Prédiction du prix de Tulip Protocol jusqu'à $0.026161 d'ici 2026
| Année | Prix min. | Prix max. |
|---|---|---|
| 2026 | $0.008764 | $0.026161 |
| 2027 | $0.008437 | $0.022164 |
| 2028 | $0.015226 | $0.037294 |
| 2029 | $0.033447 | $0.110028 |
| 2030 | $0.028446 | $0.082245 |
| 2031 | $0.033632 | $0.075081 |
| 2032 | $0.051336 | $0.139271 |
| 2033 | $0.119295 | $0.370969 |
| 2034 | $0.0959079 | $0.214845 |
| 2035 | $0.113392 | $0.253141 |
Calculateur de profit d’investissement
Si vous ouvrez une position short de $10,000.00 sur Tulip Protocol aujourd’hui et la fermez le Apr 06, 2026, notre prévision indique que vous pourriez gagner environ $3,954.66, soit un rendement de 39.55% sur les 90 prochains jours.
Prévision du prix à long terme de Tulip Token pour 2027, 2028, 2029, 2030, 2031, 2032 et 2037
[
'name' => 'Tulip Protocol'
'name_with_ticker' => 'Tulip Protocol <small>TULIP</small>'
'name_lang' => 'Tulip Token'
'name_lang_with_ticker' => 'Tulip Token <small>TULIP</small>'
'name_with_lang' => 'Tulip Token/Tulip Protocol'
'name_with_lang_with_ticker' => 'Tulip Token/Tulip Protocol <small>TULIP</small>'
'image' => '/uploads/coins/solfarm.png?1717103123'
'price_for_sd' => 0.02536
'ticker' => 'TULIP'
'marketcap' => '$39.61K'
'low24h' => '$0.02517'
'high24h' => '$0.02553'
'volume24h' => '$36.51'
'current_supply' => '1.56M'
'max_supply' => '10M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.02536'
'change_24h_pct' => '-0.3495%'
'ath_price' => '$50.22'
'ath_days' => 1521
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '7 nov. 2021'
'ath_pct' => '-99.95%'
'fdv' => '$253.67K'
'new_prediction' => true
'change_24h_pct_is_increased' => false
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$1.25'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.025583'
'next_week_prediction_price_date' => '13 janvier 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.022419'
'next_month_prediction_price_date' => '5 février 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.008764'
'current_year_max_price_prediction' => '$0.026161'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.028446'
'grand_prediction_max_price' => '$0.082245'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.025847314295653
107 => 0.025943818784657
108 => 0.026161248326027
109 => 0.024303336700954
110 => 0.025137484475192
111 => 0.025627468143481
112 => 0.023413704104396
113 => 0.025583709146222
114 => 0.024270994593042
115 => 0.023825439557382
116 => 0.024425320715486
117 => 0.024191546444769
118 => 0.023990561054493
119 => 0.023878407753351
120 => 0.024318894269396
121 => 0.024298345046927
122 => 0.02357762361193
123 => 0.022637471880341
124 => 0.022953017660891
125 => 0.022838376920559
126 => 0.022422904088649
127 => 0.022702882612975
128 => 0.02146999888573
129 => 0.019348886512723
130 => 0.02075015831776
131 => 0.020696210877557
201 => 0.020669008131885
202 => 0.021722025165062
203 => 0.021620801874558
204 => 0.021437080611113
205 => 0.02241952990357
206 => 0.022060922696015
207 => 0.023166065611214
208 => 0.023893984211326
209 => 0.023709360508637
210 => 0.024393971470379
211 => 0.022960287198362
212 => 0.023436499604096
213 => 0.023534646320916
214 => 0.022407406631802
215 => 0.021637363256734
216 => 0.021586010142754
217 => 0.0202508610489
218 => 0.02096408691789
219 => 0.02159169616731
220 => 0.021291120041283
221 => 0.021195966619239
222 => 0.021682084816201
223 => 0.021719860363426
224 => 0.020858573883429
225 => 0.021037662616016
226 => 0.021784492401928
227 => 0.021018844421578
228 => 0.019531315463646
301 => 0.019162387715382
302 => 0.019113165953076
303 => 0.018112604639756
304 => 0.019187041231618
305 => 0.01871802086616
306 => 0.020199650580916
307 => 0.019353351633987
308 => 0.019316869377861
309 => 0.019261721096943
310 => 0.018400496641901
311 => 0.018589050063886
312 => 0.01921583035606
313 => 0.019439472625494
314 => 0.019416144904545
315 => 0.01921275879069
316 => 0.019305867912107
317 => 0.019005930990654
318 => 0.018900017021041
319 => 0.018565723399012
320 => 0.018074404125599
321 => 0.018142725084003
322 => 0.017169293042691
323 => 0.016638915602636
324 => 0.016492114117491
325 => 0.016295805036299
326 => 0.01651428775057
327 => 0.017166535432024
328 => 0.016379786346126
329 => 0.015030960222386
330 => 0.01511202697071
331 => 0.015294159885262
401 => 0.014954756403924
402 => 0.014633539492813
403 => 0.014912811535873
404 => 0.014341296125983
405 => 0.0153632247921
406 => 0.015335584485604
407 => 0.015716496296687
408 => 0.015954688269255
409 => 0.015405732888053
410 => 0.015267672094214
411 => 0.015346317796898
412 => 0.014046479516999
413 => 0.015610271778004
414 => 0.015623795518415
415 => 0.015507997042515
416 => 0.016340668144831
417 => 0.018097863887347
418 => 0.017436736165977
419 => 0.017180727529572
420 => 0.016694054924624
421 => 0.017342517274957
422 => 0.01729272548404
423 => 0.017067548122537
424 => 0.016931360151704
425 => 0.017182290663715
426 => 0.016900267084341
427 => 0.016849607899995
428 => 0.016542668360599
429 => 0.016433104909893
430 => 0.016351988492838
501 => 0.016262687287994
502 => 0.016459663493406
503 => 0.016013289497565
504 => 0.015475006217165
505 => 0.015430253786705
506 => 0.015553819181878
507 => 0.015499150692876
508 => 0.015429992055012
509 => 0.015297949381097
510 => 0.015258775140391
511 => 0.015386072418044
512 => 0.015242361213467
513 => 0.015454414924175
514 => 0.01539674804833
515 => 0.015074625567573
516 => 0.014673141691534
517 => 0.014669567642896
518 => 0.014583068600369
519 => 0.014472899064492
520 => 0.014442252419949
521 => 0.014889292023359
522 => 0.015814650623649
523 => 0.015632980588458
524 => 0.015764255807178
525 => 0.016409999955421
526 => 0.016615262601943
527 => 0.016469572037354
528 => 0.016270141806741
529 => 0.016278915724762
530 => 0.016960429194402
531 => 0.017002934353542
601 => 0.017110331178004
602 => 0.017248366447778
603 => 0.016493080040677
604 => 0.01624334180291
605 => 0.016125001970906
606 => 0.015760561091611
607 => 0.01615357933513
608 => 0.015924584435351
609 => 0.015955483670911
610 => 0.015935360503217
611 => 0.0159463491135
612 => 0.015362939142211
613 => 0.015575503072623
614 => 0.01522207431086
615 => 0.0147488728731
616 => 0.014747286535955
617 => 0.014863101917463
618 => 0.014794210396685
619 => 0.014608825085637
620 => 0.014635158194077
621 => 0.01440445245514
622 => 0.014663170047847
623 => 0.014670589142669
624 => 0.014570968777035
625 => 0.014969558924747
626 => 0.015132861633483
627 => 0.015067289374747
628 => 0.015128260909008
629 => 0.015640529798611
630 => 0.015724051979475
701 => 0.015761147015049
702 => 0.01571144458153
703 => 0.015137624243925
704 => 0.01516307561597
705 => 0.014976330335152
706 => 0.014818550251594
707 => 0.014824860627489
708 => 0.014905980100413
709 => 0.015260233596266
710 => 0.016005739193905
711 => 0.016034030586378
712 => 0.016068320579373
713 => 0.015928845945092
714 => 0.0158867790608
715 => 0.015942276139565
716 => 0.016222248845216
717 => 0.016942414655998
718 => 0.01668785996021
719 => 0.016480903030155
720 => 0.016662460053001
721 => 0.016634510772425
722 => 0.0163985907172
723 => 0.016391969227006
724 => 0.015939163212825
725 => 0.015771771139277
726 => 0.01563188579354
727 => 0.015479134647795
728 => 0.015388578648332
729 => 0.015527713820472
730 => 0.01555953568054
731 => 0.015255314194989
801 => 0.015213849930645
802 => 0.015462283762823
803 => 0.015352957295829
804 => 0.015465402278298
805 => 0.015491490478767
806 => 0.015487289677629
807 => 0.015373140290022
808 => 0.015445895705699
809 => 0.015273807458189
810 => 0.015086687335842
811 => 0.01496731635578
812 => 0.014863149343413
813 => 0.014920947256096
814 => 0.014714908250861
815 => 0.014648992226341
816 => 0.015421247807916
817 => 0.015991721309173
818 => 0.015983426398532
819 => 0.015932933263285
820 => 0.015857910706467
821 => 0.016216760477898
822 => 0.016091744392959
823 => 0.016182704040195
824 => 0.016205857087981
825 => 0.016275934390378
826 => 0.016300981002637
827 => 0.016225272744399
828 => 0.015971186582769
829 => 0.015338028025774
830 => 0.015043291008314
831 => 0.014946022883319
901 => 0.014949558394924
902 => 0.014852033201636
903 => 0.014880758741832
904 => 0.014842043631037
905 => 0.014768726577384
906 => 0.014916420134635
907 => 0.014933440441248
908 => 0.014898967000179
909 => 0.014907086743507
910 => 0.014621661375255
911 => 0.014643361646092
912 => 0.014522531780535
913 => 0.014499877637368
914 => 0.0141944302591
915 => 0.013653285953193
916 => 0.013953132428814
917 => 0.013590960051058
918 => 0.013453799883795
919 => 0.014103094782837
920 => 0.01403792358361
921 => 0.013926378819773
922 => 0.013761380866093
923 => 0.013700181520076
924 => 0.013328353667036
925 => 0.013306384093854
926 => 0.013490672018017
927 => 0.013405629481976
928 => 0.013286197553248
929 => 0.012853627214013
930 => 0.012367274933596
1001 => 0.01238195485184
1002 => 0.012536654463335
1003 => 0.012986464447841
1004 => 0.012810715905103
1005 => 0.012683208320864
1006 => 0.0126593299832
1007 => 0.012958217371751
1008 => 0.013381205645395
1009 => 0.013579662279559
1010 => 0.01338299778232
1011 => 0.01315708019706
1012 => 0.013170830753673
1013 => 0.013262307046465
1014 => 0.013271919911432
1015 => 0.013124870788131
1016 => 0.013166264254995
1017 => 0.013103383793731
1018 => 0.012717486519018
1019 => 0.012710506861012
1020 => 0.012615801446363
1021 => 0.012612933804046
1022 => 0.012451816268356
1023 => 0.01242927481136
1024 => 0.012109366165112
1025 => 0.012319931004845
1026 => 0.012178695165502
1027 => 0.011965819441447
1028 => 0.011929119586382
1029 => 0.011928016344422
1030 => 0.012146592114886
1031 => 0.012317376819706
1101 => 0.012181152023396
1102 => 0.012150136277883
1103 => 0.012481303296156
1104 => 0.012439159274426
1105 => 0.012402662823408
1106 => 0.013343331684866
1107 => 0.012598718879715
1108 => 0.012274025195657
1109 => 0.011872155103976
1110 => 0.012003006032232
1111 => 0.012030578245416
1112 => 0.011064153117451
1113 => 0.010672074563397
1114 => 0.010537527978814
1115 => 0.010460094517177
1116 => 0.010495381917993
1117 => 0.010142465233117
1118 => 0.010379631082057
1119 => 0.010074035064259
1120 => 0.010022800897379
1121 => 0.010569244433285
1122 => 0.010645278859029
1123 => 0.010320892376759
1124 => 0.010529201011778
1125 => 0.010453665405013
1126 => 0.01007927363087
1127 => 0.010064974618937
1128 => 0.0098771179871794
1129 => 0.0095831587346901
1130 => 0.0094488114683227
1201 => 0.0093788422455421
1202 => 0.0094077129105344
1203 => 0.0093931150188574
1204 => 0.0092978539012705
1205 => 0.0093985752746088
1206 => 0.0091412737866744
1207 => 0.00903881426096
1208 => 0.0089925356702378
1209 => 0.008764165789975
1210 => 0.0091276038260198
1211 => 0.0091992056975923
1212 => 0.0092709486469708
1213 => 0.0098954220403189
1214 => 0.0098642251143307
1215 => 0.010146230131745
1216 => 0.010135271935342
1217 => 0.010054839536197
1218 => 0.0097155084746923
1219 => 0.0098507597878135
1220 => 0.0094344772687473
1221 => 0.0097463844364915
1222 => 0.0096040430306878
1223 => 0.0096982586640067
1224 => 0.0095288504602181
1225 => 0.009622607954888
1226 => 0.0092161851575965
1227 => 0.0088366732680088
1228 => 0.0089893999310216
1229 => 0.009155431280129
1230 => 0.0095154295489948
1231 => 0.0093010175499795
]
'min_raw' => 0.008764165789975
'max_raw' => 0.026161248326027
'avg_raw' => 0.017462707058001
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.008764'
'max' => '$0.026161'
'avg' => '$0.017462'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.016602464210025
'max_diff' => 0.00079461832602686
'year' => 2026
]
1 => [
'items' => [
101 => 0.0093781282126407
102 => 0.0091198204008948
103 => 0.0085868576032842
104 => 0.0085898741148391
105 => 0.0085078893996524
106 => 0.0084370426357667
107 => 0.0093256453473152
108 => 0.0092151335534041
109 => 0.0090390474732327
110 => 0.0092747456889248
111 => 0.0093370680381875
112 => 0.0093388422678561
113 => 0.0095108016017735
114 => 0.0096025763291107
115 => 0.0096187520225783
116 => 0.0098893337499247
117 => 0.009980029175872
118 => 0.010353590799652
119 => 0.0095947898846905
120 => 0.0095791628791896
121 => 0.0092780624461763
122 => 0.0090870997913497
123 => 0.0092911378225279
124 => 0.0094718876641831
125 => 0.0092836788475947
126 => 0.0093082549457362
127 => 0.0090555999866916
128 => 0.0091459122460293
129 => 0.009223701330146
130 => 0.0091807507701278
131 => 0.0091164517029499
201 => 0.0094570682384114
202 => 0.0094378493185937
203 => 0.0097550392671557
204 => 0.010002311514531
205 => 0.010445467587028
206 => 0.0099830111231285
207 => 0.009966157371486
208 => 0.010130905497218
209 => 0.0099800039537923
210 => 0.010075368520293
211 => 0.010430102881034
212 => 0.010437597859094
213 => 0.010312047319865
214 => 0.010304407558143
215 => 0.010328520912574
216 => 0.010469753582645
217 => 0.010420402548081
218 => 0.010477512814694
219 => 0.010548930077597
220 => 0.010844342157256
221 => 0.010915565009549
222 => 0.010742530403292
223 => 0.010758153490851
224 => 0.010693433798204
225 => 0.010630915386044
226 => 0.0107714476465
227 => 0.011028273114653
228 => 0.011026675416745
301 => 0.011086253933383
302 => 0.011123370855673
303 => 0.010964037853956
304 => 0.010860317928675
305 => 0.010900090747898
306 => 0.010963688351975
307 => 0.010879466902043
308 => 0.01035961309789
309 => 0.01051730353368
310 => 0.010491056134496
311 => 0.010453676646266
312 => 0.010612235598837
313 => 0.010596942201054
314 => 0.010138845562416
315 => 0.010168171422931
316 => 0.010140628965124
317 => 0.010229624280954
318 => 0.0099751979146798
319 => 0.010053457751358
320 => 0.010102541587282
321 => 0.010131452343721
322 => 0.010235897820271
323 => 0.010223642349103
324 => 0.010235136002975
325 => 0.010390001072114
326 => 0.011173255448546
327 => 0.011215886256102
328 => 0.011005956568212
329 => 0.011089819337844
330 => 0.010928821158922
331 => 0.011036900315026
401 => 0.01111084532872
402 => 0.010776702030647
403 => 0.010756916233107
404 => 0.01059525355743
405 => 0.010682121922297
406 => 0.010543908107737
407 => 0.010577820943316
408 => 0.01048299769857
409 => 0.010653660659994
410 => 0.010844488369209
411 => 0.010892698984571
412 => 0.010765877611528
413 => 0.010674050579509
414 => 0.010512832560988
415 => 0.010780941718766
416 => 0.010859345006978
417 => 0.01078052989967
418 => 0.010762266717162
419 => 0.010727658019312
420 => 0.010769609116017
421 => 0.010858918005833
422 => 0.010816801582672
423 => 0.010844620222166
424 => 0.010738604254873
425 => 0.010964090599809
426 => 0.011322217181812
427 => 0.011323368617333
428 => 0.011281251967149
429 => 0.01126401874131
430 => 0.011307232980251
501 => 0.011330674932135
502 => 0.011470421856733
503 => 0.01162037587459
504 => 0.012320145845865
505 => 0.012123653238106
506 => 0.012744530786122
507 => 0.013235564315744
508 => 0.013382803800984
509 => 0.013247350402717
510 => 0.012783971644293
511 => 0.012761236071739
512 => 0.01345371957029
513 => 0.013258061264196
514 => 0.013234788331266
515 => 0.012987203645128
516 => 0.013133556858595
517 => 0.013101547263938
518 => 0.013051018552808
519 => 0.013330250289051
520 => 0.013852947172108
521 => 0.013771479961063
522 => 0.013710668467173
523 => 0.013444210202908
524 => 0.013604677593604
525 => 0.013547538229327
526 => 0.013793045199795
527 => 0.013647612309135
528 => 0.013256578960092
529 => 0.01331885230979
530 => 0.01330943981826
531 => 0.013503148226976
601 => 0.013445001770818
602 => 0.013298085789478
603 => 0.013851160650986
604 => 0.013815247045844
605 => 0.013866164326942
606 => 0.013888579688751
607 => 0.014225226610679
608 => 0.014363140083093
609 => 0.014394448855846
610 => 0.014525455988029
611 => 0.014391189279053
612 => 0.014928351845498
613 => 0.015285533607879
614 => 0.01570041860529
615 => 0.016306677097082
616 => 0.016534635898201
617 => 0.016493457181159
618 => 0.016953115450503
619 => 0.017779111142885
620 => 0.01666041452671
621 => 0.01783840477995
622 => 0.017465466666326
623 => 0.016581237107793
624 => 0.016524303148605
625 => 0.01712311367176
626 => 0.01845121777874
627 => 0.018118542763174
628 => 0.018451761915888
629 => 0.01806304407427
630 => 0.018043740957062
701 => 0.018432882757955
702 => 0.019342133786758
703 => 0.018910182705739
704 => 0.018290874912348
705 => 0.018748162149492
706 => 0.018352017624742
707 => 0.01745939313661
708 => 0.018118288372859
709 => 0.017677703892635
710 => 0.017806289866724
711 => 0.018732332912159
712 => 0.018620908962926
713 => 0.018765101870814
714 => 0.018510605162578
715 => 0.018272865106639
716 => 0.01782910563742
717 => 0.017697730335662
718 => 0.01773403774268
719 => 0.017697712343514
720 => 0.017449432998847
721 => 0.017395817098004
722 => 0.017306454914301
723 => 0.017334151991681
724 => 0.01716612494249
725 => 0.017483226700474
726 => 0.017542083581047
727 => 0.017772843796415
728 => 0.017796802087493
729 => 0.018439466002628
730 => 0.0180854975177
731 => 0.018322970137558
