Predicción del precio de Seraph - Pronóstico de SERAPH
Predicción de precio de Seraph hasta $0.009894 para el año 2026
| Año | Precio min. | Precio max. |
|---|---|---|
| 2026 | $0.003314 | $0.009894 |
| 2027 | $0.003191 | $0.008382 |
| 2028 | $0.005758 | $0.0141054 |
| 2029 | $0.01265 | $0.041615 |
| 2030 | $0.010758 | $0.0311071 |
| 2031 | $0.01272 | $0.028397 |
| 2032 | $0.019416 | $0.052675 |
| 2033 | $0.04512 | $0.1403084 |
| 2034 | $0.036274 | $0.081259 |
| 2035 | $0.042887 | $0.095743 |
Calculadora de ganancias de inversión
Si abres una posición corta de $10,000.00 en Seraph hoy y la cierras el Apr 06, 2026, nuestra previsión indica que podrías obtener una ganancia de alrededor de $3,954.67, equivalente a un ROI del 39.55% en los próximos 90 días.
Predicción del precio a largo plazo de Seraph para 2027, 2028, 2029, 2030, 2031, 2032 y 2037
[
'name' => 'Seraph'
'name_with_ticker' => 'Seraph <small>SERAPH</small>'
'name_lang' => 'Seraph'
'name_lang_with_ticker' => 'Seraph <small>SERAPH</small>'
'name_with_lang' => 'Seraph'
'name_with_lang_with_ticker' => 'Seraph <small>SERAPH</small>'
'image' => '/uploads/coins/seraph.jpg?1736294429'
'price_for_sd' => 0.009594
'ticker' => 'SERAPH'
'marketcap' => '$3.06M'
'low24h' => '$0.009534'
'high24h' => '$0.009815'
'volume24h' => '$1.34M'
'current_supply' => '318.54M'
'max_supply' => '1B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.009594'
'change_24h_pct' => '-1.8726%'
'ath_price' => '$0.6981'
'ath_days' => 365
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '6 ene. 2025'
'ath_pct' => '-98.63%'
'fdv' => '$9.59M'
'new_prediction' => true
'change_24h_pct_is_increased' => false
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.473059'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.009676'
'next_week_prediction_price_date' => '13 de enero de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.008479'
'next_month_prediction_price_date' => '5 de febrero de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.003314'
'current_year_max_price_prediction' => '$0.009894'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.010758'
'grand_prediction_max_price' => '$0.0311071'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0097759948539561
107 => 0.0098124948700546
108 => 0.0098947312700616
109 => 0.0091920302359017
110 => 0.009507522370021
111 => 0.0096928444412009
112 => 0.0088555525815356
113 => 0.0096762938732339
114 => 0.0091797977742656
115 => 0.0090112795411547
116 => 0.0092381671414496
117 => 0.0091497488229592
118 => 0.0090737319448191
119 => 0.0090313132206811
120 => 0.0091979144336671
121 => 0.0091901422879498
122 => 0.0089175503676027
123 => 0.0085619653197782
124 => 0.0086813113335094
125 => 0.008637951807846
126 => 0.0084808112933517
127 => 0.0085867050269028
128 => 0.0081204026159359
129 => 0.0073181535541577
130 => 0.0078481438579217
131 => 0.0078277398077453
201 => 0.0078174511603964
202 => 0.008215724225819
203 => 0.0081774394603016
204 => 0.0081079522360019
205 => 0.0084795351059849
206 => 0.0083439023599462
207 => 0.0087618905241433
208 => 0.009037204562863
209 => 0.0089673760171676
210 => 0.0092263102012917
211 => 0.0086840608246207
212 => 0.0088641743162818
213 => 0.0089012954572867
214 => 0.0084749498310486
215 => 0.0081837033214159
216 => 0.0081642804996767
217 => 0.0076592991882148
218 => 0.007929056128731
219 => 0.0081664310730846
220 => 0.008052746895779
221 => 0.0080167578814623
222 => 0.0082006179505417
223 => 0.0082149054525642
224 => 0.0078891488923302
225 => 0.0079568839965715
226 => 0.0082393506412817
227 => 0.0079497665618596
228 => 0.0073871519988332
301 => 0.0072476158084477
302 => 0.0072289991084881
303 => 0.0068505658934079
304 => 0.0072569402839075
305 => 0.0070795469722979
306 => 0.0076399303181746
307 => 0.007319842356406
308 => 0.0073060440041258
309 => 0.0072851857708762
310 => 0.0069594526697775
311 => 0.0070307675174996
312 => 0.0072678289328859
313 => 0.0073524151165837
314 => 0.0073435920846299
315 => 0.0072666672026221
316 => 0.0073018830196861
317 => 0.0071884406029189
318 => 0.0071483817244587
319 => 0.0070219448849756
320 => 0.0068361176600038
321 => 0.0068619580753807
322 => 0.0064937857183733
323 => 0.0062931858778897
324 => 0.0062376624859073
325 => 0.0061634142856661
326 => 0.0062460490176914
327 => 0.0064927427323443
328 => 0.0061951777734818
329 => 0.0056850235232669
330 => 0.0057156846629654
331 => 0.0057845711404938
401 => 0.0056562016453493
402 => 0.0055347106914302
403 => 0.0056403372189902
404 => 0.0054241781379295
405 => 0.0058106929327277
406 => 0.0058002387907236
407 => 0.0059443076043098
408 => 0.0060343967900349
409 => 0.0058267703836588
410 => 0.0057745529039367
411 => 0.0058042983535385
412 => 0.0053126723304278
413 => 0.0059041312696961
414 => 0.0059092462311638
415 => 0.0058654488256945
416 => 0.0061803824516088
417 => 0.0068449906325492
418 => 0.0065949383010773
419 => 0.0064981104804596
420 => 0.0063140407226848
421 => 0.006559302745939
422 => 0.0065404704492367
423 => 0.0064553036616122
424 => 0.0064037945227204
425 => 0.006498701690485
426 => 0.0063920344743432
427 => 0.0063728741113051
428 => 0.0062567831579746
429 => 0.0062153439694374
430 => 0.0061846640439861
501 => 0.0061508884606115
502 => 0.006225388981185
503 => 0.0060565610002057
504 => 0.0058529710055557
505 => 0.0058360447003748
506 => 0.0058827797171552
507 => 0.0058621029512427
508 => 0.0058359457079745
509 => 0.0057860044070744
510 => 0.0057711878899244
511 => 0.0058193343827097
512 => 0.00576497979947
513 => 0.0058451829478876
514 => 0.0058233721293606
515 => 0.005701538670062
516 => 0.005549689071252
517 => 0.0055483372913073
518 => 0.005515621544327
519 => 0.005473953121702
520 => 0.0054623619197721
521 => 0.0056314416474555
522 => 0.0059814316236295
523 => 0.0059127202167562
524 => 0.0059623712500504
525 => 0.0062066051924239
526 => 0.0062842398183335
527 => 0.0062291365997398
528 => 0.0061537079155101
529 => 0.0061570263948092
530 => 0.0064147890426374
531 => 0.0064308653828044
601 => 0.0064714851079824
602 => 0.006523692933969
603 => 0.0062380278182583
604 => 0.0061435715935486
605 => 0.0060988129940493
606 => 0.0059609738313495
607 => 0.0061096215508846
608 => 0.0060230108904415
609 => 0.0060346976275767
610 => 0.0060270866246859
611 => 0.0060312427469181
612 => 0.0058105848939654
613 => 0.005890981018146
614 => 0.005757306868611
615 => 0.005578332188011
616 => 0.0055777322021251
617 => 0.0056215360016486
618 => 0.0055954797876492
619 => 0.0055253631857431
620 => 0.0055353229181028
621 => 0.0054480651825087
622 => 0.0055459175870563
623 => 0.0055487236438859
624 => 0.0055110451380787
625 => 0.0056618002683138
626 => 0.0057235647681756
627 => 0.0056987639685015
628 => 0.0057218246779566
629 => 0.0059155754859252
630 => 0.0059471653215645
701 => 0.0059611954398481
702 => 0.0059423969399826
703 => 0.0057253660870529
704 => 0.0057349923282668
705 => 0.0056643613573508
706 => 0.0056046856298351
707 => 0.0056070723459777
708 => 0.0056377534272224
709 => 0.0057717395084393
710 => 0.0060537053174493
711 => 0.0060644057137869
712 => 0.0060773749063007
713 => 0.0060246226825533
714 => 0.0060087121071003
715 => 0.0060297022629908
716 => 0.006135593795797
717 => 0.0064079755674455
718 => 0.0063116976575781
719 => 0.0062334222182009
720 => 0.0063020908814416
721 => 0.0062915198789785
722 => 0.0062022899799088
723 => 0.0061997855938313
724 => 0.0060285248889922
725 => 0.0059652137058307
726 => 0.0059123061424211
727 => 0.0058545324643647
728 => 0.0058202822914216
729 => 0.0058729061234874
730 => 0.0058849418165077
731 => 0.0057698788879887
801 => 0.0057541962360037
802 => 0.0058481591072381
803 => 0.0058068095508968
804 => 0.0058493385950135
805 => 0.005859205698056
806 => 0.0058576168672075
807 => 0.0058144431814208
808 => 0.0058419608012834
809 => 0.0057768734269111
810 => 0.0057061006830888
811 => 0.0056609520818279
812 => 0.0056215539391348
813 => 0.0056434143185344
814 => 0.0055654860575224
815 => 0.0055405552384387
816 => 0.00583263845084
817 => 0.0060484034602646
818 => 0.0060452661515752
819 => 0.006026168591779
820 => 0.0059977934917205
821 => 0.0061335179804902
822 => 0.0060862342824996
823 => 0.0061206371234729
824 => 0.0061293940903833
825 => 0.0061558987917914
826 => 0.0061653719443887
827 => 0.0061367374977121
828 => 0.0060406367972623
829 => 0.0058011629887218
830 => 0.005689687284399
831 => 0.0056528984451977
901 => 0.0056542356496307
902 => 0.0056173495818248
903 => 0.0056282141819112
904 => 0.0056135713172961
905 => 0.0055858412742043
906 => 0.0056417020665147
907 => 0.0056481395024492
908 => 0.0056351009260372
909 => 0.0056381719827856
910 => 0.005530218138943
911 => 0.0055384256352269
912 => 0.0054927252529598
913 => 0.005484156982211
914 => 0.0053686303954272
915 => 0.0051639583010932
916 => 0.0052773665093552
917 => 0.005140385341382
918 => 0.0050885084974671
919 => 0.0053340854080555
920 => 0.0053094362974757
921 => 0.0052672477348738
922 => 0.0052048420579187
923 => 0.0051816951852926
924 => 0.0050410621146262
925 => 0.005032752762563
926 => 0.0051024543097976
927 => 0.0050702894440326
928 => 0.0050251177907114
929 => 0.0048615106413588
930 => 0.0046775620370209
1001 => 0.0046831142891262
1002 => 0.0047416249176806
1003 => 0.0049117524614359
1004 => 0.0048452806868543
1005 => 0.0047970546517196
1006 => 0.0047880233650082
1007 => 0.0049010688264812
1008 => 0.0050610518382218
1009 => 0.0051361122879123
1010 => 0.0050617296618887
1011 => 0.0049762829061578
1012 => 0.004981483654257
1013 => 0.0050160819013848
1014 => 0.0050197176879651
1015 => 0.0049641006340526
1016 => 0.0049797565089502
1017 => 0.0049559738033776
1018 => 0.0048100193831778
1019 => 0.0048073795305428
1020 => 0.0047715599619928
1021 => 0.0047704753596927
1022 => 0.004709537337979
1023 => 0.0047010116874967
1024 => 0.0045800155467106
1025 => 0.0046596555729861
1026 => 0.0046062372246495
1027 => 0.0045257231735919
1028 => 0.004511842520842
1029 => 0.004511425251659
1030 => 0.0045940951794828
1031 => 0.0046586895267466
1101 => 0.0046071664596892
1102 => 0.004595435656053
1103 => 0.0047206899486035
1104 => 0.0047047501981582
1105 => 0.0046909464770729
1106 => 0.0050467271142294
1107 => 0.0047650989780107
1108 => 0.0046422930358474
1109 => 0.0044902973622043
1110 => 0.0045397879199712
1111 => 0.0045502163076602
1112 => 0.0041846941118281
1113 => 0.0040364018025019
1114 => 0.0039855134702189
1115 => 0.0039562265155346
1116 => 0.0039695729485467
1117 => 0.0038360924772
1118 => 0.0039257935615082
1119 => 0.0038102107561454
1120 => 0.0037908329226873
1121 => 0.0039975092966381
1122 => 0.0040262671066874
1123 => 0.0039035773546655
1124 => 0.0039823640371302
1125 => 0.0039537948908517
1126 => 0.0038121920916006
1127 => 0.0038067839062289
1128 => 0.0037357325991437
1129 => 0.0036245510617995
1130 => 0.0035737381158343
1201 => 0.0035472742923974
1202 => 0.0035581937817171
1203 => 0.0035526725537752
1204 => 0.0035166428067516
1205 => 0.0035547377366997
1206 => 0.0034574209325943
1207 => 0.0034186685970647
1208 => 0.0034011650661534
1209 => 0.0033147908011636
1210 => 0.0034522506675723
1211 => 0.0034793319929286
1212 => 0.0035064666768617
1213 => 0.0037426555748638
1214 => 0.0037308562449825
1215 => 0.0038375164406026
1216 => 0.0038333718215363
1217 => 0.0038029506059648
1218 => 0.0036746085015159
1219 => 0.0037257633768712
1220 => 0.0035683166217603
1221 => 0.0036862864360281
1222 => 0.0036324499393335
1223 => 0.003668084262341
1224 => 0.0036040105365561
1225 => 0.0036394715819447
1226 => 0.0034857539798215
1227 => 0.0033422146458239
1228 => 0.0033999790639989
1229 => 0.0034627755927177
1230 => 0.0035989344672379
1231 => 0.00351783936486
]
'min_raw' => 0.0033147908011636
'max_raw' => 0.0098947312700616
'avg_raw' => 0.0066047610356126
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.003314'
'max' => '$0.009894'
'avg' => '$0.0066047'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0062793991988364
'max_diff' => 0.00030054127006164
'year' => 2026
]
1 => [
'items' => [
101 => 0.0035470042302204
102 => 0.0034493068134025
103 => 0.0032477291366198
104 => 0.0032488700443791
105 => 0.0032178617104145
106 => 0.0031910659825781
107 => 0.0035271541128939
108 => 0.0034853562411221
109 => 0.0034187568028238
110 => 0.0035079027975425
111 => 0.0035314744134833
112 => 0.0035321454642513
113 => 0.0035971840808069
114 => 0.0036318952021215
115 => 0.0036380131876998
116 => 0.0037403528561023
117 => 0.003774655763058
118 => 0.0039159445820792
119 => 0.003628950205991
120 => 0.0036230397456774
121 => 0.0035091572645038
122 => 0.0034369311945327
123 => 0.0035141026453068
124 => 0.0035824660157391
125 => 0.0035112815049853
126 => 0.0035205766993027
127 => 0.0034250173096039
128 => 0.003459175294934
129 => 0.0034885967534778
130 => 0.0034723519533833
131 => 0.0034480327013846
201 => 0.0035768609989693
202 => 0.0035695920015374
203 => 0.0036895598739979
204 => 0.0037830834095658
205 => 0.0039506943046352
206 => 0.0037757835978767
207 => 0.0037694091565154
208 => 0.0038317203433153
209 => 0.0037746462235399
210 => 0.0038107150971063
211 => 0.003944883051481
212 => 0.0039477178089379
213 => 0.003900231969157
214 => 0.0038973424514909
215 => 0.0039064626264589
216 => 0.0039598797761104
217 => 0.003941214182679
218 => 0.0039628144799528
219 => 0.0039898259824493
220 => 0.0041015570094144
221 => 0.0041284949817521
222 => 0.0040630496747089
223 => 0.0040689586531748
224 => 0.0040444803118268
225 => 0.0040208345407973
226 => 0.0040739867808841
227 => 0.0041711235443524
228 => 0.0041705192615883
301 => 0.0041930531026441
302 => 0.0042070914989414
303 => 0.0041468284252991
304 => 0.0041075993802925
305 => 0.004122642292357
306 => 0.0041466962363402
307 => 0.0041148419225143
308 => 0.0039182223412272
309 => 0.0039778641620822
310 => 0.0039679368467559
311 => 0.0039537991425284
312 => 0.0040137694545947
313 => 0.0040079851716974
314 => 0.0038347234420369
315 => 0.0038458150958234
316 => 0.0038353979622403
317 => 0.0038690578519923
318 => 0.003772828479031
319 => 0.0038024279860392
320 => 0.0038209925193566
321 => 0.0038319271721
322 => 0.0038714306357707
323 => 0.0038667953602562
324 => 0.0038711425005365
325 => 0.0039297157086325
326 => 0.0042259588952844
327 => 0.0042420827583101
328 => 0.0041626829597456
329 => 0.0041944016131804
330 => 0.0041335087346927
331 => 0.0041743865319683
401 => 0.0042023540826808
402 => 0.0040759740988617
403 => 0.0040684906964193
404 => 0.0040073464913613
405 => 0.0040402019237747
406 => 0.0039879265684158
407 => 0.0040007531121065
408 => 0.0039648889777492
409 => 0.0040294372791145
410 => 0.0041016123098329
411 => 0.0041198465728707
412 => 0.0040718800771621
413 => 0.0040371491731229
414 => 0.0039761731467012
415 => 0.0040775776375799
416 => 0.0041072314009587
417 => 0.0040774218789849
418 => 0.0040705143613926
419 => 0.0040574246280369
420 => 0.0040732914102032
421 => 0.0041070699001949
422 => 0.0040911405881056
423 => 0.0041016621793789
424 => 0.0040615647232627
425 => 0.004146848374884
426 => 0.0042822993382871
427 => 0.0042827348352829
428 => 0.0042668054373286
429 => 0.0042602874708894
430 => 0.0042766319998672
501 => 0.0042854982363499
502 => 0.0043383534459899
503 => 0.0043950691917781
504 => 0.004659736830353
505 => 0.0045854192165259
506 => 0.0048202480906178
507 => 0.0050059672413115
508 => 0.0050616562940904
509 => 0.0050104249859062
510 => 0.0048351654480692
511 => 0.0048265663790232
512 => 0.00508847812122
513 => 0.0050144760577316
514 => 0.0050056737477523
515 => 0.0049120320413097
516 => 0.0049673858875682
517 => 0.0049552791893995
518 => 0.0049361681740603
519 => 0.0050417794567393
520 => 0.0052394743499301
521 => 0.0052086617468553
522 => 0.0051856615680155
523 => 0.005084881479591
524 => 0.0051455736028703
525 => 0.0051239623002516
526 => 0.005216818171173
527 => 0.0051618124102485
528 => 0.0050139154193176
529 => 0.0050374685025982
530 => 0.0050339085014426
531 => 0.0051071730729612
601 => 0.0050851808671298
602 => 0.0050296141702917
603 => 0.0052387986502773
604 => 0.0052252153736923
605 => 0.0052444733543205
606 => 0.0052529513129659
607 => 0.0053802782196892
608 => 0.0054324399793671
609 => 0.0054442816120341
610 => 0.0054938312493929
611 => 0.005443048771918
612 => 0.0056462148891105
613 => 0.005781308501972
614 => 0.0059382266851643
615 => 0.0061675263264398
616 => 0.0062537451126996
617 => 0.0062381704606762
618 => 0.0064120228317306
619 => 0.0067244316779942
620 => 0.0063013172206168
621 => 0.0067468577716374
622 => 0.0066058047771973
623 => 0.0062713706648149
624 => 0.0062498370506966
625 => 0.0064763197144619
626 => 0.0069786364645447
627 => 0.0068528118158784
628 => 0.0069788422685945
629 => 0.0068318210509995
630 => 0.0068245202083538
701 => 0.0069717017762134
702 => 0.007315599531967
703 => 0.0071522265990231
704 => 0.0069179914389613
705 => 0.0070909470360482
706 => 0.0069411168915667
707 => 0.006603507641233
708 => 0.0068527156001409
709 => 0.0066860773350532
710 => 0.0067347112397832
711 => 0.0070849600874262
712 => 0.0070428172194343
713 => 0.0070973539929404
714 => 0.0070010980151781
715 => 0.0069111797537736
716 => 0.0067433406414444
717 => 0.0066936517546519
718 => 0.0067073839753425
719 => 0.0066936449496453
720 => 0.0065997405088182
721 => 0.0065794618537623
722 => 0.0065456632069076
723 => 0.0065561388208473
