Predicción del precio de SIX Network - Pronóstico de SIX
Predicción de precio de SIX Network hasta $0.012522 para el año 2026
| Año | Precio min. | Precio max. |
|---|---|---|
| 2026 | $0.004195 | $0.012522 |
| 2027 | $0.004038 | $0.0106092 |
| 2028 | $0.007288 | $0.017851 |
| 2029 | $0.01601 | $0.052666 |
| 2030 | $0.013616 | $0.039368 |
| 2031 | $0.016098 | $0.035938 |
| 2032 | $0.024573 | $0.066664 |
| 2033 | $0.0571026 | $0.17757 |
| 2034 | $0.0459078 | $0.102839 |
| 2035 | $0.054277 | $0.12117 |
Calculadora de ganancias de inversión
Si abres una posición corta de $10,000.00 en SIX Network hoy y la cierras el Apr 06, 2026, nuestra previsión indica que podrías obtener una ganancia de alrededor de $3,954.93, equivalente a un ROI del 39.55% en los próximos 90 días.
Predicción del precio a largo plazo de SIX Network para 2027, 2028, 2029, 2030, 2031, 2032 y 2037
[
'name' => 'SIX Network'
'name_with_ticker' => 'SIX Network <small>SIX</small>'
'name_lang' => 'SIX Network'
'name_lang_with_ticker' => 'SIX Network <small>SIX</small>'
'name_with_lang' => 'SIX Network'
'name_with_lang_with_ticker' => 'SIX Network <small>SIX</small>'
'image' => '/uploads/coins/six-network.png?1717202684'
'price_for_sd' => 0.01214
'ticker' => 'SIX'
'marketcap' => '$3.32M'
'low24h' => '$0.012'
'high24h' => '$0.01228'
'volume24h' => '$386.85K'
'current_supply' => '273.78M'
'max_supply' => '1000M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '0.1 USD 0.12x'
'price' => '$0.01214'
'change_24h_pct' => '0.658%'
'ath_price' => '$0.5671'
'ath_days' => 1499
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '29 nov. 2021'
'ath_pct' => '-97.86%'
'fdv' => '$12.14M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.59869'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.012246'
'next_week_prediction_price_date' => '13 de enero de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.010731'
'next_month_prediction_price_date' => '5 de febrero de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.004195'
'current_year_max_price_prediction' => '$0.012522'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.013616'
'grand_prediction_max_price' => '$0.039368'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.01237221697674
107 => 0.012418410343816
108 => 0.012522486358531
109 => 0.011633168207868
110 => 0.012032445948507
111 => 0.012266984213867
112 => 0.011207331798395
113 => 0.012246038292655
114 => 0.01161768715742
115 => 0.011404415344603
116 => 0.011691557744136
117 => 0.011579658071783
118 => 0.011483453304463
119 => 0.011429769391291
120 => 0.011640615078757
121 => 0.011630778875422
122 => 0.011285794407342
123 => 0.010835776232099
124 => 0.010986817103053
125 => 0.01093194253862
126 => 0.010733070038153
127 => 0.01086708609151
128 => 0.010276947216496
129 => 0.0092616439547836
130 => 0.0099323843890508
131 => 0.0099065616119567
201 => 0.0098935405967762
202 => 0.010397583495224
203 => 0.010349131400786
204 => 0.010261190374938
205 => 0.010731454932249
206 => 0.010559802042879
207 => 0.011088795801409
208 => 0.011437225303947
209 => 0.01134885231159
210 => 0.011676551942833
211 => 0.010990296779661
212 => 0.011218243217088
213 => 0.011265222661922
214 => 0.010725651940609
215 => 0.010357058762654
216 => 0.010332477799954
217 => 0.0096933880246481
218 => 0.010034784624064
219 => 0.010335199503599
220 => 0.010191324089438
221 => 0.01014577743147
222 => 0.010378465429162
223 => 0.01039654727942
224 => 0.0099842791772969
225 => 0.010070002770561
226 => 0.010427484404835
227 => 0.010060995150581
228 => 0.0093489663952447
301 => 0.0091723734193535
302 => 0.0091488126611154
303 => 0.0086698785047331
304 => 0.0091841742064148
305 => 0.0089596703503628
306 => 0.0096688753416617
307 => 0.0092637812541744
308 => 0.0092463184577142
309 => 0.0092199208796292
310 => 0.0088076824667101
311 => 0.0088979364800215
312 => 0.009197954566343
313 => 0.0093050043994881
314 => 0.0092938382248577
315 => 0.0091964843140457
316 => 0.0092410524358827
317 => 0.0090974829868827
318 => 0.0090467856263011
319 => 0.0088867708108979
320 => 0.0086515932374762
321 => 0.0086842961214884
322 => 0.0082183478109806
323 => 0.0079644744416674
324 => 0.0078942056390388
325 => 0.0078002392594283
326 => 0.0079048193916508
327 => 0.0082170278379603
328 => 0.0078404382129942
329 => 0.0071948017156806
330 => 0.0072336055692802
331 => 0.007320786307351
401 => 0.0071583255787143
402 => 0.0070045701333552
403 => 0.0071382480185214
404 => 0.0068646833233341
405 => 0.0073538452937936
406 => 0.0073406148333532
407 => 0.0075229441663672
408 => 0.0076369584400754
409 => 0.0073741924517374
410 => 0.0073081075162652
411 => 0.007345752498903
412 => 0.0067235647911348
413 => 0.0074720981566672
414 => 0.0074785715042959
415 => 0.0074231427718161
416 => 0.0078217136805872
417 => 0.0086628226154782
418 => 0.0083463636006437
419 => 0.0082238211050754
420 => 0.0079908677314221
421 => 0.0083012642704125
422 => 0.0082774306591583
423 => 0.0081696460304384
424 => 0.0081044575506801
425 => 0.0082245693234227
426 => 0.0080895743728191
427 => 0.0080653255702775
428 => 0.007918404209833
429 => 0.0078659599686503
430 => 0.007827132340344
501 => 0.0077843869367028
502 => 0.0078786726456445
503 => 0.0076650088248646
504 => 0.0074073512027267
505 => 0.00738592975934
506 => 0.0074450762479231
507 => 0.0074189083296633
508 => 0.0073858044774149
509 => 0.007322600208175
510 => 0.007303848851637
511 => 0.0073647816635204
512 => 0.0072959920715077
513 => 0.0073974948616855
514 => 0.0073698917191627
515 => 0.0072157028088791
516 => 0.0070235263386197
517 => 0.0070218155649306
518 => 0.0069804114596458
519 => 0.0069276771064167
520 => 0.0069130076157469
521 => 0.0071269900398906
522 => 0.0075699272539131
523 => 0.0074829680802113
524 => 0.0075458049951455
525 => 0.007854900424641
526 => 0.0079531525668537
527 => 0.0078834155235406
528 => 0.0077879551574602
529 => 0.0077921549290982
530 => 0.0081183718978131
531 => 0.008138717650006
601 => 0.0081901248020089
602 => 0.0082561975199922
603 => 0.0078946679931197
604 => 0.0077751269208943
605 => 0.0077184817289877
606 => 0.0075440364623635
607 => 0.0077321607266108
608 => 0.0076225487741181
609 => 0.0076373391713869
610 => 0.0076277069057625
611 => 0.0076329667741244
612 => 0.0073537085630537
613 => 0.0074554555777884
614 => 0.0072862814316339
615 => 0.0070597762406222
616 => 0.0070590169157989
617 => 0.0071144537404094
618 => 0.0070814777478879
619 => 0.006992740199903
620 => 0.0070053449497648
621 => 0.006894914077634
622 => 0.007018753257057
623 => 0.0070223045216049
624 => 0.0069746196919614
625 => 0.0071654110343762
626 => 0.0072435784030344
627 => 0.007212191226655
628 => 0.0072413761950678
629 => 0.0074865816264757
630 => 0.0075265608108583
701 => 0.0075443169236843
702 => 0.0075205260847316
703 => 0.007245858100224
704 => 0.0072580407933154
705 => 0.0071686522747548
706 => 0.0070931283961011
707 => 0.0070961489551767
708 => 0.0071349780462217
709 => 0.0073045469641112
710 => 0.0076613947551759
711 => 0.0076749368679945
712 => 0.0076913503037819
713 => 0.0076245886117026
714 => 0.0076044526465482
715 => 0.0076310171821205
716 => 0.0077650304502789
717 => 0.0081097489602298
718 => 0.007987902415838
719 => 0.007888839278593
720 => 0.0079757443571869
721 => 0.0079623660015219
722 => 0.0078494392162079
723 => 0.0078462697374585
724 => 0.0076295271315639
725 => 0.007549402325155
726 => 0.0074824440396819
727 => 0.0074093273399356
728 => 0.007365981309432
729 => 0.007432580512704
730 => 0.007447812538471
731 => 0.0073021922165618
801 => 0.0072823447047711
802 => 0.0074012614030751
803 => 0.0073489305978129
804 => 0.0074027541287666
805 => 0.0074152416496376
806 => 0.0074132308711654
807 => 0.0073585915003169
808 => 0.0073934170059262
809 => 0.0073110443031773
810 => 0.0072214763609177
811 => 0.0071643375940361
812 => 0.0071144764415743
813 => 0.0071421423069073
814 => 0.0070435185485825
815 => 0.0070119668233904
816 => 0.0073816189082245
817 => 0.007654684877721
818 => 0.0076507143903786
819 => 0.0076265450698077
820 => 0.007590634362007
821 => 0.0077624033583293
822 => 0.0077025624746401
823 => 0.0077461017173971
824 => 0.0077571842820151
825 => 0.0077907278672586
826 => 0.0078027168158146
827 => 0.0077664778864182
828 => 0.0076448556131515
829 => 0.0073417844716697
830 => 0.0072007040371849
831 => 0.0071541451439245
901 => 0.0071558374712666
902 => 0.0071091555282898
903 => 0.0071229054526344
904 => 0.0071043738657333
905 => 0.0070692795234152
906 => 0.0071399753301624
907 => 0.007148122363313
908 => 0.0071316211172662
909 => 0.0071355077580641
910 => 0.0069988844885711
911 => 0.0070092716590205
912 => 0.0069514345740204
913 => 0.0069405908178193
914 => 0.0067943837033902
915 => 0.0065353566071188
916 => 0.0066788827628217
917 => 0.0065055233495641
918 => 0.0064398695129396
919 => 0.0067506645642533
920 => 0.0067194693612143
921 => 0.0066660767338403
922 => 0.0065870979099555
923 => 0.0065578038959201
924 => 0.0063798227399985
925 => 0.0063693066638142
926 => 0.0064575189305843
927 => 0.0064168120046687
928 => 0.0063596440637647
929 => 0.0061525875768316
930 => 0.0059197875314719
1001 => 0.0059268143015124
1002 => 0.0060008636645425
1003 => 0.0062161721744696
1004 => 0.006132047414766
1005 => 0.0060710139363807
1006 => 0.0060595842005388
1007 => 0.0062026512743735
1008 => 0.0064051211573283
1009 => 0.0065001154964024
1010 => 0.006405978991401
1011 => 0.0062978400431247
1012 => 0.0063044219598386
1013 => 0.0063482085029858
1014 => 0.0063528098495622
1015 => 0.0062824225110978
1016 => 0.0063022361345794
1017 => 0.0062721374287152
1018 => 0.0060874217263849
1019 => 0.0060840808050695
1020 => 0.0060387485927746
1021 => 0.0060373759514025
1022 => 0.0059602545496384
1023 => 0.0059494647324166
1024 => 0.0057963355082797
1025 => 0.0058971256273246
1026 => 0.005829520907188
1027 => 0.0057276246476009
1028 => 0.005710057694041
1029 => 0.0057095296102043
1030 => 0.0058141542852136
1031 => 0.0058959030270816
1101 => 0.0058306969202389
1102 => 0.0058158507536781
1103 => 0.0059743689718086
1104 => 0.0059541960836259
1105 => 0.0059367264925608
1106 => 0.0063869922000188
1107 => 0.0060305717578945
1108 => 0.0058751521013607
1109 => 0.0056827907630078
1110 => 0.0057454245847455
1111 => 0.005758622451268
1112 => 0.0052960281082667
1113 => 0.0051083536409235
1114 => 0.0050439508360944
1115 => 0.0050068861113933
1116 => 0.0050237769718691
1117 => 0.0048548479392408
1118 => 0.0049683710429954
1119 => 0.0048220927799549
1120 => 0.0047975687531255
1121 => 0.0050591324078414
1122 => 0.0050955274623624
1123 => 0.0049402548527187
1124 => 0.0050399650044621
1125 => 0.0050038087173651
1126 => 0.0048246003009307
1127 => 0.0048177558575908
1128 => 0.0047278353737044
1129 => 0.0045871272284589
1130 => 0.0045228198303781
1201 => 0.0044893279791153
1202 => 0.0045031473696895
1203 => 0.0044961598629348
1204 => 0.004450561654829
1205 => 0.0044987734988481
1206 => 0.0043756121598885
1207 => 0.0043265683223365
1208 => 0.0043044163587226
1209 => 0.0041951035814938
1210 => 0.0043690688216775
1211 => 0.0044033421655501
1212 => 0.0044376830384976
1213 => 0.0047365968919962
1214 => 0.0047216640005972
1215 => 0.0048566500662311
1216 => 0.004851404755944
1217 => 0.004812904543396
1218 => 0.0046504784796331
1219 => 0.0047152186136828
1220 => 0.0045159585439286
1221 => 0.0046652577365561
1222 => 0.0045971238199243
1223 => 0.0046422215908063
1224 => 0.0045611317324583
1225 => 0.0046060102081863
1226 => 0.0044114696468395
1227 => 0.0042298104079134
1228 => 0.004302915388621
1229 => 0.0043823888632188
1230 => 0.0045547076056116
1231 => 0.0044520759842412
]
'min_raw' => 0.0041951035814938
'max_raw' => 0.012522486358531
'avg_raw' => 0.0083587949700124
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.004195'
'max' => '$0.012522'
'avg' => '$0.008358'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0079470264185062
'max_diff' => 0.00038035635853089
'year' => 2026
]
1 => [
'items' => [
101 => 0.0044889861962173
102 => 0.0043653431647923
103 => 0.0041102322740768
104 => 0.0041116761740133
105 => 0.0040724329213696
106 => 0.0040385210214767
107 => 0.004463864460553
108 => 0.0044109662802191
109 => 0.0043266799529998
110 => 0.0044395005513884
111 => 0.004469332108306
112 => 0.0044701813707932
113 => 0.0045524923670563
114 => 0.0045964217605171
115 => 0.0046041645065154
116 => 0.0047336826375823
117 => 0.0047770954067304
118 => 0.0049559064588467
119 => 0.0045926946583995
120 => 0.0045852145503875
121 => 0.0044410881685739
122 => 0.0043496809386797
123 => 0.004447346899807
124 => 0.0045338656086326
125 => 0.004443776546027
126 => 0.0044555402757194
127 => 0.0043346030697183
128 => 0.0043778324302393
129 => 0.0044150673791436
130 => 0.0043945084289278
131 => 0.0043637306853902
201 => 0.0045267720611552
202 => 0.0045175726277703
203 => 0.0046694005051877
204 => 0.0047877611929503
205 => 0.0049998847049245
206 => 0.0047785227619306
207 => 0.0047704554528939
208 => 0.004849314692765
209 => 0.0047770833337917
210 => 0.0048227310593211
211 => 0.0049925301506307
212 => 0.0049961177378641
213 => 0.0049360210293585
214 => 0.0049323641391843
215 => 0.0049439063694388
216 => 0.0050115095725542
217 => 0.0049878869361491
218 => 0.0050152236490491
219 => 0.0050494086271251
220 => 0.005190812190578
221 => 0.005224904111007
222 => 0.0051420784189987
223 => 0.0051495566516271
224 => 0.0051185775691999
225 => 0.005088652163742
226 => 0.0051559201049568
227 => 0.0052788535896817
228 => 0.0052780888268535
301 => 0.0053066070058241
302 => 0.0053243735950655
303 => 0.0052481063881033
304 => 0.0051984592407938
305 => 0.0052174971162023
306 => 0.0052479390935715
307 => 0.0052076251932282
308 => 0.004958789125094
309 => 0.0050342700924563
310 => 0.0050217063686565
311 => 0.0050038140981645
312 => 0.0050797107945244
313 => 0.0050723903730093
314 => 0.0048531153278452
315 => 0.0048671526048005
316 => 0.0048539689811498
317 => 0.0048965679662808
318 => 0.0047747828487967
319 => 0.0048122431306995
320 => 0.0048357378683406
321 => 0.0048495764493063
322 => 0.0048995708929583
323 => 0.0048937046220294
324 => 0.0048992062373207
325 => 0.0049733347992127
326 => 0.0053482516274119
327 => 0.0053686575231635
328 => 0.0052681714293772
329 => 0.0053083136418443
330 => 0.0052312493720443
331 => 0.0052829831326468
401 => 0.0053183780577559
402 => 0.0051584351972404
403 => 0.0051489644190613
404 => 0.0050715820776066
405 => 0.0051131629647445
406 => 0.0050470047835365
407 => 0.00506323768709
408 => 0.0050178490735954
409 => 0.005099539541103
410 => 0.0051908821771918
411 => 0.0052139589342978
412 => 0.0051532539215204
413 => 0.0051092994916143
414 => 0.0050321299921885
415 => 0.0051604645895681
416 => 0.0051979935367679
417 => 0.005160267465985
418 => 0.0051515255110537
419 => 0.0051349595222552
420 => 0.0051550400638898
421 => 0.0051977891460617
422 => 0.005177629468361
423 => 0.0051909452906501
424 => 0.0051401991073003
425 => 0.0052481316357223
426 => 0.0054195544662338
427 => 0.0054201056186643
428 => 0.0053999458322955
429 => 0.005391696882062
430 => 0.0054123820462746
501 => 0.0054236028993101
502 => 0.0054904949273631
503 => 0.00556227273856
504 => 0.0058972284643033
505 => 0.0058031742368616
506 => 0.0061003668833464
507 => 0.0063354076810805
508 => 0.0064058861392326
509 => 0.0063410492740004
510 => 0.0061192458604598
511 => 0.0061083631268224
512 => 0.0064398310696378
513 => 0.0063461761935989
514 => 0.0063350362441014
515 => 0.0062165260026899
516 => 0.0062865802331431
517 => 0.0062712583453094
518 => 0.0062470719957916
519 => 0.0063807305874762
520 => 0.006630927539325
521 => 0.0065919319980472
522 => 0.0065628236354344
523 => 0.0064352792637822
524 => 0.0065120894635836
525 => 0.0064847388226368
526 => 0.0066022545332899
527 => 0.0065326408295907
528 => 0.0063454666658008
529 => 0.0063752747683185
530 => 0.0063707693335885
531 => 0.0064634908610726
601 => 0.0064356581600117
602 => 0.0063653345520075
603 => 0.0066300723933435
604 => 0.0066128817904764
605 => 0.006637254135023
606 => 0.0066479835948322
607 => 0.0068091248536494
608 => 0.0068751392714417
609 => 0.0068901257000256
610 => 0.0069528342911899
611 => 0.0068885654531512
612 => 0.007145686628211
613 => 0.0073166572061893
614 => 0.0075152483305766
615 => 0.0078054433395684
616 => 0.0079145593474033
617 => 0.0078948485172474
618 => 0.0081148710611152
619 => 0.0085102466816192
620 => 0.0079747652343729
621 => 0.0085386284985738
622 => 0.0083601158992423
623 => 0.0079368657375316
624 => 0.0079096134169091
625 => 0.0081962433404549
626 => 0.0088319609237719
627 => 0.0086727208794001
628 => 0.0088322213834383
629 => 0.0086461555731097
630 => 0.0086369158373411
701 => 0.0088231845823373
702 => 0.0092584116580016
703 => 0.0090516515885965
704 => 0.0087552103294552
705 => 0.0089740979420683
706 => 0.0087844772349306
707 => 0.0083572087102553
708 => 0.0086725991115393
709 => 0.0084617065320022
710 => 0.0085232561983773
711 => 0.0089665210326605
712 => 0.0089131862350662
713 => 0.0089822064018225
714 => 0.00886038761407
715 => 0.0087465896572496
716 => 0.008534177320097
717 => 0.0084712924988678
718 => 0.0084886716010967
719 => 0.0084712838866478
720 => 0.0083524411361811
721 => 0.0083267770555329
