Predicción del precio de Tulip Protocol - Pronóstico de TULIP
Predicción de precio de Tulip Protocol hasta $0.026003 para el año 2026
| Año | Precio min. | Precio max. |
|---|---|---|
| 2026 | $0.008711 | $0.026003 |
| 2027 | $0.008386 | $0.02203 |
| 2028 | $0.015134 | $0.037068 |
| 2029 | $0.033245 | $0.109363 |
| 2030 | $0.028274 | $0.081748 |
| 2031 | $0.033428 | $0.074627 |
| 2032 | $0.051026 | $0.138429 |
| 2033 | $0.118574 | $0.368726 |
| 2034 | $0.095327 | $0.213546 |
| 2035 | $0.1127072 | $0.25161 |
Calculadora de ganancias de inversión
Si abres una posición corta de $10,000.00 en Tulip Protocol hoy y la cierras el Apr 06, 2026, nuestra previsión indica que podrías obtener una ganancia de alrededor de $3,954.76, equivalente a un ROI del 39.55% en los próximos 90 días.
Predicción del precio a largo plazo de Tulip Token para 2027, 2028, 2029, 2030, 2031, 2032 y 2037
[
'name' => 'Tulip Protocol'
'name_with_ticker' => 'Tulip Protocol <small>TULIP</small>'
'name_lang' => 'Tulip Token'
'name_lang_with_ticker' => 'Tulip Token <small>TULIP</small>'
'name_with_lang' => 'Tulip Token/Tulip Protocol'
'name_with_lang_with_ticker' => 'Tulip Token/Tulip Protocol <small>TULIP</small>'
'image' => '/uploads/coins/solfarm.png?1717103123'
'price_for_sd' => 0.02521
'ticker' => 'TULIP'
'marketcap' => '$39.38K'
'low24h' => '$0.02517'
'high24h' => '$0.02553'
'volume24h' => '$34.79'
'current_supply' => '1.56M'
'max_supply' => '10M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.02521'
'change_24h_pct' => '-0.4569%'
'ath_price' => '$50.22'
'ath_days' => 1521
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '7 nov. 2021'
'ath_pct' => '-99.95%'
'fdv' => '$252.22K'
'new_prediction' => true
'change_24h_pct_is_increased' => false
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$1.24'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.025429'
'next_week_prediction_price_date' => '13 de enero de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.022283'
'next_month_prediction_price_date' => '5 de febrero de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.008711'
'current_year_max_price_prediction' => '$0.026003'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.028274'
'grand_prediction_max_price' => '$0.081748'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.025691017635836
107 => 0.025786938569849
108 => 0.026003053332024
109 => 0.024156376351213
110 => 0.024985480100009
111 => 0.025472500875912
112 => 0.023272123292417
113 => 0.025429006485839
114 => 0.024124229813463
115 => 0.02368136901377
116 => 0.024277622738082
117 => 0.024045262081842
118 => 0.023845492034282
119 => 0.023734016915259
120 => 0.024171839844272
121 => 0.024151414881322
122 => 0.023435051591688
123 => 0.022500584883064
124 => 0.022814222583302
125 => 0.022700275066437
126 => 0.022287314565793
127 => 0.022565600082186
128 => 0.021340171505069
129 => 0.019231885330375
130 => 0.02062468375593
131 => 0.020571062531619
201 => 0.020544024278793
202 => 0.021590673801477
203 => 0.021490062600183
204 => 0.021307452284649
205 => 0.022283960784144
206 => 0.021927522045935
207 => 0.023025982249565
208 => 0.023749499183627
209 => 0.023565991885828
210 => 0.024246463059374
211 => 0.022821448162457
212 => 0.023294780949538
213 => 0.023392334180945
214 => 0.022271910820839
215 => 0.021506523836995
216 => 0.021455481251223
217 => 0.020128405698059
218 => 0.02083731874678
219 => 0.021461132892838
220 => 0.021162374326809
221 => 0.021067796289963
222 => 0.021550974968738
223 => 0.021588522090224
224 => 0.02073244374127
225 => 0.020910449538493
226 => 0.021652763303915
227 => 0.020891745136186
228 => 0.019413211147899
301 => 0.019046514276472
302 => 0.01899759015426
303 => 0.018003079155855
304 => 0.01907101871485
305 => 0.018604834478348
306 => 0.020077504895714
307 => 0.019236323451404
308 => 0.019200061800588
309 => 0.019145246996952
310 => 0.018289230297893
311 => 0.018476643552288
312 => 0.01909963375374
313 => 0.019321923676105
314 => 0.019298737016035
315 => 0.019096580761882
316 => 0.019189126859826
317 => 0.018891003633151
318 => 0.018785730116914
319 => 0.018453457941907
320 => 0.017965109637178
321 => 0.018033017464165
322 => 0.017065471689212
323 => 0.016538301399477
324 => 0.016392387611271
325 => 0.016197265595525
326 => 0.016414427162149
327 => 0.017062730753597
328 => 0.016280739077031
329 => 0.014940069197897
330 => 0.015020645742024
331 => 0.015201677313285
401 => 0.014864326177883
402 => 0.014545051639961
403 => 0.014822634947122
404 => 0.014254575445595
405 => 0.015270324590108
406 => 0.015242851422353
407 => 0.015621459889922
408 => 0.01585821153452
409 => 0.015312575642976
410 => 0.015175349691809
411 => 0.015253519830165
412 => 0.013961541569266
413 => 0.01551587770248
414 => 0.015529319665905
415 => 0.015414221414205
416 => 0.016241857420397
417 => 0.017988427539606
418 => 0.01733129760514
419 => 0.017076837032657
420 => 0.016593107298357
421 => 0.017237648448282
422 => 0.017188157744376
423 => 0.016964342012521
424 => 0.016828977559547
425 => 0.017078390714652
426 => 0.016798072509497
427 => 0.016747719657222
428 => 0.016442636156879
429 => 0.016333735227672
430 => 0.016253109315158
501 => 0.016164348107618
502 => 0.016360133213536
503 => 0.01591645840585
504 => 0.01538143008176
505 => 0.015336948265698
506 => 0.015459766470725
507 => 0.015405428557741
508 => 0.015336688116676
509 => 0.015205443894339
510 => 0.01516650653716
511 => 0.01529303405827
512 => 0.01515019186395
513 => 0.015360963302686
514 => 0.015303645133865
515 => 0.014983470502205
516 => 0.014584414367326
517 => 0.014580861930677
518 => 0.014494885941
519 => 0.014385382591571
520 => 0.014354921264857
521 => 0.014799257655236
522 => 0.015719020685452
523 => 0.015538449194557
524 => 0.01566893060244
525 => 0.016310769987027
526 => 0.016514791426603
527 => 0.016369981841304
528 => 0.016171757549481
529 => 0.016180478412316
530 => 0.01685787082405
531 => 0.016900118957863
601 => 0.017006866362245
602 => 0.017144066943688
603 => 0.016393347693596
604 => 0.016145119603148
605 => 0.016027495362723
606 => 0.015665258228525
607 => 0.016055899921893
608 => 0.015828289736113
609 => 0.015859002126446
610 => 0.015839000641951
611 => 0.015849922804979
612 => 0.015270040667521
613 => 0.015481319240703
614 => 0.015130027634635
615 => 0.014659687608443
616 => 0.014658110863753
617 => 0.014773225918833
618 => 0.014704750979619
619 => 0.014520486678845
620 => 0.014546660553067
621 => 0.014317349873438
622 => 0.014574503021378
623 => 0.014581877253522
624 => 0.014482859284339
625 => 0.014879039189036
626 => 0.015041354419243
627 => 0.014976178670756
628 => 0.015036781514984
629 => 0.015545952755235
630 => 0.015628969884095
701 => 0.015665840608931
702 => 0.015616438722086
703 => 0.015046088230557
704 => 0.015071385700174
705 => 0.01488576965326
706 => 0.014728943653355
707 => 0.014735215870907
708 => 0.014815844820811
709 => 0.015167956173868
710 => 0.015908953758277
711 => 0.015937074074943
712 => 0.01597115671907
713 => 0.015832525476842
714 => 0.015790712967663
715 => 0.015845874459994
716 => 0.016124154192896
717 => 0.016839965218131
718 => 0.016586949794402
719 => 0.016381244316491
720 => 0.016561703478418
721 => 0.016533923204925
722 => 0.016299429739565
723 => 0.016292848288997
724 => 0.015842780356876
725 => 0.015676400489921
726 => 0.015537361019777
727 => 0.015385533548097
728 => 0.015295525133582
729 => 0.01543381896637
730 => 0.015465448402173
731 => 0.01516306651982
801 => 0.015121852986595
802 => 0.015368784559091
803 => 0.015260119180572
804 => 0.01537188421715
805 => 0.015397814664339
806 => 0.015393639265113
807 => 0.0152801801298
808 => 0.015352495599248
809 => 0.015181447955725
810 => 0.014995459333918
811 => 0.014876810180706
812 => 0.014773273058002
813 => 0.014830721471291
814 => 0.014625928367582
815 => 0.014560410932034
816 => 0.015327996745349
817 => 0.015895020638582
818 => 0.015886775886609
819 => 0.015836588079347
820 => 0.01576201917798
821 => 0.0161186990133
822 => 0.015994438890713
823 => 0.016084848512176
824 => 0.016107861555318
825 => 0.016177515105824
826 => 0.016202410263205
827 => 0.016127159806801
828 => 0.015874610084041
829 => 0.01524528018663
830 => 0.014952325420541
831 => 0.014855645468184
901 => 0.014859159600831
902 => 0.014762224134653
903 => 0.014790775973785
904 => 0.014752294970196
905 => 0.014679421258951
906 => 0.014826221724974
907 => 0.014843139111143
908 => 0.014808874128238
909 => 0.014816944772122
910 => 0.014533245348437
911 => 0.014554814399457
912 => 0.014434715182515
913 => 0.014412198027156
914 => 0.014108597664962
915 => 0.013570725615759
916 => 0.01386875894352
917 => 0.013508776593412
918 => 0.013372445822803
919 => 0.01401781448708
920 => 0.013953037372927
921 => 0.013842167111432
922 => 0.013678166887293
923 => 0.013617337608868
924 => 0.013247758169369
925 => 0.013225921444454
926 => 0.013409094994154
927 => 0.013324566703584
928 => 0.013205856970258
929 => 0.012775902349561
930 => 0.012292491002815
1001 => 0.012307082152758
1002 => 0.01246084630797
1003 => 0.01290793632717
1004 => 0.012733250521933
1005 => 0.012606513965944
1006 => 0.012582780018695
1007 => 0.012879860058909
1008 => 0.013300290556006
1009 => 0.013497547138642
1010 => 0.013302071856021
1011 => 0.013077520376484
1012 => 0.013091187784572
1013 => 0.013182110927475
1014 => 0.01319166566421
1015 => 0.013045505735296
1016 => 0.013086648899149
1017 => 0.013024148671047
1018 => 0.012640584886552
1019 => 0.012633647433985
1020 => 0.012539514695468
1021 => 0.012536664393557
1022 => 0.012376521122828
1023 => 0.012354115972235
1024 => 0.012036141788202
1025 => 0.012245433359047
1026 => 0.012105051561625
1027 => 0.011893463080191
1028 => 0.011856985146239
1029 => 0.011855888575496
1030 => 0.01207314263561
1031 => 0.012242894618863
1101 => 0.012107493563093
1102 => 0.012076665367334
1103 => 0.012405829844909
1104 => 0.012363940664737
1105 => 0.012327664904864
1106 => 0.013262645616313
1107 => 0.012522535425746
1108 => 0.012199805138646
1109 => 0.011800365123541
1110 => 0.011930424806611
1111 => 0.011957830292808
1112 => 0.010997249060953
1113 => 0.010607541374823
1114 => 0.010473808382767
1115 => 0.010396843155132
1116 => 0.010431917175834
1117 => 0.010081134550164
1118 => 0.010316866276023
1119 => 0.010013118173111
1120 => 0.0099621938151754
1121 => 0.010505333050353
1122 => 0.010580907701955
1123 => 0.010258482759018
1124 => 0.01046553176824
1125 => 0.0103904529193
1126 => 0.010018325062525
1127 => 0.010004112515583
1128 => 0.0098173918379805
1129 => 0.0095252101337796
1130 => 0.009391675254678
1201 => 0.0093221291302389
1202 => 0.0093508252166094
1203 => 0.0093363155972258
1204 => 0.0092416305160626
1205 => 0.0093417428352437
1206 => 0.0090859972290025
1207 => 0.0089841572679149
1208 => 0.0089381585201608
1209 => 0.0087111695744539
1210 => 0.0090724099295158
1211 => 0.0091435788302492
1212 => 0.0092148879557021
1213 => 0.0098355852079622
1214 => 0.0098045769273115
1215 => 0.010084876682749
1216 => 0.01007398474969
1217 => 0.0099940387188848
1218 => 0.0096567595653996
1219 => 0.0097911930245559
1220 => 0.0093774277328707
1221 => 0.0096874488227063
1222 => 0.0095459681440956
1223 => 0.0096396140629512
1224 => 0.0094712302571367
1225 => 0.0095644208076714
1226 => 0.0091604556168052
1227 => 0.0087832386055179
1228 => 0.0089350417425109
1229 => 0.0091000691132168
1230 => 0.0094578905010991
1231 => 0.0092447750344388
]
'min_raw' => 0.0087111695744539
'max_raw' => 0.026003053332024
'avg_raw' => 0.017357111453239
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.008711'
'max' => '$0.026003'
'avg' => '$0.017357'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.016502070425546
'max_diff' => 0.00078981333202375
'year' => 2026
]
1 => [
'items' => [
101 => 0.0093214194150378
102 => 0.0090646735701453
103 => 0.0085349335563072
104 => 0.0085379318272559
105 => 0.0084564428671405
106 => 0.0083860245080177
107 => 0.009269253909437
108 => 0.0091594103715799
109 => 0.0089843890699715
110 => 0.0092186620372445
111 => 0.0092806075282034
112 => 0.0092823710292459
113 => 0.0094532905387078
114 => 0.0095445103115466
115 => 0.0095605881918785
116 => 0.0098295337329772
117 => 0.0099196807308761
118 => 0.010290983457141
119 => 0.0095367709511383
120 => 0.0095212384409005
121 => 0.0092219587383279
122 => 0.0090321508195314
123 => 0.0092349550489156
124 => 0.009414611910612
125 => 0.0092275411778123
126 => 0.0092519686662373
127 => 0.0090008414916941
128 => 0.0090906076399615
129 => 0.0091679263396553
130 => 0.0091252354982675
131 => 0.0090613252424498
201 => 0.0093998820967327
202 => 0.0093807793921991
203 => 0.0096960513182958
204 => 0.0099418283299999
205 => 0.01038230467287
206 => 0.009922644646534
207 => 0.0099058928081912
208 => 0.010069644715071
209 => 0.0099196556613123
210 => 0.010014443565842
211 => 0.010367032876035
212 => 0.010374482532556
213 => 0.010249691187482
214 => 0.010242097622793
215 => 0.010266065165683
216 => 0.010406443812997
217 => 0.010357391200225
218 => 0.010414156125585
219 => 0.010485141533963
220 => 0.010778767280203
221 => 0.010849559453556
222 => 0.010677571173841
223 => 0.010693099789828
224 => 0.010628771452031
225 => 0.010566631083751
226 => 0.010706313556773
227 => 0.010961586021687
228 => 0.010959997984931
301 => 0.011019216235004
302 => 0.011056108714208
303 => 0.010897739186517
304 => 0.010794646447399
305 => 0.010834178763538
306 => 0.010897391797947
307 => 0.010813679628443
308 => 0.010296969339019
309 => 0.010453706233249
310 => 0.010427617550007
311 => 0.010390464092577
312 => 0.010548064251736
313 => 0.010532863331917
314 => 0.010077536767325
315 => 0.010106685296687
316 => 0.010079309385938
317 => 0.010167766554151
318 => 0.0099148786839372
319 => 0.009992665289589
320 => 0.01004145231945
321 => 0.010070188254837
322 => 0.010174002157873
323 => 0.010161820794567
324 => 0.010173244947226
325 => 0.010327173559573
326 => 0.011105691658904
327 => 0.011148064681347
328 => 0.010939404421632
329 => 0.011022760079747
330 => 0.010862735444045
331 => 0.010970161054063
401 => 0.011043658928123
402 => 0.010711536168075
403 => 0.010691870013684
404 => 0.010531184899387
405 => 0.01061752797814
406 => 0.010480149931557
407 => 0.010513857698908
408 => 0.010419607842803
409 => 0.010589238818833
410 => 0.010778912608023
411 => 0.010826831697618
412 => 0.01070077720336
413 => 0.010609505442122
414 => 0.010449262296174
415 => 0.010715750219136
416 => 0.010793679408883
417 => 0.010715340890278
418 => 0.010697188143787
419 => 0.010662788721987
420 => 0.010704486143738
421 => 0.010793254989779
422 => 0.010751393241289
423 => 0.010779043663676
424 => 0.01067366876653
425 => 0.01089779161342
426 => 0.011253752632382
427 => 0.011254897105263
428 => 0.011213035131123
429 => 0.011195906113234
430 => 0.011238859039099
501 => 0.011262159239359
502 => 0.011401061125386
503 => 0.011550108383189
504 => 0.01224564690094
505 => 0.012050342468398
506 => 0.012667465619118
507 => 0.013155529907926
508 => 0.013301879047675
509 => 0.013167244725365
510 => 0.012706667981547
511 => 0.012684069889198
512 => 0.013372365994948
513 => 0.013177890819115
514 => 0.013154758615764
515 => 0.012908671054589
516 => 0.013054139281781
517 => 0.013022323246604
518 => 0.012972100078584
519 => 0.013249643322661
520 => 0.013769179499117
521 => 0.013688204913837
522 => 0.013627761142228
523 => 0.013362914129956
524 => 0.013522411187066
525 => 0.013465617339994
526 => 0.01370963974928
527 => 0.013565086279777
528 => 0.013176417478386
529 => 0.013238314266077
530 => 0.013228958691136
531 => 0.013421495760466
601 => 0.013363700911317
602 => 0.013217673319266
603 => 0.013767403780946
604 => 0.013731707342526
605 => 0.013782316730864
606 => 0.013804596548758
607 => 0.014139207793445
608 => 0.014276287314028
609 => 0.014307406765116
610 => 0.014437621707559
611 => 0.014304166898724
612 => 0.014838081285728
613 => 0.015193103198317
614 => 0.01560547941905
615 => 0.016208071913819
616 => 0.016434652266145
617 => 0.016393722553539
618 => 0.01685060130578
619 => 0.017671602267713
620 => 0.016559670321262
621 => 0.017730537360857
622 => 0.017359854374431
623 => 0.016480971681918
624 => 0.016424381997866
625 => 0.017019571561274
626 => 0.01833964472804
627 => 0.018008981371911
628 => 0.018340185574834
629 => 0.017953818279178
630 => 0.017934631886389
701 => 0.018321420577672
702 => 0.019225173437609
703 => 0.018795834330522
704 => 0.018180271442246
705 => 0.01863479349973
706 => 0.018241044429506
707 => 0.017353817570868
708 => 0.018008728519875
709 => 0.017570808219064
710 => 0.017698616643964
711 => 0.01861905998054
712 => 0.018508309803092
713 => 0.0186516307879
714 => 0.018398673001078
715 => 0.018162370540404
716 => 0.017721294449504
717 => 0.017590713563778
718 => 0.017626801422785
719 => 0.017590695680427
720 => 0.017343917661268
721 => 0.017290625971526
722 => 0.017201804153861
723 => 0.017229333749211
724 => 0.017062322746261
725 => 0.017377507015061
726 => 0.017436007992745
727 => 0.01766537281939
