Prédiction du prix de The Graph jusqu'à $0.043448 d'ici 2026
| Année | Prix min. | Prix max. |
|---|---|---|
| 2026 | $0.014555 | $0.043448 |
| 2027 | $0.014012 | $0.0368098 |
| 2028 | $0.025287 | $0.061937 |
| 2029 | $0.055549 | $0.182733 |
| 2030 | $0.047242 | $0.136592 |
| 2031 | $0.055855 | $0.124693 |
| 2032 | $0.085259 | $0.231299 |
| 2033 | $0.198123 | $0.616098 |
| 2034 | $0.159282 | $0.356811 |
| 2035 | $0.18832 | $0.420412 |
Calculateur de profit d’investissement
Si vous ouvrez une position short de $10,000.00 sur The Graph aujourd’hui et la fermez le Apr 06, 2026, notre prévision indique que vous pourriez gagner environ $3,954.43, soit un rendement de 39.54% sur les 90 prochains jours.
Prévision du prix à long terme de The Graph pour 2027, 2028, 2029, 2030, 2031, 2032 et 2037
[
'name' => 'The Graph'
'name_with_ticker' => 'The Graph <small>GRT</small>'
'name_lang' => 'The Graph'
'name_lang_with_ticker' => 'The Graph <small>GRT</small>'
'name_with_lang' => 'The Graph'
'name_with_lang_with_ticker' => 'The Graph <small>GRT</small>'
'image' => '/uploads/coins/the-graph.png?1717092383'
'price_for_sd' => 0.04212
'ticker' => 'GRT'
'marketcap' => '$449.18M'
'low24h' => '$0.03984'
'high24h' => '$0.04213'
'volume24h' => '$28.44M'
'current_supply' => '10.66B'
'max_supply' => '10.8B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '0.03 USD 1.4x'
'price' => '$0.04212'
'change_24h_pct' => '5.3431%'
'ath_price' => '$2.84'
'ath_days' => 1789
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '12 févr. 2021'
'ath_pct' => '-98.52%'
'fdv' => '$454.9M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => '-73.03%'
'change_30d_pct_is_increased' => false
'max_price' => '$2.07'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.042488'
'next_week_prediction_price_date' => '13 janvier 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.037233'
'next_month_prediction_price_date' => '5 février 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.014555'
'current_year_max_price_prediction' => '$0.043448'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.047242'
'grand_prediction_max_price' => '$0.136592'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.042926711020462
107 => 0.043086983777016
108 => 0.043448086481263
109 => 0.040362503409893
110 => 0.041747839620978
111 => 0.042561594856542
112 => 0.038885019097596
113 => 0.04248892077488
114 => 0.040308790273423
115 => 0.039568821236767
116 => 0.040565092061117
117 => 0.040176844351963
118 => 0.039843051770302
119 => 0.039656789774451
120 => 0.040388341113455
121 => 0.040354213369098
122 => 0.039157253390491
123 => 0.037595867892729
124 => 0.03811992011651
125 => 0.037929527030595
126 => 0.03723951792604
127 => 0.037704500750493
128 => 0.035656951714026
129 => 0.032134250019124
130 => 0.034461454662048
131 => 0.034371859814807
201 => 0.034326682030025
202 => 0.03607551199997
203 => 0.035907402350732
204 => 0.03560228169123
205 => 0.03723391414585
206 => 0.03663834635136
207 => 0.038473745960557
208 => 0.039682658849379
209 => 0.039376039436538
210 => 0.040513027851658
211 => 0.038131993221309
212 => 0.038922877414982
213 => 0.03908587755118
214 => 0.037213780054632
215 => 0.035934907168394
216 => 0.035849620927101
217 => 0.033632231581904
218 => 0.034816743071967
219 => 0.035859064164806
220 => 0.03535987324872
221 => 0.035201844317592
222 => 0.036009179854433
223 => 0.036071916740007
224 => 0.034641509100367
225 => 0.034938936143767
226 => 0.036179256357876
227 => 0.034907683256705
228 => 0.032437224431416
301 => 0.031824516485978
302 => 0.031742769951609
303 => 0.030081057409103
304 => 0.03186546056067
305 => 0.03108652076598
306 => 0.033547182244274
307 => 0.032141665604664
308 => 0.032081076591501
309 => 0.031989487411629
310 => 0.030559182781814
311 => 0.030872328595143
312 => 0.0319132729721
313 => 0.032284693652876
314 => 0.032245951432911
315 => 0.031908171776768
316 => 0.032062805573638
317 => 0.031564676235931
318 => 0.031388776399121
319 => 0.030833588129087
320 => 0.030017614746811
321 => 0.030131080850272
322 => 0.028514424068933
323 => 0.02763358365199
324 => 0.027389778633871
325 => 0.027063752374328
326 => 0.027426604167409
327 => 0.028509844283394
328 => 0.027203226881305
329 => 0.024963122993979
330 => 0.025097757054558
331 => 0.025400239815469
401 => 0.024836565191635
402 => 0.024303094465801
403 => 0.024766903980066
404 => 0.023817742432238
405 => 0.025514941453851
406 => 0.025469036976662
407 => 0.026101647817836
408 => 0.026497232359304
409 => 0.025585538063237
410 => 0.02535624941326
411 => 0.025486862648875
412 => 0.023328116808735
413 => 0.02592523222724
414 => 0.025947692189227
415 => 0.025755376358858
416 => 0.027138260142269
417 => 0.030056576257536
418 => 0.028958588345979
419 => 0.028533414239763
420 => 0.027725157953048
421 => 0.028802111465587
422 => 0.028719418238916
423 => 0.028345448107434
424 => 0.028119269805056
425 => 0.028536010262193
426 => 0.028067631050555
427 => 0.027983497273945
428 => 0.027473738126138
429 => 0.027291777302935
430 => 0.027157060753504
501 => 0.027008751069556
502 => 0.027335885275876
503 => 0.026594556126267
504 => 0.025700585845231
505 => 0.025626261889255
506 => 0.025831476866333
507 => 0.025740684515434
508 => 0.025625827210409
509 => 0.025406533335591
510 => 0.025341473527405
511 => 0.025552886341478
512 => 0.025314213600522
513 => 0.02566638823098
514 => 0.025570616218207
515 => 0.025035641540124
516 => 0.024368865018239
517 => 0.024362929308583
518 => 0.024219273400675
519 => 0.024036306003145
520 => 0.023985408658879
521 => 0.024727843236444
522 => 0.026264660592808
523 => 0.025962946572831
524 => 0.026180965873161
525 => 0.027253405049151
526 => 0.027594301213827
527 => 0.027352341190708
528 => 0.027021131387619
529 => 0.027035702938036
530 => 0.028167547099218
531 => 0.028238138831203
601 => 0.028416501364172
602 => 0.028645747624283
603 => 0.027391382820094
604 => 0.026976622468562
605 => 0.026780086003978
606 => 0.026174829762244
607 => 0.026827546728206
608 => 0.026447236504267
609 => 0.026498553346724
610 => 0.026465133185753
611 => 0.026483382853504
612 => 0.025514467052136
613 => 0.025867489045439
614 => 0.025280521511831
615 => 0.024494637874527
616 => 0.024492003317008
617 => 0.024684347223878
618 => 0.024569933541654
619 => 0.024262049264634
620 => 0.024305782773012
621 => 0.023922631221062
622 => 0.024352304308601
623 => 0.024364625795308
624 => 0.024199178252154
625 => 0.024861148926968
626 => 0.025132358852557
627 => 0.025023457735423
628 => 0.02512471805987
629 => 0.025975484152519
630 => 0.026114196147147
701 => 0.026175802852361
702 => 0.026093258028699
703 => 0.025140268502271
704 => 0.025182537640192
705 => 0.024872394752138
706 => 0.024610356693785
707 => 0.02462083684191
708 => 0.024755558466467
709 => 0.025343895702225
710 => 0.026582016730504
711 => 0.026629002518472
712 => 0.026685950664162
713 => 0.026454313935796
714 => 0.026384450082056
715 => 0.02647661853853
716 => 0.026941591699441
717 => 0.028137628908284
718 => 0.027714869478039
719 => 0.027371159480608
720 => 0.027672685811905
721 => 0.027626268196644
722 => 0.027234456810798
723 => 0.027223459970166
724 => 0.02647144865105
725 => 0.026193447188842
726 => 0.025961128358973
727 => 0.025707442261592
728 => 0.025557048639429
729 => 0.02578812159575
730 => 0.025840970714835
731 => 0.025335725657376
801 => 0.025266862622989
802 => 0.025679456643382
803 => 0.025497889398063
804 => 0.025684635812525
805 => 0.025727962582561
806 => 0.025720985974685
807 => 0.025531408917706
808 => 0.025652239680555
809 => 0.025366438905033
810 => 0.025055673487542
811 => 0.024857424512552
812 => 0.024684425987962
813 => 0.024780415624138
814 => 0.024438230098187
815 => 0.024328758061602
816 => 0.02561130493688
817 => 0.026558736103351
818 => 0.026544960078967
819 => 0.026461102073432
820 => 0.026336506087184
821 => 0.026932476726986
822 => 0.026724852472888
823 => 0.026875916465331
824 => 0.026914368591544
825 => 0.02703075159655
826 => 0.027072348517382
827 => 0.026946613731708
828 => 0.026524632433773
829 => 0.025473095160099
830 => 0.024983601720632
831 => 0.02482206073245
901 => 0.024827932440561
902 => 0.024665964518417
903 => 0.024713671330381
904 => 0.024649374036117
905 => 0.024527610515967
906 => 0.024772897069889
907 => 0.024801164060226
908 => 0.024743911247585
909 => 0.024757396357544
910 => 0.024283367521869
911 => 0.024319406904709
912 => 0.024118735041394
913 => 0.024081111486158
914 => 0.023573830490194
915 => 0.022675108674289
916 => 0.023173087801338
917 => 0.022571599042324
918 => 0.022343806135244
919 => 0.023422142328297
920 => 0.023313907282905
921 => 0.023128655933837
922 => 0.022854630578801
923 => 0.02275299190907
924 => 0.022135467526682
925 => 0.022098980891806
926 => 0.022405042650279
927 => 0.022263805679686
928 => 0.02206545548235
929 => 0.021347051174035
930 => 0.020539326875998
1001 => 0.020563706995382
1002 => 0.020820629066343
1003 => 0.021567664638323
1004 => 0.021275784916504
1005 => 0.02106402282939
1006 => 0.021024366156019
1007 => 0.021520752450132
1008 => 0.022223243052446
1009 => 0.02255283592571
1010 => 0.022226219398189
1011 => 0.021851019917656
1012 => 0.021873856571529
1013 => 0.022025778598746
1014 => 0.022041743455744
1015 => 0.021797527165047
1016 => 0.021866272620373
1017 => 0.021761841987517
1018 => 0.02112095138644
1019 => 0.021109359707752
1020 => 0.020952074818491
1021 => 0.020947312294553
1022 => 0.020679731461365
1023 => 0.020642295053103
1024 => 0.020110997067813
1025 => 0.02046069901065
1026 => 0.020226137307571
1027 => 0.01987259749352
1028 => 0.01981164709632
1029 => 0.01980981485378
1030 => 0.020172821192755
1031 => 0.020456457070226
1101 => 0.020230217608821
1102 => 0.020178707268926
1103 => 0.020728702936959
1104 => 0.02065871097488
1105 => 0.02059809838712
1106 => 0.022160342723993
1107 => 0.020923704427912
1108 => 0.020384459545974
1109 => 0.019717041604751
1110 => 0.019934356251827
1111 => 0.019980147640982
1112 => 0.018375127803466
1113 => 0.017723971455279
1114 => 0.01750051913489
1115 => 0.017371919165354
1116 => 0.017430523786328
1117 => 0.016844406699938
1118 => 0.017238287075474
1119 => 0.016730759221904
1120 => 0.016645670525614
1121 => 0.017553193198434
1122 => 0.017679469676687
1123 => 0.017140734989435
1124 => 0.017486689871874
1125 => 0.017361241822369
1126 => 0.01673945933026
1127 => 0.016715711812584
1128 => 0.016403723214755
1129 => 0.015915521472049
1130 => 0.015692400175431
1201 => 0.015576196666924
1202 => 0.015624144499295
1203 => 0.01559990060802
1204 => 0.015441692818253
1205 => 0.015608968893339
1206 => 0.015181647644742
1207 => 0.015011484880389
1208 => 0.014934626307477
1209 => 0.014555354103654
1210 => 0.015158944843051
1211 => 0.015277859822548
1212 => 0.01539700910129
1213 => 0.016434122226065
1214 => 0.016382310985203
1215 => 0.016850659369502
1216 => 0.016832460212526
1217 => 0.016698879666583
1218 => 0.016135325316182
1219 => 0.016359948035861
1220 => 0.01566859421881
1221 => 0.016186603506035
1222 => 0.01595020569993
1223 => 0.016106677169996
1224 => 0.015825327358354
1225 => 0.015981037960766
1226 => 0.015306058975642
1227 => 0.014675773096544
1228 => 0.014929418533485
1229 => 0.015205160131314
1230 => 0.015803038173059
1231 => 0.015446946943782
]
'min_raw' => 0.014555354103654
'max_raw' => 0.043448086481263
'avg_raw' => 0.029001720292458
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.014555'
'max' => '$0.043448'
'avg' => '$0.0290017'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.027573045896346
'max_diff' => 0.0013196864812626
'year' => 2026
]
1 => [
'items' => [
101 => 0.01557501081513
102 => 0.015146018283747
103 => 0.014260884155846
104 => 0.014265893918884
105 => 0.014129735317002
106 => 0.014012074405494
107 => 0.01548784830503
108 => 0.01530431249209
109 => 0.015011872194743
110 => 0.015403315153858
111 => 0.015506818885283
112 => 0.015509765491007
113 => 0.015795352169372
114 => 0.015947769830809
115 => 0.015974634104254
116 => 0.016424010913169
117 => 0.016574636092094
118 => 0.017195039886814
119 => 0.015934838257119
120 => 0.015908885233855
121 => 0.015408823559042
122 => 0.015091676539213
123 => 0.01543053888682
124 => 0.015730724667477
125 => 0.015418151168011
126 => 0.015458966668255
127 => 0.015039362283415
128 => 0.015189351106774
129 => 0.015318541687127
130 => 0.015247210242127
131 => 0.015140423616482
201 => 0.015706112856737
202 => 0.015674194452848
203 => 0.016200977278513
204 => 0.01661164216172
205 => 0.017347627047556
206 => 0.016579588451426
207 => 0.016551598072307
208 => 0.016825208518001
209 => 0.016574594203761
210 => 0.016732973799449
211 => 0.017322109646152
212 => 0.017334557158245
213 => 0.017126045292978
214 => 0.017113357327027
215 => 0.017153404311621
216 => 0.017387960751235
217 => 0.017305999524042
218 => 0.017400847131154
219 => 0.017519455516205
220 => 0.018010070085689
221 => 0.018128355597424
222 => 0.017840983127914
223 => 0.017866929644338
224 => 0.017759444452191
225 => 0.017655615103362
226 => 0.01788900831647
227 => 0.01831553900078
228 => 0.01831288557553
301 => 0.018411832403718
302 => 0.01847347545796
303 => 0.018208858343682
304 => 0.018036602332528
305 => 0.018102656248139
306 => 0.018208277897669
307 => 0.01806840457073
308 => 0.017205041601235
309 => 0.01746693077434
310 => 0.017423339610209
311 => 0.01736126049162
312 => 0.017624592080306
313 => 0.017599193106175
314 => 0.016838395222057
315 => 0.016887099034195
316 => 0.016841357062185
317 => 0.016989158731678
318 => 0.016566612428564
319 => 0.016696584825509
320 => 0.016778102294457
321 => 0.016826116709915
322 => 0.016999577702339
323 => 0.016979224056957
324 => 0.016998312491164
325 => 0.017255509350925
326 => 0.018556322808293
327 => 0.018627123214695
328 => 0.018278476119542
329 => 0.018417753757296
330 => 0.01815037114948
331 => 0.018329866885414
401 => 0.018452673309243
402 => 0.017897734694277
403 => 0.017864874831021
404 => 0.017596388640069
405 => 0.017740657911251
406 => 0.017511115127473
407 => 0.017567436897546
408 => 0.017409956318377
409 => 0.017693390006811
410 => 0.018010312911623
411 => 0.018090380153043
412 => 0.017879757711981
413 => 0.017727253183957
414 => 0.017459505470862
415 => 0.017904775884887
416 => 0.018034986523318
417 => 0.017904091943835
418 => 0.017873760809666
419 => 0.017816283365223
420 => 0.017885954921218
421 => 0.018034277368217
422 => 0.017964331241298
423 => 0.01801053189042
424 => 0.017834462657869
425 => 0.018208945942957
426 => 0.018803715523988
427 => 0.018805627805446
428 => 0.018735681301491
429 => 0.018707060699092
430 => 0.018778830056858
501 => 0.018817761989313
502 => 0.019049850932079
503 => 0.019298891614499
504 => 0.020461055814388
505 => 0.020134724757534
506 => 0.021165865973134
507 => 0.021981364797744
508 => 0.022225897237803
509 => 0.022000938899089
510 => 0.02123136857436
511 => 0.0211936097828
512 => 0.022343672752156
513 => 0.022018727287092
514 => 0.02198007605799
515 => 0.021568892282633
516 => 0.02181195281997
517 => 0.021758791914971
518 => 0.021674874825711
519 => 0.022138617399207
520 => 0.023006702098207
521 => 0.022871402957021
522 => 0.022770408424472
523 => 0.02232787978191
524 => 0.022594380867083
525 => 0.022499484935145
526 => 0.022907218081197
527 => 0.022665685997871
528 => 0.022016265505601
529 => 0.022119687859513
530 => 0.022104055778776
531 => 0.02242576289264
601 => 0.02232919440232
602 => 0.022085199231172
603 => 0.023003735079078
604 => 0.02294409047028
605 => 0.0230286528889
606 => 0.023065879880756
607 => 0.02362497646496
608 => 0.023854020446413
609 => 0.023906017440182
610 => 0.024123591507665
611 => 0.023900603999178
612 => 0.024792713020526
613 => 0.025385913463719
614 => 0.026074946304303
615 => 0.027081808478963
616 => 0.027460397970632
617 => 0.027392009167585
618 => 0.028155400577253
619 => 0.02952719797119
620 => 0.027669288642088
621 => 0.029625671676989
622 => 0.029006303395668
623 => 0.027537792342614
624 => 0.027443237543406
625 => 0.028437730278297
626 => 0.030643419447908
627 => 0.03009091932764
628 => 0.030644323140177
629 => 0.029998748197079
630 => 0.029966689959821
701 => 0.030612969006141
702 => 0.032123035224706
703 => 0.031405659368251
704 => 0.030377125170248
705 => 0.031136578816289
706 => 0.030478669783971
707 => 0.028996216597016
708 => 0.030090496841211
709 => 0.029358782805224
710 => 0.029572335860983
711 => 0.031110289930377
712 => 0.030925239227826
713 => 0.031164711972161
714 => 0.030742048846503
715 => 0.03034721483928
716 => 0.029610227844042
717 => 0.029392042327771
718 => 0.029452340954976
719 => 0.029392012446766
720 => 0.02897967499619
721 => 0.028890630762997
722 => 0.028742219806558
723 => 0.028788218567715
724 => 0.028509162550453
725 => 0.029035798910941
726 => 0.029133547260151
727 => 0.029516789285487
728 => 0.029556578743914
