Prédiction du prix de Position jusqu'à $0.001423 d'ici 2026
| Année | Prix min. | Prix max. |
|---|---|---|
| 2026 | $0.000476 | $0.001423 |
| 2027 | $0.000458 | $0.0012057 |
| 2028 | $0.000828 | $0.002028 |
| 2029 | $0.001819 | $0.005985 |
| 2030 | $0.001547 | $0.004474 |
| 2031 | $0.001829 | $0.004084 |
| 2032 | $0.002792 | $0.007576 |
| 2033 | $0.006489 | $0.02018 |
| 2034 | $0.005217 | $0.011687 |
| 2035 | $0.006168 | $0.01377 |
Calculateur de profit d’investissement
Si vous ouvrez une position short de $10,000.00 sur Position aujourd’hui et la fermez le Apr 06, 2026, notre prévision indique que vous pourriez gagner environ $3,956.13, soit un rendement de 39.56% sur les 90 prochains jours.
Prévision du prix à long terme de Position pour 2027, 2028, 2029, 2030, 2031, 2032 et 2037
[
'name' => 'Position'
'name_with_ticker' => 'Position <small>POSI</small>'
'name_lang' => 'Position'
'name_lang_with_ticker' => 'Position <small>POSI</small>'
'name_with_lang' => 'Position'
'name_with_lang_with_ticker' => 'Position <small>POSI</small>'
'image' => '/uploads/coins/position-token.png?1717303432'
'price_for_sd' => 0.001379
'ticker' => 'POSI'
'marketcap' => '$83.76K'
'low24h' => '$0.001361'
'high24h' => '$0.001385'
'volume24h' => '$180.15'
'current_supply' => '60.66M'
'max_supply' => '91.8M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.001379'
'change_24h_pct' => '0.9511%'
'ath_price' => '$7.85'
'ath_days' => 1583
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '6 sept. 2021'
'ath_pct' => '-99.98%'
'fdv' => '$126.75K'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.068039'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.001391'
'next_week_prediction_price_date' => '13 janvier 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.001219'
'next_month_prediction_price_date' => '5 février 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.000476'
'current_year_max_price_prediction' => '$0.001423'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.001547'
'grand_prediction_max_price' => '$0.004474'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0014060585686673
107 => 0.0014113082809635
108 => 0.0014231361508236
109 => 0.0013220682978785
110 => 0.0013674447966546
111 => 0.0013940992384826
112 => 0.0012736735006068
113 => 0.0013917188088431
114 => 0.0013203089314144
115 => 0.0012960713464748
116 => 0.001328704061537
117 => 0.0013159870607409
118 => 0.0013050537302237
119 => 0.0012989527439367
120 => 0.0013229146083371
121 => 0.0013217967587222
122 => 0.0012825904977657
123 => 0.0012314475285996
124 => 0.0012486127877625
125 => 0.0012423764881834
126 => 0.0012197753340104
127 => 0.0012350057830493
128 => 0.0011679385934358
129 => 0.0010525529795551
130 => 0.0011287802504417
131 => 0.0011258455834318
201 => 0.0011243657912489
202 => 0.0011816484785532
203 => 0.0011761420699053
204 => 0.0011661478842905
205 => 0.001219591782954
206 => 0.00120008404102
207 => 0.0012602023050586
208 => 0.0012998000819601
209 => 0.001289756804884
210 => 0.0013269987054524
211 => 0.0012490082406646
212 => 0.0012749135446328
213 => 0.0012802525918774
214 => 0.0012189322935404
215 => 0.001177042986459
216 => 0.0011742494472497
217 => 0.0011016191614727
218 => 0.0011404176738836
219 => 0.0011745587592137
220 => 0.0011582078287958
221 => 0.0011530316126957
222 => 0.001179475778167
223 => 0.0011815307163031
224 => 0.0011346779090278
225 => 0.0011444200912958
226 => 0.0011850466108563
227 => 0.0011433964072398
228 => 0.001062476865135
301 => 0.0010424076998929
302 => 0.0010397301033015
303 => 0.00098530093545912
304 => 0.0010437488174788
