Predicción del precio de REM Token - Pronóstico de REM
Predicción de precio de REM Token hasta $0.002213 para el año 2026
| Año | Precio min. | Precio max. |
|---|---|---|
| 2026 | $0.000741 | $0.002213 |
| 2027 | $0.000713 | $0.001874 |
| 2028 | $0.001288 | $0.003154 |
| 2029 | $0.002829 | $0.0093077 |
| 2030 | $0.0024063 | $0.006957 |
| 2031 | $0.002845 | $0.006351 |
| 2032 | $0.004342 | $0.011781 |
| 2033 | $0.010091 | $0.031381 |
| 2034 | $0.008113 | $0.018174 |
| 2035 | $0.009592 | $0.021414 |
Calculadora de ganancias de inversión
Si abres una posición corta de $10,000.00 en REM Token hoy y la cierras el Apr 06, 2026, nuestra previsión indica que podrías obtener una ganancia de alrededor de $3,955.78, equivalente a un ROI del 39.56% en los próximos 90 días.
Predicción del precio a largo plazo de REM Token para 2027, 2028, 2029, 2030, 2031, 2032 y 2037
[
'name' => 'REM Token'
'name_with_ticker' => 'REM Token <small>REM</small>'
'name_lang' => 'REM Token'
'name_lang_with_ticker' => 'REM Token <small>REM</small>'
'name_with_lang' => 'REM Token'
'name_with_lang_with_ticker' => 'REM Token <small>REM</small>'
'image' => '/uploads/coins/rem-token.png?1737215847'
'price_for_sd' => 0.002145
'ticker' => 'REM'
'marketcap' => '$173.76K'
'low24h' => '$0.00214'
'high24h' => '$0.002205'
'volume24h' => '$28.42K'
'current_supply' => '80.97M'
'max_supply' => '1B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.002145'
'change_24h_pct' => '0.1341%'
'ath_price' => '$0.5861'
'ath_days' => 266
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '15 abr. 2025'
'ath_pct' => '-99.63%'
'fdv' => '$2.15M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.1058051'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.002164'
'next_week_prediction_price_date' => '13 de enero de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.001896'
'next_month_prediction_price_date' => '5 de febrero de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.000741'
'current_year_max_price_prediction' => '$0.002213'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.0024063'
'grand_prediction_max_price' => '$0.006957'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0021865127287829
107 => 0.0021946763736081
108 => 0.0022130694822452
109 => 0.002055902382766
110 => 0.0021264657962485
111 => 0.0021679151907718
112 => 0.0019806453183738
113 => 0.002164213467513
114 => 0.0020531664532293
115 => 0.0020154754287112
116 => 0.0020662214278099
117 => 0.002046445662609
118 => 0.0020294436209612
119 => 0.0020199561895896
120 => 0.0020572184506961
121 => 0.0020554801216775
122 => 0.0019945118302139
123 => 0.0019149811793852
124 => 0.001941674276308
125 => 0.0019319764239468
126 => 0.0018968301559422
127 => 0.0019205144970007
128 => 0.0018162206453495
129 => 0.0016367884943064
130 => 0.0017553268694409
131 => 0.0017507632709432
201 => 0.0017484620976379
202 => 0.0018375404103915
203 => 0.0018289775860065
204 => 0.0018134359759005
205 => 0.0018965447220847
206 => 0.0018662089117571
207 => 0.0019596967311709
208 => 0.00202127385545
209 => 0.0020056559049215
210 => 0.002063569487934
211 => 0.0019422892313486
212 => 0.0019825736676669
213 => 0.0019908762341603
214 => 0.0018955191730574
215 => 0.0018303785699742
216 => 0.0018260344344057
217 => 0.0017130896055874
218 => 0.0017734238214834
219 => 0.0018265154346723
220 => 0.0018010886720304
221 => 0.0017930393185809
222 => 0.0018341617196626
223 => 0.0018373572824162
224 => 0.0017644981129837
225 => 0.0017796478414585
226 => 0.0018428247276314
227 => 0.0017780559460222
228 => 0.0016522207832757
301 => 0.0016210119231074
302 => 0.0016168480858675
303 => 0.001532207181885
304 => 0.0016230974483748
305 => 0.0015834214113443
306 => 0.0017087575369317
307 => 0.0016371662141873
308 => 0.0016340800553516
309 => 0.0016294148736303
310 => 0.0015565609511008
311 => 0.0015725113300265
312 => 0.0016255328188866
313 => 0.0016444514834417
314 => 0.0016424781117325
315 => 0.0016252729846654
316 => 0.0016331494037322
317 => 0.0016077767135916
318 => 0.0015988170886161
319 => 0.0015705380476543
320 => 0.001528975669725
321 => 0.001534755173293
322 => 0.0014524092272272
323 => 0.0014075427853805
324 => 0.0013951243456075
325 => 0.0013785178889408
326 => 0.0013970000890761
327 => 0.0014521759515083
328 => 0.0013856221552029
329 => 0.0012715203396433
330 => 0.0012783780531785
331 => 0.0012937852994186
401 => 0.0012650739979793
402 => 0.0012379011607239
403 => 0.0012615257381155
404 => 0.0012131792946852
405 => 0.0012996277361292
406 => 0.0012972895480571
407 => 0.0013295121810917
408 => 0.0013496616548032
409 => 0.0013032236413678
410 => 0.0012915446065705
411 => 0.0012981975155736
412 => 0.0011882397492908
413 => 0.0013205262857081
414 => 0.0013216703051683
415 => 0.0013118745159953
416 => 0.0013823130127488
417 => 0.001530960211217
418 => 0.0014750331558336
419 => 0.0014533765095849
420 => 0.0014122072092353
421 => 0.00146706285756
422 => 0.0014628507996501
423 => 0.0014438022764059
424 => 0.0014322816701128
425 => 0.0014535087404489
426 => 0.0014296514011886
427 => 0.0014253659675016
428 => 0.0013994009019563
429 => 0.0013901325548918
430 => 0.0013832706397088
501 => 0.0013757163453302
502 => 0.0013923792363165
503 => 0.0013546189331555
504 => 0.0013090837092315
505 => 0.0013052979480602
506 => 0.0013157507675017
507 => 0.0013111261730197
508 => 0.001305275807281
509 => 0.0012941058658334
510 => 0.001290791982814
511 => 0.0013015604949597
512 => 0.0012894034725905
513 => 0.0013073418213236
514 => 0.0013024635830423
515 => 0.001275214140553
516 => 0.0012412512461757
517 => 0.0012409489051761
518 => 0.0012336316552928
519 => 0.0012243120374106
520 => 0.0012217195329197
521 => 0.0012595361421019
522 => 0.001337815391353
523 => 0.0013224473016614
524 => 0.0013335523214488
525 => 0.0013881780277608
526 => 0.0014055418971452
527 => 0.001393217433942
528 => 0.0013763469485696
529 => 0.0013770891643069
530 => 0.0014347407198673
531 => 0.0014383363766708
601 => 0.0014474214414103
602 => 0.0014590983170395
603 => 0.0013952060563539
604 => 0.0013740798445743
605 => 0.0013640690733955
606 => 0.001333239772821
607 => 0.0013664865303862
608 => 0.001347115068521
609 => 0.00134972894055
610 => 0.0013480266529621
611 => 0.0013489562170933
612 => 0.001299603572028
613 => 0.0013175850819911
614 => 0.0012876873341063
615 => 0.0012476576058681
616 => 0.0012475234121828
617 => 0.001257320631459
618 => 0.0012514928620683
619 => 0.0012358104844835
620 => 0.0012380380922007
621 => 0.0012185219045992
622 => 0.0012404077107275
623 => 0.0012410353173361
624 => 0.0012326080898488
625 => 0.0012663261938487
626 => 0.0012801405285688
627 => 0.001274593546908
628 => 0.0012797513375484
629 => 0.0013230859151708
630 => 0.0013301513421434
701 => 0.0013332893380888
702 => 0.0013290848392268
703 => 0.0012805434140769
704 => 0.0012826964326964
705 => 0.001266899010617
706 => 0.0012535518536512
707 => 0.0012540856699332
708 => 0.0012609478436226
709 => 0.0012909153585852
710 => 0.0013539802271425
711 => 0.0013563734928045
712 => 0.0013592742006032
713 => 0.0013474755642068
714 => 0.0013439169825719
715 => 0.0013486116702962
716 => 0.001372295519133
717 => 0.0014332168084437
718 => 0.0014116831560052
719 => 0.0013941759613815
720 => 0.0014095344909723
721 => 0.0014071701657259
722 => 0.0013872128812737
723 => 0.0013866527467689
724 => 0.0013483483371753
725 => 0.0013341880690977
726 => 0.0013223546892144
727 => 0.0013094329473001
728 => 0.0013017725055525
729 => 0.0013135424256853
730 => 0.0013162343456772
731 => 0.001290499209604
801 => 0.0012869916056518
802 => 0.0013080074733007
803 => 0.001298759173499
804 => 0.0013082712791919
805 => 0.0013104781693059
806 => 0.0013101228091686
807 => 0.0013004665220151
808 => 0.0013066211514921
809 => 0.0012920636179956
810 => 0.001276234486789
811 => 0.0012661364872689
812 => 0.0012573246433823
813 => 0.001262213966518
814 => 0.0012447844222946
815 => 0.0012392083603101
816 => 0.0013045361015088
817 => 0.0013527944063239
818 => 0.0013520927114595
819 => 0.0013478213244338
820 => 0.0013414749097327
821 => 0.0013718312393683
822 => 0.0013612557011172
823 => 0.0013689502888107
824 => 0.0013709088843195
825 => 0.0013768369630334
826 => 0.0013789557416381
827 => 0.0013725513211085
828 => 0.001351057303577
829 => 0.0012974962554784
830 => 0.0012725634430033
831 => 0.0012643351995976
901 => 0.0012646342806178
902 => 0.0012563842909259
903 => 0.0012588142826288
904 => 0.001255539238979
905 => 0.0012493370986244
906 => 0.0012618310018283
907 => 0.0012632708077837
908 => 0.0012603545814849
909 => 0.0012610414583472
910 => 0.0012368963501297
911 => 0.0012387320502671
912 => 0.0012285106386327
913 => 0.0012265942471722
914 => 0.0012007554086408
915 => 0.0011549781607828
916 => 0.0011803431998011
917 => 0.0011497057995312
918 => 0.0011381029518167
919 => 0.0011930290282844
920 => 0.0011875159736193
921 => 0.0011780800204998
922 => 0.0011641222792112
923 => 0.001158945217195
924 => 0.0011274910272436
925 => 0.0011256325458997
926 => 0.0011412220917742
927 => 0.0011340280527567
928 => 0.0011239248973804
929 => 0.001087332292748
930 => 0.0010461900897461
1001 => 0.0010474319142441
1002 => 0.0010605184835411
1003 => 0.0010985694487364
1004 => 0.0010837022783462
1005 => 0.001072915975647
1006 => 0.0010708960253865
1007 => 0.0010961799319489
1008 => 0.0011319619568768
1009 => 0.0011487500823954
1010 => 0.0011321135598695
1011 => 0.0011130024185657
1012 => 0.0011141656251844
1013 => 0.0011219039176925
1014 => 0.0011227171028216
1015 => 0.0011102777144899
1016 => 0.0011137793294411
1017 => 0.0011084600561358
1018 => 0.0010758156856798
1019 => 0.0010752252525346
1020 => 0.0010672137975631
1021 => 0.0010669712138906
1022 => 0.0010533417304329
1023 => 0.001051434871481
1024 => 0.0010243727048254
1025 => 0.0010421851048699
1026 => 0.0010302374821131
1027 => 0.0010122295964591
1028 => 0.0010091250301848
1029 => 0.0010090317031737
1030 => 0.0010275217752508
1031 => 0.0010419690376123
1101 => 0.0010304453161261
1102 => 0.0010278215881217
1103 => 0.0010558361389769
1104 => 0.0010522710320223
1105 => 0.001049183672392
1106 => 0.0011287580690052
1107 => 0.0010657687248183
1108 => 0.0010383017754467
1109 => 0.0010043062097672
1110 => 0.0010153753373729
1111 => 0.0010177077651988
1112 => 0.0009359545579008
1113 => 0.00090278729188171
1114 => 0.00089140553606602
1115 => 0.00088485517467967
1116 => 0.00088784025661769
1117 => 0.00085798582706823
1118 => 0.00087804849747216
1119 => 0.00085219708501443
1120 => 0.00084786301158812
1121 => 0.00089408853943801
1122 => 0.00090052055159271
1123 => 0.00087307958947123
1124 => 0.00089070112944145
1125 => 0.00088431131409052
1126 => 0.00085264023328296
1127 => 0.00085143063095282
1128 => 0.00083553919589591
1129 => 0.00081067217722002
1130 => 0.00079930728241395
1201 => 0.00079338834652441
1202 => 0.0007958306148302
1203 => 0.00079459572924015
1204 => 0.00078653726545628
1205 => 0.00079505763095134
1206 => 0.00077329161796957
1207 => 0.00076462421621954
1208 => 0.00076070935193125
1209 => 0.00074139076260496
1210 => 0.00077213522923875
1211 => 0.00077819227647419
1212 => 0.0007842612579638
1213 => 0.00083708759836124
1214 => 0.00083444854368067
1215 => 0.00085830431272125
1216 => 0.00085737732140428
1217 => 0.00085057326963607
1218 => 0.00082186809443819
1219 => 0.00083330946565151
1220 => 0.00079809470344076
1221 => 0.00082447999766013
1222 => 0.00081243885125464
1223 => 0.00082040887394813
1224 => 0.00080607805451726
1225 => 0.00081400932169533
1226 => 0.00077962862707535
1227 => 0.00074752441818864
1228 => 0.00076044408902494
1229 => 0.00077448924876756
1230 => 0.00080494273372972
1231 => 0.00078680488932206
]
'min_raw' => 0.00074139076260496
'max_raw' => 0.0022130694822452
'avg_raw' => 0.0014772301224251
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.000741'
'max' => '$0.002213'
'avg' => '$0.001477'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.001404459237395
'max_diff' => 6.7219482245168E-5
'year' => 2026
]
1 => [
'items' => [
101 => 0.00079332794403888
102 => 0.00077147680268368
103 => 0.00072639165659795
104 => 0.00072664683362857
105 => 0.00071971146613658
106 => 0.00071371829604326
107 => 0.00078888823893976
108 => 0.00077953966827963
109 => 0.00076464394444341
110 => 0.00078458246273073
111 => 0.00078985452343274
112 => 0.00079000461158928
113 => 0.00080455123984407
114 => 0.00081231477795127
115 => 0.00081368313519177
116 => 0.00083657256905139
117 => 0.0008442448053622
118 => 0.0008758456609109
119 => 0.0008116560959837
120 => 0.00081033415413514
121 => 0.00078486303857183
122 => 0.00076870885439917
123 => 0.00078596912938264
124 => 0.0008012593767555
125 => 0.0007853381491791
126 => 0.00078741712538512
127 => 0.0007660441781759
128 => 0.00077368400111256
129 => 0.0007802644458209
130 => 0.00077663111103362
131 => 0.00077119183300166
201 => 0.0008000057508386
202 => 0.00079837995667159
203 => 0.00082521213939045
204 => 0.00084612974460761
205 => 0.00088361783262593
206 => 0.00084449705848058
207 => 0.00084307134197973
208 => 0.00085700794946766
209 => 0.0008442426717402
210 => 0.00085230988662155
211 => 0.00088231807958989
212 => 0.00088295210542102
213 => 0.00087233135585345
214 => 0.00087168508227705
215 => 0.00087372491340977
216 => 0.00088567226806708
217 => 0.00088149749524469
218 => 0.00088632864804708
219 => 0.0008923700786037
220 => 0.00091735999689937
221 => 0.00092338498159748
222 => 0.00090874739237747
223 => 0.0009100690027939
224 => 0.00090459414261481
225 => 0.0008993054962816
226 => 0.00091119360089388
227 => 0.0009329193457341
228 => 0.00093278419100302
301 => 0.00093782414151781
302 => 0.00094096398893533
303 => 0.00092748546531057
304 => 0.0009187114420499
305 => 0.00092207596087365
306 => 0.0009274558997425
307 => 0.00092033131920748
308 => 0.00087635510771857
309 => 0.00088969468107304
310 => 0.00088747432379504
311 => 0.0008843122650265
312 => 0.00089772530918629
313 => 0.00089643158835574
314 => 0.00085767962674231
315 => 0.00086016040159437
316 => 0.00085783049087764
317 => 0.00086535890905826
318 => 0.00084383611245229
319 => 0.00085045637973004
320 => 0.00085460854930549
321 => 0.00085705420908391
322 => 0.00086588960920814
323 => 0.00086485287698137
324 => 0.00086582516447728
325 => 0.00087892573040237
326 => 0.00094518389728012
327 => 0.00094879018311287
328 => 0.00093103151273533
329 => 0.00093812575127687
330 => 0.00092450636461653
331 => 0.00093364915012358
401 => 0.00093990441176593
402 => 0.00091163808722179
403 => 0.00090996433892922
404 => 0.00089628874021544
405 => 0.00090363723233872
406 => 0.0008919452529953
407 => 0.0008948140557581
408 => 0.00088679263313559
409 => 0.0009012295968068
410 => 0.00091737236546857
411 => 0.00092145066632979
412 => 0.00091072241258285
413 => 0.00090295444984369
414 => 0.00088931646619972
415 => 0.00091199673694192
416 => 0.00091862913927567
417 => 0.00091196189975596
418 => 0.00091041695467719
419 => 0.00090748928654456
420 => 0.0009110380733115
421 => 0.00091859301778818
422 => 0.0009150302454909
423 => 0.00091738351936122
424 => 0.00090841526605302
425 => 0.00092748992726273
426 => 0.00095778507983095
427 => 0.00095788248370021
428 => 0.00095431969219826
429 => 0.00095286187467708
430 => 0.00095651751496635
501 => 0.00095850054986106
502 => 0.00097032222022677
503 => 0.00098300734352531
504 => 0.0010422032790067
505 => 0.0010255812971999
506 => 0.0010781034527409
507 => 0.0011196416586255
508 => 0.0011320971503247
509 => 0.0011206386840376
510 => 0.0010814398898437
511 => 0.0010795166099928
512 => 0.0011380961578226
513 => 0.0011215447524474
514 => 0.0011195760154442
515 => 0.0010986319799633
516 => 0.0011110124989018
517 => 0.0011083046977987
518 => 0.0011040303012873
519 => 0.0011276514689874
520 => 0.0011718681862458
521 => 0.0011649765961993
522 => 0.0011598323439213
523 => 0.0011372917279083
524 => 0.001150866213377
525 => 0.0011460325991037
526 => 0.001166800873509
527 => 0.0011544982078249
528 => 0.0011214193592729
529 => 0.0011266872749341
530 => 0.0011258910400795
531 => 0.0011422774969657
601 => 0.0011373586893454
602 => 0.0011249305639476
603 => 0.0011717170583132
604 => 0.0011686790036092
605 => 0.0011729862705834
606 => 0.0011748824627121
607 => 0.0012033605773619
608 => 0.0012150271497359
609 => 0.0012176756659169
610 => 0.0012287580073471
611 => 0.0012173999271664
612 => 0.0012628403460634
613 => 0.001293055573108
614 => 0.0013281521141816
615 => 0.0013794375937511
616 => 0.0013987214084864
617 => 0.0013952379599572
618 => 0.0014341220252537
619 => 0.0015039958262473
620 => 0.0014093614529065
621 => 0.0015090116778246
622 => 0.0014774635671327
623 => 0.0014026635642084
624 => 0.0013978473258542
625 => 0.0014485027562804
626 => 0.0015608516255612
627 => 0.0015327095080567
628 => 0.0015608976559838
629 => 0.0015280146841252
630 => 0.001526381767413
701 => 0.0015593006034368
702 => 0.0016362172581189
703 => 0.0015996770386571
704 => 0.0015472876740293
705 => 0.0015859711656017
706 => 0.0015524599452135
707 => 0.0014769497864791
708 => 0.0015326879883098
709 => 0.0014954174400782
710 => 0.0015062949674635
711 => 0.0015846321162707
712 => 0.0015752063832719
713 => 0.0015874041545718
714 => 0.0015658754074987
715 => 0.0015457641629606
716 => 0.0015082250315497
717 => 0.0014971115453957
718 => 0.0015001829131473
719 => 0.0014971100233784
720 => 0.0014761072243564
721 => 0.0014715716719073
722 => 0.0014640122191183
723 => 0.0014663552096337
724 => 0.0014521412267945
725 => 0.0014789659491707
726 => 0.0014839448540224
727 => 0.0015034656499716
728 => 0.0015054923637648
729 => 0.0015598575026221
730 => 0.0015299140977085
731 => 0.0015500027189138