729 => 0.030623902329364
730 => 0.030036038434142
731 => 0.030430428288784
801 => 0.030395150348043
802 => 0.027569619430049
803 => 0.027958952660678
804 => 0.028564632988039
805 => 0.028291774821543
806 => 0.027906017213096
807 => 0.027594497261261
808 => 0.027122512679679
809 => 0.027786821914594
810 => 0.028660317917096
811 => 0.029578732044025
812 => 0.030682146440653
813 => 0.030435877192485
814 => 0.029558104479399
815 => 0.029597480722095
816 => 0.029840889160459
817 => 0.029525653116789
818 => 0.029432683853372
819 => 0.029828116611306
820 => 0.029830839739384
821 => 0.029468122573592
822 => 0.029065028820356
823 => 0.029063339842812
824 => 0.028991613202847
825 => 0.030011508206987
826 => 0.030572347336248
827 => 0.03063664663858
828 => 0.030568019480891
829 => 0.030594431350171
830 => 0.030268091418101
831 => 0.031014007729713
901 => 0.031698534300725
902 => 0.031515066556917
903 => 0.031240022327471
904 => 0.031020936350793
905 => 0.031463456863464
906 => 0.031443752121626
907 => 0.031692555558295
908 => 0.03168126839725
909 => 0.031597605159469
910 => 0.031515069544794
911 => 0.031842313927575
912 => 0.031748072800718
913 => 0.031653685291361
914 => 0.031464376691341
915 => 0.031490106874167
916 => 0.031215110134985
917 => 0.031087884060445
918 => 0.0291747091574
919 => 0.028663446308513
920 => 0.028824300008488
921 => 0.028877257223084
922 => 0.028654754976048
923 => 0.028973766042161
924 => 0.028924048505423
925 => 0.029117470357082
926 => 0.028996628781566
927 => 0.029001588161977
928 => 0.029356957469429
929 => 0.029460122691232
930 => 0.029407652026777
1001 => 0.029444400681572
1002 => 0.030291257920676
1003 => 0.030170861902245
1004 => 0.030106903917036
1005 => 0.030124620716035
1006 => 0.03034101089745
1007 => 0.030401588333781
1008 => 0.030144917479348
1009 => 0.030265964938095
1010 => 0.030781369654229
1011 => 0.030961732135496
1012 => 0.031537362596796
1013 => 0.03129282454582
1014 => 0.031741684721745
1015 => 0.033121327874829
1016 => 0.034223482289557
1017 => 0.033209895541316
1018 => 0.035233861765445
1019 => 0.036809809791641
1020 => 0.036749322281517
1021 => 0.036474519290815
1022 => 0.034680344361737
1023 => 0.033029317842358
1024 => 0.034410471632108
1025 => 0.034413992477155
1026 => 0.034295350141731
1027 => 0.033558472785917
1028 => 0.034269708407023
1029 => 0.034326163707797
1030 => 0.03429456375204
1031 => 0.033729601611038
1101 => 0.032867008844185
1102 => 0.033035557406073
1103 => 0.033311643388742
1104 => 0.032788955025979
1105 => 0.032621924423272
1106 => 0.032932466092577
1107 => 0.033933096055007
1108 => 0.033743932756864
1109 => 0.033738992938681
1110 => 0.034548313745857
1111 => 0.03396901471028
1112 => 0.033037683343205
1113 => 0.032802509890267
1114 => 0.031967802564158
1115 => 0.032544337887427
1116 => 0.032565086367326
1117 => 0.032249323862819
1118 => 0.03306330573018
1119 => 0.033055804743973
1120 => 0.033828559381819
1121 => 0.035305776015993
1122 => 0.034868890367852
1123 => 0.034360839892088
1124 => 0.034416079065515
1125 => 0.035021916456115
1126 => 0.034655613339836
1127 => 0.034787338494406
1128 => 0.035021717074317
1129 => 0.03516312349087
1130 => 0.034395732858294
1201 => 0.034216817393304
1202 => 0.033850819142728
1203 => 0.033755337030834
1204 => 0.034053434969123
1205 => 0.03397489669434
1206 => 0.032563342537932
1207 => 0.032415827274774
1208 => 0.032420351357292
1209 => 0.032049417214114
1210 => 0.031483653611371
1211 => 0.032970446579389
1212 => 0.032851036296403
1213 => 0.032719216585608
1214 => 0.032735363748027
1215 => 0.033380730183355
1216 => 0.033006385059079
1217 => 0.034001642925926
1218 => 0.033797047828692
1219 => 0.033587205639222
1220 => 0.033558199056688
1221 => 0.033477427716636
1222 => 0.033200432737908
1223 => 0.032865944656275
1224 => 0.03264508665192
1225 => 0.030113366823645
1226 => 0.030583239297436
1227 => 0.031123784748309
1228 => 0.03131037887185
1229 => 0.030991196711612
1230 => 0.033213035995032
1231 => 0.033618987442289
]
'min_raw' => 0.014012074405494
'max_raw' => 0.036809809791641
'avg_raw' => 0.025410942098568
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.014012'
'max' => '$0.0368098'
'avg' => '$0.02541'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00054327969816052
'max_diff' => -0.0066382766896211
'year' => 2027
]
2 => [
'items' => [
101 => 0.03238933402899
102 => 0.03215931608178
103 => 0.033228115933357
104 => 0.032583498967388
105 => 0.032873769947694
106 => 0.032246362858011
107 => 0.033521205626291
108 => 0.033511493460342
109 => 0.033015550829851
110 => 0.033434718145074
111 => 0.033361877508853
112 => 0.032801959500481
113 => 0.033538956025864
114 => 0.033539321566945
115 => 0.033061987567821
116 => 0.032504565958692
117 => 0.03240491214069
118 => 0.032329836375433
119 => 0.032855305911668
120 => 0.033326440254757
121 => 0.034203104463135
122 => 0.034423518674149
123 => 0.035283810013543
124 => 0.034771548407759
125 => 0.034998627342705
126 => 0.035245153648864
127 => 0.035363347425742
128 => 0.035170757008948
129 => 0.036507143569068
130 => 0.036619975540568
131 => 0.036657807124619
201 => 0.036207185095641
202 => 0.036607442926773
203 => 0.036420175542732
204 => 0.036907393251628
205 => 0.036983795209491
206 => 0.03691908546926
207 => 0.036943336656608
208 => 0.03580296648229
209 => 0.035743832272819
210 => 0.03493753313072
211 => 0.035266105990988
212 => 0.034651854777623
213 => 0.03484664016487
214 => 0.034932499707585
215 => 0.034887651554957
216 => 0.03528468300752
217 => 0.034947125164674
218 => 0.034056254517756
219 => 0.033165141153725
220 => 0.033153953951325
221 => 0.032919339532033
222 => 0.032749756278659
223 => 0.032782424029548
224 => 0.032897549444602
225 => 0.032743064980249
226 => 0.03277603207328
227 => 0.033323505476183
228 => 0.033433297362734
229 => 0.033060181633776
301 => 0.031562068141667
302 => 0.03119442733297
303 => 0.031458680255627
304 => 0.031332384378665
305 => 0.02528767958592
306 => 0.026707793314602
307 => 0.025864009959524
308 => 0.026252864150149
309 => 0.025391579841256
310 => 0.025802629857238
311 => 0.025726723928429
312 => 0.02801022477993
313 => 0.027974571054986
314 => 0.027991636606364
315 => 0.027177053375068
316 => 0.028474706580867
317 => 0.029113977212144
318 => 0.028995665231931
319 => 0.029025441808419
320 => 0.028513781569839
321 => 0.027996590595907
322 => 0.027422946210696
323 => 0.028488706573829
324 => 0.028370212214585
325 => 0.028641995641767
326 => 0.029333217419383
327 => 0.029435002451833
328 => 0.029571802567648
329 => 0.029522769464223
330 => 0.03069093691649
331 => 0.030549464130203
401 => 0.030890372840655
402 => 0.030189097758449
403 => 0.029395538437292
404 => 0.029546368120835
405 => 0.029531842009414
406 => 0.029346907938731
407 => 0.02917995772868
408 => 0.028902032666874
409 => 0.029781428687598
410 => 0.029745726815122
411 => 0.030323698631616
412 => 0.030221536498932
413 => 0.029539272773553
414 => 0.029563639955978
415 => 0.029727520968256
416 => 0.030294715022907
417 => 0.030463096835844
418 => 0.030385095671237
419 => 0.0305697186422
420 => 0.030715637110765
421 => 0.030588043755252
422 => 0.032394496598743
423 => 0.031644331432672
424 => 0.032009956714999
425 => 0.032097156190445
426 => 0.031873796567698
427 => 0.031922235271963
428 => 0.031995606710169
429 => 0.03244110371535
430 => 0.033610216762542
501 => 0.034128008972722
502 => 0.035685812384466
503 => 0.034085013537682
504 => 0.033990028758878
505 => 0.03427063619449
506 => 0.035185231707421
507 => 0.035926425467064
508 => 0.036172322197631
509 => 0.036204821509888
510 => 0.036666140123338
511 => 0.036930559349485
512 => 0.036610123909781
513 => 0.036338588425622
514 => 0.035365982025586
515 => 0.03547856386471
516 => 0.036254141094232
517 => 0.037349689612203
518 => 0.038289784213018
519 => 0.037960595849417
520 => 0.040472070692923
521 => 0.040721073165202
522 => 0.040686669074746
523 => 0.041253933763134
524 => 0.04012802887813
525 => 0.039646682726411
526 => 0.036397297479356
527 => 0.037310242193076
528 => 0.038637260949832
529 => 0.038461625041311
530 => 0.037497908548841
531 => 0.038289053147639
601 => 0.038027476001898
602 => 0.037821159254206
603 => 0.038766336271853
604 => 0.037727075315218
605 => 0.038626893526797
606 => 0.037472867363019
607 => 0.037962099554133
608 => 0.037684387700958
609 => 0.037864101305047
610 => 0.036813499247697
611 => 0.03738037861592
612 => 0.036789915202253
613 => 0.036789635245714
614 => 0.036776600733131
615 => 0.037471278320795
616 => 0.037493931731989
617 => 0.036980563945106
618 => 0.036906579626704
619 => 0.037180138428587
620 => 0.036859872716746
621 => 0.037009723027588
622 => 0.036864411530006
623 => 0.036831698851172
624 => 0.036571038660619
625 => 0.036458739083528
626 => 0.036502774641309
627 => 0.036352458580716
628 => 0.036261887717039
629 => 0.03675858390871
630 => 0.036493219170167
701 => 0.036717912956662
702 => 0.036461846028335
703 => 0.035574206491702
704 => 0.035063715607566
705 => 0.033387046807094
706 => 0.033862547999007
707 => 0.034177805781186
708 => 0.034073613086057
709 => 0.034297459312416
710 => 0.03431120165271
711 => 0.034238426962679
712 => 0.034154163194638
713 => 0.034113148252434
714 => 0.034418840028709
715 => 0.03459630439395
716 => 0.034209446117233
717 => 0.034118810635721
718 => 0.034509945712512
719 => 0.034748537883404
720 => 0.036510168419905
721 => 0.03637966113977
722 => 0.03670720880215
723 => 0.036670331961995
724 => 0.037013654094604
725 => 0.037574840682661
726 => 0.036433791438903
727 => 0.036631838133105
728 => 0.036583281657253
729 => 0.037113408528417
730 => 0.037115063526643
731 => 0.036797225985579
801 => 0.036969530872915
802 => 0.036873355011742
803 => 0.03704715779183
804 => 0.036377918135477
805 => 0.037192979796958
806 => 0.037655067237604
807 => 0.037661483322166
808 => 0.03788050910168
809 => 0.038103051978783
810 => 0.038530203651984
811 => 0.038091138950455
812 => 0.037301304294491
813 => 0.037358327805501
814 => 0.036895248035699
815 => 0.036903032490291
816 => 0.036861478461597
817 => 0.036986185229749
818 => 0.036405284258216
819 => 0.036541620555147
820 => 0.03635074894106
821 => 0.036631423215493
822 => 0.036329464093323
823 => 0.03658325824185
824 => 0.036692787382945
825 => 0.03709695227158
826 => 0.036269768610655
827 => 0.034583085130618
828 => 0.034937646447182
829 => 0.034413222409793
830 => 0.034461759851077
831 => 0.034559813207146
901 => 0.034241990199064
902 => 0.034302620813252
903 => 0.034300454661062
904 => 0.03428178793174
905 => 0.034199109892431
906 => 0.034079210378081
907 => 0.034556853140126
908 => 0.034638013952877
909 => 0.034818424385926
910 => 0.035355203461114
911 => 0.03530156657338
912 => 0.035389050562647
913 => 0.03519807350528
914 => 0.034470618729032
915 => 0.034510123023273
916 => 0.034017503841078
917 => 0.034805827005878
918 => 0.034619141675096
919 => 0.034498784427881
920 => 0.034465943837876
921 => 0.035004053484567
922 => 0.035165064324692
923 => 0.035064733174161
924 => 0.034858951057296
925 => 0.035254113555699
926 => 0.035359842369704
927 => 0.035383511152031
928 => 0.036083663334307
929 => 0.0354226418813
930 => 0.035581756315027
1001 => 0.036823121705746
1002 => 0.035697374593078
1003 => 0.036293707945815
1004 => 0.036264520531367
1005 => 0.036569584495807
1006 => 0.036239496382133
1007 => 0.036243588219909
1008 => 0.036514464353509
1009 => 0.036134067676636
1010 => 0.036039876109912
1011 => 0.035909751135096
1012 => 0.036193874257081
1013 => 0.036364193218927
1014 => 0.037736838965917
1015 => 0.038623630718723
1016 => 0.038585132749987
1017 => 0.038936932119058
1018 => 0.038778443281179
1019 => 0.038266641016423
1020 => 0.039140225074724
1021 => 0.038863786526368
1022 => 0.038886575784422
1023 => 0.038885727567099
1024 => 0.039069535035078
1025 => 0.038939290598308
1026 => 0.038682565444116
1027 => 0.03885299158233
1028 => 0.039359096284365
1029 => 0.040930060808671
1030 => 0.041809193368984
1031 => 0.040877135924668
1101 => 0.041520056669011
1102 => 0.04113453331849
1103 => 0.041064472257374
1104 => 0.041468273996291
1105 => 0.041872782536697
1106 => 0.041847017091411
1107 => 0.04155336466282
1108 => 0.041387487857063
1109 => 0.04264356260306
1110 => 0.043569017079236
1111 => 0.043505907288287
1112 => 0.043784453381135
1113 => 0.044602273324844
1114 => 0.044677044531243
1115 => 0.044667625077834
1116 => 0.044482296841204
1117 => 0.045287546783125
1118 => 0.0459593004517
1119 => 0.044439398709072
1120 => 0.04501815739569
1121 => 0.045277980816553
1122 => 0.045659478684515
1123 => 0.046303129534234
1124 => 0.047002305076986
1125 => 0.0471011761648
1126 => 0.047031022396579
1127 => 0.046569897331287
1128 => 0.047334943553064
1129 => 0.04778308968724
1130 => 0.048049950454499
1201 => 0.048726664958872
1202 => 0.045279585397546
1203 => 0.042839571153068
1204 => 0.04245852769456
1205 => 0.04323339455123
1206 => 0.043437720761887
1207 => 0.043355357122574
1208 => 0.040608899254025
1209 => 0.042444068162275
1210 => 0.044418555602167
1211 => 0.044494403706087
1212 => 0.045482873403082
1213 => 0.045804759655165
1214 => 0.046600607322932
1215 => 0.046550826834627
1216 => 0.046744603077026
1217 => 0.046700057274635
1218 => 0.048174197493674
1219 => 0.049800393067214
1220 => 0.049744083085488
1221 => 0.049510298231519
1222 => 0.049857508605904
1223 => 0.051535916711507
1224 => 0.051381395789084
1225 => 0.051531499703157
1226 => 0.053510437450598
1227 => 0.056083338022883
1228 => 0.054887967392062
1229 => 0.05748157770231
1230 => 0.059114117911236
1231 => 0.061937427394765
]
'min_raw' => 0.02528767958592
'max_raw' => 0.061937427394765
'avg_raw' => 0.043612553490342
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.025287'
'max' => '$0.061937'
'avg' => '$0.043612'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.011275605180426
'max_diff' => 0.025127617603123
'year' => 2028
]
3 => [
'items' => [
101 => 0.061583935142335
102 => 0.06268302880587
103 => 0.060951110234425
104 => 0.056974275115894
105 => 0.056344925735673
106 => 0.05760489913254
107 => 0.060702420782331
108 => 0.057507347152644
109 => 0.058153706386657
110 => 0.057967554883779
111 => 0.057957635661283
112 => 0.058336212039541
113 => 0.057787067257662
114 => 0.055549752627028
115 => 0.05657510073767
116 => 0.056179164590891
117 => 0.056618485264737
118 => 0.058989317751859
119 => 0.057941116195715
120 => 0.056836921005297
121 => 0.05822182681461
122 => 0.059985287815133
123 => 0.059874933594964
124 => 0.059660800283351
125 => 0.060867858549257
126 => 0.062861565169645
127 => 0.063400456057773
128 => 0.063798254294251
129 => 0.063853103950205
130 => 0.064418089495402
131 => 0.061380019824187
201 => 0.066201514415568
202 => 0.067034053340399
203 => 0.066877570527733
204 => 0.06780290250409
205 => 0.067530646363239
206 => 0.067136189930827
207 => 0.068603037937107
208 => 0.066921415066437
209 => 0.064534563111952
210 => 0.063225088923144
211 => 0.064949510167237
212 => 0.066002554046996
213 => 0.066698549065348
214 => 0.066909156737369
215 => 0.061615856524488
216 => 0.058763061289634
217 => 0.060591670327812
218 => 0.062822699558243
219 => 0.061367626344165
220 => 0.061424662459339
221 => 0.059350110442577
222 => 0.063006251379064
223 => 0.062473582397603
224 => 0.065237070015696
225 => 0.064577541517265
226 => 0.066831058391848
227 => 0.066237631875196
228 => 0.068700912167791
301 => 0.069683581367158
302 => 0.071333635893145
303 => 0.072547422719391
304 => 0.073260181559805
305 => 0.073217390192518
306 => 0.076041695813282
307 => 0.07437630146244
308 => 0.072284173654471
309 => 0.072246333663004
310 => 0.073329876300431
311 => 0.075600684413073
312 => 0.076189471917767
313 => 0.076518523809022
314 => 0.076014569383186
315 => 0.074206903175236
316 => 0.073426362071719
317 => 0.074091405706368
318 => 0.073278114489043
319 => 0.074682083299358
320 => 0.076610032347478
321 => 0.076211918492978
322 => 0.077542753420007
323 => 0.078920027561564
324 => 0.080889591441243
325 => 0.08140450837213
326 => 0.08225564647835
327 => 0.083131747173953
328 => 0.083413127105804
329 => 0.083950368702775
330 => 0.083947537174369
331 => 0.085566550887369
401 => 0.08735237314949
402 => 0.08802647971156
403 => 0.089576550580588
404 => 0.08692210853834
405 => 0.088935533319417
406 => 0.09075169287124
407 => 0.088586392582087
408 => 0.091570754580422
409 => 0.091686630594108
410 => 0.093436220826421
411 => 0.09166267594504
412 => 0.090609550655832
413 => 0.093649883905687
414 => 0.095121005395691
415 => 0.094677891630518
416 => 0.091305773998325
417 => 0.08934305689946
418 => 0.084206247671875
419 => 0.090291020095594
420 => 0.093254735247942
421 => 0.091298098692062
422 => 0.092284912360096
423 => 0.097668647757487
424 => 0.099718425625761
425 => 0.099292086158189
426 => 0.099364130510064
427 => 0.10047015344168
428 => 0.10537486821844
