Prédiction du prix de KeyFi jusqu'à $0.015322 d'ici 2026
| Année | Prix min. | Prix max. |
|---|---|---|
| 2026 | $0.005133 | $0.015322 |
| 2027 | $0.004941 | $0.012981 |
| 2028 | $0.008917 | $0.021842 |
| 2029 | $0.01959 | $0.064442 |
| 2030 | $0.01666 | $0.04817 |
| 2031 | $0.019697 | $0.043974 |
| 2032 | $0.030067 | $0.081569 |
| 2033 | $0.069869 | $0.217271 |
| 2034 | $0.056171 | $0.125832 |
| 2035 | $0.066412 | $0.148261 |
Calculateur de profit d’investissement
Si vous ouvrez une position short de $10,000.00 sur KeyFi aujourd’hui et la fermez le Apr 06, 2026, notre prévision indique que vous pourriez gagner environ $3,954.99, soit un rendement de 39.55% sur les 90 prochains jours.
Prévision du prix à long terme de KeyFi pour 2027, 2028, 2029, 2030, 2031, 2032 et 2037
[
'name' => 'KeyFi'
'name_with_ticker' => 'KeyFi <small>KEYFI</small>'
'name_lang' => 'KeyFi'
'name_lang_with_ticker' => 'KeyFi <small>KEYFI</small>'
'name_with_lang' => 'KeyFi'
'name_with_lang_with_ticker' => 'KeyFi <small>KEYFI</small>'
'image' => '/uploads/coins/keyfi.jpg?1717591050'
'price_for_sd' => 0.01485
'ticker' => 'KEYFI'
'marketcap' => '$48.05K'
'low24h' => '$0.004964'
'high24h' => '$0.01486'
'volume24h' => '$7.04'
'current_supply' => '3.23M'
'max_supply' => '8.99M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.01485'
'change_24h_pct' => '0.8602%'
'ath_price' => '$2.57'
'ath_days' => 1713
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '29 avr. 2021'
'ath_pct' => '-99.42%'
'fdv' => '$133.63K'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.732546'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.014984'
'next_week_prediction_price_date' => '13 janvier 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.01313'
'next_month_prediction_price_date' => '5 février 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.005133'
'current_year_max_price_prediction' => '$0.015322'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.01666'
'grand_prediction_max_price' => '$0.04817'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.015138410061281
107 => 0.015194931389207
108 => 0.015322276827075
109 => 0.014234124003294
110 => 0.014722672674683
111 => 0.015009649248304
112 => 0.013713078648387
113 => 0.014984020216336
114 => 0.014215181683553
115 => 0.01395422633796
116 => 0.014305568332549
117 => 0.014168650015566
118 => 0.014050935686738
119 => 0.013985249068663
120 => 0.014243235853288
121 => 0.014231200461425
122 => 0.0138090840087
123 => 0.013258450303789
124 => 0.013443261049092
125 => 0.013376117572713
126 => 0.013132780952636
127 => 0.013296760453993
128 => 0.012574677718145
129 => 0.011332371901713
130 => 0.012153077176904
131 => 0.012121480916565
201 => 0.012105548649325
202 => 0.012722285981004
203 => 0.012663000917114
204 => 0.012555397945633
205 => 0.013130804739682
206 => 0.01292077351954
207 => 0.013568040250436
208 => 0.013994371981992
209 => 0.013886240464483
210 => 0.014287207518651
211 => 0.013447518715399
212 => 0.013726429653372
213 => 0.013783912811134
214 => 0.013123704309161
215 => 0.012672700686757
216 => 0.01264262388696
217 => 0.011860645757839
218 => 0.012278372162509
219 => 0.012645954111925
220 => 0.012469910883666
221 => 0.012414180856741
222 => 0.012698893477932
223 => 0.012721018086998
224 => 0.012216574655649
225 => 0.012321464418672
226 => 0.012758872166952
227 => 0.012310442865689
228 => 0.011439217983845
301 => 0.011223142167521
302 => 0.011194313670556
303 => 0.010608298919498
304 => 0.011237581386775
305 => 0.010962882726087
306 => 0.011830652503805
307 => 0.011334987060715
308 => 0.011313619914137
309 => 0.011281320338206
310 => 0.010776913234006
311 => 0.010887346333082
312 => 0.011254442773847
313 => 0.011385426919549
314 => 0.011371764200031
315 => 0.011252643801018
316 => 0.011307176509691
317 => 0.011131507654601
318 => 0.011069475325637
319 => 0.010873684232092
320 => 0.010585925413251
321 => 0.010625940041938
322 => 0.010055814525623
323 => 0.009745179885483
324 => 0.0096592003111911
325 => 0.0095442248311141
326 => 0.0096721870976038
327 => 0.010054199431668
328 => 0.0095934115083489
329 => 0.0088034229343336
330 => 0.008850902593707
331 => 0.0089575752914815
401 => 0.0087587914248892
402 => 0.0085706591778249
403 => 0.0087342249029956
404 => 0.00839949632995
405 => 0.0089980256403494
406 => 0.0089818370998621
407 => 0.0092049318139748
408 => 0.0093444375170738
409 => 0.0090229220369382
410 => 0.0089420617631544
411 => 0.0089881234499962
412 => 0.0082268263701768
413 => 0.0091427176007691
414 => 0.0091506382661645
415 => 0.0090828167202738
416 => 0.0095705005255949
417 => 0.010599665467216
418 => 0.010212452218114
419 => 0.01006251154448
420 => 0.0097774742142944
421 => 0.010157269532924
422 => 0.010128107178183
423 => 0.0099962239505506
424 => 0.0099164605629776
425 => 0.01006342705026
426 => 0.0098982497887972
427 => 0.009868579413871
428 => 0.009688809223504
429 => 0.0096246394445655
430 => 0.0095771306949119
501 => 0.0095248282296566
502 => 0.0096401944350474
503 => 0.0093787594359436
504 => 0.0090634944558134
505 => 0.0090372835839299
506 => 0.0091096541056836
507 => 0.0090776355371593
508 => 0.0090371302913423
509 => 0.0089597947461302
510 => 0.0089368509418783
511 => 0.0090114071749457
512 => 0.008927237534711
513 => 0.0090514344238348
514 => 0.0090176597421205
515 => 0.008828997115595
516 => 0.0085938536310937
517 => 0.0085917603608515
518 => 0.0085410990828283
519 => 0.0084765743282916
520 => 0.008458625017706
521 => 0.0087204498538436
522 => 0.0092624194288907
523 => 0.0091560178330762
524 => 0.0092329038905263
525 => 0.009611107196253
526 => 0.0097313266541734
527 => 0.0096459977304954
528 => 0.0095291942369063
529 => 0.0095343329978364
530 => 0.0099334858942526
531 => 0.0099583805707912
601 => 0.010021281387077
602 => 0.010102126711773
603 => 0.0096597660388762
604 => 0.0095134978499238
605 => 0.009444187867348
606 => 0.0092307399473535
607 => 0.009460925229426
608 => 0.0093268061230789
609 => 0.0093449033726862
610 => 0.0093331175151382
611 => 0.0093395533903156
612 => 0.0089978583392091
613 => 0.0091223540568691
614 => 0.0089153557799178
615 => 0.0086382083237269
616 => 0.0086372792282733
617 => 0.0087051106755415
618 => 0.0086647618764616
619 => 0.0085561842956001
620 => 0.0085716072284897
621 => 0.0084364861076037
622 => 0.0085880133790121
623 => 0.0085923586389655
624 => 0.008534012385727
625 => 0.0087674610540657
626 => 0.00886310516396
627 => 0.0088247004101806
628 => 0.0088604105840556
629 => 0.0091604392997567
630 => 0.0092093570715866
701 => 0.0092310831145068
702 => 0.0092019730951428
703 => 0.0088658945582082
704 => 0.0088808010704375
705 => 0.0087714269743248
706 => 0.008679017388668
707 => 0.0086827132874698
708 => 0.0087302238269027
709 => 0.0089377051390624
710 => 0.0093743373288112
711 => 0.0093909072012381
712 => 0.0094109903699969
713 => 0.009329302029663
714 => 0.0093046640445662
715 => 0.0093371679065125
716 => 0.0095011439999522
717 => 0.0099229350313543
718 => 0.009773845910381
719 => 0.0096526341343193
720 => 0.0097589695403856
721 => 0.0097426000381062
722 => 0.0096044249651828
723 => 0.0096005468510922
724 => 0.0093353447089093
725 => 0.0092373055153048
726 => 0.0091553766270225
727 => 0.009065912419826
728 => 0.0090128750389325
729 => 0.0090943645610434
730 => 0.0091130021789059
731 => 0.0089348239146173
801 => 0.0089105388755861
802 => 0.0090560430924491
803 => 0.0089920121115516
804 => 0.0090578695632966
805 => 0.0090731490570162
806 => 0.0090706887066107
807 => 0.0090038330086425
808 => 0.0090464448368618
809 => 0.0089456551599257
810 => 0.0088360615243776
811 => 0.0087661476128227
812 => 0.0087051384522564
813 => 0.0087389898804118
814 => 0.0086183157200643
815 => 0.0085797096274782
816 => 0.0090320089082576
817 => 0.0093661272500061
818 => 0.0093612690369916
819 => 0.0093316959146974
820 => 0.0092877562536569
821 => 0.0094979295400638
822 => 0.0094247093696272
823 => 0.0094779831613698
824 => 0.0094915435772623
825 => 0.0095325868720329
826 => 0.009547256322123
827 => 0.0095029150553626
828 => 0.0093541003482848
829 => 0.0089832682471246
830 => 0.0088106449029925
831 => 0.0087536763241596
901 => 0.0087557470238015
902 => 0.0086986278836693
903 => 0.0087154520303385
904 => 0.0086927771320465
905 => 0.0086498363603286
906 => 0.0087363384087621
907 => 0.0087463069640218
908 => 0.0087261163522949
909 => 0.0087308719722674
910 => 0.0085637023306917
911 => 0.0085764118754673
912 => 0.0085056435151058
913 => 0.0084923753006634
914 => 0.0083134790481755
915 => 0.0079965384054668
916 => 0.0081721542877
917 => 0.0079600349972922
918 => 0.007879702207883
919 => 0.0082599851386341
920 => 0.0082218152797933
921 => 0.0081564850734967
922 => 0.008059848082376
923 => 0.0080240044823451
924 => 0.0078062301152623
925 => 0.007793362843874
926 => 0.0079012977006027
927 => 0.0078514894780341
928 => 0.0077815398696986
929 => 0.0075281894789858
930 => 0.0072433397583929
1001 => 0.007251937580956
1002 => 0.0073425429772592
1003 => 0.007605990386813
1004 => 0.0075030569262139
1005 => 0.0074283775195238
1006 => 0.0074143923115055
1007 => 0.007589446469871
1008 => 0.0078371847789381
1009 => 0.0079534180507202
1010 => 0.0078382344084411
1011 => 0.0077059176421186
1012 => 0.0077139711505878
1013 => 0.007767547534398
1014 => 0.0077731776548072
1015 => 0.0076870530423146
1016 => 0.0077112966162535
1017 => 0.0076744684105615
1018 => 0.0074484537802093
1019 => 0.0074443658922464
1020 => 0.0073888982569797
1021 => 0.0073872187190281
1022 => 0.0072928544343894
1023 => 0.0072796522186589
1024 => 0.0070922862040062
1025 => 0.0072156110822472
1026 => 0.0071328912287699
1027 => 0.0070082128979387
1028 => 0.0069867183067093
1029 => 0.0069860721533415
1030 => 0.0071140889215404
1031 => 0.0072141151317758
1101 => 0.0071343301760365
1102 => 0.0071161646881811
1103 => 0.0073101245736855
1104 => 0.0072854414102715
1105 => 0.0072640659499442
1106 => 0.0078150025305787
1107 => 0.007378893236889
1108 => 0.0071887246925921
1109 => 0.0069533550069975
1110 => 0.0070299925634641
1111 => 0.0070461412226516
1112 => 0.0064801195573713
1113 => 0.0062504846382606
1114 => 0.0061716825876312
1115 => 0.0061263308933965
1116 => 0.00614699822995
1117 => 0.0059402998692608
1118 => 0.0060792045861193
1119 => 0.00590022127754
1120 => 0.0058702141433946
1121 => 0.0061902584709117
1122 => 0.0062347907694138
1123 => 0.0060448021489029
1124 => 0.0061668055996347
1125 => 0.0061225654524245
1126 => 0.0059032894326523
1127 => 0.0058949147015823
1128 => 0.0057848897027854
1129 => 0.0056127218847061
1130 => 0.0055340365719646
1201 => 0.0054930565779116
1202 => 0.005509965722142
1203 => 0.0055014159413908
1204 => 0.0054456228386943
1205 => 0.0055046139367283
1206 => 0.0053539160580561
1207 => 0.0052939069485135
1208 => 0.0052668022259339
1209 => 0.0051330491847661
1210 => 0.0053459097535115
1211 => 0.0053878459671011
1212 => 0.0054298648079862
1213 => 0.0057956101304104
1214 => 0.0057773385276876
1215 => 0.00594250491767
1216 => 0.0059360868554767
1217 => 0.0058889787255357
1218 => 0.0056902372742255
1219 => 0.005769452074492
1220 => 0.0055256412319849
1221 => 0.005708320892717
1222 => 0.0056249535244439
1223 => 0.0056801343016439
1224 => 0.0055809142887883
1225 => 0.0056358267405965
1226 => 0.0053977905990742
1227 => 0.0051755157993795
1228 => 0.0052649656673825
1229 => 0.005362207903735
1230 => 0.0055730538490083
1231 => 0.0054474757434448
]
'min_raw' => 0.0051330491847661
'max_raw' => 0.015322276827075
'avg_raw' => 0.01022766300592
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.005133'
'max' => '$0.015322'
'avg' => '$0.010227'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0097238308152339
'max_diff' => 0.00046539682707486
'year' => 2026
]
1 => [
'items' => [
101 => 0.0054926383788393
102 => 0.0053413511104016
103 => 0.0050292022625426
104 => 0.0050309689911222
105 => 0.0049829516914114
106 => 0.0049414577338207
107 => 0.0054618998994987
108 => 0.0053971746892235
109 => 0.0052940435376761
110 => 0.0054320886822914
111 => 0.0054685900095987
112 => 0.0054696291510723
113 => 0.0055703433251227
114 => 0.0056240944978674
115 => 0.0056335683750346
116 => 0.0057920443039766
117 => 0.0058451633450099
118 => 0.0060639531573381
119 => 0.0056195340863986
120 => 0.0056103815680906
121 => 0.0054340312605714
122 => 0.0053221871075546
123 => 0.0054416893254153
124 => 0.0055475519767603
125 => 0.0054373207082397
126 => 0.0054517145847994
127 => 0.0053037381130359
128 => 0.0053566327387512
129 => 0.0054021927160928
130 => 0.0053770371744964
131 => 0.0053393781111847
201 => 0.0055388724465918
202 => 0.0055276161943635
203 => 0.0057133899058496
204 => 0.0058582137987585
205 => 0.0061177641052187
206 => 0.005846909829764
207 => 0.0058370388234182
208 => 0.0059335294938076
209 => 0.005845148572791
210 => 0.0059010022640678
211 => 0.0061087652120593
212 => 0.0061131549157618
213 => 0.0060396217229313
214 => 0.0060351472214648
215 => 0.0060492700755129
216 => 0.0061319880727919
217 => 0.0061030838628753
218 => 0.0061365325463559
219 => 0.0061783606372327
220 => 0.0063513793558423
221 => 0.006393093583147
222 => 0.0062917496371438
223 => 0.0063008998607678
224 => 0.0062629944430091
225 => 0.0062263782844077
226 => 0.0063086860615832
227 => 0.0064591051421348
228 => 0.0064581693928415
301 => 0.0064930636958004
302 => 0.0065148025574637
303 => 0.0064214834493852
304 => 0.0063607361414648
305 => 0.0063840305247732
306 => 0.0064212787509688
307 => 0.0063719514270369
308 => 0.0060674803330903
309 => 0.0061598374133049
310 => 0.0061444646791267
311 => 0.0061225720362686
312 => 0.0062154377946006
313 => 0.006206480665662
314 => 0.0059381798788151
315 => 0.0059553556246892
316 => 0.0059392243928095
317 => 0.0059913477031524
318 => 0.0058423337429784
319 => 0.0058881694335036
320 => 0.005916917148918
321 => 0.0059338497741475
322 => 0.0059950220272863
323 => 0.0059878441694279
324 => 0.0059945758415636
325 => 0.0060852781440923
326 => 0.0065440192650106
327 => 0.006568987532067
328 => 0.0064460346533669
329 => 0.0064951519032693
330 => 0.0064008575242184
331 => 0.0064641579725927
401 => 0.0065074665317133
402 => 0.0063117634808042
403 => 0.0063001752162317
404 => 0.0062054916507361
405 => 0.0062563692356821
406 => 0.0061754193398051
407 => 0.0061952816127462
408 => 0.0061397449660412
409 => 0.0062396998728742
410 => 0.0063514649901357
411 => 0.0063797012724942
412 => 0.0063054237700929
413 => 0.0062516419632284
414 => 0.0061572188272029
415 => 0.0063142466067701
416 => 0.0063601663148505
417 => 0.0063140054100922
418 => 0.006303308919824
419 => 0.006283039090094
420 => 0.0063076092600229
421 => 0.0063599162262585
422 => 0.0063352492269398
423 => 0.0063515422145664
424 => 0.0062894501469897
425 => 0.006421514341893
426 => 0.0066312640663787
427 => 0.0066319384460405
428 => 0.0066072713137575
429 => 0.0065971780546881
430 => 0.0066224880293372
501 => 0.0066362176523148
502 => 0.0067180654692745
503 => 0.0068058914378332
504 => 0.0072157369116241
505 => 0.0071006539426068
506 => 0.0074642932287705
507 => 0.0077518846914744
508 => 0.0078381207962888
509 => 0.0077587876375818
510 => 0.0074873931871383
511 => 0.007474077280644
512 => 0.007879655169388
513 => 0.0077650608391737
514 => 0.0077514302082308
515 => 0.0076064233243133
516 => 0.0076921403521605
517 => 0.0076733927807774
518 => 0.0076437988221865
519 => 0.0078073409402191
520 => 0.0081134771856706
521 => 0.0080657629808895
522 => 0.0080301465404186
523 => 0.0078740856660653
524 => 0.0079680691698842
525 => 0.0079346034443097
526 => 0.0080783934392519
527 => 0.0079932154315865
528 => 0.0077641926744157
529 => 0.007800665303364
530 => 0.0077951525388712
531 => 0.0079086048414943
601 => 0.0078745492763061
602 => 0.0077885026431959
603 => 0.0081124308452649
604 => 0.0080913967496059
605 => 0.0081212182881867
606 => 0.0081343466517317
607 => 0.0083315160400759
608 => 0.0084122900297638
609 => 0.0084306271395707
610 => 0.0085073561824897
611 => 0.0084287180510843
612 => 0.0087433266447432
613 => 0.008952523001606
614 => 0.0091955153352481
615 => 0.0095505924448814
616 => 0.0096841047227504
617 => 0.0096599869247754
618 => 0.0099292023368603
619 => 0.010412976448054
620 => 0.0097577715042789
621 => 0.010447703901036
622 => 0.010229279269876
623 => 0.0097113983986845
624 => 0.0096780529759942
625 => 0.010028767914685
626 => 0.01080661989364
627 => 0.010611776795236
628 => 0.010806938587149
629 => 0.010579271990254
630 => 0.010567966424793
701 => 0.010795881328699
702 => 0.011328416924669
703 => 0.011075429224822
704 => 0.010712709321962
705 => 0.010980536053687
706 => 0.010748519752473
707 => 0.010225722088564
708 => 0.010611627802391
709 => 0.010353583641517
710 => 0.010428894646042
711 => 0.010971265091027
712 => 0.010906005644152
713 => 0.01099045741127
714 => 0.010841402252795
715 => 0.010702161230937
716 => 0.010442257523466
717 => 0.010365312848782
718 => 0.010386577588685
719 => 0.010365302311033
720 => 0.010219888575341
721 => 0.010188486492963
722 => 0.010136148313244
723 => 0.010152370103643
724 => 0.010053959013696
725 => 0.010239681073195
726 => 0.010274152724015
