 => 0.5348195043988
1019 => 0.55026248925413
1020 => 0.51792242206652
1021 => 0.52866449512795
1022 => 0.53087842149805
1023 => 0.50545092118015
1024 => 0.48808081049878
1025 => 0.48692242215009
1026 => 0.45680504397729
1027 => 0.47289350429822
1028 => 0.48705068359491
1029 => 0.48027049335329
1030 => 0.47812408767521
1031 => 0.48908960878591
1101 => 0.48994172368954
1102 => 0.47051341358351
1103 => 0.47455317446912
1104 => 0.49139964891648
1105 => 0.47412868653665
1106 => 0.44057402782832
1107 => 0.4322520085392
1108 => 0.43114169776078
1109 => 0.40857172142102
1110 => 0.43280812566138
1111 => 0.42222828571521
1112 => 0.45564987333921
1113 => 0.43655964173195
1114 => 0.43573670000253
1115 => 0.43449270287919
1116 => 0.41506579188958
1117 => 0.41931905075171
1118 => 0.43345753099902
1119 => 0.43850230003264
1120 => 0.43797608929186
1121 => 0.43338824473259
1122 => 0.43548853647826
1123 => 0.4287227649753
1124 => 0.42633363024025
1125 => 0.41879286383315
1126 => 0.4077100204046
1127 => 0.40925115775837
1128 => 0.38729314494268
1129 => 0.37532925416075
1130 => 0.37201780687386
1201 => 0.36758960116692
1202 => 0.37251798449146
1203 => 0.38723094065125
1204 => 0.36948399399477
1205 => 0.33905809875579
1206 => 0.34088674690286
1207 => 0.34499517635881
1208 => 0.33733914524763
1209 => 0.33009335432288
1210 => 0.33639298166235
1211 => 0.32350112875211
1212 => 0.34655309519145
1213 => 0.34592960410166
1214 => 0.35452195166621
1215 => 0.35989492293104
1216 => 0.3475119636857
1217 => 0.34439768292258
1218 => 0.34617171878143
1219 => 0.31685085774847
1220 => 0.35212581177807
1221 => 0.35243087104534
1222 => 0.3498187683921
1223 => 0.36860159242084
1224 => 0.40823920963121
1225 => 0.39332594361721
1226 => 0.38755107626074
1227 => 0.37657304919469
1228 => 0.39120061844946
1229 => 0.39007744935632
1230 => 0.38499805276791
1231 => 0.38192601786256
]
'min_raw' => 0.28689567044627
'max_raw' => 0.73614143917121
'avg_raw' => 0.51151855480874
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.286895'
'max' => '$0.736141'
'avg' => '$0.511518'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.17642241290109
'max_diff' => 0.42788679276002
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0090053272669689
]
1 => [
'year' => 2028
'avg' => 0.015455755855304
]
2 => [
'year' => 2029
'avg' => 0.042222339367724
]
3 => [
'year' => 2030
'avg' => 0.032574471942805
]
4 => [
'year' => 2031
'avg' => 0.0319921683577
]
5 => [
'year' => 2032
'avg' => 0.05609233943697
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0090053272669689
'min' => '$0.0090053'
'max_raw' => 0.05609233943697
'max' => '$0.056092'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.05609233943697
]
1 => [
'year' => 2033
'avg' => 0.14427526493913
]
2 => [
'year' => 2034
'avg' => 0.091448596463211
]
3 => [
'year' => 2035
'avg' => 0.10786382923985
]
4 => [
'year' => 2036
'avg' => 0.20936395197818
]
5 => [
'year' => 2037
'avg' => 0.51151855480874
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.05609233943697
'min' => '$0.056092'
'max_raw' => 0.51151855480874
'max' => '$0.511518'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.51151855480874
]
]
]
]
'prediction_2025_max_price' => '$0.015397'
'last_price' => 0.01492979
'sma_50day_nextmonth' => '$0.013683'
'sma_200day_nextmonth' => '$0.01498'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'augmenter'
'sma_200day_date_nextmonth' => '4 févr. 2026'
'sma_50day_date_nextmonth' => '4 févr. 2026'
'daily_sma3' => '$0.014635'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.010762'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.0132062'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.013194'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.012228'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.014339'