429 => 0.10243584943381
430 => 0.10468261917173
501 => 0.10587429773939
502 => 0.106981195206
503 => 0.10426300486654
504 => 0.10072667917305
505 => 0.099606576381065
506 => 0.091103549747671
507 => 0.09066093028463
508 => 0.090412474567282
509 => 0.088845996414166
510 => 0.087615173680295
511 => 0.086636377744802
512 => 0.08406772491686
513 => 0.084934569842696
514 => 0.080840673354467
515 => 0.083459803248852
516 => 0.076925845603052
517 => 0.082367519688074
518 => 0.079405863886156
519 => 0.081394536103667
520 => 0.081387597813644
521 => 0.077725821752107
522 => 0.075613785739129
523 => 0.07695965728827
524 => 0.078402538424365
525 => 0.078636641034262
526 => 0.080507374090261
527 => 0.081029455474918
528 => 0.079447524505758
529 => 0.076790443853951
530 => 0.077407623087808
531 => 0.075601278621653
601 => 0.072435729424753
602 => 0.074709282123153
603 => 0.075485572975443
604 => 0.075828427240128
605 => 0.072715473170759
606 => 0.071737315416642
607 => 0.071216552435888
608 => 0.076388600574398
609 => 0.076671937046664
610 => 0.075222347594811
611 => 0.0817746293729
612 => 0.080291646207544
613 => 0.081948501742943
614 => 0.077351620541302
615 => 0.077527227593726
616 => 0.07535099036458
617 => 0.076569537796678
618 => 0.075708307747288
619 => 0.076471091206085
620 => 0.076928300466213
621 => 0.079104180596244
622 => 0.082392364743995
623 => 0.078779176664026
624 => 0.077204858875777
625 => 0.078181556777307
626 => 0.080782631996827
627 => 0.08472339410099
628 => 0.082390383620097
629 => 0.08342573405443
630 => 0.083651912064797
701 => 0.081931636508929
702 => 0.08478682311451
703 => 0.086316940811935
704 => 0.08788652495625
705 => 0.089249350890009
706 => 0.087259598533116
707 => 0.089388918774788
708 => 0.087673062535621
709 => 0.086133762107132
710 => 0.086136096590486
711 => 0.085170470946104
712 => 0.083299449583451
713 => 0.08295440453756
714 => 0.08474937244067
715 => 0.086188766714872
716 => 0.086307322121529
717 => 0.087104244750475
718 => 0.087575855353329
719 => 0.092198280384827
720 => 0.0940574579712
721 => 0.096330825131387
722 => 0.097216429760233
723 => 0.099881782186227
724 => 0.097729293632897
725 => 0.097263589194596
726 => 0.090798316039269
727 => 0.091857004156262
728 => 0.093552065979778
729 => 0.090826266984409
730 => 0.092555159054528
731 => 0.092896478972111
801 => 0.090733645377586
802 => 0.091888908250945
803 => 0.088820872570874
804 => 0.082459239537846
805 => 0.084793905430645
806 => 0.086513005367787
807 => 0.084059637793992
808 => 0.088457204211583
809 => 0.085888236694623
810 => 0.085073997323935
811 => 0.081897359241585
812 => 0.083396610136441
813 => 0.085424368438939
814 => 0.0841714495602
815 => 0.0867714443603
816 => 0.090453730390526
817 => 0.093077946699589
818 => 0.093279401442776
819 => 0.091592206164886
820 => 0.09429594736524
821 => 0.094315641168144
822 => 0.091265810049036
823 => 0.089397805470114
824 => 0.088973390899467
825 => 0.09003366170832
826 => 0.091321026207056
827 => 0.093350841212854
828 => 0.094577415909342
829 => 0.097775672192831
830 => 0.09864102864195
831 => 0.099591793019849
901 => 0.1008623074336
902 => 0.10238788574051
903 => 0.099050007256205
904 => 0.09918262739097
905 => 0.096074441162456
906 => 0.092752898418295
907 => 0.095273535324965
908 => 0.09856893277416
909 => 0.097812964958224
910 => 0.09772790313591
911 => 0.09787095352686
912 => 0.097300978481245
913 => 0.09472300247419
914 => 0.09342835906243
915 => 0.095098779362359
916 => 0.095986533409918
917 => 0.097363362517392
918 => 0.097193639268559
919 => 0.10074020318876
920 => 0.10211829068563
921 => 0.10176571693224
922 => 0.10183059898802
923 => 0.10432556057506
924 => 0.10710047098783
925 => 0.10969954077106
926 => 0.11234342618722
927 => 0.10915611912544
928 => 0.10753780116524
929 => 0.10920749221192
930 => 0.10832153063995
1001 => 0.11341252862578
1002 => 0.11376501828054
1003 => 0.11885564812926
1004 => 0.12368726203663
1005 => 0.12065261190877
1006 => 0.1235141502957
1007 => 0.12660913736581
1008 => 0.13257986956762
1009 => 0.13056913701494
1010 => 0.12902894739179
1011 => 0.12757347564005
1012 => 0.13060208130578
1013 => 0.13449833411159
1014 => 0.13533754964812
1015 => 0.1366973994223
1016 => 0.13526768365927
1017 => 0.13698961881782
1018 => 0.14306880658414
1019 => 0.1414261563872
1020 => 0.13909332903836
1021 => 0.14389226392847
1022 => 0.14562897980981
1023 => 0.15781816139025
1024 => 0.17320750664553
1025 => 0.16683621665796
1026 => 0.16288135136243
1027 => 0.16381083851753
1028 => 0.16943050644255
1029 => 0.17123536542072
1030 => 0.16632913654585
1031 => 0.16806209952737
1101 => 0.17761089593669
1102 => 0.18273351884822
1103 => 0.17577630887432
1104 => 0.15658164248326
1105 => 0.13888328345961
1106 => 0.14357768524018
1107 => 0.14304548576251
1108 => 0.15330447626771
1109 => 0.14138697972326
1110 => 0.14158763980095
1111 => 0.15205877536534
1112 => 0.14926525591747
1113 => 0.14474011217886
1114 => 0.13891632201673
1115 => 0.12815050726663
1116 => 0.11861492491552
1117 => 0.13731639781952
1118 => 0.13650995630147
1119 => 0.13534210947541
1120 => 0.13794102621259
1121 => 0.15056062817293
1122 => 0.15026970550208
1123 => 0.14841900390017
1124 => 0.14982274475388
1125 => 0.14449402962022
1126 => 0.14586736084275
1127 => 0.13888047994912
1128 => 0.14203884191096
1129 => 0.14473040325274
1130 => 0.14527077404135
1201 => 0.14648825702011
1202 => 0.13608499826645
1203 => 0.14075575602321
1204 => 0.14349938861449
1205 => 0.13110355675288
1206 => 0.14325436287423
1207 => 0.13590390067671
1208 => 0.13340904340664
1209 => 0.13676804004834
1210 => 0.13545903579034
1211 => 0.13433363079662
1212 => 0.13370563547321
1213 => 0.13617211188794
1214 => 0.13605704781512
1215 => 0.13202141367817
1216 => 0.12675709346001
1217 => 0.12852397212065
1218 => 0.12788204853866
1219 => 0.12555563466776
1220 => 0.12712335672447
1221 => 0.12021990219271
1222 => 0.10834286748117
1223 => 0.11618920041502
1224 => 0.11588712513224
1225 => 0.11573480507664
1226 => 0.12163110741971
1227 => 0.12106431400027
1228 => 0.12003557839391
1229 => 0.1255367411316
1230 => 0.12352874273127
1231 => 0.12971692065718
]
'min_raw' => 0.055549752627028
'max_raw' => 0.18273351884822
'avg_raw' => 0.11914163573762
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.055549'
'max' => '$0.182733'
'avg' => '$0.119141'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.030262073041108
'max_diff' => 0.12079609145346
'year' => 2029
]
4 => [
'items' => [
101 => 0.13379285486545
102 => 0.13275906610757
103 => 0.13659250193114
104 => 0.12856467743639
105 => 0.13123119871313
106 => 0.13178076505263
107 => 0.12546885763735
108 => 0.12115704841334
109 => 0.12086949989632
110 => 0.11339341690581
111 => 0.11738708009451
112 => 0.12090133843155
113 => 0.11921828140557
114 => 0.11868547583105
115 => 0.12140746395987
116 => 0.12161898574974
117 => 0.11679626652482
118 => 0.11779906256733
119 => 0.1219808887656
120 => 0.1176936912766
121 => 0.10936436686521
122 => 0.10729857924926
123 => 0.10702296510128
124 => 0.10142038524715
125 => 0.10743662505571
126 => 0.10481037515407
127 => 0.11310666712604
128 => 0.10836786964556
129 => 0.10816358955749
130 => 0.107854790243
131 => 0.1030324183229
201 => 0.10408821129567
202 => 0.107597827939
203 => 0.108850098696
204 => 0.1087194765965
205 => 0.10758062890278
206 => 0.10810198754512
207 => 0.10642250970476
208 => 0.10582945112402
209 => 0.1039575951096
210 => 0.10120648388181
211 => 0.10158904277158
212 => 0.096138371561923
213 => 0.093168556597886
214 => 0.092346550957373
215 => 0.091247330660898
216 => 0.092470710814773
217 => 0.096122930495227
218 => 0.091717578698971
219 => 0.08416491204379
220 => 0.084618840178884
221 => 0.085638681925968
222 => 0.083738213577206
223 => 0.081939579779321
224 => 0.083503345938809
225 => 0.080303181511963
226 => 0.086025406507986
227 => 0.085870636358194
228 => 0.088003527976691
301 => 0.089337268877079
302 => 0.086263427905428
303 => 0.085490365213608
304 => 0.085930736856609
305 => 0.078652374537754
306 => 0.087408730496053
307 => 0.087484455825996
308 => 0.086836049576843
309 => 0.091498538802477
310 => 0.10133784533542
311 => 0.097635902432541
312 => 0.096202398248728
313 => 0.093477305747415
314 => 0.097108329705433
315 => 0.096829523718255
316 => 0.095568657310204
317 => 0.094806081372472
318 => 0.096211150919598
319 => 0.094631977706367
320 => 0.094348314804493
321 => 0.092629626247418
322 => 0.092016132627889
323 => 0.091561926375874
324 => 0.091061889921791
325 => 0.092164845738178
326 => 0.089665402752323
327 => 0.086651319534798
328 => 0.086400731128093
329 => 0.087092627750963
330 => 0.086786515000989
331 => 0.086399265578016
401 => 0.085659900968457
402 => 0.085440547282826
403 => 0.086153340345847
404 => 0.085348638536114
405 => 0.086536019890751
406 => 0.086213117863097
407 => 0.084409413385201
408 => 0.082161329788816
409 => 0.082141317129293
410 => 0.081656971206048
411 => 0.081040083850898
412 => 0.080868479901166
413 => 0.083371649914555
414 => 0.088553136928697
415 => 0.087535887045345
416 => 0.088270954338028
417 => 0.09188675789519
418 => 0.093036113115005
419 => 0.09222032800395
420 => 0.091103631028505
421 => 0.091152760028091
422 => 0.094968851640352
423 => 0.095206856593295
424 => 0.095808218326075
425 => 0.096581138097503
426 => 0.092351959583224
427 => 0.090953566100393
428 => 0.09029092968831
429 => 0.088250266011661
430 => 0.090450946833646
501 => 0.089168704361224
502 => 0.089341722678394
503 => 0.08922904427236
504 => 0.089290574301335
505 => 0.08602380702948
506 => 0.087214045327111
507 => 0.085235043306785
508 => 0.082585381754971
509 => 0.082576499160358
510 => 0.083225000071392
511 => 0.082839246353666
512 => 0.0818011930179
513 => 0.081948643594772
514 => 0.080656821386586
515 => 0.082105494200042
516 => 0.082147036952732
517 => 0.08158921900981
518 => 0.083821099357263
519 => 0.084735502556656
520 => 0.084368334837007
521 => 0.084709741090652
522 => 0.087578158370607
523 => 0.088045835545059
524 => 0.088253546852931
525 => 0.087975241216858
526 => 0.084762170492901
527 => 0.084904683842541
528 => 0.083859015441982
529 => 0.08297553583333
530 => 0.083010870384436
531 => 0.083465093747593
601 => 0.085448713814345
602 => 0.089623125304036
603 => 0.089781541168615
604 => 0.089973545817801
605 => 0.089192566415756
606 => 0.088957015555133
607 => 0.08926776794113
608 => 0.090835457416529
609 => 0.094867980370796
610 => 0.093442617435606
611 => 0.0922837751822
612 => 0.093300392260065
613 => 0.093143892029436
614 => 0.091822872586659
615 => 0.091785795970693
616 => 0.089250337304541
617 => 0.088313035965265
618 => 0.087529756810377
619 => 0.08667443642126
620 => 0.086167373823992
621 => 0.086946452429224
622 => 0.087124636924028
623 => 0.085421167937723
624 => 0.085188991409424
625 => 0.086580080955573
626 => 0.085967914311358
627 => 0.086597542885935
628 => 0.086743622116091
629 => 0.086720099995546
630 => 0.086080927712094
701 => 0.086488317065174
702 => 0.085524719796529
703 => 0.084476952494507
704 => 0.083808542234027
705 => 0.083225265630002
706 => 0.08354890139015
707 => 0.082395198998778
708 => 0.082026106384337
709 => 0.086350302718901
710 => 0.089544633044189
711 => 0.089498186216166
712 => 0.089215453095728
713 => 0.088795369029077
714 => 0.090804725650512
715 => 0.090104705981958
716 => 0.090614028779431
717 => 0.090743672807599
718 => 0.091136066234579
719 => 0.091276313157369
720 => 0.090852389548945
721 => 0.089429650141166
722 => 0.085884318806983
723 => 0.084233957500482
724 => 0.083689310780395
725 => 0.083709107654239
726 => 0.083163021496491
727 => 0.083323868343812
728 => 0.083107085527108
729 => 0.082696551317665
730 => 0.083523552059572
731 => 0.083618856191032
801 => 0.083425824335948
802 => 0.083471290325676
803 => 0.081873069010563
804 => 0.081994578305996
805 => 0.081317999108366
806 => 0.081191148665095
807 => 0.079480815369976
808 => 0.076450712020897
809 => 0.078129683415536
810 => 0.076101722069917
811 => 0.075333702379702
812 => 0.078969388141611
813 => 0.078604466129341
814 => 0.077979878272121
815 => 0.077055982655778
816 => 0.076713300784597
817 => 0.0746312742152
818 => 0.0745082569783
819 => 0.07554016556554
820 => 0.075063975258335
821 => 0.074395223719648
822 => 0.071973073436779
823 => 0.069249774572436
824 => 0.069331973847105
825 => 0.070198204547075
826 => 0.072716887134366
827 => 0.071732794273861
828 => 0.071018823612399
829 => 0.070885118369387
830 => 0.072558719416574
831 => 0.074927215528602
901 => 0.076038460912253
902 => 0.074937250486079
903 => 0.073672239241871
904 => 0.073749234614809
905 => 0.074261450336425
906 => 0.074315276966427
907 => 0.073491884691705
908 => 0.073723664793991
909 => 0.073371569624201
910 => 0.071210762217117
911 => 0.071171680063118
912 => 0.070641383077693
913 => 0.070625325895728
914 => 0.069723158434738
915 => 0.069596938970556
916 => 0.06780563071911
917 => 0.068984675234793
918 => 0.068193834076288
919 => 0.067001849909851
920 => 0.066796351390272
921 => 0.066790173856626
922 => 0.068014075072774
923 => 0.068970373236492
924 => 0.068207591096829
925 => 0.068033920389538
926 => 0.069888269183782
927 => 0.06965228639695
928 => 0.069447926825479
929 => 0.074715142679663
930 => 0.070545730325098
1001 => 0.06872762855677
1002 => 0.066477382370303
1003 => 0.067210073875343
1004 => 0.067364462740933
1005 => 0.061953026299842
1006 => 0.059757607209642
1007 => 0.059004222110509
1008 => 0.058570638334656
1009 => 0.058768227905915
1010 => 0.05679209322776
1011 => 0.058120088413731
1012 => 0.056408922820955
1013 => 0.056122040340712
1014 => 0.059181816393335
1015 => 0.059607566356105
1016 => 0.057791184744782
1017 => 0.058957595784723
1018 => 0.058534638927314
1019 => 0.0564382558437
1020 => 0.056358189429856
1021 => 0.055306298089927
1022 => 0.053660291829237
1023 => 0.052908022799858
1024 => 0.052516234557858
1025 => 0.052677894022308
1026 => 0.052596154050221
1027 => 0.052062745441305
1028 => 0.052626728407298
1029 => 0.051185984983037
1030 => 0.050612269342638
1031 => 0.050353135297971
1101 => 0.049074392582842
1102 => 0.051109440902079
1103 => 0.051510371057832
1104 => 0.051912091169845
1105 => 0.055408790478952
1106 => 0.055234105263038
1107 => 0.056813174539744
1108 => 0.056751814811373
1109 => 0.056301438674431
1110 => 0.054401375835948
1111 => 0.055158707018003
1112 => 0.052827759355033
1113 => 0.054574263833165
1114 => 0.053777232125116
1115 => 0.054304786610932
1116 => 0.053356196077765
1117 => 0.053881185245162
1118 => 0.051605446471289
1119 => 0.049480393624755
1120 => 0.05033557692436
1121 => 0.051265258973104
1122 => 0.053281046533361
1123 => 0.052080460092358
1124 => 0.052512236375742
1125 => 0.051065858104882
1126 => 0.04808156659457
1127 => 0.048098457360425
1128 => 0.047639389127888
1129 => 0.047242687149917
1130 => 0.052218361887448
1201 => 0.051599558080059
1202 => 0.050613575200023
1203 => 0.051933352466353
1204 => 0.052282322523252
1205 => 0.052292257210178
1206 => 0.05325513263531
1207 => 0.053769019422307
1208 => 0.053859594195829
1209 => 0.055374699481574
1210 => 0.055882542788634
1211 => 0.05797427749774
1212 => 0.053725419718758
1213 => 0.053637917288838
1214 => 0.051951924439015
1215 => 0.050882641119165
1216 => 0.052025139182737
1217 => 0.053037236500524
1218 => 0.051983373123889
1219 => 0.052120985432607
1220 => 0.050706259953277
1221 => 0.051211957743117
1222 => 0.051647532804576
1223 => 0.051407033857557
1224 => 0.051046995293589
1225 => 0.052954256062271
1226 => 0.052846640935087
1227 => 0.054622726010619
1228 => 0.056007311336059
1229 => 0.058488735763479
1230 => 0.055899240013885
1231 => 0.055804868496456
]
'min_raw' => 0.047242687149917
'max_raw' => 0.13659250193114
'avg_raw' => 0.09191759454053
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.047242'
'max' => '$0.136592'
'avg' => '$0.091917'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0083070654771111
'max_diff' => -0.046141016917077
'year' => 2030
]
5 => [
'items' => [
101 => 0.056727365216988
102 => 0.055882401559193
103 => 0.056416389423765
104 => 0.058402702063076
105 => 0.058444669719154
106 => 0.057741657407574
107 => 0.057698879044525
108 => 0.057833900249075
109 => 0.058624723661441
110 => 0.058348385661611
111 => 0.058668170991036
112 => 0.059068067442208
113 => 0.060722208716839
114 => 0.061121016578084
115 => 0.060152120233428
116 => 0.060239600725078
117 => 0.059877206895378
118 => 0.059527138996668
119 => 0.060314040509656
120 => 0.061752118491229
121 => 0.061743172282742
122 => 0.062076778422225
123 => 0.062284612283381
124 => 0.061392437207616
125 => 0.060811664039479
126 => 0.0610343694277
127 => 0.061390480193356
128 => 0.060918887505938
129 => 0.05800799897621
130 => 0.05889097660785
131 => 0.058744005954545
201 => 0.058534701871996
202 => 0.059422542708475
203 => 0.059336908293894
204 => 0.056771825110377