305 => 0.0010182347506714
306 => 0.0010988333820106
307 => 0.0010527958760488
308 => 0.0010508112911807
309 => 0.0010478113000774
310 => 0.0010009618668749
311 => 0.0010112189153095
312 => 0.0010453149064985
313 => 0.0010574807402735
314 => 0.0010562117441391
315 => 0.0010451478175406
316 => 0.0010502128264809
317 => 0.0010338966679182
318 => 0.0010281350927382
319 => 0.001009949976624
320 => 0.00098322287970281
321 => 0.00098693944645652
322 => 0.00093398607393021
323 => 0.00090513426612969
324 => 0.00089714846599122
325 => 0.0008864695202965
326 => 0.00089835468132303
327 => 0.00093383606367909
328 => 0.0008910379887625
329 => 0.0008176636912539
330 => 0.00082207361155789
331 => 0.00083198139316386
401 => 0.00081351830768767
402 => 0.00079604454677377
403 => 0.00081123656419737
404 => 0.00078014690706671
405 => 0.0008357384296955
406 => 0.00083423483480184
407 => 0.00085495591668115
408 => 0.0008679132344197
409 => 0.00083805081201379
410 => 0.00083054049353528
411 => 0.00083481871226558
412 => 0.00076410928650367
413 => 0.0008491774480562
414 => 0.00084991312104984
415 => 0.00084361384223828
416 => 0.00088891001208018
417 => 0.00098449905867624
418 => 0.00094853461428631
419 => 0.00093460809438744
420 => 0.00090813376987947
421 => 0.0009434092353965
422 => 0.00094070063002778
423 => 0.00092845128934233
424 => 0.00092104284987551
425 => 0.00093469312674829
426 => 0.00091935142951005
427 => 0.00091659563912441
428 => 0.00089989854771697
429 => 0.00089393844575377
430 => 0.00088952582353871
501 => 0.00088466796005524
502 => 0.00089538319639563
503 => 0.00087110106114157
504 => 0.00084181918643224
505 => 0.00083938471538444
506 => 0.00084610650398831
507 => 0.00084313261290941
508 => 0.00083937047753809
509 => 0.00083218753655765
510 => 0.000830056511408
511 => 0.00083698130931793
512 => 0.00082916361621842
513 => 0.00084069904823852
514 => 0.00083756204901362
515 => 0.00082003902634878
516 => 0.00079819885225448
517 => 0.00079800442889373
518 => 0.00079329899921017
519 => 0.00078730592704208
520 => 0.00078563879146783
521 => 0.00080995713486394
522 => 0.00086029537790711
523 => 0.00085041277630567
524 => 0.00085755396877246
525 => 0.00089268156781111
526 => 0.00090384757522174
527 => 0.00089592220764305
528 => 0.00088507347568597
529 => 0.00088555076483383
530 => 0.0009226241660657
531 => 0.00092493638862537
601 => 0.00093077862908239
602 => 0.00093828755908662
603 => 0.00089720101089231
604 => 0.00088361559210873
605 => 0.00087717806699874
606 => 0.00085735298129571
607 => 0.00087873263655203
608 => 0.00086627562700229
609 => 0.00086795650318259
610 => 0.00086686183036508
611 => 0.00086745959574489
612 => 0.00083572289073197
613 => 0.00084728607800657
614 => 0.00082806003644549
615 => 0.00080231852501966
616 => 0.00080223223044722
617 => 0.00080853242890072
618 => 0.00080478482433379
619 => 0.0007947001168039
620 => 0.00079613260191004
621 => 0.00078358252504856
622 => 0.0007976564084675
623 => 0.00079805999708518
624 => 0.00079264078535928
625 => 0.00081432354458781
626 => 0.00082320698873519
627 => 0.00081963994748643
628 => 0.00082295671561217
629 => 0.00085082344301948
630 => 0.00085536693549743
701 => 0.00085738485472987
702 => 0.00085468111028147
703 => 0.00082346606823351
704 => 0.00082485058808494
705 => 0.00081469190005846
706 => 0.00080610887917226
707 => 0.0008064521549957
708 => 0.00081086494344582
709 => 0.00083013584941412
710 => 0.00087069033494245
711 => 0.00087222934802331
712 => 0.00087409467677349
713 => 0.0008665074473074
714 => 0.00086421906630042
715 => 0.00086723803152988
716 => 0.00088246816404077
