Prédiction du prix de SIX Network jusqu'à $0.012494 d'ici 2026
| Année | Prix min. | Prix max. |
|---|---|---|
| 2026 | $0.004185 | $0.012494 |
| 2027 | $0.004029 | $0.010585 |
| 2028 | $0.007271 | $0.017811 |
| 2029 | $0.015974 | $0.052548 |
| 2030 | $0.013585 | $0.039279 |
| 2031 | $0.016062 | $0.035857 |
| 2032 | $0.024517 | $0.066514 |
| 2033 | $0.056973 | $0.177169 |
| 2034 | $0.0458041 | $0.1026069 |
| 2035 | $0.054154 | $0.120896 |
Calculateur de profit d’investissement
Si vous ouvrez une position short de $10,000.00 sur SIX Network aujourd’hui et la fermez le Apr 06, 2026, notre prévision indique que vous pourriez gagner environ $3,954.46, soit un rendement de 39.54% sur les 90 prochains jours.
Prévision du prix à long terme de SIX Network pour 2027, 2028, 2029, 2030, 2031, 2032 et 2037
[
'name' => 'SIX Network'
'name_with_ticker' => 'SIX Network <small>SIX</small>'
'name_lang' => 'SIX Network'
'name_lang_with_ticker' => 'SIX Network <small>SIX</small>'
'name_with_lang' => 'SIX Network'
'name_with_lang_with_ticker' => 'SIX Network <small>SIX</small>'
'image' => '/uploads/coins/six-network.png?1717202684'
'price_for_sd' => 0.01211
'ticker' => 'SIX'
'marketcap' => '$3.31M'
'low24h' => '$0.01191'
'high24h' => '$0.01228'
'volume24h' => '$372.94K'
'current_supply' => '273.78M'
'max_supply' => '1000M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '0.1 USD 0.12x'
'price' => '$0.01211'
'change_24h_pct' => '0.6119%'
'ath_price' => '$0.5671'
'ath_days' => 1499
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '29 nov. 2021'
'ath_pct' => '-97.87%'
'fdv' => '$12.1M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.597338'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.012218'
'next_week_prediction_price_date' => '13 janvier 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.010707'
'next_month_prediction_price_date' => '5 février 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.004185'
'current_year_max_price_prediction' => '$0.012494'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.013585'
'grand_prediction_max_price' => '$0.039279'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.012344277382163
107 => 0.012390366432935
108 => 0.01249420741769
109 => 0.0116068975723
110 => 0.012005273642832
111 => 0.012239282261479
112 => 0.011182022809123
113 => 0.012218383641454
114 => 0.011591451481977
115 => 0.011378661290846
116 => 0.011665155250229
117 => 0.011553508275633
118 => 0.011457520763005
119 => 0.011403958081685
120 => 0.011614327626271
121 => 0.01160451363557
122 => 0.011260308229658
123 => 0.010811306309253
124 => 0.010962006091726
125 => 0.010907255447936
126 => 0.010708832051865
127 => 0.010842545463084
128 => 0.010253739270882
129 => 0.0092407288206811
130 => 0.0099099545534332
131 => 0.0098841900906997
201 => 0.0098711984802642
202 => 0.010374103122387
203 => 0.010325760445031
204 => 0.010238018012257
205 => 0.010707220593278
206 => 0.01053595533954
207 => 0.011063754496393
208 => 0.011411397157005
209 => 0.011323223733211
210 => 0.01165018333582
211 => 0.010965477910344
212 => 0.011192909587073
213 => 0.011239782940441
214 => 0.010701430706261
215 => 0.01033366990491
216 => 0.01030914445224
217 => 0.0096714979032579
218 => 0.010012123542821
219 => 0.01031186000959
220 => 0.010168309502497
221 => 0.010122865700401
222 => 0.010355028229752
223 => 0.01037306924662
224 => 0.0099617321501244
225 => 0.010047262157838
226 => 0.010403936508183
227 => 0.010038274879341
228 => 0.0093278540649898
301 => 0.0091516598806944
302 => 0.0091281523286063
303 => 0.0086502997266604
304 => 0.0091634340185943
305 => 0.0089394371490211
306 => 0.0096470405761084
307 => 0.0092428612935094
308 => 0.0092254379324595
309 => 0.0091990999667811
310 => 0.0087877924924439
311 => 0.0088778426893701
312 => 0.0091771832589851
313 => 0.0092839913465366
314 => 0.0092728503879521
315 => 0.0091757163268893
316 => 0.009220183802637
317 => 0.0090769385697581
318 => 0.0090263556966369
319 => 0.0088667022351509
320 => 0.0086320557521609
321 => 0.0086646847847912
322 => 0.0081997887033959
323 => 0.0079464886443493
324 => 0.0078763785264463
325 => 0.0077826243466829
326 => 0.0078869683105209
327 => 0.0081984717112085
328 => 0.0078227325208462
329 => 0.0071785540340099
330 => 0.0072172702586955
331 => 0.0073042541206137
401 => 0.0071421602693849
402 => 0.0069887520427025
403 => 0.0071221280494
404 => 0.0068491811324725
405 => 0.0073372384515051
406 => 0.0073240378687901
407 => 0.0075059554560633
408 => 0.00761971225671
409 => 0.007357539660421
410 => 0.0072916039614444
411 => 0.0073291639321919
412 => 0.0067083812816045
413 => 0.007455224269511
414 => 0.0074616829986838
415 => 0.0074063794382985
416 => 0.0078040502731684
417 => 0.0086432597713877
418 => 0.0083275154010337
419 => 0.0082052496374086
420 => 0.0079728223313814
421 => 0.0082825179164948
422 => 0.0082587381275618
423 => 0.0081511969037897
424 => 0.0080861556361033
425 => 0.0082059961660896
426 => 0.0080713060682216
427 => 0.0080471120256081
428 => 0.0079005224507484
429 => 0.0078481966419242
430 => 0.0078094566962213
501 => 0.0077668078225107
502 => 0.007860880610479
503 => 0.007647699296637
504 => 0.0073906235305654
505 => 0.0073692504622149
506 => 0.0074282633830701
507 => 0.0074021545585869
508 => 0.0073691254632081
509 => 0.007306063925191
510 => 0.0072873549139579
511 => 0.0073481501241436
512 => 0.0072795158764249
513 => 0.0073807894476348
514 => 0.007353248639988
515 => 0.0071994079272546
516 => 0.0070076654400619
517 => 0.0070059585297324
518 => 0.0069646479253875
519 => 0.0069120326596633
520 => 0.006897396296413
521 => 0.0071108954941319
522 => 0.0075528324439167
523 => 0.007466069646019
524 => 0.0075287646593092
525 => 0.007837162073162
526 => 0.007935192337192
527 => 0.0078656127777575
528 => 0.0077703679853233
529 => 0.007774558272815
530 => 0.0081000385611219
531 => 0.0081203383674614
601 => 0.0081716294291154
602 => 0.0082375529381932
603 => 0.0078768398364148
604 => 0.0077575687181596
605 => 0.0077010514454206
606 => 0.0075270001203215
607 => 0.007714699552408
608 => 0.0076053351314222
609 => 0.0076200921282338
610 => 0.0076104816147011
611 => 0.00761572960495
612 => 0.0073371020295378
613 => 0.0074386192737838
614 => 0.0072698271656315
615 => 0.0070438334806189
616 => 0.0070430758705432
617 => 0.007098387504785
618 => 0.0070654859803935
619 => 0.0069769488242315
620 => 0.0069895251093807
621 => 0.0068793436180845
622 => 0.0070029031373244
623 => 0.007006446382219
624 => 0.0069588692369791
625 => 0.0071492297242961
626 => 0.0072272205712692
627 => 0.0071959042750711
628 => 0.0072250233364451
629 => 0.0074696750319822
630 => 0.0075095639332566
701 => 0.0075272799482897
702 => 0.0075035428350675
703 => 0.0072294951203261
704 => 0.0072416503018157
705 => 0.0071524636451343
706 => 0.0070771103184968
707 => 0.0070801240563862
708 => 0.0071188654615246
709 => 0.0072880514499175
710 => 0.0076440933884316
711 => 0.0076576049197349
712 => 0.0076739812898338
713 => 0.0076073703625377
714 => 0.0075872798694845
715 => 0.0076137844156179
716 => 0.007747495047928
717 => 0.0080914350963122
718 => 0.0079698637122297
719 => 0.0078710242845994
720 => 0.0079577331095496
721 => 0.0079443849655947
722 => 0.0078317131975186
723 => 0.0078285508762537
724 => 0.0076122977299722
725 => 0.0075323538656379
726 => 0.0074655467889056
727 => 0.0073925952051568
728 => 0.0073493470609513
729 => 0.007415795866381
730 => 0.0074309934943819
731 => 0.0072857020199836
801 => 0.0072658993288935
802 => 0.0073845474832215
803 => 0.0073323348541508
804 => 0.0073860368379609
805 => 0.0073984961588519
806 => 0.007396489921226
807 => 0.0073419739398939
808 => 0.007376720800705
809 => 0.007294534116349
810 => 0.0072051684411527
811 => 0.0071481587080557
812 => 0.0070984101546849
813 => 0.0071260135434979
814 => 0.0070276125025591
815 => 0.0069961320291411
816 => 0.0073649493460913
817 => 0.0076373986635768
818 => 0.0076334371425988
819 => 0.0076093224024656
820 => 0.0075734927901241
821 => 0.0077448738886164
822 => 0.0076851681407749
823 => 0.0077286090609117
824 => 0.0077396665982962
825 => 0.0077731344336419
826 => 0.0077850963081204
827 => 0.0077489392153905
828 => 0.0076275915959723
829 => 0.0073252048657674
830 => 0.0071844430265797
831 => 0.0071379892750739
901 => 0.0071396777807129
902 => 0.0070931012573681
903 => 0.0071068201309065
904 => 0.0070883303930149
905 => 0.0070533153025962
906 => 0.0071238514603345
907 => 0.0071319800954241
908 => 0.0071155161133636
909 => 0.0071193939771437
910 => 0.0069830792375421
911 => 0.0069934429511339
912 => 0.0069357364768974
913 => 0.00692491720864
914 => 0.0067790402668475
915 => 0.0065205981192614
916 => 0.0066638001566104
917 => 0.0064908322327464
918 => 0.0064253266590874
919 => 0.0067354198565824
920 => 0.0067042951002004
921 => 0.0066510230468807
922 => 0.0065722225771522
923 => 0.0065429947164082
924 => 0.006365415486944
925 => 0.0063549231587189
926 => 0.0064429362198839
927 => 0.0064023212205008
928 => 0.0063452823792638
929 => 0.0061386934782379
930 => 0.0059064191542504
1001 => 0.0059134300560672
1002 => 0.0059873121969102
1003 => 0.0062021344857754
1004 => 0.0061181997010525
1005 => 0.0060573040516953
1006 => 0.0060459001270872
1007 => 0.0061886441192909
1008 => 0.0063906567740501
1009 => 0.0064854365918847
1010 => 0.0063915126709165
1011 => 0.0062836179277312
1012 => 0.0062901849808128
1013 => 0.006333872642873
1014 => 0.0063384635984452
1015 => 0.0062682352123904
1016 => 0.0062880040916997
1017 => 0.0062579733563247
1018 => 0.0060736747887604
1019 => 0.0060703414120903
1020 => 0.0060251115713941
1021 => 0.0060237420297933
1022 => 0.0059467947876567
1023 => 0.0059360293365706
1024 => 0.0057832459169446
1025 => 0.0058838084264133
1026 => 0.0058163563748304
1027 => 0.0057146902227646
1028 => 0.0056971629398281
1029 => 0.0056966360485383
1030 => 0.0058010244545742
1031 => 0.0058825885871108
1101 => 0.0058175297321464
1102 => 0.0058027170919839
1103 => 0.0059608773358924
1104 => 0.0059407500031924
1105 => 0.0059233198628816
1106 => 0.0063725687565106
1107 => 0.0060169532018749
1108 => 0.0058618845222276
1109 => 0.0056699575844204
1110 => 0.00573244996315
1111 => 0.0057456180255524
1112 => 0.0052840683375569
1113 => 0.0050968176866194
1114 => 0.0050325603196096
1115 => 0.0049955792964297
1116 => 0.0050124320130712
1117 => 0.0048438844649168
1118 => 0.0049571512047957
1119 => 0.0048112032750636
1120 => 0.0047867346296883
1121 => 0.0050477076075285
1122 => 0.005084020472813
1123 => 0.0049290985079866
1124 => 0.005028583488993
1125 => 0.0049925088519354
1126 => 0.0048137051334229
1127 => 0.0048068761465668
1128 => 0.0047171587258718
1129 => 0.0045767683352001
1130 => 0.004512606159486
1201 => 0.0044791899412926
1202 => 0.0044929781241883
1203 => 0.0044860063969909
1204 => 0.0044405111611696
1205 => 0.0044886141306534
1206 => 0.0043657309211418
1207 => 0.004316797836977
1208 => 0.0042946958980986
1209 => 0.0041856299767635
1210 => 0.0043592023594431
1211 => 0.0043933983054382
1212 => 0.0044276616280107
1213 => 0.0047259004584397
1214 => 0.0047110012892857
1215 => 0.0048456825222486
1216 => 0.0048404490571986
1217 => 0.0048020357878662
1218 => 0.0046399765232291
1219 => 0.0047045704576848
1220 => 0.0045057603675563
1221 => 0.0046547224048527
1222 => 0.004586742351834
1223 => 0.0046317382805453
1224 => 0.0045508315436031
1225 => 0.0045956086723842
1226 => 0.0044015074328196
1227 => 0.0042202584263924
1228 => 0.0042931983175671
1229 => 0.0043724923209623
1230 => 0.0045444219240594
1231 => 0.0044420220708432
]
'min_raw' => 0.0041856299767635
'max_raw' => 0.01249420741769
'avg_raw' => 0.0083399186972268
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.004185'
'max' => '$0.012494'
'avg' => '$0.008339'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0079290800232365
'max_diff' => 0.00037949741769012
'year' => 2026
]
1 => [
'items' => [
101 => 0.0044788489302269
102 => 0.0043554851160333
103 => 0.0041009503302206
104 => 0.0041023909694659
105 => 0.0040632363380103
106 => 0.0040294010197629
107 => 0.0044537839257944
108 => 0.0044010052029284
109 => 0.00431690921555
110 => 0.0044294750364977
111 => 0.0044592392262161
112 => 0.0044600865708538
113 => 0.0045422116880729
114 => 0.0045860418778545
115 => 0.0045937671387744
116 => 0.0047229927851492
117 => 0.0047663075172866
118 => 0.00494471476883
119 => 0.004582323192476
120 => 0.0045748599764394
121 => 0.0044310590684421
122 => 0.0043398582591878
123 => 0.0044373036658775
124 => 0.00452362699358
125 => 0.0044337413748592
126 => 0.0044454785390751
127 => 0.0043248144398674
128 => 0.0043679461775606
129 => 0.0044050970405345
130 => 0.0043845845176271
131 => 0.0043538762780174
201 => 0.0045165494651266
202 => 0.0045073708063885
203 => 0.0046588558180651
204 => 0.004776949217464
205 => 0.0049885937009072
206 => 0.0047677316491578
207 => 0.0047596825581449
208 => 0.0048383637139107
209 => 0.0047662954716116
210 => 0.0048118401130335
211 => 0.0049812557550567
212 => 0.004984835240611
213 => 0.0049248742456702
214 => 0.0049212256136788
215 => 0.0049327417786586
216 => 0.0050001923166461
217 => 0.0049766230261275
218 => 0.005003898005817
219 => 0.005038005785568
220 => 0.0051790900240169
221 => 0.0052131049562685
222 => 0.0051304663056175
223 => 0.0051379276505055
224 => 0.0051070185266804
225 => 0.0050771607003554
226 => 0.0051442767335485
227 => 0.0052669326033778
228 => 0.0052661695675775
301 => 0.0052946233452885
302 => 0.0053123498130786
303 => 0.0052362548367559
304 => 0.0051867198052596
305 => 0.0052057146883312
306 => 0.0052360879200175
307 => 0.0051958650586556
308 => 0.004947590925288
309 => 0.0050229014375386
310 => 0.0050103660858042
311 => 0.0049925142205836
312 => 0.0050682395230106
313 => 0.0050609356328584
314 => 0.0048421557661958
315 => 0.00485616134343
316 => 0.0048430074917353
317 => 0.0048855102775857
318 => 0.0047640001816934
319 => 0.0048013758688069
320 => 0.0048248175493892
321 => 0.0048386248793396
322 => 0.0048885064228953
323 => 0.0048826533994897
324 => 0.0048881425907424
325 => 0.0049621037515963
326 => 0.0053361739227898
327 => 0.0053565337368685
328 => 0.0052562745660926
329 => 0.0052963261272929
330 => 0.0052194358881019
331 => 0.0052710528207906
401 => 0.0053063678152083
402 => 0.0051467861461177
403 => 0.0051373367553506
404 => 0.0050601291627912
405 => 0.0051016161497711
406 => 0.0050356073704661
407 => 0.0050518036160185
408 => 0.0050065175014908
409 => 0.0050880234912652
410 => 0.0051791598525832
411 => 0.0052021844965362
412 => 0.0051416165710285
413 => 0.0050977614013402
414 => 0.0050207661701584
415 => 0.0051488109555643
416 => 0.0051862551529111
417 => 0.0051486142771361
418 => 0.0051398920637497
419 => 0.0051233634851431
420 => 0.0051433986798367
421 => 0.0051860512237708
422 => 0.0051659370717203
423 => 0.0051792228235154
424 => 0.0051285912378802
425 => 0.0052362800273593
426 => 0.0054073157417708
427 => 0.0054078656495597
428 => 0.0053877513890865
429 => 0.0053795210670686
430 => 0.0054001595189496
501 => 0.0054113550324614
502 => 0.0054780960013997
503 => 0.0055497117201479
504 => 0.0058839110311601
505 => 0.005790069201948
506 => 0.006086590712284
507 => 0.0063211007284606
508 => 0.0063914200284318
509 => 0.006326729581237
510 => 0.006105427055893
511 => 0.0060945688982202
512 => 0.0064252883026003
513 => 0.0063318449229546
514 => 0.0063207301302801
515 => 0.0062024875149621
516 => 0.0062723835452479
517 => 0.0062570962581115
518 => 0.006232964527487
519 => 0.0063663212842725
520 => 0.0066159532281351
521 => 0.0065770457486506
522 => 0.0065480031200814
523 => 0.0064207467758733
524 => 0.0064973835188201
525 => 0.0064700946425369
526 => 0.0065873449729983
527 => 0.0065178884746458
528 => 0.0063311369974497
529 => 0.0063608777857341
530 => 0.006356382525415
531 => 0.006448894664243
601 => 0.0064211248164593
602 => 0.0063509600169451
603 => 0.0066151000132894
604 => 0.0065979482311507
605 => 0.0066222655367801
606 => 0.0066329707667559
607 => 0.0067937481278618
608 => 0.0068596134684052
609 => 0.0068745660538436
610 => 0.0069371330331516
611 => 0.0068730093304012
612 => 0.0071295498608279
613 => 0.0073001343440066
614 => 0.007498276999416
615 => 0.007787816674694
616 => 0.0078966862709903
617 => 0.0078770199528734
618 => 0.0080965456301986
619 => 0.0084910283925702
620 => 0.0079567561978425
621 => 0.008519346116205
622 => 0.0083412366434644
623 => 0.007918942287649
624 => 0.0078917515096579
625 => 0.0081777341503544
626 => 0.0088120161226101
627 => 0.0086531356825266
628 => 0.0088122759940927
629 => 0.0086266303674155
630 => 0.0086174114973068
701 => 0.0088032596003738
702 => 0.0092375038232426
703 => 0.0090312106703589
704 => 0.0087354388505438
705 => 0.0089538321595761
706 => 0.0087646396639457
707 => 0.0083383360196454
708 => 0.0086530141896484
709 => 0.0084425978588857
710 => 0.0085040085305496
711 => 0.0089462723607458
712 => 0.0088930580066116
713 => 0.0089619223083777
714 => 0.0088403786182531
715 => 0.008726837645996
716 => 0.0085149049896148
717 => 0.008452162178214
718 => 0.0084695020340353
719 => 0.0084521535854426
720 => 0.008333579211959
721 => 0.0083079730872948
722 => 0.0082652950910244
723 => 0.0082785227866351
724 => 0.0081982756677585
725 => 0.0083497185609794
