Prédiction du prix de Solberg jusqu'à $0.008539 d'ici 2026
| Année | Prix min. | Prix max. |
|---|---|---|
| 2026 | $0.00286 | $0.008539 |
| 2027 | $0.002753 | $0.007234 |
| 2028 | $0.004969 | $0.012172 |
| 2029 | $0.010917 | $0.035913 |
| 2030 | $0.009284 | $0.026845 |
| 2031 | $0.010977 | $0.0245067 |
| 2032 | $0.016756 | $0.045458 |
| 2033 | $0.038938 | $0.121085 |
| 2034 | $0.0313046 | $0.070126 |
| 2035 | $0.037011 | $0.082626 |
Calculateur de profit d’investissement
Si vous ouvrez une position short de $10,000.00 sur Solberg aujourd’hui et la fermez le Apr 06, 2026, notre prévision indique que vous pourriez gagner environ $3,954.43, soit un rendement de 39.54% sur les 90 prochains jours.
Prévision du prix à long terme de Solberg pour 2027, 2028, 2029, 2030, 2031, 2032 et 2037
[
'name' => 'Solberg'
'name_with_ticker' => 'Solberg <small>SLB</small>'
'name_lang' => 'Solberg'
'name_lang_with_ticker' => 'Solberg <small>SLB</small>'
'name_with_lang' => 'Solberg'
'name_with_lang_with_ticker' => 'Solberg <small>SLB</small>'
'image' => '/uploads/coins/solberg.png?1717451828'
'price_for_sd' => 0.008279
'ticker' => 'SLB'
'marketcap' => '$77.51K'
'low24h' => '$0.008275'
'high24h' => '$0.008377'
'volume24h' => '$84.85'
'current_supply' => '9.36M'
'max_supply' => '100M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.008279'
'change_24h_pct' => '-0.3862%'
'ath_price' => '$0.1062'
'ath_days' => 1517
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '11 nov. 2021'
'ath_pct' => '-92.21%'
'fdv' => '$827.98K'
'new_prediction' => true
'change_24h_pct_is_increased' => false
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.408249'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.00835'
'next_week_prediction_price_date' => '13 janvier 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.007317'
'next_month_prediction_price_date' => '5 février 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.00286'
'current_year_max_price_prediction' => '$0.008539'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.009284'
'grand_prediction_max_price' => '$0.026845'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0084366570968462
107 => 0.0084681565119393
108 => 0.0085391263025441
109 => 0.0079326972121679
110 => 0.0082049660699241
111 => 0.0083648985157139
112 => 0.0076423179072434
113 => 0.0083506154203583
114 => 0.0079221406308874
115 => 0.0077767098518656
116 => 0.0079725132367702
117 => 0.0078962084672479
118 => 0.007830606107179
119 => 0.0077939988630689
120 => 0.0079377752589118
121 => 0.0079310679181958
122 => 0.0076958218288008
123 => 0.0073889528950424
124 => 0.0074919481818411
125 => 0.0074545290285611
126 => 0.0073189171899078
127 => 0.0074103031953243
128 => 0.007007885476869
129 => 0.0063155467081195
130 => 0.0067729269056654
131 => 0.0067553182655938
201 => 0.0067464391907815
202 => 0.0070901477681771
203 => 0.0070571081191665
204 => 0.0069971408326872
205 => 0.0073178158436647
206 => 0.0072007651509704
207 => 0.0075614878052427
208 => 0.0077990830754249
209 => 0.0077388212295049
210 => 0.0079622807295089
211 => 0.0074943209852277
212 => 0.0076497584409917
213 => 0.0076817938851976
214 => 0.0073138587638063
215 => 0.0070625138143529
216 => 0.0070457519717666
217 => 0.0066099544668819
218 => 0.0068427539763567
219 => 0.0070476079107963
220 => 0.0069494987735072
221 => 0.0069184403515686
222 => 0.0070771110935032
223 => 0.0070894411690745
224 => 0.0068083141393656
225 => 0.0068667693509773
226 => 0.0071105373007683
227 => 0.0068606270240867
228 => 0.0063750921791062
301 => 0.0062546728245066
302 => 0.006238606662834
303 => 0.0059120198225805
304 => 0.0062627198215885
305 => 0.0061096298738459
306 => 0.0065932391844657
307 => 0.0063170041398884
308 => 0.0063050961992207
309 => 0.0062870956003863
310 => 0.0060059888158476
311 => 0.0060675333363934
312 => 0.006272116696183
313 => 0.0063451143437524
314 => 0.0063375000910588
315 => 0.0062711141261099
316 => 0.0063015052809124
317 => 0.0062036047823134
318 => 0.0061690340786355
319 => 0.0060599194284067
320 => 0.0058995510362619
321 => 0.0059218512447861
322 => 0.0056041194972748
323 => 0.0054310023779304
324 => 0.0053830858409429
325 => 0.0053190098451132
326 => 0.0053903233951716
327 => 0.005603219403155
328 => 0.0053464216491193
329 => 0.0049061599120931
330 => 0.0049326203926579
331 => 0.0049920692362997
401 => 0.0048812867094666
402 => 0.0047764403450918
403 => 0.0048675957524613
404 => 0.0046810510506154
405 => 0.00501461227229
406 => 0.0050055903760382
407 => 0.0051299213721909
408 => 0.0052076680956141
409 => 0.0050284870689243
410 => 0.0049834235252688
411 => 0.0050090937677588
412 => 0.0045848218405705
413 => 0.0050952493041704
414 => 0.0050996635020716
415 => 0.0050618664597045
416 => 0.0053336533263915
417 => 0.0059072083875508
418 => 0.0056914139023438
419 => 0.0056078517552488
420 => 0.0054490000525377
421 => 0.0056606605147194
422 => 0.0056444082936415
423 => 0.005570909586455
424 => 0.0055264573390187
425 => 0.0056083619679004
426 => 0.0055163084491018
427 => 0.0054997731076641
428 => 0.0053995869291802
429 => 0.0053638250216422
430 => 0.0053373483290236
501 => 0.0053082000919965
502 => 0.00537249383959
503 => 0.0052267957489963
504 => 0.0050510981347003
505 => 0.0050364907791461
506 => 0.005076822972123
507 => 0.0050589789791093
508 => 0.0050364053489726
509 => 0.0049933061414792
510 => 0.0049805195272848
511 => 0.0050220698202333
512 => 0.004975161962027
513 => 0.0050443770620137
514 => 0.0050255543846635
515 => 0.0049204124390733
516 => 0.0047893666463339
517 => 0.0047882000639006
518 => 0.0047599664628131
519 => 0.0047240067268778
520 => 0.0047140035509879
521 => 0.0048599188983057
522 => 0.0051619593003748
523 => 0.0051026615422344
524 => 0.0051455102495695
525 => 0.005356283480734
526 => 0.0054232819527491
527 => 0.0053757280242586
528 => 0.0053106332739423
529 => 0.0053134971125947
530 => 0.0055359455799466
531 => 0.0055498194179945
601 => 0.0055848741308717
602 => 0.0056299293433796
603 => 0.0053834011217729
604 => 0.005301885655527
605 => 0.0052632591053137
606 => 0.0051443042810132
607 => 0.0052725868606054
608 => 0.0051978420950848
609 => 0.0052079277175983
610 => 0.0052013594427054
611 => 0.0052049461649417
612 => 0.0050145190351305
613 => 0.0050839006726784
614 => 0.0049685402434651
615 => 0.0048140855785644
616 => 0.0048135677923688
617 => 0.0048513703527875
618 => 0.0048288839106361
619 => 0.0047683734729861
620 => 0.0047769686950531
621 => 0.0047016655054287
622 => 0.0047861118656817
623 => 0.0047885334851302
624 => 0.0047560170366084
625 => 0.0048861183059304
626 => 0.0049394209021241
627 => 0.0049180178791373
628 => 0.0049379192089753
629 => 0.0051051256317984
630 => 0.0051323875744463
701 => 0.0051444955285477
702 => 0.0051282724740484
703 => 0.0049409754354393
704 => 0.0049492828555501
705 => 0.0048883285188368
706 => 0.0048368285275238
707 => 0.0048388882570944
708 => 0.0048653659471596
709 => 0.00498099557257
710 => 0.0052243313025075
711 => 0.0052335657155825
712 => 0.0052447580936163
713 => 0.0051992330673145
714 => 0.005185502283766
715 => 0.0052036167314824
716 => 0.005295000837662
717 => 0.0055300655692989
718 => 0.0054469779936929
719 => 0.00537942650139
720 => 0.0054386873718912
721 => 0.0054295646253796
722 => 0.0053525594640141
723 => 0.0053503981856082
724 => 0.0052026006609085
725 => 0.0051479632812138
726 => 0.005102304197204
727 => 0.0050524456694258
728 => 0.0050228878628859
729 => 0.005068302087514
730 => 0.0050786888580118
731 => 0.0049793898621576
801 => 0.0049658557759451
802 => 0.0050469454794773
803 => 0.0050112609242816
804 => 0.0050479633742347
805 => 0.0050564786574516
806 => 0.0050551075007301
807 => 0.0050178487267608
808 => 0.0050415963582162
809 => 0.0049854261303145
810 => 0.0049243494439667
811 => 0.0048853863232889
812 => 0.0048513858327895
813 => 0.0048702512810387
814 => 0.0048029994027252
815 => 0.0047814841733398
816 => 0.0050335511950177
817 => 0.0052197558141084
818 => 0.0052170483252016
819 => 0.0052005671827917
820 => 0.0051760795482482
821 => 0.0052932094146711
822 => 0.005252403711295
823 => 0.0052820932699317
824 => 0.0052896505086716
825 => 0.0053125239942426
826 => 0.0053206992992917
827 => 0.0052959878493189
828 => 0.0052130532049605
829 => 0.0050063879564089
830 => 0.004910184725326
831 => 0.004878436056677
901 => 0.0048795900604831
902 => 0.0048477574838115
903 => 0.0048571336042773
904 => 0.0048444968517504
905 => 0.0048205658996232
906 => 0.0048687736121805
907 => 0.0048743291019668
908 => 0.0048630768458167
909 => 0.0048657271594777
910 => 0.004772563284456
911 => 0.0047796463315326
912 => 0.0047402070253399
913 => 0.0047328126308768
914 => 0.0046331134991951
915 => 0.0044564820358008
916 => 0.0045543530125522
917 => 0.0044361386353784
918 => 0.0043913690595025
919 => 0.0046033012686013
920 => 0.0045820291528922
921 => 0.0045456205375648
922 => 0.0044917646072751
923 => 0.0044717889188539
924 => 0.0043504229595409
925 => 0.0043432520112025
926 => 0.0044034042577945
927 => 0.0043756460657047
928 => 0.0043366630511612
929 => 0.0041954705241294
930 => 0.0040367233765064
1001 => 0.0040415149550442
1002 => 0.0040920094691073
1003 => 0.004238829078859
1004 => 0.004181464117324
1005 => 0.0041398451795433
1006 => 0.0041320512035576
1007 => 0.004229609130812
1008 => 0.0043676740368947
1009 => 0.0044324510018006
1010 => 0.0043682589968846
1011 => 0.00429451867798
1012 => 0.004299006909512
1013 => 0.0043288651031312
1014 => 0.0043320027771084
1015 => 0.0042840054101288
1016 => 0.0042975163877874
1017 => 0.0042769919772543
1018 => 0.0041510337076981
1019 => 0.0041487555220198
1020 => 0.0041178433313192
1021 => 0.0041169073224701
1022 => 0.0040643179746811
1023 => 0.0040569603613924
1024 => 0.003952541019412
1025 => 0.0040212701465144
1026 => 0.0039751702564953
1027 => 0.0039056868483717
1028 => 0.0038937078826213
1029 => 0.0038933477804459
1030 => 0.003964691704383
1031 => 0.0040204364512247
1101 => 0.0039759721838192
1102 => 0.0039658485320346
1103 => 0.0040739426474615
1104 => 0.0040601866859737
1105 => 0.0040482741120417
1106 => 0.0043553118388642
1107 => 0.0041122675196316
1108 => 0.0040062863239614
1109 => 0.0038751144690364
1110 => 0.0039178246864259
1111 => 0.0039268243567735
1112 => 0.0036113796911829
1113 => 0.0034834038296389
1114 => 0.0034394873366256
1115 => 0.0034142127740083
1116 => 0.003425730709571
1117 => 0.00331053742411
1118 => 0.0033879492170609
1119 => 0.0032882015688977
1120 => 0.0032714785510762
1121 => 0.0034498397023544
1122 => 0.0034746576145841
1123 => 0.0033687766906915
1124 => 0.0034367693843951
1125 => 0.003412114288489
1126 => 0.0032899114560323
1127 => 0.0032852442066957
1128 => 0.0032239271210062
1129 => 0.0031279777552295
1130 => 0.0030841263204044
1201 => 0.0030612881124118
1202 => 0.0030707116021374
1203 => 0.0030659467973686
1204 => 0.0030348532232143
1205 => 0.0030677290446423
1206 => 0.002983744906121
1207 => 0.0029503017454556
1208 => 0.0029351962456585
1209 => 0.0028606554887742
1210 => 0.0029792829814022
1211 => 0.0030026540918797
1212 => 0.0030260712506645
1213 => 0.0032299016303132
1214 => 0.0032197188405646
1215 => 0.0033117663006719
1216 => 0.0033081895056366
1217 => 0.003281936078944
1218 => 0.0031711771902069
1219 => 0.0032153237091702
1220 => 0.0030794475856936
1221 => 0.0031812552160805
1222 => 0.0031347944651602
1223 => 0.0031655467894591
1224 => 0.0031102513375445
1225 => 0.0031408541237273
1226 => 0.0030081962491849
1227 => 0.0028843221924839
1228 => 0.0029341727290095
1229 => 0.0029883659633132
1230 => 0.003105870703463
1231 => 0.0030358858496228
]
'min_raw' => 0.0028606554887742
'max_raw' => 0.0085391263025441
'avg_raw' => 0.0056998908956591
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.00286'
'max' => '$0.008539'
'avg' => '$0.005699'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0054191045112258
'max_diff' => 0.0002593663025441
'year' => 2026
]
1 => [
'items' => [
101 => 0.0030610550494841
102 => 0.0029767424432222
103 => 0.0028027814537985
104 => 0.0028037660541065
105 => 0.0027770059458298
106 => 0.002753881305239
107 => 0.0030439244519626
108 => 0.0030078530017639
109 => 0.0029503778667869
110 => 0.0030273106189246
111 => 0.0030476528596768
112 => 0.0030482319746732
113 => 0.0031043601247111
114 => 0.0031343157284479
115 => 0.0031395955334415
116 => 0.0032279143902551
117 => 0.0032575177061051
118 => 0.0033794495744734
119 => 0.003131774204759
120 => 0.003126673493507
121 => 0.0030283932205166
122 => 0.0029660623176364
123 => 0.0030326610707632
124 => 0.0030916584743971
125 => 0.0030302264343021
126 => 0.0030382481618374
127 => 0.0029557806671919
128 => 0.0029852589160714
129 => 0.0030106495551553
130 => 0.002996630336646
131 => 0.0029756428879996
201 => 0.0030868213600967
202 => 0.003080548234989
203 => 0.0031840801841879
204 => 0.0032647907422291
205 => 0.003409438490977
206 => 0.0032584910245009
207 => 0.0032529898988606
208 => 0.0033067642844022
209 => 0.0032575094735269
210 => 0.0032886368137818
211 => 0.0034044233952351
212 => 0.0034068697832471
213 => 0.0033658896320531
214 => 0.0033633959861287
215 => 0.0033712666724392
216 => 0.0034173655279964
217 => 0.00340125717139
218 => 0.0034198981694686
219 => 0.0034432090230071
220 => 0.0035396325968393
221 => 0.0035628799940497
222 => 0.0035064008712218
223 => 0.0035115003036432
224 => 0.003490375561319
225 => 0.003469969324926
226 => 0.0035158395642459
227 => 0.0035996683281848
228 => 0.0035991468337951
301 => 0.0036185934776306
302 => 0.0036307085756354
303 => 0.0035787017062049
304 => 0.0035448471465513
305 => 0.0035578291389441
306 => 0.0035785876274912
307 => 0.0035510974408842
308 => 0.0033814152744525
309 => 0.0034328860044091
310 => 0.0034243187581542
311 => 0.0034121179576745
312 => 0.0034638721746573
313 => 0.003458880354174
314 => 0.0033093559504699
315 => 0.0033189280176643
316 => 0.0033099380595797
317 => 0.0033389864533235
318 => 0.003255940764936
319 => 0.0032814850593628
320 => 0.0032975062013643
321 => 0.0033069427770835
322 => 0.0033410341593015
323 => 0.0033370339290795
324 => 0.0033407854993743
325 => 0.0033913340194125
326 => 0.0036469910876082
327 => 0.0036609059377546
328 => 0.0035923841265165
329 => 0.0036197572385732
330 => 0.003567206849266
331 => 0.0036024842776649
401 => 0.0036266201982259
402 => 0.0035175546142813
403 => 0.0035110964582299
404 => 0.0034583291747728
405 => 0.0034866833240109
406 => 0.0034415698338376
407 => 0.0034526391063232
408 => 0.0034216884554516
409 => 0.0034773934648075
410 => 0.0035396803209507
411 => 0.003555416440595
412 => 0.0035140214846364
413 => 0.0034840488084618
414 => 0.0034314266627126
415 => 0.0035189384638545
416 => 0.0035445295813823
417 => 0.0035188040446086
418 => 0.0035128428756241
419 => 0.00350154647117
420 => 0.0035152394612306
421 => 0.0035443902066602
422 => 0.0035306432534454
423 => 0.0035397233582339
424 => 0.0035051193621433
425 => 0.0035787189226427
426 => 0.0036956127374146
427 => 0.0036959885701431
428 => 0.0036822415428271
429 => 0.0036766165554332
430 => 0.0036907218396988
501 => 0.0036983733777839
502 => 0.0037439872806323
503 => 0.0037929328157267
504 => 0.0040213402714021
505 => 0.0039572043718357
506 => 0.0041598610545313
507 => 0.0043201361788667
508 => 0.0043681956806732
509 => 0.0043239832003856
510 => 0.0041727346936329
511 => 0.0041653137203225
512 => 0.0043913428448834
513 => 0.0043274792644052
514 => 0.0043198828947196
515 => 0.0042390703555333
516 => 0.0042868405750201
517 => 0.0042763925272715
518 => 0.0042598997727643
519 => 0.0043510420238427
520 => 0.0045216521815366
521 => 0.0044950609884881
522 => 0.0044752118964074
523 => 0.0043882389528932
524 => 0.0044406160909989
525 => 0.0044219655953375
526 => 0.0045020999605961
527 => 0.0044546301378104
528 => 0.0043269954349715
529 => 0.0043473216820881
530 => 0.0043442494107272
531 => 0.0044074765376318
601 => 0.0043884973235288
602 => 0.0043405434145681
603 => 0.0045210690545653
604 => 0.0045093467236403
605 => 0.0045259663087941
606 => 0.0045332827641565
607 => 0.0046431655400043
608 => 0.0046881809974125
609 => 0.0046984002943506
610 => 0.004741161497268
611 => 0.0046973363566675
612 => 0.0048726681658652
613 => 0.0049892535880869
614 => 0.0051246735554285
615 => 0.0053225585251702
616 => 0.0053969651043314
617 => 0.0053835242217934
618 => 0.0055335583474217
619 => 0.0058031663361044
620 => 0.0054380197046936
621 => 0.0058225199942145
622 => 0.0057007916418215
623 => 0.0054121759080972
624 => 0.0053935924574014
625 => 0.005589046383177
626 => 0.0060225443788041
627 => 0.0059139580475931
628 => 0.006022721987142
629 => 0.0058958430743214
630 => 0.0058895424668804
701 => 0.0060165597615454
702 => 0.0063133425938822
703 => 0.0061723521949771
704 => 0.0059702078858824
705 => 0.0061194680980041
706 => 0.0059901650888838
707 => 0.0056988092197023
708 => 0.0059138750136721
709 => 0.0057700666419656
710 => 0.0058120375701031
711 => 0.0061143013775491
712 => 0.0060779321965464
713 => 0.0061249972844594
714 => 0.0060419286362007
715 => 0.0059643294200036
716 => 0.0058194847203782
717 => 0.0057766033455765
718 => 0.0057884542148615
719 => 0.0057765974728743
720 => 0.0056955581946254
721 => 0.0056780577702033
722 => 0.0056488896294554
723 => 0.0056579300559295
724 => 0.0056030854178829
725 => 0.0057065885813573
726 => 0.0057257996805649
727 => 0.005801120651494