728 => 0.017689186236581
729 => 0.018327964013986
730 => 0.017976135948416
731 => 0.018212172590174
801 => 0.018191059251272
802 => 0.01650001973487
803 => 0.016733030060062
804 => 0.017095521003393
805 => 0.016932219324767
806 => 0.016701348957898
807 => 0.016514908758166
808 => 0.016232432791081
809 => 0.016630012290282
810 => 0.017152787053865
811 => 0.017702444667296
812 => 0.018362822274839
813 => 0.018215433680478
814 => 0.017690099367272
815 => 0.017713665480805
816 => 0.017859341921745
817 => 0.017670677694627
818 => 0.017615036930887
819 => 0.017851697735229
820 => 0.017853327488122
821 => 0.01763624649399
822 => 0.017395000694414
823 => 0.017393989865705
824 => 0.017351062505829
825 => 0.017961454961136
826 => 0.018297109093917
827 => 0.018335591299307
828 => 0.018294518934884
829 => 0.018310326057847
830 => 0.018115016313615
831 => 0.018561436471623
901 => 0.018971115754988
902 => 0.018861312955524
903 => 0.018696702949741
904 => 0.018565583151443
905 => 0.018830425298093
906 => 0.018818632294202
907 => 0.018967537563844
908 => 0.018960782360694
909 => 0.018910711119124
910 => 0.018861314743726
911 => 0.019057165788667
912 => 0.019000763832996
913 => 0.018944274269508
914 => 0.018830975801815
915 => 0.018846374945263
916 => 0.018681793361718
917 => 0.01860565039043
918 => 0.017460642794783
919 => 0.017154659351024
920 => 0.017250927971298
921 => 0.017282622100706
922 => 0.017149457713853
923 => 0.017340381237475
924 => 0.017310626008557
925 => 0.017426386198052
926 => 0.017354064257378
927 => 0.017357032375051
928 => 0.017569715781907
929 => 0.017631458679738
930 => 0.017600055743575
1001 => 0.017622049283634
1002 => 0.018128881131396
1003 => 0.018056825850214
1004 => 0.018018547918201
1005 => 0.018029151166965
1006 => 0.018158657570666
1007 => 0.018194912292914
1008 => 0.018041298487173
1009 => 0.018113743645991
1010 => 0.018422205937581
1011 => 0.018530150282184
1012 => 0.018874656813932
1013 => 0.01872830431613
1014 => 0.018996940659833
1015 => 0.019822637195497
1016 => 0.020482260722039
1017 => 0.019875643666935
1018 => 0.021086958270881
1019 => 0.022030140442813
1020 => 0.021993939540102
1021 => 0.021829473912229
1022 => 0.02075568608528
1023 => 0.019767570517648
1024 => 0.020594171147576
1025 => 0.020596278322573
1026 => 0.020525272595387
1027 => 0.020084262122103
1028 => 0.020509926386862
1029 => 0.020543714070413
1030 => 0.020524801952495
1031 => 0.020186680256632
1101 => 0.019670430922384
1102 => 0.01977130480657
1103 => 0.019936538286637
1104 => 0.019623716837554
1105 => 0.019523751430052
1106 => 0.019709606141795
1107 => 0.020308468747399
1108 => 0.020195257240785
1109 => 0.020192300830823
1110 => 0.020676667665271
1111 => 0.020329965544712
1112 => 0.019772577149292
1113 => 0.019631829228399
1114 => 0.019132268928389
1115 => 0.019477317006979
1116 => 0.01948973467305
1117 => 0.019300755366712
1118 => 0.019787911778477
1119 => 0.01978342254638
1120 => 0.020245905055688
1121 => 0.021129997912987
1122 => 0.020868528151517
1123 => 0.020564467266755
1124 => 0.020597527115623
1125 => 0.020960112059038
1126 => 0.02074088492524
1127 => 0.02081972053106
1128 => 0.020959992731906
1129 => 0.02104462243344
1130 => 0.020585350203949
1201 => 0.020478271877725
1202 => 0.020259227201655
1203 => 0.020202082534331
1204 => 0.020380489852472
1205 => 0.020333485827366
1206 => 0.0194886910163
1207 => 0.01940040525815
1208 => 0.019403112856309
1209 => 0.019181114119681
1210 => 0.018842512760522
1211 => 0.019732336915556
1212 => 0.019660871582826
1213 => 0.019581979386469
1214 => 0.01959164323037
1215 => 0.019977885737131
1216 => 0.019753845577496
1217 => 0.020349493061347
1218 => 0.02022704584547
1219 => 0.020101458320541
1220 => 0.020084098299106
1221 => 0.020035757816632
1222 => 0.019869980315529
1223 => 0.019669794021263
1224 => 0.019537613689949
1225 => 0.018022415874626
1226 => 0.01830362777565
1227 => 0.018627136434506
1228 => 0.018738810327164
1229 => 0.018547784406175
1230 => 0.019877523183206
1231 => 0.020120479271451
]
'min_raw' => 0.0083860245080177
'max_raw' => 0.022030140442813
'avg_raw' => 0.015208082475415
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.008386'
'max' => '$0.02203'
'avg' => '$0.015208'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00032514506643614
'max_diff' => -0.0039729128892107
'year' => 2027
]
2 => [
'items' => [
101 => 0.019384549432523
102 => 0.019246887007477
103 => 0.019886548308874
104 => 0.019500754348717
105 => 0.019674477345353
106 => 0.019298983248025
107 => 0.020061958264378
108 => 0.020056145673086
109 => 0.019759331159153
110 => 0.020010196753831
111 => 0.019966602683257
112 => 0.019631499828048
113 => 0.0200725816226
114 => 0.020072800393667
115 => 0.01978712287731
116 => 0.019453514081055
117 => 0.019393872707773
118 => 0.019348940944696
119 => 0.019663426886004
120 => 0.019945393997608
121 => 0.02047006488673
122 => 0.020601979614127
123 => 0.021116851577222
124 => 0.02081027039186
125 => 0.02094617386044
126 => 0.021093716300303
127 => 0.021164453571667
128 => 0.021049190983951
129 => 0.021848999072392
130 => 0.021916527380543
131 => 0.021939169038149
201 => 0.021669478250796
202 => 0.02190902679188
203 => 0.02179694996252
204 => 0.022088542736674
205 => 0.022134268206904
206 => 0.02209554036035
207 => 0.022110054346328
208 => 0.021427559238659
209 => 0.021392168266878
210 => 0.020909609855413
211 => 0.021106255974977
212 => 0.020738635479946
213 => 0.020855211725831
214 => 0.020906597424238
215 => 0.020879756451503
216 => 0.021117374051531
217 => 0.020915350549439
218 => 0.020382177311677
219 => 0.019848858811223
220 => 0.019842163431882
221 => 0.019701750084566
222 => 0.019600256952444
223 => 0.019619808130353
224 => 0.019688709031404
225 => 0.01959625230682
226 => 0.019615982636685
227 => 0.019943637574945
228 => 0.020009346436085
229 => 0.019786042051822
301 => 0.018889442726337
302 => 0.018669415002913
303 => 0.018827566567171
304 => 0.018751980305721
305 => 0.015134311638773
306 => 0.015984229230435
307 => 0.015479237057944
308 => 0.0157119606846
309 => 0.015196494443576
310 => 0.015442501951693
311 => 0.0153970733477
312 => 0.016763715684202
313 => 0.016742377443872
314 => 0.016752590930323
315 => 0.016265074610913
316 => 0.017041701345244
317 => 0.01742429560117
318 => 0.017353487586814
319 => 0.017371308438529
320 => 0.017065087162767
321 => 0.016755555821639
322 => 0.016412237927796
323 => 0.017050080139182
324 => 0.016979162973606
325 => 0.017141821436248
326 => 0.017555507704235
327 => 0.017616424578637
328 => 0.017698297475592
329 => 0.017668951870143
330 => 0.018368083247888
331 => 0.018283413825026
401 => 0.018487442773068
402 => 0.018067739747231
403 => 0.01759280593492
404 => 0.017683075325884
405 => 0.017674381657633
406 => 0.017563701282677
407 => 0.01746378398902
408 => 0.017297449846605
409 => 0.017823755686028
410 => 0.017802388630095
411 => 0.018148296429169
412 => 0.018087153865714
413 => 0.017678828862835
414 => 0.017693412270195
415 => 0.017791492693234
416 => 0.018130950157238
417 => 0.01823172424458
418 => 0.01818504167217
419 => 0.01829553585843
420 => 0.018382865958038
421 => 0.018306503174383
422 => 0.019387639156087
423 => 0.018938676119945
424 => 0.019157497579896
425 => 0.019209685208723
426 => 0.01907600769487
427 => 0.019104997560992
428 => 0.019148909308901
429 => 0.019415532843403
430 => 0.020115230146077
501 => 0.020425121318431
502 => 0.021357444200219
503 => 0.020399389170461
504 => 0.020342542149821
505 => 0.020510481654284
506 => 0.021057853882294
507 => 0.021501447661036
508 => 0.021648613308984
509 => 0.0216680636788
510 => 0.021944156217738
511 => 0.022102407312236
512 => 0.021910631321556
513 => 0.021748121249239
514 => 0.021166030341689
515 => 0.021233408949218
516 => 0.021697580738949
517 => 0.022353250731525
518 => 0.022915883795991
519 => 0.022718869306557
520 => 0.024221950790384
521 => 0.024370975179969
522 => 0.024350384827863
523 => 0.024689884565139
524 => 0.024016046724566
525 => 0.023727967992728
526 => 0.021783257771441
527 => 0.022329642019924
528 => 0.023123843613115
529 => 0.023018728054153
530 => 0.022441957628108
531 => 0.022915446263902
601 => 0.02275889611355
602 => 0.022635418514696
603 => 0.023201093332358
604 => 0.022579110633698
605 => 0.023117638859904
606 => 0.022426970839433
607 => 0.022719769252149
608 => 0.022553562712026
609 => 0.022661118712993
610 => 0.022032348529069
611 => 0.022371617657781
612 => 0.022018233817901
613 => 0.022018066267949
614 => 0.022010265300097
615 => 0.022426019820572
616 => 0.022439577560559
617 => 0.022132334341757
618 => 0.022088055793887
619 => 0.02225177679269
620 => 0.022060102381689
621 => 0.022149785632212
622 => 0.022062818795986
623 => 0.022043240729349
624 => 0.021887239363457
625 => 0.021820029685684
626 => 0.021846384332119
627 => 0.021756422337085
628 => 0.021702216981009
629 => 0.021999482490445
630 => 0.02184066552041
701 => 0.021975141512031
702 => 0.021821889147356
703 => 0.021290649682514
704 => 0.020985128248528
705 => 0.019981666145367
706 => 0.020266246753033
707 => 0.020454923990335
708 => 0.020392566164532
709 => 0.020526534903632
710 => 0.020534759496164
711 => 0.020491204893433
712 => 0.02044077424316
713 => 0.020416227391598
714 => 0.020599179512288
715 => 0.020705389376233
716 => 0.020473860275274
717 => 0.020419616246356
718 => 0.020653704950497
719 => 0.020796498924795
720 => 0.021850809402007
721 => 0.021772702676477
722 => 0.021968735229886
723 => 0.021946664972737
724 => 0.022152138319144
725 => 0.022488000401005
726 => 0.021805098880067
727 => 0.021923626971144
728 => 0.021894566620425
729 => 0.022211839909539
730 => 0.022212830402116
731 => 0.022022609216316
801 => 0.022125731207124
802 => 0.022068171340859
803 => 0.022172189798883
804 => 0.021771659513538
805 => 0.022259462166516
806 => 0.022536014837446
807 => 0.02253985477155
808 => 0.022670938542713
809 => 0.022804127246075
810 => 0.023059771363886
811 => 0.02279699747038
812 => 0.022324292816485
813 => 0.02235842056567
814 => 0.022081274000047
815 => 0.022085932883886
816 => 0.022061063396832
817 => 0.02213569859957
818 => 0.021788037743437
819 => 0.021869633051477
820 => 0.0217553991424
821 => 0.021923378648935
822 => 0.021742660467911
823 => 0.021894552606644
824 => 0.021960104218417
825 => 0.022201991077086
826 => 0.021706933582213
827 => 0.020697477837722
828 => 0.020909677673682
829 => 0.02059581744836
830 => 0.020624866407164
831 => 0.020683549927055
901 => 0.020493337439035
902 => 0.020529623987465
903 => 0.02052832757661
904 => 0.020517155808245
905 => 0.020467674193756
906 => 0.020395916063108
907 => 0.020681778369621
908 => 0.02073035194589
909 => 0.020838324988943
910 => 0.021159579526255
911 => 0.021127478622274
912 => 0.021179836528521
913 => 0.021065539513161
914 => 0.020630168317894
915 => 0.020653811068431
916 => 0.020358985590386
917 => 0.020830785638612
918 => 0.020719057159735
919 => 0.020647025082567
920 => 0.020627370462939
921 => 0.020949421328112
922 => 0.0210457839945
923 => 0.020985737247465
924 => 0.020862579617452
925 => 0.021099078675361
926 => 0.021162355846163
927 => 0.021176521271134
928 => 0.021595552257552
929 => 0.021199940448421
930 => 0.021295168142922
1001 => 0.022038107431476
1002 => 0.021364364015371
1003 => 0.021721260929153
1004 => 0.021703792682425
1005 => 0.021886369066783
1006 => 0.021688816089903
1007 => 0.021691264995816
1008 => 0.02185338045633
1009 => 0.021625718529716
1010 => 0.021569346235069
1011 => 0.021491468313761
1012 => 0.021661511905831
1013 => 0.021763445348866
1014 => 0.02258495403787
1015 => 0.023115686116314
1016 => 0.023092645637083
1017 => 0.023303192487289
1018 => 0.023208339202883
1019 => 0.022902032926504
1020 => 0.023424860390212
1021 => 0.023259415904665
1022 => 0.023273054947038
1023 => 0.0232725473012
1024 => 0.023382553420681
1025 => 0.023304604003116
1026 => 0.023150957699751
1027 => 0.023252955286297
1028 => 0.023555851653535
1029 => 0.024496051271437
1030 => 0.025022199433603
1031 => 0.024464376491423
1101 => 0.024849155287392
1102 => 0.024618425120514
1103 => 0.024576494585565
1104 => 0.024818164104363
1105 => 0.025060256633661
1106 => 0.02504483638614
1107 => 0.024869089641458
1108 => 0.024769814764796
1109 => 0.025521557390406
1110 => 0.026075428551354
1111 => 0.026037658251377
1112 => 0.026204364071917
1113 => 0.02669381751704
1114 => 0.026738567006032
1115 => 0.026732929598974
1116 => 0.026622013321382
1117 => 0.027103943801667
1118 => 0.027505978687081
1119 => 0.026596339407799
1120 => 0.026942718137297
1121 => 0.027098218708594
1122 => 0.027326539682199
1123 => 0.027711755435709
1124 => 0.028130201917454
1125 => 0.028189374838004
1126 => 0.028147388819189
1127 => 0.027871412116033
1128 => 0.028329281249462
1129 => 0.028597490249473
1130 => 0.028757202571125
1201 => 0.02916220644524
1202 => 0.027099179027184
1203 => 0.025638865681568
1204 => 0.02541081666547
1205 => 0.025874563307291
1206 => 0.025996849598428
1207 => 0.025947556147805
1208 => 0.024303840711434
1209 => 0.025402162843872
1210 => 0.026583865108829
1211 => 0.02662925910546
1212 => 0.027220843967526
1213 => 0.027413488248497
1214 => 0.027889791603261
1215 => 0.027859998698737
1216 => 0.02797597098598
1217 => 0.027949310965503
1218 => 0.028831562632699
1219 => 0.029804817237256
1220 => 0.02977111652506
1221 => 0.029631199660629
1222 => 0.02983900006368
1223 => 0.030843503115884
1224 => 0.030751024571671
1225 => 0.030840859600071
1226 => 0.032025225309931
1227 => 0.033565069206808
1228 => 0.032849657118909
1229 => 0.034401895495366
1230 => 0.035378947272725
1231 => 0.037068657292629
]
'min_raw' => 0.015134311638773
'max_raw' => 0.037068657292629
'avg_raw' => 0.026101484465701
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.015134'
'max' => '$0.037068'
'avg' => '$0.0261014'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0067482871307555
'max_diff' => 0.015038516849815
'year' => 2028
]
3 => [
'items' => [
101 => 0.036857097276139
102 => 0.037514888987223
103 => 0.036478360692716
104 => 0.034098282211597
105 => 0.033721625681386
106 => 0.034475701593332
107 => 0.036329523641199
108 => 0.034417318139852
109 => 0.034804154822313
110 => 0.03469274583174
111 => 0.03468680932009
112 => 0.034913381824228
113 => 0.034584726589749
114 => 0.03324572604053
115 => 0.033859382101457
116 => 0.033622420026149
117 => 0.033885347115397
118 => 0.035304256176686
119 => 0.034676922658122
120 => 0.034016077756753
121 => 0.034844923916294
122 => 0.03590032989983
123 => 0.035834284490128
124 => 0.035706128790464
125 => 0.036428535759451
126 => 0.037621740426835
127 => 0.037944258853744
128 => 0.03818233536289
129 => 0.038215162091165
130 => 0.038553297794102
131 => 0.036735056898244
201 => 0.039620651895708
202 => 0.040118914438817
203 => 0.040025261731579
204 => 0.040579059578152
205 => 0.040416118203195
206 => 0.040180041715601
207 => 0.041057929098598
208 => 0.04005150205585
209 => 0.038623005574311
210 => 0.037839304152082
211 => 0.038871345404263
212 => 0.039501576983695
213 => 0.039918119967442
214 => 0.040044165622642
215 => 0.036876201763121
216 => 0.035168844946171
217 => 0.03626324109095
218 => 0.037598479918769
219 => 0.036727639579138
220 => 0.036761774871732
221 => 0.035520185400234
222 => 0.037708333037112
223 => 0.037389538331637
224 => 0.039043445827578
225 => 0.038648727530235
226 => 0.039997424888856
227 => 0.039642267674561
228 => 0.041116505414528
301 => 0.041704618762395
302 => 0.042692152605997
303 => 0.043418586521336
304 => 0.04384516241089
305 => 0.043819552394527
306 => 0.045509858588203
307 => 0.044513144080593
308 => 0.043261035751461
309 => 0.043238389062138
310 => 0.043886873708308
311 => 0.045245919623605
312 => 0.045598300456127
313 => 0.04579523326883
314 => 0.045493623810895
315 => 0.044411761648056
316 => 0.043944619051308
317 => 0.044342638078162
318 => 0.043855895010485
319 => 0.044696150101279
320 => 0.045849999809742
321 => 0.04561173440776
322 => 0.046408219923839
323 => 0.04723249864026
324 => 0.048411254225415
325 => 0.048719424584568
326 => 0.049228818469578
327 => 0.049753152104428
328 => 0.049921553936754
329 => 0.050243085286684
330 => 0.050241390657758
331 => 0.051210347022328
401 => 0.05227913589853
402 => 0.052682578956777
403 => 0.053610274023236
404 => 0.052021628732238
405 => 0.053226634434502
406 => 0.054313579741193
407 => 0.05301767873706
408 => 0.054803776365048
409 => 0.054873126488558
410 => 0.055920231017308
411 => 0.054858789976465
412 => 0.054228509674653
413 => 0.056048105289691
414 => 0.056928550291083
415 => 0.056663353091364
416 => 0.054645189307107
417 => 0.053470531421552
418 => 0.050396225160472
419 => 0.054037873726869
420 => 0.055811614515216
421 => 0.054640595746969
422 => 0.055231189499579
423 => 0.05845327751315
424 => 0.059680040013968
425 => 0.059424881989515
426 => 0.059467999495389
427 => 0.060129938273516
428 => 0.063065339352076
429 => 0.061306378983739
430 => 0.062651038278345
501 => 0.063364240719674
502 => 0.064026702894384
503 => 0.062399905166616
504 => 0.060283465225194
