Predicción del precio de Seraph - Pronóstico de SERAPH
Predicción de precio de Seraph hasta $0.009936 para el año 2026
| Año | Precio min. | Precio max. |
|---|---|---|
| 2026 | $0.003328 | $0.009936 |
| 2027 | $0.0032046 | $0.008418 |
| 2028 | $0.005783 | $0.014165 |
| 2029 | $0.0127045 | $0.041792 |
| 2030 | $0.0108046 | $0.031239 |
| 2031 | $0.012774 | $0.028518 |
| 2032 | $0.019499 | $0.052899 |
| 2033 | $0.045312 | $0.1409056 |
| 2034 | $0.036428 | $0.081605 |
| 2035 | $0.04307 | $0.096151 |
Calculadora de ganancias de inversión
Si abres una posición corta de $10,000.00 en Seraph hoy y la cierras el Apr 06, 2026, nuestra previsión indica que podrías obtener una ganancia de alrededor de $3,955.39, equivalente a un ROI del 39.55% en los próximos 90 días.
Predicción del precio a largo plazo de Seraph para 2027, 2028, 2029, 2030, 2031, 2032 y 2037
[
'name' => 'Seraph'
'name_with_ticker' => 'Seraph <small>SERAPH</small>'
'name_lang' => 'Seraph'
'name_lang_with_ticker' => 'Seraph <small>SERAPH</small>'
'name_with_lang' => 'Seraph'
'name_with_lang_with_ticker' => 'Seraph <small>SERAPH</small>'
'image' => '/uploads/coins/seraph.jpg?1736294429'
'price_for_sd' => 0.009635
'ticker' => 'SERAPH'
'marketcap' => '$3.07M'
'low24h' => '$0.009631'
'high24h' => '$0.00987'
'volume24h' => '$1.6M'
'current_supply' => '318.54M'
'max_supply' => '1B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.009635'
'change_24h_pct' => '-2.2698%'
'ath_price' => '$0.6981'
'ath_days' => 365
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '6 ene. 2025'
'ath_pct' => '-98.62%'
'fdv' => '$9.64M'
'new_prediction' => true
'change_24h_pct_is_increased' => false
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.475073'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.009717'
'next_week_prediction_price_date' => '13 de enero de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.008515'
'next_month_prediction_price_date' => '5 de febrero de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.003328'
'current_year_max_price_prediction' => '$0.009936'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.0108046'
'grand_prediction_max_price' => '$0.031239'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0098176087504742
107 => 0.0098542641377565
108 => 0.009936850596974
109 => 0.009231158345188
110 => 0.0095479934482039
111 => 0.0097341043877913
112 => 0.0088932483919615
113 => 0.0097174833683119
114 => 0.009218873813108
115 => 0.0090496382412076
116 => 0.0092774916436803
117 => 0.009188696951142
118 => 0.0091123564886968
119 => 0.0090697571989568
120 => 0.0092370675904704
121 => 0.0092292623607271
122 => 0.0089555100866632
123 => 0.008598411404717
124 => 0.0087182654437428
125 => 0.0086747213477272
126 => 0.0085169119264662
127 => 0.0086232564224139
128 => 0.0081549690819779
129 => 0.0073493050522156
130 => 0.0078815513884332
131 => 0.0078610604834614
201 => 0.0078507280399861
202 => 0.0082506964514454
203 => 0.0082122487175248
204 => 0.0081424657039777
205 => 0.0085156303066979
206 => 0.0083794202069328
207 => 0.008799187639273
208 => 0.0090756736190676
209 => 0.0090055478312072
210 => 0.0092655842315767
211 => 0.0087210266387309
212 => 0.0089019068272158
213 => 0.0089391859833734
214 => 0.0085110255134251
215 => 0.0082185392422854
216 => 0.0081990337425879
217 => 0.0076919028555225
218 => 0.0079628080819754
219 => 0.0082011934704339
220 => 0.0080870253688157
221 => 0.0080508831585184
222 => 0.0082355258726383
223 => 0.0082498741928833
224 => 0.0079227309707301
225 => 0.0079907544058942
226 => 0.008274423438484
227 => 0.0079836066740927
228 => 0.0074185972055294
301 => 0.0072784670454586
302 => 0.0072597710989939
303 => 0.0068797269910187
304 => 0.0072878312128129
305 => 0.0071096827834866
306 => 0.0076724515371826
307 => 0.0073510010432608
308 => 0.0073371439549428
309 => 0.0073161969335572
310 => 0.0069890772703987
311 => 0.0070606956870913
312 => 0.0072987662119703
313 => 0.0073837124573036
314 => 0.0073748518679713
315 => 0.0072975995365195
316 => 0.0073329652582622
317 => 0.0072190399462948
318 => 0.0071788105474887
319 => 0.007051835498889
320 => 0.0068652172551999
321 => 0.0068911676665811
322 => 0.0065214280945133
323 => 0.0063199743520864
324 => 0.0062642146113003
325 => 0.0061896503555611
326 => 0.006272636842394
327 => 0.0065203806687609
328 => 0.0062215490523776
329 => 0.0057092232066889
330 => 0.0057400148629756
331 => 0.0058091945725269
401 => 0.0056802786414476
402 => 0.005558270531775
403 => 0.0056643466843045
404 => 0.0054472674696139
405 => 0.005835427558514
406 => 0.0058249289159153
407 => 0.0059696109933984
408 => 0.0060600836656237
409 => 0.0058515734470199
410 => 0.0057991336909126
411 => 0.0058290057592454
412 => 0.0053352870105597
413 => 0.0059292636384583
414 => 0.0059344003730018
415 => 0.0058904165332385
416 => 0.0062066907506235
417 => 0.0068741279977081
418 => 0.0066230112577538
419 => 0.0065257712659998
420 => 0.0063409179705936
421 => 0.0065872240112198
422 => 0.0065683115502725
423 => 0.006482782229531
424 => 0.0064310538294787
425 => 0.0065263649926543
426 => 0.0064192437215994
427 => 0.0064000017978222
428 => 0.0062834166751523
429 => 0.0062418010906443
430 => 0.0062109905686387
501 => 0.0061770712112899
502 => 0.0062518888614241
503 => 0.0060823422231384
504 => 0.0058778855982276
505 => 0.0058608872421176
506 => 0.0059078211978481
507 => 0.0058870564162594
508 => 0.0058607878283322
509 => 0.0058106339401548
510 => 0.0057957543529009
511 => 0.0058441057929267
512 => 0.0057895198362016
513 => 0.0058700643888004
514 => 0.0058481607272269
515 => 0.0057258086542175
516 => 0.0055733126707086
517 => 0.0055719551365842
518 => 0.0055391001270807
519 => 0.0054972543326943
520 => 0.0054856137899981
521 => 0.0056554132466089
522 => 0.0060068930401232
523 => 0.0059378891464577
524 => 0.0059877515314345
525 => 0.0062330251149039
526 => 0.0063109902114549
527 => 0.0062556524326275
528 => 0.0061799026678831
529 => 0.0061832352730953
530 => 0.0064420951502402
531 => 0.0064582399232537
601 => 0.0064990325561578
602 => 0.0065514626174362
603 => 0.0062645814987772
604 => 0.0061697231982052
605 => 0.0061247740728561
606 => 0.0059863481642814
607 => 0.0061356286389387
608 => 0.0060486492991832
609 => 0.0060603857837535
610 => 0.0060527423827804
611 => 0.0060569161965562
612 => 0.0058353190598584
613 => 0.0059160574096685
614 => 0.0057818142436488
615 => 0.005602077713851
616 => 0.0056014751739794
617 => 0.0056454654350148
618 => 0.0056192983064118
619 => 0.0055488832361596
620 => 0.0055588853645392
621 => 0.0054712561952001
622 => 0.0055695251322743
623 => 0.0055723431337664
624 => 0.0055345042402477
625 => 0.0056859010963105
626 => 0.0057479285117676
627 => 0.0057230221414659
628 => 0.0057461810144319
629 => 0.0059407565697734
630 => 0.0059724808752207
701 => 0.0059865707161104
702 => 0.0059676921958644
703 => 0.0057497374983962
704 => 0.0057594047160438
705 => 0.005688473087245
706 => 0.0056285433355009
707 => 0.0056309402112806
708 => 0.0056617518939994
709 => 0.005796308319514
710 => 0.0060794743844748
711 => 0.0060902203296483
712 => 0.00610324472868
713 => 0.0060502679522796
714 => 0.0060342896495978
715 => 0.006055369155185
716 => 0.0061617114410199
717 => 0.0064352526718362
718 => 0.0063385649316612
719 => 0.0062599562938646
720 => 0.0063289172619488
721 => 0.0063183012614461
722 => 0.0062286915336386
723 => 0.0062261764870335
724 => 0.006054186769408
725 => 0.0059906060868182
726 => 0.0059374733095146
727 => 0.0058794537037653
728 => 0.0058450577366423
729 => 0.0058979055748307
730 => 0.0059099925007016
731 => 0.0057944397788806
801 => 0.0057786903698783
802 => 0.0058730532168961
803 => 0.0058315276461251
804 => 0.0058742377254477
805 => 0.0058841468302108
806 => 0.0058825512361179
807 => 0.0058391937710516
808 => 0.0058668285263466
809 => 0.0058014640917567
810 => 0.0057303900865608
811 => 0.0056850492993128
812 => 0.0056454834488563
813 => 0.0056674368822703
814 => 0.0055891769006878
815 => 0.0055641399575174
816 => 0.0058574664930543
817 => 0.0060741499586471
818 => 0.0060709992952414
819 => 0.0060518204420435
820 => 0.0060233245564797
821 => 0.006159626789501
822 => 0.0061121418169655
823 => 0.0061466911019873
824 => 0.0061554853450542
825 => 0.0061821028701614
826 => 0.0061916163475336
827 => 0.0061628600113799
828 => 0.0060663502349574
829 => 0.0058258570479867
830 => 0.0057139068202529
831 => 0.0056769613804223
901 => 0.0056783042769907
902 => 0.0056412611946782
903 => 0.0056521720425737
904 => 0.0056374668470488
905 => 0.0056096187642935
906 => 0.005665717341634
907 => 0.0056721821800781
908 => 0.0056590881017987
909 => 0.0056621722312461
910 => 0.005553758855647
911 => 0.0055620012891323
912 => 0.0055161063720882
913 => 0.0055075016284139
914 => 0.005391483274654
915 => 0.0051859399438391
916 => 0.0052998309016845
917 => 0.0051622666400994
918 => 0.0051101689697984
919 => 0.0053567912381532
920 => 0.0053320372026473
921 => 0.0052896690541818
922 => 0.0052269977323055
923 => 0.0052037523293942
924 => 0.0050625206199051
925 => 0.0050541758970666
926 => 0.0051241741458663
927 => 0.0050918723625379
928 => 0.0050465084251029
929 => 0.0048822048421817
930 => 0.0046974732159315
1001 => 0.0047030491025463
1002 => 0.0047618087958025
1003 => 0.0049326605287688
1004 => 0.0048659058009339
1005 => 0.0048174744799674
1006 => 0.0048084047493905
1007 => 0.004921931416327
1008 => 0.0050825954346143
1009 => 0.0051579753973399
1010 => 0.0050832761436023
1011 => 0.0049974656630021
1012 => 0.0050026885493487
1013 => 0.0050374340723187
1014 => 0.0050410853355076
1015 => 0.0049852315340968
1016 => 0.0050009540520284
1017 => 0.0049770701095931
1018 => 0.0048304943989539
1019 => 0.004827843309145
1020 => 0.0047918712659015
1021 => 0.0047907820467283
1022 => 0.0047295846275244
1023 => 0.00472102268554
1024 => 0.0045995114952928
1025 => 0.0046794905286833
1026 => 0.0046258447921727
1027 => 0.0045449880135012
1028 => 0.0045310482743815
1029 => 0.0045306292289908
1030 => 0.0046136510614415
1031 => 0.0046785203702334
1101 => 0.004626777982727
1102 => 0.0046149972440758
1103 => 0.0047407847119447
1104 => 0.0047247771100802
1105 => 0.0047109146301034
1106 => 0.005068209733955
1107 => 0.0047853827791719
1108 => 0.0046620540836882
1109 => 0.0045094114035431
1110 => 0.0045591126298895
1111 => 0.0045695854085437
1112 => 0.0042025072787058
1113 => 0.0040535837271473
1114 => 0.0040024787763181
1115 => 0.0039730671545979
1116 => 0.0039864703999437
1117 => 0.0038524217365506
1118 => 0.003942504655311
1119 => 0.0038264298436641
1120 => 0.0038069695237514
1121 => 0.004014525665886
1122 => 0.0040434058905386
1123 => 0.003920193879788
1124 => 0.0039993159369025
1125 => 0.0039706251791139
1126 => 0.0038284196131549
1127 => 0.0038229884065286
1128 => 0.0037516346522977
1129 => 0.0036399798437357
1130 => 0.0035889506001244
1201 => 0.0035623741269954
1202 => 0.0035733400977736
1203 => 0.0035677953673839
1204 => 0.0035316122509911
1205 => 0.0035698693412611
1206 => 0.0034721382845424
1207 => 0.0034332209902844
1208 => 0.0034156429513424
1209 => 0.0033289010133148
1210 => 0.0034669460110316
1211 => 0.0034941426146269
1212 => 0.0035213928039327
1213 => 0.0037585870973453
1214 => 0.0037467375407506
1215 => 0.0038538517613993
1216 => 0.0038496894997553
1217 => 0.0038191387888909
1218 => 0.0036902503651023
1219 => 0.0037416229936092
1220 => 0.003583506028144
1221 => 0.0037019780095791
1222 => 0.0036479123447603
1223 => 0.0036836983539187
1224 => 0.0036193518827576
1225 => 0.0036549638766988
1226 => 0.0035005919382668
1227 => 0.0033564415942308
1228 => 0.0034144519006817
1229 => 0.0034775157380772
1230 => 0.0036142542059174
1231 => 0.0035328139025396
]
'min_raw' => 0.0033289010133148
'max_raw' => 0.009936850596974
'avg_raw' => 0.0066328758051444
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.003328'
'max' => '$0.009936'
'avg' => '$0.006632'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0063061289866852
'max_diff' => 0.000301820596974
'year' => 2026
]
1 => [
'items' => [
101 => 0.0035621029152331
102 => 0.0034639896256315
103 => 0.0032615538845078
104 => 0.0032626996488181
105 => 0.0032315593203485
106 => 0.0032046495299884
107 => 0.003542168301061
108 => 0.0035001925064959
109 => 0.0034333095715127
110 => 0.0035228350378099
111 => 0.0035465069920591
112 => 0.0035471808993178
113 => 0.0036124963685415
114 => 0.0036473552461746
115 => 0.0036534992744445
116 => 0.0037562745765022
117 => 0.0037907235021129
118 => 0.003932613751309
119 => 0.0036443977139529
120 => 0.0036384620943294
121 => 0.0035240948447146
122 => 0.0034515613269342
123 => 0.0035290612767321
124 => 0.003597715652455
125 => 0.0035262281275416
126 => 0.0035355628891113
127 => 0.0034395967276604
128 => 0.0034739001147515
129 => 0.0035034468128796
130 => 0.0034871328628479
131 => 0.0034627100900464
201 => 0.0035920867765699
202 => 0.0035847868368849
203 => 0.0037052653817327
204 => 0.003799187022945
205 => 0.0039675113944991
206 => 0.0037918561378345
207 => 0.0037854545621152
208 => 0.0038480309916161
209 => 0.0037907139219876
210 => 0.0038269363314748
211 => 0.0039616754043344
212 => 0.0039645222286249
213 => 0.0039168342538335
214 => 0.0039139324362336
215 => 0.0039230914334415
216 => 0.0039767359661646
217 => 0.0039579909181012
218 => 0.0039796831622868
219 => 0.0040068096458042
220 => 0.0041190162830232
221 => 0.0041460689233829
222 => 0.0040803450324947
223 => 0.0040862791639627
224 => 0.0040616966246093
225 => 0.0040379501996123
226 => 0.0040913286951187
227 => 0.0041888789448137
228 => 0.0041882720897732
301 => 0.0042109018515965
302 => 0.0042250000057374
303 => 0.0041644804076852
304 => 0.0041250843747205
305 => 0.0041401913205939
306 => 0.0041643476560319
307 => 0.0041323577465823
308 => 0.003934901206292
309 => 0.0039947969070434
310 => 0.0039848273336882
311 => 0.0039706294488889
312 => 0.0040308550391543
313 => 0.0040250461340519
314 => 0.0038510468737568
315 => 0.0038621857418616
316 => 0.0038517242652193
317 => 0.0038855274364674
318 => 0.0037888884398076
319 => 0.0038186139443066
320 => 0.0038372575020691
321 => 0.0038482387008177
322 => 0.0038879103205763
323 => 0.0038832553138858
324 => 0.0038876209588245
325 => 0.0039464434980072
326 => 0.0042439477157354
327 => 0.0042601402139003
328 => 0.0041804024308084
329 => 0.0042122561023954
330 => 0.0041511040185806
331 => 0.0041921558221288
401 => 0.0042202424235138
402 => 0.0040933244725981
403 => 0.0040858092152355
404 => 0.0040244047350178
405 => 0.0040574000245593
406 => 0.0040049021464535
407 => 0.0040177832894429
408 => 0.0039817664906868
409 => 0.0040465895575746
410 => 0.0041190718188413
411 => 0.0041373837004485
412 => 0.0040892130237007
413 => 0.0040543342791329
414 => 0.0039930986934447
415 => 0.0040949348371683
416 => 0.0041247148289933
417 => 0.0040947784155489
418 => 0.0040878414944303
419 => 0.0040746960414453
420 => 0.0040906303644237
421 => 0.0041245526407622
422 => 0.004108555521687
423 => 0.0041191219006692
424 => 0.004078853759992
425 => 0.0041645004421904
426 => 0.0043005279855179
427 => 0.0043009653363124
428 => 0.0042849681310068
429 => 0.0042784224192604
430 => 0.0042948365226955
501 => 0.0043037405004673
502 => 0.0043568207011448
503 => 0.0044137778712802
504 => 0.004679572131942
505 => 0.0046049381671411
506 => 0.0048407666473715
507 => 0.0050272763567382
508 => 0.0050832024634961
509 => 0.0050317530768055
510 => 0.0048557475041781
511 => 0.0048471118311061
512 => 0.0051101384642474
513 => 0.005035821393002
514 => 0.0050269816138523
515 => 0.0049329412987423
516 => 0.0049885307720919
517 => 0.004976372538822
518 => 0.0049571801728042
519 => 0.0050632410155591
520 => 0.0052617774450794
521 => 0.0052308336806758
522 => 0.0052077355959885
523 => 0.0051065265126398
524 => 0.0051674769866829
525 => 0.0051457736903056
526 => 0.0052390248247946
527 => 0.0051837849184889
528 => 0.0050352583680944
529 => 0.0050589117107947
530 => 0.0050553365556294
531 => 0.0051289129955914
601 => 0.0051068271745943
602 => 0.005051023944615
603 => 0.005261098869147
604 => 0.005247457772046
605 => 0.0052667977289463
606 => 0.0052753117760818
607 => 0.005403180680709
608 => 0.0054555644795862
609 => 0.0054674565190388
610 => 0.0055172170764638
611 => 0.0054662184310393
612 => 0.0056702493741553
613 => 0.0058059180457918
614 => 0.0059635041893436
615 => 0.0061937799002351
616 => 0.0062803656976997
617 => 0.0062647247483872
618 => 0.0064393171642847
619 => 0.0067530558546813
620 => 0.0063281403078488
621 => 0.006775577410439
622 => 0.0066339239896687
623 => 0.0062980662772585
624 => 0.0062764410000816
625 => 0.006503887742314
626 => 0.0070083427256477
627 => 0.0068819824738037
628 => 0.0070085494057524
629 => 0.0068609023566358
630 => 0.0068535704361801
701 => 0.0070013785181312
702 => 0.007346740158209
703 => 0.0071826717886956
704 => 0.0069474395497833
705 => 0.0071211313743771
706 => 0.0069706634414944
707 => 0.0066316170753872
708 => 0.0068818858485005
709 => 0.0067145382471639
710 => 0.0067633791739217
711 => 0.0071151189408542
712 => 0.0070727966815089
713 => 0.0071275656040374
714 => 0.0070308998893269
715 => 0.0069405988690031
716 => 0.006772045308727
717 => 0.0067221449091194
718 => 0.0067359355843426
719 => 0.0067221380751456
720 => 0.0066278339072583
721 => 0.0066074689311818
722 => 0.0065735264121776
723 => 0.0065840466181124
