Predicción del precio de Seraph - Pronóstico de SERAPH
Predicción de precio de Seraph hasta $0.009895 para el año 2026
| Año | Precio min. | Precio max. |
|---|---|---|
| 2026 | $0.003315 | $0.009895 |
| 2027 | $0.003191 | $0.008383 |
| 2028 | $0.005759 | $0.0141068 |
| 2029 | $0.012652 | $0.041619 |
| 2030 | $0.010759 | $0.03111 |
| 2031 | $0.012721 | $0.02840016 |
| 2032 | $0.019418 | $0.05268 |
| 2033 | $0.045124 | $0.140322 |
| 2034 | $0.036278 | $0.081267 |
| 2035 | $0.042891 | $0.095753 |
Calculadora de ganancias de inversión
Si abres una posición corta de $10,000.00 en Seraph hoy y la cierras el Apr 06, 2026, nuestra previsión indica que podrías obtener una ganancia de alrededor de $3,955.29, equivalente a un ROI del 39.55% en los próximos 90 días.
Predicción del precio a largo plazo de Seraph para 2027, 2028, 2029, 2030, 2031, 2032 y 2037
[
'name' => 'Seraph'
'name_with_ticker' => 'Seraph <small>SERAPH</small>'
'name_lang' => 'Seraph'
'name_lang_with_ticker' => 'Seraph <small>SERAPH</small>'
'name_with_lang' => 'Seraph'
'name_with_lang_with_ticker' => 'Seraph <small>SERAPH</small>'
'image' => '/uploads/coins/seraph.jpg?1736294429'
'price_for_sd' => 0.009595
'ticker' => 'SERAPH'
'marketcap' => '$3.06M'
'low24h' => '$0.009534'
'high24h' => '$0.009815'
'volume24h' => '$1.34M'
'current_supply' => '318.54M'
'max_supply' => '1B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.009595'
'change_24h_pct' => '-1.0952%'
'ath_price' => '$0.6981'
'ath_days' => 365
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '6 ene. 2025'
'ath_pct' => '-98.63%'
'fdv' => '$9.6M'
'new_prediction' => true
'change_24h_pct_is_increased' => false
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.4731074'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.009677'
'next_week_prediction_price_date' => '13 de enero de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.00848'
'next_month_prediction_price_date' => '5 de febrero de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.003315'
'current_year_max_price_prediction' => '$0.009895'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.010759'
'grand_prediction_max_price' => '$0.03111'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0097769832349458
107 => 0.0098134869413002
108 => 0.0098957316556421
109 => 0.0091929595764014
110 => 0.0095084836076762
111 => 0.0096938244154466
112 => 0.0088564479031839
113 => 0.0096772721741699
114 => 0.0091807258780285
115 => 0.0090121906072431
116 => 0.0092391011465222
117 => 0.0091506738886874
118 => 0.0090746493250238
119 => 0.0090322263122317
120 => 0.009198844369076
121 => 0.0091910714375725
122 => 0.0089184519574041
123 => 0.008562830958916
124 => 0.00868218903887
125 => 0.0086388251294348
126 => 0.0084816687275858
127 => 0.0085875731672957
128 => 0.0081212236118238
129 => 0.0073188934403751
130 => 0.0078489373276719
131 => 0.0078285312145878
201 => 0.0078182415270272
202 => 0.0082165548589937
203 => 0.0081782662227772
204 => 0.0081087719731209
205 => 0.0084803924111928
206 => 0.0083447459522963
207 => 0.0087627763762902
208 => 0.0090381182500452
209 => 0.0089682826444844
210 => 0.0092272430075937
211 => 0.0086849388079627
212 => 0.0088650705096121
213 => 0.0089021954036702
214 => 0.0084758066726722
215 => 0.0081845307171858
216 => 0.0081651059317439
217 => 0.0076600735652297
218 => 0.0079298577789428
219 => 0.0081672567225809
220 => 0.0080535610514805
221 => 0.0080175683985716
222 => 0.0082014470564289
223 => 0.0082157360029586
224 => 0.0078899465078065
225 => 0.0079576884602601
226 => 0.0082401836631545
227 => 0.0079505703059552
228 => 0.0073878988609903
301 => 0.0072483485630976
302 => 0.0072297299809364
303 => 0.0068512585051778
304 => 0.0072576739812885
305 => 0.0070802627347086
306 => 0.0076407027369415
307 => 0.0073205824133661
308 => 0.0073067826660331
309 => 0.0072859223239565
310 => 0.0069601562903113
311 => 0.0070314783481682
312 => 0.0072685637311404
313 => 0.0073531584667429
314 => 0.0073443345427553
315 => 0.0072674018834223
316 => 0.007302621260906
317 => 0.0071891673747866
318 => 0.0071491044462593
319 => 0.0070226548236508
320 => 0.0068368088110161
321 => 0.0068626518389328
322 => 0.0064944422586489
323 => 0.0062938221369488
324 => 0.0062382931313929
325 => 0.0061640374244466
326 => 0.0062466805110793
327 => 0.0064933991671711
328 => 0.0061958041236417
329 => 0.0056855982953756
330 => 0.0057162625350029
331 => 0.0057851559771508
401 => 0.0056567735034839
402 => 0.0055352702664825
403 => 0.005640907473186
404 => 0.0054247265378251
405 => 0.0058112804103725
406 => 0.0058008252114248
407 => 0.0059449085907794
408 => 0.0060350068847784
409 => 0.0058273594867797
410 => 0.0057751367277214
411 => 0.0058048851846731
412 => 0.0053132094567679
413 => 0.0059047281942235
414 => 0.0059098436728284
415 => 0.0058660418393164
416 => 0.0061810073059194
417 => 0.0068456826806443
418 => 0.0065956050681678
419 => 0.006498767457981
420 => 0.0063146790902281
421 => 0.0065599659101732
422 => 0.0065411317094719
423 => 0.006455956311242
424 => 0.0064044419646292
425 => 0.0064993587277794
426 => 0.0063926807272776
427 => 0.006373518427072
428 => 0.0062574157366147
429 => 0.0062159723584573
430 => 0.0061852893311779
501 => 0.0061515103329954
502 => 0.0062260183857842
503 => 0.006057173335814
504 => 0.0058535627576343
505 => 0.0058366347411557
506 => 0.0058833744829797
507 => 0.0058626956265871
508 => 0.005836535738747
509 => 0.0057865893886387
510 => 0.0057717713734965
511 => 0.0058199227340297
512 => 0.0057655626553865
513 => 0.0058457739125713
514 => 0.0058239608889084
515 => 0.0057021151118992
516 => 0.0055502501606613
517 => 0.0055488982440477
518 => 0.005516179189412
519 => 0.0054745065539905
520 => 0.005462914180157
521 => 0.0056320110022835
522 => 0.0059820363634434
523 => 0.0059133180096507
524 => 0.0059629740628061
525 => 0.0062072326979285
526 => 0.0062848751729204
527 => 0.0062297663832339
528 => 0.0061543300729489
529 => 0.0061576488877557
530 => 0.0064154375961236
531 => 0.0064315155616544
601 => 0.0064721393936026
602 => 0.0065243524979495
603 => 0.0062386585006801
604 => 0.0061441927261764
605 => 0.0060994296014549
606 => 0.0059615765028221
607 => 0.0061102392510661
608 => 0.0060236198340379
609 => 0.0060353077527357
610 => 0.0060276959803508
611 => 0.0060318525227787
612 => 0.0058111723606871
613 => 0.0058915766131454
614 => 0.0057578889487723
615 => 0.0055788961733212
616 => 0.0055782961267749
617 => 0.0056221043549877
618 => 0.0055960455066306
619 => 0.0055259218157359
620 => 0.005535882555053
621 => 0.0054486159974527
622 => 0.0055464782951577
623 => 0.0055492846356877
624 => 0.0055116023204759
625 => 0.0056623726924851
626 => 0.0057241434369142
627 => 0.0056993401298084
628 => 0.0057224031707671
629 => 0.0059161735674956
630 => 0.0059477665969574
701 => 0.005961798133726
702 => 0.0059429977332785
703 => 0.00572594493791
704 => 0.0057355721523644
705 => 0.0056649340404555
706 => 0.0056052522795534
707 => 0.0056076392369999
708 => 0.0056383234201894
709 => 0.0057723230477816
710 => 0.00605431736434
711 => 0.0060650188425182
712 => 0.0060779893462544
713 => 0.0060252317891066
714 => 0.006009319605049
715 => 0.0060303118831041
716 => 0.0061362141218467
717 => 0.0064086234320698
718 => 0.0063123357882309
719 => 0.0062340524349833
720 => 0.0063027280408219
721 => 0.0062921559696003
722 => 0.006202917049133
723 => 0.006200412409855
724 => 0.0060291343900696
725 => 0.0059658168059668
726 => 0.0059129038934515
727 => 0.0058551243743113
728 => 0.0058208707385779
729 => 0.0058734998910634
730 => 0.0058855368009266
731 => 0.0057704622392171
801 => 0.0057547780016712
802 => 0.0058487503728201
803 => 0.0058073966359206
804 => 0.0058499299798451
805 => 0.0058597980804798
806 => 0.005858209088996
807 => 0.0058150310382265
808 => 0.005842551440199
809 => 0.0057774574853073
810 => 0.0057066775861585
811 => 0.0056615244202451
812 => 0.0056221222942874
813 => 0.0056439848838337
814 => 0.0055660487440521
815 => 0.0055411154043913
816 => 0.0058332281472393
817 => 0.0060490149711223
818 => 0.0060458773452421
819 => 0.0060267778546281
820 => 0.005998399885766
821 => 0.0061341380966689
822 => 0.0060868496181615
823 => 0.0061212559373603
824 => 0.006130013789625
825 => 0.0061565211707341
826 => 0.0061659952810942
827 => 0.0061373579393932
828 => 0.0060412475228882
829 => 0.005801749502862
830 => 0.0056902625280272
831 => 0.0056534699693693
901 => 0.0056548073089975
902 => 0.0056179175119048
903 => 0.0056287832104334
904 => 0.0056141388653827
905 => 0.0055864060187045
906 => 0.0056422724587005
907 => 0.0056487105454781
908 => 0.0056356706508288
909 => 0.0056387420180698
910 => 0.0055307772597854
911 => 0.0055389855858706
912 => 0.0054932805831643
913 => 0.005484711446139
914 => 0.0053691731792874
915 => 0.0051644803920203
916 => 0.0052779000661759
917 => 0.0051409050490156
918 => 0.0050890229602037
919 => 0.0053346246993189
920 => 0.0053099730966436
921 => 0.0052677802686575
922 => 0.0052053682823104
923 => 0.0051822190694694
924 => 0.005041571780398
925 => 0.0050332615882356
926 => 0.0051029701824956
927 => 0.0050708020647709
928 => 0.0050256258444665
929 => 0.004862002153964
930 => 0.0046780349518971
1001 => 0.0046835877653509
1002 => 0.0047421043094969
1003 => 0.0049122490536326
1004 => 0.0048457705585648
1005 => 0.0047975396476403
1006 => 0.00478850744784
1007 => 0.0049015643385319
1008 => 0.0050615635250117
1009 => 0.005136631563528
1010 => 0.0050622414172086
1011 => 0.0049767860225667
1012 => 0.0049819872964764
1013 => 0.0050165890415857
1014 => 0.0050202251957544
1015 => 0.0049646025187991
1016 => 0.0049802599765503
1017 => 0.0049564748664782
1018 => 0.0048105056898698
1019 => 0.0048078655703382
1020 => 0.0047720423803276
1021 => 0.0047709576683711
1022 => 0.0047100134856495
1023 => 0.0047014869731995
1024 => 0.0045804785993582
1025 => 0.0046601266774676
1026 => 0.0046067029283836
1027 => 0.0045261807371255
1028 => 0.004512298681002
1029 => 0.0045118813696318
1030 => 0.0045945596556214
1031 => 0.0046591605335582
1101 => 0.0046076322573716
1102 => 0.0045959002677176
1103 => 0.0047211672238346
1104 => 0.0047052258618351
1105 => 0.0046914207451542
1106 => 0.0050472373527489
1107 => 0.0047655807431216
1108 => 0.0046427623849268
1109 => 0.0044907513440872
1110 => 0.0045402469054908
1111 => 0.0045506763475196
1112 => 0.0041851171963499
1113 => 0.0040368098942478
1114 => 0.0039859164170092
1115 => 0.0039566265013302
1116 => 0.0039699742837047
1117 => 0.0038364803171014
1118 => 0.0039261904704452
1119 => 0.0038105959793308
1120 => 0.0037912161867185
1121 => 0.0039979134562407
1122 => 0.0040266741737867
1123 => 0.0039039720174806
1124 => 0.0039827666655038
1125 => 0.0039541946308031
1126 => 0.0038125775151047
1127 => 0.00380716878295
1128 => 0.0037361102923748
1129 => 0.0036249175142598
1130 => 0.0035740994309607
1201 => 0.0035476329319557
1202 => 0.003558553525267
1203 => 0.0035530317391131
1204 => 0.0035169983493793
1205 => 0.0035550971308335
1206 => 0.0034577704877214
1207 => 0.00341901423422
1208 => 0.0034015089336518
1209 => 0.0033151259359772
1210 => 0.0034525996999709
1211 => 0.0034796837633265
1212 => 0.0035068211906536
1213 => 0.0037430339680275
1214 => 0.0037312334452003
1215 => 0.0038379044244707
1216 => 0.0038337593863716
1217 => 0.0038033350951284
1218 => 0.0036749800149263
1219 => 0.0037261400621855
1220 => 0.0035686773887581
1221 => 0.0036866591301109
1222 => 0.0036328171903928
1223 => 0.0036684551161321
1224 => 0.0036043749123106
1225 => 0.0036398395429122
1226 => 0.0034861063995006
1227 => 0.0033425525532665
1228 => 0.0034003228115891
1229 => 0.0034631256892162
1230 => 0.0035992983297873
1231 => 0.003518195028463
]
'min_raw' => 0.0033151259359772
'max_raw' => 0.0098957316556421
'avg_raw' => 0.0066054287958096
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.003315'
'max' => '$0.009895'
'avg' => '$0.0066054'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0062800340640228
'max_diff' => 0.00030057165564207
'year' => 2026
]
1 => [
'items' => [
101 => 0.0035473628424746
102 => 0.003449655548169
103 => 0.0032480574913076
104 => 0.003249198514416
105 => 0.0032181870454202
106 => 0.0031913886084593
107 => 0.0035275107182446
108 => 0.0034857086205886
109 => 0.003419102448897
110 => 0.0035082574565302
111 => 0.0035318314556287
112 => 0.0035325025742419
113 => 0.0035975477663873
114 => 0.0036322623970953
115 => 0.0036383810012194
116 => 0.0037407310164546
117 => 0.0037750373915321
118 => 0.0039163404952563
119 => 0.0036293171032174
120 => 0.0036234060453393
121 => 0.0035095120503217
122 => 0.0034372786780888
123 => 0.0035144579311169
124 => 0.0035828282132811
125 => 0.00351163650557
126 => 0.0035209326396581
127 => 0.0034253635886322
128 => 0.0034595250274321
129 => 0.0034889494605694
130 => 0.0034727030180792
131 => 0.0034483813073347
201 => 0.0035772226298281
202 => 0.0035699528974798
203 => 0.0036899328990347
204 => 0.0037834658900991
205 => 0.0039510937311084
206 => 0.0037761653403782
207 => 0.0037697902545426
208 => 0.0038321077411814
209 => 0.0037750278510496
210 => 0.0038111003712821
211 => 0.00394528189042
212 => 0.0039481169344789
213 => 0.0039006262937441
214 => 0.0038977364839394
215 => 0.0039068575809833
216 => 0.0039602801312611
217 => 0.0039416126506848
218 => 0.0039632151318104
219 => 0.0039902293652469
220 => 0.0041019716885379
221 => 0.0041289123843814
222 => 0.0040634604606308
223 => 0.0040693700365114
224 => 0.0040448892203332
225 => 0.0040212410586487
226 => 0.0040743986725787
227 => 0.0041715452568511
228 => 0.0041709409129923
301 => 0.0041934770322837
302 => 0.004207516847903
303 => 0.0041472476814919
304 => 0.0041080146703169
305 => 0.0041230591032628
306 => 0.0041471154791683
307 => 0.0041152579447803
308 => 0.0039186184846923
309 => 0.0039782663355056
310 => 0.0039683380164994
311 => 0.0039541988829097
312 => 0.0040141752581457
313 => 0.0040083903904409
314 => 0.0038351111435248
315 => 0.0038462039187092
316 => 0.0038357857319242
317 => 0.0038694490247871
318 => 0.0037732099227615
319 => 0.0038028124223643
320 => 0.003821378832609
321 => 0.0038323145908771
322 => 0.0038718220484608
323 => 0.0038671863043067
324 => 0.0038715338840953
325 => 0.0039301130141098
326 => 0.0042263861517936
327 => 0.0042425116449879
328 => 0.0041631038188772
329 => 0.0041948256791583
330 => 0.0041339266442267
331 => 0.0041748085743644
401 => 0.0042027789526761
402 => 0.0040763861914799
403 => 0.0040689020324441
404 => 0.0040077516455324
405 => 0.0040406103997238
406 => 0.0039883297591772
407 => 0.0040011575996682
408 => 0.0039652898393444
409 => 0.0040298446667273
410 => 0.0041020269945474
411 => 0.0041202631011212
412 => 0.0040722917558629
413 => 0.0040375573404302
414 => 0.0039765751491581
415 => 0.0040779898923204
416 => 0.0041076466537793
417 => 0.0040778341179777
418 => 0.0040709259020157
419 => 0.0040578348452506
420 => 0.0040737032315938
421 => 0.0041074851366873
422 => 0.004091554214099
423 => 0.0041020768691353
424 => 0.0040619753590518
425 => 0.0041472676330938
426 => 0.0042827322909759
427 => 0.0042831678320017
428 => 0.0042672368235399
429 => 0.0042607181981157
430 => 0.004277064379572
501 => 0.0042859315124565
502 => 0.0043387920659091
503 => 0.0043955135458211
504 => 0.0046602079430499
505 => 0.0045858828154998
506 => 0.0048207354314614
507 => 0.0050064733588915
508 => 0.0050621680419925
509 => 0.0050109315541769
510 => 0.0048356542971002
511 => 0.0048270543586637
512 => 0.0050889925808854
513 => 0.0050149830355772
514 => 0.0050061798356592
515 => 0.0049125286617727
516 => 0.0049678881044631
517 => 0.0049557801822727
518 => 0.0049366672347553
519 => 0.0050422891950364
520 => 0.0052400040757453
521 => 0.0052091883574284
522 => 0.0051861858532049
523 => 0.0050853955756258
524 => 0.0051460938350519
525 => 0.0051244803474688
526 => 0.0052173456063839
527 => 0.00516233428422
528 => 0.0050144223404811
529 => 0.0050379778050456
530 => 0.0050344174439637
531 => 0.0051076894227396
601 => 0.0050856949934334
602 => 0.0050301226786437
603 => 0.0052393283077774
604 => 0.0052257436578843
605 => 0.0052450035855494
606 => 0.0052534824013406
607 => 0.0053808221811777
608 => 0.0054329892145584
609 => 0.0054448320444483
610 => 0.0054943866914169
611 => 0.0054435990796885
612 => 0.0056467857375555
613 => 0.0057818930087669
614 => 0.0059388270568356
615 => 0.0061681498809594
616 => 0.0062543773841847
617 => 0.0062388011575195
618 => 0.0064126711055449
619 => 0.0067251115372349
620 => 0.0063019543017778
621 => 0.0067475398982201
622 => 0.0066064726429196
623 => 0.0062720047182936
624 => 0.0062504689270655
625 => 0.0064769744888746
626 => 0.006979342024615
627 => 0.0068535046547175
628 => 0.0069795478494721
629 => 0.0068325117676123
630 => 0.0068252101868306
701 => 0.0069724066351669
702 => 0.0073163391599654
703 => 0.0071529497095515
704 => 0.0069186908676464
705 => 0.0070916639510379
706 => 0.006941818658301
707 => 0.0066041752747083
708 => 0.0068534084292523
709 => 0.0066867533165603
710 => 0.0067353921383169
711 => 0.0070856763971183
712 => 0.0070435292683621
713 => 0.0070980715556917
714 => 0.0070018058461752
715 => 0.0069118784937778
716 => 0.0067440224124352
717 => 0.0066943285019544
718 => 0.0067080621110117
719 => 0.0066943216962598
720 => 0.0066004077614256
721 => 0.0065801270561398
722 => 0.0065463249921454
723 => 0.0065568016651996
