Previsão de Preço Solberg - Projeção SLB
Previsão de Preço Solberg até $0.008536 até 2026
| Ano | Preço Mínimo | Preço Máximo |
|---|---|---|
| 2026 | $0.002859 | $0.008536 |
| 2027 | $0.002753 | $0.007232 |
| 2028 | $0.004968 | $0.012169 |
| 2029 | $0.010914 | $0.0359036 |
| 2030 | $0.009282 | $0.026837 |
| 2031 | $0.010974 | $0.024499 |
| 2032 | $0.016751 | $0.045445 |
| 2033 | $0.038927 | $0.121051 |
| 2034 | $0.031295 | $0.0701065 |
| 2035 | $0.0370013 | $0.0826029 |
Calculadora de lucro do investimento
Se você abrir um short de $10,000.00 em Solberg hoje e fechar em Apr 06, 2026, nossa previsão mostra que pode lucrar cerca de $3,954.43, com um retorno de 39.54% nos próximos 90 dias.
Previsão de preço de longo prazo de Solberg para os anos 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'Solberg'
'name_with_ticker' => 'Solberg <small>SLB</small>'
'name_lang' => 'Solberg'
'name_lang_with_ticker' => 'Solberg <small>SLB</small>'
'name_with_lang' => 'Solberg'
'name_with_lang_with_ticker' => 'Solberg <small>SLB</small>'
'image' => '/uploads/coins/solberg.png?1717451828'
'price_for_sd' => 0.008277
'ticker' => 'SLB'
'marketcap' => '$77.49K'
'low24h' => '$0.008275'
'high24h' => '$0.008377'
'volume24h' => '$82.12'
'current_supply' => '9.36M'
'max_supply' => '100M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.008277'
'change_24h_pct' => '-0.2495%'
'ath_price' => '$0.1062'
'ath_days' => 1517
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '11 de nov. de 2021'
'ath_pct' => '-92.21%'
'fdv' => '$827.74K'
'new_prediction' => true
'change_24h_pct_is_increased' => false
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.408133'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.008348'
'next_week_prediction_price_date' => '13 de janeiro de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.007315'
'next_month_prediction_price_date' => '5 de fevereiro de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.002859'
'current_year_max_price_prediction' => '$0.008536'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.009282'
'grand_prediction_max_price' => '$0.026837'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0084342727550771
107 => 0.0084657632679035
108 => 0.008536713001247
109 => 0.0079304552979727
110 => 0.0082026472079519
111 => 0.0083625344541316
112 => 0.0076401580591436
113 => 0.0083482553954199
114 => 0.0079199017001604
115 => 0.0077745120223327
116 => 0.0079702600698942
117 => 0.0078939768653882
118 => 0.0078283930456541
119 => 0.0077917961473694
120 => 0.0079355319095749
121 => 0.0079288264644666
122 => 0.0076936468595892
123 => 0.0073868646521737
124 => 0.007489830830765
125 => 0.0074524222527697
126 => 0.0073168487403121
127 => 0.0074082089185002
128 => 0.0070059049300879
129 => 0.0063137618279663
130 => 0.0067710127621444
131 => 0.0067534090985719
201 => 0.006744532533136
202 => 0.0070881439726833
203 => 0.0070551136612355
204 => 0.0069951633225241
205 => 0.0073157477053281
206 => 0.0071987300931362
207 => 0.0075593508010947
208 => 0.0077968789228412
209 => 0.0077366341079365
210 => 0.0079600304545121
211 => 0.0074922029635573
212 => 0.0076475964900714
213 => 0.0076796228805198
214 => 0.0073117917438073
215 => 0.0070605178286811
216 => 0.0070437607232746
217 => 0.0066080863821243
218 => 0.0068408200985264
219 => 0.0070456161377846
220 => 0.0069475347277946
221 => 0.0069164850834905
222 => 0.0070751109823938
223 => 0.0070874375732775
224 => 0.0068063899948148
225 => 0.0068648286859965
226 => 0.0071085277428483
227 => 0.0068586880950312
228 => 0.0063732904703974
301 => 0.006252905148341
302 => 0.0062368435272369
303 => 0.0059103489859397
304 => 0.0062609498712056
305 => 0.0061079031892675
306 => 0.0065913758237292
307 => 0.0063152188478404
308 => 0.0063033142725578
309 => 0.0062853187609966
310 => 0.0060042914219824
311 => 0.0060658185490074
312 => 0.0062703440900846
313 => 0.006343321107286
314 => 0.0063357090065089
315 => 0.0062693418033548
316 => 0.0062997243691036
317 => 0.0062018515388389
318 => 0.0061672906054257
319 => 0.0060582067928397
320 => 0.0058978837235107
321 => 0.0059201776296194
322 => 0.0056025356784656
323 => 0.0054294674849427
324 => 0.0053815644899777
325 => 0.0053175066031065
326 => 0.0053887999987513
327 => 0.0056016358387276
328 => 0.0053449106600738
329 => 0.0049047733484495
330 => 0.0049312263508356
331 => 0.0049906583932303
401 => 0.0048799071754101
402 => 0.0047750904423884
403 => 0.0048662200877004
404 => 0.0046797281065375
405 => 0.0050131950581778
406 => 0.0050041757116663
407 => 0.0051284715697799
408 => 0.005206196320666
409 => 0.0050270659335603
410 => 0.0049820151256233
411 => 0.0050076781132693
412 => 0.0045835260924924
413 => 0.0050938093006713
414 => 0.0050982222510456
415 => 0.005060435890761
416 => 0.0053321459458897
417 => 0.0059055389107028
418 => 0.0056898054126615
419 => 0.0056062668816405
420 => 0.0054474600731031
421 => 0.0056590607164639
422 => 0.005642813088538
423 => 0.0055693351533274
424 => 0.0055248954688469
425 => 0.0056067769500973
426 => 0.0055147494471777
427 => 0.0054982187789067
428 => 0.0053980609147288
429 => 0.0053623091141098
430 => 0.0053358399042516
501 => 0.0053066999050086
502 => 0.0053709754821033
503 => 0.0052253185682504
504 => 0.0050496706090672
505 => 0.0050350673817984
506 => 0.0050753881762165
507 => 0.0050575492262166
508 => 0.005034981975769
509 => 0.0049918949488394
510 => 0.0049791119483581
511 => 0.0050206504984922
512 => 0.0049737558972387
513 => 0.0050429514358694
514 => 0.0050241340781256
515 => 0.0049190218474248
516 => 0.0047880130904394
517 => 0.0047868468377021
518 => 0.004758621215907
519 => 0.0047226716428004
520 => 0.0047126712939769
521 => 0.0048585454031534
522 => 0.0051605004435042
523 => 0.0051012194439116
524 => 0.0051440560414785
525 => 0.0053547697045684
526 => 0.0054217492416838
527 => 0.0053742087527366
528 => 0.005309132399296
529 => 0.0053119954285793
530 => 0.0055343810282377
531 => 0.0055482509453047
601 => 0.0055832957511281
602 => 0.0056283382302721
603 => 0.005381879681704
604 => 0.0053003872531054
605 => 0.0052617716194076
606 => 0.0051428504137492
607 => 0.0052710967385181
608 => 0.0051963730971304
609 => 0.0052064558692767
610 => 0.0051998894506892
611 => 0.0052034751592573
612 => 0.0050131018473688
613 => 0.0050824638764942
614 => 0.0049671360500863
615 => 0.0048127250366822
616 => 0.0048122073968218
617 => 0.0048499992735985
618 => 0.0048275191864955
619 => 0.004767025850117
620 => 0.004775618643029
621 => 0.0047003367353577
622 => 0.0047847592296433
623 => 0.0047871801647012
624 => 0.0047546729058769
625 => 0.004884737406383
626 => 0.004938024938363
627 => 0.0049166279642318
628 => 0.0049365236696179
629 => 0.0051036828370824
630 => 0.0051309370750449
701 => 0.0051430416072339
702 => 0.0051268231376438
703 => 0.0049395790323408
704 => 0.0049478841046344
705 => 0.004886946994646
706 => 0.0048354615581002
707 => 0.0048375207055565
708 => 0.0048639909125793
709 => 0.0049795878591049
710 => 0.0052228548182558
711 => 0.0052320866215297
712 => 0.0052432758364085
713 => 0.0051977636762479
714 => 0.0051840367732507
715 => 0.0052021461015182
716 => 0.0052935043810063
717 => 0.0055285026793804
718 => 0.0054454385857263
719 => 0.005377906184616
720 => 0.0054371503069944
721 => 0.005428030138725
722 => 0.0053510467403185
723 => 0.0053488860727264
724 => 0.0052011303181031
725 => 0.0051465083798546
726 => 0.005100862199873
727 => 0.0050510177629567
728 => 0.0050214683099521
729 => 0.0050668696997534
730 => 0.0050772535347744
731 => 0.0049779826024934
801 => 0.0049644523412421
802 => 0.0050455191274547
803 => 0.005009844657317
804 => 0.005046536734538
805 => 0.005055049611192
806 => 0.0050536788419826
807 => 0.0050164305979719
808 => 0.0050401715179457
809 => 0.0049840171646989
810 => 0.0049229577396542
811 => 0.0048840056306123
812 => 0.0048500147492257
813 => 0.0048688748657806
814 => 0.0048016419939836
815 => 0.0047801328451654
816 => 0.0050321286284462
817 => 0.0052182806229669
818 => 0.0052155738992423
819 => 0.0051990974146816
820 => 0.0051746167007571
821 => 0.0052917134643017
822 => 0.0052509192933065
823 => 0.0052806004611726
824 => 0.0052881555641092
825 => 0.0053110225852469
826 => 0.0053191955798167
827 => 0.005294491113717
828 => 0.0052115799080897
829 => 0.0050049730666273
830 => 0.0049087970242021
831 => 0.0048770573282631
901 => 0.0048782110059282
902 => 0.0048463874256804
903 => 0.0048557608962962
904 => 0.0048431277151289
905 => 0.0048192035262929
906 => 0.0048673976145366
907 => 0.0048729515342476
908 => 0.0048617024581751
909 => 0.0048643520228127
910 => 0.0047712144774754
911 => 0.0047782955227632
912 => 0.0047388673627846
913 => 0.0047314750581022
914 => 0.0046318041030788
915 => 0.0044552225587189
916 => 0.0045530658754795
917 => 0.0044348849076849
918 => 0.0043901279844473
919 => 0.0046020002979248
920 => 0.0045807341940749
921 => 0.0045443358684369
922 => 0.0044904951587427
923 => 0.0044705251157883
924 => 0.004349193456545
925 => 0.0043420245348377
926 => 0.004402159781389
927 => 0.0043744094342331
928 => 0.0043354374369478
929 => 0.0041942848133085
930 => 0.0040355825303103
1001 => 0.004040372754667
1002 => 0.0040908529981278
1003 => 0.0042376311141783
1004 => 0.0041802823649502
1005 => 0.0041386751893841
1006 => 0.0041308834161077
1007 => 0.0042284137718444
1008 => 0.0043664396584531
1009 => 0.0044311983162947
1010 => 0.0043670244531233
1011 => 0.0042933049744782
1012 => 0.0042977919375602
1013 => 0.0043276416927495
1014 => 0.0043307784799671
1015 => 0.004282794677854
1016 => 0.0042963018370821
1017 => 0.0042757832270941
1018 => 0.0041498605554719
1019 => 0.0041475830136474
1020 => 0.004116679559254
1021 => 0.0041157438149367
1022 => 0.0040631693297855
1023 => 0.0040558137958826
1024 => 0.0039514239645716
1025 => 0.004020133667662
1026 => 0.0039740468062503
1027 => 0.0039045830353113
1028 => 0.0038926074550189
1029 => 0.0038922474546144
1030 => 0.0039635712155538
1031 => 0.0040193002079887
1101 => 0.0039748485069361
1102 => 0.0039647277162664
1103 => 0.0040727912824709
1104 => 0.0040590392086501
1105 => 0.0040471300014126
1106 => 0.0043540809541884
1107 => 0.0041111053233849
1108 => 0.0040051540797904
1109 => 0.0038740192962467
1110 => 0.0039167174430075
1111 => 0.0039257145698963
1112 => 0.0036103590542952
1113 => 0.0034824193608908
1114 => 0.0034385152794201
1115 => 0.0034132478598211
1116 => 0.0034247625402206
1117 => 0.0033096018103274
1118 => 0.0033869917253983
1119 => 0.003287272267605
1120 => 0.0032705539759907
1121 => 0.0034488647193956
1122 => 0.0034736756176641
1123 => 0.0033678246175087
1124 => 0.0034357980953288
1125 => 0.0034111499673692
1126 => 0.0032889816714966
1127 => 0.0032843157412035
1128 => 0.0032230159847579
1129 => 0.0031270937358923
1130 => 0.0030832546942232
1201 => 0.0030604229406939
1202 => 0.0030698437671821
1203 => 0.0030650803090277
1204 => 0.0030339955224425
1205 => 0.0030668620526082
1206 => 0.0029829016494227
1207 => 0.0029494679403593
1208 => 0.0029343667096315
1209 => 0.0028598470192239
1210 => 0.0029784409857191
1211 => 0.0030018054911261
1212 => 0.0030252160318264
1213 => 0.0032289888055676
1214 => 0.0032188088936474
1215 => 0.0033108303395881
1216 => 0.0033072545554154
1217 => 0.0032810085483846
1218 => 0.0031702809619799
1219 => 0.0032144150043913
1220 => 0.0030785772818019
1221 => 0.0031803561396332
1222 => 0.0031339085193057
1223 => 0.0031646521524784
1224 => 0.0031093723279923
1225 => 0.0031399664653109
1226 => 0.0030073460821241
1227 => 0.0028835070343235
1228 => 0.0029333434822456
1229 => 0.0029875214006261
1230 => 0.0031049929319519
1231 => 0.0030350278570134
]
'min_raw' => 0.0028598470192239
'max_raw' => 0.008536713001247
'avg_raw' => 0.0056982800102354
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.002859'
'max' => '$0.008536'
'avg' => '$0.005698'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0054175729807761
'max_diff' => 0.00025929300124696
'year' => 2026
]
1 => [
'items' => [
101 => 0.0030601899436337
102 => 0.0029759011655381
103 => 0.0028019893404278
104 => 0.0028029736624712
105 => 0.002776221117053
106 => 0.0027531030118761
107 => 0.0030430641875083
108 => 0.0030070029317106
109 => 0.0029495440401774
110 => 0.0030264550498202
111 => 0.0030467915415116
112 => 0.0030473704928403
113 => 0.0031034827801151
114 => 0.0031334299178924
115 => 0.003138708230724
116 => 0.0032270021271372
117 => 0.0032565970765902
118 => 0.0033784944849533
119 => 0.003130889112481
120 => 0.0031257898427762
121 => 0.0030275373454506
122 => 0.0029652240583362
123 => 0.0030318039895307
124 => 0.0030907847195021
125 => 0.003029370041139
126 => 0.0030373895015986
127 => 0.0029549453136598
128 => 0.0029844152314883
129 => 0.0030097986947489
130 => 0.0029957834383074
131 => 0.0029748019210684
201 => 0.0030859489722518
202 => 0.0030796776200352
203 => 0.0031831803093568
204 => 0.0032638680572313
205 => 0.0034084749260827
206 => 0.0032575701199098
207 => 0.0032520705489805
208 => 0.0033058297369726
209 => 0.0032565888463387
210 => 0.0032877073894815
211 => 0.0034034612476916
212 => 0.003405906944313
213 => 0.0033649383748018
214 => 0.0033624454336238
215 => 0.0033703138955455
216 => 0.0034163997227876
217 => 0.0034002959186748
218 => 0.0034189316484926
219 => 0.0034422359139902
220 => 0.003538632236892
221 => 0.0035618730639955
222 => 0.0035054099031214
223 => 0.0035105078943572
224 => 0.0034893891222419
225 => 0.0034689886529959
226 => 0.0035148459286115
227 => 0.0035986510011261
228 => 0.0035981296541194
301 => 0.003617570802005
302 => 0.0036296824760785
303 => 0.0035776903046676
304 => 0.0035438453128843
305 => 0.0035568236363468
306 => 0.0035775762581945
307 => 0.0035500938407784
308 => 0.0033804596293925
309 => 0.0034319158128516
310 => 0.0034233509878452
311 => 0.0034111536355177
312 => 0.0034628932258848
313 => 0.0034579028161743
314 => 0.0033084206705918
315 => 0.0033179900325583
316 => 0.0033090026151877
317 => 0.0033380427993648
318 => 0.0032550205810913
319 => 0.0032805576562691
320 => 0.0032965742704254
321 => 0.0033060081792088
322 => 0.0033400899266266
323 => 0.0033360908269372
324 => 0.0033398413369749
325 => 0.0033903755711477
326 => 0.0036459603863385
327 => 0.0036598713039132
328 => 0.0035913688580962
329 => 0.0036187342340491
330 => 0.0035661986963694
331 => 0.0036014661547713
401 => 0.0036255952541135
402 => 0.0035165604939448
403 => 0.0035101041630773
404 => 0.0034573517925457
405 => 0.0034856979284224
406 => 0.0034405971880832
407 => 0.0034516633322055
408 => 0.0034207214285105
409 => 0.00347641069469
410 => 0.0035386799475158
411 => 0.003554411619867
412 => 0.003513028362822
413 => 0.0034830641574318
414 => 0.0034304568835897
415 => 0.0035179439524188
416 => 0.0035435278374645
417 => 0.003517809571162
418 => 0.0035118500869045
419 => 0.0035005568750051
420 => 0.0035142459951954
421 => 0.0035433885021321
422 => 0.0035296454340384
423 => 0.003538722972636
424 => 0.003504128756219
425 => 0.0035777075162398
426 => 0.0036945682948455
427 => 0.0036949440213574
428 => 0.0036812008791834
429 => 0.0036755774815059
430 => 0.0036896787793801
501 => 0.0036973281550113
502 => 0.0037429291666004
503 => 0.00379186086886
504 => 0.0040202037727313
505 => 0.0039560859990531
506 => 0.0041586854075479
507 => 0.0043189152354265
508 => 0.0043669611548062
509 => 0.0043227611697121
510 => 0.0041715554083416
511 => 0.0041641365323236
512 => 0.0043901017772369
513 => 0.004326256245685
514 => 0.0043186620228617
515 => 0.0042378723226638
516 => 0.0042856290414798
517 => 0.0042751839465259
518 => 0.0042586958531497
519 => 0.0043498123458888
520 => 0.004520374286271
521 => 0.0044937906083427
522 => 0.0044739471259505
523 => 0.004386998762459
524 => 0.004439361097901
525 => 0.0044207158731846
526 => 0.0045008275911182
527 => 0.0044533711841062
528 => 0.0043257725529897
529 => 0.0043460930555656
530 => 0.0043430216524804
531 => 0.0044062309103312
601 => 0.0043872570600746
602 => 0.0043393167036984
603 => 0.0045197913241012
604 => 0.0045080723061048
605 => 0.0045246871942832
606 => 0.0045320015818918
607 => 0.0046418533030115
608 => 0.0046868560382912
609 => 0.0046970724470835
610 => 0.0047398215649627
611 => 0.0046960088100871
612 => 0.0048712910675546
613 => 0.0049878435407672
614 => 0.0051232252361391
615 => 0.0053210542802466
616 => 0.005395439830852
617 => 0.0053820027469344
618 => 0.005531994470385
619 => 0.0058015262632972
620 => 0.0054364828284908
621 => 0.0058208744517366
622 => 0.0056991805018317
623 => 0.0054106463357878
624 => 0.0053920681370889
625 => 0.0055874668242844
626 => 0.0060208423060573
627 => 0.0059122866631772
628 => 0.0060210198642
629 => 0.0058941768095029
630 => 0.00588787798272
701 => 0.0060148593801524
702 => 0.006311558336649
703 => 0.0061706077840115
704 => 0.0059685206043123
705 => 0.0061177386329775
706 => 0.0059884721670711
707 => 0.0056971986399784
708 => 0.005912203652723
709 => 0.0057684359236909
710 => 0.0058103949901353
711 => 0.0061125733727249
712 => 0.0060762144702669
713 => 0.0061232662567913
714 => 0.0060402210851354
715 => 0.0059626437997872
716 => 0.00581784003572
717 => 0.005774970779919
718 => 0.0057868182999482
719 => 0.0057749649088765
720 => 0.0056939485336961
721 => 0.0056764530551896
722 => 0.0056472931578508
723 => 0.0056563310293477
724 => 0.005601501891322
725 => 0.0057049758030545
726 => 0.005724181472881