728 => 0.0058089407245636
729 => 0.0060187085564744
730 => 0.0059031719596631
731 => 0.005980683883754
801 => 0.0059737504876928
802 => 0.0054184310862065
803 => 0.0054949492001067
804 => 0.0056139873726286
805 => 0.0055603608372599
806 => 0.0054845454629253
807 => 0.005423320483187
808 => 0.0053305583783078
809 => 0.0054611192595868
810 => 0.005632792934867
811 => 0.0058132946522734
812 => 0.0060301556387962
813 => 0.0059817547911445
814 => 0.0058092405869757
815 => 0.0058169794481531
816 => 0.0058648180428215
817 => 0.0058028627161312
818 => 0.0057845908807786
819 => 0.0058623077732272
820 => 0.005862842966753
821 => 0.0057915558758445
822 => 0.0057123333196995
823 => 0.0057120013742966
824 => 0.0056979044856297
825 => 0.0058983508794988
826 => 0.0060085761287106
827 => 0.0060212132758959
828 => 0.0060077255480175
829 => 0.0060129164391691
830 => 0.0059487787953004
831 => 0.0060953784297568
901 => 0.0062299127515351
902 => 0.006193854679392
903 => 0.0061397985032924
904 => 0.0060967401553308
905 => 0.0061837115010262
906 => 0.006179838803908
907 => 0.0062287377115996
908 => 0.0062265193746929
909 => 0.0062100765112172
910 => 0.0061938552666184
911 => 0.0062581706678862
912 => 0.0062396488651948
913 => 0.006221098293028
914 => 0.0061838922805969
915 => 0.0061889491956127
916 => 0.0061349023530741
917 => 0.0061098978107004
918 => 0.0057338894876871
919 => 0.0056334077773516
920 => 0.0056650213689169
921 => 0.0056754293841068
922 => 0.005631699614998
923 => 0.0056943968706441
924 => 0.0056846255697644
925 => 0.0057226399854672
926 => 0.0056988902289302
927 => 0.0056998649272227
928 => 0.0057697078972161
929 => 0.0057899836085385
930 => 0.0057796712181149
1001 => 0.0057868936628795
1002 => 0.0059533318540769
1003 => 0.0059296696656824
1004 => 0.0059170995997027
1005 => 0.0059205815938844
1006 => 0.0059631101202104
1007 => 0.0059750157856103
1008 => 0.0059245706447149
1009 => 0.005948360864781
1010 => 0.0060496566023942
1011 => 0.0060851043777165
1012 => 0.0061982366606481
1013 => 0.0061501760560928
1014 => 0.0062383933757683
1015 => 0.0065095433409504
1016 => 0.0067261566952883
1017 => 0.0065269501027137
1018 => 0.0069247329424109
1019 => 0.0072344639416745
1020 => 0.0072225759500388
1021 => 0.0071685671861101
1022 => 0.0068159466780731
1023 => 0.0064914600293019
1024 => 0.0067629068894299
1025 => 0.0067635988633
1026 => 0.0067402813372806
1027 => 0.0065954581857826
1028 => 0.0067352418055309
1029 => 0.006746337321647
1030 => 0.0067401267831579
1031 => 0.0066290912124601
1101 => 0.0064595604188084
1102 => 0.0064926863300886
1103 => 0.0065469472485158
1104 => 0.0064442200099197
1105 => 0.0064113924327254
1106 => 0.0064724251444317
1107 => 0.0066690852582201
1108 => 0.0066319078028829
1109 => 0.0066309369492781
1110 => 0.0067899978689054
1111 => 0.0066761445779472
1112 => 0.0064931041539137
1113 => 0.0064468840328386
1114 => 0.0062828337406266
1115 => 0.0063961438617845
1116 => 0.0064002216913229
1117 => 0.006338162895966
1118 => 0.0064981398831313
1119 => 0.0064966656670312
1120 => 0.0066485400069125
1121 => 0.0069388667033683
1122 => 0.0068530028131172
1123 => 0.0067531524507199
1124 => 0.0067640089536628
1125 => 0.006883077994813
1126 => 0.0068110861344517
1127 => 0.0068369749093827
1128 => 0.0068830388090515
1129 => 0.006910830303424
1130 => 0.0067600101853094
1201 => 0.0067248468012167
1202 => 0.0066529148580338
1203 => 0.0066341491567307
1204 => 0.0066927362235439
1205 => 0.0066773006013503
1206 => 0.0063998789655403
1207 => 0.0063708868610388
1208 => 0.0063717760074927
1209 => 0.0062988739822241
1210 => 0.0061876808951987
1211 => 0.0064798896889072
1212 => 0.006456421233313
1213 => 0.0064305138746511
1214 => 0.0064336873782619
1215 => 0.0065605253117358
1216 => 0.0064869529048518
1217 => 0.0066825572068334
1218 => 0.0066423468427495
1219 => 0.0066011052345545
1220 => 0.0065954043880518
1221 => 0.0065795298874654
1222 => 0.006525090318313
1223 => 0.0064593512672506
1224 => 0.0064159446515201
1225 => 0.0059183697954762
1226 => 0.0060107167944981
1227 => 0.0061169535991791
1228 => 0.0061536261184377
1229 => 0.0060908952365848
1230 => 0.0065275673158778
1231 => 0.0066073515126415
]
'min_raw' => 0.002753881305239
'max_raw' => 0.0072344639416745
'avg_raw' => 0.0049941726234568
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.002753'
'max' => '$0.007234'
'avg' => '$0.004994'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00010677418353513
'max_diff' => -0.0013046623608696
'year' => 2027
]
2 => [
'items' => [
101 => 0.0063656799764499
102 => 0.0063204730994122
103 => 0.0065305310712102
104 => 0.0064038404356733
105 => 0.0064608892210982
106 => 0.0063375809510269
107 => 0.0065881338359951
108 => 0.0065862250428025
109 => 0.0064887543115563
110 => 0.0065711359061548
111 => 0.0065568200767819
112 => 0.0064467758612647
113 => 0.0065916224339093
114 => 0.0065916942760022
115 => 0.0064978808163742
116 => 0.0063883272339357
117 => 0.0063687416409358
118 => 0.0063539865275646
119 => 0.0064572603677138
120 => 0.0065498553698627
121 => 0.006722151712614
122 => 0.0067654711068418
123 => 0.0069345495864483
124 => 0.0068338715841244
125 => 0.0068785008385562
126 => 0.0069269522074354
127 => 0.0069501815754162
128 => 0.0069123305668481
129 => 0.0071749790411557
130 => 0.0071971546197286
131 => 0.0072045898994061
201 => 0.0071160263116445
202 => 0.0071946915061426
203 => 0.0071578866667543
204 => 0.0072536426341637
205 => 0.007268658392527
206 => 0.0072559405793943
207 => 0.0072607068181065
208 => 0.0070365826796508
209 => 0.0070249606607229
210 => 0.0068664936079795
211 => 0.0069310701033018
212 => 0.0068103474405288
213 => 0.0068486298404754
214 => 0.0068655043576037
215 => 0.0068566900674763
216 => 0.0069347211614575
217 => 0.0068683787908741
218 => 0.0066932903672091
219 => 0.0065181542408201
220 => 0.0065159555494161
221 => 0.0064698452987472
222 => 0.0064365160330273
223 => 0.0064429364320242
224 => 0.006465562755515
225 => 0.0064352009499736
226 => 0.0064416801805685
227 => 0.0065492785793309
228 => 0.006570856670846
229 => 0.006497525884773
301 => 0.006203092197108
302 => 0.0061308374316241
303 => 0.0061827727241797
304 => 0.0061579509993993
305 => 0.0049699470648853
306 => 0.0052490509673879
307 => 0.0050832169059938
308 => 0.0051596408711425
309 => 0.0049903672369812
310 => 0.0050711534875943
311 => 0.0050562352169475
312 => 0.0055050260328869
313 => 0.0054980187815876
314 => 0.005501372781969
315 => 0.0053412776049589
316 => 0.0055963135689938
317 => 0.005721953455674
318 => 0.0056987008564468
319 => 0.0057045530347147
320 => 0.0056039932228779
321 => 0.0055023464207605
322 => 0.0053896044738815
323 => 0.0055990650758568
324 => 0.0055757766325289
325 => 0.0056291919426058
326 => 0.0057650421155398
327 => 0.005785046569549
328 => 0.0058119327586024
329 => 0.005802295973716
330 => 0.0060318832864214
331 => 0.0060040787479869
401 => 0.0060710796857023
402 => 0.0059332536734483
403 => 0.0057772904580176
404 => 0.0058069339664494
405 => 0.0058040790582093
406 => 0.0057677327996028
407 => 0.0057349210224839
408 => 0.0056802986582418
409 => 0.0058531319012928
410 => 0.0058461151872555
411 => 0.0059597076314816
412 => 0.0059396290635865
413 => 0.005805539473124
414 => 0.0058103285090796
415 => 0.0058425370774139
416 => 0.0059540113001697
417 => 0.0059871044392274
418 => 0.0059717743786823
419 => 0.0060080594948999
420 => 0.006036737771295
421 => 0.0060116610448766
422 => 0.0063666946088245
423 => 0.0062192599202196
424 => 0.0062911185616017
425 => 0.0063082564241556
426 => 0.0062643581495942
427 => 0.0062738781134672
428 => 0.0062882982646999
429 => 0.0063758545992301
430 => 0.0066056277556666
501 => 0.0067073927225336
502 => 0.007013557646348
503 => 0.0066989425586721
504 => 0.006680274601376
505 => 0.0067354241494499
506 => 0.0069151753705775
507 => 0.0070608468521277
508 => 0.0071091744865473
509 => 0.0071155617812381
510 => 0.0072062276361697
511 => 0.0072581956133983
512 => 0.0071952184166323
513 => 0.0071418518363604
514 => 0.0069506993699302
515 => 0.0069728257884104
516 => 0.0071252548700254
517 => 0.0073405699258346
518 => 0.0075253326434323
519 => 0.0074606351793604
520 => 0.0079542311609374
521 => 0.0080031691863519
522 => 0.0079964075335954
523 => 0.0081078956384445
524 => 0.0078866144544768
525 => 0.0077920124612096
526 => 0.0071533902967516
527 => 0.0073328170759047
528 => 0.0075936244367691
529 => 0.0075591056045813
530 => 0.0073697003277208
531 => 0.0075251889625454
601 => 0.0074737795572932
602 => 0.0074332308263927
603 => 0.0076189924234064
604 => 0.007414739916824
605 => 0.0075915868617709
606 => 0.0073647788256291
607 => 0.0074609307119266
608 => 0.0074063502509207
609 => 0.0074416704983212
610 => 0.0072351890537289
611 => 0.0073466014291772
612 => 0.0072305539326204
613 => 0.0072304989109972
614 => 0.0072279371560788
615 => 0.0073644665211445
616 => 0.0073689187388377
617 => 0.0072680233317697
618 => 0.0072534827273287
619 => 0.0073072469629863
620 => 0.0072443031239069
621 => 0.0072737541500484
622 => 0.0072451951654865
623 => 0.0072387659365174
624 => 0.0071875367462483
625 => 0.0071654658025045
626 => 0.0071741203882446
627 => 0.0071445778253688
628 => 0.0071267773626349
629 => 0.0072243961960099
630 => 0.0071722423912701
701 => 0.0072164028774426
702 => 0.0071660764299514
703 => 0.0069916230367574
704 => 0.0068912930455203
705 => 0.0065617667576149
706 => 0.0066552200040888
707 => 0.0067171796031853
708 => 0.0066967019560535
709 => 0.0067406958658901
710 => 0.0067433967346504
711 => 0.0067290938660977
712 => 0.0067125329766246
713 => 0.0067044720515037
714 => 0.0067645515831626
715 => 0.0067994297734746
716 => 0.0067233980778672
717 => 0.0067055849153828
718 => 0.0067824571574669
719 => 0.0068293491807305
720 => 0.0071755735341574
721 => 0.0071499241157656
722 => 0.0072142991224848
723 => 0.0072070514846432
724 => 0.0072745267474278
725 => 0.0073848202849069
726 => 0.0071605626846538
727 => 0.0071994860498134
728 => 0.007189942939548
729 => 0.0072941321150873
730 => 0.0072944573823207
731 => 0.0072319907669496
801 => 0.0072658549325474
802 => 0.0072469528843255
803 => 0.0072811114402275
804 => 0.0071495815521452
805 => 0.0073097707580554
806 => 0.007400587715442
807 => 0.0074018487089834
808 => 0.0074448952260167
809 => 0.0074886329804087
810 => 0.0075725837912085
811 => 0.0074862916378599
812 => 0.0073310604543574
813 => 0.0073422676444126
814 => 0.007251255658322
815 => 0.0072527855862509
816 => 0.0072446187110641
817 => 0.0072691281182733
818 => 0.0071549599887441
819 => 0.0071817550205486
820 => 0.0071442418191108
821 => 0.0071994045034397
822 => 0.0071400585738202
823 => 0.0071899383375713
824 => 0.0072114647900659
825 => 0.0072908978632024
826 => 0.0071283262443329
827 => 0.006796831708327
828 => 0.0068665158787782
829 => 0.0067634475171074
830 => 0.0067729868863889
831 => 0.006792257930517
901 => 0.0067297941714046
902 => 0.006741710288184
903 => 0.0067412845606402
904 => 0.0067376158706645
905 => 0.0067213666344545
906 => 0.0066978020271366
907 => 0.0067916761698874
908 => 0.0068076272159985
909 => 0.006843084415587
910 => 0.0069485809907139
911 => 0.0069380393950781
912 => 0.0069552331749266
913 => 0.0069176992500563
914 => 0.0067747279775138
915 => 0.0067824920054684
916 => 0.0066856744524644
917 => 0.0068406085730811
918 => 0.0068039181282886
919 => 0.0067802635598454
920 => 0.0067738091916876
921 => 0.0068795672724189
922 => 0.0069112117477286
923 => 0.0068914930342974
924 => 0.0068510493777632
925 => 0.0069287131544025
926 => 0.0069494927046595
927 => 0.0069541444796417
928 => 0.0070917498012946
929 => 0.0069618350885177
930 => 0.0069931068511243
1001 => 0.0072370802160625
1002 => 0.0070158300400865
1003 => 0.0071330311927687
1004 => 0.0071272948062303
1005 => 0.0071872509500717
1006 => 0.0071223766524466
1007 => 0.0071231808471168
1008 => 0.007176417841067
1009 => 0.0071016560844064
1010 => 0.0070831440220803
1011 => 0.0070575697405626
1012 => 0.00711341024864
1013 => 0.0071468841077834
1014 => 0.0074166588286391
1015 => 0.0075909456015337
1016 => 0.0075833793530737
1017 => 0.0076525207005747
1018 => 0.0076213718902633
1019 => 0.007520784165127
1020 => 0.0076924751465684
1021 => 0.0076381449361846
1022 => 0.0076426238527174
1023 => 0.0076424571472204
1024 => 0.0076785819874962
1025 => 0.0076529842273678
1026 => 0.0076025284145985
1027 => 0.0076360233377889
1028 => 0.0077354912850104
1029 => 0.008044242845235
1030 => 0.0082170243087508
1031 => 0.0080338411841805
1101 => 0.0081601984505893
1102 => 0.0080844291164416
1103 => 0.0080706595744845
1104 => 0.0081500212755179
1105 => 0.0082295218887031
1106 => 0.0082244580433338
1107 => 0.008166744680563
1108 => 0.0081341438663561
1109 => 0.0083810081536046
1110 => 0.0085628935552258
1111 => 0.0085504901902105
1112 => 0.0086052346095979
1113 => 0.0087659659181006
1114 => 0.0087806611745997
1115 => 0.0087788099100474
1116 => 0.0087423861835228
1117 => 0.0089006470303416
1118 => 0.0090326710130925
1119 => 0.008733955143215
1120 => 0.0088477022359865
1121 => 0.0088987669706341
1122 => 0.0089737451513207
1123 => 0.0091002459099413
1124 => 0.0092376592864723
1125 => 0.0092570910445748
1126 => 0.0092433032823058
1127 => 0.0091526754666138
1128 => 0.0093030348228966
1129 => 0.0093911118074462
1130 => 0.0094435596361396
1201 => 0.0095765586032194
1202 => 0.0088990823290507
1203 => 0.0084195309494386
1204 => 0.0083446420767063
1205 => 0.0084969315442669
1206 => 0.0085370890623769
1207 => 0.00852090161718
1208 => 0.0079811229405225
1209 => 0.0083418002536834
1210 => 0.0087298587160347
1211 => 0.0087447656219915
1212 => 0.0089390358021643
1213 => 0.0090022981362323
1214 => 0.0091587110948461
1215 => 0.0091489274216981
1216 => 0.0091870114880468
1217 => 0.0091782566207174
1218 => 0.009467978689915
1219 => 0.0097875851563837
1220 => 0.0097765182007362
1221 => 0.0097305709897693
1222 => 0.0097988104332189
1223 => 0.010128678557725
1224 => 0.010098309586849
1225 => 0.010127810455232
1226 => 0.010516743564578
1227 => 0.011022411931817
1228 => 0.01078747820696
1229 => 0.01129721678954
1230 => 0.011618070207194
1231 => 0.012172953016162
]
'min_raw' => 0.0049699470648853
'max_raw' => 0.012172953016162
'avg_raw' => 0.0085714500405236
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.004969'
'max' => '$0.012172'
'avg' => '$0.008571'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0022160657596463
'max_diff' => 0.0049384890744874
'year' => 2028
]
3 => [
'items' => [
101 => 0.012103478955624
102 => 0.012319490761237
103 => 0.011979105887586
104 => 0.011197513414551
105 => 0.011073823413877
106 => 0.011321453927556
107 => 0.011930229382001
108 => 0.011302281422047
109 => 0.011429314476505
110 => 0.011392728948275
111 => 0.011390779460954
112 => 0.011465183462854
113 => 0.011357256577447
114 => 0.01091754303062
115 => 0.011119061157882
116 => 0.011041245331251
117 => 0.011127587792453
118 => 0.011593542445218
119 => 0.011387532786259
120 => 0.011170518345411
121 => 0.011442702613594
122 => 0.011789286719653
123 => 0.011767598109167
124 => 0.011725513139689
125 => 0.01196274390914
126 => 0.012354579638178
127 => 0.012460491261214
128 => 0.012538673056071
129 => 0.012549453004689
130 => 0.012660493175161
131 => 0.012063402192808
201 => 0.013011000916186
202 => 0.013174625038826
203 => 0.013143870485295
204 => 0.013325731811255
205 => 0.013272223595781
206 => 0.013194698586741
207 => 0.0134829874714
208 => 0.013152487528852
209 => 0.01268338446919
210 => 0.012426025252853
211 => 0.012764936629501
212 => 0.012971897980843
213 => 0.013108686268866
214 => 0.013150078322172
215 => 0.012109752666068
216 => 0.011549074836534
217 => 0.011908462897081
218 => 0.012346941134587
219 => 0.01206096642406
220 => 0.012072176091291
221 => 0.01166445130691
222 => 0.012383015730916
223 => 0.012278326938416
224 => 0.012821452579095
225 => 0.012691831286092
226 => 0.01313472916205
227 => 0.013018099308186
228 => 0.013502223310887
301 => 0.013695353482699
302 => 0.014019649099482
303 => 0.014258202275308
304 => 0.014398285262949
305 => 0.014389875205809
306 => 0.014944953791907
307 => 0.014617643342654
308 => 0.014206464277242
309 => 0.014199027345202
310 => 0.014411982809631
311 => 0.014858279041596
312 => 0.014973997161199
313 => 0.0150386678035
314 => 0.014939622463614
315 => 0.014584350429501
316 => 0.014430945766441
317 => 0.014561650983929
318 => 0.014401809734568
319 => 0.014677740574498
320 => 0.015056652553369
321 => 0.014978408728113
322 => 0.015239966104975
323 => 0.015510650473389
324 => 0.015897741277417
325 => 0.015998941147521
326 => 0.016166220684516
327 => 0.01633840627655
328 => 0.016393707648179
329 => 0.016499295125627
330 => 0.016498738627502
331 => 0.016816933597649
401 => 0.0171679125034
402 => 0.01730039891514
403 => 0.017605044113594
404 => 0.017083349887283
405 => 0.017479060950731
406 => 0.017836002235252
407 => 0.017410442120884
408 => 0.01799697759575
409 => 0.018019751439121
410 => 0.018363609435672
411 => 0.018015043480946
412 => 0.017808066129692
413 => 0.018405601987423
414 => 0.018694730766776
415 => 0.018607642825426
416 => 0.017944899291698
417 => 0.017559154128661
418 => 0.016549584632307
419 => 0.017745463310895
420 => 0.018327940930975
421 => 0.017943390815378
422 => 0.018137335525741
423 => 0.019195434978697
424 => 0.019598290743516
425 => 0.019514499560608
426 => 0.019528658891199
