Prédiction du prix de Seraph jusqu'à $0.009829 d'ici 2026
| Année | Prix min. | Prix max. |
|---|---|---|
| 2026 | $0.003292 | $0.009829 |
| 2027 | $0.00317 | $0.008327 |
| 2028 | $0.005721 | $0.014012 |
| 2029 | $0.012567 | $0.041341 |
| 2030 | $0.010688 | $0.0309025 |
| 2031 | $0.012636 | $0.02821 |
| 2032 | $0.019288 | $0.052329 |
| 2033 | $0.044823 | $0.139385 |
| 2034 | $0.036035 | $0.080724 |
| 2035 | $0.0426055 | $0.095113 |
Calculateur de profit d’investissement
Si vous ouvrez une position short de $10,000.00 sur Seraph aujourd’hui et la fermez le Apr 06, 2026, notre prévision indique que vous pourriez gagner environ $3,954.53, soit un rendement de 39.55% sur les 90 prochains jours.
Prévision du prix à long terme de Seraph pour 2027, 2028, 2029, 2030, 2031, 2032 et 2037
[
'name' => 'Seraph'
'name_with_ticker' => 'Seraph <small>SERAPH</small>'
'name_lang' => 'Seraph'
'name_lang_with_ticker' => 'Seraph <small>SERAPH</small>'
'name_with_lang' => 'Seraph'
'name_with_lang_with_ticker' => 'Seraph <small>SERAPH</small>'
'image' => '/uploads/coins/seraph.jpg?1736294429'
'price_for_sd' => 0.009531
'ticker' => 'SERAPH'
'marketcap' => '$3.06M'
'low24h' => '$0.009534'
'high24h' => '$0.009815'
'volume24h' => '$1.52M'
'current_supply' => '318.54M'
'max_supply' => '1B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.009531'
'change_24h_pct' => '-1.7633%'
'ath_price' => '$0.6981'
'ath_days' => 365
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '6 janv. 2025'
'ath_pct' => '-98.63%'
'fdv' => '$9.6M'
'new_prediction' => true
'change_24h_pct_is_increased' => false
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.469948'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.009612'
'next_week_prediction_price_date' => '13 janvier 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.008423'
'next_month_prediction_price_date' => '5 février 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.003292'
'current_year_max_price_prediction' => '$0.009829'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.010688'
'grand_prediction_max_price' => '$0.0309025'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0097117093316414
107 => 0.0097479693289353
108 => 0.0098296649543197
109 => 0.0091315847801015
110 => 0.0094450022837684
111 => 0.0096291057039239
112 => 0.0087973197539213
113 => 0.0096126639700881
114 => 0.0091194327573566
115 => 0.0089520226756713
116 => 0.0091774182960594
117 => 0.0090895814035897
118 => 0.0090140644013997
119 => 0.0089719246166309
120 => 0.009137430284237
121 => 0.0091297092470212
122 => 0.0088589098515517
123 => 0.0085056630793572
124 => 0.0086242242910357
125 => 0.0085811498913156
126 => 0.0084250427100218
127 => 0.0085302401017609
128 => 0.0080670040277238
129 => 0.0072700304392588
130 => 0.00779653560376
131 => 0.0077762657276541
201 => 0.0077660447369558
202 => 0.0081616988165445
203 => 0.0081236658060847
204 => 0.0080546355196799
205 => 0.0084237749146778
206 => 0.0082890340698781
207 => 0.0087042736046151
208 => 0.0089777772182022
209 => 0.0089084078548815
210 => 0.0091656393254179
211 => 0.0086269557018927
212 => 0.008805884793392
213 => 0.008842761831165
214 => 0.0084192197918436
215 => 0.0081298884769581
216 => 0.0081105933768738
217 => 0.0076089327491736
218 => 0.0078769158072279
219 => 0.0081127298084233
220 => 0.0079997932017564
221 => 0.0079640408459709
222 => 0.0081466918779395
223 => 0.0081608854274237
224 => 0.0078372709950177
225 => 0.0079045606830512
226 => 0.0081851698681306
227 => 0.0078974900515562
228 => 0.0073385751601833
301 => 0.0071999565395199
302 => 0.0071814622602753
303 => 0.0068055175670547
304 => 0.0072092196985833
305 => 0.0070329928996266
306 => 0.0075896912460097
307 => 0.0072717081361888
308 => 0.0072580005198692
309 => 0.007237279447332
310 => 0.0069136883197973
311 => 0.0069845342114384
312 => 0.0072200367453875
313 => 0.0073040667026264
314 => 0.0072953016896493
315 => 0.0072188826544932
316 => 0.0072538668974588
317 => 0.0071411704615481
318 => 0.0071013750044546
319 => 0.0069757695952645
320 => 0.006791164343135
321 => 0.0068168348356934
322 => 0.0064510835266331
323 => 0.0062518028015658
324 => 0.006196644523345
325 => 0.0061228845684849
326 => 0.0062049759065142
327 => 0.0064500473991287
328 => 0.006154439184218
329 => 0.0056476396342588
330 => 0.0056780991507558
331 => 0.0057465326408128
401 => 0.0056190072848243
402 => 0.0054983152377731
403 => 0.0056032471806289
404 => 0.0053885095302908
405 => 0.0057724826599349
406 => 0.0057620972628503
407 => 0.0059052187008426
408 => 0.0059947154731668
409 => 0.0057884543878837
410 => 0.0057365802827243
411 => 0.0057661301305697
412 => 0.0052777369687843
413 => 0.0058653065599702
414 => 0.0058703878861941
415 => 0.0058268784861022
416 => 0.0061397411542328
417 => 0.0067999789683016
418 => 0.0065515709446444
419 => 0.006455379849712
420 => 0.0062725205079304
421 => 0.0065161697237411
422 => 0.0064974612654867
423 => 0.0064128545222882
424 => 0.0063616841000126
425 => 0.0064559671720262
426 => 0.0063500013840056
427 => 0.006330967016732
428 => 0.0062156394606498
429 => 0.0061744727701979
430 => 0.0061439945914805
501 => 0.0061104411114366
502 => 0.0061844517274071
503 => 0.0060167339347105
504 => 0.0058144827182964
505 => 0.00579766771804
506 => 0.0058440954121377
507 => 0.0058235546136348
508 => 0.0057975693765994
509 => 0.0057479564824406
510 => 0.0057332373965554
511 => 0.0057810672849969
512 => 0.0057270701296022
513 => 0.0058067458737643
514 => 0.0057850784800123
515 => 0.0056640461798472
516 => 0.0055131951219447
517 => 0.0055118522311085
518 => 0.0054793516181288
519 => 0.0054379572009992
520 => 0.0054264422211297
521 => 0.0055944101050805
522 => 0.0059420985980031
523 => 0.0058738390273619
524 => 0.0059231635626724
525 => 0.0061657914581128
526 => 0.006242915569998
527 => 0.0061881747021666
528 => 0.0061132420260093
529 => 0.0061165386834705
530 => 0.0063726063215635
531 => 0.0063885769460524
601 => 0.0064289295618172
602 => 0.0064807940767227
603 => 0.0061970074533235
604 => 0.0061031723590289
605 => 0.0060587080855793
606 => 0.0059217753331938
607 => 0.0060694455669146
608 => 0.0059834044455954
609 => 0.0059950143324446
610 => 0.0059874533784034
611 => 0.0059915821705793
612 => 0.0057723753316198
613 => 0.0058522427825644
614 => 0.0057194476548222
615 => 0.0055416498857279
616 => 0.005541053845262
617 => 0.0055845695973619
618 => 0.0055586847252413
619 => 0.0054890291999258
620 => 0.0054989234385321
621 => 0.0054122394971341
622 => 0.0055094484384812
623 => 0.0055122360430887
624 => 0.0054748053056633
625 => 0.0056245690920574
626 => 0.0056859274375386
627 => 0.0056612897243211
628 => 0.0056841987899002
629 => 0.0058766755206955
630 => 0.0059080576261637
701 => 0.0059219954844271
702 => 0.0059033206007665
703 => 0.0056877169112046
704 => 0.0056972798516544
705 => 0.0056271133397448
706 => 0.005567830031146
707 => 0.00557020105259
708 => 0.0056006803795004
709 => 0.0057337853877071
710 => 0.0060138970305092
711 => 0.0060245270625946
712 => 0.006037410971582
713 => 0.0059850056387964
714 => 0.0059691996889768
715 => 0.0059900518166507
716 => 0.0060952470221166
717 => 0.0063658376507949
718 => 0.0062701928504795
719 => 0.0061924321390232
720 => 0.0062606492471077
721 => 0.0062501477580214
722 => 0.0061615046218085
723 => 0.0061590167042101
724 => 0.0059888821848925
725 => 0.0059259873268763
726 => 0.0058734276759195
727 => 0.005816033909179
728 => 0.0057820089603988
729 => 0.0058342867457879
730 => 0.0058462432938389
731 => 0.0057319370024264
801 => 0.0057163574772831
802 => 0.0058097024623233
803 => 0.0057686248146589
804 => 0.0058108741939584
805 => 0.0058206764123643
806 => 0.0058190980294367
807 => 0.0057762082475373
808 => 0.0058035449155283
809 => 0.0057388855462767
810 => 0.0056685781937389
811 => 0.0056237264831226
812 => 0.0055845874168938
813 => 0.0056063040456134
814 => 0.0055288882295277
815 => 0.0055041213518893
816 => 0.0057942838675074
817 => 0.0060086300375673
818 => 0.0060055133593642
819 => 0.0059865413823476
820 => 0.0059583528728259
821 => 0.0060931848570697
822 => 0.0060462120898098
823 => 0.0060803887026975
824 => 0.0060890880850653
825 => 0.0061154184954064
826 => 0.0061248293539281
827 => 0.006096383203214
828 => 0.0060009144470129
829 => 0.0057630153834567
830 => 0.005652272727175
831 => 0.0056157258060372
901 => 0.0056170542172081
902 => 0.0055804107068268
903 => 0.005591203862881
904 => 0.0055766572876168
905 => 0.005549109593261
906 => 0.0056046030531143
907 => 0.005610998157405
908 => 0.0055980453207778
909 => 0.0056010961827031
910 => 0.0054938522276585
911 => 0.005502005752639
912 => 0.0054566058894482
913 => 0.0054480939624034
914 => 0.0053333270616755
915 => 0.0051300008613077
916 => 0.0052426633136633
917 => 0.0051065829139558
918 => 0.0050550472046321
919 => 0.0052990092371235
920 => 0.0052745222155149
921 => 0.0052326110787732
922 => 0.0051706157724862
923 => 0.0051476211103327
924 => 0.0050079128223137
925 => 0.0049996581113428
926 => 0.0050689013113261
927 => 0.0050369479570469
928 => 0.0049920733459572
929 => 0.0048295420534568
930 => 0.0046468030684247
1001 => 0.0046523188097265
1002 => 0.0047104446808856
1003 => 0.0048794534906221
1004 => 0.0048134188247759
1005 => 0.0047655099170441
1006 => 0.0047565380187624
1007 => 0.0048688401096992
1008 => 0.0050277710963902
1009 => 0.0051023379594652
1010 => 0.0050284444627872
1011 => 0.0049435595925118
1012 => 0.0049487261412469
1013 => 0.0049830968753265
1014 => 0.0049867087535023
1015 => 0.0049314574292587
1016 => 0.0049470103533968
1017 => 0.0049233840394418
1018 => 0.0047783893943111
1019 => 0.0047757669009637
1020 => 0.0047401828766941
1021 => 0.0047391054065812
1022 => 0.0046785681044478
1023 => 0.0046700985174047
1024 => 0.0045498980296673
1025 => 0.0046290143546967
1026 => 0.0045759472776605
1027 => 0.0044959626753089
1028 => 0.0044821732997155
1029 => 0.004481758774434
1030 => 0.0045638850768192
1031 => 0.004628054661037
1101 => 0.0045768704021855
1102 => 0.0045652167386102
1103 => 0.0046896473771245
1104 => 0.0046738124441631
1105 => 0.0046600994943429
1106 => 0.0050135405697023
1107 => 0.0047337643792043
1108 => 0.0046117659910805
1109 => 0.0044607698189118
1110 => 0.0045099349339587
1111 => 0.0045202947460849
1112 => 0.0041571761711249
1113 => 0.0040098590104871
1114 => 0.0039593053124863
1115 => 0.0039302109445625
1116 => 0.0039434696133695
1117 => 0.003810866890216
1118 => 0.0038999781132217
1119 => 0.0037851553636
1120 => 0.0037659049559604
1121 => 0.0039712222560932
1122 => 0.0039997909589604
1123 => 0.0038779079969286
1124 => 0.0039561765896122
1125 => 0.0039277953098903
1126 => 0.003787123670081
1127 => 0.0037817510481508
1128 => 0.0037111669641417
1129 => 0.0036007165404393
1130 => 0.0035502377330268
1201 => 0.0035239479318493
1202 => 0.0035347956161932
1203 => 0.0035293106950443
1204 => 0.0034935178744043
1205 => 0.0035313622976258
1206 => 0.0034346854346901
1207 => 0.0033961879288907
1208 => 0.0033787994986564
1209 => 0.0032929932182884
1210 => 0.00342954916858
1211 => 0.003456452411074
1212 => 0.0034834086612665
1213 => 0.0037180444153789
1214 => 0.0037063226761772
1215 => 0.003812281489842
1216 => 0.0038081641251888
1217 => 0.0037779429551126
1218 => 0.0036504448097024
1219 => 0.003701263298027
1220 => 0.0035448518899104
1221 => 0.0036620459518132
1222 => 0.0036085634761018
1223 => 0.0036439634729767
1224 => 0.0035803110867066
1225 => 0.0036155389454111
1226 => 0.0034628321679138
1227 => 0.0033202367277292
1228 => 0.0033776212954799
1229 => 0.0034400048833462
1230 => 0.003575268396883
1231 => 0.0034947065641203
]
'min_raw' => 0.0032929932182884
'max_raw' => 0.0098296649543197
'avg_raw' => 0.006561329086304
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.003292'
'max' => '$0.009829'
'avg' => '$0.006561'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0062381067817116
'max_diff' => 0.00029856495431969
'year' => 2026
]
1 => [
'items' => [
101 => 0.0035236796455619
102 => 0.0034266246727677
103 => 0.0032263725415107
104 => 0.0032275059468263
105 => 0.0031967015191623
106 => 0.0031700819961404
107 => 0.003503960059724
108 => 0.0034624370446863
109 => 0.0033962755546215
110 => 0.0034848353382263
111 => 0.0035082519506442
112 => 0.0035089185886798
113 => 0.003573529520739
114 => 0.0036080123867611
115 => 0.0036140901413548
116 => 0.0037157568389616
117 => 0.0037498341749832
118 => 0.0038901938992511
119 => 0.0036050867564975
120 => 0.0035992151625125
121 => 0.0034860815559951
122 => 0.0034143304341701
123 => 0.0034909944166922
124 => 0.0035589082395295
125 => 0.0034881918277797
126 => 0.0034974258982492
127 => 0.0034024948932182
128 => 0.0034364282605979
129 => 0.0034656562479034
130 => 0.003449518271255
131 => 0.0034253589391254
201 => 0.0035533400805358
202 => 0.0035461188829753
203 => 0.0036652978641305
204 => 0.0037582064025116
205 => 0.0039247151126784
206 => 0.003750954593324
207 => 0.0037446220693632
208 => 0.0038065235068487
209 => 0.0037498246981956
210 => 0.003785656388088
211 => 0.003918942073481
212 => 0.0039217581899845
213 => 0.0038745846101894
214 => 0.0038717140935717
215 => 0.0038807742955938
216 => 0.0039338401818273
217 => 0.0039152973306273
218 => 0.0039367555874835
219 => 0.0039635894662627
220 => 0.004074585766222
221 => 0.0041013465983661
222 => 0.0040363316501568
223 => 0.0040422017720386
224 => 0.0040178843967081
225 => 0.0039943941168346
226 => 0.0040471968355103
227 => 0.00414369484173
228 => 0.0041430945326415
301 => 0.0041654801944313
302 => 0.0041794262762735
303 => 0.004119559483851
304 => 0.0040805884033468
305 => 0.0040955323954064
306 => 0.0041194281641474
307 => 0.0040877833196628
308 => 0.0038924566801857
309 => 0.003951706305089
310 => 0.0039418442703464
311 => 0.0039277995336087
312 => 0.0039873754896127
313 => 0.0039816292433196
314 => 0.0038095068576292
315 => 0.0038205255743114
316 => 0.0038101769422858
317 => 0.0038436154894914
318 => 0.0037480189069106
319 => 0.0037774237718596
320 => 0.0037958662275022
321 => 0.0038067289755573
322 => 0.0038459726701884
323 => 0.0038413678755724
324 => 0.0038456864296896
325 => 0.0039038744688762
326 => 0.0041981696033584
327 => 0.0042141874382026
328 => 0.0041353097611817
329 => 0.0041668198373582
330 => 0.0041063273815955
331 => 0.0041469363724132
401 => 0.0041747200125742
402 => 0.0040491710851735
403 => 0.0040417368924987
404 => 0.0039809947628527
405 => 0.0040136341427144
406 => 0.0039617025425
407 => 0.0039744447407023
408 => 0.0039388164436837
409 => 0.0040029402847941
410 => 0.004074640702993
411 => 0.0040927550601654
412 => 0.004045103985166
413 => 0.0040106014665075
414 => 0.0039500264095795
415 => 0.004050764079254
416 => 0.0040802228437917
417 => 0.0040506093449048
418 => 0.004043747250145
419 => 0.0040307435929747
420 => 0.004046506037486
421 => 0.0040800624050334
422 => 0.0040642378417868
423 => 0.0040746902446041
424 => 0.0040348564635357
425 => 0.0041195793022503
426 => 0.0042541395597907
427 => 0.0042545721930215
428 => 0.0042387475444746
429 => 0.0042322724392361
430 => 0.0042485094889651
501 => 0.0042573174223644
502 => 0.0043098250638224
503 => 0.0043661678551036
504 => 0.004629095077727
505 => 0.0045552661657346
506 => 0.0047885508392566
507 => 0.0049730487277888
508 => 0.0050283715774448
509 => 0.0049774771589025
510 => 0.004803370102332
511 => 0.0047948275795151
512 => 0.0050550170281347
513 => 0.0049815015914679
514 => 0.0049727571642006
515 => 0.0048797312320192
516 => 0.0049347210794243
517 => 0.0049226939931444
518 => 0.0049037086490664
519 => 0.0050086254472892
520 => 0.0052050203275752
521 => 0.0051744103437031
522 => 0.0051515614106989
523 => 0.0050514440374988
524 => 0.0051117370581901
525 => 0.0050902678683587
526 => 0.005182513132559
527 => 0.0051278690815295
528 => 0.0049809446397308
529 => 0.0050043428413565
530 => 0.0050008062502514
531 => 0.0050735890445885
601 => 0.0050517414563085
602 => 0.0049965401579985
603 => 0.0052043490712252
604 => 0.0051908551162942
605 => 0.0052099864592388
606 => 0.0052184086680595
607 => 0.0053448982915368
608 => 0.005396717043059
609 => 0.0054084808068694
610 => 0.0054577046130094
611 => 0.0054072560737308
612 => 0.0056090862000441
613 => 0.0057432914569281
614 => 0.0058991777689383
615 => 0.0061269695690757
616 => 0.0062126213931193
617 => 0.0061971491577456
618 => 0.0063698583008579
619 => 0.0066802127919221
620 => 0.0062598806737641
621 => 0.0067024914148306
622 => 0.0065623659643957
623 => 0.0062301310421637
624 => 0.0062087390299644
625 => 0.0064337323766267
626 => 0.0069327459647164
627 => 0.0068077487206652
628 => 0.0069329504154286
629 => 0.0067868959880075
630 => 0.0067796431546427
701 => 0.0069258568778884
702 => 0.0072674932119471
703 => 0.0071051945956823
704 => 0.0068724997320133
705 => 0.0070443179982134
706 => 0.006895473115001
707 => 0.0065600839340638
708 => 0.0068076531376284
709 => 0.0066421106615697
710 => 0.0066904247568057
711 => 0.007038370418896
712 => 0.0069965046762833
713 => 0.0070506828238876
714 => 0.006955059811455
715 => 0.006865732839478
716 => 0.0066989974127749
717 => 0.0066496352728853
718 => 0.006663277192487
719 => 0.0066496285126274
720 => 0.0065563415737647
721 => 0.0065361962681992
722 => 0.0065026198763373
723 => 0.0065130266041612
724 => 0.006449893164341
725 => 0.006569039009316
726 => 0.006591153528053
