Predicción del precio de Seraph - Pronóstico de SERAPH
Predicción de precio de Seraph hasta $0.009936 para el año 2026
| Año | Precio min. | Precio max. |
|---|---|---|
| 2026 | $0.003328 | $0.009936 |
| 2027 | $0.0032045 | $0.008418 |
| 2028 | $0.005783 | $0.014164 |
| 2029 | $0.0127041 | $0.04179 |
| 2030 | $0.0108042 | $0.031238 |
| 2031 | $0.012774 | $0.028517 |
| 2032 | $0.019498 | $0.052897 |
| 2033 | $0.04531 | $0.1409004 |
| 2034 | $0.036427 | $0.0816019 |
| 2035 | $0.043068 | $0.096147 |
Calculadora de ganancias de inversión
Si abres una posición corta de $10,000.00 en Seraph hoy y la cierras el Apr 06, 2026, nuestra previsión indica que podrías obtener una ganancia de alrededor de $3,955.16, equivalente a un ROI del 39.55% en los próximos 90 días.
Predicción del precio a largo plazo de Seraph para 2027, 2028, 2029, 2030, 2031, 2032 y 2037
[
'name' => 'Seraph'
'name_with_ticker' => 'Seraph <small>SERAPH</small>'
'name_lang' => 'Seraph'
'name_lang_with_ticker' => 'Seraph <small>SERAPH</small>'
'name_with_lang' => 'Seraph'
'name_with_lang_with_ticker' => 'Seraph <small>SERAPH</small>'
'image' => '/uploads/coins/seraph.jpg?1736294429'
'price_for_sd' => 0.009634
'ticker' => 'SERAPH'
'marketcap' => '$3.07M'
'low24h' => '$0.009628'
'high24h' => '$0.00987'
'volume24h' => '$1.59M'
'current_supply' => '318.54M'
'max_supply' => '1B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.009634'
'change_24h_pct' => '-2.208%'
'ath_price' => '$0.6981'
'ath_days' => 365
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '6 ene. 2025'
'ath_pct' => '-98.62%'
'fdv' => '$9.63M'
'new_prediction' => true
'change_24h_pct_is_increased' => false
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.475055'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.009717'
'next_week_prediction_price_date' => '13 de enero de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.008515'
'next_month_prediction_price_date' => '5 de febrero de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.003328'
'current_year_max_price_prediction' => '$0.009936'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.0108042'
'grand_prediction_max_price' => '$0.031238'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0098172419286636
107 => 0.0098538959463664
108 => 0.0099364793198514
109 => 0.0092308134353119
110 => 0.0095476367002082
111 => 0.0097337406860095
112 => 0.0088929161076385
113 => 0.0097171202875522
114 => 0.0092185293622269
115 => 0.0090493001135871
116 => 0.0092771450026224
117 => 0.009188353627779
118 => 0.009112016017693
119 => 0.0090694183196184
120 => 0.0092367224598032
121 => 0.0092289175216919
122 => 0.0089551754760153
123 => 0.0085980901365834
124 => 0.0087179396974234
125 => 0.0086743972283746
126 => 0.0085165937034514
127 => 0.0086229342259794
128 => 0.0081546643824731
129 => 0.0073490304552689
130 => 0.0078812569048146
131 => 0.007860766765458
201 => 0.0078504347080406
202 => 0.0082503881752155
203 => 0.0082119418778431
204 => 0.0081421614716449
205 => 0.0085153121315692
206 => 0.0083791071211122
207 => 0.0087988588694041
208 => 0.0090753345186701
209 => 0.0090052113509659
210 => 0.0092652380354234
211 => 0.0087207007892431
212 => 0.0089015742193819
213 => 0.0089388519826537
214 => 0.0085107075103484
215 => 0.0082182321675666
216 => 0.0081987273966661
217 => 0.0076916154578675
218 => 0.0079625105623092
219 => 0.0082008870438167
220 => 0.0080867232079368
221 => 0.0080505823480448
222 => 0.0082352181632369
223 => 0.0082495659473761
224 => 0.0079224349484915
225 => 0.007990455842051
226 => 0.008274114275727
227 => 0.007983308377315
228 => 0.0074183200195741
301 => 0.0072781950952792
302 => 0.0072594998473635
303 => 0.0068794699392279
304 => 0.007287558912754
305 => 0.0071094171397053
306 => 0.0076721648663001
307 => 0.0073507263829457
308 => 0.0073368698123793
309 => 0.0073159235736511
310 => 0.0069888161328809
311 => 0.0070604318736473
312 => 0.0072984935033398
313 => 0.0073834365747703
314 => 0.0073745763165021
315 => 0.0072973268714803
316 => 0.0073326912718301
317 => 0.0072187702165294
318 => 0.0071785423208411
319 => 0.0070515720164941
320 => 0.0068649607455459
321 => 0.0068909101873247
322 => 0.0065211844300811
323 => 0.0063197382147037
324 => 0.0062639805573057
325 => 0.0061894190875601
326 => 0.0062724024737139
327 => 0.0065201370434644
328 => 0.0062213165925244
329 => 0.0057090098892053
330 => 0.0057398003950029
331 => 0.0058089775197469
401 => 0.0056800664054389
402 => 0.005558062854436
403 => 0.0056641350435721
404 => 0.0054470639397558
405 => 0.0058352095255737
406 => 0.0058247112752427
407 => 0.0059693879468736
408 => 0.0060598572387086
409 => 0.00585135481081
410 => 0.0057989170140441
411 => 0.005828787966247
412 => 0.0053350876647016
413 => 0.0059290420994584
414 => 0.0059341786420747
415 => 0.0058901964457087
416 => 0.0062064588459309
417 => 0.0068738711551161
418 => 0.0066227637978027
419 => 0.0065255274392909
420 => 0.0063406810506806
421 => 0.0065869778884112
422 => 0.0065680661341027
423 => 0.0064825400090498
424 => 0.00643081354176
425 => 0.0065261211437615
426 => 0.0064190038751495
427 => 0.0063997626703211
428 => 0.0062831819036983
429 => 0.0062415678741008
430 => 0.0062107585032892
501 => 0.0061768404132917
502 => 0.0062516552679646
503 => 0.0060821149645621
504 => 0.0058776659788994
505 => 0.0058606682579103
506 => 0.0059076004600163
507 => 0.0058868364542759
508 => 0.0058605688478393
509 => 0.0058104168335948
510 => 0.0057955378022968
511 => 0.0058438874357358
512 => 0.0057893035185419
513 => 0.0058698450617013
514 => 0.0058479422185288
515 => 0.0057255947170408
516 => 0.0055731044313402
517 => 0.0055717469479383
518 => 0.0055388931660183
519 => 0.005497048935144
520 => 0.0054854088273811
521 => 0.0056552019396624
522 => 0.0060066686006046
523 => 0.0059376672851773
524 => 0.0059875278071128
525 => 0.0062327922262631
526 => 0.0063107544097525
527 => 0.0062554186985472
528 => 0.0061796717640914
529 => 0.0061830042447852
530 => 0.0064418544499773
531 => 0.006457998619763
601 => 0.0064987897285049
602 => 0.0065512178308042
603 => 0.0062643474310743
604 => 0.0061694926747558
605 => 0.0061245452288705
606 => 0.0059861244923946
607 => 0.0061353993893868
608 => 0.0060484232994979
609 => 0.0060601593455502
610 => 0.0060525162301625
611 => 0.0060566898879894
612 => 0.005835101030972
613 => 0.0059158363641017
614 => 0.0057815982138982
615 => 0.0056018683997153
616 => 0.0056012658823568
617 => 0.005645254499755
618 => 0.0056190883488517
619 => 0.0055486759095644
620 => 0.0055586776642278
621 => 0.0054710517690354
622 => 0.0055693170344222
623 => 0.0055721349306235
624 => 0.0055342974509044
625 => 0.0056856886502263
626 => 0.005747713748112
627 => 0.0057228083084035
628 => 0.0057459663160693
629 => 0.0059405346013555
630 => 0.0059722577214666
701 => 0.0059863470359083
702 => 0.0059674692210329
703 => 0.0057495226671503
704 => 0.0057591895235953
705 => 0.0056882605450618
706 => 0.0056283330325127
707 => 0.0056307298187363
708 => 0.0056615403502178
709 => 0.0057960917482116
710 => 0.0060792472330514
711 => 0.0060899927767171
712 => 0.0061030166891096
713 => 0.0060500418921155
714 => 0.0060340641864416
715 => 0.0060551429044213
716 => 0.006161481216919
717 => 0.0064350122272333
718 => 0.0063383280996663
719 => 0.0062597223989762
720 => 0.0063286807904262
721 => 0.0063180651865762
722 => 0.0062284588069162
723 => 0.0062259438542825
724 => 0.0060539605628225
725 => 0.0059903822558399
726 => 0.0059372514637713
727 => 0.0058792340258469
728 => 0.0058448393438833
729 => 0.0058976852074829
730 => 0.005909771681742
731 => 0.0057942232773938
801 => 0.0057784744568471
802 => 0.0058728337781234
803 => 0.0058313097588998
804 => 0.0058740182424174
805 => 0.0058839269769401
806 => 0.0058823314424645
807 => 0.0058389755973917
808 => 0.0058666093201512
809 => 0.0058012473278159
810 => 0.0057301759782051
811 => 0.0056848368850549
812 => 0.0056452725129234
813 => 0.0056672251260767
814 => 0.0055889680685738
815 => 0.0055639320608752
816 => 0.0058572476366587
817 => 0.0060739230061639
818 => 0.0060707724604784
819 => 0.0060515943238727
820 => 0.0060230995030195
821 => 0.0061593966432903
822 => 0.0061119134449673
823 => 0.0061464614391013
824 => 0.0061552553535831
825 => 0.0061818718841621
826 => 0.0061913850060759
827 => 0.0061626297443642
828 => 0.0060661235739003
829 => 0.0058256393726357
830 => 0.0057136933277723
831 => 0.0056767492683586
901 => 0.0056780921147515
902 => 0.0056410504165041
903 => 0.0056519608567305
904 => 0.0056372562106455
905 => 0.0056094091683965
906 => 0.0056655056496888
907 => 0.0056719702465828
908 => 0.0056588766575462
909 => 0.0056619606717591
910 => 0.0055535513468807
911 => 0.0055617934723986
912 => 0.0055159002701566
913 => 0.0055072958479871
914 => 0.0053912818290977
915 => 0.0051857461781342
916 => 0.0052996328805964
917 => 0.0051620737589158
918 => 0.0051099780351746
919 => 0.0053565910888184
920 => 0.0053318379782139
921 => 0.0052894714127776
922 => 0.0052268024325313
923 => 0.0052035578981533
924 => 0.005062331465598
925 => 0.0050539870545489
926 => 0.0051239826879578
927 => 0.0050916821115423
928 => 0.00504631986907
929 => 0.0048820224251323
930 => 0.0046972977011321
1001 => 0.0047028733794114
1002 => 0.0047616308771902
1003 => 0.0049324762265102
1004 => 0.0048657239928764
1005 => 0.0048172944814813
1006 => 0.0048082250897828
1007 => 0.0049217475149474
1008 => 0.0050824055302386
1009 => 0.0051577826764928
1010 => 0.0050830862137929
1011 => 0.0049972789393864
1012 => 0.0050025016305869
1013 => 0.0050372458553369
1014 => 0.0050408969821013
1015 => 0.004985045267593
1016 => 0.0050007671980738
1017 => 0.00497688414803
1018 => 0.004830313913996
1019 => 0.0048276629232416
1020 => 0.0047916922240453
1021 => 0.0047906030455693
1022 => 0.0047294079129251
1023 => 0.0047208462908462
1024 => 0.004599339640702
1025 => 0.0046793156857829
1026 => 0.0046256719536734
1027 => 0.0045448181961073
1028 => 0.0045308789778273
1029 => 0.0045304599480937
1030 => 0.0046134786785447
1031 => 0.0046783455635817
1101 => 0.0046266051093604
1102 => 0.0046148248108807
1103 => 0.0047406075788692
1104 => 0.0047246005751073
1105 => 0.0047107386130836
1106 => 0.0050680203670818
1107 => 0.0047852039797493
1108 => 0.0046618798922773
1109 => 0.0045092429154216
1110 => 0.0045589422847483
1111 => 0.004569414672101
1112 => 0.0042023502576462
1113 => 0.0040534322704168
1114 => 0.0040023292290557
1115 => 0.0039729187062614
1116 => 0.0039863214508129
1117 => 0.0038522777959687
1118 => 0.0039423573489014
1119 => 0.0038262868742344
1120 => 0.0038068272814305
1121 => 0.0040143756685077
1122 => 0.0040432548140894
1123 => 0.0039200474069906
1124 => 0.0039991665078154
1125 => 0.0039704768220185
1126 => 0.0038282765693801
1127 => 0.0038228455656836
1128 => 0.0037514944774902
1129 => 0.0036398438407607
1130 => 0.0035888165037888
1201 => 0.0035622410236542
1202 => 0.0035732065847035
1203 => 0.0035676620614853
1204 => 0.0035314802970262
1205 => 0.0035697359578712
1206 => 0.0034720085527427
1207 => 0.0034330927125773
1208 => 0.0034155153304152
1209 => 0.003328776633384
1210 => 0.0034668164732342
1211 => 0.0034940120606648
1212 => 0.0035212612318038
1213 => 0.0037584466627691
1214 => 0.0037465975489172
1215 => 0.0038537077673864
1216 => 0.0038495456612597
1217 => 0.0038189960918818
1218 => 0.0036901124838366
1219 => 0.003741483192874
1220 => 0.0035833721352376
1221 => 0.0037018396901256
1222 => 0.0036477760453981
1223 => 0.0036835607174601
1224 => 0.0036192166505188
1225 => 0.0036548273138655
1226 => 0.0035004611433344
1227 => 0.003356316185283
1228 => 0.0034143243242565
1229 => 0.0034773858053561
1230 => 0.0036141191641465
1231 => 0.0035326819036766
]
'min_raw' => 0.003328776633384
'max_raw' => 0.0099364793198514
'avg_raw' => 0.0066326279766177
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.003328'
'max' => '$0.009936'
'avg' => '$0.006632'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.006305893366616
'max_diff' => 0.00030180931985136
'year' => 2026
]
1 => [
'items' => [
101 => 0.0035619698220254
102 => 0.0034638601982955
103 => 0.0032614320209123
104 => 0.0032625777424126
105 => 0.0032314385774598
106 => 0.003204529792548
107 => 0.0035420359526834
108 => 0.0035000617264877
109 => 0.0034331812904959
110 => 0.0035227034117939
111 => 0.0035463744815722
112 => 0.0035470483636512
113 => 0.0036123613924498
114 => 0.0036472189676277
115 => 0.0036533627663341
116 => 0.0037561342283302
117 => 0.0037905818668029
118 => 0.0039324668144597
119 => 0.0036442615459101
120 => 0.0036383261480631
121 => 0.0035239631716275
122 => 0.0034514323639649
123 => 0.003528929418081
124 => 0.003597581228625
125 => 0.0035260963747473
126 => 0.0035354307875361
127 => 0.0034394682117324
128 => 0.0034737703171234
129 => 0.0035033159112786
130 => 0.0034870025707958
131 => 0.0034625807105185
201 => 0.0035919525630553
202 => 0.0035846528961228
203 => 0.003705126939451
204 => 0.0037990450714069
205 => 0.0039673631537461
206 => 0.0037917144602051
207 => 0.0037853131236721
208 => 0.0038478872150885
209 => 0.0037905722870355
210 => 0.0038267933431209
211 => 0.0039615273816354
212 => 0.0039643740995581
213 => 0.0039166879065641
214 => 0.0039137861973867
215 => 0.003922944852381
216 => 0.0039765873807479
217 => 0.0039578430330681
218 => 0.003979534466752
219 => 0.0040066599367247
220 => 0.0041188623814929
221 => 0.0041459140110669
222 => 0.0040801925758639
223 => 0.004086126485611
224 => 0.0040615448647513
225 => 0.0040377993270077
226 => 0.0040911758280981
227 => 0.0041887224329585
228 => 0.0041881156005923
301 => 0.0042107445168849
302 => 0.0042248421442671
303 => 0.0041643248074487
304 => 0.0041249302464641
305 => 0.0041400366278866
306 => 0.0041641920607555
307 => 0.004132203346566
308 => 0.003934754183975
309 => 0.0039946476468038
310 => 0.0039846784459484
311 => 0.003970481091634
312 => 0.0040307044316508
313 => 0.0040248957435904
314 => 0.0038509029845447
315 => 0.0038620414364607
316 => 0.0038515803506974
317 => 0.0038853822589353
318 => 0.0037887468730623
319 => 0.0038184712669076
320 => 0.0038371141280785
321 => 0.0038480949165293
322 => 0.0038877650540109
323 => 0.0038831102212485
324 => 0.0038874757030707
325 => 0.003946296044428
326 => 0.0042437891463093
327 => 0.0042599810394632
328 => 0.0041802462356668
329 => 0.004212098717084
330 => 0.004150948918135
331 => 0.0041919991878375
401 => 0.0042200847398042
402 => 0.0040931715310078
403 => 0.0040856565544428
404 => 0.0040242543685213
405 => 0.004057248425238
406 => 0.0040047525086452
407 => 0.0040176331703478
408 => 0.0039816177173113
409 => 0.0040464383621719
410 => 0.004118917915236
411 => 0.0041372291126442
412 => 0.0040890602357292
413 => 0.0040541827943591
414 => 0.0039929494966566
415 => 0.0040947818354089
416 => 0.0041245607145444
417 => 0.0040946254196341
418 => 0.0040876887577042
419 => 0.0040745437958815
420 => 0.0040904775234952
421 => 0.0041243985323733
422 => 0.0041084020110091
423 => 0.0041189679951926
424 => 0.0040787013590806
425 => 0.0041643448412053
426 => 0.0043003673020457
427 => 0.0043008046364993
428 => 0.0042848080289078
429 => 0.0042782625617331
430 => 0.0042946760518772
501 => 0.0043035796969638
502 => 0.0043566579143707
503 => 0.0044136129563776
504 => 0.0046793972859926
505 => 0.0046047661097899
506 => 0.0048405857786048
507 => 0.0050270885192858
508 => 0.0050830125364396
509 => 0.0050315650720865
510 => 0.0048555660756717
511 => 0.0048469307252601
512 => 0.0051099475307633
513 => 0.0050356332362758
514 => 0.0050267937874126
515 => 0.0049327569859931
516 => 0.0049883443823165
517 => 0.0049761866033226
518 => 0.004956994954402
519 => 0.0050630518343354
520 => 0.0052615808458078
521 => 0.0052306382375766
522 => 0.0052075410159182
523 => 0.0051063357141115
524 => 0.0051672839108217
525 => 0.005145581425359
526 => 0.0052388290756442
527 => 0.0051835912333036
528 => 0.0050350702324049
529 => 0.0050587226913297
530 => 0.0050551476697453
531 => 0.0051287213606221
601 => 0.0051066363648322
602 => 0.0050508352198658
603 => 0.0052609022952294
604 => 0.0052472617078098
605 => 0.0052666009420984
606 => 0.005275114671118
607 => 0.0054029787980948
608 => 0.0054553606397214
609 => 0.0054672522348439
610 => 0.0055170109330322
611 => 0.0054660141931038
612 => 0.0056700375128767
613 => 0.0058057011154349
614 => 0.0059632813709914
615 => 0.0061935484779392
616 => 0.0062801310402414
617 => 0.0062644906753319
618 => 0.0064390765678176
619 => 0.0067528035357879
620 => 0.006327903865356
621 => 0.0067753242500578
622 => 0.006633676121978
623 => 0.0062978309584417
624 => 0.0062762064892643
625 => 0.0065036447332536
626 => 0.0070080808683021
627 => 0.0068817253377397
628 => 0.0070082875406844
629 => 0.0068606460082022
630 => 0.0068533143616939
701 => 0.0070011169209939
702 => 0.0073464656570962
703 => 0.0071824034177778
704 => 0.0069471799680033
705 => 0.0071208653028345
706 => 0.0069704029919848
707 => 0.0066313692938912
708 => 0.0068816287160468
709 => 0.0067142873674294
710 => 0.0067631264693113
711 => 0.0071148530939582
712 => 0.0070725324159275
713 => 0.0071272992920885
714 => 0.007030637189163
715 => 0.006940339542816
716 => 0.0067717922803181
717 => 0.0067218937451721
718 => 0.0067356839051252
719 => 0.0067218869114537
720 => 0.0066275862671154
721 => 0.006607222051949
722 => 0.0065732808011615
723 => 0.0065838006140229