427 => 0.019746032549547
428 => 0.020709987060518
429 => 0.020132363173253
430 => 0.020573934991913
501 => 0.020808143092325
502 => 0.021025688628546
503 => 0.020491465547559
504 => 0.01979644916849
505 => 0.019576308306437
506 => 0.017905154885037
507 => 0.017818164092001
508 => 0.01776933352378
509 => 0.017461463698364
510 => 0.01721956234823
511 => 0.017027193413381
512 => 0.016522359882113
513 => 0.016692726379372
514 => 0.015888127097478
515 => 0.016402881204786
516 => 0.015118721323153
517 => 0.016188207831594
518 => 0.015606134948634
519 => 0.015996981234742
520 => 0.015995617608869
521 => 0.015275945678218
522 => 0.014860853927788
523 => 0.015125366546774
524 => 0.015408945071366
525 => 0.015454954732908
526 => 0.015822621692198
527 => 0.01592522963756
528 => 0.015614322772804
529 => 0.015092109963924
530 => 0.015213408089021
531 => 0.014858395825154
601 => 0.014236250488077
602 => 0.014683086130781
603 => 0.014835655465177
604 => 0.014903038774929
605 => 0.014291230289788
606 => 0.014098986780749
607 => 0.013996637949615
608 => 0.015013133171254
609 => 0.015068819074104
610 => 0.014783922121932
611 => 0.016071683360787
612 => 0.015780223331609
613 => 0.016105855593641
614 => 0.015202401555555
615 => 0.015236914716472
616 => 0.014809205096349
617 => 0.015048693904051
618 => 0.014879430933852
619 => 0.015029345575063
620 => 0.015119203792884
621 => 0.015546843230067
622 => 0.01619309078704
623 => 0.01548296815867
624 => 0.015173557560346
625 => 0.015365514155355
626 => 0.015876719863608
627 => 0.016651222679751
628 => 0.016192701424273
629 => 0.016396185371258
630 => 0.016440637561304
701 => 0.016102540962894
702 => 0.01666368878359
703 => 0.016964412459458
704 => 0.017272892724902
705 => 0.017540737495966
706 => 0.017149678923257
707 => 0.0175681676521
708 => 0.017230939609858
709 => 0.016928411193972
710 => 0.016928870004701
711 => 0.016739089510181
712 => 0.016371365888167
713 => 0.016303552010376
714 => 0.016656328366597
715 => 0.016939221596242
716 => 0.016962522037603
717 => 0.017119146265113
718 => 0.017211834869596
719 => 0.018120309197574
720 => 0.01848570508758
721 => 0.01893250426529
722 => 0.01910655772523
723 => 0.01963039623803
724 => 0.01920735409486
725 => 0.019115826266126
726 => 0.017845165380344
727 => 0.018053236029207
728 => 0.018386377213868
729 => 0.017850658755776
730 => 0.018190448812044
731 => 0.018257530566889
801 => 0.017832455247565
802 => 0.018059506342036
803 => 0.017456525951079
804 => 0.016206234111808
805 => 0.016665080715822
806 => 0.017002946262473
807 => 0.01652077046888
808 => 0.017385051916116
809 => 0.016880156537031
810 => 0.016720128941114
811 => 0.016095804235483
812 => 0.016390461464079
813 => 0.01678898958484
814 => 0.016542745540077
815 => 0.017053738906691
816 => 0.01777744179077
817 => 0.018293195563216
818 => 0.018332788733724
819 => 0.01800119361086
820 => 0.018532576911462
821 => 0.018536447458682
822 => 0.017937044924839
823 => 0.017569914210348
824 => 0.017486501339566
825 => 0.017694883044836
826 => 0.017947896904419
827 => 0.018346829242044
828 => 0.018587895698615
829 => 0.019216469165582
830 => 0.01938654312313
831 => 0.019573402839273
901 => 0.019823105045442
902 => 0.02012293656628
903 => 0.019466922268105
904 => 0.019492986939135
905 => 0.018882115507811
906 => 0.018229311775616
907 => 0.018724708435218
908 => 0.019372373667791
909 => 0.019223798547832
910 => 0.019207080811723
911 => 0.019235195406746
912 => 0.019123174618307
913 => 0.01861650874388
914 => 0.01836206431364
915 => 0.018690362544347
916 => 0.018864838443095
917 => 0.019135435346156
918 => 0.019102078566246
919 => 0.019799107128545
920 => 0.020069951350804
921 => 0.020000657808673
922 => 0.020013409488067
923 => 0.020503760015262
924 => 0.02104913064978
925 => 0.021559942216999
926 => 0.022079561683042
927 => 0.021453140135634
928 => 0.02113508190617
929 => 0.021463236812141
930 => 0.021289113199918
1001 => 0.022289679124167
1002 => 0.022358956137865
1003 => 0.023359449709809
1004 => 0.024309037246143
1005 => 0.0237126183282
1006 => 0.024275014504522
1007 => 0.024883291822048
1008 => 0.026056757456993
1009 => 0.025661575514162
1010 => 0.025358872339244
1011 => 0.025072819301598
1012 => 0.025668050263299
1013 => 0.02643380538648
1014 => 0.026598741705702
1015 => 0.026866001553365
1016 => 0.026585010502527
1017 => 0.026923433273112
1018 => 0.02811821436378
1019 => 0.027795373966457
1020 => 0.027336888703075
1021 => 0.028280053626161
1022 => 0.028621381345365
1023 => 0.031016998033453
1024 => 0.034041563060154
1025 => 0.032789373278735
1026 => 0.032012098673497
1027 => 0.032194776642928
1028 => 0.033299245402692
1029 => 0.033653965714242
1030 => 0.032689713628025
1031 => 0.03303030376617
1101 => 0.034906988913435
1102 => 0.035913770283674
1103 => 0.034546425954112
1104 => 0.030773977178511
1105 => 0.027295607121503
1106 => 0.028218227493667
1107 => 0.028113630975707
1108 => 0.030129895045203
1109 => 0.027787674329751
1110 => 0.02782711131964
1111 => 0.029885069594832
1112 => 0.029336041609347
1113 => 0.028446686587054
1114 => 0.027302100397385
1115 => 0.025186226964375
1116 => 0.023312138859262
1117 => 0.026987657210103
1118 => 0.026829162175318
1119 => 0.026599637877302
1120 => 0.027110419365415
1121 => 0.029590629283834
1122 => 0.029533452417558
1123 => 0.029169722366206
1124 => 0.029445608404387
1125 => 0.028398322430671
1126 => 0.028668231872356
1127 => 0.027295056129915
1128 => 0.027915788914383
1129 => 0.028444778430606
1130 => 0.028550980907811
1201 => 0.028790260511787
1202 => 0.026745642494057
1203 => 0.027663615957187
1204 => 0.028202839364294
1205 => 0.025766608393868
1206 => 0.028154682911088
1207 => 0.026710050243233
1208 => 0.026219720218108
1209 => 0.02687988500087
1210 => 0.026622618142996
1211 => 0.026401435205813
1212 => 0.02627801132646
1213 => 0.026762763483192
1214 => 0.026740149215676
1215 => 0.025947000600924
1216 => 0.024912370565852
1217 => 0.025259626366196
1218 => 0.02513346507839
1219 => 0.024676240296254
1220 => 0.024984354593883
1221 => 0.023627575160203
1222 => 0.021293306663815
1223 => 0.022835395933107
1224 => 0.02277602717371
1225 => 0.022746090753062
1226 => 0.023904928218718
1227 => 0.023793532735325
1228 => 0.023591348842177
1229 => 0.024672527030502
1230 => 0.024277882447865
1231 => 0.025494084061595
]
'min_raw' => 0.01091754303062
'max_raw' => 0.035913770283674
'avg_raw' => 0.023415656657147
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.010917'
'max' => '$0.035913'
'avg' => '$0.023415'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.0059475959657344
'max_diff' => 0.023740817267512
'year' => 2029
]
4 => [
'items' => [
101 => 0.026295153103387
102 => 0.02609197608252
103 => 0.026845385388227
104 => 0.025267626438477
105 => 0.025791694672882
106 => 0.025899704409666
107 => 0.024659185459485
108 => 0.023811758414059
109 => 0.023755244691505
110 => 0.022285922977376
111 => 0.023070822777113
112 => 0.023761502119521
113 => 0.02343072031339
114 => 0.023326004675394
115 => 0.023860974159864
116 => 0.023902545870511
117 => 0.022954706462185
118 => 0.023151792289346
119 => 0.023973672951401
120 => 0.023131083005391
121 => 0.021494068376579
122 => 0.021088066115136
123 => 0.021033897929353
124 => 0.019932787595873
125 => 0.021115197127621
126 => 0.020599043680407
127 => 0.022229566235686
128 => 0.021298220496779
129 => 0.021258072043432
130 => 0.0211973817677
131 => 0.020249610617379
201 => 0.0204571122653
202 => 0.021146879346385
203 => 0.021392996011698
204 => 0.021367324027131
205 => 0.021143499111386
206 => 0.021245965011645
207 => 0.020915886645424
208 => 0.020799329104325
209 => 0.020431441442937
210 => 0.019890748212257
211 => 0.019965934922247
212 => 0.018894680152191
213 => 0.01831100369767
214 => 0.01814944974779
215 => 0.017933413054207
216 => 0.018173851667182
217 => 0.018891645422023
218 => 0.018025833865245
219 => 0.016541460680768
220 => 0.016630674038404
221 => 0.016831109965329
222 => 0.016457598941522
223 => 0.016104102103892
224 => 0.016411438924106
225 => 0.015782490437697
226 => 0.016907115385074
227 => 0.016876697431973
228 => 0.017295888066014
301 => 0.017558016572139
302 => 0.016953895230634
303 => 0.016801960346963
304 => 0.016888509361758
305 => 0.015458046937522
306 => 0.017178988767957
307 => 0.01719387154437
308 => 0.017066436177124
309 => 0.017982784573713
310 => 0.019916565506747
311 => 0.019188999333581
312 => 0.018907263720528
313 => 0.018371684114166
314 => 0.019085312140073
315 => 0.019030516642015
316 => 0.01878271061922
317 => 0.018632836763431
318 => 0.018908983938105
319 => 0.018598619072504
320 => 0.018542869014386
321 => 0.018205084318852
322 => 0.018084510550771
323 => 0.017995242533063
324 => 0.017896967216862
325 => 0.018113738075719
326 => 0.017622506790967
327 => 0.017030130017552
328 => 0.016980880298448
329 => 0.017116863102974
330 => 0.0170567008347
331 => 0.016980592264654
401 => 0.016835280277499
402 => 0.01679216931501
403 => 0.016932259028635
404 => 0.01677410590969
405 => 0.017007469451739
406 => 0.016944007480895
407 => 0.016589514070562
408 => 0.016147684031016
409 => 0.016143750816894
410 => 0.01604855925962
411 => 0.015927318499286
412 => 0.015893592093373
413 => 0.01638555587434
414 => 0.017403906177703
415 => 0.017203979646095
416 => 0.017348447054477
417 => 0.018059083719065
418 => 0.018284973745148
419 => 0.018124642355133
420 => 0.017905170859671
421 => 0.017914826491635
422 => 0.018664827030168
423 => 0.018711603643787
424 => 0.018829793055694
425 => 0.018981699850319
426 => 0.018150512739121
427 => 0.017875677653445
428 => 0.017745445542581
429 => 0.017344381047291
430 => 0.01777689472079
501 => 0.017524887525325
502 => 0.017558891905785
503 => 0.017536746508401
504 => 0.017548839392838
505 => 0.016906801029481
506 => 0.017140726064545
507 => 0.016751780323245
508 => 0.016231025636852
509 => 0.016229279884543
510 => 0.016356733856285
511 => 0.016280919246618
512 => 0.016076904081377
513 => 0.016105883472675
514 => 0.015851993511356
515 => 0.016136710310805
516 => 0.016144874969848
517 => 0.016035243493431
518 => 0.01647388900633
519 => 0.016653602430866
520 => 0.016581440644555
521 => 0.01664853936757
522 => 0.017212287496098
523 => 0.017304203039103
524 => 0.017345025851706
525 => 0.017290328690804
526 => 0.016658843648472
527 => 0.016686852695382
528 => 0.016481340893457
529 => 0.01630770507713
530 => 0.016314649599183
531 => 0.016403920979851
601 => 0.016793774334925
602 => 0.017614197737568
603 => 0.017645332205976
604 => 0.017683068089944
605 => 0.017529577285311
606 => 0.017483282989925
607 => 0.017544357115111
608 => 0.017852465009331
609 => 0.01864500216374
610 => 0.018364866601595
611 => 0.018137112029001
612 => 0.018336914191358
613 => 0.018306156214564
614 => 0.018046527936692
615 => 0.01803924103565
616 => 0.017540931362232
617 => 0.017356717621931
618 => 0.017202774832376
619 => 0.017034673324961
620 => 0.016935017116552
621 => 0.017088134345605
622 => 0.017123154067519
623 => 0.016788360570163
624 => 0.016742729453577
625 => 0.017016129050539
626 => 0.01689581608128
627 => 0.01701956095378
628 => 0.017048270825664
629 => 0.017043647875047
630 => 0.016918027317284
701 => 0.016998094114743
702 => 0.016808712269692
703 => 0.016602787957433
704 => 0.016471421075749
705 => 0.016356786048192
706 => 0.016420392224108
707 => 0.016193647820998
708 => 0.01612110772298
709 => 0.016970969285324
710 => 0.01759877115898
711 => 0.0175896426711
712 => 0.017534075348788
713 => 0.017451513579253
714 => 0.017846425101643
715 => 0.017708845823748
716 => 0.01780894624355
717 => 0.017834426001591
718 => 0.01791154555517
719 => 0.017939109166924
720 => 0.017855792788043
721 => 0.017576172844276
722 => 0.016879386529878
723 => 0.016555030619586
724 => 0.016447987766615
725 => 0.016451878571018
726 => 0.01634455281629
727 => 0.01637616506106
728 => 0.016333559367646
729 => 0.016252874491743
730 => 0.016415410160385
731 => 0.016434140882071
801 => 0.016396203114854
802 => 0.016405138832401
803 => 0.016091030323271
804 => 0.016114911311012
805 => 0.01598193893662
806 => 0.015957008219427
807 => 0.015620865636191
808 => 0.015025340325342
809 => 0.015355319156593
810 => 0.014956751130487
811 => 0.01480580737971
812 => 0.015520351619321
813 => 0.015448631196036
814 => 0.015325877007491
815 => 0.015144297978418
816 => 0.015076948550248
817 => 0.014667754744924
818 => 0.014643577391941
819 => 0.014846384891022
820 => 0.014752796208376
821 => 0.014621362253135
822 => 0.0141453217905
823 => 0.013610094698917
824 => 0.013626249840495
825 => 0.013796495620073
826 => 0.014291508184969
827 => 0.01409809821206
828 => 0.013957777057591
829 => 0.013931499123397
830 => 0.014260422486412
831 => 0.014725917956654
901 => 0.014944318016417
902 => 0.0147278901901
903 => 0.014479269556529
904 => 0.014494401942497
905 => 0.014595070926917
906 => 0.014605649813796
907 => 0.014443823339956
908 => 0.014489376544438
909 => 0.014420177061357
910 => 0.013995499961423
911 => 0.01398781889935
912 => 0.013883596290183
913 => 0.013880440470998
914 => 0.013703131813257
915 => 0.013678325106362
916 => 0.013326268004549
917 => 0.013557993055089
918 => 0.013402564057298
919 => 0.013168295895633
920 => 0.013127907976261
921 => 0.013126693866635
922 => 0.013367234887263
923 => 0.013555182193213
924 => 0.01340526781126
925 => 0.013371135212457
926 => 0.013735582069509
927 => 0.013689202884942
928 => 0.013649038810221
929 => 0.014684237942893
930 => 0.013864797051788
1001 => 0.013507474051215
1002 => 0.013065218984209
1003 => 0.01320921946407
1004 => 0.013239562480983
1005 => 0.012176018767301
1006 => 0.011744539215116
1007 => 0.01159647169277
1008 => 0.011511256740293
1009 => 0.011550090264199
1010 => 0.011161708059729
1011 => 0.011422707324381
1012 => 0.011086401164441
1013 => 0.011030018342292
1014 => 0.011631375416604
1015 => 0.011715050740418
1016 => 0.011358065813144
1017 => 0.011587307927064
1018 => 0.011504181549853
1019 => 0.011092166168296
1020 => 0.0110764302113
1021 => 0.010869695375876
1022 => 0.010546195390189
1023 => 0.010398347216067
1024 => 0.010321346603307
1025 => 0.010353118556844
1026 => 0.010337053684898
1027 => 0.010232219528753
1028 => 0.010343062656014
1029 => 0.010059904269404
1030 => 0.0099471483182936
1031 => 0.0098962190710953
1101 => 0.0096448997049903
1102 => 0.010044860578693
1103 => 0.010123657909386
1104 => 0.010202610495163
1105 => 0.010889838851131
1106 => 0.010855506864554
1107 => 0.011165851302855
1108 => 0.011153791888669
1109 => 0.011065276627619
1110 => 0.010691845301304
1111 => 0.0108406883722
1112 => 0.010382572535331
1113 => 0.010725824069162
1114 => 0.010569178403648
1115 => 0.01067286201208
1116 => 0.010486429535345
1117 => 0.010589608965579
1118 => 0.010142343679682
1119 => 0.0097246936489042
1120 => 0.0098927682132537
1121 => 0.010075484486359
1122 => 0.010471659921693
1123 => 0.010235701100785
1124 => 0.010320560815374
1125 => 0.010036294976844
1126 => 0.0094497733554337
1127 => 0.0094530930041149
1128 => 0.009362869430729
1129 => 0.0092849030904662
1130 => 0.01026280380981
1201 => 0.010141186397037
1202 => 0.0099474049666768
1203 => 0.010206789111782
1204 => 0.010275374396728
1205 => 0.010277326923371
1206 => 0.010466566899966
1207 => 0.010567564309398
1208 => 0.010585365540558
1209 => 0.010883138732531
1210 => 0.010982948378757
1211 => 0.011394050185972
1212 => 0.010558995384837
1213 => 0.010541797980731
1214 => 0.010210439178634
1215 => 0.010000286187769
1216 => 0.010224828533713
1217 => 0.010423742399132
1218 => 0.010216619986903
1219 => 0.010243665801347
1220 => 0.0099656208854536
1221 => 0.010065008859656
1222 => 0.010150615172046
1223 => 0.010103348398051
1224 => 0.010032587749643
1225 => 0.010407433730551
1226 => 0.010386283451275
1227 => 0.010735348646369
1228 => 0.011007469927836
1229 => 0.011495159911723
1230 => 0.010986229989683
1231 => 0.010967682560511
]
'min_raw' => 0.0092849030904662
'max_raw' => 0.026845385388227
'avg_raw' => 0.018065144239347
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.009284'
'max' => '$0.026845'
'avg' => '$0.018065'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0016326399401535
'max_diff' => -0.0090683848954467
'year' => 2030
]
5 => [
'items' => [
101 => 0.011148986655772
102 => 0.010982920622045
103 => 0.011087868622955
104 => 0.011478251166286
105 => 0.01148649933427
106 => 0.011348331893377
107 => 0.011339924392042
108 => 0.011366460960451
109 => 0.011521886470482
110 => 0.011467576021534
111 => 0.011530425448029
112 => 0.011609019618246
113 => 0.0119341184295
114 => 0.012012498652276
115 => 0.011822075346415
116 => 0.011839268438855
117 => 0.011768044895227
118 => 0.01169924384451
119 => 0.011853898558935
120 => 0.012136533089292
121 => 0.012134774834548
122 => 0.01220034055196
123 => 0.012241187450733
124 => 0.012065842659444
125 => 0.011951699647922
126 => 0.011995469341648
127 => 0.012065458035096
128 => 0.011972772951647
129 => 0.011400677680692
130 => 0.011574214840312
131 => 0.011545329771418
201 => 0.011504193920768
202 => 0.011678686876689
203 => 0.011661856605412
204 => 0.011157724638863
205 => 0.01118999753171
206 => 0.011159687260369
207 => 0.01125762594797
208 => 0.010977631611507
209 => 0.011063755983612
210 => 0.011117772382431
211 => 0.011149588456309
212 => 0.011264529931641
213 => 0.01125104287616
214 => 0.011263691557336