726 => 0.0083778276964714
727 => 0.0084880352048684
728 => 0.0084994773139895
729 => 0.0088064036561694
730 => 0.0086373537845844
731 => 0.0087507670335073
801 => 0.0087406222850368
802 => 0.007928094686848
803 => 0.0080400538208867
804 => 0.0082142270987392
805 => 0.008135762273153
806 => 0.0080248313677155
807 => 0.0079352487138359
808 => 0.0077995218329116
809 => 0.0079905548114087
810 => 0.0082417428640398
811 => 0.0085058478575277
812 => 0.0088231527023587
813 => 0.008752333954828
814 => 0.0084999160641662
815 => 0.0085112393463499
816 => 0.0085812354212622
817 => 0.0084905841444368
818 => 0.0084638493131778
819 => 0.0085775624659885
820 => 0.0085783455459763
821 => 0.0084740402964158
822 => 0.0083581240991885
823 => 0.0083576384060896
824 => 0.0083370122384107
825 => 0.0086302997168243
826 => 0.0087915781752432
827 => 0.0088100684905877
828 => 0.0087903336296974
829 => 0.0087979287944054
830 => 0.0087040844129798
831 => 0.0089185848402319
901 => 0.0091154316441721
902 => 0.0090626724956975
903 => 0.0089835790319793
904 => 0.0089205772784704
905 => 0.0090478312847953
906 => 0.0090421648642101
907 => 0.009113712359065
908 => 0.0091104665514201
909 => 0.0090864078199377
910 => 0.0090626733549106
911 => 0.0091567778259209
912 => 0.0091296772495415
913 => 0.0091025345784816
914 => 0.0090480957963359
915 => 0.0090554949309619
916 => 0.0089764151238454
917 => 0.0089398291866275
918 => 0.0083896644728081
919 => 0.008242642484125
920 => 0.0082888985946732
921 => 0.0083041273073051
922 => 0.0082401431494164
923 => 0.0083318799956472
924 => 0.0083175829053355
925 => 0.0083732045202203
926 => 0.0083384545500501
927 => 0.0083398807009471
928 => 0.008442072953743
929 => 0.0084717397994866
930 => 0.0084566510023006
1001 => 0.0084672186786359
1002 => 0.0087107463194469
1003 => 0.0086761244764992
1004 => 0.0086577323124721
1005 => 0.0086628270676019
1006 => 0.0087250536011206
1007 => 0.0087424736330631
1008 => 0.0086686637336389
1009 => 0.0087034729088973
1010 => 0.0088516859592054
1011 => 0.0089035521386811
1012 => 0.009069084086389
1013 => 0.0089987631729069
1014 => 0.0091278402530211
1015 => 0.0095245791916729
1016 => 0.0098415217081142
1017 => 0.0095500482717913
1018 => 0.01013207284085
1019 => 0.010585262454328
1020 => 0.010567868282136
1021 => 0.010488844190561
1022 => 0.0099728998642858
1023 => 0.0094981202029509
1024 => 0.0098952935498668
1025 => 0.0098963060264076
1026 => 0.0098621884836719
1027 => 0.0096502873558995
1028 => 0.0098548147837477
1029 => 0.0098710494282358
1030 => 0.0098619623444629
1031 => 0.0096994982466283
1101 => 0.009451445597619
1102 => 0.0094999144914813
1103 => 0.0095793075283663
1104 => 0.0094289999464204
1105 => 0.0093809675665312
1106 => 0.0094702688992795
1107 => 0.0097580164000661
1108 => 0.0097036194018502
1109 => 0.0097021988763912
1110 => 0.0099349323026763
1111 => 0.0097683453964731
1112 => 0.0095005258394518
1113 => 0.009432897869198
1114 => 0.0091928641344563
1115 => 0.0093586562900132
1116 => 0.0093646228545376
1117 => 0.0092738201852938
1118 => 0.0095078939756189
1119 => 0.0095057369444331
1120 => 0.0097279551710608
1121 => 0.010152752959018
1122 => 0.01002711935009
1123 => 0.0098810211318035
1124 => 0.0098969060589954
1125 => 0.010071124502949
1126 => 0.0099657880547146
1127 => 0.010003667775932
1128 => 0.010071067167455
1129 => 0.010111730893793
1130 => 0.0098910551745545
1201 => 0.0098396051082601
1202 => 0.0097343563291413
1203 => 0.0097068988872307
1204 => 0.0097926218217352
1205 => 0.0097700368571292
1206 => 0.009364121387893
1207 => 0.0093217009628655
1208 => 0.0093230019367386
1209 => 0.0092163337610256
1210 => 0.0090536391897678
1211 => 0.0094811908090453
1212 => 0.0094468524304362
1213 => 0.0094089455180313
1214 => 0.009413588898507
1215 => 0.0095991745653665
1216 => 0.0094915255062872
1217 => 0.0097777281731834
1218 => 0.0097188935089092
1219 => 0.0096585499574999
1220 => 0.0096502086405856
1221 => 0.0096269815215629
1222 => 0.0095473270880037
1223 => 0.0094511395729916
1224 => 0.0093876282439607
1225 => 0.0086595908269023
1226 => 0.0087947103367096
1227 => 0.0089501530162119
1228 => 0.0090038112062787
1229 => 0.0089120251591357
1230 => 0.0095509513605874
1231 => 0.0096676893344387
]
'min_raw' => 0.0040294010197629
'max_raw' => 0.010585262454328
'avg_raw' => 0.0073073317370453
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.004029'
'max' => '$0.010585'
'avg' => '$0.0073073'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00015622895700055
'max_diff' => -0.0019089449633625
'year' => 2027
]
2 => [
'items' => [
101 => 0.0093140823970135
102 => 0.0092479369766974
103 => 0.0095552878433314
104 => 0.0093699176986357
105 => 0.0094533898634418
106 => 0.0092729686999641
107 => 0.0096395705750249
108 => 0.009636777682963
109 => 0.0094941612734855
110 => 0.0096146996861809
111 => 0.0095937531706704
112 => 0.009432739595619
113 => 0.0096446749925487
114 => 0.0096447801098614
115 => 0.0095075149164875
116 => 0.0093472192218413
117 => 0.0093185621376539
118 => 0.0092969728742563
119 => 0.0094480802280919
120 => 0.0095835626090405
121 => 0.0098356617310552
122 => 0.0098990454400571
123 => 0.010146436275984
124 => 0.0099991270784307
125 => 0.010064427337733
126 => 0.01013532000649
127 => 0.010169308558885
128 => 0.010113926036685
129 => 0.01049822583501
130 => 0.01053067251263
131 => 0.010541551602973
201 => 0.010411967873216
202 => 0.01052706855469
203 => 0.010473216757562
204 => 0.010613324173228
205 => 0.010635294804986
206 => 0.010616686461515
207 => 0.010623660286818
208 => 0.010295728204077
209 => 0.010278723195608
210 => 0.010046858698504
211 => 0.01014134519493
212 => 0.0099647072187176
213 => 0.010020720940547
214 => 0.010045411255411
215 => 0.010032514436089
216 => 0.010146687319671
217 => 0.010049617044647
218 => 0.0097934326290293
219 => 0.0095371784161383
220 => 0.0095339613532356
221 => 0.009466494142244
222 => 0.0094177277059331
223 => 0.0094271218516488
224 => 0.0094602280464488
225 => 0.0094158035137075
226 => 0.0094252837401489
227 => 0.0095827186654934
228 => 0.0096142911169967
229 => 0.0095069955906353
301 => 0.0090761885696236
302 => 0.0089704674460697
303 => 0.0090464576931392
304 => 0.0090101392494387
305 => 0.007271885586833
306 => 0.0076802625009812
307 => 0.007437618805764
308 => 0.0075494401840197
309 => 0.0073017638034832
310 => 0.0074199679541065
311 => 0.0073981399636108
312 => 0.0080547979568097
313 => 0.0080445451454494
314 => 0.0080494526236809
315 => 0.0078152059013271
316 => 0.0081883672905283
317 => 0.0083722000092984
318 => 0.0083381774656035
319 => 0.0083467402068646
320 => 0.0081996039422799
321 => 0.008050877224346
322 => 0.0078859164052795
323 => 0.0081923932173316
324 => 0.0081583182275651
325 => 0.0082364739942952
326 => 0.0084352461143259
327 => 0.0084645160640623
328 => 0.0085038551733345
329 => 0.0084897549030089
330 => 0.0088256805473639
331 => 0.0087849977353238
401 => 0.0088830316070967
402 => 0.008681368495012
403 => 0.0084531675416499
404 => 0.0084965410824328
405 => 0.0084923638616674
406 => 0.0084391830469333
407 => 0.0083911737852662
408 => 0.0083112518911161
409 => 0.0085641365904217
410 => 0.0085538699334516
411 => 0.0087200751761146
412 => 0.0086906967850423
413 => 0.0084945006993499
414 => 0.0085015078809328
415 => 0.0085486345446144
416 => 0.0087117404656993
417 => 0.0087601614081752
418 => 0.0087377308983794
419 => 0.0087908222513042
420 => 0.0088327834919472
421 => 0.0087960919370824
422 => 0.009315566978327
423 => 0.0090998447235287
424 => 0.0092049862495316
425 => 0.0092300618839534
426 => 0.0091658311736657
427 => 0.0091797605147978
428 => 0.0092008596710947
429 => 0.0093289696164911
430 => 0.0096651671821227
501 => 0.0098140667953667
502 => 0.010262038628389
503 => 0.0098017027552695
504 => 0.0097743883296178
505 => 0.0098550815841984
506 => 0.010118088472817
507 => 0.010331230853061
508 => 0.010401942477067
509 => 0.010411288185501
510 => 0.010543947892956
511 => 0.010619985963312
512 => 0.010527839515174
513 => 0.010449755048513
514 => 0.010170066181132
515 => 0.010202440929099
516 => 0.010425470838097
517 => 0.010740513720954
518 => 0.011010853289071
519 => 0.010916189794601
520 => 0.011638405435389
521 => 0.011710010166187
522 => 0.011700116707649
523 => 0.011863242940619
524 => 0.011539470588253
525 => 0.011401051634823
526 => 0.010466637796501
527 => 0.010729169970824
528 => 0.011110775904177
529 => 0.011060268927949
530 => 0.010783136498793
531 => 0.011010643059272
601 => 0.01093542227559
602 => 0.010876092522586
603 => 0.011147893622734
604 => 0.010849037148148
605 => 0.01110779458223
606 => 0.010775935496516
607 => 0.01091662220947
608 => 0.010836761626947
609 => 0.010888441211184
610 => 0.01058632341772
611 => 0.010749338845578
612 => 0.010579541439976
613 => 0.010579460933897
614 => 0.010575712646758
615 => 0.010775478541452
616 => 0.010781992900106
617 => 0.010634365602098
618 => 0.010613090202083
619 => 0.010691756506826
620 => 0.010599658866709
621 => 0.010642750772864
622 => 0.010600964076648
623 => 0.010591557011168
624 => 0.010516599912937
625 => 0.010484306334031
626 => 0.010496969478423
627 => 0.010453743638315
628 => 0.010427698506102
629 => 0.010570531614414
630 => 0.010494221646514
701 => 0.010558836017395
702 => 0.010485199786793
703 => 0.010229944529749
704 => 0.010083144532148
705 => 0.0096009910137667
706 => 0.0097377291534699
707 => 0.0098283866815591
708 => 0.0097984243690664
709 => 0.0098627950101763
710 => 0.0098667468447438
711 => 0.009845819293138
712 => 0.0098215878693638
713 => 0.0098097933523523
714 => 0.0098977000190894
715 => 0.0099487327979326
716 => 0.0098374853773441
717 => 0.009811421663217
718 => 0.0099238989475704
719 => 0.00999251002605
720 => 0.010499095680309
721 => 0.010461566178791
722 => 0.010555757862807
723 => 0.010545153324676
724 => 0.010643881215437
725 => 0.010805259591312
726 => 0.010477132231055
727 => 0.010534083795005
728 => 0.010520120586729
729 => 0.010672567233346
730 => 0.010673043155137
731 => 0.010581643775215
801 => 0.010631192861856
802 => 0.010603535921001
803 => 0.010653515751186
804 => 0.010461064949418
805 => 0.010695449252191
806 => 0.010828330048473
807 => 0.010830175098458
808 => 0.010893159541288
809 => 0.010957155383017
810 => 0.011079989828351
811 => 0.010953729597005
812 => 0.010726599731998
813 => 0.010742997774627
814 => 0.010609831617877
815 => 0.01061207016503
816 => 0.010600120624887
817 => 0.010635982094375
818 => 0.010468934525305
819 => 0.010508140255876
820 => 0.010453252003488
821 => 0.010533964478664
822 => 0.010447131197625
823 => 0.010520113853247
824 => 0.010551610748
825 => 0.010667834967718
826 => 0.010429964785873
827 => 0.0099449313826953
828 => 0.010046891284505
829 => 0.0098960845809511
830 => 0.0099100423155266
831 => 0.0099382391607261
901 => 0.0098468439600008
902 => 0.0098642792841054
903 => 0.0098636563716379
904 => 0.0098582884485175
905 => 0.0098345130269587
906 => 0.0098000339618747
907 => 0.0099373879450729
908 => 0.0099607270633363
909 => 0.010012607032131
910 => 0.010166966628744
911 => 0.010151542464993
912 => 0.010176699916014
913 => 0.010121781341687
914 => 0.0099125898306794
915 => 0.0099239499361778
916 => 0.0097822892385787
917 => 0.010008984449597
918 => 0.0099553000313969
919 => 0.0099206893377458
920 => 0.0099112454893173
921 => 0.010065987713514
922 => 0.010112289012281
923 => 0.010083437150054
924 => 0.010024261138883
925 => 0.010137896574148
926 => 0.010168300622731
927 => 0.010175106967951
928 => 0.010376447171807
929 => 0.010186359648736
930 => 0.010232115604846
1001 => 0.010589090512809
1002 => 0.010265363530457
1003 => 0.010436848932982
1004 => 0.010428455614895
1005 => 0.010516181744077
1006 => 0.010421259511769
1007 => 0.010422436186601
1008 => 0.010500331046232
1009 => 0.010390941764293
1010 => 0.010363855439739
1011 => 0.010326435876365
1012 => 0.010408140124025
1013 => 0.010457118125333
1014 => 0.010851844845491
1015 => 0.011106856308438
1016 => 0.011095785588287
1017 => 0.011196951246951
1018 => 0.011151375191152
1019 => 0.011004198084619
1020 => 0.011255411459135
1021 => 0.011175917036224
1022 => 0.011182470459863
1023 => 0.011182226541108
1024 => 0.01123508338282
1025 => 0.011197629466209
1026 => 0.011123803952001
1027 => 0.011172812773624
1028 => 0.011318351452872
1029 => 0.011770107978926
1030 => 0.012022916915885
1031 => 0.011754888563485
1101 => 0.011939770931928
1102 => 0.011828907391186
1103 => 0.011808760187928
1104 => 0.01192487997801
1105 => 0.012041203020412
1106 => 0.01203379374549
1107 => 0.01194934918996
1108 => 0.011901648603242
1109 => 0.012262853426736
1110 => 0.012528982987723
1111 => 0.012510834735819
1112 => 0.012590935217596
1113 => 0.012826112709507
1114 => 0.012847614392028
1115 => 0.012844905674241
1116 => 0.012791611510646
1117 => 0.013023174293089
1118 => 0.013216348040163
1119 => 0.01277927545159
1120 => 0.012945706971618
1121 => 0.013020423443048
1122 => 0.013130129390484
1123 => 0.013315221712661
1124 => 0.013516281067859
1125 => 0.013544713065188
1126 => 0.013524539202487
1127 => 0.013391935152968
1128 => 0.013611936698563
1129 => 0.013740808444301
1130 => 0.013817548619711
1201 => 0.014012148936202
1202 => 0.013020884866539
1203 => 0.01231921888901
1204 => 0.01220964361444
1205 => 0.012432469244114
1206 => 0.012491226585658
1207 => 0.012467541574957
1208 => 0.011677752724569
1209 => 0.012205485539593
1210 => 0.012773281675524
1211 => 0.012795093037527
1212 => 0.013079343655231
1213 => 0.013171907308182
1214 => 0.013400766313014
1215 => 0.01338645111995
1216 => 0.013442174645685
1217 => 0.013429364772115
1218 => 0.013853277886618
1219 => 0.01432091700362
1220 => 0.014304724148
1221 => 0.014237495492076
1222 => 0.014337341510312
1223 => 0.014819995194312
1224 => 0.014775560177457
1225 => 0.014818725011366
1226 => 0.015387800905971
1227 => 0.016127680519061
1228 => 0.015783932156082
1229 => 0.016529767192819
1230 => 0.016999230813428
1231 => 0.017811119601827
]
'min_raw' => 0.007271885586833
'max_raw' => 0.017811119601827
'avg_raw' => 0.01254150259433
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.007271'
'max' => '$0.017811'
'avg' => '$0.012541'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0032424845670701
'max_diff' => 0.0072258571474998
'year' => 2028
]
3 => [
'items' => [
101 => 0.017709467126883
102 => 0.018025529474292
103 => 0.017527487981221
104 => 0.016383884042339
105 => 0.016202904341471
106 => 0.016565230285745
107 => 0.017455973264494
108 => 0.016537177619459
109 => 0.016723048781807
110 => 0.016669517874547
111 => 0.016666665439991
112 => 0.016775531265311
113 => 0.016617615707624
114 => 0.015974239317139
115 => 0.016269094925458
116 => 0.016155237014957
117 => 0.016281570855327
118 => 0.016963342487767
119 => 0.016661914997659
120 => 0.016344385622812
121 => 0.01674263792428
122 => 0.017249749958386
123 => 0.017218015798659
124 => 0.01715643826494
125 => 0.01750354759842
126 => 0.018076870523835
127 => 0.018231837406777
128 => 0.018346230791606
129 => 0.018362003706682
130 => 0.018524474534775
131 => 0.017650827944196
201 => 0.019037327520281
202 => 0.019276737695793
203 => 0.019231738505332
204 => 0.019497832839493
205 => 0.019419541136221
206 => 0.019306108741772
207 => 0.019727924861306
208 => 0.019244346719066
209 => 0.018557968426952
210 => 0.018181407720875
211 => 0.018677293234923
212 => 0.018980113214332
213 => 0.019180257957754
214 => 0.019240821636183
215 => 0.01771864664207
216 => 0.016898278743939
217 => 0.017424125161104
218 => 0.018065694082026
219 => 0.017647263996447
220 => 0.017663665663609
221 => 0.017067094323064
222 => 0.01811847740822
223 => 0.017965299736236
224 => 0.018759985769454
225 => 0.018570327569872
226 => 0.019218363180427
227 => 0.01904771368613
228 => 0.019756070196073
301 => 0.020038652785877
302 => 0.020513152934625
303 => 0.020862197175607
304 => 0.021067162630064
305 => 0.021054857272984
306 => 0.021867032516927
307 => 0.021388121150816
308 => 0.020786495604237
309 => 0.020775614096204
310 => 0.021087204491877
311 => 0.021740212480557
312 => 0.021909527951142
313 => 0.022004152200758
314 => 0.021859231868577
315 => 0.02133940790455
316 => 0.021114950552451
317 => 0.021306194719595
318 => 0.021072319536976
319 => 0.021476053715963
320 => 0.022030466976679
321 => 0.021915982830728
322 => 0.022298686166218
323 => 0.022694743856884
324 => 0.0232611241426
325 => 0.023409196922288
326 => 0.023653955596408
327 => 0.023905892671114
328 => 0.023986808069615
329 => 0.024141300671926
330 => 0.024140486419653
331 => 0.024606060275271
401 => 0.02511960265564
402 => 0.025313453015696
403 => 0.025759201229673
404 => 0.024995873034117
405 => 0.025574866238928
406 => 0.026097132602808
407 => 0.025474465113276
408 => 0.026332667184678
409 => 0.026365989226383
410 => 0.026869112494375
411 => 0.026359100675509
412 => 0.026056257285482
413 => 0.026930554805097
414 => 0.027353599834725
415 => 0.027226175228946
416 => 0.026256467687243
417 => 0.025692056305258
418 => 0.02421488285178
419 => 0.025964658616569
420 => 0.026816923349939
421 => 0.026254260527475
422 => 0.026538034926985
423 => 0.028086216036548
424 => 0.028675663165766
425 => 0.028553062283435
426 => 0.028573779814367
427 => 0.028891834786071
428 => 0.030302265686678