724 => 0.0065202247521503
725 => 0.0066406697994912
726 => 0.0066630254616357
727 => 0.006750675322807
728 => 0.0067597754221611
729 => 0.0070038790379053
730 => 0.006869430868348
731 => 0.0069596303081835
801 => 0.0069515620212946
802 => 0.0063053453322961
803 => 0.006394388290422
804 => 0.0065329111900463
805 => 0.0064705068115289
806 => 0.006382281620681
807 => 0.0063110350487358
808 => 0.0062030892069029
809 => 0.0063550209063665
810 => 0.0065547949350261
811 => 0.0067648420212052
812 => 0.0070171998324192
813 => 0.006960876506725
814 => 0.006760124367461
815 => 0.0067691299617788
816 => 0.0068247990022811
817 => 0.006752702536765
818 => 0.0067314398815941
819 => 0.0068218778399709
820 => 0.0068225006364864
821 => 0.0067395449397613
822 => 0.0066473548635835
823 => 0.0066469685837982
824 => 0.0066305642501929
825 => 0.0068638206511418
826 => 0.0069920880867815
827 => 0.0070067937415643
828 => 0.0069910982790461
829 => 0.0069971388396388
830 => 0.0069225028450201
831 => 0.0070930985961017
901 => 0.0072496541274655
902 => 0.0072076939007389
903 => 0.0071447895558781
904 => 0.0070946832153127
905 => 0.0071958904393041
906 => 0.0071913838409347
907 => 0.0072482867514751
908 => 0.0072457053067658
909 => 0.0072265709981778
910 => 0.0072076945840853
911 => 0.0072825374322689
912 => 0.0072609838939314
913 => 0.0072393968769956
914 => 0.0071961008097239
915 => 0.0072019854643377
916 => 0.0071390919807989
917 => 0.0071099945775038
918 => 0.0066724394463789
919 => 0.0065555104178159
920 => 0.0065922986705117
921 => 0.0066044103185057
922 => 0.0065535226554264
923 => 0.006626482492314
924 => 0.0066151117790186
925 => 0.006659348572806
926 => 0.006631711344586
927 => 0.0066328455860724
928 => 0.0067141207813891
929 => 0.006737715316359
930 => 0.0067257149454421
1001 => 0.0067341195938836
1002 => 0.006927801169839
1003 => 0.0069002658433263
1004 => 0.0068856382499158
1005 => 0.0068896901932573
1006 => 0.0069391799884937
1007 => 0.0069530344291173
1008 => 0.006894332190661
1009 => 0.0069220165056706
1010 => 0.0070398928053187
1011 => 0.0070811428389748
1012 => 0.0072127931452656
1013 => 0.0071568657552557
1014 => 0.0072595229000996
1015 => 0.0075750559649504
1016 => 0.0078271256103804
1017 => 0.0075953119472243
1018 => 0.0080582057501808
1019 => 0.0084186349739548
1020 => 0.0084048011000201
1021 => 0.0083419519279769
1022 => 0.007931612839217
1023 => 0.0075540126919289
1024 => 0.0078698912488845
1025 => 0.0078706964882872
1026 => 0.0078435622401059
1027 => 0.0076750337550558
1028 => 0.0078376978141328
1029 => 0.0078506094964333
1030 => 0.0078433823878385
1031 => 0.0077141719934865
1101 => 0.0075168916033836
1102 => 0.0075554397193872
1103 => 0.0076185823197613
1104 => 0.0074990402043267
1105 => 0.0074608392551332
1106 => 0.0075318620877119
1107 => 0.0077607124524755
1108 => 0.0077174496166568
1109 => 0.0077163198491748
1110 => 0.0079014166071045
1111 => 0.0077689272748073
1112 => 0.0075559259345782
1113 => 0.0075021402870278
1114 => 0.0073112374725776
1115 => 0.0074430947264908
1116 => 0.0074478400343182
1117 => 0.0073756231638984
1118 => 0.0075617859356028
1119 => 0.0075600704128883
1120 => 0.0077368042579497
1121 => 0.0080746529915063
1122 => 0.0079747344964671
1123 => 0.0078585401578379
1124 => 0.0078711737041665
1125 => 0.0080097325251412
1126 => 0.0079259566989896
1127 => 0.0079560830701795
1128 => 0.0080096869252702
1129 => 0.0080420274619553
1130 => 0.0078665203986301
1201 => 0.0078256013066957
1202 => 0.0077418952052477
1203 => 0.0077200578458283
1204 => 0.0077882347188726
1205 => 0.0077702725215499
1206 => 0.0074474412095701
1207 => 0.0074137035412517
1208 => 0.0074147382273728
1209 => 0.0073299032562476
1210 => 0.0072005095625557
1211 => 0.007540548463882
1212 => 0.0075132385812641
1213 => 0.007483090584471
1214 => 0.0074867835420561
1215 => 0.0076343829041342
1216 => 0.0075487678201824
1217 => 0.0077763895529045
1218 => 0.0077295973675924
1219 => 0.0076816051392902
1220 => 0.0076749711514598
1221 => 0.0076564982380679
1222 => 0.007593147744579
1223 => 0.0075166482169166
1224 => 0.0074661366024782
1225 => 0.0068871163572986
1226 => 0.0069945791467981
1227 => 0.0071182052905758
1228 => 0.0071608805400072
1229 => 0.0070878815728175
1230 => 0.0075960301887376
1231 => 0.0076888738375081
]
'min_raw' => 0.0032046495299884
'max_raw' => 0.0084186349739548
'avg_raw' => 0.0058116422519716
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.0032046'
'max' => '$0.008418'
'avg' => '$0.005811'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00012425148332639
'max_diff' => -0.0015182156230192
'year' => 2027
]
2 => [
'items' => [
101 => 0.0074076443693409
102 => 0.0073550378183703
103 => 0.0075994790654612
104 => 0.0074520511117382
105 => 0.0075184379102725
106 => 0.0073749459634787
107 => 0.0076665105212986
108 => 0.0076642892878723
109 => 0.0075508640895961
110 => 0.0076467302904769
111 => 0.0076300711789225
112 => 0.0075020144094227
113 => 0.0076705701493025
114 => 0.0076706537508466
115 => 0.0075614844635822
116 => 0.0074339986362874
117 => 0.007411207181448
118 => 0.0073940368818276
119 => 0.0075142150691244
120 => 0.0076219664560673
121 => 0.0078224650733339
122 => 0.0078728751894444
123 => 0.008069629228615
124 => 0.0079524717780692
125 => 0.0080044061584531
126 => 0.0080607882749266
127 => 0.0080878199349476
128 => 0.0080437732955422
129 => 0.0083494133055676
130 => 0.0083752186869817
131 => 0.0083838710081541
201 => 0.0082808109164377
202 => 0.0083723523993967
203 => 0.0083295231710554
204 => 0.0084409529248971
205 => 0.0084584265331059
206 => 0.0084436270085947
207 => 0.0084491734076423
208 => 0.0081883635776781
209 => 0.008174839212113
210 => 0.0079904335279877
211 => 0.0080655802073267
212 => 0.0079250970921764
213 => 0.007969645735127
214 => 0.0079892823524646
215 => 0.0079790252979357
216 => 0.0080698288878274
217 => 0.0079926272864716
218 => 0.0077888795673752
219 => 0.007585076337349
220 => 0.0075825177538105
221 => 0.0075288599607704
222 => 0.0074900752043174
223 => 0.0074975465243734
224 => 0.0075238764307504
225 => 0.0074885448622936
226 => 0.0074960846437799
227 => 0.0076212952537526
228 => 0.0076464053486214
229 => 0.0075610714351098
301 => 0.0072184434587357
302 => 0.0071343616939163
303 => 0.0071947979990547
304 => 0.0071659133377951
305 => 0.0057834513402057
306 => 0.0061082402801907
307 => 0.0059152617208419
308 => 0.0060041951195064
309 => 0.0058072139819669
310 => 0.0059012237054667
311 => 0.0058838635422218
312 => 0.0064061145465141
313 => 0.0063979603154149
314 => 0.0064018633143298
315 => 0.0062155630069117
316 => 0.0065123444552333
317 => 0.0066585496685922
318 => 0.0066314909747252
319 => 0.0066383010650149
320 => 0.0065212811509302
321 => 0.006402996322891
322 => 0.006271800244691
323 => 0.0065155463416612
324 => 0.0064884459365628
325 => 0.0065506045154406
326 => 0.0067086912826567
327 => 0.0067319701596425
328 => 0.0067632572063824
329 => 0.0067520430272898
330 => 0.0070192102695209
331 => 0.0069868545536605
401 => 0.0070648225195093
402 => 0.0069044364983145
403 => 0.0067229444913516
404 => 0.0067574401884545
405 => 0.0067541179754267
406 => 0.0067118223905231
407 => 0.0066736398276355
408 => 0.006610076618298
409 => 0.0068112000182267
410 => 0.006803034775484
411 => 0.0069352205644311
412 => 0.0069118554422505
413 => 0.0067558174379129
414 => 0.0067613903657639
415 => 0.0067988709838202
416 => 0.006928591830859
417 => 0.0069671018103289
418 => 0.0069492624534811
419 => 0.0069914868879225
420 => 0.0070248593592761
421 => 0.0069956779565129
422 => 0.0074088250815075
423 => 0.0072372575906927
424 => 0.0073208783919569
425 => 0.0073408214603361
426 => 0.0072897377100404
427 => 0.0073008159463076
428 => 0.0073175964556137
429 => 0.0074194844221595
430 => 0.0076868679278965
501 => 0.0078052902624464
502 => 0.0081615696987947
503 => 0.0077954569360805
504 => 0.0077737333198663
505 => 0.0078379100049608
506 => 0.0080470837501057
507 => 0.0082165994238548
508 => 0.0082728375524312
509 => 0.0082802703495129
510 => 0.0083857768173623
511 => 0.0084462511571545
512 => 0.0083729655570698
513 => 0.0083108636843202
514 => 0.0080884224844994
515 => 0.0081141706590659
516 => 0.0082915500485932
517 => 0.0085421088838945
518 => 0.0087571144307866
519 => 0.0086818269819648
520 => 0.0092562170718192
521 => 0.0093131655030552
522 => 0.0093052970712216
523 => 0.00943503407264
524 => 0.0091775325453054
525 => 0.0090674456535127
526 => 0.0083242908140949
527 => 0.0085330870110793
528 => 0.0088365845455669
529 => 0.0087964155088201
530 => 0.0085760074867629
531 => 0.0087569472315374
601 => 0.008697122893406
602 => 0.0086499369558077
603 => 0.0088661048833896
604 => 0.0086284193673242
605 => 0.0088342134507242
606 => 0.0085702804100965
607 => 0.0086821708886892
608 => 0.0086186564415065
609 => 0.0086597580728716
610 => 0.0084194787757556
611 => 0.0085491276520292
612 => 0.0084140849562566
613 => 0.0084140209284357
614 => 0.0084110398534418
615 => 0.0085699169861472
616 => 0.0085750979637409
617 => 0.0084576875226216
618 => 0.0084407668437605
619 => 0.0085033314619967
620 => 0.0084300846797415
621 => 0.008464356388149
622 => 0.0084311227348761
623 => 0.0084236411395165
624 => 0.0083640265148029
625 => 0.0083383428953381
626 => 0.0083484141043156
627 => 0.0083140358760113
628 => 0.008293321749943
629 => 0.0084069192923999
630 => 0.008346228707977
701 => 0.0083976175899115
702 => 0.0083390534731532
703 => 0.0081360447292975
704 => 0.0080192922539276
705 => 0.0076358275557048
706 => 0.0077445776684343
707 => 0.0078166791056841
708 => 0.0077928495811031
709 => 0.0078440446207049
710 => 0.0078471875803475
711 => 0.0078305435511013
712 => 0.0078112718974665
713 => 0.0078018915222663
714 => 0.0078718051538111
715 => 0.0079123923701075
716 => 0.0078239154495049
717 => 0.0078031865449314
718 => 0.0078926415966052
719 => 0.0079472091264498
720 => 0.0083501051079756
721 => 0.0083202572723273
722 => 0.0083951694824626
723 => 0.008386735517223
724 => 0.0084652554478957
725 => 0.0085936023495471
726 => 0.0083326372121318
727 => 0.0083779317364916
728 => 0.0083668265651218
729 => 0.008488069914204
730 => 0.0084884484227057
731 => 0.0084157569783765
801 => 0.0084551641896313
802 => 0.0084331681653891
803 => 0.0084729179541357
804 => 0.0083198586362849
805 => 0.0085062683636948
806 => 0.0086119506671588
807 => 0.0086134180660449
808 => 0.0086635106391402
809 => 0.0087144075945712
810 => 0.0088120998683304
811 => 0.0087116830100786
812 => 0.0085310428574678
813 => 0.0085440844930221
814 => 0.00843817523764
815 => 0.0084399555913571
816 => 0.0084304519236867
817 => 0.0084589731457683
818 => 0.0083261174406443
819 => 0.0083572984090887
820 => 0.008313644870671
821 => 0.0083778368422244
822 => 0.008308776892146
823 => 0.008366821209872
824 => 0.0083918712132029
825 => 0.0084843062647819
826 => 0.0082951241598711
827 => 0.0079093690414555
828 => 0.0079904594441752
829 => 0.0078705203690391
830 => 0.0078816211870832
831 => 0.0079040466062144
901 => 0.0078313584856696
902 => 0.0078452250884036
903 => 0.0078447296757762
904 => 0.0078404604773965
905 => 0.0078215514898944
906 => 0.0077941297169872
907 => 0.0079033696202729
908 => 0.0079219316085203
909 => 0.0079631926090506
910 => 0.0080859573590246
911 => 0.0080736902655101
912 => 0.0080936984039892
913 => 0.0080500207500302
914 => 0.0078836472681798
915 => 0.0078926821486913
916 => 0.0077800170439394
917 => 0.0079603115090164
918 => 0.0079176153999155
919 => 0.0078900889406235
920 => 0.0078825780911749
921 => 0.0080056471512187
922 => 0.008042471342855
923 => 0.0080195249778068
924 => 0.0079724613136407
925 => 0.008062837461963
926 => 0.0080870183065905
927 => 0.0080924315059473
928 => 0.0082525607128669
929 => 0.0081013809498005
930 => 0.0081377714213682
1001 => 0.0084216794924211
1002 => 0.0081642140486119
1003 => 0.0083005992363622
1004 => 0.0082939238911361
1005 => 0.008363693938166
1006 => 0.0082882007108445
1007 => 0.008289136539875
1008 => 0.0083510876150052
1009 => 0.0082640885029201
1010 => 0.0082425462992966
1011 => 0.0082127858992789
1012 => 0.0082777666439551
1013 => 0.0083167196615622
1014 => 0.0086306523756368
1015 => 0.008833467226
1016 => 0.0088246624984596
1017 => 0.0089051212264194
1018 => 0.008868873832556
1019 => 0.0087518214361918
1020 => 0.0089516156037664
1021 => 0.0088883923694028
1022 => 0.0088936044160275
1023 => 0.0088934104233918
1024 => 0.0089354483471726
1025 => 0.0089056606254548
1026 => 0.0088469459683021
1027 => 0.0088859234978184
1028 => 0.0090016728257598
1029 => 0.0093609622913133
1030 => 0.0095620254361893
1031 => 0.0093488580375294
1101 => 0.0094958980546998
1102 => 0.0094077264401127
1103 => 0.009391703034864
1104 => 0.0094840550318189
1105 => 0.0095765686787191
1106 => 0.009570675959359
1107 => 0.0095035158023378
1108 => 0.0094655787337624
1109 => 0.0097528509268656
1110 => 0.0099645081851898
1111 => 0.0099500745791404
1112 => 0.010013779822183
1113 => 0.010200820386083
1114 => 0.010217921031178
1115 => 0.01021576674295
1116 => 0.010173381009815
1117 => 0.010357546735262
1118 => 0.010511181023517
1119 => 0.010163569937236
1120 => 0.010295935688329
1121 => 0.010355358938552
1122 => 0.010442609899964
1123 => 0.010589816896826
1124 => 0.010749722740145
1125 => 0.010772335179668
1126 => 0.010756290571721
1127 => 0.010650828369553
1128 => 0.010825799251386
1129 => 0.010928293090391
1130 => 0.010989325825989
1201 => 0.011144094688587
1202 => 0.010355725916316
1203 => 0.0097976793148315
1204 => 0.0097105322797191
1205 => 0.009887749202508
1206 => 0.0099344798917689
1207 => 0.0099156428095232
1208 => 0.0092875106241754
1209 => 0.0097072252937582
1210 => 0.010158802987617
1211 => 0.010176149925947
1212 => 0.010402219161537
1213 => 0.010475836571536
1214 => 0.010657851937758
1215 => 0.010646466827044
1216 => 0.010690784672222
1217 => 0.010680596767094
1218 => 0.011017741905163
1219 => 0.011389663058991
1220 => 0.011376784612071
1221 => 0.011323316545837
1222 => 0.011402725741854
1223 => 0.011786588230098
1224 => 0.011751248323452
1225 => 0.011785578032513
1226 => 0.012238173539694
1227 => 0.012826612079989
1228 => 0.012553223299758
1229 => 0.013146398287357
1230 => 0.013519770499195
1231 => 0.014165479132162
]
'min_raw' => 0.0057834513402057
'max_raw' => 0.014165479132162
'avg_raw' => 0.0099744652361839
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.005783'
'max' => '$0.014165'
'avg' => '$0.009974'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0025788018102173
'max_diff' => 0.0057468441582073
'year' => 2028
]
3 => [
'items' => [
101 => 0.014084633231133
102 => 0.014336002863518
103 => 0.013939902195241
104 => 0.013030374995725
105 => 0.012886438834871
106 => 0.013174602673944
107 => 0.01388302535369
108 => 0.013152291922697
109 => 0.013300118344077
110 => 0.013257544324775
111 => 0.013255275736214
112 => 0.013341858534559
113 => 0.013216265669705
114 => 0.012704577744562
115 => 0.012939081305259
116 => 0.012848528218688
117 => 0.012949003619418
118 => 0.013491227917953
119 => 0.013251497630558
120 => 0.012998961246894
121 => 0.013315697914318
122 => 0.013719012534476
123 => 0.013693773830373
124 => 0.013644800195452
125 => 0.013920862011324
126 => 0.01437683525262
127 => 0.014500082987494
128 => 0.014591061945688
129 => 0.014603606406921
130 => 0.01473282215396
131 => 0.014037996515572
201 => 0.015140702648081
202 => 0.015331109535523
203 => 0.015295320932241
204 => 0.015506950174086
205 => 0.01544468348262
206 => 0.015354468816029
207 => 0.015689946179185
208 => 0.015305348453954
209 => 0.014759460402497
210 => 0.014459975421026
211 => 0.014854361403391
212 => 0.015095199160648
213 => 0.015254377598036
214 => 0.015302544897011
215 => 0.014091933851965
216 => 0.013439481642252
217 => 0.013857696028299
218 => 0.01436794644289
219 => 0.014035162048756
220 => 0.014048206566962
221 => 0.013573743475127
222 => 0.014409925898558
223 => 0.014288101152865
224 => 0.014920128149024
225 => 0.014769289834057
226 => 0.015284683314277
227 => 0.015148962938219
228 => 0.015712330631214
301 => 0.015937073256521
302 => 0.016314451102808
303 => 0.016592051782741
304 => 0.016755064211652
305 => 0.016745277556865
306 => 0.017391214012681
307 => 0.017010327851987
308 => 0.016531845066179
309 => 0.016523190822178
310 => 0.016771003837101
311 => 0.0172903519322
312 => 0.017425011337052
313 => 0.01750026757379
314 => 0.017385010027537
315 => 0.01697158539846
316 => 0.016793070739735
317 => 0.016945170401036
318 => 0.016759165585338
319 => 0.017080262080967
320 => 0.017521196151976
321 => 0.017430145009955
322 => 0.017734515326582
323 => 0.018049506583599
324 => 0.018499958228276
325 => 0.018617722968371
326 => 0.018812383605556
327 => 0.019012753343907
328 => 0.019077106703749
329 => 0.019199977235364
330 => 0.019199329647011
331 => 0.019569608264172
401 => 0.019978037045474
402 => 0.020132209455267
403 => 0.020486720410471
404 => 0.01987963282323
405 => 0.020340115731872
406 => 0.020755482842101
407 => 0.02026026504971
408 => 0.020942807405574
409 => 0.020969308978578
410 => 0.021369451266822
411 => 0.0209638303997
412 => 0.020722974023591
413 => 0.021418317356648
414 => 0.021754772092404
415 => 0.021653429187835
416 => 0.020882204680146
417 => 0.020433318937296
418 => 0.019258498364665
419 => 0.020650124081419
420 => 0.021327944373771
421 => 0.020880449289339