'daily_sma100_action' => 'BUY'
'daily_sma200' => '$0.01501'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.013831'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.013163'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.013133'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.013096'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.01295'
'daily_ema50_action' => 'BUY'
'daily_ema100' => '$0.01366'
'daily_ema100_action' => 'BUY'
'daily_ema200' => '$0.014847'
'daily_ema200_action' => 'BUY'
'weekly_sma21' => '$0.017737'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.0162083'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.026777'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.048631'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.015545'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.016032'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.016497'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.016758'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.018725'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.042887'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.145966'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '52.69'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 76.57
'stoch_rsi_14_action' => 'NEUTRAL'
'momentum_10' => -0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.013790'
'vwma_10_action' => 'BUY'
'hma_9' => '0.012676'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 75.97
'stochastic_fast_14_action' => 'NEUTRAL'
'cci_20' => 20.2
'cci_20_action' => 'NEUTRAL'
'adx_14' => 9.48
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '-0.001183'
'ao_5_34_action' => 'SELL'
'macd_12_26' => -0
'macd_12_26_action' => 'NEUTRAL'
'williams_percent_r_14' => -24.03
'williams_percent_r_14_action' => 'NEUTRAL'
'ultimate_oscillator' => 49.14
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.000865'
'ichimoku_cloud_action' => 'NEUTRAL'
'sell_signals' => 13
'buy_signals' => 20
'sell_pct' => 39.39
'buy_pct' => 60.61
'overall_action' => 'bullish'
'overall_action_label' => 'Haussier'
'overall_action_dir' => 1
'last_updated' => 1767713646
'last_updated_date' => '6 janvier 2026'
]
Prévision du prix de KeyFi pour 2026
La prévision du prix de KeyFi pour 2026 suggère que le prix moyen pourrait varier entre $0.005158 à la baisse et $0.015397 à la hausse. Sur le marché des cryptomonnaies, comparé au prix moyen d'aujourd'hui, KeyFi pourrait potentiellement gagner 3.13% d'ici 2026 si KEYFI atteint l'objectif de prix prévu.
Prévision du prix de KeyFi de 2027 à 2032
La prévision du prix de KEYFI pour 2027-2032 se situe actuellement dans une fourchette de prix comprise entre $0.0090053 à la baisse et $0.056092 à la hausse. Compte tenu de la volatilité des prix sur le marché, si KeyFi atteint l'objectif de prix le plus élevé, il pourrait gagner 275.71% d'ici 2032 par rapport au prix actuel.
| Prévision du Prix de KeyFi | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2027 | $0.004965 | $0.0090053 | $0.013044 |
| 2028 | $0.008961 | $0.015455 | $0.021949 |
| 2029 | $0.019686 | $0.042222 | $0.064758 |
| 2030 | $0.016742 | $0.032574 | $0.0484067 |
| 2031 | $0.019794 | $0.031992 | $0.044189 |
| 2032 | $0.030214 | $0.056092 | $0.081969 |
Prévision du prix de KeyFi de 2032 à 2037
La prévision du prix de KeyFi pour 2032-2037 est actuellement estimée entre $0.056092 à la baisse et $0.511518 à la hausse. Par rapport au prix actuel, KeyFi pourrait potentiellement gagner 3326.16% d'ici 2037 s'il atteint l'objectif de prix le plus élevé. Veuillez noter que ces informations sont à titre général seulement et ne doivent pas être considérées comme un conseil en investissement à long terme.
