Prédiction du prix de REM Token jusqu'à $0.00224 d'ici 2026
| Année | Prix min. | Prix max. |
|---|---|---|
| 2026 | $0.00075 | $0.00224 |
| 2027 | $0.000722 | $0.001898 |
| 2028 | $0.0013039 | $0.003193 |
| 2029 | $0.002864 | $0.009422 |
| 2030 | $0.002436 | $0.007043 |
| 2031 | $0.00288 | $0.006429 |
| 2032 | $0.004396 | $0.011926 |
| 2033 | $0.010216 | $0.031768 |
| 2034 | $0.008213 | $0.018398 |
| 2035 | $0.00971 | $0.021678 |
Calculateur de profit d’investissement
Si vous ouvrez une position short de $10,000.00 sur REM Token aujourd’hui et la fermez le Apr 06, 2026, notre prévision indique que vous pourriez gagner environ $3,955.74, soit un rendement de 39.56% sur les 90 prochains jours.
Prévision du prix à long terme de REM Token pour 2027, 2028, 2029, 2030, 2031, 2032 et 2037
[
'name' => 'REM Token'
'name_with_ticker' => 'REM Token <small>REM</small>'
'name_lang' => 'REM Token'
'name_lang_with_ticker' => 'REM Token <small>REM</small>'
'name_with_lang' => 'REM Token'
'name_with_lang_with_ticker' => 'REM Token <small>REM</small>'
'image' => '/uploads/coins/rem-token.png?1737215847'
'price_for_sd' => 0.002172
'ticker' => 'REM'
'marketcap' => '$174.27K'
'low24h' => '$0.002141'
'high24h' => '$0.002205'
'volume24h' => '$30.82K'
'current_supply' => '80.97M'
'max_supply' => '1B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.002172'
'change_24h_pct' => '1.2752%'
'ath_price' => '$0.5861'
'ath_days' => 266
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '15 avr. 2025'
'ath_pct' => '-99.63%'
'fdv' => '$2.15M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.1071098'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.00219'
'next_week_prediction_price_date' => '13 janvier 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.001919'
'next_month_prediction_price_date' => '5 février 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.00075'
'current_year_max_price_prediction' => '$0.00224'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.002436'
'grand_prediction_max_price' => '$0.007043'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0022134741318649
107 => 0.0022217384407822
108 => 0.0022403583507589
109 => 0.002081253258665
110 => 0.0021526867739351
111 => 0.002194647271741
112 => 0.0020050682161178
113 => 0.0021908999033545
114 => 0.0020784835929886
115 => 0.002040327808814
116 => 0.0020916995455627
117 => 0.0020716799297911
118 => 0.002054468239742
119 => 0.0020448638209602
120 => 0.0020825855547367
121 => 0.0020808257907688
122 => 0.0020191057128374
123 => 0.001938594387208
124 => 0.0019656166307834
125 => 0.0019557991963576
126 => 0.0019202195475242
127 => 0.0019441959349347
128 => 0.0018386160589507
129 => 0.0016569713698845
130 => 0.0017769714154089
131 => 0.0017723515441912
201 => 0.0017700219956287
202 => 0.0018601987132826
203 => 0.001851530302611
204 => 0.0018357970523608
205 => 0.0019199305940452
206 => 0.0018892207195745
207 => 0.0019838613165366
208 => 0.0020461977346658
209 => 0.0020303872026563
210 => 0.0020890149052049
211 => 0.0019662391686981
212 => 0.0020070203434581
213 => 0.0020154252870559
214 => 0.0019188923992005
215 => 0.0018529485618009
216 => 0.0018485508596612
217 => 0.0017342133332309
218 => 0.0017952915169497
219 => 0.0018490377910352
220 => 0.0018232974966276
221 => 0.0018151488883876
222 => 0.0018567783606684
223 => 0.0018600133271969
224 => 0.0017862557475199
225 => 0.0018015922839335
226 => 0.0018655481902654
227 => 0.0017999807591879
228 => 0.0016725939509834
301 => 0.0016410002612882
302 => 0.0016367850806957
303 => 0.0015511004885153
304 => 0.0016431115027048
305 => 0.0016029462292692
306 => 0.0017298278467983
307 => 0.0016573537473455
308 => 0.0016542295337702
309 => 0.0016495068267287
310 => 0.0015757545586531
311 => 0.0015919016181605
312 => 0.0016455769032297
313 => 0.0016647288496378
314 => 0.0016627311447201
315 => 0.0016453138650504
316 => 0.0016532874064923
317 => 0.001627601851342
318 => 0.0016185317472198
319 => 0.0015899040036815
320 => 0.0015478291292963
321 => 0.0015536798986397
322 => 0.0014703185629928
323 => 0.0014248988830113
324 => 0.0014123273142143
325 => 0.0013955160870168
326 => 0.0014142261870592
327 => 0.0014700824108027
328 => 0.0014027079544091
329 => 0.0012871991746909
330 => 0.0012941414491694
331 => 0.0013097386787427
401 => 0.0012806733446189
402 => 0.0012531654451393
403 => 0.0012770813319503
404 => 0.0012281387392584
405 => 0.0013156531572435
406 => 0.0013132861374933
407 => 0.0013459061006628
408 => 0.0013663040330618
409 => 0.0013192934027913
410 => 0.0013074703564085
411 => 0.0013142053009556
412 => 0.001202891669866
413 => 0.0013368094021979
414 => 0.0013379675283082
415 => 0.0013280509494334
416 => 0.001399358007654
417 => 0.0015498381417288
418 => 0.0014932214622405
419 => 0.0014712977726944
420 => 0.0014296208228413
421 => 0.0014851528839882
422 => 0.0014808888881272
423 => 0.0014616054817715
424 => 0.0014499428174396
425 => 0.0014714316340679
426 => 0.0014472801152531
427 => 0.0014429418388347
428 => 0.00141665660383
429 => 0.0014072739708353
430 => 0.0014003274428995
501 => 0.0013926799981938
502 => 0.00140954835559
503 => 0.001371322438513
504 => 0.001325225729851
505 => 0.001321393287299
506 => 0.0013319749981367
507 => 0.0013272933788068
508 => 0.0013213708735068
509 => 0.0013100631979908
510 => 0.0013067084522155
511 => 0.001317609748494
512 => 0.0013053028205806
513 => 0.0013234623631099
514 => 0.0013185239723553
515 => 0.0012909385230397
516 => 0.0012565568397511
517 => 0.0012562507706518
518 => 0.0012488432933845
519 => 0.001239408757363
520 => 0.0012367842852748
521 => 0.0012750672026699
522 => 0.0013543116959667
523 => 0.0013387541057725
524 => 0.0013499960590938
525 => 0.0014052953428642
526 => 0.0014228733222673
527 => 0.0014103968888443
528 => 0.0013933183772618
529 => 0.0013940697450966
530 => 0.0014524321891907
531 => 0.00145607218324
601 => 0.0014652692738961
602 => 0.0014770901344866
603 => 0.0014124100325177
604 => 0.0013910233181104
605 => 0.0013808891063345
606 => 0.0013496796564982
607 => 0.0013833363724506
608 => 0.0013637260453894
609 => 0.0013663721484942
610 => 0.0013646488703759
611 => 0.001365589896756
612 => 0.0013156286951801
613 => 0.0013338319311509
614 => 0.0013035655207738
615 => 0.0012630421948427
616 => 0.0012629063464449
617 => 0.0012728243730572
618 => 0.0012669247427358
619 => 0.0012510489892343
620 => 0.0012533040650877
621 => 0.0012335472277092
622 => 0.0012557029028546
623 => 0.0012563382483409
624 => 0.0012478071065822
625 => 0.0012819409810376
626 => 0.0012959256572525
627 => 0.0012903102769922
628 => 0.001295531667204
629 => 0.0013394005938834
630 => 0.0013465531430676
701 => 0.0013497298329444
702 => 0.0013454734893403
703 => 0.0012963335106524
704 => 0.0012985130776665
705 => 0.0012825208610822
706 => 0.0012690091232868
707 => 0.0012695495219389
708 => 0.0012764963115687
709 => 0.001306833349306
710 => 0.0013706758567579
711 => 0.0013730986332475
712 => 0.0013760351090302
713 => 0.0013640909862675
714 => 0.0013604885245524
715 => 0.0013652411014288
716 => 0.0013892169905482
717 => 0.0014508894867537
718 => 0.0014290903076272
719 => 0.0014113672356728
720 => 0.0014269151478827
721 => 0.0014245216686665
722 => 0.00140431829537
723 => 0.001403751253971
724 => 0.0013649745212057
725 => 0.0013506396460059
726 => 0.0013386603513421
727 => 0.0013255792742966
728 => 0.0013178243733424
729 => 0.0013297394257475
730 => 0.0013324645392074
731 => 0.0013064120688841
801 => 0.0013028612134462
802 => 0.0013241362230938
803 => 0.0013147738845602
804 => 0.0013244032819169
805 => 0.001326637384703
806 => 0.0013262776426987
807 => 0.0013165022860119
808 => 0.0013227328068587
809 => 0.0013079957676483
810 => 0.0012919714509386
811 => 0.001281748935228
812 => 0.0012728284344506
813 => 0.0012777780467445
814 => 0.0012601335826804
815 => 0.0012544887635134
816 => 0.001320622046587
817 => 0.001369475413846
818 => 0.001368765066538
819 => 0.001364441009987
820 => 0.0013580163390551
821 => 0.0013887469858528
822 => 0.0013780410429871
823 => 0.0013858305109333
824 => 0.0013878132574486
825 => 0.0013938144339852
826 => 0.0013959593387785
827 => 0.001389475946761
828 => 0.0013677168912707
829 => 0.0013134953937779
830 => 0.0012882551403269
831 => 0.0012799254362784
901 => 0.0012802282052002
902 => 0.0012718764867168
903 => 0.0012743364421079
904 => 0.0012710210146219
905 => 0.0012647423970514
906 => 0.0012773903598022
907 => 0.0012788479196853
908 => 0.0012758957340474
909 => 0.0012765910806358
910 => 0.0012521482444487
911 => 0.0012540065801969
912 => 0.0012436591306048
913 => 0.0012417191085466
914 => 0.0012155616570331
915 => 0.0011692199400937
916 => 0.0011948977497775
917 => 0.0011638825665259
918 => 0.0011521366466719
919 => 0.0012077400043957
920 => 0.0012021589694773
921 => 0.0011926066637146
922 => 0.0011784768126165
923 => 0.0011732359133979
924 => 0.0011413938688127
925 => 0.0011395124709479
926 => 0.0011552942480518
927 => 0.0011480115009361
928 => 0.0011377837657937
929 => 0.0011007399458766
930 => 0.0010590904275026
1001 => 0.0010603475646627
1002 => 0.0010735955015407
1003 => 0.001112115664741
1004 => 0.0010970651705731
1005 => 0.0010861458643697
1006 => 0.0010841010065509
1007 => 0.0011096966833525
1008 => 0.0011459199284867
1009 => 0.0011629150646542
1010 => 0.0011460734008621
1011 => 0.0011267266043174
1012 => 0.0011279041541786
1013 => 0.0011357378658539
1014 => 0.0011365610781883
1015 => 0.0011239683025205
1016 => 0.0011275130951084
1017 => 0.0011221282310247
1018 => 0.0010890813300832
1019 => 0.001088483616438
1020 => 0.0010803733739937
1021 => 0.0010801277990757
1022 => 0.0010663302534831
1023 => 0.0010643998814768
1024 => 0.0010370040172516
1025 => 0.0010550360580469
1026 => 0.001042941111806
1027 => 0.0010247111749116
1028 => 0.0010215683269198
1029 => 0.001021473849114
1030 => 0.0010401919181653
1031 => 0.0010548173265119
1101 => 0.0010431515085742
1102 => 0.0010404954279622
1103 => 0.0010688554200251
1104 => 0.001065246352528
1105 => 0.0010621209233516
1106 => 0.0011426765341849
1107 => 0.0010789104823776
1108 => 0.0010511048441506
1109 => 0.0010166900866973
1110 => 0.0010278957052584
1111 => 0.001030256893734
1112 => 0.00094749560578488
1113 => 0.0009139193615712
1114 => 0.00090239725985114
1115 => 0.00089576612741264
1116 => 0.00089878801773338
1117 => 0.00086856545984043
1118 => 0.00088887551857946
1119 => 0.00086270533809339
1120 => 0.00085831782216976
1121 => 0.00090511334674213
1122 => 0.00091162467061088
1123 => 0.00088384534007701
1124 => 0.00090168416734485
1125 => 0.00089521556059929
1126 => 0.00086315395072485
1127 => 0.00086192943305688
1128 => 0.00084584204424197
1129 => 0.00082066839587894
1130 => 0.00080916336307787
1201 => 0.0008031714421038
1202 => 0.00080564382547792
1203 => 0.00080439371278779
1204 => 0.00079623588187587
1205 => 0.00080486131010644
1206 => 0.00078282690525035
1207 => 0.00077405262769339
1208 => 0.00077008949008261
1209 => 0.00075053268751981
1210 => 0.0007816562573468
1211 => 0.00078778799268712
1212 => 0.00079393180944025
1213 => 0.00084740953971439
1214 => 0.00084473794343639
1215 => 0.00086888787266934
1216 => 0.00086794945082822
1217 => 0.00086106149980806
1218 => 0.00083200236746698
1219 => 0.00084358481968891
1220 => 0.00080793583206254
1221 => 0.00083464647748774
1222 => 0.0008224568543789
1223 => 0.00083052515365299
1224 => 0.00081601762406896
1225 => 0.00082404668994198
1226 => 0.00078924205460869
1227 => 0.00075674197584891
1228 => 0.00076982095627829
1229 => 0.00078403930376786
1230 => 0.00081486830389282
1231 => 0.00079650680575212
]
'min_raw' => 0.00075053268751981
'max_raw' => 0.0022403583507589
'avg_raw' => 0.0014954455191394
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.00075'
'max' => '$0.00224'
'avg' => '$0.001495'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0014217773124802
'max_diff' => 6.8048350758907E-5
'year' => 2026
]
1 => [
'items' => [
101 => 0.00080311029480863
102 => 0.00078098971188005
103 => 0.00073534863086623
104 => 0.00073560695442816
105 => 0.00072858606845919
106 => 0.00072251899791586
107 => 0.00079861584469149
108 => 0.00078915199888181
109 => 0.00077407259918161
110 => 0.00079425697491185
111 => 0.00079959404422405
112 => 0.00079974598308433
113 => 0.00081447198258297
114 => 0.00082233125115518
115 => 0.00082371648130505
116 => 0.00084688815969244
117 => 0.00085465500064606
118 => 0.00088664551932957
119 => 0.00082166444712648
120 => 0.00082032620470644
121 => 0.00079454101047136
122 => 0.00077818763263969
123 => 0.00079566074024242
124 => 0.0008111395282614
125 => 0.00079502197956207
126 => 0.00079712659116218
127 => 0.00077549009888543
128 => 0.00078322412678278
129 => 0.00078988571349405
130 => 0.00078620757686206
131 => 0.00078070122830014
201 => 0.00080987044416162
202 => 0.00080822460268763
203 => 0.00083538764709522
204 => 0.00085656318265888
205 => 0.0008945135279687
206 => 0.00085491036424165
207 => 0.00085346706754712
208 => 0.00086757552424825
209 => 0.00085465284071485
210 => 0.00086281953063208
211 => 0.0008931977479665
212 => 0.00089383959182941
213 => 0.00088308788015659
214 => 0.00088243363752418
215 => 0.00088449862136178
216 => 0.00089659329619722
217 => 0.0008923670451779
218 => 0.00089725776985304
219 => 0.00090337369594874
220 => 0.00092867175937949
221 => 0.00093477103682645
222 => 0.00091995295474311
223 => 0.00092129086164421
224 => 0.00091574849217959
225 => 0.00091039463272246
226 => 0.00092242932691371
227 => 0.00094442296709073
228 => 0.00094428614579666
301 => 0.00094938824282245
302 => 0.00095256680700147
303 => 0.00093892208269395
304 => 0.00093003986890016
305 => 0.00093344587485865
306 => 0.00093889215255942
307 => 0.00093167972040338
308 => 0.00088716124801273
309 => 0.00090066530868503
310 => 0.00089841757267433
311 => 0.00089521652326105
312 => 0.00090879496069086
313 => 0.00090748528727594
314 => 0.00086825548382626
315 => 0.00087076684856232
316 => 0.00086840820823376
317 => 0.00087602945766776
318 => 0.00085424126823461
319 => 0.00086094316855855
320 => 0.00086514653761531
321 => 0.00086762235428155
322 => 0.00087656670176337
323 => 0.00087551718582165
324 => 0.00087650146237885
325 => 0.00088976356847421
326 => 0.0009568387500993
327 => 0.00096048950424211
328 => 0.00094251185564233
329 => 0.0009496935716645
330 => 0.00093590624737057
331 => 0.00094516177053613
401 => 0.00095149416442121
402 => 0.00092287929410386
403 => 0.00092118490719264
404 => 0.00090734067770693
405 => 0.00091477978245531
406 => 0.00090294363191007
407 => 0.0009058478092429
408 => 0.00089772747623868
409 => 0.00091234245890411
410 => 0.00092868428046277
411 => 0.00093281286994658
412 => 0.00092195232848421
413 => 0.0009140885807209
414 => 0.00090028243012807
415 => 0.00092324236625408
416 => 0.0009299565512687
417 => 0.00092320709949851
418 => 0.00092164310404492
419 => 0.00091867933548646
420 => 0.00092227188155524
421 => 0.00092991998437516
422 => 0.00092631328032357
423 => 0.00092869557189159
424 => 0.00091961673304269
425 => 0.00093892659966545
426 => 0.00096959531503487
427 => 0.00096969391996962
428 => 0.00096608719647655
429 => 0.00096461140293113
430 => 0.0009683121201093
501 => 0.00097031960736709
502 => 0.00098228704812583
503 => 0.00099512858886384
504 => 0.0010550544562849
505 => 0.0010382275125103
506 => 0.0010913973070921
507 => 0.0011334477113726
508 => 0.0011460567889749
509 => 0.0011344570308837
510 => 0.0010947748850602
511 => 0.0010928278896724
512 => 0.0011521297689026
513 => 0.0011353742718219
514 => 0.0011333812587597
515 => 0.0011121789670267
516 => 0.0011247121473958
517 => 0.0011219709569984
518 => 0.0011176438538525
519 => 0.0011415562889279
520 => 0.0011863182327113
521 => 0.0011793416639978
522 => 0.0011741339790869
523 => 0.0011513154197416
524 => 0.0011650572891772
525 => 0.0011601640726794
526 => 0.0011811884360661
527 => 0.0011687340689425
528 => 0.001135247332452
529 => 0.0011405802056119
530 => 0.001139774152562
531 => 0.0011563626672105
601 => 0.0011513832068653
602 => 0.0011388018330121
603 => 0.0011861652412537
604 => 0.0011830897249716
605 => 0.0011874501038987
606 => 0.0011893696775516
607 => 0.0012181989495114
608 => 0.0012300093797995
609 => 0.0012326905542456
610 => 0.0012439095495679
611 => 0.0012324114154217
612 => 0.001278412150037
613 => 0.0013089999543389
614 => 0.0013445292630696
615 => 0.0013964471325029
616 => 0.001415968731677
617 => 0.0014124423295173
618 => 0.0014518058655912
619 => 0.0015225412649138
620 => 0.0014267399761229
621 => 0.0015276189658435
622 => 0.0014956818424019
623 => 0.0014199594972461
624 => 0.0014150838709259
625 => 0.0014663639222199
626 => 0.0015800981404678
627 => 0.0015516090087596
628 => 0.0015801447384814
629 => 0.0015468562939963
630 => 0.0015452032421506
701 => 0.0015785279930339
702 => 0.0016563930899104
703 => 0.0016194023011139
704 => 0.0015663669348606
705 => 0.0016055274239803
706 => 0.0015716029841726
707 => 0.0014951617264331
708 => 0.0015515872236574
709 => 0.0015138571005691
710 => 0.00152486875633
711 => 0.0016041718631293
712 => 0.0015946299035092
713 => 0.0016069780828193
714 => 0.0015851838695452
715 => 0.0015648246377151
716 => 0.0015268226196079
717 => 0.0015155720955232
718 => 0.0015186813356288
719 => 0.0015155705547382
720 => 0.0014943087748638
721 => 0.0014897172955243
722 => 0.0014820646288011
723 => 0.0014844365102124
724 => 0.0014700472579062
725 => 0.0014972027499793
726 => 0.0015022430486014
727 => 0.0015220045511521
728 => 0.0015240562559032
729 => 0.0015790917592195
730 => 0.0015487791288269
731 => 0.0015691154583608
801 => 0.0015672963856343
802 => 0.0014216006300759
803 => 0.0014416762197073