722 => 0.0082840024634168
723 => 0.0082972600981192
724 => 0.0082168313507926
725 => 0.0083686170144251
726 => 0.0083967897711259
727 => 0.0085072467192437
728 => 0.0085187147260242
729 => 0.008826335754276
730 => 0.0086569032612763
731 => 0.0087705732056781
801 => 0.0087604054959478
802 => 0.0079460388519426
803 => 0.0080582513902688
804 => 0.00823281888567
805 => 0.0081541764656124
806 => 0.0080429944831432
807 => 0.0079532090710986
808 => 0.0078171749908212
809 => 0.0080086403465085
810 => 0.0082603969291666
811 => 0.008525099688422
812 => 0.0088431227096555
813 => 0.0087721436735123
814 => 0.0085191544692523
815 => 0.0085305033801466
816 => 0.0086006578816638
817 => 0.0085098014279905
818 => 0.0084830060860735
819 => 0.0085969766131549
820 => 0.0085977614655378
821 => 0.0084932201352174
822 => 0.0083770415774278
823 => 0.0083765547850286
824 => 0.0083558819328217
825 => 0.0086498332275923
826 => 0.0088114767178881
827 => 0.008830008883549
828 => 0.0088102293554825
829 => 0.0088178417108139
830 => 0.0087237849253821
831 => 0.008938770845206
901 => 0.0091360631851403
902 => 0.0090831846235019
903 => 0.0090039121424753
904 => 0.0089407677930577
905 => 0.0090683098215354
906 => 0.009062630575777
907 => 0.0091343400086651
908 => 0.0091310868545755
909 => 0.0091069736694235
910 => 0.0090831854846596
911 => 0.0091775029483537
912 => 0.0091503410335019
913 => 0.0091231369286941
914 => 0.0090685749317619
915 => 0.0090759908133238
916 => 0.0089967320198087
917 => 0.0089600632752931
918 => 0.0084086533383976
919 => 0.0082612985854196
920 => 0.0083076593903891
921 => 0.0083229225711428
922 => 0.0082587935938065
923 => 0.0083507380739241
924 => 0.008336408624091
925 => 0.0083921561309436
926 => 0.0083573275089375
927 => 0.0083587568877333
928 => 0.008461180438808
929 => 0.008490914431426
930 => 0.0084757914827977
1001 => 0.0084863830776326
1002 => 0.0087304619101693
1003 => 0.0086957617053842
1004 => 0.0086773279131929
1005 => 0.0086824341996087
1006 => 0.008744801574431
1007 => 0.0087622610342488
1008 => 0.0086882840761462
1009 => 0.0087231720372431
1010 => 0.0088717205476522
1011 => 0.0089237041191778
1012 => 0.0090896107259577
1013 => 0.0090191306506428
1014 => 0.0091484998791895
1015 => 0.009546136782522
1016 => 0.0098637966552848
1017 => 0.0095716635084427
1018 => 0.010155005411031
1019 => 0.010609220757622
1020 => 0.010591787216084
1021 => 0.010512584264216
1022 => 0.0099954721680619
1023 => 0.0095196179074742
1024 => 0.009917690202295
1025 => 0.0099187049704388
1026 => 0.0098845102072809
1027 => 0.0096721294700978
1028 => 0.0098771198179888
1029 => 0.0098933912073888
1030 => 0.0098842835562365
1031 => 0.0097214517429912
1101 => 0.0094728376605151
1102 => 0.0095214162571329
1103 => 0.0096009889893694
1104 => 0.0094503412066348
1105 => 0.00940220011198
1106 => 0.0094917035661612
1107 => 0.0097801023443182
1108 => 0.009725582225888
1109 => 0.0097241584852627
1110 => 0.0099574186720355
1111 => 0.0097904547190051
1112 => 0.0095220289888065
1113 => 0.0094542479518309
1114 => 0.0092136709333452
1115 => 0.0093798383369192
1116 => 0.0093858184059517
1117 => 0.0092948102172039
1118 => 0.0095294138017486
1119 => 0.0095272518884159
1120 => 0.0097499730758056
1121 => 0.010175732335837
1122 => 0.010049814372305
1123 => 0.0099033854805526
1124 => 0.0099193063611189
1125 => 0.010093919124849
1126 => 0.0099883442618761
1127 => 0.010026309718695
1128 => 0.010093861659583
1129 => 0.010134617422741
1130 => 0.009913442233996
1201 => 0.0098618757174674
1202 => 0.0097563887220377
1203 => 0.0097288691339381
1204 => 0.0098147860906572
1205 => 0.0097921500080526
1206 => 0.0093853158043055
1207 => 0.0093427993664098
1208 => 0.0093441032848606
1209 => 0.0092371936802254
1210 => 0.0090741308719116
1211 => 0.0095026501961858
1212 => 0.0094682340973225
1213 => 0.0094302413877719
1214 => 0.0094348952779084
1215 => 0.0096209009927084
1216 => 0.0095130082846107
1217 => 0.0097998587323556
1218 => 0.009740890903813
1219 => 0.0096804107729742
1220 => 0.0096720505766225
1221 => 0.0096487708861719
1222 => 0.0095689361656253
1223 => 0.0094725309432425
1224 => 0.009408875864948
1225 => 0.0086791906341181
1226 => 0.0088146159685764
1227 => 0.008970410471463
1228 => 0.0090241901095522
1229 => 0.008932196317163
1230 => 0.0095725686412576
1231 => 0.009689570835651
]
'min_raw' => 0.0040385210214767
'max_raw' => 0.010609220757622
'avg_raw' => 0.0073238708895491
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.004038'
'max' => '$0.0106092'
'avg' => '$0.007323'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00015658256001713
'max_diff' => -0.0019132656009093
'year' => 2027
]
2 => [
'items' => [
101 => 0.0093351635569692
102 => 0.0092688684254817
103 => 0.009576914939041
104 => 0.00939112523421
105 => 0.0094747863269194
106 => 0.0092939568046528
107 => 0.0096613884332458
108 => 0.0096585892198523
109 => 0.0095156500175099
110 => 0.0096364612525243
111 => 0.009615467327422
112 => 0.0094540893200212
113 => 0.0096665044039252
114 => 0.0096666097591567
115 => 0.0095290338846684
116 => 0.0093683753824975
117 => 0.0093396534368938
118 => 0.0093180153091319
119 => 0.0094694646739313
120 => 0.0096052537008405
121 => 0.009857923414964
122 => 0.0099214505843789
123 => 0.010169401355849
124 => 0.010021758743942
125 => 0.010087206801509
126 => 0.01015825992619
127 => 0.010192325407054
128 => 0.01013681753404
129 => 0.010521987142742
130 => 0.010554507259008
131 => 0.010565410972694
201 => 0.010435533947772
202 => 0.010550895143999
203 => 0.010496921460646
204 => 0.01063734599041
205 => 0.010659366349707
206 => 0.01064071588878
207 => 0.010647705498388
208 => 0.010319031185936
209 => 0.010301987688941
210 => 0.010069598398052
211 => 0.010164298751824
212 => 0.0099872609795536
213 => 0.010043401480832
214 => 0.010068147678869
215 => 0.010055221669349
216 => 0.010169652967739
217 => 0.010072362987337
218 => 0.0098155987331035
219 => 0.0095587645236201
220 => 0.0095555401793327
221 => 0.0094879202654761
222 => 0.0094390434529627
223 => 0.0094484588610509
224 => 0.0094816399872245
225 => 0.0094371149055895
226 => 0.0094466165892353
227 => 0.0096044078471418
228 => 0.0096360517585992
229 => 0.0095285133833927
301 => 0.0090967312892248
302 => 0.0089907708802726
303 => 0.0090669331209412
304 => 0.0090305324753781
305 => 0.0072883445117921
306 => 0.0076976457315973
307 => 0.0074544528453452
308 => 0.0075665273160969
309 => 0.007318290353726
310 => 0.0074367620433833
311 => 0.007414884648197
312 => 0.0080730288975401
313 => 0.0080627528803345
314 => 0.0080676714659761
315 => 0.0078328945579944
316 => 0.0082069005472969
317 => 0.0083911493464477
318 => 0.0083570497973479
319 => 0.0083656319192104
320 => 0.008218162631683
321 => 0.0080690992910312
322 => 0.0079037651055648
323 => 0.0082109355862385
324 => 0.0081767834723625
325 => 0.0082551161340512
326 => 0.0084543381477675
327 => 0.0084836743460581
328 => 0.008523102494059
329 => 0.0085089703096873
330 => 0.0088456562760945
331 => 0.008804881384037
401 => 0.0089031371421584
402 => 0.0087010175930204
403 => 0.0084723001378071
404 => 0.0085157718487062
405 => 0.0085115851733692
406 => 0.0084582839910869
407 => 0.0084101660669793
408 => 0.0083300632804812
409 => 0.008583520349943
410 => 0.0085732304557898
411 => 0.0087398118814364
412 => 0.0087103669963678
413 => 0.0085137268474935
414 => 0.0085207498888798
415 => 0.0085679832173613
416 => 0.0087314583065366
417 => 0.0087799888432366
418 => 0.0087575075650296
419 => 0.008810719083018
420 => 0.0088527752972277
421 => 0.0088160006960139
422 => 0.0093366514984307
423 => 0.00912044098562
424 => 0.0092258204851809
425 => 0.0092509528748941
426 => 0.0091865767871209
427 => 0.009200537655424
428 => 0.0092216845667944
429 => 0.0093500844716453
430 => 0.0096870429747858
501 => 0.0098362796020727
502 => 0.010285265358471
503 => 0.0098238875776507
504 => 0.0097965113295079
505 => 0.0098773872223061
506 => 0.010140989391281
507 => 0.010354614190342
508 => 0.010425485860501
509 => 0.010434852721676
510 => 0.010567812686354
511 => 0.010644022858551
512 => 0.010551667849448
513 => 0.010473406649206
514 => 0.010193084744076
515 => 0.010225532767886
516 => 0.01044906747478
517 => 0.010764823414395
518 => 0.011035774859392
519 => 0.010940897106965
520 => 0.011664747384725
521 => 0.011736514183102
522 => 0.011726598332065
523 => 0.011890093779098
524 => 0.011565588612005
525 => 0.011426856366082
526 => 0.010490327609
527 => 0.010753453989229
528 => 0.011135923635761
529 => 0.011085302343855
530 => 0.0108075426631
531 => 0.011035564153767
601 => 0.010960173118061
602 => 0.010900709080223
603 => 0.01117312536523
604 => 0.010873592469621
605 => 0.011132935565996
606 => 0.010800325362334
607 => 0.010941330500547
608 => 0.010861289164446
609 => 0.0109130857184
610 => 0.01061028412236
611 => 0.01077366851349
612 => 0.010603486794531
613 => 0.010603406106238
614 => 0.01059964933536
615 => 0.010799867373014
616 => 0.010806396476034
617 => 0.010658435043695
618 => 0.010637111489703
619 => 0.010715955844938
620 => 0.010623649754327
621 => 0.010666839193156
622 => 0.010624957918431
623 => 0.010615529561336
624 => 0.010540402807898
625 => 0.010508036136864
626 => 0.010520727942563
627 => 0.010477404266639
628 => 0.010451300184809
629 => 0.010594456576454
630 => 0.01051797389131
701 => 0.010582734508039
702 => 0.010508931611835
703 => 0.010253098619199
704 => 0.01010596635975
705 => 0.0096227215523927
706 => 0.0097597691802959
707 => 0.0098506318993818
708 => 0.0098206017712659
709 => 0.0098851181065756
710 => 0.0098890788855837
711 => 0.0098681039673083
712 => 0.0098438176989989
713 => 0.0098319964867007
714 => 0.0099201021182336
715 => 0.0099712504028377
716 => 0.0098597511888284
717 => 0.0098336284830258
718 => 0.0099463603444295
719 => 0.010015126714763
720 => 0.010522858956817
721 => 0.010485244512372
722 => 0.010579649386467
723 => 0.010569020846405
724 => 0.010667972194332
725 => 0.010829715828234
726 => 0.010500845796281
727 => 0.010557926262358
728 => 0.010543931450256
729 => 0.010696723139145
730 => 0.01069720013812
731 => 0.01060559388812
801 => 0.010655255122387
802 => 0.010627535583804
803 => 0.010677628536543
804 => 0.010484742148534
805 => 0.01071965694833
806 => 0.010852838502239
807 => 0.010854687728244
808 => 0.010917814727803
809 => 0.010981955415424
810 => 0.011105067879836
811 => 0.010978521875611
812 => 0.010750877933016
813 => 0.010767313090386
814 => 0.010633845530134
815 => 0.010636089143935
816 => 0.010624112557631
817 => 0.010660055194683
818 => 0.010492629536138
819 => 0.010531924003553
820 => 0.010476911519063
821 => 0.01055780667596
822 => 0.010470776859588
823 => 0.010543924701534
824 => 0.010575492885229
825 => 0.010691980162677
826 => 0.010453571593996
827 => 0.0099674403836136
828 => 0.010069631057807
829 => 0.0099184830237707
830 => 0.0099324723497819
831 => 0.0099607330147093
901 => 0.0098691309533654
902 => 0.0098866057399571
903 => 0.0098859814176119
904 => 0.0098806013449268
905 => 0.0098567721109319
906 => 0.0098222150071688
907 => 0.0099598798724451
908 => 0.0099832718156315
909 => 0.010035269207686
910 => 0.010189978176273
911 => 0.010174519102022
912 => 0.010199733493516
913 => 0.010144690618458
914 => 0.009935025630889
915 => 0.0099464114484427
916 => 0.0098044301211027
917 => 0.010031638425928
918 => 0.0099778325003427
919 => 0.0099431434700892
920 => 0.009933678246793
921 => 0.010088770708989
922 => 0.010135176804454
923 => 0.010106259639957
924 => 0.010046949691926
925 => 0.010160842325558
926 => 0.010191315189574
927 => 0.010198136940031
928 => 0.010399932850082
929 => 0.01020941508973
930 => 0.01025527460823
1001 => 0.010613057480393
1002 => 0.010288597786003
1003 => 0.010460471322436
1004 => 0.010452059007214
1005 => 0.01053998369257
1006 => 0.010444846616686
1007 => 0.010446025954762
1008 => 0.010524097118824
1009 => 0.010414460249108
1010 => 0.010387312618339
1011 => 0.010349808360868
1012 => 0.010431697534991
1013 => 0.01048078639135
1014 => 0.010876406521805
1015 => 0.01113199516855
1016 => 0.011120899391327
1017 => 0.011222294024714
1018 => 0.011176614813705
1019 => 0.011029104591789
1020 => 0.011280886553644
1021 => 0.011201212205909
1022 => 0.011207780462332
1023 => 0.0112075359915
1024 => 0.011260512467492
1025 => 0.011222973779029
1026 => 0.011148981170801
1027 => 0.011198100917233
1028 => 0.011343969003505
1029 => 0.011796748019075
1030 => 0.012050129154711
1031 => 0.011781494156555
1101 => 0.011966794981117
1102 => 0.011855680515814
1103 => 0.0118354877121
1104 => 0.011951870323549
1105 => 0.012068456647352
1106 => 0.012061030602542
1107 => 0.011976394918235
1108 => 0.011928586367721
1109 => 0.012290608729254
1110 => 0.012557340638342
1111 => 0.012539151310335
1112 => 0.012619433088669
1113 => 0.012855142872879
1114 => 0.012876693221536
1115 => 0.012873978372934
1116 => 0.012820563585241
1117 => 0.013052650478579
1118 => 0.013246261448182
1119 => 0.012808199605192
1120 => 0.012975007820352
1121 => 0.013049893402363
1122 => 0.013159847654305
1123 => 0.013345358907804
1124 => 0.013546873333533
1125 => 0.013575369682825
1126 => 0.013555150159326
1127 => 0.013422245978559
1128 => 0.01364274546776
1129 => 0.013771908897184
1130 => 0.013848822763554
1201 => 0.01404386353142
1202 => 0.013050355870223
1203 => 0.012347101767093
1204 => 0.012237278483777
1205 => 0.012460608448988
1206 => 0.012519498779791
1207 => 0.012495760161286
1208 => 0.011704183731148
1209 => 0.012233110997693
1210 => 0.012802192263028
1211 => 0.012824052992086
1212 => 0.01310894697244
1213 => 0.013201720130643
1214 => 0.013431097126736
1215 => 0.013416749533178
1216 => 0.013472599181541
1217 => 0.013459760314564
1218 => 0.013884632898801
1219 => 0.014353330453405
1220 => 0.014337100947456
1221 => 0.014269720128604
1222 => 0.014369792134736
1223 => 0.014853538239769
1224 => 0.014809002650291
1225 => 0.014852265181936
1226 => 0.015422629102506
1227 => 0.016164183332569
1228 => 0.015819656941877
1229 => 0.016567180074879
1230 => 0.017037706262606
1231 => 0.017851432650962
]
'min_raw' => 0.0072883445117921
'max_raw' => 0.017851432650962
'avg_raw' => 0.012569888581377
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.007288'
'max' => '$0.017851'
'avg' => '$0.012569'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0032498234903154
'max_diff' => 0.0072422118933406
'year' => 2028
]
3 => [
'items' => [
101 => 0.017749550099453
102 => 0.01806632781104
103 => 0.017567159068721
104 => 0.01642096673771
105 => 0.01623957741388
106 => 0.016602723433698
107 => 0.01749548248815
108 => 0.016574607274013
109 => 0.016760899130483
110 => 0.016707247063287
111 => 0.016704388172633
112 => 0.016813500400957
113 => 0.016655227422861
114 => 0.016010394837336
115 => 0.01630591781126
116 => 0.016191802198849
117 => 0.016318421978701
118 => 0.017001736708595
119 => 0.016699626978321
120 => 0.016381378918878
121 => 0.016780532610317
122 => 0.017288792423609
123 => 0.017256986437924
124 => 0.017195269531824
125 => 0.017543164500116
126 => 0.018117785064073
127 => 0.018273102693498
128 => 0.018387754992211
129 => 0.018403563607137
130 => 0.018566402165874
131 => 0.017690778194944
201 => 0.019080415924429
202 => 0.019320367972343
203 => 0.019275266932329
204 => 0.01954196353486
205 => 0.019463494628955
206 => 0.019349805495694
207 => 0.0197725763387
208 => 0.019287903683041
209 => 0.018599971866924
210 => 0.018222558866854
211 => 0.018719566750385
212 => 0.019023072121672
213 => 0.019223669865526
214 => 0.019284370621612
215 => 0.017758750391225
216 => 0.016936525701824
217 => 0.017463562300905
218 => 0.018106583325907
219 => 0.017687206180683
220 => 0.01770364497079
221 => 0.017105723372075
222 => 0.018159486119987
223 => 0.018005961751156
224 => 0.018802446448232
225 => 0.018612358983086
226 => 0.019261861334193
227 => 0.019090825597952
228 => 0.019800785376608
301 => 0.020084007553708
302 => 0.02055958166907
303 => 0.020909415924265
304 => 0.021114845290179
305 => 0.021102512081595
306 => 0.021916525573849
307 => 0.021436530256932
308 => 0.020833543012675
309 => 0.020822636875826
310 => 0.021134932514023
311 => 0.021789418497558
312 => 0.021959117190705
313 => 0.022053955609452
314 => 0.021908707269791
315 => 0.021387706754852
316 => 0.021162741374035
317 => 0.021354418396366
318 => 0.021120013869049
319 => 0.021524661845492
320 => 0.022080329945293
321 => 0.021965586680034
322 => 0.022349156212523
323 => 0.022746110325958
324 => 0.023313772536495
325 => 0.0234621804588
326 => 0.023707493110922
327 => 0.023960000410964
328 => 0.024041098950475
329 => 0.024195941225801
330 => 0.024195125130577
331 => 0.024661752749358
401 => 0.025176457463127
402 => 0.025370746577134
403 => 0.025817503681627
404 => 0.025052447796418
405 => 0.025632751473678
406 => 0.026156199916509
407 => 0.02553212310372
408 => 0.026392267598902
409 => 0.026425665060521
410 => 0.026929927079669
411 => 0.026418760918349
412 => 0.026115232083457
413 => 0.026991508456712
414 => 0.027415510991284
415 => 0.027287797977224
416 => 0.026315895634258
417 => 0.0257502067838
418 => 0.024269689948921
419 => 0.026023426093403
420 => 0.026877619812196
421 => 0.026313683478885
422 => 0.026598100163189
423 => 0.028149785370335
424 => 0.028740566633039
