Prédiction du prix de Tulip Protocol jusqu'à $0.0260058 d'ici 2026
| Année | Prix min. | Prix max. |
|---|---|---|
| 2026 | $0.008712 | $0.0260058 |
| 2027 | $0.008386 | $0.022032 |
| 2028 | $0.015135 | $0.037072 |
| 2029 | $0.033249 | $0.109375 |
| 2030 | $0.028277 | $0.081757 |
| 2031 | $0.033432 | $0.074635 |
| 2032 | $0.051031 | $0.138444 |
| 2033 | $0.118586 | $0.368765 |
| 2034 | $0.095338 | $0.213569 |
| 2035 | $0.112719 | $0.251637 |
Calculateur de profit d’investissement
Si vous ouvrez une position short de $10,000.00 sur Tulip Protocol aujourd’hui et la fermez le Apr 06, 2026, notre prévision indique que vous pourriez gagner environ $3,954.62, soit un rendement de 39.55% sur les 90 prochains jours.
Prévision du prix à long terme de Tulip Token pour 2027, 2028, 2029, 2030, 2031, 2032 et 2037
[
'name' => 'Tulip Protocol'
'name_with_ticker' => 'Tulip Protocol <small>TULIP</small>'
'name_lang' => 'Tulip Token'
'name_lang_with_ticker' => 'Tulip Token <small>TULIP</small>'
'name_with_lang' => 'Tulip Token/Tulip Protocol'
'name_with_lang_with_ticker' => 'Tulip Token/Tulip Protocol <small>TULIP</small>'
'image' => '/uploads/coins/solfarm.png?1717103123'
'price_for_sd' => 0.02521
'ticker' => 'TULIP'
'marketcap' => '$39.57K'
'low24h' => '$0.02517'
'high24h' => '$0.02553'
'volume24h' => '$34.82'
'current_supply' => '1.56M'
'max_supply' => '10M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.02521'
'change_24h_pct' => '-0.4466%'
'ath_price' => '$50.22'
'ath_days' => 1521
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '7 nov. 2021'
'ath_pct' => '-99.95%'
'fdv' => '$253.41K'
'new_prediction' => true
'change_24h_pct_is_increased' => false
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$1.24'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.025431'
'next_week_prediction_price_date' => '13 janvier 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.022286'
'next_month_prediction_price_date' => '5 février 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.008712'
'current_year_max_price_prediction' => '$0.0260058'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.028277'
'grand_prediction_max_price' => '$0.081757'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.025693758609921
107 => 0.025789689777736
108 => 0.02600582759719
109 => 0.024158953594455
110 => 0.024988145800311
111 => 0.025475218536449
112 => 0.02327460619472
113 => 0.025431719505961
114 => 0.024126803626991
115 => 0.023683895578489
116 => 0.024280212917098
117 => 0.024047827470305
118 => 0.023848036109283
119 => 0.023736549096982
120 => 0.024174418737313
121 => 0.024153991595224
122 => 0.023437551876807
123 => 0.022502985469951
124 => 0.022816656632189
125 => 0.022702696958265
126 => 0.022289692398875
127 => 0.022568007605543
128 => 0.02134244828748
129 => 0.019233937179782
130 => 0.020626884202969
131 => 0.020573257257811
201 => 0.020546216120274
202 => 0.021592977309971
203 => 0.021492355374472
204 => 0.021309725576247
205 => 0.022286338259411
206 => 0.021929861492762
207 => 0.023028438891085
208 => 0.023752033017153
209 => 0.023568506140964
210 => 0.024249049913964
211 => 0.02282388298224
212 => 0.023297266269186
213 => 0.023394829908545
214 => 0.022274287010496
215 => 0.021508818367532
216 => 0.021457770336028
217 => 0.020130553197204
218 => 0.020839541879841
219 => 0.021463422580617
220 => 0.021164632140043
221 => 0.021070044012668
222 => 0.021553274241765
223 => 0.021590825369153
224 => 0.02073465568522
225 => 0.020912680473877
226 => 0.021655073436738
227 => 0.020893974075997
228 => 0.019415282342953
301 => 0.019048546348646
302 => 0.018999617006719
303 => 0.018004999903959
304 => 0.019073053401402
305 => 0.018606819427714
306 => 0.020079646964253
307 => 0.019238375774314
308 => 0.019202110254743
309 => 0.019147289602917
310 => 0.018291181575456
311 => 0.018478614824966
312 => 0.019101671493229
313 => 0.019323985131701
314 => 0.019300795997847
315 => 0.019098618175647
316 => 0.019191174147332
317 => 0.018893019113897
318 => 0.018787734366031
319 => 0.018455426740913
320 => 0.017967026334315
321 => 0.018034941406386
322 => 0.017067292403997
323 => 0.016540065870475
324 => 0.016394136514731
325 => 0.016198993681421
326 => 0.016416178417008
327 => 0.017064551175952
328 => 0.016282476068712
329 => 0.014941663153539
330 => 0.015022248294375
331 => 0.01520329917989
401 => 0.014865912052504
402 => 0.014546603451188
403 => 0.014824216373707
404 => 0.014256096265924
405 => 0.01527195378069
406 => 0.015244477681823
407 => 0.015623126543121
408 => 0.015859903446747
409 => 0.015314209341321
410 => 0.015176968749521
411 => 0.015255147227848
412 => 0.013963031125817
413 => 0.015517533091117
414 => 0.015530976488665
415 => 0.015415865957136
416 => 0.016243590263795
417 => 0.01799034672453
418 => 0.017333146680885
419 => 0.01707865896001
420 => 0.016594877616596
421 => 0.017239487532601
422 => 0.017189991548533
423 => 0.016966151937783
424 => 0.016830773042779
425 => 0.017080212807767
426 => 0.016799864695469
427 => 0.01674950647105
428 => 0.016444390421356
429 => 0.016335477873511
430 => 0.016254843359019
501 => 0.016166072681549
502 => 0.016361878675775
503 => 0.015918156532434
504 => 0.015383071126184
505 => 0.015338584564358
506 => 0.015461415872857
507 => 0.015407072162562
508 => 0.015338324387581
509 => 0.015207066162801
510 => 0.015168124651396
511 => 0.015294665671724
512 => 0.015151808237574
513 => 0.01536260216351
514 => 0.015305277879415
515 => 0.014985069088331
516 => 0.014585970378162
517 => 0.014582417562503
518 => 0.014496432400051
519 => 0.014386917367711
520 => 0.014356452791079
521 => 0.014800836587698
522 => 0.015720697747411
523 => 0.015540106991347
524 => 0.015670602320288
525 => 0.016312510182704
526 => 0.016516553389323
527 => 0.016371728354293
528 => 0.016173482913925
529 => 0.016182204707188
530 => 0.016859669389903
531 => 0.016901922031169
601 => 0.017008680824429
602 => 0.017145896043799
603 => 0.016395096699487
604 => 0.01614684212559
605 => 0.016029205335837
606 => 0.015666929554568
607 => 0.016057612925489
608 => 0.015829978455983
609 => 0.01586069412302
610 => 0.015840690504568
611 => 0.015851613832882
612 => 0.015271669827811
613 => 0.015482970942299
614 => 0.015131641856938
615 => 0.014661251650179
616 => 0.014659674737266
617 => 0.014774802073969
618 => 0.014706319829165
619 => 0.014522035869237
620 => 0.014548212535949
621 => 0.014318877391169
622 => 0.014576057974772
623 => 0.014583432993674
624 => 0.014484404460265
625 => 0.014880626633388
626 => 0.015042959181003
627 => 0.014977776478916
628 => 0.01503838578886
629 => 0.01554761135258
630 => 0.015630637338535
701 => 0.015667511997107
702 => 0.015618104839576
703 => 0.015047693497367
704 => 0.01507299366597
705 => 0.014887357815685
706 => 0.014730515084017
707 => 0.014736787970752
708 => 0.014817425522957
709 => 0.015169574442766
710 => 0.015910651084191
711 => 0.015938774401013
712 => 0.015972860681416
713 => 0.015834214648623
714 => 0.015792397678469
715 => 0.015847565055978
716 => 0.016125874478539
717 => 0.016841761873636
718 => 0.016588719455697
719 => 0.016382992031073
720 => 0.016563470446184
721 => 0.016535687208814
722 => 0.016301168725352
723 => 0.016294586572609
724 => 0.01584447062275
725 => 0.015678073004732
726 => 0.01553901870047
727 => 0.01538717503032
728 => 0.01529715701281
729 => 0.015435465600163
730 => 0.01546709841051
731 => 0.015164684267041
801 => 0.015123466336745
802 => 0.015370424254364
803 => 0.015261747282339
804 => 0.015373524243126
805 => 0.015399457456834
806 => 0.015395281612134
807 => 0.015281810371869
808 => 0.015354133556653
809 => 0.01518306766406
810 => 0.014997059199132
811 => 0.014878397387244
812 => 0.014774849218167
813 => 0.014832303760626
814 => 0.014627488807545
815 => 0.014561964381944
816 => 0.015329632088972
817 => 0.015896716477971
818 => 0.015888470846365
819 => 0.015838277684567
820 => 0.015763700827447
821 => 0.01612041871693
822 => 0.015996145337033
823 => 0.016086564604296
824 => 0.0161095801027
825 => 0.016179241084541
826 => 0.016204138897986
827 => 0.016128880413113
828 => 0.015876303745828
829 => 0.015246906705225
830 => 0.014953920683799
831 => 0.01485723041666
901 => 0.014860744924229
902 => 0.014763799116009
903 => 0.014792354001336
904 => 0.014753868892209
905 => 0.01468098740607
906 => 0.014827803534232
907 => 0.014844722725315
908 => 0.014810454086681
909 => 0.014818525591622
910 => 0.014534795900052
911 => 0.014556367252273
912 => 0.014436255221948
913 => 0.014413735664235
914 => 0.014110102910925
915 => 0.013572173476165
916 => 0.013870238601095
917 => 0.013510217844478
918 => 0.013373872528742
919 => 0.014019310047388
920 => 0.013954526022166
921 => 0.013843643931925
922 => 0.013679626210606
923 => 0.013618790442307
924 => 0.013249171572386
925 => 0.013227332517711
926 => 0.013410525610193
927 => 0.013325988301302
928 => 0.013207265902836
929 => 0.012777265410291
930 => 0.012293802488399
1001 => 0.012308395195072
1002 => 0.012462175755378
1003 => 0.012909313474602
1004 => 0.01273460903214
1005 => 0.012607858954632
1006 => 0.012584122475208
1007 => 0.012881234210885
1008 => 0.013301709563702
1009 => 0.013498987191638
1010 => 0.013303491053764
1011 => 0.013078915616834
1012 => 0.013092584483098
1013 => 0.013183517326589
1014 => 0.013193073082719
1015 => 0.013046897560005
1016 => 0.013088045113421
1017 => 0.013025538217171
1018 => 0.012641933510265
1019 => 0.012634995317541
1020 => 0.012540852536005
1021 => 0.012538001929995
1022 => 0.012377841573584
1023 => 0.012355434032586
1024 => 0.012037425923894
1025 => 0.012246739824053
1026 => 0.012106343049299
1027 => 0.011894731993495
1028 => 0.011858250167714
1029 => 0.011857153479977
1030 => 0.012074430718922
1031 => 0.01224420081301
1101 => 0.012108785311305
1102 => 0.012077953826486
1103 => 0.012407153422612
1104 => 0.012365259773284
1105 => 0.012328980143151
1106 => 0.013264060607671
1107 => 0.012523871454765
1108 => 0.012201106735578
1109 => 0.011801624104226
1110 => 0.011931697663361
1111 => 0.011959106073449
1112 => 0.010998422357205
1113 => 0.01060867309317
1114 => 0.010474925833144
1115 => 0.010397952394091
1116 => 0.010433030156839
1117 => 0.010082210106179
1118 => 0.010317966982251
1119 => 0.01001418647246
1120 => 0.0099632566814061
1121 => 0.010506453864096
1122 => 0.010582036578756
1123 => 0.01025957723631
1124 => 0.010466648335586
1125 => 0.010391561476485
1126 => 0.010019393917397
1127 => 0.010005179854119
1128 => 0.0098184392552916
1129 => 0.0095262263782313
1130 => 0.0093926772522965
1201 => 0.009323123707983
1202 => 0.0093518228559383
1203 => 0.0093373116885237
1204 => 0.0092426165054114
1205 => 0.0093427395055735
1206 => 0.0090869666138394
1207 => 0.0089851157874487
1208 => 0.0089391121320892
1209 => 0.0087120989689369
1210 => 0.0090733778647241
1211 => 0.0091445543584658
1212 => 0.0092158710918877
1213 => 0.0098366345663235
1214 => 0.0098056229774
1215 => 0.010085952638012
1216 => 0.010075059542893
1217 => 0.0099951049826476
1218 => 0.0096577898448571
1219 => 0.0097922376467162
1220 => 0.0093784282104214
1221 => 0.0096884823764
1222 => 0.0095469866032189
1223 => 0.0096406425131555
1224 => 0.0094722407424766
1225 => 0.009565441235509
1226 => 0.0091614329456058
1227 => 0.0087841756890442
1228 => 0.0089359950219105
1229 => 0.0091010399993827
1230 => 0.0094588995632208
1231 => 0.0092457613592761
]
'min_raw' => 0.0087120989689369
'max_raw' => 0.02600582759719
'avg_raw' => 0.017358963283064
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.008712'
'max' => '$0.0260058'
'avg' => '$0.017358'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.016503831031063
'max_diff' => 0.00078989759719011
'year' => 2026
]
1 => [
'items' => [
101 => 0.0093224139170624
102 => 0.0090656406799616
103 => 0.0085358441481735
104 => 0.0085388427390077
105 => 0.0084573450848369
106 => 0.008386919212781
107 => 0.009270242845925
108 => 0.0091603875888634
109 => 0.0089853476142362
110 => 0.0092196455760867
111 => 0.0092815976760087
112 => 0.0092833613651991
113 => 0.0094542991100595
114 => 0.0095455286151338
115 => 0.0095616082108145
116 => 0.0098305824457068
117 => 0.0099207390613868
118 => 0.010292081401931
119 => 0.0095377884290133
120 => 0.0095222542616124
121 => 0.0092229426288951
122 => 0.0090331144594961
123 => 0.0092359403260589
124 => 0.0094156163553418
125 => 0.0092285256639699
126 => 0.009252955758563
127 => 0.0090018017912674
128 => 0.009091577516683
129 => 0.0091689044655072
130 => 0.0091262090694345
131 => 0.009062291995033
201 => 0.009400884969939
202 => 0.0093817802273383
203 => 0.0096970857897896
204 => 0.0099428890234374
205 => 0.010383412360718
206 => 0.0099237032932648
207 => 0.0099069496676687
208 => 0.010070719045236
209 => 0.0099207139891483
210 => 0.010015512006597
211 => 0.010368138934536
212 => 0.010375589385861
213 => 0.010250784726801
214 => 0.010243190351955
215 => 0.010267160451941
216 => 0.01040755407625
217 => 0.010358496230056
218 => 0.010415267211664
219 => 0.010486260193474
220 => 0.010779917266638
221 => 0.010850716992806
222 => 0.010678710363666
223 => 0.010694240636401
224 => 0.010629905435415
225 => 0.01056775843738
226 => 0.010707455813122
227 => 0.010962755513049
228 => 0.010961167306866
301 => 0.011020391874932
302 => 0.011057288290195
303 => 0.010898901866062
304 => 0.010795798127982
305 => 0.010835334661823
306 => 0.010898554440429
307 => 0.010814833339676
308 => 0.010298067922443
309 => 0.010454821538929
310 => 0.010428730072285
311 => 0.010391572650954
312 => 0.01054918962447
313 => 0.010533987082866
314 => 0.010078611939493
315 => 0.01010776357871
316 => 0.010080384747227
317 => 0.010168851352932
318 => 0.0099159365021176
319 => 0.0099937314068206
320 => 0.010042523641768
321 => 0.010071262642992
322 => 0.010175087621931
323 => 0.010162904958996
324 => 0.010174330330497
325 => 0.010328275365485
326 => 0.011106876524893
327 => 0.011149254068114
328 => 0.01094057154644
329 => 0.011023936097768
330 => 0.010863894389042
331 => 0.010971331460296
401 => 0.011044837175842
402 => 0.010712678981624
403 => 0.010693010729052
404 => 0.010532308471264
405 => 0.010618660761958
406 => 0.010481268058514
407 => 0.010514979422146
408 => 0.010420719510526
409 => 0.010590368584481
410 => 0.010780062609963
411 => 0.010827986812044
412 => 0.010701918869036
413 => 0.010610637370015
414 => 0.01045037712773
415 => 0.010716893482283
416 => 0.010794830986292
417 => 0.010716484109753
418 => 0.010698329426546
419 => 0.010663926334673
420 => 0.01070562820512
421 => 0.010794406521908
422 => 0.010752540307189
423 => 0.010780193679598
424 => 0.010674807540007
425 => 0.010898954298559
426 => 0.011254953294993
427 => 0.011256097889979
428 => 0.011214231449585
429 => 0.011197100604202
430 => 0.011240058112713
501 => 0.011263360798871
502 => 0.011402277504338
503 => 0.011551340663989
504 => 0.012246953388728
505 => 0.012051628119161
506 => 0.012668817110736
507 => 0.013156933471112
508 => 0.013303298224847
509 => 0.013168649538404
510 => 0.012708023655664
511 => 0.012685423152325
512 => 0.01337379269237
513 => 0.013179296767985
514 => 0.013156162096661
515 => 0.012910048280409
516 => 0.013055532027603
517 => 0.013023712597974
518 => 0.012973484071645
519 => 0.013251056926804
520 => 0.013770648532563
521 => 0.013689665308106
522 => 0.013629215087753
523 => 0.01336433981896
524 => 0.013523853892806
525 => 0.0134670539864
526 => 0.013711102430432
527 => 0.013566533538523
528 => 0.013177823270066
529 => 0.013239726661524
530 => 0.013230370088437
531 => 0.013422927699543
601 => 0.013365126684262
602 => 0.01321908351253
603 => 0.013768872624942
604 => 0.013733172378069
605 => 0.013783787165921
606 => 0.013806069360848
607 => 0.014140716305202
608 => 0.014277810450796
609 => 0.014308933222017
610 => 0.014439162057089
611 => 0.014305693009964
612 => 0.014839664360281
613 => 0.01519472415015
614 => 0.015607144367293
615 => 0.016209801152642
616 => 0.01643640567882
617 => 0.016395471599424
618 => 0.016852399096049
619 => 0.017673487650556
620 => 0.01656143707211
621 => 0.017732429031483
622 => 0.017361706496898
623 => 0.01648273003641
624 => 0.016426134314806
625 => 0.017021387378975
626 => 0.018341601384318
627 => 0.018010902749723
628 => 0.018342142288814
629 => 0.01795573377164
630 => 0.017936545331856
701 => 0.018323375289615
702 => 0.019227224570924
703 => 0.018797839657658
704 => 0.018182211094991
705 => 0.018636781645423
706 => 0.01824299056612
707 => 0.017355669049268
708 => 0.018010649870709
709 => 0.017572682848191
710 => 0.01770050490897
711 => 0.018621046447624
712 => 0.018510284454243
713 => 0.018653620729963
714 => 0.01840063595508
715 => 0.018164308283302
716 => 0.017723185134005
717 => 0.017592590316606
718 => 0.017628682025826
719 => 0.017592572431348
720 => 0.017345768083447
721 => 0.017292470708016
722 => 0.017203639413953
723 => 0.017231171946435
724 => 0.017064143125085
725 => 0.017379361020888
726 => 0.017437868240039
727 => 0.017667257537613
728 => 0.017691073495457
729 => 0.018329919424048
730 => 0.01797805382195
731 => 0.018214115646452
