Predicción del precio de SIX Network - Pronóstico de SIX
Predicción de precio de SIX Network hasta $0.0125049 para el año 2026
| Año | Precio min. | Precio max. |
|---|---|---|
| 2026 | $0.004189 | $0.0125049 |
| 2027 | $0.004032 | $0.010594 |
| 2028 | $0.007278 | $0.017826 |
| 2029 | $0.015988 | $0.052593 |
| 2030 | $0.013597 | $0.039313 |
| 2031 | $0.016076 | $0.035888 |
| 2032 | $0.024538 | $0.066571 |
| 2033 | $0.057022 | $0.177322 |
| 2034 | $0.045843 | $0.102695 |
| 2035 | $0.0542014 | $0.12100081 |
Calculadora de ganancias de inversión
Si abres una posición corta de $10,000.00 en SIX Network hoy y la cierras el Apr 06, 2026, nuestra previsión indica que podrías obtener una ganancia de alrededor de $3,954.72, equivalente a un ROI del 39.55% en los próximos 90 días.
Predicción del precio a largo plazo de SIX Network para 2027, 2028, 2029, 2030, 2031, 2032 y 2037
[
'name' => 'SIX Network'
'name_with_ticker' => 'SIX Network <small>SIX</small>'
'name_lang' => 'SIX Network'
'name_lang_with_ticker' => 'SIX Network <small>SIX</small>'
'name_with_lang' => 'SIX Network'
'name_with_lang_with_ticker' => 'SIX Network <small>SIX</small>'
'image' => '/uploads/coins/six-network.png?1717202684'
'price_for_sd' => 0.01212
'ticker' => 'SIX'
'marketcap' => '$3.32M'
'low24h' => '$0.012'
'high24h' => '$0.01228'
'volume24h' => '$369.72K'
'current_supply' => '273.78M'
'max_supply' => '1000M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '0.1 USD 0.12x'
'price' => '$0.01212'
'change_24h_pct' => '0.773%'
'ath_price' => '$0.5671'
'ath_days' => 1499
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '29 nov. 2021'
'ath_pct' => '-97.86%'
'fdv' => '$12.12M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.597853'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.012228'
'next_week_prediction_price_date' => '13 de enero de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.010716'
'next_month_prediction_price_date' => '5 de febrero de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.004189'
'current_year_max_price_prediction' => '$0.0125049'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.013597'
'grand_prediction_max_price' => '$0.039313'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.012354925404166
107 => 0.012401054210787
108 => 0.0125049847675
109 => 0.011616909539539
110 => 0.012015629244374
111 => 0.012249839715981
112 => 0.011191668284611
113 => 0.012228923069064
114 => 0.011601450125609
115 => 0.011388476384273
116 => 0.011675217469825
117 => 0.01156347418992
118 => 0.011467403879644
119 => 0.011413794995812
120 => 0.011624346002583
121 => 0.011614523546454
122 => 0.011270021233188
123 => 0.010820632009243
124 => 0.010971461783498
125 => 0.010916663912474
126 => 0.01071806935882
127 => 0.010851898109585
128 => 0.010262584020396
129 => 0.0092486997598266
130 => 0.0099185027584734
131 => 0.009892716071631
201 => 0.0098797132547919
202 => 0.01038305169628
203 => 0.010334667319124
204 => 0.010246849200806
205 => 0.010716456510209
206 => 0.010545043525167
207 => 0.011073297955088
208 => 0.011421240487987
209 => 0.011332991006882
210 => 0.011660232640827
211 => 0.010974936596863
212 => 0.011202564453363
213 => 0.011249478239109
214 => 0.010710661628906
215 => 0.010342583601607
216 => 0.010318036993583
217 => 0.0096798404185215
218 => 0.010020759877576
219 => 0.010320754893339
220 => 0.010177080561342
221 => 0.010131597559981
222 => 0.010363960349877
223 => 0.010382016928705
224 => 0.0099703250178834
225 => 0.010055928802731
226 => 0.010412910815988
227 => 0.010046933771918
228 => 0.0093359001573006
301 => 0.0091595539900667
302 => 0.009136026160653
303 => 0.0086577613689237
304 => 0.0091713382841933
305 => 0.0089471481976725
306 => 0.0096553619947821
307 => 0.0092508340720999
308 => 0.0092333956818727
309 => 0.0092070349973888
310 => 0.0087953727342776
311 => 0.0088855006073973
312 => 0.0091850993845099
313 => 0.0092919996034055
314 => 0.009280849034767
315 => 0.0091836311870565
316 => 0.0092281370199024
317 => 0.0090847682254456
318 => 0.0090341417201595
319 => 0.0088743505435592
320 => 0.008639501657396
321 => 0.0086721588354289
322 => 0.0082068617403857
323 => 0.0079533431878203
324 => 0.007883172593791
325 => 0.007789337542824
326 => 0.0078937715124833
327 => 0.008205543612177
328 => 0.0078294803138056
329 => 0.0071847461665211
330 => 0.0072234957873465
331 => 0.0073105546804753
401 => 0.0071483210090819
402 => 0.0069947804543481
403 => 0.0071282715095502
404 => 0.0068550891519657
405 => 0.0073435674632452
406 => 0.0073303554938698
407 => 0.0075124300010187
408 => 0.0076262849268839
409 => 0.0073638861837345
410 => 0.0072978936094341
411 => 0.0073354859789509
412 => 0.0067141678488763
413 => 0.0074616550543682
414 => 0.0074681193547613
415 => 0.0074127680902044
416 => 0.0078107819510505
417 => 0.0086507153410721
418 => 0.0083346986135036
419 => 0.008212327384933
420 => 0.0079796995899673
421 => 0.0082896623146873
422 => 0.0082658620136006
423 => 0.0081582280260902
424 => 0.0080931306546054
425 => 0.0082130745575605
426 => 0.0080782682776688
427 => 0.0080540533655715
428 => 0.0079073373443456
429 => 0.0078549663999216
430 => 0.0078161930376174
501 => 0.0077735073755124
502 => 0.0078676613095118
503 => 0.0076542961080877
504 => 0.0073969985916189
505 => 0.0073756070871222
506 => 0.0074346709117978
507 => 0.0074085395661634
508 => 0.0073754819802927
509 => 0.0073123660461677
510 => 0.0072936408967714
511 => 0.0073544885481585
512 => 0.0072857950973809
513 => 0.0073871560259291
514 => 0.00735959146192
515 => 0.0072056180480779
516 => 0.0070137101661717
517 => 0.0070120017834823
518 => 0.0069706555451176
519 => 0.0069179948941116
520 => 0.0069033459057142
521 => 0.0071170292652179
522 => 0.0075593474243858
523 => 0.0074725097859646
524 => 0.0075352588792031
525 => 0.0078439223128759
526 => 0.0079420371366072
527 => 0.0078723975586997
528 => 0.0077770706092778
529 => 0.0077812645112599
530 => 0.0081070255548645
531 => 0.0081273428715675
601 => 0.0081786781762612
602 => 0.008244658550148
603 => 0.0078836343016798
604 => 0.0077642603016234
605 => 0.0077076942777793
606 => 0.0075334928181457
607 => 0.0077213541574561
608 => 0.0076118954000645
609 => 0.0076266651260803
610 => 0.0076170463226366
611 => 0.0076222988397375
612 => 0.007343430923602
613 => 0.0074450357353756
614 => 0.0072760980292247
615 => 0.0070499094048361
616 => 0.0070491511412551
617 => 0.0071045104866331
618 => 0.0070715805817909
619 => 0.0069829670545658
620 => 0.0069955541878641
621 => 0.0068852776553672
622 => 0.0070089437555303
623 => 0.0070124900567844
624 => 0.0069648718720836
625 => 0.007155396562018
626 => 0.0072334546829376
627 => 0.0072021113736871
628 => 0.0072312555528057
629 => 0.0074761182818895
630 => 0.00751604159084
701 => 0.0075337728874901
702 => 0.0075100152989256
703 => 0.0072357311939925
704 => 0.0072478968603923
705 => 0.0071586332723967
706 => 0.0070832149469055
707 => 0.0070862312844081
708 => 0.0071250061074066
709 => 0.0072943380335544
710 => 0.0076506870894702
711 => 0.0076642102756544
712 => 0.0076806007718089
713 => 0.0076139323867453
714 => 0.0075938245638796
715 => 0.0076203519725089
716 => 0.0077541779419676
717 => 0.0080984146688118
718 => 0.0079767384187471
719 => 0.0078778137334409
720 => 0.0079645973523581
721 => 0.0079512376944583
722 => 0.0078384687370993
723 => 0.0078353036880549
724 => 0.0076188640044665
725 => 0.007538851181537
726 => 0.0074719864778411
727 => 0.0073989719669525
728 => 0.0073556865174292
729 => 0.007422192640782
730 => 0.0074374033780701
731 => 0.0072919865770311
801 => 0.007272166804383
802 => 0.0073909173031511
803 => 0.0073386596361081
804 => 0.0073924079425896
805 => 0.0074048780107378
806 => 0.0074028700425559
807 => 0.0073483070364081
808 => 0.0073830838694345
809 => 0.0073008262918543
810 => 0.0072113835309245
811 => 0.0071543246219323
812 => 0.0071045331560705
813 => 0.0071321603552276
814 => 0.0070336744347599
815 => 0.0070021668066723
816 => 0.0073713022609087
817 => 0.007643986589828
818 => 0.0076400216516906
819 => 0.0076158861104789
820 => 0.0075800255919541
821 => 0.0077515545216762
822 => 0.0076917972723902
823 => 0.007735275664131
824 => 0.0077463427396114
825 => 0.0077798394439007
826 => 0.007791811636545
827 => 0.0077556233551513
828 => 0.0076341710627674
829 => 0.0073315234974844
830 => 0.0071906402388636
831 => 0.0071441464169225
901 => 0.0071458363790457
902 => 0.0070992196793642
903 => 0.0071129503866343
904 => 0.007094444699722
905 => 0.0070593994057165
906 => 0.0071299964070778
907 => 0.0071381320538281
908 => 0.0071216538701391
909 => 0.0071255350789168
910 => 0.0069891027558956
911 => 0.0069994754090994
912 => 0.0069417191579672
913 => 0.006930890557142
914 => 0.0067848877836918
915 => 0.0065262227070845
916 => 0.0066695482687515
917 => 0.0064964311448815
918 => 0.0064308690669195
919 => 0.0067412297469967
920 => 0.0067100781427823
921 => 0.0066567601376439
922 => 0.0065778916955984
923 => 0.0065486386232609
924 => 0.0063709062161351
925 => 0.0063604048373566
926 => 0.0064484938175068
927 => 0.0064078437841242
928 => 0.0063507557418836
929 => 0.0061439886398099
930 => 0.0059115139588443
1001 => 0.0059185309081789
1002 => 0.0059924767788489
1003 => 0.006207484370781
1004 => 0.006123477184944
1005 => 0.0060625290077479
1006 => 0.0060511152462545
1007 => 0.0061939823676721
1008 => 0.0063961692760653
1009 => 0.0064910308498063
1010 => 0.0063970259112178
1011 => 0.0062890380993527
1012 => 0.0062956108170936
1013 => 0.0063393361635943
1014 => 0.0063439310792684
1015 => 0.0062736421150707
1016 => 0.0062934280467724
1017 => 0.006263371407254
1018 => 0.0060789138660097
1019 => 0.0060755776140098
1020 => 0.0060303087586088
1021 => 0.0060289380356582
1022 => 0.0059519244197759
1023 => 0.005941149682544
1024 => 0.0057882344738174
1025 => 0.0058888837272712
1026 => 0.0058213734923773
1027 => 0.0057196196443379
1028 => 0.0057020772425825
1029 => 0.0057015498968027
1030 => 0.0058060283469951
1031 => 0.0058876628357503
1101 => 0.0058225478618169
1102 => 0.0058077224444531
1103 => 0.0059660191154447
1104 => 0.0059458744211549
1105 => 0.0059284292458192
1106 => 0.0063780656560241
1107 => 0.0060221433517803
1108 => 0.0058669409117951
1109 => 0.0056748484201694
1110 => 0.0057373947040571
1111 => 0.0057505741250684
1112 => 0.0052886263099827
1113 => 0.0051012141389344
1114 => 0.0050369013443093
1115 => 0.0049998884217532
1116 => 0.005016755675341
1117 => 0.0048480627401424
1118 => 0.0049614271825195
1119 => 0.0048153533598963
1120 => 0.0047908636081682
1121 => 0.0050520616980927
1122 => 0.0050884058864086
1123 => 0.0049333502877988
1124 => 0.0050329210833275
1125 => 0.0049968153287312
1126 => 0.0048178573763279
1127 => 0.0048110224988717
1128 => 0.0047212276890319
1129 => 0.0045807161993341
1130 => 0.0045164986781156
1201 => 0.0044830536355029
1202 => 0.0044968537119158
1203 => 0.0044898759709921
1204 => 0.0044443414915394
1205 => 0.0044924859540536
1206 => 0.0043694967469953
1207 => 0.0043205214537533
1208 => 0.0042984004500141
1209 => 0.0041892404497552
1210 => 0.0043629625538395
1211 => 0.0043971879968375
1212 => 0.004431480874531
1213 => 0.004729976962111
1214 => 0.0047150649411166
1215 => 0.0048498623484564
1216 => 0.0048446243690837
1217 => 0.0048061779649372
1218 => 0.0046439789099695
1219 => 0.0047086285623595
1220 => 0.0045096469810899
1221 => 0.0046587375112094
1222 => 0.0045906988194322
1223 => 0.0046357335610788
1224 => 0.0045547570349794
1225 => 0.0045995727879616
1226 => 0.0044053041190526
1227 => 0.0042238987694593
1228 => 0.0042969015776879
1229 => 0.0043762639791162
1230 => 0.0045483418865765
1231 => 0.0044458537045051
]
'min_raw' => 0.0041892404497552
'max_raw' => 0.0125049847675
'avg_raw' => 0.0083471126086276
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.004189'
'max' => '$0.0125049'
'avg' => '$0.008347'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0079359195502448
'max_diff' => 0.00037982476749997
'year' => 2026
]
1 => [
'items' => [
101 => 0.0044827123302852
102 => 0.0043592421039812
103 => 0.0041044877595896
104 => 0.0041059296415126
105 => 0.004066741235753
106 => 0.0040328767315758
107 => 0.0044576257050879
108 => 0.004404801455944
109 => 0.0043206329284001
110 => 0.004433295847242
111 => 0.0044630857111847
112 => 0.0044639337867315
113 => 0.0045461297440677
114 => 0.0045899977412325
115 => 0.0045977296658675
116 => 0.0047270667806972
117 => 0.0047704188755903
118 => 0.0049489800190369
119 => 0.0045862758481617
120 => 0.0045788061944466
121 => 0.0044348812455529
122 => 0.004343601767601
123 => 0.0044411312295012
124 => 0.0045275290186456
125 => 0.0044375658656945
126 => 0.0044493131542441
127 => 0.0043285449716669
128 => 0.0043717139142671
129 => 0.0044088968231189
130 => 0.0043883666063613
131 => 0.0043576318782014
201 => 0.0045204453852032
202 => 0.0045112588090668
203 => 0.0046628744898532
204 => 0.0047810697551676
205 => 0.0049928968005418
206 => 0.0047718442359002
207 => 0.0047637882018403
208 => 0.0048425372270044
209 => 0.0047704068195249
210 => 0.0048159907471949
211 => 0.0049855525250694
212 => 0.0049891350982439
213 => 0.0049291223816856
214 => 0.0049254706024291
215 => 0.0049369967011113
216 => 0.0050045054211041
217 => 0.0049809158000052
218 => 0.005008214306757
219 => 0.0050423515074597
220 => 0.0051835574434394
221 => 0.0052176017165536
222 => 0.0051348917828178
223 => 0.0051423595637703
224 => 0.0051114237781147
225 => 0.0050815401967956
226 => 0.0051487141234543
227 => 0.00527147579473
228 => 0.0052707121007443
301 => 0.0052991904223343
302 => 0.0053169321807578
303 => 0.0052407715658434
304 => 0.0051911938060376
305 => 0.005210205073862
306 => 0.0052406045051247
307 => 0.0052003469480168
308 => 0.0049518586564321
309 => 0.0050272341306054
310 => 0.0050146879660306
311 => 0.0049968207020103
312 => 0.0050726113241528
313 => 0.0050653011337547
314 => 0.0048463325502672
315 => 0.0048603502085402
316 => 0.0048471850104947
317 => 0.0048897244587259
318 => 0.0047681095497178
319 => 0.0048055174766398
320 => 0.0048289793777277
321 => 0.0048427986177113
322 => 0.0048927231884736
323 => 0.0048868651163219
324 => 0.0048923590424836
325 => 0.0049663840013261
326 => 0.0053407768408533
327 => 0.0053611542170575
328 => 0.0052608085639527
329 => 0.0053008946731376
330 => 0.005223938109371
331 => 0.0052755995661917
401 => 0.0053109450228897
402 => 0.005151225700612
403 => 0.0051417681589165
404 => 0.0050644939680363
405 => 0.0051060167411814
406 => 0.0050399510235145
407 => 0.0050561612397492
408 => 0.0050108360619756
409 => 0.0050924123578153
410 => 0.0051836273322389
411 => 0.0052066718369668
412 => 0.0051460516663108
413 => 0.0051021586676919
414 => 0.0050250970213697
415 => 0.0051532522566343
416 => 0.0051907287528857
417 => 0.0051530554085537
418 => 0.0051443256714932
419 => 0.0051277828355377
420 => 0.0051478353123442
421 => 0.0051905246478386
422 => 0.0051703931455677
423 => 0.0051836903574891
424 => 0.0051330150976701
425 => 0.005240796778176
426 => 0.0054119800258932
427 => 0.0054125304080259
428 => 0.0053923987972387
429 => 0.0053841613758462
430 => 0.0054048176302022
501 => 0.0054160228008264
502 => 0.0054828213397045
503 => 0.0055544988332918
504 => 0.0058889864205236
505 => 0.0057950636445026
506 => 0.0060918409306502
507 => 0.0063265532322855
508 => 0.0063969331888208
509 => 0.0063321869404411
510 => 0.0061106935222578
511 => 0.0060998259984716
512 => 0.0064308306773465
513 => 0.0063373066945896
514 => 0.0063261823144316
515 => 0.0062078377044864
516 => 0.0062777940262291
517 => 0.0062624935524666
518 => 0.0062383410061078
519 => 0.0063718127947932
520 => 0.0066216600681035
521 => 0.0065827190275052
522 => 0.0065536513471215
523 => 0.0064262852331545
524 => 0.0065029880820141
525 => 0.0064756756666814
526 => 0.0065930271358374
527 => 0.0065235107251627
528 => 0.0063365981584369
529 => 0.0063663646007599
530 => 0.0063618654628845
531 => 0.0064544574015468
601 => 0.0064266635998336
602 => 0.0063564382770254
603 => 0.0066208061172852
604 => 0.0066036395402299
605 => 0.0066279778216685
606 => 0.0066386922858441
607 => 0.0067996083315263
608 => 0.0068655304867032
609 => 0.0068804959700581
610 => 0.0069431169188737
611 => 0.0068789379038052
612 => 0.0071356997229414
613 => 0.0073064313501995
614 => 0.007504744921029
615 => 0.0077945343496735
616 => 0.007903497855546
617 => 0.0078838145735046
618 => 0.0081035296109819
619 => 0.0084983526493376
620 => 0.007963619597979
621 => 0.0085266947994929
622 => 0.0083484316917094
623 => 0.0079257730699712
624 => 0.007898558837549
625 => 0.0081847881633577
626 => 0.0088196172594496
627 => 0.0086605997710506
628 => 0.0088198773550942
629 => 0.0086340715927804
630 => 0.0086248447705875
701 => 0.0088108531839449
702 => 0.009245471980545
703 => 0.0090390008817222
704 => 0.0087429739327694
705 => 0.0089615556251867
706 => 0.0087721999344341
707 => 0.0083455285658479
708 => 0.0086604781733741
709 => 0.0084498803400698
710 => 0.0085113439838246
711 => 0.0089539893053668
712 => 0.0089007290491846
713 => 0.0089696527524513
714 => 0.0088480042202329
715 => 0.0087343653089282
716 => 0.0085222498420415
717 => 0.0084594529094624
718 => 0.0084768077224303
719 => 0.008459444309279
720 => 0.0083407676549977
721 => 0.0083151394428049
