Prédiction du prix de Seraph jusqu'à $0.009884 d'ici 2026
| Année | Prix min. | Prix max. |
|---|---|---|
| 2026 | $0.003311 | $0.009884 |
| 2027 | $0.003187 | $0.008374 |
| 2028 | $0.005753 | $0.014091 |
| 2029 | $0.012637 | $0.041573 |
| 2030 | $0.010748 | $0.031075 |
| 2031 | $0.0127074 | $0.028368 |
| 2032 | $0.019397 | $0.052622 |
| 2033 | $0.045074 | $0.140166 |
| 2034 | $0.036237 | $0.081176 |
| 2035 | $0.042844 | $0.095646 |
Calculateur de profit d’investissement
Si vous ouvrez une position short de $10,000.00 sur Seraph aujourd’hui et la fermez le Apr 06, 2026, notre prévision indique que vous pourriez gagner environ $3,954.82, soit un rendement de 39.55% sur les 90 prochains jours.
Prévision du prix à long terme de Seraph pour 2027, 2028, 2029, 2030, 2031, 2032 et 2037
[
'name' => 'Seraph'
'name_with_ticker' => 'Seraph <small>SERAPH</small>'
'name_lang' => 'Seraph'
'name_lang_with_ticker' => 'Seraph <small>SERAPH</small>'
'name_with_lang' => 'Seraph'
'name_with_lang_with_ticker' => 'Seraph <small>SERAPH</small>'
'image' => '/uploads/coins/seraph.jpg?1736294429'
'price_for_sd' => 0.009584
'ticker' => 'SERAPH'
'marketcap' => '$3.05M'
'low24h' => '$0.009534'
'high24h' => '$0.009815'
'volume24h' => '$1.55M'
'current_supply' => '318.54M'
'max_supply' => '1B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.009584'
'change_24h_pct' => '-0.7451%'
'ath_price' => '$0.6981'
'ath_days' => 365
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '6 janv. 2025'
'ath_pct' => '-98.62%'
'fdv' => '$9.58M'
'new_prediction' => true
'change_24h_pct_is_increased' => false
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.472581'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.009666'
'next_week_prediction_price_date' => '13 janvier 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.00847'
'next_month_prediction_price_date' => '5 février 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.003311'
'current_year_max_price_prediction' => '$0.009884'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.010748'
'grand_prediction_max_price' => '$0.031075'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0097661110440583
107 => 0.0098025741575985
108 => 0.0098847274142573
109 => 0.0091827368309047
110 => 0.0094979099934693
111 => 0.0096830446987443
112 => 0.0088465993650535
113 => 0.009666510863874
114 => 0.0091705167366366
115 => 0.0090021688802704
116 => 0.0092288270907239
117 => 0.0091404981656778
118 => 0.0090645581427717
119 => 0.0090221823051749
120 => 0.0091886150795781
121 => 0.009180850791722
122 => 0.0089085344695889
123 => 0.0085533089283994
124 => 0.0086725342799035
125 => 0.0086292185919585
126 => 0.0084722369510106
127 => 0.0085780236229739
128 => 0.0081121926570572
129 => 0.0073107546919843
130 => 0.0078402091604202
131 => 0.0078198257393211
201 => 0.0078095474940884
202 => 0.0082074178940713
203 => 0.0081691718355448
204 => 0.0080997548648128
205 => 0.0084709620539057
206 => 0.0083354664364455
207 => 0.0087530320026752
208 => 0.0090280676910417
209 => 0.0089583097439995
210 => 0.009216982138271
211 => 0.0086752809912008
212 => 0.0088552123829797
213 => 0.0088922959934512
214 => 0.0084663814148133
215 => 0.0081754293637167
216 => 0.0081560261790048
217 => 0.0076515554180658
218 => 0.0079210396266137
219 => 0.0081581745781216
220 => 0.0080446053387649
221 => 0.0080086527103692
222 => 0.0081923268916696
223 => 0.0082065999486196
224 => 0.0078811727375683
225 => 0.0079488393596854
226 => 0.0082310204225535
227 => 0.0079417291209031
228 => 0.0073796833772623
301 => 0.0072402882619491
302 => 0.0072216903840046
303 => 0.006843639775709
304 => 0.007249603310098
305 => 0.0070723893481909
306 => 0.0076322061305062
307 => 0.0073124417868053
308 => 0.0072986573850533
309 => 0.0072778202400729
310 => 0.006952416464439
311 => 0.007023659210814
312 => 0.0072604809503414
313 => 0.0073449816149926
314 => 0.0073361675033759
315 => 0.0072593203946201
316 => 0.0072945006074876
317 => 0.0071811728842425
318 => 0.007141154506452
319 => 0.0070148454982234
320 => 0.0068292061498813
321 => 0.0068550204398606
322 => 0.0064872203156173
323 => 0.0062868232872994
324 => 0.0062313560310515
325 => 0.0061571828978604
326 => 0.0062397340838126
327 => 0.0064861783840769
328 => 0.0061889142718832
329 => 0.0056792758021799
330 => 0.0057099059425908
331 => 0.0057787227739237
401 => 0.0056504830640037
402 => 0.0055291149409075
403 => 0.0056346346770326
404 => 0.0054186941389741
405 => 0.00580481815628
406 => 0.0057943745837119
407 => 0.0059382977396144
408 => 0.0060282958426008
409 => 0.0058208793524491
410 => 0.0057687146660898
411 => 0.0057984300421929
412 => 0.0053073010670273
413 => 0.005898162024422
414 => 0.0059032718145176
415 => 0.0058595186894757
416 => 0.006174133908503
417 => 0.0068380701515982
418 => 0.0065882706301722
419 => 0.0064915407052456
420 => 0.006307657047251
421 => 0.0065526711035976
422 => 0.0065338578468849
423 => 0.0064487771653142
424 => 0.0063973201036323
425 => 0.0064921313175408
426 => 0.0063855719449998
427 => 0.0063664309536358
428 => 0.0062504573715734
429 => 0.0062090600792389
430 => 0.0061784111720682
501 => 0.0061446697367726
502 => 0.0062190949351928
503 => 0.0060504376441223
504 => 0.0058470534847693
505 => 0.0058301442925662
506 => 0.0058768320589103
507 => 0.0058561761977985
508 => 0.0058300454002501
509 => 0.0057801545914309
510 => 0.0057653530542027
511 => 0.0058134508695093
512 => 0.005759151240305
513 => 0.0058392733010498
514 => 0.005817484533883
515 => 0.0056957742516901
516 => 0.0055440781771598
517 => 0.0055427277639032
518 => 0.005510045093477
519 => 0.005468418798817
520 => 0.0054568393159232
521 => 0.0056257480991746
522 => 0.0059753842254907
523 => 0.0059067422878115
524 => 0.0059563431224935
525 => 0.0062003301373785
526 => 0.0062778862724649
527 => 0.0062228387647983
528 => 0.0061474863411218
529 => 0.0061508014653436
530 => 0.0064083035077759
531 => 0.0064243635943039
601 => 0.0064649422517801
602 => 0.0065170972941642
603 => 0.0062317209940411
604 => 0.0061373602672712
605 => 0.0060926469199939
606 => 0.0059549471166227
607 => 0.0061034445490696
608 => 0.0060169214544769
609 => 0.0060285963759872
610 => 0.0060209930680376
611 => 0.0060251449883115
612 => 0.0058047102267479
613 => 0.0058850250681517
614 => 0.0057514860669982
615 => 0.00557269233491
616 => 0.0055720929556269
617 => 0.0056158524682585
618 => 0.0055898225978353
619 => 0.0055197768858156
620 => 0.0055297265486016
621 => 0.0054425570330693
622 => 0.0055403105060422
623 => 0.0055431137258683
624 => 0.0055054733141061
625 => 0.0056560760266006
626 => 0.0057177780807897
627 => 0.0056930023554321
628 => 0.0057160397498516
629 => 0.0059095946702218
630 => 0.0059411525676354
701 => 0.0059551685010688
702 => 0.0059363890070234
703 => 0.0057195775784822
704 => 0.0057291940872914
705 => 0.0056586345263034
706 => 0.005599019132652
707 => 0.0056014034357565
708 => 0.005632053497552
709 => 0.0057659041150156
710 => 0.0060475848485427
711 => 0.0060582744264741
712 => 0.006071230506764
713 => 0.0060185316170209
714 => 0.0060026371276139
715 => 0.0060236060618575
716 => 0.0061293905353009
717 => 0.0064014969212018
718 => 0.00630531635105
719 => 0.0062271200503768
720 => 0.0062957192876385
721 => 0.0062851589727606
722 => 0.0061960192876664
723 => 0.0061935174335947
724 => 0.0060224298782176
725 => 0.0059591827044699
726 => 0.0059063286321173
727 => 0.0058486133648988
728 => 0.0058143978198584
729 => 0.0058669684477276
730 => 0.0058789919723187
731 => 0.0057640453757054
801 => 0.0057483785793293
802 => 0.0058422464514183
803 => 0.0058009387006589
804 => 0.0058434247466979
805 => 0.0058532818738174
806 => 0.0058516946493223
807 => 0.0058085646133646
808 => 0.0058360544121278
809 => 0.0057710328429493
810 => 0.0057003316523915
811 => 0.0056552286976554
812 => 0.0056158703876094
813 => 0.0056377086655414
814 => 0.005559859192226
815 => 0.0055349535789121
816 => 0.0058267414868469
817 => 0.0060422883516869
818 => 0.0060391542149062
819 => 0.0060200759632882
820 => 0.0059917295512659
821 => 0.0061273168187026
822 => 0.0060800809258807
823 => 0.0061144489845995
824 => 0.0061231970979664
825 => 0.0061496750023646
826 => 0.0061591385773342
827 => 0.0061305330809007
828 => 0.0060345295410027
829 => 0.0057952978473195
830 => 0.0056839348481163
831 => 0.0056471832034818
901 => 0.005648519055963
902 => 0.0056116702810247
903 => 0.0056225238966902
904 => 0.0056078958364292
905 => 0.0055801938292027
906 => 0.0056359981446573
907 => 0.0056424290721603
908 => 0.0056294036781213
909 => 0.0056324716299436
910 => 0.0055246269305192
911 => 0.00553282612879
912 => 0.0054871719509141
913 => 0.0054786123429317
914 => 0.0053632025568254
915 => 0.005158737391822
916 => 0.0052720309411477
917 => 0.005135188265046
918 => 0.0050833638701014
919 => 0.0053286924954222
920 => 0.0053040683057968
921 => 0.0052619223970362
922 => 0.0051995798140021
923 => 0.0051764563435252
924 => 0.0050359654569082
925 => 0.0050276645058371
926 => 0.0050972955828175
927 => 0.0050651632366501
928 => 0.00502003725316
929 => 0.0048565955153063
930 => 0.0046728328882591
1001 => 0.004678379526879
1002 => 0.0047368309995175
1003 => 0.0049067865394689
1004 => 0.0048403819697492
1005 => 0.0047922046925129
1006 => 0.0047831825366902
1007 => 0.0048961137059742
1008 => 0.0050559349703225
1009 => 0.0051309195317555
1010 => 0.0050566121086904
1011 => 0.004971251742069
1012 => 0.0049764472320634
1013 => 0.0050110104993755
1014 => 0.0050146426100717
1015 => 0.0049590817865887
1016 => 0.0049747218329498
1017 => 0.0049509631723715
1018 => 0.0048051563162574
1019 => 0.0048025191325888
1020 => 0.0047667357786453
1021 => 0.0047656522729091
1022 => 0.0047047758612751
1023 => 0.0046962588304687
1024 => 0.0045753850202354
1025 => 0.0046549445281706
1026 => 0.0046015801873093
1027 => 0.004521147538256
1028 => 0.0045072809192423
1029 => 0.0045068640719303
1030 => 0.0045894504180969
1031 => 0.0046539794586315
1101 => 0.0046025084828659
1102 => 0.004590789539407
1103 => 0.0047159171962918
1104 => 0.0046999935613893
1105 => 0.0046862037962601
1106 => 0.0050416247290351
1107 => 0.0047602813269025
1108 => 0.0046375995450527
1109 => 0.004485757543375
1110 => 0.0045351980647751
1111 => 0.0045456159090665
1112 => 0.0041804632666098
1113 => 0.004032320885042
1114 => 0.0039814840023158
1115 => 0.0039522266575789
1116 => 0.0039655595969661
1117 => 0.0038322140781868
1118 => 0.0039218244721378
1119 => 0.003806358524291
1120 => 0.0037870002823758
1121 => 0.003993467700612
1122 => 0.0040221964356944
1123 => 0.0038996307265145
1124 => 0.0039783377533939
1125 => 0.0039497974913379
1126 => 0.0038083378565595
1127 => 0.0038029351390176
1128 => 0.0037319556668324
1129 => 0.0036208865371967
1130 => 0.0035701249645705
1201 => 0.0035436878968147
1202 => 0.0035545963462189
1203 => 0.0035490807003961
1204 => 0.0035130873804754
1205 => 0.0035511437953617
1206 => 0.0034539253813235
1207 => 0.0034152122255116
1208 => 0.0033977263911697
1209 => 0.0033114394530277
1210 => 0.0034487603435872
1211 => 0.0034758142889504
1212 => 0.0035029215389433
1213 => 0.0037388716432264
1214 => 0.0037270842428045
1215 => 0.0038336366019217
1216 => 0.0038294961731836
1217 => 0.0037991057143296
1218 => 0.0036708933674124
1219 => 0.0037219965237283
1220 => 0.0035647089517818
1221 => 0.0036825594951993
1222 => 0.0036287774287399
1223 => 0.0036643757244295
1224 => 0.0036003667790107
1225 => 0.0036357919722701
1226 => 0.0034822297830312
1227 => 0.0033388355713982
1228 => 0.0033965415880973
1229 => 0.0034592746277327
1230 => 0.0035952958417435
1231 => 0.0035142827288293
]
'min_raw' => 0.0033114394530277
'max_raw' => 0.0098847274142573
'avg_raw' => 0.0065980834336425
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.003311'
'max' => '$0.009884'
'avg' => '$0.006598'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0062730505469723
'max_diff' => 0.00030023741425728
'year' => 2026
]
1 => [
'items' => [
101 => 0.0035434181076782
102 => 0.0034458194657379
103 => 0.0032444455897414
104 => 0.0032455853440104
105 => 0.0032146083603567
106 => 0.0031878397237662
107 => 0.0035235880593871
108 => 0.0034818324464569
109 => 0.0034153003420921
110 => 0.0035043562076651
111 => 0.0035279039920292
112 => 0.0035285743643457
113 => 0.0035935472250032
114 => 0.0036282232523831
115 => 0.0036343350525033
116 => 0.0037365712525793
117 => 0.0037708394783167
118 => 0.0039119854503082
119 => 0.0036252812337278
120 => 0.0036193767490583
121 => 0.0035056094063245
122 => 0.0034334563589721
123 => 0.0035105497872063
124 => 0.0035788440403194
125 => 0.0035077314991382
126 => 0.0035170172957488
127 => 0.0034215545193211
128 => 0.0034556779699529
129 => 0.0034850696825621
130 => 0.0034688413064243
131 => 0.0034445466418837
201 => 0.0035732446903815
202 => 0.0035659830421135
203 => 0.00368582962363
204 => 0.0037792586042334
205 => 0.0039467000399026
206 => 0.0037719661728623
207 => 0.0037655981762431
208 => 0.0038278463646543
209 => 0.0037708299484434
210 => 0.0038068623553489
211 => 0.0039408946620913
212 => 0.0039437265535274
213 => 0.0038962887232863
214 => 0.0038934021270049
215 => 0.0039025130812158
216 => 0.0039558762246039
217 => 0.0039372295026203
218 => 0.003958807961377
219 => 0.0039857921544732
220 => 0.0040974102181802
221 => 0.0041243209554588
222 => 0.0040589418154894
223 => 0.0040648448198095
224 => 0.0040403912267634
225 => 0.0040167693622835
226 => 0.004069867863938
227 => 0.0041669064193653
228 => 0.0041663027475483
301 => 0.0041888138062474
302 => 0.0042028380093253
303 => 0.0041426358633709
304 => 0.0041034464800489
305 => 0.0041184741832998
306 => 0.0041425038080588
307 => 0.0041106816998536
308 => 0.0039142609065767
309 => 0.003973842427848
310 => 0.0039639251493209
311 => 0.0039498017387161
312 => 0.0040097114190847
313 => 0.0040039329842625
314 => 0.0038308464271573
315 => 0.0038419268669652
316 => 0.0038315202654015
317 => 0.003865146124044
318 => 0.003769014041726
319 => 0.0037985836227876
320 => 0.0038171293868318
321 => 0.0038280529843291
322 => 0.0038675165088703
323 => 0.0038628859197517
324 => 0.003867228664949
325 => 0.0039257426538594
326 => 0.0042216863301919
327 => 0.0042377938915318
328 => 0.0041584743684305
329 => 0.0041901609534011
330 => 0.004129329639352
331 => 0.0041701661080075
401 => 0.0041981053827278
402 => 0.0040718531726805
403 => 0.0040643773361715
404 => 0.0040032949496505
405 => 0.0040361171642837
406 => 0.0039838946608015
407 => 0.0039967082364904
408 => 0.0039608803617968
409 => 0.0040253634029866
410 => 0.0040974654626884
411 => 0.0041156812903657
412 => 0.0040677632901536
413 => 0.00403306750005
414 => 0.0039721531221318
415 => 0.0040734550901752
416 => 0.0041030788727526
417 => 0.0040732994890566
418 => 0.0040663989551618
419 => 0.0040533224559002
420 => 0.0040691731962967
421 => 0.0041029175352707
422 => 0.0040870043281707
423 => 0.0040975152818149
424 => 0.0040574583653716
425 => 0.0041426557927862
426 => 0.0042779698113983
427 => 0.0042784048680942
428 => 0.004262491575216
429 => 0.004255980198627
430 => 0.0042723082028193
501 => 0.0042811654752838
502 => 0.0043339672467979
503 => 0.0043906256513479
504 => 0.0046550257033841
505 => 0.0045807832267862
506 => 0.0048153746821822
507 => 0.0050009060655124
508 => 0.005056538815069
509 => 0.0050053593032
510 => 0.0048302769577593
511 => 0.0048216865826176
512 => 0.0050833335245655
513 => 0.0050094062792761
514 => 0.0050006128686835
515 => 0.0049070658366795
516 => 0.0049623637186192
517 => 0.004950269260668
518 => 0.0049311775671109
519 => 0.0050366820737679
520 => 0.0052341770917776
521 => 0.0052033956411242
522 => 0.0051804187161219
523 => 0.005079740519244
524 => 0.0051403712810539
525 => 0.0051187818280791
526 => 0.005211543819064
527 => 0.0051565936705342
528 => 0.0050088462076836
529 => 0.0050323754781246
530 => 0.0050288190762317
531 => 0.0051020095751768
601 => 0.0050800396040934
602 => 0.0050245290867722
603 => 0.0052335020752765
604 => 0.0052199325317718
605 => 0.0052391710420319
606 => 0.005247640429219
607 => 0.0053748386048045
608 => 0.0054269476274542
609 => 0.0054387772878925
610 => 0.0054882768291533
611 => 0.0054375456942129
612 => 0.0056405064046606
613 => 0.0057754634340226
614 => 0.0059322229684518
615 => 0.0061612907812435
616 => 0.0062474223978489
617 => 0.0062318634922434
618 => 0.0064055400935872
619 => 0.0067176330855882
620 => 0.0062949464090069
621 => 0.0067400365058104
622 => 0.0065991261199747
623 => 0.0062650301300278
624 => 0.0062435182870082
625 => 0.0064697719703344
626 => 0.006971580863842
627 => 0.0068458834274877
628 => 0.006971786459818
629 => 0.0068249138848714
630 => 0.0068176204235861
701 => 0.0069646531866786
702 => 0.0073082032519829
703 => 0.0071449954937385
704 => 0.0069109971521109
705 => 0.0070837778861512
706 => 0.0069340992242234
707 => 0.0065968313064804
708 => 0.0068457873090271
709 => 0.0066793175199829
710 => 0.0067279022544467
711 => 0.0070777969905053
712 => 0.0070356967301561
713 => 0.0070901783654271
714 => 0.0069940197052064
715 => 0.0069041923537313
716 => 0.0067365229315364
717 => 0.0066868842816271
718 => 0.0067006026186505
719 => 0.0066868774835006
720 => 0.0065930679827441
721 => 0.0065728098299874
722 => 0.0065390453545295
723 => 0.0065495103773245
724 => 0.006486023285318
725 => 0.0066058365450367
726 => 0.0066280749418313