422 => 0.021106139780692
423 => 0.022337433921127
424 => 0.022806231009413
425 => 0.022708724492189
426 => 0.022725201488506
427 => 0.022978155888076
428 => 0.024099895000303
429 => 0.023427722922547
430 => 0.023941573290184
501 => 0.024214117672353
502 => 0.024467272083575
503 => 0.023845604859887
504 => 0.023036824935974
505 => 0.022780650383799
506 => 0.020835954722356
507 => 0.020734724867793
508 => 0.020677901482848
509 => 0.020319638078597
510 => 0.020038141179462
511 => 0.01981428439396
512 => 0.019226817339507
513 => 0.019425070225109
514 => 0.018488770354214
515 => 0.019087781831182
516 => 0.017593424629484
517 => 0.018837969712123
518 => 0.018160620406164
519 => 0.018615442247864
520 => 0.018613855417305
521 => 0.017776384205339
522 => 0.017293348287855
523 => 0.017601157574515
524 => 0.017931153563746
525 => 0.017984694302759
526 => 0.018412542716573
527 => 0.018531946012298
528 => 0.018170148451845
529 => 0.017562457398005
530 => 0.017703610169855
531 => 0.017290487831439
601 => 0.016566506823885
602 => 0.017086482623006
603 => 0.017264025222548
604 => 0.017342438148884
605 => 0.016630485977736
606 => 0.016406775148328
607 => 0.016287673379866
608 => 0.017470553313023
609 => 0.017535354145961
610 => 0.017203823922732
611 => 0.018702371968714
612 => 0.018363204393214
613 => 0.018742137673121
614 => 0.017690802035303
615 => 0.017730964472479
616 => 0.017233245333135
617 => 0.017511934793563
618 => 0.017314966065513
619 => 0.017489419439223
620 => 0.017593986072127
621 => 0.018091623540657
622 => 0.018843651932647
623 => 0.018017293097606
624 => 0.017657236719502
625 => 0.017880613671444
626 => 0.018475495930735
627 => 0.019376773005024
628 => 0.018843198837153
629 => 0.019079989992177
630 => 0.019131718325445
701 => 0.018738280488047
702 => 0.019391279619283
703 => 0.019741227158668
704 => 0.020100200922637
705 => 0.020411887783675
706 => 0.019956818907305
707 => 0.020443807836581
708 => 0.020051380724703
709 => 0.019699333036979
710 => 0.019699866948002
711 => 0.019479022290897
712 => 0.019051107939538
713 => 0.018972193967763
714 => 0.019382714414671
715 => 0.01971191293666
716 => 0.019739027303686
717 => 0.019921288520289
718 => 0.020029148830836
719 => 0.021086326503172
720 => 0.021511532108417
721 => 0.022031465473782
722 => 0.02223400882143
723 => 0.022843591682042
724 => 0.022351304014199
725 => 0.022244794480626
726 => 0.020766145853814
727 => 0.021008274483619
728 => 0.021395945781875
729 => 0.020772538410734
730 => 0.021167946899126
731 => 0.021246008910632
801 => 0.020751355266813
802 => 0.021015571150699
803 => 0.020313892097648
804 => 0.018858946618536
805 => 0.019392899389519
806 => 0.019786068355522
807 => 0.019224967763652
808 => 0.020230718856988
809 => 0.019643179831178
810 => 0.019456958166843
811 => 0.018730441061456
812 => 0.019073329168991
813 => 0.019537090244116
814 => 0.0192505398177
815 => 0.019845174978276
816 => 0.020687336949056
817 => 0.021287511721047
818 => 0.02133358568764
819 => 0.020947713517837
820 => 0.02156607613255
821 => 0.021570580229116
822 => 0.020873064673635
823 => 0.020445840279686
824 => 0.020348773998493
825 => 0.020591264599878
826 => 0.020885692956195
827 => 0.021349924412299
828 => 0.021630449758571
829 => 0.022361911082502
830 => 0.022559823544119
831 => 0.022777269336126
901 => 0.023067843972046
902 => 0.023416753324275
903 => 0.022653359525017
904 => 0.022683690583806
905 => 0.021972828847844
906 => 0.021213171135083
907 => 0.021789656646398
908 => 0.022543334765788
909 => 0.022370440172459
910 => 0.022350985998794
911 => 0.022383702522761
912 => 0.022253345645601
913 => 0.021663746321457
914 => 0.021367653231959
915 => 0.021749688858815
916 => 0.02195272379204
917 => 0.022267613266964
918 => 0.022228796492669
919 => 0.023039917963412
920 => 0.023355095239903
921 => 0.023274459405381
922 => 0.023289298339542
923 => 0.0238599117438
924 => 0.024494551204932
925 => 0.025088974808334
926 => 0.025693648028803
927 => 0.02496469086073
928 => 0.024594571366611
929 => 0.024976440208663
930 => 0.024773815225877
1001 => 0.02593815847944
1002 => 0.026018775080077
1003 => 0.027183034138369
1004 => 0.028288054622079
1005 => 0.027594011054759
1006 => 0.028248462878333
1007 => 0.028956305883768
1008 => 0.03032184988464
1009 => 0.029861982705564
1010 => 0.029509731653428
1011 => 0.029176856111225
1012 => 0.029869517272046
1013 => 0.030760614789909
1014 => 0.030952548660431
1015 => 0.031263554855058
1016 => 0.030936569869436
1017 => 0.031330387268403
1018 => 0.032720735738892
1019 => 0.03234505130922
1020 => 0.031811519024801
1021 => 0.032909065611765
1022 => 0.033306263454983
1023 => 0.036094005932813
1024 => 0.03961364596697
1025 => 0.038156491881626
1026 => 0.037251989318785
1027 => 0.03746456887614
1028 => 0.03874982226928
1029 => 0.039162604867253
1030 => 0.038040519471268
1031 => 0.038436859002696
1101 => 0.040620728788106
1102 => 0.041792304861048
1103 => 0.040201147190334
1104 => 0.035811206283065
1105 => 0.031763480280093
1106 => 0.032837119487558
1107 => 0.032715402120335
1108 => 0.035061697761454
1109 => 0.03233609135982
1110 => 0.032381983581416
1111 => 0.034776798131623
1112 => 0.034137902667143
1113 => 0.033102973838235
1114 => 0.031771036405864
1115 => 0.029308826872828
1116 => 0.027127979225624
1117 => 0.031405123681008
1118 => 0.031220685434609
1119 => 0.030953591521607
1120 => 0.031547980122413
1121 => 0.034434162447778
1122 => 0.034367626603518
1123 => 0.033944359509221
1124 => 0.03426540386974
1125 => 0.033046693209609
1126 => 0.033360782696251
1127 => 0.031762839099613
1128 => 0.032485176341313
1129 => 0.033100753345778
1130 => 0.033224339543198
1201 => 0.033502785556452
1202 => 0.031123494859696
1203 => 0.032191726530234
1204 => 0.032819212556904
1205 => 0.029984207860273
1206 => 0.032763173629287
1207 => 0.031082076702109
1208 => 0.030511487155797
1209 => 0.03127971081045
1210 => 0.03098033330511
1211 => 0.030722946106055
1212 => 0.030579319626509
1213 => 0.031143418292736
1214 => 0.031117102415712
1215 => 0.030194127510932
1216 => 0.028990144372917
1217 => 0.029394240633434
1218 => 0.029247428673566
1219 => 0.028715363191882
1220 => 0.029073911084706
1221 => 0.027495047621648
1222 => 0.024778695095638
1223 => 0.026573200778448
1224 => 0.026504114261706
1225 => 0.026469277707141
1226 => 0.027817799131279
1227 => 0.027688169912031
1228 => 0.027452891609762
1229 => 0.028711042121354
1230 => 0.02825180026011
1231 => 0.029667075465472
]
'min_raw' => 0.012704577744562
'max_raw' => 0.041792304861048
'avg_raw' => 0.027248441302805
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.0127045'
'max' => '$0.041792'
'avg' => '$0.027248'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.0069211264043559
'max_diff' => 0.027626825728885
'year' => 2029
]
4 => [
'items' => [
101 => 0.030599267249984
102 => 0.030362833260186
103 => 0.031239564139194
104 => 0.029403550195117
105 => 0.030013400379245
106 => 0.030139089656978
107 => 0.028695516739338
108 => 0.027709378855451
109 => 0.027643614701391
110 => 0.025933787508902
111 => 0.026847163393887
112 => 0.027650896374611
113 => 0.027265970649043
114 => 0.027144114663657
115 => 0.027766650465655
116 => 0.027815026829129
117 => 0.026712040615229
118 => 0.026941386376129
119 => 0.027897796324645
120 => 0.026917287299322
121 => 0.025012318428359
122 => 0.024539859810105
123 => 0.02447682512129
124 => 0.023195479877419
125 => 0.024571431754125
126 => 0.023970791886726
127 => 0.025868206031071
128 => 0.024784413247857
129 => 0.024737693107122
130 => 0.024667068762046
131 => 0.023564161978942
201 => 0.023805628471059
202 => 0.024608299867242
203 => 0.024894702064141
204 => 0.02486482796858
205 => 0.024604366339505
206 => 0.024723604339516
207 => 0.024339497196207
208 => 0.024203860969405
209 => 0.023775755727936
210 => 0.023146559290069
211 => 0.02323405291384
212 => 0.021987450132221
213 => 0.021308234774578
214 => 0.021120236915497
215 => 0.020868838321362
216 => 0.02114863305565
217 => 0.021983918663168
218 => 0.020976387004775
219 => 0.019249044646587
220 => 0.019352860865562
221 => 0.019586105086287
222 => 0.019151456024031
223 => 0.018740097163936
224 => 0.019097740318189
225 => 0.018365842589873
226 => 0.019674551430072
227 => 0.019639154523558
228 => 0.020126960249173
301 => 0.020431995180181
302 => 0.019728988420439
303 => 0.019552184121497
304 => 0.019652899885482
305 => 0.017988292653946
306 => 0.01999092632503
307 => 0.020008245184178
308 => 0.019859950597563
309 => 0.020926291203037
310 => 0.023176602480563
311 => 0.022329944859396
312 => 0.022002093438119
313 => 0.021378847646612
314 => 0.022209285659121
315 => 0.022145520976612
316 => 0.021857152900265
317 => 0.021682746987928
318 => 0.022004095228987
319 => 0.021642928384657
320 => 0.021578052895214
321 => 0.021184978014419
322 => 0.021044668165743
323 => 0.020940788339679
324 => 0.020826426858204
325 => 0.021078679789233
326 => 0.020507041460884
327 => 0.019817701675292
328 => 0.01976039053088
329 => 0.019918631639449
330 => 0.019848621728572
331 => 0.019760055350361
401 => 0.019590958014738
402 => 0.019540790447452
403 => 0.019703810703289
404 => 0.019519770339121
405 => 0.019791331921649
406 => 0.019717482197389
407 => 0.019304963640889
408 => 0.018790812785559
409 => 0.018786235764478
410 => 0.018675462806074
411 => 0.01853437678872
412 => 0.018495129886303
413 => 0.019067620609286
414 => 0.020252659272655
415 => 0.020020007827463
416 => 0.020188122339693
417 => 0.021015079350815
418 => 0.021277944117186
419 => 0.021091368932309
420 => 0.020835973311794
421 => 0.020847209422942
422 => 0.021719973571755
423 => 0.021774406801162
424 => 0.021911942011049
425 => 0.022088713623199
426 => 0.02112147390224
427 => 0.020801652519067
428 => 0.020650103404705
429 => 0.020183390789357
430 => 0.020686700332094
501 => 0.020393443415404
502 => 0.020433013792548
503 => 0.020407243532522
504 => 0.020421315837074
505 => 0.019674185619279
506 => 0.019946400602635
507 => 0.019493790395842
508 => 0.018887796136824
509 => 0.018885764631579
510 => 0.019034080867962
511 => 0.018945856566947
512 => 0.018708447241368
513 => 0.018742170115526
514 => 0.018446722253026
515 => 0.01877804283529
516 => 0.018787543924067
517 => 0.018659967452742
518 => 0.019170412523148
519 => 0.019379542284978
520 => 0.019295568718598
521 => 0.019373650475704
522 => 0.020029675545369
523 => 0.020136636256105
524 => 0.020184141138386
525 => 0.020120490889321
526 => 0.019385641409695
527 => 0.019418235108938
528 => 0.019179084170155
529 => 0.018977026827988
530 => 0.018985108062023
531 => 0.019088991801513
601 => 0.019542658184565
602 => 0.020497372342604
603 => 0.020533603047014
604 => 0.020577515717684
605 => 0.02039890081733
606 => 0.020345028854269
607 => 0.02041609987908
608 => 0.020774640320353
609 => 0.021696903678089
610 => 0.021370914211567
611 => 0.021105879700956
612 => 0.021338386419553
613 => 0.021302593832673
614 => 0.021000468379018
615 => 0.020991988723794
616 => 0.020412113382881
617 => 0.020197746672468
618 => 0.020018605804177
619 => 0.019822988652594
620 => 0.019707020247989
621 => 0.019885200424159
622 => 0.019925952338615
623 => 0.019536358269362
624 => 0.019483258037323
625 => 0.019801408964247
626 => 0.019661402603169
627 => 0.019805402617528
628 => 0.019838811856068
629 => 0.019833432199183
630 => 0.019687249478591
701 => 0.019780421985465
702 => 0.019560041230646
703 => 0.019320410259899
704 => 0.0191675406301
705 => 0.019034141602886
706 => 0.019108159136382
707 => 0.018844300144539
708 => 0.018759886342616
709 => 0.019748857236584
710 => 0.020479420669186
711 => 0.020468797987541
712 => 0.02040413514496
713 => 0.020308059277262
714 => 0.020767611772212
715 => 0.020607512872014
716 => 0.020723998198618
717 => 0.020753648603113
718 => 0.020843391447388
719 => 0.020875466800558
720 => 0.020778512805513
721 => 0.020453123356207
722 => 0.019642283785637
723 => 0.019264835776717
724 => 0.01914027164688
725 => 0.019144799316419
726 => 0.019019905978137
727 => 0.019056692663587
728 => 0.019007113070191
729 => 0.018913221314891
730 => 0.019102361585072
731 => 0.019124158239247
801 => 0.019080010640128
802 => 0.019090408997887
803 => 0.018724885732875
804 => 0.018752675672839
805 => 0.018597937755744
806 => 0.018568926261682
807 => 0.018177762281838
808 => 0.017484758591418
809 => 0.017868749907407
810 => 0.017404942395042
811 => 0.017229291462279
812 => 0.018060795658655
813 => 0.017977335699675
814 => 0.017834488529074
815 => 0.017623187791796
816 => 0.017544814292938
817 => 0.017068641723912
818 => 0.017040506908253
819 => 0.017276510891203
820 => 0.017167603173472
821 => 0.017014655491201
822 => 0.016460694490072
823 => 0.01583785891462
824 => 0.015856658405638
825 => 0.016054770813921
826 => 0.016630809360105
827 => 0.016405741134543
828 => 0.016242451554537
829 => 0.016211872324669
830 => 0.016594635408424
831 => 0.017136325363283
901 => 0.017390474170474
902 => 0.017138620421162
903 => 0.016849304394722
904 => 0.01686691372069
905 => 0.016984060677238
906 => 0.016996371166003
907 => 0.016808056174958
908 => 0.016861065741876
909 => 0.016780539362432
910 => 0.016286349120422
911 => 0.016277410786038
912 => 0.016156128530755
913 => 0.016152456152266
914 => 0.015946124780752
915 => 0.015917257595576
916 => 0.015507574134017
917 => 0.015777229029051
918 => 0.01559635868298
919 => 0.015323744408449
920 => 0.015276745604766
921 => 0.015275332763974
922 => 0.015555246668481
923 => 0.015773958072103
924 => 0.015599505000087
925 => 0.01555978541722
926 => 0.01598388664734
927 => 0.015929915900039
928 => 0.01588317758095
929 => 0.017087822969133
930 => 0.016134252144734
1001 => 0.015718440837377
1002 => 0.015203795384096
1003 => 0.015371366538752
1004 => 0.01540667624317
1005 => 0.014169046699845
1006 => 0.013666940548255
1007 => 0.013494636638501
1008 => 0.013395473302417
1009 => 0.013440663279885
1010 => 0.012988708852277
1011 => 0.013292429702266
1012 => 0.012901075370714
1013 => 0.012835463543452
1014 => 0.013535253567766
1015 => 0.013632625261535
1016 => 0.013217207364901
1017 => 0.013483972904589
1018 => 0.01338724001158
1019 => 0.012907784017473
1020 => 0.012889472325138
1021 => 0.012648898160988
1022 => 0.012272446178432
1023 => 0.012100397520848
1024 => 0.012010793086184
1025 => 0.012047765622282
1026 => 0.012029071176653
1027 => 0.01190707727351
1028 => 0.01203606372438
1029 => 0.011706556643288
1030 => 0.011575344268579
1031 => 0.011516078683026
1101 => 0.011223622182838
1102 => 0.011689050530634
1103 => 0.011780745778462
1104 => 0.011872621694254
1105 => 0.012672338814871
1106 => 0.012632387207502
1107 => 0.012993530280895
1108 => 0.012979496925163
1109 => 0.012876493070501
1110 => 0.012441936750995
1111 => 0.012615143154729
1112 => 0.012082040766289
1113 => 0.012481477323147
1114 => 0.012299191159466
1115 => 0.012419846187843
1116 => 0.012202897567796
1117 => 0.012322965891719
1118 => 0.011802490123391
1119 => 0.011316477174218
1120 => 0.011512062972567
1121 => 0.011724687103323
1122 => 0.012185710394421
1123 => 0.011911128725602
1124 => 0.012009878676792
1125 => 0.011679082870849
1126 => 0.010996556636038
1127 => 0.011000419660405
1128 => 0.010895427868822
1129 => 0.010804699631841
1130 => 0.01194266773332
1201 => 0.011801143411288
1202 => 0.011575642926375
1203 => 0.011877484286464
1204 => 0.011957295932938
1205 => 0.011959568058312
1206 => 0.01217978372298
1207 => 0.012297312862689
1208 => 0.012318027882963
1209 => 0.012664541989393
1210 => 0.012780688947237
1211 => 0.013259081828862
1212 => 0.012287341336315
1213 => 0.012267328980343
1214 => 0.0118817318134
1215 => 0.011637179994075
1216 => 0.011898476485692
1217 => 0.012129949506737
1218 => 0.011888924325392
1219 => 0.011920397125757
1220 => 0.011596840512282
1221 => 0.011712496776846
1222 => 0.011812115532469
1223 => 0.011757111910934
1224 => 0.01167476882729
1225 => 0.012110971358695
1226 => 0.012086359102382
1227 => 0.01249256092788
1228 => 0.012809224298627
1229 => 0.013376741669353
1230 => 0.01278450770765
1231 => 0.012762924348169
]
'min_raw' => 0.010804699631841
'max_raw' => 0.031239564139194
'avg_raw' => 0.021022131885518
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.0108046'
'max' => '$0.031239'
'avg' => '$0.021022'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0018998781127204
'max_diff' => -0.010552740721854
'year' => 2030
]
5 => [
'items' => [
101 => 0.012973905149178
102 => 0.012780656647175
103 => 0.01290278302973
104 => 0.013357065221057
105 => 0.013366663487912
106 => 0.013205880151435
107 => 0.013196096470798
108 => 0.013226976669345
109 => 0.013407842956763
110 => 0.01334464271848
111 => 0.013417779634255
112 => 0.013509238467345
113 => 0.013887550978746
114 => 0.013978760844474
115 => 0.013757168157649
116 => 0.013777175496201
117 => 0.013694293748473
118 => 0.013614231018673
119 => 0.01379420034304
120 => 0.014123097820628
121 => 0.01412105176649
122 => 0.014197349588436
123 => 0.014244882499424
124 => 0.014040836449248
125 => 0.013908009973564
126 => 0.013958944096309
127 => 0.01404038886778
128 => 0.013932532654607
129 => 0.013266794143042
130 => 0.01346873667991
131 => 0.01343512356729
201 => 0.013387254407424
202 => 0.01359030918982
203 => 0.013570724060703
204 => 0.012984073406377
205 => 0.013021628877884
206 => 0.012986357278987
207 => 0.013100327030913
208 => 0.012774501906555