717 => 0.00092164419979943
718 => 0.00090779677228287
719 => 0.00089653859816385
720 => 0.00090641505204818
721 => 0.00090489464938689
722 => 0.00089206092084646
723 => 0.00089170072083039
724 => 0.00086706869257011
725 => 0.00085796279256643
726 => 0.00085035322095855
727 => 0.00084204376741564
728 => 0.00083711764482
729 => 0.00084468640800958
730 => 0.00084641747370202
731 => 0.00082986824070865
801 => 0.00082761264140317
802 => 0.00084112710230556
803 => 0.00083517989193231
804 => 0.00084129674528492
805 => 0.00084271590773212
806 => 0.00084248738989204
807 => 0.0008362778192296
808 => 0.00084023561439778
809 => 0.00083087424894951
810 => 0.00082069517005616
811 => 0.00081420155190122
812 => 0.00080853500880758
813 => 0.00081167913625735
814 => 0.00080047089599391
815 => 0.00079688515435633
816 => 0.00083889480244801
817 => 0.00086992778117316
818 => 0.00086947654937208
819 => 0.00086672979183046
820 => 0.00086264866728302
821 => 0.00088216960436037
822 => 0.00087536890021608
823 => 0.0008803169806989
824 => 0.00088157647485206
825 => 0.00088538858431831
826 => 0.00088675108579061
827 => 0.00088263266002319
828 => 0.00086881072012439
829 => 0.00083436776004718
830 => 0.00081833446915425
831 => 0.000813043216104
901 => 0.00081323554310285
902 => 0.00080793030588886
903 => 0.00080949293601244
904 => 0.00080738688690239
905 => 0.00080339853939596
906 => 0.00081143286703769
907 => 0.00081235874845346
908 => 0.00081048344037881
909 => 0.00081092514331754
910 => 0.00079539839341401
911 => 0.00079657885848685
912 => 0.00079000587895505
913 => 0.00078877352453129
914 => 0.00077215760464969
915 => 0.00074272009406334
916 => 0.00075903133249647
917 => 0.00073932965017645
918 => 0.00073186832455266
919 => 0.00076718907958149
920 => 0.00076364385542184
921 => 0.00075757597273242
922 => 0.00074860030957721
923 => 0.00074527114880331
924 => 0.00072504422182528
925 => 0.00072384910707296
926 => 0.00073387411825624
927 => 0.00072924792053473
928 => 0.00072275098685564
929 => 0.00069921975165359
930 => 0.00067276285236226
1001 => 0.00067356141984973
1002 => 0.00068197686726619
1003 => 0.00070644591560726
1004 => 0.00069688543510157
1005 => 0.00068994919680082
1006 => 0.00068865024786964
1007 => 0.00070490931327706
1008 => 0.00072791929720806
1009 => 0.00073871506684912
1010 => 0.00072801678700723
1011 => 0.00071572717916117
1012 => 0.0007164751906462
1013 => 0.00072145137594106
1014 => 0.00072197430265607
1015 => 0.00071397503134038
1016 => 0.00071622677935975
1017 => 0.00071280616821418
1018 => 0.00069181388392776
1019 => 0.00069143420007227
1020 => 0.00068628235496207
1021 => 0.0006861263591396
1022 => 0.00067736178541916
1023 => 0.00067613556096904
1024 => 0.0006587329678755
1025 => 0.00067018740734957
1026 => 0.00066250437073543
1027 => 0.0006509242223128
1028 => 0.00064892780035991
1029 => 0.00064886778550526
1030 => 0.0006607580086615
1031 => 0.00067004846316916
1101 => 0.00066263802044673
1102 => 0.00066095080628422
1103 => 0.00067896583942755
1104 => 0.00067667326224939
1105 => 0.00067468790519864
1106 => 0.00072585900552275
1107 => 0.00068535308668546
1108 => 0.00066769019407539
1109 => 0.00064582901037809
1110 => 0.00065294712202358
1111 => 0.00065444701273411
1112 => 0.00060187480671664
1113 => 0.0005805462692828
1114 => 0.00057322711898448
1115 => 0.00056901484451021
1116 => 0.00057093443088255
1117 => 0.00055173624560417
1118 => 0.00056463774361992
1119 => 0.00054801373795105
1120 => 0.00054522666930147
1121 => 0.00057495245075653
1122 => 0.00057908861959051
1123 => 0.00056144243833784
1124 => 0.0005727741433593
1125 => 0.00056866510959603