429 => 0.029457102797502
430 => 0.030103198158628
501 => 0.030445884808499
502 => 0.030764191267034
503 => 0.029982531206662
504 => 0.028965602952984
505 => 0.028643499087301
506 => 0.026198314798654
507 => 0.026071032337532
508 => 0.025999584835052
509 => 0.025549118438361
510 => 0.025195175243693
511 => 0.024913706474225
512 => 0.02417504836945
513 => 0.024424323796275
514 => 0.023247056947192
515 => 0.02400023055746
516 => 0.022121284240221
517 => 0.023686126566409
518 => 0.022834454032915
519 => 0.023406329233497
520 => 0.023404334014796
521 => 0.022351330457327
522 => 0.021743979981003
523 => 0.022131007342951
524 => 0.022545931397229
525 => 0.022613251429064
526 => 0.023151211296062
527 => 0.023301344331533
528 => 0.022846434225016
529 => 0.022082347254154
530 => 0.022259827230517
531 => 0.021740383354946
601 => 0.02083007794313
602 => 0.021483875182304
603 => 0.021707110305194
604 => 0.021805703652886
605 => 0.020910522829647
606 => 0.020629237579665
607 => 0.020479483672786
608 => 0.021966790651073
609 => 0.022048268684749
610 => 0.021631415544628
611 => 0.023515631265611
612 => 0.023089175217359
613 => 0.023565631107525
614 => 0.022243722782919
615 => 0.022294221461104
616 => 0.021668408875715
617 => 0.022018822106721
618 => 0.021771161329392
619 => 0.021990512180507
620 => 0.022121990176248
621 => 0.02274770007195
622 => 0.023693271168326
623 => 0.022654239879118
624 => 0.022201519067208
625 => 0.022482384512718
626 => 0.023230366206129
627 => 0.024363596760124
628 => 0.023692701463768
629 => 0.02399043340375
630 => 0.024055474587464
701 => 0.023560781233825
702 => 0.024381836809696
703 => 0.024821847163048
704 => 0.025273206738274
705 => 0.025665109610635
706 => 0.025092923798319
707 => 0.025705244637112
708 => 0.025211822130224
709 => 0.024769171132464
710 => 0.024769842451309
711 => 0.024492161014315
712 => 0.023954118240026
713 => 0.02385489489739
714 => 0.024371067256309
715 => 0.024784988606458
716 => 0.024819081151406
717 => 0.025048249278895
718 => 0.025183868616124
719 => 0.026513122486514
720 => 0.02704775938935
721 => 0.027701503273978
722 => 0.027956173360028
723 => 0.028722639014757
724 => 0.028103655749266
725 => 0.02796973482619
726 => 0.026110539856821
727 => 0.026414982928901
728 => 0.026902425661688
729 => 0.026118577607948
730 => 0.026615748781095
731 => 0.026713900902199
801 => 0.026091942751025
802 => 0.026424157472793
803 => 0.025541893666579
804 => 0.023712502108353
805 => 0.024383873445459
806 => 0.024878228730718
807 => 0.024172722785087
808 => 0.02543731488578
809 => 0.024698566287035
810 => 0.024464418447419
811 => 0.023550924245345
812 => 0.023982058345108
813 => 0.024565173388282
814 => 0.024204876086
815 => 0.024952547087147
816 => 0.026011448621343
817 => 0.026766084913288
818 => 0.026824016517428
819 => 0.026338835938412
820 => 0.027116340912666
821 => 0.027122004187582
822 => 0.026244975400422
823 => 0.025707800151604
824 => 0.025585752804846
825 => 0.025890651005839
826 => 0.026260853709158
827 => 0.026844560190982
828 => 0.027197281793067
829 => 0.028116992662223
830 => 0.02836584005324
831 => 0.028639247890152
901 => 0.029004605076121
902 => 0.029443310053537
903 => 0.02848344853844
904 => 0.02852158562584
905 => 0.027627775873169
906 => 0.026672611967155
907 => 0.027397462308958
908 => 0.028345107708065
909 => 0.028127716806455
910 => 0.02810325588913
911 => 0.028144392367177
912 => 0.027980486726686
913 => 0.027239147589372
914 => 0.026866851715641
915 => 0.027347208375561
916 => 0.027602496562093
917 => 0.027998426275934
918 => 0.027949619581641
919 => 0.02896949200475
920 => 0.029365783589029
921 => 0.029264395243498
922 => 0.029283053139122
923 => 0.030000520123106
924 => 0.030798490967635
925 => 0.031545895965064
926 => 0.03230618843024
927 => 0.031389626188751
928 => 0.030924252408222
929 => 0.031404399359451
930 => 0.031149626628571
1001 => 0.032613626310707
1002 => 0.032714990472303
1003 => 0.034178884290598
1004 => 0.035568293841394
1005 => 0.034695630596397
1006 => 0.035518512730813
1007 => 0.036408526849749
1008 => 0.038125508484764
1009 => 0.037547289474233
1010 => 0.037104382774014
1011 => 0.036685838082416
1012 => 0.037556763143532
1013 => 0.03867719432129
1014 => 0.038918524465623
1015 => 0.039309571494653
1016 => 0.038898433358584
1017 => 0.039393603958099
1018 => 0.041141773763373
1019 => 0.040669402850466
1020 => 0.039998560216725
1021 => 0.041378572381976
1022 => 0.041877993419919
1023 => 0.04538319181303
1024 => 0.049808649576857
1025 => 0.047976481003511
1026 => 0.046839194846324
1027 => 0.047106484070051
1028 => 0.048722511434201
1029 => 0.049241528133422
1030 => 0.047830661829156
1031 => 0.048329003659413
1101 => 0.051074916140018
1102 => 0.052548010086443
1103 => 0.050547350644286
1104 => 0.045027610590679
1105 => 0.039938158177405
1106 => 0.041288110138434
1107 => 0.04113506747994
1108 => 0.044085207880792
1109 => 0.040658136960417
1110 => 0.040715840045503
1111 => 0.043726986225591
1112 => 0.042923664048858
1113 => 0.041622385004281
1114 => 0.039947658954512
1115 => 0.036851772958103
1116 => 0.034109660395916
1117 => 0.039487574601173
1118 => 0.03925566916154
1119 => 0.038919835718491
1120 => 0.039667196705023
1121 => 0.043296169513507
1122 => 0.043212509944433
1123 => 0.04268031044947
1124 => 0.043083979075808
1125 => 0.041551619942375
1126 => 0.041946543782229
1127 => 0.03993735198214
1128 => 0.040845590587042
1129 => 0.041619593043885
1130 => 0.041774985496399
1201 => 0.042125092626448
1202 => 0.039133465532718
1203 => 0.040476618268246
1204 => 0.041265594663976
1205 => 0.037700970604858
1206 => 0.041195133507468
1207 => 0.039081387960786
1208 => 0.038363950974849
1209 => 0.039329885361277
1210 => 0.038953459791484
1211 => 0.038629831191027
1212 => 0.038449240871327
1213 => 0.039158516478432
1214 => 0.039125427923593
1215 => 0.037964915365906
1216 => 0.036451074042948
1217 => 0.03695916888108
1218 => 0.036774573262972
1219 => 0.03610557492964
1220 => 0.036556399031139
1221 => 0.034571197844994
1222 => 0.03115576238601
1223 => 0.033412103667832
1224 => 0.033325236982909
1225 => 0.03328143486128
1226 => 0.034977012973877
1227 => 0.034814022261994
1228 => 0.034518192523915
1229 => 0.036100141784508
1230 => 0.035522709024171
1231 => 0.037302220731259
]
'min_raw' => 0.015974239317139
'max_raw' => 0.052548010086443
'avg_raw' => 0.034261124701791
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.015974'
'max' => '$0.052548'
'avg' => '$0.034261'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.0087023537303065
'max_diff' => 0.034736890484616
'year' => 2029
]
4 => [
'items' => [
101 => 0.038474322233148
102 => 0.038177039378758
103 => 0.039279406506543
104 => 0.036970874359943
105 => 0.03773767613681
106 => 0.037895712920281
107 => 0.036080620776192
108 => 0.034840689558198
109 => 0.034758000282209
110 => 0.032608130423254
111 => 0.033756573548765
112 => 0.034767155973408
113 => 0.034283165416368
114 => 0.034129948464816
115 => 0.034912700641594
116 => 0.034973527189548
117 => 0.033586675450073
118 => 0.033875045842593
119 => 0.035077598316989
120 => 0.03384474460567
121 => 0.031449511230087
122 => 0.03085546023625
123 => 0.03077620288314
124 => 0.029165089473076
125 => 0.030895157564224
126 => 0.030139936479495
127 => 0.032525670837214
128 => 0.031162952167035
129 => 0.031104208088795
130 => 0.031015407798652
131 => 0.029628655932353
201 => 0.029932266458394
202 => 0.030941514088142
203 => 0.031301625012425
204 => 0.03126406249272
205 => 0.030936568224163
206 => 0.031086493423267
207 => 0.030603532119553
208 => 0.030432988431241
209 => 0.029894705639192
210 => 0.029103578639297
211 => 0.029213589700897
212 => 0.027646160104465
213 => 0.026792141270544
214 => 0.026555760113102
215 => 0.026239661350321
216 => 0.026591464309464
217 => 0.027641719773355
218 => 0.026374888859776
219 => 0.024202996116302
220 => 0.02433353057091
221 => 0.024626802734387
222 => 0.024080291997937
223 => 0.023563065451057
224 => 0.024012751969653
225 => 0.023092492382687
226 => 0.024738011708879
227 => 0.02469350502262
228 => 0.025306852869192
301 => 0.025690391864819
302 => 0.024806458652124
303 => 0.024584151839541
304 => 0.02471078790327
305 => 0.022617775855154
306 => 0.025135809131793
307 => 0.025157585188133
308 => 0.024971125373123
309 => 0.026311900357378
310 => 0.02914135377236
311 => 0.028076799583144
312 => 0.027664572024759
313 => 0.026880927134932
314 => 0.027925087422397
315 => 0.027844912203757
316 => 0.027482329459521
317 => 0.02726303828448
318 => 0.027667088998328
319 => 0.027212971929603
320 => 0.027131400025758
321 => 0.026637163039561
322 => 0.026460742921839
323 => 0.026330128490165
324 => 0.026186334834801
325 => 0.026503507807388
326 => 0.025784752123926
327 => 0.024918003230158
328 => 0.024845942437995
329 => 0.025044908620808
330 => 0.024956880896204
331 => 0.024845520995116
401 => 0.024632904616875
402 => 0.024569825879281
403 => 0.024774801175009
404 => 0.024543396016935
405 => 0.024884846932964
406 => 0.024791991177145
407 => 0.024273306473349
408 => 0.023626833290746
409 => 0.023621078323397
410 => 0.023481796736634
411 => 0.023304400694764
412 => 0.023255053174188
413 => 0.023974880625335
414 => 0.025464901906587
415 => 0.02517237507589
416 => 0.025383755690424
417 => 0.026423539102848
418 => 0.02675405498228
419 => 0.026519462639757
420 => 0.026198338172286
421 => 0.02621246601912
422 => 0.027309845535455
423 => 0.027378287749816
424 => 0.02755121914521
425 => 0.027773484858699
426 => 0.026557315451868
427 => 0.026155184549427
428 => 0.025964632618477
429 => 0.025377806424031
430 => 0.026010648164066
501 => 0.025641918383132
502 => 0.025691672628183
503 => 0.025659270110823
504 => 0.02567696407635
505 => 0.024737551752692
506 => 0.025079824229375
507 => 0.024510729852051
508 => 0.023748776364656
509 => 0.023746222029391
510 => 0.023932709065972
511 => 0.023821779279375
512 => 0.023523270075908
513 => 0.023565671899337
514 => 0.023194187308806
515 => 0.023610776854573
516 => 0.023622723152116
517 => 0.02346231348521
518 => 0.024104127158744
519 => 0.024367078744461
520 => 0.024261493665395
521 => 0.024359670613845
522 => 0.025184530886385
523 => 0.025319019101985
524 => 0.025378749883562
525 => 0.025298718549061
526 => 0.02437474754541
527 => 0.02441572958845
528 => 0.024115030548635
529 => 0.023860971546876
530 => 0.023871132574582
531 => 0.024001751926845
601 => 0.0245721742989
602 => 0.025772594552655
603 => 0.025818149623789
604 => 0.025873363698939
605 => 0.025648780306933
606 => 0.025581043806931
607 => 0.025670405734708
608 => 0.02612122046692
609 => 0.027280838353175
610 => 0.026870951943898
611 => 0.026537707912894
612 => 0.02683005277003
613 => 0.026785048570748
614 => 0.026405167838188
615 => 0.026394505851257
616 => 0.025665393270257
617 => 0.025395856950151
618 => 0.025170612226627
619 => 0.024924650868701
620 => 0.024778836731023
621 => 0.025002873517837
622 => 0.025054113381707
623 => 0.024564253031846
624 => 0.024497486876256
625 => 0.024897517412322
626 => 0.024721478888041
627 => 0.02490253887581
628 => 0.024944546346076
629 => 0.024937782175849
630 => 0.024753977738603
701 => 0.024871129205776
702 => 0.024594031061379
703 => 0.024292728448142
704 => 0.024100516152714
705 => 0.023932785431691
706 => 0.024025852184281
707 => 0.023694086204614
708 => 0.023587947590589
709 => 0.02483144092469
710 => 0.025750022820396
711 => 0.025736666275834
712 => 0.025655361745838
713 => 0.025534559706285
714 => 0.026112383045297
715 => 0.025911080947928
716 => 0.026057545043117
717 => 0.026094826302422
718 => 0.026207665445939
719 => 0.026247995740895
720 => 0.026126089578348
721 => 0.02571695760726
722 => 0.024697439634407
723 => 0.024222851265907
724 => 0.024066229199408
725 => 0.024071922114058
726 => 0.023914886113732
727 => 0.023961140253688
728 => 0.023898800811474
729 => 0.023780744989452
730 => 0.024018562569944
731 => 0.024045968830671
801 => 0.023990459365676
802 => 0.024003533854154
803 => 0.023543939192396
804 => 0.023578881176343
805 => 0.023384319769517
806 => 0.02334784185121
807 => 0.022856007557154
808 => 0.021984651812713
809 => 0.022467467479682
810 => 0.021884294048139
811 => 0.021663437433095
812 => 0.022708938298465
813 => 0.022603999009262
814 => 0.022424388562159
815 => 0.022158707276796
816 => 0.022060163503673
817 => 0.021461442733349
818 => 0.021426067116187
819 => 0.021722809296781
820 => 0.021585872990712
821 => 0.021393562555156
822 => 0.020697033651771
823 => 0.019913904551572
824 => 0.019937542296533
825 => 0.020186641092671
826 => 0.020910929437994
827 => 0.020627937451161
828 => 0.020422623517754
829 => 0.020384174389742
830 => 0.020865445725524
831 => 0.021546545495118
901 => 0.021866102268263
902 => 0.021549431211159
903 => 0.02118565655154
904 => 0.021207797829501
905 => 0.021355093832312
906 => 0.021370572559555
907 => 0.021133792652781
908 => 0.021200444809592
909 => 0.021099194088596
910 => 0.020477818600738
911 => 0.020466579888566
912 => 0.020314084322812
913 => 0.020309466817687
914 => 0.020050033818538
915 => 0.020013737348581
916 => 0.019498617382315
917 => 0.019837670904038
918 => 0.019610251602775
919 => 0.019267477072981
920 => 0.019208382614845
921 => 0.019206606164075
922 => 0.019558558963191
923 => 0.019833558130664
924 => 0.019614207658887
925 => 0.019564265808394
926 => 0.020097514113127
927 => 0.020029653405683
928 => 0.019970886470692
929 => 0.021485560481118
930 => 0.020286577810379
1001 => 0.019763752930398
1002 => 0.01911665785967
1003 => 0.019327355277636
1004 => 0.01937175231939
1005 => 0.017815605321943
1006 => 0.017184276678885
1007 => 0.016967628479705
1008 => 0.016842944378121
1009 => 0.016899764488897
1010 => 0.016331494662681
1011 => 0.016713381384214
1012 => 0.016221307749363
1013 => 0.016138810003134
1014 => 0.017018698618473
1015 => 0.017141129979063
1016 => 0.016618799758345
1017 => 0.016954220317628
1018 => 0.016832592160137
1019 => 0.016229742939495
1020 => 0.016206718533525
1021 => 0.015904229985782
1022 => 0.015430893981888
1023 => 0.015214566726808
1024 => 0.015101901614123
1025 => 0.015148389435416
1026 => 0.01512488377042
1027 => 0.014971493406472
1028 => 0.015133675926529
1029 => 0.014719366606229
1030 => 0.014554385296568
1031 => 0.014479867066532
1101 => 0.014112143698011
1102 => 0.014697355104652
1103 => 0.014812649124059
1104 => 0.014928170308301
1105 => 0.015933703347463
1106 => 0.015883469758433
1107 => 0.016337556938511
1108 => 0.016319911945706
1109 => 0.016190398926223
1110 => 0.015644004800883
1111 => 0.015861787760705
1112 => 0.015191485661359
1113 => 0.015693721570301
1114 => 0.015464522075333
1115 => 0.015616228990498
1116 => 0.01534344627817
1117 => 0.015494415494095
1118 => 0.014839989613187
1119 => 0.014228895933616
1120 => 0.014474817869212
1121 => 0.014742163137789
1122 => 0.015321835798373
1123 => 0.014976587543925
1124 => 0.015100751871506
1125 => 0.014684822158966
1126 => 0.013826640357547
1127 => 0.013831497573345
1128 => 0.013699484999704
1129 => 0.013585406861926
1130 => 0.015016243459079
1201 => 0.014838296310044
1202 => 0.014554760817203
1203 => 0.014934284341623
1204 => 0.015034636385328
1205 => 0.015037493266934
1206 => 0.015314383833431
1207 => 0.015462160378406
1208 => 0.015488206634958
1209 => 0.015923899923957
1210 => 0.016069938567496
1211 => 0.016671451072071
1212 => 0.015449622571022
1213 => 0.015424459817089
1214 => 0.014939625015917
1215 => 0.014632135120079
1216 => 0.014960679112155
1217 => 0.015251724238406
1218 => 0.014948668599275
1219 => 0.014988241267892
1220 => 0.014581413832915
1221 => 0.014726835497909
1222 => 0.014852092226216
1223 => 0.014782932823095
1224 => 0.01467939784927
1225 => 0.015227861857088
1226 => 0.015196915368319
1227 => 0.015707657661532
1228 => 0.016105817802624
1229 => 0.016819391955098
1230 => 0.016074740127529
1231 => 0.01604760205521
]
'min_raw' => 0.013585406861926
'max_raw' => 0.039279406506543
'avg_raw' => 0.026432406684234
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.013585'
'max' => '$0.039279'
'avg' => '$0.026432'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0023888324552134
'max_diff' => -0.0132686035799
'year' => 2030
]
5 => [
'items' => [
101 => 0.016312881065217
102 => 0.016069897954662
103 => 0.016223454893041
104 => 0.016794651558345
105 => 0.016806720043802
106 => 0.016604557363017
107 => 0.016592255745518
108 => 0.016631083299781
109 => 0.016858497497852
110 => 0.016779031989313
111 => 0.016870991487614
112 => 0.016985988248374
113 => 0.017461663608491
114 => 0.017576347327425
115 => 0.017297725347108
116 => 0.017322881792333
117 => 0.01721866952335
118 => 0.017118001777289
119 => 0.017344288169091
120 => 0.01775783099778
121 => 0.017755258369305
122 => 0.017851192267437
123 => 0.017910958291214
124 => 0.017654398765761
125 => 0.017487387948645
126 => 0.017551430523102
127 => 0.017653835994323
128 => 0.017518221808971
129 => 0.016681148234376
130 => 0.016935062884441
131 => 0.016892799070878
201 => 0.016832610260909
202 => 0.017087923405014
203 => 0.017063297829424
204 => 0.016325666234249
205 => 0.016372887015732
206 => 0.016328537886371
207 => 0.016471838996315
208 => 0.01606215922445
209 => 0.016188173963041
210 => 0.01626720922577
211 => 0.016313761602695
