Predicción del precio de The Graph - Pronóstico de GRT
Predicción de precio de The Graph hasta $0.042745 para el año 2026
| Año | Precio min. | Precio max. |
|---|---|---|
| 2026 | $0.01432 | $0.042745 |
| 2027 | $0.013785 | $0.036214 |
| 2028 | $0.024878 | $0.060936 |
| 2029 | $0.054651 | $0.179779 |
| 2030 | $0.046479 | $0.134384 |
| 2031 | $0.054952 | $0.122677 |
| 2032 | $0.08388 | $0.227561 |
| 2033 | $0.194921 | $0.606139 |
| 2034 | $0.1567072 | $0.351043 |
| 2035 | $0.185276 | $0.413616 |
Calculadora de ganancias de inversión
Si abres una posición corta de $10,000.00 en The Graph hoy y la cierras el Apr 06, 2026, nuestra previsión indica que podrías obtener una ganancia de alrededor de $3,954.44, equivalente a un ROI del 39.54% en los próximos 90 días.
Predicción del precio a largo plazo de The Graph para 2027, 2028, 2029, 2030, 2031, 2032 y 2037
[
'name' => 'The Graph'
'name_with_ticker' => 'The Graph <small>GRT</small>'
'name_lang' => 'The Graph'
'name_lang_with_ticker' => 'The Graph <small>GRT</small>'
'name_with_lang' => 'The Graph'
'name_with_lang_with_ticker' => 'The Graph <small>GRT</small>'
'image' => '/uploads/coins/the-graph.png?1717092383'
'price_for_sd' => 0.04144
'ticker' => 'GRT'
'marketcap' => '$442.31M'
'low24h' => '$0.03982'
'high24h' => '$0.04212'
'volume24h' => '$28.76M'
'current_supply' => '10.66B'
'max_supply' => '10.8B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '0.03 USD 1.38x'
'price' => '$0.04144'
'change_24h_pct' => '3.62%'
'ath_price' => '$2.84'
'ath_days' => 1789
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '12 feb. 2021'
'ath_pct' => '-98.54%'
'fdv' => '$447.94M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => '-73.46%'
'change_30d_pct_is_increased' => false
'max_price' => '$2.04'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.041802'
'next_week_prediction_price_date' => '13 de enero de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.036632'
'next_month_prediction_price_date' => '5 de febrero de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.01432'
'current_year_max_price_prediction' => '$0.042745'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.046479'
'grand_prediction_max_price' => '$0.134384'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.042232816618162
107 => 0.042390498624902
108 => 0.04274576423753
109 => 0.039710058474953
110 => 0.041073001238712
111 => 0.041873602421953
112 => 0.038256457149949
113 => 0.041802103089934
114 => 0.039657213591463
115 => 0.038929205880522
116 => 0.039909372355581
117 => 0.039527400527007
118 => 0.039199003578938
119 => 0.03901575243934
120 => 0.039735478521597
121 => 0.039701902439601
122 => 0.038524290876216
123 => 0.036988144597369
124 => 0.037503725710832
125 => 0.037316410258712
126 => 0.036637554896055
127 => 0.037095021445177
128 => 0.035080570281365
129 => 0.031614811756087
130 => 0.03390439799694
131 => 0.033816251417258
201 => 0.033771803914653
202 => 0.035492364695139
203 => 0.035326972476186
204 => 0.035026783979261
205 => 0.036632041698898
206 => 0.036046101037467
207 => 0.037851832091014
208 => 0.039041203350242
209 => 0.038739540326772
210 => 0.039858149744806
211 => 0.037515603658359
212 => 0.03829370350164
213 => 0.038454068800941
214 => 0.036612233067815
215 => 0.035354032688647
216 => 0.035270125067891
217 => 0.033088579001104
218 => 0.034253943301157
219 => 0.035279415659152
220 => 0.034788293979542
221 => 0.03463281952762
222 => 0.035427104784193
223 => 0.035488827551222
224 => 0.034081541921878
225 => 0.034374161167158
226 => 0.035594432063881
227 => 0.034343413471453
228 => 0.031912888699094
301 => 0.031310084950915
302 => 0.03122965981903
303 => 0.029594808245
304 => 0.031350367179786
305 => 0.030584018658698
306 => 0.033004904454552
307 => 0.031622107471431
308 => 0.03156249785725
309 => 0.031472389182586
310 => 0.03006520489795
311 => 0.030373288825059
312 => 0.031397406721275
313 => 0.031762823524158
314 => 0.031724707557846
315 => 0.031392387984878
316 => 0.031544522183631
317 => 0.031054444922378
318 => 0.030881388441353
319 => 0.030335174584304
320 => 0.029532391109872
321 => 0.029644023075749
322 => 0.028053498953175
323 => 0.027186896995693
324 => 0.026947032995492
325 => 0.026626276829817
326 => 0.026983263257905
327 => 0.028048993198175
328 => 0.026763496782989
329 => 0.024559603346243
330 => 0.024692061097043
331 => 0.024989654336032
401 => 0.024435091303952
402 => 0.023910243935037
403 => 0.024366556140096
404 => 0.023432737437533
405 => 0.025102501864865
406 => 0.025057339416566
407 => 0.025679724337536
408 => 0.026068914401243
409 => 0.025171957306178
410 => 0.024946375022399
411 => 0.025074876943383
412 => 0.02295102643109
413 => 0.025506160439695
414 => 0.025528257344705
415 => 0.025339050228584
416 => 0.026699580207254
417 => 0.02957072282219
418 => 0.028490483479007
419 => 0.02807218215492
420 => 0.027276991032053
421 => 0.028336535989496
422 => 0.02825517946824
423 => 0.027887254425579
424 => 0.027664732211781
425 => 0.028074736213607
426 => 0.027613928178641
427 => 0.027531154393404
428 => 0.027029635313629
429 => 0.026850615819814
430 => 0.026718076913564
501 => 0.026572164600788
502 => 0.02689401080369
503 => 0.026164664965519
504 => 0.025285145383339
505 => 0.025212022846615
506 => 0.02541392059951
507 => 0.025324595873374
508 => 0.025211595194192
509 => 0.024995846123729
510 => 0.024931837983272
511 => 0.025139833387422
512 => 0.024905018703022
513 => 0.025251500560871
514 => 0.025157276667252
515 => 0.024630949656919
516 => 0.023974951330827
517 => 0.023969111569721
518 => 0.023827777806418
519 => 0.023647768009177
520 => 0.023597693401651
521 => 0.024328126798944
522 => 0.02584010207131
523 => 0.025543265146842
524 => 0.025757760245842
525 => 0.026812863839316
526 => 0.027148249543609
527 => 0.026910200714747
528 => 0.026584344795589
529 => 0.026598680802285
530 => 0.027712229121343
531 => 0.027781679764097
601 => 0.027957159132708
602 => 0.028182699711838
603 => 0.026948611250638
604 => 0.026540555346742
605 => 0.026347195821397
606 => 0.025751723322887
607 => 0.026393889360576
608 => 0.026019726710706
609 => 0.02607021403539
610 => 0.026037334098957
611 => 0.026055288767581
612 => 0.025102035131678
613 => 0.025449350655065
614 => 0.02487187123448
615 => 0.024098691115424
616 => 0.024096099144553
617 => 0.024285333883329
618 => 0.024172769655949
619 => 0.023869862214361
620 => 0.023912888786756
621 => 0.023535930737891
622 => 0.023958658318934
623 => 0.023970780633366
624 => 0.023808007488538
625 => 0.024459277652299
626 => 0.024726103569778
627 => 0.024618962798913
628 => 0.024718586287679
629 => 0.025555600061192
630 => 0.025692069827746
701 => 0.025752680683363
702 => 0.025671470166236
703 => 0.024733885362931
704 => 0.024775471235876
705 => 0.024470341692866
706 => 0.024212539382781
707 => 0.024222850123189
708 => 0.024355394022527
709 => 0.024934221004533
710 => 0.02615232826445
711 => 0.026198554544539
712 => 0.026254582144523
713 => 0.026026689738174
714 => 0.025957955207782
715 => 0.026048633795256
716 => 0.026506090837044
717 => 0.027682794546897
718 => 0.027266868866437
719 => 0.026928714813953
720 => 0.027225367083659
721 => 0.027179699791975
722 => 0.026794221892226
723 => 0.026783402811454
724 => 0.026043547477094
725 => 0.025770039805673
726 => 0.025541476323738
727 => 0.025291890968267
728 => 0.025143928403366
729 => 0.025371266150836
730 => 0.025423260983464
731 => 0.024926183025437
801 => 0.024858433136524
802 => 0.025264357727222
803 => 0.02508572544925
804 => 0.025269453177011
805 => 0.025312079585839
806 => 0.025305215752248
807 => 0.025118703138259
808 => 0.02523758071653
809 => 0.024956399804808
810 => 0.024650657795318
811 => 0.024455613441664
812 => 0.024285411374221
813 => 0.02437984937344
814 => 0.024043195149921
815 => 0.023935492688306
816 => 0.025197307667842
817 => 0.026129423960022
818 => 0.026115870619975
819 => 0.026033368148076
820 => 0.025910786209849
821 => 0.026497123204747
822 => 0.026292855119903
823 => 0.026441477218796
824 => 0.026479307780615
825 => 0.026593809497402
826 => 0.026634734019399
827 => 0.026511031690017
828 => 0.026095871563646
829 => 0.025061332000969
830 => 0.024579751041857
831 => 0.024420821303984
901 => 0.024426598098105
902 => 0.0242672483275
903 => 0.024314183976499
904 => 0.024250926024209
905 => 0.024131130766315
906 => 0.02437245235384
907 => 0.024400262418736
908 => 0.024343935076629
909 => 0.024357202204775
910 => 0.023890835869855
911 => 0.023926292689405
912 => 0.023728864612518
913 => 0.023691849228133
914 => 0.023192768241794
915 => 0.022308573931548
916 => 0.022798503410242
917 => 0.022206737494489
918 => 0.021982626775476
919 => 0.023043532062915
920 => 0.022937046596988
921 => 0.022754789767441
922 => 0.022485193930889
923 => 0.022385198212653
924 => 0.021777655883444
925 => 0.021741759041522
926 => 0.022042873424901
927 => 0.021903919497685
928 => 0.021708775557906
929 => 0.021001983989452
930 => 0.020207316255863
1001 => 0.020231302279637
1002 => 0.020484071300373
1003 => 0.021219031318709
1004 => 0.020931869724607
1005 => 0.020723530693287
1006 => 0.020684515055369
1007 => 0.021172877448683
1008 => 0.021864012550307
1009 => 0.022188277676713
1010 => 0.021866940784523
1011 => 0.021497806264783
1012 => 0.021520273772595
1013 => 0.021669740036447
1014 => 0.021685446827438
1015 => 0.021445178202729
1016 => 0.021512812413203
1017 => 0.021410069862891
1018 => 0.020779539021274
1019 => 0.020768134717784
1020 => 0.020613392280568
1021 => 0.020608706741067
1022 => 0.020345451253053
1023 => 0.02030861999048
1024 => 0.019785910240561
1025 => 0.020129959380869
1026 => 0.019899189280941
1027 => 0.019551364307187
1028 => 0.019491399150608
1029 => 0.019489596525591
1030 => 0.019846735001396
1031 => 0.020125786009843
1101 => 0.019903203625631
1102 => 0.019852525931324
1103 => 0.020393631122862
1104 => 0.020324770554955
1105 => 0.020265137747251
1106 => 0.021802128982393
1107 => 0.020585480486856
1108 => 0.020054952298934
1109 => 0.01939832292181
1110 => 0.019612124758014
1111 => 0.019657175946305
1112 => 0.018078100660663
1113 => 0.017437470013939
1114 => 0.01721762971764
1115 => 0.017091108519034
1116 => 0.017148765817992
1117 => 0.016572123097461
1118 => 0.016959636542448
1119 => 0.016460312688864
1120 => 0.01637659941987
1121 => 0.017269452324435
1122 => 0.017393687590134
1123 => 0.01686366134979
1124 => 0.017204023999545
1125 => 0.017080603771349
1126 => 0.016468872163187
1127 => 0.016445508515348
1128 => 0.016138563097778
1129 => 0.015658252955626
1130 => 0.015438738332221
1201 => 0.015324413210438
1202 => 0.015371585983838
1203 => 0.015347733986097
1204 => 0.01519208356672
1205 => 0.015356655685937
1206 => 0.014936241927231
1207 => 0.01476882978101
1208 => 0.014693213598494
1209 => 0.014320072189529
1210 => 0.01491390610793
1211 => 0.015030898870778
1212 => 0.01514812214551
1213 => 0.016168470720318
1214 => 0.016117496988995
1215 => 0.016578274694935
1216 => 0.016560369720598
1217 => 0.01642894845476
1218 => 0.015874503751939
1219 => 0.016095495528457
1220 => 0.015415317190082
1221 => 0.015924953048824
1222 => 0.015692376525796
1223 => 0.015846318692437
1224 => 0.015569516796411
1225 => 0.015722710394542
1226 => 0.015058642194995
1227 => 0.014438544653949
1228 => 0.014688090006241
1229 => 0.014959374343156
1230 => 0.01554758790755
1231 => 0.015197252761254
]
'min_raw' => 0.014320072189529
'max_raw' => 0.04274576423753
'avg_raw' => 0.028532918213529
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.01432'
'max' => '$0.042745'
'avg' => '$0.028532'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.027127337810471
'max_diff' => 0.0012983542375297
'year' => 2026
]
1 => [
'items' => [
101 => 0.0153232465275
102 => 0.014901188501675
103 => 0.014030362239483
104 => 0.014035291021556
105 => 0.013901333373099
106 => 0.013785574406695
107 => 0.015237492967129
108 => 0.015056923942703
109 => 0.01476921083457
110 => 0.015154326263071
111 => 0.01525615689497
112 => 0.015259055869903
113 => 0.015540026145269
114 => 0.015689980031598
115 => 0.015716410054001
116 => 0.016158522853054
117 => 0.016306713231688
118 => 0.016917088428592
119 => 0.015677257492013
120 => 0.015651723989767
121 => 0.015159745626923
122 => 0.014847725171337
123 => 0.015181109934462
124 => 0.015476443323033
125 => 0.015168922458544
126 => 0.015209078191327
127 => 0.014796256556129
128 => 0.014943820865649
129 => 0.015070923128067
130 => 0.015000744729485
131 => 0.014895684270136
201 => 0.015452229353107
202 => 0.015420826898408
203 => 0.015939094474587
204 => 0.016343121111889
205 => 0.017067209074333
206 => 0.016311585537963
207 => 0.016284047612967
208 => 0.016553235247033
209 => 0.016306672020464
210 => 0.016462491468582
211 => 0.017042104152282
212 => 0.017054350454947
213 => 0.016849209106841
214 => 0.016836726237165
215 => 0.016876125877069
216 => 0.017106890798614
217 => 0.017026254444337
218 => 0.017119568874969
219 => 0.017236259999357
220 => 0.017718943965835
221 => 0.017835317436034
222 => 0.017552590236177
223 => 0.017578117336762
224 => 0.01747236960298
225 => 0.017370218617162
226 => 0.017599839115327
227 => 0.018019475088927
228 => 0.018016864555314
301 => 0.018114211944631
302 => 0.018174858561707
303 => 0.017914518885182
304 => 0.01774504732872
305 => 0.017810033507223
306 => 0.017913947821864
307 => 0.017776335495507
308 => 0.016926928469001
309 => 0.017184584300512
310 => 0.017141697771422
311 => 0.017080622138818
312 => 0.017339697069796
313 => 0.017314708660685
314 => 0.016566208792896
315 => 0.01661412532593
316 => 0.016569122755974
317 => 0.016714535266161
318 => 0.01629881926771
319 => 0.016426690708944
320 => 0.016506890478165
321 => 0.01655412875836
322 => 0.016724785818016
323 => 0.016704761181782
324 => 0.016723541058512
325 => 0.016976580426188
326 => 0.018256366715272
327 => 0.018326022659298
328 => 0.017983011315451
329 => 0.018120037581718
330 => 0.017856977114836
331 => 0.018033571368606
401 => 0.018154392672028
402 => 0.017608424434465
403 => 0.017576095738741
404 => 0.017311949527736
405 => 0.017453886739524
406 => 0.017228054429923
407 => 0.01728346577942
408 => 0.017128530815551
409 => 0.017407382903272
410 => 0.017719182866578
411 => 0.017797955850662
412 => 0.017590738043438
413 => 0.017440698694688
414 => 0.017177279024317
415 => 0.017615351806834
416 => 0.017743457638468
417 => 0.017614678921436
418 => 0.01758483807883
419 => 0.017528289736011
420 => 0.01759683507708
421 => 0.017742759946596
422 => 0.017673944472942
423 => 0.017719398305663
424 => 0.017546175167117
425 => 0.017914605068448
426 => 0.018499760419245
427 => 0.01850164178938
428 => 0.018432825944784
429 => 0.018404667983834
430 => 0.018475277216484
501 => 0.018513579828654
502 => 0.018741917139525
503 => 0.018986932171449
504 => 0.020130310417007
505 => 0.019809254380956
506 => 0.020823727580291
507 => 0.021626044168107
508 => 0.02186662383174
509 => 0.021645301861345
510 => 0.020888171356202
511 => 0.020851022921538
512 => 0.021982495548476
513 => 0.021662802706637
514 => 0.021624776260354
515 => 0.021220239118602
516 => 0.021459370672277
517 => 0.02140706909364
518 => 0.021324508493081
519 => 0.021780754839445
520 => 0.022634807270445
521 => 0.022501695189821
522 => 0.022402333196527
523 => 0.021966957865752
524 => 0.022229151059479
525 => 0.022135789085172
526 => 0.022536931375766
527 => 0.022299303569208
528 => 0.021660380718933
529 => 0.021762131288757
530 => 0.021746751894821
531 => 0.02206325873221
601 => 0.021968251235809
602 => 0.021728200156333
603 => 0.022631888212084
604 => 0.02257320773632
605 => 0.022656403234728
606 => 0.022693028466034
607 => 0.023243087460799
608 => 0.02346842903103
609 => 0.023519585512632
610 => 0.023733642575809
611 => 0.023514259577899
612 => 0.024391947986966
613 => 0.024975559564457
614 => 0.02565345444409
615 => 0.026644041064201
616 => 0.027016510796801
617 => 0.026949227473454
618 => 0.027700278943413
619 => 0.029049901739992
620 => 0.027222024827835
621 => 0.029146783654768
622 => 0.028537427232571
623 => 0.027092654117393
624 => 0.026999627761532
625 => 0.027978044889291
626 => 0.030148079909501
627 => 0.029604510749272
628 => 0.030148968993919
629 => 0.029513829530936
630 => 0.029482289503223
701 => 0.03011812168786
702 => 0.031603778244671
703 => 0.030897998503533
704 => 0.02988609018032
705 => 0.030633267539143
706 => 0.02998599336293
707 => 0.028527503483287
708 => 0.029604095092179
709 => 0.028884208942877
710 => 0.029094309992496
711 => 0.030607403603347
712 => 0.03042534417694
713 => 0.030660945932959
714 => 0.030245115000357
715 => 0.029856663338787
716 => 0.029131589465667
717 => 0.028916930837546
718 => 0.028976254759751
719 => 0.028916901439557
720 => 0.028511229271319
721 => 0.028423624405213
722 => 0.028277612456978
723 => 0.028322867665178
724 => 0.028048322485194
725 => 0.028566445963752
726 => 0.028662614247061