209 => 0.012874723520341
210 => 0.012937581576989
211 => 0.012974605455253
212 => 0.013108361091053
213 => 0.013092666410994
214 => 0.013107385487704
215 => 0.013305709785417
216 => 0.014308766026569
217 => 0.014363360164656
218 => 0.014094518661848
219 => 0.014201915539556
220 => 0.013995737019472
221 => 0.01413414604128
222 => 0.014228841978793
223 => 0.013800929246153
224 => 0.013775591031256
225 => 0.013568561539079
226 => 0.013679807461425
227 => 0.013502807200107
228 => 0.013546236873028
301 => 0.013424803721409
302 => 0.013643359217224
303 => 0.013887738221634
304 => 0.013949478008968
305 => 0.013787067209143
306 => 0.013669471086677
307 => 0.013463011034197
308 => 0.013806358702733
309 => 0.013906764024344
310 => 0.013805831316323
311 => 0.013782443002451
312 => 0.013738122189926
313 => 0.013791845872346
314 => 0.013906217195399
315 => 0.013852281791554
316 => 0.013887907076013
317 => 0.013752140228289
318 => 0.014040903996981
319 => 0.014499530356449
320 => 0.014501004915188
321 => 0.014447069220611
322 => 0.014424999896451
323 => 0.014480341192178
324 => 0.014510361574892
325 => 0.014689325177417
326 => 0.014881360253151
327 => 0.015777504160135
328 => 0.015525870537032
329 => 0.016320982723148
330 => 0.016949813229969
331 => 0.01713837200354
401 => 0.016964906804231
402 => 0.016371491727801
403 => 0.016342375953115
404 => 0.017229188610684
405 => 0.016978623416328
406 => 0.016948819483751
407 => 0.016631755995673
408 => 0.016819179786204
409 => 0.016778187453874
410 => 0.016713479051877
411 => 0.017071070588156
412 => 0.017740450021655
413 => 0.017636120959544
414 => 0.017558244154364
415 => 0.017217010663661
416 => 0.017422509442323
417 => 0.017349335263312
418 => 0.017663737973828
419 => 0.017477492772991
420 => 0.016976725138543
421 => 0.017056474034881
422 => 0.017044420149632
423 => 0.017292488253907
424 => 0.017218024366432
425 => 0.0170298798805
426 => 0.017738162155522
427 => 0.017692170244255
428 => 0.017757376259217
429 => 0.017786081963566
430 => 0.018217200903039
501 => 0.018393816538273
502 => 0.018433911379564
503 => 0.018601682573093
504 => 0.018429737079433
505 => 0.019117641649134
506 => 0.01957505804764
507 => 0.020106370732939
508 => 0.020882761369546
509 => 0.021174691430925
510 => 0.021121956878302
511 => 0.021710607398154
512 => 0.022768399297361
513 => 0.021335766864559
514 => 0.022844332295003
515 => 0.02236673789695
516 => 0.021234370170723
517 => 0.021161459038892
518 => 0.021928311610153
519 => 0.023629116806385
520 => 0.023203084395102
521 => 0.023629813642788
522 => 0.023132011308303
523 => 0.023107291226589
524 => 0.023605636494518
525 => 0.02477004737642
526 => 0.024216879413717
527 => 0.023423777496834
528 => 0.024009391610228
529 => 0.023502078469178
530 => 0.022358959974387
531 => 0.023202758616146
601 => 0.022638534494403
602 => 0.022803205088932
603 => 0.023989120270831
604 => 0.023846427818602
605 => 0.024031085064751
606 => 0.02370516985862
607 => 0.023400713663983
608 => 0.022832423567478
609 => 0.022664180886266
610 => 0.022710677110615
611 => 0.022664157845046
612 => 0.022346204758908
613 => 0.022277542820229
614 => 0.022163103247615
615 => 0.022198572856421
616 => 0.02198339297943
617 => 0.022389481865744
618 => 0.022464855541487
619 => 0.022760373167944
620 => 0.022791054788265
621 => 0.023614067171517
622 => 0.023160765780983
623 => 0.023464879489912
624 => 0.023437676697356
625 => 0.021258912012989
626 => 0.021559126563091
627 => 0.022026166190535
628 => 0.021815765471429
629 => 0.021518308080799
630 => 0.021278095289209
701 => 0.020914148346931
702 => 0.021426396679205
703 => 0.022099948764608
704 => 0.022808137180681
705 => 0.023658979160248
706 => 0.023469081135301
707 => 0.022792231281706
708 => 0.022822594271699
709 => 0.023010286328441
710 => 0.022767208061339
711 => 0.022695519534919
712 => 0.023000437425763
713 => 0.023002537227697
714 => 0.022722846304407
715 => 0.022412021026068
716 => 0.022410718656802
717 => 0.022355410300738
718 => 0.023141850541979
719 => 0.023574313156585
720 => 0.023623894298401
721 => 0.023570975950699
722 => 0.023591342122475
723 => 0.0233397016557
724 => 0.023914877141087
725 => 0.024442715045437
726 => 0.024301243211459
727 => 0.02408915682092
728 => 0.023920219795391
729 => 0.024261447017141
730 => 0.024246252706097
731 => 0.024438104841819
801 => 0.024429401320751
802 => 0.024364888663431
803 => 0.02430124551541
804 => 0.024553583403421
805 => 0.024480914144096
806 => 0.02440813200934
807 => 0.024262156295699
808 => 0.024281996819582
809 => 0.024069947048748
810 => 0.023971843122023
811 => 0.022496595448312
812 => 0.022102361064788
813 => 0.022226395227225
814 => 0.022267230494045
815 => 0.022095659185111
816 => 0.02234164836907
817 => 0.022303311215317
818 => 0.022452458654085
819 => 0.022359277809572
820 => 0.022363101983933
821 => 0.022637126979397
822 => 0.022716677601365
823 => 0.02267621751298
824 => 0.022704554371994
825 => 0.023357565327744
826 => 0.023264728051951
827 => 0.023215410099502
828 => 0.023229071509375
829 => 0.023395929809282
830 => 0.023442641023131
831 => 0.023244722327716
901 => 0.023338061928628
902 => 0.023735490102752
903 => 0.023874567471209
904 => 0.024318435670399
905 => 0.024129872570255
906 => 0.024475988301389
907 => 0.025539830059349
908 => 0.026389700467857
909 => 0.025608124517813
910 => 0.027168803292694
911 => 0.028384015585013
912 => 0.028337373713191
913 => 0.028125473341659
914 => 0.026741986454944
915 => 0.025468881195162
916 => 0.026533887803875
917 => 0.026536602724741
918 => 0.026445117712545
919 => 0.025876912158916
920 => 0.026425345390936
921 => 0.026468878029276
922 => 0.026444511328068
923 => 0.026008869462329
924 => 0.02534372485342
925 => 0.02547369251787
926 => 0.025686582203507
927 => 0.025283537615155
928 => 0.025154740447844
929 => 0.025394198886539
930 => 0.026165783869162
1001 => 0.026019920197684
1002 => 0.026016111107741
1003 => 0.026640177750144
1004 => 0.026193480716194
1005 => 0.025475331826333
1006 => 0.025293989760423
1007 => 0.024650347593095
1008 => 0.025094913530643
1009 => 0.02511091266729
1010 => 0.024867428446648
1011 => 0.02549508922892
1012 => 0.025489305224313
1013 => 0.026085175722101
1014 => 0.027224256315133
1015 => 0.026887374133021
1016 => 0.026495616807903
1017 => 0.026538211691396
1018 => 0.02700537243018
1019 => 0.026722916383269
1020 => 0.026824489547092
1021 => 0.027005218687032
1022 => 0.027114257064409
1023 => 0.026522522746897
1024 => 0.02638456117156
1025 => 0.026102340206355
1026 => 0.026028714024436
1027 => 0.026258577111863
1028 => 0.026198016309509
1029 => 0.025109568001806
1030 => 0.024995819097582
1031 => 0.024999307614079
1101 => 0.024713280585942
1102 => 0.02427702071368
1103 => 0.02542348561026
1104 => 0.025331408434298
1105 => 0.025229762358245
1106 => 0.025242213422577
1107 => 0.025739854976881
1108 => 0.025451197743884
1109 => 0.026218640307798
1110 => 0.026060877188092
1111 => 0.025899068039661
1112 => 0.025876701086521
1113 => 0.025814418369282
1114 => 0.025600827757494
1115 => 0.025342904258954
1116 => 0.025172600824267
1117 => 0.023220393641741
1118 => 0.023582711939351
1119 => 0.023999526114399
1120 => 0.024143408697348
1121 => 0.023897287582843
1122 => 0.025610546119221
1123 => 0.025923574963187
1124 => 0.024975390176447
1125 => 0.024798023516977
1126 => 0.025622174247887
1127 => 0.025125110608819
1128 => 0.025348938335056
1129 => 0.024865145218153
1130 => 0.02584817548123
1201 => 0.025840686437651
1202 => 0.025458265462569
1203 => 0.025781485052003
1204 => 0.025725317694295
1205 => 0.025293565355288
1206 => 0.025861862800479
1207 => 0.025862144668922
1208 => 0.025494072794954
1209 => 0.025064245427453
1210 => 0.024987402446213
1211 => 0.024929511582251
1212 => 0.025334700731296
1213 => 0.025697992055335
1214 => 0.026373987141816
1215 => 0.026543948367804
1216 => 0.027207318347796
1217 => 0.026812313823609
1218 => 0.026987414213016
1219 => 0.02717751045518
1220 => 0.027268649584231
1221 => 0.027120143264238
1222 => 0.028150629897143
1223 => 0.028237634542254
1224 => 0.028266806447173
1225 => 0.027919332152525
1226 => 0.028227970653544
1227 => 0.02808356891995
1228 => 0.028459262114804
1229 => 0.028518175604849
1230 => 0.028468277974689
1231 => 0.028486978046315
]
'min_raw' => 0.012774501906555
'max_raw' => 0.028518175604849
'avg_raw' => 0.020646338755702
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.012774'
'max' => '$0.028518'
'avg' => '$0.020646'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0019698022747134
'max_diff' => -0.0027213885343452
'year' => 2031
]
6 => [
'items' => [
101 => 0.02760763949543
102 => 0.027562041152686
103 => 0.026940304513864
104 => 0.027193666789829
105 => 0.026720018158882
106 => 0.026870217018877
107 => 0.026936423245216
108 => 0.026901840869747
109 => 0.027207991512771
110 => 0.026947700923756
111 => 0.026260751263611
112 => 0.025573614444491
113 => 0.025564988001456
114 => 0.025384077005954
115 => 0.025253311491707
116 => 0.025278501568907
117 => 0.025367274686552
118 => 0.025248151836729
119 => 0.025273572736421
120 => 0.025695729049869
121 => 0.02578038948785
122 => 0.025492680240622
123 => 0.024337486096756
124 => 0.024053998556266
125 => 0.024257763778568
126 => 0.024160377126469
127 => 0.019499309981182
128 => 0.020594358568381
129 => 0.019943717882203
130 => 0.020243563044932
131 => 0.019579427386934
201 => 0.019896387733263
202 => 0.019837856730835
203 => 0.021598662454207
204 => 0.021571169894746
205 => 0.021584329128086
206 => 0.020956204634554
207 => 0.021956824008189
208 => 0.022449765092751
209 => 0.022358534817201
210 => 0.022381495512077
211 => 0.021986954701671
212 => 0.021588149145554
213 => 0.021145812408085
214 => 0.02196761939183
215 => 0.02187624848395
216 => 0.02208582047241
217 => 0.022618821045345
218 => 0.022697307404382
219 => 0.022802793866857
220 => 0.022764984479098
221 => 0.023665757489301
222 => 0.023556667934274
223 => 0.023819542374683
224 => 0.02327878970643
225 => 0.022666876733587
226 => 0.022783181384782
227 => 0.022771980311609
228 => 0.022629377794123
229 => 0.022500642617526
301 => 0.022286334819404
302 => 0.022964436404251
303 => 0.022936906718265
304 => 0.023382580334617
305 => 0.023303803193884
306 => 0.022777710168034
307 => 0.022796499683373
308 => 0.022922868203963
309 => 0.023360231096575
310 => 0.023490070181039
311 => 0.023429923543922
312 => 0.023572286172657
313 => 0.023684803789818
314 => 0.023586416653021
315 => 0.024979371029951
316 => 0.024400919256209
317 => 0.02468285262589
318 => 0.024750092073311
319 => 0.024577859642635
320 => 0.024615210689668
321 => 0.024671787348371
322 => 0.025015309741171
323 => 0.025916811898884
324 => 0.026316081067802
325 => 0.027517302062086
326 => 0.026282927321418
327 => 0.026209684632658
328 => 0.026426060807127
329 => 0.027131304692927
330 => 0.027702838622179
331 => 0.027892449399095
401 => 0.027917509593397
402 => 0.028273232015978
403 => 0.028477125474771
404 => 0.028230037957448
405 => 0.028020657157659
406 => 0.027270681122114
407 => 0.027357492890345
408 => 0.02795553988637
409 => 0.028800316493047
410 => 0.029525222705602
411 => 0.029271385815497
412 => 0.031207982106077
413 => 0.031399987718002
414 => 0.031373458750718
415 => 0.031810876108949
416 => 0.030942691731358
417 => 0.030571526089657
418 => 0.028065927663146
419 => 0.028769898618964
420 => 0.02979316174601
421 => 0.029657729034106
422 => 0.028914607999343
423 => 0.02952465898166
424 => 0.029322957048848
425 => 0.029163866365818
426 => 0.029892691626023
427 => 0.029091318313936
428 => 0.029785167434203
429 => 0.028895298760511
430 => 0.02927254532103
501 => 0.029058401927916
502 => 0.029196978947688
503 => 0.028386860521696
504 => 0.028823980759848
505 => 0.028368674882671
506 => 0.028368459008403
507 => 0.028358408105929
508 => 0.028894073451292
509 => 0.028911541478973
510 => 0.028515683979404
511 => 0.02845863472926
512 => 0.028669575707766
513 => 0.028422619067466
514 => 0.028538168525136
515 => 0.028426118942826
516 => 0.028400894221723
517 => 0.028199899352341
518 => 0.028113305236142
519 => 0.028147261020359
520 => 0.02803135242342
521 => 0.027961513301167
522 => 0.028344515346687
523 => 0.028139892804024
524 => 0.028313154007324
525 => 0.028115700998857
526 => 0.02743124284533
527 => 0.027037603723223
528 => 0.025744725720514
529 => 0.026111384318272
530 => 0.026354479347921
531 => 0.026274136442072
601 => 0.026446744092413
602 => 0.026457340800283
603 => 0.02640122429363
604 => 0.026336248567896
605 => 0.026304621977992
606 => 0.026540340667959
607 => 0.026677183301411
608 => 0.026378877186339
609 => 0.026308988237323
610 => 0.026610592189594
611 => 0.026794570426248
612 => 0.028152962357261
613 => 0.028052328295464
614 => 0.028304900042138
615 => 0.028276464339492
616 => 0.028541199767842
617 => 0.028973930307654
618 => 0.028094068126854
619 => 0.028246781778096
620 => 0.028209339917485
621 => 0.028618120333855
622 => 0.028619396501695
623 => 0.028374312221985
624 => 0.028507176386054
625 => 0.028433015254609
626 => 0.028567034442609
627 => 0.028050984266215
628 => 0.028679477676889
629 => 0.029035792941521
630 => 0.029040740379316
701 => 0.029209630986858
702 => 0.029381233625606
703 => 0.029710609947242
704 => 0.029372047498765
705 => 0.028763006612344
706 => 0.028806977397154
707 => 0.028449896948285
708 => 0.028455899535142
709 => 0.028423857256067
710 => 0.028520018547603
711 => 0.028072086262088
712 => 0.028177215074184
713 => 0.028030034121617
714 => 0.028246461835449
715 => 0.028013621392148
716 => 0.028209321861886
717 => 0.028293779697051
718 => 0.028605430927059
719 => 0.02796759025208
720 => 0.026666989937779
721 => 0.0269403918921
722 => 0.0265360089264
723 => 0.02657343610947
724 => 0.026649044975763
725 => 0.026403971902424
726 => 0.026450724121677
727 => 0.026449053803415
728 => 0.026434659903012
729 => 0.026370906931465
730 => 0.026278452509582
731 => 0.026646762470396
801 => 0.026709345509729
802 => 0.026848459853768
803 => 0.027262369779466
804 => 0.027221010417221
805 => 0.027288469253027
806 => 0.027141206993228
807 => 0.026580267183343
808 => 0.026610728913783
809 => 0.026230870647086
810 => 0.02683874602385
811 => 0.02669479311107
812 => 0.026601985731731
813 => 0.026576662378424
814 => 0.026991598306769
815 => 0.027115753639854
816 => 0.02703838836803
817 => 0.026879709938413
818 => 0.027184419432343
819 => 0.027265946838257
820 => 0.027284197817827
821 => 0.02782408461882
822 => 0.027314371492608
823 => 0.0274370645082
824 => 0.028394280391583
825 => 0.027526217672117
826 => 0.027986049854727
827 => 0.02796354346224
828 => 0.02819877804699
829 => 0.027944247360307
830 => 0.027947402573221
831 => 0.028156274948308
901 => 0.027862951367829
902 => 0.027790320324284
903 => 0.027689981057819
904 => 0.027909068175306
905 => 0.028040400993781
906 => 0.029098847057366
907 => 0.029782651485446
908 => 0.029752965731817
909 => 0.030024237950582
910 => 0.02990202733146
911 => 0.029507377004781
912 => 0.030180996989942
913 => 0.02996783544118
914 => 0.029985408220268
915 => 0.029984754160553
916 => 0.030126487955574
917 => 0.03002605657209
918 => 0.029828096006173
919 => 0.029959511468262
920 => 0.030349768408776
921 => 0.031561137926679
922 => 0.032239036357409
923 => 0.031520327589955
924 => 0.032016083273851
925 => 0.031718806519325
926 => 0.03166478248981
927 => 0.031976153695354
928 => 0.032288069914975
929 => 0.032268202200236
930 => 0.032041767041867
1001 => 0.031913859566483
1002 => 0.032882417822234
1003 => 0.033596035046113
1004 => 0.033547371135595
1005 => 0.033762157810269
1006 => 0.034392778130216
1007 => 0.03445043414908
1008 => 0.034443170815912
1009 => 0.034300264357372
1010 => 0.034921191958756
1011 => 0.035439180688012
1012 => 0.034267185641185
1013 => 0.034713466012475
1014 => 0.034913815649402
1015 => 0.035207988357471
1016 => 0.035704307025053
1017 => 0.036243440740072
1018 => 0.036319680158676
1019 => 0.036265584642784
1020 => 0.035910011465037
1021 => 0.036499938009214
1022 => 0.036845503143313
1023 => 0.037051279272551
1024 => 0.037573093298417
1025 => 0.034915052940553
1026 => 0.033033559862079
1027 => 0.032739737548786
1028 => 0.03333723677686
1029 => 0.033494792558336
1030 => 0.033431282020381
1031 => 0.031313490502692
1101 => 0.032728587814733
1102 => 0.034251113537727
1103 => 0.034309599951429
1104 => 0.035071808162871
1105 => 0.035320014400487
1106 => 0.035933691915613
1107 => 0.035895306219955
1108 => 0.036044726929146
1109 => 0.036010377695709
1110 => 0.037147086067432
1111 => 0.038401044204269
1112 => 0.038357623621333
1113 => 0.038177352303004
1114 => 0.03844508595155
1115 => 0.039739305131087
1116 => 0.039620154168475
1117 => 0.039735899179398
1118 => 0.041261856531068
1119 => 0.043245818153141
1120 => 0.042324068793198
1121 => 0.044323999678041
1122 => 0.045582850158269
1123 => 0.047759901896255
1124 => 0.047487324296453
1125 => 0.048334834562107
1126 => 0.046999353504146
1127 => 0.043932819049816
1128 => 0.043447528234196
1129 => 0.044419092736588
1130 => 0.046807589261842
1201 => 0.04434387048107
1202 => 0.044842277581666
1203 => 0.044698736303165
1204 => 0.044691087598445
1205 => 0.044983007548084
1206 => 0.044559562435612
1207 => 0.042834370871082
1208 => 0.043625015998488
1209 => 0.043319709944899
1210 => 0.043658469773431
1211 => 0.045486616852832
1212 => 0.044678349451446