801 => 0.018301728351259
802 => 0.016600401043545
803 => 0.01683482893561
804 => 0.017199525168138
805 => 0.017035230009718
806 => 0.016802955094859
807 => 0.016615380647317
808 => 0.016331186178818
809 => 0.016731184435758
810 => 0.017257139608562
811 => 0.017810141178633
812 => 0.018474536330976
813 => 0.018326251067385
814 => 0.017797720773404
815 => 0.0178214302563
816 => 0.017967992950228
817 => 0.017778180944966
818 => 0.017722201679044
819 => 0.01796030225871
820 => 0.017961941926545
821 => 0.017743540274944
822 => 0.017500826806271
823 => 0.017499809827975
824 => 0.017456621310558
825 => 0.018070727215574
826 => 0.018408423370223
827 => 0.018447139690128
828 => 0.018405817453417
829 => 0.018421720742307
830 => 0.018225222790544
831 => 0.018674358838616
901 => 0.019086530491279
902 => 0.018976059683602
903 => 0.018810448238545
904 => 0.018678530745628
905 => 0.01894498411467
906 => 0.018933119365583
907 => 0.019082930531464
908 => 0.019076134231628
909 => 0.019025758371225
910 => 0.018976061482683
911 => 0.019173104028272
912 => 0.019116358939549
913 => 0.019059525710029
914 => 0.018945537967496
915 => 0.018961030794843
916 => 0.018795447944936
917 => 0.018718841742013
918 => 0.017566868254037
919 => 0.017259023296231
920 => 0.017355877586719
921 => 0.017387764533968
922 => 0.017253790013816
923 => 0.017445875060483
924 => 0.017415938809429
925 => 0.017532403250161
926 => 0.01745964132389
927 => 0.017462627498724
928 => 0.01767660480941
929 => 0.017738723333027
930 => 0.017707129350557
1001 => 0.0177292566929
1002 => 0.018239171957832
1003 => 0.018166678313331
1004 => 0.018128167509542
1005 => 0.018138835265379
1006 => 0.018269129548276
1007 => 0.018305604833683
1008 => 0.018151056486341
1009 => 0.018223942380381
1010 => 0.018534281266606
1011 => 0.018642882313124
1012 => 0.018989484722153
1013 => 0.018842241858431
1014 => 0.019112512507315
1015 => 0.019943232339929
1016 => 0.020606868823662
1017 => 0.019996561287284
1018 => 0.021215245176062
1019 => 0.022164165393296
1020 => 0.02212774425485
1021 => 0.021962278066055
1022 => 0.020881957627082
1023 => 0.01988783065247
1024 => 0.020719460079594
1025 => 0.02072158007403
1026 => 0.020650142368704
1027 => 0.020206448916299
1028 => 0.020634702798322
1029 => 0.020668696036287
1030 => 0.020649668862558
1031 => 0.020309490132894
1101 => 0.019790100088234
1102 => 0.019891587659717
1103 => 0.020057826372095
1104 => 0.019743101808534
1105 => 0.019642528240643
1106 => 0.019829513638257
1107 => 0.020432019549326
1108 => 0.020318119296917
1109 => 0.02031514490102
1110 => 0.020802458482047
1111 => 0.020453647126884
1112 => 0.019892867743001
1113 => 0.019751263552799
1114 => 0.019248664073595
1115 => 0.019595811324079
1116 => 0.01960830453561
1117 => 0.019418175534279
1118 => 0.019908295663598
1119 => 0.019903779120323
1120 => 0.020369075238358
1121 => 0.0212585466588
1122 => 0.020995486191545
1123 => 0.020689575489025
1124 => 0.020722836464372
1125 => 0.021087627268854
1126 => 0.0208670664211
1127 => 0.020946381639757
1128 => 0.021087507215771
1129 => 0.021172651779731
1130 => 0.020710585471919
1201 => 0.020602855712381
1202 => 0.020382478432376
1203 => 0.020324986113559
1204 => 0.020504478809801
1205 => 0.020457188825912
1206 => 0.019607254529557
1207 => 0.019518431666598
1208 => 0.019521155736995
1209 => 0.019297806424788
1210 => 0.018957145113696
1211 => 0.019852382699417
1212 => 0.019780482592442
1213 => 0.019701110438967
1214 => 0.019710833074876
1215 => 0.020099425368421
1216 => 0.019874022213784
1217 => 0.020473293443237
1218 => 0.020350101294204
1219 => 0.020223749731394
1220 => 0.020206284096651
1221 => 0.020157649524778
1222 => 0.019990863481698
1223 => 0.019789459312393
1224 => 0.019656474834487
1225 => 0.018132058997485
1226 => 0.018414981709714
1227 => 0.018740458500916
1228 => 0.018852811784973
1229 => 0.018660623717983
1230 => 0.019998452237983
1231 => 0.020242886400224
]
'min_raw' => 0.0084370426357667
'max_raw' => 0.022164165393296
'avg_raw' => 0.015300604014531
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.008437'
'max' => '$0.022164'
'avg' => '$0.0153006'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00032712315420831
'max_diff' => -0.0039970829327305
'year' => 2027
]
2 => [
'items' => [
101 => 0.019502479378752
102 => 0.019363979455654
103 => 0.020007532269884
104 => 0.019619391251771
105 => 0.019794171128461
106 => 0.019416392634539
107 => 0.020184009368408
108 => 0.020178161415005
109 => 0.01987954116812
110 => 0.020131932955924
111 => 0.020088073671737
112 => 0.019750932148472
113 => 0.020194697356044
114 => 0.02019491745805
115 => 0.019907501962987
116 => 0.019571863588096
117 => 0.01951185937409
118 => 0.019466654259268
119 => 0.019783053441339
120 => 0.020066735958629
121 => 0.020594598792446
122 => 0.02072731605058
123 => 0.021245320344562
124 => 0.020936874008667
125 => 0.02107360427432
126 => 0.021222044319364
127 => 0.02129321193566
128 => 0.021177248123971
129 => 0.021981922011598
130 => 0.022049861142285
131 => 0.022072640545133
201 => 0.021801309037671
202 => 0.022042314922227
203 => 0.02192955625012
204 => 0.022222922989683
205 => 0.022268926640341
206 => 0.022229963184861
207 => 0.022244565469698
208 => 0.021557918260808
209 => 0.021522311980675
210 => 0.021036817824548
211 => 0.021234660281762
212 => 0.020864803290837
213 => 0.020982088752608
214 => 0.02103378706662
215 => 0.021006782801234
216 => 0.021245845997452
217 => 0.021042593443282
218 => 0.020506176535015
219 => 0.01996961348032
220 => 0.019962877368243
221 => 0.019821609787066
222 => 0.019719499200324
223 => 0.019739169321898
224 => 0.01980848939594
225 => 0.019715470191603
226 => 0.019735320555042
227 => 0.020064968850403
228 => 0.020131077465093
229 => 0.019906414562072
301 => 0.019004360587738
302 => 0.018782994279805
303 => 0.018942107992062
304 => 0.018866061885839
305 => 0.015226384377631
306 => 0.016081472620085
307 => 0.015573408222471
308 => 0.015807547671811
309 => 0.015288945484486
310 => 0.015536449630546
311 => 0.015490744652173
312 => 0.016865701242139
313 => 0.016844233186177
314 => 0.016854508808502
315 => 0.016364026581964
316 => 0.017145378086882
317 => 0.017530299934697
318 => 0.01745906114503
319 => 0.017476990413609
320 => 0.0171689061769
321 => 0.016857491737352
322 => 0.016512085197554
323 => 0.01715380785496
324 => 0.017082459250027
325 => 0.017246107279325
326 => 0.017662310293936
327 => 0.017723597768838
328 => 0.017805968756624
329 => 0.017776444621069
330 => 0.01847982931025
331 => 0.018394644783309
401 => 0.018599914983976
402 => 0.018177658607315
403 => 0.01769983543618
404 => 0.017790653999796
405 => 0.017781907441803
406 => 0.01767055371972
407 => 0.017570028558385
408 => 0.01740268248755
409 => 0.01793219021823
410 => 0.017910693171359
411 => 0.018258705372616
412 => 0.018197190835634
413 => 0.017786381702505
414 => 0.017801053831062
415 => 0.017899730946795
416 => 0.018241253571024
417 => 0.018342640738529
418 => 0.01829567416296
419 => 0.018406840563629
420 => 0.018494701954098
421 => 0.018417874601534
422 => 0.019505587899293
423 => 0.019053893502957
424 => 0.019274046208861
425 => 0.019326551332005
426 => 0.019192060563137
427 => 0.019221226795151
428 => 0.01926540568933
429 => 0.019533651283669
430 => 0.020237605340701
501 => 0.020549381800584
502 => 0.02148737666292
503 => 0.020523493105729
504 => 0.020466300244392
505 => 0.020635261443829
506 => 0.021185963724861
507 => 0.021632256198801
508 => 0.021780317159638
509 => 0.021799885859833
510 => 0.022077658065269
511 => 0.02223687191328
512 => 0.022043929213395
513 => 0.021880430477185
514 => 0.02129479829829
515 => 0.021362586817621
516 => 0.021829582493168
517 => 0.022489241390786
518 => 0.023055297350753
519 => 0.022857084282614
520 => 0.024369310075892
521 => 0.024519241086407
522 => 0.024498525468604
523 => 0.024840090623283
524 => 0.024162153349779
525 => 0.02387232203094
526 => 0.021915780759743
527 => 0.022465489050668
528 => 0.023264522334763
529 => 0.023158767283392
530 => 0.022578487954261
531 => 0.023054857156847
601 => 0.02289735460103
602 => 0.02277312580047
603 => 0.023342242018773
604 => 0.022716475358743
605 => 0.023258279833643
606 => 0.022563409990334
607 => 0.022857989703213
608 => 0.022690772010966
609 => 0.022798982351279
610 => 0.022166386912905
611 => 0.022507720056066
612 => 0.02215218633195
613 => 0.022152017762673
614 => 0.022144169336008
615 => 0.022562453185752
616 => 0.022576093407075
617 => 0.022266981010122
618 => 0.022222433084478
619 => 0.022387150114097
620 => 0.022194309611872
621 => 0.022284538469139
622 => 0.022197042552041
623 => 0.022177345378156
624 => 0.022020394945443
625 => 0.021952776383589
626 => 0.021979291364008
627 => 0.021888782066429
628 => 0.021834246940773
629 => 0.022133320926886
630 => 0.021973537760716
701 => 0.022108831865057
702 => 0.021954647157683
703 => 0.021420175786847
704 => 0.021112795649546
705 => 0.020103228775558
706 => 0.020389540688657
707 => 0.020579365783253
708 => 0.020516628590622
709 => 0.020651412356465
710 => 0.020659686985019
711 => 0.020615867408786
712 => 0.020565129953143
713 => 0.020540433765693
714 => 0.020724498913737
715 => 0.020831354927524
716 => 0.020598417271028
717 => 0.020543843237255
718 => 0.020779356068813
719 => 0.020923018760012
720 => 0.02198374335473
721 => 0.021905161450658
722 => 0.022102386608959
723 => 0.022080182082801
724 => 0.022286905469132
725 => 0.022624810837962
726 => 0.021937754743304
727 => 0.022057003924725
728 => 0.022027766779306
729 => 0.022346970266594
730 => 0.022347966785039
731 => 0.022156588349013
801 => 0.022260337703944
802 => 0.022202427660236
803 => 0.022307078936227
804 => 0.02190411194142
805 => 0.022394882243496
806 => 0.022673117380233
807 => 0.022676980675377
808 => 0.02280886192198
809 => 0.022942860906575
810 => 0.023200060288654
811 => 0.022935687755404
812 => 0.022460107304236
813 => 0.022494442676694
814 => 0.022215610032182
815 => 0.022220297259312
816 => 0.02219527647355
817 => 0.022270365735098
818 => 0.021920589811695
819 => 0.022002681521795
820 => 0.021887752646926
821 => 0.022056754091796
822 => 0.021874936474055
823 => 0.022027752680269
824 => 0.022093703088934
825 => 0.022337061516716
826 => 0.021838992236403
827 => 0.020823395257519
828 => 0.021036886055404
829 => 0.020721116395992
830 => 0.020750342080191
831 => 0.020809382613505
901 => 0.020618012928174
902 => 0.020654520233383
903 => 0.020653215935543
904 => 0.020641976201396
905 => 0.020592193555194
906 => 0.020519998869004
907 => 0.020807600278432
908 => 0.020856469362175
909 => 0.020965099281738
910 => 0.021288308237977
911 => 0.021256012041457
912 => 0.021308688477938
913 => 0.021193696112865
914 => 0.0207556762462
915 => 0.020779462832337
916 => 0.020482843722054
917 => 0.020957514064197
918 => 0.020845105861835
919 => 0.020772635562514
920 => 0.020752861369912
921 => 0.021076871498638
922 => 0.021173820407389
923 => 0.021113408353455
924 => 0.020989501468333
925 => 0.021227439317548
926 => 0.021291101448206
927 => 0.021305353051491
928 => 0.021726933300242
929 => 0.021328914704224
930 => 0.02142472173625
1001 => 0.022172180850795
1002 => 0.02149433857621
1003 => 0.021853406746744
1004 => 0.021835832228297
1005 => 0.022019519354138
1006 => 0.021820764522553
1007 => 0.021823228326896
1008 => 0.021986330050599
1009 => 0.021757283095209
1010 => 0.02170056784796
1011 => 0.021622216140087
1012 => 0.021793294227787
1013 => 0.021895847804166
1014 => 0.022722354312483
1015 => 0.023256315210131
1016 => 0.023233134559342
1017 => 0.02344496231519
1018 => 0.023349531971061
1019 => 0.023041362216615
1020 => 0.023567370410156
1021 => 0.023400919408602
1022 => 0.023414641426932
1023 => 0.023414130692725
1024 => 0.023524806057359
1025 => 0.023446382418268
1026 => 0.023291801375596
1027 => 0.023394419485717
1028 => 0.023699158586128
1029 => 0.024645078104344
1030 => 0.025174427198504
1031 => 0.024613210624205
1101 => 0.025000330302167
1102 => 0.024768196440235
1103 => 0.024726010812138
1104 => 0.024969150577817
1105 => 0.02521271592747
1106 => 0.02519720186766
1107 => 0.025020385931031
1108 => 0.024920507094967
1109 => 0.025676823103504
1110 => 0.026234063855087
1111 => 0.026196063771619
1112 => 0.02636378378176
1113 => 0.026856214918919
1114 => 0.026901236650753
1115 => 0.026895564947354
1116 => 0.026783973887472
1117 => 0.027268836292269
1118 => 0.027673317040692
1119 => 0.026758143781285
1120 => 0.02710662977797
1121 => 0.027263076369399
1122 => 0.027492786381229
1123 => 0.027880345675055
1124 => 0.028301337863176
1125 => 0.02836087077452
1126 => 0.028318629325009
1127 => 0.028040973660066
1128 => 0.028501628335789
1129 => 0.028771469041146
1130 => 0.028932153005991
1201 => 0.029339620805577
1202 => 0.027264042530287
1203 => 0.025794845064103
1204 => 0.02556540866429
1205 => 0.026031976605451
1206 => 0.026155006850725
1207 => 0.026105413513122
1208 => 0.024451698191342
1209 => 0.025556702195365
1210 => 0.026745593592318
1211 => 0.026791263752787
1212 => 0.027386447644649
1213 => 0.027580263917251
1214 => 0.028059464962735
1215 => 0.028029490806868
1216 => 0.028146168635689
1217 => 0.028119346423421
1218 => 0.029006965452496
1219 => 0.029986141054267
1220 => 0.029952235316765
1221 => 0.029811467238931
1222 => 0.030020531839039
1223 => 0.031031145994901
1224 => 0.030938104838191
1225 => 0.031028486396708
1226 => 0.032220057442187
1227 => 0.033769269300315
1228 => 0.033049504853887
1229 => 0.034611186595996
1230 => 0.035594182471461
1231 => 0.037294172194407
]
'min_raw' => 0.015226384377631
'max_raw' => 0.037294172194407
'avg_raw' => 0.026260278286019
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.015226'
'max' => '$0.037294'
'avg' => '$0.02626'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.006789341741864
'max_diff' => 0.015130006801111
'year' => 2028
]
3 => [
'items' => [
101 => 0.037081325108468
102 => 0.03774311863251
103 => 0.036700284402111
104 => 0.034305726217542
105 => 0.033926778218833
106 => 0.034685441708739
107 => 0.036550541869373
108 => 0.034626703067353
109 => 0.035015893151389
110 => 0.034903806381004
111 => 0.034897833753349
112 => 0.035125784658534
113 => 0.034795129981443
114 => 0.033447983343335
115 => 0.034065372708795
116 => 0.033826969025318
117 => 0.034091495686307
118 => 0.035519036976573
119 => 0.034887886943812
120 => 0.034223021654765
121 => 0.035056910272649
122 => 0.036118737038434
123 => 0.036052289827718
124 => 0.035923354466148
125 => 0.036650156348481
126 => 0.037850620125124
127 => 0.038175100660096
128 => 0.0384146255573
129 => 0.038447651993818
130 => 0.038787844815771
131 => 0.036958542272501
201 => 0.039861692388492
202 => 0.040362986215621
203 => 0.040268763752621
204 => 0.040825930743805
205 => 0.040661998081036
206 => 0.040424485372931
207 => 0.041307713566776
208 => 0.040295163715373
209 => 0.038857976677788
210 => 0.038069507444633
211 => 0.039107827334851
212 => 0.039741893059436
213 => 0.040160970169233
214 => 0.040287782649444
215 => 0.037100545821578
216 => 0.035382801943617
217 => 0.036483856075417
218 => 0.037827218106909
219 => 0.036951079828588
220 => 0.036985422790349
221 => 0.035736279850552
222 => 0.037937739539591
223 => 0.037617005380088
224 => 0.039280974766957
225 => 0.038883855118592
226 => 0.040240757558664
227 => 0.03988343967144
228 => 0.041366646243931
301 => 0.041958337501913
302 => 0.042951879213455
303 => 0.043682732540908
304 => 0.044111903593785
305 => 0.04408613777355
306 => 0.045786727297217
307 => 0.044783949069183
308 => 0.043524223278091
309 => 0.043501438812914
310 => 0.044153868650573
311 => 0.045521182604922
312 => 0.045875707219676
313 => 0.046073838114186
314 => 0.045770393752258
315 => 0.04468194985549
316 => 0.044211965299402
317 => 0.044612405757952
318 => 0.044122701487386
319 => 0.044968068445134
320 => 0.046128937838762
321 => 0.045889222899553
322 => 0.046690554001257
323 => 0.047519847389029
324 => 0.048705774179441
325 => 0.049015819357197
326 => 0.049528312246064
327 => 0.050055835773853
328 => 0.050225262113821
329 => 0.050548749566726
330 => 0.050547044628171
331 => 0.051521895840717
401 => 0.052597186916784
402 => 0.053003084404954
403 => 0.053936423297682
404 => 0.052338113151981
405 => 0.053550449757558
406 => 0.054644007722543
407 => 0.053340222834585
408 => 0.055137186559717
409 => 0.055206958589156
410 => 0.056260433396524
411 => 0.055192534857904
412 => 0.054558420114525
413 => 0.056389085618692
414 => 0.057274886990736
415 => 0.057008076408585
416 => 0.054977634704359
417 => 0.053795830542758
418 => 0.05070282109885
419 => 0.054366624393224
420 => 0.056151156103306
421 => 0.054973013198341
422 => 0.055567199951125
423 => 0.058808890208612
424 => 0.060043115974763
425 => 0.059786405643293
426 => 0.0598297854635
427 => 0.060495751284132
428 => 0.063449010486893
429 => 0.061679349116586
430 => 0.063032188926239
501 => 0.063749730283252
502 => 0.06441622268466
503 => 0.062779527993889
504 => 0.060650212249015
505 => 0.05997576857002
506 => 0.054855870105101
507 => 0.05458935715541