425 => 0.028617688260269
426 => 0.028638452682517
427 => 0.028957227528434
428 => 0.030370850747743
429 => 0.029523774947203
430 => 0.030171332657391
501 => 0.030514794931932
502 => 0.030833821833886
503 => 0.030050392592175
504 => 0.02903116265957
505 => 0.028708329755553
506 => 0.026257611124507
507 => 0.02613004057683
508 => 0.026058431362635
509 => 0.025606945396463
510 => 0.025252201099465
511 => 0.024970095263682
512 => 0.024229765306652
513 => 0.024479604934536
514 => 0.023299673501901
515 => 0.024054551818298
516 => 0.022171352761372
517 => 0.023739736895542
518 => 0.022886136716989
519 => 0.023459306279384
520 => 0.023457306544777
521 => 0.022401919656833
522 => 0.021793194525229
523 => 0.022181097871023
524 => 0.022596961049521
525 => 0.022664433451101
526 => 0.023203610917162
527 => 0.023354083758359
528 => 0.022898144024627
529 => 0.022132327646727
530 => 0.022310209324901
531 => 0.021789589758698
601 => 0.020877223994269
602 => 0.02153250101466
603 => 0.021756241399918
604 => 0.021855057900257
605 => 0.020957850956857
606 => 0.020675929055931
607 => 0.020525836201431
608 => 0.022016509496976
609 => 0.022098171945111
610 => 0.021680375314547
611 => 0.023568855701797
612 => 0.023141434428224
613 => 0.023618968711559
614 => 0.022294068427074
615 => 0.022344681402157
616 => 0.021717452375013
617 => 0.022068658718755
618 => 0.021820437394907
619 => 0.022040284716869
620 => 0.022172060295189
621 => 0.022799186400221
622 => 0.023746897668295
623 => 0.022705514672942
624 => 0.022251769188987
625 => 0.022533270335271
626 => 0.023282944983613
627 => 0.024418740450989
628 => 0.023746326674288
629 => 0.024044732490062
630 => 0.024109920885657
701 => 0.023614107860829
702 => 0.024437021784435
703 => 0.024878028041436
704 => 0.025330409207732
705 => 0.025723199098995
706 => 0.025149718221838
707 => 0.025763424965651
708 => 0.025268885663962
709 => 0.024825232785814
710 => 0.024825905624098
711 => 0.024547595692901
712 => 0.024008335131899
713 => 0.023908887210709
714 => 0.024426227855628
715 => 0.024841086060511
716 => 0.024875255769302
717 => 0.02510494258771
718 => 0.025240868880881
719 => 0.026573131336795
720 => 0.027108978317616
721 => 0.0277642018627
722 => 0.028019448359886
723 => 0.028787648805482
724 => 0.028167264555473
725 => 0.028033040520584
726 => 0.02616963751602
727 => 0.026474769653627
728 => 0.026963315646809
729 => 0.026177693459505
730 => 0.026675989912049
731 => 0.026774364187143
801 => 0.026150998318202
802 => 0.026483964962853
803 => 0.025599704272391
804 => 0.023766172134942
805 => 0.024439063029847
806 => 0.024934537221123
807 => 0.024227434458645
808 => 0.025494888791732
809 => 0.02475446813591
810 => 0.024519790334474
811 => 0.023604228562396
812 => 0.024036338475612
813 => 0.024620773320456
814 => 0.024259660534186
815 => 0.025009023787054
816 => 0.026070322000995
817 => 0.026826666309651
818 => 0.026884729034105
819 => 0.026398450314772
820 => 0.027177715065892
821 => 0.027183391158861
822 => 0.026304377336208
823 => 0.025765986264203
824 => 0.025643662679859
825 => 0.025949250976502
826 => 0.026320291583338
827 => 0.026905319205473
828 => 0.027258839144978
829 => 0.028180631654721
830 => 0.028430042277995
831 => 0.028704068936397
901 => 0.029070253058714
902 => 0.029509950985237
903 => 0.028547916954021
904 => 0.028586140359537
905 => 0.027690307589937
906 => 0.026732981800204
907 => 0.027459472742267
908 => 0.028409263007974
909 => 0.028191380071596
910 => 0.028166863790309
911 => 0.028208093375184
912 => 0.028043816756546
913 => 0.027300799698824
914 => 0.026927661183969
915 => 0.02740910506592
916 => 0.027664971062575
917 => 0.028061796909527
918 => 0.028012879747912
919 => 0.029035060513676
920 => 0.02943224905011
921 => 0.029330631225835
922 => 0.029349331351071
923 => 0.030068422224087
924 => 0.030868199167199
925 => 0.031617295814286
926 => 0.032379309098152
927 => 0.031460672342567
928 => 0.030994245251719
929 => 0.031475478950332
930 => 0.031220129575993
1001 => 0.032687442822488
1002 => 0.032789036408091
1003 => 0.034256243551138
1004 => 0.035648797841666
1005 => 0.034774159441987
1006 => 0.035598904058305
1007 => 0.036490932603269
1008 => 0.03821180039292
1009 => 0.037632272662224
1010 => 0.037188363502869
1011 => 0.036768871492231
1012 => 0.037641767773886
1013 => 0.038764734895377
1014 => 0.039006611257701
1015 => 0.039398543368547
1016 => 0.038986474677171
1017 => 0.039482766028056
1018 => 0.041234892578152
1019 => 0.040761452517867
1020 => 0.040089091522975
1021 => 0.041472227158254
1022 => 0.041972778567857
1023 => 0.045485910501263
1024 => 0.04992138468743
1025 => 0.048085069249463
1026 => 0.046945208999588
1027 => 0.047213103196155
1028 => 0.048832788218667
1029 => 0.049352979641664
1030 => 0.04793892003322
1031 => 0.048438389792498
1101 => 0.051190517272902
1102 => 0.052666945367318
1103 => 0.050661757704354
1104 => 0.045129524469129
1105 => 0.040028552771846
1106 => 0.041381560165715
1107 => 0.041228171115958
1108 => 0.044184988758757
1109 => 0.040750161129007
1110 => 0.040807994817185
1111 => 0.043825956317513
1112 => 0.043020815930184
1113 => 0.041716591617301
1114 => 0.040038075052671
1115 => 0.036935181938963
1116 => 0.034186862977576
1117 => 0.039576949360913
1118 => 0.039344519034827
1119 => 0.039007925478411
1120 => 0.039756978014989
1121 => 0.043394164510338
1122 => 0.043310315589197
1123 => 0.042776911532989
1124 => 0.043181493808415
1125 => 0.041645666388292
1126 => 0.042041484084598
1127 => 0.040027744751868
1128 => 0.040938039031445
1129 => 0.041713793337683
1130 => 0.041869537499899
1201 => 0.042220437049865
1202 => 0.039222038814696
1203 => 0.04056823159394
1204 => 0.04135899373054
1205 => 0.037786301629207
1206 => 0.041288373094778
1207 => 0.039169843372256
1208 => 0.038450782565183
1209 => 0.039418903212848
1210 => 0.039041625654925
1211 => 0.038717264565104
1212 => 0.038536265503753
1213 => 0.039247146459822
1214 => 0.039213983013535
1215 => 0.038050843793358
1216 => 0.036533576096258
1217 => 0.037042820938019
1218 => 0.036857807512812
1219 => 0.036187294992652
1220 => 0.036639139473249
1221 => 0.034649445053958
1222 => 0.031226279220885
1223 => 0.033487727424618
1224 => 0.033400664128757
1225 => 0.033356762866977
1226 => 0.035056178690246
1227 => 0.034892819071032
1228 => 0.034596319762538
1229 => 0.036181849550334
1230 => 0.035603109849403
1231 => 0.037386649239449
]
'min_raw' => 0.016010394837336
'max_raw' => 0.052666945367318
'avg_raw' => 0.034338670102327
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.01601'
'max' => '$0.052666'
'avg' => '$0.034338'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.0087220503255436
'max_diff' => 0.034815512716356
'year' => 2029
]
4 => [
'items' => [
101 => 0.038561403633829
102 => 0.03826344792009
103 => 0.039368310106085
104 => 0.037054552910644
105 => 0.037823090239143
106 => 0.0379814847174
107 => 0.036162284358868
108 => 0.034919546725038
109 => 0.034836670293108
110 => 0.032681934495841
111 => 0.033832976966321
112 => 0.03484584670697
113 => 0.034360760703066
114 => 0.034207196965763
115 => 0.034991720795736
116 => 0.035052685016318
117 => 0.033662694326368
118 => 0.033951717406089
119 => 0.035156991694615
120 => 0.033921347586434
121 => 0.031520692925557
122 => 0.030925297378012
123 => 0.030845860636653
124 => 0.029231100690295
125 => 0.030965084555494
126 => 0.030208154130456
127 => 0.032599288273732
128 => 0.031233485275002
129 => 0.031174608237523
130 => 0.031085606959989
131 => 0.029695716369266
201 => 0.030000014076479
202 => 0.031011546001106
203 => 0.031372471987536
204 => 0.031334824450171
205 => 0.031006588942836
206 => 0.031156853477256
207 => 0.030672799056254
208 => 0.030501869365476
209 => 0.029962368243467
210 => 0.029169450635102
211 => 0.029279710691791
212 => 0.027708733431442
213 => 0.02685278164193
214 => 0.026615865467856
215 => 0.026299051258477
216 => 0.026651650475816
217 => 0.027704283050247
218 => 0.026434584837025
219 => 0.024257776309432
220 => 0.024388606211041
221 => 0.024682542156212
222 => 0.024134794466968
223 => 0.023616397248077
224 => 0.024067101571007
225 => 0.023144759101505
226 => 0.024794002837108
227 => 0.024749395416012
228 => 0.025364131492096
301 => 0.025748538576126
302 => 0.024862604700709
303 => 0.024639794726861
304 => 0.024766717414113
305 => 0.022668968117614
306 => 0.025192700620438
307 => 0.025214525963922
308 => 0.025027644122456
309 => 0.02637145376871
310 => 0.029207311267046
311 => 0.028140347604068
312 => 0.027727187024616
313 => 0.026941768461059
314 => 0.027988292063459
315 => 0.027907935379106
316 => 0.027544531978094
317 => 0.027324744467275
318 => 0.027729709695013
319 => 0.027274564794006
320 => 0.02719280826324
321 => 0.02669745263878
322 => 0.026520633218092
323 => 0.026389723158399
324 => 0.026245604045634
325 => 0.026563494896149
326 => 0.025843112406858
327 => 0.024974401744739
328 => 0.024902177852763
329 => 0.025101594368497
330 => 0.025013367405099
331 => 0.024901755456006
401 => 0.024688657849482
402 => 0.024625436341737
403 => 0.024830875571195
404 => 0.024598946658988
405 => 0.024941170402771
406 => 0.024848104480565
407 => 0.024328245804418
408 => 0.023680309417606
409 => 0.023674541424671
410 => 0.023534944592961
411 => 0.023357147039254
412 => 0.02330768782727
413 => 0.024029144510046
414 => 0.025522538252012
415 => 0.02522934932658
416 => 0.025441208372414
417 => 0.026483345193312
418 => 0.026814609150528
419 => 0.026579485840113
420 => 0.026257634551043
421 => 0.026271794374339
422 => 0.027371657660103
423 => 0.027440254784116
424 => 0.027613577586227
425 => 0.027836346367957
426 => 0.026617424326921
427 => 0.026214383255822
428 => 0.026023400036468
429 => 0.025435245640665
430 => 0.026069519731991
501 => 0.0256999553813
502 => 0.025749822238324
503 => 0.025717346382268
504 => 0.025735080395682
505 => 0.024793541839872
506 => 0.0251365890038
507 => 0.024566206558678
508 => 0.023802528493095
509 => 0.023799968376439
510 => 0.023986877501088
511 => 0.023875696639992
512 => 0.023576511801503
513 => 0.023619009595698
514 => 0.023246684200271
515 => 0.023664216639871
516 => 0.023676189976236
517 => 0.023515417243845
518 => 0.024158683575422
519 => 0.024422230316325
520 => 0.024316406259779
521 => 0.024414805418412
522 => 0.0252415326501
523 => 0.025376325261504
524 => 0.025436191235589
525 => 0.025355978761036
526 => 0.024429916474563
527 => 0.024470991274889
528 => 0.024169611643655
529 => 0.023914977613865
530 => 0.023925161639677
531 => 0.024056076631096
601 => 0.024627790076684
602 => 0.025830927318576
603 => 0.025876585497424
604 => 0.025931924542131
605 => 0.025706832836133
606 => 0.025638943023767
607 => 0.025728507210125
608 => 0.026180342300229
609 => 0.027342584824006
610 => 0.026931770692535
611 => 0.026597772408946
612 => 0.026890778948944
613 => 0.026845672888773
614 => 0.02646493234779
615 => 0.026454246228901
616 => 0.025723483400642
617 => 0.025453337021699
618 => 0.025227582487348
619 => 0.024981064429308
620 => 0.024834920261142
621 => 0.025059464124782
622 => 0.025110819963121
623 => 0.024619850880918
624 => 0.024552933609207
625 => 0.024953869560038
626 => 0.024777432596476
627 => 0.024958902388925
628 => 0.025001004937393
629 => 0.024994225457385
630 => 0.024810005003771
701 => 0.024927421627372
702 => 0.024649696308975
703 => 0.024347711738213
704 => 0.02415506439637
705 => 0.023986954039651
706 => 0.02408023143619
707 => 0.023747714549307
708 => 0.023641335704951
709 => 0.024887643517253
710 => 0.025808304498268
711 => 0.025794917722982
712 => 0.02571342917123
713 => 0.025592353712674
714 => 0.026171484876303
715 => 0.025969727158988
716 => 0.026116522755756
717 => 0.026153888396125
718 => 0.026266982935712
719 => 0.026307404512811
720 => 0.026185222432229
721 => 0.025775164446515
722 => 0.024753338933257
723 => 0.024277676398471
724 => 0.024120699839205
725 => 0.024126405638993
726 => 0.023969014209018
727 => 0.024015373038935
728 => 0.023952892499864
729 => 0.023834569474529
730 => 0.024072925322801
731 => 0.024100393613876
801 => 0.024044758510749
802 => 0.024057862591556
803 => 0.023597227699728
804 => 0.023632248770107
805 => 0.023437246999973
806 => 0.023400686518854
807 => 0.022907739024702
808 => 0.022034411084928
809 => 0.022518319539557
810 => 0.021933826174191
811 => 0.021712469680207
812 => 0.022760336894729
813 => 0.022655160089703
814 => 0.022475143118758
815 => 0.022208860499905
816 => 0.022110093686342
817 => 0.021510017792905
818 => 0.02147456210784
819 => 0.021771975924039
820 => 0.021634729681248
821 => 0.021441983977152
822 => 0.020743878575235
823 => 0.019958976968725
824 => 0.01998266821451
825 => 0.020232330811927
826 => 0.020958258485506
827 => 0.020674625984763
828 => 0.020468847351165
829 => 0.020430311198775
830 => 0.020912671826833
831 => 0.021595313173211
901 => 0.021915593219692
902 => 0.021598205420679
903 => 0.021233607406545
904 => 0.021255798798281
905 => 0.021403428185581
906 => 0.021418941946819
907 => 0.021181626120899
908 => 0.02124842913581
909 => 0.021146949247565
910 => 0.020524167360719
911 => 0.020512903211249
912 => 0.020360062492503
913 => 0.020355434536282
914 => 0.02009541434579
915 => 0.020059035723706
916 => 0.019542749853387
917 => 0.019882570776688
918 => 0.019654636742737
919 => 0.019311086389369
920 => 0.019251858178957
921 => 0.019250077707432
922 => 0.019602827103887
923 => 0.01987844869461
924 => 0.019658601752845
925 => 0.019608546865758
926 => 0.020143002105574
927 => 0.02007498780464
928 => 0.020016087858676
929 => 0.021534190127919
930 => 0.020332493722816
1001 => 0.019808485499758
1002 => 0.019159925817262
1003 => 0.019371100120204
1004 => 0.01941559764863
1005 => 0.017855928523896
1006 => 0.017223170954236
1007 => 0.017006032401294
1008 => 0.016881066094188
1009 => 0.016938014809564
1010 => 0.016368458781809
1011 => 0.016751209852048
1012 => 0.016258022475385
1013 => 0.016175338006717
1014 => 0.017057218130382
1015 => 0.017179926597722
1016 => 0.01665641415352
1017 => 0.016992593891664
1018 => 0.016870690445365
1019 => 0.016266476757424
1020 => 0.01624340023884
1021 => 0.015940227049369
1022 => 0.015465819713745
1023 => 0.015249002831317
1024 => 0.015136082716457
1025 => 0.015182675756618
1026 => 0.015159116889742
1027 => 0.015005379347548
1028 => 0.015167928945702
1029 => 0.01475268189255
1030 => 0.014587327170111
1031 => 0.014512640278187
1101 => 0.014144084617785
1102 => 0.01473062057093
1103 => 0.014846175542685
1104 => 0.01496195819343
1105 => 0.01596976712
1106 => 0.015919419834067
1107 => 0.016374534778778
1108 => 0.016356849848929
1109 => 0.016227043694324
1110 => 0.015679412880122
1111 => 0.015897688762082
1112 => 0.015225869525012
1113 => 0.015729242176693
1114 => 0.01549952391981
1115 => 0.015651574202965
1116 => 0.015378174084031
1117 => 0.015529484998264
1118 => 0.014873577913294
1119 => 0.014261101106212
1120 => 0.014507579652695
1121 => 0.014775530020962
1122 => 0.01535651469185
1123 => 0.015010485014888
1124 => 0.015134930371554
1125 => 0.014718059258624
1126 => 0.013857935079303
1127 => 0.013862803288749
1128 => 0.013730491922584
1129 => 0.013616155584442
1130 => 0.015050230685819
1201 => 0.01487188077759
1202 => 0.014587703540687
1203 => 0.014968086065036
1204 => 0.015068665241957
1205 => 0.015071528589726
1206 => 0.015349045860398
1207 => 0.015497156877503
1208 => 0.015523262086217
1209 => 0.015959941507776
1210 => 0.016106310689942
1211 => 0.016709184636341
1212 => 0.015484590692495
1213 => 0.015459370986088
1214 => 0.014973438827221
1215 => 0.014665252969784
1216 => 0.014994540576544
1217 => 0.015286244443893
1218 => 0.014982502879501
1219 => 0.015022165115476
1220 => 0.014614416881877
1221 => 0.014760167689051
1222 => 0.014885707918944
1223 => 0.014816391982911
1224 => 0.01471262267174
1225 => 0.015262328053318
1226 => 0.015231311521376
1227 => 0.015743209810373
1228 => 0.016142271132844
1229 => 0.016857460363456
1230 => 0.016111123117654
1231 => 0.016083923621996
]
'min_raw' => 0.013616155584442
'max_raw' => 0.039368310106085
'avg_raw' => 0.026492232845264
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.013616'
'max' => '$0.039368'
'avg' => '$0.026492'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0023942392528934
'max_diff' => -0.013298635261233
'year' => 2030
]
5 => [
'items' => [
101 => 0.016349803054997
102 => 0.016106269985186
103 => 0.016260174478831
104 => 0.016832663970175
105 => 0.01684475977101
106 => 0.016642139522465
107 => 0.016629810061927
108 => 0.016668725497083
109 => 0.016896654416291
110 => 0.016817009048372
111 => 0.016909176684502
112 => 0.017024433724805
113 => 0.017501185711468
114 => 0.017616129001416
115 => 0.017336876398105
116 => 0.017362089781525
117 => 0.017257641642231
118 => 0.017156746048405
119 => 0.017383544608708
120 => 0.0177980234354
121 => 0.017795444984131
122 => 0.017891596015606
123 => 0.017951497311657
124 => 0.017694357098577
125 => 0.01752696827517
126 => 0.017591155801292
127 => 0.017693793053383
128 => 0.017557871923749
129 => 0.016718903746855
130 => 0.01697339309823
131 => 0.016931033626268
201 => 0.016870708587106
202 => 0.017126599597821
203 => 0.017101918285588
204 => 0.016362617161522
205 => 0.016409944820828
206 => 0.016365495313239
207 => 0.016509120765774