804 => 0.0014729075371067
805 => 0.0014588378709513
806 => 0.0014389466548025
807 => 0.0014228834312627
808 => 0.0013985460050511
809 => 0.0014328004650851
810 => 0.0014778414374741
811 => 0.0015251985692919
812 => 0.0015820950602087
813 => 0.0015693964257842
814 => 0.0015241349289706
815 => 0.0015261653266541
816 => 0.0015387164462015
817 => 0.0015224616059981
818 => 0.00151766773629
819 => 0.0015380578421185
820 => 0.0015381982575712
821 => 0.0015194950994541
822 => 0.0014987099618487
823 => 0.0014986228713632
824 => 0.001494924356887
825 => 0.0015475142515054
826 => 0.0015764333761074
827 => 0.0015797489071376
828 => 0.0015762102144523
829 => 0.0015775721168212
830 => 0.0015607447154047
831 => 0.001599207165032
901 => 0.001634504112352
902 => 0.0016250437764609
903 => 0.0016108613880942
904 => 0.0015995644326438
905 => 0.0016223825727792
906 => 0.001621366516918
907 => 0.0016341958243095
908 => 0.0016336138128206
909 => 0.0016292997992795
910 => 0.0016250439305279
911 => 0.0016419179690662
912 => 0.001637058516956
913 => 0.0016321915167744
914 => 0.0016224300028097
915 => 0.0016237567546791
916 => 0.0016095768151017
917 => 0.0016030165262233
918 => 0.0015043655218264
919 => 0.001478002749937
920 => 0.0014862970146371
921 => 0.0014890277019369
922 => 0.0014775545898258
923 => 0.0014940040853924
924 => 0.0014914404489327
925 => 0.0015014140587203
926 => 0.0014951829803288
927 => 0.0014954387059595
928 => 0.001513762978903
929 => 0.0015190825932955
930 => 0.0015163769944809
1001 => 0.0015182719031481
1002 => 0.0015619392735937
1003 => 0.0015557311699202
1004 => 0.0015524332385758
1005 => 0.0015533467880966
1006 => 0.0015645047374845
1007 => 0.0015676283541116
1008 => 0.0015543933709698
1009 => 0.00156063506553
1010 => 0.0015872114087784
1011 => 0.0015965116248246
1012 => 0.001626193450087
1013 => 0.0016135840831632
1014 => 0.0016367291218725
1015 => 0.00170786908014
1016 => 0.0017647006013147
1017 => 0.0017124359857805
1018 => 0.0018167998369673
1019 => 0.0018980620652216
1020 => 0.0018949430855519
1021 => 0.0018807731364265
1022 => 0.0017882582500272
1023 => 0.0017031246722433
1024 => 0.0017743425250222
1025 => 0.001774524073975
1026 => 0.0017684063972613
1027 => 0.0017304100326045
1028 => 0.0017670842061331
1029 => 0.0017699952688468
1030 => 0.0017683658478412
1031 => 0.001739234124146
1101 => 0.001694755366506
1102 => 0.0017034464092818
1103 => 0.0017176825146409
1104 => 0.0016907305972333
1105 => 0.0016821178265473
1106 => 0.0016981306058993
1107 => 0.0017497271173662
1108 => 0.0017399730957516
1109 => 0.0017397183788282
1110 => 0.0017814502196443
1111 => 0.0017515792279149
1112 => 0.0017035560311637
1113 => 0.0016914295406359
1114 => 0.001648388668645
1115 => 0.0016781171522355
1116 => 0.0016791870274353
1117 => 0.0016629050407906
1118 => 0.0017048772246448
1119 => 0.0017044904435815
1120 => 0.001744336785416
1121 => 0.001820508025401
1122 => 0.0017979804415783
1123 => 0.0017717833125868
1124 => 0.0017746316668758
1125 => 0.0018058710830884
1126 => 0.0017869830189197
1127 => 0.0017937752984871
1128 => 0.0018058608021598
1129 => 0.0018131522865917
1130 => 0.0017735825344756
1201 => 0.0017643569324173
1202 => 0.0017454845883523
1203 => 0.0017405611460547
1204 => 0.0017559322765112
1205 => 0.001751882526706
1206 => 0.0016790971085675
1207 => 0.0016714906273978
1208 => 0.0016717239073157
1209 => 0.001652597048746
1210 => 0.0016234239984552
1211 => 0.0017000890327872
1212 => 0.0016939317576039
1213 => 0.0016871346023367
1214 => 0.0016879672150729
1215 => 0.0017212449080573
1216 => 0.0017019421655626
1217 => 0.0017532616701422
1218 => 0.0017427119228061
1219 => 0.0017318916142588
1220 => 0.0017303959180228
1221 => 0.0017262310223775
1222 => 0.00171194804552
1223 => 0.0016947004926907
1224 => 0.0016833121643554
1225 => 0.0015527664920735
1226 => 0.0015769950094998
1227 => 0.0016048677102999
1228 => 0.0016144892549233
1229 => 0.0015980309370544
1230 => 0.0017125979202241
1231 => 0.0017335304120441
]
'min_raw' => 0.00072251899791586
'max_raw' => 0.0018980620652216
'avg_raw' => 0.0013102905315687
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.000722'
'max' => '$0.001898'
'avg' => '$0.00131'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -2.801368960395E-5
'max_diff' => -0.00034229628553733
'year' => 2027
]
2 => [
'items' => [
101 => 0.0016701245289286
102 => 0.0016582638770428
103 => 0.0017133755025871
104 => 0.0016801364552617
105 => 0.0016951039962371
106 => 0.0016627523594555
107 => 0.0017284883877396
108 => 0.001727987589342
109 => 0.001702414789624
110 => 0.0017240287448307
111 => 0.0017202727882202
112 => 0.0016914011603216
113 => 0.0017294036698413
114 => 0.0017294225186119
115 => 0.0017048092548839
116 => 0.0016760663513859
117 => 0.0016709277991175
118 => 0.0016670565902507
119 => 0.0016941519161653
120 => 0.0017184455006554
121 => 0.0017636498385012
122 => 0.0017750152830642
123 => 0.0018193753698341
124 => 0.001792961098016
125 => 0.0018046702025909
126 => 0.0018173820919609
127 => 0.0018234766391891
128 => 0.0018135459015321
129 => 0.001882455375626
130 => 0.0018882734465712
131 => 0.0018902241954331
201 => 0.0018669883084834
202 => 0.0018876272145217
203 => 0.0018779709538751
204 => 0.0019030938614912
205 => 0.0019070334541907
206 => 0.0019036967593293
207 => 0.0019049472482344
208 => 0.0018461451685595
209 => 0.0018430959705227
210 => 0.0018015199389294
211 => 0.0018184624791182
212 => 0.0017867892123123
213 => 0.0017968331314873
214 => 0.0018012603953576
215 => 0.0017989478439568
216 => 0.0018194203849201
217 => 0.0018020145428374
218 => 0.001756077663796
219 => 0.0017101282692827
220 => 0.0017095514120641
221 => 0.0016974537475629
222 => 0.0016887093519263
223 => 0.00169039383275
224 => 0.0016963301628831
225 => 0.0016883643216273
226 => 0.0016900642377377
227 => 0.0017182941716507
228 => 0.0017239554835702
229 => 0.0017047161336502
301 => 0.0016274673674961
302 => 0.0016085103265181
303 => 0.0016221362716386
304 => 0.0016156239474943
305 => 0.001303934619907
306 => 0.0013771614040705
307 => 0.0013336525354671
308 => 0.0013537034238663
309 => 0.0013092921355893
310 => 0.0013304875301501
311 => 0.0013265735147066
312 => 0.0014443200167034
313 => 0.0014424815670298
314 => 0.0014433615356
315 => 0.0014013583429989
316 => 0.0014682705693234
317 => 0.0015012339380967
318 => 0.0014951332958284
319 => 0.0014966686960541
320 => 0.0014702854331514
321 => 0.0014436169832558
322 => 0.0014140375680766
323 => 0.0014689924653534
324 => 0.0014628824188876
325 => 0.0014768966671548
326 => 0.0015125388462961
327 => 0.0015177872925661
328 => 0.0015248412575775
329 => 0.0015223129132563
330 => 0.0015825483325514
331 => 0.0015752534258287
401 => 0.0015928320521426
402 => 0.0015566714841213
403 => 0.0015157523690127
404 => 0.0015235297550482
405 => 0.0015227807302312
406 => 0.00151324478462
407 => 0.0015046361593032
408 => 0.0014903052236158
409 => 0.00153565042471
410 => 0.0015338094923557
411 => 0.0015636120473231
412 => 0.001558344156246
413 => 0.0015231638903618
414 => 0.0015244203604403
415 => 0.0015328707255569
416 => 0.0015621175357102
417 => 0.0015707999802383
418 => 0.0015667779259973
419 => 0.0015762978300538
420 => 0.0015838219740623
421 => 0.0015772427466975
422 => 0.0016703907318202
423 => 0.0016317091941424
424 => 0.0016505623064621
425 => 0.0016550586626614
426 => 0.0016435413408052
427 => 0.0016460390355114
428 => 0.0016498223624103
429 => 0.001672793982489
430 => 0.0017330781604675
501 => 0.0017597776125259
502 => 0.0018401042313712
503 => 0.0017575605947067
504 => 0.0017526627969066
505 => 0.0017671320465921
506 => 0.0018142922752905
507 => 0.0018525112111155
508 => 0.0018651906370319
509 => 0.0018668664324813
510 => 0.0018906538784129
511 => 0.0019042883988112
512 => 0.0018877654568048
513 => 0.0018737639934786
514 => 0.0018236124897694
515 => 0.0018294176628818
516 => 0.0018694095489126
517 => 0.0019259004434416
518 => 0.0019743755078232
519 => 0.0019574012298033
520 => 0.0020869029891224
521 => 0.0020997425595916
522 => 0.0020979685461058
523 => 0.002127218998419
524 => 0.0020691628073283
525 => 0.0020443426608513
526 => 0.0018767912687731
527 => 0.0019238663756146
528 => 0.0019922928080328
529 => 0.0019832363131163
530 => 0.0019335432088504
531 => 0.0019743378111475
601 => 0.001960849839863
602 => 0.0019502113172943
603 => 0.0019989484515602
604 => 0.0019453599704238
605 => 0.0019917582219404
606 => 0.0019322519844419
607 => 0.0019574787668755
608 => 0.001943158825084
609 => 0.0019524255824092
610 => 0.0018982523084372
611 => 0.0019274828920906
612 => 0.001897036220056
613 => 0.0018970217843691
614 => 0.0018963496723965
615 => 0.001932170047024
616 => 0.0019333381481546
617 => 0.0019068668371833
618 => 0.0019030519077127
619 => 0.0019171577014509
620 => 0.0019006435112967
621 => 0.0019083703969308
622 => 0.0019008775507911
623 => 0.0018991907533016
624 => 0.00188575006392
625 => 0.001879959445375
626 => 0.0018822300961124
627 => 0.0018744791945451
628 => 0.0018698089959885
629 => 0.0018954206523564
630 => 0.0018817373775303
701 => 0.0018933234942435
702 => 0.0018801196519643
703 => 0.0018343493819843
704 => 0.001808026415707
705 => 0.0017215706186211
706 => 0.0017460893754266
707 => 0.0017623453365551
708 => 0.0017569727414991
709 => 0.0017685151545977
710 => 0.0017692237650183
711 => 0.001765471208859
712 => 0.0017611262295587
713 => 0.0017590113339278
714 => 0.0017747740332594
715 => 0.0017839248107695
716 => 0.0017639768397311
717 => 0.0017593033092185
718 => 0.001779471809296
719 => 0.0017917745826923
720 => 0.0018826113491195
721 => 0.0018758818680637
722 => 0.0018927715449198
723 => 0.001890870026499
724 => 0.0019085730985807
725 => 0.0019375101395579
726 => 0.0018786730443274
727 => 0.0018888851296257
728 => 0.0018863813621421
729 => 0.0019137168390056
730 => 0.0019138021773806
731 => 0.0018974131934926
801 => 0.0019062979275392
802 => 0.0019013387127343
803 => 0.0019103006841648
804 => 0.0018757919917414
805 => 0.00191781985413
806 => 0.0019416469438887
807 => 0.0019419777830531
808 => 0.0019532716344952
809 => 0.0019647468416562
810 => 0.0019867725025218
811 => 0.0019641325579291
812 => 0.0019234055015611
813 => 0.0019263458634832
814 => 0.0019024676052361
815 => 0.0019028690030712
816 => 0.0019007263099693
817 => 0.0019071566932624
818 => 0.0018772030992624
819 => 0.0018842331479038
820 => 0.0018743910386379
821 => 0.0018888637348023
822 => 0.0018732935061518
823 => 0.0018863801547496
824 => 0.0018920279184551
825 => 0.0019128682881162
826 => 0.0018702153666081
827 => 0.001783243172304
828 => 0.0018015257819826
829 => 0.0017744843661999
830 => 0.0017769871521846
831 => 0.0017820431781889
901 => 0.00176565494368
902 => 0.0017687813023717
903 => 0.0017686696068394
904 => 0.0017677070750847
905 => 0.0017634438623453
906 => 0.0017572613604222
907 => 0.00178189054521
908 => 0.0017860755236366
909 => 0.0017953782122699
910 => 0.0018230567035684
911 => 0.0018202909695839
912 => 0.0018248019964618
913 => 0.0018149544501157
914 => 0.0017774439516161
915 => 0.0017794809521531
916 => 0.0017540795228162
917 => 0.0017947286406115
918 => 0.0017851023929755
919 => 0.0017788962885021
920 => 0.0017772028953973
921 => 0.0018049499963222
922 => 0.0018132523638014
923 => 0.0018080788855395
924 => 0.0017974679306899
925 => 0.0018178441008484
926 => 0.0018232959043812
927 => 0.0018245163621374
928 => 0.0018606190289151
929 => 0.0018265341001597
930 => 0.0018347386812861
1001 => 0.0018987484811341
1002 => 0.0018407004254206
1003 => 0.0018714497751581
1004 => 0.0018699447545004
1005 => 0.0018856750813249
1006 => 0.0018686544085669
1007 => 0.0018688654002049
1008 => 0.0018828328647604
1009 => 0.0018632180798377
1010 => 0.0018583611832475
1011 => 0.0018516514153939
1012 => 0.0018663019480303
1013 => 0.0018750842797592
1014 => 0.0019458634235824
1015 => 0.0019915899784134
1016 => 0.0019896048680729
1017 => 0.0020077450606135
1018 => 0.0019995727377289
1019 => 0.0019731821513845
1020 => 0.0020182276642852
1021 => 0.0020039733792191
1022 => 0.002005148485161
1023 => 0.0020051047476591
1024 => 0.0020145826010969
1025 => 0.0020078666733037
1026 => 0.0019946288902476
1027 => 0.0020034167484217
1028 => 0.0020295135454821
1029 => 0.002110518804305
1030 => 0.0021558504203192
1031 => 0.0021077897841009
1101 => 0.0021409413674067
1102 => 0.0021210622305402
1103 => 0.0021174496000184
1104 => 0.0021382712442172
1105 => 0.0021591293339479
1106 => 0.0021578007638041
1107 => 0.0021426588617344
1108 => 0.0021341055854667
1109 => 0.0021988738589231
1110 => 0.0022465940195069
1111 => 0.0022433398244751
1112 => 0.0022577027830246
1113 => 0.0022998728735554
1114 => 0.0023037283781408
1115 => 0.0023032426731808
1116 => 0.0022936864027856
1117 => 0.0023352083333915
1118 => 0.0023698466584117
1119 => 0.0022914744022964
1120 => 0.0023213175314569
1121 => 0.0023347150736227
1122 => 0.0023543866403936
1123 => 0.0023875758708736
1124 => 0.0024236281781835
1125 => 0.0024287263697306
1126 => 0.002425108958857
1127 => 0.0024013314930481
1128 => 0.0024407803579
1129 => 0.0024638885777406
1130 => 0.0024776489938334
1201 => 0.00251254311953
1202 => 0.002334797812282
1203 => 0.0022089808492969
1204 => 0.0021893327137079
1205 => 0.002229287970053
1206 => 0.0022398238525141
1207 => 0.0022355768515049
1208 => 0.0020939584208874
1209 => 0.0021885871219793
1210 => 0.002290399647747
1211 => 0.0022943106815063
1212 => 0.0023452801607051
1213 => 0.0023618779124418
1214 => 0.0024029150239192
1215 => 0.0024003481414231
1216 => 0.0024103400250248
1217 => 0.00240804306402
1218 => 0.0024840556716486
1219 => 0.0025679088658444
1220 => 0.0025650052963662
1221 => 0.0025529504075946
1222 => 0.0025708539730844
1223 => 0.0026573994557489
1224 => 0.0026494317345683
1225 => 0.0026571716970064
1226 => 0.0027592136985574
1227 => 0.0028918828158793
1228 => 0.0028302446911217
1229 => 0.002963981685953
1230 => 0.0030481620351059
1231 => 0.0031937432445552
]
'min_raw' => 0.001303934619907
'max_raw' => 0.0031937432445552
'avg_raw' => 0.0022488389322311
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.0013039'
'max' => '$0.003193'
'avg' => '$0.002248'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.00058141562199112
'max_diff' => 0.0012956811793337
'year' => 2028
]
3 => [
'items' => [
101 => 0.0031755157601296
102 => 0.003232189456644
103 => 0.0031428847588169
104 => 0.0029378231211489
105 => 0.0029053713320435
106 => 0.0029703406356426
107 => 0.0031300613289293
108 => 0.0029653104626134
109 => 0.0029986393482971
110 => 0.002989040626978
111 => 0.0029885291519109
112 => 0.0030080500749047
113 => 0.0029797339579593
114 => 0.0028643690035515
115 => 0.0029172400823066
116 => 0.0028968240197215
117 => 0.002919477163278
118 => 0.0030417268361851
119 => 0.0029876773417247
120 => 0.002930740589935
121 => 0.0030021519119559
122 => 0.0030930830644812
123 => 0.0030873927563752
124 => 0.0030763511802852
125 => 0.0031385919665863
126 => 0.0032413955107165
127 => 0.0032691828955968
128 => 0.0032896949750274
129 => 0.0032925232442264
130 => 0.0033216561747362
131 => 0.0031650010649415
201 => 0.0034136167473742
202 => 0.0034565458078608
203 => 0.0034484769237165
204 => 0.0034961907677163
205 => 0.0034821521444282
206 => 0.0034618123818762
207 => 0.0035374489736415
208 => 0.0034507377247408
209 => 0.003327662023569
210 => 0.0032601402597448
211 => 0.0033490583651738
212 => 0.0034033575493451
213 => 0.0034392458560056
214 => 0.0034501056359167
215 => 0.0031771617551749
216 => 0.0030300601416167
217 => 0.0031243505893841
218 => 0.0032393914432394
219 => 0.0031643620071897
220 => 0.0031673030190334
221 => 0.0030603307606155
222 => 0.0032488561144799
223 => 0.0032213895561696
224 => 0.0033638861092706
225 => 0.0033298781632668
226 => 0.0034460785706363
227 => 0.0034154791090762
228 => 0.0035424957632194
301 => 0.0035931661453958
302 => 0.0036782496032851
303 => 0.0037408373412605
304 => 0.0037775900581123
305 => 0.0037753835628485
306 => 0.0039210161371462
307 => 0.0038351416960975
308 => 0.0037272631590885
309 => 0.0037253119767064
310 => 0.0037811837996741
311 => 0.0038982758129282
312 => 0.0039286360683454
313 => 0.0039456033093015
314 => 0.0039196173891434
315 => 0.0038264068380616
316 => 0.0037861589946928
317 => 0.0038204513233353
318 => 0.0037785147521789
319 => 0.0038509090393186
320 => 0.0039503218581467
321 => 0.0039297935041796
322 => 0.0039984167137089
323 => 0.0040694345161995
324 => 0.0041709931633702
325 => 0.0041975443544464
326 => 0.0042414324636441
327 => 0.0042866077445013
328 => 0.0043011168272047
329 => 0.0043288191679894
330 => 0.0043286731629792
331 => 0.0044121560315165
401 => 0.0045042402207624
402 => 0.0045389998704489
403 => 0.0046189277682446
404 => 0.004482054044277
405 => 0.0045858743361984
406 => 0.004679522838302
407 => 0.0045678712334196
408 => 0.0047217569592626
409 => 0.0047277319932845
410 => 0.0048179479131285
411 => 0.0047264967950876
412 => 0.0046721934131173
413 => 0.0048289652421445
414 => 0.0049048221919445
415 => 0.0048819734613204
416 => 0.0047080934930902
417 => 0.0046068878935175
418 => 0.0043420133183337
419 => 0.0046557686943691
420 => 0.0048085897856661
421 => 0.0047076977233826
422 => 0.0047585818110576
423 => 0.0050361888941917
424 => 0.0051418836977216
425 => 0.0051198999174499
426 => 0.005123614814432
427 => 0.0051806458119203
428 => 0.0054335526623277
429 => 0.0052820050152287
430 => 0.0053978575130539
501 => 0.0054593052601631
502 => 0.0055163813521983
503 => 0.005376220509244
504 => 0.0051938733119322
505 => 0.0051361163001289
506 => 0.0046976659961537
507 => 0.0046748427537386
508 => 0.0046620313761561
509 => 0.0045812574527031