727 => 0.010409305750984
728 => 0.010423337786597
729 => 0.010799737042923
730 => 0.010592422657671
731 => 0.010731507045961
801 => 0.010719066029159
802 => 0.0097226224475153
803 => 0.0098599235813697
804 => 0.010073521058178
805 => 0.0099772956844003
806 => 0.0098412555191487
807 => 0.0097313957916958
808 => 0.0095649470708708
809 => 0.0097992204490674
810 => 0.0101072650292
811 => 0.0104311503055
812 => 0.010820277243171
813 => 0.01073342864062
814 => 0.010423875848071
815 => 0.010437762160217
816 => 0.010523601877836
817 => 0.010412431644158
818 => 0.010379645371946
819 => 0.010519097547502
820 => 0.010520057877993
821 => 0.010392143088775
822 => 0.010249989208718
823 => 0.01024939357877
824 => 0.010224098668858
825 => 0.010583771898534
826 => 0.010781555807791
827 => 0.010804231414243
828 => 0.010780029558807
829 => 0.010789343892427
830 => 0.010674257793502
831 => 0.010937310487923
901 => 0.011178713653539
902 => 0.011114012448328
903 => 0.011017016143897
904 => 0.010939753915443
905 => 0.011095811922733
906 => 0.011088862905326
907 => 0.011176605207483
908 => 0.011172624709833
909 => 0.011143120273773
910 => 0.011114013502024
911 => 0.011229418561927
912 => 0.011196183758024
913 => 0.01116289733129
914 => 0.011096136306578
915 => 0.01110521023862
916 => 0.011008230681969
917 => 0.01096336350158
918 => 0.010288668759943
919 => 0.010108368278692
920 => 0.010165094480448
921 => 0.010183770218962
922 => 0.010105303218459
923 => 0.010217804740661
924 => 0.010200271497594
925 => 0.010268483089762
926 => 0.010225867448379
927 => 0.010227616409166
928 => 0.010352939923862
929 => 0.010389321873342
930 => 0.010370817720198
1001 => 0.010383777394775
1002 => 0.010682427625462
1003 => 0.010639969112955
1004 => 0.010617413874416
1005 => 0.010623661829636
1006 => 0.01069997336671
1007 => 0.010721336430635
1008 => 0.010630819627628
1009 => 0.010673507875198
1010 => 0.010855269015404
1011 => 0.010918875127686
1012 => 0.011121875305425
1013 => 0.011035637221881
1014 => 0.011193930956524
1015 => 0.011680471930503
1016 => 0.012069154526592
1017 => 0.011711705948241
1018 => 0.012425472037528
1019 => 0.012981241321703
1020 => 0.012959909970894
1021 => 0.012862998741023
1022 => 0.012230270186881
1023 => 0.011648023937908
1024 => 0.012135097648656
1025 => 0.012136339299712
1026 => 0.012094499235995
1027 => 0.011834634193647
1028 => 0.012085456495811
1029 => 0.012105365859304
1030 => 0.012094221910075
1031 => 0.011894983991393
1101 => 0.011590784514888
1102 => 0.011650224364446
1103 => 0.011747588050563
1104 => 0.011563258280551
1105 => 0.011504353750098
1106 => 0.011613868479256
1107 => 0.011966747754904
1108 => 0.011900037971933
1109 => 0.011898295909905
1110 => 0.012183708650804
1111 => 0.011979414724245
1112 => 0.011650974091302
1113 => 0.011568038499884
1114 => 0.01127367302246
1115 => 0.011476992306211
1116 => 0.01148430940527
1117 => 0.011372953511433
1118 => 0.011660010008369
1119 => 0.011657364732215
1120 => 0.011929882153335
1121 => 0.012450833109648
1122 => 0.012296762277427
1123 => 0.012117594662412
1124 => 0.012137075149943
1125 => 0.01235072801622
1126 => 0.012221548616048
1127 => 0.012268002429021
1128 => 0.01235065770281
1129 => 0.012400525681703
1130 => 0.012129899915205
1201 => 0.012066804103508
1202 => 0.011937732216396
1203 => 0.011904059770289
1204 => 0.012009186129169
1205 => 0.011981489047773
1206 => 0.011483694431428
1207 => 0.011431672124316
1208 => 0.011433267574205
1209 => 0.011302455009448
1210 => 0.011102934449581
1211 => 0.011627262568158
1212 => 0.011585151682269
1213 => 0.011538664523371
1214 => 0.011544358935084
1215 => 0.01177195200023
1216 => 0.01163993652872
1217 => 0.011990921296639
1218 => 0.011918769379923
1219 => 0.011844767038797
1220 => 0.011834537661087
1221 => 0.011806053073336
1222 => 0.011708368823292
1223 => 0.01159040922145
1224 => 0.011512522074828
1225 => 0.010619693064414
1226 => 0.0107853969354
1227 => 0.010976024134585
1228 => 0.011041827879853
1229 => 0.010929266020091
1230 => 0.011712813451588
1231 => 0.011855975117773
]
'min_raw' => 0.0049414577338207
'max_raw' => 0.012981241321703
'avg_raw' => 0.008961349527762
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.004941'
'max' => '$0.012981'
'avg' => '$0.008961'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00019159145094537
'max_diff' => -0.0023410355053716
'year' => 2027
]
2 => [
'items' => [
101 => 0.011422329092693
102 => 0.011341211627051
103 => 0.011718131499131
104 => 0.011490802739687
105 => 0.011593168866145
106 => 0.01137190929202
107 => 0.011821491664652
108 => 0.011818066600229
109 => 0.011643168902997
110 => 0.01179099123905
111 => 0.011765303470431
112 => 0.01156784440101
113 => 0.011827751469354
114 => 0.011827880380017
115 => 0.011659545149035
116 => 0.011462966452568
117 => 0.011427822824621
118 => 0.011401346821846
119 => 0.01158665739247
120 => 0.011752806270641
121 => 0.012061968141118
122 => 0.01213969878086
123 => 0.012443086642597
124 => 0.01226243394262
125 => 0.012342514944676
126 => 0.012429454200557
127 => 0.012471136076912
128 => 0.012403217696164
129 => 0.012874503924868
130 => 0.012914294922408
131 => 0.012927636499692
201 => 0.012768721435035
202 => 0.012909875206984
203 => 0.012843834031611
204 => 0.013015654823166
205 => 0.013042598517199
206 => 0.013019778166902
207 => 0.013028330520666
208 => 0.012626170865055
209 => 0.012605316765351
210 => 0.012320969636139
211 => 0.012436843193081
212 => 0.012220223132343
213 => 0.012288915585036
214 => 0.012319194563658
215 => 0.012303378543543
216 => 0.012443394510135
217 => 0.01232435233516
218 => 0.012010180463055
219 => 0.011695922995033
220 => 0.011691977748511
221 => 0.011609239304286
222 => 0.011549434563413
223 => 0.011560955078192
224 => 0.011601554874919
225 => 0.011547074829421
226 => 0.011558700909336
227 => 0.011751771300097
228 => 0.011790490190049
229 => 0.011658908273545
301 => 0.011130587891602
302 => 0.011000936744682
303 => 0.011094127417994
304 => 0.011049588278399
305 => 0.0089178801256743
306 => 0.009418693336083
307 => 0.0091211271324678
308 => 0.0092582593294564
309 => 0.0089545212899602
310 => 0.0090994810026824
311 => 0.0090727122368237
312 => 0.0098780050590206
313 => 0.0098654315192461
314 => 0.0098714498073592
315 => 0.009584181235152
316 => 0.01004180787087
317 => 0.010267251207346
318 => 0.010225527645744
319 => 0.010236028567301
320 => 0.010055587943746
321 => 0.0098731968670189
322 => 0.0096708970931429
323 => 0.010046745067997
324 => 0.010004957189132
325 => 0.010100803548444
326 => 0.010344567826304
327 => 0.01038046304219
328 => 0.010428706576353
329 => 0.010411414703564
330 => 0.010823377267018
331 => 0.010773485882368
401 => 0.010893709764645
402 => 0.010646400117392
403 => 0.010366545776679
404 => 0.010419736937721
405 => 0.010414614201176
406 => 0.010349395885359
407 => 0.010290519705948
408 => 0.010192507455489
409 => 0.010502632719025
410 => 0.010490042199681
411 => 0.010693868072988
412 => 0.010657839870022
413 => 0.010417234713019
414 => 0.010425827973272
415 => 0.010483621778251
416 => 0.010683646797161
417 => 0.010743027841516
418 => 0.010715520175845
419 => 0.010780628780132
420 => 0.010832087966269
421 => 0.010787091261632
422 => 0.011424149709648
423 => 0.011159598626471
424 => 0.011288538983677
425 => 0.01131929049911
426 => 0.011240521138963
427 => 0.01125760339266
428 => 0.011283478352374
429 => 0.011440586040925
430 => 0.011852882075158
501 => 0.012035485182126
502 => 0.012584855638916
503 => 0.01202032253605
504 => 0.011986825477996
505 => 0.012085783686662
506 => 0.012408322301567
507 => 0.012669709554436
508 => 0.012756426786005
509 => 0.012767887899703
510 => 0.012930575190979
511 => 0.0130238245124
512 => 0.012910820674717
513 => 0.012815061754276
514 => 0.012472065187292
515 => 0.012511767973869
516 => 0.012785280802026
517 => 0.013171633781623
518 => 0.013503164831294
519 => 0.013387074212723
520 => 0.014272763685216
521 => 0.014360576178697
522 => 0.014348443331416
523 => 0.014548493259816
524 => 0.014151434891401
525 => 0.01398168474626
526 => 0.012835765919785
527 => 0.013157722368603
528 => 0.0136257049748
529 => 0.013563765722025
530 => 0.013223904244194
531 => 0.013502907015887
601 => 0.013410659974342
602 => 0.013337900905342
603 => 0.01367122430547
604 => 0.013304721534859
605 => 0.013622048829303
606 => 0.013215073291848
607 => 0.01338760450489
608 => 0.013289667443972
609 => 0.013353044725101
610 => 0.012982542434631
611 => 0.013182456477134
612 => 0.012974225353207
613 => 0.012974126624542
614 => 0.01296952991094
615 => 0.013214512904802
616 => 0.013222501791436
617 => 0.013041458988824
618 => 0.013015367892547
619 => 0.013111840350379
620 => 0.012998896368435
621 => 0.013051742146725
622 => 0.013000497013224
623 => 0.012988960654285
624 => 0.012897036983512
625 => 0.012857433738649
626 => 0.012872963191409
627 => 0.012819953163155
628 => 0.012788012703675
629 => 0.01296317614962
630 => 0.012869593386525
701 => 0.01294883324901
702 => 0.01285852942484
703 => 0.012545497026766
704 => 0.012365468784377
705 => 0.011774179602534
706 => 0.011941868481012
707 => 0.01205304638093
708 => 0.012016302085671
709 => 0.012095243050043
710 => 0.012100089384124
711 => 0.012074424871898
712 => 0.012044708654569
713 => 0.012030244443383
714 => 0.012138048823258
715 => 0.012200632894304
716 => 0.012064204570556
717 => 0.012032241323137
718 => 0.01217017789086
719 => 0.012254319117488
720 => 0.012875570660037
721 => 0.012829546339149
722 => 0.012945058352762
723 => 0.012932053472705
724 => 0.013053128465478
725 => 0.013251034908551
726 => 0.012848635774271
727 => 0.012918478350067
728 => 0.012901354563383
729 => 0.013088307576306
730 => 0.013088891223206
731 => 0.012976803552963
801 => 0.013037568097416
802 => 0.01300365099569
803 => 0.013064943782681
804 => 0.012828931656284
805 => 0.0131163689503
806 => 0.013279327373957
807 => 0.013281590051828
808 => 0.013358831051323
809 => 0.013437312380307
810 => 0.01358795045701
811 => 0.013433111166107
812 => 0.013154570355075
813 => 0.01317468010195
814 => 0.013011371726356
815 => 0.013014116969654
816 => 0.012999462645781
817 => 0.013043441374848
818 => 0.012838582514176
819 => 0.01288666247931
820 => 0.012819350246566
821 => 0.012918332026419
822 => 0.012811843993572
823 => 0.012901346305774
824 => 0.012939972536672
825 => 0.013082504160248
826 => 0.012790791956881
827 => 0.012195971027036
828 => 0.012321009597996
829 => 0.012136067729978
830 => 0.012153184803986
831 => 0.012187764017645
901 => 0.012075681472562
902 => 0.012097063290037
903 => 0.012096299381055
904 => 0.012089716426147
905 => 0.012060559427338
906 => 0.012018276010527
907 => 0.01218672012895
908 => 0.012215342067019
909 => 0.012278965089839
910 => 0.012468264049842
911 => 0.012449348619761
912 => 0.012480200471017
913 => 0.01241285105295
914 => 0.012156308950328
915 => 0.012170240420761
916 => 0.011996514761216
917 => 0.012274522534136
918 => 0.012208686623985
919 => 0.012166241784423
920 => 0.0121546603167
921 => 0.01234442851221
922 => 0.012401210130559
923 => 0.012365827636476
924 => 0.012293257108842
925 => 0.012432613975451
926 => 0.012469899993961
927 => 0.01247824695845
928 => 0.012725160607053
929 => 0.012492046688539
930 => 0.012548159525678
1001 => 0.012985935862925
1002 => 0.012588933134047
1003 => 0.012799234333751
1004 => 0.012788941184381
1005 => 0.012896524161944
1006 => 0.012780116240108
1007 => 0.012781559255813
1008 => 0.012877085651588
1009 => 0.012742936056999
1010 => 0.012709718730828
1011 => 0.012663829232631
1012 => 0.012764027273111
1013 => 0.012824091466811
1014 => 0.013308164755746
1015 => 0.013620898176821
1016 => 0.013607321594236
1017 => 0.013731386144762
1018 => 0.013675493928449
1019 => 0.013495003218353
1020 => 0.01380307885199
1021 => 0.013705590831075
1022 => 0.013713627625071
1023 => 0.013713328495197
1024 => 0.013778149506555
1025 => 0.01373221787925
1026 => 0.013641681927046
1027 => 0.013701783917255
1028 => 0.01388026534132
1029 => 0.014434277158096
1030 => 0.014744309510444
1031 => 0.014415612821196
1101 => 0.014642343396015
1102 => 0.014506385843488
1103 => 0.014481678311807
1104 => 0.014624081868051
1105 => 0.014766734682869
1106 => 0.014757648315271
1107 => 0.014654089697016
1108 => 0.014595592061266
1109 => 0.015038555757308
1110 => 0.015364923862861
1111 => 0.015342667746062
1112 => 0.015440899007537
1113 => 0.015729309029405
1114 => 0.015755677627333
1115 => 0.015752355790069
1116 => 0.015686998468827
1117 => 0.015970975590131
1118 => 0.016207874300824
1119 => 0.015671870137314
1120 => 0.015875973505969
1121 => 0.015967602083958
1122 => 0.01610214002142
1123 => 0.016329128073095
1124 => 0.016575697302821
1125 => 0.016610564895398
1126 => 0.016585824669897
1127 => 0.016423205634756
1128 => 0.016693004628105
1129 => 0.016851046550843
1130 => 0.016945156899109
1201 => 0.017183805083843
1202 => 0.015968167950862
1203 => 0.015107679567052
1204 => 0.014973301880317
1205 => 0.015246564190434
1206 => 0.015318621282386
1207 => 0.015289575158972
1208 => 0.014321017250813
1209 => 0.014968202623378
1210 => 0.015664519667367
1211 => 0.015691268040867
1212 => 0.016039858912391
1213 => 0.016153374389382
1214 => 0.016434035731808
1215 => 0.016416480288424
1216 => 0.016484816859007
1217 => 0.016469107464854
1218 => 0.016988973501481
1219 => 0.017562462940734
1220 => 0.017542604825038
1221 => 0.017460158932926
1222 => 0.017582605141825
1223 => 0.018174507701998
1224 => 0.018120014799302
1225 => 0.018172950012577
1226 => 0.018870836489186
1227 => 0.019778188181972
1228 => 0.019356632224053
1229 => 0.020271287353279
1230 => 0.020847014273342
1231 => 0.021842674450317
]
'min_raw' => 0.0089178801256743
'max_raw' => 0.021842674450317
'avg_raw' => 0.015380277287996
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.008917'
'max' => '$0.021842'
'avg' => '$0.01538'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0039764223918536
'max_diff' => 0.0088614331286136
'year' => 2028
]
3 => [
'items' => [
101 => 0.02171801289243
102 => 0.022105616092834
103 => 0.02149484268616
104 => 0.020092383486765
105 => 0.019870438950062
106 => 0.020314777533071
107 => 0.021407140581474
108 => 0.020280375133287
109 => 0.020508318315953
110 => 0.020442670664011
111 => 0.020439172579623
112 => 0.020572680232955
113 => 0.020379020418507
114 => 0.019590015495709
115 => 0.019951611802192
116 => 0.019811982102978
117 => 0.01996691166434
118 => 0.020803002609196
119 => 0.020433346872556
120 => 0.0200439445824
121 => 0.020532341469542
122 => 0.021154238538252
123 => 0.021115321337348
124 => 0.021039805701468
125 => 0.021465483387057
126 => 0.02216857821179
127 => 0.022358621917652
128 => 0.022498908296047
129 => 0.022518251417469
130 => 0.022717497589807
131 => 0.021646100704645
201 => 0.023346435076821
202 => 0.023640035852107
203 => 0.023584851074859
204 => 0.023911175979979
205 => 0.023815162914829
206 => 0.023676055047414
207 => 0.024193349433329
208 => 0.023600313163382
209 => 0.022758572839384
210 => 0.022296777449902
211 => 0.022904906870743
212 => 0.023276270287258
213 => 0.023521717882426
214 => 0.02359599017642
215 => 0.021729270194964
216 => 0.020723211657996
217 => 0.021368083645708
218 => 0.022154871977404
219 => 0.021641730055737
220 => 0.02166184424756
221 => 0.020930238718587
222 => 0.022219602832972
223 => 0.022031753326765
224 => 0.023006316897266
225 => 0.022773729479805
226 => 0.023568448239209
227 => 0.023359172155932
228 => 0.024227865477146
301 => 0.024574410761911
302 => 0.025156314230499
303 => 0.025584364790765
304 => 0.025835724267056
305 => 0.025820633586925
306 => 0.026816645058783
307 => 0.026229331891819
308 => 0.025491528135026
309 => 0.025478183592807
310 => 0.02586030261321
311 => 0.026661119250741
312 => 0.026868759353444
313 => 0.026984801844072
314 => 0.026807078730207
315 => 0.026169592380582
316 => 0.025894329006942
317 => 0.026128861376431
318 => 0.025842048442143
319 => 0.02633716803222
320 => 0.027017072981233
321 => 0.026876675297898
322 => 0.027346003703692
323 => 0.027831709228901
324 => 0.02852628994435
325 => 0.028707879063618
326 => 0.029008038972552
327 => 0.029317002116239
328 => 0.029416232751201
329 => 0.029605694822801
330 => 0.029604696264162
331 => 0.030175652969197
401 => 0.030805435895908
402 => 0.031043164371234
403 => 0.031589807891819
404 => 0.03065370001949
405 => 0.031363748593884
406 => 0.032004230181656
407 => 0.031240621628758
408 => 0.032293078120954
409 => 0.032333942621628
410 => 0.03295094806524
411 => 0.032325494844199
412 => 0.031954102718062
413 => 0.033026297870337
414 => 0.033545099330692
415 => 0.033388832108687
416 => 0.032199630833363
417 => 0.031507464683882
418 => 0.029695932361811
419 => 0.031841770649676
420 => 0.032886945884734
421 => 0.032196924082
422 => 0.032544930943128
423 => 0.034443543535839
424 => 0.035166412285082
425 => 0.035016060638474
426 => 0.035041467591752
427 => 0.035431514447847
428 => 0.037161197010502
429 => 0.036124731125231
430 => 0.036917070458885
501 => 0.037337324384463
502 => 0.037727679651545
503 => 0.03676909048864
504 => 0.035521980072171
505 => 0.035126967853142
506 => 0.032128315012561