727 => 0.0057994811568318
728 => 0.0058072990198167
729 => 0.0060170075677957
730 => 0.0059015036235779
731 => 0.0059789936414899
801 => 0.0059720622049235
802 => 0.0054168997460781
803 => 0.0054933962346671
804 => 0.0056124007649912
805 => 0.005558789385387
806 => 0.0054829954377576
807 => 0.0054217877612324
808 => 0.0053290518724905
809 => 0.0054595758550597
810 => 0.0056312010124601
811 => 0.005811651717033
812 => 0.0060284514149788
813 => 0.005980064246224
814 => 0.0058075987974826
815 => 0.0058153354715271
816 => 0.0058631605462008
817 => 0.0058012227291321
818 => 0.0057829560577087
819 => 0.0058606509860511
820 => 0.0058611860283222
821 => 0.0057899190843494
822 => 0.0057107189178367
823 => 0.0057103870662471
824 => 0.005696294161599
825 => 0.0058966839059322
826 => 0.0060068780036271
827 => 0.0060195115793412
828 => 0.0060060276633225
829 => 0.0060112170874406
830 => 0.0059470975699532
831 => 0.0060936557728772
901 => 0.0062281520729842
902 => 0.0061921041914612
903 => 0.0061380632925498
904 => 0.0060950171136046
905 => 0.0061819638797289
906 => 0.0061780922771003
907 => 0.0062269773651348
908 => 0.0062247596551676
909 => 0.0062083214387228
910 => 0.0061921047785217
911 => 0.0062564020031709
912 => 0.0062378854350538
913 => 0.0062193401055919
914 => 0.0061821446082083
915 => 0.0061872000940545
916 => 0.0061331685260663
917 => 0.0061081710503986
918 => 0.0057322689936871
919 => 0.0056318156811798
920 => 0.0056634203382103
921 => 0.0056738254119194
922 => 0.0056301080015817
923 => 0.0056927875379246
924 => 0.0056830189985796
925 => 0.0057210226707666
926 => 0.0056972796263118
927 => 0.0056982540491381
928 => 0.0057680772803288
929 => 0.0057883472613927
930 => 0.0057780377854248
1001 => 0.0057852581890045
1002 => 0.0059516493419584
1003 => 0.0059279938408979
1004 => 0.0059154273274311
1005 => 0.0059189083375425
1006 => 0.0059614248445888
1007 => 0.0059733271452465
1008 => 0.0059228962609999
1009 => 0.005946679757548
1010 => 0.0060479468672751
1011 => 0.0060833846244575
1012 => 0.0061964849342954
1013 => 0.0061484379124786
1014 => 0.0062366303004498
1015 => 0.0065077036340727
1016 => 0.0067242557698186
1017 => 0.0065251054763912
1018 => 0.0069227758959403
1019 => 0.007232419359993
1020 => 0.0072205347281045
1021 => 0.0071665412279645
1022 => 0.006814020376438
1023 => 0.0064896254330735
1024 => 0.0067609955777348
1025 => 0.0067616873560413
1026 => 0.0067383764199486
1027 => 0.0065935941979189
1028 => 0.0067333383124556
1029 => 0.0067444306927915
1030 => 0.0067382219095054
1031 => 0.0066272177193351
1101 => 0.0064577348379486
1102 => 0.0064908513872868
1103 => 0.0065450969706621
1104 => 0.0064423987645185
1105 => 0.0064095804649518
1106 => 0.0064705959277832
1107 => 0.0066672004621023
1108 => 0.0066300335137418
1109 => 0.0066290629345167
1110 => 0.0067880789008419
1111 => 0.0066742577867464
1112 => 0.0064912690930278
1113 => 0.0064450620345396
1114 => 0.0062810581057104
1115 => 0.0063943362035147
1116 => 0.0063984128805895
1117 => 0.0063363716240963
1118 => 0.0064963033990634
1119 => 0.0064948295996016
1120 => 0.0066466610172297
1121 => 0.0069369056624582
1122 => 0.0068510660387925
1123 => 0.0067512438957939
1124 => 0.0067620973305056
1125 => 0.0068811327207341
1126 => 0.0068091612064883
1127 => 0.0068350426648143
1128 => 0.0068810935460471
1129 => 0.0069088771860739
1130 => 0.0067580996922717
1201 => 0.0067229462459452
1202 => 0.0066510346319442
1203 => 0.0066322742341452
1204 => 0.006690844743264
1205 => 0.0066754134834378
1206 => 0.0063980702516671
1207 => 0.0063690863408238
1208 => 0.0063699752359899
1209 => 0.0062970938140648
1210 => 0.0061859321520836
1211 => 0.0064780583626524
1212 => 0.00645459653964
1213 => 0.0064286965028352
1214 => 0.0064318691095602
1215 => 0.0065586711964922
1216 => 0.0064851195824128
1217 => 0.0066806686033155
1218 => 0.0066404696033595
1219 => 0.0065992396507394
1220 => 0.0065935404153922
1221 => 0.0065776704012077
1222 => 0.0065232462175969
1223 => 0.0064575257455005
1224 => 0.0064141313972126
1225 => 0.0059166971642258
1226 => 0.0060090180644264
1227 => 0.0061152248447922
1228 => 0.0061518869997776
1229 => 0.0060891738467313
1230 => 0.0065257225151204
1231 => 0.0066054841635227
]
'min_raw' => 0.0027531030118761
'max_raw' => 0.007232419359993
'avg_raw' => 0.0049927611859346
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.002753'
'max' => '$0.007232'
'avg' => '$0.004992'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00010674400734772
'max_diff' => -0.001304293641254
'year' => 2027
]
2 => [
'items' => [
101 => 0.0063638809277885
102 => 0.0063186868269777
103 => 0.0065286854328455
104 => 0.0064020306022217
105 => 0.0064590632646964
106 => 0.0063357898436246
107 => 0.0065862719181163
108 => 0.0065843636643809
109 => 0.0064869204800094
110 => 0.0065692787921781
111 => 0.0065549670087002
112 => 0.0064449538935368
113 => 0.0065897595300938
114 => 0.0065898313518829
115 => 0.0064960444055229
116 => 0.0063865217847769
117 => 0.0063669417269963
118 => 0.0063521907836693
119 => 0.0064554354368873
120 => 0.0065480042701248
121 => 0.00672025191902
122 => 0.0067635590704555
123 => 0.0069325897656284
124 => 0.0068319402166081
125 => 0.0068765568580589
126 => 0.006924994533763
127 => 0.0069482173367321
128 => 0.0069103770254983
129 => 0.0071729512709116
130 => 0.0071951205822915
131 => 0.0072025537606334
201 => 0.0071140152024373
202 => 0.007192658164823
203 => 0.0071558637271039
204 => 0.0072515926322597
205 => 0.0072666041469162
206 => 0.0072538899280523
207 => 0.0072586548197449
208 => 0.0070345940225557
209 => 0.0070229752882065
210 => 0.0068645530209284
211 => 0.0069291112658425
212 => 0.0068084227213328
213 => 0.0068466943020266
214 => 0.0068635640501314
215 => 0.0068547522510712
216 => 0.0069327612921476
217 => 0.0068664376710385
218 => 0.0066913987303187
219 => 0.0065163121003566
220 => 0.0065141140303399
221 => 0.0064680168112067
222 => 0.0064346969649001
223 => 0.0064411155493838
224 => 0.0064637354782935
225 => 0.0064333822535111
226 => 0.006439859652966
227 => 0.0065474276426038
228 => 0.0065689996357858
229 => 0.0064956895742314
301 => 0.0062013390984988
302 => 0.0061291047534317
303 => 0.0061810253681966
304 => 0.0061562106584548
305 => 0.0049685424739151
306 => 0.0052475674969415
307 => 0.0050817803030537
308 => 0.0051581826694992
309 => 0.0049889568749254
310 => 0.0050697202939798
311 => 0.0050548062394883
312 => 0.0055034702195641
313 => 0.0054964649486324
314 => 0.0054998180011167
315 => 0.0053397680697072
316 => 0.0055947319562718
317 => 0.0057203363349983
318 => 0.0056970903073483
319 => 0.0057029408316918
320 => 0.005602409439756
321 => 0.0055007913647414
322 => 0.0053880812806406
323 => 0.0055974826855125
324 => 0.0055742008238919
325 => 0.0056276010379001
326 => 0.0057634128172811
327 => 0.0057834116176938
328 => 0.0058102902082562
329 => 0.0058006561468879
330 => 0.0060301785743415
331 => 0.0060023818939392
401 => 0.0060693638960581
402 => 0.0059315768357627
403 => 0.0057756576981705
404 => 0.0058052928288461
405 => 0.0058024387274514
406 => 0.0057661027409114
407 => 0.0057333002369548
408 => 0.0056786933099152
409 => 0.005851477707373
410 => 0.0058444629763776
411 => 0.0059580233174607
412 => 0.005937950424108
413 => 0.0058038987296281
414 => 0.0058086864121214
415 => 0.0058408858777703
416 => 0.0059523285960282
417 => 0.005985412382406
418 => 0.0059700866543948
419 => 0.0060063615158259
420 => 0.0060350316872557
421 => 0.0060099620479437
422 => 0.0063648952734109
423 => 0.0062175022523388
424 => 0.0062893405852553
425 => 0.0063064736043598
426 => 0.0062625877361921
427 => 0.0062721050095625
428 => 0.006286521085417
429 => 0.0063740526750484
430 => 0.0066037608937107
501 => 0.0067054971000795
502 => 0.0070115754965161
503 => 0.0066970493243769
504 => 0.0066783866429609
505 => 0.0067335206048412
506 => 0.0069132210252381
507 => 0.0070588513375676
508 => 0.0071071653137816
509 => 0.0071135508033151
510 => 0.0072041910345449
511 => 0.0072561443247456
512 => 0.0071931849263989
513 => 0.0071398334284238
514 => 0.0069487349849087
515 => 0.0069708551500894
516 => 0.0071232411526717
517 => 0.0073384953568101
518 => 0.0075232058573436
519 => 0.0074585266778676
520 => 0.0079519831608846
521 => 0.0080009073555868
522 => 0.0079941476137875
523 => 0.0081056042102154
524 => 0.0078843855640472
525 => 0.0077898103069009
526 => 0.0071513686278512
527 => 0.0073307446979665
528 => 0.0075914783502663
529 => 0.0075569692736834
530 => 0.0073676175259528
531 => 0.0075230622170634
601 => 0.0074716673409773
602 => 0.0074311300698329
603 => 0.0076168391674822
604 => 0.0074126443861075
605 => 0.0075894413511212
606 => 0.0073626974147607
607 => 0.0074588221269113
608 => 0.0074042570912654
609 => 0.0074395673565676
610 => 0.0072331442671185
611 => 0.007344525155548
612 => 0.0072285104559734
613 => 0.0072284554499003
614 => 0.0072258944189771
615 => 0.0073623851985386
616 => 0.0073668361579599
617 => 0.0072659692656378
618 => 0.0072514327706172
619 => 0.0073051818115938
620 => 0.0072422557615063
621 => 0.0072716984642904
622 => 0.0072431475509799
623 => 0.0072367201390195
624 => 0.0071855054269847
625 => 0.0071634407208623
626 => 0.0071720928606703
627 => 0.0071425586470217
628 => 0.0071247632149992
629 => 0.0072223544596433
630 => 0.0071702153944495
701 => 0.0072143634001229
702 => 0.0071640511757356
703 => 0.0069896470860165
704 => 0.0068893454497293
705 => 0.0065599122915177
706 => 0.006653339126526
707 => 0.0067152812147935
708 => 0.0066948093549906
709 => 0.0067387908314053
710 => 0.0067414909368544
711 => 0.0067271921105339
712 => 0.0067106359014478
713 => 0.0067025772544805
714 => 0.0067626398066492
715 => 0.0067975081397956
716 => 0.0067214979320294
717 => 0.0067036898038455
718 => 0.0067805403205358
719 => 0.0068274190913218
720 => 0.0071735455958995
721 => 0.0071479034264665
722 => 0.0072122602397217
723 => 0.007205014650185
724 => 0.0072724708433208
725 => 0.0073827332099836
726 => 0.0071585389887155
727 => 0.0071974513534748
728 => 0.0071879109402535
729 => 0.0072920706701723
730 => 0.0072923958454797
731 => 0.007229946884229
801 => 0.0072638014792417
802 => 0.0072449047730578
803 => 0.0072790536751751
804 => 0.0071475609596604
805 => 0.0073077048933958
806 => 0.0073984961843766
807 => 0.0073997568215399
808 => 0.0074427911729006
809 => 0.0074865165662645
810 => 0.0075704436511475
811 => 0.0074841758854186
812 => 0.0073289885728701
813 => 0.0073401925955842
814 => 0.0072492063310178
815 => 0.0072507358265632
816 => 0.0072425712594733
817 => 0.00726707373991
818 => 0.0071529378762223
819 => 0.0071797253352983
820 => 0.0071422227357247
821 => 0.0071973698301474
822 => 0.0071380406726899
823 => 0.0071879063395774
824 => 0.007209426708333
825 => 0.0072888373323416
826 => 0.007126311658957
827 => 0.0067949108089051
828 => 0.0068645752854329
829 => 0.0067615360526217
830 => 0.0067710727259164
831 => 0.006790338323722
901 => 0.0067278922179227
902 => 0.0067398049670062
903 => 0.0067393793597802
904 => 0.0067357117066383
905 => 0.0067194670627369
906 => 0.0066959091151749
907 => 0.0067897567275078
908 => 0.0068057032655839
909 => 0.0068411504443689
910 => 0.0069466172043821
911 => 0.0069360785879793
912 => 0.0069532675085753
913 => 0.006915744191426
914 => 0.0067728133249795
915 => 0.0067805751586887
916 => 0.0066837849679601
917 => 0.0068386753015779
918 => 0.0068019952261247
919 => 0.006778347342862
920 => 0.0067718947988177
921 => 0.0068776229905294
922 => 0.0069092585225759
923 => 0.0068895453819861
924 => 0.0068491131555123
925 => 0.0069267549830568
926 => 0.006947528660662
927 => 0.0069521791209741
928 => 0.0070897455530392
929 => 0.0069598675563541
930 => 0.0069911304810324
1001 => 0.0072350348949776
1002 => 0.0070138472480378
1003 => 0.007131015277695
1004 => 0.0071252805123562
1005 => 0.0071852197115789
1006 => 0.0071203637485258
1007 => 0.007121167715917
1008 => 0.0071743896641937
1009 => 0.0070996490364681
1010 => 0.0070811422059634
1011 => 0.0070555751521696
1012 => 0.0071113998787764
1013 => 0.007144864277642
1014 => 0.0074145627556057
1015 => 0.0075888002721151
1016 => 0.0075812361620046
1017 => 0.0076503579689932
1018 => 0.0076192179618616
1019 => 0.0075186586645151
1020 => 0.0076903011231857
1021 => 0.0076359862674369
1022 => 0.0076404639181522
1023 => 0.007640297259769
1024 => 0.0076764118905549
1025 => 0.0076508213647858
1026 => 0.0076003798116813
1027 => 0.0076338652686407
1028 => 0.0077333051045405
1029 => 0.0080419694063602
1030 => 0.0082147020389165
1031 => 0.0080315706849908
1101 => 0.0081578922407022
1102 => 0.0080821443202479
1103 => 0.0080683786697959
1104 => 0.0081477179418723
1105 => 0.0082271960868417
1106 => 0.0082221336726007
1107 => 0.0081644366206008
1108 => 0.0081318450199345
1109 => 0.0083786395391665
1110 => 0.0085604735369017
1111 => 0.0085480736772868
1112 => 0.0086028026249768
1113 => 0.0087634885080973
1114 => 0.0087781796114688
1115 => 0.0087763288701151
1116 => 0.0087399154375508
1117 => 0.0088981315571816
1118 => 0.0090301182277254
1119 => 0.0087314867799974
1120 => 0.0088452017259195
1121 => 0.0088962520288107
1122 => 0.0089712090193973
1123 => 0.0090976740267672
1124 => 0.0092350485679575
1125 => 0.009254474834317
1126 => 0.0092406909687025
1127 => 0.0091500887659616
1128 => 0.0093004056281511
1129 => 0.0093884577206576
1130 => 0.0094408907267088
1201 => 0.0095738521060345
1202 => 0.0088965672981018
1203 => 0.0084171514478079
1204 => 0.0083422837399357
1205 => 0.008494530167921
1206 => 0.0085346763368382
1207 => 0.0085184934664867
1208 => 0.0079788673403987
1209 => 0.00833944272006
1210 => 0.0087273915105365
1211 => 0.0087422942035499
1212 => 0.0089365094796891
1213 => 0.0089997539347532
1214 => 0.0091561226884234
1215 => 0.0091463417803067
1216 => 0.0091844150834551
1217 => 0.009175662690399
1218 => 0.0094653028792473
1219 => 0.0097848190195312
1220 => 0.0097737551915923
1221 => 0.0097278209660831
1222 => 0.0097960411239136
1223 => 0.010125816022117
1224 => 0.010095455634026
1225 => 0.010124948164965
1226 => 0.010513771355245
1227 => 0.011019296812064
1228 => 0.010784429483446
1229 => 0.011294024005295
1230 => 0.011614786744353
1231 => 0.012169512734069
]
'min_raw' => 0.0049685424739151
'max_raw' => 0.012169512734069
'avg_raw' => 0.0085690276039922
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.004968'
'max' => '$0.012169'
'avg' => '$0.008569'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0022154394620389
'max_diff' => 0.0049370933740764
'year' => 2028
]
3 => [
'items' => [
101 => 0.012100058308074
102 => 0.012316009065103
103 => 0.011975720389966
104 => 0.011194348808163
105 => 0.011070693764372
106 => 0.011318254293485
107 => 0.011926857697707
108 => 0.011299087206451
109 => 0.011426084359222
110 => 0.01138950917068
111 => 0.011387560234317
112 => 0.01146194320839
113 => 0.011354046824943
114 => 0.01091445754859
115 => 0.011115918723426
116 => 0.011038124888862
117 => 0.011124442948226
118 => 0.011590265914338
119 => 0.011384314477187
120 => 0.011167361368285
121 => 0.011439468712597
122 => 0.011785954868135
123 => 0.011764272387217
124 => 0.011722199311662
125 => 0.011959363035691
126 => 0.012351088025335
127 => 0.012456969715957
128 => 0.012535129415319
129 => 0.012545906317342
130 => 0.012656915105986
131 => 0.012059992871629
201 => 0.013007323787604
202 => 0.013170901667305
203 => 0.013140155805529
204 => 0.013321965734407
205 => 0.013268472641259
206 => 0.013190969542096
207 => 0.013479176951448
208 => 0.013148770413764
209 => 0.012679799930549
210 => 0.012422513448273
211 => 0.012761329042842
212 => 0.012968231903412
213 => 0.013104981532754
214 => 0.013146361887967
215 => 0.012106330245462
216 => 0.011545810872951
217 => 0.011905097364363
218 => 0.012343451680515
219 => 0.012057557791269
220 => 0.012068764290459
221 => 0.011661154735988
222 => 0.012379516081553
223 => 0.012274856875874
224 => 0.012817829020075
225 => 0.012688244360238
226 => 0.013131017065776
227 => 0.013014420173479
228 => 0.013498407354562
301 => 0.013691482944525
302 => 0.014015686909891
303 => 0.014254172666561
304 => 0.014394216064383
305 => 0.014385808384067
306 => 0.014940730095583
307 => 0.01461351214979
308 => 0.014202449290526
309 => 0.014195014460288
310 => 0.014407909739907
311 => 0.014854079841021
312 => 0.014969765256729
313 => 0.015034417622014
314 => 0.014935400274014
315 => 0.014580228645777
316 => 0.014426867337465
317 => 0.014557535615452
318 => 0.014397739539928
319 => 0.014673592397142
320 => 0.015052397289089
321 => 0.014974175576859
322 => 0.01523565903319
323 => 0.01550626690163
324 => 0.01589324830726
325 => 0.015994419576571
326 => 0.016161651837545
327 => 0.016333788767022
328 => 0.01638907450955
329 => 0.016494632146194
330 => 0.016494075805344
331 => 0.016812180848219
401 => 0.017163060561404
402 => 0.017295509530247
403 => 0.017600068630823
404 => 0.01707852184411
405 => 0.01747412107293
406 => 0.017830961479815
407 => 0.017405521635923
408 => 0.017991891345958
409 => 0.018014658753057
410 => 0.018358419569531
411 => 0.018009952125431
412 => 0.017803033269471
413 => 0.018400400253478
414 => 0.018689447320155
415 => 0.018602383991328
416 => 0.017939827760115
417 => 0.017554191615175
418 => 0.01654490744021
419 => 0.017740448143287
420 => 0.018322761145356
421 => 0.017938319710116
422 => 0.018132209608428
423 => 0.01919001002461
424 => 0.019592751935587
425 => 0.019508984433482