508 => 0.05443975536058
509 => 0.053496537205768
510 => 0.052755426105282
511 => 0.052166067042485
512 => 0.050619412864191
513 => 0.051141363246855
514 => 0.048676319298469
515 => 0.050253367060853
516 => 0.046319097398661
517 => 0.049595674080789
518 => 0.047812382360367
519 => 0.049009814789153
520 => 0.049005637060214
521 => 0.046800784312522
522 => 0.045529071261756
523 => 0.046339456313516
524 => 0.047208253417449
525 => 0.047349212824578
526 => 0.048475630947751
527 => 0.048789990033652
528 => 0.047837467327349
529 => 0.046237568404661
530 => 0.046609188434593
531 => 0.04552154039371
601 => 0.043615479037842
602 => 0.044984445580265
603 => 0.045451870947058
604 => 0.04565831261767
605 => 0.043783920186799
606 => 0.04319494538998
607 => 0.042881380150131
608 => 0.045995607879448
609 => 0.046166212304432
610 => 0.045293375945181
611 => 0.049238679054735
612 => 0.048345735452513
613 => 0.049343372232689
614 => 0.046575467812013
615 => 0.046681205488361
616 => 0.045370835177977
617 => 0.046104554992816
618 => 0.045585985476581
619 => 0.046045277682537
620 => 0.046320575537055
621 => 0.047630730828565
622 => 0.049610633949686
623 => 0.047435037317842
624 => 0.04648709871023
625 => 0.047075194490983
626 => 0.048641371053486
627 => 0.05101420871678
628 => 0.049609441062301
629 => 0.050232853092857
630 => 0.050369040887863
701 => 0.049333217226776
702 => 0.051052401012648
703 => 0.05197372557012
704 => 0.052918813924833
705 => 0.053739407662456
706 => 0.052541324853023
707 => 0.053823445197541
708 => 0.052790282524567
709 => 0.051863428800515
710 => 0.051864834455026
711 => 0.051283405574756
712 => 0.05015681385448
713 => 0.049949053056243
714 => 0.051029850965968
715 => 0.051896548537625
716 => 0.051967933900828
717 => 0.052447782209026
718 => 0.052731751494987
719 => 0.05551503653493
720 => 0.056634496802537
721 => 0.058003351627468
722 => 0.058536597726209
723 => 0.060141477304113
724 => 0.058845406703009
725 => 0.058564993675794
726 => 0.054672080771907
727 => 0.055309545041833
728 => 0.056330186844139
729 => 0.054688910779301
730 => 0.055729922672766
731 => 0.055935440472183
801 => 0.05463314084666
802 => 0.055328755345697
803 => 0.05348140947158
804 => 0.049650901041528
805 => 0.051056665463539
806 => 0.052091781253327
807 => 0.050614543392443
808 => 0.053262435081077
809 => 0.051715591420157
810 => 0.051225316241235
811 => 0.04931257797254
812 => 0.050215316807316
813 => 0.051436284007326
814 => 0.050681868230392
815 => 0.052247394243629
816 => 0.05446459658891
817 => 0.056044707016839
818 => 0.056166008275186
819 => 0.055150103129204
820 => 0.05677809760906
821 => 0.056789955771524
822 => 0.054953571347694
823 => 0.053828796113129
824 => 0.053573244813289
825 => 0.054211662064074
826 => 0.054986818464853
827 => 0.056209024060615
828 => 0.05694757730482
829 => 0.058873332467334
830 => 0.059394386598583
831 => 0.059966867115084
901 => 0.060731877631582
902 => 0.061650468901308
903 => 0.059640643498577
904 => 0.059720497608611
905 => 0.057848976021515
906 => 0.055848986802358
907 => 0.057366729317523
908 => 0.059350975759274
909 => 0.058895787433139
910 => 0.058844569447795
911 => 0.058930703892459
912 => 0.058587506759614
913 => 0.057035238847235
914 => 0.05625569961935
915 => 0.057261504104989
916 => 0.057796044425899
917 => 0.058625069846815
918 => 0.058522874965083
919 => 0.060658355418533
920 => 0.061488138549167
921 => 0.061275844515929
922 => 0.061314911727186
923 => 0.06281719444959
924 => 0.064488041804909
925 => 0.066053010840894
926 => 0.067644964561281
927 => 0.065725802216343
928 => 0.064751369935061
929 => 0.065756735317926
930 => 0.065223274294236
1001 => 0.06828869957118
1002 => 0.068500942966397
1003 => 0.071566146578203
1004 => 0.074475389803464
1005 => 0.072648146258184
1006 => 0.074371154620526
1007 => 0.076234728643332
1008 => 0.079829865287313
1009 => 0.078619149744052
1010 => 0.077691760612246
1011 => 0.076815382363801
1012 => 0.078638986377686
1013 => 0.080985023808765
1014 => 0.081490337801352
1015 => 0.082309139514145
1016 => 0.081448269631453
1017 => 0.082485092583449
1018 => 0.086145533207084
1019 => 0.085156449838975
1020 => 0.083751792453173
1021 => 0.086641358773079
1022 => 0.087687081591348
1023 => 0.095026511979253
1024 => 0.10429284602073
1025 => 0.10045652288153
1026 => 0.098075193311653
1027 => 0.098634862246466
1028 => 0.10201861375321
1029 => 0.10310536734227
1030 => 0.10015119646078
1031 => 0.10119465955825
1101 => 0.10694424381639
1102 => 0.11002871130213
1103 => 0.10583959015724
1104 => 0.094281971061449
1105 => 0.083625318424271
1106 => 0.086451942578973
1107 => 0.08613149112019
1108 => 0.092308702130314
1109 => 0.085132860527757
1110 => 0.085253683296872
1111 => 0.091558632488906
1112 => 0.089876580138665
1113 => 0.087151870752263
1114 => 0.083645211818136
1115 => 0.07716282845171
1116 => 0.071421200729433
1117 => 0.082681854910713
1118 => 0.082196275026245
1119 => 0.081493083394629
1120 => 0.083057960277509
1121 => 0.090656558222724
1122 => 0.090481385945825
1123 => 0.089367029293878
1124 => 0.090212258992891
1125 => 0.087003697899401
1126 => 0.087830617150771
1127 => 0.083623630356047
1128 => 0.085525364086551
1129 => 0.087146024749649
1130 => 0.087471396372057
1201 => 0.08820447525123
1202 => 0.081940396492051
1203 => 0.084752783951232
1204 => 0.086404798098433
1205 => 0.078940938080591
1206 => 0.08625726158402
1207 => 0.081831352817171
1208 => 0.080329132906784
1209 => 0.082351674113696
1210 => 0.081563487838377
1211 => 0.080885851562708
1212 => 0.080507718877616
1213 => 0.081992849920245
1214 => 0.081923566781991
1215 => 0.079493604144735
1216 => 0.076323816942384
1217 => 0.077387701572211
1218 => 0.077001182312223
1219 => 0.07560038665205
1220 => 0.076544353794294
1221 => 0.072387600230692
1222 => 0.065236121773763
1223 => 0.069960607498119
1224 => 0.069778719936983
1225 => 0.069687003980714
1226 => 0.073237324427373
1227 => 0.072896043036256
1228 => 0.072276613969541
1229 => 0.075589010351478
1230 => 0.074379941114052
1231 => 0.078106007611258
]
'min_raw' => 0.033447983343335
'max_raw' => 0.11002871130213
'avg_raw' => 0.071738347322734
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.033447'
'max' => '$0.110028'
'avg' => '$0.071738'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.018221598965704
'max_diff' => 0.072734539107727
'year' => 2029
]
4 => [
'items' => [
101 => 0.080560235993189
102 => 0.07993776428956
103 => 0.082245977945082
104 => 0.077412211325337
105 => 0.07901779469936
106 => 0.079348703207504
107 => 0.075548135894295
108 => 0.072951880892541
109 => 0.072778740283398
110 => 0.068277191896334
111 => 0.070681882709475
112 => 0.072797911112171
113 => 0.071784497717717
114 => 0.071463681311897
115 => 0.073102662752643
116 => 0.073230025647516
117 => 0.070326138147103
118 => 0.070929948312596
119 => 0.073447937077791
120 => 0.070866501456207
121 => 0.065851193718584
122 => 0.064607328057599
123 => 0.064441373449431
124 => 0.06106791112461
125 => 0.064690449108841
126 => 0.063109114200742
127 => 0.068104532228126
128 => 0.065251176241848
129 => 0.06512817376821
130 => 0.064942237488766
131 => 0.062038559109819
201 => 0.062674280136421
202 => 0.064787513651891
203 => 0.06554153917749
204 => 0.065462888137621
205 => 0.064777157654795
206 => 0.065091081558324
207 => 0.064079823286716
208 => 0.063722726943491
209 => 0.062595632657184
210 => 0.060939115424056
211 => 0.061169464305333
212 => 0.057887470215195
213 => 0.056099265646277
214 => 0.055604314189758
215 => 0.054942444416656
216 => 0.055679074141799
217 => 0.057878172738298
218 => 0.055225593266126
219 => 0.050677931817903
220 => 0.05095125401978
221 => 0.051565327857305
222 => 0.050421005323581
223 => 0.049338000081121
224 => 0.050279585272447
225 => 0.048352681166074
226 => 0.051798185012668
227 => 0.05170499378953
228 => 0.052989264555012
301 => 0.053792345420557
302 => 0.051941504025993
303 => 0.051476022420468
304 => 0.051741181897935
305 => 0.047358686385446
306 => 0.052631121173913
307 => 0.052676717408907
308 => 0.052286294762617
309 => 0.055093703519314
310 => 0.061018211648696
311 => 0.058789173377635
312 => 0.057926022386042
313 => 0.056285171720064
314 => 0.058471507808408
315 => 0.058303631308979
316 => 0.05754443011329
317 => 0.057085262861286
318 => 0.05793129260194
319 => 0.056980430413822
320 => 0.056809629436891
321 => 0.055774761349981
322 => 0.055405360526452
323 => 0.055131870862982
324 => 0.05483078561604
325 => 0.055494904645024
326 => 0.053989923553212
327 => 0.052175063891603
328 => 0.052024177947793
329 => 0.052440787304678
330 => 0.052256468677176
331 => 0.052023295501117
401 => 0.051578104407086
402 => 0.05144602571949
403 => 0.051875217378708
404 => 0.051390685018879
405 => 0.052105638909651
406 => 0.051911211011564
407 => 0.05082515257782
408 => 0.049471521659044
409 => 0.04945947150453
410 => 0.049167833943479
411 => 0.04879638966148
412 => 0.048693062359722
413 => 0.050200287593928
414 => 0.053320198721281
415 => 0.052707685513835
416 => 0.053150289079093
417 => 0.05532746055931
418 => 0.056019517903041
419 => 0.055528311992737
420 => 0.054855919046453
421 => 0.054885500923638
422 => 0.057183271168278
423 => 0.057326580279934
424 => 0.057688676171817
425 => 0.058154071721173
426 => 0.05560757086722
427 => 0.05476556096242
428 => 0.054366569956594
429 => 0.053137832087603
430 => 0.054462920535286
501 => 0.053690848242766
502 => 0.053795027172772
503 => 0.053727180507937
504 => 0.053764229374708
505 => 0.051797221924123
506 => 0.052513896056248
507 => 0.051322286310356
508 => 0.049726854625077
509 => 0.049721506178638
510 => 0.050111985823363
511 => 0.04987971325121
512 => 0.049254673731821
513 => 0.049343457645447
514 => 0.04856561713926
515 => 0.049437901566155
516 => 0.049462915562335
517 => 0.049127038544326
518 => 0.050470913056013
519 => 0.051021499539948
520 => 0.050800418091512
521 => 0.051005987876168
522 => 0.052733138202936
523 => 0.053014739067051
524 => 0.053139807569382
525 => 0.05297223234466
526 => 0.051037557013567
527 => 0.051123368091375
528 => 0.05049374333896
529 => 0.04996177677139
530 => 0.049983052644296
531 => 0.05025655261084
601 => 0.051450943005298
602 => 0.053964467177275
603 => 0.054059853582239
604 => 0.054175464687674
605 => 0.053705216220386
606 => 0.05356338478298
607 => 0.053750497058718
608 => 0.054694444582891
609 => 0.057122533894315
610 => 0.056264284965025
611 => 0.055566515226072
612 => 0.056178647404505
613 => 0.056084414453685
614 => 0.055288993516082
615 => 0.055266668699596
616 => 0.053740001608879
617 => 0.053175627545968
618 => 0.052703994336334
619 => 0.05218898318371
620 => 0.051883667309105
621 => 0.052352771256082
622 => 0.052460060879031
623 => 0.05143435690043
624 => 0.051294557238253
625 => 0.052132169248537
626 => 0.051763567432134
627 => 0.052142683541189
628 => 0.052230641730488
629 => 0.052216478436162
630 => 0.051831615806189
701 => 0.052076915769765
702 => 0.051496708228469
703 => 0.050865819671664
704 => 0.050463352078169
705 => 0.050112145723265
706 => 0.050307015421199
707 => 0.049612340529865
708 => 0.049390100051084
709 => 0.051993813661529
710 => 0.053917204900203
711 => 0.053889238029846
712 => 0.053718996899044
713 => 0.053466053110824
714 => 0.054675940169293
715 => 0.054254439710578
716 => 0.054561116511835
717 => 0.05463917862894
718 => 0.05487544914661
719 => 0.05495989554854
720 => 0.05470463987011
721 => 0.053847970636445
722 => 0.051713232355816
723 => 0.050719505923568
724 => 0.050391559649103
725 => 0.050403479873322
726 => 0.050074666875161
727 => 0.050171517039484
728 => 0.050040986340438
729 => 0.049793792775211
730 => 0.050291751915119
731 => 0.050349137067183
801 => 0.05023290745376
802 => 0.050260283735295
803 => 0.049297952178469
804 => 0.04937111615666
805 => 0.048963729828863
806 => 0.048887349803516
807 => 0.04785751264203
808 => 0.046033006833173
809 => 0.047043960160344
810 => 0.045822870702671
811 => 0.045360425622526
812 => 0.047549568706968
813 => 0.047329839458668
814 => 0.046953758499585
815 => 0.046397456378963
816 => 0.046191118511066
817 => 0.044937474944349
818 => 0.044863402994499
819 => 0.045484742597388
820 => 0.045198015749645
821 => 0.044795342663465
822 => 0.043336901563639
823 => 0.041697130894181
824 => 0.041746625263461
825 => 0.042268205804398
826 => 0.04378477157189
827 => 0.043192223089677
828 => 0.04276232236712
829 => 0.042681814884554
830 => 0.043689534582705
831 => 0.045115669079393
901 => 0.045784779477278
902 => 0.045121711394159
903 => 0.044360014482393
904 => 0.044406375444048
905 => 0.044714794151866
906 => 0.044747204597252
907 => 0.0442514182114
908 => 0.044390979174932
909 => 0.044178973309605
910 => 0.042877893705424
911 => 0.042854361301153
912 => 0.042535055383544
913 => 0.042525386927259
914 => 0.041982167906813
915 => 0.041906167810756
916 => 0.040827573474623
917 => 0.04153750753295
918 => 0.041061321039835
919 => 0.040343595673672
920 => 0.040219859550019
921 => 0.040216139892726
922 => 0.04095308336332
923 => 0.041528895919427
924 => 0.041069604507756
925 => 0.040965032756308
926 => 0.042081585479757
927 => 0.041939493968094
928 => 0.041816443635386
929 => 0.044987974377195
930 => 0.042477460317423
1001 => 0.04138273289223
1002 => 0.040027799820454
1003 => 0.04046897286079
1004 => 0.040561934502569
1005 => 0.03730356470999
1006 => 0.035981644490945
1007 => 0.035528011287281
1008 => 0.035266938965141
1009 => 0.03538591290068
1010 => 0.034196029657763
1011 => 0.034995650875856
1012 => 0.033965312565816
1013 => 0.033792572995127
1014 => 0.035634945527902
1015 => 0.035891300902853
1016 => 0.034797609229938
1017 => 0.035499936336548
1018 => 0.035245262764614
1019 => 0.033982974758891
1020 => 0.033934764641835
1021 => 0.033301392892132
1022 => 0.032310288748784
1023 => 0.0318573275604
1024 => 0.0316214214407
1025 => 0.031718760903407
1026 => 0.031669543092426
1027 => 0.031348363583563
1028 => 0.031687952725915
1029 => 0.030820442795128
1030 => 0.030474993350686
1031 => 0.030318961850998
1101 => 0.029548996855416
1102 => 0.030774353568374
1103 => 0.031015764277464
1104 => 0.031257650640227
1105 => 0.03336310628524
1106 => 0.033257923671171
1107 => 0.034208723276343
1108 => 0.034171776952095
1109 => 0.033900593502767
1110 => 0.032756515137566
1111 => 0.033212524382699
1112 => 0.03180899880575
1113 => 0.032860615598462
1114 => 0.032380701610836
1115 => 0.032698356196496
1116 => 0.03212718460972
1117 => 0.032443294548938
1118 => 0.031073011712336
1119 => 0.029793460879917
1120 => 0.0303083894873
1121 => 0.030868175772754
1122 => 0.032081935070512
1123 => 0.031359030046064
1124 => 0.031619014028921
1125 => 0.030748111207144
1126 => 0.028951189924726
1127 => 0.028961360304039
1128 => 0.028684943112797
1129 => 0.028446078301993
1130 => 0.03144206438424
1201 => 0.031069466155381
1202 => 0.030475779642146
1203 => 0.031270452632275
1204 => 0.031480576784022
1205 => 0.031486558723223
1206 => 0.032066331623343
1207 => 0.032375756524067
1208 => 0.032430294003943
1209 => 0.033342579189105
1210 => 0.033648365149838
1211 => 0.034907854245651
1212 => 0.032349503983072
1213 => 0.032296816442983
1214 => 0.031281635310917
1215 => 0.030637791387583
1216 => 0.031325719855181
1217 => 0.031935130565872
1218 => 0.031300571400424
1219 => 0.031383431431157
1220 => 0.030531587596932
1221 => 0.03083608168469
1222 => 0.03109835301285
1223 => 0.030953542201036
1224 => 0.030736753406828
1225 => 0.031885165837223
1226 => 0.031820367907236
1227 => 0.032889795964308
1228 => 0.033723491610329
1229 => 0.035217623248923
1230 => 0.033658418993207
1231 => 0.033601595392853
]
'min_raw' => 0.028446078301993
'max_raw' => 0.082245977945082
'avg_raw' => 0.055346028123538
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.028446'
'max' => '$0.082245'
'avg' => '$0.055346'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0050019050413414
'max_diff' => -0.027782733357052
'year' => 2030
]
5 => [
'items' => [
101 => 0.034157055201104
102 => 0.033648280111836
103 => 0.033969808405934
104 => 0.035165820069936
105 => 0.035191089911746
106 => 0.034767787503078
107 => 0.034742029513041
108 => 0.034823329371047
109 => 0.03529950517874
110 => 0.035133114720127
111 => 0.035325665971325
112 => 0.035566454259396
113 => 0.03656245671098
114 => 0.036802589530106
115 => 0.036219191274221
116 => 0.036271865604694
117 => 0.036053658642353
118 => 0.035842873450856
119 => 0.036316687778635
120 => 0.037182592775495
121 => 0.03717720602545
122 => 0.037378079153933
123 => 0.037503221448856
124 => 0.03696601910929
125 => 0.03661632013971
126 => 0.036750416976571
127 => 0.03696484073896
128 => 0.036680882240359
129 => 0.034928158844625
130 => 0.035459823158487
131 => 0.035371328219604
201 => 0.035245300665281
202 => 0.035779893244108
203 => 0.035728330485733
204 => 0.034183825685278
205 => 0.034282699871469
206 => 0.034189838552021
207 => 0.034489892472795
208 => 0.033632076215421
209 => 0.033895934718709
210 => 0.034061424298451
211 => 0.03415889893227
212 => 0.034511044148606