215 => 0.011434119421829
216 => 0.012296085076658
217 => 0.01234299996543
218 => 0.012111973894801
219 => 0.012204264253229
220 => 0.012027086946729
221 => 0.012146027259568
222 => 0.012227403200855
223 => 0.01185968096987
224 => 0.011837906845849
225 => 0.011659998265579
226 => 0.011755596259359
227 => 0.011603492977516
228 => 0.011640813802533
301 => 0.011536461522214
302 => 0.011724274850457
303 => 0.011934279334673
304 => 0.011987334760715
305 => 0.011847768776597
306 => 0.011746713806249
307 => 0.011569294567895
308 => 0.011864346715323
309 => 0.011950628954783
310 => 0.011863893511451
311 => 0.011843795014024
312 => 0.011805708397717
313 => 0.011851875269721
314 => 0.011950159043177
315 => 0.011903810230631
316 => 0.011934424437879
317 => 0.011817754649085
318 => 0.012065900705866
319 => 0.012460016363635
320 => 0.012461283509919
321 => 0.012414934447536
322 => 0.012395969409814
323 => 0.012443526360515
324 => 0.012469324055382
325 => 0.012623114513496
326 => 0.012788137802335
327 => 0.013558229486044
328 => 0.01334199082283
329 => 0.014025261977576
330 => 0.014565640749325
331 => 0.014727676715073
401 => 0.014578611250966
402 => 0.014068666350616
403 => 0.014043646020984
404 => 0.014805718995291
405 => 0.014590398474896
406 => 0.014564786784139
407 => 0.014292321666122
408 => 0.014453382296331
409 => 0.014418155973888
410 => 0.014362549500579
411 => 0.014669841963439
412 => 0.015245066021725
413 => 0.015155411957824
414 => 0.015088489358054
415 => 0.014795254006739
416 => 0.014971847184718
417 => 0.014908965736459
418 => 0.015179144343731
419 => 0.015019096521972
420 => 0.014588767210181
421 => 0.014657298571467
422 => 0.014646940194075
423 => 0.014860114866811
424 => 0.014796125121376
425 => 0.01463444516928
426 => 0.015243099968428
427 => 0.015203577311288
428 => 0.015259611402976
429 => 0.015284279343049
430 => 0.01565475679359
501 => 0.015806529551121
502 => 0.015840984624236
503 => 0.015985157005364
504 => 0.015837397484056
505 => 0.016428540920042
506 => 0.016821616810797
507 => 0.017278194685409
508 => 0.017945377676781
509 => 0.018196244653324
510 => 0.018150927779435
511 => 0.018656778309039
512 => 0.019565780466311
513 => 0.018334663104786
514 => 0.019631032675858
515 => 0.019220617036963
516 => 0.018247528940205
517 => 0.018184873538729
518 => 0.018843860095639
519 => 0.020305428853759
520 => 0.019939322456826
521 => 0.02030602767267
522 => 0.019878246559693
523 => 0.019857003621811
524 => 0.020285251298838
525 => 0.021285875338778
526 => 0.020810516365234
527 => 0.020128972713856
528 => 0.02063221394004
529 => 0.020196259817143
530 => 0.01921393316238
531 => 0.019939042502164
601 => 0.019454182536575
602 => 0.019595690451107
603 => 0.020614793981297
604 => 0.020492172748331
605 => 0.020650855978209
606 => 0.020370784230937
607 => 0.020109153055725
608 => 0.019620799038204
609 => 0.019476221489178
610 => 0.019516177522373
611 => 0.019476201688952
612 => 0.019202972104354
613 => 0.019143968201575
614 => 0.019045625778588
615 => 0.019076106207628
616 => 0.018891193681324
617 => 0.019240161823338
618 => 0.019304933385592
619 => 0.019558883297822
620 => 0.019585249220156
621 => 0.020292496110966
622 => 0.019902956408309
623 => 0.020164293272091
624 => 0.020140916843196
625 => 0.018268618709923
626 => 0.018526604873262
627 => 0.018927950382899
628 => 0.018747144774818
629 => 0.018491527946989
630 => 0.018285103653209
701 => 0.017972349740166
702 => 0.018412544866868
703 => 0.018991354648948
704 => 0.019599928791411
705 => 0.020331090748224
706 => 0.020167903911127
707 => 0.019586260227215
708 => 0.019612352337984
709 => 0.019773643499893
710 => 0.019564756790373
711 => 0.019503152021783
712 => 0.019765179950694
713 => 0.019766984393032
714 => 0.019526634988928
715 => 0.019259530609743
716 => 0.019258411432642
717 => 0.019210882788288
718 => 0.019886701799938
719 => 0.020258333923337
720 => 0.020300940947369
721 => 0.020255466131144
722 => 0.020272967583078
723 => 0.020056723038828
724 => 0.020550993941657
725 => 0.021004585800419
726 => 0.020883013492694
727 => 0.020700759320893
728 => 0.020555585094503
729 => 0.02084881505866
730 => 0.020835757989943
731 => 0.021000624071238
801 => 0.020993144793478
802 => 0.020937706531265
803 => 0.020883015472569
804 => 0.021099859338301
805 => 0.021037411787376
806 => 0.020974867238156
807 => 0.020849424569604
808 => 0.020866474311643
809 => 0.020684251608593
810 => 0.020599947048219
811 => 0.019332208735117
812 => 0.018993427633312
813 => 0.019100015064465
814 => 0.019135106414342
815 => 0.018987668444677
816 => 0.01919905661947
817 => 0.019166111996344
818 => 0.019294280252968
819 => 0.019214206290648
820 => 0.019217492553992
821 => 0.019452973003606
822 => 0.019521333979934
823 => 0.019486565035633
824 => 0.019510916012412
825 => 0.020072073994377
826 => 0.019992295274164
827 => 0.019949914419099
828 => 0.019961654205588
829 => 0.020105042101343
830 => 0.020145182883466
831 => 0.01997510356897
901 => 0.020055313956903
902 => 0.020396839608508
903 => 0.020516354257892
904 => 0.020897787648439
905 => 0.020735747964697
906 => 0.02103317881712
907 => 0.021947379855817
908 => 0.022677706903429
909 => 0.022006067968403
910 => 0.023347220584753
911 => 0.024391500273498
912 => 0.024351419079706
913 => 0.024169324761348
914 => 0.022980440099324
915 => 0.021886410708058
916 => 0.022801612748794
917 => 0.022803945787009
918 => 0.022725329120057
919 => 0.022237047753552
920 => 0.022708337986914
921 => 0.022745747294163
922 => 0.022724808030041
923 => 0.022350443851178
924 => 0.021778858944119
925 => 0.021890545266777
926 => 0.022073489741631
927 => 0.021727137684518
928 => 0.021616457216059
929 => 0.021822233264745
930 => 0.022485286568753
1001 => 0.022359940182436
1002 => 0.022356666881725
1003 => 0.022892951877527
1004 => 0.022509087558078
1005 => 0.021891953988975
1006 => 0.021736119623785
1007 => 0.021183012609966
1008 => 0.02156504559451
1009 => 0.021578794281504
1010 => 0.021369558720152
1011 => 0.021908932301616
1012 => 0.021903961879108
1013 => 0.022416016819545
1014 => 0.023394873546609
1015 => 0.023105377445802
1016 => 0.02276872497765
1017 => 0.022805328435298
1018 => 0.023206778020671
1019 => 0.022964052437152
1020 => 0.023051338249329
1021 => 0.023206645903141
1022 => 0.023300346866758
1023 => 0.02279184630861
1024 => 0.022673290504112
1025 => 0.022430766935543
1026 => 0.022367497063421
1027 => 0.0225650274496
1028 => 0.022512985171693
1029 => 0.0215776387576
1030 => 0.021479889853109
1031 => 0.021482887672456
1101 => 0.021237093404406
1102 => 0.020862198148247
1103 => 0.021847400497602
1104 => 0.02176827496105
1105 => 0.021680926492528
1106 => 0.021691626181518
1107 => 0.022119269129768
1108 => 0.021871214623297
1109 => 0.022530708184084
1110 => 0.022395136134177
1111 => 0.02225608717275
1112 => 0.022236866370746
1113 => 0.022183344383697
1114 => 0.02199979757545
1115 => 0.021778153775039
1116 => 0.021631805339551
1117 => 0.019954196972832
1118 => 0.020265551327496
1119 => 0.020623736131694
1120 => 0.020747380090768
1121 => 0.020535878542871
1122 => 0.022008148945678
1123 => 0.022277146935422
1124 => 0.021462334478184
1125 => 0.021309916336008
1126 => 0.022018141453705
1127 => 0.021590995130734
1128 => 0.021783339093813
1129 => 0.021367596652159
1130 => 0.022212353196873
1201 => 0.022205917567357
1202 => 0.021877288191771
1203 => 0.022155043489659
1204 => 0.022106776671429
1205 => 0.021735754915771
1206 => 0.022224115248307
1207 => 0.022224357468939
1208 => 0.021908058839957
1209 => 0.021538691287979
1210 => 0.021472657093757
1211 => 0.021422909198857
1212 => 0.021771104161269
1213 => 0.022083294675791
1214 => 0.022664203824723
1215 => 0.022810258186826
1216 => 0.023380318085502
1217 => 0.023040875171553
1218 => 0.023191345818785
1219 => 0.023354702991728
1220 => 0.023433022427697
1221 => 0.023305405109637
1222 => 0.024190942778296
1223 => 0.024265709289704
1224 => 0.024290777854251
1225 => 0.023992179534801
1226 => 0.02425740473028
1227 => 0.02413331464465
1228 => 0.024456162574239
1229 => 0.024506789251928
1230 => 0.024463910257022
1231 => 0.024479979963608
]
'min_raw' => 0.010977631611507
'max_raw' => 0.024506789251928
'avg_raw' => 0.017742210431717
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.010977'
'max' => '$0.0245067'
'avg' => '$0.017742'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0016927285210405
'max_diff' => -0.0023385961362994
'year' => 2031
]
6 => [
'items' => [
101 => 0.023724329782957
102 => 0.023685145334718
103 => 0.023150862602578
104 => 0.023368586765143
105 => 0.022961561879017
106 => 0.023090633663229
107 => 0.023147527275868
108 => 0.023117809281309
109 => 0.023380896562624
110 => 0.023157218628326
111 => 0.022566895783656
112 => 0.021976412105921
113 => 0.021968999064345
114 => 0.0218135351349
115 => 0.021701163188551
116 => 0.021722810012026
117 => 0.021799096241395
118 => 0.021696729294219
119 => 0.021718574472535
120 => 0.022081349986243
121 => 0.02215410202832
122 => 0.021906862163283
123 => 0.020914158428617
124 => 0.020670546442121
125 => 0.020845649906979
126 => 0.020761961728884
127 => 0.016756523519884
128 => 0.017697541813584
129 => 0.017138420697429
130 => 0.017396089431679
131 => 0.016825371555796
201 => 0.017097748040054
202 => 0.017047450049008
203 => 0.018560579618522
204 => 0.018536954181536
205 => 0.018548262427991
206 => 0.018008490361213
207 => 0.018868361919999
208 => 0.019291965569838
209 => 0.019213567808099
210 => 0.019233298835715
211 => 0.018894254409245
212 => 0.018551545119153
213 => 0.01817142777386
214 => 0.018877638817492
215 => 0.018799120204864
216 => 0.018979213652126
217 => 0.01943724199493
218 => 0.019504688408288
219 => 0.019595337071815
220 => 0.019562845978752
221 => 0.020336915632812
222 => 0.02024317069023
223 => 0.020469069029593
224 => 0.020004379006574
225 => 0.019478538136746
226 => 0.019578483295067
227 => 0.019568857772612
228 => 0.019446313824106
229 => 0.019335686626704
301 => 0.01915152351205
302 => 0.019734242857828
303 => 0.01971058551656
304 => 0.02009357037304
305 => 0.02002587407954
306 => 0.01957378166346
307 => 0.019589928232544
308 => 0.019698521669413
309 => 0.020074364794316
310 => 0.020185940623139
311 => 0.0201342542537
312 => 0.020256592056374
313 => 0.020353282867493
314 => 0.020268734933572
315 => 0.021465755382075
316 => 0.020968669035882
317 => 0.021210945462312
318 => 0.02126872696244
319 => 0.021120720864876
320 => 0.021152818087737
321 => 0.021201436634401
322 => 0.021496638929257
323 => 0.022271335168432
324 => 0.022614442859228
325 => 0.02364669927562
326 => 0.022585952541797
327 => 0.022523012220418
328 => 0.022708952772168
329 => 0.023314996564029
330 => 0.023806138134533
331 => 0.023969078128107
401 => 0.023990613338103
402 => 0.024296299598093
403 => 0.024471513261608
404 => 0.024259181245783
405 => 0.024079252094461
406 => 0.023434768208053
407 => 0.023509368972776
408 => 0.024023294263699
409 => 0.024749244007177
410 => 0.025372184409279
411 => 0.025154052392128
412 => 0.026818245705786
413 => 0.026983243675215
414 => 0.026960446290863
415 => 0.027336336220212
416 => 0.026590271259106
417 => 0.026271314033906
418 => 0.02411815481926
419 => 0.024723104732352
420 => 0.025602434958495
421 => 0.025486052305746
422 => 0.024847459190957
423 => 0.025371699979137
424 => 0.02519836958004
425 => 0.025061656702786
426 => 0.025687964896579
427 => 0.024999313310182
428 => 0.025595565132129
429 => 0.024830866003046
430 => 0.025155048800808
501 => 0.024971026965841
502 => 0.025090111645933
503 => 0.024393945039416
504 => 0.024769579641803
505 => 0.024378317404984
506 => 0.02437813189574
507 => 0.024369494760177
508 => 0.024829813046672
509 => 0.024844824009468
510 => 0.024504648100246
511 => 0.024455623437181
512 => 0.024636893311399
513 => 0.024424673763345
514 => 0.024523969954186
515 => 0.024427681343811
516 => 0.024406004749467
517 => 0.024233281957767
518 => 0.02415886822999
519 => 0.024188047770057
520 => 0.024088442956725
521 => 0.02402842745383
522 => 0.024357556166083
523 => 0.02418171597214
524 => 0.024330606134457
525 => 0.02416092700306
526 => 0.02357274520796
527 => 0.023234475637688
528 => 0.022123454751224
529 => 0.022438538896408
530 => 0.022647440010643
531 => 0.022578398193634
601 => 0.022726726732205
602 => 0.022735832899799
603 => 0.022687609779879
604 => 0.022631773584776
605 => 0.022604595612935
606 => 0.022807157948542
607 => 0.022924752202297
608 => 0.022668406032193
609 => 0.022608347711202
610 => 0.022867527842437
611 => 0.023025627572766
612 => 0.024192947152957
613 => 0.024106468348064
614 => 0.024323513177738
615 => 0.024299077260741
616 => 0.024526574820191
617 => 0.024898437182251
618 => 0.024142337025832
619 => 0.02427356986901
620 => 0.024241394606472
621 => 0.024592675686058
622 => 0.024593772347245
623 => 0.024383161792242
624 => 0.024497337190875
625 => 0.024433607615596
626 => 0.024548775571694
627 => 0.024105313370901
628 => 0.02464540246268
629 => 0.024951598175147
630 => 0.024955849702912
701 => 0.025100984040501
702 => 0.025248448933106
703 => 0.025531494952976
704 => 0.025240554933236
705 => 0.024717182160162
706 => 0.024754967983894
707 => 0.024448114718536
708 => 0.024453272977364
709 => 0.024425737787479
710 => 0.024508372965077
711 => 0.024123447145405
712 => 0.024213788465903
713 => 0.024087310088168
714 => 0.024273294929718
715 => 0.024073205984605
716 => 0.024241379090586
717 => 0.024313957028101
718 => 0.02458177118002
719 => 0.024033649616614
720 => 0.02291599264426
721 => 0.02315093769013
722 => 0.022803435512754
723 => 0.022835598162304
724 => 0.022900571833043
725 => 0.022689970908115
726 => 0.022730146927794
727 => 0.022728711557656
728 => 0.022716342313263
729 => 0.022661556878896
730 => 0.022582107160095
731 => 0.022898610386463
801 => 0.022952390452093
802 => 0.023071936876048
803 => 0.023427625944624
804 => 0.023392084218948
805 => 0.023450054248138
806 => 0.023323505999903
807 => 0.02284146837259
808 => 0.022867645334907
809 => 0.022541218195368
810 => 0.023063589400182
811 => 0.022939885003919
812 => 0.022860131974904
813 => 0.02283837062203
814 => 0.023194941375009
815 => 0.023301632932862
816 => 0.023235149913812
817 => 0.023098791302121
818 => 0.023360640147373
819 => 0.023430699851846
820 => 0.023446383635975
821 => 0.023910329585224
822 => 0.023472313060742
823 => 0.023577747991694
824 => 0.02440032122526
825 => 0.023654360809763
826 => 0.024049512678754
827 => 0.024030172051038
828 => 0.024232318376004
829 => 0.024013590152182
830 => 0.024016301550659
831 => 0.024195793792651
901 => 0.02394372931037
902 => 0.023881314599767
903 => 0.023795089124091
904 => 0.023983359295734
905 => 0.024096218748906
906 => 0.02500578305534
907 => 0.025593403078469
908 => 0.025567892943527
909 => 0.025801007823921
910 => 0.025695987435216
911 => 0.025356848897108
912 => 0.025935717028119
913 => 0.025752538930596
914 => 0.025767639910395
915 => 0.025767077851172
916 => 0.025888875272318
917 => 0.025802570636867
918 => 0.025632455341403
919 => 0.02574538581348
920 => 0.026080748942167
921 => 0.02712172638381
922 => 0.02770427115127
923 => 0.027086656457344
924 => 0.027512678803024
925 => 0.027257217202899
926 => 0.027210792230832
927 => 0.027478365746723
928 => 0.027746407614633
929 => 0.027729334506424
930 => 0.027534749874423
1001 => 0.027424833953209
1002 => 0.028257154133181
1003 => 0.028870393463581
1004 => 0.028828574652456
1005 => 0.029013149284554
1006 => 0.029555066113072
1007 => 0.029604612196349
1008 => 0.02959837052866
1009 => 0.029475565391659
1010 => 0.030009152886128
1011 => 0.030454280961593
1012 => 0.029447139550625
1013 => 0.029830645815472
1014 => 0.030002814133562
1015 => 0.030255608304557
1016 => 0.030682114444247
1017 => 0.031145413237117
1018 => 0.031210928766242
1019 => 0.031164442363121
1020 => 0.030858884355083
1021 => 0.031365831422546
1022 => 0.031662789125293
1023 => 0.031839620641524
1024 => 0.032288035944725
1025 => 0.030003877386482
1026 => 0.028387036428911
1027 => 0.02813454336592
1028 => 0.028647997938312
1029 => 0.028783391814328
1030 => 0.028728814712675
1031 => 0.026908913218181
1101 => 0.028124961961189
1102 => 0.029433328160383
1103 => 0.029483587834583
1104 => 0.030138583310547
1105 => 0.030351876686692
1106 => 0.030879233897062
1107 => 0.03084624755997
1108 => 0.030974650648609
1109 => 0.030945133002162
1110 => 0.031921951186211
1111 => 0.032999526702121
1112 => 0.032962213688486
1113 => 0.032807299458779
1114 => 0.033037373506695
1115 => 0.034149546919124
1116 => 0.034047155813524
1117 => 0.034146620050961
1118 => 0.035457935183562
1119 => 0.037162831388346
1120 => 0.036370735932443
1121 => 0.038089355152424
1122 => 0.039171134851312
1123 => 0.041041960982429
1124 => 0.0408077243368
1125 => 0.041536023220888
1126 => 0.040388391854462
1127 => 0.03775319826258
1128 => 0.037336168789549
1129 => 0.038171072355426
1130 => 0.040223601303434
1201 => 0.038106430914522
1202 => 0.038534731726791
1203 => 0.038411381064044
1204 => 0.038404808231433
1205 => 0.03865566651856
1206 => 0.038291783489194
1207 => 0.036809258566248
1208 => 0.03748869100186
1209 => 0.037226329509444
1210 => 0.037517439145624
1211 => 0.039088437789339
1212 => 0.038393861841022
1213 => 0.037662182502239
1214 => 0.038579870765716
1215 => 0.039748403277023
1216 => 0.039675278612521
1217 => 0.039533386199647
1218 => 0.040333226301772
1219 => 0.041654327819322