| Prévision du Prix de KeyFi | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2032 | $0.030214 | $0.056092 | $0.081969 |
| 2033 | $0.070212 | $0.144275 | $0.218337 |
| 2034 | $0.056447 | $0.091448 | $0.126449 |
| 2035 | $0.066738 | $0.107863 | $0.148989 |
| 2036 | $0.110473 | $0.209363 | $0.308254 |
| 2037 | $0.286895 | $0.511518 | $0.736141 |
KeyFi Histogramme des prix potentiels
Prévision du prix de KeyFi basée sur l'analyse technique
Au 6 janvier 2026, le sentiment global de prévision du prix pour KeyFi est Haussier, avec 20 indicateurs techniques montrant des signaux haussiers et 13 indiquant des signaux baissiers. La prévision du prix de KEYFI a été mise à jour pour la dernière fois le 6 janvier 2026.
Moyennes Mobiles Simples sur 50 et 200 jours de KeyFi et Indice de Force Relative sur 14 jours - RSI (14)
Selon nos indicateurs techniques, le SMA sur 200 jours de KeyFi devrait augmenter au cours du prochain mois, atteignant $0.01498 d'ici le 4 févr. 2026. Le SMA à court terme sur 50 jours pour KeyFi devrait atteindre $0.013683 d'ici le 4 févr. 2026.
Le Relative Strength Index (RSI), un oscillateur de momentum, est un outil couramment utilisé pour identifier si une cryptomonnaie est survendue (en dessous de 30) ou surachetée (au-dessus de 70). Actuellement, le RSI est à 52.69, ce qui suggère que le marché de KEYFI est dans un état NEUTRAL.
Moyennes Mobiles et Oscillateurs Populaires de KEYFI pour le Samedi 19 Octobre 2024
Les moyennes mobiles (MA) sont des indicateurs largement utilisés sur les marchés financiers, conçus pour lisser les mouvements de prix sur une période donnée. En tant qu'indicateurs retardés, ils sont basés sur des données historiques de prix. Le tableau ci-dessous met en évidence deux types : la moyenne mobile simple (SMA) et la moyenne mobile exponentielle (EMA).
Moyenne Mobile Simple Quotidienne (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 3 | $0.014635 | BUY |
| SMA 5 | $0.010762 | BUY |
| SMA 10 | $0.0132062 | BUY |
| SMA 21 | $0.013194 | BUY |
| SMA 50 | $0.012228 | BUY |
| SMA 100 | $0.014339 | BUY |
| SMA 200 | $0.01501 | SELL |
Moyenne Mobile Exponentielle Quotidienne (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 3 | $0.013831 | BUY |
| EMA 5 | $0.013163 | BUY |
| EMA 10 | $0.013133 | BUY |
| EMA 21 | $0.013096 | BUY |
| EMA 50 | $0.01295 | BUY |
| EMA 100 | $0.01366 | BUY |
| EMA 200 | $0.014847 | BUY |
Moyenne Mobile Simple Hebdomadaire (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 21 | $0.017737 | SELL |
| SMA 50 | $0.0162083 | SELL |
| SMA 100 | $0.026777 | SELL |
| SMA 200 | $0.048631 | SELL |
Moyenne Mobile Exponentielle Hebdomadaire (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 21 | $0.016758 | SELL |
| EMA 50 | $0.018725 | SELL |
| EMA 100 | $0.042887 | SELL |
| EMA 200 | $0.145966 | SELL |
Oscillateurs de KeyFi
Un oscillateur est un outil d'analyse technique qui établit des limites hautes et basses entre deux extrêmes, créant un indicateur de tendance qui fluctue à l'intérieur de ces limites. Les traders utilisent cet indicateur pour identifier les conditions de surachat ou de survente à court terme.