724 => 0.0065199811326794
725 => 0.0066404216797523
726 => 0.0066627765066075
727 => 0.006750423092859
728 => 0.0067595228522
729 => 0.0070036173473394
730 => 0.006869174201258
731 => 0.0069593702709122
801 => 0.006951302285484
802 => 0.0063051097415071
803 => 0.0063941493726621
804 => 0.0065326670965636
805 => 0.0064702650497023
806 => 0.0063820431552706
807 => 0.0063107992453582
808 => 0.0062028574367772
809 => 0.0063547834595161
810 => 0.0065545500238866
811 => 0.0067645892619375
812 => 0.0070169376441396
813 => 0.006960616422891
814 => 0.0067598717844621
815 => 0.0067688770422979
816 => 0.006824544002801
817 => 0.0067524502310729
818 => 0.0067311883703526
819 => 0.0068216229496361
820 => 0.0068222457228816
821 => 0.0067392931256851
822 => 0.0066471064940662
823 => 0.0066467202287137
824 => 0.0066303165080343
825 => 0.00686356419367
826 => 0.0069918268367687
827 => 0.0070065319420944
828 => 0.0069908370660161
829 => 0.0069968774009113
830 => 0.0069222441949666
831 => 0.0070928335719664
901 => 0.0072493832538423
902 => 0.0072074245949034
903 => 0.0071445226003792
904 => 0.0070944181319702
905 => 0.0071956215744891
906 => 0.0071911151445028
907 => 0.007248015928942
908 => 0.007245434580685
909 => 0.0072263009870248
910 => 0.0072074252782243
911 => 0.0072822653300051
912 => 0.0072607125969867
913 => 0.0072391263866209
914 => 0.0071958319370488
915 => 0.0072017163717903
916 => 0.0071388252381823
917 => 0.0071097289220728
918 => 0.0066721901396096
919 => 0.0065552654799433
920 => 0.0065920523580953
921 => 0.0066041635535538
922 => 0.006553277791824
923 => 0.0066262349026648
924 => 0.006614864614221
925 => 0.0066590997551597
926 => 0.0066314635595678
927 => 0.0066325977586748
928 => 0.0067138699172526
929 => 0.0067374635706442
930 => 0.0067254636481051
1001 => 0.0067338679825182
1002 => 0.0069275423218208
1003 => 0.0069000080241287
1004 => 0.0068853809772587
1005 => 0.0068894327692047
1006 => 0.0069389207153212
1007 => 0.0069527746382921
1008 => 0.0068940745931664
1009 => 0.0069217578737886
1010 => 0.0070396297691466
1011 => 0.0070808782615503
1012 => 0.0072125236489037
1013 => 0.0071565983485458
1014 => 0.007259251657743
1015 => 0.007574772933123
1016 => 0.0078268331603082
1017 => 0.0075950281585593
1018 => 0.0080579046661085
1019 => 0.0084183204229269
1020 => 0.0084044870658763
1021 => 0.0083416402421084
1022 => 0.0079313164851193
1023 => 0.0075537304463553
1024 => 0.0078695972009314
1025 => 0.0078704024102474
1026 => 0.007843269175901
1027 => 0.0076747469876922
1028 => 0.0078374049690443
1029 => 0.007850316168917
1030 => 0.0078430893303535
1031 => 0.007713883763775
1101 => 0.0075166107447898
1102 => 0.0075551574204946
1103 => 0.00761829766163
1104 => 0.0074987600127266
1105 => 0.0074605604908604
1106 => 0.007531580669766
1107 => 0.007760422483842
1108 => 0.0077171612644813
1109 => 0.0077160315392115
1110 => 0.0079011213812486
1111 => 0.0077686369992379
1112 => 0.0075556436175188
1113 => 0.0075018599795972
1114 => 0.0073109642979751
1115 => 0.0074428166252186
1116 => 0.0074475617557439
1117 => 0.0073753475836108
1118 => 0.0075615033995924
1119 => 0.007559787940976
1120 => 0.0077365151826139
1121 => 0.0080743512929048
1122 => 0.0079744365311864
1123 => 0.0078582465340032
1124 => 0.0078708796082962
1125 => 0.008009433252206
1126 => 0.0079256605562261
1127 => 0.0079557858017844
1128 => 0.0080093876540388
1129 => 0.008041726982363
1130 => 0.0078662264766243
1201 => 0.007825308913577
1202 => 0.0077416059396954
1203 => 0.0077197693961997
1204 => 0.0077879437219064
1205 => 0.0077699821957172
1206 => 0.0074471629458973
1207 => 0.0074134265381417
1208 => 0.0074144611856031
1209 => 0.0073296293842231
1210 => 0.0072002405251533
1211 => 0.0075402667213813
1212 => 0.0075129578591606
1213 => 0.007482810988807
1214 => 0.0074865038084097
1215 => 0.0076340976556352
1216 => 0.0075484857705764
1217 => 0.0077760989985171
1218 => 0.0077293085615324
1219 => 0.0076813181263956
1220 => 0.0076746843864352
1221 => 0.0076562121632591
1222 => 0.0075928640367765
1223 => 0.0075163673674166
1224 => 0.0074658576402771
1225 => 0.0068868590294139
1226 => 0.0069943178037102
1227 => 0.0071179393283625
1228 => 0.0071606129832903
1229 => 0.0070876167436093
1230 => 0.0075957463732364
1231 => 0.0076885865530283
]
'min_raw' => 0.003204529792548
'max_raw' => 0.0084183204229269
'avg_raw' => 0.0058114251077374
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.0032045'
'max' => '$0.008418'
'avg' => '$0.005811'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00012424684083602
'max_diff' => -0.0015181588969245
'year' => 2027
]
2 => [
'items' => [
101 => 0.0074073675926237
102 => 0.0073547630072265
103 => 0.0075991951210974
104 => 0.0074517726758226
105 => 0.007518156993903
106 => 0.0073746704084937
107 => 0.0076662240723942
108 => 0.0076640029219613
109 => 0.0075505819616658
110 => 0.0076464445806343
111 => 0.0076297860915254
112 => 0.0075017341066953
113 => 0.0076702835487155
114 => 0.0076703671471359
115 => 0.0075612019388359
116 => 0.0074337208748784
117 => 0.0074109302716111
118 => 0.007393760613536
119 => 0.0075139343105357
120 => 0.0076216816714923
121 => 0.0078221727973964
122 => 0.0078725810300003
123 => 0.0080693277177196
124 => 0.0079521746446051
125 => 0.0080041070845305
126 => 0.0080604870943616
127 => 0.0080875177443809
128 => 0.0080434727507191
129 => 0.0083491013409147
130 => 0.0083749057581452
131 => 0.0083835577560353
201 => 0.0082805015150212
202 => 0.0083720395776552
203 => 0.0083292119495708
204 => 0.0084406375399888
205 => 0.0084581104953197
206 => 0.0084433115237728
207 => 0.0084488577155867
208 => 0.0081880576304327
209 => 0.0081745337701874
210 => 0.0079901349761336
211 => 0.0080652788477176
212 => 0.0079248009815309
213 => 0.007969347959981
214 => 0.0079889838436227
215 => 0.0079787271723349
216 => 0.008069527369472
217 => 0.0079923286526507
218 => 0.0077885885463151
219 => 0.0075847929311238
220 => 0.0075822344431834
221 => 0.007528578654995
222 => 0.0074897953476825
223 => 0.0074972663885826
224 => 0.0075235953111778
225 => 0.0074882650628379
226 => 0.0074958045626103
227 => 0.0076210104942561
228 => 0.0076461196509198
229 => 0.0075607889257957
301 => 0.0072181737512574
302 => 0.0071340951280406
303 => 0.0071945291750573
304 => 0.0071656455930344
305 => 0.0057832352492872
306 => 0.0061080120539682
307 => 0.0059150407050049
308 => 0.006003970780792
309 => 0.0058069970031891
310 => 0.0059010032141415
311 => 0.0058836436995357
312 => 0.0064058751906183
313 => 0.006397721264191
314 => 0.0064016241172756
315 => 0.0062153307707191
316 => 0.0065121011301991
317 => 0.0066583008807959
318 => 0.0066312431979408
319 => 0.0066380530337806
320 => 0.0065210374919883
321 => 0.0064027570835034
322 => 0.0062715659072693
323 => 0.0065153028969929
324 => 0.0064882035044648
325 => 0.0065503597608705
326 => 0.0067084406213861
327 => 0.0067317186285878
328 => 0.0067630045063292
329 => 0.0067517907462393
330 => 0.007018948006124
331 => 0.0069865934991916
401 => 0.0070645585518718
402 => 0.0069041785232859
403 => 0.006722693297529
404 => 0.0067571877057464
405 => 0.0067538656168485
406 => 0.0067115716122628
407 => 0.0066733904760156
408 => 0.0066098296416324
409 => 0.0068109455268544
410 => 0.0068027805891951
411 => 0.0069349614391972
412 => 0.006911597190023
413 => 0.0067555650158366
414 => 0.0067611377354627
415 => 0.0067986169531058
416 => 0.0069283329532988
417 => 0.0069668414938949
418 => 0.0069490028035908
419 => 0.0069912256603727
420 => 0.0070245968848086
421 => 0.0069954165723694
422 => 0.0074085482606746
423 => 0.0072369871802495
424 => 0.0073206048571344
425 => 0.0073405471803675
426 => 0.0072894653387478
427 => 0.0073005431610915
428 => 0.0073173230434163
429 => 0.0074192072030547
430 => 0.0076865807183649
501 => 0.0078049986282227
502 => 0.0081612647526667
503 => 0.0077951656692659
504 => 0.0077734428647255
505 => 0.0078376171519441
506 => 0.008046783081592
507 => 0.0082162924216148
508 => 0.0082725284489288
509 => 0.008279960968294
510 => 0.0083854634940354
511 => 0.0084459355742848
512 => 0.0083726527124185
513 => 0.0083105531600223
514 => 0.0080881202714192
515 => 0.0081138674839396
516 => 0.0082912402459235
517 => 0.0085417897194292
518 => 0.0087567872329268
519 => 0.0086815025971197
520 => 0.0092558712256573
521 => 0.0093128175290913
522 => 0.0093049493912512
523 => 0.0094346815452201
524 => 0.0091771896390855
525 => 0.0090671068605422
526 => 0.0083239797881102
527 => 0.0085327681837042
528 => 0.0088362543784127
529 => 0.0087960868425282
530 => 0.0085756870557217
531 => 0.0087566200399247
601 => 0.0086967979370497
602 => 0.0086496137624908
603 => 0.0088657736132474
604 => 0.0086280969779832
605 => 0.0088338833721627
606 => 0.0085699601930399
607 => 0.0086818464909946
608 => 0.0086183344169442
609 => 0.0086594345126018
610 => 0.0084191641932001
611 => 0.008548808225317
612 => 0.008413770575234
613 => 0.0084137065498055
614 => 0.0084107255861954
615 => 0.0085695967826694
616 => 0.0085747775666828
617 => 0.0084573715124474
618 => 0.0084404514658049
619 => 0.0085030137463979
620 => 0.0084297697009107
621 => 0.0084640401288016
622 => 0.0084308077172597
623 => 0.0084233264014399
624 => 0.008363714004147
625 => 0.0083380313443162
626 => 0.0083481021769965
627 => 0.0083137252331886
628 => 0.008293011881076
629 => 0.0084066051791127
630 => 0.0083459168623123
701 => 0.0083973038241701
702 => 0.0083387418955815
703 => 0.0081357407368758
704 => 0.0080189926238059
705 => 0.0076355422532283
706 => 0.0077442883026554
707 => 0.0078163870459315
708 => 0.0077925584117088
709 => 0.0078437515384764
710 => 0.0078468943806866
711 => 0.0078302509733223
712 => 0.007810980039747
713 => 0.007801600015032
714 => 0.0078715110343475
715 => 0.0079120967341569
716 => 0.007823623119376
717 => 0.0078028949893103
718 => 0.0078923466986159
719 => 0.0079469121896177
720 => 0.0083497931174744
721 => 0.0083199463970505
722 => 0.0083948558081914
723 => 0.0083864221580755
724 => 0.0084649391549562
725 => 0.0085932812610974
726 => 0.0083323258742951
727 => 0.0083776187062856
728 => 0.0083665139498458
729 => 0.0084877527688324
730 => 0.0084881312631917
731 => 0.008415442534881
801 => 0.0084548482737381
802 => 0.008432853071348
803 => 0.0084726013748969
804 => 0.0083195477759026
805 => 0.0085059505383626
806 => 0.0086116288931487
807 => 0.0086130962372075
808 => 0.0086631869386608
809 => 0.0087140819923952
810 => 0.0088117706160134
811 => 0.0087113575097031
812 => 0.0085307241064697
813 => 0.0085437652547409
814 => 0.0084378599565163
815 => 0.0084396402437128
816 => 0.0084301369311342
817 => 0.0084586570875586
818 => 0.0083258063464102
819 => 0.0083569861498194
820 => 0.0083133342424578
821 => 0.0083775238155641
822 => 0.0083084664458183
823 => 0.008366508594796
824 => 0.0083915576621671
825 => 0.0084839892600341
826 => 0.0082948142236595
827 => 0.0079090735184675
828 => 0.0079901608913529
829 => 0.0078702262975798
830 => 0.0078813267008567
831 => 0.0079037512820921
901 => 0.0078310658774417
902 => 0.0078449319620686
903 => 0.0078444365679516
904 => 0.0078401675290848
905 => 0.0078212592480917
906 => 0.0077938384997623
907 => 0.0079030743214452
908 => 0.0079216356161489
909 => 0.0079628950750171
910 => 0.0080856552380505
911 => 0.0080733886028795
912 => 0.0080933959937813
913 => 0.0080497199717794
914 => 0.0078833527062515
915 => 0.0078923872491867
916 => 0.0077797263540157
917 => 0.0079600140826313
918 => 0.0079173195688134
919 => 0.0078897941380107
920 => 0.0078822835691949
921 => 0.008005348030928
922 => 0.0080421708466777
923 => 0.0080192253389897
924 => 0.0079721634332944
925 => 0.0080625362048329
926 => 0.0080867161459755
927 => 0.0080921291430754
928 => 0.0082522523669815
929 => 0.0081010782525446
930 => 0.008137467364431
1001 => 0.0084213648276388
1002 => 0.0081639090036813
1003 => 0.0083002890955816
1004 => 0.0082936139997708
1005 => 0.0083633814399363
1006 => 0.0082878910333183
1007 => 0.0082888268273828
1008 => 0.008350775587794
1009 => 0.0082637797263142
1010 => 0.0082422383275863
1011 => 0.0082124790395261
1012 => 0.0082774573562838
1013 => 0.0083164089184636
1014 => 0.0086303299028624
1015 => 0.0088331371753202
1016 => 0.0088243327767567
1017 => 0.0089047884984838
1018 => 0.0088685424589558
1019 => 0.0087514944360977
1020 => 0.0089512811386306
1021 => 0.0088880602665185
1022 => 0.0088932721184021
1023 => 0.0088930781330147
1024 => 0.0089351144861047
1025 => 0.0089053278773652
1026 => 0.0088466154140072
1027 => 0.0088855914871802
1028 => 0.009001336490303
1029 => 0.0093606125314864
1030 => 0.0095616681639071
1031 => 0.0093485087299618
1101 => 0.0094955432531787
1102 => 0.009407374933006
1103 => 0.0093913521264503
1104 => 0.0094837006727965
1105 => 0.0095762108630481
1106 => 0.0095703183638616
1107 => 0.0095031607161898
1108 => 0.0094652250650822
1109 => 0.0097524865246443
1110 => 0.0099641358746784
1111 => 0.0099497028079214
1112 => 0.010013405670702
1113 => 0.010200439246083
1114 => 0.010217539252234
1115 => 0.010215385044498
1116 => 0.01017300089505
1117 => 0.010357159739391
1118 => 0.010510788287307
1119 => 0.010163190189049
1120 => 0.010295550994472
1121 => 0.010354972024426
1122 => 0.010442219725822
1123 => 0.010589421222491
1124 => 0.010749321091142
1125 => 0.010771932685782
1126 => 0.010755888677321
1127 => 0.010650430415606
1128 => 0.010825394759886
1129 => 0.010927884769347
1130 => 0.010988915224539
1201 => 0.011143678304405
1202 => 0.010355338988477
1203 => 0.0097973132376575
1204 => 0.0097101694586775
1205 => 0.0098873797599932
1206 => 0.0099341087032245
1207 => 0.0099152723248011
1208 => 0.0092871636087717
1209 => 0.0097068625962777
1210 => 0.010158423417541
1211 => 0.010175769707725
1212 => 0.010401830496541
1213 => 0.010475445155924
1214 => 0.010657453721386
1215 => 0.010646069036061
1216 => 0.010690385225362
1217 => 0.010680197700891
1218 => 0.011017330241983
1219 => 0.011389237499475
1220 => 0.011376359533741
1221 => 0.01132289346527
1222 => 0.011402299694269
1223 => 0.011786147840005
1224 => 0.011750809253786
1225 => 0.011785137680164
1226 => 0.012237716276719
1227 => 0.012826132830797
1228 => 0.012552754265372
1229 => 0.013145907089781
1230 => 0.013519265351066
1231 => 0.014164949857994
]
'min_raw' => 0.0057832352492872
'max_raw' => 0.014164949857994
'avg_raw' => 0.0099740925536406
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.005783'
'max' => '$0.014164'
'avg' => '$0.009974'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0025787054567392
'max_diff' => 0.0057466294350671
'year' => 2028
]
3 => [
'items' => [
101 => 0.014084106977663
102 => 0.014335467217959
103 => 0.013939381349453
104 => 0.013029888133203
105 => 0.012885957350332
106 => 0.013174110422549
107 => 0.013882506633029
108 => 0.013151800504913
109 => 0.013299621402957
110 => 0.013257048974376
111 => 0.013254780470578
112 => 0.013341360033873
113 => 0.013215771861627
114 => 0.012704103055019
115 => 0.012938597853804
116 => 0.012848048150628
117 => 0.012948519797229
118 => 0.013490723836279
119 => 0.013251002506085
120 => 0.012998475558106
121 => 0.013315200391088
122 => 0.013718499941935
123 => 0.013693262180842
124 => 0.013644290375756
125 => 0.013920341876947
126 => 0.014376298081413
127 => 0.0144995412113
128 => 0.014590516770188
129 => 0.014603060762714
130 => 0.014732271681779
131 => 0.014037472004622
201 => 0.015140136935992
202 => 0.015330536709135
203 => 0.015294749443046
204 => 0.015506370777648
205 => 0.015444106412693
206 => 0.015353895116853
207 => 0.015689359945346
208 => 0.015304776590095
209 => 0.014758908935014
210 => 0.014459435143398
211 => 0.014853806390059
212 => 0.015094635148735
213 => 0.015253807638634
214 => 0.015301973137903
215 => 0.014091407325718
216 => 0.013438979494009
217 => 0.013857178254034
218 => 0.014367409603802
219 => 0.014034637643711
220 => 0.014047681674526
221 => 0.01357323631037
222 => 0.014409387490964
223 => 0.01428756729709
224 => 0.014919570678405
225 => 0.01476873799931
226 => 0.015284112222543
227 => 0.015148396917495
228 => 0.01571174356101
301 => 0.015936477789109
302 => 0.016313841535178
303 => 0.016591431842933
304 => 0.016754438181104
305 => 0.016744651891981
306 => 0.017390564213247
307 => 0.017009692283854
308 => 0.016531227375916
309 => 0.016522573455268
310 => 0.01677037721099
311 => 0.017289705901342
312 => 0.017424360274825
313 => 0.017499613699715
314 => 0.017384360459906
315 => 0.016970951277887
316 => 0.016792443289124
317 => 0.016944537267425
318 => 0.016758539401547
319 => 0.017079623899835
320 => 0.017520541495933
321 => 0.017429493755916
322 => 0.017733852700153
323 => 0.018048832187944
324 => 0.018499267002098
325 => 0.018617027342071
326 => 0.018811680706022
327 => 0.019012042957826
328 => 0.019076393913191
329 => 0.019199259853912
330 => 0.019198612289756
331 => 0.019568877071952
401 => 0.019977290592859
402 => 0.020131457242207
403 => 0.020485954951583
404 => 0.019878890047357
405 => 0.020339355750671
406 => 0.020754707341265
407 => 0.020259508052023
408 => 0.020942024905607
409 => 0.020968525488415
410 => 0.021368652825877
411 => 0.020963047114236
412 => 0.020722199737403
413 => 0.021417517089887
414 => 0.021753959254463
415 => 0.021652620136435
416 => 0.020881424444518
417 => 0.020432555473683
418 => 0.01925777879665
419 => 0.020649352517172
420 => 0.021327147483676
421 => 0.020879669119298