510 => 0.0045177912747088
511 => 0.0044673206136195
512 => 0.0043348705271063
513 => 0.0043795685431914
514 => 0.0041684707497707
515 => 0.0043035236371548
516 => 0.0039666064617209
517 => 0.0042472010969702
518 => 0.0040944861940766
519 => 0.0041970301441155
520 => 0.004196672377934
521 => 0.0040078564543234
522 => 0.0038989513700726
523 => 0.0039683499284065
524 => 0.0040427506918049
525 => 0.004054821965352
526 => 0.0041512844971566
527 => 0.0041782051163281
528 => 0.004096634383435
529 => 0.00395962460213
530 => 0.0039914488494668
531 => 0.0038983064527161
601 => 0.003735077985081
602 => 0.0038523115202321
603 => 0.0038923402035274
604 => 0.0039100191504544
605 => 0.0037495026994514
606 => 0.0036990649455646
607 => 0.003672212308609
608 => 0.0039389039439848
609 => 0.003953513913793
610 => 0.0038787672426127
611 => 0.0042166292841182
612 => 0.0041401606985575
613 => 0.0042255948438871
614 => 0.0039885611325869
615 => 0.0039976161395668
616 => 0.0038854005820036
617 => 0.0039482337959927
618 => 0.0039038253055542
619 => 0.0039431574932323
620 => 0.0039667330443539
621 => 0.0040789301884483
622 => 0.004248482208131
623 => 0.0040621716765657
624 => 0.0039809935099467
625 => 0.0040313559879538
626 => 0.0041654779035764
627 => 0.0043686794713191
628 => 0.0042483800534027
629 => 0.0043017668922574
630 => 0.004313429541532
701 => 0.004224725204487
702 => 0.0043719501267525
703 => 0.0044508491586477
704 => 0.004531783239518
705 => 0.0046020560342162
706 => 0.0044994563878398
707 => 0.0046092527165441
708 => 0.0045207762572696
709 => 0.004441403726772
710 => 0.0044415241021372
711 => 0.0043917325543085
712 => 0.0042952551562515
713 => 0.004277463243821
714 => 0.0043700190191555
715 => 0.0044442399859093
716 => 0.0044503531802256
717 => 0.0044914457210315
718 => 0.0045157638633936
719 => 0.0047541147174534
720 => 0.0048499814026979
721 => 0.0049672053707514
722 => 0.0050128707126891
723 => 0.0051503070199904
724 => 0.0050393160398135
725 => 0.0050153024430862
726 => 0.0046819269166468
727 => 0.0047365171404252
728 => 0.0048239213558676
729 => 0.0046833681799665
730 => 0.0047725168191942
731 => 0.0047901166490041
801 => 0.0046785922368327
802 => 0.0047381622440589
803 => 0.0045799619661424
804 => 0.0042519305418781
805 => 0.0043723153195005
806 => 0.0044609590369085
807 => 0.0043344535224757
808 => 0.004561209760657
809 => 0.0044287434475104
810 => 0.0043867579857473
811 => 0.0042229577305116
812 => 0.0043002651457329
813 => 0.0044048245317551
814 => 0.0043402189875267
815 => 0.0044742851923719
816 => 0.0046641586925837
817 => 0.004799473855997
818 => 0.0048098616740288
819 => 0.0047228630893659
820 => 0.0048622788765058
821 => 0.0048632943683114
822 => 0.0047060327908874
823 => 0.0046097109503514
824 => 0.0045878264255187
825 => 0.0046424982592645
826 => 0.0047088799584093
827 => 0.0048135453963382
828 => 0.0048767925284137
829 => 0.0050417075051796
830 => 0.0050863287694096
831 => 0.0051353540104763
901 => 0.0052008668513658
902 => 0.0052795318140013
903 => 0.0051074173541536
904 => 0.0051142557825049
905 => 0.0049539851805816
906 => 0.0047827130572974
907 => 0.0049126872494985
908 => 0.0050826112160594
909 => 0.005043630470381
910 => 0.0050392443401878
911 => 0.0050466205945617
912 => 0.0050172303853124
913 => 0.0048842995581296
914 => 0.0048175425289094
915 => 0.0049036761281379
916 => 0.0049494523027625
917 => 0.0050204471575032
918 => 0.0050116955431368
919 => 0.005194570664658
920 => 0.0052656304070245
921 => 0.0052474502841094
922 => 0.0052507958642549
923 => 0.0053794461335538
924 => 0.00552253169196
925 => 0.0056565501992098
926 => 0.0057928795810131
927 => 0.0056285291902229
928 => 0.0055450821975025
929 => 0.0056311781934961
930 => 0.005585494446133
1001 => 0.0058480068091611
1002 => 0.0058661825956122
1003 => 0.0061286759760085
1004 => 0.0063778134511349
1005 => 0.0062213346667695
1006 => 0.0063688871124668
1007 => 0.0065284771126159
1008 => 0.0068363521154478
1009 => 0.0067326706456672
1010 => 0.0066532522647111
1011 => 0.0065782022784543
1012 => 0.0067343693860048
1013 => 0.0069352758750381
1014 => 0.0069785492085174
1015 => 0.0070486685404396
1016 => 0.0069749466367074
1017 => 0.0070637365495515
1018 => 0.0073772039581561
1019 => 0.0072925022972978
1020 => 0.0071722123224075
1021 => 0.0074196647357709
1022 => 0.0075092168022201
1023 => 0.0081377401033425
1024 => 0.0089312767340121
1025 => 0.0086027473582724
1026 => 0.0083988185731741
1027 => 0.0084467466749277
1028 => 0.008736519389538
1029 => 0.0088295851885446
1030 => 0.00857660026514
1031 => 0.0086659588169572
1101 => 0.0091583332230093
1102 => 0.009422476294594
1103 => 0.0090637345242345
1104 => 0.0080739802077176
1105 => 0.0071613815262898
1106 => 0.0074034437914587
1107 => 0.0073760014426551
1108 => 0.007904996317
1109 => 0.007290482190699
1110 => 0.0073008290325766
1111 => 0.0078407629607076
1112 => 0.0076967178454932
1113 => 0.0074633832067503
1114 => 0.0071630851273762
1115 => 0.0066079563534428
1116 => 0.0061162633174589
1117 => 0.0070805865911668
1118 => 0.0070390032180964
1119 => 0.0069787843315799
1120 => 0.0071127949471583
1121 => 0.0077635124568303
1122 => 0.0077485113120653
1123 => 0.0076530816827219
1124 => 0.0077254642155007
1125 => 0.0074506941987898
1126 => 0.0075215086884932
1127 => 0.0071612369659961
1128 => 0.0073240948308409
1129 => 0.0074628825754115
1130 => 0.0074907462699217
1201 => 0.0075535245964087
1202 => 0.0070170906700514
1203 => 0.0072579337541132
1204 => 0.0073994065020543
1205 => 0.0067602274800338
1206 => 0.0073867719879062
1207 => 0.0070077525488513
1208 => 0.0068791076585552
1209 => 0.0070523110556634
1210 => 0.0069848135233645
1211 => 0.006926783108682
1212 => 0.0068944011402
1213 => 0.007021582599275
1214 => 0.0070156494321944
1215 => 0.0068075558802903
1216 => 0.0065361063248098
1217 => 0.006627213705657
1218 => 0.0065941135400589
1219 => 0.0064741542699253
1220 => 0.0065549923340578
1221 => 0.0061990224108261
1222 => 0.0055865946596124
1223 => 0.0059911831912335
1224 => 0.0059756069728737
1225 => 0.0059677527372515
1226 => 0.006271789836759
1227 => 0.0062425636849707
1228 => 0.0061895179332916
1229 => 0.0064731800430967
1230 => 0.0063696395572241
1231 => 0.006688726937477
]
'min_raw' => 0.0028643690035515
'max_raw' => 0.009422476294594
'avg_raw' => 0.0061434226490728
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.002864'
'max' => '$0.009422'
'avg' => '$0.006143'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.0015604343836445
'max_diff' => 0.0062287330500388
'year' => 2029
]
4 => [
'items' => [
101 => 0.0068988985233894
102 => 0.0068455922108634
103 => 0.0070432596032615
104 => 0.0066293126357006
105 => 0.0067668092136546
106 => 0.0067951470678089
107 => 0.0064696796966934
108 => 0.0062473454448492
109 => 0.0062325182850472
110 => 0.0058470213318965
111 => 0.0060529506926469
112 => 0.0062341600081714
113 => 0.0061473748084461
114 => 0.0061199012068472
115 => 0.0062602578791189
116 => 0.006271164794628
117 => 0.0060224859651571
118 => 0.0060741941684384
119 => 0.0062898259718952
120 => 0.0060687608002455
121 => 0.005639267282521
122 => 0.0055327469519129
123 => 0.0055185351762505
124 => 0.0052296435914073
125 => 0.0055398651497509
126 => 0.005404445126113
127 => 0.005832235358204
128 => 0.0055878838719187
129 => 0.0055773503677241
130 => 0.0055614274312048
131 => 0.0053127665101691
201 => 0.00536720744865
202 => 0.0055481774197494
203 => 0.0056127495442104
204 => 0.0056060141426053
205 => 0.0055472905681632
206 => 0.0055741739198294
207 => 0.0054875732773319
208 => 0.0054569927880296
209 => 0.005360472351965
210 => 0.0052186139754012
211 => 0.0052383402527304
212 => 0.004957281689494
213 => 0.0048041460673359
214 => 0.0047617601454176
215 => 0.0047050799191988
216 => 0.0047681623277893
217 => 0.0049564854858975
218 => 0.0047293278022323
219 => 0.004339881886847
220 => 0.0043632882499452
221 => 0.0044158753984153
222 => 0.0043178795951401
223 => 0.0042251347915044
224 => 0.0043057688736419
225 => 0.0041407555053183
226 => 0.0044358164756165
227 => 0.0044278359032687
228 => 0.0045378163865479
301 => 0.0046065894397691
302 => 0.0044480898176346
303 => 0.0044082275912964
304 => 0.0044309349270558
305 => 0.0040556332481677
306 => 0.0045071462325624
307 => 0.0045110509356009
308 => 0.004477616497571
309 => 0.0047180332228617
310 => 0.0052253875010822
311 => 0.0050345004133371
312 => 0.0049605831633695
313 => 0.0048200664171477
314 => 0.0050072966384294
315 => 0.0049929202786814
316 => 0.0049279049278285
317 => 0.0048885834407724
318 => 0.0049610344863358
319 => 0.0048796059544468
320 => 0.0048649791526132
321 => 0.0047763566476184
322 => 0.0047447224454024
323 => 0.0047213017414755
324 => 0.0046955178477228
325 => 0.0047523906923952
326 => 0.0046235093441217
327 => 0.0044680910724983
328 => 0.0044551697248618
329 => 0.0044908467017426
330 => 0.0044750622953114
331 => 0.0044550941551965
401 => 0.0044169695377177
402 => 0.0044056587781154
403 => 0.0044424132596226
404 => 0.0044009195929203
405 => 0.0044621457584166
406 => 0.0044454956291999
407 => 0.0043524893608778
408 => 0.0042365691152178
409 => 0.0042355371818805
410 => 0.0042105623551003
411 => 0.0041787531582055
412 => 0.0041699045673252
413 => 0.004298978096151
414 => 0.0045661564379748
415 => 0.0045137029364389
416 => 0.0045516059669497
417 => 0.0047380513630543
418 => 0.0047973167478674
419 => 0.0047552515815046
420 => 0.0046976701873209
421 => 0.0047002034764345
422 => 0.0048969765314337
423 => 0.0049092490255073
424 => 0.0049402576587745
425 => 0.0049801125155616
426 => 0.0047620390359528
427 => 0.0046899322351559
428 => 0.0046557640326054
429 => 0.0045505391935082
430 => 0.0046640151611786
501 => 0.0045978975743425
502 => 0.0046068190957051
503 => 0.0046010089432138
504 => 0.0046041816793548
505 => 0.0044357340000619
506 => 0.0044971074810469
507 => 0.004395062165327
508 => 0.0042584349427023
509 => 0.0042579769203444
510 => 0.0042914162395221
511 => 0.0042715252239945
512 => 0.0042179990126545
513 => 0.0042256021583388
514 => 0.0041589906017388
515 => 0.0042336900073512
516 => 0.0042358321190168
517 => 0.0042070687789519
518 => 0.0043221535198293
519 => 0.004369303832067
520 => 0.0043503711854658
521 => 0.0043679754671108
522 => 0.0045158826162411
523 => 0.0045399979351907
524 => 0.0045507083668995
525 => 0.00453635780727
526 => 0.00437067893828
527 => 0.0043780275006406
528 => 0.0043241086258859
529 => 0.0042785528585491
530 => 0.0042803748503341
531 => 0.0043037964365804
601 => 0.0044060798773758
602 => 0.0046213293485917
603 => 0.004629497908679
604 => 0.0046393984417986
605 => 0.0045991279979921
606 => 0.0045869820468038
607 => 0.0046030056915571
608 => 0.0046838420756663
609 => 0.0048917752024592
610 => 0.004818277748064
611 => 0.0047585231735847
612 => 0.0048109440451207
613 => 0.0048028742628361
614 => 0.0047347571792122
615 => 0.0047328453595459
616 => 0.0046021068977228
617 => 0.0045537758651576
618 => 0.004513386836831
619 => 0.0044692830722806
620 => 0.0044431368822836
621 => 0.0044833093133498
622 => 0.0044924972236409
623 => 0.0044046595010206
624 => 0.0043926875439989
625 => 0.0044644177243997
626 => 0.004432851946376
627 => 0.004465318131867
628 => 0.0044728505653907
629 => 0.0044716376701067
630 => 0.0044386793725434
701 => 0.0044596860085797
702 => 0.0044099990519744
703 => 0.0043559719494057
704 => 0.0043215060239743
705 => 0.0042914299327938
706 => 0.0043081178962134
707 => 0.0042486283537242
708 => 0.004229596451794
709 => 0.0044525694329549
710 => 0.0046172819715019
711 => 0.0046148869859581
712 => 0.0046003081274005
713 => 0.0045786469007974
714 => 0.0046822574220208
715 => 0.0046461615881843
716 => 0.0046724243232082
717 => 0.0046791092915153
718 => 0.0046993426771973
719 => 0.0047065743734603
720 => 0.0046847151646174
721 => 0.0046113529898633
722 => 0.0044285414254421
723 => 0.0043434421487137
724 => 0.0043153579699528
725 => 0.0043163787765113
726 => 0.0042882203745464
727 => 0.0042965142858961
728 => 0.0042853360906512
729 => 0.0042641672931532
730 => 0.00430681078262
731 => 0.0043117250475295
801 => 0.0043017715475362
802 => 0.0043041159571065
803 => 0.0042217052283575
804 => 0.0042279707370776
805 => 0.0041930835883417
806 => 0.0041865426685246
807 => 0.0040983509944919
808 => 0.0039421066603554
809 => 0.0040286811884715
810 => 0.003924111332728
811 => 0.0038845091438661
812 => 0.0040719797465345
813 => 0.0040531628976517
814 => 0.0040209566318519
815 => 0.0039733168523602
816 => 0.0039556467947367
817 => 0.003848289118277
818 => 0.0038419458540208
819 => 0.0038951552173754
820 => 0.0038706009270096
821 => 0.0038361174038992
822 => 0.0037112215787319
823 => 0.0035707973196573
824 => 0.0035750358453633
825 => 0.0036197021894887
826 => 0.0037495756091106
827 => 0.0036988318172314
828 => 0.0036620166140051
829 => 0.0036551222331017
830 => 0.0037414198444711
831 => 0.0038635490444673
901 => 0.0039208493326187
902 => 0.0038640664872963
903 => 0.0037988374119955
904 => 0.0038028076035666
905 => 0.0038292195094122
906 => 0.0038319950272723
907 => 0.0037895376049087
908 => 0.0038014891206083
909 => 0.0037833336753911
910 => 0.0036719137416058
911 => 0.00366989850832
912 => 0.00364255425968
913 => 0.0036417262866985
914 => 0.0035952068984192
915 => 0.0035886985144256
916 => 0.0034963314454721
917 => 0.0035571277299706
918 => 0.0035163487742772
919 => 0.0034548852692642
920 => 0.0034442889378329
921 => 0.0034439703993147
922 => 0.0035070796759748
923 => 0.0035563902613288
924 => 0.0035170581416705
925 => 0.0035081029804454
926 => 0.003603720673717
927 => 0.0035915524506736
928 => 0.0035810148479946
929 => 0.0038526137141325
930 => 0.0036376220184605
1001 => 0.0035438733678506
1002 => 0.0034278416103349
1003 => 0.0034656221356649
1004 => 0.0034735830474634
1005 => 0.0031945475869344
1006 => 0.0030813429353495
1007 => 0.0030424953649529
1008 => 0.0030201380389656
1009 => 0.0030303265531636
1010 => 0.0029284290891559
1011 => 0.0029969058701976
1012 => 0.0029086712795451
1013 => 0.002893878463282
1014 => 0.0030516528415369
1015 => 0.0030736062245666
1016 => 0.0029799462721807
1017 => 0.0030400911237814
1018 => 0.003018281764515
1019 => 0.0029101838083532
1020 => 0.0029060552615426
1021 => 0.0028518155069675
1022 => 0.0027669407939435
1023 => 0.002728150772599
1024 => 0.0027079485926923
1025 => 0.0027162844058545
1026 => 0.0027120695636396
1027 => 0.0026845648671585
1028 => 0.0027136461006461
1029 => 0.0026393555662807
1030 => 0.002609772476897
1031 => 0.0025964104817448
1101 => 0.0025304733564919
1102 => 0.0026354086451419
1103 => 0.0026560822189459
1104 => 0.0026767965260766
1105 => 0.0028571004273918
1106 => 0.0028480929540156
1107 => 0.0029295161265187
1108 => 0.0029263521717628
1109 => 0.002903128963997
1110 => 0.0028051540704652
1111 => 0.0028442051167924
1112 => 0.0027240120660773
1113 => 0.0028140688720061
1114 => 0.0027729707066423
1115 => 0.0028001735409556
1116 => 0.0027512603920797
1117 => 0.002778330948242
1118 => 0.0026609846902338
1119 => 0.0025514084056121
1120 => 0.0025955051012751
1121 => 0.0026434432525295
1122 => 0.0027473853788628
1123 => 0.0026854783059226
1124 => 0.0027077424303175
1125 => 0.002633161340564
1126 => 0.0024792792493674
1127 => 0.002480150205292
1128 => 0.002456478798065
1129 => 0.0024360232461388
1130 => 0.0026925890779551
1201 => 0.0026606810610631
1202 => 0.0026098398121638
1203 => 0.0026778928441665
1204 => 0.0026958871459748
1205 => 0.0026963994184503
1206 => 0.0027460491538964
1207 => 0.0027725472266042
1208 => 0.0027772176267682
1209 => 0.0028553425582462
1210 => 0.0028815290047848
1211 => 0.002989387272033
1212 => 0.0027702990502667
1213 => 0.0027657870725144
1214 => 0.0026788504898861
1215 => 0.0026237139347702
1216 => 0.0026826257369862
1217 => 0.0027348135514867
1218 => 0.0026804721107556
1219 => 0.0026875679557046
1220 => 0.0026146190113819
1221 => 0.0026406948264104
1222 => 0.0026631548311046
1223 => 0.0026507537366505
1224 => 0.0026321886980331
1225 => 0.0027305347458397
1226 => 0.0027249856764011
1227 => 0.0028165677770845
1228 => 0.0028879625736661
1229 => 0.0030159148124866
1230 => 0.0028823899809763
1231 => 0.0028775238054029
]
'min_raw' => 0.0024360232461388
'max_raw' => 0.0070432596032615
'avg_raw' => 0.0047396414247002
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.002436'
'max' => '$0.007043'
'avg' => '$0.004739'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.00042834575741264
'max_diff' => -0.0023792166913326
'year' => 2030
]
5 => [
'items' => [
101 => 0.0029250914521918
102 => 0.002881521722426
103 => 0.002909056287662
104 => 0.0030114785683444
105 => 0.0030136425897403
106 => 0.0029773924431748
107 => 0.0029751866184619
108 => 0.002982148855643
109 => 0.0030229268962739
110 => 0.0030086777958948
111 => 0.0030251672155965
112 => 0.0030457874874285
113 => 0.0031310816745397
114 => 0.00315164581429
115 => 0.0031016856159806
116 => 0.0031061964625073
117 => 0.0030875099769015
118 => 0.0030694590659473
119 => 0.0031100348776486
120 => 0.0031841879710523
121 => 0.0031837266685068
122 => 0.0032009287448463
123 => 0.0032116454958961
124 => 0.0031656413552491
125 => 0.003135694351307
126 => 0.0031471779381958
127 => 0.0031655404437109
128 => 0.0031412232251409
129 => 0.0029911260872953
130 => 0.0030366559706753
131 => 0.0030290775717834
201 => 0.0030182850101964
202 => 0.0030640656600072
203 => 0.0030596500046503
204 => 0.0029273839833823
205 => 0.0029358512249278
206 => 0.0029278989043851
207 => 0.0029535944789504
208 => 0.0028801340770738
209 => 0.0029027300019277
210 => 0.0029169019541724
211 => 0.0029252493429186
212 => 0.002955405834928
213 => 0.0029518673186556
214 => 0.0029551858757882