205 => 0.056936033413394
206 => 0.056781811161158
207 => 0.057280134809035
208 => 0.055855490446849
209 => 0.056293701457531
210 => 0.056568543295458
211 => 0.056730427249431
212 => 0.05731526309605
213 => 0.057246639359599
214 => 0.05731099734824
215 => 0.058178154517836
216 => 0.062563937909247
217 => 0.062802646422556
218 => 0.061627158399486
219 => 0.062096742679226
220 => 0.061195243548918
221 => 0.061800425954613
222 => 0.062214476386623
223 => 0.060343462101688
224 => 0.060232672778516
225 => 0.059327452840616
226 => 0.059813866760966
227 => 0.059039947239291
228 => 0.059229840019354
301 => 0.058698883251742
302 => 0.059654499721006
303 => 0.06072302742143
304 => 0.060992979715994
305 => 0.060282851450765
306 => 0.059768671787006
307 => 0.058865941678755
308 => 0.060367201967428
309 => 0.060806216225915
310 => 0.060364896012422
311 => 0.060262632475919
312 => 0.060068843259032
313 => 0.060303745774383
314 => 0.06080382525998
315 => 0.06056799700959
316 => 0.060723765723732
317 => 0.060130136013425
318 => 0.061392732554689
319 => 0.063398039722621
320 => 0.063404487113066
321 => 0.063168657591475
322 => 0.063072161232257
323 => 0.063314136632742
324 => 0.063445398361155
325 => 0.064227902435624
326 => 0.065067560483866
327 => 0.068985878223508
328 => 0.067885630281618
329 => 0.071362194881993
330 => 0.074111706105476
331 => 0.074936164299844
401 => 0.074177701554781
402 => 0.071583041475272
403 => 0.071455735073292
404 => 0.075333252669308
405 => 0.074237676346876
406 => 0.074107361029418
407 => 0.072721026222866
408 => 0.073540521794444
409 => 0.073361286091666
410 => 0.073078353766318
411 => 0.074641894230334
412 => 0.07756870240075
413 => 0.077112531899958
414 => 0.076772021782256
415 => 0.075280005567495
416 => 0.076178532582668
417 => 0.075858584322716
418 => 0.077233285091651
419 => 0.076418942809484
420 => 0.074229376278705
421 => 0.074578071965637
422 => 0.074525367314036
423 => 0.075610025309302
424 => 0.07528443790199
425 => 0.074461791147267
426 => 0.077558698888608
427 => 0.077357602925792
428 => 0.077642711024128
429 => 0.077768224426277
430 => 0.079653257594796
501 => 0.080425495369605
502 => 0.080600806864412
503 => 0.081334373023467
504 => 0.080582555070111
505 => 0.083590362920652
506 => 0.085590379630807
507 => 0.087913501959572
508 => 0.091308208078313
509 => 0.092584648981746
510 => 0.092354071357521
511 => 0.094927898793504
512 => 0.099553009482998
513 => 0.093288938464843
514 => 0.099885020457313
515 => 0.097796777053925
516 => 0.092845589510389
517 => 0.092526791403252
518 => 0.095879793092204
519 => 0.10331642812385
520 => 0.10145363539404
521 => 0.10331947498543
522 => 0.10114287399217
523 => 0.10103478740702
524 => 0.10321376233345
525 => 0.10830505601879
526 => 0.10588637323318
527 => 0.10241859837464
528 => 0.10497914936563
529 => 0.10276096312943
530 => 0.097762768708032
531 => 0.10145221095154
601 => 0.098985185992573
602 => 0.099705195029861
603 => 0.10489051455135
604 => 0.10426660318787
605 => 0.10507400226485
606 => 0.10364896402729
607 => 0.10231775360551
608 => 0.099832950496277
609 => 0.099097322794945
610 => 0.099300623826481
611 => 0.09909722204905
612 => 0.097706997545952
613 => 0.097406778696872
614 => 0.096906400795516
615 => 0.097061488830286
616 => 0.096120631985019
617 => 0.097896223242981
618 => 0.098225788626915
619 => 0.099517915872437
620 => 0.099652068809535
621 => 0.10325062479603
622 => 0.10126860062995
623 => 0.10259831356029
624 => 0.10247937152006
625 => 0.092952896757771
626 => 0.094265560927216
627 => 0.096307654438163
628 => 0.095387694079473
629 => 0.094087085369857
630 => 0.093036774102615
701 => 0.091445445132903
702 => 0.093685210099007
703 => 0.096630262856985
704 => 0.099726760207554
705 => 0.10344699888372
706 => 0.10261668491955
707 => 0.099657212933248
708 => 0.099789972684658
709 => 0.10061064122884
710 => 0.099547800898525
711 => 0.099234348536008
712 => 0.10056757768762
713 => 0.10057675890405
714 => 0.099353832655484
715 => 0.09799477392334
716 => 0.097989079417629
717 => 0.097747248043194
718 => 0.10118589525645
719 => 0.10307680353729
720 => 0.10329359312434
721 => 0.10306221187079
722 => 0.10315126133209
723 => 0.10205098346679
724 => 0.1045658923896
725 => 0.10687382151589
726 => 0.10625524720833
727 => 0.10532791638578
728 => 0.10458925271931
729 => 0.10608124152358
730 => 0.10601480561073
731 => 0.10685366376836
801 => 0.10681560831685
802 => 0.10653353186949
803 => 0.10625525728217
804 => 0.10735858456618
805 => 0.10704084402728
806 => 0.10672260994956
807 => 0.10608434278749
808 => 0.10617109389531
809 => 0.1052439231895
810 => 0.10481497159654
811 => 0.098364568837323
812 => 0.096640810447068
813 => 0.09718313992698
814 => 0.097361688873345
815 => 0.09661150701285
816 => 0.097687075094892
817 => 0.097519448948614
818 => 0.098171584225765
819 => 0.097764158417024
820 => 0.09778087931433
821 => 0.098979031745498
822 => 0.099326860493571
823 => 0.099149951984979
824 => 0.099273852640328
825 => 0.10212909094765
826 => 0.10172316736573
827 => 0.10150752855319
828 => 0.10156726197797
829 => 0.10229683658249
830 => 0.10250107763846
831 => 0.10163569393255
901 => 0.10204381389098
902 => 0.10378153687584
903 => 0.10438964157393
904 => 0.10633041986344
905 => 0.10550594275147
906 => 0.10701930617302
907 => 0.11167086938725
908 => 0.11538685994647
909 => 0.11196948145841
910 => 0.11879342489187
911 => 0.12410684369137
912 => 0.12390290582788
913 => 0.1229763883586
914 => 0.11692720231992
915 => 0.11136065113884
916 => 0.11601730757006
917 => 0.11602917834495
918 => 0.11562916742773
919 => 0.11314473397547
920 => 0.11554271452891
921 => 0.11573305751706
922 => 0.11562651605998
923 => 0.1137217067572
924 => 0.11081341501945
925 => 0.11138168826354
926 => 0.11231253142982
927 => 0.11055025112182
928 => 0.10998709578309
929 => 0.11103410870248
930 => 0.11440780248257
1001 => 0.11377002521592
1002 => 0.11375337027403
1003 => 0.11648205188039
1004 => 0.11452890473658
1005 => 0.11138885600901
1006 => 0.11059595229314
1007 => 0.10778167826576
1008 => 0.10972550736057
1009 => 0.10979546230916
1010 => 0.10873084697939
1011 => 0.11147524367559
1012 => 0.11144995357689
1013 => 0.1140553497904
1014 => 0.11903588880849
1015 => 0.1175628983434
1016 => 0.11584997069341
1017 => 0.11603621342329
1018 => 0.11807883648391
1019 => 0.11684381995291
1020 => 0.1172879405083
1021 => 0.11807816425426
1022 => 0.11855492586035
1023 => 0.11596761476512
1024 => 0.11536438878343
1025 => 0.11413040012843
1026 => 0.11380847552183
1027 => 0.11481353353331
1028 => 0.1145487362565
1029 => 0.10978958286661
1030 => 0.10929222485769
1031 => 0.10930747811776
1101 => 0.10805684775624
1102 => 0.10614933626924
1103 => 0.11116216256548
1104 => 0.11075956245943
1105 => 0.11031512310113
1106 => 0.11036956438659
1107 => 0.11254546238134
1108 => 0.1112833316589
1109 => 0.11463891304366
1110 => 0.11394910638896
1111 => 0.11324160879645
1112 => 0.11314381107826
1113 => 0.112871484866
1114 => 0.11193757695605
1115 => 0.11080982703561
1116 => 0.11006518885411
1117 => 0.10152931869405
1118 => 0.10311352654489
1119 => 0.10493601327218
1120 => 0.10556512838729
1121 => 0.10448898344946
1122 => 0.11198006971737
1123 => 0.11334876336442
1124 => 0.10920290102983
1125 => 0.10842737946147
1126 => 0.11203091278228
1127 => 0.1098575416758
1128 => 0.11083621055197
1129 => 0.10872086374494
1130 => 0.11301908514488
1201 => 0.1129863398993
1202 => 0.11131423469499
1203 => 0.11272748656359
1204 => 0.112481899273
1205 => 0.11059409661555
1206 => 0.11307893185633
1207 => 0.11308016430361
1208 => 0.11147079939917
1209 => 0.10959141352605
1210 => 0.10925542372105
1211 => 0.10900230053687
1212 => 0.1107739577654
1213 => 0.11236242009667
1214 => 0.11531815468196
1215 => 0.11606129658322
1216 => 0.11896182889761
1217 => 0.11723470312874
1218 => 0.11800031561206
1219 => 0.11883149626519
1220 => 0.11922999483596
1221 => 0.11858066279951
1222 => 0.12308638339048
1223 => 0.12346680426007
1224 => 0.12359435608702
1225 => 0.12207505245489
1226 => 0.12342454967766
1227 => 0.12279316461778
1228 => 0.12443585313977
1229 => 0.12469344767492
1230 => 0.12447527426784
1231 => 0.12455703883915
]
'min_raw' => 0.055855490446849
'max_raw' => 0.12469344767492
'avg_raw' => 0.090274469060886
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.055855'
'max' => '$0.124693'
'avg' => '$0.090274'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0086128032969318
'max_diff' => -0.01189905425622
'year' => 2031
]
6 => [
'items' => [
101 => 0.12071220117834
102 => 0.12051282606249
103 => 0.11779433221089
104 => 0.11890213854951
105 => 0.116831147698
106 => 0.11748788023058
107 => 0.11777736167337
108 => 0.11762615299558
109 => 0.11896477225775
110 => 0.11782667242306
111 => 0.11482303983837
112 => 0.111818588916
113 => 0.11178087048204
114 => 0.11098985158714
115 => 0.11041808980846
116 => 0.11052823141138
117 => 0.11091638478603
118 => 0.11039552962871
119 => 0.11050668048455
120 => 0.11235252528581
121 => 0.11272269629674
122 => 0.11146471056645
123 => 0.10641371633286
124 => 0.10517418967848
125 => 0.10606513685676
126 => 0.10563932148989
127 => 0.085259177253337
128 => 0.090047189838762
129 => 0.087202315346046
130 => 0.088513364398672
131 => 0.085609484218287
201 => 0.086995368045767
202 => 0.086739445907206
203 => 0.094438428456977
204 => 0.094318219434067
205 => 0.094375757132014
206 => 0.091629332895315
207 => 0.096004461277921
208 => 0.09815980684372
209 => 0.097760909742155
210 => 0.097861303548719
211 => 0.096136205331369
212 => 0.094392459853636
213 => 0.092458377758325
214 => 0.096051663231641
215 => 0.095652151226437
216 => 0.096568488026493
217 => 0.098898990509289
218 => 0.099242165852599
219 => 0.099703396994148
220 => 0.099538078462571
221 => 0.10347663658673
222 => 0.10299965121045
223 => 0.10414904872923
224 => 0.10178465082811
225 => 0.099109110172284
226 => 0.099617642980943
227 => 0.099568667182106
228 => 0.098945149051114
229 => 0.098382264761833
301 => 0.097445221011846
302 => 0.10041016609319
303 => 0.10028979473751
304 => 0.10223846706952
305 => 0.10189402030645
306 => 0.099593720522201
307 => 0.099675876179009
308 => 0.10022841245371
309 => 0.10214074680919
310 => 0.10270845784755
311 => 0.10244547147521
312 => 0.10306794071178
313 => 0.10355991501624
314 => 0.10312972510985
315 => 0.10922030699419
316 => 0.10669107276192
317 => 0.10792380392843
318 => 0.10821780304797
319 => 0.10746473048541
320 => 0.10762804495872
321 => 0.10787542188526
322 => 0.10937744614183
323 => 0.11331919240531
324 => 0.11506496499303
325 => 0.12031720795808
326 => 0.11492000288195
327 => 0.11459975506858
328 => 0.11554584262913
329 => 0.118629465256
330 => 0.12112845176513
331 => 0.1219575097602
401 => 0.12206708346051
402 => 0.12362245137399
403 => 0.1245139592561
404 => 0.12343358879906
405 => 0.12251808795621
406 => 0.11923887757328
407 => 0.1196184551041
408 => 0.1222333678825
409 => 0.1259270861996
410 => 0.12909668078155
411 => 0.12798679923048
412 => 0.13645441201093
413 => 0.13729394123102
414 => 0.13717794543803
415 => 0.13909051794008
416 => 0.13529445101212
417 => 0.13367155885509
418 => 0.12271602962981
419 => 0.12579408647188
420 => 0.13026822285978
421 => 0.12967605413169
422 => 0.12642681669279
423 => 0.12909421594359
424 => 0.12821229033399
425 => 0.12751667901457
426 => 0.13070340931972
427 => 0.12719946844554
428 => 0.13023326836918
429 => 0.12634238858647
430 => 0.12799186907591
501 => 0.12705554417371
502 => 0.1276614611371
503 => 0.12411928295005
504 => 0.12603055631827
505 => 0.12403976769425
506 => 0.12403882380123
507 => 0.12399487703202
508 => 0.12633703101967
509 => 0.12641340857712
510 => 0.12468255324145
511 => 0.12443310994654
512 => 0.12535543254635
513 => 0.12427563433864
514 => 0.12478086512386
515 => 0.12429093726444
516 => 0.12418064418382
517 => 0.12330181015266
518 => 0.12292318428799
519 => 0.12307165324551
520 => 0.12256485215249
521 => 0.12225948616215
522 => 0.12393413205059
523 => 0.12303943630742
524 => 0.12379700709621
525 => 0.12293365956933
526 => 0.11994092089855
527 => 0.11821976524136
528 => 0.11256675931929
529 => 0.11416994478625
530 => 0.11523285840947
531 => 0.11488156546334
601 => 0.11563627864395
602 => 0.11568261190371
603 => 0.11543724695531
604 => 0.11515314577825
605 => 0.11501486103703
606 => 0.11604552220347
607 => 0.11664385570104
608 => 0.11533953601151
609 => 0.11503395215762
610 => 0.1163526913772
611 => 0.11715712153934
612 => 0.12309658188627
613 => 0.12265656747956
614 => 0.12376091729193
615 => 0.12363658445068
616 => 0.12479411899076
617 => 0.12668619875319
618 => 0.12283907156235
619 => 0.12350679981903
620 => 0.12334308827059
621 => 0.12513044802899
622 => 0.12513602797106
623 => 0.12406441651066
624 => 0.12464535446825
625 => 0.12432109083752
626 => 0.12490707904511
627 => 0.1226506908189
628 => 0.12539872811637
629 => 0.12695668818442
630 => 0.12697832046148
701 => 0.127716781169
702 => 0.1284671000166
703 => 0.12990727170558
704 => 0.12842693440985
705 => 0.12576395172278
706 => 0.1259562104714
707 => 0.12439490469632
708 => 0.12442115052847
709 => 0.12428104821952
710 => 0.12470150579509
711 => 0.12274295761236
712 => 0.12320262495615
713 => 0.12255908798303
714 => 0.12350540089533
715 => 0.12248732463282
716 => 0.12334300932392
717 => 0.12371229447021
718 => 0.12507496461013
719 => 0.1222860571452
720 => 0.11659928603178
721 => 0.11779471426525
722 => 0.11602658200908
723 => 0.11619022938114
724 => 0.116520823117
725 => 0.11544926065556
726 => 0.11565368100438
727 => 0.11564637767104
728 => 0.11558344148986
729 => 0.11530468670793
730 => 0.11490043712419
731 => 0.11651084304437
801 => 0.11678448239103
802 => 0.11739274876191
803 => 0.11920253689062
804 => 0.11902169637882
805 => 0.11931665475657
806 => 0.11867276227407
807 => 0.11622009770668
808 => 0.11635328919281
809 => 0.11469238922647
810 => 0.11735027581556
811 => 0.11672085318887
812 => 0.11631506032681
813 => 0.11620433598475
814 => 0.11801861022819
815 => 0.11856146951709
816 => 0.11822319603818
817 => 0.11752938726392
818 => 0.11886170521665
819 => 0.11921817729481
820 => 0.11929797824693
821 => 0.12165859021254
822 => 0.11942991023268
823 => 0.11996637565501
824 => 0.12415172573918
825 => 0.12035619075167
826 => 0.12236677028508
827 => 0.12226836287947
828 => 0.12329690733447
829 => 0.1221839922132
830 => 0.12219778812995
831 => 0.12311106592634
901 => 0.12182853197182
902 => 0.12151095852837
903 => 0.12107223309074
904 => 0.12203017403335
905 => 0.12260441630451
906 => 0.12723238727555
907 => 0.13022226758396
908 => 0.13009246899452
909 => 0.13127858512919
910 => 0.13074422894694
911 => 0.12901865187843
912 => 0.13196400152268
913 => 0.13103196965658
914 => 0.1311088052312
915 => 0.13110594540727
916 => 0.13172566511859
917 => 0.13128653690665
918 => 0.13042097012531
919 => 0.13099557374907
920 => 0.13270194108708
921 => 0.13799855766202
922 => 0.14096261446819
923 => 0.13782011772051
924 => 0.13998776989735
925 => 0.13868795100469
926 => 0.13845173524563
927 => 0.13981318100093
928 => 0.14117700978679
929 => 0.14109013978913
930 => 0.14010007012397
1001 => 0.13954080489221
1002 => 0.14377574859468
1003 => 0.14689598297428
1004 => 0.14668320390791
1005 => 0.14762234150741
1006 => 0.15037967854599
1007 => 0.15063177488873
1008 => 0.15060001654391
1009 => 0.14997516945491
1010 => 0.15269012585485
1011 => 0.1549549902488
1012 => 0.14983053540737
1013 => 0.15178186072695
1014 => 0.15265787353068
1015 => 0.15394412022784
1016 => 0.15611423400594
1017 => 0.1584715531632
1018 => 0.15880490393873
1019 => 0.15856837561119
1020 => 0.15701366025883
1021 => 0.15959306700938
1022 => 0.16110402298932
1023 => 0.16200376269775
1024 => 0.16428535289595
1025 => 0.15266328348752
1026 => 0.14443660510591
1027 => 0.14315189048195
1028 => 0.14576440818869
1029 => 0.14645330827352
1030 => 0.14617561351313
1031 => 0.13691573905775
1101 => 0.14310313915932
1102 => 0.14976026141722
1103 => 0.15001598859513
1104 => 0.1533486831913
1105 => 0.15443394516358
1106 => 0.15711720113977
1107 => 0.15694936274789
1108 => 0.15760269287816
1109 => 0.15745250359531
1110 => 0.16242267026498
1111 => 0.16790550217852
1112 => 0.1677156491437
1113 => 0.1669274271862
1114 => 0.1680980712049
1115 => 0.17375694131565
1116 => 0.17323596323739
1117 => 0.17374204906361
1118 => 0.18041417584413
1119 => 0.18908888975777
1120 => 0.18505861421785
1121 => 0.19380315245893
1122 => 0.19930737575365
1123 => 0.20882636079454
1124 => 0.20763453698543
1125 => 0.21134020800831
1126 => 0.20550092362599
1127 => 0.1920927463701
1128 => 0.18997085099491
1129 => 0.19421893927098
1130 => 0.20466244977531
1201 => 0.1938900359599
1202 => 0.19606928124474
1203 => 0.1954416584561
1204 => 0.19540821510492
1205 => 0.19668461179557
1206 => 0.1948331318234
1207 => 0.1872898693419
1208 => 0.19074690208445