801 => 0.018193000054969
802 => 0.016501780121599
803 => 0.016734815306657
804 => 0.017097344924139
805 => 0.016934025822861
806 => 0.016703130824437
807 => 0.016516670733404
808 => 0.016234164628965
809 => 0.016631786545914
810 => 0.017154617084324
811 => 0.017704333340713
812 => 0.018364781403929
813 => 0.018217377084682
814 => 0.017691986723569
815 => 0.017715555351371
816 => 0.017861247334527
817 => 0.017672562978827
818 => 0.017616916278775
819 => 0.017853602332453
820 => 0.017855232259225
821 => 0.017638128104726
822 => 0.017396856566641
823 => 0.017395845630087
824 => 0.017352913690291
825 => 0.017963371268356
826 => 0.018299061212069
827 => 0.018337547523124
828 => 0.018296470776692
829 => 0.018312279586116
830 => 0.018116949004292
831 => 0.018563416790856
901 => 0.018973139782894
902 => 0.018863325268573
903 => 0.018698697700552
904 => 0.018567563913086
905 => 0.018832434315738
906 => 0.018820640053652
907 => 0.018969561209993
908 => 0.018962805286131
909 => 0.018912728702462
910 => 0.018863327056966
911 => 0.01905919899725
912 => 0.019002791024055
913 => 0.018946295433698
914 => 0.018832984878194
915 => 0.018848385664576
916 => 0.018683786521826
917 => 0.018607635426845
918 => 0.017462505670364
919 => 0.017156489581238
920 => 0.017252768472409
921 => 0.017284465983263
922 => 0.017151287389105
923 => 0.017342231282354
924 => 0.01731247287885
925 => 0.017428245418797
926 => 0.017355915762098
927 => 0.017358884196438
928 => 0.017571590294483
929 => 0.017633339779662
930 => 0.01760193349312
1001 => 0.01762392937967
1002 => 0.01813081530131
1003 => 0.018058752332552
1004 => 0.018020470316667
1005 => 0.018031074696691
1006 => 0.018160594917427
1007 => 0.018196853507691
1008 => 0.018043223312896
1009 => 0.018115676200887
1010 => 0.018424171402312
1011 => 0.018532127263495
1012 => 0.018876670550636
1013 => 0.01873030243849
1014 => 0.018998967442998
1015 => 0.019824752072206
1016 => 0.020484445973968
1017 => 0.019877764198905
1018 => 0.021089208037978
1019 => 0.022032490837994
1020 => 0.02199628607301
1021 => 0.021831802898303
1022 => 0.020757900508955
1023 => 0.019769679519295
1024 => 0.020596368339225
1025 => 0.020598475739037
1026 => 0.020527462436251
1027 => 0.02008640491157
1028 => 0.02051211459044
1029 => 0.020545905878798
1030 => 0.020526991743146
1031 => 0.020188833973087
1101 => 0.01967252956021
1102 => 0.019773414206628
1103 => 0.019938665315452
1104 => 0.019625810491456
1105 => 0.019525834418646
1106 => 0.019711708959225
1107 => 0.020310635457466
1108 => 0.020197411872319
1109 => 0.020194455146938
1110 => 0.020678873658472
1111 => 0.020332134548271
1112 => 0.019774686685097
1113 => 0.019633923747811
1114 => 0.019134310149724
1115 => 0.019479395041485
1116 => 0.019491814032397
1117 => 0.019302814563861
1118 => 0.019790022950333
1119 => 0.01978553323928
1120 => 0.020248065090836
1121 => 0.021132252271982
1122 => 0.020870754614309
1123 => 0.020566661289299
1124 => 0.02059972466532
1125 => 0.020962348292915
1126 => 0.020743097769779
1127 => 0.020821941786568
1128 => 0.020962228953053
1129 => 0.021046867683727
1130 => 0.020587546454492
1201 => 0.020480456704084
1202 => 0.020261388658142
1203 => 0.020204237894055
1204 => 0.02038266424647
1205 => 0.020335655206504
1206 => 0.0194907702643
1207 => 0.019402475086944
1208 => 0.019405182973977
1209 => 0.019183160552309
1210 => 0.018844523067778
1211 => 0.019734442158131
1212 => 0.019662969200766
1213 => 0.019584068587402
1214 => 0.019593733462339
1215 => 0.019980017177305
1216 => 0.019755953114829
1217 => 0.020351664148297
1218 => 0.020229203868529
1219 => 0.02010360294467
1220 => 0.020086241071095
1221 => 0.020037895431176
1222 => 0.019872100243275
1223 => 0.019671892591138
1224 => 0.019539698157507
1225 => 0.018024338685764
1226 => 0.018305580589279
1227 => 0.018629123763267
1228 => 0.01874080957041
1229 => 0.018549763268869
1230 => 0.019879643915701
1231 => 0.020122625924925
]
'min_raw' => 0.008386919212781
'max_raw' => 0.022032490837994
'avg_raw' => 0.015209705025387
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.008386'
'max' => '$0.022032'
'avg' => '$0.0152097'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00032517975615586
'max_diff' => -0.0039733367591962
'year' => 2027
]
2 => [
'items' => [
101 => 0.019386617569659
102 => 0.019248940457412
103 => 0.019888670004259
104 => 0.019502834883754
105 => 0.019676576414892
106 => 0.019301042256107
107 => 0.020064098674247
108 => 0.02005828546281
109 => 0.019761439281743
110 => 0.020012331641266
111 => 0.019968732919641
112 => 0.019633594312316
113 => 0.020074723165875
114 => 0.020074941960283
115 => 0.019789233964998
116 => 0.019455589576028
117 => 0.019395941839609
118 => 0.019351005282763
119 => 0.019665524776569
120 => 0.019947521971238
121 => 0.020472248837485
122 => 0.020604177638862
123 => 0.021119104533635
124 => 0.020812490639133
125 => 0.020948408607251
126 => 0.021095966788414
127 => 0.021166711606735
128 => 0.021051436721656
129 => 0.021851330141604
130 => 0.021918865654349
131 => 0.021941509727592
201 => 0.021671790166936
202 => 0.021911364265448
203 => 0.021799275478614
204 => 0.022090899362794
205 => 0.022136629711474
206 => 0.022097897733046
207 => 0.022112413267522
208 => 0.021429845344465
209 => 0.021394450596822
210 => 0.020911840701211
211 => 0.021108507800945
212 => 0.020740848084492
213 => 0.020857436767894
214 => 0.02090882794864
215 => 0.020881984112242
216 => 0.021119627063687
217 => 0.020917582007711
218 => 0.020384351885709
219 => 0.019850976485517
220 => 0.019844280391846
221 => 0.019703852063833
222 => 0.019602348103411
223 => 0.019621901367234
224 => 0.019690809619322
225 => 0.019598343030531
226 => 0.019618075465424
227 => 0.019945765361183
228 => 0.0200114812328
229 => 0.019788153024197
301 => 0.01889145804055
302 => 0.018671406842374
303 => 0.018829575279818
304 => 0.018753980954071
305 => 0.015135926318136
306 => 0.015985934587486
307 => 0.015480888537392
308 => 0.015713636993327
309 => 0.015198115757221
310 => 0.015444149511874
311 => 0.015398716061104
312 => 0.016765504204645
313 => 0.016744163687739
314 => 0.016754378263867
315 => 0.016266809931352
316 => 0.017043519523971
317 => 0.017426154598869
318 => 0.017355339030009
319 => 0.017373161783029
320 => 0.017066907836527
321 => 0.016757343471507
322 => 0.016413988949086
323 => 0.017051899211843
324 => 0.016980974480116
325 => 0.017143650296785
326 => 0.017557380700951
327 => 0.017618304074573
328 => 0.017700185706545
329 => 0.017670836970215
330 => 0.01837004293827
331 => 0.018285364482029
401 => 0.018489415197915
402 => 0.018069667393972
403 => 0.017594682910983
404 => 0.017684961932787
405 => 0.017676267337009
406 => 0.017565575153566
407 => 0.017465647199736
408 => 0.017299295311134
409 => 0.017825657302116
410 => 0.017804287966532
411 => 0.018150232670501
412 => 0.018089083583747
413 => 0.017680715016683
414 => 0.017695299979946
415 => 0.017793390867184
416 => 0.018132884547896
417 => 0.018233669386824
418 => 0.018186981833851
419 => 0.018297487808733
420 => 0.018384827225587
421 => 0.018308456294788
422 => 0.019389707622865
423 => 0.018940696686868
424 => 0.019159541492875
425 => 0.0192117346896
426 => 0.019078042913695
427 => 0.019107035872745
428 => 0.019150952305598
429 => 0.019417604286158
430 => 0.020117376239522
501 => 0.020427300474158
502 => 0.021359722825453
503 => 0.020401565580825
504 => 0.020344712495178
505 => 0.020512669917104
506 => 0.021060100544244
507 => 0.021503741649996
508 => 0.021650922999044
509 => 0.02167037544402
510 => 0.021946497439264
511 => 0.022104765417568
512 => 0.021912968966312
513 => 0.021750441555798
514 => 0.021168288544983
515 => 0.021235674341134
516 => 0.021699895653342
517 => 0.022355635599335
518 => 0.02291832869111
519 => 0.022721293182204
520 => 0.024224535029761
521 => 0.024373575318754
522 => 0.024352982769865
523 => 0.024692518728359
524 => 0.024018608996043
525 => 0.023730499529091
526 => 0.021785581826716
527 => 0.022332024368921
528 => 0.023126310695462
529 => 0.023021183921723
530 => 0.022444351960055
531 => 0.022917891112341
601 => 0.022761324259657
602 => 0.02263783348698
603 => 0.023203568656476
604 => 0.022581519598496
605 => 0.023120105280266
606 => 0.02242936357244
607 => 0.022722193223812
608 => 0.022555968951117
609 => 0.022663536427231
610 => 0.02203469915983
611 => 0.022374004485158
612 => 0.022020582942764
613 => 0.022020415374936
614 => 0.022012613574799
615 => 0.022428412452115
616 => 0.022441971638576
617 => 0.022134695640003
618 => 0.022090412368055
619 => 0.022254150834248
620 => 0.022062455973509
621 => 0.022152148792336
622 => 0.022065172677619
623 => 0.0220455925222
624 => 0.021889574512525
625 => 0.021822357664153
626 => 0.021848715122364
627 => 0.021758743529287
628 => 0.021704532390044
629 => 0.022001829614729
630 => 0.021842995700516
701 => 0.021977486039377
702 => 0.02182421732421
703 => 0.021292921181443
704 => 0.020987367151382
705 => 0.019983797988872
706 => 0.020268408958436
707 => 0.020457106325709
708 => 0.020394741846951
709 => 0.020528724879172
710 => 0.020536950349185
711 => 0.020493391099615
712 => 0.020442955068898
713 => 0.020418405598432
714 => 0.020601377238279
715 => 0.020707598433753
716 => 0.02047604463096
717 => 0.020421794814747
718 => 0.020655908493807
719 => 0.020798717702791
720 => 0.021853140664363
721 => 0.021775025605628
722 => 0.021971079073746
723 => 0.021949006461922
724 => 0.022154501730276
725 => 0.022490399645254
726 => 0.021807425265568
727 => 0.021925966002405
728 => 0.021896902551238
729 => 0.022214209690232
730 => 0.022215200288484
731 => 0.02202495880799
801 => 0.022128091800882
802 => 0.022070525793556
803 => 0.022174555349307
804 => 0.021773982331394
805 => 0.022261837028026
806 => 0.022538419204354
807 => 0.022542259548141
808 => 0.022673357304629
809 => 0.02280656021789
810 => 0.023062231610367
811 => 0.02279942968152
812 => 0.022326674594776
813 => 0.02236080598505
814 => 0.022083629850666
815 => 0.022088289231561
816 => 0.022063417091182
817 => 0.022138060256748
818 => 0.021790362308687
819 => 0.021871966322128
820 => 0.021757720225438
821 => 0.021925717653702
822 => 0.021744980191859
823 => 0.021896888535962
824 => 0.021962447141435
825 => 0.022204359807007
826 => 0.021709249494461
827 => 0.02069968605116
828 => 0.020911908526716
829 => 0.020598014815653
830 => 0.02062706687369
831 => 0.020685756654524
901 => 0.020495523872739
902 => 0.020531814292579
903 => 0.020530517743411
904 => 0.020519344783129
905 => 0.020469857889448
906 => 0.020398092102927
907 => 0.020683984908083
908 => 0.020732563666666
909 => 0.020840548229361
910 => 0.021161837041312
911 => 0.021129732712486
912 => 0.021182096204797
913 => 0.021067786995091
914 => 0.020632369350081
915 => 0.020656014623063
916 => 0.020361157690094
917 => 0.020833008074656
918 => 0.020721267675471
919 => 0.020649227913202
920 => 0.020629571196623
921 => 0.020951656421395
922 => 0.021048029368714
923 => 0.020987976215292
924 => 0.020864805445595
925 => 0.021101329735583
926 => 0.021164613657425
927 => 0.021178780593705
928 => 0.02159785628653
929 => 0.021202202269583
930 => 0.021297440123925
1001 => 0.022040458676654
1002 => 0.02136664337888
1003 => 0.021723578369986
1004 => 0.021706108259571
1005 => 0.021888704122999
1006 => 0.021691130069196
1007 => 0.021693579236383
1008 => 0.021855711992992
1009 => 0.021628025777132
1010 => 0.021571647468126
1011 => 0.021493761238024
1012 => 0.021663822972041
1013 => 0.021765767290354
1014 => 0.022587363626101
1015 => 0.023118152328338
1016 => 0.023095109390919
1017 => 0.023305678704364
1018 => 0.023210815300063
1019 => 0.022904476343874
1020 => 0.023427359588033
1021 => 0.023261897451217
1022 => 0.023275537948739
1023 => 0.02327503024874
1024 => 0.023385048104772
1025 => 0.023307090370785
1026 => 0.0231534276749
1027 => 0.023255436143566
1028 => 0.02355836482681
1029 => 0.024498664754588
1030 => 0.025024869051489
1031 => 0.024466986595193
1101 => 0.024851806443202
1102 => 0.024621051659728
1103 => 0.024579116651211
1104 => 0.024820811953724
1105 => 0.02506293031187
1106 => 0.025047508419162
1107 => 0.024871742924064
1108 => 0.024772457455767
1109 => 0.025524280284781
1110 => 0.026078210538231
1111 => 0.026040436208541
1112 => 0.026207159814922
1113 => 0.026696665479822
1114 => 0.026741419743135
1115 => 0.026735781734623
1116 => 0.026624853623375
1117 => 0.027106835520812
1118 => 0.027508913299319
1119 => 0.026599176970643
1120 => 0.02694559265528
1121 => 0.02710110981693
1122 => 0.027329455150094
1123 => 0.027714712002264
1124 => 0.028133203128054
1125 => 0.028192382361762
1126 => 0.028150391863459
1127 => 0.027874385716355
1128 => 0.028332303699832
1129 => 0.028600541315055
1130 => 0.028760270676411
1201 => 0.029165317760379
1202 => 0.027102070237975
1203 => 0.025641601091563
1204 => 0.02541352774492
1205 => 0.025877323863859
1206 => 0.025999623201718
1207 => 0.025950324491978
1208 => 0.024306433687644
1209 => 0.025404873000046
1210 => 0.02658670134079
1211 => 0.026632100180506
1212 => 0.027223748158747
1213 => 0.027416412992933
1214 => 0.027892767164491
1215 => 0.027862971081362
1216 => 0.027978955741686
1217 => 0.027952292876852
1218 => 0.028834638671458
1219 => 0.029807997112526
1220 => 0.029774292804802
1221 => 0.029634361012644
1222 => 0.029842183585915
1223 => 0.030846793808528
1224 => 0.03075430539778
1225 => 0.030844150010677
1226 => 0.032028642080488
1227 => 0.033568650263275
1228 => 0.032853161848077
1229 => 0.034405565832811
1230 => 0.035382721851802
1231 => 0.037072612146829
]
'min_raw' => 0.015135926318136
'max_raw' => 0.037072612146829
'avg_raw' => 0.026104269232483
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.015135'
'max' => '$0.037072'
'avg' => '$0.0261042'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0067490071053554
'max_diff' => 0.015040121308835
'year' => 2028
]
3 => [
'items' => [
101 => 0.036861029559006
102 => 0.037518891449872
103 => 0.036482252568185
104 => 0.034101920156548
105 => 0.03372522344086
106 => 0.034479379805148
107 => 0.036333399637247
108 => 0.034420990122738
109 => 0.034807868076796
110 => 0.034696447200001
111 => 0.034690510054985
112 => 0.034917106732138
113 => 0.034588416433439
114 => 0.033249273026283
115 => 0.033862994558161
116 => 0.033626007201374
117 => 0.033888962342307
118 => 0.035308022786971
119 => 0.034680622338209
120 => 0.034019706931312
121 => 0.034848641520431
122 => 0.035904160105208
123 => 0.035838107649122
124 => 0.03570993827653
125 => 0.0364324223191
126 => 0.037625754289462
127 => 0.037948307125855
128 => 0.038186409035378
129 => 0.038219239265936
130 => 0.038557411044563
131 => 0.036738976160626
201 => 0.039624879022154
202 => 0.040123194724883
203 => 0.04002953202584
204 => 0.040583388957092
205 => 0.040420430197923
206 => 0.040184328523334
207 => 0.041062309568116
208 => 0.04005577514969
209 => 0.038627126261894
210 => 0.037843341226578
211 => 0.038875492587217
212 => 0.039505791406041
213 => 0.03992237883075
214 => 0.040048437933758
215 => 0.036880136084246
216 => 0.035172597109435
217 => 0.036267110015314
218 => 0.037602491299733
219 => 0.036731558050166
220 => 0.036765696984654
221 => 0.035523975048003
222 => 0.037712356138303
223 => 0.037393527420628
224 => 0.039047611371922
225 => 0.038652850962093
226 => 0.040001692213204
227 => 0.039646497107194
228 => 0.041120892133552
301 => 0.041709068227219
302 => 0.042696707430784
303 => 0.043423218849341
304 => 0.043849840250267
305 => 0.043824227501572
306 => 0.045514714033977
307 => 0.044517893186918
308 => 0.043265651270378
309 => 0.04324300216488
310 => 0.043891555997862
311 => 0.045250746909736
312 => 0.045603165337762
313 => 0.045800119161222
314 => 0.045498477524581
315 => 0.044416499937893
316 => 0.043949307501711
317 => 0.044347368993206
318 => 0.043860573994922
319 => 0.044700918732513
320 => 0.045854891545175
321 => 0.045616600722663
322 => 0.046413171215763
323 => 0.047237537874461
324 => 0.048416419221023
325 => 0.048724622458865
326 => 0.049234070691097
327 => 0.04975846026709
328 => 0.049926880066204
329 => 0.050248445720306
330 => 0.05024675091058
331 => 0.051215810653083
401 => 0.052284713558346
402 => 0.052688199659923
403 => 0.053615993702147
404 => 0.052027178918619
405 => 0.053232313182914
406 => 0.054319374455775
407 => 0.053023335191994
408 => 0.054809623378697
409 => 0.054878980901171
410 => 0.055926197145478
411 => 0.054864642859515
412 => 0.054234295313112
413 => 0.056054085060764
414 => 0.056934623996814
415 => 0.056669398503212
416 => 0.054651019401106
417 => 0.053476236191329
418 => 0.050401601932583
419 => 0.054043639026383
420 => 0.055817569055094
421 => 0.054646425350882
422 => 0.055237082113926
423 => 0.058459513891993
424 => 0.059686407276075
425 => 0.059431222028818
426 => 0.059474344134898
427 => 0.060136353535258
428 => 0.063072067791691
429 => 0.061312919759913
430 => 0.062657722516188
501 => 0.06337100104907
502 => 0.064033533901854
503 => 0.062406562611073
504 => 0.060289896866722
505 => 0.059619459973903
506 => 0.054529978190218