212 => 0.016481940709411
213 => 0.016462206832354
214 => 0.016480714023905
215 => 0.016730079241528
216 => 0.017991282940452
217 => 0.018059927475095
218 => 0.017721896680952
219 => 0.01785693331585
220 => 0.017597692506112
221 => 0.017771722598452
222 => 0.017890789567745
223 => 0.01735274882877
224 => 0.017320889548063
225 => 0.017060578759287
226 => 0.017200455032418
227 => 0.016977901824406
228 => 0.017032508597071
301 => 0.016879823300166
302 => 0.017154626435257
303 => 0.017461899040378
304 => 0.017539528234995
305 => 0.017335319245428
306 => 0.017187458478954
307 => 0.016927863681389
308 => 0.017359575615186
309 => 0.017485821340812
310 => 0.017358912500134
311 => 0.017329504948736
312 => 0.017273777691976
313 => 0.017341327749698
314 => 0.017485133779477
315 => 0.017417317511514
316 => 0.017462111351272
317 => 0.017291403425319
318 => 0.017654483697639
319 => 0.018231142550109
320 => 0.018232996602613
321 => 0.018165179969095
322 => 0.018137430863789
323 => 0.018207014845236
324 => 0.018244761300687
325 => 0.018469783137168
326 => 0.018711240532978
327 => 0.019838016843106
328 => 0.01952162256409
329 => 0.020521365538659
330 => 0.021312032431164
331 => 0.021549118860554
401 => 0.021331010501294
402 => 0.020584873586248
403 => 0.020548264549562
404 => 0.021663308111521
405 => 0.021348257233037
406 => 0.021310782933525
407 => 0.020912119700544
408 => 0.021147779046638
409 => 0.021096236890733
410 => 0.021014875076109
411 => 0.021464496692283
412 => 0.022306148219761
413 => 0.022174968936246
414 => 0.022077049686333
415 => 0.021647996037081
416 => 0.021906382166533
417 => 0.021814375814896
418 => 0.022209693490203
419 => 0.02197551605671
420 => 0.021345870412771
421 => 0.021446143556907
422 => 0.021430987472893
423 => 0.021742898607943
424 => 0.021649270627311
425 => 0.021412705106999
426 => 0.022303271546339
427 => 0.02224544311536
428 => 0.022327430609069
429 => 0.022363524039348
430 => 0.022905596137433
501 => 0.023127665731647
502 => 0.023178079417408
503 => 0.023389028356432
504 => 0.023172830815636
505 => 0.024037775125057
506 => 0.024612912619922
507 => 0.025280964416513
508 => 0.026257167646728
509 => 0.026624229091673
510 => 0.026557922727083
511 => 0.027298068874979
512 => 0.028628095050222
513 => 0.026826759044004
514 => 0.028723570232537
515 => 0.028123061709986
516 => 0.026699266805703
517 => 0.026607591199307
518 => 0.027571801639085
519 => 0.029710327592699
520 => 0.029174651096279
521 => 0.029711203767546
522 => 0.02908528657584
523 => 0.029054204511628
524 => 0.029680804366618
525 => 0.031144889081984
526 => 0.030449357314108
527 => 0.029452141973473
528 => 0.030188470262609
529 => 0.029550594554593
530 => 0.028113282054265
531 => 0.029174241474558
601 => 0.028464808124592
602 => 0.028671858491663
603 => 0.030162981873044
604 => 0.029983565962773
605 => 0.03021574676413
606 => 0.029805953726965
607 => 0.029423142411823
608 => 0.028708596664168
609 => 0.028497054894967
610 => 0.028555517429499
611 => 0.028497025923839
612 => 0.02809724414504
613 => 0.028010911307972
614 => 0.027867019463864
615 => 0.027911617563144
616 => 0.027641058799176
617 => 0.028151659087076
618 => 0.028246430999904
619 => 0.028618003308907
620 => 0.028656581178672
621 => 0.029691404770244
622 => 0.02912144132551
623 => 0.029503822012514
624 => 0.029469618284762
625 => 0.026730124758603
626 => 0.027107602795752
627 => 0.027694840162421
628 => 0.027430290524718
629 => 0.027056279232087
630 => 0.026754245060071
701 => 0.026296632404887
702 => 0.026940713429386
703 => 0.027787611486222
704 => 0.028678059910988
705 => 0.029747875348852
706 => 0.029509104997145
707 => 0.028658060455525
708 => 0.028696237691974
709 => 0.02893223434551
710 => 0.028626597236623
711 => 0.028536458886467
712 => 0.028919850720368
713 => 0.028922490929219
714 => 0.028570818497966
715 => 0.028179998946004
716 => 0.028178361397811
717 => 0.028108818833408
718 => 0.029097658043558
719 => 0.029641419626219
720 => 0.029703761015356
721 => 0.02963722355402
722 => 0.029662831182111
723 => 0.029346428298129
724 => 0.030069631464551
725 => 0.03073331420744
726 => 0.030555433054832
727 => 0.030288763919777
728 => 0.03007634910918
729 => 0.030505394876095
730 => 0.030486290143475
731 => 0.030727517517665
801 => 0.030716574050575
802 => 0.030635458357655
803 => 0.030555435951729
804 => 0.030872715745905
805 => 0.03078134426054
806 => 0.03068983085002
807 => 0.030506286695222
808 => 0.030531233394205
809 => 0.030264610303335
810 => 0.030141258261657
811 => 0.028286339517741
812 => 0.027790644618148
813 => 0.02794660032436
814 => 0.027997944992233
815 => 0.02778221793668
816 => 0.02809151511861
817 => 0.028043311480433
818 => 0.028230843638394
819 => 0.0281136816878
820 => 0.02811849005512
821 => 0.028463038370256
822 => 0.028563062211954
823 => 0.028512189278775
824 => 0.028547818937351
825 => 0.029368889380902
826 => 0.029252159420184
827 => 0.029190148955067
828 => 0.029207326277691
829 => 0.029417127379968
830 => 0.029475860233889
831 => 0.029227005004738
901 => 0.029344366569421
902 => 0.029844077216439
903 => 0.030018947661723
904 => 0.030577050180491
905 => 0.030339958311037
906 => 0.030775150698516
907 => 0.032112783729609
908 => 0.033181377552011
909 => 0.032198654511422
910 => 0.034160990981661
911 => 0.03568895140419
912 => 0.035630305738222
913 => 0.035363870496193
914 => 0.033624328178073
915 => 0.032023575401825
916 => 0.03336267307071
917 => 0.033366086706056
918 => 0.033251057028711
919 => 0.032536617581963
920 => 0.033226196084602
921 => 0.03328093232196
922 => 0.03325029458458
923 => 0.032702535535849
924 => 0.031866208711232
925 => 0.032029624970878
926 => 0.032297304137781
927 => 0.03179053163111
928 => 0.0316285871088
929 => 0.031929672786981
930 => 0.032899833575772
1001 => 0.03271643029841
1002 => 0.032711640897647
1003 => 0.033496317893296
1004 => 0.032934658508306
1005 => 0.032031686173244
1006 => 0.031803673749899
1007 => 0.030994383254597
1008 => 0.031553363082296
1009 => 0.031573479771162
1010 => 0.031267332232167
1011 => 0.032056528358758
1012 => 0.032049255777516
1013 => 0.032798480043373
1014 => 0.034230715443906
1015 => 0.033807132959945
1016 => 0.033314552616741
1017 => 0.033368109757818
1018 => 0.033955499405153
1019 => 0.033600350215573
1020 => 0.033728064340334
1021 => 0.033955306094529
1022 => 0.03409240668693
1023 => 0.03334838309243
1024 => 0.03317491560179
1025 => 0.032820061994755
1026 => 0.032727487312336
1027 => 0.033016508171003
1028 => 0.032940361386002
1029 => 0.031571789041359
1030 => 0.031428765616679
1031 => 0.031433151940923
1101 => 0.031073512739173
1102 => 0.030524976633205
1103 => 0.0319664967683
1104 => 0.03185072252739
1105 => 0.031722916725641
1106 => 0.031738572207105
1107 => 0.0323642872401
1108 => 0.032001340921596
1109 => 0.032966293195069
1110 => 0.032767928016763
1111 => 0.032564475520135
1112 => 0.032536352187786
1113 => 0.032458040334335
1114 => 0.032189479850295
1115 => 0.031865176927834
1116 => 0.031651044047787
1117 => 0.029196415066226
1118 => 0.029651979927284
1119 => 0.030176065773887
1120 => 0.030356978107992
1121 => 0.030047515041753
1122 => 0.03220169933835
1123 => 0.032595289567575
1124 => 0.031403079089998
1125 => 0.031180065187276
1126 => 0.032216320092685
1127 => 0.031591331707713
1128 => 0.031872763939197
1129 => 0.031264461389929
1130 => 0.032500485207022
1201 => 0.032491068776442
1202 => 0.032010227594729
1203 => 0.032416631268854
1204 => 0.032346008629372
1205 => 0.031803140119477
1206 => 0.032517695107083
1207 => 0.032518049517442
1208 => 0.032055250334431
1209 => 0.031514802208444
1210 => 0.031418182848332
1211 => 0.031345393139473
1212 => 0.031854862132908
1213 => 0.032311650439354
1214 => 0.033161620230226
1215 => 0.033375322830435
1216 => 0.034209418306039
1217 => 0.033712755061688
1218 => 0.033932919445043
1219 => 0.034171939027328
1220 => 0.03428653380473
1221 => 0.034099807764449
1222 => 0.035395501365456
1223 => 0.035504897604408
1224 => 0.035541577217054
1225 => 0.035104676624932
1226 => 0.035492746608593
1227 => 0.035311181514765
1228 => 0.03578356344867
1229 => 0.035857638967581
1230 => 0.035794899638376
1231 => 0.035818412377281
]
'min_raw' => 0.01606215922445
'max_raw' => 0.035857638967581
'avg_raw' => 0.025959899096016
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.016062'
'max' => '$0.035857'
'avg' => '$0.025959'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0024767523625244
'max_diff' => -0.0034217675389611
'year' => 2031
]
6 => [
'items' => [
101 => 0.034712766464836
102 => 0.034655432891528
103 => 0.033873685551281
104 => 0.034192253370816
105 => 0.033596706101547
106 => 0.033785560275449
107 => 0.033868805395836
108 => 0.033825322869065
109 => 0.034210264717357
110 => 0.033882985507885
111 => 0.033019241864403
112 => 0.032155262894544
113 => 0.032144416342359
114 => 0.031916945930091
115 => 0.031752526485304
116 => 0.031784199503463
117 => 0.031895819350632
118 => 0.031746038936873
119 => 0.031778002182208
120 => 0.032308805024763
121 => 0.032415253749325
122 => 0.032053499391063
123 => 0.030601003441736
124 => 0.030244557292461
125 => 0.030500763715926
126 => 0.030378313547316
127 => 0.024517669962846
128 => 0.025894541240862
129 => 0.025076451081596
130 => 0.025453464665504
131 => 0.024618406456313
201 => 0.025016940002889
202 => 0.024943345408952
203 => 0.027157313679419
204 => 0.027122745610089
205 => 0.027139291515576
206 => 0.026349512336576
207 => 0.027607652013564
208 => 0.028227456859688
209 => 0.028112747478242
210 => 0.028141617358236
211 => 0.027645537169463
212 => 0.027144094656181
213 => 0.026587917737501
214 => 0.027621225706863
215 => 0.027506339499825
216 => 0.027769847124017
217 => 0.028440021204527
218 => 0.028538706883626
219 => 0.028671341437106
220 => 0.028623801391253
221 => 0.029756398154776
222 => 0.029619233213599
223 => 0.029949761256788
224 => 0.029269839994726
225 => 0.028500444547983
226 => 0.028646681468977
227 => 0.028632597677522
228 => 0.02845329484768
229 => 0.02829142827007
301 => 0.028021966023975
302 => 0.028874584443529
303 => 0.02883996969276
304 => 0.029400342272477
305 => 0.029301290975843
306 => 0.028639802174958
307 => 0.028663427376891
308 => 0.028822318213772
309 => 0.029372241214401
310 => 0.029535495802601
311 => 0.029459869772776
312 => 0.029638870975882
313 => 0.02978034622835
314 => 0.029656638089401
315 => 0.031408084459546
316 => 0.030680761816247
317 => 0.031035253811913
318 => 0.031119798064091
319 => 0.030903239739911
320 => 0.030950203486053
321 => 0.031021340764604
322 => 0.031453272389859
323 => 0.03258678595495
324 => 0.033088811396841
325 => 0.03459917970827
326 => 0.033047125172424
327 => 0.032955032679307
328 => 0.033227095620949
329 => 0.03411384170848
330 => 0.034832466124599
331 => 0.035070875301863
401 => 0.035102385010345
402 => 0.035549656476035
403 => 0.035806024139049
404 => 0.035495345955692
405 => 0.03523207872466
406 => 0.034289088181032
407 => 0.034398241904135
408 => 0.035150202813775
409 => 0.036212391888918
410 => 0.037123860617329
411 => 0.036804696036532
412 => 0.039239696492934
413 => 0.039481116842102
414 => 0.039447760355901
415 => 0.039997751839469
416 => 0.038906130748404
417 => 0.038439441582811
418 => 0.035289000088219
419 => 0.036174145643361
420 => 0.037460756690535
421 => 0.037290468893898
422 => 0.036356097560228
423 => 0.037123151812885
424 => 0.036869539688953
425 => 0.03666950528443
426 => 0.037585901670125
427 => 0.036578286200565
428 => 0.037450704955441
429 => 0.036331818878296
430 => 0.036806153953452
501 => 0.036536898423788
502 => 0.036711139750197
503 => 0.035692528516341
504 => 0.03624214641274
505 => 0.035669662604875
506 => 0.03566939117301
507 => 0.035656753561222
508 => 0.036330278222393
509 => 0.036352241837414
510 => 0.035854506095169
511 => 0.035782774598617
512 => 0.036048003537366
513 => 0.03573748991366
514 => 0.035882777283843
515 => 0.035741890520097
516 => 0.035710173942048
517 => 0.035457450852027
518 => 0.035348570796079
519 => 0.03539126547151
520 => 0.035245526533652
521 => 0.035157713551985
522 => 0.035639285348947
523 => 0.035382000964381
524 => 0.035599852827035
525 => 0.035351583134444
526 => 0.034490972213968
527 => 0.033996025772806
528 => 0.032370411522701
529 => 0.032831433707463
530 => 0.033137091892922
531 => 0.033036071864451
601 => 0.033253101975167
602 => 0.03326642586132
603 => 0.033195867159966
604 => 0.033114169222927
605 => 0.033074403185356
606 => 0.033370786649708
607 => 0.033542847226572
608 => 0.033167768781011
609 => 0.033079893149121
610 => 0.033459118166232
611 => 0.033690445207599
612 => 0.035398434109612
613 => 0.03527190077502
614 => 0.035589474613934
615 => 0.03555372067324
616 => 0.035886588649903
617 => 0.036430687111243
618 => 0.035324382807016
619 => 0.035516398981105
620 => 0.035469321049519
621 => 0.035983305562075
622 => 0.03598491016562
623 => 0.035676750774912
624 => 0.03584380897993
625 => 0.035750561672891
626 => 0.03591907215984
627 => 0.035270210845192
628 => 0.036060453886182
629 => 0.036508470768287
630 => 0.03651469148313
701 => 0.036727047929565
702 => 0.036942814378
703 => 0.037356959286473
704 => 0.03693126410128
705 => 0.036165479903709
706 => 0.036220767049306
707 => 0.035771788054459
708 => 0.035779335472478
709 => 0.035739046763595
710 => 0.035859956211743
711 => 0.035296743669733
712 => 0.035428928527609
713 => 0.035243868952509
714 => 0.03551599669773
715 => 0.0352232322282
716 => 0.035469298347115
717 => 0.035575492326818
718 => 0.035967350398116
719 => 0.035165354472459
720 => 0.033530030489694
721 => 0.033873795417258
722 => 0.033365340087238
723 => 0.033412399563857
724 => 0.033507467196089
725 => 0.033199321895834
726 => 0.033258106308348
727 => 0.033256006115474
728 => 0.033237907787897
729 => 0.033157747294164
730 => 0.033041498718982
731 => 0.033504597263084
801 => 0.033583286729794
802 => 0.033758203666728
803 => 0.034278637823753
804 => 0.034226634178784
805 => 0.034311454281339
806 => 0.034126292473705
807 => 0.033420988689057
808 => 0.033459290077882
809 => 0.032981671145493
810 => 0.033745989876793
811 => 0.033564989112707
812 => 0.033448296742621
813 => 0.033416456148296
814 => 0.033938180360933
815 => 0.034094288422379
816 => 0.033997012354508
817 => 0.033797496301308
818 => 0.034180626105077
819 => 0.034283135477617
820 => 0.034306083545729
821 => 0.034984916100154
822 => 0.034344022744632
823 => 0.034498292145238
824 => 0.035701857970626
825 => 0.03461038984773
826 => 0.035188564855072
827 => 0.03516026619714
828 => 0.03545604096652
829 => 0.035136004033032
830 => 0.035139971274383
831 => 0.035402599232075
901 => 0.035033785630699
902 => 0.034942462196361
903 => 0.034816299525894
904 => 0.03509177110129
905 => 0.035256903852232
906 => 0.036587752548185
907 => 0.037447541499844
908 => 0.037410215793921
909 => 0.037751302875269
910 => 0.037597640021122
911 => 0.037101422130869
912 => 0.037948405562206
913 => 0.037680384565239
914 => 0.037702479890583
915 => 0.03770165750147
916 => 0.037879868033651
917 => 0.037753589538846
918 => 0.037504681663362
919 => 0.037669918327152
920 => 0.03816061214542
921 => 0.039683740813648
922 => 0.040536103795159
923 => 0.039632427491902
924 => 0.040255771305181
925 => 0.039881987137324
926 => 0.039814059434909
927 => 0.040205565414394
928 => 0.040597756673269
929 => 0.040572775785568
930 => 0.040288065070869
1001 => 0.040127239212402
1002 => 0.041345066493327
1003 => 0.042242340888766
1004 => 0.042181152790401
1005 => 0.042451217157149
1006 => 0.043244134490697
1007 => 0.043316628914513
1008 => 0.043307496283378
1009 => 0.043127811289939
1010 => 0.043908541378144
1011 => 0.044559840153364
1012 => 0.043086219405556
1013 => 0.043647354895209
1014 => 0.043899266695171
1015 => 0.044269147956378
1016 => 0.044893199643331
1017 => 0.045571085296896
1018 => 0.045666945760949
1019 => 0.045598928174358
1020 => 0.045151844363287
1021 => 0.045893594934277
1022 => 0.046328095022571
1023 => 0.046586829881792
1024 => 0.047242938435403
1025 => 0.043900822416686
1026 => 0.041535106584695
1027 => 0.041165665896179
1028 => 0.041916938063814
1029 => 0.042115042543136
1030 => 0.042035186875923
1031 => 0.039372358625543
1101 => 0.041151646656525
1102 => 0.043066010971075
1103 => 0.043139549500891
1104 => 0.044097920304225
1105 => 0.044410005122737
1106 => 0.045181619235954
1107 => 0.045133354563084
1108 => 0.04532123032059
1109 => 0.045278040937494
1110 => 0.046707293599706
1111 => 0.048283971532201
1112 => 0.048229376188927
1113 => 0.048002710081725
1114 => 0.048339347903235
1115 => 0.049966648496645
1116 => 0.049816832734965
1117 => 0.049962365986161
1118 => 0.051881045096434
1119 => 0.054375600868709
1120 => 0.053216629263183
1121 => 0.05573126416208
1122 => 0.057314093535867
1123 => 0.060051433270221
1124 => 0.059708704853797
1125 => 0.060774331124854
1126 => 0.05909514945882
1127 => 0.055239408935001
1128 => 0.054629223237924
1129 => 0.055850830455834
1130 => 0.058854032598375
1201 => 0.055756248932876
1202 => 0.056382926533845
1203 => 0.056202443342607
1204 => 0.05619282616035
1205 => 0.056559874891188
1206 => 0.056027451563133
1207 => 0.053858263143509
1208 => 0.054852389413115
1209 => 0.054468509518556
1210 => 0.054894452881711
1211 => 0.057193093540257