724 => 0.0064925874766174
725 => 0.0066125219935569
726 => 0.0066347828967602
727 => 0.00672206123648
728 => 0.0067311227632445
729 => 0.0069741916970348
730 => 0.0068403134129106
731 => 0.006930130524396
801 => 0.0069220964365533
802 => 0.0062786188661231
803 => 0.0063672843978777
804 => 0.0065052201405113
805 => 0.0064430802754223
806 => 0.0063552290446757
807 => 0.0062842844655627
808 => 0.006176796173751
809 => 0.0063280838803462
810 => 0.006527011126865
811 => 0.0067361678864961
812 => 0.0069874560286992
813 => 0.0069313714406759
814 => 0.00673147022947
815 => 0.0067404376517768
816 => 0.0067958707279266
817 => 0.0067240798576866
818 => 0.0067029073285285
819 => 0.0067929619475466
820 => 0.0067935821042147
821 => 0.0067109780317869
822 => 0.0066191787216692
823 => 0.0066187940792079
824 => 0.0066024592786486
825 => 0.0068347269757311
826 => 0.0069624507242135
827 => 0.0069770940461399
828 => 0.006961465111976
829 => 0.0069674800684455
830 => 0.0068931604334043
831 => 0.0070630330803053
901 => 0.0072189250197652
902 => 0.0071771426498444
903 => 0.0071145049376193
904 => 0.007064610982791
905 => 0.0071653892197395
906 => 0.0071609017234879
907 => 0.0072175634396711
908 => 0.0072149929369311
909 => 0.0071959397329336
910 => 0.0071771433302943
911 => 0.0072516689421103
912 => 0.007230206762752
913 => 0.0072087112467011
914 => 0.0071655986984623
915 => 0.0071714584097916
916 => 0.0071088315128506
917 => 0.0070798574447139
918 => 0.0066441569784478
919 => 0.006527723576938
920 => 0.0065643558952734
921 => 0.0065764162056272
922 => 0.0065257442400767
923 => 0.0065983948221162
924 => 0.0065870723058613
925 => 0.0066311215931585
926 => 0.0066036015108529
927 => 0.0066047309446301
928 => 0.0066856616387905
929 => 0.006709156163609
930 => 0.0066972066586623
1001 => 0.0067055756823219
1002 => 0.0068984363002147
1003 => 0.0068710176876858
1004 => 0.006856452096253
1005 => 0.0068604868646229
1006 => 0.0069097668874728
1007 => 0.0069235626032813
1008 => 0.006865109185993
1009 => 0.0068926761555013
1010 => 0.0070100528128984
1011 => 0.007051128000044
1012 => 0.0071822202802042
1013 => 0.0071265299496127
1014 => 0.0072287519616345
1015 => 0.0075429475765376
1016 => 0.0077939487744051
1017 => 0.0075631176997829
1018 => 0.0080240494348567
1019 => 0.008382950907342
1020 => 0.0083691756710464
1021 => 0.0083065928977779
1022 => 0.0078979931132427
1023 => 0.0075219934996339
1024 => 0.0078365331422046
1025 => 0.0078373349684392
1026 => 0.0078103157341909
1027 => 0.0076425015908014
1028 => 0.0078044761657592
1029 => 0.0078173331193141
1030 => 0.0078101366442633
1031 => 0.0076814739339876
1101 => 0.0074850297562402
1102 => 0.0075234144783511
1103 => 0.0075862894361959
1104 => 0.0074672540239054
1105 => 0.0074292149970687
1106 => 0.0074999367851792
1107 => 0.0077278171219411
1108 => 0.0076847376642971
1109 => 0.0076836126855603
1110 => 0.0078679248738941
1111 => 0.0077359971241068
1112 => 0.0075238986326218
1113 => 0.0074703409662865
1114 => 0.007280247331563
1115 => 0.0074115456821568
1116 => 0.0074162708760487
1117 => 0.0073443601112651
1118 => 0.0075297337948612
1119 => 0.0075280255437325
1120 => 0.0077040102670753
1121 => 0.0080404269612633
1122 => 0.0079409319907318
1123 => 0.0078252301650257
1124 => 0.0078378101615436
1125 => 0.0079757816732677
1126 => 0.007892360947696
1127 => 0.0079223596222416
1128 => 0.0079757362666809
1129 => 0.0080079397215387
1130 => 0.0078331765799725
1201 => 0.0077924309317861
1202 => 0.0077090796353758
1203 => 0.007687334837968
1204 => 0.0077552227297123
1205 => 0.0077373366687523
1206 => 0.007415873741799
1207 => 0.0073822790773295
1208 => 0.0073833093777266
1209 => 0.0072988339965789
1210 => 0.0071699887639142
1211 => 0.0075085863424081
1212 => 0.0074813922181849
1213 => 0.0074513720097006
1214 => 0.007455049313947
1215 => 0.0076020230466345
1216 => 0.0075167708593244
1217 => 0.0077434277718472
1218 => 0.0076968339245629
1219 => 0.0076490451209105
1220 => 0.0076424392525632
1221 => 0.0076240446403062
1222 => 0.007560962670543
1223 => 0.0074847874014153
1224 => 0.0074344898905484
1225 => 0.0068579239383822
1226 => 0.0069649312253744
1227 => 0.0070880333550378
1228 => 0.0071305277168968
1229 => 0.0070578381704167
1230 => 0.0075638328968861
1231 => 0.0076562830092985
]
'min_raw' => 0.0031910659825781
'max_raw' => 0.008382950907342
'avg_raw' => 0.0057870084449601
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.003191'
'max' => '$0.008382'
'avg' => '$0.005787'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00012372481858543
'max_diff' => -0.0015117803627196
'year' => 2027
]
2 => [
'items' => [
101 => 0.0073762455884296
102 => 0.0073238620208375
103 => 0.0075672671548565
104 => 0.0074204641039756
105 => 0.0074865695087984
106 => 0.0073436857812947
107 => 0.0076340144844737
108 => 0.0076318026661891
109 => 0.0075188582432813
110 => 0.0076143180961129
111 => 0.0075977295975318
112 => 0.0074702156222388
113 => 0.007638056904933
114 => 0.0076381401521152
115 => 0.00752943360069
116 => 0.0074024881475494
117 => 0.0073797932988456
118 => 0.0073626957789713
119 => 0.0074823645670063
120 => 0.007589659228164
121 => 0.0077893079919761
122 => 0.0078395044347361
123 => 0.0080354244925948
124 => 0.0079187636373144
125 => 0.0079704778834492
126 => 0.0080266210130553
127 => 0.0080535380939836
128 => 0.0080096781550611
129 => 0.0083140226488287
130 => 0.008339718648977
131 => 0.0083483342955572
201 => 0.0082457110446337
202 => 0.0083368645107247
203 => 0.0082942168226262
204 => 0.0084051742591895
205 => 0.0084225738020182
206 => 0.008407837008249
207 => 0.0084133598977759
208 => 0.008153655562393
209 => 0.0081401885225539
210 => 0.0079565644787701
211 => 0.0080313926338924
212 => 0.007891504984498
213 => 0.0079358647991234
214 => 0.0079554181827345
215 => 0.0079452046047808
216 => 0.0080356233055118
217 => 0.0079587489385703
218 => 0.0077558648448957
219 => 0.0075529254755855
220 => 0.0075503777371146
221 => 0.0074969473833526
222 => 0.0074583270238401
223 => 0.0074657666752131
224 => 0.0074919849770204
225 => 0.0074568031684768
226 => 0.0074643109910926
227 => 0.0075889908708743
228 => 0.0076139945315884
229 => 0.0075290223229212
301 => 0.0071878466436916
302 => 0.0071041212762343
303 => 0.0071643014100164
304 => 0.0071355391821655
305 => 0.005758937026007
306 => 0.0060823492831681
307 => 0.0058901887020055
308 => 0.0059787451386884
309 => 0.0057825989450627
310 => 0.0058762101895637
311 => 0.0058589236108397
312 => 0.0063789609498902
313 => 0.0063708412821289
314 => 0.006374727737403
315 => 0.0061892171010658
316 => 0.0064847405819136
317 => 0.0066303260752598
318 => 0.0066033820750739
319 => 0.006610163299435
320 => 0.00649363939764
321 => 0.006375855943481
322 => 0.006245215966075
323 => 0.0064879288965061
324 => 0.00646094336189
325 => 0.0065228384692103
326 => 0.0066802551540734
327 => 0.0067034353588873
328 => 0.0067345897892277
329 => 0.006723423143674
330 => 0.0069894579441616
331 => 0.0069572393744684
401 => 0.0070348768575138
402 => 0.0068751706645194
403 => 0.0066944479476951
404 => 0.0067287974278927
405 => 0.0067254892967286
406 => 0.0066833729901134
407 => 0.0066453522716486
408 => 0.0065820584876755
409 => 0.0067823293858836
410 => 0.006774198753154
411 => 0.0069058242462203
412 => 0.006882558161779
413 => 0.0067271815557034
414 => 0.0067327308615862
415 => 0.0067700526105531
416 => 0.00689922360986
417 => 0.0069375703570866
418 => 0.0069198066159176
419 => 0.006961852073656
420 => 0.006995083089121
421 => 0.0069660253775647
422 => 0.0073774212959117
423 => 0.0072065810281907
424 => 0.007289847385979
425 => 0.0073097059216776
426 => 0.0072588387000656
427 => 0.0072698699790146
428 => 0.0072865793607788
429 => 0.0073880354548184
430 => 0.0076542856021357
501 => 0.0077722059799565
502 => 0.0081269752547194
503 => 0.0077624143341094
504 => 0.0077407827977835
505 => 0.007804687457174
506 => 0.0080129745776014
507 => 0.0081817717252934
508 => 0.0082377714773239
509 => 0.0082451727690099
510 => 0.0083502320266122
511 => 0.0084104500338307
512 => 0.0083374750694065
513 => 0.0082756364278542
514 => 0.0080541380895087
515 => 0.0080797771252922
516 => 0.0082564046568317
517 => 0.0085059014484409
518 => 0.0087199956513585
519 => 0.008645027323433
520 => 0.0092169827461126
521 => 0.0092736897900429
522 => 0.00926585471013
523 => 0.0093950417953428
524 => 0.0091386317396878
525 => 0.0090290114731844
526 => 0.0082890066440562
527 => 0.0084969178166365
528 => 0.008799128916177
529 => 0.0087591301439193
530 => 0.0085396563653072
531 => 0.0087198291608167
601 => 0.008660258400097
602 => 0.0086132724695243
603 => 0.0088285241261488
604 => 0.0085918460876394
605 => 0.0087967678716936
606 => 0.0085339535639997
607 => 0.0086453697724401
608 => 0.0085821245439337
609 => 0.008623051957821
610 => 0.0083837911325202
611 => 0.0085128904661243
612 => 0.0083784201758031
613 => 0.0083783564193769
614 => 0.008375387980265
615 => 0.0085335916804954
616 => 0.0085387506974803
617 => 0.0084218379239775
618 => 0.0084049889667949
619 => 0.0084672883923947
620 => 0.0083943520812628
621 => 0.0084284785221857
622 => 0.0083953857363932
623 => 0.0083879358532706
624 => 0.0083285739170565
625 => 0.0083029991627451
626 => 0.0083130276828908
627 => 0.0082787951735769
628 => 0.0082581688484713
629 => 0.0083712848850445
630 => 0.0083108515497913
701 => 0.0083620226096809
702 => 0.0083037067286341
703 => 0.008101558477906
704 => 0.0079853008812333
705 => 0.0076034615747608
706 => 0.0077117507284062
707 => 0.0077835465493064
708 => 0.0077598180309271
709 => 0.0078107960701233
710 => 0.0078139257077035
711 => 0.0077973522275012
712 => 0.0077781622606213
713 => 0.0077688216460159
714 => 0.0078384389346627
715 => 0.0078788541139323
716 => 0.0077907522204379
717 => 0.0077701111794686
718 => 0.0078591870580303
719 => 0.0079135232924956
720 => 0.0083147115188939
721 => 0.0082849901992614
722 => 0.0083595848790246
723 => 0.0083511866628319
724 => 0.0084293737710881
725 => 0.0085571766487495
726 => 0.0082973176642172
727 => 0.0083424201986844
728 => 0.0083313620988026
729 => 0.0084520915337219
730 => 0.0084524684378397
731 => 0.008380085110723
801 => 0.0084193252866383
802 => 0.0083974224969403
803 => 0.0084370037982642
804 => 0.0082845932529175
805 => 0.0084702128454481
806 => 0.0085754471933505
807 => 0.0085769083723733
808 => 0.0086267886180876
809 => 0.0086774698366024
810 => 0.0087747480221377
811 => 0.0086747568008057
812 => 0.0084948823275785
813 => 0.0085078686835545
814 => 0.0084024083457149
815 => 0.008404181153047
816 => 0.0083947177685711
817 => 0.0084231180977536
818 => 0.008290825528084
819 => 0.0083218743297628
820 => 0.0082784058255909
821 => 0.0083423257066456
822 => 0.0082735584809657
823 => 0.0083313567662521
824 => 0.0083563005901382
825 => 0.00844834383728
826 => 0.0082599636185247
827 => 0.007875843600263
828 => 0.0079565902851067
829 => 0.0078371595957077
830 => 0.0078482133607162
831 => 0.0078705437252272
901 => 0.0077981637078065
902 => 0.0078119715341739
903 => 0.0078114782214519
904 => 0.0078072271189226
905 => 0.0077883982809425
906 => 0.0077610927406994
907 => 0.0078698696088259
908 => 0.007888352918377
909 => 0.0079294390259114
910 => 0.0080516834129609
911 => 0.0080394683159735
912 => 0.0080593916459595
913 => 0.0080158991284648
914 => 0.0078502308538633
915 => 0.0078592274382282
916 => 0.0077470398870365
917 => 0.0079265701379954
918 => 0.0078840550048848
919 => 0.0078566452219911
920 => 0.0078491662087787
921 => 0.007971713616019
922 => 0.0080083817209605
923 => 0.0079855326186659
924 => 0.0079386684432449
925 => 0.008028661514203
926 => 0.0080527398634885
927 => 0.0080581301179182
928 => 0.008217580585196
929 => 0.0080670416277652
930 => 0.0081032778510474
1001 => 0.0083859825210084
1002 => 0.0081296083959315
1003 => 0.00826541548781
1004 => 0.0082587684373685
1005 => 0.0083282427501121
1006 => 0.0082530695159203
1007 => 0.0082540013782524
1008 => 0.0083156898613712
1009 => 0.0082290595124075
1010 => 0.0082076086197187
1011 => 0.0081779743651034
1012 => 0.0082426796759084
1013 => 0.0082814675833665
1014 => 0.0085940696309
1015 => 0.008796024809992
1016 => 0.0087872574030487
1017 => 0.0088673750906121
1018 => 0.0088312813385709
1019 => 0.008714725092179
1020 => 0.0089136723922499
1021 => 0.0088507171421989
1022 => 0.0088559070965225
1023 => 0.0088557139261633
1024 => 0.0088975736638038
1025 => 0.0088679122032969
1026 => 0.0088094464199514
1027 => 0.00884825873542
1028 => 0.0089635174367051
1029 => 0.0093212839820629
1030 => 0.0095214948806213
1031 => 0.0093092310345774
1101 => 0.0094556477932524
1102 => 0.0093678499116729
1103 => 0.0093518944248291
1104 => 0.0094438549693905
1105 => 0.0095359764787115
1106 => 0.00953010873682
1107 => 0.0094632332515448
1108 => 0.0094254569868154
1109 => 0.0097115115193232
1110 => 0.0099222716260631
1111 => 0.0099078991997371
1112 => 0.0099713344153765
1113 => 0.010157582170471
1114 => 0.010174610331064
1115 => 0.010172465174217
1116 => 0.010130259101483
1117 => 0.010313644203701
1118 => 0.010466627282325
1119 => 0.010120489615095
1120 => 0.010252294307502
1121 => 0.010311465680405
1122 => 0.010398346811182
1123 => 0.010544929841771
1124 => 0.010704157892219
1125 => 0.010726674484399
1126 => 0.010710697884729
1127 => 0.010605682705179
1128 => 0.010779911937965
1129 => 0.010881971336353
1130 => 0.010942745372505
1201 => 0.011096858216352
1202 => 0.010311831102659
1203 => 0.0097561498932087
1204 => 0.0096693722482191
1205 => 0.0098458380016679
1206 => 0.0098923706135643
1207 => 0.0098736133760558
1208 => 0.0092481436544938
1209 => 0.009666079279579
1210 => 0.010115742871145
1211 => 0.01013301628101
1212 => 0.01035812727697
1213 => 0.010431432644866
1214 => 0.010612676502587
1215 => 0.010601339649939
1216 => 0.010645469645075
1217 => 0.010635324923418
1218 => 0.010971041004449
1219 => 0.011341385696146
1220 => 0.011328561837097
1221 => 0.011275320405946
1222 => 0.011354393010218
1223 => 0.011736628420599
1224 => 0.011701438309209
1225 => 0.011735622504938
1226 => 0.012186299595621
1227 => 0.012772243921577
1228 => 0.012500013954322
1229 => 0.013090674651203
1230 => 0.013462464250311
1231 => 0.014105435918207
]
'min_raw' => 0.005758937026007
'max_raw' => 0.014105435918207
'avg_raw' => 0.0099321864721068
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.005758'
'max' => '$0.0141054'
'avg' => '$0.009932'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0025678710434289
'max_diff' => 0.0057224850108646
'year' => 2028
]
3 => [
'items' => [
101 => 0.014024932698684
102 => 0.014275236850652
103 => 0.013880815134209
104 => 0.012975143147477
105 => 0.012831817088803
106 => 0.013118759487861
107 => 0.013824179376516
108 => 0.013096543305191
109 => 0.013243743134745
110 => 0.013201349573931
111 => 0.013199090601236
112 => 0.013285306401089
113 => 0.013160245886689
114 => 0.012650726853066
115 => 0.012884236423561
116 => 0.012794067164342
117 => 0.012894116680009
118 => 0.013434042652503
119 => 0.013195328509836
120 => 0.012943862552098
121 => 0.013259256667864
122 => 0.013660861758412
123 => 0.013635730033599
124 => 0.013586963983216
125 => 0.013861855655916
126 => 0.014315896163513
127 => 0.014438621488234
128 => 0.014529214813934
129 => 0.014541706102962
130 => 0.014670374143236
131 => 0.013978493662162
201 => 0.015076525754377
202 => 0.015266125564178
203 => 0.015230488658042
204 => 0.015441220867057
205 => 0.015379218105405
206 => 0.015289385831706
207 => 0.01562344120702
208 => 0.015240473676101
209 => 0.014696899480233
210 => 0.014398683925702
211 => 0.014791398224271
212 => 0.015031215142568
213 => 0.015189718870341
214 => 0.015237682002594
215 => 0.014032202374376
216 => 0.013382515713732
217 => 0.013798957414532
218 => 0.01430704503078
219 => 0.0139756712098
220 => 0.013988660436208
221 => 0.013516208450999
222 => 0.014348846548136
223 => 0.014227538180972
224 => 0.014856886204411
225 => 0.014706687247783
226 => 0.015219896129748
227 => 0.015084751031624
228 => 0.015645730778076
301 => 0.015869520786856
302 => 0.016245299041731
303 => 0.01652172305571
304 => 0.016684044523867
305 => 0.016674299351771
306 => 0.017317497876844
307 => 0.016938226178253
308 => 0.016461771537347
309 => 0.016453153976089
310 => 0.016699916586028
311 => 0.017217063320446
312 => 0.017351151944501
313 => 0.017426089192642
314 => 0.01731132018853
315 => 0.016899647942357
316 => 0.016721889953686
317 => 0.016873344910179
318 => 0.016688128513061
319 => 0.017007863977029
320 => 0.017446929060867
321 => 0.017356263857306
322 => 0.017659344039524
323 => 0.017973000143155
324 => 0.018421542458523
325 => 0.018538808029234
326 => 0.01873264355841
327 => 0.018932163989586
328 => 0.018996244574853
329 => 0.019118594295166
330 => 0.019117949451746
331 => 0.019486658568996
401 => 0.019893356143293
402 => 0.02004687506252
403 => 0.020399883352199
404 => 0.019795369027009
405 => 0.020253900086825
406 => 0.020667506580557
407 => 0.020174387867736
408 => 0.020854037131435
409 => 0.020880426372226
410 => 0.021278872577421
411 => 0.020874971015399
412 => 0.02063513555717
413 => 0.021327531538561
414 => 0.021662560143687
415 => 0.021561646801269
416 => 0.020793691282769
417 => 0.020346708231839
418 => 0.019176867370966
419 => 0.020562594404035
420 => 0.021237541619631
421 => 0.020791943332535
422 => 0.021016677189642