1209 => 0.1894119757222
1210 => 0.19089317604647
1211 => 0.19888660330304
1212 => 0.1953525185734
1213 => 0.19162964739646
1214 => 0.1962989540236
1215 => 0.20224458590777
1216 => 0.20187251894979
1217 => 0.20115055353938
1218 => 0.205220234757
1219 => 0.21194215582378
1220 => 0.21375906407727
1221 => 0.21510026860494
1222 => 0.21528519804947
1223 => 0.21719008626113
1224 => 0.20694702225338
1225 => 0.22320302789422
1226 => 0.2260099910053
1227 => 0.22548239827712
1228 => 0.22860221964002
1229 => 0.22768428905283
1230 => 0.22635435165088
1231 => 0.23129993211611
]
'min_raw' => 0.085259177253337
'max_raw' => 0.23129993211611
'avg_raw' => 0.15827955468472
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.085259'
'max' => '$0.231299'
'avg' => '$0.158279'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.029403686806488
'max_diff' => 0.10660648444119
'year' => 2032
]
7 => [
'items' => [
101 => 0.22563022320049
102 => 0.21758278519126
103 => 0.21316780153912
104 => 0.21898180815883
105 => 0.22253221912062
106 => 0.22487881491781
107 => 0.22558889338819
108 => 0.20774216215404
109 => 0.19812376384393
110 => 0.20428904688555
111 => 0.21181111770143
112 => 0.2069052367702
113 => 0.20709753801464
114 => 0.20010304104954
115 => 0.21242997548051
116 => 0.21063404481975
117 => 0.2199513362647
118 => 0.21772768988543
119 => 0.22532557936361
120 => 0.223324800431
121 => 0.23162992191822
122 => 0.23494305973166
123 => 0.24050633376915
124 => 0.24459870079773
125 => 0.24700181699142
126 => 0.24685754290901
127 => 0.25637988649614
128 => 0.25076489316816
129 => 0.24371113819589
130 => 0.24358355802276
131 => 0.24723679767537
201 => 0.25489298576991
202 => 0.25687812394981
203 => 0.25798754537485
204 => 0.25628842784317
205 => 0.25019375501584
206 => 0.24756210618969
207 => 0.24980434723577
208 => 0.24706227911438
209 => 0.25179585798033
210 => 0.25829607280117
211 => 0.25695380414531
212 => 0.26144080701771
213 => 0.26608438294418
214 => 0.27272490507508
215 => 0.27446098345791
216 => 0.2773306550076
217 => 0.28028448967022
218 => 0.28123318175578
219 => 0.28304452930898
220 => 0.28303498261326
221 => 0.28849360038257
222 => 0.29451462482144
223 => 0.29678742216008
224 => 0.3020135943175
225 => 0.29306395764483
226 => 0.29985235986706
227 => 0.30597566859625
228 => 0.29867520749493
301 => 0.30873719233382
302 => 0.30912787640416
303 => 0.3150267420249
304 => 0.30904711163237
305 => 0.30549642619294
306 => 0.31574712201412
307 => 0.32070711082809
308 => 0.3192131218316
309 => 0.30784379180092
310 => 0.30122635406957
311 => 0.2839072431182
312 => 0.30442247817001
313 => 0.31441485072614
314 => 0.30781791396998
315 => 0.31114502514889
316 => 0.3292966649216
317 => 0.3362076341154
318 => 0.33477020083441
319 => 0.33501310339673
320 => 0.33874213693075
321 => 0.35527872523684
322 => 0.34536961820871
323 => 0.35294475924456
324 => 0.35696258673577
325 => 0.36069456882557
326 => 0.35153000031808
327 => 0.3396070313441
328 => 0.33583052657784
329 => 0.30716197862099
330 => 0.30566965619865
331 => 0.30483197040099
401 => 0.29955047993974
402 => 0.2954006751592
403 => 0.29210059632533
404 => 0.28344020397831
405 => 0.28636283216695
406 => 0.27255997433016
407 => 0.28139055363089
408 => 0.25936085924172
409 => 0.27770784334492
410 => 0.26772241403255
411 => 0.27442736125855
412 => 0.27440396832932
413 => 0.26205803468081
414 => 0.25493715780541
415 => 0.25947485769909
416 => 0.26433963218818
417 => 0.26512892548197
418 => 0.27143623259068
419 => 0.27319646642961
420 => 0.26786287572019
421 => 0.25890434279118
422 => 0.2609852056682
423 => 0.25489498918562
424 => 0.24422211905668
425 => 0.25188756071372
426 => 0.25450487952111
427 => 0.25566083661182
428 => 0.24516529462743
429 => 0.24186736746663
430 => 0.24011157871851
501 => 0.25754950011836
502 => 0.25850478881653
503 => 0.2536173967725
504 => 0.27570887225303
505 => 0.27070889097246
506 => 0.27629509508802
507 => 0.26079638917269
508 => 0.26138846061043
509 => 0.25405112485233
510 => 0.25815954259591
511 => 0.25525584535523
512 => 0.25782762304241
513 => 0.25936913598426
514 => 0.26670526775776
515 => 0.27779161018559
516 => 0.26560949430923
517 => 0.26030157197079
518 => 0.26359457713667
519 => 0.27236428384056
520 => 0.28565083840997
521 => 0.27778493068805
522 => 0.28127568696326
523 => 0.28203826191646
524 => 0.27623823277404
525 => 0.28586469375752
526 => 0.2910235924038
527 => 0.29631555493122
528 => 0.30091041771636
529 => 0.29420182872502
530 => 0.30138098058421
531 => 0.2955958514766
601 => 0.29040599261142
602 => 0.29041386348504
603 => 0.28715818920718
604 => 0.28084991005245
605 => 0.27968656658996
606 => 0.28573842619595
607 => 0.29059144448672
608 => 0.29099116231754
609 => 0.29367804260039
610 => 0.29526811067471
611 => 0.31085293939582
612 => 0.31712128643191
613 => 0.32478610253391
614 => 0.327771980371
615 => 0.3367584021642
616 => 0.3295011367247
617 => 0.32793098169652
618 => 0.30613286186238
619 => 0.30970230276407
620 => 0.31541732204749
621 => 0.30622710042539
622 => 0.31205618074719
623 => 0.31320696467952
624 => 0.30591482021136
625 => 0.30980986964676
626 => 0.29946577314799
627 => 0.27801708322211
628 => 0.28588857228084
629 => 0.29168463774264
630 => 0.28341293767894
701 => 0.29823963988413
702 => 0.28957818654111
703 => 0.28683292165446
704 => 0.27612266457403
705 => 0.28117749364039
706 => 0.28801422233083
707 => 0.28378991885516
708 => 0.29255598284953
709 => 0.30497106728944
710 => 0.31381879579238
711 => 0.31449801452415
712 => 0.30880951784854
713 => 0.31792537007471
714 => 0.31799176910618
715 => 0.3077090505557
716 => 0.30141094269795
717 => 0.29997999934134
718 => 0.30355477639913
719 => 0.30789521568753
720 => 0.31473887869674
721 => 0.31887436092266
722 => 0.32965750527757
723 => 0.33257511496303
724 => 0.33578068344336
725 => 0.3400643114938
726 => 0.34520790526804
727 => 0.33395401491496
728 => 0.33440115295857
729 => 0.3239216860825
730 => 0.31272287281785
731 => 0.32122137613394
801 => 0.3323320387112
802 => 0.32978324043979
803 => 0.32949644856703
804 => 0.32997875294758
805 => 0.3280570422869
806 => 0.31936521619057
807 => 0.31500023553871
808 => 0.32063217420494
809 => 0.32362529895729
810 => 0.32826737442028
811 => 0.32769514063714
812 => 0.33965262850729
813 => 0.34429894671797
814 => 0.34311021969251
815 => 0.34332897407351
816 => 0.35174091125685
817 => 0.36109671545156
818 => 0.369859660687
819 => 0.37877370495774
820 => 0.36802747666829
821 => 0.36257120467812
822 => 0.36820068461612
823 => 0.36521360332035
824 => 0.3823782584717
825 => 0.38356670195275
826 => 0.40073011590416
827 => 0.41702023952537
828 => 0.40678870474677
829 => 0.41643658120454
830 => 0.42687154619653
831 => 0.44700228667812
901 => 0.44022296149191
902 => 0.43503010464484
903 => 0.43012288001606
904 => 0.44033403546858
905 => 0.45347052383105
906 => 0.45629999760461
907 => 0.46088482605994
908 => 0.45606443954531
909 => 0.46187006415402
910 => 0.48236647014351
911 => 0.47682816031837
912 => 0.46896287003894
913 => 0.48514281407188
914 => 0.49099827291946
915 => 0.53209494963939
916 => 0.58398120161735
917 => 0.56249995259497
918 => 0.54916584813121
919 => 0.55229967896939
920 => 0.57124678173126
921 => 0.57733198978739
922 => 0.56079029659382
923 => 0.56663310227761
924 => 0.5988275360473
925 => 0.61609881684364
926 => 0.59264209767973
927 => 0.52792593981348
928 => 0.46825468670528
929 => 0.48408219006112
930 => 0.48228784236518
1001 => 0.51687674511331
1002 => 0.47669607346068
1003 => 0.47737261292223
1004 => 0.51267677754891
1005 => 0.50325823169312
1006 => 0.48800139364295
1007 => 0.46836607850728
1008 => 0.43206838243215
1009 => 0.39991850078228
1010 => 0.46297182237324
1011 => 0.46025284849121
1012 => 0.45631537138068
1013 => 0.46507780061064
1014 => 0.5076256696924
1015 => 0.50664480359605
1016 => 0.50040503393337
1017 => 0.50513784422771
1018 => 0.48717170911555
1019 => 0.49180199121525
1020 => 0.46824523447392
1021 => 0.47889387233806
1022 => 0.48796865932069
1023 => 0.48979055716197
1024 => 0.49389538602679
1025 => 0.45882007280651
1026 => 0.47456785868532
1027 => 0.48381820752113
1028 => 0.44202479495037
1029 => 0.48299208613067
1030 => 0.45820948963888
1031 => 0.44979790416745
1101 => 0.46112299586261
1102 => 0.45670959661499
1103 => 0.45291521510539
1104 => 0.45079788502728
1105 => 0.45911378246345
1106 => 0.4587258359084
1107 => 0.4451194136567
1108 => 0.42737039049808
1109 => 0.43332754526194
1110 => 0.4311632550876
1111 => 0.42331958829683
1112 => 0.42860527266587
1113 => 0.40532979372826
1114 => 0.36528554197021
1115 => 0.39174000127018
1116 => 0.39072153336404
1117 => 0.39020797566193
1118 => 0.4100877706783
1119 => 0.40817678709239
1120 => 0.40470833317154
1121 => 0.42325588742058
1122 => 0.41648578061987
1123 => 0.43734965454188
1124 => 0.45109195129768
1125 => 0.44760646032368
1126 => 0.46053115684479
1127 => 0.43346478607594
1128 => 0.44245514873104
1129 => 0.44430805001415
1130 => 0.42302701348021
1201 => 0.40848944764057
1202 => 0.40751995773945
1203 => 0.3823138219735
1204 => 0.39577873624286
1205 => 0.40762730358387
1206 => 0.4019527593135
1207 => 0.40015636811968
1208 => 0.40933374113916
1209 => 0.41004690162166
1210 => 0.39378676704334
1211 => 0.39716776391367
1212 => 0.41126708290689
1213 => 0.39681249725017
1214 => 0.36872959846231
1215 => 0.36176465128647
1216 => 0.36083539894376
1217 => 0.34194590980595
1218 => 0.36223008236095
1219 => 0.35337549745866
1220 => 0.38134702507076
1221 => 0.36536983851304
1222 => 0.36468109393374
1223 => 0.36363995548525
1224 => 0.34738099186937
1225 => 0.35094067159021
1226 => 0.3627735891368
1227 => 0.36699570742477
1228 => 0.36655530589654
1229 => 0.36271560138539
1230 => 0.36447339844813
1231 => 0.35881092165196
]
'min_raw' => 0.19812376384393
'max_raw' => 0.61609881684364
'avg_raw' => 0.40711129034378
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.198123'
'max' => '$0.616098'
'avg' => '$0.407111'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.11286458659059
'max_diff' => 0.38479888472753
'year' => 2033
]
8 => [
'items' => [
101 => 0.35681138324097
102 => 0.35050028999951
103 => 0.34122472641858
104 => 0.34251455042484
105 => 0.32413723188778
106 => 0.31412429339067
107 => 0.31135284398308
108 => 0.3076467460084
109 => 0.31177145761087
110 => 0.32408517125335
111 => 0.30923222010044
112 => 0.28376787716215
113 => 0.28529832756187
114 => 0.28873679521524
115 => 0.28232923349092
116 => 0.27626501406475
117 => 0.28153736085013
118 => 0.27074778305668
119 => 0.29004066414376
120 => 0.28951884577803
121 => 0.29671003878353
122 => 0.301206839348
123 => 0.29084316990336
124 => 0.28823673506437
125 => 0.28972147880452
126 => 0.26518197208747
127 => 0.29470463755012
128 => 0.294959950787
129 => 0.2927738038477
130 => 0.30849371179653
131 => 0.3416676207308
201 => 0.32918626177233
202 => 0.32435310233254
203 => 0.31516526270448
204 => 0.32740751348894
205 => 0.32646749963755
206 => 0.32221640051193
207 => 0.31964532249652
208 => 0.32438261257347
209 => 0.31905831983071
210 => 0.31810193055233
211 => 0.31230725208715
212 => 0.31023881551615
213 => 0.30870742742582
214 => 0.30702151960944
215 => 0.31074021215031
216 => 0.30231316561796
217 => 0.29215097361351
218 => 0.29130609730478
219 => 0.29363887507546
220 => 0.29260679456682
221 => 0.29130115610037
222 => 0.28880833669845
223 => 0.28806877043257
224 => 0.29047200201016
225 => 0.28775889367616
226 => 0.29176223281364
227 => 0.2906735460831
228 => 0.28459223050525
301 => 0.27701265970385
302 => 0.27694518562503
303 => 0.27531217952886
304 => 0.27323230074127
305 => 0.27265372604375
306 => 0.28109333850964
307 => 0.29856308373769
308 => 0.29513335473385
309 => 0.29761168543189
310 => 0.3098026195722
311 => 0.31367775094123
312 => 0.31092727448301
313 => 0.307162252665
314 => 0.30732789451718
315 => 0.32019411381893
316 => 0.32099656413475
317 => 0.32302409720256
318 => 0.32563005017546
319 => 0.31137107954275
320 => 0.30665629828267
321 => 0.30442217335554
322 => 0.29754193329513
323 => 0.30496168233308
324 => 0.300638512314
325 => 0.30122185565009
326 => 0.30084195253719
327 => 0.30104940532577
328 => 0.2900352713903
329 => 0.29404824291055
330 => 0.28737589942951
331 => 0.27844238051411
401 => 0.27841243222621
402 => 0.28059889832465
403 => 0.27929830273287
404 => 0.27579843343677
405 => 0.27629557335136
406 => 0.27194010458431
407 => 0.27682440611799
408 => 0.2769644704091
409 => 0.27508374826894
410 => 0.28260868868529
411 => 0.28569166291363
412 => 0.284453731312
413 => 0.28560480633239
414 => 0.29527587545826
415 => 0.2968526817041
416 => 0.29755299488053
417 => 0.29661466799783
418 => 0.28578157572258
419 => 0.28626206943085
420 => 0.28273652541213
421 => 0.27975781222899
422 => 0.27987694513502
423 => 0.28140839091676
424 => 0.28809630446375
425 => 0.30217062424935
426 => 0.30270473439702
427 => 0.30335209147708
428 => 0.30071896489685
429 => 0.29992478872462
430 => 0.30097251209005
501 => 0.30625808660894
502 => 0.31985401929101
503 => 0.31504830863936
504 => 0.31114119107422
505 => 0.31456878653018
506 => 0.31404113507611
507 => 0.30958722579416
508 => 0.30946221939482
509 => 0.30091374348182
510 => 0.29775356657616
511 => 0.29511268621865
512 => 0.29222891381018
513 => 0.29051931686151
514 => 0.29314603477259
515 => 0.29374679623726
516 => 0.28800343161753
517 => 0.28722063224232
518 => 0.29191078776993
519 => 0.28984682518885
520 => 0.2919696618873
521 => 0.2924621782107
522 => 0.29238287173902
523 => 0.29022785775978
524 => 0.2916013994067
525 => 0.28835256393925
526 => 0.28481994332771
527 => 0.28256635146758
528 => 0.28059979367404
529 => 0.28169095423491
530 => 0.27780116607347
531 => 0.27655674455466
601 => 0.29113607440239
602 => 0.30190598211512
603 => 0.30174938339162
604 => 0.30079612893627
605 => 0.29937978617622
606 => 0.30615447231419
607 => 0.30379430712785
608 => 0.30551152449931
609 => 0.30594862839174
610 => 0.30727161022683
611 => 0.30774446251875
612 => 0.30631517447555
613 => 0.30151830922972
614 => 0.2895649771094
615 => 0.28400066873998
616 => 0.28216435429719
617 => 0.28223110083953
618 => 0.28038993323216
619 => 0.28093223960788
620 => 0.28020134120606
621 => 0.27881719645634
622 => 0.28160548719703
623 => 0.28192681173017
624 => 0.2812759913537
625 => 0.2814292831124
626 => 0.27604076836425
627 => 0.27645044543731
628 => 0.27416931143525
629 => 0.27374162630935
630 => 0.2679751181932
701 => 0.25775891319672
702 => 0.26341968247578
703 => 0.25658226921129
704 => 0.2539928372043
705 => 0.26625080558606
706 => 0.26502044554365
707 => 0.2629146039757
708 => 0.25979962540086
709 => 0.25864424954689
710 => 0.25162455160572
711 => 0.25120979040272
712 => 0.25468894225015
713 => 0.25308343338287
714 => 0.25082869087944
715 => 0.24266224209162
716 => 0.23348044983583
717 => 0.23375759042935
718 => 0.2366781477126
719 => 0.24517006190445
720 => 0.24185212411808
721 => 0.23944492218513
722 => 0.23899412562331
723 => 0.24463678840099
724 => 0.25262233840582
725 => 0.25636897980147
726 => 0.25265617196557
727 => 0.24839109823546
728 => 0.24865069351096
729 => 0.25037766457815
730 => 0.25055914481926
731 => 0.24778302027762
801 => 0.24856448307485
802 => 0.2473773696274
803 => 0.24009205659166
804 => 0.23996028838082
805 => 0.23817235507031
806 => 0.23811821716024
807 => 0.23507649657819
808 => 0.23465093884234
809 => 0.22861141800744
810 => 0.23258664891032
811 => 0.22992027272966
812 => 0.22590141489084
813 => 0.22520856228463
814 => 0.22518773429864
815 => 0.22931420269894
816 => 0.23253842872452
817 => 0.22996665548489
818 => 0.22938111256996
819 => 0.23563317899626
820 => 0.23483754655466
821 => 0.23414853399152
822 => 0.25190731998916
823 => 0.23784985513667
824 => 0.23171999808894
825 => 0.2241331359641
826 => 0.22660345652823
827 => 0.22712398936765
828 => 0.20887895359208
829 => 0.20147694485021
830 => 0.19893685438882
831 => 0.19747499641668
901 => 0.19814118345144
902 => 0.19147850741472
903 => 0.19595593590188
904 => 0.19018662163607
905 => 0.18921937732444
906 => 0.1995356259126
907 => 0.20097107163699
908 => 0.1948470142187
909 => 0.19877965047608
910 => 0.19735362190142
911 => 0.19028551997023
912 => 0.19001557046589
913 => 0.18646904537261
914 => 0.18091942034421
915 => 0.17838309278991
916 => 0.17706215137823
917 => 0.17760719754932
918 => 0.17733160552653
919 => 0.17553318116017
920 => 0.17743468910605
921 => 0.17257712206166
922 => 0.17064279972451
923 => 0.16976911120075
924 => 0.16545774085773
925 => 0.17231904834857
926 => 0.17367081236074
927 => 0.1750252397656
928 => 0.186814605618
929 => 0.18622564221642
930 => 0.19154958452992
1001 => 0.19134270592172
1002 => 0.18982423133176
1003 => 0.18341803681367
1004 => 0.18597143176914
1005 => 0.17811247898187
1006 => 0.18400094076694
1007 => 0.18131369271628
1008 => 0.18309237949788
1009 => 0.17989414028683