1126 => 0.00054829870881445
1127 => 0.0005475208621097
1128 => 0.00053730171811111
1129 => 0.00052131073656951
1130 => 0.00051400242890968
1201 => 0.00051019619882681
1202 => 0.00051176672354095
1203 => 0.00051097261818663
1204 => 0.00050579054359614
1205 => 0.00051126964863623
1206 => 0.00049727279938131
1207 => 0.00049169914122772
1208 => 0.00048918164914763
1209 => 0.0004767586398053
1210 => 0.00049652917220628
1211 => 0.00050042421615188
1212 => 0.00050432693453728
1213 => 0.00053829743358327
1214 => 0.00053660036345057
1215 => 0.00055194105094353
1216 => 0.00055134494003727
1217 => 0.00054696952746162
1218 => 0.00052851038152536
1219 => 0.00053586786809291
1220 => 0.00051322266804527
1221 => 0.00053018999164489
1222 => 0.00052244681372639
1223 => 0.00052757201540171
1224 => 0.00051835644066869
1225 => 0.0005234567202277
1226 => 0.00050134787556798
1227 => 0.00048070294750457
1228 => 0.00048901106922031
1229 => 0.00049804294767428
1230 => 0.00051762636144231
1231 => 0.00050596264176173
]
'min_raw' => 0.0004767586398053
'max_raw' => 0.0014231361508236
'avg_raw' => 0.00094994739531448
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.000476'
'max' => '$0.001423'
'avg' => '$0.000949'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0009031513601947
'max_diff' => 4.322615082365E-5
'year' => 2026
]
1 => [
'items' => [
101 => 0.00051015735641293
102 => 0.00049610576451814
103 => 0.00046711331680037
104 => 0.00046727741090589
105 => 0.00046281755445932
106 => 0.00045896358733978
107 => 0.00050730236027465
108 => 0.00050129066973728
109 => 0.00049171182765659
110 => 0.00050453348842965
111 => 0.00050792373904516
112 => 0.00050802025471406
113 => 0.00051737460743912
114 => 0.00052236702716534
115 => 0.00052324696278047
116 => 0.00053796623890752
117 => 0.00054289994611336
118 => 0.00056322118784983
119 => 0.00052194345523167
120 => 0.00052109336749196
121 => 0.00050471391549067
122 => 0.00049432580808256
123 => 0.00050542519809232
124 => 0.00051525774242313
125 => 0.00050501944005114
126 => 0.00050635634619856
127 => 0.0004926122617642
128 => 0.00049752512523021
129 => 0.00050175674508131
130 => 0.00049942029332265
131 => 0.00049592251195439
201 => 0.00051445158591686
202 => 0.00051340610294787
203 => 0.0005306608026033
204 => 0.00054411207488011
205 => 0.00056821915950269
206 => 0.00054306215996828
207 => 0.00054214533891523
208 => 0.00055110741177152
209 => 0.0005428985740667
210 => 0.0005480862761367
211 => 0.00056738334049765
212 => 0.00056779105705968
213 => 0.00056096127933254
214 => 0.00056054568673716
215 => 0.00056185742025923
216 => 0.0005695402844693
217 => 0.00056685565564373
218 => 0.00056996237608717
219 => 0.00057384737757347
220 => 0.00058991739092733
221 => 0.00059379181674217
222 => 0.00058437897067157
223 => 0.00058522884528058
224 => 0.00058170818246178
225 => 0.00057830726629259
226 => 0.000585952029177
227 => 0.00059992298360647
228 => 0.00059983607102406
301 => 0.00060307706089515
302 => 0.00060509617073502
303 => 0.00059642867322353
304 => 0.00059078645105626
305 => 0.00059295003805912
306 => 0.00059640966079348
307 => 0.00059182812903399
308 => 0.00056354879264251
309 => 0.00057212693681268
310 => 0.00057069911417295
311 => 0.0005686657211048
312 => 0.00057729111140073
313 => 0.00057645917146491
314 => 0.00055153934046554
315 => 0.00055313462719393
316 => 0.00055163635513525
317 => 0.00055647757867446
318 => 0.00054263713210804
319 => 0.00054689436025504
320 => 0.0005495644538398
321 => 0.00055113715947386
322 => 0.0005568188506384
323 => 0.00055615216975807
324 => 0.00055677740881881