727 => 0.029039661306842
728 => 0.029078807583394
729 => 0.030128878277958
730 => 0.029550516985113
731 => 0.029938531673665
801 => 0.029903823987785
802 => 0.027123966731735
803 => 0.02750700653473
804 => 0.028102896263679
805 => 0.027834448748497
806 => 0.027454926769074
807 => 0.027148442422009
808 => 0.026684087296571
809 => 0.027337658218474
810 => 0.028197034481257
811 => 0.029100602783605
812 => 0.030186180894736
813 => 0.029943892497854
814 => 0.02908030865593
815 => 0.029119048396231
816 => 0.029358522227241
817 => 0.029048381857591
818 => 0.028956915407921
819 => 0.029345956141619
820 => 0.029348635251339
821 => 0.028991781274341
822 => 0.028595203382495
823 => 0.028593541706648
824 => 0.028522974501282
825 => 0.029526383280004
826 => 0.030078156652232
827 => 0.03014141658013
828 => 0.030073898755055
829 => 0.03009988368624
830 => 0.029778818918438
831 => 0.030512677768835
901 => 0.031186139221077
902 => 0.031005637165471
903 => 0.030735038924238
904 => 0.030519494391318
905 => 0.030954861723619
906 => 0.030935475501643
907 => 0.031180257122807
908 => 0.031169152414544
909 => 0.031086841562049
910 => 0.03100564010505
911 => 0.031327594703452
912 => 0.031234876949545
913 => 0.031142015179357
914 => 0.030955766682819
915 => 0.030981080946758
916 => 0.030710529428127
917 => 0.030585359916013
918 => 0.028703110777469
919 => 0.028200112303385
920 => 0.02835836586281
921 => 0.028410467043625
922 => 0.028191561463093
923 => 0.028505415833346
924 => 0.028456501962196
925 => 0.028646797221182
926 => 0.028527909005027
927 => 0.028532788218888
928 => 0.028882413112959
929 => 0.028983910707119
930 => 0.028932288211543
1001 => 0.028968442837929
1002 => 0.029801610943069
1003 => 0.029683161081734
1004 => 0.029620236953694
1005 => 0.029637667367192
1006 => 0.029850559681381
1007 => 0.029910157905865
1008 => 0.029657636040835
1009 => 0.029776726812194
1010 => 0.030283800201774
1011 => 0.030461247190258
1012 => 0.031027572798114
1013 => 0.030786987614262
1014 => 0.031228592131506
1015 => 0.032585933863438
1016 => 0.03367027235981
1017 => 0.032673069866363
1018 => 0.034664319425275
1019 => 0.036214792834672
1020 => 0.03615528308277
1021 => 0.035884922180746
1022 => 0.034119749425616
1023 => 0.032495411139102
1024 => 0.033854239088818
1025 => 0.033857703020707
1026 => 0.033740978494741
1027 => 0.033016012488766
1028 => 0.033715751249188
1029 => 0.033771293970913
1030 => 0.033740204816749
1031 => 0.033184375079741
1101 => 0.032335725805835
1102 => 0.032501549842577
1103 => 0.032773172997479
1104 => 0.032258933698724
1105 => 0.032094603083914
1106 => 0.032400124962024
1107 => 0.033384580111308
1108 => 0.033198474567896
1109 => 0.033193614600046
1110 => 0.033989853035794
1111 => 0.033419918154808
1112 => 0.032503641414723
1113 => 0.032272269453646
1114 => 0.031451054862651
1115 => 0.032018270705717
1116 => 0.032038683794114
1117 => 0.031728025473672
1118 => 0.032528849625291
1119 => 0.032521469889751
1120 => 0.033281733234768
1121 => 0.034735071208568
1122 => 0.034305247655297
1123 => 0.033805409627513
1124 => 0.033859755880138
1125 => 0.034455800133457
1126 => 0.034095418171534
1127 => 0.034225014037714
1128 => 0.034455603974592
1129 => 0.034594724608737
1130 => 0.03383973856183
1201 => 0.033663715199138
1202 => 0.033303633174877
1203 => 0.033209694495997
1204 => 0.0335029737914
1205 => 0.033425705058771
1206 => 0.032036968153078
1207 => 0.031891837419573
1208 => 0.031896288371971
1209 => 0.031531350241985
1210 => 0.030974731998568
1211 => 0.032437491508318
1212 => 0.032320011448379
1213 => 0.03219032255444
1214 => 0.032206208703953
1215 => 0.032841143029616
1216 => 0.03247284905578
1217 => 0.033452018947419
1218 => 0.033250731054239
1219 => 0.033044280886128
1220 => 0.033015743184269
1221 => 0.032936277483047
1222 => 0.032663760025671
1223 => 0.032334678820129
1224 => 0.032117390903705
1225 => 0.029626595389808
1226 => 0.030088872548896
1227 => 0.030620680282539
1228 => 0.030804258181106
1229 => 0.030490235482402
1230 => 0.032676159555807
1231 => 0.033075548948106
]
'min_raw' => 0.013785574406695
'max_raw' => 0.036214792834672
'avg_raw' => 0.025000183620683
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.013785'
'max' => '$0.036214'
'avg' => '$0.02500018'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00053449778283379
'max_diff' => -0.0065309714028582
'year' => 2027
]
2 => [
'items' => [
101 => 0.031865772427306
102 => 0.031639472635114
103 => 0.032690995732508
104 => 0.032056798761309
105 => 0.032342377618607
106 => 0.031725112332411
107 => 0.032979347738988
108 => 0.032969792566609
109 => 0.032481866665259
110 => 0.032894258295907
111 => 0.032822595101623
112 => 0.032271727960707
113 => 0.032996811209919
114 => 0.032997170842164
115 => 0.032527552770539
116 => 0.031979141675495
117 => 0.031881098724593
118 => 0.031807236531306
119 => 0.032324212046893
120 => 0.032787730677628
121 => 0.033650223933413
122 => 0.033867075230251
123 => 0.03471346027842
124 => 0.034209479191976
125 => 0.034432887479949
126 => 0.034675428779576
127 => 0.034791711997778
128 => 0.034602234733819
129 => 0.03591701909961
130 => 0.036028027184035
131 => 0.036065247234526
201 => 0.035621909343932
202 => 0.036015697155305
203 => 0.035831456879245
204 => 0.03631079889413
205 => 0.03638596584261
206 => 0.036322302111389
207 => 0.036346161287266
208 => 0.03522422477492
209 => 0.035166046448068
210 => 0.034372780833298
211 => 0.03469604243484
212 => 0.034091720365089
213 => 0.034283357118614
214 => 0.034367828773586
215 => 0.034323705574753
216 => 0.034714319160774
217 => 0.034382217815573
218 => 0.033505747763071
219 => 0.03262903891689
220 => 0.032618032551478
221 => 0.032387210587475
222 => 0.032220368584652
223 => 0.032252508273434
224 => 0.032365772728746
225 => 0.032213785448606
226 => 0.032246219640774
227 => 0.032784843338665
228 => 0.032892860479989
229 => 0.03252577602875
301 => 0.031051878986992
302 => 0.030690180955954
303 => 0.030950162327881
304 => 0.030825907977044
305 => 0.02487891360095
306 => 0.026276071716599
307 => 0.025445927807286
308 => 0.025828496313782
309 => 0.024981134347098
310 => 0.025385539891645
311 => 0.025310860954093
312 => 0.027557449859143
313 => 0.027522372463472
314 => 0.027539162156525
315 => 0.026737746361797
316 => 0.028014423483609
317 => 0.028643360541639
318 => 0.028526961030815
319 => 0.028556256279961
320 => 0.028052866839841
321 => 0.027544036066661
322 => 0.026979664430708
323 => 0.028028197171865
324 => 0.027911618230099
325 => 0.028179008378731
326 => 0.028859056812039
327 => 0.028959196527096
328 => 0.02909378531965
329 => 0.029045544818202
330 => 0.030194829275783
331 => 0.030055643344747
401 => 0.030391041392018
402 => 0.02970110216207
403 => 0.02892037043375
404 => 0.02906876201126
405 => 0.029054470709056
406 => 0.028872526029207
407 => 0.028708274507535
408 => 0.028434842001531
409 => 0.029300022910925
410 => 0.02926489814601
411 => 0.029833527261919
412 => 0.029733016542314
413 => 0.029061781357642
414 => 0.029085754653579
415 => 0.029246986589922
416 => 0.029805012162522
417 => 0.029970672145748
418 => 0.029893931841109
419 => 0.03007557045005
420 => 0.030219130200555
421 => 0.030093599344429
422 => 0.031870851546028
423 => 0.031132812522333
424 => 0.031492527607239
425 => 0.031578317535425
426 => 0.031358568438345
427 => 0.031406224148877
428 => 0.031478409564928
429 => 0.031916705275838
430 => 0.033066920043153
501 => 0.03357634233382
502 => 0.035108964429744
503 => 0.033534041904081
504 => 0.033440592519085
505 => 0.033716664039314
506 => 0.034616475454147
507 => 0.03534568809088
508 => 0.035587609991771
509 => 0.035619583964669
510 => 0.036073445533404
511 => 0.036333590520586
512 => 0.036018334801215
513 => 0.035751188587698
514 => 0.03479430401029
515 => 0.034905066005635
516 => 0.035668106316178
517 => 0.03674594569767
518 => 0.037670844017064
519 => 0.037346976861573
520 => 0.039817854643389
521 => 0.040062832082826
522 => 0.040028984121764
523 => 0.040587079186332
524 => 0.039479374137249
525 => 0.039005808767992
526 => 0.035808948631299
527 => 0.036707135931479
528 => 0.038012703920982
529 => 0.037839907101942
530 => 0.036891768730033
531 => 0.037670124769087
601 => 0.037412775921132
602 => 0.037209794207337
603 => 0.038139692788175
604 => 0.037117231100415
605 => 0.038002504083504
606 => 0.036867132325716
607 => 0.037348456259458
608 => 0.037075233515647
609 => 0.037252042115813
610 => 0.036218422652035
611 => 0.036776138624996
612 => 0.03619521983396
613 => 0.036194944402815
614 => 0.036182120588306
615 => 0.036865568969771
616 => 0.036887856196954
617 => 0.036382786810418
618 => 0.036309998421151
619 => 0.036579135246209
620 => 0.036264046511113
621 => 0.036411474547119
622 => 0.036268511956136
623 => 0.036236328065653
624 => 0.035979881350645
625 => 0.035869397054671
626 => 0.035912720793952
627 => 0.035764834536867
628 => 0.035675727717693
629 => 0.036164394999186
630 => 0.035903319783466
701 => 0.036124381478031
702 => 0.035872453776865
703 => 0.034999162604946
704 => 0.034496923617089
705 => 0.032847357547469
706 => 0.033315172438533
707 => 0.033625334195298
708 => 0.033522825736538
709 => 0.033743053571463
710 => 0.033756573771911
711 => 0.03368497545782
712 => 0.033602073782414
713 => 0.033561721831577
714 => 0.033862472213384
715 => 0.034037067932816
716 => 0.033656463077018
717 => 0.033567292684533
718 => 0.033952105207514
719 => 0.034186840624233
720 => 0.035919995054853
721 => 0.035791597376618
722 => 0.036113850352217
723 => 0.036077569612539
724 => 0.036415342069892
725 => 0.036967457284372
726 => 0.035844852679492
727 => 0.036039698022152
728 => 0.035991926443768
729 => 0.036513484010188
730 => 0.03651511225598
731 => 0.036202412441179
801 => 0.036371932083758
802 => 0.036277310869798
803 => 0.036448304192247
804 => 0.035789882547344
805 => 0.036591769038611
806 => 0.037046387006735
807 => 0.037052699377664
808 => 0.037268184686483
809 => 0.037487130240311
810 => 0.037907377164746
811 => 0.037475409781678
812 => 0.036698342510718
813 => 0.036754444257769
814 => 0.036298850001123
815 => 0.036306508622887
816 => 0.036265626299693
817 => 0.036388317229074
818 => 0.035816806306834
819 => 0.035950938777964
820 => 0.035763152532903
821 => 0.03603928981153
822 => 0.035742211746855
823 => 0.035991903406866
824 => 0.036099662049918
825 => 0.036497293762654
826 => 0.03568348121958
827 => 0.034024062353985
828 => 0.034372892318042
829 => 0.033856945401199
830 => 0.033904698252701
831 => 0.034001166612546
901 => 0.033688481095807
902 => 0.033748131638547
903 => 0.033746000501406
904 => 0.033727635512858
905 => 0.033646293933466
906 => 0.033528332550407
907 => 0.033998254393914
908 => 0.034078103272154
909 => 0.034255597437298
910 => 0.034783699677325
911 => 0.034730929810038
912 => 0.034816999652984
913 => 0.034629109669094
914 => 0.033913413930172
915 => 0.033952279652112
916 => 0.033467623476745
917 => 0.034243203689238
918 => 0.034059536057761
919 => 0.03394112434092
920 => 0.033908814606902
921 => 0.034438225910235
922 => 0.034596634069698
923 => 0.034497924735097
924 => 0.034295469010019
925 => 0.034684243852831
926 => 0.034788263599674
927 => 0.034811549784891
928 => 0.035500384266171
929 => 0.034850047980398
930 => 0.03500659038817
1001 => 0.03622788956661
1002 => 0.035120339739532
1003 => 0.035707033584243
1004 => 0.035678317973552
1005 => 0.035978450691869
1006 => 0.035653698330432
1007 => 0.035657724025165
1008 => 0.035924221546279
1009 => 0.035549973840955
1010 => 0.03545730484606
1011 => 0.035329283293319
1012 => 0.035608813670153
1013 => 0.035776379488993
1014 => 0.037126836925312
1015 => 0.037999294017516
1016 => 0.037961418354201
1017 => 0.038307531016625
1018 => 0.038151604092174
1019 => 0.03764807492168
1020 => 0.038507537816873
1021 => 0.038235567795379
1022 => 0.038257988673507
1023 => 0.038257154167304
1024 => 0.038437990455565
1025 => 0.03830985137193
1026 => 0.038057276084876
1027 => 0.038224947347617
1028 => 0.038722871054385
1029 => 0.040268441518356
1030 => 0.041133363226079
1031 => 0.040216372145523
1101 => 0.040848900313891
1102 => 0.040469608805701
1103 => 0.040400680255718
1104 => 0.040797954688918
1105 => 0.041195924498422
1106 => 0.041170575542027
1107 => 0.040881669896303
1108 => 0.040718474427743
1109 => 0.041954245190174
1110 => 0.042864740037127
1111 => 0.0428026503926
1112 => 0.043076693890909
1113 => 0.043881294077792
1114 => 0.043954856635303
1115 => 0.043945589443873
1116 => 0.043763256969623
1117 => 0.044555490344147
1118 => 0.045216385363194
1119 => 0.043721052269926
1120 => 0.044290455536495
1121 => 0.044546079007885
1122 => 0.044921410103953
1123 => 0.045554656575814
1124 => 0.046242530204586
1125 => 0.046339803077845
1126 => 0.046270783319333
1127 => 0.045817112170122
1128 => 0.046569791702763
1129 => 0.047010693720478
1130 => 0.047273240782164
1201 => 0.047939016446934
1202 => 0.04454765765142
1203 => 0.042147085334487
1204 => 0.041772201302513
1205 => 0.042534542723118
1206 => 0.042735566076173
1207 => 0.042654533814618
1208 => 0.039952471421423
1209 => 0.041757975503218
1210 => 0.043700546084133
1211 => 0.043775168131514
1212 => 0.044747659581556
1213 => 0.045064342661461
1214 => 0.045847325746113
1215 => 0.045798349940985
1216 => 0.045988993862115
1217 => 0.04594516812614
1218 => 0.047395479413917
1219 => 0.048995388137645
1220 => 0.048939988385941
1221 => 0.048709982577644
1222 => 0.049051580424783
1223 => 0.050702857684309
1224 => 0.050550834535431
1225 => 0.050698512075265
1226 => 0.052645461026155
1227 => 0.055176771612571
1228 => 0.054000723705753
1229 => 0.056552409264878
1230 => 0.058158560065308
1231 => 0.060936231795559
]
'min_raw' => 0.02487891360095
'max_raw' => 0.060936231795559
'avg_raw' => 0.042907572698254
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.024878'
'max' => '$0.060936'
'avg' => '$0.0429075'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.011093339194255
'max_diff' => 0.024721438960888
'year' => 2028
]
3 => [
'items' => [
101 => 0.06058845361461
102 => 0.0616697808357
103 => 0.059965858087215
104 => 0.056053307037088
105 => 0.055434130856762
106 => 0.056673737249813
107 => 0.059721188608107
108 => 0.056577762161582
109 => 0.057213673237707
110 => 0.057030530805003
111 => 0.057020771923069
112 => 0.057393228754232
113 => 0.056852960694588
114 => 0.054651811427232
115 => 0.055660585165007
116 => 0.055271049179559
117 => 0.055703268397245
118 => 0.058035777254336
119 => 0.05700451948855
120 => 0.055918173204873
121 => 0.057280692524143
122 => 0.05901564783001
123 => 0.058907077444984
124 => 0.058696405519131
125 => 0.059883952134737
126 => 0.061845431225206
127 => 0.062375611141499
128 => 0.062766979116655
129 => 0.062820942148212
130 => 0.063376794911096
131 => 0.060387834512139
201 => 0.06513139142723
202 => 0.065950472668351
203 => 0.06579651934246
204 => 0.066706893669758
205 => 0.066439038448699
206 => 0.066050958258582
207 => 0.067494095209522
208 => 0.065839655150416
209 => 0.063491385774726
210 => 0.062203078751721
211 => 0.063899625364377
212 => 0.064935647179409
213 => 0.065620391695782
214 => 0.065827594972703
215 => 0.060619858999431
216 => 0.057813178144116
217 => 0.059612228393712
218 => 0.061807193862034
219 => 0.060375641368136
220 => 0.06043175551561
221 => 0.058390737864689
222 => 0.061987778635579
223 => 0.061463720051135
224 => 0.064182536914273
225 => 0.063533669450017
226 => 0.065750759058043
227 => 0.065166925061486
228 => 0.067590387339477
301 => 0.068557172054789
302 => 0.070180554059824
303 => 0.071374720471082
304 => 0.072075957828536
305 => 0.072033858167869
306 => 0.074812509933166
307 => 0.073174036065869
308 => 0.071115726729903
309 => 0.071078498407898
310 => 0.072144525979464
311 => 0.074378627319083
312 => 0.074957897291594
313 => 0.075281630180764
314 => 0.074785821991777
315 => 0.073007376039306
316 => 0.072239452093955
317 => 0.072893745544292
318 => 0.072093600878607
319 => 0.073474875052522
320 => 0.075371659517551
321 => 0.074979981026221
322 => 0.076289303499015
323 => 0.077644314513616
324 => 0.079582041121848
325 => 0.080088634611049
326 => 0.080926014384672
327 => 0.081787953236656
328 => 0.08206478476601
329 => 0.082593342051326
330 => 0.082590556293529
331 => 0.084183399248836
401 => 0.08594035435478
402 => 0.086603564233669
403 => 0.08812857878057
404 => 0.085517044811886
405 => 0.087497923326273
406 => 0.089284725330854
407 => 0.087154426319792
408 => 0.090090547210531
409 => 0.090204550131326
410 => 0.091925858884819
411 => 0.090180982700298
412 => 0.089144880791771
413 => 0.092136068179456
414 => 0.093583409534837
415 => 0.093147458539742
416 => 0.08982984994151
417 => 0.087898859438413
418 => 0.082845084831556
419 => 0.088831499160194
420 => 0.091747306953573
421 => 0.089822298703733
422 => 0.090793160893909
423 => 0.096089870200391
424 => 0.098106514167769
425 => 0.09768706631996
426 => 0.09775794610154