208 => 0.016098513739411
209 => 0.01622481369524
210 => 0.016304027843547
211 => 0.016350685585452
212 => 0.016519245342725
213 => 0.016499466800718
214 => 0.016518015880783
215 => 0.016767945502693
216 => 0.018032003764824
217 => 0.018100803667044
218 => 0.017762007786129
219 => 0.017897350058101
220 => 0.017637522492015
221 => 0.017811946477822
222 => 0.017931282939022
223 => 0.017392024417941
224 => 0.017360093028081
225 => 0.017099193061204
226 => 0.017239385925274
227 => 0.017016328998315
228 => 0.017071059365991
301 => 0.016918028486662
302 => 0.01719345360131
303 => 0.017501421676222
304 => 0.017579226573973
305 => 0.017374555385105
306 => 0.017226359955877
307 => 0.01696617760076
308 => 0.017398866655861
309 => 0.017525398121532
310 => 0.017398202039938
311 => 0.017368727928543
312 => 0.017312874540709
313 => 0.017380577488808
314 => 0.017524709003996
315 => 0.017456739243125
316 => 0.017501634467653
317 => 0.017330540167504
318 => 0.017694442222687
319 => 0.018272406264117
320 => 0.018274264513017
321 => 0.018206294385763
322 => 0.018178482474127
323 => 0.018248223949462
324 => 0.018286055838886
325 => 0.018511586981719
326 => 0.018753590883536
327 => 0.019882917498742
328 => 0.019565807104266
329 => 0.020567812861217
330 => 0.021360269320802
331 => 0.021597892363111
401 => 0.021379290345215
402 => 0.020631464650643
403 => 0.020594772754376
404 => 0.021712340065931
405 => 0.021396576112592
406 => 0.021359016995094
407 => 0.020959451442055
408 => 0.021195644171058
409 => 0.021143985356486
410 => 0.02106243939045
411 => 0.021513078664059
412 => 0.022356635155411
413 => 0.022225158965411
414 => 0.022127018088581
415 => 0.021696993334692
416 => 0.02195596428604
417 => 0.021863749690527
418 => 0.022259962113678
419 => 0.022025254651383
420 => 0.021394183890083
421 => 0.021494683988856
422 => 0.021479493601105
423 => 0.021792110704628
424 => 0.021698270809784
425 => 0.02146116985556
426 => 0.02235375197103
427 => 0.022295792653254
428 => 0.022377965714516
429 => 0.022414140837369
430 => 0.022957439841995
501 => 0.023180012060561
502 => 0.023230539850851
503 => 0.023441966244135
504 => 0.023225279369581
505 => 0.024092181362922
506 => 0.024668620603361
507 => 0.025338184444422
508 => 0.026316597178006
509 => 0.026684489416658
510 => 0.026618032976621
511 => 0.027359854344755
512 => 0.028692890853529
513 => 0.026887477768017
514 => 0.028788582130946
515 => 0.028186714438948
516 => 0.026759696968358
517 => 0.026667813866683
518 => 0.02763420666578
519 => 0.029777572882317
520 => 0.029240683954933
521 => 0.029778451040267
522 => 0.029151117170044
523 => 0.029119964755803
524 => 0.029747982834426
525 => 0.031215381306612
526 => 0.030518275297086
527 => 0.029518802895023
528 => 0.030256797763193
529 => 0.029617478310184
530 => 0.028176912648305
531 => 0.029240273406089
601 => 0.02852923435013
602 => 0.028736753347574
603 => 0.030231251684122
604 => 0.030051429690316
605 => 0.030284136001369
606 => 0.029873415453346
607 => 0.029489737696806
608 => 0.02877357467194
609 => 0.028561554106688
610 => 0.028620148963223
611 => 0.028561525069987
612 => 0.028160838439452
613 => 0.028074310199738
614 => 0.027930092675992
615 => 0.02797479171701
616 => 0.027703620580042
617 => 0.028215376542316
618 => 0.028310362958492
619 => 0.028682776270929
620 => 0.02872144145646
621 => 0.029758607230625
622 => 0.029187353751078
623 => 0.029570599904811
624 => 0.029536318761568
625 => 0.026790624764041
626 => 0.027168957171437
627 => 0.027757523670096
628 => 0.027492375260233
629 => 0.02711751744386
630 => 0.026814799658534
701 => 0.026356151259283
702 => 0.027001690073667
703 => 0.027850504969182
704 => 0.028742968802968
705 => 0.029815205622715
706 => 0.02957589484676
707 => 0.028722924081455
708 => 0.028761187726891
709 => 0.028997718526787
710 => 0.028691389649833
711 => 0.028601047283769
712 => 0.028985306872991
713 => 0.028987953057597
714 => 0.028635484663579
715 => 0.028243780544664
716 => 0.028242139290103
717 => 0.028172439325555
718 => 0.029163516638898
719 => 0.029708508952019
720 => 0.029770991442419
721 => 0.02970430338258
722 => 0.029729968970058
723 => 0.029412849951139
724 => 0.030137689989663
725 => 0.030802874888263
726 => 0.030624591125836
727 => 0.030357318421427
728 => 0.030144422838768
729 => 0.03057443969248
730 => 0.030555291718893
731 => 0.030797065078468
801 => 0.030786096842327
802 => 0.030704797555058
803 => 0.030624594029289
804 => 0.030942591943169
805 => 0.030851013650862
806 => 0.030759293112172
807 => 0.030575333530118
808 => 0.030600336692564
809 => 0.030333110136556
810 => 0.030209478904292
811 => 0.028350361803836
812 => 0.02785354496619
813 => 0.028009853656953
814 => 0.028061314536505
815 => 0.027845099212074
816 => 0.028155096446149
817 => 0.028106783705587
818 => 0.028294740317107
819 => 0.028177313186356
820 => 0.028182132436763
821 => 0.028527460590195
822 => 0.028627710822267
823 => 0.028576722745117
824 => 0.028612433046584
825 => 0.029435361871521
826 => 0.029318367708398
827 => 0.029256216891018
828 => 0.029273433092179
829 => 0.029483709050743
830 => 0.029542574838499
831 => 0.02929315635935
901 => 0.029410783555988
902 => 0.029911625230158
903 => 0.030086891470934
904 => 0.030646257178922
905 => 0.030408628684236
906 => 0.030844806070552
907 => 0.03218546665226
908 => 0.033256479091583
909 => 0.03227153179092
910 => 0.034238309743127
911 => 0.035769728496461
912 => 0.035710950093996
913 => 0.035443911811999
914 => 0.033700432276202
915 => 0.032096056413547
916 => 0.033438184948056
917 => 0.033441606309701
918 => 0.033326316278312
919 => 0.03261025979495
920 => 0.033301399064834
921 => 0.033356259190228
922 => 0.033325552108492
923 => 0.032776553281581
924 => 0.031938333544832
925 => 0.032102119674978
926 => 0.032370404697304
927 => 0.031862485179922
928 => 0.03170017411819
929 => 0.032001941262893
930 => 0.032974297878809
1001 => 0.032790479493049
1002 => 0.032785679252128
1003 => 0.033572132257539
1004 => 0.033009201632846
1005 => 0.032104185542595
1006 => 0.031875657044111
1007 => 0.031064534829736
1008 => 0.031624779832323
1009 => 0.031644942052581
1010 => 0.031338101590229
1011 => 0.032129083955021
1012 => 0.032121794913279
1013 => 0.032872714946461
1014 => 0.034308192017219
1015 => 0.033883650811859
1016 => 0.033389955579977
1017 => 0.033443633940367
1018 => 0.034032353064357
1019 => 0.033676400042842
1020 => 0.033804403231171
1021 => 0.0340321593162
1022 => 0.034169570217164
1023 => 0.033423862626352
1024 => 0.033250002515616
1025 => 0.032894345745658
1026 => 0.032801561533024
1027 => 0.033091236551133
1028 => 0.033014917418231
1029 => 0.03164324749604
1030 => 0.031499900357272
1031 => 0.031504296609366
1101 => 0.031143843413148
1102 => 0.030594065770236
1103 => 0.03203884859029
1104 => 0.031922812310118
1105 => 0.031794717237301
1106 => 0.031810408152821
1107 => 0.032437539406773
1108 => 0.032073771608594
1109 => 0.033040907920424
1110 => 0.032842093769491
1111 => 0.03263818078578
1112 => 0.03260999380009
1113 => 0.032531504698399
1114 => 0.032262336364194
1115 => 0.031937299426133
1116 => 0.031722681885407
1117 => 0.029262497184668
1118 => 0.02971909315489
1119 => 0.030244365198597
1120 => 0.030425687003189
1121 => 0.030115523509347
1122 => 0.0322745835094
1123 => 0.03266906457663
1124 => 0.031474155692628
1125 => 0.03125063702824
1126 => 0.032289237355826
1127 => 0.031662834394565
1128 => 0.031944903609665
1129 => 0.03133522425023
1130 => 0.032574045639288
1201 => 0.032564607895897
1202 => 0.032082678395503
1203 => 0.032490001909125
1204 => 0.032419219424894
1205 => 0.031875122205889
1206 => 0.032591294491619
1207 => 0.032591649704138
1208 => 0.03212780303806
1209 => 0.031586131681172
1210 => 0.031489293636267
1211 => 0.031416339177792
1212 => 0.03192696128507
1213 => 0.032384783469782
1214 => 0.033236677051785
1215 => 0.033450863338793
1216 => 0.034286846676173
1217 => 0.033789059302053
1218 => 0.034009721997575
1219 => 0.034249282568208
1220 => 0.034364136715318
1221 => 0.034176988046016
1222 => 0.035475614273437
1223 => 0.035585258115911
1224 => 0.035622020747877
1225 => 0.035184131290629
1226 => 0.035573079617969
1227 => 0.035391103576221
1228 => 0.035864554682448
1229 => 0.035938797861232
1230 => 0.03587591653008
1231 => 0.035899482486875
]
'min_raw' => 0.016098513739411
'max_raw' => 0.035938797861232
'avg_raw' => 0.026018655800321
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.016098'
'max' => '$0.035938'
'avg' => '$0.026018'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0024823581549685
'max_diff' => -0.0034295122448532
'year' => 2031
]
6 => [
'items' => [
101 => 0.034791334095135
102 => 0.034733870755075
103 => 0.033950354035943
104 => 0.034269642890452
105 => 0.033672747680859
106 => 0.033862029300523
107 => 0.03394546283493
108 => 0.033901881891367
109 => 0.034287695003229
110 => 0.033959675041735
111 => 0.033093976431877
112 => 0.032228041963013
113 => 0.032217170861131
114 => 0.031989185600492
115 => 0.031824394014633
116 => 0.031856138720365
117 => 0.031968011203891
118 => 0.031817891782517
119 => 0.031849927372315
120 => 0.032381931614981
121 => 0.032488621271767
122 => 0.032126048131669
123 => 0.030670264655118
124 => 0.030313011738417
125 => 0.030569798050309
126 => 0.030447070732381
127 => 0.024573162377471
128 => 0.025953150016543
129 => 0.025133208221359
130 => 0.025511075124288
131 => 0.024674126874303
201 => 0.025073562447412
202 => 0.02499980128211
203 => 0.027218780568935
204 => 0.027184134259477
205 => 0.027200717614373
206 => 0.026409150877512
207 => 0.02767013818271
208 => 0.028291345872887
209 => 0.028176376862343
210 => 0.028205312085387
211 => 0.027708109086511
212 => 0.027205531626234
213 => 0.02664809587667
214 => 0.027683742598219
215 => 0.027568596361862
216 => 0.027832700399757
217 => 0.028504391328238
218 => 0.028603300368963
219 => 0.028736235122733
220 => 0.028688587476447
221 => 0.029823747718852
222 => 0.029686272323468
223 => 0.030017548471972
224 => 0.029336088300517
225 => 0.028564951431723
226 => 0.028711519340117
227 => 0.028697403671914
228 => 0.02851769501448
229 => 0.028355462073865
301 => 0.028085389936588
302 => 0.028939938142086
303 => 0.028905245045531
304 => 0.029466885952443
305 => 0.029367610466657
306 => 0.028704624475751
307 => 0.028728303150118
308 => 0.028887553614819
309 => 0.02943872129144
310 => 0.029602345384218
311 => 0.02952654818515
312 => 0.029705954533158
313 => 0.029847749995637
314 => 0.029723761860124
315 => 0.03147917239115
316 => 0.030750203551873
317 => 0.031105497892004
318 => 0.03119023349861
319 => 0.030973185024087
320 => 0.031020255066288
321 => 0.031091553354403
322 => 0.031524462598203
323 => 0.032660541717233
324 => 0.033163703425499
325 => 0.03467749025038
326 => 0.033121922849977
327 => 0.033029621918015
328 => 0.033302300637159
329 => 0.034191053753972
330 => 0.034911304678815
331 => 0.035150253462857
401 => 0.035181834489283
402 => 0.035630118293162
403 => 0.035887066209548
404 => 0.035575684848337
405 => 0.035311821747698
406 => 0.034366696873103
407 => 0.034476097650827
408 => 0.035229760521814
409 => 0.036294353717604
410 => 0.037207885431636
411 => 0.036887998465176
412 => 0.039328510214256
413 => 0.039570476985581
414 => 0.039537045001506
415 => 0.040088281316068
416 => 0.038994189488987
417 => 0.038526444035879
418 => 0.03536887194503
419 => 0.036256020906866
420 => 0.037545544023328
421 => 0.037374870803401
422 => 0.036438384647175
423 => 0.037207175022909
424 => 0.036952988882394
425 => 0.036752501727176
426 => 0.037670972251575
427 => 0.036661076181309
428 => 0.037535469537497
429 => 0.036414051013745
430 => 0.036889459681894
501 => 0.036619594728923
502 => 0.0367942304269
503 => 0.035773313704919
504 => 0.036324175586747
505 => 0.035750396039569
506 => 0.035750123993356
507 => 0.03573745777805
508 => 0.036412506870777
509 => 0.036434520197456
510 => 0.035935657897988
511 => 0.035863764046941
512 => 0.036129593295354
513 => 0.035818376866252
514 => 0.035963993074656
515 => 0.035822787432863
516 => 0.03579099906865
517 => 0.035537703974253
518 => 0.035428577483093
519 => 0.03547136879212
520 => 0.035325299993979
521 => 0.035237288259559
522 => 0.035719950028851
523 => 0.035462083316039
524 => 0.035680428256783
525 => 0.035431596639476
526 => 0.034569037843117
527 => 0.034072971157937
528 => 0.032443677550856
529 => 0.032905743196692
530 => 0.033212093197922
531 => 0.033110844524343
601 => 0.033328365853227
602 => 0.033341719896185
603 => 0.033271001494798
604 => 0.033189118645579
605 => 0.033149262602985
606 => 0.033446316891037
607 => 0.033618766903639
608 => 0.03324283951898
609 => 0.033154764992538
610 => 0.033534848333948
611 => 0.033766698952641
612 => 0.035478553655461
613 => 0.035351733929858
614 => 0.035670026554007
615 => 0.035634191689126
616 => 0.035967813067226
617 => 0.036513143021504
618 => 0.035404334747803
619 => 0.035596785524412
620 => 0.035549601038325
621 => 0.036064748884987
622 => 0.036066357120334
623 => 0.035757500252717
624 => 0.035924936571283
625 => 0.035831478211634
626 => 0.036000370099174
627 => 0.035350040175104
628 => 0.036142071823844
629 => 0.036591102731287
630 => 0.036597337525872
701 => 0.03681017461227
702 => 0.037026429418744
703 => 0.037441511687946
704 => 0.037014852999542
705 => 0.036247335553491
706 => 0.036302747834029
707 => 0.035852752636233
708 => 0.035860317136806
709 => 0.035819937239906
710 => 0.035941120350161
711 => 0.035376633053088
712 => 0.03550911709343
713 => 0.035323638661126
714 => 0.035596382330524
715 => 0.035302955228395
716 => 0.035549578284537
717 => 0.035656012619884
718 => 0.036048757608682
719 => 0.035244946474219
720 => 0.033605921157818
721 => 0.033950464150586
722 => 0.033440858001014
723 => 0.033488023990364
724 => 0.033583306795263
725 => 0.033274464049991
726 => 0.033333381513036
727 => 0.03333127656666
728 => 0.033313137275977
729 => 0.033232795349859
730 => 0.033116283661822
731 => 0.033580430366555
801 => 0.033659297936181
802 => 0.033834610773836
803 => 0.034356222862861
804 => 0.034304101514707
805 => 0.03438911359604
806 => 0.034203532699813
807 => 0.033496632555881
808 => 0.033535020634696
809 => 0.033056320676749
810 => 0.033822369339647
811 => 0.033640958904924
812 => 0.033524002417514
813 => 0.03349208975633
814 => 0.034014994820833
815 => 0.034171456211665
816 => 0.034073959972632
817 => 0.033873992341955
818 => 0.034257989307977
819 => 0.034360730696553
820 => 0.034383730704499
821 => 0.035064099704175
822 => 0.034421755773624
823 => 0.034576374342057
824 => 0.035782664275156
825 => 0.034688725762468
826 => 0.035268209390379
827 => 0.03523984668228
828 => 0.035536290897662
829 => 0.03521552960406
830 => 0.035219505824723
831 => 0.035482728205112
901 => 0.035113079844262
902 => 0.035021549711739
903 => 0.03489510148921
904 => 0.035171196557087
905 => 0.035336703063574
906 => 0.036670563954721
907 => 0.037532298921849
908 => 0.037494888734261
909 => 0.037836747819873
910 => 0.037682737170734
911 => 0.037185396158711
912 => 0.03803429662196
913 => 0.037765668995884
914 => 0.037787814330995
915 => 0.037786990080516
916 => 0.037965603968022
917 => 0.037839039659002
918 => 0.037589568414363
919 => 0.03775517906889
920 => 0.038246983505942
921 => 0.039773559568955
922 => 0.04062785175826
923 => 0.039722130106478
924 => 0.040346884773781
925 => 0.039972254596249
926 => 0.039904173148709
927 => 0.040296565248782
928 => 0.040689644179283
929 => 0.040664606750737
930 => 0.04037925163202
1001 => 0.040218061766075
1002 => 0.041438645433578
1003 => 0.042337950687695
1004 => 0.042276624098383
1005 => 0.04254729971913
1006 => 0.043342011713325
1007 => 0.043414670218419
1008 => 0.043405516916814
1009 => 0.043225425230807
1010 => 0.044007922395485
1011 => 0.044660695296987
1012 => 0.043183739208845
1013 => 0.043746144752435
1014 => 0.043998626720527
1015 => 0.044369345157711
1016 => 0.044994809300865
1017 => 0.0456742292565
1018 => 0.045770306687687
1019 => 0.045702135152531
1020 => 0.045254039428001
1021 => 0.045997468850623
1022 => 0.04643295237083
1023 => 0.046692272841249
1024 => 0.047349866407422
1025 => 0.044000185963207
1026 => 0.041629115654871
1027 => 0.041258838787554
1028 => 0.042011811357662
1029 => 0.042210364219556
1030 => 0.04213032780989
1031 => 0.039461472609577
1101 => 0.041244787817257
1102 => 0.043163485035319
1103 => 0.043237190009605
1104 => 0.044197729955034
1105 => 0.044510521135128
1106 => 0.045283881692047
1107 => 0.045235507778648
1108 => 0.045423808767403
1109 => 0.045380521631007
1110 => 0.046813009212421
1111 => 0.048393255741185
1112 => 0.04833853682877
1113 => 0.048111357693632
1114 => 0.048448757449111
1115 => 0.050079741216304
1116 => 0.049929586367003
1117 => 0.05007544901294
1118 => 0.051998470792678
1119 => 0.054498672652997
1120 => 0.053337077872716
1121 => 0.055857404306031
1122 => 0.05744381619904
1123 => 0.060187351529946
1124 => 0.05984384739432
1125 => 0.06091188556565
1126 => 0.059228903300073
1127 => 0.055364435831476
1128 => 0.054752869061984
1129 => 0.055977241221845
1130 => 0.058987240704377
1201 => 0.055882445626461
1202 => 0.05651054162703
1203 => 0.056329649936612
1204 => 0.05632001098717
1205 => 0.056687890482937
1206 => 0.056154262087022
1207 => 0.053980164004149