724 => 0.0064932438957474
725 => 0.0066131905384089
726 => 0.0066354536922531
727 => 0.0067227408560622
728 => 0.0067318032989729
729 => 0.0069748968077264
730 => 0.0068410049881254
731 => 0.0069308311803773
801 => 0.0069227962802654
802 => 0.0062792536524157
803 => 0.0063679281485087
804 => 0.0065058778368396
805 => 0.0064437316892329
806 => 0.006355871576476
807 => 0.0062849198246636
808 => 0.0061774206654786
809 => 0.0063287236676929
810 => 0.0065276710263243
811 => 0.0067368489323009
812 => 0.0069881624804526
813 => 0.0069320722221173
814 => 0.0067321508003283
815 => 0.0067411191292671
816 => 0.0067965578098592
817 => 0.0067247596813571
818 => 0.0067035850115959
819 => 0.0067936487353931
820 => 0.0067942689547608
821 => 0.0067116565308255
822 => 0.0066198479395354
823 => 0.0066194632581857
824 => 0.0066031268061314
825 => 0.0068354179861412
826 => 0.0069631546478592
827 => 0.0069777994502673
828 => 0.0069621689359735
829 => 0.0069681845005722
830 => 0.0068938573516038
831 => 0.0070637471731143
901 => 0.0072196548736944
902 => 0.0071778682794567
903 => 0.0071152242343801
904 => 0.0070653252351305
905 => 0.0071661136610465
906 => 0.0071616257110962
907 => 0.0072182931559407
908 => 0.0072157223933156
909 => 0.0071966672629847
910 => 0.0071778689599754
911 => 0.0072524021065435
912 => 0.0072309377572976
913 => 0.0072094400679887
914 => 0.0071663231609482
915 => 0.007172183464711
916 => 0.007109550236012
917 => 0.0070805732385142
918 => 0.0066448287216871
919 => 0.006528383548428
920 => 0.0065650195703954
921 => 0.006577081100081
922 => 0.0065264040114501
923 => 0.0065990619386708
924 => 0.0065877382776773
925 => 0.0066317920184831
926 => 0.0066042691538187
927 => 0.0066053987017849
928 => 0.0066863375782695
929 => 0.0067098344784516
930 => 0.0066978837653757
1001 => 0.0067062536351676
1002 => 0.0068991337518195
1003 => 0.0068717123671905
1004 => 0.0068571453031348
1005 => 0.0068611804794313
1006 => 0.0069104654846322
1007 => 0.0069242625952269
1008 => 0.0068658032681313
1009 => 0.0068933730247389
1010 => 0.0070107615492512
1011 => 0.0070518408892155
1012 => 0.0071829464231795
1013 => 0.0071272504621365
1014 => 0.0072294828090956
1015 => 0.0075437101900724
1016 => 0.0077947367648776
1017 => 0.0075638823525748
1018 => 0.0080248606891629
1019 => 0.0083837984476117
1020 => 0.0083700218186004
1021 => 0.0083074327180349
1022 => 0.0078987916228949
1023 => 0.0075227539946517
1024 => 0.0078373254380782
1025 => 0.0078381273453797
1026 => 0.0078111053794098
1027 => 0.0076432742695313
1028 => 0.007805265220581
1029 => 0.0078181234740106
1030 => 0.0078109262713756
1031 => 0.0076822505529326
1101 => 0.007485786514118
1102 => 0.0075241751170339
1103 => 0.0075870564317165
1104 => 0.007468008984606
1105 => 0.007429966111915
1106 => 0.0075006950502002
1107 => 0.0077285984263147
1108 => 0.0076855146132146
1109 => 0.0076843895207392
1110 => 0.0078687203435615
1111 => 0.007736779255502
1112 => 0.007524659320254
1113 => 0.0074710962390857
1114 => 0.007280983385353
1115 => 0.0074122950105849
1116 => 0.0074170206822074
1117 => 0.0073451026470402
1118 => 0.0075304950724449
1119 => 0.0075287866486071
1120 => 0.007704789164508
1121 => 0.0080412398713841
1122 => 0.0079417348416271
1123 => 0.0078260213181361
1124 => 0.0078386025865275
1125 => 0.0079765880475654
1126 => 0.0078931588879202
1127 => 0.0079231605954174
1128 => 0.0079765426363879
1129 => 0.0080087493471069
1130 => 0.0078339685364882
1201 => 0.0077932187688004
1202 => 0.0077098590453361
1203 => 0.0076881120494672
1204 => 0.0077560068048712
1205 => 0.0077381189355793
1206 => 0.0074166235078063
1207 => 0.0073830254468203
1208 => 0.0073840558513838
1209 => 0.0072995719295339
1210 => 0.0071707136702482
1211 => 0.007509345481924
1212 => 0.0074821486082973
1213 => 0.0074521253646842
1214 => 0.0074558030407165
1215 => 0.007602791632868
1216 => 0.0075175308263183
1217 => 0.0077442106545021
1218 => 0.0076976120964468
1219 => 0.00764981846121
1220 => 0.0076432119249905
1221 => 0.0076248154529856
1222 => 0.0075617271054552
1223 => 0.0074855441347904
1224 => 0.0074352415387015
1225 => 0.0068586172940715
1226 => 0.0069656353998059
1227 => 0.0070887499754461
1228 => 0.0071312486336064
1229 => 0.0070585517380055
1230 => 0.0075645976219864
1231 => 0.0076570570813691
]
'min_raw' => 0.0031913886084593
'max_raw' => 0.0083837984476117
'avg_raw' => 0.0057875935280355
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.003191'
'max' => '$0.008383'
'avg' => '$0.005787'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00012373732751782
'max_diff' => -0.0015119332080303
'year' => 2027
]
2 => [
'items' => [
101 => 0.0073769913479174
102 => 0.0073246024841972
103 => 0.0075680322271701
104 => 0.0074212143340816
105 => 0.0074873264223496
106 => 0.0073444282488931
107 => 0.0076347863051328
108 => 0.0076325742632271
109 => 0.0075196184213157
110 => 0.007615087925411
111 => 0.0075984977496853
112 => 0.0074709708823653
113 => 0.0076388291342924
114 => 0.0076389123898912
115 => 0.0075301948479233
116 => 0.0074032365602349
117 => 0.0073805394170171
118 => 0.0073634401685347
119 => 0.0074831210554259
120 => 0.0075904265643801
121 => 0.0077900955132523
122 => 0.0078402970310159
123 => 0.0080362368969518
124 => 0.0079195642469259
125 => 0.0079712837215186
126 => 0.0080274325273554
127 => 0.0080543523296775
128 => 0.0080104879563898
129 => 0.0083148632202547
130 => 0.008340561818342
131 => 0.0083491783359886
201 => 0.0082465447095615
202 => 0.0083377073915282
203 => 0.0082950553916267
204 => 0.0084060240463035
205 => 0.0084234253482757
206 => 0.0084086870645745
207 => 0.0084142105124814
208 => 0.0081544799202487
209 => 0.0081410115188534
210 => 0.0079573689101545
211 => 0.008032204630617
212 => 0.0078923028381819
213 => 0.0079366671377112
214 => 0.0079562224982252
215 => 0.0079460078876496
216 => 0.0080364357299693
217 => 0.0079595535908099
218 => 0.0077566489849742
219 => 0.0075536890979144
220 => 0.0075511411018599
221 => 0.0074977053461366
222 => 0.0074590810819955
223 => 0.0074665214855384
224 => 0.0074927424380909
225 => 0.007457557072566
226 => 0.0074650656542441
227 => 0.0075897581395176
228 => 0.0076147643281731
229 => 0.0075297835285731
301 => 0.0071885733555083
302 => 0.0071048395231773
303 => 0.0071650257413427
304 => 0.0071362606055485
305 => 0.0057595192709819
306 => 0.0060829642260455
307 => 0.0058907842168995
308 => 0.005979349606891
309 => 0.0057831835823251
310 => 0.0058768042911902
311 => 0.0058595159647437
312 => 0.0063796058810539
313 => 0.006371485392371
314 => 0.0063753722405768
315 => 0.0061898428485847
316 => 0.0064853962077001
317 => 0.0066309964201553
318 => 0.006604049695854
319 => 0.0066108316058163
320 => 0.0064942959231221
321 => 0.0063765005607197
322 => 0.006245847375239
323 => 0.0064885848446403
324 => 0.0064615965817096
325 => 0.006523497946802
326 => 0.0066809305469414
327 => 0.0067041130953402
328 => 0.0067352706754824
329 => 0.006724102900949
330 => 0.0069901645983143
331 => 0.0069579427712318
401 => 0.0070355881036484
402 => 0.0068758657639019
403 => 0.006695124775495
404 => 0.0067294777285231
405 => 0.0067261692628975
406 => 0.0066840486982035
407 => 0.0066460241357354
408 => 0.0065827239525802
409 => 0.0067830150987478
410 => 0.006774883643988
411 => 0.0069065224447674
412 => 0.0068832540080586
413 => 0.0067278616929645
414 => 0.006733411559898
415 => 0.0067707370822003
416 => 0.006899921141064
417 => 0.0069382717652562
418 => 0.0069205062281222
419 => 0.0069625559367764
420 => 0.006995790311992
421 => 0.0069667296626181
422 => 0.007378167174267
423 => 0.0072073096341071
424 => 0.0072905844103619
425 => 0.0073104449538152
426 => 0.0072595725893818
427 => 0.0072706049836246
428 => 0.007287316054755
429 => 0.0073887824062954
430 => 0.0076550594722628
501 => 0.0077729917721704
502 => 0.0081277969151198
503 => 0.00776319913636
504 => 0.007741565413024
505 => 0.007805476533358
506 => 0.0080137847122079
507 => 0.0081825989257734
508 => 0.0082386043395388
509 => 0.0082460063795164
510 => 0.0083510762589097
511 => 0.0084113003543406
512 => 0.0083383180119392
513 => 0.0082764731183237
514 => 0.0080549523858638
515 => 0.008080594013827
516 => 0.0082572394029142
517 => 0.0085067614193613
518 => 0.008720877267814
519 => 0.0086459013603766
520 => 0.0092179146093824
521 => 0.0092746273865567
522 => 0.0092667915144948
523 => 0.0093959916608908
524 => 0.0091395556814471
525 => 0.0090299243320218
526 => 0.0082898446862927
527 => 0.0084977768792861
528 => 0.0088000185332316
529 => 0.0087600157169838
530 => 0.0085405197489461
531 => 0.0087207107604396
601 => 0.0086611339769459
602 => 0.0086141432959615
603 => 0.008829416715143
604 => 0.0085927147478083
605 => 0.0087976572500398
606 => 0.0085348163710691
607 => 0.0086462438440063
608 => 0.0085829922212267
609 => 0.0086239237729924
610 => 0.0083846387577391
611 => 0.0085137511436544
612 => 0.0083792672580029
613 => 0.0083792034951308
614 => 0.0083762347559012
615 => 0.0085344544509774
616 => 0.0085396139895536
617 => 0.0084226893958356
618 => 0.0084058387351754
619 => 0.0084681444594249
620 => 0.0083952007742238
621 => 0.0084293306654273
622 => 0.0083962345338596
623 => 0.0083887838975326
624 => 0.0083294159596573
625 => 0.0083038386196652
626 => 0.0083138681537229
627 => 0.0082796321834046
628 => 0.0082590037729186
629 => 0.008372131245846
630 => 0.0083116918006101
701 => 0.00836286803404
702 => 0.0083045462570911
703 => 0.0081023775685978
704 => 0.0079861082179501
705 => 0.0076042303064335
706 => 0.0077125304084216
707 => 0.0077843334880842
708 => 0.007760602570684
709 => 0.0078115857639055
710 => 0.007814715717901
711 => 0.0077981405620726
712 => 0.0077789486550322
713 => 0.007769607096064
714 => 0.0078392314232174
715 => 0.0078796506885771
716 => 0.0077915398877296
717 => 0.0077708967598922
718 => 0.0078599816442796
719 => 0.0079143233722932
720 => 0.0083155521599667
721 => 0.0082858278354239
722 => 0.0083604300569221
723 => 0.0083520309916458
724 => 0.0084302260048419
725 => 0.0085580418037391
726 => 0.0082981565467215
727 => 0.0083432636411837
728 => 0.0083322044232965
729 => 0.0084529460643064
730 => 0.0084533230065302
731 => 0.0083809323612525
801 => 0.0084201765044616
802 => 0.0083982715003291
803 => 0.0084378568034355
804 => 0.0082854308489476
805 => 0.0084710692081489
806 => 0.0085763141955444
807 => 0.0085777755222964
808 => 0.008627660811046
809 => 0.0086783471535767
810 => 0.0087756351742143
811 => 0.0086756338434843
812 => 0.0084957411844344
813 => 0.008508728853368
814 => 0.0084032578531872
815 => 0.0084050308397552
816 => 0.0083955664985041
817 => 0.0084239696990409
818 => 0.0082916637542149
819 => 0.0083227156950162
820 => 0.0082792427960544
821 => 0.0083431691395915
822 => 0.0082743949613488
823 => 0.0083321990902068
824 => 0.0083571454359847
825 => 0.0084491979889617
826 => 0.0082607987244284
827 => 0.0078766398705362
828 => 0.0079573947191002
829 => 0.0078379519549176
830 => 0.0078490068374933
831 => 0.0078713394596679
901 => 0.0077989521244208
902 => 0.0078127613467989
903 => 0.0078122679842015
904 => 0.0078080164518736
905 => 0.0077891857102443
906 => 0.0077618774093331
907 => 0.0078706652751115
908 => 0.007889150453378
909 => 0.0079302407148352
910 => 0.0080524974611412
911 => 0.0080402811291726
912 => 0.0080602064734641
913 => 0.0080167095587518
914 => 0.0078510245346147
915 => 0.00786002202856
916 => 0.0077478231348865
917 => 0.0079273715368664
918 => 0.0078848521053545
919 => 0.0078574395512534
920 => 0.0078499597818915
921 => 0.0079725195790245
922 => 0.0080091913912161
923 => 0.007986339978812
924 => 0.0079394710652891
925 => 0.0080294732348036
926 => 0.0080535540184789
927 => 0.0080589448178787
928 => 0.008218411406054
929 => 0.0080678572287049
930 => 0.0081040971155726
1001 => 0.0083868303677829
1002 => 0.00813043032255
1003 => 0.0082662511449132
1004 => 0.008259603422436
1005 => 0.008329084759231
1006 => 0.0082539039248105
1007 => 0.0082548358813566
1008 => 0.0083165306013571
1009 => 0.0082298914938178
1010 => 0.0082084384323825
1011 => 0.0081788011816595
1012 => 0.0082435130343562
1013 => 0.0082823048633825
1014 => 0.0085949385158754
1015 => 0.0087969141132125
1016 => 0.0087881458198594
1017 => 0.0088682716075498
1018 => 0.0088321742063272
1019 => 0.008715606175766
1020 => 0.008914573589977
1021 => 0.0088516119749704
1022 => 0.0088568024540132
1023 => 0.008856609264124
1024 => 0.0088984732339034
1025 => 0.0088688087745382
1026 => 0.0088103370801351
1027 => 0.0088491533196396
1028 => 0.0089644236739084
1029 => 0.0093222263904853
1030 => 0.0095224575309373
1031 => 0.0093101722244125
1101 => 0.0094566037862398
1102 => 0.0093687970280438
1103 => 0.0093528399280548
1104 => 0.0094448097700897
1105 => 0.0095369405931583
1106 => 0.0095310722580213
1107 => 0.0094641900114436
1108 => 0.0094264099274261
1109 => 0.0097124933808637
1110 => 0.0099232747960522
1111 => 0.0099089009166328
1112 => 0.0099723425457537
1113 => 0.010158609131028
1114 => 0.010175639013217
1115 => 0.010173493639488
1116 => 0.010131283299599
1117 => 0.010314686942575
1118 => 0.010467685488225
1119 => 0.010121512825489
1120 => 0.010253330843726
1121 => 0.010312508199024
1122 => 0.010399398113731
1123 => 0.010545995964283
1124 => 0.010705240113142
1125 => 0.010727758981814
1126 => 0.010711780766864
1127 => 0.010606754969979
1128 => 0.010781001817838
1129 => 0.010883071534723
1130 => 0.010943851715304
1201 => 0.011097980140399
1202 => 0.010312873658224
1203 => 0.0097571362678163
1204 => 0.009670349849359
1205 => 0.0098468334439993
1206 => 0.0098933707604757
1207 => 0.0098746116265569
1208 => 0.0092490786682203
1209 => 0.0096670565477904
1210 => 0.010116765601629
1211 => 0.010134040757885
1212 => 0.01035917451321
1213 => 0.010432487292488
1214 => 0.01061374947448
1215 => 0.010602411475644
1216 => 0.010646545932448
1217 => 0.010636400185131
1218 => 0.010972150208016
1219 => 0.011342532342619
1220 => 0.011329707187041
1221 => 0.01127646037303
1222 => 0.011355540971768
1223 => 0.01173781502724
1224 => 0.011702621358029
1225 => 0.011736809009878
1226 => 0.012187531665301
1227 => 0.012773535231902
1228 => 0.01250127774142
1229 => 0.013091998155783
1230 => 0.013463825343881
1231 => 0.014106862018048
]
'min_raw' => 0.0057595192709819
'max_raw' => 0.014106862018048
'avg_raw' => 0.0099331906445151
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.005759'
'max' => '$0.0141068'
'avg' => '$0.009933'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0025681306625225
'max_diff' => 0.0057230635704366
'year' => 2028
]
3 => [
'items' => [
101 => 0.01402635065942
102 => 0.014276680117852
103 => 0.013882218524248
104 => 0.012976454971492
105 => 0.012833114422145
106 => 0.013120085831899
107 => 0.013825577040519
108 => 0.01309786740311
109 => 0.013245082114986
110 => 0.013202684268062
111 => 0.013200425066979
112 => 0.013286649583495
113 => 0.01316157642512
114 => 0.012652005877668
115 => 0.012885539056647
116 => 0.012795360681059
117 => 0.012895420312017
118 => 0.013435400872569
119 => 0.01319666259522
120 => 0.012945171213556
121 => 0.013260597216568
122 => 0.013662242910537
123 => 0.013637108644835
124 => 0.013588337664065
125 => 0.013863257129098
126 => 0.014317343541487
127 => 0.014440081274088
128 => 0.014530683759032
129 => 0.014543176310965
130 => 0.014671857359945
131 => 0.013979906927779
201 => 0.015078050034174
202 => 0.015267669013057
203 => 0.015232028503928
204 => 0.01544278201857
205 => 0.015380772988262
206 => 0.015290931632264
207 => 0.01562502078153
208 => 0.015242014531501
209 => 0.01469838537873
210 => 0.014400139673754
211 => 0.014792893676861
212 => 0.015032734841332
213 => 0.015191254594285
214 => 0.015239222575748
215 => 0.014033621070098
216 => 0.013383868724277
217 => 0.013800352528522
218 => 0.014308491513878
219 => 0.013977084190059
220 => 0.013990074729716
221 => 0.013517574978262
222 => 0.014350297257488
223 => 0.014228976625701
224 => 0.014858388278022
225 => 0.014708174135851
226 => 0.015221434904699
227 => 0.01508627614302
228 => 0.015647312606125
301 => 0.015871125240714
302 => 0.016246941487844
303 => 0.016523393449079
304 => 0.0166857313284
305 => 0.01667598517104
306 => 0.01731924872532
307 => 0.016939938681278
308 => 0.016463435869448
309 => 0.016454817436929
310 => 0.016701604995273
311 => 0.017218804014701
312 => 0.0173529061955
313 => 0.01742785102001
314 => 0.017313070412424
315 => 0.016901356545012
316 => 0.0167235805845
317 => 0.016875050853522
318 => 0.016689815730497
319 => 0.017009583520634
320 => 0.017448692995206
321 => 0.017358018625134
322 => 0.017661129449623
323 => 0.017974817264781
324 => 0.018423404929059
325 => 0.018540682355654
326 => 0.018734537482155
327 => 0.018934078085416
328 => 0.018998165149413
329 => 0.019120527239632
330 => 0.019119882331017
331 => 0.019488628725811
401 => 0.019895367418394
402 => 0.020048901858821
403 => 0.020401945838646
404 => 0.019797370395333
405 => 0.020255947813948
406 => 0.020669596124477
407 => 0.020176427555947
408 => 0.020856145534126
409 => 0.020882537442945
410 => 0.021281023932189
411 => 0.020877081534566
412 => 0.020637221828287
413 => 0.021329687812888
414 => 0.021664750290363
415 => 0.021563826745319
416 => 0.020795793584322
417 => 0.020348765342131
418 => 0.019178806207007
419 => 0.020564673341034
420 => 0.021239688795721
421 => 0.020794045457367
422 => 0.021018802035708