727 => 0.006677857938087
728 => 0.0066868598775675
729 => 0.0069283304253521
730 => 0.00679533250538
731 => 0.0068845589925852
801 => 0.0068765777357373
802 => 0.0062373315803529
803 => 0.0063254140604483
804 => 0.0064624427576718
805 => 0.0064007115153106
806 => 0.006313437981498
807 => 0.0062429599236335
808 => 0.0061361784592173
809 => 0.0062864713198267
810 => 0.0064840904496641
811 => 0.0066918718248214
812 => 0.0069415075326979
813 => 0.0068857917487799
814 => 0.0066872050589056
815 => 0.0066961135127457
816 => 0.0067511820690378
817 => 0.0066798632851336
818 => 0.0066588299834523
819 => 0.0067482924163751
820 => 0.0067489084949829
821 => 0.0066668476149383
822 => 0.0065756519637511
823 => 0.0065752698506428
824 => 0.0065590424653596
825 => 0.0067897828038
826 => 0.0069166666594628
827 => 0.006931213689031
828 => 0.0069156875284682
829 => 0.0069216629314575
830 => 0.0068478320115423
831 => 0.0070165876005893
901 => 0.0071714544172967
902 => 0.0071299468021721
903 => 0.0070677209864453
904 => 0.0070181551270174
905 => 0.0071182706609166
906 => 0.0071138126737886
907 => 0.0071701017907556
908 => 0.0071675481912683
909 => 0.007148620278373
910 => 0.0071299474781475
911 => 0.0072039830203641
912 => 0.0071826619731802
913 => 0.0071613078085209
914 => 0.0071184787621377
915 => 0.0071242999408563
916 => 0.0070620848692939
917 => 0.0070333013304211
918 => 0.0066004659671409
919 => 0.006484798214769
920 => 0.0065211896442994
921 => 0.0065331706478039
922 => 0.0064828318937393
923 => 0.0065550047361029
924 => 0.0065437566750705
925 => 0.006587516300652
926 => 0.0065601771864108
927 => 0.0065612991931955
928 => 0.0066416976988653
929 => 0.0066650377271009
930 => 0.0066531668003631
1001 => 0.0066614807905387
1002 => 0.0068530731850189
1003 => 0.0068258348733037
1004 => 0.0068113650630847
1005 => 0.0068153732994038
1006 => 0.0068643292639808
1007 => 0.0068780342611658
1008 => 0.00681996522506
1009 => 0.0068473509181806
1010 => 0.0069639557237262
1011 => 0.0070047608064067
1012 => 0.0071349910427722
1013 => 0.0070796669237063
1014 => 0.0071812167386235
1015 => 0.0074933462487962
1016 => 0.0077426968992413
1017 => 0.0075133837362405
1018 => 0.0079712844511692
1019 => 0.0083278258396975
1020 => 0.0083141411873551
1021 => 0.0082519699493142
1022 => 0.007846057057618
1023 => 0.0074725299628588
1024 => 0.0077850012384231
1025 => 0.0077857977919648
1026 => 0.0077589562322767
1027 => 0.0075922456103212
1028 => 0.0077531550639989
1029 => 0.0077659274720946
1030 => 0.0077587783200184
1031 => 0.0076309616770388
1101 => 0.0074358092876732
1102 => 0.0074739415974264
1103 => 0.0075364030986803
1104 => 0.0074181504459725
1105 => 0.0073803615582515
1106 => 0.0074506182901549
1107 => 0.0076770001189191
1108 => 0.0076342039455319
1109 => 0.0076330863644918
1110 => 0.0078161865426443
1111 => 0.0076851263305787
1112 => 0.007474422567969
1113 => 0.0074212170890688
1114 => 0.0072323734824785
1115 => 0.0073628084341883
1116 => 0.0073675025558914
1117 => 0.0072960646658529
1118 => 0.0074802193590289
1119 => 0.0074785223411115
1120 => 0.0076533498144733
1121 => 0.0079875542813407
1122 => 0.007888713575285
1123 => 0.0077737725879804
1124 => 0.0077862698602683
1125 => 0.0079233340913701
1126 => 0.0078404619283739
1127 => 0.0078702633359926
1128 => 0.0079232889833704
1129 => 0.0079552806729862
1130 => 0.0077816667484568
1201 => 0.007741189037735
1202 => 0.0076583858473442
1203 => 0.0076367840405659
1204 => 0.007704225511394
1205 => 0.0076864570665731
1206 => 0.0073671080331388
1207 => 0.0073337342823037
1208 => 0.0073347578075951
1209 => 0.0072508379242848
1210 => 0.0071228399591568
1211 => 0.0074592109691517
1212 => 0.0074321956695399
1213 => 0.0074023728695865
1214 => 0.0074060259924142
1215 => 0.0075520332471817
1216 => 0.0074673416658735
1217 => 0.0076925081154587
1218 => 0.007646220662547
1219 => 0.0075987461111267
1220 => 0.0075921836820102
1221 => 0.0075739100300517
1222 => 0.0075112428781599
1223 => 0.0074355685265384
1224 => 0.0073856017647979
1225 => 0.0068128272265939
1226 => 0.0069191308492083
1227 => 0.0070414234771462
1228 => 0.0070836384022534
1229 => 0.0070114268516736
1230 => 0.0075140942303113
1231 => 0.0076059364042118
]
'min_raw' => 0.0031700819961404
'max_raw' => 0.0083278258396975
'avg_raw' => 0.005748953917919
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.00317'
'max' => '$0.008327'
'avg' => '$0.005748'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00012291122214795
'max_diff' => -0.0015018391146222
'year' => 2027
]
2 => [
'items' => [
101 => 0.0073277404687505
102 => 0.0072757013678908
103 => 0.0075175059051001
104 => 0.0073716682097605
105 => 0.0074373389150422
106 => 0.0072953947701784
107 => 0.007583814313972
108 => 0.0075816170402832
109 => 0.0074694153234966
110 => 0.0075642474462004
111 => 0.0075477680311767
112 => 0.0074210925692653
113 => 0.0075878301520615
114 => 0.0075879128518224
115 => 0.007479921138891
116 => 0.0073538104606129
117 => 0.0073312648499381
118 => 0.0073142797608712
119 => 0.0074331616243366
120 => 0.0075397507313857
121 => 0.0077380866339236
122 => 0.0077879529921664
123 => 0.0079825847081797
124 => 0.00786669099774
125 => 0.0079180651785031
126 => 0.007973839119043
127 => 0.0080005791971566
128 => 0.0079570076748222
129 => 0.0082593508434012
130 => 0.0082848778703845
131 => 0.0082934368617241
201 => 0.008191488446394
202 => 0.0082820425005309
203 => 0.0082396752574353
204 => 0.0083499030540109
205 => 0.0083671881799731
206 => 0.0083525482932193
207 => 0.0083580348650269
208 => 0.0081000383076345
209 => 0.0080866598250935
210 => 0.0079042432663524
211 => 0.0079785793623945
212 => 0.0078396115938656
213 => 0.0078836797047927
214 => 0.007903104508193
215 => 0.0078929580932446
216 => 0.0079827822137318
217 => 0.0079064133614622
218 => 0.0077048634041212
219 => 0.0075032585346291
220 => 0.0075007275497163
221 => 0.0074476485462006
222 => 0.0074092821485631
223 => 0.0074166728778692
224 => 0.0074427187719317
225 => 0.0074077683138513
226 => 0.007415226766116
227 => 0.0075390867691166
228 => 0.0075639260093892
229 => 0.0074795125656251
301 => 0.0071405804081104
302 => 0.0070574056065094
303 => 0.0071171900044722
304 => 0.0070886169128543
305 => 0.0057210670925399
306 => 0.0060423526376696
307 => 0.0058514556765797
308 => 0.0059394297789968
309 => 0.0057445734142525
310 => 0.0058375690848056
311 => 0.0058203961801126
312 => 0.0063370138291506
313 => 0.0063289475551452
314 => 0.0063328084536539
315 => 0.0061485177083181
316 => 0.006442097869677
317 => 0.0065867260139636
318 => 0.0065599591936095
319 => 0.0065666958256241
320 => 0.0064509381680836
321 => 0.0063339292408126
322 => 0.0062041483329242
323 => 0.0064452652183758
324 => 0.0064184571367161
325 => 0.0064799452308002
326 => 0.0066363267664065
327 => 0.0066593545415602
328 => 0.0066903041048914
329 => 0.0066792108895771
330 => 0.0069434962838549
331 => 0.0069114895787967
401 => 0.0069886165290295
402 => 0.0068299605407648
403 => 0.0066504262302787
404 => 0.0066845498332833
405 => 0.0066812634559092
406 => 0.0066394241000095
407 => 0.0066016534002672
408 => 0.0065387758270249
409 => 0.0067377297728933
410 => 0.0067296526060237
411 => 0.0068604125489645
412 => 0.0068372994589154
413 => 0.0066829445868348
414 => 0.0066884574012881
415 => 0.0067255337278544
416 => 0.0068538553174303
417 => 0.0068919499020165
418 => 0.0068743029726295
419 => 0.0069160719455444
420 => 0.0069490844386781
421 => 0.0069202178064127
422 => 0.007328908444951
423 => 0.007159191598018
424 => 0.0072419104083309
425 => 0.007261638357183
426 => 0.0072111056310324
427 => 0.0072220643698932
428 => 0.0072386638731898
429 => 0.0073394528066902
430 => 0.0076039521317084
501 => 0.0077210970822512
502 => 0.0080735334457892
503 => 0.0077113698248451
504 => 0.0076898805343603
505 => 0.007753364965992
506 => 0.0079602824205667
507 => 0.0081279695827312
508 => 0.0081836010885256
509 => 0.0081909537103924
510 => 0.0082953221135754
511 => 0.0083551441359243
512 => 0.0082826490442674
513 => 0.0082212170446407
514 => 0.0080011752471982
515 => 0.0080266456844061
516 => 0.0082021117389512
517 => 0.0084499678758952
518 => 0.008662654226429
519 => 0.0085881788793397
520 => 0.0091563732062294
521 => 0.0092127073528748
522 => 0.0092049237953095
523 => 0.0093332613650128
524 => 0.0090785374246432
525 => 0.0089696380050914
526 => 0.0082344993402428
527 => 0.0084410433191488
528 => 0.0087412671223912
529 => 0.0087015313762506
530 => 0.0084835008253307
531 => 0.0086624888307048
601 => 0.0086033097986557
602 => 0.0085566328407383
603 => 0.0087704690337315
604 => 0.0085353473556288
605 => 0.0087389216037934
606 => 0.0084778355248163
607 => 0.0085885190764519
608 => 0.0085256897393825
609 => 0.0085663480205403
610 => 0.008328660539677
611 => 0.0084569109348134
612 => 0.0083233249015911
613 => 0.008323261564418
614 => 0.0083203126453306
615 => 0.0084774760210054
616 => 0.0084826011130438
617 => 0.0083664571409594
618 => 0.0083497189800722
619 => 0.0084116087336975
620 => 0.0083391520411545
621 => 0.0083730540715584
622 => 0.0083401788991189
623 => 0.0083327780053457
624 => 0.0082738064246026
625 => 0.008248399846161
626 => 0.0082583624202148
627 => 0.0082243550189103
628 => 0.0082038643295228
629 => 0.0083162365314683
630 => 0.0082562005970505
701 => 0.0083070351634822
702 => 0.0082491027591995
703 => 0.0080482838060086
704 => 0.0079327907024067
705 => 0.0075534623157559
706 => 0.0076610393756547
707 => 0.0077323630776641
708 => 0.0077087905945754
709 => 0.0077594334095898
710 => 0.0077625424671278
711 => 0.0077460779717242
712 => 0.0077270141952794
713 => 0.007717735003199
714 => 0.0077868944986667
715 => 0.0078270439135873
716 => 0.0077395213653487
717 => 0.007719016056867
718 => 0.0078075061853886
719 => 0.0078614851126676
720 => 0.0082600351835569
721 => 0.0082305093070057
722 => 0.0083046134629887
723 => 0.0082962704722459
724 => 0.0083739434334339
725 => 0.0085009058979337
726 => 0.0082427557083423
727 => 0.0082875616550934
728 => 0.0082765762716704
729 => 0.0083965118073602
730 => 0.0083968862330112
731 => 0.0083249788881409
801 => 0.0083639610263585
802 => 0.0083422022662244
803 => 0.0083815232866595
804 => 0.0082301149709232
805 => 0.0084145139559723
806 => 0.008519056298087
807 => 0.0085205078686087
808 => 0.0085700601090717
809 => 0.0086204080552544
810 => 0.0087170465535701
811 => 0.008617712859987
812 => 0.0084390212151712
813 => 0.0084519221747564
814 => 0.0083471553287817
815 => 0.0083489164783902
816 => 0.0083395153237561
817 => 0.0083677288964987
818 => 0.0082363062635534
819 => 0.0082671508928219
820 => 0.0082239682312201
821 => 0.0082874677844205
822 => 0.0082191527620291
823 => 0.0082765709741859
824 => 0.008301350771109
825 => 0.0083927887552258
826 => 0.0082056472974291
827 => 0.0078240531966186
828 => 0.0079042689029903
829 => 0.0077856235724589
830 => 0.0077966046495142
831 => 0.0078187881727914
901 => 0.0077468841158529
902 => 0.0077606011439595
903 => 0.0077601110751903
904 => 0.0077558879272938
905 => 0.0077371829050177
906 => 0.0077100569220414
907 => 0.0078181184892816
908 => 0.0078364802552735
909 => 0.0078772961865321
910 => 0.0079987367122469
911 => 0.0079866019399632
912 => 0.0080063942570247
913 => 0.0079631877400084
914 => 0.0077986088759193
915 => 0.0078075463000521
916 => 0.0076960964779031
917 => 0.0078744461640064
918 => 0.0078322106042363
919 => 0.0078049810640939
920 => 0.0077975512317862
921 => 0.007919292785075
922 => 0.007955719765884
923 => 0.0079330209159676
924 => 0.0078864649125577
925 => 0.0079758662021515
926 => 0.0079997862157092
927 => 0.0080051410246086
928 => 0.0081635429687719
929 => 0.0080139939336612
930 => 0.0080499918728019
1001 => 0.0083308375179127
1002 => 0.0080761492718471
1003 => 0.0082110633160137
1004 => 0.0082044599756106
1005 => 0.0082734774353639
1006 => 0.0081987985294421
1007 => 0.0081997242639829
1008 => 0.0082610070925961
1009 => 0.0081749464122252
1010 => 0.0081536365774913
1011 => 0.0081241971934303
1012 => 0.0081884770115091
1013 => 0.0082270098553213
1014 => 0.0085375562771918
1015 => 0.0087381834283576
1016 => 0.008729473674609
1017 => 0.0088090645198952
1018 => 0.0087732081151252
1019 => 0.0086574183256812
1020 => 0.0088550573772015
1021 => 0.0087925161117314
1022 => 0.0087976719376691
1023 => 0.0087974800375702
1024 => 0.0088390645116555
1025 => 0.008809598100605
1026 => 0.0087515167797593
1027 => 0.0087900738710784
1028 => 0.0089045746478838
1029 => 0.0092599885724005
1030 => 0.0094588829131683
1031 => 0.0092480148833472
1101 => 0.0093934688266824
1102 => 0.0093062482912205
1103 => 0.009290397725341
1104 => 0.0093817535507174
1105 => 0.0094732692823727
1106 => 0.0094674401258996
1107 => 0.0094010044041027
1108 => 0.0093634765506037
1109 => 0.0096476500300516
1110 => 0.00985702420894
1111 => 0.0098427462936021
1112 => 0.0099057643684767
1113 => 0.010090787385384
1114 => 0.010107703571266
1115 => 0.010105572520659
1116 => 0.010063643988929
1117 => 0.010245823177349
1118 => 0.010397800261467
1119 => 0.010053938745265
1120 => 0.010184876709157
1121 => 0.010243658979706
1122 => 0.010329968792785
1123 => 0.010475587914655
1124 => 0.010633768904569
1125 => 0.010656137430909
1126 => 0.010640265891039
1127 => 0.010535941276057
1128 => 0.010709024802713
1129 => 0.01081041307332
1130 => 0.010870787468237
1201 => 0.011023886888406
1202 => 0.010244021998997
1203 => 0.0096919948684737
1204 => 0.0096057878606741
1205 => 0.0097810932009578
1206 => 0.0098273198211567
1207 => 0.0098086859285177
1208 => 0.0091873292050028
1209 => 0.0096025165461175
1210 => 0.010049223215214
1211 => 0.010066383037644
1212 => 0.010290013736389
1213 => 0.010362837058833
1214 => 0.010542889083269
1215 => 0.010531626780118
1216 => 0.010575466582814
1217 => 0.010565388571374
1218 => 0.010898897032215
1219 => 0.011266806391008
1220 => 0.011254066859793
1221 => 0.01120117553656
1222 => 0.011279728170871
1223 => 0.011659450056708
1224 => 0.01162449135038
1225 => 0.011658450755803
1226 => 0.012106164259392
1227 => 0.012688255500563
1228 => 0.012417815678034
1229 => 0.013004592275958
1230 => 0.013373937040661
1231 => 0.014012680620252
]
'min_raw' => 0.0057210670925399
'max_raw' => 0.014012680620252
'avg_raw' => 0.0098668738563961
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.005721'
'max' => '$0.014012'
'avg' => '$0.009866'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0025509850963995
'max_diff' => 0.0056848547805548
'year' => 2028
]
3 => [
'items' => [
101 => 0.013932706778209
102 => 0.014181364966427
103 => 0.013789536909907
104 => 0.012889820490621
105 => 0.012747436923293
106 => 0.01303249243081
107 => 0.013733273580731
108 => 0.013010422338531
109 => 0.013156654203385
110 => 0.013114539416469
111 => 0.013112295298451
112 => 0.013197944155725
113 => 0.013073706021105
114 => 0.012567537510645
115 => 0.012799511556119
116 => 0.012709935236853
117 => 0.012809326841436
118 => 0.013345702339152
119 => 0.013108557946017
120 => 0.012858745591895
121 => 0.013172065721763
122 => 0.013571029915563
123 => 0.013546063453323
124 => 0.013497618081405
125 => 0.01377070210639
126 => 0.014221756909553
127 => 0.014343675210363
128 => 0.014433672807511
129 => 0.014446081955635
130 => 0.014573903893564
131 => 0.013886573118046
201 => 0.014977384710699
202 => 0.015165737739688
203 => 0.015130335176671
204 => 0.015339681641285
205 => 0.015278086600789
206 => 0.015188845051075
207 => 0.015520703726758
208 => 0.015140254534701
209 => 0.014600254803798
210 => 0.014304000271441
211 => 0.01469413213782
212 => 0.014932372054892
213 => 0.015089833485172
214 => 0.015137481218834
215 => 0.01393992864957
216 => 0.013294514234047
217 => 0.013708217474706
218 => 0.014212963980582
219 => 0.013883769225721
220 => 0.013896673036863
221 => 0.013427327827291
222 => 0.014254490617232
223 => 0.014133979956272
224 => 0.014759189478513
225 => 0.01460997820841
226 => 0.015119812303305
227 => 0.014985555899718
228 => 0.015542846724832
301 => 0.015765165123017
302 => 0.016138472314665
303 => 0.016413078604476
304 => 0.016574332670233
305 => 0.016564651580974
306 => 0.017203620525963
307 => 0.016826842862977
308 => 0.016353521318591
309 => 0.016344960425163
310 => 0.016590100360019
311 => 0.01710384641262
312 => 0.017237053289359
313 => 0.017311497761039
314 => 0.01719748346123
315 => 0.016788518311958
316 => 0.016611929234003
317 => 0.016762388244699
318 => 0.016578389803708
319 => 0.016896022733702
320 => 0.017332200589318
321 => 0.017242131586968
322 => 0.017543218757926
323 => 0.017854812304574
324 => 0.018300405070822
325 => 0.018416899520172
326 => 0.01860946041506
327 => 0.018807668828858
328 => 0.018871328029503
329 => 0.018992873195825
330 => 0.018992232592803
331 => 0.019358517132448
401 => 0.019762540322564
402 => 0.019915049723674
403 => 0.020265736682111
404 => 0.019665197555325
405 => 0.020120713381488
406 => 0.020531600058988
407 => 0.020041724023204
408 => 0.020716904012055
409 => 0.020743119721031
410 => 0.021138945801851
411 => 0.020737700237839
412 => 0.02049944190275
413 => 0.021187284788729
414 => 0.021520110294406
415 => 0.021419860543473
416 => 0.020656954988925
417 => 0.02021291123362
418 => 0.019050763076343
419 => 0.020427377769702
420 => 0.021097886630436
421 => 0.020655218532959
422 => 0.020878474572861
423 => 0.022096487135552
424 => 0.022560227458951