| Période | Valeur | Action |
|---|---|---|
| RSI (14) | 52.69 | NEUTRAL |
| Stoch RSI (14) | 76.57 | NEUTRAL |
| Stochastique Rapide (14) | 75.97 | NEUTRAL |
| Indice de Canal des Matières Premières (20) | 20.2 | NEUTRAL |
| Indice Directionnel Moyen (14) | 9.48 | NEUTRAL |
| Oscillateur Impressionnant (5, 34) | -0.001183 | SELL |
| Momentum (10) | -0 | BUY |
| MACD (12, 26) | -0 | NEUTRAL |
| Plage de Pourcentage de Williams (14) | -24.03 | NEUTRAL |
| Oscillateur Ultime (7, 14, 28) | 49.14 | NEUTRAL |
| VWMA (10) | 0.013790 | BUY |
| Moyenne Mobile de Hull (9) | 0.012676 | BUY |
| Nuage Ichimoku B/L (9, 26, 52, 26) | -0.000865 | NEUTRAL |
Prévision du cours de KeyFi basée sur les flux monétaires mondiaux
Définitions des flux monétaires mondiaux utilisés pour la prédiction du cours de KeyFi
M0 : le total de toutes les devises physiques, plus les comptes à la banque centrale qui peuvent être échangés contre des devises physiques.
M1 : M0 plus le montant des comptes à vue, y compris les comptes de "chèques" et les comptes "courants".
M2 : M1 plus la plupart des comptes d'épargne, comptes du marché monétaire et comptes de certificats de dépôt (CD) de moins de 100 000 $.
Prédictions du cours de KeyFi par des sociétés Internet ou des niches technologiques
| Comparaison | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Action Facebook | $0.020978 | $0.029478 | $0.041422 | $0.0582056 | $0.081788 | $0.114926 |
| Action Amazon.com | $0.031151 | $0.06500027 | $0.135626 | $0.282993 | $0.590483 | $1.23 |
| Action Apple | $0.021176 | $0.030037 | $0.042606 | $0.060433 | $0.08572 | $0.121587 |
| Action Netflix | $0.023556 | $0.037169 | $0.058646 | $0.092535 | $0.1460067 | $0.230375 |
| Action Google | $0.019334 | $0.025037 | $0.032423 | $0.041988 | $0.054374 | $0.070414 |
| Action Tesla | $0.033844 | $0.076723 | $0.173926 | $0.394277 | $0.893796 | $2.02 |
| Action Kodak | $0.011195 | $0.008395 | $0.006295 | $0.004721 | $0.00354 | $0.002654 |
| Action Nokia | $0.00989 | $0.006551 | $0.00434 | $0.002875 | $0.0019047 | $0.001261 |
Ce calcul montre la valeur potentielle des cryptomonnaies si l'on suppose que leur capitalisation se comportera comme celle de certaines sociétés Internet ou niches technologiques. En extrapolant les données, vous pourrez obtenir une potentielle image des cours futurs pour 2024, 2025, 2026, 2027, 2028, 2029 et 2030.
Aperçu des prévisions relatives à KeyFi
Vous vous posez peut-être des questions telles que : "Devrais-je investir dans KeyFi maintenant ?", "Devrais-je acheter KEYFI aujourd'hui ?", " KeyFi sera-t-il un bon ou un mauvais investissement à court ou à long terme ?".
Nous mettons régulièrement à jour les prévisions de KeyFi avec de nouvelles valeurs. Regardez nos prévisions similaires. Nous faisons une prévision des cours futurs pour une grande quantité de devises numériques comme KeyFi en utilisant des méthodes d'analyse technique.
Si vous souhaitez trouver des cryptomonnaies ayant un bon rendement, vous devriez consulter un maximum d'informations disponibles à propos de KeyFi afin de prendre une décision responsable concernant cet investissement.
Le cours de KeyFi est de $0.01492 USD actuellement, mais ce cours peut subir une hausse ou une baisse, ce qui pourrait causer la perte de votre investissement, car les cryptomonnaies sont des actifs à haut risque.