801 => 0.0015482058035517
802 => 0.0014042847070853
803 => 0.0014241157643518
804 => 0.0014549666661298
805 => 0.0014410683766962
806 => 0.001421419447136
807 => 0.0014055518830071
808 => 0.0013815109008101
809 => 0.0014153481215862
810 => 0.0014598404687194
811 => 0.0015066207631116
812 => 0.0015628242216575
813 => 0.0015502802639904
814 => 0.0015055700785484
815 => 0.0015075757448065
816 => 0.0015199739844136
817 => 0.0015039171376236
818 => 0.0014991816600383
819 => 0.0015193234025116
820 => 0.0015194621076223
821 => 0.0015009867648556
822 => 0.0014804548023224
823 => 0.0014803687726497
824 => 0.0014767153082322
825 => 0.0015286646273289
826 => 0.0015572315001635
827 => 0.0015605066460962
828 => 0.0015570110567472
829 => 0.0015583563703527
830 => 0.0015417339364783
831 => 0.0015797278910854
901 => 0.0016145949010456
902 => 0.0016052497975513
903 => 0.0015912401589285
904 => 0.0015800808069699
905 => 0.0016026210088791
906 => 0.0016016173291697
907 => 0.001614290368131
908 => 0.0016137154458807
909 => 0.0016094539795351
910 => 0.0016052499497417
911 => 0.0016219184526706
912 => 0.001617118191515
913 => 0.001612310474228
914 => 0.0016026678611843
915 => 0.0016039784524437
916 => 0.0015899712327826
917 => 0.0015834908520406
918 => 0.0014860414742883
919 => 0.0014599998163026
920 => 0.0014681930520318
921 => 0.0014708904779711
922 => 0.0014595571150424
923 => 0.00147580624618
924 => 0.0014732738363043
925 => 0.0014831259617205
926 => 0.00147697078149
927 => 0.0014772233922337
928 => 0.0014953244648687
929 => 0.0015005792832621
930 => 0.0014979066402156
1001 => 0.0014997784677925
1002 => 0.0015429139442533
1003 => 0.0015367814588955
1004 => 0.0015335236982741
1005 => 0.0015344261202302
1006 => 0.0015454481593009
1007 => 0.0015485337284597
1008 => 0.0015354599551148
1009 => 0.0015416256222029
1010 => 0.0015678782501241
1011 => 0.0015770651841265
1012 => 0.0016063854674836
1013 => 0.001593929689987
1014 => 0.0016167928086554
1015 => 0.0016870662408305
1016 => 0.0017432055210036
1017 => 0.0016915775189025
1018 => 0.0017946701576462
1019 => 0.0018749425646688
1020 => 0.0018718615759866
1021 => 0.001857864225088
1022 => 0.001766476223845
1023 => 0.001682379622583
1024 => 0.001752730000469
1025 => 0.0017529093380499
1026 => 0.0017468661781988
1027 => 0.001709332631376
1028 => 0.0017455600921281
1029 => 0.0017484356964038
1030 => 0.0017468261226943
1031 => 0.0017180492403473
1101 => 0.0016741122598602
1102 => 0.0016826974406771
1103 => 0.0016967601419881
1104 => 0.0016701365146195
1105 => 0.0016616286524928
1106 => 0.0016774463868734
1107 => 0.0017284144228035
1108 => 0.0017187792108487
1109 => 0.0017185275965256
1110 => 0.0017597511192342
1111 => 0.0017302439735678
1112 => 0.0016828057273008
1113 => 0.0016708269444847
1114 => 0.0016283103353628
1115 => 0.0016576767087223
1116 => 0.0016587335522195
1117 => 0.0016426498896476
1118 => 0.0016841108278763
1119 => 0.0016837287580315
1120 => 0.0017230897482334
1121 => 0.0017983331781867
1122 => 0.0017760799934452
1123 => 0.0017502019607304
1124 => 0.0017530156204065
1125 => 0.0017838745223496
1126 => 0.0017652165257946
1127 => 0.001771926071444
1128 => 0.0017838643666487
1129 => 0.0017910670365569
1130 => 0.0017519792670495
1201 => 0.0017428660381932
1202 => 0.0017242235702619
1203 => 0.0017193600983568
1204 => 0.001734543999499
1205 => 0.0017305435780032
1206 => 0.0016586447286159
1207 => 0.0016511308988135
1208 => 0.0016513613372463
1209 => 0.001632467454945
1210 => 0.0016036497493843
1211 => 0.0016793809589821
1212 => 0.0016732986829938
1213 => 0.0016665843210335
1214 => 0.001667406792062
1215 => 0.0017002791433796
1216 => 0.0016812115195218
1217 => 0.0017319059226697
1218 => 0.0017214846773957
1219 => 0.0017107961665035
1220 => 0.0017093186887182
1221 => 0.0017052045239255
1222 => 0.0016910955220383
1223 => 0.0016740580544399
1224 => 0.0016628084425713
1225 => 0.0015338528925503
1226 => 0.0015577862925343
1227 => 0.0015853194876178
1228 => 0.0015948238362283
1229 => 0.0015785659902492
1230 => 0.0016917374808903
1231 => 0.0017124150027781
]
'min_raw' => 0.00071371829604326
'max_raw' => 0.0018749425646688
'avg_raw' => 0.001294330430356
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.000713'
'max' => '$0.001874'
'avg' => '$0.001294'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -2.7672466561696E-5
'max_diff' => -0.00033812691757635
'year' => 2027
]
2 => [
'items' => [
101 => 0.0016497814402187
102 => 0.0016380652579753
103 => 0.0016925055918477
104 => 0.0016596714154625
105 => 0.0016744566430783
106 => 0.0016424990680601
107 => 0.0017074343932638
108 => 0.0017069396948822
109 => 0.0016816783867471
110 => 0.0017030290714009
111 => 0.0016993188645278
112 => 0.0016707989098591
113 => 0.0017083385266969
114 => 0.0017083571458785
115 => 0.0016840436860267
116 => 0.0016556508878205
117 => 0.0016505749261092
118 => 0.0016467508708193
119 => 0.0016735161598958
120 => 0.0016975138343889
121 => 0.0017421675570926
122 => 0.0017533945639266
123 => 0.0017972143190238
124 => 0.0017711217884085
125 => 0.0017826882692754
126 => 0.001795245320435
127 => 0.0018012656325312
128 => 0.0017914558570383
129 => 0.001859525973635
130 => 0.0018652731770902
131 => 0.0018672001646957
201 => 0.0018442473043714
202 => 0.0018646348165232
203 => 0.0018550961747508
204 => 0.0018799130707315
205 => 0.0018838046768993
206 => 0.0018805086249231
207 => 0.0018817438821456
208 => 0.0018236580460217
209 => 0.0018206459889915
210 => 0.0017795763776586
211 => 0.001796312547848
212 => 0.0017650250798645
213 => 0.0017749466582587
214 => 0.0017793199954786
215 => 0.0017770356122996
216 => 0.0017972587857998
217 => 0.0017800649570033
218 => 0.0017346876158821
219 => 0.0016892979117346
220 => 0.0016887280809727
221 => 0.0016767777730655
222 => 0.0016681398892567
223 => 0.0016698038521236
224 => 0.0016756678743009
225 => 0.0016677990616275
226 => 0.0016694782717703
227 => 0.0016973643486595
228 => 0.0017029567025053
229 => 0.0016839516990638
301 => 0.0016076438678373
302 => 0.0015889177346506
303 => 0.0016023777078298
304 => 0.0015959447075834
305 => 0.0012880519373972
306 => 0.0013603867767145
307 => 0.0013174078714512
308 => 0.0013372145283609
309 => 0.0012933441954206
310 => 0.0013142814177409
311 => 0.0013104150772833
312 => 0.0014267273583619
313 => 0.0014249113020751
314 => 0.001425780552116
315 => 0.001384288982845
316 => 0.0014503861793126
317 => 0.0014829480350708
318 => 0.0014769217021757
319 => 0.0014784384003332
320 => 0.0014523765009267
321 => 0.0014260328882708
322 => 0.0013968137675825
323 => 0.0014510992822289
324 => 0.0014450636596848
325 => 0.0014589072062524
326 => 0.0014941152429094
327 => 0.0014992997600494
328 => 0.0015062678036618
329 => 0.0015037702560459
330 => 0.0015632719728793
331 => 0.0015560659223658
401 => 0.0015734304307811
402 => 0.0015377103195224
403 => 0.0014972896230491
404 => 0.0015049722759966
405 => 0.0015042323747377
406 => 0.0014948125824937
407 => 0.0014863088152431
408 => 0.0014721524386924
409 => 0.0015169453088482
410 => 0.0015151268001213
411 => 0.0015445663426253
412 => 0.0015393626175272
413 => 0.001504610867755
414 => 0.0015058520332967
415 => 0.0015141994680484
416 => 0.0015430900350335
417 => 0.0015516667223345
418 => 0.0015476936590548
419 => 0.0015570976051396
420 => 0.0015645301006954
421 => 0.0015580310121487
422 => 0.0016500444006041
423 => 0.0016118340265664
424 => 0.0016304574970063
425 => 0.0016348990849704
426 => 0.001623522050797
427 => 0.0016259893221281
428 => 0.0016297265659036
429 => 0.0016524183782812
430 => 0.0017119682598888
501 => 0.0017383424970831
502 => 0.001817690690964
503 => 0.0017361524838312
504 => 0.0017313143440586
505 => 0.0017456073498625
506 => 0.0017921931395299
507 => 0.0018299465464746
508 => 0.0018424715296044
509 => 0.00184412691289
510 => 0.0018676246138867
511 => 0.0018810930578919
512 => 0.0018647713749348
513 => 0.0018509404575802
514 => 0.0018013998283724
515 => 0.0018071342910979
516 => 0.0018466390526832
517 => 0.0019024418552412
518 => 0.0019503264651281
519 => 0.0019335589436929
520 => 0.0020614832962184
521 => 0.0020741664732472
522 => 0.002072414068278
523 => 0.0021013082330594
524 => 0.0020439592001627
525 => 0.0020194413775142
526 => 0.0018539308588998
527 => 0.0019004325635441
528 => 0.001968025522194
529 => 0.0019590793406561
530 => 0.0019099915273196
531 => 0.0019502892276199
601 => 0.001936965547675
602 => 0.0019264566085025
603 => 0.0019746000961099
604 => 0.0019216643538601
605 => 0.0019674974476713
606 => 0.0019087160307758
607 => 0.0019336355363184
608 => 0.0019194900197516
609 => 0.0019286439025796
610 => 0.0018751304906114
611 => 0.0019040050287448
612 => 0.0018739292148943
613 => 0.0018739149550426
614 => 0.0018732510297849
615 => 0.0019086350914034
616 => 0.0019097889643824
617 => 0.001883640089384
618 => 0.0018798716279745
619 => 0.0018938056049359
620 => 0.0018774925672285
621 => 0.0018851253348988
622 => 0.0018777237559856
623 => 0.0018760575046711
624 => 0.0018627805307083
625 => 0.001857060445267
626 => 0.001859303438157
627 => 0.0018516469470815
628 => 0.0018470336342612
629 => 0.0018723333257495
630 => 0.0018588167211739
701 => 0.0018702617122429
702 => 0.0018572187004468
703 => 0.0018120059389917
704 => 0.0017860036017626
705 => 0.0017006008865991
706 => 0.0017248209906777
707 => 0.0017408789447394
708 => 0.0017355717910178
709 => 0.0017469736108076
710 => 0.001747673589941
711 => 0.0017439667420995
712 => 0.0017396746871757
713 => 0.0017375855522043
714 => 0.0017531562526848
715 => 0.0017621955683994
716 => 0.0017424905752572
717 => 0.0017378739710661
718 => 0.0017577968070754
719 => 0.001769949725532
720 => 0.0018596800472805
721 => 0.0018530325352203
722 => 0.0018697164859832
723 => 0.0018678381291634
724 => 0.0018853255675247
725 => 0.0019139101385025
726 => 0.0018557897133328
727 => 0.0018658774094892
728 => 0.0018634041393506
729 => 0.0018904066541977
730 => 0.0018904909531016
731 => 0.0018743015965751
801 => 0.0018830781093905
802 => 0.001878179300708
803 => 0.0018870321101109
804 => 0.0018529437536439
805 => 0.0018944596922101
806 => 0.0019179965541491
807 => 0.0019183233634999
808 => 0.0019294796492589
809 => 0.0019408150817186
810 => 0.0019625724572167
811 => 0.0019402082803247
812 => 0.0018999773032048
813 => 0.0019028818498076
814 => 0.0018792944426421
815 => 0.001879690951218
816 => 0.0018775743573651
817 => 0.0018839264148474
818 => 0.0018543376730541
819 => 0.0018612820916119
820 => 0.0018515598649646
821 => 0.0018658562752672
822 => 0.0018504757010628
823 => 0.0018634029466648
824 => 0.0018689819173216
825 => 0.001889568439152
826 => 0.0018474350550501
827 => 0.0017615222326871
828 => 0.0017795821495401
829 => 0.0017528701139387
830 => 0.0017553424145335
831 => 0.0017603368551987
901 => 0.0017441482389234
902 => 0.0017472365167468
903 => 0.0017471261817311
904 => 0.0017461753741733
905 => 0.0017419640898461
906 => 0.0017358568943944
907 => 0.0017601860813783
908 => 0.0017643200843322
909 => 0.0017735094608041
910 => 0.0018008508119708
911 => 0.0017981187662358
912 => 0.0018025748461811
913 => 0.0017928472486803
914 => 0.0017557936498821
915 => 0.0017578058385671
916 => 0.0017327138134222
917 => 0.0017728678013066
918 => 0.0017633588069688
919 => 0.0017572282964596
920 => 0.0017555555298684
921 => 0.0017829646549562
922 => 0.0017911658947679
923 => 0.001786055432482
924 => 0.0017755737252376
925 => 0.0017957017017854
926 => 0.0018010870991784
927 => 0.0018022926910489
928 => 0.001837955606335
929 => 0.0018042858518478
930 => 0.0018123904964015
1001 => 0.001875620619636
1002 => 0.0018182796230229
1003 => 0.0018486544277857
1004 => 0.0018471677391554
1005 => 0.0018627064614447
1006 => 0.0018458931103864
1007 => 0.0018461015320233
1008 => 0.001859898864732
1009 => 0.0018405229993047
1010 => 0.0018357252625415
1011 => 0.0018290972235652
1012 => 0.0018435693041881
1013 => 0.0018522446620056
1014 => 0.0019221616746663
1015 => 0.0019673312534483
1016 => 0.0019653703229071
1017 => 0.0019832895573456
1018 => 0.0019752167781097
1019 => 0.0019491476444653
1020 => 0.0019936444768041
1021 => 0.0019795638172256
1022 => 0.0019807246096932
1023 => 0.0019806814049396
1024 => 0.0019900438126067
1025 => 0.0019834096887225
1026 => 0.0019703331495679
1027 => 0.0019790139665153
1028 => 0.0020047928894001
1029 => 0.0020848114570286
1030 => 0.0021295909075786
1031 => 0.0020821156778788
1101 => 0.0021148634556071
1102 => 0.0020952264581964
1103 => 0.0020916578316168
1104 => 0.0021122258560719
1105 => 0.0021328298821311
1106 => 0.0021315174947448
1107 => 0.0021165600298543
1108 => 0.0021081109374692
1109 => 0.0021720902956622
1110 => 0.0022192291969189
1111 => 0.0022160146398764
1112 => 0.0022302026492321
1113 => 0.0022718590835189
1114 => 0.0022756676258146
1115 => 0.0022751878370237
1116 => 0.0022657479675634
1117 => 0.0023067641368903
1118 => 0.0023409805469536
1119 => 0.0022635629105274
1120 => 0.0022930425330072
1121 => 0.0023062768853125
1122 => 0.0023257088409521
1123 => 0.00235849380729
1124 => 0.0023941069765158
1125 => 0.0023991430691229
1126 => 0.002395569720419
1127 => 0.0023720818779812
1128 => 0.0024110502327015
1129 => 0.0024338769809763
1130 => 0.0024474697871931
1201 => 0.0024819388821317
1202 => 0.0023063586161668
1203 => 0.0021820741770115
1204 => 0.0021626653671483
1205 => 0.0022021339452188
1206 => 0.0022125414945
1207 => 0.0022083462244347
1208 => 0.0020684527887185
1209 => 0.0021619288571609
1210 => 0.0022625012471138
1211 => 0.0022663646422059
1212 => 0.0023167132834858
1213 => 0.0023331088649471
1214 => 0.0023736461205247
1215 => 0.0023711105041512
1216 => 0.0023809806807957
1217 => 0.0023787116981128
1218 => 0.0024537984279441
1219 => 0.0025366302414353
1220 => 0.0025337620391231
1221 => 0.0025218539859122
1222 => 0.0025395394755552
1223 => 0.0026250307838747
1224 => 0.0026171601141749
1225 => 0.0026248057993662
1226 => 0.0027256048699539
1227 => 0.0028566580002185
1228 => 0.0027957706636914
1229 => 0.002927878664096
1230 => 0.0030110336476065
1231 => 0.0031548415932021
]
'min_raw' => 0.0012880519373972
'max_raw' => 0.0031548415932021
'avg_raw' => 0.0022214467652997
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.001288'
'max' => '$0.003154'
'avg' => '$0.002221'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.00057433364135397
'max_diff' => 0.0012798990285333
'year' => 2028
]
3 => [
'items' => [
101 => 0.0031368361301445
102 => 0.0031928195080534
103 => 0.0031046025934178
104 => 0.0029020387258344
105 => 0.002869982218406
106 => 0.0029341601580777
107 => 0.0030919353603689
108 => 0.0029291912554833
109 => 0.0029621141759433
110 => 0.0029526323726359
111 => 0.0029521271276328
112 => 0.0029714102744241
113 => 0.002943439064262
114 => 0.0028294793221368
115 => 0.0028817064003838
116 => 0.0028615390173223
117 => 0.002883916232407
118 => 0.0030046768331536
119 => 0.0029512856929904
120 => 0.0028950424639724
121 => 0.0029655839545326
122 => 0.0030554075127017
123 => 0.0030497865158599
124 => 0.0030388794325925
125 => 0.0031003620898948
126 => 0.0032019134270298
127 => 0.0032293623453911
128 => 0.0032496245757569
129 => 0.0032524183949912
130 => 0.0032811964694531
131 => 0.0031264495100628
201 => 0.0033720369087989
202 => 0.0034144430683457
203 => 0.0034064724679061
204 => 0.0034536051295183
205 => 0.0034397375048318
206 => 0.0034196454924247
207 => 0.0034943607864847
208 => 0.0034087057310582
209 => 0.003287129163552
210 => 0.0032204298541062
211 => 0.0033082648852642
212 => 0.0033619026737722
213 => 0.003397353839972
214 => 0.0034080813414439
215 => 0.0031384620760122
216 => 0.0029931522457146
217 => 0.0030862941809548
218 => 0.0031999337702608
219 => 0.0031258182364064
220 => 0.0031287234250143
221 => 0.0030230541509576
222 => 0.0032092831562975
223 => 0.003182151156652
224 => 0.0033229120188087
225 => 0.0032893183093785
226 => 0.0034041033281622
227 => 0.0033738765858515
228 => 0.0034993461032285
301 => 0.0035493992906618
302 => 0.0036334463825188
303 => 0.003695271765422
304 => 0.0037315768127939
305 => 0.0037293971939265
306 => 0.0038732558787167
307 => 0.0037884274383356
308 => 0.0036818629246885
309 => 0.0036799355088433
310 => 0.003735126780492
311 => 0.0038507925448817
312 => 0.0038807829947195
313 => 0.0038975435648064
314 => 0.0038718741682786
315 => 0.003779798975954
316 => 0.00374004137474
317 => 0.0037739160028629
318 => 0.0037324902435486
319 => 0.0038040027261403
320 => 0.0039022046389807
321 => 0.0038819263323116
322 => 0.0039497136712128
323 => 0.0040198664355395
324 => 0.0041201880392844
325 => 0.0041464158214016
326 => 0.004189769347888
327 => 0.0042343943675341
328 => 0.0042487267211665
329 => 0.0042760916313187
330 => 0.0042759474047345
331 => 0.0043584134033493
401 => 0.0044493759535808
402 => 0.0044837122105053
403 => 0.0045626665399909
404 => 0.0044274600176365
405 => 0.0045300157179829
406 => 0.0046225235268311
407 => 0.004512231903473
408 => 0.0046642432116197
409 => 0.00467014546625
410 => 0.0047592625036881
411 => 0.004668925313486
412 => 0.0046152833783105
413 => 0.0047701456352251
414 => 0.0048450786032307
415 => 0.0048225081834427
416 => 0.0046507461744169
417 => 0.0045507733179448
418 => 0.0042891250692334
419 => 0.0045990587221952
420 => 0.0047500183636643
421 => 0.0046503552254147
422 => 0.0047006195152893
423 => 0.0049748451825942
424 => 0.0050792525619069
425 => 0.0050575365568725
426 => 0.0050612062042475
427 => 0.0051175425309966
428 => 0.0053673688287841
429 => 0.0052176671202216
430 => 0.0053321084672016
501 => 0.0053928077449908
502 => 0.005449188617009
503 => 0.00531073501469
504 => 0.0051306089123604
505 => 0.0050735554145732
506 => 0.0046404456904615
507 => 0.0046179004484213