727 => 0.006715265040658
728 => 0.0067243174059602
729 => 0.0069671405901189
730 => 0.0068333976607621
731 => 0.0069231239645836
801 => 0.0069150979994331
802 => 0.0062722710031976
803 => 0.0063608468915682
804 => 0.006498643177228
805 => 0.0064365661373167
806 => 0.0063488037266724
807 => 0.0062779308745544
808 => 0.0061705512564745
809 => 0.0063216860068791
810 => 0.0065204121322724
811 => 0.0067293574284482
812 => 0.0069803915111653
813 => 0.0069243636262617
814 => 0.0067246645208875
815 => 0.0067336228768743
816 => 0.0067889999086015
817 => 0.0067172816209809
818 => 0.0066961304978542
819 => 0.0067860940690815
820 => 0.0067867135987535
821 => 0.0067041930414013
822 => 0.0066124865430069
823 => 0.0066121022894301
824 => 0.0065957840038206
825 => 0.0068278168716301
826 => 0.0069554114877564
827 => 0.0069700400048662
828 => 0.0069544268720009
829 => 0.0069604357471777
830 => 0.0068861912514093
831 => 0.0070558921522145
901 => 0.007211626480473
902 => 0.0071698863537211
903 => 0.0071073119700113
904 => 0.0070574684593958
905 => 0.0071581448066696
906 => 0.0071536618474048
907 => 0.0072102662769753
908 => 0.007207698373087
909 => 0.0071886644324227
910 => 0.007169887033483
911 => 0.0072443372977778
912 => 0.0072228968172955
913 => 0.0072014230338251
914 => 0.0071583540736034
915 => 0.0071642078605972
916 => 0.007101644281237
917 => 0.0070726995067104
918 => 0.0066374395460548
919 => 0.0065211238620381
920 => 0.0065577191440538
921 => 0.0065697672610895
922 => 0.0065191465263428
923 => 0.0065917236565697
924 => 0.006580412587702
925 => 0.0066244173399121
926 => 0.0065969250811955
927 => 0.0065980533730829
928 => 0.0066789022440009
929 => 0.0067023730151841
930 => 0.006690435591528
1001 => 0.0066987961538658
1002 => 0.0068914617841679
1003 => 0.0068640708926389
1004 => 0.0068495200274349
1005 => 0.0068535507165388
1006 => 0.0069027809158787
1007 => 0.0069165626838246
1008 => 0.0068581683646101
1009 => 0.0068857074631252
1010 => 0.0070029654493706
1011 => 0.0070439991083293
1012 => 0.0071749588504516
1013 => 0.0071193248243742
1014 => 0.0072214434870235
1015 => 0.0075353214411898
1016 => 0.0077860688696803
1017 => 0.0075554711718647
1018 => 0.0080159368917949
1019 => 0.0083744755046451
1020 => 0.0083607141955066
1021 => 0.0082981946952086
1022 => 0.0078900080167209
1023 => 0.0075143885494561
1024 => 0.0078286101834682
1025 => 0.0078294111990335
1026 => 0.0078024192820025
1027 => 0.007634774803503
1028 => 0.0077965856175412
1029 => 0.007809429572349
1030 => 0.0078022403731399
1031 => 0.0076737077445376
1101 => 0.0074774621774623
1102 => 0.0075158080915233
1103 => 0.0075786194809907
1104 => 0.0074597044169004
1105 => 0.0074217038486058
1106 => 0.0074923541349694
1107 => 0.0077200040782049
1108 => 0.0076769681751226
1109 => 0.0076758443337714
1110 => 0.0078599701772207
1111 => 0.007728175810155
1112 => 0.0075162917563002
1113 => 0.0074627882382946
1114 => 0.0072728867936628
1115 => 0.0074040523978757
1116 => 0.0074087728144617
1117 => 0.0073369347535143
1118 => 0.0075221210190239
1119 => 0.0075204144949859
1120 => 0.0076962212927491
1121 => 0.0080322978600547
1122 => 0.007932903481779
1123 => 0.0078173186339219
1124 => 0.0078298859117041
1125 => 0.0079677179302909
1126 => 0.0078843815454544
1127 => 0.0079143498904835
1128 => 0.0079676725696115
1129 => 0.007999843465857
1130 => 0.0078252570148164
1201 => 0.0077845525616435
1202 => 0.0077012855357736
1203 => 0.0076795627229768
1204 => 0.0077473819781243
1205 => 0.0077295140004826
1206 => 0.007408376081726
1207 => 0.0073748153824214
1208 => 0.0073758446411555
1209 => 0.0072914546670298
1210 => 0.0071627397005738
1211 => 0.007500994947249
1212 => 0.0074738283170618
1213 => 0.0074438384598654
1214 => 0.0074475120462522
1215 => 0.0075943371842999
1216 => 0.007509171189385
1217 => 0.0077355989452983
1218 => 0.0076890522057239
1219 => 0.0076413117179164
1220 => 0.0076347125282905
1221 => 0.0076163365135116
1222 => 0.0075533183214209
1223 => 0.0074772200676651
1224 => 0.0074269734090176
1225 => 0.0068509903814897
1226 => 0.0069578894810598
1227 => 0.0070808671509556
1228 => 0.0071233185498015
1229 => 0.0070507024945282
1230 => 0.0075561856458832
1231 => 0.0076485422885925
]
'min_raw' => 0.0031878397237662
'max_raw' => 0.0083744755046451
'avg_raw' => 0.0057811576142056
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.003187'
'max' => '$0.008374'
'avg' => '$0.005781'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00012359972926155
'max_diff' => -0.0015102519096122
'year' => 2027
]
2 => [
'items' => [
101 => 0.007368787993551
102 => 0.0073164573872414
103 => 0.0075596164317207
104 => 0.0074129618029154
105 => 0.0074790003732867
106 => 0.0073362611053108
107 => 0.007626296277882
108 => 0.0076240866958089
109 => 0.0075112564629372
110 => 0.0076066198031322
111 => 0.0075900480759968
112 => 0.0074626630209732
113 => 0.0076303346113389
114 => 0.0076304177743558
115 => 0.0075218211283576
116 => 0.0073950040206944
117 => 0.0073723321171306
118 => 0.0073552518833369
119 => 0.0074747996828108
120 => 0.0075819858660028
121 => 0.0077814327792148
122 => 0.0078315784719381
123 => 0.0080273004490249
124 => 0.0079107575411998
125 => 0.0079624195027553
126 => 0.0080185058700545
127 => 0.0080453957370456
128 => 0.0080015801417734
129 => 0.0083056169345689
130 => 0.0083312869553275
131 => 0.008339893891243
201 => 0.0082373743953561
202 => 0.0083284357026905
203 => 0.0082858311326223
204 => 0.0083966763880493
205 => 0.0084140583394436
206 => 0.0083993364449935
207 => 0.0084048537507215
208 => 0.0081454119838361
209 => 0.0081319585595587
210 => 0.0079485201649256
211 => 0.0080232726666467
212 => 0.0078835264476596
213 => 0.007927841413246
214 => 0.007947375027828
215 => 0.0079371717760932
216 => 0.0080274990609363
217 => 0.0079507024161745
218 => 0.0077480234441109
219 => 0.0075452892522969
220 => 0.0075427440896624
221 => 0.0074893677555135
222 => 0.007450786442287
223 => 0.00745821857196
224 => 0.0074844103663157
225 => 0.007449264127585
226 => 0.0074567643595777
227 => 0.0075813181844415
228 => 0.0076062965657407
229 => 0.0075214102664024
301 => 0.0071805795255249
302 => 0.0070969388068044
303 => 0.0071570580967532
304 => 0.0071283249483358
305 => 0.0057531145762586
306 => 0.0060761998543943
307 => 0.0058842335530654
308 => 0.0059727004566626
309 => 0.0057767525724385
310 => 0.0058702691732988
311 => 0.0058530000717994
312 => 0.0063725116382533
313 => 0.0063644001797079
314 => 0.0063682827056647
315 => 0.0061829596258772
316 => 0.0064781843240487
317 => 0.0066236226263048
318 => 0.0065967058672723
319 => 0.006603480235622
320 => 0.0064870741428183
321 => 0.0063694097710942
322 => 0.0062389018744351
323 => 0.0064813694151641
324 => 0.006454411163694
325 => 0.0065162436932937
326 => 0.0066735012253943
327 => 0.0066966579943593
328 => 0.0067277809266812
329 => 0.006716625570925
330 => 0.006982391402634
331 => 0.0069502054068346
401 => 0.0070277643961682
402 => 0.0068682196706944
403 => 0.0066876796696964
404 => 0.0067219944215888
405 => 0.0067186896350398
406 => 0.006676615909213
407 => 0.00663863363078
408 => 0.0065754038386296
409 => 0.0067754722572419
410 => 0.0067673498448141
411 => 0.006898842260749
412 => 0.0068755996989834
413 => 0.0067203801830925
414 => 0.0067259238784686
415 => 0.0067632078940818
416 => 0.0068922482978206
417 => 0.0069305562753909
418 => 0.0069128104938714
419 => 0.0069548134424516
420 => 0.0069880108604113
421 => 0.0069589825270309
422 => 0.0073699625123594
423 => 0.0071992949690264
424 => 0.0072824771421498
425 => 0.0073023156003019
426 => 0.0072514998069031
427 => 0.0072625199329142
428 => 0.0072792124210163
429 => 0.0073805659400483
430 => 0.0076465469008654
501 => 0.0077643480578177
502 => 0.0081187586507152
503 => 0.0077545663116041
504 => 0.0077329566453789
505 => 0.0077967966953343
506 => 0.0080048732315365
507 => 0.0081734997204931
508 => 0.0082294428551755
509 => 0.0082368366639443
510 => 0.0083417897036378
511 => 0.0084019468287318
512 => 0.00832904564408
513 => 0.0082672695231598
514 => 0.0080459951259581
515 => 0.0080716082399444
516 => 0.0082480571960068
517 => 0.0084973017392367
518 => 0.0087111794868028
519 => 0.0086362869539972
520 => 0.0092076641134154
521 => 0.0092643138249054
522 => 0.0092564866664819
523 => 0.0093855431398633
524 => 0.009129392322095
525 => 0.0090198828848106
526 => 0.0082806262216915
527 => 0.0084883271901406
528 => 0.0087902327456314
529 => 0.0087502744132745
530 => 0.0085310225289184
531 => 0.0087110131645877
601 => 0.0086515026316079
602 => 0.0086045642051524
603 => 0.0088195982362067
604 => 0.0085831594859513
605 => 0.0087878740882314
606 => 0.0085253254933058
607 => 0.0086366290567786
608 => 0.0085734477710039
609 => 0.0086143338061073
610 => 0.0083753148803316
611 => 0.0085042836908237
612 => 0.0083699493538051
613 => 0.0083698856618385
614 => 0.0083669202239033
615 => 0.0085249639756761
616 => 0.0085301177767475
617 => 0.0084133232053965
618 => 0.0083964912829907
619 => 0.0084587277220925
620 => 0.0083858651516535
621 => 0.0084199570897704
622 => 0.0083868977617291
623 => 0.008379455410651
624 => 0.0083201534910492
625 => 0.0082946045935445
626 => 0.0083046229745701
627 => 0.0082704250753004
628 => 0.0082498196039983
629 => 0.0083628212770291
630 => 0.0083024490416033
701 => 0.0083535683660904
702 => 0.0082953114440642
703 => 0.0080933675709889
704 => 0.0079772275140655
705 => 0.0075957742580332
706 => 0.0077039539282526
707 => 0.0077756771615281
708 => 0.0077519726333584
709 => 0.0078028991323016
710 => 0.0078060256057288
711 => 0.0077894688817882
712 => 0.0077702983165126
713 => 0.0077609671455353
714 => 0.0078305140491157
715 => 0.0078708883674853
716 => 0.0077828755475204
717 => 0.0077622553752328
718 => 0.0078512411955383
719 => 0.0079055224945192
720 => 0.0083063051081669
721 => 0.0082766138376371
722 => 0.0083511331000494
723 => 0.008342743374693
724 => 0.0084208514335505
725 => 0.008548525098854
726 => 0.0082889288391738
727 => 0.008333985773691
728 => 0.008322938853864
729 => 0.0084435462278778
730 => 0.0084439227509347
731 => 0.0083716126054283
801 => 0.0084108131084055
802 => 0.0083889324630531
803 => 0.0084284737465513
804 => 0.0082762172926173
805 => 0.0084616492184404
806 => 0.0085667771714128
807 => 0.0085682368731418
808 => 0.0086180666885036
809 => 0.0086686966668596
810 => 0.0087658765013721
811 => 0.0086659863740195
812 => 0.0084862937590201
813 => 0.0084992669854195
814 => 0.0083939132709923
815 => 0.0083956842859655
816 => 0.0083862304692415
817 => 0.0084146020848804
818 => 0.0082824432667756
819 => 0.0083134606772295
820 => 0.0082700361209564
821 => 0.0083338913771864
822 => 0.0082651936771349
823 => 0.0083229335267048
824 => 0.0083478521316728
825 => 0.008439802320464
826 => 0.008251612559488
827 => 0.0078678808975312
828 => 0.0079485459451712
829 => 0.0078292360036089
830 => 0.0078402785929455
831 => 0.0078625863808204
901 => 0.0077902795416637
902 => 0.0078040734079244
903 => 0.0078035805939557
904 => 0.0077993337894124
905 => 0.0077805239879251
906 => 0.0077532460543627
907 => 0.00786191294597
908 => 0.0078803775683674
909 => 0.0079214221366742
910 => 0.0080435429311583
911 => 0.0080313401839827
912 => 0.0080512433709133
913 => 0.0080077948255955
914 => 0.0078422940463493
915 => 0.0078512815349107
916 => 0.007739207408536
917 => 0.0079185561492858
918 => 0.0078760840001885
919 => 0.0078487019293678
920 => 0.0078412304776513
921 => 0.0079636539859642
922 => 0.0080002850184048
923 => 0.007977459017205
924 => 0.0079306422228033
925 => 0.0080205443081973
926 => 0.0080445983135842
927 => 0.0080499831183128
928 => 0.008209272376616
929 => 0.008058885618369
930 => 0.0080950852057949
1001 => 0.0083775040532635
1002 => 0.0081213891297464
1003 => 0.0082570589167778
1004 => 0.0082504185866941
1005 => 0.0083198226589241
1006 => 0.0082447254270182
1007 => 0.0082456563472109
1008 => 0.008307282461512
1009 => 0.0082207396983043
1010 => 0.0081993104930805
1011 => 0.0081697061995427
1012 => 0.0082343460914311
1013 => 0.0082730947832074
1014 => 0.0085853807811462
1015 => 0.0087871317777864
1016 => 0.0087783732349418
1017 => 0.0088584099212358
1018 => 0.0088223526610083
1019 => 0.0087059142563092
1020 => 0.0089046604149799
1021 => 0.008841768814484
1022 => 0.0088469535216156
1023 => 0.0088467605465572
1024 => 0.0088885779628078
1025 => 0.0088589464908843
1026 => 0.008800539818115
1027 => 0.0088393128932246
1028 => 0.0089544550646721
1029 => 0.0093118598978384
1030 => 0.0095118683774625
1031 => 0.009299819136227
1101 => 0.0094460878633787
1102 => 0.0093583787479641
1103 => 0.0093424393925731
1104 => 0.0094343069623985
1105 => 0.0095263353342435
1106 => 0.0095204735248066
1107 => 0.0094536656525562
1108 => 0.009415927580709
1109 => 0.0097016929039177
1110 => 0.0099122399261726
1111 => 0.0098978820307799
1112 => 0.0099612531116053
1113 => 0.010147312564902
1114 => 0.010164323509539
1115 => 0.010162180521507
1116 => 0.010120017120317
1117 => 0.010303216814961
1118 => 0.010456045223325
1119 => 0.010110257511159
1120 => 0.010241928945258
1121 => 0.010301040494214
1122 => 0.010387833785687
1123 => 0.010534268616648
1124 => 0.010693335682991
1125 => 0.010715829510254
1126 => 0.010699869063382
1127 => 0.010594960057176
1128 => 0.010769013139234
1129 => 0.010870969352656
1130 => 0.010931681944523
1201 => 0.011085638975885
1202 => 0.010301405547016
1203 => 0.0097462861471328
1204 => 0.0096595962368197
1205 => 0.0098358835783538
1206 => 0.0098823691444511
1207 => 0.0098636308710452
1208 => 0.0092387935172286
1209 => 0.0096563065974649
1210 => 0.010105515566302
1211 => 0.010122771512257
1212 => 0.010347654914573
1213 => 0.01042088616865
1214 => 0.010601946783656
1215 => 0.01059062139289
1216 => 0.01063470677134
1217 => 0.010624572306287
1218 => 0.010959948968775
1219 => 0.011329919231416
1220 => 0.011317108337654
1221 => 0.01126392073511
1222 => 0.011342913394722
1223 => 0.01172476235419
1224 => 0.011689607821007
1225 => 0.011723757455538
1226 => 0.012173978898816
1227 => 0.01275933081833
1228 => 0.012487376083344
1229 => 0.013077439605397
1230 => 0.013448853314606
1231 => 0.014091174919789
]
'min_raw' => 0.0057531145762586
'max_raw' => 0.014091174919789
'avg_raw' => 0.0099221447480239
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.005753'
'max' => '$0.014091'
'avg' => '$0.009922'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0025652748524924
'max_diff' => 0.0057166994151441
'year' => 2028
]
3 => [
'items' => [
101 => 0.01401075309132
102 => 0.014260804178644
103 => 0.013866781233817
104 => 0.01296202490732
105 => 0.012818843755384
106 => 0.013105496047484
107 => 0.013810202736492
108 => 0.013083302326009
109 => 0.013230353332333
110 => 0.013188002632619
111 => 0.01318574594381
112 => 0.013271874577028
113 => 0.013146940502378
114 => 0.012637936607045
115 => 0.012871210092697
116 => 0.012781131997174
117 => 0.012881080359924
118 => 0.013420460451845
119 => 0.013181987655991
120 => 0.012930775937516
121 => 0.013245851180827
122 => 0.013647050237162
123 => 0.013621943921241
124 => 0.013573227174727
125 => 0.013847840924098
126 => 0.014301422383779
127 => 0.014424023629693
128 => 0.014514525362955
129 => 0.014527004022932
130 => 0.014655541976144
131 => 0.013964361005989
201 => 0.015061282956411
202 => 0.015250691075391
203 => 0.015215090199185
204 => 0.01542560935192
205 => 0.01536366927683
206 => 0.015273927826125
207 => 0.015607645461917
208 => 0.015225065122106
209 => 0.014682040495269
210 => 0.014384126445177
211 => 0.014776443698379
212 => 0.015016018154924
213 => 0.015174361630903
214 => 0.015222276271061
215 => 0.014018015417163
216 => 0.01336898560828
217 => 0.013785006274632
218 => 0.014292580199794
219 => 0.013961541407207
220 => 0.013974517501137
221 => 0.013502543178373
222 => 0.014334339454623
223 => 0.014213153733681
224 => 0.0148418654683
225 => 0.014691818367106
226 => 0.01520450838024
227 => 0.015069499917668
228 => 0.01562991249758
301 => 0.015853476248272
302 => 0.016228874580603
303 => 0.016505019122012
304 => 0.016667176478531
305 => 0.016657441159082
306 => 0.017299989392083
307 => 0.016921101148008
308 => 0.016445128216347
309 => 0.016436519367688
310 => 0.016683032493584
311 => 0.017199656377889
312 => 0.017333609434517
313 => 0.01740847091896
314 => 0.017293817949589
315 => 0.01688256191581
316 => 0.01670498364554
317 => 0.016856285476748
318 => 0.016671256338695
319 => 0.016990668540981
320 => 0.017429289717485
321 => 0.017338716179033
322 => 0.017641489938534
323 => 0.017954828926889
324 => 0.018402917753171
325 => 0.018520064765042
326 => 0.018713704320963
327 => 0.018913023031287
328 => 0.018977038829253
329 => 0.019099264850506
330 => 0.019098620659042
331 => 0.019466957000847
401 => 0.019873243392285
402 => 0.020026607099502
403 => 0.020379258487722
404 => 0.019775355343774
405 => 0.020233422815598
406 => 0.020646611141355
407 => 0.020153990985632
408 => 0.020832953104521
409 => 0.020859315665036
410 => 0.021257359029743
411 => 0.020853865823731
412 => 0.020614272845997
413 => 0.021305968795283
414 => 0.021640658676925
415 => 0.021539847360778
416 => 0.020772668267231
417 => 0.020326137128927
418 => 0.019157479010563
419 => 0.020541805034039
420 => 0.021216069858731
421 => 0.020770922084225
422 => 0.020995428728986
423 => 0.022220264186277
424 => 0.022686602226191