215 => 0.0029998999924194
216 => 0.003226048650308
217 => 0.003238357422788
218 => 0.0031777445253745
219 => 0.0032019581823546
220 => 0.0031554732558974
221 => 0.0031866788984501
222 => 0.0032080290065472
223 => 0.0031115519734459
224 => 0.0031058392296764
225 => 0.0030591624433921
226 => 0.0030842439044329
227 => 0.003044337496496
228 => 0.0030541291331369
301 => 0.0030267508634696
302 => 0.0030760262979116
303 => 0.0031311238902461
304 => 0.0031450437179397
305 => 0.0031084266441406
306 => 0.0030819134695272
307 => 0.0030353650688888
308 => 0.0031127760965492
309 => 0.0031354134400954
310 => 0.0031126571922206
311 => 0.0031073840723541
312 => 0.0030973915197355
313 => 0.00310950403963
314 => 0.0031352901522609
315 => 0.0031231298977389
316 => 0.0031311619600868
317 => 0.0031005520210434
318 => 0.0031656565845339
319 => 0.0032690582996232
320 => 0.0032693907530451
321 => 0.0032572304329748
322 => 0.0032522546919998
323 => 0.0032647319183418
324 => 0.0032715003017898
325 => 0.0033118493638479
326 => 0.0033551455150138
327 => 0.0035571897609144
328 => 0.0035004565451586
329 => 0.0036797222197877
330 => 0.0038214980936847
331 => 0.0038640104791588
401 => 0.0038249010848849
402 => 0.0036911099597219
403 => 0.0036845455288372
404 => 0.0038844859549867
405 => 0.0038279936267478
406 => 0.0038212740440609
407 => 0.0037497890371862
408 => 0.0037920455298395
409 => 0.0037828034150309
410 => 0.0037682142846657
411 => 0.0038488367290354
412 => 0.0039997547476803
413 => 0.0039762327591742
414 => 0.0039586746859082
415 => 0.0038817403199344
416 => 0.0039280719921633
417 => 0.0039115741711073
418 => 0.0039824592801398
419 => 0.0039404685118464
420 => 0.0038275656417997
421 => 0.0038455457959873
422 => 0.0038428281318529
423 => 0.0038987574671635
424 => 0.0038819688689547
425 => 0.0038395498886053
426 => 0.0039992389262994
427 => 0.0039888696084287
428 => 0.0040035709304133
429 => 0.0040100429070044
430 => 0.0041072428102124
501 => 0.0041470625005067
502 => 0.0041561022673453
503 => 0.0041939278933595
504 => 0.0041551611313117
505 => 0.0043102558197359
506 => 0.004413384737512
507 => 0.0045331742824745
508 => 0.004708219004059
509 => 0.004774037438629
510 => 0.0047621479275419
511 => 0.0048948648376895
512 => 0.0051333541750935
513 => 0.0048103534413024
514 => 0.0051504739982915
515 => 0.0050427957568294
516 => 0.0047874925833716
517 => 0.0047710540688276
518 => 0.004943948342024
519 => 0.0053274111995166
520 => 0.0052313581029144
521 => 0.0053275683079725
522 => 0.0052153339932663
523 => 0.0052097606135561
524 => 0.0053221173378189
525 => 0.0055846449483053
526 => 0.0054599279212636
527 => 0.0052811154811296
528 => 0.0054131478042948
529 => 0.0052987691869544
530 => 0.0050410421495273
531 => 0.0052312846529217
601 => 0.0051040749086964
602 => 0.0051412014749033
603 => 0.0054085774362435
604 => 0.005376406053186
605 => 0.0054180388018522
606 => 0.005344558090175
607 => 0.0052759155186238
608 => 0.0051477890613593
609 => 0.0051098571339212
610 => 0.0051203401540173
611 => 0.0051098519390571
612 => 0.0050381663637605
613 => 0.0050226858706004
614 => 0.004996884370451
615 => 0.0050048813342286
616 => 0.0049563669654527
617 => 0.005047923602913
618 => 0.0050649173216199
619 => 0.0051315446071736
620 => 0.0051384620729874
621 => 0.0053240181148743
622 => 0.0052218169651456
623 => 0.0052903823200064
624 => 0.0052842491893055
625 => 0.0047930257772874
626 => 0.0048607120293626
627 => 0.0049660105964757
628 => 0.0049185737347201
629 => 0.0048515091107138
630 => 0.0047973508310511
701 => 0.0047152954993937
702 => 0.0048307868029684
703 => 0.0049826455860383
704 => 0.0051423134623312
705 => 0.0053341439538433
706 => 0.0052913296212909
707 => 0.0051387273247268
708 => 0.0051455729522747
709 => 0.0051878899281201
710 => 0.0051330855994976
711 => 0.0051169227330792
712 => 0.0051856693984719
713 => 0.005186142818974
714 => 0.0051230838155694
715 => 0.005053005272961
716 => 0.0050527116413087
717 => 0.0050402418415299
718 => 0.0052175523429451
719 => 0.0053150551906098
720 => 0.0053262337349609
721 => 0.005314302785509
722 => 0.0053188945344306
723 => 0.0052621597757031
724 => 0.005391838609984
725 => 0.0055108447322276
726 => 0.0054789485492713
727 => 0.0054311316367103
728 => 0.0053930431626809
729 => 0.0054699761152591
730 => 0.0054665504119845
731 => 0.0055098053175684
801 => 0.0055078430251987
802 => 0.0054932980273501
803 => 0.005478949068719
804 => 0.0055358410677587
805 => 0.0055194570856928
806 => 0.0055030476547774
807 => 0.0054701360289184
808 => 0.0054746092654768
809 => 0.0054268006091799
810 => 0.0054046821372017
811 => 0.0050720733882845
812 => 0.0049831894622694
813 => 0.0050111541547929
814 => 0.0050203608576745
815 => 0.0049816784591649
816 => 0.0050371390819349
817 => 0.0050284956026235
818 => 0.0050621223243577
819 => 0.0050411138085207
820 => 0.0050419760053387
821 => 0.0051037575709275
822 => 0.0051216930222555
823 => 0.0051125709069532
824 => 0.0051189597238231
825 => 0.0052661873120387
826 => 0.0052452562570677
827 => 0.0052341370512857
828 => 0.0052372171472773
829 => 0.0052748369526615
830 => 0.0052853684442038
831 => 0.0052407457745041
901 => 0.0052617900834951
902 => 0.0053513940802581
903 => 0.0053827504079781
904 => 0.0054828247541694
905 => 0.0054403113932277
906 => 0.0055183465071714
907 => 0.0057581998433034
908 => 0.0059498112847941
909 => 0.0057735974845215
910 => 0.0061254674952493
911 => 0.0063994487713561
912 => 0.0063889329136394
913 => 0.0063411579408491
914 => 0.0060292375421707
915 => 0.0057422037408356
916 => 0.0059823197037513
917 => 0.0059829318087211
918 => 0.0059623056345583
919 => 0.0058341982382965
920 => 0.0059578477748573
921 => 0.0059676626260404
922 => 0.0059621689193574
923 => 0.0058639492790072
924 => 0.0057139860422161
925 => 0.0057432884997238
926 => 0.0057912865228754
927 => 0.0057004162516129
928 => 0.0056713776939206
929 => 0.0057253658974822
930 => 0.0058993271382464
1001 => 0.0058664407733688
1002 => 0.0058655819774776
1003 => 0.0060062837924132
1004 => 0.0059055716582714
1005 => 0.0057436580975525
1006 => 0.0057027727880934
1007 => 0.0055576574831584
1008 => 0.00565788914116
1009 => 0.0056614963000925
1010 => 0.0056066004453478
1011 => 0.0057481125936167
1012 => 0.0057468085342576
1013 => 0.0058811532577353
1014 => 0.0061379699114508
1015 => 0.0060620165897671
1016 => 0.0059736911403469
1017 => 0.005983294565698
1018 => 0.0060886204385254
1019 => 0.0060249380114581
1020 => 0.0060478386562411
1021 => 0.0060885857756567
1022 => 0.0061131695244942
1023 => 0.0059797573425626
1024 => 0.0059486525811121
1025 => 0.0058850231554719
1026 => 0.0058684234260219
1027 => 0.0059202482655343
1028 => 0.0059065942513214
1029 => 0.0056611931323518
1030 => 0.0056355473500206
1031 => 0.0056363338695509
1101 => 0.0055718463304885
1102 => 0.0054734873546356
1103 => 0.0057319688704678
1104 => 0.0057112091873
1105 => 0.0056882921037546
1106 => 0.0056910993157258
1107 => 0.0058032973809972
1108 => 0.0057382168370017
1109 => 0.0059112441297052
1110 => 0.0058756749200018
1111 => 0.0058391934942845
1112 => 0.005834150649999
1113 => 0.0058201084135468
1114 => 0.0057719523598663
1115 => 0.0057138010313168
1116 => 0.0056754044872266
1117 => 0.0052352606387205
1118 => 0.0053169487768042
1119 => 0.0054109235335615
1120 => 0.0054433632430139
1121 => 0.005387872875236
1122 => 0.0057741434578039
1123 => 0.005844718815435
1124 => 0.0056309414536537
1125 => 0.0055909524377366
1126 => 0.00577676513103
1127 => 0.0056646973622962
1128 => 0.005715161471695
1129 => 0.0056060856695667
1130 => 0.0058277192784694
1201 => 0.0058260308017074
1202 => 0.0057398103220222
1203 => 0.0058126832810398
1204 => 0.005800019811095
1205 => 0.0057026771018821
1206 => 0.0058308052159785
1207 => 0.0058308687659245
1208 => 0.0057478834288224
1209 => 0.0056509747229133
1210 => 0.0056336497351782
1211 => 0.0056205976842045
1212 => 0.0057119514672607
1213 => 0.0057938589834931
1214 => 0.0059462685646063
1215 => 0.0059845879544605
1216 => 0.0061341510841276
1217 => 0.0060450935225074
1218 => 0.0060845715860852
1219 => 0.0061274306086118
1220 => 0.0061479788000994
1221 => 0.0061144966247471
1222 => 0.0063468297277603
1223 => 0.0063664457601569
1224 => 0.0063730228461415
1225 => 0.0062946814310129
1226 => 0.0063642669436836
1227 => 0.006331710186735
1228 => 0.0064164138237878
1229 => 0.006429696435628
1230 => 0.006418446535942
1231 => 0.0064226626465918
]
'min_raw' => 0.0028801340770738
'max_raw' => 0.006429696435628
'avg_raw' => 0.0046549152563509
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.00288'
'max' => '$0.006429'
'avg' => '$0.004654'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0004441108309349
'max_diff' => -0.00061356316763344
'year' => 2031
]
6 => [
'items' => [
101 => 0.006224407329538
102 => 0.0062141267454686
103 => 0.006073950252206
104 => 0.0061310732093429
105 => 0.0060242845789501
106 => 0.0060581483536924
107 => 0.006073075182933
108 => 0.0060652782544278
109 => 0.0061343028556328
110 => 0.0060756178438142
111 => 0.0059207384489156
112 => 0.0057658168572295
113 => 0.0057638719428422
114 => 0.0057230838223445
115 => 0.0056936014819415
116 => 0.0056992808266454
117 => 0.0057192955781502
118 => 0.0056924381881992
119 => 0.0056981695740495
120 => 0.0057933487671882
121 => 0.0058124362755853
122 => 0.0057475694640812
123 => 0.0054871198556563
124 => 0.0054232048684604
125 => 0.0054691456937675
126 => 0.0054471889382388
127 => 0.0043963066088244
128 => 0.0046431958241624
129 => 0.0044965026359741
130 => 0.0045641056061203
131 => 0.004414369846997
201 => 0.0044858315995742
202 => 0.0044726352232385
203 => 0.004869625775519
204 => 0.0048634273140878
205 => 0.0048663941895597
206 => 0.0047247774931358
207 => 0.0049503767358513
208 => 0.0050615150350994
209 => 0.0050409462937586
210 => 0.005046123002818
211 => 0.004957169989921
212 => 0.0048672554491662
213 => 0.0047675263857205
214 => 0.0049528106587178
215 => 0.0049322102104685
216 => 0.004979460226945
217 => 0.0050996303223771
218 => 0.0051173258254113
219 => 0.0051411087609393
220 => 0.0051325842715372
221 => 0.0053356721931934
222 => 0.0053110769058635
223 => 0.0053703444717813
224 => 0.0052484265920474
225 => 0.0051104649385772
226 => 0.0051366869385956
227 => 0.0051341615491298
228 => 0.0051020104427233
229 => 0.0050729858614326
301 => 0.0050246681112087
302 => 0.0051775526225988
303 => 0.0051713457906362
304 => 0.0052718271854568
305 => 0.0052540661228981
306 => 0.0051354534002616
307 => 0.0051396896768551
308 => 0.0051681806728315
309 => 0.0052667883352103
310 => 0.005296061803126
311 => 0.0052825011664414
312 => 0.0053145981876264
313 => 0.0053399663644699
314 => 0.0053177840400626
315 => 0.0056318389752885
316 => 0.005501421470349
317 => 0.0055649860548173
318 => 0.0055801458336688
319 => 0.0055413143789167
320 => 0.0055497355310022
321 => 0.0055624912817853
322 => 0.0056399417027081
323 => 0.0058431940176693
324 => 0.0059332130843803
325 => 0.0062040398880429
326 => 0.0059257382540159
327 => 0.0059092249867793
328 => 0.0059580090723049
329 => 0.0061170130759835
330 => 0.0062458708864784
331 => 0.0062886204562049
401 => 0.0062942705175628
402 => 0.0063744715523075
403 => 0.0064204412897624
404 => 0.0063647330371928
405 => 0.0063175261260373
406 => 0.0061484368298158
407 => 0.0061680093762683
408 => 0.0063028448121657
409 => 0.0064933078071383
410 => 0.006656744871122
411 => 0.0065995149076716
412 => 0.0070361391307399
413 => 0.0070794286390071
414 => 0.007073447428682
415 => 0.0071720673708572
416 => 0.0069763268692413
417 => 0.0068926440125068
418 => 0.0063277327960504
419 => 0.0064864498054455
420 => 0.0067171542997246
421 => 0.0066866196948093
422 => 0.0065190759243151
423 => 0.006656617774148
424 => 0.0066111421372619
425 => 0.006575273615664
426 => 0.0067395942665593
427 => 0.0065589169609796
428 => 0.0067153519053905
429 => 0.0065147224710712
430 => 0.006599776329324
501 => 0.0065514956457875
502 => 0.0065827391650936
503 => 0.0064000901896399
504 => 0.0064986431432415
505 => 0.006395990062758
506 => 0.0063959413918321
507 => 0.0063936753193908
508 => 0.0065144462133462
509 => 0.0065183845478622
510 => 0.0064291346747546
511 => 0.0064162723736947
512 => 0.0064638310421179
513 => 0.0064081522970293
514 => 0.0064342040314184
515 => 0.0064089413775246
516 => 0.0064032542220203
517 => 0.0063579379993715
518 => 0.006338414524659
519 => 0.0063460701821517
520 => 0.006319937476367
521 => 0.0063041915758704
522 => 0.0063905430634635
523 => 0.0063444089470516
524 => 0.006383472348467
525 => 0.0063389546723598
526 => 0.0061846370115442
527 => 0.0060958872929294
528 => 0.0058043955369034
529 => 0.005887062237318
530 => 0.0059418703452177
531 => 0.0059237562658838
601 => 0.0059626723175112
602 => 0.0059650614470181
603 => 0.0059524094419318
604 => 0.0059377600408641
605 => 0.0059306295225871
606 => 0.0059837745639001
607 => 0.0060146270491622
608 => 0.0059473710720834
609 => 0.0059316139376649
610 => 0.0059996134437959
611 => 0.0060410931032537
612 => 0.0063473556032833
613 => 0.0063246666880663
614 => 0.0063816114127863
615 => 0.0063752003106708
616 => 0.0064348874541834
617 => 0.0065324507081577
618 => 0.0063340773337132
619 => 0.0063685080922816
620 => 0.006360066465403
621 => 0.0064522299341505
622 => 0.0064525176584399
623 => 0.0063972610550191
624 => 0.0064272165561695
625 => 0.0064104962172135
626 => 0.0064407121295963
627 => 0.0063243636637708
628 => 0.0064660635361056
629 => 0.0065463982327813
630 => 0.0065475136801226
701 => 0.0065855916887713
702 => 0.006624281150888
703 => 0.0066985422042789
704 => 0.0066222100504141
705 => 0.0064848959363969
706 => 0.0064948095719071
707 => 0.0064143023571
708 => 0.0064156556979257
709 => 0.0064084314585348
710 => 0.0064301119447624
711 => 0.0063291213112982
712 => 0.006352823611115
713 => 0.006319640252571
714 => 0.0063684359581407
715 => 0.0063159398451668
716 => 0.0063600623945949
717 => 0.0063791042242424
718 => 0.0064493689855829
719 => 0.0063055616827862
720 => 0.0060123288574854
721 => 0.006073969952468
722 => 0.0059827979311852
723 => 0.0059912362488713
724 => 0.0060082829935455
725 => 0.0059530289167086
726 => 0.005963569653313
727 => 0.0059631930640275
728 => 0.0059599478210148
729 => 0.0059455741016158
730 => 0.0059247293647336
731 => 0.0060077683808007
801 => 0.0060218783277519
802 => 0.0060532429919718
803 => 0.0061465629578354
804 => 0.0061372380926093
805 => 0.006152447334678
806 => 0.0061192456446382
807 => 0.0059927763800475
808 => 0.0059996442695768
809 => 0.0059140015770964
810 => 0.0060510529157741
811 => 0.0060185973497859
812 => 0.0059976730352574
813 => 0.0059919636421759
814 => 0.0060855149301847
815 => 0.0061135069417937
816 => 0.006096064198633
817 => 0.0060602886235243
818 => 0.0061289883038324
819 => 0.006147369440076
820 => 0.0061514842986107
821 => 0.0062732069602595
822 => 0.0061582872432268
823 => 0.0061859495613203
824 => 0.0064017630705292
825 => 0.0062060499979053
826 => 0.0063097235773965
827 => 0.0063046492951717
828 => 0.0063576851903167
829 => 0.006300298803768
830 => 0.0063010101768062
831 => 0.0063481024587323
901 => 0.0062819698419049
902 => 0.0062655944759534
903 => 0.0062429720251739
904 => 0.0062923673188251
905 => 0.006321977563412
906 => 0.006560614388454
907 => 0.0067147846605926
908 => 0.0067080917224839
909 => 0.0067692526481422
910 => 0.0067416990909633
911 => 0.0066527213865712
912 => 0.0068045954782933
913 => 0.0067565361609906
914 => 0.0067604981127169
915 => 0.0067603506486758
916 => 0.0067923058932637
917 => 0.006769662673818
918 => 0.0067250305640118
919 => 0.0067546594413945
920 => 0.0068426466147037
921 => 0.0071157615004317
922 => 0.0072686002087761
923 => 0.0071065604182794
924 => 0.0072183332959648
925 => 0.0071513093981021
926 => 0.0071391291620722
927 => 0.0072093307892093
928 => 0.0072796552950016
929 => 0.0072751759280038
930 => 0.007224123948002
1001 => 0.0071952859798949
1002 => 0.0074136567358294
1003 => 0.0075745485889531
1004 => 0.0075635768432027
1005 => 0.007612002560742
1006 => 0.0077541819651884
1007 => 0.0077671810680806
1008 => 0.0077655434798972
1009 => 0.0077333238470626
1010 => 0.0078733179350687
1011 => 0.0079901034662451
1012 => 0.0077258659329761
1013 => 0.0078264841265216
1014 => 0.0078716548753199
1015 => 0.0079379789361131
1016 => 0.0080498787438745
1017 => 0.0081714316150615
1018 => 0.0081886205238067
1019 => 0.008176424170487
1020 => 0.0080962567844226
1021 => 0.0082292613865027
1022 => 0.0083071723630596
1023 => 0.0083535665666382
1024 => 0.0084712145476541
1025 => 0.0078719338344865
1026 => 0.0074477331595225
1027 => 0.0073814880985949
1028 => 0.0075162000349496
1029 => 0.0075517224982588
1030 => 0.0075374034378402
1031 => 0.0070599270115301
1101 => 0.0073789742840264
1102 => 0.0077222423229757
1103 => 0.0077354286463548
1104 => 0.0079072758040491
1105 => 0.0079632362828473
1106 => 0.0081015957693131
1107 => 0.0080929413457634
1108 => 0.0081266296789375
1109 => 0.0081188853145414
1110 => 0.008375167128192
1111 => 0.0086578840268662
1112 => 0.0086480944396498
1113 => 0.0086074505405108
1114 => 0.0086678136615468
1115 => 0.0089596077987626
1116 => 0.0089327440705136
1117 => 0.0089588398942606
1118 => 0.009302881626835
1119 => 0.0097501848185476
1120 => 0.0095423675774909
1121 => 0.0099932711927837
1122 => 0.010277091117237
1123 => 0.010767928329051
1124 => 0.010706473092707
1125 => 0.010897552417337
1126 => 0.010596455393558
1127 => 0.0099050757652137
1128 => 0.0097956622925333
1129 => 0.01001471083563
1130 => 0.010553220304388
1201 => 0.0099977512560661
1202 => 0.010110121921097
1203 => 0.010077759162009
1204 => 0.01007603468811