507 => 0.054265048560878
508 => 0.05411633553174
509 => 0.053178720918902
510 => 0.052442012667468
511 => 0.051856154913704
512 => 0.050318689215892
513 => 0.050837538756124
514 => 0.048387139327843
515 => 0.049954818045234
516 => 0.046043921390733
517 => 0.049301032337523
518 => 0.047528334931847
519 => 0.048718653563215
520 => 0.048714500653644
521 => 0.046522746662432
522 => 0.045258588701039
523 => 0.046064159355802
524 => 0.046927795043987
525 => 0.047067917028775
526 => 0.048187643241704
527 => 0.048500134759299
528 => 0.047553270872155
529 => 0.045962876750366
530 => 0.04633228903183
531 => 0.045251102572946
601 => 0.043356364890988
602 => 0.044717198573116
603 => 0.045181847023828
604 => 0.045387062250101
605 => 0.043523805351989
606 => 0.042938329581326
607 => 0.042626627193643
608 => 0.045722353682598
609 => 0.045891944567871
610 => 0.045024293621082
611 => 0.048946158174604
612 => 0.04805851943948
613 => 0.049050229383383
614 => 0.046298768739283
615 => 0.046403878241221
616 => 0.045101292678191
617 => 0.045830653554689
618 => 0.045315164795579
619 => 0.045771728403553
620 => 0.04604539074769
621 => 0.047347762569247
622 => 0.049315903331696
623 => 0.047153231649379
624 => 0.046210924627364
625 => 0.046795526604086
626 => 0.048352398706045
627 => 0.050711139635328
628 => 0.049314717531107
629 => 0.049934425948175
630 => 0.050069804668396
701 => 0.0490401347071
702 => 0.050749105035507
703 => 0.051664956118151
704 => 0.052604429820265
705 => 0.053420148512355
706 => 0.052229183364171
707 => 0.053503686790876
708 => 0.052476662009092
709 => 0.051555314607962
710 => 0.051556711911654
711 => 0.050978737228187
712 => 0.049858838449474
713 => 0.049652311932349
714 => 0.050726688955855
715 => 0.051588237584825
716 => 0.051659198856446
717 => 0.05213619644541
718 => 0.052418478705093
719 => 0.055185228594111
720 => 0.056298038287229
721 => 0.057658760915565
722 => 0.058188839065427
723 => 0.059784184252977
724 => 0.058495813446429
725 => 0.0582170663182
726 => 0.054347280726637
727 => 0.054980957900466
728 => 0.05599553619652
729 => 0.054364010749047
730 => 0.055398838120077
731 => 0.055603134963759
801 => 0.054308572138653
802 => 0.0550000540783
803 => 0.053163683056705
804 => 0.049355931201744
805 => 0.050753344151825
806 => 0.051782310447198
807 => 0.050313848673072
808 => 0.052946009565874
809 => 0.051408355511129
810 => 0.050920992996186
811 => 0.049019618068112
812 => 0.04991699384353
813 => 0.051130707428967
814 => 0.050380773542516
815 => 0.051936998960041
816 => 0.054141029181416
817 => 0.055711752369436
818 => 0.055832332992065
819 => 0.054822463212448
820 => 0.056440785979187
821 => 0.056452573693779
822 => 0.054627099001856
823 => 0.053509005917338
824 => 0.053254972816048
825 => 0.053889597309195
826 => 0.054660148602019
827 => 0.055875093226052
828 => 0.056609258817113
829 => 0.058523573307255
830 => 0.05904153192059
831 => 0.059610611401406
901 => 0.060371077085388
902 => 0.061284211118408
903 => 0.05928632583891
904 => 0.059365705545589
905 => 0.057505302435924
906 => 0.055517194904455
907 => 0.057025920699738
908 => 0.058998378979689
909 => 0.058545894870895
910 => 0.058494981165244
911 => 0.058580603895865
912 => 0.058239445654584
913 => 0.056696399573185
914 => 0.055921491491086
915 => 0.05692132061713
916 => 0.057452685300347
917 => 0.058276785584147
918 => 0.058175197829522
919 => 0.060297991658681
920 => 0.061122845150739
921 => 0.06091181233
922 => 0.060950647447804
923 => 0.062444005295037
924 => 0.064104926353625
925 => 0.065660598102831
926 => 0.067243094223779
927 => 0.065335333384101
928 => 0.064366690084043
929 => 0.065366082715968
930 => 0.064835790917999
1001 => 0.067883004883893
1002 => 0.068093987367445
1003 => 0.071140980985086
1004 => 0.074032940757477
1005 => 0.072216552639279
1006 => 0.073929324822822
1007 => 0.075781827583689
1008 => 0.079355605967143
1009 => 0.078152083134635
1010 => 0.077230203506542
1011 => 0.076359031712483
1012 => 0.078171801921291
1013 => 0.080503901835212
1014 => 0.081006213820095
1015 => 0.081820151133553
1016 => 0.080964395571971
1017 => 0.081995058887513
1018 => 0.085633753287784
1019 => 0.084650545941187
1020 => 0.083254233450551
1021 => 0.08612663321564
1022 => 0.087166143524454
1023 => 0.094461971267488
1024 => 0.10367325516868
1025 => 0.099859723149036
1026 => 0.097492540762533
1027 => 0.098048884773678
1028 => 0.10141253383276
1029 => 0.10249283115365
1030 => 0.099556210634647
1031 => 0.10059347464739
1101 => 0.10630890133916
1102 => 0.10937504438646
1103 => 0.10521081029028
1104 => 0.093721853574855
1105 => 0.083128510788155
1106 => 0.08593834231963
1107 => 0.085619794623185
1108 => 0.091760307589492
1109 => 0.084627096771139
1110 => 0.084747201747181
1111 => 0.091014694018715
1112 => 0.08934263453269
1113 => 0.086634112306527
1114 => 0.083148285997836
1115 => 0.076704413666313
1116 => 0.07099689624161
1117 => 0.082190652274215
1118 => 0.081707957159565
1119 => 0.081008943102143
1120 => 0.082564523245715
1121 => 0.090117978863772
1122 => 0.089943847263625
1123 => 0.088836110866219
1124 => 0.089676319160511
1125 => 0.08648681973019
1126 => 0.087308826356936
1127 => 0.083126832748534
1128 => 0.085017268515012
1129 => 0.086628301034288
1130 => 0.086951739664277
1201 => 0.087680463412828
1202 => 0.08145359876798
1203 => 0.084249278182375
1204 => 0.085891477918597
1205 => 0.078471959766611
1206 => 0.085744817900301
1207 => 0.081345202908036
1208 => 0.079851907499662
1209 => 0.081862433040328
1210 => 0.08107892928183
1211 => 0.080405318759158
1212 => 0.080029432513409
1213 => 0.081505740576868
1214 => 0.081436869041138
1215 => 0.079021342510272
1216 => 0.075870386620215
1217 => 0.07692795084352
1218 => 0.076543727846476
1219 => 0.075151254139435
1220 => 0.076089613290064
1221 => 0.071957554483394
1222 => 0.064848562072245
1223 => 0.069544980213377
1224 => 0.069364173223663
1225 => 0.069273002140505
1226 => 0.072802230574102
1227 => 0.072462976693365
1228 => 0.071847227577844
1229 => 0.075139945424052
1230 => 0.073938059116881
1231 => 0.077641989515554
]
'min_raw' => 0.033249273026283
'max_raw' => 0.10937504438646
'avg_raw' => 0.071312158706369
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.033249'
'max' => '$0.109375'
'avg' => '$0.071312'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.018113346708146
'max_diff' => 0.072302432239627
'year' => 2029
]
4 => [
'items' => [
101 => 0.080081637631318
102 => 0.079462863954812
103 => 0.081757364799531
104 => 0.076952314987245
105 => 0.078548359789749
106 => 0.078877302411522
107 => 0.075099313796946
108 => 0.072518482823877
109 => 0.0723463708216
110 => 0.067871565574715
111 => 0.070261970418235
112 => 0.072365427758859
113 => 0.071358034927584
114 => 0.071039124452207
115 => 0.072668368907665
116 => 0.072794975155389
117 => 0.069908339290149
118 => 0.070508562294401
119 => 0.073011592000907
120 => 0.07044549236791
121 => 0.065459979950992
122 => 0.064223503941495
123 => 0.064058535249053
124 => 0.060705114245147
125 => 0.064306131180889
126 => 0.062734190787184
127 => 0.067699931656162
128 => 0.064863527103604
129 => 0.064741255372393
130 => 0.064556423717305
131 => 0.061669995731166
201 => 0.062301940018062
202 => 0.064402619075538
203 => 0.065152165029089
204 => 0.065073981245285
205 => 0.064392324602135
206 => 0.064704383522722
207 => 0.063699133010976
208 => 0.063344158132798
209 => 0.062223759773736
210 => 0.060577083703863
211 => 0.06080606411103
212 => 0.057543567940378
213 => 0.05576598687283
214 => 0.055273975861474
215 => 0.054616038174534
216 => 0.05534829167392
217 => 0.057534325698638
218 => 0.054897504871838
219 => 0.050376860515765
220 => 0.050648558944368
221 => 0.051258984645452
222 => 0.050121460389852
223 => 0.049044889147101
224 => 0.049980880497688
225 => 0.048065423889418
226 => 0.051490458425359
227 => 0.05139782083971
228 => 0.052674461911994
301 => 0.053472771773806
302 => 0.051632925998217
303 => 0.051170209761129
304 => 0.051433793959055
305 => 0.047077334308395
306 => 0.052318446216266
307 => 0.052363771569687
308 => 0.051975668375875
309 => 0.05476639866564
310 => 0.06065571002765
311 => 0.058439914196261
312 => 0.057581891077564
313 => 0.055950788501709
314 => 0.058124135838748
315 => 0.057957256672763
316 => 0.057202565797136
317 => 0.056746126400778
318 => 0.057587129983764
319 => 0.056641916749872
320 => 0.056472130480342
321 => 0.055443410416276
322 => 0.055076204157185
323 => 0.054804339261856
324 => 0.054505042724992
325 => 0.055165216305264
326 => 0.053669176119301
327 => 0.051865098313657
328 => 0.051715108764511
329 => 0.052129243096921
330 => 0.051946019483505
331 => 0.051714231560341
401 => 0.051271685291336
402 => 0.051140391266828
403 => 0.051567033151675
404 => 0.05108537933845
405 => 0.051796085776905
406 => 0.051602812950826
407 => 0.050523206655422
408 => 0.049177617489904
409 => 0.049165638923862
410 => 0.04887573394536
411 => 0.048506496367732
412 => 0.048403782920647
413 => 0.049902053916833
414 => 0.053003430039461
415 => 0.052394555696948
416 => 0.052834529809366
417 => 0.054998766984078
418 => 0.055686712901036
419 => 0.055198425184071
420 => 0.054530026840815
421 => 0.054559432975739
422 => 0.056843552452585
423 => 0.056986010182598
424 => 0.057345954907735
425 => 0.057808585599903
426 => 0.055277213191419
427 => 0.054440205562942
428 => 0.054043584913155
429 => 0.052822146823317
430 => 0.054139363085019
501 => 0.053371877578149
502 => 0.053475437594064
503 => 0.053407993997843
504 => 0.053444822761896
505 => 0.051489501058404
506 => 0.052201917518473
507 => 0.051017386978163
508 => 0.049431433554481
509 => 0.049426116882498
510 => 0.049814276736126
511 => 0.049583384066492
512 => 0.048962057829299
513 => 0.049050314288715
514 => 0.04827709483642
515 => 0.049144197129814
516 => 0.049169062520947
517 => 0.04883518090661
518 => 0.050171071626641
519 => 0.050718387144621
520 => 0.050498619113627
521 => 0.05070296763371
522 => 0.052419857174783
523 => 0.05269978508312
524 => 0.052824110569004
525 => 0.05265753088789
526 => 0.050734349222782
527 => 0.05081965050763
528 => 0.050193766277711
529 => 0.049664960057485
530 => 0.04968610953307
531 => 0.049957984670263
601 => 0.051145279339651
602 => 0.053643870976533
603 => 0.053738690702706
604 => 0.053853614976915
605 => 0.053386160197397
606 => 0.053245171362955
607 => 0.05343117202789
608 => 0.054369511676996
609 => 0.056783176011226
610 => 0.055930025832289
611 => 0.055236401456739
612 => 0.055844897033885
613 => 0.055751223909329
614 => 0.054960528468779
615 => 0.054938336281256
616 => 0.053420738930215
617 => 0.052859717743555
618 => 0.052390886448274
619 => 0.051878934912978
620 => 0.051575432882084
621 => 0.052041749940744
622 => 0.052148402169361
623 => 0.051128791770774
624 => 0.050989822641036
625 => 0.051822458502341
626 => 0.051456046503575
627 => 0.051832910330887
628 => 0.051920345971501
629 => 0.051906266819548
630 => 0.051523690610686
701 => 0.051767533277628
702 => 0.051190772677312
703 => 0.05056363215111
704 => 0.050163555567628
705 => 0.049814435686082
706 => 0.05000814768733
707 => 0.049317599773294
708 => 0.04909667959761
709 => 0.051684924868702
710 => 0.053596889478783
711 => 0.053569088756131
712 => 0.053399859006754
713 => 0.053148417926182
714 => 0.054351117195823
715 => 0.053932120819011
716 => 0.05423697569146
717 => 0.054314574051217
718 => 0.054549440915071
719 => 0.05463338563141
720 => 0.05437964639528
721 => 0.053528066527191
722 => 0.051406010461697
723 => 0.050418187634829
724 => 0.050092189648472
725 => 0.050104039056117
726 => 0.049777179495162
727 => 0.049873454284682
728 => 0.049743699052315
729 => 0.049497974033375
730 => 0.049992974859846
731 => 0.050050019093845
801 => 0.049934479986127
802 => 0.049961693628571
803 => 0.049005079164068
804 => 0.049077808484146
805 => 0.048672842387952
806 => 0.048596916126855
807 => 0.047573197100109
808 => 0.045759530453782
809 => 0.046764477832728
810 => 0.045550642715946
811 => 0.045090944964617
812 => 0.047267082621739
813 => 0.047048658757628
814 => 0.046674812048839
815 => 0.046121814850061
816 => 0.045916702809823
817 => 0.044670506983918
818 => 0.044596875086327
819 => 0.045214523387763
820 => 0.044929499948631
821 => 0.044529219093271
822 => 0.043079442410979
823 => 0.041449413415518
824 => 0.041498613744894
825 => 0.042017095640583
826 => 0.043524651679106
827 => 0.042935623453871
828 => 0.042508276718143
829 => 0.042428247520536
830 => 0.043429980481052
831 => 0.044847642489725
901 => 0.045512777785795
902 => 0.044853648907849
903 => 0.044096477142884
904 => 0.044142562679821
905 => 0.044449149110381
906 => 0.044481367009334
907 => 0.043988526028857
908 => 0.044127257878029
909 => 0.04391651151323
910 => 0.042623161461472
911 => 0.042599768860293
912 => 0.042282359899504
913 => 0.042272748882318
914 => 0.041732757058641
915 => 0.041657208469721
916 => 0.040585021928649
917 => 0.041290738356863
918 => 0.040817380828593
919 => 0.040103919379737
920 => 0.039980918357034
921 => 0.039977220797764
922 => 0.040709786178678
923 => 0.041282177903866
924 => 0.040825615085459
925 => 0.040721664581806
926 => 0.041831584004125
927 => 0.041690336640495
928 => 0.041568017334539
929 => 0.044720706405902
930 => 0.042225106998522
1001 => 0.04113688321307
1002 => 0.039789999630482
1003 => 0.040228551716549
1004 => 0.040320961084754
1005 => 0.037081948862643
1006 => 0.035767882007525
1007 => 0.035316943782414
1008 => 0.035057422458532
1009 => 0.035175689584688
1010 => 0.033992875290414
1011 => 0.034787746058109
1012 => 0.033763528860071
1013 => 0.033591815513728
1014 => 0.035423242739985
1015 => 0.035678075139476
1016 => 0.034590880953027
1017 => 0.035289035621478
1018 => 0.035035875033622
1019 => 0.033781086124249
1020 => 0.033733162417514
1021 => 0.033103553450754
1022 => 0.032118337334093
1023 => 0.031668067131902
1024 => 0.031433562501176
1025 => 0.031530323682217
1026 => 0.031481398268142
1027 => 0.031162126846872
1028 => 0.031499698532283
1029 => 0.030637342370309
1030 => 0.030293945198135
1031 => 0.030138840662218
1101 => 0.029373449933097
1102 => 0.03059152695393
1103 => 0.030831503471964
1104 => 0.031071952817872
1105 => 0.033164900212254
1106 => 0.033060342475038
1107 => 0.034005493497782
1108 => 0.033968766667059
1109 => 0.033699194284941
1110 => 0.03256191274729
1111 => 0.033015212898104
1112 => 0.031620025492384
1113 => 0.032665394760271
1114 => 0.032188331882072
1115 => 0.03250409932127
1116 => 0.031936320993989
1117 => 0.032250552963299
1118 => 0.030888410806932
1119 => 0.029616461627174
1120 => 0.03012833110762
1121 => 0.03068479177224
1122 => 0.031891340276677
1123 => 0.031172729941244
1124 => 0.031431169391531
1125 => 0.03056544049531
1126 => 0.028779194499174
1127 => 0.028789304457527
1128 => 0.028514529426505
1129 => 0.028277083681892
1130 => 0.031255270982723
1201 => 0.030884886313691
1202 => 0.030294726818334
1203 => 0.031084678754875
1204 => 0.031293554585119
1205 => 0.031299500986361
1206 => 0.031875829527651
1207 => 0.032183416173449
1208 => 0.032237629652928
1209 => 0.033144495065049
1210 => 0.033448464389348
1211 => 0.034700471016786
1212 => 0.032157319595542
1213 => 0.032104945065588
1214 => 0.031095794998611
1215 => 0.030455776072103
1216 => 0.031139617642069
1217 => 0.031745407919376
1218 => 0.031114618591161
1219 => 0.031196986360736
1220 => 0.030350203224989
1221 => 0.030652888351169
1222 => 0.030913601557925
1223 => 0.030769651049168
1224 => 0.030554150170276
1225 => 0.031695740024978
1226 => 0.031631327051449
1227 => 0.032694401769185
1228 => 0.033523144532863
1229 => 0.035008399720862
1230 => 0.033458458504081
1231 => 0.033401972485683
]
'min_raw' => 0.028277083681892
'max_raw' => 0.081757364799531
'avg_raw' => 0.055017224240711
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.028277'
'max' => '$0.081757'
'avg' => '$0.055017'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0049721893443911
'max_diff' => -0.027617679586925
'year' => 2030
]
5 => [
'items' => [
101 => 0.033954132376164
102 => 0.033448379856546
103 => 0.033767997990961
104 => 0.034956904298131
105 => 0.034982024014947
106 => 0.034561236393344
107 => 0.034535631428328
108 => 0.03461644829397
109 => 0.035089795200298
110 => 0.034924393246745
111 => 0.035115800574861
112 => 0.035355158369603
113 => 0.036345243694258
114 => 0.036583949914115
115 => 0.036004017554849
116 => 0.036056378953663
117 => 0.035839468331799
118 => 0.03562993538896
119 => 0.036100934844633
120 => 0.036961695607394
121 => 0.036956340859362
122 => 0.037156020625524
123 => 0.037280419465607
124 => 0.036746408578456
125 => 0.036398787127045
126 => 0.036532087311244
127 => 0.036745237208678
128 => 0.036462965672269
129 => 0.034720654988658
130 => 0.035249160750828
131 => 0.035161191549392
201 => 0.035035912709126
202 => 0.035567329339802
203 => 0.035516072909374
204 => 0.033980743820214
205 => 0.034079030607139
206 => 0.033986720965263
207 => 0.03428499230294
208 => 0.033432272225468
209 => 0.033694563178141
210 => 0.033859069604833
211 => 0.033955965153952