1212 => 0.056176809712365
1213 => 0.055106237255874
1214 => 0.05644897269536
1215 => 0.058158736323781
1216 => 0.058051742388655
1217 => 0.057844129434515
1218 => 0.05901443278674
1219 => 0.060947431057907
1220 => 0.061469912723187
1221 => 0.06185559800683
1222 => 0.061908777491238
1223 => 0.062456559231506
1224 => 0.059510998755311
1225 => 0.064185678878391
1226 => 0.064992867000214
1227 => 0.064841149087831
1228 => 0.06573830471357
1229 => 0.065474338769836
1230 => 0.065091893532353
1231 => 0.066514076029623
]
'min_raw' => 0.024517669962846
'max_raw' => 0.066514076029623
'avg_raw' => 0.045515872996234
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.024517'
'max' => '$0.066514'
'avg' => '$0.045515'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0084555107383956
'max_diff' => 0.030656437062041
'year' => 2032
]
7 => [
'items' => [
101 => 0.064883658560713
102 => 0.062569486227447
103 => 0.061299885516279
104 => 0.062971798148514
105 => 0.063992776851309
106 => 0.064667578827416
107 => 0.064871773497659
108 => 0.059739654230143
109 => 0.056973726585335
110 => 0.058746654494232
111 => 0.060909748904034
112 => 0.059498982656647
113 => 0.059554282022611
114 => 0.057542900096685
115 => 0.06108771157351
116 => 0.060571262357894
117 => 0.063250601802093
118 => 0.062611155940692
119 => 0.064796053246079
120 => 0.064220696561688
121 => 0.066608969990835
122 => 0.067561716921643
123 => 0.069161527301689
124 => 0.070338354329651
125 => 0.071029409669585
126 => 0.070987921299058
127 => 0.073726226838277
128 => 0.072111543730908
129 => 0.070083121196465
130 => 0.070046433432408
131 => 0.071096982205966
201 => 0.073298644231362
202 => 0.073869503161668
203 => 0.074188535425701
204 => 0.073699926407741
205 => 0.071947303620074
206 => 0.071190529986358
207 => 0.071835323048127
208 => 0.071046796541283
209 => 0.072408014513557
210 => 0.074277257529958
211 => 0.073891266238859
212 => 0.075181577253955
213 => 0.076516913409901
214 => 0.078426504086603
215 => 0.078925741801431
216 => 0.079750962759732
217 => 0.080600386196787
218 => 0.080873198112165
219 => 0.081394080707188
220 => 0.081391335398798
221 => 0.082961050158343
222 => 0.084692494148141
223 => 0.085346074171269
224 => 0.08684894539584
225 => 0.084275331090652
226 => 0.086227447104687
227 => 0.08798830461398
228 => 0.085888937699767
301 => 0.088782425901254
302 => 0.088894773491333
303 => 0.090591088716315
304 => 0.08887154826112
305 => 0.087850490627793
306 => 0.090798245756678
307 => 0.092224571610129
308 => 0.091794950655245
309 => 0.088525513975573
310 => 0.086622561595268
311 => 0.081642168163909
312 => 0.087541659320339
313 => 0.090415129372119
314 => 0.088518072382318
315 => 0.089474837582759
316 => 0.094694638284205
317 => 0.096682000434248
318 => 0.096268642999749
319 => 0.096338493601737
320 => 0.097410838144726
321 => 0.10216620439927
322 => 0.099316678711018
323 => 0.10149503432999
324 => 0.10265042629565
325 => 0.10372361874405
326 => 0.10108819727674
327 => 0.097659552669805
328 => 0.096573556998079
329 => 0.088329447451589
330 => 0.087900305747341
331 => 0.087659415504423
401 => 0.086140636597421
402 => 0.084947292405072
403 => 0.083998300797287
404 => 0.081507863425577
405 => 0.082348312930974
406 => 0.078379075555143
407 => 0.080918452967064
408 => 0.074583454274651
409 => 0.079859429431195
410 => 0.076987956022642
411 => 0.078916073188456
412 => 0.078909346169304
413 => 0.075359071156937
414 => 0.073311346622153
415 => 0.074616236394349
416 => 0.076015181812421
417 => 0.076242155999886
418 => 0.078055925250629
419 => 0.078562109261671
420 => 0.07702834807674
421 => 0.07445217550763
422 => 0.075050561639194
423 => 0.073299220346296
424 => 0.070230062094862
425 => 0.072434385133404
426 => 0.073187037936005
427 => 0.073519452291317
428 => 0.070501287646239
429 => 0.069552914787213
430 => 0.069048009034686
501 => 0.074062568352439
502 => 0.074337277231594
503 => 0.07293182776592
504 => 0.079284592620952
505 => 0.077846766280061
506 => 0.079453170578843
507 => 0.074996264369742
508 => 0.075166524188949
509 => 0.07305655336447
510 => 0.074237996037877
511 => 0.073402990435988
512 => 0.07414254714511
513 => 0.074585834387251
514 => 0.07669545898628
515 => 0.079883517955379
516 => 0.076380351420965
517 => 0.074853971595652
518 => 0.075800929054591
519 => 0.078322801556338
520 => 0.082143567488763
521 => 0.079881597156687
522 => 0.080885421179315
523 => 0.081104712071237
524 => 0.079436818891057
525 => 0.082205065089374
526 => 0.083688590716244
527 => 0.085210381037039
528 => 0.086531708932988
529 => 0.084602544518027
530 => 0.086667026976892
531 => 0.085003418545259
601 => 0.083510989801405
602 => 0.083513253199762
603 => 0.082577030847838
604 => 0.080762982069377
605 => 0.080428443642127
606 => 0.082168754788226
607 => 0.083564319519319
608 => 0.083679264914876
609 => 0.084451921256714
610 => 0.08490917132082
611 => 0.089390843550381
612 => 0.091193409195448
613 => 0.093397552345414
614 => 0.094256190321027
615 => 0.096840382788871
616 => 0.094753437493236
617 => 0.094301913751024
618 => 0.088033508106949
619 => 0.089059959180004
620 => 0.090703406385761
621 => 0.088060607946053
622 => 0.0897368552677
623 => 0.090067781996766
624 => 0.087970806666351
625 => 0.089090891795281
626 => 0.086116277774938
627 => 0.079948356412341
628 => 0.082211931749044
629 => 0.083878685108078
630 => 0.08150002255553
701 => 0.085763683114019
702 => 0.083272940635569
703 => 0.082483494846624
704 => 0.079403585366205
705 => 0.080857184084375
706 => 0.082823197164229
707 => 0.081608429654432
708 => 0.08412925463552
709 => 0.087699415088208
710 => 0.090243724033523
711 => 0.090439044481535
712 => 0.088803224285157
713 => 0.091424636589517
714 => 0.091443730716294
715 => 0.088486766928192
716 => 0.086675643072423
717 => 0.086264151921755
718 => 0.087292137493715
719 => 0.088540301754681
720 => 0.090508308911237
721 => 0.091697534418903
722 => 0.094798403826425
723 => 0.095637410179207
724 => 0.096559223790083
725 => 0.097791051051002
726 => 0.099270175511763
727 => 0.096033935398221
728 => 0.096162517251038
729 => 0.093148975266103
730 => 0.089928573469563
731 => 0.092372457004386
801 => 0.095567509629964
802 => 0.094834561027437
803 => 0.094752089336871
804 => 0.094890783844663
805 => 0.094338164534221
806 => 0.09183868787412
807 => 0.090583466342969
808 => 0.092203022359319
809 => 0.093063744303864
810 => 0.094398648977011
811 => 0.094234093799626
812 => 0.097672664879358
813 => 0.099008789623949
814 => 0.098666951738281
815 => 0.098729858136033
816 => 0.10114884816448
817 => 0.10383926257936
818 => 0.10635919071034
819 => 0.1089225698386
820 => 0.10583231624909
821 => 0.10426327605668
822 => 0.10588212502553
823 => 0.10502314097571
824 => 0.10995911811722
825 => 0.11030087446506
826 => 0.11523649467925
827 => 0.11992098598523
828 => 0.11697874092732
829 => 0.1197531454953
830 => 0.1227538902361
831 => 0.12854281369438
901 => 0.12659330793041
902 => 0.12510001706787
903 => 0.12368886441829
904 => 0.12662524906789
905 => 0.1304028610097
906 => 0.13121652244046
907 => 0.13253496480086
908 => 0.13114878387036
909 => 0.13281828611833
910 => 0.13871236267013
911 => 0.13711973115738
912 => 0.13485793838098
913 => 0.1395107457455
914 => 0.14119457864339
915 => 0.1530125997509
916 => 0.16793333957724
917 => 0.16175605531427
918 => 0.15792161563253
919 => 0.15882279991187
920 => 0.16427134899753
921 => 0.16602125003554
922 => 0.16126441578717
923 => 0.16294461006099
924 => 0.17220264570284
925 => 0.17716928479135
926 => 0.17042392180053
927 => 0.15181373283385
928 => 0.13465428868828
929 => 0.13920574597553
930 => 0.13868975196732
1001 => 0.14863635630101
1002 => 0.13708174742252
1003 => 0.13727629740259
1004 => 0.14742858698027
1005 => 0.14472013017525
1006 => 0.14033277702405
1007 => 0.13468632122162
1008 => 0.12424832543687
1009 => 0.11500310148527
1010 => 0.13313511470227
1011 => 0.13235322932143
1012 => 0.13122094342105
1013 => 0.13374072316622
1014 => 0.14597605835681
1015 => 0.14569399427875
1016 => 0.1438996465245
1017 => 0.14526064348145
1018 => 0.14009418767718
1019 => 0.14142570097595
1020 => 0.13465157054466
1021 => 0.13771376041228
1022 => 0.14032336373465
1023 => 0.14084728023746
1024 => 0.14202769087011
1025 => 0.13194121125487
1026 => 0.13646974447863
1027 => 0.13912983348141
1028 => 0.12711145459199
1029 => 0.1388922687728
1030 => 0.13176562808516
1031 => 0.12934673919723
1101 => 0.13260345442045
1102 => 0.1313343093307
1103 => 0.13024317290923
1104 => 0.12963430003795
1105 => 0.13202567226735
1106 => 0.13191411189454
1107 => 0.1280013627819
1108 => 0.12289734106852
1109 => 0.12461041828933
1110 => 0.12398804127482
1111 => 0.12173246668602
1112 => 0.12325245161976
1113 => 0.11655920721835
1114 => 0.1050438281103
1115 => 0.11265124027468
1116 => 0.11235836318162
1117 => 0.11221068127038
1118 => 0.11792744125849
1119 => 0.11737790669373
1120 => 0.11638049607762
1121 => 0.12171414845788
1122 => 0.11976729359134
1123 => 0.12576704155332
1124 => 0.12971886360046
1125 => 0.12871655370125
1126 => 0.13243326143739
1127 => 0.12464988412857
1128 => 0.12723520985566
1129 => 0.12776804190491
1130 => 0.12164833201543
1201 => 0.11746781734473
1202 => 0.11718902467755
1203 => 0.10994058834897
1204 => 0.11381264452836
1205 => 0.11721989372966
1206 => 0.11558808577546
1207 => 0.11507150412603
1208 => 0.11771060774005
1209 => 0.11791568869325
1210 => 0.11323982122672
1211 => 0.11421208213848
1212 => 0.11826657176543
1213 => 0.11410991940262
1214 => 0.10603422284699
1215 => 0.10403133844596
1216 => 0.10376411674637
1217 => 0.098332135399998
1218 => 0.1041651807588
1219 => 0.10161890014378
1220 => 0.10966257009749
1221 => 0.105068068959
1222 => 0.10487000919783
1223 => 0.10457061281978
1224 => 0.099895082082628
1225 => 0.10091872616858
1226 => 0.1043214750157
1227 => 0.10553561413906
1228 => 0.10540896948134
1229 => 0.10430479968999
1230 => 0.10481028296621
1231 => 0.10318194521145
]
'min_raw' => 0.056973726585335
'max_raw' => 0.17716928479135
'avg_raw' => 0.11707150568834
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.056973'
'max' => '$0.177169'
'avg' => '$0.117071'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.032456056622489
'max_diff' => 0.11065520876172
'year' => 2033
]
8 => [
'items' => [
101 => 0.10260694525933
102 => 0.10079208724423
103 => 0.098124747329364
104 => 0.098495657304273
105 => 0.093210958985463
106 => 0.090331574861207
107 => 0.089534599285285
108 => 0.088468850237261
109 => 0.08965497847611
110 => 0.093195988099113
111 => 0.088924779226672
112 => 0.081602091205339
113 => 0.082042197232674
114 => 0.083030984807444
115 => 0.081188385703344
116 => 0.079444520288934
117 => 0.080960669782491
118 => 0.077857950334561
119 => 0.083405933629309
120 => 0.08325587622923
121 => 0.085323821316526
122 => 0.086616949818118
123 => 0.083636707277273
124 => 0.082887184337683
125 => 0.083314146667992
126 => 0.076257410418334
127 => 0.084747135413992
128 => 0.084820554908298
129 => 0.084191892623783
130 => 0.088712409093118
131 => 0.09825210882786
201 => 0.094662890054118
202 => 0.093273036060213
203 => 0.090630922601822
204 => 0.094151381911953
205 => 0.093881065564656
206 => 0.092658592527745
207 => 0.091919237020673
208 => 0.09328152221233
209 => 0.091750434809684
210 => 0.091475409440701
211 => 0.089809054935215
212 => 0.089214242191055
213 => 0.088773866515457
214 => 0.088289056167044
215 => 0.089358426988432
216 => 0.086935092019719
217 => 0.084012787609908
218 => 0.083769829618004
219 => 0.084440657994736
220 => 0.084143866375332
221 => 0.083768408693915
222 => 0.083051557730275
223 => 0.08283888336246
224 => 0.083529971882922
225 => 0.082749773236285
226 => 0.083900998839018
227 => 0.083587929175293
228 => 0.081839147483035
301 => 0.079659518012573
302 => 0.079640114738358
303 => 0.079170517144256
304 => 0.078572414003695
305 => 0.078406035392738
306 => 0.080832983901028
307 => 0.085856694680733
308 => 0.084870420047466
309 => 0.085583104547491
310 => 0.08908880691784
311 => 0.090203164281225
312 => 0.089412219819695
313 => 0.088329526257422
314 => 0.0883771592794
315 => 0.092077050935314
316 => 0.092307808639514
317 => 0.09289085891277
318 => 0.093640243283892
319 => 0.089539843218526
320 => 0.088184030805064
321 => 0.087541571665956
322 => 0.085563046180482
323 => 0.08769671629061
324 => 0.086453518090302
325 => 0.086621268001222
326 => 0.08651202065167
327 => 0.086571677091799
328 => 0.08340438285491
329 => 0.084558378406748
330 => 0.082639636980699
331 => 0.080070657600053
401 => 0.080062045480369
402 => 0.080690799544311
403 => 0.080316792023929
404 => 0.079310347403194
405 => 0.079453308111285
406 => 0.078200821878083
407 => 0.079605382616991
408 => 0.079645660393223
409 => 0.079104828001803
410 => 0.081268747612122
411 => 0.08215530724206
412 => 0.081799319776275
413 => 0.08213033021247
414 => 0.084911404211242
415 => 0.085364840619807
416 => 0.085566227120164
417 => 0.085296395888284
418 => 0.082181163139878
419 => 0.082319336959263
420 => 0.08130550915239
421 => 0.080448931490125
422 => 0.080483190104458
423 => 0.080923582370164
424 => 0.082846801223166
425 => 0.086894101919365
426 => 0.087047694022247
427 => 0.087233852131539
428 => 0.086476653545482
429 => 0.086248275206512
430 => 0.086549565185064
501 => 0.088069518529595
502 => 0.091979251195037
503 => 0.090597290548805
504 => 0.08947373503192
505 => 0.090459396128621
506 => 0.090307661328651
507 => 0.089026866916398
508 => 0.088990919283064
509 => 0.086532665311207
510 => 0.085623904789546
511 => 0.0848644764781
512 => 0.084035200587379
513 => 0.08354357804178
514 => 0.084298933710271
515 => 0.08447169248876
516 => 0.082820094118247
517 => 0.082594987363212
518 => 0.0839437182448
519 => 0.083350192069568
520 => 0.083960648459535
521 => 0.084102279578405
522 => 0.084079473706225
523 => 0.083459764213237
524 => 0.083854748564065
525 => 0.082920492823854
526 => 0.08190463002705
527 => 0.081256572853178
528 => 0.080691057016665
529 => 0.081004838070736
530 => 0.079886265907129
531 => 0.079528412159582
601 => 0.083720936753433
602 => 0.086817999748146
603 => 0.086772967225632
604 => 0.086498843326248
605 => 0.086091550815766
606 => 0.088039722545585
607 => 0.087361018469839
608 => 0.087854832392567
609 => 0.087980528761207
610 => 0.088360973811754
611 => 0.088496950216967
612 => 0.088085935078726
613 => 0.086706518073518
614 => 0.083269142047573
615 => 0.081669034228476
616 => 0.081140971996271
617 => 0.081160166055478
618 => 0.080630708216476
619 => 0.080786657278698
620 => 0.080576475496873
621 => 0.080178442050531
622 => 0.080980260627053
623 => 0.08107266274854
624 => 0.080885508711762
625 => 0.080929590262498
626 => 0.079380034772506
627 => 0.079497844110952
628 => 0.078841866743995
629 => 0.078718878895616
630 => 0.077060625234432
701 => 0.074122788505934
702 => 0.075750635236233
703 => 0.07378442529592
704 => 0.073039791798581
705 => 0.076564770960716
706 => 0.07621096082054
707 => 0.075605391658131
708 => 0.074709628655255
709 => 0.074377381444066
710 => 0.072358752565568
711 => 0.07223948120246
712 => 0.073239968182209
713 => 0.07277827786571
714 => 0.072129889805549
715 => 0.069781493977691
716 => 0.067141119540041
717 => 0.067220815847511
718 => 0.068060669830215
719 => 0.070502658554667
720 => 0.06954853131319
721 => 0.068856301052149
722 => 0.068726667132622
723 => 0.070349307042503
724 => 0.072645682468556
725 => 0.073723090439956
726 => 0.072655411861665
727 => 0.071428920198822
728 => 0.071503571063324
729 => 0.07200018982068
730 => 0.072052377430267
731 => 0.071254057443136
801 => 0.071478779843328
802 => 0.07113740596839
803 => 0.069042395128026
804 => 0.069004503025275
805 => 0.068490353578436
806 => 0.068474785337522
807 => 0.067600088867859
808 => 0.067477712785262
809 => 0.065740949854466
810 => 0.066884092474919
811 => 0.0661173324228
812 => 0.064961644163846
813 => 0.064762403072397
814 => 0.064756413644598
815 => 0.065943047079377
816 => 0.066870225972341
817 => 0.066130670542185
818 => 0.065962288106418
819 => 0.067760171996034
820 => 0.067531374883005
821 => 0.067333238058705
822 => 0.072440067236019
823 => 0.068397613451325
824 => 0.066634872866003
825 => 0.064453146656308
826 => 0.065163527711403
827 => 0.065313215437381
828 => 0.060066557188774
829 => 0.057937988590744
830 => 0.057207544061315
831 => 0.05678716290766
901 => 0.056978735878195
902 => 0.055062774483773
903 => 0.056350332227901
904 => 0.054691271612517
905 => 0.054413124701297
906 => 0.057379730599776
907 => 0.057792516479889
908 => 0.056031443672806
909 => 0.057162337506743
910 => 0.056752259681958
911 => 0.054719711444975
912 => 0.054642083052735
913 => 0.053622221794942
914 => 0.05202633641055
915 => 0.051296973966561
916 => 0.050917115673116
917 => 0.051073852608282
918 => 0.050994601617633
919 => 0.050477435296211
920 => 0.051024244985803
921 => 0.049627372186259
922 => 0.049071126182111
923 => 0.048819882766847
924 => 0.047580077756253
925 => 0.049553158871899
926 => 0.049941880707902
927 => 0.050331368446005
928 => 0.053721593291614
929 => 0.053552227239003
930 => 0.055083213869991
1001 => 0.055023722544814
1002 => 0.054587060357318
1003 => 0.052744854415712
1004 => 0.053479124869873
1005 => 0.051219154542931
1006 => 0.05291247797492