423 => 0.022242752243817
424 => 0.022709562241965
425 => 0.022612469025599
426 => 0.022628876180874
427 => 0.022880758382675
428 => 0.023997742779519
429 => 0.023328419837434
430 => 0.023840092147606
501 => 0.02411148129595
502 => 0.024363562661612
503 => 0.023744530498678
504 => 0.022939178750089
505 => 0.022684090044945
506 => 0.020747637364666
507 => 0.02064683659307
508 => 0.020590254065397
509 => 0.020233509232177
510 => 0.019953205513899
511 => 0.019730297590115
512 => 0.019145320632165
513 => 0.019342733183294
514 => 0.018410402006501
515 => 0.019006874453625
516 => 0.01751885138354
517 => 0.018758121213151
518 => 0.018083642987579
519 => 0.018536536976017
520 => 0.018534956871557
521 => 0.017701035448672
522 => 0.017220046975449
523 => 0.017526551550938
524 => 0.017855148786226
525 => 0.017908462582118
526 => 0.018334497474935
527 => 0.01845339465593
528 => 0.018093130646735
529 => 0.01748801541286
530 => 0.01762856988048
531 => 0.017217198643648
601 => 0.016496286374267
602 => 0.017014058152057
603 => 0.017190848201813
604 => 0.017268928759292
605 => 0.016559994339689
606 => 0.016337231753335
607 => 0.016218634821519
608 => 0.017396500881706
609 => 0.017461027043366
610 => 0.017130902077237
611 => 0.018623098227874
612 => 0.018285368281918
613 => 0.018662695377397
614 => 0.017615816035766
615 => 0.017655808236426
616 => 0.017160198779112
617 => 0.017437706958572
618 => 0.017241573121836
619 => 0.017415287040061
620 => 0.017519410446396
621 => 0.018014938579074
622 => 0.018763779348449
623 => 0.017940923200459
624 => 0.017582392993263
625 => 0.017804823117357
626 => 0.018397183849319
627 => 0.019294640680628
628 => 0.018763328173491
629 => 0.018999115641887
630 => 0.019050624714277
701 => 0.018658854541772
702 => 0.019309085805703
703 => 0.019657550022514
704 => 0.020015002204451
705 => 0.020325367918445
706 => 0.019872227942443
707 => 0.020357152671829
708 => 0.019966388940682
709 => 0.019615833477431
710 => 0.019616365125366
711 => 0.019396456562471
712 => 0.018970356011599
713 => 0.018891776532463
714 => 0.019300556906423
715 => 0.019628360054694
716 => 0.019655359492056
717 => 0.019836848158073
718 => 0.019944251281139
719 => 0.020996947894658
720 => 0.021420351180978
721 => 0.021938080704876
722 => 0.022139765532072
723 => 0.022746764553918
724 => 0.022256563545727
725 => 0.022150505474096
726 => 0.020678124394964
727 => 0.020919226714187
728 => 0.021305254790178
729 => 0.020684489855754
730 => 0.021078222326254
731 => 0.021155953456325
801 => 0.020663396500821
802 => 0.020926492452885
803 => 0.020227787606715
804 => 0.018779009204755
805 => 0.01931069871022
806 => 0.019702201150995
807 => 0.019143478896107
808 => 0.020144966912456
809 => 0.019559918288214
810 => 0.019374485961615
811 => 0.018651048344158
812 => 0.01899248305193
813 => 0.019454278383067
814 => 0.019168942557894
815 => 0.019761057238517
816 => 0.020599649537497
817 => 0.021197280348784
818 => 0.021243159021664
819 => 0.02085892244816
820 => 0.021474664009365
821 => 0.021479149014418
822 => 0.020784590018001
823 => 0.020359176500017
824 => 0.020262521653653
825 => 0.020503984410169
826 => 0.020797164773062
827 => 0.021259428491373
828 => 0.021538764774908
829 => 0.022267125653852
830 => 0.022464199223951
831 => 0.022680723328517
901 => 0.022970066305778
902 => 0.023317496735997
903 => 0.022557338733904
904 => 0.022587541228439
905 => 0.021879692621994
906 => 0.021123254870249
907 => 0.021697296832527
908 => 0.022447780336602
909 => 0.022275618591557
910 => 0.022256246878294
911 => 0.022288824726737
912 => 0.02215902039325
913 => 0.021571920203659
914 => 0.021277082163889
915 => 0.021657498456399
916 => 0.021859672785487
917 => 0.022173227538448
918 => 0.022134575296807
919 => 0.022942258667113
920 => 0.023256100001736
921 => 0.023175805958311
922 => 0.023190581994685
923 => 0.023758776740005
924 => 0.024390726154962
925 => 0.024982630175139
926 => 0.025584740367333
927 => 0.024858873029883
928 => 0.024490322361199
929 => 0.024870572575856
930 => 0.02466880645955
1001 => 0.025828214411564
1002 => 0.02590848930263
1003 => 0.027067813416253
1004 => 0.028168150049829
1005 => 0.027477048324858
1006 => 0.0281287261236
1007 => 0.02883356879501
1008 => 0.030193324664762
1009 => 0.029735406724618
1010 => 0.029384648758956
1011 => 0.029053184176256
1012 => 0.029742909354334
1013 => 0.030630229777302
1014 => 0.03082135009776
1015 => 0.031131038030484
1016 => 0.030805439036064
1017 => 0.03119758716129
1018 => 0.032582042361956
1019 => 0.032207950345812
1020 => 0.031676679544595
1021 => 0.03276957396103
1022 => 0.033165088201818
1023 => 0.035941014276087
1024 => 0.039445735612639
1025 => 0.037994757966065
1026 => 0.037094089318081
1027 => 0.037305767814504
1028 => 0.038585573404308
1029 => 0.038996606340754
1030 => 0.037879277127944
1031 => 0.038273936695068
1101 => 0.040448549711995
1102 => 0.041615159825638
1103 => 0.040030746594669
1104 => 0.035659413329167
1105 => 0.031628844421705
1106 => 0.032697932794847
1107 => 0.032576731351008
1108 => 0.034913081749197
1109 => 0.032199028374948
1110 => 0.032244726073192
1111 => 0.034629389723378
1112 => 0.033993202344993
1113 => 0.032962660268733
1114 => 0.031636368519328
1115 => 0.029184595553414
1116 => 0.027012991864757
1117 => 0.031272006788675
1118 => 0.03108835032064
1119 => 0.030822388538561
1120 => 0.031414257704507
1121 => 0.034288206369347
1122 => 0.034221952550558
1123 => 0.033800479558421
1124 => 0.034120163108265
1125 => 0.032906618196798
1126 => 0.033219376352387
1127 => 0.031628205958997
1128 => 0.032347481429955
1129 => 0.032960449188277
1130 => 0.033083511540903
1201 => 0.033360777305089
1202 => 0.030991571707399
1203 => 0.03205527546454
1204 => 0.032680101766297
1205 => 0.029857113803585
1206 => 0.032624300370872
1207 => 0.03095032910895
1208 => 0.030382158120449
1209 => 0.03114712550563
1210 => 0.03084901697167
1211 => 0.030592720759692
1212 => 0.03044970306968
1213 => 0.031011410690987
1214 => 0.030985206359067
1215 => 0.030066143667857
1216 => 0.028867263852961
1217 => 0.029269647270729
1218 => 0.029123457602689
1219 => 0.028593647386871
1220 => 0.028950675502803
1221 => 0.027378504368034
1222 => 0.024673665645008
1223 => 0.026460564956889
1224 => 0.026391771277154
1225 => 0.026357082384287
1226 => 0.027699887830897
1227 => 0.027570808070998
1228 => 0.027336527042829
1229 => 0.028589344632064
1230 => 0.028132049359218
1231 => 0.029541325637811
]
'min_raw' => 0.012650726853066
'max_raw' => 0.041615159825638
'avg_raw' => 0.027132943339352
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.01265'
'max' => '$0.041615'
'avg' => '$0.027132'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.0068917898270589
'max_diff' => 0.027509723907431
'year' => 2029
]
4 => [
'items' => [
101 => 0.030469566141166
102 => 0.030234134324081
103 => 0.031107149004063
104 => 0.029278917371974
105 => 0.029886182584232
106 => 0.030011339102845
107 => 0.028573885057482
108 => 0.027591927116074
109 => 0.027526441716522
110 => 0.025823861968259
111 => 0.026733366327037
112 => 0.027533692524915
113 => 0.027150398383953
114 => 0.027029058909512
115 => 0.027648955969113
116 => 0.027697127279703
117 => 0.026598816293278
118 => 0.026827189926341
119 => 0.027779545940173
120 => 0.026803192998286
121 => 0.024906298718549
122 => 0.024435842710558
123 => 0.024373075206868
124 => 0.023097161200862
125 => 0.024467280830585
126 => 0.023869186895288
127 => 0.025758558470627
128 => 0.024679359559696
129 => 0.024632837451613
130 => 0.024562512461937
131 => 0.023464280569624
201 => 0.023704723557763
202 => 0.024503992670837
203 => 0.024789180894793
204 => 0.024759433426556
205 => 0.024500075816143
206 => 0.024618808402064
207 => 0.024236329373637
208 => 0.024101268068087
209 => 0.023674977436231
210 => 0.023048447973196
211 => 0.02313557073776
212 => 0.021894251931136
213 => 0.021217915563512
214 => 0.021030714570924
215 => 0.020780381579967
216 => 0.021058990348363
217 => 0.021890735430921
218 => 0.020887474396794
219 => 0.019167453724362
220 => 0.019270829897548
221 => 0.019503085466035
222 => 0.019070278750683
223 => 0.018660663517317
224 => 0.019016790729595
225 => 0.018287995296054
226 => 0.019591156912317
227 => 0.019555910042665
228 => 0.020041648106234
301 => 0.020345390085733
302 => 0.019645363160623
303 => 0.019469308282032
304 => 0.019569597142125
305 => 0.017912045680975
306 => 0.019906190789062
307 => 0.019923436238766
308 => 0.019775770228389
309 => 0.020837590936122
310 => 0.023078363819624
311 => 0.02223529492597
312 => 0.021908833168456
313 => 0.021288229128777
314 => 0.022115147163827
315 => 0.022051652760666
316 => 0.021764506990035
317 => 0.021590840332008
318 => 0.021910826474333
319 => 0.021551190507844
320 => 0.021486590006127
321 => 0.021095181251762
322 => 0.020955466134417
323 => 0.020852026623754
324 => 0.02073814988627
325 => 0.020989333592844
326 => 0.020420118267779
327 => 0.019733700386617
328 => 0.019676632166943
329 => 0.019834202538953
330 => 0.019764489379073
331 => 0.019676298407154
401 => 0.019507917824379
402 => 0.019457962902351
403 => 0.019620292164258
404 => 0.019437031891949
405 => 0.019707442406444
406 => 0.019633905708998
407 => 0.019223135694832
408 => 0.018711164170644
409 => 0.018706606550182
410 => 0.018596303125097
411 => 0.018455815129021
412 => 0.018416734582442
413 => 0.018986798689096
414 => 0.020166814329287
415 => 0.019935149023736
416 => 0.020102550949012
417 => 0.020926002737594
418 => 0.021187753299125
419 => 0.021001968950452
420 => 0.020747655875309
421 => 0.020758844359955
422 => 0.021627909123521
423 => 0.021682111626808
424 => 0.021819063866224
425 => 0.021995086196572
426 => 0.021031946314452
427 => 0.02071348055812
428 => 0.020562573814963
429 => 0.020097839454297
430 => 0.020599015618962
501 => 0.020307001730315
502 => 0.020346404380509
503 => 0.020320743352879
504 => 0.020334756009156
505 => 0.019590792652087
506 => 0.01986185379784
507 => 0.019411162069851
508 => 0.018807736438595
509 => 0.018805713544291
510 => 0.018953401112669
511 => 0.018865550767983
512 => 0.018629147749271
513 => 0.018662727682289
514 => 0.018368532134593
515 => 0.018698448348361
516 => 0.018707909164875
517 => 0.018580873451917
518 => 0.019089154898891
519 => 0.019297398222435
520 => 0.019213780594797
521 => 0.019291531386773
522 => 0.019944775763088
523 => 0.020051283099478
524 => 0.020098586622823
525 => 0.020035206168057
526 => 0.019303471494794
527 => 0.019335927039129
528 => 0.019097789789389
529 => 0.018896588907644
530 => 0.018904635887754
531 => 0.019008079295255
601 => 0.019459822722687
602 => 0.020410490133989
603 => 0.020446567267319
604 => 0.020490293805359
605 => 0.020312435999952
606 => 0.020258792383971
607 => 0.020329562160042
608 => 0.020686582856009
609 => 0.02160493701621
610 => 0.021280329321183
611 => 0.021016418212306
612 => 0.021247939404715
613 => 0.021212298531867
614 => 0.020911453697321
615 => 0.02090300998481
616 => 0.020325592561404
617 => 0.020112134487129
618 => 0.019933752943206
619 => 0.019738964954009
620 => 0.019623488104661
621 => 0.019800913028549
622 => 0.019841492207873
623 => 0.019453549510934
624 => 0.019400674354838
625 => 0.019717476735483
626 => 0.019578063819345
627 => 0.019721453460867
628 => 0.019754721087674
629 => 0.01974936423354
630 => 0.01960380113762
701 => 0.019696578714205
702 => 0.019477132087254
703 => 0.019238516840262
704 => 0.019086295178936
705 => 0.018953461590156
706 => 0.019027165385544
707 => 0.018764424812765
708 => 0.01868036881561
709 => 0.01966514775882
710 => 0.020392614552326
711 => 0.02038203689704
712 => 0.020317648140838
713 => 0.020221979509905
714 => 0.020679584099773
715 => 0.020520163810756
716 => 0.020636155391027
717 => 0.020665680116357
718 => 0.020755042567653
719 => 0.02078698196303
720 => 0.020690438926866
721 => 0.020366428705763
722 => 0.019559026040741
723 => 0.019183177920632
724 => 0.01905914178075
725 => 0.019063650258857
726 => 0.018939286305946
727 => 0.01897591706368
728 => 0.018926547623297
729 => 0.018833053846964
730 => 0.019021392408314
731 => 0.019043096673015
801 => 0.018999136202317
802 => 0.019009490484559
803 => 0.018645516562947
804 => 0.018673188709697
805 => 0.018519106680185
806 => 0.018490218157138
807 => 0.018100712203987
808 => 0.017410645948191
809 => 0.017793009640254
810 => 0.017331168068713
811 => 0.017156261667529
812 => 0.01798424136721
813 => 0.017901135169944
814 => 0.01775889348562
815 => 0.017548488388741
816 => 0.017470447091619
817 => 0.01699629287518
818 => 0.016968277314558
819 => 0.017203280947466
820 => 0.017094834856861
821 => 0.016942535473904
822 => 0.016390922547175
823 => 0.015770726984769
824 => 0.015789446790387
825 => 0.01598671945964
826 => 0.016560316351337
827 => 0.016336202122424
828 => 0.016173604677933
829 => 0.016143155064241
830 => 0.016524295730179
831 => 0.01706368962392
901 => 0.017316761170605
902 => 0.017065974953737
903 => 0.016777885251089
904 => 0.01679541993641
905 => 0.016912070342174
906 => 0.016924328650471
907 => 0.016736811870147
908 => 0.016789596745423
909 => 0.016709411693129
910 => 0.016217316175213
911 => 0.016208415727746
912 => 0.016087647551537
913 => 0.016083990739158
914 => 0.015878533944393
915 => 0.01584978911855
916 => 0.015441842182209
917 => 0.015710354091086
918 => 0.015530250400119
919 => 0.015258791655667
920 => 0.015211992065804
921 => 0.015210585213621
922 => 0.015489312647109
923 => 0.015707096998742
924 => 0.015533383380933
925 => 0.015493832157454
926 => 0.015916135749764
927 => 0.01586239376826
928 => 0.015815853558876
929 => 0.01701539281686
930 => 0.01606586389295
1001 => 0.015651815084909
1002 => 0.015139351059222
1003 => 0.015306211930054
1004 => 0.015341371967234
1005 => 0.014108988364041
1006 => 0.013609010489709
1007 => 0.013437436924508
1008 => 0.01333869391204
1009 => 0.013383692342758
1010 => 0.012933653614304
1011 => 0.013236087082779
1012 => 0.012846391584764
1013 => 0.012781057866343
1014 => 0.013477881690802
1015 => 0.013574840655189
1016 => 0.013161183590322
1017 => 0.013426818390963
1018 => 0.013330495519651
1019 => 0.012853071795584
1020 => 0.012834837721016
1021 => 0.012595283278534
1022 => 0.012220426962931
1023 => 0.012049107567963
1024 => 0.0119598829396
1025 => 0.011996698760216
1026 => 0.01197808355473
1027 => 0.011856606747123
1028 => 0.011985046463146
1029 => 0.011656936063663
1030 => 0.011526279858823
1031 => 0.011467265482298
1101 => 0.011176048617426
1102 => 0.011639504154165
1103 => 0.011730810733361
1104 => 0.011822297214725
1105 => 0.012618624574521
1106 => 0.012578842310023
1107 => 0.012938454606334
1108 => 0.012924480733784
1109 => 0.012821913481543
1110 => 0.012389199115834
1111 => 0.012561671349613
1112 => 0.012030828622176
1113 => 0.012428572087369
1114 => 0.012247058580019
1115 => 0.012367202187948
1116 => 0.012151173147979
1117 => 0.012270732538318
1118 => 0.01175246291054
1119 => 0.01126851002437
1120 => 0.01146326679323
1121 => 0.011674989674119
1122 => 0.012134058825873
1123 => 0.011860641026327
1124 => 0.011958972406115
1125 => 0.011629578744298
1126 => 0.010949945533321
1127 => 0.010953792183487
1128 => 0.010849245420593
1129 => 0.010758901753374
1130 => 0.011892046349658
1201 => 0.011751121906745
1202 => 0.011526577250698
1203 => 0.011827139195867
1204 => 0.011906612544729
1205 => 0.011908875039245
1206 => 0.012128157275813
1207 => 0.012245188244778
1208 => 0.012265815460299
1209 => 0.012610860797446
1210 => 0.012726515443199
1211 => 0.013202880561
1212 => 0.012235258984711
1213 => 0.012215331455109
1214 => 0.011831368718811
1215 => 0.01158785348124
1216 => 0.011848042415464
1217 => 0.012078534291854
1218 => 0.011838530743904
1219 => 0.011869870140515
1220 => 0.011547684986402
1221 => 0.011662851018777
1222 => 0.011762047520398
1223 => 0.011707277042704
1224 => 0.011625282986674
1225 => 0.012059636586485
1226 => 0.012035128654138
1227 => 0.012439608712028
1228 => 0.0127549298418
1229 => 0.013320041676746
1230 => 0.012730318017034
1231 => 0.012708826142935
]
'min_raw' => 0.010758901753374
'max_raw' => 0.031107149004063
'avg_raw' => 0.020933025378718
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.010758'
'max' => '$0.0311071'
'avg' => '$0.020933'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0018918250996915
'max_diff' => -0.010508010821575
'year' => 2030
]
5 => [
'items' => [
101 => 0.012918912659659
102 => 0.012726483280048
103 => 0.012848092005526
104 => 0.013300448631008
105 => 0.01331000621369
106 => 0.013149904389513
107 => 0.013140162178962
108 => 0.013170911485617
109 => 0.013351011135133
110 => 0.013288078783689
111 => 0.013360905694033
112 => 0.013451976860582
113 => 0.013828685818806
114 => 0.013919509073292
115 => 0.01369885565135
116 => 0.0137187781848
117 => 0.013636247747922
118 => 0.013556524380001
119 => 0.013735730868424
120 => 0.01406323424833
121 => 0.014061196866801
122 => 0.014137171285183
123 => 0.01418450271843
124 => 0.013981321558211
125 => 0.013849058094087
126 => 0.013899776322375
127 => 0.013980875873907
128 => 0.013873476830846
129 => 0.013210560184995
130 => 0.013411646748067
131 => 0.013378176111341
201 => 0.013330509854476
202 => 0.0135327039486
203 => 0.013513201834966
204 => 0.012929037816668
205 => 0.012966434101804
206 => 0.012931312008628
207 => 0.013044798676985
208 => 0.012720354627526
209 => 0.012820151431975