212 => 0.034306018319271
213 => 0.034264943620619
214 => 0.034303465058331
215 => 0.03482250149189
216 => 0.037447609661034
217 => 0.037590488506706
218 => 0.036886900815135
219 => 0.037167970220264
220 => 0.036628378425538
221 => 0.036990610012289
222 => 0.037238439664258
223 => 0.036118545121909
224 => 0.036052232235166
225 => 0.03551041335316
226 => 0.03580155613016
227 => 0.035338327038047
228 => 0.035451987254186
301 => 0.035134183381142
302 => 0.035706167078501
303 => 0.036345733729428
304 => 0.036507313522705
305 => 0.036082266651069
306 => 0.03577450470405
307 => 0.035234176108173
308 => 0.036132754605125
309 => 0.036395526341317
310 => 0.03613137437706
311 => 0.036070164595107
312 => 0.03595417216891
313 => 0.036094772936656
314 => 0.036394095230008
315 => 0.036252940364078
316 => 0.036346175639854
317 => 0.035990858912397
318 => 0.03674658535828
319 => 0.037946860829816
320 => 0.037950719911722
321 => 0.037809564284914
322 => 0.037751806443665
323 => 0.037896640682809
324 => 0.037975207316133
325 => 0.038443574687468
326 => 0.038946151537489
327 => 0.041291458405078
328 => 0.040632905621556
329 => 0.042713801397411
330 => 0.044359519785614
331 => 0.044852998771693
401 => 0.044399021324481
402 => 0.042845989000949
403 => 0.042769789826024
404 => 0.045090675790715
405 => 0.044434919202379
406 => 0.044356919042796
407 => 0.043527129128188
408 => 0.044017637739202
409 => 0.043910356310646
410 => 0.043741007327283
411 => 0.044676863587971
412 => 0.046428702963515
413 => 0.046155662368191
414 => 0.04595185022977
415 => 0.045058804768032
416 => 0.045596617604924
417 => 0.045405112754833
418 => 0.046227939122803
419 => 0.045740515010253
420 => 0.044429951201268
421 => 0.044638662807523
422 => 0.044607116468107
423 => 0.045256337897893
424 => 0.045061457739338
425 => 0.044569062989435
426 => 0.046422715366979
427 => 0.046302349492137
428 => 0.046473000783193
429 => 0.046548126759082
430 => 0.047676412296274
501 => 0.048138634779751
502 => 0.048243567375844
503 => 0.048682642985578
504 => 0.048232642774685
505 => 0.050032964462969
506 => 0.051230073333995
507 => 0.05262057689035
508 => 0.054652476318307
509 => 0.055416489299339
510 => 0.055278477192731
511 => 0.05681904014926
512 => 0.059587397537353
513 => 0.055838041371231
514 => 0.059786122518305
515 => 0.05853620560993
516 => 0.055572675105219
517 => 0.055381858678445
518 => 0.057388795943532
519 => 0.061839989636942
520 => 0.060725016101764
521 => 0.061841813334218
522 => 0.060539010040383
523 => 0.060474314875956
524 => 0.061778539086147
525 => 0.064825930042821
526 => 0.063378228829047
527 => 0.061302594148201
528 => 0.062835210496086
529 => 0.061507516378601
530 => 0.058515849933725
531 => 0.060724163502515
601 => 0.059247527108214
602 => 0.059678488110379
603 => 0.062782158178112
604 => 0.06240871638427
605 => 0.062891984645281
606 => 0.062039028813929
607 => 0.061242233568658
608 => 0.059754956072568
609 => 0.05931464652787
610 => 0.059436332245347
611 => 0.059314586226472
612 => 0.058482468136195
613 => 0.058302772313827
614 => 0.058003271403891
615 => 0.058096099259413
616 => 0.057532949926652
617 => 0.058595729070161
618 => 0.058792990244374
619 => 0.059566392276594
620 => 0.059646689441242
621 => 0.061800603092286
622 => 0.060614263648339
623 => 0.061410162570958
624 => 0.061338969880028
625 => 0.055636903797466
626 => 0.056422598193888
627 => 0.057644892110237
628 => 0.057094250357702
629 => 0.056315771749944
630 => 0.055687108534797
701 => 0.054734619479736
702 => 0.056075229533803
703 => 0.057837989196915
704 => 0.059691395935295
705 => 0.061918142691438
706 => 0.061421158737656
707 => 0.059649768453581
708 => 0.059729231727724
709 => 0.060220442420825
710 => 0.059584279942061
711 => 0.059396663207707
712 => 0.060194666762575
713 => 0.060200162174483
714 => 0.059468180359862
715 => 0.058654716524168
716 => 0.058651308080994
717 => 0.058506560048561
718 => 0.060564760393793
719 => 0.061696562476145
720 => 0.061826321760896
721 => 0.061687828642413
722 => 0.061741129147122
723 => 0.061082558452958
724 => 0.062587855766743
725 => 0.063969265440346
726 => 0.063599018138307
727 => 0.063043964798796
728 => 0.062601838078884
729 => 0.063494867134086
730 => 0.063455101956015
731 => 0.063957200031963
801 => 0.063934421962979
802 => 0.063765585264902
803 => 0.063599024167998
804 => 0.064259420090009
805 => 0.064069236670104
806 => 0.063878757842817
807 => 0.063496723393845
808 => 0.063548648220381
809 => 0.062993690718654
810 => 0.062736941985227
811 => 0.058876057060845
812 => 0.057844302450996
813 => 0.058168913454556
814 => 0.058275783825449
815 => 0.057826762897013
816 => 0.058470543564378
817 => 0.058370211029301
818 => 0.058760546230714
819 => 0.058516681743256
820 => 0.058526690026884
821 => 0.059243843487107
822 => 0.059452036187599
823 => 0.059346147699808
824 => 0.059420308367012
825 => 0.061129309641467
826 => 0.060886344311024
827 => 0.060757273821704
828 => 0.060793027229329
829 => 0.061229713696353
830 => 0.061351962064923
831 => 0.060833987137053
901 => 0.061078267107414
902 => 0.062118380217465
903 => 0.06248236094068
904 => 0.063644012688522
905 => 0.063150522379325
906 => 0.064056345199616
907 => 0.066840535731433
908 => 0.06906473977958
909 => 0.067019269817784
910 => 0.071103737301528
911 => 0.074284081119684
912 => 0.074162014226804
913 => 0.07360744771943
914 => 0.069986710836274
915 => 0.066654854774249
916 => 0.069442093848214
917 => 0.069449199093815
918 => 0.069209772785481
919 => 0.067722716547366
920 => 0.069158026451776
921 => 0.069271956139708
922 => 0.069208185810815
923 => 0.06806806327964
924 => 0.066327306904401
925 => 0.06666744653334
926 => 0.067224602184204
927 => 0.066169790302274
928 => 0.065832713992692
929 => 0.066459402983597
930 => 0.068478725488131
1001 => 0.068096984265788
1002 => 0.068087015459735
1003 => 0.069720266292392
1004 => 0.068551211173799
1005 => 0.066671736783339
1006 => 0.066197144712526
1007 => 0.064512662584668
1008 => 0.065676140390299
1009 => 0.065718011885224
1010 => 0.065080786981535
1011 => 0.066723444072327
1012 => 0.066708306698051
1013 => 0.068267765128516
1014 => 0.071248863941726
1015 => 0.070367206331696
1016 => 0.069341934455307
1017 => 0.069453409935976
1018 => 0.070676020813984
1019 => 0.069936802367649
1020 => 0.070202630474965
1021 => 0.070675618451306
1022 => 0.070960983841063
1023 => 0.069412350247914
1024 => 0.069051289677643
1025 => 0.068312686465909
1026 => 0.06811999867465
1027 => 0.068721575579145
1028 => 0.068563081318837
1029 => 0.06571449274821
1030 => 0.065416799393183
1031 => 0.065425929223373
1101 => 0.064677365127609
1102 => 0.0635356252056
1103 => 0.066536049550891
1104 => 0.066295073485052
1105 => 0.066029054558432
1106 => 0.06606164035906
1107 => 0.067364022873535
1108 => 0.066608575243246
1109 => 0.068617056583801
1110 => 0.068204173200658
1111 => 0.06778070091669
1112 => 0.067722164147764
1113 => 0.067559163447394
1114 => 0.067000173395935
1115 => 0.066325159318703
1116 => 0.065879456556197
1117 => 0.060770316298194
1118 => 0.061718543011578
1119 => 0.062809391411741
1120 => 0.063185947908177
1121 => 0.062541821964107
1122 => 0.0670256074142
1123 => 0.067844838222764
1124 => 0.065363334666521
1125 => 0.064899146670271
1126 => 0.067056039501956
1127 => 0.065755169455025
1128 => 0.066340951157504
1129 => 0.065074811522204
1130 => 0.067647509510859
1201 => 0.067627909862634
1202 => 0.066627072238027
1203 => 0.067472973344904
1204 => 0.067325977210981
1205 => 0.066196033997754
1206 => 0.067683330726162
1207 => 0.067684068406783
1208 => 0.066720783953186
1209 => 0.065595878601466
1210 => 0.065394772093657
1211 => 0.065243265354881
1212 => 0.066303689787297
1213 => 0.067254463017541
1214 => 0.06902361628235
1215 => 0.069468423447168
1216 => 0.071204535423943
1217 => 0.070170765271532
1218 => 0.070629022190531
1219 => 0.071126524900503
1220 => 0.071365045994721
1221 => 0.070976388671441
1222 => 0.073673285183571
1223 => 0.073900985879968
1224 => 0.073977331953867
1225 => 0.073067953623894
1226 => 0.073875694423558
1227 => 0.073497779252959
1228 => 0.074481009539
1229 => 0.074635192602366
1230 => 0.074504605032917
1231 => 0.074553545170843
]
'min_raw' => 0.033432272225468
'max_raw' => 0.074635192602366
'avg_raw' => 0.054033732413917
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.033432'
'max' => '$0.074635'
'avg' => '$0.054033'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0051551885435764
'max_diff' => -0.0071221721971648
'year' => 2031
]
6 => [
'items' => [
101 => 0.072252219762887
102 => 0.072132883900026
103 => 0.070505730942227
104 => 0.071168807799837
105 => 0.069929217396636
106 => 0.070322304282687
107 => 0.070495573236589
108 => 0.070405067367997
109 => 0.071206297170494
110 => 0.070525088157937
111 => 0.068727265572669
112 => 0.066928953171839
113 => 0.06690637682452
114 => 0.066432912912232
115 => 0.066090685222889
116 => 0.066156610417036
117 => 0.066388939399968
118 => 0.06607718184005
119 => 0.066143711121968
120 => 0.067248540484095
121 => 0.067470106133387
122 => 0.066717139485805
123 => 0.063693869743194
124 => 0.06295195176506
125 => 0.06348522769487
126 => 0.063230356147789
127 => 0.051031832338226
128 => 0.053897694564022
129 => 0.052194896544939
130 => 0.052979624214102
131 => 0.051241508374029
201 => 0.052071028355368
202 => 0.051917846304034
203 => 0.056526067956085
204 => 0.05645411691339
205 => 0.056488556069964
206 => 0.054844685395955
207 => 0.057463416015604
208 => 0.05875349688535
209 => 0.05851473725075
210 => 0.058574827906904
211 => 0.057542271344305
212 => 0.056498553474547
213 => 0.055340909729956
214 => 0.057491668718314
215 => 0.057252541033489
216 => 0.057801013907053
217 => 0.059195934850431
218 => 0.059401342258133
219 => 0.05967741189712
220 => 0.059578460583518
221 => 0.061935882321819
222 => 0.061650382994541
223 => 0.062338354229518
224 => 0.060923145202667
225 => 0.059321701855912
226 => 0.059626083881003
227 => 0.059596769444301
228 => 0.059223563019541
229 => 0.058886648946455
301 => 0.058325781939718
302 => 0.060100448141732
303 => 0.060028399934852
304 => 0.061194776657372
305 => 0.060988608242087
306 => 0.059611765106849
307 => 0.059660939328779
308 => 0.059991659603589
309 => 0.061136286250802
310 => 0.06147608937182
311 => 0.061318679027351
312 => 0.061691257636945
313 => 0.061985728578715
314 => 0.061728238653477
315 => 0.065373752996647
316 => 0.06385988127699
317 => 0.064597731819699
318 => 0.064773704826467
319 => 0.064322953669944
320 => 0.064420705455605
321 => 0.064568772775114
322 => 0.065467808544622
323 => 0.067827138541906
324 => 0.0688720697372
325 => 0.072015796794241
326 => 0.068785302747576
327 => 0.06859361859996
328 => 0.069159898774395
329 => 0.071005599354183
330 => 0.072501366316261
331 => 0.072997598510448
401 => 0.07306318378681
402 => 0.073994148371999
403 => 0.074527759910767
404 => 0.073881104784557
405 => 0.073333132272709
406 => 0.071370362752119
407 => 0.071597558668571
408 => 0.073162713233577
409 => 0.075373586243793
410 => 0.077270745288688
411 => 0.076606426313834
412 => 0.081674711155866
413 => 0.082177210895866
414 => 0.08210778167956
415 => 0.083252550869268
416 => 0.080980417155888
417 => 0.080009035972901
418 => 0.073451610149523
419 => 0.075293979331968
420 => 0.077971971137202
421 => 0.077617528879825
422 => 0.075672699647939
423 => 0.077269269961319
424 => 0.076741393886346
425 => 0.076325036124416
426 => 0.07823245174674
427 => 0.076135169917679
428 => 0.07795104914662
429 => 0.075622165252638
430 => 0.076609460866953
501 => 0.076049024126152
502 => 0.076411695381994
503 => 0.074291526630935
504 => 0.075435518224819
505 => 0.074243932819534
506 => 0.074243367852903
507 => 0.074217063539038
508 => 0.075618958484057
509 => 0.075664674227885
510 => 0.074628671745369
511 => 0.074479367602239
512 => 0.075031423272862
513 => 0.074385110666171
514 => 0.074687516266999
515 => 0.074394270223755
516 => 0.074328254362714
517 => 0.073802228750267
518 => 0.073575602453049
519 => 0.073664468463629
520 => 0.073361122955953
521 => 0.073178346315092
522 => 0.074180704664749
523 => 0.073645185033548
524 => 0.074098628600835
525 => 0.073581872426771
526 => 0.071790570387517
527 => 0.070760373642067
528 => 0.067376770143703
529 => 0.068336355898492
530 => 0.06897256224668
531 => 0.068762296052399
601 => 0.06921402919993
602 => 0.069241761946364
603 => 0.069094898895227
604 => 0.068924850296333
605 => 0.068842080042669
606 => 0.069458981701086
607 => 0.069817113877752
608 => 0.069036414065064
609 => 0.068853507022102
610 => 0.069642837636348
611 => 0.070124328855057
612 => 0.073679389487458
613 => 0.073416019113115
614 => 0.07407702706889
615 => 0.074002607717063
616 => 0.07469544936154
617 => 0.075827952633535
618 => 0.073525256828675
619 => 0.073924925199169
620 => 0.073826935744414
621 => 0.074896758917209
622 => 0.07490009878838
623 => 0.074258686354658
624 => 0.074606406440707
625 => 0.074412318627876
626 => 0.074763061538202
627 => 0.073412501641196
628 => 0.075057337811818
629 => 0.075989853929659
630 => 0.07600280191686
701 => 0.076444807155811
702 => 0.076893910077802
703 => 0.077755924027943
704 => 0.076869868976591
705 => 0.07527594219493
706 => 0.075391018560214
707 => 0.074456499871321
708 => 0.074472209299316
709 => 0.074388351141509
710 => 0.074640015785634
711 => 0.073467727878251
712 => 0.073742861506978
713 => 0.07335767281558
714 => 0.07392408787418
715 => 0.07331471890289
716 => 0.073826888490932
717 => 0.074047923906441
718 => 0.074863549348219
719 => 0.073194250361974
720 => 0.069790436727415
721 => 0.070505959620651
722 => 0.069447645058445
723 => 0.069545596100465
724 => 0.069743472794138
725 => 0.069102089688719
726 => 0.069224445372928
727 => 0.069220073966885
728 => 0.069182403551225
729 => 0.069015555034115
730 => 0.068773591674332
731 => 0.069737499227312
801 => 0.069901285903535
802 => 0.070265363395902
803 => 0.071348611057064
804 => 0.071240369070975
805 => 0.071416916241203
806 => 0.071031514759865
807 => 0.069563473769826
808 => 0.069643195458544
809 => 0.068649064722784
810 => 0.070239941237878
811 => 0.06986320068056
812 => 0.069620313592414
813 => 0.069554039600081
814 => 0.070639972422671
815 => 0.070964900543101
816 => 0.070762427143564
817 => 0.070347148294021
818 => 0.071144606451315
819 => 0.071357972612148
820 => 0.071405737426917
821 => 0.072818680384207
822 => 0.071484705242391
823 => 0.071805806317599
824 => 0.074310945244025
825 => 0.072039129923298
826 => 0.073242561166214
827 => 0.073183659469228
828 => 0.073799294171211
829 => 0.073133159454635
830 => 0.073141416992802
831 => 0.073688058901456
901 => 0.072920398928139
902 => 0.072730315523119
903 => 0.072467716660488
904 => 0.073041091670057
905 => 0.073384804056772
906 => 0.076154873464768
907 => 0.077944464632845
908 => 0.077866773760528
909 => 0.078576722902288
910 => 0.078256884311536
911 => 0.077224041132842
912 => 0.078986978497066
913 => 0.078429111350593
914 => 0.07847510124034
915 => 0.078473389494346
916 => 0.078844322377158
917 => 0.078581482434187
918 => 0.078063397926623
919 => 0.078407326600735
920 => 0.079428671806099
921 => 0.082598958662245
922 => 0.084373093187658
923 => 0.082492153536146
924 => 0.083789600520974
925 => 0.083011594657707
926 => 0.082870207848682
927 => 0.083685100435733
928 => 0.084501419384384
929 => 0.084449423396398
930 => 0.08385681775812
1001 => 0.083522069869868
1002 => 0.086056893028482
1003 => 0.087924507552164
1004 => 0.087797148762295
1005 => 0.088359269041477
1006 => 0.090009671566881
1007 => 0.090160563690286
1008 => 0.090141554750953
1009 => 0.089767552879129
1010 => 0.091392588497239
1011 => 0.092748221799648
1012 => 0.089680982251755
1013 => 0.090848946918478
1014 => 0.091373283886842
1015 => 0.092143166120168
1016 => 0.093442086495034
1017 => 0.094853058543752
1018 => 0.095052585461962
1019 => 0.09491101156525
1020 => 0.093980437570156
1021 => 0.09552434002226
1022 => 0.096428721869735
1023 => 0.096967260563496
1024 => 0.09833290508658
1025 => 0.091376522013453
1026 => 0.086452448319622
1027 => 0.085683483107844
1028 => 0.087247204104058
1029 => 0.087659544860318
1030 => 0.087493330818501
1031 => 0.0819508381989
1101 => 0.085654303031247
1102 => 0.089638919794685
1103 => 0.089791985152432
1104 => 0.091786767618616
1105 => 0.092436350558502
1106 => 0.094042411905895
1107 => 0.093941952331332
1108 => 0.094333002711405
1109 => 0.094243107001074
1110 => 0.097217997451004
1111 => 0.10049974339278
1112 => 0.10038610696613
1113 => 0.099914317159145
1114 => 0.10061500547464
1115 => 0.10400211897982
1116 => 0.10369028784565
1117 => 0.10399320523078
1118 => 0.10798680294275
1119 => 0.11317904805095
1120 => 0.1107667289053
1121 => 0.11600076732522
1122 => 0.1192953170661
1123 => 0.12499290018016
1124 => 0.12427953471309
1125 => 0.1264975620086
1126 => 0.12300246164317
1127 => 0.11497700472784
1128 => 0.11370694545077
1129 => 0.11624963628648
1130 => 0.12250059359393
1201 => 0.1160527713956
1202 => 0.11735715742866
1203 => 0.11698149416339
1204 => 0.11696147666445