1213 => 0.043826905402397
1214 => 0.044894805190464
1215 => 0.046254608590855
1216 => 0.04616951453786
1217 => 0.046004396508495
1218 => 0.046935158194726
1219 => 0.048472503812792
1220 => 0.0488880421558
1221 => 0.049194784065301
1222 => 0.049237078592174
1223 => 0.04967273850487
1224 => 0.04733008535387
1225 => 0.051047936068107
1226 => 0.051689906182903
1227 => 0.051569242408256
1228 => 0.052282765172619
1229 => 0.052072828675018
1230 => 0.051768663628022
1231 => 0.052899748980182
]
'min_raw' => 0.019499309981182
'max_raw' => 0.052899748980182
'avg_raw' => 0.036199529480682
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.019499'
'max' => '$0.052899'
'avg' => '$0.036199'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.006724808074627
'max_diff' => 0.024381573375333
'year' => 2032
]
7 => [
'items' => [
101 => 0.051603050897812
102 => 0.049762551219637
103 => 0.048752816695234
104 => 0.050082516569928
105 => 0.050894517883273
106 => 0.051431199098411
107 => 0.05159359850984
108 => 0.047511938849304
109 => 0.045312150671498
110 => 0.046722189672849
111 => 0.048442534570191
112 => 0.047320528751103
113 => 0.047364509254973
114 => 0.045764823814897
115 => 0.048584071235887
116 => 0.048173330600252
117 => 0.050304253744515
118 => 0.04979569183441
119 => 0.051533376936597
120 => 0.051075786213022
121 => 0.05297521972303
122 => 0.053732955175282
123 => 0.055005310931718
124 => 0.055941261005573
125 => 0.056490868790812
126 => 0.056457872400913
127 => 0.058635692259543
128 => 0.057351507976139
129 => 0.055738269857188
130 => 0.055709091469317
131 => 0.056544610350883
201 => 0.058295628713234
202 => 0.058749642298311
203 => 0.059003373954696
204 => 0.058614775090479
205 => 0.057220885089162
206 => 0.056619010453776
207 => 0.057131825081111
208 => 0.056504696858543
209 => 0.057587296111797
210 => 0.059073936117239
211 => 0.058766950834927
212 => 0.05979315660789
213 => 0.060855171622911
214 => 0.06237390079247
215 => 0.062770952835771
216 => 0.063427264764811
217 => 0.06410282532703
218 => 0.064319797172747
219 => 0.064734063748631
220 => 0.064731880359289
221 => 0.065980300569072
222 => 0.067357346720818
223 => 0.067877149764411
224 => 0.069072408201045
225 => 0.06702557001516
226 => 0.068578120291536
227 => 0.069978559503681
228 => 0.06830889814163
301 => 0.070610137348014
302 => 0.070699489251678
303 => 0.072048596913534
304 => 0.070681017840488
305 => 0.069868953752381
306 => 0.072213352347103
307 => 0.073347732979225
308 => 0.073006048300934
309 => 0.070405811028086
310 => 0.068892361405866
311 => 0.064931371821885
312 => 0.069623335086126
313 => 0.071908653525693
314 => 0.07039989260542
315 => 0.071160823854224
316 => 0.075312218014914
317 => 0.076892800128439
318 => 0.076564050097928
319 => 0.076619603441399
320 => 0.077472456860262
321 => 0.081254478594457
322 => 0.07898820350475
323 => 0.080720685895123
324 => 0.081639588308047
325 => 0.082493116080159
326 => 0.080397121632075
327 => 0.077670263651391
328 => 0.076806553263198
329 => 0.070249876066326
330 => 0.069908572544023
331 => 0.0697169885344
401 => 0.068509078453818
402 => 0.067559992004897
403 => 0.066805243223394
404 => 0.064824557033667
405 => 0.065492980479047
406 => 0.062336180093958
407 => 0.064355789110202
408 => 0.059317459471988
409 => 0.063513530109466
410 => 0.061229799633408
411 => 0.062763263227347
412 => 0.062757913117328
413 => 0.059934320455812
414 => 0.058305731135524
415 => 0.059343531636056
416 => 0.060456136153332
417 => 0.060636652493009
418 => 0.062079173291607
419 => 0.062481749839615
420 => 0.061261924104649
421 => 0.059213051288994
422 => 0.059688957714257
423 => 0.058296086907006
424 => 0.0558551343933
425 => 0.057608269103586
426 => 0.058206866373569
427 => 0.058471241029328
428 => 0.056070844577389
429 => 0.055316587897047
430 => 0.05491502796926
501 => 0.058903190249936
502 => 0.059121670782439
503 => 0.058003893488121
504 => 0.063056352850432
505 => 0.061912825689709
506 => 0.063190425699193
507 => 0.05964577419438
508 => 0.05978118465537
509 => 0.058103089827431
510 => 0.05904271080074
511 => 0.058378616982203
512 => 0.058966798711612
513 => 0.059319352415055
514 => 0.060997171884145
515 => 0.063532688112684
516 => 0.060746561605812
517 => 0.059532606388701
518 => 0.060285737377853
519 => 0.062291424448407
520 => 0.065330143029528
521 => 0.063531160469594
522 => 0.064329518380988
523 => 0.064503924068156
524 => 0.063177420930415
525 => 0.065379053092321
526 => 0.066558925653914
527 => 0.067769230761884
528 => 0.068820104775154
529 => 0.067285808286581
530 => 0.068927725462117
531 => 0.067604630056033
601 => 0.066417676697687
602 => 0.066419476815979
603 => 0.065674883635666
604 => 0.064232140524033
605 => 0.063966076558598
606 => 0.065350174906969
607 => 0.066460090707761
608 => 0.066551508689253
609 => 0.067166015106104
610 => 0.067529673673678
611 => 0.071094022005746
612 => 0.07252763239074
613 => 0.074280624032654
614 => 0.074963513070375
615 => 0.077018764244646
616 => 0.075358982002083
617 => 0.074999877673385
618 => 0.070014510592139
619 => 0.070830864172408
620 => 0.072137925020822
621 => 0.070036063544109
622 => 0.071369210869261
623 => 0.071632402391167
624 => 0.069964643095418
625 => 0.070855465394903
626 => 0.068489705477875
627 => 0.063584255214
628 => 0.065384514260762
629 => 0.066710110879822
630 => 0.064818321059539
701 => 0.068209281090019
702 => 0.066228352243836
703 => 0.06560049290095
704 => 0.063150989756333
705 => 0.06430706095057
706 => 0.06587066379412
707 => 0.064904539025147
708 => 0.066909392985129
709 => 0.069748800867485
710 => 0.071772332014115
711 => 0.071927673609267
712 => 0.070626678648042
713 => 0.072711531376244
714 => 0.072726717252284
715 => 0.070374994857998
716 => 0.068934577985943
717 => 0.068607312241949
718 => 0.069424886234674
719 => 0.070417571994328
720 => 0.071982760760186
721 => 0.072928571550798
722 => 0.075394744473431
723 => 0.076062020155577
724 => 0.076795153824909
725 => 0.077774846497187
726 => 0.078951218738303
727 => 0.076377383245651
728 => 0.076479646528004
729 => 0.074082926554425
730 => 0.071521687538244
731 => 0.073465348688575
801 => 0.076006427088225
802 => 0.075423500895703
803 => 0.075357909790943
804 => 0.075468215835694
805 => 0.075028708523122
806 => 0.073040833237261
807 => 0.072042534713459
808 => 0.073330594502279
809 => 0.074015140955091
810 => 0.075076812804679
811 => 0.074945939340043
812 => 0.077680692009347
813 => 0.078743334202011
814 => 0.078471464856104
815 => 0.078521495358652
816 => 0.080445358290063
817 => 0.08258508954238
818 => 0.084589230222582
819 => 0.086627928202329
820 => 0.084170198216008
821 => 0.082922314500666
822 => 0.084209811962876
823 => 0.083526647686589
824 => 0.087452312257825
825 => 0.087724116755344
826 => 0.091649497456349
827 => 0.095375151167243
828 => 0.09303513482345
829 => 0.095241664838996
830 => 0.09762820695184
831 => 0.10223223389002
901 => 0.10068175958886
902 => 0.099494120573204
903 => 0.098371807442038
904 => 0.1007071629058
905 => 0.10371156040172
906 => 0.10435867884658
907 => 0.10540725794553
908 => 0.10430480523714
909 => 0.10563258809321
910 => 0.11032024503249
911 => 0.1090535987484
912 => 0.10725475740145
913 => 0.11095521234766
914 => 0.11229439260753
915 => 0.1216934610055
916 => 0.13356017311408
917 => 0.12864727638009
918 => 0.12559768283912
919 => 0.12631440965858
920 => 0.13064773120707
921 => 0.1320394565557
922 => 0.12825626730164
923 => 0.12959255370339
924 => 0.13695562315782
925 => 0.14090567368457
926 => 0.13554097450668
927 => 0.12073998224193
928 => 0.10709279141971
929 => 0.11071264096677
930 => 0.11030226236515
1001 => 0.11821296193231
1002 => 0.10902338965344
1003 => 0.10917811848264
1004 => 0.11725240293928
1005 => 0.11509832227453
1006 => 0.11160898747144
1007 => 0.1071182674253
1008 => 0.098816756078685
1009 => 0.091463875974219
1010 => 0.10588456712623
1011 => 0.10526272070143
1012 => 0.10436219492585
1013 => 0.10636621759235
1014 => 0.11609718280913
1015 => 0.11587285256483
1016 => 0.11444577800484
1017 => 0.11552820148093
1018 => 0.11141923340264
1019 => 0.11247820803588
1020 => 0.10709062963495
1021 => 0.10952604007732
1022 => 0.11160150092609
1023 => 0.1120181804192
1024 => 0.11295698059337
1025 => 0.10493503589248
1026 => 0.10853665355126
1027 => 0.11065226649985
1028 => 0.10109385023145
1029 => 0.11046332734288
1030 => 0.10479539168246
1031 => 0.10287160918977
1101 => 0.1054617288771
1102 => 0.10445235671598
1103 => 0.10358455780416
1104 => 0.10310031110069
1105 => 0.10500220913799
1106 => 0.10491348332129
1107 => 0.10180160898977
1108 => 0.097742295780535
1109 => 0.099104734535969
1110 => 0.098609747763188
1111 => 0.096815851844067
1112 => 0.098024721097735
1113 => 0.092701472699308
1114 => 0.083543100508189
1115 => 0.089593401706169
1116 => 0.089360471691508
1117 => 0.089243017815581
1118 => 0.09378965194782
1119 => 0.093352597984702
1120 => 0.092559340761997
1121 => 0.096801283053092
1122 => 0.095252917054667
1123 => 0.1000246162209
1124 => 0.10316756590594
1125 => 0.10237041220204
1126 => 0.10532637157201
1127 => 0.099136122373154
1128 => 0.10119227484732
1129 => 0.10161604502254
1130 => 0.09674893814368
1201 => 0.093424105418206
1202 => 0.093202376981285
1203 => 0.087437575225486
1204 => 0.09051708579158
1205 => 0.093226927650936
1206 => 0.091929123692528
1207 => 0.091518277730086
1208 => 0.093617200650583
1209 => 0.093780304937565
1210 => 0.090061509909363
1211 => 0.090834765154649
1212 => 0.094059368070479
1213 => 0.090753513434649
1214 => 0.084330777885518
1215 => 0.082737850668067
1216 => 0.082525324813786
1217 => 0.078205179863409
1218 => 0.082844297681615
1219 => 0.08081919843334
1220 => 0.087216462694227
1221 => 0.083562379657625
1222 => 0.08340485944124
1223 => 0.083166744530983
1224 => 0.079448217309253
1225 => 0.080262338446079
1226 => 0.082968601099037
1227 => 0.083934226101843
1228 => 0.083833503502918
1229 => 0.082955338935641
1230 => 0.08335735817761
1231 => 0.082062314126438
]
'min_raw' => 0.045312150671498
'max_raw' => 0.14090567368457
'avg_raw' => 0.093108912178033
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.045312'
'max' => '$0.1409056'
'avg' => '$0.0931089'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.025812840690316
'max_diff' => 0.088005924704387
'year' => 2033
]
8 => [
'items' => [
101 => 0.081605007117958
102 => 0.080161620406993
103 => 0.07804024068763
104 => 0.078335231548786
105 => 0.07413222323553
106 => 0.071842201235933
107 => 0.07120835332845
108 => 0.070360745416235
109 => 0.071304092897533
110 => 0.074120316641058
111 => 0.07072335331117
112 => 0.064899497951348
113 => 0.06524952158184
114 => 0.066035920756607
115 => 0.06457047109698
116 => 0.06318354598001
117 => 0.064389364844424
118 => 0.061921720553939
119 => 0.066334123779802
120 => 0.066214780638159
121 => 0.067859451699576
122 => 0.068887898266328
123 => 0.066517661893495
124 => 0.065921553855528
125 => 0.066261124085554
126 => 0.060648784585265
127 => 0.067400803826742
128 => 0.067459195569526
129 => 0.066959210017155
130 => 0.070554451818035
131 => 0.07814153340193
201 => 0.075286968120419
202 => 0.074181594163726
203 => 0.072080277464028
204 => 0.074880157202535
205 => 0.074665170123546
206 => 0.073692917020927
207 => 0.073104895310849
208 => 0.074188343341398
209 => 0.072970644109876
210 => 0.072751911867757
211 => 0.071426632463546
212 => 0.070953568012613
213 => 0.070603329926381
214 => 0.070217752207123
215 => 0.071068240575825
216 => 0.069140922041283
217 => 0.066816764825992
218 => 0.06662353630127
219 => 0.067157057246853
220 => 0.066921013944396
221 => 0.06662240621675
222 => 0.0660522827437
223 => 0.065883139288007
224 => 0.066432773462271
225 => 0.06581226852519
226 => 0.066727857360507
227 => 0.066478867859142
228 => 0.065088032744776
301 => 0.063354537239164
302 => 0.063339105493034
303 => 0.062965626729853
304 => 0.062489945372033
305 => 0.062357621700403
306 => 0.064287814142965
307 => 0.068283254733271
308 => 0.067498854142603
309 => 0.068065663957966
310 => 0.070853807257259
311 => 0.07174007416971
312 => 0.071111022907635
313 => 0.070249938741914
314 => 0.07028782207513
315 => 0.073230407337301
316 => 0.073413932770654
317 => 0.073877642333189
318 => 0.074473640165353
319 => 0.07121252391562
320 => 0.070134223793034
321 => 0.06962326537314
322 => 0.068049711205661
323 => 0.069746654468949
324 => 0.068757918299786
325 => 0.068891332589044
326 => 0.068804446358143
327 => 0.068851892115436
328 => 0.066332890423175
329 => 0.067250682245004
330 => 0.065724675332562
331 => 0.063681523379118
401 => 0.063674674017349
402 => 0.064174732563423
403 => 0.063877278172925
404 => 0.063076836056348
405 => 0.063190535081027
406 => 0.062194411985098
407 => 0.063311482460264
408 => 0.063343516044421
409 => 0.062913383064242
410 => 0.064634384257256
411 => 0.065339479850237
412 => 0.065056357108342
413 => 0.065319615203918
414 => 0.067531449528502
415 => 0.067892075032507
416 => 0.068052241059802
417 => 0.067837639801159
418 => 0.06536004347505
419 => 0.065469935407666
420 => 0.064663621320573
421 => 0.063982370884264
422 => 0.064009617329028
423 => 0.064359868609649
424 => 0.065889436494084
425 => 0.069108321933925
426 => 0.069230476283392
427 => 0.06937853091844
428 => 0.068776318311402
429 => 0.06859468522672
430 => 0.068834306148892
501 => 0.07004315027914
502 => 0.073152625580119
503 => 0.07205352933388
504 => 0.071159946977236
505 => 0.071943859612087
506 => 0.071823182406462
507 => 0.070804545345741
508 => 0.070775955596122
509 => 0.06882086539863
510 => 0.068098113067867
511 => 0.067494127123207
512 => 0.06683459023909
513 => 0.06644359466631
514 => 0.067044341570411
515 => 0.067181739495207
516 => 0.065868195890131
517 => 0.06568916475047
518 => 0.066761832813183
519 => 0.066289791591879
520 => 0.066775297694049
521 => 0.066887939274346
522 => 0.066869801385563
523 => 0.066376936136933
524 => 0.066691073748956
525 => 0.065948044647591
526 => 0.065140112099219
527 => 0.064624701469334
528 => 0.06417493733546
529 => 0.064424492617378
530 => 0.063534873604334
531 => 0.063250266577568
601 => 0.066584650994323
602 => 0.069047796613653
603 => 0.069011981500835
604 => 0.068793966212456
605 => 0.068470039716711
606 => 0.070019453038363
607 => 0.069479668418597
608 => 0.069872406829991
609 => 0.06997237523887
610 => 0.070274949503988
611 => 0.070383093796631
612 => 0.070056206633224
613 => 0.068959133386923
614 => 0.066225331163736
615 => 0.064952738849085
616 => 0.064532762188548
617 => 0.064548027542509
618 => 0.064126940932717
619 => 0.064250969811079
620 => 0.064083808750407
621 => 0.063767246142098
622 => 0.064404945768365
623 => 0.06447843470971
624 => 0.064329587996996
625 => 0.064364646786169
626 => 0.06313225957816
627 => 0.063225955300981
628 => 0.062704245610039
629 => 0.062606431332292
630 => 0.06128759466405
701 => 0.058951084337828
702 => 0.0602457378691
703 => 0.058681978459158
704 => 0.058089759075791
705 => 0.060893233527639
706 => 0.060611842448951
707 => 0.060130223239998
708 => 0.059417808051719
709 => 0.059153566328457
710 => 0.05754811726668
711 => 0.057453258771373
712 => 0.058248962677161
713 => 0.057881772703139
714 => 0.057366098913896
715 => 0.055498380722268
716 => 0.053398447094638
717 => 0.053461830891144
718 => 0.054129780707439
719 => 0.056071934883622
720 => 0.055313101647379
721 => 0.054762559427877
722 => 0.054659459419402
723 => 0.055949971879948
724 => 0.05777631738234
725 => 0.058633197829885
726 => 0.057784055330214
727 => 0.056808606147671
728 => 0.056867977219616
729 => 0.057262946362558
730 => 0.057304452034918
731 => 0.056669534894879
801 => 0.056848260350752
802 => 0.056576760040283
803 => 0.054910563136087
804 => 0.054880426917658
805 => 0.054471515326313
806 => 0.054459133645839
807 => 0.053763473021186
808 => 0.053666145290922
809 => 0.052284868897091
810 => 0.053194029202401
811 => 0.052584212202657
812 => 0.051665074142756
813 => 0.051506614394785
814 => 0.051501850903415
815 => 0.052445600175424
816 => 0.053183000942679
817 => 0.052594820230453
818 => 0.052460902883683
819 => 0.053890789790836
820 => 0.053708823648193
821 => 0.053551242142219
822 => 0.057612788174134
823 => 0.054397757563484
824 => 0.052995820709709
825 => 0.051260657632575
826 => 0.051825635479941
827 => 0.051944684613633
828 => 0.047771930199778
829 => 0.04607904425376
830 => 0.045498109592148
831 => 0.04516377348118
901 => 0.045316134645277
902 => 0.043792338738144
903 => 0.044816354788996
904 => 0.04349687633668
905 => 0.043275661480196
906 => 0.045635052404949
907 => 0.045963347868767
908 => 0.044562737426715
909 => 0.045462156068746
910 => 0.045136014366291
911 => 0.043519495007613
912 => 0.043457755858423
913 => 0.042646643267641
914 => 0.041377409125413
915 => 0.040797335064317
916 => 0.040495227456864
917 => 0.040619882943659
918 => 0.040556853315015
919 => 0.040145542353226
920 => 0.040580429177881
921 => 0.039469473048531
922 => 0.039027081366242
923 => 0.038827263306761
924 => 0.037841225797714
925 => 0.039410449967479
926 => 0.039719606897487
927 => 0.040029372962152
928 => 0.04272567506878
929 => 0.042590975435203
930 => 0.043808594521353
1001 => 0.043761280082723
1002 => 0.043413995395231
1003 => 0.041948858424264
1004 => 0.042532835907336
1005 => 0.040735443984691
1006 => 0.042082172223908
1007 => 0.041467581696245