210 => 0.012882743052189
211 => 0.012919609997347
212 => 0.013052798683156
213 => 0.013037170528135
214 => 0.013051827215097
215 => 0.013249310875644
216 => 0.014248115462479
217 => 0.014302478192403
218 => 0.014034776228026
219 => 0.014141717882607
220 => 0.01393641329138
221 => 0.014074235638892
222 => 0.014168530188751
223 => 0.013742431249736
224 => 0.013717200435927
225 => 0.013511048479622
226 => 0.013621822863897
227 => 0.013445572853556
228 => 0.01348881844113
301 => 0.01336790000819
302 => 0.013585529112862
303 => 0.013828872268028
304 => 0.013890350358936
305 => 0.01372862796974
306 => 0.013611530301938
307 => 0.013405945371647
308 => 0.01374783769248
309 => 0.013847817426071
310 => 0.013747312541502
311 => 0.013724023363672
312 => 0.013679890413768
313 => 0.013733386377625
314 => 0.01384727291497
315 => 0.013793566127112
316 => 0.013829040406684
317 => 0.013693849033874
318 => 0.013981388819629
319 => 0.014438071199627
320 => 0.014439539508154
321 => 0.014385832430796
322 => 0.014363856651876
323 => 0.014418963372463
324 => 0.014448856507786
325 => 0.01462706153732
326 => 0.014818282634012
327 => 0.015710628055972
328 => 0.015460061032263
329 => 0.016251802976493
330 => 0.016877968059554
331 => 0.017065727589083
401 => 0.016892997656684
402 => 0.016302097888637
403 => 0.01627310552698
404 => 0.01715615925189
405 => 0.01690665612818
406 => 0.016876978525527
407 => 0.016561258974401
408 => 0.016747888331744
409 => 0.016707069753606
410 => 0.016642635631101
411 => 0.016998711444197
412 => 0.017665253579207
413 => 0.017561366736673
414 => 0.017483820027893
415 => 0.017144032923529
416 => 0.017348660654554
417 => 0.017275796638922
418 => 0.017588866690723
419 => 0.017403410927387
420 => 0.016904765896625
421 => 0.01698417676133
422 => 0.016972173968882
423 => 0.017219190586926
424 => 0.017145042329518
425 => 0.016957695331586
426 => 0.017662975410652
427 => 0.017617178445291
428 => 0.017682108071528
429 => 0.017710692101014
430 => 0.018139983656712
501 => 0.018315850671284
502 => 0.018355775562577
503 => 0.018522835624377
504 => 0.018351618956051
505 => 0.019036607704771
506 => 0.019492085252468
507 => 0.020021145862779
508 => 0.020794245612529
509 => 0.021084938270007
510 => 0.021032427243323
511 => 0.021618582650318
512 => 0.022671890887185
513 => 0.021245330953229
514 => 0.022747502027643
515 => 0.022271932008882
516 => 0.021144364049541
517 => 0.021071761966112
518 => 0.021835364079511
519 => 0.023528960073051
520 => 0.023104733485276
521 => 0.023529653955774
522 => 0.023033961655959
523 => 0.02300934635525
524 => 0.023505579287178
525 => 0.024665054580875
526 => 0.024114231331121
527 => 0.023324491135196
528 => 0.023907623006149
529 => 0.023402460213223
530 => 0.022264187054598
531 => 0.0231044090872
601 => 0.022542576542144
602 => 0.022706549147452
603 => 0.023887437590875
604 => 0.023745349969119
605 => 0.02392922450863
606 => 0.023604690759227
607 => 0.023301525063009
608 => 0.022735643777639
609 => 0.022568114226651
610 => 0.022614413367462
611 => 0.022568091283096
612 => 0.022251485904648
613 => 0.022183115003317
614 => 0.0220691605057
615 => 0.022104479769482
616 => 0.021890211975398
617 => 0.02229457957282
618 => 0.022369633762176
619 => 0.022663898778121
620 => 0.022694450348263
621 => 0.023513974229068
622 => 0.02306259424706
623 => 0.023365418909263
624 => 0.02333833142118
625 => 0.021168801866305
626 => 0.021467743897045
627 => 0.0219328038837
628 => 0.021723294990086
629 => 0.021427098432047
630 => 0.021187903830375
701 => 0.020825499549939
702 => 0.021335576615295
703 => 0.02200627371559
704 => 0.022711460333545
705 => 0.02355869584936
706 => 0.023369602745139
707 => 0.022695621854901
708 => 0.022725856145294
709 => 0.022912752631747
710 => 0.022670704700454
711 => 0.022599320040179
712 => 0.022902945475611
713 => 0.022905036377116
714 => 0.022626530979693
715 => 0.022317023196408
716 => 0.022315726347495
717 => 0.02226065242695
718 => 0.023043759184076
719 => 0.023474388719472
720 => 0.023523759701711
721 => 0.023471065659
722 => 0.023491345504688
723 => 0.023240771666315
724 => 0.023813509155471
725 => 0.024339109713388
726 => 0.024198237536048
727 => 0.023987050116056
728 => 0.023818829163868
729 => 0.024158610025852
730 => 0.024143480118932
731 => 0.024334519051039
801 => 0.024325852421584
802 => 0.024261613214054
803 => 0.024198239830233
804 => 0.024449508133682
805 => 0.024377146897534
806 => 0.0243046732644
807 => 0.024159316297991
808 => 0.024179072723849
809 => 0.023967921768342
810 => 0.023870233674715
811 => 0.022401239133063
812 => 0.022008675790753
813 => 0.022132184209607
814 => 0.022172846387989
815 => 0.022002002318332
816 => 0.02224694882798
817 => 0.022208774173914
818 => 0.022357289421459
819 => 0.022264503542575
820 => 0.022268311507409
821 => 0.022541174993172
822 => 0.022620388423933
823 => 0.022580099833717
824 => 0.022608316581292
825 => 0.023258559619616
826 => 0.023166115853168
827 => 0.023117006944715
828 => 0.023130610447973
829 => 0.023296761485633
830 => 0.023343274704667
831 => 0.023146194927193
901 => 0.023239138889554
902 => 0.023634882484945
903 => 0.023773370346184
904 => 0.024215357121315
905 => 0.024027593283551
906 => 0.024372241933996
907 => 0.025431574386079
908 => 0.026277842449033
909 => 0.025499579364834
910 => 0.027053642890861
911 => 0.028263704263046
912 => 0.028217260092119
913 => 0.028006257902654
914 => 0.026628635201568
915 => 0.025360926252831
916 => 0.026421418618215
917 => 0.026424122031346
918 => 0.026333024796656
919 => 0.025767227695809
920 => 0.026313336283983
921 => 0.026356684400537
922 => 0.026332420982461
923 => 0.025898625671823
924 => 0.025236300411253
925 => 0.025365717181786
926 => 0.025577704491949
927 => 0.025176368288625
928 => 0.025048117053844
929 => 0.025286560500097
930 => 0.026054874965586
1001 => 0.025909629566428
1002 => 0.025905836622073
1003 => 0.026527258033307
1004 => 0.026082454413998
1005 => 0.025367349541712
1006 => 0.025186776130386
1007 => 0.024545862169002
1008 => 0.024988543724987
1009 => 0.025004475046096
1010 => 0.024762022881979
1011 => 0.0253870231986
1012 => 0.025381263710653
1013 => 0.025974608492265
1014 => 0.027108860864583
1015 => 0.026773406624919
1016 => 0.026383309841507
1017 => 0.026425724178075
1018 => 0.026890904762716
1019 => 0.026609645962202
1020 => 0.026710788587873
1021 => 0.026890751671238
1022 => 0.026999327867665
1023 => 0.026410101734302
1024 => 0.026272724936671
1025 => 0.025991700221422
1026 => 0.025918386118788
1027 => 0.026147274885585
1028 => 0.026086970782294
1029 => 0.025003136080246
1030 => 0.024889869323482
1031 => 0.024893343053205
1101 => 0.024608528407782
1102 => 0.024174117710166
1103 => 0.025315723086186
1104 => 0.025224036197735
1105 => 0.025122820968886
1106 => 0.025135219256894
1107 => 0.025630751458028
1108 => 0.025343317756394
1109 => 0.026107507361645
1110 => 0.025950412952448
1111 => 0.025789289664426
1112 => 0.025767017518086
1113 => 0.025704998798591
1114 => 0.025492313533292
1115 => 0.02523548329504
1116 => 0.025065901725493
1117 => 0.023121969363215
1118 => 0.023482751902319
1119 => 0.023897799327196
1120 => 0.024041072035065
1121 => 0.023795994154085
1122 => 0.0255019907018
1123 => 0.02581369271046
1124 => 0.024869526994412
1125 => 0.024692912138971
1126 => 0.02551356954232
1127 => 0.025018612806813
1128 => 0.025241491794505
1129 => 0.024759749331403
1130 => 0.025738612824274
1201 => 0.025731155524503
1202 => 0.025350355517142
1203 => 0.025672205075758
1204 => 0.025616275794619
1205 => 0.025186353524177
1206 => 0.025752242127085
1207 => 0.025752522800772
1208 => 0.025386011072993
1209 => 0.024958005614681
1210 => 0.024881488347772
1211 => 0.024823842865805
1212 => 0.025227314539674
1213 => 0.025589065980841
1214 => 0.026262195727065
1215 => 0.026431436538434
1216 => 0.027091994692206
1217 => 0.026698664473627
1218 => 0.026873022665044
1219 => 0.027062313146299
1220 => 0.02715306596394
1221 => 0.027005189117659
1222 => 0.028031307827051
1223 => 0.028117943685588
1224 => 0.028146991939559
1225 => 0.027800990484144
1226 => 0.028108320759201
1227 => 0.027964531101211
1228 => 0.028338631845384
1229 => 0.028397295618829
1230 => 0.028347609489746
1231 => 0.028366230297382
]
'min_raw' => 0.012720354627526
'max_raw' => 0.028397295618829
'avg_raw' => 0.020558825123177
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.01272'
'max' => '$0.028397'
'avg' => '$0.020558'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0019614528741512
'max_diff' => -0.0027098533852337
'year' => 2031
]
6 => [
'items' => [
101 => 0.02749061899866
102 => 0.027445213933604
103 => 0.026826112649766
104 => 0.027078400999095
105 => 0.026606760022519
106 => 0.026756322234632
107 => 0.02682224783265
108 => 0.02678781204149
109 => 0.027092665003836
110 => 0.026833477708496
111 => 0.026149439821757
112 => 0.025465215569353
113 => 0.025456625691222
114 => 0.025276481523125
115 => 0.025146270284641
116 => 0.025171353588665
117 => 0.025259750423712
118 => 0.025141132499891
119 => 0.02516644564802
120 => 0.025586812567575
121 => 0.025671114155373
122 => 0.025384624421281
123 => 0.024234326798633
124 => 0.023952040876732
125 => 0.024154942399422
126 => 0.024057968540108
127 => 0.019416658259326
128 => 0.020507065264267
129 => 0.019859182448654
130 => 0.020157756657744
131 => 0.019496436071445
201 => 0.019812052918008
202 => 0.01975377001093
203 => 0.021507112207386
204 => 0.021479736180632
205 => 0.021492839635932
206 => 0.020867377573582
207 => 0.021863755622051
208 => 0.022354607277322
209 => 0.022263763699525
210 => 0.022286627070909
211 => 0.021893758600568
212 => 0.021496643461493
213 => 0.021056181656677
214 => 0.021874505247301
215 => 0.021783521633273
216 => 0.021992205308981
217 => 0.022522946652479
218 => 0.0226011003314
219 => 0.022706139668425
220 => 0.022668490543311
221 => 0.023565445447111
222 => 0.023456818289962
223 => 0.023718578484525
224 => 0.023180117904514
225 => 0.022570798647084
226 => 0.022686610317774
227 => 0.022675456722588
228 => 0.022533458654369
229 => 0.022405269147543
301 => 0.022191869735847
302 => 0.022867097051623
303 => 0.022839684055712
304 => 0.023283468595384
305 => 0.023205025367304
306 => 0.022681162291872
307 => 0.022699872164096
308 => 0.022825705046459
309 => 0.023261214089053
310 => 0.023390502824612
311 => 0.023330611131036
312 => 0.023472370327321
313 => 0.023584411016077
314 => 0.02348644091282
315 => 0.024873490974273
316 => 0.024297491083965
317 => 0.02457822942272
318 => 0.024645183862306
319 => 0.024473681473205
320 => 0.024510874200361
321 => 0.024567211047591
322 => 0.024909277352084
323 => 0.025806958312756
324 => 0.026204535099516
325 => 0.027400664478579
326 => 0.026171521881912
327 => 0.026098589646923
328 => 0.026314048667739
329 => 0.027016303236403
330 => 0.027585414604887
331 => 0.027774221678635
401 => 0.027799175650296
402 => 0.028153390272306
403 => 0.02835641948793
404 => 0.028110379300424
405 => 0.027901886002995
406 => 0.027155088890743
407 => 0.027241532689947
408 => 0.027837044744273
409 => 0.028678240596493
410 => 0.02940007414921
411 => 0.029147313197487
412 => 0.031075700837704
413 => 0.031266892595475
414 => 0.03124047607652
415 => 0.03167603935387
416 => 0.03081153494925
417 => 0.030441942567291
418 => 0.027946964620399
419 => 0.028647951654648
420 => 0.029666877476453
421 => 0.029532018823162
422 => 0.028792047655401
423 => 0.029399512814724
424 => 0.02919866583586
425 => 0.029040249490481
426 => 0.029765985479181
427 => 0.028968008948014
428 => 0.029658917050135
429 => 0.028772820262636
430 => 0.029148467788224
501 => 0.028935232084674
502 => 0.029073221718056
503 => 0.028266537140897
504 => 0.028701804557571
505 => 0.028248428585337
506 => 0.028248213626094
507 => 0.028238205326379
508 => 0.028771600147135
509 => 0.028788994133091
510 => 0.028394814554637
511 => 0.028338007119139
512 => 0.028548053982156
513 => 0.028302144116924
514 => 0.028417203795128
515 => 0.028305629157364
516 => 0.028280511356282
517 => 0.028080368443818
518 => 0.027994141374085
519 => 0.028027953229925
520 => 0.027912535934735
521 => 0.027842992839558
522 => 0.028224371454374
523 => 0.028020616245247
524 => 0.028193143046314
525 => 0.02799652698188
526 => 0.02731497004101
527 => 0.026922999436982
528 => 0.025635601556041
529 => 0.026000705998064
530 => 0.026242770620853
531 => 0.026162768264465
601 => 0.026334644282788
602 => 0.026345196074394
603 => 0.026289317428768
604 => 0.026224617115632
605 => 0.026193124581349
606 => 0.026427844130545
607 => 0.026564106729151
608 => 0.026267065044156
609 => 0.026197472333417
610 => 0.026497797877067
611 => 0.026680996285201
612 => 0.028033630400571
613 => 0.027933422896354
614 => 0.028184924067209
615 => 0.028156608894971
616 => 0.028420222189306
617 => 0.028851118514254
618 => 0.027974985805128
619 => 0.028127052149043
620 => 0.02808976899324
621 => 0.02849681671213
622 => 0.028498087470678
623 => 0.028254042029661
624 => 0.028386343022421
625 => 0.028312496237751
626 => 0.028445947358642
627 => 0.027932084564041
628 => 0.028557913979804
629 => 0.028912718930985
630 => 0.028917645398076
701 => 0.02908582012903
702 => 0.029256695395702
703 => 0.02958467558998
704 => 0.029247548206095
705 => 0.028641088861175
706 => 0.028684873267027
707 => 0.028329306374995
708 => 0.028335283518688
709 => 0.028303377057216
710 => 0.028399130749902
711 => 0.027953097114889
712 => 0.028057780317507
713 => 0.027911223220817
714 => 0.028126733562537
715 => 0.027894880059982
716 => 0.028089751014173
717 => 0.028173850857927
718 => 0.02848418109192
719 => 0.0278490440321
720 => 0.026553956572127
721 => 0.026826199657631
722 => 0.026423530749938
723 => 0.026460799290414
724 => 0.026536087673419
725 => 0.026292053391273
726 => 0.026338607441903
727 => 0.026336944203618
728 => 0.026322611314638
729 => 0.026259128572801
730 => 0.02616706603746
731 => 0.026533814842906
801 => 0.026596132611521
802 => 0.026734657291614
803 => 0.027146812777382
804 => 0.027105628725058
805 => 0.027172801623108
806 => 0.027026163563824
807 => 0.026467601409416
808 => 0.026497934021724
809 => 0.026119685860196
810 => 0.026724984635706
811 => 0.026581641896112
812 => 0.026489227899396
813 => 0.026464011884182
814 => 0.026877189023679
815 => 0.027000818099575
816 => 0.026923780755915
817 => 0.026765774916531
818 => 0.027069192838382
819 => 0.027150374674095
820 => 0.02716854829324
821 => 0.027706146676143
822 => 0.027198594070871
823 => 0.027320767027599
824 => 0.028273925560182
825 => 0.027409542298016
826 => 0.027867425390033
827 => 0.027845014395387
828 => 0.028079251891344
829 => 0.027825800083838
830 => 0.027828941922752
831 => 0.028036928950539
901 => 0.02774484868067
902 => 0.027672525498316
903 => 0.027572611539883
904 => 0.027790770012843
905 => 0.027921546150923
906 => 0.02897550577936
907 => 0.029656411765729
908 => 0.029626851841099
909 => 0.029896974218357
910 => 0.029775281613365
911 => 0.029382304090958
912 => 0.030053068803204
913 => 0.029840810782261
914 => 0.029858309075614
915 => 0.029857657788262
916 => 0.02999879081627
917 => 0.029898785131274
918 => 0.029701663660774
919 => 0.029832522092166
920 => 0.030221124850654
921 => 0.03142735973679
922 => 0.032102384759559
923 => 0.031386722382833
924 => 0.031880376707197
925 => 0.0315843600196
926 => 0.03153056498173
927 => 0.031840616378198
928 => 0.032151210478593
929 => 0.032131426977133
930 => 0.03190595160943
1001 => 0.03177858629544
1002 => 0.03274303912348
1003 => 0.033453631538154
1004 => 0.033405173899346
1005 => 0.033619050157779
1006 => 0.034246997467484
1007 => 0.034304409099792
1008 => 0.034297176553712
1009 => 0.034154875832754
1010 => 0.034773171508421
1011 => 0.035288964638939
1012 => 0.034121937327315
1013 => 0.034566326050072
1014 => 0.034765826465028
1015 => 0.03505875226329
1016 => 0.035552967185021
1017 => 0.036089815674055
1018 => 0.036165731936649
1019 => 0.036111865715411
1020 => 0.035757799705631
1021 => 0.036345225728267
1022 => 0.036689326115491
1023 => 0.036894230021486
1024 => 0.03741383223433
1025 => 0.034767058511673
1026 => 0.032893540517587
1027 => 0.032600963628883
1028 => 0.033195930237081
1029 => 0.033352818186893
1030 => 0.033289576851044
1031 => 0.031180762015897
1101 => 0.032589861155205
1102 => 0.03410593334868
1103 => 0.034164171856029
1104 => 0.034923149295657
1105 => 0.035170303461537
1106 => 0.035781379781885
1107 => 0.035743156791669
1108 => 0.035891944151325
1109 => 0.035857740513978
1110 => 0.036989630720122
1111 => 0.038238273704821
1112 => 0.038195037168702
1113 => 0.038015529966378
1114 => 0.038282128772355
1115 => 0.039570862145279
1116 => 0.039452216227831
1117 => 0.039567470630396
1118 => 0.041086959906903
1119 => 0.043062512111191
1120 => 0.042144669770101
1121 => 0.044136123548247
1122 => 0.045389638139162
1123 => 0.047557462008321
1124 => 0.047286039783144
1125 => 0.048129957707181
1126 => 0.046800137352551
1127 => 0.043746601017283
1128 => 0.04326336720376
1129 => 0.044230813535863
1130 => 0.046609185941307
1201 => 0.044155910124907
1202 => 0.044652204627411
1203 => 0.044509271777303
1204 => 0.044501655493146
1205 => 0.044792338081744
1206 => 0.044370687825998
1207 => 0.042652808830655
1208 => 0.043440102650696
1209 => 0.043136090697824
1210 => 0.043473414625128
1211 => 0.04529381273782
1212 => 0.044488971339328
1213 => 0.043641136306023
