Predicción del precio de Tulip Protocol - Pronóstico de TULIP
Predicción de precio de Tulip Protocol hasta $0.026137 para el año 2026
| Año | Precio min. | Precio max. |
|---|---|---|
| 2026 | $0.008756 | $0.026137 |
| 2027 | $0.008429 | $0.022143 |
| 2028 | $0.015212 | $0.03726 |
| 2029 | $0.033417 | $0.109928 |
| 2030 | $0.02842 | $0.082171 |
| 2031 | $0.0336014 | $0.075012 |
| 2032 | $0.05129 | $0.139145 |
| 2033 | $0.119186 | $0.370631 |
| 2034 | $0.09582 | $0.214649 |
| 2035 | $0.113289 | $0.252911 |
Calculadora de ganancias de inversión
Si abres una posición corta de $10,000.00 en Tulip Protocol hoy y la cierras el Apr 06, 2026, nuestra previsión indica que podrías obtener una ganancia de alrededor de $3,954.67, equivalente a un ROI del 39.55% en los próximos 90 días.
Predicción del precio a largo plazo de Tulip Token para 2027, 2028, 2029, 2030, 2031, 2032 y 2037
[
'name' => 'Tulip Protocol'
'name_with_ticker' => 'Tulip Protocol <small>TULIP</small>'
'name_lang' => 'Tulip Token'
'name_lang_with_ticker' => 'Tulip Token <small>TULIP</small>'
'name_with_lang' => 'Tulip Token/Tulip Protocol'
'name_with_lang_with_ticker' => 'Tulip Token/Tulip Protocol <small>TULIP</small>'
'image' => '/uploads/coins/solfarm.png?1717103123'
'price_for_sd' => 0.02534
'ticker' => 'TULIP'
'marketcap' => '$39.58K'
'low24h' => '$0.02517'
'high24h' => '$0.02553'
'volume24h' => '$34.79'
'current_supply' => '1.56M'
'max_supply' => '10M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.02534'
'change_24h_pct' => '-0.4306%'
'ath_price' => '$50.22'
'ath_days' => 1521
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '7 nov. 2021'
'ath_pct' => '-99.95%'
'fdv' => '$253.44K'
'new_prediction' => true
'change_24h_pct_is_increased' => false
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$1.24'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.02556'
'next_week_prediction_price_date' => '13 de enero de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.022399'
'next_month_prediction_price_date' => '5 de febrero de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.008756'
'current_year_max_price_prediction' => '$0.026137'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.02842'
'grand_prediction_max_price' => '$0.082171'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.025823776562803
107 => 0.025920193170458
108 => 0.026137424710658
109 => 0.0242812049839
110 => 0.025114593145466
111 => 0.025604130612476
112 => 0.023392382527001
113 => 0.025560411464138
114 => 0.024248892328173
115 => 0.02380374303507
116 => 0.024403077914273
117 => 0.024169516528976
118 => 0.023968714165081
119 => 0.023856662995806
120 => 0.024296748384916
121 => 0.024276217875498
122 => 0.023556152762021
123 => 0.022616857175098
124 => 0.022932115605396
125 => 0.022817579262105
126 => 0.022402484778538
127 => 0.022682208341763
128 => 0.021450447334173
129 => 0.01933126654198
130 => 0.020731262285566
131 => 0.02067736397234
201 => 0.020650185998718
202 => 0.021702244106982
203 => 0.021601112994983
204 => 0.021417559036425
205 => 0.022399113666144
206 => 0.022040833022524
207 => 0.023144969544625
208 => 0.023872225269153
209 => 0.023687769693155
210 => 0.024371757217206
211 => 0.022939378522898
212 => 0.023415157268088
213 => 0.023513214608071
214 => 0.022387001434376
215 => 0.021617659295616
216 => 0.021566352946103
217 => 0.02023241969937
218 => 0.020944996072642
219 => 0.021572033792707
220 => 0.021271731384888
221 => 0.021176664613852
222 => 0.021662340129609
223 => 0.021700081276713
224 => 0.020839579123119
225 => 0.02101850476941
226 => 0.021764654458359
227 => 0.020999703711672
228 => 0.019513529364854
301 => 0.019144937578875
302 => 0.019095760640131
303 => 0.018096110483174
304 => 0.019169568644505
305 => 0.018700975390194
306 => 0.020181255865953
307 => 0.019335727597103
308 => 0.019299278563368
309 => 0.019244180502968
310 => 0.018383740317847
311 => 0.018572122034562
312 => 0.019198331552269
313 => 0.019421770162942
314 => 0.01939846368527
315 => 0.019195262784005
316 => 0.019288287116047
317 => 0.018988623330713
318 => 0.018882805811149
319 => 0.018548816612004
320 => 0.018057944756132
321 => 0.018126203498383
322 => 0.017153657908293
323 => 0.016623763453911
324 => 0.016477095652834
325 => 0.016280965339566
326 => 0.016499249093601
327 => 0.01715090280883
328 => 0.016364870172216
329 => 0.015017272350519
330 => 0.015098265275798
331 => 0.015280232331884
401 => 0.014941137926699
402 => 0.014620213530228
403 => 0.014899231255541
404 => 0.014328236293419
405 => 0.015349234345096
406 => 0.015321619209112
407 => 0.015702184144681
408 => 0.015940159208871
409 => 0.015391703731255
410 => 0.015253768661816
411 => 0.015332342746168
412 => 0.014033688157767
413 => 0.015596056358846
414 => 0.015609567783928
415 => 0.015493874759355
416 => 0.016325787593723
417 => 0.01808138315436
418 => 0.017420857485781
419 => 0.017165081982413
420 => 0.016678852563539
421 => 0.017326724394742
422 => 0.01727697794648
423 => 0.017052005641662
424 => 0.016915941689752
425 => 0.017166643693095
426 => 0.016884876937141
427 => 0.016834263885339
428 => 0.016527603858963
429 => 0.016418140181689
430 => 0.016337097632909
501 => 0.01624787774978
502 => 0.016444674579754
503 => 0.015998707072253
504 => 0.015460913976941
505 => 0.015416202300068
506 => 0.015539655171006
507 => 0.015485036465601
508 => 0.01541594080672
509 => 0.015284018376832
510 => 0.015244879809962
511 => 0.015372061164959
512 => 0.015228480830301
513 => 0.015440341435314
514 => 0.015382727073532
515 => 0.015060897932069
516 => 0.014659779665396
517 => 0.014656208871449
518 => 0.01456978859886
519 => 0.014459719388343
520 => 0.01442910065202
521 => 0.014875733160959
522 => 0.015800249087875
523 => 0.015618744489631
524 => 0.015749900163202
525 => 0.016395056267632
526 => 0.016600131992709
527 => 0.016454574100534
528 => 0.016255325480105
529 => 0.0162640914082
530 => 0.016944984260866
531 => 0.016987450712886
601 => 0.017094749736945
602 => 0.017232659305562
603 => 0.016478060696407
604 => 0.016228549881569
605 => 0.016110317815165
606 => 0.01574620881221
607 => 0.01613886915555
608 => 0.015910082788878
609 => 0.015940953886198
610 => 0.01592084904357
611 => 0.015931827647128
612 => 0.015348948955332
613 => 0.01556131931542
614 => 0.015208212401865
615 => 0.014735441882725
616 => 0.01473385699017
617 => 0.014849566904956
618 => 0.014780738119912
619 => 0.014595521629108
620 => 0.01462183075743
621 => 0.014391335109568
622 => 0.014649817102339
623 => 0.014657229440998
624 => 0.014557699794172
625 => 0.014955926967677
626 => 0.015119080965585
627 => 0.015053568419912
628 => 0.015114484430737
629 => 0.015626286825132
630 => 0.015709732946922
701 => 0.01574679420208
702 => 0.015697137029844
703 => 0.015123839238978
704 => 0.015149267433853
705 => 0.01496269221173
706 => 0.014805055809849
707 => 0.01481136043923
708 => 0.014892406041095
709 => 0.0152463369377
710 => 0.015991163644241
711 => 0.016019429273293
712 => 0.01605368804027
713 => 0.015914340417896
714 => 0.01587231184161
715 => 0.015927758382227
716 => 0.016207476132075
717 => 0.016926986127315
718 => 0.01667266324054
719 => 0.016465894774821
720 => 0.016647286463635
721 => 0.016619362634937
722 => 0.016383657419179
723 => 0.016377041958814
724 => 0.015924648290259
725 => 0.0157574086515
726 => 0.015617650691682
727 => 0.015465038648036
728 => 0.01537456511296
729 => 0.015513573582323
730 => 0.015545366463966
731 => 0.015241422016252
801 => 0.015199995511142
802 => 0.015448203108242
803 => 0.01533897619887
804 => 0.015451318783856
805 => 0.015477383227229
806 => 0.015473186251531
807 => 0.015359140813517
808 => 0.015431829974823
809 => 0.015259898438651
810 => 0.015072948716346
811 => 0.014953686440895
812 => 0.014849614287718
813 => 0.01490735956701
814 => 0.014701508190207
815 => 0.014635652191798
816 => 0.015407204522531
817 => 0.015977158524828
818 => 0.015968871167908
819 => 0.015918424013993
820 => 0.015843469776106
821 => 0.016201992762713
822 => 0.016077090523073
823 => 0.016167967338342
824 => 0.016191099301916
825 => 0.016261112788753
826 => 0.016286136592435
827 => 0.01621049727756
828 => 0.015956642498275
829 => 0.015324060524084
830 => 0.015029591907476
831 => 0.014932412359232
901 => 0.014935944651241
902 => 0.014838508268803
903 => 0.014867207650223
904 => 0.014828527795159
905 => 0.014755277507328
906 => 0.01490283656815
907 => 0.014919841375302
908 => 0.014885399327307
909 => 0.01489351167643
910 => 0.014608346229421
911 => 0.01463002673901
912 => 0.014509306906591
913 => 0.014486673393311
914 => 0.014181504169234
915 => 0.013640852653794
916 => 0.01394042607566
917 => 0.013578583508444
918 => 0.013441548245429
919 => 0.014090251867184
920 => 0.014025140015797
921 => 0.013913696829665
922 => 0.013748849130581
923 => 0.013687705515455
924 => 0.013316216265666
925 => 0.013294266698971
926 => 0.013478386802219
927 => 0.013393421709756
928 => 0.013274098541141
929 => 0.012841922120012
930 => 0.012356012733967
1001 => 0.012370679284014
1002 => 0.01252523801905
1003 => 0.01297463838625
1004 => 0.012799049888079
1005 => 0.012671658418011
1006 => 0.012647801825041
1007 => 0.012946417033224
1008 => 0.013369020114624
1009 => 0.013567296025206
1010 => 0.013370810619549
1011 => 0.013145098765055
1012 => 0.01315883679979
1013 => 0.013250229790134
1014 => 0.013259833901192
1015 => 0.013112918687469
1016 => 0.013154274459571
1017 => 0.013091451260097
1018 => 0.012705905400888
1019 => 0.012698932098874
1020 => 0.012604312927257
1021 => 0.012601447896345
1022 => 0.012440477081566
1023 => 0.01241795615184
1024 => 0.012098338828867
1025 => 0.012308711918738
1026 => 0.012167604695136
1027 => 0.011954922825337
1028 => 0.011918256390819
1029 => 0.011917154153522
1030 => 0.012135530879009
1031 => 0.012306160059556
1101 => 0.012170059315703
1102 => 0.01213907181453
1103 => 0.012469937257145
1104 => 0.012427831613667
1105 => 0.012391368397967
1106 => 0.013331180643836
1107 => 0.012587245916767
1108 => 0.012262847913455
1109 => 0.011861343782846
1110 => 0.011992075552332
1111 => 0.012019622657012
1112 => 0.011054077599457
1113 => 0.010662356089859
1114 => 0.010527932029478
1115 => 0.010450569082252
1116 => 0.010485824348765
1117 => 0.010133229045776
1118 => 0.010370178920773
1119 => 0.010064861192523
1120 => 0.010013673681792
1121 => 0.010559619601511
1122 => 0.010635584786871
1123 => 0.010311493705595
1124 => 0.010519612645354
1125 => 0.010444145824728
1126 => 0.010070094988659
1127 => 0.010055808998053
1128 => 0.009868123437036
1129 => 0.0095744318771307
1130 => 0.0094402069534574
1201 => 0.0093703014478141
1202 => 0.0093991458218736
1203 => 0.0093845612236967
1204 => 0.0092893868551899
1205 => 0.0093900165070924
1206 => 0.0091329493295245
1207 => 0.009030583108086
1208 => 0.0089843466607405
1209 => 0.0087561847444144
1210 => 0.009119291817354
1211 => 0.0091908284850255
1212 => 0.0092625061020311
1213 => 0.0098864108216772
1214 => 0.0098552423050201
1215 => 0.010136990515917
1216 => 0.010126042298543
1217 => 0.010045683144777
1218 => 0.0097066610934767
1219 => 0.009841789240638
1220 => 0.0094258858072521
1221 => 0.0097375089382293
1222 => 0.0095952971549444
1223 => 0.0096894269912485
1224 => 0.0095201730582286
1225 => 0.0096138451730854
1226 => 0.0092077924827658
1227 => 0.0088286261938609
1228 => 0.0089812137770702
1229 => 0.0091470939305255
1230 => 0.0095067643686936
1231 => 0.0092925476229374
]
'min_raw' => 0.0087561847444144
'max_raw' => 0.026137424710658
'avg_raw' => 0.017446804727536
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.008756'
'max' => '$0.026137'
'avg' => '$0.017446'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.016587345255586
'max_diff' => 0.00079389471065772
'year' => 2026
]
1 => [
'items' => [
101 => 0.0093695880651433
102 => 0.0091115154801678
103 => 0.0085790380225738
104 => 0.0085820517871569
105 => 0.008500141730958
106 => 0.0084293594833382
107 => 0.0093171529930875
108 => 0.0092067418362117
109 => 0.0090308161079851
110 => 0.009266299686227
111 => 0.0093285652819411
112 => 0.0093303378959159
113 => 0.0095021406358904
114 => 0.009593831789012
115 => 0.0096099927521619
116 => 0.0098803280755556
117 => 0.009970940910148
118 => 0.010344162351826
119 => 0.0095860524352801
120 => 0.0095704396604369
121 => 0.0092696134230894
122 => 0.0090788246674889
123 => 0.0092826768924122
124 => 0.0094632621350906
125 => 0.0092752247099588
126 => 0.0092997784279943
127 => 0.009047353547977
128 => 0.0091375835648886
129 => 0.0092153018107488
130 => 0.0091723903634522
131 => 0.0091081498499115
201 => 0.009448456204558
202 => 0.0094292547863574
203 => 0.0097461558874135
204 => 0.0099932029575018
205 => 0.010435955472046
206 => 0.0099739201419085
207 => 0.0099570817380542
208 => 0.010121679836695
209 => 0.0099709157110366
210 => 0.010066193434252
211 => 0.010420604757848
212 => 0.010428092910642
213 => 0.01030265670341
214 => 0.0102950238988
215 => 0.010319115294521
216 => 0.010460219351738
217 => 0.010410913258456
218 => 0.010467971517879
219 => 0.010539323744994
220 => 0.010834466809059
221 => 0.010905624802603
222 => 0.010732747769481
223 => 0.01074835662995
224 => 0.010683695873981
225 => 0.010621234393913
226 => 0.01076163867934
227 => 0.011018230270612
228 => 0.01101663402764
301 => 0.011076158289387
302 => 0.01111324141133
303 => 0.010954053505446
304 => 0.010850428032218
305 => 0.010890164632514
306 => 0.010953704321738
307 => 0.010869559567665
308 => 0.010350179165887
309 => 0.010507726001638
310 => 0.010481502504522
311 => 0.010444157055743
312 => 0.010602571617365
313 => 0.010587292146441
314 => 0.010129612671311
315 => 0.010158911826371
316 => 0.010131394449972
317 => 0.010220308722644
318 => 0.0099661140485206
319 => 0.010044302618254
320 => 0.010093341756218
321 => 0.010122226185215
322 => 0.010226576548992
323 => 0.01021433223821
324 => 0.010225815425442
325 => 0.010380539467449
326 => 0.011163080577037
327 => 0.011205672563053
328 => 0.010995934046626
329 => 0.011079720447029
330 => 0.010918868880327
331 => 0.011026849614666
401 => 0.011100727290688
402 => 0.010766888278607
403 => 0.010747120498908
404 => 0.010585605040572
405 => 0.010672394299179
406 => 0.010534306348367
407 => 0.010568188301385
408 => 0.010473451406972
409 => 0.010643958954988
410 => 0.010834612887864
411 => 0.010882779600461
412 => 0.010756073716693
413 => 0.01066433030652
414 => 0.010503259100416
415 => 0.010771124105874
416 => 0.010849455996508
417 => 0.010770712661799
418 => 0.010752466110572
419 => 0.010717888928966
420 => 0.010759801823106
421 => 0.010849029384209
422 => 0.010806951314167
423 => 0.01083474462075
424 => 0.01072882519639
425 => 0.010954106203267
426 => 0.011311906659015
427 => 0.011313057045987
428 => 0.011270978749129
429 => 0.011253761216644
430 => 0.011296936102745
501 => 0.011320356707328
502 => 0.011459976372059
503 => 0.011609793835009
504 => 0.012308926564114
505 => 0.012112612891406
506 => 0.01273292504026
507 => 0.013223511412552
508 => 0.013370616814861
509 => 0.013235286766581
510 => 0.012772329981802
511 => 0.012749615113289
512 => 0.013441468005062
513 => 0.013245987874266
514 => 0.01322273613472
515 => 0.01297537691039
516 => 0.013121596848005
517 => 0.013089616402732
518 => 0.01303913370533
519 => 0.013318111160531
520 => 0.013840332052178
521 => 0.013758939028858
522 => 0.013698182912664
523 => 0.013431967297339
524 => 0.013592288559175
525 => 0.013535201228587
526 => 0.013780484629309
527 => 0.013635184176414
528 => 0.013244506920015
529 => 0.013306723560786
530 => 0.013297319640696
531 => 0.013490851649778
601 => 0.013432758144411
602 => 0.013285975951405
603 => 0.013838547157943
604 => 0.013802666257353
605 => 0.013853537170874
606 => 0.013875932120241
607 => 0.014212272476263
608 => 0.014350060358435
609 => 0.014381340620004
610 => 0.01451222845117
611 => 0.014378084011528
612 => 0.014914757413457
613 => 0.015271613909979
614 => 0.015686121094356
615 => 0.016291827499759
616 => 0.016519578711288
617 => 0.016478437493448
618 => 0.016937677177193
619 => 0.017762920680557
620 => 0.016645242800092
621 => 0.017822160322156
622 => 0.017449561822837
623 => 0.016566137483712
624 => 0.016509255371161
625 => 0.017107520590384
626 => 0.018434415265727
627 => 0.018102043199068
628 => 0.018434958907359
629 => 0.018046595049779
630 => 0.018027309510862
701 => 0.018416096941641
702 => 0.019324519965353
703 => 0.018892962238515
704 => 0.018274218414797
705 => 0.01873108922551
706 => 0.018335305447873
707 => 0.017443493823952
708 => 0.018101789040413
709 => 0.017661605776334
710 => 0.017790074654221
711 => 0.018715274402997
712 => 0.018603951921449
713 => 0.018748013520756
714 => 0.018493748568728
715 => 0.018256225009631
716 => 0.017812869647846
717 => 0.017681613982376
718 => 0.017717888326228
719 => 0.017681596006613
720 => 0.01743354275634
721 => 0.017379975680561
722 => 0.017290694874102
723 => 0.017318366729271
724 => 0.017150492693107
725 => 0.017467305683895
726 => 0.017526108966732
727 => 0.017756659041416
728 => 0.017780595514991