1007 => 0.052139715875437
1008 => 0.052651206331756
1009 => 0.05173150037206
1010 => 0.052240503623884
1011 => 0.050034061075848
1012 => 0.047973716069976
1013 => 0.048802859045559
1014 => 0.049704232284019
1015 => 0.051658639130629
1016 => 0.050494610536294
1017 => 0.050913239235611
1018 => 0.049510903170497
1019 => 0.046617483310673
1020 => 0.046633859752856
1021 => 0.046188770144
1022 => 0.045804147737801
1023 => 0.050628313222925
1024 => 0.050028351986079
1025 => 0.049072392276151
1026 => 0.050351982336219
1027 => 0.050690326257926
1028 => 0.050699958433721
1029 => 0.051633514310547
1030 => 0.052131753249358
1031 => 0.052219570021815
1101 => 0.05368854036481
1102 => 0.054180919847594
1103 => 0.056208961253031
1104 => 0.052089481156402
1105 => 0.052004643174711
1106 => 0.050369988792476
1107 => 0.049333265140399
1108 => 0.050440974147889
1109 => 0.051422253111167
1110 => 0.050400479865169
1111 => 0.050533901880286
1112 => 0.049162254779475
1113 => 0.04965255407602
1114 => 0.050074865880653
1115 => 0.049841690124475
1116 => 0.049492614731643
1117 => 0.051341799426536
1118 => 0.051237461179037
1119 => 0.052959464479493
1120 => 0.054301889193836
1121 => 0.056707754269061
1122 => 0.054197108642481
1123 => 0.054105610736936
1124 => 0.055000017440365
1125 => 0.054180782918588
1126 => 0.054698510857337
1127 => 0.056624340294086
1128 => 0.056665030035402
1129 => 0.055983424442585
1130 => 0.055941948680317
1201 => 0.056072858490366
1202 => 0.056839601336715
1203 => 0.056571677826573
1204 => 0.056881725695503
1205 => 0.057269445303221
1206 => 0.05887321799045
1207 => 0.059259882155795
1208 => 0.058320488696393
1209 => 0.058405305407834
1210 => 0.058053946467091
1211 => 0.057714538132847
1212 => 0.05847747850162
1213 => 0.059871767021183
1214 => 0.059863093224666
1215 => 0.060186541060109
1216 => 0.060388046382003
1217 => 0.059523038029522
1218 => 0.058959949399296
1219 => 0.059175873410385
1220 => 0.05952114060633
1221 => 0.059063907912135
1222 => 0.056241655912776
1223 => 0.057097746883226
1224 => 0.056955251485033
1225 => 0.056752320709975
1226 => 0.057613126800718
1227 => 0.057530099953315
1228 => 0.055043123530388
1229 => 0.055202331692008
1230 => 0.05505280550601
1231 => 0.05553595520315
]
'min_raw' => 0.045804147737801
'max_raw' => 0.10260694525933
'avg_raw' => 0.074205546498566
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.0458041'
'max' => '$0.1026069'
'avg' => '$0.0742055'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.011169578847533
'max_diff' => -0.074562339532018
'year' => 2034
]
9 => [
'items' => [
101 => 0.05415469124938
102 => 0.054579558738605
103 => 0.054846031644962
104 => 0.055002986233947
105 => 0.055570013834131
106 => 0.055503479689858
107 => 0.055565877978305
108 => 0.056406630219642
109 => 0.060658866544995
110 => 0.060890306386154
111 => 0.059750611963145
112 => 0.060205897405658
113 => 0.059331848916013
114 => 0.059918603522728
115 => 0.060320046122691
116 => 0.058506004206431
117 => 0.058398588417185
118 => 0.057520932418507
119 => 0.057992535039219
120 => 0.057242181360237
121 => 0.057426291906802
122 => 0.056911502768137
123 => 0.057838020724238
124 => 0.058874011765493
125 => 0.05913574401504
126 => 0.0584472391493
127 => 0.057948716251823
128 => 0.057073474267504
129 => 0.058529021193466
130 => 0.058954667471607
131 => 0.05852678545477
201 => 0.058427635842063
202 => 0.058239747505141
203 => 0.058467497240946
204 => 0.058952349310564
205 => 0.058723702028344
206 => 0.058874727586497
207 => 0.058299173895697
208 => 0.05952332438328
209 => 0.061467569965419
210 => 0.061473821032882
211 => 0.061245172518168
212 => 0.061151614472248
213 => 0.061386221723896
214 => 0.061513486533822
215 => 0.062272163366041
216 => 0.063086253834031
217 => 0.066885258832638
218 => 0.065818513430993
219 => 0.069189216669576
220 => 0.071855005300259
221 => 0.072654358749792
222 => 0.071918991188707
223 => 0.069403338486014
224 => 0.069279908562865
225 => 0.073039355781864
226 => 0.071977139748906
227 => 0.071850792531729
228 => 0.070506671607958
301 => 0.071301213546522
302 => 0.071127435569331
303 => 0.070853118530826
304 => 0.072369049201334
305 => 0.075206736088461
306 => 0.074764455975443
307 => 0.074434314387859
308 => 0.072987730053838
309 => 0.073858896929227
310 => 0.073548691091003
311 => 0.074881532233501
312 => 0.074091986666732
313 => 0.071969092417738
314 => 0.072307170324041
315 => 0.072256070528622
316 => 0.073307700697382
317 => 0.072992027423786
318 => 0.072194430255577
319 => 0.075197037183176
320 => 0.075002064590675
321 => 0.075278491149902
322 => 0.075400182670049
323 => 0.07722781659501
324 => 0.077976539736304
325 => 0.078146512997621
326 => 0.078857742073524
327 => 0.078128816970298
328 => 0.081045037097995
329 => 0.082984153316751
330 => 0.085236536590845
331 => 0.088527873937846
401 => 0.089765447226891
402 => 0.089541890689314
403 => 0.092037345102297
404 => 0.096521621211591
405 => 0.090448291101363
406 => 0.096843522454631
407 => 0.094818866044683
408 => 0.09001844211871
409 => 0.089709351411158
410 => 0.092960254227894
411 => 0.10017044378762
412 => 0.098364373080198
413 => 0.10017339787229
414 => 0.098063074360306
415 => 0.097958279010734
416 => 0.10007090416964
417 => 0.10500716800662
418 => 0.10266213409076
419 => 0.099299952946451
420 => 0.10178253518207
421 => 0.099631892697438
422 => 0.094785893252626
423 => 0.098362992011966
424 => 0.095971087941503
425 => 0.096669172709878
426 => 0.10169659929711
427 => 0.10109168602922
428 => 0.10187449981134
429 => 0.1004928539757
430 => 0.099202178899664
501 => 0.096793038023455
502 => 0.096079810179219
503 => 0.096276920696116
504 => 0.096079712501036
505 => 0.094731820321945
506 => 0.094440743134204
507 => 0.093955601735585
508 => 0.094105967341047
509 => 0.093193759578521
510 => 0.094915284098148
511 => 0.095234814219013
512 => 0.096487596201166
513 => 0.096617664182498
514 => 0.10010664417056
515 => 0.098184972623063
516 => 0.099474195806263
517 => 0.099358875550119
518 => 0.090122481861344
519 => 0.091395175418266
520 => 0.093375087199596
521 => 0.092483139625814
522 => 0.091222134440074
523 => 0.090203805141769
524 => 0.08866093212532
525 => 0.09083249626772
526 => 0.093687872194876
527 => 0.096690081228099
528 => 0.10029703866899
529 => 0.099492007757794
530 => 0.096622651667689
531 => 0.096751368885825
601 => 0.097547048079984
602 => 0.09651657122847
603 => 0.09621266348766
604 => 0.097505295823218
605 => 0.097514197471695
606 => 0.09632850931674
607 => 0.095010833911149
608 => 0.095005312803087
609 => 0.094770845191897
610 => 0.098104785627464
611 => 0.099938115767629
612 => 0.10014830411364
613 => 0.09992396841725
614 => 0.10001030632323
615 => 0.098943531909336
616 => 0.10138186187736
617 => 0.10361951458186
618 => 0.10301977585658
619 => 0.10212068224949
620 => 0.10140451088524
621 => 0.10285106864341
622 => 0.10278665570353
623 => 0.10359997063757
624 => 0.10356307397423
625 => 0.10328958675223
626 => 0.10301978562367
627 => 0.1040895166015
628 => 0.10378145125924
629 => 0.10347290740641
630 => 0.10285407547386
701 => 0.10293818501121
702 => 0.10203924664531
703 => 0.10162335662463
704 => 0.095369368573223
705 => 0.093698098610933
706 => 0.094223914162906
707 => 0.094397026295411
708 => 0.093669687466032
709 => 0.094712504509346
710 => 0.094549982577762
711 => 0.095182260341406
712 => 0.094787240644991
713 => 0.09480345239112
714 => 0.095965121091198
715 => 0.096302358456922
716 => 0.096130836810875
717 => 0.096250964692348
718 => 0.099019261018089
719 => 0.098625697805702
720 => 0.098416625193127
721 => 0.098474539735638
722 => 0.099181898799807
723 => 0.099379920717402
724 => 0.098540887937801
725 => 0.098936580647051
726 => 0.10062138998216
727 => 0.10121097789749
728 => 0.103092659505
729 => 0.10229328771391
730 => 0.10376056923245
731 => 0.10827049238734
801 => 0.1118733310664
802 => 0.10856001172353
803 => 0.1151761661389
804 => 0.12032779138224
805 => 0.12013006342492
806 => 0.11923175840451
807 => 0.113366770028
808 => 0.10796972028189
809 => 0.11248458156535
810 => 0.11249609087525
811 => 0.11210826028697
812 => 0.10969947781168
813 => 0.11202443987817
814 => 0.11220898692398
815 => 0.11210568965335
816 => 0.11025888177723
817 => 0.10743914749756
818 => 0.10799011682632
819 => 0.1088926158263
820 => 0.10718399693833
821 => 0.10663798967475
822 => 0.10765312105987
823 => 0.11092408589374
824 => 0.11030572893931
825 => 0.11028958114025
826 => 0.11293517441548
827 => 0.11104150058518
828 => 0.107997066314
829 => 0.10722830650938
830 => 0.10449972710161
831 => 0.10638436661742
901 => 0.10645219143844
902 => 0.10541999363618
903 => 0.10808082347689
904 => 0.10805630346148
905 => 0.11058236538298
906 => 0.11541124703136
907 => 0.1139831091131
908 => 0.11232234009513
909 => 0.11250291173551
910 => 0.11448333694174
911 => 0.11328592665334
912 => 0.11371652374169
913 => 0.11448268518147
914 => 0.11494492940081
915 => 0.11243640190588
916 => 0.11185154415008
917 => 0.11065513043887
918 => 0.11034300843374
919 => 0.11131746243752
920 => 0.11106072823549
921 => 0.10644649102486
922 => 0.10596427756298
923 => 0.10597906636141
924 => 0.1047665176835
925 => 0.10291708990466
926 => 0.10777727568386
927 => 0.10738693474753
928 => 0.10695602856382
929 => 0.1070088121126
930 => 0.10911845403237
1001 => 0.10789475517944
1002 => 0.11114815914027
1003 => 0.11047935709219
1004 => 0.10979340279521
1005 => 0.10969858301669
1006 => 0.10943454913522
1007 => 0.10852907871299
1008 => 0.1074356687678
1009 => 0.10671370481244
1010 => 0.098437751824385
1011 => 0.099973720559965
1012 => 0.10174071258229
1013 => 0.10235067114763
1014 => 0.10130729481378
1015 => 0.1085702775701
1016 => 0.10989729450752
1017 => 0.10587767364489
1018 => 0.10512576670154
1019 => 0.10861957246413
1020 => 0.1065123804889
1021 => 0.10746124890632
1022 => 0.10541031439113
1023 => 0.10957765498689
1024 => 0.10954590683376
1025 => 0.10792471721835
1026 => 0.10929493557986
1027 => 0.10905682642013
1028 => 0.10722650733715
1029 => 0.1096356793665
1030 => 0.10963687428577
1031 => 0.10807651452865
1101 => 0.10625435593899
1102 => 0.10592859702063
1103 => 0.1056831814352
1104 => 0.10740089171655
1105 => 0.10894098538368
1106 => 0.11180671787659
1107 => 0.11252723111344
1108 => 0.11533944224412
1109 => 0.11366490743988
1110 => 0.11440720702974
1111 => 0.11521307823923
1112 => 0.11559944253199
1113 => 0.11496988265039
1114 => 0.11933840408863
1115 => 0.11970724114605
1116 => 0.11983090902098
1117 => 0.11835786817121
1118 => 0.11966627321531
1119 => 0.119054113825
1120 => 0.12064678249581
1121 => 0.12089653327961
1122 => 0.12068500325087
1123 => 0.1207642780917
1124 => 0.11703651570415
1125 => 0.11684321155885
1126 => 0.11420749582134
1127 => 0.1152815694666
1128 => 0.11327364026848
1129 => 0.11391037530117
1130 => 0.11419104203654
1201 => 0.11404443766168
1202 => 0.11534229597898
1203 => 0.11423885127434
1204 => 0.11132667927568
1205 => 0.10841371385772
1206 => 0.10837714394974
1207 => 0.1076102115733
1208 => 0.10705585993581
1209 => 0.10716264772787
1210 => 0.10753898183565
1211 => 0.10703398671333
1212 => 0.10714175302658
1213 => 0.10893139186972
1214 => 0.10929029117659
1215 => 0.10807061110083
1216 => 0.10317341959765
1217 => 0.10197163651909
1218 => 0.10283545436356
1219 => 0.1024226050709
1220 => 0.082663036048789
1221 => 0.087305253692704
1222 => 0.084547005603505
1223 => 0.0858181332239
1224 => 0.083002676169709
1225 => 0.084346359846716
1226 => 0.084098230535044
1227 => 0.091562779133252
1228 => 0.091446230474042
1229 => 0.091502016149588
1230 => 0.088839220506969
1231 => 0.093081126268442
]
'min_raw' => 0.05415469124938
'max_raw' => 0.12089653327961
'avg_raw' => 0.087525612264494
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.054154'
'max' => '$0.120896'
'avg' => '$0.087525'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0083505435115789
'max_diff' => 0.018289588020277
'year' => 2035
]
10 => [
'items' => [
101 => 0.095170841580541
102 => 0.094784090892244
103 => 0.094881427708272
104 => 0.093208858716611
105 => 0.091518210273482
106 => 0.089643020961123
107 => 0.093126890923083
108 => 0.092739544054956
109 => 0.093627978407434
110 => 0.095887517109934
111 => 0.096220242767029
112 => 0.096667429424337
113 => 0.096507144840606
114 => 0.1003257739042
115 => 0.099863312728475
116 => 0.10097771110282
117 => 0.098685309097187
118 => 0.096091238631021
119 => 0.096584286620086
120 => 0.096536802133898
121 => 0.095932270124562
122 => 0.095386525656986
123 => 0.094478014881022
124 => 0.097352677410468
125 => 0.097235971361522
126 => 0.099125306638005
127 => 0.098791348275863
128 => 0.096561092600005
129 => 0.096640746617779
130 => 0.097176458167728
131 => 0.099030561958748
201 => 0.099580986200935
202 => 0.09932600776134
203 => 0.099929522815077
204 => 0.10040651650626
205 => 0.099989425878765
206 => 0.10589454959779
207 => 0.10344233052586
208 => 0.10463752503909
209 => 0.104922571888
210 => 0.10419243037841
211 => 0.10435077192743
212 => 0.10459061622871
213 => 0.10604690385976
214 => 0.10986862398386
215 => 0.11156123781149
216 => 0.11665355002402
217 => 0.11142068979543
218 => 0.11111019352519
219 => 0.11202747272776
220 => 0.11501719907251
221 => 0.11744009146421
222 => 0.11824390465055
223 => 0.11835014183264
224 => 0.11985814880671
225 => 0.12072251028158
226 => 0.11967503709553
227 => 0.11878741324537
228 => 0.11560805479004
229 => 0.11597607418835
301 => 0.11851136289543
302 => 0.12209260752195
303 => 0.1251656879765
304 => 0.12408960230899
305 => 0.13229937635405
306 => 0.1331133419167
307 => 0.1330008781946
308 => 0.13485521288063
309 => 0.13117473615755
310 => 0.12960126105256
311 => 0.11897932759674
312 => 0.12196365763479
313 => 0.12630155660865
314 => 0.12572741941317
315 => 0.12257712122598
316 => 0.12516329819283
317 => 0.12430822721036
318 => 0.12363379724956
319 => 0.12672349164468
320 => 0.12332624573959
321 => 0.12626766648199
322 => 0.12249526395476
323 => 0.12409451777767
324 => 0.12318670396059
325 => 0.12377417075772
326 => 0.12033985186561
327 => 0.12219292697641
328 => 0.12026275784865
329 => 0.12026184269717
330 => 0.12021923410669
331 => 0.12249006952582
401 => 0.12256412138732
402 => 0.12088597058154
403 => 0.12064412283278
404 => 0.12153836071747
405 => 0.12049144235577
406 => 0.12098128886798
407 => 0.12050627930761
408 => 0.12039934465034
409 => 0.11954727110777
410 => 0.11918017439738
411 => 0.11932412247644
412 => 0.11883275347229
413 => 0.11853668587369
414 => 0.12016033880942
415 => 0.11929288654383
416 => 0.1200273893087
417 => 0.11919033070649
418 => 0.11628872090217
419 => 0.11461997441974
420 => 0.10913910247875
421 => 0.11069347096221
422 => 0.11172401887486
423 => 0.11138342279588
424 => 0.11211515496672
425 => 0.11216007737912
426 => 0.11192218379126
427 => 0.11164673349256
428 => 0.11151265952052
429 => 0.11251193706341
430 => 0.1130920513112
501 => 0.11182744814485
502 => 0.11153116931665
503 => 0.11280975293848
504 => 0.11358968820919
505 => 0.1193482920403
506 => 0.11892167606845
507 => 0.11999239843865
508 => 0.11987185153134
509 => 0.12099413915476
510 => 0.12282860510491
511 => 0.1190986229035
512 => 0.11974601884059
513 => 0.11958729230737
514 => 0.1213202269767
515 => 0.12132563700959
516 => 0.12028665610881
517 => 0.12084990451066
518 => 0.12053551470466
519 => 0.12110365957644
520 => 0.11891597835205
521 => 0.12158033793776
522 => 0.12309085813531
523 => 0.12311183170972
524 => 0.12382780629513
525 => 0.12455527794036
526 => 0.12595159641395
527 => 0.12451633537599
528 => 0.12193444048853
529 => 0.12212084495993
530 => 0.1206070809321
531 => 0.12063252757889
601 => 0.12049669138402
602 => 0.12090434603008
603 => 0.11900543562245
604 => 0.11945110609963
605 => 0.11882716482173
606 => 0.1197446625141
607 => 0.11875758666492
608 => 0.11958721576463
609 => 0.11994525618143
610 => 0.12126643302746
611 => 0.11856244777054
612 => 0.11304883878797
613 => 0.11420786624216
614 => 0.11249357359778
615 => 0.11265223790879
616 => 0.11297276506827
617 => 0.11193383167444
618 => 0.11213202742543
619 => 0.11212494647852
620 => 0.11206392670351
621 => 0.11179366000226
622 => 0.11140171981482
623 => 0.11296308888877
624 => 0.1132283959197
625 => 0.11381814058489
626 => 0.11557282068085
627 => 0.11539748676106
628 => 0.11568346365877
629 => 0.11505917769675
630 => 0.11268119674407
701 => 0.11281033255061
702 => 0.11120000697377
703 => 0.11377696093938
704 => 0.1131667042262
705 => 0.11277326775325
706 => 0.11266591496644
707 => 0.11442494457497
708 => 0.11495127380325
709 => 0.11462330074883
710 => 0.1139506184457
711 => 0.11524236732838
712 => 0.11558798483487
713 => 0.11566535584869
714 => 0.11795408720051
715 => 0.11579327050662
716 => 0.11631340056151
717 => 0.12037130677209
718 => 0.11669134579188
719 => 0.11864070319602
720 => 0.11854529229505
721 => 0.11954251758035
722 => 0.11846349071483
723 => 0.11847686654603
724 => 0.11936233504149
725 => 0.1181188542347
726 => 0.11781095089984
727 => 0.11738558464796
728 => 0.11831435629722
729 => 0.11887111289622
730 => 0.12335816219151
731 => 0.12625700067058
801 => 0.12613115444706
802 => 0.12728115335577
803 => 0.12676306831461
804 => 0.1250900350528
805 => 0.12794569882604