325 => 0.00056520185690497
326 => 0.0006078098244033
327 => 0.00061012888206505
328 => 0.00059870899398309
329 => 0.0006032710140245
330 => 0.0005945129331491
331 => 0.0006003922915148
401 => 0.0006044147991891
402 => 0.00058623786049268
403 => 0.00058516154015044
404 => 0.00057636731155984
405 => 0.00058109283187386
406 => 0.00057357418927733
407 => 0.00057541900117956
408 => 0.0005702607462731
409 => 0.00057954457810643
410 => 0.00058992534465771
411 => 0.00059254793623745
412 => 0.00058564902688781
413 => 0.00058065376185838
414 => 0.0005718837220093
415 => 0.0005864684937314
416 => 0.00059073352544581
417 => 0.00058644609133549
418 => 0.00058545259916984
419 => 0.00058356993331114
420 => 0.0005858520156317
421 => 0.00059071029716713
422 => 0.00058841922131339
423 => 0.00058993251727835
424 => 0.00058416539356396
425 => 0.00059643154252586
426 => 0.00061591313908685
427 => 0.00061597577560536
428 => 0.00061368468740187
429 => 0.00061274722347119
430 => 0.00061509801900282
501 => 0.00061637322914406
502 => 0.0006239752708312
503 => 0.0006321325644402
504 => 0.00067019909440739
505 => 0.00065951016511828
506 => 0.00069328505509318
507 => 0.00071999660794274
508 => 0.00072800623468769
509 => 0.0007206377549644
510 => 0.00069543058386849
511 => 0.00069419379979736
512 => 0.00073186395560778
513 => 0.0007212204111889
514 => 0.00071995439544775
515 => 0.00070648612692928
516 => 0.0007144475417012
517 => 0.00071270626350368
518 => 0.00070995757068263
519 => 0.0007251473954705
520 => 0.00075358139146838
521 => 0.00074914968653979
522 => 0.00074584162439146
523 => 0.00073134665901994
524 => 0.00074007586574132
525 => 0.00073696756242478
526 => 0.00075032280605067
527 => 0.00074241145558156
528 => 0.00072113977587171
529 => 0.00072452736097788
530 => 0.00072401533430396
531 => 0.00073455280697067
601 => 0.00073138971923227
602 => 0.00072339769065729
603 => 0.00075348420716123
604 => 0.00075153055612946
605 => 0.0007543003866257
606 => 0.00075551975167
607 => 0.00077383288408206
608 => 0.00078133518847641
609 => 0.00078303834292025
610 => 0.00079016495184583
611 => 0.00078286102639799
612 => 0.00081208193579995
613 => 0.00083151213546492
614 => 0.00085408131224471
615 => 0.00088706094554282
616 => 0.00089946159274158
617 => 0.00089722152681901
618 => 0.00092222630839428
619 => 0.00096715934505998
620 => 0.00090630377821383
621 => 0.00097038483787169
622 => 0.00095009751423542
623 => 0.0009019966348472
624 => 0.00089889950528672
625 => 0.00093147397927111
626 => 0.0010037210273916
627 => 0.00098562396125663
628 => 0.0010037506277087
629 => 0.00098260490843779
630 => 0.00098155484524588
701 => 0.0010027236273218
702 => 0.0010521856404925
703 => 0.0010286880920909
704 => 0.00099499859462207
705 => 0.0010198743952864
706 => 0.0009983246746043
707 => 0.00094976712252038
708 => 0.00098561012277122
709 => 0.00096164292925336
710 => 0.00096863783048796
711 => 0.0010190133064115
712 => 0.0010129519958714
713 => 0.0010207958929726
714 => 0.0010069516198996
715 => 0.00099401888580795
716 => 0.00096987897722846
717 => 0.00096273234038119
718 => 0.00096470741369672
719 => 0.00096273136163294
720 => 0.00094922530463993
721 => 0.00094630867291821
722 => 0.00094144749226811
723 => 0.00094295417542027
724 => 0.00093381373360952
725 => 0.00095106363581804
726 => 0.00095426536967355
727 => 0.00096681840997845
728 => 0.00096812170826601
729 => 0.0010030817468338
730 => 0.00098382634507024
731 => 0.00099674453100463
801 => 0.00099558900686398
802 => 0.00090303912675817
803 => 0.00091579168366224
804 => 0.00093563066023217
805 => 0.00092669322817852