422 => 0.021105351178028
423 => 0.022336599312806
424 => 0.022805378885117
425 => 0.022707876011093
426 => 0.022724352391769
427 => 0.022977297340036
428 => 0.024098994539982
429 => 0.023426847577037
430 => 0.023940678745342
501 => 0.024213212944255
502 => 0.024466357896702
503 => 0.023844713900777
504 => 0.023035964195844
505 => 0.022779799215288
506 => 0.020835176214795
507 => 0.02073395014255
508 => 0.020677128880735
509 => 0.020318878862517
510 => 0.020037392481137
511 => 0.019813544059744
512 => 0.019226098955211
513 => 0.019424344433359
514 => 0.018488079546056
515 => 0.019087068641762
516 => 0.017592767274721
517 => 0.018837265856598
518 => 0.018159941858889
519 => 0.01861474670678
520 => 0.018613159935511
521 => 0.017775720014536
522 => 0.017292702145042
523 => 0.01760049993082
524 => 0.017930483590193
525 => 0.017984022328728
526 => 0.018411854756559
527 => 0.018531253590939
528 => 0.018169469548568
529 => 0.017561801200291
530 => 0.017702948698156
531 => 0.017289841795503
601 => 0.016565887838531
602 => 0.017085844209452
603 => 0.017263380175352
604 => 0.017341790171895
605 => 0.016629864601886
606 => 0.016406162131134
607 => 0.016287064812751
608 => 0.017469900549181
609 => 0.017534698960924
610 => 0.017203181124878
611 => 0.018701673179617
612 => 0.01836251827666
613 => 0.018741437398232
614 => 0.017690141042163
615 => 0.017730301978723
616 => 0.017232601435989
617 => 0.017511280483558
618 => 0.017314319114981
619 => 0.017488765970474
620 => 0.017593328696386
621 => 0.018090947571358
622 => 0.018842947864814
623 => 0.018016619905565
624 => 0.017656576980485
625 => 0.017879945586246
626 => 0.018474805618558
627 => 0.019376049017835
628 => 0.018842494786249
629 => 0.019079277093889
630 => 0.019131003494396
701 => 0.018737580357276
702 => 0.019390555090074
703 => 0.019740489554137
704 => 0.020099449905532
705 => 0.020411125120808
706 => 0.019956073247478
707 => 0.020443043981065
708 => 0.0200506315317
709 => 0.019698596997767
710 => 0.019699130888841
711 => 0.019478294483301
712 => 0.019050396120389
713 => 0.018971485097129
714 => 0.01938199020549
715 => 0.019711176427416
716 => 0.01973828978135
717 => 0.019920544188007
718 => 0.020028400468498
719 => 0.021085538640805
720 => 0.021510728358812
721 => 0.022030642297562
722 => 0.022233178077449
723 => 0.022842738161814
724 => 0.02235046888764
725 => 0.022243963333654
726 => 0.020765369954569
727 => 0.021007489537562
728 => 0.021395146350998
729 => 0.02077176227264
730 => 0.021167155987122
731 => 0.021245215081945
801 => 0.020750579920198
802 => 0.021014785932011
803 => 0.020313133096259
804 => 0.018858241979237
805 => 0.01939217479979
806 => 0.019785329075561
807 => 0.019224249448463
808 => 0.020229962963255
809 => 0.019642445890055
810 => 0.019456231183643
811 => 0.018729741223595
812 => 0.019072616519575
813 => 0.019536360266889
814 => 0.019249820547046
815 => 0.019844433489875
816 => 0.0206865639944
817 => 0.021286716341663
818 => 0.021332788586765
819 => 0.020946930834559
820 => 0.02156527034498
821 => 0.021569774273257
822 => 0.020872284779511
823 => 0.020445076348229
824 => 0.020348013693788
825 => 0.020590495234837
826 => 0.020884912590232
827 => 0.021349126700949
828 => 0.021629641565767
829 => 0.022361075559625
830 => 0.022558980626507
831 => 0.022776418293943
901 => 0.023066982072931
902 => 0.023415878388629
903 => 0.022652513112559
904 => 0.022682843038068
905 => 0.021972007862503
906 => 0.021212378533336
907 => 0.021788842505041
908 => 0.022542492464257
909 => 0.022369604330904
910 => 0.022350150884118
911 => 0.022382866185676
912 => 0.022252514179126
913 => 0.021662936884572
914 => 0.021366854858196
915 => 0.021748876210802
916 => 0.021951903557898
917 => 0.022266781267398
918 => 0.02222796594344
919 => 0.023039057107715
920 => 0.023354222608029
921 => 0.023273589786356
922 => 0.023288428166081
923 => 0.023859020250133
924 => 0.02449363599881
925 => 0.025088037392371
926 => 0.025692688020034
927 => 0.02496375808847
928 => 0.02459365242337
929 => 0.024975506997404
930 => 0.024772889585429
1001 => 0.025937189334865
1002 => 0.02601780292337
1003 => 0.027182018480682
1004 => 0.02828699767678
1005 => 0.027592980041469
1006 => 0.028247407412326
1007 => 0.028955223970155
1008 => 0.030320716949304
1009 => 0.029860866952549
1010 => 0.029508629061802
1011 => 0.029175765957048
1012 => 0.029868401237512
1013 => 0.030759465460709
1014 => 0.030951392159879
1015 => 0.031262386734176
1016 => 0.03093541396591
1017 => 0.031329216650417
1018 => 0.032719513172396
1019 => 0.03234384277967
1020 => 0.031810330429971
1021 => 0.032907836008576
1022 => 0.033305019011028
1023 => 0.036092657328591
1024 => 0.039612165856109
1025 => 0.038155066215377
1026 => 0.037250597448064
1027 => 0.037463169062668
1028 => 0.038748374434036
1029 => 0.039161141608939
1030 => 0.038039098138174
1031 => 0.038435422860905
1101 => 0.040619211048944
1102 => 0.041790743347513
1103 => 0.040199645128277
1104 => 0.035809868245274
1105 => 0.031762293480166
1106 => 0.032835892572539
1107 => 0.032714179753123
1108 => 0.035060387728046
1109 => 0.032334883165046
1110 => 0.032380773671941
1111 => 0.034775498743108
1112 => 0.034136627150102
1113 => 0.033101736989924
1114 => 0.031769849323613
1115 => 0.02930773178774
1116 => 0.02712696562499
1117 => 0.031403950270595
1118 => 0.031219518915485
1119 => 0.03095243498209
1120 => 0.031546801374361
1121 => 0.034432875861387
1122 => 0.034366342503149
1123 => 0.03394309122366
1124 => 0.034264123588787
1125 => 0.033045458464148
1126 => 0.033359536215257
1127 => 0.031761652323643
1128 => 0.032483962576178
1129 => 0.033099516580433
1130 => 0.033223098160219
1201 => 0.033501533769711
1202 => 0.031122331971967
1203 => 0.032190523729459
1204 => 0.032817986310954
1205 => 0.029983087540478
1206 => 0.032761949477156
1207 => 0.031080915361915
1208 => 0.030510347134917
1209 => 0.031278542085922
1210 => 0.030979175766421
1211 => 0.030721798184295
1212 => 0.03057817707116
1213 => 0.031142254660595
1214 => 0.031115939766829
1215 => 0.030192999347771
1216 => 0.028989061194974
1217 => 0.029393142356976
1218 => 0.029246335882539
1219 => 0.028714290280771
1220 => 0.029072824776932
1221 => 0.027494020305994
1222 => 0.024777769272861
1223 => 0.026572207906368
1224 => 0.026503123970951
1225 => 0.026468288718007
1226 => 0.027816759756447
1227 => 0.027687135380621
1228 => 0.027451865869211
1229 => 0.028709969371693
1230 => 0.028250744669407
1231 => 0.029665966994905
]
'min_raw' => 0.012704103055019
'max_raw' => 0.041790743347513
'avg_raw' => 0.027247423201266
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.0127041'
'max' => '$0.04179'
'avg' => '$0.027247'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.0069208678057314
'max_diff' => 0.027625793489519
'year' => 2029
]
4 => [
'items' => [
101 => 0.030598123949318
102 => 0.03036169879356
103 => 0.031238396914692
104 => 0.029402451570819
105 => 0.030012278968711
106 => 0.030137963550233
107 => 0.028694444569763
108 => 0.027708343531598
109 => 0.027642581834727
110 => 0.025932818527643
111 => 0.02684616028556
112 => 0.027649863235877
113 => 0.027264951892544
114 => 0.027143100460143
115 => 0.027765613001924
116 => 0.02781398755788
117 => 0.026711042555584
118 => 0.026940379747287
119 => 0.027896753960825
120 => 0.026916281570909
121 => 0.025011383876558
122 => 0.024538942911088
123 => 0.02447591057748
124 => 0.02319461320936
125 => 0.024570513675465
126 => 0.02396989625017
127 => 0.025867239500176
128 => 0.024783487211429
129 => 0.024736768816329
130 => 0.024666147110037
131 => 0.023563281535569
201 => 0.023804739005614
202 => 0.024607380411054
203 => 0.024893771906918
204 => 0.024863898927563
205 => 0.024603447030288
206 => 0.024722680575131
207 => 0.024338587783471
208 => 0.024202956624536
209 => 0.023774867378646
210 => 0.023145694449861
211 => 0.023233184804551
212 => 0.021986628600576
213 => 0.021307438620905
214 => 0.021119447786113
215 => 0.02086805858515
216 => 0.021147842865282
217 => 0.021983097263472
218 => 0.02097560325015
219 => 0.019248325431797
220 => 0.019352137771819
221 => 0.019585373277686
222 => 0.01915074045551
223 => 0.018739396965288
224 => 0.019097026756683
225 => 0.018365156374746
226 => 0.019673816316791
227 => 0.019638420732836
228 => 0.020126208232242
301 => 0.020431231766028
302 => 0.019728251273193
303 => 0.019551453580306
304 => 0.019652165581182
305 => 0.017987620545467
306 => 0.019990179390824
307 => 0.020007497602877
308 => 0.01985920855709
309 => 0.020925509320175
310 => 0.023175736517832
311 => 0.022329110530894
312 => 0.022001271359346
313 => 0.021378048854584
314 => 0.022208455838889
315 => 0.022144693538861
316 => 0.021856336237002
317 => 0.021681936841107
318 => 0.02200327307542
319 => 0.021642119725606
320 => 0.021577246660149
321 => 0.021184186466071
322 => 0.021043881859884
323 => 0.020940005915151
324 => 0.020825648706639
325 => 0.021077892212575
326 => 0.020506275242727
327 => 0.019816961213394
328 => 0.019759652210336
329 => 0.019917887406438
330 => 0.019847880111387
331 => 0.019759317042341
401 => 0.019590226024814
402 => 0.019540060331971
403 => 0.019703074496775
404 => 0.019519041009028
405 => 0.019790592445021
406 => 0.019716745480057
407 => 0.019304242336761
408 => 0.018790110691989
409 => 0.018785533841923
410 => 0.018674765022402
411 => 0.018533684276539
412 => 0.018494438840529
413 => 0.019066908173163
414 => 0.020251902559148
415 => 0.020019259806667
416 => 0.020187368037523
417 => 0.021014294150503
418 => 0.021277149095283
419 => 0.021090580881539
420 => 0.020835194803539
421 => 0.020846430494864
422 => 0.021719162034014
423 => 0.021773593229596
424 => 0.021911123300664
425 => 0.022087888307979
426 => 0.021120684726638
427 => 0.020800875293162
428 => 0.02064933184123
429 => 0.020182636663974
430 => 0.020685927401224
501 => 0.020392681441687
502 => 0.020432250340337
503 => 0.020406481043182
504 => 0.02042055282194
505 => 0.019673450519666
506 => 0.019945655332074
507 => 0.019493062036455
508 => 0.018887090419602
509 => 0.018885058990261
510 => 0.019033369685007
511 => 0.018945148680374
512 => 0.018707748225277
513 => 0.018741469839425
514 => 0.018446033015939
515 => 0.018777341218853
516 => 0.018786841952635
517 => 0.018659270248033
518 => 0.019169696246343
519 => 0.019378818194319
520 => 0.019294847765499
521 => 0.019372926605185
522 => 0.020028927163351
523 => 0.020135883877643
524 => 0.020183386984968
525 => 0.020119739114109
526 => 0.019384917091151
527 => 0.019417509572574
528 => 0.019178367569345
529 => 0.01897631777678
530 => 0.018984398708871
531 => 0.019088278566884
601 => 0.019541927999299
602 => 0.020496606485721
603 => 0.020532835836419
604 => 0.020576746866351
605 => 0.020398138639704
606 => 0.020344268689496
607 => 0.020415337058834
608 => 0.020773864103724
609 => 0.021696093002324
610 => 0.021370115715961
611 => 0.02110509110801
612 => 0.021337589139304
613 => 0.021301797889766
614 => 0.020999683724625
615 => 0.020991204386232
616 => 0.020411350711585
617 => 0.020196992010697
618 => 0.020017857835765
619 => 0.019822247993155
620 => 0.019706283921554
621 => 0.01988445744026
622 => 0.019925207832076
623 => 0.019535628319484
624 => 0.019482530071463
625 => 0.019800669111104
626 => 0.019660667981177
627 => 0.019804662615168
628 => 0.019838070605417
629 => 0.019832691149535
630 => 0.019686513890864
701 => 0.019779682916472
702 => 0.019559310395885
703 => 0.019319688378629
704 => 0.019166824460599
705 => 0.019033430417661
706 => 0.019107445185591
707 => 0.018843596052486
708 => 0.018759185404572
709 => 0.019748119346966
710 => 0.020478655483044
711 => 0.020468033198301
712 => 0.02040337277176
713 => 0.020307300493809
714 => 0.020766835818194
715 => 0.020606742899877
716 => 0.020723223874164
717 => 0.020752873170811
718 => 0.020842612661964
719 => 0.020874686816682
720 => 0.020777736444193
721 => 0.020452359152628
722 => 0.019641549877994
723 => 0.019264115971914
724 => 0.019139556496248
725 => 0.019144083996617
726 => 0.019019195324807
727 => 0.019055980635772
728 => 0.019006402894851
729 => 0.01891251464769
730 => 0.019101647850899
731 => 0.019123443690671
801 => 0.019079297741068
802 => 0.019089695710306
803 => 0.018724186102581
804 => 0.018751975004212
805 => 0.018597242868692
806 => 0.018568232458606
807 => 0.01817708309408
808 => 0.017484105296816
809 => 0.017868082265483
810 => 0.017404292082665
811 => 0.017228647712864
812 => 0.018060120841198
813 => 0.017976664000588
814 => 0.01783382216728
815 => 0.017622529324972
816 => 0.017544158754435
817 => 0.01706800397696
818 => 0.01703987021252
819 => 0.017275865377497
820 => 0.017166961728958
821 => 0.017014019761372
822 => 0.016460079458255
823 => 0.015837267154219
824 => 0.01585606594282
825 => 0.016054170948898
826 => 0.016630187972172
827 => 0.016405128155983
828 => 0.016241844677075
829 => 0.016211266589758
830 => 0.016594015372083
831 => 0.017135685087422
901 => 0.017389824398682
902 => 0.017137980059549
903 => 0.016848674843015
904 => 0.016866283511034
905 => 0.016983426090543
906 => 0.016995736119343
907 => 0.016807428164436
908 => 0.016860435750722
909 => 0.016779912380038
910 => 0.016285740602786
911 => 0.016276802602371
912 => 0.016155524878637
913 => 0.016151852637361
914 => 0.015945528975143
915 => 0.01591666286855
916 => 0.015506994714266
917 => 0.015776639534005
918 => 0.015595775945913
919 => 0.015323171857249
920 => 0.015276174809613
921 => 0.015274762021611
922 => 0.015554665467509
923 => 0.015773368699272
924 => 0.015598922145462
925 => 0.015559204046664
926 => 0.015983289430809
927 => 0.015929320700053
928 => 0.015882584127278
929 => 0.017087184505499
930 => 0.016133649309998
1001 => 0.015717853538873
1002 => 0.015203227314631
1003 => 0.015370792208215
1004 => 0.015406100593333
1005 => 0.01416851729238
1006 => 0.013666429901314
1007 => 0.013494132429465
1008 => 0.013394972798487
1009 => 0.013440161087491
1010 => 0.012988223546555
1011 => 0.013291933048421
1012 => 0.0129005933393
1013 => 0.012834983963536
1014 => 0.013534747841133
1015 => 0.013632115896739
1016 => 0.013216713521639
1017 => 0.013483469093989
1018 => 0.013386739815275
1019 => 0.0129073017354
1020 => 0.012888990727256
1021 => 0.012648425551839
1022 => 0.012271987634907
1023 => 0.012099945405691
1024 => 0.012010344318976
1025 => 0.012047315473645
1026 => 0.012028621726508
1027 => 0.011906632381505
1028 => 0.012035614012968
1029 => 0.011706119243468
1030 => 0.011574911771333
1031 => 0.01151564840016
1101 => 0.011223202827217
1102 => 0.011688613784906
1103 => 0.011780305606663
1104 => 0.011872178089635
1105 => 0.012671865329892
1106 => 0.012631915215262
1107 => 0.012993044795027
1108 => 0.012979011963632
1109 => 0.012876011957572
1110 => 0.012441471874681
1111 => 0.012614671806789
1112 => 0.012081589337007
1113 => 0.012481010969452
1114 => 0.01229873161665
1115 => 0.012419382136913
1116 => 0.012202441622861
1117 => 0.012322505460592
1118 => 0.011802049139144
1119 => 0.011316054349195
1120 => 0.011511632839743
1121 => 0.011724249026082
1122 => 0.012185255091662
1123 => 0.01191068368222
1124 => 0.01200942994375
1125 => 0.011678646497549
1126 => 0.010996145764418
1127 => 0.011000008644448
1128 => 0.010895020775742
1129 => 0.010804295928701
1130 => 0.011942221511525
1201 => 0.01180070247736
1202 => 0.01157521041797
1203 => 0.011877040500161
1204 => 0.01195684916458
1205 => 0.011959121205058
1206 => 0.012179328641663
1207 => 0.012296853390053
1208 => 0.012317567636338
1209 => 0.012664068795732
1210 => 0.012780211413901
1211 => 0.013258586421016
1212 => 0.012286882236252
1213 => 0.012266870628015
1214 => 0.011881287868394
1215 => 0.01163674518642
1216 => 0.011898031915044
1217 => 0.012129496287409
1218 => 0.011888480111648
1219 => 0.011919951736073
1220 => 0.011596407211858
1221 => 0.01171205915508
1222 => 0.011811674188582
1223 => 0.011756672622183
1224 => 0.011674332615178
1225 => 0.01211051884846
1226 => 0.012085907511751
1227 => 0.012492094160061
1228 => 0.012808745699105
1229 => 0.013376241865305
1230 => 0.012784030031631
1231 => 0.012762447478583
]
'min_raw' => 0.010804295928701
'max_raw' => 0.031238396914692
'avg_raw' => 0.021021346421697
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.0108042'
'max' => '$0.031238'
'avg' => '$0.021021'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0018998071263176
'max_diff' => -0.010552346432821
'year' => 2030
]
5 => [
'items' => [
101 => 0.012973420396577
102 => 0.012780179115046
103 => 0.012902300934511
104 => 0.013356566152193
105 => 0.013366164060421
106 => 0.013205386731398
107 => 0.013195603416316
108 => 0.013226482461066
109 => 0.013407341990656
110 => 0.013344144113765
111 => 0.013417278296878
112 => 0.013508733712731
113 => 0.013887032088991
114 => 0.013978238546785
115 => 0.013756654139474
116 => 0.013776660730478
117 => 0.013693782079516
118 => 0.013613722341153
119 => 0.013793684941207
120 => 0.014122570129981
121 => 0.014120524152291
122 => 0.014196819123471
123 => 0.014244350258455
124 => 0.014040311832187
125 => 0.013907490319387
126 => 0.013958422539047
127 => 0.014039864267442
128 => 0.013932012084172
129 => 0.013266298447036
130 => 0.013468233438591
131 => 0.01343462158188
201 => 0.013386754210582
202 => 0.013589801406107
203 => 0.013570217008762
204 => 0.012983588273853
205 => 0.01302114234215
206 => 0.012985872061129
207 => 0.013099837554727
208 => 0.012774024604389