729 => 0.018422674191313
730 => 0.018069028046088
731 => 0.018306284412644
801 => 0.018285061970076
802 => 0.016585283967918
803 => 0.016819498379347
804 => 0.017183862502999
805 => 0.017019716959178
806 => 0.016787653564356
807 => 0.016600249930585
808 => 0.016316314262417
809 => 0.016715948262862
810 => 0.017241424477109
811 => 0.017793922458952
812 => 0.018457712583034
813 => 0.018309562354708
814 => 0.017781513364305
815 => 0.017805201256274
816 => 0.017951630483588
817 => 0.017761991329719
818 => 0.017706063041047
819 => 0.017943946795561
820 => 0.01794558497024
821 => 0.017727382205057
822 => 0.01748488976224
823 => 0.01748387371005
824 => 0.01744072452205
825 => 0.018054271194468
826 => 0.018391659827732
827 => 0.018430340890807
828 => 0.018389056283992
829 => 0.018404945090628
830 => 0.018208626078782
831 => 0.018657353123266
901 => 0.01906914943379
902 => 0.018958779225824
903 => 0.018793318594035
904 => 0.018661521231151
905 => 0.018927731955709
906 => 0.018915878011199
907 => 0.01906555275226
908 => 0.019058762641443
909 => 0.019008432655575
910 => 0.018958781023267
911 => 0.019155644133005
912 => 0.019098950718925
913 => 0.019042169244314
914 => 0.018928285304173
915 => 0.01894376402305
916 => 0.018778331960371
917 => 0.01870179551852
918 => 0.017550871069679
919 => 0.017243306449407
920 => 0.01734007254
921 => 0.017371930449553
922 => 0.017238077932656
923 => 0.017429988057996
924 => 0.017400079068245
925 => 0.017516437451193
926 => 0.017443741785221
927 => 0.017446725240709
928 => 0.017660507693983
929 => 0.017722569649664
930 => 0.017691004438103
1001 => 0.017713111630288
1002 => 0.018222562543329
1003 => 0.018150134914818
1004 => 0.018111659180707
1005 => 0.018122317222004
1006 => 0.018252492853036
1007 => 0.0182889349224
1008 => 0.018134527313769
1009 => 0.018207346834619
1010 => 0.018517403112225
1011 => 0.018625905261721
1012 => 0.018972192038928
1013 => 0.018825083261214
1014 => 0.019095107789427
1015 => 0.019925071131008
1016 => 0.020588103277358
1017 => 0.019978351514613
1018 => 0.02119592561475
1019 => 0.022143981702338
1020 => 0.022107593730626
1021 => 0.021942278222823
1022 => 0.020862941572479
1023 => 0.01986971989483
1024 => 0.020700592002603
1025 => 0.020702710066476
1026 => 0.020631337415555
1027 => 0.020188048010465
1028 => 0.020615911905143
1029 => 0.020649874187329
1030 => 0.020630864340605
1031 => 0.020290995393069
1101 => 0.019772078328464
1102 => 0.019873473480776
1103 => 0.020039560808668
1104 => 0.019725122847522
1105 => 0.019624640866468
1106 => 0.019811455986727
1107 => 0.020413413228676
1108 => 0.020299616698986
1109 => 0.020296645011708
1110 => 0.020783514822959
1111 => 0.020435021111185
1112 => 0.019874752398359
1113 => 0.019733277159334
1114 => 0.019231135369936
1115 => 0.019577966492441
1116 => 0.019590448327088
1117 => 0.019400492465821
1118 => 0.019890166269594
1119 => 0.019885653839287
1120 => 0.020350526237643
1121 => 0.0212391876652
1122 => 0.020976366752698
1123 => 0.020670734626293
1124 => 0.020703965312693
1125 => 0.021068423922177
1126 => 0.020848063927102
1127 => 0.020927306917735
1128 => 0.02106830397842
1129 => 0.021153371005891
1130 => 0.020691725476547
1201 => 0.020584093820599
1202 => 0.020363917226106
1203 => 0.020306477262394
1204 => 0.020485806504473
1205 => 0.020438559584981
1206 => 0.019589399277218
1207 => 0.019500657300374
1208 => 0.019503378890109
1209 => 0.019280232969883
1210 => 0.01893988188038
1211 => 0.019834304222286
1212 => 0.019762469590798
1213 => 0.019683169717194
1214 => 0.019692883499232
1215 => 0.020081121923067
1216 => 0.019855924030732
1217 => 0.020454649536714
1218 => 0.02033156957202
1219 => 0.020205333070655
1220 => 0.020187883340909
1221 => 0.020139293057876
1222 => 0.019972658897707
1223 => 0.019771438136142
1224 => 0.019638574759913
1225 => 0.018115547124886
1226 => 0.018398212194903
1227 => 0.018723392592225
1228 => 0.018835643562302
1229 => 0.018643630510455
1230 => 0.019980240743327
1231 => 0.020224452312769
]
'min_raw' => 0.0084293594833382
'max_raw' => 0.022143981702338
'avg_raw' => 0.015286670592838
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.008429'
'max' => '$0.022143'
'avg' => '$0.015286'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00032682526107618
'max_diff' => -0.0039934430083202
'year' => 2027
]
2 => [
'items' => [
101 => 0.019484719539402
102 => 0.019346345740595
103 => 0.01998931250654
104 => 0.019601524947185
105 => 0.019776145661418
106 => 0.01939871118967
107 => 0.02016562889704
108 => 0.020159786269048
109 => 0.019861437959259
110 => 0.020113599907692
111 => 0.020069780563751
112 => 0.019732946056799
113 => 0.020176307151711
114 => 0.020176527053283
115 => 0.019889373291763
116 => 0.019554040564348
117 => 0.019494090992892
118 => 0.019448927043891
119 => 0.019765038098564
120 => 0.02004846228173
121 => 0.020575844419788
122 => 0.020708440819586
123 => 0.021225973395441
124 => 0.020917807944724
125 => 0.021054413697616
126 => 0.021202718566445
127 => 0.021273821374292
128 => 0.021157963164492
129 => 0.021961904279701
130 => 0.022029781541944
131 => 0.022052540200838
201 => 0.021781455780113
202 => 0.022022242193816
203 => 0.021909586204852
204 => 0.0222026857914
205 => 0.022248647549055
206 => 0.022209719575458
207 => 0.022224308562795
208 => 0.021538286645894
209 => 0.021502712790449
210 => 0.021017660747248
211 => 0.021215323040176
212 => 0.020845802857748
213 => 0.020962981514076
214 => 0.021014632749266
215 => 0.020987653075184
216 => 0.021226498569649
217 => 0.021023431106443
218 => 0.020487502683662
219 => 0.01995142824754
220 => 0.019944698269671
221 => 0.01980355933314
222 => 0.019701541732914
223 => 0.019721193941986
224 => 0.019790450890035
225 => 0.019697516393191
226 => 0.019717348679991
227 => 0.020046696782712
228 => 0.02011274519591
229 => 0.019888286881084
301 => 0.018987054357877
302 => 0.018765889636111
303 => 0.018924858452229
304 => 0.018848881597028
305 => 0.015212518543694
306 => 0.016066828104139
307 => 0.015559226372934
308 => 0.015793152604306
309 => 0.015275022679576
310 => 0.015522301437173
311 => 0.01547663807982
312 => 0.016850342572158
313 => 0.016828894065979
314 => 0.016839160330857
315 => 0.016349124759607
316 => 0.017129764730524
317 => 0.017514336051103
318 => 0.017443162134698
319 => 0.017461075076075
320 => 0.017153271394799
321 => 0.016842140543317
322 => 0.016497048546329
323 => 0.017138186822073
324 => 0.017066903190406
325 => 0.01723040219441
326 => 0.017646226195741
327 => 0.017707457859498
328 => 0.017789753836539
329 => 0.017760256586997
330 => 0.018463000742282
331 => 0.018377893788222
401 => 0.018582977060566
402 => 0.018161105209649
403 => 0.017683717165894
404 => 0.017774453026021
405 => 0.017765714433039
406 => 0.017654462114689
407 => 0.01755402849611
408 => 0.017386834818172
409 => 0.017915860355176
410 => 0.017894382884487
411 => 0.018242078170102
412 => 0.018180619651038
413 => 0.017770184619277
414 => 0.01778484338673
415 => 0.017883430642621
416 => 0.01822464226091
417 => 0.018325937100676
418 => 0.018279013294995
419 => 0.018390078462513
420 => 0.018477859842429
421 => 0.018401102452325
422 => 0.019487825229183
423 => 0.019036542166184
424 => 0.019256494391083
425 => 0.019308951700687
426 => 0.019174583405193
427 => 0.019203723077118
428 => 0.019247861739999
429 => 0.019515863057773
430 => 0.020219176062418
501 => 0.020530668604563
502 => 0.021467809286374
503 => 0.020504803485123
504 => 0.020447662706191
505 => 0.020616470041923
506 => 0.021166670828562
507 => 0.021612556888401
508 => 0.021760483018233
509 => 0.021780033898285
510 => 0.022057553151794
511 => 0.022216622012477
512 => 0.022023855014937
513 => 0.021860505168067
514 => 0.021275406292309
515 => 0.021343133080349
516 => 0.021809703488523
517 => 0.022468761670928
518 => 0.023034302154749
519 => 0.022836269588391
520 => 0.0243471182805
521 => 0.024496912757059
522 => 0.024476216003834
523 => 0.024817470113842
524 => 0.024140150200666
525 => 0.023850582815328
526 => 0.02189582325906
527 => 0.022445030960765
528 => 0.023243336609031
529 => 0.02313767786299
530 => 0.022557926962449
531 => 0.023033862361704
601 => 0.022876503234834
602 => 0.022752387562636
603 => 0.023320985517983
604 => 0.022695788709362
605 => 0.023237099792614
606 => 0.022542862729197
607 => 0.022837174184473
608 => 0.022670108768215
609 => 0.022778220567301
610 => 0.02214620119893
611 => 0.0224872235087
612 => 0.022132013549666
613 => 0.022131845133896
614 => 0.022124003854363
615 => 0.022541906795924
616 => 0.022555534595845
617 => 0.022246703690615
618 => 0.022202196332326
619 => 0.022366763363171
620 => 0.022174098470225
621 => 0.022264245161016
622 => 0.022176828921655
623 => 0.022157149684907
624 => 0.022000342178354
625 => 0.021932785193018
626 => 0.021959276027697
627 => 0.021868849151976
628 => 0.021814363688472
629 => 0.022113165324292
630 => 0.021953527663897
701 => 0.02208869856331
702 => 0.021934654263501
703 => 0.021400669606456
704 => 0.021093569383404
705 => 0.02008492186665
706 => 0.020370973051178
707 => 0.020560625282462
708 => 0.020497945221154
709 => 0.020632606246807
710 => 0.02064087334011
711 => 0.020597093667964
712 => 0.020546402416142
713 => 0.020521728718157
714 => 0.020705626248156
715 => 0.020812384954026
716 => 0.020579659421091
717 => 0.0205251350849
718 => 0.020760433447827
719 => 0.020903965313284
720 => 0.021963723964236
721 => 0.021885213620398
722 => 0.022082259176554
723 => 0.022060074870842
724 => 0.022266610005512
725 => 0.022604207662438
726 => 0.021917777232118
727 => 0.022036917819843
728 => 0.022007707299091
729 => 0.022326620105254
730 => 0.022327615716224
731 => 0.022136411558054
801 => 0.022240066434131
802 => 0.022182209125927
803 => 0.022286765101736
804 => 0.021884165066891
805 => 0.022374488451344
806 => 0.022652470214588
807 => 0.02265632999164
808 => 0.022788091141218
809 => 0.02292196810028
810 => 0.023178933264975
811 => 0.022914801481305
812 => 0.022439654115194
813 => 0.022473958220311
814 => 0.02219537949341
815 => 0.022200062452138
816 => 0.022175064451435
817 => 0.022250085333307
818 => 0.021900627931671
819 => 0.02198264488535
820 => 0.021867820669909
821 => 0.022036668214424
822 => 0.021855016168025
823 => 0.022007693212894
824 => 0.022073583564135
825 => 0.022316720378731
826 => 0.021819104662821
827 => 0.020804432532457
828 => 0.02101772891597
829 => 0.020702246810685
830 => 0.020731445880654
831 => 0.020790432648989
901 => 0.020599237233545
902 => 0.020635711293552
903 => 0.020634408183464
904 => 0.020623178684728
905 => 0.020573441372853
906 => 0.020501312430408
907 => 0.020788651936992
908 => 0.020837476518338
909 => 0.020946007514585
910 => 0.021268922142138
911 => 0.021236655355994
912 => 0.021289283822931
913 => 0.021174396175104
914 => 0.020736775189131
915 => 0.020760540114127
916 => 0.020464191118615
917 => 0.020938429204486
918 => 0.020826123366115
919 => 0.020753719061525
920 => 0.020733962876196
921 => 0.021057677946652
922 => 0.021154538569344
923 => 0.021094181529357
924 => 0.020970387479447
925 => 0.021208108651699
926 => 0.021271712808743
927 => 0.021285951433874
928 => 0.021707147772593
929 => 0.021309491630301
930 => 0.021405211416113
1001 => 0.022151989860598
1002 => 0.021474764859831
1003 => 0.021833506046657
1004 => 0.021815947532361
1005 => 0.021999467384401
1006 => 0.021800893547951
1007 => 0.021803355108642
1008 => 0.021966308304542
1009 => 0.021737469929664
1010 => 0.021680806329883
1011 => 0.021602525972618
1012 => 0.021773448268877
1013 => 0.021875908455334
1014 => 0.022701662309461
1015 => 0.023235136958177
1016 => 0.023211977416737
1017 => 0.023423612272655
1018 => 0.023328268831711
1019 => 0.023020379710574
1020 => 0.023545908897276
1021 => 0.023379609473528
1022 => 0.023393318995968
1023 => 0.023392808726858
1024 => 0.023503383305503
1025 => 0.023425031082522
1026 => 0.023270590808336
1027 => 0.023373115469767
1028 => 0.023677577060977
1029 => 0.024622635182119
1030 => 0.025151502227064
1031 => 0.024590796721948
1101 => 0.024977563871231
1102 => 0.024745641400887
1103 => 0.02470349418893
1104 => 0.024946412540548
1105 => 0.025189756088583
1106 => 0.025174256156576
1107 => 0.024997601236532
1108 => 0.024897813354652
1109 => 0.025653440627642
1110 => 0.026210173930606
1111 => 0.026172208451731
1112 => 0.026339775728449
1113 => 0.026831758435554
1114 => 0.026876739168563
1115 => 0.026871072630074
1116 => 0.026759583190056
1117 => 0.027244004057228
1118 => 0.027648116467197
1119 => 0.026733776605931
1120 => 0.027081945255514
1121 => 0.027238249379604
1122 => 0.027467750207114
1123 => 0.027854956571927
1124 => 0.028275565385529
1125 => 0.028335044083514
1126 => 0.028292841100976
1127 => 0.028015438281833
1128 => 0.028475673464584
1129 => 0.028745268440796
1130 => 0.028905806079559
1201 => 0.029312902820547
1202 => 0.027239214660662
1203 => 0.025771355112108
1204 => 0.025542127647452
1205 => 0.026008270710754
1206 => 0.026131188919126
1207 => 0.026081640743457
1208 => 0.024429431369607
1209 => 0.025533429107031
1210 => 0.026721237845733
1211 => 0.02676686641689
1212 => 0.027361508307394
1213 => 0.027555148082136
1214 => 0.028033912745486
1215 => 0.02800396588544
1216 => 0.028120537462156
1217 => 0.028093739675407
1218 => 0.028980550398468
1219 => 0.029958834318672
1220 => 0.029924959457267
1221 => 0.029784319569208
1222 => 0.029993193785641
1223 => 0.031002887630567
1224 => 0.03090993120134
1225 => 0.031000230454324
1226 => 0.032190716401343
1227 => 0.033738517477119
1228 => 0.033019408480734
1229 => 0.034579668084851
1230 => 0.035561768799834
1231 => 0.037260210435289
]
'min_raw' => 0.015212518543694
'max_raw' => 0.037260210435289
'avg_raw' => 0.026236364489491
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.015212'
'max' => '$0.03726'
'avg' => '$0.026236'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0067831590603554
'max_diff' => 0.015116228732952
'year' => 2028
]
3 => [
'items' => [
101 => 0.037047557177529
102 => 0.037708748042471
103 => 0.036666863464063
104 => 0.034274485872426
105 => 0.033895882960896
106 => 0.034653855577532
107 => 0.036517257293645
108 => 0.034595170426208
109 => 0.034984006096159
110 => 0.034872021397055
111 => 0.034866054208344
112 => 0.03509379753113
113 => 0.034763443963136
114 => 0.033417524097655
115 => 0.034034351240449
116 => 0.033796164658144
117 => 0.034060450429198
118 => 0.035486691735831
119 => 0.034856116456822
120 => 0.034191856624162
121 => 0.035024985865375
122 => 0.036085845683706
123 => 0.036019458982823
124 => 0.035890641035622
125 => 0.036616781059305
126 => 0.037816151639365
127 => 0.038140336687694
128 => 0.038379643462699
129 => 0.038412639823851
130 => 0.038752522850842
131 => 0.036924886153162
201 => 0.039825392529419
202 => 0.040326229855726
203 => 0.040232093195961
204 => 0.040788752805696
205 => 0.04062496942742
206 => 0.040387673009124
207 => 0.041270096895448
208 => 0.040258469117714
209 => 0.038822590847615
210 => 0.038034839630186
211 => 0.039072213979374
212 => 0.039705702295047
213 => 0.040124397774283
214 => 0.040251094773317
215 => 0.037066760387389
216 => 0.035350580764655
217 => 0.036450632226788
218 => 0.037792770932086
219 => 0.036917430504888
220 => 0.036951742192396
221 => 0.035703736778628
222 => 0.037903191718955
223 => 0.037582749634477
224 => 0.039245203735601
225 => 0.03884844572234
226 => 0.04020411250571
227 => 0.039847120008307
228 => 0.041328975905844
301 => 0.041920128343018
302 => 0.042912765290564
303 => 0.043642953069938
304 => 0.044071733300253
305 => 0.044045990943539
306 => 0.045745031833508
307 => 0.044743166780661
308 => 0.043484588152821
309 => 0.043461824436208
310 => 0.044113660141763
311 => 0.045479728958215
312 => 0.045833930726828
313 => 0.046031881194388
314 => 0.045728713162614
315 => 0.044641260452063
316 => 0.044171703885157
317 => 0.044571779684524
318 => 0.044082521360804
319 => 0.044927118489185
320 => 0.046086930742665
321 => 0.045847434098716
322 => 0.046648035472093
323 => 0.047476573667818
324 => 0.048661420499683
325 => 0.048971183336284
326 => 0.04948320952596
327 => 0.050010252666977
328 => 0.050179524719661
329 => 0.050502717590267
330 => 0.050501014204307
331 => 0.051474977673269
401 => 0.052549289540673
402 => 0.052954817400241
403 => 0.053887306352381
404 => 0.052290451700151
405 => 0.053501684297211
406 => 0.054594246418878
407 => 0.053291648816378
408 => 0.055086976145108
409 => 0.055156684636983
410 => 0.056209200102568
411 => 0.055142274040633
412 => 0.054508736750804
413 => 0.056337735168207
414 => 0.057222729889477
415 => 0.056956162277105
416 => 0.054927569584882
417 => 0.053746841627575
418 => 0.05065664881789
419 => 0.054317115687358
420 => 0.056100022322193
421 => 0.054922952287417
422 => 0.055516597946883
423 => 0.058755336174678
424 => 0.059988437999051
425 => 0.059731961439614
426 => 0.059775301756195
427 => 0.060440661118246
428 => 0.063391230949672
429 => 0.061623181113008
430 => 0.062974788965574
501 => 0.06369167689699
502 => 0.064357562360288
503 => 0.062722358117691
504 => 0.060594981423992