427 => 0.09884609058166
428 => 0.10367152245862
429 => 0.10078001182531
430 => 0.10299046336164
501 => 0.10416287888613
502 => 0.10525188376471
503 => 0.10257763196645
504 => 0.099098469669481
505 => 0.097996472924733
506 => 0.089630894571052
507 => 0.089195429887878
508 => 0.088950990365281
509 => 0.087409833751969
510 => 0.086198906812231
511 => 0.085235932750915
512 => 0.082708801245628
513 => 0.083561633943939
514 => 0.079533913777847
515 => 0.082110706406474
516 => 0.075682367768687
517 => 0.08103607920535
518 => 0.078122297473764
519 => 0.080078823540616
520 => 0.080071997405484
521 => 0.076469412599256
522 => 0.07439151686705
523 => 0.075715632900523
524 => 0.077135190396868
525 => 0.077365508824685
526 => 0.079206002172938
527 => 0.079719644305164
528 => 0.078163284664863
529 => 0.075549154738767
530 => 0.076156357498643
531 => 0.074379211922501
601 => 0.071264832657229
602 => 0.073501634217393
603 => 0.074265376615255
604 => 0.074602688767595
605 => 0.071540054449075
606 => 0.07057770825317
607 => 0.070065363213337
608 => 0.075153807107161
609 => 0.075432563550177
610 => 0.074006406175517
611 => 0.080452772742773
612 => 0.078993761451634
613 => 0.080623834530281
614 => 0.076101260212583
615 => 0.076274028641973
616 => 0.074132969482506
617 => 0.075331819546183
618 => 0.074484510961917
619 => 0.075234964308305
620 => 0.075684782949894
621 => 0.077825490782621
622 => 0.081060522650134
623 => 0.077505740418727
624 => 0.075956870895084
625 => 0.076917780836379
626 => 0.07947681063728
627 => 0.08335387177997
628 => 0.081058573550371
629 => 0.082077187927975
630 => 0.082299709854482
701 => 0.080607241916535
702 => 0.083416275486953
703 => 0.084921659397889
704 => 0.0864658717952
705 => 0.087806668151937
706 => 0.085849079405756
707 => 0.087943979973493
708 => 0.086255859915628
709 => 0.084741441709079
710 => 0.084743738456373
711 => 0.083793721793285
712 => 0.081952944798749
713 => 0.081613477278371
714 => 0.083379430189401
715 => 0.084795557187684
716 => 0.084912196190054
717 => 0.085696236859536
718 => 0.086160224051474
719 => 0.090707929292469
720 => 0.092537053960988
721 => 0.094773672982096
722 => 0.095644962139758
723 => 0.098267230129871
724 => 0.096149535757661
725 => 0.095691359259312
726 => 0.089330594852621
727 => 0.09037216966788
728 => 0.092039831444131
729 => 0.089358093981073
730 => 0.091059039150508
731 => 0.091394841757899
801 => 0.089266969568258
802 => 0.090403558044675
803 => 0.087385116026309
804 => 0.081126316437684
805 => 0.083423243320068
806 => 0.085114554642732
807 => 0.082700844848109
808 => 0.087027326231502
809 => 0.084499885124028
810 => 0.083698807631527
811 => 0.080573518728536
812 => 0.082048534787346
813 => 0.084043515127082
814 => 0.082810849218483
815 => 0.085368816064544
816 => 0.088991579303405
817 => 0.091573376126699
818 => 0.091771574428493
819 => 0.090111652038068
820 => 0.092771688262206
821 => 0.092791063722072
822 => 0.089790531994676
823 => 0.087952723018677
824 => 0.087535168952547
825 => 0.088578300876037
826 => 0.08984485560393
827 => 0.091841859401118
828 => 0.093048606971426
829 => 0.096195164625333
830 => 0.097046532907602
831 => 0.097981928531082
901 => 0.099231905549377
902 => 0.10073282344737
903 => 0.097448900533865
904 => 0.097579376913217
905 => 0.094521433365169
906 => 0.091253582130616
907 => 0.093733473874235
908 => 0.096975602442843
909 => 0.09623185456697
910 => 0.096148167737544
911 => 0.096288905771848
912 => 0.095728144161975
913 => 0.093191840183315
914 => 0.091918124203334
915 => 0.093561542777111
916 => 0.094434946608928
917 => 0.095789519783257
918 => 0.09562254004795
919 => 0.099111775074485
920 => 0.10046758629681
921 => 0.1001207117677
922 => 0.10018454502906
923 => 0.10263917648509
924 => 0.10536923149765
925 => 0.1079262882794
926 => 0.11052743626595
927 => 0.10739165084363
928 => 0.10579949239454
929 => 0.10744219350318
930 => 0.10657055317224
1001 => 0.11157925705912
1002 => 0.11192604884901
1003 => 0.11693439054959
1004 => 0.12168790320567
1005 => 0.11870230707441
1006 => 0.12151758975198
1007 => 0.12456254750114
1008 => 0.13043676502586
1009 => 0.128458535221
1010 => 0.12694324219329
1011 => 0.12551129760395
1012 => 0.12849094697957
1013 => 0.13232421830025
1014 => 0.13314986822811
1015 => 0.13448773653378
1016 => 0.13308113159712
1017 => 0.13477523231088
1018 => 0.14075615225604
1019 => 0.13914005489182
1020 => 0.13684493683401
1021 => 0.14156629871705
1022 => 0.1432749412287
1023 => 0.15526708919845
1024 => 0.17040767138118
1025 => 0.16413937093911
1026 => 0.16024843457792
1027 => 0.16116289691704
1028 => 0.16669172498913
1029 => 0.16846740908965
1030 => 0.16364048758942
1031 => 0.16534543786547
1101 => 0.17473988151354
1102 => 0.1797796991209
1103 => 0.1729349498723
1104 => 0.15405055816212
1105 => 0.13663828656433
1106 => 0.14125680507687
1107 => 0.14073320840687
1108 => 0.15082636612601
1109 => 0.13910151150416
1110 => 0.13929892798593
1111 => 0.14960080151786
1112 => 0.14685243827836
1113 => 0.14240044181415
1114 => 0.13667079106539
1115 => 0.12607900172777
1116 => 0.11669755853754
1117 => 0.13509672905092
1118 => 0.13430332336166
1119 => 0.13315435434748
1120 => 0.1357112605571
1121 => 0.14812687132055
1122 => 0.14784065130705
1123 => 0.14601986561184
1124 => 0.14740091551399
1125 => 0.14215833708903
1126 => 0.14350946892043
1127 => 0.13663552837155
1128 => 0.13974283658076
1129 => 0.14239088982923
1130 => 0.14292252572396
1201 => 0.14412032854079
1202 => 0.13388523461605
1203 => 0.13848049130169
1204 => 0.14117977408718
1205 => 0.1289843162616
1206 => 0.14093870909735
1207 => 0.13370706440185
1208 => 0.13125253557654
1209 => 0.13455723528024
1210 => 0.13326939059178
1211 => 0.13216217735342
1212 => 0.13154433334208
1213 => 0.13397094007808
1214 => 0.13385773597342
1215 => 0.12988733636926
1216 => 0.12470811193982
1217 => 0.12644642966058
1218 => 0.12581488253581
1219 => 0.12352607428445
1220 => 0.12506845469411
1221 => 0.11827659195083
1222 => 0.10659154511132
1223 => 0.11431104497616
1224 => 0.11401385262856
1225 => 0.11386399477031
1226 => 0.11966498556743
1227 => 0.11910735415392
1228 => 0.11809524767804
1229 => 0.12350748615531
1230 => 0.12153194630623
1231 => 0.12762009462538
]
'min_raw' => 0.054651811427232
'max_raw' => 0.1797796991209
'avg_raw' => 0.11721575527407
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.054651'
'max' => '$0.179779'
'avg' => '$0.117215'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.029772897826283
'max_diff' => 0.11884346732534
'year' => 2029
]
4 => [
'items' => [
101 => 0.13163014286511
102 => 0.13061306492005
103 => 0.13438453467176
104 => 0.12648647698996
105 => 0.12910989493678
106 => 0.12965057773972
107 => 0.12344069997262
108 => 0.11919858954951
109 => 0.11891568914789
110 => 0.11156045427304
111 => 0.1154895613738
112 => 0.11894701302497
113 => 0.11729116199315
114 => 0.11676696902362
115 => 0.11944495722138
116 => 0.11965305983976
117 => 0.11490829808688
118 => 0.11589488430237
119 => 0.12000911282726
120 => 0.11579121629956
121 => 0.10759653233573
122 => 0.10556413741233
123 => 0.10529297846508
124 => 0.099780962241545
125 => 0.10569995175939
126 => 0.10311615421579
127 => 0.11127833969736
128 => 0.10661614312497
129 => 0.10641516514895
130 => 0.10611135746113
131 => 0.10136693739901
201 => 0.10240566386899
202 => 0.10585854885771
203 => 0.10709057712122
204 => 0.10696206647963
205 => 0.10584162783755
206 => 0.10635455891032
207 => 0.1047022292079
208 => 0.10411875719971
209 => 0.10227715904524
210 => 0.099570518512635
211 => 0.099946893479485
212 => 0.09458433035338
213 => 0.091662521349512
214 => 0.090853803126065
215 => 0.089772351319011
216 => 0.090975955985305
217 => 0.094569138885815
218 => 0.090234997971523
219 => 0.082804417378607
220 => 0.083251007933334
221 => 0.084254364315881
222 => 0.082384616334871
223 => 0.080615056786899
224 => 0.082153545244957
225 => 0.079005110292125
226 => 0.084634837638105
227 => 0.084482569290525
228 => 0.086580983505102
301 => 0.087893164977272
302 => 0.084869011507717
303 => 0.084108445088304
304 => 0.084541698286618
305 => 0.077380988001914
306 => 0.085995800705685
307 => 0.086070301963686
308 => 0.085432376961663
309 => 0.090019498773919
310 => 0.099699756556951
311 => 0.096057654191508
312 => 0.094647322072481
313 => 0.091966279683265
314 => 0.09553860948235
315 => 0.095264310290806
316 => 0.094023825321767
317 => 0.093273576141942
318 => 0.094655933259664
319 => 0.093102286797188
320 => 0.092823209201178
321 => 0.091132302608774
322 => 0.090528725886634
323 => 0.090081861710643
324 => 0.089589908160844
325 => 0.090675035104514
326 => 0.088215994689821
327 => 0.085250633012404
328 => 0.085004095274585
329 => 0.085684807644523
330 => 0.085383643093902
331 => 0.085002653414583
401 => 0.084275240360399
402 => 0.084059432445943
403 => 0.084760703472808
404 => 0.083969009370119
405 => 0.085137197144447
406 => 0.084819514708607
407 => 0.083044966446291
408 => 0.08083322228953
409 => 0.080813533127245
410 => 0.080337016476658
411 => 0.079730100877378
412 => 0.079561270842006
413 => 0.082023978038213
414 => 0.087121708231736
415 => 0.086120901816402
416 => 0.086844087018247
417 => 0.090401442448625
418 => 0.091532218766532
419 => 0.090729620519986
420 => 0.089630974538011
421 => 0.089679309385495
422 => 0.093433715288661
423 => 0.093667872979593
424 => 0.094259513922445
425 => 0.095019939731721
426 => 0.09085912432348
427 => 0.089483335353943
428 => 0.08883141021431
429 => 0.086823733111022
430 => 0.088988840741692
501 => 0.087727325244453
502 => 0.087897546784537
503 => 0.087786689783249
504 => 0.08784722520207
505 => 0.084633264014578
506 => 0.085804262550473
507 => 0.083857250365646
508 => 0.081250419612537
509 => 0.08124168060178
510 => 0.081879698735509
511 => 0.081500180583915
512 => 0.080478906996279
513 => 0.080623974089127
514 => 0.079353033709009
515 => 0.080778289262392
516 => 0.080819160491854
517 => 0.080270359469606
518 => 0.082466162296959
519 => 0.083365784506931
520 => 0.08300455191763
521 => 0.083340439465493
522 => 0.086162489841329
523 => 0.086622607187281
524 => 0.086826960918707
525 => 0.086553153990277
526 => 0.083392021365852
527 => 0.08353223103992
528 => 0.082503465482196
529 => 0.081634266994562
530 => 0.081669030375722
531 => 0.08211591138626
601 => 0.084067466968502
602 => 0.088174400640845
603 => 0.08833025577158
604 => 0.088519156736647
605 => 0.087750801577702
606 => 0.087519058309595
607 => 0.087824787498241
608 => 0.089367135853259
609 => 0.093334474565859
610 => 0.091932152095183
611 => 0.090792042098073
612 => 0.091792225936986
613 => 0.091638255474686
614 => 0.090338589822472
615 => 0.090302112536285
616 => 0.087807638621443
617 => 0.086885488411549
618 => 0.086114870674414
619 => 0.085273376222949
620 => 0.084774510104971
621 => 0.085540995192781
622 => 0.085716299401148
623 => 0.084040366360784
624 => 0.083811942880168
625 => 0.085180545978456
626 => 0.084578274781566
627 => 0.085197725643175
628 => 0.085341443556619
629 => 0.08531830166245
630 => 0.08468946136249
701 => 0.085090265417397
702 => 0.084142244342103
703 => 0.083111413810882
704 => 0.082453808154974
705 => 0.081879960001463
706 => 0.082198364309281
707 => 0.081063311090237
708 => 0.080700184721357
709 => 0.084954482021971
710 => 0.088097177179339
711 => 0.088051481147107
712 => 0.08777331830296
713 => 0.08736002473983
714 => 0.089336900854869
715 => 0.088648196745275
716 => 0.089149286528159
717 => 0.089276834908574
718 => 0.089662885440979
719 => 0.089800865324149
720 => 0.089383794284018
721 => 0.087984052932403
722 => 0.084496030567592
723 => 0.082872346741036
724 => 0.082336504033679
725 => 0.082355980898381
726 => 0.081818722021341
727 => 0.081976968838883
728 => 0.081763690236209
729 => 0.081359792160379
730 => 0.082173424741254
731 => 0.082267188316688
801 => 0.082077276750126
802 => 0.08212200779895
803 => 0.080549621140112
804 => 0.080669166282739
805 => 0.080003523737528
806 => 0.079878723784742
807 => 0.078196037394577
808 => 0.075214914545106
809 => 0.07686674598831
810 => 0.074871565887569
811 => 0.074115960951507
812 => 0.077692877198149
813 => 0.077333854015199
814 => 0.076719362389616
815 => 0.075810401204102
816 => 0.075473258658589
817 => 0.073424887278411
818 => 0.073303858569634
819 => 0.07431908673633
820 => 0.073850593869268
821 => 0.073192652451789
822 => 0.070809655332135
823 => 0.068130377586411
824 => 0.068211248140215
825 => 0.069063476541395
826 => 0.071541445556484
827 => 0.07057326019299
828 => 0.069870830603127
829 => 0.069739286655902
830 => 0.071385834561333
831 => 0.07371604480997
901 => 0.074809327323115
902 => 0.073725917556072
903 => 0.072481354750618
904 => 0.072557105521837
905 => 0.073061041465815
906 => 0.073113998008257
907 => 0.07230391556503
908 => 0.072531949027713
909 => 0.07218554534608
910 => 0.07005966659131
911 => 0.070021216185871
912 => 0.069499491255025
913 => 0.069483693631465
914 => 0.068596109373713
915 => 0.068471930200473
916 => 0.066709577784191
917 => 0.067869563481483
918 => 0.067091505977722
919 => 0.065918789794344
920 => 0.065716613082307
921 => 0.065710535406207
922 => 0.066914652711996
923 => 0.067855492669693
924 => 0.067105040621115
925 => 0.066934177236556
926 => 0.068758551168584
927 => 0.068526382956196
928 => 0.068325326781592
929 => 0.073507400040174
930 => 0.069405384693787
1001 => 0.067616671867912
1002 => 0.065402800078539
1003 => 0.06612364789647
1004 => 0.066275541123165
1005 => 0.060951578550107
1006 => 0.058791647597274
1007 => 0.058050440689543
1008 => 0.057623865635016
1009 => 0.057818261243956
1010 => 0.055874070051775
1011 => 0.057180598686875
1012 => 0.055497093452836
1013 => 0.05521484832175
1014 => 0.05822516422649
1015 => 0.058644032098624
1016 => 0.056857011624052
1017 => 0.058004568061063
1018 => 0.057588448144775
1019 => 0.055525952318121
1020 => 0.055447180148235
1021 => 0.054412292242654
1022 => 0.052792893064205
1023 => 0.052052784185373
1024 => 0.051667329055357
1025 => 0.051826375354372
1026 => 0.051745956678693
1027 => 0.051221170422598
1028 => 0.0517760368126
1029 => 0.050358582472769
1030 => 0.049794140733442
1031 => 0.049539195494737
1101 => 0.048281123182509
1102 => 0.05028327569856
1103 => 0.050677724966675
1104 => 0.0510729514217
1105 => 0.054513127880128
1106 => 0.054341266386103
1107 => 0.05589481059215
1108 => 0.055834442721087
1109 => 0.055391346747775
1110 => 0.053521997722121
1111 => 0.054267086925804
1112 => 0.051973818169438
1113 => 0.053692091048825
1114 => 0.052907943063464
1115 => 0.053426969826193
1116 => 0.05249371290805
1117 => 0.053010215819784
1118 => 0.050771263521249
1119 => 0.048680561367785
1120 => 0.049521920945739
1121 => 0.050436575028114
1122 => 0.052419778128229
1123 => 0.051238598722871
1124 => 0.051663395502376
1125 => 0.050240397401156
1126 => 0.047304345859027
1127 => 0.047320963591901
1128 => 0.046869316027505
1129 => 0.046479026590242
1130 => 0.051374271386462
1201 => 0.050765470313684
1202 => 0.049795425482126
1203 => 0.051093869037215
1204 => 0.051437198122251
1205 => 0.051446972218638
1206 => 0.052394283118752
1207 => 0.052899863115958
1208 => 0.052988973781775
1209 => 0.054479587951111
1210 => 0.054979222158996
1211 => 0.057037144750396
1212 => 0.052856968185486
1213 => 0.052770880199973
1214 => 0.051112140800811
1215 => 0.050060142050229
1216 => 0.051184172055287
1217 => 0.052179909194372
1218 => 0.051143081129329
1219 => 0.051278468985988
1220 => 0.049886612020633
1221 => 0.05038413539279
1222 => 0.050812669544528
1223 => 0.050576058174012
1224 => 0.050221839500229
1225 => 0.052098270104203
1226 => 0.051992394535736
1227 => 0.053739769853111
1228 => 0.055101973869012
1229 => 0.057543286988601
1230 => 0.054995649479778
1231 => 0.054902803443015
]
'min_raw' => 0.046479026590242
'max_raw' => 0.13438453467176
'avg_raw' => 0.090431780631002
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.046479'
'max' => '$0.134384'
'avg' => '$0.090431'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0081727848369905
'max_diff' => -0.045395164449137
'year' => 2030
]
5 => [
'items' => [
101 => 0.05581038834535
102 => 0.054979083212477
103 => 0.055504439360775
104 => 0.057458643991135
105 => 0.057499933255579
106 => 0.056808284877927
107 => 0.05676619801129
108 => 0.056899036648022
109 => 0.057677076692503
110 => 0.057405205594205
111 => 0.057719821712089
112 => 0.058113253985076
113 => 0.059740656677975
114 => 0.060133017957687
115 => 0.059179783463986
116 => 0.059265849865853
117 => 0.058909313998337
118 => 0.058564904817698
119 => 0.059339086358853
120 => 0.060753918341891
121 => 0.060745116745555
122 => 0.061073330265216
123 => 0.061277804568897
124 => 0.060400051173159
125 => 0.05982866598842
126 => 0.060047771426433
127 => 0.060398125793311
128 => 0.059934156227212
129 => 0.057070321133643
130 => 0.057939025758538
131 => 0.057794430831469
201 => 0.05758851007198