423 => 0.022245001049571
424 => 0.022711858243543
425 => 0.022614755210775
426 => 0.022631164024861
427 => 0.022883071692671
428 => 0.024000169019827
429 => 0.023330778407282
430 => 0.023842502448985
501 => 0.024113919035546
502 => 0.024366025887355
503 => 0.023746931138501
504 => 0.022941497966551
505 => 0.02268638347121
506 => 0.020749735010037
507 => 0.020648924047195
508 => 0.020592335798867
509 => 0.020235554897726
510 => 0.019955222839942
511 => 0.01973229237953
512 => 0.01914725627874
513 => 0.019344688788842
514 => 0.018412263350705
515 => 0.019008796102896
516 => 0.017520622589431
517 => 0.01876001771276
518 => 0.018085471295513
519 => 0.018538411072826
520 => 0.018536830808613
521 => 0.017702825073892
522 => 0.01722178797136
523 => 0.017528323535337
524 => 0.017856953992744
525 => 0.017910273178813
526 => 0.018336351144974
527 => 0.018455260346814
528 => 0.018094959913898
529 => 0.017489783501146
530 => 0.017630352179224
531 => 0.017218939351586
601 => 0.016497954195916
602 => 0.017015778321911
603 => 0.017192586245645
604 => 0.017270674697292
605 => 0.016561668602395
606 => 0.016338883494107
607 => 0.016220274571803
608 => 0.017398259717612
609 => 0.01746279240305
610 => 0.017132634060345
611 => 0.018624981076273
612 => 0.018287216984855
613 => 0.018664582229181
614 => 0.017617597045059
615 => 0.017657593289045
616 => 0.0171619337242
617 => 0.01743946996053
618 => 0.017243316294103
619 => 0.017417047775301
620 => 0.017521181708809
621 => 0.018016759940797
622 => 0.018765676420111
623 => 0.017942737079015
624 => 0.017584170623392
625 => 0.017806623235806
626 => 0.018399043857129
627 => 0.019296591423886
628 => 0.018765225199538
629 => 0.01900103650672
630 => 0.019052550786824
701 => 0.018660741005237
702 => 0.019311038009405
703 => 0.019659537456942
704 => 0.020017025778316
705 => 0.020327422871169
706 => 0.019874237081423
707 => 0.020359210838083
708 => 0.019968407599607
709 => 0.019617816694198
710 => 0.019618348395884
711 => 0.019398417599605
712 => 0.018972273968751
713 => 0.018893686545006
714 => 0.019302508247829
715 => 0.019630344537933
716 => 0.019657346705016
717 => 0.019838853720055
718 => 0.019946267701884
719 => 0.020999070746035
720 => 0.021422516839636
721 => 0.021940298707468
722 => 0.022142003925575
723 => 0.022749064316755
724 => 0.022258813747843
725 => 0.022152744953438
726 => 0.020680215012375
727 => 0.020921341707732
728 => 0.021307408812263
729 => 0.020686581116732
730 => 0.021080353394709
731 => 0.021158092383619
801 => 0.0206654856292
802 => 0.020928608181016
803 => 0.020229832693792
804 => 0.018780907816199
805 => 0.019312651076991
806 => 0.01970419309978
807 => 0.019145414356477
808 => 0.020147003626124
809 => 0.019561895851795
810 => 0.019376444777459
811 => 0.018652934018393
812 => 0.01899440324619
813 => 0.019456245266152
814 => 0.019170880592713
815 => 0.019763055137821
816 => 0.020601732220876
817 => 0.021199423454345
818 => 0.021245306765689
819 => 0.020861031344771
820 => 0.021476835159205
821 => 0.021481320617705
822 => 0.020786691399391
823 => 0.020361234870886
824 => 0.020264570252441
825 => 0.02050605742153
826 => 0.020799267425796
827 => 0.021261577880288
828 => 0.021540942405519
829 => 0.022269376923827
830 => 0.022466470418627
831 => 0.022683016414398
901 => 0.02297238864506
902 => 0.023319854201487
903 => 0.02255961934525
904 => 0.022589824893344
905 => 0.021881904721384
906 => 0.021125390491623
907 => 0.021699490491181
908 => 0.022450049871282
909 => 0.022277870720192
910 => 0.022258497048394
911 => 0.022291078190551
912 => 0.022161260733474
913 => 0.021574101186379
914 => 0.021279233337641
915 => 0.021659688091324
916 => 0.021861882860814
917 => 0.022175469315055
918 => 0.022136813165563
919 => 0.022944578194963
920 => 0.023258451259841
921 => 0.02317814909846
922 => 0.023192926628733
923 => 0.023761178820164
924 => 0.024393192127011
925 => 0.024985155990374
926 => 0.025587327057627
927 => 0.024861386332917
928 => 0.024492798402709
929 => 0.024873087061748
930 => 0.024671300546311
1001 => 0.02583082571778
1002 => 0.025911108724866
1003 => 0.027070550049467
1004 => 0.028170997930218
1005 => 0.02747982633289
1006 => 0.028131570018118
1007 => 0.028836483951134
1008 => 0.030196377296086
1009 => 0.029738413059131
1010 => 0.029387619630838
1011 => 0.029056121536122
1012 => 0.029745916447385
1013 => 0.030633326580981
1014 => 0.030824466224249
1015 => 0.031134185467307
1016 => 0.030808553553899
1017 => 0.03120074132642
1018 => 0.032585336499459
1019 => 0.032211206661544
1020 => 0.031679882147333
1021 => 0.032772887058513
1022 => 0.033168441286921
1023 => 0.035944648015241
1024 => 0.039449723689125
1025 => 0.037998599344569
1026 => 0.037097839636414
1027 => 0.037309539534136
1028 => 0.038589474515939
1029 => 0.039000549008989
1030 => 0.037883106831005
1031 => 0.038277806299338
1101 => 0.04045263917585
1102 => 0.041619367237106
1103 => 0.040034793817436
1104 => 0.03566301859766
1105 => 0.031632042188175
1106 => 0.032701238649204
1107 => 0.032580024951552
1108 => 0.034916611561437
1109 => 0.032202283788643
1110 => 0.032247986107055
1111 => 0.034632890853545
1112 => 0.0339966391548
1113 => 0.032965992887793
1114 => 0.031639567046506
1115 => 0.029187546199346
1116 => 0.027015722955356
1117 => 0.031275168477842
1118 => 0.031091493441613
1119 => 0.030825504770039
1120 => 0.031417433775647
1121 => 0.034291673004902
1122 => 0.034225412487664
1123 => 0.033803896883403
1124 => 0.034123612754167
1125 => 0.032909945149845
1126 => 0.033222734926176
1127 => 0.031631403660917
1128 => 0.032350751852678
1129 => 0.032963781583791
1130 => 0.033086856378372
1201 => 0.033364150174918
1202 => 0.030994705043779
1203 => 0.032058516344406
1204 => 0.032683405817886
1205 => 0.029860132443031
1206 => 0.032627598780781
1207 => 0.030953458275585
1208 => 0.030385229843375
1209 => 0.031150274568943
1210 => 0.030852135895358
1211 => 0.030595813771101
1212 => 0.030452781621593
1213 => 0.031014546033144
1214 => 0.030988339051892
1215 => 0.03006918344082
1216 => 0.028870182415752
1217 => 0.029272606515631
1218 => 0.029126402067399
1219 => 0.028596538286256
1220 => 0.02895360249875
1221 => 0.02738127241299
1222 => 0.024676160223047
1223 => 0.02646324019555
1224 => 0.026394439560578
1225 => 0.026359747160564
1226 => 0.027702688368638
1227 => 0.027573595558407
1228 => 0.027339290843757
1229 => 0.028592235096427
1230 => 0.028134893589724
1231 => 0.029544312350172
]
'min_raw' => 0.012652005877668
'max_raw' => 0.041619367237106
'avg_raw' => 0.027135686557387
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.012652'
'max' => '$0.041619'
'avg' => '$0.027135'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.0068924866066862
'max_diff' => 0.027512505219057
'year' => 2029
]
4 => [
'items' => [
101 => 0.030472646701293
102 => 0.030237191081378
103 => 0.031110294025636
104 => 0.02928187755411
105 => 0.029889204162615
106 => 0.030014373334909
107 => 0.028576773958839
108 => 0.027594716738679
109 => 0.027529224718366
110 => 0.02582647283443
111 => 0.026736069146696
112 => 0.027536476259837
113 => 0.027153143366743
114 => 0.027031791624534
115 => 0.027651751357498
116 => 0.027699927538345
117 => 0.026601505509544
118 => 0.026829902231833
119 => 0.027782354531577
120 => 0.026805902877621
121 => 0.024908816816455
122 => 0.02443831324402
123 => 0.024375539394355
124 => 0.023099496389801
125 => 0.02446975454253
126 => 0.023871600138228
127 => 0.025761162734428
128 => 0.024681854713406
129 => 0.024635327901806
130 => 0.024564995802072
131 => 0.023466652875379
201 => 0.02370712017299
202 => 0.024506470094454
203 => 0.024791687151753
204 => 0.024761936675963
205 => 0.024502552843755
206 => 0.024621297433879
207 => 0.02423877973573
208 => 0.024103704775097
209 => 0.023677371044041
210 => 0.023050778237089
211 => 0.023137909810013
212 => 0.021896465502514
213 => 0.021220060755352
214 => 0.021032840836209
215 => 0.020782482535872
216 => 0.02106111947241
217 => 0.02189294864677
218 => 0.020889586180088
219 => 0.019169391608656
220 => 0.019272778233468
221 => 0.019505057283656
222 => 0.01907220681031
223 => 0.018662550163674
224 => 0.01901871338143
225 => 0.018289844264589
226 => 0.019593137634213
227 => 0.019557887201002
228 => 0.020043674374076
301 => 0.020347447062756
302 => 0.019647349362925
303 => 0.019471276684683
304 => 0.019571575684267
305 => 0.017913856639931
306 => 0.019908203361782
307 => 0.01992545055505
308 => 0.019777769615218
309 => 0.020839697676056
310 => 0.023080697108094
311 => 0.022237542977768
312 => 0.021911048214038
313 => 0.021290381429519
314 => 0.022117383068343
315 => 0.022053882245717
316 => 0.021766707443828
317 => 0.021593023227606
318 => 0.021913041721444
319 => 0.021553369394732
320 => 0.02148876236172
321 => 0.021097314034812
322 => 0.02095758479187
323 => 0.020854134823177
324 => 0.02074024657243
325 => 0.020991455674394
326 => 0.020422182800035
327 => 0.019735695520065
328 => 0.019678621530631
329 => 0.019836207833455
330 => 0.019766487625376
331 => 0.019678287737098
401 => 0.019509890130565
402 => 0.019459930157952
403 => 0.019622275831811
404 => 0.019438997031365
405 => 0.019709434885135
406 => 0.019635890752919
407 => 0.019225079208732
408 => 0.018713055922761
409 => 0.018708497841511
410 => 0.018598183264435
411 => 0.018457681064621
412 => 0.018418596566888
413 => 0.01898871830865
414 => 0.020168853251791
415 => 0.019937164524217
416 => 0.020104583374305
417 => 0.020928118416213
418 => 0.021189895441473
419 => 0.021004092309472
420 => 0.020749753522552
421 => 0.020760943138385
422 => 0.02163009576688
423 => 0.021684303750195
424 => 0.021821269835874
425 => 0.021997309962582
426 => 0.02103407270427
427 => 0.020715574750141
428 => 0.020564652749881
429 => 0.020099871403245
430 => 0.020601098238251
501 => 0.020309054826166
502 => 0.02034846146008
503 => 0.020322797838047
504 => 0.020336811911043
505 => 0.019592773337155
506 => 0.019863861887963
507 => 0.019413124593755
508 => 0.018809637954445
509 => 0.01880761485562
510 => 0.018955317355632
511 => 0.018867458129026
512 => 0.018631031209294
513 => 0.018664614537339
514 => 0.018370389245633
515 => 0.018700338814872
516 => 0.018709800587902
517 => 0.01858275203127
518 => 0.01909108486695
519 => 0.019299349244489
520 => 0.01921572316287
521 => 0.019293481815672
522 => 0.019946792236859
523 => 0.020053310341445
524 => 0.020100618647311
525 => 0.0200372317846
526 => 0.019305423130873
527 => 0.019337881956556
528 => 0.01909972063046
529 => 0.018898499406731
530 => 0.018906547200414
531 => 0.019010001066339
601 => 0.019461790166321
602 => 0.020412553692812
603 => 0.020448634473644
604 => 0.020492365432562
605 => 0.020314489645223
606 => 0.020260840605719
607 => 0.020331617536816
608 => 0.020688674328595
609 => 0.021607121337023
610 => 0.021282480823231
611 => 0.021018543032188
612 => 0.021250087632051
613 => 0.021214443155808
614 => 0.020913567904991
615 => 0.020905123338796
616 => 0.020327647536841
617 => 0.020114167881345
618 => 0.019935768302538
619 => 0.01974096061972
620 => 0.019625472095333
621 => 0.019802914957387
622 => 0.019843498239381
623 => 0.019455516320328
624 => 0.019402635818404
625 => 0.019719470228674
626 => 0.019580043217491
627 => 0.019723447356116
628 => 0.019756718346375
629 => 0.019751360950647
630 => 0.019605783137883
701 => 0.019698570094546
702 => 0.019479101280914
703 => 0.019240461909239
704 => 0.019088224857869
705 => 0.018955377839234
706 => 0.019029089086287
707 => 0.018766321949685
708 => 0.018682257454229
709 => 0.019667135961401
710 => 0.020394676303878
711 => 0.02038409757916
712 => 0.020319702313072
713 => 0.020224024009766
714 => 0.020681674864765
715 => 0.020522238457901
716 => 0.020638241765252
717 => 0.020667769475616
718 => 0.020757140961712
719 => 0.020789083586252
720 => 0.020692530789312
721 => 0.02036848780985
722 => 0.019561003514114
723 => 0.019185117394687
724 => 0.019061068714397
725 => 0.019065577648324
726 => 0.018941201121862
727 => 0.01897783558307
728 => 0.018928461151297
729 => 0.018834957922475
730 => 0.019023315525392
731 => 0.019045021984456
801 => 0.019001057069229
802 => 0.019011412398318
803 => 0.018647401677903
804 => 0.018675076622387
805 => 0.018520979014741
806 => 0.018492087570982
807 => 0.018102542237668
808 => 0.017412406214203
809 => 0.017794808564327
810 => 0.017332920299285
811 => 0.017157996214564
812 => 0.017986059625356
813 => 0.017902945025817
814 => 0.017760688960452
815 => 0.017550262591017
816 => 0.017472213403698
817 => 0.016998011248913
818 => 0.016969992855838
819 => 0.017205020248285
820 => 0.01709656319347
821 => 0.01694424841261
822 => 0.01639257971624
823 => 0.015772321450291
824 => 0.015791043148536
825 => 0.015988335762619
826 => 0.016561990646599
827 => 0.016337853759098
828 => 0.016175239875541
829 => 0.016144787183306
830 => 0.016525966383654
831 => 0.017065414811657
901 => 0.017318511944598
902 => 0.017067700372528
903 => 0.016779581543188
904 => 0.016797118001316
905 => 0.016913780200768
906 => 0.016926039748416
907 => 0.01673850400961
908 => 0.016791294221587
909 => 0.016711101062356
910 => 0.016218955792178
911 => 0.01621005444485
912 => 0.016089274058634
913 => 0.01608561687654
914 => 0.015880139309507
915 => 0.01585139157748
916 => 0.015443403396539
917 => 0.015711942452737
918 => 0.015531820552773
919 => 0.015260334363066
920 => 0.015213530041632
921 => 0.015212123047211
922 => 0.015490878660839
923 => 0.015708685031092
924 => 0.01553495385034
925 => 0.01549539862812
926 => 0.015917744916528
927 => 0.015863997501556
928 => 0.015817452586824
929 => 0.017017113121652
930 => 0.016067488197657
1001 => 0.015653397528099
1002 => 0.015140881690837
1003 => 0.015307759431778
1004 => 0.015342923023739
1005 => 0.014110414823045
1006 => 0.013610386399523
1007 => 0.013438795487744
1008 => 0.013340042492076
1009 => 0.013385045472264
1010 => 0.012934961243609
1011 => 0.013237425288971
1012 => 0.012847690391629
1013 => 0.012782350067783
1014 => 0.013479244343119
1015 => 0.013576213110335
1016 => 0.013162514223558
1017 => 0.013428175880635
1018 => 0.013331843270806
1019 => 0.012854371277837
1020 => 0.012836135359752
1021 => 0.012596556697633
1022 => 0.012221662482986
1023 => 0.012050325767138
1024 => 0.01196109211791
1025 => 0.011997911660711
1026 => 0.011979294573174
1027 => 0.011857805483916
1028 => 0.011986258185561
1029 => 0.011658114613179
1030 => 0.011527445198624
1031 => 0.011468424855577
1101 => 0.011177178547849
1102 => 0.011640680941265
1103 => 0.011731996751817
1104 => 0.011823492482725
1105 => 0.012619900353491
1106 => 0.012580114066893
1107 => 0.012939762721033
1108 => 0.012925787435685
1109 => 0.012823209813602
1110 => 0.012390451699235
1111 => 0.01256294137045
1112 => 0.012032044973297
1113 => 0.01242982865149
1114 => 0.012248296792606
1115 => 0.012368452547397
1116 => 0.012152401666276
1117 => 0.01227197314441
1118 => 0.011753651118093
1119 => 0.011269649302905
1120 => 0.01146442576223
1121 => 0.011676170048907
1122 => 0.012135285613862
1123 => 0.011861840170996
1124 => 0.011960181492368
1125 => 0.011630754527911
1126 => 0.010951052604076
1127 => 0.010954899643149
1128 => 0.010850342310279
1129 => 0.010759989509058
1130 => 0.011893248669495
1201 => 0.011752309978719
1202 => 0.011527742620566
1203 => 0.011828334953405
1204 => 0.01190781633725
1205 => 0.01191007906051
1206 => 0.012129383467139
1207 => 0.012246426268269
1208 => 0.012267055569261
1209 => 0.012612135791476
1210 => 0.012727802130244
1211 => 0.013204215409918
1212 => 0.012236496004326
1213 => 0.012216566459993
1214 => 0.011832564903966
1215 => 0.01158902504631
1216 => 0.011849240286378
1217 => 0.012079755466155
1218 => 0.011839727653161
1219 => 0.011871070218274
1220 => 0.011548852490322
1221 => 0.011664030166312
1222 => 0.011763236696982
1223 => 0.011708460681836
1224 => 0.011626458335974
1225 => 0.012060855850174
1226 => 0.012036345440005
1227 => 0.012440866391984
1228 => 0.012756219401622
1229 => 0.013321388370987
1230 => 0.01273160508853
1231 => 0.012710111041541
]
'min_raw' => 0.010759989509058
'max_raw' => 0.031110294025636
'avg_raw' => 0.020935141767347
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.010759'
'max' => '$0.03111'
'avg' => '$0.020935'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0018920163686102
'max_diff' => -0.010509073211469
'year' => 2030
]
5 => [
'items' => [
101 => 0.012920218798612
102 => 0.012727769963842
103 => 0.012849390984308
104 => 0.013301793344336
105 => 0.013311351893317
106 => 0.013151233882389
107 => 0.013141490686873
108 => 0.013172243102371
109 => 0.013352360960476
110 => 0.013289422246391
111 => 0.013362256519743
112 => 0.013453336893848
113 => 0.013830083938423
114 => 0.013920916375399
115 => 0.013700240644766
116 => 0.013720165192441
117 => 0.0136376264115
118 => 0.013557894983319
119 => 0.01373711959003
120 => 0.014064656081463
121 => 0.014062618493949
122 => 0.014138600593561
123 => 0.014185936812151
124 => 0.013982735109737
125 => 0.013850458273399
126 => 0.013901181629444
127 => 0.013982289380372
128 => 0.013874879478961
129 => 0.013211895810346
130 => 0.013413002703843
131 => 0.01337952868314
201 => 0.01333185760708
202 => 0.013534072143605
203 => 0.013514568058252
204 => 0.012930344979303
205 => 0.012967745045311
206 => 0.01293261940119
207 => 0.013046117543374
208 => 0.012721640691695
209 => 0.012821447585886
210 => 0.012884045534291