505 => 0.059613099853641
506 => 0.054524161008725
507 => 0.054259259641706
508 => 0.054110562477065
509 => 0.053173047887636
510 => 0.052436418227204
511 => 0.051850622971922
512 => 0.050313321288792
513 => 0.050832115478885
514 => 0.048381977455772
515 => 0.0499494889354
516 => 0.046039009489861
517 => 0.04929577297263
518 => 0.047523264675824
519 => 0.048713456325671
520 => 0.048709303859128
521 => 0.046517783681153
522 => 0.045253760578356
523 => 0.046059245295973
524 => 0.046922788852715
525 => 0.047062895889488
526 => 0.048182502651597
527 => 0.048494960833034
528 => 0.047548197956
529 => 0.045957973495224
530 => 0.046327346368304
531 => 0.045246275248873
601 => 0.04335173969487
602 => 0.044712428205172
603 => 0.04517702708784
604 => 0.04538222042204
605 => 0.043519162293557
606 => 0.042933748980628
607 => 0.042622079844918
608 => 0.045717476086118
609 => 0.045887048879673
610 => 0.04501949049267
611 => 0.048940936667188
612 => 0.048053392624118
613 => 0.049044996773797
614 => 0.046293829651655
615 => 0.046398927940659
616 => 0.045096481335627
617 => 0.045825764404931
618 => 0.045310330637438
619 => 0.045766845539847
620 => 0.04604047869007
621 => 0.047342711576429
622 => 0.049310642380387
623 => 0.047148201408847
624 => 0.046205994910822
625 => 0.046790534523026
626 => 0.048347240540055
627 => 0.050705729842169
628 => 0.049309456706297
629 => 0.049929099013742
630 => 0.050064463291951
701 => 0.0490349031744
702 => 0.050743691192252
703 => 0.051659444573189
704 => 0.052598818053567
705 => 0.053414449725933
706 => 0.052223611628239
707 => 0.053497979092708
708 => 0.052471063872486
709 => 0.051549814759402
710 => 0.051551211914032
711 => 0.050973298888093
712 => 0.049853519578608
713 => 0.049647015093443
714 => 0.050721277503917
715 => 0.051582734224088
716 => 0.051653687925661
717 => 0.052130634629192
718 => 0.0524128867754
719 => 0.055179341511425
720 => 0.056292032491568
721 => 0.057652609959925
722 => 0.058182631561794
723 => 0.05977780656016
724 => 0.058489573195201
725 => 0.058210855803324
726 => 0.054341483035053
727 => 0.054975092609091
728 => 0.055989562671356
729 => 0.054358211272727
730 => 0.055392928249826
731 => 0.055597203299408
801 => 0.054302778576446
802 => 0.054994186749771
803 => 0.053158011629657
804 => 0.049350665980317
805 => 0.050747929856348
806 => 0.051776786383041
807 => 0.050308481262355
808 => 0.052940361359929
809 => 0.051402871339959
810 => 0.050915560816165
811 => 0.049014388724098
812 => 0.049911668768729
813 => 0.051125252876905
814 => 0.050375398992348
815 => 0.051931458393931
816 => 0.054135253492457
817 => 0.055705809117933
818 => 0.055826376877191
819 => 0.054816614829064
820 => 0.056434764955402
821 => 0.056446551412498
822 => 0.054621271459651
823 => 0.053503297651733
824 => 0.053249291650338
825 => 0.053883848442634
826 => 0.054654317534129
827 => 0.055869132549576
828 => 0.056603219820882
829 => 0.058517330094643
830 => 0.059035233452881
831 => 0.059604252225097
901 => 0.060364636783668
902 => 0.061277673404832
903 => 0.059280001256929
904 => 0.059359372495492
905 => 0.057499167851019
906 => 0.055511272408069
907 => 0.057019837254603
908 => 0.058992085115475
909 => 0.05853964927705
910 => 0.058488741002802
911 => 0.05857435459931
912 => 0.058233232752311
913 => 0.056690351280902
914 => 0.055915525864909
915 => 0.056915248330585
916 => 0.057446556328564
917 => 0.058270568698503
918 => 0.058168991781117
919 => 0.060291559153612
920 => 0.061116324651457
921 => 0.060905314343403
922 => 0.060944145318332
923 => 0.062437343856246
924 => 0.064098087730109
925 => 0.065653593522437
926 => 0.067235920824921
927 => 0.06532836350249
928 => 0.06435982353594
929 => 0.065359109554062
930 => 0.064828874326877
1001 => 0.067875763220265
1002 => 0.068086723196502
1003 => 0.071133391765142
1004 => 0.074025043027327
1005 => 0.072208848678862
1006 => 0.073921438146274
1007 => 0.075773743284748
1008 => 0.079347140422543
1009 => 0.078143745980161
1010 => 0.077221964696891
1011 => 0.076350885838216
1012 => 0.078163462663244
1013 => 0.080495313792021
1014 => 0.080997572190967
1015 => 0.081811422674735
1016 => 0.080955758403956
1017 => 0.081986311769782
1018 => 0.085624617999244
1019 => 0.084641515539826
1020 => 0.083245352005846
1021 => 0.086117445347362
1022 => 0.087156844762676
1023 => 0.094451894197053
1024 => 0.10366219545141
1025 => 0.09984907025401
1026 => 0.0974821403952
1027 => 0.098038425056347
1028 => 0.10140171528607
1029 => 0.10248189736236
1030 => 0.09954559011791
1031 => 0.10058274347679
1101 => 0.10629756045486
1102 => 0.10936337641032
1103 => 0.10519958654879
1104 => 0.093711855459135
1105 => 0.083119642755367
1106 => 0.085929174537961
1107 => 0.085610660823736
1108 => 0.091750518728744
1109 => 0.084618068871303
1110 => 0.084738161034715
1111 => 0.091004984698976
1112 => 0.089333103585908
1113 => 0.086624870301092
1114 => 0.083139415855456
1115 => 0.076696230947185
1116 => 0.070989322392425
1117 => 0.082181884290857
1118 => 0.081699240669443
1119 => 0.081000301181859
1120 => 0.082555715378326
1121 => 0.090108365204345
1122 => 0.089934252180314
1123 => 0.08882663395467
1124 => 0.089666752616722
1125 => 0.08647759343772
1126 => 0.087299512373954
1127 => 0.083117964894757
1128 => 0.085008198992203
1129 => 0.086619059648792
1130 => 0.086942463774802
1201 => 0.087671109784127
1202 => 0.081444909412454
1203 => 0.084240290587696
1204 => 0.085882315136355
1205 => 0.078463588488147
1206 => 0.085735670763545
1207 => 0.081336525116029
1208 => 0.079843389010311
1209 => 0.081853700070936
1210 => 0.081070279895519
1211 => 0.080396741232672
1212 => 0.08002089508594
1213 => 0.081497045658927
1214 => 0.081428181470316
1215 => 0.079012912624428
1216 => 0.075862292873921
1217 => 0.076919744277759
1218 => 0.076535562269085
1219 => 0.075143237109184
1220 => 0.076081496156976
1221 => 0.071949878152536
1222 => 0.064841644118715
1223 => 0.069537561252554
1224 => 0.069356773551076
1225 => 0.069265612193922
1226 => 0.072794464134385
1227 => 0.072455246444776
1228 => 0.071839563016505
1229 => 0.075131929600199
1230 => 0.073930171508571
1231 => 0.077633706777151
]
'min_raw' => 0.03324572604053
'max_raw' => 0.10936337641032
'avg_raw' => 0.071304551225427
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.033245'
'max' => '$0.109363'
'avg' => '$0.0713045'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.018111414401757
'max_diff' => 0.072294719117695
'year' => 2029
]
4 => [
'items' => [
101 => 0.08007309463468
102 => 0.07945438696808
103 => 0.081748643038671
104 => 0.076944105822352
105 => 0.078539980361037
106 => 0.078868887891674
107 => 0.075091302307617
108 => 0.072510746653972
109 => 0.072338653012362
110 => 0.067864325131416
111 => 0.070254474969905
112 => 0.072357707916654
113 => 0.071350422552631
114 => 0.071031546098176
115 => 0.072660616748123
116 => 0.072787209489671
117 => 0.06990088156669
118 => 0.070501040539996
119 => 0.073003803226808
120 => 0.070437977341716
121 => 0.065452996772261
122 => 0.064216652668288
123 => 0.064051701574475
124 => 0.060698638308812
125 => 0.064299271093125
126 => 0.062727498391813
127 => 0.067692709522529
128 => 0.064856607553625
129 => 0.064734348866191
130 => 0.064549536928684
131 => 0.061663416862628
201 => 0.062295293734596
202 => 0.06439574869458
203 => 0.065145214687621
204 => 0.065067039244353
205 => 0.064385455319377
206 => 0.064697480949957
207 => 0.063692337676923
208 => 0.063337400666967
209 => 0.062217121830429
210 => 0.060570621425646
211 => 0.060799577405505
212 => 0.057537429273363
213 => 0.055760037835666
214 => 0.055268079311354
215 => 0.054610211812283
216 => 0.055342387195893
217 => 0.057528188017571
218 => 0.054891648483114
219 => 0.050371486383033
220 => 0.050643155827229
221 => 0.051253516408956
222 => 0.050116113502847
223 => 0.049039657107204
224 => 0.049975548607548
225 => 0.048060296337499
226 => 0.051484965495566
227 => 0.051392337792365
228 => 0.052668842674372
301 => 0.053467067373608
302 => 0.051627417870184
303 => 0.051164750995014
304 => 0.051428307074148
305 => 0.047072312164485
306 => 0.052312864957898
307 => 0.052358185476074
308 => 0.051970123684565
309 => 0.054760556263142
310 => 0.060649239361687
311 => 0.058433679908286
312 => 0.05757574832229
313 => 0.055944819750167
314 => 0.058117935237564
315 => 0.057951073874015
316 => 0.057196463507751
317 => 0.056740072803706
318 => 0.057580986669611
319 => 0.056635874269739
320 => 0.05646610611277
321 => 0.055437495791116
322 => 0.055070328705073
323 => 0.054798492811909
324 => 0.05449922820358
325 => 0.055159331357461
326 => 0.053663450766964
327 => 0.051859565417807
328 => 0.051709591869335
329 => 0.052123682022476
330 => 0.051940477955097
331 => 0.051708714758744
401 => 0.051266215699954
402 => 0.051134935681707
403 => 0.051561532052998
404 => 0.051079929621924
405 => 0.051790560243215
406 => 0.05159730803521
407 => 0.050517816910689
408 => 0.049172371290734
409 => 0.049160394002549
410 => 0.048870519950702
411 => 0.04850132176282
412 => 0.048398619273062
413 => 0.049896730435802
414 => 0.052997775707981
415 => 0.052388966319328
416 => 0.052828893495925
417 => 0.054992899792855
418 => 0.055680772320709
419 => 0.055192536693592
420 => 0.054524209654132
421 => 0.054553612652051
422 => 0.056837488462239
423 => 0.056979930995061
424 => 0.0573398373218
425 => 0.057802418661176
426 => 0.055271316295946
427 => 0.054434397958267
428 => 0.054037819619413
429 => 0.052816511830876
430 => 0.054133587573797
501 => 0.053366183941203
502 => 0.053469732909481
503 => 0.053402296508047
504 => 0.05343912134326
505 => 0.051484008230741
506 => 0.052196348691223
507 => 0.051011944514968
508 => 0.04942616027857
509 => 0.049420844173762
510 => 0.049808962619041
511 => 0.049578094580713
512 => 0.048956834625731
513 => 0.049045081670072
514 => 0.048271944703742
515 => 0.049138954495881
516 => 0.049163817234409
517 => 0.048829971238093
518 => 0.050165719447179
519 => 0.050712976578308
520 => 0.050493231991858
521 => 0.050697558712328
522 => 0.052414265098036
523 => 0.052694163144057
524 => 0.052818475367073
525 => 0.052651913456446
526 => 0.050728936953657
527 => 0.050814229138683
528 => 0.050188411677215
529 => 0.049659661869294
530 => 0.049680809088683
531 => 0.049952655222618
601 => 0.051139823233078
602 => 0.053638148323713
603 => 0.053732957934651
604 => 0.053847869948899
605 => 0.053380465036801
606 => 0.05323949124285
607 => 0.053425472065495
608 => 0.054363711613845
609 => 0.056777118461754
610 => 0.055924059295679
611 => 0.055230508915004
612 => 0.055838939578696
613 => 0.055745276447058
614 => 0.054954665356787
615 => 0.054932475536695
616 => 0.053415040080809
617 => 0.052854078743101
618 => 0.052385297462084
619 => 0.051873400541059
620 => 0.051569930887335
621 => 0.052036198199946
622 => 0.052142839051053
623 => 0.051123337423071
624 => 0.050984383118365
625 => 0.051816930155246
626 => 0.051450557244797
627 => 0.051827380868805
628 => 0.051914807181908
629 => 0.0519007295319
630 => 0.05151819413573
701 => 0.051762010789879
702 => 0.051185311717574
703 => 0.050558238093842
704 => 0.050158204189968
705 => 0.049809121552041
706 => 0.050002812888365
707 => 0.04931233864101
708 => 0.049091442032781
709 => 0.051679411193502
710 => 0.053591171837883
711 => 0.053563374080973
712 => 0.053394162384789
713 => 0.053142748127597
714 => 0.054345319094969
715 => 0.053926367416102
716 => 0.054231189767062
717 => 0.054308779848735
718 => 0.054543621657322
719 => 0.054627557418556
720 => 0.054373845250972
721 => 0.053522356228227
722 => 0.051400526540694
723 => 0.050412809093378
724 => 0.050086845884028
725 => 0.050098694027595
726 => 0.049771869335559
727 => 0.049868133854619
728 => 0.049738392464359
729 => 0.049492693659019
730 => 0.049987641679496
731 => 0.050044679828096
801 => 0.049929153045929
802 => 0.04995636378526
803 => 0.048999851371044
804 => 0.049072572932461
805 => 0.048667650037481
806 => 0.048591731876091
807 => 0.047568122058252
808 => 0.045754648891336
809 => 0.046759489063907
810 => 0.045545783437351
811 => 0.045086134725933
812 => 0.047262040235746
813 => 0.047043639672785
814 => 0.046669832845439
815 => 0.046116894639624
816 => 0.045911804480451
817 => 0.044665741596966
818 => 0.044592117554323
819 => 0.045209699965906
820 => 0.044924706932674
821 => 0.044524468778714
822 => 0.043074846756562
823 => 0.041444991650306
824 => 0.04149418673106
825 => 0.042012613315827
826 => 0.04352000853039
827 => 0.042931043141858
828 => 0.04250374199488
829 => 0.042423721334676
830 => 0.043425347431726
831 => 0.044842858206207
901 => 0.045507922546578
902 => 0.044848863983575
903 => 0.04409177299263
904 => 0.044137853613227
905 => 0.044444407337577
906 => 0.04447662179957
907 => 0.043983833394676
908 => 0.044122550444129
909 => 0.043911826561457
910 => 0.042618614482466
911 => 0.042595224376777
912 => 0.04227784927673
913 => 0.042268239284834
914 => 0.041728305066726
915 => 0.041652764537224
916 => 0.040580692375506
917 => 0.041286333518882
918 => 0.040813026487729
919 => 0.040099641149938
920 => 0.039976653248812
921 => 0.039972956083992
922 => 0.04070544331586
923 => 0.041277773979103
924 => 0.040821259866176
925 => 0.040717320451817
926 => 0.041827121469491
927 => 0.041685889173931
928 => 0.041563582916827
929 => 0.044715935663747
930 => 0.042220602483407
1001 => 0.041132494788141
1002 => 0.039785754889201
1003 => 0.040224260191148
1004 => 0.040316659701251
1005 => 0.037077993012415
1006 => 0.035764066340104
1007 => 0.035313176220449
1008 => 0.035053682581937
1009 => 0.035171937091523
1010 => 0.033989248978216
1011 => 0.034784034950214
1012 => 0.033759927014228
1013 => 0.033588231986025
1014 => 0.035419463838197
1015 => 0.035674269052525
1016 => 0.034587190846425
1017 => 0.035285271036717
1018 => 0.035032137455676
1019 => 0.033777482405423
1020 => 0.033729563811121
1021 => 0.033100022010161
1022 => 0.032114910994973
1023 => 0.031664688826974
1024 => 0.031430209212872
1025 => 0.031526960071567
1026 => 0.031478039876786
1027 => 0.031158802514943
1028 => 0.031496338188681
1029 => 0.030634074021651
1030 => 0.030290713482605
1031 => 0.030135625493022
1101 => 0.029370316414709
1102 => 0.030588263492797
1103 => 0.030828214410473
1104 => 0.031068638105582
1105 => 0.033161362227275
1106 => 0.033056815644132
1107 => 0.034001865839492
1108 => 0.033965142926736
1109 => 0.033695599302221
1110 => 0.032558439088167
1111 => 0.033011690881557
1112 => 0.03161665231247
1113 => 0.032661910061832
1114 => 0.032184898076031
1115 => 0.032500631829602
1116 => 0.031932914072116
1117 => 0.0322471125196
1118 => 0.030885115674646
1119 => 0.02961330218464
1120 => 0.030125117059569
1121 => 0.030681518361747
1122 => 0.031887938153284
1123 => 0.031169404478192
1124 => 0.031427816358521
1125 => 0.030562179817044
1126 => 0.028776124375122
1127 => 0.028786233254958
1128 => 0.028511487536551
1129 => 0.028274067122316
1130 => 0.031251936714309
1201 => 0.030881591557393
1202 => 0.030291495019422
1203 => 0.031081362685
1204 => 0.031290216232664
1205 => 0.031296161999552
1206 => 0.031872429058922
1207 => 0.032179982891809
1208 => 0.03223419058787
1209 => 0.033140959256863
1210 => 0.033444896154141
1211 => 0.03469676921927
1212 => 0.032153889097848
1213 => 0.032101520155136
1214 => 0.031092477742871
1215 => 0.030452527092683
1216 => 0.031136295711391
1217 => 0.031742021363842
1218 => 0.031111299327346
1219 => 0.031193658310043
1220 => 0.030346965507932
1221 => 0.030649618344088
1222 => 0.030910303738325
1223 => 0.030766368586006
1224 => 0.030550890696445
1225 => 0.031692358767945
1226 => 0.031627952665901
1227 => 0.032690913976319
1228 => 0.033519568330883
1229 => 0.035004665073945
1230 => 0.033454889202716
1231 => 0.033398409210167
]
'min_raw' => 0.028274067122316
'max_raw' => 0.081748643038671
'avg_raw' => 0.055011355080494
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.028274'
'max' => '$0.081748'
'avg' => '$0.055011'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0049716589182146
'max_diff' => -0.027614733371652
'year' => 2030
]
5 => [
'items' => [
101 => 0.033950510197007
102 => 0.033444811630356
103 => 0.033764395668358
104 => 0.034953175144673
105 => 0.034978292181753
106 => 0.034557549449182
107 => 0.034531947215668
108 => 0.03461275545988
109 => 0.035086051870225
110 => 0.034920667561521
111 => 0.035112054470572
112 => 0.03535138673096
113 => 0.036341366434703
114 => 0.036580047189715
115 => 0.036000176696819
116 => 0.036052532509793
117 => 0.035835645027649
118 => 0.03562613443749
119 => 0.036097083647603
120 => 0.036957752585614
121 => 0.036952398408819
122 => 0.037152056873425
123 => 0.037276442442813
124 => 0.036742488523194
125 => 0.036394904155552
126 => 0.036528190119474
127 => 0.036741317278376
128 => 0.036459075854298
129 => 0.034716951037944
130 => 0.035245400419862
131 => 0.035157440602856
201 => 0.035032175127161
202 => 0.035563535067057
203 => 0.035512284104593
204 => 0.033977118802185
205 => 0.034075395104013
206 => 0.0339830953096
207 => 0.03428133482811
208 => 0.033428705717618
209 => 0.033690968689461
210 => 0.033855457566838