425 => 0.022463772713474
426 => 0.022480071977679
427 => 0.022730297838703
428 => 0.023839937108383
429 => 0.023175015536754
430 => 0.023683323164128
501 => 0.023952927696848
502 => 0.024203351412062
503 => 0.023588389914725
504 => 0.022788334042267
505 => 0.022534922763399
506 => 0.020611203914699
507 => 0.020511065994337
508 => 0.020454855545148
509 => 0.020100456614138
510 => 0.019821996132401
511 => 0.019600554018749
512 => 0.019019423784314
513 => 0.019215538179179
514 => 0.018289337876795
515 => 0.018881888007737
516 => 0.017403649961243
517 => 0.018634770532444
518 => 0.017964727577723
519 => 0.01841464340107
520 => 0.018413073687147
521 => 0.017584636010423
522 => 0.017106810447541
523 => 0.017411299493459
524 => 0.017737735921052
525 => 0.017790699133166
526 => 0.018213932482403
527 => 0.018332047812805
528 => 0.01797415284741
529 => 0.017373016763428
530 => 0.017512646965282
531 => 0.017103980845957
601 => 0.016387809190956
602 => 0.016902176176735
603 => 0.017077803680801
604 => 0.017155370791874
605 => 0.01645109822205
606 => 0.01622980049011
607 => 0.016111983434493
608 => 0.01728210401854
609 => 0.017346205865532
610 => 0.017018251753233
611 => 0.018500635438707
612 => 0.018165126355824
613 => 0.018539972203126
614 => 0.017499976987999
615 => 0.017539706205756
616 => 0.017047355804252
617 => 0.017323039130228
618 => 0.017128195041117
619 => 0.017300766641845
620 => 0.017404205347783
621 => 0.01789647495943
622 => 0.018640391460665
623 => 0.017822946295195
624 => 0.017466773730569
625 => 0.017687741186472
626 => 0.018276206640294
627 => 0.019167761925825
628 => 0.018639943252568
629 => 0.018874180216817
630 => 0.018925350573029
701 => 0.018536156624278
702 => 0.019182112061856
703 => 0.019528284828587
704 => 0.019883386456892
705 => 0.020191711251027
706 => 0.019741551057694
707 => 0.020223286992489
708 => 0.019835092866885
709 => 0.019486842605446
710 => 0.019487370757341
711 => 0.019268908281217
712 => 0.018845609705681
713 => 0.018767546953787
714 => 0.019173639247379
715 => 0.019499286809756
716 => 0.01952610870274
717 => 0.019706403925647
718 => 0.019813100781376
719 => 0.020858875014855
720 => 0.021279494062659
721 => 0.021793819072402
722 => 0.021994177649466
723 => 0.022597185133904
724 => 0.022110207616347
725 => 0.022004846967191
726 => 0.02054214805219
727 => 0.020781664917579
728 => 0.021165154529008
729 => 0.020548471654634
730 => 0.020939614997593
731 => 0.021016834979042
801 => 0.02052751700654
802 => 0.020788882877835
803 => 0.020094772613255
804 => 0.018655521167649
805 => 0.019183714360147
806 => 0.019572642337732
807 => 0.019017594159244
808 => 0.020012496535853
809 => 0.019431295106392
810 => 0.019247082155841
811 => 0.018528401759086
812 => 0.018867591241809
813 => 0.019326349873918
814 => 0.01904289037569
815 => 0.019631111396171
816 => 0.020464189233988
817 => 0.021057890111859
818 => 0.021103467093249
819 => 0.020721757203647
820 => 0.021333449737774
821 => 0.021337905250085
822 => 0.020647913572753
823 => 0.020225297512277
824 => 0.020129278254145
825 => 0.020369153186643
826 => 0.020660405638051
827 => 0.021119629577288
828 => 0.021397128985993
829 => 0.022120700269583
830 => 0.022316477912508
831 => 0.022531578186009
901 => 0.022819018485876
902 => 0.023164164264045
903 => 0.02240900495057
904 => 0.022439008837888
905 => 0.021735814941073
906 => 0.02098435141412
907 => 0.021554618559826
908 => 0.022300166993377
909 => 0.022129137358963
910 => 0.022109893031273
911 => 0.022142256652516
912 => 0.022013305893473
913 => 0.02143006638946
914 => 0.021137167161818
915 => 0.021515081892039
916 => 0.021715926752102
917 => 0.022027419614548
918 => 0.021989021544435
919 => 0.022791393706203
920 => 0.023103171265791
921 => 0.023023405224335
922 => 0.02303808409564
923 => 0.023602542474837
924 => 0.024230336282225
925 => 0.024818348027532
926 => 0.025416498830551
927 => 0.024695404691289
928 => 0.024329277558275
929 => 0.024707027302747
930 => 0.024506587971117
1001 => 0.025658371824829
1002 => 0.025738118839871
1003 => 0.0268898194065
1004 => 0.027982920386184
1005 => 0.027296363245783
1006 => 0.027943755705969
1007 => 0.028643963434341
1008 => 0.029994777746981
1009 => 0.029539871008705
1010 => 0.029191419576482
1011 => 0.028862134656737
1012 => 0.029547324302218
1013 => 0.030428809834957
1014 => 0.030618673375946
1015 => 0.030926324845802
1016 => 0.03060286694308
1017 => 0.030992436359189
1018 => 0.032367787583531
1019 => 0.031996155542153
1020 => 0.031468378300564
1021 => 0.032554086002046
1022 => 0.032946999398631
1023 => 0.035704671386205
1024 => 0.039186346184266
1025 => 0.037744909955959
1026 => 0.036850163974193
1027 => 0.037060450503567
1028 => 0.038331840277689
1029 => 0.038740170321242
1030 => 0.037630188503057
1031 => 0.038022252846187
1101 => 0.040182565923751
1102 => 0.041341504578723
1103 => 0.039767510219044
1104 => 0.035424922206212
1105 => 0.031420857734495
1106 => 0.032482915937767
1107 => 0.032362511497019
1108 => 0.034683498394317
1109 => 0.031987292240873
1110 => 0.032032689437691
1111 => 0.034401671886057
1112 => 0.033769667983474
1113 => 0.032745902602233
1114 => 0.031428332354745
1115 => 0.028992681891764
1116 => 0.026835358353565
1117 => 0.031066366613913
1118 => 0.030883917844138
1119 => 0.03061970498811
1120 => 0.031207682108383
1121 => 0.034062732104209
1122 => 0.03399691396091
1123 => 0.033578212513955
1124 => 0.033895793871206
1125 => 0.032690229054824
1126 => 0.033000930558206
1127 => 0.031420223470225
1128 => 0.032134769090152
1129 => 0.032743706061522
1130 => 0.03286595917399
1201 => 0.03314140167878
1202 => 0.030787775633002
1203 => 0.031844484628726
1204 => 0.032465202163471
1205 => 0.029660777759597
1206 => 0.032409767709918
1207 => 0.030746804239891
1208 => 0.03018236946129
1209 => 0.030942306532048
1210 => 0.030646158316511
1211 => 0.030391547471198
1212 => 0.030249470244744
1213 => 0.030807484158315
1214 => 0.030781452142276
1215 => 0.029868433073841
1216 => 0.028677436918485
1217 => 0.029077174321339
1218 => 0.028931945975324
1219 => 0.028405619714537
1220 => 0.028760300065432
1221 => 0.027198467299706
1222 => 0.024511415203277
1223 => 0.02628656412481
1224 => 0.026218222822321
1225 => 0.026183762038575
1226 => 0.027517737391594
1227 => 0.027389506441449
1228 => 0.027156766011295
1229 => 0.028401345254019
1230 => 0.027947057088472
1231 => 0.029347066170936
]
'min_raw' => 0.012567537510645
'max_raw' => 0.041341504578723
'avg_raw' => 0.026954521044684
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.012567'
'max' => '$0.041341'
'avg' => '$0.026954'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.0068464704181053
'max_diff' => 0.02732882395847
'year' => 2029
]
4 => [
'items' => [
101 => 0.030269202699558
102 => 0.030035319047908
103 => 0.030902592910149
104 => 0.029086383463744
105 => 0.029689655388164
106 => 0.029813988895689
107 => 0.028385987339355
108 => 0.027410486610752
109 => 0.027345431833676
110 => 0.025654048002559
111 => 0.026557571592769
112 => 0.027352634961807
113 => 0.026971861307447
114 => 0.026851319743766
115 => 0.027467140450336
116 => 0.027514994993384
117 => 0.026423906340489
118 => 0.02665077822171
119 => 0.027596871680713
120 => 0.026626939093969
121 => 0.024742518515514
122 => 0.024275156157904
123 => 0.024212801404202
124 => 0.022945277623388
125 => 0.02430638754542
126 => 0.023712226588975
127 => 0.025589173931243
128 => 0.02451707167561
129 => 0.024470855490153
130 => 0.024400992947395
131 => 0.023309982868501
201 => 0.023548844738471
202 => 0.024342857973942
203 => 0.024626170841557
204 => 0.024596618988351
205 => 0.024338966875916
206 => 0.024456918693596
207 => 0.024076954791709
208 => 0.023942781629689
209 => 0.023519294223115
210 => 0.022896884726833
211 => 0.02298343458475
212 => 0.021750278510312
213 => 0.021078389632412
214 => 0.020892419646362
215 => 0.020643732808796
216 => 0.020920509486396
217 => 0.021746785134091
218 => 0.020750121398813
219 => 0.019041411332511
220 => 0.019144107718996
221 => 0.019374836008597
222 => 0.018944875367346
223 => 0.018537953704263
224 => 0.018891739075716
225 => 0.018167736095097
226 => 0.01946232830984
227 => 0.019427313218484
228 => 0.019909857139095
301 => 0.020211601755451
302 => 0.01951617810573
303 => 0.01934128093845
304 => 0.019440910313566
305 => 0.017794258670084
306 => 0.019775290569567
307 => 0.019792422615697
308 => 0.019645727635558
309 => 0.020700565964534
310 => 0.022926603851
311 => 0.022089078855945
312 => 0.021764763863533
313 => 0.021148240825884
314 => 0.021969721168035
315 => 0.021906644294847
316 => 0.0216213867531
317 => 0.021448862101793
318 => 0.02176674406172
319 => 0.021409473009114
320 => 0.021345297310914
321 => 0.02095646240367
322 => 0.020817666032645
323 => 0.02071490672518
324 => 0.020601778824583
325 => 0.020851310783584
326 => 0.020285838535825
327 => 0.019603934438956
328 => 0.019547241491606
329 => 0.019703775703734
330 => 0.019634520967469
331 => 0.019546909926573
401 => 0.019379636590055
402 => 0.019330010164339
403 => 0.019491271972596
404 => 0.019309216793221
405 => 0.019577849127447
406 => 0.019504795996643
407 => 0.019096727146431
408 => 0.018588122272628
409 => 0.018583594622416
410 => 0.018474016536635
411 => 0.018334452369216
412 => 0.018295628810636
413 => 0.01886194425852
414 => 0.020034200287243
415 => 0.019804058379096
416 => 0.019970359493624
417 => 0.02078839638284
418 => 0.021048425710694
419 => 0.020863863052915
420 => 0.020611222303619
421 => 0.020622337214414
422 => 0.021485687134317
423 => 0.021539533209814
424 => 0.021675584871195
425 => 0.021850449704264
426 => 0.020893643290124
427 => 0.020577271718353
428 => 0.020427357316021
429 => 0.019965678981014
430 => 0.02046355948401
501 => 0.020173465836283
502 => 0.020212609380371
503 => 0.020187117095933
504 => 0.020201037607017
505 => 0.019461966444932
506 => 0.019731245131959
507 => 0.019283517087316
508 => 0.018684059495371
509 => 0.018682049903326
510 => 0.018828766299704
511 => 0.018741493646125
512 => 0.01850664517933
513 => 0.018540004295585
514 => 0.018247743335082
515 => 0.018575490067746
516 => 0.018584888671304
517 => 0.018458688326744
518 => 0.018963627388745
519 => 0.019170501334438
520 => 0.019087433564175
521 => 0.019164673078235
522 => 0.019813621814407
523 => 0.019919428774022
524 => 0.019966421236267
525 => 0.019903457562167
526 => 0.01917653466984
527 => 0.01920877679123
528 => 0.018972205497457
529 => 0.018772327683488
530 => 0.018780321747826
531 => 0.018883084926503
601 => 0.019331857754766
602 => 0.020276273715244
603 => 0.020312113610585
604 => 0.020355552609262
605 => 0.020178864370952
606 => 0.020125573507599
607 => 0.0201958779119
608 => 0.020550550891624
609 => 0.021462866088247
610 => 0.021140392966277
611 => 0.020878217298522
612 => 0.021108216041195
613 => 0.021072809537551
614 => 0.020773943014943
615 => 0.020765554827059
616 => 0.020191934416767
617 => 0.019979880011786
618 => 0.019802671478988
619 => 0.019609164387317
620 => 0.019494446896959
621 => 0.019670705100317
622 => 0.01971101743685
623 => 0.019325625794742
624 => 0.019273098337994
625 => 0.019587817472196
626 => 0.019449321315146
627 => 0.019591768047211
628 => 0.019624816910936
629 => 0.019619495282696
630 => 0.019474889388554
701 => 0.01956705687327
702 => 0.019349053295466
703 => 0.019112007147682
704 => 0.018960786473892
705 => 0.0188288263795
706 => 0.018902045509434
707 => 0.018641032680502
708 => 0.018557529423376
709 => 0.019535832603282
710 => 0.020258515680811
711 => 0.02024800758265
712 => 0.020184042237557
713 => 0.020089002709646
714 => 0.020543598158192
715 => 0.020385226193841
716 => 0.020500455030327
717 => 0.020529785605352
718 => 0.020618560422147
719 => 0.020650289788698
720 => 0.020554381605519
721 => 0.020232502028571
722 => 0.019430408726209
723 => 0.01905703212875
724 => 0.01893381163251
725 => 0.018938290463519
726 => 0.0188147443099
727 => 0.018851134189091
728 => 0.018802089394978
729 => 0.018709210420139
730 => 0.018896310494464
731 => 0.018917872035072
801 => 0.018874200642046
802 => 0.018884486836031
803 => 0.018522906354064
804 => 0.018550396532797
805 => 0.018397327724332
806 => 0.018368629168017
807 => 0.017981684549443
808 => 0.017296156069121
809 => 0.017676005393079
810 => 0.017217200824636
811 => 0.017043444582542
812 => 0.017865979607972
813 => 0.01778341990499
814 => 0.017642113581323
815 => 0.017433092077802
816 => 0.017355563968916
817 => 0.016884527721739
818 => 0.016856696387375
819 => 0.017090154670524
820 => 0.01698242170566
821 => 0.016831123821326
822 => 0.016283138221088
823 => 0.015667020974624
824 => 0.01568561768152
825 => 0.015881593114351
826 => 0.016451418116196
827 => 0.016228777629903
828 => 0.016067249402591
829 => 0.016037000021137
830 => 0.016415634361412
831 => 0.016951481279248
901 => 0.017202888664197
902 => 0.016953751581068
903 => 0.016667556314462
904 => 0.01668497569424
905 => 0.016800859023877
906 => 0.01681303672332
907 => 0.016626753026108
908 => 0.01667919079571
909 => 0.016599533028675
910 => 0.016110673459414
911 => 0.016101831539996
912 => 0.015981857517774
913 => 0.015978224752062
914 => 0.01577411901134
915 => 0.015745563207296
916 => 0.015340298870759
917 => 0.015607045084321
918 => 0.015428125729069
919 => 0.015158452057894
920 => 0.015111960215337
921 => 0.015110562614409
922 => 0.015387457176777
923 => 0.015603809410144
924 => 0.015431238107855
925 => 0.015391946967478
926 => 0.015811473552699
927 => 0.01575808497066
928 => 0.015711850802934
929 => 0.016903502064976
930 => 0.015960217105362
1001 => 0.015548891022147
1002 => 0.015039796885464
1003 => 0.015205560503444
1004 => 0.015240489333326
1005 => 0.014016209705719
1006 => 0.013519519613273
1007 => 0.013349074290917
1008 => 0.013250980598158
1009 => 0.013295683125731
1010 => 0.012848603786593
1011 => 0.013149048496504
1012 => 0.012761915579486
1013 => 0.012697011486108
1014 => 0.013389253098302
1015 => 0.013485574474622
1016 => 0.013074637558535
1017 => 0.013338525583307
1018 => 0.013242836117207
1019 => 0.012768551862209
1020 => 0.012750437692267
1021 => 0.012512458525007
1022 => 0.012140067210092
1023 => 0.011969874386583
1024 => 0.011881236486418
1025 => 0.011917810211544
1026 => 0.011899317416946
1027 => 0.011778639423183
1028 => 0.011906234538288
1029 => 0.011580281745137
1030 => 0.011450484716524
1031 => 0.011391858409968
1101 => 0.011102556544904
1102 => 0.011562964465344
1103 => 0.011653670625737
1104 => 0.011744555505286
1105 => 0.012535646332021
1106 => 0.012496125669917
1107 => 0.012853373207996
1108 => 0.012839491225603
1109 => 0.012737598440716
1110 => 0.012307729541829
1111 => 0.012479067623249
1112 => 0.011951715640488
1113 => 0.012346843602422
1114 => 0.012166523701534
1115 => 0.012285877262546
1116 => 0.012071268798169
1117 => 0.012190041983322
1118 => 0.011675180421343
1119 => 0.011194409939065
1120 => 0.011387886015699
1121 => 0.011598216637673
1122 => 0.012054267017359
1123 => 0.011782647173552
1124 => 0.011880331940469
1125 => 0.011553104323531
1126 => 0.010877940281841
1127 => 0.010881761636994
1128 => 0.010777902358428
1129 => 0.010688152778045
1130 => 0.011813845980039
1201 => 0.011673848235794
1202 => 0.011450780152793
1203 => 0.011749365646264
1204 => 0.011828316389926
1205 => 0.011830564006607
1206 => 0.012048404275035
1207 => 0.012164665665346
1208 => 0.012185157239294
1209 => 0.012527933608417
1210 => 0.012642827726017
1211 => 0.01311606033599
1212 => 0.012154801698651
1213 => 0.012135005209589
1214 => 0.011753567356479
1215 => 0.011511653439743
1216 => 0.011770131409324
1217 => 0.011999107604612
1218 => 0.011760682285135
1219 => 0.011791815598426
1220 => 0.011471749087093
1221 => 0.011586157804365
1222 => 0.011684702004199
1223 => 0.011630291689211
1224 => 0.011548836814185
1225 => 0.011980334167809
1226 => 0.011955987396065
1227 => 0.012357807651841
1228 => 0.01267105527566
1229 => 0.013232451017254
1230 => 0.012646605294679
1231 => 0.012625254748022
]
'min_raw' => 0.010688152778045
'max_raw' => 0.030902592910149
'avg_raw' => 0.020795372844097
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.010688'
'max' => '$0.0309025'
'avg' => '$0.020795'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0018793847326006
'max_diff' => -0.010438911668574
'year' => 2030
]
5 => [
'items' => [
101 => 0.012833959766325
102 => 0.012642795774366
103 => 0.012763604818527
104 => 0.013212986812539
105 => 0.013222481545946
106 => 0.013063432528112
107 => 0.013053754380923
108 => 0.013084301484603
109 => 0.013263216824982
110 => 0.01320069830754
111 => 0.013273046318699
112 => 0.013363518614484
113 => 0.013737750389311
114 => 0.013827976403266
115 => 0.01360877396618
116 => 0.013628565491943
117 => 0.013546577763232
118 => 0.013467378644599
119 => 0.013645406697182
120 => 0.013970756462428
121 => 0.013968732478424
122 => 0.014044207300065
123 => 0.014091227488681
124 => 0.013889382418262
125 => 0.013757988699468
126 => 0.013808373412053
127 => 0.013888939664713
128 => 0.013782246862161
129 => 0.013123689459893
130 => 0.013323453706931
131 => 0.013290203168251
201 => 0.013242850357768
202 => 0.013443714852896
203 => 0.013424340982329
204 => 0.012844018341772
205 => 0.012881168714368
206 => 0.012846277578976
207 => 0.012959017975484
208 => 0.012636707422973
209 => 0.01273584797813
210 => 0.012798028004941
211 => 0.012834652518421