806 => 0.00091405779029167
807 => 0.00090385399672872
808 => 0.00088839420608939
809 => 0.00091015356453526
810 => 0.00093876480704179
811 => 0.00096884733659172
812 => 0.0010049895247605
813 => 0.00099692300910271
814 => 0.00096817168352388
815 => 0.00096946144698649
816 => 0.00097743425720913
817 => 0.00096710874356462
818 => 0.00096406354801289
819 => 0.00097701589410248
820 => 0.00097710508979152
821 => 0.0009652243384635
822 => 0.00095202105751695
823 => 0.00095196573528769
824 => 0.00094961633897182
825 => 0.00098302286082317
826 => 0.0010013930700611
827 => 0.0010034991849452
828 => 0.0010012513117488
829 => 0.0010021164289272
830 => 0.00099142720893154
831 => 0.0010158595960518
901 => 0.001038281170586
902 => 0.0010322717096437
903 => 0.0010232626733961
904 => 0.0010160865420909
905 => 0.001030581241169
906 => 0.0010299358150358
907 => 0.0010380853376926
908 => 0.0010377156282709
909 => 0.0010349752503205
910 => 0.0010322718075113
911 => 0.0010429906526666
912 => 0.0010399037974012
913 => 0.0010368121473971
914 => 0.0010306113700057
915 => 0.0010314541586372
916 => 0.0010224466779267
917 => 0.0010182794051958
918 => 0.00095561362200768
919 => 0.00093886727707629
920 => 0.00094413601809499
921 => 0.00094587062444115
922 => 0.00093858259366598
923 => 0.00094903175765607
924 => 0.00094740326651662
925 => 0.00095373877290478
926 => 0.00094978062356917
927 => 0.00094994306739856
928 => 0.00096158314062817
929 => 0.00096496230340714
930 => 0.00096324363394457
1001 => 0.00096444733112361
1002 => 0.00099218602456584
1003 => 0.00098824246939184
1004 => 0.00098614753430362
1005 => 0.0009867278456401
1006 => 0.00099381567653888
1007 => 0.00099579988220932
1008 => 0.00098739266335601
1009 => 0.00099135755636878
1010 => 0.0010082395675973
1011 => 0.0010141473160882
1012 => 0.0010330020133911
1013 => 0.0010249922028613
1014 => 0.0010396945567452
1015 => 0.0010848845801824
1016 => 0.0011209854978158
1017 => 0.0010877856020266
1018 => 0.0011540803398362
1019 => 0.0012057003026363
1020 => 0.0012037190424865
1021 => 0.0011947179079811
1022 => 0.0011359499527208
1023 => 0.0010818708041095
1024 => 0.0011271103082448
1025 => 0.0011272256330445
1026 => 0.0011233395195183
1027 => 0.0010992032021633
1028 => 0.0011224996279929
1029 => 0.001124348813675
1030 => 0.0011233137614312
1031 => 0.0011048085035056
1101 => 0.0010765543949967
1102 => 0.0010820751801686
1103 => 0.0010911183389011
1104 => 0.0010739977528199
1105 => 0.0010685266881941
1106 => 0.0010786984382461
1107 => 0.001111473936282
1108 => 0.0011052779182339
1109 => 0.0011051161151626
1110 => 0.0011316253078931
1111 => 0.0011126504469399
1112 => 0.0010821448149496
1113 => 0.0010744417405522
1114 => 0.0010471010158541
1115 => 0.0010659853517874
1116 => 0.0010666649654185
1117 => 0.0010563222076211
1118 => 0.0010829840727427
1119 => 0.0010827383789618
1120 => 0.0011080498517999
1121 => 0.0011564358813112
1122 => 0.0011421257514528
1123 => 0.0011254846273652
1124 => 0.0011272939789618
1125 => 0.0011471381001167
1126 => 0.0011351398914692
1127 => 0.0011394545309534
1128 => 0.0011471315693931
1129 => 0.0011517633172939
1130 => 0.0011266275417174
1201 => 0.0011207671900474
1202 => 0.0011087789672345
1203 => 0.0011056514636734
1204 => 0.001115415621012
1205 => 0.0011128431105261
1206 => 0.0010666078465244
1207 => 0.0010617760041856
1208 => 0.0010619241898919
1209 => 0.0010497742925895
1210 => 0.0010312427828939
1211 => 0.001079942483915
1212 => 0.0010760312163711
1213 => 0.0010717134797107
1214 => 0.001072242377815
1215 => 0.0010933812674422
1216 => 0.0010811196439189
1217 => 0.0011137191796962