425 => 0.022589607173838
426 => 0.022605997741011
427 => 0.022857625282714
428 => 0.023973480376444
429 => 0.023304834138962
430 => 0.023815989133821
501 => 0.024087103899987
502 => 0.024338930404192
503 => 0.023720524100448
504 => 0.022915986585469
505 => 0.022661155782288
506 => 0.020726660910954
507 => 0.020625962051816
508 => 0.020569436730694
509 => 0.020213052576685
510 => 0.019933032253469
511 => 0.01971034969596
512 => 0.019125964166415
513 => 0.019323177127819
514 => 0.018391788564464
515 => 0.018987657960915
516 => 0.017501139324636
517 => 0.018739156217069
518 => 0.018065359908238
519 => 0.018517796007924
520 => 0.018516217500994
521 => 0.017683139196477
522 => 0.017202637016331
523 => 0.017508831706945
524 => 0.017837096721047
525 => 0.017890356615169
526 => 0.018315960774546
527 => 0.018434737747097
528 => 0.0180748379751
529 => 0.017470334530002
530 => 0.017610746893043
531 => 0.017199791564276
601 => 0.016479608157781
602 => 0.016996856453522
603 => 0.01717346776349
604 => 0.017251469379296
605 => 0.016543251712631
606 => 0.016320714345611
607 => 0.016202237318679
608 => 0.017378912522652
609 => 0.01744337344652
610 => 0.017113582246157
611 => 0.018604269743885
612 => 0.018266881252546
613 => 0.018643826859558
614 => 0.01759800594283
615 => 0.017637957710233
616 => 0.01714284932823
617 => 0.017420076938998
618 => 0.01722414139917
619 => 0.017397679687665
620 => 0.017501697822263
621 => 0.017996724961852
622 => 0.01874480863183
623 => 0.017922784414898
624 => 0.017564616691977
625 => 0.017786821932865
626 => 0.018378583771215
627 => 0.019275133248046
628 => 0.018744357913023
629 => 0.018979906993556
630 => 0.019031363988804
701 => 0.018639989907128
702 => 0.019289563768688
703 => 0.019637675678226
704 => 0.019994766465803
705 => 0.020304818391199
706 => 0.01985213655265
707 => 0.02033657100929
708 => 0.019946202351431
709 => 0.019596001309762
710 => 0.019596532420186
711 => 0.019376846191126
712 => 0.018951176440076
713 => 0.018872676407037
714 => 0.019281043492368
715 => 0.019608515222297
716 => 0.019635487362458
717 => 0.019816792538251
718 => 0.019924087073694
719 => 0.020975719380882
720 => 0.021398694594392
721 => 0.021915900678961
722 => 0.022117381597038
723 => 0.022723766925544
724 => 0.022234061524567
725 => 0.022128110680674
726 => 0.020657218220849
727 => 0.020898076778744
728 => 0.021283714569329
729 => 0.020663577245976
730 => 0.021056911641708
731 => 0.021134564183387
801 => 0.020642505217027
802 => 0.020905335171573
803 => 0.02020733673595
804 => 0.018760023090317
805 => 0.019291175042512
806 => 0.019682281663142
807 => 0.019124124292405
808 => 0.020124599775778
809 => 0.019540142652397
810 => 0.019354897803175
811 => 0.018632191601802
812 => 0.018973281109338
813 => 0.01943460955221
814 => 0.019149562209703
815 => 0.019741078245479
816 => 0.020578822703703
817 => 0.021175849293179
818 => 0.02122168158141
819 => 0.020837833482052
820 => 0.021452952510959
821 => 0.021457432981544
822 => 0.020763576204102
823 => 0.02033859279133
824 => 0.020242035665775
825 => 0.02048325429655
826 => 0.020776138245727
827 => 0.02123793460222
828 => 0.021516988468798
829 => 0.022244612954099
830 => 0.022441487277193
831 => 0.022657792469707
901 => 0.022946842912958
902 => 0.023293922081092
903 => 0.022534532620442
904 => 0.022564704579392
905 => 0.021857571628098
906 => 0.021101898656516
907 => 0.021675360245981
908 => 0.022425084989808
909 => 0.022253097305201
910 => 0.022233745177294
911 => 0.022266290088602
912 => 0.022136616991002
913 => 0.021550110376464
914 => 0.02125557042637
915 => 0.021635602107147
916 => 0.021837572032216
917 => 0.02215080977237
918 => 0.02211219660925
919 => 0.022919063388608
920 => 0.023232587420682
921 => 0.023152374556828
922 => 0.023167135654208
923 => 0.023734755938418
924 => 0.024366066434475
925 => 0.024957372022789
926 => 0.025558873464388
927 => 0.024833739999539
928 => 0.024465561946104
929 => 0.024845427716938
930 => 0.024643865591935
1001 => 0.02580210134941
1002 => 0.025882295080269
1003 => 0.027040447084115
1004 => 0.02813967124594
1005 => 0.027449268244544
1006 => 0.028100287178426
1007 => 0.028804417233772
1008 => 0.030162798351519
1009 => 0.029705343379486
1010 => 0.029354940040142
1011 => 0.029023810577598
1012 => 0.02971283842383
1013 => 0.030599261740518
1014 => 0.030790188832875
1015 => 0.031099563662257
1016 => 0.030774293857716
1017 => 0.031166045509992
1018 => 0.032549100986925
1019 => 0.032175387188489
1020 => 0.03164465351722
1021 => 0.032736442986198
1022 => 0.033131557350797
1023 => 0.035904676884554
1024 => 0.039405854847776
1025 => 0.037956344181028
1026 => 0.037056586134761
1027 => 0.03726805061818
1028 => 0.038546562287995
1029 => 0.038957179658407
1030 => 0.03784098009733
1031 => 0.038235240652365
1101 => 0.040407655073447
1102 => 0.041573085710959
1103 => 0.039990274367001
1104 => 0.03562336064423
1105 => 0.031596866757005
1106 => 0.03266487425128
1107 => 0.03254379534556
1108 => 0.034877783626795
1109 => 0.032166474237992
1110 => 0.032212125734559
1111 => 0.034594378421714
1112 => 0.033958834246931
1113 => 0.032929334078132
1114 => 0.03160438324755
1115 => 0.029155089094102
1116 => 0.026985680958773
1117 => 0.031240389897009
1118 => 0.031056919110906
1119 => 0.030791226223782
1120 => 0.031382496993104
1121 => 0.034253540013794
1122 => 0.034187353179508
1123 => 0.033766306308598
1124 => 0.034085666649246
1125 => 0.032873348666331
1126 => 0.033185790614496
1127 => 0.031596228939801
1128 => 0.032314777202723
1129 => 0.032927125233141
1130 => 0.033050063166216
1201 => 0.033327048606798
1202 => 0.030960238343607
1203 => 0.032022866665881
1204 => 0.032647061250408
1205 => 0.029826927409122
1206 => 0.032591316271788
1207 => 0.030919037442603
1208 => 0.030351440891192
1209 => 0.031115634872507
1210 => 0.030817827734786
1211 => 0.030561790645595
1212 => 0.03041891755055
1213 => 0.030980057269416
1214 => 0.030953879430824
1215 => 0.030035745938233
1216 => 0.028838078225058
1217 => 0.029240054821702
1218 => 0.029094012955591
1219 => 0.028564738393027
1220 => 0.028921405543341
1221 => 0.027350823918473
1222 => 0.024648719864618
1223 => 0.02643381257028
1224 => 0.02636508844292
1225 => 0.026330434621513
1226 => 0.02767188245348
1227 => 0.027542933196903
1228 => 0.027308889033542
1229 => 0.028560439988427
1230 => 0.028103607054158
1231 => 0.029511458514199
]
'min_raw' => 0.012637936607045
'max_raw' => 0.041573085710959
'avg_raw' => 0.027105511159002
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.012637'
'max' => '$0.041573'
'avg' => '$0.0271055'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.0068848220307861
'max_diff' => 0.02748191079117
'year' => 2029
]
4 => [
'items' => [
101 => 0.030438760539905
102 => 0.030203566751108
103 => 0.031075698788324
104 => 0.02924931555061
105 => 0.029855966800402
106 => 0.029980996782201
107 => 0.028544996043917
108 => 0.027564030890022
109 => 0.027498611698078
110 => 0.025797753306549
111 => 0.026706338130455
112 => 0.027505855175697
113 => 0.027122948556055
114 => 0.027001731759286
115 => 0.027621002085262
116 => 0.027669124693282
117 => 0.026571924130621
118 => 0.026800066871421
119 => 0.027751460026133
120 => 0.026776094204946
121 => 0.02488111773948
122 => 0.024411137375945
123 => 0.024348433331993
124 => 0.023073809311474
125 => 0.024442543711135
126 => 0.023845054465882
127 => 0.025732515832617
128 => 0.024654408022596
129 => 0.024607932949693
130 => 0.024537679060589
131 => 0.023440557512073
201 => 0.023680757405486
202 => 0.024479218434668
203 => 0.024764118325188
204 => 0.024734400932491
205 => 0.024475305540026
206 => 0.024593918083913
207 => 0.024211825752703
208 => 0.024076900997989
209 => 0.023651041358133
210 => 0.023025145334272
211 => 0.023112180015233
212 => 0.021872116217362
213 => 0.021196463645115
214 => 0.021009451918075
215 => 0.020759372020919
216 => 0.021037699107896
217 => 0.021868603272429
218 => 0.02086635656385
219 => 0.019148074881424
220 => 0.019251346538347
221 => 0.019483367289824
222 => 0.019050998154418
223 => 0.018641797053748
224 => 0.018997564211246
225 => 0.018269505610695
226 => 0.019571349693359
227 => 0.019536138459299
228 => 0.020021385427819
301 => 0.020324820315504
302 => 0.019625501137601
303 => 0.019449624255518
304 => 0.019549811720711
305 => 0.01789393609141
306 => 0.019886065061861
307 => 0.019903293075923
308 => 0.019755776360098
309 => 0.020816523536782
310 => 0.023055030934925
311 => 0.022212814407992
312 => 0.021886682712634
313 => 0.021266706121358
314 => 0.022092788118666
315 => 0.02202935791016
316 => 0.021742502452101
317 => 0.021569011376023
318 => 0.021888674003223
319 => 0.021529401638963
320 => 0.021464866450198
321 => 0.021073853421258
322 => 0.020934279559885
323 => 0.020830944629521
324 => 0.02071718302467
325 => 0.020968112777345
326 => 0.020399472945225
327 => 0.019713749052138
328 => 0.019656738530063
329 => 0.019814149593928
330 => 0.019744506916043
331 => 0.019656405107715
401 => 0.019488194762516
402 => 0.019438290346341
403 => 0.019600455488729
404 => 0.019417380497788
405 => 0.019687517619532
406 => 0.019614055269786
407 => 0.019203700555832
408 => 0.018692246649472
409 => 0.018687693636894
410 => 0.018577501731721
411 => 0.01843715577302
412 => 0.01839811473799
413 => 0.018967602493557
414 => 0.020146425104246
415 => 0.019914994018934
416 => 0.020082226696084
417 => 0.020904845951398
418 => 0.021166331875638
419 => 0.020980735360246
420 => 0.020726679402882
421 => 0.020737856575651
422 => 0.02160604268993
423 => 0.021660190392938
424 => 0.021797004169731
425 => 0.021972848536477
426 => 0.021010682416275
427 => 0.020692538637915
428 => 0.020541784465783
429 => 0.020077519964824
430 => 0.020578189426079
501 => 0.02028647077181
502 => 0.020325833584799
503 => 0.020300198501201
504 => 0.020314196990282
505 => 0.019570985801407
506 => 0.019841772896603
507 => 0.019391536830818
508 => 0.018788721280103
509 => 0.018786700431003
510 => 0.018934238683032
511 => 0.018846477157553
512 => 0.018610313149043
513 => 0.018643859131789
514 => 0.018349961024191
515 => 0.018679543683248
516 => 0.018688994934607
517 => 0.018562087658381
518 => 0.019069855218302
519 => 0.0192778880019
520 => 0.019194354914071
521 => 0.019272027097776
522 => 0.019924611025377
523 => 0.020031010679809
524 => 0.020078266377941
525 => 0.020014950002624
526 => 0.019283955134007
527 => 0.019316377864861
528 => 0.019078481378678
529 => 0.018877483916769
530 => 0.018885522761152
531 => 0.018988861584415
601 => 0.019440148286345
602 => 0.020389854545752
603 => 0.020425895204071
604 => 0.020469577533333
605 => 0.020291899547245
606 => 0.020238310166491
607 => 0.020309008392298
608 => 0.020665668130149
609 => 0.021583093808075
610 => 0.021258814300695
611 => 0.020995170013484
612 => 0.021226457131357
613 => 0.021190852292449
614 => 0.02089031162062
615 => 0.020881876444943
616 => 0.020305042807038
617 => 0.02009180054497
618 => 0.01991359934988
619 => 0.019719008296902
620 => 0.019603648197945
621 => 0.01978089374017
622 => 0.019821431892784
623 => 0.019433881416988
624 => 0.019381059719185
625 => 0.019697541803578
626 => 0.019558269837878
627 => 0.019701514508379
628 => 0.019734748500666
629 => 0.019729397062464
630 => 0.019583981134989
701 => 0.019676664910796
702 => 0.01945744015065
703 => 0.019219066150485
704 => 0.019066998389604
705 => 0.018934299099375
706 => 0.019007928378122
707 => 0.018745453443563
708 => 0.018661482429421
709 => 0.019645265733004
710 => 0.020371997036814
711 => 0.020361430075839
712 => 0.020297106418508
713 => 0.020201534511292
714 => 0.020658676449855
715 => 0.020499417339301
716 => 0.020615291648773
717 => 0.020644786523763
718 => 0.02073405862707
719 => 0.020765965730806
720 => 0.020669520302408
721 => 0.020345837664889
722 => 0.019539251307012
723 => 0.019163783180083
724 => 0.01903987244428
725 => 0.019044376364186
726 => 0.018920138146782
727 => 0.018956731869774
728 => 0.018907412343305
729 => 0.018814013091849
730 => 0.019002161237537
731 => 0.019023843558606
801 => 0.0189799275332
802 => 0.018990271346966
803 => 0.01862666541338
804 => 0.0186543095828
805 => 0.018500383334619
806 => 0.018471524018693
807 => 0.018082411867182
808 => 0.017393043288071
809 => 0.017775020399525
810 => 0.017313645762998
811 => 0.017138916197179
812 => 0.017966058785745
813 => 0.017883036611217
814 => 0.017740938737297
815 => 0.017530746365978
816 => 0.017452783970836
817 => 0.016979109137846
818 => 0.016951121901756
819 => 0.017185887939282
820 => 0.01707755149077
821 => 0.016925406086838
822 => 0.016374350856526
823 => 0.015754782329539
824 => 0.0157734832089
825 => 0.015970556429852
826 => 0.016543573398716
827 => 0.016319685755687
828 => 0.016157252701854
829 => 0.016126833873591
830 => 0.016507589195435
831 => 0.017046437746549
901 => 0.017299253430676
902 => 0.017048720765833
903 => 0.016760922330099
904 => 0.016778439287352
905 => 0.016894971756225
906 => 0.016907217671024
907 => 0.016719890475518
908 => 0.016772621983777
909 => 0.016692518000861
910 => 0.016200920005562
911 => 0.016192028556702
912 => 0.016071382480567
913 => 0.016067729365329
914 => 0.01586248029325
915 => 0.015833764529246
916 => 0.015426230038905
917 => 0.015694470474576
918 => 0.015514548873583
919 => 0.015243364581671
920 => 0.01519661230753
921 => 0.015195206877714
922 => 0.015473652509809
923 => 0.015691216675246
924 => 0.015517678686863
925 => 0.015478167450801
926 => 0.015900044082122
927 => 0.015846356435295
928 => 0.015799863279392
929 => 0.01699818976894
930 => 0.016049620845881
1001 => 0.015635990653006
1002 => 0.015124044743079
1003 => 0.015290736912807
1004 => 0.015325861402186
1005 => 0.014094723774
1006 => 0.013595251391573
1007 => 0.013423851292144
1008 => 0.013325208111681
1009 => 0.013370161047701
1010 => 0.01292057732125
1011 => 0.013222705020853
1012 => 0.012833403516113
1013 => 0.012768135851947
1014 => 0.013464255167625
1015 => 0.013561116103731
1016 => 0.013147877257967
1017 => 0.013413243494239
1018 => 0.0133170180081
1019 => 0.012840076973049
1020 => 0.01282186133365
1021 => 0.01258254908755
1022 => 0.012208071762384
1023 => 0.012036925576215
1024 => 0.011947791156499
1025 => 0.011984569755269
1026 => 0.011965973370287
1027 => 0.011844619379201
1028 => 0.011972929239004
1029 => 0.011645150568502
1030 => 0.011514626460815
1031 => 0.01145567174951
1101 => 0.011164749313203
1102 => 0.011627736283162
1103 => 0.0117189505488
1104 => 0.011810344534719
1105 => 0.01260586678482
1106 => 0.012566124741327
1107 => 0.012925373459339
1108 => 0.012911413714773
1109 => 0.012808950160953
1110 => 0.012376673281821
1111 => 0.012548971141249
1112 => 0.012018665110964
1113 => 0.012416006446158
1114 => 0.012234676454146
1115 => 0.012354698593457
1116 => 0.012138887965016
1117 => 0.012258326477398
1118 => 0.011740580835009
1119 => 0.011257117239025
1120 => 0.011451677103231
1121 => 0.011663185926243
1122 => 0.012121790945978
1123 => 0.011848649579633
1124 => 0.011946881543589
1125 => 0.011617820908168
1126 => 0.01093887482577
1127 => 0.010942717586863
1128 => 0.010838276523731
1129 => 0.01074802419654
1130 => 0.011880023151286
1201 => 0.011739241187008
1202 => 0.011514923552019
1203 => 0.01181518162048
1204 => 0.011894574619517
1205 => 0.011896834826587
1206 => 0.012115895362553
1207 => 0.012232808009868
1208 => 0.012253414370685
1209 => 0.012598110857145
1210 => 0.01271364857275
1211 => 0.013189532071816
1212 => 0.012222888788566
1213 => 0.012202981406265
1214 => 0.011819406867256
1215 => 0.011576137830542
1216 => 0.011836063706325
1217 => 0.012066322548848
1218 => 0.011826561651337
1219 => 0.011857869362923
1220 => 0.011536009947199
1221 => 0.011651059543427
1222 => 0.011750155754553
1223 => 0.011695440651376
1224 => 0.011613529493678
1225 => 0.012047443949599
1226 => 0.012022960795471
1227 => 0.012427031912475
1228 => 0.012742034243582
1229 => 0.013306574734329
1230 => 0.012717447302074
1231 => 0.012695977156873
]
'min_raw' => 0.01074802419654
'max_raw' => 0.031075698788324
'avg_raw' => 0.020911861492432
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.010748'
'max' => '$0.031075'
'avg' => '$0.020911'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0018899124105049
'max_diff' => -0.010497386922635
'year' => 2030
]
5 => [
'items' => [
101 => 0.012905851270131
102 => 0.012713616442117
103 => 0.012835102217701
104 => 0.01328700149772
105 => 0.013296549417413
106 => 0.013136609460751
107 => 0.013126877099853
108 => 0.013157595318081
109 => 0.01333751288171
110 => 0.01327464415667
111 => 0.013347397436928
112 => 0.013438376527928
113 => 0.013814704622641
114 => 0.013905436052223
115 => 0.01368500571719
116 => 0.01370490810839
117 => 0.01362246111214
118 => 0.01354281834682
119 => 0.013721843652367
120 => 0.014049015917006
121 => 0.014046980595328
122 => 0.014122878201404
123 => 0.01417016178122
124 => 0.013967186042955
125 => 0.013835056300969
126 => 0.01388572325168
127 => 0.01396674080925
128 => 0.013859450349688
129 => 0.013197203931493
130 => 0.013398087190308
131 => 0.013364650393352
201 => 0.013317032328432
202 => 0.013519021998556
203 => 0.013499539602115
204 => 0.012915966190317
205 => 0.012953324666741
206 => 0.012918238083004
207 => 0.013031610013099
208 => 0.012707493985837
209 => 0.012807189892868
210 => 0.012869718231167
211 => 0.01290654790279