202 => 0.058461999289806
203 => 0.058377749123856
204 => 0.055854129561011
205 => 0.056015683497561
206 => 0.055863954190976
207 => 0.056354222621447
208 => 0.054952607108307
209 => 0.055383734600124
210 => 0.055654133721423
211 => 0.055813400881172
212 => 0.056388783072698
213 => 0.056321268613559
214 => 0.056384586279123
215 => 0.05723772617389
216 => 0.061552614999361
217 => 0.061787464877866
218 => 0.060630978183801
219 => 0.061092971807388
220 => 0.060206045076999
221 => 0.060801444933002
222 => 0.061208802392963
223 => 0.059368032361735
224 => 0.059259033906984
225 => 0.058368446514481
226 => 0.058846997733764
227 => 0.058085588334835
228 => 0.058272411568362
301 => 0.057750037520463
302 => 0.058690206803045
303 => 0.059741462148509
304 => 0.060007050764104
305 => 0.05930840145956
306 => 0.058802533319838
307 => 0.057914395509809
308 => 0.059391388481329
309 => 0.059823306236746
310 => 0.059389119801232
311 => 0.059288509316963
312 => 0.059097852631071
313 => 0.059328958034167
314 => 0.059820953919891
315 => 0.059588937745921
316 => 0.059742188516427
317 => 0.059158154610766
318 => 0.060400341746056
319 => 0.06237323386551
320 => 0.062379577036274
321 => 0.06214755961165
322 => 0.06205262308038
323 => 0.062290687038038
324 => 0.062419826969173
325 => 0.063189682154777
326 => 0.064015767441313
327 => 0.06787074702433
328 => 0.066788284183369
329 => 0.070208651403183
330 => 0.072913717794959
331 => 0.073724848927636
401 => 0.072978646452242
402 => 0.070425928092988
403 => 0.070300679551896
404 => 0.074115518510515
405 => 0.073037651774012
406 => 0.072909442955448
407 => 0.07154551773815
408 => 0.072351766466998
409 => 0.072175428043044
410 => 0.071897069214061
411 => 0.073435335624929
412 => 0.076314833024085
413 => 0.075866036350671
414 => 0.075531030453046
415 => 0.074063132128404
416 => 0.074947134786799
417 => 0.0746323583721
418 => 0.075984837611695
419 => 0.075183658871242
420 => 0.073029485873372
421 => 0.07337254502353
422 => 0.073320692323122
423 => 0.07438781722318
424 => 0.074067492815851
425 => 0.073258143841568
426 => 0.076304991215016
427 => 0.07610714589404
428 => 0.076387645325447
429 => 0.076511129849886
430 => 0.07836569215463
501 => 0.07912544699151
502 => 0.079297924640862
503 => 0.080019632974349
504 => 0.079279967880063
505 => 0.082239155629481
506 => 0.084206842809452
507 => 0.086492412725244
508 => 0.089832244675495
509 => 0.091088052383962
510 => 0.090861201961727
511 => 0.093393424429432
512 => 0.097943771915755
513 => 0.091780957288126
514 => 0.098270416055502
515 => 0.096215928334155
516 => 0.091344774905498
517 => 0.091031130051819
518 => 0.09432993170896
519 => 0.10164635628661
520 => 0.099813674912106
521 => 0.10164935389679
522 => 0.099507936853325
523 => 0.099401597447837
524 => 0.10154535005073
525 => 0.10655434485724
526 => 0.10417475918403
527 => 0.10076303962313
528 => 0.10328220025466
529 => 0.10109987017832
530 => 0.096182469720592
531 => 0.099812273495198
601 => 0.097385127081978
602 => 0.098093497439556
603 => 0.10319499818936
604 => 0.10258117212225
605 => 0.10337551989186
606 => 0.1019735168702
607 => 0.10066382497239
608 => 0.098219187786123
609 => 0.097495451234427
610 => 0.097695465980002
611 => 0.097495352117052
612 => 0.096127600078713
613 => 0.095832234156258
614 => 0.095339944678556
615 => 0.09549252577262
616 => 0.094566877530174
617 => 0.096313767012356
618 => 0.096638005093787
619 => 0.097909245580426
620 => 0.098041229984927
621 => 0.10158161664524
622 => 0.099631631166521
623 => 0.10093984977929
624 => 0.10082283039314
625 => 0.091450347570926
626 => 0.09274179300971
627 => 0.094750876834555
628 => 0.093845787294711
629 => 0.092566202443707
630 => 0.091532869069523
701 => 0.089967263343871
702 => 0.092170823337931
703 => 0.09506827040764
704 => 0.098114714024131
705 => 0.10177481641845
706 => 0.10095792417233
707 => 0.098046290955783
708 => 0.098176904694928
709 => 0.098984307435709
710 => 0.097938647526123
711 => 0.09763026200508
712 => 0.098941940000699
713 => 0.09895097280617
714 => 0.09774781470797
715 => 0.096410724657428
716 => 0.096405122201295
717 => 0.096167199941558
718 => 0.099550262694785
719 => 0.10141060514284
720 => 0.10162389040641
721 => 0.10139624934523
722 => 0.10148385935493
723 => 0.10040136707426
724 => 0.10287562342476
725 => 0.10514624573057
726 => 0.10453767044784
727 => 0.10362532958496
728 => 0.10289860614338
729 => 0.10436647750061
730 => 0.10430111549972
731 => 0.10512641382558
801 => 0.10508897352636
802 => 0.10481145674042
803 => 0.10453768035884
804 => 0.1056231727655
805 => 0.10531056838486
806 => 0.10499747844327
807 => 0.10436952863374
808 => 0.10445487744199
809 => 0.10354269410762
810 => 0.10312067635847
811 => 0.096774541973437
812 => 0.095078647499831
813 => 0.095612210424343
814 => 0.095787873193047
815 => 0.095049817744786
816 => 0.096107999666704
817 => 0.095943083135065
818 => 0.096584676886728
819 => 0.096183836965451
820 => 0.096200287575639
821 => 0.097379072316031
822 => 0.097721278541075
823 => 0.097547229693075
824 => 0.097669127540169
825 => 0.10047821197659
826 => 0.10007884999919
827 => 0.099866696908282
828 => 0.099925464764345
829 => 0.1006432460653
830 => 0.10084418564016
831 => 0.0999927905417
901 => 0.10039431339199
902 => 0.10210394672769
903 => 0.10270222163832
904 => 0.1046116279648
905 => 0.10380047822032
906 => 0.10528937868205
907 => 0.10986575109783
908 => 0.11352167404445
909 => 0.11015953621533
910 => 0.11687317312781
911 => 0.12210070247819
912 => 0.12190006119481
913 => 0.12098852053764
914 => 0.1150371173533
915 => 0.10956054741264
916 => 0.11414193071544
917 => 0.11415360960365
918 => 0.11376006471491
919 => 0.11131579121026
920 => 0.11367500929522
921 => 0.11386227545938
922 => 0.11375745620554
923 => 0.11188343744043
924 => 0.10902215716266
925 => 0.10958124448
926 => 0.11049704091087
927 => 0.10876324721208
928 => 0.10820919507105
929 => 0.10923928341395
930 => 0.11255844268223
1001 => 0.11193097484914
1002 => 0.11191458912822
1003 => 0.11459916260594
1004 => 0.11267758736311
1005 => 0.10958829636151
1006 => 0.10880820964087
1007 => 0.10603942731196
1008 => 0.1079518351286
1009 => 0.10802065928133
1010 => 0.10697325306449
1011 => 0.10967328760342
1012 => 0.10964840630982
1013 => 0.11221168725743
1014 => 0.11711171770492
1015 => 0.11566253758574
1016 => 0.11397729877749
1017 => 0.11416053096255
1018 => 0.11617013577709
1019 => 0.1149550828314
1020 => 0.11539202434232
1021 => 0.11616947441379
1022 => 0.1166385293449
1023 => 0.11409304117631
1024 => 0.11349956611944
1025 => 0.11228552443451
1026 => 0.11196880362008
1027 => 0.11295761524064
1028 => 0.11269709831385
1029 => 0.10801487487779
1030 => 0.10752555647708
1031 => 0.10754056317384
1101 => 0.10631014878942
1102 => 0.1044334715199
1103 => 0.10936526733363
1104 => 0.10896917510935
1105 => 0.10853191994885
1106 => 0.10858548121106
1107 => 0.11072620661974
1108 => 0.10948447777348
1109 => 0.1127858174266
1110 => 0.11210716124127
1111 => 0.1114111000856
1112 => 0.11131488323134
1113 => 0.11104695907155
1114 => 0.11012814743745
1115 => 0.10901862717725
1116 => 0.10828602579647
1117 => 0.099888134819574
1118 => 0.1014467345366
1119 => 0.10323976144021
1120 => 0.10385870714223
1121 => 0.10279995768918
1122 => 0.11016995331901
1123 => 0.11151652253962
1124 => 0.10743767653585
1125 => 0.10667469098672
1126 => 0.11021997452459
1127 => 0.10808173515797
1128 => 0.10904458421383
1129 => 0.10696343120533
1130 => 0.11119217344653
1201 => 0.11115995751573
1202 => 0.10951488127343
1203 => 0.11090528844843
1204 => 0.11066367098553
1205 => 0.10880638395962
1206 => 0.11125105275803
1207 => 0.11125226528326
1208 => 0.10966891516708
1209 => 0.1078199088713
1210 => 0.1074893502172
1211 => 0.10724031867564
1212 => 0.10898333772052
1213 => 0.11054612314588
1214 => 0.11345407937511
1215 => 0.11418520866248
1216 => 0.1170388549451
1217 => 0.11533964752531
1218 => 0.11609288416608
1219 => 0.11691062909147
1220 => 0.11730268608027
1221 => 0.11666385025595
1222 => 0.12109673754053
1223 => 0.12147100904751
1224 => 0.12159649904636
1225 => 0.12010175439536
1226 => 0.12142943749479
1227 => 0.12080825854081
1228 => 0.12242439361058
1229 => 0.12267782422537
1230 => 0.1224631775107
1231 => 0.12254362038796
]
'min_raw' => 0.054952607108307
'max_raw' => 0.12267782422537
'avg_raw' => 0.088815215666839
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.054952'
'max' => '$0.122677'
'avg' => '$0.088815'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0084735805180658
'max_diff' => -0.011706710446392
'year' => 2031
]
6 => [
'items' => [
101 => 0.11876093310548
102 => 0.11856478081462
103 => 0.11589023041039
104 => 0.11698012946939
105 => 0.1149426154188
106 => 0.11558873211297
107 => 0.11587353419533
108 => 0.11572476974988
109 => 0.11704175072691
110 => 0.11592204785499
111 => 0.1129669678798
112 => 0.11001108279504
113 => 0.10997397406562
114 => 0.10919574169851
115 => 0.10863322223745
116 => 0.1087415834421
117 => 0.10912346246106
118 => 0.10861102673465
119 => 0.10872038087803
120 => 0.11053638828098
121 => 0.11090057561446
122 => 0.10966292475809
123 => 0.1046935779776
124 => 0.10347408781301
125 => 0.10435063315978
126 => 0.10393170094077
127 => 0.08388099419588
128 => 0.088591610329256
129 => 0.085792722180213
130 => 0.087082578609944
131 => 0.084225638578343
201 => 0.085589120106479
202 => 0.085337334854606
203 => 0.092911866199808
204 => 0.09279360031128
205 => 0.092850207933627
206 => 0.090148178628636
207 => 0.094452584679577
208 => 0.096573089881706
209 => 0.096180640804211
210 => 0.096279411782033
211 => 0.094582199139142
212 => 0.092866640661933
213 => 0.090963822288151
214 => 0.094499023631179
215 => 0.094105969589733
216 => 0.095007494144429
217 => 0.097300324916793
218 => 0.09763795295764
219 => 0.098091728468425
220 => 0.097929082249749
221 => 0.10180397503896
222 => 0.10133469995482
223 => 0.10246551788794
224 => 0.10013933960415
225 => 0.097507048073172
226 => 0.098007360637117
227 => 0.09795917651395
228 => 0.097345737322866
229 => 0.096791951849874
301 => 0.095870055065433
302 => 0.098787072906457
303 => 0.098668647309212
304 => 0.10058582007392
305 => 0.10024694116533
306 => 0.097983824876071
307 => 0.098064652517082
308 => 0.098608257247319
309 => 0.10048967942544
310 => 0.1010482136249
311 => 0.10078947832997
312 => 0.10140188558162
313 => 0.10188590730347
314 => 0.10146267125775
315 => 0.10745480113923
316 => 0.1049664510426
317 => 0.10617925556587
318 => 0.10646850229841
319 => 0.10572760287521
320 => 0.10588827743049
321 => 0.10613165560053
322 => 0.10760940019069
323 => 0.11148742958412
324 => 0.11320498240384
325 => 0.1183723248045
326 => 0.11306236355165
327 => 0.11274729242571
328 => 0.11367808683086
329 => 0.11671186383879
330 => 0.11917045515554
331 => 0.11998611173484
401 => 0.12009391421682
402 => 0.12162414018341
403 => 0.12250123717044
404 => 0.12143833050213
405 => 0.1205376283917
406 => 0.11731142523142
407 => 0.11768486703189
408 => 0.12025751071265
409 => 0.12389152143969
410 => 0.12700988069787
411 => 0.12591793997145
412 => 0.13424867692402
413 => 0.13507463546486
414 => 0.13496051470095
415 => 0.13684217117609
416 => 0.13310746626562
417 => 0.13151080755989
418 => 0.12073237041138
419 => 0.12376067160337
420 => 0.12816248523183
421 => 0.12757988869215
422 => 0.12438317397435
423 => 0.1270074557031
424 => 0.1261397860947
425 => 0.12545541907491
426 => 0.12859063706365
427 => 0.12514333609737
428 => 0.12812809576764
429 => 0.12430011061713
430 => 0.12592292786471
501 => 0.12500173830815
502 => 0.12559786084799
503 => 0.12211294066086
504 => 0.12399331900218
505 => 0.12203471073975
506 => 0.12203378210441
507 => 0.12199054571846
508 => 0.12429483965341
509 => 0.12436998259591
510 => 0.12266710589638
511 => 0.12242169476005
512 => 0.12332910835626
513 => 0.12226676468709
514 => 0.12276382860358
515 => 0.12228182024676
516 => 0.12217331001298
517 => 0.1213086820088
518 => 0.12093617649115
519 => 0.12108224550291
520 => 0.12058363666205
521 => 0.12028320679997
522 => 0.12193078265718
523 => 0.1210505493397
524 => 0.12179587427696
525 => 0.12094648244344
526 => 0.11800212028608
527 => 0.11630878647331
528 => 0.11074715930056
529 => 0.11232442986758
530 => 0.11337016188531
531 => 0.11302454745969
601 => 0.11376706098095
602 => 0.11381264528072
603 => 0.11357124656592
604 => 0.11329173777928
605 => 0.11315568835975
606 => 0.11416968926974
607 => 0.11475835092768
608 => 0.11347511508338
609 => 0.11317447087944
610 => 0.11447189316742
611 => 0.11526332001359
612 => 0.12110677118141
613 => 0.1206738694448
614 => 0.12176036785101
615 => 0.12163804480415
616 => 0.12277686822663
617 => 0.12463836321971
618 => 0.1208534234166
619 => 0.12151035809305
620 => 0.12134929288122
621 => 0.12310776063039
622 => 0.12311325037476
623 => 0.12205896111716
624 => 0.12263050842759
625 => 0.12231148639849
626 => 0.1228880023235
627 => 0.12066808777818
628 => 0.12337170406941
629 => 0.12490448028935
630 => 0.12492576288865
701 => 0.12565228665204
702 => 0.12639047687306
703 => 0.1278073687195
704 => 0.12635096052849
705 => 0.12373102397134
706 => 0.12392017492842
707 => 0.12238410708356
708 => 0.12240992866155
709 => 0.12227209105459
710 => 0.122685752089
711 => 0.12075886311305
712 => 0.1212111001043
713 => 0.12057796566826
714 => 0.12150898178244
715 => 0.12050736234606
716 => 0.1213492152107
717 => 0.12171253099922
718 => 0.12305317408047
719 => 0.12030934827291
720 => 0.11471450171063
721 => 0.11589060628898
722 => 0.11415105523658
723 => 0.11431205730942
724 => 0.11463730711984
725 => 0.11358306606915
726 => 0.11378418203867
727 => 0.11377699676101
728 => 0.11371507791991
729 => 0.11344082910591
730 => 0.11304311406712
731 => 0.1146274883714
801 => 0.11489670443926
802 => 0.11549513840929
803 => 0.11727567198246
804 => 0.11709775469063
805 => 0.11738794517532
806 => 0.11675446097658
807 => 0.11434144282453
808 => 0.11447248131956
809 => 0.1128384291867
810 => 0.1154533520224
811 => 0.11483410377961
812 => 0.11443487040904
813 => 0.11432593588501
814 => 0.11611088305651
815 => 0.11664496722584
816 => 0.11631216181257
817 => 0.11562956820046
818 => 0.11694034972639
819 => 0.1172910595653
820 => 0.11736957056455
821 => 0.11969202411108
822 => 0.11749936991856
823 => 0.11802716357581
824 => 0.1221448590243
825 => 0.11841067745565
826 => 0.12038875671475
827 => 0.12029194002844
828 => 0.12130385844285
829 => 0.12020893318278
830 => 0.12022250609363
831 => 0.12112102109233
901 => 0.11985921882469
902 => 0.11954677883846
903 => 0.11911514523522
904 => 0.1200576014169
905 => 0.12062256127419
906 => 0.12517572280667
907 => 0.12811727280604
908 => 0.12798957236278
909 => 0.12915651536896
910 => 0.1286307968567
911 => 0.1269331131031
912 => 0.12983085226002
913 => 0.12891388634422
914 => 0.1289894799002
915 => 0.12898666630427
916 => 0.12959636847573
917 => 0.12916433860887
918 => 0.12831276339433
919 => 0.12887807876309
920 => 0.13055686330438
921 => 0.13576786203194
922 => 0.13868400595644
923 => 0.13559230650607
924 => 0.13772491938743
925 => 0.13644611158628
926 => 0.13621371416757
927 => 0.13755315265592
928 => 0.13889493565403
929 => 0.13880946987774
930 => 0.13783540432243
1001 => 0.13728517940623
1002 => 0.14145166681053
1003 => 0.14452146375575
1004 => 0.14431212418427
1005 => 0.14523608097193
1006 => 0.14794884667739
1007 => 0.14819686797601
1008 => 0.14816562299309
1009 => 0.14755087632611
1010 => 0.15022194646029
1011 => 0.15245020015922
1012 => 0.14740858023445
1013 => 0.14932836310215
1014 => 0.150190215483
1015 => 0.15145567047818
1016 => 0.15359070516991
1017 => 0.15590991913512
1018 => 0.15623788141869
1019 => 0.15600517648406
1020 => 0.15447559253018
1021 => 0.15701330412489
1022 => 0.15849983606041
1023 => 0.15938503180934
1024 => 0.16162974094608
1025 => 0.1501955379899
1026 => 0.14210184082075
1027 => 0.14083789313338
1028 => 0.14340818045793
1029 => 0.14408594472776
1030 => 0.14381273880044
1031 => 0.13470254678981
1101 => 0.14078992985785
1102 => 0.14733944219735
1103 => 0.14759103564004
1104 => 0.15086985846104
1105 => 0.15193757757505
1106 => 0.15457745971108
1107 => 0.15441233436471
1108 => 0.15505510365514
1109 => 0.15490734212648
1110 => 0.15979716789072
1111 => 0.16519137185483
1112 => 0.16500458772407
1113 => 0.16422910708291
1114 => 0.16538082807414
1115 => 0.17094822464313
1116 => 0.17043566798277
1117 => 0.17093357311883
1118 => 0.17749784743839
1119 => 0.18603233781096
1120 => 0.18206721018408
1121 => 0.19067039619966
1122 => 0.19608564576118
1123 => 0.20545075993057
1124 => 0.2042782015124
1125 => 0.20792397173417
1126 => 0.20217907722356
1127 => 0.18898763819247
1128 => 0.18690004247099
1129 => 0.19107946197172
1130 => 0.20135415699247
1201 => 0.19075587526098
1202 => 0.19289989385203
1203 => 0.19228241635357
1204 => 0.19224951360179
1205 => 0.19350527781216
1206 => 0.19168372632876