1208 => 0.054976540343489
1209 => 0.054591791588948
1210 => 0.055018699017031
1211 => 0.05732254233638
1212 => 0.056303958288131
1213 => 0.055230962736349
1214 => 0.056576737275058
1215 => 0.058290370721138
1216 => 0.058183134619777
1217 => 0.057975051761925
1218 => 0.059148003936773
1219 => 0.061085377286881
1220 => 0.061609041518419
1221 => 0.061995599748296
1222 => 0.062048899597241
1223 => 0.062597921167048
1224 => 0.059645693814943
1225 => 0.06433095444131
1226 => 0.065139969523771
1227 => 0.064987908218508
1228 => 0.065887094434104
1229 => 0.065622531039323
1230 => 0.06523922018901
1231 => 0.066664621603123
]
'min_raw' => 0.024573162377471
'max_raw' => 0.066664621603123
'avg_raw' => 0.045618891990297
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.024573'
'max' => '$0.066664'
'avg' => '$0.045618'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0084746486380604
'max_diff' => 0.030725823741891
'year' => 2032
]
7 => [
'items' => [
101 => 0.065030513905805
102 => 0.062711103757901
103 => 0.06143862947803
104 => 0.063114326257337
105 => 0.0641376158067
106 => 0.064813945105391
107 => 0.065018601942526
108 => 0.059874866820374
109 => 0.057102678874162
110 => 0.058879619564484
111 => 0.061047609844573
112 => 0.059633650519473
113 => 0.059689075048038
114 => 0.057673140632419
115 => 0.061225975308371
116 => 0.060708357180127
117 => 0.063393760945103
118 => 0.06275286778488
119 => 0.064942710308444
120 => 0.064366051382375
121 => 0.066759730343922
122 => 0.067714633687954
123 => 0.069318065021422
124 => 0.07049755563746
125 => 0.071190175087258
126 => 0.071148592813443
127 => 0.073893096135182
128 => 0.072274758411995
129 => 0.070241744818756
130 => 0.07020497401693
131 => 0.071257900564894
201 => 0.073464545753135
202 => 0.074036696745064
203 => 0.074356451095278
204 => 0.073866736177196
205 => 0.072110146565986
206 => 0.071351660077977
207 => 0.071997912541229
208 => 0.071207601311779
209 => 0.072571900215977
210 => 0.074445374009963
211 => 0.074058509080023
212 => 0.07535174053878
213 => 0.076690099046677
214 => 0.07860401182241
215 => 0.079104379493972
216 => 0.079931468227785
217 => 0.080782814219374
218 => 0.081056243607455
219 => 0.081578305149457
220 => 0.081575553627434
221 => 0.083148821223053
222 => 0.084884184101062
223 => 0.085539243413767
224 => 0.087045516183152
225 => 0.084466076851674
226 => 0.086422611215064
227 => 0.088187454186073
228 => 0.0860833356401
301 => 0.088983372858979
302 => 0.089095974732563
303 => 0.09079612933657
304 => 0.089072696935197
305 => 0.088049328276653
306 => 0.091003755248747
307 => 0.092433309396965
308 => 0.092002716053424
309 => 0.088725879448062
310 => 0.086818619993608
311 => 0.081826954118427
312 => 0.087739797971497
313 => 0.090619771732307
314 => 0.088718421011772
315 => 0.089677351720244
316 => 0.094908966731338
317 => 0.096900827005575
318 => 0.096486533992688
319 => 0.096556542692022
320 => 0.09763131434118
321 => 0.1023974437211
322 => 0.099541468518638
323 => 0.10172475454957
324 => 0.10288276158796
325 => 0.10395838306164
326 => 0.10131699667593
327 => 0.097880591797792
328 => 0.096792138122422
329 => 0.088529369154142
330 => 0.088099256145956
331 => 0.087857820680703
401 => 0.08633560422401
402 => 0.085139559059227
403 => 0.084188419537882
404 => 0.081692345399569
405 => 0.082534697148225
406 => 0.078556475942914
407 => 0.081101600890569
408 => 0.074752263789383
409 => 0.080040180398822
410 => 0.07716220780037
411 => 0.079094688997405
412 => 0.079087946752559
413 => 0.075529636175095
414 => 0.073477276894061
415 => 0.074785120106954
416 => 0.076187231847899
417 => 0.076414719760597
418 => 0.078232594231593
419 => 0.078739923921367
420 => 0.077202691276394
421 => 0.074620687890711
422 => 0.075220428387978
423 => 0.073465123172026
424 => 0.070389018297912
425 => 0.072598330522139
426 => 0.073352686852092
427 => 0.073685853582131
428 => 0.070660857731471
429 => 0.069710338359339
430 => 0.069204289821245
501 => 0.074230198912662
502 => 0.074505529558038
503 => 0.073096899048464
504 => 0.079464042523565
505 => 0.078022961858115
506 => 0.079633002034757
507 => 0.075166008224033
508 => 0.075336653403208
509 => 0.07322190694646
510 => 0.074406023654829
511 => 0.073569128131217
512 => 0.074310358726462
513 => 0.074754649289044
514 => 0.076869048736708
515 => 0.080064323444107
516 => 0.076553227968235
517 => 0.075023393389584
518 => 0.075972494158063
519 => 0.078500074575558
520 => 0.082329488292525
521 => 0.080062398297948
522 => 0.081068494339857
523 => 0.081288281566916
524 => 0.079616613337148
525 => 0.0823911250846
526 => 0.083878008470152
527 => 0.085403243156565
528 => 0.086727561698672
529 => 0.084794030882182
530 => 0.086863186016581
531 => 0.085195812233306
601 => 0.083700005579774
602 => 0.083702274101026
603 => 0.082763932737017
604 => 0.08094577810563
605 => 0.080610482496105
606 => 0.082354732600019
607 => 0.083753456002258
608 => 0.0838686615611
609 => 0.084643066705583
610 => 0.08510135169308
611 => 0.089593167578786
612 => 0.091399813086267
613 => 0.093608945014766
614 => 0.094469526400769
615 => 0.097059567837137
616 => 0.094967899024389
617 => 0.094515353319538
618 => 0.088232759991006
619 => 0.089261534296595
620 => 0.0909087012218
621 => 0.088259921166913
622 => 0.089939962446613
623 => 0.090271638183366
624 => 0.088169916634216
625 => 0.089292536923644
626 => 0.086311190268642
627 => 0.080129308654106
628 => 0.082398007286021
629 => 0.084068533114813
630 => 0.081684486782778
701 => 0.085957797557616
702 => 0.083461417621996
703 => 0.082670185029773
704 => 0.079583304592728
705 => 0.081040193334089
706 => 0.083010656217417
707 => 0.081793139246418
708 => 0.084319669772334
709 => 0.087897910798111
710 => 0.090447978441017
711 => 0.090643740970324
712 => 0.089004218317198
713 => 0.091631563832125
714 => 0.091650701175863
715 => 0.088687044702004
716 => 0.086871821613474
717 => 0.086459399108497
718 => 0.087489711386123
719 => 0.088740700697299
720 => 0.090713162170651
721 => 0.091905079328668
722 => 0.095012967132763
723 => 0.095853872462425
724 => 0.096777772473158
725 => 0.098012387807708
726 => 0.09949486006571
727 => 0.096251295162395
728 => 0.096380168042765
729 => 0.093359805315011
730 => 0.090132114576576
731 => 0.092581529509718
801 => 0.095783813702786
802 => 0.095049206170687
803 => 0.094966547816655
804 => 0.095105556240621
805 => 0.094551686151457
806 => 0.092046552265551
807 => 0.090788489711017
808 => 0.092411711372354
809 => 0.093274381444069
810 => 0.094612307492564
811 => 0.094447379866895
812 => 0.09789373368505
813 => 0.099232882566455
814 => 0.09889027097718
815 => 0.098953319755015
816 => 0.10137778483871
817 => 0.10407428864106
818 => 0.10659992028697
819 => 0.10916910127559
820 => 0.10607185331696
821 => 0.10449926181527
822 => 0.10612177482881
823 => 0.1052608465853
824 => 0.1102079956404
825 => 0.1105505255073
826 => 0.11549731682721
827 => 0.12019241084276
828 => 0.11724350641294
829 => 0.12002419046869
830 => 0.12303172698748
831 => 0.12883375288744
901 => 0.12687983468206
902 => 0.12538316395855
903 => 0.12396881735669
904 => 0.12691184811396
905 => 0.13069801016713
906 => 0.13151351320997
907 => 0.13283493968551
908 => 0.13144562132282
909 => 0.13311890226229
910 => 0.1390263192555
911 => 0.13743008303772
912 => 0.1351631710007
913 => 0.13982650936249
914 => 0.14151415338735
915 => 0.15335892297987
916 => 0.16831343387345
917 => 0.16212216816689
918 => 0.15827904975194
919 => 0.15918227373944
920 => 0.16464315487563
921 => 0.16639701657688
922 => 0.16162941588052
923 => 0.16331341304579
924 => 0.17259240299337
925 => 0.17757028339462
926 => 0.1708096531912
927 => 0.15215734259045
928 => 0.13495906037459
929 => 0.13952081926698
930 => 0.13900365737644
1001 => 0.14897277449755
1002 => 0.13739201333184
1003 => 0.13758700364935
1004 => 0.14776227155505
1005 => 0.14504768452607
1006 => 0.14065040119715
1007 => 0.13499116540921
1008 => 0.12452954463927
1009 => 0.11526339537945
1010 => 0.13343644794468
1011 => 0.13265279287252
1012 => 0.13151794419685
1013 => 0.1340434271211
1014 => 0.14630645533042
1015 => 0.14602375283865
1016 => 0.14422534382206
1017 => 0.14558942121069
1018 => 0.1404112718357
1019 => 0.14174579883391
1020 => 0.13495633607882
1021 => 0.13802545679713
1022 => 0.14064096660204
1023 => 0.14116606891867
1024 => 0.1423491512504
1025 => 0.13223984225905
1026 => 0.13677862520245
1027 => 0.13944473495525
1028 => 0.1273991540982
1029 => 0.1392066325512
1030 => 0.13206386168069
1031 => 0.12963949796643
1101 => 0.13290358432205
1102 => 0.13163156669484
1103 => 0.13053796063434
1104 => 0.12992770966204
1105 => 0.13232449443755
1106 => 0.132212681563
1107 => 0.12829107647438
1108 => 0.12317550250136
1109 => 0.1248924570397
1110 => 0.12426867135939
1111 => 0.12200799158398
1112 => 0.12353141679709
1113 => 0.11682302314642
1114 => 0.10528158054241
1115 => 0.11290621105057
1116 => 0.11261267107
1117 => 0.11246465490083
1118 => 0.1181943539984
1119 => 0.11764357563682
1120 => 0.11664390751731
1121 => 0.12198963189502
1122 => 0.12003837058701
1123 => 0.1260516981633
1124 => 0.13001246462268
1125 => 0.12900788613121
1126 => 0.1327330061303
1127 => 0.1249320122045
1128 => 0.1275231894651
1129 => 0.12805722750729
1130 => 0.12192366648599
1201 => 0.11773368978836
1202 => 0.11745426611186
1203 => 0.11018942393253
1204 => 0.11407024398497
1205 => 0.11748520503188
1206 => 0.11584970370209
1207 => 0.11533195284029
1208 => 0.11797702970676
1209 => 0.11818257483283
1210 => 0.11349612417562
1211 => 0.11447058566784
1212 => 0.11853425208117
1213 => 0.11436819170052
1214 => 0.10627421690302
1215 => 0.10426679924528
1216 => 0.10399897272569
1217 => 0.098554696827608
1218 => 0.10440094449201
1219 => 0.1018489007168
1220 => 0.10991077642451
1221 => 0.10530587625698
1222 => 0.10510736821445
1223 => 0.10480729419337
1224 => 0.10012118102769
1225 => 0.10114714199295
1226 => 0.10455759249973
1227 => 0.10577447966202
1228 => 0.10564754836133
1229 => 0.10454087943168
1230 => 0.10504750680061
1231 => 0.1034154835246
]
'min_raw' => 0.057102678874162
'max_raw' => 0.17757028339462
'avg_raw' => 0.11733648113439
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.0571026'
'max' => '$0.17757'
'avg' => '$0.117336'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.032529516496691
'max_diff' => 0.11090566179149
'year' => 2033
]
8 => [
'items' => [
101 => 0.10283918213822
102 => 0.1010202164386
103 => 0.098346839362255
104 => 0.098718588841495
105 => 0.093421929326097
106 => 0.090536028107112
107 => 0.089737248685264
108 => 0.088669087459078
109 => 0.08985790033803
110 => 0.093406924555181
111 => 0.089126048381807
112 => 0.081786786451107
113 => 0.082227888598636
114 => 0.08321891415973
115 => 0.081372144582921
116 => 0.079624332166093
117 => 0.081143913258021
118 => 0.078034171226203
119 => 0.083594711627307
120 => 0.083444314592692
121 => 0.085516940192712
122 => 0.086812995514963
123 => 0.083826007600067
124 => 0.083074788217145
125 => 0.083502716918675
126 => 0.076430008705349
127 => 0.084938949039994
128 => 0.085012534709349
129 => 0.084382449533173
130 => 0.088913197577312
131 => 0.098474489126198
201 => 0.094877146643445
202 => 0.093484146903871
203 => 0.090836053380665
204 => 0.094364480772103
205 => 0.094093552600482
206 => 0.092868312661956
207 => 0.092127283724154
208 => 0.093492652263241
209 => 0.091958099452296
210 => 0.091682451600759
211 => 0.090012325528265
212 => 0.08941616650628
213 => 0.088974794100176
214 => 0.088488886449412
215 => 0.089560677646354
216 => 0.08713185778821
217 => 0.084202939139435
218 => 0.083959431245129
219 => 0.084631777950742
220 => 0.084334314583834
221 => 0.08395800710497
222 => 0.083239533646576
223 => 0.083026377919227
224 => 0.083719030624654
225 => 0.082937066104389
226 => 0.084090897349852
227 => 0.083777119095481
228 => 0.082024379273477
301 => 0.079839816507866
302 => 0.079820369316976
303 => 0.079349708852526
304 => 0.078750251986775
305 => 0.078583496800438
306 => 0.081015938376915
307 => 0.086051019643374
308 => 0.085062512711485
309 => 0.08577681027604
310 => 0.089290447327366
311 => 0.090407326887231
312 => 0.089614592230381
313 => 0.088529448138341
314 => 0.088577188971192
315 => 0.092285454829147
316 => 0.092516734822056
317 => 0.093101104750384
318 => 0.093852185251207
319 => 0.089742504487435
320 => 0.088383623376795
321 => 0.087739710118721
322 => 0.085756706509642
323 => 0.087895205892153
324 => 0.086649193881637
325 => 0.086817323471687
326 => 0.086707828855604
327 => 0.086767620319979
328 => 0.083593157342941
329 => 0.084749764806911
330 => 0.082826680570354
331 => 0.080251886653939
401 => 0.080243255041892
402 => 0.080873432205226
403 => 0.08049857816964
404 => 0.079489855598256
405 => 0.079633139878485
406 => 0.078377818812876
407 => 0.079785558584172
408 => 0.079825927523677
409 => 0.079283871031625
410 => 0.08145268837996
411 => 0.082341254617159
412 => 0.081984461422115
413 => 0.082316221055457
414 => 0.085103589637346
415 => 0.085558052337611
416 => 0.085759894648949
417 => 0.085489452690739
418 => 0.082367169036289
419 => 0.082505655593339
420 => 0.08148953312498
421 => 0.080631016715564
422 => 0.080665352869615
423 => 0.081106741903376
424 => 0.083034313700934
425 => 0.087090774912333
426 => 0.087244714650071
427 => 0.087431294102948
428 => 0.086672381700776
429 => 0.086443486458467
430 => 0.086745458365947
501 => 0.088268851918351
502 => 0.092187433732447
503 => 0.090802345206066
504 => 0.08967624667393
505 => 0.090664138680597
506 => 0.090512060449524
507 => 0.089228367133147
508 => 0.08919233813723
509 => 0.086728520241522
510 => 0.085817702863898
511 => 0.085056555689656
512 => 0.084225402845635
513 => 0.083732667579203
514 => 0.084489732892616
515 => 0.084662882687127
516 => 0.083007546148112
517 => 0.082781929894523
518 => 0.084133713445203
519 => 0.083538843904119
520 => 0.084150681979179
521 => 0.084292633660843
522 => 0.08426977617067
523 => 0.083648664049447
524 => 0.084044542393685
525 => 0.083108172092548
526 => 0.082090010028334
527 => 0.081440486065103
528 => 0.080873690260333
529 => 0.081188181515185
530 => 0.080067077615472
531 => 0.079708413914591
601 => 0.083910427718202
602 => 0.08701450049419
603 => 0.08696936604668
604 => 0.086694621705096
605 => 0.086286407343358
606 => 0.088238988495179
607 => 0.087558748264977
608 => 0.088053679868422
609 => 0.088179660733713
610 => 0.088560966869939
611 => 0.08869725103927
612 => 0.08828530562411
613 => 0.086902766495939
614 => 0.083457610436412
615 => 0.081853880990681
616 => 0.081324623561363
617 => 0.081343861063716
618 => 0.080813204868835
619 => 0.08096950690057
620 => 0.080758849400841
621 => 0.080359915059876
622 => 0.081163548443798
623 => 0.081256159704932
624 => 0.081068582070421
625 => 0.081112763393758
626 => 0.07955970069546
627 => 0.079677776679337
628 => 0.07902031459674
629 => 0.078897048382077
630 => 0.077235041489046
701 => 0.074290555366291
702 => 0.075922086506481
703 => 0.073951426317127
704 => 0.073205107443043
705 => 0.076738064916555
706 => 0.076383453975202
707 => 0.075776514189275
708 => 0.074878723748554
709 => 0.074545724540947
710 => 0.072522526770263
711 => 0.07240298545263
712 => 0.073405736898716
713 => 0.072943001608918
714 => 0.072293146010483
715 => 0.069939434907757
716 => 0.067293084341327
717 => 0.067372961030561
718 => 0.06821471590864
719 => 0.070662231742764
720 => 0.069705944963918
721 => 0.069012147933739
722 => 0.068882220605448
723 => 0.070508533140289
724 => 0.072810106100099
725 => 0.07388995263805
726 => 0.072819857514368
727 => 0.071590589854295
728 => 0.071665409680886
729 => 0.072163152467321
730 => 0.072215458196472
731 => 0.071415331320522
801 => 0.071640562349332
802 => 0.071298415821012
803 => 0.069198663208271
804 => 0.069160685341894
805 => 0.068645372187642
806 => 0.06862976871013
807 => 0.067753092483857
808 => 0.067630439419625
809 => 0.065889745561917
810 => 0.067035475530367
811 => 0.066266980021054
812 => 0.065108676018755
813 => 0.064908983972167
814 => 0.064902980988112
815 => 0.066092300206437
816 => 0.067021577642845
817 => 0.06628034832946
818 => 0.066111584782929
819 => 0.067913537938441
820 => 0.067684222974234
821 => 0.067485637694154
822 => 0.072604025485422
823 => 0.068552422155853
824 => 0.066785691846729
825 => 0.064599027596201
826 => 0.065311016502291
827 => 0.065461043026097
828 => 0.060202509679434
829 => 0.058069123355601
830 => 0.057337025564229
831 => 0.056915692934951
901 => 0.057107699504876
902 => 0.055187401592168
903 => 0.056477873548304
904 => 0.054815057874641
905 => 0.054536281415681
906 => 0.057509601823524
907 => 0.05792332198839
908 => 0.056158263232293
909 => 0.057291716690763
910 => 0.056880710710541
911 => 0.054843562076796
912 => 0.054765757983238
913 => 0.053743588408061
914 => 0.052144090953942
915 => 0.051413077697163
916 => 0.051032359646085
917 => 0.051189451334007
918 => 0.051110020969508
919 => 0.050591684112388
920 => 0.051139731431415
921 => 0.049739697000089
922 => 0.049182192008691
923 => 0.048930379938094
924 => 0.047687768797316
925 => 0.049665315713975
926 => 0.050054917369037
927 => 0.050445286659713
928 => 0.053843184818614
929 => 0.053673435428956
930 => 0.05520788724016
1001 => 0.055148261264452