722 => 0.0082724246330193
723 => 0.0082856637386777
724 => 0.0082053473996223
725 => 0.0083569209256223
726 => 0.0083850543077092
727 => 0.0084953568797489
728 => 0.0085068088586928
729 => 0.0088139999517644
730 => 0.0086448042598371
731 => 0.0087583153376352
801 => 0.0087481618384292
802 => 0.0079349333639173
803 => 0.0080469890725294
804 => 0.0082213125901115
805 => 0.0081427800817307
806 => 0.0080317534886571
807 => 0.007942093561881
808 => 0.0078062496046168
809 => 0.007997447365814
810 => 0.0082488520901731
811 => 0.0085131848973835
812 => 0.0088307634454751
813 => 0.0087598836105629
814 => 0.0085072479873299
815 => 0.0085185810368377
816 => 0.0085886374895043
817 => 0.0084979080180012
818 => 0.0084711501256052
819 => 0.0085849613659845
820 => 0.0085857451214474
821 => 0.0084813498994602
822 => 0.0083653337143453
823 => 0.0083648476022936
824 => 0.0083442036427358
825 => 0.0086377441073249
826 => 0.0087991616825604
827 => 0.0088176679474238
828 => 0.0087979160634849
829 => 0.0088055177796888
830 => 0.0087115924492527
831 => 0.0089262779019379
901 => 0.0091232945035126
902 => 0.0090704898456448
903 => 0.0089913281568766
904 => 0.0089282720588292
905 => 0.0090556358328965
906 => 0.0090499645245264
907 => 0.0091215737353714
908 => 0.0091183251279326
909 => 0.0090942456436841
910 => 0.0090704907055991
911 => 0.0091646763499699
912 => 0.0091375523969663
913 => 0.0091103863129718
914 => 0.0090559005726015
915 => 0.0090633060896301
916 => 0.0089841580692435
917 => 0.0089475405734457
918 => 0.0083969012943037
919 => 0.0082497524862595
920 => 0.0082960484967604
921 => 0.0083112903454927
922 => 0.0082472509956555
923 => 0.0083390669729628
924 => 0.0083247575501567
925 => 0.0083804271435631
926 => 0.0083456471984955
927 => 0.0083470745795728
928 => 0.0084493549821504
929 => 0.0084790474181506
930 => 0.0084639456055535
1001 => 0.0084745223974366
1002 => 0.0087182601021985
1003 => 0.0086836083948744
1004 => 0.0086652003659926
1005 => 0.0086702995157956
1006 => 0.0087325797251576
1007 => 0.0087500147834056
1008 => 0.008676141216469
1009 => 0.0087109804176943
1010 => 0.0088593213147586
1011 => 0.0089112322333635
1012 => 0.0090769069668957
1013 => 0.0090065253954576
1014 => 0.0091357138158752
1015 => 0.009532794976661
1016 => 0.0098500108838229
1017 => 0.009558286026095
1018 => 0.010140812642396
1019 => 0.010594393171666
1020 => 0.010576983995475
1021 => 0.01049789173869
1022 => 0.0099815023651779
1023 => 0.0095063131647404
1024 => 0.0099038291085056
1025 => 0.0099048424583962
1026 => 0.0098706954862873
1027 => 0.0096586115752056
1028 => 0.0098633154259002
1029 => 0.0098795640741931
1030 => 0.0098704691520134
1031 => 0.0097078649146441
1101 => 0.0094595982984675
1102 => 0.0095081090010021
1103 => 0.0095875705213453
1104 => 0.0094371332859259
1105 => 0.0093890594738959
1106 => 0.0094784378368766
1107 => 0.0097664335451221
1108 => 0.0097119896247238
1109 => 0.0097105678739371
1110 => 0.0099435020532162
1111 => 0.0097767714511945
1112 => 0.0095087208763138
1113 => 0.0094410345710037
1114 => 0.0092007937861116
1115 => 0.0093667289519449
1116 => 0.0093727006631546
1117 => 0.009281819668644
1118 => 0.0095160953681446
1119 => 0.0095139364763303
1120 => 0.00973634638567
1121 => 0.01016151059898
1122 => 0.010035768620044
1123 => 0.0098895443792298
1124 => 0.0099054430085647
1125 => 0.010079811731208
1126 => 0.0099743844210471
1127 => 0.010012296816846
1128 => 0.010079754346256
1129 => 0.010120453148626
1130 => 0.0098995870772228
1201 => 0.0098480926307334
1202 => 0.0097427530653108
1203 => 0.0097152719389481
1204 => 0.0098010688170027
1205 => 0.0097784643708837
1206 => 0.009372198763951
1207 => 0.009329741747586
1208 => 0.0093310438436633
1209 => 0.0092242836572925
1210 => 0.0090614487476964
1211 => 0.0094893691677476
1212 => 0.0094550011692751
1213 => 0.0094170615588332
1214 => 0.0094217089446319
1215 => 0.0096074546954075
1216 => 0.0094997127795724
1217 => 0.0097861623213727
1218 => 0.0097272769070399
1219 => 0.0096668813040246
1220 => 0.0096585327919928
1221 => 0.0096352856375426
1222 => 0.0095555624950477
1223 => 0.0094592920098669
1224 => 0.009395725896744
1225 => 0.0086670604835546
1226 => 0.0088022965457908
1227 => 0.0089578733082387
1228 => 0.0090115777832009
1229 => 0.0089197125625414
1230 => 0.0095591898938844
1231 => 0.0096760285644777
]
'min_raw' => 0.0040328767315758
'max_raw' => 0.010594393171666
'avg_raw' => 0.007313634951621
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.004032'
'max' => '$0.010594'
'avg' => '$0.007313'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00015636371817937
'max_diff' => -0.0019105915958339
'year' => 2027
]
2 => [
'items' => [
101 => 0.0093221166100528
102 => 0.0092559141335098
103 => 0.0095635301172251
104 => 0.0093780000745202
105 => 0.00946154424139
106 => 0.0092809674488334
107 => 0.0096478855501674
108 => 0.0096450902489912
109 => 0.0095023508203511
110 => 0.0096229932080003
111 => 0.0096020286242829
112 => 0.0094408761608999
113 => 0.0096529943706991
114 => 0.0096530995786848
115 => 0.0095157159820415
116 => 0.0093552820182986
117 => 0.0093266002148624
118 => 0.0093049923288314
119 => 0.0094562300260139
120 => 0.0095918292723997
121 => 0.0098441458520197
122 => 0.0099075842350302
123 => 0.010155188467253
124 => 0.010007752202595
125 => 0.010073108789099
126 => 0.010144062609002
127 => 0.010178080479503
128 => 0.01012265018502
129 => 0.01050728147563
130 => 0.010539756141355
131 => 0.010550644615868
201 => 0.010420949108778
202 => 0.010536149074686
203 => 0.01048225082566
204 => 0.010622479096261
205 => 0.010644468679615
206 => 0.010625844284816
207 => 0.010632824125655
208 => 0.010304609172729
209 => 0.010287589495948
210 => 0.010055524995378
211 => 0.010150092994694
212 => 0.0099733026527342
213 => 0.010029364691312
214 => 0.010054076303739
215 => 0.010041168359779
216 => 0.010155439727487
217 => 0.010058285720837
218 => 0.0098018803236892
219 => 0.0095454050690626
220 => 0.009542185231161
221 => 0.0094746598237821
222 => 0.0094258513221424
223 => 0.0094352535711328
224 => 0.0094683883229297
225 => 0.0094239254701323
226 => 0.0094334138741005
227 => 0.0095909846008773
228 => 0.0096225842863894
229 => 0.0095151962082252
301 => 0.0090840175783702
302 => 0.0089782052610741
303 => 0.0090542610563971
304 => 0.0090179112848533
305 => 0.007278158225995
306 => 0.0076868874010519
307 => 0.0074440344043644
308 => 0.0075559522383671
309 => 0.0073080622152278
310 => 0.0074263683272992
311 => 0.0074045215082471
312 => 0.0080617459265629
313 => 0.0080514842712536
314 => 0.0080563959826154
315 => 0.0078219472019169
316 => 0.0081954304755477
317 => 0.0083794217661624
318 => 0.0083453698750392
319 => 0.0083539400024158
320 => 0.008206676819897
321 => 0.0080578218121236
322 => 0.0078927186998813
323 => 0.008199459875066
324 => 0.0081653554926319
325 => 0.0082435786755662
326 => 0.0084425222539855
327 => 0.0084718174516209
328 => 0.0085111904943254
329 => 0.0084970780612799
330 => 0.0088332934709684
331 => 0.0087925755664344
401 => 0.0088906940010206
402 => 0.0086888569368132
403 => 0.0084604591401124
404 => 0.0085038700943787
405 => 0.008499689270394
406 => 0.0084464625825425
407 => 0.0083984119086762
408 => 0.0083184210748822
409 => 0.0085715239094224
410 => 0.0085612483965601
411 => 0.0087275970058233
412 => 0.0086981932733119
413 => 0.0085018279512865
414 => 0.0085088411771781
415 => 0.0085560084917408
416 => 0.0087192551059892
417 => 0.0087677178157752
418 => 0.0087452679576972
419 => 0.0087984051065708
420 => 0.0088404025424644
421 => 0.0088036793379152
422 => 0.0093236024719478
423 => 0.009107694137783
424 => 0.0092129263575744
425 => 0.0092380236219305
426 => 0.0091737375070211
427 => 0.0091876788634318
428 => 0.0092087962196017
429 => 0.009337016671063
430 => 0.009673504236584
501 => 0.009822532288805
502 => 0.010270890536826
503 => 0.0098101575836387
504 => 0.009782819596899
505 => 0.0098635824564896
506 => 0.010126816211619
507 => 0.010340142445861
508 => 0.010410915064845
509 => 0.010420268834773
510 => 0.010553042972861
511 => 0.010629146632723
512 => 0.010536920700191
513 => 0.010458768878828
514 => 0.010178838755266
515 => 0.010211241429293
516 => 0.010434463721151
517 => 0.010749778356128
518 => 0.011020351115834
519 => 0.010925605965798
520 => 0.011648444580924
521 => 0.011720111077083
522 => 0.011710209084569
523 => 0.011873476028223
524 => 0.011549424393804
525 => 0.011410886041885
526 => 0.010475666189667
527 => 0.010738424821019
528 => 0.011120359922961
529 => 0.011069809380036
530 => 0.010792437899851
531 => 0.011020140704694
601 => 0.010944855036488
602 => 0.010885474106368
603 => 0.011157509658805
604 => 0.010858395394296
605 => 0.011117376029362
606 => 0.010785230686078
607 => 0.010926038753662
608 => 0.010846109284382
609 => 0.010897833446794
610 => 0.010595455050232
611 => 0.010758611093196
612 => 0.010588667222438
613 => 0.010588586646916
614 => 0.01058483512655
615 => 0.01078477333685
616 => 0.01079129331471
617 => 0.010643538675208
618 => 0.010622244923295
619 => 0.010700979084626
620 => 0.010608802002216
621 => 0.01065193107892
622 => 0.010610108338013
623 => 0.010600693158114
624 => 0.010525671402811
625 => 0.010493349967861
626 => 0.010506024035326
627 => 0.010462760909139
628 => 0.010436693310715
629 => 0.010579649625111
630 => 0.010503273833171
701 => 0.010567943939613
702 => 0.010494244191304
703 => 0.010238768754211
704 => 0.010091842128736
705 => 0.0096092727106537
706 => 0.0097461287989963
707 => 0.0098368645271552
708 => 0.00980687636954
709 => 0.009871302535974
710 => 0.0098752577793454
711 => 0.0098543121758907
712 => 0.0098300598503881
713 => 0.0098182551595711
714 => 0.0099062376535189
715 => 0.0099573144526101
716 => 0.0098459710713634
717 => 0.0098198848749968
718 => 0.0099324591808738
719 => 0.010001129442427
720 => 0.010508152071246
721 => 0.010470590197242
722 => 0.010564863129848
723 => 0.010554249444372
724 => 0.010653062496599
725 => 0.010814580075478
726 => 0.010486169676592
727 => 0.010543170366261
728 => 0.010529195113492
729 => 0.010681773258714
730 => 0.010682249591029
731 => 0.010590771371125
801 => 0.0106403631982
802 => 0.010612682400807
803 => 0.01066270534298
804 => 0.010470088535514
805 => 0.010704675015308
806 => 0.010837670432931
807 => 0.010839517074434
808 => 0.010902555846871
809 => 0.010966606890626
810 => 0.011089547291444
811 => 0.010963178149574
812 => 0.010735852365136
813 => 0.010752264552514
814 => 0.010618983528274
815 => 0.01062122400637
816 => 0.010609264158701
817 => 0.010645156561852
818 => 0.010477964899601
819 => 0.010517204448553
820 => 0.010462268850234
821 => 0.010543050946999
822 => 0.010456142764638
823 => 0.010529188374202
824 => 0.01056071243779
825 => 0.010677036911092
826 => 0.010438961545351
827 => 0.0099535097583188
828 => 0.010055557609487
829 => 0.0099046208219236
830 => 0.0099185905962694
831 => 0.0099468117637212
901 => 0.0098553377266186
902 => 0.0098727880902196
903 => 0.0098721646404354
904 => 0.0098667920870105
905 => 0.0098429961570652
906 => 0.0098084873507632
907 => 0.0099459598138198
908 => 0.0099693190641198
909 => 0.010021243783938
910 => 0.010175736529243
911 => 0.010160299060797
912 => 0.010185478212327
913 => 0.010130512265913
914 => 0.0099211403088774
915 => 0.0099325102134633
916 => 0.0097907273210869
917 => 0.010017618076609
918 => 0.0099638873508894
919 => 0.0099292468024792
920 => 0.009919794807903
921 => 0.010074670510841
922 => 0.01012101174854
923 => 0.010092134999051
924 => 0.01003290794338
925 => 0.010146641399175
926 => 0.010177071673917
927 => 0.010183883890206
928 => 0.010385397767648
929 => 0.010195146277415
930 => 0.010240941702052
1001 => 0.010598224532184
1002 => 0.010274218306914
1003 => 0.01044585163064
1004 => 0.010437451072581
1005 => 0.010525252873244
1006 => 0.010430248762184
1007 => 0.010431426452002
1008 => 0.010509388502782
1009 => 0.010399904862991
1010 => 0.010372795174107
1011 => 0.010335343333077
1012 => 0.010417118057818
1013 => 0.010466138306947
1014 => 0.010861205513525
1015 => 0.011116436946227
1016 => 0.011105356676608
1017 => 0.011206609599527
1018 => 0.011160994230382
1019 => 0.011013690170685
1020 => 0.011265120238771
1021 => 0.011185557244948
1022 => 0.011192116321489
1023 => 0.011191872192333
1024 => 0.011244774627708
1025 => 0.011207288403808
1026 => 0.011133399208619
1027 => 0.01118245030465
1028 => 0.011328114523773
1029 => 0.011780260729457
1030 => 0.012033287736298
1031 => 0.011765028185935
1101 => 0.011950070031637
1102 => 0.011839110861367
1103 => 0.01181894627938
1104 => 0.011935166232965
1105 => 0.012051589614195
1106 => 0.012044173948123
1107 => 0.011959656551757
1108 => 0.011911914819099
1109 => 0.012273431213436
1110 => 0.012539790334512
1111 => 0.012521626428149
1112 => 0.012601796003617
1113 => 0.012837176356744
1114 => 0.012858696586351
1115 => 0.012855985532058
1116 => 0.012802645397572
1117 => 0.013034407923227
1118 => 0.013227748299602
1119 => 0.012790298697584
1120 => 0.012956873779396
1121 => 0.013031654700336
1122 => 0.013141455278775
1123 => 0.013326707259315
1124 => 0.013527940045842
1125 => 0.013556396568262
1126 => 0.013536205303835
1127 => 0.013403486871693
1128 => 0.013623678187918
1129 => 0.01375266109684
1130 => 0.013829467467382
1201 => 0.014024235643716
1202 => 0.013032116521845
1203 => 0.012329845295865
1204 => 0.012220175503009
1205 => 0.012443193339334
1206 => 0.012502001364239
1207 => 0.012478295923139
1208 => 0.011687825810592
1209 => 0.012216013841458
1210 => 0.012784299751359
1211 => 0.012806129927576
1212 => 0.01309062573637
1213 => 0.013183269233591
1214 => 0.013412325649389
1215 => 0.013397998108215
1216 => 0.013453769700378
1217 => 0.01344094877717
1218 => 0.013865227553916
1219 => 0.014333270050675
1220 => 0.014317063227296
1221 => 0.01424977658076
1222 => 0.014349708724945
1223 => 0.014832778740082
1224 => 0.014788305394128
1225 => 0.014831507461492
1226 => 0.015401074233972
1227 => 0.016141592058126
1228 => 0.015797547182032
1229 => 0.016544025566908
1230 => 0.017013894141069
1231 => 0.017826483254762
]
'min_raw' => 0.007278158225995
'max_raw' => 0.017826483254762
'avg_raw' => 0.012552320740378
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.007278'
'max' => '$0.017826'
'avg' => '$0.012552'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0032452814944193
'max_diff' => 0.0072320900830956
'year' => 2028
]
3 => [
'items' => [
101 => 0.017724743095642
102 => 0.018041078074548
103 => 0.017542606977005
104 => 0.016398016579415
105 => 0.016216880767681
106 => 0.016579519249862
107 => 0.017471030572561
108 => 0.016551442385691
109 => 0.016737473878221
110 => 0.016683896795857
111 => 0.016681041900826
112 => 0.01679000163247
113 => 0.016631949858763
114 => 0.015988018499709
115 => 0.016283128446852
116 => 0.016169172323916
117 => 0.016295615138305
118 => 0.016977974858578
119 => 0.016676287360822
120 => 0.016358484089037
121 => 0.016757079918047
122 => 0.017264629380763
123 => 0.01723286784754
124 => 0.017171237197797
125 => 0.017518645943523
126 => 0.01809246341025
127 => 0.018247563965721
128 => 0.018362056024878
129 => 0.018377842545477
130 => 0.01854045351891
131 => 0.017666053331516
201 => 0.0190537488851
202 => 0.019293365572888
203 => 0.019248327566678
204 => 0.019514651430543
205 => 0.01943629219381
206 => 0.019322761953971
207 => 0.019744941926907
208 => 0.019260946656103
209 => 0.018573976302507
210 => 0.018197090779791
211 => 0.018693404038591
212 => 0.018996485226794
213 => 0.019196802612613
214 => 0.019257418532526
215 => 0.017733930528965
216 => 0.016912854991564
217 => 0.017439154997388
218 => 0.018081277327779
219 => 0.017662486309549
220 => 0.017678902124587
221 => 0.017081816188935
222 => 0.018134106184222
223 => 0.01798079638306
224 => 0.018776167902686
225 => 0.018586346106272
226 => 0.019234940704382
227 => 0.019064144009928
228 => 0.019773111539494
301 => 0.020055937881567
302 => 0.020530847328314
303 => 0.020880192650569
304 => 0.021085334905709
305 => 0.02107301893418
306 => 0.02188589475051
307 => 0.021406570281338
308 => 0.020804425779955
309 => 0.020793534885666
310 => 0.021105394055386
311 => 0.021758965320734
312 => 0.021928426840764
313 => 0.022023132712095
314 => 0.021878087373416
315 => 0.021357815015625
316 => 0.021133164049371
317 => 0.021324573181384
318 => 0.021090496260906
319 => 0.021494578696035
320 => 0.022049470186818
321 => 0.02193488728825
322 => 0.022317920738934
323 => 0.022714320064098
324 => 0.023281188902491
325 => 0.023429389407939
326 => 0.023674359207884
327 => 0.023926513600415
328 => 0.024007498795544
329 => 0.024162124661277
330 => 0.024161309706639
331 => 0.024627285160545
401 => 0.025141270516261
402 => 0.025335288089256
403 => 0.025781420800166
404 => 0.025017434167088
405 => 0.025596926804323
406 => 0.026119643668752
407 => 0.025496439073894
408 => 0.026355381419858
409 => 0.026388732204747
410 => 0.026892289460689
411 => 0.026381837711894
412 => 0.026078733092879
413 => 0.026953784770793
414 => 0.027377194713866
415 => 0.027249660193188
416 => 0.026279116193673
417 => 0.025714217957365
418 => 0.024235770312215
419 => 0.02598705541208
420 => 0.026840055298538
421 => 0.026276907130037
422 => 0.026560926309856
423 => 0.028110442861423
424 => 0.028700398440493