1214 => 0.044704509587443
1215 => 0.046058549189395
1216 => 0.045973815824548
1217 => 0.045809397680946
1218 => 0.046736214147777
1219 => 0.048267043419237
1220 => 0.048680820419942
1221 => 0.048986262142565
1222 => 0.049028377395634
1223 => 0.049462190676733
1224 => 0.04712946732924
1225 => 0.050831559190296
1226 => 0.051470808186476
1227 => 0.051350655869351
1228 => 0.052061154224896
1229 => 0.051852107585091
1230 => 0.051549231802426
1231 => 0.052675522823299
]
'min_raw' => 0.019416658259326
'max_raw' => 0.052675522823299
'avg_raw' => 0.036046090541312
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.019416'
'max' => '$0.052675'
'avg' => '$0.036046'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0066963036318004
'max_diff' => 0.02427822720447
'year' => 2032
]
7 => [
'items' => [
101 => 0.051384321054867
102 => 0.049551622702361
103 => 0.048546168139512
104 => 0.049870231815577
105 => 0.050678791299095
106 => 0.051213197683659
107 => 0.051374908732731
108 => 0.047310550002294
109 => 0.045120086066258
110 => 0.046524148335537
111 => 0.048237201207259
112 => 0.047119951234044
113 => 0.04716374531776
114 => 0.045570840464082
115 => 0.048378137941515
116 => 0.047969138312141
117 => 0.050091029112841
118 => 0.049584622844016
119 => 0.05131494242066
120 => 0.050859291286806
121 => 0.052750673668323
122 => 0.053505197307444
123 => 0.054772159929755
124 => 0.055704142792192
125 => 0.056251420955007
126 => 0.0562185644269
127 => 0.058387153160871
128 => 0.057108412149168
129 => 0.055502012062353
130 => 0.05547295735291
131 => 0.056304934720737
201 => 0.058048531041857
202 => 0.058500620199629
203 => 0.058753276363686
204 => 0.058366324653408
205 => 0.056978342933399
206 => 0.056379019463926
207 => 0.056889660423989
208 => 0.05626519040971
209 => 0.057343200849696
210 => 0.058823539434403
211 => 0.058517855370554
212 => 0.059539711365284
213 => 0.060597224817444
214 => 0.062109516549934
215 => 0.062504885608807
216 => 0.063158415628587
217 => 0.063831112692367
218 => 0.06404716485956
219 => 0.06445967548378
220 => 0.064457501349169
221 => 0.065700629880424
222 => 0.067071839146885
223 => 0.067589438901406
224 => 0.068779630996311
225 => 0.066741468743092
226 => 0.068287438224879
227 => 0.069681941395577
228 => 0.068019357226853
301 => 0.07031084217101
302 => 0.070399815338775
303 => 0.071743204538217
304 => 0.070381422222353
305 => 0.069572800230155
306 => 0.071907261622958
307 => 0.073036833956091
308 => 0.072696597576587
309 => 0.070107381929019
310 => 0.068600347365451
311 => 0.064656147227337
312 => 0.069328222667699
313 => 0.071603854328391
314 => 0.07010148859277
315 => 0.070859194482421
316 => 0.074992992129398
317 => 0.07656687462979
318 => 0.076239518071978
319 => 0.0762948359415
320 => 0.077144074370724
321 => 0.080910065250046
322 => 0.078653396220171
323 => 0.080378535137735
324 => 0.08129354259916
325 => 0.082143452523252
326 => 0.080056342366473
327 => 0.077341042718242
328 => 0.076480993339122
329 => 0.069952107928755
330 => 0.069612251089633
331 => 0.069421479147118
401 => 0.068218689034786
402 => 0.067273625478433
403 => 0.06652207585046
404 => 0.064549785194944
405 => 0.065215375393981
406 => 0.06207195573814
407 => 0.064083004237995
408 => 0.05906603056675
409 => 0.06324431532034
410 => 0.060970264892257
411 => 0.062497228594325
412 => 0.062491901161817
413 => 0.059680276862028
414 => 0.058058590643012
415 => 0.059091992218741
416 => 0.060199880739441
417 => 0.060379631924541
418 => 0.061816038310478
419 => 0.062216908457341
420 => 0.061002253197508
421 => 0.058962064938703
422 => 0.059435954139484
423 => 0.058048987293483
424 => 0.055618381244776
425 => 0.057364084943268
426 => 0.057960144939106
427 => 0.058223398990057
428 => 0.055833177098145
429 => 0.055082117485464
430 => 0.054682259649674
501 => 0.058653517307578
502 => 0.058871071766686
503 => 0.057758032394792
504 => 0.062789075898475
505 => 0.061650395806131
506 => 0.062922580452675
507 => 0.059392953661584
508 => 0.059527790158277
509 => 0.057856808270596
510 => 0.058792446472647
511 => 0.058131167548464
512 => 0.058716856152078
513 => 0.0590679154862
514 => 0.060738623182196
515 => 0.063263392118534
516 => 0.060489075165606
517 => 0.059280265540264
518 => 0.060030204233223
519 => 0.062027389798336
520 => 0.065053228163531
521 => 0.063261870950664
522 => 0.064056844862516
523 => 0.064230511296328
524 => 0.062909630807208
525 => 0.065101930911249
526 => 0.066276802347219
527 => 0.067481977335136
528 => 0.068528397008908
529 => 0.067000603942596
530 => 0.068635561524083
531 => 0.067318074322269
601 => 0.066136152102919
602 => 0.066137944591049
603 => 0.065396507517722
604 => 0.063959879761067
605 => 0.063694943560916
606 => 0.065073175131857
607 => 0.066178386332736
608 => 0.066269416820845
609 => 0.066881318529453
610 => 0.067243435657519
611 => 0.070792675786926
612 => 0.072220209527828
613 => 0.073965770764372
614 => 0.074645765240447
615 => 0.07669230482192
616 => 0.075039557898062
617 => 0.07468197570482
618 => 0.069717740098163
619 => 0.070530633400651
620 => 0.071832154010472
621 => 0.069739201693639
622 => 0.071066698207453
623 => 0.071328774139501
624 => 0.069668083974791
625 => 0.070555130345949
626 => 0.068199398175073
627 => 0.063314740642386
628 => 0.065107368931437
629 => 0.066427346744336
630 => 0.064543575653238
701 => 0.067920162422022
702 => 0.065947630138597
703 => 0.065322432103
704 => 0.06288331166694
705 => 0.064034482622405
706 => 0.065591457822851
707 => 0.06462942816677
708 => 0.066625784152618
709 => 0.069453156637273
710 => 0.07146811064278
711 => 0.071622793791539
712 => 0.070327313357432
713 => 0.072403329020735
714 => 0.072418450528404
715 => 0.070076696379426
716 => 0.068642385002118
717 => 0.068316506439377
718 => 0.06913061498136
719 => 0.070119093044055
720 => 0.071677647444561
721 => 0.072619449227138
722 => 0.075075168783029
723 => 0.075739616083856
724 => 0.07646964221963
725 => 0.077445182268748
726 => 0.078616568221047
727 => 0.076053642444455
728 => 0.07615547226345
729 => 0.07376891126641
730 => 0.071218528573606
731 => 0.073153951127754
801 => 0.075684258658829
802 => 0.075103803315459
803 => 0.075038490231703
804 => 0.075148328722242
805 => 0.07471068434924
806 => 0.07273123507001
807 => 0.071737168033989
808 => 0.073019768124004
809 => 0.073701412989885
810 => 0.074758584731186
811 => 0.074628265999883
812 => 0.077351426873519
813 => 0.078409564844904
814 => 0.078138847871547
815 => 0.078188666309812
816 => 0.080104374563747
817 => 0.082235036137574
818 => 0.08423068186702
819 => 0.086260738417992
820 => 0.08381342601134
821 => 0.082570831700487
822 => 0.083852871847426
823 => 0.083172603299439
824 => 0.087081628156934
825 => 0.087352280556776
826 => 0.091261022747281
827 => 0.094970884530432
828 => 0.092640786813513
829 => 0.094837964010662
830 => 0.097214390287864
831 => 0.10179890213785
901 => 0.10025499983185
902 => 0.099072394861483
903 => 0.097954838878792
904 => 0.10028029547176
905 => 0.10327195822853
906 => 0.10391633373254
907 => 0.10496046821944
908 => 0.10386268847716
909 => 0.10518484326027
910 => 0.10985263062889
911 => 0.10859135327819
912 => 0.10680013667974
913 => 0.11048490650821
914 => 0.11181841038495
915 => 0.12117763895331
916 => 0.13299405163133
917 => 0.12810197919188
918 => 0.12506531196252
919 => 0.12577900079213
920 => 0.13009395469133
921 => 0.13147978093396
922 => 0.12771262748354
923 => 0.12904324976835
924 => 0.13637510938155
925 => 0.14030841682981
926 => 0.1349664570014
927 => 0.12022820170002
928 => 0.10663885722318
929 => 0.11024336331459
930 => 0.10983472418467
1001 => 0.11771189267095
1002 => 0.10856127223051
1003 => 0.10871534521065
1004 => 0.11675540519915
1005 => 0.11461045503574
1006 => 0.11113591047548
1007 => 0.10666422524363
1008 => 0.098397901511729
1009 => 0.091076188058895
1010 => 0.10543575422981
1011 => 0.10481654362534
1012 => 0.1039198349082
1013 => 0.10591536312418
1014 => 0.11560508170037
1015 => 0.11538170232464
1016 => 0.11396067670534
1017 => 0.11503851211323
1018 => 0.11094696071722
1019 => 0.11200144667487
1020 => 0.10663670460158
1021 => 0.10906179207013
1022 => 0.11112845566335
1023 => 0.11154336897717
1024 => 0.1124781898592
1025 => 0.10449024777394
1026 => 0.10807659925656
1027 => 0.11018324475691
1028 => 0.1006653437459
1029 => 0.10999510645631
1030 => 0.1043511954738
1031 => 0.10243556731764
1101 => 0.10501470826509
1102 => 0.10400961452957
1103 => 0.10314549395686
1104 => 0.1026632998298
1105 => 0.10455713629222
1106 => 0.10446878655762
1107 => 0.1013701025273
1108 => 0.09732799552826
1109 => 0.098684659314776
1110 => 0.098191770642344
1111 => 0.096405478509546
1112 => 0.097609223729317
1113 => 0.092308538982959
1114 => 0.083188986382467
1115 => 0.089213642169803
1116 => 0.088981699475555
1117 => 0.088864743451351
1118 => 0.093392105766278
1119 => 0.092956904343718
1120 => 0.092167009500266
1121 => 0.096390971471303
1122 => 0.094849168531569
1123 => 0.09960064189737
1124 => 0.10273026956212
1125 => 0.10193649475349
1126 => 0.10487992469899
1127 => 0.098715914108342
1128 => 0.10076335116937
1129 => 0.10118532511003
1130 => 0.096338848436249
1201 => 0.093028108678675
1202 => 0.092807320082042
1203 => 0.087066953590451
1204 => 0.090133411035639
1205 => 0.092831766688774
1206 => 0.09153946373178
1207 => 0.091130359222049
1208 => 0.093220385438325
1209 => 0.093382798375194
1210 => 0.089679766202836
1211 => 0.090449743851247
1212 => 0.093660678643255
1213 => 0.090368836532899
1214 => 0.083973325031833
1215 => 0.082387149754704
1216 => 0.082175524733725
1217 => 0.077873691581004
1218 => 0.082493145571314
1219 => 0.080476630110874
1220 => 0.086846778288841
1221 => 0.083208183813376
1222 => 0.083051331277905
1223 => 0.082814225665277
1224 => 0.079111460164241
1225 => 0.079922130485944
1226 => 0.082616922103862
1227 => 0.083578454112135
1228 => 0.083478158446073
1229 => 0.082603716154796
1230 => 0.083004031357873
1231 => 0.081714476609698
]
'min_raw' => 0.045120086066258
'max_raw' => 0.14030841682981
'avg_raw' => 0.092714251448036
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.04512'
'max' => '$0.1403084'
'avg' => '$0.092714'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.025703427806932
'max_diff' => 0.087632894006514
'year' => 2033
]
8 => [
'items' => [
101 => 0.081259107988356
102 => 0.079821839360393
103 => 0.077709451532881
104 => 0.078003192016324
105 => 0.073817998993681
106 => 0.07153768370994
107 => 0.070906522493472
108 => 0.070062507336769
109 => 0.071001856251261
110 => 0.07380614286769
111 => 0.070423578245682
112 => 0.06462440846057
113 => 0.06497294844596
114 => 0.06575601431068
115 => 0.064296776252273
116 => 0.062915729894557
117 => 0.064116437654758
118 => 0.061659252967702
119 => 0.066052953340772
120 => 0.065934116058884
121 => 0.067571815853356
122 => 0.068595903143822
123 => 0.066235713491495
124 => 0.065642132176566
125 => 0.065980263070316
126 => 0.0603917125925
127 => 0.067115112051182
128 => 0.067173256288896
129 => 0.066675390025199
130 => 0.070255392675277
131 => 0.077810314897771
201 => 0.074967849261626
202 => 0.073867160653333
203 => 0.071774750804368
204 => 0.07456276269311
205 => 0.074348686879815
206 => 0.073380554866255
207 => 0.072795025603698
208 => 0.073873881223267
209 => 0.072661343453267
210 => 0.072443538351466
211 => 0.071123876408836
212 => 0.07065281713611
213 => 0.070304063603994
214 => 0.069920120232948
215 => 0.070767003636748
216 => 0.068847854426947
217 => 0.066533548616443
218 => 0.066341139129436
219 => 0.066872398639878
220 => 0.066637355854127
221 => 0.066340013835005
222 => 0.065772306944221
223 => 0.065603880436864
224 => 0.06615118487685
225 => 0.065533310073938
226 => 0.066445018003017
227 => 0.066197083893408
228 => 0.064812144111601
301 => 0.063085996373091
302 => 0.063070630037501
303 => 0.062698734338688
304 => 0.062225069251358
305 => 0.062093306460052
306 => 0.064015317396241
307 => 0.067993822513205
308 => 0.067212746761186
309 => 0.067777154039882
310 => 0.070553479236653
311 => 0.071435989529695
312 => 0.070809604627095
313 => 0.069952170338679
314 => 0.069989893095817
315 => 0.072920005622345
316 => 0.073102753146476
317 => 0.073564497183367
318 => 0.074157968759623
319 => 0.070910675402775
320 => 0.069836945870734
321 => 0.069328153250206
322 => 0.067761268906505
323 => 0.069451019336675
324 => 0.068466474123343
325 => 0.068599322909475
326 => 0.068512804963226
327 => 0.068560049612196
328 => 0.066051725211974
329 => 0.066965626789766
330 => 0.065446088162561
331 => 0.06341159651695
401 => 0.063404776187569
402 => 0.06390271513557
403 => 0.063606521564946
404 => 0.06280947228223
405 => 0.062922689370873
406 => 0.061930788541739
407 => 0.063043124090474
408 => 0.063075021893884
409 => 0.062646712118294
410 => 0.064360418503847
411 => 0.06506252540826
412 => 0.064780602738682
413 => 0.065042744962214
414 => 0.067245203985028
415 => 0.067604300905771
416 => 0.067763788037353
417 => 0.067550096409028
418 => 0.06508300187004
419 => 0.06519242800374
420 => 0.064389531640029
421 => 0.063711168819827
422 => 0.063738299775091
423 => 0.064087066445668
424 => 0.065610150950975
425 => 0.068815392501657
426 => 0.068937029075505
427 => 0.069084456151397
428 => 0.068484796142832
429 => 0.068303932946275
430 => 0.068542538187285
501 => 0.069746258390127
502 => 0.072842553558684
503 => 0.071748116051515
504 => 0.070858321322252
505 => 0.071638911186752
506 => 0.071518745495578
507 => 0.07050442613159
508 => 0.070475957565338
509 => 0.068529154408329
510 => 0.067809465607746
511 => 0.067208039778205
512 => 0.066551298472966
513 => 0.066161960213052
514 => 0.066760160731354
515 => 0.06689697626759
516 => 0.065589000379567
517 => 0.065410728099166
518 => 0.066478849443947
519 => 0.066008809063686
520 => 0.066492257251225
521 => 0.066604421377675
522 => 0.066586360369958
523 => 0.066095584229172
524 => 0.066408390306154
525 => 0.065668510682113
526 => 0.064864002717294
527 => 0.064350776758357
528 => 0.06390291903964
529 => 0.064151416531628
530 => 0.063265568346541
531 => 0.06298216768353
601 => 0.066302418645632
602 => 0.06875512373005
603 => 0.068719460426744
604 => 0.068502369239731
605 => 0.068179815771167
606 => 0.06972266159484
607 => 0.069185164960049
608 => 0.069576238671206
609 => 0.069675783344008
610 => 0.069977075087641
611 => 0.070084760989089
612 => 0.069759259402245
613 => 0.068666836320124
614 => 0.065944621863949
615 => 0.064677423686123
616 => 0.064259227180585
617 => 0.064274427829293
618 => 0.06385512607924
619 => 0.063978629236417
620 => 0.063812176721304
621 => 0.063496955926868
622 => 0.06413195253584
623 => 0.064205129979621
624 => 0.064056914183443
625 => 0.064091824368933
626 => 0.06286466088037
627 => 0.062957959455147
628 => 0.062438461134982
629 => 0.062341061462596
630 => 0.061027814947113
701 => 0.058701208386808
702 => 0.05999037427038
703 => 0.05843324316718
704 => 0.057843534024011
705 => 0.060635125389183
706 => 0.060354927042812
707 => 0.059875349273117
708 => 0.059165953798974
709 => 0.058902832117058
710 => 0.057304188071943
711 => 0.057209731653323
712 => 0.058002062809103
713 => 0.057636429243161
714 => 0.057122941240319
715 => 0.055263139745469
716 => 0.053172107106143
717 => 0.053235222237762
718 => 0.053900340815286
719 => 0.055834262782898
720 => 0.055078646012962
721 => 0.05453043737667
722 => 0.054427774378184
723 => 0.055712816743786
724 => 0.057531420915812
725 => 0.058384669304352
726 => 0.057539126064848
727 => 0.056567811518587
728 => 0.056626930934379
729 => 0.057020225921683
730 => 0.057061555663957
731 => 0.05642932974709
801 => 0.056607297639403
802 => 0.056336948137254
803 => 0.054677813741588
804 => 0.054647805261543
805 => 0.05424062692369
806 => 0.054228297725443
807 => 0.053535585797359
808 => 0.053438670610129
809 => 0.05206324903231
810 => 0.052968555679991
811 => 0.052361323511459
812 => 0.051446081401894
813 => 0.051288293317229
814 => 0.051283550016869
815 => 0.052223299019002
816 => 0.052957574165752
817 => 0.052371886575009
818 => 0.052238536863674
819 => 0.053662362909441
820 => 0.053481168066654
821 => 0.053324254501383
822 => 0.057368584858832
823 => 0.054167181797878
824 => 0.052771187333603
825 => 0.051043379091905
826 => 0.051605962167767
827 => 0.051724506687916
828 => 0.047569439327476
829 => 0.045883729016826
830 => 0.045305256762864
831 => 0.044972337802311
901 => 0.045124053153168
902 => 0.043606716159485
903 => 0.044626391713678
904 => 0.043312506134451
905 => 0.04309222894134
906 => 0.045441619116188
907 => 0.045768523034079
908 => 0.044373849359267
909 => 0.045269455635655
910 => 0.044944696349978
911 => 0.043335028931626
912 => 0.043273551476157
913 => 0.042465876948174
914 => 0.041202022708487
915 => 0.040624407407213
916 => 0.040323580343224
917 => 0.040447707452828
918 => 0.04038494498786
919 => 0.039975377449775
920 => 0.040408420919721
921 => 0.039302173799925
922 => 0.038861657283183
923 => 0.038662686192477
924 => 0.037680828200449
925 => 0.039243400899996
926 => 0.039551247406578
927 => 0.039859700465878
928 => 0.042544573757231
929 => 0.042410445074969
930 => 0.043622903039307
1001 => 0.04357578915238
1002 => 0.043229976500434
1003 => 0.041771049805293
1004 => 0.042352551983108
1005 => 0.040562778665296
1006 => 0.041903798527757
1007 => 0.041291813064858
1008 => 0.041696885627149
1009 => 0.040968528636229