1207 => 0.18426239789454
1208 => 0.18766354898178
1209 => 0.18635020121031
1210 => 0.18780745847932
1211 => 0.19567167494157
1212 => 0.1921947173841
1213 => 0.18853202504241
1214 => 0.19312585405539
1215 => 0.19897537699983
1216 => 0.19860932436657
1217 => 0.19789902925992
1218 => 0.20190292558629
1219 => 0.2085161892859
1220 => 0.21030372788966
1221 => 0.21162325234234
1222 => 0.21180519247082
1223 => 0.21367928886928
1224 => 0.20360180020165
1225 => 0.21959503352544
1226 => 0.22235662311631
1227 => 0.22183755872939
1228 => 0.22490694933418
1229 => 0.22400385675532
1230 => 0.22269541729945
1231 => 0.22756105428615
]
'min_raw' => 0.08388099419588
'max_raw' => 0.22756105428615
'avg_raw' => 0.15572102424101
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.08388'
'max' => '$0.227561'
'avg' => '$0.155721'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.028928387087573
'max_diff' => 0.10488323006078
'year' => 2032
]
7 => [
'items' => [
101 => 0.22198299411756
102 => 0.21406563996649
103 => 0.2097220228917
104 => 0.21544204824537
105 => 0.21893506812749
106 => 0.22124373207177
107 => 0.22194233238638
108 => 0.20438408695998
109 => 0.19492116650009
110 => 0.20098679002228
111 => 0.20838726934632
112 => 0.20356069016534
113 => 0.20374988293131
114 => 0.19686844942193
115 => 0.20899612351835
116 => 0.2072292234123
117 => 0.2163959042881
118 => 0.21420820232988
119 => 0.2216832747356
120 => 0.21971483765421
121 => 0.22788570992519
122 => 0.23114529209162
123 => 0.23661863786251
124 => 0.2406448532921
125 => 0.24300912400159
126 => 0.24286718205634
127 => 0.25223560048231
128 => 0.24671137144413
129 => 0.23977163781135
130 => 0.23964611992452
131 => 0.24324030630972
201 => 0.25077273495622
202 => 0.25272578411187
203 => 0.25381727215002
204 => 0.25214562022463
205 => 0.24614946552874
206 => 0.24356035633225
207 => 0.24576635238138
208 => 0.2430686087767
209 => 0.24772567109154
210 => 0.25412081234464
211 => 0.25280024096501
212 => 0.25721471309601
213 => 0.26178322733558
214 => 0.26831640788299
215 => 0.27002442320106
216 => 0.27284770757182
217 => 0.27575379458993
218 => 0.27668715141891
219 => 0.27846921920904
220 => 0.27845982683213
221 => 0.28383020806469
222 => 0.28975390487107
223 => 0.29198996328158
224 => 0.29713165629957
225 => 0.28832668719268
226 => 0.29500535740445
227 => 0.30102968511343
228 => 0.29384723326491
301 => 0.30374656984145
302 => 0.30413093864834
303 => 0.30993445128868
304 => 0.3040514794092
305 => 0.30055818948628
306 => 0.31064318660189
307 => 0.31552299903171
308 => 0.31405315981462
309 => 0.30286761079764
310 => 0.296357141499
311 => 0.27931798756871
312 => 0.29950160143581
313 => 0.30933245098639
314 => 0.30284215127227
315 => 0.30611548092988
316 => 0.32397370616112
317 => 0.33077296209472
318 => 0.32935876439092
319 => 0.32959774052318
320 => 0.33326649560973
321 => 0.3495357760838
322 => 0.33978684610477
323 => 0.3472395377883
324 => 0.35119241858457
325 => 0.35486407456458
326 => 0.34584764791646
327 => 0.33411740932486
328 => 0.33040195036099
329 => 0.30219681887552
330 => 0.30072861929303
331 => 0.29990447437637
401 => 0.29470835725447
402 => 0.29062563253292
403 => 0.2873788982525
404 => 0.27885849794373
405 => 0.28173388292897
406 => 0.26815414318255
407 => 0.27684197943588
408 => 0.25516838690631
409 => 0.27321879879921
410 => 0.26339478025743
411 => 0.26999134449211
412 => 0.26996832970092
413 => 0.25782196350229
414 => 0.25081619296711
415 => 0.25528054262079
416 => 0.26006667983006
417 => 0.26084321448976
418 => 0.26704856631254
419 => 0.26878034662269
420 => 0.26353297143385
421 => 0.2547192498753
422 => 0.25676647637376
423 => 0.25077470598746
424 => 0.24027435885557
425 => 0.24781589148416
426 => 0.25039090230135
427 => 0.25152817377335
428 => 0.24120228834216
429 => 0.2379576709538
430 => 0.23623026388121
501 => 0.25338630773304
502 => 0.25432615454283
503 => 0.24951776538303
504 => 0.27125214033548
505 => 0.26633298190249
506 => 0.27182888709521
507 => 0.25658071202704
508 => 0.25716321284903
509 => 0.24994448240891
510 => 0.25398648909964
511 => 0.25112972905059
512 => 0.25365993490292
513 => 0.25517652985837
514 => 0.26239407577586
515 => 0.27330121157989
516 => 0.26131601509973
517 => 0.25609389336215
518 => 0.25933366831782
519 => 0.26796161595731
520 => 0.28103339828766
521 => 0.27329464005395
522 => 0.27672896954543
523 => 0.27747921775664
524 => 0.27177294393951
525 => 0.28124379674264
526 => 0.2863193037009
527 => 0.29152572361191
528 => 0.29604631214006
529 => 0.28944616500782
530 => 0.29650926853324
531 => 0.29081765389737
601 => 0.28571168718068
602 => 0.28571943082454
603 => 0.28251638331689
604 => 0.27631007516087
605 => 0.27516553671505
606 => 0.28111957024948
607 => 0.28589414129502
608 => 0.28628739783499
609 => 0.28893084569212
610 => 0.29049521090429
611 => 0.30582811663494
612 => 0.31199513816026
613 => 0.31953605534568
614 => 0.3224736675722
615 => 0.33131482718177
616 => 0.32417487275317
617 => 0.32263009870012
618 => 0.30118433740858
619 => 0.30469607961865
620 => 0.31031871772971
621 => 0.30127705264008
622 => 0.30701190803503
623 => 0.30814408997084
624 => 0.30096982032017
625 => 0.30480190772248
626 => 0.29462501971667
627 => 0.27352303992819
628 => 0.28126728927846
629 => 0.28696966348641
630 => 0.278831672394
701 => 0.29341870644339
702 => 0.28489726228924
703 => 0.28219637359383
704 => 0.27165924385669
705 => 0.2766323634813
706 => 0.2833585789818
707 => 0.27920255980898
708 => 0.28782692362201
709 => 0.30004132281509
710 => 0.30874603106012
711 => 0.30941427047238
712 => 0.30381772624098
713 => 0.31278622408846
714 => 0.31285154980415
715 => 0.3027350475948
716 => 0.2965387463205
717 => 0.29513093363384
718 => 0.29864792574304
719 => 0.30291820343615
720 => 0.30965124116473
721 => 0.31371987485044
722 => 0.32432871366623
723 => 0.32719916127054
724 => 0.33035291292234
725 => 0.33456729771013
726 => 0.33962774719395
727 => 0.32855577181489
728 => 0.32899568203745
729 => 0.3186856118664
730 => 0.30766782327502
731 => 0.31602895142914
801 => 0.32696001425639
802 => 0.32445241636607
803 => 0.32417026037783
804 => 0.32464476848651
805 => 0.32275412156769
806 => 0.31420279562455
807 => 0.30990837327004
808 => 0.31544927373135
809 => 0.31839401572943
810 => 0.32296105375996
811 => 0.32239806992422
812 => 0.33416226942679
813 => 0.33873348162256
814 => 0.33756396992968
815 => 0.33777918822704
816 => 0.34605514955793
817 => 0.35525972063914
818 => 0.36388101610683
819 => 0.37265096814981
820 => 0.36207844866494
821 => 0.35671037529287
822 => 0.36224885677037
823 => 0.35931006053864
824 => 0.37619725538977
825 => 0.37736648812164
826 => 0.39425246183637
827 => 0.410279261636
828 => 0.4002131158318
829 => 0.409705037936
830 => 0.41997132557945
831 => 0.43977666008882
901 => 0.43310692018613
902 => 0.42799800394882
903 => 0.42317010279067
904 => 0.43321619869306
905 => 0.44614034058119
906 => 0.44892407695799
907 => 0.45343479335757
908 => 0.44869232660758
909 => 0.45440410544236
910 => 0.47456919461196
911 => 0.46912040951617
912 => 0.46138225874424
913 => 0.47730065996788
914 => 0.4830614674895
915 => 0.52349383163456
916 => 0.57454136154534
917 => 0.55340734896612
918 => 0.54028878536788
919 => 0.54337195898996
920 => 0.56201278884544
921 => 0.56799963176465
922 => 0.55172532892172
923 => 0.55747368781326
924 => 0.58914771047185
925 => 0.60613980740387
926 => 0.5830622574271
927 => 0.5193922123101
928 => 0.46068552293216
929 => 0.47625718055187
930 => 0.47449183782259
1001 => 0.50852162375445
1002 => 0.46899045779367
1003 => 0.46965606124512
1004 => 0.50438954711188
1005 => 0.49512324856533
1006 => 0.48011303165776
1007 => 0.46079511412689
1008 => 0.42508415687997
1009 => 0.39345396617267
1010 => 0.45548805414758
1011 => 0.45281303147243
1012 => 0.44893920222267
1013 => 0.45755999002591
1014 => 0.49942008854514
1015 => 0.49845507778636
1016 => 0.49231617169179
1017 => 0.49697247785869
1018 => 0.4792967586738
1019 => 0.48385219397639
1020 => 0.46067622349262
1021 => 0.47115273006531
1022 => 0.48008082647371
1023 => 0.48187327401042
1024 => 0.48591174983528
1025 => 0.4514034160766
1026 => 0.46689664482279
1027 => 0.47599746519197
1028 => 0.43487962767335
1029 => 0.47518469774815
1030 => 0.45080270275997
1031 => 0.44252708745571
1101 => 0.45366911323349
1102 => 0.44932705495191
1103 => 0.44559400821563
1104 => 0.4435109039949
1105 => 0.45169237802559
1106 => 0.45131070248308
1107 => 0.43792422301319
1108 => 0.42046210624742
1109 => 0.42632296580846
1110 => 0.42419366058408
1111 => 0.41647678376511
1112 => 0.42167702700184
1113 => 0.39877778757015
1114 => 0.35938083632683
1115 => 0.38540766907942
1116 => 0.3844056643302
1117 => 0.38390040809834
1118 => 0.40345885358309
1119 => 0.40157876033984
1120 => 0.39816637269342
1121 => 0.41641411258995
1122 => 0.40975344206098
1123 => 0.43028005917993
1124 => 0.44380021679283
1125 => 0.44037106749092
1126 => 0.45308684107444
1127 => 0.42645798817547
1128 => 0.43530302494437
1129 => 0.43712597476374
1130 => 0.41618893831215
1201 => 0.40188636684594
1202 => 0.40093254839039
1203 => 0.37613386048373
1204 => 0.38938111939546
1205 => 0.40103815902895
1206 => 0.39545534166733
1207 => 0.39368798847256
1208 => 0.40271701265248
1209 => 0.40341864515962
1210 => 0.3874213496411
1211 => 0.39074769394786
1212 => 0.4046191026658
1213 => 0.39039817003854
1214 => 0.36276922091992
1215 => 0.35591685953839
1216 => 0.35500262821602
1217 => 0.33641848068169
1218 => 0.35637476709175
1219 => 0.34766331327853
1220 => 0.37518269149524
1221 => 0.35946377024724
1222 => 0.35878615896925
1223 => 0.3577618501386
1224 => 0.34176570665434
1225 => 0.34526784546944
1226 => 0.35690948828164
1227 => 0.36106335758953
1228 => 0.36063007498907
1229 => 0.35685243788079
1230 => 0.35858182080433
1231 => 0.35301087585065
]
'min_raw' => 0.19492116650009
'max_raw' => 0.60613980740387
'avg_raw' => 0.40053048695198
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.194921'
'max' => '$0.606139'
'avg' => '$0.40053'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.11104017230421
'max_diff' => 0.37857875311773
'year' => 2033
]
8 => [
'items' => [
101 => 0.35104365923832
102 => 0.34483458248423
103 => 0.33570895495696
104 => 0.33697792943535
105 => 0.31889767345349
106 => 0.30904659040275
107 => 0.3063199404495
108 => 0.30267375017746
109 => 0.30673178734287
110 => 0.31884645435995
111 => 0.30423359566736
112 => 0.27918087441178
113 => 0.280686585647
114 => 0.28406947174286
115 => 0.27776548588325
116 => 0.27179929232056
117 => 0.27698641357074
118 => 0.26637124531055
119 => 0.28535226411254
120 => 0.28483888074763
121 => 0.29191383077868
122 => 0.29633794222569
123 => 0.28614179766343
124 => 0.28357749487933
125 => 0.28503823828622
126 => 0.26089540361651
127 => 0.28994084611429
128 => 0.29019203230715
129 => 0.28804122362433
130 => 0.30350702507697
131 => 0.33614469004648
201 => 0.32386508763792
202 => 0.31911005443238
203 => 0.31007073283273
204 => 0.32211509216245
205 => 0.3211902732872
206 => 0.31700789160619
207 => 0.31447837411569
208 => 0.31913908765118
209 => 0.31390086013081
210 => 0.31295993053128
211 => 0.30725892089967
212 => 0.30522391984059
213 => 0.30371728607218
214 => 0.30205863033193
215 => 0.30571721158366
216 => 0.2974263851408
217 => 0.28742846121045
218 => 0.28659724201467
219 => 0.28889231129574
220 => 0.28787691398668
221 => 0.28659238068301
222 => 0.28413985678447
223 => 0.28341224533366
224 => 0.28577662956191
225 => 0.28310737762038
226 => 0.28704600426179
227 => 0.28597491574948
228 => 0.27999190238807
301 => 0.27253485254451
302 => 0.27246846915921
303 => 0.27086186000243
304 => 0.26881560168596
305 => 0.26824637943437
306 => 0.2765495686871
307 => 0.29373692194672
308 => 0.29036263324335
309 => 0.29280090264255
310 => 0.3047947748427
311 => 0.3086072661468
312 => 0.30590125012295
313 => 0.30219708848971
314 => 0.30236005280263
315 => 0.31501829442941
316 => 0.31580777343275
317 => 0.31780253217863
318 => 0.32036636088584
319 => 0.3063378812381
320 => 0.30169931267279
321 => 0.29950130154855
322 => 0.29273227802328
323 => 0.30003208956307
324 => 0.29577880198793
325 => 0.29635271579481
326 => 0.29597895367518
327 => 0.29618305306618
328 => 0.28534695853095
329 => 0.28929506185123
330 => 0.28273057433403
331 => 0.27394146244681
401 => 0.27391199826191
402 => 0.27606312094478
403 => 0.27478354899957
404 => 0.27134025379581
405 => 0.27182935762761
406 => 0.26754429340181
407 => 0.27234964200821
408 => 0.27248744221188
409 => 0.27063712124931
410 => 0.27804042378779
411 => 0.28107356287832
412 => 0.27985564198304
413 => 0.28098811030158
414 => 0.29050285017298
415 => 0.29205416792922
416 => 0.29274316080225
417 => 0.29182000162646
418 => 0.28116202227998
419 => 0.28163474898522
420 => 0.27816619408124
421 => 0.27523563069468
422 => 0.27535283786136
423 => 0.27685952838863
424 => 0.28343933428741
425 => 0.29728614790067
426 => 0.2978116243554
427 => 0.29844851714777
428 => 0.29585795408454
429 => 0.29507661547632
430 => 0.29610740278117
501 => 0.30130753794344
502 => 0.31468369740371
503 => 0.3099556692868
504 => 0.30611170883161
505 => 0.30948389847511
506 => 0.30896477631159
507 => 0.30458286282539
508 => 0.30445987710825
509 => 0.29604958414575
510 => 0.29294049033062
511 => 0.29034229882706
512 => 0.28750514153268
513 => 0.28582317958619
514 => 0.28840743757403
515 => 0.28899848795189
516 => 0.28334796269639
517 => 0.28257781698347
518 => 0.28719215788217
519 => 0.28516155849262
520 => 0.28725008032121
521 => 0.28773463530046
522 => 0.28765661078855
523 => 0.28553643181301
524 => 0.28688777066737
525 => 0.2836914514233
526 => 0.280215934317
527 => 0.27799877093555
528 => 0.27606400182118
529 => 0.27713752417527
530 => 0.27331061300038
531 => 0.27208630709503
601 => 0.2864299674696
602 => 0.29702578360863
603 => 0.29687171624557
604 => 0.29593387079582
605 => 0.29454042269249
606 => 0.30120559853543
607 => 0.29888358454614
608 => 0.30057304373411
609 => 0.30100308200382
610 => 0.30230467832701
611 => 0.30276988713657
612 => 0.3013637030058
613 => 0.29664437731201
614 => 0.2848842663831
615 => 0.27940990299988
616 => 0.27760327190069
617 => 0.27766893950986
618 => 0.2758575336957
619 => 0.27639107388949
620 => 0.27567199018993
621 => 0.27431021962801
622 => 0.27705343868044
623 => 0.27736956912138
624 => 0.27672926901552
625 => 0.27688008286965
626 => 0.27157867146884
627 => 0.27198172626359
628 => 0.26973746594873
629 => 0.26931669419466
630 => 0.2636433995488
701 => 0.25359233572646
702 => 0.25916160076441
703 => 0.25243471175574
704 => 0.24988713695915
705 => 0.26194695981702
706 => 0.26073648808951
707 => 0.25866468667142
708 => 0.25560006057282
709 => 0.25446336094208
710 => 0.24755713382109
711 => 0.24714907707949
712 => 0.25057198972447
713 => 0.24899243331405
714 => 0.24677413788901
715 => 0.23873969672455
716 => 0.22970632474365
717 => 0.229978985462
718 => 0.23285233301726
719 => 0.24120697855791
720 => 0.23794267400834
721 => 0.23557438360406
722 => 0.23513087400188
723 => 0.24068232522335
724 => 0.24853879176671
725 => 0.25222487009032
726 => 0.24857207841948
727 => 0.2443759480283
728 => 0.24463134704221
729 => 0.24633040226102
730 => 0.24650894894117
731 => 0.24377769942568
801 => 0.2445465301659
802 => 0.24337860596814
803 => 0.23621105732232
804 => 0.23608141909586
805 => 0.23432238706584
806 => 0.23426912427506
807 => 0.23127657198089
808 => 0.2308578932284
809 => 0.22491599901339
810 => 0.22882697177942
811 => 0.22620369658325
812 => 0.22224980209457
813 => 0.2215681491944
814 => 0.2215476578851
815 => 0.22560742345036
816 => 0.22877953105508
817 => 0.22624932957841
818 => 0.22567325174807
819 => 0.23182425583362
820 => 0.23104148449609
821 => 0.23036360956612
822 => 0.24783533135823
823 => 0.23400510022432
824 => 0.22797433004794
825 => 0.22051010674248
826 => 0.22294049548862
827 => 0.22345261410727
828 => 0.205502502585
829 => 0.19822014457597
830 => 0.19572111373714
831 => 0.19428288615828
901 => 0.19493830452609
902 => 0.18838332818256
903 => 0.19278838069471
904 => 0.18711232525957
905 => 0.18616071609439
906 => 0.19631020634076
907 => 0.19772244861608
908 => 0.19169738432028
909 => 0.19556645096749
910 => 0.19416347361716
911 => 0.18720962493874
912 => 0.18694403906827
913 => 0.18345484224104
914 => 0.17799492484806
915 => 0.17549959609032
916 => 0.17420000720786
917 => 0.17473624290924
918 => 0.17446510572954
919 => 0.17269575222771
920 => 0.17456652300113
921 => 0.16978747673089
922 => 0.16788442199869
923 => 0.16702485632669
924 => 0.16278317769021
925 => 0.1695335746839
926 => 0.17086348793091
927 => 0.17219602151786
928 => 0.1837948166329
929 => 0.18321537360681
930 => 0.18845325636249
1001 => 0.18824972187045
1002 => 0.18675579286046
1003 => 0.18045315210668
1004 => 0.18296527237737
1005 => 0.17523335665437
1006 => 0.1810266336332
1007 => 0.17838282395309