426 => 0.019523139762408
427 => 0.019740451987288
428 => 0.020704134068436
429 => 0.020126673427436
430 => 0.020568120450443
501 => 0.02080226235969
502 => 0.02101974641387
503 => 0.020485674313347
504 => 0.019790854357644
505 => 0.019570775711115
506 => 0.017900094585894
507 => 0.017813128377925
508 => 0.017764311610047
509 => 0.017456528793843
510 => 0.017214695809115
511 => 0.017022381240977
512 => 0.01651769038419
513 => 0.016688008733
514 => 0.01588363684445
515 => 0.016398245473555
516 => 0.015114448517191
517 => 0.016183632770683
518 => 0.01560172439135
519 => 0.015992460217697
520 => 0.015991096977208
521 => 0.015271628437997
522 => 0.014856653999506
523 => 0.015121091862759
524 => 0.015404590243271
525 => 0.015450586901706
526 => 0.015818149952104
527 => 0.015920728898728
528 => 0.015609909901502
529 => 0.015087844678781
530 => 0.015209108522979
531 => 0.014854196591573
601 => 0.014232227083275
602 => 0.014678936442681
603 => 0.014831462658406
604 => 0.014898826924497
605 => 0.014287191346766
606 => 0.014095002168989
607 => 0.013992682263363
608 => 0.015008890206287
609 => 0.01506456037136
610 => 0.014779743935878
611 => 0.016067141231659
612 => 0.015775763574008
613 => 0.016101303806864
614 => 0.015198105100146
615 => 0.015232608507061
616 => 0.014805019764899
617 => 0.01504444088902
618 => 0.014875225755394
619 => 0.015025098028196
620 => 0.015114930850567
621 => 0.015542449429624
622 => 0.016188514346124
623 => 0.015478592410401
624 => 0.015169269256737
625 => 0.015361171601571
626 => 0.015872232834458
627 => 0.016646516763025
628 => 0.016188125093397
629 => 0.016391551532382
630 => 0.016435991159488
701 => 0.016097990112887
702 => 0.016658979343733
703 => 0.016959618030011
704 => 0.017268011113723
705 => 0.017535780187331
706 => 0.017144832134379
707 => 0.01756320259124
708 => 0.017226069855337
709 => 0.016923626939091
710 => 0.016924085620152
711 => 0.016734358760805
712 => 0.016366739063697
713 => 0.016298944351252
714 => 0.016651621006918
715 => 0.016934434286159
716 => 0.016957728142421
717 => 0.01711430810528
718 => 0.017206970514398
719 => 0.018115188092189
720 => 0.018480480715146
721 => 0.018927153619863
722 => 0.019101157889356
723 => 0.019624848356546
724 => 0.01920192577223
725 => 0.019110423810805
726 => 0.017840122035248
727 => 0.018048133879832
728 => 0.018381180913169
729 => 0.017845613858159
730 => 0.01818530788402
731 => 0.018252370680428
801 => 0.017827415494567
802 => 0.018054402420565
803 => 0.017451592442049
804 => 0.016201653956366
805 => 0.016660370882581
806 => 0.016998140942723
807 => 0.016516101420152
808 => 0.017380138606855
809 => 0.016875385919731
810 => 0.016715403550315
811 => 0.016091255289388
812 => 0.016385829242876
813 => 0.016784244732861
814 => 0.016538070280822
815 => 0.017048919232082
816 => 0.017772417585504
817 => 0.018288025597224
818 => 0.018327607578034
819 => 0.017996106169552
820 => 0.018527339292259
821 => 0.018531208745597
822 => 0.017931975613033
823 => 0.017564948655881
824 => 0.017481559358985
825 => 0.017689882172066
826 => 0.01794282452566
827 => 0.018341644118269
828 => 0.018582642445388
829 => 0.019211038266879
830 => 0.019381064158654
831 => 0.019567871065086
901 => 0.019817502701195
902 => 0.020117249484581
903 => 0.019461420587125
904 => 0.019487477891839
905 => 0.018876779103097
906 => 0.018224159864262
907 => 0.018719416516401
908 => 0.019366898707843
909 => 0.019218365577722
910 => 0.019201652566327
911 => 0.019229759215691
912 => 0.019117770086218
913 => 0.018611247404124
914 => 0.018356874884176
915 => 0.01868508033226
916 => 0.018859506921172
917 => 0.019130027348979
918 => 0.019096679996258
919 => 0.019793511566514
920 => 0.020064279243622
921 => 0.019995005285016
922 => 0.02000775336057
923 => 0.020497965306425
924 => 0.021043181809992
925 => 0.021553849013236
926 => 0.022073321626043
927 => 0.021447077115943
928 => 0.021129108775106
929 => 0.021457170938958
930 => 0.021283096537009
1001 => 0.022283379684431
1002 => 0.022352637119275
1003 => 0.02335284793484
1004 => 0.0243021671017
1005 => 0.023705916741814
1006 => 0.02426815397548
1007 => 0.024876259383564
1008 => 0.026049393377303
1009 => 0.025654323119563
1010 => 0.025351705493675
1011 => 0.025065733299448
1012 => 0.025660796038827
1013 => 0.026426334746679
1014 => 0.026591224452111
1015 => 0.026858408767628
1016 => 0.026577497129606
1017 => 0.026915824256201
1018 => 0.028110267681556
1019 => 0.027787518524381
1020 => 0.027329162836677
1021 => 0.028272061205428
1022 => 0.028613292459655
1023 => 0.031008232106011
1024 => 0.034031942339558
1025 => 0.032780106448118
1026 => 0.032003051513809
1027 => 0.032185677855361
1028 => 0.033289834473602
1029 => 0.033644454535201
1030 => 0.032680474962908
1031 => 0.033020968844529
1101 => 0.034897123608878
1102 => 0.0359036204457
1103 => 0.034536662550736
1104 => 0.030765279932867
1105 => 0.027287892921978
1106 => 0.028210252546043
1107 => 0.028105685588826
1108 => 0.030121379828046
1109 => 0.027779821063723
1110 => 0.027819246908052
1111 => 0.029876623569481
1112 => 0.029327750748577
1113 => 0.028438647073032
1114 => 0.02729438436275
1115 => 0.025179108911304
1116 => 0.023305550455138
1117 => 0.026980030042423
1118 => 0.026821579801012
1119 => 0.026592120370438
1120 => 0.027102757503076
1121 => 0.029582266472288
1122 => 0.02952510576516
1123 => 0.029161478510063
1124 => 0.029437286578191
1125 => 0.028390296585177
1126 => 0.028660129745896
1127 => 0.027287342086109
1128 => 0.027907899441009
1129 => 0.028436739455861
1130 => 0.028542911918453
1201 => 0.028782123897973
1202 => 0.026738083723823
1203 => 0.027655797752149
1204 => 0.028194868765616
1205 => 0.025759326315204
1206 => 0.028146725922237
1207 => 0.02670250153197
1208 => 0.02621231008239
1209 => 0.026872288291436
1210 => 0.026615094141521
1211 => 0.026393973714371
1212 => 0.026270584716691
1213 => 0.026755199874277
1214 => 0.026732591997935
1215 => 0.025939667540375
1216 => 0.024905329909224
1217 => 0.025252487569214
1218 => 0.025126361936719
1219 => 0.024669266374028
1220 => 0.024977293593353
1221 => 0.023620897608454
1222 => 0.021287288815762
1223 => 0.022828942264585
1224 => 0.022769590283801
1225 => 0.022739662323692
1226 => 0.02389817228231
1227 => 0.023786808281162
1228 => 0.023584681528597
1229 => 0.024665554157707
1230 => 0.024271021108294
1231 => 0.02548687900291
]
'min_raw' => 0.01091445754859
'max_raw' => 0.0359036204457
'avg_raw' => 0.023409038997145
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.010914'
'max' => '$0.0359036'
'avg' => '$0.023409'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.0059459150746748
'max_diff' => 0.02373410771163
'year' => 2029
]
4 => [
'items' => [
101 => 0.026287721649062
102 => 0.026084602049452
103 => 0.026837798428967
104 => 0.02526048538054
105 => 0.025784405504412
106 => 0.02589238471582
107 => 0.024652216357244
108 => 0.023805028809011
109 => 0.023748531058189
110 => 0.02227962459919
111 => 0.023064302572989
112 => 0.023754786717751
113 => 0.023424098396144
114 => 0.023319412352556
115 => 0.023854230645615
116 => 0.023895790607395
117 => 0.022948219074492
118 => 0.023145249201871
119 => 0.023966897586571
120 => 0.023124545770709
121 => 0.021487993789876
122 => 0.021082106271528
123 => 0.021027953394589
124 => 0.019927154253484
125 => 0.021109229616331
126 => 0.020593222042798
127 => 0.022223283784867
128 => 0.021292201259994
129 => 0.021252064153278
130 => 0.021191391029642
131 => 0.020243887735454
201 => 0.020451330739906
202 => 0.021140902881164
203 => 0.021386949989752
204 => 0.021361285260522
205 => 0.021137523601477
206 => 0.021239960543143
207 => 0.020909975462642
208 => 0.020793450862672
209 => 0.02042566717255
210 => 0.019885126750908
211 => 0.019960292211864
212 => 0.018889340196497
213 => 0.018305828698799
214 => 0.018144320406794
215 => 0.017928344768829
216 => 0.018168715429791
217 => 0.018886306323995
218 => 0.018020739460184
219 => 0.016536785784637
220 => 0.016625973929071
221 => 0.016826353209418
222 => 0.016452947746134
223 => 0.016099550812681
224 => 0.016406800774319
225 => 0.015778030039374
226 => 0.016902337148748
227 => 0.016871927792274
228 => 0.017290999955964
301 => 0.017553054380145
302 => 0.016949103773534
303 => 0.016797211829227
304 => 0.016883736383808
305 => 0.015453678232411
306 => 0.017174133695622
307 => 0.017189012265911
308 => 0.017061612914052
309 => 0.017977702335109
310 => 0.019910936748994
311 => 0.019183576198317
312 => 0.018901920208505
313 => 0.018366491965984
314 => 0.01907991830856
315 => 0.019025138296635
316 => 0.018777402308007
317 => 0.018627570809101
318 => 0.018903639939919
319 => 0.018593362788671
320 => 0.018537628486461
321 => 0.018199939254586
322 => 0.018079399562688
323 => 0.01799015677363
324 => 0.017891909231692
325 => 0.018108618827444
326 => 0.017617526372949
327 => 0.017025317015214
328 => 0.016976081214912
329 => 0.017112025588401
330 => 0.017051880323
331 => 0.016975793262521
401 => 0.016830522342988
402 => 0.016787423564384
403 => 0.01692747368629
404 => 0.016769365264088
405 => 0.017002662853659
406 => 0.01693921881824
407 => 0.016584825593731
408 => 0.016143120422815
409 => 0.016139188320286
410 => 0.016044023665754
411 => 0.015922817170106
412 => 0.015889100295846
413 => 0.016380925039539
414 => 0.01739898753991
415 => 0.017199117510916
416 => 0.017343544090368
417 => 0.018053979917034
418 => 0.018279806102781
419 => 0.018119520025124
420 => 0.017900110556014
421 => 0.017909763459133
422 => 0.018659552034848
423 => 0.018706315428606
424 => 0.018824471438189
425 => 0.018976335301389
426 => 0.018145383097705
427 => 0.017870625685065
428 => 0.017740430379996
429 => 0.017339479232305
430 => 0.017771870670136
501 => 0.017519934696159
502 => 0.017553929466407
503 => 0.017531790327687
504 => 0.01754387979447
505 => 0.016902022881998
506 => 0.017135881805896
507 => 0.016747045987231
508 => 0.016226438474906
509 => 0.016224693215976
510 => 0.016352111167073
511 => 0.016276317983896
512 => 0.016072360476786
513 => 0.016101331678019
514 => 0.01584751347029
515 => 0.016132149803964
516 => 0.016140312155536
517 => 0.016030711662825
518 => 0.016469233207095
519 => 0.016648895841582
520 => 0.01657675444941
521 => 0.016643834209193
522 => 0.01720742301298
523 => 0.017299312579101
524 => 0.017340123854487
525 => 0.017285442151927
526 => 0.016654135577932
527 => 0.016682136709011
528 => 0.016476682988192
529 => 0.01630309624428
530 => 0.016310038803694
531 => 0.016399284954762
601 => 0.016789028130694
602 => 0.017609219667828
603 => 0.01764034533711
604 => 0.01767807055628
605 => 0.017524623130741
606 => 0.017478341918904
607 => 0.017539398783511
608 => 0.017847419601236
609 => 0.018639732771262
610 => 0.018359676380157
611 => 0.018131986174852
612 => 0.018331731869743
613 => 0.018300982585673
614 => 0.018041427683137
615 => 0.018034142841497
616 => 0.017535973998807
617 => 0.01735181232042
618 => 0.017197913037698
619 => 0.017029859038607
620 => 0.016930230994725
621 => 0.017083304950264
622 => 0.017118314775014
623 => 0.016783615895953
624 => 0.016737997675492
625 => 0.01701132000511
626 => 0.016891041038328
627 => 0.017014750938438
628 => 0.017043452696427
629 => 0.017038831052333
630 => 0.016913245997062
701 => 0.016993290166292
702 => 0.016803961843749
703 => 0.016598095729177
704 => 0.016466765973993
705 => 0.016352163344231
706 => 0.016415751543967
707 => 0.016189071222654
708 => 0.016116551625693
709 => 0.016966173002808
710 => 0.017593797449052
711 => 0.017584671541037
712 => 0.017529119922989
713 => 0.017446581486804
714 => 0.017841381400529
715 => 0.017703841004861
716 => 0.017803913134594
717 => 0.017829385691625
718 => 0.017906483449916
719 => 0.017934039271728
720 => 0.017850746439462
721 => 0.017571205521014
722 => 0.016874616130195
723 => 0.016550351888361
724 => 0.016443339287508
725 => 0.016447228992303
726 => 0.016339933569646
727 => 0.016371536880262
728 => 0.016328943227936
729 => 0.016248281154942
730 => 0.016410770888259
731 => 0.016429496316327
801 => 0.016391569270964
802 => 0.016400502463126
803 => 0.016086482726365
804 => 0.016110356964936
805 => 0.015977422170782
806 => 0.015952498499431
807 => 0.015616450915766
808 => 0.015021093910427
809 => 0.015350979484087
810 => 0.014952524100036
811 => 0.014801623008512
812 => 0.015515965305854
813 => 0.015444265151972
814 => 0.015321545655834
815 => 0.015140017944061
816 => 0.015072687549977
817 => 0.014663609389732
818 => 0.014639438869677
819 => 0.014842189051934
820 => 0.01474862681903
821 => 0.014617230009245
822 => 0.014141324083684
823 => 0.013606248256316
824 => 0.013622398832177
825 => 0.013792596497423
826 => 0.014287469163409
827 => 0.014094113851424
828 => 0.013953832354083
829 => 0.013927561846477
830 => 0.014256392250195
831 => 0.014721756163556
901 => 0.014940094499774
902 => 0.014723727839616
903 => 0.014475177470434
904 => 0.014490305579735
905 => 0.014590946113399
906 => 0.014601522010507
907 => 0.01443974127156
908 => 0.014485281601938
909 => 0.014416101675799
910 => 0.013991544596785
911 => 0.013983865705511
912 => 0.013879672551413
913 => 0.013876517624116
914 => 0.013699259076795
915 => 0.013674459380695
916 => 0.013322501776165
917 => 0.013554161337292
918 => 0.013398776266361
919 => 0.013164574312834
920 => 0.01312419780777
921 => 0.013122984041272
922 => 0.013363457080945
923 => 0.013551351269813
924 => 0.013401479256196
925 => 0.013367356303842
926 => 0.013731700162057
927 => 0.013685334085031
928 => 0.013645181361356
929 => 0.014680087929271
930 => 0.013860878626
1001 => 0.013503656610941
1002 => 0.013061526532686
1003 => 0.013205486315579
1004 => 0.013235820757044
1005 => 0.012172577618776
1006 => 0.011741220009999
1007 => 0.011593194334035
1008 => 0.011508003464742
1009 => 0.011546826013639
1010 => 0.011158553572538
1011 => 0.011419479074391
1012 => 0.011083267960251
1013 => 0.011026901072839
1014 => 0.011628088193487
1015 => 0.011711739869241
1016 => 0.011354855831936
1017 => 0.011584033158164
1018 => 0.011500930273871
1019 => 0.011089031334818
1020 => 0.01107329982507
1021 => 0.010866623416401
1022 => 0.010543214857274
1023 => 0.010395408467542
1024 => 0.010318429616456
1025 => 0.010350192590702
1026 => 0.01033413225896
1027 => 0.010229327730718
1028 => 0.010340139531839
1029 => 0.010057061170571
1030 => 0.0099443370861969
1031 => 0.0098934222324639
1101 => 0.0096421738934559
1102 => 0.010042021731461
1103 => 0.010120796792698
1104 => 0.010199727065141
1105 => 0.01088676119877
1106 => 0.010852438914993
1107 => 0.011162695644714
1108 => 0.011150639638722
1109 => 0.01106214939358
1110 => 0.010688823605264
1111 => 0.010837624610594
1112 => 0.010379638244997
1113 => 0.010722792770148
1114 => 0.010566191375345
1115 => 0.010669845681038
1116 => 0.010483465893269
1117 => 0.010586616163254
1118 => 0.01013947728208
1119 => 0.0097219452862538
1120 => 0.009889972349893
1121 => 0.010072636984294
1122 => 0.01046870045376
1123 => 0.010232808318799
1124 => 0.0103176440506
1125 => 0.010033458550396
1126 => 0.0094471026899009
1127 => 0.0094504214003933
1128 => 0.0093602233257129
1129 => 0.0092822790200545
1130 => 0.010259903368141
1201 => 0.010138320326503
1202 => 0.0099445936620469
1203 => 0.010203904500813
1204 => 0.010272470402399
1205 => 0.010274422377225
1206 => 0.010463608871407
1207 => 0.010564577737265
1208 => 0.010582373937497
1209 => 0.010880062973737
1210 => 0.010979844412071
1211 => 0.011390830034973
1212 => 0.010556011234427
1213 => 0.010538818690598
1214 => 0.010207553536094
1215 => 0.0099974599380132
1216 => 0.010221938824498
1217 => 0.010420796473499
1218 => 0.010213732597562
1219 => 0.010240770768403
1220 => 0.0099628044326974
1221 => 0.01006216431818
1222 => 0.01014774643678
1223 => 0.010100493021174
1224 => 0.01002975237092
1225 => 0.010404492414024
1226 => 0.010383348112174
1227 => 0.010732314655549
1228 => 0.011004359030946
1229 => 0.011491911185408
1230 => 0.010983125095559
1231 => 0.010964582908203
]
'min_raw' => 0.0092822790200545
'max_raw' => 0.026837798428967
'avg_raw' => 0.018060038724511
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.009282'
'max' => '$0.026837'
'avg' => '$0.01806'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0016321785285353
'max_diff' => -0.0090658220167333
'year' => 2030
]
5 => [
'items' => [
101 => 0.011145835763865
102 => 0.010979816663203
103 => 0.011084735004037
104 => 0.011475007218668
105 => 0.01148325305558
106 => 0.011345124663139
107 => 0.011336719537906
108 => 0.011363248606634
109 => 0.01151863019079
110 => 0.011464335090892
111 => 0.011527166755078
112 => 0.011605738713255
113 => 0.011930745646095
114 => 0.012009103717297
115 => 0.011818734228278
116 => 0.011835922461659
117 => 0.011764719047007
118 => 0.011695937440629
119 => 0.01185054844702
120 => 0.012133103100086
121 => 0.012131345342254
122 => 0.012196892529688
123 => 0.012237727884437
124 => 0.012062432648547
125 => 0.011948321895768
126 => 0.011992079219439
127 => 0.012062048132901
128 => 0.011969389243821
129 => 0.011397455656651
130 => 0.01157094377174
131 => 0.011542066866253
201 => 0.011500942641289
202 => 0.011675386282555
203 => 0.011658560767797
204 => 0.011154571277455
205 => 0.011186835049437
206 => 0.01115653334429
207 => 0.011254444352764
208 => 0.010974529147429
209 => 0.011060629179333
210 => 0.011114630312205
211 => 0.011146437394323
212 => 0.011261346385253
213 => 0.011247863141442