1205 => 0.010141850842891
1206 => 0.010046381077641
1207 => 0.0096574200793314
1208 => 0.0098356786126952
1209 => 0.0097668444322856
1210 => 0.0098432210873782
1211 => 0.010255394394784
1212 => 0.010073162750596
1213 => 0.0098811965167395
1214 => 0.010121964774712
1215 => 0.010428545504062
1216 => 0.010409360232998
1217 => 0.010372132788312
1218 => 0.010581981944839
1219 => 0.010928591271388
1220 => 0.011022278379566
1221 => 0.011091436287473
1222 => 0.011100971994541
1223 => 0.011199195703751
1224 => 0.010671022063768
1225 => 0.011509247194883
1226 => 0.011653985519524
1227 => 0.011626780713281
1228 => 0.0117876512696
1229 => 0.011740319071039
1230 => 0.011671742141518
1231 => 0.011926756191433
]
'min_raw' => 0.0043963066088244
'max_raw' => 0.011926756191433
'avg_raw' => 0.0081615314001285
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.004396'
'max' => '$0.011926'
'avg' => '$0.008161'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0015161725317506
'max_diff' => 0.0054970597558046
'year' => 2032
]
7 => [
'items' => [
101 => 0.011634403161778
102 => 0.011219444842406
103 => 0.010991790501454
104 => 0.011291584101972
105 => 0.011474657592453
106 => 0.011595657524
107 => 0.011632272030177
108 => 0.010712022679922
109 => 0.010216059319504
110 => 0.010533966147301
111 => 0.01092183441797
112 => 0.01066886743594
113 => 0.010678783262706
114 => 0.010318118824886
115 => 0.010953745217859
116 => 0.010861139798862
117 => 0.011341576876434
118 => 0.011226916712123
119 => 0.011618694498423
120 => 0.011515526277387
121 => 0.01194377179485
122 => 0.012114610526051
123 => 0.012401475344662
124 => 0.012612494272983
125 => 0.012736408623841
126 => 0.012728969271007
127 => 0.013219979662993
128 => 0.012930447989435
129 => 0.01256672797007
130 => 0.012560149422442
131 => 0.012748525174424
201 => 0.013143309072213
202 => 0.013245670793038
203 => 0.013302877030536
204 => 0.013215263686444
205 => 0.012900997805719
206 => 0.012765299391786
207 => 0.012880918372019
208 => 0.012739526294447
209 => 0.012983608687946
210 => 0.013318785947406
211 => 0.013249573168762
212 => 0.01348094111081
213 => 0.013720382590212
214 => 0.014062794659746
215 => 0.014152313854204
216 => 0.014300285678534
217 => 0.014452597291982
218 => 0.014501515677308
219 => 0.014594916053379
220 => 0.014594423787294
221 => 0.014875892107155
222 => 0.01518636038031
223 => 0.015303554966069
224 => 0.015573037453875
225 => 0.0151115581373
226 => 0.015461595500015
227 => 0.015777337963187
228 => 0.015400896782059
301 => 0.015919733250697
302 => 0.015939878495066
303 => 0.016244047767494
304 => 0.015935713938106
305 => 0.015752626294452
306 => 0.016281193461477
307 => 0.016536950463891
308 => 0.016459914373344
309 => 0.015873665920544
310 => 0.015532444175636
311 => 0.014639401052451
312 => 0.015697249208455
313 => 0.016212496187391
314 => 0.015872331555343
315 => 0.016043890809553
316 => 0.016979862472248
317 => 0.017336219881724
318 => 0.017262100031679
319 => 0.01727462506622
320 => 0.017466909056029
321 => 0.01831960215957
322 => 0.017808648686657
323 => 0.018199253471638
324 => 0.018406428841161
325 => 0.018598864870384
326 => 0.018126302802646
327 => 0.017511506495834
328 => 0.017316774698073
329 => 0.015838508886598
330 => 0.015761558731328
331 => 0.015718364277347
401 => 0.01544602935497
402 => 0.015232048704795
403 => 0.015061883347183
404 => 0.014615318633134
405 => 0.014766021115081
406 => 0.014054290166186
407 => 0.014509630405093
408 => 0.013373690625312
409 => 0.014319735028546
410 => 0.013804846071226
411 => 0.014150580158173
412 => 0.014149373924513
413 => 0.013512767855353
414 => 0.013145586760291
415 => 0.013379568844967
416 => 0.01363041621326
417 => 0.013671115354814
418 => 0.013996345515592
419 => 0.014087110262666
420 => 0.01381208884163
421 => 0.013350150798243
422 => 0.013457448470037
423 => 0.013143412376397
424 => 0.012593076201518
425 => 0.012988337250264
426 => 0.013123296750707
427 => 0.013182902554576
428 => 0.012641710133119
429 => 0.012471655724438
430 => 0.012381120184151
501 => 0.013280289652636
502 => 0.01332954818588
503 => 0.01307753456535
504 => 0.01421666002706
505 => 0.013958840851976
506 => 0.014246888037776
507 => 0.013447712330962
508 => 0.013478241919196
509 => 0.013099899332231
510 => 0.01331174590007
511 => 0.013162019574055
512 => 0.013294630790898
513 => 0.013374117407496
514 => 0.013752397912165
515 => 0.014324054384269
516 => 0.013695895419311
517 => 0.013422197562876
518 => 0.013591998173673
519 => 0.014044199576288
520 => 0.014729307849013
521 => 0.014323709962471
522 => 0.014503707417019
523 => 0.014543028853309
524 => 0.014243955987823
525 => 0.014740335092156
526 => 0.015006348686746
527 => 0.015279223591037
528 => 0.015516153224652
529 => 0.015170231353615
530 => 0.015540417341577
531 => 0.015242112781903
601 => 0.014974502753718
602 => 0.014974908607666
603 => 0.014807032927826
604 => 0.01448175264444
605 => 0.014421765969489
606 => 0.014733824228068
607 => 0.01498406539942
608 => 0.015004676460867
609 => 0.015143222831184
610 => 0.015225213145996
611 => 0.016028829691584
612 => 0.016352050914084
613 => 0.016747279706693
614 => 0.016901243595288
615 => 0.017364619700851
616 => 0.016990405862042
617 => 0.0169094423441
618 => 0.015785443481173
619 => 0.01596949823201
620 => 0.016264187646741
621 => 0.015790302801082
622 => 0.016090873662397
623 => 0.016150212717382
624 => 0.01577420037536
625 => 0.015975044813768
626 => 0.015441661531582
627 => 0.014335680682253
628 => 0.014741566365003
629 => 0.015040434847151
630 => 0.014613912672908
701 => 0.015378437161551
702 => 0.014931817738275
703 => 0.014790260822609
704 => 0.014237996825913
705 => 0.014498644173763
706 => 0.01485117344384
707 => 0.014633351340859
708 => 0.015085364910698
709 => 0.015725536673207
710 => 0.016181761194058
711 => 0.016216784447806
712 => 0.015923462645568
713 => 0.01639351270561
714 => 0.016396936507132
715 => 0.015866718119194
716 => 0.015541962308851
717 => 0.015468177105448
718 => 0.015652507009988
719 => 0.015876317543277
720 => 0.016229204374762
721 => 0.016442446496328
722 => 0.01699846885449
723 => 0.017148912562199
724 => 0.017314204585288
725 => 0.017535085702308
726 => 0.017800310116046
727 => 0.017220014198021
728 => 0.017243070436651
729 => 0.016702706912531
730 => 0.01612525099104
731 => 0.016563468054555
801 => 0.017136378571527
802 => 0.017004952265924
803 => 0.016990164121748
804 => 0.017015033678363
805 => 0.01691594253592
806 => 0.016467756971139
807 => 0.016242680986296
808 => 0.016533086429751
809 => 0.016687423998488
810 => 0.016926788107949
811 => 0.016897281429095
812 => 0.017513857669237
813 => 0.017753440551858
814 => 0.017692144998154
815 => 0.017703424855196
816 => 0.018137178220212
817 => 0.018619601170293
818 => 0.019071453924359
819 => 0.019531097953323
820 => 0.018976979136195
821 => 0.018695631774156
822 => 0.018985910435679
823 => 0.018831884491907
824 => 0.019716963251884
825 => 0.019778244184896
826 => 0.020663258943605
827 => 0.021503243335217
828 => 0.020975664188729
829 => 0.02147314756118
830 => 0.022011216388901
831 => 0.023049238456095
901 => 0.022699669141921
902 => 0.022431904525713
903 => 0.022178868257225
904 => 0.022705396563571
905 => 0.02338276681819
906 => 0.023528665883263
907 => 0.023765078106414
908 => 0.023516519560882
909 => 0.02381588095115
910 => 0.024872758204856
911 => 0.024587180641591
912 => 0.024181614592871
913 => 0.025015917681101
914 => 0.02531784872546
915 => 0.02743695891729
916 => 0.03011242307055
917 => 0.029004763343056
918 => 0.028317203206244
919 => 0.028478796147539
920 => 0.029455785086133
921 => 0.02976956292513
922 => 0.028916606593028
923 => 0.029217885189295
924 => 0.030877959875783
925 => 0.031768536683511
926 => 0.030559013758193
927 => 0.027221987977617
928 => 0.024145097807578
929 => 0.024961227634842
930 => 0.024868703839887
1001 => 0.026652246991984
1002 => 0.024580369711154
1003 => 0.024615254810937
1004 => 0.026435679746614
1005 => 0.02595002158376
1006 => 0.025163317558334
1007 => 0.024150841617582
1008 => 0.022279186198412
1009 => 0.020621408798681
1010 => 0.023872692042888
1011 => 0.023732490797323
1012 => 0.023529458617084
1013 => 0.023981284763829
1014 => 0.026175224279334
1015 => 0.026124646872412
1016 => 0.025802899214397
1017 => 0.026046941977248
1018 => 0.025120535682077
1019 => 0.025359291678222
1020 => 0.024144610412454
1021 => 0.024693697074152
1022 => 0.025161629644822
1023 => 0.025255574036245
1024 => 0.025467235547038
1025 => 0.023658611111704
1026 => 0.024470630384746
1027 => 0.024947615631741
1028 => 0.022792578932944
1029 => 0.024905017485177
1030 => 0.023627126984111
1031 => 0.023193391754778
1101 => 0.023777359100804
1102 => 0.023549786458131
1103 => 0.023354132863474
1104 => 0.023244954795901
1105 => 0.023673755964698
1106 => 0.023653751877645
1107 => 0.022952149938773
1108 => 0.022036938810467
1109 => 0.022344113705908
1110 => 0.022232514186614
1111 => 0.02182806313207
1112 => 0.022100614309226
1113 => 0.020900436860024
1114 => 0.018835593938467
1115 => 0.020199692420297
1116 => 0.0201471761126
1117 => 0.020120695008834
1118 => 0.021145777317016
1119 => 0.021047239305757
1120 => 0.020868391850435
1121 => 0.021824778458299
1122 => 0.021475684481213
1123 => 0.022551509861706
1124 => 0.023260118037321
1125 => 0.023080392082912
1126 => 0.023746841497078
1127 => 0.022351190395093
1128 => 0.022814769707369
1129 => 0.022910312761136
1130 => 0.021812976796014
1201 => 0.021063361343039
1202 => 0.021013370538568
1203 => 0.019713640646482
1204 => 0.020407945863781
1205 => 0.021018905722702
1206 => 0.020726303362679
1207 => 0.020633674196743
1208 => 0.021106896516697
1209 => 0.021143669943832
1210 => 0.02030523190807
1211 => 0.020479569725584
1212 => 0.021206587405871
1213 => 0.020461250745376
1214 => 0.019013183364088
1215 => 0.018654042632431
1216 => 0.018606126638551
1217 => 0.017632108490486
1218 => 0.018678042133418
1219 => 0.018221464068999
1220 => 0.019663788703854
1221 => 0.018839940607767
1222 => 0.018804426162949
1223 => 0.018750740870771
1224 => 0.017912363214548
1225 => 0.018095914639581
1226 => 0.018706067532063
1227 => 0.018923776957965
1228 => 0.018901068081202
1229 => 0.018703077450022
1230 => 0.0187937165471
1231 => 0.018501736434656
]
'min_raw' => 0.010216059319504
'max_raw' => 0.031768536683511
'avg_raw' => 0.020992298001507
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.010216'
'max' => '$0.031768'
'avg' => '$0.020992'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.0058197527106797
'max_diff' => 0.019841780492078
'year' => 2033
]
8 => [
'items' => [
101 => 0.018398632179912
102 => 0.018073206790878
103 => 0.017594921370058
104 => 0.017661429891318
105 => 0.016713821322484
106 => 0.01619751388079
107 => 0.016054606785752
108 => 0.015863505445769
109 => 0.016076192190605
110 => 0.016711136866469
111 => 0.015945258876349
112 => 0.014632214782382
113 => 0.014711130969748
114 => 0.014888432212332
115 => 0.014558032519741
116 => 0.014245336939048
117 => 0.014517200376666
118 => 0.013960846284498
119 => 0.014955664946357
120 => 0.014928757889501
121 => 0.015299564767469
122 => 0.015531437917985
123 => 0.014997045375869
124 => 0.014862647096678
125 => 0.014939206464566
126 => 0.013673850651469
127 => 0.015196158201985
128 => 0.015209323180897
129 => 0.015096596638762
130 => 0.015907178413439
131 => 0.017617758784804
201 => 0.01697416964116
202 => 0.016724952472157
203 => 0.016251190451704
204 => 0.016882450214752
205 => 0.016833979314136
206 => 0.016614775519509
207 => 0.016482200380561
208 => 0.016726474139048
209 => 0.016451932158626
210 => 0.016402616875033
211 => 0.016103819912018
212 => 0.015997162990617
213 => 0.015918198452146
214 => 0.015831266254185
215 => 0.016023017020733
216 => 0.01558848455682
217 => 0.015064481003085
218 => 0.015020915777389
219 => 0.015141203195829
220 => 0.015087984967515
221 => 0.015020660988986
222 => 0.014892121179381
223 => 0.014853986163689
224 => 0.014977906464207
225 => 0.014838007669925
226 => 0.01504443596157
227 => 0.014988298888441
228 => 0.014674721761303
301 => 0.014283888559767
302 => 0.014280409324473
303 => 0.014196204952297
304 => 0.014088958024119
305 => 0.014059124382177
306 => 0.014494304796239
307 => 0.015395115229494
308 => 0.015218264586879
309 => 0.015346057300551
310 => 0.01597467097072
311 => 0.016174488353394
312 => 0.016032662708106
313 => 0.015838523017411
314 => 0.015847064178526
315 => 0.016510498271712
316 => 0.016551875842319
317 => 0.016656423614333
318 => 0.016790797046568
319 => 0.016055547084663
320 => 0.01581243397144
321 => 0.015697233490994
322 => 0.015342460599414
323 => 0.015725052747054
324 => 0.015502132686853
325 => 0.015532212219008
326 => 0.015512622884232
327 => 0.015523319985644
328 => 0.014955386874267
329 => 0.015162311850367
330 => 0.014818258943841
331 => 0.014357610723754
401 => 0.014356066469396
402 => 0.014468809468663
403 => 0.014401745521065
404 => 0.014221278162452
405 => 0.014246912698961
406 => 0.014022327185214
407 => 0.014274181446582
408 => 0.01428140372562
409 => 0.014184426116399
410 => 0.014572442355227
411 => 0.014731412924866
412 => 0.014667580185015
413 => 0.014726934249673
414 => 0.015225613529513
415 => 0.015306920011029
416 => 0.015343030979314
417 => 0.015294647065599
418 => 0.01473604919147
419 => 0.014760825382529
420 => 0.014579034131798
421 => 0.01442543968162
422 => 0.01443158265413
423 => 0.014510550167402
424 => 0.014855405929246
425 => 0.015581134549689
426 => 0.015608675420334
427 => 0.015642055758979
428 => 0.015506281146093
429 => 0.015465330223659
430 => 0.01551935506068
501 => 0.01579190057352
502 => 0.016492961627929
503 => 0.016245159829008
504 => 0.016043693109219
505 => 0.016220433737511
506 => 0.016193225903125
507 => 0.015963564399904
508 => 0.01595711856642
509 => 0.015516324714516
510 => 0.015353373263857
511 => 0.015217198834982
512 => 0.015068499913574
513 => 0.01498034620853
514 => 0.015115790364619
515 => 0.015146768045645
516 => 0.014850617031197
517 => 0.014810252742243
518 => 0.015052096053505
519 => 0.014945669829046
520 => 0.015055131840146
521 => 0.015080527965669
522 => 0.015076438604537
523 => 0.014965317403228
524 => 0.01503614274326
525 => 0.014868619700033
526 => 0.014686463551671
527 => 0.014570259277745
528 => 0.014468855636484
529 => 0.01452512027027
530 => 0.01432454712434
531 => 0.014260379738218
601 => 0.015012148711678
602 => 0.015567488535252
603 => 0.015559413674278
604 => 0.015510260034788
605 => 0.015437227696957
606 => 0.015786557803117
607 => 0.015664858179207
608 => 0.015753404823945
609 => 0.015775943661322
610 => 0.015844161933799
611 => 0.015868544102651
612 => 0.015794844253876
613 => 0.015547498559708
614 => 0.014931136606767
615 => 0.014644218453835
616 => 0.014549530684368
617 => 0.01455297240495
618 => 0.014458034386769
619 => 0.014485997887947
620 => 0.014448309822242
621 => 0.014376937743519
622 => 0.01452071324553
623 => 0.014537282032775
624 => 0.014503723112617
625 => 0.014511627453165
626 => 0.014233773927454
627 => 0.014254898527547
628 => 0.014137274069841
629 => 0.014115220902006
630 => 0.013817876515658
701 => 0.013291087834486
702 => 0.01358297990047
703 => 0.013230415330997
704 => 0.013096893786312
705 => 0.013728964011988
706 => 0.013665521692229
707 => 0.013556936018516
708 => 0.013396315175856
709 => 0.013336739342895
710 => 0.012974775441237
711 => 0.012953388682925
712 => 0.013132787766434
713 => 0.01305000126214
714 => 0.012933737656411
715 => 0.012512642661911
716 => 0.012039192468332
717 => 0.012053482953674
718 => 0.012204078651398
719 => 0.012641955953125
720 => 0.012470869715986
721 => 0.012346744687953
722 => 0.012323499801387
723 => 0.012614458223226
724 => 0.013026225347802
725 => 0.013219417269883
726 => 0.013027969942427
727 => 0.012808045560901
728 => 0.012821431338973
729 => 0.012910480923552
730 => 0.012919838775798
731 => 0.012776690612016
801 => 0.012816985981626
802 => 0.012755773630503
803 => 0.012380113544655
804 => 0.012373319044933
805 => 0.012281126001528
806 => 0.012278334432814
807 => 0.01212149106735
808 => 0.012099547596315
809 => 0.011788125574476
810 => 0.011993104492323
811 => 0.011855615396107
812 => 0.011648386897711
813 => 0.011612660626478
814 => 0.011611586651624
815 => 0.011824363984033
816 => 0.011990618065309
817 => 0.0118580070778
818 => 0.0118278141265
819 => 0.01215019585518
820 => 0.012109169841631
821 => 0.012073641578486
822 => 0.012989356118098
823 => 0.012264496605899
824 => 0.011948416485046
825 => 0.011557207313503
826 => 0.011684586992405
827 => 0.011711427762347
828 => 0.01077064022554
829 => 0.010388962839025
830 => 0.010257985543182
831 => 0.010182606257677
901 => 0.010216957544635
902 => 0.009873403130479
903 => 0.010104277378657
904 => 0.0098067882959301
905 => 0.0097569132830976
906 => 0.010288860614839
907 => 0.01036287797846
908 => 0.010047096909862
909 => 0.010249879476213
910 => 0.010176347698766
911 => 0.009811887892408
912 => 0.00979796820859
913 => 0.0096150950891413
914 => 0.0093289340684178
915 => 0.0091981508032219
916 => 0.0091300377431955
917 => 0.0091581425192594
918 => 0.0091439318844612
919 => 0.0090511978799586
920 => 0.0091492472890487
921 => 0.0088987715656365
922 => 0.0087990301143538
923 => 0.0087539792147934
924 => 0.0085316675934204
925 => 0.0088854642454516
926 => 0.0089551666429146
927 => 0.0090250063756327
928 => 0.0096329135673331
929 => 0.0096025442419636
930 => 0.0098770681528423
1001 => 0.0098664006584826
1002 => 0.0097881019921075
1003 => 0.0094577727981765
1004 => 0.0095894361273257
1005 => 0.0091841968652287
1006 => 0.0094878296739831
1007 => 0.0093492643400768
1008 => 0.0094409805952052