209 => 0.012874242473529
210 => 0.01293709818157
211 => 0.012974120676486
212 => 0.013107871314686
213 => 0.013092177221037
214 => 0.013106895747789
215 => 0.01330521263538
216 => 0.014308231398678
217 => 0.014362823496928
218 => 0.014093992039023
219 => 0.01420138490399
220 => 0.013995214087491
221 => 0.014133617937831
222 => 0.014228310337157
223 => 0.013800413592903
224 => 0.013775076324735
225 => 0.013568054567937
226 => 0.013679296333729
227 => 0.013502302685789
228 => 0.013545730736018
301 => 0.013424302121587
302 => 0.013642849451367
303 => 0.013887219324884
304 => 0.013948956805392
305 => 0.01378655207383
306 => 0.013668960345185
307 => 0.013462508006809
308 => 0.013805842846619
309 => 0.01390624441672
310 => 0.013805315479914
311 => 0.013781928039915
312 => 0.013737608883378
313 => 0.013791330558485
314 => 0.013905697608206
315 => 0.013851764219585
316 => 0.013887388172954
317 => 0.013751626397975
318 => 0.014040379377396
319 => 0.014498988600904
320 => 0.014500463104548
321 => 0.014446529425206
322 => 0.014424460925637
323 => 0.014479800153611
324 => 0.014509819414653
325 => 0.014688776330443
326 => 0.014880804231043
327 => 0.01577691465481
328 => 0.01552529043366
329 => 0.016320372911473
330 => 0.016949179922884
331 => 0.017137731651209
401 => 0.016964272933195
402 => 0.016370880028925
403 => 0.016341765342111
404 => 0.017228544865112
405 => 0.016977989032789
406 => 0.016948186213796
407 => 0.016631134572371
408 => 0.016818551360063
409 => 0.016777560559356
410 => 0.016712854575102
411 => 0.017070432750453
412 => 0.017739787173485
413 => 0.017635462009489
414 => 0.017557588114071
415 => 0.017216367373102
416 => 0.017421858473577
417 => 0.017348687028621
418 => 0.0176630779919
419 => 0.017476839749866
420 => 0.016976090825931
421 => 0.017055836742558
422 => 0.017043783307686
423 => 0.017291842143228
424 => 0.017217381037997
425 => 0.017029243581832
426 => 0.017737499392835
427 => 0.017691509199994
428 => 0.01775671277862
429 => 0.017785417410419
430 => 0.01821652024171
501 => 0.018393129277938
502 => 0.018433222621138
503 => 0.018600987546121
504 => 0.018429048476974
505 => 0.019116927344041
506 => 0.019574326651797
507 => 0.020105619485307
508 => 0.020881981113118
509 => 0.021173900266921
510 => 0.021121167684654
511 => 0.021709796210367
512 => 0.022767548586596
513 => 0.021334969682187
514 => 0.022843478747103
515 => 0.022365902193725
516 => 0.021233576776902
517 => 0.021160668369299
518 => 0.02192749228814
519 => 0.023628233936062
520 => 0.023202217442909
521 => 0.023628930746428
522 => 0.023131147011662
523 => 0.02310642785358
524 => 0.023604754501505
525 => 0.024769121876753
526 => 0.024215974582431
527 => 0.023422902298739
528 => 0.024008494531446
529 => 0.023501200345473
530 => 0.022358124561773
531 => 0.023201891676126
601 => 0.022637688635862
602 => 0.022802353077694
603 => 0.02398822394946
604 => 0.023845536828744
605 => 0.024030187175422
606 => 0.023704284146676
607 => 0.023399839327637
608 => 0.022831570464531
609 => 0.022663334069482
610 => 0.022709828556562
611 => 0.022663311029123
612 => 0.022345369822876
613 => 0.022276710449658
614 => 0.022162275152926
615 => 0.022197743436458
616 => 0.021982571599375
617 => 0.022388645312721
618 => 0.022464016172228
619 => 0.022759522757064
620 => 0.022790203231007
621 => 0.023613184863503
622 => 0.023159900409969
623 => 0.023464002756096
624 => 0.023436800979936
625 => 0.021258117702196
626 => 0.021558321035183
627 => 0.022025343212316
628 => 0.021814950354551
629 => 0.021517504078019
630 => 0.021277300261658
701 => 0.020913366917771
702 => 0.021425596110571
703 => 0.022099123029602
704 => 0.022807284985162
705 => 0.023658095174158
706 => 0.023468204244497
707 => 0.02279137968049
708 => 0.022821741536011
709 => 0.02300942657989
710 => 0.022766357395082
711 => 0.022694671547208
712 => 0.022999578045203
713 => 0.023001677768681
714 => 0.022721997295668
715 => 0.022411183630899
716 => 0.022409881310295
717 => 0.022354575020754
718 => 0.023140985877708
719 => 0.023573432333927
720 => 0.02362301162321
721 => 0.023570095252731
722 => 0.023590460663553
723 => 0.023338829598986
724 => 0.023913983593711
725 => 0.024441801776105
726 => 0.024300335228033
727 => 0.024088256761817
728 => 0.023919326048394
729 => 0.024260540520645
730 => 0.024245346777317
731 => 0.02443719174474
801 => 0.024428488548868
802 => 0.024363978301978
803 => 0.024300337531897
804 => 0.024552665991641
805 => 0.024479999447506
806 => 0.024407220032156
807 => 0.024261249772702
808 => 0.024281089555271
809 => 0.024069047707393
810 => 0.02397094744619
811 => 0.022495754893133
812 => 0.022101535239649
813 => 0.022225564767716
814 => 0.022266398508781
815 => 0.022094833610379
816 => 0.022340813603282
817 => 0.022302477881945
818 => 0.022451619748019
819 => 0.022358442385083
820 => 0.02236226641656
821 => 0.022636281173446
822 => 0.022715828823112
823 => 0.022675370246463
824 => 0.022703706046709
825 => 0.023356692603578
826 => 0.023263858796526
827 => 0.023214542686776
828 => 0.023228203586209
829 => 0.023395055651679
830 => 0.023441765120225
831 => 0.023243853819778
901 => 0.023337189933181
902 => 0.023734603257933
903 => 0.02387367542995
904 => 0.024317527044599
905 => 0.024128970989863
906 => 0.024475073788846
907 => 0.025538875797782
908 => 0.02638871445202
909 => 0.025607167704515
910 => 0.027167788166723
911 => 0.028382955054261
912 => 0.028336314925151
913 => 0.028124422470992
914 => 0.026740987276413
915 => 0.025467929584505
916 => 0.026532896400671
917 => 0.026535611220098
918 => 0.026444129626117
919 => 0.025875945302728
920 => 0.026424358043274
921 => 0.026467889055076
922 => 0.026443523264297
923 => 0.026007897675733
924 => 0.025342777919062
925 => 0.025472740727444
926 => 0.025685622458743
927 => 0.025282592929613
928 => 0.025153800574635
929 => 0.025393250066286
930 => 0.026164806219669
1001 => 0.026018947998192
1002 => 0.02601513905057
1003 => 0.026639182375558
1004 => 0.026192502031845
1005 => 0.025474379974656
1006 => 0.02529304468435
1007 => 0.02464942656585
1008 => 0.025093975892787
1009 => 0.025109974431647
1010 => 0.024866499308468
1011 => 0.025494136639034
1012 => 0.02548835285054
1013 => 0.026084201084424
1014 => 0.027223239117234
1015 => 0.026886369522274
1016 => 0.026494626834644
1017 => 0.026537220126636
1018 => 0.027004363410585
1019 => 0.026721917917265
1020 => 0.026823487285943
1021 => 0.02700420967318
1022 => 0.027113243976485
1023 => 0.026521531768333
1024 => 0.026383575347746
1025 => 0.026101364927349
1026 => 0.026027741496375
1027 => 0.026257595995275
1028 => 0.026197037455694
1029 => 0.025108629816406
1030 => 0.024994885162257
1031 => 0.02499837354841
1101 => 0.02471235720729
1102 => 0.024276113635295
1103 => 0.025422535695748
1104 => 0.025330461960127
1105 => 0.025228819681943
1106 => 0.025241270281058
1107 => 0.025738893241652
1108 => 0.025450246793945
1109 => 0.026217660683395
1110 => 0.026059903458297
1111 => 0.025898100355648
1112 => 0.025875734238219
1113 => 0.025813453848091
1114 => 0.02559987121683
1115 => 0.025341957355256
1116 => 0.025171660283729
1117 => 0.023219526042812
1118 => 0.023581830802884
1119 => 0.023998629404228
1120 => 0.024142506611197
1121 => 0.023896394692677
1122 => 0.025609589215443
1123 => 0.025922606363506
1124 => 0.024974457004421
1125 => 0.024797096972019
1126 => 0.02562121690964
1127 => 0.02512417184269
1128 => 0.025347991205903
1129 => 0.024864216165282
1130 => 0.02584720969875
1201 => 0.025839720934989
1202 => 0.025457314248554
1203 => 0.025780521761321
1204 => 0.025724356502232
1205 => 0.025292620295073
1206 => 0.02586089650659
1207 => 0.025861178364501
1208 => 0.025493120243046
1209 => 0.02506330893547
1210 => 0.024986468825365
1211 => 0.024928580124418
1212 => 0.025333754134112
1213 => 0.025697031884258
1214 => 0.026373001713087
1215 => 0.026542956588701
1216 => 0.027206301782762
1217 => 0.02681131201739
1218 => 0.026986405864406
1219 => 0.027176495003878
1220 => 0.027267630727637
1221 => 0.027119129956384
1222 => 0.028149578086535
1223 => 0.028236579480834
1224 => 0.028265750295784
1225 => 0.027918288984048
1226 => 0.028226915953202
1227 => 0.028082519614986
1228 => 0.028458198772566
1229 => 0.028517110061387
1230 => 0.028467214295586
1231 => 0.028485913668509
]
'min_raw' => 0.012774024604389
'max_raw' => 0.028517110061387
'avg_raw' => 0.020645567332888
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.012774'
'max' => '$0.028517'
'avg' => '$0.020645'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0019697286756879
'max_diff' => -0.002721286853305
'year' => 2031
]
6 => [
'items' => [
101 => 0.027606607972932
102 => 0.027561011333909
103 => 0.026939297925444
104 => 0.027192650734867
105 => 0.026719019801167
106 => 0.026869213049183
107 => 0.026935416801814
108 => 0.026900835718469
109 => 0.027206974922584
110 => 0.026946694058979
111 => 0.026259770065789
112 => 0.025572658920616
113 => 0.025564032799897
114 => 0.025383128563892
115 => 0.025252367935524
116 => 0.02527755707153
117 => 0.025366326872286
118 => 0.025247208473329
119 => 0.025272628423203
120 => 0.025694768963346
121 => 0.025779426238103
122 => 0.025491727740746
123 => 0.024336576759162
124 => 0.024053099810805
125 => 0.024256857419692
126 => 0.024159474406315
127 => 0.019498581415563
128 => 0.020593589087737
129 => 0.019942972711878
130 => 0.020242806671294
131 => 0.019578695827836
201 => 0.019895644331366
202 => 0.01983711551587
203 => 0.021597855449093
204 => 0.021570363916855
205 => 0.021583522658518
206 => 0.020955421634017
207 => 0.021956003620848
208 => 0.022448926287326
209 => 0.022357699420473
210 => 0.022380659257454
211 => 0.021986133188537
212 => 0.021587342533256
213 => 0.021145022323107
214 => 0.021966798601133
215 => 0.021875431107206
216 => 0.022084995265289
217 => 0.022617975923371
218 => 0.02269645934987
219 => 0.022801941870985
220 => 0.022764133895922
221 => 0.023664873249948
222 => 0.023555787770906
223 => 0.023818652389363
224 => 0.02327791992561
225 => 0.022666029816076
226 => 0.022782330121704
227 => 0.022771129467044
228 => 0.02262853227771
229 => 0.022499801911131
301 => 0.022285502120332
302 => 0.022963578368821
303 => 0.022936049711445
304 => 0.023381706675799
305 => 0.023302932478469
306 => 0.022776859109381
307 => 0.022795647922675
308 => 0.022922011721674
309 => 0.023359358272807
310 => 0.023489192506007
311 => 0.023429048116189
312 => 0.023571405425735
313 => 0.023683918838825
314 => 0.023585535378132
315 => 0.024978437709186
316 => 0.024400007548521
317 => 0.024681930384138
318 => 0.024749167319247
319 => 0.024576941323806
320 => 0.024614290975266
321 => 0.024670865520059
322 => 0.025014375077604
323 => 0.025915843551895
324 => 0.026315097802655
325 => 0.027516273914925
326 => 0.026281945295017
327 => 0.026208705342871
328 => 0.026425073432735
329 => 0.027130290968041
330 => 0.027701803542692
331 => 0.027891407235056
401 => 0.027916466493017
402 => 0.028272175624506
403 => 0.028476061465092
404 => 0.028228983179864
405 => 0.028019610203308
406 => 0.027269662189614
407 => 0.02735647071424
408 => 0.027954495365039
409 => 0.028799240407769
410 => 0.029524119535173
411 => 0.029270292129345
412 => 0.031206816061596
413 => 0.031398814499488
414 => 0.031372286523424
415 => 0.03180968753814
416 => 0.030941535599096
417 => 0.030570383825503
418 => 0.028064879017324
419 => 0.028768823670209
420 => 0.029792048564398
421 => 0.029656620912756
422 => 0.028913527643716
423 => 0.029523555832294
424 => 0.029321861435805
425 => 0.029162776696986
426 => 0.02989157472561
427 => 0.029090231355765
428 => 0.029784054551288
429 => 0.028894219126347
430 => 0.029271451591554
501 => 0.029057316199621
502 => 0.029195888041648
503 => 0.028385799884647
504 => 0.028822903790386
505 => 0.028367614925104
506 => 0.028367399058902
507 => 0.028357348531966
508 => 0.028892993862911
509 => 0.028910461237923
510 => 0.028514618529039
511 => 0.028457571410464
512 => 0.028668504507442
513 => 0.028421557094346
514 => 0.028537102234665
515 => 0.028425056838939
516 => 0.028399833060324
517 => 0.028198845700846
518 => 0.02811225482012
519 => 0.028146209335625
520 => 0.028030305069455
521 => 0.027960468556648
522 => 0.028343456291809
523 => 0.028138841394593
524 => 0.02831209612422
525 => 0.02811465049332
526 => 0.027430217913656
527 => 0.027036593499348
528 => 0.025743763803295
529 => 0.026110408701346
530 => 0.026353494648074
531 => 0.026273154744131
601 => 0.026445755945218
602 => 0.026456352257155
603 => 0.026400237847221
604 => 0.026335264549218
605 => 0.026303639140999
606 => 0.026539349023653
607 => 0.026676186544163
608 => 0.026377891574899
609 => 0.026308005237191
610 => 0.026609597920433
611 => 0.026793569282987
612 => 0.028151910459504
613 => 0.028051280157763
614 => 0.028303842467433
615 => 0.028275407827249
616 => 0.028540133364114
617 => 0.028972847735528
618 => 0.028093018429601
619 => 0.028245726374902
620 => 0.028208285913255
621 => 0.028617051056093
622 => 0.028618327176251
623 => 0.028373252053786
624 => 0.028506111253564
625 => 0.02843195289305
626 => 0.028565967073603
627 => 0.028049936178732
628 => 0.028678406106592
629 => 0.02903470805798
630 => 0.029039655310921
701 => 0.029208539608092
702 => 0.029380135835137
703 => 0.029709499850067
704 => 0.029370950051523
705 => 0.0287619319211
706 => 0.028805901063
707 => 0.028448833955964
708 => 0.028454836318543
709 => 0.028422795236684
710 => 0.028518952935282
711 => 0.028071037386158
712 => 0.028176162270257
713 => 0.028028986816908
714 => 0.028245406444209
715 => 0.028012574700679
716 => 0.028208267858331
717 => 0.028292722537843
718 => 0.02860436212342
719 => 0.027966545280503
720 => 0.026665993561393
721 => 0.026939385300415
722 => 0.026535017443943
723 => 0.026572443228597
724 => 0.026648049269866
725 => 0.026402985353354
726 => 0.026449735825773
727 => 0.02644806556992
728 => 0.026433672207326
729 => 0.026369921617824
730 => 0.026277470650376
731 => 0.026645766849781
801 => 0.026708347550783
802 => 0.026847456697
803 => 0.027261351157509
804 => 0.0272199933406
805 => 0.027287449655897
806 => 0.027140192898355
807 => 0.026579274047236
808 => 0.026609734639514
809 => 0.026229890565712
810 => 0.026837743230027
811 => 0.026693795695854
812 => 0.026600991784139
813 => 0.026575669377005
814 => 0.026990589801825
815 => 0.027114740496012
816 => 0.027037378114838
817 => 0.026878705614029
818 => 0.027183403722896
819 => 0.027264928082648
820 => 0.027283178380294
821 => 0.027823045009139
822 => 0.027313350927676
823 => 0.027436039359008
824 => 0.028393219477301
825 => 0.027525189191836
826 => 0.027985004193432
827 => 0.027962498641866
828 => 0.028197724437391
829 => 0.027943203260906
830 => 0.02794635835593
831 => 0.02815522292678
901 => 0.027861910305944
902 => 0.027789281976161
903 => 0.027688946458739
904 => 0.027908025390328
905 => 0.028039353301729
906 => 0.029097759817893
907 => 0.029781538696536
908 => 0.029751854052075
909 => 0.030023116135117
910 => 0.029900910082231
911 => 0.029506274501133
912 => 0.030179869317385
913 => 0.029966715733119
914 => 0.029984287855624
915 => 0.029983633820347
916 => 0.030125362319674
917 => 0.030024934688674
918 => 0.029826981519289
919 => 0.029958392071215
920 => 0.030348634430301
921 => 0.031559958687003
922 => 0.032237831788966
923 => 0.031519149875103
924 => 0.032014887035751
925 => 0.031717621388573
926 => 0.031663599377594
927 => 0.03197495894917
928 => 0.032286863514458
929 => 0.03226699654205
930 => 0.032040569844127
1001 => 0.031912667147835
1002 => 0.032881189214704
1003 => 0.03359477977523
1004 => 0.033546117682973
1005 => 0.033760896332431
1006 => 0.034391493090094
1007 => 0.034449146954718
1008 => 0.034441883892935
1009 => 0.034298982773903
1010 => 0.034919887175158
1011 => 0.035437856550459
1012 => 0.034265905293658
1013 => 0.034712168990279
1014 => 0.034912511141411
1015 => 0.03520667285811
1016 => 0.035702972981409
1017 => 0.036242086552419
1018 => 0.036318323122439
1019 => 0.036264229627754
1020 => 0.035908669735522
1021 => 0.036498574237883
1022 => 0.036844126460403
1023 => 0.037049894901092
1024 => 0.037571689430075
1025 => 0.034913748386332
1026 => 0.033032325607329
1027 => 0.032738514272313
1028 => 0.033335991175628
1029 => 0.033493541070243
1030 => 0.033430032905274
1031 => 0.031312320516031
1101 => 0.032727364954855
1102 => 0.034249833790713
1103 => 0.034308318019148
1104 => 0.035070497751701
1105 => 0.035318694715423
1106 => 0.035932349301309
1107 => 0.035893965039882
1108 => 0.036043380166168
1109 => 0.036009032216144
1110 => 0.03714569811628
1111 => 0.03839960940065
1112 => 0.038356190440066
1113 => 0.038175925857333
1114 => 0.038443649502371
1115 => 0.03973782032514
1116 => 0.039618673814444
1117 => 0.039734414500709
1118 => 0.041260314837025
1119 => 0.043244202331028
1120 => 0.042322487411016
1121 => 0.044322343571119
1122 => 0.045581147016083
1123 => 0.047758117411444
1124 => 0.04748554999614
1125 => 0.048333028595707
1126 => 0.046997597436209
1127 => 0.043931177558834
1128 => 0.043445904875456
1129 => 0.044417433076641
1130 => 0.046805840358918
1201 => 0.044342213631702
1202 => 0.044840602109983
1203 => 0.04469706619471
1204 => 0.044689417775773
1205 => 0.044981326818214
1206 => 0.044557897527202
1207 => 0.042832770422146
1208 => 0.043623386008155
1209 => 0.043318091361918
1210 => 0.043656838533142
1211 => 0.045484917306275
1212 => 0.044676680104718