1008 => 0.041874378548282
1009 => 0.041142921128926
1010 => 0.041547739865934
1011 => 0.039792919474558
1012 => 0.038154292884081
1013 => 0.038813724058581
1014 => 0.039530601160365
1015 => 0.041084973373921
1016 => 0.04015920210682
1017 => 0.040492144461757
1018 => 0.039376843306595
1019 => 0.03707565845347
1020 => 0.037088682909831
1021 => 0.036734695754215
1022 => 0.036428799168791
1023 => 0.040265538073324
1024 => 0.039788378940679
1025 => 0.039028088311852
1026 => 0.040045767531285
1027 => 0.040314858069644
1028 => 0.040322518698975
1029 => 0.04106499118737
1030 => 0.041461248887523
1031 => 0.041531091024654
1101 => 0.042699387527324
1102 => 0.043090985104816
1103 => 0.044703920105541
1104 => 0.041427629190163
1105 => 0.041360156134784
1106 => 0.040060088364902
1107 => 0.039235564831985
1108 => 0.040116544196612
1109 => 0.040896971647995
1110 => 0.04008433842125
1111 => 0.040190451165039
1112 => 0.039099557452707
1113 => 0.039489500623546
1114 => 0.03982537221329
1115 => 0.039639923663053
1116 => 0.039362298207537
1117 => 0.040832985496859
1118 => 0.040750003556326
1119 => 0.042119541371098
1120 => 0.043187194034301
1121 => 0.045100618472504
1122 => 0.043103860322168
1123 => 0.043031090518775
1124 => 0.043742427019585
1125 => 0.043090876202904
1126 => 0.043502633828277
1127 => 0.045034277953308
1128 => 0.045066639180137
1129 => 0.04452454693567
1130 => 0.044491560573329
1201 => 0.044595675318718
1202 => 0.045205478634428
1203 => 0.044992394618556
1204 => 0.04523898083635
1205 => 0.045547340677564
1206 => 0.046822847722688
1207 => 0.047130368153059
1208 => 0.046383252938321
1209 => 0.046450709077117
1210 => 0.046171267478034
1211 => 0.045901330394712
1212 => 0.046508109536874
1213 => 0.047617010345448
1214 => 0.04761011193107
1215 => 0.047867355364708
1216 => 0.048027615892745
1217 => 0.047339660388535
1218 => 0.046891826652119
1219 => 0.047063554603062
1220 => 0.047338151336368
1221 => 0.046974506583373
1222 => 0.044729922711256
1223 => 0.045410786073483
1224 => 0.045297457117491
1225 => 0.045136062902886
1226 => 0.045820676278567
1227 => 0.045754643648357
1228 => 0.043776710008658
1229 => 0.043903330902882
1230 => 0.043784410244617
1231 => 0.044168667220347
]
'min_raw' => 0.036428799168791
'max_raw' => 0.081605007117958
'avg_raw' => 0.059016903143375
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.036428'
'max' => '$0.081605'
'avg' => '$0.059016'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0088833515027062
'max_diff' => -0.05930066656661
'year' => 2034
]
9 => [
'items' => [
101 => 0.043070125065191
102 => 0.043408029233322
103 => 0.04361995955992
104 => 0.043744788150411
105 => 0.044195754615032
106 => 0.044142838905444
107 => 0.044192465300227
108 => 0.044861129516526
109 => 0.04824300366472
110 => 0.048427071612922
111 => 0.047520653716289
112 => 0.047882749787691
113 => 0.047187604512304
114 => 0.04765426019274
115 => 0.047973534157525
116 => 0.046530796503514
117 => 0.046445366942933
118 => 0.045747352555718
119 => 0.046122425949852
120 => 0.045525657211053
121 => 0.04567208338547
122 => 0.045262663036597
123 => 0.045999538149791
124 => 0.046823479025159
125 => 0.047031639028688
126 => 0.046484059677919
127 => 0.046087576140725
128 => 0.045391481659208
129 => 0.046549102295448
130 => 0.046887625847334
131 => 0.046547324175343
201 => 0.046468468842205
202 => 0.046319038128396
203 => 0.046500171274544
204 => 0.046885782175368
205 => 0.046703935195655
206 => 0.046824048329487
207 => 0.046366300923444
208 => 0.047339888130432
209 => 0.048886178921651
210 => 0.048891150499388
211 => 0.048709302539452
212 => 0.048634894272215
213 => 0.048821481314567
214 => 0.048922697130841
215 => 0.049526085411595
216 => 0.050173545076894
217 => 0.053194956826059
218 => 0.052346556497268
219 => 0.055027332745717
220 => 0.057147478703011
221 => 0.057783217772857
222 => 0.057198367742433
223 => 0.055197627381332
224 => 0.055099461514181
225 => 0.058089412304458
226 => 0.057244614257783
227 => 0.057144128218256
228 => 0.056075126531533
301 => 0.056707038926821
302 => 0.056568830416376
303 => 0.056350661521246
304 => 0.057556306352057
305 => 0.059813165846677
306 => 0.059461413129746
307 => 0.059198846043896
308 => 0.058048353505831
309 => 0.058741206985558
310 => 0.058494495132162
311 => 0.059554525821563
312 => 0.058926587123716
313 => 0.057238214081697
314 => 0.057507093053589
315 => 0.057466452537897
316 => 0.058302831471021
317 => 0.058051771275499
318 => 0.057417429005349
319 => 0.059805452146277
320 => 0.059650387206387
321 => 0.05987023383837
322 => 0.059967017124752
323 => 0.061420564728946
324 => 0.06201603667405
325 => 0.062151219230792
326 => 0.062716871523187
327 => 0.06213714528646
328 => 0.06445646357117
329 => 0.065998674894529
330 => 0.067790032708079
331 => 0.070407687945264
401 => 0.07139195052911
402 => 0.071214152303131
403 => 0.073198828629078
404 => 0.07676524786993
405 => 0.071935027599535
406 => 0.077021261272951
407 => 0.07541101841534
408 => 0.071593161566974
409 => 0.071347336595514
410 => 0.073932833579457
411 => 0.07966721704498
412 => 0.078230819025705
413 => 0.079669566477564
414 => 0.0779911911514
415 => 0.077907845669998
416 => 0.079588051534176
417 => 0.08351394411908
418 => 0.081648899711875
419 => 0.078974901226496
420 => 0.080949340096076
421 => 0.079238898421555
422 => 0.075384794606379
423 => 0.078229720639211
424 => 0.076327399619885
425 => 0.076882598026272
426 => 0.080880993859999
427 => 0.080399896294841
428 => 0.08102248109259
429 => 0.079923635220445
430 => 0.078897139903772
501 => 0.076981110166659
502 => 0.076413868220625
503 => 0.076570633487281
504 => 0.076413790535544
505 => 0.075341789506851
506 => 0.075110290986771
507 => 0.074724449977788
508 => 0.074844038240288
509 => 0.074118544261632
510 => 0.075487701294061
511 => 0.075741828904251
512 => 0.076738187214232
513 => 0.076841632439266
514 => 0.07961647615029
515 => 0.078088138863612
516 => 0.079113479465808
517 => 0.079021763351468
518 => 0.071675906101632
519 => 0.072688100417612
520 => 0.074262757129203
521 => 0.073553376415028
522 => 0.072550478054708
523 => 0.071740583856741
524 => 0.070513511330888
525 => 0.072240592347185
526 => 0.074511520229027
527 => 0.076899226917951
528 => 0.079767900055953
529 => 0.079127645606587
530 => 0.076845599069043
531 => 0.076947970009681
601 => 0.077580786883226
602 => 0.07676123153451
603 => 0.076519528662552
604 => 0.077547580620219
605 => 0.077554660249045
606 => 0.076611662773774
607 => 0.075563693646727
608 => 0.07555930261782
609 => 0.075372826633842
610 => 0.078024364814691
611 => 0.07948244271341
612 => 0.079649608994689
613 => 0.079471191090769
614 => 0.079539857060834
615 => 0.078691433658124
616 => 0.080630677964576
617 => 0.08241032031156
618 => 0.081933338146055
619 => 0.081218274072953
620 => 0.080648691096574
621 => 0.081799162498428
622 => 0.081747933817913
623 => 0.082394776688185
624 => 0.082365432159244
625 => 0.082147923230963
626 => 0.081933345913984
627 => 0.082784120721085
628 => 0.082539111239665
629 => 0.082293721190847
630 => 0.081801553880606
701 => 0.081868447592102
702 => 0.081153506984893
703 => 0.080822742746542
704 => 0.07584884221612
705 => 0.074519653467503
706 => 0.07493784330595
707 => 0.075075522259061
708 => 0.074497057612261
709 => 0.075326427320397
710 => 0.075197170929904
711 => 0.075700031932853
712 => 0.075385866209897
713 => 0.075398759680752
714 => 0.076322654084771
715 => 0.076590864560786
716 => 0.076454450547961
717 => 0.076549990246545
718 => 0.078751662275623
719 => 0.078438654918596
720 => 0.078272375998644
721 => 0.078318436395841
722 => 0.078881010803651
723 => 0.079038500922414
724 => 0.078371204222581
725 => 0.078685905203819
726 => 0.080025862040427
727 => 0.080494771098251
728 => 0.081991303721709
729 => 0.081355550064518
730 => 0.082522503417067
731 => 0.086109320179086
801 => 0.088974717597428
802 => 0.086339579713964
803 => 0.091601517166589
804 => 0.095698690253555
805 => 0.095541433926278
806 => 0.094826997029245
807 => 0.090162474398717
808 => 0.08587011112999
809 => 0.089460855267651
810 => 0.089470008812901
811 => 0.089161560707003
812 => 0.087245816012097
813 => 0.089094896944238
814 => 0.089241670273755
815 => 0.089159516239404
816 => 0.08769071927352
817 => 0.08544813778567
818 => 0.085886332840415
819 => 0.086604105279023
820 => 0.085245212309721
821 => 0.0848109636678
822 => 0.085618314512315
823 => 0.08821976715157
824 => 0.087727977599308
825 => 0.08771513498662
826 => 0.089819219242424
827 => 0.088313149005071
828 => 0.08589185988335
829 => 0.085280452447235
830 => 0.083110367942429
831 => 0.084609253039474
901 => 0.084663195245703
902 => 0.083842271196286
903 => 0.085958473345589
904 => 0.085938972170233
905 => 0.087947991155874
906 => 0.091788480903347
907 => 0.090652659105997
908 => 0.089331821932738
909 => 0.089475433556313
910 => 0.091050498603246
911 => 0.090098178320633
912 => 0.090440639334073
913 => 0.091049980247486
914 => 0.091417610749632
915 => 0.089422537184567
916 => 0.08895739010115
917 => 0.088005862412922
918 => 0.087757626600168
919 => 0.088532626047954
920 => 0.088328441074597
921 => 0.084658661612144
922 => 0.084275149239858
923 => 0.084286911016786
924 => 0.083322550921653
925 => 0.081851670303632
926 => 0.085717056746073
927 => 0.085406612118696
928 => 0.085063905276578
929 => 0.08510588490928
930 => 0.086783718153842
1001 => 0.085810490139386
1002 => 0.088397976324751
1003 => 0.087866066951995
1004 => 0.087320516110904
1005 => 0.087245104366781
1006 => 0.087035113837171
1007 => 0.086314978177107
1008 => 0.085445371094135
1009 => 0.084871181173881
1010 => 0.078289178359243
1011 => 0.079510759795891
1012 => 0.080916077888103
1013 => 0.081401188062075
1014 => 0.080571373540893
1015 => 0.086347744312182
1016 => 0.087403142914591
1017 => 0.084206271705948
1018 => 0.083608267630203
1019 => 0.086386949359831
1020 => 0.084711064596839
1021 => 0.085465715402999
1022 => 0.083834573132003
1023 => 0.087148928296949
1024 => 0.087123678463656
1025 => 0.085834319446385
1026 => 0.086924076858633
1027 => 0.086734704690642
1028 => 0.085279021535695
1029 => 0.087195076049416
1030 => 0.08719602638855
1031 => 0.085955046367509
1101 => 0.084505853388392
1102 => 0.084246771912137
1103 => 0.084051588822477
1104 => 0.085417712327883
1105 => 0.086642574391073
1106 => 0.088921739021613
1107 => 0.089494775161346
1108 => 0.091731373363902
1109 => 0.09039958803227
1110 => 0.090989951220275
1111 => 0.091630873972827
1112 => 0.091938155909553
1113 => 0.091437456483315
1114 => 0.094911814112432
1115 => 0.095205156347897
1116 => 0.095303511462048
1117 => 0.094131977617762
1118 => 0.095172573872398
1119 => 0.09468571334578
1120 => 0.095952389182291
1121 => 0.096151020127185
1122 => 0.095982786783361
1123 => 0.096045835380446
1124 => 0.09308108406268
1125 => 0.092927346066545
1126 => 0.090831117580489
1127 => 0.091685346183095
1128 => 0.090088406754765
1129 => 0.090594812697788
1130 => 0.090818031612259
1201 => 0.090701434718901
1202 => 0.091733642986613
1203 => 0.09085605509284
1204 => 0.088539956352368
1205 => 0.086223226592343
1206 => 0.086194141937373
1207 => 0.085584187885235
1208 => 0.085143302824196
1209 => 0.08522823292819
1210 => 0.085527537692272
1211 => 0.085125906687201
1212 => 0.085211615025342
1213 => 0.086634944510146
1214 => 0.086920383087602
1215 => 0.085950351273355
1216 => 0.08205553356423
1217 => 0.081099735529
1218 => 0.081786744202424
1219 => 0.081458398305553
1220 => 0.065743284999902
1221 => 0.069435317765494
1222 => 0.067241637265765
1223 => 0.068252586166427
1224 => 0.066013406427015
1225 => 0.067082060364128
1226 => 0.066884719002937
1227 => 0.072821398434817
1228 => 0.072728705351124
1229 => 0.072773072625079
1230 => 0.070655307040883
1231 => 0.074028965120108
]
'min_raw' => 0.043070125065191
'max_raw' => 0.096151020127185
'avg_raw' => 0.069610572596188
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.04307'
'max' => '$0.096151'
'avg' => '$0.06961'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0066413258963993
'max_diff' => 0.014546013009227
'year' => 2035
]
10 => [
'items' => [
101 => 0.075690950402755
102 => 0.075383361159243
103 => 0.075460774745085
104 => 0.074130552856841
105 => 0.072785952080678
106 => 0.071294582887336
107 => 0.074065362509761
108 => 0.073757299114533
109 => 0.074463885705476
110 => 0.076260934350036
111 => 0.076525556589271
112 => 0.076881211562338
113 => 0.076753734571738
114 => 0.079790753665602
115 => 0.079422950614438
116 => 0.080309250143584
117 => 0.078486064768424
118 => 0.076422957458086
119 => 0.076815086709721
120 => 0.076777321509485
121 => 0.076296527165591
122 => 0.075862487529691
123 => 0.075139933825828
124 => 0.07742620066268
125 => 0.077333382404317
126 => 0.078836002117787
127 => 0.078570399487762
128 => 0.076796640120467
129 => 0.076859990283276
130 => 0.077286050573213
131 => 0.078760650101355
201 => 0.0791984116397
202 => 0.078995623053358
203 => 0.079475608595579
204 => 0.079854969597564
205 => 0.079523250496684
206 => 0.084219693431473
207 => 0.08226940289009
208 => 0.083219960929926
209 => 0.083446663421413
210 => 0.082865969756507
211 => 0.082991901419344
212 => 0.083182653574218
213 => 0.084340863305511
214 => 0.08738034077111
215 => 0.088726504650201
216 => 0.092776505099001
217 => 0.088614724479548
218 => 0.08836778164075
219 => 0.089097309019875
220 => 0.091475088019407
221 => 0.093402054565103
222 => 0.094041340537678
223 => 0.094125832732415
224 => 0.095325175715892
225 => 0.096012616747599
226 => 0.095179543931846
227 => 0.094473601946855
228 => 0.091945005381362
229 => 0.092237697318957
301 => 0.094254054520363
302 => 0.097102277830194
303 => 0.099546349737158
304 => 0.098690520939845
305 => 0.10521989054237
306 => 0.10586725086838
307 => 0.10577780660299
308 => 0.10725258976577
309 => 0.10432544552202
310 => 0.10307403464707
311 => 0.094626234616792
312 => 0.096999721844015
313 => 0.1004497249188
314 => 0.099993104075005
315 => 0.097487619623249
316 => 0.099544449102529
317 => 0.098864396953674
318 => 0.098328011608483
319 => 0.10078529685822
320 => 0.09808341078642
321 => 0.1004227715384
322 => 0.097422517176398
323 => 0.098694430293701
324 => 0.097972430892805
325 => 0.098439652990103
326 => 0.09570828215621
327 => 0.0971820635579
328 => 0.095646968004556
329 => 0.095646240169389
330 => 0.095612352849966
331 => 0.097418385960819
401 => 0.097477280635725
402 => 0.09614261943804
403 => 0.095950273908128
404 => 0.096661476144588
405 => 0.095828844589854
406 => 0.096218427653793
407 => 0.095840644663986
408 => 0.095755597755653
409 => 0.095077929520518
410 => 0.094785971411946
411 => 0.09490045570915
412 => 0.09450966178209
413 => 0.094274194305402
414 => 0.095565512442222
415 => 0.094875613253344
416 => 0.09545977549698
417 => 0.094794048893204
418 => 0.092486350441245
419 => 0.091159168658055
420 => 0.086800140206063
421 => 0.08803635526769
422 => 0.088855967132506
423 => 0.088585085416074
424 => 0.089167044160279
425 => 0.0892027717007
426 => 0.089013570980592
427 => 0.08879450078482
428 => 0.088687869528859
429 => 0.089482611549437
430 => 0.089943986042168
501 => 0.088938226148132
502 => 0.088702590677036
503 => 0.089719469459432
504 => 0.090339764929262
505 => 0.09491967816457
506 => 0.094580383399173
507 => 0.095431946677083
508 => 0.095336073720294
509 => 0.096228647700213
510 => 0.097687628927471
511 => 0.094721112154888
512 => 0.095235996892177
513 => 0.095109759045019
514 => 0.09648799075895
515 => 0.096492293447921
516 => 0.09566597468764
517 => 0.096113935493079
518 => 0.095863896060645
519 => 0.09631575110991
520 => 0.094575851910723
521 => 0.09669486132482
522 => 0.097896203116663
523 => 0.097912883748608
524 => 0.098482310223503
525 => 0.099060880500955
526 => 0.10017139576567
527 => 0.099029908832955
528 => 0.096976484962512
529 => 0.097124735533439
530 => 0.095920813869517
531 => 0.095941052010194
601 => 0.09583301922917
602 => 0.096157233737352
603 => 0.094646998763106
604 => 0.095001447892946
605 => 0.094505217035518
606 => 0.095234918183205
607 => 0.094449880372215
608 => 0.095109698169306
609 => 0.095394453657225
610 => 0.096445207537991
611 => 0.094294683169684
612 => 0.089909618405005
613 => 0.090831412182311
614 => 0.089468006780336
615 => 0.089594195141139
616 => 0.08984911571269
617 => 0.089022834735472
618 => 0.089180463106819
619 => 0.089174831512181
620 => 0.089126301472022
621 => 0.088911353877362
622 => 0.088599637339019
623 => 0.089841420086485
624 => 0.090052423173004
625 => 0.090521456896584
626 => 0.091916983109346
627 => 0.091777537131916
628 => 0.092004979306661
629 => 0.091508474316226
630 => 0.089617226583635
701 => 0.089719930434582
702 => 0.088439211767555
703 => 0.09048870604082
704 => 0.090003358744908
705 => 0.089690452185863
706 => 0.089605072732169
707 => 0.091004058184486
708 => 0.09142265655823
709 => 0.091161814142804
710 => 0.090626818738779
711 => 0.091654168071701
712 => 0.091929043412802
713 => 0.091990577864662
714 => 0.093810843907905
715 => 0.092092310515846
716 => 0.092505978584068
717 => 0.095733298765573
718 => 0.09280656470069
719 => 0.094356921008817
720 => 0.094281039135199
721 => 0.095074148961239
722 => 0.094215980980322
723 => 0.094226619000951
724 => 0.094930846796562
725 => 0.093941885865779
726 => 0.093697005231528
727 => 0.093358704389179
728 => 0.094097371901959