425 => 0.028577691804147
426 => 0.028598427205766
427 => 0.028916756527781
428 => 0.030328404048754
429 => 0.029482512132454
430 => 0.0301291648075
501 => 0.030472147054665
502 => 0.03079072808044
503 => 0.030008393769704
504 => 0.028990588326209
505 => 0.028668206617689
506 => 0.026220913143116
507 => 0.026093520889708
508 => 0.02602201175749
509 => 0.02557115679402
510 => 0.025216908292301
511 => 0.02493519673133
512 => 0.024195901469149
513 => 0.024445391917895
514 => 0.023267109572892
515 => 0.024020932861463
516 => 0.022140365788216
517 => 0.023706557928168
518 => 0.022854150752411
519 => 0.023426519245515
520 => 0.023424522305762
521 => 0.022370610440363
522 => 0.021762736070979
523 => 0.022150097277975
524 => 0.022565379240645
525 => 0.022632757341912
526 => 0.023171181246481
527 => 0.023321443784864
528 => 0.022866141278478
529 => 0.022101395215583
530 => 0.022279028283993
531 => 0.021759136342518
601 => 0.020848045712437
602 => 0.021502406909077
603 => 0.021725834591841
604 => 0.021824512984944
605 => 0.020928559989725
606 => 0.020647032106542
607 => 0.020497149023783
608 => 0.021985738934796
609 => 0.022067287250423
610 => 0.021650074537905
611 => 0.023535915560218
612 => 0.023109091656219
613 => 0.023585958531382
614 => 0.022262909944896
615 => 0.022313452182621
616 => 0.021687099778985
617 => 0.022037815272139
618 => 0.021789940865666
619 => 0.02200948092613
620 => 0.022141072333174
621 => 0.022767321958545
622 => 0.023713708692931
623 => 0.022673781148099
624 => 0.022220669824779
625 => 0.022501777541372
626 => 0.023250404434601
627 => 0.024384612499348
628 => 0.023713138496953
629 => 0.024011127256848
630 => 0.024076224544288
701 => 0.023581104474241
702 => 0.024402868282563
703 => 0.02484325818344
704 => 0.025295007095891
705 => 0.025687248018854
706 => 0.025114568646086
707 => 0.025727417665311
708 => 0.025233569538231
709 => 0.024790536715159
710 => 0.024791208613076
711 => 0.024513287651486
712 => 0.023974780768111
713 => 0.023875471836638
714 => 0.024392089439492
715 => 0.024806367833112
716 => 0.024840489785871
717 => 0.025069855590971
718 => 0.025205591911774
719 => 0.02653599238022
720 => 0.02707109045428
721 => 0.027725398250351
722 => 0.027980288011688
723 => 0.028747414810274
724 => 0.028127897617423
725 => 0.027993861175804
726 => 0.026133062487697
727 => 0.026437768168631
728 => 0.026925631363531
729 => 0.02614110717209
730 => 0.026638707198982
731 => 0.0267369439849
801 => 0.026114449340267
802 => 0.026446950626371
803 => 0.025563925790238
804 => 0.023732956221331
805 => 0.024404906675104
806 => 0.024899688385158
807 => 0.024193573878766
808 => 0.025459256801068
809 => 0.024719870966858
810 => 0.024485521154192
811 => 0.023571238983244
812 => 0.024002744973983
813 => 0.024586363005029
814 => 0.024225754914722
815 => 0.024974070847688
816 => 0.026033885777337
817 => 0.026789173009276
818 => 0.026847154584505
819 => 0.026361555494683
820 => 0.027139731135175
821 => 0.027145399295162
822 => 0.026267613993747
823 => 0.025729975384159
824 => 0.025607822760859
825 => 0.025912983963294
826 => 0.026283505998916
827 => 0.02686771597878
828 => 0.027220741834186
829 => 0.028141246034638
830 => 0.028390308078356
831 => 0.028663951753509
901 => 0.029029624092098
902 => 0.029468707491038
903 => 0.02850801801119
904 => 0.028546187995174
905 => 0.027651607253192
906 => 0.026695619434528
907 => 0.02742109502333
908 => 0.028369557849715
909 => 0.028151979429384
910 => 0.028127497412373
911 => 0.02816866937424
912 => 0.028004622350757
913 => 0.027262643743412
914 => 0.026890026731834
915 => 0.027370797741507
916 => 0.027626306136492
917 => 0.02802257737444
918 => 0.027973728580092
919 => 0.028994480732623
920 => 0.029391114153154
921 => 0.029289638351281
922 => 0.029308312340977
923 => 0.030026398203166
924 => 0.030825057367542
925 => 0.031573107067339
926 => 0.032334055351454
927 => 0.031416702494636
928 => 0.030950927288402
929 => 0.031431488408492
930 => 0.031176495913785
1001 => 0.032641758424059
1002 => 0.032743210021136
1003 => 0.034208366576253
1004 => 0.035598974614656
1005 => 0.034725558621065
1006 => 0.035549150563501
1007 => 0.036439932397681
1008 => 0.038158395079958
1009 => 0.037579677304813
1010 => 0.037136388558716
1011 => 0.03671748283561
1012 => 0.037589159145983
1013 => 0.038710556793909
1014 => 0.038952095106659
1015 => 0.039343479448052
1016 => 0.038931986669278
1017 => 0.039427584396868
1018 => 0.041177262151937
1019 => 0.040704483777685
1020 => 0.04003306248333
1021 => 0.04141426503012
1022 => 0.041914116862514
1023 => 0.045422338796693
1024 => 0.049851613906014
1025 => 0.048017864926567
1026 => 0.046879597760314
1027 => 0.047147117544442
1028 => 0.048764538873941
1029 => 0.049284003270589
1030 => 0.047871919970384
1031 => 0.048370691664181
1101 => 0.051118972735154
1102 => 0.052593337354318
1103 => 0.050590952167908
1104 => 0.045066450854348
1105 => 0.039972608341953
1106 => 0.041323724754958
1107 => 0.041170550083747
1108 => 0.044123235239462
1109 => 0.040693208169817
1110 => 0.040750961028875
1111 => 0.043764704586663
1112 => 0.04296068947409
1113 => 0.041658287962197
1114 => 0.039982117314314
1115 => 0.036883560844682
1116 => 0.034139082969889
1117 => 0.039521636097864
1118 => 0.039289530619448
1119 => 0.038953407490597
1120 => 0.039701413141534
1121 => 0.043333516257376
1122 => 0.043249784524585
1123 => 0.042717125960877
1124 => 0.043121142786812
1125 => 0.041587461859218
1126 => 0.041982726355525
1127 => 0.039971801451274
1128 => 0.040880823491637
1129 => 0.041655493593491
1130 => 0.041811020085625
1201 => 0.042161429213782
1202 => 0.039167221579278
1203 => 0.040511532901853
1204 => 0.041301189858928
1205 => 0.037733490998893
1206 => 0.041230667923492
1207 => 0.039115099085872
1208 => 0.038397043247606
1209 => 0.039363810837168
1210 => 0.038987060567303
1211 => 0.038663152808792
1212 => 0.038482406714101
1213 => 0.03919229413363
1214 => 0.03915917703701
1215 => 0.037997663435449
1216 => 0.036482516291565
1217 => 0.036991049406062
1218 => 0.036806294558042
1219 => 0.036136719154967
1220 => 0.036587932131797
1221 => 0.0346010185355
1222 => 0.031182636963852
1223 => 0.033440924537942
1224 => 0.033353982922884
1225 => 0.033310143018083
1226 => 0.035007183715527
1227 => 0.034844052409858
1228 => 0.034547967492683
1229 => 0.036131281323271
1230 => 0.03555335047653
1231 => 0.037334397168552
]
'min_raw' => 0.015988018499709
'max_raw' => 0.052593337354318
'avg_raw' => 0.034290677927014
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.015988'
'max' => '$0.052593'
'avg' => '$0.03429'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.0087098602737138
'max_diff' => 0.034766854099557
'year' => 2029
]
4 => [
'items' => [
101 => 0.038507509710796
102 => 0.038209970423868
103 => 0.039313288439993
104 => 0.037002764981928
105 => 0.037770228192586
106 => 0.037928401296644
107 => 0.036111743476373
108 => 0.034870742708945
109 => 0.034787982106202
110 => 0.032636257795921
111 => 0.033785691554361
112 => 0.034797145694988
113 => 0.03431273765364
114 => 0.034159388539028
115 => 0.034942815908216
116 => 0.035003694924404
117 => 0.033615646903657
118 => 0.033904266040935
119 => 0.03510785582232
120 => 0.033873938666537
121 => 0.031476639192073
122 => 0.030882075777148
123 => 0.030802750057619
124 => 0.029190246920922
125 => 0.030921807347549
126 => 0.030165934818392
127 => 0.032553727081255
128 => 0.031189832946694
129 => 0.031131038196534
130 => 0.031042161308352
131 => 0.029654213246932
201 => 0.029958085663682
202 => 0.030968203858035
203 => 0.031328625409577
204 => 0.031291030488904
205 => 0.030963253727815
206 => 0.031113308250553
207 => 0.030629930350352
208 => 0.030459239553151
209 => 0.029920492444979
210 => 0.029128683028654
211 => 0.029238788984443
212 => 0.0276700073425
213 => 0.026815251842425
214 => 0.026578666785501
215 => 0.026262295359812
216 => 0.026614401779865
217 => 0.027665563181215
218 => 0.026397639514855
219 => 0.024223873323385
220 => 0.024354520375409
221 => 0.024648045511851
222 => 0.024101063361955
223 => 0.023583390661811
224 => 0.024033465074472
225 => 0.023112411682893
226 => 0.024759350413839
227 => 0.024714805336659
228 => 0.025328682249548
301 => 0.025712552081199
302 => 0.024827856398576
303 => 0.024605357826868
304 => 0.024732103125309
305 => 0.022637285670716
306 => 0.025157490971922
307 => 0.025179285812021
308 => 0.024992665159065
309 => 0.026334596679348
310 => 0.029166490746082
311 => 0.028101018285502
312 => 0.02768843514469
313 => 0.026904114292409
314 => 0.027949175259709
315 => 0.027868930882911
316 => 0.027506035379255
317 => 0.02728655504634
318 => 0.027690954289369
319 => 0.027236445504841
320 => 0.027154803238073
321 => 0.026660139929125
322 => 0.026483567633577
323 => 0.026352840535498
324 => 0.026208922845494
325 => 0.02652636940759
326 => 0.025806993734306
327 => 0.024939497193593
328 => 0.024867374242675
329 => 0.025066512051273
330 => 0.024978408395035
331 => 0.024866952436265
401 => 0.024654152657748
402 => 0.024591019509211
403 => 0.024796171614109
404 => 0.024564566848789
405 => 0.024906312296183
406 => 0.02481337644413
407 => 0.024294244329281
408 => 0.023647213506854
409 => 0.023641453575341
410 => 0.023502051845993
411 => 0.023324502784477
412 => 0.023275112697335
413 => 0.023995561062798
414 => 0.0254868676181
415 => 0.025194088457353
416 => 0.025405651406208
417 => 0.026446331723028
418 => 0.026777132701397
419 => 0.026542338002401
420 => 0.02622093653691
421 => 0.026235076570252
422 => 0.027333402672675
423 => 0.027401903924449
424 => 0.02757498448834
425 => 0.027797441925502
426 => 0.026580223465883
427 => 0.026177745690267
428 => 0.025987029391563
429 => 0.02539969700805
430 => 0.026033084629595
501 => 0.025664036786883
502 => 0.025713833949335
503 => 0.025681403481961
504 => 0.025699112710086
505 => 0.024758890060899
506 => 0.025101457777615
507 => 0.024531872506473
508 => 0.023769261767361
509 => 0.023766705228758
510 => 0.023953353126766
511 => 0.023842327653498
512 => 0.023543560959659
513 => 0.02358599935838
514 => 0.023214194329805
515 => 0.023631143220597
516 => 0.02364309982287
517 => 0.023482551788555
518 => 0.024124919082678
519 => 0.024388097487203
520 => 0.024282421331745
521 => 0.024380682966425
522 => 0.0252062547533
523 => 0.025340858976783
524 => 0.025400641281399
525 => 0.025320540912852
526 => 0.024395772903165
527 => 0.024436790296812
528 => 0.0241358318777
529 => 0.023881553727767
530 => 0.023891723520251
531 => 0.024022455543162
601 => 0.024593369954547
602 => 0.025794825676064
603 => 0.025840420042443
604 => 0.025895681744575
605 => 0.025670904629695
606 => 0.02560310970102
607 => 0.025692548711299
608 => 0.026143752310759
609 => 0.027304370469155
610 => 0.026894130496898
611 => 0.026560599013687
612 => 0.026853196043905
613 => 0.026808153024554
614 => 0.026427944611541
615 => 0.026417273427711
616 => 0.025687531923157
617 => 0.025417763104333
618 => 0.025192324087478
619 => 0.024946150566307
620 => 0.024800210651145
621 => 0.025024440689338
622 => 0.025075724752085
623 => 0.024585441854705
624 => 0.02451861810745
625 => 0.024918993704942
626 => 0.024742803331992
627 => 0.024924019499882
628 => 0.024966063205276
629 => 0.024959293200359
630 => 0.024775330215664
701 => 0.024892582736253
702 => 0.024615245570401
703 => 0.024313683057232
704 => 0.024121304961839
705 => 0.023953429558357
706 => 0.024046576589184
707 => 0.02371452443226
708 => 0.02360829426437
709 => 0.024852860220543
710 => 0.025772234473706
711 => 0.025758866407953
712 => 0.025677491745668
713 => 0.02555658550376
714 => 0.026134907266085
715 => 0.025933431528
716 => 0.026080021961318
717 => 0.026117335378979
718 => 0.026230271856155
719 => 0.026270636939528
720 => 0.026148625622224
721 => 0.025739140738923
722 => 0.024718743342393
723 => 0.024243745599798
724 => 0.024086988433029
725 => 0.024092686258317
726 => 0.023935514800666
727 => 0.023981808838875
728 => 0.023919415623424
729 => 0.0238012579679
730 => 0.024039280686915
731 => 0.024066710587947
801 => 0.024011153241169
802 => 0.02402423900754
803 => 0.023564247905074
804 => 0.023599220029546
805 => 0.023404490796441
806 => 0.02336798141273
807 => 0.022875722868455
808 => 0.022003615503254
809 => 0.022486847641086
810 => 0.021903171171306
811 => 0.021682124048059
812 => 0.02272852674963
813 => 0.022623496941086
814 => 0.022443731564218
815 => 0.022177821105442
816 => 0.022079192329672
817 => 0.021479955110167
818 => 0.021444548978433
819 => 0.021741547125185
820 => 0.021604492699541
821 => 0.021412016379367
822 => 0.020714886658708
823 => 0.019931082040968
824 => 0.019954740175557
825 => 0.020204053841257
826 => 0.020928966948807
827 => 0.020645730856563
828 => 0.020440239821881
829 => 0.020401757528122
830 => 0.020883444002646
831 => 0.021565131280532
901 => 0.021884963699424
902 => 0.021568019485757
903 => 0.021203931038586
904 => 0.021226091415342
905 => 0.021373514473875
906 => 0.021389006552877
907 => 0.021152022402666
908 => 0.021218732052808
909 => 0.021117393994184
910 => 0.020495482515465
911 => 0.020484234108917
912 => 0.020331607002362
913 => 0.020326985514234
914 => 0.020067328731367
915 => 0.020031000952522
916 => 0.019515436650101
917 => 0.019854782635227
918 => 0.019627167164868
919 => 0.019284096961976
920 => 0.019224951529687
921 => 0.019223173546572
922 => 0.019575429935848
923 => 0.019850666314225
924 => 0.019631126633426
925 => 0.019581141703706
926 => 0.020114849981875
927 => 0.020046930738619
928 => 0.019988113111991
929 => 0.021504093661609
930 => 0.020304076763149
1001 => 0.019780800900851
1002 => 0.019133147653865
1003 => 0.019344026816835
1004 => 0.019388462154932
1005 => 0.017830972844204
1006 => 0.017199099624815
1007 => 0.016982264547561
1008 => 0.016857472895003
1009 => 0.016914342018108
1010 => 0.016345582009322
1011 => 0.016727798141649
1012 => 0.016235300050126
1013 => 0.016152731142355
1014 => 0.017033378738803
1015 => 0.017155915707181
1016 => 0.016633134930831
1017 => 0.016968844819767
1018 => 0.016847111747323
1019 => 0.01624374251635
1020 => 0.01622069824981
1021 => 0.015917948779162
1022 => 0.015444204481447
1023 => 0.015227690625135
1024 => 0.015114928328908
1025 => 0.015161456250024
1026 => 0.01513793030933
1027 => 0.014984407632739
1028 => 0.015146730049445
1029 => 0.014732063351015
1030 => 0.014566939730504
1031 => 0.014492357221958
1101 => 0.014124316659778
1102 => 0.014710032862588
1103 => 0.0148254263332
1104 => 0.014941047164596
1105 => 0.015947447564203
1106 => 0.015897170644296
1107 => 0.016351649514397
1108 => 0.016333989301238
1109 => 0.016204364565416
1110 => 0.015657499127216
1111 => 0.015875469943943
1112 => 0.015204589650242
1113 => 0.015707258781709
1114 => 0.015477861582072
1115 => 0.015629699357759
1116 => 0.015356681346414
1117 => 0.01550778078653
1118 => 0.014852790405897
1119 => 0.014241169604427
1120 => 0.014487303669263
1121 => 0.014754879546584
1122 => 0.015335052225683
1123 => 0.014989506164332
1124 => 0.015113777594537
1125 => 0.014697489106137
1126 => 0.01383856704764
1127 => 0.013843428453213
1128 => 0.013711302007147
1129 => 0.01359712546697
1130 => 0.015029196286192
1201 => 0.014851095642132
1202 => 0.014567315575059
1203 => 0.014947166471808
1204 => 0.015047605077953
1205 => 0.01505046442387
1206 => 0.015327593832767
1207 => 0.015475497847974
1208 => 0.015501566571707
1209 => 0.015937635684384
1210 => 0.016083800299063
1211 => 0.016685831660934
1212 => 0.015462949225631
1213 => 0.015437764766616
1214 => 0.014952511752902
1215 => 0.014644756620058
1216 => 0.014973584010144
1217 => 0.015264880188345
1218 => 0.014961563137144
1219 => 0.015001169940658
1220 => 0.014593991581334
1221 => 0.01473953868527
1222 => 0.014864903458492
1223 => 0.014795684399319
1224 => 0.014692060117498
1225 => 0.015240997223631
1226 => 0.015210024040801
1227 => 0.015721206894041
1228 => 0.016119710483178
1229 => 0.016833900155949
1230 => 0.016088606000863
1231 => 0.016061444519576
]
'min_raw' => 0.01359712546697
'max_raw' => 0.039313288439993
'avg_raw' => 0.026455206953481
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.013597'
'max' => '$0.039313'
'avg' => '$0.026455'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0023908930327392
'max_diff' => -0.013280048914325
'year' => 2030
]
5 => [
'items' => [
101 => 0.016326952355998
102 => 0.016083759651196
103 => 0.016237449045904
104 => 0.016809138418433
105 => 0.016821217314018
106 => 0.016618880250188
107 => 0.016606568021465
108 => 0.016645429067899
109 => 0.016873039430663
110 => 0.016793505376153
111 => 0.016885544197588
112 => 0.01700064015314
113 => 0.017476725824979
114 => 0.017591508468679
115 => 0.017312646152466
116 => 0.017337824297331
117 => 0.017233522136126
118 => 0.017132767555303
119 => 0.017359249138967
120 => 0.017773148684619
121 => 0.017770573837027
122 => 0.017866590486561
123 => 0.017926408063775
124 => 0.017669627233227
125 => 0.017502472354633
126 => 0.017566570171427
127 => 0.01766906397635
128 => 0.017533332811868
129 => 0.016695537187892
130 => 0.016949670861614
131 => 0.016907370591805
201 => 0.016847129863708
202 => 0.017102663237794
203 => 0.017078016420486
204 => 0.016339748553359
205 => 0.016387010066908
206 => 0.016342622682533
207 => 0.016486047402254
208 => 0.016076014245652