1205 => 0.11772546318195
1206 => 0.11661726089146
1207 => 0.11210224539822
1208 => 0.11417145039162
1209 => 0.11337243097228
1210 => 0.11425900258888
1211 => 0.1190434639537
1212 => 0.116928139537
1213 => 0.11469981709901
1214 => 0.11749462794059
1215 => 0.12105338254312
1216 => 0.12083068207579
1217 => 0.12039855008759
1218 => 0.12283445547934
1219 => 0.1268578575332
1220 => 0.12794536694102
1221 => 0.12874814415272
1222 => 0.12885883356718
1223 => 0.12999900332922
1224 => 0.12386802315895
1225 => 0.1335980461439
1226 => 0.13527815232694
1227 => 0.1349623619978
1228 => 0.13682972931057
1229 => 0.13628030247662
1230 => 0.13548426919664
1231 => 0.13844444358781
]
'min_raw' => 0.051031832338226
'max_raw' => 0.13844444358781
'avg_raw' => 0.094738137963017
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.051031'
'max' => '$0.138444'
'avg' => '$0.094738'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.017599560112758
'max_diff' => 0.063809250985442
'year' => 2032
]
7 => [
'items' => [
101 => 0.13505084252209
102 => 0.13023405305181
103 => 0.12759146708312
104 => 0.13107143745802
105 => 0.13319653393174
106 => 0.13460108751935
107 => 0.13502610458631
108 => 0.12434395369691
109 => 0.11858686682677
110 => 0.12227709350539
111 => 0.12677942473916
112 => 0.12384301248162
113 => 0.12395811428275
114 => 0.11977156207908
115 => 0.12714984171291
116 => 0.12607488843136
117 => 0.1316517479576
118 => 0.13032078567457
119 => 0.13486849812578
120 => 0.13367093302694
121 => 0.13864195879728
122 => 0.14062503556222
123 => 0.14395493009181
124 => 0.14640441406288
125 => 0.14784279790185
126 => 0.1477564427314
127 => 0.15345603610141
128 => 0.15009518501974
129 => 0.14587316396939
130 => 0.14579680092889
131 => 0.14798344545737
201 => 0.15256605251244
202 => 0.15375425584759
203 => 0.15441829941427
204 => 0.15340129357638
205 => 0.1497533306016
206 => 0.14817815868468
207 => 0.14952025079502
208 => 0.14787898747137
209 => 0.15071226842515
210 => 0.15460296833085
211 => 0.15379955418582
212 => 0.15648524721808
213 => 0.15926465696332
214 => 0.16323933773012
215 => 0.16427846646457
216 => 0.16599610674808
217 => 0.16776412281525
218 => 0.16833196192666
219 => 0.16941614298046
220 => 0.16941042881114
221 => 0.17267768139058
222 => 0.17628156216409
223 => 0.17764194372606
224 => 0.18077006611593
225 => 0.17541326614576
226 => 0.17947646045762
227 => 0.18314156343526
228 => 0.17877187657085
301 => 0.18479447190698
302 => 0.18502831563639
303 => 0.18855907831837
304 => 0.1849799739279
305 => 0.18285471316574
306 => 0.18899026135361
307 => 0.19195905985377
308 => 0.19106483358464
309 => 0.18425972752316
310 => 0.18029886391065
311 => 0.16993251984318
312 => 0.18221190218383
313 => 0.18819283112747
314 => 0.18424423836208
315 => 0.18623567887702
316 => 0.19710033259978
317 => 0.20123688930317
318 => 0.20037651442558
319 => 0.20052190361691
320 => 0.20275391453025
321 => 0.21265188011084
322 => 0.2067207897019
323 => 0.21125488608582
324 => 0.21365975445894
325 => 0.21589353022867
326 => 0.2104080829303
327 => 0.20327159659233
328 => 0.20101117179978
329 => 0.18385162862982
330 => 0.1829583998877
331 => 0.18245700352715
401 => 0.17929577039781
402 => 0.17681190709277
403 => 0.17483664677267
404 => 0.16965297383007
405 => 0.17140231127988
406 => 0.16314061852601
407 => 0.16842615677352
408 => 0.15524029565279
409 => 0.16622187261412
410 => 0.1602450995451
411 => 0.16425834191615
412 => 0.16424434009159
413 => 0.15685468848684
414 => 0.15259249165931
415 => 0.15530852936499
416 => 0.15822033738482
417 => 0.15869276843954
418 => 0.16246800354322
419 => 0.16352159051225
420 => 0.16032917280882
421 => 0.15496704798944
422 => 0.15621254728793
423 => 0.15256725165578
424 => 0.1461790112747
425 => 0.15076715704437
426 => 0.15233375173666
427 => 0.15302564919971
428 => 0.14674354847928
429 => 0.14476957604188
430 => 0.14371864967944
501 => 0.15415610767367
502 => 0.15472789518383
503 => 0.15180254943928
504 => 0.16502538959731
505 => 0.16203265362888
506 => 0.16537627294373
507 => 0.1560995312813
508 => 0.1564539153056
509 => 0.15206215713622
510 => 0.15452124825368
511 => 0.15278324191207
512 => 0.15432257799261
513 => 0.15524524969236
514 => 0.15963628721743
515 => 0.16627201120923
516 => 0.15898041263938
517 => 0.15580335872489
518 => 0.15777438510501
519 => 0.1630234880941
520 => 0.17097614781922
521 => 0.16626801319976
522 => 0.16835740339456
523 => 0.16881384220163
524 => 0.16534223803786
525 => 0.17110415081658
526 => 0.17419200668439
527 => 0.17735950786303
528 => 0.18010976038507
529 => 0.17609433823744
530 => 0.18039141552356
531 => 0.1769287297672
601 => 0.17382234267787
602 => 0.17382705378482
603 => 0.17187837178661
604 => 0.16810255486534
605 => 0.16740623629363
606 => 0.17102857343899
607 => 0.17393334479297
608 => 0.1741725956746
609 => 0.1757808263487
610 => 0.17673256069554
611 => 0.18606085111467
612 => 0.18981276668891
613 => 0.19440053803296
614 => 0.1961877335241
615 => 0.20156655120737
616 => 0.19722271908191
617 => 0.19628290367759
618 => 0.18323565137583
619 => 0.18537213820932
620 => 0.18879285977006
621 => 0.18329205781444
622 => 0.1867810505452
623 => 0.18746985161723
624 => 0.18310514266889
625 => 0.18543652230614
626 => 0.1792450691955
627 => 0.16640696796776
628 => 0.17111844329321
629 => 0.17458767499819
630 => 0.169636653602
701 => 0.17851116782369
702 => 0.17332685982253
703 => 0.17168368307684
704 => 0.16527306475708
705 => 0.16829862983668
706 => 0.17239074992876
707 => 0.16986229547188
708 => 0.17510921811925
709 => 0.18254025989109
710 => 0.18783606278389
711 => 0.18824260877176
712 => 0.18483776230292
713 => 0.19029405049867
714 => 0.19033379360141
715 => 0.18417907822702
716 => 0.1804093493298
717 => 0.17955285899277
718 => 0.18169253977948
719 => 0.18429050726141
720 => 0.18838677788607
721 => 0.19086206843413
722 => 0.19731631339082
723 => 0.19906264701839
724 => 0.20098133821982
725 => 0.20354530136739
726 => 0.2066239965127
727 => 0.19988798680497
728 => 0.20015562102815
729 => 0.19388314205472
730 => 0.18718009870714
731 => 0.19226687306181
801 => 0.1989171538653
802 => 0.19739157210107
803 => 0.19721991298779
804 => 0.19750859600206
805 => 0.19635835717268
806 => 0.19115586957721
807 => 0.18854321287605
808 => 0.19191420658035
809 => 0.19370573970851
810 => 0.19648425135219
811 => 0.19614174114484
812 => 0.20329888874858
813 => 0.20607993988649
814 => 0.20536842799752
815 => 0.20549936330858
816 => 0.21053432355344
817 => 0.21613423486428
818 => 0.22137929078026
819 => 0.22671478693839
820 => 0.22028263807181
821 => 0.21701678955715
822 => 0.22038631159104
823 => 0.2185983957704
824 => 0.2288722904061
825 => 0.22958363257972
826 => 0.2398567842959
827 => 0.2496072285787
828 => 0.24348314922202
829 => 0.24925788022078
830 => 0.25550372261665
831 => 0.2675529659497
901 => 0.26349520469262
902 => 0.26038702316293
903 => 0.25744980663598
904 => 0.26356168795856
905 => 0.27142452564036
906 => 0.27311810556769
907 => 0.2758623520473
908 => 0.27297711242449
909 => 0.27645206575145
910 => 0.28872017796749
911 => 0.2854052257531
912 => 0.28069746070349
913 => 0.29038195705604
914 => 0.2938867386385
915 => 0.31848513125256
916 => 0.34954161803674
917 => 0.3366840285802
918 => 0.32870290789271
919 => 0.33057866056899
920 => 0.34191943821414
921 => 0.34556173605548
922 => 0.33566071494737
923 => 0.3391579229858
924 => 0.35842788311546
925 => 0.36876559847068
926 => 0.35472559247788
927 => 0.31598977277848
928 => 0.28027357796955
929 => 0.28974712115409
930 => 0.28867311535523
1001 => 0.30937628353807
1002 => 0.28532616523911
1003 => 0.2857311075513
1004 => 0.30686239532711
1005 => 0.30122493003051
1006 => 0.29209295824202
1007 => 0.28034025146965
1008 => 0.25861428600712
1009 => 0.23937099252359
1010 => 0.27711152251061
1011 => 0.27548408223087
1012 => 0.27312730753267
1013 => 0.27837205459386
1014 => 0.30383905757557
1015 => 0.30325196072819
1016 => 0.29951715012465
1017 => 0.30234997105033
1018 => 0.29159635103726
1019 => 0.29436780377001
1020 => 0.28026792034181
1021 => 0.2866416565145
1022 => 0.29207336513194
1023 => 0.29316386105471
1024 => 0.29562080405082
1025 => 0.2746264951549
1026 => 0.28405232348864
1027 => 0.28958911455404
1028 => 0.2645736910904
1029 => 0.28909464006288
1030 => 0.27426103094515
1031 => 0.26922628121726
1101 => 0.27600490844802
1102 => 0.27336327082376
1103 => 0.27109214591659
1104 => 0.26982481919551
1105 => 0.274802294904
1106 => 0.27457008971282
1107 => 0.26642597336733
1108 => 0.25580230559129
1109 => 0.25936795720694
1110 => 0.25807252254681
1111 => 0.25337770022412
1112 => 0.2565414436146
1113 => 0.24260991885678
1114 => 0.2186414546086
1115 => 0.23447575626486
1116 => 0.2338661528755
1117 => 0.23355876320328
1118 => 0.24545780327001
1119 => 0.24431398512515
1120 => 0.24223794399194
1121 => 0.25333957210065
1122 => 0.249287328503
1123 => 0.26177538844229
1124 => 0.27000083239538
1125 => 0.26791459374364
1126 => 0.27565066353855
1127 => 0.25945010261856
1128 => 0.26483127910249
1129 => 0.26594033211784
1130 => 0.25320257973305
1201 => 0.24450112791949
1202 => 0.24392084028734
1203 => 0.22883372197654
1204 => 0.2368931387992
1205 => 0.24398509208182
1206 => 0.24058859681725
1207 => 0.2395133678839
1208 => 0.24500647931569
1209 => 0.24543334111926
1210 => 0.23570084676112
1211 => 0.23772454052619
1212 => 0.24616367993763
1213 => 0.23751189586562
1214 => 0.22070289267462
1215 => 0.2165340274806
1216 => 0.21597782401629
1217 => 0.20467153097324
1218 => 0.21681261098707
1219 => 0.21151270420032
1220 => 0.22825504623704
1221 => 0.21869191025665
1222 => 0.21827966257813
1223 => 0.21765648974847
1224 => 0.20792469626923
1225 => 0.21005534055344
1226 => 0.21713792666045
1227 => 0.21966507317448
1228 => 0.21940147108876
1229 => 0.21710321812464
1230 => 0.21815534656265
1231 => 0.21476607427795
]
'min_raw' => 0.11858686682677
'max_raw' => 0.36876559847068
'avg_raw' => 0.24367623264872
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.118586'
'max' => '$0.368765'
'avg' => '$0.243676'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.067555034488545
'max_diff' => 0.23032115488287
'year' => 2033
]
8 => [
'items' => [
101 => 0.21356925169262
102 => 0.20979175040133
103 => 0.2042398670645
104 => 0.20501189049416
105 => 0.1940121568746
106 => 0.18801891819862
107 => 0.18636006872272
108 => 0.18414178587546
109 => 0.18661062967294
110 => 0.1939809960113
111 => 0.18509077049679
112 => 0.16984910242898
113 => 0.1707651526504
114 => 0.17282324552016
115 => 0.168988003073
116 => 0.16535826796426
117 => 0.16851402815159
118 => 0.1620559324639
119 => 0.1736036755301
120 => 0.17329134144234
121 => 0.17759562594978
122 => 0.18028718338509
123 => 0.17408401489877
124 => 0.17252393479961
125 => 0.17341262732577
126 => 0.15872451945527
127 => 0.17639529417541
128 => 0.17654811176898
129 => 0.17523959475454
130 => 0.18464873676905
131 => 0.20450496120466
201 => 0.19703425085721
202 => 0.19414136600726
203 => 0.18864198979282
204 => 0.19596958207791
205 => 0.19540693731866
206 => 0.19286244434065
207 => 0.19132352704825
208 => 0.19415902934528
209 => 0.19097217693453
210 => 0.19039973067272
211 => 0.18693132915378
212 => 0.18569326761373
213 => 0.18477665613813
214 => 0.18376755696787
215 => 0.18599337828561
216 => 0.18094937434844
217 => 0.17486680007002
218 => 0.17436109983314
219 => 0.1757573826488
220 => 0.1751396314439
221 => 0.17435814227804
222 => 0.17286606663449
223 => 0.17242339966421
224 => 0.17386185256616
225 => 0.17223792310687
226 => 0.17463411948406
227 => 0.17398248665706
228 => 0.1703425186564
301 => 0.16580577083882
302 => 0.16576538426709
303 => 0.16478794939155
304 => 0.16354303911924
305 => 0.16319673356117
306 => 0.16824825883075
307 => 0.17870476495935
308 => 0.17665190260332
309 => 0.17813530604135
310 => 0.18543218277811
311 => 0.18775164046798
312 => 0.18610534433908
313 => 0.1838517926587
314 => 0.18395093749567
315 => 0.19165200578399
316 => 0.19213231196681
317 => 0.19334589073814
318 => 0.19490568241663
319 => 0.18637098360665
320 => 0.18354895394923
321 => 0.18221171973731
322 => 0.17809355593933
323 => 0.18253464253077
324 => 0.17994701156023
325 => 0.18029617138421
326 => 0.18006878059079
327 => 0.1801929513401
328 => 0.17360044770057
329 => 0.17600240953503
330 => 0.17200868211709
331 => 0.16666152942142
401 => 0.16664360389063
402 => 0.16795231193759
403 => 0.1671738411815
404 => 0.1650789963932
405 => 0.16537655920799
406 => 0.16276959584012
407 => 0.16569309176144
408 => 0.16577692716369
409 => 0.16465122199008
410 => 0.16915527082158
411 => 0.1710005833028
412 => 0.17025962004259
413 => 0.17094859534521
414 => 0.17673720830233
415 => 0.17768100478924
416 => 0.17810017684502
417 => 0.17753854181993
418 => 0.17105440056376
419 => 0.17134199980117
420 => 0.16923178742215
421 => 0.16744888033059
422 => 0.16752018726414
423 => 0.1684368332709
424 => 0.17243988014301
425 => 0.18086405629285
426 => 0.18118374761975
427 => 0.181571222834
428 => 0.1799951664082
429 => 0.17951981270936
430 => 0.18014692693734
501 => 0.18331060457708
502 => 0.1914484423966
503 => 0.18857198700327
504 => 0.18623338399379
505 => 0.18828496931595
506 => 0.18796914383646
507 => 0.18530325895405
508 => 0.1852284364444
509 => 0.18011175102011
510 => 0.17822022892004
511 => 0.17663953147524
512 => 0.17491345113068
513 => 0.17389017284368
514 => 0.17546239336417
515 => 0.17582197879917
516 => 0.17238429115341
517 => 0.17191574702999
518 => 0.17472303696916
519 => 0.17348765333324
520 => 0.17475827603882
521 => 0.17505307140571
522 => 0.17500560256193
523 => 0.17371572016313
524 => 0.17453785273928
525 => 0.17259326410717
526 => 0.17047881603753
527 => 0.16912992990386
528 => 0.16795284784846
529 => 0.16860596138521
530 => 0.16627773088052
531 => 0.16553288308405
601 => 0.17425933272105
602 => 0.18070565489304
603 => 0.18061192281564
604 => 0.18004135290037
605 => 0.17919360174216
606 => 0.18324858629954
607 => 0.18183591076173
608 => 0.18286375024848
609 => 0.18312537853614
610 => 0.18391724856551
611 => 0.18420027403748
612 => 0.18334477448736
613 => 0.18047361350669
614 => 0.17331895332465
615 => 0.16998843969628
616 => 0.16888931472482
617 => 0.16892926583
618 => 0.16782723599963
619 => 0.16815183317419
620 => 0.16771435434904
621 => 0.16688587529171
622 => 0.16855480513801
623 => 0.16874713375564
624 => 0.16835758558729
625 => 0.16844933828278
626 => 0.16522404582702
627 => 0.16546925780747
628 => 0.16410388634032
629 => 0.16384789565003
630 => 0.16039635547757
701 => 0.15428145175332
702 => 0.15766970200462
703 => 0.15357717216113
704 => 0.15202726909745
705 => 0.15936426914152
706 => 0.1586278378338
707 => 0.15736738755397
708 => 0.15550291888926
709 => 0.15481136932513
710 => 0.15060973309148
711 => 0.15036147800794
712 => 0.15244392237906
713 => 0.15148294595432
714 => 0.15013337110376
715 => 0.14524534779924
716 => 0.13974959123605
717 => 0.1399154735816
718 => 0.14166357149216
719 => 0.14674640193025
720 => 0.14476045214423
721 => 0.14331962278832
722 => 0.14304979876113
723 => 0.14642721137627
724 => 0.15120695781652
725 => 0.15344950790548
726 => 0.15122720887458
727 => 0.14867435140495
728 => 0.14882973201033
729 => 0.14986340956614
730 => 0.14997203446184
731 => 0.1483103866871
801 => 0.14877813080253
802 => 0.14806758471978
803 => 0.14370696472145
804 => 0.14362809493336
805 => 0.14255792846128
806 => 0.14252552424581
807 => 0.14070490411126
808 => 0.14045018676908
809 => 0.13683523498819
810 => 0.13921460719745
811 => 0.13761864924213
812 => 0.13521316415502
813 => 0.13479845761932
814 => 0.13478599104009
815 => 0.13725588636792
816 => 0.13918574503251
817 => 0.13764641161405
818 => 0.13729593523339
819 => 0.14103810605784
820 => 0.14056188070978
821 => 0.14014947262969
822 => 0.15077898394751
823 => 0.14236489630834
824 => 0.13869587383834
825 => 0.13415476180323
826 => 0.13563337078013
827 => 0.13594493541685
828 => 0.12502437956939
829 => 0.12059391142215
830 => 0.11907354171268
831 => 0.11819854745001
901 => 0.118597293323
902 => 0.11460935234839
903 => 0.11728931463778
904 => 0.11383609484604
905 => 0.1132571513102
906 => 0.11943193606969
907 => 0.1202911212964
908 => 0.11662557019132
909 => 0.1189794473996
910 => 0.11812589880254
911 => 0.11389529038802
912 => 0.11373371226484
913 => 0.11161094167551
914 => 0.1082892167526
915 => 0.10677109932905
916 => 0.10598045059396
917 => 0.1063066876715
918 => 0.10614173222208
919 => 0.10506528633445
920 => 0.10620343284031
921 => 0.10329593883243
922 => 0.10213815129122
923 => 0.10161520551933
924 => 0.09903463723822
925 => 0.10314146895738
926 => 0.10395056654256
927 => 0.10476125829992
928 => 0.111817776565
929 => 0.11146525285399
930 => 0.11465189551551
1001 => 0.11452806844154
1002 => 0.11361918633429
1003 => 0.10978476222764
1004 => 0.11131309533451
1005 => 0.10660912358725
1006 => 0.11013365905929
1007 => 0.10852520825797
1008 => 0.10958984022541
1009 => 0.10767553595396
1010 => 0.10873499097747
1011 => 0.10414243359555