505 => 0.059921151923899
506 => 0.054805915869973
507 => 0.054539645619022
508 => 0.054390180058349
509 => 0.053447820840628
510 => 0.052707384629413
511 => 0.05211856226362
512 => 0.050573316538539
513 => 0.05109479160959
514 => 0.048631992441657
515 => 0.050207604073057
516 => 0.046276917134672
517 => 0.049550510017952
518 => 0.047768842243587
519 => 0.048965184236272
520 => 0.048961010311762
521 => 0.046758165402654
522 => 0.045487610431281
523 => 0.046297257509779
524 => 0.047165263447794
525 => 0.047306094490914
526 => 0.048431486846824
527 => 0.048745559663131
528 => 0.047793904367064
529 => 0.04619546238466
530 => 0.046566744000592
531 => 0.045480086421184
601 => 0.043575760810952
602 => 0.044943480710556
603 => 0.04541048041868
604 => 0.045616734094174
605 => 0.043744048569784
606 => 0.04315561012004
607 => 0.042842330426874
608 => 0.045953722199639
609 => 0.046124171264521
610 => 0.045252129749516
611 => 0.049193840087707
612 => 0.048301709640296
613 => 0.04929843792732
614 => 0.046533054085536
615 => 0.046638695472375
616 => 0.045329518444433
617 => 0.04606257010084
618 => 0.045544472817449
619 => 0.04600334677116
620 => 0.046278393927006
621 => 0.047587356131881
622 => 0.049565456263717
623 => 0.047391840828515
624 => 0.046444765456652
625 => 0.047032325690802
626 => 0.048597076022126
627 => 0.050967752872178
628 => 0.049564264462629
629 => 0.050187108786008
630 => 0.050323172562251
701 => 0.049288292169015
702 => 0.051005910388414
703 => 0.051926395946096
704 => 0.052870623660629
705 => 0.053690470128499
706 => 0.052493478347432
707 => 0.053774431135205
708 => 0.052742209306866
709 => 0.051816199617715
710 => 0.051817603992173
711 => 0.051236704587326
712 => 0.050111138792398
713 => 0.049903567190536
714 => 0.050983380876826
715 => 0.051849289194494
716 => 0.051920609550959
717 => 0.052400020887596
718 => 0.052683731578288
719 => 0.055464482033053
720 => 0.056582922869533
721 => 0.05795053115338
722 => 0.058483291654118
723 => 0.060086709756129
724 => 0.058791819415504
725 => 0.058511661745068
726 => 0.054622293903654
727 => 0.055259177669799
728 => 0.05627889002954
729 => 0.054639108584882
730 => 0.055679172485857
731 => 0.055884503131475
801 => 0.054583389438863
802 => 0.055278370479891
803 => 0.053432706882438
804 => 0.049605686686525
805 => 0.051010170955904
806 => 0.05204434412246
807 => 0.050568451501152
808 => 0.053213931899915
809 => 0.051668496864758
810 => 0.051178668152578
811 => 0.049267671709817
812 => 0.050169588469802
813 => 0.051389443801884
814 => 0.050635715030061
815 => 0.052199815404539
816 => 0.054414998665133
817 => 0.055993670173076
818 => 0.056114860969014
819 => 0.055099880952183
820 => 0.056726392906671
821 => 0.056738240270555
822 => 0.054903528141397
823 => 0.053779777178008
824 => 0.053524458594733
825 => 0.05416229447391
826 => 0.054936744982228
827 => 0.056157837582324
828 => 0.056895718266558
829 => 0.058819719749366
830 => 0.059340299385168
831 => 0.059912258575031
901 => 0.060676572438369
902 => 0.061594327197359
903 => 0.059586332032496
904 => 0.059666113423768
905 => 0.057796296128833
906 => 0.055798128190271
907 => 0.05731448858049
908 => 0.059296928077731
909 => 0.058842154266663
910 => 0.058790982922732
911 => 0.058877038929477
912 => 0.058534154327456
913 => 0.05698329998041
914 => 0.056204470636185
915 => 0.057209359190791
916 => 0.05774341273512
917 => 0.058571683208012
918 => 0.058469581389559
919 => 0.060603117177972
920 => 0.061432144670576
921 => 0.061220043961881
922 => 0.06125907559677
923 => 0.062759990272614
924 => 0.0644293160788
925 => 0.065992859983234
926 => 0.067583363998598
927 => 0.065665949329649
928 => 0.064692404410452
929 => 0.065696854262151
930 => 0.065163879032185
1001 => 0.068226512794297
1002 => 0.068438562911083
1003 => 0.071500975209915
1004 => 0.074407569146779
1005 => 0.072581989572074
1006 => 0.074303428885111
1007 => 0.076165305853167
1008 => 0.079757168603199
1009 => 0.078547555592244
1010 => 0.077621010982904
1011 => 0.076745430804109
1012 => 0.078567374161742
1013 => 0.080911275185081
1014 => 0.081416129015903
1015 => 0.082234185090842
1016 => 0.081374099155182
1017 => 0.082409977929327
1018 => 0.086067085190257
1019 => 0.085078902526175
1020 => 0.083675524284888
1021 => 0.086562459235077
1022 => 0.087607229770875
1023 => 0.094939976541683
1024 => 0.10419787224049
1025 => 0.10036504263056
1026 => 0.097985881607043
1027 => 0.098545040882024
1028 => 0.10192571099168
1029 => 0.1030114749338
1030 => 0.10005999425385
1031 => 0.10110250712666
1101 => 0.10684685555346
1102 => 0.10992851418367
1103 => 0.10574320784187
1104 => 0.094196113636496
1105 => 0.083549165428954
1106 => 0.08637321553192
1107 => 0.086053055890722
1108 => 0.092224641653254
1109 => 0.08505533469645
1110 => 0.08517604743889
1111 => 0.091475255059168
1112 => 0.089794734461836
1113 => 0.087072506318975
1114 => 0.083569040706995
1115 => 0.077092560491904
1116 => 0.071356161355387
1117 => 0.082606561075921
1118 => 0.082121423382447
1119 => 0.081418872108919
1120 => 0.082982323944168
1121 => 0.090574002262592
1122 => 0.090398989505488
1123 => 0.089285647637083
1124 => 0.090130107631723
1125 => 0.08692446839901
1126 => 0.087750634620329
1127 => 0.083547478897961
1128 => 0.08544748082376
1129 => 0.087066665639995
1130 => 0.087391740964295
1201 => 0.088124152268701
1202 => 0.081865777862813
1203 => 0.084675604234838
1204 => 0.086326113983275
1205 => 0.078869050893777
1206 => 0.086178711822282
1207 => 0.081756833488033
1208 => 0.080255981567006
1209 => 0.082276680956464
1210 => 0.081489212439198
1211 => 0.080812193249755
1212 => 0.080434404909379
1213 => 0.081918183524544
1214 => 0.081848963478648
1215 => 0.079421213675219
1216 => 0.076254313024387
1217 => 0.077317228832776
1218 => 0.076931061554699
1219 => 0.075531541522379
1220 => 0.07647464904547
1221 => 0.072321680809573
1222 => 0.065176714812217
1223 => 0.069896898206297
1224 => 0.069715176280197
1225 => 0.069623543844623
1226 => 0.073170631208988
1227 => 0.072829660604134
1228 => 0.072210795617528
1229 => 0.07552017558158
1230 => 0.074312207377259
1231 => 0.078034880749872
]
'min_raw' => 0.033417524097655
'max_raw' => 0.10992851418367
'avg_raw' => 0.071673019140663
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.033417'
'max' => '$0.109928'
'avg' => '$0.071673'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.018205005553962
'max_diff' => 0.072668303748383
'year' => 2029
]
4 => [
'items' => [
101 => 0.080486874200493
102 => 0.079864969347737
103 => 0.082171081039559
104 => 0.077341716266213
105 => 0.078945837523434
106 => 0.079276444691331
107 => 0.075479338346526
108 => 0.072885447611943
109 => 0.072712464672465
110 => 0.06821501559886
111 => 0.070617516591839
112 => 0.072731618043415
113 => 0.07171912750901
114 => 0.071398603253112
115 => 0.073036092163267
116 => 0.07316333907573
117 => 0.070262095986547
118 => 0.070865356295208
119 => 0.073381052066006
120 => 0.070801967216395
121 => 0.065791226644719
122 => 0.064548493704035
123 => 0.064382690221635
124 => 0.061012299924108
125 => 0.06463153906149
126 => 0.063051644188444
127 => 0.06804251316235
128 => 0.065191755571022
129 => 0.065068865108997
130 => 0.064883098151535
131 => 0.061982063993383
201 => 0.062617206103679
202 => 0.06472851521318
203 => 0.065481854089049
204 => 0.065403274672372
205 => 0.064718168646722
206 => 0.065031806676954
207 => 0.064021469302844
208 => 0.063664698147691
209 => 0.062538630244392
210 => 0.060883621510741
211 => 0.061113760625914
212 => 0.05783475526796
213 => 0.05604817911896
214 => 0.055553678387612
215 => 0.054892411343046
216 => 0.055628370259861
217 => 0.057825466257766
218 => 0.055175302344374
219 => 0.050631782202247
220 => 0.05090485550457
221 => 0.0515183701387
222 => 0.050375089676805
223 => 0.049293070667877
224 => 0.050233798409163
225 => 0.048308649028776
226 => 0.05175101524381
227 => 0.051657908884813
228 => 0.052941010135279
301 => 0.053743359679084
302 => 0.051894203744363
303 => 0.051429146027431
304 => 0.05169406403869
305 => 0.04731555942473
306 => 0.052583192895733
307 => 0.052628747608734
308 => 0.052238680498956
309 => 0.055043532702327
310 => 0.060962645706783
311 => 0.058735637298738
312 => 0.057873272331457
313 => 0.056233915898272
314 => 0.058418261010138
315 => 0.058250537386639
316 => 0.05749202755388
317 => 0.057033278440332
318 => 0.057878537748059
319 => 0.056928541458034
320 => 0.056757896020193
321 => 0.055723970330946
322 => 0.055354905900506
323 => 0.055081665289086
324 => 0.054780854223982
325 => 0.055444368476156
326 => 0.05394075788816
327 => 0.052127550919801
328 => 0.051976802379553
329 => 0.052393032353124
330 => 0.052208881574496
331 => 0.051975920736473
401 => 0.051531135053577
402 => 0.051399176642804
403 => 0.051827977460696
404 => 0.051343886337937
405 => 0.052058189159376
406 => 0.051863938316122
407 => 0.050778868896285
408 => 0.049426470655015
409 => 0.049414431473916
410 => 0.049123059491212
411 => 0.048751953463168
412 => 0.048648720255922
413 => 0.050154572942695
414 => 0.053271642937936
415 => 0.052659687512707
416 => 0.053101888023149
417 => 0.055277076872596
418 => 0.055968503997624
419 => 0.055477745401628
420 => 0.054805964766757
421 => 0.054835519705346
422 => 0.057131197496529
423 => 0.05727437610443
424 => 0.057636142255424
425 => 0.058101113994555
426 => 0.055556932099396
427 => 0.054715688966879
428 => 0.0543170613003
429 => 0.053089442375559
430 => 0.0544133241378
501 => 0.053641954929212
502 => 0.053746038989175
503 => 0.053678254108579
504 => 0.053715269236978
505 => 0.051750053032297
506 => 0.05246607452856
507 => 0.05127554991637
508 => 0.049681571103307
509 => 0.049676227527404
510 => 0.050066351583713
511 => 0.049834290529465
512 => 0.049209820199318
513 => 0.049298523262298
514 => 0.048521391092839
515 => 0.049392881178103
516 => 0.049417872395407
517 => 0.049082301242195
518 => 0.050424951961
519 => 0.050975037055993
520 => 0.050754156934318
521 => 0.050959539517835
522 => 0.052685117023438
523 => 0.052966461449076
524 => 0.053091416058375
525 => 0.052923993435228
526 => 0.05099107990695
527 => 0.051076812841312
528 => 0.050447761453659
529 => 0.049916279318893
530 => 0.049937535817027
531 => 0.050210786722138
601 => 0.051404089450709
602 => 0.05391532469395
603 => 0.054010624235741
604 => 0.054126130060477
605 => 0.053656309822701
606 => 0.053514607543414
607 => 0.053701549426255
608 => 0.05464463734914
609 => 0.057070515532673
610 => 0.056213048163656
611 => 0.055515913845371
612 => 0.05612748858857
613 => 0.056033341450536
614 => 0.055238644859196
615 => 0.055216340372697
616 => 0.053691063534047
617 => 0.053127203415671
618 => 0.052655999696558
619 => 0.052141457536371
620 => 0.051836419696203
621 => 0.052305096455921
622 => 0.052412288376088
623 => 0.051387518449899
624 => 0.051247846095614
625 => 0.052084695338536
626 => 0.05171642918761
627 => 0.052095200056398
628 => 0.052183078146993
629 => 0.052168927750403
630 => 0.051784415593739
701 => 0.052029492176079
702 => 0.051449812997999
703 => 0.050819498956834
704 => 0.050417397868524
705 => 0.050066511338003
706 => 0.050261203578781
707 => 0.049567161289807
708 => 0.049345123193252
709 => 0.05194646574438
710 => 0.053868105456044
711 => 0.053840164053583
712 => 0.053670077952051
713 => 0.053417364505879
714 => 0.054626149786498
715 => 0.054205033165155
716 => 0.054511430692653
717 => 0.054589421722865
718 => 0.054825477081921
719 => 0.05490984658314
720 => 0.05465482335207
721 => 0.053798934240136
722 => 0.051666139948688
723 => 0.050673318448652
724 => 0.05034567081689
725 => 0.050357580186013
726 => 0.050029066619832
727 => 0.050125828588018
728 => 0.049995416756127
729 => 0.049748448296536
730 => 0.05024595397234
731 => 0.05030328686689
801 => 0.050187163097407
802 => 0.050214514448862
803 => 0.049253059234655
804 => 0.04932615658642
805 => 0.048919141243029
806 => 0.048842830772787
807 => 0.047813931427574
808 => 0.045991087096186
809 => 0.047001119803556
810 => 0.045781142325144
811 => 0.045319118368394
812 => 0.047506267920181
813 => 0.047286738767267
814 => 0.046911000284507
815 => 0.046355204757745
816 => 0.046149054790437
817 => 0.044896552848224
818 => 0.04482254835164
819 => 0.045443322134598
820 => 0.045156856393285
821 => 0.044754549999421
822 => 0.04329743702199
823 => 0.041659159601831
824 => 0.041708608899301
825 => 0.042229714465418
826 => 0.043744899179566
827 => 0.043152890298787
828 => 0.042723381063262
829 => 0.042642946894449
830 => 0.043649748917488
831 => 0.045074584711634
901 => 0.045743085787343
902 => 0.045080621523995
903 => 0.044319618247869
904 => 0.044365936991137
905 => 0.044674074838938
906 => 0.044706455769907
907 => 0.04421112086955
908 => 0.04435055474256
909 => 0.044138741939357
910 => 0.042838847157081
911 => 0.04281533618248
912 => 0.042496321039275
913 => 0.042486661387523
914 => 0.041943937046874
915 => 0.041868006159941
916 => 0.040790394040568
917 => 0.041499681600849
918 => 0.041023928744681
919 => 0.040306856971682
920 => 0.040183233527736
921 => 0.040179517257731
922 => 0.040915789634287
923 => 0.04149107782945
924 => 0.041032204669301
925 => 0.040927728145618
926 => 0.042043264085682
927 => 0.041901301968973
928 => 0.04177836369146
929 => 0.044947006294004
930 => 0.042438778421825
1001 => 0.041345047904913
1002 => 0.039991348696443
1003 => 0.040432119984665
1004 => 0.040524996971371
1005 => 0.037269594397623
1006 => 0.035948877978888
1007 => 0.035495657874126
1008 => 0.035234823296244
1009 => 0.03535368888874
1010 => 0.034164889207293
1011 => 0.034963782254157
1012 => 0.03393438221676
1013 => 0.033761799950533
1014 => 0.035602494735593
1015 => 0.035858616661751
1016 => 0.034765920953915
1017 => 0.035467608489712
1018 => 0.035213166835046
1019 => 0.033952028325844
1020 => 0.033903862111099
1021 => 0.033271067138344
1022 => 0.032280865539233
1023 => 0.031828316837784
1024 => 0.031592625544861
1025 => 0.031689876365852
1026 => 0.031640703374835
1027 => 0.031319816346552
1028 => 0.031659096243679
1029 => 0.030792376306652
1030 => 0.03044724144409
1031 => 0.030291352033739
1101 => 0.02952208820309
1102 => 0.030746329050832
1103 => 0.030987519920417
1104 => 0.031229186010523
1105 => 0.033332724332446
1106 => 0.03322763750242
1107 => 0.034177571266491
1108 => 0.034140658587235
1109 => 0.033869722089815
1110 => 0.032726685574093
1111 => 0.033182279556593
1112 => 0.031780032093482
1113 => 0.032830691236404
1114 => 0.032351214280149
1115 => 0.032668579595184
1116 => 0.032097928143075
1117 => 0.032413750218293
1118 => 0.031044715223187
1119 => 0.029766329607599
1120 => 0.030280789297714
1121 => 0.030840065816471
1122 => 0.032052719810143
1123 => 0.03133047309569
1124 => 0.031590220325379
1125 => 0.030720110587082
1126 => 0.028924825662415
1127 => 0.028934986780121
1128 => 0.028658821306869
1129 => 0.02842017401716
1130 => 0.031413431819043
1201 => 0.031041172894976
1202 => 0.030448027019518
1203 => 0.031241976344499
1204 => 0.031451909147694
1205 => 0.03145788563947
1206 => 0.032037130572178
1207 => 0.0323462736966
1208 => 0.032400761512182
1209 => 0.033312215929213
1210 => 0.033617723427427
1211 => 0.034876065575533
1212 => 0.032320045062355
1213 => 0.032267405501922
1214 => 0.031253148839688
1215 => 0.030609891229735
1216 => 0.031297193238572
1217 => 0.031906048992321
1218 => 0.031272067685136
1219 => 0.031354852259778
1220 => 0.030503784153057
1221 => 0.030808000954734
1222 => 0.031070033446766
1223 => 0.030925354506224
1224 => 0.030708763129692
1225 => 0.031856129763813
1226 => 0.03179139084175
1227 => 0.032859845029289
1228 => 0.033692781474367
1229 => 0.035185552489147
1230 => 0.033627768115311
1231 => 0.033570996261097
]
'min_raw' => 0.02842017401716
'max_raw' => 0.082171081039559
'avg_raw' => 0.05529562752836
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.02842'
'max' => '$0.082171'
'avg' => '$0.055295'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.004997350080495
'max_diff' => -0.027757433144113
'year' => 2030
]
5 => [
'items' => [
101 => 0.034125950242537
102 => 0.033617638466864
103 => 0.033938873962763
104 => 0.035133796484476
105 => 0.035159043314426
106 => 0.034736126384068
107 => 0.034710391850421
108 => 0.0347916176731
109 => 0.035267359853577
110 => 0.035101120917638
111 => 0.035293496822961
112 => 0.035534065838333
113 => 0.036529161285059
114 => 0.036769075428384
115 => 0.036186208441324
116 => 0.036238834804171
117 => 0.036020826550954
118 => 0.035810233309982
119 => 0.036283616161014
120 => 0.03714873262564
121 => 0.037143350781013
122 => 0.037344040985345
123 => 0.037469069320036
124 => 0.036932356181206
125 => 0.036582975663316
126 => 0.036716950385535
127 => 0.036931178883953
128 => 0.036647478970798
129 => 0.034896351684221
130 => 0.035427531840524
131 => 0.035339117489133
201 => 0.035213204701199
202 => 0.035747310455856
203 => 0.03569579465286
204 => 0.034152696348297
205 => 0.034251480495185
206 => 0.034158703739452
207 => 0.034458484417562
208 => 0.03360144932645
209 => 0.033865067548257
210 => 0.034030406425706