1010 => 0.18166417791829
1011 => 0.17399136575517
1012 => 0.16682660171662
1013 => 0.16970991191823
1014 => 0.1728443998539
1015 => 0.1796407683511
1016 => 0.17559290734299
1017 => 0.17704867122808
1018 => 0.17217210590497
1019 => 0.16211035872137
1020 => 0.16216730711773
1021 => 0.16061952652061
1022 => 0.15928201810503
1023 => 0.17605785287313
1024 => 0.17397151263302
1025 => 0.17064720251385
1026 => 0.17509692371119
1027 => 0.17627350062234
1028 => 0.17630699611292
1029 => 0.17955339783457
1030 => 0.18128600301536
1031 => 0.18159138218802
1101 => 0.18669966544018
1102 => 0.18841189460642
1103 => 0.19546432421843
1104 => 0.18113900357081
1105 => 0.18084398301911
1106 => 0.17515954041367
1107 => 0.17155437704582
1108 => 0.17540638903382
1109 => 0.17881874580312
1110 => 0.1752655718504
1111 => 0.17572954135703
1112 => 0.17095969563049
1113 => 0.17266469103563
1114 => 0.17413326276622
1115 => 0.17332240377524
1116 => 0.17210850861973
1117 => 0.17853897146204
1118 => 0.17817613954729
1119 => 0.18416433438175
1120 => 0.18883256047513
1121 => 0.1971988561797
1122 => 0.18846819046712
1123 => 0.1881500103073
1124 => 0.19126027240724
1125 => 0.1884114184415
1126 => 0.19021179580875
1127 => 0.19690878755211
1128 => 0.19705028443466
1129 => 0.19468002934342
1130 => 0.19453579910571
1201 => 0.19499103252373
1202 => 0.19765734887205
1203 => 0.19672565601232
1204 => 0.19780383457717
1205 => 0.19915211338218
1206 => 0.20472916617805
1207 => 0.20607377472611
1208 => 0.20280707305393
1209 => 0.20310201963922
1210 => 0.20188018354085
1211 => 0.20069990517939
1212 => 0.20335299857014
1213 => 0.20820157888841
1214 => 0.20817141612189
1215 => 0.2092961925128
1216 => 0.20999691888618
1217 => 0.20698888832856
1218 => 0.2050307710439
1219 => 0.20578163780908
1220 => 0.20698229011835
1221 => 0.20539228244717
1222 => 0.19557801853745
1223 => 0.19855503927005
1224 => 0.19805951745127
1225 => 0.19735383412381
1226 => 0.20034725149107
1227 => 0.20005852908351
1228 => 0.19141017204189
1229 => 0.19196381180017
1230 => 0.1914438407093
1231 => 0.19312397367997
]
'min_raw' => 0.15928201810503
'max_raw' => 0.35681138324097
'avg_raw' => 0.258046700673
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.159282'
'max' => '$0.356811'
'avg' => '$0.258046'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.038841745738894
'max_diff' => -0.25928743360268
'year' => 2034
]
9 => [
'items' => [
101 => 0.18832068574736
102 => 0.18979814476479
103 => 0.19072479321021
104 => 0.1912705962634
105 => 0.19324241115221
106 => 0.19301104143361
107 => 0.19322802888565
108 => 0.19615170982592
109 => 0.21093868473568
110 => 0.2117435071544
111 => 0.20778026721466
112 => 0.20936350339914
113 => 0.20632403614064
114 => 0.20836445087393
115 => 0.20976045081353
116 => 0.20345219552183
117 => 0.20307866158369
118 => 0.20002664936262
119 => 0.20166662785541
120 => 0.19905730415475
121 => 0.19969754092063
122 => 0.1979073831084
123 => 0.20112931075354
124 => 0.20473192649774
125 => 0.20564208950633
126 => 0.20324784248054
127 => 0.2015142498453
128 => 0.19847063225873
129 => 0.20353223613663
130 => 0.20501240336012
131 => 0.20352446144833
201 => 0.2031796727952
202 => 0.20252629892054
203 => 0.20331828915141
204 => 0.20500434205154
205 => 0.20420923064034
206 => 0.2047344157355
207 => 0.2027329517213
208 => 0.20698988411184
209 => 0.2137509172346
210 => 0.21377265506163
211 => 0.21297753936449
212 => 0.21265219515223
213 => 0.21346803210915
214 => 0.21391059019089
215 => 0.21654885731065
216 => 0.21937982304336
217 => 0.23259070487077
218 => 0.22888114211783
219 => 0.24060262239398
220 => 0.2498727914487
221 => 0.25265250981284
222 => 0.25009529971368
223 => 0.24134722210224
224 => 0.24091799967971
225 => 0.25399132097431
226 => 0.25029750891254
227 => 0.2498581417214
228 => 0.24518401713031
301 => 0.24794700366524
302 => 0.24734269797948
303 => 0.24638877189087
304 => 0.25166035772821
305 => 0.26152829581799
306 => 0.25999028512576
307 => 0.25884223149027
308 => 0.25381179465296
309 => 0.25684124121776
310 => 0.25576251332126
311 => 0.26039741294227
312 => 0.25765180108238
313 => 0.25026952465321
314 => 0.25144517650685
315 => 0.25126747909426
316 => 0.2549244792537
317 => 0.25382673857816
318 => 0.25105312760925
319 => 0.26149456827838
320 => 0.26081655919967
321 => 0.26177782105882
322 => 0.26220099825723
323 => 0.26855651919371
324 => 0.2711601727674
325 => 0.27175124771199
326 => 0.2742245172332
327 => 0.27168971051321
328 => 0.28183074467975
329 => 0.28857394065474
330 => 0.2964065097814
331 => 0.30785199847154
401 => 0.31215560809573
402 => 0.31137819953723
403 => 0.32005603843655
404 => 0.33564992204109
405 => 0.31453016925991
406 => 0.33676932022126
407 => 0.32972866179024
408 => 0.31303538730633
409 => 0.31196053723034
410 => 0.32326541652375
411 => 0.34833855074221
412 => 0.34205801499762
413 => 0.34834882344875
414 => 0.34101026123454
415 => 0.34064583976635
416 => 0.34799240586198
417 => 0.3651580579849
418 => 0.35700330010615
419 => 0.3453114550583
420 => 0.35394453149638
421 => 0.3464657617322
422 => 0.32961400027767
423 => 0.3420532123903
424 => 0.33373546549895
425 => 0.33616302623759
426 => 0.35364569303174
427 => 0.35154213230967
428 => 0.3542643346685
429 => 0.3494597187576
430 => 0.34497144987842
501 => 0.33659376271222
502 => 0.33411354255729
503 => 0.33479898617914
504 => 0.33411320288547
505 => 0.3294259639109
506 => 0.32841375510062
507 => 0.32672669607093
508 => 0.32724958620805
509 => 0.32407742166571
510 => 0.33006395155975
511 => 0.33117510426121
512 => 0.33553160148293
513 => 0.33598390747661
514 => 0.34811669022825
515 => 0.34143415737178
516 => 0.34591737735403
517 => 0.34551635596111
518 => 0.31339718118283
519 => 0.3178229200774
520 => 0.32470798092398
521 => 0.32160627034507
522 => 0.317221177275
523 => 0.31367997950711
524 => 0.30831470278268
525 => 0.3158662267413
526 => 0.32579567773184
527 => 0.33623573473982
528 => 0.34877877917528
529 => 0.34597931767442
530 => 0.33600125124886
531 => 0.33644886001973
601 => 0.33921580131368
602 => 0.33563236093489
603 => 0.33457553441012
604 => 0.33907060957785
605 => 0.33910156469008
606 => 0.33497838346104
607 => 0.33039622205917
608 => 0.33037702263559
609 => 0.32956167127255
610 => 0.34115531043072
611 => 0.34753063971857
612 => 0.34826156094707
613 => 0.34748144289622
614 => 0.34778167937222
615 => 0.3440720157304
616 => 0.352551206749
617 => 0.36033255093275
618 => 0.35824698446733
619 => 0.35512042385493
620 => 0.35262996773159
621 => 0.35766031215251
622 => 0.35743631883394
623 => 0.3602645876796
624 => 0.36013628106789
625 => 0.35918524063167
626 => 0.35824701843198
627 => 0.3619669634019
628 => 0.36089567899105
629 => 0.35982273057962
630 => 0.3576707682803
701 => 0.35796325569709
702 => 0.35483723492946
703 => 0.35339099468538
704 => 0.33164301142992
705 => 0.32583123966821
706 => 0.32765974137397
707 => 0.32826173161253
708 => 0.32573244109384
709 => 0.32935879397621
710 => 0.32879363072075
711 => 0.3309923503383
712 => 0.32961868577856
713 => 0.32967506145125
714 => 0.33371471602526
715 => 0.33488744493402
716 => 0.33429098554594
717 => 0.33470872525592
718 => 0.34433536055543
719 => 0.34296676085831
720 => 0.34223971954641
721 => 0.3424411149585
722 => 0.34490092667491
723 => 0.34558953965477
724 => 0.34267183807114
725 => 0.34404784300501
726 => 0.3499066973724
727 => 0.35195696481854
728 => 0.35850043432243
729 => 0.35572065217628
730 => 0.3608230626117
731 => 0.37650613275025
801 => 0.38903485436283
802 => 0.37751292419658
803 => 0.40052032591502
804 => 0.41843488836858
805 => 0.41774729762334
806 => 0.41462347928827
807 => 0.39422822621818
808 => 0.37546021026698
809 => 0.39116045254221
810 => 0.39120047568855
811 => 0.38985181095325
812 => 0.38147537011136
813 => 0.38956032896894
814 => 0.3902020836428
815 => 0.38984287168178
816 => 0.38342067412791
817 => 0.37361516548364
818 => 0.37553113840166
819 => 0.37866954112616
820 => 0.37272789002928
821 => 0.3708291724865
822 => 0.37435924964433
823 => 0.38573389376766
824 => 0.38358358318497
825 => 0.38352742988557
826 => 0.39272737043191
827 => 0.38614219847216
828 => 0.37555530495595
829 => 0.37288197471914
830 => 0.36339345334948
831 => 0.36994720885646
901 => 0.37018306684973
902 => 0.36659364193631
903 => 0.37584656700522
904 => 0.37576129967177
905 => 0.38454557490855
906 => 0.40133780993817
907 => 0.39637151974421
908 => 0.39059626457948
909 => 0.39122419494634
910 => 0.39811104120662
911 => 0.39394709674624
912 => 0.39544448020625
913 => 0.39810877473741
914 => 0.39971620977878
915 => 0.39099290978091
916 => 0.38895909126773
917 => 0.38479861236307
918 => 0.38371322107586
919 => 0.38710184433247
920 => 0.38620906182618
921 => 0.37016324389868
922 => 0.36848636664717
923 => 0.36853779407844
924 => 0.36432120649835
925 => 0.35788989834173
926 => 0.37479099218386
927 => 0.37343359781768
928 => 0.3719351394914
929 => 0.37211869208629
930 => 0.37945488409194
1001 => 0.37519952224208
1002 => 0.38651309916001
1003 => 0.38418736786294
1004 => 0.38180199033388
1005 => 0.38147225849899
1006 => 0.38055409166115
1007 => 0.37740535593936
1008 => 0.37360306834563
1009 => 0.37109246872773
1010 => 0.34231318652765
1011 => 0.34765445390261
1012 => 0.35379909514565
1013 => 0.35592020067964
1014 => 0.35229190288771
1015 => 0.37754862325093
1016 => 0.3821632694411
1017 => 0.36818520512514
1018 => 0.36557048001223
1019 => 0.37772004419402
1020 => 0.37039237176859
1021 => 0.37369202221308
1022 => 0.36655998276438
1023 => 0.3810517363065
1024 => 0.38094133342484
1025 => 0.37530371398585
1026 => 0.38006859133093
1027 => 0.37924057663435
1028 => 0.37287571817258
1029 => 0.38125351367253
1030 => 0.38125766895458
1031 => 0.37583158281697
1101 => 0.36949510213124
1102 => 0.36836228904563
1103 => 0.36750886655764
1104 => 0.37348213259679
1105 => 0.37883774424957
1106 => 0.38880320976667
1107 => 0.39130876457129
1108 => 0.40108811177794
1109 => 0.39526498666415
1110 => 0.397846302605
1111 => 0.40064868620823
1112 => 0.40199225196186
1113 => 0.39980298366603
1114 => 0.41499433521787
1115 => 0.41627695073983
1116 => 0.41670700062976
1117 => 0.41158456235966
1118 => 0.41613448646511
1119 => 0.41400572765382
1120 => 0.41954416669458
1121 => 0.42041266465451
1122 => 0.41967707778016
1123 => 0.41995275274095
1124 => 0.40698961412951
1125 => 0.4063174070065
1126 => 0.39715181518666
1127 => 0.40088686160188
1128 => 0.39390437135406
1129 => 0.39611859093926
1130 => 0.39709459783456
1201 => 0.39658478722036
1202 => 0.40109803552218
1203 => 0.39726085246992
1204 => 0.38713389550371
1205 => 0.37700417945485
1206 => 0.37687700912134
1207 => 0.37421003369002
1208 => 0.37228229893409
1209 => 0.37265364903814
1210 => 0.3739623352408
1211 => 0.37220623571293
1212 => 0.3725809885837
1213 => 0.37880438320392
1214 => 0.38005244061179
1215 => 0.37581105389235
1216 => 0.35878127418465
1217 => 0.35460212352841
1218 => 0.35760601414396
1219 => 0.35617034790506
1220 => 0.28745726871529
1221 => 0.30360038743542
1222 => 0.29400869446043
1223 => 0.29842898787588
1224 => 0.28863835310527
1225 => 0.29331095718894
1226 => 0.29244809783087
1227 => 0.31840575502322
1228 => 0.31800046190975
1229 => 0.31819445427553
1230 => 0.30893469321229
1231 => 0.32368574401595
]
'min_raw' => 0.18832068574736
'max_raw' => 0.42041266465451
'avg_raw' => 0.30436667520093
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.18832'
'max' => '$0.420412'
'avg' => '$0.304366'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.029038667642329
'max_diff' => 0.063601281413541
'year' => 2035
]
10 => [
'items' => [
101 => 0.33095264207246
102 => 0.32960773264443
103 => 0.32994621737253
104 => 0.32412992829023
105 => 0.31825076866763
106 => 0.31172987584999
107 => 0.32384488869845
108 => 0.32249790607987
109 => 0.32558739957785
110 => 0.33344485140908
111 => 0.33460189103879
112 => 0.33615696403465
113 => 0.33559958106327
114 => 0.34887870476023
115 => 0.34727051526205
116 => 0.35114578924497
117 => 0.34317405664436
118 => 0.33415328452296
119 => 0.33586783839198
120 => 0.33570271306682
121 => 0.33360047815553
122 => 0.3317026744749
123 => 0.32854336604951
124 => 0.33853988539711
125 => 0.33813404496738
126 => 0.34470412978673
127 => 0.34354280347651
128 => 0.33578718215212
129 => 0.33606417568497
130 => 0.33792709031197
131 => 0.3443746591064
201 => 0.34628873650855
202 => 0.34540205959308
203 => 0.34750075808358
204 => 0.34915948379964
205 => 0.34770906849533
206 => 0.36824389054922
207 => 0.35971640074965
208 => 0.36387263994407
209 => 0.36486387850196
210 => 0.36232484177943
211 => 0.36287546792846
212 => 0.36370951650759
213 => 0.36877369615662
214 => 0.38206356888786
215 => 0.38794956305331
216 => 0.40565786690989
217 => 0.38746081317486
218 => 0.38638107531312
219 => 0.38957087557724
220 => 0.39996752455538
221 => 0.40839303204458
222 => 0.41118825895794
223 => 0.41155769433871
224 => 0.41680172585134
225 => 0.41980750691898
226 => 0.41616496249398
227 => 0.4130782874841
228 => 0.40202220073089
229 => 0.4033019728773
301 => 0.41211833387708
302 => 0.42457196307034
303 => 0.43525847249743
304 => 0.43151642935852
305 => 0.46006557703766
306 => 0.46289610841724
307 => 0.46250502050262
308 => 0.46895339222484
309 => 0.4561546875443
310 => 0.45068299333014
311 => 0.41374566165648
312 => 0.4241235452026
313 => 0.43920840840861
314 => 0.43721187019796
315 => 0.42625683931821
316 => 0.43525016212415
317 => 0.4322766883573
318 => 0.42993138622784
319 => 0.44067566994206
320 => 0.42886188864743
321 => 0.43909055690313
322 => 0.42597218406317
323 => 0.43153352269637
324 => 0.42837663791648
325 => 0.43041952926232
326 => 0.4184768281977
327 => 0.42492081979949
328 => 0.41820873696119
329 => 0.41820555455999
330 => 0.41805738495931
331 => 0.42595412065264
401 => 0.4262116329201
402 => 0.42037593331142
403 => 0.41953491782705
404 => 0.42264459286683
405 => 0.41900397782043
406 => 0.42070739868688
407 => 0.41905557270318
408 => 0.41868371188147
409 => 0.41572066158717
410 => 0.41444409804962
411 => 0.41494467150568
412 => 0.41323595623684
413 => 0.41220639348043
414 => 0.41785257901334
415 => 0.41483604984958
416 => 0.41739025265588
417 => 0.41447941619201
418 => 0.40438918881716
419 => 0.39858619235166
420 => 0.37952668820514
421 => 0.38493193993785
422 => 0.38851562742878
423 => 0.3873312187344
424 => 0.38987578691524
425 => 0.39003200273541
426 => 0.38920473768102
427 => 0.38824687072725
428 => 0.38778063406752
429 => 0.39125558014862
430 => 0.39327290331
501 => 0.38887529841204
502 => 0.38784500111348
503 => 0.39229122246373
504 => 0.39500341491889
505 => 0.41502872015845
506 => 0.41354518086542
507 => 0.41726857336104
508 => 0.41684937650615
509 => 0.42075208502451
510 => 0.42713136404433
511 => 0.41416050612256
512 => 0.41641179855926
513 => 0.41585983364371
514 => 0.42188604185865
515 => 0.42190485502291
516 => 0.41829184216663
517 => 0.42025051505046
518 => 0.41915723758009
519 => 0.42113293773437
520 => 0.41352536729369
521 => 0.42279056690395
522 => 0.42804333804669
523 => 0.42811627277911
524 => 0.4306060446122
525 => 0.43313579699248
526 => 0.43799143639143
527 => 0.43300037584504
528 => 0.42402194379205
529 => 0.42467015758612
530 => 0.41940610615853
531 => 0.41949459581405
601 => 0.41902223109779
602 => 0.42043983316924
603 => 0.41383645122969
604 => 0.41538625177225
605 => 0.41321652193705
606 => 0.41640708199034
607 => 0.41297456679147
608 => 0.41585956746952
609 => 0.41710463812287
610 => 0.42169897563822
611 => 0.41229597940491
612 => 0.39312263355832
613 => 0.39715310330962
614 => 0.39119172196088
615 => 0.39174347050128
616 => 0.39285809036303
617 => 0.38924524271018
618 => 0.38993446018843
619 => 0.38990983649016
620 => 0.38969764276125
621 => 0.38875780155195
622 => 0.38739484585654
623 => 0.3928244418514
624 => 0.39374703601355
625 => 0.39579784855077
626 => 0.4018996755821
627 => 0.40128995917068
628 => 0.40228443193459
629 => 0.40011350347469
630 => 0.39184417364617
701 => 0.3922932380408
702 => 0.38669339784394
703 => 0.39565464804677
704 => 0.39353250571602
705 => 0.39216434675003
706 => 0.39179103190025
707 => 0.39790798418057
708 => 0.39973827217432
709 => 0.39859775952267
710 => 0.39625853480008
711 => 0.40075053779717
712 => 0.4019524082968
713 => 0.40222146277839
714 => 0.4101804308331
715 => 0.40266628067954
716 => 0.40447501130573
717 => 0.41858621132634
718 => 0.40578930012014
719 => 0.41256810939124
720 => 0.41223632195264
721 => 0.41570413139333
722 => 0.41195186036073
723 => 0.41199837425723
724 => 0.41507755411081
725 => 0.41075340133948
726 => 0.40968268030259
727 => 0.40820348685879
728 => 0.41143325162812
729 => 0.41336934953764
730 => 0.42897287678112
731 => 0.4390534669877
801 => 0.43861584198117
802 => 0.44261491534119
803 => 0.44081329616519
804 => 0.43499539260274
805 => 0.44492584456608
806 => 0.44178343405712