729 => 0.094540169668813
730 => 0.098108794470532
731 => 0.10041428884151
801 => 0.10031420125055
802 => 0.10122881447574
803 => 0.1008167728409
804 => 0.099486181710892
805 => 0.10175733852151
806 => 0.10103864947739
807 => 0.10109789732898
808 => 0.10109569212099
809 => 0.10157355750644
810 => 0.10123494608513
811 => 0.10056750821597
812 => 0.10101058462154
813 => 0.10232636314335
814 => 0.10641058004808
815 => 0.10869616193664
816 => 0.10627298514853
817 => 0.10794446004934
818 => 0.10694217071626
819 => 0.10676002492891
820 => 0.10780983468765
821 => 0.10886148199939
822 => 0.10879449661203
823 => 0.10803105466639
824 => 0.10759980568292
825 => 0.11086536746476
826 => 0.11327137775823
827 => 0.11310730398631
828 => 0.11383147225591
829 => 0.11595765269311
830 => 0.11615204398613
831 => 0.11612755515124
901 => 0.11564573604886
902 => 0.11773923680871
903 => 0.11948567197421
904 => 0.11553420884776
905 => 0.11703887427786
906 => 0.11771436706673
907 => 0.11870619089046
908 => 0.12037956393008
909 => 0.12219729089138
910 => 0.12245433741407
911 => 0.12227195060541
912 => 0.12107311081131
913 => 0.12306208934236
914 => 0.12422718631856
915 => 0.12492097490512
916 => 0.12668030732521
917 => 0.11771853868023
918 => 0.1113749534045
919 => 0.11038431096121
920 => 0.11239882132473
921 => 0.11293003164217
922 => 0.11271590142929
923 => 0.10557561946792
924 => 0.1103467188544
925 => 0.11548002062883
926 => 0.11567721165602
927 => 0.11824704985657
928 => 0.1190838945159
929 => 0.12115295110374
930 => 0.12102353105083
1001 => 0.12152731340409
1002 => 0.12141150256537
1003 => 0.12524399420307
1004 => 0.12947180160998
1005 => 0.12932540608309
1006 => 0.1287176087472
1007 => 0.12962029143584
1008 => 0.13398384175914
1009 => 0.13358211596984
1010 => 0.13397235835523
1011 => 0.13911723010532
1012 => 0.14580629522992
1013 => 0.14269855290839
1014 => 0.14944145951735
1015 => 0.15368576180157
1016 => 0.16102584373309
1017 => 0.1601068293246
1018 => 0.16296426935653
1019 => 0.1584616017293
1020 => 0.14812256671793
1021 => 0.14648637485114
1022 => 0.14976207240343
1023 => 0.15781505519782
1024 => 0.1495084553171
1025 => 0.15118886965443
1026 => 0.15070491021223
1027 => 0.15067912207025
1028 => 0.15166335056166
1029 => 0.15023567580097
1030 => 0.14441907199213
1031 => 0.14708478724026
1101 => 0.14605542656479
1102 => 0.14719757897814
1103 => 0.1533613044935
1104 => 0.1506361745183
1105 => 0.147765471461
1106 => 0.15136597015485
1107 => 0.15595064225771
1108 => 0.15566374171696
1109 => 0.15510703475279
1110 => 0.15824516276162
1111 => 0.16342843084697
1112 => 0.16482944738238
1113 => 0.1658636491463
1114 => 0.16600624809657
1115 => 0.16747510590902
1116 => 0.15957668725161
1117 => 0.17211168050671
1118 => 0.17427612756966
1119 => 0.17386930122896
1120 => 0.17627499304558
1121 => 0.17556717748662
1122 => 0.17454166379455
1123 => 0.17835519702921
1124 => 0.17398328891193
1125 => 0.16777791574738
1126 => 0.16437352530094
1127 => 0.16885670126516
1128 => 0.17159442038522
1129 => 0.17340387857195
1130 => 0.17395141952594
1201 => 0.16018981900807
1202 => 0.15277307958229
1203 => 0.15752712452112
1204 => 0.16332738745316
1205 => 0.15954446649816
1206 => 0.15969274983758
1207 => 0.15429929868989
1208 => 0.16380458820333
1209 => 0.16241974747329
1210 => 0.16960430363047
1211 => 0.1678896516439
1212 => 0.17374837828722
1213 => 0.17220557921472
1214 => 0.17860965190793
1215 => 0.18116440988859
1216 => 0.18545424615446
1217 => 0.18860986717441
1218 => 0.19046290819473
1219 => 0.19035165856245
1220 => 0.19769433026635
1221 => 0.19336461329597
1222 => 0.18792546834524
1223 => 0.18782709137336
1224 => 0.19064410161663
1225 => 0.19654778227749
1226 => 0.19807852077779
1227 => 0.19893399477228
1228 => 0.19762380657046
1229 => 0.19292420911273
1230 => 0.19089494675798
1231 => 0.19262393707762
]
'min_raw' => 0.071294582887336
'max_raw' => 0.19893399477228
'avg_raw' => 0.13511428882981
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.071294'
'max' => '$0.198933'
'avg' => '$0.135114'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.028224457822146
'max_diff' => 0.10278297464509
'year' => 2036
]
11 => [
'items' => [
101 => 0.19050953049053
102 => 0.19415958945755
103 => 0.19917190002978
104 => 0.19813687771744
105 => 0.20159680212838
106 => 0.20517745989905
107 => 0.2102979613285
108 => 0.21163665001378
109 => 0.21384945150477
110 => 0.21612715110643
111 => 0.21685868683275
112 => 0.21825541551651
113 => 0.21824805406691
114 => 0.2224571899661
115 => 0.22709999720901
116 => 0.22885254946197
117 => 0.23288244673136
118 => 0.22598138888197
119 => 0.23121592053437
120 => 0.23593759911366
121 => 0.23030821925948
122 => 0.23806700791119
123 => 0.23836826409274
124 => 0.24291687476638
125 => 0.23830598644028
126 => 0.23556805567073
127 => 0.24347235921351
128 => 0.24729700271464
129 => 0.24614498896612
130 => 0.23737810745794
131 => 0.23227540639095
201 => 0.2189206534611
202 => 0.2347399351889
203 => 0.24244504586374
204 => 0.23735815308271
205 => 0.23992368591458
206 => 0.25392040116843
207 => 0.2592494441169
208 => 0.25814104043644
209 => 0.25832834241256
210 => 0.26120379725858
211 => 0.27395514758775
212 => 0.26631424289652
213 => 0.27215542823373
214 => 0.27525357187462
215 => 0.2781313003497
216 => 0.27106450873032
217 => 0.2618707166653
218 => 0.25895865678918
219 => 0.23685236184734
220 => 0.23570163319285
221 => 0.23505569432843
222 => 0.23098314115816
223 => 0.22778322993252
224 => 0.22523854172081
225 => 0.21856051994505
226 => 0.22081415625898
227 => 0.21017078335989
228 => 0.21698003616276
301 => 0.19999295602258
302 => 0.21414030113713
303 => 0.20644054439213
304 => 0.2116107239621
305 => 0.21159268569264
306 => 0.2020727458974
307 => 0.19658184329957
308 => 0.20008086014403
309 => 0.2038320839536
310 => 0.20444070739606
311 => 0.20930426698212
312 => 0.21066158192073
313 => 0.20654885428978
314 => 0.19964093654406
315 => 0.20124548828357
316 => 0.19654932710978
317 => 0.18831948528796
318 => 0.19423030136365
319 => 0.19624851385212
320 => 0.19713987146206
321 => 0.18904676723402
322 => 0.18650373817573
323 => 0.18514985084318
324 => 0.19859621841708
325 => 0.19933284078623
326 => 0.19556417659772
327 => 0.2125988960892
328 => 0.20874341442831
329 => 0.21305093205946
330 => 0.20109989203132
331 => 0.20155643785461
401 => 0.19589862398137
402 => 0.19906662169512
403 => 0.19682758302038
404 => 0.19881067878661
405 => 0.19999933821229
406 => 0.20565622369394
407 => 0.21420489368255
408 => 0.20481127364349
409 => 0.20071833887335
410 => 0.20325757258521
411 => 0.21001988657618
412 => 0.22026513842898
413 => 0.21419974312721
414 => 0.21689146256505
415 => 0.21747948351595
416 => 0.21300708557356
417 => 0.22043004212048
418 => 0.22440806483796
419 => 0.22848869301029
420 => 0.23203178811571
421 => 0.22685880038332
422 => 0.23239463877564
423 => 0.22793373023846
424 => 0.22393183412036
425 => 0.22393790334486
426 => 0.2214274554516
427 => 0.21656314632162
428 => 0.21566609308616
429 => 0.22033267730236
430 => 0.22407483591657
501 => 0.22438305802377
502 => 0.22645490931166
503 => 0.22768100956206
504 => 0.23969845881848
505 => 0.24453197632297
506 => 0.25044231003365
507 => 0.25274471810212
508 => 0.25967414092923
509 => 0.25407806921613
510 => 0.25286732390006
511 => 0.23605881071843
512 => 0.23881120381029
513 => 0.24321805071679
514 => 0.23613147800077
515 => 0.2406262772849
516 => 0.24151364587645
517 => 0.23589067897159
518 => 0.23889414854953
519 => 0.23091782381719
520 => 0.21437875576494
521 => 0.22044845483117
522 => 0.22491779638253
523 => 0.2185394949229
524 => 0.22997235341493
525 => 0.22329351350599
526 => 0.22117664189571
527 => 0.21291797102478
528 => 0.21681574577047
529 => 0.22208754192476
530 => 0.21883018481349
531 => 0.225589689914
601 => 0.23516295183049
602 => 0.24198542836979
603 => 0.24250917340345
604 => 0.23812277805911
605 => 0.24515200459201
606 => 0.24520320483332
607 => 0.23727420858898
608 => 0.23241774253815
609 => 0.23131434323331
610 => 0.23407085103098
611 => 0.23741776037675
612 => 0.24269490357883
613 => 0.24588377069378
614 => 0.25419864488514
615 => 0.25644841143519
616 => 0.2589202227871
617 => 0.26222332503165
618 => 0.26618954617425
619 => 0.25751168011132
620 => 0.25785646790757
621 => 0.249775759183
622 => 0.24114036301995
623 => 0.24769355229038
624 => 0.25626097552723
625 => 0.25429559917053
626 => 0.25407445418141
627 => 0.25444635871261
628 => 0.25296452912286
629 => 0.24626226880755
630 => 0.24289643563558
701 => 0.24723921914305
702 => 0.24954721530221
703 => 0.25312671606666
704 => 0.25268546704334
705 => 0.26190587660224
706 => 0.26548864894611
707 => 0.26457202246508
708 => 0.26474070379743
709 => 0.2712271419905
710 => 0.27844139529896
711 => 0.28519849552689
712 => 0.29207210810296
713 => 0.28378569986085
714 => 0.27957837279011
715 => 0.28391926037416
716 => 0.28161592431965
717 => 0.29485157650272
718 => 0.29576798434289
719 => 0.30900267943766
720 => 0.32156398104077
721 => 0.31367445256295
722 => 0.32111392256537
723 => 0.32916031592187
724 => 0.34468311418684
725 => 0.33945558182983
726 => 0.33545137397023
727 => 0.3316674168911
728 => 0.3395412308865
729 => 0.34967076680432
730 => 0.35185257182153
731 => 0.35538792946308
801 => 0.35167093318596
802 => 0.35614764578804
803 => 0.37195240844058
804 => 0.36768182205937
805 => 0.36161690286702
806 => 0.37409324507567
807 => 0.37860838482042
808 => 0.41029800014616
809 => 0.45030744852762
810 => 0.4337432741815
811 => 0.42346135664229
812 => 0.42587785115435
813 => 0.44048794729796
814 => 0.44518024647801
815 => 0.4324249597741
816 => 0.43693034267414
817 => 0.46175544541284
818 => 0.4750733165475
819 => 0.45698585871791
820 => 0.40708327992504
821 => 0.36107082325147
822 => 0.37327539872923
823 => 0.37189177862212
824 => 0.39856325452022
825 => 0.36757996998655
826 => 0.36810164903704
827 => 0.39532466281112
828 => 0.38806202945681
829 => 0.37629749355061
830 => 0.361156717383
831 => 0.33316759228488
901 => 0.30837684365098
902 => 0.3569972106905
903 => 0.35490061205335
904 => 0.35186442652826
905 => 0.35862112886477
906 => 0.39142975748745
907 => 0.39067341240653
908 => 0.38586193089237
909 => 0.38951139721441
910 => 0.37565772445945
911 => 0.37922813137067
912 => 0.36106353464325
913 => 0.36927469098461
914 => 0.37627225214028
915 => 0.37767711614294
916 => 0.38084234647508
917 => 0.35379579984176
918 => 0.36593890523523
919 => 0.37307184199879
920 => 0.34084497420257
921 => 0.37243482043974
922 => 0.353324979638
923 => 0.34683881264972
924 => 0.35557158201192
925 => 0.35216841329858
926 => 0.34924256867961
927 => 0.34760989710984
928 => 0.35402227912886
929 => 0.35372313384322
930 => 0.34323123227038
1001 => 0.32954497437324
1002 => 0.33413853175962
1003 => 0.33246964929632
1004 => 0.32642140395919
1005 => 0.33049719104849
1006 => 0.31254948741586
1007 => 0.28167139615637
1008 => 0.3020704090639
1009 => 0.30128506925682
1010 => 0.30088906531376
1011 => 0.31621835972647
1012 => 0.31474480177568
1013 => 0.31207027966588
1014 => 0.32637228426326
1015 => 0.32115186019611
1016 => 0.33723997708447
1017 => 0.3478366513813
1018 => 0.34514899201312
1019 => 0.35511521540746
1020 => 0.33424435804412
1021 => 0.34117681966677
1022 => 0.34260559039922
1023 => 0.32619579974657
1024 => 0.31498589408023
1025 => 0.31423832117456
1026 => 0.29480188956928
1027 => 0.30518467444743
1028 => 0.31432109547137
1029 => 0.30994545881581
1030 => 0.30856026296909
1031 => 0.31563692813767
1101 => 0.3161868456288
1102 => 0.30364866855324
1103 => 0.30625575259968
1104 => 0.31712772646499
1105 => 0.30598180675289
1106 => 0.28432710542792
1107 => 0.27895644009965
1108 => 0.27823989434386
1109 => 0.26367422402078
1110 => 0.27931533363772
1111 => 0.27248757013425
1112 => 0.29405639323256
1113 => 0.28173639715472
1114 => 0.28120530674747
1115 => 0.28040248570289
1116 => 0.26786521155554
1117 => 0.27061007780848
1118 => 0.27973443128815
1119 => 0.2829901034029
1120 => 0.28265051012839
1121 => 0.27968971697833
1122 => 0.28104515292071
1123 => 0.2766788214851
1124 => 0.27513697897785
1125 => 0.27027049990779
1126 => 0.26311812007396
1127 => 0.26411270235794
1128 => 0.24994196638513
1129 => 0.24222099732926
1130 => 0.24008393485533
1201 => 0.23722616560121
1202 => 0.24040672749682
1203 => 0.24990182247058
1204 => 0.23844872343546
1205 => 0.21881318848122
1206 => 0.21999331758929
1207 => 0.22264471731166
1208 => 0.2177038514698
1209 => 0.21302773660591
1210 => 0.21709323909487
1211 => 0.20877340408408
1212 => 0.22365012962423
1213 => 0.22324775588991
1214 => 0.22879287920074
1215 => 0.23226035860439
1216 => 0.22426894118877
1217 => 0.22225912131983
1218 => 0.2234040060584
1219 => 0.20448161159214
1220 => 0.22724651587571
1221 => 0.22744338771329
1222 => 0.22575765151559
1223 => 0.23787926025903
1224 => 0.26345963553225
1225 => 0.25383526938625
1226 => 0.25010842391651
1227 => 0.24302368795424
1228 => 0.25246367797397
1229 => 0.25173883402724
1230 => 0.24846081481122
1231 => 0.24647825856133
]
'min_raw' => 0.18514985084318
'max_raw' => 0.4750733165475
'avg_raw' => 0.33011158369534
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.185149'
'max' => '$0.475073'
'avg' => '$0.330111'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.11385526795584
'max_diff' => 0.27613932177523
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0058116422519716
]
1 => [
'year' => 2028
'avg' => 0.0099744652361839
]
2 => [
'year' => 2029
'avg' => 0.027248441302805
]
3 => [
'year' => 2030
'avg' => 0.021022131885518
]
4 => [
'year' => 2031
'avg' => 0.020646338755702
]
5 => [
'year' => 2032
'avg' => 0.036199529480682
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0058116422519716
'min' => '$0.005811'
'max_raw' => 0.036199529480682
'max' => '$0.036199'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.036199529480682
]
1 => [
'year' => 2033
'avg' => 0.093108912178033
]
2 => [
'year' => 2034
'avg' => 0.059016903143375
]
3 => [
'year' => 2035
'avg' => 0.069610572596188
]
4 => [
'year' => 2036
'avg' => 0.13511428882981
]
5 => [
'year' => 2037
'avg' => 0.33011158369534
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.036199529480682
'min' => '$0.036199'
'max_raw' => 0.33011158369534
'max' => '$0.330111'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.33011158369534
]
]
]
]
'prediction_2025_max_price' => '$0.009936'
'last_price' => 0.00963503
'sma_50day_nextmonth' => '$0.009558'
'sma_200day_nextmonth' => '$0.086657'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 feb. 2026'
'sma_50day_date_nextmonth' => '4 feb. 2026'
'daily_sma3' => '$0.009662'
'daily_sma3_action' => 'SELL'
'daily_sma5' => '$0.009855'
'daily_sma5_action' => 'SELL'
'daily_sma10' => '$0.010035'
'daily_sma10_action' => 'SELL'
'daily_sma21' => '$0.010653'
'daily_sma21_action' => 'SELL'
'daily_sma50' => '$0.012533'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.042393'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.111628'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.009714'
'daily_ema3_action' => 'SELL'
'daily_ema5' => '$0.00982'
'daily_ema5_action' => 'SELL'
'daily_ema10' => '$0.010071'
'daily_ema10_action' => 'SELL'
'daily_ema21' => '$0.01077'
'daily_ema21_action' => 'SELL'
'daily_ema50' => '$0.019192'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.046935'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.087288'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.080811'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.128874'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.009922'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.011217'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.023435'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.059049'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.12239'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.07135'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.035675'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '26.76'
'rsi_14_action' => 'BUY'
'stoch_rsi_14' => -16.7
'stoch_rsi_14_action' => 'BUY'
'momentum_10' => -0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.010032'
'vwma_10_action' => 'SELL'
'hma_9' => '0.009610'
'hma_9_action' => 'SELL'
'stochastic_fast_14' => 0
'stochastic_fast_14_action' => 'BUY'
'cci_20' => -107.34
'cci_20_action' => 'BUY'
'adx_14' => 40.11
'adx_14_action' => 'SELL'
'ao_5_34' => '-0.001279'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'NEUTRAL'
'williams_percent_r_14' => -100
'williams_percent_r_14_action' => 'BUY'
'ultimate_oscillator' => 12.67
'ultimate_oscillator_action' => 'BUY'
'ichimoku_cloud' => '-0.014369'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 29
'buy_signals' => 3
'sell_pct' => 90.63
'buy_pct' => 9.38
'overall_action' => 'bearish'
'overall_action_label' => 'Bajista'
'overall_action_dir' => -1
'last_updated' => 1767688469
'last_updated_date' => '6 de enero de 2026'
]
Predicción de precio de Seraph para 2026
La previsión del precio de Seraph para 2026 sugiere que el precio medio podría oscilar entre $0.003328 en el extremo inferior y $0.009936 en el extremo superior. En el mercado de criptomonedas, en comparación con el precio medio de hoy, Seraph podría potencialmente ganar 3.13% para 2026 si SERAPH alcanza el objetivo de precio previsto.