1009 => 0.0092760664987631
1010 => 0.0093673367688703
1011 => 0.0089716956671415
1012 => 0.0086022515731677
1013 => 0.0087509266613282
1014 => 0.0089125534852173
1015 => 0.0092630016211578
1016 => 0.009054277602526
1017 => 0.0091293426523549
1018 => 0.0088778873011655
1019 => 0.0083590630869917
1020 => 0.0083619995756998
1021 => 0.0082821897735491
1022 => 0.0082132224520689
1023 => 0.0090782520668916
1024 => 0.0089706719601939
1025 => 0.0087992571399073
1026 => 0.0090287026886151
1027 => 0.0090893717334839
1028 => 0.0090910988959007
1029 => 0.0092584964453912
1030 => 0.0093478365475619
1031 => 0.0093635831277916
1101 => 0.0096269867887783
1102 => 0.0097152762215627
1103 => 0.010078927900014
1104 => 0.0093402566640773
1105 => 0.0093250442160692
1106 => 0.0090319314580195
1107 => 0.0088460347129349
1108 => 0.009044659967197
1109 => 0.0092206148274222
1110 => 0.0090373988659989
1111 => 0.0090613230026608
1112 => 0.0088153705437441
1113 => 0.008903286974668
1114 => 0.0089790124486018
1115 => 0.0089372012928332
1116 => 0.0088746079689647
1117 => 0.0092061885354465
1118 => 0.0091874794604109
1119 => 0.0094962549069229
1120 => 0.0097369674482231
1121 => 0.010168367354747
1122 => 0.0097181790629036
1123 => 0.0097017724122125
1124 => 0.0098621500544281
1125 => 0.0097152516685813
1126 => 0.0098080863776765
1127 => 0.010153410247892
1128 => 0.010160706397116
1129 => 0.010038486497066
1130 => 0.010031049405041
1201 => 0.010054523073784
1202 => 0.010192009084803
1203 => 0.010143967248035
1204 => 0.010199562477814
1205 => 0.010269085163957
1206 => 0.010556660470852
1207 => 0.010625993903763
1208 => 0.010457549607053
1209 => 0.010472758241055
1210 => 0.010409755450186
1211 => 0.01034889554363
1212 => 0.010485699725693
1213 => 0.010735712057308
1214 => 0.010734156743568
1215 => 0.010792154744958
1216 => 0.010828287019342
1217 => 0.010673180847244
1218 => 0.01057221243262
1219 => 0.010610930147574
1220 => 0.010672840616947
1221 => 0.010590853416764
1222 => 0.010084790437071
1223 => 0.010238297617681
1224 => 0.01021274651671
1225 => 0.010176358641807
1226 => 0.010330711298947
1227 => 0.01031582360862
1228 => 0.0098698794833964
1229 => 0.009898427379431
1230 => 0.0098716155755078
1231 => 0.0099582499991627
]
'min_raw' => 0.0082132224520689
'max_raw' => 0.018398632179912
'avg_raw' => 0.01330592731599
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.008213'
'max' => '$0.018398'
'avg' => '$0.0133059'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0020028368674351
'max_diff' => -0.013369904503599
'year' => 2034
]
9 => [
'items' => [
101 => 0.009710573125394
102 => 0.009786756863636
103 => 0.0098345385900833
104 => 0.0098626823940372
105 => 0.0099643571123058
106 => 0.0099524267576422
107 => 0.009963615504709
108 => 0.010114372270771
109 => 0.010876848260038
110 => 0.010918348145825
111 => 0.010713987530338
112 => 0.01079562556539
113 => 0.010638898390366
114 => 0.01074411039294
115 => 0.010816093773007
116 => 0.010490814720094
117 => 0.010471553805624
118 => 0.010314179761798
119 => 0.010398743658829
120 => 0.010264196418293
121 => 0.010297209604858
122 => 0.010204901857185
123 => 0.010371037424707
124 => 0.010556802804054
125 => 0.010603734474974
126 => 0.010480277454138
127 => 0.010390886434838
128 => 0.01023394525218
129 => 0.010494941936603
130 => 0.010571265320858
131 => 0.010494541042357
201 => 0.01047676235057
202 => 0.010443071761759
203 => 0.010483909968252
204 => 0.010570849647316
205 => 0.010529850500193
206 => 0.010556931159179
207 => 0.010453727612577
208 => 0.010673232193841
209 => 0.011021858295542
210 => 0.011022979185465
211 => 0.010981979817341
212 => 0.010965203759249
213 => 0.011007271598993
214 => 0.011030091676341
215 => 0.011166131356152
216 => 0.011312107352648
217 => 0.011993313633981
218 => 0.011802033636074
219 => 0.012406440374015
220 => 0.012884447631335
221 => 0.013027781107081
222 => 0.012895921053755
223 => 0.01244483493427
224 => 0.012422702497228
225 => 0.013096815603387
226 => 0.012906347774561
227 => 0.012883692232385
228 => 0.012642675540783
301 => 0.012785146256018
302 => 0.012753985820677
303 => 0.01270479754907
304 => 0.012976621749142
305 => 0.013485452385763
306 => 0.013406146359262
307 => 0.01334694808938
308 => 0.013087558503113
309 => 0.013243768970807
310 => 0.013188145415276
311 => 0.013427139509419
312 => 0.013285564702416
313 => 0.012904904793427
314 => 0.012965526138605
315 => 0.012956363344234
316 => 0.013144933003095
317 => 0.013088329072092
318 => 0.012945310518245
319 => 0.013483713257964
320 => 0.0134487523788
321 => 0.013498318912285
322 => 0.013520139633221
323 => 0.013847855893167
324 => 0.013982110759116
325 => 0.014012588964149
326 => 0.014140120703157
327 => 0.014009415858303
328 => 0.014532328428691
329 => 0.014880034775204
330 => 0.015283913589484
331 => 0.015874089089539
401 => 0.016096000536988
402 => 0.016055914220258
403 => 0.01650337854882
404 => 0.017307462000671
405 => 0.016218442475503
406 => 0.017365182679851
407 => 0.017002137970907
408 => 0.016141365496896
409 => 0.01608594189741
410 => 0.016668867010584
411 => 0.017961738807142
412 => 0.017637889085735
413 => 0.017962268509271
414 => 0.017583862681289
415 => 0.017565071642475
416 => 0.017943890182823
417 => 0.01882902035067
418 => 0.018408528186534
419 => 0.017805649560337
420 => 0.018250805756091
421 => 0.017865170262068
422 => 0.016996225561455
423 => 0.017637641443957
424 => 0.0172087449098
425 => 0.017333919719861
426 => 0.018235396441113
427 => 0.018126928377
428 => 0.018267296095834
429 => 0.018019550746155
430 => 0.017788117523699
501 => 0.017356130227528
502 => 0.017228240085848
503 => 0.017263584320003
504 => 0.017228222571001
505 => 0.016986529648961
506 => 0.016934336085458
507 => 0.016847344526301
508 => 0.016874306848008
509 => 0.016710737266515
510 => 0.017019426861992
511 => 0.017076722371077
512 => 0.017301360916089
513 => 0.017324683635042
514 => 0.017950298785373
515 => 0.017605720473607
516 => 0.0178368933546
517 => 0.01781621507624
518 => 0.016160021046498
519 => 0.016388229971073
520 => 0.016743251441806
521 => 0.016583314750461
522 => 0.016357201688321
523 => 0.016174603267228
524 => 0.015897947987624
525 => 0.016287334980972
526 => 0.016799337470534
527 => 0.01733766886311
528 => 0.017984438758421
529 => 0.017840087247019
530 => 0.017325577949801
531 => 0.017348658461025
601 => 0.017491333099565
602 => 0.017306556479298
603 => 0.017252062246713
604 => 0.017483846428824
605 => 0.0174854425991
606 => 0.017272834766482
607 => 0.01703656006735
608 => 0.017035570067734
609 => 0.016993527267166
610 => 0.017591342002111
611 => 0.017920079660444
612 => 0.017957768903185
613 => 0.017917542874116
614 => 0.01793302427619
615 => 0.017741739076046
616 => 0.018178960319711
617 => 0.018580197769598
618 => 0.01847265756184
619 => 0.018311439502671
620 => 0.018183021553228
621 => 0.018442406374133
622 => 0.018430856376367
623 => 0.018576693310505
624 => 0.018570077304777
625 => 0.018521037829032
626 => 0.018472659313194
627 => 0.018664474660029
628 => 0.018609234920601
629 => 0.0185539093786
630 => 0.0184429455342
701 => 0.018458027363568
702 => 0.018296837140969
703 => 0.018222263168432
704 => 0.017100849549457
705 => 0.016801171187219
706 => 0.016895456100495
707 => 0.016926497142052
708 => 0.016796076734758
709 => 0.016983066096563
710 => 0.016953924002597
711 => 0.017067298842666
712 => 0.016996467164754
713 => 0.016999374121523
714 => 0.017207674983357
715 => 0.017268145609722
716 => 0.017237389761095
717 => 0.017258930103225
718 => 0.017755318195995
719 => 0.017684747682801
720 => 0.017647258504189
721 => 0.01765764326287
722 => 0.017784481063254
723 => 0.017819988722274
724 => 0.017669540275926
725 => 0.017740492632956
726 => 0.018042598763994
727 => 0.018148318812131
728 => 0.018485726457282
729 => 0.018342389692679
730 => 0.018605490527578
731 => 0.019414172796372
801 => 0.020060204149242
802 => 0.019466087018768
803 => 0.020652441326717
804 => 0.021576188327872
805 => 0.021540733379387
806 => 0.021379656723082
807 => 0.020327995321351
808 => 0.01936024082009
809 => 0.020169808553421
810 => 0.020171872308063
811 => 0.0201023297218
812 => 0.01967040669113
813 => 0.02008729973658
814 => 0.020120391192594
815 => 0.020101868776955
816 => 0.019770714402037
817 => 0.019265102879097
818 => 0.019363898160417
819 => 0.019525726846587
820 => 0.019219351382666
821 => 0.019121445857999
822 => 0.019303470855643
823 => 0.019889993324466
824 => 0.019779114649228
825 => 0.019776219158922
826 => 0.020250605151464
827 => 0.019911047159709
828 => 0.019365144285301
829 => 0.019227296609938
830 => 0.018738030227723
831 => 0.019075968260626
901 => 0.019088130048811
902 => 0.018903044841833
903 => 0.019380162929784
904 => 0.019375766202609
905 => 0.019828718817463
906 => 0.020694594095831
907 => 0.020438512168883
908 => 0.020140716749476
909 => 0.020173095368537
910 => 0.020528208902392
911 => 0.02031349915337
912 => 0.020390710276128
913 => 0.020528092034111
914 => 0.020610977859699
915 => 0.020161169373775
916 => 0.02005629749888
917 => 0.019841766447869
918 => 0.019785799301072
919 => 0.019960530365783
920 => 0.019914494903572
921 => 0.019087107897607
922 => 0.019000641351946
923 => 0.019003293157455
924 => 0.01878586891713
925 => 0.018454244762838
926 => 0.019325733240069
927 => 0.019255740518874
928 => 0.019178473971681
929 => 0.019187938682835
930 => 0.019566222293316
1001 => 0.019346798695457
1002 => 0.019930172293187
1003 => 0.019810248219309
1004 => 0.019687248545451
1005 => 0.019670246243862
1006 => 0.019622901863266
1007 => 0.019460540366134
1008 => 0.019264479101933
1009 => 0.019135022472772
1010 => 0.017651046757671
1011 => 0.017926464018505
1012 => 0.01824330647202
1013 => 0.018352679217307
1014 => 0.01816558956813
1015 => 0.019467927805808
1016 => 0.019705877551476
1017 => 0.018985112250771
1018 => 0.018850286491663
1019 => 0.019476766960129
1020 => 0.019098922653522
1021 => 0.019269065921651
1022 => 0.018901309239347
1023 => 0.019648562425726
1024 => 0.019642869608438
1025 => 0.019352171241457
1026 => 0.019597867510613
1027 => 0.019555171737559
1028 => 0.019226973997196
1029 => 0.019658966879492
1030 => 0.019659181142572
1031 => 0.019379390284681
1101 => 0.019052655816758
1102 => 0.018994243411017
1103 => 0.018950237509894
1104 => 0.019258243167586
1105 => 0.019534400077164
1106 => 0.020048259620784
1107 => 0.020177456119052
1108 => 0.020681718652888
1109 => 0.020381454866086
1110 => 0.020514557913708
1111 => 0.020659060100478
1112 => 0.020728339762708
1113 => 0.020615452270857
1114 => 0.021398779548645
1115 => 0.021464916371418
1116 => 0.021487091476012
1117 => 0.021222957925283
1118 => 0.021457570339558
1119 => 0.021347802960465
1120 => 0.021633387186608
1121 => 0.02167817043979
1122 => 0.021640240617555
1123 => 0.021654455528971
1124 => 0.020986023885779
1125 => 0.020951362178822
1126 => 0.020478747344977
1127 => 0.020671341383161
1128 => 0.020311296060048
1129 => 0.020425470140885
1130 => 0.020475796987827
1201 => 0.020449509099008
1202 => 0.020682230361115
1203 => 0.020484369746511
1204 => 0.019962183053277
1205 => 0.019439854090627
1206 => 0.019433296675981
1207 => 0.019295776679987
1208 => 0.019196374910927
1209 => 0.019215523218115
1210 => 0.019283004350199
1211 => 0.019192452784856
1212 => 0.019211776552403
1213 => 0.019532679847269
1214 => 0.019597034714477
1215 => 0.019378331730635
1216 => 0.01850020769182
1217 => 0.018284713850087
1218 => 0.018439606550096
1219 => 0.018365577815859
1220 => 0.014822454671977
1221 => 0.015654858898744
1222 => 0.015160272572975
1223 => 0.015388200706712
1224 => 0.014883356140611
1225 => 0.015124294428725
1226 => 0.015079801924568
1227 => 0.016418283288577
1228 => 0.016397384743099
1229 => 0.016407387770893
1230 => 0.015929917191538
1231 => 0.016690540789189
]
'min_raw' => 0.009710573125394
'max_raw' => 0.02167817043979
'avg_raw' => 0.015694371782592
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.00971'
'max' => '$0.021678'
'avg' => '$0.015694'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0014973506733251
'max_diff' => 0.0032795382598781
'year' => 2035
]
10 => [
'items' => [
101 => 0.017065251324532
102 => 0.016995902377038
103 => 0.017013356013058
104 => 0.016713444719575
105 => 0.016410291567787
106 => 0.016074048067519
107 => 0.016698746930065
108 => 0.016629291080515
109 => 0.016788597809956
110 => 0.017193759676714
111 => 0.017253421300654
112 => 0.017333607128258
113 => 0.017304866217078
114 => 0.017989591324088
115 => 0.017906666595667
116 => 0.018106491332088
117 => 0.017695436688531
118 => 0.017230289341681
119 => 0.017318698645505
120 => 0.017310184118604
121 => 0.017201784418636
122 => 0.017103926016382
123 => 0.016941019348065
124 => 0.017456480152272
125 => 0.017435553384963
126 => 0.017774333422988
127 => 0.017714450760533
128 => 0.017314539684889
129 => 0.017328822587191
130 => 0.017424881969303
131 => 0.017757344587581
201 => 0.017856042128466
202 => 0.017810321495111
203 => 0.017918538842979
204 => 0.018004069422356
205 => 0.017929280166896
206 => 0.018988138307626
207 => 0.018548426584263
208 => 0.018762739018736
209 => 0.018813851271555
210 => 0.018682928310733
211 => 0.018711320812935
212 => 0.018754327717279
213 => 0.019015457218835
214 => 0.019700736589351
215 => 0.020004242157697
216 => 0.020917353634769
217 => 0.019979040245248
218 => 0.01992336461184
219 => 0.020087843562186
220 => 0.020623936661893
221 => 0.021058389766542
222 => 0.021202522925554
223 => 0.021221572501897
224 => 0.021491975889996
225 => 0.02164696606933
226 => 0.021459141806366
227 => 0.021299980409524
228 => 0.020729884041875
229 => 0.020795874248751
301 => 0.021250481334789
302 => 0.021892640620041
303 => 0.022443680092073
304 => 0.022250725274632
305 => 0.023722834326836
306 => 0.023868787926336
307 => 0.02384862185813
308 => 0.024181125878598
309 => 0.023521173111235
310 => 0.023239030517204
311 => 0.02133439291008
312 => 0.021869518388523
313 => 0.022647354698258
314 => 0.022544405145929
315 => 0.021979519626175
316 => 0.022443251575752
317 => 0.022289927290983
318 => 0.022168994066155
319 => 0.02272301261315
320 => 0.022113846462901
321 => 0.022641277799922
322 => 0.021964841654615
323 => 0.022251606675985
324 => 0.022088824980592
325 => 0.022194164687285
326 => 0.021578350914399
327 => 0.021910629078214
328 => 0.021564527050355
329 => 0.02156436295293
330 => 0.021556722731482
331 => 0.021963910232407
401 => 0.021977188602194
402 => 0.021676276423784
403 => 0.021632910277743
404 => 0.021793257648772
405 => 0.02160553287234
406 => 0.021693368113707
407 => 0.021608193312322
408 => 0.021589018670475
409 => 0.021436231861937
410 => 0.021370407103858
411 => 0.021396218687596
412 => 0.021308110445515
413 => 0.021255022042647
414 => 0.021546162111936
415 => 0.021390617717472
416 => 0.021522322702664
417 => 0.021372228249543
418 => 0.020851935481988
419 => 0.020552709609371
420 => 0.019569924802625
421 => 0.019848641354677
422 => 0.020033430717041
423 => 0.019972357833882
424 => 0.020103566018976
425 => 0.020111621135912
426 => 0.020068964017429
427 => 0.020019572538941
428 => 0.019995531498733
429 => 0.020174713715988
430 => 0.020278735024101
501 => 0.020051976801717
502 => 0.019998850522897
503 => 0.020228115605392
504 => 0.020367967173272
505 => 0.021400552574686
506 => 0.021324055312942
507 => 0.02151604842809
508 => 0.021494432949699
509 => 0.021695672321275
510 => 0.022024613643698
511 => 0.021355783961771
512 => 0.021471869668164
513 => 0.021443408133767
514 => 0.021754143703297
515 => 0.021755113785827
516 => 0.021568812289501
517 => 0.021669809353056
518 => 0.021613435562889
519 => 0.021715310621095
520 => 0.021323033645374
521 => 0.02180078465812
522 => 0.022071638696751
523 => 0.02207539950534
524 => 0.022203782170021
525 => 0.02233422639276
526 => 0.022584602719008
527 => 0.022327243532912
528 => 0.021864279410538
529 => 0.021897703924808
530 => 0.021626268229252
531 => 0.021630831112333
601 => 0.021606474084847
602 => 0.021679571357846
603 => 0.021339074386181
604 => 0.021418988344855
605 => 0.021307108334736
606 => 0.021471626462871
607 => 0.021294632152818
608 => 0.021443394408753
609 => 0.021507595266868
610 => 0.021744497815456
611 => 0.021259641453772
612 => 0.020270986510408
613 => 0.020478813765786
614 => 0.020171420930604
615 => 0.020199871307827
616 => 0.020257345597661
617 => 0.02007105261989
618 => 0.020106591449282
619 => 0.020105321752213
620 => 0.02009438018882
621 => 0.020045918190326
622 => 0.019975638704594
623 => 0.020255610544863
624 => 0.020303183216134
625 => 0.020408931371363
626 => 0.020723566151664
627 => 0.020692126717512
628 => 0.020743405739023
629 => 0.020631463922985
630 => 0.020205063967616
701 => 0.020228219536664
702 => 0.019939469219585
703 => 0.020401547376556
704 => 0.020292121169851
705 => 0.020221573382529
706 => 0.020202323765138
707 => 0.020517738464202
708 => 0.020612115485682
709 => 0.020553306059302
710 => 0.020432686210052
711 => 0.020664311978669
712 => 0.020726285262845
713 => 0.020740158795685
714 => 0.021150555247839
715 => 0.020763095398424
716 => 0.020856360835198
717 => 0.021583991149114
718 => 0.020924130860512
719 => 0.021273673572025
720 => 0.021256565275228
721 => 0.021435379498558
722 => 0.021241897289719
723 => 0.021244295733584
724 => 0.021403070649976
725 => 0.021180099915111
726 => 0.021124889225514
727 => 0.021048616053262
728 => 0.021215155734476
729 => 0.021314988741422
730 => 0.022119569458142
731 => 0.022639365294482
801 => 0.022616799586362
802 => 0.022823007917339
803 => 0.022730109175582
804 => 0.022430114633
805 => 0.022942168736751
806 => 0.02278013339307
807 => 0.022793491389931