209 => 0.016202137683007
210 => 0.016281241120583
211 => 0.016327833653016
212 => 0.016496157828963
213 => 0.016476406929706
214 => 0.016494930085334
215 => 0.016744510402329
216 => 0.018006802000068
217 => 0.018075505746644
218 => 0.017737183371291
219 => 0.017872336487131
220 => 0.017612872059456
221 => 0.017787052268015
222 => 0.017906221943013
223 => 0.017367717096707
224 => 0.017335830334576
225 => 0.017075295004912
226 => 0.017215291933598
227 => 0.016992546753923
228 => 0.017047200629719
301 => 0.016894383628353
302 => 0.017169423805251
303 => 0.017476961459947
304 => 0.017554657616553
305 => 0.017350272478821
306 => 0.017202284169466
307 => 0.016942465448618
308 => 0.017374549771826
309 => 0.017500904395463
310 => 0.017373886084778
311 => 0.017344453166788
312 => 0.01728867784038
313 => 0.017356286165952
314 => 0.017500216241046
315 => 0.017432341475603
316 => 0.017477173953978
317 => 0.017306318777465
318 => 0.017669712238367
319 => 0.018246868509678
320 => 0.018248724161465
321 => 0.018180849030152
322 => 0.018153075988808
323 => 0.018222719992543
324 => 0.018260499007623
325 => 0.018485714945175
326 => 0.018727380619168
327 => 0.019855128872697
328 => 0.019538461675864
329 => 0.020539067016439
330 => 0.021330415928492
331 => 0.021567706865722
401 => 0.021349410368871
402 => 0.02060262984529
403 => 0.020565989230098
404 => 0.021681994614934
405 => 0.021366671977433
406 => 0.021329165353051
407 => 0.020930158238064
408 => 0.021166020861014
409 => 0.021114434245478
410 => 0.021033002249153
411 => 0.021483011703408
412 => 0.022325389229154
413 => 0.022194096792
414 => 0.022096093078145
415 => 0.021666669332487
416 => 0.021925278342639
417 => 0.021833192627454
418 => 0.022228851298931
419 => 0.02199447186686
420 => 0.021364283098326
421 => 0.021464642736844
422 => 0.021449473579378
423 => 0.02176165376514
424 => 0.021667945022163
425 => 0.02143117544334
426 => 0.022322510074349
427 => 0.022264631761275
428 => 0.022346689976389
429 => 0.022382814540417
430 => 0.022925354223235
501 => 0.023147615371951
502 => 0.023198072543939
503 => 0.023409203444926
504 => 0.023192819414787
505 => 0.024058509814542
506 => 0.024634143415944
507 => 0.025302771465807
508 => 0.026279816756934
509 => 0.026647194824572
510 => 0.026580831264927
511 => 0.027321615853796
512 => 0.028652789293276
513 => 0.026849899476751
514 => 0.028748346831311
515 => 0.028147320317486
516 => 0.026722297265213
517 => 0.026630542580564
518 => 0.027595584736422
519 => 0.029735955356248
520 => 0.029199816791864
521 => 0.029736832286873
522 => 0.029110375186687
523 => 0.029079266311468
524 => 0.029706406663795
525 => 0.031171754280648
526 => 0.030475622555615
527 => 0.029477547029279
528 => 0.03021451046615
529 => 0.029576084534386
530 => 0.028137532225954
531 => 0.029199406816808
601 => 0.028489361518351
602 => 0.028696590484525
603 => 0.030189000090614
604 => 0.030009429418383
605 => 0.030241810496046
606 => 0.029831663976443
607 => 0.029448522452963
608 => 0.028733360346926
609 => 0.028521636104394
610 => 0.02858014906799
611 => 0.028521607108275
612 => 0.028121480482626
613 => 0.028035073175914
614 => 0.027891057212469
615 => 0.027935693781521
616 => 0.027664901636888
617 => 0.028175942362322
618 => 0.028270796024238
619 => 0.02864268884695
620 => 0.028681299993511
621 => 0.029717016211199
622 => 0.029146561123
623 => 0.029529271646887
624 => 0.029495038415419
625 => 0.026753181835803
626 => 0.027130985480869
627 => 0.027718729391276
628 => 0.027453951556306
629 => 0.027079617646129
630 => 0.026777322943147
701 => 0.026319315556908
702 => 0.026963952157786
703 => 0.02781158073848
704 => 0.028702797253117
705 => 0.029773535500634
706 => 0.029534559188556
707 => 0.02868278054637
708 => 0.028720990714034
709 => 0.028957190935384
710 => 0.028651290187682
711 => 0.028561074085293
712 => 0.028944796628278
713 => 0.028947439114542
714 => 0.02859546333497
715 => 0.028204306666864
716 => 0.028202667706142
717 => 0.028133065155178
718 => 0.029122757325881
719 => 0.029666987950603
720 => 0.029729383114656
721 => 0.029662788258924
722 => 0.02968841797584
723 => 0.029371742166617
724 => 0.030095569159205
725 => 0.030759824386674
726 => 0.030581789795969
727 => 0.030314890635395
728 => 0.030102292598392
729 => 0.030531708454914
730 => 0.030512587242787
731 => 0.030754022696746
801 => 0.030743069789955
802 => 0.030661884127636
803 => 0.030581792695365
804 => 0.030899346171193
805 => 0.030807895869907
806 => 0.030716303521045
807 => 0.030532601043313
808 => 0.030557569261012
809 => 0.03029071618434
810 => 0.030167257740706
811 => 0.028310738966672
812 => 0.027814616486749
813 => 0.027970706718437
814 => 0.02802209567559
815 => 0.027806182536529
816 => 0.028115746514408
817 => 0.028067501296365
818 => 0.028255195217261
819 => 0.028137932204208
820 => 0.028142744719167
821 => 0.028487590237446
822 => 0.028587700358481
823 => 0.028536783542935
824 => 0.028572443935217
825 => 0.029394222624045
826 => 0.029277391973497
827 => 0.029215328018914
828 => 0.029232520158486
829 => 0.029442502232615
830 => 0.029501285748775
831 => 0.029252215860161
901 => 0.029369678659487
902 => 0.02986982035077
903 => 0.030044841637151
904 => 0.030603425568296
905 => 0.030366129186308
906 => 0.030801696965393
907 => 0.032140483822304
908 => 0.033209999400608
909 => 0.032226428675199
910 => 0.034190457832767
911 => 0.035719736255183
912 => 0.035661040002184
913 => 0.035394374936388
914 => 0.033653332110438
915 => 0.032051198544512
916 => 0.033391451302594
917 => 0.0333948678825
918 => 0.033279738981969
919 => 0.032564683268531
920 => 0.033254856593115
921 => 0.033309640045279
922 => 0.033278975880162
923 => 0.032730744341207
924 => 0.031893696111345
925 => 0.03205725333185
926 => 0.032325163395513
927 => 0.031817953753105
928 => 0.031655869539439
929 => 0.031957214930427
930 => 0.032928212567994
1001 => 0.032744651089219
1002 => 0.032739857557178
1003 => 0.033525211405562
1004 => 0.032963067540087
1005 => 0.032059316312183
1006 => 0.031831107208123
1007 => 0.031021118628784
1008 => 0.031580580625614
1009 => 0.031600714666889
1010 => 0.031294303048788
1011 => 0.032084179926261
1012 => 0.03207690107178
1013 => 0.032826771609283
1014 => 0.034260242438476
1015 => 0.033836294577468
1016 => 0.033343289340512
1017 => 0.033396892679322
1018 => 0.033984789001749
1019 => 0.033629333464842
1020 => 0.033757157754238
1021 => 0.033984595524378
1022 => 0.034121814378066
1023 => 0.033377148997955
1024 => 0.033203531876388
1025 => 0.032848372176992
1026 => 0.03275571764079
1027 => 0.033044987805297
1028 => 0.032968775337015
1029 => 0.031599022478683
1030 => 0.031455875683754
1031 => 0.031460265791588
1101 => 0.031100316369481
1102 => 0.030551307103007
1103 => 0.031994070675659
1104 => 0.031878196569312
1105 => 0.031750280523848
1106 => 0.031765949509539
1107 => 0.032392204276633
1108 => 0.032028944885094
1109 => 0.032994729514542
1110 => 0.032796193228871
1111 => 0.032592565236619
1112 => 0.032564417645429
1113 => 0.032486038241136
1114 => 0.032217246100122
1115 => 0.031892663437944
1116 => 0.031678345849506
1117 => 0.029221599535143
1118 => 0.029677557360853
1119 => 0.030202095277469
1120 => 0.030383163664331
1121 => 0.030073433659053
1122 => 0.032229476128557
1123 => 0.032623405863878
1124 => 0.031430167000191
1125 => 0.031206960728416
1126 => 0.032244109494575
1127 => 0.031618582002301
1128 => 0.03190025699377
1129 => 0.031291429730197
1130 => 0.032528519726248
1201 => 0.032519095173171
1202 => 0.032037839223762
1203 => 0.032444593456704
1204 => 0.032373909899
1205 => 0.031830573117399
1206 => 0.032545744471357
1207 => 0.032546099187426
1208 => 0.032082900799527
1209 => 0.031541986489626
1210 => 0.031445283786841
1211 => 0.031372431290474
1212 => 0.031882339745603
1213 => 0.03233952207203
1214 => 0.0331902250364
1215 => 0.033404111973846
1216 => 0.034238926929959
1217 => 0.033741835269997
1218 => 0.033962189564443
1219 => 0.034201415322084
1220 => 0.034316108947532
1221 => 0.034129221839663
1222 => 0.035426033090051
1223 => 0.035535523692854
1224 => 0.035572234944884
1225 => 0.035134957487679
1226 => 0.03552336221574
1227 => 0.035341640506093
1228 => 0.03581442991085
1229 => 0.035888569326394
1230 => 0.035825775879015
1231 => 0.035849308899719
]
'min_raw' => 0.016076014245652
'max_raw' => 0.035888569326394
'avg_raw' => 0.025982291786023
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.016076'
'max' => '$0.035888'
'avg' => '$0.025982'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.002478888778682
'max_diff' => -0.003424719113599
'year' => 2031
]
6 => [
'items' => [
101 => 0.034742709270694
102 => 0.034685326242151
103 => 0.033902904576252
104 => 0.034221747188475
105 => 0.033625686207449
106 => 0.03381470328464
107 => 0.033898020211246
108 => 0.033854500176981
109 => 0.034239774071382
110 => 0.033912212554885
111 => 0.033047723856748
112 => 0.032182999629245
113 => 0.032172143720957
114 => 0.031944477095506
115 => 0.031779915824527
116 => 0.031811616163442
117 => 0.03192333229252
118 => 0.031773422680016
119 => 0.031805413496454
120 => 0.032336674203019
121 => 0.032443214748942
122 => 0.032081148345816
123 => 0.030627399491329
124 => 0.030270645875985
125 => 0.030527073299963
126 => 0.030404517507343
127 => 0.024538818603723
128 => 0.025916877553986
129 => 0.0250980817202
130 => 0.025475420511394
131 => 0.024639641991251
201 => 0.025038519307968
202 => 0.024964861232238
203 => 0.027180739244533
204 => 0.027146141357212
205 => 0.027162701534993
206 => 0.026372241102177
207 => 0.027631466034993
208 => 0.028251805517162
209 => 0.028136997188813
210 => 0.02816589197161
211 => 0.027669383870161
212 => 0.027167508818728
213 => 0.026610852148672
214 => 0.027645051436792
215 => 0.027530066130324
216 => 0.027793801052955
217 => 0.028464553217393
218 => 0.028563324021546
219 => 0.028696072983962
220 => 0.028648491930651
221 => 0.029782065658226
222 => 0.029644782400256
223 => 0.029975595552874
224 => 0.029295087799085
225 => 0.028525028681283
226 => 0.028671391744448
227 => 0.028657295804488
228 => 0.028477838310228
229 => 0.028315832108497
301 => 0.028046137427578
302 => 0.028899491305306
303 => 0.028864846696278
304 => 0.029425702646498
305 => 0.029326565909432
306 => 0.028664506516435
307 => 0.028688152097176
308 => 0.028847179991341
309 => 0.029397577348794
310 => 0.029560972758396
311 => 0.029485281494487
312 => 0.029664437101831
313 => 0.029806034389114
314 => 0.029682219541044
315 => 0.031435176687309
316 => 0.030707226664434
317 => 0.03106202444054
318 => 0.031146641619551
319 => 0.030929896494821
320 => 0.030976900751314
321 => 0.031048099392008
322 => 0.031480403596175
323 => 0.032614894916141
324 => 0.033117353399011
325 => 0.034629024535588
326 => 0.033075631216568
327 => 0.032983459285598
328 => 0.03325575690539
329 => 0.034143267889202
330 => 0.034862512181913
331 => 0.035101127008004
401 => 0.035132663896374
402 => 0.035580321172934
403 => 0.035836909975545
404 => 0.035525963805004
405 => 0.035262469482893
406 => 0.034318665527208
407 => 0.034427913404971
408 => 0.035180522946853
409 => 0.036243628253242
410 => 0.03715588320338
411 => 0.036836443315136
412 => 0.039273544173015
413 => 0.039515172768409
414 => 0.039481787509314
415 => 0.040032253408778
416 => 0.038939690698772
417 => 0.038472598972839
418 => 0.035319439946121
419 => 0.036205349016943
420 => 0.037493069878999
421 => 0.037322635194201
422 => 0.036387457883298
423 => 0.03715517378753
424 => 0.036901342900895
425 => 0.036701135949153
426 => 0.037618322807111
427 => 0.036609838180827
428 => 0.037483009473401
429 => 0.036363158258874
430 => 0.036837902489638
501 => 0.036568414703462
502 => 0.036742806328299
503 => 0.035723316452907
504 => 0.036273408442951
505 => 0.035700430817586
506 => 0.035700159151588
507 => 0.035687510638751
508 => 0.03636161627402
509 => 0.036383598834585
510 => 0.035885433751604
511 => 0.035813640380345
512 => 0.036079098102318
513 => 0.035768316633376
514 => 0.035913729326658
515 => 0.035772721035721
516 => 0.035740977099342
517 => 0.035488036013488
518 => 0.035379062038942
519 => 0.035421793542275
520 => 0.0352759288918
521 => 0.035188040163734
522 => 0.035670027358611
523 => 0.035412521043696
524 => 0.03563056082269
525 => 0.035382076975713
526 => 0.03452072370283
527 => 0.03402535032695
528 => 0.032398333841965
529 => 0.032859753698799
530 => 0.033165675541253
531 => 0.033064568374147
601 => 0.033281785692371
602 => 0.033295121071544
603 => 0.033224501507121
604 => 0.033142733098446
605 => 0.033102932759179
606 => 0.033399571880265
607 => 0.03357178087447
608 => 0.03319637889085
609 => 0.03310842745852
610 => 0.033487979590471
611 => 0.033719506171701
612 => 0.035428968363957
613 => 0.035302325883264
614 => 0.03562017365747
615 => 0.035584388875866
616 => 0.035917543980356
617 => 0.036462111774344
618 => 0.035354853185616
619 => 0.035547034990498
620 => 0.035499916450067
621 => 0.036014344319348
622 => 0.036015950307005
623 => 0.035707525101793
624 => 0.035874727409166
625 => 0.035781399668145
626 => 0.03595005551017
627 => 0.035300634495724
628 => 0.036091559190652
629 => 0.036539962526615
630 => 0.03654618860737
701 => 0.036758728229867
702 => 0.036974680795789
703 => 0.037389182940572
704 => 0.036963120555943
705 => 0.036196675802331
706 => 0.036252010637941
707 => 0.035802644359329
708 => 0.035810198287657
709 => 0.03576987482623
710 => 0.035890888569382
711 => 0.035327190207153
712 => 0.035459489086064
713 => 0.035274269880847
714 => 0.035546632360119
715 => 0.035253615355553
716 => 0.03549989372808
717 => 0.035606179309405
718 => 0.03599837539266
719 => 0.035195687675172
720 => 0.033558953082031
721 => 0.033903014536998
722 => 0.033394120619658
723 => 0.033441220689204
724 => 0.033536370325606
725 => 0.033227959223002
726 => 0.033286794342228
727 => 0.033284692337753
728 => 0.033266578398781
729 => 0.033186348759592
730 => 0.033069999909817
731 => 0.033533497917033
801 => 0.03361225526031
802 => 0.033787323078445
803 => 0.03430820615558
804 => 0.034256157652905
805 => 0.034341050920239
806 => 0.034155729394304
807 => 0.033449817223277
808 => 0.03348815165041
809 => 0.033010120729797
810 => 0.033775098753045
811 => 0.033593941859923
812 => 0.033477148832433
813 => 0.033445280772802
814 => 0.033967455018334
815 => 0.034123697736676
816 => 0.034026337759665
817 => 0.033826649606369
818 => 0.034210109893199
819 => 0.034312707689064
820 => 0.034335675551898
821 => 0.035015093658944
822 => 0.034373647476688
823 => 0.034528049948184
824 => 0.035732653954664
825 => 0.034640244344776
826 => 0.035218918078776
827 => 0.035190595010769
828 => 0.035486624911831
829 => 0.035166311918417
830 => 0.035170282581862
831 => 0.035433137079203
901 => 0.035064005343746
902 => 0.034972603134935
903 => 0.034846331638099
904 => 0.035122040831891
905 => 0.035287316024315
906 => 0.036619312694002
907 => 0.037479843289047
908 => 0.037442485386428
909 => 0.037783866685302
910 => 0.037630071283465
911 => 0.037133425361757
912 => 0.037981139390595
913 => 0.037712887202009
914 => 0.03773500158651
915 => 0.037734178488014
916 => 0.03791254274241
917 => 0.037786155321327
918 => 0.037537032740968
919 => 0.037702411935874
920 => 0.038193529020601
921 => 0.039717971520904
922 => 0.04057106974025
923 => 0.039666613936917
924 => 0.040290495438911
925 => 0.039916388849424
926 => 0.039848402553407
927 => 0.040240246241139
928 => 0.040632775799376
929 => 0.040607773363468
930 => 0.040322817060804
1001 => 0.040161852475928
1002 => 0.041380730239703
1003 => 0.042278778613011
1004 => 0.042217537734544
1005 => 0.042487835055497
1006 => 0.043281436349795
1007 => 0.04335399330641
1008 => 0.043344852797579
1009 => 0.043165012810073
1010 => 0.04394641634646
1011 => 0.044598276924001
1012 => 0.043123385049042
1013 => 0.043685004567274
1014 => 0.043937133663259
1015 => 0.044307333979497
1016 => 0.044931923965768
1017 => 0.04561039435517
1018 => 0.045706337507281
1019 => 0.045638261249555
1020 => 0.045190791789482
1021 => 0.045933182185401
1022 => 0.046368057068133
1023 => 0.046627015108865
1024 => 0.047283689613653
1025 => 0.043938690726721
1026 => 0.041570934257319
1027 => 0.041201174893804
1028 => 0.04195309509958
1029 => 0.042151370461392
1030 => 0.042071445911662
1031 => 0.03940632073835
1101 => 0.041187143561327
1102 => 0.043103159183014
1103 => 0.043176761146262
1104 => 0.044135958628476
1105 => 0.044448312647518
1106 => 0.045220592345588
1107 => 0.045172286040205
1108 => 0.045360323857031
1109 => 0.045317097219303
1110 => 0.046747582737302
1111 => 0.048325620692809
1112 => 0.048270978256263
1113 => 0.048044116629662
1114 => 0.048381044830821
1115 => 0.050009749113729
1116 => 0.049859804122813
1117 => 0.050005462909204
1118 => 0.051925797048504
1119 => 0.054422504593939
1120 => 0.053262533273745
1121 => 0.055779337265811
1122 => 0.057363531968769
1123 => 0.060103232898745
1124 => 0.059760208849
1125 => 0.060826754316186
1126 => 0.059146124208678
1127 => 0.055287057770455
1128 => 0.054676345734694
1129 => 0.05589900669598
1130 => 0.058904799363792
1201 => 0.055804343588163
1202 => 0.056431561753531
1203 => 0.05625092287971
1204 => 0.056241297401789
1205 => 0.056608662744353
1206 => 0.056075780154477
1207 => 0.053904720619574
1208 => 0.054899704410286