211 => 0.034127792294717
212 => 0.034479616831701
213 => 0.034438334283029
214 => 0.034477050650512
215 => 0.034998713560624
216 => 0.037637105546879
217 => 0.037780707401407
218 => 0.0370735593498
219 => 0.037356051048538
220 => 0.036813728761104
221 => 0.037177793345902
222 => 0.037426877088583
223 => 0.036301315551457
224 => 0.036234667102062
225 => 0.035690106457633
226 => 0.035982722502457
227 => 0.035517149335303
228 => 0.035631384705465
301 => 0.035311972651632
302 => 0.035886850754225
303 => 0.03652965379995
304 => 0.036692051234362
305 => 0.036264853500916
306 => 0.035955534188199
307 => 0.035412471371184
308 => 0.036315596938824
309 => 0.036579698377056
310 => 0.036314209726401
311 => 0.036252690205002
312 => 0.036136110823116
313 => 0.036277423071976
314 => 0.036578260023904
315 => 0.036436390872961
316 => 0.036530097946572
317 => 0.036172983212282
318 => 0.036932533855587
319 => 0.038138883072973
320 => 0.038142761682964
321 => 0.038000891767294
322 => 0.037942841654431
323 => 0.038088408797296
324 => 0.038167373000823
325 => 0.038638110448398
326 => 0.039143230484654
327 => 0.04150040529272
328 => 0.040838520039002
329 => 0.042929945757675
330 => 0.044583991963505
331 => 0.045079968097958
401 => 0.044623693391741
402 => 0.043062802269248
403 => 0.042986217504155
404 => 0.045318847832393
405 => 0.044659772923428
406 => 0.044581378060166
407 => 0.043747389165266
408 => 0.044240379893686
409 => 0.044132555589643
410 => 0.043962349650765
411 => 0.044902941618558
412 => 0.046663645815043
413 => 0.046389223554242
414 => 0.046184380066636
415 => 0.045286815532989
416 => 0.045827349860541
417 => 0.045634875939753
418 => 0.046461866050427
419 => 0.045971975428937
420 => 0.044654779782775
421 => 0.04486454753096
422 => 0.044832841557816
423 => 0.04548534823841
424 => 0.045289481929107
425 => 0.044794595517382
426 => 0.046657627919513
427 => 0.046536652958049
428 => 0.046708167794678
429 => 0.046783673930035
430 => 0.047917668922899
501 => 0.048382230387682
502 => 0.048487693973481
503 => 0.048928991434553
504 => 0.048476714090637
505 => 0.050286145934581
506 => 0.051489312527529
507 => 0.052886852439624
508 => 0.054929033874511
509 => 0.055696912985263
510 => 0.055558202496925
511 => 0.057106561153762
512 => 0.059888927242018
513 => 0.056120598234253
514 => 0.060088657829647
515 => 0.058832415975196
516 => 0.055853889137119
517 => 0.055662107123272
518 => 0.057679200079425
519 => 0.062152918118171
520 => 0.061032302489955
521 => 0.062154751043889
522 => 0.06084535518336
523 => 0.06078033264243
524 => 0.06209115660957
525 => 0.065153968258087
526 => 0.063698941251654
527 => 0.061612803250674
528 => 0.063153175086695
529 => 0.06181876244765
530 => 0.0588119572933
531 => 0.061031445576304
601 => 0.059547336968846
602 => 0.059980478760055
603 => 0.063099854308436
604 => 0.062724522789611
605 => 0.063210236529734
606 => 0.062352964491759
607 => 0.061552137228899
608 => 0.060057333672556
609 => 0.059614796032448
610 => 0.059737097515337
611 => 0.059614735425906
612 => 0.058778406574087
613 => 0.058597801438164
614 => 0.0582967849658
615 => 0.058390082557491
616 => 0.057824083523971
617 => 0.05889224064159
618 => 0.059090500015189
619 => 0.059867815688481
620 => 0.059948519180327
621 => 0.062113332266049
622 => 0.06092098959664
623 => 0.061720916001193
624 => 0.06164936305437
625 => 0.055918442845384
626 => 0.056708113085845
627 => 0.05793659216783
628 => 0.05738316400656
629 => 0.056600746068769
630 => 0.055968901633408
701 => 0.055011592704424
702 => 0.056358986638479
703 => 0.05813066638239
704 => 0.05999345190235
705 => 0.062231466650039
706 => 0.061731967811719
707 => 0.059951613773372
708 => 0.060031479154983
709 => 0.060525175518232
710 => 0.05988579387078
711 => 0.059697227740734
712 => 0.060499269427593
713 => 0.060504792647896
714 => 0.05976910679065
715 => 0.058951526589412
716 => 0.058948100898516
717 => 0.058802620398594
718 => 0.060871235841109
719 => 0.062008765173882
720 => 0.062139181078664
721 => 0.06199998714439
722 => 0.062053557365283
723 => 0.061391654110291
724 => 0.062904568669889
725 => 0.064292968681519
726 => 0.063920847819562
727 => 0.063362985747392
728 => 0.06291862173663
729 => 0.063816169780718
730 => 0.063776203379187
731 => 0.064280842218631
801 => 0.064257948885939
802 => 0.06408825782466
803 => 0.063920853879765
804 => 0.064584591598793
805 => 0.064393445795014
806 => 0.064202003089007
807 => 0.063818035433696
808 => 0.063870223015081
809 => 0.063312457265662
810 => 0.063054409308357
811 => 0.059173987174109
812 => 0.058137011583387
813 => 0.058463265213813
814 => 0.058570676380121
815 => 0.058119383274118
816 => 0.058766421660439
817 => 0.058665581413314
818 => 0.059057891825305
819 => 0.058812793312031
820 => 0.05882285224051
821 => 0.059543634707536
822 => 0.059752880924142
823 => 0.059646456609552
824 => 0.059720992551479
825 => 0.061438641873522
826 => 0.061194447067261
827 => 0.061064723443418
828 => 0.061100657773769
829 => 0.061539554002368
830 => 0.06166242098353
831 => 0.061141824950637
901 => 0.061387341049279
902 => 0.062432717436666
903 => 0.062798540009072
904 => 0.063966070055395
905 => 0.063470082540525
906 => 0.064380489089905
907 => 0.067178768442237
908 => 0.069414227615082
909 => 0.067358406975476
910 => 0.071463543062397
911 => 0.074659980352862
912 => 0.074537295765709
913 => 0.07397992298919
914 => 0.070340864115678
915 => 0.066992147884961
916 => 0.069793491205957
917 => 0.069800632406184
918 => 0.069559994530522
919 => 0.068065413351784
920 => 0.069507986345195
921 => 0.069622492550756
922 => 0.069558399525299
923 => 0.068412507639792
924 => 0.066662942526843
925 => 0.067004803362046
926 => 0.067564778383881
927 => 0.06650462884452
928 => 0.066165846829968
929 => 0.066795707050935
930 => 0.068825247919479
1001 => 0.06844157497461
1002 => 0.068431555723476
1003 => 0.070073071284272
1004 => 0.068898100403972
1005 => 0.067009115321968
1006 => 0.066532121676109
1007 => 0.064839115574734
1008 => 0.066008480919235
1009 => 0.066050564296202
1010 => 0.065410114847643
1011 => 0.067061084265
1012 => 0.067045870291171
1013 => 0.068613220038582
1014 => 0.07160940408595
1015 => 0.070723285029881
1016 => 0.069692824977152
1017 => 0.069804864556441
1018 => 0.071033662204004
1019 => 0.070290703095566
1020 => 0.070557876371055
1021 => 0.071033257805253
1022 => 0.071320067227562
1023 => 0.069763597094317
1024 => 0.069400709451686
1025 => 0.068658368691116
1026 => 0.06846470584313
1027 => 0.069069326903166
1028 => 0.068910030615423
1029 => 0.066047027351323
1030 => 0.065747827580625
1031 => 0.065757003610433
1101 => 0.065004651560839
1102 => 0.063857134100026
1103 => 0.066872741472335
1104 => 0.06663054599694
1105 => 0.066363180936546
1106 => 0.06639593163088
1107 => 0.067704904582782
1108 => 0.066945634165961
1109 => 0.068964279011056
1110 => 0.068549306316923
1111 => 0.06812369113902
1112 => 0.068064858156879
1113 => 0.067901032625167
1114 => 0.067339213920132
1115 => 0.066660784073732
1116 => 0.066212825924552
1117 => 0.061077831918663
1118 => 0.06203085693727
1119 => 0.063127225350213
1120 => 0.063505687332941
1121 => 0.062858301922714
1122 => 0.067364776641988
1123 => 0.06818815299867
1124 => 0.065694092306769
1125 => 0.065227555383141
1126 => 0.067395362725031
1127 => 0.066087909894202
1128 => 0.066676655823868
1129 => 0.065404109150736
1130 => 0.06798982574562
1201 => 0.067970126917427
1202 => 0.066964224760959
1203 => 0.067814406375485
1204 => 0.067666666398019
1205 => 0.066531005340795
1206 => 0.068025828226776
1207 => 0.068026569640278
1208 => 0.067058410684876
1209 => 0.065927812982215
1210 => 0.065725688816505
1211 => 0.065573415409203
1212 => 0.066639205900201
1213 => 0.06759479032179
1214 => 0.069372896020898
1215 => 0.069819954040403
1216 => 0.071564851252869
1217 => 0.070525849920349
1218 => 0.070986425753735
1219 => 0.071486445973306
1220 => 0.071726174054202
1221 => 0.071335550010899
1222 => 0.074046093610205
1223 => 0.074274946538896
1224 => 0.074351678946316
1225 => 0.073437698895332
1226 => 0.074249527100301
1227 => 0.07386969956812
1228 => 0.074857905287726
1229 => 0.075012868562605
1230 => 0.074881620181761
1231 => 0.074930807971136
]
'min_raw' => 0.03360144932645
'max_raw' => 0.075012868562605
'avg_raw' => 0.054307158944527
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.0336014'
'max' => '$0.075012'
'avg' => '$0.0543071'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0051812753092899
'max_diff' => -0.0071582124769543
'year' => 2031
]
6 => [
'items' => [
101 => 0.072617837181786
102 => 0.072497897444465
103 => 0.070862510615562
104 => 0.071528942836509
105 => 0.070283079742375
106 => 0.070678155763337
107 => 0.070852301508954
108 => 0.070761337654128
109 => 0.071566621914375
110 => 0.070881965784459
111 => 0.069075045689725
112 => 0.067267633300818
113 => 0.067244942710562
114 => 0.066769082932041
115 => 0.066425123470237
116 => 0.066491382265198
117 => 0.066724886900911
118 => 0.066411551756321
119 => 0.066478417695914
120 => 0.067588837818589
121 => 0.067811524655037
122 => 0.067054747775422
123 => 0.064016179401384
124 => 0.063270507100724
125 => 0.063806481563114
126 => 0.063550320291268
127 => 0.051290068374191
128 => 0.054170432703221
129 => 0.052459018026841
130 => 0.05324771664812
131 => 0.051500805432219
201 => 0.052334523027908
202 => 0.052180565830476
203 => 0.05681210643538
204 => 0.05673979129931
205 => 0.056774404728115
206 => 0.055122215586455
207 => 0.057754197750943
208 => 0.059050806808187
209 => 0.058810838979824
210 => 0.058871233712319
211 => 0.057833452110731
212 => 0.056784452722496
213 => 0.055620950961096
214 => 0.057782593420614
215 => 0.057542255679583
216 => 0.058093503986718
217 => 0.05949548363911
218 => 0.059701930468527
219 => 0.059979397100841
220 => 0.059879945064577
221 => 0.062249296048152
222 => 0.06196235201056
223 => 0.062653804581723
224 => 0.061231434182208
225 => 0.059621887062518
226 => 0.059927809349911
227 => 0.059898346573564
228 => 0.059523251614858
229 => 0.059184632657767
301 => 0.05862092749951
302 => 0.060404574032901
303 => 0.060332161240966
304 => 0.061504440171725
305 => 0.061297228483803
306 => 0.059913418118561
307 => 0.059962841176475
308 => 0.060295234992853
309 => 0.061445653786546
310 => 0.061787176410999
311 => 0.061628969524029
312 => 0.062003433490641
313 => 0.062299394541725
314 => 0.062040601641961
315 => 0.0657045633567
316 => 0.064183031002221
317 => 0.06492461528504
318 => 0.065101478766824
319 => 0.064648446677272
320 => 0.064746693115633
321 => 0.064895509699198
322 => 0.065799094853328
323 => 0.068170363752237
324 => 0.06922058260579
325 => 0.072380217843591
326 => 0.069133376549755
327 => 0.068940722424144
328 => 0.069509868142315
329 => 0.071364908508261
330 => 0.072868244489779
331 => 0.073366987764381
401 => 0.073432904921474
402 => 0.074368580460455
403 => 0.074904892230083
404 => 0.074254964839313
405 => 0.07370421942587
406 => 0.071731517715952
407 => 0.071959863310364
408 => 0.073532938016427
409 => 0.07575499869238
410 => 0.077661757918357
411 => 0.076994077294688
412 => 0.08208800914422
413 => 0.082593051680255
414 => 0.082523271131756
415 => 0.083673833189251
416 => 0.081390201813011
417 => 0.080413905156395
418 => 0.073823296835482
419 => 0.075674988946238
420 => 0.078366532175288
421 => 0.078010296336154
422 => 0.076055625698062
423 => 0.077660275125398
424 => 0.077129727842694
425 => 0.076711263188398
426 => 0.078628330893092
427 => 0.07652043620298
428 => 0.078345504313298
429 => 0.076004835583903
430 => 0.076997127203536
501 => 0.076433854488487
502 => 0.076798360967231
503 => 0.074667463540583
504 => 0.075817244067391
505 => 0.074619628890541
506 => 0.074619061065013
507 => 0.074592623643606
508 => 0.076001612588132
509 => 0.076047559667029
510 => 0.07500631470816
511 => 0.074856255042283
512 => 0.075411104276483
513 => 0.07476152113848
514 => 0.075065457000324
515 => 0.074770727046111
516 => 0.074704377125455
517 => 0.07417568966916
518 => 0.073947916576423
519 => 0.074037232275075
520 => 0.073732351750179
521 => 0.073548650205918
522 => 0.074556080782752
523 => 0.074017851265183
524 => 0.074473589389886
525 => 0.07395421827805
526 => 0.072153851725205
527 => 0.071118441882133
528 => 0.067717716357876
529 => 0.068682157897968
530 => 0.069321583636836
531 => 0.069110253433955
601 => 0.069564272483676
602 => 0.069592145565939
603 => 0.069444539344698
604 => 0.06927363025003
605 => 0.06919044115461
606 => 0.069810464516317
607 => 0.070170408946814
608 => 0.069385758564144
609 => 0.06920192595791
610 => 0.069995250816524
611 => 0.07047917852199
612 => 0.07405222880366
613 => 0.073787525697993
614 => 0.074451878547855
615 => 0.074377082612286
616 => 0.07507343023865
617 => 0.076211664309291
618 => 0.073897316188427
619 => 0.074299006998072
620 => 0.074200521687942
621 => 0.075275758479701
622 => 0.075279115251599
623 => 0.074634457082879
624 => 0.074983936734526
625 => 0.074788866780449
626 => 0.075141384552752
627 => 0.073783990426635
628 => 0.075437149950604
629 => 0.076374384873448
630 => 0.076387398381261
701 => 0.076831640296333
702 => 0.077283015810802
703 => 0.078149391804304
704 => 0.07725885305457
705 => 0.075656860535998
706 => 0.075772519221434
707 => 0.074833271593942
708 => 0.074849060516249
709 => 0.074764778011573
710 => 0.075017716152595
711 => 0.073839496124644
712 => 0.074116022010211
713 => 0.073728884151084
714 => 0.074298165435973
715 => 0.073685712879
716 => 0.074200474195344
717 => 0.07442262811487
718 => 0.075242380860554
719 => 0.073564634731942
720 => 0.070143596802274
721 => 0.070862740451165
722 => 0.06979907050694
723 => 0.069897517209955
724 => 0.070096395217722
725 => 0.069451766525714
726 => 0.069574741365564
727 => 0.069570347838924
728 => 0.069532486799915
729 => 0.069364793980382
730 => 0.069121606215047
731 => 0.070090391422897
801 => 0.070255006907729
802 => 0.070620926738968
803 => 0.071709655950942
804 => 0.071600866228663
805 => 0.071778306779342
806 => 0.071390955053495
807 => 0.069915485345565
808 => 0.069995610449405
809 => 0.068996449120609
810 => 0.07059537593737
811 => 0.070216728962358
812 => 0.069972612794323
813 => 0.069906003436155
814 => 0.070997431397261
815 => 0.071324003749261
816 => 0.07112050577495
817 => 0.070703125492653
818 => 0.071504619022066
819 => 0.07171906487824
820 => 0.071767071396978
821 => 0.073187164259957
822 => 0.071846438812755
823 => 0.072169164753561
824 => 0.07468698041755
825 => 0.072403669045124
826 => 0.073613190003018
827 => 0.073553990246172
828 => 0.074172740240273
829 => 0.073503234686697
830 => 0.073511534010428
831 => 0.074060942087435
901 => 0.073289397529548
902 => 0.07309835224676
903 => 0.07283442455688
904 => 0.073410701012131
905 => 0.073756152684312
906 => 0.076540239455794
907 => 0.078338886479953
908 => 0.078260802469041
909 => 0.07897434416164
910 => 0.078652887093831
911 => 0.077614817425786
912 => 0.079386675770029
913 => 0.078825985652209
914 => 0.078872208264283
915 => 0.078870487856353
916 => 0.079243297768323
917 => 0.078979127778166
918 => 0.078458421611073
919 => 0.078804090665128
920 => 0.079830604176726
921 => 0.083016933614004
922 => 0.084800045780355
923 => 0.082909588022648
924 => 0.084213600469676
925 => 0.083431657668602
926 => 0.083289555400864
927 => 0.084108571583361
928 => 0.084929021345265
929 => 0.084876762242333
930 => 0.084281157845752
1001 => 0.083944716035026
1002 => 0.086492366142123
1003 => 0.088369431342944
1004 => 0.088241428080253
1005 => 0.088806392852881
1006 => 0.09046514689902
1007 => 0.090616802580817
1008 => 0.090597697450676
1009 => 0.09022180301971
1010 => 0.091855061794566
1011 => 0.093217554999004
1012 => 0.090134794319575
1013 => 0.091308669230001
1014 => 0.091835659497179
1015 => 0.092609437560362
1016 => 0.093914930853214
1017 => 0.095333042834245
1018 => 0.09553357941717
1019 => 0.095391289115026
1020 => 0.09445600614264
1021 => 0.096007721193878
1022 => 0.096916679478698
1023 => 0.097457943336168
1024 => 0.098830498420994
1025 => 0.09183891400966
1026 => 0.086889923059026
1027 => 0.086117066657789
1028 => 0.087688700540782
1029 => 0.088103127862182
1030 => 0.087936072728573
1031 => 0.082365533471063
1101 => 0.086087738921448
1102 => 0.090092519014139
1103 => 0.09024635892748
1104 => 0.092251235577884
1105 => 0.092904105597926
1106 => 0.094518294086691
1107 => 0.094417326157222
1108 => 0.094810355366888
1109 => 0.094720004757903
1110 => 0.097709949025851
1111 => 0.10100830156442
1112 => 0.10089409010413
1113 => 0.10041991290237
1114 => 0.10112414690621
1115 => 0.10452840019895
1116 => 0.1042149911078
1117 => 0.10451944134373
1118 => 0.10853324783118
1119 => 0.11375176722218
1120 => 0.11132724103428
1121 => 0.1165877652234
1122 => 0.11989898635205
1123 => 0.1256254009074
1124 => 0.12490842560188
1125 => 0.12713767676591
1126 => 0.12362489016775
1127 => 0.11555882208707
1128 => 0.11428233593764
1129 => 0.11683789353458
1130 => 0.12312048251901
1201 => 0.11664003244963
1202 => 0.11795101905851
1203 => 0.11757345482696
1204 => 0.1175533360336