508 => 0.0046052451208734
509 => 0.0045254550708154
510 => 0.0044627619478038
511 => 0.0044129060487387
512 => 0.0042820692813599
513 => 0.0043262228495967
514 => 0.0041176963501505
515 => 0.0042511042147708
516 => 0.0039182908866064
517 => 0.0041954677159031
518 => 0.0040446129694009
519 => 0.0041459078744517
520 => 0.0041455544660706
521 => 0.003959038430293
522 => 0.0038514598733469
523 => 0.0039200131168531
524 => 0.0039935076356549
525 => 0.0040054318740652
526 => 0.004100719436095
527 => 0.0041273121464582
528 => 0.0040467349925628
529 => 0.0039113940701284
530 => 0.0039428306796122
531 => 0.0038508228114591
601 => 0.0036895825615524
602 => 0.0038053881240201
603 => 0.0038449292346577
604 => 0.0038623928417226
605 => 0.0037038315745073
606 => 0.0036540081818156
607 => 0.0036274826256053
608 => 0.0038909258016581
609 => 0.0039053578135316
610 => 0.0038315216003058
611 => 0.0041652682855232
612 => 0.0040897311318364
613 => 0.0041741246395566
614 => 0.0039399781368045
615 => 0.0039489228485297
616 => 0.0038380741417627
617 => 0.0039001420106389
618 => 0.003856274441458
619 => 0.0038951275402004
620 => 0.0039184159273892
621 => 0.0040292464449742
622 => 0.0041967332223844
623 => 0.004012692061519
624 => 0.003932502692212
625 => 0.003982251725928
626 => 0.0041147399585645
627 => 0.0043154664129568
628 => 0.0041966323119602
629 => 0.0042493688680486
630 => 0.0042608894594678
701 => 0.0041732655928705
702 => 0.0043186972299036
703 => 0.0043966352256742
704 => 0.0044765834823389
705 => 0.0045460003135017
706 => 0.0044446503905272
707 => 0.0045531093360507
708 => 0.0044657105715399
709 => 0.0043873048446556
710 => 0.0043874237537788
711 => 0.0043382386959793
712 => 0.0042429364487768
713 => 0.0042253612521938
714 => 0.004316789644321
715 => 0.004390106556506
716 => 0.0043961452885579
717 => 0.0044367372983025
718 => 0.0044607592315383
719 => 0.0046962068334848
720 => 0.0047909058067123
721 => 0.0049067019186152
722 => 0.0049518110301126
723 => 0.0050875732832083
724 => 0.0049779342377624
725 => 0.0049542131406183
726 => 0.0046248983221025
727 => 0.0046788236051859
728 => 0.0047651631864183
729 => 0.0046263220299962
730 => 0.0047143847869171
731 => 0.0047317702405575
801 => 0.0046216042606292
802 => 0.0046804486704999
803 => 0.0045241753640349
804 => 0.0042001395534197
805 => 0.0043190579743914
806 => 0.0044066219597342
807 => 0.0042816573560884
808 => 0.0045056515713254
809 => 0.0043747987749631
810 => 0.0043333247205582
811 => 0.0041715196477567
812 => 0.0042478854136706
813 => 0.0043511712055216
814 => 0.0042873525944198
815 => 0.0044197857948687
816 => 0.0046073465253489
817 => 0.0047410134713237
818 => 0.0047512747596866
819 => 0.0046653358684146
820 => 0.0048030534901326
821 => 0.004804056612657
822 => 0.0046487105727662
823 => 0.0045535619883035
824 => 0.0045319440297192
825 => 0.0045859499287131
826 => 0.0046515230601307
827 => 0.0047549136121144
828 => 0.0048173903573139
829 => 0.0049802965736887
830 => 0.0050243743249525
831 => 0.0050728024100522
901 => 0.0051375172664138
902 => 0.0052152240440244
903 => 0.0050452060384616
904 => 0.0050519611707758
905 => 0.0048936427580553
906 => 0.0047244568289063
907 => 0.0048528478598066
908 => 0.0050207020535656
909 => 0.0049821961160548
910 => 0.00497786341148
911 => 0.0049851498187829
912 => 0.0049561175993862
913 => 0.004824805947039
914 => 0.0047588620572847
915 => 0.0048439464991483
916 => 0.0048891650933259
917 => 0.0049592951894196
918 => 0.0049506501748093
919 => 0.0051312977709242
920 => 0.0052014919642747
921 => 0.0051835332858368
922 => 0.0051868381148691
923 => 0.0053139213490185
924 => 0.0054552640420531
925 => 0.005587650125891
926 => 0.0057223189364856
927 => 0.0055599704291007
928 => 0.0054775398693146
929 => 0.0055625871659725
930 => 0.0055174598732384
1001 => 0.0057767746829128
1002 => 0.0057947290777073
1003 => 0.0060540251359695
1004 => 0.0063001279716605
1005 => 0.0061455551899532
1006 => 0.0062913103609922
1007 => 0.0064489564620643
1008 => 0.0067530813681904
1009 => 0.0066506627990503
1010 => 0.0065722117801926
1011 => 0.0064980759464446
1012 => 0.006652340847742
1013 => 0.0068508001788191
1014 => 0.0068935464179132
1015 => 0.0069628116555659
1016 => 0.0068899877275244
1017 => 0.0069776961275578
1018 => 0.0072873453206997
1019 => 0.0072036753753637
1020 => 0.0070848506023718
1021 => 0.0073292889013326
1022 => 0.0074177501714967
1023 => 0.0080386176930353
1024 => 0.0088224885857358
1025 => 0.008497960888984
1026 => 0.0082965160751668
1027 => 0.0083438603847487
1028 => 0.0086301034990587
1029 => 0.0087220357024727
1030 => 0.0084721322826625
1031 => 0.0085604023953154
1101 => 0.009046779394559
1102 => 0.0093077050498108
1103 => 0.0089533329629881
1104 => 0.0079756344300449
1105 => 0.0070741517316538
1106 => 0.0073132655375621
1107 => 0.0072861574525374
1108 => 0.0078087088614583
1109 => 0.007201679874839
1110 => 0.007211900686161
1111 => 0.0077452579048269
1112 => 0.0076029673429444
1113 => 0.0073724748558931
1114 => 0.0070758345818876
1115 => 0.0065274675994841
1116 => 0.0060417636708247
1117 => 0.0069943409258602
1118 => 0.0069532640624737
1119 => 0.00689377867704
1120 => 0.0070261569653317
1121 => 0.0076689483570435
1122 => 0.0076541299349519
1123 => 0.0075598626940302
1124 => 0.0076313635654359
1125 => 0.007359940407434
1126 => 0.0074298923354415
1127 => 0.0070740089321886
1128 => 0.0072348830934627
1129 => 0.0073719803225353
1130 => 0.0073995046210308
1201 => 0.0074615182709667
1202 => 0.0069316184220161
1203 => 0.0071695278971527
1204 => 0.0073092774246923
1205 => 0.0066778839751373
1206 => 0.0072967968062793
1207 => 0.0069223940445667
1208 => 0.0067953161239006
1209 => 0.0069664098028345
1210 => 0.0068997344297599
1211 => 0.0068424108592996
1212 => 0.0068104233220389
1213 => 0.0069360556369276
1214 => 0.006930194739275
1215 => 0.0067246358879354
1216 => 0.0064564927460137
1217 => 0.0065464903859412
1218 => 0.0065137933996232
1219 => 0.0063952953032114
1220 => 0.0064751487126782
1221 => 0.0061235147102721
1222 => 0.0055185466854773
1223 => 0.0059182070933285
1224 => 0.0059028206023731
1225 => 0.0058950620359116
1226 => 0.0061953957866094
1227 => 0.0061665256263583
1228 => 0.0061141260028052
1229 => 0.0063943329430326
1230 => 0.0062920536405344
1231 => 0.0066072543507994
]
'min_raw' => 0.0028294793221368
'max_raw' => 0.0093077050498108
'avg_raw' => 0.0060685921859738
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.002829'
'max' => '$0.0093077'
'avg' => '$0.006068'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.0015414273847396
'max_diff' => 0.0061528634566087
'year' => 2029
]
4 => [
'items' => [
101 => 0.0068148659244836
102 => 0.0067622089138665
103 => 0.0069574686023904
104 => 0.0065485637497955
105 => 0.0066843855394123
106 => 0.0067123782220114
107 => 0.0063908752328856
108 => 0.0061712491416187
109 => 0.0061566025852519
110 => 0.0057758012093348
111 => 0.0059792222306284
112 => 0.006158224311233
113 => 0.006072496205746
114 => 0.0060453572486031
115 => 0.0061840042949244
116 => 0.0061947783578552
117 => 0.0059491285812487
118 => 0.0060002069485219
119 => 0.0062132122311232
120 => 0.0059948397619156
121 => 0.0055705777251855
122 => 0.0054653548741949
123 => 0.0054513162062308
124 => 0.0051659434890146
125 => 0.0054723863682407
126 => 0.0053386158392999
127 => 0.0057611953374068
128 => 0.0055198201944275
129 => 0.005509414994444
130 => 0.005493686008558
131 => 0.0052480539222516
201 => 0.0053018317384193
202 => 0.0054805973899532
203 => 0.0055443829883598
204 => 0.005537729627866
205 => 0.0054797213407355
206 => 0.0055062772375333
207 => 0.0054207314412596
208 => 0.0053905234401136
209 => 0.0052951786791315
210 => 0.0051550482201503
211 => 0.0051745342199417
212 => 0.0048968991135707
213 => 0.0047456287724094
214 => 0.004703759135687
215 => 0.0046477693076093
216 => 0.0047100833357517
217 => 0.0048961126081973
218 => 0.0046717218373161
219 => 0.0042870195998226
220 => 0.0043101408597967
221 => 0.0043620874661947
222 => 0.0042652853088331
223 => 0.0041736701908796
224 => 0.0042533221029707
225 => 0.0040903186935048
226 => 0.0043817856494707
227 => 0.0043739022851385
228 => 0.0044825431421269
301 => 0.0045504784995366
302 => 0.0043939094950404
303 => 0.0043545328138173
304 => 0.0043769635610124
305 => 0.0040062332749841
306 => 0.0044522465684658
307 => 0.0044561037099489
308 => 0.0044230765228318
309 => 0.0046605648324953
310 => 0.0051617392403466
311 => 0.0049731772684191
312 => 0.004900160373573
313 => 0.0047613552030955
314 => 0.0049463048513212
315 => 0.0049321036040015
316 => 0.0048678801779583
317 => 0.0048290376494982
318 => 0.004900606199163
319 => 0.0048201695141806
320 => 0.0048057208753055
321 => 0.0047181778439965
322 => 0.0046869289647733
323 => 0.0046637935386501
324 => 0.0046383237077286
325 => 0.0046945038080551
326 => 0.0045671923096075
327 => 0.0044136671229799
328 => 0.0044009031648773
329 => 0.0044361455754171
330 => 0.0044205534322422
331 => 0.0044008285156945
401 => 0.0043631682782437
402 => 0.0043519952902757
403 => 0.0043883020808086
404 => 0.0043473138311144
405 => 0.0044077942262836
406 => 0.0043913469053305
407 => 0.0042994735074827
408 => 0.0041849652378759
409 => 0.0041839458740871
410 => 0.0041592752552315
411 => 0.0041278535128666
412 => 0.0041191127029727
413 => 0.0042466140411017
414 => 0.0045105379952347
415 => 0.0044587234078734
416 => 0.0044961647574144
417 => 0.0046803391400906
418 => 0.0047388826380264
419 => 0.0046973298498703
420 => 0.0046404498305778
421 => 0.0046429522627557
422 => 0.0048373285074308
423 => 0.0048494515153844
424 => 0.0048800824454526
425 => 0.0049194518468901
426 => 0.0047040346291732
427 => 0.0046328061311734
428 => 0.0045990541172145
429 => 0.0044951109778943
430 => 0.0046072047422399
501 => 0.0045418925060893
502 => 0.0045507053581297
503 => 0.0045449659766771
504 => 0.0045481000670455
505 => 0.0043817041785164
506 => 0.0044423300947859
507 => 0.0043415277503979
508 => 0.0042065647268566
509 => 0.0042061122834775
510 => 0.0042391442922873
511 => 0.0042194955609046
512 => 0.0041666213299689
513 => 0.004174131864914
514 => 0.0041083316758387
515 => 0.0041821211992186
516 => 0.0041842372187175
517 => 0.0041558242328738
518 => 0.0042695071746324
519 => 0.0043160831686273
520 => 0.0042973811326799
521 => 0.0043147709839295
522 => 0.0044608765379071
523 => 0.0044846981182377
524 => 0.0044952780906553
525 => 0.0044811023291934
526 => 0.0043174415252464
527 => 0.004324700577841
528 => 0.0042714384663594
529 => 0.0042264375947805
530 => 0.0042282373936452
531 => 0.0042513736913405
601 => 0.0043524112603021
602 => 0.0045650388676917
603 => 0.0045731079299634
604 => 0.0045828878688279
605 => 0.0045431079424628
606 => 0.0045311099360284
607 => 0.0045469384034635
608 => 0.0046267901533706
609 => 0.0048321905336702
610 => 0.0047595883210422
611 => 0.0047005615920548
612 => 0.0047523439468686
613 => 0.0047443724592285
614 => 0.0046770850813248
615 => 0.0046751965487346
616 => 0.0045460505574612
617 => 0.0044983082249994
618 => 0.0044584111585426
619 => 0.0044148446035111
620 => 0.0043890168893243
621 => 0.0044286999968014
622 => 0.0044377759929982
623 => 0.0043510081849575
624 => 0.0043391820533396
625 => 0.0044100385183989
626 => 0.0043788572299215
627 => 0.0044109279583792
628 => 0.004418368642479
629 => 0.0044171705209654
630 => 0.004384613674647
701 => 0.0044053644376312
702 => 0.0043562826970733
703 => 0.0043029136760555
704 => 0.0042688675656537
705 => 0.0042391578187669
706 => 0.0042556425130803
707 => 0.0041968775878393
708 => 0.0041780775055504
709 => 0.0043983345460391
710 => 0.0045610407900104
711 => 0.0045586749767843
712 => 0.0045442736972082
713 => 0.0045228763169511
714 => 0.0046252248017288
715 => 0.0045895686361548
716 => 0.0046155114757822
717 => 0.0046221150172849
718 => 0.0046421019485542
719 => 0.0046492455585482
720 => 0.0046276526075902
721 => 0.0045551840268185
722 => 0.0043745992136412
723 => 0.0042905364956278
724 => 0.0042627943985081
725 => 0.0042638027710487
726 => 0.0042359873548068
727 => 0.0042441802414896
728 => 0.004233138203168
729 => 0.004212227253943
730 => 0.0042543513208912
731 => 0.0042592057271941
801 => 0.0042493734666233
802 => 0.0042516893199208
803 => 0.0041702824018077
804 => 0.0041764715929853
805 => 0.004142009390024
806 => 0.0041355481424168
807 => 0.0040484306942979
808 => 0.0038940895070794
809 => 0.00397960950706
810 => 0.0038763133730151
811 => 0.0038371935618605
812 => 0.0040223806634877
813 => 0.004003793014775
814 => 0.0039719790400355
815 => 0.0039249195407825
816 => 0.0039074647147441
817 => 0.0038014147172617
818 => 0.0037951487176557
819 => 0.0038477099599988
820 => 0.0038234547551793
821 => 0.0037893912614485
822 => 0.0036660167401162
823 => 0.0035273029302386
824 => 0.0035314898282348
825 => 0.0035756121102947
826 => 0.0037039035960843
827 => 0.0036537778931211
828 => 0.0036174111204951
829 => 0.0036106007171634
830 => 0.0036958471734045
831 => 0.0038164887686703
901 => 0.0038730911059655
902 => 0.0038169999087445
903 => 0.0037525653615416
904 => 0.0037564871938689
905 => 0.0037825773873306
906 => 0.0037853190977679
907 => 0.0037433788315173
908 => 0.0037551847708003
909 => 0.0037372504694717
910 => 0.0036271876953219
911 => 0.0036251970087504
912 => 0.0035981858289721
913 => 0.0035973679411833
914 => 0.0035514151861258
915 => 0.0035449860780368
916 => 0.0034537440937373
917 => 0.0035137998441094
918 => 0.0034735175998282
919 => 0.0034128027560756
920 => 0.0034023354941278
921 => 0.0034020208355941
922 => 0.0034643614045374
923 => 0.0035130713582649
924 => 0.0034742183267138
925 => 0.003465372244564
926 => 0.0035598252586858
927 => 0.0035478052516804
928 => 0.0035373960031345
929 => 0.0038056866370229
930 => 0.003593313665321
1001 => 0.0035007069278336
1002 => 0.0033860885046504
1003 => 0.0034234088411951
1004 => 0.0034312727844549
1005 => 0.003155636138223
1006 => 0.0030438103851751
1007 => 0.0030054360007937
1008 => 0.002983351000048
1009 => 0.0029934154122138
1010 => 0.002892759118618
1011 => 0.0029604018126158
1012 => 0.0028732419706266
1013 => 0.0028586293394745
1014 => 0.0030144819339837
1015 => 0.003036167912032
1016 => 0.0029436487923726
1017 => 0.0030030610446788
1018 => 0.0029815173361005
1019 => 0.0028747360759536
1020 => 0.0028706578172458
1021 => 0.0028170787344468
1022 => 0.0027332378448213
1023 => 0.002694920308511
1024 => 0.0026749642029125
1025 => 0.0026831984810192
1026 => 0.0026790349780354
1027 => 0.0026518653047641
1028 => 0.0026805923119036
1029 => 0.0026072066794811
1030 => 0.0025779839293422
1031 => 0.0025647846910671
1101 => 0.0024996507183727
1102 => 0.0026033078341386
1103 => 0.0026237295917825
1104 => 0.0026441915865974
1105 => 0.0028222992814647
1106 => 0.0028134015243563
1107 => 0.0028938329152332
1108 => 0.0028907074992875
1109 => 0.0028677671637073
1110 => 0.0027709856613963
1111 => 0.0028095610432531
1112 => 0.0026908320138433
1113 => 0.0027797918754663
1114 => 0.0027391943096742
1115 => 0.0027660657976345
1116 => 0.0027177484393775
1117 => 0.0027444892604118
1118 => 0.0026285723481171
1119 => 0.0025203307664112
1120 => 0.0025638903386584
1121 => 0.0026112445753324
1122 => 0.0027139206260768
1123 => 0.0026527676173125
1124 => 0.0026747605517154
1125 => 0.0026010879030384
1126 => 0.0024490801852659
1127 => 0.0024499405324405
1128 => 0.0024265574567294
1129 => 0.00240635106533
1130 => 0.0026597917760034
1201 => 0.0026282724173264
1202 => 0.0025780504444263
1203 => 0.0026452745508949
1204 => 0.0026630496716353
1205 => 0.0026635557043339
1206 => 0.002712600677108
1207 => 0.0027387759878694
1208 => 0.0027433894998414
1209 => 0.0028205628241883
1210 => 0.0028464303045687
1211 => 0.0029529747953524
1212 => 0.002736555195628
1213 => 0.0027320981763906
1214 => 0.0026462205319324
1215 => 0.0025917555721451
1216 => 0.0026499497943258
1217 => 0.0027015019308744
1218 => 0.002647822400516
1219 => 0.002654831813944
1220 => 0.0025827714302166
1221 => 0.002608529626643
1222 => 0.0026307160554091
1223 => 0.0026184660135025
1224 => 0.0026001271078595
1225 => 0.0026972752435702
1226 => 0.0026917937650268
1227 => 0.0027822603424266
1228 => 0.0028527855088368
1229 => 0.0029791792149253
1230 => 0.002847280793569
1231 => 0.0028424738908461
]
'min_raw' => 0.00240635106533
'max_raw' => 0.0069574686023904
'avg_raw' => 0.0046819098338602
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.0024063'
'max' => '$0.006957'
'avg' => '$0.004681'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.00042312825680678
'max_diff' => -0.0023502364474205
'year' => 2030
]
5 => [
'items' => [
101 => 0.0028894621360145
102 => 0.0028464231109131
103 => 0.0028736222891206
104 => 0.0029747970068185
105 => 0.0029769346691744
106 => 0.0029411260704903
107 => 0.002938947114006
108 => 0.0029458245470865
109 => 0.0029861058874513
110 => 0.0029720303494072
111 => 0.0029883189183808
112 => 0.0030086880233017
113 => 0.0030929432775759
114 => 0.0031132569341366
115 => 0.0030639052801175
116 => 0.0030683611819084
117 => 0.003049902308572
118 => 0.0030320712682181
119 => 0.0030721528429194
120 => 0.0031454027084912
121 => 0.0031449470248792
122 => 0.0031619395699179
123 => 0.0031725257847032
124 => 0.0031270820012619
125 => 0.0030974997692558
126 => 0.0031088434793733
127 => 0.003126982318885
128 => 0.0031029612981888
129 => 0.0029546924308329
130 => 0.0029996677337367
131 => 0.0029921816441536
201 => 0.0029815205422476
202 => 0.0030267435571011
203 => 0.0030223816869962
204 => 0.002891726742841
205 => 0.0029000908484569
206 => 0.0028922353918063
207 => 0.0029176179793196
208 => 0.0028450523678889
209 => 0.0028673730612281
210 => 0.002881372390847
211 => 0.0028896181035404