214 => 0.011260508247887
215 => 0.011430887946588
216 => 0.012292609995365
217 => 0.012339511625198
218 => 0.012108550846438
219 => 0.012200815122053
220 => 0.012023687888851
221 => 0.012142594587149
222 => 0.012223947530221
223 => 0.011856329223748
224 => 0.011834561253462
225 => 0.011656702953161
226 => 0.011752273929334
227 => 0.011600213634447
228 => 0.011637523911969
301 => 0.011533201123366
302 => 0.011720961372391
303 => 0.011930906505794
304 => 0.011983946937476
305 => 0.011844420397062
306 => 0.011743393986555
307 => 0.011566024889874
308 => 0.011860993650583
309 => 0.011947251505225
310 => 0.011860540574794
311 => 0.011840447757542
312 => 0.011802371905156
313 => 0.011848525729622
314 => 0.011946781726423
315 => 0.011900446012835
316 => 0.01193105156799
317 => 0.01181441475205
318 => 0.012062490678564
319 => 0.012456494952593
320 => 0.01245776174076
321 => 0.012411425777405
322 => 0.012392466099522
323 => 0.012440009609826
324 => 0.012465800013829
325 => 0.012619547008163
326 => 0.012784523658633
327 => 0.013554397701428
328 => 0.013338220150912
329 => 0.014021298201691
330 => 0.014561524253273
331 => 0.01472351442492
401 => 0.014574491089231
402 => 0.014064690307922
403 => 0.014039677049458
404 => 0.014801534649072
405 => 0.014586274981892
406 => 0.014560670529432
407 => 0.014288282414658
408 => 0.014449297526414
409 => 0.014414081159524
410 => 0.014358490401544
411 => 0.014665696018364
412 => 0.015240757508617
413 => 0.015151128782468
414 => 0.015084225096156
415 => 0.014791072618103
416 => 0.014967615887867
417 => 0.014904752210968
418 => 0.015174854461203
419 => 0.015014851871661
420 => 0.0145846441782
421 => 0.014653156171367
422 => 0.014642800721426
423 => 0.0148559151474
424 => 0.014791943486548
425 => 0.014630309227937
426 => 0.01523879201096
427 => 0.01519928052359
428 => 0.015255298779098
429 => 0.015279959747594
430 => 0.015650332494951
501 => 0.015802062358938
502 => 0.015836507694468
503 => 0.015980639330046
504 => 0.015832921568074
505 => 0.016423897936942
506 => 0.016816862737812
507 => 0.017273311575806
508 => 0.017940306009998
509 => 0.018191102087297
510 => 0.018145798020722
511 => 0.018651505588423
512 => 0.019560250846335
513 => 0.018329481419367
514 => 0.019625484614506
515 => 0.019215184966002
516 => 0.018242371880372
517 => 0.018179734186371
518 => 0.018838534502551
519 => 0.020299690196658
520 => 0.019933687267575
521 => 0.020300288846333
522 => 0.019872628631522
523 => 0.019851391697254
524 => 0.020279518344255
525 => 0.021279859590943
526 => 0.020804634961873
527 => 0.02012328392624
528 => 0.020626382927955
529 => 0.020190552013055
530 => 0.019208502980394
531 => 0.019933407392033
601 => 0.019448684456059
602 => 0.019590152378065
603 => 0.020608967892387
604 => 0.020486381314252
605 => 0.02064501969757
606 => 0.020365027103303
607 => 0.020103469869479
608 => 0.01961525386905
609 => 0.019470717180081
610 => 0.019510661921027
611 => 0.019470697385451
612 => 0.019197545020148
613 => 0.019138557792868
614 => 0.019040243163111
615 => 0.019070714977867
616 => 0.018885854710965
617 => 0.019234724228689
618 => 0.019299477485406
619 => 0.019553355627103
620 => 0.019579714097982
621 => 0.020286761108876
622 => 0.019897331496718
623 => 0.020158594502289
624 => 0.020135224679968
625 => 0.018263455689765
626 => 0.018521368941857
627 => 0.018922601024476
628 => 0.018741846515114
629 => 0.018486301928916
630 => 0.018279935974128
701 => 0.017967270450622
702 => 0.018407341170748
703 => 0.018985987371409
704 => 0.019594389520542
705 => 0.020325344838638
706 => 0.020162204120897
707 => 0.019580724819312
708 => 0.019606809556011
709 => 0.019768055134313
710 => 0.019559227459706
711 => 0.019497640101663
712 => 0.019759593977056
713 => 0.019761397909429
714 => 0.019521116432125
715 => 0.019254087541149
716 => 0.019252968680345
717 => 0.019205453468389
718 => 0.019881081482174
719 => 0.020252608576058
720 => 0.020295203558626
721 => 0.020249741594352
722 => 0.020267238100081
723 => 0.02005105467019
724 => 0.020545185883715
725 => 0.020998649549758
726 => 0.02087711160042
727 => 0.020694908936726
728 => 0.020549775739023
729 => 0.020842922831441
730 => 0.020829869452872
731 => 0.020994688940228
801 => 0.020987211776238
802 => 0.020931789181815
803 => 0.020877113579736
804 => 0.02109389616173
805 => 0.021031466259537
806 => 0.020968939386463
807 => 0.020843532170127
808 => 0.020860577093621
809 => 0.020678405889785
810 => 0.020594125155303
811 => 0.019326745126457
812 => 0.018988059769912
813 => 0.019094617077657
814 => 0.019129698510126
815 => 0.018982302208921
816 => 0.019193630641846
817 => 0.019160695329427
818 => 0.019288827363537
819 => 0.019208776031471
820 => 0.019212061366062
821 => 0.019447475264924
822 => 0.019515816921286
823 => 0.019481057803275
824 => 0.019505401898057
825 => 0.0200664012873
826 => 0.0199866451139
827 => 0.019944276236381
828 => 0.019956012705008
829 => 0.020099360076922
830 => 0.020139489514582
831 => 0.019969458267372
901 => 0.020049645986495
902 => 0.020391075117184
903 => 0.02051055598971
904 => 0.02089188158074
905 => 0.020729887692148
906 => 0.021027234485589
907 => 0.021941177155635
908 => 0.022671297800489
909 => 0.021999848681969
910 => 0.023340622265941
911 => 0.024384606823611
912 => 0.02434453695744
913 => 0.024162494102013
914 => 0.022973945438871
915 => 0.021880225238786
916 => 0.02279516862797
917 => 0.022797501006829
918 => 0.022718906558275
919 => 0.02223076318833
920 => 0.022701920227113
921 => 0.02273931896186
922 => 0.022718385615528
923 => 0.022344127238304
924 => 0.021772703870792
925 => 0.02188435862901
926 => 0.022067251400665
927 => 0.021720997228492
928 => 0.021610348040203
929 => 0.021816065933102
930 => 0.022478931847049
1001 => 0.022353620885738
1002 => 0.022350348510117
1003 => 0.022886481942723
1004 => 0.022502726109813
1005 => 0.021885766953079
1006 => 0.021729976629312
1007 => 0.021177025932876
1008 => 0.021558950948447
1009 => 0.021572695749829
1010 => 0.02136351932198
1011 => 0.021902740467362
1012 => 0.021897771449579
1013 => 0.022409681674643
1014 => 0.023388261760265
1015 => 0.023098847475945
1016 => 0.022762290151466
1017 => 0.022798883264359
1018 => 0.0232002193933
1019 => 0.022957562408129
1020 => 0.023044823551861
1021 => 0.023200087313107
1022 => 0.02329376179525
1023 => 0.022785404947947
1024 => 0.022666882649322
1025 => 0.022424427622009
1026 => 0.02236117563102
1027 => 0.022558650191777
1028 => 0.022506622621897
1029 => 0.021571540552496
1030 => 0.021473819273496
1031 => 0.021476816245609
1101 => 0.02123109144317
1102 => 0.020856302138741
1103 => 0.021841226053274
1104 => 0.021762122878936
1105 => 0.021674799096566
1106 => 0.021685495761643
1107 => 0.022113017850774
1108 => 0.021865033448695
1109 => 0.022524340625465
1110 => 0.022388806890509
1111 => 0.022249797226667
1112 => 0.022230581856786
1113 => 0.022177074995954
1114 => 0.021993580061135
1115 => 0.021771998901005
1116 => 0.021625691826056
1117 => 0.019948557579792
1118 => 0.020259823940457
1119 => 0.020617907515581
1120 => 0.020741516530784
1121 => 0.020530074756796
1122 => 0.022001929071125
1123 => 0.022270851037494
1124 => 0.021456268860016
1125 => 0.021303893793782
1126 => 0.0220119187551
1127 => 0.021584893150893
1128 => 0.02177718275432
1129 => 0.021361557808501
1130 => 0.02220607561075
1201 => 0.022199641800051
1202 => 0.021871105300677
1203 => 0.022148782100227
1204 => 0.022100528923015
1205 => 0.021729612024371
1206 => 0.022217834338029
1207 => 0.022218076490206
1208 => 0.021901867252557
1209 => 0.021532604090087
1210 => 0.021466588558244
1211 => 0.021416854722939
1212 => 0.021764951279575
1213 => 0.022077053563785
1214 => 0.022657798537982
1215 => 0.022803811622655
1216 => 0.023373710412777
1217 => 0.023034363431128
1218 => 0.023184791552814
1219 => 0.023348102558261
1220 => 0.023426399859835
1221 => 0.023298818608584
1222 => 0.024184106009344
1223 => 0.024258851390473
1224 => 0.02428391287022
1225 => 0.023985398939698
1226 => 0.024250549178057
1227 => 0.024126494162382
1228 => 0.024449250849693
1229 => 0.024499863219428
1230 => 0.02445699634285
1231 => 0.024473061507866
]
'min_raw' => 0.010974529147429
'max_raw' => 0.024499863219428
'avg_raw' => 0.017737196183429
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.010974'
'max' => '$0.024499'
'avg' => '$0.017737'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0016922501273746
'max_diff' => -0.0023379352095384
'year' => 2031
]
6 => [
'items' => [
101 => 0.023717624886717
102 => 0.023678451512665
103 => 0.023144319777847
104 => 0.023361982407888
105 => 0.022955072553868
106 => 0.023084107860214
107 => 0.023140985393757
108 => 0.023111275798006
109 => 0.023374288726412
110 => 0.023150674007275
111 => 0.02256051799781
112 => 0.021970201200735
113 => 0.021962790254209
114 => 0.021807370261496
115 => 0.021695030073356
116 => 0.021716670779074
117 => 0.021792935448666
118 => 0.021690597432118
119 => 0.021712436436618
120 => 0.022075109423839
121 => 0.022147840904961
122 => 0.021900670914085
123 => 0.020908247734258
124 => 0.020664704596624
125 => 0.020839758574285
126 => 0.020756094047883
127 => 0.016751787843362
128 => 0.017692540189401
129 => 0.017133577090316
130 => 0.01739117300303
131 => 0.016820616421657
201 => 0.017092915927721
202 => 0.017042632151737
203 => 0.018555334085281
204 => 0.018531715325242
205 => 0.018543020375796
206 => 0.018003400857719
207 => 0.018863029402282
208 => 0.019286513334576
209 => 0.019208137729368
210 => 0.019227863180663
211 => 0.018888914573874
212 => 0.018546302139214
213 => 0.018166292221502
214 => 0.018872303677967
215 => 0.018793807256025
216 => 0.018973849805838
217 => 0.019431748702096
218 => 0.019499176053959
219 => 0.019589799098644
220 => 0.019557317188112
221 => 0.020331168077016
222 => 0.020237449628337
223 => 0.020463284125015
224 => 0.019998725431244
225 => 0.019473033172925
226 => 0.019572950085057
227 => 0.019563327282938
228 => 0.01944081796742
229 => 0.019330222035133
301 => 0.019146110968085
302 => 0.019728665627535
303 => 0.019705014972231
304 => 0.020087891590723
305 => 0.02002021442934
306 => 0.01956824978221
307 => 0.019584391788002
308 => 0.019692954534532
309 => 0.020068691439821
310 => 0.020180235735429
311 => 0.020128563973432
312 => 0.020250867201376
313 => 0.02034753068604
314 => 0.020263006646793
315 => 0.021459688797102
316 => 0.020962742935905
317 => 0.021204950890925
318 => 0.021262716061026
319 => 0.021114751792485
320 => 0.021146839944128
321 => 0.02119544475037
322 => 0.021490563616072
323 => 0.022265040913008
324 => 0.022608051635775
325 => 0.023640016319072
326 => 0.022579569370189
327 => 0.022516646836808
328 => 0.022702534838618
329 => 0.023308407352269
330 => 0.023799410117872
331 => 0.023962304061851
401 => 0.023983833185634
402 => 0.024289433053524
403 => 0.024464597198699
404 => 0.024252325191488
405 => 0.024072446891182
406 => 0.023428145146804
407 => 0.023502724828091
408 => 0.024016504875048
409 => 0.024742249452869
410 => 0.025365013801494
411 => 0.025146943432134
412 => 0.026810666416657
413 => 0.026975617754874
414 => 0.026952826813448
415 => 0.027328610509955
416 => 0.026582756399407
417 => 0.026263889316904
418 => 0.024111338621414
419 => 0.024716117565445
420 => 0.025595199278016
421 => 0.02547884951697
422 => 0.024840436879379
423 => 0.02536452950826
424 => 0.02519124809526
425 => 0.025054573855375
426 => 0.025680705043895
427 => 0.024992248082065
428 => 0.025588331393179
429 => 0.024823848380983
430 => 0.025147939559212
501 => 0.024963969731923
502 => 0.025083020756673
503 => 0.024387050898596
504 => 0.024762579340301
505 => 0.024371427680798
506 => 0.024371242223982
507 => 0.024362607529419
508 => 0.024822795722192
509 => 0.024837802442637
510 => 0.024497722672872
511 => 0.024448711865004
512 => 0.024629930509295
513 => 0.024417770938069
514 => 0.024517039066129
515 => 0.024420777668542
516 => 0.02439910720037
517 => 0.024226433223047
518 => 0.024152040525847
519 => 0.024181211819283
520 => 0.024081635155954
521 => 0.024021636614452
522 => 0.024350672309373
523 => 0.024174881810839
524 => 0.024323729894282
525 => 0.024154098717073
526 => 0.02356608315208
527 => 0.023227909182501
528 => 0.022117202289302
529 => 0.022432197386386
530 => 0.022641039461639
531 => 0.022572017157013
601 => 0.022720303775434
602 => 0.022729407369471
603 => 0.02268119787822
604 => 0.022625377463368
605 => 0.022598207172481
606 => 0.022800712260551
607 => 0.022918273280184
608 => 0.022661999557837
609 => 0.022601958210341
610 => 0.022861065092894
611 => 0.02301912014157
612 => 0.024186109817535
613 => 0.024099655453012
614 => 0.024316638942152
615 => 0.024292209931157
616 => 0.024519643195956
617 => 0.024891400463432
618 => 0.024135513993686
619 => 0.024266709748247
620 => 0.024234543578981
621 => 0.024585725380602
622 => 0.024586821731854
623 => 0.02437627069895
624 => 0.024490413829688
625 => 0.024426702265463
626 => 0.024541837673151
627 => 0.024098500802265
628 => 0.024638437255746
629 => 0.024944546432134
630 => 0.024948796758345
701 => 0.02509389007852
702 => 0.025241313295056
703 => 0.025524279321341
704 => 0.025233421526163
705 => 0.024710196667073
706 => 0.024747971811894
707 => 0.02444120526845
708 => 0.024446362069467
709 => 0.024418834661492
710 => 0.024501446484993
711 => 0.024116629451858
712 => 0.024206945240373
713 => 0.024080502607563
714 => 0.024266434886657
715 => 0.024066402490059
716 => 0.02423452806748
717 => 0.024307085493244
718 => 0.024574823956361
719 => 0.024026857301365
720 => 0.022909516197746
721 => 0.023144394844179
722 => 0.022796990876786
723 => 0.022829144436628
724 => 0.022894099744711
725 => 0.022683558339161
726 => 0.022723723004418
727 => 0.02272228803994
728 => 0.022709922291305
729 => 0.022655152340226
730 => 0.022575725075258
731 => 0.022892138852469
801 => 0.022945903718944
802 => 0.023065416357061
803 => 0.0234210049019
804 => 0.023385473220915
805 => 0.023443426866796
806 => 0.023316914383233
807 => 0.022835012987894
808 => 0.022861182552159
809 => 0.022534847666442
810 => 0.023057071240332
811 => 0.022933401805021
812 => 0.022853671315558
813 => 0.02283191611281
814 => 0.023188386092873
815 => 0.02329504749789
816 => 0.023228583268064
817 => 0.02309226319362
818 => 0.023354038035965
819 => 0.023424077940383
820 => 0.02343975729201
821 => 0.023903572122299
822 => 0.023465679388683
823 => 0.023571084521944
824 => 0.024393425282423
825 => 0.023647675687936
826 => 0.024042715880336
827 => 0.024023380718608
828 => 0.024225469913609
829 => 0.024006803506077
830 => 0.024009514138267
831 => 0.02418895565272
901 => 0.023936962408119
902 => 0.023874565336967
903 => 0.023788364230066
904 => 0.023976581193379
905 => 0.024089408750564
906 => 0.024998715998765
907 => 0.025586169950551
908 => 0.025560667025205
909 => 0.025793716023397
910 => 0.025688725315227
911 => 0.025349682623397
912 => 0.025928387156499
913 => 0.0257452608282
914 => 0.025760357540206
915 => 0.025759795639831
916 => 0.025881558638969
917 => 0.025795278394665
918 => 0.025625211176656
919 => 0.025738109732675
920 => 0.026073378082079
921 => 0.027114061325917
922 => 0.027696441456388
923 => 0.027079001310805
924 => 0.027504903255375
925 => 0.027249513853013
926 => 0.027203102001427
927 => 0.027470599896523
928 => 0.027738566011275
929 => 0.027721497728214
930 => 0.027526968089117
1001 => 0.027417083231998
1002 => 0.028249168184232
1003 => 0.02886223420284
1004 => 0.028820427210418
1005 => 0.029004949678608
1006 => 0.029546713352279
1007 => 0.029596245432996
1008 => 0.029590005529308
1009 => 0.029467235099112
1010 => 0.030000671792744
1011 => 0.030445674067498
1012 => 0.029438817291701
1013 => 0.029822215171201
1014 => 0.029994334831617
1015 => 0.03024705755871
1016 => 0.030673443160562
1017 => 0.03113661101737
1018 => 0.031202108030699
1019 => 0.031155634765421
1020 => 0.030850163113237
1021 => 0.031356966908897
1022 => 0.031653840686383
1023 => 0.03183062222704
1024 => 0.032278910800504
1025 => 0.029995397784043
1026 => 0.028379013773032
1027 => 0.028126592068844
1028 => 0.028639901530303
1029 => 0.028775257141723
1030 => 0.028720695464481
1031 => 0.026901308304883
1101 => 0.02811701337198
1102 => 0.029425009804791
1103 => 0.029475255274758
1104 => 0.030130065637939
1105 => 0.030343298733775
1106 => 0.030870506904092
1107 => 0.030837529889495
1108 => 0.030965896689253
1109 => 0.030936387384992
1110 => 0.031912929503726
1111 => 0.032990200478598
1112 => 0.03295289801025
1113 => 0.03279802756192
1114 => 0.033028036587025
1115 => 0.034139895680466
1116 => 0.034037533512321
1117 => 0.034136969639485
1118 => 0.035447914172285
1119 => 0.03715232854461
1120 => 0.03636045694826
1121 => 0.038078590457426
1122 => 0.039160064427102
1123 => 0.041030361831162
1124 => 0.040796191384764
1125 => 0.041524284439288
1126 => 0.040376977412867
1127 => 0.037742528571196
1128 => 0.037325616957736
1129 => 0.038160284565766
1130 => 0.040212233434432
1201 => 0.038095661393625
1202 => 0.038523841160851
1203 => 0.038400525359085
1204 => 0.038393954384067
1205 => 0.038644741774406
1206 => 0.038280961584529
1207 => 0.036798855648162
1208 => 0.037478096064694
1209 => 0.037215808720067
1210 => 0.037506836083747
1211 => 0.039077390736715
1212 => 0.038383011087291
1213 => 0.037651538533446
1214 => 0.038568967442722
1215 => 0.039737169707008
1216 => 0.039664065708771
1217 => 0.039522213397089
1218 => 0.040321827450894