211 => 0.012920916206802
212 => 0.013054118358369
213 => 0.013038488623296
214 => 0.013053146792091
215 => 0.0132506504188
216 => 0.01424955598763
217 => 0.014303924213781
218 => 0.014036195183971
219 => 0.014143147650659
220 => 0.013937822302552
221 => 0.014075658584296
222 => 0.014169962667604
223 => 0.01374382064877
224 => 0.013718587284053
225 => 0.013512414485197
226 => 0.013623200069078
227 => 0.013446932239358
228 => 0.013490182199184
301 => 0.013369251541046
302 => 0.013586902648641
303 => 0.013830270406495
304 => 0.013891754713014
305 => 0.013730015973223
306 => 0.013612906466512
307 => 0.013407300750998
308 => 0.01374922763812
309 => 0.013849217479948
310 => 0.013748702434048
311 => 0.013725410901616
312 => 0.013681273489744
313 => 0.013734774862196
314 => 0.013848672913796
315 => 0.013794960696028
316 => 0.013830438562151
317 => 0.013695233521106
318 => 0.013982802377955
319 => 0.014439530929845
320 => 0.014440999386822
321 => 0.014387286879526
322 => 0.014365308878792
323 => 0.014420421170826
324 => 0.01445031732843
325 => 0.014628540375001
326 => 0.014819780804692
327 => 0.015712216445321
328 => 0.015461624088571
329 => 0.016253446080172
330 => 0.01687967447031
331 => 0.017067452982864
401 => 0.016894705586976
402 => 0.016303746077275
403 => 0.016274750784408
404 => 0.017157893788571
405 => 0.016908365439383
406 => 0.016878684836239
407 => 0.016562933364965
408 => 0.016749581591069
409 => 0.016708758886056
410 => 0.016644318249077
411 => 0.017000430062455
412 => 0.017667039586777
413 => 0.017563142240987
414 => 0.017485587692014
415 => 0.017145766234203
416 => 0.017350414653676
417 => 0.017277543271284
418 => 0.017590644975361
419 => 0.017405170461918
420 => 0.01690647501672
421 => 0.016985893910089
422 => 0.016973889904125
423 => 0.017220931496254
424 => 0.017146775742246
425 => 0.016959409802998
426 => 0.017664761187893
427 => 0.017618959592328
428 => 0.017683895783136
429 => 0.017712482702548
430 => 0.018141817660848
501 => 0.018317702456078
502 => 0.018357631383891
503 => 0.018524708335941
504 => 0.018353474357121
505 => 0.019038532360159
506 => 0.019494055957937
507 => 0.020023170057785
508 => 0.020796347970127
509 => 0.021087070017463
510 => 0.021034553681764
511 => 0.021620768350744
512 => 0.022674183080081
513 => 0.021247478916843
514 => 0.022749801865041
515 => 0.022274183764794
516 => 0.021146501805112
517 => 0.021073892381406
518 => 0.021837571697159
519 => 0.023531338918089
520 => 0.023107069439795
521 => 0.023532032870965
522 => 0.023036290455243
523 => 0.023011672665857
524 => 0.023507955768351
525 => 0.024667548288311
526 => 0.024116669348754
527 => 0.023326849307841
528 => 0.02391004013509
529 => 0.023404826268763
530 => 0.022266438027472
531 => 0.023106745008921
601 => 0.022544855660991
602 => 0.022708844844397
603 => 0.023889852679013
604 => 0.023747750691793
605 => 0.023931643821545
606 => 0.023607077260853
607 => 0.023303880913718
608 => 0.022737942416134
609 => 0.02257039592743
610 => 0.022616699749217
611 => 0.022570372981556
612 => 0.022253735593401
613 => 0.022185357779576
614 => 0.022071391760834
615 => 0.022106714595494
616 => 0.021892425138324
617 => 0.022296833618464
618 => 0.022371895396014
619 => 0.022666190162992
620 => 0.022696744821985
621 => 0.023516351558994
622 => 0.023064925941181
623 => 0.023367781219822
624 => 0.023340690993116
625 => 0.02117094209261
626 => 0.021469914347243
627 => 0.02193502135279
628 => 0.021725491277229
629 => 0.021429264772872
630 => 0.021190045987943
701 => 0.020827605067399
702 => 0.021337733703003
703 => 0.022008498612689
704 => 0.022713756527025
705 => 0.02356107770077
706 => 0.023371965478696
707 => 0.022697916447066
708 => 0.022728153794232
709 => 0.022915069176453
710 => 0.022672996773423
711 => 0.022601604895955
712 => 0.022905261028786
713 => 0.022907352141686
714 => 0.022628818586573
715 => 0.022319279511168
716 => 0.022317982531139
717 => 0.022262903042464
718 => 0.023046088973919
719 => 0.02347676204719
720 => 0.023526138020976
721 => 0.023473438650747
722 => 0.023493720546785
723 => 0.023243121374682
724 => 0.023815916769234
725 => 0.024341570466867
726 => 0.024200684046948
727 => 0.023989475275305
728 => 0.023821237315498
729 => 0.024161052530297
730 => 0.024145921093701
731 => 0.024336979340389
801 => 0.024328311834713
802 => 0.024264066132416
803 => 0.024200686341365
804 => 0.024451980048757
805 => 0.024379611496681
806 => 0.024307130536256
807 => 0.024161758873842
808 => 0.024181517297132
809 => 0.023970344993661
810 => 0.023872647023488
811 => 0.022403503962294
812 => 0.022010900930709
813 => 0.022134421836617
814 => 0.022175088126061
815 => 0.022004226783581
816 => 0.02224919805802
817 => 0.022211019544388
818 => 0.022359549807249
819 => 0.022266754547447
820 => 0.022270562897278
821 => 0.022543453970318
822 => 0.022622675409783
823 => 0.022582382746275
824 => 0.022610602346644
825 => 0.023260911126396
826 => 0.023168458013619
827 => 0.023119344140116
828 => 0.023132949018726
829 => 0.02329911685473
830 => 0.023345634776384
831 => 0.023148535073581
901 => 0.023241488432843
902 => 0.023637272039041
903 => 0.023775773901798
904 => 0.024217805363054
905 => 0.02403002254183
906 => 0.024374706037237
907 => 0.025434145590855
908 => 0.026280499213927
909 => 0.025502157445108
910 => 0.027056378091394
911 => 0.028266561804238
912 => 0.028220112937673
913 => 0.028009089415285
914 => 0.026631327432611
915 => 0.02536349031488
916 => 0.026424089899069
917 => 0.026426793585523
918 => 0.026335687140642
919 => 0.025769832836093
920 => 0.026315996637404
921 => 0.026359349136577
922 => 0.0263350832654
923 => 0.025901244096818
924 => 0.025238851873273
925 => 0.025368281728211
926 => 0.025580290470896
927 => 0.025178913691336
928 => 0.02505064948999
929 => 0.025289117043555
930 => 0.026057509187831
1001 => 0.025912249103948
1002 => 0.025908455776116
1003 => 0.026529940014828
1004 => 0.026085091424603
1005 => 0.025369914253174
1006 => 0.02518932258536
1007 => 0.024548343825744
1008 => 0.024991070138099
1009 => 0.02500700306991
1010 => 0.024764526393187
1011 => 0.025389589899124
1012 => 0.025383829828877
1013 => 0.02597723459934
1014 => 0.027111601647811
1015 => 0.026776113492766
1016 => 0.026385977269456
1017 => 0.026428395894233
1018 => 0.02689362350996
1019 => 0.026612336273378
1020 => 0.026713489124857
1021 => 0.026893470403004
1022 => 0.027002057576794
1023 => 0.026412771870987
1024 => 0.02627538118417
1025 => 0.02599432805652
1026 => 0.025921006541621
1027 => 0.026149918449726
1028 => 0.026089608249517
1029 => 0.025005663968686
1030 => 0.024892385760331
1031 => 0.024895859841257
1101 => 0.024611016400261
1102 => 0.024176561782483
1103 => 0.025318282578066
1104 => 0.025226586419808
1105 => 0.025125360957811
1106 => 0.025137760499321
1107 => 0.025633342800175
1108 => 0.025345880038174
1109 => 0.026110146905175
1110 => 0.025953036613285
1111 => 0.025791897035239
1112 => 0.025769622637121
1113 => 0.025707597647356
1114 => 0.02549489087897
1115 => 0.025238034674448
1116 => 0.025068435959719
1117 => 0.02312430706033
1118 => 0.023485126075579
1119 => 0.023900215462935
1120 => 0.024043502656084
1121 => 0.023798399997031
1122 => 0.025504569025867
1123 => 0.02581630254849
1124 => 0.024872041374592
1125 => 0.024695408662886
1126 => 0.025516149037041
1127 => 0.025021142259995
1128 => 0.025244043781389
1129 => 0.024762252612749
1130 => 0.025741215071513
1201 => 0.025733757017788
1202 => 0.025352918510459
1203 => 0.025674800608984
1204 => 0.025618865673236
1205 => 0.025188899936425
1206 => 0.025754845752286
1207 => 0.02575512645435
1208 => 0.025388577671189
1209 => 0.024960528940303
1210 => 0.02488400393728
1211 => 0.02482635262719
1212 => 0.025229865093196
1213 => 0.025591653108467
1214 => 0.02626485091003
1215 => 0.026434108832128
1216 => 0.027094733770216
1217 => 0.026701363784829
1218 => 0.026875739604357
1219 => 0.02706504922342
1220 => 0.02715581121643
1221 => 0.027007919419378
1222 => 0.0280341418723
1223 => 0.02812078648997
1224 => 0.028149837680802
1225 => 0.027803801243652
1226 => 0.028111162590678
1227 => 0.027967358395142
1228 => 0.028341496961969
1229 => 0.028400166666489
1230 => 0.028350475513996
1231 => 0.028369098204249
]
'min_raw' => 0.012721640691695
'max_raw' => 0.028400166666489
'avg_raw' => 0.020560903679092
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.012721'
'max' => '$0.02840016'
'avg' => '$0.02056'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0019616511826366
'max_diff' => -0.0027101273591475
'year' => 2031
]
6 => [
'items' => [
101 => 0.027493398378726
102 => 0.027447988723088
103 => 0.026828824846342
104 => 0.027081138702744
105 => 0.026609450041918
106 => 0.026759027375198
107 => 0.026824959638482
108 => 0.026790520365765
109 => 0.027095404149617
110 => 0.026836190649701
111 => 0.026152083604779
112 => 0.02546779017535
113 => 0.025459199428757
114 => 0.02527903704757
115 => 0.025148812644358
116 => 0.025173898484376
117 => 0.025262304256595
118 => 0.025143674340164
119 => 0.025168990047524
120 => 0.025589399467375
121 => 0.025673709578304
122 => 0.025387190879282
123 => 0.024236776958261
124 => 0.023954462496447
125 => 0.024157384533059
126 => 0.024060400869412
127 => 0.01941862133891
128 => 0.020509138587112
129 => 0.019861190268697
130 => 0.020159794664491
131 => 0.019498407216793
201 => 0.019814055973121
202 => 0.019755767173474
203 => 0.021509286637832
204 => 0.021481907843283
205 => 0.02149501262338
206 => 0.02086948732503
207 => 0.021865966110164
208 => 0.02235686739194
209 => 0.022266014629598
210 => 0.022288880312533
211 => 0.021895972122068
212 => 0.021498816833519
213 => 0.021058310496757
214 => 0.021876716822232
215 => 0.021785724009501
216 => 0.021994428783725
217 => 0.022525223786688
218 => 0.022603385367168
219 => 0.022708435323971
220 => 0.022670782392422
221 => 0.023567827980924
222 => 0.023459189841259
223 => 0.023720976500526
224 => 0.023182461480613
225 => 0.022573080619266
226 => 0.022688903998847
227 => 0.022677749276
228 => 0.022535736851371
229 => 0.022407534384219
301 => 0.022194113397234
302 => 0.022869408980419
303 => 0.022841993212977
304 => 0.023285822620532
305 => 0.023207371461618
306 => 0.022683455422133
307 => 0.022702167185979
308 => 0.022828012790406
309 => 0.023263565864208
310 => 0.023392867671227
311 => 0.023332969922429
312 => 0.023474743450974
313 => 0.023586795467363
314 => 0.023488815459049
315 => 0.024876005755223
316 => 0.024299947629682
317 => 0.024580714351884
318 => 0.024647675560756
319 => 0.024476155832273
320 => 0.02451335231972
321 => 0.024569694862766
322 => 0.024911795751139
323 => 0.025809567469919
324 => 0.026207184452828
325 => 0.027403434763986
326 => 0.026174167897493
327 => 0.026101228288847
328 => 0.026316709093185
329 => 0.02701903466179
330 => 0.027588203569059
331 => 0.027777029731741
401 => 0.02780198622632
402 => 0.028156236660439
403 => 0.028359286402897
404 => 0.028113221340026
405 => 0.027904706963329
406 => 0.027157834347756
407 => 0.027244286886676
408 => 0.02783985914897
409 => 0.028681140048493
410 => 0.029403046580642
411 => 0.029150260074066
412 => 0.031078842679779
413 => 0.031270053767582
414 => 0.031243634577842
415 => 0.031679241891882
416 => 0.030814650083399
417 => 0.030445020334596
418 => 0.027949790138309
419 => 0.028650848044349
420 => 0.029669876882464
421 => 0.029535004594577
422 => 0.028794958613619
423 => 0.029402485189404
424 => 0.029201617904337
425 => 0.029043185542613
426 => 0.029768994905294
427 => 0.028970937696421
428 => 0.029661915651324
429 => 0.02877572927691
430 => 0.029151414781535
501 => 0.028938157519246
502 => 0.029076161103774
503 => 0.028269394968501
504 => 0.028704706391954
505 => 0.028251284582115
506 => 0.028251069601139
507 => 0.028241060289556
508 => 0.028774509038052
509 => 0.028791904782589
510 => 0.028397685351454
511 => 0.028340872172563
512 => 0.028550940271917
513 => 0.028305005544496
514 => 0.028420076855562
515 => 0.028308490937283
516 => 0.02828337059672
517 => 0.028083207449236
518 => 0.0279969716617
519 => 0.028030786936015
520 => 0.027915357971808
521 => 0.027845807845625
522 => 0.028227225018907
523 => 0.028023449209547
524 => 0.028195993453566
525 => 0.027999357510687
526 => 0.027317731662464
527 => 0.026925721429089
528 => 0.025638193388547
529 => 0.026003334743671
530 => 0.026245423839884
531 => 0.02616541339503
601 => 0.026337306790509
602 => 0.026347859648931
603 => 0.026291975353815
604 => 0.026227268499292
605 => 0.026195772781024
606 => 0.026430516061037
607 => 0.02656679243618
608 => 0.026269720719424
609 => 0.026200120972663
610 => 0.026500476880083
611 => 0.026683693810099
612 => 0.028036464680639
613 => 0.027936247045157
614 => 0.028187773643499
615 => 0.028159455608516
616 => 0.028423095554908
617 => 0.028854035444705
618 => 0.027977814156061
619 => 0.028129895874317
620 => 0.02809260894908
621 => 0.028499697821657
622 => 0.028500968708682
623 => 0.028256898593975
624 => 0.028389212962743
625 => 0.028315358711951
626 => 0.028448823325132
627 => 0.027934908577536
628 => 0.028560801266439
629 => 0.028915642089414
630 => 0.028920569054585
701 => 0.029088760788484
702 => 0.029259653331133
703 => 0.029587666685146
704 => 0.029250505216719
705 => 0.028643984557028
706 => 0.028687773389608
707 => 0.028332170548748
708 => 0.028338148296748
709 => 0.028306238609441
710 => 0.028402001983099
711 => 0.027955923252812
712 => 0.028060617039201
713 => 0.02791404512517
714 => 0.0281295772556
715 => 0.027897700311995
716 => 0.028092590968196
717 => 0.028176699314684
718 => 0.02848706092395
719 => 0.027851859649959
720 => 0.026556641252947
721 => 0.026828911863004
722 => 0.026426202244335
723 => 0.026463474552766
724 => 0.026538770547642
725 => 0.026294711592934
726 => 0.026341270350311
727 => 0.026339606943868
728 => 0.026325272605792
729 => 0.026261783445669
730 => 0.026169711602542
731 => 0.02653649748734
801 => 0.026598821556459
802 => 0.026737360241793
803 => 0.027149557397657
804 => 0.027108369181508
805 => 0.02717554887093
806 => 0.027028895986119
807 => 0.026470277359482
808 => 0.026500613038504
809 => 0.026122326635007
810 => 0.026727686607951
811 => 0.026584329375997
812 => 0.026491906035962
813 => 0.026466687471337
814 => 0.026879906384223
815 => 0.027003547959371
816 => 0.026926502827016
817 => 0.026768481012791
818 => 0.027071929611059
819 => 0.027153119654487
820 => 0.027171295111037
821 => 0.027708947846672
822 => 0.027201343926382
823 => 0.027323529235145
824 => 0.028276784134777
825 => 0.027412313480995
826 => 0.0278702428663
827 => 0.027847829605839
828 => 0.028082090783875
829 => 0.027828613351668
830 => 0.02783175550823
831 => 0.0280397635641
901 => 0.027747653764082
902 => 0.027675323269648
903 => 0.027575399209628
904 => 0.027793579739032
905 => 0.027924369098954
906 => 0.028978435285718
907 => 0.029659410113626
908 => 0.029629847200403
909 => 0.029899996887805
910 => 0.029778291979343
911 => 0.029385274725786
912 => 0.03005610725426
913 => 0.029843827773426
914 => 0.029861327835906
915 => 0.029860676482706
916 => 0.030001823779667
917 => 0.029901807983811
918 => 0.029704666583767
919 => 0.02983553824532
920 => 0.030224180292657
921 => 0.031430537132583
922 => 0.032105630402309
923 => 0.031389895670074
924 => 0.0318835999043
925 => 0.03158755328857
926 => 0.031533752811868
927 => 0.031843835555418
928 => 0.032154461057762
929 => 0.032134675556134
930 => 0.031909177392228
1001 => 0.031781799201241
1002 => 0.032746349538215
1003 => 0.033457013795812
1004 => 0.033408551257797
1005 => 0.033622449139731
1006 => 0.034250459936702
1007 => 0.034307877373489
1008 => 0.034300644096179
1009 => 0.034158328988211
1010 => 0.034776687175336
1011 => 0.035292532454013
1012 => 0.034125387152595
1013 => 0.034569820804321
1014 => 0.034769341389339
1015 => 0.035062296803235
1016 => 0.035556561691506
1017 => 0.036093464457455
1018 => 0.036169388395399
1019 => 0.036115516728133
1020 => 0.035761414921268
1021 => 0.036348900334352
1022 => 0.036693035511108
1023 => 0.036897960133473
1024 => 0.037417614879584
1025 => 0.034770573560547
1026 => 0.032896866148443
1027 => 0.03260425967938
1028 => 0.033199286440401
1029 => 0.033356190252032
1030 => 0.033292942522304
1031 => 0.031183914479956
1101 => 0.03259315608321
1102 => 0.034109381555912
1103 => 0.034167625951341
1104 => 0.034926680125755
1105 => 0.035173859279627
1106 => 0.035784997381535
1107 => 0.035746770526865
1108 => 0.035895572929349
1109 => 0.035861365833916
1110 => 0.036993370477392
1111 => 0.038242139703461
1112 => 0.038198898796005
1113 => 0.038019373444991
1114 => 0.038285999204868
1115 => 0.039574862872415
1116 => 0.039456204959526
1117 => 0.03957147101464
1118 => 0.041091113915851
1119 => 0.043066865854107
1120 => 0.042148930716536
1121 => 0.044140585836345
1122 => 0.045394227161163
1123 => 0.047562270203504
1124 => 0.047290820536766
1125 => 0.048134823783315
1126 => 0.04680486898005
1127 => 0.043751023923541
1128 => 0.043267741253699
1129 => 0.044235285397389
1130 => 0.046613898263073
1201 => 0.044160374413484
1202 => 0.044656719092779
1203 => 0.044513771791751
1204 => 0.044506154737567
1205 => 0.044796866715005
1206 => 0.044375173829214
1207 => 0.0426571211514
1208 => 0.043444494569094
1209 => 0.043140451879745
1210 => 0.043477809911462
1211 => 0.0452983920716
1212 => 0.044493469301345
1213 => 0.043645548549497
1214 => 0.044709029340992