1008 => 0.18013275892092
1009 => 0.17698621806349
1010 => 0.17872764369148
1011 => 0.17117885969831
1012 => 0.16412991141975
1013 => 0.16696661397867
1014 => 0.1700504340765
1015 => 0.17673694179136
1016 => 0.17275451295888
1017 => 0.17418674495935
1018 => 0.16938900751053
1019 => 0.15948990474767
1020 => 0.15954593259427
1021 => 0.15802317129788
1022 => 0.15670728321101
1023 => 0.17321194281654
1024 => 0.17115932749454
1025 => 0.16788875361857
1026 => 0.17226654671899
1027 => 0.17342410469966
1028 => 0.17345705874804
1029 => 0.17665098358691
1030 => 0.17835558184595
1031 => 0.17865602467726
1101 => 0.18368173442054
1102 => 0.18536628603577
1103 => 0.19230471573224
1104 => 0.17821095859304
1105 => 0.17792070693941
1106 => 0.17232815124565
1107 => 0.16878126400985
1108 => 0.17257100964918
1109 => 0.17592820693375
1110 => 0.17243246872343
1111 => 0.17288893833464
1112 => 0.16819619539959
1113 => 0.16987363018479
1114 => 0.17131846299667
1115 => 0.1705207112413
1116 => 0.16932643825188
1117 => 0.17565295504138
1118 => 0.1752959881703
1119 => 0.18118738605068
1120 => 0.18578015199634
1121 => 0.19401120962607
1122 => 0.1854216718947
1123 => 0.18510863499945
1124 => 0.18816862086323
1125 => 0.18536581756788
1126 => 0.18713709250106
1127 => 0.19372582985053
1128 => 0.19386503948833
1129 => 0.19153309869372
1130 => 0.19139119988444
1201 => 0.19183907462269
1202 => 0.19446229095367
1203 => 0.19354565856433
1204 => 0.19460640877157
1205 => 0.19593289314851
1206 => 0.20141979494925
1207 => 0.20274266839759
1208 => 0.19952877174937
1209 => 0.19981895063223
1210 => 0.19861686506236
1211 => 0.19745566546395
1212 => 0.20006587258158
1213 => 0.20483607739281
1214 => 0.20480640219625
1215 => 0.20591299699293
1216 => 0.20660239638373
1217 => 0.20364298952721
1218 => 0.20171652448403
1219 => 0.20245525376574
1220 => 0.20363649797463
1221 => 0.20207219218921
1222 => 0.19241657222466
1223 => 0.19534547051851
1224 => 0.1948579586266
1225 => 0.19416368240906
1226 => 0.19710871229203
1227 => 0.19682465697537
1228 => 0.18831609742574
1229 => 0.18886078780216
1230 => 0.1883492218516
1231 => 0.19000219609439
]
'min_raw' => 0.15670728321101
'max_raw' => 0.35104365923832
'avg_raw' => 0.25387547122466
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.1567072'
'max' => '$0.351043'
'avg' => '$0.253875'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.03821388328908
'max_diff' => -0.25509614816556
'year' => 2034
]
9 => [
'items' => [
101 => 0.18527655153417
102 => 0.18673012797319
103 => 0.18764179748931
104 => 0.18817877783808
105 => 0.19011871906871
106 => 0.18989108935602
107 => 0.19010456928617
108 => 0.1929809900057
109 => 0.20752893893669
110 => 0.20832075169876
111 => 0.2044215760664
112 => 0.20597921982369
113 => 0.20298888442894
114 => 0.20499631661294
115 => 0.20636975072999
116 => 0.20016346605124
117 => 0.19979597015102
118 => 0.19679329257837
119 => 0.19840676142556
120 => 0.19583961647717
121 => 0.19646950405259
122 => 0.1947082834791
123 => 0.19787812985585
124 => 0.20142251064939
125 => 0.20231796120967
126 => 0.19996241630127
127 => 0.19825684654961
128 => 0.19526242791529
129 => 0.20024221283913
130 => 0.20169845370705
131 => 0.20023456382579
201 => 0.19989534855367
202 => 0.19925253622597
203 => 0.20003172422777
204 => 0.20169052270654
205 => 0.20090826397715
206 => 0.20142495964954
207 => 0.19945584856066
208 => 0.20364396921402
209 => 0.21029571273769
210 => 0.21031709918079
211 => 0.20953483623473
212 => 0.20921475109129
213 => 0.21001740034563
214 => 0.21045280463972
215 => 0.21304842514755
216 => 0.21583362936654
217 => 0.22883096217676
218 => 0.22518136313332
219 => 0.23671337001734
220 => 0.24583369021892
221 => 0.2485684754641
222 => 0.24605260172012
223 => 0.23744593354679
224 => 0.23702364934593
225 => 0.24988564523846
226 => 0.24625154228209
227 => 0.24581927729905
228 => 0.24122070820271
301 => 0.24393903208251
302 => 0.24334449477459
303 => 0.24240598854828
304 => 0.24759236115085
305 => 0.2573007876722
306 => 0.2557876383538
307 => 0.25465814258059
308 => 0.24970902089367
309 => 0.25268949757554
310 => 0.2516282069164
311 => 0.25618818509978
312 => 0.25348695503983
313 => 0.24622401037795
314 => 0.24738065825434
315 => 0.24720583325467
316 => 0.2508037193595
317 => 0.24972372325585
318 => 0.24699494668212
319 => 0.25726760532579
320 => 0.256600556013
321 => 0.25754627942983
322 => 0.25796261612539
323 => 0.26421540241724
324 => 0.26677696889417
325 => 0.26735848933096
326 => 0.26979177936538
327 => 0.26729794685823
328 => 0.27727505495929
329 => 0.28390924966609
330 => 0.29161520821058
331 => 0.30287568481047
401 => 0.30710972817726
402 => 0.3063448861405
403 => 0.3148824509845
404 => 0.33022426522975
405 => 0.30944590543873
406 => 0.33132556875248
407 => 0.3243987199602
408 => 0.30797528608241
409 => 0.30691781056025
410 => 0.31803995066228
411 => 0.34270778694226
412 => 0.33652877373441
413 => 0.3427178935943
414 => 0.33549795652328
415 => 0.33513942579329
416 => 0.34236723736596
417 => 0.35925541307299
418 => 0.35123247383838
419 => 0.33972962314016
420 => 0.34822314909154
421 => 0.34086527087373
422 => 0.32428591190857
423 => 0.33652404875946
424 => 0.32834075516934
425 => 0.33072907528675
426 => 0.34792914124013
427 => 0.34585958379889
428 => 0.34853778276371
429 => 0.34381083169147
430 => 0.33939511401823
501 => 0.33115284906562
502 => 0.3287127207519
503 => 0.3293870844312
504 => 0.32871238657076
505 => 0.3241009150801
506 => 0.32310506825075
507 => 0.32144527990612
508 => 0.32195971771763
509 => 0.31883883004153
510 => 0.32472858989464
511 => 0.32582178122376
512 => 0.33010785727964
513 => 0.33055285191427
514 => 0.34248951272142
515 => 0.33591500053628
516 => 0.34032575092615
517 => 0.33993121189568
518 => 0.30833123169475
519 => 0.31268543015745
520 => 0.31945919654267
521 => 0.31640762396775
522 => 0.31209341430483
523 => 0.30860945868874
524 => 0.3033309096776
525 => 0.31076036604522
526 => 0.32052931113404
527 => 0.33080060848294
528 => 0.34314089924558
529 => 0.34038669000418
530 => 0.33056991533086
531 => 0.33101028867154
601 => 0.33373250338315
602 => 0.33020698799233
603 => 0.32916724467735
604 => 0.33358965861801
605 => 0.33362011335231
606 => 0.32956358182241
607 => 0.32505548936436
608 => 0.32503660029236
609 => 0.32423442878245
610 => 0.33564066105286
611 => 0.34191293550142
612 => 0.34263204165867
613 => 0.3418645339275
614 => 0.34215991719194
615 => 0.33851021889045
616 => 0.34685234692323
617 => 0.35450790855707
618 => 0.35245605450198
619 => 0.34938003358516
620 => 0.34692983476368
621 => 0.35187886552808
622 => 0.35165849297863
623 => 0.35444104390476
624 => 0.35431481132196
625 => 0.35337914410254
626 => 0.3524560879176
627 => 0.35611590135332
628 => 0.35506193385864
629 => 0.35400632926133
630 => 0.35188915263643
701 => 0.35217691210234
702 => 0.3491014223039
703 => 0.34767855999831
704 => 0.3262821248462
705 => 0.32056429822487
706 => 0.32236324287703
707 => 0.3229555021661
708 => 0.3204670966929
709 => 0.32403483092255
710 => 0.32347880332203
711 => 0.3256419814504
712 => 0.32429052167007
713 => 0.32434598605086
714 => 0.32832034110322
715 => 0.32947411328303
716 => 0.32888729544029
717 => 0.32929828254241
718 => 0.33876930684381
719 => 0.33742283005446
720 => 0.33670754109639
721 => 0.33690568102615
722 => 0.33932573079621
723 => 0.34000321260201
724 => 0.33713267458504
725 => 0.33848643690822
726 => 0.34425058506232
727 => 0.34626771069373
728 => 0.35270540743394
729 => 0.34997055943776
730 => 0.3549904912962
731 => 0.37042005040813
801 => 0.38274624987103
802 => 0.37141056744321
803 => 0.39404606302478
804 => 0.41167104320403
805 => 0.41099456710881
806 => 0.40792124414142
807 => 0.38785567279169
808 => 0.36939103487486
809 => 0.38483748854223
810 => 0.38487686472922
811 => 0.38355000066041
812 => 0.37530896188574
813 => 0.38326323037454
814 => 0.38389461132152
815 => 0.38354120588895
816 => 0.37722282078255
817 => 0.36757581455784
818 => 0.36946081648248
819 => 0.37254848808803
820 => 0.36670288158294
821 => 0.36483485610677
822 => 0.36830787087335
823 => 0.37949864808264
824 => 0.37738309647498
825 => 0.37732785087289
826 => 0.38637907778395
827 => 0.37990035269265
828 => 0.36948459239336
829 => 0.36685447555079
830 => 0.35751933261866
831 => 0.36396714909252
901 => 0.36419919452858
902 => 0.36066779134094
903 => 0.36977114629936
904 => 0.36968725728081
905 => 0.37832953795825
906 => 0.39485033272115
907 => 0.38996432077082
908 => 0.38428242046918
909 => 0.38490020057398
910 => 0.39167572351235
911 => 0.38757908767367
912 => 0.38905226648402
913 => 0.39167349367978
914 => 0.39325494512839
915 => 0.38467265404768
916 => 0.38267171145833
917 => 0.37857848515593
918 => 0.37751063881733
919 => 0.38084448623266
920 => 0.37996613522529
921 => 0.36417969200821
922 => 0.36252992085708
923 => 0.36258051698296
924 => 0.35843208898111
925 => 0.35210474054149
926 => 0.36873263445446
927 => 0.36739718186602
928 => 0.36592294556421
929 => 0.36610353109931
930 => 0.37332113627531
1001 => 0.36913456077543
1002 => 0.3802652579081
1003 => 0.37797712119701
1004 => 0.3756303024132
1005 => 0.37530590057143
1006 => 0.37440257556084
1007 => 0.37130473798708
1008 => 0.36756391296558
1009 => 0.36509389626168
1010 => 0.33677982051106
1011 => 0.34203474827497
1012 => 0.34808006366562
1013 => 0.35016688231339
1014 => 0.34659723461292
1015 => 0.37144568943555
1016 => 0.37598574157731
1017 => 0.36223362749964
1018 => 0.35966116845083
1019 => 0.37161433942252
1020 => 0.36440511611087
1021 => 0.36765142892668
1022 => 0.36063467625707
1023 => 0.37489217596461
1024 => 0.37478355770468
1025 => 0.36923706829821
1026 => 0.37392492316384
1027 => 0.37311029301849
1028 => 0.36684832013899
1029 => 0.37509069167417
1030 => 0.37509477978762
1031 => 0.36975640432497
1101 => 0.36352235050525
1102 => 0.36240784892407
1103 => 0.36156822169486
1104 => 0.36744493209838
1105 => 0.37271397227018
1106 => 0.38251834972406
1107 => 0.38498340316223
1108 => 0.3946046708393
1109 => 0.38887567438862
1110 => 0.39141526431228
1111 => 0.39417234842134
1112 => 0.39549419593164
1113 => 0.39334031634786
1114 => 0.40828610532212
1115 => 0.40954798783869
1116 => 0.40997108613125
1117 => 0.40493145018067
1118 => 0.40940782644627
1119 => 0.40731347823359
1120 => 0.41276239045628
1121 => 0.41361684946801
1122 => 0.41289315308334
1123 => 0.41316437186038
1124 => 0.40041077758869
1125 => 0.39974943644514
1126 => 0.39073200302612
1127 => 0.39440667379787
1128 => 0.38753705292164
1129 => 0.38971548046643
1130 => 0.39067571057135
1201 => 0.39017414085712
1202 => 0.39461443416988
1203 => 0.39083927776204
1204 => 0.38087601930858
1205 => 0.37091004637201
1206 => 0.3707849316999
1207 => 0.36816106693974
1208 => 0.36626449330294
1209 => 0.36662984066995
1210 => 0.36791737244431
1211 => 0.36618965961561
1212 => 0.36655835474488
1213 => 0.37268115049349
1214 => 0.37390903351509
1215 => 0.36973620724282
1216 => 0.35298170762368
1217 => 0.34887011139167
1218 => 0.35182544522674
1219 => 0.35041298600145
1220 => 0.28281062831541
1221 => 0.2986927994938
1222 => 0.28925615268717
1223 => 0.29360499369491
1224 => 0.28397262091318
1225 => 0.28856969408054
1226 => 0.28772078252476
1227 => 0.313258843792
1228 => 0.31286010209177
1229 => 0.31305095864273
1230 => 0.30394087819129
1231 => 0.31845348371607
]
'min_raw' => 0.18527655153417
'max_raw' => 0.41361684946801
'avg_raw' => 0.29944670050109
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.185276'
'max' => '$0.413616'
'avg' => '$0.299446'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.028569268323158
'max_diff' => 0.062573190229689
'year' => 2035
]
10 => [
'items' => [
101 => 0.32560291505399
102 => 0.3242797455893
103 => 0.32461275883699
104 => 0.31889048791589
105 => 0.31310636273351
106 => 0.30669087773577
107 => 0.31861005588366
108 => 0.31728484674077
109 => 0.32032439971936
110 => 0.32805483874872
111 => 0.32919317526087
112 => 0.33072311107708
113 => 0.33017473799521
114 => 0.34323920957042
115 => 0.3416570158605
116 => 0.3454696474732
117 => 0.33762677498082
118 => 0.3287518203034
119 => 0.33043865904345
120 => 0.33027620290808
121 => 0.32820794984639
122 => 0.32634082346013
123 => 0.32323258408661
124 => 0.3330675133973
125 => 0.33266823322798
126 => 0.33913211505691
127 => 0.33798956115685
128 => 0.33035930658187
129 => 0.33063182261674
130 => 0.33246462391801
131 => 0.33880797014824
201 => 0.34069110719733
202 => 0.33981876308615
203 => 0.341883536892
204 => 0.34351544992053
205 => 0.34208848004301
206 => 0.36229136429555
207 => 0.35390171821372
208 => 0.35799077333922
209 => 0.35896598889255
210 => 0.35646799475929
211 => 0.35700972024033
212 => 0.35783028673275
213 => 0.36281260579131
214 => 0.37588765264664
215 => 0.381678501894
216 => 0.39910055757018
217 => 0.38119765247652
218 => 0.38013536817785
219 => 0.38327360650081
220 => 0.39350219749461
221 => 0.40179150977239
222 => 0.40454155287682
223 => 0.40490501647134
224 => 0.41006428015467
225 => 0.41302147388338
226 => 0.40943780984141
227 => 0.4064010297911
228 => 0.3955236605899
229 => 0.39678274569303
301 => 0.40545659347899
302 => 0.41770891436373
303 => 0.42822268031956
304 => 0.42454112592357
305 => 0.45262878719265
306 => 0.45541356407967
307 => 0.4550287979565
308 => 0.4613729341355
309 => 0.44878111578105
310 => 0.44339786947953
311 => 0.40705761610689
312 => 0.41726774500493
313 => 0.43210876697808
314 => 0.43014450206895
315 => 0.4193665552104
316 => 0.42821450428039
317 => 0.4252890956169
318 => 0.42298170442869
319 => 0.43355231077167
320 => 0.42192949488099
321 => 0.43199282049858
322 => 0.41908650130225
323 => 0.42455794295394
324 => 0.42145208804859
325 => 0.42346195681161
326 => 0.41171230509133
327 => 0.41805213195292
328 => 0.41144854745048
329 => 0.41144541649161
330 => 0.41129964199771
331 => 0.41906872988007
401 => 0.41932207955699
402 => 0.41358071187349
403 => 0.41275329109328
404 => 0.41581269938651
405 => 0.41223093353544
406 => 0.41390681923379
407 => 0.41228169440599
408 => 0.41191584457689
409 => 0.40900069089438
410 => 0.40774476253413
411 => 0.40823724440547
412 => 0.40655614988678
413 => 0.40554322963143
414 => 0.41109814666409
415 => 0.40813037857825
416 => 0.41064329364115
417 => 0.40777950977181
418 => 0.39785238718945
419 => 0.39214319401492
420 => 0.37339177970159
421 => 0.37870965753979
422 => 0.38223541604827
423 => 0.38107015288225
424 => 0.38357358905984
425 => 0.38372727970907
426 => 0.38291338708823
427 => 0.38197100369939
428 => 0.38151230358278
429 => 0.38493107844607
430 => 0.38691579232489
501 => 0.38258927308315
502 => 0.38157563015925
503 => 0.38594997998632
504 => 0.38861833085385
505 => 0.40831993444286
506 => 0.40686037601365
507 => 0.4105235812471
508 => 0.41011116055428
509 => 0.4139507832333
510 => 0.42022694356787
511 => 0.40746575476565
512 => 0.40968065589301
513 => 0.40913761328611
514 => 0.41506641007474
515 => 0.41508491913116
516 => 0.41153030929102
517 => 0.41345732095232
518 => 0.41238171590778
519 => 0.4143254796
520 => 0.40684088272097
521 => 0.41595631380733
522 => 0.42112417584788
523 => 0.42119593161733
524 => 0.42364545720986
525 => 0.42613431707884
526 => 0.43091146686331
527 => 0.42600108496415
528 => 0.41716778594359
529 => 0.4178055216015
530 => 0.41262656161772
531 => 0.4127136208707
601 => 0.41224889175533
602 => 0.41364357881375
603 => 0.40714693810024
604 => 0.4086716866904
605 => 0.40653702973526
606 => 0.40967601556568
607 => 0.40629898570509
608 => 0.40913735141453
609 => 0.4103622959614
610 => 0.41488236771055
611 => 0.40563136743259
612 => 0.38676795162815
613 => 0.39073327032705
614 => 0.38486825250232
615 => 0.38541108223169
616 => 0.38650768467575
617 => 0.38295323736858
618 => 0.38363131390128
619 => 0.38360708823598
620 => 0.38339832454019
621 => 0.38247367551633
622 => 0.3811327514955
623 => 0.38647458007985
624 => 0.3873822608487
625 => 0.38939992275998
626 => 0.39540311601481
627 => 0.3948032554436
628 => 0.39578165292321
629 => 0.3936458167187
630 => 0.38551015754749
701 => 0.38595196298233
702 => 0.3804426421305
703 => 0.38925903703916
704 => 0.38717119835406
705 => 0.38582515517159
706 => 0.38545787481824
707 => 0.391475948828
708 => 0.39327665089347
709 => 0.39215457420689
710 => 0.38985316218651
711 => 0.39427255361703
712 => 0.39545499632469
713 => 0.39571970164012
714 => 0.40355001592076
715 => 0.39615732922447
716 => 0.39793682238925
717 => 0.41181992008216
718 => 0.39922986621122
719 => 0.40589909853836
720 => 0.40557267432096
721 => 0.40898442790501
722 => 0.40529281094544
723 => 0.40533857296202
724 => 0.40836797901245
725 => 0.40411372457088
726 => 0.40306031134343
727 => 0.4016050285144
728 => 0.40478258533113
729 => 0.40668738693423
730 => 0.42203868893256
731 => 0.43195633012791
801 => 0.4315257791677
802 => 0.43546020898638
803 => 0.43368771231782
804 => 0.42796385301404