Predicción de precio de Seraph 2027-2032
La predicción del precio de SERAPH para 2027-2032 está actualmente dentro de un rango de precios de $0.005811 en el extremo inferior y $0.036199 en el extremo superior. Considerando la volatilidad de precios en el mercado, si Seraph alcanza el objetivo de precio superior, podría ganar 275.71% para 2032 en comparación con el precio de hoy.
| Predicción de Precio de Seraph | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.0032046 | $0.005811 | $0.008418 |
| 2028 | $0.005783 | $0.009974 | $0.014165 |
| 2029 | $0.0127045 | $0.027248 | $0.041792 |
| 2030 | $0.0108046 | $0.021022 | $0.031239 |
| 2031 | $0.012774 | $0.020646 | $0.028518 |
| 2032 | $0.019499 | $0.036199 | $0.052899 |
Predicción de precio de Seraph 2032-2037
La predicción de precio de Seraph para 2032-2037 se estima actualmente entre $0.036199 en el extremo inferior y $0.330111 en el extremo superior. Comparado con el precio actual, Seraph podría potencialmente ganar 3326.16% para 2037 si alcanza el objetivo de precio superior. Tenga en cuenta que esta información es solo para fines generales y no debe considerarse como consejo de inversión a largo plazo.
| Predicción de Precio de Seraph | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.019499 | $0.036199 | $0.052899 |
| 2033 | $0.045312 | $0.0931089 | $0.1409056 |
| 2034 | $0.036428 | $0.059016 | $0.081605 |
| 2035 | $0.04307 | $0.06961 | $0.096151 |
| 2036 | $0.071294 | $0.135114 | $0.198933 |
| 2037 | $0.185149 | $0.330111 | $0.475073 |
Seraph Histograma de precios potenciales
Pronóstico de precio de Seraph basado en análisis técnico
A fecha de 6 de enero de 2026, el sentimiento general de predicción de precio para Seraph es Bajista, con 3 indicadores técnicos mostrando señales alcistas y 29 indicando señales bajistas. La predicción de precio de SERAPH se actualizó por última vez el 6 de enero de 2026.
Promedios Móviles Simples de 50 y 200 días y el Índice de Fuerza Relativa de 14 días - RSI (14) de Seraph
Según nuestros indicadores técnicos, se proyecta que el SMA de 200 días de Seraph aumentar durante el próximo mes, alcanzando $0.086657 para el 4 feb. 2026. Se espera que el SMA de 50 días a corto plazo para Seraph alcance $0.009558 para el 4 feb. 2026.
El oscilador de momento del Índice de Fuerza Relativa (RSI) es una herramienta comúnmente utilizada para identificar si una criptomoneda está sobrevendida (por debajo de 30) o sobrecomprada (por encima de 70). Actualmente, el RSI se encuentra en 26.76, lo que sugiere que el mercado de SERAPH está en un estado BUY.
Promedios Móviles y Osciladores Populares de SERAPH para Sáb, 19 de Oct de 2024
Los promedios móviles (MA) son indicadores ampliamente utilizados en los mercados financieros, diseñados para suavizar los movimientos de precios durante un período establecido. Como indicadores rezagados, se basan en datos históricos de precios. La tabla a continuación resalta dos tipos: el promedio móvil simple (SMA) y el promedio móvil exponencial (EMA).
Promedio Móvil Simple Diario (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 3 | $0.009662 | SELL |
| SMA 5 | $0.009855 | SELL |
| SMA 10 | $0.010035 | SELL |
| SMA 21 | $0.010653 | SELL |
| SMA 50 | $0.012533 | SELL |
| SMA 100 | $0.042393 | SELL |
| SMA 200 | $0.111628 | SELL |
Promedio Móvil Exponencial Diario (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 3 | $0.009714 | SELL |
| EMA 5 | $0.00982 | SELL |
| EMA 10 | $0.010071 | SELL |
| EMA 21 | $0.01077 | SELL |
| EMA 50 | $0.019192 | SELL |
| EMA 100 | $0.046935 | SELL |
| EMA 200 | $0.087288 | SELL |
Promedio Móvil Simple Semanal (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 21 | $0.080811 | SELL |
| SMA 50 | $0.128874 | SELL |
| SMA 100 | — | — |
| SMA 200 | — | — |
Promedio Móvil Exponencial Semanal (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 21 | $0.059049 | SELL |
| EMA 50 | $0.12239 | SELL |
| EMA 100 | $0.07135 | SELL |
| EMA 200 | $0.035675 | SELL |
Osciladores de Seraph
Un oscilador es una herramienta de análisis técnico que establece límites altos y bajos entre dos extremos, creando un indicador de tendencia que fluctúa dentro de estos límites. Los traders utilizan este indicador para identificar condiciones de sobrecompra o sobreventa a corto plazo.
| Período | Valor | Acción |
|---|---|---|
| RSI (14) | 26.76 | BUY |
| Stoch RSI (14) | -16.7 | BUY |
| Estocástico Rápido (14) | 0 | BUY |
| Índice de Canal de Materias Primas (20) | -107.34 | BUY |
| Índice Direccional Medio (14) | 40.11 | SELL |
| Oscilador Asombroso (5, 34) | -0.001279 | NEUTRAL |
| Momentum (10) | -0 | BUY |
| MACD (12, 26) | 0 | NEUTRAL |
| Rango Percentil de Williams (14) | -100 | BUY |
| Oscilador Ultimate (7, 14, 28) | 12.67 | BUY |
| VWMA (10) | 0.010032 | SELL |
| Promedio Móvil de Hull (9) | 0.009610 | SELL |
| Nube Ichimoku B/L (9, 26, 52, 26) | -0.014369 | SELL |
Predicción de precios de Seraph basada en flujos de dinero globales
Definiciones de flujos de dinero globales utilizadas para la predicción de precios de Seraph
M0: El total de toda la moneda física, además de cuentas en el banco central que pueden cambiarse por moneda física.
M1: Medir M0 más la cantidad en cuentas a la vista, incluyendo cuentas "de cheques" o "corrientes".
M2: Medir M1 más la mayoría de cuentas de ahorro, cuentas del mercado monetario, y cuentas de certificados de depósito (CD) inferiores a 100 000 $.
Predicciones de precios de Seraph por parte de empresas de Internet o nichos tecnológicos
| Comparación | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook acción | $0.013538 | $0.019024 | $0.026732 | $0.037563 | $0.052782 | $0.074168 |
| Amazon.com acción | $0.020104 | $0.041948 | $0.087527 | $0.182631 | $0.381071 | $0.795129 |
| Apple acción | $0.013666 | $0.019384 | $0.027496 | $0.0390011 | $0.05532 | $0.078467 |
| Netflix acción | $0.0152025 | $0.023987 | $0.037848 | $0.059718 | $0.094226 | $0.148674 |
| Google acción | $0.012477 | $0.016158 | $0.020924 | $0.027097 | $0.03509 | $0.045442 |
| Tesla acción | $0.021841 | $0.049513 | $0.112244 | $0.254449 | $0.576817 | $1.30 |
| Kodak acción | $0.007225 | $0.005418 | $0.004063 | $0.003046 | $0.002284 | $0.001713 |
| Nokia acción | $0.006382 | $0.004228 | $0.0028011 | $0.001855 | $0.001229 | $0.000814 |
Este cálculo muestra cuánto puede costar la criptomoneda si asumimos que su capitalización se comportará como la capitalización de algunas empresas de Internet o nichos tecnológicos. Si extrapola los datos, puede obtener una imagen potencial del precio futuro en 2024, 2025, 2026, 2027, 2028, 2029 y 2030.
Resumen de pronósticos y predicciones de Seraph
Podría preguntarse cosas como: "¿Debo invertir en Seraph ahora?", "¿Debería comprar SERAPH hoy?", "¿Será Seraph una buena o mala inversión a corto plazo?, ¿Lo será a largo plazo?".
Actualizamos el pronóstico de Seraph regularmente con valores actualizados. Aquí hay algunas predicciones similares. Hacemos un pronóstico de precios futuros para una gran cantidad de monedas digitales, como Seraph, con métodos de análisis técnico.
Si está tratando de encontrar criptomonedas que ofrezcan un buen rendimiento, debería explorar el máximo de fuentes de información disponibles acerca de Seraph a fin de tomar una decisión responsable sobre la inversión por sus propios medios.
El precio de Seraph es de $0.009635 USD hoy, pero dicho precio puede subir y bajar, y su inversión puede perderse porque estos son activos de criptomonedas conllevan un alto riesgo
Pronóstico a corto plazo de Seraph
basado en el historial de precios de las últimas 4 horas
Pronóstico a largo plazo de Seraph
basado en el historial de precios del último mes
Predicción de precios de Seraph basada en el patrón de crecimiento del Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si Seraph ofrece un 1 % del crecimiento medio anterior anual del Bitcoin | $0.009885 | $0.010142 | $0.010406 | $0.010676 |
| Si Seraph ofrece un 2 % del crecimiento medio anterior anual del Bitcoin | $0.010135 | $0.010662 | $0.011217 | $0.01180031 |
| Si Seraph ofrece un 5 % del crecimiento medio anterior anual del Bitcoin | $0.010887 | $0.0123022 | $0.0139011 | $0.0157077 |
| Si Seraph ofrece un 10 % del crecimiento medio anterior anual del Bitcoin | $0.012139 | $0.015294 | $0.01927 | $0.024279 |
| Si Seraph ofrece un 20 % del crecimiento medio anterior anual del Bitcoin | $0.014643 | $0.022256 | $0.033827 | $0.051412 |
| Si Seraph ofrece un 50 % del crecimiento medio anterior anual del Bitcoin | $0.022157 | $0.050954 | $0.117177 | $0.269468 |
| Si Seraph ofrece un 100 % del crecimiento medio anterior anual del Bitcoin | $0.034679 | $0.124822 | $0.449277 | $1.61 |
Cuadro de preguntas
¿Es SERAPH una buena inversión?
La decisión de adquirir Seraph depende completamente de su tolerancia individual al riesgo. Como puede discernir, el valor de Seraph ha experimentado una caída de -2.2698% durante las últimas 24 horas, y Seraph ha sufrido un declive de durante el período previo de 30 días. Por lo tanto, la determinación de si invertir o no en Seraph dependerá de si dicha inversión se alinea con sus aspiraciones comerciales.
¿Puede Seraph subir?
Parece que el valor medio de Seraph podría potencialmente aumentar hasta $0.009936 para el final de este año. Mirando las perspectivas de Seraph en un horizonte de cinco años más extendido, la moneda digital podría potencialmente crecer hasta $0.031239. Sin embargo, dada la imprevisibilidad del mercado, es vital realizar una investigación exhaustiva antes de invertir cualquier fondo en un proyecto, red o activo en particular.
¿Cuál será el precio de Seraph la próxima semana?
Basado en nuestro nuevo pronóstico experimental de Seraph, el precio de Seraph aumentará en un 0.86% durante la próxima semana y alcanzará $0.009717 para el 13 de enero de 2026.
¿Cuál será el precio de Seraph el próximo mes?
Basado en nuestro nuevo pronóstico experimental de Seraph, el precio de Seraph disminuirá en un -11.62% durante el próximo mes y alcanzará $0.008515 para el 5 de febrero de 2026.
¿Hasta qué punto puede subir el precio de Seraph este año en 2026?
Según nuestra predicción más reciente sobre el valor de Seraph en 2026, se anticipa que SERAPH fluctúe dentro del rango de $0.003328 y $0.009936. Sin embargo, es crucial tener en cuenta que el mercado de criptomonedas es excepcionalmente inestable, y esta predicción de precios proyectada de Seraph no considera fluctuaciones de precios repentinas y extremas.
¿Dónde estará Seraph en 5 años?
El futuro de Seraph parece estar en una tendencia alcista, con un precio máximo de $0.031239 proyectada después de un período de cinco años. Basado en el pronóstico de Seraph para 2030, el valor de Seraph podría potencialmente alcanzar su punto más alto de aproximadamente $0.031239, mientras que su punto más bajo se anticipa que esté alrededor de $0.0108046.
¿Cuánto será Seraph en 2026?
Basado en nuestra nueva simulación experimental de predicción de precios de Seraph, se espera que el valor de SERAPH en 2026 crezca en un 3.13% hasta $0.009936 si ocurre lo mejor. El precio estará entre $0.009936 y $0.003328 durante 2026.
¿Cuánto será Seraph en 2027?
Según nuestra última simulación experimental para la predicción de precios de Seraph, el valor de SERAPH podría disminuir en un -12.62% hasta $0.008418 en 2027, asumiendo las condiciones más favorables. Se proyecta que el precio fluctúe entre $0.008418 y $0.0032046 a lo largo del año.
¿Cuánto será Seraph en 2028?
Nuestro nuevo modelo experimental de predicción de precios de Seraph sugiere que el valor de SERAPH en 2028 podría aumentar en un 47.02% , alcanzando $0.014165 en el mejor escenario. Se espera que el precio oscile entre $0.014165 y $0.005783 durante el año.
¿Cuánto será Seraph en 2029?
Basado en nuestro modelo de pronóstico experimental, el valor de Seraph podría experimentar un 333.75% crecimiento en 2029, potencialmente alcanzando $0.041792 bajo condiciones óptimas. El rango de precios previsto para 2029 se encuentra entre $0.041792 y $0.0127045.
¿Cuánto será Seraph en 2030?
Usando nuestra nueva simulación experimental para las predicciones de precios de Seraph, se espera que el valor de SERAPH en 2030 aumente en un 224.23% , alcanzando $0.031239 en el mejor escenario. Se pronostica que el precio oscile entre $0.031239 y $0.0108046 durante el transcurso de 2030.
¿Cuánto será Seraph en 2031?
Nuestra simulación experimental indica que el precio de Seraph podría crecer en un 195.98% en 2031, potencialmente alcanzando $0.028518 bajo condiciones ideales. Es probable que el precio fluctúe entre $0.028518 y $0.012774 durante el año.
¿Cuánto será Seraph en 2032?
Basado en los hallazgos de nuestra última predicción experimental de precios de Seraph, SERAPH podría experimentar un 449.04% aumento en valor, alcanzando $0.052899 si se desarrolla el escenario más positivo en 2032. Se espera que el precio se mantenga dentro de un rango de $0.052899 y $0.019499 a lo largo del año.
¿Cuánto será Seraph en 2033?
Según nuestra predicción experimental de precios de Seraph, se anticipa que el valor de SERAPH aumente en un 1362.43% en 2033, con el precio potencial más alto siendo $0.1409056. A lo largo del año, el precio de SERAPH podría oscilar entre $0.1409056 y $0.045312.
¿Cuánto será Seraph en 2034?
Los resultados de nuestra nueva simulación de predicción de precios de Seraph sugieren que SERAPH podría aumentar en un 746.96% en 2034, alcanzando potencialmente $0.081605 bajo las mejores circunstancias. El rango de precios previsto para el año está entre $0.081605 y $0.036428.
¿Cuánto será Seraph en 2035?
Basado en nuestra predicción experimental para el precio de Seraph, SERAPH podría crecer en un 897.93% , con el valor potencialmente alcanzando $0.096151 en 2035. El rango de precios esperado para el año está entre $0.096151 y $0.04307.
¿Cuánto será Seraph en 2036?
Nuestra reciente simulación de predicción de precios de Seraph sugiere que el valor de SERAPH podría aumentar en un 1964.7% en 2036, posiblemente alcanzando $0.198933 si las condiciones son óptimas. El rango de precios esperado para 2036 está entre $0.198933 y $0.071294.
¿Cuánto será Seraph en 2037?
Según la simulación experimental, el valor de Seraph podría aumentar en un 4830.69% en 2037, con un máximo de $0.475073 bajo condiciones favorables. Se espera que el precio caiga entre $0.475073 y $0.185149 durante el transcurso del año.
Predicciones relacionadas
¿Cómo leer y predecir los movimientos de precio de Seraph?
Los traders de Seraph utilizan indicadores y patrones de gráficos para predecir la dirección del mercado. También identifican niveles clave de soporte y resistencia para estimar cuándo una tendencia bajista podría desacelerar o una tendencia alcista podría estancarse.
Indicadores de predicción de precio de Seraph
Las medias móviles son herramientas populares para la predicción de precios de Seraph. Una media móvil simple (SMA) calcula el precio de cierre promedio de SERAPH durante un período específico, como una SMA de 12 días. Una media móvil exponencial (EMA) da más peso a los precios recientes, reaccionando más rápido a los cambios de precio.
Las medias móviles comúnmente utilizadas en el mercado de criptomonedas incluyen las de 50 días, 100 días y 200 días, que ayudan a identificar niveles clave de resistencia y soporte. Un movimiento de precio de SERAPH por encima de estas medias se considera alcista, mientras que una caída por debajo indica debilidad.
Los traders también utilizan RSI y niveles de retroceso de Fibonacci para evaluar la dirección futura de SERAPH.
¿Cómo leer gráficos de Seraph y predecir movimientos de precio?
La mayoría de los traders prefieren gráficos de velas sobre gráficos lineales simples porque proporcionan información más detallada. Las velas pueden representar la acción del precio de Seraph en diferentes marcos de tiempo, como 5 minutos para tendencias a corto plazo y semanal para tendencias a largo plazo. Las opciones populares incluyen gráficos de 1 hora, 4 horas y 1 día.
Por ejemplo, un gráfico de velas de 1 hora muestra los precios de apertura, cierre, máximo y mínimo de SERAPH dentro de cada hora. El color de la vela es crucial: el verde indica que el precio cerró más alto de lo que abrió, mientras que el rojo significa lo contrario. Algunos gráficos usan velas huecas y llenas para transmitir la misma información.
¿Qué afecta el precio de Seraph?
La acción del precio de Seraph está impulsada por la oferta y la demanda, influenciada por factores como reducciones a la mitad de recompensas de bloque, hard forks y actualizaciones de protocolo. Los eventos del mundo real, como regulaciones, adopción por empresas y gobiernos y hacks de exchanges de criptomonedas, también impactan el precio de SERAPH. La capitalización de mercado de Seraph puede cambiar rápidamente.
Los traders a menudo monitorean la actividad de las "ballenas" de SERAPH, grandes poseedores de Seraph, ya que sus acciones pueden influir significativamente en los movimientos de precios en el relativamente pequeño mercado de Seraph.
Patrones de predicción de precios alcistas y bajistas
Los traders a menudo identifican patrones de velas para obtener una ventaja en las predicciones de precios de criptomonedas. Ciertas formaciones indican tendencias alcistas, mientras que otras sugieren movimientos bajistas.
Patrones de velas alcistas comúnmente seguidos:
- Martillo
- Envolvente Alcista
- Línea Penetrante
- Estrella de la Mañana
- Tres Soldados Blancos
Patrones de velas bajistas comunes:
- Harami Bajista
- Cubierta de Nube Oscura
- Estrella de la Tarde
- Estrella Fugaz
- Hombre Colgado