1220 => 0.0420114162509
1221 => 0.042275011630739
1222 => 0.042311356980139
1223 => 0.042685736667461
1224 => 0.040672602732899
1225 => 0.043867497987995
1226 => 0.04441916814135
1227 => 0.044315477016905
1228 => 0.04492863517453
1229 => 0.044748228490235
1230 => 0.044486847509634
1231 => 0.04545883361195
]
'min_raw' => 0.016756523519884
'max_raw' => 0.04545883361195
'avg_raw' => 0.031107678565917
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.016756'
'max' => '$0.045458'
'avg' => '$0.0311076'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0057788919083774
'max_diff' => 0.020952044360023
'year' => 2032
]
7 => [
'items' => [
101 => 0.044344529980879
102 => 0.042762916263499
103 => 0.041895211697372
104 => 0.043037875065779
105 => 0.043735659711409
106 => 0.044196850974731
107 => 0.044336407172353
108 => 0.040828876589581
109 => 0.038938512142032
110 => 0.040150214079839
111 => 0.041628574071164
112 => 0.040664390368503
113 => 0.040702184544206
114 => 0.039327511967231
115 => 0.041750202091333
116 => 0.041397236518282
117 => 0.043228422535653
118 => 0.042791395296421
119 => 0.044284656407356
120 => 0.043891430712217
121 => 0.045523688587784
122 => 0.046174840445966
123 => 0.047268225759547
124 => 0.048072524447096
125 => 0.048544824020207
126 => 0.048516468925389
127 => 0.050387955132768
128 => 0.049284405101024
129 => 0.047898086174382
130 => 0.047873012038779
131 => 0.048591006255178
201 => 0.050095725160657
202 => 0.050485876880079
203 => 0.050703918465758
204 => 0.050369980187207
205 => 0.049172155719893
206 => 0.048654941188015
207 => 0.049095622954323
208 => 0.048556707022344
209 => 0.049487027114043
210 => 0.050764555305595
211 => 0.050500750785934
212 => 0.051382609743379
213 => 0.052295240990066
214 => 0.053600344661663
215 => 0.053941547089268
216 => 0.054505541727332
217 => 0.055086077472487
218 => 0.055272529907954
219 => 0.055628525460053
220 => 0.055626649187769
221 => 0.056699465745284
222 => 0.057882815630586
223 => 0.058329502817675
224 => 0.05935663537391
225 => 0.057597706866375
226 => 0.058931874344455
227 => 0.060135326806061
228 => 0.058700521168813
301 => 0.060678066472922
302 => 0.060754850075866
303 => 0.061914191318637
304 => 0.060738976866181
305 => 0.060041138275731
306 => 0.062055772138691
307 => 0.063030590004605
308 => 0.062736966930061
309 => 0.060502480834819
310 => 0.059201914085772
311 => 0.055798080042924
312 => 0.059830068501365
313 => 0.061793932464756
314 => 0.060497394901589
315 => 0.061151293033364
316 => 0.064718749213149
317 => 0.066077005550729
318 => 0.065794497727441
319 => 0.065842236899102
320 => 0.066575127364764
321 => 0.06982516729966
322 => 0.067877668035335
323 => 0.069366458251506
324 => 0.070156107213931
325 => 0.070889577177846
326 => 0.069088406762033
327 => 0.066745110515509
328 => 0.066002890229351
329 => 0.060368479792894
330 => 0.060075184260672
331 => 0.059910548590672
401 => 0.058872543979498
402 => 0.058056956688507
403 => 0.057408371393897
404 => 0.055706289896874
405 => 0.056280692436993
406 => 0.053567929782756
407 => 0.055303459194531
408 => 0.050973824496425
409 => 0.054579672928798
410 => 0.052617173564868
411 => 0.053934939106496
412 => 0.053930341546662
413 => 0.051503917386579
414 => 0.050104406569224
415 => 0.050996229331819
416 => 0.051952334126299
417 => 0.052107458912481
418 => 0.053347073735413
419 => 0.053693023587062
420 => 0.052644779385712
421 => 0.050884102440839
422 => 0.051293067538368
423 => 0.050096118904576
424 => 0.047998512463819
425 => 0.049505050030265
426 => 0.050019448193231
427 => 0.050246635726614
428 => 0.048183880703857
429 => 0.047535718291117
430 => 0.047190642061183
501 => 0.05061782667037
502 => 0.050805575579693
503 => 0.049845025614576
504 => 0.054186802539992
505 => 0.053204124702531
506 => 0.05430201660889
507 => 0.051255958242336
508 => 0.051372321774
509 => 0.049930268928023
510 => 0.050737722163764
511 => 0.050167040242175
512 => 0.050672487921725
513 => 0.050975451176808
514 => 0.052417267396103
515 => 0.054596136154001
516 => 0.052201908133274
517 => 0.051158708698667
518 => 0.051805903760721
519 => 0.053529469497339
520 => 0.056140759816022
521 => 0.054594823390246
522 => 0.055280883724303
523 => 0.055430757386594
524 => 0.054290841099905
525 => 0.056182790155472
526 => 0.057196701024517
527 => 0.058236763776866
528 => 0.059139821122834
529 => 0.057821339842108
530 => 0.059232303809352
531 => 0.058095315920422
601 => 0.057075320244405
602 => 0.057076867156809
603 => 0.056437008969484
604 => 0.055197203104222
605 => 0.054968563880633
606 => 0.056157973995694
607 => 0.057111768270415
608 => 0.057190327335248
609 => 0.057718396853453
610 => 0.058030902954778
611 => 0.061093887579208
612 => 0.062325845333492
613 => 0.063832259955663
614 => 0.064419093347875
615 => 0.066185251467017
616 => 0.064758935345461
617 => 0.064450342880613
618 => 0.060166220989491
619 => 0.060867745709161
620 => 0.06199095447242
621 => 0.060184742288294
622 => 0.061330368186386
623 => 0.061556539006344
624 => 0.060123367889433
625 => 0.060888886506644
626 => 0.058855896019783
627 => 0.054640449791093
628 => 0.056187483152174
629 => 0.057326620431728
630 => 0.05570093107919
701 => 0.058614916320748
702 => 0.056912626299495
703 => 0.05637308208709
704 => 0.054268127753095
705 => 0.055261585171618
706 => 0.05660525055511
707 => 0.055775021565979
708 => 0.057497871377936
709 => 0.05993788617893
710 => 0.061676786031511
711 => 0.061810277170187
712 => 0.060692281062219
713 => 0.062483876960194
714 => 0.062496926780381
715 => 0.060475999288581
716 => 0.059238192452426
717 => 0.058956960134883
718 => 0.059659533602948
719 => 0.060512587495395
720 => 0.061857615724265
721 => 0.062670388113315
722 => 0.064789667442794
723 => 0.06536308366485
724 => 0.065993094243955
725 => 0.066834982665706
726 => 0.067845885571778
727 => 0.065634087564026
728 => 0.065721966422181
729 => 0.06366237074179
730 => 0.061461397381394
731 => 0.063131661806732
801 => 0.065315310356896
802 => 0.064814378966771
803 => 0.064758013952283
804 => 0.064852804272301
805 => 0.064475118363037
806 => 0.062766858993127
807 => 0.061908981831828
808 => 0.063015862237709
809 => 0.063604119911856
810 => 0.064516456262998
811 => 0.064403991550635
812 => 0.066754072013405
813 => 0.067667242218493
814 => 0.067433614203275
815 => 0.067476607380647
816 => 0.069129858418265
817 => 0.070968613589103
818 => 0.072690850451709
819 => 0.074442783760146
820 => 0.072330759777705
821 => 0.071258404250951
822 => 0.072364801427473
823 => 0.071777731511943
824 => 0.07515120938283
825 => 0.07538478167128
826 => 0.07875801560132
827 => 0.081959616278153
828 => 0.079948748255668
829 => 0.081844906229387
830 => 0.083895755673991
831 => 0.087852176990963
901 => 0.086519793479987
902 => 0.085499208591691
903 => 0.084534760803681
904 => 0.086541623548754
905 => 0.089123420409875
906 => 0.089679514725618
907 => 0.0905805999615
908 => 0.089633219015431
909 => 0.090774235014383
910 => 0.094802522878519
911 => 0.093714043938949
912 => 0.092168228863038
913 => 0.095348175250895
914 => 0.096498985486931
915 => 0.10457597440744
916 => 0.11477350656335
917 => 0.11055166129019
918 => 0.10793102569105
919 => 0.10854693721916
920 => 0.11227073075425
921 => 0.11346669505042
922 => 0.11021565181981
923 => 0.11136397524981
924 => 0.11769135024978
925 => 0.12108578393078
926 => 0.11647568705872
927 => 0.10375661262783
928 => 0.092029045128581
929 => 0.095139724128628
930 => 0.094787069665631
1001 => 0.101585044747
1002 => 0.093688084076224
1003 => 0.093821048641035
1004 => 0.1007595986479
1005 => 0.098908512462933
1006 => 0.095909989912486
1007 => 0.092050937661563
1008 => 0.084917122656604
1009 => 0.078598503765562
1010 => 0.090990770501919
1011 => 0.090456393426373
1012 => 0.089682536230736
1013 => 0.091404671679531
1014 => 0.099766872582208
1015 => 0.099574096785599
1016 => 0.098347755522644
1017 => 0.099277924562119
1018 => 0.095746926782565
1019 => 0.096656945309681
1020 => 0.092027187421971
1021 => 0.094120031342985
1022 => 0.095903556429798
1023 => 0.096261625496516
1024 => 0.097068373387291
1025 => 0.090174800989842
1026 => 0.093269812611644
1027 => 0.095087841976082
1028 => 0.086873919167078
1029 => 0.094925479131923
1030 => 0.090054799231216
1031 => 0.088401617317759
1101 => 0.090627408974074
1102 => 0.089760015800955
1103 => 0.089014282085743
1104 => 0.088598149859323
1105 => 0.09023252560006
1106 => 0.090156280018253
1107 => 0.087482124087746
1108 => 0.083993796688941
1109 => 0.085164593864424
1110 => 0.084739232274289
1111 => 0.083197666998903
1112 => 0.084236495865212
1113 => 0.079662019277244
1114 => 0.07179187006825
1115 => 0.076991131704901
1116 => 0.076790965787599
1117 => 0.076690033055293
1118 => 0.0805971344782
1119 => 0.080221556828554
1120 => 0.079539879716779
1121 => 0.083185147464167
1122 => 0.0818545757006
1123 => 0.085955084353778
1124 => 0.088655944557032
1125 => 0.087970919045812
1126 => 0.090511091121363
1127 => 0.085191566666669
1128 => 0.086958499308241
1129 => 0.087322661676806
1130 => 0.083140165426005
1201 => 0.080283005976883
1202 => 0.080092466015629
1203 => 0.075138545271678
1204 => 0.077784889746445
1205 => 0.080113563371066
1206 => 0.078998309417246
1207 => 0.078645253332731
1208 => 0.080448940299997
1209 => 0.080589102224888
1210 => 0.077393395483683
1211 => 0.07805788411005
1212 => 0.080828912144045
1213 => 0.077988061313319
1214 => 0.072468752199568
1215 => 0.071099887228939
1216 => 0.07091725540867
1217 => 0.067204785042274
1218 => 0.071191361331759
1219 => 0.069451113947797
1220 => 0.074948534582368
1221 => 0.071808437399159
1222 => 0.071673074085624
1223 => 0.071468452583734
1224 => 0.068272975979158
1225 => 0.068972582272428
1226 => 0.071298180144303
1227 => 0.072127979664724
1228 => 0.072041424776397
1229 => 0.071286783446006
1230 => 0.07163225438267
1231 => 0.070519372125621
]
'min_raw' => 0.038938512142032
'max_raw' => 0.12108578393078
'avg_raw' => 0.080012148036404
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.038938'
'max' => '$0.121085'
'avg' => '$0.080012'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.022181988622148
'max_diff' => 0.075626950318826
'year' => 2033
]
8 => [
'items' => [
101 => 0.070126390238016
102 => 0.06888603130255
103 => 0.067063046325317
104 => 0.067316543567418
105 => 0.063704733317552
106 => 0.061736827400146
107 => 0.061192136978792
108 => 0.060463754183177
109 => 0.061274409753709
110 => 0.063694501512914
111 => 0.060775357400205
112 => 0.055770689573116
113 => 0.056071478637063
114 => 0.056747262358677
115 => 0.055487943864205
116 => 0.054296104595778
117 => 0.055332312142699
118 => 0.053211768408991
119 => 0.057003519937878
120 => 0.056900963685283
121 => 0.05831429417491
122 => 0.059198078734536
123 => 0.057161241453248
124 => 0.056648982385198
125 => 0.056940788431236
126 => 0.052117884496229
127 => 0.057920160029861
128 => 0.057970338349621
129 => 0.057540681111698
130 => 0.060630213708198
131 => 0.067150091136195
201 => 0.06469705098632
202 => 0.063747159696758
203 => 0.061941415660934
204 => 0.064347462374198
205 => 0.064162715526795
206 => 0.063327220219677
207 => 0.062821910051029
208 => 0.06375295953042
209 => 0.062706542717064
210 => 0.062518577503774
211 => 0.061379712819407
212 => 0.06097318994213
213 => 0.060672216587935
214 => 0.060340874497999
215 => 0.061071732583095
216 => 0.059415512009879
217 => 0.057418272359885
218 => 0.05725222349342
219 => 0.057710699012894
220 => 0.057507857725015
221 => 0.057251252367373
222 => 0.056761322857322
223 => 0.056615971237378
224 => 0.057088293487616
225 => 0.056555069205195
226 => 0.057341870680136
227 => 0.057127904214664
228 => 0.055932704931784
301 => 0.054443044105866
302 => 0.054429782999846
303 => 0.054108838018436
304 => 0.053700066330209
305 => 0.053586355397973
306 => 0.055245045633315
307 => 0.058678484780053
308 => 0.058004418520312
309 => 0.058491500474064
310 => 0.06088746160379
311 => 0.061649065597866
312 => 0.06110849712245
313 => 0.06036853365249
314 => 0.06040108828979
315 => 0.062929767468819
316 => 0.063087478087474
317 => 0.063485961941442
318 => 0.063998126305313
319 => 0.061195720928279
320 => 0.060269095248548
321 => 0.059830008594256
322 => 0.058477791646958
323 => 0.0599360416943
324 => 0.059086381840206
325 => 0.059201029983037
326 => 0.059126365229615
327 => 0.059167137233792
328 => 0.05700246006605
329 => 0.057791154653893
330 => 0.056479796931773
331 => 0.054724036148667
401 => 0.054718150222873
402 => 0.055147870187154
403 => 0.054892255937456
404 => 0.054204404563962
405 => 0.054302110605
406 => 0.05344610287438
407 => 0.054406045442017
408 => 0.054433573160017
409 => 0.054063942983052
410 => 0.055542866955044
411 => 0.056148783313057
412 => 0.055905484812332
413 => 0.056131712841662
414 => 0.058032429016631
415 => 0.058342328687212
416 => 0.058479965650061
417 => 0.058295550353247
418 => 0.056166454444146
419 => 0.05626088890133
420 => 0.055567991512764
421 => 0.054982566235154
422 => 0.055005980176107
423 => 0.055306964868758
424 => 0.056621382674082
425 => 0.059387497456224
426 => 0.059492469490202
427 => 0.059619698657635
428 => 0.059102193693431
429 => 0.058946109244371
430 => 0.059152024921495
501 => 0.060190832198262
502 => 0.06286292654753
503 => 0.061918429941318
504 => 0.061150539498502
505 => 0.061824186438628
506 => 0.061720483772415
507 => 0.0608451289069
508 => 0.060820560611285
509 => 0.059140474756484
510 => 0.058519385269667
511 => 0.058000356406741
512 => 0.057433590438018
513 => 0.057097592573591
514 => 0.057613838001649
515 => 0.057731909439082
516 => 0.056603129788208
517 => 0.056449281292778
518 => 0.057371067122083
519 => 0.056965423546245
520 => 0.057382638023471
521 => 0.057479435360987
522 => 0.057463848760215
523 => 0.057040310279172
524 => 0.05731026107689
525 => 0.056671746964083
526 => 0.055977458768124
527 => 0.055534546154785
528 => 0.055148046155814
529 => 0.055362498818755
530 => 0.05459801423288
531 => 0.054353440227824
601 => 0.057218807820708
602 => 0.059335485669464
603 => 0.059304708335247
604 => 0.059117359228487
605 => 0.058838996458219
606 => 0.060170468227802
607 => 0.059706610086898
608 => 0.06004410564105
609 => 0.060130012424226
610 => 0.060390026383431
611 => 0.060482959024892
612 => 0.060202052036528
613 => 0.059259293873679
614 => 0.056910030166617
615 => 0.055816441569263
616 => 0.055455539116978
617 => 0.055468657235667
618 => 0.055106800960358
619 => 0.055213383850697
620 => 0.055069735780716
621 => 0.054797701088372
622 => 0.055345701443076
623 => 0.05540885337898
624 => 0.055280943548075
625 => 0.055311070943656
626 => 0.05425203217477
627 => 0.054332548592257
628 => 0.053884222948157
629 => 0.053800167294535
630 => 0.052666839106429
701 => 0.050658983942653
702 => 0.051771530610602
703 => 0.050427730683454
704 => 0.049918813289152
705 => 0.052327949080886
706 => 0.052086138666421
707 => 0.051672264349318
708 => 0.051060057975357
709 => 0.050832984676094
710 => 0.049453359192444
711 => 0.049371843558854
712 => 0.050055623201573
713 => 0.049740082423879
714 => 0.049296943667359
715 => 0.047691940011501
716 => 0.045887384503868
717 => 0.045941852691612
718 => 0.046515848223641
719 => 0.04818481764686
720 => 0.047532722419744
721 => 0.047059619850541
722 => 0.04697102196074
723 => 0.048080010043842
724 => 0.049649460521618
725 => 0.050385811571316
726 => 0.049656110044379
727 => 0.048817868220156
728 => 0.048868888115958
729 => 0.049208300625412
730 => 0.049243968081121
731 => 0.048698358826203
801 => 0.048851944635538
802 => 0.048618633746977
803 => 0.04718680525454
804 => 0.047160908017489
805 => 0.046809514214092
806 => 0.046798874149378
807 => 0.046201065630506
808 => 0.046117428086261
809 => 0.044930442987658
810 => 0.045711720174081
811 => 0.045187680456322
812 => 0.044397828993187
813 => 0.044261658303229
814 => 0.044257564847858
815 => 0.045068565692943
816 => 0.045702243157018
817 => 0.045196796351573
818 => 0.045081715911648
819 => 0.046310473935066
820 => 0.046154103276208
821 => 0.04601868729412
822 => 0.049508933445217
823 => 0.04674613126932
824 => 0.045541391825394
825 => 0.04405029798972
826 => 0.044535805661363
827 => 0.04463810926137
828 => 0.04105229737644
829 => 0.039597533941308
830 => 0.039098313951974
831 => 0.038811005790178
901 => 0.038941935727297
902 => 0.037632478008947
903 => 0.03851245525211
904 => 0.037378575553724
905 => 0.037188476932326
906 => 0.039215994293781
907 => 0.039498111490043
908 => 0.038294511883847
909 => 0.039067417676101
910 => 0.038787151291635
911 => 0.037398012666721
912 => 0.037344957789061
913 => 0.036647936857662
914 => 0.035557234069872
915 => 0.035058753628388
916 => 0.034799140686458
917 => 0.034906262046054
918 => 0.034852098208675
919 => 0.034498642531943
920 => 0.034872357874325
921 => 0.033917669604382
922 => 0.033537505042845
923 => 0.033365793530149
924 => 0.032518452740768
925 => 0.033866948750832
926 => 0.03413261945272
927 => 0.03439881360796
928 => 0.036715851990859
929 => 0.036600099301132
930 => 0.037646447242418
1001 => 0.03760578808553
1002 => 0.037307352702962
1003 => 0.036048302914147
1004 => 0.036550137719564
1005 => 0.035005568190933
1006 => 0.036162864702302
1007 => 0.035634722904371
1008 => 0.035984299429159
1009 => 0.035355729317546
1010 => 0.035703605970336
1011 => 0.034195619831871
1012 => 0.03278748359371
1013 => 0.033354158722005