211 => 0.033952342779276
212 => 0.034302358601415
213 => 0.034261288284554
214 => 0.034299805612853
215 => 0.034818786676334
216 => 0.037443614802626
217 => 0.037586478406183
218 => 0.036882965772359
219 => 0.037164005193398
220 => 0.036624470961568
221 => 0.036986663905961
222 => 0.037234467119811
223 => 0.036114692046239
224 => 0.036048386233662
225 => 0.035506625152133
226 => 0.035797736870431
227 => 0.035334557194946
228 => 0.035448205285973
301 => 0.0351304353158
302 => 0.035702357994741
303 => 0.036341856417597
304 => 0.036503418973768
305 => 0.036078417445535
306 => 0.035770688330129
307 => 0.035230417375748
308 => 0.036128900013607
309 => 0.036391643717679
310 => 0.036127519932783
311 => 0.036066316680604
312 => 0.035950336628316
313 => 0.03609092239697
314 => 0.03639021275904
315 => 0.036249072951313
316 => 0.03634229828088
317 => 0.035987019458112
318 => 0.03674266528416
319 => 0.037942812711994
320 => 0.037946671382218
321 => 0.037805530813695
322 => 0.037747779133971
323 => 0.037892597922402
324 => 0.037971156174348
325 => 0.038439473580909
326 => 0.038941996816737
327 => 0.041287053490284
328 => 0.040628570960248
329 => 0.042709244749064
330 => 0.04435478757434
331 => 0.044848213916774
401 => 0.044394284899238
402 => 0.042841418251013
403 => 0.04276522720491
404 => 0.045085865580746
405 => 0.044430178947601
406 => 0.044352187108966
407 => 0.043522485715181
408 => 0.044012941999425
409 => 0.043905672015501
410 => 0.04373634109805
411 => 0.044672097522907
412 => 0.046423750014686
413 => 0.046150738546949
414 => 0.045946948150921
415 => 0.045053997958019
416 => 0.045591753421792
417 => 0.04540026900117
418 => 0.046223007591179
419 => 0.045735635476349
420 => 0.044425211476469
421 => 0.044633900817664
422 => 0.044602357843567
423 => 0.045251510015322
424 => 0.045056650646309
425 => 0.044564308424386
426 => 0.046417763056898
427 => 0.046297410022519
428 => 0.046468043108734
429 => 0.04654316107029
430 => 0.047671326243565
501 => 0.048133499417797
502 => 0.048238420819828
503 => 0.048677449589593
504 => 0.048227497384091
505 => 0.050027627016585
506 => 0.051224608181717
507 => 0.052614963401106
508 => 0.054646646068885
509 => 0.055410577546086
510 => 0.055272580162415
511 => 0.056812978773852
512 => 0.059581040837466
513 => 0.055832084647395
514 => 0.059779744618716
515 => 0.058529961049722
516 => 0.055566746690283
517 => 0.055375950619537
518 => 0.057382673787376
519 => 0.061833392633694
520 => 0.060718538042327
521 => 0.06183521613642
522 => 0.060532551823811
523 => 0.060467863560973
524 => 0.061771948638358
525 => 0.064819014503644
526 => 0.063371467728602
527 => 0.061296054473549
528 => 0.062828507324074
529 => 0.061500954843133
530 => 0.058509607545031
531 => 0.060717685534031
601 => 0.059241206665228
602 => 0.059672121693078
603 => 0.062775460665647
604 => 0.062402058710051
605 => 0.062885275416682
606 => 0.062032410577461
607 => 0.061235700333188
608 => 0.059748581497772
609 => 0.059308318924678
610 => 0.059429991660893
611 => 0.059308258629713
612 => 0.058476229308625
613 => 0.058296552655955
614 => 0.057997083696356
615 => 0.058089901649132
616 => 0.057526812392352
617 => 0.058589478160074
618 => 0.058786718290742
619 => 0.059560037817519
620 => 0.059640326416178
621 => 0.061794010290739
622 => 0.060607797403818
623 => 0.061403611421058
624 => 0.061332426324864
625 => 0.055630968530704
626 => 0.056416579110351
627 => 0.057638742634101
628 => 0.057088159623255
629 => 0.056309764062502
630 => 0.055681167912264
701 => 0.054728780467397
702 => 0.056069247507066
703 => 0.057831819121454
704 => 0.059685028141005
705 => 0.061911537350931
706 => 0.0614146064147
707 => 0.059643405100053
708 => 0.059722859897165
709 => 0.060214018188599
710 => 0.059577923574755
711 => 0.059390326855091
712 => 0.060188245280061
713 => 0.060193740105725
714 => 0.059461836377896
715 => 0.058648459321382
716 => 0.058645051241816
717 => 0.0585003186509
718 => 0.06055829943021
719 => 0.061689980773504
720 => 0.061819726215717
721 => 0.061681247871486
722 => 0.061734542690172
723 => 0.061076042251405
724 => 0.062581178982186
725 => 0.063962441288946
726 => 0.063592233484369
727 => 0.063037239357168
728 => 0.062595159802714
729 => 0.06348809359083
730 => 0.063448332654853
731 => 0.063950377167683
801 => 0.063927601528631
802 => 0.063758782841816
803 => 0.063592239513416
804 => 0.064252564985318
805 => 0.064062401853913
806 => 0.06387194334664
807 => 0.063489949652566
808 => 0.063541868939834
809 => 0.062986970640194
810 => 0.062730249296362
811 => 0.058869776245761
812 => 0.057838131702045
813 => 0.058162708076559
814 => 0.058269567046671
815 => 0.057820594019157
816 => 0.058464306008904
817 => 0.058363984177162
818 => 0.058754277738163
819 => 0.058510439265826
820 => 0.058520446481785
821 => 0.059237523437084
822 => 0.059445693927871
823 => 0.059339816736115
824 => 0.059413969491963
825 => 0.061122788452562
826 => 0.06087984904132
827 => 0.060750792321059
828 => 0.06078654191456
829 => 0.061223181796485
830 => 0.06134541712377
831 => 0.060827497452739
901 => 0.061071751363655
902 => 0.062111753515901
903 => 0.062475695410163
904 => 0.063637223234628
905 => 0.063143785570284
906 => 0.064049511758669
907 => 0.06683340527695
908 => 0.069057372050132
909 => 0.0670121202962
910 => 0.071096152054689
911 => 0.074276156598233
912 => 0.074154102727277
913 => 0.07359959538028
914 => 0.06997924475225
915 => 0.066647744127949
916 => 0.069434685863165
917 => 0.069441790350788
918 => 0.069202389584116
919 => 0.067715491983072
920 => 0.069150648770638
921 => 0.069264566304711
922 => 0.069200802778747
923 => 0.068060801874242
924 => 0.066320231200448
925 => 0.06666033454377
926 => 0.067217430758051
927 => 0.066162731401972
928 => 0.065825691051216
929 => 0.066452313187821
930 => 0.068471420273866
1001 => 0.06808971977514
1002 => 0.068079752032545
1003 => 0.069712828632296
1004 => 0.068543898226863
1005 => 0.066664624336091
1006 => 0.066190082894094
1007 => 0.064505780464423
1008 => 0.065669134151876
1009 => 0.065711001180009
1010 => 0.065073844254577
1011 => 0.066716326109017
1012 => 0.066701190349576
1013 => 0.068260482419205
1014 => 0.07124126321298
1015 => 0.070359699656946
1016 => 0.069334537155121
1017 => 0.069446000743742
1018 => 0.070668481195338
1019 => 0.069929341607789
1020 => 0.070195141356936
1021 => 0.070668078875584
1022 => 0.070953413822962
1023 => 0.06940494543587
1024 => 0.069043923383034
1025 => 0.068305398964453
1026 => 0.068112731728857
1027 => 0.068714244457973
1028 => 0.068555767105609
1029 => 0.065707482418411
1030 => 0.065409820820893
1031 => 0.065418949677126
1101 => 0.064670465437128
1102 => 0.06352884731433
1103 => 0.066528951578566
1104 => 0.066288001219716
1105 => 0.066022010671621
1106 => 0.066054592996042
1107 => 0.067356836574179
1108 => 0.066601469533982
1109 => 0.068609736612568
1110 => 0.068196897275245
1111 => 0.067773470166705
1112 => 0.0677149396424
1113 => 0.067551956330715
1114 => 0.06699302591153
1115 => 0.066318083843852
1116 => 0.065872428628291
1117 => 0.060763833406195
1118 => 0.061711958964085
1119 => 0.062802690994073
1120 => 0.063179207319991
1121 => 0.062535150090372
1122 => 0.06701845721653
1123 => 0.067837600630701
1124 => 0.065356361797773
1125 => 0.064892223320446
1126 => 0.067048886057833
1127 => 0.065748154785892
1128 => 0.066333873998002
1129 => 0.065067869432699
1130 => 0.067640292969547
1201 => 0.067620695412184
1202 => 0.06661996455553
1203 => 0.067465775422865
1204 => 0.067318794970282
1205 => 0.066188972297811
1206 => 0.067676110363492
1207 => 0.067676847965419
1208 => 0.066713666273654
1209 => 0.065588880925258
1210 => 0.065387795871209
1211 => 0.065236305294959
1212 => 0.066296616602786
1213 => 0.067247288405876
1214 => 0.0690162529399
1215 => 0.069461012653314
1216 => 0.071196939424101
1217 => 0.070163279552838
1218 => 0.070621487585633
1219 => 0.071118937222715
1220 => 0.071357432871837
1221 => 0.070968817009975
1222 => 0.073665425820972
1223 => 0.073893102226579
1224 => 0.073969440155986
1225 => 0.073060158837216
1226 => 0.073867813468226
1227 => 0.073489938613086
1228 => 0.074473064009501
1229 => 0.074627230624834
1230 => 0.074496656986284
1231 => 0.074545591903345
]
'min_raw' => 0.033428705717618
'max_raw' => 0.074627230624834
'avg_raw' => 0.054027968171226
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.033428'
'max' => '$0.074627'
'avg' => '$0.054027'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0051546385953023
'max_diff' => -0.0071214124138368
'year' => 2031
]
6 => [
'items' => [
101 => 0.072244511997551
102 => 0.072125188865272
103 => 0.070498209489866
104 => 0.071161215611368
105 => 0.06992175744593
106 => 0.070314802398024
107 => 0.070488052867838
108 => 0.070397556654285
109 => 0.071198700982712
110 => 0.070517564640576
111 => 0.068719933844496
112 => 0.066921813285108
113 => 0.066899239346202
114 => 0.066425825942379
115 => 0.066083634761405
116 => 0.066149552922745
117 => 0.066381857121148
118 => 0.066070132819088
119 => 0.066136655003756
120 => 0.067241366504238
121 => 0.067462908517218
122 => 0.06671002219506
123 => 0.06368707497062
124 => 0.062945236139253
125 => 0.063478455179936
126 => 0.063223610822194
127 => 0.05102638833402
128 => 0.053891944833658
129 => 0.052189328466677
130 => 0.052973972422194
131 => 0.051236042001877
201 => 0.05206547349119
202 => 0.051912307781102
203 => 0.056520037834539
204 => 0.05644809446748
205 => 0.056482529950133
206 => 0.054838834641939
207 => 0.057457285899083
208 => 0.058747229144813
209 => 0.058508494980756
210 => 0.058568579226524
211 => 0.057536132815609
212 => 0.056492526288207
213 => 0.055335006039425
214 => 0.057485535587835
215 => 0.057246433412815
216 => 0.057794847776063
217 => 0.059189619911234
218 => 0.059395005406362
219 => 0.059671045594628
220 => 0.059572104837013
221 => 0.061929275088873
222 => 0.061643806218263
223 => 0.062331704061435
224 => 0.060916646007096
225 => 0.059315373500067
226 => 0.059619723054111
227 => 0.059590411744632
228 => 0.05921724513301
229 => 0.058880367001444
301 => 0.058319559827212
302 => 0.060094036710328
303 => 0.060021996189449
304 => 0.061188248484538
305 => 0.060982102063011
306 => 0.059605405807464
307 => 0.059654574783558
308 => 0.059985259777593
309 => 0.061129764317643
310 => 0.061469531188941
311 => 0.061312137636787
312 => 0.061684676500218
313 => 0.061979116028241
314 => 0.061721653571667
315 => 0.065366779016486
316 => 0.063853068794538
317 => 0.064590840624387
318 => 0.064766794858603
319 => 0.064316091787579
320 => 0.064413833145217
321 => 0.064561884669113
322 => 0.065460824530747
323 => 0.06781990283802
324 => 0.068864722561522
325 => 0.072008114250176
326 => 0.068777964828078
327 => 0.068586301129058
328 => 0.06915252089352
329 => 0.070998024576562
330 => 0.072493631972321
331 => 0.072989811229155
401 => 0.073055389508972
402 => 0.073986254780165
403 => 0.074519809394004
404 => 0.073873223252055
405 => 0.073325309197145
406 => 0.071362749062051
407 => 0.071589920741562
408 => 0.073154908338077
409 => 0.075365545495464
410 => 0.077262502154098
411 => 0.076598254047858
412 => 0.081665998212381
413 => 0.082168444346415
414 => 0.08209902253672
415 => 0.083243669604059
416 => 0.080971778278712
417 => 0.080000500721305
418 => 0.073443774434905
419 => 0.075285947075994
420 => 0.077963653196822
421 => 0.077609248750848
422 => 0.075664626990613
423 => 0.077261026984114
424 => 0.076733207222219
425 => 0.076316893876751
426 => 0.078224106018655
427 => 0.076127047924674
428 => 0.077942733438169
429 => 0.075614097986251
430 => 0.076601288277256
501 => 0.076040911323059
502 => 0.076403543889641
503 => 0.074283601315207
504 => 0.075427470869674
505 => 0.074236012581047
506 => 0.074235447674686
507 => 0.074209146166928
508 => 0.075610891559763
509 => 0.075656602426699
510 => 0.074620710463474
511 => 0.074471422247899
512 => 0.075023419026
513 => 0.074377175367029
514 => 0.074679548707652
515 => 0.074386333947484
516 => 0.074320325128923
517 => 0.073794355632149
518 => 0.073567753511107
519 => 0.073656610041585
520 => 0.073353296894382
521 => 0.073170539751876
522 => 0.074172791171353
523 => 0.073637328668633
524 => 0.074090723863197
525 => 0.073574022815956
526 => 0.071782911870288
527 => 0.07075282502478
528 => 0.067369582484486
529 => 0.068329065872014
530 => 0.068965204350603
531 => 0.068754960587224
601 => 0.069206645544497
602 => 0.069234375332441
603 => 0.069087527948448
604 => 0.068917497490099
605 => 0.068834736066249
606 => 0.069451571914464
607 => 0.069809665886093
608 => 0.069029049357364
609 => 0.068846161826669
610 => 0.069635408236233
611 => 0.070116848090135
612 => 0.07367152947366
613 => 0.073408187195299
614 => 0.074069124635673
615 => 0.073994713222799
616 => 0.074687480955902
617 => 0.075819863414038
618 => 0.073517413257533
619 => 0.073917038991966
620 => 0.073819059990589
621 => 0.074888769036151
622 => 0.074892108551028
623 => 0.074250764542284
624 => 0.074598447534043
625 => 0.074404380426227
626 => 0.074755085919792
627 => 0.073404670098619
628 => 0.075049330800428
629 => 0.075981747438759
630 => 0.075994694044687
701 => 0.07643665213114
702 => 0.076885707143462
703 => 0.077747629135166
704 => 0.076861668606923
705 => 0.075267911863132
706 => 0.075382975952231
707 => 0.074448556956479
708 => 0.074464264708614
709 => 0.074380415496678
710 => 0.074632053293573
711 => 0.073459890444217
712 => 0.073734994722075
713 => 0.073349847122065
714 => 0.073916201756302
715 => 0.073306897791638
716 => 0.073819012742148
717 => 0.074040024577909
718 => 0.07485556300991
719 => 0.073186442102137
720 => 0.069782991581637
721 => 0.070498438143895
722 => 0.0694402364812
723 => 0.069538177073941
724 => 0.069736032658406
725 => 0.069094717974836
726 => 0.069217060606313
727 => 0.069212689666604
728 => 0.069175023269572
729 => 0.069008192551627
730 => 0.068766255004155
731 => 0.069730059728832
801 => 0.069893828932522
802 => 0.070257867585613
803 => 0.071340999687436
804 => 0.07123276924845
805 => 0.071409297584874
806 => 0.071023937217625
807 => 0.069556052836137
808 => 0.069635766020257
809 => 0.068641741336968
810 => 0.070232448139589
811 => 0.069855747772425
812 => 0.069612886595133
813 => 0.069546619672816
814 => 0.070632436649617
815 => 0.070957330107172
816 => 0.070754878307213
817 => 0.070339643759034
818 => 0.071137016844612
819 => 0.071350360243843
820 => 0.071398119963129
821 => 0.072810912189648
822 => 0.071477079354427
823 => 0.071798146175023
824 => 0.074303017856746
825 => 0.072031444890087
826 => 0.073234747752649
827 => 0.073175852339212
828 => 0.07379142136615
829 => 0.07312535771189
830 => 0.073133614369154
831 => 0.073680197962817
901 => 0.072912619882388
902 => 0.072722556755199
903 => 0.072459985906246
904 => 0.073033299748974
905 => 0.073376975468935
906 => 0.076146749369816
907 => 0.077936149626821
908 => 0.077858467042457
909 => 0.078568340447839
910 => 0.078248535977019
911 => 0.077215802980585
912 => 0.078978552277127
913 => 0.078420744643138
914 => 0.078466729626747
915 => 0.078465018063361
916 => 0.078835911375574
917 => 0.078573099471998
918 => 0.078055070232962
919 => 0.078398962217246
920 => 0.079420198466938
921 => 0.082590147121334
922 => 0.084364092384568
923 => 0.082483353389056
924 => 0.083780661964062
925 => 0.083002739097368
926 => 0.082861367371289
927 => 0.083676173026743
928 => 0.084492404891635
929 => 0.084440414450508
930 => 0.083847872030567
1001 => 0.08351315985275
1002 => 0.08604771259999
1003 => 0.087915127889176
1004 => 0.087787782685765
1005 => 0.088349842998745
1006 => 0.090000069461525
1007 => 0.090150945487971
1008 => 0.090131938576484
1009 => 0.089757976602654
1010 => 0.091382838864247
1011 => 0.092738327549599
1012 => 0.089671415210513
1013 => 0.090839255280406
1014 => 0.091363536313239
1015 => 0.092133336416609
1016 => 0.093432118224474
1017 => 0.094842939752675
1018 => 0.095042445385633
1019 => 0.094900886591826
1020 => 0.093970411869059
1021 => 0.095514149619818
1022 => 0.096418434989108
1023 => 0.096956916232317
1024 => 0.09832241507036
1025 => 0.091366774094411
1026 => 0.086443225693846
1027 => 0.085674342514198
1028 => 0.087237896694851
1029 => 0.087650193463179
1030 => 0.087483997152842
1031 => 0.08194209579857
1101 => 0.08564516555049
1102 => 0.089629357240608
1103 => 0.089782406269556
1104 => 0.091776975935149
1105 => 0.092426489578439
1106 => 0.094032379593463
1107 => 0.093931930735786
1108 => 0.094322939399154
1109 => 0.094233053278772
1110 => 0.097207626371565
1111 => 0.1004890222213
1112 => 0.10037539791722
1113 => 0.099903658440107
1114 => 0.10060427200715
1115 => 0.10399102417982
1116 => 0.10367922631136
1117 => 0.10398211138169
1118 => 0.10797528306226
1119 => 0.11316697426905
1120 => 0.11075491246622
1121 => 0.11598839252627
1122 => 0.11928259080921
1123 => 0.1249795661131
1124 => 0.12426627674686
1125 => 0.12648406742633
1126 => 0.1229893399133
1127 => 0.11496473914244
1128 => 0.11369481535351
1129 => 0.11623723493854
1130 => 0.12248752540264
1201 => 0.11604039104893
1202 => 0.11734463793192
1203 => 0.11696901474188