1218 => 0.0011070176951721
1219 => 0.001100144342857
1220 => 0.0010991942361997
1221 => 0.0010965485819652
1222 => 0.0010874756491907
1223 => 0.0010765195376668
1224 => 0.0010692853638365
1225 => 0.00098635922592871
1226 => 0.0010017498347652
1227 => 0.0010194553273335
1228 => 0.0010255671924178
1229 => 0.001015112424263
1230 => 0.00108788846716
1231 => 0.0011011853514847
]
'min_raw' => 0.00045896358733978
'max_raw' => 0.0012057003026363
'avg_raw' => 0.00083233194498805
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.000458'
'max' => '$0.0012057'
'avg' => '$0.000832'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -1.7795052465526E-5
'max_diff' => -0.00021743584818733
'year' => 2027
]
2 => [
'items' => [
101 => 0.0010609082215309
102 => 0.001053374015021
103 => 0.0010883824084845
104 => 0.0010672680676239
105 => 0.0010767758540206
106 => 0.0010562252203121
107 => 0.0010979825214291
108 => 0.0010976644007572
109 => 0.0010814198674913
110 => 0.0010951496357699
111 => 0.0010927637506585
112 => 0.0010744237126098
113 => 0.0010985639333478
114 => 0.0010985759065961
115 => 0.0010829408965143
116 => 0.0010646826276825
117 => 0.0010614184804564
118 => 0.001058959383998
119 => 0.0010761710670372
120 => 0.0010916030082306
121 => 0.0011203180248888
122 => 0.0011275376623286
123 => 0.0011557163878948
124 => 0.0011389373288174
125 => 0.0011463752683812
126 => 0.0011544502039385
127 => 0.0011583216249906
128 => 0.0011520133521382
129 => 0.0011957865117686
130 => 0.0011994823076164
131 => 0.0012007214759956
201 => 0.0011859614128551
202 => 0.0011990718035597
203 => 0.0011929378859195
204 => 0.0012088966355678
205 => 0.0012113991712842
206 => 0.0012092796125627
207 => 0.0012100739568989
208 => 0.0011727212872688
209 => 0.0011707843542975
210 => 0.0011443741357946
211 => 0.001155136495049
212 => 0.0011350167802763
213 => 0.0011413969490867
214 => 0.0011442092667059
215 => 0.0011427402715793
216 => 0.0011557449826936
217 => 0.0011446883215595
218 => 0.0011155079749432
219 => 0.001086319678161
220 => 0.0010859532428711
221 => 0.0010782684795446
222 => 0.0010727138031941
223 => 0.001073783830922
224 => 0.0010775547482008
225 => 0.0010724946306267
226 => 0.0010735744632656
227 => 0.0010915068799584
228 => 0.001095103098238
229 => 0.0010828817433908
301 => 0.001033811240146
302 => 0.0010217692155657
303 => 0.0010304247840303
304 => 0.0010262879797942
305 => 0.00082829449818665
306 => 0.00087481012981153
307 => 0.00084717212102162
308 => 0.00085990898703565
309 => 0.00083169773688883
310 => 0.0008451616241372
311 => 0.00084267533578486
312 => 0.00091747109494006
313 => 0.00091630326203906
314 => 0.00091686224184842
315 => 0.00089018067913307
316 => 0.000932685133022
317 => 0.00095362435541841
318 => 0.0009497490626322
319 => 0.00095072439033658
320 => 0.00093396502895996
321 => 0.0009170245091007
322 => 0.00089823486544947
323 => 0.00093314370088331
324 => 0.00092926243429676
325 => 0.00093816466341067
326 => 0.00096080553852461
327 => 0.00096413949338946
328 => 0.00096862036253745
329 => 0.00096701428991788
330 => 0.0010052774555984
331 => 0.001000643533766
401 => 0.0010118099521118
402 => 0.0009888397823763
403 => 0.00096284685497202
404 => 0.00096778726069876
405 => 0.00096731145989904
406 => 0.00096125396961989
407 => 0.00095578553824456
408 => 0.00094668214072562
409 => 0.00097548663752487
410 => 0.00097431722755801
411 => 0.00099324861563111
412 => 0.00098990230889949
413 => 0.00096755485356562
414 => 0.00096835299730476
415 => 0.00097372089752531
416 => 0.00099229926147824
417 => 0.00099781458481095
418 => 0.00099525966729561