1219 => 0.041642555602845
1220 => 0.041999543115202
1221 => 0.042263063998535
1222 => 0.042299399076125
1223 => 0.042673672957426
1224 => 0.04066110796851
1225 => 0.043855100292254
1226 => 0.044406614534307
1227 => 0.044302952714724
1228 => 0.044915937583499
1229 => 0.044735581885181
1230 => 0.044474274775259
1231 => 0.045445986177888
]
'min_raw' => 0.016751787843362
'max_raw' => 0.045445986177888
'avg_raw' => 0.031098887010625
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.016751'
'max' => '$0.045445'
'avg' => '$0.031098'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0057772586959334
'max_diff' => 0.02094612295846
'year' => 2032
]
7 => [
'items' => [
101 => 0.04433199746784
102 => 0.042750830741206
103 => 0.041883371403043
104 => 0.043025711835485
105 => 0.04372329927539
106 => 0.044184360198274
107 => 0.044323876954958
108 => 0.040817337659562
109 => 0.038927507460928
110 => 0.040138866951305
111 => 0.041616809133131
112 => 0.040652897925067
113 => 0.040690681419498
114 => 0.039316397348208
115 => 0.041738402779167
116 => 0.041385536960148
117 => 0.043216205453426
118 => 0.042779301725473
119 => 0.0442721408156
120 => 0.043879026252684
121 => 0.04551082282461
122 => 0.04616179065628
123 => 0.047254866960707
124 => 0.048058938339865
125 => 0.048531104433141
126 => 0.048502757351951
127 => 0.050373714645723
128 => 0.049270476495855
129 => 0.047884549366352
130 => 0.047859482317124
131 => 0.048577273616232
201 => 0.050081567262738
202 => 0.050471608718694
203 => 0.05068958868214
204 => 0.050355744780186
205 => 0.049158258838294
206 => 0.048641190479977
207 => 0.049081747702176
208 => 0.04854298407694
209 => 0.049473041244471
210 => 0.050750208384982
211 => 0.050486478420933
212 => 0.051368088150144
213 => 0.052280461471829
214 => 0.053585196299089
215 => 0.053926302297125
216 => 0.05449013754078
217 => 0.05507050921673
218 => 0.055256908957589
219 => 0.055612803899334
220 => 0.055610928157316
221 => 0.056683441518755
222 => 0.057866456969396
223 => 0.058313017915142
224 => 0.059339860186371
225 => 0.057581428781736
226 => 0.058915219201556
227 => 0.060118331547173
228 => 0.058683931410228
301 => 0.060660917826639
302 => 0.06073767972924
303 => 0.061896693322597
304 => 0.060721811005593
305 => 0.060024169636112
306 => 0.062038234129521
307 => 0.063012776495444
308 => 0.062719236403739
309 => 0.060485381812003
310 => 0.059185182625082
311 => 0.055782310563216
312 => 0.059813159513629
313 => 0.061776468455899
314 => 0.060480297316143
315 => 0.061134010645264
316 => 0.064700458601687
317 => 0.066058331073089
318 => 0.065775903091282
319 => 0.065823628771047
320 => 0.066556312109487
321 => 0.069805433528212
322 => 0.067858484660067
323 => 0.069346854118982
324 => 0.070136279913275
325 => 0.070869542586191
326 => 0.069068881211555
327 => 0.066726247220123
328 => 0.065984236697951
329 => 0.060351418641035
330 => 0.060058205999084
331 => 0.059893616857904
401 => 0.058855905604362
402 => 0.058040548812113
403 => 0.05739214681866
404 => 0.055690546358612
405 => 0.056264786562873
406 => 0.053552790581174
407 => 0.055287829503029
408 => 0.050959418432805
409 => 0.054564247791517
410 => 0.052602303063048
411 => 0.053919696181881
412 => 0.053915099921395
413 => 0.051489361509756
414 => 0.050090246217792
415 => 0.050981816936213
416 => 0.051937651519333
417 => 0.05209273246463
418 => 0.05333199695148
419 => 0.053677849031858
420 => 0.052629901082021
421 => 0.050869721734187
422 => 0.051278571251272
423 => 0.050081960895378
424 => 0.047984947273625
425 => 0.049491059067113
426 => 0.050005311852471
427 => 0.05023243517882
428 => 0.048170263125467
429 => 0.047522283894371
430 => 0.047177305188807
501 => 0.050603521217747
502 => 0.050791217066058
503 => 0.049830938568581
504 => 0.054171488434517
505 => 0.053189088318408
506 => 0.054286669941974
507 => 0.051241472442955
508 => 0.051357803088319
509 => 0.049916157790829
510 => 0.05072338282665
511 => 0.050152862189409
512 => 0.050658167020909
513 => 0.05096104465346
514 => 0.052402453391143
515 => 0.054580706363934
516 => 0.052187154992478
517 => 0.051144250383648
518 => 0.051791262537448
519 => 0.053514341165283
520 => 0.056124893489224
521 => 0.054579393971189
522 => 0.055265260413009
523 => 0.055415091718473
524 => 0.054275497591376
525 => 0.05616691195019
526 => 0.057180536270901
527 => 0.058220305083952
528 => 0.059123107210663
529 => 0.057804998555013
530 => 0.059215563760013
531 => 0.058078897203061
601 => 0.057059189795047
602 => 0.057060736270268
603 => 0.056421058917672
604 => 0.055181603442485
605 => 0.054953028836202
606 => 0.056142102803877
607 => 0.05709562752023
608 => 0.057174164382944
609 => 0.057702084659785
610 => 0.058014502441609
611 => 0.061076621414858
612 => 0.062308230997076
613 => 0.063814219881035
614 => 0.06440088742422
615 => 0.066166546397252
616 => 0.064740633376719
617 => 0.064432128125313
618 => 0.060149216999385
619 => 0.060850543456323
620 => 0.061973434781817
621 => 0.060167733063756
622 => 0.061313035188623
623 => 0.061539142088888
624 => 0.060106376010337
625 => 0.060871678279059
626 => 0.058839262349642
627 => 0.054625007477244
628 => 0.056171603620572
629 => 0.057310418960694
630 => 0.055685189055421
701 => 0.05859835075554
702 => 0.056896541830194
703 => 0.056357150102094
704 => 0.054252790663741
705 => 0.055245967314421
706 => 0.056589252955385
707 => 0.055759258602986
708 => 0.057481621508492
709 => 0.059920946720098
710 => 0.061659355130215
711 => 0.061792808542041
712 => 0.060675128398653
713 => 0.062466217961371
714 => 0.062479264093459
715 => 0.060458907749897
716 => 0.059221450738857
717 => 0.058940297902316
718 => 0.059642672811254
719 => 0.060495485616266
720 => 0.061840133717444
721 => 0.062652676403292
722 => 0.064771356788642
723 => 0.065344610953591
724 => 0.065974443481066
725 => 0.066816093970932
726 => 0.067826711178772
727 => 0.065615538262488
728 => 0.065703392284594
729 => 0.063644378680723
730 => 0.061444027352568
731 => 0.063113819732973
801 => 0.06529685114718
802 => 0.064796061328726
803 => 0.064739712243942
804 => 0.064834475774615
805 => 0.064456896605767
806 => 0.062749120018803
807 => 0.061891485308077
808 => 0.062998052890864
809 => 0.063586144313458
810 => 0.064498222822939
811 => 0.064385789895004
812 => 0.066735206185348
813 => 0.067648118313115
814 => 0.067414556325119
815 => 0.067457537351894
816 => 0.069110321152849
817 => 0.070948556660424
818 => 0.072670306789808
819 => 0.074421744972306
820 => 0.072310317883509
821 => 0.071238265422537
822 => 0.072344349912533
823 => 0.071757445912874
824 => 0.075129970381946
825 => 0.075363476658923
826 => 0.078735757256089
827 => 0.081936453106504
828 => 0.079926153389281
829 => 0.081821775476734
830 => 0.083872045316652
831 => 0.087827348482146
901 => 0.08649534152525
902 => 0.085475045071479
903 => 0.084510869852701
904 => 0.086517165424472
905 => 0.0890982326262
906 => 0.089654169780298
907 => 0.090555000354275
908 => 0.08960788715406
909 => 0.090748580682622
910 => 0.094775730084581
911 => 0.09368755876754
912 => 0.092142180565075
913 => 0.095321228246381
914 => 0.096471713244011
915 => 0.10454641947105
916 => 0.11474106963216
917 => 0.11052041752378
918 => 0.10790052256051
919 => 0.10851626002162
920 => 0.11223900114977
921 => 0.11343462744623
922 => 0.11018450301534
923 => 0.11133250190975
924 => 0.1176580886867
925 => 0.12105156304341
926 => 0.11644276906258
927 => 0.10372728925691
928 => 0.092003036166292
929 => 0.095112836035922
930 => 0.094760281239031
1001 => 0.10155633509784
1002 => 0.093661606241511
1003 => 0.093794533228291
1004 => 0.10073112228375
1005 => 0.098880559246998
1006 => 0.095882884129662
1007 => 0.092024922512074
1008 => 0.084893123643707
1009 => 0.07857629050107
1010 => 0.090965054973573
1011 => 0.090430828922012
1012 => 0.089657190431487
1013 => 0.091378839175723
1014 => 0.099738676779208
1015 => 0.099545955464295
1016 => 0.098319960786091
1017 => 0.099249866944087
1018 => 0.095719867084135
1019 => 0.096629628424647
1020 => 0.092001178984701
1021 => 0.09409343143268
1022 => 0.095876452465184
1023 => 0.096234420335537
1024 => 0.097040940225734
1025 => 0.090149316068259
1026 => 0.093243452987511
1027 => 0.095060968546148
1028 => 0.086849367130442
1029 => 0.094898651588471
1030 => 0.090029348224158
1031 => 0.088376633527827
1101 => 0.090601796137832
1102 => 0.089734648104671
1103 => 0.088989125146401
1104 => 0.088573110525976
1105 => 0.090207024364528
1106 => 0.09013080033101
1107 => 0.087457400162129
1108 => 0.083970058623555
1109 => 0.085140524911985
1110 => 0.084715283536218
1111 => 0.083174153933212
1112 => 0.08421268920894
1113 => 0.079639505445308
1114 => 0.071771580473387
1115 => 0.076969372710898
1116 => 0.076769263363863
1117 => 0.076668359156852
1118 => 0.080574356366916
1119 => 0.080198884861856
1120 => 0.079517400403545
1121 => 0.083161637936709
1122 => 0.081831442215192
1123 => 0.085930791995377
1124 => 0.088630888889928
1125 => 0.087946056978485
1126 => 0.090485511158511
1127 => 0.08516749009126
1128 => 0.086933923367829
1129 => 0.087297982817959
1130 => 0.08311666861123
1201 => 0.080260316643619
1202 => 0.080069830532175
1203 => 0.075117309849885
1204 => 0.077762906423015
1205 => 0.080090921925143
1206 => 0.078975983160925
1207 => 0.078623026856021
1208 => 0.080426204070891
1209 => 0.080566326383655
1210 => 0.077371522803142
1211 => 0.078035823633802
1212 => 0.080806068528479
1213 => 0.077966020570173
1214 => 0.072448271306384
1215 => 0.071079793200112
1216 => 0.07089721299468
1217 => 0.067185791835104
1218 => 0.071171241450806
1219 => 0.069431485890143
1220 => 0.074927352860806
1221 => 0.071788143122089
1222 => 0.071652818064512
1223 => 0.071448254392114
1224 => 0.06825368088319
1225 => 0.068953089455906
1226 => 0.07127803007455
1227 => 0.072107595079613
1228 => 0.072021064653159
1229 => 0.071266636597152
1230 => 0.071612009897895
1231 => 0.070499442160166
]
'min_raw' => 0.038927507460928
'max_raw' => 0.12105156304341
'avg_raw' => 0.079989535252168
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.038927'
'max' => '$0.121051'
'avg' => '$0.079989'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.022175719617566
'max_diff' => 0.07560557686552
'year' => 2033
]
8 => [
'items' => [
101 => 0.070106571335879
102 => 0.068866562946795
103 => 0.067044093175901
104 => 0.067297518775401
105 => 0.063686729284106
106 => 0.061719379530146
107 => 0.061174843047502
108 => 0.060446666105166
109 => 0.061257092570744
110 => 0.063676500371149
111 => 0.060758181257863
112 => 0.055754927834418
113 => 0.056055631890296
114 => 0.056731224624018
115 => 0.055472262034219
116 => 0.054280759599696
117 => 0.055316674296866
118 => 0.053196729864628
119 => 0.0569874097805
120 => 0.056884882512033
121 => 0.058297813570597
122 => 0.059181348357781
123 => 0.057145086721106
124 => 0.056632972426119
125 => 0.056924696002841
126 => 0.052103155101932
127 => 0.057903790814513
128 => 0.057953954953032
129 => 0.0575244191435
130 => 0.060613078585914
131 => 0.067131113386446
201 => 0.064678766507143
202 => 0.063729143672901
203 => 0.061923909970835
204 => 0.064329276694666
205 => 0.064144582059842
206 => 0.063309322877808
207 => 0.062804155518346
208 => 0.063734941867431
209 => 0.062688820789138
210 => 0.062500908697992
211 => 0.061362365876017
212 => 0.06095595788897
213 => 0.060655069594929
214 => 0.060323821147862
215 => 0.061054472680121
216 => 0.059398720182808
217 => 0.057402044986468
218 => 0.057236043048217
219 => 0.057694388994767
220 => 0.057491605033261
221 => 0.057235072196626
222 => 0.056745281148928
223 => 0.056599970607806
224 => 0.0570721593718
225 => 0.056539085787566
226 => 0.057325664899124
227 => 0.057111758904188
228 => 0.05591689740481
301 => 0.054427657582198
302 => 0.05441440022399
303 => 0.054093545947052
304 => 0.053684889784606
305 => 0.053571210989001
306 => 0.055229432450471
307 => 0.058661901249324
308 => 0.057988025492092
309 => 0.058474969788257
310 => 0.060870253778907
311 => 0.061631642530832
312 => 0.061091226829197
313 => 0.060351472485409
314 => 0.060384017922219
315 => 0.062911982453809
316 => 0.06306964850078
317 => 0.063468019736481
318 => 0.063980039354054
319 => 0.061178425984105
320 => 0.060252062184439
321 => 0.059813099623451
322 => 0.058461264835497
323 => 0.05991910275675
324 => 0.05906968303088
325 => 0.05918429877221
326 => 0.059109655120308
327 => 0.059150415601628
328 => 0.056986350208209
329 => 0.057774821897642
330 => 0.05646383478736
331 => 0.054708570211902
401 => 0.05470268594957
402 => 0.055132284467732
403 => 0.054876742458937
404 => 0.054189085483858
405 => 0.054286763911518
406 => 0.053430998103139
407 => 0.054390669374796
408 => 0.054418189312998
409 => 0.054048663599763
410 => 0.055527169602865
411 => 0.056132914718683
412 => 0.055889684978223
413 => 0.056115849071691
414 => 0.058016028072171
415 => 0.058325840159872
416 => 0.058463438224191
417 => 0.058279075046254
418 => 0.056150580855612
419 => 0.056244988624023
420 => 0.055552287059961
421 => 0.054967027233421
422 => 0.054990434557199
423 => 0.055291334186492
424 => 0.056605380515147
425 => 0.059370713546539
426 => 0.059475655913648
427 => 0.059602849123969
428 => 0.059085490415407
429 => 0.058929450078449
430 => 0.059135307560325
501 => 0.060173821252613
502 => 0.062845160422893
503 => 0.061900930747372
504 => 0.061133257323363
505 => 0.061806713879488
506 => 0.061703040521399
507 => 0.060827933045952
508 => 0.060803371693752
509 => 0.059123760659586
510 => 0.058502846703147
511 => 0.057983964526543
512 => 0.057417358735453
513 => 0.057081455829697
514 => 0.057597555358079
515 => 0.05771559342653
516 => 0.056587132787847
517 => 0.0564333277726
518 => 0.057354853089663
519 => 0.05694932415555
520 => 0.057366420720919
521 => 0.057463190701872
522 => 0.057447608506137
523 => 0.057024189724222
524 => 0.057294064229285
525 => 0.056655730571349
526 => 0.055961638592959
527 => 0.055518851154205
528 => 0.055132460386661
529 => 0.055346852441657
530 => 0.054582583912037
531 => 0.054338079027725
601 => 0.057202636819338
602 => 0.059318716459189
603 => 0.059287947823166
604 => 0.059100651664427
605 => 0.05882236756418
606 => 0.060153463037355
607 => 0.059689735990595
608 => 0.060027136162804
609 => 0.060113018667272
610 => 0.060372959142141
611 => 0.060465865519268
612 => 0.060185037919963
613 => 0.059242546196492
614 => 0.056893946431027
615 => 0.055800666900279
616 => 0.055439866445121
617 => 0.055452980856408
618 => 0.055091226847793
619 => 0.055197779616007
620 => 0.055054172143397
621 => 0.054782214332651
622 => 0.055330059813201
623 => 0.0553931939013
624 => 0.055265320219874
625 => 0.055295439100945
626 => 0.054236699634299
627 => 0.054317193296487
628 => 0.053868994356785
629 => 0.053784962458709
630 => 0.052651954568289
701 => 0.050644666858289
702 => 0.051756899101762
703 => 0.050413478955167
704 => 0.049904705389515
705 => 0.05231316031879
706 => 0.052071418244032
707 => 0.0516576608948
708 => 0.051045627540699
709 => 0.050818618416185
710 => 0.049439382837995
711 => 0.0493578902421
712 => 0.050041476637144
713 => 0.049726025036603
714 => 0.049283011518579
715 => 0.047678461463858
716 => 0.045874415954086
717 => 0.0459288687482
718 => 0.046502702059399
719 => 0.048171199803674
720 => 0.047519288869682
721 => 0.047046320007254
722 => 0.046957747156713
723 => 0.048066421821055
724 => 0.049635428745622
725 => 0.050371571690077
726 => 0.049642076389116
727 => 0.048804071466187
728 => 0.048855076942905
729 => 0.049194393528652
730 => 0.049230050904136
731 => 0.048684595847607
801 => 0.048838138250999
802 => 0.048604893300035
803 => 0.04717346946651
804 => 0.047147579548456
805 => 0.046796285054881
806 => 0.046785647997229
807 => 0.046188008429141
808 => 0.046104394522278
809 => 0.044917744885709
810 => 0.045698801270005
811 => 0.04517490965472
812 => 0.044385281416947
813 => 0.044249149211126
814 => 0.044245056912635
815 => 0.045055828555185
816 => 0.045689326931307
817 => 0.045184022973665
818 => 0.045068975057416
819 => 0.046297385813066
820 => 0.046141059347197
821 => 0.046005681635952
822 => 0.049494941384546
823 => 0.0467329200232
824 => 0.045528521058986
825 => 0.044037848631611
826 => 0.044523219090587
827 => 0.044625493777869
828 => 0.041040695303932
829 => 0.039586343009514
830 => 0.03908726410818
831 => 0.038800037144523
901 => 0.038930930078631
902 => 0.037621842435145
903 => 0.038501570981878
904 => 0.037368011737043
905 => 0.037177966840726
906 => 0.039204911191535
907 => 0.039486948656713
908 => 0.038283689208092
909 => 0.039056376564116
910 => 0.038776189387664
911 => 0.037387443356784
912 => 0.037334403473329
913 => 0.036637579531816
914 => 0.035547184995052
915 => 0.03504884543256
916 => 0.034789305861631
917 => 0.034896396946922
918 => 0.034842248417158
919 => 0.03448889263297
920 => 0.034862502357084
921 => 0.033908083898169
922 => 0.033528026777557
923 => 0.033356363793434
924 => 0.03250926247687
925 => 0.033857377379189
926 => 0.03412297299805
927 => 0.034389091922327
928 => 0.036705475471049
929 => 0.036589755494987
930 => 0.037635807720675
1001 => 0.037595160054751
1002 => 0.037296809015062
1003 => 0.036038115054979
1004 => 0.036539808033406
1005 => 0.034995675026208
1006 => 0.036152644466039
1007 => 0.035624651929899
1008 => 0.035974129658457
1009 => 0.035345737191373
1010 => 0.035693515528346
1011 => 0.03418595557223
1012 => 0.032778217297149