1213 => 0.043825267868736
1214 => 0.044893127756158
1215 => 0.046252880349314
1216 => 0.046167789475745
1217 => 0.046002677615794
1218 => 0.04693340452536
1219 => 0.048470692702565
1220 => 0.048886215519539
1221 => 0.049192945968039
1222 => 0.049235238914634
1223 => 0.04967088254948
1224 => 0.04732831692858
1225 => 0.051046028730301
1226 => 0.051687974858742
1227 => 0.051567315592536
1228 => 0.052280811697076
1229 => 0.052070883043472
1230 => 0.051766729361195
1231 => 0.052897772451864
]
'min_raw' => 0.019498581415563
'max_raw' => 0.052897772451864
'avg_raw' => 0.036198176933714
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.019498'
'max' => '$0.052897'
'avg' => '$0.036198'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.006724556811174
'max_diff' => 0.024380662390477
'year' => 2032
]
7 => [
'items' => [
101 => 0.051601122818883
102 => 0.049760691908515
103 => 0.048750995111491
104 => 0.050080645303729
105 => 0.050892616277732
106 => 0.051429277440495
107 => 0.051591670784087
108 => 0.047510163629301
109 => 0.045310457643636
110 => 0.046720443960767
111 => 0.048440724579724
112 => 0.047318760682882
113 => 0.04736273954348
114 => 0.045763113873508
115 => 0.048582255957093
116 => 0.048171530668231
117 => 0.050302374193404
118 => 0.049793831285034
119 => 0.051531451460943
120 => 0.051073877834632
121 => 0.05297324037485
122 => 0.05373094751533
123 => 0.055003255731897
124 => 0.05593917083523
125 => 0.05648875808511
126 => 0.056455762928077
127 => 0.058633501415382
128 => 0.057349365113806
129 => 0.055736187271337
130 => 0.055707009973678
131 => 0.056542497637199
201 => 0.058293450575093
202 => 0.058747447196559
203 => 0.059001169372601
204 => 0.058612585027861
205 => 0.057218747107377
206 => 0.056616894960231
207 => 0.057129690426935
208 => 0.056502585636173
209 => 0.057585144439556
210 => 0.059071728898683
211 => 0.058764755086465
212 => 0.059790922516623
213 => 0.060852897850875
214 => 0.062371570275151
215 => 0.062768607483134
216 => 0.063424894889957
217 => 0.06410043021076
218 => 0.064317393949615
219 => 0.064731645046982
220 => 0.064729461739219
221 => 0.065977835303452
222 => 0.067354830003712
223 => 0.06787461362556
224 => 0.069069827402962
225 => 0.067023065694447
226 => 0.068575557961859
227 => 0.069975944848468
228 => 0.068306345871079
301 => 0.07060749909474
302 => 0.070696847659889
303 => 0.072045904914143
304 => 0.070678376938859
305 => 0.069866343192439
306 => 0.072210654191846
307 => 0.073344992439354
308 => 0.073003320527654
309 => 0.070403180409191
310 => 0.06888978733499
311 => 0.064928945748084
312 => 0.069620733703398
313 => 0.0719059667551
314 => 0.070397262207659
315 => 0.071158165025286
316 => 0.07530940407469
317 => 0.076889927131879
318 => 0.076561189384674
319 => 0.076616740652467
320 => 0.077469562205604
321 => 0.081251442629619
322 => 0.078985252216247
323 => 0.080717669874735
324 => 0.0816365379541
325 => 0.08249003383529
326 => 0.080394117701233
327 => 0.077667361605948
328 => 0.076803683489137
329 => 0.070247251273733
330 => 0.069905960503779
331 => 0.069714383652436
401 => 0.068506518703797
402 => 0.067557467716221
403 => 0.066802747134897
404 => 0.064822134950858
405 => 0.065490533421491
406 => 0.062333850986022
407 => 0.064353384542278
408 => 0.059315243154508
409 => 0.063511157011423
410 => 0.061227511863897
411 => 0.062760918162021
412 => 0.062755568251903
413 => 0.059932081090147
414 => 0.058303552619919
415 => 0.059341314344424
416 => 0.060453877290722
417 => 0.060634386885648
418 => 0.062076853786387
419 => 0.062479415292661
420 => 0.061259635134851
421 => 0.059210838872586
422 => 0.059686727516243
423 => 0.058293908751745
424 => 0.055853047440963
425 => 0.057606116647716
426 => 0.058204691551914
427 => 0.058469056329668
428 => 0.056068749565329
429 => 0.055314521066779
430 => 0.054912976142741
501 => 0.058900989411071
502 => 0.059119461780341
503 => 0.058001726250276
504 => 0.063053996834205
505 => 0.061910512399844
506 => 0.063188064673514
507 => 0.059643545609859
508 => 0.059778951011419
509 => 0.058100918883247
510 => 0.059040504748876
511 => 0.058376435743316
512 => 0.058964595496102
513 => 0.059317136026848
514 => 0.060994892806459
515 => 0.063530314298828
516 => 0.060744291891844
517 => 0.059530382032545
518 => 0.060283484881965
519 => 0.062289097012706
520 => 0.065327702056175
521 => 0.063528786712816
522 => 0.064327114794635
523 => 0.064501513965368
524 => 0.063175060390641
525 => 0.065376610291509
526 => 0.066556438768743
527 => 0.067766698655282
528 => 0.068817533404051
529 => 0.067283294242413
530 => 0.068925150069911
531 => 0.067602104099516
601 => 0.066415195090094
602 => 0.066416995141126
603 => 0.065672429781542
604 => 0.064229740576074
605 => 0.063963686551762
606 => 0.065347733185151
607 => 0.066457607515425
608 => 0.066549022081206
609 => 0.067163505537848
610 => 0.067527150517806
611 => 0.071091365672769
612 => 0.07252492249283
613 => 0.074277848636558
614 => 0.074960712159044
615 => 0.077015886541606
616 => 0.075356166314585
617 => 0.074997075403339
618 => 0.070011894593662
619 => 0.070828217671971
620 => 0.072135229683806
621 => 0.070033446740334
622 => 0.071366544254221
623 => 0.071629725942328
624 => 0.069962028960172
625 => 0.070852817975275
626 => 0.068487146451699
627 => 0.063581879473408
628 => 0.0653820712559
629 => 0.066707618345817
630 => 0.064815899209728
701 => 0.068206732541526
702 => 0.066225877710098
703 => 0.065598041826335
704 => 0.063148630204125
705 => 0.064304658203309
706 => 0.065868202624931
707 => 0.064902113953918
708 => 0.066906893005215
709 => 0.069746194796896
710 => 0.071769650336993
711 => 0.071924986128014
712 => 0.070624039776724
713 => 0.072708814607195
714 => 0.072723999915834
715 => 0.070372365390508
716 => 0.068932002337702
717 => 0.068604748821555
718 => 0.069422292266722
719 => 0.070414940936001
720 => 0.071980071220675
721 => 0.072925846672333
722 => 0.075391927449716
723 => 0.076059178199999
724 => 0.076792284476773
725 => 0.077771940544145
726 => 0.078948268831686
727 => 0.076374529506953
728 => 0.076476788968375
729 => 0.07408015854503
730 => 0.071519015226117
731 => 0.073462603754151
801 => 0.076003587209807
802 => 0.075420682797543
803 => 0.075355094143506
804 => 0.07546539606682
805 => 0.07502590517585
806 => 0.073038104164289
807 => 0.072039842940575
808 => 0.073327854602765
809 => 0.074012375478415
810 => 0.075074007660055
811 => 0.074943139085331
812 => 0.077677789574262
813 => 0.078740392062722
814 => 0.07846853287485
815 => 0.078518561508075
816 => 0.080442352556922
817 => 0.082582003861045
818 => 0.084586069659213
819 => 0.086624691465739
820 => 0.084167053309209
821 => 0.082919216219372
822 => 0.084206665575963
823 => 0.083523526825194
824 => 0.087449044719228
825 => 0.087720839061135
826 => 0.091646073095545
827 => 0.095371587602374
828 => 0.09303165869016
829 => 0.095238106261665
830 => 0.097624559204557
831 => 0.10222841411943
901 => 0.10067799774967
902 => 0.099490403108556
903 => 0.098368131911118
904 => 0.10070340011745
905 => 0.10370768535808
906 => 0.10435477962422
907 => 0.10540331954441
908 => 0.1043009080277
909 => 0.10562864127294
910 => 0.11031612306419
911 => 0.10904952410665
912 => 0.10725074997099
913 => 0.11095106665465
914 => 0.11229019687785
915 => 0.12168891409221
916 => 0.13355518281697
917 => 0.1286424696468
918 => 0.12559299004981
919 => 0.12630969008972
920 => 0.13064284972946
921 => 0.13203452307813
922 => 0.12825147517787
923 => 0.12958771165107
924 => 0.13695050599427
925 => 0.14090040893267
926 => 0.13553591019958
927 => 0.1207354709541
928 => 0.10708879004089
929 => 0.11070850433713
930 => 0.11029814106875
1001 => 0.11820854506321
1002 => 0.1090193161404
1003 => 0.10917403918837
1004 => 0.11724802196018
1005 => 0.11509402177977
1006 => 0.111604817351
1007 => 0.10711426509461
1008 => 0.098813063922855
1009 => 0.091460458548913
1010 => 0.1058806108911
1011 => 0.10525878770076
1012 => 0.10435829557212
1013 => 0.10636224336099
1014 => 0.11609284499329
1015 => 0.11586852313078
1016 => 0.11444150189152
1017 => 0.11552388492431
1018 => 0.11141507037211
1019 => 0.11247400543818
1020 => 0.10708662833691
1021 => 0.10952194778343
1022 => 0.11159733108538
1023 => 0.11201399500982
1024 => 0.11295276010698
1025 => 0.10493111513532
1026 => 0.10853259822447
1027 => 0.11064813212601
1028 => 0.10109007299505
1029 => 0.1104592000285
1030 => 0.10479147614291
1031 => 0.10286776552979
1101 => 0.10545778844076
1102 => 0.10444845399347
1103 => 0.1035806875058
1104 => 0.10309645889556
1105 => 0.10499828587098
1106 => 0.1049095633694
1107 => 0.10179780530891
1108 => 0.097738643770476
1109 => 0.099101031620209
1110 => 0.098606063341947
1111 => 0.096812234449346
1112 => 0.098021058535233
1113 => 0.092698009032857
1114 => 0.083539979032057
1115 => 0.089590054168631
1116 => 0.089357132857088
1117 => 0.089239683369667
1118 => 0.093786147623008
1119 => 0.093349109989826
1120 => 0.092555882406116
1121 => 0.096797666202714
1122 => 0.095249358056913
1123 => 0.10002087893499
1124 => 0.10316371118792
1125 => 0.10236658726861
1126 => 0.10532243619311
1127 => 0.09913241828463
1128 => 0.10118849393341
1129 => 0.10161224827503
1130 => 0.096745323249099
1201 => 0.09342061475155
1202 => 0.093198894599215
1203 => 0.087434308237518
1204 => 0.090513703741821
1205 => 0.093223444351564
1206 => 0.091925688883863
1207 => 0.091514858272131
1208 => 0.093613702769183
1209 => 0.093776800961991
1210 => 0.090058144881588
1211 => 0.090831371235226
1212 => 0.094055853668085
1213 => 0.090750122551088
1214 => 0.084327626978875
1215 => 0.082734759279018
1216 => 0.08252224136548
1217 => 0.078202257831537
1218 => 0.082841202315315
1219 => 0.080816178732163
1220 => 0.087213203967833
1221 => 0.083559257461153
1222 => 0.0834017431303
1223 => 0.083163637116888
1224 => 0.079445248832951
1225 => 0.08025933955123
1226 => 0.082965501088306
1227 => 0.083931090011827
1228 => 0.083830371176267
1229 => 0.082952239420433
1230 => 0.083354243641492
1231 => 0.082059247977907
]
'min_raw' => 0.045310457643636
'max_raw' => 0.14090040893267
'avg_raw' => 0.093105433288151
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.04531'
'max' => '$0.1409004'
'avg' => '$0.0931054'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.025811876228073
'max_diff' => 0.088002636480802
'year' => 2033
]
8 => [
'items' => [
101 => 0.081601958056091
102 => 0.080158625275339
103 => 0.07803732481849
104 => 0.078332304657706
105 => 0.074129453384231
106 => 0.071839516948241
107 => 0.071205692723636
108 => 0.070358116481157
109 => 0.071301428715539
110 => 0.074117547234633
111 => 0.070720710827733
112 => 0.064897073068472
113 => 0.065247083620799
114 => 0.066033453412813
115 => 0.064568058507752
116 => 0.063181185211383
117 => 0.064386959021988
118 => 0.061919406931729
119 => 0.066331645294052
120 => 0.066212306611506
121 => 0.06785691622199
122 => 0.068885324362212
123 => 0.066515176550089
124 => 0.065919090784901
125 => 0.06625864832734
126 => 0.060646518524605
127 => 0.06739828548592
128 => 0.067456675046975
129 => 0.066956708175894
130 => 0.070551815645376
131 => 0.078138613748123
201 => 0.075284155123623
202 => 0.074178822467748
203 => 0.072077584280936
204 => 0.074877359405685
205 => 0.0746623803594
206 => 0.073690163583717
207 => 0.073102163844283
208 => 0.074185571393246
209 => 0.072967917659426
210 => 0.072749193589945
211 => 0.071423963703025
212 => 0.070950916927512
213 => 0.070600691927457
214 => 0.070215128614795
215 => 0.071065585206137
216 => 0.069138338683273
217 => 0.066814268307005
218 => 0.066621047002009
219 => 0.067154548013295
220 => 0.06691851353028
221 => 0.066619916959713
222 => 0.066049814788563
223 => 0.065880677652688
224 => 0.066430291290608
225 => 0.065809809537863
226 => 0.066725364163429
227 => 0.066476383965223
228 => 0.065085600817549
301 => 0.063352170081677
302 => 0.063336738912134
303 => 0.062963274103487
304 => 0.062487610518864
305 => 0.062355291791331
306 => 0.064285412114836
307 => 0.068280703420851
308 => 0.067496332138262
309 => 0.068063120775535
310 => 0.070851159899585
311 => 0.071737393697859
312 => 0.071108365939442
313 => 0.070247313946979
314 => 0.070285195864734
315 => 0.073227671181146
316 => 0.073411189757317
317 => 0.073874881993965
318 => 0.074470857557467
319 => 0.071209863154978
320 => 0.070131603321633
321 => 0.069620663993017
322 => 0.068047168619283
323 => 0.069744048478557
324 => 0.068755349252198
325 => 0.068888758556609
326 => 0.068801875572096
327 => 0.068849319556642
328 => 0.066330411983508
329 => 0.067248169513273
330 => 0.065722219618038
331 => 0.063679144004232
401 => 0.06367229489838
402 => 0.064172334760435
403 => 0.063874891483923
404 => 0.063074479274793
405 => 0.063188174051261
406 => 0.062192088174138
407 => 0.063309116911461
408 => 0.063341149298726
409 => 0.062911032389891
410 => 0.064631969279998
411 => 0.065337038528026
412 => 0.065053926364633
413 => 0.065317174623923
414 => 0.067528926306278
415 => 0.067889538335993
416 => 0.068049698378899
417 => 0.067835105138545
418 => 0.065357601384507
419 => 0.065467489211158
420 => 0.064661205250911
421 => 0.063979980268613
422 => 0.064007225695351
423 => 0.064357463889301
424 => 0.065886974623479
425 => 0.069105739793974
426 => 0.069227889579307
427 => 0.069375938682492
428 => 0.068773748576322
429 => 0.068592122278117
430 => 0.068831734247174
501 => 0.070040533210579
502 => 0.073149892330175
503 => 0.072050837150197
504 => 0.071157288181062
505 => 0.071941171526066
506 => 0.071820498829383
507 => 0.070801899828672
508 => 0.070773311147271
509 => 0.068818293999107
510 => 0.068095568673018
511 => 0.067491605295484
512 => 0.066832093054081
513 => 0.066441112090326
514 => 0.067041836548323
515 => 0.06717922933943
516 => 0.065865734813153
517 => 0.065686710362751
518 => 0.066759338346657
519 => 0.066287314762542
520 => 0.066772802724426
521 => 0.066885440096022
522 => 0.066867302884936
523 => 0.066374456051556
524 => 0.066688581926248
525 => 0.065945580587171
526 => 0.065137678226117
527 => 0.064622286853861
528 => 0.064172539524822
529 => 0.064422085482441
530 => 0.06353249970882
531 => 0.063247903316015
601 => 0.066582163147959
602 => 0.069045216735149
603 => 0.069009402960515
604 => 0.068791395817985
605 => 0.06846748142532
606 => 0.070016836855218
607 => 0.069477072403781
608 => 0.06986979614103
609 => 0.069969760814724
610 => 0.07027232377456
611 => 0.070380464026536
612 => 0.07005358907683
613 => 0.068956556821202
614 => 0.066222856742877
615 => 0.064950311976934
616 => 0.064530351008263
617 => 0.064545615791855
618 => 0.064124544915399
619 => 0.064248569159588
620 => 0.064081414344666
621 => 0.063764863564295
622 => 0.06440253936377
623 => 0.064476025559298
624 => 0.064327184408042
625 => 0.064362241887291
626 => 0.063129900725781
627 => 0.063223592947786
628 => 0.062701902749828
629 => 0.062604092126781
630 => 0.061285304735106
701 => 0.058948881709465
702 => 0.060243486867741
703 => 0.058679785885576
704 => 0.058087588629694
705 => 0.060890958333471
706 => 0.060609577768584
707 => 0.060127976554688
708 => 0.059415587984849
709 => 0.059151356134625
710 => 0.057545967058304
711 => 0.057451112107257
712 => 0.058246786282633
713 => 0.057879610028174
714 => 0.057363955506391
715 => 0.055496307099555
716 => 0.053396451933133
717 => 0.053459833361388
718 => 0.054127758220633
719 => 0.056069839830825
720 => 0.05531103494737
721 => 0.05476051329814
722 => 0.05465741714186
723 => 0.055947881384135
724 => 0.057774158647572
725 => 0.058631007078926
726 => 0.057781896306328
727 => 0.056806483570138
728 => 0.056865852423763
729 => 0.057260806809211
730 => 0.057302310930767
731 => 0.056667417513557
801 => 0.056846136291592
802 => 0.056574646125369
803 => 0.05490851147639
804 => 0.054878376383961
805 => 0.054469480071051
806 => 0.054457098853201
807 => 0.053761464220976
808 => 0.053664140127233
809 => 0.052282915342945
810 => 0.053192041678697
811 => 0.052582247463949
812 => 0.051663143746411
813 => 0.051504689919077
814 => 0.051499926605689
815 => 0.052443640615769
816 => 0.053181013831032
817 => 0.05259285509539
818 => 0.052458942752263
819 => 0.053888776233606
820 => 0.053706816889884
821 => 0.053549241271732
822 => 0.057610635549415
823 => 0.054395725064081
824 => 0.052993840591801
825 => 0.051258742346712
826 => 0.051823699084438
827 => 0.051942743770018
828 => 0.047770145265546
829 => 0.046077322571946
830 => 0.04549640961618
831 => 0.045162085997233
901 => 0.045314441468559
902 => 0.043790702496021
903 => 0.044814680285883
904 => 0.043495251134115
905 => 0.043274044543027
906 => 0.045633347312296
907 => 0.045961630509793
908 => 0.044561072399676
909 => 0.045460457436133
910 => 0.045134327919527
911 => 0.04351786895993
912 => 0.043456132117541
913 => 0.042645049832895
914 => 0.041375863113903
915 => 0.040795810726497
916 => 0.040493714406891
917 => 0.0406183652361
918 => 0.040555337962474
919 => 0.040144042368769
920 => 0.04057891294446
921 => 0.039467998324499
922 => 0.039025623171583
923 => 0.038825812578036
924 => 0.037839811910961
925 => 0.039408977448764
926 => 0.039718122827538
927 => 0.040027877318208
928 => 0.042724078681117
929 => 0.042589384080412
930 => 0.043806957671854
1001 => 0.043759645001065
1002 => 0.043412373289401
1003 => 0.041947291061316
1004 => 0.042531246724851
1005 => 0.040733921959349
1006 => 0.042080599879867
1007 => 0.041466032315557