1205 => 0.11832118854691
1206 => 0.11720737842786
1207 => 0.11266951563227
1208 => 0.1147491914097
1209 => 0.1139461287178
1210 => 0.11483718664675
1211 => 0.11964585878905
1212 => 0.11751983021051
1213 => 0.11528023180756
1214 => 0.11808918521153
1215 => 0.12166594815591
1216 => 0.12144212075891
1217 => 0.12100780205614
1218 => 0.12345603384346
1219 => 0.12749979549151
1220 => 0.12859280801583
1221 => 0.12939964751563
1222 => 0.12951089705098
1223 => 0.13065683640636
1224 => 0.12449483167861
1225 => 0.13427409143305
1226 => 0.13596269944604
1227 => 0.13564531112523
1228 => 0.13752212786418
1229 => 0.13696992076934
1230 => 0.13616985932755
1231 => 0.13914501306916
]
'min_raw' => 0.051290068374191
'max_raw' => 0.13914501306916
'avg_raw' => 0.095217540721673
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.05129'
'max' => '$0.139145'
'avg' => '$0.095217'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.017688619047741
'max_diff' => 0.064132144506551
'year' => 2032
]
7 => [
'items' => [
101 => 0.13573423938693
102 => 0.13089307554947
103 => 0.12823711732088
104 => 0.13173469736633
105 => 0.13387054745136
106 => 0.13528220849199
107 => 0.13570937626993
108 => 0.12497317056465
109 => 0.11918695114677
110 => 0.12289585145449
111 => 0.12742096580454
112 => 0.12446969443992
113 => 0.12458537868992
114 => 0.12037764130444
115 => 0.1277932571968
116 => 0.12671286433643
117 => 0.1323179444072
118 => 0.13098024706474
119 => 0.1355509722745
120 => 0.13434734714509
121 => 0.13934352776351
122 => 0.14133663947838
123 => 0.14468338425073
124 => 0.14714526332897
125 => 0.14859092581196
126 => 0.14850413365903
127 => 0.15423256864281
128 => 0.15085471066915
129 => 0.14661132495423
130 => 0.14653457549436
131 => 0.14873228508535
201 => 0.1533380814759
202 => 0.15453229746835
203 => 0.15519970129019
204 => 0.15417754910455
205 => 0.1505111263674
206 => 0.14892798361869
207 => 0.15027686710866
208 => 0.14862729851131
209 => 0.15147491669753
210 => 0.15538530468565
211 => 0.15457782502945
212 => 0.15727710845599
213 => 0.16007058282957
214 => 0.16406537664657
215 => 0.16510976367712
216 => 0.16683609572414
217 => 0.16861305847105
218 => 0.16918377101487
219 => 0.17027343834273
220 => 0.17026769525804
221 => 0.1735514810936
222 => 0.17717359856061
223 => 0.1785408640522
224 => 0.18168481565864
225 => 0.17630090870981
226 => 0.18038466397636
227 => 0.18406831344981
228 => 0.17967651468852
301 => 0.18572958612309
302 => 0.18596461317034
303 => 0.18951324254684
304 => 0.18591602683862
305 => 0.18378001163381
306 => 0.18994660749467
307 => 0.19293042898579
308 => 0.19203167766952
309 => 0.18519213577588
310 => 0.18121122903202
311 => 0.17079242822379
312 => 0.18313394783984
313 => 0.18914514203775
314 => 0.1851765682351
315 => 0.18717808602301
316 => 0.1980977180795
317 => 0.2022552069728
318 => 0.20139047834603
319 => 0.20153660324931
320 => 0.20377990879237
321 => 0.21372796098123
322 => 0.20776685751562
323 => 0.21232389775679
324 => 0.21474093546908
325 => 0.21698601479923
326 => 0.211472809529
327 => 0.20430021047749
328 => 0.20202834727266
329 => 0.18478197178247
330 => 0.18388422304099
331 => 0.18338028946783
401 => 0.18020305957186
402 => 0.17770662719015
403 => 0.17572137147361
404 => 0.17051146762589
405 => 0.17226965723616
406 => 0.16396615789433
407 => 0.16927844251529
408 => 0.15602585707072
409 => 0.16706300403166
410 => 0.16105598673831
411 => 0.16508953729258
412 => 0.16507546461468
413 => 0.15764841920591
414 => 0.15336465441261
415 => 0.15609443606552
416 => 0.15902097868777
417 => 0.15949580038216
418 => 0.1632901392825
419 => 0.16434905771054
420 => 0.1611404854374
421 => 0.15575122669407
422 => 0.15700302858424
423 => 0.15333928668726
424 => 0.14691871993659
425 => 0.15153008306926
426 => 0.15310460519008
427 => 0.15380000385718
428 => 0.14748611386497
429 => 0.1455021525482
430 => 0.1444459081902
501 => 0.15493618278251
502 => 0.15551086370513
503 => 0.1525707148533
504 => 0.16586046645994
505 => 0.16285258636994
506 => 0.16621312537898
507 => 0.15688944068347
508 => 0.15724561799485
509 => 0.15283163624132
510 => 0.15530317108093
511 => 0.15355636991758
512 => 0.15510349549007
513 => 0.15603083617919
514 => 0.16044409364174
515 => 0.16711339634277
516 => 0.159784900146
517 => 0.15659176940707
518 => 0.15857276975866
519 => 0.1638484347481
520 => 0.17184133726342
521 => 0.16710937810219
522 => 0.16920934122407
523 => 0.16966808974534
524 => 0.1661789182465
525 => 0.17196998799348
526 => 0.17507346931745
527 => 0.17825699898088
528 => 0.18102116858715
529 => 0.17698542722599
530 => 0.18130424898323
531 => 0.17782404102156
601 => 0.17470193470266
602 => 0.17470666964919
603 => 0.17274812674865
604 => 0.16895320308656
605 => 0.16825336093869
606 => 0.1718940281722
607 => 0.17481349852101
608 => 0.17505396008226
609 => 0.17667032887516
610 => 0.17762687927688
611 => 0.18700237358091
612 => 0.19077327494815
613 => 0.1953842617605
614 => 0.19718050098489
615 => 0.2025865370629
616 => 0.19822072387312
617 => 0.19727615272726
618 => 0.18416287750295
619 => 0.18631017558631
620 => 0.18974820700122
621 => 0.18421956937467
622 => 0.18772621743175
623 => 0.18841850403918
624 => 0.18403170838368
625 => 0.18637488548554
626 => 0.1801521018066
627 => 0.16724903602206
628 => 0.17198435279424
629 => 0.17547113982895
630 => 0.17049506481267
701 => 0.17941448667864
702 => 0.17420394455879
703 => 0.17255245285692
704 => 0.16610939492864
705 => 0.16915027025475
706 => 0.17326309767444
707 => 0.17072184849658
708 => 0.17599532211113
709 => 0.18346396713338
710 => 0.18878656834174
711 => 0.18919517157151
712 => 0.18577309558113
713 => 0.19125699419512
714 => 0.19129693840961
715 => 0.18511107837065
716 => 0.18132227353979
717 => 0.18046144911051
718 => 0.18261195730943
719 => 0.18522307126863
720 => 0.18934007022382
721 => 0.1918278864679
722 => 0.19831479179668
723 => 0.20006996238449
724 => 0.20199836272603
725 => 0.20457530027897
726 => 0.20766957452449
727 => 0.20089947863241
728 => 0.20116846716324
729 => 0.1948642476069
730 => 0.1881272848944
731 => 0.19323979981893
801 => 0.19992373299338
802 => 0.19839043133807
803 => 0.19821790357934
804 => 0.19850804741432
805 => 0.19735198803917
806 => 0.19212317433091
807 => 0.18949729682073
808 => 0.19288534874166
809 => 0.19468594755279
810 => 0.19747851928014
811 => 0.19713427587071
812 => 0.20432764074006
813 => 0.20712276481222
814 => 0.20640765246446
815 => 0.20653925034659
816 => 0.21159968896671
817 => 0.21722793747087
818 => 0.22249953490782
819 => 0.22786203024107
820 => 0.22139733281509
821 => 0.21811495814928
822 => 0.22150153095273
823 => 0.21970456775376
824 => 0.23003045130898
825 => 0.23074539308259
826 => 0.2410705299589
827 => 0.25087031434895
828 => 0.24471524535494
829 => 0.25051919818589
830 => 0.25679664637579
831 => 0.26890686241338
901 => 0.26482856769446
902 => 0.26170465785479
903 => 0.25875257815093
904 => 0.26489538738521
905 => 0.27279801333134
906 => 0.27450016326973
907 => 0.27725829644123
908 => 0.27435845665987
909 => 0.27785099426965
910 => 0.29018118673095
911 => 0.28684945988629
912 => 0.28211787216505
913 => 0.29185137490897
914 => 0.29537389171396
915 => 0.32009675940777
916 => 0.35131040112193
917 => 0.33838774849245
918 => 0.33036624099393
919 => 0.33225148552879
920 => 0.34364965083435
921 => 0.34731037977081
922 => 0.33735925659257
923 => 0.34087416152918
924 => 0.36024163330772
925 => 0.37063166053402
926 => 0.35652060799388
927 => 0.31758877368809
928 => 0.28169184446017
929 => 0.29121332655121
930 => 0.29013388596807
1001 => 0.31094181825281
1002 => 0.28676999930292
1003 => 0.28717699074195
1004 => 0.30841520903035
1005 => 0.30274921650624
1006 => 0.29357103426268
1007 => 0.28175885534773
1008 => 0.25992295012915
1009 => 0.24058227993778
1010 => 0.27851378807339
1011 => 0.27687811246861
1012 => 0.27450941179934
1013 => 0.27978069881861
1014 => 0.30537657230323
1015 => 0.30478650457365
1016 => 0.30103279473328
1017 => 0.30387995056352
1018 => 0.29307191407984
1019 => 0.2958573911761
1020 => 0.28168615820318
1021 => 0.28809214734991
1022 => 0.29355134200572
1023 => 0.29464735615763
1024 => 0.29711673200576
1025 => 0.27601618575056
1026 => 0.28548971153966
1027 => 0.29105452039142
1028 => 0.26591251154966
1029 => 0.29055754371434
1030 => 0.27564887218474
1031 => 0.27058864514686
1101 => 0.27740157421914
1102 => 0.27474656913388
1103 => 0.27246395166871
1104 => 0.27119021190279
1105 => 0.27619287509794
1106 => 0.27595949488041
1107 => 0.26777416691807
1108 => 0.25709674026784
1109 => 0.26068043512624
1110 => 0.25937844518687
1111 => 0.25465986568653
1112 => 0.25783961854629
1113 => 0.24383759618798
1114 => 0.2197478444823
1115 => 0.23566227234813
1116 => 0.23504958418686
1117 => 0.23474063903275
1118 => 0.24669989173144
1119 => 0.24555028553136
1120 => 0.24346373902125
1121 => 0.25462154462358
1122 => 0.25054879548507
1123 => 0.26310004866959
1124 => 0.27136711578107
1125 => 0.26927032014999
1126 => 0.27704553672655
1127 => 0.26076299621773
1128 => 0.26617140303262
1129 => 0.26728606818144
1130 => 0.25448385903443
1201 => 0.24573837532312
1202 => 0.24515515126538
1203 => 0.22999168771186
1204 => 0.23809188754695
1205 => 0.24521972819279
1206 => 0.24180604566621
1207 => 0.24072537575916
1208 => 0.24624628394557
1209 => 0.24667530579504
1210 => 0.23689356216153
1211 => 0.23892749641047
1212 => 0.24740934034199
1213 => 0.23871377570557
1214 => 0.22181971402943
1215 => 0.21762975315507
1216 => 0.21707073513813
1217 => 0.20570722893688
1218 => 0.21790974637577
1219 => 0.21258302050656
1220 => 0.22941008370343
1221 => 0.21979855545073
1222 => 0.21938422167807
1223 => 0.21875789541115
1224 => 0.20897685620321
1225 => 0.21111828217228
1226 => 0.21823670824185
1227 => 0.22077664285829
1228 => 0.22051170686872
1229 => 0.21820182407067
1230 => 0.2192592765871
1231 => 0.21585285359079
]
'min_raw' => 0.11918695114677
'max_raw' => 0.37063166053402
'avg_raw' => 0.24490930584039
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.119186'
'max' => '$0.370631'
'avg' => '$0.2449093'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.067896882772576
'max_diff' => 0.23148664746486
'year' => 2033
]
8 => [
'items' => [
101 => 0.21464997473222
102 => 0.2108533581767
103 => 0.20527338068218
104 => 0.20604931077678
105 => 0.19499391527959
106 => 0.18897034905848
107 => 0.1873031053178
108 => 0.18507359730885
109 => 0.18755493417991
110 => 0.19496259673319
111 => 0.18602738407065
112 => 0.17070858869302
113 => 0.17162927439718
114 => 0.17369778182037
115 => 0.1698431319218
116 => 0.16619502928904
117 => 0.1693667585483
118 => 0.16287598300269
119 => 0.17448216103501
120 => 0.17416824644517
121 => 0.17849431189439
122 => 0.18119948939958
123 => 0.17496493106173
124 => 0.17339695649979
125 => 0.17429014607074
126 => 0.15952771206734
127 => 0.17728790608926
128 => 0.17744149698467
129 => 0.17612635849043
130 => 0.18558311352263
131 => 0.20553981627642
201 => 0.19803130194394
202 => 0.19512377824835
203 => 0.18959657357766
204 => 0.19696124562842
205 => 0.1963957537217
206 => 0.19383838486309
207 => 0.19229168019792
208 => 0.19514153096804
209 => 0.1919385521496
210 => 0.19136320914184
211 => 0.18787725649415
212 => 0.18663292999967
213 => 0.18571168020122
214 => 0.18469747469326
215 => 0.18693455931955
216 => 0.18186503124338
217 => 0.17575167735549
218 => 0.17524341812712
219 => 0.17664676654326
220 => 0.17602588933612
221 => 0.17524044560592
222 => 0.17374081962209
223 => 0.17329591262713
224 => 0.17474164452257
225 => 0.17310949750403
226 => 0.17551781933754
227 => 0.17486288905735
228 => 0.17120450175124
301 => 0.16664479665937
302 => 0.16660420571974
303 => 0.16562182473711
304 => 0.16437061485377
305 => 0.16402255688802
306 => 0.16909964435676
307 => 0.17960906347259
308 => 0.17754581303107
309 => 0.17903672292548
310 => 0.18637052399822
311 => 0.18870171882415
312 => 0.18704709195408
313 => 0.18478213664139
314 => 0.1848817831803
315 => 0.19262182113238
316 => 0.19310455780533
317 => 0.19432427764111
318 => 0.19589196232288
319 => 0.18731407543425
320 => 0.18447776547925
321 => 0.18313376447008
322 => 0.1789947615557
323 => 0.18345832134757
324 => 0.18085759620553
325 => 0.18120852288062
326 => 0.1809799814231
327 => 0.18110478051281
328 => 0.17447891687171
329 => 0.17689303333739
330 => 0.17287909648762
331 => 0.16750488563133
401 => 0.16748686939209
402 => 0.16880219988553
403 => 0.16801978983915
404 => 0.16591434452193
405 => 0.16621341309182
406 => 0.16359325772485
407 => 0.16653154739281
408 => 0.16661580702678
409 => 0.1654844054549
410 => 0.17001124609423
411 => 0.17186589639772
412 => 0.17112118364613
413 => 0.17181364536581
414 => 0.17763155040193
415 => 0.17858012277581
416 => 0.17900141596511
417 => 0.1784369389021
418 => 0.17191998598979
419 => 0.17220904056368
420 => 0.17008814989124
421 => 0.16829622076698
422 => 0.16836788853452
423 => 0.16928917303887
424 => 0.17331247650198
425 => 0.18177928145341
426 => 0.18210059051217
427 => 0.18249002646462
428 => 0.18090599473116
429 => 0.18042823560321
430 => 0.18105852321307
501 => 0.18423820998937
502 => 0.19241722765456
503 => 0.18952621655346
504 => 0.187175779527
505 => 0.18923774647248
506 => 0.18892032282345
507 => 0.18624094778181
508 => 0.18616574664832
509 => 0.18102316929539
510 => 0.17912207553883
511 => 0.17753337930145
512 => 0.17579856448419
513 => 0.174770108109
514 => 0.17635028452635
515 => 0.1767116895691
516 => 0.1732566062158
517 => 0.17278569112172
518 => 0.17560718677118
519 => 0.17436555173181
520 => 0.17564260416087
521 => 0.17593889127876
522 => 0.17589118222871
523 => 0.17459477264673
524 => 0.17542106545479
525 => 0.17346663663399
526 => 0.17134148883708
527 => 0.16998577694404
528 => 0.16880273850827
529 => 0.16945915699103
530 => 0.16711914495727
531 => 0.16637052801253
601 => 0.1751411360436
602 => 0.18162007849607
603 => 0.18152587210687
604 => 0.18095241494052
605 => 0.18010037391286
606 => 0.18417587788116
607 => 0.18275605379088
608 => 0.18378909444684
609 => 0.18405204665035
610 => 0.18484792377427
611 => 0.18513238143812
612 => 0.18427255280942
613 => 0.18138686291226
614 => 0.1741959980517
615 => 0.17084863104774
616 => 0.16974394418163
617 => 0.16978409745112
618 => 0.16867649102665
619 => 0.1690027307581
620 => 0.16856303816181
621 => 0.16773036675751
622 => 0.16940774187822
623 => 0.16960104373506
624 => 0.16920952433874
625 => 0.16930174132978
626 => 0.16606012794842
627 => 0.16630658077339
628 => 0.16493430012625
629 => 0.164677014048
630 => 0.16120800807016
701 => 0.15506216113995
702 => 0.15846755693108
703 => 0.15435431768651
704 => 0.15279657165884
705 => 0.1601706990746
706 => 0.15943054120851
707 => 0.15816371268067
708 => 0.15628980925778
709 => 0.15559476025007
710 => 0.15137186250501
711 => 0.15112235117795
712 => 0.15321533332823
713 => 0.15224949408099
714 => 0.15089308998595
715 => 0.14598033185016
716 => 0.14045676514722
717 => 0.14062348690607
718 => 0.14238043070467
719 => 0.14748898175523
720 => 0.14549298248095
721 => 0.144044862106
722 => 0.14377367269011
723 => 0.14716817600346
724 => 0.15197210936228
725 => 0.15422600741229
726 => 0.15199246289663
727 => 0.14942668721962
728 => 0.14958285409642
729 => 0.15062176236378
730 => 0.15073093693331
731 => 0.14906088073358
801 => 0.14953099177139
802 => 0.1488168501171
803 => 0.1444341641029
804 => 0.14435489521055
805 => 0.1432793133823
806 => 0.14324674519201
807 => 0.1414169121857
808 => 0.14116090589908
809 => 0.13752766140214
810 => 0.13991907393251
811 => 0.13831503996193
812 => 0.13589738241491
813 => 0.13548057734254
814 => 0.13546804767875
815 => 0.13795044140121
816 => 0.13989006571654
817 => 0.1383429428196
818 => 0.13799069292568
819 => 0.14175180023184
820 => 0.14127316504388
821 => 0.14085867005797
822 => 0.15154196982
823 => 0.14308530443007
824 => 0.13939771563048
825 => 0.13483362423686
826 => 0.13631971540877
827 => 0.13663285665391
828 => 0.12565703959157
829 => 0.12120415197633
830 => 0.11967608875031
831 => 0.11879666676009
901 => 0.11919743040412
902 => 0.11518930927878
903 => 0.11788283296321
904 => 0.11441213886671
905 => 0.11383026570682
906 => 0.12003629668786
907 => 0.12089982964376
908 => 0.11721572977521
909 => 0.11958151829241
910 => 0.11872365048916
911 => 0.1144716339555
912 => 0.11430923819963
913 => 0.11217572576865
914 => 0.10883719194358
915 => 0.10731139240071
916 => 0.10651674275118
917 => 0.10684463068398
918 => 0.10667884051162
919 => 0.10559694749215
920 => 0.10674085335308
921 => 0.10381864657294
922 => 0.10265500028726
923 => 0.10212940825642
924 => 0.099535781543094
925 => 0.10366339503502
926 => 0.10447658689124
927 => 0.10529138098662
928 => 0.11238360730334
929 => 0.11202929971898
930 => 0.1152320677268
1001 => 0.11510761405153
1002 => 0.1141941327343
1003 => 0.11034030531727
1004 => 0.11187637223783
1005 => 0.10714859701416
1006 => 0.1106909676692
1007 => 0.10907437763518
1008 => 0.11014439695255
1009 => 0.10822040574016
1010 => 0.10928522191675