212 => 0.012966965374777
213 => 0.012951439988233
214 => 0.012966000294951
215 => 0.013162185331628
216 => 0.014154421924564
217 => 0.014208427173071
218 => 0.013942485577932
219 => 0.014048723999724
220 => 0.013844769461672
221 => 0.013981685509443
222 => 0.014075359992037
223 => 0.01365206301776
224 => 0.013626998118118
225 => 0.013422201787136
226 => 0.013532247735149
227 => 0.013357156719277
228 => 0.013400117930148
301 => 0.013279994639262
302 => 0.013496192646549
303 => 0.01373793561247
304 => 0.013799009432381
305 => 0.013638350506128
306 => 0.013522022855583
307 => 0.013317789821934
308 => 0.013657433908521
309 => 0.013756756189905
310 => 0.01365691221086
311 => 0.013633776179281
312 => 0.013589933441245
313 => 0.013643077623414
314 => 0.01375621525943
315 => 0.013702861639609
316 => 0.013738102645471
317 => 0.013603800271493
318 => 0.013889449237379
319 => 0.014343128540373
320 => 0.014344587193517
321 => 0.014291233286099
322 => 0.01426940201671
323 => 0.014324146363506
324 => 0.014353842925912
325 => 0.014530876105054
326 => 0.014720839759587
327 => 0.015607317247654
328 => 0.015358397916302
329 => 0.016144933480497
330 => 0.016766980992915
331 => 0.016953505843048
401 => 0.016781911757598
402 => 0.016194897660603
403 => 0.016166095948506
404 => 0.017043342840375
405 => 0.016795480412969
406 => 0.016765997965921
407 => 0.016452354540708
408 => 0.016637756650502
409 => 0.016597206489406
410 => 0.016533196076332
411 => 0.016886930386597
412 => 0.017549089437334
413 => 0.017445885739589
414 => 0.017368848966703
415 => 0.017031296252987
416 => 0.017234578381772
417 => 0.017162193509325
418 => 0.017473204857935
419 => 0.017288968624763
420 => 0.016793602611302
421 => 0.016872491281693
422 => 0.016860567417865
423 => 0.017105959690505
424 => 0.01703229902127
425 => 0.016846183989986
426 => 0.017546826249685
427 => 0.017501330438517
428 => 0.017565833096962
429 => 0.017594229162021
430 => 0.018020697758798
501 => 0.018195408297425
502 => 0.018235070648432
503 => 0.018401032147529
504 => 0.018230941375147
505 => 0.018911425737342
506 => 0.019363908130838
507 => 0.019889489715415
508 => 0.020657505673493
509 => 0.020946286778276
510 => 0.020894121056476
511 => 0.021476421990647
512 => 0.022522803825529
513 => 0.021105624742508
514 => 0.022597917758108
515 => 0.022125475018721
516 => 0.021005321782514
517 => 0.020933197119841
518 => 0.021691777896647
519 => 0.023374237048908
520 => 0.02295280011356
521 => 0.023374926368758
522 => 0.022882493669513
523 => 0.022858040235447
524 => 0.023351010011686
525 => 0.024502860764252
526 => 0.023955659648188
527 => 0.023171112669091
528 => 0.023750409949553
529 => 0.023248569033785
530 => 0.02211778099413
531 => 0.022952477848678
601 => 0.02239433983284
602 => 0.02255723417811
603 => 0.023730357270638
604 => 0.023589203996447
605 => 0.023771869403692
606 => 0.02344946974109
607 => 0.023148297618459
608 => 0.022586137486234
609 => 0.022419709585242
610 => 0.022465704269627
611 => 0.02241968679256
612 => 0.022105163365099
613 => 0.022037242060884
614 => 0.021924036911493
615 => 0.021959123920926
616 => 0.021746265120736
617 => 0.022147973655567
618 => 0.022222534299475
619 => 0.022514864271413
620 => 0.022545214938867
621 => 0.023359349749658
622 => 0.022910937976854
623 => 0.02321177130806
624 => 0.023184861943364
625 => 0.021029598899744
626 => 0.021326575131108
627 => 0.021788576950835
628 => 0.021580445757277
629 => 0.021286196944784
630 => 0.021048575252073
701 => 0.02068855408955
702 => 0.021195276962207
703 => 0.021861563655781
704 => 0.022562113068956
705 => 0.02340377728707
706 => 0.023215927631639
707 => 0.022546378741848
708 => 0.022576414215938
709 => 0.022762081698241
710 => 0.02252162543899
711 => 0.022450710193873
712 => 0.022752339032539
713 => 0.022754416184579
714 => 0.022477742198201
715 => 0.022170269693146
716 => 0.022168981372123
717 => 0.022114269609681
718 => 0.022892226770509
719 => 0.023320024548624
720 => 0.023369070874454
721 => 0.023316723340115
722 => 0.023336869828483
723 => 0.023087943727278
724 => 0.023656914977889
725 => 0.024179059262874
726 => 0.024039113440512
727 => 0.023829314758322
728 => 0.023662200002683
729 => 0.023999746515067
730 => 0.023984716100218
731 => 0.024174498788053
801 => 0.024165889149095
802 => 0.024102072369264
803 => 0.024039115719611
804 => 0.02428873171919
805 => 0.024216846320022
806 => 0.024144849262973
807 => 0.024000448142863
808 => 0.024020074653335
809 => 0.023810312195844
810 => 0.023713266484932
811 => 0.022253931838033
812 => 0.021863949935247
813 => 0.021986646180677
814 => 0.022027040970479
815 => 0.021857320346611
816 => 0.022100656123587
817 => 0.022062732500502
818 => 0.022210271133349
819 => 0.022118095400929
820 => 0.02212187832514
821 => 0.02239294750025
822 => 0.022471640034995
823 => 0.022431616376697
824 => 0.022459647575038
825 => 0.023105614709582
826 => 0.023013778839916
827 => 0.022964992864512
828 => 0.022978506913109
829 => 0.023143565365676
830 => 0.023189772720538
831 => 0.022993988911056
901 => 0.02308632168742
902 => 0.023479462930405
903 => 0.023617040115582
904 => 0.024056120449873
905 => 0.023869591319836
906 => 0.024211973610811
907 => 0.025264340046545
908 => 0.026105043173627
909 => 0.025331897834436
910 => 0.026875742064425
911 => 0.028077846248773
912 => 0.028031707487968
913 => 0.027822092818257
914 => 0.02645352916397
915 => 0.02519415648516
916 => 0.026247675206773
917 => 0.026250360842652
918 => 0.026159862650146
919 => 0.025597786148859
920 => 0.026140303606273
921 => 0.026183366671908
922 => 0.026159262806546
923 => 0.025728320070867
924 => 0.025070350165016
925 => 0.025198915909662
926 => 0.025409509222062
927 => 0.025010812147321
928 => 0.024883404274034
929 => 0.025120279750815
930 => 0.025883541891968
1001 => 0.025739251605459
1002 => 0.025735483602956
1003 => 0.026352818637243
1004 => 0.025910939981932
1005 => 0.025200537535426
1006 => 0.025021151548627
1007 => 0.024384452144368
1008 => 0.024824222690735
1009 => 0.02484004924979
1010 => 0.024599191415891
1011 => 0.025220081821204
1012 => 0.025214360206813
1013 => 0.025803803239317
1014 => 0.026930596932771
1015 => 0.026597348591467
1016 => 0.026209817027846
1017 => 0.026251952453896
1018 => 0.026714074078575
1019 => 0.026434664795084
1020 => 0.026535142321538
1021 => 0.026713921993805
1022 => 0.026821784208933
1023 => 0.026236432741045
1024 => 0.026099959313283
1025 => 0.025820782575746
1026 => 0.025747950576003
1027 => 0.025975334203513
1028 => 0.025915426651246
1029 => 0.024838719088785
1030 => 0.024726197157763
1031 => 0.024729648044744
1101 => 0.024446706299064
1102 => 0.024015152223102
1103 => 0.025149250567974
1104 => 0.025058166599185
1105 => 0.024957616946981
1106 => 0.024969933705647
1107 => 0.025462207358997
1108 => 0.025176663779639
1109 => 0.025935828185035
1110 => 0.025779766805856
1111 => 0.025619703041175
1112 => 0.025597577353235
1113 => 0.025535966459831
1114 => 0.025324679781947
1115 => 0.025069538422041
1116 => 0.024901071996265
1117 => 0.022969922650869
1118 => 0.023328332736395
1119 => 0.023740650869686
1120 => 0.023882981437037
1121 => 0.023639515152608
1122 => 0.025334293314801
1123 => 0.025643945616322
1124 => 0.024705988596894
1125 => 0.024530535135092
1126 => 0.025345796014547
1127 => 0.024854094042646
1128 => 0.025075507410486
1129 => 0.024596932815854
1130 => 0.025569359444563
1201 => 0.025561951182913
1202 => 0.025183655261093
1203 => 0.025503388383757
1204 => 0.025447826885448
1205 => 0.025020731721416
1206 => 0.025582899123059
1207 => 0.025583177951077
1208 => 0.025219076351188
1209 => 0.024793885394607
1210 => 0.024717871294133
1211 => 0.024660604880483
1212 => 0.025061423383223
1213 => 0.025420795999453
1214 => 0.02608949934223
1215 => 0.026257627250603
1216 => 0.026913841669894
1217 => 0.026523097933707
1218 => 0.02669630957098
1219 => 0.026884355305523
1220 => 0.026974511345815
1221 => 0.026827606916198
1222 => 0.027846978017988
1223 => 0.027933044171703
1224 => 0.027961901408574
1225 => 0.027618175208477
1226 => 0.027923484524282
1227 => 0.027780640406199
1228 => 0.028152281118212
1229 => 0.028210559127203
1230 => 0.028161199726888
1231 => 0.028179698086798
]
'min_raw' => 0.012636707422973
'max_raw' => 0.028210559127203
'avg_raw' => 0.020423633275088
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.012636'
'max' => '$0.02821'
'avg' => '$0.020423'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.001948554644928
'max_diff' => -0.0026920337829458
'year' => 2031
]
6 => [
'items' => [
101 => 0.027309844680805
102 => 0.027264738192862
103 => 0.026649708029149
104 => 0.026900337366935
105 => 0.02643179783292
106 => 0.026580376545649
107 => 0.026645868626509
108 => 0.026611659280111
109 => 0.026914507573653
110 => 0.026657024656323
111 => 0.025977484903379
112 => 0.025297760010284
113 => 0.025289226617943
114 => 0.025110267051732
115 => 0.024980912063441
116 => 0.0250058304233
117 => 0.025093645973598
118 => 0.024975808064017
119 => 0.02500095475656
120 => 0.025418557404306
121 => 0.025502304637105
122 => 0.025217698817896
123 => 0.024074965385348
124 => 0.023794535734671
125 => 0.023996103006416
126 => 0.023899766833117
127 => 0.019288977134647
128 => 0.020372213781492
129 => 0.019728591349178
130 => 0.020025202177633
131 => 0.01936823033946
201 => 0.01968177173548
202 => 0.019623872088334
203 => 0.021365684561158
204 => 0.02133848855518
205 => 0.021351505844061
206 => 0.020730156729392
207 => 0.021719982740526
208 => 0.022207606626603
209 => 0.02211736042298
210 => 0.022140073448154
211 => 0.021749788423814
212 => 0.021355284656217
213 => 0.020917719264258
214 => 0.021730661677801
215 => 0.021640276358805
216 => 0.021847587760971
217 => 0.022374839026478
218 => 0.022452478778157
219 => 0.022556827391758
220 => 0.022519425841822
221 => 0.023410482500447
222 => 0.023302569659706
223 => 0.023562608557248
224 => 0.023027688815806
225 => 0.022422376353316
226 => 0.02253742646328
227 => 0.022526346212516
228 => 0.02238528190297
229 => 0.022257935351723
301 => 0.022045939223564
302 => 0.022716726342581
303 => 0.02268949361055
304 => 0.023130359887542
305 => 0.023052432490737
306 => 0.022532014262805
307 => 0.022550601101626
308 => 0.022675606525231
309 => 0.023108251723614
310 => 0.023236690275225
311 => 0.023177192420727
312 => 0.023318019429126
313 => 0.023429323354585
314 => 0.023331997488499
315 => 0.0247099265102
316 => 0.024137714311513
317 => 0.024416606555726
318 => 0.024483120712642
319 => 0.024312746098343
320 => 0.024349694251527
321 => 0.024405660635832
322 => 0.024745477561987
323 => 0.025637255503039
324 => 0.026032217882594
325 => 0.027220481688583
326 => 0.025999421755113
327 => 0.02592696911191
328 => 0.026141011305498
329 => 0.026838647950111
330 => 0.027404016924893
331 => 0.027591582430746
401 => 0.027616372308714
402 => 0.027968257666814
403 => 0.028169951791804
404 => 0.027925529528837
405 => 0.027718407253051
406 => 0.026976520970146
407 => 0.027062396327481
408 => 0.027653992381029
409 => 0.028489656651498
410 => 0.02920674353161
411 => 0.028955644699195
412 => 0.030871351542365
413 => 0.031061286050905
414 => 0.031035043243142
415 => 0.03146774231964
416 => 0.030608922770427
417 => 0.030241760774293
418 => 0.027763189440013
419 => 0.028459566885335
420 => 0.029471792398923
421 => 0.029337820556549
422 => 0.028602715331716
423 => 0.029206185888378
424 => 0.029006659650076
425 => 0.028849285027577
426 => 0.02957024868182
427 => 0.028777519528425
428 => 0.029463884319212
429 => 0.028583614375493
430 => 0.028956791697511
501 => 0.028744958200977
502 => 0.028882040434571
503 => 0.028080660498031
504 => 0.02851306565939
505 => 0.028062671021702
506 => 0.028062457476
507 => 0.02805251498941
508 => 0.028582402283295
509 => 0.028599681888925
510 => 0.028208094378129
511 => 0.028151660500077
512 => 0.028360326125429
513 => 0.028116033327755
514 => 0.028230336390226
515 => 0.028119495451075
516 => 0.028094542821005
517 => 0.027895716019265
518 => 0.027810055966219
519 => 0.027843645480206
520 => 0.027728987152387
521 => 0.027659901362503
522 => 0.028038772086938
523 => 0.027836356742474
524 => 0.028007749032354
525 => 0.027812425886604
526 => 0.027135350765189
527 => 0.026745957702924
528 => 0.025467025563469
529 => 0.025829729131708
530 => 0.026070201972695
531 => 0.025990725700183
601 => 0.026161471486773
602 => 0.026171953891329
603 => 0.026116442695562
604 => 0.026052167842288
605 => 0.026020882398336
606 => 0.026254058465868
607 => 0.026389425021415
608 => 0.026094336639399
609 => 0.026025201560218
610 => 0.026323552206712
611 => 0.026505545928722
612 => 0.027849285318602
613 => 0.027749736764379
614 => 0.027999584100063
615 => 0.027971455124285
616 => 0.028233334935883
617 => 0.02866139774918
618 => 0.027791026361502
619 => 0.027942092739225
620 => 0.027905054752039
621 => 0.028309425784249
622 => 0.028310688186473
623 => 0.028068247552832
624 => 0.028199678553479
625 => 0.028126317374539
626 => 0.028258890940241
627 => 0.027748407232746
628 => 0.028370121285164
629 => 0.028722593090517
630 => 0.028727487161877
701 => 0.028894556000225
702 => 0.029064307615961
703 => 0.029390131060117
704 => 0.029055220576944
705 => 0.028452749220596
706 => 0.028496245706554
707 => 0.028143016970762
708 => 0.028148954809627
709 => 0.02811725816041
710 => 0.028212382190721
711 => 0.02776928160811
712 => 0.027873276429192
713 => 0.027727683070685
714 => 0.027941776247697
715 => 0.027711447380102
716 => 0.0279050368912
717 => 0.027988583706596
718 => 0.028296873254043
719 => 0.027665912763281
720 => 0.02637934161035
721 => 0.026649794464863
722 => 0.026249773449425
723 => 0.026286796917391
724 => 0.026361590214924
725 => 0.026119160666775
726 => 0.026165408584729
727 => 0.026163756283658
728 => 0.026149517645674
729 => 0.026086452357127
730 => 0.025994995211647
731 => 0.026359332330215
801 => 0.026421240306234
802 => 0.02655885406815
803 => 0.026968299279304
804 => 0.026927386047327
805 => 0.026994117226155
806 => 0.026848443437452
807 => 0.026293554306646
808 => 0.026323687456101
809 => 0.025947926599548
810 => 0.026549245018222
811 => 0.026406844879665
812 => 0.026315038583969
813 => 0.026289988385609
814 => 0.026700448532246
815 => 0.026823264641294
816 => 0.026746733884018
817 => 0.026589767068085
818 => 0.026891189757749
819 => 0.026971837753501
820 => 0.026989891865566
821 => 0.027523955079583
822 => 0.027019740066528
823 => 0.027141109631636
824 => 0.028088000332144
825 => 0.027229301128768
826 => 0.027684173248074
827 => 0.027661909624874
828 => 0.027894606809078
829 => 0.027642821663848
830 => 0.027645942842485
831 => 0.027852562177785
901 => 0.027562402585349
902 => 0.027490554989739
903 => 0.027391298050985
904 => 0.027608021945511
905 => 0.027737938118701
906 => 0.028784967061697
907 => 0.029461395509192
908 => 0.029432029966334
909 => 0.029700376058071
910 => 0.029579483685975
911 => 0.02918909032668
912 => 0.029855444187598
913 => 0.029644581944574
914 => 0.029661965171691
915 => 0.02966131816711
916 => 0.029801523124824
917 => 0.029702175062688
918 => 0.029506349834348
919 => 0.029636347759701
920 => 0.030022395122889
921 => 0.031220697983605
922 => 0.031891284139863
923 => 0.031180327854985
924 => 0.03167073598021
925 => 0.031376665855357
926 => 0.031323224565843
927 => 0.03163123710936
928 => 0.03193978878806
929 => 0.031920135380032
930 => 0.0316961427056
1001 => 0.031569614927417
1002 => 0.032527725653734
1003 => 0.033233645315895
1004 => 0.033185506327481
1005 => 0.033397976166702
1006 => 0.0340217941861
1007 => 0.034078828287852
1008 => 0.034071643301945
1009 => 0.03393027832986
1010 => 0.034544508182964
1011 => 0.035056909532769
1012 => 0.033897556423249
1013 => 0.034339022910307
1014 => 0.03453721143951
1015 => 0.034828211000266
1016 => 0.035319176036451
1017 => 0.035852494287792
1018 => 0.035927911336068
1019 => 0.035874399331278
1020 => 0.035522661608155
1021 => 0.036106224802582
1022 => 0.036448062435636
1023 => 0.036651618923305
1024 => 0.037167804307464
1025 => 0.034538435384395
1026 => 0.032677237372532
1027 => 0.032386584426955
1028 => 0.032977638621149
1029 => 0.033133494898589
1030 => 0.03307066942858
1031 => 0.030975721853508
1101 => 0.032375554961531
1102 => 0.033881657684453
1103 => 0.033939513223837
1104 => 0.034693499738054
1105 => 0.034939028654035
1106 => 0.035546086625251
1107 => 0.035508114983868
1108 => 0.035655923939457
1109 => 0.035621945220261
1110 => 0.036746392280803
1111 => 0.037986824370584
1112 => 0.037943872151648
1113 => 0.037765545362615
1114 => 0.038030391053564
1115 => 0.039310649903
1116 => 0.039192784183874
1117 => 0.039307280690227
1118 => 0.040816778025939
1119 => 0.042779339285856
1120 => 0.041867532542696
1121 => 0.043845890810032
1122 => 0.045091162471054
1123 => 0.0472447310453
1124 => 0.046975093653255
1125 => 0.047813462095593
1126 => 0.046492386446474
1127 => 0.043458929722658
1128 => 0.042978873584509
1129 => 0.043939958130042
1130 => 0.046302690703977
1201 => 0.043865547273037
1202 => 0.044358578214974
1203 => 0.044216585270528
1204 => 0.04420901906995
1205 => 0.044497790172064
1206 => 0.04407891262716
1207 => 0.042372330154589
1208 => 0.043154446844815
1209 => 0.04285243403039
1210 => 0.043187539764541
1211 => 0.044995967203634
1212 => 0.044196418325286
1213 => 0.043354158532021
1214 => 0.044410539225185
1215 => 0.045755674859372