808 => 0.02279299420462
809 => 0.022900733542792
810 => 0.022824390347532
811 => 0.022673910073206
812 => 0.022773805901924
813 => 0.023070460799804
814 => 0.023991286705309
815 => 0.024506593081349
816 => 0.023960264614433
817 => 0.024337114675282
818 => 0.024111138924179
819 => 0.024070072408007
820 => 0.024306762095221
821 => 0.0245438660764
822 => 0.024528763577828
823 => 0.024356638262916
824 => 0.024259409040041
825 => 0.024995661289833
826 => 0.02553811940575
827 => 0.02550112739893
828 => 0.025664398086589
829 => 0.026143765875329
830 => 0.026187593258299
831 => 0.026182072015405
901 => 0.026073441273801
902 => 0.026545441115588
903 => 0.026939191687655
904 => 0.026048296395763
905 => 0.02638753766024
906 => 0.026539833993534
907 => 0.026763450195097
908 => 0.027140728209559
909 => 0.027550552201317
910 => 0.027608505807242
911 => 0.027567384950503
912 => 0.027297095011278
913 => 0.027745529313276
914 => 0.028008211610308
915 => 0.028164632906814
916 => 0.028561291288729
917 => 0.026540774523841
918 => 0.025110552331454
919 => 0.024887202483454
920 => 0.025341393182161
921 => 0.025461159647307
922 => 0.025412881935381
923 => 0.023803036827737
924 => 0.024878726982128
925 => 0.026036079141654
926 => 0.026080537751567
927 => 0.026659932441718
928 => 0.026848607103023
929 => 0.027315095771593
930 => 0.027285916778362
1001 => 0.027399499345703
1002 => 0.027373388680448
1003 => 0.028237460708195
1004 => 0.029190660470739
1005 => 0.029157654193952
1006 => 0.029020620450338
1007 => 0.029224138927329
1008 => 0.030207943233369
1009 => 0.030117370298011
1010 => 0.030205354189727
1011 => 0.031365314911328
1012 => 0.032873428851899
1013 => 0.03217275851434
1014 => 0.033693011534384
1015 => 0.034649930225353
1016 => 0.036304822154143
1017 => 0.036097621534144
1018 => 0.036741858817864
1019 => 0.035726689180271
1020 => 0.033395654492724
1021 => 0.033026759330577
1022 => 0.033765296787108
1023 => 0.035580919058558
1024 => 0.033708116380529
1025 => 0.034086981923151
1026 => 0.033977868621388
1027 => 0.033972054437239
1028 => 0.03419395819822
1029 => 0.033872075219195
1030 => 0.032560666057004
1031 => 0.033161677147854
1101 => 0.032929597902753
1102 => 0.033187107127846
1103 => 0.034576778210786
1104 => 0.033962371499397
1105 => 0.033315143939297
1106 => 0.034126910930956
1107 => 0.03516056926474
1108 => 0.035095884783875
1109 => 0.03497036985498
1110 => 0.035677890937412
1111 => 0.036846508481363
1112 => 0.037162381107607
1113 => 0.037395551822569
1114 => 0.037427702124711
1115 => 0.037758870218072
1116 => 0.035978095914962
1117 => 0.038804230467526
1118 => 0.039292225834362
1119 => 0.039200502930732
1120 => 0.039742889242987
1121 => 0.039583305430909
1122 => 0.039352093525141
1123 => 0.040211891198941
1124 => 0.039226202548024
1125 => 0.037827141602797
1126 => 0.037059589097958
1127 => 0.038070364153025
1128 => 0.038687609207965
1129 => 0.039095568925123
1130 => 0.039219017289039
1201 => 0.036116332354899
1202 => 0.034444157258192
1203 => 0.035516002323655
1204 => 0.036823727278313
1205 => 0.035970831436811
1206 => 0.036004263339052
1207 => 0.034788258006154
1208 => 0.036931316768082
1209 => 0.03661909113243
1210 => 0.038238918282508
1211 => 0.037852333533217
1212 => 0.039173239692778
1213 => 0.03882540083258
1214 => 0.040269260493855
1215 => 0.040845255203678
1216 => 0.041812439967888
1217 => 0.042523905017591
1218 => 0.042941690902934
1219 => 0.042916608605454
1220 => 0.044572084423286
1221 => 0.04359590817143
1222 => 0.042369600732021
1223 => 0.042347420699393
1224 => 0.042982542699173
1225 => 0.044313584173502
1226 => 0.04465870386193
1227 => 0.044851578685667
1228 => 0.044556184179093
1229 => 0.043496614820885
1230 => 0.04303909814415
1231 => 0.043428915608263
]
'min_raw' => 0.016074048067519
'max_raw' => 0.044851578685667
'avg_raw' => 0.030462813376593
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.016074'
'max' => '$0.044851'
'avg' => '$0.030462'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.0063634749421253
'max_diff' => 0.023173408245878
'year' => 2036
]
11 => [
'items' => [
101 => 0.042952202347049
102 => 0.043775143178021
103 => 0.044905216709621
104 => 0.04467186099414
105 => 0.045451934164347
106 => 0.046259227829421
107 => 0.047413694028303
108 => 0.04771551424245
109 => 0.048214411579241
110 => 0.048727940818036
111 => 0.048892872569536
112 => 0.049207778458467
113 => 0.04920611874899
114 => 0.050155108840893
115 => 0.051201874300039
116 => 0.051597004028191
117 => 0.052505583050495
118 => 0.050949673315205
119 => 0.052129848722425
120 => 0.053194396481444
121 => 0.051925198756989
122 => 0.053674492135007
123 => 0.053742413232892
124 => 0.054767941171305
125 => 0.053728372138343
126 => 0.053111079364992
127 => 0.054893180471998
128 => 0.055755483062019
129 => 0.055495750504253
130 => 0.053519172915079
131 => 0.052368719978778
201 => 0.049357762738682
202 => 0.052924371653249
203 => 0.054661562816126
204 => 0.053514674009641
205 => 0.054093098013095
206 => 0.057248791821323
207 => 0.058450275707453
208 => 0.058200375458144
209 => 0.058242604486569
210 => 0.05889090338305
211 => 0.06176581771477
212 => 0.060043102407211
213 => 0.061360053710929
214 => 0.062058559933799
215 => 0.062707371441776
216 => 0.061114095437168
217 => 0.059041266765045
218 => 0.058384714913155
219 => 0.053400638520544
220 => 0.053141195699562
221 => 0.052995562582223
222 => 0.052077366377612
223 => 0.051355915675895
224 => 0.050782191292143
225 => 0.049276567180573
226 => 0.049784671120169
227 => 0.0473850205345
228 => 0.048920231940816
301 => 0.0450903316645
302 => 0.048279986420717
303 => 0.046544002352714
304 => 0.047709668965236
305 => 0.047705602064237
306 => 0.045559240255648
307 => 0.044321263557881
308 => 0.045110150492472
309 => 0.045955899908276
310 => 0.046093119905548
311 => 0.047189656099456
312 => 0.047495675781209
313 => 0.046568421858804
314 => 0.04501096549404
315 => 0.045372727085777
316 => 0.044313932470771
317 => 0.042458435633921
318 => 0.043791085856014
319 => 0.04424611123433
320 => 0.044447076363619
321 => 0.042622408329828
322 => 0.04204905801814
323 => 0.041743811123073
324 => 0.044775423764077
325 => 0.04494150234803
326 => 0.044091820831382
327 => 0.047932461856739
328 => 0.047063206507583
329 => 0.048034377705321
330 => 0.045339901013133
331 => 0.045442833651368
401 => 0.044167225204382
402 => 0.044881480698507
403 => 0.044376667936788
404 => 0.044823775912992
405 => 0.045091770590433
406 => 0.046367169722625
407 => 0.048294549430105
408 => 0.046176667623089
409 => 0.045253876191146
410 => 0.045826370805547
411 => 0.047350999406156
412 => 0.049660889780381
413 => 0.048293388187964
414 => 0.048900262172996
415 => 0.049032837140781
416 => 0.048024492094193
417 => 0.049698068900537
418 => 0.050594952307171
419 => 0.051514969098506
420 => 0.052313793900137
421 => 0.051147494160444
422 => 0.052395602064416
423 => 0.051389847414518
424 => 0.050487581520555
425 => 0.050488949885477
426 => 0.049922945310193
427 => 0.048826240124413
428 => 0.048623990861679
429 => 0.049676117067688
430 => 0.050519822648184
501 => 0.050589314280871
502 => 0.051056433041392
503 => 0.051332869112163
504 => 0.054042318402327
505 => 0.055132081320572
506 => 0.056464622788845
507 => 0.056983722788659
508 => 0.058546027680451
509 => 0.057284339596129
510 => 0.057011365442696
511 => 0.053221724801246
512 => 0.053842278243984
513 => 0.054835844180308
514 => 0.053238108337583
515 => 0.054251503981695
516 => 0.054451569748498
517 => 0.053183817885028
518 => 0.053860978931632
519 => 0.05206263995611
520 => 0.048333748305478
521 => 0.049702220222905
522 => 0.050709876176797
523 => 0.049271826887509
524 => 0.051849474578365
525 => 0.050343666010816
526 => 0.049866396986461
527 => 0.048004400363761
528 => 0.048883191094853
529 => 0.050071768141726
530 => 0.049337365713671
531 => 0.050861361022964
601 => 0.053019744815626
602 => 0.054557937640254
603 => 0.054676020985513
604 => 0.053687066050193
605 => 0.05527187264547
606 => 0.055283416231344
607 => 0.053495747917746
608 => 0.052400811029447
609 => 0.052152039064658
610 => 0.052773520207316
611 => 0.053528113046252
612 => 0.054717895636375
613 => 0.055436856337325
614 => 0.057311524538111
615 => 0.057818756002294
616 => 0.05837604959846
617 => 0.059120765705919
618 => 0.060014988334213
619 => 0.058058480131627
620 => 0.058136215849904
621 => 0.056314342501355
622 => 0.054367409545365
623 => 0.055844888970343
624 => 0.05777649677765
625 => 0.057333383812416
626 => 0.057283524551851
627 => 0.057367373998316
628 => 0.057033281293247
629 => 0.055522192370272
630 => 0.054763332973071
701 => 0.05574245520114
702 => 0.056262815089642
703 => 0.057069847896557
704 => 0.056970364068709
705 => 0.059049193910326
706 => 0.059856964326227
707 => 0.059650302087395
708 => 0.059688332912944
709 => 0.061150762666789
710 => 0.062777285324683
711 => 0.064300738432369
712 => 0.065850460367341
713 => 0.063982210088056
714 => 0.063033627813893
715 => 0.064012322587827
716 => 0.063493013364651
717 => 0.06647711819814
718 => 0.06668373114229
719 => 0.069667620191034
720 => 0.072499686213191
721 => 0.070720916286407
722 => 0.072398216209807
723 => 0.074212352829233
724 => 0.077712116701164
725 => 0.076533519352275
726 => 0.075630732254001
727 => 0.074777602808368
728 => 0.076552829754245
729 => 0.078836630860174
730 => 0.079328539744415
731 => 0.080125620060544
801 => 0.079287587570479
802 => 0.080296905398511
803 => 0.083860240848193
804 => 0.082897396155257
805 => 0.08153000190628
806 => 0.084342913017429
807 => 0.085360894613639
808 => 0.092505622576942
809 => 0.1015261367646
810 => 0.097791584659021
811 => 0.095473427653844
812 => 0.09601824953748
813 => 0.099312235955138
814 => 0.10037015984659
815 => 0.097494358021395
816 => 0.098510139843308
817 => 0.10410719755152
818 => 0.10710983943686
819 => 0.10303184844796
820 => 0.091780833045042
821 => 0.081406883015144
822 => 0.084158521708131
823 => 0.083846571273636
824 => 0.089859911533936
825 => 0.082874432627765
826 => 0.082992050177285
827 => 0.08912973994593
828 => 0.087492309542297
829 => 0.084839881994653
830 => 0.081426248671594
831 => 0.075115831751055
901 => 0.069526519505539
902 => 0.08048844796073
903 => 0.080015749672769
904 => 0.07933121250184
905 => 0.080854575901085
906 => 0.088251596153574
907 => 0.088081070894936
908 => 0.086996276202233
909 => 0.087819083415707
910 => 0.084695639911916
911 => 0.08550062242233
912 => 0.081405239728457
913 => 0.083256523744377
914 => 0.084834191076401
915 => 0.085150931151069
916 => 0.085864562712445
917 => 0.07976665915459
918 => 0.082504438827024
919 => 0.084112627889315
920 => 0.076846771199465
921 => 0.083969005264067
922 => 0.079660508220258
923 => 0.078198139612136
924 => 0.080167026290559
925 => 0.079399749237172
926 => 0.078740089482691
927 => 0.078371988005297
928 => 0.079817721083838
929 => 0.079750275907699
930 => 0.077384775986508
1001 => 0.074299077769425
1002 => 0.075334739375669
1003 => 0.074958473804741
1004 => 0.073594838836474
1005 => 0.074513764159172
1006 => 0.070467282095473
1007 => 0.063505520022714
1008 => 0.068104673292518
1009 => 0.067927610894547
1010 => 0.067838328004349
1011 => 0.071294464575347
1012 => 0.070962236790683
1013 => 0.070359240108333
1014 => 0.073583764329527
1015 => 0.07240676961282
1016 => 0.076033989994879
1017 => 0.078423111932409
1018 => 0.077817153329053
1019 => 0.080064134058928
1020 => 0.075358598927335
1021 => 0.076921588944748
1022 => 0.077243719021127
1023 => 0.073543974201168
1024 => 0.071016593364984
1025 => 0.070848045877462
1026 => 0.066465915802052
1027 => 0.068806814317018
1028 => 0.070866708137225
1029 => 0.069880178851564
1030 => 0.069567873151447
1031 => 0.071163375242499
1101 => 0.071287359419526
1102 => 0.068460507044077
1103 => 0.069048299167705
1104 => 0.071499490035544
1105 => 0.068986535446944
1106 => 0.064104275170095
1107 => 0.062893407118907
1108 => 0.062731855000153
1109 => 0.059447884810175
1110 => 0.062974323112078
1111 => 0.061434938290627
1112 => 0.066297836496931
1113 => 0.063520175121736
1114 => 0.063400435691493
1115 => 0.063219431980725
1116 => 0.060392783179111
1117 => 0.061011639623762
1118 => 0.063068812700278
1119 => 0.063802835229693
1120 => 0.063726270666206
1121 => 0.063058731429917
1122 => 0.063364327473936
1123 => 0.06237989613943
1124 => 0.06203227294605
1125 => 0.060935078526449
1126 => 0.059322505837331
1127 => 0.059546743960236
1128 => 0.056351815510496
1129 => 0.05461104892339
1130 => 0.054129227675014
1201 => 0.05348491616499
1202 => 0.054202004374519
1203 => 0.056342764679619
1204 => 0.053760553564034
1205 => 0.049333533727414
1206 => 0.049599605162869
1207 => 0.05019738868102
1208 => 0.04908342304968
1209 => 0.048029148067665
1210 => 0.048945754628494
1211 => 0.047069967963346
1212 => 0.050424068537826
1213 => 0.050333349517045
1214 => 0.051583550795023
1215 => 0.052365327310855
1216 => 0.050563585545014
1217 => 0.050110452363333
1218 => 0.050368577617373
1219 => 0.046102342149192
1220 => 0.051234908339878
1221 => 0.051279294985429
1222 => 0.050899229578303
1223 => 0.05363216262464
1224 => 0.059399503775605
1225 => 0.057229598043852
1226 => 0.056389344958769
1227 => 0.054792023229805
1228 => 0.05692035959407
1229 => 0.056756936568514
1230 => 0.056017875670607
1231 => 0.055570889333542
]
'min_raw' => 0.041743811123073
'max_raw' => 0.10710983943686
'avg_raw' => 0.074426825279966
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.041743'
'max' => '$0.1071098'
'avg' => '$0.074426'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.025669763055554
'max_diff' => 0.062258260751191
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0013102905315687
]
1 => [
'year' => 2028
'avg' => 0.0022488389322311
]
2 => [
'year' => 2029
'avg' => 0.0061434226490728
]
3 => [
'year' => 2030
'avg' => 0.0047396414247002
]
4 => [
'year' => 2031
'avg' => 0.0046549152563509
]
5 => [
'year' => 2032
'avg' => 0.0081615314001285
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0013102905315687
'min' => '$0.00131'
'max_raw' => 0.0081615314001285
'max' => '$0.008161'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.0081615314001285
]
1 => [
'year' => 2033
'avg' => 0.020992298001507
]
2 => [
'year' => 2034
'avg' => 0.01330592731599
]
3 => [
'year' => 2035
'avg' => 0.015694371782592
]
4 => [
'year' => 2036
'avg' => 0.030462813376593
]
5 => [
'year' => 2037
'avg' => 0.074426825279966
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.0081615314001285
'min' => '$0.008161'
'max_raw' => 0.074426825279966
'max' => '$0.074426'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.074426825279966
]
]
]
]
'prediction_2025_max_price' => '$0.00224'
'last_price' => 0.00217231
'sma_50day_nextmonth' => '$0.002043'
'sma_200day_nextmonth' => '$0.002228'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'augmenter'
'sma_200day_date_nextmonth' => '4 févr. 2026'
'sma_50day_date_nextmonth' => '4 févr. 2026'
'daily_sma3' => '$0.002179'
'daily_sma3_action' => 'SELL'
'daily_sma5' => '$0.002179'
'daily_sma5_action' => 'SELL'
'daily_sma10' => '$0.002147'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.002112'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.002063'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.0022014'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.0023096'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.00217'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.002166'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.002148'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.00212'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.002116'
'daily_ema50_action' => 'BUY'
'daily_ema100' => '$0.002215'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.002947'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.002199'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.002954'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.002171'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.002155'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.002155'
'weekly_ema10_action' => 'BUY'
'weekly_ema21' => '$0.002454'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.004311'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.002357'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.001178'
'weekly_ema200_action' => 'BUY'
'rsi_14' => '54.91'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 68.36
'stoch_rsi_14_action' => 'NEUTRAL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.002138'
'vwma_10_action' => 'BUY'
'hma_9' => '0.0022025'
'hma_9_action' => 'SELL'
'stochastic_fast_14' => 68.93
'stochastic_fast_14_action' => 'NEUTRAL'
'cci_20' => 96.28
'cci_20_action' => 'NEUTRAL'
'adx_14' => 8.47
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.000099'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'NEUTRAL'
'williams_percent_r_14' => -31.07
'williams_percent_r_14_action' => 'NEUTRAL'
'ultimate_oscillator' => 58.38
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.000112'
'ichimoku_cloud_action' => 'NEUTRAL'
'sell_signals' => 14
'buy_signals' => 17
'sell_pct' => 45.16
'buy_pct' => 54.84
'overall_action' => 'bullish'
'overall_action_label' => 'Haussier'
'overall_action_dir' => 1
'last_updated' => 1767709281
'last_updated_date' => '6 janvier 2026'
]
Prévision du prix de REM Token pour 2026
La prévision du prix de REM Token pour 2026 suggère que le prix moyen pourrait varier entre $0.00075 à la baisse et $0.00224 à la hausse. Sur le marché des cryptomonnaies, comparé au prix moyen d'aujourd'hui, REM Token pourrait potentiellement gagner 3.13% d'ici 2026 si REM atteint l'objectif de prix prévu.