1002 => 0.054710610751425
1003 => 0.052864235226981
1004 => 0.053600167602545
1005 => 0.051335082139842
1006 => 0.053032238179339
1007 => 0.052257727037843
1008 => 0.052770375183311
1009 => 0.05184858759414
1010 => 0.052358742905664
1011 => 0.050147306374721
1012 => 0.048082298057877
1013 => 0.048913317685926
1014 => 0.049816731060236
1015 => 0.051775561441189
1016 => 0.050608898226293
1017 => 0.05102847443479
1018 => 0.049622964372535
1019 => 0.046722995650002
1020 => 0.046739409158036
1021 => 0.046293312149327
1022 => 0.045907819202572
1023 => 0.050742903530789
1024 => 0.050141584363203
1025 => 0.049183460968362
1026 => 0.050465947206667
1027 => 0.050805056923868
1028 => 0.050814710900785
1029 => 0.051750379754491
1030 => 0.052249746389442
1031 => 0.052337761923231
1101 => 0.053810057081001
1102 => 0.054303550997843
1103 => 0.056336182599441
1104 => 0.052207378619347
1105 => 0.052122348618411
1106 => 0.050483994418091
1107 => 0.049444924282892
1108 => 0.050555140439211
1109 => 0.051538640394091
1110 => 0.050514554503184
1111 => 0.050648278500904
1112 => 0.049273526863253
1113 => 0.049764935885636
1114 => 0.050188203535657
1115 => 0.049954500017838
1116 => 0.049604634540285
1117 => 0.051458004613477
1118 => 0.051353430210531
1119 => 0.053079331031481
1120 => 0.054424794141763
1121 => 0.056836104565689
1122 => 0.054319776433867
1123 => 0.054228071435245
1124 => 0.05512450250672
1125 => 0.054303413758916
1126 => 0.054822313504508
1127 => 0.056752501794515
1128 => 0.056793283631532
1129 => 0.056110135317069
1130 => 0.056068565680049
1201 => 0.056199771786665
1202 => 0.056968250051266
1203 => 0.056699720132663
1204 => 0.057010469752816
1205 => 0.057399066911185
1206 => 0.05900646951998
1207 => 0.059394008847124
1208 => 0.058452489198267
1209 => 0.05853749788081
1210 => 0.058185343686845
1211 => 0.057845167147954
1212 => 0.058609834328587
1213 => 0.060007278630765
1214 => 0.059998585202289
1215 => 0.060322765117959
1216 => 0.06052472651977
1217 => 0.059657760338416
1218 => 0.059093397233584
1219 => 0.059309809959334
1220 => 0.059655858620664
1221 => 0.059197591042392
1222 => 0.056368951259106
1223 => 0.057226979875146
1224 => 0.057084161957981
1225 => 0.056880771876686
1226 => 0.057743526285054
1227 => 0.057660311517663
1228 => 0.05516770616152
1229 => 0.055327274669182
1230 => 0.055177410050979
1231 => 0.055661653291811
]
'min_raw' => 0.045907819202572
'max_raw' => 0.10283918213822
'avg_raw' => 0.074373500670395
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.0459078'
'max' => '$0.102839'
'avg' => '$0.074373'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.011194859671589
'max_diff' => -0.074731101256399
'year' => 2034
]
9 => [
'items' => [
101 => 0.054277263034761
102 => 0.054703092153818
103 => 0.054970168185392
104 => 0.055127478019763
105 => 0.055695789009875
106 => 0.055629104274607
107 => 0.055691643793101
108 => 0.056534298962899
109 => 0.060796159647403
110 => 0.061028123321195
111 => 0.059885849354715
112 => 0.060342165273966
113 => 0.059466138494326
114 => 0.060054221140368
115 => 0.06045657235111
116 => 0.058638424597455
117 => 0.058530765687165
118 => 0.057651123233385
119 => 0.058123793262551
120 => 0.057371741259971
121 => 0.057556268515742
122 => 0.057040314221809
123 => 0.057968929225413
124 => 0.059007265091625
125 => 0.059269589736556
126 => 0.058579526533603
127 => 0.058079875297283
128 => 0.057202652321656
129 => 0.058661493680313
130 => 0.059088103350969
131 => 0.058659252881327
201 => 0.058559878856942
202 => 0.0583715652603
203 => 0.058599830476686
204 => 0.059085779943084
205 => 0.058856615148808
206 => 0.059007982532791
207 => 0.058431126154416
208 => 0.059658047340296
209 => 0.061606693458136
210 => 0.061612958674041
211 => 0.061383792644482
212 => 0.061290022842637
213 => 0.061525161095922
214 => 0.061652713952453
215 => 0.062413107946597
216 => 0.063229040997746
217 => 0.067036644527978
218 => 0.065967484693061
219 => 0.06934581706043
220 => 0.072017639341465
221 => 0.072818802018919
222 => 0.072081770053278
223 => 0.069560423512506
224 => 0.069436714222497
225 => 0.073204670439462
226 => 0.072140050224842
227 => 0.072013417037906
228 => 0.070666253879056
301 => 0.07146259415534
302 => 0.071288422855309
303 => 0.07101348493746
304 => 0.072532846711064
305 => 0.07537695631689
306 => 0.074933675162931
307 => 0.074602786344721
308 => 0.073152927863615
309 => 0.074026066506857
310 => 0.073715158559867
311 => 0.075051016407192
312 => 0.074259683811311
313 => 0.072131984679633
314 => 0.072470827779341
315 => 0.072419612326478
316 => 0.073473622717235
317 => 0.073157234960076
318 => 0.07235783253905
319 => 0.075367235459451
320 => 0.075171821572979
321 => 0.075448873786163
322 => 0.075570840738531
323 => 0.077402611264551
324 => 0.078153029038943
325 => 0.078323387011642
326 => 0.07903622585792
327 => 0.078305650931765
328 => 0.08122847152748
329 => 0.083171976672321
330 => 0.085429457909913
331 => 0.088728244751789
401 => 0.089968619119819
402 => 0.089744556592395
403 => 0.092245659127372
404 => 0.096740084786339
405 => 0.09065300851862
406 => 0.097062714609104
407 => 0.095033475664472
408 => 0.090222186631199
409 => 0.089912396338828
410 => 0.093170657132375
411 => 0.10039716597648
412 => 0.098587007473417
413 => 0.10040012674732
414 => 0.098285026804811
415 => 0.098179994265204
416 => 0.1002974010641
417 => 0.10524483746357
418 => 0.10289449588206
419 => 0.099524704897575
420 => 0.10201290612077
421 => 0.099857395949086
422 => 0.09500042824298
423 => 0.098585623279324
424 => 0.096188305458997
425 => 0.096887970247393
426 => 0.10192677573161
427 => 0.10132049332472
428 => 0.10210507889947
429 => 0.10072030589622
430 => 0.099426709552518
501 => 0.097012115913278
502 => 0.096297273774726
503 => 0.096494830424496
504 => 0.096297175875462
505 => 0.094946232925568
506 => 0.094654496924163
507 => 0.094168257473906
508 => 0.094318963411485
509 => 0.093404690990635
510 => 0.0951301119471
511 => 0.095450365280978
512 => 0.096705982764926
513 => 0.096836345137461
514 => 0.10033322195766
515 => 0.098407200967723
516 => 0.099699342132425
517 => 0.09958376086455
518 => 0.090326461853655
519 => 0.091602035979515
520 => 0.093586429022143
521 => 0.09269246264622
522 => 0.091428603346582
523 => 0.090407969198275
524 => 0.088861604098391
525 => 0.091038083281167
526 => 0.09389992196376
527 => 0.096908926089204
528 => 0.10052404738817
529 => 0.099717194398888
530 => 0.096841343911146
531 => 0.096970352463216
601 => 0.097767832569119
602 => 0.096735023373267
603 => 0.096430427778579
604 => 0.097725985811792
605 => 0.097734907607941
606 => 0.096546535808952
607 => 0.09522587802412
608 => 0.09522034441978
609 => 0.09498534612301
610 => 0.098326832479755
611 => 0.10016431211359
612 => 0.10037497619236
613 => 0.1001501327426
614 => 0.1002366660627
615 => 0.099167477149871
616 => 0.10161132594647
617 => 0.10385404327383
618 => 0.10325294712143
619 => 0.10235181853813
620 => 0.1016340262173
621 => 0.10308385806241
622 => 0.10301929933259
623 => 0.10383445509448
624 => 0.10379747492055
625 => 0.10352336869739
626 => 0.10325295691062
627 => 0.10432510907917
628 => 0.10401634647287
629 => 0.10370710427295
630 => 0.10308687169841
701 => 0.10317117160626
702 => 0.10227019861552
703 => 0.10185336728428
704 => 0.095585224180685
705 => 0.09391017152592
706 => 0.09443717718995
707 => 0.094610681138245
708 => 0.093881696076252
709 => 0.094926873394252
710 => 0.094763983616358
711 => 0.095397692454809
712 => 0.095001778684984
713 => 0.095018027124198
714 => 0.096182325103537
715 => 0.096520325760217
716 => 0.09634841589823
717 => 0.09646881567284
718 => 0.099243377661172
719 => 0.098848923671929
720 => 0.098639377851903
721 => 0.098697423476112
722 => 0.099406383551411
723 => 0.099604853664709
724 => 0.098763921848416
725 => 0.099160510154349
726 => 0.10084913282646
727 => 0.10144005519393
728 => 0.10332599573208
729 => 0.10252481467156
730 => 0.10399541718246
731 => 0.10851554793562
801 => 0.1121265411505
802 => 0.10880572255949
803 => 0.1154368517414
804 => 0.12060013698851
805 => 0.12040196150082
806 => 0.11950162328905
807 => 0.11362336030826
808 => 0.10821409507337
809 => 0.11273917513189
810 => 0.11275071049155
811 => 0.11236200210143
812 => 0.10994776767431
813 => 0.11227799197652
814 => 0.1124629567195
815 => 0.11235942564953
816 => 0.11050843777472
817 => 0.10768232140964
818 => 0.10823453778261
819 => 0.10913907946645
820 => 0.10742659335178
821 => 0.10687935027496
822 => 0.10789677927203
823 => 0.11117514749037
824 => 0.11055539096898
825 => 0.11053920662158
826 => 0.11319078783772
827 => 0.111292827934
828 => 0.10824150299952
829 => 0.10747100321153
830 => 0.10473624803502
831 => 0.1066251531763
901 => 0.10669313150958
902 => 0.10565859746784
903 => 0.10832544973536
904 => 0.10830087422223
905 => 0.11083265354166
906 => 0.11567246470753
907 => 0.11424109439314
908 => 0.11257656645015
909 => 0.1127575467899
910 => 0.11474245441949
911 => 0.11354233395561
912 => 0.11397390564196
913 => 0.11474180118406
914 => 0.11520509163038
915 => 0.11269088642431
916 => 0.11210470492244
917 => 0.11090558329137
918 => 0.11059275484048
919 => 0.1115694143885
920 => 0.11131209910349
921 => 0.10668741819389
922 => 0.10620411330736
923 => 0.10621893557822
924 => 0.10500364246114
925 => 0.10315002875381
926 => 0.10802121490314
927 => 0.10762999048314
928 => 0.10719810900183
929 => 0.10725101201901
930 => 0.10936542882662
1001 => 0.1081389602976
1002 => 0.11139972789624
1003 => 0.1107294121056
1004 => 0.11004190524427
1005 => 0.10994687085406
1006 => 0.10968223936778
1007 => 0.10877471953628
1008 => 0.10767883480625
1009 => 0.10695523678357
1010 => 0.098660552300421
1011 => 0.10019999749253
1012 => 0.10197098886122
1013 => 0.10258232798488
1014 => 0.10153659011047
1015 => 0.10881601164141
1016 => 0.11014603210136
1017 => 0.10611731337307
1018 => 0.10536370459051
1019 => 0.10886541810773
1020 => 0.10675345678978
1021 => 0.10770447284193
1022 => 0.10564889631514
1023 => 0.1098256691201
1024 => 0.10979384910934
1025 => 0.10816899015151
1026 => 0.10954230981611
1027 => 0.10930366172865
1028 => 0.10746919996712
1029 => 0.10988382483001
1030 => 0.10988502245382
1031 => 0.1083211310344
1101 => 0.10649484823636
1102 => 0.10616835200695
1103 => 0.10592238095668
1104 => 0.10764397904187
1105 => 0.10918755850175
1106 => 0.11205977719078
1107 => 0.11278192121144
1108 => 0.11560049739991
1109 => 0.11392217251366
1110 => 0.11466615219779
1111 => 0.11547384738726
1112 => 0.1158610861631
1113 => 0.11523010135825
1114 => 0.11960851035119
1115 => 0.11997818222118
1116 => 0.12010213000153
1117 => 0.11862575512396
1118 => 0.11993712156509
1119 => 0.11932357663517
1120 => 0.12091985009512
1121 => 0.12117016615588
1122 => 0.12095815735767
1123 => 0.12103761162632
1124 => 0.11730141195513
1125 => 0.11710767029215
1126 => 0.11446598897021
1127 => 0.11554249363522
1128 => 0.11353001976219
1129 => 0.1141681959581
1130 => 0.1144494979445
1201 => 0.11430256175055
1202 => 0.11560335759381
1203 => 0.11449741539201
1204 => 0.11157865208772
1205 => 0.10865909356833
1206 => 0.10862244088934
1207 => 0.10785377266567
1208 => 0.10729816632857
1209 => 0.10740519582029
1210 => 0.10778238170919
1211 => 0.10727624359902
1212 => 0.10738425382668
1213 => 0.10917794327418
1214 => 0.10953765490086
1215 => 0.10831521424497
1216 => 0.10340693861423
1217 => 0.10220243546297
1218 => 0.10306820844176
1219 => 0.10265442472082
1220 => 0.082850132599054
1221 => 0.087502857271845
1222 => 0.084738366262873
1223 => 0.086012370907923
1224 => 0.083190541449239
1225 => 0.084537266371677
1226 => 0.084288575453022
1227 => 0.091770019042738
1228 => 0.091653206591474
1229 => 0.091709118530316
1230 => 0.089040296011567
1231 => 0.093291802750363
]
'min_raw' => 0.054277263034761
'max_raw' => 0.12117016615588
'avg_raw' => 0.087723714595321
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.054277'
'max' => '$0.12117'
'avg' => '$0.087723'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0083694438321881
'max_diff' => 0.018330984017665
'year' => 2035
]
10 => [
'items' => [
101 => 0.095386247849131
102 => 0.0949986218032
103 => 0.095096178927886
104 => 0.093419824303572
105 => 0.091725349307409
106 => 0.089845915758832
107 => 0.093337670987081
108 => 0.092949447411949
109 => 0.093839892614868
110 => 0.096104545476206
111 => 0.096438024212617
112 => 0.096886223016162
113 => 0.096725575650055
114 => 0.10055284766168
115 => 0.10008933976792
116 => 0.10120626043156
117 => 0.098908669885473
118 => 0.096308728093276
119 => 0.096802892029471
120 => 0.0967553000686
121 => 0.096149399783202
122 => 0.095602420097177
123 => 0.094691853030515
124 => 0.097573021968002
125 => 0.097456051770772
126 => 0.09934966330094
127 => 0.099014949069421
128 => 0.096779645512877
129 => 0.096859479816698
130 => 0.09739640387695
131 => 0.099254704179974
201 => 0.099806374232645
202 => 0.099550818683997
203 => 0.10015569971206
204 => 0.10063377301365
205 => 0.10021573835819
206 => 0.1061342275224
207 => 0.10367645818579
208 => 0.1048743578594
209 => 0.10516004987312
210 => 0.10442825578743
211 => 0.10458695572104
212 => 0.10482734287731
213 => 0.10628692661754
214 => 0.11011729668586
215 => 0.1118137415149
216 => 0.11691757948421
217 => 0.1116728753875
218 => 0.11136167635115
219 => 0.11228103169056
220 => 0.11527752487466
221 => 0.11770590115408
222 => 0.11851153366235
223 => 0.11861801129786
224 => 0.12012943144082
225 => 0.12099574928044
226 => 0.11994590528117
227 => 0.11905627241503
228 => 0.11586971791382
229 => 0.11623857027404
301 => 0.11877959726263
302 => 0.12236894754976
303 => 0.12544898350436
304 => 0.12437046226315
305 => 0.13259881801626
306 => 0.13341462587937
307 => 0.13330190761091
308 => 0.13516043933154
309 => 0.13147163234949
310 => 0.12989459589739
311 => 0.11924862113845
312 => 0.12223970580204
313 => 0.12658742302082
314 => 0.12601198634382
315 => 0.12285455788472
316 => 0.12544658831174
317 => 0.12458958199229
318 => 0.1239136255509
319 => 0.12701031304948
320 => 0.12360537793988
321 => 0.12655345618847
322 => 0.1227725153407
323 => 0.12437538885733
324 => 0.12346552032702
325 => 0.12405431677543
326 => 0.12061222476914
327 => 0.12246949406367
328 => 0.12053495626035
329 => 0.12053403903755
330 => 0.12049133400832
331 => 0.12276730915487
401 => 0.12284152862269
402 => 0.12115957955058
403 => 0.12091718441231
404 => 0.12181344628294
405 => 0.12076415836378
406 => 0.12125511357702
407 => 0.12077902889705
408 => 0.12067185220771
409 => 0.11981785011245
410 => 0.11944992252854
411 => 0.11959419641452
412 => 0.11910171526339
413 => 0.11880497755601
414 => 0.12043230540954
415 => 0.11956288978362
416 => 0.12029905499569
417 => 0.11946010182508
418 => 0.11655192462122
419 => 0.11487940115786
420 => 0.10938612400794
421 => 0.11094401059327
422 => 0.11197689101109
423 => 0.11163552403917
424 => 0.11236891238635
425 => 0.11241393647453
426 => 0.11217550444685
427 => 0.11189943070384
428 => 0.11176505327357
429 => 0.11276659254541
430 => 0.11334801980297
501 => 0.11208055437918
502 => 0.11178360496411
503 => 0.11306508248625
504 => 0.11384678303446
505 => 0.1196184206829
506 => 0.11919083912376
507 => 0.12026398492856
508 => 0.1201431651797
509 => 0.12126799294867
510 => 0.12310661096324
511 => 0.11936818645393
512 => 0.12001704768376
513 => 0.1198579618946
514 => 0.12159481882609
515 => 0.12160024110385
516 => 0.12055890861098
517 => 0.12112343184905
518 => 0.12080833046445
519 => 0.12137776125494
520 => 0.11918512851135
521 => 0.12185551851296
522 => 0.12336945756774
523 => 0.12339047861299
524 => 0.12410807370959
525 => 0.12483719188804
526 => 0.12623667073878
527 => 0.12479816118247
528 => 0.12221042252675
529 => 0.12239724889934
530 => 0.12088005867231
531 => 0.12090556291413
601 => 0.1207694192725
602 => 0.12117799658946
603 => 0.11927478825613
604 => 0.11972146744788
605 => 0.11909611396368
606 => 0.12001568828741
607 => 0.11902637832616
608 => 0.11985788517861
609 => 0.12021673597124
610 => 0.12154090312155
611 => 0.11883079776141
612 => 0.11330470947407
613 => 0.11446636022941
614 => 0.11274818751657
615 => 0.11290721094268
616 => 0.11322846357184
617 => 0.11218717869344
618 => 0.11238582303358
619 => 0.11237872605991
620 => 0.11231756817493
621 => 0.11204668976173
622 => 0.11165386247092
623 => 0.11321876549162
624 => 0.11348467300897
625 => 0.11407575248108
626 => 0.11583440405702
627 => 0.11565867329272
628 => 0.11594529746029
629 => 0.11531959851181
630 => 0.11293623532236
701 => 0.11306566341025
702 => 0.11145169308027
703 => 0.11403447963104
704 => 0.1134228416847
705 => 0.11302851472175
706 => 0.1129209189565
707 => 0.11468392988954
708 => 0.11521145039251
709 => 0.11488273501564
710 => 0.11420853018752
711 => 0.11550320276828
712 => 0.11584960253304
713 => 0.11592714866564
714 => 0.11822106024989
715 => 0.11605535284102
716 => 0.11657666013961
717 => 0.12064375086953
718 => 0.11695546079765
719 => 0.11890923030741
720 => 0.11881360345683
721 => 0.11981308582607
722 => 0.11873161672985
723 => 0.11874502283543
724 => 0.11963249546851
725 => 0.11838620021188
726 => 0.11807759997965
727 => 0.11765127096906
728 => 0.11858214476675
729 => 0.11914016150866
730 => 0.12363736663036