1209 => 0.054515493385646
1210 => 0.054941804162313
1211 => 0.057242427600048
1212 => 0.056225267138213
1213 => 0.055153771219075
1214 => 0.056497664885653
1215 => 0.058208903335173
1216 => 0.058101817108393
1217 => 0.05789402506987
1218 => 0.059065337911388
1219 => 0.061000003563114
1220 => 0.06152293591466
1221 => 0.061908953885689
1222 => 0.061962179242067
1223 => 0.062510433492134
1224 => 0.059562332211663
1225 => 0.064241044656382
1226 => 0.065048929048762
1227 => 0.064897080266371
1228 => 0.06579500976753
1229 => 0.065530816130016
1230 => 0.065148040999971
1231 => 0.066571450254389
]
'min_raw' => 0.024538818603723
'max_raw' => 0.066571450254389
'avg_raw' => 0.045555134429056
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.024538'
'max' => '$0.066571'
'avg' => '$0.045555'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.008462804358071
'max_diff' => 0.030682880927994
'year' => 2032
]
7 => [
'items' => [
101 => 0.064939626407402
102 => 0.062623457897515
103 => 0.061352762044372
104 => 0.063026116847901
105 => 0.064047976234381
106 => 0.064723360286382
107 => 0.064927731092439
108 => 0.059791184921897
109 => 0.057022871421887
110 => 0.058797328636615
111 => 0.060962288905078
112 => 0.05955030574806
113 => 0.059605652814577
114 => 0.057592535895315
115 => 0.061140405082966
116 => 0.060623510384602
117 => 0.063305160994086
118 => 0.062665163554542
119 => 0.0648519455255
120 => 0.064276092545502
121 => 0.066666426069966
122 => 0.067619994828571
123 => 0.069221185185395
124 => 0.070399027329892
125 => 0.071090678765671
126 => 0.071049154607786
127 => 0.073789822175719
128 => 0.072173746262541
129 => 0.070143574035741
130 => 0.070106854625269
131 => 0.071158309589292
201 => 0.073361870741301
202 => 0.073933222087506
203 => 0.074252529544851
204 => 0.073763499058755
205 => 0.072009364480204
206 => 0.07125193806285
207 => 0.071897287315192
208 => 0.071108080635072
209 => 0.072470472777244
210 => 0.074341328179705
211 => 0.073955003937261
212 => 0.075246427958784
213 => 0.076582915959292
214 => 0.07849415382545
215 => 0.078993822176597
216 => 0.079819754960358
217 => 0.080669911099633
218 => 0.080942958339218
219 => 0.081464290241168
220 => 0.081461542564708
221 => 0.083032611340919
222 => 0.084765548853029
223 => 0.085419692646255
224 => 0.086923860229079
225 => 0.084348025955812
226 => 0.086301825841136
227 => 0.088064202244483
228 => 0.085963024442163
301 => 0.088859008531022
302 => 0.088971453030751
303 => 0.090669231476405
304 => 0.08894820776674
305 => 0.087926269381644
306 => 0.090876567207886
307 => 0.092304123392494
308 => 0.091874131851853
309 => 0.08860187499627
310 => 0.086697281152622
311 => 0.08171259169508
312 => 0.087617171680098
313 => 0.090493120351841
314 => 0.088594426983988
315 => 0.089552017478336
316 => 0.094776320715734
317 => 0.096765397139951
318 => 0.096351683148408
319 => 0.096421594002667
320 => 0.097494863536883
321 => 0.10225433171193
322 => 0.099402348057832
323 => 0.1015825826996
324 => 0.10273897129217
325 => 0.10381308946319
326 => 0.1011753947137
327 => 0.097743792600055
328 => 0.096656860161806
329 => 0.088405639347712
330 => 0.087976127471102
331 => 0.08773502943922
401 => 0.086214940452193
402 => 0.085020566895806
403 => 0.08407075669952
404 => 0.081578171107132
405 => 0.082419345573945
406 => 0.078446684382722
407 => 0.080988252230399
408 => 0.074647789045948
409 => 0.079928315193839
410 => 0.077054364887604
411 => 0.078984145223595
412 => 0.078977412401799
413 => 0.075424074965827
414 => 0.073374584089018
415 => 0.074680599443099
416 => 0.076080751574301
417 => 0.076307921546912
418 => 0.078123255332725
419 => 0.078629875971877
420 => 0.077094791783392
421 => 0.074516397039476
422 => 0.075115299331565
423 => 0.073362447353185
424 => 0.070290641683552
425 => 0.072496866144064
426 => 0.073250168175724
427 => 0.073582869267576
428 => 0.070562101190757
429 => 0.069612910276954
430 => 0.069107568998929
501 => 0.074126453813939
502 => 0.074401399653597
503 => 0.072994737864482
504 => 0.079352982536427
505 => 0.077913915944199
506 => 0.079521705907592
507 => 0.075060955225954
508 => 0.07523136190919
509 => 0.073119571049802
510 => 0.074302032821143
511 => 0.073466306953681
512 => 0.074206501595334
513 => 0.074650171211603
514 => 0.076761615546892
515 => 0.079952424496488
516 => 0.076446236173663
517 => 0.074918539711866
518 => 0.075866314004674
519 => 0.078390361842657
520 => 0.082214423520831
521 => 0.079950502040938
522 => 0.080955191949835
523 => 0.081174671999386
524 => 0.079505340115042
525 => 0.082275974168517
526 => 0.083760779466366
527 => 0.085283882464794
528 => 0.086606350121952
529 => 0.084675521633469
530 => 0.086741784889538
531 => 0.085076741449711
601 => 0.08358302535516
602 => 0.083585290705897
603 => 0.082648260780074
604 => 0.080832647225425
605 => 0.080497820229439
606 => 0.08223963254655
607 => 0.083636401074633
608 => 0.083751445620676
609 => 0.084524768446381
610 => 0.084982412928775
611 => 0.089467950993738
612 => 0.091272071509783
613 => 0.093478115926549
614 => 0.094337494552731
615 => 0.096923916113247
616 => 0.094835170644241
617 => 0.094383257423197
618 => 0.088109444729429
619 => 0.089136781206568
620 => 0.090781646029693
621 => 0.088136567944521
622 => 0.089814261176513
623 => 0.090145473358909
624 => 0.088046689203338
625 => 0.089167740503939
626 => 0.08619056061809
627 => 0.080017318882306
628 => 0.082282846751284
629 => 0.083951037831287
630 => 0.081570323473646
701 => 0.085837661813348
702 => 0.083344770851038
703 => 0.082554644095855
704 => 0.079472077923359
705 => 0.080926930497924
706 => 0.082894639436505
707 => 0.081678824083179
708 => 0.084201823496925
709 => 0.087775063526154
710 => 0.090321567161106
711 => 0.090517056090136
712 => 0.088879824855355
713 => 0.091503498357762
714 => 0.091522608954897
715 => 0.088563094526162
716 => 0.086750408417207
717 => 0.086338562319328
718 => 0.087367434619013
719 => 0.088616675531135
720 => 0.090586380266484
721 => 0.091776631585462
722 => 0.094880175764836
723 => 0.09571990583419
724 => 0.096642514590161
725 => 0.097875404410141
726 => 0.099355804745488
727 => 0.096116773090986
728 => 0.09624546585693
729 => 0.093229324427703
730 => 0.090006144752141
731 => 0.092452136350874
801 => 0.095649944989592
802 => 0.094916364154605
803 => 0.094833821324973
804 => 0.094972635468943
805 => 0.094419539475874
806 => 0.091917906797915
807 => 0.090661602528093
808 => 0.092282555553564
809 => 0.093144019946284
810 => 0.094480076091801
811 => 0.094315378971142
812 => 0.097756916120039
813 => 0.099094193389419
814 => 0.098752060638591
815 => 0.098815021298628
816 => 0.10123609791815
817 => 0.10392883305145
818 => 0.10645093484147
819 => 0.10901652510908
820 => 0.10592360590479
821 => 0.10435321227758
822 => 0.10597345764567
823 => 0.10511373264676
824 => 0.11005396750151
825 => 0.11039601864418
826 => 0.11533589626372
827 => 0.12002442835435
828 => 0.117079645352
829 => 0.11985644308728
830 => 0.12285977623362
831 => 0.12865369314615
901 => 0.12670250576246
902 => 0.12520792680556
903 => 0.12379555691305
904 => 0.12673447445197
905 => 0.13051534491543
906 => 0.13132970820054
907 => 0.13264928783312
908 => 0.13126191119998
909 => 0.13293285354008
910 => 0.13883201424989
911 => 0.13723800895277
912 => 0.13497426518171
913 => 0.1396310860007
914 => 0.14131637135215
915 => 0.15314458653947
916 => 0.16807819681266
917 => 0.16189558410019
918 => 0.15805783687789
919 => 0.15895979850771
920 => 0.16441304744487
921 => 0.16616445792602
922 => 0.16140352049087
923 => 0.16308516407963
924 => 0.17235118558928
925 => 0.17732210883964
926 => 0.17057092738159
927 => 0.15194468549456
928 => 0.13477043982329
929 => 0.13932582314167
930 => 0.13880938404337
1001 => 0.14876456819576
1002 => 0.13719999245361
1003 => 0.1373947102501
1004 => 0.14755575706803
1005 => 0.14484496398145
1006 => 0.14045382635333
1007 => 0.1348024999875
1008 => 0.12435550051583
1009 => 0.11510230174764
1010 => 0.13324995541647
1011 => 0.1324673955909
1012 => 0.13133413299461
1013 => 0.13385608627083
1014 => 0.14610197551123
1015 => 0.14581966812817
1016 => 0.14402377259159
1017 => 0.14538594352779
1018 => 0.14021503120222
1019 => 0.141547693048
1020 => 0.13476771933503
1021 => 0.13783255061001
1022 => 0.14044440494414
1023 => 0.14096877337089
1024 => 0.14215020221125
1025 => 0.13205502212262
1026 => 0.1365874616035
1027 => 0.13924984516637
1028 => 0.12722109937098
1029 => 0.13901207553736
1030 => 0.13187928749703
1031 => 0.12945831210525
1101 => 0.13271783653102
1102 => 0.13144759669231
1103 => 0.13035551906997
1104 => 0.12974612099243
1105 => 0.13213955599013
1106 => 0.13202789938671
1107 => 0.12811177518476
1108 => 0.12300335080496
1109 => 0.12471790570514
1110 => 0.12409499183586
1111 => 0.12183747161614
1112 => 0.1233587676702
1113 => 0.11665974975841
1114 => 0.10513443762582
1115 => 0.11274841185046
1116 => 0.11245528212523
1117 => 0.11230747282539
1118 => 0.11802916402042
1119 => 0.11747915543389
1120 => 0.11648088446364
1121 => 0.12181913758691
1122 => 0.11987060338728
1123 => 0.12587552665815
1124 => 0.12983075749842
1125 => 0.12882758301901
1126 => 0.13254749674158
1127 => 0.12475740558712
1128 => 0.12734496138442
1129 => 0.12787825304805
1130 => 0.12175326437201
1201 => 0.11756914364072
1202 => 0.11729011049041
1203 => 0.1100354217497
1204 => 0.11391081791719
1205 => 0.11732100616978
1206 => 0.11568779063809
1207 => 0.11517076339168
1208 => 0.11781214346405
1209 => 0.11801740131756
1210 => 0.1133375005052
1211 => 0.11431060007727
1212 => 0.11836858705717
1213 => 0.1142083492171
1214 => 0.10612568666484
1215 => 0.10412107460033
1216 => 0.10385362239859
1217 => 0.098416955491847
1218 => 0.10425503236391
1219 => 0.10170655535852
1220 => 0.1097571636831
1221 => 0.10515869938438
1222 => 0.10496046877929
1223 => 0.1046608141456
1224 => 0.099981250353083
1225 => 0.10100577742185
1226 => 0.10441146143831
1227 => 0.10562664786317
1228 => 0.10549989396332
1229 => 0.10439477172867
1230 => 0.10490069102855
1231 => 0.10327094868966
]
'min_raw' => 0.057022871421887
'max_raw' => 0.17732210883964
'avg_raw' => 0.11717249013076
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.057022'
'max' => '$0.177322'
'avg' => '$0.117172'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.032484052818164
'max_diff' => 0.11075065858525
'year' => 2033
]
8 => [
'items' => [
101 => 0.10269545274964
102 => 0.10087902926032
103 => 0.098209388530812
104 => 0.098580618448108
105 => 0.093291361613458
106 => 0.090409493767834
107 => 0.089611830730572
108 => 0.088545162380514
109 => 0.089732313759008
110 => 0.093276377813406
111 => 0.089001484648669
112 => 0.081672480166618
113 => 0.082112965824005
114 => 0.083102606314789
115 => 0.081258417807341
116 => 0.07951304815605
117 => 0.081030505461531
118 => 0.077925109645927
119 => 0.083477878562901
120 => 0.083327691725152
121 => 0.085397420596473
122 => 0.086691664534822
123 => 0.083708851273378
124 => 0.082958681804509
125 => 0.083386012427278
126 => 0.076323189123633
127 => 0.084820237251764
128 => 0.084893720076824
129 => 0.084264515515946
130 => 0.088788931327247
131 => 0.098336859889772
201 => 0.094744545100014
202 => 0.09335349223513
203 => 0.090709099722132
204 => 0.094232595737211
205 => 0.093962046218353
206 => 0.092738518691221
207 => 0.091998525425173
208 => 0.093361985707298
209 => 0.09182957760747
210 => 0.091554315004983
211 => 0.089886523122574
212 => 0.089291197300249
213 => 0.088850441762004
214 => 0.088365213222141
215 => 0.08943550646966
216 => 0.087010081161978
217 => 0.084085256008287
218 => 0.083842088443805
219 => 0.084513495468852
220 => 0.084216447840643
221 => 0.083840666294043
222 => 0.08312319698357
223 => 0.082910339165459
224 => 0.083602023810387
225 => 0.082821152173983
226 => 0.083973370809777
227 => 0.083660031096006
228 => 0.081909740926146
301 => 0.079728231334083
302 => 0.079708811322842
303 => 0.079238808659625
304 => 0.078640189602644
305 => 0.078473667475541
306 => 0.080902709439796
307 => 0.085930753610696
308 => 0.084943628229049
309 => 0.085656927481967
310 => 0.089165653828108
311 => 0.090280972422463
312 => 0.089489345701958
313 => 0.088405718221522
314 => 0.088453392331158
315 => 0.092156475468157
316 => 0.092387432221117
317 => 0.092970985426376
318 => 0.093721016207249
319 => 0.089617079187166
320 => 0.088260097266573
321 => 0.087617083950106
322 => 0.085636851812857
323 => 0.087772362400607
324 => 0.086528091832806
325 => 0.086695986442738
326 => 0.086586644857764
327 => 0.086646352756805
328 => 0.083476326450823
329 => 0.084631317425045
330 => 0.082710920916217
331 => 0.08013972556552
401 => 0.080131106017127
402 => 0.0807604024366
403 => 0.080386072301926
404 => 0.079378759534427
405 => 0.079521843558668
406 => 0.07826827694623
407 => 0.079674049241974
408 => 0.079714361761321
409 => 0.079173062854525
410 => 0.081338849035313
411 => 0.082226173400695
412 => 0.081869878864496
413 => 0.082201174826227
414 => 0.08498464774526
415 => 0.0854384752825
416 => 0.085640035496378
417 => 0.085369971511393
418 => 0.082252051601494
419 => 0.082390344607917
420 => 0.081375642285635
421 => 0.080518325750002
422 => 0.080552613915395
423 => 0.080993386058058
424 => 0.082918263856013
425 => 0.086969055704066
426 => 0.08712278029361
427 => 0.087309098980599
428 => 0.086551247244345
429 => 0.086322671909026
430 => 0.086624221776611
501 => 0.088145486214223
502 => 0.092058591367026
503 => 0.09067543865852
504 => 0.08955091397645
505 => 0.090537425292302
506 => 0.090385559607758
507 => 0.089103660397981
508 => 0.089067681756661
509 => 0.086607307325131
510 => 0.085697762917809
511 => 0.084937679532832
512 => 0.084107688318917
513 => 0.08361564170575
514 => 0.08437164893476
515 => 0.084544556732849
516 => 0.082891533713874
517 => 0.082666232784517
518 => 0.084016127064793
519 => 0.083422088921175
520 => 0.084033071883323
521 => 0.084174825171456
522 => 0.084151999627212
523 => 0.083531755580428
524 => 0.083927080639904
525 => 0.082992019022171
526 => 0.0819752799546
527 => 0.081326663774572
528 => 0.080760660131046
529 => 0.081074711848799
530 => 0.079955174818587
531 => 0.079597012390794
601 => 0.083793153404849
602 => 0.08689288788805
603 => 0.086847816521035
604 => 0.086573456165743
605 => 0.086165812329746
606 => 0.088115664528563
607 => 0.087436375011021
608 => 0.087930614891571
609 => 0.088056419684354
610 => 0.088437192902127
611 => 0.088573286598917
612 => 0.088161916924068
613 => 0.086781310050699
614 => 0.083340968986427
615 => 0.081739480933985
616 => 0.081210963201786
617 => 0.081230173817553
618 => 0.080700259274724
619 => 0.080856342856691
620 => 0.080645979774643
621 => 0.080247602989541
622 => 0.081050113204915
623 => 0.081142595031337
624 => 0.080955279557786
625 => 0.080999399132726
626 => 0.079448507015207
627 => 0.079566417974541
628 => 0.078909874769567
629 => 0.078786780833381
630 => 0.077127096782963
701 => 0.074186725912598
702 => 0.075815976803487
703 => 0.073848070834636
704 => 0.073102795025591
705 => 0.076630814791442
706 => 0.076276699458987
707 => 0.075670607940058
708 => 0.074774072263022
709 => 0.074441538459471
710 => 0.072421168336504
711 => 0.072301794091384
712 => 0.073303144078908
713 => 0.072841055514015
714 => 0.07219210816228
715 => 0.069841686637034
716 => 0.067199034644835
717 => 0.067278799697361
718 => 0.068119378127791
719 => 0.070563473281713
720 => 0.069608523021801
721 => 0.068915695651442
722 => 0.068785949911288
723 => 0.070409989490419
724 => 0.072708345741701
725 => 0.073786683071979
726 => 0.072718083527265
727 => 0.071490533907782
728 => 0.071565249165203
729 => 0.072062296299798
730 => 0.072114528925775
731 => 0.071315520317632
801 => 0.071540436560605
802 => 0.071198768220757
803 => 0.069101950249782
804 => 0.069064025461769
805 => 0.068549432515934
806 => 0.068533850846047
807 => 0.067658399873956
808 => 0.067535918231254
809 => 0.065797657190092
810 => 0.066941785871324
811 => 0.066174364421405
812 => 0.065017679279958
813 => 0.064818266325592
814 => 0.064812271731386
815 => 0.065999928741586
816 => 0.066927907407672
817 => 0.066187714046088
818 => 0.066019186365701
819 => 0.06781862108787
820 => 0.067589626617262
821 => 0.067391318882572
822 => 0.07250255314799
823 => 0.068456612392328
824 => 0.066692351288635
825 => 0.064508743148718
826 => 0.065219736969783
827 => 0.065369553814554
828 => 0.060118369863004
829 => 0.057987965187854
830 => 0.057256890585949
831 => 0.056836146816675
901 => 0.057027885035701
902 => 0.05511027095652
903 => 0.056398939332139
904 => 0.054738447631452
905 => 0.054460060794124
906 => 0.057429225650402
907 => 0.057842367594544
908 => 0.056079775707695
909 => 0.057211645036758
910 => 0.056801213483879
911 => 0.05476691199576
912 => 0.054689216642223
913 => 0.053668475664639
914 => 0.052071213689122
915 => 0.05134122210605
916 => 0.050961036151509
917 => 0.051117908286029
918 => 0.051038588934449
919 => 0.050520976511713
920 => 0.051068257872625
921 => 0.049670180147766
922 => 0.049113454332649
923 => 0.048861994197902
924 => 0.047621119746738
925 => 0.049595902817913
926 => 0.049984959960596
927 => 0.050374783666036
928 => 0.053767932877943
929 => 0.053598420732256
930 => 0.055130727973501
1001 => 0.055071185331839
1002 => 0.054634146484904
1003 => 0.052790351479088