212 => 0.0029194072719272
213 => 0.0029159118568423
214 => 0.0029191899920177
215 => 0.0029633594646865
216 => 0.0031867535003123
217 => 0.0031989123447802
218 => 0.0031390377477316
219 => 0.0031629564682783
220 => 0.0031170377552778
221 => 0.0031478632949437
222 => 0.0031689533462993
223 => 0.003073651459607
224 => 0.0030680083003812
225 => 0.0030219000645179
226 => 0.0030466760187669
227 => 0.0030072556941026
228 => 0.0030169280629108
301 => 0.0029898832765011
302 => 0.0030385585074752
303 => 0.0030929849790705
304 => 0.003106735255162
305 => 0.0030705641986314
306 => 0.0030443739699145
307 => 0.0029983925558852
308 => 0.0030748606721785
309 => 0.0030972222797063
310 => 0.0030747432161738
311 => 0.0030695343259761
312 => 0.0030596634884637
313 => 0.0030716284708168
314 => 0.0030971004935893
315 => 0.0030850883580442
316 => 0.0030930225851983
317 => 0.0030627854930263
318 => 0.0031270970450451
319 => 0.0032292392670689
320 => 0.0032295676710146
321 => 0.0032175554707196
322 => 0.0032126403371654
323 => 0.0032249655836293
324 => 0.0032316515242279
325 => 0.0032715091112286
326 => 0.0033142778900766
327 => 0.0035138611194803
328 => 0.0034578189473089
329 => 0.0036349010616953
330 => 0.0037749500229402
331 => 0.0038169445828187
401 => 0.0037783115637272
402 => 0.0036461500923299
403 => 0.0036396656200336
404 => 0.0038371706554351
405 => 0.0037813664366305
406 => 0.0037747287023712
407 => 0.0037041144244817
408 => 0.0037458562084629
409 => 0.0037367266679912
410 => 0.0037223152417242
411 => 0.0038019556578024
412 => 0.0039510354071517
413 => 0.0039277999301546
414 => 0.003910455724439
415 => 0.0038344584638156
416 => 0.0038802257893135
417 => 0.0038639289213191
418 => 0.0039339506084712
419 => 0.0038924713121726
420 => 0.0037809436647881
421 => 0.003798704810234
422 => 0.0037960202488303
423 => 0.0038512683322881
424 => 0.0038346842289758
425 => 0.0037927819364932
426 => 0.0039505258687754
427 => 0.0039402828552309
428 => 0.0039548051065582
429 => 0.003961198250708
430 => 0.0040572142025283
501 => 0.0040965488658213
502 => 0.004105478523039
503 => 0.0041428434109153
504 => 0.00410454885059
505 => 0.0042577543954501
506 => 0.0043596271429906
507 => 0.0044779575815827
508 => 0.0046508701565891
509 => 0.0047158868843222
510 => 0.0047041421943994
511 => 0.0048352425353453
512 => 0.0050708269338282
513 => 0.0047517605369485
514 => 0.0050877382276166
515 => 0.0049813715698001
516 => 0.0047291781375715
517 => 0.0047129398537012
518 => 0.0048837281740324
519 => 0.0052625202307602
520 => 0.0051676371167738
521 => 0.0052626754255437
522 => 0.0051518081901066
523 => 0.0051463026974047
524 => 0.0052572908513788
525 => 0.0055166207227886
526 => 0.0053934228217167
527 => 0.0052167884211654
528 => 0.0053472125137968
529 => 0.0052342270945795
530 => 0.0049796393224554
531 => 0.0051675645614447
601 => 0.0050419043059352
602 => 0.0050785786489595
603 => 0.0053426978154881
604 => 0.0053109182985988
605 => 0.0053520439361576
606 => 0.0052794582623116
607 => 0.0052116517972292
608 => 0.0050850859947787
609 => 0.0050476161002918
610 => 0.0050579714311024
611 => 0.0050476109687041
612 => 0.0049767985654328
613 => 0.0049615066336885
614 => 0.0049360194108264
615 => 0.0049439189669313
616 => 0.0048959955314005
617 => 0.0049864369557341
618 => 0.0050032236810576
619 => 0.0050690394074987
620 => 0.0050758726145531
621 => 0.0052591684758635
622 => 0.0051582121956156
623 => 0.0052259423845518
624 => 0.0052198839589521
625 => 0.0047346439339652
626 => 0.0048015057280994
627 => 0.0049055216973854
628 => 0.0048586626442124
629 => 0.0047924149063555
630 => 0.0047389163060571
701 => 0.0046578604560923
702 => 0.0047719450083781
703 => 0.0049219540630943
704 => 0.0050796770917334
705 => 0.005269170976221
706 => 0.0052268781471554
707 => 0.0050761346353721
708 => 0.0050828968791925
709 => 0.0051246984096453
710 => 0.0050705616296393
711 => 0.0050545956363401
712 => 0.0051225049273405
713 => 0.0051229725813053
714 => 0.0050606816732601
715 => 0.0049914567280836
716 => 0.0049911666730357
717 => 0.0049788487626752
718 => 0.0051539995189954
719 => 0.0052503147252326
720 => 0.005261357108408
721 => 0.0052495714848638
722 => 0.0052541073036113
723 => 0.0051980636072626
724 => 0.0053261628778738
725 => 0.0054437194362915
726 => 0.005412211767406
727 => 0.0053649772926676
728 => 0.0053273527584179
729 => 0.0054033486228617
730 => 0.0053999646466466
731 => 0.0054426926823079
801 => 0.0054407542918012
802 => 0.005426386460491
803 => 0.0054122122805265
804 => 0.005468411301909
805 => 0.0054522268862795
806 => 0.0054360173317823
807 => 0.0054035065886795
808 => 0.0054079253386135
809 => 0.0053606990195731
810 => 0.0053388499634556
811 => 0.0050102925826656
812 => 0.0049224913145963
813 => 0.0049501153808905
814 => 0.0049592099407731
815 => 0.004920998716389
816 => 0.0049757837964977
817 => 0.0049672455997945
818 => 0.0050004627284886
819 => 0.0049797101086006
820 => 0.0049805618033596
821 => 0.005041590833525
822 => 0.0050593078206181
823 => 0.005050296817989
824 => 0.0050566078153513
825 => 0.0052020420858617
826 => 0.0051813659833213
827 => 0.0051703822159367
828 => 0.0051734247945666
829 => 0.0052105863688279
830 => 0.0052209895806744
831 => 0.0051769104410603
901 => 0.0051976984181208
902 => 0.0052862109860571
903 => 0.0053171853754574
904 => 0.0054160407578727
905 => 0.0053740452344084
906 => 0.0054511298352508
907 => 0.0056880616181634
908 => 0.0058773391207864
909 => 0.0057032717071507
910 => 0.0060508557363731
911 => 0.0063214997610905
912 => 0.0063111119926406
913 => 0.0062639189468221
914 => 0.0059557979201251
915 => 0.0056722603575328
916 => 0.0059094515682821
917 => 0.0059100562174571
918 => 0.0058896812820992
919 => 0.0057631343084774
920 => 0.0058852777217237
921 => 0.0058949730223074
922 => 0.005889546232169
923 => 0.0057925229641982
924 => 0.0056443863669041
925 => 0.0056733319034265
926 => 0.0057207452827231
927 => 0.0056309818642475
928 => 0.0056022970130873
929 => 0.0056556276089104
930 => 0.0058274699005234
1001 => 0.0057949841107086
1002 => 0.0057941357754512
1003 => 0.0059331237603978
1004 => 0.0058336383586605
1005 => 0.0056736969993384
1006 => 0.0056333096967423
1007 => 0.0054899619806729
1008 => 0.0055889727587491
1009 => 0.0055925359803865
1010 => 0.0055383087890998
1011 => 0.0056780972370483
1012 => 0.0056768090618911
1013 => 0.0058095173884535
1014 => 0.0060632058658694
1015 => 0.0059881776998457
1016 => 0.0059009281058014
1017 => 0.0059104145558428
1018 => 0.0060144574982436
1019 => 0.0059515507601987
1020 => 0.005974172461801
1021 => 0.0060144232575889
1022 => 0.0060387075620588
1023 => 0.0059069204181438
1024 => 0.0058761945307895
1025 => 0.0058133401485835
1026 => 0.0057969426134986
1027 => 0.0058481361963056
1028 => 0.0058346484959319
1029 => 0.0055922365054054
1030 => 0.0055669031036278
1031 => 0.0055676800428925
1101 => 0.0055039779995851
1102 => 0.0054068170932992
1103 => 0.0056621501538424
1104 => 0.0056416433356969
1105 => 0.0056190053955659
1106 => 0.0056217784140617
1107 => 0.0057326098416031
1108 => 0.0056683220165078
1109 => 0.005839241736091
1110 => 0.0058041057800617
1111 => 0.0057680687193405
1112 => 0.0057630872998331
1113 => 0.0057492161059929
1114 => 0.0057016466210711
1115 => 0.0056442036095452
1116 => 0.0056062747577073
1117 => 0.0051714921174226
1118 => 0.0052521852464452
1119 => 0.0053450153359755
1120 => 0.0053770599108881
1121 => 0.005322245448083
1122 => 0.0057038110301608
1123 => 0.0057735267388638
1124 => 0.0055623533097591
1125 => 0.0055228513833279
1126 => 0.0057064007698812
1127 => 0.0055956980517897
1128 => 0.0056455474789679
1129 => 0.0055378002835874
1130 => 0.0057567342661515
1201 => 0.0057550663560191
1202 => 0.0056698960919534
1203 => 0.0057418814159209
1204 => 0.0057293721944097
1205 => 0.0056332151760447
1206 => 0.0057597826151458
1207 => 0.0057598453910166
1208 => 0.0056778708636146
1209 => 0.0055821425621405
1210 => 0.0055650286028385
1211 => 0.0055521355334414
1212 => 0.0056423765742557
1213 => 0.0057232864092734
1214 => 0.0058738395529922
1215 => 0.0059116921903775
1216 => 0.0060594335540854
1217 => 0.0059714607653938
1218 => 0.0060104579631824
1219 => 0.0060527949378724
1220 => 0.0060730928404295
1221 => 0.0060400184974582
1222 => 0.0062695216480679
1223 => 0.0062888987457742
1224 => 0.0062953957190239
1225 => 0.0062180085479232
1226 => 0.0062867464685535
1227 => 0.0062545862718512
1228 => 0.0063382581693106
1229 => 0.0063513789912086
1230 => 0.0063402661218477
1231 => 0.0063444308778163
]
'min_raw' => 0.0028450523678889
'max_raw' => 0.0063513789912086
'avg_raw' => 0.0045982156795487
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.002845'
'max' => '$0.006351'
'avg' => '$0.004598'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.00043870130255887
'max_diff' => -0.00060608961118175
'year' => 2031
]
6 => [
'items' => [
101 => 0.006148590425901
102 => 0.0061384350653285
103 => 0.0059999660033311
104 => 0.0060563931696067
105 => 0.005950905286879
106 => 0.0059843565811375
107 => 0.0059991015929111
108 => 0.0059913996355326
109 => 0.0060595834769253
110 => 0.006001613282703
111 => 0.0058486204089681
112 => 0.0056955858524271
113 => 0.0056936646282289
114 => 0.005653373330776
115 => 0.0056242501024367
116 => 0.0056298602694169
117 => 0.0056496312296006
118 => 0.0056231009782892
119 => 0.0056287625525243
120 => 0.0057227824077
121 => 0.0057416374191366
122 => 0.0056775607231466
123 => 0.0054202835425239
124 => 0.0053571470770681
125 => 0.0054025283163872
126 => 0.0053808390069188
127 => 0.0043427570358493
128 => 0.0045866389968645
129 => 0.0044417326170781
130 => 0.0045085121437056
131 => 0.0043606002532688
201 => 0.0044311915601117
202 => 0.0044181559233196
203 => 0.0048103108996402
204 => 0.0048041879390765
205 => 0.0048071186762785
206 => 0.0046672269536325
207 => 0.0048900782662818
208 => 0.0049998628363668
209 => 0.0049795446342658
210 => 0.0049846582879962
211 => 0.0048967887745634
212 => 0.0048079694452418
213 => 0.0047094551398273
214 => 0.0048924825425513
215 => 0.0048721330197503
216 => 0.0049188075035285
217 => 0.0050375138572639
218 => 0.005054993818773
219 => 0.0050784870643056
220 => 0.0050700664081453
221 => 0.0052706806007264
222 => 0.0052463848983097
223 => 0.0053049305507832
224 => 0.005184497701776
225 => 0.0050482165015333
226 => 0.0050741191023313
227 => 0.0050716244735789
228 => 0.0050398649863591
229 => 0.0050111939413597
301 => 0.0049634647294526
302 => 0.0051144870185211
303 => 0.005108355789384
304 => 0.0052076132623394
305 => 0.0051900685398589
306 => 0.0050729005892121
307 => 0.0050770852654914
308 => 0.0051052292245561
309 => 0.0052026357882213
310 => 0.0052315526882617
311 => 0.0052181572280238
312 => 0.0052498632888114
313 => 0.0052749224664978
314 => 0.005253010335711
315 => 0.005563239899058
316 => 0.0054344109552266
317 => 0.005497201286064
318 => 0.0055121764099866
319 => 0.0054738179449518
320 => 0.0054821365225042
321 => 0.0054947369008194
322 => 0.0055712439305422
323 => 0.0057720205140222
324 => 0.0058609430961131
325 => 0.0061284710716964
326 => 0.0058535593135325
327 => 0.0058372471875011
328 => 0.0058854370544745
329 => 0.0060425042968541
330 => 0.0061697925442269
331 => 0.0062120213993156
401 => 0.006217602639638
402 => 0.0062968267791056
403 => 0.0063422365784057
404 => 0.0062872068847725
405 => 0.0062405749812675
406 => 0.0060735452910773
407 => 0.0060928794325236
408 => 0.0062260724943427
409 => 0.0064142155391945
410 => 0.0065756618446249
411 => 0.006519128975435
412 => 0.0069504348613679
413 => 0.0069931970782316
414 => 0.0069872887225291
415 => 0.0070847074164157
416 => 0.0068913511480228
417 => 0.0068086875971835
418 => 0.0062506573280999
419 => 0.0064074410719535
420 => 0.0066353354512312
421 => 0.0066051727755737
422 => 0.006439669785708
423 => 0.006575536295766
424 => 0.0065306145786023
425 => 0.0064951829564715
426 => 0.0066575020862107
427 => 0.0064790255353601
428 => 0.006633555011109
429 => 0.0064353693600583
430 => 0.0065193872128195
501 => 0.0064716946161059
502 => 0.0065025575711644
503 => 0.0063221333665263
504 => 0.006419485887799
505 => 0.006318083181576
506 => 0.0063180351034902
507 => 0.0063157966331301
508 => 0.0064350964673131
509 => 0.0064389868306228
510 => 0.0063508240729095
511 => 0.0063381184421619
512 => 0.0063850978183264
513 => 0.0063300972727559
514 => 0.006355831681859
515 => 0.0063308767417916
516 => 0.0063252588591509
517 => 0.0062804946144663
518 => 0.0062612089470377
519 => 0.0062687713541669
520 => 0.0062429569599468
521 => 0.0062274028536818
522 => 0.0063127025299028
523 => 0.006267130353877
524 => 0.0063057179403298
525 => 0.0062617425154252
526 => 0.0061093045335252
527 => 0.006021635838132
528 => 0.0057336946213312
529 => 0.005815354393226
530 => 0.0058694949064753
531 => 0.0058516014671694
601 => 0.0058900434986403
602 => 0.0058924035271594
603 => 0.0058799056308581
604 => 0.0058654346680208
605 => 0.0058583910036061
606 => 0.0059108887073876
607 => 0.0059413653914242
608 => 0.0058749286312865
609 => 0.0058593634279353
610 => 0.0059265346605086
611 => 0.0059675090735747
612 => 0.006270041118121
613 => 0.0062476285670954
614 => 0.0063038796719287
615 => 0.006297546660768
616 => 0.0063565067801371
617 => 0.0064528816568998
618 => 0.0062569245856017
619 => 0.0062909359574934
620 => 0.0062825971545428
621 => 0.0063736380186054
622 => 0.0063739222382456
623 => 0.0063193386924116
624 => 0.0063489293181251
625 => 0.0063324126426282
626 => 0.0063622605076137
627 => 0.0062473292338121
628 => 0.0063873031192381
629 => 0.0064666592925567
630 => 0.0064677611531002
701 => 0.0065053753494436
702 => 0.0065435935513959
703 => 0.0066169500619395
704 => 0.0065415476781312
705 => 0.0064059061299342
706 => 0.0064156990115944
707 => 0.0063361724215158
708 => 0.0063375092778627
709 => 0.0063303730339118
710 => 0.0063517894391999
711 => 0.0062520289304239
712 => 0.0062754425224352
713 => 0.0062426633565096
714 => 0.0062908647019883
715 => 0.0062390080222211
716 => 0.0062825931333196
717 => 0.0063014030224003
718 => 0.0063708119180564
719 => 0.006228756271898
720 => 0.0059390951930595
721 => 0.0059999854636324
722 => 0.0059099239706275
723 => 0.0059182595046934
724 => 0.0059350986100969
725 => 0.0058805175600716
726 => 0.0058909299043699
727 => 0.005890557902161
728 => 0.0058873521880968
729 => 0.0058731535489651
730 => 0.0058525627131089
731 => 0.0059345902656348
801 => 0.0059485283452207
802 => 0.0059795109695774
803 => 0.0060716942439482
804 => 0.0060624829610072
805 => 0.0060775069456564
806 => 0.0060447096715234
807 => 0.0059197808761755
808 => 0.0059265651108135
809 => 0.0058419655961682
810 => 0.0059773475697823
811 => 0.0059452873314757
812 => 0.0059246178872753
813 => 0.0059189780379242
814 => 0.0060113898168018
815 => 0.0060390408694192
816 => 0.0060218105890212
817 => 0.0059864707812373
818 => 0.0060543336594587
819 => 0.0060724909027657
820 => 0.0060765556399288
821 => 0.0061967956487209
822 => 0.0060832757207204
823 => 0.0061106010956812
824 => 0.0063237858707528
825 => 0.0061304566972509
826 => 0.0062328674722099
827 => 0.0062278549976956
828 => 0.0062802448847729
829 => 0.006223557497809
830 => 0.0062242602059097
831 => 0.006270778876436
901 => 0.0062054517933682
902 => 0.0061892758889038
903 => 0.0061669289927402
904 => 0.0062157226229685
905 => 0.0062449721975443
906 => 0.00648070228718
907 => 0.0066329946756828
908 => 0.0066263832614553
909 => 0.0066867992114459
910 => 0.0066595812726284
911 => 0.0065716873684575
912 => 0.0067217115453576
913 => 0.0066742376185082
914 => 0.0066781513113569
915 => 0.0066780056435136
916 => 0.0067095716546257
917 => 0.0066872042427703
918 => 0.0066431157780357
919 => 0.006672383758449
920 => 0.0067592991967822
921 => 0.0070290873842598
922 => 0.0071800644281903
923 => 0.0070199983766428
924 => 0.0071304097956304
925 => 0.007064202287849
926 => 0.0070521704141824
927 => 0.0071215169446464
928 => 0.007190984857032
929 => 0.0071865600513311
930 => 0.0071361299141559
1001 => 0.007107643209283
1002 => 0.0073233540823269
1003 => 0.0074822861790467
1004 => 0.0074714480755447
1005 => 0.0075192839396625
1006 => 0.0076597315162198
1007 => 0.0076725722824738
1008 => 0.0076709546410675
1009 => 0.0076391274621114
1010 => 0.0077774163406545
1011 => 0.0078927793560965
1012 => 0.0076317603897587
1013 => 0.0077311529951509
1014 => 0.0077757735379413
1015 => 0.007841289733076
1016 => 0.0079518265360575
1017 => 0.0080718988225344
1018 => 0.0080888783603678
1019 => 0.0080768305657293
1020 => 0.0079976396650815
1021 => 0.0081290241937048
1022 => 0.008205986169226
1023 => 0.0082518152644054
1024 => 0.008368030224546
1025 => 0.0077760490992229
1026 => 0.0073570154353482
1027 => 0.0072915772778148
1028 => 0.0074246483443876
1029 => 0.0074597381234209
1030 => 0.0074455934774914
1031 => 0.0069739329919265
1101 => 0.0072890940829706
1102 => 0.0076281809174369
1103 => 0.0076412066237234
1104 => 0.0078109605830285
1105 => 0.0078662394306282
1106 => 0.0080029136180289
1107 => 0.0079943646103946
1108 => 0.0080276426000654
1109 => 0.0080199925665345
1110 => 0.0082731527185488
1111 => 0.0085524259608669
1112 => 0.0085427556165199
1113 => 0.0085026067837257
1114 => 0.0085622346468184
1115 => 0.0088504745616301
1116 => 0.0088239380492248
1117 => 0.0088497160106518
1118 => 0.0091895671147046
1119 => 0.009631421893229
1120 => 0.0094261359871099
1121 => 0.0098715473339601
1122 => 0.010151910166561
1123 => 0.010636768695487
1124 => 0.010576062019687
1125 => 0.010764813886941
1126 => 0.010467384400139
1127 => 0.0097844261780242
1128 => 0.0096763454251154
1129 => 0.0098927258294793
1130 => 0.010424675939517
1201 => 0.0098759728274645
1202 => 0.0099869747524002