213 => 0.034469723971914
214 => 0.034508475628407
215 => 0.035030614021344
216 => 0.037671410836558
217 => 0.03781514358062
218 => 0.037107350981076
219 => 0.037390100164002
220 => 0.036847283563232
221 => 0.037211679983884
222 => 0.037460990760228
223 => 0.036334403301634
224 => 0.036267694103828
225 => 0.035722637105856
226 => 0.03601551986296
227 => 0.035549522337393
228 => 0.035663861830265
301 => 0.035344158640255
302 => 0.035919560730003
303 => 0.036562949674786
304 => 0.036725495130438
305 => 0.036297908016837
306 => 0.035988306767226
307 => 0.035444748961901
308 => 0.036348697706132
309 => 0.036613039866284
310 => 0.036347309229299
311 => 0.03628573363438
312 => 0.036169047993274
313 => 0.03631048904475
314 => 0.03661160020211
315 => 0.036469601740949
316 => 0.036563394226236
317 => 0.03620595399071
318 => 0.036966196945617
319 => 0.038173645720441
320 => 0.03817752786569
321 => 0.038035528639104
322 => 0.037977425615001
323 => 0.038123125438712
324 => 0.038202161616155
325 => 0.038673328129256
326 => 0.039178908569916
327 => 0.041538231884448
328 => 0.040875743338712
329 => 0.042969075340137
330 => 0.044624629168123
331 => 0.045121057372541
401 => 0.044664366783228
402 => 0.04310205294713
403 => 0.04302539837692
404 => 0.045360154839938
405 => 0.044700479200515
406 => 0.044622012882276
407 => 0.043787263827151
408 => 0.044280703904412
409 => 0.044172781321185
410 => 0.04400242024381
411 => 0.044943869537889
412 => 0.046706178572648
413 => 0.046431506182751
414 => 0.046226475985379
415 => 0.045328093343886
416 => 0.045869120355092
417 => 0.045676470999092
418 => 0.046504214890773
419 => 0.046013877746113
420 => 0.044695481508737
421 => 0.04490544045503
422 => 0.044873705582677
423 => 0.045526807006953
424 => 0.045330762170359
425 => 0.044835424681925
426 => 0.046700155191955
427 => 0.046579069964809
428 => 0.046750741132965
429 => 0.046826316090294
430 => 0.047961344691512
501 => 0.048426329592567
502 => 0.048531889305812
503 => 0.048973588998592
504 => 0.048520899415077
505 => 0.050331980511339
506 => 0.051536243760841
507 => 0.052935057495958
508 => 0.054979100328652
509 => 0.055747679342198
510 => 0.055608842422685
511 => 0.057158612370094
512 => 0.059943514516139
513 => 0.0561717507698
514 => 0.060143427153252
515 => 0.05888604026546
516 => 0.055904798573929
517 => 0.055712841755525
518 => 0.057731773241958
519 => 0.062209568963911
520 => 0.0610879319223
521 => 0.062211403560296
522 => 0.060900814217865
523 => 0.060835732410499
524 => 0.062147751161224
525 => 0.065213354486713
526 => 0.063757001259195
527 => 0.061668961795087
528 => 0.063210737641892
529 => 0.061875108718771
530 => 0.058865562935982
531 => 0.061087074227593
601 => 0.059601612891892
602 => 0.060035149481118
603 => 0.063157368263064
604 => 0.062781694638854
605 => 0.063267851095023
606 => 0.062409797674815
607 => 0.061608240477735
608 => 0.060112074444968
609 => 0.059669133442759
610 => 0.059791546400422
611 => 0.059669072780977
612 => 0.058831981636119
613 => 0.058651211883087
614 => 0.058349921041663
615 => 0.058443303671798
616 => 0.057876788744176
617 => 0.058945919460556
618 => 0.059144359542664
619 => 0.059922383719943
620 => 0.060003160771024
621 => 0.062169947030265
622 => 0.060976517570039
623 => 0.061777173087701
624 => 0.061705554922139
625 => 0.0559694111213
626 => 0.05675980112663
627 => 0.057989399936877
628 => 0.057435467339543
629 => 0.056652336247177
630 => 0.05601991590126
701 => 0.055061734408894
702 => 0.056410356459153
703 => 0.058183651045278
704 => 0.06004813444811
705 => 0.062288189090821
706 => 0.061788234971678
707 => 0.060006258184714
708 => 0.060086196361642
709 => 0.0605803427169
710 => 0.059940378288911
711 => 0.059751640285507
712 => 0.060554413013502
713 => 0.060559941268083
714 => 0.059823584851397
715 => 0.059005259446051
716 => 0.059001830632723
717 => 0.058856217530927
718 => 0.060926718465193
719 => 0.062065284627783
720 => 0.062195819403433
721 => 0.062056498597335
722 => 0.062110117646157
723 => 0.061447611082739
724 => 0.062961904626494
725 => 0.064351570130352
726 => 0.063979110089445
727 => 0.06342073953981
728 => 0.062975970502257
729 => 0.063874336639161
730 => 0.063834333809244
731 => 0.064339432614494
801 => 0.064316518415096
802 => 0.064146672684617
803 => 0.063979116155171
804 => 0.064643458854693
805 => 0.064452138826248
806 => 0.064260521624955
807 => 0.063876203992635
808 => 0.063928439141708
809 => 0.063370165002621
810 => 0.063111881840992
811 => 0.059227922798062
812 => 0.058190002029769
813 => 0.058516553032299
814 => 0.058624062101226
815 => 0.058172357652732
816 => 0.058819985798519
817 => 0.058719053638006
818 => 0.059111721631223
819 => 0.058866399716724
820 => 0.058876467813666
821 => 0.059597907256063
822 => 0.059807344195413
823 => 0.059700822877696
824 => 0.059775426757288
825 => 0.061494641674153
826 => 0.061250224290373
827 => 0.061120382426659
828 => 0.061156349510263
829 => 0.061595645781906
830 => 0.061718624753278
831 => 0.061197554209993
901 => 0.061443294090479
902 => 0.062489623312556
903 => 0.062855779323177
904 => 0.064024373544225
905 => 0.063527933949018
906 => 0.064439170311424
907 => 0.067240000226089
908 => 0.069477496964613
909 => 0.067419802495403
910 => 0.07152868031221
911 => 0.07472803107611
912 => 0.074605234664994
913 => 0.074047353856992
914 => 0.070404978071432
915 => 0.067053209568797
916 => 0.069857106244859
917 => 0.069864253954113
918 => 0.069623396742987
919 => 0.068127453290516
920 => 0.069571341153486
921 => 0.069685951728618
922 => 0.069621800283956
923 => 0.068474863946371
924 => 0.066723704148147
925 => 0.067065876581036
926 => 0.067626362006236
927 => 0.066565246166823
928 => 0.066226155360855
929 => 0.066856589683816
930 => 0.068887980428602
1001 => 0.068503957775346
1002 => 0.068493929391912
1003 => 0.070136941153492
1004 => 0.068960899316331
1005 => 0.067070192471202
1006 => 0.066592764057448
1007 => 0.064898214822936
1008 => 0.066068646014991
1009 => 0.066110767749914
1010 => 0.065469734547543
1011 => 0.067122208782639
1012 => 0.06710698094165
1013 => 0.068675759289543
1014 => 0.071674674284474
1015 => 0.070787747552829
1016 => 0.069756348261279
1017 => 0.069868489961871
1018 => 0.07109840762806
1019 => 0.070354771330793
1020 => 0.070622188128106
1021 => 0.071098002860709
1022 => 0.071385073702704
1023 => 0.069827184885477
1024 => 0.069463966479745
1025 => 0.068720949093955
1026 => 0.068527109727079
1027 => 0.069132281884238
1028 => 0.068972840401875
1029 => 0.066107227581197
1030 => 0.065807755097317
1031 => 0.06581693949085
1101 => 0.065063901690993
1102 => 0.063915338296431
1103 => 0.066933694320183
1104 => 0.06669127808961
1105 => 0.066423669332584
1106 => 0.066456449878365
1107 => 0.067766615926698
1108 => 0.067006653453694
1109 => 0.069027138243576
1110 => 0.068611787312109
1111 => 0.068185784196511
1112 => 0.068126897589564
1113 => 0.067962922734936
1114 => 0.067400591946064
1115 => 0.06672154372766
1116 => 0.066273177275719
1117 => 0.061133502849955
1118 => 0.062087396527266
1119 => 0.063184764252868
1120 => 0.063563571194321
1121 => 0.062915595708324
1122 => 0.067426177967709
1123 => 0.06825030481155
1124 => 0.06575397084509
1125 => 0.065287008684609
1126 => 0.067456791929209
1127 => 0.066148147387501
1128 => 0.066737429944503
1129 => 0.065463723376591
1130 => 0.06805179678812
1201 => 0.068032080004933
1202 => 0.067025260993559
1203 => 0.067876217527573
1204 => 0.067728342888776
1205 => 0.066591646704621
1206 => 0.068087832084646
1207 => 0.068088574173928
1208 => 0.067119532765613
1209 => 0.065987904551144
1210 => 0.065785596154262
1211 => 0.06563318395352
1212 => 0.066699945886158
1213 => 0.067656401299284
1214 => 0.069436127697704
1215 => 0.069883593199523
1216 => 0.071630080842589
1217 => 0.070590132486083
1218 => 0.071051128122936
1219 => 0.071551604098555
1220 => 0.071791550685661
1221 => 0.071400570598215
1222 => 0.074113584790889
1223 => 0.074342646313358
1224 => 0.074419448660467
1225 => 0.0735046355393
1226 => 0.074317203705573
1227 => 0.073937029970003
1228 => 0.074926136414651
1229 => 0.075081240934717
1230 => 0.074949872924225
1231 => 0.074999105547052
]
'min_raw' => 0.033632076215421
'max_raw' => 0.075081240934717
'avg_raw' => 0.054356658575069
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.033632'
'max' => '$0.075081'
'avg' => '$0.054356'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0051859979134278
'max_diff' => -0.0071647370103647
'year' => 2031
]
6 => [
'items' => [
101 => 0.072684026542104
102 => 0.072563977482683
103 => 0.070927100039183
104 => 0.071594139696596
105 => 0.070347141029104
106 => 0.070742577152076
107 => 0.070916881627228
108 => 0.0708258348611
109 => 0.071631853118008
110 => 0.070946572940985
111 => 0.06913800588333
112 => 0.067328946082789
113 => 0.067306234810621
114 => 0.066829941297697
115 => 0.06648566832536
116 => 0.066551987513572
117 => 0.066785704982978
118 => 0.066472084241163
119 => 0.066539011127405
120 => 0.067650443370523
121 => 0.067873333180508
122 => 0.067115866517508
123 => 0.064074528563643
124 => 0.063328176601146
125 => 0.063864639590986
126 => 0.063608244834484
127 => 0.051336818001391
128 => 0.054219807711179
129 => 0.052506833122703
130 => 0.053296250623244
131 => 0.051547747141029
201 => 0.052382224649661
202 => 0.052228127124056
203 => 0.056863889263528
204 => 0.056791508214003
205 => 0.05682615319209
206 => 0.055172458120942
207 => 0.057806839271996
208 => 0.059104630156287
209 => 0.058864443603191
210 => 0.058924893383989
211 => 0.05788616587017
212 => 0.05683621034497
213 => 0.055671648080527
214 => 0.057835260823617
215 => 0.057594704020686
216 => 0.058146454777003
217 => 0.05954971229913
218 => 0.05975634729972
219 => 0.060034066835998
220 => 0.059934524151665
221 => 0.062306034739989
222 => 0.062018829160012
223 => 0.062710911973071
224 => 0.061287245118159
225 => 0.059676230936128
226 => 0.05998243206411
227 => 0.059952942433172
228 => 0.0595775055847
229 => 0.059238577984815
301 => 0.058674359023265
302 => 0.060459631306302
303 => 0.060387152511901
304 => 0.061560499945875
305 => 0.061353099389631
306 => 0.05996802771551
307 => 0.060017495821316
308 => 0.060350192606427
309 => 0.061501659978362
310 => 0.06184349389223
311 => 0.0616851428036
312 => 0.062059948084845
313 => 0.062356178897098
314 => 0.062097150114014
315 => 0.065764451439124
316 => 0.064241532245582
317 => 0.06498379246411
318 => 0.065160817152578
319 => 0.064707372135496
320 => 0.064805708123052
321 => 0.064954660349248
322 => 0.06585906909887
323 => 0.068232499350659
324 => 0.069283675452691
325 => 0.072446190619767
326 => 0.069196389910495
327 => 0.069003560185419
328 => 0.069573224665818
329 => 0.07142995585512
330 => 0.072934662090157
331 => 0.073433859956904
401 => 0.073499837195853
402 => 0.074436365579917
403 => 0.074973166184442
404 => 0.07432264640095
405 => 0.073771398996701
406 => 0.071796899218026
407 => 0.072025452943792
408 => 0.073599961468495
409 => 0.075824047497728
410 => 0.077732544687521
411 => 0.077064255489498
412 => 0.082162830331767
413 => 0.082668333201568
414 => 0.082598489049826
415 => 0.083750099816145
416 => 0.081464386966456
417 => 0.080487200439614
418 => 0.073890584942423
419 => 0.075743964824684
420 => 0.078437961328735
421 => 0.078081400789455
422 => 0.076124948517481
423 => 0.077731060543034
424 => 0.077200029679619
425 => 0.076781183605153
426 => 0.078699998669588
427 => 0.076590182685664
428 => 0.07841691430037
429 => 0.07607411210939
430 => 0.077067308178262
501 => 0.076503522054082
502 => 0.076868360771455
503 => 0.074735521084572
504 => 0.075886349607857
505 => 0.07468764283443
506 => 0.074687074491343
507 => 0.074660612972881
508 => 0.076070886175939
509 => 0.07611687513446
510 => 0.075074681106596
511 => 0.07492448466505
512 => 0.075479839630587
513 => 0.07482966441364
514 => 0.075133877305495
515 => 0.074838878712227
516 => 0.074772468315262
517 => 0.074243298973442
518 => 0.074015318271172
519 => 0.074104715378871
520 => 0.073799556962927
521 => 0.073615687979258
522 => 0.074624036804115
523 => 0.074085316703669
524 => 0.074541470222387
525 => 0.074021625716644
526 => 0.072219618174269
527 => 0.071183264580766
528 => 0.067779439379407
529 => 0.06874475998408
530 => 0.069384768543675
531 => 0.069173245718547
601 => 0.069627678595389
602 => 0.069655577083276
603 => 0.06950783632262
604 => 0.069336771448544
605 => 0.069253506528324
606 => 0.069874095025971
607 => 0.070234367536903
608 => 0.06944900196484
609 => 0.069265001799738
610 => 0.070059049754315
611 => 0.070543418547901
612 => 0.074119725576421
613 => 0.073854781200429
614 => 0.074519739591461
615 => 0.074444875481249
616 => 0.07514185781123
617 => 0.07628112935404
618 => 0.073964671762175
619 => 0.074366728703046
620 => 0.074268153625995
621 => 0.075344370469463
622 => 0.075347730300976
623 => 0.074702484542298
624 => 0.075052282735994
625 => 0.074857034980484
626 => 0.075209874064007
627 => 0.073851242706758
628 => 0.075505909044695
629 => 0.076443998233962
630 => 0.076457023603265
701 => 0.076901670433841
702 => 0.077353457365914
703 => 0.07822062303968
704 => 0.077329272585928
705 => 0.075725819890846
706 => 0.07584158399631
707 => 0.074901480267864
708 => 0.074917283581383
709 => 0.074832924255292
710 => 0.075086092943166
711 => 0.073906798996836
712 => 0.0741835769289
713 => 0.073796086203201
714 => 0.074365886373884
715 => 0.073752875581571
716 => 0.074268106090108
717 => 0.074490462497431
718 => 0.075310962427442
719 => 0.073631687074781
720 => 0.070207530953757
721 => 0.070927330084276
722 => 0.069862690631236
723 => 0.069961227065983
724 => 0.07016028634613
725 => 0.069515070091032
726 => 0.069638157019404
727 => 0.069633759488173
728 => 0.069595863939764
729 => 0.069428018272379
730 => 0.069184608847418
731 => 0.070154277078994
801 => 0.070319042606765
802 => 0.070685295964868
803 => 0.071775017526558
804 => 0.071666128645141
805 => 0.071843730928488
806 => 0.071456026141135
807 => 0.069979211579105
808 => 0.070059409714992
809 => 0.069059337675387
810 => 0.070659721874347
811 => 0.070280729771994
812 => 0.070036391098118
813 => 0.069969721027168
814 => 0.071062143797833
815 => 0.071389013812445
816 => 0.07118533035477
817 => 0.070767569640682
818 => 0.071569793711599
819 => 0.07178443502986
820 => 0.071832485305351
821 => 0.073253872547808
822 => 0.071911925062562
823 => 0.072234945160072
824 => 0.074755055750688
825 => 0.072469663196489
826 => 0.073680286602784
827 => 0.073621032886826
828 => 0.074240346856224
829 => 0.073570231064915
830 => 0.073578537953275
831 => 0.074128446802138
901 => 0.073356199000493
902 => 0.07316497958466
903 => 0.072900811331227
904 => 0.073477613048197
905 => 0.073823379591022
906 => 0.076610003988653
907 => 0.078410290435034
908 => 0.078332135252479
909 => 0.079046327320661
910 => 0.078724577252695
911 => 0.077685561409854
912 => 0.0794590347591
913 => 0.078897833586122
914 => 0.078944098328963
915 => 0.078942376352924
916 => 0.079315526071896
917 => 0.079051115297335
918 => 0.078529934519465
919 => 0.078875918642303
920 => 0.079903367795546
921 => 0.083092601493202
922 => 0.084877338922136
923 => 0.082985158058997
924 => 0.084290359081079
925 => 0.083507703558506
926 => 0.08336547176807
927 => 0.084185234463535
928 => 0.08500643204508
929 => 0.08495412530927
930 => 0.084357978034031
1001 => 0.084021229564926
1002 => 0.086571201792006
1003 => 0.088449977891276
1004 => 0.08832185795678
1005 => 0.088887337680808
1006 => 0.090547603640183
1007 => 0.090699397552378
1008 => 0.090680275008385
1009 => 0.090304037958953
1010 => 0.091938785408737
1011 => 0.093302520491991
1012 => 0.090216949952543
1013 => 0.091391894820881
1014 => 0.091919365426637
1015 => 0.092693848769363
1016 => 0.094000531987023
1017 => 0.095419936542007
1018 => 0.095620655909061
1019 => 0.09547823591283
1020 => 0.094542100453176
1021 => 0.096095229854258
1022 => 0.097005016632045
1023 => 0.097546773838118
1024 => 0.098920579972914
1025 => 0.091922622905525
1026 => 0.086969121072195
1027 => 0.086195560231487
1028 => 0.087768626619844
1029 => 0.088183431681485
1030 => 0.088016224281259
1031 => 0.082440607615162
1101 => 0.08616620576364
1102 => 0.090174636114213
1103 => 0.090328616248825
1104 => 0.092335320294648
1105 => 0.092988785389546
1106 => 0.094604445171145
1107 => 0.09450338521191
1108 => 0.094896772657967
1109 => 0.094806339696639
1110 => 0.097799009224747
1111 => 0.10110036812997
1112 => 0.10098605256876
1113 => 0.10051144316623
1114 => 0.10121631906192
1115 => 0.10462367524724
1116 => 0.10430998049146
1117 => 0.10461470822624
1118 => 0.10863217319891
1119 => 0.11385544914111
1120 => 0.11142871305762
1121 => 0.11669403208428
1122 => 0.12000827130899
1123 => 0.1257399053494
1124 => 0.12502227653865
1125 => 0.1272535596099
1126 => 0.12373757119375
1127 => 0.11566415109176
1128 => 0.11438650145681
1129 => 0.11694438838122
1130 => 0.12323270378993
1201 => 0.11674634695079
1202 => 0.1180585284915
1203 => 0.1176806201195
1204 => 0.11766048298836
1205 => 0.11842903538022