507 => 0.031972222109719
508 => 0.031884602433256
509 => 0.0313321727672
510 => 0.0308981143729
511 => 0.030552935022198
512 => 0.029647081326677
513 => 0.029952780357302
514 => 0.028509038633001
515 => 0.029432693425143
516 => 0.027128446772796
517 => 0.02904749185593
518 => 0.028003042865453
519 => 0.028704362272193
520 => 0.028701915434851
521 => 0.027410564053523
522 => 0.026665739526589
523 => 0.027140370704155
524 => 0.027649213002777
525 => 0.027731770953777
526 => 0.028391498276082
527 => 0.028575613990947
528 => 0.028017734779368
529 => 0.027080696382604
530 => 0.027298349030602
531 => 0.026661328802624
601 => 0.025544975355723
602 => 0.026346759890948
603 => 0.026620524383252
604 => 0.026741434379072
605 => 0.025643628978104
606 => 0.025298674686606
607 => 0.025115023916258
608 => 0.026938983490988
609 => 0.027038904113848
610 => 0.026527696079946
611 => 0.028838404867919
612 => 0.028315420303357
613 => 0.028899722196302
614 => 0.027278599334123
615 => 0.02734052841059
616 => 0.026573062867987
617 => 0.027002792289779
618 => 0.026699073385282
619 => 0.026968074399167
620 => 0.027129312497756
621 => 0.027896652106815
622 => 0.029056253641671
623 => 0.027782037157742
624 => 0.027226842788578
625 => 0.027571282252676
626 => 0.02848856993527
627 => 0.029878307729491
628 => 0.029055554984232
629 => 0.029420678681331
630 => 0.029500441965924
701 => 0.028893774551532
702 => 0.029900676422401
703 => 0.030440283315056
704 => 0.030993808331007
705 => 0.031474418592938
706 => 0.030772718267361
707 => 0.031523638200519
708 => 0.030918529289606
709 => 0.030375684041506
710 => 0.030376507313671
711 => 0.030035972559835
712 => 0.029376143564137
713 => 0.029254460973737
714 => 0.029887469175814
715 => 0.030395081807779
716 => 0.030436891215448
717 => 0.030717931650583
718 => 0.030884248485149
719 => 0.03251437956067
720 => 0.033170031764396
721 => 0.03397175086825
722 => 0.034284065641615
723 => 0.035224021138398
724 => 0.034464930735293
725 => 0.034300696751678
726 => 0.032020672173581
727 => 0.032394026070515
728 => 0.032991801682799
729 => 0.032030529273253
730 => 0.032640235362702
731 => 0.032760604260099
801 => 0.031997865604612
802 => 0.0324052772765
803 => 0.031323312665109
804 => 0.029079837513531
805 => 0.029903174051577
806 => 0.03050942687566
807 => 0.029644229345259
808 => 0.031195062430735
809 => 0.030289097757893
810 => 0.030001950450575
811 => 0.028881686429323
812 => 0.029410407924438
813 => 0.030125511317142
814 => 0.029683660560143
815 => 0.030600567225141
816 => 0.031899151592854
817 => 0.032824600145322
818 => 0.03289564459384
819 => 0.032300643174841
820 => 0.033254136746036
821 => 0.033261081905749
822 => 0.032185537262306
823 => 0.031526772156854
824 => 0.031377099338842
825 => 0.031751011383321
826 => 0.03220500963329
827 => 0.032920838337046
828 => 0.033353398630738
829 => 0.034481286464433
830 => 0.034786460573153
831 => 0.035121754395627
901 => 0.035569810343238
902 => 0.036107816387532
903 => 0.034930689791318
904 => 0.034977459225424
905 => 0.033881335237457
906 => 0.032709969556233
907 => 0.033598890095488
908 => 0.034761035452421
909 => 0.034494438023484
910 => 0.034464440366637
911 => 0.034514888104797
912 => 0.034313882349637
913 => 0.033404740768668
914 => 0.032948175558232
915 => 0.033537261161901
916 => 0.033850333943068
917 => 0.034335882523841
918 => 0.034276028412574
919 => 0.035526749412535
920 => 0.03601274177328
921 => 0.035888404130616
922 => 0.035911285249219
923 => 0.036791151204327
924 => 0.037769743104643
925 => 0.038686323555863
926 => 0.03961870855889
927 => 0.038494682046135
928 => 0.037923970703275
929 => 0.038512799130598
930 => 0.0382003584787
1001 => 0.039995735140422
1002 => 0.040120043125106
1003 => 0.04191528996066
1004 => 0.043619192981617
1005 => 0.042549002022747
1006 => 0.043558143894502
1007 => 0.044649613105349
1008 => 0.04675523429757
1009 => 0.046046135156677
1010 => 0.045502976327753
1011 => 0.044989693858944
1012 => 0.046057753195238
1013 => 0.047431794468716
1014 => 0.047727749798619
1015 => 0.0482073104967
1016 => 0.04770311106056
1017 => 0.048310363745645
1018 => 0.050454232564344
1019 => 0.049874940285078
1020 => 0.049052252122639
1021 => 0.050744630655652
1022 => 0.051357095867794
1023 => 0.055655697477131
1024 => 0.061082859575295
1025 => 0.058835978829988
1026 => 0.057441267444987
1027 => 0.057769057703458
1028 => 0.059750873580677
1029 => 0.060387369940748
1030 => 0.058657153420623
1031 => 0.059268295145939
1101 => 0.062635746138563
1102 => 0.064442275555343
1103 => 0.061988765958086
1104 => 0.055219630286854
1105 => 0.048978178054838
1106 => 0.050633692243025
1107 => 0.050446008310671
1108 => 0.054063914304179
1109 => 0.049861124355802
1110 => 0.049931888559877
1111 => 0.053624609017902
1112 => 0.052639454508956
1113 => 0.051043630373521
1114 => 0.048989829337071
1115 => 0.04519318816759
1116 => 0.041830397206609
1117 => 0.048425604685599
1118 => 0.048141207346499
1119 => 0.047729357854157
1120 => 0.048645884332594
1121 => 0.053096276751307
1122 => 0.052993680801542
1123 => 0.052341017714045
1124 => 0.052836056913603
1125 => 0.05095684760836
1126 => 0.051441162635121
1127 => 0.048977189376916
1128 => 0.050091008194237
1129 => 0.051040206451648
1130 => 0.051230772054943
1201 => 0.051660126089689
1202 => 0.047991342871908
1203 => 0.049638518826875
1204 => 0.050606080380904
1205 => 0.046234602079613
1206 => 0.050519670310262
1207 => 0.047927477518392
1208 => 0.047047648351402
1209 => 0.048232222416075
1210 => 0.047770592751036
1211 => 0.047373710672839
1212 => 0.047152243653905
1213 => 0.048022064110333
1214 => 0.04798148594638
1215 => 0.04655829085479
1216 => 0.044701790874663
1217 => 0.045324893205528
1218 => 0.045098514287109
1219 => 0.044278087883298
1220 => 0.044830956220805
1221 => 0.042396403862687
1222 => 0.038207883067565
1223 => 0.040974948202684
1224 => 0.04086841920497
1225 => 0.040814702453617
1226 => 0.042894075426596
1227 => 0.042694191694541
1228 => 0.042331400763593
1229 => 0.044271424943347
1230 => 0.04356329002073
1231 => 0.045745594994666
]
'min_raw' => 0.019590015495709
'max_raw' => 0.064442275555343
'avg_raw' => 0.042016145525526
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.01959'
'max' => '$0.064442'
'avg' => '$0.042016'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.010672135370035
'max_diff' => 0.042599601105027
'year' => 2029
]
4 => [
'items' => [
101 => 0.047183002193137
102 => 0.046818429232353
103 => 0.048170317650107
104 => 0.045339248224741
105 => 0.046279615925057
106 => 0.046473424404799
107 => 0.044247485346111
108 => 0.042726895145109
109 => 0.042625489114699
110 => 0.039988995256398
111 => 0.041397388994468
112 => 0.042636717200676
113 => 0.042043175165656
114 => 0.041855277488933
115 => 0.042815205969279
116 => 0.042889800633433
117 => 0.041189034385526
118 => 0.041542677544729
119 => 0.043017428306885
120 => 0.041505517609343
121 => 0.038568122093228
122 => 0.037839607392562
123 => 0.037742410102303
124 => 0.035766620454865
125 => 0.037888290228389
126 => 0.036962124515031
127 => 0.03988787090636
128 => 0.038216700258725
129 => 0.038144659432232
130 => 0.038035759156896
131 => 0.036335115388504
201 => 0.036707448292232
202 => 0.037945139572127
203 => 0.038386761764384
204 => 0.038340696951627
205 => 0.037939074209635
206 => 0.038122935044278
207 => 0.037530655234533
208 => 0.037321508906473
209 => 0.036661385564888
210 => 0.035691186616486
211 => 0.035826098730837
212 => 0.033903880747688
213 => 0.032856554370638
214 => 0.032566668233011
215 => 0.0321790203746
216 => 0.03261045409011
217 => 0.033898435345656
218 => 0.032344856691001
219 => 0.029681355058467
220 => 0.029841436044969
221 => 0.030201090493165
222 => 0.029530876808303
223 => 0.028896575802352
224 => 0.029448049064559
225 => 0.028319488310533
226 => 0.030337471668527
227 => 0.030282890874026
228 => 0.031035070278632
301 => 0.031505423496608
302 => 0.030421411607837
303 => 0.030148785549291
304 => 0.030304085742402
305 => 0.027737319485726
306 => 0.030825310715152
307 => 0.030852015791535
308 => 0.030623350714416
309 => 0.032267610713052
310 => 0.035737512167729
311 => 0.034431995664017
312 => 0.033926460214334
313 => 0.032965436954944
314 => 0.034245943388167
315 => 0.034147620473107
316 => 0.033702966963351
317 => 0.033434039133246
318 => 0.033929546905991
319 => 0.033372640236661
320 => 0.033272604496078
321 => 0.032666496748102
322 => 0.03245014385822
323 => 0.032289964791808
324 => 0.032113623378558
325 => 0.032502588594645
326 => 0.031621142242357
327 => 0.03055820435075
328 => 0.03046983256621
329 => 0.030713834833052
330 => 0.030605881993807
331 => 0.030469315729549
401 => 0.030208573539471
402 => 0.03013121690155
403 => 0.030382588446687
404 => 0.030098804628099
405 => 0.03051754311093
406 => 0.030403669413457
407 => 0.029767580196122
408 => 0.028974777520933
409 => 0.028967719914164
410 => 0.028796911878251
411 => 0.028579362163356
412 => 0.028518844809535
413 => 0.0294016055246
414 => 0.031228893785979
415 => 0.030870153376968
416 => 0.031129380087674
417 => 0.032404518938243
418 => 0.032809847234076
419 => 0.032522154810421
420 => 0.032128343676825
421 => 0.032145669368078
422 => 0.033491441226311
423 => 0.033575375366351
424 => 0.033787449860054
425 => 0.034060025516707
426 => 0.032568575623399
427 => 0.032075422212227
428 => 0.031841738766904
429 => 0.031122084202185
430 => 0.031898169951716
501 => 0.031445978020769
502 => 0.03150699416133
503 => 0.031467257319745
504 => 0.031488956322244
505 => 0.030336907601051
506 => 0.030756653605156
507 => 0.030058744462256
508 => 0.029124322463891
509 => 0.029121189953702
510 => 0.029349888414007
511 => 0.029213849620846
512 => 0.028847772726327
513 => 0.028899772221359
514 => 0.028444201928436
515 => 0.028955086703286
516 => 0.028969737050595
517 => 0.028773018584196
518 => 0.029560107068366
519 => 0.029882577862533
520 => 0.029753093553831
521 => 0.029873492898256
522 => 0.030885060660578
523 => 0.031049990343632
524 => 0.031123241214202
525 => 0.031025094751519
526 => 0.02989198249999
527 => 0.029942240846711
528 => 0.029573478445411
529 => 0.029261913075538
530 => 0.029274374056388
531 => 0.029434559157166
601 => 0.030134096886995
602 => 0.031606232799419
603 => 0.031662099281178
604 => 0.03172981108681
605 => 0.031454393144076
606 => 0.031371324457153
607 => 0.031480913497052
608 => 0.03203377034453
609 => 0.033455868255411
610 => 0.03295320387498
611 => 0.032544529909252
612 => 0.032903047154905
613 => 0.032847856235088
614 => 0.032381989329651
615 => 0.032368913997234
616 => 0.031474766459042
617 => 0.031144220472926
618 => 0.03086799150599
619 => 0.030566356685236
620 => 0.030387537452602
621 => 0.030662285065815
622 => 0.030725123095675
623 => 0.030124382637617
624 => 0.030042503932996
625 => 0.03053308155893
626 => 0.030317196636334
627 => 0.030539239632912
628 => 0.030590755512768
629 => 0.0305824602696
630 => 0.030357051616184
701 => 0.030500720370089
702 => 0.030160900937388
703 => 0.029791398343554
704 => 0.029555678709513
705 => 0.029349982065141
706 => 0.029464114518598
707 => 0.029057253161785
708 => 0.02892709002524
709 => 0.030452048628915
710 => 0.031578551945518
711 => 0.03156217214115
712 => 0.031462464294605
713 => 0.031314318659638
714 => 0.03202293256859
715 => 0.031776065651893
716 => 0.031955681960211
717 => 0.03200140184915
718 => 0.032139782183021
719 => 0.032189241258188
720 => 0.032039741581497
721 => 0.031538002406673
722 => 0.030287716086941
723 => 0.029705704430022
724 => 0.029513630889068
725 => 0.029520612397482
726 => 0.029328031228596
727 => 0.029384755013716
728 => 0.029308305011013
729 => 0.029163527201137
730 => 0.029455174896811
731 => 0.029488784576851
801 => 0.02942071051975
802 => 0.029436744424515
803 => 0.028873120306531
804 => 0.028915971424094
805 => 0.028677370956246
806 => 0.028632636244896
807 => 0.028029475039495
808 => 0.026960887534514
809 => 0.027552988742573
810 => 0.026837813745267
811 => 0.026566966137117
812 => 0.027849116588651
813 => 0.027720424244635
814 => 0.027500158892897
815 => 0.027174340530354
816 => 0.02705349133033
817 => 0.026319249847189
818 => 0.026275866943339
819 => 0.026639776848571
820 => 0.026471844948682
821 => 0.026236004960453
822 => 0.025381816429805
823 => 0.024421425709254
824 => 0.024450413868307
825 => 0.024755896287809
826 => 0.025644127622431
827 => 0.025297080273436
828 => 0.025045293439831
829 => 0.024998141334581
830 => 0.025588348651401
831 => 0.026423615656958
901 => 0.026815504247919
902 => 0.02642715455611
903 => 0.025981039340392
904 => 0.026008192306474
905 => 0.026188828825074
906 => 0.026207811169115
907 => 0.025917436025068
908 => 0.025999174927235
909 => 0.025875006060482
910 => 0.025112981954412
911 => 0.025099199354738
912 => 0.024912186349809
913 => 0.024906523670344
914 => 0.024588367896381
915 => 0.024543855704296
916 => 0.023912138104417
917 => 0.024327936541675
918 => 0.02404904078036
919 => 0.0236286790832
920 => 0.023556208568165
921 => 0.023554030016973
922 => 0.023985647488801
923 => 0.024322892840216
924 => 0.024053892291534
925 => 0.023992646080955
926 => 0.02464659537678
927 => 0.024563374368006
928 => 0.024491305511126
929 => 0.026348826657899
930 => 0.024878453726045
1001 => 0.024237287201805
1002 => 0.023443721873836
1003 => 0.023702110746126
1004 => 0.02375655707804
1005 => 0.021848175515177
1006 => 0.021073945352797
1007 => 0.020808258737317
1008 => 0.02065535233385
1009 => 0.020725033701988
1010 => 0.020028135747706
1011 => 0.020496462698612
1012 => 0.019893007977521
1013 => 0.019791836829718
1014 => 0.020870888624724
1015 => 0.021021032378269
1016 => 0.020380472479635
1017 => 0.020791815631786
1018 => 0.020642656886719
1019 => 0.019903352476694
1020 => 0.019875116486186
1021 => 0.019504159521042
1022 => 0.018923683702015
1023 => 0.018658390676474
1024 => 0.018520223765392
1025 => 0.018577234125724
1026 => 0.018548407942994
1027 => 0.018360297601903
1028 => 0.018559190207552
1029 => 0.018051101788218
1030 => 0.017848776885693
1031 => 0.017757391421125
1101 => 0.017306433704489
1102 => 0.018024107973464
1103 => 0.018165498845474
1104 => 0.01830716830118
1105 => 0.019540304191256
1106 => 0.019478700206994
1107 => 0.020035570222368
1108 => 0.020013931277589
1109 => 0.019855102928508
1110 => 0.019185032249731
1111 => 0.01945211047943
1112 => 0.018630085201588
1113 => 0.019246002432033
1114 => 0.018964923529377
1115 => 0.019150969372305
1116 => 0.018816442171642
1117 => 0.019001583336779
1118 => 0.018199027866483
1119 => 0.017449612860582
1120 => 0.017751199335745
1121 => 0.018079058324843
1122 => 0.018789940150126
1123 => 0.018366544799635
1124 => 0.018518813778022
1125 => 0.018008738189945
1126 => 0.016956306555851
1127 => 0.016962263204607
1128 => 0.016800369526171
1129 => 0.016660469751138
1130 => 0.018415176848833
1201 => 0.018196951283421
1202 => 0.017849237405592
1203 => 0.018314666248666
1204 => 0.018437733022124
1205 => 0.018441236560153
1206 => 0.018780801429603
1207 => 0.018962027261299
1208 => 0.018993969099613
1209 => 0.019528281758477
1210 => 0.019707376313974
1211 => 0.020445041441655
1212 => 0.018946651515634
1213 => 0.01891579316115
1214 => 0.018321215786963
1215 => 0.017944125416358
1216 => 0.018347035487254
1217 => 0.018703958807358
1218 => 0.018332306389439
1219 => 0.018380836349208
1220 => 0.017881923343271
1221 => 0.018060261266855
1222 => 0.018213869911358
1223 => 0.018129056246562
1224 => 0.018002086085335
1225 => 0.018674695165409
1226 => 0.018636743925135
1227 => 0.019263092963717
1228 => 0.01975137682994
1229 => 0.020626468809395
1230 => 0.019713264709257
1231 => 0.019679983922191
]
'min_raw' => 0.016660469751138
'max_raw' => 0.048170317650107
'avg_raw' => 0.032415393700622
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.01666'
'max' => '$0.04817'
'avg' => '$0.032415'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0029295457445709
'max_diff' => -0.016271957905237
'year' => 2030
]
5 => [
'items' => [
101 => 0.020005308954173
102 => 0.019707326508406
103 => 0.019895641128126
104 => 0.020596128412825
105 => 0.020610928605337
106 => 0.020363006311786
107 => 0.020347920217692
108 => 0.020395536406141
109 => 0.020674425909154
110 => 0.020576973347392
111 => 0.020689747919059
112 => 0.020830774247795
113 => 0.021414118937368
114 => 0.02155476136712
115 => 0.021213073177562
116 => 0.021243923795359
117 => 0.021116123032914
118 => 0.02099266909773
119 => 0.021270175515023
120 => 0.021777323947028
121 => 0.021774169002953
122 => 0.021891817581621
123 => 0.021965111671478
124 => 0.02165047978326
125 => 0.021445665993364
126 => 0.02152420463305
127 => 0.021649789628257
128 => 0.021483479111697
129 => 0.020456933560963
130 => 0.020768321905072
131 => 0.0207164916585
201 => 0.020642679084609
202 => 0.020955782472505
203 => 0.020925582886922
204 => 0.020020988051905
205 => 0.020078897278292
206 => 0.020024509703762
207 => 0.020200247083717
208 => 0.019697836113168
209 => 0.019852374343919
210 => 0.01994929927354
211 => 0.0200063888017
212 => 0.020212635324067
213 => 0.020188434675156
214 => 0.020211130977752
215 => 0.02051694012336
216 => 0.022063617840818