1216 => 0.045671498688826
1217 => 0.045508161735057
1218 => 0.046428883591411
1219 => 0.047949646351916
1220 => 0.048360702415161
1221 => 0.048664135597377
1222 => 0.048705973906659
1223 => 0.049136934494628
1224 => 0.046819550797068
1225 => 0.050497298239729
1226 => 0.051132343627354
1227 => 0.051012981414415
1228 => 0.051718807635965
1229 => 0.051511135656502
1230 => 0.051210251540996
1231 => 0.052329136235695
]
'min_raw' => 0.019288977134647
'max_raw' => 0.052329136235695
'avg_raw' => 0.035809056685171
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.019288'
'max' => '$0.052329'
'avg' => '$0.035809'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0066522697116747
'max_diff' => 0.024118577108492
'year' => 2032
]
7 => [
'items' => [
101 => 0.051046425222561
102 => 0.049225778428244
103 => 0.04822693558857
104 => 0.049542292414206
105 => 0.050345534927994
106 => 0.050876427133789
107 => 0.051037074794489
108 => 0.046999442696764
109 => 0.044823382933433
110 => 0.046218212293152
111 => 0.04792000037799
112 => 0.046810097278331
113 => 0.046853603378513
114 => 0.045271173235803
115 => 0.048060010332751
116 => 0.047653700225538
117 => 0.049761637780511
118 => 0.049258561565761
119 => 0.050977502812176
120 => 0.050524847974001
121 => 0.052403792899677
122 => 0.053153354900932
123 => 0.05441198616105
124 => 0.055337840439544
125 => 0.055881519780645
126 => 0.055848879312295
127 => 0.058003207721712
128 => 0.056732875525181
129 => 0.055137038892027
130 => 0.055108175242133
131 => 0.055934681647624
201 => 0.057666812332573
202 => 0.058115928617703
203 => 0.058366923351521
204 => 0.05798251617949
205 => 0.056603661625684
206 => 0.056008279220302
207 => 0.056515562279576
208 => 0.055895198689414
209 => 0.056966120289315
210 => 0.058436724382489
211 => 0.058133050452648
212 => 0.059148186870769
213 => 0.060198746268058
214 => 0.061701093389757
215 => 0.062093862559122
216 => 0.062743095060409
217 => 0.063411368565999
218 => 0.063626000005519
219 => 0.064035798019786
220 => 0.064033638181969
221 => 0.065268592080552
222 => 0.066630784474028
223 => 0.067144980567739
224 => 0.068327346132288
225 => 0.066302586538028
226 => 0.067838389949036
227 => 0.069223723069418
228 => 0.067572071812718
301 => 0.069848488284692
302 => 0.069936876377829
303 => 0.071271431645006
304 => 0.069918604211868
305 => 0.069115299600449
306 => 0.071434409914185
307 => 0.072556554343712
308 => 0.072218555309224
309 => 0.069646365967703
310 => 0.068149241444546
311 => 0.064230977793693
312 => 0.068872330344522
313 => 0.071132997781921
314 => 0.069640511385177
315 => 0.070393234710945
316 => 0.07449984910498
317 => 0.076063381982637
318 => 0.075738178074004
319 => 0.075793132181251
320 => 0.076636786141905
321 => 0.08037801241217
322 => 0.078136182910081
323 => 0.079849977564679
324 => 0.080758968069932
325 => 0.081603289109801
326 => 0.079529903486286
327 => 0.076832459254178
328 => 0.075978065434863
329 => 0.069492113026713
330 => 0.069154491036805
331 => 0.068964973582876
401 => 0.067770092843632
402 => 0.066831243887967
403 => 0.066084636341194
404 => 0.064125315182577
405 => 0.064786528557135
406 => 0.061663779572407
407 => 0.063661603709407
408 => 0.05867762092837
409 => 0.062828429888265
410 => 0.060569333285519
411 => 0.062086255896055
412 => 0.062080963495969
413 => 0.059287828029221
414 => 0.057676805783251
415 => 0.058703411860307
416 => 0.059804015067003
417 => 0.059982584234416
418 => 0.06140954502058
419 => 0.061807779103579
420 => 0.06060111124032
421 => 0.058574338963193
422 => 0.059045111937416
423 => 0.057667265583954
424 => 0.055252642847608
425 => 0.05698686705212
426 => 0.057579007443996
427 => 0.057840530374543
428 => 0.055466026234641
429 => 0.054719905480891
430 => 0.054322677052154
501 => 0.058267820296477
502 => 0.058483944149059
503 => 0.057378223962419
504 => 0.06237618405472
505 => 0.061244991757284
506 => 0.062508810702362
507 => 0.059002394224414
508 => 0.059136344055887
509 => 0.05747635030241
510 => 0.058405835883535
511 => 0.057748905433514
512 => 0.058330742633935
513 => 0.058679493452863
514 => 0.0603392148177
515 => 0.062847381240205
516 => 0.060091307792623
517 => 0.058890447123813
518 => 0.059635454328846
519 => 0.06161950669175
520 => 0.064625447583322
521 => 0.062845870075313
522 => 0.063635616354182
523 => 0.063808140782748
524 => 0.062495946211883
525 => 0.064673830068845
526 => 0.065840975720888
527 => 0.067038225653121
528 => 0.068077764223098
529 => 0.066560017702097
530 => 0.068184224039986
531 => 0.066875400442662
601 => 0.065701250372166
602 => 0.065703031073155
603 => 0.064966469582337
604 => 0.063539288881157
605 => 0.063276094862979
606 => 0.064645263383281
607 => 0.065743206875822
608 => 0.065833638760662
609 => 0.066441516692506
610 => 0.066801252590931
611 => 0.070327153432731
612 => 0.071745299919085
613 => 0.073479382598459
614 => 0.07415490552962
615 => 0.07618798736404
616 => 0.074546108663913
617 => 0.074190877879239
618 => 0.069259286364935
619 => 0.070066834199129
620 => 0.071359796198451
621 => 0.069280606832076
622 => 0.070599373921619
623 => 0.070859726480401
624 => 0.069209956773019
625 => 0.070091170056073
626 => 0.067750928837811
627 => 0.062898392103622
628 => 0.064679232329401
629 => 0.065990530159913
630 => 0.064119146473916
701 => 0.067473529298516
702 => 0.065513968100901
703 => 0.064892881276783
704 => 0.062469800142458
705 => 0.063613401164914
706 => 0.065160137922574
707 => 0.064204434433788
708 => 0.066187662672619
709 => 0.068996442766457
710 => 0.070998146727071
711 => 0.07115181270191
712 => 0.069864851158985
713 => 0.071927215244802
714 => 0.071942237315633
715 => 0.069615882201827
716 => 0.06819100264782
717 => 0.067867267015177
718 => 0.068676022097628
719 => 0.069658000072147
720 => 0.071206305645277
721 => 0.072141914276117
722 => 0.074581485376872
723 => 0.075241563368752
724 => 0.075966788958684
725 => 0.076935913998124
726 => 0.078099597086531
727 => 0.075553524737612
728 => 0.075654684938507
729 => 0.073283817619964
730 => 0.070750205873335
731 => 0.072672901369864
801 => 0.075186569966112
802 => 0.074609931612775
803 => 0.074545048018372
804 => 0.07465416422695
805 => 0.074219397739782
806 => 0.072252965031522
807 => 0.071265434835953
808 => 0.072539600734059
809 => 0.073216763202302
810 => 0.074266983135774
811 => 0.07413752136152
812 => 0.076842775124758
813 => 0.077893954934524
814 => 0.077625018156666
815 => 0.077674508996117
816 => 0.079577619830807
817 => 0.081694270483577
818 => 0.08367679313655
819 => 0.085693500330484
820 => 0.083262281094775
821 => 0.082027857903639
822 => 0.083301467540773
823 => 0.082625672339956
824 => 0.086508992017727
825 => 0.086777864646697
826 => 0.090660903516254
827 => 0.094346369787132
828 => 0.09203159445438
829 => 0.094214323333394
830 => 0.096575122576545
831 => 0.10112948734245
901 => 0.09959573751378
902 => 0.09842090918194
903 => 0.09731070208508
904 => 0.099620866813232
905 => 0.10259285683022
906 => 0.10323299501451
907 => 0.10427026342467
908 => 0.10317970252253
909 => 0.10449316300781
910 => 0.10913025568464
911 => 0.10787727231061
912 => 0.10609783449236
913 => 0.1097583738096
914 => 0.11108310875853
915 => 0.12038079239914
916 => 0.13211950206357
917 => 0.12725959918198
918 => 0.12424290063528
919 => 0.1249518963508
920 => 0.12923847573985
921 => 0.13061518899039
922 => 0.12687280779392
923 => 0.12819468009984
924 => 0.13547832646909
925 => 0.13938576905884
926 => 0.13407893718241
927 => 0.11943759850733
928 => 0.10593761558608
929 => 0.10951841896895
930 => 0.1091124669906
1001 => 0.11693783636097
1002 => 0.10784738907153
1003 => 0.10800044889013
1004 => 0.11598763861187
1005 => 0.11385679332921
1006 => 0.11040509686934
1007 => 0.10596281679012
1008 => 0.097750851202493
1009 => 0.090477284273934
1010 => 0.10474242402326
1011 => 0.1041272852578
1012 => 0.10323647316695
1013 => 0.1052188790792
1014 => 0.11484487947335
1015 => 0.11462296900794
1016 => 0.11321128784673
1017 => 0.11428203556553
1018 => 0.11021738961725
1019 => 0.11126494142839
1020 => 0.10593547711981
1021 => 0.10834461756538
1022 => 0.11039769107897
1023 => 0.1108098759831
1024 => 0.11173854961878
1025 => 0.10380313508052
1026 => 0.10736590323667
1027 => 0.10945869574217
1028 => 0.10000338306585
1029 => 0.10927179461171
1030 => 0.10366499716811
1031 => 0.10176196590448
1101 => 0.10432414679565
1102 => 0.10332566241056
1103 => 0.10246722416923
1104 => 0.10198820088073
1105 => 0.10386958374962
1106 => 0.10378181499004
1107 => 0.10070350745586
1108 => 0.09668798076538
1109 => 0.098035723327875
1110 => 0.097546075819767
1111 => 0.095771530084597
1112 => 0.096967359650632
1113 => 0.091701531437305
1114 => 0.08264194769021
1115 => 0.088626986216096
1116 => 0.088396568743319
1117 => 0.088280381804944
1118 => 0.092777972842832
1119 => 0.092345633241619
1120 => 0.091560932631935
1121 => 0.09575711844253
1122 => 0.094225454174999
1123 => 0.098945682542041
1124 => 0.1020547302298
1125 => 0.10126617516903
1126 => 0.1041902495467
1127 => 0.098066772594457
1128 => 0.10010074600674
1129 => 0.10051994510805
1130 => 0.095705338160984
1201 => 0.092416369347212
1202 => 0.092197032624322
1203 => 0.086494413949062
1204 => 0.089540706815456
1205 => 0.09222131847372
1206 => 0.090937513513279
1207 => 0.090531099215386
1208 => 0.092607381722815
1209 => 0.0927687266558
1210 => 0.089090045085187
1211 => 0.089854959472412
1212 => 0.093044779623577
1213 => 0.089774584188838
1214 => 0.083421128642533
1215 => 0.081845383823654
1216 => 0.081635150418076
1217 => 0.077361605495379
1218 => 0.081950682627169
1219 => 0.079947427479521
1220 => 0.086275686488257
1221 => 0.082661018881601
1222 => 0.082505197785623
1223 => 0.082269651345066
1224 => 0.078591234692183
1225 => 0.079396574163591
1226 => 0.082073645223215
1227 => 0.083028854336653
1228 => 0.082929218200324
1229 => 0.082060526114552
1230 => 0.082458208902995
1231 => 0.081177134079551
]
'min_raw' => 0.044823382933433
'max_raw' => 0.13938576905884
'avg_raw' => 0.092104575996136
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.044823'
'max' => '$0.139385'
'avg' => '$0.0921045'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.025534405798785
'max_diff' => 0.087056632823145
'year' => 2033
]
8 => [
'items' => [
101 => 0.080724759896126
102 => 0.079296942537916
103 => 0.077198445465959
104 => 0.077490254354645
105 => 0.07333258255347
106 => 0.071067262291846
107 => 0.07044025149987
108 => 0.069601786464254
109 => 0.070534958356713
110 => 0.073320804391641
111 => 0.069960483023311
112 => 0.064199447736447
113 => 0.064545695773514
114 => 0.065323612310838
115 => 0.063873969989967
116 => 0.062502005192519
117 => 0.063694817272877
118 => 0.061253790675447
119 => 0.065618598712995
120 => 0.065500542887813
121 => 0.067127473406293
122 => 0.068144826447473
123 => 0.06580015705951
124 => 0.065210479049098
125 => 0.0655463864432
126 => 0.059994585461657
127 => 0.066673772821991
128 => 0.066731534711643
129 => 0.066236942344186
130 => 0.06979340341679
131 => 0.07729864556801
201 => 0.074474871573055
202 => 0.073381420933188
203 => 0.071302770467492
204 => 0.074072448794979
205 => 0.073859780713141
206 => 0.072898014995092
207 => 0.072316336087925
208 => 0.07338809730963
209 => 0.072183533011899
210 => 0.071967160164814
211 => 0.070656176127454
212 => 0.07018821447209
213 => 0.069841754292548
214 => 0.069460335677347
215 => 0.070301650098884
216 => 0.068395120935553
217 => 0.066096033663934
218 => 0.065904889433768
219 => 0.066432655458829
220 => 0.066199158280299
221 => 0.06590377153911
222 => 0.065339797806388
223 => 0.065172478847282
224 => 0.065716184292759
225 => 0.065102372544812
226 => 0.066008085214964
227 => 0.06576178148405
228 => 0.064385948865103
301 => 0.062671152023419
302 => 0.06265588673462
303 => 0.062286436567909
304 => 0.061815886233399
305 => 0.061684989895072
306 => 0.063594361966493
307 => 0.067546705011638
308 => 0.066770765500322
309 => 0.067331461318727
310 => 0.070089529804232
311 => 0.070966236837761
312 => 0.070343970951306
313 => 0.069492175026238
314 => 0.069529649724004
315 => 0.072440494256121
316 => 0.072622040059075
317 => 0.073080747734243
318 => 0.073670316727607
319 => 0.070444377100244
320 => 0.069377708257659
321 => 0.068872261383508
322 => 0.06731568064368
323 => 0.068994319520438
324 => 0.068016248533434
325 => 0.068148223725244
326 => 0.068062274708444
327 => 0.068109208683464
328 => 0.065617378660194
329 => 0.066525270553943
330 => 0.065015724192056
331 => 0.062994611068021
401 => 0.062987835588136
402 => 0.063482500161935
403 => 0.063188254317212
404 => 0.062396446314818
405 => 0.062508918904329
406 => 0.061523540670986
407 => 0.062628561662706
408 => 0.062660249710794
409 => 0.062234756438081
410 => 0.063937193739338
411 => 0.06463468369072
412 => 0.064354614903671
413 => 0.064615033318014
414 => 0.066803009290174
415 => 0.067159744841721
416 => 0.06731818320909
417 => 0.067105896785877
418 => 0.064655025502261
419 => 0.064763732065599
420 => 0.063966115431764
421 => 0.063292213426944
422 => 0.063319165972987
423 => 0.063665639204593
424 => 0.065178708127402
425 => 0.06836287247517
426 => 0.068483709184574
427 => 0.068630166801427
428 => 0.068034450069985
429 => 0.06785477620354
430 => 0.06809181241114
501 => 0.069287617124754
502 => 0.072363551505981
503 => 0.071276310860906
504 => 0.07039236729255
505 => 0.071167824111473
506 => 0.071048448612431
507 => 0.070040799265263
508 => 0.070012517904169
509 => 0.06807851664197
510 => 0.067363560410414
511 => 0.066766089469778
512 => 0.066113666799979
513 => 0.065726888771915
514 => 0.06632115561049
515 => 0.066457071467631
516 => 0.06515769663908
517 => 0.064980596651303
518 => 0.066041694185252
519 => 0.065574744722264
520 => 0.066055013824737
521 => 0.066166440376182
522 => 0.066148498135028
523 => 0.065660949266865
524 => 0.065971698376516
525 => 0.065236684093424
526 => 0.064437466456137
527 => 0.063927615396566
528 => 0.063482702725161
529 => 0.063729566133733
530 => 0.062849543157652
531 => 0.062568006096241
601 => 0.065866423570242
602 => 0.068303000022251
603 => 0.068267571235648
604 => 0.068051907608751
605 => 0.06773147520495
606 => 0.069264175498566
607 => 0.06873021336358
608 => 0.069118715430811
609 => 0.069217605512302
610 => 0.069516916005188
611 => 0.069623893779789
612 => 0.069300532644104
613 => 0.06821529317751
614 => 0.065510979608231
615 => 0.064252114341576
616 => 0.06383666783552
617 => 0.06385176852697
618 => 0.063435224044328
619 => 0.06355791506268
620 => 0.063392557115131
621 => 0.063079409166858
622 => 0.063710230130355
623 => 0.063782926369894
624 => 0.063635685219264
625 => 0.063670365840445
626 => 0.062451272000752
627 => 0.062543957057651
628 => 0.062027874882989
629 => 0.061931115696703
630 => 0.060626504899573
701 => 0.058315197766097
702 => 0.059595886282054
703 => 0.058048994646834
704 => 0.057463163345343
705 => 0.060236397611142
706 => 0.059958041808401
707 => 0.059481617672467
708 => 0.058776887079931
709 => 0.05851549564798
710 => 0.056927364053922
711 => 0.056833528766992
712 => 0.057620649668168
713 => 0.057257420455452
714 => 0.056747309075139
715 => 0.054899737364805
716 => 0.052822455052419
717 => 0.052885155148098
718 => 0.053545900002457
719 => 0.055467104780089
720 => 0.054716456836288
721 => 0.054171853140368
722 => 0.054069865238849
723 => 0.055346457352492
724 => 0.057153102647612
725 => 0.058000740198673
726 => 0.057160757128707
727 => 0.056195829805831
728 => 0.056254560460932
729 => 0.05664526919752
730 => 0.056686327161411
731 => 0.05605825867035
801 => 0.056235056271652
802 => 0.055966484548563
803 => 0.054318260379715
804 => 0.054288449231075
805 => 0.053883948438835
806 => 0.053871700315605
807 => 0.053183543560552
808 => 0.053087265673517
809 => 0.051720888668231
810 => 0.052620242150881
811 => 0.052017003052896
812 => 0.051107779442516
813 => 0.050951028949379
814 => 0.050946316840273
815 => 0.051879886189455
816 => 0.052609332849485
817 => 0.052027496655275
818 => 0.051895023832274
819 => 0.053309487004757
820 => 0.053129483672941
821 => 0.052973601948484
822 => 0.056991337376893
823 => 0.053810986277503
824 => 0.052424171670074
825 => 0.05070772524443
826 => 0.051266608855693
827 => 0.051384373844295
828 => 0.047256629603344
829 => 0.045582004278868
830 => 0.045007335974432
831 => 0.044676606240611
901 => 0.044827323933356
902 => 0.043319964727368
903 => 0.044332935043212
904 => 0.043027689384728
905 => 0.042808860702447
906 => 0.045142801628725
907 => 0.045467555873932
908 => 0.044082053370645
909 => 0.044971770270235
910 => 0.044649146554454
911 => 0.043050064075261
912 => 0.04298899088661
913 => 0.042186627509018
914 => 0.040931084191251
915 => 0.040357267204307
916 => 0.040058418335399
917 => 0.040181729203159
918 => 0.040119379455044
919 => 0.039712505173605
920 => 0.040142701012587
921 => 0.039043728413182
922 => 0.038606108669074
923 => 0.038408445983362
924 => 0.037433044546888
925 => 0.038985341995306
926 => 0.039291164147973
927 => 0.039597588864753
928 => 0.042264806819289
929 => 0.04213156014776
930 => 0.04333604516462
1001 => 0.04328924109177
1002 => 0.042945702453598
1003 => 0.041496369448513
1004 => 0.042074047752463
1005 => 0.040296043724046
1006 => 0.041628245234658
1007 => 0.04102028409928
1008 => 0.041422692963233
1009 => 0.040699125542101