1215 => 0.046063205840213
1216 => 0.045978463908581
1217 => 0.045814029141835
1218 => 0.046740939312457
1219 => 0.048271923355127
1220 => 0.048685742189868
1221 => 0.048991214793521
1222 => 0.049033334304563
1223 => 0.049467191445423
1224 => 0.04713423225294
1225 => 0.050836698406052
1226 => 0.051476012032131
1227 => 0.051355847567263
1228 => 0.05206641775622
1229 => 0.051857349981203
1230 => 0.051554443576932
1231 => 0.052680848469043
]
'min_raw' => 0.01941862133891
'max_raw' => 0.052680848469043
'avg_raw' => 0.036049734903976
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.019418'
'max' => '$0.05268'
'avg' => '$0.036049'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0066969806472152
'max_diff' => 0.024280681802554
'year' => 2032
]
7 => [
'items' => [
101 => 0.051389516156426
102 => 0.049556632512884
103 => 0.048551076295708
104 => 0.049875273838391
105 => 0.050683915069581
106 => 0.051218375484157
107 => 0.051380102882677
108 => 0.047315333233969
109 => 0.045124647835775
110 => 0.046528852059758
111 => 0.048242078126016
112 => 0.047124715195639
113 => 0.047168513707062
114 => 0.045575447806156
115 => 0.048383029109379
116 => 0.047973988128975
117 => 0.050096093458892
118 => 0.049589635990948
119 => 0.051320130507841
120 => 0.050864433306356
121 => 0.052756006912032
122 => 0.053510606835646
123 => 0.054777697551496
124 => 0.055709774640062
125 => 0.056257108134261
126 => 0.056224248284266
127 => 0.058393056268748
128 => 0.057114185972678
129 => 0.055507623474229
130 => 0.055478565827271
131 => 0.056310627310385
201 => 0.058054399914071
202 => 0.058506534779348
203 => 0.058759216487665
204 => 0.058372225655464
205 => 0.05698410360654
206 => 0.056384719543753
207 => 0.056895412131076
208 => 0.056270878981095
209 => 0.057348998411014
210 => 0.058829486662178
211 => 0.058523771692798
212 => 0.059545731000086
213 => 0.060603351369876
214 => 0.062115795999377
215 => 0.062511205031191
216 => 0.063164801124721
217 => 0.063837566200096
218 => 0.064053640210779
219 => 0.064466192541001
220 => 0.064464018186579
221 => 0.065707272401678
222 => 0.06707862030131
223 => 0.067596272386644
224 => 0.068786584813367
225 => 0.066748216496126
226 => 0.068294342279841
227 => 0.069688986438791
228 => 0.068026234178061
301 => 0.070317950797888
302 => 0.070406932961094
303 => 0.07175045798102
304 => 0.070388537985075
305 => 0.069579834238886
306 => 0.0719145316524
307 => 0.073044218188521
308 => 0.072703947410147
309 => 0.070114469985485
310 => 0.068607283056421
311 => 0.064662684148413
312 => 0.06933523194894
313 => 0.071611093682489
314 => 0.070108576053403
315 => 0.070866358549283
316 => 0.075000574135004
317 => 0.07657461575941
318 => 0.076247226104915
319 => 0.076302549567233
320 => 0.077151873856886
321 => 0.080918245488638
322 => 0.078661348303081
323 => 0.080386661637115
324 => 0.081301761608407
325 => 0.082151757460818
326 => 0.080064436291244
327 => 0.077348862118466
328 => 0.076488725785899
329 => 0.069959180286577
330 => 0.069619289086958
331 => 0.069428497856855
401 => 0.068225586139009
402 => 0.067280427034032
403 => 0.066528801422247
404 => 0.064556311362514
405 => 0.065221968854621
406 => 0.062078231390078
407 => 0.064089483212678
408 => 0.059072002311072
409 => 0.063250709501179
410 => 0.060976429160105
411 => 0.062503547242563
412 => 0.062498219271436
413 => 0.059686310708403
414 => 0.05806446053228
415 => 0.059097966587859
416 => 0.060205967119252
417 => 0.060385736477709
418 => 0.061822288088434
419 => 0.062223198764413
420 => 0.061008420699465
421 => 0.058968026171803
422 => 0.059441963284134
423 => 0.058054856211826
424 => 0.055624004421908
425 => 0.057369884616028
426 => 0.057966004875233
427 => 0.058229285541921
428 => 0.055838821991751
429 => 0.055087686444799
430 => 0.05468778818224
501 => 0.058659447345632
502 => 0.058877023800116
503 => 0.057763871896764
504 => 0.062795424053309
505 => 0.061656628837157
506 => 0.0629289421052
507 => 0.059398958458764
508 => 0.059533808587811
509 => 0.057862657759091
510 => 0.058798390556836
511 => 0.058137044775465
512 => 0.058722792593869
513 => 0.059073887421092
514 => 0.060744764030406
515 => 0.063269788228091
516 => 0.060495190783799
517 => 0.059286258944353
518 => 0.060036273458254
519 => 0.062033660944531
520 => 0.065059805230623
521 => 0.063268266906427
522 => 0.064063321192411
523 => 0.064237005184396
524 => 0.062915991150487
525 => 0.065108512902328
526 => 0.066283503121154
527 => 0.067488799955703
528 => 0.068535325425491
529 => 0.067007377894939
530 => 0.068642500775305
531 => 0.067324880371774
601 => 0.066142838656712
602 => 0.066144631326068
603 => 0.065403119291336
604 => 0.063966346287514
605 => 0.063701383301556
606 => 0.065079754215644
607 => 0.066185077156531
608 => 0.066276116848082
609 => 0.0668880804217
610 => 0.067250234160841
611 => 0.070799833128559
612 => 0.072227511197197
613 => 0.073973248914966
614 => 0.074653312140424
615 => 0.076700058632891
616 => 0.075047144611601
617 => 0.074689526265778
618 => 0.069724788760728
619 => 0.07053776424905
620 => 0.071839416446321
621 => 0.069746252526032
622 => 0.071073883253535
623 => 0.071335985682207
624 => 0.06967512761698
625 => 0.070562263671059
626 => 0.068206293328935
627 => 0.063321141943426
628 => 0.065113951472315
629 => 0.066434062738739
630 => 0.064550101193006
701 => 0.067927029344352
702 => 0.065954297632282
703 => 0.065329036387378
704 => 0.062889669349279
705 => 0.064040956691414
706 => 0.065598089306498
707 => 0.064635962386472
708 => 0.06663252020961
709 => 0.069460178549695
710 => 0.071475336272804
711 => 0.071630035060472
712 => 0.070334423649594
713 => 0.072410649204007
714 => 0.072425772240504
715 => 0.070083781333496
716 => 0.068649324943213
717 => 0.068323413433219
718 => 0.0691376042839
719 => 0.070126182284549
720 => 0.071684894259355
721 => 0.07262679126078
722 => 0.07508275909693
723 => 0.075747273575276
724 => 0.076477373518777
725 => 0.077453012197778
726 => 0.078624516580542
727 => 0.076061331684836
728 => 0.076163171799117
729 => 0.073776369513947
730 => 0.071225728970171
731 => 0.073161347201064
801 => 0.075691910553455
802 => 0.075111396524393
803 => 0.075046076837298
804 => 0.075155926432821
805 => 0.074718237812724
806 => 0.072738588405521
807 => 0.071744420866484
808 => 0.07302715063103
809 => 0.073708864413153
810 => 0.074766143037535
811 => 0.074635811130636
812 => 0.077359247323611
813 => 0.078417492275766
814 => 0.07814674793215
815 => 0.078196571407202
816 => 0.08011247334471
817 => 0.082243350334505
818 => 0.084239197829432
819 => 0.086269459624917
820 => 0.083821899787994
821 => 0.082579179847309
822 => 0.083861349612167
823 => 0.083181012287087
824 => 0.087090432358155
825 => 0.087361112121728
826 => 0.091270249497227
827 => 0.094980486357996
828 => 0.092650153061545
829 => 0.094847552399582
830 => 0.097224218940265
831 => 0.10180919429749
901 => 0.10026513589856
902 => 0.099082411363451
903 => 0.09796474239266
904 => 0.10029043409592
905 => 0.10328239931834
906 => 0.10392683997056
907 => 0.10497108002244
908 => 0.10387318929149
909 => 0.10519547774822
910 => 0.10986373704347
911 => 0.10860233217403
912 => 0.10681093447847
913 => 0.11049607684768
914 => 0.11182971554547
915 => 0.12118989035857
916 => 0.13300749770964
917 => 0.1281149306677
918 => 0.12507795642262
919 => 0.12579171740821
920 => 0.13010710756156
921 => 0.13149307391518
922 => 0.12772553959479
923 => 0.12905629640931
924 => 0.13638889729445
925 => 0.14032260241133
926 => 0.13498010249553
927 => 0.12024035711446
928 => 0.10664963871609
929 => 0.11025450923336
930 => 0.10984582878886
1001 => 0.11772379367936
1002 => 0.10857224808507
1003 => 0.10872633664243
1004 => 0.11676720950395
1005 => 0.11462204247996
1006 => 0.11114714663332
1007 => 0.10667500930132
1008 => 0.098407849820494
1009 => 0.091085396121526
1010 => 0.10544641408558
1011 => 0.10482714087715
1012 => 0.1039303415002
1013 => 0.10592607146977
1014 => 0.11561676970418
1015 => 0.11539336774415
1016 => 0.11397219845511
1017 => 0.11505014283523
1018 => 0.1109581777717
1019 => 0.11201277034088
1020 => 0.10664748587686
1021 => 0.10907281852867
1022 => 0.11113969106749
1023 => 0.11155464633023
1024 => 0.11248956172532
1025 => 0.1045008120363
1026 => 0.1080875261093
1027 => 0.11019438459753
1028 => 0.10067552129955
1029 => 0.1100062272756
1030 => 0.10436174567758
1031 => 0.10244592384594
1101 => 0.10502532555191
1102 => 0.10402013019854
1103 => 0.10315592226077
1104 => 0.10267367938252
1105 => 0.1045677073172
1106 => 0.1044793486502
1107 => 0.10138035133407
1108 => 0.097337835666476
1109 => 0.098694636615574
1110 => 0.09820169811069
1111 => 0.096415225378657
1112 => 0.097619092300507
1113 => 0.092317871639787
1114 => 0.083197397026492
1115 => 0.089222661923727
1116 => 0.088990695779411
1117 => 0.088873727930619
1118 => 0.093401547974802
1119 => 0.092966302552135
1120 => 0.09217632784806
1121 => 0.096400716873711
1122 => 0.094858758053298
1123 => 0.099610711806622
1124 => 0.10274065588566
1125 => 0.10194680082413
1126 => 0.1048905283588
1127 => 0.098725894569088
1128 => 0.10077353863185
1129 => 0.10119555523527
1130 => 0.096348588568869
1201 => 0.093037514086054
1202 => 0.092816703167063
1203 => 0.087075756308032
1204 => 0.090142523780822
1205 => 0.092841152245417
1206 => 0.091548718632905
1207 => 0.09113957276154
1208 => 0.093229810285433
1209 => 0.093392239642714
1210 => 0.089688833083231
1211 => 0.090458888578581
1212 => 0.093670148005263
1213 => 0.090377973080272
1214 => 0.083981814974734
1215 => 0.082395479330757
1216 => 0.082183832913883
1217 => 0.077881564833549
1218 => 0.082501485863846
1219 => 0.080484766527936
1220 => 0.08685555874607
1221 => 0.083216596398315
1222 => 0.083059728004606
1223 => 0.082822598419923
1224 => 0.079119458558723
1225 => 0.079930210841511
1226 => 0.082625274910555
1227 => 0.083586904132459
1228 => 0.083486598326219
1229 => 0.082612067626329
1230 => 0.083012423302417
1231 => 0.081722738176574
]
'min_raw' => 0.045124647835775
'max_raw' => 0.14032260241133
'avg_raw' => 0.092723625123552
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.045124'
'max' => '$0.140322'
'avg' => '$0.092723'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.025706026496865
'max_diff' => 0.087641753942287
'year' => 2033
]
8 => [
'items' => [
101 => 0.081267323516165
102 => 0.079829909576241
103 => 0.077717308180289
104 => 0.078011078361733
105 => 0.073825462204127
106 => 0.071544916374
107 => 0.070913691345332
108 => 0.070069590856287
109 => 0.071009034741635
110 => 0.073813604879447
111 => 0.070430698270499
112 => 0.064630942172765
113 => 0.064979517396543
114 => 0.065762662431458
115 => 0.064303276839917
116 => 0.062922090854472
117 => 0.064122920009655
118 => 0.061665486894212
119 => 0.066059631482933
120 => 0.065940782186256
121 => 0.067578647556853
122 => 0.068602838385469
123 => 0.066242410111229
124 => 0.065648768783534
125 => 0.065986933863283
126 => 0.060397818367059
127 => 0.067121897580621
128 => 0.067180047696883
129 => 0.066682131097486
130 => 0.070262495696053
131 => 0.077818181742752
201 => 0.074975428725217
202 => 0.073874628834162
203 => 0.071782007436588
204 => 0.074570301201292
205 => 0.074356203744321
206 => 0.073387973849851
207 => 0.072802385388614
208 => 0.073881350083565
209 => 0.072668689722535
210 => 0.072450862600016
211 => 0.071131067235797
212 => 0.070659960337634
213 => 0.070311171545539
214 => 0.069927189356723
215 => 0.070774158382853
216 => 0.068854815141587
217 => 0.066540275348159
218 => 0.066347846408003
219 => 0.066879159630299
220 => 0.06664409308105
221 => 0.066346720999802
222 => 0.065778956712231
223 => 0.065610513176473
224 => 0.0661578729505
225 => 0.065539935678681
226 => 0.066451735784034
227 => 0.066203776607579
228 => 0.064818696804407
301 => 0.063092374547432
302 => 0.063077006658261
303 => 0.062705073359732
304 => 0.062231360383509
305 => 0.062099584270609
306 => 0.06402178952759
307 => 0.06800069688278
308 => 0.067219542161773
309 => 0.067784006503657
310 => 0.070560612394831
311 => 0.071443211912183
312 => 0.070816763680282
313 => 0.069959242702811
314 => 0.069996969273827
315 => 0.072927378043097
316 => 0.073110144043524
317 => 0.073571934764056
318 => 0.074165466341982
319 => 0.070917844674506
320 => 0.069844006585343
321 => 0.069335162524429
322 => 0.067768119764247
323 => 0.06945804103301
324 => 0.068473396279346
325 => 0.068606258496869
326 => 0.068519731803409
327 => 0.068566981228948
328 => 0.066058403229968
329 => 0.066972397205818
330 => 0.06545270494892
331 => 0.063418007610395
401 => 0.06341118659146
402 => 0.06390917588251
403 => 0.06361295236587
404 => 0.062815822499196
405 => 0.06292905103441
406 => 0.06193704992127
407 => 0.063049497930305
408 => 0.063081398958674
409 => 0.062653045879743
410 => 0.064366925525904
411 => 0.06506910341533
412 => 0.064787152242565
413 => 0.065049320969424
414 => 0.067252002667133
415 => 0.0676111358936
416 => 0.067770639149787
417 => 0.067556925916628
418 => 0.065089581947338
419 => 0.065199019144333
420 => 0.064396041605507
421 => 0.063717610200888
422 => 0.063744743899168
423 => 0.064093545831052
424 => 0.065616784324551
425 => 0.068822349934305
426 => 0.068943998805957
427 => 0.069091440787147
428 => 0.068491720151243
429 => 0.068310838668901
430 => 0.068549468033582
501 => 0.069753309935973
502 => 0.072849918148811
503 => 0.071755369990885
504 => 0.070865485300835
505 => 0.071646154085199
506 => 0.07152597624493
507 => 0.070511554330359
508 => 0.070483082885854
509 => 0.068536082901488
510 => 0.067816321338312
511 => 0.067214834702903
512 => 0.066558026999243
513 => 0.06616864937612
514 => 0.066766910374202
515 => 0.066903739742879
516 => 0.065595631614759
517 => 0.065417341310522
518 => 0.06648557064542
519 => 0.066015482742735
520 => 0.066498979808266
521 => 0.06661115527483
522 => 0.066593092441093
523 => 0.066102266681438
524 => 0.066415104384007
525 => 0.065675149956024
526 => 0.064870560653153
527 => 0.064357282805606
528 => 0.063909379807195
529 => 0.064157902422989
530 => 0.063271964676121
531 => 0.062988535360494
601 => 0.066309122009448
602 => 0.068762075069352
603 => 0.068726408160385
604 => 0.068509295024832
605 => 0.068186708945193
606 => 0.069729710754983
607 => 0.069192159777747
608 => 0.069583273027573
609 => 0.069682827764625
610 => 0.069984149969714
611 => 0.070091846758514
612 => 0.06976631226253
613 => 0.068673778733317
614 => 0.065951289053489
615 => 0.064683962758309
616 => 0.06426572397191
617 => 0.064280926157447
618 => 0.063861582014791
619 => 0.063985097658489
620 => 0.063818628314552
621 => 0.063503375650394
622 => 0.064138436459336
623 => 0.064211621301565
624 => 0.064063390520347
625 => 0.064098304235356
626 => 0.062871016677061
627 => 0.06296432468459
628 => 0.062444773841662
629 => 0.062347364321892
630 => 0.061033985033436
701 => 0.058707143246566
702 => 0.059996439468489
703 => 0.058439150934889
704 => 0.057849382170442
705 => 0.060641255773471
706 => 0.060361029098247
707 => 0.05988140284187
708 => 0.059171935645819
709 => 0.058908787361551
710 => 0.057309981688958
711 => 0.057215515720525
712 => 0.058007926983246
713 => 0.057642256450707
714 => 0.057128716532762
715 => 0.055268727006671
716 => 0.053177482957976
717 => 0.053240604470715
718 => 0.053905790293626
719 => 0.05583990778627
720 => 0.055084214621321
721 => 0.054535950559571
722 => 0.054433277181563
723 => 0.055718449468617
724 => 0.057537237506716
725 => 0.058390572161104
726 => 0.057544943434765
727 => 0.05657353068583
728 => 0.056632656078765
729 => 0.057025990829314
730 => 0.057067324750143
731 => 0.056435034913431
801 => 0.056613020798806
802 => 0.05634264396355
803 => 0.054683341824661
804 => 0.054653330310672
805 => 0.054246110805927
806 => 0.054233780361163
807 => 0.053540998397925
808 => 0.053444073412293
809 => 0.052068512775426
810 => 0.052973910952193
811 => 0.052366617390755
812 => 0.0514512827476
813 => 0.051293478710109
814 => 0.051288734930188
815 => 0.052228578943628
816 => 0.052962928327692
817 => 0.052377181522262
818 => 0.05224381832889
819 => 0.053667788327535
820 => 0.053486575165432
821 => 0.053329645735751
822 => 0.057374384986546
823 => 0.054172658254602
824 => 0.052776522651302
825 => 0.051048539723258
826 => 0.051611179677875
827 => 0.051729736183214
828 => 0.047574248733601
829 => 0.045888367992826
830 => 0.045309837253667
831 => 0.044976884634057
901 => 0.045128615323769
902 => 0.043611124922984
903 => 0.044630903569286
904 => 0.043316885152477
905 => 0.043096585688713
906 => 0.045446213393614
907 => 0.045773150362425
908 => 0.044378335682123
909 => 0.045274032506862
910 => 0.044949240387094
911 => 0.043339410226771
912 => 0.043277926555756
913 => 0.042470170369572
914 => 0.041206188350613
915 => 0.040628514650783
916 => 0.040327657172319
917 => 0.040451796831528
918 => 0.040389028021096
919 => 0.039979419074563
920 => 0.04041250632644
921 => 0.039306147361902
922 => 0.038865586307683
923 => 0.038666595100431
924 => 0.037684637839758
925 => 0.039247368519865
926 => 0.039555246150609
927 => 0.039863730395393
928 => 0.042548875135101
929 => 0.042414732892046
930 => 0.043627313439346
1001 => 0.043580194789071
1002 => 0.043234347174478
1003 => 0.041775272977683
1004 => 0.042356833947029
1005 => 0.040566879678024
1006 => 0.041908035121422
1007 => 0.041295987785045
1008 => 0.041701101301329
1009 => 0.040972670671438