806 => 0.12704204732214
807 => 0.12711654325419
808 => 0.12711377051188
809 => 0.12771461976339
810 => 0.12728886300167
811 => 0.12644965272128
812 => 0.1270067596697
813 => 0.12866116813714
814 => 0.13379650278352
815 => 0.13667030408577
816 => 0.13362349633667
817 => 0.13572514352362
818 => 0.13446490410491
819 => 0.13423588111366
820 => 0.13555587085757
821 => 0.13687817106878
822 => 0.13679394626179
823 => 0.13583402420931
824 => 0.13529178859899
825 => 0.13939777830261
826 => 0.14242300157253
827 => 0.14221670162688
828 => 0.14312724249466
829 => 0.14580061864444
830 => 0.14604503865574
831 => 0.14601424735224
901 => 0.14540842685166
902 => 0.14804071285288
903 => 0.15023661214576
904 => 0.14526819690961
905 => 0.1471601043902
906 => 0.14800944261169
907 => 0.14925652310814
908 => 0.1513605569406
909 => 0.15364609575006
910 => 0.15396929599737
911 => 0.15373996995535
912 => 0.15223259567193
913 => 0.15473345950939
914 => 0.1561984068929
915 => 0.15707074953506
916 => 0.15928286533159
917 => 0.1480146878354
918 => 0.14003851173884
919 => 0.13879291666398
920 => 0.14132588322931
921 => 0.14199380631256
922 => 0.1417245673552
923 => 0.13274665599632
924 => 0.1387456498187
925 => 0.14520006276185
926 => 0.14544800304942
927 => 0.14867921712417
928 => 0.14973143287885
929 => 0.15233298373394
930 => 0.15217025601963
1001 => 0.15280369225312
1002 => 0.15265807623263
1003 => 0.15747690137051
1004 => 0.16279278110006
1005 => 0.16260870908848
1006 => 0.16184448848273
1007 => 0.16297948640125
1008 => 0.16846604396643
1009 => 0.16796092966613
1010 => 0.16845160518334
1011 => 0.17492056576152
1012 => 0.18333113471207
1013 => 0.17942358102723
1014 => 0.18790184815506
1015 => 0.1932384678984
1016 => 0.20246759992773
1017 => 0.20131206714323
1018 => 0.20490490051575
1019 => 0.19924342229199
1020 => 0.18624352391673
1021 => 0.18418624023723
1022 => 0.1883049742623
1023 => 0.19843047996276
1024 => 0.18798608605418
1025 => 0.19009897333908
1026 => 0.18949046165889
1027 => 0.18945803665746
1028 => 0.19069556708
1029 => 0.18890046465685
1030 => 0.18158689445219
1031 => 0.18493866057785
1101 => 0.18364438271171
1102 => 0.185080480499
1103 => 0.19283050796525
1104 => 0.18940403608484
1105 => 0.1857945263028
1106 => 0.19032165258382
1107 => 0.19608624002893
1108 => 0.19572550250657
1109 => 0.19502552093662
1110 => 0.19897128039662
1111 => 0.20548851902548
1112 => 0.20725010243848
1113 => 0.20855046729997
1114 => 0.20872976564452
1115 => 0.21057665002674
1116 => 0.20064548722878
1117 => 0.21640649763949
1118 => 0.21912798874829
1119 => 0.21861646121409
1120 => 0.22164128404367
1121 => 0.22075130443486
1122 => 0.21946186361521
1123 => 0.22425685119836
1124 => 0.21875978486982
1125 => 0.21095739127787
1126 => 0.20667684383947
1127 => 0.21231381400826
1128 => 0.21575611498719
1129 => 0.21803125696281
1130 => 0.21871971354995
1201 => 0.20141641512639
1202 => 0.19209089696102
1203 => 0.19806844718774
1204 => 0.20536147101282
1205 => 0.2006049741132
1206 => 0.20079141978642
1207 => 0.19400990519296
1208 => 0.20596148457791
1209 => 0.20422023999013
1210 => 0.21325381999175
1211 => 0.21109788362536
1212 => 0.21846441743513
1213 => 0.21652456220358
1214 => 0.22457679281388
1215 => 0.22778904560976
1216 => 0.23318291800128
1217 => 0.2371506724895
1218 => 0.23948061381602
1219 => 0.23934073287817
1220 => 0.24857312118603
1221 => 0.24312910435596
1222 => 0.23629013616115
1223 => 0.23616644080317
1224 => 0.2397084393402
1225 => 0.24713149657396
1226 => 0.24905618731358
1227 => 0.25013182686589
1228 => 0.24848444744824
1229 => 0.24257535735541
1230 => 0.24002384221309
1231 => 0.24219780703885
]
'min_raw' => 0.089643020961123
'max_raw' => 0.25013182686589
'avg_raw' => 0.16988742391351
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.089643'
'max' => '$0.250131'
'avg' => '$0.169887'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.035488329711742
'max_diff' => 0.12923529358628
'year' => 2036
]
11 => [
'items' => [
101 => 0.23953923486787
102 => 0.24412867629859
103 => 0.25043095963477
104 => 0.24912956304778
105 => 0.25347993672181
106 => 0.25798211580178
107 => 0.26442043409164
108 => 0.26610364890285
109 => 0.26888593897885
110 => 0.27174982940173
111 => 0.27266963382155
112 => 0.27442582585753
113 => 0.27441656985862
114 => 0.27970897276441
115 => 0.28554665706157
116 => 0.28775024774105
117 => 0.29281728300181
118 => 0.28414016268785
119 => 0.29072185812156
120 => 0.29665871215329
121 => 0.2895805500289
122 => 0.29933614751711
123 => 0.29971493526092
124 => 0.30543418047489
125 => 0.29963662977572
126 => 0.29619406267699
127 => 0.30613262489972
128 => 0.31094158209752
129 => 0.30949308505295
130 => 0.29846995102266
131 => 0.29205401421257
201 => 0.27526227003877
202 => 0.295152816362
203 => 0.30484092126085
204 => 0.29844486117144
205 => 0.30167066184394
206 => 0.31926958434371
207 => 0.32597011458578
208 => 0.32457645113567
209 => 0.32481195731709
210 => 0.32842744181248
211 => 0.34446049114873
212 => 0.33485311634327
213 => 0.34219759440058
214 => 0.34609307907969
215 => 0.34971142234736
216 => 0.34082591487108
217 => 0.32926600019848
218 => 0.32560448996946
219 => 0.29780889904812
220 => 0.29636201783053
221 => 0.29554983955811
222 => 0.2904291704354
223 => 0.28640572717426
224 => 0.28320613571214
225 => 0.27480945223663
226 => 0.27764308642239
227 => 0.26426052548647
228 => 0.27282221372443
301 => 0.25146332333748
302 => 0.26925164193459
303 => 0.25957026885778
304 => 0.26607105049916
305 => 0.26604836988443
306 => 0.25407836980795
307 => 0.24717432357136
308 => 0.25157385054281
309 => 0.25629049269109
310 => 0.25705575201096
311 => 0.26317100167317
312 => 0.26487763640704
313 => 0.25970645348825
314 => 0.25102070780888
315 => 0.25303820842943
316 => 0.24713343898568
317 => 0.23678555765918
318 => 0.24421758668455
319 => 0.24675520815705
320 => 0.24787596636442
321 => 0.23770001354201
322 => 0.23450250823453
323 => 0.23280018323849
324 => 0.24970712008365
325 => 0.25063332024928
326 => 0.24589474925041
327 => 0.26731353949503
328 => 0.26246580760088
329 => 0.26788191184979
330 => 0.25285514139455
331 => 0.25342918426217
401 => 0.24631527031398
402 => 0.25029858677307
403 => 0.24748330708807
404 => 0.24997677416708
405 => 0.25147134805328
406 => 0.25858409467819
407 => 0.26933285807568
408 => 0.25752168752163
409 => 0.25237539137215
410 => 0.25556812455942
411 => 0.26407079377057
412 => 0.2769527728691
413 => 0.26932638196878
414 => 0.27271084474583
415 => 0.27345019929834
416 => 0.26782678099279
417 => 0.27716011632319
418 => 0.28216192655063
419 => 0.2872927488652
420 => 0.29174769811856
421 => 0.28524338560356
422 => 0.29220393235119
423 => 0.2865949603745
424 => 0.28156313266655
425 => 0.28157076387214
426 => 0.27841422484767
427 => 0.27229803273825
428 => 0.27117011307405
429 => 0.27703769360777
430 => 0.28174293753386
501 => 0.28213048396021
502 => 0.28473554876186
503 => 0.28627719927718
504 => 0.30138747009951
505 => 0.30746494602296
506 => 0.31489636854143
507 => 0.3177913264244
508 => 0.32650411175229
509 => 0.31946782998219
510 => 0.31794548616095
511 => 0.29681111888584
512 => 0.30027187034317
513 => 0.3058128673392
514 => 0.29690248788543
515 => 0.30255407276221
516 => 0.30366981533382
517 => 0.29659971660119
518 => 0.30037616181522
519 => 0.29034704296472
520 => 0.2695514654602
521 => 0.27718326774568
522 => 0.28280284306467
523 => 0.27478301619584
524 => 0.28915824544805
525 => 0.28076053328387
526 => 0.2780988616891
527 => 0.26771473184346
528 => 0.27261564140879
529 => 0.27924419177016
530 => 0.27514851829852
531 => 0.28364765572064
601 => 0.29568470094752
602 => 0.30426301619463
603 => 0.30492155272194
604 => 0.29940627072054
605 => 0.30824454532585
606 => 0.30830892250738
607 => 0.29833931264718
608 => 0.29223298211882
609 => 0.29084561097495
610 => 0.29431153610248
611 => 0.29851980905237
612 => 0.30515508258257
613 => 0.30916463941074
614 => 0.31961943711399
615 => 0.32244820560995
616 => 0.32555616455799
617 => 0.32970935617161
618 => 0.33469632756023
619 => 0.32378511807036
620 => 0.32421864076443
621 => 0.31405827356344
622 => 0.30320046406513
623 => 0.31144018802928
624 => 0.32221253102787
625 => 0.31974134364161
626 => 0.31946328457888
627 => 0.31993090279525
628 => 0.31806770820744
629 => 0.30964054814002
630 => 0.30540848111098
701 => 0.31086892729389
702 => 0.31377091142361
703 => 0.3182716357292
704 => 0.31771682645977
705 => 0.32931020892845
706 => 0.33381504679009
707 => 0.3326625164922
708 => 0.33287460980421
709 => 0.3410304035736
710 => 0.35010132361209
711 => 0.35859743724146
712 => 0.36724004894183
713 => 0.35682104321016
714 => 0.35153091465456
715 => 0.35698897697749
716 => 0.35409285228115
717 => 0.37073484383269
718 => 0.3718870992201
719 => 0.38852788736622
720 => 0.40432197686509
721 => 0.39440199223136
722 => 0.40375609093504
723 => 0.41387331133394
724 => 0.43339107094326
725 => 0.4268181761499
726 => 0.42178344174858
727 => 0.417025642067
728 => 0.42692586792495
729 => 0.43966235033124
730 => 0.44240566665304
731 => 0.44685088712185
801 => 0.44217728133459
802 => 0.44780612472455
803 => 0.46767841533023
804 => 0.46230874699102
805 => 0.45468295473207
806 => 0.47037021961017
807 => 0.47604737978686
808 => 0.51589266305872
809 => 0.56619897911601
810 => 0.54537183393921
811 => 0.5324437528402
812 => 0.53548215855665
813 => 0.5538523222045
814 => 0.55975223572834
815 => 0.54371423694839
816 => 0.54937912925002
817 => 0.58059324279192
818 => 0.59733861323848
819 => 0.57459615096875
820 => 0.51185059954569
821 => 0.45399633557475
822 => 0.4693418915913
823 => 0.46760218176707
824 => 0.50113785272787
825 => 0.46218068217699
826 => 0.46283662101784
827 => 0.49706577413921
828 => 0.48793402292267
829 => 0.47314175545821
830 => 0.45410433549735
831 => 0.41891190395147
901 => 0.38774098591773
902 => 0.44887433441559
903 => 0.44623815326458
904 => 0.44242057229777
905 => 0.45091618563401
906 => 0.49216847247293
907 => 0.49121747374067
908 => 0.48516770500985
909 => 0.48975640127196
910 => 0.47233733481745
911 => 0.47682662486754
912 => 0.45398717116375
913 => 0.46431155809771
914 => 0.47311001789578
915 => 0.47487643896367
916 => 0.47885627582531
917 => 0.444849005587
918 => 0.460117271523
919 => 0.46908594731735
920 => 0.42856514379525
921 => 0.46828498131604
922 => 0.4442570146715
923 => 0.43610156190439
924 => 0.4470818046561
925 => 0.44280279337712
926 => 0.43912395075143
927 => 0.43707109335576
928 => 0.44513377178744
929 => 0.44475763820162
930 => 0.43156553138894
1001 => 0.41435696583086
1002 => 0.42013272528406
1003 => 0.41803433772667
1004 => 0.41042951052134
1005 => 0.4155542458474
1006 => 0.39298750504065
1007 => 0.35416260039975
1008 => 0.37981152164452
1009 => 0.37882406607725
1010 => 0.37832614620269
1011 => 0.39760060163402
1012 => 0.39574780748164
1013 => 0.39238496795246
1014 => 0.41036774933622
1015 => 0.40380379222861
1016 => 0.42403236137147
1017 => 0.43735620531078
1018 => 0.43397684750657
1019 => 0.44650798713122
1020 => 0.42026578711646
1021 => 0.42898239330704
1022 => 0.43077887376223
1023 => 0.41014584460534
1024 => 0.39605094751886
1025 => 0.39511097857679
1026 => 0.3706723694253
1027 => 0.38372727717246
1028 => 0.39521505574118
1029 => 0.38971330129439
1030 => 0.38797161019678
1031 => 0.39686953228777
1101 => 0.39756097703979
1102 => 0.38179596341772
1103 => 0.3850740089628
1104 => 0.39874400381552
1105 => 0.38472956016611
1106 => 0.35750178540167
1107 => 0.35074892080665
1108 => 0.34984796418969
1109 => 0.33153365983155
1110 => 0.35120017950897
1111 => 0.34261521663981
1112 => 0.36973501147982
1113 => 0.35424433011359
1114 => 0.35357655780072
1115 => 0.35256712200892
1116 => 0.33680324369349
1117 => 0.34025453119784
1118 => 0.35172713650823
1119 => 0.35582069133112
1120 => 0.35539370002559
1121 => 0.35167091448335
1122 => 0.35337518664084
1123 => 0.34788513221378
1124 => 0.34594647972998
1125 => 0.33982755922274
1126 => 0.33083443647203
1127 => 0.33208498534855
1128 => 0.31426725600083
1129 => 0.30455921139372
1130 => 0.30187215259644
1201 => 0.2982789052728
1202 => 0.30227801944291
1203 => 0.31421678061226
1204 => 0.29981610169255
1205 => 0.27512714777487
1206 => 0.27661099597325
1207 => 0.27994476231654
1208 => 0.2737323107909
1209 => 0.26785274679342
1210 => 0.27296455066513
1211 => 0.26250351542148
1212 => 0.28120892844754
1213 => 0.2807029994465
1214 => 0.28767522068764
1215 => 0.2920350937141
1216 => 0.28198699791376
1217 => 0.27945992899291
1218 => 0.2808994622991
1219 => 0.25710718334779
1220 => 0.28573088390432
1221 => 0.28597842285536
1222 => 0.28385884407132
1223 => 0.29910008096006
1224 => 0.33126384465631
1225 => 0.31916254296938
1226 => 0.31447655319243
1227 => 0.30556848320099
1228 => 0.31743795755572
1229 => 0.31652656711792
1230 => 0.31240491392364
1231 => 0.30991212521139
]
'min_raw' => 0.23280018323849
'max_raw' => 0.59733861323848
'avg_raw' => 0.41506939823849
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.23280018'
'max' => '$0.597338'
'avg' => '$0.415069'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.14315716227737
'max_diff' => 0.3472067863726
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0073073317370453
]
1 => [
'year' => 2028
'avg' => 0.01254150259433
]
2 => [
'year' => 2029
'avg' => 0.034261124701791
]
3 => [
'year' => 2030
'avg' => 0.026432406684234
]
4 => [
'year' => 2031
'avg' => 0.025959899096016
]
5 => [
'year' => 2032
'avg' => 0.045515872996234
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0073073317370453
'min' => '$0.0073073'
'max_raw' => 0.045515872996234
'max' => '$0.045515'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.045515872996234
]
1 => [
'year' => 2033
'avg' => 0.11707150568834
]
2 => [
'year' => 2034
'avg' => 0.074205546498566
]
3 => [
'year' => 2035
'avg' => 0.087525612264494
]
4 => [
'year' => 2036
'avg' => 0.16988742391351
]
5 => [
'year' => 2037
'avg' => 0.41506939823849
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.045515872996234
'min' => '$0.045515'
'max_raw' => 0.41506939823849
'max' => '$0.415069'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.41506939823849
]
]
]
]
'prediction_2025_max_price' => '$0.012494'
'last_price' => 0.01211471
'sma_50day_nextmonth' => '$0.011374'
'sma_200day_nextmonth' => '$0.016786'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'augmenter'
'sma_200day_date_nextmonth' => '4 févr. 2026'
'sma_50day_date_nextmonth' => '4 févr. 2026'
'daily_sma3' => '$0.012042'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.011826'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.011562'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.011761'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.012743'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.01526'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.018288'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.0120052'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.011873'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.011743'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.01194'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.013016'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.014813'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.017047'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.016696'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.018697'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.024037'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.038953'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.012087'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.012388'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.0135031'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.015566'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.0189027'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.024428'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.029815'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '49.65'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 129.47
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'SELL'
'vwma_10' => '0.011667'
'vwma_10_action' => 'BUY'
'hma_9' => '0.012145'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 98.19
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 61.03
'cci_20_action' => 'NEUTRAL'
'adx_14' => 28.59
'adx_14_action' => 'SELL'
'ao_5_34' => '-0.000564'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -1.81
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 66.57
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.005745'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 18
'buy_signals' => 16
'sell_pct' => 52.94
'buy_pct' => 47.06
'overall_action' => 'bearish'
'overall_action_label' => 'Baissier'
'overall_action_dir' => -1
'last_updated' => 1767687453
'last_updated_date' => '6 janvier 2026'
]
Prévision du prix de SIX Network pour 2026
La prévision du prix de SIX Network pour 2026 suggère que le prix moyen pourrait varier entre $0.004185 à la baisse et $0.012494 à la hausse. Sur le marché des cryptomonnaies, comparé au prix moyen d'aujourd'hui, SIX Network pourrait potentiellement gagner 3.13% d'ici 2026 si SIX atteint l'objectif de prix prévu.