1013 => 0.033344732273483
1014 => 0.033960598841605
1015 => 0.035295954481176
1016 => 0.034500627678692
1017 => 0.034786657271501
1018 => 0.033828506016367
1019 => 0.031851566294648
1020 => 0.031862755558778
1021 => 0.031558646452564
1022 => 0.031295851784139
1023 => 0.034591980529266
1024 => 0.034182054815725
1025 => 0.033528891840948
1026 => 0.034403176438352
1027 => 0.034634351162667
1028 => 0.034640932382075
1029 => 0.035278787855789
1030 => 0.035619211436452
1031 => 0.035679212568024
1101 => 0.036682891937692
1102 => 0.037019312023554
1103 => 0.038404978745266
1104 => 0.03559032887404
1105 => 0.035532363012174
1106 => 0.034415479415571
1107 => 0.033707134181374
1108 => 0.034463980419772
1109 => 0.035134442867178
1110 => 0.034436312552719
1111 => 0.034527473633452
1112 => 0.033590290725632
1113 => 0.033925289516623
1114 => 0.034213835604635
1115 => 0.03405451741479
1116 => 0.033816010373505
1117 => 0.035079472592344
1118 => 0.035008183102409
1119 => 0.036184748167463
1120 => 0.037101964772648
1121 => 0.038745780901219
1122 => 0.037030373076982
1123 => 0.036967856797739
1124 => 0.037578963455273
1125 => 0.037019218466309
1126 => 0.037372957977594
1127 => 0.03868878799716
1128 => 0.038716589412015
1129 => 0.038250879893084
1130 => 0.038222541426533
1201 => 0.038311986033948
1202 => 0.038835865893327
1203 => 0.038652806173258
1204 => 0.038864647515827
1205 => 0.03912955835854
1206 => 0.040225341923869
1207 => 0.040489531631712
1208 => 0.039847687608312
1209 => 0.039905638937202
1210 => 0.039665571653438
1211 => 0.039433669665356
1212 => 0.039954951467999
1213 => 0.040907604208147
1214 => 0.040901677804893
1215 => 0.041122674723684
1216 => 0.041260353973254
1217 => 0.040669333846731
1218 => 0.040284601476776
1219 => 0.040432132348574
1220 => 0.040668037425382
1221 => 0.040355631511614
1222 => 0.038427317491342
1223 => 0.039012244783916
1224 => 0.038914884280948
1225 => 0.038776231085281
1226 => 0.039364380001073
1227 => 0.039307651603346
1228 => 0.037608415849236
1229 => 0.037717195409057
1230 => 0.037615031094558
1231 => 0.037945144895558
]
'min_raw' => 0.031295851784139
'max_raw' => 0.070106571335879
'avg_raw' => 0.050701211560009
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.031295'
'max' => '$0.0701065'
'avg' => '$0.0507012'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0076316556767888
'max_diff' => -0.050944991707529
'year' => 2034
]
9 => [
'items' => [
101 => 0.037001391237714
102 => 0.037291683506589
103 => 0.037473752096306
104 => 0.037580991894366
105 => 0.037968415579978
106 => 0.037922955882099
107 => 0.03796558974133
108 => 0.038540036791031
109 => 0.041445392841997
110 => 0.041603524961545
111 => 0.040824824570788
112 => 0.041135900017709
113 => 0.040538703184343
114 => 0.040939605419453
115 => 0.041213892546902
116 => 0.039974441760339
117 => 0.039901049528728
118 => 0.039301387851595
119 => 0.039623612070312
120 => 0.039110930169591
121 => 0.039236724375177
122 => 0.038884992809818
123 => 0.039518039598407
124 => 0.040225884273576
125 => 0.040404713792156
126 => 0.039934290319719
127 => 0.039593672723256
128 => 0.03899566043028
129 => 0.039990168201073
130 => 0.040280992580328
131 => 0.039988640624416
201 => 0.039920896288215
202 => 0.039792520893526
203 => 0.039948131735068
204 => 0.040279408688301
205 => 0.040123184594881
206 => 0.040226373360899
207 => 0.039833124192632
208 => 0.040669529498985
209 => 0.041997942417372
210 => 0.042002213482122
211 => 0.041845988546596
212 => 0.041782064668892
213 => 0.041942360933263
214 => 0.042029315080988
215 => 0.042547683806656
216 => 0.04310391410202
217 => 0.04569959818819
218 => 0.044970740483591
219 => 0.047273785822779
220 => 0.049095195673067
221 => 0.049641356846569
222 => 0.049138914265817
223 => 0.047420085338477
224 => 0.047335751391195
225 => 0.049904407479496
226 => 0.049178644482649
227 => 0.049092317283532
228 => 0.048173941737041
301 => 0.048716815428042
302 => 0.048598080988343
303 => 0.048410652866592
304 => 0.049446418052112
305 => 0.051385278016011
306 => 0.051083088508124
307 => 0.050857518058654
308 => 0.049869134011647
309 => 0.050464361971514
310 => 0.050252412695846
311 => 0.05116308129045
312 => 0.050623621388786
313 => 0.04917314611414
314 => 0.049404139082456
315 => 0.049369224959989
316 => 0.050087755126332
317 => 0.049872070205411
318 => 0.04932710901756
319 => 0.051378651203435
320 => 0.051245435465162
321 => 0.051434304924676
322 => 0.051517451101736
323 => 0.05276618867805
324 => 0.053277756507921
325 => 0.053393891361557
326 => 0.053879841233858
327 => 0.053381800486044
328 => 0.055374318574335
329 => 0.056699226836395
330 => 0.058238175961933
331 => 0.060486994264874
401 => 0.061332570749511
402 => 0.061179824926023
403 => 0.062884853297904
404 => 0.065948751381523
405 => 0.061799126328921
406 => 0.066168691585387
407 => 0.064785337674247
408 => 0.061505430436407
409 => 0.061294243077857
410 => 0.063515434339828
411 => 0.068441822777143
412 => 0.067207818348231
413 => 0.068443841166319
414 => 0.067001954893802
415 => 0.066930353087199
416 => 0.068373811968413
417 => 0.071746532323216
418 => 0.070144279307181
419 => 0.067847056720137
420 => 0.069543290129668
421 => 0.068073855771341
422 => 0.06476280889325
423 => 0.0672068747283
424 => 0.06557259750739
425 => 0.066049566483407
426 => 0.069484574121371
427 => 0.069071264914468
428 => 0.069606125299602
429 => 0.068662110719574
430 => 0.067780252244392
501 => 0.066134197912794
502 => 0.065646882374706
503 => 0.065781558857657
504 => 0.065646815635729
505 => 0.064725863365221
506 => 0.064526983810089
507 => 0.064195509171756
508 => 0.06429824702268
509 => 0.063674977726288
510 => 0.064851215662586
511 => 0.065069535788536
512 => 0.065925503668471
513 => 0.06601437309333
514 => 0.068398231455006
515 => 0.067085242328507
516 => 0.06796610879259
517 => 0.067887315805006
518 => 0.0615765159718
519 => 0.062446088508157
520 => 0.063798870487835
521 => 0.063189444039643
522 => 0.062327857625726
523 => 0.061632080401147
524 => 0.060577906759036
525 => 0.062061635916696
526 => 0.064012581982013
527 => 0.066063852305097
528 => 0.068528319193728
529 => 0.067978278873743
530 => 0.066017780810862
531 => 0.066105727321818
601 => 0.066649378046872
602 => 0.06594530096205
603 => 0.065737654884519
604 => 0.066620850664442
605 => 0.066626932748382
606 => 0.065816806971737
607 => 0.064916500422447
608 => 0.064912728105132
609 => 0.064752527250616
610 => 0.067030454269932
611 => 0.068283083806157
612 => 0.068426695763772
613 => 0.068273417577169
614 => 0.068332408267799
615 => 0.067603530740478
616 => 0.069269528626018
617 => 0.070798413035903
618 => 0.070388639354202
619 => 0.069774330352572
620 => 0.069285003643643
621 => 0.070273369532605
622 => 0.070229359155402
623 => 0.070785059564352
624 => 0.070759849783921
625 => 0.070572988637341
626 => 0.070388646027602
627 => 0.071119543638071
628 => 0.070909056864113
629 => 0.070698243146056
630 => 0.070275423960528
701 => 0.070332892110125
702 => 0.069718689177604
703 => 0.069434530797007
704 => 0.065161470544104
705 => 0.064019569218257
706 => 0.064378834620913
707 => 0.06449711411979
708 => 0.064000157199395
709 => 0.064712665765483
710 => 0.064601622060191
711 => 0.065033628159086
712 => 0.064763729504021
713 => 0.064774806238969
714 => 0.065568520635054
715 => 0.06579893930094
716 => 0.065681746507764
717 => 0.065763824322971
718 => 0.067655272931531
719 => 0.067386369424515
720 => 0.067243519795859
721 => 0.067283090119249
722 => 0.067766395791851
723 => 0.067901694992669
724 => 0.067328422771499
725 => 0.06759878126505
726 => 0.068749933416987
727 => 0.069152771520596
728 => 0.070438437374056
729 => 0.069892263668618
730 => 0.070894789142794
731 => 0.073976210664292
801 => 0.076437863393815
802 => 0.074174025811644
803 => 0.078694537559828
804 => 0.082214404384686
805 => 0.082079306033303
806 => 0.081465535836402
807 => 0.077458261036803
808 => 0.07377070702111
809 => 0.076855502537051
810 => 0.076863366315215
811 => 0.076598379644626
812 => 0.074952570191774
813 => 0.076541109043166
814 => 0.076667201488463
815 => 0.076596623249784
816 => 0.075334785001087
817 => 0.073408191222016
818 => 0.073784643034833
819 => 0.074401278783635
820 => 0.073233858667459
821 => 0.072860797203862
822 => 0.073554389442537
823 => 0.07578928815123
824 => 0.075366793496238
825 => 0.075355760453362
826 => 0.077163371753033
827 => 0.075869512169402
828 => 0.073789391297758
829 => 0.073264133344244
830 => 0.071399821465426
831 => 0.072687508320577
901 => 0.072733849878069
902 => 0.072028596947343
903 => 0.073846618686216
904 => 0.073829865295836
905 => 0.075555806360069
906 => 0.078855157441024
907 => 0.077879376975179
908 => 0.076744650458015
909 => 0.076868026692984
910 => 0.078221159472101
911 => 0.07740302450483
912 => 0.0776972315433
913 => 0.078220714154512
914 => 0.078536544211198
915 => 0.076822583608175
916 => 0.076422977403398
917 => 0.075605523351143
918 => 0.075392264847413
919 => 0.076058064116236
920 => 0.075882649531936
921 => 0.072729955049605
922 => 0.072400480934775
923 => 0.072410585435496
924 => 0.071582107108116
925 => 0.070318478801279
926 => 0.07363921854432
927 => 0.073372516669231
928 => 0.073078098440218
929 => 0.073114162993345
930 => 0.074555583565487
1001 => 0.073719486840161
1002 => 0.075942387017998
1003 => 0.075485425567931
1004 => 0.075016744780942
1005 => 0.074951958819815
1006 => 0.07477155670279
1007 => 0.07415289071884
1008 => 0.07340581436716
1009 => 0.072912529849135
1010 => 0.067257954644082
1011 => 0.068307410910989
1012 => 0.069514714685117
1013 => 0.069931471109979
1014 => 0.069218580406585
1015 => 0.074181039988931
1016 => 0.075087729174075
1017 => 0.072341308490399
1018 => 0.071827565316101
1019 => 0.074214720905909
1020 => 0.072774974267352
1021 => 0.073423292090537
1022 => 0.072021983567701
1023 => 0.074869334300333
1024 => 0.074847642258367
1025 => 0.07373995851304
1026 => 0.0746761652295
1027 => 0.074513476273599
1028 => 0.07326290405323
1029 => 0.074908979670324
1030 => 0.074909796103293
1031 => 0.073843674581537
1101 => 0.072598678048138
1102 => 0.072376102073471
1103 => 0.072208420975435
1104 => 0.073382052819459
1105 => 0.074434327460958
1106 => 0.076392349687783
1107 => 0.076884642997067
1108 => 0.078806096557025
1109 => 0.077661964515946
1110 => 0.078169143430766
1111 => 0.078719757887641
1112 => 0.078983742706443
1113 => 0.078553593610411
1114 => 0.081538401890864
1115 => 0.081790411161897
1116 => 0.081874907690602
1117 => 0.080868447132268
1118 => 0.081762419673096
1119 => 0.081344159526501
1120 => 0.082432356231925
1121 => 0.082602999370128
1122 => 0.082458470702876
1123 => 0.08251263552836
1124 => 0.079965628217256
1125 => 0.079833552451641
1126 => 0.078032690015817
1127 => 0.078766554769718
1128 => 0.077394629787352
1129 => 0.077829681331654
1130 => 0.078021447907059
1201 => 0.077921279930724
1202 => 0.078808046381822
1203 => 0.078054113743972
1204 => 0.076064361554683
1205 => 0.074074067258741
1206 => 0.074049080735114
1207 => 0.073525071378605
1208 => 0.07314630859095
1209 => 0.073219271741184
1210 => 0.073476403399343
1211 => 0.073131363631538
1212 => 0.073204995359959
1213 => 0.074427772657395
1214 => 0.074672991923946
1215 => 0.073839641042851
1216 => 0.070493617003292
1217 => 0.069672494311119
1218 => 0.070262701018682
1219 => 0.069980620226647
1220 => 0.056479822286375
1221 => 0.059651634502275
1222 => 0.057767051388153
1223 => 0.05863555399264
1224 => 0.056711882643552
1225 => 0.057629959439591
1226 => 0.057460424178159
1227 => 0.06256060436058
1228 => 0.0624809720621
1229 => 0.062519087829335
1230 => 0.060699722949108
1231 => 0.063598020604449
]
'min_raw' => 0.037001391237714
'max_raw' => 0.082602999370128
'avg_raw' => 0.059802195303921
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.0370013'
'max' => '$0.0826029'
'avg' => '$0.0598021'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0057055394535745
'max_diff' => 0.012496428034249
'year' => 2035
]
10 => [
'items' => [
101 => 0.065025826248883
102 => 0.064761577423915
103 => 0.064828083160142
104 => 0.063685294267717
105 => 0.062530152523827
106 => 0.061248922554813
107 => 0.06362928947243
108 => 0.063364633305409
109 => 0.063971659332272
110 => 0.065515497430488
111 => 0.065742833454921
112 => 0.066048375377173
113 => 0.065938860348001
114 => 0.068547952648485
115 => 0.068231974355551
116 => 0.068993391128362
117 => 0.067427099057859
118 => 0.065654690906277
119 => 0.065991567751505
120 => 0.065959123802317
121 => 0.065546075091723
122 => 0.065173193184455
123 => 0.064552449867679
124 => 0.066516573574683
125 => 0.06643683373909
126 => 0.067727728989927
127 => 0.067499550715254
128 => 0.065975720352293
129 => 0.066030144251818
130 => 0.066396171131353
131 => 0.067662994340647
201 => 0.068039073721066
202 => 0.067864858767884
203 => 0.068277212639838
204 => 0.068603120327209
205 => 0.068318141627609
206 => 0.072352839047055
207 => 0.070677351380378
208 => 0.071493972411148
209 => 0.071688731715176
210 => 0.071189859853255
211 => 0.071298047296844
212 => 0.071461921794567
213 => 0.072456935654825
214 => 0.075068139933721
215 => 0.076224624533776
216 => 0.079703965512985
217 => 0.076128594586784
218 => 0.075916446872379
219 => 0.076543181248766
220 => 0.078585922729208
221 => 0.080241372834156
222 => 0.080790581139175
223 => 0.080863168083124
224 => 0.081893519374017
225 => 0.082484097519043
226 => 0.081768407626374
227 => 0.081161935378191
228 => 0.078989627063309
229 => 0.079241077665756
301 => 0.08097332296505
302 => 0.083420221479042
303 => 0.085519914960446
304 => 0.084784675484964
305 => 0.090394033684714
306 => 0.090950178638045
307 => 0.090873337387814
308 => 0.092140318356969
309 => 0.089625619149383
310 => 0.088550536518138
311 => 0.081293061562001
312 => 0.083332115996119
313 => 0.086296001365577
314 => 0.08590372002293
315 => 0.083751267242746
316 => 0.085518282131997
317 => 0.084934051749946
318 => 0.084473245007882
319 => 0.086584290025061
320 => 0.084263109311723
321 => 0.086272845812351
322 => 0.083695337962233
323 => 0.084788033996956
324 => 0.084167766879887
325 => 0.084569155721709
326 => 0.082222644754138
327 => 0.083488765113906
328 => 0.082169969984554
329 => 0.08216934470395
330 => 0.082140232228376
331 => 0.083691788849625
401 => 0.083742385055341
402 => 0.082595782367966
403 => 0.082430539007415
404 => 0.083041530318924
405 => 0.082326219512025
406 => 0.08266090893646
407 => 0.082336356913738
408 => 0.082263293417311
409 => 0.081681111047057
410 => 0.081430290874514
411 => 0.081528643927008
412 => 0.081192914254372
413 => 0.080990624982737
414 => 0.0820999918007
415 => 0.081507301861592
416 => 0.082009153567162
417 => 0.081437230209931
418 => 0.079454694678623
419 => 0.078314517529635
420 => 0.074569691692135
421 => 0.075631719654208
422 => 0.07633584529181
423 => 0.076103131772783
424 => 0.07660309045983
425 => 0.076633783862718
426 => 0.076471242197084
427 => 0.076283039771156
428 => 0.076191433238461
429 => 0.076874193281343
430 => 0.077270558466882
501 => 0.076406513719529
502 => 0.076204080124495
503 => 0.077077677069287
504 => 0.07761057070095
505 => 0.081545157870082
506 => 0.081253670944043
507 => 0.081985245926979
508 => 0.081902881810834
509 => 0.082669688941985
510 => 0.083923094524545
511 => 0.081374570517488
512 => 0.081816906163784
513 => 0.081708455678334
514 => 0.08289248964123
515 => 0.082896186066021
516 => 0.082186298558382
517 => 0.082571140092882
518 => 0.082356332105899
519 => 0.082744519171418
520 => 0.081249777958435
521 => 0.083070211408506
522 => 0.084102279868556
523 => 0.084116610140125
524 => 0.084605802399186
525 => 0.085102850066498
526 => 0.086056889780175
527 => 0.08507624241669
528 => 0.083312153273876
529 => 0.083439514812014
530 => 0.082405229993038
531 => 0.082422616507704
601 => 0.082329805929812
602 => 0.08260833746052
603 => 0.081310899966238
604 => 0.081615405952865
605 => 0.081189095788403
606 => 0.081815979448743
607 => 0.081141556257799
608 => 0.081708403380226
609 => 0.081953035806986
610 => 0.08285573472829
611 => 0.08100822689316
612 => 0.077241033352045
613 => 0.078032943107194
614 => 0.07686164637616
615 => 0.076970054348058
616 => 0.077189055704293
617 => 0.076479200655949
618 => 0.07661461862907
619 => 0.076609780546148
620 => 0.076568088561275
621 => 0.076383427847298
622 => 0.076115633278023
623 => 0.077182444419195
624 => 0.077363716420259
625 => 0.077766661623776
626 => 0.078965553229098
627 => 0.078845755685916
628 => 0.079041150449199
629 => 0.078614604778046
630 => 0.07698984057838
701 => 0.077078073091399
702 => 0.075977812240231
703 => 0.077738525480088
704 => 0.07732156534461
705 => 0.077052748432782
706 => 0.076979399247818
707 => 0.078181262673539
708 => 0.078540879047416
709 => 0.078316790256173
710 => 0.077857177607619
711 => 0.078739769765124
712 => 0.078975914192898
713 => 0.079028778221605
714 => 0.080592562304442
715 => 0.079116176380362
716 => 0.079471557146302
717 => 0.082244136434254
718 => 0.07972978960987
719 => 0.081061695199372
720 => 0.080996505351668
721 => 0.081677863182029
722 => 0.080940614122233
723 => 0.080949753207914
724 => 0.081554752802098
725 => 0.080705139984319
726 => 0.080494763902505
727 => 0.080204130852221
728 => 0.080838717484919
729 => 0.081219123471336
730 => 0.084284916344451
731 => 0.086265558357624
801 => 0.08617957346426
802 => 0.086965314432627