212 => 0.013039601931036
213 => 0.013023989576525
214 => 0.013038631445159
215 => 0.013235915444086
216 => 0.014233710210969
217 => 0.014288017978621
218 => 0.014020586668572
219 => 0.014127420202087
220 => 0.013922323179664
221 => 0.014060006184847
222 => 0.014154205400225
223 => 0.013728537259402
224 => 0.013703331954666
225 => 0.013497388423874
226 => 0.013608050812084
227 => 0.013431978995535
228 => 0.013475180860586
301 => 0.013354384679634
302 => 0.013571793755067
303 => 0.013814890883357
304 => 0.013876306818159
305 => 0.013714747934917
306 => 0.0135977686562
307 => 0.013392391578142
308 => 0.013733938236078
309 => 0.013833816887304
310 => 0.013733413616043
311 => 0.013710147984237
312 => 0.013666059654004
313 => 0.013719501531915
314 => 0.01383327292672
315 => 0.013779620437957
316 => 0.01381505885202
317 => 0.013680004161547
318 => 0.01396725323637
319 => 0.014423473897443
320 => 0.014424940721468
321 => 0.014371287943499
322 => 0.014349334382719
323 => 0.014404385388839
324 => 0.014434248301348
325 => 0.01461227316051
326 => 0.014803300927213
327 => 0.015694744162475
328 => 0.015444430469181
329 => 0.016235371939701
330 => 0.016860903951987
331 => 0.017048473651271
401 => 0.016875918353766
402 => 0.016285616002253
403 => 0.016256652952702
404 => 0.017138813885086
405 => 0.016889563016157
406 => 0.016859915418408
407 => 0.016544515068761
408 => 0.016730955738495
409 => 0.016690178429105
410 => 0.016625809451338
411 => 0.016981525261621
412 => 0.017647393503503
413 => 0.017543611693533
414 => 0.01746614338669
415 => 0.017126699816789
416 => 0.017331120663335
417 => 0.017258330315303
418 => 0.017571083844344
419 => 0.017385815582079
420 => 0.01688767469568
421 => 0.016967005273733
422 => 0.016955014616451
423 => 0.017201781493642
424 => 0.01712770820224
425 => 0.016940550617471
426 => 0.017645117638241
427 => 0.01759936697492
428 => 0.017664230955452
429 => 0.017692786085667
430 => 0.018121643615346
501 => 0.018297332823345
502 => 0.018337217349434
503 => 0.018504108508742
504 => 0.018333064945356
505 => 0.019017361150895
506 => 0.019472378197788
507 => 0.020000903912717
508 => 0.020773222036548
509 => 0.02106362079545
510 => 0.021011162858913
511 => 0.021596725646057
512 => 0.022648968958225
513 => 0.02122385131709
514 => 0.022724503653661
515 => 0.022249414449767
516 => 0.021122986493824
517 => 0.021050457813175
518 => 0.021813287903037
519 => 0.023505171622676
520 => 0.023081373940092
521 => 0.023505864803863
522 => 0.023010673663115
523 => 0.022986083249178
524 => 0.023481814475444
525 => 0.024640117506517
526 => 0.024089851154794
527 => 0.023300909408754
528 => 0.023883451716737
529 => 0.023378799657817
530 => 0.022241677325852
531 => 0.023081049869992
601 => 0.02251978535368
602 => 0.022683592178002
603 => 0.023863286709494
604 => 0.02372134274238
605 => 0.023905031379483
606 => 0.023580825742966
607 => 0.023277966555922
608 => 0.022712657392687
609 => 0.022545297218858
610 => 0.022591549549916
611 => 0.022545274298499
612 => 0.022228989017129
613 => 0.02216068724073
614 => 0.022046847954364
615 => 0.022082131509361
616 => 0.021868080346134
617 => 0.022272039116371
618 => 0.022347017423799
619 => 0.022640984929411
620 => 0.022671505611044
621 => 0.023490200929808
622 => 0.023039277305849
623 => 0.023341795803673
624 => 0.023314735701813
625 => 0.021147399603258
626 => 0.02144603939507
627 => 0.021910629192802
628 => 0.02170133211866
629 => 0.021405435023797
630 => 0.021166482254697
701 => 0.020804444375335
702 => 0.021314005738215
703 => 0.021984024744594
704 => 0.022688498398745
705 => 0.023534877335266
706 => 0.023345975409572
707 => 0.022672675933256
708 => 0.022702879655918
709 => 0.022889587184687
710 => 0.022647783970763
711 => 0.022576471482417
712 => 0.022879789943866
713 => 0.022881878731409
714 => 0.022603654910895
715 => 0.022294460048815
716 => 0.022293164511054
717 => 0.022238146271814
718 => 0.023020461285652
719 => 0.023450655442293
720 => 0.02349997650906
721 => 0.02344733574153
722 => 0.023467595083715
723 => 0.023217274582647
724 => 0.02378943301785
725 => 0.024314502178597
726 => 0.02417377242705
727 => 0.023962798523569
728 => 0.023794747647566
729 => 0.024134184981398
730 => 0.024119070371246
731 => 0.024309916157538
801 => 0.024301258290293
802 => 0.024237084030436
803 => 0.024173774718915
804 => 0.024424788982936
805 => 0.024352500906064
806 => 0.024280100545842
807 => 0.024134890539475
808 => 0.024154626991023
809 => 0.023943689515161
810 => 0.023846100186985
811 => 0.022378590840754
812 => 0.02198642439119
813 => 0.022109807939507
814 => 0.022150429007266
815 => 0.02197975766584
816 => 0.022224456527574
817 => 0.022186320469173
818 => 0.022334685563563
819 => 0.022241993493852
820 => 0.022245797608725
821 => 0.022518385221713
822 => 0.022597518565434
823 => 0.022557270708133
824 => 0.022585458927771
825 => 0.023235044551819
826 => 0.023142694248658
827 => 0.023093634990714
828 => 0.023107224740441
829 => 0.023273207794658
830 => 0.0233196739875
831 => 0.023122793463307
901 => 0.02321564345667
902 => 0.023610986943987
903 => 0.023749334790045
904 => 0.024190874703928
905 => 0.024003300700764
906 => 0.024347600901583
907 => 0.025405862338314
908 => 0.026251274800096
909 => 0.025473798562094
910 => 0.027026290885528
911 => 0.028235128851119
912 => 0.028188731636575
913 => 0.027977942776348
914 => 0.026601712891143
915 => 0.025335285632346
916 => 0.026394705809672
917 => 0.026397406489575
918 => 0.02630640135679
919 => 0.025741176292965
920 => 0.026286732749765
921 => 0.026330037040136
922 => 0.026305798153068
923 => 0.025872441421874
924 => 0.025210785791052
925 => 0.025340071717535
926 => 0.025551844702475
927 => 0.02515091426151
928 => 0.02502279269239
929 => 0.025260995065511
930 => 0.02602853274314
1001 => 0.025883434191228
1002 => 0.025879645081648
1003 => 0.026500438218093
1004 => 0.026056084307942
1005 => 0.025341702427099
1006 => 0.025161311580646
1007 => 0.024521045601575
1008 => 0.024963279593869
1009 => 0.024979194807957
1010 => 0.0247369877699
1011 => 0.025361356193358
1012 => 0.025355602528418
1013 => 0.025948347421515
1014 => 0.027081453032303
1015 => 0.026746337946452
1016 => 0.026356635562025
1017 => 0.026399007016488
1018 => 0.026863717290277
1019 => 0.02658274285044
1020 => 0.026683783218029
1021 => 0.026863564353579
1022 => 0.026972030776371
1023 => 0.026383400367451
1024 => 0.026246162461685
1025 => 0.025965421870446
1026 => 0.025892181890463
1027 => 0.026120839244183
1028 => 0.026060596110061
1029 => 0.02497785719584
1030 => 0.024864704955001
1031 => 0.024868175172684
1101 => 0.024583648482999
1102 => 0.024149676987001
1103 => 0.025290128167393
1104 => 0.025198533977004
1105 => 0.025097421079641
1106 => 0.025109806832626
1107 => 0.025604838036557
1108 => 0.025317694938602
1109 => 0.026081111926345
1110 => 0.02592417634408
1111 => 0.025763215956302
1112 => 0.025740966327738
1113 => 0.025679010310939
1114 => 0.025466540076515
1115 => 0.025209969500967
1116 => 0.025040559383227
1117 => 0.023098592392066
1118 => 0.023459010169724
1119 => 0.023873637969804
1120 => 0.024016765824875
1121 => 0.02377193572463
1122 => 0.02547620746113
1123 => 0.025787594330159
1124 => 0.024844383192606
1125 => 0.024667946899827
1126 => 0.025487774595111
1127 => 0.024993318274995
1128 => 0.025215971925667
1129 => 0.024734716517949
1130 => 0.025712590351882
1201 => 0.025705140591654
1202 => 0.025324725583972
1203 => 0.025646249743496
1204 => 0.025590377008457
1205 => 0.025160889401705
1206 => 0.025726205875079
1207 => 0.025726486264997
1208 => 0.025360345091039
1209 => 0.024932772358464
1210 => 0.024856332452697
1211 => 0.024798745251958
1212 => 0.025201809004445
1213 => 0.025563194704577
1214 => 0.02623564389741
1215 => 0.026404713601487
1216 => 0.027064603912107
1217 => 0.026671671361609
1218 => 0.026845853271917
1219 => 0.027034952375091
1220 => 0.027125613439042
1221 => 0.026977886100475
1222 => 0.028002967374556
1223 => 0.028089515641767
1224 => 0.028118534527123
1225 => 0.027772882889058
1226 => 0.028079902444433
1227 => 0.027936258161892
1228 => 0.028309980679533
1229 => 0.028368585142228
1230 => 0.028318949247239
1231 => 0.028337551228707
]
'min_raw' => 0.012707493985837
'max_raw' => 0.028368585142228
'avg_raw' => 0.020538039564032
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.0127074'
'max' => '$0.028368'
'avg' => '$0.020538'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0019594697892968
'max_diff' => -0.0027071136460962
'year' => 2031
]
6 => [
'items' => [
101 => 0.027462825198007
102 => 0.027417466038768
103 => 0.026798990684003
104 => 0.027051023962609
105 => 0.026579859828524
106 => 0.026729270828971
107 => 0.026795129774327
108 => 0.026760728798735
109 => 0.027065273546033
110 => 0.026806348296449
111 => 0.026123001991542
112 => 0.025439469509392
113 => 0.025430888315872
114 => 0.025250926278672
115 => 0.025120846687468
116 => 0.025145904631555
117 => 0.025234212094878
118 => 0.025115714097166
119 => 0.025141001652979
120 => 0.025560943569577
121 => 0.025645159926062
122 => 0.025358959841271
123 => 0.02420982520236
124 => 0.023927824679585
125 => 0.024130521063043
126 => 0.024033645247069
127 => 0.019397027463489
128 => 0.020486332035817
129 => 0.019839104248227
130 => 0.020137376590267
131 => 0.019476724617962
201 => 0.019792022366882
202 => 0.019733798385487
203 => 0.021485367902926
204 => 0.021458019554116
205 => 0.021471109761449
206 => 0.020846280059101
207 => 0.021841650740916
208 => 0.022332006131151
209 => 0.022241254398804
210 => 0.022264094654667
211 => 0.021871623385565
212 => 0.021474909741233
213 => 0.021034893255877
214 => 0.021852389497988
215 => 0.021761497870991
216 => 0.021969970561546
217 => 0.022500175310393
218 => 0.022578249973713
219 => 0.02268318311297
220 => 0.022645572052196
221 => 0.023541620108981
222 => 0.023433102776989
223 => 0.023694598324522
224 => 0.02315668214353
225 => 0.022547978925265
226 => 0.02266367350705
227 => 0.022652531188467
228 => 0.022510676684349
229 => 0.022382616780774
301 => 0.022169433121975
302 => 0.022843977763658
303 => 0.022816592483069
304 => 0.023259928343901
305 => 0.023181564424164
306 => 0.022658230989257
307 => 0.022676921945266
308 => 0.022802627606993
309 => 0.023237696337512
310 => 0.023366854358468
311 => 0.023307023217104
312 => 0.023448639090794
313 => 0.023560566503215
314 => 0.023462695450529
315 => 0.02484834316477
316 => 0.024272925626796
317 => 0.024553380131075
318 => 0.024620266877812
319 => 0.024448937882523
320 => 0.02448609300677
321 => 0.024542372895838
322 => 0.024884093361531
323 => 0.025780866741124
324 => 0.026178041566403
325 => 0.027372961624514
326 => 0.026145061726104
327 => 0.026072203227687
328 => 0.026287444413282
329 => 0.026988988982527
330 => 0.02755752496317
331 => 0.027746141147576
401 => 0.027771069890059
402 => 0.028124926390973
403 => 0.028327750338264
404 => 0.028081958904413
405 => 0.027873676399659
406 => 0.027127634320608
407 => 0.027213990722664
408 => 0.027808900697301
409 => 0.028649246076499
410 => 0.029370349834885
411 => 0.029117844431702
412 => 0.031044282416959
413 => 0.031235280874404
414 => 0.031208891063305
415 => 0.031644013973746
416 => 0.030780383607761
417 => 0.030411164894252
418 => 0.027918709441294
419 => 0.028618987757638
420 => 0.029636883416348
421 => 0.029502161109005
422 => 0.028762938073221
423 => 0.029369789067925
424 => 0.029169145151091
425 => 0.02901088896916
426 => 0.029735891218056
427 => 0.028938721463944
428 => 0.029628931038248
429 => 0.028743730119899
430 => 0.029118997855114
501 => 0.028905977738948
502 => 0.029043827860871
503 => 0.02823795886485
504 => 0.028672786213739
505 => 0.028219868617556
506 => 0.028219653875644
507 => 0.028209655694605
508 => 0.02874251123797
509 => 0.028759887638109
510 => 0.028366106586462
511 => 0.028309356584904
512 => 0.028519191084545
513 => 0.028273529841208
514 => 0.028388473190792
515 => 0.028277011358172
516 => 0.028251918951904
517 => 0.028051978389639
518 => 0.027965838497935
519 => 0.027999616169023
520 => 0.027884315564015
521 => 0.027814842778892
522 => 0.02819583580904
523 => 0.027992286602247
524 => 0.028164638973792
525 => 0.027968221693813
526 => 0.027287353826468
527 => 0.026895779515911
528 => 0.025609683230982
529 => 0.025974418541991
530 => 0.026216238430535
531 => 0.026136316958814
601 => 0.026308019205575
602 => 0.026318560329018
603 => 0.026262738178299
604 => 0.026198103279026
605 => 0.026166642584595
606 => 0.026401124825626
607 => 0.026537249658854
608 => 0.026240508291483
609 => 0.026170985940961
610 => 0.026471007846913
611 => 0.026654021036226
612 => 0.028005287599888
613 => 0.027905181408318
614 => 0.02815642830431
615 => 0.028128141759519
616 => 0.028391488533288
617 => 0.028821949209749
618 => 0.027946702295805
619 => 0.028098614896305
620 => 0.028061369434837
621 => 0.028468005616862
622 => 0.028469275090637
623 => 0.028225476386529
624 => 0.028357643619208
625 => 0.028283871495745
626 => 0.028417187693743
627 => 0.027903844429098
628 => 0.028529041113454
629 => 0.0288834873467
630 => 0.028888408832993
701 => 0.029056413534492
702 => 0.029227116041391
703 => 0.029554764638329
704 => 0.029217978099854
705 => 0.028612131902646
706 => 0.028655872041213
707 => 0.02830066463746
708 => 0.028306635738091
709 => 0.028274761534961
710 => 0.028370418417931
711 => 0.027924835735657
712 => 0.028029413100568
713 => 0.027883004177288
714 => 0.028098296631899
715 => 0.027866677539855
716 => 0.028061351473947
717 => 0.028145366290359
718 => 0.028455382771625
719 => 0.027820887853505
720 => 0.026527109763929
721 => 0.026799077603901
722 => 0.026396815805969
723 => 0.026434046666887
724 => 0.026509258931187
725 => 0.026265471374668
726 => 0.026311978357823
727 => 0.02631031680112
728 => 0.0262959984031
729 => 0.026232579844127
730 => 0.026140610386637
731 => 0.026506988398571
801 => 0.026569243162143
802 => 0.026707627789829
803 => 0.027119366574634
804 => 0.027078224160563
805 => 0.027145329144895
806 => 0.026998839340876
807 => 0.026440841908752
808 => 0.026471143853923
809 => 0.026093278112085
810 => 0.026697964913252
811 => 0.02655476709726
812 => 0.026462446533733
813 => 0.026437256012631
814 => 0.026850015418244
815 => 0.026973519501615
816 => 0.026896560044909
817 => 0.026738713953939
818 => 0.027041825111608
819 => 0.027122924870168
820 => 0.027141080115265
821 => 0.027678134970855
822 => 0.027171095515757
823 => 0.027293144952138
824 => 0.028245339814233
825 => 0.027381830468222
826 => 0.02783925062736
827 => 0.02781686229087
828 => 0.028050862966031
829 => 0.027797667405539
830 => 0.027800806067963
831 => 0.028008582814927
901 => 0.02771679784655
902 => 0.027644547784999
903 => 0.02754473484243
904 => 0.027762672750945
905 => 0.027893316670616
906 => 0.028946210715779
907 => 0.029626428286756
908 => 0.029596898248054
909 => 0.029866747523877
910 => 0.029745177953582
911 => 0.029352597742669
912 => 0.030022684292641
913 => 0.029810640870618
914 => 0.029828121472697
915 => 0.029827470843815
916 => 0.029968461182302
917 => 0.029868556605909
918 => 0.029671634430843
919 => 0.029802360560625
920 => 0.03019057043063
921 => 0.031395585778859
922 => 0.032069928332058
923 => 0.031354989510427
924 => 0.031848144736175
925 => 0.0315524273299
926 => 0.031498686680349
927 => 0.031808424606004
928 => 0.032118704686895
929 => 0.03209894118712
930 => 0.031873693781452
1001 => 0.031746457237431
1002 => 0.032709934976126
1003 => 0.033419808961582
1004 => 0.03337140031483
1005 => 0.03358506033826
1006 => 0.034212372775307
1007 => 0.034269726362816
1008 => 0.034262501129047
1009 => 0.03412034427818
1010 => 0.034738014839266
1011 => 0.035253286488204
1012 => 0.03408743907451
1013 => 0.034531378507582
1014 => 0.034730677221923
1015 => 0.035023306863839
1016 => 0.035517022120175
1017 => 0.03605332784006
1018 => 0.036129167349145
1019 => 0.036075355588194
1020 => 0.035721647549259
1021 => 0.036308479667415
1022 => 0.036652232159324
1023 => 0.03685692890162
1024 => 0.037376005781792
1025 => 0.034731908022933
1026 => 0.032860284209027
1027 => 0.03256800312391
1028 => 0.033162368203882
1029 => 0.033319097535497
1030 => 0.033255920138445
1031 => 0.031149237375301
1101 => 0.03255691187515
1102 => 0.034071451276354
1103 => 0.03412963090291
1104 => 0.034887840994679
1105 => 0.03513474528064
1106 => 0.035745203785382
1107 => 0.035707019439701
1108 => 0.035855656371089
1109 => 0.035821487314595
1110 => 0.036952233147426
1111 => 0.038199613718419
1112 => 0.038156420895673
1113 => 0.037977095180255
1114 => 0.038243424447228
1115 => 0.039530854873919
1116 => 0.039412328910881
1117 => 0.039527466787955
1118 => 0.041045419817422
1119 => 0.04301897468203
1120 => 0.042102060305751
1121 => 0.044091500667273
1122 => 0.045343747919148
1123 => 0.047509380056485
1124 => 0.047238232246927
1125 => 0.04808129694585
1126 => 0.046752821077564
1127 => 0.043702371954708
1128 => 0.043219626704366
1129 => 0.044186094920608
1130 => 0.046562062723648
1201 => 0.044111267239138
1202 => 0.044607059973732
1203 => 0.044464271632815
1204 => 0.044456663048939
1205 => 0.044747051749142
1206 => 0.044325827793842
1207 => 0.042609685623208
1208 => 0.04339618346672
1209 => 0.043092478878612
1210 => 0.043429461761795
1211 => 0.045248019400023
1212 => 0.044443991719163
1213 => 0.043597013871282
1214 => 0.044659312051956
1215 => 0.046011982681213