1203 => 0.0099550061905512
1204 => 0.0099533027217479
1205 => 0.010018317197461
1206 => 0.0099240103095121
1207 => 0.009539787082522
1208 => 0.0097158743232099
1209 => 0.0096478785831764
1210 => 0.0097233249261617
1211 => 0.010130477722815
1212 => 0.009950465766104
1213 => 0.0097608377926932
1214 => 0.0099986733531663
1215 => 0.010301519750814
1216 => 0.010282568167517
1217 => 0.010245794174772
1218 => 0.010453087246449
1219 => 0.010795474669687
1220 => 0.010888020614365
1221 => 0.010956336138707
1222 => 0.010965755695314
1223 => 0.011062782982583
1224 => 0.010541042804911
1225 => 0.011369057866114
1226 => 0.01151203319373
1227 => 0.011485159757858
1228 => 0.011644070817181
1229 => 0.011597315152344
1230 => 0.011529573529734
1231 => 0.011781481360112
]
'min_raw' => 0.0043427570358493
'max_raw' => 0.011781481360112
'avg_raw' => 0.0080621191979808
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.004342'
'max' => '$0.011781'
'avg' => '$0.008062'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0014977046679604
'max_diff' => 0.0054301023689037
'year' => 2032
]
7 => [
'items' => [
101 => 0.011492689360497
102 => 0.011082785474945
103 => 0.010857904096351
104 => 0.011154046036347
105 => 0.011334889585172
106 => 0.011454415667136
107 => 0.011490584187319
108 => 0.0105815440097
109 => 0.010091621771643
110 => 0.010405656309268
111 => 0.010788800118676
112 => 0.010538914421704
113 => 0.010548709467929
114 => 0.010192438132854
115 => 0.010820322226452
116 => 0.010728844795351
117 => 0.011203429869722
118 => 0.01109016633294
119 => 0.011477172037803
120 => 0.011375260465739
121 => 0.011798289703578
122 => 0.011967047519611
123 => 0.012250418157788
124 => 0.012458866752756
125 => 0.012581271754708
126 => 0.01257392301752
127 => 0.013058952617183
128 => 0.012772947607906
129 => 0.012413657910048
130 => 0.012407159492958
131 => 0.012593240718653
201 => 0.012983215918818
202 => 0.013084330814313
203 => 0.013140840246547
204 => 0.013054294083973
205 => 0.012743856144566
206 => 0.012609810616286
207 => 0.012724021290053
208 => 0.012584351450271
209 => 0.012825460778171
210 => 0.013156555383551
211 => 0.01308818565683
212 => 0.013316735402696
213 => 0.013553260345533
214 => 0.01389150163679
215 => 0.013979930435363
216 => 0.014126099876759
217 => 0.014276556246115
218 => 0.01432487877704
219 => 0.014417141482175
220 => 0.014416655212177
221 => 0.014694695084099
222 => 0.015001381673007
223 => 0.015117148760508
224 => 0.015383348794784
225 => 0.014927490564848
226 => 0.015273264268777
227 => 0.015585160804997
228 => 0.01521330489653
301 => 0.015725821635038
302 => 0.015745721498606
303 => 0.016046185812282
304 => 0.015741607668374
305 => 0.015560750138769
306 => 0.016082879050094
307 => 0.016335520783378
308 => 0.016259423037246
309 => 0.015680315431775
310 => 0.015343249966298
311 => 0.01446108462807
312 => 0.015506047577907
313 => 0.016015018548786
314 => 0.015678997319919
315 => 0.015848466882572
316 => 0.016773037865715
317 => 0.017125054634559
318 => 0.017051837607422
319 => 0.017064210079753
320 => 0.017254151938665
321 => 0.01809645874397
322 => 0.017591728981712
323 => 0.017977575973095
324 => 0.01818222782605
325 => 0.018372319872446
326 => 0.017905513885705
327 => 0.017298206155698
328 => 0.017105846304561
329 => 0.015645586630963
330 => 0.015569573773366
331 => 0.015526905452971
401 => 0.015257887728437
402 => 0.01504651348711
403 => 0.014878420842584
404 => 0.014437295546635
405 => 0.014586162384649
406 => 0.013883100732911
407 => 0.014332894662718
408 => 0.013210791290527
409 => 0.014145312322369
410 => 0.013636695012195
411 => 0.013978217856758
412 => 0.013977026315727
413 => 0.013348174478969
414 => 0.01298546586333
415 => 0.013216597910046
416 => 0.01346438981141
417 => 0.013504593213734
418 => 0.013825861881883
419 => 0.013915521061516
420 => 0.01364384956144
421 => 0.013187538192251
422 => 0.01329352891596
423 => 0.012983317964697
424 => 0.012439685204702
425 => 0.012830131743848
426 => 0.012963447359035
427 => 0.013022327129525
428 => 0.012487726746714
429 => 0.012319743699696
430 => 0.012230310934978
501 => 0.013118527996055
502 => 0.013167186531697
503 => 0.012918242583727
504 => 0.014043492834387
505 => 0.013788814046896
506 => 0.014073352650341
507 => 0.013283911368725
508 => 0.013314069088807
509 => 0.012940334934732
510 => 0.013149601088089
511 => 0.013001698515859
512 => 0.013132694450906
513 => 0.013211212874256
514 => 0.013584885702234
515 => 0.014149579065826
516 => 0.013529071442625
517 => 0.013258707385363
518 => 0.013426439725903
519 => 0.01387313305227
520 => 0.014549896307527
521 => 0.014149238839285
522 => 0.014327043820086
523 => 0.014365886298398
524 => 0.014070456314462
525 => 0.014560789232432
526 => 0.014823562626629
527 => 0.015093113755784
528 => 0.015327157448577
529 => 0.014985449107243
530 => 0.015351126014437
531 => 0.015056454977902
601 => 0.014792104595599
602 => 0.01479250550601
603 => 0.014626674649648
604 => 0.014305356469414
605 => 0.014246100467073
606 => 0.014554357674457
607 => 0.014801550762712
608 => 0.014821910769435
609 => 0.014958769564333
610 => 0.015039761189396
611 => 0.015833589217784
612 => 0.016152873417692
613 => 0.016543288093599
614 => 0.01669537661243
615 => 0.01715310852736
616 => 0.016783452830886
617 => 0.01670347549571
618 => 0.015593167593058
619 => 0.015774980449917
620 => 0.016066080376079
621 => 0.015597967723622
622 => 0.015894877456926
623 => 0.015953493727688
624 => 0.015582061434817
625 => 0.015780459471081
626 => 0.015253573107681
627 => 0.014161063748734
628 => 0.014562005507659
629 => 0.014857233597764
630 => 0.014435906711823
701 => 0.015191118847271
702 => 0.014749939508485
703 => 0.014610106838433
704 => 0.014064569738613
705 => 0.014322042250079
706 => 0.014670277508489
707 => 0.014455108605486
708 => 0.01490161638699
709 => 0.015533990484876
710 => 0.015984657925558
711 => 0.016019254575694
712 => 0.015729505603709
713 => 0.016193830180468
714 => 0.016197212278095
715 => 0.015673452258689
716 => 0.015352652163111
717 => 0.015279765706426
718 => 0.015461850365456
719 => 0.0156829347562
720 => 0.016031523220711
721 => 0.016242167929138
722 => 0.016791417611394
723 => 0.01694002882719
724 => 0.017103307497245
725 => 0.017321498153715
726 => 0.017583491979743
727 => 0.01701026440371
728 => 0.017033039803936
729 => 0.01649925822201
730 => 0.0159288360497
731 => 0.016361715374356
801 => 0.01692764750782
802 => 0.016797822051104
803 => 0.01678321403513
804 => 0.016807780666072
805 => 0.016709896511411
806 => 0.016267170107636
807 => 0.016044835679274
808 => 0.016331703815423
809 => 0.016484161462754
810 => 0.016720609978061
811 => 0.016691462707727
812 => 0.017300528690441
813 => 0.017537193314124
814 => 0.017476644375936
815 => 0.017487786837754
816 => 0.017916256834357
817 => 0.018392803592154
818 => 0.018839152516715
819 => 0.019293197813911
820 => 0.018745828486452
821 => 0.018467908099015
822 => 0.01875465099751
823 => 0.01860250117937
824 => 0.019476799164969
825 => 0.019537333660555
826 => 0.020411568424458
827 => 0.021241321317342
828 => 0.020720168391889
829 => 0.021211592127348
830 => 0.021743106963612
831 => 0.022768485317939
901 => 0.022423173961447
902 => 0.022158670874093
903 => 0.021908716734613
904 => 0.022428831619768
905 => 0.023097951110483
906 => 0.023242073040036
907 => 0.023475605624726
908 => 0.02323007466693
909 => 0.023525789661248
910 => 0.024569793534942
911 => 0.024287694472593
912 => 0.023887068454369
913 => 0.024711209245453
914 => 0.02500946259398
915 => 0.027102760790433
916 => 0.029745636233291
917 => 0.028651468445892
918 => 0.02797228319168
919 => 0.028131907836909
920 => 0.029096996481661
921 => 0.029406952323973
922 => 0.028564385496383
923 => 0.028861994344015
924 => 0.030501848354723
925 => 0.031381577418652
926 => 0.03018678718646
927 => 0.02689040832191
928 => 0.023850996464773
929 => 0.024657185355785
930 => 0.024565788554498
1001 => 0.026327607113049
1002 => 0.024280966503252
1003 => 0.024315426682218
1004 => 0.026113677782762
1005 => 0.025633935218966
1006 => 0.024856813706401
1007 => 0.023856670311828
1008 => 0.022007812744895
1009 => 0.020370228038655
1010 => 0.023581908760827
1011 => 0.023443415248024
1012 => 0.023242856117897
1013 => 0.02368917875923
1014 => 0.025856394814648
1015 => 0.025806433469977
1016 => 0.025488604885681
1017 => 0.025729675065657
1018 => 0.024814552938294
1019 => 0.025050400747459
1020 => 0.023850515006406
1021 => 0.024392913473016
1022 => 0.024855146352658
1023 => 0.02494794644672
1024 => 0.025157029797134
1025 => 0.023370435459971
1026 => 0.024172563865703
1027 => 0.024643739154803
1028 => 0.022514952057146
1029 => 0.024601659878455
1030 => 0.023339334827375
1031 => 0.022910882745552
1101 => 0.023487737029457
1102 => 0.02326293635401
1103 => 0.023069665933999
1104 => 0.022961817718826
1105 => 0.023385395839842
1106 => 0.023365635414211
1107 => 0.022672579395259
1108 => 0.021768516071114
1109 => 0.022071949397564
1110 => 0.021961709225362
1111 => 0.021562184620037
1112 => 0.021831415965241
1113 => 0.020645857375827
1114 => 0.018606165442712
1115 => 0.019953648411181
1116 => 0.019901771782675
1117 => 0.019875613234164
1118 => 0.020888209443274
1119 => 0.020790871682338
1120 => 0.020614202693103
1121 => 0.021558939955504
1122 => 0.021214098146218
1123 => 0.022276819347488
1124 => 0.022976796263141
1125 => 0.02279925947545
1126 => 0.023457591147905
1127 => 0.022078939888556
1128 => 0.022536872535024
1129 => 0.022631251818793
1130 => 0.021547282044334
1201 => 0.020806797343823
1202 => 0.020757415456443
1203 => 0.019473517030835
1204 => 0.020159365206529
1205 => 0.020762883218813
1206 => 0.020473844925819
1207 => 0.02038234403703
1208 => 0.02084980223373
1209 => 0.020886127739122
1210 => 0.020057902366573
1211 => 0.020230116648013
1212 => 0.020948278829857
1213 => 0.020212020803645
1214 => 0.01878159172578
1215 => 0.01842682553724
1216 => 0.018379493188051
1217 => 0.017417339147869
1218 => 0.018450532710339
1219 => 0.017999516032455
1220 => 0.01942427231388
1221 => 0.018610459167051
1222 => 0.018575377308839
1223 => 0.018522345934762
1224 => 0.017694180206295
1225 => 0.017875495868152
1226 => 0.018478216743318
1227 => 0.018693274341714
1228 => 0.018670842072286
1229 => 0.018475263082216
1230 => 0.018564798142344
1231 => 0.01827637451759
]
'min_raw' => 0.010091621771643
'max_raw' => 0.031381577418652
'avg_raw' => 0.020736599595147
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.010091'
'max' => '$0.031381'
'avg' => '$0.020736'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.0057488647357937
'max_diff' => 0.019600096058539
'year' => 2033
]
8 => [
'items' => [
101 => 0.018174526132671
102 => 0.017853064614261
103 => 0.01738060498821
104 => 0.017446303396976
105 => 0.016510237251982
106 => 0.016000218735399
107 => 0.015859052331944
108 => 0.015670278717495
109 => 0.015880374814004
110 => 0.016507585494203
111 => 0.015751036343714
112 => 0.014453985890952
113 => 0.01453194083323
114 => 0.014707082443497
115 => 0.014380707211441
116 => 0.014071820444898
117 => 0.014340372427632
118 => 0.013790795052083
119 => 0.014773496243695
120 => 0.01474691693045
121 => 0.015113207164849
122 => 0.015342255965451
123 => 0.014814372635493
124 => 0.014681611405557
125 => 0.01475723823579
126 => 0.013507295192884
127 => 0.015011060151511
128 => 0.015024064773319
129 => 0.014912711306069
130 => 0.015713419723003
131 => 0.017403164229954
201 => 0.016767414376624
202 => 0.016521232817773
203 => 0.016053241494441
204 => 0.016676812146206
205 => 0.016628931649368
206 => 0.016412397884527
207 => 0.016281437587925
208 => 0.016522735949877
209 => 0.016251538050549
210 => 0.016202823455809
211 => 0.015907666013692
212 => 0.015802308235664
213 => 0.015724305531226
214 => 0.015638432218027
215 => 0.015827847348647
216 => 0.015398607743026
217 => 0.014880986857525
218 => 0.014837952281631
219 => 0.014956774529312
220 => 0.014904204529989
221 => 0.014837700596699
222 => 0.01471072647678
223 => 0.014673055967773
224 => 0.014795466846913
225 => 0.014657272101361
226 => 0.014861185976281
227 => 0.014805732685372
228 => 0.014495975110132
301 => 0.014109902484441
302 => 0.014106465628257
303 => 0.014023286914338
304 => 0.013917346316159
305 => 0.013887876065338
306 => 0.014317755728699
307 => 0.01520759376664
308 => 0.015032897267772
309 => 0.015159133391822
310 => 0.015780090181659
311 => 0.015977473672326
312 => 0.015837375545935
313 => 0.015645600589654
314 => 0.015654037714456
315 => 0.016309390794294
316 => 0.016350264362011
317 => 0.016453538681319
318 => 0.01658627536695
319 => 0.015859981177467
320 => 0.015619829323446
321 => 0.015506032051893
322 => 0.015155580500597
323 => 0.015533512453225
324 => 0.015313307689088
325 => 0.015343020835036
326 => 0.015323670109758
327 => 0.01533423691425
328 => 0.014773221558684
329 => 0.014977626068154
330 => 0.014637763926254
331 => 0.014182726669567
401 => 0.014181201225126
402 => 0.01429257094905
403 => 0.014226323879362
404 => 0.014048054718202
405 => 0.014073377011138
406 => 0.013851527079648
407 => 0.014100313609543
408 => 0.01410744791702
409 => 0.014011651551516
410 => 0.014394941526745
411 => 0.014551975742331
412 => 0.0144889205224
413 => 0.014547551620008
414 => 0.015040156696008
415 => 0.015120472817262
416 => 0.015156143932938
417 => 0.015108349363449
418 => 0.01455655553651
419 => 0.014581029939143
420 => 0.014401453011641
421 => 0.014249729431252
422 => 0.014255797578782
423 => 0.014333803221787
424 => 0.014674458439759
425 => 0.015391347263258
426 => 0.015418552670071
427 => 0.015451526416766
428 => 0.015317405617681
429 => 0.015276953501313
430 => 0.015330320284379
501 => 0.015599546034262
502 => 0.016292067757038
503 => 0.016047284328238
504 => 0.015848271590343
505 => 0.016022859414926
506 => 0.015995982987796
507 => 0.015769118895339
508 => 0.015762751575858
509 => 0.015327326849595
510 => 0.015166360242436
511 => 0.015031844497353
512 => 0.014884956815345
513 => 0.014797876873731
514 => 0.014931671241176
515 => 0.014962271596019
516 => 0.014669727873275
517 => 0.014629855244851
518 => 0.014868752763839
519 => 0.014763622872729
520 => 0.014871751572831
521 => 0.014896838358766
522 => 0.014892798808432
523 => 0.014783031128023
524 => 0.014852993774197
525 => 0.014687511259128
526 => 0.01450757387866
527 => 0.014392785040417
528 => 0.01429261655452
529 => 0.014348195852322
530 => 0.014150065804036
531 => 0.014086680014019
601 => 0.014829292003882
602 => 0.015377867465219
603 => 0.015369890960751
604 => 0.015321336041195
605 => 0.015249193279741
606 => 0.015594268341912
607 => 0.015474051090245
608 => 0.01556151918532
609 => 0.015583783486541
610 => 0.015651170820759
611 => 0.015675256000604
612 => 0.015602453858878
613 => 0.015358120979211
614 => 0.014749266673555
615 => 0.014465843350701
616 => 0.014372308933371
617 => 0.014375708731794
618 => 0.014281927113924
619 => 0.014309550003384
620 => 0.014272321000252
621 => 0.014201818274984
622 => 0.014343842507709
623 => 0.014360209477483
624 => 0.014327059324502
625 => 0.014334867385582
626 => 0.014060398277514
627 => 0.014081265567685
628 => 0.013965073844327
629 => 0.013943289296909
630 => 0.01364956673823
701 => 0.013129194649765
702 => 0.013417531300516
703 => 0.013069261172678
704 => 0.012937365998112
705 => 0.013561737240599
706 => 0.013499067685215
707 => 0.0133918046482
708 => 0.01323314026088
709 => 0.013174290096234
710 => 0.012816735125548
711 => 0.012795608870398
712 => 0.012972822768667
713 => 0.012891044652174
714 => 0.012776197204823
715 => 0.012360231392417
716 => 0.011892548097726
717 => 0.01190666451664
718 => 0.012055425871124
719 => 0.012487969572489
720 => 0.012318967265284
721 => 0.012196354152328
722 => 0.012173392402009
723 => 0.012460806780943
724 => 0.012867558342309
725 => 0.013058397074348
726 => 0.012869281686756
727 => 0.012652036112184
728 => 0.01266525884369
729 => 0.012753223752505
730 => 0.012762467620664
731 => 0.012621063084825
801 => 0.012660867633382
802 => 0.012600400884319
803 => 0.012229316556936
804 => 0.012222604818175
805 => 0.012131534739692
806 => 0.012128777173909
807 => 0.011973844251913
808 => 0.011952168065125
809 => 0.011644539344747
810 => 0.011847021500086
811 => 0.011711207101075
812 => 0.011506502766388
813 => 0.01147121166193
814 => 0.011470150768715
815 => 0.011680336349387
816 => 0.0118445653592
817 => 0.011713569650693
818 => 0.011683744467111
819 => 0.012002199398722
820 => 0.011961673105893
821 => 0.01192657759767
822 => 0.012831138201279
823 => 0.012115107899778
824 => 0.011802877818744
825 => 0.011416433802579
826 => 0.011542261922862
827 => 0.011568775756605
828 => 0.010639447559498
829 => 0.010262419225673
830 => 0.010133037309517
831 => 0.010058576187577
901 => 0.010092509055869
902 => 0.0097531393344128
903 => 0.0099812013998884
904 => 0.0096873359073159
905 => 0.0096380684011651
906 => 0.010163536304834
907 => 0.01023665209389
908 => 0.0099247174224799
909 => 0.010125029979161
910 => 0.010052393861556
911 => 0.009692373387741
912 => 0.0096786232537726
913 => 0.0094979776353439
914 => 0.0092153022223873
915 => 0.0090861119734723
916 => 0.0090188285701562
917 => 0.0090465910136918
918 => 0.0090325534726954
919 => 0.0089409490223353
920 => 0.0090378041325617
921 => 0.0087903793492278
922 => 0.0086918528068673
923 => 0.0086473506534815
924 => 0.0084277469170336
925 => 0.0087772341199471
926 => 0.0088460875016449
927 => 0.0089150765457745
928 => 0.0095155790741016
929 => 0.0094855796647889
930 => 0.0097567597146708
1001 => 0.0097462221566005
1002 => 0.0096688772135487
1003 => 0.0093425716214384
1004 => 0.0094726312146156
1005 => 0.0090723280025645