1204 => 0.11694899937837
1205 => 0.11771290439486
1206 => 0.11660482032584
1207 => 0.11209028648812
1208 => 0.11415927074163
1209 => 0.11336033656056
1210 => 0.11424681359895
1211 => 0.11903076456415
1212 => 0.11691566580729
1213 => 0.1146875810836
1214 => 0.11748209377868
1215 => 0.12104046873827
1216 => 0.12081779202831
1217 => 0.12038570613935
1218 => 0.12282135167214
1219 => 0.12684432451511
1220 => 0.12793171790895
1221 => 0.12873440948151
1222 => 0.12884508708778
1223 => 0.12998513521811
1224 => 0.1238548090922
1225 => 0.13358379409196
1226 => 0.13526372104363
1227 => 0.13494796440256
1228 => 0.13681513250721
1229 => 0.13626576428533
1230 => 0.13546981592508
1231 => 0.13842967452899
]
'min_raw' => 0.05102638833402
'max_raw' => 0.13842967452899
'avg_raw' => 0.094728031431506
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.051026'
'max' => '$0.138429'
'avg' => '$0.094728'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.017597682616402
'max_diff' => 0.063802443904158
'year' => 2032
]
7 => [
'items' => [
101 => 0.13503643548788
102 => 0.13022015986593
103 => 0.12757785580459
104 => 0.13105745494114
105 => 0.13318232471256
106 => 0.13458672846437
107 => 0.1350117001911
108 => 0.12433068885855
109 => 0.11857421614636
110 => 0.12226404915678
111 => 0.12676590008817
112 => 0.12382980108297
113 => 0.12394489060521
114 => 0.11975878501704
115 => 0.12713627754636
116 => 0.12606143893932
117 => 0.13163770353402
118 => 0.13030688323617
119 => 0.13485411054381
120 => 0.13365667319953
121 => 0.13862716866782
122 => 0.14061003388091
123 => 0.14393957318203
124 => 0.14638879584559
125 => 0.1478270262398
126 => 0.1477406802816
127 => 0.15343966562699
128 => 0.15007917307619
129 => 0.14585760242511
130 => 0.14578124753092
131 => 0.14796765879123
201 => 0.15254977698021
202 => 0.15373785355951
203 => 0.15440182628695
204 => 0.15338492894182
205 => 0.1497373551266
206 => 0.14816235124681
207 => 0.14950430018465
208 => 0.14786321194866
209 => 0.15069619065201
210 => 0.15458647550331
211 => 0.15378314706537
212 => 0.15646855359167
213 => 0.15924766683338
214 => 0.16322192358682
215 => 0.16426094146847
216 => 0.16597839851653
217 => 0.16774622597423
218 => 0.16831400450936
219 => 0.16939806990425
220 => 0.16939235634451
221 => 0.17265926037803
222 => 0.1762627566946
223 => 0.17762299313298
224 => 0.18075078181914
225 => 0.17539455330487
226 => 0.17945731416087
227 => 0.18312202615047
228 => 0.17875280543812
301 => 0.18477475829224
302 => 0.18500857707552
303 => 0.18853896310071
304 => 0.18496024052406
305 => 0.18283520648173
306 => 0.18897010013794
307 => 0.19193858193084
308 => 0.19104445105651
309 => 0.18424007095419
310 => 0.18027962988105
311 => 0.16991439168061
312 => 0.182192464074
313 => 0.18817275498054
314 => 0.18422458344548
315 => 0.18621581151634
316 => 0.1970793062131
317 => 0.20121542163443
318 => 0.20035513854042
319 => 0.20050051222184
320 => 0.20273228502739
321 => 0.21262919470691
322 => 0.20669873701837
323 => 0.21123234971125
324 => 0.21363696153639
325 => 0.21587049901006
326 => 0.2103856368915
327 => 0.20324991186388
328 => 0.20098972821027
329 => 0.18383201559627
330 => 0.18293888214254
331 => 0.18243753927025
401 => 0.17927664337682
402 => 0.17679304504683
403 => 0.17481799544473
404 => 0.16963487548908
405 => 0.17138402632203
406 => 0.16312321491393
407 => 0.16840818930765
408 => 0.15522373483606
409 => 0.16620414029818
410 => 0.16022800482293
411 => 0.16424081906691
412 => 0.16422681873604
413 => 0.15683795544895
414 => 0.1525762133066
415 => 0.15529196126919
416 => 0.15820345866143
417 => 0.15867583931787
418 => 0.16245067168477
419 => 0.16350414625862
420 => 0.16031206911782
421 => 0.15495051632239
422 => 0.15619588275277
423 => 0.15255097599563
424 => 0.14616341710306
425 => 0.15075107341579
426 => 0.15231750098596
427 => 0.15300932463836
428 => 0.14672789408361
429 => 0.14475413222682
430 => 0.14370331797573
501 => 0.1541396625166
502 => 0.15471138902926
503 => 0.15178635535649
504 => 0.16500778492051
505 => 0.16201536821295
506 => 0.16535863083518
507 => 0.15608287880253
508 => 0.15643722502163
509 => 0.15204593535885
510 => 0.15450476414393
511 => 0.15276694321039
512 => 0.15430611507671
513 => 0.15522868834714
514 => 0.1596192574425
515 => 0.16625427354458
516 => 0.15896345283223
517 => 0.15578673784138
518 => 0.15775755395518
519 => 0.16300609697734
520 => 0.17095790832388
521 => 0.16625027596161
522 => 0.1683394432632
523 => 0.16879583337802
524 => 0.1653245995601
525 => 0.17108589766606
526 => 0.17417342412575
527 => 0.17734058739981
528 => 0.18009054652877
529 => 0.17607555274073
530 => 0.18037217162069
531 => 0.17690985525878
601 => 0.17380379955446
602 => 0.17380851015884
603 => 0.17186003604329
604 => 0.16808462192086
605 => 0.16738837763145
606 => 0.17101032835096
607 => 0.17391478982801
608 => 0.17415401518669
609 => 0.175762074297
610 => 0.17671370711416
611 => 0.18604100240437
612 => 0.18979251772952
613 => 0.19437979965657
614 => 0.1961668044922
615 => 0.20154504837076
616 => 0.19720167963921
617 => 0.19626196449307
618 => 0.18321610405387
619 => 0.18535236296995
620 => 0.18877271961291
621 => 0.18327250447512
622 => 0.18676112500504
623 => 0.18744985259673
624 => 0.18308560926942
625 => 0.18541674019836
626 => 0.17922594758324
627 => 0.16638921590611
628 => 0.17110018861799
629 => 0.17456905023021
630 => 0.16961855700202
701 => 0.178492124503
702 => 0.17330836955654
703 => 0.17166536810264
704 => 0.16525543365864
705 => 0.1682806759752
706 => 0.17237235952565
707 => 0.16984417480074
708 => 0.17509053771378
709 => 0.18252078675252
710 => 0.18781602469651
711 => 0.18822252731461
712 => 0.18481804407002
713 => 0.1902737501966
714 => 0.19031348905961
715 => 0.18415943026161
716 => 0.18039010351377
717 => 0.17953370454593
718 => 0.1816731570745
719 => 0.18427084740891
720 => 0.18836668104917
721 => 0.19084170753671
722 => 0.19729526396361
723 => 0.19904141129477
724 => 0.20095989781291
725 => 0.20352358744049
726 => 0.20660195415493
727 => 0.19986666303526
728 => 0.20013426870759
729 => 0.19386245887341
730 => 0.18716013059708
731 => 0.1922463623018
801 => 0.19889593366268
802 => 0.19737051464537
803 => 0.19719887384444
804 => 0.19748752606242
805 => 0.19633740993889
806 => 0.19113547733749
807 => 0.18852309935089
808 => 0.19189373344231
809 => 0.19368507545224
810 => 0.19646329068819
811 => 0.19612081701935
812 => 0.20327720110864
813 => 0.20605795556791
814 => 0.20534651958204
815 => 0.2054774409251
816 => 0.21051186404748
817 => 0.21611117796764
818 => 0.22135567434842
819 => 0.22669060132331
820 => 0.22025913862933
821 => 0.21699363851081
822 => 0.22036280108883
823 => 0.21857507600053
824 => 0.22884787463158
825 => 0.22955914092022
826 => 0.239831196711
827 => 0.24958060083009
828 => 0.24345717478161
829 => 0.24923128974016
830 => 0.25547646583834
831 => 0.26752442377504
901 => 0.26346709539423
902 => 0.26035924544097
903 => 0.25742234225217
904 => 0.26353357156782
905 => 0.27139557045314
906 => 0.27308896971175
907 => 0.275832923439
908 => 0.27294799160949
909 => 0.27642257423332
910 => 0.28868937770438
911 => 0.28537477912443
912 => 0.28066751629259
913 => 0.29035097951666
914 => 0.29385538721394
915 => 0.31845115570603
916 => 0.34950432942781
917 => 0.33664811160086
918 => 0.32866784232812
919 => 0.33054339490173
920 => 0.34188296272866
921 => 0.34552487201477
922 => 0.33562490713369
923 => 0.33912174209488
924 => 0.35838964653225
925 => 0.36872625907452
926 => 0.35468775084984
927 => 0.31595606343329
928 => 0.28024367877786
929 => 0.28971621133812
930 => 0.28864232011269
1001 => 0.30934327971062
1002 => 0.28529572704451
1003 => 0.28570062615802
1004 => 0.30682965967773
1005 => 0.30119279577801
1006 => 0.29206179817544
1007 => 0.28031034516532
1008 => 0.25858669739828
1009 => 0.23934545676228
1010 => 0.27708196064256
1011 => 0.27545469397586
1012 => 0.27309817069507
1013 => 0.27834235825401
1014 => 0.30380664445161
1015 => 0.3032196102349
1016 => 0.29948519805571
1017 => 0.30231771678003
1018 => 0.29156524394804
1019 => 0.2943364010261
1020 => 0.28023802175367
1021 => 0.28661107798513
1022 => 0.29204220715553
1023 => 0.29313258674572
1024 => 0.2955892676386
1025 => 0.27459719838608
1026 => 0.28402202118569
1027 => 0.28955822159399
1028 => 0.2645454667406
1029 => 0.28906379985267
1030 => 0.27423177316353
1031 => 0.26919756053567
1101 => 0.275975464632
1102 => 0.27333410881393
1103 => 0.27106322618718
1104 => 0.26979603466273
1105 => 0.2747729793811
1106 => 0.27454079896125
1107 => 0.26639755141866
1108 => 0.25577501696057
1109 => 0.25934028819751
1110 => 0.25804499173254
1111 => 0.25335067024689
1112 => 0.25651407613368
1113 => 0.24258403757135
1114 => 0.21861813024527
1115 => 0.23445074272048
1116 => 0.23384120436275
1117 => 0.23353384748242
1118 => 0.24543161817627
1119 => 0.24428792205233
1120 => 0.24221210238827
1121 => 0.25331254619088
1122 => 0.24926073488089
1123 => 0.26174746261148
1124 => 0.26997202908576
1125 => 0.26788601299103
1126 => 0.27562125751287
1127 => 0.25942242484598
1128 => 0.26480302727356
1129 => 0.26591196197669
1130 => 0.25317556843744
1201 => 0.24447504488253
1202 => 0.24389481915465
1203 => 0.22880931031644
1204 => 0.23686786737184
1205 => 0.24395906409484
1206 => 0.24056293116362
1207 => 0.23948781693418
1208 => 0.24498034236856
1209 => 0.24540715863511
1210 => 0.2356757025258
1211 => 0.23769918040606
1212 => 0.24613741954196
1213 => 0.23748655843013
1214 => 0.22067934839998
1215 => 0.21651092793465
1216 => 0.21595478380534
1217 => 0.20464969690175
1218 => 0.21678948172222
1219 => 0.21149014032208
1220 => 0.22823069630926
1221 => 0.21866858051079
1222 => 0.21825637681027
1223 => 0.21763327045981
1224 => 0.20790251515464
1225 => 0.21003293214471
1226 => 0.21711476269138
1227 => 0.21964163961296
1228 => 0.21937806564795
1229 => 0.21708005785822
1230 => 0.21813207405665
1231 => 0.21474316333476
]
'min_raw' => 0.11857421614636
'max_raw' => 0.36872625907452
'avg_raw' => 0.24365023761044
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.118574'
'max' => '$0.368726'
'avg' => '$0.24365'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.067547827812337
'max_diff' => 0.23029658454552
'year' => 2033
]
8 => [
'items' => [
101 => 0.21354646842478
102 => 0.20976937011202
103 => 0.20421807904231
104 => 0.2049900201136
105 => 0.19399145993017
106 => 0.18799886060447
107 => 0.18634018809231
108 => 0.18412214188834
109 => 0.18659072231304
110 => 0.19396030239107
111 => 0.18507102527333
112 => 0.16983098316527
113 => 0.17074693566373
114 => 0.17280480897904
115 => 0.16896997567016
116 => 0.16534062777646
117 => 0.16849605131173
118 => 0.16203864456462
119 => 0.1735851557338
120 => 0.1732728549654
121 => 0.17757668029781
122 => 0.18026795060156
123 => 0.17406544386053
124 => 0.17250553018853
125 => 0.17339412791023
126 => 0.15870758694645
127 => 0.17637647657315
128 => 0.17652927786436
129 => 0.17522090044068
130 => 0.18462903870113
131 => 0.2044831449026
201 => 0.19701323152004
202 => 0.19412065527898
203 => 0.18862186573027
204 => 0.19594867631811
205 => 0.19538609158101
206 => 0.19284187004594
207 => 0.19130311692307
208 => 0.1941383167327
209 => 0.19095180429089
210 => 0.19037941909684
211 => 0.1869113875821
212 => 0.18567345811672
213 => 0.18475694442394
214 => 0.18374795290297
215 => 0.18597353677321
216 => 0.18093007092331
217 => 0.17484814552537
218 => 0.17434249923588
219 => 0.17573863309805
220 => 0.17512094779398
221 => 0.17433954199628
222 => 0.17284762552527
223 => 0.17240500577808
224 => 0.17384330522789
225 => 0.17221954900712
226 => 0.17461548976145
227 => 0.17396392644972
228 => 0.17032434675573
301 => 0.16578808291204
302 => 0.1657477006487
303 => 0.16477037004454
304 => 0.1635255925775
305 => 0.16317932396282
306 => 0.16823031034278
307 => 0.178685700986
308 => 0.17663305762644
309 => 0.17811630281707
310 => 0.18541240113326
311 => 0.18773161138665
312 => 0.1860854908823
313 => 0.18383217960766
314 => 0.183931313868
315 => 0.19163156061716
316 => 0.19211181556159
317 => 0.19332526487005
318 => 0.19488489015215
319 => 0.18635110181185
320 => 0.1835293732046
321 => 0.18219228164694
322 => 0.1780745571689
323 => 0.18251516999145
324 => 0.17992781506575
325 => 0.18027693764185
326 => 0.18004957110616
327 => 0.18017372860911
328 => 0.17358192824861
329 => 0.17598363384515
330 => 0.17199033247245
331 => 0.16664375020351
401 => 0.16662582658499
402 => 0.16793439502082
403 => 0.1671560073109
404 => 0.16506138599769
405 => 0.1653589170689
406 => 0.16275223180822
407 => 0.16567541585511
408 => 0.16575924231392
409 => 0.16463365722895
410 => 0.16913722557485
411 => 0.17098234120072
412 => 0.17024145698543
413 => 0.17093035878913
414 => 0.17671835422516
415 => 0.17766205002918
416 => 0.17808117736827
417 => 0.17751960225761
418 => 0.17103615272053
419 => 0.17132372127726
420 => 0.16921373401274
421 => 0.1674310171192
422 => 0.16750231644582
423 => 0.16841886466607
424 => 0.17242148449876
425 => 0.18084476196933
426 => 0.181164419192
427 => 0.18155185307094
428 => 0.17997596477663
429 => 0.17950066178785
430 => 0.18012770911616
501 => 0.18329104925922
502 => 0.19142801894563
503 => 0.18855187040852
504 => 0.18621351687793
505 => 0.18826488333984
506 => 0.18794909155217
507 => 0.18528349106262
508 => 0.18520867653493
509 => 0.18009253695145
510 => 0.1782012166363
511 => 0.17662068781809
512 => 0.17489479160935
513 => 0.17387162248425
514 => 0.17544367528246
515 => 0.17580322235739
516 => 0.17236590143932
517 => 0.17189740729953
518 => 0.17470439776095
519 => 0.17346914591403
520 => 0.17473963307136
521 => 0.17503439698989
522 => 0.17498693321002
523 => 0.17369718841407
524 => 0.17451923328626
525 => 0.17257485210014
526 => 0.17046062959685
527 => 0.16911188736046
528 => 0.16793493087452
529 => 0.16858797473803
530 => 0.16625999260571
531 => 0.16551522426855
601 => 0.17424074298016
602 => 0.18068637746756
603 => 0.18059265538936
604 => 0.18002214634169
605 => 0.17917448562038
606 => 0.1832290375977
607 => 0.18181651276213
608 => 0.18284424260041
609 => 0.18310584297794
610 => 0.18389762853172
611 => 0.18418062381093
612 => 0.1833252155243
613 => 0.18045436083505
614 => 0.17330046390211
615 => 0.16997030556826
616 => 0.16887129784991
617 => 0.16891124469316
618 => 0.16780933242579
619 => 0.16813389497277
620 => 0.16769646281725
621 => 0.16686807214091
622 => 0.16853682394811
623 => 0.1687291320484
624 => 0.16833962543649
625 => 0.16843136834394
626 => 0.16520641995785
627 => 0.16545160577942
628 => 0.16408637996819
629 => 0.16383041658662
630 => 0.16037924461962
701 => 0.15426499322471
702 => 0.15765288202224
703 => 0.15356078876408
704 => 0.15201105104189
705 => 0.15934726838509
706 => 0.15861091563883
707 => 0.15735059982207
708 => 0.15548633005626
709 => 0.15479485426567
710 => 0.15059366625667
711 => 0.15034543765663
712 => 0.15242765987551
713 => 0.15146678596639
714 => 0.15011735508657
715 => 0.14522985322951
716 => 0.13973468294592
717 => 0.13990054759537
718 => 0.1416484590213
719 => 0.14673074723018
720 => 0.14474500930249
721 => 0.14330433365224
722 => 0.1430345384095
723 => 0.146411590727
724 => 0.15119082727061
725 => 0.15343313812748
726 => 0.15121107616831
727 => 0.14865849103394
728 => 0.14881385506353
729 => 0.14984742234807
730 => 0.14995603565582
731 => 0.14829456514333
801 => 0.14876225936048
802 => 0.14805178907778
803 => 0.14369163426428
804 => 0.1436127728899
805 => 0.14254272058167
806 => 0.14251031982304
807 => 0.14068989390969
808 => 0.1404352037404
809 => 0.13682063759748
810 => 0.13919975597867
811 => 0.13760396827789
812 => 0.13519873980456
813 => 0.13478407750917
814 => 0.13477161225985
815 => 0.13724124410272
816 => 0.13917089689269
817 => 0.13763172768816
818 => 0.13728128869583
819 => 0.14102306031075
820 => 0.14054688576575
821 => 0.14013452168077
822 => 0.15076289905725
823 => 0.14234970902114
824 => 0.1386810779573
825 => 0.13414045036164
826 => 0.13561890160262
827 => 0.13593043300206
828 => 0.12501104214416
829 => 0.12058104663304
830 => 0.11906083911448
831 => 0.11818593819497
901 => 0.1185846415303
902 => 0.11459712598364
903 => 0.11727680237842
904 => 0.11382395097131
905 => 0.11324506919635
906 => 0.11941919523848
907 => 0.12027828880852
908 => 0.11661312873927
909 => 0.11896675483924
910 => 0.11811329729754
911 => 0.1138831401984
912 => 0.11372157931214
913 => 0.111599035177
914 => 0.10827766461103
915 => 0.10675970913812
916 => 0.10596914474833
917 => 0.10629534702335
918 => 0.10613040917115
919 => 0.10505407811725
920 => 0.10619210320725
921 => 0.10328491936674
922 => 0.10212725533668
923 => 0.10160436535191
924 => 0.099024072362201
925 => 0.10313046597032
926 => 0.10393947724211
927 => 0.10475008251601
928 => 0.11180584800163
929 => 0.11145336189736
930 => 0.11463966461231
1001 => 0.11451585074804
1002 => 0.11360706559906
1003 => 0.10977305054338
1004 => 0.11130122060983
1005 => 0.10659775067567
1006 => 0.11012191015521
1007 => 0.10851363094116
1008 => 0.10957814933516
1009 => 0.107664049279
1010 => 0.10872339128133