1008 => 0.041872813968175
1009 => 0.041141383878746
1010 => 0.041546187490244
1011 => 0.039791432665383
1012 => 0.038152867299995
1013 => 0.038812273835732
1014 => 0.039529124152363
1015 => 0.041083438288881
1016 => 0.040157701611984
1017 => 0.040490631526976
1018 => 0.039375372043548
1019 => 0.037074273171116
1020 => 0.037087297140835
1021 => 0.036733323211475
1022 => 0.036427438055469
1023 => 0.040264033605387
1024 => 0.039786892301155
1025 => 0.03902663007957
1026 => 0.040044271274781
1027 => 0.040313351758932
1028 => 0.040321012102033
1029 => 0.041063456848938
1030 => 0.041459699743452
1031 => 0.041529539271025
1101 => 0.04269779212186
1102 => 0.043089375067833
1103 => 0.0447022498034
1104 => 0.041426081302247
1105 => 0.041358610767909
1106 => 0.040058591573319
1107 => 0.03923409884762
1108 => 0.040115045295632
1109 => 0.040895443587388
1110 => 0.040082840723596
1111 => 0.040188949502624
1112 => 0.039098096550076
1113 => 0.03948802515121
1114 => 0.039823884191561
1115 => 0.039638442570361
1116 => 0.039360827487948
1117 => 0.040831459827009
1118 => 0.040748480986985
1119 => 0.042117967630809
1120 => 0.0431855804026
1121 => 0.04509893334826
1122 => 0.043102249804119
1123 => 0.043029482719672
1124 => 0.043740792642347
1125 => 0.04308926616999
1126 => 0.04350100841059
1127 => 0.045032595307789
1128 => 0.045064955325483
1129 => 0.044522883335568
1130 => 0.044489898205718
1201 => 0.044594009060999
1202 => 0.045203789592224
1203 => 0.044990713537951
1204 => 0.045237290542381
1205 => 0.045545638862142
1206 => 0.046821098249653
1207 => 0.047128607189935
1208 => 0.046381519890156
1209 => 0.046448973508544
1210 => 0.046169542350422
1211 => 0.045899615352939
1212 => 0.04650637182361
1213 => 0.04761523119959
1214 => 0.047608333042962
1215 => 0.047865566865043
1216 => 0.048025821405159
1217 => 0.047337891605486
1218 => 0.046890074601779
1219 => 0.047061796136336
1220 => 0.047336382609703
1221 => 0.046972751443808
1222 => 0.044728251437562
1223 => 0.045409089360242
1224 => 0.045295764638634
1225 => 0.045134376454308
1226 => 0.045818964250326
1227 => 0.045752934087337
1228 => 0.043775074350482
1229 => 0.043901690513685
1230 => 0.043782774298732
1231 => 0.044167016917214
]
'min_raw' => 0.036427438055469
'max_raw' => 0.081601958056091
'avg_raw' => 0.05901469805578
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.036427'
'max' => '$0.0816019'
'avg' => '$0.059014'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0088830195881671
'max_diff' => -0.059298450876575
'year' => 2034
]
9 => [
'items' => [
101 => 0.043068515807615
102 => 0.04340640735041
103 => 0.043618329758514
104 => 0.043743153684952
105 => 0.044194103299814
106 => 0.044141189567351
107 => 0.04419081410791
108 => 0.044859453340466
109 => 0.048241201129459
110 => 0.048425262200208
111 => 0.047518878170666
112 => 0.047880960712834
113 => 0.04718584141062
114 => 0.047652479655091
115 => 0.047971741690631
116 => 0.046529057942582
117 => 0.046443631573962
118 => 0.04574564326712
119 => 0.046120702647139
120 => 0.045523956205806
121 => 0.045670376909204
122 => 0.045260971857774
123 => 0.045997819438616
124 => 0.046821729528536
125 => 0.047029881754445
126 => 0.046482322863246
127 => 0.046085854140128
128 => 0.04538978566725
129 => 0.046547363050544
130 => 0.046885873953951
131 => 0.046545584996877
201 => 0.046466732610062
202 => 0.046317307479532
203 => 0.046498433857882
204 => 0.046884030350872
205 => 0.046702190165627
206 => 0.046822298811593
207 => 0.046364568508669
208 => 0.047338119338875
209 => 0.048884352355007
210 => 0.048889323746988
211 => 0.048707482581557
212 => 0.048633077094486
213 => 0.048819657165262
214 => 0.048920869199744
215 => 0.049524234935702
216 => 0.050171670409537
217 => 0.053192969267696
218 => 0.052344600638248
219 => 0.05502527672308
220 => 0.057145343463958
221 => 0.057781058780265
222 => 0.05719623060198
223 => 0.055195564995864
224 => 0.055097402796549
225 => 0.058087241871317
226 => 0.05724247538939
227 => 0.057141993104389
228 => 0.056073031359484
301 => 0.056704920144211
302 => 0.056566716797742
303 => 0.056348556054201
304 => 0.057554155837706
305 => 0.059810931007792
306 => 0.059459191433631
307 => 0.059196634158249
308 => 0.058046184606797
309 => 0.058739012198981
310 => 0.058492309563643
311 => 0.059552300646417
312 => 0.058924385410659
313 => 0.057236075452438
314 => 0.057504944378028
315 => 0.057464305380814
316 => 0.058300653063759
317 => 0.058049602248765
318 => 0.057415283679965
319 => 0.059803217595604
320 => 0.059648158449509
321 => 0.059867996867216
322 => 0.05996477653742
323 => 0.061418269831754
324 => 0.062013719527845
325 => 0.062148897033671
326 => 0.062714528191226
327 => 0.062134823615193
328 => 0.06445405524168
329 => 0.065996208942377
330 => 0.06778749982424
331 => 0.070405057256241
401 => 0.071389283064433
402 => 0.071211491481647
403 => 0.07319609365282
404 => 0.076762379639189
405 => 0.071932339843511
406 => 0.077018383476613
407 => 0.07540820078357
408 => 0.071590486584316
409 => 0.071344670797777
410 => 0.073930071178086
411 => 0.079664240386045
412 => 0.07822789603586
413 => 0.079666589730846
414 => 0.07798827711493
415 => 0.077904934747621
416 => 0.079585077833155
417 => 0.083510823732338
418 => 0.08164584901002
419 => 0.078971950435016
420 => 0.08094631553233
421 => 0.079235937766173
422 => 0.075381977954427
423 => 0.078226797690405
424 => 0.076324547748758
425 => 0.0768797254109
426 => 0.080877971849918
427 => 0.080396892260328
428 => 0.081019453796028
429 => 0.079920648980789
430 => 0.078894192017739
501 => 0.076978233870513
502 => 0.076411013118715
503 => 0.076567772528047
504 => 0.076410935436536
505 => 0.075338974461728
506 => 0.07510748459128
507 => 0.07472165799873
508 => 0.074841241792975
509 => 0.07411577492143
510 => 0.075484880797139
511 => 0.07573899891219
512 => 0.076735319994577
513 => 0.076838761354518
514 => 0.079613501387221
515 => 0.07808522120482
516 => 0.079110523496537
517 => 0.079018810809047
518 => 0.071673228027335
519 => 0.07268538452403
520 => 0.07425998240068
521 => 0.073550628191566
522 => 0.0725477673032
523 => 0.071737903365846
524 => 0.070510876687916
525 => 0.072237893174143
526 => 0.074508736205804
527 => 0.076896353681263
528 => 0.079764919635133
529 => 0.079124689108018
530 => 0.076842727836088
531 => 0.076945094951773
601 => 0.077577888180962
602 => 0.076758363453835
603 => 0.076516669612782
604 => 0.077544683158663
605 => 0.077551762522967
606 => 0.076608800281535
607 => 0.075560870310452
608 => 0.07555647944561
609 => 0.075370010429058
610 => 0.078021449538732
611 => 0.079479472958322
612 => 0.079646632993656
613 => 0.079468221756082
614 => 0.079536885160536
615 => 0.07868849345803
616 => 0.080627665307214
617 => 0.082407241160244
618 => 0.081930276816539
619 => 0.081215239460849
620 => 0.080645677766176
621 => 0.081796106182205
622 => 0.081744879415782
623 => 0.082391698117636
624 => 0.082362354685114
625 => 0.082144853883762
626 => 0.081930284584178
627 => 0.082781027603217
628 => 0.082536027276248
629 => 0.082290646396101
630 => 0.081798497475033
701 => 0.081865388687134
702 => 0.081150474792725
703 => 0.080819722912937
704 => 0.075846008225651
705 => 0.074516869140392
706 => 0.074935043353735
707 => 0.075072717162657
708 => 0.074494274129414
709 => 0.075323612849261
710 => 0.07519436128826
711 => 0.07569720350248
712 => 0.075383049517906
713 => 0.075395942507015
714 => 0.076319802390956
715 => 0.076588002845645
716 => 0.076451593929747
717 => 0.076547130058617
718 => 0.078748719825168
719 => 0.078435724163242
720 => 0.078269451456078
721 => 0.078315510132291
722 => 0.078878063520261
723 => 0.079035547754617
724 => 0.078368275987432
725 => 0.078682965210288
726 => 0.080022871981203
727 => 0.080491763518868
728 => 0.081988240226387
729 => 0.08135251032328
730 => 0.082519420074179
731 => 0.08610610281959
801 => 0.088971393176193
802 => 0.086336353751129
803 => 0.091598094598504
804 => 0.095695114600081
805 => 0.095537864148477
806 => 0.094823453945422
807 => 0.090159105598539
808 => 0.085866902708221
809 => 0.089457512682533
810 => 0.089466665885773
811 => 0.089158229304625
812 => 0.087242556188956
813 => 0.089091568032662
814 => 0.089238335878191
815 => 0.089156184913415
816 => 0.087687442827164
817 => 0.08544494513037
818 => 0.085883123812543
819 => 0.086600869432544
820 => 0.085242027236459
821 => 0.084807794819658
822 => 0.085615115498589
823 => 0.088216470938048
824 => 0.087724699760844
825 => 0.087711857628004
826 => 0.089815863267516
827 => 0.088309849302461
828 => 0.085888650648967
829 => 0.085277266057273
830 => 0.08310726263477
831 => 0.08460609172798
901 => 0.084660031918731
902 => 0.083839138542041
903 => 0.085955261622284
904 => 0.085935761175563
905 => 0.087944705096899
906 => 0.091785051349613
907 => 0.090649271990723
908 => 0.089328484168778
909 => 0.089472090426497
910 => 0.091047096623232
911 => 0.090094811922792
912 => 0.090437260140635
913 => 0.09104657828684
914 => 0.091414195052964
915 => 0.089419196031153
916 => 0.088954066327334
917 => 0.088002574191664
918 => 0.08775434765391
919 => 0.088529318144878
920 => 0.08832514080062
921 => 0.084655498454565
922 => 0.084272000411705
923 => 0.08428376174917
924 => 0.083319437686061
925 => 0.081848612025525
926 => 0.085713854042976
927 => 0.085403421014947
928 => 0.085060726977612
929 => 0.0851027050418
930 => 0.086780475596369
1001 => 0.085807283945275
1002 => 0.088394673452682
1003 => 0.087862783954007
1004 => 0.087317253496694
1005 => 0.087241844570229
1006 => 0.087031861886635
1007 => 0.086311753133476
1008 => 0.085442178542208
1009 => 0.084868010075793
1010 => 0.07828625318888
1011 => 0.079507788982772
1012 => 0.080913054567155
1013 => 0.081398146615635
1014 => 0.080568363099361
1015 => 0.086344518044288
1016 => 0.08739987721314
1017 => 0.084203125451312
1018 => 0.083605143719188
1019 => 0.086383721627093
1020 => 0.084707899481292
1021 => 0.085462522090934
1022 => 0.083831440765386
1023 => 0.087145672093888
1024 => 0.087120423204021
1025 => 0.085831112361924
1026 => 0.086920829056845
1027 => 0.086731463964491
1028 => 0.085275835199197
1029 => 0.087191818122106
1030 => 0.087192768425731
1031 => 0.085951834772248
1101 => 0.084502695940288
1102 => 0.084243624144264
1103 => 0.08404844834736
1104 => 0.08541452080939
1105 => 0.086639337107248
1106 => 0.088918416579852
1107 => 0.089491431308857
1108 => 0.091727945943914
1109 => 0.090396210372659
1110 => 0.090986551502534
1111 => 0.091627450307864
1112 => 0.091934720763413
1113 => 0.091434040045138
1114 => 0.094908267859533
1115 => 0.095201599134657
1116 => 0.095299950573901
1117 => 0.094128460502409
1118 => 0.095169017876559
1119 => 0.094682175540833
1120 => 0.095948804049697
1121 => 0.096147427573011
1122 => 0.095979200515001
1123 => 0.09604224675636
1124 => 0.093077606212559
1125 => 0.092923873960638
1126 => 0.090827723797354
1127 => 0.091681920482852
1128 => 0.090085040722026
1129 => 0.090591427743868
1130 => 0.090814638318063
1201 => 0.090698045781192
1202 => 0.091730215481823
1203 => 0.090852660377948
1204 => 0.088536648175405
1205 => 0.086220004976887
1206 => 0.086190921408626
1207 => 0.085580990146605
1208 => 0.085140121558646
1209 => 0.085225048489341
1210 => 0.085524342070301
1211 => 0.085122726071635
1212 => 0.085208431207398
1213 => 0.086631707511401
1214 => 0.086917135423827
1215 => 0.08594713985352
1216 => 0.082052467669046
1217 => 0.08109670534593
1218 => 0.081783688350195
1219 => 0.081455354721528
1220 => 0.065740828590052
1221 => 0.069432723407782
1222 => 0.067239124871988
1223 => 0.068250035999898
1224 => 0.06601093992444
1225 => 0.067079553932729
1226 => 0.066882219944933
1227 => 0.072818677560732
1228 => 0.072725987940392
1229 => 0.072770353556623
1230 => 0.070652667099904
1231 => 0.074026199126911
]
'min_raw' => 0.043068515807615
'max_raw' => 0.096147427573011
'avg_raw' => 0.069607971690313
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.043068'
'max' => '$0.096147'
'avg' => '$0.0696079'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0066410777521463
'max_diff' => 0.01454546951692
'year' => 2035
]
10 => [
'items' => [
101 => 0.075688122311702
102 => 0.07538054456085
103 => 0.075457955254237
104 => 0.074127783067954
105 => 0.072783232530999
106 => 0.071291919060671
107 => 0.074062595156624
108 => 0.073754543271772
109 => 0.074461103462052
110 => 0.076258084962295
111 => 0.076522697314275
112 => 0.076878338998769
113 => 0.076750866771177
114 => 0.079787772390888
115 => 0.079419983082192
116 => 0.080306249495942
117 => 0.078483132241664
118 => 0.076420102016569
119 => 0.07681221661682
120 => 0.076774452827629
121 => 0.076293676447973
122 => 0.075859653029383
123 => 0.075137126322771
124 => 0.077423307736324
125 => 0.077330492945991
126 => 0.078833056516086
127 => 0.078567463809948
128 => 0.076793770716798
129 => 0.076857118512612
130 => 0.077283162883377
131 => 0.078757707315082
201 => 0.079195452497052
202 => 0.078992671487634
203 => 0.079472639095838
204 => 0.079851985923507
205 => 0.079520279216867
206 => 0.084216546675352
207 => 0.082266329003964
208 => 0.083216851527471
209 => 0.083443545548524
210 => 0.08286287358046
211 => 0.082988800538028
212 => 0.083179545565703
213 => 0.08433771202204
214 => 0.087377075921631
215 => 0.08872318950311
216 => 0.092773038629065
217 => 0.088611413508974
218 => 0.088364479896865
219 => 0.089093980018176
220 => 0.091471670175179
221 => 0.093398564722349
222 => 0.094037826808858
223 => 0.094122315846657
224 => 0.095321614018289
225 => 0.096009029364682
226 => 0.09517598767558
227 => 0.094470072067166
228 => 0.0919415699793
229 => 0.092234250980853
301 => 0.09425053284377
302 => 0.09709864973355
303 => 0.099542630321038
304 => 0.098686833500623
305 => 0.10521595914199
306 => 0.10586329528025
307 => 0.10577385435682
308 => 0.1072485824163
309 => 0.10432154754138
310 => 0.10307018342373
311 => 0.094622699034188
312 => 0.096996097579237
313 => 0.10044597174928
314 => 0.099989367966507
315 => 0.097483977128824
316 => 0.099540729757424
317 => 0.098860703017808
318 => 0.098324337713937
319 => 0.1007815311505
320 => 0.098079746031056
321 => 0.10041901937595
322 => 0.097418877114439
323 => 0.098690742708411
324 => 0.097968770284056
325 => 0.098435974924226
326 => 0.095704706144349
327 => 0.097178432480169
328 => 0.095643394283616
329 => 0.095642666475643
330 => 0.095608780422374
331 => 0.097414746053218
401 => 0.097473638527603
402 => 0.096139027197747
403 => 0.095946688854568
404 => 0.096657864517909
405 => 0.095825264073338
406 => 0.096214832581028
407 => 0.095837063706576
408 => 0.095752019975907
409 => 0.095074377060939
410 => 0.09478242986099
411 => 0.094896909880643
412 => 0.094506130555074
413 => 0.094270671876313
414 => 0.09556194176476
415 => 0.094872068353041
416 => 0.095456208770236
417 => 0.094790507040445
418 => 0.092482894812549
419 => 0.09115576261773
420 => 0.086796897035003
421 => 0.088033065907108
422 => 0.088852647148223
423 => 0.088581775552924
424 => 0.089163712553019
425 => 0.089199438758529
426 => 0.089010245107652
427 => 0.088791183097145
428 => 0.088684555825319
429 => 0.089479268151424
430 => 0.089940625405516
501 => 0.088934903090352
502 => 0.088699276423459
503 => 0.089716117211541
504 => 0.090336389504861
505 => 0.09491613161784
506 => 0.094576849529739
507 => 0.095428380990127
508 => 0.095332511615503
509 => 0.096225052245589
510 => 0.097683978959966
511 => 0.094717573027312
512 => 0.095232438526622
513 => 0.095106205396172
514 => 0.096484385614319
515 => 0.096488688142527
516 => 0.09566240025654
517 => 0.096110344324523
518 => 0.095860314234478
519 => 0.096312152400784
520 => 0.094572318210602
521 => 0.096691248450748
522 => 0.097892545356063
523 => 0.097909225364759
524 => 0.098478630563796
525 => 0.099057179223743
526 => 0.10016765299554
527 => 0.099026208712958
528 => 0.09697286156595
529 => 0.097121106597693
530 => 0.095917229916693
531 => 0.095937467301198
601 => 0.095829438556674
602 => 0.096153640951015
603 => 0.094643462404677
604 => 0.094997898291001
605 => 0.094501685974574
606 => 0.095231359857954
607 => 0.094446351378851
608 => 0.095106144522734
609 => 0.095390889371145
610 => 0.096441603991898
611 => 0.094291159975056
612 => 0.089906259052453
613 => 0.090828018388169
614 => 0.089464663928011
615 => 0.089590847573955
616 => 0.089845758620741
617 => 0.089019508516405
618 => 0.089177130998179
619 => 0.089171499613958
620 => 0.089122971387058
621 => 0.088908031823628
622 => 0.088596326932156
623 => 0.089838063282072
624 => 0.090049058484743
625 => 0.090518074683506
626 => 0.091913548754298
627 => 0.091774107987081
628 => 0.092001541663754
629 => 0.091505055224563
630 => 0.089613878155912
701 => 0.089716578169467
702 => 0.088435907354778
703 => 0.090485325051434
704 => 0.089999995889874
705 => 0.089687101022163
706 => 0.089601724758558
707 => 0.091000657939656
708 => 0.091419240673032
709 => 0.091158408003635
710 => 0.090623432588996
711 => 0.091650743536386
712 => 0.091925608607138
713 => 0.091987140759845
714 => 0.093807338791284
715 => 0.092088869609925
716 => 0.092502522221993
717 => 0.095729721818999
718 => 0.092803097107617
719 => 0.094353395488756
720 => 0.094277516450362
721 => 0.095070596642916
722 => 0.094212460726297
723 => 0.09422309834945
724 => 0.094927299832531
725 => 0.09393837585295
726 => 0.093693504368336
727 => 0.093355216166145
728 => 0.094093856079603