731 => 0.12654276623644
801 => 0.1264166351771
802 => 0.12756923695207
803 => 0.12704997929582
804 => 0.12537315935055
805 => 0.12823528653073
806 => 0.12732958973443
807 => 0.1274042542779
808 => 0.12740147525986
809 => 0.12800368445201
810 => 0.12757696404771
811 => 0.12673585432888
812 => 0.12729422221319
813 => 0.1289523752094
814 => 0.13409933298798
815 => 0.136979638749
816 => 0.13392593496455
817 => 0.13603233894434
818 => 0.13476924714495
819 => 0.13453970579127
820 => 0.13586268315261
821 => 0.13718797621069
822 => 0.13710356077229
823 => 0.13614146606668
824 => 0.13559800317973
825 => 0.13971328623314
826 => 0.14274535668488
827 => 0.14253858980733
828 => 0.14345119156065
829 => 0.1461306185341
830 => 0.14637559175688
831 => 0.14634473076145
901 => 0.14573753906848
902 => 0.1483757828914
903 => 0.15057665230397
904 => 0.14559699173501
905 => 0.14749318129113
906 => 0.14834444187428
907 => 0.14959434496798
908 => 0.15170314099513
909 => 0.15399385281114
910 => 0.1543177845783
911 => 0.15408793948794
912 => 0.15257715346764
913 => 0.1550836776706
914 => 0.15655194076346
915 => 0.15742625783466
916 => 0.15964338045473
917 => 0.14834969896984
918 => 0.14035546988244
919 => 0.13910705557237
920 => 0.14164575516336
921 => 0.14231518999975
922 => 0.1420453416566
923 => 0.13304711001523
924 => 0.13905968174501
925 => 0.14552870337487
926 => 0.14577720484159
927 => 0.14901573233036
928 => 0.15007032963243
929 => 0.15267776874439
930 => 0.15251467271801
1001 => 0.15314954264835
1002 => 0.15300359704578
1003 => 0.15783332893961
1004 => 0.16316124044062
1005 => 0.16297675180707
1006 => 0.16221080149181
1007 => 0.1633483683239
1008 => 0.16884734396665
1009 => 0.16834108640875
1010 => 0.16883287250333
1011 => 0.17531647469481
1012 => 0.1837460798254
1013 => 0.17982968192372
1014 => 0.18832713845722
1015 => 0.19367583691423
1016 => 0.20292585782991
1017 => 0.20176770965395
1018 => 0.20536867491663
1019 => 0.19969438270617
1020 => 0.18666506082729
1021 => 0.18460312076572
1022 => 0.18873117698563
1023 => 0.19887960039244
1024 => 0.18841156701738
1025 => 0.19052923653555
1026 => 0.18991934757186
1027 => 0.18988684918084
1028 => 0.19112718058535
1029 => 0.18932801519178
1030 => 0.18199789171469
1031 => 0.18535724410755
1101 => 0.18406003681931
1102 => 0.18549938501882
1103 => 0.19326695361921
1104 => 0.18983272638527
1105 => 0.18621504696828
1106 => 0.19075241978451
1107 => 0.19653005459004
1108 => 0.19616850058732
1109 => 0.19546693470419
1110 => 0.19942162485459
1111 => 0.20595361436757
1112 => 0.20771918488527
1113 => 0.20902249294593
1114 => 0.20920219710793
1115 => 0.21105326166199
1116 => 0.20109962102644
1117 => 0.21689630434269
1118 => 0.21962395517683
1119 => 0.21911126986956
1120 => 0.22214293897462
1121 => 0.22125094501788
1122 => 0.21995858572415
1123 => 0.22476442611018
1124 => 0.21925491791891
1125 => 0.21143486466921
1126 => 0.20714462879331
1127 => 0.21279435747815
1128 => 0.21624444963763
1129 => 0.21852474108797
1130 => 0.21921475590305
1201 => 0.2018722938146
1202 => 0.19252566860596
1203 => 0.19851674820542
1204 => 0.20582627879899
1205 => 0.20105901621493
1206 => 0.2012458838826
1207 => 0.19444902025229
1208 => 0.20642765041326
1209 => 0.20468246475494
1210 => 0.21373649103747
1211 => 0.21157567500204
1212 => 0.21895888196016
1213 => 0.21701463612988
1214 => 0.22508509187006
1215 => 0.22830461516369
1216 => 0.23371069585248
1217 => 0.23768743081385
1218 => 0.24002264564599
1219 => 0.23988244810664
1220 => 0.24913573267099
1221 => 0.24367939404853
1222 => 0.23682494677845
1223 => 0.23670097145284
1224 => 0.24025098682228
1225 => 0.24769084513748
1226 => 0.24961989215308
1227 => 0.25069796626936
1228 => 0.24904685823225
1229 => 0.24312439371688
1230 => 0.24056710356672
1231 => 0.24274598886649
]
'min_raw' => 0.089845915758832
'max_raw' => 0.25069796626936
'avg_raw' => 0.1702719410141
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.089845'
'max' => '$0.250697'
'avg' => '$0.170271'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.035568652724072
'max_diff' => 0.12952780011348
'year' => 2036
]
11 => [
'items' => [
101 => 0.24008139937862
102 => 0.24468122838644
103 => 0.25099777608462
104 => 0.24969343396328
105 => 0.25405365411702
106 => 0.2585660232676
107 => 0.26501891381611
108 => 0.26670593835534
109 => 0.26949452576688
110 => 0.2723648982166
111 => 0.27328678448874
112 => 0.27504695142678
113 => 0.27503767447817
114 => 0.28034205601884
115 => 0.28619295312121
116 => 0.28840153132878
117 => 0.29348003513536
118 => 0.28478327533858
119 => 0.29137986754562
120 => 0.29733015883978
121 => 0.29023597625717
122 => 0.30001365421475
123 => 0.30039329929315
124 => 0.30612548924156
125 => 0.30031481657412
126 => 0.29686445769252
127 => 0.30682551450044
128 => 0.31164535611945
129 => 0.31019358059863
130 => 0.29914549720222
131 => 0.29271503879093
201 => 0.27588528878578
202 => 0.29582085465798
203 => 0.30553088726589
204 => 0.29912035056354
205 => 0.30235345239756
206 => 0.31999220766716
207 => 0.32670790364899
208 => 0.32531108583103
209 => 0.32554712504869
210 => 0.32917079270198
211 => 0.34524013066691
212 => 0.33561101087399
213 => 0.34297211215944
214 => 0.34687641373882
215 => 0.35050294663484
216 => 0.34159732801971
217 => 0.33001124905094
218 => 0.32634145149103
219 => 0.29848294902636
220 => 0.29703279298973
221 => 0.29621877646215
222 => 0.29108651740064
223 => 0.28705396762237
224 => 0.28384713431972
225 => 0.27543144609206
226 => 0.27827149382378
227 => 0.26485864327954
228 => 0.27343970973551
301 => 0.2520324764023
302 => 0.26986105644157
303 => 0.26015777089226
304 => 0.26667326616959
305 => 0.26665053422036
306 => 0.25465344167513
307 => 0.24773376906798
308 => 0.25214325377094
309 => 0.25687057139786
310 => 0.25763756277822
311 => 0.26376665347712
312 => 0.26547715094682
313 => 0.26029426375814
314 => 0.25158885907359
315 => 0.25361092603267
316 => 0.24769279194559
317 => 0.23732148959573
318 => 0.24477034000897
319 => 0.24731370504288
320 => 0.24843699993417
321 => 0.2382380152252
322 => 0.23503327279891
323 => 0.23332709482155
324 => 0.25027229822103
325 => 0.25120059471488
326 => 0.24645129860441
327 => 0.26791856737048
328 => 0.26305986329387
329 => 0.26848822615884
330 => 0.25342744465044
331 => 0.25400278678609
401 => 0.24687277146028
402 => 0.25086510361494
403 => 0.2480434519269
404 => 0.25054256262983
405 => 0.25204051928096
406 => 0.25916936464141
407 => 0.26994245640436
408 => 0.2581045528706
409 => 0.25294660877904
410 => 0.25614656828407
411 => 0.26466848213168
412 => 0.27757961783956
413 => 0.26993596563968
414 => 0.27332808868835
415 => 0.27406911666944
416 => 0.26843297052063
417 => 0.27778743058738
418 => 0.28280056173266
419 => 0.28794299696638
420 => 0.29240802939206
421 => 0.28588899524946
422 => 0.29286529624888
423 => 0.28724362912625
424 => 0.28220041255998
425 => 0.28220806103777
426 => 0.27904437761611
427 => 0.27291434233688
428 => 0.27178386977978
429 => 0.27766473078478
430 => 0.28238062439118
501 => 0.28276904797621
502 => 0.28538000898807
503 => 0.28692514881986
504 => 0.30206961968709
505 => 0.30816085115152
506 => 0.31560909368512
507 => 0.3185106039119
508 => 0.32724310944553
509 => 0.3201909020077
510 => 0.31866511256806
511 => 0.29748291052426
512 => 0.30095149492228
513 => 0.30650503321213
514 => 0.29757448632516
515 => 0.30323886279641
516 => 0.30435713069973
517 => 0.29727102975926
518 => 0.30105602244391
519 => 0.2910042040456
520 => 0.270161558577
521 => 0.27781063440998
522 => 0.28344292887414
523 => 0.27540495021688
524 => 0.28981271584728
525 => 0.28139599660265
526 => 0.27872830067588
527 => 0.26832066776327
528 => 0.2732326698715
529 => 0.27987622305596
530 => 0.27577127958392
531 => 0.28428965364877
601 => 0.29635394309199
602 => 0.30495167419009
603 => 0.30561170122535
604 => 0.30008393613252
605 => 0.3089422149715
606 => 0.30900673786204
607 => 0.29901456314453
608 => 0.29289441176673
609 => 0.29150390049678
610 => 0.2949776702749
611 => 0.29919546807881
612 => 0.30584575964908
613 => 0.30986439156434
614 => 0.32034285228164
615 => 0.32317802331073
616 => 0.32629301670155
617 => 0.33045560850008
618 => 0.33545386722084
619 => 0.32451796169084
620 => 0.32495246560463
621 => 0.31476910179301
622 => 0.30388671711821
623 => 0.31214509057799
624 => 0.32294181531126
625 => 0.32046503472813
626 => 0.32018634631649
627 => 0.32065502292315
628 => 0.31878761124755
629 => 0.31034137744836
630 => 0.30609973171063
701 => 0.31157253687154
702 => 0.31448108924803
703 => 0.31899200033155
704 => 0.31843593532672
705 => 0.33005555784137
706 => 0.33457059179142
707 => 0.3334154528978
708 => 0.3336280262542
709 => 0.34180227955462
710 => 0.35089373038811
711 => 0.35940907381627
712 => 0.36807124689391
713 => 0.35762865915845
714 => 0.35232655711565
715 => 0.35779697302104
716 => 0.35489429333996
717 => 0.37157395177814
718 => 0.37272881513906
719 => 0.38940726744809
720 => 0.40523710472252
721 => 0.39529466755144
722 => 0.40466993798656
723 => 0.41481005733915
724 => 0.43437199274538
725 => 0.42778422109774
726 => 0.4227380912592
727 => 0.4179695229445
728 => 0.42789215661849
729 => 0.44065746632214
730 => 0.44340699176768
731 => 0.44786227338903
801 => 0.4431780895301
802 => 0.44881967304226
803 => 0.46873694187758
804 => 0.46335512002368
805 => 0.45571206782011
806 => 0.47143483869076
807 => 0.47712484834812
808 => 0.5170603160047
809 => 0.56748049357301
810 => 0.54660620898299
811 => 0.53364886692901
812 => 0.53669414966396
813 => 0.55510589168119
814 => 0.56101915885764
815 => 0.54494486024661
816 => 0.55062257426225
817 => 0.58190733670893
818 => 0.59869060802623
819 => 0.57589667128328
820 => 0.51300910383012
821 => 0.45502389459362
822 => 0.47040418319114
823 => 0.46866053577011
824 => 0.50227211016547
825 => 0.46322676535235
826 => 0.46388418882163
827 => 0.49819081498022
828 => 0.48903839528558
829 => 0.47421264753361
830 => 0.45513213895937
831 => 0.41986005412645
901 => 0.38861858495509
902 => 0.44989030048079
903 => 0.44724815269194
904 => 0.44342193114931
905 => 0.45193677315201
906 => 0.49328242893703
907 => 0.49232927774836
908 => 0.48626581618803
909 => 0.49086489834064
910 => 0.47340640619602
911 => 0.47790585714417
912 => 0.45501470944022
913 => 0.46536246422118
914 => 0.47418083813751
915 => 0.47595125725947
916 => 0.4799401019411
917 => 0.44585586086734
918 => 0.46115868444871
919 => 0.4701476596221
920 => 0.42953514276699
921 => 0.46934488074308
922 => 0.44526253006083
923 => 0.43708861853451
924 => 0.44809371357375
925 => 0.44380501733415
926 => 0.44011784814804
927 => 0.43806034438858
928 => 0.44614127159738
929 => 0.44576428668429
930 => 0.43254232133031
1001 => 0.41529480652231
1002 => 0.42108363862225
1003 => 0.41898050164975
1004 => 0.41135846195134
1005 => 0.41649479641949
1006 => 0.39387697886117
1007 => 0.35496419932395
1008 => 0.38067117341691
1009 => 0.37968148287814
1010 => 0.37918243602959
1011 => 0.39850051657188
1012 => 0.39664352887169
1013 => 0.39327307801216
1014 => 0.41129656097817
1015 => 0.40471774724552
1016 => 0.42499210100608
1017 => 0.43834610165577
1018 => 0.43495909513435
1019 => 0.44751859729087
1020 => 0.42121700162203
1021 => 0.42995333666636
1022 => 0.43175388321096
1023 => 0.41107415399608
1024 => 0.39694735502519
1025 => 0.39600525859113
1026 => 0.37151133596843
1027 => 0.38459579172544
1028 => 0.39610957132004
1029 => 0.39059536439962
1030 => 0.38884973122086
1031 => 0.3977677925495
1101 => 0.39846080229277
1102 => 0.38266010670443
1103 => 0.3859455716602
1104 => 0.39964650668886
1105 => 0.38560034325046
1106 => 0.35831094211741
1107 => 0.35154279333092
1108 => 0.35063979752107
1109 => 0.33228404122348
1110 => 0.351995073396
1111 => 0.34339067962987
1112 => 0.3705718564406
1113 => 0.35504611402189
1114 => 0.35437683029712
1115 => 0.35336510978457
1116 => 0.33756555207248
1117 => 0.34102465109716
1118 => 0.35252322309083
1119 => 0.35662604311885
1120 => 0.35619808537651
1121 => 0.35246687381503
1122 => 0.35417500336098
1123 => 0.34867252294169
1124 => 0.34672948258141
1125 => 0.34059671272901
1126 => 0.3315832352669
1127 => 0.33283661459087
1128 => 0.31497855723375
1129 => 0.30524853978676
1130 => 0.30255539919699
1201 => 0.29895401904627
1202 => 0.30296218466793
1203 => 0.31492796760101
1204 => 0.30049469470125
1205 => 0.27574986069099
1206 => 0.27723706737815
1207 => 0.28057837924858
1208 => 0.27435186668303
1209 => 0.26845899509133
1210 => 0.27358236883653
1211 => 0.263097656461
1212 => 0.28184540664785
1213 => 0.28133833254526
1214 => 0.28832633446183
1215 => 0.29269607546849
1216 => 0.28262523716858
1217 => 0.2800924485706
1218 => 0.28153524006483
1219 => 0.25768911052289
1220 => 0.28637759693638
1221 => 0.2866256961582
1222 => 0.28450131999558
1223 => 0.29977705335312
1224 => 0.33201361535825
1225 => 0.31988492401922
1226 => 0.31518832814111
1227 => 0.30626009594363
1228 => 0.3181564352408
1229 => 0.31724298199458
1230 => 0.31311199999832
1231 => 0.31061356919753
]
'min_raw' => 0.23332709482155
'max_raw' => 0.59869060802623
'avg_raw' => 0.41600885142389
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.233327'
'max' => '$0.59869'
'avg' => '$0.4160088'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.14348117906272
'max_diff' => 0.34799264175687
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0073238708895491
]
1 => [
'year' => 2028
'avg' => 0.012569888581377
]
2 => [
'year' => 2029
'avg' => 0.034338670102327
]
3 => [
'year' => 2030
'avg' => 0.026492232845264
]
4 => [
'year' => 2031
'avg' => 0.026018655800321
]
5 => [
'year' => 2032
'avg' => 0.045618891990297
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0073238708895491
'min' => '$0.007323'
'max_raw' => 0.045618891990297
'max' => '$0.045618'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.045618891990297
]
1 => [
'year' => 2033
'avg' => 0.11733648113439
]
2 => [
'year' => 2034
'avg' => 0.074373500670395
]
3 => [
'year' => 2035
'avg' => 0.087723714595321
]
4 => [
'year' => 2036
'avg' => 0.1702719410141
]
5 => [
'year' => 2037
'avg' => 0.41600885142389
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.045618891990297
'min' => '$0.045618'
'max_raw' => 0.41600885142389
'max' => '$0.4160088'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.41600885142389
]
]
]
]
'prediction_2025_max_price' => '$0.012522'
'last_price' => 0.01214213
'sma_50day_nextmonth' => '$0.01139'
'sma_200day_nextmonth' => '$0.01679'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 feb. 2026'
'sma_50day_date_nextmonth' => '4 feb. 2026'
'daily_sma3' => '$0.012052'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.011832'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.011565'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.011762'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.012743'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.01526'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.018288'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.012018'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.011882'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.011748'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.011943'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.013017'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.014813'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.017048'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.016697'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.018698'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.024038'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.038953'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.01210085'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.012397'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.0135081'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.015569'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.0189038'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.024429'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.029815'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '50.16'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 130.14
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.011671'
'vwma_10_action' => 'BUY'
'hma_9' => '0.012153'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 64.82
'cci_20_action' => 'NEUTRAL'
'adx_14' => 28.57
'adx_14_action' => 'SELL'
'ao_5_34' => '-0.000559'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 67.52
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.005745'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 17
'buy_signals' => 17
'sell_pct' => 50
'buy_pct' => 50
'overall_action' => 'neutral'
'overall_action_label' => 'Neutral'
'overall_action_dir' => 0
'last_updated' => 1767712169
'last_updated_date' => '6 de enero de 2026'
]
Predicción de precio de SIX Network para 2026
La previsión del precio de SIX Network para 2026 sugiere que el precio medio podría oscilar entre $0.004195 en el extremo inferior y $0.012522 en el extremo superior. En el mercado de criptomonedas, en comparación con el precio medio de hoy, SIX Network podría potencialmente ganar 3.13% para 2026 si SIX alcanza el objetivo de precio previsto.