Prévision du cours de KeyFi basée sur le modèle de croissance du Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si KeyFi présente 1 % de la précédente croissance annuelle moyenne du Bitcoin | $0.015317 | $0.015716 | $0.016124 | $0.016543 |
| Si KeyFi présente 2 % de la précédente croissance annuelle moyenne du Bitcoin | $0.0157059 | $0.016522 | $0.017381 | $0.018284 |
| Si KeyFi présente 5 % de la précédente croissance annuelle moyenne du Bitcoin | $0.01687 | $0.019062 | $0.02154 | $0.024339 |
| Si KeyFi présente 10 % de la précédente croissance annuelle moyenne du Bitcoin | $0.01881 | $0.023699 | $0.02986 | $0.037622 |
| Si KeyFi présente 20 % de la précédente croissance annuelle moyenne du Bitcoin | $0.022691 | $0.034487 | $0.052416 | $0.079665 |
| Si KeyFi présente 50 % de la précédente croissance annuelle moyenne du Bitcoin | $0.034333 | $0.078955 | $0.18157 | $0.41755 |
| Si KeyFi présente 100 % de la précédente croissance annuelle moyenne du Bitcoin | $0.053737 | $0.193417 | $0.69617 | $2.50 |
Boîte à questions
Est-ce que KEYFI est un bon investissement ?
La décision d'acquérir KeyFi dépend entièrement de votre tolérance individuelle au risque. Comme vous pouvez le discerner, la valeur de KeyFi a connu une hausse de 1.4117% au cours des 24 heures précédentes, et KeyFi a enregistré une déclin de sur une période de 30 jours précédents. Par conséquent, la détermination de si investir ou non dans KeyFi dépendra de la mesure dans laquelle cet investissement s'aligne avec vos aspirations de trading.
Est-ce que KeyFi peut monter ?
Il semble que la valeur moyenne de KeyFi pourrait potentiellement s'envoler jusqu'à $0.015397 pour la fin de cette année. En regardant les perspectives de KeyFi sur une période de cinq ans plus longue, la monnaie numérique pourrait potentiellement croître jusqu'à $0.0484067. Cependant, compte tenu de l'imprévisibilité du marché, il est essentiel de mener des recherches approfondies avant d'investir des fonds dans un projet, un réseau ou un actif particulier.
Quel sera le prix de KeyFi la semaine prochaine ?
Basé sur notre nouveau pronostic expérimental de KeyFi, le prix de KeyFi va augmenter de 0.86% durant la prochaine semaine et atteindre $0.0150575 d'ici 13 janvier 2026.
Quel sera le prix de KeyFi le mois prochain ?
Basé sur notre nouveau pronostic expérimental de KeyFi, le prix de KeyFi va diminuer de -11.62% durant le prochain mois et atteindre $0.013195 d'ici 5 février 2026.
Jusqu'où le prix de KeyFi peut-il monter cette année en 2026 ?
Selon notre prédiction la plus récente sur la valeur de KeyFi en 2026, KEYFI devrait fluctuer dans la fourchette de $0.005158 et $0.015397. Cependant, il est crucial de garder à l'esprit que le marché des cryptomonnaies est exceptionnellement instable, et cette prévision de prix de KeyFi ne prend pas en compte les fluctuations de prix soudaines et extrêmes.
Où sera KeyFi dans 5 ans ?
L'avenir de KeyFi semble suivre une tendance haussière, avec un prix maximum de $0.0484067 prévue après une période de cinq ans. Selon la prévision de KeyFi pour 2030, la valeur de KeyFi pourrait potentiellement atteindre son point le plus élevé d'environ $0.0484067, tandis que son point le plus bas devrait être autour de $0.016742.
Combien vaudra KeyFi en 2026 ?
Basé sur notre nouvelle simulation expérimentale de prédiction de prix de KeyFi, il est attendu que la valeur de KEYFI en 2026 augmente de 3.13% jusqu'à $0.015397 si le meilleur scénario se produit. Le prix sera entre $0.015397 et $0.005158 durant 2026.
Combien vaudra KeyFi en 2027 ?