1011 => 0.10413132382699
1012 => 0.099843315850249
1013 => 0.10156893543484
1014 => 0.10344488127184
1015 => 0.10751240982854
1016 => 0.10508982337655
1017 => 0.10596107707282
1018 => 0.10304252303642
1019 => 0.097020712415568
1020 => 0.097054795209716
1021 => 0.096128470837974
1022 => 0.095327991335216
1023 => 0.10536808657284
1024 => 0.10411944201962
1025 => 0.10212989034263
1026 => 0.10479298432392
1027 => 0.10549714864156
1028 => 0.10551719520974
1029 => 0.10746011983409
1030 => 0.10849705905439
1031 => 0.10867982408632
1101 => 0.1117370579624
1102 => 0.11276180243177
1103 => 0.11698257987384
1104 => 0.10840908200624
1105 => 0.10823251645961
1106 => 0.10483045951756
1107 => 0.10267282122053
1108 => 0.1049781948577
1109 => 0.10702044118535
1110 => 0.1048939178037
1111 => 0.10517159686399
1112 => 0.10231691296746
1113 => 0.10333732813511
1114 => 0.10421624714225
1115 => 0.10373095972698
1116 => 0.10300446097814
1117 => 0.10685300027596
1118 => 0.10663585060623
1119 => 0.11021969887789
1120 => 0.1130135648891
1121 => 0.11802067224448
1122 => 0.11279549469273
1123 => 0.11260506845454
1124 => 0.11446651547814
1125 => 0.11276151745393
1126 => 0.1138390173507
1127 => 0.11784707035302
1128 => 0.11793175419715
1129 => 0.11651319069897
1130 => 0.11642687098119
1201 => 0.1166993216184
1202 => 0.11829507351038
1203 => 0.11773746876682
1204 => 0.11838274309289
1205 => 0.11918966851844
1206 => 0.12252745420778
1207 => 0.12333218303746
1208 => 0.1213771091854
1209 => 0.12155363046421
1210 => 0.12082237917556
1211 => 0.12011599959327
1212 => 0.12170383773579
1213 => 0.12460564315028
1214 => 0.1245875911694
1215 => 0.12526075362253
1216 => 0.12568012825405
1217 => 0.12387986533458
1218 => 0.12270796037151
1219 => 0.1231573433046
1220 => 0.1238759164009
1221 => 0.12292431973416
1222 => 0.11705062428455
1223 => 0.11883232827084
1224 => 0.11853576560665
1225 => 0.11811342430958
1226 => 0.11990494144531
1227 => 0.11973214524714
1228 => 0.11455622824825
1229 => 0.11488757366129
1230 => 0.11457637846026
1231 => 0.11558191381934
]
'min_raw' => 0.095327991335216
'max_raw' => 0.21354646842478
'avg_raw' => 0.15443722988
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.095327'
'max' => '$0.213546'
'avg' => '$0.154437'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.023246224811141
'max_diff' => -0.15517979064974
'year' => 2034
]
9 => [
'items' => [
101 => 0.11270721524465
102 => 0.11359145316484
103 => 0.11414603889916
104 => 0.1144726941572
105 => 0.11565279693887
106 => 0.11551432549814
107 => 0.11564418935969
108 => 0.11739397024932
109 => 0.12624376153676
110 => 0.12672543615057
111 => 0.12435349418795
112 => 0.12530103821753
113 => 0.12348196088583
114 => 0.12470311968536
115 => 0.12553860552192
116 => 0.12176320568117
117 => 0.12153965100475
118 => 0.11971306569382
119 => 0.12069456917683
120 => 0.11913292656276
121 => 0.11951609903632
122 => 0.11844471539589
123 => 0.1203729926383
124 => 0.12252910621932
125 => 0.12307382565739
126 => 0.12164090333229
127 => 0.12060337313474
128 => 0.11878181189153
129 => 0.12181110883512
130 => 0.12269696757758
131 => 0.12180645579627
201 => 0.12160010475847
202 => 0.12120906991472
203 => 0.12168306464912
204 => 0.12269214300062
205 => 0.1222162802848
206 => 0.12253059599223
207 => 0.12133274863649
208 => 0.12388046129651
209 => 0.12792684214108
210 => 0.12793985191714
211 => 0.12746398663624
212 => 0.12726927281596
213 => 0.12775753947208
214 => 0.12802240410328
215 => 0.12960136893638
216 => 0.13129566111102
217 => 0.13920218341251
218 => 0.13698206358872
219 => 0.14399720053572
220 => 0.14954526305927
221 => 0.15120888442271
222 => 0.14967843104777
223 => 0.1444428327256
224 => 0.14418594929417
225 => 0.1520101436001
226 => 0.14979945033787
227 => 0.1495364954087
228 => 0.14673909923165
301 => 0.14839270683654
302 => 0.14803103859639
303 => 0.1474601275859
304 => 0.15061509570473
305 => 0.15652091437723
306 => 0.15560043715271
307 => 0.15491334360431
308 => 0.15190269968515
309 => 0.15371577977615
310 => 0.153070176683
311 => 0.15584409728099
312 => 0.15420088816861
313 => 0.14978270216213
314 => 0.1504863128462
315 => 0.15037996350677
316 => 0.1525686253762
317 => 0.15191164340892
318 => 0.15025167723347
319 => 0.15650072893106
320 => 0.15609495027287
321 => 0.15667025163626
322 => 0.15692351708822
323 => 0.16072720473589
324 => 0.16228545386072
325 => 0.16263920369304
326 => 0.16411941984231
327 => 0.1626023745668
328 => 0.16867163730379
329 => 0.17270734287259
330 => 0.17739502256627
331 => 0.18424498252824
401 => 0.18682063083961
402 => 0.1863553630259
403 => 0.19154892449155
404 => 0.20088163899895
405 => 0.18824177146036
406 => 0.20155158267049
407 => 0.19733785011052
408 => 0.18734716601265
409 => 0.18670388373918
410 => 0.19346969100448
411 => 0.20847560033411
412 => 0.20471679024266
413 => 0.20848174840086
414 => 0.20408972472179
415 => 0.20387162372724
416 => 0.20826843761395
417 => 0.21854183291811
418 => 0.21366132790157
419 => 0.20666392721143
420 => 0.21183069898942
421 => 0.20735476311317
422 => 0.19726922684842
423 => 0.20471391595142
424 => 0.19973586436078
425 => 0.20118872446271
426 => 0.21165184847693
427 => 0.21039289771355
428 => 0.21202209657707
429 => 0.20914660322651
430 => 0.20646043901341
501 => 0.20144651403249
502 => 0.19996213802915
503 => 0.20037236615422
504 => 0.19996193474046
505 => 0.19715668979399
506 => 0.19655089741488
507 => 0.19554121690934
508 => 0.19585415911747
509 => 0.1939556643746
510 => 0.19753851620343
511 => 0.19820352507484
512 => 0.20081082585081
513 => 0.20108152446676
514 => 0.20834282001525
515 => 0.20434342044826
516 => 0.20702656296934
517 => 0.20678655744754
518 => 0.18756369443146
519 => 0.19021243535032
520 => 0.19433304499937
521 => 0.19247671593783
522 => 0.18985230095891
523 => 0.1877329451512
524 => 0.18452190438726
525 => 0.18904138259993
526 => 0.19498401585665
527 => 0.20123223945299
528 => 0.20873907070417
529 => 0.20706363335805
530 => 0.20109190446439
531 => 0.20135979186021
601 => 0.20301576633136
602 => 0.20087112893008
603 => 0.20023863349215
604 => 0.20292887117082
605 => 0.20294739735918
606 => 0.20047973284092
607 => 0.19773737530671
608 => 0.19772588472851
609 => 0.19723790869333
610 => 0.2041765345744
611 => 0.20799207723479
612 => 0.20842952305175
613 => 0.20796263364592
614 => 0.20814232084804
615 => 0.20592214064371
616 => 0.21099681421683
617 => 0.21565383652072
618 => 0.21440565506051
619 => 0.2125344536122
620 => 0.21104395152935
621 => 0.21405454013863
622 => 0.21392048336696
623 => 0.2156131614936
624 => 0.21553637183639
625 => 0.21496718784725
626 => 0.21440567538786
627 => 0.21663200881883
628 => 0.21599086054453
629 => 0.21534871638988
630 => 0.21406079798036
701 => 0.21423584748227
702 => 0.21236496912327
703 => 0.21149941518883
704 => 0.19848356076911
705 => 0.19500529916285
706 => 0.19609963107072
707 => 0.19645991354911
708 => 0.19494616964055
709 => 0.19711648955652
710 => 0.19677824749655
711 => 0.19809414948689
712 => 0.19727203105315
713 => 0.19730577108044
714 => 0.19972344609994
715 => 0.20042530744363
716 => 0.20006833509952
717 => 0.20031834629304
718 => 0.20607974872463
719 => 0.20526066153813
720 => 0.20482553779532
721 => 0.20494607004577
722 => 0.2064182318929
723 => 0.20683035683304
724 => 0.20508415450216
725 => 0.20590767361608
726 => 0.20941411348301
727 => 0.21064116898913
728 => 0.21455734114459
729 => 0.21289368160854
730 => 0.21594740068846
731 => 0.22533349205059
801 => 0.23283175129877
802 => 0.22593604221547
803 => 0.23970564042721
804 => 0.25042724776659
805 => 0.25001573461914
806 => 0.24814617438427
807 => 0.23593990947706
808 => 0.22470752252428
809 => 0.23410389116262
810 => 0.23412784443866
811 => 0.2333206880394
812 => 0.2283075089656
813 => 0.23314624027433
814 => 0.23353032119392
815 => 0.23331533801431
816 => 0.22947174537245
817 => 0.22360328982299
818 => 0.22474997199026
819 => 0.22662826077192
820 => 0.22307226825614
821 => 0.22193591318216
822 => 0.22404861346508
823 => 0.23085617397524
824 => 0.22956924409431
825 => 0.22953563715423
826 => 0.23504166892805
827 => 0.23110053845402
828 => 0.22476443532457
829 => 0.22316448572145
830 => 0.21748574248557
831 => 0.22140807066558
901 => 0.221549228274
902 => 0.21940100921503
903 => 0.22493875146169
904 => 0.22488772019199
905 => 0.23014498227104
906 => 0.24019489282872
907 => 0.23722263975075
908 => 0.23376623280129
909 => 0.23414204007247
910 => 0.23826371826588
911 => 0.23577165754138
912 => 0.23666781995318
913 => 0.23826236181674
914 => 0.23922438851328
915 => 0.23400361923558
916 => 0.23278640817869
917 => 0.23029642153932
918 => 0.22964683050291
919 => 0.2316748726654
920 => 0.23114055520737
921 => 0.2215373645236
922 => 0.22053377766549
923 => 0.22056455624164
924 => 0.21804098936899
925 => 0.21419194416274
926 => 0.2243070051502
927 => 0.22349462419272
928 => 0.22259781848896
929 => 0.22270767207057
930 => 0.227098277214
1001 => 0.22455150449993
1002 => 0.23132251716811
1003 => 0.22993060051881
1004 => 0.22850298645963
1005 => 0.22830564671046
1006 => 0.22775613709599
1007 => 0.22587166416443
1008 => 0.2235960498603
1009 => 0.22209349218638
1010 => 0.20486950672436
1011 => 0.2080661782388
1012 => 0.21174365743038
1013 => 0.21301310851074
1014 => 0.21084162459444
1015 => 0.22595740758479
1016 => 0.22871920679644
1017 => 0.22035353683666
1018 => 0.21878866155524
1019 => 0.22606000054772
1020 => 0.22167449425021
1021 => 0.22364928746745
1022 => 0.21938086468592
1023 => 0.22805397024127
1024 => 0.22798789570837
1025 => 0.22461386175636
1026 => 0.22746557214821
1027 => 0.22697001729048
1028 => 0.22316074126854
1029 => 0.22817473108565
1030 => 0.22817721796205
1031 => 0.22492978364106
1101 => 0.22113749130894
1102 => 0.2204595190099
1103 => 0.21994875795534
1104 => 0.22352367155825
1105 => 0.22672892791616
1106 => 0.23269311534778
1107 => 0.23419265377369
1108 => 0.24004545207993
1109 => 0.23656039565614
1110 => 0.23810527602977
1111 => 0.23978246221202
1112 => 0.24058656694427
1113 => 0.2392763214337
1114 => 0.2483681263112
1115 => 0.24913575320856
1116 => 0.2493931318673
1117 => 0.24632742641707
1118 => 0.24905049039417
1119 => 0.24777645893768
1120 => 0.25109113485132
1121 => 0.25161091835849
1122 => 0.25117068021975
1123 => 0.25133566770915
1124 => 0.2435774161505
1125 => 0.24317510987915
1126 => 0.23768963532289
1127 => 0.23992500675115
1128 => 0.23574608701016
1129 => 0.23707126550767
1130 => 0.23765539156261
1201 => 0.23735027726037
1202 => 0.24005139129777
1203 => 0.23775489256484
1204 => 0.23169405482928
1205 => 0.22563156582254
1206 => 0.22555545621146
1207 => 0.2239593098678
1208 => 0.22280558841012
1209 => 0.22302783609334
1210 => 0.22381106591721
1211 => 0.22276006566892
1212 => 0.22298434985896
1213 => 0.22670896181133
1214 => 0.22745590617566
1215 => 0.22491749737566
1216 => 0.21472541975303
1217 => 0.21222425833954
1218 => 0.21402204356337
1219 => 0.21316281801857
1220 => 0.17203903081682
1221 => 0.18170045462211
1222 => 0.17595996466796
1223 => 0.17860544654607
1224 => 0.17274589279555
1225 => 0.17554237897082
1226 => 0.17502597008557
1227 => 0.19056125366218
1228 => 0.19031869157721
1229 => 0.19043479321118
1230 => 0.18489295972047
1231 => 0.19372125094836
]
'min_raw' => 0.11270721524465
'max_raw' => 0.25161091835849
'avg_raw' => 0.18215906680157
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.1127072'
'max' => '$0.25161'
'avg' => '$0.182159'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.017379223909436
'max_diff' => 0.038064449933707
'year' => 2035
]
10 => [
'items' => [
101 => 0.1980703846623
102 => 0.19726547576029
103 => 0.19746805398985
104 => 0.19398708883234
105 => 0.19046849656292
106 => 0.18656583622867
107 => 0.19381649674631
108 => 0.19301034706965
109 => 0.19485936438441
110 => 0.19956193601802
111 => 0.2002544075544
112 => 0.20118509632165
113 => 0.20085151064953
114 => 0.20879887472605
115 => 0.20783639649799
116 => 0.21015569210373
117 => 0.20538472507733
118 => 0.19998592302261
119 => 0.20101205879307
120 => 0.20091323366672
121 => 0.19965507638197
122 => 0.19851926824132
123 => 0.19662846769909
124 => 0.20261124040053
125 => 0.20236835075468
126 => 0.20630045179271
127 => 0.20560541473984
128 => 0.20096378719641
129 => 0.20112956383217
130 => 0.20224449137725
131 => 0.20610326834079
201 => 0.20724881606913
202 => 0.20671815271918
203 => 0.20797419350707
204 => 0.20896691693291
205 => 0.20809886428512
206 => 0.22038865921685
207 => 0.21528507951968
208 => 0.21777252875361
209 => 0.21836577073899
210 => 0.21684619386796
211 => 0.21717573567932
212 => 0.21767490172876
213 => 0.22070574023423
214 => 0.22865953745279
215 => 0.23218222009756
216 => 0.24278038464046
217 => 0.23188971034203
218 => 0.23124350279925
219 => 0.23315255226733
220 => 0.23937479678366
221 => 0.24441734153843
222 => 0.24609024454498
223 => 0.24631134629391
224 => 0.24944982354668
225 => 0.25124874017883
226 => 0.24906872985805
227 => 0.24722139936778
228 => 0.24060449085074
229 => 0.24137041602883
301 => 0.24664688097442
302 => 0.25410019849231
303 => 0.26049592030818
304 => 0.25825636144167
305 => 0.27534261471096
306 => 0.27703664693152
307 => 0.27680258645326
308 => 0.2806618439575
309 => 0.27300200373571
310 => 0.26972727363848
311 => 0.24762081318787
312 => 0.25383182686368
313 => 0.26285990000153
314 => 0.2616650006682
315 => 0.25510857263441
316 => 0.26049094666959
317 => 0.25871136549116
318 => 0.25730773598084
319 => 0.26373803487457
320 => 0.2566676570988
321 => 0.26278936757466
322 => 0.25493821056838
323 => 0.25826659155793
324 => 0.25637724153259
325 => 0.25759988254901
326 => 0.25045234814964
327 => 0.25430898421495
328 => 0.25029189940988
329 => 0.25028999478865
330 => 0.25020131741893
331 => 0.25492739987761
401 => 0.25508151725692
402 => 0.25158893517924
403 => 0.25108559953746
404 => 0.25294669521401
405 => 0.2507678395985
406 => 0.25178731242744
407 => 0.25079871839193
408 => 0.25057616505156
409 => 0.24880282217117
410 => 0.24803881729922
411 => 0.2483384032955
412 => 0.24731576184305
413 => 0.2466995833774
414 => 0.25007874401312
415 => 0.24827339480041
416 => 0.24980204835392
417 => 0.24805995469823
418 => 0.24202109909354
419 => 0.23854808937554
420 => 0.22714125094049
421 => 0.23037621617053
422 => 0.23252100146486
423 => 0.23181214993788
424 => 0.23333503730696
425 => 0.23342853022305
426 => 0.23293342401536
427 => 0.23236015445389
428 => 0.23208111853516
429 => 0.23416082366352
430 => 0.23536816249019
501 => 0.23273625936267
502 => 0.23211964128414
503 => 0.23478064065741
504 => 0.2364038487379
505 => 0.24838870520238
506 => 0.24750082832491
507 => 0.24972922505031
508 => 0.24947834177657
509 => 0.25181405655623
510 => 0.25563196307425
511 => 0.24786909161966
512 => 0.24921645768428
513 => 0.24888611464046
514 => 0.25249271337227
515 => 0.25250397277983
516 => 0.25034163667715
517 => 0.25151387415831
518 => 0.25085956335498
519 => 0.25204199141201
520 => 0.2474889701879
521 => 0.25303405857059
522 => 0.25617776636598
523 => 0.25622141675177
524 => 0.25771150929677
525 => 0.25922552962284
526 => 0.26213155979534
527 => 0.25914448201857
528 => 0.25377101988434
529 => 0.25415896649426
530 => 0.25100850761103
531 => 0.25106146739403
601 => 0.25077876392182
602 => 0.25162717832284
603 => 0.24767514943845
604 => 0.24860268271841
605 => 0.24730413069483
606 => 0.24921363488578
607 => 0.24715932402867
608 => 0.24888595533904
609 => 0.24963111217386
610 => 0.25238075693643
611 => 0.24675319926157
612 => 0.23527822821038
613 => 0.23769040624591
614 => 0.23412260545886
615 => 0.23445281900528
616 => 0.23511990292213
617 => 0.23295766569132
618 => 0.23337015241503
619 => 0.23335541548664
620 => 0.23322842059926
621 => 0.23266593918596
622 => 0.23185022985312
623 => 0.23509976477306
624 => 0.2356519240773
625 => 0.23687930581257
626 => 0.24053116131573
627 => 0.24016625483428
628 => 0.24076143244535
629 => 0.23946216306217
630 => 0.23451308838557
701 => 0.23478184695122
702 => 0.23143042333093
703 => 0.23679360237557
704 => 0.23552353078729
705 => 0.23470470737203
706 => 0.23448128381683
707 => 0.23814219156343
708 => 0.23923759253892
709 => 0.23855501216062
710 => 0.23715501989068
711 => 0.23984341891952
712 => 0.24056272108519
713 => 0.24072374631324
714 => 0.24548707394295
715 => 0.24098996341377
716 => 0.24207246261558
717 => 0.25051781237506
718 => 0.24285904552181
719 => 0.24691606513486
720 => 0.24671749513652
721 => 0.24879292908849
722 => 0.24654724897508
723 => 0.2465750868715
724 => 0.24841793161879
725 => 0.24582998853003
726 => 0.24518917742693
727 => 0.24430390147757
728 => 0.24623686912582
729 => 0.24739559581034
730 => 0.2567340818966
731 => 0.26276716979503
801 => 0.26250525753822
802 => 0.26489864528625
803 => 0.26382040218484
804 => 0.26033847078425
805 => 0.26628170310877
806 => 0.26440101572589
807 => 0.2645560573087
808 => 0.26455028665324
809 => 0.26580077935031
810 => 0.26491469066846
811 => 0.26316811892141
812 => 0.26432757475619
813 => 0.26777074407247