1011 => 0.10466942484778
1012 => 0.10035925849079
1013 => 0.10209379525444
1014 => 0.10397943508487
1015 => 0.10806798268933
1016 => 0.1056328774659
1017 => 0.10650863338577
1018 => 0.10357499765398
1019 => 0.09752206918767
1020 => 0.097556328105443
1021 => 0.096625216931117
1022 => 0.095820600932041
1023 => 0.10591257859368
1024 => 0.1046574816409
1025 => 0.10265764890966
1026 => 0.10533450449061
1027 => 0.10604230759362
1028 => 0.10606245775291
1029 => 0.10801542248513
1030 => 0.1090577201128
1031 => 0.10924142958725
1101 => 0.11231446178999
1102 => 0.11334450165007
1103 => 0.11758709005705
1104 => 0.10896928844122
1105 => 0.10879181048804
1106 => 0.10537217333818
1107 => 0.10320338539541
1108 => 0.1055206721041
1109 => 0.10757347178682
1110 => 0.10543595954648
1111 => 0.10571507351972
1112 => 0.10284563797823
1113 => 0.10387132616482
1114 => 0.10475478700624
1115 => 0.10426699185704
1116 => 0.10353673890913
1117 => 0.10740516562265
1118 => 0.10718689382699
1119 => 0.11078926171737
1120 => 0.11359756509571
1121 => 0.11863054679399
1122 => 0.11337836801657
1123 => 0.1131869577464
1124 => 0.11505802384047
1125 => 0.1133442151996
1126 => 0.11442728310197
1127 => 0.11845604781075
1128 => 0.1185411692606
1129 => 0.11711527530278
1130 => 0.11702850952586
1201 => 0.11730236805803
1202 => 0.11890636603477
1203 => 0.11834587985582
1204 => 0.11899448865187
1205 => 0.11980558388319
1206 => 0.12316061765717
1207 => 0.12396950494167
1208 => 0.12200432820032
1209 => 0.12218176165691
1210 => 0.12144673161034
1211 => 0.12073670179525
1212 => 0.12233274512804
1213 => 0.12524954568903
1214 => 0.12523140042412
1215 => 0.12590804145977
1216 => 0.12632958321938
1217 => 0.1245200173997
1218 => 0.12334205659067
1219 => 0.12379376172045
1220 => 0.12451604805982
1221 => 0.12355953399532
1222 => 0.11765548608882
1223 => 0.11944639707161
1224 => 0.119148301913
1225 => 0.11872377815754
1226 => 0.12052455299944
1227 => 0.12035086387292
1228 => 0.1151482002034
1229 => 0.11548125785152
1230 => 0.1151684545421
1231 => 0.11617918602837
]
'min_raw' => 0.095820600932041
'max_raw' => 0.21464997473222
'avg_raw' => 0.15523528783213
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.09582'
'max' => '$0.214649'
'avg' => '$0.155235'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.023366350214725
'max_diff' => -0.1559816858018
'year' => 2034
]
9 => [
'items' => [
101 => 0.1132896323824
102 => 0.11417843962246
103 => 0.11473589119137
104 => 0.11506423444801
105 => 0.11625043543805
106 => 0.11611124844295
107 => 0.11624178337901
108 => 0.11800060630179
109 => 0.1268961290901
110 => 0.1273802927686
111 => 0.12499609374111
112 => 0.12594853422634
113 => 0.12412005677053
114 => 0.12534752593635
115 => 0.12618732916527
116 => 0.12239241985865
117 => 0.12216770995827
118 => 0.12033168572557
119 => 0.1213182611505
120 => 0.11974854871215
121 => 0.12013370123831
122 => 0.11905678119818
123 => 0.12099502285778
124 => 0.12316227820552
125 => 0.12370981249386
126 => 0.12226948550956
127 => 0.12122659385075
128 => 0.11939561964774
129 => 0.12244057055326
130 => 0.12333100699123
131 => 0.12243589346972
201 => 0.12222847610817
202 => 0.12183542058283
203 => 0.12231186469596
204 => 0.12332615748316
205 => 0.12284783573576
206 => 0.12316377567686
207 => 0.12195973841725
208 => 0.12452061644128
209 => 0.12858790705231
210 => 0.12860098405669
211 => 0.12812265973097
212 => 0.12792693972252
213 => 0.12841772950787
214 => 0.12868396283316
215 => 0.1302710870035
216 => 0.13197413447209
217 => 0.13992151391017
218 => 0.13768992156591
219 => 0.1447413093951
220 => 0.15031804165987
221 => 0.15199025982513
222 => 0.15045189779704
223 => 0.14518924439961
224 => 0.14493103351712
225 => 0.15279565952783
226 => 0.15057354245711
227 => 0.15030922870227
228 => 0.14749737691587
301 => 0.14915952957625
302 => 0.14879599240712
303 => 0.14822213120079
304 => 0.15139340269024
305 => 0.15732973981713
306 => 0.15640450600529
307 => 0.15571386188511
308 => 0.15268766039396
309 => 0.15451010961821
310 => 0.15386117035617
311 => 0.15664942525291
312 => 0.15499772481949
313 => 0.15055670773479
314 => 0.15126395434331
315 => 0.15115705544122
316 => 0.1533570272714
317 => 0.15269665033464
318 => 0.15102810624564
319 => 0.15730945006219
320 => 0.15690157453342
321 => 0.1574798487799
322 => 0.15773442298692
323 => 0.16155776627836
324 => 0.16312406769153
325 => 0.16347964553428
326 => 0.16496751073469
327 => 0.16344262609268
328 => 0.16954325188503
329 => 0.17359981205557
330 => 0.17831171544232
331 => 0.18519707273059
401 => 0.1877860307641
402 => 0.18731835866821
403 => 0.19253875798269
404 => 0.20191969950784
405 => 0.18921451516183
406 => 0.20259310512877
407 => 0.19835759800849
408 => 0.18831528681981
409 => 0.18766868037033
410 => 0.19446945010093
411 => 0.20955290281358
412 => 0.20577466898417
413 => 0.20955908265061
414 => 0.20514436308774
415 => 0.20492513505126
416 => 0.20934466957528
417 => 0.21967115288694
418 => 0.21476542774801
419 => 0.2077318678282
420 => 0.21292533901868
421 => 0.20842627364042
422 => 0.1982886201341
423 => 0.20577177983997
424 => 0.20076800405277
425 => 0.20222837184282
426 => 0.21274556429204
427 => 0.21148010787151
428 => 0.21311772565778
429 => 0.21022737312893
430 => 0.20752732810022
501 => 0.20248749354616
502 => 0.20099544699554
503 => 0.20140779498392
504 => 0.20099524265636
505 => 0.19817550154183
506 => 0.19756657871662
507 => 0.19655168066374
508 => 0.19686624000796
509 => 0.19495793474966
510 => 0.19855930104806
511 => 0.19922774636817
512 => 0.20184852043113
513 => 0.20212061788843
514 => 0.20941943634936
515 => 0.20539936979274
516 => 0.20809637751477
517 => 0.20785513175889
518 => 0.18853293415422
519 => 0.19119536250295
520 => 0.19533726549753
521 => 0.19347134381269
522 => 0.19083336710875
523 => 0.18870305948096
524 => 0.18547542558972
525 => 0.19001825831042
526 => 0.19599160026175
527 => 0.20227211169783
528 => 0.20981773467286
529 => 0.20813363946557
530 => 0.20213105152493
531 => 0.20240032323506
601 => 0.20406485499253
602 => 0.20190913512795
603 => 0.20127337125523
604 => 0.20397751079924
605 => 0.20399613272211
606 => 0.20151571649046
607 => 0.19875918776035
608 => 0.19874763780432
609 => 0.19825714014171
610 => 0.20523162153227
611 => 0.20906688109748
612 => 0.2095065874258
613 => 0.20903728535818
614 => 0.20921790109807
615 => 0.20698624806126
616 => 0.21208714512727
617 => 0.21676823270147
618 => 0.21551360123473
619 => 0.21363273030973
620 => 0.21213452602294
621 => 0.21516067191838
622 => 0.21502592240526
623 => 0.2167273474852
624 => 0.21665016101567
625 => 0.21607803575512
626 => 0.21551362166713
627 => 0.21775145972752
628 => 0.21710699830471
629 => 0.2164615358553
630 => 0.21516696209766
701 => 0.21534291617191
702 => 0.21346237000579
703 => 0.2125923433014
704 => 0.19950922915336
705 => 0.19601299354992
706 => 0.1971129804432
707 => 0.19747512468962
708 => 0.19595355847445
709 => 0.19813509356871
710 => 0.19779510363509
711 => 0.19911780557935
712 => 0.19829143882962
713 => 0.19832535320927
714 => 0.20075552162028
715 => 0.20146100984867
716 => 0.20110219284172
717 => 0.20135349597386
718 => 0.20714467058558
719 => 0.20632135074713
720 => 0.20588397849233
721 => 0.20600513359596
722 => 0.20748490287344
723 => 0.20789915747873
724 => 0.20614393160697
725 => 0.20697170627493
726 => 0.21049626575085
727 => 0.21172966209464
728 => 0.21566607116016
729 => 0.21399381462503
730 => 0.21706331386882
731 => 0.22649790807484
801 => 0.23403491475086
802 => 0.22710357193161
803 => 0.24094432486012
804 => 0.25172133635305
805 => 0.25130769670189
806 => 0.24942847547134
807 => 0.23715913440831
808 => 0.22586870383655
809 => 0.23531362842683
810 => 0.23533770548198
811 => 0.23452637808339
812 => 0.22948729329095
813 => 0.23435102885546
814 => 0.23473709452208
815 => 0.23452100041192
816 => 0.23065754591631
817 => 0.22475876498727
818 => 0.22591137266112
819 => 0.22779936754344
820 => 0.22422499935421
821 => 0.22308277213914
822 => 0.22520638984957
823 => 0.23204912858588
824 => 0.23075554846507
825 => 0.23072176786035
826 => 0.23625625218053
827 => 0.23229475582375
828 => 0.22592591073505
829 => 0.2243176933554
830 => 0.2186096050827
831 => 0.22255220198417
901 => 0.22269408902778
902 => 0.22053476899721
903 => 0.22610112765483
904 => 0.22604983267987
905 => 0.23133426178213
906 => 0.24143610548472
907 => 0.23844849322032
908 => 0.23497422520812
909 => 0.23535197447205
910 => 0.23949495153272
911 => 0.23699001302687
912 => 0.23789080637863
913 => 0.2394935880741
914 => 0.24046058606581
915 => 0.2352128383423
916 => 0.23398933731916
917 => 0.23148648361632
918 => 0.23083353580323
919 => 0.23287205792043
920 => 0.2323349793646
921 => 0.22268216397118
922 => 0.22167339105481
923 => 0.22170432867996
924 => 0.21916772121721
925 => 0.21529878598097
926 => 0.22546611677969
927 => 0.22464953782485
928 => 0.2237480978569
929 => 0.22385851910943
930 => 0.22827181280634
1001 => 0.22571187958545
1002 => 0.23251788161798
1003 => 0.23111877220724
1004 => 0.22968378091944
1005 => 0.22948542141256
1006 => 0.22893307219446
1007 => 0.2270388612055
1008 => 0.22475148761191
1009 => 0.22324116543651
1010 => 0.20592817463182
1011 => 0.20914136502014
1012 => 0.21283784767037
1013 => 0.21411385866851
1014 => 0.21193115355892
1015 => 0.22712504770698
1016 => 0.22990111857983
1017 => 0.22149221882733
1018 => 0.21991925701675
1019 => 0.22722817082141
1020 => 0.22282000231882
1021 => 0.22480500032562
1022 => 0.22051452037078
1023 => 0.2292324443994
1024 => 0.22916602842482
1025 => 0.22577455907445
1026 => 0.22864100574561
1027 => 0.2281428900967
1028 => 0.22431392955295
1029 => 0.22935382927823
1030 => 0.22935632900562
1031 => 0.22609211349278
1101 => 0.22228022440245
1102 => 0.2215987486659
1103 => 0.22108534824179
1104 => 0.22467873529331
1105 => 0.22790055488747
1106 => 0.23389556239539
1107 => 0.23540284972074
1108 => 0.2412858924974
1109 => 0.23778282696406
1110 => 0.2393356905427
1111 => 0.24102154362328
1112 => 0.2418298035853
1113 => 0.2405127873508
1114 => 0.24965157433997
1115 => 0.25042316796706
1116 => 0.25068187663596
1117 => 0.24760032908202
1118 => 0.2503374645551
1119 => 0.24905684951164
1120 => 0.25238865408962
1121 => 0.25291112359006
1122 => 0.25246861051058
1123 => 0.25263445057664
1124 => 0.24483610807388
1125 => 0.24443172287558
1126 => 0.23891790200287
1127 => 0.2411648247646
1128 => 0.23696431035935
1129 => 0.23829633674735
1130 => 0.23888348128716
1201 => 0.23857679029972
1202 => 0.24129186240629
1203 => 0.23898349646312
1204 => 0.23289133920859
1205 => 0.22679752214989
1206 => 0.22672101924063
1207 => 0.22511662477388
1208 => 0.22395694143393
1209 => 0.22418033758718
1210 => 0.22496761476926
1211 => 0.22391118345291
1212 => 0.22413662663668
1213 => 0.22788048560733
1214 => 0.22863128982392
1215 => 0.22607976373782
1216 => 0.21583501831868
1217 => 0.21332093209583
1218 => 0.21512800741632
1219 => 0.21426434180368
1220 => 0.1729280464818
1221 => 0.18263939591774
1222 => 0.17686924184917
1223 => 0.17952839431599
1224 => 0.17363856118614
1225 => 0.17644949826831
1226 => 0.17593042082822
1227 => 0.19154598334149
1228 => 0.19130216781135
1229 => 0.1914188694032
1230 => 0.18584839835993
1231 => 0.19472230998662
]
'min_raw' => 0.1132896323824
'max_raw' => 0.25291112359006
'avg_raw' => 0.18310037798623
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.113289'
'max' => '$0.252911'
'avg' => '$0.18310037'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.017469031450361
'max_diff' => 0.038261148857838
'year' => 2035
]
10 => [
'items' => [
101 => 0.19909391794948
102 => 0.19828484966213
103 => 0.19848847471936
104 => 0.19498952159401
105 => 0.19145274691778
106 => 0.18752991949612
107 => 0.19481804796944
108 => 0.19400773249571
109 => 0.19586630465015
110 => 0.20059317693128
111 => 0.20128922683032
112 => 0.20222472495327
113 => 0.20188941546948
114 => 0.20987784773341
115 => 0.20891039587687
116 => 0.21124167649623
117 => 0.20644605538753
118 => 0.2010193548985
119 => 0.20205079324926
120 => 0.20195145744178
121 => 0.20068679860021
122 => 0.19954512114476
123 => 0.19764454984706
124 => 0.20365823866461
125 => 0.2034140938809
126 => 0.20736651414186
127 => 0.20666788546897
128 => 0.202002272208
129 => 0.20216890549837
130 => 0.20328959445728
131 => 0.20716831173989
201 => 0.20831977911258
202 => 0.20778637354751
203 => 0.20904890495518
204 => 0.21004675830225
205 => 0.20917421997235
206 => 0.22152752270324
207 => 0.21639757014011
208 => 0.2188978733254
209 => 0.21949418090245
210 => 0.21796675158283
211 => 0.21829799630911
212 => 0.21879974181065
213 => 0.2218462422441
214 => 0.22984114089347
215 => 0.23338202708217
216 => 0.2440349578851
217 => 0.23308800577571
218 => 0.23243845894053
219 => 0.23435737346583
220 => 0.2406117715744
221 => 0.24568037379566
222 => 0.24736192156712
223 => 0.24758416586445
224 => 0.2507388612709
225 => 0.2525470738463
226 => 0.25035579827183
227 => 0.24849892165859
228 => 0.24184782011397
229 => 0.24261770322811
301 => 0.24792143442817
302 => 0.25541326713647
303 => 0.26184203899253
304 => 0.25959090715385
305 => 0.27676545403152
306 => 0.2784682402027
307 => 0.27823297021151
308 => 0.28211217051804
309 => 0.27441274789499
310 => 0.27112109555436
311 => 0.24890039945882
312 => 0.25514350869125
313 => 0.26421823460554
314 => 0.26301716060231
315 => 0.25642685207523
316 => 0.26183703965254
317 => 0.26004826244728
318 => 0.25863737964905
319 => 0.26510090726082
320 => 0.2579939931446
321 => 0.26414733770072
322 => 0.25625560965929
323 => 0.25960119013447
324 => 0.25770207684924
325 => 0.25893103589136
326 => 0.25174656644291
327 => 0.25562313176415
328 => 0.25158528858058
329 => 0.25158337411717
330 => 0.25149423850509
331 => 0.25624474310403
401 => 0.25639965688845
402 => 0.25288902681222
403 => 0.25238309017189
404 => 0.25425380310333
405 => 0.25206368820111
406 => 0.25308842917944
407 => 0.25209472656142
408 => 0.25187102317152
409 => 0.25008851650085
410 => 0.24932056361608
411 => 0.2496216977299
412 => 0.24859377175414
413 => 0.24797440917203
414 => 0.25137103169838
415 => 0.24955635330191
416 => 0.25109290620797
417 => 0.24934181024308
418 => 0.24327174871259
419 => 0.23978079213666
420 => 0.22831500860055
421 => 0.23156669058813
422 => 0.23372255911001
423 => 0.23301004457639
424 => 0.23454080150112
425 => 0.23463477754401
426 => 0.23413711286356
427 => 0.23356088091839
428 => 0.23328040307511
429 => 0.23537085512775
430 => 0.23658443290569
501 => 0.23393892935798
502 => 0.23331912489128
503 => 0.23599387504027
504 => 0.237625471086
505 => 0.24967225957305
506 => 0.24877979457132
507 => 0.25101970658826
508 => 0.2507675268694
509 => 0.25311531150913
510 => 0.25695294714726
511 => 0.24914996087514
512 => 0.25050428948501
513 => 0.25017223938589
514 => 0.25379747529994
515 => 0.25380879289076
516 => 0.25163528286632
517 => 0.25281357791174
518 => 0.25215588594222
519 => 0.25334442422354
520 => 0.24876787515711
521 => 0.25434161791208
522 => 0.2575015708901
523 => 0.25754544684027
524 => 0.25904323947291
525 => 0.26056508353398
526 => 0.26348613068451
527 => 0.26048361711435
528 => 0.25508238749044
529 => 0.25547233882342
530 => 0.25230559987115
531 => 0.25235883332506
601 => 0.25207466897613
602 => 0.25292746757816
603 => 0.24895501649323
604 => 0.24988734282284
605 => 0.24858208050169
606 => 0.25050145209964
607 => 0.24843652554373
608 => 0.25017207926128
609 => 0.25092108671125
610 => 0.25368494032663
611 => 0.24802830211752
612 => 0.23649403388841
613 => 0.23891867690965
614 => 0.23533243942963
615 => 0.23566435936217
616 => 0.23633489045058
617 => 0.23416147980894
618 => 0.23457609806732
619 => 0.23456128498551
620 => 0.23443363384911
621 => 0.23386824580012
622 => 0.23304832127047
623 => 0.23631464823716
624 => 0.23686966083735
625 => 0.23810338509608
626 => 0.2417741116469
627 => 0.24140731950278
628 => 0.2420055727079
629 => 0.24069958932017
630 => 0.23572494018588
701 => 0.23599508756763
702 => 0.23262634538838
703 => 0.23801723878459
704 => 0.23674060407205
705 => 0.23591754936788
706 => 0.2356929712663
707 => 0.23937279683823
708 => 0.24047385832355
709 => 0.23978775069539
710 => 0.23838052393307
711 => 0.24108281532597
712 => 0.24180583450219
713 => 0.24196769183183
714 => 0.24675563406708
715 => 0.24223528461538
716 => 0.24332337765681
717 => 0.25181236895622
718 => 0.24411402524838
719 => 0.24819200960398
720 => 0.24799241349058
721 => 0.25007857229543
722 => 0.24782128757816
723 => 0.24784926932757
724 => 0.24970163701764
725 => 0.2471003206732
726 => 0.24645619816393
727 => 0.24556634753066
728 => 0.24750930383387
729 => 0.2486740182653
730 => 0.25806076119408
731 => 0.26412502521356
801 => 0.26386175951911
802 => 0.2662675151536
803 => 0.26518370020607
804 => 0.26168377584455
805 => 0.26765771995936
806 => 0.26576731408099
807 => 0.26592315684476
808 => 0.26591735636931
809 => 0.26717431101627
810 => 0.2662836434507
811 => 0.2645280462538
812 => 0.26569349360339
813 => 0.26915445557663
814 => 0.27989738773683