1206 => 0.11731421005083
1207 => 0.11277221110568
1208 => 0.11485378245607
1209 => 0.11404998779242
1210 => 0.11494185789861
1211 => 0.11975491302649
1212 => 0.11762694662555
1213 => 0.11538530688411
1214 => 0.11819682057955
1215 => 0.12177684365477
1216 => 0.12155281224465
1217 => 0.12111809767113
1218 => 0.12356856096111
1219 => 0.12761600839776
1220 => 0.12871001717593
1221 => 0.12951759208995
1222 => 0.1296289430265
1223 => 0.13077592687722
1224 => 0.12460830563476
1225 => 0.13439647894229
1226 => 0.13608662607967
1227 => 0.13576894846727
1228 => 0.1376474758782
1229 => 0.13709476546026
1230 => 0.13629397478228
1231 => 0.13927184030285
]
'min_raw' => 0.051336818001391
'max_raw' => 0.13927184030285
'avg_raw' => 0.09530432915212
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.051336'
'max' => '$0.139271'
'avg' => '$0.0953043'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.01770474178597
'max_diff' => 0.064190599368131
'year' => 2032
]
7 => [
'items' => [
101 => 0.13585795778487
102 => 0.13101238134646
103 => 0.12835400227771
104 => 0.13185477028076
105 => 0.13399256714026
106 => 0.13540551487497
107 => 0.13583307200576
108 => 0.12508708051484
109 => 0.11929558710125
110 => 0.12300786797976
111 => 0.12753710685947
112 => 0.12458314548409
113 => 0.12469893517742
114 => 0.12048736254352
115 => 0.12790973758612
116 => 0.12682835997441
117 => 0.13243854893687
118 => 0.1310996323164
119 => 0.13567452362901
120 => 0.1344698014251
121 => 0.13947053593843
122 => 0.14146546432528
123 => 0.14481525957261
124 => 0.14727938259266
125 => 0.1487263627612
126 => 0.14863949149937
127 => 0.15437314780978
128 => 0.15099221100223
129 => 0.14674495754631
130 => 0.14666813813121
131 => 0.14886785088007
201 => 0.15347784533997
202 => 0.15467314983073
203 => 0.15534116197463
204 => 0.15431807812258
205 => 0.1506483135319
206 => 0.14906372778778
207 => 0.15041384075164
208 => 0.14876276861337
209 => 0.15161298233305
210 => 0.15552693454298
211 => 0.15471871888907
212 => 0.15742046264562
213 => 0.16021648320191
214 => 0.16421491817455
215 => 0.16526025713801
216 => 0.16698816269394
217 => 0.1687667450984
218 => 0.16933797783257
219 => 0.17042863836521
220 => 0.17042289004584
221 => 0.17370966897088
222 => 0.17733508790826
223 => 0.17870359962848
224 => 0.18185041686895
225 => 0.17646160262227
226 => 0.18054908013062
227 => 0.18423608715934
228 => 0.17984028538224
301 => 0.18589887404152
302 => 0.1861341153101
303 => 0.18968597917441
304 => 0.18608548469315
305 => 0.18394752256337
306 => 0.19011973912366
307 => 0.19310628029418
308 => 0.19220670978834
309 => 0.18536093382163
310 => 0.18137639857986
311 => 0.1709481012927
312 => 0.18330086989826
313 => 0.18931754315082
314 => 0.18534535209142
315 => 0.18734869421323
316 => 0.19827827924393
317 => 0.2024395575854
318 => 0.20157404077991
319 => 0.20172029887242
320 => 0.20396564913293
321 => 0.21392276872501
322 => 0.20795623186121
323 => 0.21251742573171
324 => 0.21493666651402
325 => 0.21718379217838
326 => 0.21166556175807
327 => 0.20448642506015
328 => 0.20221249110826
329 => 0.1849503959739
330 => 0.18405182895667
331 => 0.18354743606054
401 => 0.1803673101982
402 => 0.17786860238019
403 => 0.17588153715223
404 => 0.17066688460617
405 => 0.17242667676273
406 => 0.16411560898687
407 => 0.16943273562371
408 => 0.15616807077569
409 => 0.16721527782277
410 => 0.16120278528191
411 => 0.16524001231763
412 => 0.16522592681283
413 => 0.15779211183608
414 => 0.15350444249726
415 => 0.15623671227854
416 => 0.15916592237193
417 => 0.15964117685454
418 => 0.16343897420082
419 => 0.16449885780678
420 => 0.16128736099947
421 => 0.15589319008025
422 => 0.15714613295685
423 => 0.15347905164985
424 => 0.14705263271159
425 => 0.15166819898756
426 => 0.1532441562463
427 => 0.15394018875206
428 => 0.14762054380548
429 => 0.1456347741571
430 => 0.14457756705852
501 => 0.15507740327635
502 => 0.15565260800641
503 => 0.1527097792817
504 => 0.16601164416783
505 => 0.16300102246961
506 => 0.16636462452675
507 => 0.15703244152352
508 => 0.1573889434817
509 => 0.1529709384931
510 => 0.15544472607552
511 => 0.15369633274616
512 => 0.1552448684853
513 => 0.15617305442249
514 => 0.16059033445994
515 => 0.16726571606522
516 => 0.15993054012565
517 => 0.15673449892713
518 => 0.15871730491147
519 => 0.16399777853891
520 => 0.17199796638694
521 => 0.16726169416212
522 => 0.16936357134837
523 => 0.16982273800756
524 => 0.16633038621531
525 => 0.17212673437896
526 => 0.1752330444493
527 => 0.17841947582118
528 => 0.1811861648996
529 => 0.17714674506012
530 => 0.18146950331645
531 => 0.17798612323141
601 => 0.1748611711899
602 => 0.17486591045223
603 => 0.17290558238833
604 => 0.16910719974729
605 => 0.16840671971064
606 => 0.17205070532218
607 => 0.17497283669591
608 => 0.17521351743192
609 => 0.17683135950495
610 => 0.17778878177867
611 => 0.18717282161359
612 => 0.19094716006405
613 => 0.1955623496767
614 => 0.19736022612866
615 => 0.20277118967468
616 => 0.19840139715429
617 => 0.19745596505522
618 => 0.18433073740527
619 => 0.18647999269766
620 => 0.18992115779307
621 => 0.18438748095023
622 => 0.18789732523018
623 => 0.18859024283971
624 => 0.1841994487286
625 => 0.18654476157836
626 => 0.1803163059862
627 => 0.16740147937672
628 => 0.17214111227287
629 => 0.17563107742762
630 => 0.17065046684219
701 => 0.17957801854032
702 => 0.17436272714035
703 => 0.17270973014469
704 => 0.16626079952867
705 => 0.16930444653733
706 => 0.17342102269737
707 => 0.17087745723381
708 => 0.17615573748897
709 => 0.18363118999621
710 => 0.18895864262376
711 => 0.18936761828526
712 => 0.18594242315735
713 => 0.19143132020913
714 => 0.19147130083179
715 => 0.18527980253458
716 => 0.18148754430195
717 => 0.18062593525251
718 => 0.1827784035864
719 => 0.18539189751132
720 => 0.1895126490091
721 => 0.19200273283608
722 => 0.19849555081843
723 => 0.20025232120077
724 => 0.20218247923147
725 => 0.20476176559917
726 => 0.20785886019905
727 => 0.20108259353221
728 => 0.20135182723943
729 => 0.19504186154307
730 => 0.18829875825589
731 => 0.19341593311117
801 => 0.20010595852519
802 => 0.19857125930339
803 => 0.19839857428988
804 => 0.19868898258378
805 => 0.19753186948914
806 => 0.19229828984667
807 => 0.18967001891416
808 => 0.19306115896052
809 => 0.19486339897288
810 => 0.19765851606021
811 => 0.19731395888143
812 => 0.20451388032472
813 => 0.20731155208326
814 => 0.2065957879283
815 => 0.20672750575864
816 => 0.21179255684326
817 => 0.21742593535655
818 => 0.22270233772402
819 => 0.22806972083897
820 => 0.22159913100137
821 => 0.21831376453234
822 => 0.22170342411304
823 => 0.21990482302661
824 => 0.23024011836899
825 => 0.23095571179432
826 => 0.24129025977721
827 => 0.25109897642805
828 => 0.24493829724107
829 => 0.25074754023131
830 => 0.25703071015978
831 => 0.26915196435939
901 => 0.26506995237582
902 => 0.2619431951697
903 => 0.25898842471829
904 => 0.26513683297107
905 => 0.27304666196505
906 => 0.27475036337096
907 => 0.27751101051255
908 => 0.27460852759904
909 => 0.27810424857036
910 => 0.29044567969675
911 => 0.28711091606557
912 => 0.2823750156193
913 => 0.29211739020993
914 => 0.29564311770177
915 => 0.32038851967725
916 => 0.35163061185288
917 => 0.33869618054553
918 => 0.33066736164157
919 => 0.33255432453013
920 => 0.34396287898111
921 => 0.34762694458134
922 => 0.33766675120075
923 => 0.34118485988617
924 => 0.36056998463563
925 => 0.37096948211445
926 => 0.35684556769936
927 => 0.31787824799069
928 => 0.28194859960072
929 => 0.29147876028689
930 => 0.2903983358204
1001 => 0.31122523402013
1002 => 0.28703138305585
1003 => 0.2874387454575
1004 => 0.30869632185593
1005 => 0.30302516491995
1006 => 0.29383861699056
1007 => 0.28201567156704
1008 => 0.26015986346158
1009 => 0.24080156472828
1010 => 0.27876764649423
1011 => 0.27713048001165
1012 => 0.27475962033038
1013 => 0.28003571199723
1014 => 0.30565491548668
1015 => 0.30506430992498
1016 => 0.30130717867105
1017 => 0.30415692961332
1018 => 0.29333904187204
1019 => 0.29612705786169
1020 => 0.28194290816084
1021 => 0.28835473620804
1022 => 0.29381890678459
1023 => 0.29491591992626
1024 => 0.29738754654933
1025 => 0.27626776766874
1026 => 0.285749928342
1027 => 0.29131980937923
1028 => 0.26615488421901
1029 => 0.29082237972021
1030 => 0.2759001193057
1031 => 0.27083527999618
1101 => 0.27765441888461
1102 => 0.27499699382796
1103 => 0.27271229581349
1104 => 0.27143739506532
1105 => 0.27644461806408
1106 => 0.27621102512626
1107 => 0.26801823644018
1108 => 0.25733107757998
1109 => 0.26091803888749
1110 => 0.25961486221653
1111 => 0.25489198184783
1112 => 0.25807463297358
1113 => 0.24405984811863
1114 => 0.21994813920082
1115 => 0.23587707267354
1116 => 0.23526382606219
1117 => 0.23495459931223
1118 => 0.24692475257359
1119 => 0.24577409853594
1120 => 0.24368565019035
1121 => 0.25485362585618
1122 => 0.25077716450768
1123 => 0.26333985784867
1124 => 0.2716144601871
1125 => 0.26951575337873
1126 => 0.27729805687265
1127 => 0.26100067523137
1128 => 0.26641401167515
1129 => 0.26752969281365
1130 => 0.25471581477002
1201 => 0.24596235976688
1202 => 0.24537860411486
1203 => 0.2302013194398
1204 => 0.23830890240646
1205 => 0.24544323990253
1206 => 0.24202644588887
1207 => 0.24094479097796
1208 => 0.24647073133546
1209 => 0.24690014422772
1210 => 0.23710948477713
1211 => 0.23914527290677
1212 => 0.24763484782898
1213 => 0.23893135740073
1214 => 0.22202189720573
1215 => 0.21782811728579
1216 => 0.21726858973777
1217 => 0.20589472598202
1218 => 0.21810836571338
1219 => 0.21277678466545
1220 => 0.22961918531372
1221 => 0.21999889639104
1222 => 0.21958418496341
1223 => 0.2189572878156
1224 => 0.20916733343263
1225 => 0.21131071125845
1226 => 0.21843562559711
1227 => 0.22097787530105
1228 => 0.22071269782889
1229 => 0.21840070962986
1230 => 0.21945912598808
1231 => 0.21604959812156
]
'min_raw' => 0.11929558710125
'max_raw' => 0.37096948211445
'avg_raw' => 0.24513253460785
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.119295'
'max' => '$0.370969'
'avg' => '$0.245132'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.067958769099857
'max_diff' => 0.23169764181161
'year' => 2033
]
8 => [
'items' => [
101 => 0.2148456228687
102 => 0.21104554579121
103 => 0.20546048228538
104 => 0.20623711962105
105 => 0.19517164740464
106 => 0.18914259085208
107 => 0.18747382746001
108 => 0.18524228730973
109 => 0.18772588585789
110 => 0.19514030031215
111 => 0.18619694342454
112 => 0.17086418534427
113 => 0.17178571023064
114 => 0.17385610304713
115 => 0.16999793973063
116 => 0.16634651194266
117 => 0.1695211321546
118 => 0.16302444042781
119 => 0.174641197204
120 => 0.17432699648879
121 => 0.17865700503953
122 => 0.18136464824703
123 => 0.17512440726364
124 => 0.17355500353173
125 => 0.17444900722285
126 => 0.15967311762643
127 => 0.17744949962539
128 => 0.17760323051509
129 => 0.17628689330469
130 => 0.18575226793491
131 => 0.20572716072907
201 => 0.19821180257171
202 => 0.19530162874027
203 => 0.18976938615939
204 => 0.19714077092636
205 => 0.19657476358777
206 => 0.19401506375077
207 => 0.1924669493026
208 => 0.19531939764113
209 => 0.19211349938681
210 => 0.19153763196814
211 => 0.18804850196095
212 => 0.18680304129368
213 => 0.18588095179885
214 => 0.18486582186768
215 => 0.18710494554121
216 => 0.18203079671574
217 => 0.17591187065717
218 => 0.1754031481631
219 => 0.17680777569657
220 => 0.17618633257523
221 => 0.17540017293252
222 => 0.17389918007675
223 => 0.17345386756007
224 => 0.17490091720433
225 => 0.1732672825242
226 => 0.17567779948342
227 => 0.1750222722505
228 => 0.17136055041496
301 => 0.16679668926481
302 => 0.16675606132755
303 => 0.16577278492898
304 => 0.16452043459881
305 => 0.16417205938685
306 => 0.16925377449509
307 => 0.17977277268619
308 => 0.17770764164298
309 => 0.17919991046484
310 => 0.18654039611566
311 => 0.18887371576794
312 => 0.18721758074645
313 => 0.18495056098308
314 => 0.18505029834735
315 => 0.19279739115235
316 => 0.19328056782782
317 => 0.19450139940803
318 => 0.19607051299556
319 => 0.18748480757545
320 => 0.18464591239416
321 => 0.18330068636136
322 => 0.17915791084832
323 => 0.1836255390644
324 => 0.1810224434258
325 => 0.18137368996186
326 => 0.18114494019447
327 => 0.18126985303545
328 => 0.17463795008373
329 => 0.17705426695678
330 => 0.17303667150297
331 => 0.16765756218657
401 => 0.16763952952598
402 => 0.16895605891059
403 => 0.16817293571683
404 => 0.16606557133834
405 => 0.16636491250182
406 => 0.16374236892813
407 => 0.16668333677436
408 => 0.1667676732089
409 => 0.1656352403925
410 => 0.17016620713497
411 => 0.17202254790628
412 => 0.17127715636746
413 => 0.17197024924885
414 => 0.17779345716134
415 => 0.17874289413545
416 => 0.17916457132306
417 => 0.17859957975318
418 => 0.17207668679968
419 => 0.17236600483965
420 => 0.17024318102788
421 => 0.1684496186046
422 => 0.16852135169554
423 => 0.1694434759279
424 => 0.17347044653249
425 => 0.18194496876697
426 => 0.18226657069097
427 => 0.18265636160465
428 => 0.18107088606549
429 => 0.18059269147192
430 => 0.18122355357333
501 => 0.18440613855539
502 => 0.19259261119264
503 => 0.18969896500651
504 => 0.18734638561491
505 => 0.1894102319922
506 => 0.18909251901937
507 => 0.18641070179373
508 => 0.18633543211628
509 => 0.18118816743143
510 => 0.17928534087499
511 => 0.17769519658033
512 => 0.17595880052233
513 => 0.17492940673462
514 => 0.17651102344365
515 => 0.17687275789814
516 => 0.17341452532192
517 => 0.17294318100039
518 => 0.17576724837327
519 => 0.17452448161431
520 => 0.17580269804503
521 => 0.1760992552213
522 => 0.17605150268563
523 => 0.17475391145842
524 => 0.17558095741191
525 => 0.17362474717764
526 => 0.17149766236114
527 => 0.17014071477028
528 => 0.16895659802427
529 => 0.16961361481623
530 => 0.16727146991944
531 => 0.1665221706289
601 => 0.17530077285199
602 => 0.18178562070007
603 => 0.18169132844408
604 => 0.18111734858572
605 => 0.18026453094377
606 => 0.18434374963301
607 => 0.18292263140823
608 => 0.18395661365516
609 => 0.1842198055331
610 => 0.18501640807931
611 => 0.18530112501927
612 => 0.18444051267807
613 => 0.18155219254603
614 => 0.17435477339022
615 => 0.17100435534413
616 => 0.1698986615833
617 => 0.16993885145149
618 => 0.1688302354712
619 => 0.16915677256208
620 => 0.16871667919688
621 => 0.16788324883322
622 => 0.16956215283982
623 => 0.1697556308865
624 => 0.16936375462995
625 => 0.1694560556745
626 => 0.16621148764282
627 => 0.16645816510343
628 => 0.16508463365646
629 => 0.16482711306832
630 => 0.16135494517744
701 => 0.15520349645995
702 => 0.15861199618501
703 => 0.15449500782472
704 => 0.15293584195013
705 => 0.16031669070042
706 => 0.15957585819877
707 => 0.15830787498809
708 => 0.15643226354863
709 => 0.15573658102097
710 => 0.15150983420918
711 => 0.15126009545873
712 => 0.15335498531041
713 => 0.15238826572462
714 => 0.15103062530082
715 => 0.14611338930765
716 => 0.14058478801044
717 => 0.14075166173206
718 => 0.14251020694142
719 => 0.14762341430976
720 => 0.14562559573156
721 => 0.14417615543075
722 => 0.14390471883243
723 => 0.14730231615149
724 => 0.1521106281766
725 => 0.15436658059887
726 => 0.1521310002627
727 => 0.1495628859447
728 => 0.14971919516374
729 => 0.15075905037025
730 => 0.15086832444969
731 => 0.14919674603509
801 => 0.14966728556748
802 => 0.14895249299075
803 => 0.14456581226678
804 => 0.1444864711228
805 => 0.14340990892835
806 => 0.14337731105296
807 => 0.14154581019918
808 => 0.14128957056917
809 => 0.13765301445984
810 => 0.14004660670351
811 => 0.13844111069569
812 => 0.13602124951369
813 => 0.13560406453381
814 => 0.13559152344955
815 => 0.13807617981241
816 => 0.14001757204727
817 => 0.13846903898612
818 => 0.13811646802515
819 => 0.14188100348748
820 => 0.14140193203539
821 => 0.14098705924757
822 => 0.15168009657278
823 => 0.14321572314177
824 => 0.1395247731963
825 => 0.1349565217464
826 => 0.13644396745361
827 => 0.13675739411924
828 => 0.12577157287145
829 => 0.12131462655942
830 => 0.11978517054161
831 => 0.11890494698002
901 => 0.11930607591019
902 => 0.1152943014817
903 => 0.11799028024627
904 => 0.11451642269804
905 => 0.11393401917517
906 => 0.12014570679977
907 => 0.12101002684458
908 => 0.11732256901023
909 => 0.11969051388508
910 => 0.11883186415656
911 => 0.11457597201513
912 => 0.11441342823955
913 => 0.11227797116483
914 => 0.10893639434885
915 => 0.10740920407747
916 => 0.10661383012446
917 => 0.106942016919
918 => 0.106776075633
919 => 0.10569319649484
920 => 0.10683814499763
921 => 0.10391327469837
922 => 0.10274856777793
923 => 0.10222249668296
924 => 0.099626505943115
925 => 0.10375788165253
926 => 0.10457181471298
927 => 0.105387351473
928 => 0.11248604217838
929 => 0.11213141165143
930 => 0.11533709890298
1001 => 0.11521253179127
1002 => 0.11429821785843
1003 => 0.11044087777316
1004 => 0.11197834478067
1005 => 0.10724626030696
1006 => 0.11079185974513
1007 => 0.10917379622932
1008 => 0.11024479084281
1009 => 0.10831904596007
1010 => 0.10938483269024
1011 => 0.10476482843654
1012 => 0.10045073346965