217 => 0.022147800096427
218 => 0.021733255881594
219 => 0.021898858118897
220 => 0.021580938036504
221 => 0.021794359917694
222 => 0.021940377748476
223 => 0.021280551248785
224 => 0.021241480605712
225 => 0.020922248354048
226 => 0.021093785683853
227 => 0.020820857458163
228 => 0.020887824498123
301 => 0.020700578816312
302 => 0.021037583763329
303 => 0.021414407659367
304 => 0.021509608256733
305 => 0.021259176471498
306 => 0.021077847354728
307 => 0.020759493159205
308 => 0.021288923281346
309 => 0.02144374478315
310 => 0.021288110069906
311 => 0.021252046106162
312 => 0.021183704960033
313 => 0.021266545003383
314 => 0.021442901592002
315 => 0.021359735081604
316 => 0.021414668026927
317 => 0.021205320285962
318 => 0.021650583939506
319 => 0.022357769779868
320 => 0.022360043497982
321 => 0.022276876539285
322 => 0.022242846411644
323 => 0.022328180758259
324 => 0.0223744711407
325 => 0.022650426770012
326 => 0.022946538154821
327 => 0.024328360784204
328 => 0.023940350519326
329 => 0.025166385761111
330 => 0.026136020456612
331 => 0.026426771504806
401 => 0.026159294221361
402 => 0.025244268883536
403 => 0.025199373375103
404 => 0.026566807543547
405 => 0.026180444758509
406 => 0.026134488134625
407 => 0.02564558730144
408 => 0.025934588245398
409 => 0.025871379499567
410 => 0.025771601401993
411 => 0.026322995071086
412 => 0.027355154796376
413 => 0.027194283023657
414 => 0.027074199707949
415 => 0.026548029574244
416 => 0.026864901519089
417 => 0.026752069488812
418 => 0.027236867495856
419 => 0.026949683896074
420 => 0.026177517680414
421 => 0.026300487695351
422 => 0.026281901024975
423 => 0.026664413384255
424 => 0.02654959266854
425 => 0.026259480437425
426 => 0.027351626986645
427 => 0.027280709064577
428 => 0.027381254463976
429 => 0.027425517658261
430 => 0.02809028801699
501 => 0.028362623162683
502 => 0.028424448008653
503 => 0.028683145333905
504 => 0.028418011383533
505 => 0.029478736222324
506 => 0.03018405634511
507 => 0.031003321963168
508 => 0.032200489228988
509 => 0.032650635195353
510 => 0.03256932035563
511 => 0.033476998913494
512 => 0.035108077105415
513 => 0.032899007892527
514 => 0.035225163137737
515 => 0.034488729243857
516 => 0.032742657729349
517 => 0.032630231308645
518 => 0.033812691210578
519 => 0.036435273465515
520 => 0.035778346355735
521 => 0.036436347962929
522 => 0.035668754136324
523 => 0.035630636633045
524 => 0.036399067644073
525 => 0.038194548586334
526 => 0.037341582893262
527 => 0.036118647416476
528 => 0.037021643941551
529 => 0.036239384783147
530 => 0.034476735958712
531 => 0.035777844015955
601 => 0.0349078301115
602 => 0.035161746421303
603 => 0.036990386243665
604 => 0.036770359462258
605 => 0.037055094491331
606 => 0.03655254461783
607 => 0.03608308379114
608 => 0.035206800295504
609 => 0.034947375952701
610 => 0.035019071507942
611 => 0.034947340423944
612 => 0.034457067861597
613 => 0.034351193548437
614 => 0.034174731721378
615 => 0.034229424620277
616 => 0.033897624759677
617 => 0.034523799649979
618 => 0.034640023227453
619 => 0.035095701093963
620 => 0.035143011081717
621 => 0.036412067453777
622 => 0.035713092529672
623 => 0.036182025255353
624 => 0.036140079498602
625 => 0.03278050039362
626 => 0.033243420752469
627 => 0.033963579558427
628 => 0.033639148992495
629 => 0.033180480077328
630 => 0.03281008033606
701 => 0.03224888685272
702 => 0.033038755903755
703 => 0.034077349712657
704 => 0.035169351534651
705 => 0.036481320172984
706 => 0.036188504045907
707 => 0.035144825193544
708 => 0.035191643864453
709 => 0.035481058465545
710 => 0.035106240261042
711 => 0.034995699055213
712 => 0.03546587180134
713 => 0.03546910962264
714 => 0.035037835980066
715 => 0.034558554248587
716 => 0.034556546040632
717 => 0.034471262485828
718 => 0.035683925891265
719 => 0.036350768150157
720 => 0.036427220540469
721 => 0.036345622295148
722 => 0.036377026221253
723 => 0.035989005403671
724 => 0.036875905928665
725 => 0.037689813555771
726 => 0.037471668925106
727 => 0.037144639112654
728 => 0.036884144115145
729 => 0.037410304582343
730 => 0.037386875484992
731 => 0.037682704782686
801 => 0.037669284256949
802 => 0.037569807990838
803 => 0.037471672477717
804 => 0.037860768694506
805 => 0.037748715232765
806 => 0.037636487721048
807 => 0.037411398265126
808 => 0.037441991660526
809 => 0.037115018314381
810 => 0.036963745483172
811 => 0.034688965056063
812 => 0.034081069395344
813 => 0.034272325745064
814 => 0.03433529230136
815 => 0.034070735330776
816 => 0.034450042067484
817 => 0.034390927514353
818 => 0.034620907659728
819 => 0.034477226049475
820 => 0.034483122792878
821 => 0.034905659772482
822 => 0.035028324055263
823 => 0.034965936011018
824 => 0.03500963045867
825 => 0.036016550562526
826 => 0.03587339872325
827 => 0.035797352161757
828 => 0.035818417579002
829 => 0.036075707254147
830 => 0.036147734315693
831 => 0.035842550594673
901 => 0.035986477001752
902 => 0.036599297376113
903 => 0.03681374982451
904 => 0.037498179096779
905 => 0.037207421377159
906 => 0.037741119755221
907 => 0.039381526618198
908 => 0.040691997127865
909 => 0.039486834289691
910 => 0.041893346493281
911 => 0.043767161437449
912 => 0.04369524129889
913 => 0.043368498321254
914 => 0.041235209825266
915 => 0.039272125945719
916 => 0.040914328967905
917 => 0.04091851528113
918 => 0.040777448585127
919 => 0.039901295451654
920 => 0.040746960355254
921 => 0.040814086164298
922 => 0.040776513561427
923 => 0.040104769008243
924 => 0.039079139234676
925 => 0.03927954483742
926 => 0.039607813302879
927 => 0.03898633261379
928 => 0.038787731876784
929 => 0.039156968432215
930 => 0.040346725547307
1001 => 0.040121808856493
1002 => 0.040115935372736
1003 => 0.04107822435556
1004 => 0.040389433118818
1005 => 0.039282072593859
1006 => 0.039002449457015
1007 => 0.038009975697938
1008 => 0.038695480858403
1009 => 0.038720150968747
1010 => 0.038344706798053
1011 => 0.039312537819119
1012 => 0.039303619085877
1013 => 0.040222430597743
1014 => 0.041978853118586
1015 => 0.041459392550869
1016 => 0.040855316427764
1017 => 0.04092099625156
1018 => 0.041641341806979
1019 => 0.041205804440283
1020 => 0.041362426714021
1021 => 0.041641104740409
1022 => 0.041809238112916
1023 => 0.040896804446682
1024 => 0.040684072512336
1025 => 0.040248897633426
1026 => 0.040135368630442
1027 => 0.040489809489093
1028 => 0.040396426845419
1029 => 0.0387180775415
1030 => 0.038542680700993
1031 => 0.038548059871682
1101 => 0.038107016176562
1102 => 0.03743431867889
1103 => 0.039202127538094
1104 => 0.03906014774623
1105 => 0.038903413044376
1106 => 0.038922612151038
1107 => 0.039689958060217
1108 => 0.039244858680996
1109 => 0.040428228331009
1110 => 0.040184963106314
1111 => 0.039935459046529
1112 => 0.039900969985388
1113 => 0.039804932209057
1114 => 0.039475582939935
1115 => 0.039077873906648
1116 => 0.038815271953905
1117 => 0.035805036609965
1118 => 0.036363718780067
1119 => 0.037006431691287
1120 => 0.03722829361273
1121 => 0.036848783443724
1122 => 0.039490568314549
1123 => 0.039973247867321
1124 => 0.038511180017566
1125 => 0.038237686818714
1126 => 0.039508498483134
1127 => 0.038742043699081
1128 => 0.039087178241409
1129 => 0.038341186139397
1130 => 0.039856984497565
1201 => 0.039845436653733
1202 => 0.039255756856547
1203 => 0.039754150183176
1204 => 0.039667542077816
1205 => 0.03900179503911
1206 => 0.039878089866164
1207 => 0.039878524497465
1208 => 0.039310970513418
1209 => 0.038648191713593
1210 => 0.038529702518321
1211 => 0.038440436826468
1212 => 0.0390652243533
1213 => 0.039625406896198
1214 => 0.040667767727501
1215 => 0.040929842006373
1216 => 0.041952735364084
1217 => 0.041343652173341
1218 => 0.04161365086285
1219 => 0.041906772633958
1220 => 0.042047305990223
1221 => 0.041818314427624
1222 => 0.043407288851852
1223 => 0.043541446978175
1224 => 0.043586429037468
1225 => 0.043050635801882
1226 => 0.043526545599051
1227 => 0.043303883165432
1228 => 0.043883188960303
1229 => 0.043974031505887
1230 => 0.043897091101595
1231 => 0.043925925959415
]
'min_raw' => 0.019697836113168
'max_raw' => 0.043974031505887
'avg_raw' => 0.031835933809527
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.019697'
'max' => '$0.043974'
'avg' => '$0.031835'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0030373663620294
'max_diff' => -0.0041962861442197
'year' => 2031
]
6 => [
'items' => [
101 => 0.042570016602633
102 => 0.042499705549492
103 => 0.041541009350873
104 => 0.041931685138135
105 => 0.041201335479426
106 => 0.041432936879638
107 => 0.041535024570072
108 => 0.041481699754015
109 => 0.041953773360981
110 => 0.041552414356793
111 => 0.040493161955211
112 => 0.039433620961021
113 => 0.039420319286922
114 => 0.039141360845604
115 => 0.038939724986318
116 => 0.038978567206233
117 => 0.039115452255483
118 => 0.038931768978412
119 => 0.038970967118553
120 => 0.039621917420747
121 => 0.039752460861487
122 => 0.039308823243238
123 => 0.037527554189366
124 => 0.037090426295571
125 => 0.037404625157008
126 => 0.03725445833824
127 => 0.030067255470218
128 => 0.031755782174773
129 => 0.030752516943876
130 => 0.031214867720287
131 => 0.030190793713813
201 => 0.03067953550602
202 => 0.030589282742991
203 => 0.033304383716778
204 => 0.033261991149571
205 => 0.033282282228128
206 => 0.03231373618048
207 => 0.033856656333274
208 => 0.034616754282155
209 => 0.034476080381169
210 => 0.034511484971347
211 => 0.033903116811071
212 => 0.033288172561747
213 => 0.032606104750005
214 => 0.033873302438092
215 => 0.033732411686962
216 => 0.034055564379161
217 => 0.034877432661047
218 => 0.034998455887528
219 => 0.035161112331216
220 => 0.035102811574828
221 => 0.036491772119822
222 => 0.036323559833166
223 => 0.036728903046028
224 => 0.035895081303708
225 => 0.034951532855186
226 => 0.035130870568327
227 => 0.035113598904409
228 => 0.034893710799235
229 => 0.034695205649747
301 => 0.034364750504327
302 => 0.035410359482595
303 => 0.035367909667583
304 => 0.036055122830107
305 => 0.035933651228398
306 => 0.035122434143045
307 => 0.035151406919949
308 => 0.035346262768471
309 => 0.036020661085029
310 => 0.036220868421922
311 => 0.03612812440659
312 => 0.036347642611682
313 => 0.036521140850508
314 => 0.036369431319252
315 => 0.038517318354739
316 => 0.037625365907444
317 => 0.03806009732409
318 => 0.038163778205374
319 => 0.037898201808139
320 => 0.037955795819122
321 => 0.038043035052332
322 => 0.038572734593189
323 => 0.039962819458194
324 => 0.040578478582278
325 => 0.042430719433169
326 => 0.040527356662411
327 => 0.040414418992493
328 => 0.040748063502053
329 => 0.041835524961133
330 => 0.042716810333655
331 => 0.043009183534294
401 => 0.043047825479314
402 => 0.043596337040315
403 => 0.043910733637945
404 => 0.043529733309523
405 => 0.043206875423582
406 => 0.042050438550738
407 => 0.042184299267643
408 => 0.043106466863831
409 => 0.044409082908847
410 => 0.045526862989571
411 => 0.04513545536387
412 => 0.048121619257246
413 => 0.048417685209888
414 => 0.048376778468191
415 => 0.049051260768832
416 => 0.047712550757992
417 => 0.047140226292073
418 => 0.043276680963115
419 => 0.044362179608586
420 => 0.045940015638879
421 => 0.045731183123688
422 => 0.044585316422812
423 => 0.045525993746926
424 => 0.045214976405874
425 => 0.044969664124865
426 => 0.046093487240292
427 => 0.044857797560771
428 => 0.045927688689072
429 => 0.044555542250419
430 => 0.045137243280935
501 => 0.044807041642301
502 => 0.045020722570488
503 => 0.043771548230528
504 => 0.044445572382377
505 => 0.043743506609825
506 => 0.043743173739237
507 => 0.043727675598396
508 => 0.044553652866367
509 => 0.044580587955422
510 => 0.043970189506409
511 => 0.04388222155369
512 => 0.044207485180762
513 => 0.04382668666014
514 => 0.044004859891222
515 => 0.043832083345802
516 => 0.043793187706197
517 => 0.043483260632278
518 => 0.043349735527211
519 => 0.043402094161426
520 => 0.043223367150125
521 => 0.043115677660977
522 => 0.043706253448499
523 => 0.043390732628986
524 => 0.043657895357703
525 => 0.043353429709705
526 => 0.042298019124375
527 => 0.041691041335987
528 => 0.039697468576911
529 => 0.040262843338365
530 => 0.040637687390132
531 => 0.040513801433259
601 => 0.040779956406123
602 => 0.040796296159836
603 => 0.040709766465029
604 => 0.040609576163583
605 => 0.040560809065711
606 => 0.04092427905912
607 => 0.041135285624131
608 => 0.040675308005494
609 => 0.040567541685218
610 => 0.041032604453721
611 => 0.04131629247385
612 => 0.043410885423953
613 => 0.043255711212763
614 => 0.043645168031449
615 => 0.043601321170367
616 => 0.044009533961685
617 => 0.044676789351894
618 => 0.043320072576058
619 => 0.043555551696607
620 => 0.043497817654256
621 => 0.044128142789971
622 => 0.044130110596242
623 => 0.043752199190305
624 => 0.043957071094376
625 => 0.04384271721789
626 => 0.044049370128553
627 => 0.043253638766568
628 => 0.044222753671574
629 => 0.044772179374327
630 => 0.044779808150743
701 => 0.045040231573336
702 => 0.045304836853398
703 => 0.045812723646214
704 => 0.045290672166402
705 => 0.044351552374908
706 => 0.044419353790515
707 => 0.043868748200373
708 => 0.043878003979818
709 => 0.043828595903751
710 => 0.043976873259296
711 => 0.043286177307751
712 => 0.043448282267035
713 => 0.043221334374752
714 => 0.043555058356211
715 => 0.043196026518711
716 => 0.043497789813152
717 => 0.043628020847421
718 => 0.044108576167548
719 => 0.043125048107201
720 => 0.041119567813156
721 => 0.041541144085063
722 => 0.040917599664812
723 => 0.040975311074907
724 => 0.041091897308002
725 => 0.040714003181899
726 => 0.040786093472347
727 => 0.04078351789988
728 => 0.040761323007802
729 => 0.040663018150639
730 => 0.040520456658729
731 => 0.041088377764384
801 => 0.041184878626904
802 => 0.041399388090358
803 => 0.042037622750439
804 => 0.041973848057287
805 => 0.042077867227804
806 => 0.041850793962608
807 => 0.040985844352417
808 => 0.041032815277649
809 => 0.040447087087355
810 => 0.041384409703636
811 => 0.041162439336047
812 => 0.041019333596059
813 => 0.040980285869038
814 => 0.041620102589392
815 => 0.04181154578002
816 => 0.041692251230895
817 => 0.041447574630262
818 => 0.041917426035621
819 => 0.042043138450256
820 => 0.042071280823798
821 => 0.042903767429023
822 => 0.042117807577257
823 => 0.042306995925346
824 => 0.043782989410942
825 => 0.042444466992685
826 => 0.043153512170248
827 => 0.043118808098499
828 => 0.043481531618559
829 => 0.043089054182748
830 => 0.043093919410944
831 => 0.043415993323739
901 => 0.042963698599556
902 => 0.042851704065213
903 => 0.042696984418138
904 => 0.04303480910722
905 => 0.043237319729829
906 => 0.044869406620388
907 => 0.045923809183894
908 => 0.045878034787823
909 => 0.046296327081831
910 => 0.046107882572262
911 => 0.045499345541715
912 => 0.046538044049674
913 => 0.046209356380764
914 => 0.046236452992833
915 => 0.046235444455579
916 => 0.046453993021029
917 => 0.046299131332726
918 => 0.045993883048854
919 => 0.046196521105029
920 => 0.046798283687439
921 => 0.048666173207569
922 => 0.049711468929278
923 => 0.04860324509261
924 => 0.049367683055435
925 => 0.048909292674837
926 => 0.048825989506749
927 => 0.049306113038926
928 => 0.049787076963787
929 => 0.049756441641037
930 => 0.049407286529359
1001 => 0.049210057666255
1002 => 0.050703540694196
1003 => 0.051803913548364
1004 => 0.051728875496703
1005 => 0.052060069053053
1006 => 0.053032463577928
1007 => 0.053121367146837
1008 => 0.05311016734058
1009 => 0.052889810568909
1010 => 0.053847259260034
1011 => 0.054645979802877
1012 => 0.052838804342987
1013 => 0.053526953100449
1014 => 0.053835885248442
1015 => 0.054289489297734
1016 => 0.055054795361755
1017 => 0.05588612073469
1018 => 0.056003679257442
1019 => 0.055920265859856
1020 => 0.05537198442918
1021 => 0.05628163057202
1022 => 0.056814479948669
1023 => 0.057131779558422
1024 => 0.057936398575135
1025 => 0.053837793108215
1026 => 0.05093659644482
1027 => 0.050483532692043
1028 => 0.051404855649167
1029 => 0.051647801165548
1030 => 0.051549870132522
1031 => 0.04828430952261
1101 => 0.050466340191255
1102 => 0.052814021720367
1103 => 0.052904205729135
1104 => 0.054079504190314
1105 => 0.054462229546386
1106 => 0.055408498857526
1107 => 0.055349309454473
1108 => 0.055579710973302
1109 => 0.055526745654121
1110 => 0.057279510292496
1111 => 0.059213069976692
1112 => 0.059146116953171
1113 => 0.058868144871728
1114 => 0.059280980813954
1115 => 0.061276621620892
1116 => 0.061092894994882
1117 => 0.061271369762254
1118 => 0.063624342743021
1119 => 0.066683542324522
1120 => 0.065262236980299
1121 => 0.068346060607668
1122 => 0.070287164114631
1123 => 0.073644101916074
1124 => 0.073223796770066
1125 => 0.07453062802182
1126 => 0.072471362838381
1127 => 0.067742873731046
1128 => 0.06699457222988
1129 => 0.068492690785225
1130 => 0.072175669069268
1201 => 0.068376700692453
1202 => 0.069145227047296
1203 => 0.0689238914054
1204 => 0.068912097369659
1205 => 0.069362227744073
1206 => 0.068709290158764
1207 => 0.066049104974989
1208 => 0.067268252168143
1209 => 0.06679748088861
1210 => 0.067319836721576
1211 => 0.070138775716164