Predicción de precio de SIX Network 2027-2032
La predicción del precio de SIX para 2027-2032 está actualmente dentro de un rango de precios de $0.007323 en el extremo inferior y $0.045618 en el extremo superior. Considerando la volatilidad de precios en el mercado, si SIX Network alcanza el objetivo de precio superior, podría ganar 275.71% para 2032 en comparación con el precio de hoy.
| Predicción de Precio de SIX Network | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.004038 | $0.007323 | $0.0106092 |
| 2028 | $0.007288 | $0.012569 | $0.017851 |
| 2029 | $0.01601 | $0.034338 | $0.052666 |
| 2030 | $0.013616 | $0.026492 | $0.039368 |
| 2031 | $0.016098 | $0.026018 | $0.035938 |
| 2032 | $0.024573 | $0.045618 | $0.066664 |
Predicción de precio de SIX Network 2032-2037
La predicción de precio de SIX Network para 2032-2037 se estima actualmente entre $0.045618 en el extremo inferior y $0.4160088 en el extremo superior. Comparado con el precio actual, SIX Network podría potencialmente ganar 3326.16% para 2037 si alcanza el objetivo de precio superior. Tenga en cuenta que esta información es solo para fines generales y no debe considerarse como consejo de inversión a largo plazo.
| Predicción de Precio de SIX Network | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.024573 | $0.045618 | $0.066664 |
| 2033 | $0.0571026 | $0.117336 | $0.17757 |
| 2034 | $0.0459078 | $0.074373 | $0.102839 |
| 2035 | $0.054277 | $0.087723 | $0.12117 |
| 2036 | $0.089845 | $0.170271 | $0.250697 |
| 2037 | $0.233327 | $0.4160088 | $0.59869 |
SIX Network Histograma de precios potenciales
Pronóstico de precio de SIX Network basado en análisis técnico
A fecha de 6 de enero de 2026, el sentimiento general de predicción de precio para SIX Network es Neutral, con 17 indicadores técnicos mostrando señales alcistas y 17 indicando señales bajistas. La predicción de precio de SIX se actualizó por última vez el 6 de enero de 2026.
Promedios Móviles Simples de 50 y 200 días y el Índice de Fuerza Relativa de 14 días - RSI (14) de SIX Network
Según nuestros indicadores técnicos, se proyecta que el SMA de 200 días de SIX Network aumentar durante el próximo mes, alcanzando $0.01679 para el 4 feb. 2026. Se espera que el SMA de 50 días a corto plazo para SIX Network alcance $0.01139 para el 4 feb. 2026.
El oscilador de momento del Índice de Fuerza Relativa (RSI) es una herramienta comúnmente utilizada para identificar si una criptomoneda está sobrevendida (por debajo de 30) o sobrecomprada (por encima de 70). Actualmente, el RSI se encuentra en 50.16, lo que sugiere que el mercado de SIX está en un estado NEUTRAL.
Promedios Móviles y Osciladores Populares de SIX para Sáb, 19 de Oct de 2024
Los promedios móviles (MA) son indicadores ampliamente utilizados en los mercados financieros, diseñados para suavizar los movimientos de precios durante un período establecido. Como indicadores rezagados, se basan en datos históricos de precios. La tabla a continuación resalta dos tipos: el promedio móvil simple (SMA) y el promedio móvil exponencial (EMA).
Promedio Móvil Simple Diario (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 3 | $0.012052 | BUY |
| SMA 5 | $0.011832 | BUY |
| SMA 10 | $0.011565 | BUY |
| SMA 21 | $0.011762 | BUY |
| SMA 50 | $0.012743 | SELL |
| SMA 100 | $0.01526 | SELL |
| SMA 200 | $0.018288 | SELL |
Promedio Móvil Exponencial Diario (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 3 | $0.012018 | BUY |
| EMA 5 | $0.011882 | BUY |
| EMA 10 | $0.011748 | BUY |
| EMA 21 | $0.011943 | BUY |
| EMA 50 | $0.013017 | SELL |
| EMA 100 | $0.014813 | SELL |
| EMA 200 | $0.017048 | SELL |
Promedio Móvil Simple Semanal (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 21 | $0.016697 | SELL |
| SMA 50 | $0.018698 | SELL |
| SMA 100 | $0.024038 | SELL |
| SMA 200 | $0.038953 | SELL |
Promedio Móvil Exponencial Semanal (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 21 | $0.015569 | SELL |
| EMA 50 | $0.0189038 | SELL |
| EMA 100 | $0.024429 | SELL |
| EMA 200 | $0.029815 | SELL |
Osciladores de SIX Network
Un oscilador es una herramienta de análisis técnico que establece límites altos y bajos entre dos extremos, creando un indicador de tendencia que fluctúa dentro de estos límites. Los traders utilizan este indicador para identificar condiciones de sobrecompra o sobreventa a corto plazo.
| Período | Valor | Acción |
|---|---|---|
| RSI (14) | 50.16 | NEUTRAL |
| Stoch RSI (14) | 130.14 | SELL |
| Estocástico Rápido (14) | 100 | SELL |
| Índice de Canal de Materias Primas (20) | 64.82 | NEUTRAL |
| Índice Direccional Medio (14) | 28.57 | SELL |
| Oscilador Asombroso (5, 34) | -0.000559 | NEUTRAL |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Rango Percentil de Williams (14) | -0 | SELL |
| Oscilador Ultimate (7, 14, 28) | 67.52 | NEUTRAL |
| VWMA (10) | 0.011671 | BUY |
| Promedio Móvil de Hull (9) | 0.012153 | BUY |
| Nube Ichimoku B/L (9, 26, 52, 26) | -0.005745 | SELL |
Predicción de precios de SIX Network basada en flujos de dinero globales
Definiciones de flujos de dinero globales utilizadas para la predicción de precios de SIX Network
M0: El total de toda la moneda física, además de cuentas en el banco central que pueden cambiarse por moneda física.
M1: Medir M0 más la cantidad en cuentas a la vista, incluyendo cuentas "de cheques" o "corrientes".
M2: Medir M1 más la mayoría de cuentas de ahorro, cuentas del mercado monetario, y cuentas de certificados de depósito (CD) inferiores a 100 000 $.
Predicciones de precios de SIX Network por parte de empresas de Internet o nichos tecnológicos
| Comparación | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook acción | $0.017061 | $0.023974 | $0.033688 | $0.047337 | $0.066517 | $0.093467 |
| Amazon.com acción | $0.025335 | $0.052863 | $0.1103029 | $0.230153 | $0.480229 | $1.00 |
| Apple acción | $0.017222 | $0.024429 | $0.03465 | $0.049149 | $0.069714 | $0.098885 |
| Netflix acción | $0.019158 | $0.030228 | $0.047696 | $0.075257 | $0.118744 | $0.18736 |
| Google acción | $0.015724 | $0.020362 | $0.026369 | $0.034148 | $0.044221 | $0.057267 |
| Tesla acción | $0.027525 | $0.062397 | $0.14145 | $0.320658 | $0.726909 | $1.64 |
| Kodak acción | $0.0091053 | $0.006828 | $0.00512 | $0.003839 | $0.002879 | $0.002159 |
| Nokia acción | $0.008043 | $0.005328 | $0.003529 | $0.002338 | $0.001549 | $0.001026 |
Este cálculo muestra cuánto puede costar la criptomoneda si asumimos que su capitalización se comportará como la capitalización de algunas empresas de Internet o nichos tecnológicos. Si extrapola los datos, puede obtener una imagen potencial del precio futuro en 2024, 2025, 2026, 2027, 2028, 2029 y 2030.
Resumen de pronósticos y predicciones de SIX Network
Podría preguntarse cosas como: "¿Debo invertir en SIX Network ahora?", "¿Debería comprar SIX hoy?", "¿Será SIX Network una buena o mala inversión a corto plazo?, ¿Lo será a largo plazo?".
Actualizamos el pronóstico de SIX Network regularmente con valores actualizados. Aquí hay algunas predicciones similares. Hacemos un pronóstico de precios futuros para una gran cantidad de monedas digitales, como SIX Network, con métodos de análisis técnico.
Si está tratando de encontrar criptomonedas que ofrezcan un buen rendimiento, debería explorar el máximo de fuentes de información disponibles acerca de SIX Network a fin de tomar una decisión responsable sobre la inversión por sus propios medios.
El precio de SIX Network es de $0.01214 USD hoy, pero dicho precio puede subir y bajar, y su inversión puede perderse porque estos son activos de criptomonedas conllevan un alto riesgo
Predicción de precios de SIX Network basada en el patrón de crecimiento del Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si SIX Network ofrece un 1 % del crecimiento medio anterior anual del Bitcoin | $0.012457 | $0.012781 | $0.013113 | $0.013454 |
| Si SIX Network ofrece un 2 % del crecimiento medio anterior anual del Bitcoin | $0.012773 | $0.013437 | $0.014135 | $0.01487 |
| Si SIX Network ofrece un 5 % del crecimiento medio anterior anual del Bitcoin | $0.01372 | $0.0155033 | $0.017518 | $0.019795 |
| Si SIX Network ofrece un 10 % del crecimiento medio anterior anual del Bitcoin | $0.015298 | $0.019274 | $0.024284 | $0.030597 |
| Si SIX Network ofrece un 20 % del crecimiento medio anterior anual del Bitcoin | $0.018454 | $0.028048 | $0.042629 | $0.06479 |
| Si SIX Network ofrece un 50 % del crecimiento medio anterior anual del Bitcoin | $0.027922 | $0.064212 | $0.147667 | $0.339586 |
| Si SIX Network ofrece un 100 % del crecimiento medio anterior anual del Bitcoin | $0.0437034 | $0.1573026 | $0.566182 | $2.03 |
Cuadro de preguntas
¿Es SIX una buena inversión?
La decisión de adquirir SIX Network depende completamente de su tolerancia individual al riesgo. Como puede discernir, el valor de SIX Network ha experimentado un aumento de 0.658% durante las últimas 24 horas, y SIX Network ha sufrido un declive de durante el período previo de 30 días. Por lo tanto, la determinación de si invertir o no en SIX Network dependerá de si dicha inversión se alinea con sus aspiraciones comerciales.
¿Puede SIX Network subir?
Parece que el valor medio de SIX Network podría potencialmente aumentar hasta $0.012522 para el final de este año. Mirando las perspectivas de SIX Network en un horizonte de cinco años más extendido, la moneda digital podría potencialmente crecer hasta $0.039368. Sin embargo, dada la imprevisibilidad del mercado, es vital realizar una investigación exhaustiva antes de invertir cualquier fondo en un proyecto, red o activo en particular.
¿Cuál será el precio de SIX Network la próxima semana?
Basado en nuestro nuevo pronóstico experimental de SIX Network, el precio de SIX Network aumentará en un 0.86% durante la próxima semana y alcanzará $0.012246 para el 13 de enero de 2026.
¿Cuál será el precio de SIX Network el próximo mes?
Basado en nuestro nuevo pronóstico experimental de SIX Network, el precio de SIX Network disminuirá en un -11.62% durante el próximo mes y alcanzará $0.010731 para el 5 de febrero de 2026.
¿Hasta qué punto puede subir el precio de SIX Network este año en 2026?
Según nuestra predicción más reciente sobre el valor de SIX Network en 2026, se anticipa que SIX fluctúe dentro del rango de $0.004195 y $0.012522. Sin embargo, es crucial tener en cuenta que el mercado de criptomonedas es excepcionalmente inestable, y esta predicción de precios proyectada de SIX Network no considera fluctuaciones de precios repentinas y extremas.
¿Dónde estará SIX Network en 5 años?
El futuro de SIX Network parece estar en una tendencia alcista, con un precio máximo de $0.039368 proyectada después de un período de cinco años. Basado en el pronóstico de SIX Network para 2030, el valor de SIX Network podría potencialmente alcanzar su punto más alto de aproximadamente $0.039368, mientras que su punto más bajo se anticipa que esté alrededor de $0.013616.
¿Cuánto será SIX Network en 2026?
Basado en nuestra nueva simulación experimental de predicción de precios de SIX Network, se espera que el valor de SIX en 2026 crezca en un 3.13% hasta $0.012522 si ocurre lo mejor. El precio estará entre $0.012522 y $0.004195 durante 2026.
¿Cuánto será SIX Network en 2027?
Según nuestra última simulación experimental para la predicción de precios de SIX Network, el valor de SIX podría disminuir en un -12.62% hasta $0.0106092 en 2027, asumiendo las condiciones más favorables. Se proyecta que el precio fluctúe entre $0.0106092 y $0.004038 a lo largo del año.
¿Cuánto será SIX Network en 2028?
Nuestro nuevo modelo experimental de predicción de precios de SIX Network sugiere que el valor de SIX en 2028 podría aumentar en un 47.02% , alcanzando $0.017851 en el mejor escenario. Se espera que el precio oscile entre $0.017851 y $0.007288 durante el año.
¿Cuánto será SIX Network en 2029?
Basado en nuestro modelo de pronóstico experimental, el valor de SIX Network podría experimentar un 333.75% crecimiento en 2029, potencialmente alcanzando $0.052666 bajo condiciones óptimas. El rango de precios previsto para 2029 se encuentra entre $0.052666 y $0.01601.
¿Cuánto será SIX Network en 2030?
Usando nuestra nueva simulación experimental para las predicciones de precios de SIX Network, se espera que el valor de SIX en 2030 aumente en un 224.23% , alcanzando $0.039368 en el mejor escenario. Se pronostica que el precio oscile entre $0.039368 y $0.013616 durante el transcurso de 2030.
¿Cuánto será SIX Network en 2031?
Nuestra simulación experimental indica que el precio de SIX Network podría crecer en un 195.98% en 2031, potencialmente alcanzando $0.035938 bajo condiciones ideales. Es probable que el precio fluctúe entre $0.035938 y $0.016098 durante el año.
¿Cuánto será SIX Network en 2032?
Basado en los hallazgos de nuestra última predicción experimental de precios de SIX Network, SIX podría experimentar un 449.04% aumento en valor, alcanzando $0.066664 si se desarrolla el escenario más positivo en 2032. Se espera que el precio se mantenga dentro de un rango de $0.066664 y $0.024573 a lo largo del año.
¿Cuánto será SIX Network en 2033?
Según nuestra predicción experimental de precios de SIX Network, se anticipa que el valor de SIX aumente en un 1362.43% en 2033, con el precio potencial más alto siendo $0.17757. A lo largo del año, el precio de SIX podría oscilar entre $0.17757 y $0.0571026.
¿Cuánto será SIX Network en 2034?
Los resultados de nuestra nueva simulación de predicción de precios de SIX Network sugieren que SIX podría aumentar en un 746.96% en 2034, alcanzando potencialmente $0.102839 bajo las mejores circunstancias. El rango de precios previsto para el año está entre $0.102839 y $0.0459078.
¿Cuánto será SIX Network en 2035?
Basado en nuestra predicción experimental para el precio de SIX Network, SIX podría crecer en un 897.93% , con el valor potencialmente alcanzando $0.12117 en 2035. El rango de precios esperado para el año está entre $0.12117 y $0.054277.
¿Cuánto será SIX Network en 2036?
Nuestra reciente simulación de predicción de precios de SIX Network sugiere que el valor de SIX podría aumentar en un 1964.7% en 2036, posiblemente alcanzando $0.250697 si las condiciones son óptimas. El rango de precios esperado para 2036 está entre $0.250697 y $0.089845.
¿Cuánto será SIX Network en 2037?
Según la simulación experimental, el valor de SIX Network podría aumentar en un 4830.69% en 2037, con un máximo de $0.59869 bajo condiciones favorables. Se espera que el precio caiga entre $0.59869 y $0.233327 durante el transcurso del año.
Predicciones relacionadas
Predicción de precios de MindAI
Predicción de precios de EML Protocol
Predicción de precios de OpenOcean
Predicción de precios de Unisocks
Predicción de precios de Argentine Football Association Fan Token
Predicción de precios de Trabzonspor Fan Token
Predicción de precios de Lithium Finance
Predicción de precios de Omax
Predicción de precios de Minted
Predicción de precios de PIZA (Ordinals)
Predicción de precios de DappRadar
Predicción de precios de FLO
Predicción de precios de Veloce
Predicción de precios de Orbofi AI
Predicción de precios de Rain Coin
Predicción de precios de Lynex
Predicción de precios de COS
Predicción de precios de ALVA
Predicción de precios de Panther Protocol
Predicción de precios de GemHUBPredicción de precios de DUST Protocol
Predicción de precios de RedFOX Labs
Predicción de precios de Matr1x Fire
Predicción de precios de Shyft Network
Predicción de precios de Celo Euro
¿Cómo leer y predecir los movimientos de precio de SIX Network?
Los traders de SIX Network utilizan indicadores y patrones de gráficos para predecir la dirección del mercado. También identifican niveles clave de soporte y resistencia para estimar cuándo una tendencia bajista podría desacelerar o una tendencia alcista podría estancarse.
Indicadores de predicción de precio de SIX Network
Las medias móviles son herramientas populares para la predicción de precios de SIX Network. Una media móvil simple (SMA) calcula el precio de cierre promedio de SIX durante un período específico, como una SMA de 12 días. Una media móvil exponencial (EMA) da más peso a los precios recientes, reaccionando más rápido a los cambios de precio.
Las medias móviles comúnmente utilizadas en el mercado de criptomonedas incluyen las de 50 días, 100 días y 200 días, que ayudan a identificar niveles clave de resistencia y soporte. Un movimiento de precio de SIX por encima de estas medias se considera alcista, mientras que una caída por debajo indica debilidad.
Los traders también utilizan RSI y niveles de retroceso de Fibonacci para evaluar la dirección futura de SIX.
¿Cómo leer gráficos de SIX Network y predecir movimientos de precio?
La mayoría de los traders prefieren gráficos de velas sobre gráficos lineales simples porque proporcionan información más detallada. Las velas pueden representar la acción del precio de SIX Network en diferentes marcos de tiempo, como 5 minutos para tendencias a corto plazo y semanal para tendencias a largo plazo. Las opciones populares incluyen gráficos de 1 hora, 4 horas y 1 día.
Por ejemplo, un gráfico de velas de 1 hora muestra los precios de apertura, cierre, máximo y mínimo de SIX dentro de cada hora. El color de la vela es crucial: el verde indica que el precio cerró más alto de lo que abrió, mientras que el rojo significa lo contrario. Algunos gráficos usan velas huecas y llenas para transmitir la misma información.
¿Qué afecta el precio de SIX Network?
La acción del precio de SIX Network está impulsada por la oferta y la demanda, influenciada por factores como reducciones a la mitad de recompensas de bloque, hard forks y actualizaciones de protocolo. Los eventos del mundo real, como regulaciones, adopción por empresas y gobiernos y hacks de exchanges de criptomonedas, también impactan el precio de SIX. La capitalización de mercado de SIX Network puede cambiar rápidamente.
Los traders a menudo monitorean la actividad de las "ballenas" de SIX, grandes poseedores de SIX Network, ya que sus acciones pueden influir significativamente en los movimientos de precios en el relativamente pequeño mercado de SIX Network.
Patrones de predicción de precios alcistas y bajistas
Los traders a menudo identifican patrones de velas para obtener una ventaja en las predicciones de precios de criptomonedas. Ciertas formaciones indican tendencias alcistas, mientras que otras sugieren movimientos bajistas.
Patrones de velas alcistas comúnmente seguidos:
- Martillo
- Envolvente Alcista
- Línea Penetrante
- Estrella de la Mañana
- Tres Soldados Blancos
Patrones de velas bajistas comunes:
- Harami Bajista
- Cubierta de Nube Oscura
- Estrella de la Tarde
- Estrella Fugaz
- Hombre Colgado