1013 => 0.10218685122061
1014 => 0.10407420976505
1015 => 0.10816648397941
1016 => 0.10572915921787
1017 => 0.10660571336757
1018 => 0.10366940369946
1019 => 0.097610958138745
1020 => 0.097645248282674
1021 => 0.096713288423569
1022 => 0.095907939036936
1023 => 0.1060091152863
1024 => 0.10475287434372
1025 => 0.10275121881448
1026 => 0.105430514283
1027 => 0.10613896253101
1028 => 0.10615913105667
1029 => 0.10811387586788
1030 => 0.10915712352403
1031 => 0.10934100044512
1101 => 0.11241683364061
1102 => 0.11344781235651
1103 => 0.11769426777777
1104 => 0.10906861124917
1105 => 0.10889097152923
1106 => 0.10546821746479
1107 => 0.10329745272552
1108 => 0.10561685158366
1109 => 0.10767152234245
1110 => 0.10553206181264
1111 => 0.10581143019136
1112 => 0.10293937923043
1113 => 0.1039660023064
1114 => 0.10485026840049
1115 => 0.1043620286381
1116 => 0.10363111008271
1117 => 0.10750306277139
1118 => 0.10728459202639
1119 => 0.11089024338589
1120 => 0.11370110646322
1121 => 0.11873867559968
1122 => 0.11348170959137
1123 => 0.11329012485548
1124 => 0.11516289637996
1125 => 0.11344752564495
1126 => 0.11453158073689
1127 => 0.11856401756494
1128 => 0.11864921660089
1129 => 0.11722202297604
1130 => 0.11713517811426
1201 => 0.1174092862617
1202 => 0.11901474624287
1203 => 0.11845374919465
1204 => 0.11910294918156
1205 => 0.11991478370609
1206 => 0.12327287551028
1207 => 0.1240825000755
1208 => 0.12211553212422
1209 => 0.12229312730701
1210 => 0.12155742729876
1211 => 0.12084675030907
1212 => 0.12244424839584
1213 => 0.12536370754831
1214 => 0.12534554574444
1215 => 0.12602280352164
1216 => 0.12644472950612
1217 => 0.12463351431201
1218 => 0.12345447982087
1219 => 0.12390659666869
1220 => 0.12462954135417
1221 => 0.12367215545079
1222 => 0.11776272615083
1223 => 0.11955526950463
1224 => 0.11925690263967
1225 => 0.11883199194131
1226 => 0.12063440814488
1227 => 0.12046056070503
1228 => 0.11525315493641
1229 => 0.11558651615833
1230 => 0.11527342773644
1231 => 0.11628508047943
]
'min_raw' => 0.095907939036936
'max_raw' => 0.2148456228687
'avg_raw' => 0.15537678095282
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.0959079'
'max' => '$0.214845'
'avg' => '$0.155376'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.023387648064312
'max_diff' => -0.15612385924575
'year' => 2034
]
9 => [
'items' => [
101 => 0.11339289307687
102 => 0.11428251044272
103 => 0.11484047011493
104 => 0.11516911264831
105 => 0.11635639483119
106 => 0.11621708097058
107 => 0.116347734886
108 => 0.11810816093233
109 => 0.12701179176937
110 => 0.12749639675107
111 => 0.12511002458521
112 => 0.12606333319636
113 => 0.12423318912862
114 => 0.1254617771022
115 => 0.12630234579096
116 => 0.12250397751849
117 => 0.1222790628006
118 => 0.12044136507727
119 => 0.12142883974127
120 => 0.11985769654891
121 => 0.12024320013206
122 => 0.11916529850598
123 => 0.12110530682485
124 => 0.12327453757217
125 => 0.12382257092446
126 => 0.12238093111778
127 => 0.12133708888904
128 => 0.1195044457984
129 => 0.12255217210126
130 => 0.12344342014999
131 => 0.12254749075467
201 => 0.12233988433734
202 => 0.12194647055161
203 => 0.12242334893176
204 => 0.12343856622171
205 => 0.12295980849589
206 => 0.12327603640842
207 => 0.12207090169866
208 => 0.1246341138996
209 => 0.1287051117453
210 => 0.12871820066905
211 => 0.12823944036255
212 => 0.12804354196016
213 => 0.12853477908824
214 => 0.12880125507862
215 => 0.13038982587333
216 => 0.13209442562752
217 => 0.14004904890516
218 => 0.13781542251973
219 => 0.14487323751431
220 => 0.15045505283244
221 => 0.15212879518315
222 => 0.15058903097616
223 => 0.14532158080049
224 => 0.14506313456517
225 => 0.15293492898773
226 => 0.15071078651233
227 => 0.15044623184205
228 => 0.14763181712237
301 => 0.14929548479374
302 => 0.14893161626948
303 => 0.14835723200288
304 => 0.15153139402776
305 => 0.15747314197894
306 => 0.15654706483939
307 => 0.15585579121419
308 => 0.15282683141533
309 => 0.15465094175691
310 => 0.15400141100281
311 => 0.15679220732484
312 => 0.15513900140737
313 => 0.15069393644558
314 => 0.15140182769187
315 => 0.15129483135407
316 => 0.1534968084041
317 => 0.15283582955011
318 => 0.1511657646245
319 => 0.15745283373039
320 => 0.15704458643317
321 => 0.1576233877623
322 => 0.15787819400741
323 => 0.16170502218159
324 => 0.1632727512397
325 => 0.16362865318285
326 => 0.16511787453555
327 => 0.16359159999895
328 => 0.16969778636064
329 => 0.17375804398531
330 => 0.17847424215532
331 => 0.18536587527626
401 => 0.1879571930809
402 => 0.18748909471348
403 => 0.19271425229265
404 => 0.2021037443137
405 => 0.18938697950678
406 => 0.20277776372718
407 => 0.19853839604704
408 => 0.1884869315404
409 => 0.18783973572515
410 => 0.19464670418895
411 => 0.20974390509523
412 => 0.20596222749924
413 => 0.20975009056503
414 => 0.2053313470946
415 => 0.2051119192372
416 => 0.20953548205749
417 => 0.21987137770297
418 => 0.21496118111706
419 => 0.20792121028156
420 => 0.21311941519241
421 => 0.20861624902747
422 => 0.19846935530102
423 => 0.20595933572166
424 => 0.20095099911674
425 => 0.20241269799587
426 => 0.21293947660556
427 => 0.21167286675284
428 => 0.21331197718718
429 => 0.21041899017357
430 => 0.20771648412068
501 => 0.20267205588222
502 => 0.20117864936812
503 => 0.20159137320148
504 => 0.20117844484269
505 => 0.19835613360396
506 => 0.19774665576068
507 => 0.19673083265336
508 => 0.19704567871063
509 => 0.19513563407934
510 => 0.19874028293394
511 => 0.19940933752541
512 => 0.20203250035902
513 => 0.20230484582641
514 => 0.20961031697963
515 => 0.20558658623189
516 => 0.20828605220967
517 => 0.20804458656426
518 => 0.18870477725496
519 => 0.1913696323412
520 => 0.1955153105778
521 => 0.19364768815154
522 => 0.19100730699717
523 => 0.18887505764673
524 => 0.18564448184712
525 => 0.19019145524735
526 => 0.19617024175195
527 => 0.20245647771867
528 => 0.21000897834219
529 => 0.20832334812382
530 => 0.20231528897292
531 => 0.20258480611754
601 => 0.20425085505449
602 => 0.20209317030464
603 => 0.20145682694889
604 => 0.20416343124913
605 => 0.20418207014542
606 => 0.2016993930758
607 => 0.19894035183802
608 => 0.19892879135449
609 => 0.19843784661541
610 => 0.20541868507304
611 => 0.20925744038237
612 => 0.20969754749212
613 => 0.20922781766729
614 => 0.20940859803396
615 => 0.20717491090066
616 => 0.21228045730803
617 => 0.21696581157764
618 => 0.21571003654539
619 => 0.21382745125311
620 => 0.21232788139021
621 => 0.2153567855427
622 => 0.21522191320873
623 => 0.2169248890955
624 => 0.21684763227241
625 => 0.21627498553386
626 => 0.2157100569964
627 => 0.21794993479077
628 => 0.21730488595733
629 => 0.21665883518488
630 => 0.21536308145532
701 => 0.21553919590736
702 => 0.21365693566997
703 => 0.21278611595779
704 => 0.19969107687519
705 => 0.19619165453957
706 => 0.19729264404367
707 => 0.19765511837559
708 => 0.1961321652905
709 => 0.19831568879997
710 => 0.19797538897395
711 => 0.19929929652828
712 => 0.19847217656572
713 => 0.19850612185749
714 => 0.20093850530682
715 => 0.20164463657026
716 => 0.2012854925105
717 => 0.20153702469922
718 => 0.20733347782318
719 => 0.20650940754909
720 => 0.20607163664031
721 => 0.20619290217382
722 => 0.20767402022435
723 => 0.20808865241245
724 => 0.20633182669578
725 => 0.20716035585985
726 => 0.21068812788446
727 => 0.21192264843846
728 => 0.21586264544337
729 => 0.21418886468782
730 => 0.21726116170417
731 => 0.22670435530916
801 => 0.23424823178013
802 => 0.22731057121355
803 => 0.2411639396456
804 => 0.25195077411763
805 => 0.25153675744418
806 => 0.24965582335
807 => 0.23737529908643
808 => 0.22607457756679
809 => 0.23552811097195
810 => 0.23555220997274
811 => 0.23474014306931
812 => 0.22969646527587
813 => 0.23456463401491
814 => 0.23495105157082
815 => 0.23473476049623
816 => 0.23086778455752
817 => 0.22496362703574
818 => 0.22611728528294
819 => 0.22800700102584
820 => 0.22442937488852
821 => 0.22328610656164
822 => 0.22541165989702
823 => 0.23226063562024
824 => 0.23096587643318
825 => 0.23093206503827
826 => 0.23647159390386
827 => 0.23250648674125
828 => 0.22613183660796
829 => 0.224522153378
830 => 0.21880886232419
831 => 0.2227550528051
901 => 0.22289706917524
902 => 0.22073578097794
903 => 0.22630721323363
904 => 0.22625587150457
905 => 0.23154511723309
906 => 0.24165616851606
907 => 0.23866583311707
908 => 0.23518839839561
909 => 0.23556649196864
910 => 0.23971324525031
911 => 0.23720602355504
912 => 0.23810763795763
913 => 0.23971188054893
914 => 0.24067975993536
915 => 0.23542722901975
916 => 0.23420261280573
917 => 0.23169747781372
918 => 0.23104393485486
919 => 0.2330843150345
920 => 0.23254674694486
921 => 0.22288513324925
922 => 0.22187544086134
923 => 0.22190640668537
924 => 0.21936748716774
925 => 0.21549502549284
926 => 0.2256716235618
927 => 0.22485430031547
928 => 0.2239520387073
929 => 0.22406256060607
930 => 0.2284798769109
1001 => 0.22591761037428
1002 => 0.23272981590911
1003 => 0.23132943124479
1004 => 0.22989313199797
1005 => 0.22969459169131
1006 => 0.22914173902058
1007 => 0.22724580150521
1008 => 0.22495634302723
1009 => 0.22344464423057
1010 => 0.20611587306349
1011 => 0.20933199219528
1012 => 0.21303184409791
1013 => 0.21430901814848
1014 => 0.21212432355723
1015 => 0.22733206656355
1016 => 0.23011066775626
1017 => 0.22169410349986
1018 => 0.22011970797355
1019 => 0.22743528367214
1020 => 0.22302309723313
1021 => 0.22500990451646
1022 => 0.22071551389539
1023 => 0.22944138409587
1024 => 0.22937490758478
1025 => 0.22598034699407
1026 => 0.22884940636039
1027 => 0.22835083669141
1028 => 0.22451838614493
1029 => 0.22956287961402
1030 => 0.22956538161984
1031 => 0.2262981908554
1101 => 0.22248282732255
1102 => 0.22180073043775
1103 => 0.22128686206187
1104 => 0.22488352439669
1105 => 0.22810828059963
1106 => 0.23410875240843
1107 => 0.23561741358886
1108 => 0.24150581861333
1109 => 0.2379995601225
1110 => 0.23955383909783
1111 => 0.24124122879175
1112 => 0.24205022546271
1113 => 0.24073200880053
1114 => 0.24987912556773
1115 => 0.2506514224833
1116 => 0.25091036695875
1117 => 0.24782601065052
1118 => 0.25056564095481
1119 => 0.24928385866245
1120 => 0.25261870009779
1121 => 0.25314164581624
1122 => 0.25269872939705
1123 => 0.25286472062222
1124 => 0.24505927012339
1125 => 0.24465451633799
1126 => 0.23913566975409
1127 => 0.24138464053029
1128 => 0.23718029746017
1129 => 0.23851353795724
1130 => 0.23910121766476
1201 => 0.23879424713608
1202 => 0.24151179396364
1203 => 0.23920132400208
1204 => 0.23310361389707
1205 => 0.22700424247503
1206 => 0.22692766983526
1207 => 0.22532181300269
1208 => 0.22416107264008
1209 => 0.2243846724134
1210 => 0.22517266717913
1211 => 0.2241152729518
1212 => 0.22434092162145
1213 => 0.22808819302684
1214 => 0.22883968158288
1215 => 0.22628582984394
1216 => 0.21603174659305
1217 => 0.21351536884286
1218 => 0.21532409126776
1219 => 0.2144596384453
1220 => 0.17308566611387
1221 => 0.18280586720433
1222 => 0.17703045378322
1223 => 0.17969203000166
1224 => 0.17379682843476
1225 => 0.17661032761647
1226 => 0.17609077705015
1227 => 0.19172057276195
1228 => 0.19147653499999
1229 => 0.19159334296245
1230 => 0.18601779457277
1231 => 0.19489979455017
]
'min_raw' => 0.11339289307687
'max_raw' => 0.25314164581624
'avg_raw' => 0.18326726944656
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.113392'
'max' => '$0.253141'
'avg' => '$0.183267'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.017484954039934
'max_diff' => 0.038296022947542
'year' => 2035
]
10 => [
'items' => [
101 => 0.19927538712542
102 => 0.19846558139237
103 => 0.1986693920488
104 => 0.19516724971432
105 => 0.19162725135555
106 => 0.18770084837384
107 => 0.19499561979579
108 => 0.19418456573957
109 => 0.1960448319365
110 => 0.20077601264466
111 => 0.20147269697594
112 => 0.20240904778227
113 => 0.20207343267219
114 => 0.2100691461943
115 => 0.20910081252936
116 => 0.21143421805327
117 => 0.20663422585469
118 => 0.20120257906255
119 => 0.20223495754382
120 => 0.20213553119421
121 => 0.20086971964742
122 => 0.19972700158124
123 => 0.19782469795987
124 => 0.20384386810586
125 => 0.20359950079023
126 => 0.20755552358437
127 => 0.20685625812875
128 => 0.20218639227683
129 => 0.20235317744931
130 => 0.20347488788846
131 => 0.20735714052583
201 => 0.20850965743251
202 => 0.20797576568148
203 => 0.20923944785526
204 => 0.21023821072095
205 => 0.20936487709397
206 => 0.22172943955438
207 => 0.21659481116653
208 => 0.21909739331625
209 => 0.21969424441289
210 => 0.21816542287928
211 => 0.21849696952692
212 => 0.21899917235706
213 => 0.22204844960021
214 => 0.23005063540172
215 => 0.2335947490205
216 => 0.24425738970605
217 => 0.2333004597209
218 => 0.23265032083986
219 => 0.23457098440823
220 => 0.2408310832458
221 => 0.24590430537246
222 => 0.24758738583308
223 => 0.24780983270058
224 => 0.25096740353378
225 => 0.25277726425015
226 => 0.25058399138227
227 => 0.24872542227198
228 => 0.242068258413
229 => 0.24283884325653
301 => 0.24814740867625
302 => 0.25564607000453
303 => 0.26208070152694
304 => 0.25982751783734
305 => 0.27701771888918
306 => 0.2787220571078
307 => 0.27848657267384
308 => 0.28236930877538
309 => 0.27466286831928
310 => 0.27136821571904
311 => 0.24912726600928
312 => 0.25537606568117
313 => 0.26445906298341
314 => 0.26325689423097
315 => 0.25666057880087
316 => 0.26207569763018
317 => 0.26028528999879
318 => 0.25887312121583
319 => 0.26534254017296
320 => 0.25822914828051
321 => 0.26438810145782
322 => 0.25648918030171
323 => 0.25983781019064
324 => 0.25793696591068
325 => 0.25916704511853
326 => 0.25197602720409
327 => 0.25585612591863
328 => 0.25181460234098
329 => 0.25181268613259
330 => 0.25172346927561
331 => 0.25647830384185
401 => 0.25663335882635
402 => 0.25311952889774
403 => 0.25261313110869
404 => 0.25448554914864
405 => 0.25229343801092
406 => 0.25331911301528
407 => 0.25232450466193
408 => 0.25210059737193
409 => 0.25031646599057
410 => 0.24954781313576
411 => 0.24984922172587
412 => 0.24882035882104
413 => 0.24820043170527
414 => 0.25160015016894
415 => 0.24978381773806
416 => 0.25132177117404
417 => 0.24956907912854
418 => 0.24349348488727
419 => 0.23999934639088
420 => 0.22852311207701
421 => 0.2317777578922
422 => 0.23393559143484
423 => 0.23322242746187
424 => 0.23475457963364
425 => 0.23484864133336
426 => 0.23435052304388
427 => 0.23377376587756
428 => 0.23349303238567
429 => 0.23558538983359
430 => 0.23680007375762
501 => 0.23415215889894
502 => 0.23353178949581
503 => 0.23620897761333
504 => 0.23784206081845
505 => 0.24989982965489
506 => 0.24900655119341
507 => 0.25124850483469
508 => 0.25099609526026
509 => 0.25334601984754
510 => 0.25718715339552
511 => 0.24937705489465
512 => 0.25073261794151
513 => 0.25040026518694
514 => 0.25402880541376
515 => 0.25404013332028
516 => 0.25186464219528
517 => 0.25304401122745
518 => 0.25238571978799
519 => 0.25357534139252
520 => 0.24899462091495
521 => 0.25457344399842
522 => 0.25773627719532
523 => 0.25778019313733
524 => 0.25927935097087
525 => 0.26080258215511
526 => 0.26372629176779
527 => 0.26072104148086
528 => 0.2553148887699
529 => 0.25570519553386
530 => 0.25253557017746
531 => 0.25258885215234
601 => 0.25230442879465
602 => 0.25315800470148
603 => 0.24918193282576
604 => 0.25011510894773
605 => 0.2488086569123
606 => 0.25072977796993
607 => 0.24866296928461
608 => 0.25040010491638
609 => 0.2511497950681
610 => 0.25391616786761
611 => 0.24825437377285
612 => 0.23670959234387
613 => 0.23913644536719
614 => 0.23554693912051
615 => 0.23587916158986
616 => 0.23655030385074
617 => 0.23437491219912
618 => 0.23478990837178
619 => 0.23477508178821
620 => 0.23464731430097
621 => 0.23408141091477
622 => 0.23326073904421
623 => 0.23653004318704
624 => 0.23708556166748
625 => 0.23832041043532
626 => 0.24199448276249
627 => 0.24162735629641
628 => 0.24222615479451
629 => 0.24091898103527
630 => 0.23593979763148
701 => 0.23621019124588
702 => 0.23283837854155
703 => 0.2382341856036
704 => 0.23695638727014
705 => 0.23613258237198
706 => 0.23590779957302
707 => 0.23959097921484
708 => 0.24069304429044
709 => 0.24000631129216
710 => 0.23859780187749
711 => 0.24130255634209
712 => 0.24202623453238
713 => 0.24218823939096
714 => 0.24698054571699
715 => 0.24245607607871
716 => 0.24354516089
717 => 0.25204188969477
718 => 0.24433652913727
719 => 0.24841823047462
720 => 0.24821845243431
721 => 0.25030651272126
722 => 0.24804717054487
723 => 0.24807517779894
724 => 0.24992923387629
725 => 0.24732554649643
726 => 0.24668083688543
727 => 0.24579017517534
728 => 0.24773490243512
729 => 0.2489006784749
730 => 0.25829597718742
731 => 0.26436576863338
801 => 0.26410226297877
802 => 0.26651021139994
803 => 0.26542540858193
804 => 0.26192229412602
805 => 0.26790168334296
806 => 0.26600955440645
807 => 0.26616553921703
808 => 0.26615973345459
809 => 0.26741783378459
810 => 0.26652635439759
811 => 0.26476915701732
812 => 0.26593566664331
813 => 0.26939978319768
814 => 0.28015250727451
815 => 0.28616987412255