1212 => 0.068892455591544
1213 => 0.067579558583083
1214 => 0.069226222786863
1215 => 0.071322992173486
1216 => 0.071191780113528
1217 => 0.070937173874823
1218 => 0.072372375911654
1219 => 0.074742909201756
1220 => 0.075383654824496
1221 => 0.075856640143736
1222 => 0.075921856828106
1223 => 0.076593629209067
1224 => 0.072981339808201
1225 => 0.078714135857548
1226 => 0.079704031369975
1227 => 0.079517972040604
1228 => 0.080618199241496
1229 => 0.080294484488923
1230 => 0.079825472601734
1231 => 0.081569566740185
]
'min_raw' => 0.030067255470218
'max_raw' => 0.081569566740185
'avg_raw' => 0.055818411105202
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.030067'
'max' => '$0.081569'
'avg' => '$0.055818'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.010369419357051
'max_diff' => 0.037595535234298
'year' => 2032
]
7 => [
'items' => [
101 => 0.079570103551591
102 => 0.076732117280797
103 => 0.075175141883636
104 => 0.07722549268424
105 => 0.078477570370787
106 => 0.079305114074498
107 => 0.079555528299225
108 => 0.073261751551521
109 => 0.069869754953369
110 => 0.072043985883465
111 => 0.074696697675584
112 => 0.072966603860257
113 => 0.073034420262317
114 => 0.070567761142318
115 => 0.074914942274496
116 => 0.074281594549085
117 => 0.077567403668885
118 => 0.076783218952179
119 => 0.079462668735001
120 => 0.078757079809043
121 => 0.081685939991748
122 => 0.082854341614353
123 => 0.084816269785899
124 => 0.086259472135372
125 => 0.087106948159045
126 => 0.087056068877386
127 => 0.090414191094055
128 => 0.08843402374674
129 => 0.0859464668689
130 => 0.085901474813122
131 => 0.087189815769108
201 => 0.089889824973775
202 => 0.09058989807701
203 => 0.090981143435988
204 => 0.090381937549363
205 => 0.088232607813724
206 => 0.087304538131225
207 => 0.088095280389482
208 => 0.08712827055689
209 => 0.088797600822981
210 => 0.091089947828028
211 => 0.090616587236408
212 => 0.092198960724007
213 => 0.093836550813126
214 => 0.09617837818934
215 => 0.096790618583099
216 => 0.097802628672565
217 => 0.098844319482622
218 => 0.099178882496458
219 => 0.099817667098677
220 => 0.099814300388511
221 => 0.10173932078246
222 => 0.10386267788991
223 => 0.10466419604214
224 => 0.10650724283722
225 => 0.1033510897887
226 => 0.10574506813128
227 => 0.10790449652145
228 => 0.10532993697191
301 => 0.10887836751551
302 => 0.1090161450326
303 => 0.11109642196368
304 => 0.10898766276119
305 => 0.10773548827816
306 => 0.11135046909233
307 => 0.11309964443747
308 => 0.11257277858825
309 => 0.10856330346112
310 => 0.10622961696264
311 => 0.10012190926163
312 => 0.10735675286682
313 => 0.11088063414362
314 => 0.10855417745992
315 => 0.10972750688927
316 => 0.1161288118025
317 => 0.11856601425965
318 => 0.1180590931859
319 => 0.11814475450273
320 => 0.11945982471026
321 => 0.12529157023283
322 => 0.1217970531369
323 => 0.12446848051968
324 => 0.12588539597096
325 => 0.12720150600766
326 => 0.12396955571837
327 => 0.11976483587878
328 => 0.11843302460345
329 => 0.10832285719217
330 => 0.10779657907218
331 => 0.10750116321557
401 => 0.10563860802706
402 => 0.10417514984569
403 => 0.10301135356515
404 => 0.099957204586011
405 => 0.10098789021099
406 => 0.096120214188677
407 => 0.099234380807904
408 => 0.091465452342151
409 => 0.097935646823386
410 => 0.094414214130894
411 => 0.096778761475274
412 => 0.096770511792343
413 => 0.092416630450921
414 => 0.089905402556375
415 => 0.091505654709232
416 => 0.093221252045268
417 => 0.093499601941078
418 => 0.095723918668921
419 => 0.096344677656134
420 => 0.094463748944413
421 => 0.091304458567792
422 => 0.092038289666539
423 => 0.089890531492581
424 => 0.086126667905044
425 => 0.088829940444367
426 => 0.089752956543795
427 => 0.090160613036369
428 => 0.086459285480681
429 => 0.085296248002952
430 => 0.08467705660864
501 => 0.090826663659633
502 => 0.09116355301584
503 => 0.089439979438133
504 => 0.097230695445321
505 => 0.095467416472282
506 => 0.097437431099003
507 => 0.091971702185981
508 => 0.092180500391039
509 => 0.089592936731423
510 => 0.091041799479742
511 => 0.090017789988256
512 => 0.090924745687618
513 => 0.091468371194297
514 => 0.094055510260178
515 => 0.097965187795739
516 => 0.093669077957221
517 => 0.091797201379152
518 => 0.092958503080352
519 => 0.096051202545197
520 => 0.10073680054681
521 => 0.097962832223408
522 => 0.099193872260297
523 => 0.099462799743198
524 => 0.09741737819941
525 => 0.10081221815669
526 => 0.10263154046943
527 => 0.10449778870659
528 => 0.10611819975982
529 => 0.10375236812099
530 => 0.10628414710319
531 => 0.10424398016269
601 => 0.10241373950847
602 => 0.10241651522806
603 => 0.10126837853012
604 => 0.099043719003335
605 => 0.098633457654195
606 => 0.10076768900272
607 => 0.10247914043177
608 => 0.10262010376877
609 => 0.10356765121744
610 => 0.10412840003705
611 => 0.10962450077029
612 => 0.11183507795132
613 => 0.11453812988421
614 => 0.11559112094773
615 => 0.11876024653073
616 => 0.11620092023866
617 => 0.11564719389646
618 => 0.10795993184517
619 => 0.10921872057542
620 => 0.11123416278759
621 => 0.10799316574491
622 => 0.11004883239381
623 => 0.11045466453527
624 => 0.10788303790559
625 => 0.10925665480193
626 => 0.10560873557427
627 => 0.09804470246629
628 => 0.10082063908783
629 => 0.10286466281145
630 => 0.099947588931539
701 => 0.10517633095493
702 => 0.10212180780801
703 => 0.1011536706134
704 => 0.097376622251417
705 => 0.099159243686351
706 => 0.10157026470178
707 => 0.10008053402552
708 => 0.10317194886294
709 => 0.10755021672295
710 => 0.11067043113035
711 => 0.1109099624487
712 => 0.10890387362287
713 => 0.11211864376894
714 => 0.11214205985981
715 => 0.10851578600232
716 => 0.10629471345578
717 => 0.10579008110003
718 => 0.10705075166369
719 => 0.10858143846061
720 => 0.11099490491289
721 => 0.11245331214346
722 => 0.11625606472138
723 => 0.1172849805355
724 => 0.11841544706744
725 => 0.11992609897708
726 => 0.1217400239178
727 => 0.11777125941431
728 => 0.11792894582674
729 => 0.11423328727237
730 => 0.11028394609598
731 => 0.11328100375653
801 => 0.11719925796583
802 => 0.11630040612093
803 => 0.1161992669265
804 => 0.11636935499786
805 => 0.11569165006056
806 => 0.11262641574609
807 => 0.11108707426274
808 => 0.11307321750415
809 => 0.1141287642439
810 => 0.11576582518389
811 => 0.11556402286888
812 => 0.1197809160428
813 => 0.12141947321795
814 => 0.12100026017473
815 => 0.12107740546361
816 => 0.12404393496154
817 => 0.12734332587656
818 => 0.13043364086145
819 => 0.1335772419962
820 => 0.12978750813142
821 => 0.12786331499317
822 => 0.12984859114658
823 => 0.1287951756748
824 => 0.13484841343899
825 => 0.13526752648826
826 => 0.14132032653446
827 => 0.14706515453233
828 => 0.14345693099615
829 => 0.14685932327281
830 => 0.15053928792112
831 => 0.15763853678047
901 => 0.15524775951923
902 => 0.15341646160537
903 => 0.15168589392555
904 => 0.15528693054738
905 => 0.15991960663341
906 => 0.16091744069112
907 => 0.16253431306656
908 => 0.16083436946554
909 => 0.16288176429033
910 => 0.17010996769271
911 => 0.16815684332827
912 => 0.16538309275036
913 => 0.17108906513251
914 => 0.1731540343562
915 => 0.18764706980086
916 => 0.20594512572718
917 => 0.19836961042217
918 => 0.193667243612
919 => 0.19477241135402
920 => 0.20145424195003
921 => 0.20360023386676
922 => 0.1977666880693
923 => 0.19982719506476
924 => 0.21118079119431
925 => 0.21727163125084
926 => 0.20899945234512
927 => 0.1861768388236
928 => 0.16513334685908
929 => 0.17071502852886
930 => 0.17008223904726
1001 => 0.1822802616985
1002 => 0.16811026195812
1003 => 0.16834884841276
1004 => 0.1807991132545
1005 => 0.1774775960463
1006 => 0.1720971635568
1007 => 0.16517262997059
1008 => 0.15237198919467
1009 => 0.14103410468715
1010 => 0.16327030716525
1011 => 0.16231144168048
1012 => 0.16092286236264
1013 => 0.16401299537453
1014 => 0.17901780413069
1015 => 0.17867189472304
1016 => 0.17647139555606
1017 => 0.1781404547799
1018 => 0.17180456940507
1019 => 0.1734374713316
1020 => 0.16513001346244
1021 => 0.16888533136938
1022 => 0.17208561956515
1023 => 0.17272812480152
1024 => 0.17417572190621
1025 => 0.1618061631412
1026 => 0.16735973187552
1027 => 0.17062193320792
1028 => 0.15588318890825
1029 => 0.17033059562179
1030 => 0.16159083664288
1031 => 0.15862443117867
1101 => 0.16261830534203
1102 => 0.1610618886964
1103 => 0.15972377306033
1104 => 0.15897708154367
1105 => 0.16190974194143
1106 => 0.16177292982859
1107 => 0.15697452821299
1108 => 0.1507152089133
1109 => 0.15281604192543
1110 => 0.15205278959671
1111 => 0.14928666469592
1112 => 0.15115069889585
1113 => 0.14294243564544
1114 => 0.1288205453515
1115 => 0.13814989864488
1116 => 0.13779072869147
1117 => 0.1376096189139
1118 => 0.14462037006948
1119 => 0.14394644811142
1120 => 0.14272327315848
1121 => 0.14926420012868
1122 => 0.14687667379667
1123 => 0.15423446737997
1124 => 0.15908078610618
1125 => 0.15785160291522
1126 => 0.16240958910151
1127 => 0.15286444087494
1128 => 0.15603495623093
1129 => 0.15668839505166
1130 => 0.14918348610519
1201 => 0.14405671007829
1202 => 0.14371481256682
1203 => 0.13482568944944
1204 => 0.13957418726825
1205 => 0.14375266884261
1206 => 0.14175150043176
1207 => 0.14111799029609
1208 => 0.14435445618765
1209 => 0.14460595730587
1210 => 0.13887170515735
1211 => 0.14006403775918
1212 => 0.1450362629176
1213 => 0.1399387504426
1214 => 0.13003511637761
1215 => 0.12757887820104
1216 => 0.12725117075084
1217 => 0.12058965800927
1218 => 0.12774301578096
1219 => 0.12462038341555
1220 => 0.13448474164301
1221 => 0.1288502731271
1222 => 0.12860738245085
1223 => 0.12824021756938
1224 => 0.12250637836909
1225 => 0.12376172474946
1226 => 0.12793468731247
1227 => 0.12942364736674
1228 => 0.12926833663439
1229 => 0.12791423751936
1230 => 0.12853413716011
1231 => 0.1265372244299
]
'min_raw' => 0.069869754953369
'max_raw' => 0.21727163125084
'avg_raw' => 0.14357069310211
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.069869'
'max' => '$0.217271'
'avg' => '$0.14357'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.039802499483151
'max_diff' => 0.13570206451066
'year' => 2033
]
8 => [
'items' => [
101 => 0.12583207298272
102 => 0.12360642104822
103 => 0.12033532755656
104 => 0.12079019316935
105 => 0.11430930103419
106 => 0.11077816703198
107 => 0.10980079567976
108 => 0.10849381386042
109 => 0.109948422754
110 => 0.11429094148106
111 => 0.10905294257949
112 => 0.10007276086566
113 => 0.10061248508814
114 => 0.10182508517051
115 => 0.099565412939171
116 => 0.097426822812124
117 => 0.09928615341829
118 => 0.095481132042496
119 => 0.10228490382507
120 => 0.1021008808657
121 => 0.10463690624382
122 => 0.10622273495724
123 => 0.10256791319095
124 => 0.10164873540042
125 => 0.10217234084421
126 => 0.09351830920393
127 => 0.1039296872306
128 => 0.10401972526012
129 => 0.10324876498772
130 => 0.10879250237169
131 => 0.12049151738692
201 => 0.1160898773464
202 => 0.11438542928244
203 => 0.1111452722669
204 => 0.11546258910862
205 => 0.11513108653581
206 => 0.11363190618295
207 => 0.11272519722781
208 => 0.11439583627887
209 => 0.11251818656124
210 => 0.11218090907759
211 => 0.1101373744882
212 => 0.10940792561468
213 => 0.10886787070893
214 => 0.10827332332239
215 => 0.10958474670511
216 => 0.10661288878776
217 => 0.10302911947425
218 => 0.10273116783275
219 => 0.1035538385111
220 => 0.10318986797656
221 => 0.10272942528186
222 => 0.10185031478358
223 => 0.10158950147796
224 => 0.10243701819259
225 => 0.10148022123507
226 => 0.10289202726532
227 => 0.10250809414388
228 => 0.10036347493731
301 => 0.09769048536619
302 => 0.097666690152222
303 => 0.097090798933706
304 => 0.096357314881101
305 => 0.096153276397509
306 => 0.099129565780734
307 => 0.10529039573116
308 => 0.10408087739573
309 => 0.10495487834951
310 => 0.10925409801155
311 => 0.11062069066007
312 => 0.10965071556767
313 => 0.10832295383574
314 => 0.10838136861344
315 => 0.11291873239226
316 => 0.1132017222055
317 => 0.11391674616759
318 => 0.11483575402462
319 => 0.10980722657963
320 => 0.10814452542299
321 => 0.10735664537183
322 => 0.1049302797622
323 => 0.10754690705132
324 => 0.1060223103851
325 => 0.10622803056301
326 => 0.10609405502727
327 => 0.10616721472917
328 => 0.1022830020322
329 => 0.10369820499076
330 => 0.10134515558902
331 => 0.098194686582269
401 => 0.098184125105462
402 => 0.098955197931597
403 => 0.098496533642529
404 => 0.097262279833984
405 => 0.097437599761974
406 => 0.095901612712484
407 => 0.097624096399726
408 => 0.097673491068533
409 => 0.097010241024624
410 => 0.099663964801764
411 => 0.10075119759849
412 => 0.1003146322114
413 => 0.10072056700714
414 => 0.10413113834321
415 => 0.10468721028465
416 => 0.10493418070899
417 => 0.10460327305769
418 => 0.10078290599029
419 => 0.10095235551518
420 => 0.099709047333033
421 => 0.098658582935705
422 => 0.098700596002638
423 => 0.099240671253678
424 => 0.10159921154996
425 => 0.10656262055995
426 => 0.10675097830367
427 => 0.10697927338385
428 => 0.10605068256085
429 => 0.10577061068322
430 => 0.1061400977825
501 => 0.10800409324301
502 => 0.11279879563725
503 => 0.11110402758372
504 => 0.10972615477556
505 => 0.11093492070016
506 => 0.11074884066069
507 => 0.10917813786322
508 => 0.10913405346708
509 => 0.10611937261468
510 => 0.10500491374451
511 => 0.10407358849679
512 => 0.10305660563915
513 => 0.10245370411156
514 => 0.10338003487178
515 => 0.10359189767666
516 => 0.10156645927996
517 => 0.10129039951074
518 => 0.10294441622761
519 => 0.10221654513847
520 => 0.10296517860399
521 => 0.10313886798964
522 => 0.10311089999815
523 => 0.10235091898563
524 => 0.10283530822005
525 => 0.10168958327726
526 => 0.1004437794843
527 => 0.099649034280716
528 => 0.098955513682932
529 => 0.099340319218236
530 => 0.097968557747591
531 => 0.097529703645027
601 => 0.10267120804653
602 => 0.1064692926284
603 => 0.10641406697438
604 => 0.10607789500837
605 => 0.10557841165688
606 => 0.10796755292475
607 => 0.10713522387942
608 => 0.10774081280332
609 => 0.10789496060094
610 => 0.10836151955799
611 => 0.10852827428304
612 => 0.10802422568534
613 => 0.10633257702711
614 => 0.10211714940793
615 => 0.10015485647187
616 => 0.099507267118401
617 => 0.099530805761452
618 => 0.098881504904963
619 => 0.099072753106822
620 => 0.098814996585143
621 => 0.098326868091081
622 => 0.099310178659238
623 => 0.099423496042046
624 => 0.099193979605752
625 => 0.099248039035116
626 => 0.097347740970353
627 => 0.097492216504987
628 => 0.096687758369085
629 => 0.096536932166491
630 => 0.094503332051113
701 => 0.090900514671671
702 => 0.092896825233827
703 => 0.090485562798486
704 => 0.089572381177635
705 => 0.093895240941867
706 => 0.093461345719004
707 => 0.092718705707182
708 => 0.091620186349958
709 => 0.091212734834654
710 => 0.088737188411142
711 => 0.088590919921914
712 => 0.089817867574783
713 => 0.089251673449675
714 => 0.08845652246354
715 => 0.085576566194922
716 => 0.082338541828244
717 => 0.082436277430378
718 => 0.083466232735834
719 => 0.086460966694841
720 => 0.085290872327634
721 => 0.084441955438938
722 => 0.084282978824034
723 => 0.086272903999652
724 => 0.089089065025365
725 => 0.090410344770578
726 => 0.089100996670935
727 => 0.087596888074372
728 => 0.087688436195277
729 => 0.088297464829375
730 => 0.088361465127617
731 => 0.087382445056117
801 => 0.087658033471601
802 => 0.087239389468147
803 => 0.084670171991709
804 => 0.084623702994637
805 => 0.08399317559169
806 => 0.083974083472516
807 => 0.082901399067673
808 => 0.082751323104318
809 => 0.080621443111211
810 => 0.082023336572545
811 => 0.081083020041392
812 => 0.0796657412307
813 => 0.079421401829532
814 => 0.079414056692084
815 => 0.080869285132922
816 => 0.082006331380938
817 => 0.081099377250036
818 => 0.080892881374997
819 => 0.083097717083152
820 => 0.082817131641766
821 => 0.082574146459107
822 => 0.088836908693437
823 => 0.083879443695534
824 => 0.081717705994238
825 => 0.07904214508603
826 => 0.079913321209092
827 => 0.080096890818461
828 => 0.073662649140322
829 => 0.071052278092835
830 => 0.070156497119096
831 => 0.069640962504224
901 => 0.069875898101897
902 => 0.067526257993173
903 => 0.069105255005696
904 => 0.067070665281676
905 => 0.066729559693316
906 => 0.070367658157167
907 => 0.070873878304949
908 => 0.068714185884239
909 => 0.070101058040777
910 => 0.069598158917852
911 => 0.067105542482868
912 => 0.067010342869496
913 => 0.065759635562126
914 => 0.063802520810747
915 => 0.062908066852968
916 => 0.062442227465751
917 => 0.062634441875945
918 => 0.062537252388293
919 => 0.06190302523986
920 => 0.062573605546042
921 => 0.06086054996666
922 => 0.060178397431923
923 => 0.059870284957801
924 => 0.058349849531299
925 => 0.060769538435566
926 => 0.061246247632145
927 => 0.061723896093103
928 => 0.065881499841293
929 => 0.0656737977073
930 => 0.067551323843558
1001 => 0.067478366630452
1002 => 0.066942865762484
1003 => 0.064683675686146
1004 => 0.065584148584383
1005 => 0.062812632968167
1006 => 0.064889240912579
1007 => 0.063941563767971
1008 => 0.06456883031671
1009 => 0.063440948503733
1010 => 0.064065164868133
1011 => 0.061359293067399