803 => 0.086611330929815
804 => 0.085468224823107
805 => 0.087419367560319
806 => 0.086801944358986
807 => 0.086852843977534
808 => 0.08685094949119
809 => 0.087261481944004
810 => 0.086970582076438
811 => 0.086397188577208
812 => 0.086777833941151
813 => 0.087908214588855
814 => 0.091416950803639
815 => 0.093380486074005
816 => 0.091298743514876
817 => 0.092734701656519
818 => 0.091873638455735
819 => 0.091717157657741
820 => 0.092619045487166
821 => 0.093522511951847
822 => 0.093464965043839
823 => 0.092809094783998
824 => 0.092438610316305
825 => 0.095244042827077
826 => 0.097311037711718
827 => 0.097170082517895
828 => 0.097792212902345
829 => 0.099618806952859
830 => 0.099785807821216
831 => 0.099764769550274
901 => 0.099350840473313
902 => 0.10114935952925
903 => 0.10264971576765
904 => 0.099255027851557
905 => 0.10054768057028
906 => 0.10112799402238
907 => 0.10198006634131
908 => 0.10341765516725
909 => 0.10497925793382
910 => 0.10520008568712
911 => 0.10504339782857
912 => 0.10401347882588
913 => 0.10572220320686
914 => 0.10672313387472
915 => 0.10731916518154
916 => 0.10883060140548
917 => 0.1011315778407
918 => 0.095681826295246
919 => 0.094830768896057
920 => 0.096561427583487
921 => 0.097017788477618
922 => 0.096833829973421
923 => 0.09069963913928
924 => 0.094798473650815
925 => 0.099208474945433
926 => 0.099377881055454
927 => 0.10158561991232
928 => 0.10230455018239
929 => 0.10408206933711
930 => 0.10397088503002
1001 => 0.10440368265768
1002 => 0.10430418997809
1003 => 0.1075966699114
1004 => 0.11122876421584
1005 => 0.11110299633943
1006 => 0.11058083981017
1007 => 0.11135633129703
1008 => 0.11510504185809
1009 => 0.11475992066149
1010 => 0.11509517650663
1011 => 0.11951511752619
1012 => 0.1252616695809
1013 => 0.12259181920709
1014 => 0.1283846262895
1015 => 0.13203089128436
1016 => 0.13833672956214
1017 => 0.13754720755286
1018 => 0.14000202412002
1019 => 0.13613379837802
1020 => 0.12725157017698
1021 => 0.12584592356436
1022 => 0.12866006367947
1023 => 0.13557835255267
1024 => 0.12844218214275
1025 => 0.12988582012251
1026 => 0.12947005228722
1027 => 0.12944789778618
1028 => 0.13029344498212
1029 => 0.12906693467363
1030 => 0.12406991103184
1031 => 0.12636001751922
1101 => 0.1254756974245
1102 => 0.12645691650003
1103 => 0.13175215116513
1104 => 0.12941100169706
1105 => 0.12694479091199
1106 => 0.13003796653245
1107 => 0.13397664202777
1108 => 0.13373016679375
1109 => 0.13325190182111
1110 => 0.13594785643078
1111 => 0.14040078360538
1112 => 0.14160439192736
1113 => 0.14249287098396
1114 => 0.14261537723489
1115 => 0.14387726775666
1116 => 0.13709176438373
1117 => 0.14786053250066
1118 => 0.14972000127324
1119 => 0.14937049821108
1120 => 0.15143721949339
1121 => 0.15082913766447
1122 => 0.14994812249949
1123 => 0.15322431533618
1124 => 0.14946842462405
1125 => 0.14413741061166
1126 => 0.14121271088897
1127 => 0.14506419141261
1128 => 0.14741615617025
1129 => 0.148970655262
1130 => 0.14944104574791
1201 => 0.13761850369472
1202 => 0.1312468092363
1203 => 0.13533099233252
1204 => 0.14031397758518
1205 => 0.13706408364906
1206 => 0.13719147333849
1207 => 0.13255797864269
1208 => 0.14072393905219
1209 => 0.13953422730706
1210 => 0.14570645394534
1211 => 0.1442334025229
1212 => 0.14926661374196
1213 => 0.1479412005467
1214 => 0.15344291661735
1215 => 0.15563770011095
1216 => 0.15932308318748
1217 => 0.16203406598078
1218 => 0.16362600692984
1219 => 0.16353043276648
1220 => 0.1698384959085
1221 => 0.16611885146059
1222 => 0.16144610138113
1223 => 0.16136158607453
1224 => 0.16378166955406
1225 => 0.16885350060969
1226 => 0.17016855261027
1227 => 0.1709034872759
1228 => 0.16977790925223
1229 => 0.16574050179334
1230 => 0.16399716972271
1231 => 0.16548253915608
]
'min_raw' => 0.061248922554813
'max_raw' => 0.1709034872759
'avg_raw' => 0.11607620491536
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.061248'
'max' => '$0.1709034'
'avg' => '$0.116076'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.024247531317099
'max_diff' => 0.088300487905774
'year' => 2036
]
11 => [
'items' => [
101 => 0.16366605997832
102 => 0.16680181265317
103 => 0.17110787083637
104 => 0.17021868684954
105 => 0.1731910956036
106 => 0.17626722595753
107 => 0.18066623052131
108 => 0.18181629320895
109 => 0.18371730309865
110 => 0.18567406672437
111 => 0.1863025264647
112 => 0.18750245110858
113 => 0.18749612691341
114 => 0.19111218059199
115 => 0.19510079977933
116 => 0.1966064111858
117 => 0.20006848159509
118 => 0.1941398073446
119 => 0.1986367748673
120 => 0.20269315213917
121 => 0.19785697193084
122 => 0.20452251966255
123 => 0.20478132777651
124 => 0.20868902302626
125 => 0.20472782526682
126 => 0.20237567868185
127 => 0.20916623773887
128 => 0.21245197536595
129 => 0.21146228445246
130 => 0.20393068773367
131 => 0.19954697539796
201 => 0.18807395466044
202 => 0.20166424332164
203 => 0.20828367649436
204 => 0.20391354500089
205 => 0.20611758513083
206 => 0.21814211341735
207 => 0.22272027525831
208 => 0.22176804959916
209 => 0.22192896006059
210 => 0.22439925309045
211 => 0.2353538928001
212 => 0.22878961875952
213 => 0.23380776030489
214 => 0.2364693644863
215 => 0.2389416107828
216 => 0.23287055524005
217 => 0.22497220118046
218 => 0.22247046089943
219 => 0.20347902154974
220 => 0.20249043465595
221 => 0.20193551087522
222 => 0.19843679493321
223 => 0.19568776258175
224 => 0.19350162999084
225 => 0.18776456523784
226 => 0.18970065617868
227 => 0.18055697238087
228 => 0.18640677724245
301 => 0.17181323711918
302 => 0.18396717098323
303 => 0.17735233735259
304 => 0.18179402023018
305 => 0.18177852361705
306 => 0.17359997720256
307 => 0.1688827623126
308 => 0.17188875523723
309 => 0.17511141826846
310 => 0.17563428450294
311 => 0.17981255124303
312 => 0.18097861567865
313 => 0.17744538600039
314 => 0.17151081843737
315 => 0.17288928312918
316 => 0.16885482776961
317 => 0.16178459993506
318 => 0.16686256100017
319 => 0.16859640016999
320 => 0.16936216232202
321 => 0.16240940526789
322 => 0.16022469804978
323 => 0.15906157825833
324 => 0.17061330481066
325 => 0.17124613446775
326 => 0.168008488469
327 => 0.18264295538952
328 => 0.17933072480907
329 => 0.18303129788362
330 => 0.17276420190678
331 => 0.17315641879958
401 => 0.16829581102663
402 => 0.17101742659355
403 => 0.16909387643261
404 => 0.17079754695127
405 => 0.17181872003566
406 => 0.1766785302307
407 => 0.18402266220923
408 => 0.17595263664795
409 => 0.172436410946
410 => 0.17461785759549
411 => 0.18042733749074
412 => 0.18922899691385
413 => 0.18401823738546
414 => 0.18633068397973
415 => 0.18683585068698
416 => 0.18299362952355
417 => 0.18937066508863
418 => 0.1927881702549
419 => 0.19629382340244
420 => 0.19933768380428
421 => 0.19489358844435
422 => 0.19964940751552
423 => 0.19581705685923
424 => 0.19237904213941
425 => 0.19238425618859
426 => 0.19022753933347
427 => 0.18604862866286
428 => 0.18527797341921
429 => 0.18928701931972
430 => 0.19250189447387
501 => 0.19276668698978
502 => 0.19454660706137
503 => 0.1955999454251
504 => 0.20592409333373
505 => 0.21007655102841
506 => 0.21515409769547
507 => 0.21713208827713
508 => 0.22308513077908
509 => 0.21827756547629
510 => 0.21723741848202
511 => 0.20279728459765
512 => 0.20516185571227
513 => 0.20894776221394
514 => 0.20285971280143
515 => 0.20672117887786
516 => 0.20748351407838
517 => 0.20265284321201
518 => 0.20523311324271
519 => 0.19838068103793
520 => 0.18417202650576
521 => 0.18938648338288
522 => 0.19322607881165
523 => 0.1877465027161
524 => 0.1975684307785
525 => 0.1918306631702
526 => 0.19001206629978
527 => 0.18291707153169
528 => 0.18626563595083
529 => 0.19079461727455
530 => 0.18799623336709
531 => 0.19380330015454
601 => 0.20202765541371
602 => 0.20788882074022
603 => 0.20833876823561
604 => 0.20457043159825
605 => 0.21060921510883
606 => 0.21065320105401
607 => 0.20384142858492
608 => 0.19966925587571
609 => 0.19872132945785
610 => 0.20108943550158
611 => 0.20396475341517
612 => 0.20849832836862
613 => 0.21123787276388
614 => 0.21838115160463
615 => 0.22031391804508
616 => 0.22243744238497
617 => 0.22527512577371
618 => 0.22868249224898
619 => 0.22122736838257
620 => 0.22152357435187
621 => 0.21458146623068
622 => 0.20716282810418
623 => 0.2127926496959
624 => 0.22015289252328
625 => 0.21846444468633
626 => 0.21827445981282
627 => 0.21859396167266
628 => 0.21732092714315
629 => 0.21156303914705
630 => 0.2086714638417
701 => 0.21240233370514
702 => 0.21438512499565
703 => 0.21746026136965
704 => 0.2170811859033
705 => 0.22500240695721
706 => 0.22808035393346
707 => 0.22729288338416
708 => 0.22743779691677
709 => 0.23301027289537
710 => 0.23920801225066
711 => 0.24501301302064
712 => 0.25091810913444
713 => 0.24379928528943
714 => 0.24018478556894
715 => 0.24391402665132
716 => 0.24193523884014
717 => 0.25330594054976
718 => 0.25409322326547
719 => 0.26546310274393
720 => 0.27625447226905
721 => 0.26947660641779
722 => 0.27586782863375
723 => 0.2827804565443
724 => 0.29611603731721
725 => 0.29162508286428
726 => 0.28818508213557
727 => 0.28493429806889
728 => 0.2916986636642
729 => 0.30040091193919
730 => 0.30227529286852
731 => 0.30531250604267
801 => 0.30211924776281
802 => 0.30596517563503
803 => 0.31954299101033
804 => 0.31587414544123
805 => 0.31066379493676
806 => 0.32138217614831
807 => 0.32526111664211
808 => 0.35248555244455
809 => 0.38685752723048
810 => 0.37262730397055
811 => 0.36379414518668
812 => 0.36587014702622
813 => 0.37842162865326
814 => 0.38245276618776
815 => 0.37149474475257
816 => 0.37536530317579
817 => 0.39669246063263
818 => 0.40813379635109
819 => 0.39259492566902
820 => 0.34972379773775
821 => 0.31019465988151
822 => 0.32067956726126
823 => 0.31949090414896
824 => 0.34240427421925
825 => 0.31578664468778
826 => 0.31623481730437
827 => 0.33962201160204
828 => 0.33338270912144
829 => 0.32327583817235
830 => 0.31026845122437
831 => 0.28622309341338
901 => 0.26492544944577
902 => 0.30669503382073
903 => 0.30489385338942
904 => 0.3022854772049
905 => 0.30809013614777
906 => 0.33627591229314
907 => 0.33562613892454
908 => 0.33149261227076
909 => 0.33462785580642
910 => 0.32272621482187
911 => 0.32579353869891
912 => 0.31018839826412
913 => 0.31724257346888
914 => 0.32325415336652
915 => 0.32446106703393
916 => 0.32718030515315
917 => 0.30394471314839
918 => 0.31437681179739
919 => 0.32050469239822
920 => 0.29281870490946
921 => 0.3199574294428
922 => 0.30354023318611
923 => 0.29796799019858
924 => 0.3054702812941
925 => 0.30254663115796
926 => 0.3000330484534
927 => 0.29863042611543
928 => 0.30413928069832
929 => 0.30388228604753
930 => 0.29486873072731
1001 => 0.28311091525159
1002 => 0.28705722406238
1003 => 0.28562349307458
1004 => 0.28042746701981
1005 => 0.28392896121015
1006 => 0.26851015286157
1007 => 0.24198289449775
1008 => 0.25950761392479
1009 => 0.25883293129007
1010 => 0.25849272571123
1011 => 0.27166206801297
1012 => 0.27039613961908
1013 => 0.26809846718816
1014 => 0.28038526846376
1015 => 0.27590042071737
1016 => 0.28972166470872
1017 => 0.29882522990345
1018 => 0.29651627130058
1019 => 0.30507821836757
1020 => 0.28714813904696
1021 => 0.29310379216734
1022 => 0.29433124402127
1023 => 0.28023365124325
1024 => 0.27060326116032
1025 => 0.26996102393628
1026 => 0.25326325468198
1027 => 0.26218306823794
1028 => 0.27003213504022
1029 => 0.26627304115412
1030 => 0.26508302432952
1031 => 0.27116256220326
1101 => 0.27163499436377
1102 => 0.26086349103801
1103 => 0.26310322766858
1104 => 0.27244330174331
1105 => 0.26286788176606
1106 => 0.24426440488625
1107 => 0.23965048540686
1108 => 0.2390349034969
1109 => 0.22652158793424
1110 => 0.23995880956879
1111 => 0.23409310223016
1112 => 0.25262280143093
1113 => 0.24203873662422
1114 => 0.2415824787445
1115 => 0.24089277804084
1116 => 0.2301220504175
1117 => 0.23248015525156
1118 => 0.24031885486949
1119 => 0.24311579120244
1120 => 0.24282404782829
1121 => 0.24028044096497
1122 => 0.24144489116162
1123 => 0.23769379135687
1124 => 0.23636919994342
1125 => 0.232188425085
1126 => 0.22604384101166
1127 => 0.22689828311398
1128 => 0.21472425424681
1129 => 0.20809119719536
1130 => 0.2062552544258
1201 => 0.20380015502502
1202 => 0.20653256443589
1203 => 0.21468976675261
1204 => 0.20485045011164
1205 => 0.18798163187849
1206 => 0.18899547659737
1207 => 0.19127328466749
1208 => 0.18702860439803
1209 => 0.18301137075199
1210 => 0.18650402947875
1211 => 0.17935648881567
1212 => 0.19213703080885
1213 => 0.19179135296499
1214 => 0.19655514867663
1215 => 0.19953404789805
1216 => 0.19266864962275
1217 => 0.19094202052253
1218 => 0.19192558692893
1219 => 0.17566942515229
1220 => 0.1952266734447
1221 => 0.19539580534007
1222 => 0.193947595369
1223 => 0.20436122632242
1224 => 0.22633723572707
1225 => 0.21806897700611
1226 => 0.21486725731991
1227 => 0.208780785856
1228 => 0.21689064770274
1229 => 0.21626793684646
1230 => 0.2134518021983
1231 => 0.21174859517622
]
'min_raw' => 0.15906157825833
'max_raw' => 0.40813379635109
'avg_raw' => 0.28359768730471
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.159061'
'max' => '$0.408133'
'avg' => '$0.283597'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.097812655703514
'max_diff' => 0.23723030907519
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0049927611859346
]
1 => [
'year' => 2028
'avg' => 0.0085690276039922
]
2 => [
'year' => 2029
'avg' => 0.023409038997145
]
3 => [
'year' => 2030
'avg' => 0.018060038724511
]
4 => [
'year' => 2031
'avg' => 0.017737196183429
]
5 => [
'year' => 2032
'avg' => 0.031098887010625
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0049927611859346
'min' => '$0.004992'
'max_raw' => 0.031098887010625
'max' => '$0.031098'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.031098887010625
]
1 => [
'year' => 2033
'avg' => 0.079989535252168
]
2 => [
'year' => 2034
'avg' => 0.050701211560009
]
3 => [
'year' => 2035
'avg' => 0.059802195303921
]
4 => [
'year' => 2036
'avg' => 0.11607620491536
]
5 => [
'year' => 2037
'avg' => 0.28359768730471
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.031098887010625
'min' => '$0.031098'
'max_raw' => 0.28359768730471
'max' => '$0.283597'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.28359768730471
]
]
]
]
'prediction_2025_max_price' => '$0.008536'
'last_price' => 0.00827742
'sma_50day_nextmonth' => '$0.00786'
'sma_200day_nextmonth' => '$0.008516'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 de fev. de 2026'
'sma_50day_date_nextmonth' => '4 de fev. de 2026'
'daily_sma3' => '$0.008311'
'daily_sma3_action' => 'SELL'
'daily_sma5' => '$0.008297'
'daily_sma5_action' => 'SELL'
'daily_sma10' => '$0.008267'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.00823'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.008271'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.0085057'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.008692'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.008295'
'daily_ema3_action' => 'SELL'
'daily_ema5' => '$0.00829'
'daily_ema5_action' => 'SELL'
'daily_ema10' => '$0.008271'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.008259'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.008315'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.008472'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.008862'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.0086084'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.00930086'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.011096'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.011688'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.008283'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.00829'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.008362'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.0086015'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.009427'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.010956'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.013855'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '51.25'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 98.04
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'SELL'
'vwma_10' => '0.008266'
'vwma_10_action' => 'BUY'
'hma_9' => '0.008330'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 80.04
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 66.73
'cci_20_action' => 'NEUTRAL'
'adx_14' => 10.68
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.000041'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'NEUTRAL'
'williams_percent_r_14' => -19.96
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 59.7
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.000220'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 26
'buy_signals' => 8
'sell_pct' => 76.47
'buy_pct' => 23.53
'overall_action' => 'bearish'
'overall_action_label' => 'Baixista'
'overall_action_dir' => -1
'last_updated' => 1767693229
'last_updated_date' => '6 de janeiro de 2026'
]
Previsão de preço de Solberg para 2026
A previsão de preço para Solberg em 2026 sugere que o preço médio poderia variar entre $0.002859 na extremidade inferior e $0.008536 na extremidade superior. No mercado de criptomoedas, comparado ao preço médio de hoje, Solberg poderia potencialmente ganhar 3.13% até 2026 se SLB atingir a meta de preço prevista.