816 => 0.27979025423463
817 => 0.2841908306068
818 => 0.28155205286918
819 => 0.28107250845742
820 => 0.28383639561918
821 => 0.28660512059955
822 => 0.28642876478782
823 => 0.28441881262768
824 => 0.28328344165307
825 => 0.29188085105004
826 => 0.29821527584069
827 => 0.29778331053649
828 => 0.29968986490658
829 => 0.30528756750468
830 => 0.30579935127756
831 => 0.30573487828539
901 => 0.3044663688052
902 => 0.30997803396657
903 => 0.31457596201271
904 => 0.3041727455113
905 => 0.30813415416693
906 => 0.30991255814106
907 => 0.31252378280376
908 => 0.31692935650181
909 => 0.3217149780586
910 => 0.3223917174184
911 => 0.32191153845767
912 => 0.31875529239655
913 => 0.32399177660833
914 => 0.32705918624893
915 => 0.32888575849348
916 => 0.33351764179302
917 => 0.30992354095856
918 => 0.29322246368504
919 => 0.2906143493023
920 => 0.29591805245863
921 => 0.29731659668472
922 => 0.29675284526081
923 => 0.27795426439394
924 => 0.29051537866449
925 => 0.30403008145111
926 => 0.30454923622551
927 => 0.3113149790196
928 => 0.31351818221053
929 => 0.31896549196595
930 => 0.31862476125761
1001 => 0.31995109449743
1002 => 0.31964619345448
1003 => 0.32973618771001
1004 => 0.3408669497525
1005 => 0.34048152685663
1006 => 0.33888134811982
1007 => 0.341257886415
1008 => 0.3527460256878
1009 => 0.35168838191725
1010 => 0.35271579275046
1011 => 0.36626095639626
1012 => 0.38387159591285
1013 => 0.37568968577809
1014 => 0.3934420764893
1015 => 0.4046162654282
1016 => 0.42394086976534
1017 => 0.42152133412665
1018 => 0.4290442607846
1019 => 0.41718986036106
1020 => 0.38996976081902
1021 => 0.38566207587214
1022 => 0.39428617022376
1023 => 0.41548766466038
1024 => 0.39361845971423
1025 => 0.39804257139233
1026 => 0.39676842693141
1027 => 0.39670053318785
1028 => 0.39929176123561
1029 => 0.39553304980297
1030 => 0.38021938324714
1031 => 0.38723754638567
1101 => 0.38452749655801
1102 => 0.3875344988894
1103 => 0.40376205028982
1104 => 0.39658746299919
1105 => 0.38902961810465
1106 => 0.39850883282245
1107 => 0.41057913056978
1108 => 0.40982379302917
1109 => 0.40835812249377
1110 => 0.41662003056179
1111 => 0.43026628217823
1112 => 0.43395480915508
1113 => 0.43667760436077
1114 => 0.43705303181763
1115 => 0.44092016795019
1116 => 0.42012560232166
1117 => 0.45312711201645
1118 => 0.45882556109243
1119 => 0.45775448884267
1120 => 0.46408807516323
1121 => 0.46222457340014
1122 => 0.4595246517199
1123 => 0.46956473323043
1124 => 0.4580545899714
1125 => 0.44171739070196
1126 => 0.43275448006957
1127 => 0.44455756380767
1128 => 0.45176529517567
1129 => 0.4565291471121
1130 => 0.45797068582967
1201 => 0.42173982525687
1202 => 0.40221340086378
1203 => 0.41472961502884
1204 => 0.43000026013317
1205 => 0.42004077311707
1206 => 0.4204311661523
1207 => 0.40623155497449
1208 => 0.43125661064431
1209 => 0.42761067052706
1210 => 0.44652581430488
1211 => 0.44201156343879
1212 => 0.45743612890795
1213 => 0.45337432388644
1214 => 0.47023464943827
1215 => 0.47696068977599
1216 => 0.4882547583276
1217 => 0.4965627211293
1218 => 0.50144131579246
1219 => 0.50114842326803
1220 => 0.52047984582968
1221 => 0.50908078133354
1222 => 0.49476086977315
1223 => 0.49450186775177
1224 => 0.50191835286361
1225 => 0.51746127104469
1226 => 0.52149132358879
1227 => 0.52374357317106
1228 => 0.52029417453444
1229 => 0.50792130700219
1230 => 0.50257876553362
1231 => 0.50713076565317
]
'min_raw' => 0.18770084837384
'max_raw' => 0.52374357317106
'avg_raw' => 0.35572221077245
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.18770084'
'max' => '$0.523743'
'avg' => '$0.355722'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.074307955296972
'max_diff' => 0.27060192735481
'year' => 2036
]
11 => [
'items' => [
101 => 0.50156406066479
102 => 0.51117375521628
103 => 0.52436991835547
104 => 0.52164496285051
105 => 0.53075408055543
106 => 0.54018105907289
107 => 0.55366206174495
108 => 0.55718649504351
109 => 0.56301224926383
110 => 0.56900886401712
111 => 0.57093481506257
112 => 0.57461205319586
113 => 0.57459267233576
114 => 0.5856742769571
115 => 0.59789763002316
116 => 0.60251166283432
117 => 0.61312137686434
118 => 0.59495261339666
119 => 0.60873382919461
120 => 0.62116483081056
121 => 0.60634407821398
122 => 0.6267710328759
123 => 0.62756416523695
124 => 0.63953952223866
125 => 0.62740020371662
126 => 0.62019191512831
127 => 0.64100197419171
128 => 0.65107130626177
129 => 0.64803834149533
130 => 0.62495732986674
131 => 0.61152319110775
201 => 0.57636345872363
202 => 0.61801168052003
203 => 0.63829731446177
204 => 0.62490479497549
205 => 0.63165920280803
206 => 0.66850906181831
207 => 0.68253910227774
208 => 0.67962095193957
209 => 0.68011407130988
210 => 0.68768442647854
211 => 0.72125555036713
212 => 0.70113895476053
213 => 0.71651733834732
214 => 0.72467397755086
215 => 0.73225031861756
216 => 0.71364521948494
217 => 0.68944025887659
218 => 0.6817735317968
219 => 0.62357317285028
220 => 0.62054359141577
221 => 0.61884299555087
222 => 0.6081209791767
223 => 0.59969641131406
224 => 0.59299688216554
225 => 0.57541531703106
226 => 0.58134857915169
227 => 0.55332723388516
228 => 0.57125429757119
301 => 0.52653155392677
302 => 0.56377798377734
303 => 0.54350644539703
304 => 0.55711823821813
305 => 0.55707074795529
306 => 0.5320071217488
307 => 0.51755094521743
308 => 0.52676298354602
309 => 0.53663901988679
310 => 0.53824137355611
311 => 0.55104591246284
312 => 0.55461938403906
313 => 0.54379159833366
314 => 0.52560477447053
315 => 0.52982915885665
316 => 0.51746533820267
317 => 0.49579821807407
318 => 0.51135992202206
319 => 0.51667337194972
320 => 0.51902009413835
321 => 0.49771296997743
322 => 0.4910178089659
323 => 0.4874533614212
324 => 0.52285429230477
325 => 0.52479363521165
326 => 0.51487168270457
327 => 0.5597198488747
328 => 0.54956932762426
329 => 0.56090994679909
330 => 0.52944584025151
331 => 0.53064781149367
401 => 0.51575219921937
402 => 0.52409274676781
403 => 0.51819791658897
404 => 0.52341891294879
405 => 0.52654835663989
406 => 0.54144152469079
407 => 0.56394803983326
408 => 0.53921698202737
409 => 0.52844130598607
410 => 0.53512647479739
411 => 0.55292996030318
412 => 0.57990315218809
413 => 0.56393447970615
414 => 0.57102110538799
415 => 0.57256921783744
416 => 0.56079450994164
417 => 0.58033730246348
418 => 0.5908104437413
419 => 0.60155371958111
420 => 0.61088180497307
421 => 0.59726261896099
422 => 0.61183710022754
423 => 0.60009264106898
424 => 0.58955664708387
425 => 0.58957262583768
426 => 0.58296324290451
427 => 0.57015673063566
428 => 0.56779501328613
429 => 0.58008096519039
430 => 0.58993313513362
501 => 0.59074460703886
502 => 0.59619927454221
503 => 0.59942729058314
504 => 0.63106623605933
505 => 0.64379168166094
506 => 0.65935211566222
507 => 0.66541378164373
508 => 0.68365722302054
509 => 0.6689241624489
510 => 0.66573657211893
511 => 0.62148395072298
512 => 0.62873031499749
513 => 0.64033244337113
514 => 0.62167526554653
515 => 0.63350895058587
516 => 0.63584517068436
517 => 0.62104130178331
518 => 0.62894868780078
519 => 0.60794901491494
520 => 0.56440577531669
521 => 0.58038577853665
522 => 0.59215243971746
523 => 0.57535996339358
524 => 0.60545982724556
525 => 0.58787610817054
526 => 0.58230291339113
527 => 0.56055989356924
528 => 0.57082176195959
529 => 0.58470108589334
530 => 0.57612527734688
531 => 0.59392136774492
601 => 0.6191253777925
602 => 0.63708725627715
603 => 0.63846614627367
604 => 0.62691786176043
605 => 0.64542406139306
606 => 0.64555885885371
607 => 0.62468379006806
608 => 0.61189792666972
609 => 0.60899295160393
610 => 0.61625014887218
611 => 0.62506172610836
612 => 0.63895512748482
613 => 0.64735061895958
614 => 0.66924160810114
615 => 0.675164682099
616 => 0.68167234465882
617 => 0.69036858872755
618 => 0.70081065940327
619 => 0.6779640032322
620 => 0.67887174347338
621 => 0.65759725358037
622 => 0.63486241005922
623 => 0.65211532235352
624 => 0.67467121011957
625 => 0.669496864544
626 => 0.66891464496446
627 => 0.669893776803
628 => 0.66599248921734
629 => 0.64834711005589
630 => 0.63948571110693
701 => 0.65091917653507
702 => 0.65699555456512
703 => 0.66641948697389
704 => 0.66525778838943
705 => 0.68953282621794
706 => 0.69896537187907
707 => 0.69655212305756
708 => 0.6969962189188
709 => 0.71407339228115
710 => 0.73306672124866
711 => 0.75085648021723
712 => 0.76895298712799
713 => 0.74713694172839
714 => 0.73606009930109
715 => 0.74748857323589
716 => 0.74142446409867
717 => 0.77627063393277
718 => 0.77868330712742
719 => 0.81352695718682
720 => 0.84659773019786
721 => 0.82582657019407
722 => 0.84541283852405
723 => 0.86659698461482
724 => 0.90746463942773
725 => 0.89370185102818
726 => 0.8831597708045
727 => 0.87319755593209
728 => 0.8939273436245
729 => 0.92059588432434
730 => 0.92634003256298
731 => 0.93564774714309
801 => 0.9258618233553
802 => 0.93764789067355
803 => 0.97925788736738
804 => 0.9680144989591
805 => 0.95204707995448
806 => 0.98489417607769
807 => 0.99678141247483
808 => 1.080212262904
809 => 1.1855471579273
810 => 1.1419378197214
811 => 1.1148680962325
812 => 1.1212301233548
813 => 1.1596948612061
814 => 1.1720485141942
815 => 1.1384670268131
816 => 1.1503285758724
817 => 1.2156868773914
818 => 1.250749509211
819 => 1.2031297456603
820 => 1.0717487066512
821 => 0.95060938857642
822 => 0.98274099070443
823 => 0.97909826418282
824 => 1.0493176055508
825 => 0.967746347864
826 => 0.9691197986423
827 => 1.0407912016262
828 => 1.021670500069
829 => 0.99069741234079
830 => 0.95083552639371
831 => 0.87714714344236
901 => 0.81187928770977
902 => 0.93988458309086
903 => 0.93436476199151
904 => 0.92637124304798
905 => 0.94415995446771
906 => 1.0305368877081
907 => 1.028545619822
908 => 1.0158781894849
909 => 1.02548632375
910 => 0.98901305994947
911 => 0.99841305051165
912 => 0.95059019948952
913 => 0.9722081254102
914 => 0.99063095800525
915 => 0.9943296144034
916 => 1.0026628761265
917 => 0.93145606709475
918 => 0.96342583382794
919 => 0.98220507662164
920 => 0.897359774485
921 => 0.98052795779685
922 => 0.93021651497036
923 => 0.91314005562254
924 => 0.93613125848194
925 => 0.92717156436795
926 => 0.91946854549964
927 => 0.91517012861646
928 => 0.93205233054993
929 => 0.93126475565114
930 => 0.90364219659378
1001 => 0.867609694343
1002 => 0.87970338482493
1003 => 0.87530963369389
1004 => 0.85938611278983
1005 => 0.87011664326592
1006 => 0.82286481764642
1007 => 0.74157050760425
1008 => 0.79527601893017
1009 => 0.79320841516448
1010 => 0.79216583558745
1011 => 0.83252404303757
1012 => 0.82864453261351
1013 => 0.82160318320555
1014 => 0.85925679288606
1015 => 0.84551271884016
1016 => 0.88786871653853
1017 => 0.91576711603685
1018 => 0.90869117950539
1019 => 0.93492975907823
1020 => 0.87998199902781
1021 => 0.89823344079507
1022 => 0.90199503764789
1023 => 0.85879215318743
1024 => 0.8292792684976
1025 => 0.8273110955603
1026 => 0.77613982063417
1027 => 0.80347510265961
1028 => 0.82752901963117
1029 => 0.81600906006116
1030 => 0.81236218501029
1031 => 0.83099327873446
1101 => 0.83244107428135
1102 => 0.79943118238167
1103 => 0.80629498419493
1104 => 0.83491817876838
1105 => 0.80557375313124
1106 => 0.74856232750298
1107 => 0.73442270570254
1108 => 0.73253621950943
1109 => 0.69418844375911
1110 => 0.73536758284248
1111 => 0.71739178510027
1112 => 0.77417711478479
1113 => 0.74174163901483
1114 => 0.74034341048235
1115 => 0.73822978297997
1116 => 0.705222268265
1117 => 0.71244881625059
1118 => 0.73647096238901
1119 => 0.74504233476005
1120 => 0.74414827039856
1121 => 0.7363532407677
1122 => 0.7399217654157
1123 => 0.72842630416808
1124 => 0.72436701754421
1125 => 0.71155479236453
1126 => 0.69272436081794
1127 => 0.69534284781824
1128 => 0.65803483567401
1129 => 0.63770745057176
1130 => 0.63208109828609
1201 => 0.62455730486824
1202 => 0.63293093077269
1203 => 0.65792914676311
1204 => 0.62777599461129
1205 => 0.57608053024468
1206 => 0.5791875157379
1207 => 0.58616798966889
1208 => 0.57315992267895
1209 => 0.56084887895728
1210 => 0.57155233264672
1211 => 0.54964828290533
1212 => 0.5888149894323
1213 => 0.58775563978417
1214 => 0.60235456592455
1215 => 0.61148357404025
1216 => 0.59044416588504
1217 => 0.58515281163061
1218 => 0.58816700749257
1219 => 0.53834906409857
1220 => 0.59828337711542
1221 => 0.59880169154322
1222 => 0.59436356873461
1223 => 0.62627674015177
1224 => 0.69362348580975
1225 => 0.66828493107665
1226 => 0.65847307682212
1227 => 0.63982073471184
1228 => 0.6646738731073
1229 => 0.66276553984789
1230 => 0.65413533313491
1231 => 0.64891575718702
]
'min_raw' => 0.4874533614212
'max_raw' => 1.250749509211
'avg_raw' => 0.86910143531611
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.487453'
'max' => '$1.25'
'avg' => '$0.8691014'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.29975251304736
'max_diff' => 0.72700593603997
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.015300604014531
]
1 => [
'year' => 2028
'avg' => 0.026260278286019
]
2 => [
'year' => 2029
'avg' => 0.071738347322734
]
3 => [
'year' => 2030
'avg' => 0.055346028123538
]
4 => [
'year' => 2031
'avg' => 0.054356658575069
]
5 => [
'year' => 2032
'avg' => 0.09530432915212
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.015300604014531
'min' => '$0.0153006'
'max_raw' => 0.09530432915212
'max' => '$0.0953043'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.09530432915212
]
1 => [
'year' => 2033
'avg' => 0.24513253460785
]
2 => [
'year' => 2034
'avg' => 0.15537678095282
]
3 => [
'year' => 2035
'avg' => 0.18326726944656
]
4 => [
'year' => 2036
'avg' => 0.35572221077245
]
5 => [
'year' => 2037
'avg' => 0.86910143531611
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.09530432915212
'min' => '$0.0953043'
'max_raw' => 0.86910143531611
'max' => '$0.8691014'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.86910143531611
]
]
]
]
'prediction_2025_max_price' => '$0.026161'
'last_price' => 0.02536663
'sma_50day_nextmonth' => '$0.023384'
'sma_200day_nextmonth' => '$0.044874'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'augmenter'
'sma_200day_date_nextmonth' => '4 févr. 2026'
'sma_50day_date_nextmonth' => '4 févr. 2026'
'daily_sma3' => '$0.025435'
'daily_sma3_action' => 'SELL'
'daily_sma5' => '$0.0252016'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.02492'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.023345'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.026764'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.037447'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.056343'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.02533'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.025179'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.024686'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.02443'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.028084'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.037149'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.061957'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.0419057'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.083076'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.309724'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$1.62'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.025058'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.025741'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.030656'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.045236'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.132592'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.753708'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$3.07'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '54.32'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 102.76
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'SELL'
'vwma_10' => '0.0250083'
'vwma_10_action' => 'BUY'
'hma_9' => '0.025574'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 95.89
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 87.04
'cci_20_action' => 'NEUTRAL'
'adx_14' => 20.14
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.001555'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'NEUTRAL'
'williams_percent_r_14' => -4.11
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 85.19
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '-0.014567'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 20
'buy_signals' => 14
'sell_pct' => 58.82
'buy_pct' => 41.18
'overall_action' => 'bearish'
'overall_action_label' => 'Baissier'
'overall_action_dir' => -1
'last_updated' => 1767704700
'last_updated_date' => '6 janvier 2026'
]
Prévision du prix de Tulip Token pour 2026
La prévision du prix de Tulip Token pour 2026 suggère que le prix moyen pourrait varier entre $0.008764 à la baisse et $0.026161 à la hausse. Sur le marché des cryptomonnaies, comparé au prix moyen d'aujourd'hui, Tulip Token pourrait potentiellement gagner 3.13% d'ici 2026 si TULIP atteint l'objectif de prix prévu.