1004 => 0.05352525530592
1005 => 0.051263335556342
1006 => 0.052958119628318
1007 => 0.052184690953743
1008 => 0.052696622615445
1009 => 0.051776123328688
1010 => 0.052285565640463
1011 => 0.050077219842194
1012 => 0.048015097608035
1013 => 0.048844955792161
1014 => 0.049747106544102
1015 => 0.051703199238045
1016 => 0.050538166566947
1017 => 0.050957156370236
1018 => 0.049553610667262
1019 => 0.046657694979017
1020 => 0.046674085547317
1021 => 0.046228612009633
1022 => 0.045843657832873
1023 => 0.050671984583872
1024 => 0.050071505827835
1025 => 0.049114721518806
1026 => 0.050395415337538
1027 => 0.050734051110555
1028 => 0.050743691594947
1029 => 0.051678052745602
1030 => 0.0521767214592
1031 => 0.052264613981326
1101 => 0.05373485144009
1102 => 0.054227655643367
1103 => 0.056257446412403
1104 => 0.052134412902856
1105 => 0.052049501740964
1106 => 0.050413437325943
1107 => 0.049375819408781
1108 => 0.050484483912452
1109 => 0.051466609314907
1110 => 0.050443954699861
1111 => 0.050577491803169
1112 => 0.049204661536422
1113 => 0.049695383759116
1114 => 0.050118059844722
1115 => 0.049884682954003
1116 => 0.049535306453026
1117 => 0.051386086231916
1118 => 0.051281657983527
1119 => 0.053005146662873
1120 => 0.054348729336281
1121 => 0.05675666968116
1122 => 0.05424385840251
1123 => 0.054152281571996
1124 => 0.055047459779658
1125 => 0.054227518596248
1126 => 0.054745693120755
1127 => 0.056673183754315
1128 => 0.056713908594102
1129 => 0.056031715056675
1130 => 0.055990203517925
1201 => 0.056121226249167
1202 => 0.056888630478475
1203 => 0.056620475860805
1204 => 0.056930791173217
1205 => 0.057318845223105
1206 => 0.05892400130495
1207 => 0.059310999002053
1208 => 0.058370795233394
1209 => 0.058455685106689
1210 => 0.05810402308804
1211 => 0.057764321984337
1212 => 0.058527920456099
1213 => 0.059923411671808
1214 => 0.059914730393381
1215 => 0.060238457230952
1216 => 0.060440136368862
1217 => 0.059574381870804
1218 => 0.059010807527243
1219 => 0.059226917791731
1220 => 0.059572482810917
1221 => 0.059114855713418
1222 => 0.05629016927416
1223 => 0.057146998698163
1224 => 0.05700438038519
1225 => 0.056801274564538
1226 => 0.057662823176039
1227 => 0.057579724710698
1228 => 0.055090603052464
1229 => 0.055249948545089
1230 => 0.055100293379639
1231 => 0.055583859835772
]
'min_raw' => 0.045843657832873
'max_raw' => 0.10269545274964
'avg_raw' => 0.074269555291258
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.045843'
'max' => '$0.102695'
'avg' => '$0.074269'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.011179213589014
'max_diff' => -0.074626656089997
'year' => 2034
]
9 => [
'items' => [
101 => 0.054201404420687
102 => 0.054626638395388
103 => 0.054893341157999
104 => 0.055050431134085
105 => 0.05561794784531
106 => 0.055551356309501
107 => 0.055613808421946
108 => 0.056455285885836
109 => 0.060711190137999
110 => 0.060942829616321
111 => 0.059802152106905
112 => 0.060257830273048
113 => 0.059383027839915
114 => 0.059970288573944
115 => 0.060372077453361
116 => 0.058556470766832
117 => 0.058448962322046
118 => 0.057570549268087
119 => 0.058042558687426
120 => 0.057291557762579
121 => 0.057475827120639
122 => 0.056960593931189
123 => 0.057887911090295
124 => 0.058924795764694
125 => 0.059186753781263
126 => 0.058497655019685
127 => 0.057998702102481
128 => 0.05712270514518
129 => 0.058579507608038
130 => 0.059005521043428
131 => 0.058577269940821
201 => 0.058478034802876
202 => 0.058289984395783
203 => 0.058517930585712
204 => 0.059003200882768
205 => 0.058774356372211
206 => 0.058925512203155
207 => 0.058349462046814
208 => 0.059574668471566
209 => 0.061520591136057
210 => 0.061526847595614
211 => 0.0612980018515
212 => 0.061204363103559
213 => 0.061439172724541
214 => 0.061566547311528
215 => 0.062325878569061
216 => 0.063140671261486
217 => 0.066942953235129
218 => 0.065875287672007
219 => 0.06924889843779
220 => 0.071916986544993
221 => 0.07271702950699
222 => 0.071981027626882
223 => 0.069463204953076
224 => 0.069339668560792
225 => 0.073102358632772
226 => 0.072039226345315
227 => 0.07191277014258
228 => 0.070567489796615
301 => 0.071362717097293
302 => 0.071188789221354
303 => 0.070914235560342
304 => 0.072431473854021
305 => 0.075271608494992
306 => 0.074828946876582
307 => 0.074498520512921
308 => 0.073050688373027
309 => 0.073922606706259
310 => 0.073612133288291
311 => 0.074946124123182
312 => 0.074155897504108
313 => 0.072031172072618
314 => 0.072369541600769
315 => 0.072318397727294
316 => 0.073370935019317
317 => 0.073054989449834
318 => 0.072256704284107
319 => 0.075261901223551
320 => 0.075066760450087
321 => 0.075343425451467
322 => 0.075465221941224
323 => 0.077294432360754
324 => 0.07804380134143
325 => 0.078213921219594
326 => 0.07892576379296
327 => 0.078196209927895
328 => 0.081114945551245
329 => 0.083055734427827
330 => 0.085310060580059
331 => 0.088604236994218
401 => 0.089842877798776
402 => 0.089619128424077
403 => 0.092116735385376
404 => 0.096604879576146
405 => 0.090526310685985
406 => 0.096927058487243
407 => 0.094900655633552
408 => 0.09009609092088
409 => 0.089786733595481
410 => 0.093040440601046
411 => 0.10025684958169
412 => 0.098449220979875
413 => 0.10025980621452
414 => 0.098147662363409
415 => 0.098042776618655
416 => 0.10015722410207
417 => 0.10509774589959
418 => 0.10275068918628
419 => 0.099385607865826
420 => 0.10187033154638
421 => 0.099717833943963
422 => 0.09486765439957
423 => 0.09844783872035
424 => 0.096053871422823
425 => 0.096752558350543
426 => 0.10178432153418
427 => 0.10117888647553
428 => 0.1019623755032
429 => 0.10057953787684
430 => 0.099287749480347
501 => 0.096876530508818
502 => 0.096162687443006
503 => 0.096359967985014
504 => 0.096162589680567
505 => 0.094813534826243
506 => 0.094522206558896
507 => 0.094036646683268
508 => 0.094187141992253
509 => 0.093274147370519
510 => 0.094997156856045
511 => 0.095316962599667
512 => 0.096570825216166
513 => 0.09670100539254
514 => 0.10019299493187
515 => 0.098269665774109
516 => 0.099560001025388
517 => 0.099444581295407
518 => 0.090200220406918
519 => 0.091474011773665
520 => 0.093455631402573
521 => 0.092562914445772
522 => 0.091300821532452
523 => 0.090281613835806
524 => 0.088737409956049
525 => 0.090910847262998
526 => 0.093768686202346
527 => 0.096773484904195
528 => 0.10038355366226
529 => 0.099577828341289
530 => 0.096705997179874
531 => 0.096834825427901
601 => 0.097631190965158
602 => 0.096599825236972
603 => 0.096295655349079
604 => 0.097589402693407
605 => 0.097598312020337
606 => 0.096411601105347
607 => 0.095092789089141
608 => 0.095087263218639
609 => 0.094852593358568
610 => 0.098189409610194
611 => 0.10002432115841
612 => 0.10023469081031
613 => 0.1000101616047
614 => 0.10009657398469
615 => 0.099028879384303
616 => 0.1014693126258
617 => 0.10370889550203
618 => 0.10310863944949
619 => 0.10220877029531
620 => 0.10149198117043
621 => 0.10293978671156
622 => 0.10287531820987
623 => 0.10368933469938
624 => 0.10365240620942
625 => 0.10337868308071
626 => 0.10310864922501
627 => 0.10417930293964
628 => 0.10387097186399
629 => 0.10356216186503
630 => 0.10294279613566
701 => 0.10302697822486
702 => 0.10212726444577
703 => 0.10171101568347
704 => 0.095451633018809
705 => 0.093778921439584
706 => 0.094305190553592
707 => 0.094478452010495
708 => 0.093750485787578
709 => 0.094794202352062
710 => 0.094631540231056
711 => 0.09526436338973
712 => 0.094869002954178
713 => 0.094885228684361
714 => 0.096047899425586
715 => 0.096385427688119
716 => 0.096213758089608
717 => 0.096333989591916
718 => 0.099104673816054
719 => 0.098710771120876
720 => 0.098501518164834
721 => 0.098559482663718
722 => 0.099267451887125
723 => 0.099465644615992
724 => 0.098625888097025
725 => 0.099021922125945
726 => 0.10070818475688
727 => 0.10129828124351
728 => 0.10318158596645
729 => 0.10238152464707
730 => 0.10385007182463
731 => 0.10836388518382
801 => 0.11196983162726
802 => 0.10865365425583
803 => 0.11527551568471
804 => 0.12043158465669
805 => 0.12023368614167
806 => 0.11933460625438
807 => 0.11346455881096
808 => 0.10806285363605
809 => 0.11258160938338
810 => 0.11259312862107
811 => 0.11220496349489
812 => 0.10979410323343
813 => 0.11212107078363
814 => 0.11230577701746
815 => 0.11220239064387
816 => 0.11035398973397
817 => 0.10753182318616
818 => 0.10808326777429
819 => 0.10898654525881
820 => 0.10727645253718
821 => 0.10672997429445
822 => 0.10774598131943
823 => 0.11101976764738
824 => 0.11040087730583
825 => 0.11038471557788
826 => 0.11303259090937
827 => 0.11113728361929
828 => 0.10809022325651
829 => 0.10732080032912
830 => 0.10458986728228
831 => 0.10647613246499
901 => 0.10654401579086
902 => 0.10551092762746
903 => 0.1081740526673
904 => 0.10814951150122
905 => 0.1106777523727
906 => 0.11551079935507
907 => 0.11408142954258
908 => 0.11241922796566
909 => 0.11259995536492
910 => 0.1145820888616
911 => 0.1133836457018
912 => 0.1138146142179
913 => 0.11458143653913
914 => 0.11504407948465
915 => 0.11253338816473
916 => 0.11194802591781
917 => 0.11075058019484
918 => 0.1104381889571
919 => 0.11141348351293
920 => 0.11115652785514
921 => 0.10653831046018
922 => 0.10605568104688
923 => 0.10607048260195
924 => 0.10485688799445
925 => 0.10300586492193
926 => 0.10787024303767
927 => 0.10747956539805
928 => 0.10704828751995
929 => 0.10710111659918
930 => 0.10921257827015
1001 => 0.10798782386962
1002 => 0.11124403417673
1003 => 0.11057465522823
1004 => 0.1098881092355
1005 => 0.1097932076666
1006 => 0.10952894603275
1007 => 0.10862269456285
1008 => 0.10752834145568
1009 => 0.10680575474309
1010 => 0.098522663019665
1011 => 0.100059956663
1012 => 0.10182847287094
1013 => 0.10243895757904
1014 => 0.10139468124158
1015 => 0.1086639289576
1016 => 0.10999209056353
1017 => 0.10596900242533
1018 => 0.10521644689628
1019 => 0.10871326637279
1020 => 0.10660425675966
1021 => 0.10755394365932
1022 => 0.10550124003322
1023 => 0.10967217532577
1024 => 0.10964039978707
1025 => 0.10801781175342
1026 => 0.10938921204845
1027 => 0.10915089749869
1028 => 0.10731899960496
1029 => 0.1097302497565
1030 => 0.10973144570649
1031 => 0.10816974000221
1101 => 0.10634600964095
1102 => 0.10601996972694
1103 => 0.10577434244904
1104 => 0.10749353440618
1105 => 0.10903495653918
1106 => 0.11190316097773
1107 => 0.11262429572044
1108 => 0.1154389326299
1109 => 0.1137629533925
1110 => 0.11450589328088
1111 => 0.11531245962497
1112 => 0.11569915719082
1113 => 0.1150690542586
1114 => 0.11944134392975
1115 => 0.11981049914149
1116 => 0.11993427369081
1117 => 0.11845996221411
1118 => 0.11976949587232
1119 => 0.11915680844084
1120 => 0.12075085092808
1121 => 0.12100081714383
1122 => 0.12078910465189
1123 => 0.12086844787422
1124 => 0.11713746996464
1125 => 0.11694399907756
1126 => 0.11430600980404
1127 => 0.11538100993203
1128 => 0.11337134871885
1129 => 0.11400863299136
1130 => 0.11428954182641
1201 => 0.11414281099241
1202 => 0.11544178882635
1203 => 0.11433739230386
1204 => 0.11142270830143
1205 => 0.10850723019528
1206 => 0.10847062874255
1207 => 0.10770303481967
1208 => 0.10714820500526
1209 => 0.10725508491116
1210 => 0.10763174364012
1211 => 0.10712631291521
1212 => 0.10723417218635
1213 => 0.10902535474997
1214 => 0.10938456363898
1215 => 0.10816383148217
1216 => 0.10326241572176
1217 => 0.10205959599989
1218 => 0.10292415896302
1219 => 0.10251095355163
1220 => 0.082734340168055
1221 => 0.087380562131873
1222 => 0.084619934811762
1223 => 0.085892158891225
1224 => 0.08307427325837
1225 => 0.084419115980408
1226 => 0.084170772635441
1227 => 0.091641760061557
1228 => 0.091525110868906
1229 => 0.09158094466449
1230 => 0.088915852127065
1231 => 0.093161416904331
]
'min_raw' => 0.054201404420687
'max_raw' => 0.12100081714383
'avg_raw' => 0.08760111078226
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.0542014'
'max' => '$0.12100081'
'avg' => '$0.0876011'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0083577465878139
'max_diff' => 0.01830536439419
'year' => 2035
]
10 => [
'items' => [
101 => 0.095252934779183
102 => 0.094865850484494
103 => 0.094963271262063
104 => 0.09328925953294
105 => 0.091597152757236
106 => 0.089720345929615
107 => 0.093207221035
108 => 0.092819540046225
109 => 0.093708740751259
110 => 0.095970228504082
111 => 0.096303241166241
112 => 0.096750813561265
113 => 0.096590390718022
114 => 0.10041231368413
115 => 0.099949453595076
116 => 0.10106481323576
117 => 0.098770433832329
118 => 0.09617412575285
119 => 0.096667599039053
120 => 0.09662007359333
121 => 0.096015020122111
122 => 0.095468804902062
123 => 0.094559510455865
124 => 0.09743665263389
125 => 0.09731984591574
126 => 0.099210810909619
127 => 0.098876564479097
128 => 0.096644385012095
129 => 0.096724107738446
130 => 0.097260281386596
131 => 0.099115984504766
201 => 0.099666883536141
202 => 0.099411685155278
203 => 0.10001572079368
204 => 0.10049312593376
205 => 0.10007567552902
206 => 0.10598589293521
207 => 0.10353155860924
208 => 0.10472778408257
209 => 0.10501307680939
210 => 0.1042823054887
211 => 0.1044407836212
212 => 0.10468083480923
213 => 0.1061383786161
214 => 0.10996339530902
215 => 0.11165746916454
216 => 0.11675417394302
217 => 0.11151679991349
218 => 0.11120603581298
219 => 0.11212410624933
220 => 0.11511641149528
221 => 0.11754139384419
222 => 0.11834590038991
223 => 0.11845222921089
224 => 0.11996153697324
225 => 0.1208266440357
226 => 0.11977826731216
227 => 0.11888987780857
228 => 0.11570777687769
229 => 0.11607611372502
301 => 0.11861358934099
302 => 0.12219792310512
303 => 0.12527365436112
304 => 0.12419664047533
305 => 0.13241349617061
306 => 0.13322816384995
307 => 0.13311560311803
308 => 0.13497153733037
309 => 0.1312878858733
310 => 0.12971305350801
311 => 0.1190819577029
312 => 0.12206886198737
313 => 0.12641050277959
314 => 0.12583587034042
315 => 0.12268285474472
316 => 0.12527126251605
317 => 0.12441545395985
318 => 0.12374044224405
319 => 0.1268328017716
320 => 0.12343262544393
321 => 0.12637658341972
322 => 0.12260092686443
323 => 0.12420156018403
324 => 0.1232929632979
325 => 0.12388093683668
326 => 0.12044365554328
327 => 0.12229832909391
328 => 0.12036649502598
329 => 0.1203655790851
330 => 0.12032293374097
331 => 0.12259572795484
401 => 0.12266984369255
402 => 0.12099024533451
403 => 0.12074818897086
404 => 0.12164319821415
405 => 0.12059537679355
406 => 0.12108564584134
407 => 0.12061022654356
408 => 0.12050319964577
409 => 0.11965039111503
410 => 0.11928297775152
411 => 0.11942704999843
412 => 0.11893525714541
413 => 0.11863893416254
414 => 0.12026398764134
415 => 0.11939578712209
416 => 0.12013092346002
417 => 0.11929314282134
418 => 0.11638903012405
419 => 0.11471884420141
420 => 0.10923324452762
421 => 0.11078895379024
422 => 0.11182039064086
423 => 0.11147950076788
424 => 0.1122118641219
425 => 0.11225682528383
426 => 0.11201872649188
427 => 0.11174303859314
428 => 0.11160884897053
429 => 0.11260898847796
430 => 0.11318960312517
501 => 0.11192390912766
502 => 0.11162737473299
503 => 0.11290706124534
504 => 0.11368766927863
505 => 0.11945124041066
506 => 0.11902425644511
507 => 0.12009590240727
508 => 0.11997525151768
509 => 0.12109850721261
510 => 0.12293455555055
511 => 0.11920135591233
512 => 0.11984931028519
513 => 0.11969044683642
514 => 0.12142487631391
515 => 0.12143029101342
516 => 0.12039041390048
517 => 0.12095414815348
518 => 0.1206394871587
519 => 0.12120812210526
520 => 0.11901855381393
521 => 0.12168521164348
522 => 0.1231970347972
523 => 0.12321802646315
524 => 0.12393461863945
525 => 0.12466271779278
526 => 0.12606024071353
527 => 0.12462374163703
528 => 0.12203961963876
529 => 0.12222618490037
530 => 0.12071111511828
531 => 0.12073658371504
601 => 0.12060063034954
602 => 0.12100863663349
603 => 0.11910808824907
604 => 0.11955414315613
605 => 0.11892966367415
606 => 0.11984795278876
607 => 0.11886002550007
608 => 0.11969037022765
609 => 0.12004871948571
610 => 0.12137103596266
611 => 0.11866471828128
612 => 0.11314635332735
613 => 0.11430638054438
614 => 0.11259060917222
615 => 0.11274941034512
616 => 0.11307021398739
617 => 0.11203038442238
618 => 0.11222875113459
619 => 0.11222166407974
620 => 0.11216059166982
621 => 0.11189009183984
622 => 0.11149781356961
623 => 0.11306052946133
624 => 0.11332606534286
625 => 0.11391631871454
626 => 0.115672512376
627 => 0.11549702721532
628 => 0.1157832507932
629 => 0.11515842632977
630 => 0.11277839415994
701 => 0.11290764135744
702 => 0.11129592673354
703 => 0.11387510354798
704 => 0.11326432043485
705 => 0.11287054458844
706 => 0.11276309920044
707 => 0.11452364612629
708 => 0.1150504293597
709 => 0.11472217339975
710 => 0.11404891084913
711 => 0.11534177397852
712 => 0.11568768961043
713 => 0.11576512736354
714 => 0.1180558329469
715 => 0.11589315235908
716 => 0.11641373107177
717 => 0.12047513758238
718 => 0.11679200231304
719 => 0.11874304120893
720 => 0.11864754800769
721 => 0.11964563348727
722 => 0.11856567586643
723 => 0.11857906323546
724 => 0.11946529552516
725 => 0.11822074210711
726 => 0.11791257317861
727 => 0.11748684001103
728 => 0.1184164128073
729 => 0.11897364965771
730 => 0.12346456942659
731 => 0.12636590840812
801 => 0.12623995363119
802 => 0.12739094451483