Selon notre dernière simulation expérimentale pour la prédiction de prix de KeyFi, le valeur de KEYFI pourrait diminuer de -12.62% jusqu'à $0.013044 en 2027, en supposant les conditions les plus favorables. Il est prévu que le prix fluctue entre $0.013044 et $0.004965 tout au long de l'année.
Combien vaudra KeyFi en 2028 ?
Notre nouveau modèle expérimental de prédiction de prix de KeyFi suggère que la valeur de KEYFI en 2028 pourrait augmenter de 47.02%, atteignant $0.021949 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.021949 et $0.008961 durant l'année.
Combien vaudra KeyFi en 2029 ?
Basé sur notre modèle de prévision expérimental, la valeur de KeyFi pourrait connaître un 333.75% croissance en 2029, atteignant potentiellement $0.064758 sous des conditions optimales. Le range de prix prévu pour 2029 se situe entre $0.064758 et $0.019686.
Combien vaudra KeyFi en 2030 ?
En utilisant notre nouvelle simulation expérimentale pour les prédictions de prix de KeyFi, il est prévu que la valeur de KEYFI en 2030 augmente de 224.23%, atteignant $0.0484067 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.0484067 et $0.016742 au cours de 2030.
Combien vaudra KeyFi en 2031 ?
Notre simulation expérimentale indique que le prix de KeyFi pourrait augmenter de 195.98% en 2031, atteignant potentiellement $0.044189 dans des conditions idéales. Il est probable que le prix fluctue entre $0.044189 et $0.019794 durant l'année.
Combien vaudra KeyFi en 2032 ?
Basé sur les résultats de notre dernière prédiction expérimentale de prix de KeyFi, KEYFI pourrait connaître une 449.04% hausse en valeur, atteignant $0.081969 si le scénario le plus positif se réalise en 2032. Il est prévu que le prix reste dans une fourchette de $0.081969 et $0.030214 tout au long de l'année.
Combien vaudra KeyFi en 2033 ?
Selon notre prédiction expérimentale de prix de KeyFi, la valeur de KEYFI est anticipée à augmenter de 1362.43% en 2033, avec le prix potentiel le plus élevé étant $0.218337. Tout au long de l'année, le prix de KEYFI pourrait osciller entre $0.218337 et $0.070212.
Combien vaudra KeyFi en 2034 ?
Les résultats de notre nouvelle simulation de prédiction de prix de KeyFi suggèrent que KEYFI pourrait augmenter de 746.96% en 2034, atteignant potentiellement $0.126449 dans les meilleures circonstances. La fourchette de prix prévue pour l'année est entre $0.126449 et $0.056447.
Combien vaudra KeyFi en 2035 ?
Basé sur notre prédiction expérimentale pour le prix de KeyFi, KEYFI pourrait augmenter de 897.93%, avec la valeur potentiellement atteignant $0.148989 en 2035. La fourchette de prix attendue pour l'année se situe entre $0.148989 et $0.066738.
Combien vaudra KeyFi en 2036 ?
Notre récente simulation de prédiction de prix de KeyFi suggère que la valeur de KEYFI pourrait augmenter de 1964.7% en 2036, pouvant atteindre $0.308254 si les conditions sont optimales. La fourchette de prix attendue pour 2036 est entre $0.308254 et $0.110473.
Combien vaudra KeyFi en 2037 ?
Selon la simulation expérimentale, la valeur de KeyFi pourrait augmenter de 4830.69% en 2037, avec un maximum de $0.736141 sous des conditions favorables. Il est prévu que le prix chute entre $0.736141 et $0.286895 au cours de l'année.