805 => 0.43773378289531
806 => 0.43464216828965
807 => 0.43489703724143
808 => 0.43488755100631
809 => 0.43694320444544
810 => 0.43548658558594
811 => 0.43261544029503
812 => 0.43452144052988
813 => 0.44018157981983
814 => 0.45775082585012
815 => 0.46758280869022
816 => 0.45715892813774
817 => 0.46434918136152
818 => 0.46003759157644
819 => 0.4592540474538
820 => 0.46377005783387
821 => 0.46829397289229
822 => 0.46800581906049
823 => 0.46472168903369
824 => 0.46286656731326
825 => 0.4769141704917
826 => 0.48726420521891
827 => 0.48655840223802
828 => 0.48967358705621
829 => 0.49881986603145
830 => 0.49965608715604
831 => 0.49955074251467
901 => 0.4974780812067
902 => 0.50648378065223
903 => 0.5139964935699
904 => 0.49699831999885
905 => 0.50347100197228
906 => 0.50637679744693
907 => 0.5106433673144
908 => 0.51784178584095
909 => 0.52566117764701
910 => 0.52676692538365
911 => 0.5259823444496
912 => 0.52082524535698
913 => 0.5293813171759
914 => 0.53439326338286
915 => 0.53737776265275
916 => 0.54494595622787
917 => 0.50639474265054
918 => 0.47910627756086
919 => 0.4748447896869
920 => 0.48351069285334
921 => 0.48579582240905
922 => 0.48487468955045
923 => 0.45415904113332
924 => 0.47468307815473
925 => 0.49676521627972
926 => 0.49761348113744
927 => 0.50866826119854
928 => 0.51226815073718
929 => 0.52116869766952
930 => 0.52061196603554
1001 => 0.52277910757493
1002 => 0.52228091926469
1003 => 0.53876730822556
1004 => 0.55695424350185
1005 => 0.55632448776414
1006 => 0.55370990064013
1007 => 0.55759300837265
1008 => 0.57636387460821
1009 => 0.57463575404224
1010 => 0.57631447597112
1011 => 0.59844638514251
1012 => 0.62722101529269
1013 => 0.6138523106623
1014 => 0.64285855296912
1015 => 0.66111644494643
1016 => 0.69269158121992
1017 => 0.68873821864765
1018 => 0.70103018748987
1019 => 0.68166087455163
1020 => 0.63718501686144
1021 => 0.63014654213522
1022 => 0.64423774677967
1023 => 0.67887959839842
1024 => 0.64314675159232
1025 => 0.65037545996263
1026 => 0.64829359146568
1027 => 0.64818265754085
1028 => 0.65241655425077
1029 => 0.64627506624783
1030 => 0.62125353929123
1031 => 0.63272075764266
1101 => 0.62829271393612
1102 => 0.63320595856105
1103 => 0.65972071342558
1104 => 0.64799790826716
1105 => 0.63564888531612
1106 => 0.6511373005643
1107 => 0.67085937557213
1108 => 0.66962520356212
1109 => 0.66723039401881
1110 => 0.68072981002628
1111 => 0.70302689031286
1112 => 0.70905370151739
1113 => 0.71350257033585
1114 => 0.71411599418166
1115 => 0.72043464103431
1116 => 0.6864576844036
1117 => 0.74037998716667
1118 => 0.7496908792803
1119 => 0.74794081745988
1120 => 0.75828948218194
1121 => 0.75524464250043
1122 => 0.75083314752262
1123 => 0.7672379823312
1124 => 0.74843116302507
1125 => 0.72173725073272
1126 => 0.70709244250341
1127 => 0.72637790734274
1128 => 0.73815486775015
1129 => 0.74593868942408
1130 => 0.7482940691595
1201 => 0.68909521882685
1202 => 0.65719032181631
1203 => 0.67764099500968
1204 => 0.70259222773565
1205 => 0.68631907904598
1206 => 0.68695695566547
1207 => 0.66375572214225
1208 => 0.7046450220855
1209 => 0.69868779501691
1210 => 0.7295938995869
1211 => 0.72221790969429
1212 => 0.74742063820305
1213 => 0.74078391515128
1214 => 0.76833258148497
1215 => 0.77932249033585
1216 => 0.7977762577392
1217 => 0.81135092416145
1218 => 0.81932222792658
1219 => 0.81884366074813
1220 => 0.85042993755337
1221 => 0.83180461366178
1222 => 0.80840681720214
1223 => 0.80798362488329
1224 => 0.82010167521908
1225 => 0.84549778429813
1226 => 0.85208262588397
1227 => 0.85576265400984
1228 => 0.85012656283236
1229 => 0.82991010863703
1230 => 0.82118074621523
1231 => 0.82861841591258
]
'min_raw' => 0.30669087773577
'max_raw' => 0.85576265400984
'avg_raw' => 0.5812267658728
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.30669'
'max' => '$0.855762'
'avg' => '$0.581226'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.1214143262016
'max_diff' => 0.44214580454183
'year' => 2036
]
11 => [
'items' => [
101 => 0.81952278499897
102 => 0.83522439573915
103 => 0.85678606096851
104 => 0.85233366236271
105 => 0.86721736336099
106 => 0.88262042808319
107 => 0.90464750243087
108 => 0.91040619532556
109 => 0.91992509569699
110 => 0.92972317097508
111 => 0.93287004868887
112 => 0.9388784146633
113 => 0.9388467476088
114 => 0.95695336288243
115 => 0.97692552024444
116 => 0.98446454729209
117 => 1.0018001242838
118 => 0.97211355619657
119 => 0.99463115910544
120 => 1.0149426005814
121 => 0.99072646271132
122 => 1.0241027671287
123 => 1.0253986933969
124 => 1.0449656414522
125 => 1.0251307910245
126 => 1.0133529201557
127 => 1.047355192043
128 => 1.0638078203477
129 => 1.0588521548064
130 => 1.0211392953456
131 => 0.99918879355875
201 => 0.94174009644704
202 => 1.0097905597749
203 => 1.0429359554027
204 => 1.0210534567782
205 => 1.0320897162555
206 => 1.0922999694441
207 => 1.1152241355331
208 => 1.1104560692386
209 => 1.1112617939533
210 => 1.1236312578719
211 => 1.1784842728751
212 => 1.1456150748022
213 => 1.1707423451436
214 => 1.1840697587295
215 => 1.196449003213
216 => 1.166049491262
217 => 1.1265001728714
218 => 1.1139732435696
219 => 1.018877673547
220 => 1.0139275361482
221 => 1.0111488740217
222 => 0.99362980236389
223 => 0.97986461091845
224 => 0.96891801961225
225 => 0.94019089509589
226 => 0.94988545632658
227 => 0.90410041566437
228 => 0.93339206215784
301 => 0.86031803174248
302 => 0.92117625567893
303 => 0.88805389127422
304 => 0.91029466814885
305 => 0.91021707217354
306 => 0.86926475050262
307 => 0.84564430601598
308 => 0.86069617256432
309 => 0.87683296832279
310 => 0.8794511091439
311 => 0.90037288605823
312 => 0.90621170428292
313 => 0.88851981247373
314 => 0.85880373488467
315 => 0.86570610195704
316 => 0.84550442976756
317 => 0.8101017763016
318 => 0.83552858009188
319 => 0.84421040884353
320 => 0.84804479901313
321 => 0.81323035535158
322 => 0.80229090129477
323 => 0.79646682774584
324 => 0.85430962738903
325 => 0.85747838652622
326 => 0.84126656676296
327 => 0.91454552936073
328 => 0.89796024325922
329 => 0.91649007132835
330 => 0.86507978449241
331 => 0.86704372668268
401 => 0.84270527300815
402 => 0.85633318076983
403 => 0.84670141481185
404 => 0.85523218049629
405 => 0.86034548627388
406 => 0.88467994624765
407 => 0.92145411612285
408 => 0.8810451894103
409 => 0.86343844137515
410 => 0.87436156883205
411 => 0.90345129668266
412 => 0.94752372345212
413 => 0.92143195976435
414 => 0.9330110414221
415 => 0.93554055564683
416 => 0.91630145507307
417 => 0.94823309653264
418 => 0.96534552260302
419 => 0.98289933083359
420 => 0.99814081067366
421 => 0.97588795380978
422 => 0.99970170047586
423 => 0.98051202435517
424 => 0.96329690108266
425 => 0.96332300931857
426 => 0.95252371101691
427 => 0.93159870975827
428 => 0.92773981847906
429 => 0.94781425823775
430 => 0.9639120578677
501 => 0.96523794974848
502 => 0.97415051875843
503 => 0.97942488529176
504 => 1.031120847472
505 => 1.0519133911123
506 => 1.0773381198929
507 => 1.0872424846122
508 => 1.1170510715059
509 => 1.0929782166542
510 => 1.0877699030816
511 => 1.0154640215919
512 => 1.0273041056352
513 => 1.0462612225867
514 => 1.0157766174681
515 => 1.035112082827
516 => 1.03892931327
517 => 1.0147407622513
518 => 1.027660912476
519 => 0.99334882403676
520 => 0.9222020258867
521 => 0.94831230325737
522 => 0.96753825602651
523 => 0.94010045088207
524 => 0.98928165461379
525 => 0.96055101069984
526 => 0.95144477589323
527 => 0.91591810730557
528 => 0.93268532733207
529 => 0.95536323250137
530 => 0.94135092369619
531 => 0.9704285684257
601 => 1.0116102680873
602 => 1.0409587996787
603 => 1.0432118155121
604 => 1.0243426758977
605 => 1.054580592551
606 => 1.0548008427624
607 => 1.0206923492519
608 => 0.99980108689367
609 => 0.99505454813028
610 => 1.006912332575
611 => 1.0213098719586
612 => 1.0440107787461
613 => 1.0577284612805
614 => 1.0934969020334
615 => 1.1031748165396
616 => 1.1138079104215
617 => 1.1280170029725
618 => 1.1450786617165
619 => 1.1077487237054
620 => 1.1092319117343
621 => 1.0744707903265
622 => 1.0373235468532
623 => 1.0655136741801
624 => 1.1023685156847
625 => 1.0939139743225
626 => 1.0929626657087
627 => 1.0945625029262
628 => 1.0881880548386
629 => 1.0593566623868
630 => 1.0448777175916
701 => 1.0635592503502
702 => 1.0734876535921
703 => 1.0888857411724
704 => 1.0869876018639
705 => 1.126651421837
706 => 1.1420635829069
707 => 1.1381204925817
708 => 1.1388461160973
709 => 1.1667490975336
710 => 1.1977829515765
711 => 1.2268502511654
712 => 1.2564187567769
713 => 1.2207727691839
714 => 1.202673935023
715 => 1.2213473120088
716 => 1.2114389553333
717 => 1.2683753118002
718 => 1.2723174615889
719 => 1.3292497009092
720 => 1.3832851753891
721 => 1.3493464620144
722 => 1.3813491400935
723 => 1.4159626456527
724 => 1.4827377137154
725 => 1.4602502199671
726 => 1.4430251521799
727 => 1.4267475463518
728 => 1.4606186600828
729 => 1.5041933067934
730 => 1.513578868342
731 => 1.5287870636114
801 => 1.5127975058553
802 => 1.5320551669805
803 => 1.6000431729973
804 => 1.5816722136248
805 => 1.5555824980368
806 => 1.6092524991496
807 => 1.6286754639155
808 => 1.7649960025281
809 => 1.937106313647
810 => 1.8658515147065
811 => 1.8216213616262
812 => 1.8320164967533
813 => 1.8948653560723
814 => 1.9150504149624
815 => 1.8601804666919
816 => 1.8795614600324
817 => 1.9863526388355
818 => 2.0436426799921
819 => 1.9658351090223
820 => 1.7511671066097
821 => 1.5532334046019
822 => 1.6057343354451
823 => 1.5997823591811
824 => 1.7145161583341
825 => 1.5812340723195
826 => 1.583478200827
827 => 1.7005845734413
828 => 1.6693426009393
829 => 1.6187346066556
830 => 1.5536028989663
831 => 1.4332009133489
901 => 1.3265575170298
902 => 1.535709775719
903 => 1.5266907500056
904 => 1.5136298642279
905 => 1.5426954521907
906 => 1.6838296969271
907 => 1.6805760957789
908 => 1.6598783452763
909 => 1.6755774066109
910 => 1.6159824852998
911 => 1.6313414534728
912 => 1.5532020508922
913 => 1.5885243242483
914 => 1.6186260246291
915 => 1.6246693866438
916 => 1.6382853898446
917 => 1.5219381332823
918 => 1.5741746357028
919 => 1.6048586869765
920 => 1.4662270270267
921 => 1.602118384794
922 => 1.5199127863949
923 => 1.4920109716115
924 => 1.5295770894327
925 => 1.5149375367835
926 => 1.5023513090792
927 => 1.4953279777613
928 => 1.522912388668
929 => 1.5216255429287
930 => 1.4764920927818
1001 => 1.41761734694
1002 => 1.4373776441422
1003 => 1.4301985429149
1004 => 1.4041805539445
1005 => 1.4217135370866
1006 => 1.3445071525688
1007 => 1.2116775808447
1008 => 1.2994288646054
1009 => 1.2960505356357
1010 => 1.2943470289741
1011 => 1.360289693453
1012 => 1.3539508278195
1013 => 1.3424457246243
1014 => 1.403969253702
1015 => 1.3815123379804
1016 => 1.4507192607195
1017 => 1.4963034160587
1018 => 1.4847417997717
1019 => 1.5276139181955
1020 => 1.4378328814795
1021 => 1.4676545404866
1022 => 1.4738007430769
1023 => 1.4032100629032
1024 => 1.3549879446312
1025 => 1.3517720791148
1026 => 1.2681615714484
1027 => 1.3128256297634
1028 => 1.3521281527562
1029 => 1.3333052942417
1030 => 1.3273465395528
1031 => 1.3577885249618
1101 => 1.360154127946
1102 => 1.3062181292098
1103 => 1.317433131278
1104 => 1.3642015542414
1105 => 1.3162546870147
1106 => 1.2231017560697
1107 => 1.1999985412553
1108 => 1.1969161465223
1109 => 1.1342583956066
1110 => 1.2015424085415
1111 => 1.172171133796
1112 => 1.2649546387952
1113 => 1.2119571983476
1114 => 1.2096725846145
1115 => 1.206219055877
1116 => 1.1522869413047
1117 => 1.1640946468314
1118 => 1.2033452583663
1119 => 1.2173503187517
1120 => 1.2158894762134
1121 => 1.2031529089567
1122 => 1.208983644225
1123 => 1.1902008143628
1124 => 1.1835682062076
1125 => 1.1626338704273
1126 => 1.1318661800881
1127 => 1.136144616139
1128 => 1.075185770773
1129 => 1.0419721564868
1130 => 1.0327790658008
1201 => 1.0204856807297
1202 => 1.034167636356
1203 => 1.0750130820231
1204 => 1.0257448087039
1205 => 0.94127780986551
1206 => 0.94635442042045
1207 => 0.95776005707822
1208 => 0.93650572862231
1209 => 0.91639029047936
1210 => 0.93387903192757
1211 => 0.89808925101099
1212 => 0.96208508111429
1213 => 0.96035417325624
1214 => 0.98420786124316
1215 => 0.99912406186834
1216 => 0.9647470486046
1217 => 0.9561013227341
1218 => 0.96102632111627
1219 => 0.87962706842847
1220 => 0.97755580569777
1221 => 0.97840269748426
1222 => 0.97115109584546
1223 => 1.0232951252308
1224 => 1.1333352913645
1225 => 1.0919337545096
1226 => 1.0759018280713
1227 => 1.0454251241928
1228 => 1.0860335225833
1229 => 1.0829154311766
1230 => 1.0688142393345
1231 => 1.06028579451
]
'min_raw' => 0.79646682774584
'max_raw' => 2.0436426799921
'avg_raw' => 1.420054753869
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.796466'
'max' => '$2.04'
'avg' => '$1.42'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.48977595001008
'max_diff' => 1.1878800259823
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.025000183620683
]
1 => [
'year' => 2028
'avg' => 0.042907572698254
]
2 => [
'year' => 2029
'avg' => 0.11721575527407
]
3 => [
'year' => 2030
'avg' => 0.090431780631002
]
4 => [
'year' => 2031
'avg' => 0.088815215666839
]
5 => [
'year' => 2032
'avg' => 0.15572102424101
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.025000183620683
'min' => '$0.02500018'
'max_raw' => 0.15572102424101
'max' => '$0.155721'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.15572102424101
]
1 => [
'year' => 2033
'avg' => 0.40053048695198
]
2 => [
'year' => 2034
'avg' => 0.25387547122466
]
3 => [
'year' => 2035
'avg' => 0.29944670050109
]
4 => [
'year' => 2036
'avg' => 0.5812267658728
]
5 => [
'year' => 2037
'avg' => 1.420054753869
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.15572102424101
'min' => '$0.155721'
'max_raw' => 1.420054753869
'max' => '$1.42'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 1.420054753869
]
]
]
]
'prediction_2025_max_price' => '$0.042745'
'last_price' => 0.04144741
'sma_50day_nextmonth' => '$0.037697'
'sma_200day_nextmonth' => '$0.066692'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 feb. 2026'
'sma_50day_date_nextmonth' => '4 feb. 2026'
'daily_sma3' => '$0.040247'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.038765'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.037335'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.037131'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.043593'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.05584'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.07433'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.040246'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.039239'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.038151'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.038659'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.044286'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.054636'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.071631'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.064453'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.086411'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.15793'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.149433'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.040364'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.041518'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.047392'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.060698'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.0904091'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.136762'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.259869'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '55.01'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 124.09
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0.01
'momentum_10_action' => 'SELL'
'vwma_10' => '0.037561'
'vwma_10_action' => 'BUY'
'hma_9' => '0.040935'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 211.87
'cci_20_action' => 'SELL'
'adx_14' => 24.63
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '-0.001212'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 68.7
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.008188'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 18
'buy_signals' => 16
'sell_pct' => 52.94
'buy_pct' => 47.06
'overall_action' => 'bearish'
'overall_action_label' => 'Bajista'
'overall_action_dir' => -1
'last_updated' => 1767691004
'last_updated_date' => '6 de enero de 2026'
]
Predicción de precio de The Graph para 2026
La previsión del precio de The Graph para 2026 sugiere que el precio medio podría oscilar entre $0.01432 en el extremo inferior y $0.042745 en el extremo superior. En el mercado de criptomonedas, en comparación con el precio medio de hoy, The Graph podría potencialmente ganar 3.13% para 2026 si GRT alcanza el objetivo de precio previsto.