814 => 0.27845844727951
815 => 0.28443942758741
816 => 0.27809838475504
817 => 0.28247235119086
818 => 0.27984952993296
819 => 0.27937288528823
820 => 0.28212005944351
821 => 0.28487204216348
822 => 0.28469675276136
823 => 0.28269895462254
824 => 0.28157044914617
825 => 0.29011587069031
826 => 0.29641199171658
827 => 0.29598263847232
828 => 0.29787766405933
829 => 0.30344151779372
830 => 0.30395020685071
831 => 0.30388612372161
901 => 0.30262528481766
902 => 0.30810362137688
903 => 0.31267374611674
904 => 0.30233343704053
905 => 0.30627089137216
906 => 0.30803854147849
907 => 0.31063397627273
908 => 0.315012909816
909 => 0.31976959309874
910 => 0.3204422402693
911 => 0.31996496491266
912 => 0.31682780442118
913 => 0.32203262402819
914 => 0.32508148528594
915 => 0.32689701239298
916 => 0.33150088706153
917 => 0.30804945788377
918 => 0.29144937070009
919 => 0.2888570273782
920 => 0.29412865946214
921 => 0.29551874680219
922 => 0.29495840433844
923 => 0.27627349699931
924 => 0.28875865520799
925 => 0.3021916356586
926 => 0.30270765114524
927 => 0.30943248202919
928 => 0.31162236262514
929 => 0.31703673293045
930 => 0.31669806259368
1001 => 0.31801637560158
1002 => 0.31771331827106
1003 => 0.32774229913148
1004 => 0.33880575433859
1005 => 0.3384226620644
1006 => 0.33683215948151
1007 => 0.33919432703808
1008 => 0.35061299844373
1009 => 0.34956175016118
1010 => 0.35058294832256
1011 => 0.36404620543794
1012 => 0.38155035481393
1013 => 0.37341792004092
1014 => 0.39106296345328
1015 => 0.4021695829578
1016 => 0.42137733294498
1017 => 0.41897242804643
1018 => 0.42644986416345
1019 => 0.41466714635921
1020 => 0.38761164460051
1021 => 0.38333000788289
1022 => 0.39190195301987
1023 => 0.41297524370095
1024 => 0.39123828010285
1025 => 0.39563563952846
1026 => 0.39436919971806
1027 => 0.39430171652258
1028 => 0.39687727561982
1029 => 0.39314129281715
1030 => 0.37792022678858
1031 => 0.38489595165117
1101 => 0.3822022892799
1102 => 0.38519110850665
1103 => 0.40132053319063
1104 => 0.39418933006038
1105 => 0.38667718685457
1106 => 0.39609908151269
1107 => 0.40809639112674
1108 => 0.40734562105233
1109 => 0.40588881331043
1110 => 0.41410076227555
1111 => 0.42766449609063
1112 => 0.43133071883735
1113 => 0.43403704951636
1114 => 0.43441020679316
1115 => 0.43825395866019
1116 => 0.41758513612098
1117 => 0.45038708830371
1118 => 0.45605107931003
1119 => 0.45498648374922
1120 => 0.46128177137556
1121 => 0.45942953805986
1122 => 0.45674594259191
1123 => 0.46672531252574
1124 => 0.45528477019023
1125 => 0.4390463606692
1126 => 0.43013764804664
1127 => 0.44186935947337
1128 => 0.44903350626137
1129 => 0.45376855156293
1130 => 0.45520137341019
1201 => 0.41918959797811
1202 => 0.39978124832485
1203 => 0.41222177793541
1204 => 0.42740008265978
1205 => 0.41750081987187
1206 => 0.41788885223137
1207 => 0.4037751049763
1208 => 0.428648836119
1209 => 0.42502494271252
1210 => 0.44382570811591
1211 => 0.43933875456682
1212 => 0.45467004891178
1213 => 0.45063280530313
1214 => 0.46739117780339
1215 => 0.47407654630857
1216 => 0.48530232052329
1217 => 0.49356004573276
1218 => 0.49840913992087
1219 => 0.49811801849431
1220 => 0.51733254547674
1221 => 0.50600241021964
1222 => 0.49176909002888
1223 => 0.49151165417218
1224 => 0.49888329238668
1225 => 0.5143322237741
1226 => 0.51833790691005
1227 => 0.5205765373177
1228 => 0.5171479969211
1229 => 0.50484994713763
1230 => 0.49953971159365
1231 => 0.50406418612945
]
'min_raw' => 0.18656583622867
'max_raw' => 0.5205765373177
'avg_raw' => 0.35357118677319
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.186565'
'max' => '$0.520576'
'avg' => '$0.353571'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.073858620984018
'max_diff' => 0.26896561895921
'year' => 2036
]
11 => [
'items' => [
101 => 0.4985311425647
102 => 0.50808272805529
103 => 0.52119909504246
104 => 0.51849061712734
105 => 0.52754465271986
106 => 0.5369146270458
107 => 0.55031411116377
108 => 0.55381723249366
109 => 0.55960775884021
110 => 0.56556811253962
111 => 0.56748241751183
112 => 0.57113741967774
113 => 0.57111815601217
114 => 0.58213275104914
115 => 0.59428219046854
116 => 0.5988683225892
117 => 0.60941388051984
118 => 0.59135498212404
119 => 0.60505286400293
120 => 0.61740869633791
121 => 0.60267756365697
122 => 0.62298099814394
123 => 0.62376933449649
124 => 0.63567227746408
125 => 0.62360636443848
126 => 0.61644166379964
127 => 0.63712588608614
128 => 0.64713432970369
129 => 0.64411970503467
130 => 0.62117826245305
131 => 0.60782535886578
201 => 0.57287823459517
202 => 0.61427461289713
203 => 0.63443758121911
204 => 0.62112604523611
205 => 0.62783960970013
206 => 0.66446664053522
207 => 0.67841184245259
208 => 0.6755113379381
209 => 0.67600147545468
210 => 0.68352605328598
211 => 0.71689417525065
212 => 0.69689922310241
213 => 0.71218461482318
214 => 0.72029193147629
215 => 0.72782245900937
216 => 0.7093298634358
217 => 0.68527126830475
218 => 0.67765090131563
219 => 0.6198024753243
220 => 0.61679121352847
221 => 0.6151009010319
222 => 0.60444371984048
223 => 0.59607009467162
224 => 0.58941107704458
225 => 0.57193582624023
226 => 0.57783321039533
227 => 0.5499813079815
228 => 0.56779996813505
301 => 0.52334765937488
302 => 0.56036886301784
303 => 0.54021990502255
304 => 0.5537493884119
305 => 0.55370218531891
306 => 0.52879011687251
307 => 0.51442135569422
308 => 0.52357768955758
309 => 0.53339400628978
310 => 0.53498667065352
311 => 0.5477137815289
312 => 0.55126564460589
313 => 0.54050333366199
314 => 0.52242648408052
315 => 0.52662532394925
316 => 0.5143362663383
317 => 0.49280016556689
318 => 0.50826776912516
319 => 0.51354908904248
320 => 0.51588162078812
321 => 0.49470333911732
322 => 0.48804866321349
323 => 0.48450576960043
324 => 0.51969263386229
325 => 0.52162024971641
326 => 0.51175829446932
327 => 0.55633526733514
328 => 0.54624612548174
329 => 0.55751816883175
330 => 0.52624432324132
331 => 0.52743902625869
401 => 0.51263348657057
402 => 0.5209235994894
403 => 0.51506441488119
404 => 0.52025384029005
405 => 0.52336436048332
406 => 0.53816747072807
407 => 0.56053789075827
408 => 0.53595637969773
409 => 0.52524586331492
410 => 0.53189060744058
411 => 0.54958643668136
412 => 0.57639652381396
413 => 0.56052441262817
414 => 0.5675681860465
415 => 0.56910693718273
416 => 0.55740343001183
417 => 0.57682804881706
418 => 0.5872378598401
419 => 0.59791617194287
420 => 0.6071878511422
421 => 0.59365101926791
422 => 0.60813736980202
423 => 0.59646392845664
424 => 0.58599164479164
425 => 0.58600752692319
426 => 0.57943811040448
427 => 0.56670903809974
428 => 0.56436160186774
429 => 0.57657326159513
430 => 0.58636585624801
501 => 0.58717242124699
502 => 0.5925941048085
503 => 0.59580260129242
504 => 0.62725022857433
505 => 0.63989872441553
506 => 0.65536506570637
507 => 0.66139007727439
508 => 0.67952320200793
509 => 0.66487923108521
510 => 0.66171091586119
511 => 0.61772588655752
512 => 0.62492843264191
513 => 0.63646040386534
514 => 0.6179160445155
515 => 0.62967817219984
516 => 0.63200026536066
517 => 0.61728591428088
518 => 0.62514548496217
519 => 0.60427279543297
520 => 0.56099285835153
521 => 0.57687623175926
522 => 0.58857174087302
523 => 0.5718808073218
524 => 0.60179865968403
525 => 0.58432126796385
526 => 0.57878177385131
527 => 0.55717023234603
528 => 0.567370048032
529 => 0.58116544479457
530 => 0.57264149348231
531 => 0.59032997233298
601 => 0.61538157573051
602 => 0.63323484016037
603 => 0.63460539211843
604 => 0.62312693916585
605 => 0.64152123327686
606 => 0.64165521562795
607 => 0.62090637672783
608 => 0.60819782843153
609 => 0.60531041951959
610 => 0.61252373309147
611 => 0.62128202741887
612 => 0.63509141649897
613 => 0.64343614110256
614 => 0.66519475716876
615 => 0.67108201480787
616 => 0.67755032604826
617 => 0.68619398461872
618 => 0.69657291292114
619 => 0.67386440866817
620 => 0.67476665987609
621 => 0.65362081513637
622 => 0.63102344741109
623 => 0.64817203271292
624 => 0.67059152681436
625 => 0.66544847009615
626 => 0.66486977115224
627 => 0.6658429822582
628 => 0.6619652854492
629 => 0.64442660649624
630 => 0.635618791724
701 => 0.64698311989338
702 => 0.65302275454735
703 => 0.66238970118417
704 => 0.66123502729893
705 => 0.68536327589874
706 => 0.69473878370426
707 => 0.69234012760701
708 => 0.69278153805579
709 => 0.70975544710507
710 => 0.72863392491851
711 => 0.74631611062535
712 => 0.76430318939389
713 => 0.74261906389078
714 => 0.73160920225123
715 => 0.74296856911044
716 => 0.73694112916028
717 => 0.77157658696874
718 => 0.77397467091992
719 => 0.80860762419056
720 => 0.84147842085976
721 => 0.82083286241333
722 => 0.84030069413194
723 => 0.86135674137122
724 => 0.90197727271635
725 => 0.88829770680684
726 => 0.87781937370628
727 => 0.86791739955718
728 => 0.88852183586732
729 => 0.9150291140164
730 => 0.92073852784616
731 => 0.92998995941431
801 => 0.92026321033163
802 => 0.93197800823546
803 => 0.97333639257901
804 => 0.96216099204883
805 => 0.94629012676068
806 => 0.97893859909846
807 => 0.99075395431978
808 => 1.0736803050126
809 => 1.1783782482789
810 => 1.1350326122829
811 => 1.1081265772652
812 => 1.1144501337141
813 => 1.1526822783459
814 => 1.164961229774
815 => 1.131582806984
816 => 1.1433726301968
817 => 1.2083357152496
818 => 1.243186326115
819 => 1.1958545154982
820 => 1.0652679272132
821 => 0.94486112898838
822 => 0.9767984338664
823 => 0.97317773462319
824 => 1.0429724652024
825 => 0.96189446244213
826 => 0.96325960807249
827 => 1.0344976197662
828 => 1.015492539575
829 => 0.98470674365208
830 => 0.94508589936822
831 => 0.87184310422498
901 => 0.80696991804017
902 => 0.9342011755511
903 => 0.9287147323722
904 => 0.92076954960383
905 => 0.93845069409627
906 => 1.0243053128712
907 => 1.0223260860241
908 => 1.0097352546336
909 => 1.0192852892728
910 => 0.9830325764061
911 => 0.99237572597078
912 => 0.94484205593637
913 => 0.96632925997333
914 => 0.98464069116064
915 => 0.98831698207686
916 => 0.99659985322718
917 => 0.92582362612283
918 => 0.95760007421182
919 => 0.97626576041357
920 => 0.89193351109059
921 => 0.97459878299331
922 => 0.92459156947183
923 => 0.9076183701195
924 => 0.93047054699844
925 => 0.92156503144425
926 => 0.91390859212017
927 => 0.90963616742301
928 => 0.92641628402018
929 => 0.92563347152434
930 => 0.89817794389109
1001 => 0.86236332732399
1002 => 0.87438388821862
1003 => 0.87001670575225
1004 => 0.85418947311634
1005 => 0.86485511692558
1006 => 0.81788901934847
1007 => 0.73708628955237
1008 => 0.79046704791022
1009 => 0.78841194678054
1010 => 0.78737567159953
1011 => 0.82748983616966
1012 => 0.82363378483748
1013 => 0.81663501391101
1014 => 0.85406093519977
1015 => 0.8403999704797
1016 => 0.88249984481887
1017 => 0.91022954490781
1018 => 0.90319639600343
1019 => 0.92927631296635
1020 => 0.87466081766352
1021 => 0.89280189440977
1022 => 0.89654074518473
1023 => 0.85359910514054
1024 => 0.82426468252402
1025 => 0.8223084109724
1026 => 0.77144656468779
1027 => 0.79861655243055
1028 => 0.82252501727369
1029 => 0.81107471798565
1030 => 0.80744989529901
1031 => 0.8259683282769
1101 => 0.82740736911894
1102 => 0.79459708541783
1103 => 0.80141938236585
1104 => 0.82986949475157
1105 => 0.8007025125292
1106 => 0.74403583047063
1107 => 0.72998170984193
1108 => 0.72810663108122
1109 => 0.68999074128983
1110 => 0.73092087338473
1111 => 0.71305377386596
1112 => 0.76949572716503
1113 => 0.73725638614487
1114 => 0.73586661258945
1115 => 0.73376576602497
1116 => 0.70095784513393
1117 => 0.70814069475693
1118 => 0.73201758088264
1119 => 0.74053712284467
1120 => 0.73964846481948
1121 => 0.73190057111464
1122 => 0.73544751717708
1123 => 0.72402156807202
1124 => 0.71998682763246
1125 => 0.70725207696241
1126 => 0.6885355115421
1127 => 0.69113816475916
1128 => 0.65405575120579
1129 => 0.63385128418927
1130 => 0.62825895400969
1201 => 0.62078065637399
1202 => 0.62910364762663
1203 => 0.65395070138735
1204 => 0.6239798829554
1205 => 0.5725970169623
1206 => 0.57568521476063
1207 => 0.58262347831932
1208 => 0.56969407007891
1209 => 0.55745747026234
1210 => 0.56809620101612
1211 => 0.54632460332649
1212 => 0.58525447188507
1213 => 0.58420152804026
1214 => 0.59871217563198
1215 => 0.60778598135954
1216 => 0.58687379683699
1217 => 0.58161443898213
1218 => 0.58461040824075
1219 => 0.53509370999982
1220 => 0.59466560497873
1221 => 0.59518078520028
1222 => 0.59076949936835
1223 => 0.62248969436871
1224 => 0.68942919959639
1225 => 0.66424386509438
1226 => 0.65449134234443
1227 => 0.63595178946774
1228 => 0.66065464290621
1229 => 0.65875784918668
1230 => 0.65017982864931
1231 => 0.64499181506325
]
'min_raw' => 0.48450576960043
'max_raw' => 1.243186326115
'avg_raw' => 0.86384604785774
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.4845057'
'max' => '$1.24'
'avg' => '$0.863846'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.29793993337176
'max_diff' => 0.72260978879734
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.015208082475415
]
1 => [
'year' => 2028
'avg' => 0.026101484465701
]
2 => [
'year' => 2029
'avg' => 0.071304551225427
]
3 => [
'year' => 2030
'avg' => 0.055011355080494
]
4 => [
'year' => 2031
'avg' => 0.054027968171226
]
5 => [
'year' => 2032
'avg' => 0.094728031431506
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.015208082475415
'min' => '$0.015208'
'max_raw' => 0.094728031431506
'max' => '$0.094728'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.094728031431506
]
1 => [
'year' => 2033
'avg' => 0.24365023761044
]
2 => [
'year' => 2034
'avg' => 0.15443722988
]
3 => [
'year' => 2035
'avg' => 0.18215906680157
]
4 => [
'year' => 2036
'avg' => 0.35357118677319
]
5 => [
'year' => 2037
'avg' => 0.86384604785774
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.094728031431506
'min' => '$0.094728'
'max_raw' => 0.86384604785774
'max' => '$0.863846'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.86384604785774
]
]
]
]
'prediction_2025_max_price' => '$0.026003'
'last_price' => 0.02521324
'sma_50day_nextmonth' => '$0.023296'
'sma_200day_nextmonth' => '$0.044852'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 feb. 2026'
'sma_50day_date_nextmonth' => '4 feb. 2026'
'daily_sma3' => '$0.025384'
'daily_sma3_action' => 'SELL'
'daily_sma5' => '$0.02517'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.0249046'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.023338'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.026761'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.037445'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.056343'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.025253'
'daily_ema3_action' => 'SELL'
'daily_ema5' => '$0.025128'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.024658'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.024416'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.028078'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.037145'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.061955'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.041898'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.083073'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.309722'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$1.62'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.024981'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.02569'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.030628'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.045223'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.132586'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.753705'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$3.07'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '53.04'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 101.1
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'SELL'
'vwma_10' => '0.024989'
'vwma_10_action' => 'BUY'
'hma_9' => '0.025528'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 91.59
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 80.82
'cci_20_action' => 'NEUTRAL'
'adx_14' => 19.95
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.001529'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'NEUTRAL'
'williams_percent_r_14' => -8.41
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 78.37
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '-0.014567'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 22
'buy_signals' => 12
'sell_pct' => 64.71
'buy_pct' => 35.29
'overall_action' => 'bearish'
'overall_action_label' => 'Bajista'
'overall_action_dir' => -1
'last_updated' => 1767686445
'last_updated_date' => '6 de enero de 2026'
]
Predicción de precio de Tulip Token para 2026
La previsión del precio de Tulip Token para 2026 sugiere que el precio medio podría oscilar entre $0.008711 en el extremo inferior y $0.026003 en el extremo superior. En el mercado de criptomonedas, en comparación con el precio medio de hoy, Tulip Token podría potencialmente ganar 3.13% para 2026 si TULIP alcanza el objetivo de precio previsto.