1216 => 0.045927334984217
1217 => 0.045763083072052
1218 => 0.046688962500975
1219 => 0.048218244060337
1220 => 0.048631602720681
1221 => 0.048936735633002
1222 => 0.048978808306348
1223 => 0.049412182989835
1224 => 0.047081818092244
1225 => 0.050780167032735
1226 => 0.05141876972993
1227 => 0.051298738890228
1228 => 0.052008518911651
1229 => 0.051799683623967
1230 => 0.051497114057366
1231 => 0.052622266365861
]
'min_raw' => 0.019397027463489
'max_raw' => 0.052622266365861
'avg_raw' => 0.036009646914675
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.019397'
'max' => '$0.052622'
'avg' => '$0.0360096'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.006689533477652
'max_diff' => 0.024253681223633
'year' => 2032
]
7 => [
'items' => [
101 => 0.05133237003928
102 => 0.049501524597131
103 => 0.048497086577551
104 => 0.049819811587438
105 => 0.050627553594234
106 => 0.051161419678686
107 => 0.051322967233271
108 => 0.047262717685546
109 => 0.045074468371086
110 => 0.046477111093326
111 => 0.048188432019687
112 => 0.047072311618092
113 => 0.047116061424739
114 => 0.045524767043345
115 => 0.048329226262881
116 => 0.04792064014381
117 => 0.05004038565233
118 => 0.049534491374701
119 => 0.051263061548853
120 => 0.050807871091304
121 => 0.052697341231235
122 => 0.053451102025415
123 => 0.054716783712344
124 => 0.0556478243135
125 => 0.056194549162468
126 => 0.056161725853249
127 => 0.058328122082097
128 => 0.057050673914064
129 => 0.0554458979436
130 => 0.055416872609297
131 => 0.056248008824252
201 => 0.057989842319713
202 => 0.058441474402439
203 => 0.058693875123902
204 => 0.05830731463285
205 => 0.056920736201986
206 => 0.056322018665651
207 => 0.056832143353125
208 => 0.056208304695858
209 => 0.057285225236513
210 => 0.058764067156648
211 => 0.058458692148115
212 => 0.059479515017261
213 => 0.060535959293129
214 => 0.062046722055502
215 => 0.062441691384969
216 => 0.06309456066724
217 => 0.063766577615085
218 => 0.063982411347368
219 => 0.06439450491157
220 => 0.064392332975071
221 => 0.065634204667891
222 => 0.067004027602635
223 => 0.067521104049027
224 => 0.068710092825744
225 => 0.066673991212752
226 => 0.068218397675256
227 => 0.069611490963436
228 => 0.067950587714773
301 => 0.070239755902231
302 => 0.070328639115583
303 => 0.071670670110191
304 => 0.070310264595127
305 => 0.069502460142849
306 => 0.071834561328536
307 => 0.072962991631791
308 => 0.07262309924098
309 => 0.070036501364353
310 => 0.068530990455754
311 => 0.064590778016585
312 => 0.069258129855291
313 => 0.071531460787405
314 => 0.070030613986435
315 => 0.0707875538138
316 => 0.074917172073337
317 => 0.076489463333588
318 => 0.076162437742601
319 => 0.076217699684179
320 => 0.077066079509105
321 => 0.080828262864131
322 => 0.078573875391072
323 => 0.080297270143938
324 => 0.081211352506697
325 => 0.08206040314759
326 => 0.079975403118767
327 => 0.077262848716
328 => 0.076403668871357
329 => 0.069881384350536
330 => 0.069541871116382
331 => 0.069351292049747
401 => 0.068149717992558
402 => 0.067205609922441
403 => 0.066454820132599
404 => 0.064484523519243
405 => 0.065149440787587
406 => 0.062009199218761
407 => 0.064018214491168
408 => 0.059006313123538
409 => 0.063180373511954
410 => 0.060908622213776
411 => 0.062434042111947
412 => 0.062428720065626
413 => 0.059619938398274
414 => 0.057999891750324
415 => 0.059032248527557
416 => 0.060139016941333
417 => 0.060318586392852
418 => 0.061753540530925
419 => 0.062154005386625
420 => 0.060940578177937
421 => 0.058902452607708
422 => 0.059375862692978
423 => 0.057990298110056
424 => 0.055562149473457
425 => 0.05730608821567
426 => 0.057901545577836
427 => 0.058164533471425
428 => 0.055776728162086
429 => 0.055026427892116
430 => 0.054626974324013
501 => 0.058594216927048
502 => 0.058811551432386
503 => 0.057699637375074
504 => 0.062725594350141
505 => 0.061588065495879
506 => 0.062858963927425
507 => 0.059332905689789
508 => 0.059467605862934
509 => 0.057798313385647
510 => 0.058733005630764
511 => 0.058072395278453
512 => 0.058657491734168
513 => 0.05900819613728
514 => 0.060677214700097
515 => 0.063199431022959
516 => 0.060427918983676
517 => 0.059220331499377
518 => 0.059969511982906
519 => 0.061964678336395
520 => 0.064987457492616
521 => 0.063197911393033
522 => 0.063992081563565
523 => 0.064165572415654
524 => 0.062846027374419
525 => 0.065036111000466
526 => 0.066209794607872
527 => 0.067413751129469
528 => 0.068459112843076
529 => 0.066932864419172
530 => 0.068566169011867
531 => 0.067250013827227
601 => 0.066069286564984
602 => 0.066071077240858
603 => 0.065330389781579
604 => 0.063895214496602
605 => 0.063630546154513
606 => 0.065007384293987
607 => 0.066111478094789
608 => 0.066202416548476
609 => 0.066813699606987
610 => 0.067175450624298
611 => 0.070721102370605
612 => 0.07214719283414
613 => 0.073890989258439
614 => 0.074570296240685
615 => 0.076614766712213
616 => 0.07496369076268
617 => 0.074606470095245
618 => 0.069647253472512
619 => 0.070459324916664
620 => 0.071759529651991
621 => 0.069668693369702
622 => 0.070994847746642
623 => 0.07125665871244
624 => 0.069597647552898
625 => 0.07048379709485
626 => 0.068130446636454
627 => 0.063250727631988
628 => 0.06504154352266
629 => 0.066360186800305
630 => 0.064478320255561
701 => 0.067851493198722
702 => 0.065880955201751
703 => 0.065256389259216
704 => 0.062819734843553
705 => 0.063969741932317
706 => 0.065525142986384
707 => 0.064564085969751
708 => 0.066558423582702
709 => 0.069382937513055
710 => 0.071395854342536
711 => 0.071550381102216
712 => 0.070256210435813
713 => 0.072330127188011
714 => 0.072345233407404
715 => 0.070005846838726
716 => 0.06857298559117
717 => 0.06824743650096
718 => 0.069060721955965
719 => 0.070048200639118
720 => 0.071605179296629
721 => 0.072546028890715
722 => 0.074999265644026
723 => 0.075663041169662
724 => 0.076392329228171
725 => 0.077366882978447
726 => 0.078537084626107
727 => 0.075976750040645
728 => 0.076078476906786
729 => 0.073694328791049
730 => 0.071146524607959
731 => 0.07307999039465
801 => 0.075607739712572
802 => 0.075027871226126
803 => 0.074962624175762
804 => 0.075072351616451
805 => 0.074635149714405
806 => 0.072657701714909
807 => 0.071664639709042
808 => 0.072945943053748
809 => 0.073626898757208
810 => 0.074683001667698
811 => 0.074552814692352
812 => 0.0772732223726
813 => 0.078330290536286
814 => 0.078059847265518
815 => 0.07810961533592
816 => 0.080023386754118
817 => 0.082151894168264
818 => 0.084145522242903
819 => 0.086173526348744
820 => 0.083728688244805
821 => 0.082487350232276
822 => 0.083768094200025
823 => 0.083088513422961
824 => 0.086993586144724
825 => 0.087263964907263
826 => 0.091168755247821
827 => 0.094874866254794
828 => 0.092547124333189
829 => 0.094742080121464
830 => 0.097116103763854
831 => 0.10169598054148
901 => 0.10015363916478
902 => 0.098972229841803
903 => 0.097855803740117
904 => 0.10017890923007
905 => 0.10316754733039
906 => 0.10381127135237
907 => 0.1048543501895
908 => 0.10375768033387
909 => 0.10507849838075
910 => 0.10974156648308
911 => 0.10848156431979
912 => 0.10669215869246
913 => 0.11037320311343
914 => 0.11170535877968
915 => 0.12105512490076
916 => 0.1328595908482
917 => 0.12797246443366
918 => 0.12493886736157
919 => 0.1256518346314
920 => 0.12996242598901
921 => 0.13134685112175
922 => 0.12758350637101
923 => 0.1289127833587
924 => 0.13623723025251
925 => 0.14016656101465
926 => 0.13483000206014
927 => 0.12010664755564
928 => 0.10653104229403
929 => 0.11013190412688
930 => 0.10972367814279
1001 => 0.11759288258683
1002 => 0.1084515136849
1003 => 0.10860543089287
1004 => 0.11663736215118
1005 => 0.11449458059362
1006 => 0.11102354889711
1007 => 0.10655638466669
1008 => 0.098298418424083
1009 => 0.090984107432581
1010 => 0.10532915567214
1011 => 0.10471057110727
1012 => 0.10381476898825
1013 => 0.10580827966822
1014 => 0.1154882016623
1015 => 0.11526504812949
1016 => 0.11384545920766
1017 => 0.11492220489318
1018 => 0.11083479017245
1019 => 0.11188821001468
1020 => 0.1065288918488
1021 => 0.10895152748468
1022 => 0.11101610162201
1023 => 0.11143059544662
1024 => 0.11236447119805
1025 => 0.10438460515029
1026 => 0.10796733072917
1027 => 0.11007184635078
1028 => 0.10056356820942
1029 => 0.10988389826337
1030 => 0.10424569343599
1031 => 0.10233200203459
1101 => 0.10490853539691
1102 => 0.10390445783985
1103 => 0.10304121091771
1104 => 0.10255950430268
1105 => 0.10445142604236
1106 => 0.10436316563187
1107 => 0.10126761445957
1108 => 0.097229594146109
1109 => 0.098584886306804
1110 => 0.098092495958892
1111 => 0.096308009818438
1112 => 0.097510538017426
1113 => 0.092215212414678
1114 => 0.083104879942225
1115 => 0.089123444630558
1116 => 0.088891736436996
1117 => 0.088774898658672
1118 => 0.093297683681044
1119 => 0.092862922259547
1120 => 0.092073826022333
1121 => 0.096293517447225
1122 => 0.09475327331428
1123 => 0.099499942804857
1124 => 0.10262640632668
1125 => 0.10183343404705
1126 => 0.10477388810084
1127 => 0.098616109500881
1128 => 0.10066147654459
1129 => 0.10108302385754
1130 => 0.096241447110047
1201 => 0.092934054604889
1202 => 0.09271348923183
1203 => 0.086978926414647
1204 => 0.090042283583812
1205 => 0.092737911122345
1206 => 0.091446914720535
1207 => 0.091038223827143
1208 => 0.093126136967245
1209 => 0.093288385699998
1210 => 0.089589097398886
1211 => 0.090358296577912
1212 => 0.093565985023174
1213 => 0.090277471059173
1214 => 0.083888425602824
1215 => 0.082303853994185
1216 => 0.082092442932143
1217 => 0.077794959055555
1218 => 0.082409742645998
1219 => 0.080395265940259
1220 => 0.086758973716553
1221 => 0.083124057963983
1222 => 0.082967364010904
1223 => 0.082730498118819
1224 => 0.079031476219417
1225 => 0.07984132693028
1226 => 0.082533394036937
1227 => 0.083493953908899
1228 => 0.083393759644619
1229 => 0.082520201439463
1230 => 0.082920111912441
1231 => 0.081631860940932
]
'min_raw' => 0.045074468371086
'max_raw' => 0.14016656101465
'avg_raw' => 0.09262051469287
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.045074'
'max' => '$0.140166'
'avg' => '$0.09262'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.025677440907597
'max_diff' => 0.087544294648792
'year' => 2033
]
8 => [
'items' => [
101 => 0.081176952710267
102 => 0.079741137201921
103 => 0.07763088505881
104 => 0.077924328562238
105 => 0.073743366889226
106 => 0.071465357069339
107 => 0.070834833974881
108 => 0.069991672141597
109 => 0.070930071347518
110 => 0.073731522750117
111 => 0.070352377997513
112 => 0.064559071338617
113 => 0.064907258940131
114 => 0.065689533102906
115 => 0.064231770375837
116 => 0.062852120295417
117 => 0.064051614105793
118 => 0.061596913702606
119 => 0.065986171919161
120 => 0.065867454785157
121 => 0.067503498818382
122 => 0.06852655072736
123 => 0.066168747294154
124 => 0.065575766106881
125 => 0.065913555140644
126 => 0.060330654846911
127 => 0.06704725675679
128 => 0.06710534220902
129 => 0.066607979302329
130 => 0.070184362467521
131 => 0.077731646447958
201 => 0.074892054625723
202 => 0.073792478845036
203 => 0.071702184482166
204 => 0.074487377611293
205 => 0.074273518234757
206 => 0.073306365030302
207 => 0.072721427754546
208 => 0.073799192620282
209 => 0.072587880760586
210 => 0.07237029586596
211 => 0.071051968139231
212 => 0.070581385120878
213 => 0.070232984188539
214 => 0.069849428995203
215 => 0.070695456175704
216 => 0.068778247280545
217 => 0.066466281299288
218 => 0.066274066343765
219 => 0.066804788735675
220 => 0.06656998358489
221 => 0.066272942187039
222 => 0.06570580926413
223 => 0.06553755304078
224 => 0.066084304140351
225 => 0.065467054026505
226 => 0.066377840192839
227 => 0.066130156751693
228 => 0.064746617183546
301 => 0.063022214629679
302 => 0.063006863829893
303 => 0.06263534412825
304 => 0.062162157929846
305 => 0.062030528354484
306 => 0.063950596082743
307 => 0.067925078817449
308 => 0.067144792755315
309 => 0.067708629402139
310 => 0.070482147654873
311 => 0.071363765704814
312 => 0.070738014095234
313 => 0.069881446697363
314 => 0.069919131315716
315 => 0.072846281414826
316 => 0.073028844175992
317 => 0.07349012137648
318 => 0.074082992936029
319 => 0.070838982685474
320 => 0.069766338724644
321 => 0.069258060507981
322 => 0.067692760329085
323 => 0.069380802373329
324 => 0.068397252563316
325 => 0.068529967035532
326 => 0.068443536561397
327 => 0.068490733444678
328 => 0.065984945032036
329 => 0.066897922629241
330 => 0.065379920298971
331 => 0.063347485582497
401 => 0.063340672148664
402 => 0.063838107666173
403 => 0.063542213555705
404 => 0.062745970112569
405 => 0.062859072735503
406 => 0.061868174746426
407 => 0.062979385692165
408 => 0.063011251245985
409 => 0.062583374503806
410 => 0.064295348283278
411 => 0.064996745337565
412 => 0.064715107699855
413 => 0.064976984890115
414 => 0.067177217163977
415 => 0.067535951027481
416 => 0.067695276913021
417 => 0.067481801333033
418 => 0.065017201097058
419 => 0.065126516597813
420 => 0.064324431985247
421 => 0.063646755009224
422 => 0.063673858534317
423 => 0.064022272591834
424 => 0.065543817215222
425 => 0.068745818175189
426 => 0.068867331770987
427 => 0.069014609793896
428 => 0.06841555605872
429 => 0.068234875720019
430 => 0.068473239724318
501 => 0.069675742931669
502 => 0.072768907657412
503 => 0.071675576657809
504 => 0.07078668153642
505 => 0.071566482202282
506 => 0.071446438002052
507 => 0.0704331441439
508 => 0.070404704360182
509 => 0.068459869476744
510 => 0.067740908302085
511 => 0.067140090531229
512 => 0.066484013210199
513 => 0.066095068582381
514 => 0.066692664302881
515 => 0.066829341514704
516 => 0.065522688027646
517 => 0.06534459598561
518 => 0.066411637429217
519 => 0.0659420722732
520 => 0.066425031680819
521 => 0.066537082406135
522 => 0.066519039658612
523 => 0.066028759706516
524 => 0.066341249527624
525 => 0.065602117943005
526 => 0.064798423358708
527 => 0.064285716285868
528 => 0.06383831136409
529 => 0.064086557618019
530 => 0.063201605050738
531 => 0.062918490913888
601 => 0.066235385007476
602 => 0.06868561033703
603 => 0.068649983090342
604 => 0.068433111388716
605 => 0.068110884030919
606 => 0.069652169993416
607 => 0.069115216783068
608 => 0.069505895107538
609 => 0.069605339137834
610 => 0.069906326266912
611 => 0.07001390329484
612 => 0.069688730799392
613 => 0.068597412188196
614 => 0.065877949968555
615 => 0.064612032964263
616 => 0.064194259267332
617 => 0.06420944454775
618 => 0.063790566723738
619 => 0.063913945015697
620 => 0.063747660788829
621 => 0.063432758691616
622 => 0.064067113300887
623 => 0.064140216760183
624 => 0.063992150814406
625 => 0.064027025704702
626 => 0.062801102913461
627 => 0.062894307160715
628 => 0.062375334068183
629 => 0.062278032869647
630 => 0.060966114083884
701 => 0.058641859789235
702 => 0.059929722289294
703 => 0.058374165490094
704 => 0.057785052559705
705 => 0.060573821546308
706 => 0.060293906488464
707 => 0.059814813585587
708 => 0.059106135330521
709 => 0.058843279672138
710 => 0.057246251901793
711 => 0.057151890981309
712 => 0.057943421067669
713 => 0.057578157167701
714 => 0.05706518831589
715 => 0.055207267133447
716 => 0.053118348587818
717 => 0.053181399908237
718 => 0.05384584603189
719 => 0.05577781274918
720 => 0.055022959929372
721 => 0.054475305547662
722 => 0.054372746344398
723 => 0.055656489495481
724 => 0.057473255006769
725 => 0.058325640736828
726 => 0.057480952365679
727 => 0.056510619846155
728 => 0.05656967949053
729 => 0.056962576845374
730 => 0.057003864802098
731 => 0.056372278083683
801 => 0.056550066045376
802 => 0.056279989874292
803 => 0.054622532910868
804 => 0.054592554770252
805 => 0.054185788101324
806 => 0.054173471368248
807 => 0.0534814597917
808 => 0.053384642588491
809 => 0.052010611601155
810 => 0.052915002957969
811 => 0.052308384718496
812 => 0.051394067944833
813 => 0.051236439388427
814 => 0.051231700883679
815 => 0.052170499772741
816 => 0.052904032546355
817 => 0.052318937102487
818 => 0.052185722211517
819 => 0.053608108728502
820 => 0.053427097078875
821 => 0.053270342157697
822 => 0.057310583581692
823 => 0.05411241723063
824 => 0.052717834156614
825 => 0.050991772778376
826 => 0.051553787066687
827 => 0.051672211734942
828 => 0.047521345266229
829 => 0.045837339256829
830 => 0.045259451854831
831 => 0.044926869484852
901 => 0.045078431447158
902 => 0.043562628524494
903 => 0.044581273157591
904 => 0.043268715954196
905 => 0.043048661467616
906 => 0.045395676341923
907 => 0.04572224975062
908 => 0.04432898613071
909 => 0.045223686923584
910 => 0.044899255978816
911 => 0.04329121598018
912 => 0.043229800680174
913 => 0.042422942734197
914 => 0.041160366287229
915 => 0.040583334971515
916 => 0.040282812052276
917 => 0.040406813665829
918 => 0.040344114655505
919 => 0.039934961201893
920 => 0.040367566852528
921 => 0.039262438180153
922 => 0.038822367038186
923 => 0.038623597112933
924 => 0.037642731807367
925 => 0.039203724701304
926 => 0.039511259966279
927 => 0.03981940117073
928 => 0.042501559978534
929 => 0.042367566904198
930 => 0.04357879903892
1001 => 0.043531732785477
1002 => 0.043186269759995
1003 => 0.041728818081395
1004 => 0.042309732343906
1005 => 0.040521768538015
1006 => 0.04186143259111
1007 => 0.041250065862986
1008 => 0.041654728885352
1009 => 0.040927108284144