1012 => 0.058832588052517
1013 => 0.059849407909623
1014 => 0.060954807381753
1015 => 0.063351595087877
1016 => 0.061924088103179
1017 => 0.062437473594892
1018 => 0.060717718137347
1019 => 0.057169371404572
1020 => 0.05718945466173
1021 => 0.056643618821828
1022 => 0.056171936962815
1023 => 0.062088054452431
1024 => 0.06135229172262
1025 => 0.060179950106912
1026 => 0.061749175946542
1027 => 0.062164104165502
1028 => 0.062175916588576
1029 => 0.063320783253589
1030 => 0.063931798797934
1031 => 0.064039492935918
1101 => 0.065840965369797
1102 => 0.066444795167637
1103 => 0.06893188464775
1104 => 0.063879958397925
1105 => 0.063775917301322
1106 => 0.061771258172186
1107 => 0.06049987166008
1108 => 0.061858311094388
1109 => 0.06306170298771
1110 => 0.061808650912753
1111 => 0.061972273060369
1112 => 0.060290153027856
1113 => 0.060891431788375
1114 => 0.061409334057931
1115 => 0.061123378865571
1116 => 0.06069529010222
1117 => 0.062963038575758
1118 => 0.062835083319503
1119 => 0.064946862833373
1120 => 0.066593145979237
1121 => 0.069543579684939
1122 => 0.066464648303452
1123 => 0.066352439806267
1124 => 0.067449295865061
1125 => 0.06644462724469
1126 => 0.067079543132782
1127 => 0.069441284919606
1128 => 0.069491184801977
1129 => 0.068655297479886
1130 => 0.068604433660371
1201 => 0.068764974964184
1202 => 0.069705270395033
1203 => 0.069376702279135
1204 => 0.06975692962118
1205 => 0.070232409734654
1206 => 0.072199197083378
1207 => 0.072673382854628
1208 => 0.071521357267625
1209 => 0.071625372279447
1210 => 0.071194483086099
1211 => 0.07077824952435
1212 => 0.071713881785131
1213 => 0.073423768131608
1214 => 0.07341313101739
1215 => 0.073809791414331
1216 => 0.074056907555514
1217 => 0.072996104177488
1218 => 0.072305560185214
1219 => 0.072570358692307
1220 => 0.072993777271711
1221 => 0.0724330497537
1222 => 0.068971979758278
1223 => 0.070021847300882
1224 => 0.069847098005893
1225 => 0.069598233759587
1226 => 0.070653883692061
1227 => 0.070552063680799
1228 => 0.067502159037744
1229 => 0.067697404037601
1230 => 0.067514032532857
1231 => 0.068106543378965
]
'min_raw' => 0.056171936962815
'max_raw' => 0.12583207298272
'avg_raw' => 0.091002004972766
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.056171'
'max' => '$0.125832'
'avg' => '$0.091002'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.013697817990554
'max_diff' => -0.091439558268126
'year' => 2034
]
9 => [
'items' => [
101 => 0.066412629714545
102 => 0.066933666149038
103 => 0.067260455316339
104 => 0.067452936646392
105 => 0.068148311196226
106 => 0.068066717018786
107 => 0.068143239187593
108 => 0.069174296072923
109 => 0.074389027982924
110 => 0.074672854335128
111 => 0.073275189572265
112 => 0.07383352907731
113 => 0.07276163932305
114 => 0.073481206096122
115 => 0.073973515407244
116 => 0.071748864295921
117 => 0.071617134894975
118 => 0.070540821070407
119 => 0.071119171154199
120 => 0.070198974586043
121 => 0.070424758636759
122 => 0.069793446747457
123 => 0.070929682455257
124 => 0.072200170529755
125 => 0.072521145990468
126 => 0.071676797741957
127 => 0.071065433964774
128 => 0.069992080567788
129 => 0.071777091188216
130 => 0.072299082690842
131 => 0.071774349389071
201 => 0.071652757217402
202 => 0.0714223402718
203 => 0.071701641261662
204 => 0.072296239813015
205 => 0.072015838116708
206 => 0.072201048377161
207 => 0.071495217852306
208 => 0.072996455347546
209 => 0.075380781782464
210 => 0.075388447781829
211 => 0.075108044574053
212 => 0.074993309622802
213 => 0.07528102033027
214 => 0.07543709158656
215 => 0.076367495257392
216 => 0.077365855465111
217 => 0.082024766935853
218 => 0.080716563237804
219 => 0.08485022665453
220 => 0.088119417728143
221 => 0.08909970518672
222 => 0.088197886850918
223 => 0.08511281503941
224 => 0.084961446698226
225 => 0.089571846468341
226 => 0.088269197363596
227 => 0.088114251397582
228 => 0.086465888104531
301 => 0.08744027496449
302 => 0.087227162264824
303 => 0.086890753442571
304 => 0.088749815694995
305 => 0.0922298142719
306 => 0.09168742385847
307 => 0.091282554575611
308 => 0.0895085352338
309 => 0.090576891119135
310 => 0.090196470051376
311 => 0.091831000379643
312 => 0.090862740822458
313 => 0.088259328515437
314 => 0.088673930506289
315 => 0.088611264249435
316 => 0.089900931374909
317 => 0.089513805315348
318 => 0.088535671673155
319 => 0.092217920015089
320 => 0.091978815289505
321 => 0.092317811123432
322 => 0.092467047573322
323 => 0.094708367250563
324 => 0.095626564208099
325 => 0.09583501099276
326 => 0.096707227086517
327 => 0.095813309461776
328 => 0.099389617313205
329 => 0.10176765335106
330 => 0.10452986458164
331 => 0.1085661976019
401 => 0.11008389615569
402 => 0.10980973749634
403 => 0.11287003912627
404 => 0.11836933312857
405 => 0.11092130204504
406 => 0.11876409686123
407 => 0.11628115857185
408 => 0.11039415655386
409 => 0.1100151030271
410 => 0.11400184914318
411 => 0.12284406831854
412 => 0.12062919270273
413 => 0.12284769106159
414 => 0.12025969488351
415 => 0.12013117905992
416 => 0.12272199786374
417 => 0.12877558721705
418 => 0.1258997538307
419 => 0.12177654148808
420 => 0.12482105731758
421 => 0.12218361594943
422 => 0.11624072237363
423 => 0.12062749902909
424 => 0.11769418640779
425 => 0.11855028297416
426 => 0.12471566980681
427 => 0.12397383415152
428 => 0.1249338381816
429 => 0.12323945619619
430 => 0.12165663624229
501 => 0.11870218525659
502 => 0.1178275179724
503 => 0.11806924454252
504 => 0.11782739818472
505 => 0.11617441001103
506 => 0.1158174473723
507 => 0.1152224940022
508 => 0.11540689492938
509 => 0.11428820853384
510 => 0.11639940089462
511 => 0.11679125680055
512 => 0.1183276065419
513 => 0.11848711546869
514 => 0.12276582762978
515 => 0.12040918487229
516 => 0.12199022429676
517 => 0.12184880124931
518 => 0.11052174573854
519 => 0.11208251404847
520 => 0.11451057974264
521 => 0.11341673943858
522 => 0.11187030516785
523 => 0.11062147657968
524 => 0.10872937356932
525 => 0.11139247222178
526 => 0.1148941637608
527 => 0.11857592414479
528 => 0.12299931800765
529 => 0.12201206799144
530 => 0.11849323187337
531 => 0.11865108429112
601 => 0.11962686582498
602 => 0.11836314007953
603 => 0.11799044268633
604 => 0.11957566292631
605 => 0.11958657946689
606 => 0.11813251027038
607 => 0.11651657845032
608 => 0.11650980763699
609 => 0.11622226817766
610 => 0.12031084751455
611 => 0.12255915274784
612 => 0.12281691731951
613 => 0.12254180313841
614 => 0.12264768366782
615 => 0.12133944439059
616 => 0.12432969143203
617 => 0.12707383782203
618 => 0.12633834796938
619 => 0.1252357441242
620 => 0.12435746705292
621 => 0.12613145380343
622 => 0.12605246096594
623 => 0.12704987009726
624 => 0.12700462185775
625 => 0.12666923068134
626 => 0.12633835994725
627 => 0.12765022500798
628 => 0.1272724289384
629 => 0.12689404604717
630 => 0.12613514123129
701 => 0.12623828899984
702 => 0.12513587553476
703 => 0.12462584862281
704 => 0.11695626759272
705 => 0.11490670493068
706 => 0.11555153906685
707 => 0.11576383520759
708 => 0.11487186291049
709 => 0.11615072205565
710 => 0.11595141321252
711 => 0.11672680732936
712 => 0.11624237474886
713 => 0.11626225603094
714 => 0.11768686895827
715 => 0.11810044015181
716 => 0.11789009450484
717 => 0.11803741338575
718 => 0.12143231481682
719 => 0.12094966839615
720 => 0.12069327210468
721 => 0.12076429562966
722 => 0.12163176573281
723 => 0.12187460999958
724 => 0.12084566177691
725 => 0.121330919707
726 => 0.12339708638491
727 => 0.12412012778727
728 => 0.12642772886405
729 => 0.1254474189123
730 => 0.12724682025556
731 => 0.13277756652364
801 => 0.13719590934111
802 => 0.13313261869042
803 => 0.14124634260215
804 => 0.14756404051199
805 => 0.14732155674353
806 => 0.14621991998197
807 => 0.1390273888763
808 => 0.13240871451827
809 => 0.13794551666252
810 => 0.13795963110984
811 => 0.1374840148953
812 => 0.13453000343474
813 => 0.13738122169966
814 => 0.13760754105143
815 => 0.13748086239761
816 => 0.13521602873685
817 => 0.13175804634808
818 => 0.13243372782961
819 => 0.13354050787987
820 => 0.13144514234621
821 => 0.13077554609554
822 => 0.13202045292145
823 => 0.13603180210117
824 => 0.13527347977491
825 => 0.13525367691435
826 => 0.13849810140481
827 => 0.13617579366026
828 => 0.13244225033692
829 => 0.13149948140839
830 => 0.12815328683735
831 => 0.13046451534631
901 => 0.13054769234574
902 => 0.12928185611157
903 => 0.1325449659709
904 => 0.13251489583909
905 => 0.13561273300072
906 => 0.14153463415924
907 => 0.13978323658761
908 => 0.13774655176331
909 => 0.13796799587486
910 => 0.14039669120787
911 => 0.13892824656781
912 => 0.13945630949874
913 => 0.14039589192138
914 => 0.14096276532548
915 => 0.13788643151569
916 => 0.13716919094658
917 => 0.13570196845939
918 => 0.13531919749949
919 => 0.1365142196007
920 => 0.13619937349779
921 => 0.13054070164102
922 => 0.12994933894743
923 => 0.12996747519697
924 => 0.12848046558619
925 => 0.12621241900654
926 => 0.13217270999982
927 => 0.13169401521884
928 => 0.13116557322868
929 => 0.13123030435722
930 => 0.1338174646644
1001 => 0.13231678103151
1002 => 0.13630659442676
1003 => 0.13548640873747
1004 => 0.13464518838009
1005 => 0.1345289061025
1006 => 0.13420510803445
1007 => 0.13309468397918
1008 => 0.13175378020629
1009 => 0.13086839938834
1010 => 0.12071918075832
1011 => 0.12260281670077
1012 => 0.12476976815373
1013 => 0.12551779111178
1014 => 0.12423824608042
1015 => 0.13314520821594
1016 => 0.13477259602772
1017 => 0.12984313219395
1018 => 0.12892103077933
1019 => 0.13320566103116
1020 => 0.13062150521457
1021 => 0.13178515042055
1022 => 0.12926998596511
1023 => 0.13438060595934
1024 => 0.13434167159761
1025 => 0.13235352499127
1026 => 0.13403389288871
1027 => 0.13374188761471
1028 => 0.13149727499273
1029 => 0.1344517641831
1030 => 0.13445322957287
1031 => 0.1325396816903
1101 => 0.13030507669296
1102 => 0.12990558209845
1103 => 0.12960461658603
1104 => 0.13171113135402
1105 => 0.13359982590809
1106 => 0.13711421822614
1107 => 0.1379978199548
1108 => 0.14144657632646
1109 => 0.13939300982404
1110 => 0.14030332925642
1111 => 0.14129160977282
1112 => 0.14176542779519
1113 => 0.14099336675421
1114 => 0.14635070496415
1115 => 0.14680302845367
1116 => 0.14695468860712
1117 => 0.14514822430545
1118 => 0.14675278741357
1119 => 0.14600206547283
1120 => 0.14795523540608
1121 => 0.14826151739093
1122 => 0.14800210744606
1123 => 0.14809932618238
1124 => 0.14352778311943
1125 => 0.1432907244948
1126 => 0.14005841332712
1127 => 0.14137560401999
1128 => 0.13891317915427
1129 => 0.13969403944497
1130 => 0.14003823522081
1201 => 0.13985844688045
1202 => 0.14145007600547
1203 => 0.14009686610086
1204 => 0.13652552267428
1205 => 0.13295320623758
1206 => 0.13290835871466
1207 => 0.1319678308535
1208 => 0.13128800147615
1209 => 0.13141896073247
1210 => 0.13188047823303
1211 => 0.13126117724002
1212 => 0.13139333650624
1213 => 0.13358806089798
1214 => 0.13402819722269
1215 => 0.13253244201898
1216 => 0.12652676903961
1217 => 0.12505296182639
1218 => 0.12611230522439
1219 => 0.1256060073106
1220 => 0.10137385104658
1221 => 0.10706683672016
1222 => 0.10368425794845
1223 => 0.10524310587142
1224 => 0.10179036886002
1225 => 0.10343819593531
1226 => 0.10313390244352
1227 => 0.11228805493893
1228 => 0.11214512543884
1229 => 0.11221353822687
1230 => 0.1089480176055
1231 => 0.11415008062389
]
'min_raw' => 0.066412629714545
'max_raw' => 0.14826151739093
'avg_raw' => 0.10733707355274
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.066412'
'max' => '$0.148261'
'avg' => '$0.107337'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.01024069275173
'max_diff' => 0.022429444408219
'year' => 2035
]
10 => [
'items' => [
101 => 0.11671280392689
102 => 0.11623851204818
103 => 0.11635788109583
104 => 0.11430672536855
105 => 0.11223339789792
106 => 0.10993375865018
107 => 0.11420620412848
108 => 0.11373118112437
109 => 0.11482071298792
110 => 0.11759169928131
111 => 0.11799973753896
112 => 0.11854814509517
113 => 0.11835158002457
114 => 0.12303455747615
115 => 0.12246741800748
116 => 0.12383406094981
117 => 0.12102277273
118 => 0.11784153325936
119 => 0.11844618288017
120 => 0.1183879502594
121 => 0.11764658216071
122 => 0.11697730819002
123 => 0.1158631555956
124 => 0.11938849926792
125 => 0.11924537675286
126 => 0.12156236390999
127 => 0.12115281392396
128 => 0.11841773888332
129 => 0.11851542262347
130 => 0.11917239272116
131 => 0.12144617373042
201 => 0.12212118674479
202 => 0.12180849382192
203 => 0.12254861477665
204 => 0.12313357620211
205 => 0.12262207692547
206 => 0.12986382802629
207 => 0.12685654807611
208 => 0.12832227539931
209 => 0.12867184272933
210 => 0.1277764333641
211 => 0.12797061559321
212 => 0.12826474875882
213 => 0.13005066774326
214 => 0.13473743591826
215 => 0.13681317363905
216 => 0.14305813298716
217 => 0.136640812517
218 => 0.13626003527782
219 => 0.13738494103612
220 => 0.14105139326954
221 => 0.14402270843238
222 => 0.14500846509117
223 => 0.1451387491067
224 => 0.14698809413047
225 => 0.14804810420985
226 => 0.14676353500198
227 => 0.14567499709832
228 => 0.14177598944168
229 => 0.14222731019458
301 => 0.14533646262881
302 => 0.14972832357033
303 => 0.15349699715341
304 => 0.15217733901615
305 => 0.16224539906997
306 => 0.16324360609997
307 => 0.16310568616432
308 => 0.16537975033178
309 => 0.16086619606449
310 => 0.15893656416922
311 => 0.14591035134852
312 => 0.14957018581882
313 => 0.15488997015595
314 => 0.15418587675076
315 => 0.1503225071669
316 => 0.15349406644114
317 => 0.15244544976125
318 => 0.15161836227867
319 => 0.15540741037516
320 => 0.15124119634755
321 => 0.15484840898403
322 => 0.15022212146591
323 => 0.15218336710336
324 => 0.15107006922477
325 => 0.15179050939287
326 => 0.14757883089113
327 => 0.14985135037795
328 => 0.14748428660913
329 => 0.1474831643127
330 => 0.14743091124881
331 => 0.15021575127567
401 => 0.15030656480896
402 => 0.14824856382146
403 => 0.14795197372714
404 => 0.14904862275499
405 => 0.14776473395621
406 => 0.14836545744446
407 => 0.1477829292587
408 => 0.14765178989417
409 => 0.14660684912603
410 => 0.14615665991188
411 => 0.14633319070269
412 => 0.14573060010577
413 => 0.14536751747447
414 => 0.14735868497479
415 => 0.14629488450283
416 => 0.14719564229541
417 => 0.14616911510607
418 => 0.14261072463122
419 => 0.14056425663983
420 => 0.1338427868958
421 => 0.13574898737725
422 => 0.13701280026856
423 => 0.13659511011552
424 => 0.13749247018888
425 => 0.13754756080933
426 => 0.13725581990198
427 => 0.13691802130559
428 => 0.1367535996303
429 => 0.13797906408974
430 => 0.13869048745569
501 => 0.13713964079984
502 => 0.13677629912702
503 => 0.13834429072068
504 => 0.13930076468701
505 => 0.14636283105809
506 => 0.14583965037115
507 => 0.14715273122635
508 => 0.14700489847292
509 => 0.14838121639936
510 => 0.15063091453373
511 => 0.14605664920106
512 => 0.14685058349662
513 => 0.14665592914197
514 => 0.14878111434493
515 => 0.14878774894116
516 => 0.14751359425111
517 => 0.14820433417939
518 => 0.14781878210088
519 => 0.14851552681723
520 => 0.14583266297411
521 => 0.14910010153777
522 => 0.15095252865428
523 => 0.15097824960659
524 => 0.15185628535805
525 => 0.15274842053393
526 => 0.15446079631543
527 => 0.15270066330278
528 => 0.1495343553585
529 => 0.14976295256497
530 => 0.14790654737575
531 => 0.14793775388237
601 => 0.14777117110434
602 => 0.14827109856096
603 => 0.14594236893747
604 => 0.14648891712551
605 => 0.14572374646168
606 => 0.14684892016503
607 => 0.1456384192581
608 => 0.14665583527375
609 => 0.14709491829823
610 => 0.14871514411133
611 => 0.14539911058814
612 => 0.1386374937586
613 => 0.14005886759285
614 => 0.13795654404549
615 => 0.13815112209391
616 => 0.13854420071858
617 => 0.1372701042887
618 => 0.13751316173613
619 => 0.13750447801374
620 => 0.1374296463855
621 => 0.13709820469615
622 => 0.13661754867285
623 => 0.13853233433155
624 => 0.13885769372701
625 => 0.13958092735962
626 => 0.1417327800762
627 => 0.14151775924563
628 => 0.14186846714142
629 => 0.14110287377406
630 => 0.13818663577445
701 => 0.13834500152827
702 => 0.13637017804046
703 => 0.13953042668303
704 => 0.13878203809122
705 => 0.13829954709753
706 => 0.13816789495965
707 => 0.1403250817029
708 => 0.14097054578624
709 => 0.14056833588499
710 => 0.13974339164318
711 => 0.14132752846033
712 => 0.14175137664323
713 => 0.14184626062046
714 => 0.14465304733234
715 => 0.14200312881814
716 => 0.14264099054243
717 => 0.14761740562969
718 => 0.14310448384389
719 => 0.145495079164
720 => 0.14537807196313
721 => 0.14660101963557
722 => 0.14527775455883
723 => 0.14529415801537
724 => 0.14638005269884
725 => 0.14485510945805
726 => 0.1444775120663
727 => 0.14395586397401
728 => 0.14509486349942
729 => 0.14577764220238
730 => 0.15128033710257
731 => 0.15483532896147
801 => 0.15468099738925
802 => 0.15609129906273
803 => 0.15545594524194
804 => 0.15340422015675
805 => 0.15690626469595
806 => 0.15579807127198
807 => 0.1558894293914
808 => 0.15588602903763
809 => 0.15662288078462
810 => 0.15610075379041
811 => 0.15507158788958
812 => 0.15575479624371
813 => 0.15778368080403