Predicción de precio de The Graph 2027-2032
La predicción del precio de GRT para 2027-2032 está actualmente dentro de un rango de precios de $0.02500018 en el extremo inferior y $0.155721 en el extremo superior. Considerando la volatilidad de precios en el mercado, si The Graph alcanza el objetivo de precio superior, podría ganar 275.71% para 2032 en comparación con el precio de hoy.
| Predicción de Precio de The Graph | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.013785 | $0.02500018 | $0.036214 |
| 2028 | $0.024878 | $0.0429075 | $0.060936 |
| 2029 | $0.054651 | $0.117215 | $0.179779 |
| 2030 | $0.046479 | $0.090431 | $0.134384 |
| 2031 | $0.054952 | $0.088815 | $0.122677 |
| 2032 | $0.08388 | $0.155721 | $0.227561 |
Predicción de precio de The Graph 2032-2037
La predicción de precio de The Graph para 2032-2037 se estima actualmente entre $0.155721 en el extremo inferior y $1.42 en el extremo superior. Comparado con el precio actual, The Graph podría potencialmente ganar 3326.16% para 2037 si alcanza el objetivo de precio superior. Tenga en cuenta que esta información es solo para fines generales y no debe considerarse como consejo de inversión a largo plazo.
| Predicción de Precio de The Graph | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.08388 | $0.155721 | $0.227561 |
| 2033 | $0.194921 | $0.40053 | $0.606139 |
| 2034 | $0.1567072 | $0.253875 | $0.351043 |
| 2035 | $0.185276 | $0.299446 | $0.413616 |
| 2036 | $0.30669 | $0.581226 | $0.855762 |
| 2037 | $0.796466 | $1.42 | $2.04 |
The Graph Histograma de precios potenciales
Pronóstico de precio de The Graph basado en análisis técnico
A fecha de 6 de enero de 2026, el sentimiento general de predicción de precio para The Graph es Bajista, con 16 indicadores técnicos mostrando señales alcistas y 18 indicando señales bajistas. La predicción de precio de GRT se actualizó por última vez el 6 de enero de 2026.
Promedios Móviles Simples de 50 y 200 días y el Índice de Fuerza Relativa de 14 días - RSI (14) de The Graph
Según nuestros indicadores técnicos, se proyecta que el SMA de 200 días de The Graph aumentar durante el próximo mes, alcanzando $0.066692 para el 4 feb. 2026. Se espera que el SMA de 50 días a corto plazo para The Graph alcance $0.037697 para el 4 feb. 2026.
El oscilador de momento del Índice de Fuerza Relativa (RSI) es una herramienta comúnmente utilizada para identificar si una criptomoneda está sobrevendida (por debajo de 30) o sobrecomprada (por encima de 70). Actualmente, el RSI se encuentra en 55.01, lo que sugiere que el mercado de GRT está en un estado NEUTRAL.
Promedios Móviles y Osciladores Populares de GRT para Sáb, 19 de Oct de 2024
Los promedios móviles (MA) son indicadores ampliamente utilizados en los mercados financieros, diseñados para suavizar los movimientos de precios durante un período establecido. Como indicadores rezagados, se basan en datos históricos de precios. La tabla a continuación resalta dos tipos: el promedio móvil simple (SMA) y el promedio móvil exponencial (EMA).
Promedio Móvil Simple Diario (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 3 | $0.040247 | BUY |
| SMA 5 | $0.038765 | BUY |
| SMA 10 | $0.037335 | BUY |
| SMA 21 | $0.037131 | BUY |
| SMA 50 | $0.043593 | SELL |
| SMA 100 | $0.05584 | SELL |
| SMA 200 | $0.07433 | SELL |
Promedio Móvil Exponencial Diario (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 3 | $0.040246 | BUY |
| EMA 5 | $0.039239 | BUY |
| EMA 10 | $0.038151 | BUY |
| EMA 21 | $0.038659 | BUY |
| EMA 50 | $0.044286 | SELL |
| EMA 100 | $0.054636 | SELL |
| EMA 200 | $0.071631 | SELL |
Promedio Móvil Simple Semanal (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 21 | $0.064453 | SELL |
| SMA 50 | $0.086411 | SELL |
| SMA 100 | $0.15793 | SELL |
| SMA 200 | $0.149433 | SELL |
Promedio Móvil Exponencial Semanal (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 21 | $0.060698 | SELL |
| EMA 50 | $0.0904091 | SELL |
| EMA 100 | $0.136762 | SELL |
| EMA 200 | $0.259869 | SELL |
Osciladores de The Graph
Un oscilador es una herramienta de análisis técnico que establece límites altos y bajos entre dos extremos, creando un indicador de tendencia que fluctúa dentro de estos límites. Los traders utilizan este indicador para identificar condiciones de sobrecompra o sobreventa a corto plazo.
| Período | Valor | Acción |
|---|---|---|
| RSI (14) | 55.01 | NEUTRAL |
| Stoch RSI (14) | 124.09 | SELL |
| Estocástico Rápido (14) | 100 | SELL |
| Índice de Canal de Materias Primas (20) | 211.87 | SELL |
| Índice Direccional Medio (14) | 24.63 | NEUTRAL |
| Oscilador Asombroso (5, 34) | -0.001212 | NEUTRAL |
| Momentum (10) | 0.01 | SELL |
| MACD (12, 26) | 0 | BUY |
| Rango Percentil de Williams (14) | -0 | SELL |
| Oscilador Ultimate (7, 14, 28) | 68.7 | NEUTRAL |
| VWMA (10) | 0.037561 | BUY |
| Promedio Móvil de Hull (9) | 0.040935 | BUY |
| Nube Ichimoku B/L (9, 26, 52, 26) | -0.008188 | SELL |
Predicción de precios de The Graph basada en flujos de dinero globales
Definiciones de flujos de dinero globales utilizadas para la predicción de precios de The Graph
M0: El total de toda la moneda física, además de cuentas en el banco central que pueden cambiarse por moneda física.
M1: Medir M0 más la cantidad en cuentas a la vista, incluyendo cuentas "de cheques" o "corrientes".
M2: Medir M1 más la mayoría de cuentas de ahorro, cuentas del mercado monetario, y cuentas de certificados de depósito (CD) inferiores a 100 000 $.
Predicciones de precios de The Graph por parte de empresas de Internet o nichos tecnológicos
| Comparación | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook acción | $0.05824 | $0.081837 | $0.114995 | $0.161588 | $0.227058 | $0.319054 |
| Amazon.com acción | $0.086482 | $0.18045 | $0.376521 | $0.785634 | $1.63 | $3.42 |
| Apple acción | $0.058789 | $0.083389 | $0.118281 | $0.167772 | $0.237972 | $0.337546 |
| Netflix acción | $0.065397 | $0.103187 | $0.162812 | $0.256893 | $0.405337 | $0.639558 |
| Google acción | $0.053674 | $0.0695078 | $0.090012 | $0.116565 | $0.150951 | $0.195482 |
| Tesla acción | $0.093958 | $0.212996 | $0.482845 | $1.09 | $2.48 | $5.62 |
| Kodak acción | $0.031081 | $0.0233075 | $0.017478 | $0.0131067 | $0.009828 | $0.00737 |
| Nokia acción | $0.027457 | $0.018189 | $0.012049 | $0.007982 | $0.005287 | $0.003503 |
Este cálculo muestra cuánto puede costar la criptomoneda si asumimos que su capitalización se comportará como la capitalización de algunas empresas de Internet o nichos tecnológicos. Si extrapola los datos, puede obtener una imagen potencial del precio futuro en 2024, 2025, 2026, 2027, 2028, 2029 y 2030.
Resumen de pronósticos y predicciones de The Graph
Podría preguntarse cosas como: "¿Debo invertir en The Graph ahora?", "¿Debería comprar GRT hoy?", "¿Será The Graph una buena o mala inversión a corto plazo?, ¿Lo será a largo plazo?".
Actualizamos el pronóstico de The Graph regularmente con valores actualizados. Aquí hay algunas predicciones similares. Hacemos un pronóstico de precios futuros para una gran cantidad de monedas digitales, como The Graph, con métodos de análisis técnico.
Si está tratando de encontrar criptomonedas que ofrezcan un buen rendimiento, debería explorar el máximo de fuentes de información disponibles acerca de The Graph a fin de tomar una decisión responsable sobre la inversión por sus propios medios.
El precio de The Graph es de $0.04144 USD hoy, pero dicho precio puede subir y bajar, y su inversión puede perderse porque estos son activos de criptomonedas conllevan un alto riesgo
Pronóstico a corto plazo de The Graph
basado en el historial de precios de las últimas 4 horas
Pronóstico a largo plazo de The Graph
basado en el historial de precios del último mes
Predicción de precios de The Graph basada en el patrón de crecimiento del Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si The Graph ofrece un 1 % del crecimiento medio anterior anual del Bitcoin | $0.042524 | $0.04363 | $0.044764 | $0.045927 |
| Si The Graph ofrece un 2 % del crecimiento medio anterior anual del Bitcoin | $0.0436021 | $0.045868 | $0.048253 | $0.050761 |
| Si The Graph ofrece un 5 % del crecimiento medio anterior anual del Bitcoin | $0.046834 | $0.052921 | $0.059798 | $0.06757 |
| Si The Graph ofrece un 10 % del crecimiento medio anterior anual del Bitcoin | $0.05222 | $0.065794 | $0.082897 | $0.104444 |
| Si The Graph ofrece un 20 % del crecimiento medio anterior anual del Bitcoin | $0.062994 | $0.095742 | $0.145516 | $0.221165 |
| Si The Graph ofrece un 50 % del crecimiento medio anterior anual del Bitcoin | $0.095314 | $0.219192 | $0.504067 | $1.15 |
| Si The Graph ofrece un 100 % del crecimiento medio anterior anual del Bitcoin | $0.149182 | $0.536955 | $1.93 | $6.95 |
Cuadro de preguntas
¿Es GRT una buena inversión?
La decisión de adquirir The Graph depende completamente de su tolerancia individual al riesgo. Como puede discernir, el valor de The Graph ha experimentado un aumento de 3.62% durante las últimas 24 horas, y The Graph ha sufrido un declive de -73.46% durante el período previo de 30 días. Por lo tanto, la determinación de si invertir o no en The Graph dependerá de si dicha inversión se alinea con sus aspiraciones comerciales.
¿Puede The Graph subir?
Parece que el valor medio de The Graph podría potencialmente aumentar hasta $0.042745 para el final de este año. Mirando las perspectivas de The Graph en un horizonte de cinco años más extendido, la moneda digital podría potencialmente crecer hasta $0.134384. Sin embargo, dada la imprevisibilidad del mercado, es vital realizar una investigación exhaustiva antes de invertir cualquier fondo en un proyecto, red o activo en particular.
¿Cuál será el precio de The Graph la próxima semana?
Basado en nuestro nuevo pronóstico experimental de The Graph, el precio de The Graph aumentará en un 0.86% durante la próxima semana y alcanzará $0.041802 para el 13 de enero de 2026.
¿Cuál será el precio de The Graph el próximo mes?
Basado en nuestro nuevo pronóstico experimental de The Graph, el precio de The Graph disminuirá en un -11.62% durante el próximo mes y alcanzará $0.036632 para el 5 de febrero de 2026.
¿Hasta qué punto puede subir el precio de The Graph este año en 2026?
Según nuestra predicción más reciente sobre el valor de The Graph en 2026, se anticipa que GRT fluctúe dentro del rango de $0.01432 y $0.042745. Sin embargo, es crucial tener en cuenta que el mercado de criptomonedas es excepcionalmente inestable, y esta predicción de precios proyectada de The Graph no considera fluctuaciones de precios repentinas y extremas.
¿Dónde estará The Graph en 5 años?
El futuro de The Graph parece estar en una tendencia alcista, con un precio máximo de $0.134384 proyectada después de un período de cinco años. Basado en el pronóstico de The Graph para 2030, el valor de The Graph podría potencialmente alcanzar su punto más alto de aproximadamente $0.134384, mientras que su punto más bajo se anticipa que esté alrededor de $0.046479.
¿Cuánto será The Graph en 2026?
Basado en nuestra nueva simulación experimental de predicción de precios de The Graph, se espera que el valor de GRT en 2026 crezca en un 3.13% hasta $0.042745 si ocurre lo mejor. El precio estará entre $0.042745 y $0.01432 durante 2026.
¿Cuánto será The Graph en 2027?
Según nuestra última simulación experimental para la predicción de precios de The Graph, el valor de GRT podría disminuir en un -12.62% hasta $0.036214 en 2027, asumiendo las condiciones más favorables. Se proyecta que el precio fluctúe entre $0.036214 y $0.013785 a lo largo del año.
¿Cuánto será The Graph en 2028?
Nuestro nuevo modelo experimental de predicción de precios de The Graph sugiere que el valor de GRT en 2028 podría aumentar en un 47.02% , alcanzando $0.060936 en el mejor escenario. Se espera que el precio oscile entre $0.060936 y $0.024878 durante el año.
¿Cuánto será The Graph en 2029?
Basado en nuestro modelo de pronóstico experimental, el valor de The Graph podría experimentar un 333.75% crecimiento en 2029, potencialmente alcanzando $0.179779 bajo condiciones óptimas. El rango de precios previsto para 2029 se encuentra entre $0.179779 y $0.054651.
¿Cuánto será The Graph en 2030?
Usando nuestra nueva simulación experimental para las predicciones de precios de The Graph, se espera que el valor de GRT en 2030 aumente en un 224.23% , alcanzando $0.134384 en el mejor escenario. Se pronostica que el precio oscile entre $0.134384 y $0.046479 durante el transcurso de 2030.
¿Cuánto será The Graph en 2031?
Nuestra simulación experimental indica que el precio de The Graph podría crecer en un 195.98% en 2031, potencialmente alcanzando $0.122677 bajo condiciones ideales. Es probable que el precio fluctúe entre $0.122677 y $0.054952 durante el año.
¿Cuánto será The Graph en 2032?
Basado en los hallazgos de nuestra última predicción experimental de precios de The Graph, GRT podría experimentar un 449.04% aumento en valor, alcanzando $0.227561 si se desarrolla el escenario más positivo en 2032. Se espera que el precio se mantenga dentro de un rango de $0.227561 y $0.08388 a lo largo del año.
¿Cuánto será The Graph en 2033?
Según nuestra predicción experimental de precios de The Graph, se anticipa que el valor de GRT aumente en un 1362.43% en 2033, con el precio potencial más alto siendo $0.606139. A lo largo del año, el precio de GRT podría oscilar entre $0.606139 y $0.194921.
¿Cuánto será The Graph en 2034?
Los resultados de nuestra nueva simulación de predicción de precios de The Graph sugieren que GRT podría aumentar en un 746.96% en 2034, alcanzando potencialmente $0.351043 bajo las mejores circunstancias. El rango de precios previsto para el año está entre $0.351043 y $0.1567072.
¿Cuánto será The Graph en 2035?
Basado en nuestra predicción experimental para el precio de The Graph, GRT podría crecer en un 897.93% , con el valor potencialmente alcanzando $0.413616 en 2035. El rango de precios esperado para el año está entre $0.413616 y $0.185276.
¿Cuánto será The Graph en 2036?
Nuestra reciente simulación de predicción de precios de The Graph sugiere que el valor de GRT podría aumentar en un 1964.7% en 2036, posiblemente alcanzando $0.855762 si las condiciones son óptimas. El rango de precios esperado para 2036 está entre $0.855762 y $0.30669.
¿Cuánto será The Graph en 2037?
Según la simulación experimental, el valor de The Graph podría aumentar en un 4830.69% en 2037, con un máximo de $2.04 bajo condiciones favorables. Se espera que el precio caiga entre $2.04 y $0.796466 durante el transcurso del año.
Predicciones relacionadas
Predicción de precios de Optimism
Predicción de precios de Injective Protocol
Predicción de precios de Pepe
Predicción de precios de Fantom
Predicción de precios de Theta Network
Predicción de precios de Fetch.ai
Predicción de precios de Monero
Predicción de precios de Lido DAO
Predicción de precios de Thorchain
Predicción de precios de Wrapped eETH
Predicción de precios de Gala
Predicción de precios de Rocket Pool ETH
Predicción de precios de Celestia
Predicción de precios de Arweave
Predicción de precios de Sui
Predicción de precios de Core
Predicción de precios de Ethena
Predicción de precios de Aave
Predicción de precios de FLOKI
Predicción de precios de Algorand
Predicción de precios de Bitcoin SV
Predicción de precios de Flow
Predicción de precios de Sei
Predicción de precios de Mantle Staked Ether
Predicción de precios de Jupiter
¿Cómo leer y predecir los movimientos de precio de The Graph?
Los traders de The Graph utilizan indicadores y patrones de gráficos para predecir la dirección del mercado. También identifican niveles clave de soporte y resistencia para estimar cuándo una tendencia bajista podría desacelerar o una tendencia alcista podría estancarse.
Indicadores de predicción de precio de The Graph
Las medias móviles son herramientas populares para la predicción de precios de The Graph. Una media móvil simple (SMA) calcula el precio de cierre promedio de GRT durante un período específico, como una SMA de 12 días. Una media móvil exponencial (EMA) da más peso a los precios recientes, reaccionando más rápido a los cambios de precio.
Las medias móviles comúnmente utilizadas en el mercado de criptomonedas incluyen las de 50 días, 100 días y 200 días, que ayudan a identificar niveles clave de resistencia y soporte. Un movimiento de precio de GRT por encima de estas medias se considera alcista, mientras que una caída por debajo indica debilidad.
Los traders también utilizan RSI y niveles de retroceso de Fibonacci para evaluar la dirección futura de GRT.
¿Cómo leer gráficos de The Graph y predecir movimientos de precio?
La mayoría de los traders prefieren gráficos de velas sobre gráficos lineales simples porque proporcionan información más detallada. Las velas pueden representar la acción del precio de The Graph en diferentes marcos de tiempo, como 5 minutos para tendencias a corto plazo y semanal para tendencias a largo plazo. Las opciones populares incluyen gráficos de 1 hora, 4 horas y 1 día.
Por ejemplo, un gráfico de velas de 1 hora muestra los precios de apertura, cierre, máximo y mínimo de GRT dentro de cada hora. El color de la vela es crucial: el verde indica que el precio cerró más alto de lo que abrió, mientras que el rojo significa lo contrario. Algunos gráficos usan velas huecas y llenas para transmitir la misma información.
¿Qué afecta el precio de The Graph?
La acción del precio de The Graph está impulsada por la oferta y la demanda, influenciada por factores como reducciones a la mitad de recompensas de bloque, hard forks y actualizaciones de protocolo. Los eventos del mundo real, como regulaciones, adopción por empresas y gobiernos y hacks de exchanges de criptomonedas, también impactan el precio de GRT. La capitalización de mercado de The Graph puede cambiar rápidamente.
Los traders a menudo monitorean la actividad de las "ballenas" de GRT, grandes poseedores de The Graph, ya que sus acciones pueden influir significativamente en los movimientos de precios en el relativamente pequeño mercado de The Graph.
Patrones de predicción de precios alcistas y bajistas
Los traders a menudo identifican patrones de velas para obtener una ventaja en las predicciones de precios de criptomonedas. Ciertas formaciones indican tendencias alcistas, mientras que otras sugieren movimientos bajistas.
Patrones de velas alcistas comúnmente seguidos:
- Martillo
- Envolvente Alcista
- Línea Penetrante
- Estrella de la Mañana
- Tres Soldados Blancos
Patrones de velas bajistas comunes:
- Harami Bajista
- Cubierta de Nube Oscura
- Estrella de la Tarde
- Estrella Fugaz
- Hombre Colgado