1012 => 0.099853968131338
1013 => 0.10157977182225
1014 => 0.10345591780386
1015 => 0.10752388032509
1016 => 0.10510103540741
1017 => 0.10597238205772
1018 => 0.10305351664085
1019 => 0.097031063553161
1020 => 0.097065149983601
1021 => 0.096138726782333
1022 => 0.095338161876435
1023 => 0.10537932829159
1024 => 0.10413055052051
1025 => 0.1021407865783
1026 => 0.10480416468503
1027 => 0.10550840412994
1028 => 0.10552845283689
1029 => 0.10747158475182
1030 => 0.10850863460315
1031 => 0.10869141913427
1101 => 0.11174897918656
1102 => 0.11277383298589
1103 => 0.11699506074261
1104 => 0.10842064816873
1105 => 0.10824406378432
1106 => 0.10484164387689
1107 => 0.10268377538148
1108 => 0.10498939497891
1109 => 0.10703185919378
1110 => 0.1049051089334
1111 => 0.10518281761925
1112 => 0.10232782915657
1113 => 0.10334835319229
1114 => 0.10422736597128
1115 => 0.1037420267807
1116 => 0.10301545052173
1117 => 0.10686440042012
1118 => 0.10664722758269
1119 => 0.11023145821505
1120 => 0.11302562230376
1121 => 0.1180332638673
1122 => 0.11280752884148
1123 => 0.11261708228673
1124 => 0.11447872790806
1125 => 0.11277354797765
1126 => 0.11385116283286
1127 => 0.11785964345427
1128 => 0.11794433633332
1129 => 0.11652562148863
1130 => 0.1164392925614
1201 => 0.11671177226636
1202 => 0.11830769440907
1203 => 0.11775003017467
1204 => 0.11839537334505
1205 => 0.11920238486145
1206 => 0.12254052665907
1207 => 0.12334534134525
1208 => 0.12139005890641
1209 => 0.12156659901827
1210 => 0.12083526971243
1211 => 0.12012881476653
1212 => 0.12171682231546
1213 => 0.12461893732351
1214 => 0.12460088341666
1215 => 0.12527411768947
1216 => 0.12569353706406
1217 => 0.12389308207458
1218 => 0.122721052081
1219 => 0.12317048295874
1220 => 0.12388913271959
1221 => 0.12293743452702
1222 => 0.11706311241298
1223 => 0.11884500648923
1224 => 0.11854841218477
1225 => 0.11812602582813
1226 => 0.11991773410078
1227 => 0.11974491946698
1228 => 0.11456845024962
1229 => 0.11489983101391
1230 => 0.11458860261147
1231 => 0.11559424525109
]
'min_raw' => 0.095338161876435
'max_raw' => 0.21356925169262
'avg_raw' => 0.15445370678453
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.095338'
'max' => '$0.213569'
'avg' => '$0.154453'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.023248704950336
'max_diff' => -0.15519634677806
'year' => 2034
]
9 => [
'items' => [
101 => 0.11271923997487
102 => 0.11360357223438
103 => 0.11415821713744
104 => 0.11448490724633
105 => 0.11566513593313
106 => 0.11552664971889
107 => 0.11565652743561
108 => 0.11740649500932
109 => 0.12625723048079
110 => 0.12673895648446
111 => 0.1243667614594
112 => 0.12531440658243
113 => 0.12349513517342
114 => 0.12471642425835
115 => 0.12555199923288
116 => 0.12177619659481
117 => 0.12155261806734
118 => 0.11972583787807
119 => 0.12070744607766
120 => 0.11914563685198
121 => 0.11952885020619
122 => 0.11845735225987
123 => 0.12038583523014
124 => 0.12254217884686
125 => 0.12308695640103
126 => 0.12165388119749
127 => 0.12061624030586
128 => 0.11879448472033
129 => 0.12182410485954
130 => 0.12271005811425
131 => 0.12181945132426
201 => 0.12161307827087
202 => 0.12122200170762
203 => 0.12169604701251
204 => 0.12270523302256
205 => 0.12222931953696
206 => 0.12254366877871
207 => 0.12134569362467
208 => 0.1238936781001
209 => 0.12794049065294
210 => 0.12795350181702
211 => 0.12747758576607
212 => 0.12728285117177
213 => 0.12777116992105
214 => 0.12803606281065
215 => 0.12961519610347
216 => 0.13130966904211
217 => 0.13921703489028
218 => 0.13699667820195
219 => 0.14401256359375
220 => 0.14956121803997
221 => 0.15122501689513
222 => 0.14969440023616
223 => 0.14445824332812
224 => 0.14420133248981
225 => 0.15202636155885
226 => 0.14981543243781
227 => 0.14955244945398
228 => 0.1467547548228
301 => 0.14840853885105
302 => 0.14804683202452
303 => 0.14747586010354
304 => 0.15063116482585
305 => 0.15653761359002
306 => 0.1556170381598
307 => 0.1549298713054
308 => 0.15191890618071
309 => 0.15373217970918
310 => 0.15308650773666
311 => 0.15586072428417
312 => 0.15421733985785
313 => 0.14979868247521
314 => 0.15050236822748
315 => 0.15039600754164
316 => 0.15258490291936
317 => 0.15192785085869
318 => 0.15026770758149
319 => 0.15651742599025
320 => 0.15611160403955
321 => 0.15668696678183
322 => 0.15694025925467
323 => 0.1607443527177
324 => 0.16230276809208
325 => 0.16265655566597
326 => 0.16413692973947
327 => 0.16261972261043
328 => 0.16868963287693
329 => 0.17272576901506
330 => 0.17741394883717
331 => 0.18426463962122
401 => 0.18684056272845
402 => 0.18637524527532
403 => 0.19156936084193
404 => 0.20090307105643
405 => 0.18826185497066
406 => 0.20157308620424
407 => 0.19735890408125
408 => 0.18736715407752
409 => 0.18672380317227
410 => 0.1934903322814
411 => 0.20849784259115
412 => 0.20473863147233
413 => 0.20850399131384
414 => 0.20411149904986
415 => 0.20389337478612
416 => 0.20829065776881
417 => 0.21856514914127
418 => 0.21368412342376
419 => 0.20668597618111
420 => 0.21185329920185
421 => 0.20737688578811
422 => 0.19729027349773
423 => 0.20473575687444
424 => 0.19975717417559
425 => 0.20121018928313
426 => 0.21167442960781
427 => 0.210415344527
428 => 0.21204471720971
429 => 0.20916891707284
430 => 0.20648246627294
501 => 0.20146800635647
502 => 0.19998347198509
503 => 0.20039374387739
504 => 0.19998326867472
505 => 0.19717772443672
506 => 0.19657186742564
507 => 0.19556207919731
508 => 0.19587505479323
509 => 0.1939763575
510 => 0.19755959158321
511 => 0.1982246714044
512 => 0.20083225035324
513 => 0.20110297785002
514 => 0.20836504810596
515 => 0.20436522184312
516 => 0.20704865062862
517 => 0.20680861950063
518 => 0.18758370559773
519 => 0.1902327291107
520 => 0.19435377838751
521 => 0.19249725127426
522 => 0.18987255629656
523 => 0.18775297437483
524 => 0.18454159102503
525 => 0.18906155142072
526 => 0.19500481869685
527 => 0.20125370891602
528 => 0.20876134107085
529 => 0.20708572497237
530 => 0.20111335895509
531 => 0.20138127493181
601 => 0.20303742607884
602 => 0.20089255986624
603 => 0.20025999694738
604 => 0.20295052164745
605 => 0.20296904981237
606 => 0.20050112201904
607 => 0.19775847190277
608 => 0.19774698009864
609 => 0.1972589520013
610 => 0.20419831816421
611 => 0.20801426790476
612 => 0.2084517603928
613 => 0.20798482117455
614 => 0.2081645275475
615 => 0.20594411047219
616 => 0.21101932546212
617 => 0.21567684462362
618 => 0.21442852999495
619 => 0.2125571289082
620 => 0.21106646780372
621 => 0.21407737761263
622 => 0.21394330653845
623 => 0.21563616525687
624 => 0.21555936740698
625 => 0.21499012269161
626 => 0.21442855032447
627 => 0.21665512128291
628 => 0.21601390460451
629 => 0.21537169193951
630 => 0.21408363612201
701 => 0.21425870429995
702 => 0.21238762633698
703 => 0.21152198005661
704 => 0.19850473697568
705 => 0.19502610427376
706 => 0.19612055293588
707 => 0.1964808738528
708 => 0.19496696844294
709 => 0.19713751991029
710 => 0.19679924176328
711 => 0.19811528414718
712 => 0.19729307800164
713 => 0.19732682162865
714 => 0.19974475458985
715 => 0.2004466908151
716 => 0.20008968038562
717 => 0.20033971825283
718 => 0.20610173536831
719 => 0.20528256079343
720 => 0.20484739062727
721 => 0.2049679357373
722 => 0.20644025464935
723 => 0.20685242355909
724 => 0.20510603492592
725 => 0.20592964190108
726 => 0.20943645586999
727 => 0.21066364229063
728 => 0.21458023226242
729 => 0.21291639523057
730 => 0.21597044011171
731 => 0.22535753287571
801 => 0.232856592113
802 => 0.22596014732666
803 => 0.23973121461651
804 => 0.25045396584394
805 => 0.25004240879215
806 => 0.24817264909395
807 => 0.23596508190061
808 => 0.22473149656473
809 => 0.23412886770142
810 => 0.23415282353304
811 => 0.23334558101828
812 => 0.22833186708852
813 => 0.23317111464138
814 => 0.23355523653856
815 => 0.23334023042239
816 => 0.22949622770772
817 => 0.22362714605287
818 => 0.22477395055964
819 => 0.22665243973589
820 => 0.22309606783135
821 => 0.22195959151967
822 => 0.22407251720654
823 => 0.23088080401517
824 => 0.22959373683172
825 => 0.22956012630611
826 => 0.23506674551835
827 => 0.23112519456519
828 => 0.22478841543704
829 => 0.22318829513534
830 => 0.21750894603447
831 => 0.22143169268759
901 => 0.2215728653561
902 => 0.21942441710369
903 => 0.22496275017195
904 => 0.22491171345772
905 => 0.23016953643395
906 => 0.24022051921635
907 => 0.23724794902877
908 => 0.23379117331533
909 => 0.23416702068137
910 => 0.23828913861654
911 => 0.23579681201414
912 => 0.23669307003748
913 => 0.23828778202268
914 => 0.23924991135782
915 => 0.23402858507638
916 => 0.23281124415527
917 => 0.23032099185928
918 => 0.22967133151801
919 => 0.23169959005228
920 => 0.23116521558793
921 => 0.22156100033996
922 => 0.2205573064092
923 => 0.22058808826911
924 => 0.21806425215716
925 => 0.21421479629638
926 => 0.22433093645946
927 => 0.22351846882908
928 => 0.22262156744513
929 => 0.22273143274701
930 => 0.22712250632401
1001 => 0.22457546189482
1002 => 0.23134719696219
1003 => 0.22995513180933
1004 => 0.22852736543804
1005 => 0.2283300046347
1006 => 0.22778043639305
1007 => 0.22589576240712
1008 => 0.22361990531776
1009 => 0.22211718733599
1010 => 0.20489136424735
1011 => 0.2080883768146
1012 => 0.21176624835636
1013 => 0.21303583487443
1014 => 0.21086411928256
1015 => 0.22598151497545
1016 => 0.22874360884339
1017 => 0.22037704635047
1018 => 0.21881200411254
1019 => 0.22608411888402
1020 => 0.22169814469694
1021 => 0.22367314860482
1022 => 0.21940427042536
1023 => 0.22807830131415
1024 => 0.22801221973176
1025 => 0.22463782580414
1026 => 0.22748984044491
1027 => 0.22699423271644
1028 => 0.22318455028293
1029 => 0.2281990750425
1030 => 0.22820156218422
1031 => 0.22495378139454
1101 => 0.22116108446284
1102 => 0.22048303983095
1103 => 0.21997222428331
1104 => 0.22354751929367
1105 => 0.2267531176203
1106 => 0.23271794137094
1107 => 0.23421763978257
1108 => 0.24007106252373
1109 => 0.23658563427935
1110 => 0.23813067947623
1111 => 0.23980804459744
1112 => 0.2406122351196
1113 => 0.23930184981898
1114 => 0.24839462470092
1115 => 0.24916233349638
1116 => 0.24941973961484
1117 => 0.24635370708457
1118 => 0.2490770615853
1119 => 0.24780289420243
1120 => 0.25111792375877
1121 => 0.25163776272162
1122 => 0.25119747761389
1123 => 0.2513624827058
1124 => 0.24360340341947
1125 => 0.24320105422607
1126 => 0.23771499442466
1127 => 0.23995060434464
1128 => 0.2357712387548
1129 => 0.23709655863558
1130 => 0.23768074701091
1201 => 0.23737560015603
1202 => 0.24007700237523
1203 => 0.2377802586289
1204 => 0.2317187742627
1205 => 0.22565563844914
1206 => 0.22557952071793
1207 => 0.22398320408145
1208 => 0.22282935953326
1209 => 0.22305163092808
1210 => 0.22383494431472
1211 => 0.22278383193524
1212 => 0.22300814005415
1213 => 0.22673314938529
1214 => 0.2274801734411
1215 => 0.22494149381832
1216 => 0.21474832880316
1217 => 0.21224690054082
1218 => 0.21404487757031
1219 => 0.21318556035476
1220 => 0.17205738565709
1221 => 0.18171984023947
1222 => 0.17597873783257
1223 => 0.17862450195709
1224 => 0.17276432305091
1225 => 0.17556110758323
1226 => 0.17504464360233
1227 => 0.19058158463798
1228 => 0.19033899667407
1229 => 0.19045511069492
1230 => 0.18491268594612
1231 => 0.1937419190642
]
'min_raw' => 0.11271923997487
'max_raw' => 0.25163776272162
'avg_raw' => 0.18217850134825
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.112719'
'max' => '$0.251637'
'avg' => '$0.182178'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.017381078098438
'max_diff' => 0.038068511029001
'year' => 2035
]
10 => [
'items' => [
101 => 0.19809151678711
102 => 0.1972865220094
103 => 0.19748912185202
104 => 0.19400778531042
105 => 0.19048881764247
106 => 0.18658574093348
107 => 0.19383717502393
108 => 0.19303093933918
109 => 0.19488015392555
110 => 0.19958322727642
111 => 0.20027577269257
112 => 0.20120656075499
113 => 0.20087293949262
114 => 0.20882115147323
115 => 0.20785857055838
116 => 0.21017811360972
117 => 0.20540663756896
118 => 0.20000725951617
119 => 0.20103350476504
120 => 0.20093466909503
121 => 0.19967637757751
122 => 0.19854044825751
123 => 0.19664944598582
124 => 0.20263285698914
125 => 0.2023899414294
126 => 0.2063224619832
127 => 0.20562735077685
128 => 0.20098522801827
129 => 0.20115102234075
130 => 0.20226606883742
131 => 0.20612525749378
201 => 0.20727092744059
202 => 0.20674020747417
203 => 0.20799638226903
204 => 0.20898921160851
205 => 0.2081210663482
206 => 0.22041217247787
207 => 0.2153080482799
208 => 0.21779576289973
209 => 0.21838906817809
210 => 0.21686932918343
211 => 0.2171989061536
212 => 0.21769812545905
213 => 0.22072928732462
214 => 0.22868393313362
215 => 0.23220699161333
216 => 0.24280628687415
217 => 0.23191445064993
218 => 0.23126817416328
219 => 0.23317742730781
220 => 0.23940033567526
221 => 0.24444341841902
222 => 0.24611649990755
223 => 0.24633762524583
224 => 0.24947643734266
225 => 0.25127554590118
226 => 0.24909530299515
227 => 0.24724777541323
228 => 0.24063016093837
229 => 0.241396167833
301 => 0.24667319572452
302 => 0.25412730843669
303 => 0.26052371261197
304 => 0.25828391480698
305 => 0.27537199100824
306 => 0.27706620396506
307 => 0.27683211851489
308 => 0.28069178776322
309 => 0.27303113031325
310 => 0.26975605083514
311 => 0.24764723184677
312 => 0.2538589081755
313 => 0.26288794451826
314 => 0.26169291770114
315 => 0.2551357901622
316 => 0.26051873844274
317 => 0.25873896740084
318 => 0.25733518813732
319 => 0.26376617307949
320 => 0.25669504096527
321 => 0.26281740456628
322 => 0.25496540992024
323 => 0.25829414601468
324 => 0.25640459441463
325 => 0.2576273658746
326 => 0.25047906890495
327 => 0.25433611643467
328 => 0.25031860304692
329 => 0.25031669822248
330 => 0.25022801139177
331 => 0.25495459807608
401 => 0.25510873189817
402 => 0.25161577719699
403 => 0.25111238785434
404 => 0.25297368209114
405 => 0.25079459401358
406 => 0.25181417561005
407 => 0.25082547610147
408 => 0.25060289901689
409 => 0.24882936693859
410 => 0.24806528055498
411 => 0.24836489851407
412 => 0.24734214795604
413 => 0.24672590375032
414 => 0.25010542490861
415 => 0.24829988308323
416 => 0.24982869972876
417 => 0.24808642020914
418 => 0.24204692031908
419 => 0.23857354006575
420 => 0.22716548463537
421 => 0.23040079500377
422 => 0.2325458091252
423 => 0.23183688197086
424 => 0.23335993181677
425 => 0.23345343470761
426 => 0.23295827567705
427 => 0.23238494495346
428 => 0.2321058792644
429 => 0.23418580627645
430 => 0.23539327391407
501 => 0.23276108998887
502 => 0.23214440612336
503 => 0.2348056893986
504 => 0.23642907065912
505 => 0.24841520578767
506 => 0.24752723418264
507 => 0.24975586865563
508 => 0.24950495861516
509 => 0.25184092259217
510 => 0.25565923644255
511 => 0.24789553676738
512 => 0.24924304658246
513 => 0.24891266829435
514 => 0.25251965181409
515 => 0.25253091242293
516 => 0.25036834562065
517 => 0.2515407081678
518 => 0.25088632755606
519 => 0.25206888176632
520 => 0.24751537478048
521 => 0.25306105476853
522 => 0.25620509796602
523 => 0.25624875300887
524 => 0.25773900453181
525 => 0.25925318638867
526 => 0.26215952660547
527 => 0.25917213013744
528 => 0.25379809470866
529 => 0.25418608270859
530 => 0.25103528770297
531 => 0.25108825313626
601 => 0.25080551950242
602 => 0.25165402442075
603 => 0.24770157389448
604 => 0.24862920613295
605 => 0.24733051556689
606 => 0.24924022348279
607 => 0.24718569345131
608 => 0.24891250897593
609 => 0.24965774531152
610 => 0.25240768343362
611 => 0.24677952535477
612 => 0.23530333003917
613 => 0.23771576542993
614 => 0.23414758399429
615 => 0.23447783277118
616 => 0.23514498785921
617 => 0.23298251993935
618 => 0.23339505067126
619 => 0.23338031217059
620 => 0.23325330373412
621 => 0.2326907623097
622 => 0.23187496594885
623 => 0.2351248475616
624 => 0.2356770657757
625 => 0.2369045784603
626 => 0.24055682357984
627 => 0.24019187816653
628 => 0.24078711927708
629 => 0.23948771127488
630 => 0.23453810858161
701 => 0.23480689582111
702 => 0.23145511463751
703 => 0.2368188658796
704 => 0.23554865878742
705 => 0.2347297480119
706 => 0.23450630061964
707 => 0.23816759894841
708 => 0.2392631167922
709 => 0.23858046358942
710 => 0.23718032195434
711 => 0.23986900780841
712 => 0.24058838671641
713 => 0.24074942912424
714 => 0.24551326495327
715 => 0.24101567462746
716 => 0.24209828932109
717 => 0.25054454011475
718 => 0.24288495614784
719 => 0.24694240860421
720 => 0.24674381742044
721 => 0.24881947280042
722 => 0.24657355309544
723 => 0.24660139396189
724 => 0.24844443532224
725 => 0.24585621612589
726 => 0.24521533665467
727 => 0.24432996625524
728 => 0.24626314013177
729 => 0.24742199044081
730 => 0.25676147284994
731 => 0.26279520441838
801 => 0.26253326421816
802 => 0.26492690731667
803 => 0.26384854917753
804 => 0.26036624628975
805 => 0.26631011269759
806 => 0.26442922466422
807 => 0.26458428278841
808 => 0.26457851151728
809 => 0.26582913762939
810 => 0.26494295441076
811 => 0.263196196322
812 => 0.26435577585911
813 => 0.26779931252704
814 => 0.27848815600489
815 => 0.28446977442344