1010 => 0.041329803567571
1011 => 0.039584187986411
1012 => 0.037954156718199
1013 => 0.038610128884106
1014 => 0.039323245647965
1015 => 0.040869464490782
1016 => 0.039948549304029
1017 => 0.040279745228844
1018 => 0.039170294322241
1019 => 0.036881180202937
1020 => 0.036894136340255
1021 => 0.036542006004062
1022 => 0.03623771398172
1023 => 0.040054327491289
1024 => 0.039579671269643
1025 => 0.038823368701921
1026 => 0.039835709743087
1027 => 0.040103388782383
1028 => 0.04011100922832
1029 => 0.04084958711965
1030 => 0.04124376627265
1031 => 0.041313242056837
1101 => 0.042475410326877
1102 => 0.042864953801624
1103 => 0.044469428243851
1104 => 0.041210322925495
1105 => 0.041143203796177
1106 => 0.039849955457588
1107 => 0.039029756915807
1108 => 0.039906115153454
1109 => 0.04068244891718
1110 => 0.039874078311649
1111 => 0.039979634447096
1112 => 0.038894462955476
1113 => 0.039282360701666
1114 => 0.039616470496154
1115 => 0.039431994705704
1116 => 0.03915582551867
1117 => 0.040618798401748
1118 => 0.040536251738248
1119 => 0.041898605720571
1120 => 0.04296065807266
1121 => 0.04486404575217
1122 => 0.042877761482758
1123 => 0.042805373389215
1124 => 0.043512978615007
1125 => 0.042864845470951
1126 => 0.043274443245198
1127 => 0.044798053218382
1128 => 0.044830244696242
1129 => 0.044290995965707
1130 => 0.044258182631447
1201 => 0.044361751248881
1202 => 0.044968355876099
1203 => 0.044756389580271
1204 => 0.045001682344133
1205 => 0.045308424701398
1206 => 0.046577241147109
1207 => 0.046883148496612
1208 => 0.046139952232095
1209 => 0.046207054533566
1210 => 0.045929078729443
1211 => 0.045660557585686
1212 => 0.046264153902487
1213 => 0.047367238035154
1214 => 0.047360375806015
1215 => 0.047616269883902
1216 => 0.047775689774485
1217 => 0.047091342901611
1218 => 0.046645858251502
1219 => 0.046816685413279
1220 => 0.047089841765091
1221 => 0.046728104489895
1222 => 0.044495294454382
1223 => 0.0451725863867
1224 => 0.045059851891278
1225 => 0.044899304260816
1226 => 0.045580326536105
1227 => 0.045514640276288
1228 => 0.043547081774617
1229 => 0.043673038486166
1230 => 0.043554741619428
1231 => 0.04393698299712
]
'min_raw' => 0.03623771398172
'max_raw' => 0.081176952710267
'avg_raw' => 0.058707333345993
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.036237'
'max' => '$0.081176'
'avg' => '$0.0587073'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0088367543893659
'max_diff' => -0.058989608304386
'year' => 2034
]
9 => [
'items' => [
101 => 0.042844203182146
102 => 0.043180334893248
103 => 0.043391153551412
104 => 0.043515327360655
105 => 0.043963928306422
106 => 0.043911290163169
107 => 0.04396065624553
108 => 0.044625813021844
109 => 0.047989947742195
110 => 0.048173050172478
111 => 0.047271386839193
112 => 0.047631583556318
113 => 0.046940084625802
114 => 0.047404292490497
115 => 0.047721891721921
116 => 0.046286721865938
117 => 0.046201740421242
118 => 0.045507387428659
119 => 0.045880493396709
120 => 0.045286854974273
121 => 0.045432513078549
122 => 0.04502524032075
123 => 0.045758250197591
124 => 0.046577869138119
125 => 0.046784937250229
126 => 0.046240230195694
127 => 0.045845826390267
128 => 0.045153383232628
129 => 0.046304931635885
130 => 0.046641679481799
131 => 0.046303162842808
201 => 0.046224721140819
202 => 0.046076074257291
203 => 0.046256257279859
204 => 0.046639845480709
205 => 0.04645895236895
206 => 0.046578435456194
207 => 0.046123089138046
208 => 0.047091569448902
209 => 0.04862974926002
210 => 0.048634694759631
211 => 0.04845380067279
212 => 0.048379782709872
213 => 0.048565391020542
214 => 0.048666075915029
215 => 0.049266299156991
216 => 0.049910362609566
217 => 0.052915925715831
218 => 0.052071975622546
219 => 0.054738690012174
220 => 0.056847714864844
221 => 0.057480119201681
222 => 0.056898336968715
223 => 0.054908091376997
224 => 0.054810440433299
225 => 0.057784707607341
226 => 0.056944340900607
227 => 0.056844381954866
228 => 0.055780987655483
301 => 0.056409585390365
302 => 0.056272101844774
303 => 0.056055077342133
304 => 0.057254398031789
305 => 0.059499419298728
306 => 0.059149511680599
307 => 0.058888321875414
308 => 0.057743864180299
309 => 0.058433083336639
310 => 0.05818766559619
311 => 0.059242135955105
312 => 0.058617491073862
313 => 0.05693797429628
314 => 0.05720544287887
315 => 0.057165015540683
316 => 0.057997007295846
317 => 0.057747264022251
318 => 0.057116249158278
319 => 0.059491746060103
320 => 0.059337494504506
321 => 0.059556187943527
322 => 0.059652463558703
323 => 0.061098386661893
324 => 0.061690735092892
325 => 0.061825208557247
326 => 0.062387893752824
327 => 0.061811208436987
328 => 0.064118360869997
329 => 0.065652482611872
330 => 0.067434443960243
331 => 0.070038368436269
401 => 0.071017468126903
402 => 0.070840602531371
403 => 0.072814868350915
404 => 0.076362580143172
405 => 0.071557696517548
406 => 0.076617250642499
407 => 0.075015454221901
408 => 0.07121762372375
409 => 0.07097308821315
410 => 0.073545023120216
411 => 0.079249327204528
412 => 0.077820463729089
413 => 0.079251664313297
414 => 0.077582092809123
415 => 0.077499184511688
416 => 0.079170576951893
417 => 0.083075876491292
418 => 0.081220615068087
419 => 0.07856064288916
420 => 0.080524724952329
421 => 0.078823255301998
422 => 0.074989367968434
423 => 0.077819371104118
424 => 0.075927028601135
425 => 0.076479314745966
426 => 0.080456737222533
427 => 0.079978163227198
428 => 0.08059748229192
429 => 0.079504400353087
430 => 0.078483289459017
501 => 0.076577310146543
502 => 0.076013043635764
503 => 0.076168986599161
504 => 0.076012966358176
505 => 0.074946588449701
506 => 0.074716304241897
507 => 0.074332487139907
508 => 0.074451448109001
509 => 0.073729759667606
510 => 0.075091734864959
511 => 0.075344529463271
512 => 0.076335661432599
513 => 0.076438564041609
514 => 0.079198852468305
515 => 0.077678531987643
516 => 0.078698494224226
517 => 0.078607259201529
518 => 0.071299934226675
519 => 0.072306819135135
520 => 0.07387321607481
521 => 0.073167556376688
522 => 0.072169918662481
523 => 0.07136427271831
524 => 0.070143636731363
525 => 0.071861658442753
526 => 0.074120674301991
527 => 0.076495856411743
528 => 0.079349482088513
529 => 0.078712586057322
530 => 0.076442509864656
531 => 0.076544343824367
601 => 0.077173841293117
602 => 0.07635858487521
603 => 0.076118149841874
604 => 0.077140809211667
605 => 0.077147851704703
606 => 0.076209800668873
607 => 0.075167328604075
608 => 0.075162960608059
609 => 0.074977462773214
610 => 0.077615092461857
611 => 0.07906552209617
612 => 0.07923181151626
613 => 0.079054329493273
614 => 0.079122635279911
615 => 0.07827866223374
616 => 0.080207734344854
617 => 0.081978041679471
618 => 0.081503561496694
619 => 0.080792248251378
620 => 0.080225652989997
621 => 0.081370089659769
622 => 0.081319129696374
623 => 0.081962579589285
624 => 0.081933388985396
625 => 0.081717020987785
626 => 0.081503569223876
627 => 0.08234988134028
628 => 0.082106157042112
629 => 0.081862054172791
630 => 0.081372468498089
701 => 0.081439011322438
702 => 0.080727820895383
703 => 0.080398791661968
704 => 0.075450981442921
705 => 0.074128764878029
706 => 0.074544761125544
707 => 0.074681717891564
708 => 0.074106287548056
709 => 0.074931306844719
710 => 0.074802728461246
711 => 0.075302951735502
712 => 0.074990433950917
713 => 0.075003259789806
714 => 0.075922307958455
715 => 0.076189111551724
716 => 0.076053413090818
717 => 0.076148451641366
718 => 0.078338574925464
719 => 0.078027209430665
720 => 0.077861802717298
721 => 0.07790762150731
722 => 0.07846724496317
723 => 0.078623908976503
724 => 0.077960112543427
725 => 0.078273162778627
726 => 0.079606090948119
727 => 0.080072540370241
728 => 0.081561223017229
729 => 0.080928804169564
730 => 0.082089636334899
731 => 0.085657638654291
801 => 0.088508005794002
802 => 0.08588669037592
803 => 0.091121026635932
804 => 0.095196708235293
805 => 0.095040276787107
806 => 0.094329587428044
807 => 0.089689532284773
808 => 0.085419684362611
809 => 0.088991593456819
810 => 0.08900069898767
811 => 0.088693868828708
812 => 0.086788173063269
813 => 0.088627554746906
814 => 0.0887735581853
815 => 0.088691835085247
816 => 0.087230742610025
817 => 0.084999924455386
818 => 0.085435820982979
819 => 0.086149828387223
820 => 0.08479806341344
821 => 0.084366092597989
822 => 0.085169208529723
823 => 0.087757015397622
824 => 0.08726780549939
825 => 0.087255030251895
826 => 0.089348077653814
827 => 0.08784990742194
828 => 0.085441319034126
829 => 0.084833118700825
830 => 0.082674417250443
831 => 0.084165440031252
901 => 0.084219099286717
902 => 0.083402481347551
903 => 0.085507583079251
904 => 0.085488184196197
905 => 0.087486664987402
906 => 0.091307009665079
907 => 0.090177145756146
908 => 0.0888632369589
909 => 0.0890060952759
910 => 0.090572898409017
911 => 0.089625573468098
912 => 0.089966238121836
913 => 0.090572382772263
914 => 0.09093808488959
915 => 0.088953476369053
916 => 0.088490769188117
917 => 0.087544232684073
918 => 0.087297298978109
919 => 0.08806823321052
920 => 0.087865119277788
921 => 0.084214589434074
922 => 0.08383308875405
923 => 0.083844788835248
924 => 0.082885487235958
925 => 0.081422322038277
926 => 0.08526743281673
927 => 0.084958616608929
928 => 0.084617707415993
929 => 0.084659466846927
930 => 0.086328499112958
1001 => 0.08536037611051
1002 => 0.087934289784756
1003 => 0.087405170512259
1004 => 0.086862481326971
1005 => 0.086787465150848
1006 => 0.086578576114577
1007 => 0.08586221788502
1008 => 0.084997172276374
1009 => 0.084425994236578
1010 => 0.077878516942073
1011 => 0.07909369064301
1012 => 0.08049163721937
1013 => 0.08097420277561
1014 => 0.080148740999141
1015 => 0.085894812147204
1016 => 0.086944674716474
1017 => 0.083764572513313
1018 => 0.083169705233819
1019 => 0.085933811547013
1020 => 0.084266717541903
1021 => 0.085017409870326
1022 => 0.083394823663025
1023 => 0.086691793567102
1024 => 0.086666676180368
1025 => 0.085384080422239
1026 => 0.086468121574173
1027 => 0.086279742747082
1028 => 0.084831695295049
1029 => 0.086737699254166
1030 => 0.086738644608351
1031 => 0.085504174077189
1101 => 0.084062582757139
1102 => 0.083804860277981
1103 => 0.08361070101008
1104 => 0.084969658592602
1105 => 0.086188095711742
1106 => 0.088455305114282
1107 => 0.089025335425647
1108 => 0.091250201679973
1109 => 0.089925402152294
1110 => 0.090512668623888
1111 => 0.091150229452718
1112 => 0.091455899559582
1113 => 0.090957826523609
1114 => 0.094413959608063
1115 => 0.094705763133572
1116 => 0.094803602331584
1117 => 0.09363821370122
1118 => 0.094673351567589
1119 => 0.094189044840078
1120 => 0.095449076400777
1121 => 0.095646665438386
1122 => 0.095479314552965
1123 => 0.095542032432233
1124 => 0.092592832548308
1125 => 0.092439900976057
1126 => 0.090354668136895
1127 => 0.091204415932117
1128 => 0.089615853158422
1129 => 0.09011960277797
1130 => 0.090341650810364
1201 => 0.090225665519356
1202 => 0.091252459397507
1203 => 0.090379474840948
1204 => 0.088075525064241
1205 => 0.085770947577957
1206 => 0.085742015484885
1207 => 0.085135260911918
1208 => 0.084696688488306
1209 => 0.084781173096286
1210 => 0.08507890787431
1211 => 0.084679383601755
1212 => 0.0847646423617
1213 => 0.08618050585292
1214 => 0.086464447178607
1215 => 0.085499503610883
1216 => 0.081625115945776
1217 => 0.080674331494593
1218 => 0.081357736503228
1219 => 0.08103111292602
1220 => 0.065398432350363
1221 => 0.069071098768785
1222 => 0.066888925094925
1223 => 0.067894571120823
1224 => 0.065667136870946
1225 => 0.066730185244819
1226 => 0.066533879026475
1227 => 0.072439417945198
1228 => 0.072347211077785
1229 => 0.072391345625737
1230 => 0.070284688660054
1231 => 0.073640650408357
]
'min_raw' => 0.042844203182146
'max_raw' => 0.095646665438386
'avg_raw' => 0.069245434310266
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.042844'
'max' => '$0.095646'
'avg' => '$0.069245'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.006606489200426
'max_diff' => 0.014469712728119
'year' => 2035
]
10 => [
'items' => [
101 => 0.075293917842052
102 => 0.074987942040363
103 => 0.075064949557658
104 => 0.073741705272414
105 => 0.072404157522887
106 => 0.070920611221538
107 => 0.07367685687758
108 => 0.07337040941131
109 => 0.074073289642614
110 => 0.075860911971066
111 => 0.076124146149447
112 => 0.076477935554649
113 => 0.076351127237329
114 => 0.079372215820857
115 => 0.079006342059607
116 => 0.079887992555154
117 => 0.078074370594831
118 => 0.076022085196149
119 => 0.076412157556174
120 => 0.07637459045114
121 => 0.075896318086538
122 => 0.075464555180778
123 => 0.074745791591133
124 => 0.077020065945768
125 => 0.076927734560283
126 => 0.078422472367799
127 => 0.078158262941212
128 => 0.076393807727451
129 => 0.076456825590595
130 => 0.076880651005597
131 => 0.078347515606069
201 => 0.078782980891247
202 => 0.078581256020861
203 => 0.079058723826314
204 => 0.079436094911812
205 => 0.079106115824545
206 => 0.083777923835943
207 => 0.081837863432292
208 => 0.082783435374178
209 => 0.083008948710685
210 => 0.082431301041258
211 => 0.082556572136744
212 => 0.082746323712076
213 => 0.083898458120321
214 => 0.086921992180335
215 => 0.088261094833623
216 => 0.092289851236201
217 => 0.088149900999477
218 => 0.087904253485247
219 => 0.088629954170139
220 => 0.090995260665627
221 => 0.092912119418278
222 => 0.093548052052767
223 => 0.093632101048518
224 => 0.094825152946821
225 => 0.095508988045828
226 => 0.094680285065987
227 => 0.093978046059391
228 => 0.091462713102877
229 => 0.091753869741618
301 => 0.093759650256395
302 => 0.096592933373402
303 => 0.099024185040659
304 => 0.09817284544446
305 => 0.10466796561136
306 => 0.10531193024572
307 => 0.10522295515512
308 => 0.10669000242699
309 => 0.10377821235132
310 => 0.1025333656807
311 => 0.094129878103368
312 => 0.096490915338794
313 => 0.099922821619341
314 => 0.099468595954123
315 => 0.096976253878072
316 => 0.0990222943757
317 => 0.098345809401582
318 => 0.097812237635108
319 => 0.1002566333353
320 => 0.097568919852698
321 => 0.099896009621358
322 => 0.09691149292239
323 => 0.098176734292024
324 => 0.097458522097781
325 => 0.097923293408232
326 => 0.095206249824171
327 => 0.096672300589626
328 => 0.0951452572924
329 => 0.09514453327505
330 => 0.095110823709628
331 => 0.096907383376867
401 => 0.096965969123117
402 => 0.095638308814576
403 => 0.095446972222164
404 => 0.096154443887881
405 => 0.095326179854449
406 => 0.09571371938266
407 => 0.095337918031966
408 => 0.095253317232337
409 => 0.094579203667255
410 => 0.09428877700828
411 => 0.094402660784637
412 => 0.094013916744818
413 => 0.093779684399341
414 => 0.09506422900057
415 => 0.094377948638515
416 => 0.094959046692439
417 => 0.094296812119571
418 => 0.092001218568143
419 => 0.090680998441255
420 => 0.086344835024241
421 => 0.087574565590313
422 => 0.088389878227866
423 => 0.088120417406018
424 => 0.088699323518842
425 => 0.088734863652489
426 => 0.088546655373961
427 => 0.088328734298399
428 => 0.088222662370606
429 => 0.08901323561727
430 => 0.08947218999643
501 => 0.08847170575852
502 => 0.08823730629984
503 => 0.089248851102616
504 => 0.089865892847959
505 => 0.094421782409763
506 => 0.094084267395695
507 => 0.094931363847029
508 => 0.094835993786364
509 => 0.095723885820409
510 => 0.097175214044903
511 => 0.094224257966754
512 => 0.094736441905537
513 => 0.094610866231801
514 => 0.095981868509932
515 => 0.095986148629394
516 => 0.095164164277012
517 => 0.095609775329612
518 => 0.09536104746475
519 => 0.095810532334142
520 => 0.094079759676909
521 => 0.096187653948055
522 => 0.097382694170089
523 => 0.097399287304731
524 => 0.097965726885549
525 => 0.098541262305628
526 => 0.0996459524259
527 => 0.098510453097746
528 => 0.096467800345028
529 => 0.096615273276046
530 => 0.095417666714505
531 => 0.09543779869717
601 => 0.095330332595933
602 => 0.095652846455415
603 => 0.094150533332538
604 => 0.094503123219696
605 => 0.094009495312911
606 => 0.094735368854871
607 => 0.093954448914917
608 => 0.094610805675409
609 => 0.094894067494667
610 => 0.095939309705917
611 => 0.093800065790455
612 => 0.089438002632746
613 => 0.0903549611934
614 => 0.088998707456652
615 => 0.08912423390361
616 => 0.089377817303852
617 => 0.088555870536344
618 => 0.088712672077065
619 => 0.088707070022635
620 => 0.088658794544032
621 => 0.088444974444713
622 => 0.088134892997682
623 => 0.089370162044614
624 => 0.089580058326485
625 => 0.090046631760435
626 => 0.091434837820089
627 => 0.091296123298577
628 => 0.091522372438374
629 => 0.091028471836531
630 => 0.089147144535989
701 => 0.089249309659747
702 => 0.087975308929397
703 => 0.090014052697416
704 => 0.089531251263047
705 => 0.089219986037499
706 => 0.089135054436857
707 => 0.090526701590823
708 => 0.090943104230686
709 => 0.090683630049265
710 => 0.090151440933099
711 => 0.091173401363726
712 => 0.091446834861913
713 => 0.091508046538317
714 => 0.093318764479911
715 => 0.091609245556685
716 => 0.092020743752662
717 => 0.095231135210337
718 => 0.092319753161964
719 => 0.093861977164555
720 => 0.093786493324974
721 => 0.094575442938685
722 => 0.093721776428936
723 => 0.093732358648435
724 => 0.094432892457333
725 => 0.093449119064673
726 => 0.093205522937814
727 => 0.092868996633227
728 => 0.093603789507725
729 => 0.094044264604163