Prévision du prix de Tulip Token de 2027 à 2032
La prévision du prix de TULIP pour 2027-2032 se situe actuellement dans une fourchette de prix comprise entre $0.0153006 à la baisse et $0.0953043 à la hausse. Compte tenu de la volatilité des prix sur le marché, si Tulip Token atteint l'objectif de prix le plus élevé, il pourrait gagner 275.71% d'ici 2032 par rapport au prix actuel.
| Prévision du Prix de Tulip Token | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2027 | $0.008437 | $0.0153006 | $0.022164 |
| 2028 | $0.015226 | $0.02626 | $0.037294 |
| 2029 | $0.033447 | $0.071738 | $0.110028 |
| 2030 | $0.028446 | $0.055346 | $0.082245 |
| 2031 | $0.033632 | $0.054356 | $0.075081 |
| 2032 | $0.051336 | $0.0953043 | $0.139271 |
Prévision du prix de Tulip Token de 2032 à 2037
La prévision du prix de Tulip Token pour 2032-2037 est actuellement estimée entre $0.0953043 à la baisse et $0.8691014 à la hausse. Par rapport au prix actuel, Tulip Token pourrait potentiellement gagner 3326.16% d'ici 2037 s'il atteint l'objectif de prix le plus élevé. Veuillez noter que ces informations sont à titre général seulement et ne doivent pas être considérées comme un conseil en investissement à long terme.
| Prévision du Prix de Tulip Token | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2032 | $0.051336 | $0.0953043 | $0.139271 |
| 2033 | $0.119295 | $0.245132 | $0.370969 |
| 2034 | $0.0959079 | $0.155376 | $0.214845 |
| 2035 | $0.113392 | $0.183267 | $0.253141 |
| 2036 | $0.18770084 | $0.355722 | $0.523743 |
| 2037 | $0.487453 | $0.8691014 | $1.25 |
Tulip Token Histogramme des prix potentiels
Prévision du prix de Tulip Token basée sur l'analyse technique
Au 6 janvier 2026, le sentiment global de prévision du prix pour Tulip Token est Baissier, avec 14 indicateurs techniques montrant des signaux haussiers et 20 indiquant des signaux baissiers. La prévision du prix de TULIP a été mise à jour pour la dernière fois le 6 janvier 2026.
Moyennes Mobiles Simples sur 50 et 200 jours de Tulip Token et Indice de Force Relative sur 14 jours - RSI (14)
Selon nos indicateurs techniques, le SMA sur 200 jours de Tulip Token devrait augmenter au cours du prochain mois, atteignant $0.044874 d'ici le 4 févr. 2026. Le SMA à court terme sur 50 jours pour Tulip Token devrait atteindre $0.023384 d'ici le 4 févr. 2026.
Le Relative Strength Index (RSI), un oscillateur de momentum, est un outil couramment utilisé pour identifier si une cryptomonnaie est survendue (en dessous de 30) ou surachetée (au-dessus de 70). Actuellement, le RSI est à 54.32, ce qui suggère que le marché de TULIP est dans un état NEUTRAL.
Moyennes Mobiles et Oscillateurs Populaires de TULIP pour le Samedi 19 Octobre 2024
Les moyennes mobiles (MA) sont des indicateurs largement utilisés sur les marchés financiers, conçus pour lisser les mouvements de prix sur une période donnée. En tant qu'indicateurs retardés, ils sont basés sur des données historiques de prix. Le tableau ci-dessous met en évidence deux types : la moyenne mobile simple (SMA) et la moyenne mobile exponentielle (EMA).
Moyenne Mobile Simple Quotidienne (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 3 | $0.025435 | SELL |
| SMA 5 | $0.0252016 | BUY |
| SMA 10 | $0.02492 | BUY |
| SMA 21 | $0.023345 | BUY |
| SMA 50 | $0.026764 | SELL |
| SMA 100 | $0.037447 | SELL |
| SMA 200 | $0.056343 | SELL |
Moyenne Mobile Exponentielle Quotidienne (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 3 | $0.02533 | BUY |
| EMA 5 | $0.025179 | BUY |
| EMA 10 | $0.024686 | BUY |
| EMA 21 | $0.02443 | BUY |
| EMA 50 | $0.028084 | SELL |
| EMA 100 | $0.037149 | SELL |
| EMA 200 | $0.061957 | SELL |
Moyenne Mobile Simple Hebdomadaire (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 21 | $0.0419057 | SELL |
| SMA 50 | $0.083076 | SELL |
| SMA 100 | $0.309724 | SELL |
| SMA 200 | $1.62 | SELL |
Moyenne Mobile Exponentielle Hebdomadaire (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 21 | $0.045236 | SELL |
| EMA 50 | $0.132592 | SELL |
| EMA 100 | $0.753708 | SELL |
| EMA 200 | $3.07 | SELL |
Oscillateurs de Tulip Token
Un oscillateur est un outil d'analyse technique qui établit des limites hautes et basses entre deux extrêmes, créant un indicateur de tendance qui fluctue à l'intérieur de ces limites. Les traders utilisent cet indicateur pour identifier les conditions de surachat ou de survente à court terme.
| Période | Valeur | Action |
|---|---|---|
| RSI (14) | 54.32 | NEUTRAL |
| Stoch RSI (14) | 102.76 | SELL |
| Stochastique Rapide (14) | 95.89 | SELL |
| Indice de Canal des Matières Premières (20) | 87.04 | NEUTRAL |
| Indice Directionnel Moyen (14) | 20.14 | NEUTRAL |
| Oscillateur Impressionnant (5, 34) | 0.001555 | BUY |
| Momentum (10) | 0 | SELL |
| MACD (12, 26) | 0 | NEUTRAL |
| Plage de Pourcentage de Williams (14) | -4.11 | SELL |
| Oscillateur Ultime (7, 14, 28) | 85.19 | SELL |
| VWMA (10) | 0.0250083 | BUY |
| Moyenne Mobile de Hull (9) | 0.025574 | BUY |
| Nuage Ichimoku B/L (9, 26, 52, 26) | -0.014567 | SELL |
Prévision du cours de Tulip Token basée sur les flux monétaires mondiaux
Définitions des flux monétaires mondiaux utilisés pour la prédiction du cours de Tulip Token
M0 : le total de toutes les devises physiques, plus les comptes à la banque centrale qui peuvent être échangés contre des devises physiques.
M1 : M0 plus le montant des comptes à vue, y compris les comptes de "chèques" et les comptes "courants".
M2 : M1 plus la plupart des comptes d'épargne, comptes du marché monétaire et comptes de certificats de dépôt (CD) de moins de 100 000 $.
Prédictions du cours de Tulip Token par des sociétés Internet ou des niches technologiques
| Comparaison | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Action Facebook | $0.035644 | $0.050086 | $0.070379 | $0.098895 | $0.138964 | $0.195267 |
| Action Amazon.com | $0.052928 | $0.110439 | $0.230438 | $0.480823 | $1.00 | $2.09 |
| Action Apple | $0.03598 | $0.051035 | $0.07239 | $0.10268 | $0.145644 | $0.206584 |
| Action Netflix | $0.040024 | $0.063152 | $0.099644 | $0.157223 | $0.248074 | $0.391422 |
| Action Google | $0.032849 | $0.04254 | $0.055089 | $0.07134 | $0.092385 | $0.119638 |
| Action Tesla | $0.0575042 | $0.130357 | $0.295511 | $0.6699014 | $1.51 | $3.44 |
| Action Kodak | $0.019022 | $0.014264 | $0.010696 | $0.008021 | $0.006015 | $0.00451 |
| Action Nokia | $0.0168043 | $0.011132 | $0.007374 | $0.004885 | $0.003236 | $0.002143 |
Ce calcul montre la valeur potentielle des cryptomonnaies si l'on suppose que leur capitalisation se comportera comme celle de certaines sociétés Internet ou niches technologiques. En extrapolant les données, vous pourrez obtenir une potentielle image des cours futurs pour 2024, 2025, 2026, 2027, 2028, 2029 et 2030.
Aperçu des prévisions relatives à Tulip Token
Vous vous posez peut-être des questions telles que : "Devrais-je investir dans Tulip Token maintenant ?", "Devrais-je acheter TULIP aujourd'hui ?", " Tulip Token sera-t-il un bon ou un mauvais investissement à court ou à long terme ?".
Nous mettons régulièrement à jour les prévisions de Tulip Token/Tulip Protocol avec de nouvelles valeurs. Regardez nos prévisions similaires. Nous faisons une prévision des cours futurs pour une grande quantité de devises numériques comme Tulip Token en utilisant des méthodes d'analyse technique.
Si vous souhaitez trouver des cryptomonnaies ayant un bon rendement, vous devriez consulter un maximum d'informations disponibles à propos de Tulip Token afin de prendre une décision responsable concernant cet investissement.
Le cours de Tulip Token est de $0.02536 USD actuellement, mais ce cours peut subir une hausse ou une baisse, ce qui pourrait causer la perte de votre investissement, car les cryptomonnaies sont des actifs à haut risque.
Prévision du cours de Tulip Token basée sur le modèle de croissance du Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si Tulip Token présente 1 % de la précédente croissance annuelle moyenne du Bitcoin | $0.026025 | $0.0267024 | $0.027396 | $0.0281086 |
| Si Tulip Token présente 2 % de la précédente croissance annuelle moyenne du Bitcoin | $0.026685 | $0.028072 | $0.029532 | $0.031067 |
| Si Tulip Token présente 5 % de la précédente croissance annuelle moyenne du Bitcoin | $0.028663 | $0.032388 | $0.036598 | $0.041354 |
| Si Tulip Token présente 10 % de la précédente croissance annuelle moyenne du Bitcoin | $0.03196 | $0.040267 | $0.050734 | $0.063922 |
| Si Tulip Token présente 20 % de la précédente croissance annuelle moyenne du Bitcoin | $0.038553 | $0.058596 | $0.089058 | $0.135357 |
| Si Tulip Token présente 50 % de la précédente croissance annuelle moyenne du Bitcoin | $0.058334 | $0.134149 | $0.308499 | $0.709443 |
| Si Tulip Token présente 100 % de la précédente croissance annuelle moyenne du Bitcoin | $0.0913026 | $0.328627 | $1.18 | $4.25 |
Boîte à questions
Est-ce que TULIP est un bon investissement ?
La décision d'acquérir Tulip Token dépend entièrement de votre tolérance individuelle au risque. Comme vous pouvez le discerner, la valeur de Tulip Token a connu une baisse de -0.3495% au cours des 24 heures précédentes, et Tulip Token a enregistré une déclin de sur une période de 30 jours précédents. Par conséquent, la détermination de si investir ou non dans Tulip Token dépendra de la mesure dans laquelle cet investissement s'aligne avec vos aspirations de trading.
Est-ce que Tulip Token peut monter ?
Il semble que la valeur moyenne de Tulip Token pourrait potentiellement s'envoler jusqu'à $0.026161 pour la fin de cette année. En regardant les perspectives de Tulip Token sur une période de cinq ans plus longue, la monnaie numérique pourrait potentiellement croître jusqu'à $0.082245. Cependant, compte tenu de l'imprévisibilité du marché, il est essentiel de mener des recherches approfondies avant d'investir des fonds dans un projet, un réseau ou un actif particulier.
Quel sera le prix de Tulip Token la semaine prochaine ?
Basé sur notre nouveau pronostic expérimental de Tulip Token, le prix de Tulip Token va augmenter de 0.86% durant la prochaine semaine et atteindre $0.025583 d'ici 13 janvier 2026.
Quel sera le prix de Tulip Token le mois prochain ?
Basé sur notre nouveau pronostic expérimental de Tulip Token, le prix de Tulip Token va diminuer de -11.62% durant le prochain mois et atteindre $0.022419 d'ici 5 février 2026.
Jusqu'où le prix de Tulip Token peut-il monter cette année en 2026 ?
Selon notre prédiction la plus récente sur la valeur de Tulip Token en 2026, TULIP devrait fluctuer dans la fourchette de $0.008764 et $0.026161. Cependant, il est crucial de garder à l'esprit que le marché des cryptomonnaies est exceptionnellement instable, et cette prévision de prix de Tulip Token ne prend pas en compte les fluctuations de prix soudaines et extrêmes.
Où sera Tulip Token dans 5 ans ?
L'avenir de Tulip Token semble suivre une tendance haussière, avec un prix maximum de $0.082245 prévue après une période de cinq ans. Selon la prévision de Tulip Token pour 2030, la valeur de Tulip Token pourrait potentiellement atteindre son point le plus élevé d'environ $0.082245, tandis que son point le plus bas devrait être autour de $0.028446.
Combien vaudra Tulip Token en 2026 ?
Basé sur notre nouvelle simulation expérimentale de prédiction de prix de Tulip Token, il est attendu que la valeur de TULIP en 2026 augmente de 3.13% jusqu'à $0.026161 si le meilleur scénario se produit. Le prix sera entre $0.026161 et $0.008764 durant 2026.
Combien vaudra Tulip Token en 2027 ?
Selon notre dernière simulation expérimentale pour la prédiction de prix de Tulip Token, le valeur de TULIP pourrait diminuer de -12.62% jusqu'à $0.022164 en 2027, en supposant les conditions les plus favorables. Il est prévu que le prix fluctue entre $0.022164 et $0.008437 tout au long de l'année.
Combien vaudra Tulip Token en 2028 ?
Notre nouveau modèle expérimental de prédiction de prix de Tulip Token suggère que la valeur de TULIP en 2028 pourrait augmenter de 47.02%, atteignant $0.037294 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.037294 et $0.015226 durant l'année.
Combien vaudra Tulip Token en 2029 ?
Basé sur notre modèle de prévision expérimental, la valeur de Tulip Token pourrait connaître un 333.75% croissance en 2029, atteignant potentiellement $0.110028 sous des conditions optimales. Le range de prix prévu pour 2029 se situe entre $0.110028 et $0.033447.
Combien vaudra Tulip Token en 2030 ?
En utilisant notre nouvelle simulation expérimentale pour les prédictions de prix de Tulip Token, il est prévu que la valeur de TULIP en 2030 augmente de 224.23%, atteignant $0.082245 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.082245 et $0.028446 au cours de 2030.
Combien vaudra Tulip Token en 2031 ?
Notre simulation expérimentale indique que le prix de Tulip Token pourrait augmenter de 195.98% en 2031, atteignant potentiellement $0.075081 dans des conditions idéales. Il est probable que le prix fluctue entre $0.075081 et $0.033632 durant l'année.
Combien vaudra Tulip Token en 2032 ?
Basé sur les résultats de notre dernière prédiction expérimentale de prix de Tulip Token, TULIP pourrait connaître une 449.04% hausse en valeur, atteignant $0.139271 si le scénario le plus positif se réalise en 2032. Il est prévu que le prix reste dans une fourchette de $0.139271 et $0.051336 tout au long de l'année.
Combien vaudra Tulip Token en 2033 ?
Selon notre prédiction expérimentale de prix de Tulip Token, la valeur de TULIP est anticipée à augmenter de 1362.43% en 2033, avec le prix potentiel le plus élevé étant $0.370969. Tout au long de l'année, le prix de TULIP pourrait osciller entre $0.370969 et $0.119295.
Combien vaudra Tulip Token en 2034 ?
Les résultats de notre nouvelle simulation de prédiction de prix de Tulip Token suggèrent que TULIP pourrait augmenter de 746.96% en 2034, atteignant potentiellement $0.214845 dans les meilleures circonstances. La fourchette de prix prévue pour l'année est entre $0.214845 et $0.0959079.
Combien vaudra Tulip Token en 2035 ?
Basé sur notre prédiction expérimentale pour le prix de Tulip Token, TULIP pourrait augmenter de 897.93%, avec la valeur potentiellement atteignant $0.253141 en 2035. La fourchette de prix attendue pour l'année se situe entre $0.253141 et $0.113392.
Combien vaudra Tulip Token en 2036 ?
Notre récente simulation de prédiction de prix de Tulip Token suggère que la valeur de TULIP pourrait augmenter de 1964.7% en 2036, pouvant atteindre $0.523743 si les conditions sont optimales. La fourchette de prix attendue pour 2036 est entre $0.523743 et $0.18770084.
Combien vaudra Tulip Token en 2037 ?
Selon la simulation expérimentale, la valeur de Tulip Token pourrait augmenter de 4830.69% en 2037, avec un maximum de $1.25 sous des conditions favorables. Il est prévu que le prix chute entre $1.25 et $0.487453 au cours de l'année.
Prévisions liées
Prévision du cours de Million
Prévision du cours de The Three Kingdoms
Prévision du cours de Hypersign Identity Token
Prévision du cours de Populous
Prévision du cours de YAM
Prévision du cours de Polker
Prévision du cours de LightChain
Prévision du cours de Dacxi
Prévision du cours de Goons of Balatroon
Prévision du cours de Trava Finance
Prévision du cours de Tidal Finance
Prévision du cours de NFTBooks
Prévision du cours de Collab.Land
Prévision du cours de MYX Network
Prévision du cours de Hummingbot
Prévision du cours de Wrapped OrdBridge
Prévision du cours de Dingocoin
Prévision du cours de Moon Money Chain
Prévision du cours de Shikoku
Prévision du cours de VNX Swiss Franc
Prévision du cours de XP Network
Prévision du cours de Monsterra
Prévision du cours de Virtual Versions
Prévision du cours de Rocky the dog
Prévision du cours de #MetaHash
Comment lire et prédire les mouvements de prix de Tulip Token ?
Les traders de Tulip Token utilisent des indicateurs et des modèles graphiques pour prédire la direction du marché. Ils identifient également des niveaux clés de support et de résistance pour évaluer quand une tendance baissière pourrait ralentir ou une tendance haussière pourrait s'arrêter.
Indicateurs de prédiction du prix de Tulip Token
Les moyennes mobiles sont des outils populaires pour la prédiction du prix de Tulip Token. Une moyenne mobile simple (SMA) calcule le prix de clôture moyen de TULIP sur une période spécifique, comme une SMA de 12 jours. Une moyenne mobile exponentielle (EMA) donne plus de poids aux prix récents, réagissant plus rapidement aux changements de prix.
Les moyennes mobiles couramment utilisées sur le marché des cryptomonnaies incluent les moyennes sur 50 jours, 100 jours et 200 jours, qui aident à identifier les niveaux clés de résistance et de support. Un mouvement de prix de TULIP au-dessus de ces moyennes est considéré comme haussier, tandis qu'une chute en dessous indique une faiblesse.
Les traders utilisent également le RSI et les niveaux de retracement de Fibonacci pour évaluer la direction future de TULIP.
Comment lire les graphiques de Tulip Token et prédire les mouvements de prix ?
La plupart des traders préfèrent les graphiques en chandeliers aux simples graphiques linéaires parce qu'ils fournissent des informations plus détaillées. Les chandeliers peuvent représenter l'action des prix de Tulip Token dans différentes périodes, comme 5 minutes pour les tendances à court terme et hebdomadaire pour les tendances à long terme. Les options populaires incluent les graphiques de 1 heure, 4 heures et 1 jour.
Par exemple, un graphique en chandeliers de 1 heure montre les prix d'ouverture, de clôture, les plus hauts et les plus bas de TULIP au sein de chaque heure. La couleur du chandelier est cruciale : le vert indique que le prix a clôturé plus haut qu'il n'a ouvert, tandis que le rouge signifie le contraire. Certains graphiques utilisent des chandeliers creux et pleins pour transmettre la même information.
Qu'est-ce qui affecte le prix de Tulip Token ?
L'action du prix de Tulip Token est déterminée par l'offre et la demande, influencée par des facteurs tels que les réductions de récompenses de bloc, les hard forks et les mises à jour de protocole. Les événements du monde réel, tels que les réglementations, l'adoption par les entreprises et les gouvernements et les piratages d'échanges de cryptomonnaies, impactent également le prix de TULIP. La capitalisation boursière de Tulip Token peut changer rapidement.
Les traders surveillent souvent l'activité des « baleines » de TULIP, de grands détenteurs de Tulip Token, car leurs actions peuvent influencer significativement les mouvements de prix sur le marché relativement petit de Tulip Token.
Modèles de prédiction de prix haussiers et baissiers
Les traders identifient souvent des modèles de chandeliers pour obtenir un avantage dans les prédictions de prix des cryptomonnaies. Certaines formations indiquent des tendances haussières, tandis que d'autres suggèrent des mouvements baissiers.
Modèles de chandeliers haussiers couramment suivis :
- Marteau
- Englobante haussière
- Ligne pénétrante
- Étoile du matin
- Trois soldats blancs
Modèles de chandeliers baissiers courants :
- Harami baissier
- Nuage sombre
- Étoile du soir
- Étoile filante
- Pendu