1010 => 0.041371631468127
1011 => 0.039624249233642
1012 => 0.037992568289411
1013 => 0.038649204333105
1014 => 0.039363042808042
1015 => 0.040910826504364
1016 => 0.039988979303773
1017 => 0.040320510416007
1018 => 0.039209936687659
1019 => 0.036918505866375
1020 => 0.036931475115975
1021 => 0.036578988405654
1022 => 0.036274388424035
1023 => 0.040094864544034
1024 => 0.039619727945722
1025 => 0.038862659960653
1026 => 0.039876025543354
1027 => 0.040143975487695
1028 => 0.040151603645917
1029 => 0.040890929016304
1030 => 0.041285507099011
1031 => 0.041355053196287
1101 => 0.042518397640773
1102 => 0.042908335353681
1103 => 0.044514433607096
1104 => 0.041252029905457
1105 => 0.041184842848106
1106 => 0.039890285675256
1107 => 0.039069257050096
1108 => 0.039946502207642
1109 => 0.040723621661322
1110 => 0.039914432942894
1111 => 0.040020095906615
1112 => 0.038933826165273
1113 => 0.039322116484061
1114 => 0.039656564414955
1115 => 0.039471901925456
1116 => 0.03919545324091
1117 => 0.040659906728273
1118 => 0.040577276523277
1119 => 0.041941009278349
1120 => 0.043004136482393
1121 => 0.04490945048876
1122 => 0.042921155996851
1123 => 0.042848694642811
1124 => 0.043557016001718
1125 => 0.042908226913371
1126 => 0.043318239221769
1127 => 0.044843391167111
1128 => 0.044875615224413
1129 => 0.04433582074625
1130 => 0.044302974203197
1201 => 0.044406647637433
1202 => 0.045013866179933
1203 => 0.044801685363242
1204 => 0.045047226376078
1205 => 0.045354279172486
1206 => 0.046624379726118
1207 => 0.046930596669694
1208 => 0.046186648252087
1209 => 0.04625381846456
1210 => 0.045975561334534
1211 => 0.045706768433481
1212 => 0.046310975620998
1213 => 0.047415176131906
1214 => 0.047408306957836
1215 => 0.047664460013776
1216 => 0.04782404124554
1217 => 0.047139001778207
1218 => 0.046693066274573
1219 => 0.046864066322279
1220 => 0.047137499122459
1221 => 0.046775395750416
1222 => 0.044540325995571
1223 => 0.045218303382382
1224 => 0.045105454793816
1225 => 0.044944744680841
1226 => 0.045626456185924
1227 => 0.045560703448213
1228 => 0.043591153675491
1229 => 0.043717237861752
1230 => 0.043598821272462
1231 => 0.043981449498214
]
'min_raw' => 0.036274388424035
'max_raw' => 0.081259107988356
'avg_raw' => 0.058766748206195
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.036274'
'max' => '$0.081259'
'avg' => '$0.058766'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0088456976422232
'max_diff' => -0.059049308841457
'year' => 2034
]
9 => [
'items' => [
101 => 0.042887563733502
102 => 0.043224035627294
103 => 0.043435067644853
104 => 0.043559367124419
105 => 0.044008422077564
106 => 0.043955730661785
107 => 0.044005146705177
108 => 0.044670976654578
109 => 0.048038516053404
110 => 0.048221803792825
111 => 0.047319227929574
112 => 0.047679789184421
113 => 0.046987590421193
114 => 0.047452268088276
115 => 0.047770188746562
116 => 0.046333566424396
117 => 0.046248498974079
118 => 0.045553443260327
119 => 0.045926926830929
120 => 0.045332687615681
121 => 0.045478493133498
122 => 0.045070808194586
123 => 0.045804559915366
124 => 0.046625008352687
125 => 0.046832286028445
126 => 0.046287027702176
127 => 0.045892224739682
128 => 0.045199080793724
129 => 0.046351794623573
130 => 0.046688883275738
131 => 0.046350024040386
201 => 0.046271502951334
202 => 0.046122705629466
203 => 0.046303071006579
204 => 0.046687047418545
205 => 0.046505971233593
206 => 0.046625575243905
207 => 0.046169768091713
208 => 0.047139228554775
209 => 0.048678965083483
210 => 0.048683915588195
211 => 0.048502838427175
212 => 0.048428745554247
213 => 0.048614541710135
214 => 0.048715328502947
215 => 0.049316159201899
216 => 0.049960874480026
217 => 0.052969479371731
218 => 0.052124675157267
219 => 0.054794088399894
220 => 0.056905247694884
221 => 0.057538292057644
222 => 0.056955921030944
223 => 0.054963661207667
224 => 0.054865911436159
225 => 0.057843188722537
226 => 0.057001971521197
227 => 0.056901911411828
228 => 0.05583744090237
301 => 0.056466674810697
302 => 0.056329052124642
303 => 0.056111807981971
304 => 0.057312342446245
305 => 0.059559635790914
306 => 0.059209374048164
307 => 0.058947919905376
308 => 0.057802303959833
309 => 0.058492220641635
310 => 0.058246554525729
311 => 0.05930209206323
312 => 0.058676815009034
313 => 0.056995598473537
314 => 0.057263337748177
315 => 0.057222869495431
316 => 0.058055703269316
317 => 0.057805707242601
318 => 0.057174053758923
319 => 0.059551954786574
320 => 0.059397547120419
321 => 0.059616461888521
322 => 0.059712834939603
323 => 0.061160221391818
324 => 0.061753169310091
325 => 0.061887778868553
326 => 0.062451033530673
327 => 0.061873764579446
328 => 0.064183251970143
329 => 0.065718926322631
330 => 0.067502691108126
331 => 0.070109250890508
401 => 0.07108934148071
402 => 0.07091229688804
403 => 0.072888560766787
404 => 0.076439863027017
405 => 0.07163011661045
406 => 0.076694791266072
407 => 0.075091373744583
408 => 0.071289699645382
409 => 0.071044916652187
410 => 0.07361945449051
411 => 0.079329531625825
412 => 0.077899222066588
413 => 0.07933187109987
414 => 0.077660609902912
415 => 0.077577617697988
416 => 0.079250701673859
417 => 0.08315995357854
418 => 0.081302814534742
419 => 0.078640150326282
420 => 0.080606220142166
421 => 0.078903028516476
422 => 0.075065261090477
423 => 0.077898128335823
424 => 0.076003870684274
425 => 0.076556715771272
426 => 0.080538163605268
427 => 0.080059105268277
428 => 0.080679051115951
429 => 0.079584862921614
430 => 0.078562718610463
501 => 0.076654810348267
502 => 0.076089972770571
503 => 0.076246073556319
504 => 0.076089895414774
505 => 0.075022438276657
506 => 0.074791921009314
507 => 0.07440771546455
508 => 0.074526796828302
509 => 0.073804378000848
510 => 0.0751677315876
511 => 0.075420782027132
512 => 0.076412917073316
513 => 0.076515923825092
514 => 0.079279005806557
515 => 0.077757146682873
516 => 0.078778141174035
517 => 0.078686813816773
518 => 0.071372093450796
519 => 0.072379997378903
520 => 0.073947979593362
521 => 0.073241605731098
522 => 0.072242958355884
523 => 0.071436497056315
524 => 0.070214625722565
525 => 0.071934386160857
526 => 0.074195688261078
527 => 0.076573274178071
528 => 0.079429787871737
529 => 0.078792247268796
530 => 0.076519873641517
531 => 0.076621810662467
601 => 0.077251945215239
602 => 0.076435863715638
603 => 0.076195185349602
604 => 0.077218879703613
605 => 0.077225929324017
606 => 0.076286928931982
607 => 0.075243401831493
608 => 0.075239029414839
609 => 0.075053343846583
610 => 0.077693642953002
611 => 0.079145540497183
612 => 0.079311998210774
613 => 0.079134336566793
614 => 0.079202711482423
615 => 0.078357884291843
616 => 0.080288908723787
617 => 0.082061007701063
618 => 0.08158604731978
619 => 0.080874014188641
620 => 0.080306845503527
621 => 0.081452440402447
622 => 0.081401428864932
623 => 0.082045529962442
624 => 0.08201630981615
625 => 0.081799722842926
626 => 0.081586055054783
627 => 0.082433223682856
628 => 0.082189252723083
629 => 0.081944902809023
630 => 0.081454821648275
701 => 0.081521431817407
702 => 0.080809521628827
703 => 0.080480159400796
704 => 0.075527341741695
705 => 0.074203787025197
706 => 0.074620204282448
707 => 0.074757299655804
708 => 0.074181286947003
709 => 0.0750071412059
710 => 0.074878432694447
711 => 0.075379162220549
712 => 0.075066328151789
713 => 0.075079166971092
714 => 0.07599914526406
715 => 0.076266218876376
716 => 0.076130383081603
717 => 0.076225517816083
718 => 0.078417857618312
719 => 0.078106177005515
720 => 0.077940602891992
721 => 0.077986468052992
722 => 0.078546657876757
723 => 0.07870348044218
724 => 0.078039012212754
725 => 0.078352379270996
726 => 0.079686656432792
727 => 0.080153577925874
728 => 0.081643767196759
729 => 0.081010708308485
730 => 0.082172715296059
731 => 0.085744328618488
801 => 0.088597580477287
802 => 0.085973612152315
803 => 0.091213245831567
804 => 0.095293052231675
805 => 0.095136462466765
806 => 0.094425053853284
807 => 0.089780302734026
808 => 0.085506133504747
809 => 0.089081657555851
810 => 0.08909077230197
811 => 0.088783631615005
812 => 0.086876007186807
813 => 0.088717250419919
814 => 0.088863401621351
815 => 0.08878159581329
816 => 0.087319024636853
817 => 0.085085948778769
818 => 0.08552228645621
819 => 0.086237016472907
820 => 0.084883883442999
821 => 0.084451475450722
822 => 0.085255404177352
823 => 0.087845830039753
824 => 0.087356125035781
825 => 0.087343336859074
826 => 0.089438502533305
827 => 0.087938816075608
828 => 0.085527790071669
829 => 0.084918974208149
830 => 0.082758088040159
831 => 0.084250619813202
901 => 0.084304333374611
902 => 0.08348688897582
903 => 0.085594121179438
904 => 0.085574702663711
905 => 0.087575206020924
906 => 0.091399417085166
907 => 0.090268409695472
908 => 0.088953171154512
909 => 0.089096174051523
910 => 0.090664562870513
911 => 0.089716279187718
912 => 0.090057288611719
913 => 0.090664046711908
914 => 0.091030118938707
915 => 0.089043501891619
916 => 0.088580326427064
917 => 0.087632831979084
918 => 0.087385648363427
919 => 0.088157362821187
920 => 0.087954043326641
921 => 0.084299818957764
922 => 0.083917932179303
923 => 0.08392964410159
924 => 0.082969371639425
925 => 0.081504725642826
926 => 0.085353727872421
927 => 0.085044599126633
928 => 0.084703344915947
929 => 0.084745146609586
930 => 0.086415868022664
1001 => 0.085446765229625
1002 => 0.088023283837743
1003 => 0.087493629069153
1004 => 0.086950390654319
1005 => 0.086875298557942
1006 => 0.086666198115154
1007 => 0.085949114893988
1008 => 0.085083193814408
1009 => 0.084511437712871
1010 => 0.077957334032428
1011 => 0.079173737552051
1012 => 0.080573098922708
1013 => 0.08105615286027
1014 => 0.080229855673755
1015 => 0.085981742143252
1016 => 0.087032667227786
1017 => 0.083849346596585
1018 => 0.083253877280612
1019 => 0.086020781012473
1020 => 0.084351999821936
1021 => 0.085103451889854
1022 => 0.083479223541321
1023 => 0.086779530149601
1024 => 0.086754387342771
1025 => 0.085470493531345
1026 => 0.086555631789037
1027 => 0.086367062312822
1028 => 0.084917549361813
1029 => 0.086825482295597
1030 => 0.086826428606529
1031 => 0.085590708727289
1101 => 0.084147658442203
1102 => 0.083889675134556
1103 => 0.083695319367425
1104 => 0.085055652285365
1105 => 0.086275322525938
1106 => 0.088544826461751
1107 => 0.089115433673298
1108 => 0.091342551607439
1109 => 0.090016411314062
1110 => 0.090604272129724
1111 => 0.091242478203115
1112 => 0.091548457663949
1113 => 0.091049880552282
1114 => 0.094509511422316
1115 => 0.094801610268098
1116 => 0.094899548484443
1117 => 0.093732980420461
1118 => 0.094769165899932
1119 => 0.094284369028944
1120 => 0.095545675806806
1121 => 0.095743464814748
1122 => 0.095575944561569
1123 => 0.095638725914577
1124 => 0.09268654128771
1125 => 0.092533454940792
1126 => 0.09044611173806
1127 => 0.091296719522035
1128 => 0.089706549040585
1129 => 0.090210808480824
1130 => 0.090433081237321
1201 => 0.090316978563195
1202 => 0.0913448116099
1203 => 0.090470943547781
1204 => 0.088164662054641
1205 => 0.08585775221665
1206 => 0.085828790842802
1207 => 0.0852214222028
1208 => 0.084782405921193
1209 => 0.08486697603197
1210 => 0.085165012133
1211 => 0.084765083521202
1212 => 0.084850428567424
1213 => 0.086267724985786
1214 => 0.086551953674793
1215 => 0.08558603353423
1216 => 0.081707724788257
1217 => 0.080755978093994
1218 => 0.081440074743873
1219 => 0.081113120606698
1220 => 0.065464618949107
1221 => 0.069141002296052
1222 => 0.066956620149479
1223 => 0.06796328394121
1224 => 0.065733595412574
1225 => 0.066797719646427
1226 => 0.066601214756029
1227 => 0.072512730385825
1228 => 0.07242043020029
1229 => 0.072464609414688
1230 => 0.07035582040311
1231 => 0.073715178558416
]
'min_raw' => 0.042887563733502
'max_raw' => 0.095743464814748
'avg_raw' => 0.069315514274125
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.042887'
'max' => '$0.095743'
'avg' => '$0.069315'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0066131753094671
'max_diff' => 0.014484356826392
'year' => 2035
]
10 => [
'items' => [
101 => 0.075370119184332
102 => 0.075063833719293
103 => 0.075140919172182
104 => 0.073816335695227
105 => 0.072477434278141
106 => 0.070992386551143
107 => 0.07375142167046
108 => 0.073444664063492
109 => 0.074148255645973
110 => 0.075937687140753
111 => 0.076201187725749
112 => 0.076555335184142
113 => 0.076428398530241
114 => 0.079452544611795
115 => 0.079086300567361
116 => 0.079968843338845
117 => 0.07815338589922
118 => 0.076099023481483
119 => 0.076489490614927
120 => 0.076451885490038
121 => 0.075973129089047
122 => 0.075540929216878
123 => 0.074821438201274
124 => 0.077098014239279
125 => 0.077005589409652
126 => 0.078501839969201
127 => 0.078237363148998
128 => 0.076471122215228
129 => 0.076534203855712
130 => 0.076958458203971
131 => 0.078426807347349
201 => 0.078862713345936
202 => 0.07866078431954
203 => 0.079138735347126
204 => 0.079516488351697
205 => 0.079186175308513
206 => 0.083862711431444
207 => 0.081920687586242
208 => 0.082867216495879
209 => 0.083092958063555
210 => 0.082514725784786
211 => 0.082640123661105
212 => 0.082830067274853
213 => 0.083983367702758
214 => 0.087009961735747
215 => 0.088350419630236
216 => 0.092383253342832
217 => 0.088239113262173
218 => 0.087993217139943
219 => 0.088719652271493
220 => 0.091087352579589
221 => 0.09300615129252
222 => 0.093642727523753
223 => 0.093726861581438
224 => 0.094921120910018
225 => 0.095605648085542
226 => 0.09477610641539
227 => 0.094073156706569
228 => 0.091555278102902
229 => 0.091846729407233
301 => 0.093854539875716
302 => 0.096690690421895
303 => 0.099124402641688
304 => 0.098272201445751
305 => 0.10477389501047
306 => 0.10541851137037
307 => 0.10532944623238
308 => 0.10679797823202
309 => 0.10388324127407
310 => 0.10263713475418
311 => 0.094225142412434
312 => 0.096588569139757
313 => 0.1000239486871
314 => 0.099569263322001
315 => 0.097074398866758
316 => 0.099122510063279
317 => 0.098445340451351
318 => 0.09791122868263
319 => 0.1003580982378
320 => 0.097667664650029
321 => 0.099997109553992
322 => 0.097009572369637
323 => 0.09827609422903
324 => 0.097557155166869
325 => 0.098022396849945
326 => 0.095302603477134
327 => 0.096770137961851
328 => 0.095241549217765
329 => 0.095240824467672
330 => 0.095207080786424
331 => 0.097005458665041
401 => 0.097064103703099
402 => 0.095735099733603
403 => 0.095543569498654
404 => 0.096251757162318
405 => 0.095422654882811
406 => 0.095810586621085
407 => 0.095434404939971
408 => 0.095349718519954
409 => 0.09467492271705
410 => 0.094384202131262
411 => 0.094498201163896
412 => 0.094109063694987
413 => 0.093874594294252
414 => 0.095160438921109
415 => 0.094473464007803
416 => 0.095055150163037
417 => 0.094392245374503
418 => 0.092094328563574
419 => 0.090772772305579
420 => 0.086432220466736
421 => 0.087663195583794
422 => 0.08847933335994
423 => 0.088209599829792
424 => 0.088789091825568
425 => 0.08882466792767
426 => 0.088636269172622
427 => 0.088418127549651
428 => 0.088311948271577
429 => 0.089103321619288
430 => 0.089562740484037
501 => 0.088561243704291
502 => 0.088326607021225
503 => 0.089339175559701
504 => 0.08995684178323
505 => 0.094517342141097
506 => 0.094179485544364
507 => 0.095027439301155
508 => 0.094931972721052
509 => 0.095820763347795
510 => 0.097273560391577
511 => 0.094319617793127
512 => 0.094832320088568
513 => 0.094706617325751
514 => 0.096079007129154
515 => 0.096083291580318
516 => 0.095260475337223
517 => 0.095706537371274
518 => 0.095457557780939
519 => 0.095907497552285
520 => 0.094174973263534
521 => 0.096285000832792
522 => 0.097481250497389
523 => 0.097497860425143
524 => 0.098064873272137
525 => 0.098640991163853
526 => 0.099746799287708
527 => 0.098610150775457
528 => 0.09656543075242
529 => 0.096713052933678
530 => 0.095514234332305
531 => 0.095534386689578
601 => 0.095426811827084
602 => 0.095749652087286
603 => 0.094245818545765
604 => 0.09459876527214
605 => 0.094104637788362
606 => 0.09483124595192
607 => 0.094049535680564
608 => 0.094706556708073
609 => 0.094990105202953
610 => 0.096036405253426
611 => 0.093894996312388
612 => 0.089528518520971
613 => 0.090446405091153
614 => 0.08908877875542
615 => 0.08921443224164
616 => 0.089468272281409
617 => 0.088645493661226
618 => 0.088802453893223
619 => 0.088796846169223
620 => 0.088748521833337
621 => 0.08853448533701
622 => 0.088224090071504
623 => 0.089460609274652
624 => 0.089670717982425
625 => 0.090137763612842
626 => 0.091527374608886
627 => 0.091388519701097
628 => 0.091614997816735
629 => 0.091120597361918
630 => 0.089237366060764
701 => 0.089339634580916
702 => 0.088064344495882
703 => 0.090105151578125
704 => 0.089621861523712
705 => 0.089310281281645
706 => 0.089225263725826
707 => 0.090618319298748
708 => 0.091035143359637
709 => 0.090775406576913
710 => 0.090242678857814
711 => 0.091265673565296
712 => 0.091539383792336
713 => 0.091600657418126
714 => 0.093413207900005
715 => 0.091701958855139
716 => 0.092113873508591
717 => 0.095327514048599
718 => 0.092413185530893
719 => 0.093956970344003
720 => 0.09388141011087
721 => 0.094671158182428
722 => 0.093816627717983
723 => 0.093827220647236
724 => 0.094528463432611
725 => 0.093543694410354
726 => 0.093299851751606
727 => 0.092962984864979
728 => 0.0936985213879