803 => 0.12687241257988
804 => 0.12519793618013
805 => 0.12805606321386
806 => 0.12715163223127
807 => 0.1272261924226
808 => 0.12722341728855
809 => 0.12782478482524
810 => 0.12739866081097
811 => 0.12655872663811
812 => 0.12711631414014
813 => 0.12877214968
814 => 0.13391191400295
815 => 0.13678819421089
816 => 0.13373875832286
817 => 0.13584221836485
818 => 0.1345808918791
819 => 0.13435167133543
820 => 0.13567279968628
821 => 0.13699624049741
822 => 0.13691194303913
823 => 0.13595119296969
824 => 0.13540848963359
825 => 0.13951802111348
826 => 0.14254585390383
827 => 0.14233937600637
828 => 0.14325070229552
829 => 0.14592638446672
830 => 0.14617101531172
831 => 0.14614019744802
901 => 0.14553385437412
902 => 0.1481684109529
903 => 0.15036620440153
904 => 0.14539350347144
905 => 0.14728704288818
906 => 0.14813711373839
907 => 0.14938526995115
908 => 0.15149111869734
909 => 0.1537786289845
910 => 0.15410210802038
911 => 0.15387258416452
912 => 0.15236390963857
913 => 0.15486693069045
914 => 0.15633314171957
915 => 0.15720623683378
916 => 0.15942026077422
917 => 0.14814236348656
918 => 0.14015930723849
919 => 0.13891263772863
920 => 0.1414477891998
921 => 0.14211628842529
922 => 0.14184681722572
923 => 0.1328611616308
924 => 0.13886533011155
925 => 0.145325310552
926 => 0.14557346470982
927 => 0.14880746599013
928 => 0.14986058937319
929 => 0.15246438429409
930 => 0.15230151621285
1001 => 0.15293549884066
1002 => 0.15278975721357
1003 => 0.15761273901081
1004 => 0.1629332041529
1005 => 0.16274897336307
1006 => 0.16198409355001
1007 => 0.16312007050379
1008 => 0.16861136070612
1009 => 0.16810581070042
1010 => 0.16859690946831
1011 => 0.17507145009241
1012 => 0.1834892738964
1013 => 0.17957834960375
1014 => 0.18806392998064
1015 => 0.19340515302661
1016 => 0.20264224599184
1017 => 0.20148571645895
1018 => 0.20508164896539
1019 => 0.19941528722008
1020 => 0.1864041752922
1021 => 0.18434511702507
1022 => 0.18846740381951
1023 => 0.19860164365678
1024 => 0.18814824054234
1025 => 0.19026295037785
1026 => 0.18965391380296
1027 => 0.18962146083212
1028 => 0.19086005873321
1029 => 0.18906340787676
1030 => 0.1817435290763
1031 => 0.18509818639424
1101 => 0.18380279209991
1102 => 0.18524012864751
1103 => 0.19299684119223
1104 => 0.18956741367928
1105 => 0.18595479037845
1106 => 0.19048582170298
1107 => 0.19625538161039
1108 => 0.19589433292028
1109 => 0.19519374755482
1110 => 0.19914291057845
1111 => 0.20566577089728
1112 => 0.20742887383049
1113 => 0.20873036037073
1114 => 0.20890981337583
1115 => 0.21075829085783
1116 => 0.20081856156086
1117 => 0.2165931672255
1118 => 0.21931700585909
1119 => 0.21880503708752
1120 => 0.22183246909211
1121 => 0.22094172179783
1122 => 0.21965116872237
1123 => 0.2244502924029
1124 => 0.21894848437248
1125 => 0.21113936053168
1126 => 0.20685512074566
1127 => 0.21249695329566
1128 => 0.21594222356112
1129 => 0.21821932804625
1130 => 0.21890837848758
1201 => 0.2015901544514
1202 => 0.19225659220864
1203 => 0.19823929859674
1204 => 0.20553861329456
1205 => 0.20077801349916
1206 => 0.20096461999813
1207 => 0.1941772557535
1208 => 0.20613914442399
1209 => 0.20439639786002
1210 => 0.21343777011676
1211 => 0.21127997406614
1212 => 0.21865286215747
1213 => 0.21671133363063
1214 => 0.22477050999612
1215 => 0.2279855336418
1216 => 0.23338405872138
1217 => 0.23735523574586
1218 => 0.23968718685115
1219 => 0.23954718525372
1220 => 0.2487875373063
1221 => 0.2433388245342
1222 => 0.23649395712945
1223 => 0.23637015507338
1224 => 0.23991520889482
1225 => 0.24734466916655
1226 => 0.24927102012076
1227 => 0.25034758750653
1228 => 0.24869878707964
1229 => 0.24278459987829
1230 => 0.24023088383035
1231 => 0.24240672389147
]
'min_raw' => 0.089720345929615
'max_raw' => 0.25034758750653
'avg_raw' => 0.17003396671807
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.08972'
'max' => '$0.250347'
'avg' => '$0.170033'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.035518941508928
'max_diff' => 0.12934677036269
'year' => 2036
]
11 => [
'items' => [
101 => 0.23974585846879
102 => 0.24433925869531
103 => 0.25064697830366
104 => 0.24934445914796
105 => 0.25369858540087
106 => 0.2582046480052
107 => 0.26464851990932
108 => 0.26633318664094
109 => 0.26911787668617
110 => 0.27198423746575
111 => 0.27290483529756
112 => 0.27466254220321
113 => 0.27465327822019
114 => 0.2799502462877
115 => 0.28579296609962
116 => 0.28799845756934
117 => 0.29306986359246
118 => 0.28438525850113
119 => 0.29097263122446
120 => 0.29691460631353
121 => 0.28983033865346
122 => 0.2995943512002
123 => 0.29997346568166
124 => 0.30569764424629
125 => 0.29989509265112
126 => 0.2964495560363
127 => 0.30639669114069
128 => 0.31120979648589
129 => 0.30976004998557
130 => 0.29872740753529
131 => 0.29230593641694
201 => 0.27549970789093
202 => 0.29540741155503
203 => 0.30510387329413
204 => 0.29870229604188
205 => 0.30193087925041
206 => 0.3195449823645
207 => 0.32625129240163
208 => 0.32485642679455
209 => 0.32509213612071
210 => 0.3287107392886
211 => 0.34475761853622
212 => 0.3351419565273
213 => 0.34249276984114
214 => 0.34639161471747
215 => 0.35001307912359
216 => 0.34111990711773
217 => 0.32955002100476
218 => 0.325885352402
219 => 0.29806578534544
220 => 0.29661765606589
221 => 0.29580477721847
222 => 0.29067969106949
223 => 0.28665277723563
224 => 0.28345042584522
225 => 0.27504649949372
226 => 0.2778825779375
227 => 0.26448847336895
228 => 0.27305754681399
301 => 0.25168023251061
302 => 0.26948389509279
303 => 0.25979417098252
304 => 0.26630056011827
305 => 0.26627785993951
306 => 0.25429753468804
307 => 0.24738753310599
308 => 0.25179085505536
309 => 0.2565115657212
310 => 0.25727748514436
311 => 0.26339800974579
312 => 0.26510611660181
313 => 0.25993047308418
314 => 0.25123723518729
315 => 0.25325647607909
316 => 0.24734661325377
317 => 0.23698980597198
318 => 0.24442824577427
319 => 0.24696805616788
320 => 0.24808978112751
321 => 0.23790505065322
322 => 0.23470478721694
323 => 0.23300099381628
324 => 0.24992251437743
325 => 0.25084951347194
326 => 0.24610685503995
327 => 0.26754412086988
328 => 0.26269220738176
329 => 0.26811298349565
330 => 0.25307325113285
331 => 0.25364778916279
401 => 0.24652773883983
402 => 0.25051449125875
403 => 0.24769678314809
404 => 0.25019240106116
405 => 0.25168826414844
406 => 0.2588071461412
407 => 0.26956518128993
408 => 0.25774382256527
409 => 0.25259308728396
410 => 0.25578857448365
411 => 0.2642985779928
412 => 0.27719166892823
413 => 0.26955869959682
414 => 0.27294608176988
415 => 0.27368607408054
416 => 0.26805780508345
417 => 0.27739919123423
418 => 0.28240531596172
419 => 0.28754056406058
420 => 0.29199935609843
421 => 0.28548943304337
422 => 0.2924559838731
423 => 0.28684217366611
424 => 0.2818060055654
425 => 0.28181364335357
426 => 0.27865438153732
427 => 0.27253291367573
428 => 0.27140402108189
429 => 0.27727666291848
430 => 0.28198596553018
501 => 0.28237384624931
502 => 0.28498115814785
503 => 0.28652413847196
504 => 0.30164744322825
505 => 0.30773016150777
506 => 0.31516799428
507 => 0.31806544931807
508 => 0.32678575018754
509 => 0.31974339900723
510 => 0.31821974203091
511 => 0.29706714451025
512 => 0.30053088116927
513 => 0.30607665776123
514 => 0.29715859232362
515 => 0.30281505218808
516 => 0.30393175718553
517 => 0.29685555987259
518 => 0.30063526260187
519 => 0.29059749275666
520 => 0.2697839772425
521 => 0.27742236262686
522 => 0.28304678532247
523 => 0.27502004064952
524 => 0.28940766979787
525 => 0.28100271387035
526 => 0.27833874635036
527 => 0.2679456592819
528 => 0.27285079631161
529 => 0.27948506437908
530 => 0.27538585802983
531 => 0.28389232670346
601 => 0.29593975493766
602 => 0.30452546973411
603 => 0.30518457430694
604 => 0.29966453489104
605 => 0.30851043328344
606 => 0.30857486599594
607 => 0.29859665647276
608 => 0.29248505869871
609 => 0.29109649082554
610 => 0.2945654056175
611 => 0.29877730857193
612 => 0.30541830560755
613 => 0.30943132103018
614 => 0.31989513691348
615 => 0.32272634547038
616 => 0.32583698530563
617 => 0.32999375941131
618 => 0.33498503250018
619 => 0.32406441113506
620 => 0.32449830778048
621 => 0.31432917637157
622 => 0.3034620010602
623 => 0.311708832509
624 => 0.32249046759831
625 => 0.32001714859617
626 => 0.31973884968311
627 => 0.3202068712612
628 => 0.31834206950464
629 => 0.30990764027249
630 => 0.30567192271442
701 => 0.31113707901112
702 => 0.3140415663567
703 => 0.31854617293177
704 => 0.31799088509068
705 => 0.32959426786864
706 => 0.33410299154807
707 => 0.33294946709171
708 => 0.3331617433528
709 => 0.3413245722097
710 => 0.35040331671236
711 => 0.35890675898496
712 => 0.36755682569599
713 => 0.35712883265799
714 => 0.3518341409025
715 => 0.35729691128293
716 => 0.35439828842501
717 => 0.37105463515399
718 => 0.37220788446274
719 => 0.38886302674826
720 => 0.40467074003468
721 => 0.39474219854408
722 => 0.40410436597838
723 => 0.41423031336729
724 => 0.43376490875625
725 => 0.4271863442646
726 => 0.42214726696324
727 => 0.41738536326211
728 => 0.42729412893325
729 => 0.44004159767277
730 => 0.44278728034553
731 => 0.4472363352069
801 => 0.44255869802471
802 => 0.44819239678582
803 => 0.46808182898522
804 => 0.46270752883607
805 => 0.45507515866241
806 => 0.47077595518246
807 => 0.47645801240776
808 => 0.51633766573142
809 => 0.56668737539885
810 => 0.54584226498252
811 => 0.53290303227959
812 => 0.53594405888748
813 => 0.55433006841279
814 => 0.56023507112955
815 => 0.5441832381689
816 => 0.54985301693703
817 => 0.58109405538976
818 => 0.59785387018713
819 => 0.57509179054887
820 => 0.51229211558406
821 => 0.45438794723584
822 => 0.46974674014048
823 => 0.46800552966392
824 => 0.50157012808246
825 => 0.46257935355491
826 => 0.46323585820054
827 => 0.49749453696884
828 => 0.4883549088159
829 => 0.47354988172327
830 => 0.45449604031784
831 => 0.4192732522129
901 => 0.38807544652825
902 => 0.44926152790142
903 => 0.44662307281294
904 => 0.44280219884768
905 => 0.45130514039561
906 => 0.49259301095031
907 => 0.49164119189823
908 => 0.48558620471124
909 => 0.49017885912636
910 => 0.47274476719914
911 => 0.47723792965568
912 => 0.45437877491974
913 => 0.46471206754301
914 => 0.4735181167844
915 => 0.4752860615454
916 => 0.47926933136542
917 => 0.44523272687363
918 => 0.46051416302824
919 => 0.46949057509214
920 => 0.42893481882278
921 => 0.46868891818739
922 => 0.44464022531404
923 => 0.43647773775358
924 => 0.44746745192778
925 => 0.44318474962625
926 => 0.43950273367611
927 => 0.43744810551086
928 => 0.4455177387099
929 => 0.44514128067587
930 => 0.43193779451393
1001 => 0.41471438505863
1002 => 0.42049512661097
1003 => 0.41839492901027
1004 => 0.41078354197442
1005 => 0.41591269783421
1006 => 0.3933264912341
1007 => 0.35446809670747
1008 => 0.38013914239658
1009 => 0.37915083506227
1010 => 0.37865248568814
1011 => 0.39794356702791
1012 => 0.39608917467807
1013 => 0.39272343440483
1014 => 0.41072172751486
1015 => 0.40415210841849
1016 => 0.42439812647656
1017 => 0.43773346339996
1018 => 0.43435119060323
1019 => 0.44689313943495
1020 => 0.42062830322088
1021 => 0.42935242824887
1022 => 0.43115045832602
1023 => 0.41049963137168
1024 => 0.39639257620016
1025 => 0.39545179645242
1026 => 0.37099210685694
1027 => 0.38405827560713
1028 => 0.39555596339249
1029 => 0.39004946319992
1030 => 0.38830626974097
1031 => 0.39721186707023
1101 => 0.397903908254
1102 => 0.38212529592487
1103 => 0.38540616907177
1104 => 0.39908795549409
1105 => 0.38506142315777
1106 => 0.35781016204935
1107 => 0.3510514725163
1108 => 0.35014973874523
1109 => 0.33181963669317
1110 => 0.35150312046883
1111 => 0.34291075231619
1112 => 0.37005394035802
1113 => 0.35454989692036
1114 => 0.3538815485953
1115 => 0.35287124207659
1116 => 0.3370937660334
1117 => 0.34054803057595
1118 => 0.35203053201472
1119 => 0.35612761788771
1120 => 0.35570025826473
1121 => 0.35197426149342
1122 => 0.35368000373513
1123 => 0.34818521365457
1124 => 0.34624488891296
1125 => 0.34012069030008
1126 => 0.33111981019218
1127 => 0.33237143777679
1128 => 0.31453833907464
1129 => 0.30482192042753
1130 => 0.30213254380635
1201 => 0.29853619699172
1202 => 0.30253876074858
1203 => 0.31448782014663
1204 => 0.30007471937821
1205 => 0.27536446907222
1206 => 0.27684959721983
1207 => 0.280186239229
1208 => 0.27396842891901
1209 => 0.26808379328187
1210 => 0.27320000653278
1211 => 0.26272994772866
1212 => 0.28145149581418
1213 => 0.280945130405
1214 => 0.28792336579852
1215 => 0.29228699959789
1216 => 0.28223023643356
1217 => 0.27970098769411
1218 => 0.28114176272404
1219 => 0.25732896084523
1220 => 0.28597735185418
1221 => 0.28622510432927
1222 => 0.28410369722261
1223 => 0.29935808101504
1224 => 0.33154958877868
1225 => 0.3194378486576
1226 => 0.31474781680343
1227 => 0.30583206282027
1228 => 0.31771177563774
1229 => 0.31679959904575
1230 => 0.31267439056406
1231 => 0.3101794516029
]
'min_raw' => 0.23300099381628
'max_raw' => 0.59785387018713
'avg_raw' => 0.4154274320017
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.23300099'
'max' => '$0.597853'
'avg' => '$0.415427'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.14328064788666
'max_diff' => 0.3475062826806
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.007313634951621
]
1 => [
'year' => 2028
'avg' => 0.012552320740378
]
2 => [
'year' => 2029
'avg' => 0.034290677927014
]
3 => [
'year' => 2030
'avg' => 0.026455206953481
]
4 => [
'year' => 2031
'avg' => 0.025982291786023
]
5 => [
'year' => 2032
'avg' => 0.045555134429056
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.007313634951621
'min' => '$0.007313'
'max_raw' => 0.045555134429056
'max' => '$0.045555'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.045555134429056
]
1 => [
'year' => 2033
'avg' => 0.11717249013076
]
2 => [
'year' => 2034
'avg' => 0.074269555291258
]
3 => [
'year' => 2035
'avg' => 0.08760111078226
]
4 => [
'year' => 2036
'avg' => 0.17003396671807
]
5 => [
'year' => 2037
'avg' => 0.4154274320017
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.045555134429056
'min' => '$0.045555'
'max_raw' => 0.4154274320017
'max' => '$0.415427'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.4154274320017
]
]
]
]
'prediction_2025_max_price' => '$0.0125049'
'last_price' => 0.01212516
'sma_50day_nextmonth' => '$0.01138'
'sma_200day_nextmonth' => '$0.016787'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 feb. 2026'
'sma_50day_date_nextmonth' => '4 feb. 2026'
'daily_sma3' => '$0.012046'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.011828'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.011563'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.011761'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.012743'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.01526'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.018288'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.01201'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.011876'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.011745'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.011941'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.013016'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.014813'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.017047'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.016696'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.018697'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.024037'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.038953'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.012092'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.012391'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.013505'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.015567'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.0189031'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.024428'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.029815'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '49.84'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 129.72
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.011668'
'vwma_10_action' => 'BUY'
'hma_9' => '0.012148'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 99.21
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 62.48
'cci_20_action' => 'NEUTRAL'
'adx_14' => 28.57
'adx_14_action' => 'SELL'
'ao_5_34' => '-0.000562'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0.79
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 67.02
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.005745'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 17
'buy_signals' => 17
'sell_pct' => 50
'buy_pct' => 50
'overall_action' => 'neutral'
'overall_action_label' => 'Neutral'
'overall_action_dir' => 0
'last_updated' => 1767707577
'last_updated_date' => '6 de enero de 2026'
]
Predicción de precio de SIX Network para 2026
La previsión del precio de SIX Network para 2026 sugiere que el precio medio podría oscilar entre $0.004189 en el extremo inferior y $0.0125049 en el extremo superior. En el mercado de criptomonedas, en comparación con el precio medio de hoy, SIX Network podría potencialmente ganar 3.13% para 2026 si SIX alcanza el objetivo de precio previsto.