730 => 0.097594170388144
731 => 0.099887571419967
801 => 0.099788008832761
802 => 0.10069782450647
803 => 0.10028794421251
804 => 0.098964332622341
805 => 0.10122357620952
806 => 0.10050865700777
807 => 0.10056759407814
808 => 0.10056540043743
809 => 0.10104075920728
810 => 0.10070392395285
811 => 0.10003998709095
812 => 0.10048073936452
813 => 0.10178961604518
814 => 0.10585240942322
815 => 0.10812600242243
816 => 0.10571553626986
817 => 0.10737824354447
818 => 0.10638121166289
819 => 0.10620002131087
820 => 0.10724432435243
821 => 0.10829045530822
822 => 0.10822382128888
823 => 0.1074643839344
824 => 0.10703539704286
825 => 0.11028382950674
826 => 0.11267721921053
827 => 0.11251400607822
828 => 0.11323437576448
829 => 0.11534940344354
830 => 0.11554277506812
831 => 0.11551841468802
901 => 0.11503912294025
902 => 0.11712164236133
903 => 0.11885891670084
904 => 0.11492818074871
905 => 0.11642495354217
906 => 0.11709690307216
907 => 0.11808352434063
908 => 0.11974811979747
909 => 0.12155631197573
910 => 0.12181201017555
911 => 0.12163058006649
912 => 0.12043802871811
913 => 0.12241657417579
914 => 0.12357555970229
915 => 0.12426570906041
916 => 0.1260158130027
917 => 0.1171010528037
918 => 0.11079074244251
919 => 0.10980529635763
920 => 0.111809239722
921 => 0.11233766360603
922 => 0.11212465660096
923 => 0.10502182858113
924 => 0.10976790143807
925 => 0.11487427677099
926 => 0.1150704334439
927 => 0.11762679170483
928 => 0.11845924674326
929 => 0.12051745021285
930 => 0.12038870902544
1001 => 0.12088984881711
1002 => 0.12077464545754
1003 => 0.12458703397908
1004 => 0.12879266466351
1005 => 0.128647037046
1006 => 0.12804242787634
1007 => 0.12894037559446
1008 => 0.13328103716357
1009 => 0.13288141860397
1010 => 0.13326961399519
1011 => 0.13838749861414
1012 => 0.14504147662936
1013 => 0.14195003579282
1014 => 0.14865757286998
1015 => 0.15287961190879
1016 => 0.16018119185943
1017 => 0.15926699808857
1018 => 0.16210944958189
1019 => 0.15763040044074
1020 => 0.14734559824747
1021 => 0.14571798893175
1022 => 0.14897650399946
1023 => 0.15698724533219
1024 => 0.14872421724709
1025 => 0.15039581706691
1026 => 0.14991439620635
1027 => 0.14988874333459
1028 => 0.15086780911162
1029 => 0.14944762313741
1030 => 0.1436615299919
1031 => 0.14631326238282
1101 => 0.14528930116004
1102 => 0.14642546247808
1103 => 0.15255685652301
1104 => 0.14984602106157
1105 => 0.14699037611333
1106 => 0.15057198859677
1107 => 0.15513261206375
1108 => 0.15484721644342
1109 => 0.15429342965385
1110 => 0.1574150967913
1111 => 0.16257117633972
1112 => 0.16396484392285
1113 => 0.16499362084044
1114 => 0.16513547179605
1115 => 0.16659662479868
1116 => 0.15873963684557
1117 => 0.17120887850891
1118 => 0.17336197208832
1119 => 0.17295727973198
1120 => 0.17535035262946
1121 => 0.17464624987662
1122 => 0.1736261154581
1123 => 0.17741964502181
1124 => 0.17307066949906
1125 => 0.16689784626531
1126 => 0.16351131335467
1127 => 0.16797097307522
1128 => 0.17069433164588
1129 => 0.17249429842295
1130 => 0.17303896728212
1201 => 0.15934955245439
1202 => 0.151971717112
1203 => 0.15670082497942
1204 => 0.16247066296326
1205 => 0.15870758510424
1206 => 0.15885509063187
1207 => 0.15348993052437
1208 => 0.16294536058413
1209 => 0.16156778395711
1210 => 0.16871465393499
1211 => 0.16700899605755
1212 => 0.17283699108462
1213 => 0.17130228467661
1214 => 0.17767276517198
1215 => 0.18021412231546
1216 => 0.18448145649001
1217 => 0.18762052487999
1218 => 0.18946384587939
1219 => 0.18935317980071
1220 => 0.19665733593923
1221 => 0.19235033025212
1222 => 0.18693971602582
1223 => 0.18684185508474
1224 => 0.18964408886153
1225 => 0.19551680210241
1226 => 0.19703951120127
1227 => 0.19789049785573
1228 => 0.19658718217136
1229 => 0.19191223618389
1230 => 0.18989361820901
1231 => 0.1916135392086
]
'min_raw' => 0.070920611221538
'max_raw' => 0.19789049785573
'avg_raw' => 0.13440555453864
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.07092'
'max' => '$0.19789'
'avg' => '$0.1344055'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.028076408039392
'max_diff' => 0.10224383241735
'year' => 2036
]
11 => [
'items' => [
101 => 0.1895102236206
102 => 0.19314113641161
103 => 0.19812715519479
104 => 0.19709756203292
105 => 0.20053933760782
106 => 0.20410121324249
107 => 0.20919485537392
108 => 0.2105265220441
109 => 0.21272771641115
110 => 0.21499346846954
111 => 0.21572116696696
112 => 0.21711056919012
113 => 0.21710324635458
114 => 0.22129030347163
115 => 0.2259087571341
116 => 0.22765211647424
117 => 0.23166087514749
118 => 0.22479601640321
119 => 0.23000309061856
120 => 0.23470000190232
121 => 0.22910015063889
122 => 0.23681824100752
123 => 0.23711791696697
124 => 0.2416426681629
125 => 0.23705596598838
126 => 0.23433239687842
127 => 0.24219523884807
128 => 0.24599982039998
129 => 0.24485384947384
130 => 0.23613295414229
131 => 0.23105701900254
201 => 0.21777231766703
202 => 0.23350862025533
203 => 0.24117331421185
204 => 0.2361131044366
205 => 0.23866517991241
206 => 0.25258847619518
207 => 0.25788956595298
208 => 0.25678697634078
209 => 0.25697329583507
210 => 0.2598336676468
211 => 0.27251813149552
212 => 0.26491730673379
213 => 0.27072785246666
214 => 0.2738097449719
215 => 0.27667237848649
216 => 0.26964265531926
217 => 0.26049708876583
218 => 0.2576003039336
219 => 0.23560996630028
220 => 0.23446527372727
221 => 0.23382272309831
222 => 0.22977153227327
223 => 0.22658840599936
224 => 0.22405706580443
225 => 0.21741407321079
226 => 0.21965588820405
227 => 0.20906834451009
228 => 0.21584187976598
301 => 0.19894390438523
302 => 0.21301704040837
303 => 0.20535767229795
304 => 0.21050073198605
305 => 0.2104827883353
306 => 0.20101278484095
307 => 0.19555068445934
308 => 0.19903134741063
309 => 0.20276289438978
310 => 0.20336832533272
311 => 0.20820637339453
312 => 0.20955656861509
313 => 0.20546541406221
314 => 0.1985937314048
315 => 0.20018986655973
316 => 0.19551833883137
317 => 0.18733166617516
318 => 0.19321147740244
319 => 0.19521910347249
320 => 0.19610578551696
321 => 0.18805513320528
322 => 0.18552544346078
323 => 0.18417865786696
324 => 0.19755449328713
325 => 0.19828725174569
326 => 0.1945383558701
327 => 0.21148372071265
328 => 0.20764846276078
329 => 0.21193338555403
330 => 0.20004503402431
331 => 0.20049918506254
401 => 0.19487104892909
402 => 0.19802242909163
403 => 0.19579513516647
404 => 0.19776782871704
405 => 0.19895025309753
406 => 0.20457746570922
407 => 0.21308129413728
408 => 0.20373694779604
409 => 0.19966548228166
410 => 0.20219139658799
411 => 0.20891823924684
412 => 0.21910975021575
413 => 0.21307617059888
414 => 0.21575377077602
415 => 0.21633870729658
416 => 0.21188976906237
417 => 0.21927378891434
418 => 0.22323094514068
419 => 0.22729016861081
420 => 0.23081467861306
421 => 0.2256688254926
422 => 0.23117562596056
423 => 0.22673811686453
424 => 0.22275721246413
425 => 0.22276324985286
426 => 0.22026597037075
427 => 0.21542717669671
428 => 0.2145348289028
429 => 0.21917693481781
430 => 0.22289946415258
501 => 0.22320606949831
502 => 0.2252670530085
503 => 0.22648672182001
504 => 0.23844113423219
505 => 0.24324929779645
506 => 0.24912862918895
507 => 0.25141896010729
508 => 0.25831203504242
509 => 0.25274531720413
510 => 0.25154092278352
511 => 0.23482057769853
512 => 0.23755853326951
513 => 0.24194226431206
514 => 0.23489286380879
515 => 0.23936408587979
516 => 0.24024679983003
517 => 0.23465332787718
518 => 0.23764104292685
519 => 0.22970655755069
520 => 0.21325424423603
521 => 0.2192921050422
522 => 0.22373800291752
523 => 0.21739315847419
524 => 0.22876604655947
525 => 0.22212224012411
526 => 0.22001647244305
527 => 0.21180112195887
528 => 0.21567845114956
529 => 0.22092259439799
530 => 0.21768232356755
531 => 0.22440637206982
601 => 0.23392941798727
602 => 0.24071610761523
603 => 0.24123710537421
604 => 0.23687371861632
605 => 0.2438660737426
606 => 0.24391700541596
607 => 0.23602960026891
608 => 0.2311986085336
609 => 0.23010099704684
610 => 0.23284304574017
611 => 0.23617239906398
612 => 0.24142186131256
613 => 0.24459400140704
614 => 0.25286526040035
615 => 0.25510322592836
616 => 0.25756207153489
617 => 0.26084784754511
618 => 0.26479326410106
619 => 0.25616091728933
620 => 0.25650389652087
621 => 0.24846557469275
622 => 0.23987547500746
623 => 0.24639428989756
624 => 0.25491677320475
625 => 0.25296170611757
626 => 0.25274172113187
627 => 0.25311167485908
628 => 0.25163761812187
629 => 0.24497051413056
630 => 0.2416223362444
701 => 0.24594233992882
702 => 0.24823822962585
703 => 0.25179895432331
704 => 0.25136001984657
705 => 0.26053206427332
706 => 0.26409604338933
707 => 0.26318422502019
708 => 0.26335202154425
709 => 0.26980443549595
710 => 0.27698084685039
711 => 0.2837025030947
712 => 0.29054006052827
713 => 0.2822971181677
714 => 0.278111860391
715 => 0.28242997809696
716 => 0.28013872406027
717 => 0.29330494938517
718 => 0.29421655026031
719 => 0.30738182351725
720 => 0.31987723552967
721 => 0.31202909112323
722 => 0.31942953781032
723 => 0.32743372426967
724 => 0.34287509858222
725 => 0.33767498694785
726 => 0.33369178293206
727 => 0.32992767438385
728 => 0.33776018673728
729 => 0.34783658875254
730 => 0.35000694923604
731 => 0.35352376236084
801 => 0.34982626337557
802 => 0.35427949363718
803 => 0.3700013533092
804 => 0.36575316804512
805 => 0.35972006204028
806 => 0.37213096030789
807 => 0.37662241614479
808 => 0.40814580540184
809 => 0.44794538650513
810 => 0.43146809859023
811 => 0.42124011426269
812 => 0.4236439331907
813 => 0.43817739290877
814 => 0.44284507890127
815 => 0.43015669932582
816 => 0.43463844949698
817 => 0.45933333357602
818 => 0.47258134657769
819 => 0.4545887654759
820 => 0.40494794781218
821 => 0.35917684685419
822 => 0.37131740392778
823 => 0.36994104152099
824 => 0.39647261371438
825 => 0.36565185023154
826 => 0.36617079284434
827 => 0.39325100985328
828 => 0.38602647222774
829 => 0.37432364652325
830 => 0.35926229043295
831 => 0.33141998069321
901 => 0.30675927051648
902 => 0.35512460219542
903 => 0.35303900114678
904 => 0.35001874175958
905 => 0.35674000219959
906 => 0.3893765350332
907 => 0.38862415731724
908 => 0.38383791415477
909 => 0.38746823740949
910 => 0.37368723330434
911 => 0.37723891184987
912 => 0.35916959647794
913 => 0.36733768166732
914 => 0.3742985375153
915 => 0.37569603238401
916 => 0.37884465968108
917 => 0.35193998416459
918 => 0.36401939359172
919 => 0.37111491494256
920 => 0.33905709134219
921 => 0.37048123484374
922 => 0.35147163362135
923 => 0.34501948945184
924 => 0.35370645157072
925 => 0.35032113398465
926 => 0.34741063671665
927 => 0.34578652923242
928 => 0.35216527546751
929 => 0.3518676993314
930 => 0.3414308324295
1001 => 0.32781636501709
1002 => 0.33238582716035
1003 => 0.33072569872477
1004 => 0.32470917911339
1005 => 0.32876358689411
1006 => 0.31091002691662
1007 => 0.28019390492264
1008 => 0.30048591597213
1009 => 0.29970469562018
1010 => 0.29931076889321
1011 => 0.3145596543669
1012 => 0.31309382588025
1013 => 0.31043333282355
1014 => 0.32466031707202
1015 => 0.31946727644138
1016 => 0.33547100403074
1017 => 0.3460120940773
1018 => 0.34333853267295
1019 => 0.35325247881124
1020 => 0.33249109833912
1021 => 0.33938719612995
1022 => 0.34080847232706
1023 => 0.32448475829479
1024 => 0.31333365354887
1025 => 0.31259000199422
1026 => 0.2932555230817
1027 => 0.30358384565431
1028 => 0.31267234210318
1029 => 0.30831965759998
1030 => 0.30694172771903
1031 => 0.31398127264432
1101 => 0.31452830557464
1102 => 0.30205589679138
1103 => 0.30464930552724
1104 => 0.3154642510741
1105 => 0.30437679664775
1106 => 0.28283568382276
1107 => 0.27749319001298
1108 => 0.27678040285706
1109 => 0.2622911359264
1110 => 0.27785020099548
1111 => 0.2710582521358
1112 => 0.29251393720347
1113 => 0.28025856496197
1114 => 0.27973026035914
1115 => 0.27893165046652
1116 => 0.26646013987523
1117 => 0.26919060808888
1118 => 0.27826710029309
1119 => 0.28150569496556
1120 => 0.2811678830082
1121 => 0.27822262052963
1122 => 0.27957094661014
1123 => 0.27522751851688
1124 => 0.27369376365652
1125 => 0.26885281142469
1126 => 0.26173794899109
1127 => 0.26272731425047
1128 => 0.24863091006449
1129 => 0.24095044091117
1130 => 0.23882458827649
1201 => 0.23598180928789
1202 => 0.2391456877276
1203 => 0.24859097672255
1204 => 0.23719795426479
1205 => 0.21766541638857
1206 => 0.21883935519676
1207 => 0.22147684715319
1208 => 0.21656189834113
1209 => 0.21191031177091
1210 => 0.21595448889857
1211 => 0.20767829510752
1212 => 0.22247698563286
1213 => 0.222076722527
1214 => 0.22759275920996
1215 => 0.23104205014828
1216 => 0.22309255125665
1217 => 0.22109327378313
1218 => 0.22223215309414
1219 => 0.20340901496817
1220 => 0.2260545072455
1221 => 0.22625034640309
1222 => 0.22457345263841
1223 => 0.23663147817496
1224 => 0.26207767304954
1225 => 0.2525037909669
1226 => 0.24879649445239
1227 => 0.24174892106828
1228 => 0.2511393941591
1229 => 0.25041835233993
1230 => 0.24715752778663
1231 => 0.2451853709224
]
'min_raw' => 0.18417865786696
'max_raw' => 0.47258134657769
'avg_raw' => 0.32838000222232
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.184178'
'max' => '$0.472581'
'avg' => '$0.32838'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.11325804664543
'max_diff' => 0.27469084872195
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0057811576142056
]
1 => [
'year' => 2028
'avg' => 0.0099221447480239
]
2 => [
'year' => 2029
'avg' => 0.027105511159002
]
3 => [
'year' => 2030
'avg' => 0.020911861492432
]
4 => [
'year' => 2031
'avg' => 0.020538039564032
]
5 => [
'year' => 2032
'avg' => 0.036009646914675
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0057811576142056
'min' => '$0.005781'
'max_raw' => 0.036009646914675
'max' => '$0.0360096'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.036009646914675
]
1 => [
'year' => 2033
'avg' => 0.09262051469287
]
2 => [
'year' => 2034
'avg' => 0.058707333345993
]
3 => [
'year' => 2035
'avg' => 0.069245434310266
]
4 => [
'year' => 2036
'avg' => 0.13440555453864
]
5 => [
'year' => 2037
'avg' => 0.32838000222232
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.036009646914675
'min' => '$0.0360096'
'max_raw' => 0.32838000222232
'max' => '$0.32838'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.32838000222232
]
]
]
]
'prediction_2025_max_price' => '$0.009884'
'last_price' => 0.00958449
'sma_50day_nextmonth' => '$0.009529'
'sma_200day_nextmonth' => '$0.08665'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'augmenter'
'sma_200day_date_nextmonth' => '4 févr. 2026'
'sma_50day_date_nextmonth' => '4 févr. 2026'
'daily_sma3' => '$0.009645'
'daily_sma3_action' => 'SELL'
'daily_sma5' => '$0.009845'
'daily_sma5_action' => 'SELL'
'daily_sma10' => '$0.010029'
'daily_sma10_action' => 'SELL'
'daily_sma21' => '$0.010651'
'daily_sma21_action' => 'SELL'
'daily_sma50' => '$0.012532'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.042392'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.111628'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.009689'
'daily_ema3_action' => 'SELL'
'daily_ema5' => '$0.0098031'
'daily_ema5_action' => 'SELL'
'daily_ema10' => '$0.010062'
'daily_ema10_action' => 'SELL'
'daily_ema21' => '$0.010765'
'daily_ema21_action' => 'SELL'
'daily_ema50' => '$0.01919'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.046934'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.087287'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.0808091'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.128873'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.009897'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.01120065'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.023426'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.059044'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.122388'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.071349'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.035674'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '26.46'
'rsi_14_action' => 'BUY'
'stoch_rsi_14' => -18.3
'stoch_rsi_14_action' => 'BUY'
'momentum_10' => -0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.010029'
'vwma_10_action' => 'SELL'
'hma_9' => '0.009595'
'hma_9_action' => 'SELL'
'stochastic_fast_14' => 0
'stochastic_fast_14_action' => 'BUY'
'cci_20' => -112.25
'cci_20_action' => 'BUY'
'adx_14' => 40.16
'adx_14_action' => 'SELL'
'ao_5_34' => '-0.001287'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'NEUTRAL'
'williams_percent_r_14' => -100
'williams_percent_r_14_action' => 'BUY'
'ultimate_oscillator' => 12.24
'ultimate_oscillator_action' => 'BUY'
'ichimoku_cloud' => '-0.014369'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 29
'buy_signals' => 3
'sell_pct' => 90.63
'buy_pct' => 9.38
'overall_action' => 'bearish'
'overall_action_label' => 'Baissier'
'overall_action_dir' => -1
'last_updated' => 1767710584
'last_updated_date' => '6 janvier 2026'
]
Prévision du prix de Seraph pour 2026
La prévision du prix de Seraph pour 2026 suggère que le prix moyen pourrait varier entre $0.003311 à la baisse et $0.009884 à la hausse. Sur le marché des cryptomonnaies, comparé au prix moyen d'aujourd'hui, Seraph pourrait potentiellement gagner 3.13% d'ici 2026 si SERAPH atteint l'objectif de prix prévu.