729 => 0.094139442267936
730 => 0.097692940740324
731 => 0.099988662812704
801 => 0.099888999463006
802 => 0.10079973591727
803 => 0.10038944080324
804 => 0.099064489649625
805 => 0.10132601970826
806 => 0.10061037697127
807 => 0.100669373689
808 => 0.10066717782822
809 => 0.10114301768575
810 => 0.10080584153661
811 => 0.10014123273624
812 => 0.10058243107392
813 => 0.10189263240554
814 => 0.10595953754078
815 => 0.10823543153378
816 => 0.1058225258647
817 => 0.10748691588514
818 => 0.10648887495568
819 => 0.10630750122965
820 => 0.10735286115994
821 => 0.10840005085441
822 => 0.108333349398
823 => 0.1075731434536
824 => 0.10714372240512
825 => 0.1103954424508
826 => 0.11279125438885
827 => 0.11262787607641
828 => 0.11334897481408
829 => 0.11546614301063
830 => 0.11565971033731
831 => 0.11563532530324
901 => 0.11515554848741
902 => 0.11724017552595
903 => 0.11897920807702
904 => 0.11504449401663
905 => 0.11654278162164
906 => 0.11721541119933
907 => 0.1182030309796
908 => 0.1198693110932
909 => 0.12167933325554
910 => 0.12193529023518
911 => 0.12175367650946
912 => 0.12055991823739
913 => 0.12254046608548
914 => 0.12370062456533
915 => 0.12439147239032
916 => 0.12614334752839
917 => 0.11721956513062
918 => 0.11090286840871
919 => 0.10991642500137
920 => 0.11192239646015
921 => 0.11245135513651
922 => 0.11223813255733
923 => 0.10512811610788
924 => 0.10987899223622
925 => 0.1149905354853
926 => 0.11518689067891
927 => 0.11774583610673
928 => 0.11857913363274
929 => 0.12063942011078
930 => 0.12051054863063
1001 => 0.12101219560171
1002 => 0.12089687565037
1003 => 0.12471312250644
1004 => 0.12892300950682
1005 => 0.12877723450662
1006 => 0.12817201344119
1007 => 0.12907086992887
1008 => 0.13341592447218
1009 => 0.13301590147791
1010 => 0.13340448974296
1011 => 0.13852755392606
1012 => 0.14518826611147
1013 => 0.14209369657677
1014 => 0.14880802202866
1015 => 0.15303433398952
1016 => 0.16034330351702
1017 => 0.15942818453474
1018 => 0.1622735127361
1019 => 0.15778993056537
1020 => 0.14749471961992
1021 => 0.14586546307932
1022 => 0.14912727593295
1023 => 0.15714612455056
1024 => 0.14887473385332
1025 => 0.15054802541869
1026 => 0.1500661173353
1027 => 0.15004043850151
1028 => 0.15102049514378
1029 => 0.14959887186785
1030 => 0.14380692289657
1031 => 0.14646133897794
1101 => 0.14543634145339
1102 => 0.1465736526255
1103 => 0.15271125195858
1104 => 0.14999767299133
1105 => 0.14713913798259
1106 => 0.15072437524325
1107 => 0.15528961429726
1108 => 0.15500392984178
1109 => 0.15444958259132
1110 => 0.1575744090175
1111 => 0.16273570678531
1112 => 0.16413078483218
1113 => 0.16516060292526
1114 => 0.16530259744138
1115 => 0.16676522920648
1116 => 0.15890028957486
1117 => 0.17138215075621
1118 => 0.17353742337778
1119 => 0.17313232145182
1120 => 0.17552781626295
1121 => 0.17482300092168
1122 => 0.17380183407431
1123 => 0.17759920288631
1124 => 0.17324582597522
1125 => 0.16706675552483
1126 => 0.16367679526759
1127 => 0.16814096839461
1128 => 0.17086708314512
1129 => 0.17266887158174
1130 => 0.17321409167399
1201 => 0.15951082244985
1202 => 0.1521255203562
1203 => 0.15685941432557
1204 => 0.16263509168412
1205 => 0.15886820539552
1206 => 0.15901586020637
1207 => 0.15364527027913
1208 => 0.16311026972355
1209 => 0.16173129891767
1210 => 0.16888540189791
1211 => 0.16717801780642
1212 => 0.17301191106613
1213 => 0.17147565145579
1214 => 0.17785257920718
1215 => 0.18039650833563
1216 => 0.18466816127326
1217 => 0.18781040656293
1218 => 0.1896555930986
1219 => 0.18954481502012
1220 => 0.19685636334273
1221 => 0.19254499874293
1222 => 0.18712890869496
1223 => 0.18703094871354
1224 => 0.18983601849597
1225 => 0.19571467522664
1226 => 0.19723892538592
1227 => 0.19809077328293
1228 => 0.19678613857562
1229 => 0.19210646130082
1230 => 0.19008580038007
1231 => 0.19180746202873
]
'min_raw' => 0.070992386551143
'max_raw' => 0.19809077328293
'avg_raw' => 0.13454157991704
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.070992'
'max' => '$0.19809'
'avg' => '$0.134541'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.028104822817641
'max_diff' => 0.10234730846818
'year' => 2036
]
11 => [
'items' => [
101 => 0.18970201777648
102 => 0.19333660523918
103 => 0.19832767013146
104 => 0.19729703496802
105 => 0.20074229379796
106 => 0.20430777423514
107 => 0.20940657139607
108 => 0.21073958578185
109 => 0.21294300787154
110 => 0.21521105298829
111 => 0.21593948795426
112 => 0.21733029632439
113 => 0.21732296607776
114 => 0.22151426071335
115 => 0.22613738848999
116 => 0.22788251220002
117 => 0.23189532794455
118 => 0.22502352160788
119 => 0.23023586565186
120 => 0.23493753045297
121 => 0.2293320118502
122 => 0.2370579133258
123 => 0.23735789257283
124 => 0.24188722305118
125 => 0.23729587889664
126 => 0.23456955339376
127 => 0.24244035296649
128 => 0.24624878495187
129 => 0.24510165424382
130 => 0.23637193291478
131 => 0.23129086066592
201 => 0.21799271452501
202 => 0.23374494306608
203 => 0.24141739408963
204 => 0.23635206312016
205 => 0.23890672142846
206 => 0.25284410880777
207 => 0.25815056354281
208 => 0.25704685805284
209 => 0.25723336611211
210 => 0.26009663276817
211 => 0.27279393395089
212 => 0.26518541676107
213 => 0.27100184306699
214 => 0.27408685460696
215 => 0.27695238525485
216 => 0.2699155476439
217 => 0.26076072530372
218 => 0.25786100877529
219 => 0.23584841578201
220 => 0.23470256472086
221 => 0.2340593637974
222 => 0.23000407295755
223 => 0.22681772519508
224 => 0.22428382315285
225 => 0.21763410750684
226 => 0.21987819133292
227 => 0.2092799324967
228 => 0.21606032292088
301 => 0.19914524591436
302 => 0.21323262467962
303 => 0.2055655048922
304 => 0.21071376962293
305 => 0.21069580781228
306 => 0.2012162201842
307 => 0.19574859187427
308 => 0.19923277743663
309 => 0.20296810093448
310 => 0.20357414460487
311 => 0.20841708902175
312 => 0.20976865070976
313 => 0.20567335569671
314 => 0.19879471854075
315 => 0.20039246906707
316 => 0.19571621351085
317 => 0.18752125551814
318 => 0.19340701741874
319 => 0.19541667531029
320 => 0.19630425472288
321 => 0.18824545473434
322 => 0.18571320481288
323 => 0.18436505620233
324 => 0.19775442866031
325 => 0.19848792870835
326 => 0.19473523875609
327 => 0.211697753185
328 => 0.20785861375355
329 => 0.21214787311047
330 => 0.20024748995364
331 => 0.20070210061622
401 => 0.19506826851767
402 => 0.19822283804006
403 => 0.19599328997816
404 => 0.19796797999672
405 => 0.19915160105189
406 => 0.20478450869402
407 => 0.21329694343663
408 => 0.2039431401332
409 => 0.19986755408497
410 => 0.20239602474733
411 => 0.20912967531915
412 => 0.2193315006247
413 => 0.21329181471295
414 => 0.21597212476006
415 => 0.21655765326666
416 => 0.21210421247667
417 => 0.21949570533895
418 => 0.22345686641222
419 => 0.22752019802661
420 => 0.23104827501542
421 => 0.22589721402525
422 => 0.23140958766033
423 => 0.22696758757539
424 => 0.22298265429368
425 => 0.22298869779255
426 => 0.22048889093435
427 => 0.21564520015064
428 => 0.21475194925458
429 => 0.21939875322106
430 => 0.2231250499482
501 => 0.22343196559441
502 => 0.2254950349266
503 => 0.22671593810608
504 => 0.23868244900241
505 => 0.24349547867708
506 => 0.24938076025729
507 => 0.25167340910907
508 => 0.25857346019284
509 => 0.25300110854794
510 => 0.25179549521784
511 => 0.23505822827813
512 => 0.23779895480187
513 => 0.24218712240715
514 => 0.23513058754568
515 => 0.23960633472485
516 => 0.24048994202731
517 => 0.2348908091913
518 => 0.23788154796326
519 => 0.22993903247718
520 => 0.21347006856983
521 => 0.21951404000368
522 => 0.22396443735777
523 => 0.21761317160344
524 => 0.22899756964015
525 => 0.22234703932878
526 => 0.22023914050183
527 => 0.21201547565771
528 => 0.21589672890625
529 => 0.22114617949909
530 => 0.21790262934685
531 => 0.22463348293426
601 => 0.23416616666711
602 => 0.24095972477628
603 => 0.24148124981195
604 => 0.2371134470808
605 => 0.24411287883241
606 => 0.24416386205127
607 => 0.23626847444193
608 => 0.23143259349292
609 => 0.23033387116652
610 => 0.23307869495506
611 => 0.23641141775677
612 => 0.24166619273287
613 => 0.24484154319733
614 => 0.25312117313288
615 => 0.25536140359785
616 => 0.25782273768341
617 => 0.26111183906904
618 => 0.26506124859077
619 => 0.25642016539723
620 => 0.2567634917415
621 => 0.24871703471561
622 => 0.24011824140479
623 => 0.24664365367299
624 => 0.25517476217444
625 => 0.25321771645817
626 => 0.25299750883627
627 => 0.2533678369758
628 => 0.25189228841687
629 => 0.24521843697121
630 => 0.24186687055572
701 => 0.24619124630749
702 => 0.24848945956373
703 => 0.2520537878989
704 => 0.25161440919775
705 => 0.26079573620823
706 => 0.26436332225559
707 => 0.26345058107906
708 => 0.26361854742189
709 => 0.27007749155051
710 => 0.27726116580471
711 => 0.28398962471307
712 => 0.29083410210869
713 => 0.28258281746377
714 => 0.27839332398957
715 => 0.28271581185416
716 => 0.28042223894978
717 => 0.29360178917623
718 => 0.29451431263864
719 => 0.30769290983359
720 => 0.32020096784977
721 => 0.31234488071494
722 => 0.31975281703715
723 => 0.32776510414752
724 => 0.34322210593016
725 => 0.33801673151364
726 => 0.33402949628921
727 => 0.3302615782683
728 => 0.33810201752967
729 => 0.34818861738535
730 => 0.35036117438601
731 => 0.35388154670773
801 => 0.35018030566209
802 => 0.35463804282323
803 => 0.37037581383105
804 => 0.36612332918359
805 => 0.36008411736318
806 => 0.37250757610225
807 => 0.37700357752495
808 => 0.40855887008367
809 => 0.44839873042318
810 => 0.43190476664
811 => 0.42166643106289
812 => 0.42407268278008
813 => 0.43862085111168
814 => 0.44329326104401
815 => 0.43059204017165
816 => 0.43507832610597
817 => 0.45979820268597
818 => 0.47305962336255
819 => 0.45504883283734
820 => 0.4053577760966
821 => 0.3595403524152
822 => 0.37169319636098
823 => 0.37031544100419
824 => 0.39687386452199
825 => 0.36602190883114
826 => 0.36654137664072
827 => 0.39364900023102
828 => 0.38641715099945
829 => 0.37470248142957
830 => 0.35962588246729
831 => 0.3317553948689
901 => 0.30706972677695
902 => 0.35548400667509
903 => 0.35339629489022
904 => 0.35037297884419
905 => 0.35710104154767
906 => 0.38977060424187
907 => 0.38901746508071
908 => 0.38422637799241
909 => 0.38786037532219
910 => 0.37406542412754
911 => 0.3776206971556
912 => 0.3595330947012
913 => 0.36770944641559
914 => 0.37467734701
915 => 0.37607625621586
916 => 0.37922807008673
917 => 0.35229616564596
918 => 0.36438780006069
919 => 0.37149050244642
920 => 0.33940023466917
921 => 0.37085618103054
922 => 0.35182734110772
923 => 0.34536866703433
924 => 0.35406442080855
925 => 0.35067567710584
926 => 0.34776223426396
927 => 0.34613648309888
928 => 0.35252168495534
929 => 0.35222380765677
930 => 0.34177637810533
1001 => 0.32814813214718
1002 => 0.33272221882266
1003 => 0.33106041025117
1004 => 0.3250378016105
1005 => 0.32909631266177
1006 => 0.31122468395743
1007 => 0.28047747565804
1008 => 0.30079002327308
1009 => 0.3000080122857
1010 => 0.29961368688449
1011 => 0.31487800501961
1012 => 0.31341069303865
1013 => 0.31074750742526
1014 => 0.32498889011822
1015 => 0.31979059386166
1016 => 0.33581051805174
1017 => 0.34636227622705
1018 => 0.34368600904017
1019 => 0.35360998860513
1020 => 0.3328275965413
1021 => 0.33973067354006
1022 => 0.34115338814225
1023 => 0.32481315366642
1024 => 0.31365076342529
1025 => 0.31290635925677
1026 => 0.29355231285078
1027 => 0.30389108822046
1028 => 0.31298878269818
1029 => 0.30863169305296
1030 => 0.30725236863564
1031 => 0.31429903794478
1101 => 0.31484662450075
1102 => 0.30236159299419
1103 => 0.30495762639393
1104 => 0.31578351722549
1105 => 0.30468484172135
1106 => 0.28312192817516
1107 => 0.27777402748509
1108 => 0.27706051895167
1109 => 0.26255658813288
1110 => 0.27813139978119
1111 => 0.2713325771177
1112 => 0.29280997644926
1113 => 0.28054220113667
1114 => 0.28001336186224
1115 => 0.27921394373508
1116 => 0.2667298113295
1117 => 0.26946304291832
1118 => 0.27854872100247
1119 => 0.28179059330039
1120 => 0.28145243945984
1121 => 0.27850419622319
1122 => 0.27985388687948
1123 => 0.27550606301217
1124 => 0.27397075591249
1125 => 0.26912490438642
1126 => 0.26200284134376
1127 => 0.26299320789199
1128 => 0.2488825374153
1129 => 0.24119429522964
1130 => 0.23906629112205
1201 => 0.23622063509397
1202 => 0.23938771554243
1203 => 0.24884256365876
1204 => 0.23743801087254
1205 => 0.21788570505693
1206 => 0.21906083195195
1207 => 0.22170099318677
1208 => 0.2167810701921
1209 => 0.21212477597549
1210 => 0.21617304601974
1211 => 0.20788847629218
1212 => 0.22270214385835
1213 => 0.22230147566551
1214 => 0.22782309486312
1215 => 0.23127587666242
1216 => 0.22331833246641
1217 => 0.22131703162061
1218 => 0.22245706353643
1219 => 0.20361487542034
1220 => 0.22628328610805
1221 => 0.226479323465
1222 => 0.22480073259703
1223 => 0.23687096147957
1224 => 0.26234290922054
1225 => 0.25275933787366
1226 => 0.24904828938318
1227 => 0.24199358349
1228 => 0.25139356022567
1229 => 0.25067178867485
1230 => 0.24740766399831
1231 => 0.24543351120926
]
'min_raw' => 0.18436505620233
'max_raw' => 0.47305962336255
'avg_raw' => 0.32871233978244
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.184365'
'max' => '$0.473059'
'avg' => '$0.328712'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.11337266965118
'max_diff' => 0.27496885007962
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0057870084449601
]
1 => [
'year' => 2028
'avg' => 0.0099321864721068
]
2 => [
'year' => 2029
'avg' => 0.027132943339352
]
3 => [
'year' => 2030
'avg' => 0.020933025378718
]
4 => [
'year' => 2031
'avg' => 0.020558825123177
]
5 => [
'year' => 2032
'avg' => 0.036046090541312
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0057870084449601
'min' => '$0.005787'
'max_raw' => 0.036046090541312
'max' => '$0.036046'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.036046090541312
]
1 => [
'year' => 2033
'avg' => 0.092714251448036
]
2 => [
'year' => 2034
'avg' => 0.058766748206195
]
3 => [
'year' => 2035
'avg' => 0.069315514274125
]
4 => [
'year' => 2036
'avg' => 0.13454157991704
]
5 => [
'year' => 2037
'avg' => 0.32871233978244
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.036046090541312
'min' => '$0.036046'
'max_raw' => 0.32871233978244
'max' => '$0.328712'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.32871233978244
]
]
]
]
'prediction_2025_max_price' => '$0.009894'
'last_price' => 0.00959419
'sma_50day_nextmonth' => '$0.009535'
'sma_200day_nextmonth' => '$0.086652'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 feb. 2026'
'sma_50day_date_nextmonth' => '4 feb. 2026'
'daily_sma3' => '$0.009648'
'daily_sma3_action' => 'SELL'
'daily_sma5' => '$0.009847'
'daily_sma5_action' => 'SELL'
'daily_sma10' => '$0.01003'
'daily_sma10_action' => 'SELL'
'daily_sma21' => '$0.010651'
'daily_sma21_action' => 'SELL'
'daily_sma50' => '$0.012532'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.042392'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.111628'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.009694'
'daily_ema3_action' => 'SELL'
'daily_ema5' => '$0.0098064'
'daily_ema5_action' => 'SELL'
'daily_ema10' => '$0.010063'
'daily_ema10_action' => 'SELL'
'daily_ema21' => '$0.010766'
'daily_ema21_action' => 'SELL'
'daily_ema50' => '$0.019191'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.046934'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.087287'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.0808096'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.128873'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.0099025'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.0112038'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.023428'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.059045'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.122388'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.071349'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.035674'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '26.51'
'rsi_14_action' => 'BUY'
'stoch_rsi_14' => -18
'stoch_rsi_14_action' => 'BUY'
'momentum_10' => -0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.010036'
'vwma_10_action' => 'SELL'
'hma_9' => '0.009598'
'hma_9_action' => 'SELL'
'stochastic_fast_14' => 0
'stochastic_fast_14_action' => 'BUY'
'cci_20' => -111.31
'cci_20_action' => 'BUY'
'adx_14' => 40.15
'adx_14_action' => 'SELL'
'ao_5_34' => '-0.001286'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'NEUTRAL'
'williams_percent_r_14' => -100
'williams_percent_r_14_action' => 'BUY'
'ultimate_oscillator' => 12.32
'ultimate_oscillator_action' => 'BUY'
'ichimoku_cloud' => '-0.014369'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 29
'buy_signals' => 3
'sell_pct' => 90.63
'buy_pct' => 9.38
'overall_action' => 'bearish'
'overall_action_label' => 'Bajista'
'overall_action_dir' => -1
'last_updated' => 1767704467
'last_updated_date' => '6 de enero de 2026'
]
Predicción de precio de Seraph para 2026
La previsión del precio de Seraph para 2026 sugiere que el precio medio podría oscilar entre $0.003314 en el extremo inferior y $0.009894 en el extremo superior. En el mercado de criptomonedas, en comparación con el precio medio de hoy, Seraph podría potencialmente ganar 3.13% para 2026 si SERAPH alcanza el objetivo de precio previsto.