Prévisions liées
Prévision du cours de IDRX
Prévision du cours de POSTHUMAN
Prévision du cours de Rabbit Finance
Prévision du cours de Marginswap
Prévision du cours de CluCoin
Prévision du cours de GATEWAY TO MARS
Prévision du cours de NIRVANA
Prévision du cours de Evil Coin
Prévision du cours de BabyUSDT
Prévision du cours de ShopNext Loyalty Token
Prévision du cours de Alpaca
Prévision du cours de Creaticles
Prévision du cours de SOHOTRN
Prévision du cours de Pawtocol
Prévision du cours de BitScreener
Prévision du cours de TurtleCoin
Prévision du cours de Snowswap
Prévision du cours de Lithium
Prévision du cours de Meta Doge
Prévision du cours de Butter
Prévision du cours de APE
Prévision du cours de TEN
Prévision du cours de DeFiner
Prévision du cours de TosDis
Prévision du cours de DinoSwap
Comment lire et prédire les mouvements de prix de KeyFi ?
Les traders de KeyFi utilisent des indicateurs et des modèles graphiques pour prédire la direction du marché. Ils identifient également des niveaux clés de support et de résistance pour évaluer quand une tendance baissière pourrait ralentir ou une tendance haussière pourrait s'arrêter.
Indicateurs de prédiction du prix de KeyFi
Les moyennes mobiles sont des outils populaires pour la prédiction du prix de KeyFi. Une moyenne mobile simple (SMA) calcule le prix de clôture moyen de KEYFI sur une période spécifique, comme une SMA de 12 jours. Une moyenne mobile exponentielle (EMA) donne plus de poids aux prix récents, réagissant plus rapidement aux changements de prix.
Les moyennes mobiles couramment utilisées sur le marché des cryptomonnaies incluent les moyennes sur 50 jours, 100 jours et 200 jours, qui aident à identifier les niveaux clés de résistance et de support. Un mouvement de prix de KEYFI au-dessus de ces moyennes est considéré comme haussier, tandis qu'une chute en dessous indique une faiblesse.
Les traders utilisent également le RSI et les niveaux de retracement de Fibonacci pour évaluer la direction future de KEYFI.
Comment lire les graphiques de KeyFi et prédire les mouvements de prix ?
La plupart des traders préfèrent les graphiques en chandeliers aux simples graphiques linéaires parce qu'ils fournissent des informations plus détaillées. Les chandeliers peuvent représenter l'action des prix de KeyFi dans différentes périodes, comme 5 minutes pour les tendances à court terme et hebdomadaire pour les tendances à long terme. Les options populaires incluent les graphiques de 1 heure, 4 heures et 1 jour.
Par exemple, un graphique en chandeliers de 1 heure montre les prix d'ouverture, de clôture, les plus hauts et les plus bas de KEYFI au sein de chaque heure. La couleur du chandelier est cruciale : le vert indique que le prix a clôturé plus haut qu'il n'a ouvert, tandis que le rouge signifie le contraire. Certains graphiques utilisent des chandeliers creux et pleins pour transmettre la même information.
Qu'est-ce qui affecte le prix de KeyFi ?
L'action du prix de KeyFi est déterminée par l'offre et la demande, influencée par des facteurs tels que les réductions de récompenses de bloc, les hard forks et les mises à jour de protocole. Les événements du monde réel, tels que les réglementations, l'adoption par les entreprises et les gouvernements et les piratages d'échanges de cryptomonnaies, impactent également le prix de KEYFI. La capitalisation boursière de KeyFi peut changer rapidement.
Les traders surveillent souvent l'activité des « baleines » de KEYFI, de grands détenteurs de KeyFi, car leurs actions peuvent influencer significativement les mouvements de prix sur le marché relativement petit de KeyFi.
Modèles de prédiction de prix haussiers et baissiers
Les traders identifient souvent des modèles de chandeliers pour obtenir un avantage dans les prédictions de prix des cryptomonnaies. Certaines formations indiquent des tendances haussières, tandis que d'autres suggèrent des mouvements baissiers.
Modèles de chandeliers haussiers couramment suivis :
- Marteau
- Englobante haussière
- Ligne pénétrante
- Étoile du matin
- Trois soldats blancs
Modèles de chandeliers baissiers courants :
- Harami baissier
- Nuage sombre
- Étoile du soir
- Étoile filante
- Pendu