816 => 0.27812805506536
817 => 0.28250248815956
818 => 0.27987938707292
819 => 0.27940269157498
820 => 0.28215015882621
821 => 0.28490243515515
822 => 0.28472712705141
823 => 0.28272911576755
824 => 0.28160048989096
825 => 0.29014682314593
826 => 0.2964436159052
827 => 0.29601421685326
828 => 0.2979094446205
829 => 0.30347389196233
830 => 0.30398263529134
831 => 0.30391854532522
901 => 0.30265757190238
902 => 0.30813649294521
903 => 0.31270710527157
904 => 0.30236569298802
905 => 0.30630356740657
906 => 0.30807140610345
907 => 0.31066711780457
908 => 0.31504651853615
909 => 0.31980370930933
910 => 0.3204764282446
911 => 0.31999910196746
912 => 0.3168616067724
913 => 0.32206698168149
914 => 0.32511616822218
915 => 0.32693188902777
916 => 0.3315362548836
917 => 0.30808232367339
918 => 0.2914804654268
919 => 0.28888784552785
920 => 0.2941600400421
921 => 0.29555027569054
922 => 0.29498987344386
923 => 0.2763029726124
924 => 0.28878946286232
925 => 0.30222387647731
926 => 0.30273994701763
927 => 0.30946549537364
928 => 0.31165560960789
929 => 0.31707055757225
930 => 0.31673185110275
1001 => 0.31805030476143
1002 => 0.31774721509773
1003 => 0.32777726594989
1004 => 0.33884190151678
1005 => 0.33845876837048
1006 => 0.33686809609692
1007 => 0.33923051567309
1008 => 0.35065040533653
1009 => 0.34959904489632
1010 => 0.35062035200932
1011 => 0.36408504551929
1012 => 0.38159106241257
1013 => 0.37345775999028
1014 => 0.39110468595193
1015 => 0.40221249042143
1016 => 0.42142228968302
1017 => 0.41901712820521
1018 => 0.42649536208973
1019 => 0.41471138718759
1020 => 0.38765299887802
1021 => 0.38337090535268
1022 => 0.39194376503029
1023 => 0.41301930402027
1024 => 0.39128002130602
1025 => 0.39567784988581
1026 => 0.39441127495897
1027 => 0.39434378456372
1028 => 0.3969196184473
1029 => 0.3931832370527
1030 => 0.37796054708895
1031 => 0.38493701619146
1101 => 0.38224306643342
1102 => 0.38523220453723
1103 => 0.40136335006915
1104 => 0.39423138611101
1105 => 0.38671844143481
1106 => 0.39614134131465
1107 => 0.40813993092139
1108 => 0.40738908074734
1109 => 0.40593211757865
1110 => 0.41414494267642
1111 => 0.42771012360596
1112 => 0.4313767375019
1113 => 0.43408335691926
1114 => 0.4344565540082
1115 => 0.43830071596503
1116 => 0.41762968826962
1117 => 0.45043514009188
1118 => 0.45609973538927
1119 => 0.45503502624678
1120 => 0.46133098551722
1121 => 0.45947855458678
1122 => 0.45679467280609
1123 => 0.46677510743868
1124 => 0.45533334451196
1125 => 0.4390932025154
1126 => 0.43018353942249
1127 => 0.44191650250525
1128 => 0.4490814136359
1129 => 0.45381696411933
1130 => 0.45524993883432
1201 => 0.41923432130675
1202 => 0.3998239009771
1203 => 0.41226575786748
1204 => 0.42744568196484
1205 => 0.41754536302481
1206 => 0.41793343678347
1207 => 0.40381818373304
1208 => 0.42869456865354
1209 => 0.42507028861395
1210 => 0.44387305987058
1211 => 0.43938562760852
1212 => 0.45471855764892
1213 => 0.45068088330684
1214 => 0.46744104375748
1215 => 0.47412712552447
1216 => 0.48535409741679
1217 => 0.49361270364277
1218 => 0.49846231518063
1219 => 0.49817116269433
1220 => 0.51738773967421
1221 => 0.50605639560524
1222 => 0.49182155686186
1223 => 0.49156409353934
1224 => 0.49893651823375
1225 => 0.51438709786731
1226 => 0.5183932083695
1227 => 0.52063207761658
1228 => 0.51720317142908
1229 => 0.50490380956696
1230 => 0.49959300747408
1231 => 0.50411796472596
]
'min_raw' => 0.18658574093348
'max_raw' => 0.52063207761658
'avg_raw' => 0.35360890927503
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.186585'
'max' => '$0.520632'
'avg' => '$0.3536089'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.073866500958605
'max_diff' => 0.26899431489496
'year' => 2036
]
11 => [
'items' => [
101 => 0.49858433084091
102 => 0.50813693538995
103 => 0.52125470176201
104 => 0.51854593487945
105 => 0.52760093644682
106 => 0.5369719104551
107 => 0.55037282416372
108 => 0.55387631924155
109 => 0.55966746337922
110 => 0.56562845298863
111 => 0.567542962198
112 => 0.571198354316
113 => 0.57117908859519
114 => 0.58219485877906
115 => 0.59434559442188
116 => 0.59893221583686
117 => 0.60947889887284
118 => 0.59141807377358
119 => 0.60511741707917
120 => 0.61747456765762
121 => 0.60274186331248
122 => 0.6230474639724
123 => 0.62383588443255
124 => 0.63574009732485
125 => 0.62367289698726
126 => 0.61650743194667
127 => 0.63719386103238
128 => 0.64720337245055
129 => 0.64418842615129
130 => 0.62124453594769
131 => 0.60789020773944
201 => 0.57293935496094
202 => 0.61434014984156
203 => 0.63450526935016
204 => 0.62119231315969
205 => 0.62790659389375
206 => 0.66453753246592
207 => 0.67848422219657
208 => 0.67558340822732
209 => 0.67607359803666
210 => 0.683598978665
211 => 0.71697066067384
212 => 0.69697357526461
213 => 0.71226059778347
214 => 0.72036877940602
215 => 0.72790011037091
216 => 0.70940554182273
217 => 0.68534437988072
218 => 0.67772319987482
219 => 0.61986860203624
220 => 0.61685701896896
221 => 0.61516652613299
222 => 0.60450820792714
223 => 0.59613368937641
224 => 0.58947396129893
225 => 0.57199684606047
226 => 0.57789485940735
227 => 0.55003998547469
228 => 0.56786054670069
301 => 0.52340349532471
302 => 0.56042864875904
303 => 0.54027754107189
304 => 0.55380846792151
305 => 0.55376125979242
306 => 0.528846533478
307 => 0.51447623929692
308 => 0.52363355004932
309 => 0.53345091408413
310 => 0.5350437483692
311 => 0.54777221709975
312 => 0.55132445912492
313 => 0.54056099995032
314 => 0.52248222175018
315 => 0.52668150959304
316 => 0.51439114086281
317 => 0.4928527424053
318 => 0.50832199620185
319 => 0.51360387958306
320 => 0.51593666018647
321 => 0.49475611900528
322 => 0.48810073311423
323 => 0.48455746150993
324 => 0.51974807985753
325 => 0.52167590136894
326 => 0.51181289395007
327 => 0.55639462273211
328 => 0.5463044044684
329 => 0.55757765043246
330 => 0.52630046823615
331 => 0.52749529871636
401 => 0.51268817942555
402 => 0.52097917681634
403 => 0.51511936709185
404 => 0.52030934616039
405 => 0.523420198215
406 => 0.53822488780323
407 => 0.56059769453304
408 => 0.53601356087164
409 => 0.52530190178409
410 => 0.53194735483735
411 => 0.54964507204574
412 => 0.57645801954592
413 => 0.56058421496496
414 => 0.56762873988331
415 => 0.56916765518887
416 => 0.55746289937105
417 => 0.57688959058842
418 => 0.58730051223396
419 => 0.59797996360561
420 => 0.60725263200017
421 => 0.5937143558816
422 => 0.60820225196412
423 => 0.59652756517954
424 => 0.58605416422684
425 => 0.58607004805286
426 => 0.57949993064325
427 => 0.56676950027408
428 => 0.56442181359416
429 => 0.57663477618324
430 => 0.58642841560782
501 => 0.5872350666592
502 => 0.59265732866001
503 => 0.59586616745835
504 => 0.62731714988689
505 => 0.63996699519583
506 => 0.65543498659027
507 => 0.66146064096663
508 => 0.67959570032284
509 => 0.6649501670352
510 => 0.66178151378369
511 => 0.61779179171825
512 => 0.62499510624212
513 => 0.6365283078113
514 => 0.61798196996419
515 => 0.62974535254966
516 => 0.63206769345454
517 => 0.61735177250098
518 => 0.62521218171969
519 => 0.60433726528372
520 => 0.56105271066678
521 => 0.57693777867125
522 => 0.58863453557862
523 => 0.57194182127208
524 => 0.6018628655693
525 => 0.58438360918659
526 => 0.57884352406554
527 => 0.55722967682539
528 => 0.56743058072947
529 => 0.58122744932261
530 => 0.57270258859018
531 => 0.59039295462425
601 => 0.61544723077678
602 => 0.63330239997101
603 => 0.63467309815322
604 => 0.62319342056476
605 => 0.64158967716259
606 => 0.64172367380826
607 => 0.62097262121499
608 => 0.60826271704395
609 => 0.60537500007443
610 => 0.61258908323456
611 => 0.62134831198419
612 => 0.63515917438769
613 => 0.64350478928976
614 => 0.66526572678222
615 => 0.6711536125327
616 => 0.67762261387707
617 => 0.68626719463928
618 => 0.69664723026932
619 => 0.67393630324654
620 => 0.67483865071562
621 => 0.65369054992621
622 => 0.63109077128828
623 => 0.64824118617229
624 => 0.67066307220905
625 => 0.66551946677823
626 => 0.66494070609294
627 => 0.66591402103078
628 => 0.66203591051039
629 => 0.64449536035617
630 => 0.63568660587837
701 => 0.64705214650767
702 => 0.65309242553012
703 => 0.66246037152627
704 => 0.66130557444889
705 => 0.685436397291
706 => 0.69481290536923
707 => 0.69241399335942
708 => 0.69285545090227
709 => 0.70983117089751
710 => 0.72871166285532
711 => 0.74639573507415
712 => 0.76438473288372
713 => 0.74269829390175
714 => 0.73168725762031
715 => 0.74304783641012
716 => 0.73701975339252
717 => 0.77165890645719
718 => 0.77405724625989
719 => 0.80869389451952
720 => 0.84156819817327
721 => 0.82092043705268
722 => 0.84039034579381
723 => 0.86144863950229
724 => 0.90207350465099
725 => 0.88839247926889
726 => 0.87791302823521
727 => 0.86800999764472
728 => 0.8886166322417
729 => 0.91512673845168
730 => 0.92083676141867
731 => 0.93008918002185
801 => 0.92036139319253
802 => 0.93207744094788
803 => 0.97344023781651
804 => 0.9622636449831
805 => 0.9463910864327
806 => 0.97904304203525
807 => 0.99085965783654
808 => 1.0737948559398
809 => 1.1785039694273
810 => 1.1351537088864
811 => 1.1082448032644
812 => 1.1145690343734
813 => 1.1528052579918
814 => 1.165085519461
815 => 1.1317035355278
816 => 1.1434946165966
817 => 1.2084646325594
818 => 1.2433189616358
819 => 1.1959821011892
820 => 1.0653815806241
821 => 0.94496193620066
822 => 0.97690264846901
823 => 0.97328156293348
824 => 1.0430837399109
825 => 0.96199708694037
826 => 0.96336237821808
827 => 1.0346079902936
828 => 1.0156008824509
829 => 0.98481180199208
830 => 0.94518673056124
831 => 0.87193612114586
901 => 0.8070560136423
902 => 0.93430084545319
903 => 0.92881381692579
904 => 0.92086778648605
905 => 0.9385508173794
906 => 1.0244145959816
907 => 1.0224351579709
908 => 1.0098429832649
909 => 1.0193940367971
910 => 0.98313745612923
911 => 0.99248160251432
912 => 0.94494286111374
913 => 0.96643235762001
914 => 0.98474574245349
915 => 0.98842242559311
916 => 0.99670618044276
917 => 0.92592240222436
918 => 0.95770224054188
919 => 0.97636991818526
920 => 0.89202867145653
921 => 0.97470276291522
922 => 0.92469021412527
923 => 0.90771520390268
924 => 0.93056981887985
925 => 0.92166335319641
926 => 0.914006097007
927 => 0.90973321648494
928 => 0.92651512335237
929 => 0.92573222733828
930 => 0.89827377047542
1001 => 0.86245533284769
1002 => 0.87447717621569
1003 => 0.87010952781472
1004 => 0.85428060657172
1005 => 0.86494738829826
1006 => 0.81797627990927
1007 => 0.73716492927177
1008 => 0.79055138282151
1009 => 0.78849606243314
1010 => 0.78745967669196
1011 => 0.82757812104139
1012 => 0.82372165830718
1013 => 0.816722140682
1014 => 0.85415205494144
1015 => 0.84048963273336
1016 => 0.88259399870717
1017 => 0.91032665727717
1018 => 0.9032927580063
1019 => 0.92937545743496
1020 => 0.87475413520618
1021 => 0.8928971474235
1022 => 0.89663639709636
1023 => 0.85369017560958
1024 => 0.82435262330418
1025 => 0.82239614303799
1026 => 0.77152887030416
1027 => 0.79870175681229
1028 => 0.822612772449
1029 => 0.81116125152879
1030 => 0.80753604210991
1031 => 0.82605645081899
1101 => 0.82749564519226
1102 => 0.79468186096273
1103 => 0.80150488578145
1104 => 0.82995803350901
1105 => 0.80078793946198
1106 => 0.74411521163639
1107 => 0.73005959157388
1108 => 0.72818431276107
1109 => 0.69006435638626
1110 => 0.73099885531602
1111 => 0.71312984955681
1112 => 0.76957782464659
1113 => 0.73733504401187
1114 => 0.73594512218154
1115 => 0.73384405147779
1116 => 0.70103263031042
1117 => 0.70821624627148
1118 => 0.73209567982163
1119 => 0.7406161307334
1120 => 0.7397273778973
1121 => 0.73197865756986
1122 => 0.73552598205589
1123 => 0.72409881391658
1124 => 0.72006364301066
1125 => 0.70732753367035
1126 => 0.68860897138011
1127 => 0.69121190227418
1128 => 0.65412553239895
1129 => 0.6339189097683
1130 => 0.62832598294315
1201 => 0.62084688744804
1202 => 0.62917076668043
1203 => 0.65402047137275
1204 => 0.62404645535487
1205 => 0.57265810732497
1206 => 0.57574663460305
1207 => 0.58268563840492
1208 => 0.56975485072624
1209 => 0.55751694538711
1210 => 0.56815681118684
1211 => 0.54638289068594
1212 => 0.58531691267132
1213 => 0.58426385648795
1214 => 0.59877605222032
1215 => 0.60785082603202
1216 => 0.58693641038898
1217 => 0.58167649141335
1218 => 0.58467278031185
1219 => 0.53515079913552
1220 => 0.59472904983854
1221 => 0.59524428502466
1222 => 0.59083252855275
1223 => 0.62255610777999
1224 => 0.68950275478195
1225 => 0.66431473325717
1226 => 0.6545611700108
1227 => 0.63601963914963
1228 => 0.66072512813497
1229 => 0.65882813204656
1230 => 0.65024919632038
1231 => 0.64506062922527
]
'min_raw' => 0.48455746150993
'max_raw' => 1.2433189616358
'avg_raw' => 0.86393821157286
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.484557'
'max' => '$1.24'
'avg' => '$0.863938'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.29797172057645
'max_diff' => 0.72268688401921
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.015209705025387
]
1 => [
'year' => 2028
'avg' => 0.026104269232483
]
2 => [
'year' => 2029
'avg' => 0.071312158706369
]
3 => [
'year' => 2030
'avg' => 0.055017224240711
]
4 => [
'year' => 2031
'avg' => 0.054033732413917
]
5 => [
'year' => 2032
'avg' => 0.094738137963017
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.015209705025387
'min' => '$0.0152097'
'max_raw' => 0.094738137963017
'max' => '$0.094738'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.094738137963017
]
1 => [
'year' => 2033
'avg' => 0.24367623264872
]
2 => [
'year' => 2034
'avg' => 0.15445370678453
]
3 => [
'year' => 2035
'avg' => 0.18217850134825
]
4 => [
'year' => 2036
'avg' => 0.35360890927503
]
5 => [
'year' => 2037
'avg' => 0.86393821157286
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.094738137963017
'min' => '$0.094738'
'max_raw' => 0.86393821157286
'max' => '$0.863938'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.86393821157286
]
]
]
]
'prediction_2025_max_price' => '$0.0260058'
'last_price' => 0.02521593
'sma_50day_nextmonth' => '$0.023298'
'sma_200day_nextmonth' => '$0.044853'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'augmenter'
'sma_200day_date_nextmonth' => '4 févr. 2026'
'sma_50day_date_nextmonth' => '4 févr. 2026'
'daily_sma3' => '$0.025385'
'daily_sma3_action' => 'SELL'
'daily_sma5' => '$0.025171'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.0249049'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.023338'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.026761'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.037446'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.056343'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.025255'
'daily_ema3_action' => 'SELL'
'daily_ema5' => '$0.025128'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.024659'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.024416'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.028078'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.037146'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.061955'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.041898'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.083073'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.309722'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$1.62'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.024983'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.025691'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.030628'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.045223'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.132586'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.753705'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$3.07'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '53.06'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 101.13
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'SELL'
'vwma_10' => '0.024990'
'vwma_10_action' => 'BUY'
'hma_9' => '0.025529'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 91.66
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 80.93
'cci_20_action' => 'NEUTRAL'
'adx_14' => 19.96
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.001529'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'NEUTRAL'
'williams_percent_r_14' => -8.34
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 78.48
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '-0.014567'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 22
'buy_signals' => 12
'sell_pct' => 64.71
'buy_pct' => 35.29
'overall_action' => 'bearish'
'overall_action_label' => 'Baissier'
'overall_action_dir' => -1
'last_updated' => 1767694755
'last_updated_date' => '6 janvier 2026'
]
Prévision du prix de Tulip Token pour 2026
La prévision du prix de Tulip Token pour 2026 suggère que le prix moyen pourrait varier entre $0.008712 à la baisse et $0.0260058 à la hausse. Sur le marché des cryptomonnaies, comparé au prix moyen d'aujourd'hui, Tulip Token pourrait potentiellement gagner 3.13% d'ici 2026 si TULIP atteint l'objectif de prix prévu.