729 => 0.094536637301911
730 => 0.098105128766741
731 => 0.100410536996
801 => 0.10031045314469
802 => 0.10122503219658
803 => 0.10081300595712
804 => 0.09948246454287
805 => 0.10175353649475
806 => 0.10103487430349
807 => 0.10109411994136
808 => 0.10109191481576
809 => 0.10156976234641
810 => 0.10123116357686
811 => 0.10056375064563
812 => 0.10100681049624
813 => 0.10232253985575
814 => 0.10640660415918
815 => 0.10869210065004
816 => 0.10626901440068
817 => 0.10794042684907
818 => 0.10693817496518
819 => 0.10675603598347
820 => 0.10780580651747
821 => 0.10885741453582
822 => 0.10879043165128
823 => 0.10802701823063
824 => 0.1075957853602
825 => 0.11086122512869
826 => 0.11326714552481
827 => 0.11310307788329
828 => 0.1138272190953
829 => 0.11595332009062
830 => 0.11614770412047
831 => 0.11612321620057
901 => 0.11564141510072
902 => 0.11773483763971
903 => 0.11948120755201
904 => 0.11552989206668
905 => 0.11703450127697
906 => 0.11770996882696
907 => 0.11870175559252
908 => 0.12037506610879
909 => 0.12219272515316
910 => 0.12244976207165
911 => 0.12226738207763
912 => 0.12106858707657
913 => 0.1230574912921
914 => 0.12422254473601
915 => 0.12491630740009
916 => 0.12667557408509
917 => 0.11771414028459
918 => 0.11137079202844
919 => 0.11038018659918
920 => 0.11239462169321
921 => 0.11292581216269
922 => 0.1127116899505
923 => 0.1055716747762
924 => 0.11034259589695
925 => 0.11547570587242
926 => 0.11567288953183
927 => 0.11824263171382
928 => 0.11907944510557
929 => 0.12114842438588
930 => 0.12101900916857
1001 => 0.12152277269868
1002 => 0.12140696618708
1003 => 0.12523931462886
1004 => 0.12946696406941
1005 => 0.12932057401238
1006 => 0.12871279938603
1007 => 0.12961544834714
1008 => 0.13397883563223
1009 => 0.13357712485287
1010 => 0.13396735265737
1011 => 0.13911203217622
1012 => 0.14580084737285
1013 => 0.14269322116795
1014 => 0.14943587583724
1015 => 0.15368001953878
1016 => 0.16101982721796
1017 => 0.16010084714722
1018 => 0.16295818041472
1019 => 0.15845568102365
1020 => 0.14811703231648
1021 => 0.14648090158381
1022 => 0.14975647674404
1023 => 0.15780915864951
1024 => 0.14950286913378
1025 => 0.15118322068467
1026 => 0.15069927932497
1027 => 0.15067349214653
1028 => 0.15165768386356
1029 => 0.15023006244602
1030 => 0.1444136759668
1031 => 0.14707929161405
1101 => 0.14604996939927
1102 => 0.14719207913762
1103 => 0.15335557435362
1104 => 0.15063054619925
1105 => 0.14775995040194
1106 => 0.15136031456797
1107 => 0.1559448153707
1108 => 0.1556579255496
1109 => 0.15510123938604
1110 => 0.15823925014291
1111 => 0.16342232456239
1112 => 0.1648232887507
1113 => 0.16585745187305
1114 => 0.1660000454953
1115 => 0.16746884842585
1116 => 0.15957072488227
1117 => 0.17210524978413
1118 => 0.17426961597541
1119 => 0.17386280483524
1120 => 0.1762684067664
1121 => 0.17556061765402
1122 => 0.1745351422789
1123 => 0.178348533026
1124 => 0.17397678825921
1125 => 0.16777164695012
1126 => 0.16436738370418
1127 => 0.16885039216052
1128 => 0.17158800898938
1129 => 0.17339739956812
1130 => 0.17394492006398
1201 => 0.16018383372989
1202 => 0.15276737142065
1203 => 0.15752123873096
1204 => 0.16332128494393
1205 => 0.15953850533271
1206 => 0.15968678313172
1207 => 0.15429353350311
1208 => 0.16379846786413
1209 => 0.16241367887681
1210 => 0.16959796659268
1211 => 0.16788337867177
1212 => 0.17374188641162
1213 => 0.17219914498374
1214 => 0.17860297839734
1215 => 0.1811576409229
1216 => 0.18544731690477
1217 => 0.18860282001917
1218 => 0.19045579180309
1219 => 0.19034454632751
1220 => 0.1976869436823
1221 => 0.19335738848601
1222 => 0.18791844676164
1223 => 0.18782007346549
1224 => 0.19063697845494
1225 => 0.19654043853268
1226 => 0.19807111983898
1227 => 0.19892656186982
1228 => 0.19761642262144
1229 => 0.19291700075787
1230 => 0.1908878142238
1231 => 0.19261673994202
]
'min_raw' => 0.071291919060671
'max_raw' => 0.19892656186982
'avg_raw' => 0.13510924046525
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.071291'
'max' => '$0.198926'
'avg' => '$0.1351092'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.028223403253056
'max_diff' => 0.10277913429681
'year' => 2036
]
11 => [
'items' => [
101 => 0.19050241235691
102 => 0.19415233494436
103 => 0.19916445823832
104 => 0.1981294745982
105 => 0.2015892697337
106 => 0.20516979371788
107 => 0.21029010382665
108 => 0.21162874249361
109 => 0.21384146130624
110 => 0.2161190758047
111 => 0.21685058419817
112 => 0.21824726069504
113 => 0.21823989952048
114 => 0.22244887815095
115 => 0.22709151192158
116 => 0.22884399869277
117 => 0.23287374539044
118 => 0.22597294538984
119 => 0.23120728146097
120 => 0.23592878362106
121 => 0.23029961410112
122 => 0.23805811285608
123 => 0.2383593577816
124 => 0.24290779850249
125 => 0.23829708245606
126 => 0.23555925398562
127 => 0.24346326219469
128 => 0.24728776279313
129 => 0.24613579208806
130 => 0.23736923814268
131 => 0.23226672773128
201 => 0.2189124737839
202 => 0.23473116444541
203 => 0.2424359872291
204 => 0.23734928451302
205 => 0.23991472148718
206 => 0.2539109137725
207 => 0.25923975760841
208 => 0.25813139534197
209 => 0.25831869031981
210 => 0.2611940377283
211 => 0.27394491162033
212 => 0.26630429242129
213 => 0.27214525951042
214 => 0.27524328739332
215 => 0.27812090834593
216 => 0.27105438076776
217 => 0.26186093221648
218 => 0.25894898114557
219 => 0.23684351217586
220 => 0.2356928265168
221 => 0.23504691178702
222 => 0.23097451078225
223 => 0.22777471911701
224 => 0.22523012598417
225 => 0.21855235372376
226 => 0.22080590583359
227 => 0.21016293060987
228 => 0.21697192899412
301 => 0.19998548355346
302 => 0.21413230007139
303 => 0.2064328310175
304 => 0.21160281741063
305 => 0.21158477981515
306 => 0.20206519571971
307 => 0.19657449828211
308 => 0.20007338439049
309 => 0.2038244680406
310 => 0.20443306874267
311 => 0.20929644660833
312 => 0.21065371083268
313 => 0.20654113686829
314 => 0.19963347722768
315 => 0.20123796901525
316 => 0.19654198330725
317 => 0.18831244898245
318 => 0.1942230442084
319 => 0.19624118128907
320 => 0.19713250559463
321 => 0.18903970375459
322 => 0.18649676971318
323 => 0.18514293296681
324 => 0.19858879813519
325 => 0.19932539298143
326 => 0.19555686960401
327 => 0.212590952616
328 => 0.20873561501002
329 => 0.21304297169655
330 => 0.20109237820302
331 => 0.20154890696808
401 => 0.19589130449149
402 => 0.19905918383724
403 => 0.19682022882118
404 => 0.1988032504917
405 => 0.19999186550471
406 => 0.2056485396244
407 => 0.2141968902034
408 => 0.20480362114438
409 => 0.20071083930127
410 => 0.20324997813806
411 => 0.21001203946422
412 => 0.2202569085169
413 => 0.21419173984051
414 => 0.21688335870585
415 => 0.21747135768614
416 => 0.21299912684891
417 => 0.22042180604699
418 => 0.22439968013098
419 => 0.22848015583609
420 => 0.23202311855851
421 => 0.22685032410789
422 => 0.23238595566101
423 => 0.22792521379971
424 => 0.2239234672071
425 => 0.22392953620483
426 => 0.2214191821111
427 => 0.21655505472952
428 => 0.21565803501125
429 => 0.22032444486677
430 => 0.22406646366024
501 => 0.22437467425114
502 => 0.22644644812707
503 => 0.22767250256588
504 => 0.23968950280639
505 => 0.24452283971297
506 => 0.25043295259194
507 => 0.25273527463401
508 => 0.25966443855251
509 => 0.25406857592915
510 => 0.25285787585095
511 => 0.23604999069692
512 => 0.23880228094929
513 => 0.24320896319986
514 => 0.23612265526415
515 => 0.24061728660611
516 => 0.24150462204232
517 => 0.2358818652321
518 => 0.23888522258942
519 => 0.23090919588177
520 => 0.21437074578966
521 => 0.22044021806971
522 => 0.22490939263011
523 => 0.21853132948717
524 => 0.22996376080575
525 => 0.22328517044272
526 => 0.22116837792652
527 => 0.21291001562978
528 => 0.21680764474032
529 => 0.22207924392101
530 => 0.21882200851653
531 => 0.22558126105718
601 => 0.23515416528155
602 => 0.24197638690814
603 => 0.24250011237277
604 => 0.23811388092022
605 => 0.24514284481549
606 => 0.24519404314377
607 => 0.23726534315575
608 => 0.23240905856028
609 => 0.23130570048248
610 => 0.23406210528692
611 => 0.23740888957991
612 => 0.2426858356086
613 => 0.24587458357579
614 => 0.254189147093
615 => 0.25643882958354
616 => 0.25891054857953
617 => 0.26221352740808
618 => 0.26617960035814
619 => 0.25750205853206
620 => 0.25784683344578
621 => 0.24976642664608
622 => 0.24113135313304
623 => 0.24768429755233
624 => 0.25625140067887
625 => 0.25428609775583
626 => 0.2540649610295
627 => 0.25443685166498
628 => 0.25295507744181
629 => 0.24625306754749
630 => 0.24288736013537
701 => 0.24722998138054
702 => 0.24953789130452
703 => 0.25311725832571
704 => 0.25267602578908
705 => 0.26189609083971
706 => 0.26547872931809
707 => 0.26456213708557
708 => 0.26473081211538
709 => 0.27121700795137
710 => 0.2784309917089
711 => 0.28518783946683
712 => 0.29206119521956
713 => 0.28377509658801
714 => 0.27956792671842
715 => 0.28390865211101
716 => 0.28160540211756
717 => 0.29484055976821
718 => 0.29575693336802
719 => 0.30899113396612
720 => 0.32155196623302
721 => 0.31366273253687
722 => 0.32110192457344
723 => 0.32914801728723
724 => 0.34467023556362
725 => 0.33944289852635
726 => 0.33543884027863
727 => 0.33165502458199
728 => 0.33952854438286
729 => 0.34965770182414
730 => 0.35183942532112
731 => 0.35537465086876
801 => 0.35165779347223
802 => 0.35613433880794
803 => 0.37193851093668
804 => 0.36766808412021
805 => 0.36160339153545
806 => 0.37407926758227
807 => 0.37859423862487
808 => 0.41028266991055
809 => 0.45029062339252
810 => 0.4337270679446
811 => 0.42344553457548
812 => 0.42586193879846
813 => 0.44047148905538
814 => 0.44516361291396
815 => 0.43240880279426
816 => 0.4369140173567
817 => 0.46173819253866
818 => 0.47505556606889
819 => 0.45696878405295
820 => 0.40706806980315
821 => 0.36105733232343
822 => 0.37326145179357
823 => 0.37187788338357
824 => 0.39854836273767
825 => 0.36756623585296
826 => 0.36808789541161
827 => 0.39530989203422
828 => 0.38804753003848
829 => 0.37628343369842
830 => 0.36114322324564
831 => 0.33315514392372
901 => 0.30836532156296
902 => 0.35698387196754
903 => 0.354887351667
904 => 0.35185127958491
905 => 0.35860772946629
906 => 0.39141513223847
907 => 0.39065881541737
908 => 0.38584751367778
909 => 0.38949684364239
910 => 0.37564368851137
911 => 0.37921396201912
912 => 0.36105004398754
913 => 0.36926089353004
914 => 0.3762581932312
915 => 0.377663004743
916 => 0.38082811681054
917 => 0.35378258073523
918 => 0.36592523241783
919 => 0.37305790266875
920 => 0.34083223898631
921 => 0.37242090491116
922 => 0.35331177812305
923 => 0.34682585348171
924 => 0.35555829655568
925 => 0.35215525499717
926 => 0.34922951969848
927 => 0.34759690913129
928 => 0.35400905156024
929 => 0.35370991745176
930 => 0.34321840789479
1001 => 0.32953266136636
1002 => 0.33412604712061
1003 => 0.33245722701287
1004 => 0.32640920766033
1005 => 0.3304848424633
1006 => 0.31253780942259
1007 => 0.28166087188166
1008 => 0.30205912260737
1009 => 0.30127381214346
1010 => 0.30087782299656
1011 => 0.3162065446507
1012 => 0.31473304175743
1013 => 0.31205861957757
1014 => 0.32636008979969
1015 => 0.3211398607867
1016 => 0.3372273765641
1017 => 0.34782365493038
1018 => 0.345136095983
1019 => 0.35510194700274
1020 => 0.33423186945106
1021 => 0.34116407205155
1022 => 0.34259278939989
1023 => 0.32618361187711
1024 => 0.31497412505389
1025 => 0.31422658008028
1026 => 0.29479087469125
1027 => 0.30517327163054
1028 => 0.31430935128434
1029 => 0.30993387811859
1030 => 0.30854873402786
1031 => 0.31562513478631
1101 => 0.31617503173052
1102 => 0.30363732312716
1103 => 0.30624430976339
1104 => 0.31711587741195
1105 => 0.30597037415222
1106 => 0.28431648192618
1107 => 0.27894601726564
1108 => 0.27822949828262
1109 => 0.26366437218631
1110 => 0.27930489739413
1111 => 0.2724773890009
1112 => 0.29404540620901
1113 => 0.28172587045133
1114 => 0.28119479988757
1115 => 0.28039200883931
1116 => 0.26785520313044
1117 => 0.27059996682512
1118 => 0.27972397938554
1119 => 0.28297952985645
1120 => 0.2826399492704
1121 => 0.2796792667464
1122 => 0.28103465204474
1123 => 0.27666848375125
1124 => 0.27512669885289
1125 => 0.2702604016123
1126 => 0.26310828901757
1127 => 0.26410283414032
1128 => 0.24993262763809
1129 => 0.2422119470659
1130 => 0.24007496444045
1201 => 0.23721730196305
1202 => 0.24039774502122
1203 => 0.24989248522347
1204 => 0.23843981411806
1205 => 0.2188050128193
1206 => 0.21998509783343
1207 => 0.22263639848979
1208 => 0.21769571725677
1209 => 0.21301977710966
1210 => 0.21708512769656
1211 => 0.20876560354527
1212 => 0.22364177323648
1213 => 0.22323941453632
1214 => 0.22878433066104
1215 => 0.23225168050696
1216 => 0.22426056167995
1217 => 0.22225081690524
1218 => 0.22339565886673
1219 => 0.20447397141041
1220 => 0.2272380251138
1221 => 0.22743488959553
1222 => 0.22574921638311
1223 => 0.23787037221886
1224 => 0.2634497917156
1225 => 0.25382578517116
1226 => 0.25009907895001
1227 => 0.24301460769941
1228 => 0.25245424500656
1229 => 0.25172942814265
1230 => 0.24845153140543
1231 => 0.2464690492311
]
'min_raw' => 0.18514293296681
'max_raw' => 0.47505556606889
'avg_raw' => 0.33009924951785
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.185142'
'max' => '$0.475055'
'avg' => '$0.330099'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.11385101390614
'max_diff' => 0.27612900419907
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0058114251077374
]
1 => [
'year' => 2028
'avg' => 0.0099740925536406
]
2 => [
'year' => 2029
'avg' => 0.027247423201266
]
3 => [
'year' => 2030
'avg' => 0.021021346421697
]
4 => [
'year' => 2031
'avg' => 0.020645567332888
]
5 => [
'year' => 2032
'avg' => 0.036198176933714
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0058114251077374
'min' => '$0.005811'
'max_raw' => 0.036198176933714
'max' => '$0.036198'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.036198176933714
]
1 => [
'year' => 2033
'avg' => 0.093105433288151
]
2 => [
'year' => 2034
'avg' => 0.05901469805578
]
3 => [
'year' => 2035
'avg' => 0.069607971690313
]
4 => [
'year' => 2036
'avg' => 0.13510924046525
]
5 => [
'year' => 2037
'avg' => 0.33009924951785
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.036198176933714
'min' => '$0.036198'
'max_raw' => 0.33009924951785
'max' => '$0.330099'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.33009924951785
]
]
]
]
'prediction_2025_max_price' => '$0.009936'
'last_price' => 0.00963467
'sma_50day_nextmonth' => '$0.009558'
'sma_200day_nextmonth' => '$0.086657'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 feb. 2026'
'sma_50day_date_nextmonth' => '4 feb. 2026'
'daily_sma3' => '$0.009662'
'daily_sma3_action' => 'SELL'
'daily_sma5' => '$0.009855'
'daily_sma5_action' => 'SELL'
'daily_sma10' => '$0.010034'
'daily_sma10_action' => 'SELL'
'daily_sma21' => '$0.010653'
'daily_sma21_action' => 'SELL'
'daily_sma50' => '$0.012533'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.042393'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.111628'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.009714'
'daily_ema3_action' => 'SELL'
'daily_ema5' => '$0.009819'
'daily_ema5_action' => 'SELL'
'daily_ema10' => '$0.010071'
'daily_ema10_action' => 'SELL'
'daily_ema21' => '$0.01077'
'daily_ema21_action' => 'SELL'
'daily_ema50' => '$0.019192'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.046935'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.087288'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.080811'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.128874'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.009922'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.011217'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.023435'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.059049'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.12239'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.07135'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.035675'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '26.76'
'rsi_14_action' => 'BUY'
'stoch_rsi_14' => -16.71
'stoch_rsi_14_action' => 'BUY'
'momentum_10' => -0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.010033'
'vwma_10_action' => 'SELL'
'hma_9' => '0.009610'
'hma_9_action' => 'SELL'
'stochastic_fast_14' => 0
'stochastic_fast_14_action' => 'BUY'
'cci_20' => -107.38
'cci_20_action' => 'BUY'
'adx_14' => 40.12
'adx_14_action' => 'SELL'
'ao_5_34' => '-0.001279'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'NEUTRAL'
'williams_percent_r_14' => -100
'williams_percent_r_14_action' => 'BUY'
'ultimate_oscillator' => 12.67
'ultimate_oscillator_action' => 'BUY'
'ichimoku_cloud' => '-0.014369'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 29
'buy_signals' => 3
'sell_pct' => 90.63
'buy_pct' => 9.38
'overall_action' => 'bearish'
'overall_action_label' => 'Bajista'
'overall_action_dir' => -1
'last_updated' => 1767691581
'last_updated_date' => '6 de enero de 2026'
]
Predicción de precio de Seraph para 2026
La previsión del precio de Seraph para 2026 sugiere que el precio medio podría oscilar entre $0.003328 en el extremo inferior y $0.009936 en el extremo superior. En el mercado de criptomonedas, en comparación con el precio medio de hoy, Seraph podría potencialmente ganar 3.13% para 2026 si SERAPH alcanza el objetivo de precio previsto.