1014 => 0.033970199393624
1015 => 0.035305932533937
1016 => 0.034510380895126
1017 => 0.03479649134758
1018 => 0.033838069226169
1019 => 0.031860570629952
1020 => 0.031871763057251
1021 => 0.031567567980371
1022 => 0.031304699020739
1023 => 0.034601759570856
1024 => 0.034191717972635
1025 => 0.033538370350787
1026 => 0.034412902105633
1027 => 0.0346441421823
1028 => 0.034650725262197
1029 => 0.035288761055601
1030 => 0.035629280872915
1031 => 0.035689298966614
1101 => 0.03669326207321
1102 => 0.037029777263948
1103 => 0.038415835709183
1104 => 0.035600390145495
1105 => 0.035542407896866
1106 => 0.034425208560864
1107 => 0.033716663079749
1108 => 0.034473723276144
1109 => 0.035144375261126
1110 => 0.034446047587473
1111 => 0.03453723443915
1112 => 0.033599786592738
1113 => 0.03393488008681
1114 => 0.034223507745872
1115 => 0.034064144517287
1116 => 0.033825570050829
1117 => 0.035089389446372
1118 => 0.035018079803127
1119 => 0.03619497747934
1120 => 0.037112453378708
1121 => 0.038756734208809
1122 => 0.0370408414443
1123 => 0.036978307491905
1124 => 0.037589586907325
1125 => 0.037029683680254
1126 => 0.037383523192561
1127 => 0.038699725193039
1128 => 0.038727534467265
1129 => 0.038261693293751
1130 => 0.038233346816007
1201 => 0.038322816709124
1202 => 0.038846844667654
1203 => 0.038663733197191
1204 => 0.038875634426627
1205 => 0.039140620158782
1206 => 0.040236713498599
1207 => 0.040500977892023
1208 => 0.039858952421382
1209 => 0.039916920132927
1210 => 0.039676784982914
1211 => 0.039444817436887
1212 => 0.039966246604217
1213 => 0.04091916865623
1214 => 0.040913240577601
1215 => 0.04113429997151
1216 => 0.04127201814256
1217 => 0.040680830936549
1218 => 0.040295989803992
1219 => 0.040443562382292
1220 => 0.040679534148706
1221 => 0.040367039918791
1222 => 0.03843818077035
1223 => 0.039023273419988
1224 => 0.038925885393519
1225 => 0.038787193001039
1226 => 0.039375508184638
1227 => 0.039318763749975
1228 => 0.037619047627386
1229 => 0.037727857938838
1230 => 0.037625664742816
1231 => 0.037955871865925
]
'min_raw' => 0.031304699020739
'max_raw' => 0.070126390238016
'avg_raw' => 0.050715544629378
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.0313046'
'max' => '$0.070126'
'avg' => '$0.050715'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0076338131212925
'max_diff' => -0.050959393692761
'year' => 2034
]
9 => [
'items' => [
101 => 0.037011851411959
102 => 0.037302225745524
103 => 0.037484345805446
104 => 0.037591615919852
105 => 0.037979149128893
106 => 0.037933676579704
107 => 0.037976322491389
108 => 0.038550931935423
109 => 0.041457109321197
110 => 0.041615286144185
111 => 0.040836365617334
112 => 0.041147529004283
113 => 0.040550163345293
114 => 0.040951178914175
115 => 0.041225543581713
116 => 0.0399857424064
117 => 0.039912329427041
118 => 0.039312498227482
119 => 0.039634813537949
120 => 0.039121986703705
121 => 0.039247816470907
122 => 0.038895985472167
123 => 0.039529211221046
124 => 0.040237256001627
125 => 0.040416136074737
126 => 0.039945579615097
127 => 0.039604865727136
128 => 0.039006684378009
129 => 0.040001473292949
130 => 0.04029237988732
131 => 0.039999945284451
201 => 0.039932181797144
202 => 0.039803770111143
203 => 0.03995942494337
204 => 0.040290795547531
205 => 0.040134527290063
206 => 0.040237745227213
207 => 0.039844384888672
208 => 0.040681026644113
209 => 0.042009815100558
210 => 0.042014087372724
211 => 0.041857818272912
212 => 0.041793876324133
213 => 0.041954217903743
214 => 0.042041196633125
215 => 0.042559711899964
216 => 0.043116099439843
217 => 0.045712517317552
218 => 0.044983453567225
219 => 0.04728714996992
220 => 0.049109074726913
221 => 0.049655390298421
222 => 0.049152805678767
223 => 0.04743349084402
224 => 0.047349133055803
225 => 0.049918515294915
226 => 0.049192547127204
227 => 0.049106195523666
228 => 0.048187560355362
301 => 0.048730587515009
302 => 0.048611819509466
303 => 0.048424338402388
304 => 0.049460396395394
305 => 0.051399804468765
306 => 0.051097529532877
307 => 0.050871895315366
308 => 0.04988323185537
309 => 0.050478628084266
310 => 0.05026661889122
311 => 0.051177544928905
312 => 0.050637932523663
313 => 0.049187047204324
314 => 0.049418105473609
315 => 0.049383181481031
316 => 0.050101914773541
317 => 0.049886168879186
318 => 0.049341053632561
319 => 0.051393175782811
320 => 0.051259922384877
321 => 0.05144884523718
322 => 0.051532014919397
323 => 0.052781105509806
324 => 0.053292817958256
325 => 0.053408985642841
326 => 0.053895072891607
327 => 0.053396891349277
328 => 0.05538997271602
329 => 0.056715255525383
330 => 0.058254639706887
331 => 0.060504093743526
401 => 0.061349909269915
402 => 0.061197120265674
403 => 0.062902630643589
404 => 0.065967394881337
405 => 0.061816596743086
406 => 0.06618739726159
407 => 0.06480365228075
408 => 0.061522817823688
409 => 0.061311570763151
410 => 0.063533389948744
411 => 0.068461171060219
412 => 0.067226817782226
413 => 0.068463190019987
414 => 0.06702089613086
415 => 0.066949274082658
416 => 0.068393141025053
417 => 0.071766814837048
418 => 0.070164108869241
419 => 0.067866236864763
420 => 0.069562949794021
421 => 0.068093100031329
422 => 0.06478111713094
423 => 0.067225873895537
424 => 0.065591134669715
425 => 0.066068238483327
426 => 0.069504217186897
427 => 0.069090791138811
428 => 0.069625802727255
429 => 0.068681521277343
430 => 0.067799413503607
501 => 0.066152893837747
502 => 0.065665440537124
503 => 0.065800155092683
504 => 0.06566537377928
505 => 0.064744161158528
506 => 0.064545225380786
507 => 0.06421365703564
508 => 0.064316423930223
509 => 0.063692978437607
510 => 0.064869548892585
511 => 0.065087930736932
512 => 0.065944140596232
513 => 0.066033035144191
514 => 0.068417567414956
515 => 0.067104207110656
516 => 0.067985322592854
517 => 0.067906507330746
518 => 0.061593923454733
519 => 0.062463741816448
520 => 0.063816906223239
521 => 0.063207307492151
522 => 0.062345477510527
523 => 0.061649503591965
524 => 0.060595031938358
525 => 0.062079180541476
526 => 0.064030678132968
527 => 0.066082528343573
528 => 0.068547691929063
529 => 0.067997496114449
530 => 0.066036443825074
531 => 0.066124415198226
601 => 0.066668219611591
602 => 0.065963943486443
603 => 0.065756238708033
604 => 0.066639684164561
605 => 0.066645767967887
606 => 0.065835413171291
607 => 0.064934852108237
608 => 0.0649310787245
609 => 0.064770832581718
610 => 0.067049403563673
611 => 0.068302387214237
612 => 0.06844603977049
613 => 0.068292718252638
614 => 0.068351725619746
615 => 0.067622642041093
616 => 0.069289110898874
617 => 0.070818427519463
618 => 0.070408537996061
619 => 0.069794055331252
620 => 0.069304590291237
621 => 0.070293235588056
622 => 0.070249212769261
623 => 0.070805070272929
624 => 0.070779853365774
625 => 0.070592939394148
626 => 0.070408544671348
627 => 0.071139648904219
628 => 0.070929102626327
629 => 0.07071822931191
630 => 0.07029529059676
701 => 0.070352774992417
702 => 0.069738398426704
703 => 0.069454159715446
704 => 0.065179891482159
705 => 0.064037667344481
706 => 0.064397034310311
707 => 0.064515347246422
708 => 0.064018249837904
709 => 0.064730959827871
710 => 0.064619884730881
711 => 0.06505201295651
712 => 0.064782038001964
713 => 0.064793117868269
714 => 0.065587056644861
715 => 0.065817540449362
716 => 0.06570031452616
717 => 0.065782415544501
718 => 0.067674398859497
719 => 0.067405419334325
720 => 0.067262529322538
721 => 0.067302110832331
722 => 0.067785553133892
723 => 0.067920890583358
724 => 0.067347456299977
725 => 0.067617891223004
726 => 0.06876936880195
727 => 0.069172320786595
728 => 0.070458350093655
729 => 0.069912021986668
730 => 0.070914830871569
731 => 0.073997123501016
801 => 0.076459472131845
802 => 0.074194994570074
803 => 0.078716784252384
804 => 0.082237646132267
805 => 0.082102509589015
806 => 0.081488565881255
807 => 0.077480158237963
808 => 0.073791561762616
809 => 0.076877229340323
810 => 0.076885095341552
811 => 0.076620033760084
812 => 0.074973759042195
813 => 0.076562746968409
814 => 0.076688875059635
815 => 0.076618276868715
816 => 0.075356081902405
817 => 0.073428943481472
818 => 0.073805501716005
819 => 0.074422311785749
820 => 0.073254561643663
821 => 0.07288139471679
822 => 0.073575183031759
823 => 0.075810713539126
824 => 0.075388099446255
825 => 0.075377063284372
826 => 0.077185185589942
827 => 0.07589096023637
828 => 0.073810251321249
829 => 0.073284844879002
830 => 0.071420005965213
831 => 0.072708056845295
901 => 0.072754411503397
902 => 0.072048959199937
903 => 0.073867494887705
904 => 0.073850736761195
905 => 0.075577165743414
906 => 0.078877449540303
907 => 0.07790139322446
908 => 0.076766345923761
909 => 0.076889757036795
910 => 0.078243272342195
911 => 0.077424906090801
912 => 0.077719196300654
913 => 0.078242826898716
914 => 0.078558746239542
915 => 0.076844301105372
916 => 0.076444581933207
917 => 0.075626896789322
918 => 0.075413577998098
919 => 0.076079565486232
920 => 0.075904101312794
921 => 0.072750515573877
922 => 0.072420948317775
923 => 0.072431055675006
924 => 0.071602343139468
925 => 0.070338357608975
926 => 0.073660036114457
927 => 0.073393258843605
928 => 0.073098757383507
929 => 0.073134832131967
930 => 0.074576660189066
1001 => 0.073740327101886
1002 => 0.075963855686451
1003 => 0.075506765054852
1004 => 0.075037951773313
1005 => 0.074973147497403
1006 => 0.07479269438128
1007 => 0.074173853502448
1008 => 0.073426565954686
1009 => 0.072933141986715
1010 => 0.067276968251446
1011 => 0.068326721196263
1012 => 0.069534366271283
1013 => 0.069951240511846
1014 => 0.069238148276544
1015 => 0.074202010730246
1016 => 0.075108956233506
1017 => 0.07236175914554
1018 => 0.071847870737699
1019 => 0.074235701168711
1020 => 0.072795547518412
1021 => 0.07344404861896
1022 => 0.072042343950713
1023 => 0.074890499620235
1024 => 0.074868801445999
1025 => 0.073760804562042
1026 => 0.074697275941127
1027 => 0.074534540993582
1028 => 0.07328361524047
1029 => 0.074930156197845
1030 => 0.074930972861617
1031 => 0.073864549950738
1101 => 0.072619201460824
1102 => 0.072396562564646
1103 => 0.072228834063703
1104 => 0.073402797689672
1105 => 0.074455369805827
1106 => 0.076413945559235
1107 => 0.076906378038254
1108 => 0.07882837478695
1109 => 0.077683919303425
1110 => 0.078191241596092
1111 => 0.078742011709902
1112 => 0.079006071156363
1113 => 0.078575800458566
1114 => 0.081561452534715
1115 => 0.081813533047958
1116 => 0.081898053463561
1117 => 0.080891308382065
1118 => 0.081785533646054
1119 => 0.081367155258661
1120 => 0.082455659593792
1121 => 0.082626350972262
1122 => 0.08248178144722
1123 => 0.082535961584926
1124 => 0.079988234243051
1125 => 0.079856121140042
1126 => 0.078054749606201
1127 => 0.078788821821308
1128 => 0.077416509000163
1129 => 0.077851683532137
1130 => 0.078043504319335
1201 => 0.077943308025837
1202 => 0.078830325162957
1203 => 0.078076179390775
1204 => 0.076085864704945
1205 => 0.07409500775921
1206 => 0.074070014171973
1207 => 0.073545856679705
1208 => 0.073166986817028
1209 => 0.07323997059371
1210 => 0.073497174942161
1211 => 0.073152037632724
1212 => 0.073225690176599
1213 => 0.074448813149241
1214 => 0.074694101738491
1215 => 0.073860515271782
1216 => 0.070513545321994
1217 => 0.069692190501078
1218 => 0.070282564058179
1219 => 0.070000403522811
1220 => 0.056495788950402
1221 => 0.05966849782741
1222 => 0.057783381947705
1223 => 0.058652130075085
1224 => 0.056727914910296
1225 => 0.057646251243691
1226 => 0.057476668055186
1227 => 0.062578290042134
1228 => 0.06249863523186
1229 => 0.062536761774299
1230 => 0.060716882565475
1231 => 0.063615999560237
]
'min_raw' => 0.037011851411959
'max_raw' => 0.082626350972262
'avg_raw' => 0.05981910119211
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.037011'
'max' => '$0.082626'
'avg' => '$0.059819'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0057071523912195
'max_diff' => 0.012499960734246
'year' => 2035
]
10 => [
'items' => [
101 => 0.065044208840732
102 => 0.064779885313472
103 => 0.064846409850657
104 => 0.063703297895488
105 => 0.062547829596744
106 => 0.061266237428141
107 => 0.063647277267827
108 => 0.063382546283359
109 => 0.063989743914526
110 => 0.065534018450805
111 => 0.0657614187424
112 => 0.066067047040371
113 => 0.065957501051652
114 => 0.068567330934134
115 => 0.068251263315154
116 => 0.069012895338037
117 => 0.067446160481806
118 => 0.065673251276142
119 => 0.06601022335537
120 => 0.065977770234382
121 => 0.065564604756247
122 => 0.065191617436463
123 => 0.064570698637549
124 => 0.066535377596005
125 => 0.066455615218217
126 => 0.067746875400987
127 => 0.06751863262105
128 => 0.065994371476149
129 => 0.066048810761135
130 => 0.066414941115292
131 => 0.06768212245143
201 => 0.068058308148281
202 => 0.067884043945092
203 => 0.068296514388158
204 => 0.068622514208584
205 => 0.068337454946422
206 => 0.072373292961847
207 => 0.070697331640198
208 => 0.071514183527106
209 => 0.071708997888962
210 => 0.071209984997571
211 => 0.071318203025402
212 => 0.071482123849918
213 => 0.072477418997392
214 => 0.075089361455336
215 => 0.076246172989866
216 => 0.079726497567575
217 => 0.076150115895518
218 => 0.075937908207636
219 => 0.076564819759815
220 => 0.078608138716701
221 => 0.080264056812067
222 => 0.080813420376506
223 => 0.080886027840551
224 => 0.081916670408439
225 => 0.082507415508006
226 => 0.081791523292107
227 => 0.081184879596171
228 => 0.079011957176718
229 => 0.079263478863441
301 => 0.080996213862907
302 => 0.083443804107236
303 => 0.085544091165232
304 => 0.084808643839915
305 => 0.090419587787179
306 => 0.090975889960899
307 => 0.090899026987894
308 => 0.092166366128492
309 => 0.089650956023532
310 => 0.088575569469886
311 => 0.081316042848931
312 => 0.083355673717176
313 => 0.086320396967492
314 => 0.085928004728171
315 => 0.083774943456512
316 => 0.085542457875187
317 => 0.084958062333087
318 => 0.084497125322439
319 => 0.086608767125252
320 => 0.084286930221595
321 => 0.086297234868266
322 => 0.083718998364972
323 => 0.084812003301348
324 => 0.084191560836761
325 => 0.084593063149917
326 => 0.082245888831245
327 => 0.083512367119165
328 => 0.082193199170673
329 => 0.082192573713305
330 => 0.082163453007727
331 => 0.083715448249041
401 => 0.083766058758142
402 => 0.082619131929876
403 => 0.082453841855559
404 => 0.083065005892345
405 => 0.082349492869383
406 => 0.082684276909442
407 => 0.082359633136907
408 => 0.082286548985665
409 => 0.081704202034328
410 => 0.081453310955729
411 => 0.081551691812314
412 => 0.081215867229981
413 => 0.081013520771819
414 => 0.082123201204213
415 => 0.081530343713566
416 => 0.082032337290997
417 => 0.081460252252874
418 => 0.07947715626515
419 => 0.078336656791751
420 => 0.074590772304037
421 => 0.075653100497997
422 => 0.076357425189651
423 => 0.076124645883261
424 => 0.07662474590702
425 => 0.076655447986835
426 => 0.076492860371194
427 => 0.076304604741046
428 => 0.07621297231148
429 => 0.076895925368429
430 => 0.077292402605131
501 => 0.076428113595107
502 => 0.076225622772747
503 => 0.077099466680585
504 => 0.077632510959563
505 => 0.081568210423827
506 => 0.081276641095372
507 => 0.082008422892202
508 => 0.081926035491986
509 => 0.082693059397046
510 => 0.083946819313331
511 => 0.081397574846738
512 => 0.081840035539897
513 => 0.081731554395844
514 => 0.082915923081332
515 => 0.08291962055109
516 => 0.082209532360536
517 => 0.082594482688501
518 => 0.082379613975991
519 => 0.082767910780744
520 => 0.081272747009229
521 => 0.083093695089979
522 => 0.084126055312462
523 => 0.084140389635152
524 => 0.084629720187292
525 => 0.08512690836838
526 => 0.086081217786014
527 => 0.085100293196674
528 => 0.083335705351537
529 => 0.083463102894372
530 => 0.082428525686405
531 => 0.082445917116182
601 => 0.082353080301039
602 => 0.082631690571714
603 => 0.081333886296028
604 => 0.081638478365517
605 => 0.081212047684543
606 => 0.081839108562877
607 => 0.081164494714667
608 => 0.081731502082952
609 => 0.081976203666512
610 => 0.082879157777896
611 => 0.081031127658246
612 => 0.077262869143638
613 => 0.078055002769127
614 => 0.076883374916276
615 => 0.076991813534759
616 => 0.077210876801973
617 => 0.076500821079891
618 => 0.076636277335237
619 => 0.076631437884605
620 => 0.076589734113541
621 => 0.076405021196575
622 => 0.076137150922636
623 => 0.077204263647885
624 => 0.077385586893961
625 => 0.07778864600879
626 => 0.078987876536912
627 => 0.078868045127349
628 => 0.079063495128103
629 => 0.078636828873862
630 => 0.077011605358585
701 => 0.07709986281465
702 => 0.07599929092328
703 => 0.077760501911105
704 => 0.077343423902339
705 => 0.077074530996834
706 => 0.077001161076292
707 => 0.078203364264936
708 => 0.078563082301204
709 => 0.078338930160781
710 => 0.077879187581211
711 => 0.078762029244678
712 => 0.078998240429723
713 => 0.079051119402921
714 => 0.080615345562486
715 => 0.079138542268855
716 => 0.079494023499795
717 => 0.08226738658699
718 => 0.079752328964849
719 => 0.081084611079775
720 => 0.081019402803111
721 => 0.081700953251139
722 => 0.080963495773406
723 => 0.080972637442677
724 => 0.081577808068299
725 => 0.080727955067711
726 => 0.080517519513255
727 => 0.080226804301943
728 => 0.08086157033024
729 => 0.081242083856206
730 => 0.084308743419101
731 => 0.086289945353398
801 => 0.086203936152382
802 => 0.086989899247192