Prévision du prix de Tulip Token de 2027 à 2032
La prévision du prix de TULIP pour 2027-2032 se situe actuellement dans une fourchette de prix comprise entre $0.0152097 à la baisse et $0.094738 à la hausse. Compte tenu de la volatilité des prix sur le marché, si Tulip Token atteint l'objectif de prix le plus élevé, il pourrait gagner 275.71% d'ici 2032 par rapport au prix actuel.
| Prévision du Prix de Tulip Token | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2027 | $0.008386 | $0.0152097 | $0.022032 |
| 2028 | $0.015135 | $0.0261042 | $0.037072 |
| 2029 | $0.033249 | $0.071312 | $0.109375 |
| 2030 | $0.028277 | $0.055017 | $0.081757 |
| 2031 | $0.033432 | $0.054033 | $0.074635 |
| 2032 | $0.051031 | $0.094738 | $0.138444 |
Prévision du prix de Tulip Token de 2032 à 2037
La prévision du prix de Tulip Token pour 2032-2037 est actuellement estimée entre $0.094738 à la baisse et $0.863938 à la hausse. Par rapport au prix actuel, Tulip Token pourrait potentiellement gagner 3326.16% d'ici 2037 s'il atteint l'objectif de prix le plus élevé. Veuillez noter que ces informations sont à titre général seulement et ne doivent pas être considérées comme un conseil en investissement à long terme.
| Prévision du Prix de Tulip Token | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2032 | $0.051031 | $0.094738 | $0.138444 |
| 2033 | $0.118586 | $0.243676 | $0.368765 |
| 2034 | $0.095338 | $0.154453 | $0.213569 |
| 2035 | $0.112719 | $0.182178 | $0.251637 |
| 2036 | $0.186585 | $0.3536089 | $0.520632 |
| 2037 | $0.484557 | $0.863938 | $1.24 |
Tulip Token Histogramme des prix potentiels
Prévision du prix de Tulip Token basée sur l'analyse technique
Au 6 janvier 2026, le sentiment global de prévision du prix pour Tulip Token est Baissier, avec 12 indicateurs techniques montrant des signaux haussiers et 22 indiquant des signaux baissiers. La prévision du prix de TULIP a été mise à jour pour la dernière fois le 6 janvier 2026.
Moyennes Mobiles Simples sur 50 et 200 jours de Tulip Token et Indice de Force Relative sur 14 jours - RSI (14)
Selon nos indicateurs techniques, le SMA sur 200 jours de Tulip Token devrait augmenter au cours du prochain mois, atteignant $0.044853 d'ici le 4 févr. 2026. Le SMA à court terme sur 50 jours pour Tulip Token devrait atteindre $0.023298 d'ici le 4 févr. 2026.
Le Relative Strength Index (RSI), un oscillateur de momentum, est un outil couramment utilisé pour identifier si une cryptomonnaie est survendue (en dessous de 30) ou surachetée (au-dessus de 70). Actuellement, le RSI est à 53.06, ce qui suggère que le marché de TULIP est dans un état NEUTRAL.
Moyennes Mobiles et Oscillateurs Populaires de TULIP pour le Samedi 19 Octobre 2024
Les moyennes mobiles (MA) sont des indicateurs largement utilisés sur les marchés financiers, conçus pour lisser les mouvements de prix sur une période donnée. En tant qu'indicateurs retardés, ils sont basés sur des données historiques de prix. Le tableau ci-dessous met en évidence deux types : la moyenne mobile simple (SMA) et la moyenne mobile exponentielle (EMA).
Moyenne Mobile Simple Quotidienne (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 3 | $0.025385 | SELL |
| SMA 5 | $0.025171 | BUY |
| SMA 10 | $0.0249049 | BUY |
| SMA 21 | $0.023338 | BUY |
| SMA 50 | $0.026761 | SELL |
| SMA 100 | $0.037446 | SELL |
| SMA 200 | $0.056343 | SELL |
Moyenne Mobile Exponentielle Quotidienne (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 3 | $0.025255 | SELL |
| EMA 5 | $0.025128 | BUY |
| EMA 10 | $0.024659 | BUY |
| EMA 21 | $0.024416 | BUY |
| EMA 50 | $0.028078 | SELL |
| EMA 100 | $0.037146 | SELL |
| EMA 200 | $0.061955 | SELL |
Moyenne Mobile Simple Hebdomadaire (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 21 | $0.041898 | SELL |
| SMA 50 | $0.083073 | SELL |
| SMA 100 | $0.309722 | SELL |
| SMA 200 | $1.62 | SELL |
Moyenne Mobile Exponentielle Hebdomadaire (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 21 | $0.045223 | SELL |
| EMA 50 | $0.132586 | SELL |
| EMA 100 | $0.753705 | SELL |
| EMA 200 | $3.07 | SELL |
Oscillateurs de Tulip Token
Un oscillateur est un outil d'analyse technique qui établit des limites hautes et basses entre deux extrêmes, créant un indicateur de tendance qui fluctue à l'intérieur de ces limites. Les traders utilisent cet indicateur pour identifier les conditions de surachat ou de survente à court terme.
| Période | Valeur | Action |
|---|---|---|
| RSI (14) | 53.06 | NEUTRAL |
| Stoch RSI (14) | 101.13 | SELL |
| Stochastique Rapide (14) | 91.66 | SELL |
| Indice de Canal des Matières Premières (20) | 80.93 | NEUTRAL |
| Indice Directionnel Moyen (14) | 19.96 | NEUTRAL |
| Oscillateur Impressionnant (5, 34) | 0.001529 | BUY |
| Momentum (10) | 0 | SELL |
| MACD (12, 26) | 0 | NEUTRAL |
| Plage de Pourcentage de Williams (14) | -8.34 | SELL |
| Oscillateur Ultime (7, 14, 28) | 78.48 | SELL |
| VWMA (10) | 0.024990 | BUY |
| Moyenne Mobile de Hull (9) | 0.025529 | BUY |
| Nuage Ichimoku B/L (9, 26, 52, 26) | -0.014567 | SELL |
Prévision du cours de Tulip Token basée sur les flux monétaires mondiaux
Définitions des flux monétaires mondiaux utilisés pour la prédiction du cours de Tulip Token
M0 : le total de toutes les devises physiques, plus les comptes à la banque centrale qui peuvent être échangés contre des devises physiques.
M1 : M0 plus le montant des comptes à vue, y compris les comptes de "chèques" et les comptes "courants".
M2 : M1 plus la plupart des comptes d'épargne, comptes du marché monétaire et comptes de certificats de dépôt (CD) de moins de 100 000 $.
Prédictions du cours de Tulip Token par des sociétés Internet ou des niches technologiques
| Comparaison | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Action Facebook | $0.035432 | $0.049788 | $0.069961 | $0.0983075 | $0.138138 | $0.1941076 |
| Action Amazon.com | $0.052614 | $0.109783 | $0.229069 | $0.477967 | $0.9973068 | $2.08 |
| Action Apple | $0.035766 | $0.050732 | $0.07196 | $0.10207 | $0.144778 | $0.205357 |
| Action Netflix | $0.039786 | $0.062777 | $0.099052 | $0.156289 | $0.24660069 | $0.389097 |
| Action Google | $0.032654 | $0.042287 | $0.054762 | $0.070916 | $0.091836 | $0.118928 |
| Action Tesla | $0.057162 | $0.129583 | $0.293755 | $0.665921 | $1.50 | $3.42 |
| Action Kodak | $0.0189092 | $0.014179 | $0.010633 | $0.007973 | $0.005979 | $0.004484 |
| Action Nokia | $0.0167045 | $0.011066 | $0.00733 | $0.004856 | $0.003217 | $0.002131 |
Ce calcul montre la valeur potentielle des cryptomonnaies si l'on suppose que leur capitalisation se comportera comme celle de certaines sociétés Internet ou niches technologiques. En extrapolant les données, vous pourrez obtenir une potentielle image des cours futurs pour 2024, 2025, 2026, 2027, 2028, 2029 et 2030.
Aperçu des prévisions relatives à Tulip Token
Vous vous posez peut-être des questions telles que : "Devrais-je investir dans Tulip Token maintenant ?", "Devrais-je acheter TULIP aujourd'hui ?", " Tulip Token sera-t-il un bon ou un mauvais investissement à court ou à long terme ?".
Nous mettons régulièrement à jour les prévisions de Tulip Token/Tulip Protocol avec de nouvelles valeurs. Regardez nos prévisions similaires. Nous faisons une prévision des cours futurs pour une grande quantité de devises numériques comme Tulip Token en utilisant des méthodes d'analyse technique.
Si vous souhaitez trouver des cryptomonnaies ayant un bon rendement, vous devriez consulter un maximum d'informations disponibles à propos de Tulip Token afin de prendre une décision responsable concernant cet investissement.
Le cours de Tulip Token est de $0.02521 USD actuellement, mais ce cours peut subir une hausse ou une baisse, ce qui pourrait causer la perte de votre investissement, car les cryptomonnaies sont des actifs à haut risque.
Prévision du cours de Tulip Token basée sur le modèle de croissance du Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si Tulip Token présente 1 % de la précédente croissance annuelle moyenne du Bitcoin | $0.025871 | $0.026543 | $0.027233 | $0.027941 |
| Si Tulip Token présente 2 % de la précédente croissance annuelle moyenne du Bitcoin | $0.026526 | $0.0279058 | $0.029356 | $0.030882 |
| Si Tulip Token présente 5 % de la précédente croissance annuelle moyenne du Bitcoin | $0.028493 | $0.032196 | $0.03638 | $0.0411089 |
| Si Tulip Token présente 10 % de la précédente croissance annuelle moyenne du Bitcoin | $0.03177 | $0.040028 | $0.050433 | $0.063542 |
| Si Tulip Token présente 20 % de la précédente croissance annuelle moyenne du Bitcoin | $0.038324 | $0.058248 | $0.088529 | $0.134553 |
| Si Tulip Token présente 50 % de la précédente croissance annuelle moyenne du Bitcoin | $0.057988 | $0.133352 | $0.306666 | $0.705228 |
| Si Tulip Token présente 100 % de la précédente croissance annuelle moyenne du Bitcoin | $0.09076 | $0.326675 | $1.17 | $4.23 |
Boîte à questions
Est-ce que TULIP est un bon investissement ?
La décision d'acquérir Tulip Token dépend entièrement de votre tolérance individuelle au risque. Comme vous pouvez le discerner, la valeur de Tulip Token a connu une baisse de -0.4466% au cours des 24 heures précédentes, et Tulip Token a enregistré une déclin de sur une période de 30 jours précédents. Par conséquent, la détermination de si investir ou non dans Tulip Token dépendra de la mesure dans laquelle cet investissement s'aligne avec vos aspirations de trading.
Est-ce que Tulip Token peut monter ?
Il semble que la valeur moyenne de Tulip Token pourrait potentiellement s'envoler jusqu'à $0.0260058 pour la fin de cette année. En regardant les perspectives de Tulip Token sur une période de cinq ans plus longue, la monnaie numérique pourrait potentiellement croître jusqu'à $0.081757. Cependant, compte tenu de l'imprévisibilité du marché, il est essentiel de mener des recherches approfondies avant d'investir des fonds dans un projet, un réseau ou un actif particulier.
Quel sera le prix de Tulip Token la semaine prochaine ?
Basé sur notre nouveau pronostic expérimental de Tulip Token, le prix de Tulip Token va augmenter de 0.86% durant la prochaine semaine et atteindre $0.025431 d'ici 13 janvier 2026.
Quel sera le prix de Tulip Token le mois prochain ?
Basé sur notre nouveau pronostic expérimental de Tulip Token, le prix de Tulip Token va diminuer de -11.62% durant le prochain mois et atteindre $0.022286 d'ici 5 février 2026.
Jusqu'où le prix de Tulip Token peut-il monter cette année en 2026 ?
Selon notre prédiction la plus récente sur la valeur de Tulip Token en 2026, TULIP devrait fluctuer dans la fourchette de $0.008712 et $0.0260058. Cependant, il est crucial de garder à l'esprit que le marché des cryptomonnaies est exceptionnellement instable, et cette prévision de prix de Tulip Token ne prend pas en compte les fluctuations de prix soudaines et extrêmes.
Où sera Tulip Token dans 5 ans ?
L'avenir de Tulip Token semble suivre une tendance haussière, avec un prix maximum de $0.081757 prévue après une période de cinq ans. Selon la prévision de Tulip Token pour 2030, la valeur de Tulip Token pourrait potentiellement atteindre son point le plus élevé d'environ $0.081757, tandis que son point le plus bas devrait être autour de $0.028277.
Combien vaudra Tulip Token en 2026 ?
Basé sur notre nouvelle simulation expérimentale de prédiction de prix de Tulip Token, il est attendu que la valeur de TULIP en 2026 augmente de 3.13% jusqu'à $0.0260058 si le meilleur scénario se produit. Le prix sera entre $0.0260058 et $0.008712 durant 2026.
Combien vaudra Tulip Token en 2027 ?
Selon notre dernière simulation expérimentale pour la prédiction de prix de Tulip Token, le valeur de TULIP pourrait diminuer de -12.62% jusqu'à $0.022032 en 2027, en supposant les conditions les plus favorables. Il est prévu que le prix fluctue entre $0.022032 et $0.008386 tout au long de l'année.
Combien vaudra Tulip Token en 2028 ?
Notre nouveau modèle expérimental de prédiction de prix de Tulip Token suggère que la valeur de TULIP en 2028 pourrait augmenter de 47.02%, atteignant $0.037072 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.037072 et $0.015135 durant l'année.
Combien vaudra Tulip Token en 2029 ?
Basé sur notre modèle de prévision expérimental, la valeur de Tulip Token pourrait connaître un 333.75% croissance en 2029, atteignant potentiellement $0.109375 sous des conditions optimales. Le range de prix prévu pour 2029 se situe entre $0.109375 et $0.033249.
Combien vaudra Tulip Token en 2030 ?
En utilisant notre nouvelle simulation expérimentale pour les prédictions de prix de Tulip Token, il est prévu que la valeur de TULIP en 2030 augmente de 224.23%, atteignant $0.081757 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.081757 et $0.028277 au cours de 2030.
Combien vaudra Tulip Token en 2031 ?
Notre simulation expérimentale indique que le prix de Tulip Token pourrait augmenter de 195.98% en 2031, atteignant potentiellement $0.074635 dans des conditions idéales. Il est probable que le prix fluctue entre $0.074635 et $0.033432 durant l'année.
Combien vaudra Tulip Token en 2032 ?
Basé sur les résultats de notre dernière prédiction expérimentale de prix de Tulip Token, TULIP pourrait connaître une 449.04% hausse en valeur, atteignant $0.138444 si le scénario le plus positif se réalise en 2032. Il est prévu que le prix reste dans une fourchette de $0.138444 et $0.051031 tout au long de l'année.
Combien vaudra Tulip Token en 2033 ?
Selon notre prédiction expérimentale de prix de Tulip Token, la valeur de TULIP est anticipée à augmenter de 1362.43% en 2033, avec le prix potentiel le plus élevé étant $0.368765. Tout au long de l'année, le prix de TULIP pourrait osciller entre $0.368765 et $0.118586.
Combien vaudra Tulip Token en 2034 ?
Les résultats de notre nouvelle simulation de prédiction de prix de Tulip Token suggèrent que TULIP pourrait augmenter de 746.96% en 2034, atteignant potentiellement $0.213569 dans les meilleures circonstances. La fourchette de prix prévue pour l'année est entre $0.213569 et $0.095338.
Combien vaudra Tulip Token en 2035 ?
Basé sur notre prédiction expérimentale pour le prix de Tulip Token, TULIP pourrait augmenter de 897.93%, avec la valeur potentiellement atteignant $0.251637 en 2035. La fourchette de prix attendue pour l'année se situe entre $0.251637 et $0.112719.
Combien vaudra Tulip Token en 2036 ?
Notre récente simulation de prédiction de prix de Tulip Token suggère que la valeur de TULIP pourrait augmenter de 1964.7% en 2036, pouvant atteindre $0.520632 si les conditions sont optimales. La fourchette de prix attendue pour 2036 est entre $0.520632 et $0.186585.
Combien vaudra Tulip Token en 2037 ?
Selon la simulation expérimentale, la valeur de Tulip Token pourrait augmenter de 4830.69% en 2037, avec un maximum de $1.24 sous des conditions favorables. Il est prévu que le prix chute entre $1.24 et $0.484557 au cours de l'année.
Prévisions liées
Prévision du cours de Million
Prévision du cours de The Three Kingdoms
Prévision du cours de Hypersign Identity Token
Prévision du cours de Populous
Prévision du cours de YAM
Prévision du cours de Polker
Prévision du cours de LightChain
Prévision du cours de Dacxi
Prévision du cours de Goons of Balatroon
Prévision du cours de Trava Finance
Prévision du cours de Tidal Finance
Prévision du cours de NFTBooks
Prévision du cours de Collab.Land
Prévision du cours de MYX Network
Prévision du cours de Hummingbot
Prévision du cours de Wrapped OrdBridge
Prévision du cours de Dingocoin
Prévision du cours de Moon Money Chain
Prévision du cours de Shikoku
Prévision du cours de VNX Swiss Franc
Prévision du cours de XP Network
Prévision du cours de Monsterra
Prévision du cours de Virtual Versions
Prévision du cours de Rocky the dog
Prévision du cours de #MetaHash
Comment lire et prédire les mouvements de prix de Tulip Token ?
Les traders de Tulip Token utilisent des indicateurs et des modèles graphiques pour prédire la direction du marché. Ils identifient également des niveaux clés de support et de résistance pour évaluer quand une tendance baissière pourrait ralentir ou une tendance haussière pourrait s'arrêter.
Indicateurs de prédiction du prix de Tulip Token
Les moyennes mobiles sont des outils populaires pour la prédiction du prix de Tulip Token. Une moyenne mobile simple (SMA) calcule le prix de clôture moyen de TULIP sur une période spécifique, comme une SMA de 12 jours. Une moyenne mobile exponentielle (EMA) donne plus de poids aux prix récents, réagissant plus rapidement aux changements de prix.
Les moyennes mobiles couramment utilisées sur le marché des cryptomonnaies incluent les moyennes sur 50 jours, 100 jours et 200 jours, qui aident à identifier les niveaux clés de résistance et de support. Un mouvement de prix de TULIP au-dessus de ces moyennes est considéré comme haussier, tandis qu'une chute en dessous indique une faiblesse.
Les traders utilisent également le RSI et les niveaux de retracement de Fibonacci pour évaluer la direction future de TULIP.
Comment lire les graphiques de Tulip Token et prédire les mouvements de prix ?
La plupart des traders préfèrent les graphiques en chandeliers aux simples graphiques linéaires parce qu'ils fournissent des informations plus détaillées. Les chandeliers peuvent représenter l'action des prix de Tulip Token dans différentes périodes, comme 5 minutes pour les tendances à court terme et hebdomadaire pour les tendances à long terme. Les options populaires incluent les graphiques de 1 heure, 4 heures et 1 jour.
Par exemple, un graphique en chandeliers de 1 heure montre les prix d'ouverture, de clôture, les plus hauts et les plus bas de TULIP au sein de chaque heure. La couleur du chandelier est cruciale : le vert indique que le prix a clôturé plus haut qu'il n'a ouvert, tandis que le rouge signifie le contraire. Certains graphiques utilisent des chandeliers creux et pleins pour transmettre la même information.
Qu'est-ce qui affecte le prix de Tulip Token ?
L'action du prix de Tulip Token est déterminée par l'offre et la demande, influencée par des facteurs tels que les réductions de récompenses de bloc, les hard forks et les mises à jour de protocole. Les événements du monde réel, tels que les réglementations, l'adoption par les entreprises et les gouvernements et les piratages d'échanges de cryptomonnaies, impactent également le prix de TULIP. La capitalisation boursière de Tulip Token peut changer rapidement.
Les traders surveillent souvent l'activité des « baleines » de TULIP, de grands détenteurs de Tulip Token, car leurs actions peuvent influencer significativement les mouvements de prix sur le marché relativement petit de Tulip Token.
Modèles de prédiction de prix haussiers et baissiers
Les traders identifient souvent des modèles de chandeliers pour obtenir un avantage dans les prédictions de prix des cryptomonnaies. Certaines formations indiquent des tendances haussières, tandis que d'autres suggèrent des mouvements baissiers.
Modèles de chandeliers haussiers couramment suivis :
- Marteau
- Englobante haussière
- Ligne pénétrante
- Étoile du matin
- Trois soldats blancs
Modèles de chandeliers baissiers courants :
- Harami baissier
- Nuage sombre
- Étoile du soir
- Étoile filante
- Pendu