1006 => 0.0093722623870058
1007 => 0.0092353848595061
1008 => 0.0093259839572717
1009 => 0.0091630786104979
1010 => 0.0092532371555995
1011 => 0.0088624151927375
1012 => 0.0084974711428304
1013 => 0.0086443352818939
1014 => 0.0088039933970076
1015 => 0.0091501728707051
1016 => 0.0089439912320895
1017 => 0.0090181419459266
1018 => 0.0087697494672519
1019 => 0.0082572448339423
1020 => 0.008260145554509
1021 => 0.0081813078821946
1022 => 0.0081131806228264
1023 => 0.008967673673527
1024 => 0.0088614039551362
1025 => 0.0086920770671175
1026 => 0.0089187278355136
1027 => 0.008978657896109
1028 => 0.0089803640206824
1029 => 0.0091457225706011
1030 => 0.0092339744583349
1031 => 0.0092495292360536
1101 => 0.0095097244871587
1102 => 0.0095969385032708
1103 => 0.009956160692647
1104 => 0.0092264869022424
1105 => 0.0092114597507041
1106 => 0.0089219172766277
1107 => 0.0087382848620829
1108 => 0.0089344907451559
1109 => 0.0091083023727846
1110 => 0.0089273180883961
1111 => 0.0089509508151505
1112 => 0.0087079942003182
1113 => 0.0087948397579495
1114 => 0.0088696428515415
1115 => 0.0088283409799826
1116 => 0.0087665100792258
1117 => 0.0090940518014408
1118 => 0.009075570613827
1119 => 0.0093805849957053
1120 => 0.0096183655181671
1121 => 0.010044510722771
1122 => 0.0095998059863149
1123 => 0.0095835991781772
1124 => 0.009742023327377
1125 => 0.009596914249359
1126 => 0.0096886181776713
1127 => 0.010029735802183
1128 => 0.010036943080063
1129 => 0.0099162118895228
1130 => 0.0099088653856063
1201 => 0.0099320531314041
1202 => 0.010067864482797
1203 => 0.010020407823559
1204 => 0.010075325871085
1205 => 0.010144001730451
1206 => 0.010428074202751
1207 => 0.010496563114099
1208 => 0.010330170566952
1209 => 0.010345193950941
1210 => 0.01028295857073
1211 => 0.010222839973253
1212 => 0.010357977800765
1213 => 0.010604944836682
1214 => 0.01060340846757
1215 => 0.010660700019549
1216 => 0.010696392181804
1217 => 0.010543175293148
1218 => 0.010443436732574
1219 => 0.010481682843227
1220 => 0.010542839207054
1221 => 0.010461850658683
1222 => 0.0099619518205909
1223 => 0.010113589194407
1224 => 0.010088349320715
1225 => 0.010052404671305
1226 => 0.010204877223253
1227 => 0.010190170873659
1228 => 0.0097496586074023
1229 => 0.0097778587734495
1230 => 0.0097513735529015
1231 => 0.0098369527188583
]
'min_raw' => 0.0081131806228264
'max_raw' => 0.018174526132671
'avg_raw' => 0.013143853377749
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.008113'
'max' => '$0.018174'
'avg' => '$0.013143'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0019784411488166
'max_diff' => -0.013207051285981
'year' => 2034
]
9 => [
'items' => [
101 => 0.0095922926935505
102 => 0.0096675484695248
103 => 0.0097147481867367
104 => 0.0097425491827799
105 => 0.0098429854438093
106 => 0.0098312004078085
107 => 0.0098422528694246
108 => 0.0099911733303413
109 => 0.010744361918327
110 => 0.010785356311354
111 => 0.010583484927094
112 => 0.010664128563369
113 => 0.010509310416545
114 => 0.0106132408757
115 => 0.010684347456305
116 => 0.010363030491557
117 => 0.010344004186234
118 => 0.010188547049847
119 => 0.010272080909399
120 => 0.010139172532555
121 => 0.010171783599295
122 => 0.010080600213708
123 => 0.010244712153333
124 => 0.010428214802251
125 => 0.010474574818107
126 => 0.010352621575632
127 => 0.01026431939097
128 => 0.01010928984325
129 => 0.010367107436166
130 => 0.010442501157184
131 => 0.010366711425046
201 => 0.010349149288071
202 => 0.010315869070238
203 => 0.01035620984361
204 => 0.010442090546788
205 => 0.010401590793137
206 => 0.010428341593937
207 => 0.010326395126593
208 => 0.010543226014313
209 => 0.010887605647209
210 => 0.01088871288404
211 => 0.01084821291208
212 => 0.010831641196139
213 => 0.010873196625113
214 => 0.010895738740639
215 => 0.011030121377979
216 => 0.011174319301886
217 => 0.011847228094277
218 => 0.011658277998062
219 => 0.012255322710194
220 => 0.012727507560937
221 => 0.012869095151534
222 => 0.012738841230396
223 => 0.012293249602361
224 => 0.012271386751282
225 => 0.0129372887675
226 => 0.012749140947674
227 => 0.012726761363187
228 => 0.012488680395151
301 => 0.012629415734162
302 => 0.012598634851057
303 => 0.012550045721224
304 => 0.012818558944348
305 => 0.013321191727695
306 => 0.01324285169475
307 => 0.013184374494246
308 => 0.012928144424095
309 => 0.013082452157384
310 => 0.01302750612913
311 => 0.013263589136121
312 => 0.013123738792658
313 => 0.01274771554289
314 => 0.012807598484804
315 => 0.012798547298602
316 => 0.012984820069278
317 => 0.012928905607095
318 => 0.012787629102466
319 => 0.013319473783485
320 => 0.013284938748175
321 => 0.013333901532436
322 => 0.013355456464292
323 => 0.013679180949474
324 => 0.013811800513025
325 => 0.013841907475783
326 => 0.013967885803991
327 => 0.013838773020214
328 => 0.014355316211179
329 => 0.01469878729204
330 => 0.01509774662732
331 => 0.015680733446325
401 => 0.0158999418832
402 => 0.015860343841137
403 => 0.01630235779377
404 => 0.017096647041233
405 => 0.016020892407648
406 => 0.017153664648949
407 => 0.016795042035838
408 => 0.015944754271496
409 => 0.015890005763706
410 => 0.016465830509763
411 => 0.017742954375437
412 => 0.017423049332105
413 => 0.017743477625485
414 => 0.017369681000706
415 => 0.01735111884768
416 => 0.01772532315775
417 => 0.018599671925041
418 => 0.018184301600174
419 => 0.017588766386496
420 => 0.018028500320722
421 => 0.017647562091441
422 => 0.016789201642973
423 => 0.017422804706747
424 => 0.016999132381978
425 => 0.017122782490005
426 => 0.018013278700168
427 => 0.0179061318402
428 => 0.01804478979853
429 => 0.017800062131388
430 => 0.017571447900267
501 => 0.017144722460763
502 => 0.017018390095436
503 => 0.01705330381625
504 => 0.01701837279393
505 => 0.016779623832337
506 => 0.016728066016812
507 => 0.016642134065471
508 => 0.016668767970408
509 => 0.016507190761609
510 => 0.016812120338168
511 => 0.016868717954608
512 => 0.017090620271412
513 => 0.017113658906075
514 => 0.017731653699791
515 => 0.017391272552393
516 => 0.017619629613162
517 => 0.017599203208267
518 => 0.015963182585647
519 => 0.016188611792712
520 => 0.016539308895323
521 => 0.016381320325955
522 => 0.016157961452501
523 => 0.015977587186442
524 => 0.015704301729147
525 => 0.016088945762308
526 => 0.016594711763581
527 => 0.017126485966508
528 => 0.017765377828099
529 => 0.017622784602113
530 => 0.01711454232756
531 => 0.017137341704725
601 => 0.017278278483136
602 => 0.017095752549637
603 => 0.017041922088519
604 => 0.017270883004401
605 => 0.017272459732394
606 => 0.017062441586908
607 => 0.016829044851114
608 => 0.016828066910269
609 => 0.016786536215479
610 => 0.017377069219048
611 => 0.01770180266139
612 => 0.01773903282722
613 => 0.017699296774595
614 => 0.017714589604183
615 => 0.017525634369097
616 => 0.017957530003569
617 => 0.018353880147811
618 => 0.018247649842368
619 => 0.018088395512982
620 => 0.017961541768898
621 => 0.018217767131732
622 => 0.018206357819661
623 => 0.018350418375069
624 => 0.018343882956142
625 => 0.01829544080975
626 => 0.01824765157239
627 => 0.018437130496671
628 => 0.018382563609416
629 => 0.018327911964714
630 => 0.018218299724516
701 => 0.018233197848425
702 => 0.018073971016544
703 => 0.018000305398392
704 => 0.016892551249914
705 => 0.01659652314453
706 => 0.016689659612692
707 => 0.016720322556298
708 => 0.016591490745464
709 => 0.016776202468023
710 => 0.01674741534172
711 => 0.016859409210258
712 => 0.016789440303404
713 => 0.016792311851748
714 => 0.016998075487861
715 => 0.017057809546806
716 => 0.017027428322314
717 => 0.017048706290541
718 => 0.017539048087463
719 => 0.017469337164188
720 => 0.017432304625589
721 => 0.017442562891866
722 => 0.017567855734026
723 => 0.017602930889096
724 => 0.01745431499238
725 => 0.017524403108409
726 => 0.017822829410957
727 => 0.017927261727383
728 => 0.018260559551058
729 => 0.018118968711664
730 => 0.018378864825279
731 => 0.019177696873418
801 => 0.019815859188445
802 => 0.019228978750373
803 => 0.020400882572439
804 => 0.021313377797536
805 => 0.021278354710956
806 => 0.021119240062066
807 => 0.020080388508234
808 => 0.019124421819993
809 => 0.019924128547196
810 => 0.019926167164105
811 => 0.019857471647013
812 => 0.01943080969022
813 => 0.01984262473576
814 => 0.019875313118583
815 => 0.019857016316745
816 => 0.019529895594833
817 => 0.019030442714489
818 => 0.019128034611787
819 => 0.019287892130382
820 => 0.01898524849791
821 => 0.018888535519511
822 => 0.019068343346752
823 => 0.019647721630571
824 => 0.019538193522124
825 => 0.019535333300575
826 => 0.020003940995654
827 => 0.019668519017848
828 => 0.019129265558144
829 => 0.01899309694769
830 => 0.018509790114744
831 => 0.01884361186574
901 => 0.018855625516266
902 => 0.018672794754822
903 => 0.019144101266798
904 => 0.019139758094318
905 => 0.019587193482722
906 => 0.020442521896294
907 => 0.020189559196246
908 => 0.019895391098353
909 => 0.019927375326991
910 => 0.020278163371341
911 => 0.020066068912015
912 => 0.020142339558364
913 => 0.020278047926583
914 => 0.020359924154579
915 => 0.019915594597786
916 => 0.019812000123358
917 => 0.019600082185397
918 => 0.019544796751019
919 => 0.019717399489675
920 => 0.019671924766184
921 => 0.018854615815459
922 => 0.018769202482644
923 => 0.018771821987619
924 => 0.018557046101074
925 => 0.018229461321973
926 => 0.019090334562379
927 => 0.019021194393261
928 => 0.018944868997579
929 => 0.018954218423044
930 => 0.019327894319003
1001 => 0.019111143428261
1002 => 0.01968741119607
1003 => 0.019568947867203
1004 => 0.019447446400954
1005 => 0.019430651197293
1006 => 0.019383883498805
1007 => 0.019223499659196
1008 => 0.019029826535294
1009 => 0.018901946763214
1010 => 0.01743604673594
1011 => 0.017708109254254
1012 => 0.018021092382295
1013 => 0.018129132903894
1014 => 0.017944322115523
1015 => 0.019230797115556
1016 => 0.019465848494844
1017 => 0.018753862534959
1018 => 0.01862067903206
1019 => 0.019239528603834
1020 => 0.018866286660771
1021 => 0.019034357484878
1022 => 0.018671080292984
1023 => 0.019409231500681
1024 => 0.01940360802522
1025 => 0.019116450533525
1026 => 0.019359154079136
1027 => 0.019316978365445
1028 => 0.018992778264559
1029 => 0.019419509222145
1030 => 0.019419720875376
1031 => 0.019143338032961
1101 => 0.018820583381005
1102 => 0.01876288247236
1103 => 0.018719412588722
1104 => 0.019023666558256
1105 => 0.019296459715962
1106 => 0.019804060151295
1107 => 0.019931682961026
1108 => 0.02042980328374
1109 => 0.020133196884602
1110 => 0.020264678659644
1111 => 0.020407420725684
1112 => 0.02047585652131
1113 => 0.020364344064805
1114 => 0.021138129960484
1115 => 0.021203461198267
1116 => 0.021225366197182
1117 => 0.020964449946816
1118 => 0.02119620464535
1119 => 0.021087774296815
1120 => 0.021369879940884
1121 => 0.02141411770798
1122 => 0.021376649893054
1123 => 0.021390691658576
1124 => 0.0207304019018
1125 => 0.020696162394605
1126 => 0.02022930428448
1127 => 0.020419552415197
1128 => 0.020063892653652
1129 => 0.020176676027739
1130 => 0.020226389864398
1201 => 0.020200422177363
1202 => 0.020430308759062
1203 => 0.020234858201892
1204 => 0.019719032046473
1205 => 0.019203065354563
1206 => 0.019196587813044
1207 => 0.019060742890633
1208 => 0.018962551892968
1209 => 0.018981466962631
1210 => 0.019048126135255
1211 => 0.018958677540675
1212 => 0.018977765933488
1213 => 0.019294760439469
1214 => 0.019358331426942
1215 => 0.01914229237272
1216 => 0.018274864395731
1217 => 0.0180619953944
1218 => 0.018215001411181
1219 => 0.018141874390009
1220 => 0.01464190854798
1221 => 0.015464173606837
1222 => 0.014975611630347
1223 => 0.015200763466769
1224 => 0.014702068201283
1225 => 0.014940071720832
1226 => 0.014896121161268
1227 => 0.016218299043319
1228 => 0.016197655054287
1229 => 0.016207536239381
1230 => 0.015735881529552
1231 => 0.016487240289131
]
'min_raw' => 0.0095922926935505
'max_raw' => 0.02141411770798
'avg_raw' => 0.015503205200765
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.009592'
'max' => '$0.021414'
'avg' => '$0.0155032'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0014791120707241
'max_diff' => 0.003239591575309
'year' => 2035
]
10 => [
'items' => [
101 => 0.016857386632087
102 => 0.016788882395131
103 => 0.016806123435707
104 => 0.016509865236315
105 => 0.01621040466634
106 => 0.015878256807586
107 => 0.016495346474435
108 => 0.016426736637553
109 => 0.016584102918319
110 => 0.016984329677751
111 => 0.017043264588391
112 => 0.01712247370595
113 => 0.017094082875794
114 => 0.017770467632517
115 => 0.017688552975548
116 => 0.017885943730389
117 => 0.017479895971608
118 => 0.01702041439014
119 => 0.017107746817193
120 => 0.017099336002185
121 => 0.016992256673646
122 => 0.016895590243683
123 => 0.01673466787339
124 => 0.017243850065024
125 => 0.01722317819792
126 => 0.017557831697925
127 => 0.017498678441148
128 => 0.017103638515137
129 => 0.017117747443378
130 => 0.017212636766313
131 => 0.017541049796419
201 => 0.017638545143819
202 => 0.017593381414386
203 => 0.017700280611978
204 => 0.017784769379123
205 => 0.017710891100319
206 => 0.01875685173268
207 => 0.018322495954003
208 => 0.018534197938302
209 => 0.018584687614137
210 => 0.01845535937117
211 => 0.018483406036172
212 => 0.018525889091392
213 => 0.018783837883653
214 => 0.019460770152629
215 => 0.019760578846525
216 => 0.020662568094411
217 => 0.019735683908035
218 => 0.019680686436244
219 => 0.019843161937254
220 => 0.020372725111022
221 => 0.020801886324021
222 => 0.020944263857277
223 => 0.020963081398693
224 => 0.021230191116161
225 => 0.021383293424913
226 => 0.021197756970778
227 => 0.021040534252375
228 => 0.020477381990258
229 => 0.020542568398011
301 => 0.020991638105177
302 => 0.021625975516623
303 => 0.022170303007202
304 => 0.021979698491729
305 => 0.023433876398968
306 => 0.023578052198686
307 => 0.023558131764927
308 => 0.023886585692922
309 => 0.023234671534331
310 => 0.022955965601292
311 => 0.021074527588647
312 => 0.021603134927341
313 => 0.022371496738153
314 => 0.022269801171283
315 => 0.021711796285901
316 => 0.022169879710459
317 => 0.022018423004707
318 => 0.021898962816936
319 => 0.022446233095612
320 => 0.021844486943584
321 => 0.022365493859975
322 => 0.021697297100577
323 => 0.021980569157101
324 => 0.02181977023749
325 => 0.021923826845253
326 => 0.0213155140425
327 => 0.021643744864907
328 => 0.021301858561165
329 => 0.021301696462542
330 => 0.021294149303438
331 => 0.021696377023634
401 => 0.021709493655149
402 => 0.021412246762192
403 => 0.021369408841047
404 => 0.021527803087781
405 => 0.021342364908375
406 => 0.021429130265385
407 => 0.021344992942649
408 => 0.021326051859098
409 => 0.021175126082805
410 => 0.021110103108587
411 => 0.021135600292213
412 => 0.021048565259797
413 => 0.020996123504571
414 => 0.021283717318383
415 => 0.021130067545165
416 => 0.02126016828699
417 => 0.021111902071658
418 => 0.020597946772802
419 => 0.020302365645451
420 => 0.019331551729593
421 => 0.019606873351839
422 => 0.01978941187223
423 => 0.01972908289233
424 => 0.019858692885371
425 => 0.019866649886295
426 => 0.01982451235634
427 => 0.019775722494803
428 => 0.019751974288456
429 => 0.019928973962028
430 => 0.020031728230072
501 => 0.019807732054801
502 => 0.019755252884975
503 => 0.019981725385341
504 => 0.020119873479736
505 => 0.021139881390036
506 => 0.021064315909459
507 => 0.021253970436731
508 => 0.021232618247446
509 => 0.021431406406363
510 => 0.021756341032048
511 => 0.021095658084881
512 => 0.021210329799811
513 => 0.021182214943467
514 => 0.021489165572924
515 => 0.021490123839285
516 => 0.021306091603604
517 => 0.021405858464148
518 => 0.021350171339553
519 => 0.021450805500263
520 => 0.021063306686396
521 => 0.021535238413774
522 => 0.021802793292589
523 => 0.021806508292341
524 => 0.021933327181452
525 => 0.022062182517644
526 => 0.022309509114529
527 => 0.022055284713093
528 => 0.021597959763157
529 => 0.021630977147392
530 => 0.021362847696572
531 => 0.021367355001082
601 => 0.021343294656365
602 => 0.021415501562039
603 => 0.021079152041645
604 => 0.021158092601796
605 => 0.021047575355309
606 => 0.021210089556901
607 => 0.021035251140548
608 => 0.021182201385632
609 => 0.021245620239932
610 => 0.021479637177611
611 => 0.02100068664858
612 => 0.020024074097785
613 => 0.020229369896245
614 => 0.019925721284686
615 => 0.019953825119757
616 => 0.020010599339294
617 => 0.019826575518407
618 => 0.019861681464175
619 => 0.019860427232755
620 => 0.019849618943972
621 => 0.019801747240822
622 => 0.019732323800127
623 => 0.020008885420449
624 => 0.020055878628898
625 => 0.020160338710054
626 => 0.020471141055626
627 => 0.02044008457208
628 => 0.020490738985265
629 => 0.020380160685693
630 => 0.019958954529928
701 => 0.01998182805067
702 => 0.019696594880494
703 => 0.020153044656601
704 => 0.020044951324777
705 => 0.01997526285056
706 => 0.019956247704711
707 => 0.020267820469182
708 => 0.020361047923616
709 => 0.020302954830274
710 => 0.020183804200984
711 => 0.020412608632943
712 => 0.020473827046451
713 => 0.020487531591587
714 => 0.020892929176119
715 => 0.020510188813157
716 => 0.020602318222634
717 => 0.021321085575873
718 => 0.0206692627696
719 => 0.021014547847466
720 => 0.020997647939681
721 => 0.021174284101708
722 => 0.020983158618772
723 => 0.020985527848195
724 => 0.021142368793704
725 => 0.02092211397215
726 => 0.020867575780882
727 => 0.020792231660256
728 => 0.020956742791234
729 => 0.021055359774056
730 => 0.021850140229412
731 => 0.022363604649964
801 => 0.022341313805302
802 => 0.022545010398802
803 => 0.022453243217783
804 => 0.022156902783315
805 => 0.022662719770087