1010 => 0.041375814258183
1011 => 0.039628255358365
1012 => 0.037996409446532
1013 => 0.038653111878005
1014 => 0.039367022524049
1015 => 0.040914962705723
1016 => 0.039993022303747
1017 => 0.040324586934724
1018 => 0.039213900924201
1019 => 0.036922238432719
1020 => 0.036935208993547
1021 => 0.036582686645814
1022 => 0.036278055868266
1023 => 0.040098918249309
1024 => 0.039623733613331
1025 => 0.038866589086527
1026 => 0.039880057123381
1027 => 0.040148034158226
1028 => 0.040155663087677
1029 => 0.04089506320597
1030 => 0.041289681181647
1031 => 0.041359234310233
1101 => 0.042522696372163
1102 => 0.042912673508887
1103 => 0.044518934143421
1104 => 0.041256200603453
1105 => 0.041189006753299
1106 => 0.039894318697023
1107 => 0.039073207063525
1108 => 0.03995054091306
1109 => 0.040727738935736
1110 => 0.039918468406019
1111 => 0.040024142052566
1112 => 0.038937762486253
1113 => 0.0393260920623
1114 => 0.039660573806835
1115 => 0.039475892647431
1116 => 0.039199416013134
1117 => 0.040664017560926
1118 => 0.04058137900178
1119 => 0.041945249634127
1120 => 0.043008484323367
1121 => 0.044913990962419
1122 => 0.04292549544826
1123 => 0.042853026768171
1124 => 0.04356141974039
1125 => 0.042912565057614
1126 => 0.043322618819426
1127 => 0.044847924961984
1128 => 0.044880152277231
1129 => 0.044340303224304
1130 => 0.044307453360372
1201 => 0.044411137276288
1202 => 0.045018417210317
1203 => 0.04480621494154
1204 => 0.045051780779273
1205 => 0.045358864619595
1206 => 0.046629093584019
1207 => 0.046935341487002
1208 => 0.046191317854087
1209 => 0.046258494857659
1210 => 0.045980209595044
1211 => 0.045711389518261
1212 => 0.046315657792849
1213 => 0.047419969941581
1214 => 0.047413100073018
1215 => 0.047669279026763
1216 => 0.047828876392645
1217 => 0.047143767665867
1218 => 0.04669778707688
1219 => 0.04686880441318
1220 => 0.047142264858196
1221 => 0.046780124876469
1222 => 0.04454482914969
1223 => 0.045222875081951
1224 => 0.04511001508407
1225 => 0.044949288722844
1226 => 0.045631069150906
1227 => 0.045565309765405
1228 => 0.043595560865579
1229 => 0.043721657799311
1230 => 0.043603229237765
1231 => 0.043985896148324
]
'min_raw' => 0.036278055868266
'max_raw' => 0.081267323516165
'avg_raw' => 0.058772689692216
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.036278'
'max' => '$0.081267'
'avg' => '$0.058772'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0088465919675088
'max_diff' => -0.059055278895165
'year' => 2034
]
9 => [
'items' => [
101 => 0.042891899788638
102 => 0.043228405700699
103 => 0.043439459054197
104 => 0.043563771100796
105 => 0.044012871454679
106 => 0.043960174711647
107 => 0.044009595751142
108 => 0.044675493017852
109 => 0.048043372884525
110 => 0.04822667915486
111 => 0.047324012038612
112 => 0.047684609747231
113 => 0.046992341000732
114 => 0.047457065648054
115 => 0.047775018449026
116 => 0.046338250880242
117 => 0.046253174829363
118 => 0.045558048843494
119 => 0.045931570174352
120 => 0.045337270879822
121 => 0.045483091138993
122 => 0.04507536498197
123 => 0.045809190887143
124 => 0.046629722274144
125 => 0.046837020906267
126 => 0.046291707452824
127 => 0.045896864574624
128 => 0.045203650549834
129 => 0.046356480922342
130 => 0.046693603655132
131 => 0.046354710160144
201 => 0.046276181132386
202 => 0.046127368766684
203 => 0.046307752379251
204 => 0.046691767612328
205 => 0.046510673120057
206 => 0.046630289222677
207 => 0.04617443598708
208 => 0.047143994465363
209 => 0.04868388666583
210 => 0.048688837671052
211 => 0.048507742202614
212 => 0.048433641838685
213 => 0.048619456779095
214 => 0.048720253761739
215 => 0.04932114520639
216 => 0.049965925667072
217 => 0.052974834737322
218 => 0.05212994511074
219 => 0.054799628238666
220 => 0.056911000977888
221 => 0.057544109343241
222 => 0.056961679437167
223 => 0.054969218190734
224 => 0.054871458536446
225 => 0.057849036834057
226 => 0.057007734583256
227 => 0.056907664357525
228 => 0.055843086227059
301 => 0.056472383752731
302 => 0.056334747152629
303 => 0.056117481045955
304 => 0.05731813688769
305 => 0.059565657440133
306 => 0.059215360284921
307 => 0.058953879708372
308 => 0.057808147937787
309 => 0.058498134372135
310 => 0.058252443418683
311 => 0.059308087674043
312 => 0.058682747402551
313 => 0.057001360891263
314 => 0.057269127235108
315 => 0.057228654890907
316 => 0.058061572866664
317 => 0.057811551564636
318 => 0.057179834218987
319 => 0.059557975659222
320 => 0.059403552382011
321 => 0.05962248928302
322 => 0.059718872077693
323 => 0.061166404864811
324 => 0.061759412731811
325 => 0.061894035899684
326 => 0.062457347508459
327 => 0.061880020193692
328 => 0.064189741080158
329 => 0.065725570693707
330 => 0.067509515822914
331 => 0.070116339135932
401 => 0.071096528816091
402 => 0.070919466323708
403 => 0.072895930008375
404 => 0.076447591315402
405 => 0.071637358619741
406 => 0.07670254532843
407 => 0.075098965696852
408 => 0.071296907237545
409 => 0.071052099496091
410 => 0.073626897627539
411 => 0.079337552067956
412 => 0.077907097900338
413 => 0.079339891778527
414 => 0.077668461612291
415 => 0.077585461016618
416 => 0.079258714146056
417 => 0.083168361287265
418 => 0.081311034481408
419 => 0.078648101069995
420 => 0.08061436966115
421 => 0.078911005837924
422 => 0.075072850402682
423 => 0.077906004058994
424 => 0.076011554892589
425 => 0.076564455873803
426 => 0.080546306243542
427 => 0.080067199472385
428 => 0.080687207998354
429 => 0.079592909178467
430 => 0.078570661525609
501 => 0.07666256036844
502 => 0.076097665684052
503 => 0.076253782252035
504 => 0.076097588320434
505 => 0.075030023259353
506 => 0.074799482686056
507 => 0.074415238297014
508 => 0.074534331700233
509 => 0.073811839834172
510 => 0.075175331259864
511 => 0.075428407283518
512 => 0.076420642637388
513 => 0.076523659803441
514 => 0.079287021140382
515 => 0.077765008152396
516 => 0.078786105869016
517 => 0.078694769278297
518 => 0.071379309373208
519 => 0.07238731520328
520 => 0.073955455945217
521 => 0.073249010666539
522 => 0.072250262325225
523 => 0.071443719490116
524 => 0.070221724621686
525 => 0.071941658932668
526 => 0.074203189656987
527 => 0.076581015954704
528 => 0.07943781845006
529 => 0.078800213389944
530 => 0.076527610019203
531 => 0.076629557346277
601 => 0.077259755607451
602 => 0.076443591599681
603 => 0.076202888900375
604 => 0.077226686752808
605 => 0.077233737085949
606 => 0.076294641758293
607 => 0.075251009154235
608 => 0.075246636295518
609 => 0.075060931953921
610 => 0.077701498002117
611 => 0.079153542337285
612 => 0.079320016880226
613 => 0.079142337274146
614 => 0.079210719102675
615 => 0.078365806497654
616 => 0.080297026161681
617 => 0.082069304303223
618 => 0.081594295902089
619 => 0.080882190782368
620 => 0.08031496475488
621 => 0.081460675476716
622 => 0.081409658781788
623 => 0.082053824999758
624 => 0.082024601899226
625 => 0.08180799302844
626 => 0.081594303637874
627 => 0.082441557917114
628 => 0.082197562291181
629 => 0.081953187672646
630 => 0.081463056963294
701 => 0.081529673866904
702 => 0.080817691702171
703 => 0.080488296174679
704 => 0.075534977771573
705 => 0.074211289239914
706 => 0.074627748598139
707 => 0.074764857832229
708 => 0.074188786886898
709 => 0.075014724642018
710 => 0.074886003117767
711 => 0.075386783269054
712 => 0.075073917571877
713 => 0.075086757689221
714 => 0.076006828994621
715 => 0.076273929608841
716 => 0.076138080080682
717 => 0.076233224433556
718 => 0.078425785887597
719 => 0.078114073763001
720 => 0.077948482909462
721 => 0.07799435270756
722 => 0.078554599168116
723 => 0.078711437588749
724 => 0.078046902179687
725 => 0.078360300920234
726 => 0.07969471298126
727 => 0.080161681681438
728 => 0.081652021614713
729 => 0.081018898722377
730 => 0.082181023192176
731 => 0.085752997614908
801 => 0.088606537945616
802 => 0.085982304329955
803 => 0.091222467751131
804 => 0.095302686631313
805 => 0.095146081034732
806 => 0.094434600495809
807 => 0.089789379778952
808 => 0.085514778418961
809 => 0.089090663965754
810 => 0.089099779633401
811 => 0.088792607893635
812 => 0.086884790599161
813 => 0.088726219987221
814 => 0.088872385964956
815 => 0.088790571886095
816 => 0.087327852839536
817 => 0.085094551211108
818 => 0.085530933003534
819 => 0.086245735281475
820 => 0.084892465445956
821 => 0.084460013735996
822 => 0.085264023742115
823 => 0.087854711503967
824 => 0.087364956989421
825 => 0.087352167519793
826 => 0.089447545021255
827 => 0.087947706940975
828 => 0.085536437175424
829 => 0.084927559758882
830 => 0.082766455119131
831 => 0.084259137791398
901 => 0.084312856783401
902 => 0.083495329738648
903 => 0.085602774989457
904 => 0.085583354510463
905 => 0.087584060124276
906 => 0.091408657827175
907 => 0.090277536089405
908 => 0.088962164574074
909 => 0.089105181929086
910 => 0.090673729316663
911 => 0.08972534975968
912 => 0.090066393660708
913 => 0.090673213105873
914 => 0.09103932234362
915 => 0.089052504443876
916 => 0.08858928215096
917 => 0.087641691908585
918 => 0.087394483301959
919 => 0.088166275782254
920 => 0.087962935731527
921 => 0.084308341910133
922 => 0.083926416521829
923 => 0.083938129628225
924 => 0.082977760079773
925 => 0.081512966003282
926 => 0.08536235737799
927 => 0.085053197378403
928 => 0.084711908665943
929 => 0.084753714585853
930 => 0.086424604913635
1001 => 0.085455404141537
1002 => 0.088032183243042
1003 => 0.087502474924843
1004 => 0.086959181587054
1005 => 0.086884081898652
1006 => 0.086674960315212
1007 => 0.085957804594885
1008 => 0.085091795968212
1009 => 0.084519982060501
1010 => 0.077965215741464
1011 => 0.079181742242956
1012 => 0.080581245093042
1013 => 0.081064347868736
1014 => 0.080237967141217
1015 => 0.085990435142857
1016 => 0.087041466478918
1017 => 0.083857824004913
1018 => 0.083262294485292
1019 => 0.086029477959019
1020 => 0.08436052804994
1021 => 0.085112056091807
1022 => 0.083487663529151
1023 => 0.086788303807851
1024 => 0.086763158459012
1025 => 0.085479134842256
1026 => 0.086564382810524
1027 => 0.086375794269397
1028 => 0.08492613476849
1029 => 0.086834260599741
1030 => 0.086835207006347
1031 => 0.0855993621923
1101 => 0.08415616601071
1102 => 0.083898156620214
1103 => 0.08370378120316
1104 => 0.085064251654641
1105 => 0.086284045207359
1106 => 0.088553778596499
1107 => 0.089124443498064
1108 => 0.091351786600186
1109 => 0.090025512230239
1110 => 0.090613432480308
1111 => 0.091251703078155
1112 => 0.091557713474387
1113 => 0.09105908595515
1114 => 0.094519066603742
1115 => 0.094811194981551
1116 => 0.09490914309973
1117 => 0.093742457092386
1118 => 0.094778747333167
1119 => 0.094293901447831
1120 => 0.095555335747409
1121 => 0.095753144752385
1122 => 0.09558560756243
1123 => 0.095648395262812
1124 => 0.092695912161651
1125 => 0.092542810337267
1126 => 0.090455256098177
1127 => 0.091305949881028
1128 => 0.089715618628802
1129 => 0.09021992905111
1130 => 0.090442224280017
1201 => 0.090326109867579
1202 => 0.091354046831139
1203 => 0.090480090418465
1204 => 0.088173575753682
1205 => 0.08586643268052
1206 => 0.085837468378594
1207 => 0.085230038331889
1208 => 0.084790977664483
1209 => 0.084875556325539
1210 => 0.08517362255887
1211 => 0.084773653513147
1212 => 0.084859007187997
1213 => 0.086276446899074
1214 => 0.086560704324413
1215 => 0.085594686526565
1216 => 0.081715985672506
1217 => 0.080764142753935
1218 => 0.081448308567938
1219 => 0.081121321374766
1220 => 0.065471237608981
1221 => 0.069147992648779
1222 => 0.066963389654935
1223 => 0.067970155223249
1224 => 0.065740241266737
1225 => 0.066804473086588
1226 => 0.066607948328985
1227 => 0.072520061629888
1228 => 0.072427752112541
1229 => 0.072471935793584
1230 => 0.070362933577416
1231 => 0.073722631373422
]
'min_raw' => 0.042891899788638
'max_raw' => 0.095753144752385
'avg_raw' => 0.069322522270511
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.042891'
'max' => '$0.095753'
'avg' => '$0.069322'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0066138439203713
'max_diff' => 0.01448582123622
'year' => 2035
]
10 => [
'items' => [
101 => 0.07537773931856
102 => 0.075071422887187
103 => 0.075148516133635
104 => 0.073823798737508
105 => 0.072484761953667
106 => 0.070999564084104
107 => 0.073758878149748
108 => 0.07345208952871
109 => 0.074155752246309
110 => 0.075945364657722
111 => 0.076208891883379
112 => 0.076563075147092
113 => 0.076436125659532
114 => 0.07946057749089
115 => 0.079094296418136
116 => 0.079976928417215
117 => 0.07816128742966
118 => 0.076106717310017
119 => 0.076497223920803
120 => 0.076459614993929
121 => 0.075980810189299
122 => 0.075548566620488
123 => 0.074829002862288
124 => 0.077105809068631
125 => 0.077013374894589
126 => 0.078509776729342
127 => 0.078245273169777
128 => 0.076478853664006
129 => 0.076541941682224
130 => 0.076966238923809
131 => 0.078434736521477
201 => 0.078870686591406
202 => 0.078668737149408
203 => 0.079146736499208
204 => 0.079524527695686
205 => 0.07919418125691
206 => 0.083871190190995
207 => 0.081928970001638
208 => 0.082875594608049
209 => 0.083101358998842
210 => 0.082523068259139
211 => 0.082648478813542
212 => 0.082838441631132
213 => 0.083991858661002
214 => 0.087018758691289
215 => 0.088359352109897
216 => 0.092392593553496
217 => 0.088248034488443
218 => 0.088002113505414
219 => 0.088728622081629
220 => 0.091096561770986
221 => 0.093015554479945
222 => 0.093652195070852
223 => 0.093736337634731
224 => 0.094930717706339
225 => 0.095615314089514
226 => 0.094785688550331
227 => 0.094082667771288
228 => 0.091564534602906
229 => 0.091856015373795
301 => 0.093864028837649
302 => 0.096700466126745
303 => 0.099134424401792
304 => 0.09828213704588
305 => 0.10478448795038
306 => 0.10542916948284
307 => 0.1053400953401
308 => 0.10680877581252
309 => 0.10389374416635
310 => 0.10264751166153
311 => 0.094234668843342
312 => 0.096598334519853
313 => 0.10003406139388
314 => 0.099579330058789
315 => 0.097084213365627
316 => 0.099132531632038
317 => 0.098455293556328
318 => 0.097921127787382
319 => 0.10036824472805
320 => 0.097677539129762
321 => 0.10000721954726
322 => 0.097019380314362
323 => 0.098286030222731
324 => 0.097567018473779
325 => 0.098032307194116
326 => 0.095312238842431
327 => 0.096779921699074
328 => 0.095251178410302
329 => 0.095250453586934
330 => 0.095216706494104
331 => 0.097015266193859
401 => 0.097073917161098
402 => 0.095744778825506
403 => 0.095553229226304
404 => 0.096261488489762
405 => 0.095432302385648
406 => 0.095820273344928
407 => 0.095444053630772
408 => 0.095359358648716
409 => 0.09468449462203
410 => 0.094393744643561
411 => 0.094507755201823
412 => 0.094118578390004
413 => 0.093884085283743
414 => 0.095170059913163
415 => 0.094483015544732
416 => 0.095064760510098
417 => 0.094401788699996
418 => 0.092103639563117
419 => 0.090781949692012
420 => 0.086440959010986
421 => 0.087672058583143
422 => 0.088488278873147
423 => 0.08821851807217
424 => 0.088798068656241
425 => 0.088833648355189
426 => 0.088645230552488
427 => 0.088427066874776
428 => 0.088320876861674
429 => 0.089112330219491
430 => 0.089571795532798
501 => 0.088570197498868
502 => 0.088335537093364
503 => 0.089348208005411
504 => 0.089965936676758
505 => 0.094526898114231
506 => 0.094189007359232
507 => 0.095037046846568
508 => 0.094941570614521
509 => 0.095830451100534
510 => 0.097283395026245
511 => 0.094329153775765
512 => 0.094841907906872
513 => 0.094716192435146
514 => 0.096088720991076
515 => 0.096093005875411
516 => 0.095270106443245
517 => 0.095716213575441
518 => 0.095467208812558
519 => 0.0959171940741
520 => 0.094184494622196
521 => 0.096294735521267
522 => 0.09749110613012
523 => 0.097507717737184
524 => 0.098074787910796
525 => 0.098650964049676
526 => 0.099756883973889
527 => 0.098620120543228
528 => 0.096575193793159
529 => 0.096722830899441
530 => 0.095523891094085
531 => 0.09554404548882
601 => 0.0954364597502
602 => 0.095759332650474
603 => 0.094255347067088
604 => 0.094608329477385
605 => 0.094114152035907
606 => 0.094840833661625
607 => 0.094059044357129
608 => 0.094716131811339
609 => 0.094999708973782
610 => 0.096046114808178
611 => 0.093904489364582
612 => 0.089537570109794
613 => 0.090455549480929
614 => 0.089097785885297
615 => 0.089223452075444
616 => 0.089477317779165
617 => 0.088654455973715
618 => 0.088811432074839
619 => 0.088805823783883
620 => 0.088757494562268
621 => 0.08854343642624
622 => 0.088233009778887
623 => 0.089469653997657
624 => 0.08967978394802
625 => 0.090146876798083
626 => 0.091536628287766
627 => 0.09139775934135
628 => 0.091624260354572
629 => 0.091129809914457
630 => 0.089246388213242
701 => 0.089348667073034
702 => 0.088073248052531
703 => 0.090114261466196
704 => 0.08963092254978
705 => 0.08931931080606
706 => 0.089234284654724
707 => 0.090627481069541
708 => 0.091044347272532
709 => 0.090784584229678
710 => 0.090251802650286
711 => 0.091274900785454
712 => 0.091548638685379
713 => 0.091609918506108
714 => 0.093422652242015
715 => 0.091711230184985
716 => 0.092123186484184
717 => 0.095337151932426
718 => 0.092422528767786
719 => 0.093966469661949
720 => 0.09389090178946
721 => 0.094680729706803
722 => 0.093826112846889
723 => 0.093836706847116
724 => 0.094538020530139
725 => 0.093553151944923
726 => 0.093309284632985
727 => 0.092972383688154
728 => 0.093707994575918
729 => 0.094148960034314