815 => 0.2859092748986
816 => 0.27953546458094
817 => 0.28393203358934
818 => 0.28129565884202
819 => 0.28081655112507
820 => 0.28357792136624
821 => 0.28634412502048
822 => 0.28616792980633
823 => 0.28415980799949
824 => 0.283025470945
825 => 0.29161505115233
826 => 0.29794370752941
827 => 0.29751213559234
828 => 0.29941695376784
829 => 0.30500955884491
830 => 0.30552087656434
831 => 0.3054564622842
901 => 0.30418910796608
902 => 0.309695753956
903 => 0.314289494921
904 => 0.30389575205883
905 => 0.30785355327666
906 => 0.30963033775573
907 => 0.31223918451922
908 => 0.3166407463027
909 => 0.32142200985616
910 => 0.32209813294651
911 => 0.32161839125844
912 => 0.31846501941766
913 => 0.3236967350502
914 => 0.32676135136891
915 => 0.32858626025421
916 => 0.33321392555143
917 => 0.30964131057179
918 => 0.29295544205421
919 => 0.29034970273833
920 => 0.29564857610281
921 => 0.2970458467513
922 => 0.29648260870492
923 => 0.2777011466756
924 => 0.29025082222766
925 => 0.30375321791498
926 => 0.30427189992357
927 => 0.31103148152642
928 => 0.31323267838093
929 => 0.31867502756984
930 => 0.31833460714628
1001 => 0.31965973256709
1002 => 0.31935510918082
1003 => 0.32943591503145
1004 => 0.34055654089885
1005 => 0.34017146898649
1006 => 0.33857274744478
1007 => 0.34094712155675
1008 => 0.3524247992106
1009 => 0.35136811857827
1010 => 0.35239459380474
1011 => 0.36592742261219
1012 => 0.38352202508434
1013 => 0.37534756576682
1014 => 0.39308379034853
1015 => 0.40424780356585
1016 => 0.42355481004469
1017 => 0.42113747774453
1018 => 0.42865355368538
1019 => 0.41680994841476
1020 => 0.38961463672587
1021 => 0.38531087455164
1022 => 0.39392711541308
1023 => 0.41510930281044
1024 => 0.39326001295093
1025 => 0.39768009583293
1026 => 0.39640711166556
1027 => 0.39633927974911
1028 => 0.39892814810747
1029 => 0.39517285952738
1030 => 0.37987313828858
1031 => 0.3868849103705
1101 => 0.38417732843672
1102 => 0.38718159245585
1103 => 0.40339436631439
1104 => 0.39622631252727
1105 => 0.38867535014795
1106 => 0.39814593266432
1107 => 0.41020523865288
1108 => 0.40945058895677
1109 => 0.40798625312722
1110 => 0.41624063752827
1111 => 0.42987446225109
1112 => 0.43355963028853
1113 => 0.43627994599382
1114 => 0.43665503156947
1115 => 0.44051864611304
1116 => 0.41974301695602
1117 => 0.45271447398422
1118 => 0.45840773379487
1119 => 0.45733763691191
1120 => 0.46366545558245
1121 => 0.46180365080831
1122 => 0.4591061877988
1123 => 0.46913712635724
1124 => 0.45763746475499
1125 => 0.44131514287774
1126 => 0.43236039427695
1127 => 0.44415272959343
1128 => 0.45135389727541
1129 => 0.45611341103292
1130 => 0.45755363702016
1201 => 0.42135576990685
1202 => 0.40184712715852
1203 => 0.41435194349315
1204 => 0.42960868245773
1205 => 0.41965826500074
1206 => 0.42004830252642
1207 => 0.40586162215646
1208 => 0.4308638888793
1209 => 0.42722126891994
1210 => 0.44611918771276
1211 => 0.44160904772758
1212 => 0.45701956689014
1213 => 0.4529614607319
1214 => 0.4698064325091
1215 => 0.47652634781042
1216 => 0.48781013147265
1217 => 0.49611052866786
1218 => 0.50098468066217
1219 => 0.50069205485892
1220 => 0.52000587335329
1221 => 0.50861718936058
1222 => 0.49431031815901
1223 => 0.49405155199658
1224 => 0.5014612833218
1225 => 0.51699004741896
1226 => 0.52101643001503
1227 => 0.52326662859701
1228 => 0.51982037113872
1229 => 0.50745877089897
1230 => 0.50212109459019
1231 => 0.50666894945264
]
'min_raw' => 0.18752991949612
'max_raw' => 0.52326662859701
'avg_raw' => 0.35539827404657
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.187529'
'max' => '$0.523266'
'avg' => '$0.355398'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.074240287113718
'max_diff' => 0.27035550500695
'year' => 2036
]
11 => [
'items' => [
101 => 0.50110731375748
102 => 0.51070825728669
103 => 0.52389240340319
104 => 0.52116992936589
105 => 0.53027075189644
106 => 0.53968914578111
107 => 0.55315787204271
108 => 0.55667909583299
109 => 0.56249954485816
110 => 0.56849069882297
111 => 0.57041489601034
112 => 0.57408878548435
113 => 0.57406942227334
114 => 0.58514093548455
115 => 0.59735315741274
116 => 0.60196298847705
117 => 0.61256304082185
118 => 0.59441082265151
119 => 0.60817948865136
120 => 0.62059917003529
121 => 0.60579191388601
122 => 0.6262002668396
123 => 0.62699267693846
124 => 0.63895712863873
125 => 0.62682886472891
126 => 0.61962714033404
127 => 0.64041824881692
128 => 0.650478411298
129 => 0.64744820848638
130 => 0.62438821547039
131 => 0.61096631044545
201 => 0.57583859610307
202 => 0.61744889114595
203 => 0.6377160520724
204 => 0.62433572841978
205 => 0.63108398538321
206 => 0.66790028724604
207 => 0.68191755131639
208 => 0.67900205837783
209 => 0.67949472869135
210 => 0.68705818995237
211 => 0.72059874245794
212 => 0.70050046593268
213 => 0.71586484526818
214 => 0.72401405666734
215 => 0.73158349837537
216 => 0.71299534188708
217 => 0.68881242341006
218 => 0.68115267799854
219 => 0.62300531892988
220 => 0.61997849636918
221 => 0.61827944914374
222 => 0.60756719672238
223 => 0.59915030065208
224 => 0.59245687239766
225 => 0.57489131783119
226 => 0.58081917685511
227 => 0.55282334909232
228 => 0.57073408758374
301 => 0.52605207049142
302 => 0.56326458205921
303 => 0.54301150385814
304 => 0.55661090116536
305 => 0.5565634541493
306 => 0.53152265201386
307 => 0.51707963993034
308 => 0.5262832893604
309 => 0.53615033213602
310 => 0.53775122662964
311 => 0.5505441051444
312 => 0.55411432255587
313 => 0.54329639712162
314 => 0.52512613500245
315 => 0.52934667247318
316 => 0.5169941108732
317 => 0.49534672180368
318 => 0.51089425456056
319 => 0.51620286582053
320 => 0.51854745097784
321 => 0.49725973004739
322 => 0.49057066595213
323 => 0.48700946435451
324 => 0.52237815755008
325 => 0.52431573440364
326 => 0.51440281727505
327 => 0.55921014267766
328 => 0.54906886495073
329 => 0.56039915684508
330 => 0.52896370293529
331 => 0.53016457960809
401 => 0.5152825319517
402 => 0.5236154842205
403 => 0.5177260221405
404 => 0.52294226402502
405 => 0.52606885790323
406 => 0.54094846356204
407 => 0.56343448325439
408 => 0.53872594666773
409 => 0.52796008344416
410 => 0.53463916443855
411 => 0.55242643728561
412 => 0.57937506616265
413 => 0.56342093547574
414 => 0.57050110775588
415 => 0.57204781042415
416 => 0.56028382510965
417 => 0.57980882108117
418 => 0.59027242504309
419 => 0.60100591757027
420 => 0.61032550838598
421 => 0.59671872462035
422 => 0.61127993370541
423 => 0.59954616958227
424 => 0.58901977014958
425 => 0.58903573435241
426 => 0.58243237022213
427 => 0.56963752014227
428 => 0.56727795347933
429 => 0.57955271724038
430 => 0.58939591535229
501 => 0.59020664829453
502 => 0.59565634853106
503 => 0.59888142499467
504 => 0.63049155861684
505 => 0.64320541585241
506 => 0.65875167981907
507 => 0.66480782577352
508 => 0.6830346538479
509 => 0.66831500986724
510 => 0.66513032230112
511 => 0.62091799934269
512 => 0.62815776475031
513 => 0.63974932770137
514 => 0.62110913994631
515 => 0.63293204869711
516 => 0.63526614132796
517 => 0.62047575349915
518 => 0.62837593869345
519 => 0.60739538905906
520 => 0.56389180190319
521 => 0.57985725300983
522 => 0.59161319893705
523 => 0.57483601460123
524 => 0.6049084681565
525 => 0.58734076161096
526 => 0.58177264203465
527 => 0.56004942238953
528 => 0.57030194585862
529 => 0.58416863065257
530 => 0.57560063162504
531 => 0.59338051609868
601 => 0.61856157423534
602 => 0.63650709582146
603 => 0.63788473013842
604 => 0.62634696201511
605 => 0.64483630906576
606 => 0.64497098377374
607 => 0.62411492476941
608 => 0.61134070475628
609 => 0.60843837509211
610 => 0.61568896362846
611 => 0.62449251664407
612 => 0.63837326606117
613 => 0.64676111222187
614 => 0.66863216643911
615 => 0.67454984661803
616 => 0.68105158300614
617 => 0.6897399078819
618 => 0.70017246953602
619 => 0.67734661856287
620 => 0.67825353217474
621 => 0.65699841579396
622 => 0.63428427564907
623 => 0.6515214766615
624 => 0.67405682401649
625 => 0.66888719043391
626 => 0.66830550104984
627 => 0.66928374124667
628 => 0.66538600634985
629 => 0.64775669586834
630 => 0.63890336650985
701 => 0.65032642010751
702 => 0.65639726471304
703 => 0.66581261526293
704 => 0.66465197457372
705 => 0.68890490645542
706 => 0.69832886241405
707 => 0.69591781120602
708 => 0.69636150265349
709 => 0.71342312476979
710 => 0.73239915755333
711 => 0.75017271636318
712 => 0.76825274377668
713 => 0.74645656505423
714 => 0.73538980970038
715 => 0.74680787635019
716 => 0.74074928946488
717 => 0.77556372680147
718 => 0.77797420290685
719 => 0.81278612276336
720 => 0.8458267800335
721 => 0.82507453518699
722 => 0.84464296737562
723 => 0.8658078222253
724 => 0.90663826110429
725 => 0.892888005722
726 => 0.88235552559315
727 => 0.87240238276395
728 => 0.89311329297458
729 => 0.91975754809568
730 => 0.92549646545327
731 => 0.93479570400771
801 => 0.9250186917245
802 => 0.93679402611705
803 => 0.97836613086687
804 => 0.96713298119635
805 => 0.95118010284529
806 => 0.9839972869179
807 => 0.9958736982602
808 => 1.0792285727854
809 => 1.1844675450915
810 => 1.1408979195204
811 => 1.1138528469454
812 => 1.1202090805183
813 => 1.1586387906404
814 => 1.1709811938336
815 => 1.137430287273
816 => 1.1492810346696
817 => 1.2145798179646
818 => 1.2496105201666
819 => 1.2020341213253
820 => 1.0707727238295
821 => 0.949743720694
822 => 0.98184606233257
823 => 0.9782066530424
824 => 1.0483620495038
825 => 0.96686507429176
826 => 0.96823727434369
827 => 1.0398434101081
828 => 1.0207401207261
829 => 0.98979523849171
830 => 0.94996965257997
831 => 0.87634837360129
901 => 0.81113995372862
902 => 0.93902868170114
903 => 0.93351388720041
904 => 0.92552764751658
905 => 0.94330015973154
906 => 1.0295984342318
907 => 1.0276089796843
908 => 1.0149530848818
909 => 1.0245524695455
910 => 0.98811241994782
911 => 0.99750385045366
912 => 0.94972454908155
913 => 0.97132278874163
914 => 0.98972884467249
915 => 0.99342413290693
916 => 1.0017498059852
917 => 0.93060784109272
918 => 0.96254849471109
919 => 0.98131063627737
920 => 0.89654259810837
921 => 0.9796350447128
922 => 0.92936941776053
923 => 0.91230850900855
924 => 0.93527877503928
925 => 0.92632724002778
926 => 0.91863123587668
927 => 0.91433673332622
928 => 0.93120356156344
929 => 0.93041670386596
930 => 0.90281929915958
1001 => 0.86681960973423
1002 => 0.8789022871549
1003 => 0.87451253717226
1004 => 0.85860351694618
1005 => 0.86932427571613
1006 => 0.8221154797451
1007 => 0.74089519997664
1008 => 0.79455180463614
1009 => 0.7924860837239
1010 => 0.79144445356697
1011 => 0.83176590900895
1012 => 0.82788993144246
1013 => 0.82085499420559
1014 => 0.85847431480696
1015 => 0.84474275673619
1016 => 0.88706018314832
1017 => 0.91493317710288
1018 => 0.9078636842391
1019 => 0.93407836977524
1020 => 0.87918064763909
1021 => 0.8974154688184
1022 => 0.90117364019108
1023 => 0.85801009823023
1024 => 0.82852408930736
1025 => 0.82655770867732
1026 => 0.77543303262738
1027 => 0.80274342190929
1028 => 0.82677543429667
1029 => 0.81526596532261
1030 => 0.81162241128103
1031 => 0.83023653868902
1101 => 0.83168301580784
1102 => 0.79870318420796
1103 => 0.80556073553301
1104 => 0.83415786453154
1105 => 0.80484016125492
1106 => 0.7478806528081
1107 => 0.73375390718647
1108 => 0.73186913891296
1109 => 0.69355628438078
1110 => 0.73469792387857
1111 => 0.7167384957104
1112 => 0.77347211410667
1113 => 0.74106617554722
1114 => 0.73966922030485
1115 => 0.73755751756723
1116 => 0.70458006098729
1117 => 0.7118000281516
1118 => 0.7358002986378
1119 => 0.74436386552968
1120 => 0.74347061534362
1121 => 0.73568268421912
1122 => 0.73924795920726
1123 => 0.72776296624631
1124 => 0.72370737619235
1125 => 0.7109068184041
1126 => 0.69209353469973
1127 => 0.6947096371874
1128 => 0.65743559940557
1129 => 0.63712672533911
1130 => 0.63150549666418
1201 => 0.62398855475274
1202 => 0.63235455525489
1203 => 0.65733000673977
1204 => 0.6272043134114
1205 => 0.57555592527159
1206 => 0.57866008140336
1207 => 0.58563419859923
1208 => 0.57263797734313
1209 => 0.5603381446144
1210 => 0.57103185125506
1211 => 0.54914774833155
1212 => 0.588278787885
1213 => 0.58722040292855
1214 => 0.60180603462682
1215 => 0.61092672945504
1216 => 0.589906480736
1217 => 0.58461994502796
1218 => 0.58763139602691
1219 => 0.53785881910423
1220 => 0.59773855322626
1221 => 0.59825639565351
1222 => 0.59382231440016
1223 => 0.62570642424076
1224 => 0.69299184090767
1225 => 0.66767636060797
1226 => 0.65787344147148
1227 => 0.63923808502712
1228 => 0.66406859103125
1229 => 0.66216199558637
1230 => 0.65353964792976
1231 => 0.64832482516368
]
'min_raw' => 0.48700946435451
'max_raw' => 1.2496105201666
'avg_raw' => 0.86830999226057
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.4870094'
'max' => '$1.24'
'avg' => '$0.8683099'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.29947954485838
'max_diff' => 0.72634389156963
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.015286670592838
]
1 => [
'year' => 2028
'avg' => 0.026236364489491
]
2 => [
'year' => 2029
'avg' => 0.071673019140663
]
3 => [
'year' => 2030
'avg' => 0.05529562752836
]
4 => [
'year' => 2031
'avg' => 0.054307158944527
]
5 => [
'year' => 2032
'avg' => 0.095217540721673
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.015286670592838
'min' => '$0.015286'
'max_raw' => 0.095217540721673
'max' => '$0.095217'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.095217540721673
]
1 => [
'year' => 2033
'avg' => 0.24490930584039
]
2 => [
'year' => 2034
'avg' => 0.15523528783213
]
3 => [
'year' => 2035
'avg' => 0.18310037798623
]
4 => [
'year' => 2036
'avg' => 0.35539827404657
]
5 => [
'year' => 2037
'avg' => 0.86830999226057
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.095217540721673
'min' => '$0.095217'
'max_raw' => 0.86830999226057
'max' => '$0.8683099'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.86830999226057
]
]
]
]
'prediction_2025_max_price' => '$0.026137'
'last_price' => 0.02534353
'sma_50day_nextmonth' => '$0.023371'
'sma_200day_nextmonth' => '$0.044871'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 feb. 2026'
'sma_50day_date_nextmonth' => '4 feb. 2026'
'daily_sma3' => '$0.025427'
'daily_sma3_action' => 'SELL'
'daily_sma5' => '$0.025197'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.024917'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.023344'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.026763'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.037447'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.056343'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.025319'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.025171'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.024682'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.024428'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.028083'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.037148'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.061956'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.0419046'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.083075'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.309723'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$1.62'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.025046'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.025733'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.030652'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.045234'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.132591'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.7537075'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$3.07'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '54.13'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 102.5
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'SELL'
'vwma_10' => '0.0250039'
'vwma_10_action' => 'BUY'
'hma_9' => '0.025567'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 95.24
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 86.11
'cci_20_action' => 'NEUTRAL'
'adx_14' => 20.11
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.001551'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'NEUTRAL'
'williams_percent_r_14' => -4.76
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 84.06
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '-0.014567'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 20
'buy_signals' => 14
'sell_pct' => 58.82
'buy_pct' => 41.18
'overall_action' => 'bearish'
'overall_action_label' => 'Bajista'
'overall_action_dir' => -1
'last_updated' => 1767696500
'last_updated_date' => '6 de enero de 2026'
]
Predicción de precio de Tulip Token para 2026
La previsión del precio de Tulip Token para 2026 sugiere que el precio medio podría oscilar entre $0.008756 en el extremo inferior y $0.026137 en el extremo superior. En el mercado de criptomonedas, en comparación con el precio medio de hoy, Tulip Token podría potencialmente ganar 3.13% para 2026 si TULIP alcanza el objetivo de precio previsto.