806 => 0.02250265811119
807 => 0.022515853399875
808 => 0.022515362270571
809 => 0.022621789280904
810 => 0.022546375990191
811 => 0.02239772865318
812 => 0.022496407692568
813 => 0.022789449161151
814 => 0.023699058871241
815 => 0.024208088515734
816 => 0.023668414647486
817 => 0.024040674455282
818 => 0.023817451220337
819 => 0.023776884918231
820 => 0.024010691587311
821 => 0.024244907504013
822 => 0.024229988962663
823 => 0.024059960234257
824 => 0.0239639153199
825 => 0.024691199588819
826 => 0.025227050249195
827 => 0.025190508826546
828 => 0.025351790782212
829 => 0.025825319592312
830 => 0.025868613132251
831 => 0.025863159141309
901 => 0.025755851585356
902 => 0.026222102194385
903 => 0.026611056655337
904 => 0.025731012986566
905 => 0.026066122095016
906 => 0.026216563370341
907 => 0.026437455796432
908 => 0.026810138345118
909 => 0.027214970442154
910 => 0.027272218139433
911 => 0.027231598158659
912 => 0.026964600508192
913 => 0.027407572619421
914 => 0.027667055293204
915 => 0.027821571287287
916 => 0.02821339813927
917 => 0.026217492444441
918 => 0.024804691190691
919 => 0.024584061873821
920 => 0.025032720265496
921 => 0.025151027905398
922 => 0.025103338244099
923 => 0.023513101986733
924 => 0.024575689609033
925 => 0.025718944545723
926 => 0.025762861623893
927 => 0.026335198949534
928 => 0.026521575443662
929 => 0.02698238200877
930 => 0.026953558432659
1001 => 0.027065757498229
1002 => 0.027039964876071
1003 => 0.027893512003665
1004 => 0.028835101238375
1005 => 0.028802496997247
1006 => 0.02866713240438
1007 => 0.028868171907881
1008 => 0.029839992904937
1009 => 0.029750523200642
1010 => 0.029837435397354
1011 => 0.030983267122314
1012 => 0.032473011357424
1013 => 0.03178087559234
1014 => 0.033282611045872
1015 => 0.034227873910295
1016 => 0.03586260829231
1017 => 0.035657931496445
1018 => 0.036294321595128
1019 => 0.03529151731451
1020 => 0.032988875986029
1021 => 0.03262447418164
1022 => 0.03335401582215
1023 => 0.035147522757713
1024 => 0.0332975319062
1025 => 0.033671782646028
1026 => 0.033563998407781
1027 => 0.033558255043778
1028 => 0.033777455887811
1029 => 0.033459493630794
1030 => 0.032164058195387
1031 => 0.032757748621385
1101 => 0.032528496236552
1102 => 0.032782868849422
1103 => 0.034155612929838
1104 => 0.033548690049754
1105 => 0.032909346097997
1106 => 0.033711225295281
1107 => 0.034732293069011
1108 => 0.034668396482766
1109 => 0.03454441039875
1110 => 0.035243313462648
1111 => 0.036397696564824
1112 => 0.036709721678655
1113 => 0.036940052238612
1114 => 0.036971810931364
1115 => 0.037298945204621
1116 => 0.035539861768864
1117 => 0.038331572357877
1118 => 0.038813623657151
1119 => 0.038723017991867
1120 => 0.03925879772319
1121 => 0.039101157734815
1122 => 0.038872762124615
1123 => 0.03972208696238
1124 => 0.038748404572863
1125 => 0.037366385004148
1126 => 0.036608181735504
1127 => 0.037606644962168
1128 => 0.038216371613127
1129 => 0.038619362143513
1130 => 0.038741306834514
1201 => 0.035676414408514
1202 => 0.034024607377627
1203 => 0.035083396746419
1204 => 0.036375192850085
1205 => 0.035532685776284
1206 => 0.0355657104585
1207 => 0.034364516778224
1208 => 0.036481471837255
1209 => 0.036173049291549
1210 => 0.037773146004263
1211 => 0.037391270082195
1212 => 0.038696086836017
1213 => 0.038352484855564
1214 => 0.039778757465895
1215 => 0.040347736224945
1216 => 0.041303140115864
1217 => 0.042005939107216
1218 => 0.042418636117341
1219 => 0.042393859336841
1220 => 0.04402917049579
1221 => 0.043064884638778
1222 => 0.041853514337644
1223 => 0.041831604470721
1224 => 0.042458990314928
1225 => 0.043773818929485
1226 => 0.044114734859261
1227 => 0.0443052603554
1228 => 0.044013463925824
1229 => 0.042966800739027
1230 => 0.042514856881671
1231 => 0.042899926142213
]
'min_raw' => 0.015878256807586
'max_raw' => 0.0443052603554
'avg_raw' => 0.030091758581493
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.015878'
'max' => '$0.0443052'
'avg' => '$0.030091'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.0062859641140351
'max_diff' => 0.02289114264742
'year' => 2036
]
11 => [
'items' => [
101 => 0.042429019525949
102 => 0.04324193645868
103 => 0.044358245037006
104 => 0.044127731729945
105 => 0.044898303154966
106 => 0.045695763513385
107 => 0.04683616764211
108 => 0.047134311510402
109 => 0.047627131987291
110 => 0.048134406141104
111 => 0.048297328927887
112 => 0.048608399079828
113 => 0.048606759586578
114 => 0.049544190426887
115 => 0.050578205673563
116 => 0.050968522491676
117 => 0.051866034492731
118 => 0.050329076643496
119 => 0.05149487682744
120 => 0.052546457775228
121 => 0.051292719617681
122 => 0.053020705584334
123 => 0.053087799363719
124 => 0.054100835775025
125 => 0.053073929297873
126 => 0.052464155509742
127 => 0.054224549588151
128 => 0.055076348830799
129 => 0.054819779966741
130 => 0.052867278242894
131 => 0.051730838492877
201 => 0.048756556464224
202 => 0.052279722006585
203 => 0.053995753170121
204 => 0.052862834136743
205 => 0.053434212599214
206 => 0.056551468220367
207 => 0.057738317333547
208 => 0.057491461014707
209 => 0.05753317566899
210 => 0.058173577907627
211 => 0.061013474109698
212 => 0.059311742477139
213 => 0.060612652547562
214 => 0.061302650558135
215 => 0.061943559164362
216 => 0.060369690188714
217 => 0.058322109776123
218 => 0.057673555107878
219 => 0.052750187666267
220 => 0.052493905009831
221 => 0.052350045788613
222 => 0.051443033748129
223 => 0.050730370735816
224 => 0.050163634648943
225 => 0.048676349915266
226 => 0.049178264853181
227 => 0.04680784340815
228 => 0.048324355046103
301 => 0.044541105184005
302 => 0.047691908089037
303 => 0.045977069317257
304 => 0.047128537432066
305 => 0.047124520068288
306 => 0.045004302195627
307 => 0.043781404774493
308 => 0.044560682607119
309 => 0.045396130302845
310 => 0.045531678880693
311 => 0.046614858625618
312 => 0.046917150809556
313 => 0.046001191379552
314 => 0.04446270573969
315 => 0.044820060864708
316 => 0.043774162984291
317 => 0.04194126717874
318 => 0.043257684945577
319 => 0.043707167849979
320 => 0.043905685107039
321 => 0.042103242591785
322 => 0.041536876020562
323 => 0.041235347210318
324 => 0.044230033045074
325 => 0.044394088695223
326 => 0.04355475679393
327 => 0.047348616576493
328 => 0.046489949263363
329 => 0.047449291030729
330 => 0.044787634632732
331 => 0.044889313491531
401 => 0.043629242697783
402 => 0.044334798144321
403 => 0.043836134295822
404 => 0.044277796236676
405 => 0.044542526582983
406 => 0.045802390611513
407 => 0.047706293712495
408 => 0.045614208938413
409 => 0.04470265764314
410 => 0.045268178939968
411 => 0.046774236676948
412 => 0.049055991242148
413 => 0.047705146614959
414 => 0.048304628521676
415 => 0.0484355886492
416 => 0.047439525832097
417 => 0.049092717498984
418 => 0.049978676343773
419 => 0.050887486795176
420 => 0.051676581445838
421 => 0.050524487915716
422 => 0.051757393139067
423 => 0.050763889166115
424 => 0.049872613395824
425 => 0.049873965093265
426 => 0.0493148547831
427 => 0.048231508104723
428 => 0.04803172235571
429 => 0.049071033052233
430 => 0.049904461807756
501 => 0.049973106991915
502 => 0.050434535974088
503 => 0.050707604892641
504 => 0.053384051513658
505 => 0.054460540485358
506 => 0.05577685082306
507 => 0.056289627882781
508 => 0.057832902991789
509 => 0.056586583002589
510 => 0.056316933833205
511 => 0.052573453220191
512 => 0.053186447960858
513 => 0.054167911685862
514 => 0.052589637195521
515 => 0.053590689090931
516 => 0.053788317940263
517 => 0.052536008032273
518 => 0.053204920863248
519 => 0.051428486703011
520 => 0.047745015122754
521 => 0.049096818255829
522 => 0.050092200373787
523 => 0.048671667361731
524 => 0.051217917803621
525 => 0.049730450860747
526 => 0.049258995250861
527 => 0.047419678830635
528 => 0.0482877653792
529 => 0.049461864865936
530 => 0.048736407886849
531 => 0.050241840046369
601 => 0.052373933468341
602 => 0.053893390209196
603 => 0.05401003523059
604 => 0.053033126341915
605 => 0.054598629070566
606 => 0.054610032048846
607 => 0.052844138575661
608 => 0.051762538655872
609 => 0.05151679687839
610 => 0.052130708019053
611 => 0.052876109478067
612 => 0.054051399823835
613 => 0.05476160316504
614 => 0.056613436816156
615 => 0.057114489905917
616 => 0.057664995341759
617 => 0.058400640373632
618 => 0.059283970849911
619 => 0.057351294055845
620 => 0.057428082907833
621 => 0.05562840103693
622 => 0.053705182857382
623 => 0.055164665723128
624 => 0.057072745423222
625 => 0.05663502983178
626 => 0.056585777886024
627 => 0.056668605997434
628 => 0.056338582735942
629 => 0.054845899755444
630 => 0.054096283707327
701 => 0.055063479656847
702 => 0.055577501259078
703 => 0.056374703936743
704 => 0.056276431879814
705 => 0.058329940364162
706 => 0.059127871666306
707 => 0.058923726693812
708 => 0.058961294281774
709 => 0.06040591079014
710 => 0.062012621455488
711 => 0.063517518017732
712 => 0.065048363437657
713 => 0.063202869534023
714 => 0.062265841543998
715 => 0.063232615246023
716 => 0.062719631511403
717 => 0.065667388211387
718 => 0.065871484489637
719 => 0.06881902803326
720 => 0.071616597843114
721 => 0.069859494369214
722 => 0.071516363803423
723 => 0.073308403183067
724 => 0.076765537894312
725 => 0.07560129654703
726 => 0.074709505921
727 => 0.073866768088503
728 => 0.075620371737066
729 => 0.077876354816441
730 => 0.078362271964201
731 => 0.079149643378209
801 => 0.078321818611575
802 => 0.079318842361079
803 => 0.082838774311261
804 => 0.081887657627023
805 => 0.080536919035768
806 => 0.083315567252579
807 => 0.084321149240521
808 => 0.091378850259277
809 => 0.10028948933454
810 => 0.096600426246972
811 => 0.094310505743195
812 => 0.094848691379223
813 => 0.098102555125342
814 => 0.099147592888123
815 => 0.096306820002766
816 => 0.097310229010943
817 => 0.10283911129899
818 => 0.10580517925875
819 => 0.10177686057333
820 => 0.090662889085675
821 => 0.080415299804377
822 => 0.083133421936737
823 => 0.082825271240077
824 => 0.088765365516476
825 => 0.081864973808659
826 => 0.081981158707978
827 => 0.088044087843343
828 => 0.086426602294947
829 => 0.083806482858443
830 => 0.080434429575861
831 => 0.074200877205832
901 => 0.068679646036229
902 => 0.07950805182342
903 => 0.079041111275698
904 => 0.078364912165884
905 => 0.079869720112388
906 => 0.087176640353424
907 => 0.087008192191675
908 => 0.085936610929638
909 => 0.086749395872409
910 => 0.083663997728218
911 => 0.084459175083186
912 => 0.080413676533878
913 => 0.082242410833108
914 => 0.083800861258888
915 => 0.084113743255116
916 => 0.084818682368768
917 => 0.078795054824991
918 => 0.081499486747734
919 => 0.083088087131343
920 => 0.075910732804421
921 => 0.082946213913253
922 => 0.078690196870815
923 => 0.077245640763381
924 => 0.079190545256246
925 => 0.078432614083895
926 => 0.077780989369119
927 => 0.077417371581941
928 => 0.078845494790225
929 => 0.078778871135582
930 => 0.076442184380059
1001 => 0.073394071763017
1002 => 0.074417118408182
1003 => 0.074045435970881
1004 => 0.07269841087011
1005 => 0.073606143147598
1006 => 0.06960894959033
1007 => 0.062731985831093
1008 => 0.067275118737542
1009 => 0.067100213062621
1010 => 0.067012017689985
1011 => 0.070426056506211
1012 => 0.070097875449308
1013 => 0.06950222361747
1014 => 0.072687471257102
1015 => 0.07152481302101
1016 => 0.075107851747914
1017 => 0.077467872789868
1018 => 0.076869295114945
1019 => 0.079088906311875
1020 => 0.074440687336623
1021 => 0.075984639226025
1022 => 0.076302845570606
1023 => 0.072648165795662
1024 => 0.070151569928901
1025 => 0.069985075447864
1026 => 0.065656322267003
1027 => 0.067968707275744
1028 => 0.070003510390443
1029 => 0.069028997605603
1030 => 0.068720495970664
1031 => 0.070296563917727
1101 => 0.070419037895323
1102 => 0.067626618226926
1103 => 0.068207250700416
1104 => 0.070628584636986
1105 => 0.068146239297717
1106 => 0.063323447792326
1107 => 0.06212732881868
1108 => 0.061967744498749
1109 => 0.058723774976828
1110 => 0.062207259207964
1111 => 0.0606866249895
1112 => 0.065490290265633
1113 => 0.06274646242248
1114 => 0.062628181488181
1115 => 0.062449382507947
1116 => 0.059657163933736
1117 => 0.060268482346741
1118 => 0.062300597857991
1119 => 0.063025679565824
1120 => 0.062950047603278
1121 => 0.062290639383369
1122 => 0.062592513089727
1123 => 0.061620072701776
1124 => 0.061276683761194
1125 => 0.060192853808149
1126 => 0.058599923192839
1127 => 0.058821429964909
1128 => 0.055665417603011
1129 => 0.053945854565995
1130 => 0.053469902180826
1201 => 0.052833438759958
1202 => 0.053541792417777
1203 => 0.055656477016522
1204 => 0.053105718735071
1205 => 0.048732622576414
1206 => 0.048995453106943
1207 => 0.049585955273955
1208 => 0.04848555839229
1209 => 0.047444125093103
1210 => 0.048349566852592
1211 => 0.046496628360661
1212 => 0.049809874038187
1213 => 0.049720260027874
1214 => 0.050955233126717
1215 => 0.051727487149623
1216 => 0.049947691647034
1217 => 0.049500077891211
1218 => 0.049755059029439
1219 => 0.045540788792043
1220 => 0.050610837339572
1221 => 0.050654683329949
1222 => 0.050279247340666
1223 => 0.052978891672037
1224 => 0.058675983251415
1225 => 0.056532508234275
1226 => 0.055702489920763
1227 => 0.054124624500038
1228 => 0.056227036488776
1229 => 0.056065604050777
1230 => 0.055335545344712
1231 => 0.054894003561362
]
'min_raw' => 0.041235347210318
'max_raw' => 0.10580517925875
'avg_raw' => 0.073520263234535
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.041235'
'max' => '$0.1058051'
'avg' => '$0.07352'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.025357090402732
'max_diff' => 0.061499918903353
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.001294330430356
]
1 => [
'year' => 2028
'avg' => 0.0022214467652997
]
2 => [
'year' => 2029
'avg' => 0.0060685921859738
]
3 => [
'year' => 2030
'avg' => 0.0046819098338602
]
4 => [
'year' => 2031
'avg' => 0.0045982156795487
]
5 => [
'year' => 2032
'avg' => 0.0080621191979808
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.001294330430356
'min' => '$0.001294'
'max_raw' => 0.0080621191979808
'max' => '$0.008062'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.0080621191979808
]
1 => [
'year' => 2033
'avg' => 0.020736599595147
]
2 => [
'year' => 2034
'avg' => 0.013143853377749
]
3 => [
'year' => 2035
'avg' => 0.015503205200765
]
4 => [
'year' => 2036
'avg' => 0.030091758581493
]
5 => [
'year' => 2037
'avg' => 0.073520263234535
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.0080621191979808
'min' => '$0.008062'
'max_raw' => 0.073520263234535
'max' => '$0.07352'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.073520263234535
]
]
]
]
'prediction_2025_max_price' => '$0.002213'
'last_price' => 0.00214585
'sma_50day_nextmonth' => '$0.002027'
'sma_200day_nextmonth' => '$0.002224'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 feb. 2026'
'sma_50day_date_nextmonth' => '4 feb. 2026'
'daily_sma3' => '$0.00217'
'daily_sma3_action' => 'SELL'
'daily_sma5' => '$0.002174'
'daily_sma5_action' => 'SELL'
'daily_sma10' => '$0.002145'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.002111'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.002062'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.0022011'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.0023094'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.002157'
'daily_ema3_action' => 'SELL'
'daily_ema5' => '$0.002157'
'daily_ema5_action' => 'SELL'
'daily_ema10' => '$0.002143'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.002117'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.002115'
'daily_ema50_action' => 'BUY'
'daily_ema100' => '$0.002214'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.002947'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.002198'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.002953'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.002158'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.002146'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.00215'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.002451'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.00431'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.002357'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.001178'
'weekly_ema200_action' => 'BUY'
'rsi_14' => '53.01'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 62.69
'stoch_rsi_14_action' => 'NEUTRAL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.002135'
'vwma_10_action' => 'BUY'
'hma_9' => '0.002194'
'hma_9_action' => 'SELL'
'stochastic_fast_14' => 51.95
'stochastic_fast_14_action' => 'NEUTRAL'
'cci_20' => 58.96
'cci_20_action' => 'NEUTRAL'
'adx_14' => 8.2
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.000095'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'NEUTRAL'
'williams_percent_r_14' => -48.05
'williams_percent_r_14_action' => 'NEUTRAL'
'ultimate_oscillator' => 55.73
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.000112'
'ichimoku_cloud_action' => 'NEUTRAL'
'sell_signals' => 21
'buy_signals' => 10
'sell_pct' => 67.74
'buy_pct' => 32.26
'overall_action' => 'bearish'
'overall_action_label' => 'Bajista'
'overall_action_dir' => -1
'last_updated' => 1767702340
'last_updated_date' => '6 de enero de 2026'
]
Predicción de precio de REM Token para 2026
La previsión del precio de REM Token para 2026 sugiere que el precio medio podría oscilar entre $0.000741 en el extremo inferior y $0.002213 en el extremo superior. En el mercado de criptomonedas, en comparación con el precio medio de hoy, REM Token podría potencialmente ganar 3.13% para 2026 si REM alcanza el objetivo de precio previsto.