730 => 0.097702817775542
731 => 0.099998771951978
801 => 0.099899098526031
802 => 0.10080992705836
803 => 0.10039959046231
804 => 0.099074505352354
805 => 0.10133626405813
806 => 0.10062054896762
807 => 0.10067955165009
808 => 0.1006773555673
809 => 0.10115324353359
810 => 0.10081603329498
811 => 0.10015135730076
812 => 0.10059260024486
813 => 0.10190293404157
814 => 0.10597025035253
815 => 0.10824637444492
816 => 0.10583322482418
817 => 0.10749778311921
818 => 0.10649964128496
819 => 0.10631824922153
820 => 0.10736371484069
821 => 0.10841101040903
822 => 0.10834430220891
823 => 0.10758401940552
824 => 0.10715455494135
825 => 0.11040660374521
826 => 0.11280265790669
827 => 0.11263926307623
828 => 0.11336043471904
829 => 0.11547781696734
830 => 0.11567140386423
831 => 0.11564701636476
901 => 0.11516719104213
902 => 0.11725202884241
903 => 0.11899123721463
904 => 0.11505612534342
905 => 0.11655456442958
906 => 0.11722726201205
907 => 0.1182149816435
908 => 0.11988143022277
909 => 0.12169163538352
910 => 0.12194761824114
911 => 0.12176598615376
912 => 0.12057210718931
913 => 0.12255285527645
914 => 0.12371313105163
915 => 0.12440404872331
916 => 0.12615610098096
917 => 0.11723141636331
918 => 0.11091408100532
919 => 0.10992753786575
920 => 0.11193371213397
921 => 0.11246272428956
922 => 0.11224948015297
923 => 0.10513874486056
924 => 0.10989010131603
925 => 0.11500216135673
926 => 0.11519853640241
927 => 0.11775774054692
928 => 0.11859112232169
929 => 0.12065161710058
930 => 0.12052273259115
1001 => 0.12102443028017
1002 => 0.12090909866966
1003 => 0.12472573135917
1004 => 0.12893604399115
1005 => 0.12879025425268
1006 => 0.12818497199767
1007 => 0.12908391936232
1008 => 0.13342941320304
1009 => 0.1330293497653
1010 => 0.13341797731774
1011 => 0.13854155945725
1012 => 0.14520294505968
1013 => 0.14210806265517
1014 => 0.14882306694453
1015 => 0.15304980619759
1016 => 0.16035951468278
1017 => 0.15944430317936
1018 => 0.16228991905152
1019 => 0.15780588357784
1020 => 0.14750963175716
1021 => 0.14588021049407
1022 => 0.1491423531263
1023 => 0.1571620124724
1024 => 0.14888978551395
1025 => 0.15056324625387
1026 => 0.15008128944819
1027 => 0.1500556080182
1028 => 0.151035763747
1029 => 0.14961399674089
1030 => 0.14382146218704
1031 => 0.14647614663745
1101 => 0.14545104548273
1102 => 0.14658847164025
1103 => 0.15272669150214
1104 => 0.15001283818431
1105 => 0.14715401416952
1106 => 0.1507396139079
1107 => 0.15530531452061
1108 => 0.15501960118162
1109 => 0.15446519788507
1110 => 0.15759034024012
1111 => 0.16275215982987
1112 => 0.16414737892311
1113 => 0.16517730113374
1114 => 0.16531931000591
1115 => 0.16678208964726
1116 => 0.15891635484779
1117 => 0.17139947798094
1118 => 0.17355496850672
1119 => 0.1731498256238
1120 => 0.1755455626263
1121 => 0.17484067602618
1122 => 0.17381940593594
1123 => 0.17761715867276
1124 => 0.17326334162283
1125 => 0.16708364645078
1126 => 0.16369334345888
1127 => 0.16815796792656
1128 => 0.17088435829504
1129 => 0.17268632889762
1130 => 0.17323160411318
1201 => 0.1595269494494
1202 => 0.15214090068062
1203 => 0.15687527326019
1204 => 0.1626515345562
1205 => 0.15888426742464
1206 => 0.15903193716382
1207 => 0.15366080425461
1208 => 0.16312676063749
1209 => 0.16174765041373
1210 => 0.16890247669421
1211 => 0.1671949199813
1212 => 0.17302940306428
1213 => 0.17149298813371
1214 => 0.1778705606107
1215 => 0.18041474693765
1216 => 0.18468683175158
1217 => 0.18782939473123
1218 => 0.18967476782052
1219 => 0.18956397854206
1220 => 0.19687626608308
1221 => 0.19256446559201
1222 => 0.18714782796188
1223 => 0.18704985807642
1224 => 0.18985521145942
1225 => 0.19573446253906
1226 => 0.19725886680439
1227 => 0.19811080082565
1228 => 0.19680603421605
1229 => 0.19212588381252
1230 => 0.19010501859717
1231 => 0.19182685431075
]
'min_raw' => 0.070999564084104
'max_raw' => 0.19811080082565
'avg_raw' => 0.13455518245488
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.070999'
'max' => '$0.19811'
'avg' => '$0.134555'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.028107664295466
'max_diff' => 0.10235765607327
'year' => 2036
]
11 => [
'items' => [
101 => 0.18972119719207
102 => 0.19335615212194
103 => 0.19834772162513
104 => 0.19731698226153
105 => 0.20076258941697
106 => 0.20432843033441
107 => 0.20942774299829
108 => 0.21076089215562
109 => 0.21296453701758
110 => 0.21523281144017
111 => 0.21596132005299
112 => 0.21735226903782
113 => 0.21734493805008
114 => 0.22153665643752
115 => 0.22616025162558
116 => 0.2279055517726
117 => 0.23191877322426
118 => 0.22504627212835
119 => 0.2302591431552
120 => 0.23496128330804
121 => 0.22935519797134
122 => 0.23708188055763
123 => 0.23738189013341
124 => 0.24191167854001
125 => 0.23731987018747
126 => 0.2345932690453
127 => 0.24246486437833
128 => 0.24627368140706
129 => 0.24512643472082
130 => 0.23639583079204
131 => 0.23131424483226
201 => 0.21801475421081
202 => 0.23376857534716
203 => 0.24144180207741
204 => 0.23637595898852
205 => 0.23893087558006
206 => 0.25286967206903
207 => 0.2581766633018
208 => 0.25707284622405
209 => 0.25725937313982
210 => 0.26012292928031
211 => 0.27282151419643
212 => 0.2652122277638
213 => 0.27102924212702
214 => 0.27411456557047
215 => 0.27698038593169
216 => 0.26994283687636
217 => 0.26078708895751
218 => 0.25788707925946
219 => 0.23587226073018
220 => 0.23472629382022
221 => 0.23408302786731
222 => 0.23002732702598
223 => 0.22684065711465
224 => 0.22430649888769
225 => 0.21765611093644
226 => 0.2199004216458
227 => 0.20930109129536
228 => 0.21608216723637
301 => 0.19916538006728
302 => 0.21325418310674
303 => 0.20558628815163
304 => 0.21073507338661
305 => 0.21071710975997
306 => 0.20123656371852
307 => 0.19576838261576
308 => 0.19925292043923
309 => 0.20298862158895
310 => 0.20359472653209
311 => 0.20843816058447
312 => 0.20978985891923
313 => 0.20569414986016
314 => 0.19881481725435
315 => 0.20041272931781
316 => 0.1957360009788
317 => 0.18754021445244
318 => 0.19342657142037
319 => 0.19543643249407
320 => 0.19632410164348
321 => 0.18826448688725
322 => 0.18573198094809
323 => 0.18438369603586
324 => 0.19777442219763
325 => 0.19850799640462
326 => 0.19475492704469
327 => 0.21171915643223
328 => 0.20787962885283
329 => 0.21216932186612
330 => 0.20026773554657
331 => 0.20072239217159
401 => 0.19508799047653
402 => 0.19824287893491
403 => 0.19601310545933
404 => 0.19798799512468
405 => 0.19917173584732
406 => 0.2048052129925
407 => 0.21331850836656
408 => 0.20396375936692
409 => 0.1998877612653
410 => 0.20241648756326
411 => 0.20915081892638
412 => 0.21935367566559
413 => 0.21331337912435
414 => 0.21599396015847
415 => 0.21657954786367
416 => 0.2121256568181
417 => 0.21951789698141
418 => 0.22347945853938
419 => 0.2275432009682
420 => 0.23107163465566
421 => 0.22592005287851
422 => 0.2314329838303
423 => 0.22699053464648
424 => 0.22300519847663
425 => 0.22301124258653
426 => 0.22051118299071
427 => 0.21566700249604
428 => 0.21477366128975
429 => 0.21942093506138
430 => 0.22314760852777
501 => 0.22345455520402
502 => 0.22551783311841
503 => 0.22673885973469
504 => 0.23870658047943
505 => 0.24352009676515
506 => 0.24940597336412
507 => 0.25169885400925
508 => 0.25859960270788
509 => 0.25302668768233
510 => 0.25182095246127
511 => 0.23508199333609
512 => 0.2378229969551
513 => 0.24221160821666
514 => 0.23515435991937
515 => 0.23963055960936
516 => 0.24051425624704
517 => 0.23491455732271
518 => 0.2379055984669
519 => 0.22996227996983
520 => 0.21349165100321
521 => 0.21953623349983
522 => 0.2239870808018
523 => 0.21763517291637
524 => 0.22902072194822
525 => 0.22236951924925
526 => 0.22026140730771
527 => 0.21203691102759
528 => 0.21591855668192
529 => 0.2211685380092
530 => 0.21792465992478
531 => 0.2246561940207
601 => 0.2341898415351
602 => 0.24098408649238
603 => 0.24150566425573
604 => 0.23713741992725
605 => 0.24413755934139
606 => 0.2441885477148
607 => 0.23629236185924
608 => 0.23145599198885
609 => 0.23035715857849
610 => 0.23310225987655
611 => 0.23643531962605
612 => 0.24169062587491
613 => 0.24486629737636
614 => 0.25314676440614
615 => 0.2553872213648
616 => 0.25784880429826
617 => 0.26113823822143
618 => 0.26508804703975
619 => 0.25644609020802
620 => 0.25678945126357
621 => 0.2487421807179
622 => 0.24014251804453
623 => 0.24666859005053
624 => 0.25520056107141
625 => 0.25324331749223
626 => 0.25302308760671
627 => 0.25339345318748
628 => 0.25191775544637
629 => 0.24524322925528
630 => 0.24189132398686
701 => 0.24621613694536
702 => 0.24851458255752
703 => 0.25207927125646
704 => 0.25163984813287
705 => 0.26082210340173
706 => 0.26439005014222
707 => 0.26347721668495
708 => 0.26364520000965
709 => 0.27010479715596
710 => 0.27728919770014
711 => 0.28401833687491
712 => 0.29086350626674
713 => 0.28261138739338
714 => 0.27842147034942
715 => 0.28274439522988
716 => 0.28045059043874
717 => 0.29363147315533
718 => 0.29454408887648
719 => 0.30772401846523
720 => 0.32023334108178
721 => 0.31237645967412
722 => 0.31978514495983
723 => 0.3277982421353
724 => 0.34325680666495
725 => 0.33805090597022
726 => 0.33406326762493
727 => 0.33029496865675
728 => 0.33813620060891
729 => 0.34822382024863
730 => 0.35039659690101
731 => 0.35391732514242
801 => 0.35021570989074
802 => 0.35467389774184
803 => 0.37041325988324
804 => 0.36616034529744
805 => 0.36012052289547
806 => 0.37254523768169
807 => 0.37704169366297
808 => 0.40860017655186
809 => 0.44844406481499
810 => 0.43194843344498
811 => 0.42170906274291
812 => 0.42411555773902
813 => 0.43866519693198
814 => 0.44333807925829
815 => 0.43063557425624
816 => 0.43512231376687
817 => 0.45984468959697
818 => 0.47310745104104
819 => 0.45509483957349
820 => 0.40539875892505
821 => 0.3595767029713
822 => 0.37173077560431
823 => 0.37035288095251
824 => 0.39691398960276
825 => 0.3660589146911
826 => 0.36657843502036
827 => 0.39368879926879
828 => 0.38645621887662
829 => 0.37474036492021
830 => 0.35966224167072
831 => 0.33178893628647
901 => 0.307100772403
902 => 0.35551994712305
903 => 0.35343202426457
904 => 0.35040840255265
905 => 0.35713714548248
906 => 0.38981001116274
907 => 0.38905679585706
908 => 0.38426522437618
909 => 0.38789958911346
910 => 0.37410324320986
911 => 0.37765887568618
912 => 0.35956944452353
913 => 0.36774662289042
914 => 0.37471522795947
915 => 0.37611427859905
916 => 0.3792664111273
917 => 0.3523317837941
918 => 0.36442464070759
919 => 0.37152806119681
920 => 0.33943454900187
921 => 0.37089367564923
922 => 0.35186291185636
923 => 0.34540358479259
924 => 0.35410021773233
925 => 0.35071113141796
926 => 0.34779739401869
927 => 0.34617147848553
928 => 0.35255732590413
929 => 0.35225941848931
930 => 0.34181093267291
1001 => 0.32818130886019
1002 => 0.33275585798889
1003 => 0.33109388140381
1004 => 0.32507066386022
1005 => 0.32912958523854
1006 => 0.31125614966151
1007 => 0.28050583273158
1008 => 0.30082043400318
1009 => 0.30003834395225
1010 => 0.29964397868362
1011 => 0.31490984008488
1012 => 0.31344237975449
1013 => 0.31077892488543
1014 => 0.32502174742284
1015 => 0.31982292560369
1016 => 0.33584446945384
1017 => 0.34639729444203
1018 => 0.3437207566769
1019 => 0.35364573958453
1020 => 0.33286124636152
1021 => 0.33976502128107
1022 => 0.34118787972377
1023 => 0.32484599320358
1024 => 0.31368247441293
1025 => 0.31293799498303
1026 => 0.29358199182769
1027 => 0.30392181247708
1028 => 0.31302042675768
1029 => 0.30866289659826
1030 => 0.3072834327273
1031 => 0.31433081447483
1101 => 0.31487845639336
1102 => 0.30239216261447
1103 => 0.3049884584806
1104 => 0.31581544384064
1105 => 0.30471564622871
1106 => 0.2831505526104
1107 => 0.27780211123231
1108 => 0.27708853056114
1109 => 0.26258313335353
1110 => 0.27815951965976
1111 => 0.27136000961589
1112 => 0.29283958037384
1113 => 0.28057056475415
1114 => 0.28004167201255
1115 => 0.27924217306193
1116 => 0.26675677847493
1117 => 0.26949028640127
1118 => 0.27857688307341
1119 => 0.28181908313387
1120 => 0.281480895105
1121 => 0.27853235379254
1122 => 0.27988218090641
1123 => 0.27553391746169
1124 => 0.27399845513809
1125 => 0.2691521136826
1126 => 0.26202933057903
1127 => 0.26301979725614
1128 => 0.24890770015039
1129 => 0.24121868066149
1130 => 0.23909046140661
1201 => 0.23624451767458
1202 => 0.23941191832391
1203 => 0.24886772235238
1204 => 0.23746201653331
1205 => 0.21790773392376
1206 => 0.21908297962747
1207 => 0.22172340779013
1208 => 0.2168029873772
1209 => 0.21214622239595
1210 => 0.21619490173186
1211 => 0.20790949441064
1212 => 0.2227246596809
1213 => 0.22232395097936
1214 => 0.22784612842843
1215 => 0.23129925931383
1216 => 0.22334091058739
1217 => 0.22133940740436
1218 => 0.22247955458066
1219 => 0.20363546146556
1220 => 0.2263061639943
1221 => 0.22650222117119
1222 => 0.22482346059289
1223 => 0.23689490981004
1224 => 0.26236943283764
1225 => 0.25278489256434
1226 => 0.24907346887626
1227 => 0.24201804973217
1228 => 0.25141897683233
1229 => 0.25069713230834
1230 => 0.24743267761948
1231 => 0.24545832523794
]
'min_raw' => 0.18438369603586
'max_raw' => 0.47310745104104
'avg_raw' => 0.32874557353845
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.184383'
'max' => '$0.4731074'
'avg' => '$0.328745'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.11338413195176
'max_diff' => 0.27499665021539
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0057875935280355
]
1 => [
'year' => 2028
'avg' => 0.0099331906445151
]
2 => [
'year' => 2029
'avg' => 0.027135686557387
]
3 => [
'year' => 2030
'avg' => 0.020935141767347
]
4 => [
'year' => 2031
'avg' => 0.020560903679092
]
5 => [
'year' => 2032
'avg' => 0.036049734903976
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0057875935280355
'min' => '$0.005787'
'max_raw' => 0.036049734903976
'max' => '$0.036049'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.036049734903976
]
1 => [
'year' => 2033
'avg' => 0.092723625123552
]
2 => [
'year' => 2034
'avg' => 0.058772689692216
]
3 => [
'year' => 2035
'avg' => 0.069322522270511
]
4 => [
'year' => 2036
'avg' => 0.13455518245488
]
5 => [
'year' => 2037
'avg' => 0.32874557353845
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.036049734903976
'min' => '$0.036049'
'max_raw' => 0.32874557353845
'max' => '$0.328745'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.32874557353845
]
]
]
]
'prediction_2025_max_price' => '$0.009895'
'last_price' => 0.00959516
'sma_50day_nextmonth' => '$0.009535'
'sma_200day_nextmonth' => '$0.086652'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 feb. 2026'
'sma_50day_date_nextmonth' => '4 feb. 2026'
'daily_sma3' => '$0.009649'
'daily_sma3_action' => 'SELL'
'daily_sma5' => '$0.009847'
'daily_sma5_action' => 'SELL'
'daily_sma10' => '$0.010031'
'daily_sma10_action' => 'SELL'
'daily_sma21' => '$0.010651'
'daily_sma21_action' => 'SELL'
'daily_sma50' => '$0.012532'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.042392'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.111628'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.009694'
'daily_ema3_action' => 'SELL'
'daily_ema5' => '$0.0098067'
'daily_ema5_action' => 'SELL'
'daily_ema10' => '$0.010064'
'daily_ema10_action' => 'SELL'
'daily_ema21' => '$0.010766'
'daily_ema21_action' => 'SELL'
'daily_ema50' => '$0.019191'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.046935'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.087287'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.0808096'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.128873'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.0099029'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.0112042'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.023428'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.059045'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.122388'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.071349'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.035674'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '26.52'
'rsi_14_action' => 'BUY'
'stoch_rsi_14' => -17.97
'stoch_rsi_14_action' => 'BUY'
'momentum_10' => -0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.010036'
'vwma_10_action' => 'SELL'
'hma_9' => '0.009598'
'hma_9_action' => 'SELL'
'stochastic_fast_14' => 0
'stochastic_fast_14_action' => 'BUY'
'cci_20' => -111.21
'cci_20_action' => 'BUY'
'adx_14' => 40.15
'adx_14_action' => 'SELL'
'ao_5_34' => '-0.001286'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'NEUTRAL'
'williams_percent_r_14' => -100
'williams_percent_r_14_action' => 'BUY'
'ultimate_oscillator' => 12.33
'ultimate_oscillator_action' => 'BUY'
'ichimoku_cloud' => '-0.014369'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 29
'buy_signals' => 3
'sell_pct' => 90.63
'buy_pct' => 9.38
'overall_action' => 'bearish'
'overall_action_label' => 'Bajista'
'overall_action_dir' => -1
'last_updated' => 1767705951
'last_updated_date' => '6 de enero de 2026'
]
Predicción de precio de Seraph para 2026
La previsión del precio de Seraph para 2026 sugiere que el precio medio podría oscilar entre $0.003315 en el extremo inferior y $0.009895 en el extremo superior. En el mercado de criptomonedas, en comparación con el precio medio de hoy, Seraph podría potencialmente ganar 3.13% para 2026 si SERAPH alcanza el objetivo de precio previsto.