807 => 0.44204249056145
808 => 0.44203284846542
809 => 0.44412227673959
810 => 0.44264172531405
811 => 0.43972340647884
812 => 0.44166072271389
813 => 0.44741385932877
814 => 0.46527177190913
815 => 0.47526529637497
816 => 0.46467014918805
817 => 0.47197853984291
818 => 0.46759610969585
819 => 0.46679969177212
820 => 0.47138990118921
821 => 0.47598814516023
822 => 0.47569525689803
823 => 0.47235716789751
824 => 0.47047156612199
825 => 0.48474997448918
826 => 0.4952700625478
827 => 0.49455266306976
828 => 0.49771903105499
829 => 0.50701558539168
830 => 0.50786554581202
831 => 0.50775847033517
901 => 0.50565175474918
902 => 0.51480541980378
903 => 0.52244156823575
904 => 0.50516411095988
905 => 0.51174314051201
906 => 0.51469667884105
907 => 0.51903334938342
908 => 0.52635003949878
909 => 0.53429790562026
910 => 0.53542182103375
911 => 0.53462434926357
912 => 0.52938251790635
913 => 0.53807916785424
914 => 0.54317346143217
915 => 0.546206996677
916 => 0.55389953732574
917 => 0.51471491888827
918 => 0.48697809835633
919 => 0.48264659330572
920 => 0.49145487915415
921 => 0.49377755388762
922 => 0.49284128661495
923 => 0.46162097338485
924 => 0.48248222481776
925 => 0.50492717729572
926 => 0.50578937933035
927 => 0.51702579184264
928 => 0.52068482835276
929 => 0.52973161321541
930 => 0.52916573435908
1001 => 0.53136848250734
1002 => 0.53086210885434
1003 => 0.54761937278709
1004 => 0.5661051233827
1005 => 0.56546502062066
1006 => 0.56280747525907
1007 => 0.56675438329985
1008 => 0.58583365896794
1009 => 0.58407714500359
1010 => 0.58578344870046
1011 => 0.60827898997399
1012 => 0.63752639358302
1013 => 0.62393803821531
1014 => 0.65342085941931
1015 => 0.67197873255002
1016 => 0.7040726552097
1017 => 0.70005433802681
1018 => 0.71254826660214
1019 => 0.69286071162133
1020 => 0.64765410587406
1021 => 0.64049998747061
1022 => 0.65482271368543
1023 => 0.69003373849338
1024 => 0.65371379320883
1025 => 0.6610612708367
1026 => 0.65894519678558
1027 => 0.65883244019213
1028 => 0.66313590074985
1029 => 0.65689350675748
1030 => 0.63146087064733
1031 => 0.64311649790114
1101 => 0.63861570046925
1102 => 0.64360967077661
1103 => 0.67056006885541
1104 => 0.65864465544753
1105 => 0.6460927353519
1106 => 0.66183562864586
1107 => 0.68188174165413
1108 => 0.68062729192841
1109 => 0.67819313514118
1110 => 0.69191434950245
1111 => 0.71457777568867
1112 => 0.72070360871778
1113 => 0.72522557342273
1114 => 0.72584907595632
1115 => 0.73227153955699
1116 => 0.69773633410697
1117 => 0.75254459208313
1118 => 0.76200846418805
1119 => 0.76022964846963
1120 => 0.77074834401362
1121 => 0.76765347695103
1122 => 0.7631695001471
1123 => 0.77984386997503
1124 => 0.76072805051957
1125 => 0.73359555141728
1126 => 0.71871012578979
1127 => 0.73831245502911
1128 => 0.75028291346854
1129 => 0.75819462503287
1130 => 0.76058870417184
1201 => 0.70041720379693
1202 => 0.66798810235926
1203 => 0.6887747845804
1204 => 0.71413597151037
1205 => 0.69759545143305
1206 => 0.69824380850474
1207 => 0.67466137364669
1208 => 0.7162224937198
1209 => 0.71016738810919
1210 => 0.74158128672833
1211 => 0.73408410771059
1212 => 0.75970092255398
1213 => 0.75295515669276
1214 => 0.780956453632
1215 => 0.79212692908591
1216 => 0.8108838959187
1217 => 0.8246815970755
1218 => 0.83278387110274
1219 => 0.83229744096101
1220 => 0.86440268719381
1221 => 0.84547134516219
1222 => 0.82168911779575
1223 => 0.82125897233466
1224 => 0.8335761248845
1225 => 0.85938949758321
1226 => 0.86608252955468
1227 => 0.86982302134652
1228 => 0.86409432795986
1229 => 0.84354571300605
1230 => 0.83467292525284
1231 => 0.84223279748799
]
'min_raw' => 0.31172987584999
'max_raw' => 0.86982302134652
'avg_raw' => 0.59077644859825
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.311729'
'max' => '$0.869823'
'avg' => '$0.590776'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.12340919010262
'max_diff' => 0.44941035669201
'year' => 2036
]
11 => [
'items' => [
101 => 0.83298772337163
102 => 0.84894731500611
103 => 0.87086324310507
104 => 0.86633769061761
105 => 0.88146593407446
106 => 0.89712207451467
107 => 0.91951105850543
108 => 0.9253643679823
109 => 0.93503966596613
110 => 0.94499872576131
111 => 0.94819730736333
112 => 0.95430439210318
113 => 0.95427220475206
114 => 0.97267631566981
115 => 0.99297661993996
116 => 1.0006395148488
117 => 1.0182599191572
118 => 0.98808559427167
119 => 1.010973166315
120 => 1.0316183292112
121 => 1.0070043149062
122 => 1.0409289992959
123 => 1.0422462179157
124 => 1.0621346552017
125 => 1.0419739138488
126 => 1.0300025299889
127 => 1.0645634666307
128 => 1.0812864152124
129 => 1.0762493270037
130 => 1.037916837024
131 => 1.015605683698
201 => 0.95721309194372
202 => 1.0263816392489
203 => 1.060071620967
204 => 1.0378295881102
205 => 1.0490471757414
206 => 1.1102466965421
207 => 1.1335475116875
208 => 1.1287011050223
209 => 1.12952006797
210 => 1.1420927648828
211 => 1.1978470269045
212 => 1.1644377807274
213 => 1.1899778976092
214 => 1.2035242835116
215 => 1.216106921686
216 => 1.1852079391133
217 => 1.1450088167824
218 => 1.1322760672958
219 => 1.0356180562852
220 => 1.0305865870476
221 => 1.0277622708955
222 => 1.0099553570635
223 => 0.99596400051576
224 => 0.98483755432324
225 => 0.95563843687598
226 => 0.96549228186535
227 => 0.91895498298385
228 => 0.94872789762762
301 => 0.87445324493038
302 => 0.93631138277987
303 => 0.9026448106928
304 => 0.92525100838971
305 => 0.92517213749558
306 => 0.88354696023405
307 => 0.85953842668489
308 => 0.87483759868852
309 => 0.8912395255262
310 => 0.8939006829729
311 => 0.91516620925205
312 => 0.9211009605356
313 => 0.90311838707939
314 => 0.87291406784442
315 => 0.87992984231553
316 => 0.85939625223916
317 => 0.82341192544346
318 => 0.8492564971742
319 => 0.85808097026868
320 => 0.86197836030635
321 => 0.82659190773063
322 => 0.81547271605407
323 => 0.80955295170453
324 => 0.86834612118094
325 => 0.87156694372293
326 => 0.85508876021968
327 => 0.92957171217985
328 => 0.91271392620484
329 => 0.93154820339677
330 => 0.87929323431814
331 => 0.8812894445076
401 => 0.85655110472275
402 => 0.8704029219858
403 => 0.86061290400918
404 => 0.86928383203727
405 => 0.87448115054573
406 => 0.89921543101245
407 => 0.93659380853158
408 => 0.89552095432628
409 => 0.87762492357493
410 => 0.88872752040197
411 => 0.91829519883549
412 => 0.96309174520387
413 => 0.93657128813927
414 => 0.94834061663797
415 => 0.95091169133396
416 => 0.93135648813521
417 => 0.96381277343906
418 => 0.98120636040778
419 => 0.999048581542
420 => 1.0145404822252
421 => 0.99192200606214
422 => 1.0161270177878
423 => 0.99662205109666
424 => 0.97912407958835
425 => 0.97915061678827
426 => 0.96817388365653
427 => 0.9469050800564
428 => 0.94298278635054
429 => 0.96338705353949
430 => 0.97974934353374
501 => 0.98109702010775
502 => 0.99015602457337
503 => 0.99551705010097
504 => 1.0480623882322
505 => 1.0691965579064
506 => 1.0950390205346
507 => 1.1051061161297
508 => 1.1354044646174
509 => 1.110936087502
510 => 1.1056422001998
511 => 1.0321483172829
512 => 1.0441829364933
513 => 1.0634515230173
514 => 1.0324660491776
515 => 1.0521192004559
516 => 1.0559991488289
517 => 1.0314131746333
518 => 1.0445456057484
519 => 1.0096697622011
520 => 0.93735400661623
521 => 0.96389328154758
522 => 0.9834351209204
523 => 0.95554650664396
524 => 1.0055357682961
525 => 0.97633307362672
526 => 0.9670772213931
527 => 0.93096684188015
528 => 0.94800955099429
529 => 0.97106005909925
530 => 0.95681752499958
531 => 0.98637292178365
601 => 1.0282312457663
602 => 1.0580619801427
603 => 1.0603520135184
604 => 1.0411728498184
605 => 1.0719075820474
606 => 1.0721314510178
607 => 1.0374625475084
608 => 1.0162280371461
609 => 1.011403511714
610 => 1.0234561221474
611 => 1.038090216248
612 => 1.0611641038928
613 => 1.0751071709477
614 => 1.1114632949953
615 => 1.1213002197509
616 => 1.132108017688
617 => 1.1465505687334
618 => 1.1638925542575
619 => 1.1259492772105
620 => 1.1274568343427
621 => 1.0921245801171
622 => 1.0543669993191
623 => 1.0830202965959
624 => 1.1204806711968
625 => 1.1118872198733
626 => 1.1109202810511
627 => 1.1125464039436
628 => 1.1060672222815
629 => 1.0767621237539
630 => 1.0620452867329
701 => 1.0810337611555
702 => 1.0911252902313
703 => 1.1067763717542
704 => 1.1048470456022
705 => 1.1451625508016
706 => 1.1608279370445
707 => 1.1568200608839
708 => 1.1575576065523
709 => 1.1859190400687
710 => 1.2174627871125
711 => 1.2470076687831
712 => 1.2770619914006
713 => 1.240830332445
714 => 1.2224341304854
715 => 1.2414143151341
716 => 1.2313431619941
717 => 1.2892149952348
718 => 1.2932219154057
719 => 1.3510895638541
720 => 1.4060128529831
721 => 1.3715165191341
722 => 1.4040450082047
723 => 1.4392272212212
724 => 1.5070994182383
725 => 1.4842424500556
726 => 1.4667343706421
727 => 1.4501893201947
728 => 1.4846169437229
729 => 1.5289075313973
730 => 1.5384472997724
731 => 1.5539053690121
801 => 1.5376530993294
802 => 1.5572271680334
803 => 1.6263322318403
804 => 1.6076594335924
805 => 1.5811410582783
806 => 1.635692869233
807 => 1.6554349575527
808 => 1.7939952723923
809 => 1.9689333935184
810 => 1.8965078626665
811 => 1.8515509985095
812 => 1.8621169279775
813 => 1.9259984077836
814 => 1.9465151116005
815 => 1.8907436380943
816 => 1.9104430653888
817 => 2.0189888465869
818 => 2.0772201756341
819 => 1.9981342092772
820 => 1.7799391646932
821 => 1.5787533687251
822 => 1.6321169013303
823 => 1.6260671327961
824 => 1.7426860333315
825 => 1.6072140935297
826 => 1.6094950935588
827 => 1.7285255494557
828 => 1.696770264521
829 => 1.6453307698365
830 => 1.5791289339626
831 => 1.4567487174211
901 => 1.3483531468055
902 => 1.5609418227918
903 => 1.5517746125158
904 => 1.5384991335318
905 => 1.5680422754539
906 => 1.7114953866604
907 => 1.7081883281347
908 => 1.6871505090701
909 => 1.7031075094118
910 => 1.6425334305256
911 => 1.6581447499007
912 => 1.5787214998671
913 => 1.6146241258902
914 => 1.6452204037836
915 => 1.6513630595563
916 => 1.665202776664
917 => 1.5469439092617
918 => 1.6000386688274
919 => 1.631226865766
920 => 1.4903174573609
921 => 1.6284415398202
922 => 1.5448852854824
923 => 1.5165250377874
924 => 1.5547083751302
925 => 1.5398282914332
926 => 1.5270352692583
927 => 1.5198965430727
928 => 1.5479341718762
929 => 1.5466261829803
930 => 1.5007511803886
1001 => 1.4409091096121
1002 => 1.4609940728137
1003 => 1.453697017385
1004 => 1.4272515471726
1005 => 1.4450726010575
1006 => 1.3665976987773
1007 => 1.2315857081747
1008 => 1.3207787646959
1009 => 1.3173449290432
1010 => 1.3156134333951
1011 => 1.3826395502557
1012 => 1.3761965356752
1013 => 1.3645024011213
1014 => 1.4270367752209
1015 => 1.4042108874685
1016 => 1.4745548950657
1017 => 1.5208880080344
1018 => 1.5091364318664
1019 => 1.5527129485608
1020 => 1.4614567897999
1021 => 1.4917684251787
1022 => 1.4980156112201
1023 => 1.4262651107514
1024 => 1.3772506925427
1025 => 1.3739819896534
1026 => 1.2889977430823
1027 => 1.3343956416317
1028 => 1.3743439136625
1029 => 1.3552117914709
1030 => 1.349155133141
1031 => 1.3800972870199
1101 => 1.3825017573779
1102 => 1.3276795784007
1103 => 1.3390788454027
1104 => 1.3866156837714
1105 => 1.3378810390428
1106 => 1.2431975850941
1107 => 1.2197147794137
1108 => 1.2165817402619
1109 => 1.1528945088118
1110 => 1.2212840127767
1111 => 1.1914301615712
1112 => 1.2857381198251
1113 => 1.2318699198542
1114 => 1.2295477694185
1115 => 1.2260374984495
1116 => 1.1712192674539
1117 => 1.1832209761616
1118 => 1.2231164838179
1119 => 1.2373516504047
1120 => 1.2358668059044
1121 => 1.2229209740654
1122 => 1.2288475095879
1123 => 1.2097560737281
1124 => 1.2030144903722
1125 => 1.1817361988821
1126 => 1.1504629886699
1127 => 1.1548117203596
1128 => 1.0928513078485
1129 => 1.0590919866244
1130 => 1.0497478514503
1201 => 1.0372524833772
1202 => 1.0511592365231
1203 => 1.0926757817848
1204 => 1.0425980199728
1205 => 0.95674320989268
1206 => 0.96190323026797
1207 => 0.97349626402745
1208 => 0.95189272231225
1209 => 0.93144678312664
1210 => 0.94922286841705
1211 => 0.91284505358215
1212 => 0.97789234915319
1213 => 0.97613300210093
1214 => 1.000378611392
1215 => 1.0155398884518
1216 => 0.98059805335084
1217 => 0.97181027631573
1218 => 0.97681619349713
1219 => 0.89407953330695
1220 => 0.99361726112097
1221 => 0.9944780675245
1222 => 0.98710732048676
1223 => 1.0401080876652
1224 => 1.1519562377654
1225 => 1.1098744646163
1226 => 1.0935791301246
1227 => 1.0626016873441
1228 => 1.1038772905906
1229 => 1.100707968261
1230 => 1.0863750907567
1231 => 1.0777065217208
]
'min_raw' => 0.80955295170453
'max_raw' => 2.0772201756341
'avg_raw' => 1.4433865636693
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.809552'
'max' => '$2.07'
'avg' => '$1.44'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.49782307585455
'max_diff' => 1.2073971542876
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.025410942098568
]
1 => [
'year' => 2028
'avg' => 0.043612553490342
]
2 => [
'year' => 2029
'avg' => 0.11914163573762
]
3 => [
'year' => 2030
'avg' => 0.09191759454053
]
4 => [
'year' => 2031
'avg' => 0.090274469060886
]
5 => [
'year' => 2032
'avg' => 0.15827955468472
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.025410942098568
'min' => '$0.02541'
'max_raw' => 0.15827955468472
'max' => '$0.158279'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.15827955468472
]
1 => [
'year' => 2033
'avg' => 0.40711129034378
]
2 => [
'year' => 2034
'avg' => 0.258046700673
]
3 => [
'year' => 2035
'avg' => 0.30436667520093
]
4 => [
'year' => 2036
'avg' => 0.59077644859825
]
5 => [
'year' => 2037
'avg' => 1.4433865636693
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.15827955468472
'min' => '$0.158279'
'max_raw' => 1.4433865636693
'max' => '$1.44'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 1.4433865636693
]
]
]
]
'prediction_2025_max_price' => '$0.043448'
'last_price' => 0.0421284
'sma_50day_nextmonth' => '$0.038086'
'sma_200day_nextmonth' => '$0.06679'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'augmenter'
'sma_200day_date_nextmonth' => '4 févr. 2026'
'sma_50day_date_nextmonth' => '4 févr. 2026'
'daily_sma3' => '$0.040474'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.0389016'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.0374031'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.037163'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.0436073'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.055847'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.074334'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.040587'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.039466'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.038275'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.038721'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.044313'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.05465'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.071638'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.064486'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.086424'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.157937'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.149437'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.0407048'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.041745'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.047515'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.06076'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.090435'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.136775'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.259876'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '56.49'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 126.32
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0.01
'momentum_10_action' => 'BUY'
'vwma_10' => '0.037640'
'vwma_10_action' => 'BUY'
'hma_9' => '0.041139'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 237.2
'cci_20_action' => 'SELL'
'adx_14' => 24.84
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '-0.001096'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 69.97
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.008188'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 16
'buy_signals' => 18
'sell_pct' => 47.06
'buy_pct' => 52.94
'overall_action' => 'bullish'
'overall_action_label' => 'Haussier'
'overall_action_dir' => 1
'last_updated' => 1767699918
'last_updated_date' => '6 janvier 2026'
]
Prévision du prix de The Graph pour 2026
La prévision du prix de The Graph pour 2026 suggère que le prix moyen pourrait varier entre $0.014555 à la baisse et $0.043448 à la hausse. Sur le marché des cryptomonnaies, comparé au prix moyen d'aujourd'hui, The Graph pourrait potentiellement gagner 3.13% d'ici 2026 si GRT atteint l'objectif de prix prévu.