Predicción de precio de REM Token 2027-2032
La predicción del precio de REM para 2027-2032 está actualmente dentro de un rango de precios de $0.001294 en el extremo inferior y $0.008062 en el extremo superior. Considerando la volatilidad de precios en el mercado, si REM Token alcanza el objetivo de precio superior, podría ganar 275.71% para 2032 en comparación con el precio de hoy.
| Predicción de Precio de REM Token | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.000713 | $0.001294 | $0.001874 |
| 2028 | $0.001288 | $0.002221 | $0.003154 |
| 2029 | $0.002829 | $0.006068 | $0.0093077 |
| 2030 | $0.0024063 | $0.004681 | $0.006957 |
| 2031 | $0.002845 | $0.004598 | $0.006351 |
| 2032 | $0.004342 | $0.008062 | $0.011781 |
Predicción de precio de REM Token 2032-2037
La predicción de precio de REM Token para 2032-2037 se estima actualmente entre $0.008062 en el extremo inferior y $0.07352 en el extremo superior. Comparado con el precio actual, REM Token podría potencialmente ganar 3326.16% para 2037 si alcanza el objetivo de precio superior. Tenga en cuenta que esta información es solo para fines generales y no debe considerarse como consejo de inversión a largo plazo.
| Predicción de Precio de REM Token | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.004342 | $0.008062 | $0.011781 |
| 2033 | $0.010091 | $0.020736 | $0.031381 |
| 2034 | $0.008113 | $0.013143 | $0.018174 |
| 2035 | $0.009592 | $0.0155032 | $0.021414 |
| 2036 | $0.015878 | $0.030091 | $0.0443052 |
| 2037 | $0.041235 | $0.07352 | $0.1058051 |
REM Token Histograma de precios potenciales
Pronóstico de precio de REM Token basado en análisis técnico
A fecha de 6 de enero de 2026, el sentimiento general de predicción de precio para REM Token es Bajista, con 10 indicadores técnicos mostrando señales alcistas y 21 indicando señales bajistas. La predicción de precio de REM se actualizó por última vez el 6 de enero de 2026.
Promedios Móviles Simples de 50 y 200 días y el Índice de Fuerza Relativa de 14 días - RSI (14) de REM Token
Según nuestros indicadores técnicos, se proyecta que el SMA de 200 días de REM Token aumentar durante el próximo mes, alcanzando $0.002224 para el 4 feb. 2026. Se espera que el SMA de 50 días a corto plazo para REM Token alcance $0.002027 para el 4 feb. 2026.
El oscilador de momento del Índice de Fuerza Relativa (RSI) es una herramienta comúnmente utilizada para identificar si una criptomoneda está sobrevendida (por debajo de 30) o sobrecomprada (por encima de 70). Actualmente, el RSI se encuentra en 53.01, lo que sugiere que el mercado de REM está en un estado NEUTRAL.
Promedios Móviles y Osciladores Populares de REM para Sáb, 19 de Oct de 2024
Los promedios móviles (MA) son indicadores ampliamente utilizados en los mercados financieros, diseñados para suavizar los movimientos de precios durante un período establecido. Como indicadores rezagados, se basan en datos históricos de precios. La tabla a continuación resalta dos tipos: el promedio móvil simple (SMA) y el promedio móvil exponencial (EMA).
Promedio Móvil Simple Diario (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 3 | $0.00217 | SELL |
| SMA 5 | $0.002174 | SELL |
| SMA 10 | $0.002145 | BUY |
| SMA 21 | $0.002111 | BUY |
| SMA 50 | $0.002062 | BUY |
| SMA 100 | $0.0022011 | SELL |
| SMA 200 | $0.0023094 | SELL |
Promedio Móvil Exponencial Diario (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 3 | $0.002157 | SELL |
| EMA 5 | $0.002157 | SELL |
| EMA 10 | $0.002143 | BUY |
| EMA 21 | $0.002117 | BUY |
| EMA 50 | $0.002115 | BUY |
| EMA 100 | $0.002214 | SELL |
| EMA 200 | $0.002947 | SELL |
Promedio Móvil Simple Semanal (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 21 | $0.002198 | SELL |
| SMA 50 | $0.002953 | SELL |
| SMA 100 | — | — |
| SMA 200 | — | — |
Promedio Móvil Exponencial Semanal (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 21 | $0.002451 | SELL |
| EMA 50 | $0.00431 | SELL |
| EMA 100 | $0.002357 | SELL |
| EMA 200 | $0.001178 | BUY |
Osciladores de REM Token
Un oscilador es una herramienta de análisis técnico que establece límites altos y bajos entre dos extremos, creando un indicador de tendencia que fluctúa dentro de estos límites. Los traders utilizan este indicador para identificar condiciones de sobrecompra o sobreventa a corto plazo.
| Período | Valor | Acción |
|---|---|---|
| RSI (14) | 53.01 | NEUTRAL |
| Stoch RSI (14) | 62.69 | NEUTRAL |
| Estocástico Rápido (14) | 51.95 | NEUTRAL |
| Índice de Canal de Materias Primas (20) | 58.96 | NEUTRAL |
| Índice Direccional Medio (14) | 8.2 | NEUTRAL |
| Oscilador Asombroso (5, 34) | 0.000095 | BUY |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | NEUTRAL |
| Rango Percentil de Williams (14) | -48.05 | NEUTRAL |
| Oscilador Ultimate (7, 14, 28) | 55.73 | NEUTRAL |
| VWMA (10) | 0.002135 | BUY |
| Promedio Móvil de Hull (9) | 0.002194 | SELL |
| Nube Ichimoku B/L (9, 26, 52, 26) | -0.000112 | NEUTRAL |
Predicción de precios de REM Token basada en flujos de dinero globales
Definiciones de flujos de dinero globales utilizadas para la predicción de precios de REM Token
M0: El total de toda la moneda física, además de cuentas en el banco central que pueden cambiarse por moneda física.
M1: Medir M0 más la cantidad en cuentas a la vista, incluyendo cuentas "de cheques" o "corrientes".
M2: Medir M1 más la mayoría de cuentas de ahorro, cuentas del mercado monetario, y cuentas de certificados de depósito (CD) inferiores a 100 000 $.
Predicciones de precios de REM Token por parte de empresas de Internet o nichos tecnológicos
| Comparación | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook acción | $0.003015 | $0.004236 | $0.005953 | $0.008365 | $0.011755 | $0.016518 |
| Amazon.com acción | $0.004477 | $0.009342 | $0.019493 | $0.040674 | $0.084869 | $0.177085 |
| Apple acción | $0.003043 | $0.004317 | $0.006123 | $0.008686 | $0.01232 | $0.017475 |
| Netflix acción | $0.003385 | $0.005342 | $0.008429 | $0.013300096 | $0.020985 | $0.033111 |
| Google acción | $0.002778 | $0.003598 | $0.00466 | $0.006034 | $0.007815 | $0.01012 |
| Tesla acción | $0.004864 | $0.011027 | $0.024998 | $0.056669 | $0.128464 | $0.29122 |
| Kodak acción | $0.0016091 | $0.0012066 | $0.0009048 | $0.000678 | $0.0005088 | $0.000381 |
| Nokia acción | $0.001421 | $0.000941 | $0.000623 | $0.000413 | $0.000273 | $0.000181 |
Este cálculo muestra cuánto puede costar la criptomoneda si asumimos que su capitalización se comportará como la capitalización de algunas empresas de Internet o nichos tecnológicos. Si extrapola los datos, puede obtener una imagen potencial del precio futuro en 2024, 2025, 2026, 2027, 2028, 2029 y 2030.
Resumen de pronósticos y predicciones de REM Token
Podría preguntarse cosas como: "¿Debo invertir en REM Token ahora?", "¿Debería comprar REM hoy?", "¿Será REM Token una buena o mala inversión a corto plazo?, ¿Lo será a largo plazo?".
Actualizamos el pronóstico de REM Token regularmente con valores actualizados. Aquí hay algunas predicciones similares. Hacemos un pronóstico de precios futuros para una gran cantidad de monedas digitales, como REM Token, con métodos de análisis técnico.
Si está tratando de encontrar criptomonedas que ofrezcan un buen rendimiento, debería explorar el máximo de fuentes de información disponibles acerca de REM Token a fin de tomar una decisión responsable sobre la inversión por sus propios medios.
El precio de REM Token es de $0.002145 USD hoy, pero dicho precio puede subir y bajar, y su inversión puede perderse porque estos son activos de criptomonedas conllevan un alto riesgo
Predicción de precios de REM Token basada en el patrón de crecimiento del Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si REM Token ofrece un 1 % del crecimiento medio anterior anual del Bitcoin | $0.0022016 | $0.002258 | $0.002317 | $0.002377 |
| Si REM Token ofrece un 2 % del crecimiento medio anterior anual del Bitcoin | $0.002257 | $0.002374 | $0.002498 | $0.002628 |
| Si REM Token ofrece un 5 % del crecimiento medio anterior anual del Bitcoin | $0.002424 | $0.002739 | $0.003095 | $0.003498 |
| Si REM Token ofrece un 10 % del crecimiento medio anterior anual del Bitcoin | $0.0027036 | $0.0034063 | $0.004291 | $0.0054073 |
| Si REM Token ofrece un 20 % del crecimiento medio anterior anual del Bitcoin | $0.003261 | $0.004956 | $0.007533 | $0.01145 |
| Si REM Token ofrece un 50 % del crecimiento medio anterior anual del Bitcoin | $0.004934 | $0.011348 | $0.026097 | $0.060014 |
| Si REM Token ofrece un 100 % del crecimiento medio anterior anual del Bitcoin | $0.007723 | $0.027799 | $0.10006 | $0.360148 |
Cuadro de preguntas
¿Es REM una buena inversión?
La decisión de adquirir REM Token depende completamente de su tolerancia individual al riesgo. Como puede discernir, el valor de REM Token ha experimentado un aumento de 0.1341% durante las últimas 24 horas, y REM Token ha sufrido un declive de durante el período previo de 30 días. Por lo tanto, la determinación de si invertir o no en REM Token dependerá de si dicha inversión se alinea con sus aspiraciones comerciales.
¿Puede REM Token subir?
Parece que el valor medio de REM Token podría potencialmente aumentar hasta $0.002213 para el final de este año. Mirando las perspectivas de REM Token en un horizonte de cinco años más extendido, la moneda digital podría potencialmente crecer hasta $0.006957. Sin embargo, dada la imprevisibilidad del mercado, es vital realizar una investigación exhaustiva antes de invertir cualquier fondo en un proyecto, red o activo en particular.
¿Cuál será el precio de REM Token la próxima semana?
Basado en nuestro nuevo pronóstico experimental de REM Token, el precio de REM Token aumentará en un 0.86% durante la próxima semana y alcanzará $0.002164 para el 13 de enero de 2026.
¿Cuál será el precio de REM Token el próximo mes?
Basado en nuestro nuevo pronóstico experimental de REM Token, el precio de REM Token disminuirá en un -11.62% durante el próximo mes y alcanzará $0.001896 para el 5 de febrero de 2026.
¿Hasta qué punto puede subir el precio de REM Token este año en 2026?
Según nuestra predicción más reciente sobre el valor de REM Token en 2026, se anticipa que REM fluctúe dentro del rango de $0.000741 y $0.002213. Sin embargo, es crucial tener en cuenta que el mercado de criptomonedas es excepcionalmente inestable, y esta predicción de precios proyectada de REM Token no considera fluctuaciones de precios repentinas y extremas.
¿Dónde estará REM Token en 5 años?
El futuro de REM Token parece estar en una tendencia alcista, con un precio máximo de $0.006957 proyectada después de un período de cinco años. Basado en el pronóstico de REM Token para 2030, el valor de REM Token podría potencialmente alcanzar su punto más alto de aproximadamente $0.006957, mientras que su punto más bajo se anticipa que esté alrededor de $0.0024063.
¿Cuánto será REM Token en 2026?
Basado en nuestra nueva simulación experimental de predicción de precios de REM Token, se espera que el valor de REM en 2026 crezca en un 3.13% hasta $0.002213 si ocurre lo mejor. El precio estará entre $0.002213 y $0.000741 durante 2026.
¿Cuánto será REM Token en 2027?
Según nuestra última simulación experimental para la predicción de precios de REM Token, el valor de REM podría disminuir en un -12.62% hasta $0.001874 en 2027, asumiendo las condiciones más favorables. Se proyecta que el precio fluctúe entre $0.001874 y $0.000713 a lo largo del año.
¿Cuánto será REM Token en 2028?
Nuestro nuevo modelo experimental de predicción de precios de REM Token sugiere que el valor de REM en 2028 podría aumentar en un 47.02% , alcanzando $0.003154 en el mejor escenario. Se espera que el precio oscile entre $0.003154 y $0.001288 durante el año.
¿Cuánto será REM Token en 2029?
Basado en nuestro modelo de pronóstico experimental, el valor de REM Token podría experimentar un 333.75% crecimiento en 2029, potencialmente alcanzando $0.0093077 bajo condiciones óptimas. El rango de precios previsto para 2029 se encuentra entre $0.0093077 y $0.002829.
¿Cuánto será REM Token en 2030?
Usando nuestra nueva simulación experimental para las predicciones de precios de REM Token, se espera que el valor de REM en 2030 aumente en un 224.23% , alcanzando $0.006957 en el mejor escenario. Se pronostica que el precio oscile entre $0.006957 y $0.0024063 durante el transcurso de 2030.
¿Cuánto será REM Token en 2031?
Nuestra simulación experimental indica que el precio de REM Token podría crecer en un 195.98% en 2031, potencialmente alcanzando $0.006351 bajo condiciones ideales. Es probable que el precio fluctúe entre $0.006351 y $0.002845 durante el año.
¿Cuánto será REM Token en 2032?
Basado en los hallazgos de nuestra última predicción experimental de precios de REM Token, REM podría experimentar un 449.04% aumento en valor, alcanzando $0.011781 si se desarrolla el escenario más positivo en 2032. Se espera que el precio se mantenga dentro de un rango de $0.011781 y $0.004342 a lo largo del año.
¿Cuánto será REM Token en 2033?
Según nuestra predicción experimental de precios de REM Token, se anticipa que el valor de REM aumente en un 1362.43% en 2033, con el precio potencial más alto siendo $0.031381. A lo largo del año, el precio de REM podría oscilar entre $0.031381 y $0.010091.
¿Cuánto será REM Token en 2034?
Los resultados de nuestra nueva simulación de predicción de precios de REM Token sugieren que REM podría aumentar en un 746.96% en 2034, alcanzando potencialmente $0.018174 bajo las mejores circunstancias. El rango de precios previsto para el año está entre $0.018174 y $0.008113.
¿Cuánto será REM Token en 2035?
Basado en nuestra predicción experimental para el precio de REM Token, REM podría crecer en un 897.93% , con el valor potencialmente alcanzando $0.021414 en 2035. El rango de precios esperado para el año está entre $0.021414 y $0.009592.
¿Cuánto será REM Token en 2036?
Nuestra reciente simulación de predicción de precios de REM Token sugiere que el valor de REM podría aumentar en un 1964.7% en 2036, posiblemente alcanzando $0.0443052 si las condiciones son óptimas. El rango de precios esperado para 2036 está entre $0.0443052 y $0.015878.
¿Cuánto será REM Token en 2037?
Según la simulación experimental, el valor de REM Token podría aumentar en un 4830.69% en 2037, con un máximo de $0.1058051 bajo condiciones favorables. Se espera que el precio caiga entre $0.1058051 y $0.041235 durante el transcurso del año.
Predicciones relacionadas
¿Cómo leer y predecir los movimientos de precio de REM Token?
Los traders de REM Token utilizan indicadores y patrones de gráficos para predecir la dirección del mercado. También identifican niveles clave de soporte y resistencia para estimar cuándo una tendencia bajista podría desacelerar o una tendencia alcista podría estancarse.
Indicadores de predicción de precio de REM Token
Las medias móviles son herramientas populares para la predicción de precios de REM Token. Una media móvil simple (SMA) calcula el precio de cierre promedio de REM durante un período específico, como una SMA de 12 días. Una media móvil exponencial (EMA) da más peso a los precios recientes, reaccionando más rápido a los cambios de precio.
Las medias móviles comúnmente utilizadas en el mercado de criptomonedas incluyen las de 50 días, 100 días y 200 días, que ayudan a identificar niveles clave de resistencia y soporte. Un movimiento de precio de REM por encima de estas medias se considera alcista, mientras que una caída por debajo indica debilidad.
Los traders también utilizan RSI y niveles de retroceso de Fibonacci para evaluar la dirección futura de REM.
¿Cómo leer gráficos de REM Token y predecir movimientos de precio?
La mayoría de los traders prefieren gráficos de velas sobre gráficos lineales simples porque proporcionan información más detallada. Las velas pueden representar la acción del precio de REM Token en diferentes marcos de tiempo, como 5 minutos para tendencias a corto plazo y semanal para tendencias a largo plazo. Las opciones populares incluyen gráficos de 1 hora, 4 horas y 1 día.
Por ejemplo, un gráfico de velas de 1 hora muestra los precios de apertura, cierre, máximo y mínimo de REM dentro de cada hora. El color de la vela es crucial: el verde indica que el precio cerró más alto de lo que abrió, mientras que el rojo significa lo contrario. Algunos gráficos usan velas huecas y llenas para transmitir la misma información.
¿Qué afecta el precio de REM Token?
La acción del precio de REM Token está impulsada por la oferta y la demanda, influenciada por factores como reducciones a la mitad de recompensas de bloque, hard forks y actualizaciones de protocolo. Los eventos del mundo real, como regulaciones, adopción por empresas y gobiernos y hacks de exchanges de criptomonedas, también impactan el precio de REM. La capitalización de mercado de REM Token puede cambiar rápidamente.
Los traders a menudo monitorean la actividad de las "ballenas" de REM, grandes poseedores de REM Token, ya que sus acciones pueden influir significativamente en los movimientos de precios en el relativamente pequeño mercado de REM Token.
Patrones de predicción de precios alcistas y bajistas
Los traders a menudo identifican patrones de velas para obtener una ventaja en las predicciones de precios de criptomonedas. Ciertas formaciones indican tendencias alcistas, mientras que otras sugieren movimientos bajistas.
Patrones de velas alcistas comúnmente seguidos:
- Martillo
- Envolvente Alcista
- Línea Penetrante
- Estrella de la Mañana
- Tres Soldados Blancos
Patrones de velas bajistas comunes:
- Harami Bajista
- Cubierta de Nube Oscura
- Estrella de la Tarde
- Estrella Fugaz
- Hombre Colgado