814 => 0.16408140073303
815 => 0.16760568823899
816 => 0.16386923419994
817 => 0.16644659016296
818 => 0.16490109499098
819 => 0.16462023254373
820 => 0.16623900255362
821 => 0.16786060600612
822 => 0.16775731687658
823 => 0.16658011604032
824 => 0.16591514515829
825 => 0.17095052745865
826 => 0.17466051136205
827 => 0.17440751533189
828 => 0.17552415753032
829 => 0.17880265356135
830 => 0.17910239815098
831 => 0.17906463722224
901 => 0.17832168898173
902 => 0.18154979409079
903 => 0.18424273616587
904 => 0.17814971792989
905 => 0.18046985951069
906 => 0.1815114458166
907 => 0.18304080353841
908 => 0.18562108636522
909 => 0.18842395790136
910 => 0.18882031466849
911 => 0.18853908057479
912 => 0.18669051145148
913 => 0.18975744693153
914 => 0.19155398580726
915 => 0.19262378359469
916 => 0.19533661278624
917 => 0.18151787829903
918 => 0.17173629119331
919 => 0.17020875511892
920 => 0.17331505979358
921 => 0.17413416756397
922 => 0.1738039862488
923 => 0.16279392065832
924 => 0.17015078940217
925 => 0.17806616158746
926 => 0.17837022326947
927 => 0.18233282408805
928 => 0.18362320934708
929 => 0.186813622396
930 => 0.18661406119114
1001 => 0.18739087599799
1002 => 0.18721229972645
1003 => 0.19312186807885
1004 => 0.19964099955094
1005 => 0.19941526275763
1006 => 0.19847806047766
1007 => 0.19986996568016
1008 => 0.20659840799194
1009 => 0.20597896084496
1010 => 0.20658070098387
1011 => 0.21451391366785
1012 => 0.22482821864338
1013 => 0.22003618844296
1014 => 0.23043351510832
1015 => 0.23697808110557
1016 => 0.24829623127705
1017 => 0.24687914313251
1018 => 0.25128521593785
1019 => 0.24434225959858
1020 => 0.22839982844063
1021 => 0.22587687768471
1022 => 0.23092788898935
1023 => 0.24334530741133
1024 => 0.2305368202934
1025 => 0.23312796055555
1026 => 0.23238171198573
1027 => 0.2323419475708
1028 => 0.23385959355524
1029 => 0.23165816889972
1030 => 0.22268916882442
1031 => 0.22679960870428
1101 => 0.22521237046713
1102 => 0.2269735296277
1103 => 0.23647777925999
1104 => 0.23227572394454
1105 => 0.22784920001697
1106 => 0.23340104334644
1107 => 0.2404704477252
1108 => 0.24002805710412
1109 => 0.23916963439429
1110 => 0.24400851826407
1111 => 0.252000936757
1112 => 0.2541612553595
1113 => 0.25575595838609
1114 => 0.25597584099073
1115 => 0.25824076847479
1116 => 0.24606168255778
1117 => 0.26539020468919
1118 => 0.26872770652164
1119 => 0.26810039450241
1120 => 0.27180988732563
1121 => 0.27071846043629
1122 => 0.26913715411327
1123 => 0.27501748926982
1124 => 0.26827615953141
1125 => 0.25870769067756
1126 => 0.25345823942148
1127 => 0.26037114029664
1128 => 0.2645926076341
1129 => 0.26738272900842
1130 => 0.26822701805045
1201 => 0.24700711032811
1202 => 0.2355707569758
1203 => 0.24290132835657
1204 => 0.25184513137012
1205 => 0.24601199928045
1206 => 0.24624064701479
1207 => 0.23792413357507
1208 => 0.2525809582727
1209 => 0.25044558219756
1210 => 0.26152391705283
1211 => 0.25887998353043
1212 => 0.26791393554642
1213 => 0.26553499321991
1214 => 0.27540984981239
1215 => 0.2793491974582
1216 => 0.28596397526601
1217 => 0.29082983274843
1218 => 0.29368715733113
1219 => 0.29351561428074
1220 => 0.30483775779085
1221 => 0.2981614853285
1222 => 0.28977451363919
1223 => 0.28962281978189
1224 => 0.29396655126409
1225 => 0.30306982080625
1226 => 0.30543016615135
1227 => 0.30674927719502
1228 => 0.30472901271305
1229 => 0.29748239744793
1230 => 0.29435334571763
1231 => 0.2970193884492
]
'min_raw' => 0.10993375865018
'max_raw' => 0.30674927719502
'avg_raw' => 0.2083415179226
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.109933'
'max' => '$0.306749'
'avg' => '$0.208341'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.043521128935632
'max_diff' => 0.15848775980409
'year' => 2036
]
11 => [
'items' => [
101 => 0.29375904728415
102 => 0.29938731082519
103 => 0.30711611879926
104 => 0.30552015051564
105 => 0.31085523320687
106 => 0.31637648252522
107 => 0.32427211702529
108 => 0.32633632825811
109 => 0.32974839093103
110 => 0.33326052422567
111 => 0.33438852678526
112 => 0.33654223367016
113 => 0.33653088257178
114 => 0.34302122323061
115 => 0.35018026996643
116 => 0.35288264437688
117 => 0.35909660532393
118 => 0.34845541496527
119 => 0.3565268800895
120 => 0.36380754367343
121 => 0.35512723640214
122 => 0.36709101772341
123 => 0.36755554424161
124 => 0.37456934315504
125 => 0.36745951427499
126 => 0.36323772058139
127 => 0.37542588078626
128 => 0.38132334758595
129 => 0.37954698259071
130 => 0.36602875726695
131 => 0.35816057030456
201 => 0.33756800736408
202 => 0.3619607876996
203 => 0.37384179945388
204 => 0.36599798831675
205 => 0.36995395040707
206 => 0.39153639684685
207 => 0.39975359509119
208 => 0.39804447529892
209 => 0.39833328840931
210 => 0.40276713942926
211 => 0.42242927661807
212 => 0.41064726824976
213 => 0.41965417218391
214 => 0.42443140155377
215 => 0.42886875843038
216 => 0.41797201238246
217 => 0.40379550587911
218 => 0.39930521118025
219 => 0.36521807588378
220 => 0.36344369245868
221 => 0.36244767727285
222 => 0.35616794241532
223 => 0.35123379098144
224 => 0.34730997056793
225 => 0.3370126940509
226 => 0.34048772259567
227 => 0.32407601303617
228 => 0.33457564321707
301 => 0.30838215848552
302 => 0.33019687091355
303 => 0.31832411473224
304 => 0.32629635119124
305 => 0.32626853680926
306 => 0.31158912188837
307 => 0.30312234171358
308 => 0.30851770357297
309 => 0.3143019597706
310 => 0.31524043587809
311 => 0.32273987502285
312 => 0.32483280728824
313 => 0.31849112481443
314 => 0.30783935673504
315 => 0.31031351951892
316 => 0.30307220288373
317 => 0.29038207401379
318 => 0.29949634611657
319 => 0.30260835933872
320 => 0.3039828016651
321 => 0.29150351739266
322 => 0.28758225533582
323 => 0.28549460831933
324 => 0.30622843784361
325 => 0.30736428382892
326 => 0.30155313517562
327 => 0.32782007812427
328 => 0.32187505995847
329 => 0.32851710181449
330 => 0.31008901517923
331 => 0.3107929929054
401 => 0.30206884136908
402 => 0.30695378328141
403 => 0.3035012637868
404 => 0.30655912824883
405 => 0.30839199959932
406 => 0.31711471958822
407 => 0.33029647036433
408 => 0.31581183609895
409 => 0.30950067352574
410 => 0.31341608329084
411 => 0.32384333546194
412 => 0.33964115626239
413 => 0.33028852838775
414 => 0.3344390658206
415 => 0.33534577360511
416 => 0.32844949206346
417 => 0.33989543199958
418 => 0.346029404198
419 => 0.35232159042688
420 => 0.35778491942636
421 => 0.34980835287892
422 => 0.35834442248058
423 => 0.35146585720077
424 => 0.34529507305178
425 => 0.34530443158414
426 => 0.34143340854671
427 => 0.33393281363138
428 => 0.33254958884922
429 => 0.33974529884804
430 => 0.34551557683082
501 => 0.34599084456325
502 => 0.3491855669421
503 => 0.35107617073765
504 => 0.36960665808525
505 => 0.37705977338869
506 => 0.38617330170147
507 => 0.38972353458962
508 => 0.40040846275399
509 => 0.39177951547382
510 => 0.38991258845114
511 => 0.36399444773772
512 => 0.36823854182758
513 => 0.37503374595962
514 => 0.36410649815103
515 => 0.37103732177984
516 => 0.37240561317909
517 => 0.36373519445186
518 => 0.36836643972075
519 => 0.3560672253551
520 => 0.33056455962763
521 => 0.33992382375686
522 => 0.34681539245022
523 => 0.3369802742005
524 => 0.35460934299148
525 => 0.34431080494164
526 => 0.34104666279685
527 => 0.32831208053931
528 => 0.33432231316585
529 => 0.34245123885147
530 => 0.3374285078668
531 => 0.34785142882685
601 => 0.36261306459777
602 => 0.37313308531874
603 => 0.37394068188207
604 => 0.36717701334514
605 => 0.37801583534073
606 => 0.37809478432596
607 => 0.36586854883705
608 => 0.35838004767605
609 => 0.35667864445633
610 => 0.36092908327894
611 => 0.36608990068388
612 => 0.37422707133059
613 => 0.37914419313122
614 => 0.39196543894737
615 => 0.3954345004513
616 => 0.39924594729038
617 => 0.40433921567407
618 => 0.41045499025591
619 => 0.3970740236421
620 => 0.39760567439091
621 => 0.38514550355223
622 => 0.37183002404184
623 => 0.38193481319227
624 => 0.39514548082269
625 => 0.39211493907178
626 => 0.39177394121645
627 => 0.39234740502419
628 => 0.39006247551225
629 => 0.37972782401317
630 => 0.37453782672867
701 => 0.38123424733519
702 => 0.38479309686417
703 => 0.39031256211931
704 => 0.38963217152484
705 => 0.40384972127479
706 => 0.40937423119124
707 => 0.4079608251475
708 => 0.40822092587507
709 => 0.4182227871938
710 => 0.4293469140199
711 => 0.43976612675037
712 => 0.4503649974554
713 => 0.43758764513952
714 => 0.43110009363105
715 => 0.43779359078982
716 => 0.43424192697958
717 => 0.45465084072512
718 => 0.45606390963227
719 => 0.47647134758104
720 => 0.49584043626693
721 => 0.48367505869659
722 => 0.49514646180478
723 => 0.50755371954351
724 => 0.53148933272654
725 => 0.52342866027152
726 => 0.51725431149782
727 => 0.5114195817409
728 => 0.52356072812778
729 => 0.53918011899494
730 => 0.54254438618706
731 => 0.54799578428728
801 => 0.54226430575014
802 => 0.54916724034647
803 => 0.57353763277465
804 => 0.56695253761715
805 => 0.55760064388663
806 => 0.57683872815132
807 => 0.58380091606055
808 => 0.63266519693364
809 => 0.69435837001868
810 => 0.66881699126226
811 => 0.65296263325301
812 => 0.65668878345558
813 => 0.67921704182054
814 => 0.68645240339618
815 => 0.66678419645488
816 => 0.67373133965007
817 => 0.71201078168362
818 => 0.73254647418309
819 => 0.70465624545735
820 => 0.62770821054556
821 => 0.55675860817748
822 => 0.57557763762773
823 => 0.57344414371055
824 => 0.61457062871796
825 => 0.56679548527548
826 => 0.56759989616487
827 => 0.60957683332853
828 => 0.59837810616015
829 => 0.580237602372
830 => 0.55689105393062
831 => 0.51373279984238
901 => 0.47550633063948
902 => 0.55047723977647
903 => 0.54724435784873
904 => 0.5425626657311
905 => 0.55298126492688
906 => 0.60357102525059
907 => 0.60240476753206
908 => 0.59498563095665
909 => 0.60061298065982
910 => 0.57925110076119
911 => 0.58475654361203
912 => 0.55674736939798
913 => 0.56940868590917
914 => 0.58019868099818
915 => 0.58236493226091
916 => 0.58724560696736
917 => 0.5455407759761
918 => 0.56426502070167
919 => 0.57526376025347
920 => 0.52557105482086
921 => 0.57428149524129
922 => 0.54481478765342
923 => 0.53481334452299
924 => 0.54827897010817
925 => 0.54303140272188
926 => 0.53851985243064
927 => 0.53600232984985
928 => 0.54588999913274
929 => 0.54542872754238
930 => 0.52925058148166
1001 => 0.50814684945105
1002 => 0.51522995462691
1003 => 0.51265659611206
1004 => 0.50333041288437
1005 => 0.50961513433217
1006 => 0.48194040170077
1007 => 0.43432746261586
1008 => 0.46578202859912
1009 => 0.46457106202474
1010 => 0.46396043776498
1011 => 0.48759767476105
1012 => 0.48532549982772
1013 => 0.48120148007452
1014 => 0.5032546720275
1015 => 0.49520496030738
1016 => 0.5200122750782
1017 => 0.53635197702278
1018 => 0.53220770007565
1019 => 0.54757526873117
1020 => 0.5153931350643
1021 => 0.52608274894534
1022 => 0.52828586355105
1023 => 0.50298253906203
1024 => 0.48569725574727
1025 => 0.48454452441684
1026 => 0.45457422520782
1027 => 0.47058411713347
1028 => 0.48467215949371
1029 => 0.4779250804794
1030 => 0.47578915682673
1031 => 0.48670112754293
1101 => 0.48754908112229
1102 => 0.46821564965084
1103 => 0.4722356822639
1104 => 0.4889998865352
1105 => 0.47181326732878
1106 => 0.43842247362903
1107 => 0.43014109512765
1108 => 0.42903620657948
1109 => 0.40657645127933
1110 => 0.43069449643807
1111 => 0.42016632340285
1112 => 0.45342469587422
1113 => 0.4344276918868
1114 => 0.43360876901373
1115 => 0.43237084698123
1116 => 0.41303880779358
1117 => 0.41727129576049
1118 => 0.43134073038862
1119 => 0.43636086316747
1120 => 0.4358372221899
1121 => 0.43127178248339
1122 => 0.4333618174022
1123 => 0.42662908671229
1124 => 0.42425161937601
1125 => 0.41674767848881
1126 => 0.4057189584012
1127 => 0.40725256957246
1128 => 0.38540178925732
1129 => 0.37349632443295
1130 => 0.37020104868107
1201 => 0.3657944682266
1202 => 0.37069878366886
1203 => 0.38533988874209
1204 => 0.36767960974006
1205 => 0.33740230011561
1206 => 0.33922201801406
1207 => 0.3433103838528
1208 => 0.33569174115956
1209 => 0.32848133523463
1210 => 0.33475019818763
1211 => 0.32192130296103
1212 => 0.34486069455016
1213 => 0.34424024829458
1214 => 0.35279063491654
1215 => 0.35813736714286
1216 => 0.34581488038632
1217 => 0.3427158082906
1218 => 0.34448118060129
1219 => 0.3153035087209
1220 => 0.35040619663702
1221 => 0.35070976613979
1222 => 0.34811041975468
1223 => 0.36680151739612
1224 => 0.4062455633191
1225 => 0.3914051266098
1226 => 0.38565846096139
1227 => 0.37473404536297
1228 => 0.38929018052025
1229 => 0.38817249645125
1230 => 0.38311790522215
1231 => 0.3800608726755
]
'min_raw' => 0.28549460831933
'max_raw' => 0.73254647418309
'avg_raw' => 0.50902054125121
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.285494'
'max' => '$0.732546'
'avg' => '$0.50902'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.17556084966915
'max_diff' => 0.42579719698807
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.008961349527762
]
1 => [
'year' => 2028
'avg' => 0.015380277287996
]
2 => [
'year' => 2029
'avg' => 0.042016145525526
]
3 => [
'year' => 2030
'avg' => 0.032415393700622
]
4 => [
'year' => 2031
'avg' => 0.031835933809527
]
5 => [
'year' => 2032
'avg' => 0.055818411105202
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.008961349527762
'min' => '$0.008961'
'max_raw' => 0.055818411105202
'max' => '$0.055818'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.055818411105202
]
1 => [
'year' => 2033
'avg' => 0.14357069310211
]
2 => [
'year' => 2034
'avg' => 0.091002004972766
]
3 => [
'year' => 2035
'avg' => 0.10733707355274
]
4 => [
'year' => 2036
'avg' => 0.2083415179226
]
5 => [
'year' => 2037
'avg' => 0.50902054125121
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.055818411105202
'min' => '$0.055818'
'max_raw' => 0.50902054125121
'max' => '$0.50902'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.50902054125121
]
]
]
]
'prediction_2025_max_price' => '$0.015322'
'last_price' => 0.01485688
'sma_50day_nextmonth' => '$0.013641'
'sma_200day_nextmonth' => '$0.01497'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'augmenter'
'sma_200day_date_nextmonth' => '4 févr. 2026'
'sma_50day_date_nextmonth' => '4 févr. 2026'
'daily_sma3' => '$0.01461'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.010747'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.013198'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.01319'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.012227'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.014339'
'daily_sma100_action' => 'BUY'
'daily_sma200' => '$0.01501'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.013794'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.013139'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.013119'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.01309'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.012947'
'daily_ema50_action' => 'BUY'
'daily_ema100' => '$0.013659'
'daily_ema100_action' => 'BUY'
'daily_ema200' => '$0.014846'
'daily_ema200_action' => 'BUY'
'weekly_sma21' => '$0.017733'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.0162068'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.026776'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.04863'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.0155088'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.0160081'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.016483'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.016751'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.018722'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.042886'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.145965'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '52.60'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 76.4
'stoch_rsi_14_action' => 'NEUTRAL'
'momentum_10' => -0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.013785'
'vwma_10_action' => 'BUY'
'hma_9' => '0.012654'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 75.42
'stochastic_fast_14_action' => 'NEUTRAL'
'cci_20' => 19.15
'cci_20_action' => 'NEUTRAL'
'adx_14' => 9.46
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '-0.001196'
'ao_5_34_action' => 'SELL'
'macd_12_26' => -0
'macd_12_26_action' => 'NEUTRAL'
'williams_percent_r_14' => -24.58
'williams_percent_r_14_action' => 'NEUTRAL'
'ultimate_oscillator' => 48.98
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.000865'
'ichimoku_cloud_action' => 'NEUTRAL'
'sell_signals' => 13
'buy_signals' => 20
'sell_pct' => 39.39
'buy_pct' => 60.61
'overall_action' => 'bullish'
'overall_action_label' => 'Haussier'
'overall_action_dir' => 1
'last_updated' => 1767705411
'last_updated_date' => '6 janvier 2026'
]
Prévision du prix de KeyFi pour 2026
La prévision du prix de KeyFi pour 2026 suggère que le prix moyen pourrait varier entre $0.005133 à la baisse et $0.015322 à la hausse. Sur le marché des cryptomonnaies, comparé au prix moyen d'aujourd'hui, KeyFi pourrait potentiellement gagner 3.13% d'ici 2026 si KEYFI atteint l'objectif de prix prévu.