Prévision du prix de The Graph de 2027 à 2032
La prévision du prix de GRT pour 2027-2032 se situe actuellement dans une fourchette de prix comprise entre $0.02541 à la baisse et $0.158279 à la hausse. Compte tenu de la volatilité des prix sur le marché, si The Graph atteint l'objectif de prix le plus élevé, il pourrait gagner 275.71% d'ici 2032 par rapport au prix actuel.
| Prévision du Prix de The Graph | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2027 | $0.014012 | $0.02541 | $0.0368098 |
| 2028 | $0.025287 | $0.043612 | $0.061937 |
| 2029 | $0.055549 | $0.119141 | $0.182733 |
| 2030 | $0.047242 | $0.091917 | $0.136592 |
| 2031 | $0.055855 | $0.090274 | $0.124693 |
| 2032 | $0.085259 | $0.158279 | $0.231299 |
Prévision du prix de The Graph de 2032 à 2037
La prévision du prix de The Graph pour 2032-2037 est actuellement estimée entre $0.158279 à la baisse et $1.44 à la hausse. Par rapport au prix actuel, The Graph pourrait potentiellement gagner 3326.16% d'ici 2037 s'il atteint l'objectif de prix le plus élevé. Veuillez noter que ces informations sont à titre général seulement et ne doivent pas être considérées comme un conseil en investissement à long terme.
| Prévision du Prix de The Graph | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2032 | $0.085259 | $0.158279 | $0.231299 |
| 2033 | $0.198123 | $0.407111 | $0.616098 |
| 2034 | $0.159282 | $0.258046 | $0.356811 |
| 2035 | $0.18832 | $0.304366 | $0.420412 |
| 2036 | $0.311729 | $0.590776 | $0.869823 |
| 2037 | $0.809552 | $1.44 | $2.07 |
The Graph Histogramme des prix potentiels
Prévision du prix de The Graph basée sur l'analyse technique
Au 6 janvier 2026, le sentiment global de prévision du prix pour The Graph est Haussier, avec 18 indicateurs techniques montrant des signaux haussiers et 16 indiquant des signaux baissiers. La prévision du prix de GRT a été mise à jour pour la dernière fois le 6 janvier 2026.
Moyennes Mobiles Simples sur 50 et 200 jours de The Graph et Indice de Force Relative sur 14 jours - RSI (14)
Selon nos indicateurs techniques, le SMA sur 200 jours de The Graph devrait augmenter au cours du prochain mois, atteignant $0.06679 d'ici le 4 févr. 2026. Le SMA à court terme sur 50 jours pour The Graph devrait atteindre $0.038086 d'ici le 4 févr. 2026.
Le Relative Strength Index (RSI), un oscillateur de momentum, est un outil couramment utilisé pour identifier si une cryptomonnaie est survendue (en dessous de 30) ou surachetée (au-dessus de 70). Actuellement, le RSI est à 56.49, ce qui suggère que le marché de GRT est dans un état NEUTRAL.
Moyennes Mobiles et Oscillateurs Populaires de GRT pour le Samedi 19 Octobre 2024
Les moyennes mobiles (MA) sont des indicateurs largement utilisés sur les marchés financiers, conçus pour lisser les mouvements de prix sur une période donnée. En tant qu'indicateurs retardés, ils sont basés sur des données historiques de prix. Le tableau ci-dessous met en évidence deux types : la moyenne mobile simple (SMA) et la moyenne mobile exponentielle (EMA).
Moyenne Mobile Simple Quotidienne (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 3 | $0.040474 | BUY |
| SMA 5 | $0.0389016 | BUY |
| SMA 10 | $0.0374031 | BUY |
| SMA 21 | $0.037163 | BUY |
| SMA 50 | $0.0436073 | SELL |
| SMA 100 | $0.055847 | SELL |
| SMA 200 | $0.074334 | SELL |
Moyenne Mobile Exponentielle Quotidienne (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 3 | $0.040587 | BUY |
| EMA 5 | $0.039466 | BUY |
| EMA 10 | $0.038275 | BUY |
| EMA 21 | $0.038721 | BUY |
| EMA 50 | $0.044313 | SELL |
| EMA 100 | $0.05465 | SELL |
| EMA 200 | $0.071638 | SELL |
Moyenne Mobile Simple Hebdomadaire (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 21 | $0.064486 | SELL |
| SMA 50 | $0.086424 | SELL |
| SMA 100 | $0.157937 | SELL |
| SMA 200 | $0.149437 | SELL |
Moyenne Mobile Exponentielle Hebdomadaire (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 21 | $0.06076 | SELL |
| EMA 50 | $0.090435 | SELL |
| EMA 100 | $0.136775 | SELL |
| EMA 200 | $0.259876 | SELL |
Oscillateurs de The Graph
Un oscillateur est un outil d'analyse technique qui établit des limites hautes et basses entre deux extrêmes, créant un indicateur de tendance qui fluctue à l'intérieur de ces limites. Les traders utilisent cet indicateur pour identifier les conditions de surachat ou de survente à court terme.
| Période | Valeur | Action |
|---|---|---|
| RSI (14) | 56.49 | NEUTRAL |
| Stoch RSI (14) | 126.32 | SELL |
| Stochastique Rapide (14) | 100 | SELL |
| Indice de Canal des Matières Premières (20) | 237.2 | SELL |
| Indice Directionnel Moyen (14) | 24.84 | NEUTRAL |
| Oscillateur Impressionnant (5, 34) | -0.001096 | NEUTRAL |
| Momentum (10) | 0.01 | BUY |
| MACD (12, 26) | 0 | BUY |
| Plage de Pourcentage de Williams (14) | -0 | SELL |
| Oscillateur Ultime (7, 14, 28) | 69.97 | NEUTRAL |
| VWMA (10) | 0.037640 | BUY |
| Moyenne Mobile de Hull (9) | 0.041139 | BUY |
| Nuage Ichimoku B/L (9, 26, 52, 26) | -0.008188 | SELL |
Prévision du cours de The Graph basée sur les flux monétaires mondiaux
Définitions des flux monétaires mondiaux utilisés pour la prédiction du cours de The Graph
M0 : le total de toutes les devises physiques, plus les comptes à la banque centrale qui peuvent être échangés contre des devises physiques.
M1 : M0 plus le montant des comptes à vue, y compris les comptes de "chèques" et les comptes "courants".
M2 : M1 plus la plupart des comptes d'épargne, comptes du marché monétaire et comptes de certificats de dépôt (CD) de moins de 100 000 $.
Prédictions du cours de The Graph par des sociétés Internet ou des niches technologiques
| Comparaison | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Action Facebook | $0.059197 | $0.083182 | $0.116885 | $0.164242 | $0.230788 | $0.324296 |
| Action Amazon.com | $0.0879034 | $0.183415 | $0.3827077 | $0.798542 | $1.66 | $3.47 |
| Action Apple | $0.059755 | $0.084759 | $0.120224 | $0.170529 | $0.241882 | $0.343092 |
| Action Netflix | $0.066472 | $0.104882 | $0.165488 | $0.261114 | $0.411997 | $0.650067 |
| Action Google | $0.054556 | $0.070649 | $0.091491 | $0.11848 | $0.153432 | $0.198693 |
| Action Tesla | $0.0955018 | $0.216495 | $0.490779 | $1.11 | $2.52 | $5.71 |
| Action Kodak | $0.031591 | $0.02369 | $0.017765 | $0.013322 | $0.00999 | $0.007491 |
| Action Nokia | $0.0279083 | $0.018488 | $0.012247 | $0.008113 | $0.005374 | $0.00356 |
Ce calcul montre la valeur potentielle des cryptomonnaies si l'on suppose que leur capitalisation se comportera comme celle de certaines sociétés Internet ou niches technologiques. En extrapolant les données, vous pourrez obtenir une potentielle image des cours futurs pour 2024, 2025, 2026, 2027, 2028, 2029 et 2030.
Aperçu des prévisions relatives à The Graph
Vous vous posez peut-être des questions telles que : "Devrais-je investir dans The Graph maintenant ?", "Devrais-je acheter GRT aujourd'hui ?", " The Graph sera-t-il un bon ou un mauvais investissement à court ou à long terme ?".
Nous mettons régulièrement à jour les prévisions de The Graph avec de nouvelles valeurs. Regardez nos prévisions similaires. Nous faisons une prévision des cours futurs pour une grande quantité de devises numériques comme The Graph en utilisant des méthodes d'analyse technique.
Si vous souhaitez trouver des cryptomonnaies ayant un bon rendement, vous devriez consulter un maximum d'informations disponibles à propos de The Graph afin de prendre une décision responsable concernant cet investissement.
Le cours de The Graph est de $0.04212 USD actuellement, mais ce cours peut subir une hausse ou une baisse, ce qui pourrait causer la perte de votre investissement, car les cryptomonnaies sont des actifs à haut risque.
Prévision à court terme de The Graph
basée sur l'historique des cours sur 4 heures
Prévision à long terme de The Graph
basée sur l'historique des cours sur 1 mois
Prévision du cours de The Graph basée sur le modèle de croissance du Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si The Graph présente 1 % de la précédente croissance annuelle moyenne du Bitcoin | $0.043223 | $0.044346 | $0.045499 | $0.046682 |
| Si The Graph présente 2 % de la précédente croissance annuelle moyenne du Bitcoin | $0.044318 | $0.046622 | $0.049046 | $0.051595 |
| Si The Graph présente 5 % de la précédente croissance annuelle moyenne du Bitcoin | $0.0476036 | $0.05379 | $0.060781 | $0.06868 |
| Si The Graph présente 10 % de la précédente croissance annuelle moyenne du Bitcoin | $0.053078 | $0.066875 | $0.084259 | $0.10616 |
| Si The Graph présente 20 % de la précédente croissance annuelle moyenne du Bitcoin | $0.064029 | $0.097316 | $0.1479072 | $0.224798 |
| Si The Graph présente 50 % de la précédente croissance annuelle moyenne du Bitcoin | $0.096881 | $0.222793 | $0.512349 | $1.17 |
| Si The Graph présente 100 % de la précédente croissance annuelle moyenne du Bitcoin | $0.151633 | $0.545778 | $1.96 | $7.07 |
Boîte à questions
Est-ce que GRT est un bon investissement ?
La décision d'acquérir The Graph dépend entièrement de votre tolérance individuelle au risque. Comme vous pouvez le discerner, la valeur de The Graph a connu une hausse de 5.3431% au cours des 24 heures précédentes, et The Graph a enregistré une déclin de -73.03% sur une période de 30 jours précédents. Par conséquent, la détermination de si investir ou non dans The Graph dépendra de la mesure dans laquelle cet investissement s'aligne avec vos aspirations de trading.
Est-ce que The Graph peut monter ?
Il semble que la valeur moyenne de The Graph pourrait potentiellement s'envoler jusqu'à $0.043448 pour la fin de cette année. En regardant les perspectives de The Graph sur une période de cinq ans plus longue, la monnaie numérique pourrait potentiellement croître jusqu'à $0.136592. Cependant, compte tenu de l'imprévisibilité du marché, il est essentiel de mener des recherches approfondies avant d'investir des fonds dans un projet, un réseau ou un actif particulier.
Quel sera le prix de The Graph la semaine prochaine ?
Basé sur notre nouveau pronostic expérimental de The Graph, le prix de The Graph va augmenter de 0.86% durant la prochaine semaine et atteindre $0.042488 d'ici 13 janvier 2026.
Quel sera le prix de The Graph le mois prochain ?
Basé sur notre nouveau pronostic expérimental de The Graph, le prix de The Graph va diminuer de -11.62% durant le prochain mois et atteindre $0.037233 d'ici 5 février 2026.
Jusqu'où le prix de The Graph peut-il monter cette année en 2026 ?
Selon notre prédiction la plus récente sur la valeur de The Graph en 2026, GRT devrait fluctuer dans la fourchette de $0.014555 et $0.043448. Cependant, il est crucial de garder à l'esprit que le marché des cryptomonnaies est exceptionnellement instable, et cette prévision de prix de The Graph ne prend pas en compte les fluctuations de prix soudaines et extrêmes.
Où sera The Graph dans 5 ans ?
L'avenir de The Graph semble suivre une tendance haussière, avec un prix maximum de $0.136592 prévue après une période de cinq ans. Selon la prévision de The Graph pour 2030, la valeur de The Graph pourrait potentiellement atteindre son point le plus élevé d'environ $0.136592, tandis que son point le plus bas devrait être autour de $0.047242.
Combien vaudra The Graph en 2026 ?
Basé sur notre nouvelle simulation expérimentale de prédiction de prix de The Graph, il est attendu que la valeur de GRT en 2026 augmente de 3.13% jusqu'à $0.043448 si le meilleur scénario se produit. Le prix sera entre $0.043448 et $0.014555 durant 2026.
Combien vaudra The Graph en 2027 ?
Selon notre dernière simulation expérimentale pour la prédiction de prix de The Graph, le valeur de GRT pourrait diminuer de -12.62% jusqu'à $0.0368098 en 2027, en supposant les conditions les plus favorables. Il est prévu que le prix fluctue entre $0.0368098 et $0.014012 tout au long de l'année.
Combien vaudra The Graph en 2028 ?
Notre nouveau modèle expérimental de prédiction de prix de The Graph suggère que la valeur de GRT en 2028 pourrait augmenter de 47.02%, atteignant $0.061937 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.061937 et $0.025287 durant l'année.
Combien vaudra The Graph en 2029 ?
Basé sur notre modèle de prévision expérimental, la valeur de The Graph pourrait connaître un 333.75% croissance en 2029, atteignant potentiellement $0.182733 sous des conditions optimales. Le range de prix prévu pour 2029 se situe entre $0.182733 et $0.055549.
Combien vaudra The Graph en 2030 ?
En utilisant notre nouvelle simulation expérimentale pour les prédictions de prix de The Graph, il est prévu que la valeur de GRT en 2030 augmente de 224.23%, atteignant $0.136592 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.136592 et $0.047242 au cours de 2030.
Combien vaudra The Graph en 2031 ?
Notre simulation expérimentale indique que le prix de The Graph pourrait augmenter de 195.98% en 2031, atteignant potentiellement $0.124693 dans des conditions idéales. Il est probable que le prix fluctue entre $0.124693 et $0.055855 durant l'année.
Combien vaudra The Graph en 2032 ?
Basé sur les résultats de notre dernière prédiction expérimentale de prix de The Graph, GRT pourrait connaître une 449.04% hausse en valeur, atteignant $0.231299 si le scénario le plus positif se réalise en 2032. Il est prévu que le prix reste dans une fourchette de $0.231299 et $0.085259 tout au long de l'année.
Combien vaudra The Graph en 2033 ?
Selon notre prédiction expérimentale de prix de The Graph, la valeur de GRT est anticipée à augmenter de 1362.43% en 2033, avec le prix potentiel le plus élevé étant $0.616098. Tout au long de l'année, le prix de GRT pourrait osciller entre $0.616098 et $0.198123.
Combien vaudra The Graph en 2034 ?
Les résultats de notre nouvelle simulation de prédiction de prix de The Graph suggèrent que GRT pourrait augmenter de 746.96% en 2034, atteignant potentiellement $0.356811 dans les meilleures circonstances. La fourchette de prix prévue pour l'année est entre $0.356811 et $0.159282.
Combien vaudra The Graph en 2035 ?
Basé sur notre prédiction expérimentale pour le prix de The Graph, GRT pourrait augmenter de 897.93%, avec la valeur potentiellement atteignant $0.420412 en 2035. La fourchette de prix attendue pour l'année se situe entre $0.420412 et $0.18832.
Combien vaudra The Graph en 2036 ?
Notre récente simulation de prédiction de prix de The Graph suggère que la valeur de GRT pourrait augmenter de 1964.7% en 2036, pouvant atteindre $0.869823 si les conditions sont optimales. La fourchette de prix attendue pour 2036 est entre $0.869823 et $0.311729.
Combien vaudra The Graph en 2037 ?
Selon la simulation expérimentale, la valeur de The Graph pourrait augmenter de 4830.69% en 2037, avec un maximum de $2.07 sous des conditions favorables. Il est prévu que le prix chute entre $2.07 et $0.809552 au cours de l'année.
Prévisions liées
Prévision du cours de Optimism
Prévision du cours de Injective Protocol
Prévision du cours de Pepe
Prévision du cours de Fantom
Prévision du cours de Theta Network
Prévision du cours de Fetch.ai
Prévision du cours de Monero
Prévision du cours de Lido DAO
Prévision du cours de Thorchain
Prévision du cours de Wrapped eETH
Prévision du cours de Gala
Prévision du cours de Rocket Pool ETH
Prévision du cours de Celestia
Prévision du cours de Arweave
Prévision du cours de Sui
Prévision du cours de Core
Prévision du cours de Ethena
Prévision du cours de Aave [New]
Prévision du cours de FLOKI
Prévision du cours de Algorand
Prévision du cours de Bitcoin SV
Prévision du cours de Flow
Prévision du cours de Sei
Prévision du cours de Mantle Staked Ether
Prévision du cours de Jupiter
Comment lire et prédire les mouvements de prix de The Graph ?
Les traders de The Graph utilisent des indicateurs et des modèles graphiques pour prédire la direction du marché. Ils identifient également des niveaux clés de support et de résistance pour évaluer quand une tendance baissière pourrait ralentir ou une tendance haussière pourrait s'arrêter.
Indicateurs de prédiction du prix de The Graph
Les moyennes mobiles sont des outils populaires pour la prédiction du prix de The Graph. Une moyenne mobile simple (SMA) calcule le prix de clôture moyen de GRT sur une période spécifique, comme une SMA de 12 jours. Une moyenne mobile exponentielle (EMA) donne plus de poids aux prix récents, réagissant plus rapidement aux changements de prix.
Les moyennes mobiles couramment utilisées sur le marché des cryptomonnaies incluent les moyennes sur 50 jours, 100 jours et 200 jours, qui aident à identifier les niveaux clés de résistance et de support. Un mouvement de prix de GRT au-dessus de ces moyennes est considéré comme haussier, tandis qu'une chute en dessous indique une faiblesse.
Les traders utilisent également le RSI et les niveaux de retracement de Fibonacci pour évaluer la direction future de GRT.
Comment lire les graphiques de The Graph et prédire les mouvements de prix ?
La plupart des traders préfèrent les graphiques en chandeliers aux simples graphiques linéaires parce qu'ils fournissent des informations plus détaillées. Les chandeliers peuvent représenter l'action des prix de The Graph dans différentes périodes, comme 5 minutes pour les tendances à court terme et hebdomadaire pour les tendances à long terme. Les options populaires incluent les graphiques de 1 heure, 4 heures et 1 jour.
Par exemple, un graphique en chandeliers de 1 heure montre les prix d'ouverture, de clôture, les plus hauts et les plus bas de GRT au sein de chaque heure. La couleur du chandelier est cruciale : le vert indique que le prix a clôturé plus haut qu'il n'a ouvert, tandis que le rouge signifie le contraire. Certains graphiques utilisent des chandeliers creux et pleins pour transmettre la même information.
Qu'est-ce qui affecte le prix de The Graph ?
L'action du prix de The Graph est déterminée par l'offre et la demande, influencée par des facteurs tels que les réductions de récompenses de bloc, les hard forks et les mises à jour de protocole. Les événements du monde réel, tels que les réglementations, l'adoption par les entreprises et les gouvernements et les piratages d'échanges de cryptomonnaies, impactent également le prix de GRT. La capitalisation boursière de The Graph peut changer rapidement.
Les traders surveillent souvent l'activité des « baleines » de GRT, de grands détenteurs de The Graph, car leurs actions peuvent influencer significativement les mouvements de prix sur le marché relativement petit de The Graph.
Modèles de prédiction de prix haussiers et baissiers
Les traders identifient souvent des modèles de chandeliers pour obtenir un avantage dans les prédictions de prix des cryptomonnaies. Certaines formations indiquent des tendances haussières, tandis que d'autres suggèrent des mouvements baissiers.
Modèles de chandeliers haussiers couramment suivis :
- Marteau
- Englobante haussière
- Ligne pénétrante
- Étoile du matin
- Trois soldats blancs
Modèles de chandeliers baissiers courants :
- Harami baissier
- Nuage sombre
- Étoile du soir
- Étoile filante
- Pendu