1010 => 0.041099577628322
1011 => 0.039363685925624
1012 => 0.0377427346783
1013 => 0.03839505277874
1014 => 0.039104197155542
1015 => 0.040641802851074
1016 => 0.039726017583787
1017 => 0.040055368595578
1018 => 0.03895209783877
1019 => 0.036675735133764
1020 => 0.036688619099462
1021 => 0.036338450290554
1022 => 0.036035853314174
1023 => 0.039831206538087
1024 => 0.039359194369037
1025 => 0.038607104753083
1026 => 0.039613806590891
1027 => 0.039879994535314
1028 => 0.039887572531876
1029 => 0.040622036206005
1030 => 0.041014019600548
1031 => 0.04108310837279
1101 => 0.04223880283317
1102 => 0.042626176372312
1103 => 0.044221713156879
1104 => 0.040980762548157
1105 => 0.040914017303137
1106 => 0.039627972950237
1107 => 0.038812343290071
1108 => 0.03968381981087
1109 => 0.04045582903989
1110 => 0.03965196142895
1111 => 0.039756929568367
1112 => 0.038677802979077
1113 => 0.039063539957123
1114 => 0.039395788606999
1115 => 0.03921234043121
1116 => 0.038937709633063
1117 => 0.040392533086988
1118 => 0.040310446246218
1119 => 0.041665211292759
1120 => 0.042721347526716
1121 => 0.0446141324649
1122 => 0.042638912708794
1123 => 0.042566927850094
1124 => 0.043270591390621
1125 => 0.04262606864509
1126 => 0.043033384772096
1127 => 0.044548507539756
1128 => 0.044580519696338
1129 => 0.044044274828264
1130 => 0.044011644279308
1201 => 0.044114635972098
1202 => 0.044717861533653
1203 => 0.044507075987196
1204 => 0.044751002357993
1205 => 0.045056036019808
1206 => 0.046317784576666
1207 => 0.046621987882095
1208 => 0.045882931561233
1209 => 0.045949660072144
1210 => 0.045673232720592
1211 => 0.045406207362618
1212 => 0.046006441371423
1213 => 0.047103380820143
1214 => 0.047096556816764
1215 => 0.047351025447411
1216 => 0.047509557296172
1217 => 0.046829022548883
1218 => 0.046386019452354
1219 => 0.046555895028583
1220 => 0.046827529774381
1221 => 0.046467807541522
1222 => 0.044247435280767
1223 => 0.044920954386751
1224 => 0.044808847874114
1225 => 0.0446491945675
1226 => 0.045326423236736
1227 => 0.045261102879478
1228 => 0.043304504580009
1229 => 0.043429759654973
1230 => 0.043312121755975
1231 => 0.043692233874088
]
'min_raw' => 0.036035853314174
'max_raw' => 0.080724759896126
'avg_raw' => 0.05838030660515
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.036035'
'max' => '$0.080724'
'avg' => '$0.05838'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0087875296192584
'max_diff' => -0.058661009162714
'year' => 2034
]
9 => [
'items' => [
101 => 0.04260554134329
102 => 0.042939800646778
103 => 0.043149444948438
104 => 0.04327292705268
105 => 0.043719029085673
106 => 0.043666684160992
107 => 0.043715775251659
108 => 0.044377226800017
109 => 0.04772262174885
110 => 0.047904704214717
111 => 0.047008063559254
112 => 0.047366253815656
113 => 0.046678606850962
114 => 0.047140228865196
115 => 0.047456058923406
116 => 0.046028883620979
117 => 0.045944375561861
118 => 0.045253890433533
119 => 0.04562491803042
120 => 0.045034586445945
121 => 0.045179433167853
122 => 0.044774429105888
123 => 0.04550335578192
124 => 0.046318409069478
125 => 0.046524323717345
126 => 0.045982650930637
127 => 0.045590444135085
128 => 0.044901858203044
129 => 0.046046991954165
130 => 0.046381863960312
131 => 0.046045233014077
201 => 0.045967228268302
202 => 0.045819409416012
203 => 0.045998588736601
204 => 0.046380040175449
205 => 0.04620015472119
206 => 0.046318972232902
207 => 0.045866162402343
208 => 0.046829247834202
209 => 0.048358859279125
210 => 0.048363777230037
211 => 0.048183890806128
212 => 0.048110285157172
213 => 0.048294859544523
214 => 0.048394983578023
215 => 0.048991863301563
216 => 0.049632339025658
217 => 0.052621159768559
218 => 0.051781910863912
219 => 0.054433770432755
220 => 0.056531047050841
221 => 0.057159928605814
222 => 0.056581387166403
223 => 0.054602228154372
224 => 0.054505121171165
225 => 0.057462820314521
226 => 0.05662713483532
227 => 0.056527732706698
228 => 0.055470262000709
301 => 0.056095358158244
302 => 0.055958640458983
303 => 0.055742824882243
304 => 0.056935464806242
305 => 0.05916798027627
306 => 0.058820021803869
307 => 0.05856028694555
308 => 0.057422204404079
309 => 0.058107584293983
310 => 0.057863533642775
311 => 0.058912130118734
312 => 0.058290964795632
313 => 0.056620803695896
314 => 0.056886782355952
315 => 0.056846580216559
316 => 0.057673937396506
317 => 0.057425585307353
318 => 0.056798085485243
319 => 0.059160349781099
320 => 0.05900695747733
321 => 0.059224432693711
322 => 0.059320172009607
323 => 0.060758040658728
324 => 0.061347089437608
325 => 0.061480813823164
326 => 0.062040364604433
327 => 0.061466891689987
328 => 0.063761192227028
329 => 0.065286768208012
330 => 0.067058803215348
331 => 0.069648222639172
401 => 0.070621868295999
402 => 0.070445987922858
403 => 0.072409256177366
404 => 0.075937205589717
405 => 0.071159087367028
406 => 0.076190457457697
407 => 0.074597583776952
408 => 0.07082090893448
409 => 0.070577735598697
410 => 0.073135343650115
411 => 0.078807872147509
412 => 0.077386968096197
413 => 0.078810196237511
414 => 0.077149925011455
415 => 0.077067478551216
416 => 0.078729560569857
417 => 0.082613105801785
418 => 0.080768179034612
419 => 0.078123024119267
420 => 0.080076165345589
421 => 0.078384173660662
422 => 0.074571642835867
423 => 0.077385881557648
424 => 0.075504080269297
425 => 0.076053289927297
426 => 0.080008556338593
427 => 0.079532648219649
428 => 0.080148517393468
429 => 0.07906152442178
430 => 0.078046101583165
501 => 0.0761507394486
502 => 0.07558961616078
503 => 0.075744690450432
504 => 0.075589539313663
505 => 0.074529101618651
506 => 0.074300100199379
507 => 0.073918421134475
508 => 0.074036719436475
509 => 0.073319051130307
510 => 0.074673439501883
511 => 0.074924825918477
512 => 0.075910436828693
513 => 0.076012766223031
514 => 0.078757678578689
515 => 0.077245826979571
516 => 0.078260107559247
517 => 0.078169380757421
518 => 0.070902760930196
519 => 0.071904037028458
520 => 0.073461708419605
521 => 0.072759979569267
522 => 0.071767899154152
523 => 0.07096674102696
524 => 0.069752904541639
525 => 0.071461356085063
526 => 0.073707788191099
527 => 0.076069739448417
528 => 0.078907469122908
529 => 0.078274120894377
530 => 0.076016690066036
531 => 0.076117956763941
601 => 0.076743947643414
602 => 0.075933232577228
603 => 0.075694136877172
604 => 0.07671109956579
605 => 0.076718102828914
606 => 0.075785277167079
607 => 0.074748612149243
608 => 0.074744268484966
609 => 0.074559803958038
610 => 0.077182740841005
611 => 0.078625090917806
612 => 0.078790454029648
613 => 0.078613960662835
614 => 0.07868188595495
615 => 0.077842614225275
616 => 0.079760940521012
617 => 0.081521386432789
618 => 0.081049549321992
619 => 0.080342198417309
620 => 0.079778759351093
621 => 0.080916820984342
622 => 0.080866144891289
623 => 0.081506010473529
624 => 0.081476982474676
625 => 0.081261819745931
626 => 0.08104955700613
627 => 0.081891154776346
628 => 0.081648788134171
629 => 0.081406045029656
630 => 0.080919186571443
701 => 0.080985358721777
702 => 0.080278129951201
703 => 0.079950933561345
704 => 0.075030684911834
705 => 0.073715833698922
706 => 0.074129512656768
707 => 0.074265706510861
708 => 0.073693481577974
709 => 0.074513905139209
710 => 0.074386042996234
711 => 0.074883479797698
712 => 0.074572702880339
713 => 0.074585457273431
714 => 0.07549938592276
715 => 0.07576470329779
716 => 0.075629760739476
717 => 0.075724269881759
718 => 0.077902193175859
719 => 0.077592562129504
720 => 0.077428076807304
721 => 0.077473640365666
722 => 0.078030146462511
723 => 0.078185937785521
724 => 0.077525839002665
725 => 0.077837145404646
726 => 0.079162648553613
727 => 0.079626499638771
728 => 0.081106889641443
729 => 0.080477993656474
730 => 0.081632359454865
731 => 0.085180486366819
801 => 0.088014975655795
802 => 0.085408262165428
803 => 0.090613440774599
804 => 0.094666418960362
805 => 0.094510858907004
806 => 0.093804128413242
807 => 0.08918992050275
808 => 0.084943857589551
809 => 0.088495869513797
810 => 0.088504924322669
811 => 0.088199803348253
812 => 0.086304723181235
813 => 0.088133858666265
814 => 0.088279048798623
815 => 0.088197780933675
816 => 0.086744827412873
817 => 0.084526435937304
818 => 0.084959904321552
819 => 0.085669934377464
820 => 0.084325699353835
821 => 0.083896134813714
822 => 0.084694777021797
823 => 0.087268168619956
824 => 0.086781683844966
825 => 0.086768979761452
826 => 0.088850367930507
827 => 0.087360543193144
828 => 0.084965371746035
829 => 0.08436055936721
830 => 0.082213882872818
831 => 0.083696599973694
901 => 0.083749960322524
902 => 0.082937891319376
903 => 0.085031266670073
904 => 0.085011975847684
905 => 0.086999324185369
906 => 0.090798387793074
907 => 0.089674817743709
908 => 0.088368228020372
909 => 0.088510290551102
910 => 0.090068365873007
911 => 0.089126317965983
912 => 0.08946508496154
913 => 0.090067853108586
914 => 0.09043151809759
915 => 0.088457964755671
916 => 0.087997835065701
917 => 0.087056571203598
918 => 0.086811013031497
919 => 0.087577652807065
920 => 0.087375670311986
921 => 0.083745475591826
922 => 0.083366100045357
923 => 0.083377734951744
924 => 0.082423777101822
925 => 0.080968762404575
926 => 0.084792454154528
927 => 0.084485358194475
928 => 0.084146348021916
929 => 0.084187874833689
930 => 0.085847609825406
1001 => 0.084884879711584
1002 => 0.087444455507543
1003 => 0.086918283671785
1004 => 0.086378617513868
1005 => 0.086304019212211
1006 => 0.086096293783566
1007 => 0.085383925997514
1008 => 0.084523699089189
1009 => 0.083955702772735
1010 => 0.07744469792619
1011 => 0.078653102552936
1012 => 0.08004326192646
1013 => 0.080523139371486
1014 => 0.07970227579526
1015 => 0.085416338694726
1016 => 0.086460353048538
1017 => 0.083297965471469
1018 => 0.082706411875233
1019 => 0.085455120850012
1020 => 0.083797313322214
1021 => 0.084543823950473
1022 => 0.08293027629166
1023 => 0.086208880563014
1024 => 0.086183903091631
1025 => 0.084908451979438
1026 => 0.085986454525551
1027 => 0.085799125054824
1028 => 0.084359143890456
1029 => 0.086254530534372
1030 => 0.086255470622501
1031 => 0.085027876657714
1101 => 0.083594315661717
1102 => 0.083338028814832
1103 => 0.083144951102998
1104 => 0.084496338669241
1105 => 0.085707988535455
1106 => 0.087962568543004
1107 => 0.088529423524401
1108 => 0.090741896254469
1109 => 0.089424476467056
1110 => 0.090008471595373
1111 => 0.090642480918317
1112 => 0.090946448302657
1113 => 0.090451149761664
1114 => 0.093888030601566
1115 => 0.094178208647762
1116 => 0.094275502836621
1117 => 0.093116605954798
1118 => 0.094145977629049
1119 => 0.093664368711874
1120 => 0.094917381319554
1121 => 0.095113869695706
1122 => 0.094947451031382
1123 => 0.095009819543331
1124 => 0.092077048053801
1125 => 0.091924968380467
1126 => 0.089851351243474
1127 => 0.090696365554202
1128 => 0.089116651802885
1129 => 0.089617595306282
1130 => 0.089838406429415
1201 => 0.089723067229611
1202 => 0.090744141395482
1203 => 0.089876019762821
1204 => 0.08758490404182
1205 => 0.085293164107873
1206 => 0.085264393179813
1207 => 0.084661018507775
1208 => 0.084224889133474
1209 => 0.084308903123486
1210 => 0.084604979382401
1211 => 0.084207680643069
1212 => 0.084292464472663
1213 => 0.085700440955623
1214 => 0.085982800598052
1215 => 0.085023232208045
1216 => 0.081170426657108
1217 => 0.080224938510877
1218 => 0.080904536640543
1219 => 0.080579732506288
1220 => 0.065034133122841
1221 => 0.068686341106847
1222 => 0.066516323140015
1223 => 0.067516367256857
1224 => 0.06530134083615
1225 => 0.066358467543593
1226 => 0.066163254840814
1227 => 0.072035897202405
1228 => 0.071944203969484
1229 => 0.071988092667785
1230 => 0.069893170746471
1231 => 0.073230438250454
]
'min_raw' => 0.04260554134329
'max_raw' => 0.095113869695706
'avg_raw' => 0.068859705519498
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.0426055'
'max' => '$0.095113'
'avg' => '$0.068859'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0065696880291158
'max_diff' => 0.01438910979958
'year' => 2035
]
10 => [
'items' => [
101 => 0.074874496227173
102 => 0.074570224850869
103 => 0.074646803401015
104 => 0.073330930192625
105 => 0.072000833196799
106 => 0.070525550927968
107 => 0.073266443033056
108 => 0.072961702619559
109 => 0.073660667485982
110 => 0.075438331939146
111 => 0.075700099782565
112 => 0.076051918418708
113 => 0.075925816481806
114 => 0.078930076217949
115 => 0.078566240541158
116 => 0.079442979839556
117 => 0.077639460584381
118 => 0.075598607355531
119 => 0.075986506833817
120 => 0.075949148994767
121 => 0.075473540826336
122 => 0.075044183037753
123 => 0.074329423290571
124 => 0.076591028895195
125 => 0.076499211837824
126 => 0.077985623271006
127 => 0.077722885611961
128 => 0.075968259222046
129 => 0.076030926046824
130 => 0.076452390560107
131 => 0.077911084052778
201 => 0.078344123596828
202 => 0.078143522426382
203 => 0.078618330517427
204 => 0.078993599473105
205 => 0.078665458520518
206 => 0.083311242421115
207 => 0.081381989042664
208 => 0.082322293715662
209 => 0.082546550839576
210 => 0.081972120932291
211 => 0.082096694210388
212 => 0.082285388782519
213 => 0.083431105274313
214 => 0.086437796864517
215 => 0.087769440102577
216 => 0.0917757544864
217 => 0.087658865669025
218 => 0.087414586523981
219 => 0.088136244723612
220 => 0.090488375378362
221 => 0.092394556349639
222 => 0.09302694654803
223 => 0.093110527352372
224 => 0.094296933405059
225 => 0.094976959229296
226 => 0.094152872504685
227 => 0.093454545291055
228 => 0.090953223891394
229 => 0.091242758654277
301 => 0.09323736605273
302 => 0.096054866484834
303 => 0.098472574966537
304 => 0.097625977721892
305 => 0.10408491709402
306 => 0.10472529455036
307 => 0.10463681509178
308 => 0.10609569023828
309 => 0.10320012016724
310 => 0.10196220786284
311 => 0.093605531560992
312 => 0.095953416737415
313 => 0.099366205727806
314 => 0.098914510307626
315 => 0.096436051718692
316 => 0.098470694833448
317 => 0.097797978190537
318 => 0.097267378663234
319 => 0.099698157959589
320 => 0.097025416272337
321 => 0.099339543084935
322 => 0.096371651511201
323 => 0.097629844906794
324 => 0.096915633483488
325 => 0.097377815804827
326 => 0.094675907398219
327 => 0.096133791589306
328 => 0.094615254622791
329 => 0.09461453463855
330 => 0.094581012850849
331 => 0.096367564857729
401 => 0.096425824254534
402 => 0.09510555962212
403 => 0.094915288862179
404 => 0.095618819586622
405 => 0.094795169363288
406 => 0.095180550118793
407 => 0.094806842153778
408 => 0.09472271261936
409 => 0.09405235417565
410 => 0.093763545326211
411 => 0.093876794717763
412 => 0.093490216160332
413 => 0.093257288596322
414 => 0.094534677695666
415 => 0.093852220229616
416 => 0.094430081301176
417 => 0.093771535678252
418 => 0.091488729634527
419 => 0.090175863738545
420 => 0.085863854738181
421 => 0.087086735141654
422 => 0.087897506114317
423 => 0.087629546312689
424 => 0.088205227653265
425 => 0.088240569812086
426 => 0.088053409939888
427 => 0.087836702784547
428 => 0.087731221725985
429 => 0.0885173911175
430 => 0.088973788910519
501 => 0.08797887782814
502 => 0.087745784081824
503 => 0.088751694116655
504 => 0.089365298656807
505 => 0.093895809826678
506 => 0.093560174925855
507 => 0.094402552661897
508 => 0.094307713856158
509 => 0.095190659924827
510 => 0.09663390358625
511 => 0.093699385685303
512 => 0.094208716524913
513 => 0.094083840365207
514 => 0.095447205532586
515 => 0.095451461809822
516 => 0.094634056286837
517 => 0.095077185081737
518 => 0.094829842745027
519 => 0.095276823777785
520 => 0.093555692317128
521 => 0.095651844651547
522 => 0.09684022795209
523 => 0.096856728655371
524 => 0.097420012908236
525 => 0.09799234233237
526 => 0.099090878822608
527 => 0.097961704745889
528 => 0.095930430504752
529 => 0.096077081943987
530 => 0.094886146599623
531 => 0.094906166437921
601 => 0.094799298972099
602 => 0.095120016281639
603 => 0.093626071731073
604 => 0.093976697531037
605 => 0.093485819357825
606 => 0.094207649451631
607 => 0.093431079593485
608 => 0.094083780146142
609 => 0.094365464067302
610 => 0.095404883800606
611 => 0.09327755645375
612 => 0.088939791986111
613 => 0.08985164266752
614 => 0.088502943885392
615 => 0.088627771092536
616 => 0.08887994191707
617 => 0.088062573769595
618 => 0.088218501853903
619 => 0.088212931005482
620 => 0.08816492444341
621 => 0.087952295419996
622 => 0.087643941268676
623 => 0.088872329301133
624 => 0.08908105636456
625 => 0.089545030770744
626 => 0.090925503886702
627 => 0.09078756206862
628 => 0.091012550897062
629 => 0.09052140154783
630 => 0.088650554102196
701 => 0.088752150119413
702 => 0.087485246156757
703 => 0.08951263318803
704 => 0.089032521178824
705 => 0.088722989843175
706 => 0.088638531350455
707 => 0.090022426392254
708 => 0.090436509478657
709 => 0.090178480687293
710 => 0.089649256108302
711 => 0.090665523751166
712 => 0.090937434099506
713 => 0.090998304798832
714 => 0.092798936211993
715 => 0.091098940092308
716 => 0.091508146054824
717 => 0.094700654161384
718 => 0.091805489844739
719 => 0.093339122953134
720 => 0.09326405959312
721 => 0.09404861439606
722 => 0.09319970319984
723 => 0.093210226471528
724 => 0.093906857986193
725 => 0.092928564662002
726 => 0.092686325477162
727 => 0.092351673778255
728 => 0.09308237351983
729 => 0.093520394968197