Predicción de precio de SIX Network 2027-2032
La predicción del precio de SIX para 2027-2032 está actualmente dentro de un rango de precios de $0.007313 en el extremo inferior y $0.045555 en el extremo superior. Considerando la volatilidad de precios en el mercado, si SIX Network alcanza el objetivo de precio superior, podría ganar 275.71% para 2032 en comparación con el precio de hoy.
| Predicción de Precio de SIX Network | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.004032 | $0.007313 | $0.010594 |
| 2028 | $0.007278 | $0.012552 | $0.017826 |
| 2029 | $0.015988 | $0.03429 | $0.052593 |
| 2030 | $0.013597 | $0.026455 | $0.039313 |
| 2031 | $0.016076 | $0.025982 | $0.035888 |
| 2032 | $0.024538 | $0.045555 | $0.066571 |
Predicción de precio de SIX Network 2032-2037
La predicción de precio de SIX Network para 2032-2037 se estima actualmente entre $0.045555 en el extremo inferior y $0.415427 en el extremo superior. Comparado con el precio actual, SIX Network podría potencialmente ganar 3326.16% para 2037 si alcanza el objetivo de precio superior. Tenga en cuenta que esta información es solo para fines generales y no debe considerarse como consejo de inversión a largo plazo.
| Predicción de Precio de SIX Network | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.024538 | $0.045555 | $0.066571 |
| 2033 | $0.057022 | $0.117172 | $0.177322 |
| 2034 | $0.045843 | $0.074269 | $0.102695 |
| 2035 | $0.0542014 | $0.0876011 | $0.12100081 |
| 2036 | $0.08972 | $0.170033 | $0.250347 |
| 2037 | $0.23300099 | $0.415427 | $0.597853 |
SIX Network Histograma de precios potenciales
Pronóstico de precio de SIX Network basado en análisis técnico
A fecha de 6 de enero de 2026, el sentimiento general de predicción de precio para SIX Network es Neutral, con 17 indicadores técnicos mostrando señales alcistas y 17 indicando señales bajistas. La predicción de precio de SIX se actualizó por última vez el 6 de enero de 2026.
Promedios Móviles Simples de 50 y 200 días y el Índice de Fuerza Relativa de 14 días - RSI (14) de SIX Network
Según nuestros indicadores técnicos, se proyecta que el SMA de 200 días de SIX Network aumentar durante el próximo mes, alcanzando $0.016787 para el 4 feb. 2026. Se espera que el SMA de 50 días a corto plazo para SIX Network alcance $0.01138 para el 4 feb. 2026.
El oscilador de momento del Índice de Fuerza Relativa (RSI) es una herramienta comúnmente utilizada para identificar si una criptomoneda está sobrevendida (por debajo de 30) o sobrecomprada (por encima de 70). Actualmente, el RSI se encuentra en 49.84, lo que sugiere que el mercado de SIX está en un estado NEUTRAL.
Promedios Móviles y Osciladores Populares de SIX para Sáb, 19 de Oct de 2024
Los promedios móviles (MA) son indicadores ampliamente utilizados en los mercados financieros, diseñados para suavizar los movimientos de precios durante un período establecido. Como indicadores rezagados, se basan en datos históricos de precios. La tabla a continuación resalta dos tipos: el promedio móvil simple (SMA) y el promedio móvil exponencial (EMA).
Promedio Móvil Simple Diario (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 3 | $0.012046 | BUY |
| SMA 5 | $0.011828 | BUY |
| SMA 10 | $0.011563 | BUY |
| SMA 21 | $0.011761 | BUY |
| SMA 50 | $0.012743 | SELL |
| SMA 100 | $0.01526 | SELL |
| SMA 200 | $0.018288 | SELL |
Promedio Móvil Exponencial Diario (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 3 | $0.01201 | BUY |
| EMA 5 | $0.011876 | BUY |
| EMA 10 | $0.011745 | BUY |
| EMA 21 | $0.011941 | BUY |
| EMA 50 | $0.013016 | SELL |
| EMA 100 | $0.014813 | SELL |
| EMA 200 | $0.017047 | SELL |
Promedio Móvil Simple Semanal (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 21 | $0.016696 | SELL |
| SMA 50 | $0.018697 | SELL |
| SMA 100 | $0.024037 | SELL |
| SMA 200 | $0.038953 | SELL |
Promedio Móvil Exponencial Semanal (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 21 | $0.015567 | SELL |
| EMA 50 | $0.0189031 | SELL |
| EMA 100 | $0.024428 | SELL |
| EMA 200 | $0.029815 | SELL |
Osciladores de SIX Network
Un oscilador es una herramienta de análisis técnico que establece límites altos y bajos entre dos extremos, creando un indicador de tendencia que fluctúa dentro de estos límites. Los traders utilizan este indicador para identificar condiciones de sobrecompra o sobreventa a corto plazo.
| Período | Valor | Acción |
|---|---|---|
| RSI (14) | 49.84 | NEUTRAL |
| Stoch RSI (14) | 129.72 | SELL |
| Estocástico Rápido (14) | 99.21 | SELL |
| Índice de Canal de Materias Primas (20) | 62.48 | NEUTRAL |
| Índice Direccional Medio (14) | 28.57 | SELL |
| Oscilador Asombroso (5, 34) | -0.000562 | NEUTRAL |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Rango Percentil de Williams (14) | -0.79 | SELL |
| Oscilador Ultimate (7, 14, 28) | 67.02 | NEUTRAL |
| VWMA (10) | 0.011668 | BUY |
| Promedio Móvil de Hull (9) | 0.012148 | BUY |
| Nube Ichimoku B/L (9, 26, 52, 26) | -0.005745 | SELL |
Predicción de precios de SIX Network basada en flujos de dinero globales
Definiciones de flujos de dinero globales utilizadas para la predicción de precios de SIX Network
M0: El total de toda la moneda física, además de cuentas en el banco central que pueden cambiarse por moneda física.
M1: Medir M0 más la cantidad en cuentas a la vista, incluyendo cuentas "de cheques" o "corrientes".
M2: Medir M1 más la mayoría de cuentas de ahorro, cuentas del mercado monetario, y cuentas de certificados de depósito (CD) inferiores a 100 000 $.
Predicciones de precios de SIX Network por parte de empresas de Internet o nichos tecnológicos
| Comparación | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook acción | $0.017037 | $0.023941 | $0.033641 | $0.047271 | $0.066424 | $0.093337 |
| Amazon.com acción | $0.025299 | $0.052789 | $0.110148 | $0.229832 | $0.479558 | $1.00 |
| Apple acción | $0.017198 | $0.024394 | $0.0346023 | $0.04908 | $0.069617 | $0.098746 |
| Netflix acción | $0.019131 | $0.030186 | $0.047629 | $0.075152 | $0.118578 | $0.187098 |
| Google acción | $0.015702 | $0.020334 | $0.026332 | $0.03410048 | $0.044159 | $0.057186 |
| Tesla acción | $0.027486 | $0.06231 | $0.141253 | $0.32021 | $0.725893 | $1.64 |
| Kodak acción | $0.009092 | $0.006818 | $0.005113 | $0.003834 | $0.002875 | $0.002156 |
| Nokia acción | $0.008032 | $0.005321 | $0.003525 | $0.002335 | $0.001546 | $0.001024 |
Este cálculo muestra cuánto puede costar la criptomoneda si asumimos que su capitalización se comportará como la capitalización de algunas empresas de Internet o nichos tecnológicos. Si extrapola los datos, puede obtener una imagen potencial del precio futuro en 2024, 2025, 2026, 2027, 2028, 2029 y 2030.
Resumen de pronósticos y predicciones de SIX Network
Podría preguntarse cosas como: "¿Debo invertir en SIX Network ahora?", "¿Debería comprar SIX hoy?", "¿Será SIX Network una buena o mala inversión a corto plazo?, ¿Lo será a largo plazo?".
Actualizamos el pronóstico de SIX Network regularmente con valores actualizados. Aquí hay algunas predicciones similares. Hacemos un pronóstico de precios futuros para una gran cantidad de monedas digitales, como SIX Network, con métodos de análisis técnico.
Si está tratando de encontrar criptomonedas que ofrezcan un buen rendimiento, debería explorar el máximo de fuentes de información disponibles acerca de SIX Network a fin de tomar una decisión responsable sobre la inversión por sus propios medios.
El precio de SIX Network es de $0.01212 USD hoy, pero dicho precio puede subir y bajar, y su inversión puede perderse porque estos son activos de criptomonedas conllevan un alto riesgo
Predicción de precios de SIX Network basada en el patrón de crecimiento del Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si SIX Network ofrece un 1 % del crecimiento medio anterior anual del Bitcoin | $0.01244 | $0.012763 | $0.013095 | $0.013435 |
| Si SIX Network ofrece un 2 % del crecimiento medio anterior anual del Bitcoin | $0.012755 | $0.013418 | $0.014116 | $0.01485 |
| Si SIX Network ofrece un 5 % del crecimiento medio anterior anual del Bitcoin | $0.013701 | $0.015481 | $0.017493 | $0.019767 |
| Si SIX Network ofrece un 10 % del crecimiento medio anterior anual del Bitcoin | $0.015276 | $0.019247 | $0.02425 | $0.030554 |
| Si SIX Network ofrece un 20 % del crecimiento medio anterior anual del Bitcoin | $0.018428 | $0.0280089 | $0.042569 | $0.06470035 |
| Si SIX Network ofrece un 50 % del crecimiento medio anterior anual del Bitcoin | $0.027883 | $0.064123 | $0.147461 | $0.339111 |
| Si SIX Network ofrece un 100 % del crecimiento medio anterior anual del Bitcoin | $0.043642 | $0.157082 | $0.565391 | $2.03 |
Cuadro de preguntas
¿Es SIX una buena inversión?
La decisión de adquirir SIX Network depende completamente de su tolerancia individual al riesgo. Como puede discernir, el valor de SIX Network ha experimentado un aumento de 0.773% durante las últimas 24 horas, y SIX Network ha sufrido un declive de durante el período previo de 30 días. Por lo tanto, la determinación de si invertir o no en SIX Network dependerá de si dicha inversión se alinea con sus aspiraciones comerciales.
¿Puede SIX Network subir?
Parece que el valor medio de SIX Network podría potencialmente aumentar hasta $0.0125049 para el final de este año. Mirando las perspectivas de SIX Network en un horizonte de cinco años más extendido, la moneda digital podría potencialmente crecer hasta $0.039313. Sin embargo, dada la imprevisibilidad del mercado, es vital realizar una investigación exhaustiva antes de invertir cualquier fondo en un proyecto, red o activo en particular.
¿Cuál será el precio de SIX Network la próxima semana?
Basado en nuestro nuevo pronóstico experimental de SIX Network, el precio de SIX Network aumentará en un 0.86% durante la próxima semana y alcanzará $0.012228 para el 13 de enero de 2026.
¿Cuál será el precio de SIX Network el próximo mes?
Basado en nuestro nuevo pronóstico experimental de SIX Network, el precio de SIX Network disminuirá en un -11.62% durante el próximo mes y alcanzará $0.010716 para el 5 de febrero de 2026.
¿Hasta qué punto puede subir el precio de SIX Network este año en 2026?
Según nuestra predicción más reciente sobre el valor de SIX Network en 2026, se anticipa que SIX fluctúe dentro del rango de $0.004189 y $0.0125049. Sin embargo, es crucial tener en cuenta que el mercado de criptomonedas es excepcionalmente inestable, y esta predicción de precios proyectada de SIX Network no considera fluctuaciones de precios repentinas y extremas.
¿Dónde estará SIX Network en 5 años?
El futuro de SIX Network parece estar en una tendencia alcista, con un precio máximo de $0.039313 proyectada después de un período de cinco años. Basado en el pronóstico de SIX Network para 2030, el valor de SIX Network podría potencialmente alcanzar su punto más alto de aproximadamente $0.039313, mientras que su punto más bajo se anticipa que esté alrededor de $0.013597.
¿Cuánto será SIX Network en 2026?
Basado en nuestra nueva simulación experimental de predicción de precios de SIX Network, se espera que el valor de SIX en 2026 crezca en un 3.13% hasta $0.0125049 si ocurre lo mejor. El precio estará entre $0.0125049 y $0.004189 durante 2026.
¿Cuánto será SIX Network en 2027?
Según nuestra última simulación experimental para la predicción de precios de SIX Network, el valor de SIX podría disminuir en un -12.62% hasta $0.010594 en 2027, asumiendo las condiciones más favorables. Se proyecta que el precio fluctúe entre $0.010594 y $0.004032 a lo largo del año.
¿Cuánto será SIX Network en 2028?
Nuestro nuevo modelo experimental de predicción de precios de SIX Network sugiere que el valor de SIX en 2028 podría aumentar en un 47.02% , alcanzando $0.017826 en el mejor escenario. Se espera que el precio oscile entre $0.017826 y $0.007278 durante el año.
¿Cuánto será SIX Network en 2029?
Basado en nuestro modelo de pronóstico experimental, el valor de SIX Network podría experimentar un 333.75% crecimiento en 2029, potencialmente alcanzando $0.052593 bajo condiciones óptimas. El rango de precios previsto para 2029 se encuentra entre $0.052593 y $0.015988.
¿Cuánto será SIX Network en 2030?
Usando nuestra nueva simulación experimental para las predicciones de precios de SIX Network, se espera que el valor de SIX en 2030 aumente en un 224.23% , alcanzando $0.039313 en el mejor escenario. Se pronostica que el precio oscile entre $0.039313 y $0.013597 durante el transcurso de 2030.
¿Cuánto será SIX Network en 2031?
Nuestra simulación experimental indica que el precio de SIX Network podría crecer en un 195.98% en 2031, potencialmente alcanzando $0.035888 bajo condiciones ideales. Es probable que el precio fluctúe entre $0.035888 y $0.016076 durante el año.
¿Cuánto será SIX Network en 2032?
Basado en los hallazgos de nuestra última predicción experimental de precios de SIX Network, SIX podría experimentar un 449.04% aumento en valor, alcanzando $0.066571 si se desarrolla el escenario más positivo en 2032. Se espera que el precio se mantenga dentro de un rango de $0.066571 y $0.024538 a lo largo del año.
¿Cuánto será SIX Network en 2033?
Según nuestra predicción experimental de precios de SIX Network, se anticipa que el valor de SIX aumente en un 1362.43% en 2033, con el precio potencial más alto siendo $0.177322. A lo largo del año, el precio de SIX podría oscilar entre $0.177322 y $0.057022.
¿Cuánto será SIX Network en 2034?
Los resultados de nuestra nueva simulación de predicción de precios de SIX Network sugieren que SIX podría aumentar en un 746.96% en 2034, alcanzando potencialmente $0.102695 bajo las mejores circunstancias. El rango de precios previsto para el año está entre $0.102695 y $0.045843.
¿Cuánto será SIX Network en 2035?
Basado en nuestra predicción experimental para el precio de SIX Network, SIX podría crecer en un 897.93% , con el valor potencialmente alcanzando $0.12100081 en 2035. El rango de precios esperado para el año está entre $0.12100081 y $0.0542014.
¿Cuánto será SIX Network en 2036?
Nuestra reciente simulación de predicción de precios de SIX Network sugiere que el valor de SIX podría aumentar en un 1964.7% en 2036, posiblemente alcanzando $0.250347 si las condiciones son óptimas. El rango de precios esperado para 2036 está entre $0.250347 y $0.08972.
¿Cuánto será SIX Network en 2037?
Según la simulación experimental, el valor de SIX Network podría aumentar en un 4830.69% en 2037, con un máximo de $0.597853 bajo condiciones favorables. Se espera que el precio caiga entre $0.597853 y $0.23300099 durante el transcurso del año.
Predicciones relacionadas
Predicción de precios de MindAI
Predicción de precios de EML Protocol
Predicción de precios de OpenOcean
Predicción de precios de Unisocks
Predicción de precios de Argentine Football Association Fan Token
Predicción de precios de Trabzonspor Fan Token
Predicción de precios de Lithium Finance
Predicción de precios de Omax
Predicción de precios de Minted
Predicción de precios de PIZA (Ordinals)
Predicción de precios de DappRadar
Predicción de precios de FLO
Predicción de precios de Veloce
Predicción de precios de Orbofi AI
Predicción de precios de Rain Coin
Predicción de precios de Lynex
Predicción de precios de COS
Predicción de precios de ALVA
Predicción de precios de Panther Protocol
Predicción de precios de GemHUBPredicción de precios de DUST Protocol
Predicción de precios de RedFOX Labs
Predicción de precios de Matr1x Fire
Predicción de precios de Shyft Network
Predicción de precios de Celo Euro
¿Cómo leer y predecir los movimientos de precio de SIX Network?
Los traders de SIX Network utilizan indicadores y patrones de gráficos para predecir la dirección del mercado. También identifican niveles clave de soporte y resistencia para estimar cuándo una tendencia bajista podría desacelerar o una tendencia alcista podría estancarse.
Indicadores de predicción de precio de SIX Network
Las medias móviles son herramientas populares para la predicción de precios de SIX Network. Una media móvil simple (SMA) calcula el precio de cierre promedio de SIX durante un período específico, como una SMA de 12 días. Una media móvil exponencial (EMA) da más peso a los precios recientes, reaccionando más rápido a los cambios de precio.
Las medias móviles comúnmente utilizadas en el mercado de criptomonedas incluyen las de 50 días, 100 días y 200 días, que ayudan a identificar niveles clave de resistencia y soporte. Un movimiento de precio de SIX por encima de estas medias se considera alcista, mientras que una caída por debajo indica debilidad.
Los traders también utilizan RSI y niveles de retroceso de Fibonacci para evaluar la dirección futura de SIX.
¿Cómo leer gráficos de SIX Network y predecir movimientos de precio?
La mayoría de los traders prefieren gráficos de velas sobre gráficos lineales simples porque proporcionan información más detallada. Las velas pueden representar la acción del precio de SIX Network en diferentes marcos de tiempo, como 5 minutos para tendencias a corto plazo y semanal para tendencias a largo plazo. Las opciones populares incluyen gráficos de 1 hora, 4 horas y 1 día.
Por ejemplo, un gráfico de velas de 1 hora muestra los precios de apertura, cierre, máximo y mínimo de SIX dentro de cada hora. El color de la vela es crucial: el verde indica que el precio cerró más alto de lo que abrió, mientras que el rojo significa lo contrario. Algunos gráficos usan velas huecas y llenas para transmitir la misma información.
¿Qué afecta el precio de SIX Network?
La acción del precio de SIX Network está impulsada por la oferta y la demanda, influenciada por factores como reducciones a la mitad de recompensas de bloque, hard forks y actualizaciones de protocolo. Los eventos del mundo real, como regulaciones, adopción por empresas y gobiernos y hacks de exchanges de criptomonedas, también impactan el precio de SIX. La capitalización de mercado de SIX Network puede cambiar rápidamente.
Los traders a menudo monitorean la actividad de las "ballenas" de SIX, grandes poseedores de SIX Network, ya que sus acciones pueden influir significativamente en los movimientos de precios en el relativamente pequeño mercado de SIX Network.
Patrones de predicción de precios alcistas y bajistas
Los traders a menudo identifican patrones de velas para obtener una ventaja en las predicciones de precios de criptomonedas. Ciertas formaciones indican tendencias alcistas, mientras que otras sugieren movimientos bajistas.
Patrones de velas alcistas comúnmente seguidos:
- Martillo
- Envolvente Alcista
- Línea Penetrante
- Estrella de la Mañana
- Tres Soldados Blancos
Patrones de velas bajistas comunes:
- Harami Bajista
- Cubierta de Nube Oscura
- Estrella de la Tarde
- Estrella Fugaz
- Hombre Colgado