Previsão de preço de Solberg 2027-2032
A previsão de preço de SLB para 2027-2032 está atualmente dentro de uma faixa de preço entre $0.004992 na extremidade inferior e $0.031098 na extremidade superior. Considerando a volatilidade de preços no mercado, se Solberg atingir a meta de preço superior, poderia ganhar 275.71% até 2032 em comparação com o preço de hoje.
| Previsão de Preço de Solberg | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.002753 | $0.004992 | $0.007232 |
| 2028 | $0.004968 | $0.008569 | $0.012169 |
| 2029 | $0.010914 | $0.023409 | $0.0359036 |
| 2030 | $0.009282 | $0.01806 | $0.026837 |
| 2031 | $0.010974 | $0.017737 | $0.024499 |
| 2032 | $0.016751 | $0.031098 | $0.045445 |
Previsão de preço de Solberg 2032-2037
A previsão de preço de Solberg para 2032-2037 é atualmente estimada entre $0.031098 na extremidade inferior e $0.283597 na extremidade superior. Comparado ao preço atual, Solberg poderia potencialmente ganhar 3326.16% até 2037 se atingir a meta de preço superior. Por favor, note que esta informação é apenas para fins gerais e não deve ser considerada como aconselhamento de investimento a longo prazo.
| Previsão de Preço de Solberg | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.016751 | $0.031098 | $0.045445 |
| 2033 | $0.038927 | $0.079989 | $0.121051 |
| 2034 | $0.031295 | $0.0507012 | $0.0701065 |
| 2035 | $0.0370013 | $0.0598021 | $0.0826029 |
| 2036 | $0.061248 | $0.116076 | $0.1709034 |
| 2037 | $0.159061 | $0.283597 | $0.408133 |
Solberg Histograma de preços potenciais
Previsão de preço de Solberg baseada na análise técnica
Em 6 de janeiro de 2026, o sentimento geral de previsão de preço para Solberg é Baixista, com 8 indicadores técnicos mostrando sinais de alta e 26 indicando sinais de baixa. A previsão de preço de SLB foi atualizada pela última vez em 6 de janeiro de 2026.
Médias Móveis Simples de 50 e 200 dias e Índice de Força Relativa de 14 dias - RSI (14) de Solberg
De acordo com nossos indicadores técnicos, o SMA de 200 dias de Solberg está projetado para aumentar no próximo mês, alcançando $0.008516 até 4 de fev. de 2026. O SMA de 50 dias de curto prazo para Solberg é esperado para alcançar $0.00786 até 4 de fev. de 2026.
O oscilador de momentum Índice de Força Relativa (RSI) é uma ferramenta comumente usada para identificar se uma criptomoeda está sobrevendida (abaixo de 30) ou sobrecomprada (acima de 70). No momento, o RSI está em 51.25, sugerindo que o mercado de SLB está em um estado NEUTRAL.
Médias Móveis e Osciladores Populares de SLB para Sábado, 19 de Outubro de 2024
Médias móveis (MA) são indicadores amplamente utilizados nos mercados financeiros, projetados para suavizar movimentos de preços ao longo de um período definido. Como indicadores atrasados, eles se baseiam em dados históricos de preços. A tabela abaixo destaca dois tipos: a média móvel simples (SMA) e a média móvel exponencial (EMA).
Média Móvel Simples Diária (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 3 | $0.008311 | SELL |
| SMA 5 | $0.008297 | SELL |
| SMA 10 | $0.008267 | BUY |
| SMA 21 | $0.00823 | BUY |
| SMA 50 | $0.008271 | BUY |
| SMA 100 | $0.0085057 | SELL |
| SMA 200 | $0.008692 | SELL |
Média Móvel Exponencial Diária (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 3 | $0.008295 | SELL |
| EMA 5 | $0.00829 | SELL |
| EMA 10 | $0.008271 | BUY |
| EMA 21 | $0.008259 | BUY |
| EMA 50 | $0.008315 | SELL |
| EMA 100 | $0.008472 | SELL |
| EMA 200 | $0.008862 | SELL |
Média Móvel Simples Semanal (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 21 | $0.0086084 | SELL |
| SMA 50 | $0.00930086 | SELL |
| SMA 100 | $0.011096 | SELL |
| SMA 200 | $0.011688 | SELL |
Média Móvel Exponencial Semanal (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 21 | $0.0086015 | SELL |
| EMA 50 | $0.009427 | SELL |
| EMA 100 | $0.010956 | SELL |
| EMA 200 | $0.013855 | SELL |
Osciladores de Solberg
Um oscilador é uma ferramenta de análise técnica que define limites altos e baixos entre dois extremos, criando um indicador de tendência que flutua dentro desses limites. Os traders usam esse indicador para identificar condições de sobrecompra ou sobrevenda de curto prazo.
| Período | Valor | Ação |
|---|---|---|
| RSI (14) | 51.25 | NEUTRAL |
| Stoch RSI (14) | 98.04 | SELL |
| Estocástico Rápido (14) | 80.04 | SELL |
| Índice de Canal de Commodities (20) | 66.73 | NEUTRAL |
| Índice Direcional Médio (14) | 10.68 | NEUTRAL |
| Oscilador Impressionante (5, 34) | 0.000041 | BUY |
| Momentum (10) | 0 | SELL |
| MACD (12, 26) | 0 | NEUTRAL |
| Williams Percent Range (14) | -19.96 | SELL |
| Oscilador Ultimate (7, 14, 28) | 59.7 | NEUTRAL |
| VWMA (10) | 0.008266 | BUY |
| Média Móvel de Hull (9) | 0.008330 | BUY |
| Nuvem Ichimoku B/L (9, 26, 52, 26) | -0.000220 | SELL |
Previsão do preço de Solberg com base nos fluxos financeiros mundiais
Definições dos fluxos financeiros mundiais, usadas na previsão do preço do Solberg
M0: o total de todas as moedas físicas, mais as contas no Banco Central que podem ser trocadas por moedas físicas.
M1: o valor de M0, mais o valor em contas de demanda, incluindo contas 'correntes'.
M2: o valor de M1, mais a maioria das contas de poupança, do mercado de moedas e de certificados de depósito (CD) de menos de US$ 100.000.
Previsões de preço de Solberg por empresas de Internet ou nichos tecnológicos
| Comparação | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.011631 | $0.016343 | $0.022965 | $0.03227 | $0.045345 | $0.063718 |
| Amazon.com stock | $0.017271 | $0.036037 | $0.075194 | $0.156898 | $0.327377 | $0.683092 |
| Apple stock | $0.01174 | $0.016653 | $0.023621 | $0.0335057 | $0.047525 | $0.067411 |
| Netflix stock | $0.01306 | $0.0206073 | $0.032515 | $0.0513039 | $0.080949 | $0.127725 |
| Google stock | $0.010719 | $0.013881 | $0.017976 | $0.023279 | $0.030146 | $0.039039 |
| Tesla stock | $0.018764 | $0.042537 | $0.096428 | $0.218596 | $0.495541 | $1.12 |
| Kodak stock | $0.0062071 | $0.004654 | $0.00349 | $0.002617 | $0.001962 | $0.001471 |
| Nokia stock | $0.005483 | $0.003632 | $0.0024064 | $0.001594 | $0.001056 | $0.000699 |
Este cálculo mostra quanto a criptomoeda pode custar, se assumirmos que sua capitalização se comportará da mesma forma que a de algumas empresas de Internet ou nichos tecnológicos. Se você extrapolar os dados, poderá obter uma imagem em potencial do preço futuro para 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Visão geral da previsão para Solberg
Você pode fazer perguntas como: 'Devo investir em Solberg agora?', 'Devo comprar SLB hoje?', 'Solberg será um bom ou mau investimento no curto ou no longo prazo?'.
Atualizamos a previsão para Solberg regularmente com novos valores. Veja nossas previsões semelhantes. Fazemos previsões de preços futuros para uma enorme quantidade de moedas digitais, como Solberg, com métodos de análise técnica.
Se você estiver tentando encontrar criptomoedas com bom retorno, você deve explorar o máximo de fontes de informações disponíveis sobre Solberg para poder tomar sozinho uma decisão de tão grande responsabilidade sobre o seu investimento.
O preço de Solberg é de $0.008277 USD hoje, mas o preço pode tanto subir quanto descer e seu investimento pode ser perdido, porque criptomoedas são ativos de alto risco
Previsão do preço de Solberg com base no padrão de crescimento do Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se Solberg tiver 1% da média anterior do crescimento anual do Bitcoin | $0.008492 | $0.008713 | $0.008939 | $0.009172 |
| Se Solberg tiver 2% da média anterior do crescimento anual do Bitcoin | $0.0087077 | $0.00916 | $0.009636 | $0.010137 |
| Se Solberg tiver 5% da média anterior do crescimento anual do Bitcoin | $0.009353 | $0.010568 | $0.011942 | $0.013494 |
| Se Solberg tiver 10% da média anterior do crescimento anual do Bitcoin | $0.010428 | $0.013139 | $0.016555 | $0.020858 |
| Se Solberg tiver 20% da média anterior do crescimento anual do Bitcoin | $0.01258 | $0.01912 | $0.02906 | $0.044168 |
| Se Solberg tiver 50% da média anterior do crescimento anual do Bitcoin | $0.019035 | $0.043774 | $0.100666 | $0.231499 |
| Se Solberg tiver 100% da média anterior do crescimento anual do Bitcoin | $0.029793 | $0.107234 | $0.385972 | $1.38 |
Perguntas Frequentes sobre Solberg
SLB é um bom investimento?
A decisão de adquirir Solberg depende inteiramente da sua tolerância individual ao risco. Como você pode perceber, o valor de Solberg experimentou uma queda de -0.2495% nas últimas 24 horas, e Solberg registrou um declínio de durante os últimos 30 dias. Consequentemente, a decisão de investir ou não em Solberg dependerá de quão alinhado esse investimento está com suas aspirações de negociação.
Solberg pode subir?
Parece que o valor médio de Solberg pode potencialmente subir para $0.008536 até o final deste ano. Observando as perspectivas de Solberg em um horizonte de cinco anos mais longo, a moeda digital poderia potencialmente crescer até $0.026837. No entanto, dada a imprevisibilidade do mercado, é vital conduzir uma pesquisa aprofundada antes de investir quaisquer fundos em um projeto, rede ou ativo específico.
Qual será o preço de Solberg na próxima semana?
Com base na nossa nova previsão experimental de Solberg, o preço de Solberg aumentará 0.86% na próxima semana e atingirá $0.008348 até 13 de janeiro de 2026.
Qual será o preço de Solberg no próximo mês?
Com base na nossa nova previsão experimental de Solberg, o preço de Solberg diminuirá -11.62% no próximo mês e atingirá $0.007315 até 5 de fevereiro de 2026.
Até onde o preço de Solberg pode subir este ano em 2026?
De acordo com nossa previsão mais recente sobre o valor de Solberg em 2026, espera-se que SLB fluctue dentro do intervalo de $0.002859 e $0.008536. No entanto, é crucial lembrar que o mercado de criptomoedas é excepcionalmente instável, e essa previsão de preço de Solberg não considera flutuações repentinas e extremas de preço.
Onde estará Solberg em 5 anos?
O futuro de Solberg parece seguir uma tendência de alta, com um preço máximo de $0.026837 projetada após um período de cinco anos. Com base na previsão de Solberg para 2030, o valor de Solberg pode potencialmente atingir seu pico mais alto de aproximadamente $0.026837, enquanto seu pico mais baixo está previsto para cerca de $0.009282.
Quanto será Solberg em 2026?
Com base na nossa nova simulação experimental de previsão de preços de Solberg, espera-se que o valor de SLB em 2026 aumente 3.13% para $0.008536 se o melhor cenário ocorrer. O preço ficará entre $0.008536 e $0.002859 durante 2026.
Quanto será Solberg em 2027?
De acordo com nossa última simulação experimental para previsão de preços de Solberg, o valor de SLB pode diminuir -12.62% para $0.007232 em 2027, assumindo as condições mais favoráveis. O preço está projetado para flutuar entre $0.007232 e $0.002753 ao longo do ano.
Quanto será Solberg em 2028?
Nosso novo modelo experimental de previsão de preços de Solberg sugere que o valor de SLB em 2028 pode aumentar 47.02%, alcançando $0.012169 no melhor cenário. O preço é esperado para variar entre $0.012169 e $0.004968 durante o ano.
Quanto será Solberg em 2029?
Com base no nosso modelo de previsão experimental, o valor de Solberg pode experimentar um 333.75% crescimento em 2029, potencialmente alcançando $0.0359036 sob condições ótimas. A faixa de preço prevista para 2029 está entre $0.0359036 e $0.010914.
Quanto será Solberg em 2030?
Usando nossa nova simulação experimental para previsões de preços de Solberg, espera-se que o valor de SLB em 2030 aumente 224.23%, alcançando $0.026837 no melhor cenário. O preço está previsto para variar entre $0.026837 e $0.009282 ao longo de 2030.
Quanto será Solberg em 2031?
Nossa simulação experimental indica que o preço de Solberg poderia aumentar 195.98% em 2031, potencialmente atingindo $0.024499 sob condições ideais. O preço provavelmente oscilará entre $0.024499 e $0.010974 durante o ano.
Quanto será Solberg em 2032?
Com base nos achados da nossa mais recente previsão experimental de preços de Solberg, SLB poderia ver um 449.04% aumento em valor, atingindo $0.045445 se o cenário mais positivo se desenrolar em 2032. O preço é esperado para permanecer dentro de uma faixa de $0.045445 e $0.016751 ao longo do ano.
Quanto será Solberg em 2033?
De acordo com nossa previsão experimental de preços de Solberg, espera-se que o valor de SLB seja aumentar 1362.43% em 2033, com o preço potencial mais alto sendo $0.121051. Ao longo do ano, o preço de SLB poderia variar entre $0.121051 e $0.038927.
Quanto será Solberg em 2034?
Os resultados da nossa nova simulação de previsão de preços de Solberg sugerem que SLB pode aumentar 746.96% em 2034, atingindo potencialmente $0.0701065 nas melhores circunstâncias. A faixa de preço prevista para o ano é entre $0.0701065 e $0.031295.
Quanto será Solberg em 2035?
Com base em nossa previsão experimental para o preço de Solberg, SLB poderia aumentar 897.93%, com o valor potencialmente atingindo $0.0826029 em 2035. A faixa de preço esperada para o ano está entre $0.0826029 e $0.0370013.
Quanto será Solberg em 2036?
Nossa recente simulação de previsão de preços de Solberg sugere que o valor de SLB pode aumentar 1964.7% em 2036, possivelmente atingindo $0.1709034 se as condições forem ideais. A faixa de preço esperada para 2036 está entre $0.1709034 e $0.061248.
Quanto será Solberg em 2037?
De acordo com a simulação experimental, o valor de Solberg poderia aumentar 4830.69% em 2037, com um pico de $0.408133 sob condições favoráveis. O preço é esperado para cair entre $0.408133 e $0.159061 ao longo do ano.
Previsões relacionadas
Previsão de Preço do World$tateCoin
Previsão de Preço do SwiftCash
Previsão de Preço do SakeToken
Previsão de Preço do X8X Token
Previsão de Preço do WaterDrop
Previsão de Preço do BlockCDN
Previsão de Preço do Sirin Labs Token
Previsão de Preço do Benzene
Previsão de Preço do Nsure Network
Previsão de Preço do Grok Inu
Previsão de Preço do DOGE-1
Previsão de Preço do Mackerel
Previsão de Preço do WELL
Previsão de Preço do DeltaChain
Previsão de Preço do SureRemit
Previsão de Preço do lien
Previsão de Preço do Kripton
Previsão de Preço do DataminePrevisão de Preço do Wonderland
Previsão de Preço do DFSocial Gaming
Previsão de Preço do WagyuSwap
Previsão de Preço do Tesla
Previsão de Preço do Baked Token
Previsão de Preço do Aluna
Previsão de Preço do Finance Vote
Como ler e prever os movimentos de preço de Solberg?
Traders de Solberg utilizam indicadores e padrões de gráfico para prever a direção do mercado. Eles também identificam níveis-chave de suporte e resistência para avaliar quando uma tendência de baixa pode desacelerar ou uma tendência de alta pode estagnar.
Indicadores de Previsão de Preço de Solberg
Médias móveis são ferramentas populares para a previsão de preço de Solberg. Uma média móvel simples (SMA) calcula o preço médio de fechamento de SLB em um período específico, como uma SMA de 12 dias. Uma média móvel exponencial (EMA) dá mais peso aos preços recentes, reagindo mais rapidamente às mudanças de preço.
Médias móveis comumente usadas no mercado de criptomoedas incluem as de 50 dias, 100 dias e 200 dias, que ajudam a identificar níveis-chave de resistência e suporte. Um movimento de preço de SLB acima dessas médias é visto como altista, enquanto uma queda abaixo indica fraqueza.
Traders também usam RSI e níveis de retração de Fibonacci para avaliar a direção futura de SLB.
Como ler gráficos de Solberg e prever movimentos de preço?
A maioria dos traders prefere gráficos de velas em vez de gráficos de linha simples porque eles fornecem informações mais detalhadas. Velas podem representar a ação de preço de Solberg em diferentes períodos de tempo, como 5 minutos para tendências de curto prazo e semanal para tendências de longo prazo. Opções populares incluem gráficos de 1 hora, 4 horas e 1 dia.
Por exemplo, um gráfico de velas de 1 hora mostra os preços de abertura, fechamento, máximo e mínimo de SLB dentro de cada hora. A cor da vela é crucial: verde indica que o preço fechou mais alto do que abriu, enquanto vermelho significa o oposto. Alguns gráficos usam velas vazias e preenchidas para transmitir a mesma informação.
O que afeta o preço de Solberg?
A ação de preço de Solberg é impulsionada pela oferta e demanda, influenciada por fatores como reduções pela metade das recompensas de bloco, hard forks e atualizações de protocolo. Eventos do mundo real, como regulamentações, adoção por empresas e governos e hacks de exchanges de criptomoedas, também impactam o preço de SLB. A capitalização de mercado de Solberg pode mudar rapidamente.
Traders frequentemente monitoram a atividade de "baleias" de SLB, grandes detentores de Solberg, pois suas ações podem influenciar significativamente os movimentos de preço no relativamente pequeno mercado de Solberg.
Padrões de previsão de preço altistas e baixistas
Traders frequentemente identificam padrões de velas para ganhar vantagem em previsões de preço de criptomoedas. Certas formações indicam tendências altistas, enquanto outras sugerem movimentos baixistas.
Padrões de velas altistas comumente seguidos:
- Martelo
- Engolfo de Alta
- Linha de Perfuração
- Estrela da Manhã
- Três Soldados Brancos
Padrões de velas baixistas comuns:
- Harami de Baixa
- Nuvem Negra
- Estrela da Noite
- Estrela Cadente
- Homem Enforcado