Prévision du prix de Seraph de 2027 à 2032
La prévision du prix de SERAPH pour 2027-2032 se situe actuellement dans une fourchette de prix comprise entre $0.005781 à la baisse et $0.0360096 à la hausse. Compte tenu de la volatilité des prix sur le marché, si Seraph atteint l'objectif de prix le plus élevé, il pourrait gagner 275.71% d'ici 2032 par rapport au prix actuel.
| Prévision du Prix de Seraph | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2027 | $0.003187 | $0.005781 | $0.008374 |
| 2028 | $0.005753 | $0.009922 | $0.014091 |
| 2029 | $0.012637 | $0.0271055 | $0.041573 |
| 2030 | $0.010748 | $0.020911 | $0.031075 |
| 2031 | $0.0127074 | $0.020538 | $0.028368 |
| 2032 | $0.019397 | $0.0360096 | $0.052622 |
Prévision du prix de Seraph de 2032 à 2037
La prévision du prix de Seraph pour 2032-2037 est actuellement estimée entre $0.0360096 à la baisse et $0.32838 à la hausse. Par rapport au prix actuel, Seraph pourrait potentiellement gagner 3326.16% d'ici 2037 s'il atteint l'objectif de prix le plus élevé. Veuillez noter que ces informations sont à titre général seulement et ne doivent pas être considérées comme un conseil en investissement à long terme.
| Prévision du Prix de Seraph | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2032 | $0.019397 | $0.0360096 | $0.052622 |
| 2033 | $0.045074 | $0.09262 | $0.140166 |
| 2034 | $0.036237 | $0.0587073 | $0.081176 |
| 2035 | $0.042844 | $0.069245 | $0.095646 |
| 2036 | $0.07092 | $0.1344055 | $0.19789 |
| 2037 | $0.184178 | $0.32838 | $0.472581 |
Seraph Histogramme des prix potentiels
Prévision du prix de Seraph basée sur l'analyse technique
Au 6 janvier 2026, le sentiment global de prévision du prix pour Seraph est Baissier, avec 3 indicateurs techniques montrant des signaux haussiers et 29 indiquant des signaux baissiers. La prévision du prix de SERAPH a été mise à jour pour la dernière fois le 6 janvier 2026.
Moyennes Mobiles Simples sur 50 et 200 jours de Seraph et Indice de Force Relative sur 14 jours - RSI (14)
Selon nos indicateurs techniques, le SMA sur 200 jours de Seraph devrait augmenter au cours du prochain mois, atteignant $0.08665 d'ici le 4 févr. 2026. Le SMA à court terme sur 50 jours pour Seraph devrait atteindre $0.009529 d'ici le 4 févr. 2026.
Le Relative Strength Index (RSI), un oscillateur de momentum, est un outil couramment utilisé pour identifier si une cryptomonnaie est survendue (en dessous de 30) ou surachetée (au-dessus de 70). Actuellement, le RSI est à 26.46, ce qui suggère que le marché de SERAPH est dans un état BUY.
Moyennes Mobiles et Oscillateurs Populaires de SERAPH pour le Samedi 19 Octobre 2024
Les moyennes mobiles (MA) sont des indicateurs largement utilisés sur les marchés financiers, conçus pour lisser les mouvements de prix sur une période donnée. En tant qu'indicateurs retardés, ils sont basés sur des données historiques de prix. Le tableau ci-dessous met en évidence deux types : la moyenne mobile simple (SMA) et la moyenne mobile exponentielle (EMA).
Moyenne Mobile Simple Quotidienne (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 3 | $0.009645 | SELL |
| SMA 5 | $0.009845 | SELL |
| SMA 10 | $0.010029 | SELL |
| SMA 21 | $0.010651 | SELL |
| SMA 50 | $0.012532 | SELL |
| SMA 100 | $0.042392 | SELL |
| SMA 200 | $0.111628 | SELL |
Moyenne Mobile Exponentielle Quotidienne (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 3 | $0.009689 | SELL |
| EMA 5 | $0.0098031 | SELL |
| EMA 10 | $0.010062 | SELL |
| EMA 21 | $0.010765 | SELL |
| EMA 50 | $0.01919 | SELL |
| EMA 100 | $0.046934 | SELL |
| EMA 200 | $0.087287 | SELL |
Moyenne Mobile Simple Hebdomadaire (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 21 | $0.0808091 | SELL |
| SMA 50 | $0.128873 | SELL |
| SMA 100 | — | — |
| SMA 200 | — | — |
Moyenne Mobile Exponentielle Hebdomadaire (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 21 | $0.059044 | SELL |
| EMA 50 | $0.122388 | SELL |
| EMA 100 | $0.071349 | SELL |
| EMA 200 | $0.035674 | SELL |
Oscillateurs de Seraph
Un oscillateur est un outil d'analyse technique qui établit des limites hautes et basses entre deux extrêmes, créant un indicateur de tendance qui fluctue à l'intérieur de ces limites. Les traders utilisent cet indicateur pour identifier les conditions de surachat ou de survente à court terme.
| Période | Valeur | Action |
|---|---|---|
| RSI (14) | 26.46 | BUY |
| Stoch RSI (14) | -18.3 | BUY |
| Stochastique Rapide (14) | 0 | BUY |
| Indice de Canal des Matières Premières (20) | -112.25 | BUY |
| Indice Directionnel Moyen (14) | 40.16 | SELL |
| Oscillateur Impressionnant (5, 34) | -0.001287 | NEUTRAL |
| Momentum (10) | -0 | BUY |
| MACD (12, 26) | 0 | NEUTRAL |
| Plage de Pourcentage de Williams (14) | -100 | BUY |
| Oscillateur Ultime (7, 14, 28) | 12.24 | BUY |
| VWMA (10) | 0.010029 | SELL |
| Moyenne Mobile de Hull (9) | 0.009595 | SELL |
| Nuage Ichimoku B/L (9, 26, 52, 26) | -0.014369 | SELL |
Prévision du cours de Seraph basée sur les flux monétaires mondiaux
Définitions des flux monétaires mondiaux utilisés pour la prédiction du cours de Seraph
M0 : le total de toutes les devises physiques, plus les comptes à la banque centrale qui peuvent être échangés contre des devises physiques.
M1 : M0 plus le montant des comptes à vue, y compris les comptes de "chèques" et les comptes "courants".
M2 : M1 plus la plupart des comptes d'épargne, comptes du marché monétaire et comptes de certificats de dépôt (CD) de moins de 100 000 $.
Prédictions du cours de Seraph par des sociétés Internet ou des niches technologiques
| Comparaison | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Action Facebook | $0.013467 | $0.018924 | $0.026592 | $0.037366 | $0.0525059 | $0.073779 |
| Action Amazon.com | $0.019998 | $0.041728 | $0.087068 | $0.181673 | $0.379072 | $0.790958 |
| Action Apple | $0.013594 | $0.019283 | $0.027351 | $0.038796 | $0.055029 | $0.078055 |
| Action Netflix | $0.015122 | $0.023861 | $0.037649 | $0.0594051 | $0.093732 | $0.147894 |
| Action Google | $0.012411 | $0.016073 | $0.020814 | $0.026955 | $0.0349068 | $0.0452041 |
| Action Tesla | $0.021727 | $0.049254 | $0.111655 | $0.253114 | $0.573791 | $1.30 |
| Action Kodak | $0.007187 | $0.005389 | $0.004041 | $0.00303 | $0.002272 | $0.0017043 |
| Action Nokia | $0.006349 | $0.0042061 | $0.002786 | $0.001845 | $0.001222 | $0.00081 |
Ce calcul montre la valeur potentielle des cryptomonnaies si l'on suppose que leur capitalisation se comportera comme celle de certaines sociétés Internet ou niches technologiques. En extrapolant les données, vous pourrez obtenir une potentielle image des cours futurs pour 2024, 2025, 2026, 2027, 2028, 2029 et 2030.
Aperçu des prévisions relatives à Seraph
Vous vous posez peut-être des questions telles que : "Devrais-je investir dans Seraph maintenant ?", "Devrais-je acheter SERAPH aujourd'hui ?", " Seraph sera-t-il un bon ou un mauvais investissement à court ou à long terme ?".
Nous mettons régulièrement à jour les prévisions de Seraph avec de nouvelles valeurs. Regardez nos prévisions similaires. Nous faisons une prévision des cours futurs pour une grande quantité de devises numériques comme Seraph en utilisant des méthodes d'analyse technique.
Si vous souhaitez trouver des cryptomonnaies ayant un bon rendement, vous devriez consulter un maximum d'informations disponibles à propos de Seraph afin de prendre une décision responsable concernant cet investissement.
Le cours de Seraph est de $0.009584 USD actuellement, mais ce cours peut subir une hausse ou une baisse, ce qui pourrait causer la perte de votre investissement, car les cryptomonnaies sont des actifs à haut risque.
Prévision à court terme de Seraph
basée sur l'historique des cours sur 4 heures
Prévision à long terme de Seraph
basée sur l'historique des cours sur 1 mois
Prévision du cours de Seraph basée sur le modèle de croissance du Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si Seraph présente 1 % de la précédente croissance annuelle moyenne du Bitcoin | $0.009833 | $0.010089 | $0.010351 | $0.01062 |
| Si Seraph présente 2 % de la précédente croissance annuelle moyenne du Bitcoin | $0.010082 | $0.0106069 | $0.011158 | $0.011738 |
| Si Seraph présente 5 % de la précédente croissance annuelle moyenne du Bitcoin | $0.01083 | $0.012237 | $0.013828 | $0.015625 |
| Si Seraph présente 10 % de la précédente croissance annuelle moyenne du Bitcoin | $0.012075 | $0.015214 | $0.019169 | $0.024152 |
| Si Seraph présente 20 % de la précédente croissance annuelle moyenne du Bitcoin | $0.014567 | $0.02214 | $0.033649 | $0.051143 |
| Si Seraph présente 50 % de la précédente croissance annuelle moyenne du Bitcoin | $0.022041 | $0.050686 | $0.116562 | $0.268055 |
| Si Seraph présente 100 % de la précédente croissance annuelle moyenne du Bitcoin | $0.034497 | $0.124168 | $0.446921 | $1.60 |
Boîte à questions
Est-ce que SERAPH est un bon investissement ?
La décision d'acquérir Seraph dépend entièrement de votre tolérance individuelle au risque. Comme vous pouvez le discerner, la valeur de Seraph a connu une baisse de -0.7451% au cours des 24 heures précédentes, et Seraph a enregistré une déclin de sur une période de 30 jours précédents. Par conséquent, la détermination de si investir ou non dans Seraph dépendra de la mesure dans laquelle cet investissement s'aligne avec vos aspirations de trading.
Est-ce que Seraph peut monter ?
Il semble que la valeur moyenne de Seraph pourrait potentiellement s'envoler jusqu'à $0.009884 pour la fin de cette année. En regardant les perspectives de Seraph sur une période de cinq ans plus longue, la monnaie numérique pourrait potentiellement croître jusqu'à $0.031075. Cependant, compte tenu de l'imprévisibilité du marché, il est essentiel de mener des recherches approfondies avant d'investir des fonds dans un projet, un réseau ou un actif particulier.
Quel sera le prix de Seraph la semaine prochaine ?
Basé sur notre nouveau pronostic expérimental de Seraph, le prix de Seraph va augmenter de 0.86% durant la prochaine semaine et atteindre $0.009666 d'ici 13 janvier 2026.
Quel sera le prix de Seraph le mois prochain ?
Basé sur notre nouveau pronostic expérimental de Seraph, le prix de Seraph va diminuer de -11.62% durant le prochain mois et atteindre $0.00847 d'ici 5 février 2026.
Jusqu'où le prix de Seraph peut-il monter cette année en 2026 ?
Selon notre prédiction la plus récente sur la valeur de Seraph en 2026, SERAPH devrait fluctuer dans la fourchette de $0.003311 et $0.009884. Cependant, il est crucial de garder à l'esprit que le marché des cryptomonnaies est exceptionnellement instable, et cette prévision de prix de Seraph ne prend pas en compte les fluctuations de prix soudaines et extrêmes.
Où sera Seraph dans 5 ans ?
L'avenir de Seraph semble suivre une tendance haussière, avec un prix maximum de $0.031075 prévue après une période de cinq ans. Selon la prévision de Seraph pour 2030, la valeur de Seraph pourrait potentiellement atteindre son point le plus élevé d'environ $0.031075, tandis que son point le plus bas devrait être autour de $0.010748.
Combien vaudra Seraph en 2026 ?
Basé sur notre nouvelle simulation expérimentale de prédiction de prix de Seraph, il est attendu que la valeur de SERAPH en 2026 augmente de 3.13% jusqu'à $0.009884 si le meilleur scénario se produit. Le prix sera entre $0.009884 et $0.003311 durant 2026.
Combien vaudra Seraph en 2027 ?
Selon notre dernière simulation expérimentale pour la prédiction de prix de Seraph, le valeur de SERAPH pourrait diminuer de -12.62% jusqu'à $0.008374 en 2027, en supposant les conditions les plus favorables. Il est prévu que le prix fluctue entre $0.008374 et $0.003187 tout au long de l'année.
Combien vaudra Seraph en 2028 ?
Notre nouveau modèle expérimental de prédiction de prix de Seraph suggère que la valeur de SERAPH en 2028 pourrait augmenter de 47.02%, atteignant $0.014091 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.014091 et $0.005753 durant l'année.
Combien vaudra Seraph en 2029 ?
Basé sur notre modèle de prévision expérimental, la valeur de Seraph pourrait connaître un 333.75% croissance en 2029, atteignant potentiellement $0.041573 sous des conditions optimales. Le range de prix prévu pour 2029 se situe entre $0.041573 et $0.012637.
Combien vaudra Seraph en 2030 ?
En utilisant notre nouvelle simulation expérimentale pour les prédictions de prix de Seraph, il est prévu que la valeur de SERAPH en 2030 augmente de 224.23%, atteignant $0.031075 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.031075 et $0.010748 au cours de 2030.
Combien vaudra Seraph en 2031 ?
Notre simulation expérimentale indique que le prix de Seraph pourrait augmenter de 195.98% en 2031, atteignant potentiellement $0.028368 dans des conditions idéales. Il est probable que le prix fluctue entre $0.028368 et $0.0127074 durant l'année.
Combien vaudra Seraph en 2032 ?
Basé sur les résultats de notre dernière prédiction expérimentale de prix de Seraph, SERAPH pourrait connaître une 449.04% hausse en valeur, atteignant $0.052622 si le scénario le plus positif se réalise en 2032. Il est prévu que le prix reste dans une fourchette de $0.052622 et $0.019397 tout au long de l'année.
Combien vaudra Seraph en 2033 ?
Selon notre prédiction expérimentale de prix de Seraph, la valeur de SERAPH est anticipée à augmenter de 1362.43% en 2033, avec le prix potentiel le plus élevé étant $0.140166. Tout au long de l'année, le prix de SERAPH pourrait osciller entre $0.140166 et $0.045074.
Combien vaudra Seraph en 2034 ?
Les résultats de notre nouvelle simulation de prédiction de prix de Seraph suggèrent que SERAPH pourrait augmenter de 746.96% en 2034, atteignant potentiellement $0.081176 dans les meilleures circonstances. La fourchette de prix prévue pour l'année est entre $0.081176 et $0.036237.
Combien vaudra Seraph en 2035 ?
Basé sur notre prédiction expérimentale pour le prix de Seraph, SERAPH pourrait augmenter de 897.93%, avec la valeur potentiellement atteignant $0.095646 en 2035. La fourchette de prix attendue pour l'année se situe entre $0.095646 et $0.042844.
Combien vaudra Seraph en 2036 ?
Notre récente simulation de prédiction de prix de Seraph suggère que la valeur de SERAPH pourrait augmenter de 1964.7% en 2036, pouvant atteindre $0.19789 si les conditions sont optimales. La fourchette de prix attendue pour 2036 est entre $0.19789 et $0.07092.
Combien vaudra Seraph en 2037 ?
Selon la simulation expérimentale, la valeur de Seraph pourrait augmenter de 4830.69% en 2037, avec un maximum de $0.472581 sous des conditions favorables. Il est prévu que le prix chute entre $0.472581 et $0.184178 au cours de l'année.
Prévisions liées
Comment lire et prédire les mouvements de prix de Seraph ?
Les traders de Seraph utilisent des indicateurs et des modèles graphiques pour prédire la direction du marché. Ils identifient également des niveaux clés de support et de résistance pour évaluer quand une tendance baissière pourrait ralentir ou une tendance haussière pourrait s'arrêter.
Indicateurs de prédiction du prix de Seraph
Les moyennes mobiles sont des outils populaires pour la prédiction du prix de Seraph. Une moyenne mobile simple (SMA) calcule le prix de clôture moyen de SERAPH sur une période spécifique, comme une SMA de 12 jours. Une moyenne mobile exponentielle (EMA) donne plus de poids aux prix récents, réagissant plus rapidement aux changements de prix.
Les moyennes mobiles couramment utilisées sur le marché des cryptomonnaies incluent les moyennes sur 50 jours, 100 jours et 200 jours, qui aident à identifier les niveaux clés de résistance et de support. Un mouvement de prix de SERAPH au-dessus de ces moyennes est considéré comme haussier, tandis qu'une chute en dessous indique une faiblesse.
Les traders utilisent également le RSI et les niveaux de retracement de Fibonacci pour évaluer la direction future de SERAPH.
Comment lire les graphiques de Seraph et prédire les mouvements de prix ?
La plupart des traders préfèrent les graphiques en chandeliers aux simples graphiques linéaires parce qu'ils fournissent des informations plus détaillées. Les chandeliers peuvent représenter l'action des prix de Seraph dans différentes périodes, comme 5 minutes pour les tendances à court terme et hebdomadaire pour les tendances à long terme. Les options populaires incluent les graphiques de 1 heure, 4 heures et 1 jour.
Par exemple, un graphique en chandeliers de 1 heure montre les prix d'ouverture, de clôture, les plus hauts et les plus bas de SERAPH au sein de chaque heure. La couleur du chandelier est cruciale : le vert indique que le prix a clôturé plus haut qu'il n'a ouvert, tandis que le rouge signifie le contraire. Certains graphiques utilisent des chandeliers creux et pleins pour transmettre la même information.
Qu'est-ce qui affecte le prix de Seraph ?
L'action du prix de Seraph est déterminée par l'offre et la demande, influencée par des facteurs tels que les réductions de récompenses de bloc, les hard forks et les mises à jour de protocole. Les événements du monde réel, tels que les réglementations, l'adoption par les entreprises et les gouvernements et les piratages d'échanges de cryptomonnaies, impactent également le prix de SERAPH. La capitalisation boursière de Seraph peut changer rapidement.
Les traders surveillent souvent l'activité des « baleines » de SERAPH, de grands détenteurs de Seraph, car leurs actions peuvent influencer significativement les mouvements de prix sur le marché relativement petit de Seraph.
Modèles de prédiction de prix haussiers et baissiers
Les traders identifient souvent des modèles de chandeliers pour obtenir un avantage dans les prédictions de prix des cryptomonnaies. Certaines formations indiquent des tendances haussières, tandis que d'autres suggèrent des mouvements baissiers.
Modèles de chandeliers haussiers couramment suivis :
- Marteau
- Englobante haussière
- Ligne pénétrante
- Étoile du matin
- Trois soldats blancs
Modèles de chandeliers baissiers courants :
- Harami baissier
- Nuage sombre
- Étoile du soir
- Étoile filante
- Pendu