730 => 0.097050526150733
731 => 0.099331151888191
801 => 0.099232143910205
802 => 0.10013689149382
803 => 0.099729294420866
804 => 0.098413055953608
805 => 0.10065971451904
806 => 0.099948777744748
807 => 0.10000738650863
808 => 0.10000520508751
809 => 0.10047791589124
810 => 0.10014295696349
811 => 0.099482718534064
812 => 0.099921015615555
813 => 0.10122260125351
814 => 0.10526276301125
815 => 0.1075236910559
816 => 0.10512665230406
817 => 0.10678009753745
818 => 0.10578861958019
819 => 0.10560843854144
820 => 0.10664692433666
821 => 0.10768722786378
822 => 0.10762096502646
823 => 0.10686575808595
824 => 0.10643916084791
825 => 0.10966949805485
826 => 0.11204955548156
827 => 0.11188725152116
828 => 0.11260360841827
829 => 0.11470685442425
830 => 0.1148991488803
831 => 0.11487492419868
901 => 0.11439830232551
902 => 0.1164692211594
903 => 0.11819681808499
904 => 0.1142879781328
905 => 0.11577641321612
906 => 0.11644461967941
907 => 0.11742574501544
908 => 0.11908106791302
909 => 0.12087918763251
910 => 0.12113346147622
911 => 0.12095304201598
912 => 0.11976713372493
913 => 0.12173465777802
914 => 0.1228871872242
915 => 0.12357349213424
916 => 0.12531384719584
917 => 0.11644874629504
918 => 0.11017358725335
919 => 0.10919363055459
920 => 0.11118641103641
921 => 0.11171189135733
922 => 0.11150007089886
923 => 0.10443680888494
924 => 0.10915644394187
925 => 0.11423437442493
926 => 0.11442943841531
927 => 0.11697155658965
928 => 0.11779937447216
929 => 0.11984611280555
930 => 0.11971808876553
1001 => 0.12021643697899
1002 => 0.1201018753549
1003 => 0.12389302712591
1004 => 0.12807523052081
1005 => 0.12793041411584
1006 => 0.12732917289623
1007 => 0.1282221186342
1008 => 0.1325386007299
1009 => 0.13214120822874
1010 => 0.1325272411938
1011 => 0.13761661685089
1012 => 0.14423352916036
1013 => 0.14115930906548
1014 => 0.14782948208836
1015 => 0.15202800243559
1016 => 0.15928890924101
1017 => 0.15837980794826
1018 => 0.16120642568461
1019 => 0.15675232689905
1020 => 0.14652481576552
1021 => 0.1449062729793
1022 => 0.14814663662535
1023 => 0.15611275445909
1024 => 0.14789575522576
1025 => 0.14955804346882
1026 => 0.14907930434299
1027 => 0.14905379436948
1028 => 0.15002740630161
1029 => 0.14861513141387
1030 => 0.14286126945782
1031 => 0.14549823048456
1101 => 0.14447997319486
1102 => 0.14560980557389
1103 => 0.15170704494516
1104 => 0.14901131007909
1105 => 0.1461715723814
1106 => 0.14973323364255
1107 => 0.15426845234758
1108 => 0.15398464651159
1109 => 0.15343394456813
1110 => 0.15653822258958
1111 => 0.16166558041289
1112 => 0.16305148462913
1113 => 0.164074530788
1114 => 0.16421559156881
1115 => 0.16566860527985
1116 => 0.15785538434896
1117 => 0.17025516662402
1118 => 0.17239626648585
1119 => 0.17199382845133
1120 => 0.1743735708365
1121 => 0.17367339025854
1122 => 0.17265893845605
1123 => 0.17643133632227
1124 => 0.17210658658546
1125 => 0.16596814880492
1126 => 0.16260048043398
1127 => 0.16703529780689
1128 => 0.16974348602273
1129 => 0.17153342616028
1130 => 0.17207506096439
1201 => 0.15846190244844
1202 => 0.15112516502873
1203 => 0.1558279295989
1204 => 0.16156562694198
1205 => 0.15782351115052
1206 => 0.15797019500478
1207 => 0.15263492129689
1208 => 0.16203768027964
1209 => 0.1606677773855
1210 => 0.1677748360236
1211 => 0.16607867944191
1212 => 0.17187420986684
1213 => 0.17034805247658
1214 => 0.17668304647724
1215 => 0.17921024709722
1216 => 0.18345381026554
1217 => 0.18657539260656
1218 => 0.18840844546357
1219 => 0.18829839584564
1220 => 0.19556186448839
1221 => 0.19127885079603
1222 => 0.18589837616959
1223 => 0.18580106035878
1224 => 0.18858768440973
1225 => 0.19442768394753
1226 => 0.19594191085915
1227 => 0.19678815712811
1228 => 0.19549210150915
1229 => 0.19084319711245
1230 => 0.18883582376443
1231 => 0.19054616401614
]
'min_raw' => 0.070525550927968
'max_raw' => 0.19678815712811
'avg_raw' => 0.13365685402804
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.070525'
'max' => '$0.196788'
'avg' => '$0.133656'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.027920009584678
'max_diff' => 0.1016742874324
'year' => 2036
]
11 => [
'items' => [
101 => 0.18845456485951
102 => 0.19206525180293
103 => 0.19702349617737
104 => 0.19599963832107
105 => 0.19942224162933
106 => 0.20296427598501
107 => 0.20802954419634
108 => 0.20935379287312
109 => 0.21154272557918
110 => 0.21379585636064
111 => 0.21451950124407
112 => 0.21590116386036
113 => 0.21589388181636
114 => 0.22005761510716
115 => 0.224650341867
116 => 0.22638398989697
117 => 0.23037041794798
118 => 0.22354379961173
119 => 0.22872186803831
120 => 0.23339261537455
121 => 0.22782395784798
122 => 0.23549905491756
123 => 0.23579706154463
124 => 0.24029660780359
125 => 0.23573545566137
126 => 0.23302705807904
127 => 0.24084610041691
128 => 0.24462948870668
129 => 0.24348990136357
130 => 0.2348175854141
131 => 0.22976992555838
201 => 0.2165592260951
202 => 0.23220787026911
203 => 0.23982986836906
204 => 0.23479784628036
205 => 0.23733570552665
206 => 0.2511814426708
207 => 0.2564530029302
208 => 0.25535655524723
209 => 0.25554183685659
210 => 0.25838627508698
211 => 0.27100008066125
212 => 0.26344159597542
213 => 0.26921977430672
214 => 0.27228449925887
215 => 0.2751311865934
216 => 0.26814062220456
217 => 0.25904600064646
218 => 0.25616535223277
219 => 0.23429751085396
220 => 0.23315919474297
221 => 0.23252022341536
222 => 0.22849159957909
223 => 0.22532620477672
224 => 0.22280896530631
225 => 0.2162029772246
226 => 0.21843230428136
227 => 0.20790373805598
228 => 0.2146395416175
301 => 0.19783569570067
302 => 0.21183043790918
303 => 0.20421373598794
304 => 0.20932814647751
305 => 0.20931030278112
306 => 0.19989305154449
307 => 0.19446137756422
308 => 0.19792265162836
309 => 0.2016334121814
310 => 0.20223547059663
311 => 0.2070465685144
312 => 0.20838924252905
313 => 0.20432087758121
314 => 0.19748747334416
315 => 0.19907471729507
316 => 0.19442921211621
317 => 0.18628814297704
318 => 0.19213520096223
319 => 0.19413164363536
320 => 0.19501338645464
321 => 0.18700757996438
322 => 0.18449198175062
323 => 0.18315269836953
324 => 0.19645402425888
325 => 0.19718270091714
326 => 0.19345468810897
327 => 0.21030565950659
328 => 0.20649176569846
329 => 0.21075281950881
330 => 0.19893069154323
331 => 0.19938231275212
401 => 0.19378552791521
402 => 0.19691935344658
403 => 0.19470446656892
404 => 0.19666617131271
405 => 0.19784200904773
406 => 0.20343787550732
407 => 0.21189433371539
408 => 0.20260203966396
409 => 0.19855325407765
410 => 0.20106509788417
411 => 0.20775446894781
412 => 0.21788920853184
413 => 0.21188923871745
414 => 0.21455192343498
415 => 0.21513360159116
416 => 0.21070944598099
417 => 0.21805233345973
418 => 0.2219874465131
419 => 0.22602405824895
420 => 0.22952893511589
421 => 0.22441174675466
422 => 0.22988787182131
423 => 0.22547508168379
424 => 0.22151635274457
425 => 0.22152235650228
426 => 0.21903898801091
427 => 0.21422714863431
428 => 0.2133397716264
429 => 0.21795601888489
430 => 0.22165781202596
501 => 0.22196270943945
502 => 0.22401221232734
503 => 0.22522508702484
504 => 0.23711290788351
505 => 0.24189428777408
506 => 0.24774086859737
507 => 0.25001844132329
508 => 0.25687311867328
509 => 0.25133741000348
510 => 0.25013972461154
511 => 0.23351251950834
512 => 0.23623522341251
513 => 0.24059453506495
514 => 0.23358440295185
515 => 0.23803071826762
516 => 0.23890851509679
517 => 0.23334620134511
518 => 0.23631727345327
519 => 0.22842698679548
520 => 0.21206632040286
521 => 0.21807054755837
522 => 0.22249167974583
523 => 0.21618217899266
524 => 0.22749171488133
525 => 0.22088491749138
526 => 0.21879087990096
527 => 0.21062129268246
528 => 0.21447702337335
529 => 0.21969195434151
530 => 0.21646973330398
531 => 0.22315632577578
601 => 0.23262632396491
602 => 0.23937520862263
603 => 0.23989330418542
604 => 0.23555422349066
605 => 0.24250762799565
606 => 0.24255827595627
607 => 0.23471480726914
608 => 0.22991072637089
609 => 0.22881922908294
610 => 0.2315460033089
611 => 0.2348568106095
612 => 0.24007703094855
613 => 0.24323150076954
614 => 0.25145668506115
615 => 0.25368218409595
616 => 0.25612733280604
617 => 0.25939480553866
618 => 0.26331824431698
619 => 0.2547339836315
620 => 0.2550750523116
621 => 0.24708150761847
622 => 0.23853925872358
623 => 0.24502176082844
624 => 0.25349676999943
625 => 0.25155259353155
626 => 0.25133383396299
627 => 0.25170172687846
628 => 0.25023588131255
629 => 0.2436059161447
630 => 0.24027638914319
701 => 0.24457232842807
702 => 0.24685542896773
703 => 0.25039631879744
704 => 0.24995982938681
705 => 0.25908078132435
706 => 0.26262490744401
707 => 0.2617181683209
708 => 0.26188503014145
709 => 0.26830150119156
710 => 0.2754379366472
711 => 0.28212215018701
712 => 0.28892161929336
713 => 0.28072459389786
714 => 0.27656264992427
715 => 0.28085671373645
716 => 0.27857822303439
717 => 0.29167110645271
718 => 0.29257762929337
719 => 0.3056695659472
720 => 0.3180953727905
721 => 0.31029094614368
722 => 0.31765016895254
723 => 0.32560976842656
724 => 0.34096512721042
725 => 0.33579398258005
726 => 0.33183296683536
727 => 0.32808982609611
728 => 0.33587870776762
729 => 0.34589897960761
730 => 0.34805725018897
731 => 0.35155447305359
801 => 0.34787757083151
802 => 0.35230599456051
803 => 0.3679402762719
804 => 0.36371575534586
805 => 0.35771625650526
806 => 0.37005802038403
807 => 0.37452445675436
808 => 0.40587224629224
809 => 0.44545012549641
810 => 0.42906462362352
811 => 0.41889361385417
812 => 0.42128404240954
813 => 0.43573654409915
814 => 0.44037822894237
815 => 0.42776052945377
816 => 0.43221731422336
817 => 0.45677463648524
818 => 0.46994885198551
819 => 0.45205649780294
820 => 0.40269220223431
821 => 0.3571760672766
822 => 0.36924899588566
823 => 0.36788030044798
824 => 0.39426407963002
825 => 0.36361500191892
826 => 0.36413105378363
827 => 0.39106042157825
828 => 0.38387612793689
829 => 0.37223849233269
830 => 0.35726103489549
831 => 0.3295738195757
901 => 0.30505048085183
902 => 0.35314639547694
903 => 0.35107241218156
904 => 0.34806897702275
905 => 0.35475279696306
906 => 0.38720752935784
907 => 0.38645934273042
908 => 0.38169976113497
909 => 0.38530986182609
910 => 0.37160562422696
911 => 0.37513751829595
912 => 0.35716885728828
913 => 0.36529144250131
914 => 0.37221352319341
915 => 0.37360323337551
916 => 0.37673432137613
917 => 0.34997951722743
918 => 0.36199163881041
919 => 0.36904763485684
920 => 0.33716838801977
921 => 0.36841748464646
922 => 0.34951377561126
923 => 0.34309757284054
924 => 0.35173614460088
925 => 0.34836968478459
926 => 0.34547540031969
927 => 0.34386033985816
928 => 0.35020355355459
929 => 0.34990763505387
930 => 0.33952890628179
1001 => 0.32599027768973
1002 => 0.33053428583556
1003 => 0.32888340507587
1004 => 0.32290040023492
1005 => 0.32693222310696
1006 => 0.30917811563735
1007 => 0.27863309651408
1008 => 0.29881207176615
1009 => 0.29803520316944
1010 => 0.2976434707948
1011 => 0.31280741299082
1012 => 0.31134974984034
1013 => 0.30870407694875
1014 => 0.3228518103775
1015 => 0.31768769736214
1016 => 0.33360227685744
1017 => 0.34408464820352
1018 => 0.34142597976096
1019 => 0.35128470067764
1020 => 0.33063897060563
1021 => 0.33749665397263
1022 => 0.33891001301023
1023 => 0.32267722954309
1024 => 0.31158824155899
1025 => 0.31084873248416
1026 => 0.2916219554764
1027 => 0.30189274456083
1028 => 0.31093061392099
1029 => 0.30660217586447
1030 => 0.30523192168418
1031 => 0.31223225311939
1101 => 0.31277623882569
1102 => 0.30037330707303
1103 => 0.30295226933417
1104 => 0.31370697067996
1105 => 0.30268127845398
1106 => 0.28126015949551
1107 => 0.27594742582367
1108 => 0.27523860921874
1109 => 0.26083005414248
1110 => 0.27630244809145
1111 => 0.26954833349835
1112 => 0.29088450057123
1113 => 0.27869739636736
1114 => 0.27817203466319
1115 => 0.27737787339352
1116 => 0.26497583482948
1117 => 0.26769109308434
1118 => 0.27671702506899
1119 => 0.27993757928552
1120 => 0.27960164909551
1121 => 0.27667279307819
1122 => 0.27801360836475
1123 => 0.27369437515572
1124 => 0.27216916401255
1125 => 0.26735517810232
1126 => 0.26027994871182
1127 => 0.26126380275348
1128 => 0.24724592199644
1129 => 0.23960823657476
1130 => 0.23749422591312
1201 => 0.23466728250578
1202 => 0.23781353669319
1203 => 0.24720621110151
1204 => 0.23587665299804
1205 => 0.21645292030574
1206 => 0.21762031973697
1207 => 0.22024311965496
1208 => 0.21535554935935
1209 => 0.21072987425723
1210 => 0.21475152346564
1211 => 0.20652143186537
1212 => 0.22123768690513
1213 => 0.22083965344813
1214 => 0.22632496327985
1215 => 0.22975504008751
1216 => 0.2218498235464
1217 => 0.21986168296429
1218 => 0.22099421819581
1219 => 0.20227593357217
1220 => 0.22479528008351
1221 => 0.22499002832728
1222 => 0.22332247562906
1223 => 0.23531333243953
1224 => 0.26061778035164
1225 => 0.25109722917804
1226 => 0.24741058400344
1227 => 0.24040226883161
1228 => 0.2497404326855
1229 => 0.24902340739957
1230 => 0.24578074713283
1231 => 0.24381957608579
]
'min_raw' => 0.18315269836953
'max_raw' => 0.46994885198551
'avg_raw' => 0.32655077517752
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.183152'
'max' => '$0.469948'
'avg' => '$0.32655'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.11262714744157
'max_diff' => 0.2731606948574
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.005748953917919
]
1 => [
'year' => 2028
'avg' => 0.0098668738563961
]
2 => [
'year' => 2029
'avg' => 0.026954521044684
]
3 => [
'year' => 2030
'avg' => 0.020795372844097
]
4 => [
'year' => 2031
'avg' => 0.020423633275088
]
5 => [
'year' => 2032
'avg' => 0.035809056685171
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.005748953917919
'min' => '$0.005748'
'max_raw' => 0.035809056685171
'max' => '$0.035809'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.035809056685171
]
1 => [
'year' => 2033
'avg' => 0.092104575996136
]
2 => [
'year' => 2034
'avg' => 0.05838030660515
]
3 => [
'year' => 2035
'avg' => 0.068859705519498
]
4 => [
'year' => 2036
'avg' => 0.13365685402804
]
5 => [
'year' => 2037
'avg' => 0.32655077517752
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.035809056685171
'min' => '$0.035809'
'max_raw' => 0.32655077517752
'max' => '$0.32655'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.32655077517752
]
]
]
]
'prediction_2025_max_price' => '$0.009829'
'last_price' => 0.0095311
'sma_50day_nextmonth' => '$0.009499'
'sma_200day_nextmonth' => '$0.086643'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'augmenter'
'sma_200day_date_nextmonth' => '4 févr. 2026'
'sma_50day_date_nextmonth' => '4 févr. 2026'
'daily_sma3' => '$0.009627'
'daily_sma3_action' => 'SELL'
'daily_sma5' => '$0.009834'
'daily_sma5_action' => 'SELL'
'daily_sma10' => '$0.010024'
'daily_sma10_action' => 'SELL'
'daily_sma21' => '$0.010648'
'daily_sma21_action' => 'SELL'
'daily_sma50' => '$0.012531'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.042392'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.111627'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.009662'
'daily_ema3_action' => 'SELL'
'daily_ema5' => '$0.009785'
'daily_ema5_action' => 'SELL'
'daily_ema10' => '$0.010052'
'daily_ema10_action' => 'SELL'
'daily_ema21' => '$0.010761'
'daily_ema21_action' => 'SELL'
'daily_ema50' => '$0.019188'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.046933'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.087287'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.0808066'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.128872'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.00987'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.011182'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.023416'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.059039'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.122386'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.071349'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.035674'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '26.14'
'rsi_14_action' => 'BUY'
'stoch_rsi_14' => -19.96
'stoch_rsi_14_action' => 'BUY'
'momentum_10' => -0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.010024'
'vwma_10_action' => 'SELL'
'hma_9' => '0.009579'
'hma_9_action' => 'SELL'
'stochastic_fast_14' => 0
'stochastic_fast_14_action' => 'BUY'
'cci_20' => -117.39
'cci_20_action' => 'BUY'
'adx_14' => 40.2
'adx_14_action' => 'SELL'
'ao_5_34' => '-0.001297'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'NEUTRAL'
'williams_percent_r_14' => -100
'williams_percent_r_14_action' => 'BUY'
'ultimate_oscillator' => 11.83
'ultimate_oscillator_action' => 'BUY'
'ichimoku_cloud' => '-0.014369'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 29
'buy_signals' => 3
'sell_pct' => 90.63
'buy_pct' => 9.38
'overall_action' => 'bearish'
'overall_action_label' => 'Baissier'
'overall_action_dir' => -1
'last_updated' => 1767712821
'last_updated_date' => '6 janvier 2026'
]
Prévision du prix de Seraph pour 2026
La prévision du prix de Seraph pour 2026 suggère que le prix moyen pourrait varier entre $0.003292 à la baisse et $0.009829 à la hausse. Sur le marché des cryptomonnaies, comparé au prix moyen d'aujourd'hui, Seraph pourrait potentiellement gagner 3.13% d'ici 2026 si SERAPH atteint l'objectif de prix prévu.