803 => 0.086635815674383
804 => 0.085492386415256
805 => 0.087444080734243
806 => 0.086826482989357
807 => 0.086877396997064
808 => 0.086875501975154
809 => 0.087286150484171
810 => 0.08699516838015
811 => 0.086421612784422
812 => 0.086802365755585
813 => 0.08793306595826
814 => 0.091442794081483
815 => 0.093406884436951
816 => 0.091324553375899
817 => 0.092760917458289
818 => 0.091899610837708
819 => 0.091743085803096
820 => 0.092645228593309
821 => 0.093548950465052
822 => 0.093491387288719
823 => 0.092835331616465
824 => 0.092464742414005
825 => 0.095270968011521
826 => 0.097338547228966
827 => 0.097197552187563
828 => 0.097819858446271
829 => 0.099646968869045
830 => 0.09981401694801
831 => 0.099792972729617
901 => 0.099378926636237
902 => 0.10117795412773
903 => 0.10267873451201
904 => 0.099283086928561
905 => 0.10057610507605
906 => 0.1011565825809
907 => 0.10200889577793
908 => 0.1034468910056
909 => 0.10500893523225
910 => 0.10522982541284
911 => 0.10507309325915
912 => 0.10404288310167
913 => 0.10575209053353
914 => 0.10675330416127
915 => 0.10734950396422
916 => 0.10886136746632
917 => 0.10116016741235
918 => 0.095708875239668
919 => 0.09485757724929
920 => 0.096588725188363
921 => 0.09704521509425
922 => 0.096861204585576
923 => 0.090725279635424
924 => 0.094825272874287
925 => 0.09923652086208
926 => 0.099405974862664
927 => 0.1016143378402
928 => 0.10233347134954
929 => 0.10411149300321
930 => 0.10400027726467
1001 => 0.10443319724283
1002 => 0.10433367643698
1003 => 0.10762708714377
1004 => 0.11126020822958
1005 => 0.111134404799
1006 => 0.11061210065778
1007 => 0.11138781137358
1008 => 0.11513758168306
1009 => 0.1147923629218
1010 => 0.1151277135427
1011 => 0.11954890406536
1012 => 0.12529708065184
1013 => 0.12262647551993
1014 => 0.12842092021025
1015 => 0.1320682159925
1016 => 0.13837583691047
1017 => 0.13758609170585
1018 => 0.14004160224176
1019 => 0.13617228296479
1020 => 0.12728754378642
1021 => 0.12588149980203
1022 => 0.12869643546548
1023 => 0.13561668011669
1024 => 0.12847849233436
1025 => 0.12992253842593
1026 => 0.12950665305441
1027 => 0.12948449229036
1028 => 0.13033027851978
1029 => 0.12910342148077
1030 => 0.12410498519647
1031 => 0.12639573908959
1101 => 0.12551116900042
1102 => 0.12649266546343
1103 => 0.13178939707433
1104 => 0.12944758577084
1105 => 0.12698067779591
1106 => 0.13007472784717
1107 => 0.13401451679338
1108 => 0.13376797188161
1109 => 0.13328957170499
1110 => 0.13598628845236
1111 => 0.14044047445514
1112 => 0.14164442303333
1113 => 0.1425331532601
1114 => 0.14265569414315
1115 => 0.14391794139731
1116 => 0.13713051978441
1117 => 0.14790233219743
1118 => 0.14976232663585
1119 => 0.1494127247703
1120 => 0.15148003030806
1121 => 0.15087177657637
1122 => 0.14999051235124
1123 => 0.1532676313571
1124 => 0.14951067886675
1125 => 0.14417815779386
1126 => 0.14125263126796
1127 => 0.14510520059276
1128 => 0.14745783024326
1129 => 0.1490127687869
1130 => 0.14948329225069
1201 => 0.13765740800291
1202 => 0.13128391228696
1203 => 0.13536924996861
1204 => 0.14035364389516
1205 => 0.13710283122448
1206 => 0.13723025692657
1207 => 0.13259545235672
1208 => 0.14076372125695
1209 => 0.13957367318415
1210 => 0.14574764469104
1211 => 0.1442741768417
1212 => 0.14930881093338
1213 => 0.14798302304807
1214 => 0.15348629443615
1215 => 0.15568169838798
1216 => 0.15936812331045
1217 => 0.16207987248986
1218 => 0.16367226347551
1219 => 0.16357666229364
1220 => 0.16988650870481
1221 => 0.16616581272539
1222 => 0.16149174167451
1223 => 0.16140720247571
1224 => 0.16382797010505
1225 => 0.168901234951
1226 => 0.17021665871255
1227 => 0.17095180114185
1228 => 0.16982590492088
1229 => 0.1657873560999
1230 => 0.16404353119491
1231 => 0.16552932053743
]
'min_raw' => 0.061266237428141
'max_raw' => 0.17095180114185
'avg_raw' => 0.11610901928499
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.061266'
'max' => '$0.170951'
'avg' => '$0.116109'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.024254386016182
'max_diff' => 0.088325450169584
'year' => 2036
]
11 => [
'items' => [
101 => 0.16371232784686
102 => 0.1668489669889
103 => 0.17115624248088
104 => 0.1702668071246
105 => 0.17324005616905
106 => 0.17631705613514
107 => 0.18071730428336
108 => 0.18186769209002
109 => 0.1837692393891
110 => 0.1857265561856
111 => 0.18635519358947
112 => 0.18755545744819
113 => 0.18754913146519
114 => 0.19116620739051
115 => 0.19515595414766
116 => 0.19666199118563
117 => 0.20012504031108
118 => 0.19419469004346
119 => 0.1986929288444
120 => 0.20275045284108
121 => 0.19791290546016
122 => 0.20458033752077
123 => 0.20483921879896
124 => 0.20874801874158
125 => 0.20478570116428
126 => 0.20243288963504
127 => 0.20922536836125
128 => 0.21251203485579
129 => 0.21152206415986
130 => 0.20398833828291
131 => 0.19960338668583
201 => 0.18812712256226
202 => 0.20172125315434
203 => 0.20834255761952
204 => 0.20397119070394
205 => 0.20617585390893
206 => 0.21820378149091
207 => 0.22278323756349
208 => 0.22183074271321
209 => 0.22199169866351
210 => 0.22446269003726
211 => 0.23542042658831
212 => 0.22885429684858
213 => 0.23387385700641
214 => 0.23653621361476
215 => 0.23900915880734
216 => 0.23293638699672
217 => 0.22503580009784
218 => 0.2225333525829
219 => 0.20353654441441
220 => 0.20254767805028
221 => 0.20199259739438
222 => 0.19849289237664
223 => 0.19574308288258
224 => 0.19355633227902
225 => 0.18781764567627
226 => 0.18975428394379
227 => 0.18060801525599
228 => 0.18645947383858
301 => 0.17186180816848
302 => 0.18401917791052
303 => 0.1774024742877
304 => 0.18184541281475
305 => 0.18182991182078
306 => 0.17364905335753
307 => 0.1689305049261
308 => 0.17193734763526
309 => 0.17516092170296
310 => 0.17568393575003
311 => 0.17986338367269
312 => 0.18102977775098
313 => 0.17749554924005
314 => 0.17155930399387
315 => 0.17293815837322
316 => 0.16890256248611
317 => 0.16183033592089
318 => 0.16690973250926
319 => 0.16864406182983
320 => 0.16941004046036
321 => 0.16245531788418
322 => 0.16026999305637
323 => 0.15910654445469
324 => 0.17066153664296
325 => 0.17129454519895
326 => 0.1680559839281
327 => 0.18269458796532
328 => 0.17938142102795
329 => 0.1830830402426
330 => 0.17281304179076
331 => 0.17320536956201
401 => 0.16834338771088
402 => 0.17106577266977
403 => 0.16914167872739
404 => 0.17084583086823
405 => 0.17186729263496
406 => 0.1767284766827
407 => 0.18407468482372
408 => 0.17600237789217
409 => 0.17248515816454
410 => 0.17466722150197
411 => 0.18047834371849
412 => 0.1892824913424
413 => 0.18407025874906
414 => 0.18638335906454
415 => 0.1868886685808
416 => 0.18304536123381
417 => 0.18942419956632
418 => 0.1928426708503
419 => 0.19634931503471
420 => 0.19939403592609
421 => 0.1949486842347
422 => 0.19970584776062
423 => 0.19587241371113
424 => 0.19243342707562
425 => 0.19243864259879
426 => 0.19028131604675
427 => 0.18610122401154
428 => 0.18533035090613
429 => 0.18934053015102
430 => 0.19255631414003
501 => 0.19282118151193
502 => 0.1946016047612
503 => 0.1956552409003
504 => 0.20598230741232
505 => 0.21013593899343
506 => 0.21521492106659
507 => 0.21719347081983
508 => 0.22314819622774
509 => 0.2183392718417
510 => 0.21729883080123
511 => 0.20285461473747
512 => 0.20521985430873
513 => 0.209006831074
514 => 0.2029170605895
515 => 0.20677961828997
516 => 0.2075421690002
517 => 0.20271013251872
518 => 0.20529113198345
519 => 0.19843676261814
520 => 0.18422409134505
521 => 0.18944002233236
522 => 0.1932807032024
523 => 0.18779957804831
524 => 0.19762428273818
525 => 0.19188489308143
526 => 0.19006578209953
527 => 0.18296878159925
528 => 0.18631829264678
529 => 0.19084855429894
530 => 0.18804937929735
531 => 0.1938580877239
601 => 0.20208476798184
602 => 0.20794759024093
603 => 0.20839766493503
604 => 0.20462826300102
605 => 0.21066875365627
606 => 0.21071275203614
607 => 0.20389905390089
608 => 0.19972570173188
609 => 0.19877750733827
610 => 0.20114628283796
611 => 0.20402241359467
612 => 0.20855727017517
613 => 0.21129758903081
614 => 0.21844288725351
615 => 0.22037620008081
616 => 0.2225003247342
617 => 0.22533881032691
618 => 0.22874714005372
619 => 0.22128990864777
620 => 0.22158619835355
621 => 0.21464212772073
622 => 0.20722139236911
623 => 0.21285280549327
624 => 0.22021512903762
625 => 0.2185262038819
626 => 0.21833616530027
627 => 0.21865575748227
628 => 0.21738236306999
629 => 0.21162284733748
630 => 0.20873045459309
701 => 0.21246237916144
702 => 0.21444573098067
703 => 0.21752173668583
704 => 0.21714255405607
705 => 0.22506601441367
706 => 0.22814483151563
707 => 0.22735713835094
708 => 0.22750209285014
709 => 0.23307614414977
710 => 0.23927563558604
711 => 0.24508227741105
712 => 0.25098904287652
713 => 0.24386820656291
714 => 0.24025268503499
715 => 0.24398298036182
716 => 0.2420036331537
717 => 0.2533775493241
718 => 0.2541650546021
719 => 0.26553814830891
720 => 0.27633256851947
721 => 0.26955278658734
722 => 0.27594581558125
723 => 0.28286039766947
724 => 0.29619974836816
725 => 0.29170752433686
726 => 0.288266551131
727 => 0.28501484807814
728 => 0.29178112593783
729 => 0.3004858343104
730 => 0.30236074512119
731 => 0.30539881690573
801 => 0.30220465590203
802 => 0.30605167100569
803 => 0.31963332478571
804 => 0.31596344204577
805 => 0.31075161859198
806 => 0.3214730298554
807 => 0.32535306691321
808 => 0.35258519897605
809 => 0.38696689060866
810 => 0.3727326445104
811 => 0.36389698862096
812 => 0.36597357733954
813 => 0.37852860723005
814 => 0.38256088435416
815 => 0.37159976512156
816 => 0.3754714177392
817 => 0.39680460431483
818 => 0.40824917446208
819 => 0.39270591099127
820 => 0.34982266353008
821 => 0.31028235091376
822 => 0.32077022234309
823 => 0.31958122319955
824 => 0.34250107080584
825 => 0.31587591655614
826 => 0.31632421586969
827 => 0.33971802165194
828 => 0.3334769553406
829 => 0.32336722721161
830 => 0.3103561631172
831 => 0.28630400776092
901 => 0.26500034301789
902 => 0.30678173551995
903 => 0.30498004590073
904 => 0.30237093233665
905 => 0.30817723223793
906 => 0.33637097641152
907 => 0.33572101935408
908 => 0.33158632416561
909 => 0.33472245402453
910 => 0.32281744848437
911 => 0.32588563948401
912 => 0.31027608752622
913 => 0.31733225692362
914 => 0.32334553627555
915 => 0.32455279113358
916 => 0.32727279797266
917 => 0.30403063734081
918 => 0.31446568511053
919 => 0.32059529804348
920 => 0.29290148381515
921 => 0.32004788037859
922 => 0.30362604303335
923 => 0.29805222479065
924 => 0.30555663675973
925 => 0.3026321601171
926 => 0.3001178668308
927 => 0.298714847976
928 => 0.30422525989436
929 => 0.303968192592
930 => 0.2949520891687
1001 => 0.28319094979638
1002 => 0.28713837421597
1003 => 0.28570423791703
1004 => 0.28050674296242
1005 => 0.28400922701389
1006 => 0.26858605981781
1007 => 0.24205130228341
1008 => 0.25958097589224
1009 => 0.25890610252691
1010 => 0.25856580077304
1011 => 0.27173886600549
1012 => 0.27047257973771
1013 => 0.26817425776219
1014 => 0.28046453247697
1015 => 0.27597841687855
1016 => 0.28980356809111
1017 => 0.29890970683442
1018 => 0.29660009549639
1019 => 0.30516446299826
1020 => 0.28722931490192
1021 => 0.29318665166628
1022 => 0.2944144505169
1023 => 0.28031287239476
1024 => 0.27067975983154
1025 => 0.2700373410491
1026 => 0.25333485138917
1027 => 0.26225718654772
1028 => 0.27010847225593
1029 => 0.26634831568608
1030 => 0.26515796244755
1031 => 0.27123921898709
1101 => 0.27171178470265
1102 => 0.26093723630756
1103 => 0.26317760610447
1104 => 0.27252032058808
1105 => 0.26294219367042
1106 => 0.24433345764755
1107 => 0.23971823382797
1108 => 0.23910247789499
1109 => 0.22658562485828
1110 => 0.24002664515215
1111 => 0.23415927959693
1112 => 0.25269421708404
1113 => 0.24210716019626
1114 => 0.24165077333391
1115 => 0.24096087765408
1116 => 0.2301871051807
1117 => 0.23254587664341
1118 => 0.24038679223649
1119 => 0.24318451925434
1120 => 0.24289269340528
1121 => 0.24034836747249
1122 => 0.24151314685547
1123 => 0.23776098662687
1124 => 0.23643602075569
1125 => 0.23225406400567
1126 => 0.22610774287818
1127 => 0.22696242652854
1128 => 0.21478495610257
1129 => 0.20815002390724
1130 => 0.20631356212257
1201 => 0.20385776867309
1202 => 0.20659095052731
1203 => 0.21475045885888
1204 => 0.20490836067474
1205 => 0.18803477368096
1206 => 0.18904890501048
1207 => 0.19132735700962
1208 => 0.1870814767827
1209 => 0.18306310747763
1210 => 0.18655675356778
1211 => 0.17940719231795
1212 => 0.19219134732923
1213 => 0.19184557176335
1214 => 0.19661071418472
1215 => 0.19959045553136
1216 => 0.19272311643006
1217 => 0.19099599921734
1218 => 0.19197984367481
1219 => 0.17571908633353
1220 => 0.19528186339711
1221 => 0.19545104310552
1222 => 0.19400242373015
1223 => 0.20441899858353
1224 => 0.22640122053533
1225 => 0.21813062440423
1226 => 0.21492799960218
1227 => 0.20883980751238
1228 => 0.21695196199097
1229 => 0.21632907509633
1230 => 0.21351214433597
1231 => 0.21180845582274
]
'min_raw' => 0.15910654445469
'max_raw' => 0.40824917446208
'avg_raw' => 0.28367785945839
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.1591065'
'max' => '$0.408249'
'avg' => '$0.283677'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.097840307026554
'max_diff' => 0.23729737332024
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0049941726234568
]
1 => [
'year' => 2028
'avg' => 0.0085714500405236
]
2 => [
'year' => 2029
'avg' => 0.023415656657147
]
3 => [
'year' => 2030
'avg' => 0.018065144239347
]
4 => [
'year' => 2031
'avg' => 0.017742210431717
]
5 => [
'year' => 2032
'avg' => 0.031107678565917
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0049941726234568
'min' => '$0.004994'
'max_raw' => 0.031107678565917
'max' => '$0.0311076'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.031107678565917
]
1 => [
'year' => 2033
'avg' => 0.080012148036404
]
2 => [
'year' => 2034
'avg' => 0.050715544629378
]
3 => [
'year' => 2035
'avg' => 0.05981910119211
]
4 => [
'year' => 2036
'avg' => 0.11610901928499
]
5 => [
'year' => 2037
'avg' => 0.28367785945839
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.031107678565917
'min' => '$0.0311076'
'max_raw' => 0.28367785945839
'max' => '$0.283677'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.28367785945839
]
]
]
]
'prediction_2025_max_price' => '$0.008539'
'last_price' => 0.00827976
'sma_50day_nextmonth' => '$0.007861'
'sma_200day_nextmonth' => '$0.008517'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'augmenter'
'sma_200day_date_nextmonth' => '4 févr. 2026'
'sma_50day_date_nextmonth' => '4 févr. 2026'
'daily_sma3' => '$0.008312'
'daily_sma3_action' => 'SELL'
'daily_sma5' => '$0.008298'
'daily_sma5_action' => 'SELL'
'daily_sma10' => '$0.008267'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.00823'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.008272'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.0085058'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.008692'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.008297'
'daily_ema3_action' => 'SELL'
'daily_ema5' => '$0.008291'
'daily_ema5_action' => 'SELL'
'daily_ema10' => '$0.008272'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.008259'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.008316'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.008472'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.008862'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.0086085'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.0093009'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.011096'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.011688'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.008284'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.008291'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.008363'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.0086017'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.009427'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.010956'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.013855'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '51.45'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 98.34
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'SELL'
'vwma_10' => '0.008267'
'vwma_10_action' => 'BUY'
'hma_9' => '0.008330'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 80.91
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 69.69
'cci_20_action' => 'NEUTRAL'
'adx_14' => 10.7
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.000042'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'NEUTRAL'
'williams_percent_r_14' => -19.09
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 60.13
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.000220'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 26
'buy_signals' => 8
'sell_pct' => 76.47
'buy_pct' => 23.53
'overall_action' => 'bearish'
'overall_action_label' => 'Baissier'
'overall_action_dir' => -1
'last_updated' => 1767695394
'last_updated_date' => '6 janvier 2026'
]
Prévision du prix de Solberg pour 2026
La prévision du prix de Solberg pour 2026 suggère que le prix moyen pourrait varier entre $0.00286 à la baisse et $0.008539 à la hausse. Sur le marché des cryptomonnaies, comparé au prix moyen d'aujourd'hui, Solberg pourrait potentiellement gagner 3.13% d'ici 2026 si SLB atteint l'objectif de prix prévu.