Prévision du prix de REM Token de 2027 à 2032
La prévision du prix de REM pour 2027-2032 se situe actuellement dans une fourchette de prix comprise entre $0.00131 à la baisse et $0.008161 à la hausse. Compte tenu de la volatilité des prix sur le marché, si REM Token atteint l'objectif de prix le plus élevé, il pourrait gagner 275.71% d'ici 2032 par rapport au prix actuel.
| Prévision du Prix de REM Token | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2027 | $0.000722 | $0.00131 | $0.001898 |
| 2028 | $0.0013039 | $0.002248 | $0.003193 |
| 2029 | $0.002864 | $0.006143 | $0.009422 |
| 2030 | $0.002436 | $0.004739 | $0.007043 |
| 2031 | $0.00288 | $0.004654 | $0.006429 |
| 2032 | $0.004396 | $0.008161 | $0.011926 |
Prévision du prix de REM Token de 2032 à 2037
La prévision du prix de REM Token pour 2032-2037 est actuellement estimée entre $0.008161 à la baisse et $0.074426 à la hausse. Par rapport au prix actuel, REM Token pourrait potentiellement gagner 3326.16% d'ici 2037 s'il atteint l'objectif de prix le plus élevé. Veuillez noter que ces informations sont à titre général seulement et ne doivent pas être considérées comme un conseil en investissement à long terme.
| Prévision du Prix de REM Token | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2032 | $0.004396 | $0.008161 | $0.011926 |
| 2033 | $0.010216 | $0.020992 | $0.031768 |
| 2034 | $0.008213 | $0.0133059 | $0.018398 |
| 2035 | $0.00971 | $0.015694 | $0.021678 |
| 2036 | $0.016074 | $0.030462 | $0.044851 |
| 2037 | $0.041743 | $0.074426 | $0.1071098 |
REM Token Histogramme des prix potentiels
Prévision du prix de REM Token basée sur l'analyse technique
Au 6 janvier 2026, le sentiment global de prévision du prix pour REM Token est Haussier, avec 17 indicateurs techniques montrant des signaux haussiers et 14 indiquant des signaux baissiers. La prévision du prix de REM a été mise à jour pour la dernière fois le 6 janvier 2026.
Moyennes Mobiles Simples sur 50 et 200 jours de REM Token et Indice de Force Relative sur 14 jours - RSI (14)
Selon nos indicateurs techniques, le SMA sur 200 jours de REM Token devrait augmenter au cours du prochain mois, atteignant $0.002228 d'ici le 4 févr. 2026. Le SMA à court terme sur 50 jours pour REM Token devrait atteindre $0.002043 d'ici le 4 févr. 2026.
Le Relative Strength Index (RSI), un oscillateur de momentum, est un outil couramment utilisé pour identifier si une cryptomonnaie est survendue (en dessous de 30) ou surachetée (au-dessus de 70). Actuellement, le RSI est à 54.91, ce qui suggère que le marché de REM est dans un état NEUTRAL.
Moyennes Mobiles et Oscillateurs Populaires de REM pour le Samedi 19 Octobre 2024
Les moyennes mobiles (MA) sont des indicateurs largement utilisés sur les marchés financiers, conçus pour lisser les mouvements de prix sur une période donnée. En tant qu'indicateurs retardés, ils sont basés sur des données historiques de prix. Le tableau ci-dessous met en évidence deux types : la moyenne mobile simple (SMA) et la moyenne mobile exponentielle (EMA).
Moyenne Mobile Simple Quotidienne (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 3 | $0.002179 | SELL |
| SMA 5 | $0.002179 | SELL |
| SMA 10 | $0.002147 | BUY |
| SMA 21 | $0.002112 | BUY |
| SMA 50 | $0.002063 | BUY |
| SMA 100 | $0.0022014 | SELL |
| SMA 200 | $0.0023096 | SELL |
Moyenne Mobile Exponentielle Quotidienne (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 3 | $0.00217 | BUY |
| EMA 5 | $0.002166 | BUY |
| EMA 10 | $0.002148 | BUY |
| EMA 21 | $0.00212 | BUY |
| EMA 50 | $0.002116 | BUY |
| EMA 100 | $0.002215 | SELL |
| EMA 200 | $0.002947 | SELL |
Moyenne Mobile Simple Hebdomadaire (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 21 | $0.002199 | SELL |
| SMA 50 | $0.002954 | SELL |
| SMA 100 | — | — |
| SMA 200 | — | — |
Moyenne Mobile Exponentielle Hebdomadaire (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 21 | $0.002454 | SELL |
| EMA 50 | $0.004311 | SELL |
| EMA 100 | $0.002357 | SELL |
| EMA 200 | $0.001178 | BUY |
Oscillateurs de REM Token
Un oscillateur est un outil d'analyse technique qui établit des limites hautes et basses entre deux extrêmes, créant un indicateur de tendance qui fluctue à l'intérieur de ces limites. Les traders utilisent cet indicateur pour identifier les conditions de surachat ou de survente à court terme.
| Période | Valeur | Action |
|---|---|---|
| RSI (14) | 54.91 | NEUTRAL |
| Stoch RSI (14) | 68.36 | NEUTRAL |
| Stochastique Rapide (14) | 68.93 | NEUTRAL |
| Indice de Canal des Matières Premières (20) | 96.28 | NEUTRAL |
| Indice Directionnel Moyen (14) | 8.47 | NEUTRAL |
| Oscillateur Impressionnant (5, 34) | 0.000099 | BUY |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | NEUTRAL |
| Plage de Pourcentage de Williams (14) | -31.07 | NEUTRAL |
| Oscillateur Ultime (7, 14, 28) | 58.38 | NEUTRAL |
| VWMA (10) | 0.002138 | BUY |
| Moyenne Mobile de Hull (9) | 0.0022025 | SELL |
| Nuage Ichimoku B/L (9, 26, 52, 26) | -0.000112 | NEUTRAL |
Prévision du cours de REM Token basée sur les flux monétaires mondiaux
Définitions des flux monétaires mondiaux utilisés pour la prédiction du cours de REM Token
M0 : le total de toutes les devises physiques, plus les comptes à la banque centrale qui peuvent être échangés contre des devises physiques.
M1 : M0 plus le montant des comptes à vue, y compris les comptes de "chèques" et les comptes "courants".
M2 : M1 plus la plupart des comptes d'épargne, comptes du marché monétaire et comptes de certificats de dépôt (CD) de moins de 100 000 $.
Prédictions du cours de REM Token par des sociétés Internet ou des niches technologiques
| Comparaison | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Action Facebook | $0.003052 | $0.004289 | $0.006027 | $0.008469 | $0.01190039 | $0.016722 |
| Action Amazon.com | $0.004532 | $0.009457 | $0.019733 | $0.041176 | $0.085916 | $0.179269 |
| Action Apple | $0.003081 | $0.00437 | $0.006199 | $0.008793 | $0.012472 | $0.017691 |
| Action Netflix | $0.003427 | $0.0054081 | $0.008533 | $0.013464 | $0.021244 | $0.03352 |
| Action Google | $0.002813 | $0.003642 | $0.004717 | $0.0061093 | $0.007911 | $0.010245 |
| Action Tesla | $0.004924 | $0.011163 | $0.0253065 | $0.057368 | $0.130048 | $0.294811 |
| Action Kodak | $0.001629 | $0.001221 | $0.000916 | $0.000686 | $0.000515 | $0.000386 |
| Action Nokia | $0.001439 | $0.000953 | $0.000631 | $0.000418 | $0.000277 | $0.000183 |
Ce calcul montre la valeur potentielle des cryptomonnaies si l'on suppose que leur capitalisation se comportera comme celle de certaines sociétés Internet ou niches technologiques. En extrapolant les données, vous pourrez obtenir une potentielle image des cours futurs pour 2024, 2025, 2026, 2027, 2028, 2029 et 2030.
Aperçu des prévisions relatives à REM Token
Vous vous posez peut-être des questions telles que : "Devrais-je investir dans REM Token maintenant ?", "Devrais-je acheter REM aujourd'hui ?", " REM Token sera-t-il un bon ou un mauvais investissement à court ou à long terme ?".
Nous mettons régulièrement à jour les prévisions de REM Token avec de nouvelles valeurs. Regardez nos prévisions similaires. Nous faisons une prévision des cours futurs pour une grande quantité de devises numériques comme REM Token en utilisant des méthodes d'analyse technique.
Si vous souhaitez trouver des cryptomonnaies ayant un bon rendement, vous devriez consulter un maximum d'informations disponibles à propos de REM Token afin de prendre une décision responsable concernant cet investissement.
Le cours de REM Token est de $0.002172 USD actuellement, mais ce cours peut subir une hausse ou une baisse, ce qui pourrait causer la perte de votre investissement, car les cryptomonnaies sont des actifs à haut risque.
Prévision du cours de REM Token basée sur le modèle de croissance du Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si REM Token présente 1 % de la précédente croissance annuelle moyenne du Bitcoin | $0.002228 | $0.002286 | $0.002346 | $0.0024071 |
| Si REM Token présente 2 % de la précédente croissance annuelle moyenne du Bitcoin | $0.002285 | $0.002404 | $0.002529 | $0.00266 |
| Si REM Token présente 5 % de la précédente croissance annuelle moyenne du Bitcoin | $0.002454 | $0.002773 | $0.003134 | $0.003541 |
| Si REM Token présente 10 % de la précédente croissance annuelle moyenne du Bitcoin | $0.002736 | $0.003448 | $0.004344 | $0.005474 |
| Si REM Token présente 20 % de la précédente croissance annuelle moyenne du Bitcoin | $0.0033016 | $0.005018 | $0.007626 | $0.011591 |
| Si REM Token présente 50 % de la précédente croissance annuelle moyenne du Bitcoin | $0.004995 | $0.011488 | $0.026418 | $0.060754 |
| Si REM Token présente 100 % de la précédente croissance annuelle moyenne du Bitcoin | $0.007818 | $0.028142 | $0.101293 | $0.364589 |
Boîte à questions
Est-ce que REM est un bon investissement ?
La décision d'acquérir REM Token dépend entièrement de votre tolérance individuelle au risque. Comme vous pouvez le discerner, la valeur de REM Token a connu une hausse de 1.2752% au cours des 24 heures précédentes, et REM Token a enregistré une déclin de sur une période de 30 jours précédents. Par conséquent, la détermination de si investir ou non dans REM Token dépendra de la mesure dans laquelle cet investissement s'aligne avec vos aspirations de trading.
Est-ce que REM Token peut monter ?
Il semble que la valeur moyenne de REM Token pourrait potentiellement s'envoler jusqu'à $0.00224 pour la fin de cette année. En regardant les perspectives de REM Token sur une période de cinq ans plus longue, la monnaie numérique pourrait potentiellement croître jusqu'à $0.007043. Cependant, compte tenu de l'imprévisibilité du marché, il est essentiel de mener des recherches approfondies avant d'investir des fonds dans un projet, un réseau ou un actif particulier.
Quel sera le prix de REM Token la semaine prochaine ?
Basé sur notre nouveau pronostic expérimental de REM Token, le prix de REM Token va augmenter de 0.86% durant la prochaine semaine et atteindre $0.00219 d'ici 13 janvier 2026.
Quel sera le prix de REM Token le mois prochain ?
Basé sur notre nouveau pronostic expérimental de REM Token, le prix de REM Token va diminuer de -11.62% durant le prochain mois et atteindre $0.001919 d'ici 5 février 2026.
Jusqu'où le prix de REM Token peut-il monter cette année en 2026 ?
Selon notre prédiction la plus récente sur la valeur de REM Token en 2026, REM devrait fluctuer dans la fourchette de $0.00075 et $0.00224. Cependant, il est crucial de garder à l'esprit que le marché des cryptomonnaies est exceptionnellement instable, et cette prévision de prix de REM Token ne prend pas en compte les fluctuations de prix soudaines et extrêmes.
Où sera REM Token dans 5 ans ?
L'avenir de REM Token semble suivre une tendance haussière, avec un prix maximum de $0.007043 prévue après une période de cinq ans. Selon la prévision de REM Token pour 2030, la valeur de REM Token pourrait potentiellement atteindre son point le plus élevé d'environ $0.007043, tandis que son point le plus bas devrait être autour de $0.002436.
Combien vaudra REM Token en 2026 ?
Basé sur notre nouvelle simulation expérimentale de prédiction de prix de REM Token, il est attendu que la valeur de REM en 2026 augmente de 3.13% jusqu'à $0.00224 si le meilleur scénario se produit. Le prix sera entre $0.00224 et $0.00075 durant 2026.
Combien vaudra REM Token en 2027 ?
Selon notre dernière simulation expérimentale pour la prédiction de prix de REM Token, le valeur de REM pourrait diminuer de -12.62% jusqu'à $0.001898 en 2027, en supposant les conditions les plus favorables. Il est prévu que le prix fluctue entre $0.001898 et $0.000722 tout au long de l'année.
Combien vaudra REM Token en 2028 ?
Notre nouveau modèle expérimental de prédiction de prix de REM Token suggère que la valeur de REM en 2028 pourrait augmenter de 47.02%, atteignant $0.003193 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.003193 et $0.0013039 durant l'année.
Combien vaudra REM Token en 2029 ?
Basé sur notre modèle de prévision expérimental, la valeur de REM Token pourrait connaître un 333.75% croissance en 2029, atteignant potentiellement $0.009422 sous des conditions optimales. Le range de prix prévu pour 2029 se situe entre $0.009422 et $0.002864.
Combien vaudra REM Token en 2030 ?
En utilisant notre nouvelle simulation expérimentale pour les prédictions de prix de REM Token, il est prévu que la valeur de REM en 2030 augmente de 224.23%, atteignant $0.007043 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.007043 et $0.002436 au cours de 2030.
Combien vaudra REM Token en 2031 ?
Notre simulation expérimentale indique que le prix de REM Token pourrait augmenter de 195.98% en 2031, atteignant potentiellement $0.006429 dans des conditions idéales. Il est probable que le prix fluctue entre $0.006429 et $0.00288 durant l'année.
Combien vaudra REM Token en 2032 ?
Basé sur les résultats de notre dernière prédiction expérimentale de prix de REM Token, REM pourrait connaître une 449.04% hausse en valeur, atteignant $0.011926 si le scénario le plus positif se réalise en 2032. Il est prévu que le prix reste dans une fourchette de $0.011926 et $0.004396 tout au long de l'année.
Combien vaudra REM Token en 2033 ?
Selon notre prédiction expérimentale de prix de REM Token, la valeur de REM est anticipée à augmenter de 1362.43% en 2033, avec le prix potentiel le plus élevé étant $0.031768. Tout au long de l'année, le prix de REM pourrait osciller entre $0.031768 et $0.010216.
Combien vaudra REM Token en 2034 ?
Les résultats de notre nouvelle simulation de prédiction de prix de REM Token suggèrent que REM pourrait augmenter de 746.96% en 2034, atteignant potentiellement $0.018398 dans les meilleures circonstances. La fourchette de prix prévue pour l'année est entre $0.018398 et $0.008213.
Combien vaudra REM Token en 2035 ?
Basé sur notre prédiction expérimentale pour le prix de REM Token, REM pourrait augmenter de 897.93%, avec la valeur potentiellement atteignant $0.021678 en 2035. La fourchette de prix attendue pour l'année se situe entre $0.021678 et $0.00971.
Combien vaudra REM Token en 2036 ?
Notre récente simulation de prédiction de prix de REM Token suggère que la valeur de REM pourrait augmenter de 1964.7% en 2036, pouvant atteindre $0.044851 si les conditions sont optimales. La fourchette de prix attendue pour 2036 est entre $0.044851 et $0.016074.
Combien vaudra REM Token en 2037 ?
Selon la simulation expérimentale, la valeur de REM Token pourrait augmenter de 4830.69% en 2037, avec un maximum de $0.1071098 sous des conditions favorables. Il est prévu que le prix chute entre $0.1071098 et $0.041743 au cours de l'année.
Prévisions liées
Comment lire et prédire les mouvements de prix de REM Token ?
Les traders de REM Token utilisent des indicateurs et des modèles graphiques pour prédire la direction du marché. Ils identifient également des niveaux clés de support et de résistance pour évaluer quand une tendance baissière pourrait ralentir ou une tendance haussière pourrait s'arrêter.
Indicateurs de prédiction du prix de REM Token
Les moyennes mobiles sont des outils populaires pour la prédiction du prix de REM Token. Une moyenne mobile simple (SMA) calcule le prix de clôture moyen de REM sur une période spécifique, comme une SMA de 12 jours. Une moyenne mobile exponentielle (EMA) donne plus de poids aux prix récents, réagissant plus rapidement aux changements de prix.
Les moyennes mobiles couramment utilisées sur le marché des cryptomonnaies incluent les moyennes sur 50 jours, 100 jours et 200 jours, qui aident à identifier les niveaux clés de résistance et de support. Un mouvement de prix de REM au-dessus de ces moyennes est considéré comme haussier, tandis qu'une chute en dessous indique une faiblesse.
Les traders utilisent également le RSI et les niveaux de retracement de Fibonacci pour évaluer la direction future de REM.
Comment lire les graphiques de REM Token et prédire les mouvements de prix ?
La plupart des traders préfèrent les graphiques en chandeliers aux simples graphiques linéaires parce qu'ils fournissent des informations plus détaillées. Les chandeliers peuvent représenter l'action des prix de REM Token dans différentes périodes, comme 5 minutes pour les tendances à court terme et hebdomadaire pour les tendances à long terme. Les options populaires incluent les graphiques de 1 heure, 4 heures et 1 jour.
Par exemple, un graphique en chandeliers de 1 heure montre les prix d'ouverture, de clôture, les plus hauts et les plus bas de REM au sein de chaque heure. La couleur du chandelier est cruciale : le vert indique que le prix a clôturé plus haut qu'il n'a ouvert, tandis que le rouge signifie le contraire. Certains graphiques utilisent des chandeliers creux et pleins pour transmettre la même information.
Qu'est-ce qui affecte le prix de REM Token ?
L'action du prix de REM Token est déterminée par l'offre et la demande, influencée par des facteurs tels que les réductions de récompenses de bloc, les hard forks et les mises à jour de protocole. Les événements du monde réel, tels que les réglementations, l'adoption par les entreprises et les gouvernements et les piratages d'échanges de cryptomonnaies, impactent également le prix de REM. La capitalisation boursière de REM Token peut changer rapidement.
Les traders surveillent souvent l'activité des « baleines » de REM, de grands détenteurs de REM Token, car leurs actions peuvent influencer significativement les mouvements de prix sur le marché relativement petit de REM Token.
Modèles de prédiction de prix haussiers et baissiers
Les traders identifient souvent des modèles de chandeliers pour obtenir un avantage dans les prédictions de prix des cryptomonnaies. Certaines formations indiquent des tendances haussières, tandis que d'autres suggèrent des mouvements baissiers.
Modèles de chandeliers haussiers couramment suivis :
- Marteau
- Englobante haussière
- Ligne pénétrante
- Étoile du matin
- Trois soldats blancs
Modèles de chandeliers baissiers courants :
- Harami baissier
- Nuage sombre
- Étoile du soir
- Étoile filante
- Pendu