Prévision du prix de KeyFi de 2027 à 2032
La prévision du prix de KEYFI pour 2027-2032 se situe actuellement dans une fourchette de prix comprise entre $0.008961 à la baisse et $0.055818 à la hausse. Compte tenu de la volatilité des prix sur le marché, si KeyFi atteint l'objectif de prix le plus élevé, il pourrait gagner 275.71% d'ici 2032 par rapport au prix actuel.
| Prévision du Prix de KeyFi | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2027 | $0.004941 | $0.008961 | $0.012981 |
| 2028 | $0.008917 | $0.01538 | $0.021842 |
| 2029 | $0.01959 | $0.042016 | $0.064442 |
| 2030 | $0.01666 | $0.032415 | $0.04817 |
| 2031 | $0.019697 | $0.031835 | $0.043974 |
| 2032 | $0.030067 | $0.055818 | $0.081569 |
Prévision du prix de KeyFi de 2032 à 2037
La prévision du prix de KeyFi pour 2032-2037 est actuellement estimée entre $0.055818 à la baisse et $0.50902 à la hausse. Par rapport au prix actuel, KeyFi pourrait potentiellement gagner 3326.16% d'ici 2037 s'il atteint l'objectif de prix le plus élevé. Veuillez noter que ces informations sont à titre général seulement et ne doivent pas être considérées comme un conseil en investissement à long terme.
| Prévision du Prix de KeyFi | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2032 | $0.030067 | $0.055818 | $0.081569 |
| 2033 | $0.069869 | $0.14357 | $0.217271 |
| 2034 | $0.056171 | $0.091002 | $0.125832 |
| 2035 | $0.066412 | $0.107337 | $0.148261 |
| 2036 | $0.109933 | $0.208341 | $0.306749 |
| 2037 | $0.285494 | $0.50902 | $0.732546 |
KeyFi Histogramme des prix potentiels
Prévision du prix de KeyFi basée sur l'analyse technique
Au 6 janvier 2026, le sentiment global de prévision du prix pour KeyFi est Haussier, avec 20 indicateurs techniques montrant des signaux haussiers et 13 indiquant des signaux baissiers. La prévision du prix de KEYFI a été mise à jour pour la dernière fois le 6 janvier 2026.
Moyennes Mobiles Simples sur 50 et 200 jours de KeyFi et Indice de Force Relative sur 14 jours - RSI (14)
Selon nos indicateurs techniques, le SMA sur 200 jours de KeyFi devrait augmenter au cours du prochain mois, atteignant $0.01497 d'ici le 4 févr. 2026. Le SMA à court terme sur 50 jours pour KeyFi devrait atteindre $0.013641 d'ici le 4 févr. 2026.
Le Relative Strength Index (RSI), un oscillateur de momentum, est un outil couramment utilisé pour identifier si une cryptomonnaie est survendue (en dessous de 30) ou surachetée (au-dessus de 70). Actuellement, le RSI est à 52.60, ce qui suggère que le marché de KEYFI est dans un état NEUTRAL.
Moyennes Mobiles et Oscillateurs Populaires de KEYFI pour le Samedi 19 Octobre 2024
Les moyennes mobiles (MA) sont des indicateurs largement utilisés sur les marchés financiers, conçus pour lisser les mouvements de prix sur une période donnée. En tant qu'indicateurs retardés, ils sont basés sur des données historiques de prix. Le tableau ci-dessous met en évidence deux types : la moyenne mobile simple (SMA) et la moyenne mobile exponentielle (EMA).
Moyenne Mobile Simple Quotidienne (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 3 | $0.01461 | BUY |
| SMA 5 | $0.010747 | BUY |
| SMA 10 | $0.013198 | BUY |
| SMA 21 | $0.01319 | BUY |
| SMA 50 | $0.012227 | BUY |
| SMA 100 | $0.014339 | BUY |
| SMA 200 | $0.01501 | SELL |
Moyenne Mobile Exponentielle Quotidienne (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 3 | $0.013794 | BUY |
| EMA 5 | $0.013139 | BUY |
| EMA 10 | $0.013119 | BUY |
| EMA 21 | $0.01309 | BUY |
| EMA 50 | $0.012947 | BUY |
| EMA 100 | $0.013659 | BUY |
| EMA 200 | $0.014846 | BUY |
Moyenne Mobile Simple Hebdomadaire (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 21 | $0.017733 | SELL |
| SMA 50 | $0.0162068 | SELL |
| SMA 100 | $0.026776 | SELL |
| SMA 200 | $0.04863 | SELL |
Moyenne Mobile Exponentielle Hebdomadaire (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 21 | $0.016751 | SELL |
| EMA 50 | $0.018722 | SELL |
| EMA 100 | $0.042886 | SELL |
| EMA 200 | $0.145965 | SELL |
Oscillateurs de KeyFi
Un oscillateur est un outil d'analyse technique qui établit des limites hautes et basses entre deux extrêmes, créant un indicateur de tendance qui fluctue à l'intérieur de ces limites. Les traders utilisent cet indicateur pour identifier les conditions de surachat ou de survente à court terme.
| Période | Valeur | Action |
|---|---|---|
| RSI (14) | 52.60 | NEUTRAL |
| Stoch RSI (14) | 76.4 | NEUTRAL |
| Stochastique Rapide (14) | 75.42 | NEUTRAL |
| Indice de Canal des Matières Premières (20) | 19.15 | NEUTRAL |
| Indice Directionnel Moyen (14) | 9.46 | NEUTRAL |
| Oscillateur Impressionnant (5, 34) | -0.001196 | SELL |
| Momentum (10) | -0 | BUY |
| MACD (12, 26) | -0 | NEUTRAL |
| Plage de Pourcentage de Williams (14) | -24.58 | NEUTRAL |
| Oscillateur Ultime (7, 14, 28) | 48.98 | NEUTRAL |
| VWMA (10) | 0.013785 | BUY |
| Moyenne Mobile de Hull (9) | 0.012654 | BUY |
| Nuage Ichimoku B/L (9, 26, 52, 26) | -0.000865 | NEUTRAL |
Prévision du cours de KeyFi basée sur les flux monétaires mondiaux
Définitions des flux monétaires mondiaux utilisés pour la prédiction du cours de KeyFi
M0 : le total de toutes les devises physiques, plus les comptes à la banque centrale qui peuvent être échangés contre des devises physiques.
M1 : M0 plus le montant des comptes à vue, y compris les comptes de "chèques" et les comptes "courants".
M2 : M1 plus la plupart des comptes d'épargne, comptes du marché monétaire et comptes de certificats de dépôt (CD) de moins de 100 000 $.
Prédictions du cours de KeyFi par des sociétés Internet ou des niches technologiques
| Comparaison | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Action Facebook | $0.020876 | $0.029334 | $0.04122 | $0.057921 | $0.081389 | $0.114365 |
| Action Amazon.com | $0.030999 | $0.064682 | $0.134964 | $0.281611 | $0.587599 | $1.22 |
| Action Apple | $0.021073 | $0.02989 | $0.042398 | $0.060138 | $0.0853016 | $0.120993 |
| Action Netflix | $0.023441 | $0.036987 | $0.05836 | $0.092083 | $0.145293 | $0.22925 |
| Action Google | $0.019239 | $0.024915 | $0.032265 | $0.041783 | $0.0541089 | $0.07007 |
| Action Tesla | $0.033679 | $0.076348 | $0.173076 | $0.392351 | $0.889432 | $2.01 |
| Action Kodak | $0.011141 | $0.008354 | $0.006265 | $0.004698 | $0.003523 | $0.002641 |
| Action Nokia | $0.009842 | $0.006519 | $0.004319 | $0.002861 | $0.001895 | $0.001255 |
Ce calcul montre la valeur potentielle des cryptomonnaies si l'on suppose que leur capitalisation se comportera comme celle de certaines sociétés Internet ou niches technologiques. En extrapolant les données, vous pourrez obtenir une potentielle image des cours futurs pour 2024, 2025, 2026, 2027, 2028, 2029 et 2030.
Aperçu des prévisions relatives à KeyFi
Vous vous posez peut-être des questions telles que : "Devrais-je investir dans KeyFi maintenant ?", "Devrais-je acheter KEYFI aujourd'hui ?", " KeyFi sera-t-il un bon ou un mauvais investissement à court ou à long terme ?".
Nous mettons régulièrement à jour les prévisions de KeyFi avec de nouvelles valeurs. Regardez nos prévisions similaires. Nous faisons une prévision des cours futurs pour une grande quantité de devises numériques comme KeyFi en utilisant des méthodes d'analyse technique.
Si vous souhaitez trouver des cryptomonnaies ayant un bon rendement, vous devriez consulter un maximum d'informations disponibles à propos de KeyFi afin de prendre une décision responsable concernant cet investissement.
Le cours de KeyFi est de $0.01485 USD actuellement, mais ce cours peut subir une hausse ou une baisse, ce qui pourrait causer la perte de votre investissement, car les cryptomonnaies sont des actifs à haut risque.
Prévision du cours de KeyFi basée sur le modèle de croissance du Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si KeyFi présente 1 % de la précédente croissance annuelle moyenne du Bitcoin | $0.015243 | $0.015639 | $0.016045 | $0.016462 |
| Si KeyFi présente 2 % de la précédente croissance annuelle moyenne du Bitcoin | $0.015629 | $0.016441 | $0.017296 | $0.018195 |
| Si KeyFi présente 5 % de la précédente croissance annuelle moyenne du Bitcoin | $0.016787 | $0.018969 | $0.021435 | $0.02422 |
| Si KeyFi présente 10 % de la précédente croissance annuelle moyenne du Bitcoin | $0.018718 | $0.023584 | $0.029714 | $0.037438 |
| Si KeyFi présente 20 % de la précédente croissance annuelle moyenne du Bitcoin | $0.02258 | $0.034319 | $0.05216 | $0.079276 |
| Si KeyFi présente 50 % de la précédente croissance annuelle moyenne du Bitcoin | $0.034165 | $0.078569 | $0.180683 | $0.415511 |
| Si KeyFi présente 100 % de la précédente croissance annuelle moyenne du Bitcoin | $0.053474 | $0.192472 | $0.69277 | $2.49 |
Boîte à questions
Est-ce que KEYFI est un bon investissement ?
La décision d'acquérir KeyFi dépend entièrement de votre tolérance individuelle au risque. Comme vous pouvez le discerner, la valeur de KeyFi a connu une hausse de 0.8602% au cours des 24 heures précédentes, et KeyFi a enregistré une déclin de sur une période de 30 jours précédents. Par conséquent, la détermination de si investir ou non dans KeyFi dépendra de la mesure dans laquelle cet investissement s'aligne avec vos aspirations de trading.
Est-ce que KeyFi peut monter ?
Il semble que la valeur moyenne de KeyFi pourrait potentiellement s'envoler jusqu'à $0.015322 pour la fin de cette année. En regardant les perspectives de KeyFi sur une période de cinq ans plus longue, la monnaie numérique pourrait potentiellement croître jusqu'à $0.04817. Cependant, compte tenu de l'imprévisibilité du marché, il est essentiel de mener des recherches approfondies avant d'investir des fonds dans un projet, un réseau ou un actif particulier.
Quel sera le prix de KeyFi la semaine prochaine ?
Basé sur notre nouveau pronostic expérimental de KeyFi, le prix de KeyFi va augmenter de 0.86% durant la prochaine semaine et atteindre $0.014984 d'ici 13 janvier 2026.
Quel sera le prix de KeyFi le mois prochain ?
Basé sur notre nouveau pronostic expérimental de KeyFi, le prix de KeyFi va diminuer de -11.62% durant le prochain mois et atteindre $0.01313 d'ici 5 février 2026.
Jusqu'où le prix de KeyFi peut-il monter cette année en 2026 ?
Selon notre prédiction la plus récente sur la valeur de KeyFi en 2026, KEYFI devrait fluctuer dans la fourchette de $0.005133 et $0.015322. Cependant, il est crucial de garder à l'esprit que le marché des cryptomonnaies est exceptionnellement instable, et cette prévision de prix de KeyFi ne prend pas en compte les fluctuations de prix soudaines et extrêmes.
Où sera KeyFi dans 5 ans ?
L'avenir de KeyFi semble suivre une tendance haussière, avec un prix maximum de $0.04817 prévue après une période de cinq ans. Selon la prévision de KeyFi pour 2030, la valeur de KeyFi pourrait potentiellement atteindre son point le plus élevé d'environ $0.04817, tandis que son point le plus bas devrait être autour de $0.01666.
Combien vaudra KeyFi en 2026 ?
Basé sur notre nouvelle simulation expérimentale de prédiction de prix de KeyFi, il est attendu que la valeur de KEYFI en 2026 augmente de 3.13% jusqu'à $0.015322 si le meilleur scénario se produit. Le prix sera entre $0.015322 et $0.005133 durant 2026.
Combien vaudra KeyFi en 2027 ?
Selon notre dernière simulation expérimentale pour la prédiction de prix de KeyFi, le valeur de KEYFI pourrait diminuer de -12.62% jusqu'à $0.012981 en 2027, en supposant les conditions les plus favorables. Il est prévu que le prix fluctue entre $0.012981 et $0.004941 tout au long de l'année.
Combien vaudra KeyFi en 2028 ?
Notre nouveau modèle expérimental de prédiction de prix de KeyFi suggère que la valeur de KEYFI en 2028 pourrait augmenter de 47.02%, atteignant $0.021842 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.021842 et $0.008917 durant l'année.
Combien vaudra KeyFi en 2029 ?
Basé sur notre modèle de prévision expérimental, la valeur de KeyFi pourrait connaître un 333.75% croissance en 2029, atteignant potentiellement $0.064442 sous des conditions optimales. Le range de prix prévu pour 2029 se situe entre $0.064442 et $0.01959.
Combien vaudra KeyFi en 2030 ?
En utilisant notre nouvelle simulation expérimentale pour les prédictions de prix de KeyFi, il est prévu que la valeur de KEYFI en 2030 augmente de 224.23%, atteignant $0.04817 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.04817 et $0.01666 au cours de 2030.
Combien vaudra KeyFi en 2031 ?
Notre simulation expérimentale indique que le prix de KeyFi pourrait augmenter de 195.98% en 2031, atteignant potentiellement $0.043974 dans des conditions idéales. Il est probable que le prix fluctue entre $0.043974 et $0.019697 durant l'année.
Combien vaudra KeyFi en 2032 ?
Basé sur les résultats de notre dernière prédiction expérimentale de prix de KeyFi, KEYFI pourrait connaître une 449.04% hausse en valeur, atteignant $0.081569 si le scénario le plus positif se réalise en 2032. Il est prévu que le prix reste dans une fourchette de $0.081569 et $0.030067 tout au long de l'année.
Combien vaudra KeyFi en 2033 ?
Selon notre prédiction expérimentale de prix de KeyFi, la valeur de KEYFI est anticipée à augmenter de 1362.43% en 2033, avec le prix potentiel le plus élevé étant $0.217271. Tout au long de l'année, le prix de KEYFI pourrait osciller entre $0.217271 et $0.069869.
Combien vaudra KeyFi en 2034 ?
Les résultats de notre nouvelle simulation de prédiction de prix de KeyFi suggèrent que KEYFI pourrait augmenter de 746.96% en 2034, atteignant potentiellement $0.125832 dans les meilleures circonstances. La fourchette de prix prévue pour l'année est entre $0.125832 et $0.056171.
Combien vaudra KeyFi en 2035 ?
Basé sur notre prédiction expérimentale pour le prix de KeyFi, KEYFI pourrait augmenter de 897.93%, avec la valeur potentiellement atteignant $0.148261 en 2035. La fourchette de prix attendue pour l'année se situe entre $0.148261 et $0.066412.
Combien vaudra KeyFi en 2036 ?
Notre récente simulation de prédiction de prix de KeyFi suggère que la valeur de KEYFI pourrait augmenter de 1964.7% en 2036, pouvant atteindre $0.306749 si les conditions sont optimales. La fourchette de prix attendue pour 2036 est entre $0.306749 et $0.109933.
Combien vaudra KeyFi en 2037 ?
Selon la simulation expérimentale, la valeur de KeyFi pourrait augmenter de 4830.69% en 2037, avec un maximum de $0.732546 sous des conditions favorables. Il est prévu que le prix chute entre $0.732546 et $0.285494 au cours de l'année.
Prévisions liées
Prévision du cours de IDRX
Prévision du cours de POSTHUMAN
Prévision du cours de Rabbit Finance
Prévision du cours de Marginswap
Prévision du cours de CluCoin
Prévision du cours de GATEWAY TO MARS
Prévision du cours de NIRVANA
Prévision du cours de Evil Coin
Prévision du cours de BabyUSDT
Prévision du cours de ShopNext Loyalty Token
Prévision du cours de Alpaca
Prévision du cours de Creaticles
Prévision du cours de SOHOTRN
Prévision du cours de Pawtocol
Prévision du cours de BitScreener
Prévision du cours de TurtleCoin
Prévision du cours de Snowswap
Prévision du cours de Lithium
Prévision du cours de Meta Doge
Prévision du cours de Butter
Prévision du cours de APE
Prévision du cours de TEN
Prévision du cours de DeFiner
Prévision du cours de TosDis
Prévision du cours de DinoSwap
Comment lire et prédire les mouvements de prix de KeyFi ?
Les traders de KeyFi utilisent des indicateurs et des modèles graphiques pour prédire la direction du marché. Ils identifient également des niveaux clés de support et de résistance pour évaluer quand une tendance baissière pourrait ralentir ou une tendance haussière pourrait s'arrêter.
Indicateurs de prédiction du prix de KeyFi
Les moyennes mobiles sont des outils populaires pour la prédiction du prix de KeyFi. Une moyenne mobile simple (SMA) calcule le prix de clôture moyen de KEYFI sur une période spécifique, comme une SMA de 12 jours. Une moyenne mobile exponentielle (EMA) donne plus de poids aux prix récents, réagissant plus rapidement aux changements de prix.
Les moyennes mobiles couramment utilisées sur le marché des cryptomonnaies incluent les moyennes sur 50 jours, 100 jours et 200 jours, qui aident à identifier les niveaux clés de résistance et de support. Un mouvement de prix de KEYFI au-dessus de ces moyennes est considéré comme haussier, tandis qu'une chute en dessous indique une faiblesse.
Les traders utilisent également le RSI et les niveaux de retracement de Fibonacci pour évaluer la direction future de KEYFI.
Comment lire les graphiques de KeyFi et prédire les mouvements de prix ?
La plupart des traders préfèrent les graphiques en chandeliers aux simples graphiques linéaires parce qu'ils fournissent des informations plus détaillées. Les chandeliers peuvent représenter l'action des prix de KeyFi dans différentes périodes, comme 5 minutes pour les tendances à court terme et hebdomadaire pour les tendances à long terme. Les options populaires incluent les graphiques de 1 heure, 4 heures et 1 jour.
Par exemple, un graphique en chandeliers de 1 heure montre les prix d'ouverture, de clôture, les plus hauts et les plus bas de KEYFI au sein de chaque heure. La couleur du chandelier est cruciale : le vert indique que le prix a clôturé plus haut qu'il n'a ouvert, tandis que le rouge signifie le contraire. Certains graphiques utilisent des chandeliers creux et pleins pour transmettre la même information.
Qu'est-ce qui affecte le prix de KeyFi ?
L'action du prix de KeyFi est déterminée par l'offre et la demande, influencée par des facteurs tels que les réductions de récompenses de bloc, les hard forks et les mises à jour de protocole. Les événements du monde réel, tels que les réglementations, l'adoption par les entreprises et les gouvernements et les piratages d'échanges de cryptomonnaies, impactent également le prix de KEYFI. La capitalisation boursière de KeyFi peut changer rapidement.
Les traders surveillent souvent l'activité des « baleines » de KEYFI, de grands détenteurs de KeyFi, car leurs actions peuvent influencer significativement les mouvements de prix sur le marché relativement petit de KeyFi.
Modèles de prédiction de prix haussiers et baissiers
Les traders identifient souvent des modèles de chandeliers pour obtenir un avantage dans les prédictions de prix des cryptomonnaies. Certaines formations indiquent des tendances haussières, tandis que d'autres suggèrent des mouvements baissiers.
Modèles de chandeliers haussiers couramment suivis :
- Marteau
- Englobante haussière
- Ligne pénétrante
- Étoile du matin
- Trois soldats blancs
Modèles de chandeliers baissiers courants :
- Harami baissier
- Nuage sombre
- Étoile du soir
- Étoile filante
- Pendu