Prévision du prix de SIX Network de 2027 à 2032
La prévision du prix de SIX pour 2027-2032 se situe actuellement dans une fourchette de prix comprise entre $0.0073073 à la baisse et $0.045515 à la hausse. Compte tenu de la volatilité des prix sur le marché, si SIX Network atteint l'objectif de prix le plus élevé, il pourrait gagner 275.71% d'ici 2032 par rapport au prix actuel.
| Prévision du Prix de SIX Network | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2027 | $0.004029 | $0.0073073 | $0.010585 |
| 2028 | $0.007271 | $0.012541 | $0.017811 |
| 2029 | $0.015974 | $0.034261 | $0.052548 |
| 2030 | $0.013585 | $0.026432 | $0.039279 |
| 2031 | $0.016062 | $0.025959 | $0.035857 |
| 2032 | $0.024517 | $0.045515 | $0.066514 |
Prévision du prix de SIX Network de 2032 à 2037
La prévision du prix de SIX Network pour 2032-2037 est actuellement estimée entre $0.045515 à la baisse et $0.415069 à la hausse. Par rapport au prix actuel, SIX Network pourrait potentiellement gagner 3326.16% d'ici 2037 s'il atteint l'objectif de prix le plus élevé. Veuillez noter que ces informations sont à titre général seulement et ne doivent pas être considérées comme un conseil en investissement à long terme.
| Prévision du Prix de SIX Network | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2032 | $0.024517 | $0.045515 | $0.066514 |
| 2033 | $0.056973 | $0.117071 | $0.177169 |
| 2034 | $0.0458041 | $0.0742055 | $0.1026069 |
| 2035 | $0.054154 | $0.087525 | $0.120896 |
| 2036 | $0.089643 | $0.169887 | $0.250131 |
| 2037 | $0.23280018 | $0.415069 | $0.597338 |
SIX Network Histogramme des prix potentiels
Prévision du prix de SIX Network basée sur l'analyse technique
Au 6 janvier 2026, le sentiment global de prévision du prix pour SIX Network est Baissier, avec 16 indicateurs techniques montrant des signaux haussiers et 18 indiquant des signaux baissiers. La prévision du prix de SIX a été mise à jour pour la dernière fois le 6 janvier 2026.
Moyennes Mobiles Simples sur 50 et 200 jours de SIX Network et Indice de Force Relative sur 14 jours - RSI (14)
Selon nos indicateurs techniques, le SMA sur 200 jours de SIX Network devrait augmenter au cours du prochain mois, atteignant $0.016786 d'ici le 4 févr. 2026. Le SMA à court terme sur 50 jours pour SIX Network devrait atteindre $0.011374 d'ici le 4 févr. 2026.
Le Relative Strength Index (RSI), un oscillateur de momentum, est un outil couramment utilisé pour identifier si une cryptomonnaie est survendue (en dessous de 30) ou surachetée (au-dessus de 70). Actuellement, le RSI est à 49.65, ce qui suggère que le marché de SIX est dans un état NEUTRAL.
Moyennes Mobiles et Oscillateurs Populaires de SIX pour le Samedi 19 Octobre 2024
Les moyennes mobiles (MA) sont des indicateurs largement utilisés sur les marchés financiers, conçus pour lisser les mouvements de prix sur une période donnée. En tant qu'indicateurs retardés, ils sont basés sur des données historiques de prix. Le tableau ci-dessous met en évidence deux types : la moyenne mobile simple (SMA) et la moyenne mobile exponentielle (EMA).
Moyenne Mobile Simple Quotidienne (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 3 | $0.012042 | BUY |
| SMA 5 | $0.011826 | BUY |
| SMA 10 | $0.011562 | BUY |
| SMA 21 | $0.011761 | BUY |
| SMA 50 | $0.012743 | SELL |
| SMA 100 | $0.01526 | SELL |
| SMA 200 | $0.018288 | SELL |
Moyenne Mobile Exponentielle Quotidienne (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 3 | $0.0120052 | BUY |
| EMA 5 | $0.011873 | BUY |
| EMA 10 | $0.011743 | BUY |
| EMA 21 | $0.01194 | BUY |
| EMA 50 | $0.013016 | SELL |
| EMA 100 | $0.014813 | SELL |
| EMA 200 | $0.017047 | SELL |
Moyenne Mobile Simple Hebdomadaire (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 21 | $0.016696 | SELL |
| SMA 50 | $0.018697 | SELL |
| SMA 100 | $0.024037 | SELL |
| SMA 200 | $0.038953 | SELL |
Moyenne Mobile Exponentielle Hebdomadaire (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 21 | $0.015566 | SELL |
| EMA 50 | $0.0189027 | SELL |
| EMA 100 | $0.024428 | SELL |
| EMA 200 | $0.029815 | SELL |
Oscillateurs de SIX Network
Un oscillateur est un outil d'analyse technique qui établit des limites hautes et basses entre deux extrêmes, créant un indicateur de tendance qui fluctue à l'intérieur de ces limites. Les traders utilisent cet indicateur pour identifier les conditions de surachat ou de survente à court terme.
| Période | Valeur | Action |
|---|---|---|
| RSI (14) | 49.65 | NEUTRAL |
| Stoch RSI (14) | 129.47 | SELL |
| Stochastique Rapide (14) | 98.19 | SELL |
| Indice de Canal des Matières Premières (20) | 61.03 | NEUTRAL |
| Indice Directionnel Moyen (14) | 28.59 | SELL |
| Oscillateur Impressionnant (5, 34) | -0.000564 | NEUTRAL |
| Momentum (10) | 0 | SELL |
| MACD (12, 26) | 0 | BUY |
| Plage de Pourcentage de Williams (14) | -1.81 | SELL |
| Oscillateur Ultime (7, 14, 28) | 66.57 | NEUTRAL |
| VWMA (10) | 0.011667 | BUY |
| Moyenne Mobile de Hull (9) | 0.012145 | BUY |
| Nuage Ichimoku B/L (9, 26, 52, 26) | -0.005745 | SELL |
Prévision du cours de SIX Network basée sur les flux monétaires mondiaux
Définitions des flux monétaires mondiaux utilisés pour la prédiction du cours de SIX Network
M0 : le total de toutes les devises physiques, plus les comptes à la banque centrale qui peuvent être échangés contre des devises physiques.
M1 : M0 plus le montant des comptes à vue, y compris les comptes de "chèques" et les comptes "courants".
M2 : M1 plus la plupart des comptes d'épargne, comptes du marché monétaire et comptes de certificats de dépôt (CD) de moins de 100 000 $.
Prédictions du cours de SIX Network par des sociétés Internet ou des niches technologiques
| Comparaison | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Action Facebook | $0.017023 | $0.02392 | $0.033612 | $0.04723 | $0.066367 | $0.093256 |
| Action Amazon.com | $0.025278 | $0.052744 | $0.110053 | $0.229633 | $0.479144 | $0.999764 |
| Action Apple | $0.017183 | $0.024373 | $0.034572 | $0.049038 | $0.069557 | $0.098661 |
| Action Netflix | $0.019115 | $0.03016 | $0.047588 | $0.075087 | $0.118476 | $0.186937 |
| Action Google | $0.015688 | $0.020316 | $0.0263098 | $0.034071 | $0.044121 | $0.057137 |
| Action Tesla | $0.027463 | $0.062256 | $0.141131 | $0.319934 | $0.725267 | $1.64 |
| Action Kodak | $0.009084 | $0.006812 | $0.0051087 | $0.00383 | $0.002872 | $0.002154 |
| Action Nokia | $0.008025 | $0.005316 | $0.003521 | $0.002333 | $0.001545 | $0.001023 |
Ce calcul montre la valeur potentielle des cryptomonnaies si l'on suppose que leur capitalisation se comportera comme celle de certaines sociétés Internet ou niches technologiques. En extrapolant les données, vous pourrez obtenir une potentielle image des cours futurs pour 2024, 2025, 2026, 2027, 2028, 2029 et 2030.
Aperçu des prévisions relatives à SIX Network
Vous vous posez peut-être des questions telles que : "Devrais-je investir dans SIX Network maintenant ?", "Devrais-je acheter SIX aujourd'hui ?", " SIX Network sera-t-il un bon ou un mauvais investissement à court ou à long terme ?".
Nous mettons régulièrement à jour les prévisions de SIX Network avec de nouvelles valeurs. Regardez nos prévisions similaires. Nous faisons une prévision des cours futurs pour une grande quantité de devises numériques comme SIX Network en utilisant des méthodes d'analyse technique.
Si vous souhaitez trouver des cryptomonnaies ayant un bon rendement, vous devriez consulter un maximum d'informations disponibles à propos de SIX Network afin de prendre une décision responsable concernant cet investissement.
Le cours de SIX Network est de $0.01211 USD actuellement, mais ce cours peut subir une hausse ou une baisse, ce qui pourrait causer la perte de votre investissement, car les cryptomonnaies sont des actifs à haut risque.
Prévision du cours de SIX Network basée sur le modèle de croissance du Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si SIX Network présente 1 % de la précédente croissance annuelle moyenne du Bitcoin | $0.012429 | $0.012752 | $0.013084 | $0.013424 |
| Si SIX Network présente 2 % de la précédente croissance annuelle moyenne du Bitcoin | $0.012744 | $0.013407 | $0.014104 | $0.014837 |
| Si SIX Network présente 5 % de la précédente croissance annuelle moyenne du Bitcoin | $0.013689 | $0.015468 | $0.017478 | $0.01975 |
| Si SIX Network présente 10 % de la précédente croissance annuelle moyenne du Bitcoin | $0.015263 | $0.019231 | $0.02423 | $0.030528 |
| Si SIX Network présente 20 % de la précédente croissance annuelle moyenne du Bitcoin | $0.018412 | $0.027984 | $0.042533 | $0.064644 |
| Si SIX Network présente 50 % de la précédente croissance annuelle moyenne du Bitcoin | $0.027859 | $0.064067 | $0.147334 | $0.338819 |
| Si SIX Network présente 100 % de la précédente croissance annuelle moyenne du Bitcoin | $0.0436047 | $0.156947 | $0.5649042 | $2.03 |
Boîte à questions
Est-ce que SIX est un bon investissement ?
La décision d'acquérir SIX Network dépend entièrement de votre tolérance individuelle au risque. Comme vous pouvez le discerner, la valeur de SIX Network a connu une hausse de 0.6119% au cours des 24 heures précédentes, et SIX Network a enregistré une déclin de sur une période de 30 jours précédents. Par conséquent, la détermination de si investir ou non dans SIX Network dépendra de la mesure dans laquelle cet investissement s'aligne avec vos aspirations de trading.
Est-ce que SIX Network peut monter ?
Il semble que la valeur moyenne de SIX Network pourrait potentiellement s'envoler jusqu'à $0.012494 pour la fin de cette année. En regardant les perspectives de SIX Network sur une période de cinq ans plus longue, la monnaie numérique pourrait potentiellement croître jusqu'à $0.039279. Cependant, compte tenu de l'imprévisibilité du marché, il est essentiel de mener des recherches approfondies avant d'investir des fonds dans un projet, un réseau ou un actif particulier.
Quel sera le prix de SIX Network la semaine prochaine ?
Basé sur notre nouveau pronostic expérimental de SIX Network, le prix de SIX Network va augmenter de 0.86% durant la prochaine semaine et atteindre $0.012218 d'ici 13 janvier 2026.
Quel sera le prix de SIX Network le mois prochain ?
Basé sur notre nouveau pronostic expérimental de SIX Network, le prix de SIX Network va diminuer de -11.62% durant le prochain mois et atteindre $0.010707 d'ici 5 février 2026.
Jusqu'où le prix de SIX Network peut-il monter cette année en 2026 ?
Selon notre prédiction la plus récente sur la valeur de SIX Network en 2026, SIX devrait fluctuer dans la fourchette de $0.004185 et $0.012494. Cependant, il est crucial de garder à l'esprit que le marché des cryptomonnaies est exceptionnellement instable, et cette prévision de prix de SIX Network ne prend pas en compte les fluctuations de prix soudaines et extrêmes.
Où sera SIX Network dans 5 ans ?
L'avenir de SIX Network semble suivre une tendance haussière, avec un prix maximum de $0.039279 prévue après une période de cinq ans. Selon la prévision de SIX Network pour 2030, la valeur de SIX Network pourrait potentiellement atteindre son point le plus élevé d'environ $0.039279, tandis que son point le plus bas devrait être autour de $0.013585.
Combien vaudra SIX Network en 2026 ?
Basé sur notre nouvelle simulation expérimentale de prédiction de prix de SIX Network, il est attendu que la valeur de SIX en 2026 augmente de 3.13% jusqu'à $0.012494 si le meilleur scénario se produit. Le prix sera entre $0.012494 et $0.004185 durant 2026.
Combien vaudra SIX Network en 2027 ?
Selon notre dernière simulation expérimentale pour la prédiction de prix de SIX Network, le valeur de SIX pourrait diminuer de -12.62% jusqu'à $0.010585 en 2027, en supposant les conditions les plus favorables. Il est prévu que le prix fluctue entre $0.010585 et $0.004029 tout au long de l'année.
Combien vaudra SIX Network en 2028 ?
Notre nouveau modèle expérimental de prédiction de prix de SIX Network suggère que la valeur de SIX en 2028 pourrait augmenter de 47.02%, atteignant $0.017811 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.017811 et $0.007271 durant l'année.
Combien vaudra SIX Network en 2029 ?
Basé sur notre modèle de prévision expérimental, la valeur de SIX Network pourrait connaître un 333.75% croissance en 2029, atteignant potentiellement $0.052548 sous des conditions optimales. Le range de prix prévu pour 2029 se situe entre $0.052548 et $0.015974.
Combien vaudra SIX Network en 2030 ?
En utilisant notre nouvelle simulation expérimentale pour les prédictions de prix de SIX Network, il est prévu que la valeur de SIX en 2030 augmente de 224.23%, atteignant $0.039279 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.039279 et $0.013585 au cours de 2030.
Combien vaudra SIX Network en 2031 ?
Notre simulation expérimentale indique que le prix de SIX Network pourrait augmenter de 195.98% en 2031, atteignant potentiellement $0.035857 dans des conditions idéales. Il est probable que le prix fluctue entre $0.035857 et $0.016062 durant l'année.
Combien vaudra SIX Network en 2032 ?
Basé sur les résultats de notre dernière prédiction expérimentale de prix de SIX Network, SIX pourrait connaître une 449.04% hausse en valeur, atteignant $0.066514 si le scénario le plus positif se réalise en 2032. Il est prévu que le prix reste dans une fourchette de $0.066514 et $0.024517 tout au long de l'année.
Combien vaudra SIX Network en 2033 ?
Selon notre prédiction expérimentale de prix de SIX Network, la valeur de SIX est anticipée à augmenter de 1362.43% en 2033, avec le prix potentiel le plus élevé étant $0.177169. Tout au long de l'année, le prix de SIX pourrait osciller entre $0.177169 et $0.056973.
Combien vaudra SIX Network en 2034 ?
Les résultats de notre nouvelle simulation de prédiction de prix de SIX Network suggèrent que SIX pourrait augmenter de 746.96% en 2034, atteignant potentiellement $0.1026069 dans les meilleures circonstances. La fourchette de prix prévue pour l'année est entre $0.1026069 et $0.0458041.
Combien vaudra SIX Network en 2035 ?
Basé sur notre prédiction expérimentale pour le prix de SIX Network, SIX pourrait augmenter de 897.93%, avec la valeur potentiellement atteignant $0.120896 en 2035. La fourchette de prix attendue pour l'année se situe entre $0.120896 et $0.054154.
Combien vaudra SIX Network en 2036 ?
Notre récente simulation de prédiction de prix de SIX Network suggère que la valeur de SIX pourrait augmenter de 1964.7% en 2036, pouvant atteindre $0.250131 si les conditions sont optimales. La fourchette de prix attendue pour 2036 est entre $0.250131 et $0.089643.
Combien vaudra SIX Network en 2037 ?
Selon la simulation expérimentale, la valeur de SIX Network pourrait augmenter de 4830.69% en 2037, avec un maximum de $0.597338 sous des conditions favorables. Il est prévu que le prix chute entre $0.597338 et $0.23280018 au cours de l'année.
Prévisions liées
Prévision du cours de MindAI
Prévision du cours de EML Protocol
Prévision du cours de OpenOcean
Prévision du cours de Unisocks
Prévision du cours de Argentine Football Association Fan Token
Prévision du cours de Trabzonspor Fan Token
Prévision du cours de Lithium Finance
Prévision du cours de Omax
Prévision du cours de Minted
Prévision du cours de PIZA (Ordinals)
Prévision du cours de DappRadar
Prévision du cours de FLO
Prévision du cours de Veloce
Prévision du cours de Orbofi AI
Prévision du cours de Rain Coin
Prévision du cours de Lynex
Prévision du cours de COS
Prévision du cours de ALVA
Prévision du cours de Panther Protocol
Prévision du cours de GemHUBPrévision du cours de DUST Protocol
Prévision du cours de RedFOX Labs
Prévision du cours de Matr1x Fire
Prévision du cours de Shyft Network
Prévision du cours de Celo Euro
Comment lire et prédire les mouvements de prix de SIX Network ?
Les traders de SIX Network utilisent des indicateurs et des modèles graphiques pour prédire la direction du marché. Ils identifient également des niveaux clés de support et de résistance pour évaluer quand une tendance baissière pourrait ralentir ou une tendance haussière pourrait s'arrêter.
Indicateurs de prédiction du prix de SIX Network
Les moyennes mobiles sont des outils populaires pour la prédiction du prix de SIX Network. Une moyenne mobile simple (SMA) calcule le prix de clôture moyen de SIX sur une période spécifique, comme une SMA de 12 jours. Une moyenne mobile exponentielle (EMA) donne plus de poids aux prix récents, réagissant plus rapidement aux changements de prix.
Les moyennes mobiles couramment utilisées sur le marché des cryptomonnaies incluent les moyennes sur 50 jours, 100 jours et 200 jours, qui aident à identifier les niveaux clés de résistance et de support. Un mouvement de prix de SIX au-dessus de ces moyennes est considéré comme haussier, tandis qu'une chute en dessous indique une faiblesse.
Les traders utilisent également le RSI et les niveaux de retracement de Fibonacci pour évaluer la direction future de SIX.
Comment lire les graphiques de SIX Network et prédire les mouvements de prix ?
La plupart des traders préfèrent les graphiques en chandeliers aux simples graphiques linéaires parce qu'ils fournissent des informations plus détaillées. Les chandeliers peuvent représenter l'action des prix de SIX Network dans différentes périodes, comme 5 minutes pour les tendances à court terme et hebdomadaire pour les tendances à long terme. Les options populaires incluent les graphiques de 1 heure, 4 heures et 1 jour.
Par exemple, un graphique en chandeliers de 1 heure montre les prix d'ouverture, de clôture, les plus hauts et les plus bas de SIX au sein de chaque heure. La couleur du chandelier est cruciale : le vert indique que le prix a clôturé plus haut qu'il n'a ouvert, tandis que le rouge signifie le contraire. Certains graphiques utilisent des chandeliers creux et pleins pour transmettre la même information.
Qu'est-ce qui affecte le prix de SIX Network ?
L'action du prix de SIX Network est déterminée par l'offre et la demande, influencée par des facteurs tels que les réductions de récompenses de bloc, les hard forks et les mises à jour de protocole. Les événements du monde réel, tels que les réglementations, l'adoption par les entreprises et les gouvernements et les piratages d'échanges de cryptomonnaies, impactent également le prix de SIX. La capitalisation boursière de SIX Network peut changer rapidement.
Les traders surveillent souvent l'activité des « baleines » de SIX, de grands détenteurs de SIX Network, car leurs actions peuvent influencer significativement les mouvements de prix sur le marché relativement petit de SIX Network.
Modèles de prédiction de prix haussiers et baissiers
Les traders identifient souvent des modèles de chandeliers pour obtenir un avantage dans les prédictions de prix des cryptomonnaies. Certaines formations indiquent des tendances haussières, tandis que d'autres suggèrent des mouvements baissiers.
Modèles de chandeliers haussiers couramment suivis :
- Marteau
- Englobante haussière
- Ligne pénétrante
- Étoile du matin
- Trois soldats blancs
Modèles de chandeliers baissiers courants :
- Harami baissier
- Nuage sombre
- Étoile du soir
- Étoile filante
- Pendu