Predicción de precio de Tulip Token 2027-2032
La predicción del precio de TULIP para 2027-2032 está actualmente dentro de un rango de precios de $0.015286 en el extremo inferior y $0.095217 en el extremo superior. Considerando la volatilidad de precios en el mercado, si Tulip Token alcanza el objetivo de precio superior, podría ganar 275.71% para 2032 en comparación con el precio de hoy.
| Predicción de Precio de Tulip Token | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.008429 | $0.015286 | $0.022143 |
| 2028 | $0.015212 | $0.026236 | $0.03726 |
| 2029 | $0.033417 | $0.071673 | $0.109928 |
| 2030 | $0.02842 | $0.055295 | $0.082171 |
| 2031 | $0.0336014 | $0.0543071 | $0.075012 |
| 2032 | $0.05129 | $0.095217 | $0.139145 |
Predicción de precio de Tulip Token 2032-2037
La predicción de precio de Tulip Token para 2032-2037 se estima actualmente entre $0.095217 en el extremo inferior y $0.8683099 en el extremo superior. Comparado con el precio actual, Tulip Token podría potencialmente ganar 3326.16% para 2037 si alcanza el objetivo de precio superior. Tenga en cuenta que esta información es solo para fines generales y no debe considerarse como consejo de inversión a largo plazo.
| Predicción de Precio de Tulip Token | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.05129 | $0.095217 | $0.139145 |
| 2033 | $0.119186 | $0.2449093 | $0.370631 |
| 2034 | $0.09582 | $0.155235 | $0.214649 |
| 2035 | $0.113289 | $0.18310037 | $0.252911 |
| 2036 | $0.187529 | $0.355398 | $0.523266 |
| 2037 | $0.4870094 | $0.8683099 | $1.24 |
Tulip Token Histograma de precios potenciales
Pronóstico de precio de Tulip Token basado en análisis técnico
A fecha de 6 de enero de 2026, el sentimiento general de predicción de precio para Tulip Token es Bajista, con 14 indicadores técnicos mostrando señales alcistas y 20 indicando señales bajistas. La predicción de precio de TULIP se actualizó por última vez el 6 de enero de 2026.
Promedios Móviles Simples de 50 y 200 días y el Índice de Fuerza Relativa de 14 días - RSI (14) de Tulip Token
Según nuestros indicadores técnicos, se proyecta que el SMA de 200 días de Tulip Token aumentar durante el próximo mes, alcanzando $0.044871 para el 4 feb. 2026. Se espera que el SMA de 50 días a corto plazo para Tulip Token alcance $0.023371 para el 4 feb. 2026.
El oscilador de momento del Índice de Fuerza Relativa (RSI) es una herramienta comúnmente utilizada para identificar si una criptomoneda está sobrevendida (por debajo de 30) o sobrecomprada (por encima de 70). Actualmente, el RSI se encuentra en 54.13, lo que sugiere que el mercado de TULIP está en un estado NEUTRAL.
Promedios Móviles y Osciladores Populares de TULIP para Sáb, 19 de Oct de 2024
Los promedios móviles (MA) son indicadores ampliamente utilizados en los mercados financieros, diseñados para suavizar los movimientos de precios durante un período establecido. Como indicadores rezagados, se basan en datos históricos de precios. La tabla a continuación resalta dos tipos: el promedio móvil simple (SMA) y el promedio móvil exponencial (EMA).
Promedio Móvil Simple Diario (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 3 | $0.025427 | SELL |
| SMA 5 | $0.025197 | BUY |
| SMA 10 | $0.024917 | BUY |
| SMA 21 | $0.023344 | BUY |
| SMA 50 | $0.026763 | SELL |
| SMA 100 | $0.037447 | SELL |
| SMA 200 | $0.056343 | SELL |
Promedio Móvil Exponencial Diario (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 3 | $0.025319 | BUY |
| EMA 5 | $0.025171 | BUY |
| EMA 10 | $0.024682 | BUY |
| EMA 21 | $0.024428 | BUY |
| EMA 50 | $0.028083 | SELL |
| EMA 100 | $0.037148 | SELL |
| EMA 200 | $0.061956 | SELL |
Promedio Móvil Simple Semanal (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 21 | $0.0419046 | SELL |
| SMA 50 | $0.083075 | SELL |
| SMA 100 | $0.309723 | SELL |
| SMA 200 | $1.62 | SELL |
Promedio Móvil Exponencial Semanal (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 21 | $0.045234 | SELL |
| EMA 50 | $0.132591 | SELL |
| EMA 100 | $0.7537075 | SELL |
| EMA 200 | $3.07 | SELL |
Osciladores de Tulip Token
Un oscilador es una herramienta de análisis técnico que establece límites altos y bajos entre dos extremos, creando un indicador de tendencia que fluctúa dentro de estos límites. Los traders utilizan este indicador para identificar condiciones de sobrecompra o sobreventa a corto plazo.
| Período | Valor | Acción |
|---|---|---|
| RSI (14) | 54.13 | NEUTRAL |
| Stoch RSI (14) | 102.5 | SELL |
| Estocástico Rápido (14) | 95.24 | SELL |
| Índice de Canal de Materias Primas (20) | 86.11 | NEUTRAL |
| Índice Direccional Medio (14) | 20.11 | NEUTRAL |
| Oscilador Asombroso (5, 34) | 0.001551 | BUY |
| Momentum (10) | 0 | SELL |
| MACD (12, 26) | 0 | NEUTRAL |
| Rango Percentil de Williams (14) | -4.76 | SELL |
| Oscilador Ultimate (7, 14, 28) | 84.06 | SELL |
| VWMA (10) | 0.0250039 | BUY |
| Promedio Móvil de Hull (9) | 0.025567 | BUY |
| Nube Ichimoku B/L (9, 26, 52, 26) | -0.014567 | SELL |
Predicción de precios de Tulip Token basada en flujos de dinero globales
Definiciones de flujos de dinero globales utilizadas para la predicción de precios de Tulip Token
M0: El total de toda la moneda física, además de cuentas en el banco central que pueden cambiarse por moneda física.
M1: Medir M0 más la cantidad en cuentas a la vista, incluyendo cuentas "de cheques" o "corrientes".
M2: Medir M1 más la mayoría de cuentas de ahorro, cuentas del mercado monetario, y cuentas de certificados de depósito (CD) inferiores a 100 000 $.
Predicciones de precios de Tulip Token por parte de empresas de Internet o nichos tecnológicos
| Comparación | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook acción | $0.035611 | $0.05004 | $0.070315 | $0.0988049 | $0.138837 | $0.195089 |
| Amazon.com acción | $0.05288 | $0.110338 | $0.230228 | $0.480385 | $1.00 | $2.09 |
| Apple acción | $0.035947 | $0.050989 | $0.072324 | $0.102586 | $0.145511 | $0.206396 |
| Netflix acción | $0.039988 | $0.063094 | $0.099553 | $0.15708 | $0.247848 | $0.391066 |
| Google acción | $0.032819 | $0.0425014 | $0.055039 | $0.071275 | $0.0923014 | $0.119529 |
| Tesla acción | $0.057451 | $0.130239 | $0.295242 | $0.669291 | $1.51 | $3.43 |
| Kodak acción | $0.0190049 | $0.014251 | $0.010687 | $0.008014 | $0.0060098 | $0.0045067 |
| Nokia acción | $0.016789 | $0.011122 | $0.007367 | $0.00488 | $0.003233 | $0.002141 |
Este cálculo muestra cuánto puede costar la criptomoneda si asumimos que su capitalización se comportará como la capitalización de algunas empresas de Internet o nichos tecnológicos. Si extrapola los datos, puede obtener una imagen potencial del precio futuro en 2024, 2025, 2026, 2027, 2028, 2029 y 2030.
Resumen de pronósticos y predicciones de Tulip Token
Podría preguntarse cosas como: "¿Debo invertir en Tulip Token ahora?", "¿Debería comprar TULIP hoy?", "¿Será Tulip Token una buena o mala inversión a corto plazo?, ¿Lo será a largo plazo?".
Actualizamos el pronóstico de Tulip Token/Tulip Protocol regularmente con valores actualizados. Aquí hay algunas predicciones similares. Hacemos un pronóstico de precios futuros para una gran cantidad de monedas digitales, como Tulip Token, con métodos de análisis técnico.
Si está tratando de encontrar criptomonedas que ofrezcan un buen rendimiento, debería explorar el máximo de fuentes de información disponibles acerca de Tulip Token a fin de tomar una decisión responsable sobre la inversión por sus propios medios.
El precio de Tulip Token es de $0.02534 USD hoy, pero dicho precio puede subir y bajar, y su inversión puede perderse porque estos son activos de criptomonedas conllevan un alto riesgo
Predicción de precios de Tulip Token basada en el patrón de crecimiento del Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si Tulip Token ofrece un 1 % del crecimiento medio anterior anual del Bitcoin | $0.0260022 | $0.026678 | $0.027371 | $0.028083 |
| Si Tulip Token ofrece un 2 % del crecimiento medio anterior anual del Bitcoin | $0.026661 | $0.028047 | $0.0295051 | $0.031038 |
| Si Tulip Token ofrece un 5 % del crecimiento medio anterior anual del Bitcoin | $0.028637 | $0.032359 | $0.036564 | $0.041316 |
| Si Tulip Token ofrece un 10 % del crecimiento medio anterior anual del Bitcoin | $0.031931 | $0.040231 | $0.050688 | $0.063863 |
| Si Tulip Token ofrece un 20 % del crecimiento medio anterior anual del Bitcoin | $0.038518 | $0.058543 | $0.088977 | $0.135234 |
| Si Tulip Token ofrece un 50 % del crecimiento medio anterior anual del Bitcoin | $0.058281 | $0.134027 | $0.308218 | $0.708797 |
| Si Tulip Token ofrece un 100 % del crecimiento medio anterior anual del Bitcoin | $0.091219 | $0.328328 | $1.18 | $4.25 |
Cuadro de preguntas
¿Es TULIP una buena inversión?
La decisión de adquirir Tulip Token depende completamente de su tolerancia individual al riesgo. Como puede discernir, el valor de Tulip Token ha experimentado una caída de -0.4306% durante las últimas 24 horas, y Tulip Token ha sufrido un declive de durante el período previo de 30 días. Por lo tanto, la determinación de si invertir o no en Tulip Token dependerá de si dicha inversión se alinea con sus aspiraciones comerciales.
¿Puede Tulip Token subir?
Parece que el valor medio de Tulip Token podría potencialmente aumentar hasta $0.026137 para el final de este año. Mirando las perspectivas de Tulip Token en un horizonte de cinco años más extendido, la moneda digital podría potencialmente crecer hasta $0.082171. Sin embargo, dada la imprevisibilidad del mercado, es vital realizar una investigación exhaustiva antes de invertir cualquier fondo en un proyecto, red o activo en particular.
¿Cuál será el precio de Tulip Token la próxima semana?
Basado en nuestro nuevo pronóstico experimental de Tulip Token, el precio de Tulip Token aumentará en un 0.86% durante la próxima semana y alcanzará $0.02556 para el 13 de enero de 2026.
¿Cuál será el precio de Tulip Token el próximo mes?
Basado en nuestro nuevo pronóstico experimental de Tulip Token, el precio de Tulip Token disminuirá en un -11.62% durante el próximo mes y alcanzará $0.022399 para el 5 de febrero de 2026.
¿Hasta qué punto puede subir el precio de Tulip Token este año en 2026?
Según nuestra predicción más reciente sobre el valor de Tulip Token en 2026, se anticipa que TULIP fluctúe dentro del rango de $0.008756 y $0.026137. Sin embargo, es crucial tener en cuenta que el mercado de criptomonedas es excepcionalmente inestable, y esta predicción de precios proyectada de Tulip Token no considera fluctuaciones de precios repentinas y extremas.
¿Dónde estará Tulip Token en 5 años?
El futuro de Tulip Token parece estar en una tendencia alcista, con un precio máximo de $0.082171 proyectada después de un período de cinco años. Basado en el pronóstico de Tulip Token para 2030, el valor de Tulip Token podría potencialmente alcanzar su punto más alto de aproximadamente $0.082171, mientras que su punto más bajo se anticipa que esté alrededor de $0.02842.
¿Cuánto será Tulip Token en 2026?
Basado en nuestra nueva simulación experimental de predicción de precios de Tulip Token, se espera que el valor de TULIP en 2026 crezca en un 3.13% hasta $0.026137 si ocurre lo mejor. El precio estará entre $0.026137 y $0.008756 durante 2026.
¿Cuánto será Tulip Token en 2027?
Según nuestra última simulación experimental para la predicción de precios de Tulip Token, el valor de TULIP podría disminuir en un -12.62% hasta $0.022143 en 2027, asumiendo las condiciones más favorables. Se proyecta que el precio fluctúe entre $0.022143 y $0.008429 a lo largo del año.
¿Cuánto será Tulip Token en 2028?
Nuestro nuevo modelo experimental de predicción de precios de Tulip Token sugiere que el valor de TULIP en 2028 podría aumentar en un 47.02% , alcanzando $0.03726 en el mejor escenario. Se espera que el precio oscile entre $0.03726 y $0.015212 durante el año.
¿Cuánto será Tulip Token en 2029?
Basado en nuestro modelo de pronóstico experimental, el valor de Tulip Token podría experimentar un 333.75% crecimiento en 2029, potencialmente alcanzando $0.109928 bajo condiciones óptimas. El rango de precios previsto para 2029 se encuentra entre $0.109928 y $0.033417.
¿Cuánto será Tulip Token en 2030?
Usando nuestra nueva simulación experimental para las predicciones de precios de Tulip Token, se espera que el valor de TULIP en 2030 aumente en un 224.23% , alcanzando $0.082171 en el mejor escenario. Se pronostica que el precio oscile entre $0.082171 y $0.02842 durante el transcurso de 2030.
¿Cuánto será Tulip Token en 2031?
Nuestra simulación experimental indica que el precio de Tulip Token podría crecer en un 195.98% en 2031, potencialmente alcanzando $0.075012 bajo condiciones ideales. Es probable que el precio fluctúe entre $0.075012 y $0.0336014 durante el año.
¿Cuánto será Tulip Token en 2032?
Basado en los hallazgos de nuestra última predicción experimental de precios de Tulip Token, TULIP podría experimentar un 449.04% aumento en valor, alcanzando $0.139145 si se desarrolla el escenario más positivo en 2032. Se espera que el precio se mantenga dentro de un rango de $0.139145 y $0.05129 a lo largo del año.
¿Cuánto será Tulip Token en 2033?
Según nuestra predicción experimental de precios de Tulip Token, se anticipa que el valor de TULIP aumente en un 1362.43% en 2033, con el precio potencial más alto siendo $0.370631. A lo largo del año, el precio de TULIP podría oscilar entre $0.370631 y $0.119186.
¿Cuánto será Tulip Token en 2034?
Los resultados de nuestra nueva simulación de predicción de precios de Tulip Token sugieren que TULIP podría aumentar en un 746.96% en 2034, alcanzando potencialmente $0.214649 bajo las mejores circunstancias. El rango de precios previsto para el año está entre $0.214649 y $0.09582.
¿Cuánto será Tulip Token en 2035?
Basado en nuestra predicción experimental para el precio de Tulip Token, TULIP podría crecer en un 897.93% , con el valor potencialmente alcanzando $0.252911 en 2035. El rango de precios esperado para el año está entre $0.252911 y $0.113289.
¿Cuánto será Tulip Token en 2036?
Nuestra reciente simulación de predicción de precios de Tulip Token sugiere que el valor de TULIP podría aumentar en un 1964.7% en 2036, posiblemente alcanzando $0.523266 si las condiciones son óptimas. El rango de precios esperado para 2036 está entre $0.523266 y $0.187529.
¿Cuánto será Tulip Token en 2037?
Según la simulación experimental, el valor de Tulip Token podría aumentar en un 4830.69% en 2037, con un máximo de $1.24 bajo condiciones favorables. Se espera que el precio caiga entre $1.24 y $0.4870094 durante el transcurso del año.
Predicciones relacionadas
Predicción de precios de Million
Predicción de precios de The Three Kingdoms
Predicción de precios de Hypersign Identity Token
Predicción de precios de Populous
Predicción de precios de YAM
Predicción de precios de Polker
Predicción de precios de LightChain
Predicción de precios de Dacxi
Predicción de precios de Goons of Balatroon
Predicción de precios de Trava Finance
Predicción de precios de Tidal Finance
Predicción de precios de NFTBooks
Predicción de precios de Collab.Land
Predicción de precios de MYX Network
Predicción de precios de Hummingbot
Predicción de precios de Wrapped OrdBridge
Predicción de precios de Dingocoin
Predicción de precios de Moon Money Chain
Predicción de precios de Shikoku
Predicción de precios de VNX Swiss Franc
Predicción de precios de XP Network
Predicción de precios de Monsterra
Predicción de precios de Virtual Versions
Predicción de precios de Rocky the dog
Predicción de precios de #MetaHash
¿Cómo leer y predecir los movimientos de precio de Tulip Token?
Los traders de Tulip Token utilizan indicadores y patrones de gráficos para predecir la dirección del mercado. También identifican niveles clave de soporte y resistencia para estimar cuándo una tendencia bajista podría desacelerar o una tendencia alcista podría estancarse.
Indicadores de predicción de precio de Tulip Token
Las medias móviles son herramientas populares para la predicción de precios de Tulip Token. Una media móvil simple (SMA) calcula el precio de cierre promedio de TULIP durante un período específico, como una SMA de 12 días. Una media móvil exponencial (EMA) da más peso a los precios recientes, reaccionando más rápido a los cambios de precio.
Las medias móviles comúnmente utilizadas en el mercado de criptomonedas incluyen las de 50 días, 100 días y 200 días, que ayudan a identificar niveles clave de resistencia y soporte. Un movimiento de precio de TULIP por encima de estas medias se considera alcista, mientras que una caída por debajo indica debilidad.
Los traders también utilizan RSI y niveles de retroceso de Fibonacci para evaluar la dirección futura de TULIP.
¿Cómo leer gráficos de Tulip Token y predecir movimientos de precio?
La mayoría de los traders prefieren gráficos de velas sobre gráficos lineales simples porque proporcionan información más detallada. Las velas pueden representar la acción del precio de Tulip Token en diferentes marcos de tiempo, como 5 minutos para tendencias a corto plazo y semanal para tendencias a largo plazo. Las opciones populares incluyen gráficos de 1 hora, 4 horas y 1 día.
Por ejemplo, un gráfico de velas de 1 hora muestra los precios de apertura, cierre, máximo y mínimo de TULIP dentro de cada hora. El color de la vela es crucial: el verde indica que el precio cerró más alto de lo que abrió, mientras que el rojo significa lo contrario. Algunos gráficos usan velas huecas y llenas para transmitir la misma información.
¿Qué afecta el precio de Tulip Token?
La acción del precio de Tulip Token está impulsada por la oferta y la demanda, influenciada por factores como reducciones a la mitad de recompensas de bloque, hard forks y actualizaciones de protocolo. Los eventos del mundo real, como regulaciones, adopción por empresas y gobiernos y hacks de exchanges de criptomonedas, también impactan el precio de TULIP. La capitalización de mercado de Tulip Token puede cambiar rápidamente.
Los traders a menudo monitorean la actividad de las "ballenas" de TULIP, grandes poseedores de Tulip Token, ya que sus acciones pueden influir significativamente en los movimientos de precios en el relativamente pequeño mercado de Tulip Token.
Patrones de predicción de precios alcistas y bajistas
Los traders a menudo identifican patrones de velas para obtener una ventaja en las predicciones de precios de criptomonedas. Ciertas formaciones indican tendencias alcistas, mientras que otras sugieren movimientos bajistas.
Patrones de velas alcistas comúnmente seguidos:
- Martillo
- Envolvente Alcista
- Línea Penetrante
- Estrella de la Mañana
- Tres Soldados Blancos
Patrones de velas bajistas comunes:
- Harami Bajista
- Cubierta de Nube Oscura
- Estrella de la Tarde
- Estrella Fugaz
- Hombre Colgado