Predicción de precio de Tulip Token 2027-2032
La predicción del precio de TULIP para 2027-2032 está actualmente dentro de un rango de precios de $0.015208 en el extremo inferior y $0.094728 en el extremo superior. Considerando la volatilidad de precios en el mercado, si Tulip Token alcanza el objetivo de precio superior, podría ganar 275.71% para 2032 en comparación con el precio de hoy.
| Predicción de Precio de Tulip Token | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.008386 | $0.015208 | $0.02203 |
| 2028 | $0.015134 | $0.0261014 | $0.037068 |
| 2029 | $0.033245 | $0.0713045 | $0.109363 |
| 2030 | $0.028274 | $0.055011 | $0.081748 |
| 2031 | $0.033428 | $0.054027 | $0.074627 |
| 2032 | $0.051026 | $0.094728 | $0.138429 |
Predicción de precio de Tulip Token 2032-2037
La predicción de precio de Tulip Token para 2032-2037 se estima actualmente entre $0.094728 en el extremo inferior y $0.863846 en el extremo superior. Comparado con el precio actual, Tulip Token podría potencialmente ganar 3326.16% para 2037 si alcanza el objetivo de precio superior. Tenga en cuenta que esta información es solo para fines generales y no debe considerarse como consejo de inversión a largo plazo.
| Predicción de Precio de Tulip Token | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.051026 | $0.094728 | $0.138429 |
| 2033 | $0.118574 | $0.24365 | $0.368726 |
| 2034 | $0.095327 | $0.154437 | $0.213546 |
| 2035 | $0.1127072 | $0.182159 | $0.25161 |
| 2036 | $0.186565 | $0.353571 | $0.520576 |
| 2037 | $0.4845057 | $0.863846 | $1.24 |
Tulip Token Histograma de precios potenciales
Pronóstico de precio de Tulip Token basado en análisis técnico
A fecha de 6 de enero de 2026, el sentimiento general de predicción de precio para Tulip Token es Bajista, con 12 indicadores técnicos mostrando señales alcistas y 22 indicando señales bajistas. La predicción de precio de TULIP se actualizó por última vez el 6 de enero de 2026.
Promedios Móviles Simples de 50 y 200 días y el Índice de Fuerza Relativa de 14 días - RSI (14) de Tulip Token
Según nuestros indicadores técnicos, se proyecta que el SMA de 200 días de Tulip Token aumentar durante el próximo mes, alcanzando $0.044852 para el 4 feb. 2026. Se espera que el SMA de 50 días a corto plazo para Tulip Token alcance $0.023296 para el 4 feb. 2026.
El oscilador de momento del Índice de Fuerza Relativa (RSI) es una herramienta comúnmente utilizada para identificar si una criptomoneda está sobrevendida (por debajo de 30) o sobrecomprada (por encima de 70). Actualmente, el RSI se encuentra en 53.04, lo que sugiere que el mercado de TULIP está en un estado NEUTRAL.
Promedios Móviles y Osciladores Populares de TULIP para Sáb, 19 de Oct de 2024
Los promedios móviles (MA) son indicadores ampliamente utilizados en los mercados financieros, diseñados para suavizar los movimientos de precios durante un período establecido. Como indicadores rezagados, se basan en datos históricos de precios. La tabla a continuación resalta dos tipos: el promedio móvil simple (SMA) y el promedio móvil exponencial (EMA).
Promedio Móvil Simple Diario (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 3 | $0.025384 | SELL |
| SMA 5 | $0.02517 | BUY |
| SMA 10 | $0.0249046 | BUY |
| SMA 21 | $0.023338 | BUY |
| SMA 50 | $0.026761 | SELL |
| SMA 100 | $0.037445 | SELL |
| SMA 200 | $0.056343 | SELL |
Promedio Móvil Exponencial Diario (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 3 | $0.025253 | SELL |
| EMA 5 | $0.025128 | BUY |
| EMA 10 | $0.024658 | BUY |
| EMA 21 | $0.024416 | BUY |
| EMA 50 | $0.028078 | SELL |
| EMA 100 | $0.037145 | SELL |
| EMA 200 | $0.061955 | SELL |
Promedio Móvil Simple Semanal (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 21 | $0.041898 | SELL |
| SMA 50 | $0.083073 | SELL |
| SMA 100 | $0.309722 | SELL |
| SMA 200 | $1.62 | SELL |
Promedio Móvil Exponencial Semanal (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 21 | $0.045223 | SELL |
| EMA 50 | $0.132586 | SELL |
| EMA 100 | $0.753705 | SELL |
| EMA 200 | $3.07 | SELL |
Osciladores de Tulip Token
Un oscilador es una herramienta de análisis técnico que establece límites altos y bajos entre dos extremos, creando un indicador de tendencia que fluctúa dentro de estos límites. Los traders utilizan este indicador para identificar condiciones de sobrecompra o sobreventa a corto plazo.
| Período | Valor | Acción |
|---|---|---|
| RSI (14) | 53.04 | NEUTRAL |
| Stoch RSI (14) | 101.1 | SELL |
| Estocástico Rápido (14) | 91.59 | SELL |
| Índice de Canal de Materias Primas (20) | 80.82 | NEUTRAL |
| Índice Direccional Medio (14) | 19.95 | NEUTRAL |
| Oscilador Asombroso (5, 34) | 0.001529 | BUY |
| Momentum (10) | 0 | SELL |
| MACD (12, 26) | 0 | NEUTRAL |
| Rango Percentil de Williams (14) | -8.41 | SELL |
| Oscilador Ultimate (7, 14, 28) | 78.37 | SELL |
| VWMA (10) | 0.024989 | BUY |
| Promedio Móvil de Hull (9) | 0.025528 | BUY |
| Nube Ichimoku B/L (9, 26, 52, 26) | -0.014567 | SELL |
Predicción de precios de Tulip Token basada en flujos de dinero globales
Definiciones de flujos de dinero globales utilizadas para la predicción de precios de Tulip Token
M0: El total de toda la moneda física, además de cuentas en el banco central que pueden cambiarse por moneda física.
M1: Medir M0 más la cantidad en cuentas a la vista, incluyendo cuentas "de cheques" o "corrientes".
M2: Medir M1 más la mayoría de cuentas de ahorro, cuentas del mercado monetario, y cuentas de certificados de depósito (CD) inferiores a 100 000 $.
Predicciones de precios de Tulip Token por parte de empresas de Internet o nichos tecnológicos
| Comparación | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook acción | $0.035428 | $0.049783 | $0.069953 | $0.098297 | $0.138123 | $0.194086 |
| Amazon.com acción | $0.0526089 | $0.109771 | $0.229045 | $0.477916 | $0.99720045 | $2.08 |
| Apple acción | $0.035763 | $0.050727 | $0.071952 | $0.102059 | $0.144763 | $0.205335 |
| Netflix acción | $0.039782 | $0.06277 | $0.099042 | $0.156273 | $0.246574 | $0.389055 |
| Google acción | $0.032651 | $0.042282 | $0.054756 | $0.070909 | $0.091826 | $0.118915 |
| Tesla acción | $0.057156 | $0.129569 | $0.293724 | $0.66585 | $1.50 | $3.42 |
| Kodak acción | $0.0189072 | $0.014178 | $0.010632 | $0.007973 | $0.005978 | $0.004483 |
| Nokia acción | $0.0167027 | $0.011064 | $0.00733 | $0.004855 | $0.003216 | $0.00213 |
Este cálculo muestra cuánto puede costar la criptomoneda si asumimos que su capitalización se comportará como la capitalización de algunas empresas de Internet o nichos tecnológicos. Si extrapola los datos, puede obtener una imagen potencial del precio futuro en 2024, 2025, 2026, 2027, 2028, 2029 y 2030.
Resumen de pronósticos y predicciones de Tulip Token
Podría preguntarse cosas como: "¿Debo invertir en Tulip Token ahora?", "¿Debería comprar TULIP hoy?", "¿Será Tulip Token una buena o mala inversión a corto plazo?, ¿Lo será a largo plazo?".
Actualizamos el pronóstico de Tulip Token/Tulip Protocol regularmente con valores actualizados. Aquí hay algunas predicciones similares. Hacemos un pronóstico de precios futuros para una gran cantidad de monedas digitales, como Tulip Token, con métodos de análisis técnico.
Si está tratando de encontrar criptomonedas que ofrezcan un buen rendimiento, debería explorar el máximo de fuentes de información disponibles acerca de Tulip Token a fin de tomar una decisión responsable sobre la inversión por sus propios medios.
El precio de Tulip Token es de $0.02521 USD hoy, pero dicho precio puede subir y bajar, y su inversión puede perderse porque estos son activos de criptomonedas conllevan un alto riesgo
Predicción de precios de Tulip Token basada en el patrón de crecimiento del Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si Tulip Token ofrece un 1 % del crecimiento medio anterior anual del Bitcoin | $0.025868 | $0.026541 | $0.02723 | $0.027938 |
| Si Tulip Token ofrece un 2 % del crecimiento medio anterior anual del Bitcoin | $0.026523 | $0.0279028 | $0.029353 | $0.030879 |
| Si Tulip Token ofrece un 5 % del crecimiento medio anterior anual del Bitcoin | $0.02849 | $0.032192 | $0.036376 | $0.0411045 |
| Si Tulip Token ofrece un 10 % del crecimiento medio anterior anual del Bitcoin | $0.031766 | $0.040024 | $0.050427 | $0.063535 |
| Si Tulip Token ofrece un 20 % del crecimiento medio anterior anual del Bitcoin | $0.03832 | $0.058242 | $0.08852 | $0.134538 |
| Si Tulip Token ofrece un 50 % del crecimiento medio anterior anual del Bitcoin | $0.057981 | $0.133338 | $0.306633 | $0.705153 |
| Si Tulip Token ofrece un 100 % del crecimiento medio anterior anual del Bitcoin | $0.09075 | $0.32664 | $1.17 | $4.23 |
Cuadro de preguntas
¿Es TULIP una buena inversión?
La decisión de adquirir Tulip Token depende completamente de su tolerancia individual al riesgo. Como puede discernir, el valor de Tulip Token ha experimentado una caída de -0.4569% durante las últimas 24 horas, y Tulip Token ha sufrido un declive de durante el período previo de 30 días. Por lo tanto, la determinación de si invertir o no en Tulip Token dependerá de si dicha inversión se alinea con sus aspiraciones comerciales.
¿Puede Tulip Token subir?
Parece que el valor medio de Tulip Token podría potencialmente aumentar hasta $0.026003 para el final de este año. Mirando las perspectivas de Tulip Token en un horizonte de cinco años más extendido, la moneda digital podría potencialmente crecer hasta $0.081748. Sin embargo, dada la imprevisibilidad del mercado, es vital realizar una investigación exhaustiva antes de invertir cualquier fondo en un proyecto, red o activo en particular.
¿Cuál será el precio de Tulip Token la próxima semana?
Basado en nuestro nuevo pronóstico experimental de Tulip Token, el precio de Tulip Token aumentará en un 0.86% durante la próxima semana y alcanzará $0.025429 para el 13 de enero de 2026.
¿Cuál será el precio de Tulip Token el próximo mes?
Basado en nuestro nuevo pronóstico experimental de Tulip Token, el precio de Tulip Token disminuirá en un -11.62% durante el próximo mes y alcanzará $0.022283 para el 5 de febrero de 2026.
¿Hasta qué punto puede subir el precio de Tulip Token este año en 2026?
Según nuestra predicción más reciente sobre el valor de Tulip Token en 2026, se anticipa que TULIP fluctúe dentro del rango de $0.008711 y $0.026003. Sin embargo, es crucial tener en cuenta que el mercado de criptomonedas es excepcionalmente inestable, y esta predicción de precios proyectada de Tulip Token no considera fluctuaciones de precios repentinas y extremas.
¿Dónde estará Tulip Token en 5 años?
El futuro de Tulip Token parece estar en una tendencia alcista, con un precio máximo de $0.081748 proyectada después de un período de cinco años. Basado en el pronóstico de Tulip Token para 2030, el valor de Tulip Token podría potencialmente alcanzar su punto más alto de aproximadamente $0.081748, mientras que su punto más bajo se anticipa que esté alrededor de $0.028274.
¿Cuánto será Tulip Token en 2026?
Basado en nuestra nueva simulación experimental de predicción de precios de Tulip Token, se espera que el valor de TULIP en 2026 crezca en un 3.13% hasta $0.026003 si ocurre lo mejor. El precio estará entre $0.026003 y $0.008711 durante 2026.
¿Cuánto será Tulip Token en 2027?
Según nuestra última simulación experimental para la predicción de precios de Tulip Token, el valor de TULIP podría disminuir en un -12.62% hasta $0.02203 en 2027, asumiendo las condiciones más favorables. Se proyecta que el precio fluctúe entre $0.02203 y $0.008386 a lo largo del año.
¿Cuánto será Tulip Token en 2028?
Nuestro nuevo modelo experimental de predicción de precios de Tulip Token sugiere que el valor de TULIP en 2028 podría aumentar en un 47.02% , alcanzando $0.037068 en el mejor escenario. Se espera que el precio oscile entre $0.037068 y $0.015134 durante el año.
¿Cuánto será Tulip Token en 2029?
Basado en nuestro modelo de pronóstico experimental, el valor de Tulip Token podría experimentar un 333.75% crecimiento en 2029, potencialmente alcanzando $0.109363 bajo condiciones óptimas. El rango de precios previsto para 2029 se encuentra entre $0.109363 y $0.033245.
¿Cuánto será Tulip Token en 2030?
Usando nuestra nueva simulación experimental para las predicciones de precios de Tulip Token, se espera que el valor de TULIP en 2030 aumente en un 224.23% , alcanzando $0.081748 en el mejor escenario. Se pronostica que el precio oscile entre $0.081748 y $0.028274 durante el transcurso de 2030.
¿Cuánto será Tulip Token en 2031?
Nuestra simulación experimental indica que el precio de Tulip Token podría crecer en un 195.98% en 2031, potencialmente alcanzando $0.074627 bajo condiciones ideales. Es probable que el precio fluctúe entre $0.074627 y $0.033428 durante el año.
¿Cuánto será Tulip Token en 2032?
Basado en los hallazgos de nuestra última predicción experimental de precios de Tulip Token, TULIP podría experimentar un 449.04% aumento en valor, alcanzando $0.138429 si se desarrolla el escenario más positivo en 2032. Se espera que el precio se mantenga dentro de un rango de $0.138429 y $0.051026 a lo largo del año.
¿Cuánto será Tulip Token en 2033?
Según nuestra predicción experimental de precios de Tulip Token, se anticipa que el valor de TULIP aumente en un 1362.43% en 2033, con el precio potencial más alto siendo $0.368726. A lo largo del año, el precio de TULIP podría oscilar entre $0.368726 y $0.118574.
¿Cuánto será Tulip Token en 2034?
Los resultados de nuestra nueva simulación de predicción de precios de Tulip Token sugieren que TULIP podría aumentar en un 746.96% en 2034, alcanzando potencialmente $0.213546 bajo las mejores circunstancias. El rango de precios previsto para el año está entre $0.213546 y $0.095327.
¿Cuánto será Tulip Token en 2035?
Basado en nuestra predicción experimental para el precio de Tulip Token, TULIP podría crecer en un 897.93% , con el valor potencialmente alcanzando $0.25161 en 2035. El rango de precios esperado para el año está entre $0.25161 y $0.1127072.
¿Cuánto será Tulip Token en 2036?
Nuestra reciente simulación de predicción de precios de Tulip Token sugiere que el valor de TULIP podría aumentar en un 1964.7% en 2036, posiblemente alcanzando $0.520576 si las condiciones son óptimas. El rango de precios esperado para 2036 está entre $0.520576 y $0.186565.
¿Cuánto será Tulip Token en 2037?
Según la simulación experimental, el valor de Tulip Token podría aumentar en un 4830.69% en 2037, con un máximo de $1.24 bajo condiciones favorables. Se espera que el precio caiga entre $1.24 y $0.4845057 durante el transcurso del año.
Predicciones relacionadas
Predicción de precios de Million
Predicción de precios de The Three Kingdoms
Predicción de precios de Hypersign Identity Token
Predicción de precios de Populous
Predicción de precios de YAM
Predicción de precios de Polker
Predicción de precios de LightChain
Predicción de precios de Dacxi
Predicción de precios de Goons of Balatroon
Predicción de precios de Trava Finance
Predicción de precios de Tidal Finance
Predicción de precios de NFTBooks
Predicción de precios de Collab.Land
Predicción de precios de MYX Network
Predicción de precios de Hummingbot
Predicción de precios de Wrapped OrdBridge
Predicción de precios de Dingocoin
Predicción de precios de Moon Money Chain
Predicción de precios de Shikoku
Predicción de precios de VNX Swiss Franc
Predicción de precios de XP Network
Predicción de precios de Monsterra
Predicción de precios de Virtual Versions
Predicción de precios de Rocky the dog
Predicción de precios de #MetaHash
¿Cómo leer y predecir los movimientos de precio de Tulip Token?
Los traders de Tulip Token utilizan indicadores y patrones de gráficos para predecir la dirección del mercado. También identifican niveles clave de soporte y resistencia para estimar cuándo una tendencia bajista podría desacelerar o una tendencia alcista podría estancarse.
Indicadores de predicción de precio de Tulip Token
Las medias móviles son herramientas populares para la predicción de precios de Tulip Token. Una media móvil simple (SMA) calcula el precio de cierre promedio de TULIP durante un período específico, como una SMA de 12 días. Una media móvil exponencial (EMA) da más peso a los precios recientes, reaccionando más rápido a los cambios de precio.
Las medias móviles comúnmente utilizadas en el mercado de criptomonedas incluyen las de 50 días, 100 días y 200 días, que ayudan a identificar niveles clave de resistencia y soporte. Un movimiento de precio de TULIP por encima de estas medias se considera alcista, mientras que una caída por debajo indica debilidad.
Los traders también utilizan RSI y niveles de retroceso de Fibonacci para evaluar la dirección futura de TULIP.
¿Cómo leer gráficos de Tulip Token y predecir movimientos de precio?
La mayoría de los traders prefieren gráficos de velas sobre gráficos lineales simples porque proporcionan información más detallada. Las velas pueden representar la acción del precio de Tulip Token en diferentes marcos de tiempo, como 5 minutos para tendencias a corto plazo y semanal para tendencias a largo plazo. Las opciones populares incluyen gráficos de 1 hora, 4 horas y 1 día.
Por ejemplo, un gráfico de velas de 1 hora muestra los precios de apertura, cierre, máximo y mínimo de TULIP dentro de cada hora. El color de la vela es crucial: el verde indica que el precio cerró más alto de lo que abrió, mientras que el rojo significa lo contrario. Algunos gráficos usan velas huecas y llenas para transmitir la misma información.
¿Qué afecta el precio de Tulip Token?
La acción del precio de Tulip Token está impulsada por la oferta y la demanda, influenciada por factores como reducciones a la mitad de recompensas de bloque, hard forks y actualizaciones de protocolo. Los eventos del mundo real, como regulaciones, adopción por empresas y gobiernos y hacks de exchanges de criptomonedas, también impactan el precio de TULIP. La capitalización de mercado de Tulip Token puede cambiar rápidamente.
Los traders a menudo monitorean la actividad de las "ballenas" de TULIP, grandes poseedores de Tulip Token, ya que sus acciones pueden influir significativamente en los movimientos de precios en el relativamente pequeño mercado de Tulip Token.
Patrones de predicción de precios alcistas y bajistas
Los traders a menudo identifican patrones de velas para obtener una ventaja en las predicciones de precios de criptomonedas. Ciertas formaciones indican tendencias alcistas, mientras que otras sugieren movimientos bajistas.
Patrones de velas alcistas comúnmente seguidos:
- Martillo
- Envolvente Alcista
- Línea Penetrante
- Estrella de la Mañana
- Tres Soldados Blancos
Patrones de velas bajistas comunes:
- Harami Bajista
- Cubierta de Nube Oscura
- Estrella de la Tarde
- Estrella Fugaz
- Hombre Colgado