Prévision du prix de Seraph de 2027 à 2032
La prévision du prix de SERAPH pour 2027-2032 se situe actuellement dans une fourchette de prix comprise entre $0.005748 à la baisse et $0.035809 à la hausse. Compte tenu de la volatilité des prix sur le marché, si Seraph atteint l'objectif de prix le plus élevé, il pourrait gagner 275.71% d'ici 2032 par rapport au prix actuel.
| Prévision du Prix de Seraph | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2027 | $0.00317 | $0.005748 | $0.008327 |
| 2028 | $0.005721 | $0.009866 | $0.014012 |
| 2029 | $0.012567 | $0.026954 | $0.041341 |
| 2030 | $0.010688 | $0.020795 | $0.0309025 |
| 2031 | $0.012636 | $0.020423 | $0.02821 |
| 2032 | $0.019288 | $0.035809 | $0.052329 |
Prévision du prix de Seraph de 2032 à 2037
La prévision du prix de Seraph pour 2032-2037 est actuellement estimée entre $0.035809 à la baisse et $0.32655 à la hausse. Par rapport au prix actuel, Seraph pourrait potentiellement gagner 3326.16% d'ici 2037 s'il atteint l'objectif de prix le plus élevé. Veuillez noter que ces informations sont à titre général seulement et ne doivent pas être considérées comme un conseil en investissement à long terme.
| Prévision du Prix de Seraph | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2032 | $0.019288 | $0.035809 | $0.052329 |
| 2033 | $0.044823 | $0.0921045 | $0.139385 |
| 2034 | $0.036035 | $0.05838 | $0.080724 |
| 2035 | $0.0426055 | $0.068859 | $0.095113 |
| 2036 | $0.070525 | $0.133656 | $0.196788 |
| 2037 | $0.183152 | $0.32655 | $0.469948 |
Seraph Histogramme des prix potentiels
Prévision du prix de Seraph basée sur l'analyse technique
Au 6 janvier 2026, le sentiment global de prévision du prix pour Seraph est Baissier, avec 3 indicateurs techniques montrant des signaux haussiers et 29 indiquant des signaux baissiers. La prévision du prix de SERAPH a été mise à jour pour la dernière fois le 6 janvier 2026.
Moyennes Mobiles Simples sur 50 et 200 jours de Seraph et Indice de Force Relative sur 14 jours - RSI (14)
Selon nos indicateurs techniques, le SMA sur 200 jours de Seraph devrait augmenter au cours du prochain mois, atteignant $0.086643 d'ici le 4 févr. 2026. Le SMA à court terme sur 50 jours pour Seraph devrait atteindre $0.009499 d'ici le 4 févr. 2026.
Le Relative Strength Index (RSI), un oscillateur de momentum, est un outil couramment utilisé pour identifier si une cryptomonnaie est survendue (en dessous de 30) ou surachetée (au-dessus de 70). Actuellement, le RSI est à 26.14, ce qui suggère que le marché de SERAPH est dans un état BUY.
Moyennes Mobiles et Oscillateurs Populaires de SERAPH pour le Samedi 19 Octobre 2024
Les moyennes mobiles (MA) sont des indicateurs largement utilisés sur les marchés financiers, conçus pour lisser les mouvements de prix sur une période donnée. En tant qu'indicateurs retardés, ils sont basés sur des données historiques de prix. Le tableau ci-dessous met en évidence deux types : la moyenne mobile simple (SMA) et la moyenne mobile exponentielle (EMA).
Moyenne Mobile Simple Quotidienne (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 3 | $0.009627 | SELL |
| SMA 5 | $0.009834 | SELL |
| SMA 10 | $0.010024 | SELL |
| SMA 21 | $0.010648 | SELL |
| SMA 50 | $0.012531 | SELL |
| SMA 100 | $0.042392 | SELL |
| SMA 200 | $0.111627 | SELL |
Moyenne Mobile Exponentielle Quotidienne (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 3 | $0.009662 | SELL |
| EMA 5 | $0.009785 | SELL |
| EMA 10 | $0.010052 | SELL |
| EMA 21 | $0.010761 | SELL |
| EMA 50 | $0.019188 | SELL |
| EMA 100 | $0.046933 | SELL |
| EMA 200 | $0.087287 | SELL |
Moyenne Mobile Simple Hebdomadaire (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 21 | $0.0808066 | SELL |
| SMA 50 | $0.128872 | SELL |
| SMA 100 | — | — |
| SMA 200 | — | — |
Moyenne Mobile Exponentielle Hebdomadaire (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 21 | $0.059039 | SELL |
| EMA 50 | $0.122386 | SELL |
| EMA 100 | $0.071349 | SELL |
| EMA 200 | $0.035674 | SELL |
Oscillateurs de Seraph
Un oscillateur est un outil d'analyse technique qui établit des limites hautes et basses entre deux extrêmes, créant un indicateur de tendance qui fluctue à l'intérieur de ces limites. Les traders utilisent cet indicateur pour identifier les conditions de surachat ou de survente à court terme.
| Période | Valeur | Action |
|---|---|---|
| RSI (14) | 26.14 | BUY |
| Stoch RSI (14) | -19.96 | BUY |
| Stochastique Rapide (14) | 0 | BUY |
| Indice de Canal des Matières Premières (20) | -117.39 | BUY |
| Indice Directionnel Moyen (14) | 40.2 | SELL |
| Oscillateur Impressionnant (5, 34) | -0.001297 | NEUTRAL |
| Momentum (10) | -0 | BUY |
| MACD (12, 26) | 0 | NEUTRAL |
| Plage de Pourcentage de Williams (14) | -100 | BUY |
| Oscillateur Ultime (7, 14, 28) | 11.83 | BUY |
| VWMA (10) | 0.010024 | SELL |
| Moyenne Mobile de Hull (9) | 0.009579 | SELL |
| Nuage Ichimoku B/L (9, 26, 52, 26) | -0.014369 | SELL |
Prévision du cours de Seraph basée sur les flux monétaires mondiaux
Définitions des flux monétaires mondiaux utilisés pour la prédiction du cours de Seraph
M0 : le total de toutes les devises physiques, plus les comptes à la banque centrale qui peuvent être échangés contre des devises physiques.
M1 : M0 plus le montant des comptes à vue, y compris les comptes de "chèques" et les comptes "courants".
M2 : M1 plus la plupart des comptes d'épargne, comptes du marché monétaire et comptes de certificats de dépôt (CD) de moins de 100 000 $.
Prédictions du cours de Seraph par des sociétés Internet ou des niches technologiques
| Comparaison | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Action Facebook | $0.013392 | $0.018819 | $0.026443 | $0.037158 | $0.052213 | $0.073368 |
| Action Amazon.com | $0.019887 | $0.041495 | $0.086583 | $0.180661 | $0.376961 | $0.786552 |
| Action Apple | $0.013519 | $0.019175 | $0.027199 | $0.03858 | $0.054723 | $0.07762 |
| Action Netflix | $0.015038 | $0.023728 | $0.037439 | $0.059074 | $0.0932099 | $0.14707 |
| Action Google | $0.012342 | $0.015983 | $0.020698 | $0.026805 | $0.034712 | $0.044952 |
| Action Tesla | $0.0216062 | $0.048979 | $0.111033 | $0.2517046 | $0.570595 | $1.29 |
| Action Kodak | $0.007147 | $0.005359 | $0.004019 | $0.003013 | $0.00226 | $0.001694 |
| Action Nokia | $0.006313 | $0.004182 | $0.00277 | $0.001835 | $0.001216 | $0.0008055 |
Ce calcul montre la valeur potentielle des cryptomonnaies si l'on suppose que leur capitalisation se comportera comme celle de certaines sociétés Internet ou niches technologiques. En extrapolant les données, vous pourrez obtenir une potentielle image des cours futurs pour 2024, 2025, 2026, 2027, 2028, 2029 et 2030.
Aperçu des prévisions relatives à Seraph
Vous vous posez peut-être des questions telles que : "Devrais-je investir dans Seraph maintenant ?", "Devrais-je acheter SERAPH aujourd'hui ?", " Seraph sera-t-il un bon ou un mauvais investissement à court ou à long terme ?".
Nous mettons régulièrement à jour les prévisions de Seraph avec de nouvelles valeurs. Regardez nos prévisions similaires. Nous faisons une prévision des cours futurs pour une grande quantité de devises numériques comme Seraph en utilisant des méthodes d'analyse technique.
Si vous souhaitez trouver des cryptomonnaies ayant un bon rendement, vous devriez consulter un maximum d'informations disponibles à propos de Seraph afin de prendre une décision responsable concernant cet investissement.
Le cours de Seraph est de $0.009531 USD actuellement, mais ce cours peut subir une hausse ou une baisse, ce qui pourrait causer la perte de votre investissement, car les cryptomonnaies sont des actifs à haut risque.
Prévision à court terme de Seraph
basée sur l'historique des cours sur 4 heures
Prévision à long terme de Seraph
basée sur l'historique des cours sur 1 mois
Prévision du cours de Seraph basée sur le modèle de croissance du Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si Seraph présente 1 % de la précédente croissance annuelle moyenne du Bitcoin | $0.009778 | $0.010033 | $0.010293 | $0.010561 |
| Si Seraph présente 2 % de la précédente croissance annuelle moyenne du Bitcoin | $0.010026 | $0.010547 | $0.011096 | $0.011673 |
| Si Seraph présente 5 % de la précédente croissance annuelle moyenne du Bitcoin | $0.010769 | $0.012169 | $0.013751 | $0.015538 |
| Si Seraph présente 10 % de la précédente croissance annuelle moyenne du Bitcoin | $0.0120085 | $0.015129 | $0.019062 | $0.024017 |
| Si Seraph présente 20 % de la précédente croissance annuelle moyenne du Bitcoin | $0.014485 | $0.022016 | $0.033462 | $0.050858 |
| Si Seraph présente 50 % de la précédente croissance annuelle moyenne du Bitcoin | $0.021918 | $0.0504046 | $0.115913 | $0.266561 |
| Si Seraph présente 100 % de la précédente croissance annuelle moyenne du Bitcoin | $0.0343054 | $0.123476 | $0.444431 | $1.59 |
Boîte à questions
Est-ce que SERAPH est un bon investissement ?
La décision d'acquérir Seraph dépend entièrement de votre tolérance individuelle au risque. Comme vous pouvez le discerner, la valeur de Seraph a connu une baisse de -1.7633% au cours des 24 heures précédentes, et Seraph a enregistré une déclin de sur une période de 30 jours précédents. Par conséquent, la détermination de si investir ou non dans Seraph dépendra de la mesure dans laquelle cet investissement s'aligne avec vos aspirations de trading.
Est-ce que Seraph peut monter ?
Il semble que la valeur moyenne de Seraph pourrait potentiellement s'envoler jusqu'à $0.009829 pour la fin de cette année. En regardant les perspectives de Seraph sur une période de cinq ans plus longue, la monnaie numérique pourrait potentiellement croître jusqu'à $0.0309025. Cependant, compte tenu de l'imprévisibilité du marché, il est essentiel de mener des recherches approfondies avant d'investir des fonds dans un projet, un réseau ou un actif particulier.
Quel sera le prix de Seraph la semaine prochaine ?
Basé sur notre nouveau pronostic expérimental de Seraph, le prix de Seraph va augmenter de 0.86% durant la prochaine semaine et atteindre $0.009612 d'ici 13 janvier 2026.
Quel sera le prix de Seraph le mois prochain ?
Basé sur notre nouveau pronostic expérimental de Seraph, le prix de Seraph va diminuer de -11.62% durant le prochain mois et atteindre $0.008423 d'ici 5 février 2026.
Jusqu'où le prix de Seraph peut-il monter cette année en 2026 ?
Selon notre prédiction la plus récente sur la valeur de Seraph en 2026, SERAPH devrait fluctuer dans la fourchette de $0.003292 et $0.009829. Cependant, il est crucial de garder à l'esprit que le marché des cryptomonnaies est exceptionnellement instable, et cette prévision de prix de Seraph ne prend pas en compte les fluctuations de prix soudaines et extrêmes.
Où sera Seraph dans 5 ans ?
L'avenir de Seraph semble suivre une tendance haussière, avec un prix maximum de $0.0309025 prévue après une période de cinq ans. Selon la prévision de Seraph pour 2030, la valeur de Seraph pourrait potentiellement atteindre son point le plus élevé d'environ $0.0309025, tandis que son point le plus bas devrait être autour de $0.010688.
Combien vaudra Seraph en 2026 ?
Basé sur notre nouvelle simulation expérimentale de prédiction de prix de Seraph, il est attendu que la valeur de SERAPH en 2026 augmente de 3.13% jusqu'à $0.009829 si le meilleur scénario se produit. Le prix sera entre $0.009829 et $0.003292 durant 2026.
Combien vaudra Seraph en 2027 ?
Selon notre dernière simulation expérimentale pour la prédiction de prix de Seraph, le valeur de SERAPH pourrait diminuer de -12.62% jusqu'à $0.008327 en 2027, en supposant les conditions les plus favorables. Il est prévu que le prix fluctue entre $0.008327 et $0.00317 tout au long de l'année.
Combien vaudra Seraph en 2028 ?
Notre nouveau modèle expérimental de prédiction de prix de Seraph suggère que la valeur de SERAPH en 2028 pourrait augmenter de 47.02%, atteignant $0.014012 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.014012 et $0.005721 durant l'année.
Combien vaudra Seraph en 2029 ?
Basé sur notre modèle de prévision expérimental, la valeur de Seraph pourrait connaître un 333.75% croissance en 2029, atteignant potentiellement $0.041341 sous des conditions optimales. Le range de prix prévu pour 2029 se situe entre $0.041341 et $0.012567.
Combien vaudra Seraph en 2030 ?
En utilisant notre nouvelle simulation expérimentale pour les prédictions de prix de Seraph, il est prévu que la valeur de SERAPH en 2030 augmente de 224.23%, atteignant $0.0309025 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.0309025 et $0.010688 au cours de 2030.
Combien vaudra Seraph en 2031 ?
Notre simulation expérimentale indique que le prix de Seraph pourrait augmenter de 195.98% en 2031, atteignant potentiellement $0.02821 dans des conditions idéales. Il est probable que le prix fluctue entre $0.02821 et $0.012636 durant l'année.
Combien vaudra Seraph en 2032 ?
Basé sur les résultats de notre dernière prédiction expérimentale de prix de Seraph, SERAPH pourrait connaître une 449.04% hausse en valeur, atteignant $0.052329 si le scénario le plus positif se réalise en 2032. Il est prévu que le prix reste dans une fourchette de $0.052329 et $0.019288 tout au long de l'année.
Combien vaudra Seraph en 2033 ?
Selon notre prédiction expérimentale de prix de Seraph, la valeur de SERAPH est anticipée à augmenter de 1362.43% en 2033, avec le prix potentiel le plus élevé étant $0.139385. Tout au long de l'année, le prix de SERAPH pourrait osciller entre $0.139385 et $0.044823.
Combien vaudra Seraph en 2034 ?
Les résultats de notre nouvelle simulation de prédiction de prix de Seraph suggèrent que SERAPH pourrait augmenter de 746.96% en 2034, atteignant potentiellement $0.080724 dans les meilleures circonstances. La fourchette de prix prévue pour l'année est entre $0.080724 et $0.036035.
Combien vaudra Seraph en 2035 ?
Basé sur notre prédiction expérimentale pour le prix de Seraph, SERAPH pourrait augmenter de 897.93%, avec la valeur potentiellement atteignant $0.095113 en 2035. La fourchette de prix attendue pour l'année se situe entre $0.095113 et $0.0426055.
Combien vaudra Seraph en 2036 ?
Notre récente simulation de prédiction de prix de Seraph suggère que la valeur de SERAPH pourrait augmenter de 1964.7% en 2036, pouvant atteindre $0.196788 si les conditions sont optimales. La fourchette de prix attendue pour 2036 est entre $0.196788 et $0.070525.
Combien vaudra Seraph en 2037 ?
Selon la simulation expérimentale, la valeur de Seraph pourrait augmenter de 4830.69% en 2037, avec un maximum de $0.469948 sous des conditions favorables. Il est prévu que le prix chute entre $0.469948 et $0.183152 au cours de l'année.
Prévisions liées
Comment lire et prédire les mouvements de prix de Seraph ?
Les traders de Seraph utilisent des indicateurs et des modèles graphiques pour prédire la direction du marché. Ils identifient également des niveaux clés de support et de résistance pour évaluer quand une tendance baissière pourrait ralentir ou une tendance haussière pourrait s'arrêter.
Indicateurs de prédiction du prix de Seraph
Les moyennes mobiles sont des outils populaires pour la prédiction du prix de Seraph. Une moyenne mobile simple (SMA) calcule le prix de clôture moyen de SERAPH sur une période spécifique, comme une SMA de 12 jours. Une moyenne mobile exponentielle (EMA) donne plus de poids aux prix récents, réagissant plus rapidement aux changements de prix.
Les moyennes mobiles couramment utilisées sur le marché des cryptomonnaies incluent les moyennes sur 50 jours, 100 jours et 200 jours, qui aident à identifier les niveaux clés de résistance et de support. Un mouvement de prix de SERAPH au-dessus de ces moyennes est considéré comme haussier, tandis qu'une chute en dessous indique une faiblesse.
Les traders utilisent également le RSI et les niveaux de retracement de Fibonacci pour évaluer la direction future de SERAPH.
Comment lire les graphiques de Seraph et prédire les mouvements de prix ?
La plupart des traders préfèrent les graphiques en chandeliers aux simples graphiques linéaires parce qu'ils fournissent des informations plus détaillées. Les chandeliers peuvent représenter l'action des prix de Seraph dans différentes périodes, comme 5 minutes pour les tendances à court terme et hebdomadaire pour les tendances à long terme. Les options populaires incluent les graphiques de 1 heure, 4 heures et 1 jour.
Par exemple, un graphique en chandeliers de 1 heure montre les prix d'ouverture, de clôture, les plus hauts et les plus bas de SERAPH au sein de chaque heure. La couleur du chandelier est cruciale : le vert indique que le prix a clôturé plus haut qu'il n'a ouvert, tandis que le rouge signifie le contraire. Certains graphiques utilisent des chandeliers creux et pleins pour transmettre la même information.
Qu'est-ce qui affecte le prix de Seraph ?
L'action du prix de Seraph est déterminée par l'offre et la demande, influencée par des facteurs tels que les réductions de récompenses de bloc, les hard forks et les mises à jour de protocole. Les événements du monde réel, tels que les réglementations, l'adoption par les entreprises et les gouvernements et les piratages d'échanges de cryptomonnaies, impactent également le prix de SERAPH. La capitalisation boursière de Seraph peut changer rapidement.
Les traders surveillent souvent l'activité des « baleines » de SERAPH, de grands détenteurs de Seraph, car leurs actions peuvent influencer significativement les mouvements de prix sur le marché relativement petit de Seraph.
Modèles de prédiction de prix haussiers et baissiers
Les traders identifient souvent des modèles de chandeliers pour obtenir un avantage dans les prédictions de prix des cryptomonnaies. Certaines formations indiquent des tendances haussières, tandis que d'autres suggèrent des mouvements baissiers.
Modèles de chandeliers haussiers couramment suivis :
- Marteau
- Englobante haussière
- Ligne pénétrante
- Étoile du matin
- Trois soldats blancs
Modèles de chandeliers baissiers courants :
- Harami baissier
- Nuage sombre
- Étoile du soir
- Étoile filante
- Pendu