Predicción de precio de Seraph 2027-2032
La predicción del precio de SERAPH para 2027-2032 está actualmente dentro de un rango de precios de $0.005787 en el extremo inferior y $0.036046 en el extremo superior. Considerando la volatilidad de precios en el mercado, si Seraph alcanza el objetivo de precio superior, podría ganar 275.71% para 2032 en comparación con el precio de hoy.
| Predicción de Precio de Seraph | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.003191 | $0.005787 | $0.008382 |
| 2028 | $0.005758 | $0.009932 | $0.0141054 |
| 2029 | $0.01265 | $0.027132 | $0.041615 |
| 2030 | $0.010758 | $0.020933 | $0.0311071 |
| 2031 | $0.01272 | $0.020558 | $0.028397 |
| 2032 | $0.019416 | $0.036046 | $0.052675 |
Predicción de precio de Seraph 2032-2037
La predicción de precio de Seraph para 2032-2037 se estima actualmente entre $0.036046 en el extremo inferior y $0.328712 en el extremo superior. Comparado con el precio actual, Seraph podría potencialmente ganar 3326.16% para 2037 si alcanza el objetivo de precio superior. Tenga en cuenta que esta información es solo para fines generales y no debe considerarse como consejo de inversión a largo plazo.
| Predicción de Precio de Seraph | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.019416 | $0.036046 | $0.052675 |
| 2033 | $0.04512 | $0.092714 | $0.1403084 |
| 2034 | $0.036274 | $0.058766 | $0.081259 |
| 2035 | $0.042887 | $0.069315 | $0.095743 |
| 2036 | $0.070992 | $0.134541 | $0.19809 |
| 2037 | $0.184365 | $0.328712 | $0.473059 |
Seraph Histograma de precios potenciales
Pronóstico de precio de Seraph basado en análisis técnico
A fecha de 6 de enero de 2026, el sentimiento general de predicción de precio para Seraph es Bajista, con 3 indicadores técnicos mostrando señales alcistas y 29 indicando señales bajistas. La predicción de precio de SERAPH se actualizó por última vez el 6 de enero de 2026.
Promedios Móviles Simples de 50 y 200 días y el Índice de Fuerza Relativa de 14 días - RSI (14) de Seraph
Según nuestros indicadores técnicos, se proyecta que el SMA de 200 días de Seraph aumentar durante el próximo mes, alcanzando $0.086652 para el 4 feb. 2026. Se espera que el SMA de 50 días a corto plazo para Seraph alcance $0.009535 para el 4 feb. 2026.
El oscilador de momento del Índice de Fuerza Relativa (RSI) es una herramienta comúnmente utilizada para identificar si una criptomoneda está sobrevendida (por debajo de 30) o sobrecomprada (por encima de 70). Actualmente, el RSI se encuentra en 26.51, lo que sugiere que el mercado de SERAPH está en un estado BUY.
Promedios Móviles y Osciladores Populares de SERAPH para Sáb, 19 de Oct de 2024
Los promedios móviles (MA) son indicadores ampliamente utilizados en los mercados financieros, diseñados para suavizar los movimientos de precios durante un período establecido. Como indicadores rezagados, se basan en datos históricos de precios. La tabla a continuación resalta dos tipos: el promedio móvil simple (SMA) y el promedio móvil exponencial (EMA).
Promedio Móvil Simple Diario (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 3 | $0.009648 | SELL |
| SMA 5 | $0.009847 | SELL |
| SMA 10 | $0.01003 | SELL |
| SMA 21 | $0.010651 | SELL |
| SMA 50 | $0.012532 | SELL |
| SMA 100 | $0.042392 | SELL |
| SMA 200 | $0.111628 | SELL |
Promedio Móvil Exponencial Diario (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 3 | $0.009694 | SELL |
| EMA 5 | $0.0098064 | SELL |
| EMA 10 | $0.010063 | SELL |
| EMA 21 | $0.010766 | SELL |
| EMA 50 | $0.019191 | SELL |
| EMA 100 | $0.046934 | SELL |
| EMA 200 | $0.087287 | SELL |
Promedio Móvil Simple Semanal (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 21 | $0.0808096 | SELL |
| SMA 50 | $0.128873 | SELL |
| SMA 100 | — | — |
| SMA 200 | — | — |
Promedio Móvil Exponencial Semanal (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 21 | $0.059045 | SELL |
| EMA 50 | $0.122388 | SELL |
| EMA 100 | $0.071349 | SELL |
| EMA 200 | $0.035674 | SELL |
Osciladores de Seraph
Un oscilador es una herramienta de análisis técnico que establece límites altos y bajos entre dos extremos, creando un indicador de tendencia que fluctúa dentro de estos límites. Los traders utilizan este indicador para identificar condiciones de sobrecompra o sobreventa a corto plazo.
| Período | Valor | Acción |
|---|---|---|
| RSI (14) | 26.51 | BUY |
| Stoch RSI (14) | -18 | BUY |
| Estocástico Rápido (14) | 0 | BUY |
| Índice de Canal de Materias Primas (20) | -111.31 | BUY |
| Índice Direccional Medio (14) | 40.15 | SELL |
| Oscilador Asombroso (5, 34) | -0.001286 | NEUTRAL |
| Momentum (10) | -0 | BUY |
| MACD (12, 26) | 0 | NEUTRAL |
| Rango Percentil de Williams (14) | -100 | BUY |
| Oscilador Ultimate (7, 14, 28) | 12.32 | BUY |
| VWMA (10) | 0.010036 | SELL |
| Promedio Móvil de Hull (9) | 0.009598 | SELL |
| Nube Ichimoku B/L (9, 26, 52, 26) | -0.014369 | SELL |
Predicción de precios de Seraph basada en flujos de dinero globales
Definiciones de flujos de dinero globales utilizadas para la predicción de precios de Seraph
M0: El total de toda la moneda física, además de cuentas en el banco central que pueden cambiarse por moneda física.
M1: Medir M0 más la cantidad en cuentas a la vista, incluyendo cuentas "de cheques" o "corrientes".
M2: Medir M1 más la mayoría de cuentas de ahorro, cuentas del mercado monetario, y cuentas de certificados de depósito (CD) inferiores a 100 000 $.
Predicciones de precios de Seraph por parte de empresas de Internet o nichos tecnológicos
| Comparación | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook acción | $0.013481 | $0.018943 | $0.026619 | $0.0374041 | $0.052559 | $0.073854 |
| Amazon.com acción | $0.020018 | $0.04177 | $0.087156 | $0.181857 | $0.379456 | $0.791758 |
| Apple acción | $0.0136086 | $0.0193027 | $0.027379 | $0.038835 | $0.055085 | $0.078134 |
| Netflix acción | $0.015138 | $0.023885 | $0.037687 | $0.059465 | $0.093826 | $0.148044 |
| Google acción | $0.012424 | $0.016089 | $0.020835 | $0.026982 | $0.034942 | $0.045249 |
| Tesla acción | $0.021749 | $0.049304 | $0.111768 | $0.25337 | $0.574372 | $1.30 |
| Kodak acción | $0.007194 | $0.005395 | $0.004045 | $0.003033 | $0.002275 | $0.0017061 |
| Nokia acción | $0.006355 | $0.00421 | $0.002789 | $0.001847 | $0.001224 | $0.00081 |
Este cálculo muestra cuánto puede costar la criptomoneda si asumimos que su capitalización se comportará como la capitalización de algunas empresas de Internet o nichos tecnológicos. Si extrapola los datos, puede obtener una imagen potencial del precio futuro en 2024, 2025, 2026, 2027, 2028, 2029 y 2030.
Resumen de pronósticos y predicciones de Seraph
Podría preguntarse cosas como: "¿Debo invertir en Seraph ahora?", "¿Debería comprar SERAPH hoy?", "¿Será Seraph una buena o mala inversión a corto plazo?, ¿Lo será a largo plazo?".
Actualizamos el pronóstico de Seraph regularmente con valores actualizados. Aquí hay algunas predicciones similares. Hacemos un pronóstico de precios futuros para una gran cantidad de monedas digitales, como Seraph, con métodos de análisis técnico.
Si está tratando de encontrar criptomonedas que ofrezcan un buen rendimiento, debería explorar el máximo de fuentes de información disponibles acerca de Seraph a fin de tomar una decisión responsable sobre la inversión por sus propios medios.
El precio de Seraph es de $0.009594 USD hoy, pero dicho precio puede subir y bajar, y su inversión puede perderse porque estos son activos de criptomonedas conllevan un alto riesgo
Pronóstico a corto plazo de Seraph
basado en el historial de precios de las últimas 4 horas
Pronóstico a largo plazo de Seraph
basado en el historial de precios del último mes
Predicción de precios de Seraph basada en el patrón de crecimiento del Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si Seraph ofrece un 1 % del crecimiento medio anterior anual del Bitcoin | $0.009843 | $0.010099 | $0.010361 | $0.010631 |
| Si Seraph ofrece un 2 % del crecimiento medio anterior anual del Bitcoin | $0.010092 | $0.010617 | $0.011169 | $0.01175 |
| Si Seraph ofrece un 5 % del crecimiento medio anterior anual del Bitcoin | $0.010841 | $0.01225 | $0.013842 | $0.015641 |
| Si Seraph ofrece un 10 % del crecimiento medio anterior anual del Bitcoin | $0.012088 | $0.01523 | $0.019188 | $0.024176 |
| Si Seraph ofrece un 20 % del crecimiento medio anterior anual del Bitcoin | $0.014581 | $0.022162 | $0.033683 | $0.051194 |
| Si Seraph ofrece un 50 % del crecimiento medio anterior anual del Bitcoin | $0.022063 | $0.050738 | $0.11668 | $0.268326 |
| Si Seraph ofrece un 100 % del crecimiento medio anterior anual del Bitcoin | $0.034532 | $0.124293 | $0.447373 | $1.61 |
Cuadro de preguntas
¿Es SERAPH una buena inversión?
La decisión de adquirir Seraph depende completamente de su tolerancia individual al riesgo. Como puede discernir, el valor de Seraph ha experimentado una caída de -1.8726% durante las últimas 24 horas, y Seraph ha sufrido un declive de durante el período previo de 30 días. Por lo tanto, la determinación de si invertir o no en Seraph dependerá de si dicha inversión se alinea con sus aspiraciones comerciales.
¿Puede Seraph subir?
Parece que el valor medio de Seraph podría potencialmente aumentar hasta $0.009894 para el final de este año. Mirando las perspectivas de Seraph en un horizonte de cinco años más extendido, la moneda digital podría potencialmente crecer hasta $0.0311071. Sin embargo, dada la imprevisibilidad del mercado, es vital realizar una investigación exhaustiva antes de invertir cualquier fondo en un proyecto, red o activo en particular.
¿Cuál será el precio de Seraph la próxima semana?
Basado en nuestro nuevo pronóstico experimental de Seraph, el precio de Seraph aumentará en un 0.86% durante la próxima semana y alcanzará $0.009676 para el 13 de enero de 2026.
¿Cuál será el precio de Seraph el próximo mes?
Basado en nuestro nuevo pronóstico experimental de Seraph, el precio de Seraph disminuirá en un -11.62% durante el próximo mes y alcanzará $0.008479 para el 5 de febrero de 2026.
¿Hasta qué punto puede subir el precio de Seraph este año en 2026?
Según nuestra predicción más reciente sobre el valor de Seraph en 2026, se anticipa que SERAPH fluctúe dentro del rango de $0.003314 y $0.009894. Sin embargo, es crucial tener en cuenta que el mercado de criptomonedas es excepcionalmente inestable, y esta predicción de precios proyectada de Seraph no considera fluctuaciones de precios repentinas y extremas.
¿Dónde estará Seraph en 5 años?
El futuro de Seraph parece estar en una tendencia alcista, con un precio máximo de $0.0311071 proyectada después de un período de cinco años. Basado en el pronóstico de Seraph para 2030, el valor de Seraph podría potencialmente alcanzar su punto más alto de aproximadamente $0.0311071, mientras que su punto más bajo se anticipa que esté alrededor de $0.010758.
¿Cuánto será Seraph en 2026?
Basado en nuestra nueva simulación experimental de predicción de precios de Seraph, se espera que el valor de SERAPH en 2026 crezca en un 3.13% hasta $0.009894 si ocurre lo mejor. El precio estará entre $0.009894 y $0.003314 durante 2026.
¿Cuánto será Seraph en 2027?
Según nuestra última simulación experimental para la predicción de precios de Seraph, el valor de SERAPH podría disminuir en un -12.62% hasta $0.008382 en 2027, asumiendo las condiciones más favorables. Se proyecta que el precio fluctúe entre $0.008382 y $0.003191 a lo largo del año.
¿Cuánto será Seraph en 2028?
Nuestro nuevo modelo experimental de predicción de precios de Seraph sugiere que el valor de SERAPH en 2028 podría aumentar en un 47.02% , alcanzando $0.0141054 en el mejor escenario. Se espera que el precio oscile entre $0.0141054 y $0.005758 durante el año.
¿Cuánto será Seraph en 2029?
Basado en nuestro modelo de pronóstico experimental, el valor de Seraph podría experimentar un 333.75% crecimiento en 2029, potencialmente alcanzando $0.041615 bajo condiciones óptimas. El rango de precios previsto para 2029 se encuentra entre $0.041615 y $0.01265.
¿Cuánto será Seraph en 2030?
Usando nuestra nueva simulación experimental para las predicciones de precios de Seraph, se espera que el valor de SERAPH en 2030 aumente en un 224.23% , alcanzando $0.0311071 en el mejor escenario. Se pronostica que el precio oscile entre $0.0311071 y $0.010758 durante el transcurso de 2030.
¿Cuánto será Seraph en 2031?
Nuestra simulación experimental indica que el precio de Seraph podría crecer en un 195.98% en 2031, potencialmente alcanzando $0.028397 bajo condiciones ideales. Es probable que el precio fluctúe entre $0.028397 y $0.01272 durante el año.
¿Cuánto será Seraph en 2032?
Basado en los hallazgos de nuestra última predicción experimental de precios de Seraph, SERAPH podría experimentar un 449.04% aumento en valor, alcanzando $0.052675 si se desarrolla el escenario más positivo en 2032. Se espera que el precio se mantenga dentro de un rango de $0.052675 y $0.019416 a lo largo del año.
¿Cuánto será Seraph en 2033?
Según nuestra predicción experimental de precios de Seraph, se anticipa que el valor de SERAPH aumente en un 1362.43% en 2033, con el precio potencial más alto siendo $0.1403084. A lo largo del año, el precio de SERAPH podría oscilar entre $0.1403084 y $0.04512.
¿Cuánto será Seraph en 2034?
Los resultados de nuestra nueva simulación de predicción de precios de Seraph sugieren que SERAPH podría aumentar en un 746.96% en 2034, alcanzando potencialmente $0.081259 bajo las mejores circunstancias. El rango de precios previsto para el año está entre $0.081259 y $0.036274.
¿Cuánto será Seraph en 2035?
Basado en nuestra predicción experimental para el precio de Seraph, SERAPH podría crecer en un 897.93% , con el valor potencialmente alcanzando $0.095743 en 2035. El rango de precios esperado para el año está entre $0.095743 y $0.042887.
¿Cuánto será Seraph en 2036?
Nuestra reciente simulación de predicción de precios de Seraph sugiere que el valor de SERAPH podría aumentar en un 1964.7% en 2036, posiblemente alcanzando $0.19809 si las condiciones son óptimas. El rango de precios esperado para 2036 está entre $0.19809 y $0.070992.
¿Cuánto será Seraph en 2037?
Según la simulación experimental, el valor de Seraph podría aumentar en un 4830.69% en 2037, con un máximo de $0.473059 bajo condiciones favorables. Se espera que el precio caiga entre $0.473059 y $0.184365 durante el transcurso del año.
Predicciones relacionadas
¿Cómo leer y predecir los movimientos de precio de Seraph?
Los traders de Seraph utilizan indicadores y patrones de gráficos para predecir la dirección del mercado. También identifican niveles clave de soporte y resistencia para estimar cuándo una tendencia bajista podría desacelerar o una tendencia alcista podría estancarse.
Indicadores de predicción de precio de Seraph
Las medias móviles son herramientas populares para la predicción de precios de Seraph. Una media móvil simple (SMA) calcula el precio de cierre promedio de SERAPH durante un período específico, como una SMA de 12 días. Una media móvil exponencial (EMA) da más peso a los precios recientes, reaccionando más rápido a los cambios de precio.
Las medias móviles comúnmente utilizadas en el mercado de criptomonedas incluyen las de 50 días, 100 días y 200 días, que ayudan a identificar niveles clave de resistencia y soporte. Un movimiento de precio de SERAPH por encima de estas medias se considera alcista, mientras que una caída por debajo indica debilidad.
Los traders también utilizan RSI y niveles de retroceso de Fibonacci para evaluar la dirección futura de SERAPH.
¿Cómo leer gráficos de Seraph y predecir movimientos de precio?
La mayoría de los traders prefieren gráficos de velas sobre gráficos lineales simples porque proporcionan información más detallada. Las velas pueden representar la acción del precio de Seraph en diferentes marcos de tiempo, como 5 minutos para tendencias a corto plazo y semanal para tendencias a largo plazo. Las opciones populares incluyen gráficos de 1 hora, 4 horas y 1 día.
Por ejemplo, un gráfico de velas de 1 hora muestra los precios de apertura, cierre, máximo y mínimo de SERAPH dentro de cada hora. El color de la vela es crucial: el verde indica que el precio cerró más alto de lo que abrió, mientras que el rojo significa lo contrario. Algunos gráficos usan velas huecas y llenas para transmitir la misma información.
¿Qué afecta el precio de Seraph?
La acción del precio de Seraph está impulsada por la oferta y la demanda, influenciada por factores como reducciones a la mitad de recompensas de bloque, hard forks y actualizaciones de protocolo. Los eventos del mundo real, como regulaciones, adopción por empresas y gobiernos y hacks de exchanges de criptomonedas, también impactan el precio de SERAPH. La capitalización de mercado de Seraph puede cambiar rápidamente.
Los traders a menudo monitorean la actividad de las "ballenas" de SERAPH, grandes poseedores de Seraph, ya que sus acciones pueden influir significativamente en los movimientos de precios en el relativamente pequeño mercado de Seraph.
Patrones de predicción de precios alcistas y bajistas
Los traders a menudo identifican patrones de velas para obtener una ventaja en las predicciones de precios de criptomonedas. Ciertas formaciones indican tendencias alcistas, mientras que otras sugieren movimientos bajistas.
Patrones de velas alcistas comúnmente seguidos:
- Martillo
- Envolvente Alcista
- Línea Penetrante
- Estrella de la Mañana
- Tres Soldados Blancos
Patrones de velas bajistas comunes:
- Harami Bajista
- Cubierta de Nube Oscura
- Estrella de la Tarde
- Estrella Fugaz
- Hombre Colgado