Predicción de precio de Seraph 2027-2032
La predicción del precio de SERAPH para 2027-2032 está actualmente dentro de un rango de precios de $0.005811 en el extremo inferior y $0.036198 en el extremo superior. Considerando la volatilidad de precios en el mercado, si Seraph alcanza el objetivo de precio superior, podría ganar 275.71% para 2032 en comparación con el precio de hoy.
| Predicción de Precio de Seraph | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.0032045 | $0.005811 | $0.008418 |
| 2028 | $0.005783 | $0.009974 | $0.014164 |
| 2029 | $0.0127041 | $0.027247 | $0.04179 |
| 2030 | $0.0108042 | $0.021021 | $0.031238 |
| 2031 | $0.012774 | $0.020645 | $0.028517 |
| 2032 | $0.019498 | $0.036198 | $0.052897 |
Predicción de precio de Seraph 2032-2037
La predicción de precio de Seraph para 2032-2037 se estima actualmente entre $0.036198 en el extremo inferior y $0.330099 en el extremo superior. Comparado con el precio actual, Seraph podría potencialmente ganar 3326.16% para 2037 si alcanza el objetivo de precio superior. Tenga en cuenta que esta información es solo para fines generales y no debe considerarse como consejo de inversión a largo plazo.
| Predicción de Precio de Seraph | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.019498 | $0.036198 | $0.052897 |
| 2033 | $0.04531 | $0.0931054 | $0.1409004 |
| 2034 | $0.036427 | $0.059014 | $0.0816019 |
| 2035 | $0.043068 | $0.0696079 | $0.096147 |
| 2036 | $0.071291 | $0.1351092 | $0.198926 |
| 2037 | $0.185142 | $0.330099 | $0.475055 |
Seraph Histograma de precios potenciales
Pronóstico de precio de Seraph basado en análisis técnico
A fecha de 6 de enero de 2026, el sentimiento general de predicción de precio para Seraph es Bajista, con 3 indicadores técnicos mostrando señales alcistas y 29 indicando señales bajistas. La predicción de precio de SERAPH se actualizó por última vez el 6 de enero de 2026.
Promedios Móviles Simples de 50 y 200 días y el Índice de Fuerza Relativa de 14 días - RSI (14) de Seraph
Según nuestros indicadores técnicos, se proyecta que el SMA de 200 días de Seraph aumentar durante el próximo mes, alcanzando $0.086657 para el 4 feb. 2026. Se espera que el SMA de 50 días a corto plazo para Seraph alcance $0.009558 para el 4 feb. 2026.
El oscilador de momento del Índice de Fuerza Relativa (RSI) es una herramienta comúnmente utilizada para identificar si una criptomoneda está sobrevendida (por debajo de 30) o sobrecomprada (por encima de 70). Actualmente, el RSI se encuentra en 26.76, lo que sugiere que el mercado de SERAPH está en un estado BUY.
Promedios Móviles y Osciladores Populares de SERAPH para Sáb, 19 de Oct de 2024
Los promedios móviles (MA) son indicadores ampliamente utilizados en los mercados financieros, diseñados para suavizar los movimientos de precios durante un período establecido. Como indicadores rezagados, se basan en datos históricos de precios. La tabla a continuación resalta dos tipos: el promedio móvil simple (SMA) y el promedio móvil exponencial (EMA).
Promedio Móvil Simple Diario (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 3 | $0.009662 | SELL |
| SMA 5 | $0.009855 | SELL |
| SMA 10 | $0.010034 | SELL |
| SMA 21 | $0.010653 | SELL |
| SMA 50 | $0.012533 | SELL |
| SMA 100 | $0.042393 | SELL |
| SMA 200 | $0.111628 | SELL |
Promedio Móvil Exponencial Diario (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 3 | $0.009714 | SELL |
| EMA 5 | $0.009819 | SELL |
| EMA 10 | $0.010071 | SELL |
| EMA 21 | $0.01077 | SELL |
| EMA 50 | $0.019192 | SELL |
| EMA 100 | $0.046935 | SELL |
| EMA 200 | $0.087288 | SELL |
Promedio Móvil Simple Semanal (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 21 | $0.080811 | SELL |
| SMA 50 | $0.128874 | SELL |
| SMA 100 | — | — |
| SMA 200 | — | — |
Promedio Móvil Exponencial Semanal (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 21 | $0.059049 | SELL |
| EMA 50 | $0.12239 | SELL |
| EMA 100 | $0.07135 | SELL |
| EMA 200 | $0.035675 | SELL |
Osciladores de Seraph
Un oscilador es una herramienta de análisis técnico que establece límites altos y bajos entre dos extremos, creando un indicador de tendencia que fluctúa dentro de estos límites. Los traders utilizan este indicador para identificar condiciones de sobrecompra o sobreventa a corto plazo.
| Período | Valor | Acción |
|---|---|---|
| RSI (14) | 26.76 | BUY |
| Stoch RSI (14) | -16.71 | BUY |
| Estocástico Rápido (14) | 0 | BUY |
| Índice de Canal de Materias Primas (20) | -107.38 | BUY |
| Índice Direccional Medio (14) | 40.12 | SELL |
| Oscilador Asombroso (5, 34) | -0.001279 | NEUTRAL |
| Momentum (10) | -0 | BUY |
| MACD (12, 26) | 0 | NEUTRAL |
| Rango Percentil de Williams (14) | -100 | BUY |
| Oscilador Ultimate (7, 14, 28) | 12.67 | BUY |
| VWMA (10) | 0.010033 | SELL |
| Promedio Móvil de Hull (9) | 0.009610 | SELL |
| Nube Ichimoku B/L (9, 26, 52, 26) | -0.014369 | SELL |
Predicción de precios de Seraph basada en flujos de dinero globales
Definiciones de flujos de dinero globales utilizadas para la predicción de precios de Seraph
M0: El total de toda la moneda física, además de cuentas en el banco central que pueden cambiarse por moneda física.
M1: Medir M0 más la cantidad en cuentas a la vista, incluyendo cuentas "de cheques" o "corrientes".
M2: Medir M1 más la mayoría de cuentas de ahorro, cuentas del mercado monetario, y cuentas de certificados de depósito (CD) inferiores a 100 000 $.
Predicciones de precios de Seraph por parte de empresas de Internet o nichos tecnológicos
| Comparación | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook acción | $0.013538 | $0.019023 | $0.026731 | $0.037561 | $0.05278 | $0.074165 |
| Amazon.com acción | $0.0201033 | $0.041946 | $0.087524 | $0.182624 | $0.381057 | $0.795099 |
| Apple acción | $0.013666 | $0.019384 | $0.027495 | $0.038999 | $0.055318 | $0.078464 |
| Netflix acción | $0.0152019 | $0.023986 | $0.037846 | $0.059716 | $0.094222 | $0.148668 |
| Google acción | $0.012476 | $0.016157 | $0.020923 | $0.027096 | $0.035089 | $0.04544 |
| Tesla acción | $0.021841 | $0.049512 | $0.11224 | $0.254439 | $0.576795 | $1.30 |
| Kodak acción | $0.007224 | $0.005417 | $0.004062 | $0.003046 | $0.002284 | $0.001713 |
| Nokia acción | $0.006382 | $0.004228 | $0.00280099 | $0.001855 | $0.001229 | $0.000814 |
Este cálculo muestra cuánto puede costar la criptomoneda si asumimos que su capitalización se comportará como la capitalización de algunas empresas de Internet o nichos tecnológicos. Si extrapola los datos, puede obtener una imagen potencial del precio futuro en 2024, 2025, 2026, 2027, 2028, 2029 y 2030.
Resumen de pronósticos y predicciones de Seraph
Podría preguntarse cosas como: "¿Debo invertir en Seraph ahora?", "¿Debería comprar SERAPH hoy?", "¿Será Seraph una buena o mala inversión a corto plazo?, ¿Lo será a largo plazo?".
Actualizamos el pronóstico de Seraph regularmente con valores actualizados. Aquí hay algunas predicciones similares. Hacemos un pronóstico de precios futuros para una gran cantidad de monedas digitales, como Seraph, con métodos de análisis técnico.
Si está tratando de encontrar criptomonedas que ofrezcan un buen rendimiento, debería explorar el máximo de fuentes de información disponibles acerca de Seraph a fin de tomar una decisión responsable sobre la inversión por sus propios medios.
El precio de Seraph es de $0.009634 USD hoy, pero dicho precio puede subir y bajar, y su inversión puede perderse porque estos son activos de criptomonedas conllevan un alto riesgo
Pronóstico a corto plazo de Seraph
basado en el historial de precios de las últimas 4 horas
Pronóstico a largo plazo de Seraph
basado en el historial de precios del último mes
Predicción de precios de Seraph basada en el patrón de crecimiento del Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si Seraph ofrece un 1 % del crecimiento medio anterior anual del Bitcoin | $0.009885 | $0.010142 | $0.0104056 | $0.010676 |
| Si Seraph ofrece un 2 % del crecimiento medio anterior anual del Bitcoin | $0.010135 | $0.010662 | $0.011216 | $0.011799 |
| Si Seraph ofrece un 5 % del crecimiento medio anterior anual del Bitcoin | $0.010886 | $0.0123017 | $0.01390058 | $0.0157071 |
| Si Seraph ofrece un 10 % del crecimiento medio anterior anual del Bitcoin | $0.012139 | $0.015294 | $0.019269 | $0.024278 |
| Si Seraph ofrece un 20 % del crecimiento medio anterior anual del Bitcoin | $0.014643 | $0.022255 | $0.033826 | $0.05141 |
| Si Seraph ofrece un 50 % del crecimiento medio anterior anual del Bitcoin | $0.022156 | $0.050952 | $0.117173 | $0.269458 |
| Si Seraph ofrece un 100 % del crecimiento medio anterior anual del Bitcoin | $0.034678 | $0.124818 | $0.44926 | $1.61 |
Cuadro de preguntas
¿Es SERAPH una buena inversión?
La decisión de adquirir Seraph depende completamente de su tolerancia individual al riesgo. Como puede discernir, el valor de Seraph ha experimentado una caída de -2.208% durante las últimas 24 horas, y Seraph ha sufrido un declive de durante el período previo de 30 días. Por lo tanto, la determinación de si invertir o no en Seraph dependerá de si dicha inversión se alinea con sus aspiraciones comerciales.
¿Puede Seraph subir?
Parece que el valor medio de Seraph podría potencialmente aumentar hasta $0.009936 para el final de este año. Mirando las perspectivas de Seraph en un horizonte de cinco años más extendido, la moneda digital podría potencialmente crecer hasta $0.031238. Sin embargo, dada la imprevisibilidad del mercado, es vital realizar una investigación exhaustiva antes de invertir cualquier fondo en un proyecto, red o activo en particular.
¿Cuál será el precio de Seraph la próxima semana?
Basado en nuestro nuevo pronóstico experimental de Seraph, el precio de Seraph aumentará en un 0.86% durante la próxima semana y alcanzará $0.009717 para el 13 de enero de 2026.
¿Cuál será el precio de Seraph el próximo mes?
Basado en nuestro nuevo pronóstico experimental de Seraph, el precio de Seraph disminuirá en un -11.62% durante el próximo mes y alcanzará $0.008515 para el 5 de febrero de 2026.
¿Hasta qué punto puede subir el precio de Seraph este año en 2026?
Según nuestra predicción más reciente sobre el valor de Seraph en 2026, se anticipa que SERAPH fluctúe dentro del rango de $0.003328 y $0.009936. Sin embargo, es crucial tener en cuenta que el mercado de criptomonedas es excepcionalmente inestable, y esta predicción de precios proyectada de Seraph no considera fluctuaciones de precios repentinas y extremas.
¿Dónde estará Seraph en 5 años?
El futuro de Seraph parece estar en una tendencia alcista, con un precio máximo de $0.031238 proyectada después de un período de cinco años. Basado en el pronóstico de Seraph para 2030, el valor de Seraph podría potencialmente alcanzar su punto más alto de aproximadamente $0.031238, mientras que su punto más bajo se anticipa que esté alrededor de $0.0108042.
¿Cuánto será Seraph en 2026?
Basado en nuestra nueva simulación experimental de predicción de precios de Seraph, se espera que el valor de SERAPH en 2026 crezca en un 3.13% hasta $0.009936 si ocurre lo mejor. El precio estará entre $0.009936 y $0.003328 durante 2026.
¿Cuánto será Seraph en 2027?
Según nuestra última simulación experimental para la predicción de precios de Seraph, el valor de SERAPH podría disminuir en un -12.62% hasta $0.008418 en 2027, asumiendo las condiciones más favorables. Se proyecta que el precio fluctúe entre $0.008418 y $0.0032045 a lo largo del año.
¿Cuánto será Seraph en 2028?
Nuestro nuevo modelo experimental de predicción de precios de Seraph sugiere que el valor de SERAPH en 2028 podría aumentar en un 47.02% , alcanzando $0.014164 en el mejor escenario. Se espera que el precio oscile entre $0.014164 y $0.005783 durante el año.
¿Cuánto será Seraph en 2029?
Basado en nuestro modelo de pronóstico experimental, el valor de Seraph podría experimentar un 333.75% crecimiento en 2029, potencialmente alcanzando $0.04179 bajo condiciones óptimas. El rango de precios previsto para 2029 se encuentra entre $0.04179 y $0.0127041.
¿Cuánto será Seraph en 2030?
Usando nuestra nueva simulación experimental para las predicciones de precios de Seraph, se espera que el valor de SERAPH en 2030 aumente en un 224.23% , alcanzando $0.031238 en el mejor escenario. Se pronostica que el precio oscile entre $0.031238 y $0.0108042 durante el transcurso de 2030.
¿Cuánto será Seraph en 2031?
Nuestra simulación experimental indica que el precio de Seraph podría crecer en un 195.98% en 2031, potencialmente alcanzando $0.028517 bajo condiciones ideales. Es probable que el precio fluctúe entre $0.028517 y $0.012774 durante el año.
¿Cuánto será Seraph en 2032?
Basado en los hallazgos de nuestra última predicción experimental de precios de Seraph, SERAPH podría experimentar un 449.04% aumento en valor, alcanzando $0.052897 si se desarrolla el escenario más positivo en 2032. Se espera que el precio se mantenga dentro de un rango de $0.052897 y $0.019498 a lo largo del año.
¿Cuánto será Seraph en 2033?
Según nuestra predicción experimental de precios de Seraph, se anticipa que el valor de SERAPH aumente en un 1362.43% en 2033, con el precio potencial más alto siendo $0.1409004. A lo largo del año, el precio de SERAPH podría oscilar entre $0.1409004 y $0.04531.
¿Cuánto será Seraph en 2034?
Los resultados de nuestra nueva simulación de predicción de precios de Seraph sugieren que SERAPH podría aumentar en un 746.96% en 2034, alcanzando potencialmente $0.0816019 bajo las mejores circunstancias. El rango de precios previsto para el año está entre $0.0816019 y $0.036427.
¿Cuánto será Seraph en 2035?
Basado en nuestra predicción experimental para el precio de Seraph, SERAPH podría crecer en un 897.93% , con el valor potencialmente alcanzando $0.096147 en 2035. El rango de precios esperado para el año está entre $0.096147 y $0.043068.
¿Cuánto será Seraph en 2036?
Nuestra reciente simulación de predicción de precios de Seraph sugiere que el valor de SERAPH podría aumentar en un 1964.7% en 2036, posiblemente alcanzando $0.198926 si las condiciones son óptimas. El rango de precios esperado para 2036 está entre $0.198926 y $0.071291.
¿Cuánto será Seraph en 2037?
Según la simulación experimental, el valor de Seraph podría aumentar en un 4830.69% en 2037, con un máximo de $0.475055 bajo condiciones favorables. Se espera que el precio caiga entre $0.475055 y $0.185142 durante el transcurso del año.
Predicciones relacionadas
¿Cómo leer y predecir los movimientos de precio de Seraph?
Los traders de Seraph utilizan indicadores y patrones de gráficos para predecir la dirección del mercado. También identifican niveles clave de soporte y resistencia para estimar cuándo una tendencia bajista podría desacelerar o una tendencia alcista podría estancarse.
Indicadores de predicción de precio de Seraph
Las medias móviles son herramientas populares para la predicción de precios de Seraph. Una media móvil simple (SMA) calcula el precio de cierre promedio de SERAPH durante un período específico, como una SMA de 12 días. Una media móvil exponencial (EMA) da más peso a los precios recientes, reaccionando más rápido a los cambios de precio.
Las medias móviles comúnmente utilizadas en el mercado de criptomonedas incluyen las de 50 días, 100 días y 200 días, que ayudan a identificar niveles clave de resistencia y soporte. Un movimiento de precio de SERAPH por encima de estas medias se considera alcista, mientras que una caída por debajo indica debilidad.
Los traders también utilizan RSI y niveles de retroceso de Fibonacci para evaluar la dirección futura de SERAPH.
¿Cómo leer gráficos de Seraph y predecir movimientos de precio?
La mayoría de los traders prefieren gráficos de velas sobre gráficos lineales simples porque proporcionan información más detallada. Las velas pueden representar la acción del precio de Seraph en diferentes marcos de tiempo, como 5 minutos para tendencias a corto plazo y semanal para tendencias a largo plazo. Las opciones populares incluyen gráficos de 1 hora, 4 horas y 1 día.
Por ejemplo, un gráfico de velas de 1 hora muestra los precios de apertura, cierre, máximo y mínimo de SERAPH dentro de cada hora. El color de la vela es crucial: el verde indica que el precio cerró más alto de lo que abrió, mientras que el rojo significa lo contrario. Algunos gráficos usan velas huecas y llenas para transmitir la misma información.
¿Qué afecta el precio de Seraph?
La acción del precio de Seraph está impulsada por la oferta y la demanda, influenciada por factores como reducciones a la mitad de recompensas de bloque, hard forks y actualizaciones de protocolo. Los eventos del mundo real, como regulaciones, adopción por empresas y gobiernos y hacks de exchanges de criptomonedas, también impactan el precio de SERAPH. La capitalización de mercado de Seraph puede cambiar rápidamente.
Los traders a menudo monitorean la actividad de las "ballenas" de SERAPH, grandes poseedores de Seraph, ya que sus acciones pueden influir significativamente en los movimientos de precios en el relativamente pequeño mercado de Seraph.
Patrones de predicción de precios alcistas y bajistas
Los traders a menudo identifican patrones de velas para obtener una ventaja en las predicciones de precios de criptomonedas. Ciertas formaciones indican tendencias alcistas, mientras que otras sugieren movimientos bajistas.
Patrones de velas alcistas comúnmente seguidos:
- Martillo
- Envolvente Alcista
- Línea Penetrante
- Estrella de la Mañana
- Tres Soldados Blancos
Patrones de velas bajistas comunes:
- Harami Bajista
- Cubierta de Nube Oscura
- Estrella de la Tarde
- Estrella Fugaz
- Hombre Colgado