Prévision du prix de Solberg de 2027 à 2032
La prévision du prix de SLB pour 2027-2032 se situe actuellement dans une fourchette de prix comprise entre $0.004994 à la baisse et $0.0311076 à la hausse. Compte tenu de la volatilité des prix sur le marché, si Solberg atteint l'objectif de prix le plus élevé, il pourrait gagner 275.71% d'ici 2032 par rapport au prix actuel.
| Prévision du Prix de Solberg | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2027 | $0.002753 | $0.004994 | $0.007234 |
| 2028 | $0.004969 | $0.008571 | $0.012172 |
| 2029 | $0.010917 | $0.023415 | $0.035913 |
| 2030 | $0.009284 | $0.018065 | $0.026845 |
| 2031 | $0.010977 | $0.017742 | $0.0245067 |
| 2032 | $0.016756 | $0.0311076 | $0.045458 |
Prévision du prix de Solberg de 2032 à 2037
La prévision du prix de Solberg pour 2032-2037 est actuellement estimée entre $0.0311076 à la baisse et $0.283677 à la hausse. Par rapport au prix actuel, Solberg pourrait potentiellement gagner 3326.16% d'ici 2037 s'il atteint l'objectif de prix le plus élevé. Veuillez noter que ces informations sont à titre général seulement et ne doivent pas être considérées comme un conseil en investissement à long terme.
| Prévision du Prix de Solberg | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2032 | $0.016756 | $0.0311076 | $0.045458 |
| 2033 | $0.038938 | $0.080012 | $0.121085 |
| 2034 | $0.0313046 | $0.050715 | $0.070126 |
| 2035 | $0.037011 | $0.059819 | $0.082626 |
| 2036 | $0.061266 | $0.116109 | $0.170951 |
| 2037 | $0.1591065 | $0.283677 | $0.408249 |
Solberg Histogramme des prix potentiels
Prévision du prix de Solberg basée sur l'analyse technique
Au 6 janvier 2026, le sentiment global de prévision du prix pour Solberg est Baissier, avec 8 indicateurs techniques montrant des signaux haussiers et 26 indiquant des signaux baissiers. La prévision du prix de SLB a été mise à jour pour la dernière fois le 6 janvier 2026.
Moyennes Mobiles Simples sur 50 et 200 jours de Solberg et Indice de Force Relative sur 14 jours - RSI (14)
Selon nos indicateurs techniques, le SMA sur 200 jours de Solberg devrait augmenter au cours du prochain mois, atteignant $0.008517 d'ici le 4 févr. 2026. Le SMA à court terme sur 50 jours pour Solberg devrait atteindre $0.007861 d'ici le 4 févr. 2026.
Le Relative Strength Index (RSI), un oscillateur de momentum, est un outil couramment utilisé pour identifier si une cryptomonnaie est survendue (en dessous de 30) ou surachetée (au-dessus de 70). Actuellement, le RSI est à 51.45, ce qui suggère que le marché de SLB est dans un état NEUTRAL.
Moyennes Mobiles et Oscillateurs Populaires de SLB pour le Samedi 19 Octobre 2024
Les moyennes mobiles (MA) sont des indicateurs largement utilisés sur les marchés financiers, conçus pour lisser les mouvements de prix sur une période donnée. En tant qu'indicateurs retardés, ils sont basés sur des données historiques de prix. Le tableau ci-dessous met en évidence deux types : la moyenne mobile simple (SMA) et la moyenne mobile exponentielle (EMA).
Moyenne Mobile Simple Quotidienne (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 3 | $0.008312 | SELL |
| SMA 5 | $0.008298 | SELL |
| SMA 10 | $0.008267 | BUY |
| SMA 21 | $0.00823 | BUY |
| SMA 50 | $0.008272 | BUY |
| SMA 100 | $0.0085058 | SELL |
| SMA 200 | $0.008692 | SELL |
Moyenne Mobile Exponentielle Quotidienne (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 3 | $0.008297 | SELL |
| EMA 5 | $0.008291 | SELL |
| EMA 10 | $0.008272 | BUY |
| EMA 21 | $0.008259 | BUY |
| EMA 50 | $0.008316 | SELL |
| EMA 100 | $0.008472 | SELL |
| EMA 200 | $0.008862 | SELL |
Moyenne Mobile Simple Hebdomadaire (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 21 | $0.0086085 | SELL |
| SMA 50 | $0.0093009 | SELL |
| SMA 100 | $0.011096 | SELL |
| SMA 200 | $0.011688 | SELL |
Moyenne Mobile Exponentielle Hebdomadaire (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 21 | $0.0086017 | SELL |
| EMA 50 | $0.009427 | SELL |
| EMA 100 | $0.010956 | SELL |
| EMA 200 | $0.013855 | SELL |
Oscillateurs de Solberg
Un oscillateur est un outil d'analyse technique qui établit des limites hautes et basses entre deux extrêmes, créant un indicateur de tendance qui fluctue à l'intérieur de ces limites. Les traders utilisent cet indicateur pour identifier les conditions de surachat ou de survente à court terme.
| Période | Valeur | Action |
|---|---|---|
| RSI (14) | 51.45 | NEUTRAL |
| Stoch RSI (14) | 98.34 | SELL |
| Stochastique Rapide (14) | 80.91 | SELL |
| Indice de Canal des Matières Premières (20) | 69.69 | NEUTRAL |
| Indice Directionnel Moyen (14) | 10.7 | NEUTRAL |
| Oscillateur Impressionnant (5, 34) | 0.000042 | BUY |
| Momentum (10) | 0 | SELL |
| MACD (12, 26) | 0 | NEUTRAL |
| Plage de Pourcentage de Williams (14) | -19.09 | SELL |
| Oscillateur Ultime (7, 14, 28) | 60.13 | NEUTRAL |
| VWMA (10) | 0.008267 | BUY |
| Moyenne Mobile de Hull (9) | 0.008330 | BUY |
| Nuage Ichimoku B/L (9, 26, 52, 26) | -0.000220 | SELL |
Prévision du cours de Solberg basée sur les flux monétaires mondiaux
Définitions des flux monétaires mondiaux utilisés pour la prédiction du cours de Solberg
M0 : le total de toutes les devises physiques, plus les comptes à la banque centrale qui peuvent être échangés contre des devises physiques.
M1 : M0 plus le montant des comptes à vue, y compris les comptes de "chèques" et les comptes "courants".
M2 : M1 plus la plupart des comptes d'épargne, comptes du marché monétaire et comptes de certificats de dépôt (CD) de moins de 100 000 $.
Prédictions du cours de Solberg par des sociétés Internet ou des niches technologiques
| Comparaison | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Action Facebook | $0.011634 | $0.016348 | $0.022972 | $0.032279 | $0.045358 | $0.063736 |
| Action Amazon.com | $0.017276 | $0.036047 | $0.075215 | $0.156942 | $0.32747 | $0.683285 |
| Action Apple | $0.011744 | $0.016658 | $0.023628 | $0.033515 | $0.047538 | $0.06743 |
| Action Netflix | $0.013064 | $0.020613 | $0.032524 | $0.051318 | $0.080972 | $0.127761 |
| Action Google | $0.010722 | $0.013885 | $0.017981 | $0.023285 | $0.030154 | $0.03905 |
| Action Tesla | $0.018769 | $0.042549 | $0.096455 | $0.218658 | $0.495681 | $1.12 |
| Action Kodak | $0.0062089 | $0.004656 | $0.003491 | $0.002618 | $0.001963 | $0.001472 |
| Action Nokia | $0.005484 | $0.003633 | $0.002407 | $0.001594 | $0.001056 | $0.000699 |
Ce calcul montre la valeur potentielle des cryptomonnaies si l'on suppose que leur capitalisation se comportera comme celle de certaines sociétés Internet ou niches technologiques. En extrapolant les données, vous pourrez obtenir une potentielle image des cours futurs pour 2024, 2025, 2026, 2027, 2028, 2029 et 2030.
Aperçu des prévisions relatives à Solberg
Vous vous posez peut-être des questions telles que : "Devrais-je investir dans Solberg maintenant ?", "Devrais-je acheter SLB aujourd'hui ?", " Solberg sera-t-il un bon ou un mauvais investissement à court ou à long terme ?".
Nous mettons régulièrement à jour les prévisions de Solberg avec de nouvelles valeurs. Regardez nos prévisions similaires. Nous faisons une prévision des cours futurs pour une grande quantité de devises numériques comme Solberg en utilisant des méthodes d'analyse technique.
Si vous souhaitez trouver des cryptomonnaies ayant un bon rendement, vous devriez consulter un maximum d'informations disponibles à propos de Solberg afin de prendre une décision responsable concernant cet investissement.
Le cours de Solberg est de $0.008279 USD actuellement, mais ce cours peut subir une hausse ou une baisse, ce qui pourrait causer la perte de votre investissement, car les cryptomonnaies sont des actifs à haut risque.
Prévision du cours de Solberg basée sur le modèle de croissance du Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si Solberg présente 1 % de la précédente croissance annuelle moyenne du Bitcoin | $0.008494 | $0.008715 | $0.008942 | $0.009174 |
| Si Solberg présente 2 % de la précédente croissance annuelle moyenne du Bitcoin | $0.00871 | $0.009163 | $0.009639 | $0.01014 |
| Si Solberg présente 5 % de la précédente croissance annuelle moyenne du Bitcoin | $0.009355 | $0.010571 | $0.011945 | $0.013498 |
| Si Solberg présente 10 % de la précédente croissance annuelle moyenne du Bitcoin | $0.010431 | $0.013143 | $0.016559 | $0.020864 |
| Si Solberg présente 20 % de la précédente croissance annuelle moyenne du Bitcoin | $0.012584 | $0.019126 | $0.029069 | $0.044181 |
| Si Solberg présente 50 % de la précédente croissance annuelle moyenne du Bitcoin | $0.01904 | $0.043787 | $0.100695 | $0.231564 |
| Si Solberg présente 100 % de la précédente croissance annuelle moyenne du Bitcoin | $0.0298015 | $0.107265 | $0.386082 | $1.38 |
Boîte à questions
Est-ce que SLB est un bon investissement ?
La décision d'acquérir Solberg dépend entièrement de votre tolérance individuelle au risque. Comme vous pouvez le discerner, la valeur de Solberg a connu une baisse de -0.3862% au cours des 24 heures précédentes, et Solberg a enregistré une déclin de sur une période de 30 jours précédents. Par conséquent, la détermination de si investir ou non dans Solberg dépendra de la mesure dans laquelle cet investissement s'aligne avec vos aspirations de trading.
Est-ce que Solberg peut monter ?
Il semble que la valeur moyenne de Solberg pourrait potentiellement s'envoler jusqu'à $0.008539 pour la fin de cette année. En regardant les perspectives de Solberg sur une période de cinq ans plus longue, la monnaie numérique pourrait potentiellement croître jusqu'à $0.026845. Cependant, compte tenu de l'imprévisibilité du marché, il est essentiel de mener des recherches approfondies avant d'investir des fonds dans un projet, un réseau ou un actif particulier.
Quel sera le prix de Solberg la semaine prochaine ?
Basé sur notre nouveau pronostic expérimental de Solberg, le prix de Solberg va augmenter de 0.86% durant la prochaine semaine et atteindre $0.00835 d'ici 13 janvier 2026.
Quel sera le prix de Solberg le mois prochain ?
Basé sur notre nouveau pronostic expérimental de Solberg, le prix de Solberg va diminuer de -11.62% durant le prochain mois et atteindre $0.007317 d'ici 5 février 2026.
Jusqu'où le prix de Solberg peut-il monter cette année en 2026 ?
Selon notre prédiction la plus récente sur la valeur de Solberg en 2026, SLB devrait fluctuer dans la fourchette de $0.00286 et $0.008539. Cependant, il est crucial de garder à l'esprit que le marché des cryptomonnaies est exceptionnellement instable, et cette prévision de prix de Solberg ne prend pas en compte les fluctuations de prix soudaines et extrêmes.
Où sera Solberg dans 5 ans ?
L'avenir de Solberg semble suivre une tendance haussière, avec un prix maximum de $0.026845 prévue après une période de cinq ans. Selon la prévision de Solberg pour 2030, la valeur de Solberg pourrait potentiellement atteindre son point le plus élevé d'environ $0.026845, tandis que son point le plus bas devrait être autour de $0.009284.
Combien vaudra Solberg en 2026 ?
Basé sur notre nouvelle simulation expérimentale de prédiction de prix de Solberg, il est attendu que la valeur de SLB en 2026 augmente de 3.13% jusqu'à $0.008539 si le meilleur scénario se produit. Le prix sera entre $0.008539 et $0.00286 durant 2026.
Combien vaudra Solberg en 2027 ?
Selon notre dernière simulation expérimentale pour la prédiction de prix de Solberg, le valeur de SLB pourrait diminuer de -12.62% jusqu'à $0.007234 en 2027, en supposant les conditions les plus favorables. Il est prévu que le prix fluctue entre $0.007234 et $0.002753 tout au long de l'année.
Combien vaudra Solberg en 2028 ?
Notre nouveau modèle expérimental de prédiction de prix de Solberg suggère que la valeur de SLB en 2028 pourrait augmenter de 47.02%, atteignant $0.012172 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.012172 et $0.004969 durant l'année.
Combien vaudra Solberg en 2029 ?
Basé sur notre modèle de prévision expérimental, la valeur de Solberg pourrait connaître un 333.75% croissance en 2029, atteignant potentiellement $0.035913 sous des conditions optimales. Le range de prix prévu pour 2029 se situe entre $0.035913 et $0.010917.
Combien vaudra Solberg en 2030 ?
En utilisant notre nouvelle simulation expérimentale pour les prédictions de prix de Solberg, il est prévu que la valeur de SLB en 2030 augmente de 224.23%, atteignant $0.026845 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.026845 et $0.009284 au cours de 2030.
Combien vaudra Solberg en 2031 ?
Notre simulation expérimentale indique que le prix de Solberg pourrait augmenter de 195.98% en 2031, atteignant potentiellement $0.0245067 dans des conditions idéales. Il est probable que le prix fluctue entre $0.0245067 et $0.010977 durant l'année.
Combien vaudra Solberg en 2032 ?
Basé sur les résultats de notre dernière prédiction expérimentale de prix de Solberg, SLB pourrait connaître une 449.04% hausse en valeur, atteignant $0.045458 si le scénario le plus positif se réalise en 2032. Il est prévu que le prix reste dans une fourchette de $0.045458 et $0.016756 tout au long de l'année.
Combien vaudra Solberg en 2033 ?
Selon notre prédiction expérimentale de prix de Solberg, la valeur de SLB est anticipée à augmenter de 1362.43% en 2033, avec le prix potentiel le plus élevé étant $0.121085. Tout au long de l'année, le prix de SLB pourrait osciller entre $0.121085 et $0.038938.
Combien vaudra Solberg en 2034 ?
Les résultats de notre nouvelle simulation de prédiction de prix de Solberg suggèrent que SLB pourrait augmenter de 746.96% en 2034, atteignant potentiellement $0.070126 dans les meilleures circonstances. La fourchette de prix prévue pour l'année est entre $0.070126 et $0.0313046.
Combien vaudra Solberg en 2035 ?
Basé sur notre prédiction expérimentale pour le prix de Solberg, SLB pourrait augmenter de 897.93%, avec la valeur potentiellement atteignant $0.082626 en 2035. La fourchette de prix attendue pour l'année se situe entre $0.082626 et $0.037011.
Combien vaudra Solberg en 2036 ?
Notre récente simulation de prédiction de prix de Solberg suggère que la valeur de SLB pourrait augmenter de 1964.7% en 2036, pouvant atteindre $0.170951 si les conditions sont optimales. La fourchette de prix attendue pour 2036 est entre $0.170951 et $0.061266.
Combien vaudra Solberg en 2037 ?
Selon la simulation expérimentale, la valeur de Solberg pourrait augmenter de 4830.69% en 2037, avec un maximum de $0.408249 sous des conditions favorables. Il est prévu que le prix chute entre $0.408249 et $0.1591065 au cours de l'année.
Prévisions liées
Prévision du cours de World$tateCoin
Prévision du cours de SwiftCash
Prévision du cours de SakeToken
Prévision du cours de X8X Token
Prévision du cours de WaterDrop
Prévision du cours de BlockCDN
Prévision du cours de Sirin Labs Token
Prévision du cours de Benzene
Prévision du cours de Nsure Network
Prévision du cours de Grok Inu
Prévision du cours de DOGE-1
Prévision du cours de Mackerel
Prévision du cours de WELL
Prévision du cours de DeltaChain
Prévision du cours de SureRemit
Prévision du cours de lien
Prévision du cours de Kripton
Prévision du cours de DataminePrévision du cours de Wonderland
Prévision du cours de DFSocial Gaming
Prévision du cours de WagyuSwap
Prévision du cours de Tesla
Prévision du cours de Baked Token
Prévision du cours de Aluna
Prévision du cours de Finance Vote
Comment lire et prédire les mouvements de prix de Solberg ?
Les traders de Solberg utilisent des indicateurs et des modèles graphiques pour prédire la direction du marché. Ils identifient également des niveaux clés de support et de résistance pour évaluer quand une tendance baissière pourrait ralentir ou une tendance haussière pourrait s'arrêter.
Indicateurs de prédiction du prix de Solberg
Les moyennes mobiles sont des outils populaires pour la prédiction du prix de Solberg. Une moyenne mobile simple (SMA) calcule le prix de clôture moyen de SLB sur une période spécifique, comme une SMA de 12 jours. Une moyenne mobile exponentielle (EMA) donne plus de poids aux prix récents, réagissant plus rapidement aux changements de prix.
Les moyennes mobiles couramment utilisées sur le marché des cryptomonnaies incluent les moyennes sur 50 jours, 100 jours et 200 jours, qui aident à identifier les niveaux clés de résistance et de support. Un mouvement de prix de SLB au-dessus de ces moyennes est considéré comme haussier, tandis qu'une chute en dessous indique une faiblesse.
Les traders utilisent également le RSI et les niveaux de retracement de Fibonacci pour évaluer la direction future de SLB.
Comment lire les graphiques de Solberg et prédire les mouvements de prix ?
La plupart des traders préfèrent les graphiques en chandeliers aux simples graphiques linéaires parce qu'ils fournissent des informations plus détaillées. Les chandeliers peuvent représenter l'action des prix de Solberg dans différentes périodes, comme 5 minutes pour les tendances à court terme et hebdomadaire pour les tendances à long terme. Les options populaires incluent les graphiques de 1 heure, 4 heures et 1 jour.
Par exemple, un graphique en chandeliers de 1 heure montre les prix d'ouverture, de clôture, les plus hauts et les plus bas de SLB au sein de chaque heure. La couleur du chandelier est cruciale : le vert indique que le prix a clôturé plus haut qu'il n'a ouvert, tandis que le rouge signifie le contraire. Certains graphiques utilisent des chandeliers creux et pleins pour transmettre la même information.
Qu'est-ce qui affecte le prix de Solberg ?
L'action du prix de Solberg est déterminée par l'offre et la demande, influencée par des facteurs tels que les réductions de récompenses de bloc, les hard forks et les mises à jour de protocole. Les événements du monde réel, tels que les réglementations, l'adoption par les entreprises et les gouvernements et les piratages d'échanges de cryptomonnaies, impactent également le prix de SLB. La capitalisation boursière de Solberg peut changer rapidement.
Les traders surveillent souvent l'activité des « baleines » de SLB, de grands détenteurs de Solberg, car leurs actions peuvent influencer significativement les mouvements de prix sur le marché relativement petit de Solberg.
Modèles de prédiction de prix haussiers et baissiers
Les traders identifient souvent des modèles de chandeliers pour obtenir un avantage dans les prédictions de prix des cryptomonnaies. Certaines formations indiquent des tendances haussières, tandis que d'autres suggèrent des mouvements baissiers.
Modèles de chandeliers haussiers couramment suivis :
- Marteau
- Englobante haussière
- Ligne pénétrante
- Étoile du matin
- Trois soldats blancs
Modèles de chandeliers baissiers courants :
- Harami baissier
- Nuage sombre
- Étoile du soir
- Étoile filante
- Pendu