Predicción de precio de Seraph 2027-2032
La predicción del precio de SERAPH para 2027-2032 está actualmente dentro de un rango de precios de $0.005787 en el extremo inferior y $0.036049 en el extremo superior. Considerando la volatilidad de precios en el mercado, si Seraph alcanza el objetivo de precio superior, podría ganar 275.71% para 2032 en comparación con el precio de hoy.
| Predicción de Precio de Seraph | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.003191 | $0.005787 | $0.008383 |
| 2028 | $0.005759 | $0.009933 | $0.0141068 |
| 2029 | $0.012652 | $0.027135 | $0.041619 |
| 2030 | $0.010759 | $0.020935 | $0.03111 |
| 2031 | $0.012721 | $0.02056 | $0.02840016 |
| 2032 | $0.019418 | $0.036049 | $0.05268 |
Predicción de precio de Seraph 2032-2037
La predicción de precio de Seraph para 2032-2037 se estima actualmente entre $0.036049 en el extremo inferior y $0.328745 en el extremo superior. Comparado con el precio actual, Seraph podría potencialmente ganar 3326.16% para 2037 si alcanza el objetivo de precio superior. Tenga en cuenta que esta información es solo para fines generales y no debe considerarse como consejo de inversión a largo plazo.
| Predicción de Precio de Seraph | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.019418 | $0.036049 | $0.05268 |
| 2033 | $0.045124 | $0.092723 | $0.140322 |
| 2034 | $0.036278 | $0.058772 | $0.081267 |
| 2035 | $0.042891 | $0.069322 | $0.095753 |
| 2036 | $0.070999 | $0.134555 | $0.19811 |
| 2037 | $0.184383 | $0.328745 | $0.4731074 |
Seraph Histograma de precios potenciales
Pronóstico de precio de Seraph basado en análisis técnico
A fecha de 6 de enero de 2026, el sentimiento general de predicción de precio para Seraph es Bajista, con 3 indicadores técnicos mostrando señales alcistas y 29 indicando señales bajistas. La predicción de precio de SERAPH se actualizó por última vez el 6 de enero de 2026.
Promedios Móviles Simples de 50 y 200 días y el Índice de Fuerza Relativa de 14 días - RSI (14) de Seraph
Según nuestros indicadores técnicos, se proyecta que el SMA de 200 días de Seraph aumentar durante el próximo mes, alcanzando $0.086652 para el 4 feb. 2026. Se espera que el SMA de 50 días a corto plazo para Seraph alcance $0.009535 para el 4 feb. 2026.
El oscilador de momento del Índice de Fuerza Relativa (RSI) es una herramienta comúnmente utilizada para identificar si una criptomoneda está sobrevendida (por debajo de 30) o sobrecomprada (por encima de 70). Actualmente, el RSI se encuentra en 26.52, lo que sugiere que el mercado de SERAPH está en un estado BUY.
Promedios Móviles y Osciladores Populares de SERAPH para Sáb, 19 de Oct de 2024
Los promedios móviles (MA) son indicadores ampliamente utilizados en los mercados financieros, diseñados para suavizar los movimientos de precios durante un período establecido. Como indicadores rezagados, se basan en datos históricos de precios. La tabla a continuación resalta dos tipos: el promedio móvil simple (SMA) y el promedio móvil exponencial (EMA).
Promedio Móvil Simple Diario (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 3 | $0.009649 | SELL |
| SMA 5 | $0.009847 | SELL |
| SMA 10 | $0.010031 | SELL |
| SMA 21 | $0.010651 | SELL |
| SMA 50 | $0.012532 | SELL |
| SMA 100 | $0.042392 | SELL |
| SMA 200 | $0.111628 | SELL |
Promedio Móvil Exponencial Diario (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 3 | $0.009694 | SELL |
| EMA 5 | $0.0098067 | SELL |
| EMA 10 | $0.010064 | SELL |
| EMA 21 | $0.010766 | SELL |
| EMA 50 | $0.019191 | SELL |
| EMA 100 | $0.046935 | SELL |
| EMA 200 | $0.087287 | SELL |
Promedio Móvil Simple Semanal (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 21 | $0.0808096 | SELL |
| SMA 50 | $0.128873 | SELL |
| SMA 100 | — | — |
| SMA 200 | — | — |
Promedio Móvil Exponencial Semanal (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 21 | $0.059045 | SELL |
| EMA 50 | $0.122388 | SELL |
| EMA 100 | $0.071349 | SELL |
| EMA 200 | $0.035674 | SELL |
Osciladores de Seraph
Un oscilador es una herramienta de análisis técnico que establece límites altos y bajos entre dos extremos, creando un indicador de tendencia que fluctúa dentro de estos límites. Los traders utilizan este indicador para identificar condiciones de sobrecompra o sobreventa a corto plazo.
| Período | Valor | Acción |
|---|---|---|
| RSI (14) | 26.52 | BUY |
| Stoch RSI (14) | -17.97 | BUY |
| Estocástico Rápido (14) | 0 | BUY |
| Índice de Canal de Materias Primas (20) | -111.21 | BUY |
| Índice Direccional Medio (14) | 40.15 | SELL |
| Oscilador Asombroso (5, 34) | -0.001286 | NEUTRAL |
| Momentum (10) | -0 | BUY |
| MACD (12, 26) | 0 | NEUTRAL |
| Rango Percentil de Williams (14) | -100 | BUY |
| Oscilador Ultimate (7, 14, 28) | 12.33 | BUY |
| VWMA (10) | 0.010036 | SELL |
| Promedio Móvil de Hull (9) | 0.009598 | SELL |
| Nube Ichimoku B/L (9, 26, 52, 26) | -0.014369 | SELL |
Predicción de precios de Seraph basada en flujos de dinero globales
Definiciones de flujos de dinero globales utilizadas para la predicción de precios de Seraph
M0: El total de toda la moneda física, además de cuentas en el banco central que pueden cambiarse por moneda física.
M1: Medir M0 más la cantidad en cuentas a la vista, incluyendo cuentas "de cheques" o "corrientes".
M2: Medir M1 más la mayoría de cuentas de ahorro, cuentas del mercado monetario, y cuentas de certificados de depósito (CD) inferiores a 100 000 $.
Predicciones de precios de Seraph por parte de empresas de Internet o nichos tecnológicos
| Comparación | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook acción | $0.013482 | $0.018945 | $0.026621 | $0.0374079 | $0.052564 | $0.073861 |
| Amazon.com acción | $0.02002 | $0.041774 | $0.087165 | $0.181875 | $0.379494 | $0.791838 |
| Apple acción | $0.01361 | $0.0193047 | $0.027382 | $0.038839 | $0.055091 | $0.078142 |
| Netflix acción | $0.015139 | $0.023888 | $0.037691 | $0.059471 | $0.093836 | $0.148059 |
| Google acción | $0.012425 | $0.016091 | $0.020838 | $0.026985 | $0.034945 | $0.045254 |
| Tesla acción | $0.021751 | $0.049309 | $0.111779 | $0.253396 | $0.57443 | $1.30 |
| Kodak acción | $0.007195 | $0.005395 | $0.004046 | $0.003034 | $0.002275 | $0.0017062 |
| Nokia acción | $0.006356 | $0.00421 | $0.002789 | $0.001847 | $0.001224 | $0.00081 |
Este cálculo muestra cuánto puede costar la criptomoneda si asumimos que su capitalización se comportará como la capitalización de algunas empresas de Internet o nichos tecnológicos. Si extrapola los datos, puede obtener una imagen potencial del precio futuro en 2024, 2025, 2026, 2027, 2028, 2029 y 2030.
Resumen de pronósticos y predicciones de Seraph
Podría preguntarse cosas como: "¿Debo invertir en Seraph ahora?", "¿Debería comprar SERAPH hoy?", "¿Será Seraph una buena o mala inversión a corto plazo?, ¿Lo será a largo plazo?".
Actualizamos el pronóstico de Seraph regularmente con valores actualizados. Aquí hay algunas predicciones similares. Hacemos un pronóstico de precios futuros para una gran cantidad de monedas digitales, como Seraph, con métodos de análisis técnico.
Si está tratando de encontrar criptomonedas que ofrezcan un buen rendimiento, debería explorar el máximo de fuentes de información disponibles acerca de Seraph a fin de tomar una decisión responsable sobre la inversión por sus propios medios.
El precio de Seraph es de $0.009595 USD hoy, pero dicho precio puede subir y bajar, y su inversión puede perderse porque estos son activos de criptomonedas conllevan un alto riesgo
Pronóstico a corto plazo de Seraph
basado en el historial de precios de las últimas 4 horas
Pronóstico a largo plazo de Seraph
basado en el historial de precios del último mes
Predicción de precios de Seraph basada en el patrón de crecimiento del Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si Seraph ofrece un 1 % del crecimiento medio anterior anual del Bitcoin | $0.009844 | $0.01010046 | $0.010363 | $0.010632 |
| Si Seraph ofrece un 2 % del crecimiento medio anterior anual del Bitcoin | $0.010093 | $0.010618 | $0.01117 | $0.011751 |
| Si Seraph ofrece un 5 % del crecimiento medio anterior anual del Bitcoin | $0.010842 | $0.012251 | $0.013843 | $0.015642 |
| Si Seraph ofrece un 10 % del crecimiento medio anterior anual del Bitcoin | $0.012089 | $0.015231 | $0.01919 | $0.024179 |
| Si Seraph ofrece un 20 % del crecimiento medio anterior anual del Bitcoin | $0.014583 | $0.022164 | $0.033687 | $0.05120017 |
| Si Seraph ofrece un 50 % del crecimiento medio anterior anual del Bitcoin | $0.022065 | $0.050743 | $0.116692 | $0.268353 |
| Si Seraph ofrece un 100 % del crecimiento medio anterior anual del Bitcoin | $0.034536 | $0.1243063 | $0.447418 | $1.61 |
Cuadro de preguntas
¿Es SERAPH una buena inversión?
La decisión de adquirir Seraph depende completamente de su tolerancia individual al riesgo. Como puede discernir, el valor de Seraph ha experimentado una caída de -1.0952% durante las últimas 24 horas, y Seraph ha sufrido un declive de durante el período previo de 30 días. Por lo tanto, la determinación de si invertir o no en Seraph dependerá de si dicha inversión se alinea con sus aspiraciones comerciales.
¿Puede Seraph subir?
Parece que el valor medio de Seraph podría potencialmente aumentar hasta $0.009895 para el final de este año. Mirando las perspectivas de Seraph en un horizonte de cinco años más extendido, la moneda digital podría potencialmente crecer hasta $0.03111. Sin embargo, dada la imprevisibilidad del mercado, es vital realizar una investigación exhaustiva antes de invertir cualquier fondo en un proyecto, red o activo en particular.
¿Cuál será el precio de Seraph la próxima semana?
Basado en nuestro nuevo pronóstico experimental de Seraph, el precio de Seraph aumentará en un 0.86% durante la próxima semana y alcanzará $0.009677 para el 13 de enero de 2026.
¿Cuál será el precio de Seraph el próximo mes?
Basado en nuestro nuevo pronóstico experimental de Seraph, el precio de Seraph disminuirá en un -11.62% durante el próximo mes y alcanzará $0.00848 para el 5 de febrero de 2026.
¿Hasta qué punto puede subir el precio de Seraph este año en 2026?
Según nuestra predicción más reciente sobre el valor de Seraph en 2026, se anticipa que SERAPH fluctúe dentro del rango de $0.003315 y $0.009895. Sin embargo, es crucial tener en cuenta que el mercado de criptomonedas es excepcionalmente inestable, y esta predicción de precios proyectada de Seraph no considera fluctuaciones de precios repentinas y extremas.
¿Dónde estará Seraph en 5 años?
El futuro de Seraph parece estar en una tendencia alcista, con un precio máximo de $0.03111 proyectada después de un período de cinco años. Basado en el pronóstico de Seraph para 2030, el valor de Seraph podría potencialmente alcanzar su punto más alto de aproximadamente $0.03111, mientras que su punto más bajo se anticipa que esté alrededor de $0.010759.
¿Cuánto será Seraph en 2026?
Basado en nuestra nueva simulación experimental de predicción de precios de Seraph, se espera que el valor de SERAPH en 2026 crezca en un 3.13% hasta $0.009895 si ocurre lo mejor. El precio estará entre $0.009895 y $0.003315 durante 2026.
¿Cuánto será Seraph en 2027?
Según nuestra última simulación experimental para la predicción de precios de Seraph, el valor de SERAPH podría disminuir en un -12.62% hasta $0.008383 en 2027, asumiendo las condiciones más favorables. Se proyecta que el precio fluctúe entre $0.008383 y $0.003191 a lo largo del año.
¿Cuánto será Seraph en 2028?
Nuestro nuevo modelo experimental de predicción de precios de Seraph sugiere que el valor de SERAPH en 2028 podría aumentar en un 47.02% , alcanzando $0.0141068 en el mejor escenario. Se espera que el precio oscile entre $0.0141068 y $0.005759 durante el año.
¿Cuánto será Seraph en 2029?
Basado en nuestro modelo de pronóstico experimental, el valor de Seraph podría experimentar un 333.75% crecimiento en 2029, potencialmente alcanzando $0.041619 bajo condiciones óptimas. El rango de precios previsto para 2029 se encuentra entre $0.041619 y $0.012652.
¿Cuánto será Seraph en 2030?
Usando nuestra nueva simulación experimental para las predicciones de precios de Seraph, se espera que el valor de SERAPH en 2030 aumente en un 224.23% , alcanzando $0.03111 en el mejor escenario. Se pronostica que el precio oscile entre $0.03111 y $0.010759 durante el transcurso de 2030.
¿Cuánto será Seraph en 2031?
Nuestra simulación experimental indica que el precio de Seraph podría crecer en un 195.98% en 2031, potencialmente alcanzando $0.02840016 bajo condiciones ideales. Es probable que el precio fluctúe entre $0.02840016 y $0.012721 durante el año.
¿Cuánto será Seraph en 2032?
Basado en los hallazgos de nuestra última predicción experimental de precios de Seraph, SERAPH podría experimentar un 449.04% aumento en valor, alcanzando $0.05268 si se desarrolla el escenario más positivo en 2032. Se espera que el precio se mantenga dentro de un rango de $0.05268 y $0.019418 a lo largo del año.
¿Cuánto será Seraph en 2033?
Según nuestra predicción experimental de precios de Seraph, se anticipa que el valor de SERAPH aumente en un 1362.43% en 2033, con el precio potencial más alto siendo $0.140322. A lo largo del año, el precio de SERAPH podría oscilar entre $0.140322 y $0.045124.
¿Cuánto será Seraph en 2034?
Los resultados de nuestra nueva simulación de predicción de precios de Seraph sugieren que SERAPH podría aumentar en un 746.96% en 2034, alcanzando potencialmente $0.081267 bajo las mejores circunstancias. El rango de precios previsto para el año está entre $0.081267 y $0.036278.
¿Cuánto será Seraph en 2035?
Basado en nuestra predicción experimental para el precio de Seraph, SERAPH podría crecer en un 897.93% , con el valor potencialmente alcanzando $0.095753 en 2035. El rango de precios esperado para el año está entre $0.095753 y $0.042891.
¿Cuánto será Seraph en 2036?
Nuestra reciente simulación de predicción de precios de Seraph sugiere que el valor de SERAPH podría aumentar en un 1964.7% en 2036, posiblemente alcanzando $0.19811 si las condiciones son óptimas. El rango de precios esperado para 2036 está entre $0.19811 y $0.070999.
¿Cuánto será Seraph en 2037?
Según la simulación experimental, el valor de Seraph podría aumentar en un 4830.69% en 2037, con un máximo de $0.4731074 bajo condiciones favorables. Se espera que el precio caiga entre $0.4731074 y $0.184383 durante el transcurso del año.
Predicciones relacionadas
¿Cómo leer y predecir los movimientos de precio de Seraph?
Los traders de Seraph utilizan indicadores y patrones de gráficos para predecir la dirección del mercado. También identifican niveles clave de soporte y resistencia para estimar cuándo una tendencia bajista podría desacelerar o una tendencia alcista podría estancarse.
Indicadores de predicción de precio de Seraph
Las medias móviles son herramientas populares para la predicción de precios de Seraph. Una media móvil simple (SMA) calcula el precio de cierre promedio de SERAPH durante un período específico, como una SMA de 12 días. Una media móvil exponencial (EMA) da más peso a los precios recientes, reaccionando más rápido a los cambios de precio.
Las medias móviles comúnmente utilizadas en el mercado de criptomonedas incluyen las de 50 días, 100 días y 200 días, que ayudan a identificar niveles clave de resistencia y soporte. Un movimiento de precio de SERAPH por encima de estas medias se considera alcista, mientras que una caída por debajo indica debilidad.
Los traders también utilizan RSI y niveles de retroceso de Fibonacci para evaluar la dirección futura de SERAPH.
¿Cómo leer gráficos de Seraph y predecir movimientos de precio?
La mayoría de los traders prefieren gráficos de velas sobre gráficos lineales simples porque proporcionan información más detallada. Las velas pueden representar la acción del precio de Seraph en diferentes marcos de tiempo, como 5 minutos para tendencias a corto plazo y semanal para tendencias a largo plazo. Las opciones populares incluyen gráficos de 1 hora, 4 horas y 1 día.
Por ejemplo, un gráfico de velas de 1 hora muestra los precios de apertura, cierre, máximo y mínimo de SERAPH dentro de cada hora. El color de la vela es crucial: el verde indica que el precio cerró más alto de lo que abrió, mientras que el rojo significa lo contrario. Algunos gráficos usan velas huecas y llenas para transmitir la misma información.
¿Qué afecta el precio de Seraph?
La acción del precio de Seraph está impulsada por la oferta y la demanda, influenciada por factores como reducciones a la mitad de recompensas de bloque, hard forks y actualizaciones de protocolo. Los eventos del mundo real, como regulaciones, adopción por empresas y gobiernos y hacks de exchanges de criptomonedas, también impactan el precio de SERAPH. La capitalización de mercado de Seraph puede cambiar rápidamente.
Los traders a menudo monitorean la actividad de las "ballenas" de SERAPH, grandes poseedores de Seraph, ya que sus acciones pueden influir significativamente en los movimientos de precios en el relativamente pequeño mercado de Seraph.
Patrones de predicción de precios alcistas y bajistas
Los traders a menudo identifican patrones de velas para obtener una ventaja en las predicciones de precios de criptomonedas. Ciertas formaciones indican tendencias alcistas, mientras que otras sugieren movimientos bajistas.
Patrones de velas alcistas comúnmente seguidos:
- Martillo
- Envolvente Alcista
- Línea Penetrante
- Estrella de la Mañana
- Tres Soldados Blancos
Patrones de velas bajistas comunes:
- Harami Bajista
- Cubierta de Nube Oscura
- Estrella de la Tarde
- Estrella Fugaz
- Hombre Colgado