419 => 0.0010013069675458
420 => 0.0010060865070953
421 => 0.0010019072041262
422 => 0.0010610773207995
423 => 0.0010365057630306
424 => 0.0010484817693194
425 => 0.0010513379762525
426 => 0.0010440218622528
427 => 0.001045608465409
428 => 0.001048011736867
429 => 0.0010626039305516
430 => 0.001100898069065
501 => 0.0011178582823356
502 => 0.0011688839207624
503 => 0.0011164499727211
504 => 0.0011133387592376
505 => 0.0011225300175449
506 => 0.0011524874689138
507 => 0.001176765169488
508 => 0.0011848194833825
509 => 0.0011858839939259
510 => 0.0012009944222329
511 => 0.0012096554379456
512 => 0.0011991596187927
513 => 0.0011902655110187
514 => 0.0011584079209495
515 => 0.0011620955237453
516 => 0.001187499450189
517 => 0.0012233839925745
518 => 0.0012541766630915
519 => 0.0012433941431094
520 => 0.0013256571593004
521 => 0.0013338132013415
522 => 0.0013326863000478
523 => 0.0013512669775991
524 => 0.0013143881165489
525 => 0.0012986216889557
526 => 0.0011921885180718
527 => 0.0012220918977376
528 => 0.0012655582162456
529 => 0.0012598052860008
530 => 0.0012282388836422
531 => 0.0012541527171447
601 => 0.0012455847933883
602 => 0.0012388269164381
603 => 0.0012697860608258
604 => 0.00123574520984
605 => 0.0012652186327172
606 => 0.0012274186630136
607 => 0.0012434433967524
608 => 0.0012343469828531
609 => 0.0012402334774605
610 => 0.0012058211502666
611 => 0.0012243892067084
612 => 0.0012050486580725
613 => 0.0012050394881342
614 => 0.0012046125444511
615 => 0.0012273666141522
616 => 0.0012281086235482
617 => 0.0012112933316597
618 => 0.0012088699853943
619 => 0.0012178303666645
620 => 0.0012073401069246
621 => 0.001212248433432
622 => 0.0012074887751344
623 => 0.0012064172757978
624 => 0.0011978793867836
625 => 0.0011942010294421
626 => 0.0011956434081353
627 => 0.0011907198260583
628 => 0.0011877531897632
629 => 0.0012040224058229
630 => 0.0011953304199805
701 => 0.0012026902343319
702 => 0.0011943027969958
703 => 0.0011652282849566
704 => 0.0011485072256254
705 => 0.0010935881675919
706 => 0.0011091631443233
707 => 0.0011194893700097
708 => 0.0011160765524819
709 => 0.0011234086051166
710 => 0.0011238587335999
711 => 0.001121475008547
712 => 0.0011187149603097
713 => 0.0011173715214681
714 => 0.0011273844139349
715 => 0.0011331972350304
716 => 0.0011205257449044
717 => 0.0011175569920609
718 => 0.0011303685681904
719 => 0.0011381836222284
720 => 0.0011958855903455
721 => 0.0011916108421725
722 => 0.0012023396212098
723 => 0.0012011317253367
724 => 0.0012123771949964
725 => 0.0012307587851998
726 => 0.0011933838727428
727 => 0.0011998708652181
728 => 0.0011982804044697
729 => 0.0012156446378796
730 => 0.001215698847121
731 => 0.0012052881217839
801 => 0.0012109319448838
802 => 0.0012077817176596
803 => 0.0012134746040325
804 => 0.0011915537503044
805 => 0.0012182509839353
806 => 0.0012333865950723
807 => 0.0012335967530476
808 => 0.0012407709126029
809 => 0.0012480602742103
810 => 0.0012620515690463
811 => 0.0012476700645911
812 => 0.0012217991380876
813 => 0.0012236669354186
814 => 0.0012084988206754
815 => 0.0012087537994246
816 => 0.0012073927028784
817 => 0.001211477456072
818 => 0.0011924501239248
819 => 0.0011969158007485
820 => 0.0011906638270444
821 => 0.0011998572746482
822 => 0.0011899666447578
823 => 0.0011982796375013
824 => 0.0012018672495893
825 => 0.0012151056154299
826 => 0.0011880113273594
827 => 0.0011327642398617
828 => 0.0011443778474599
829 => 0.001127200409593
830 => 0.0011287902468667
831 => 0.0011320019711803
901 => 0.0011215917218691
902 => 0.001123577669373
903 => 0.0011235067173533
904 => 0.0011228952911786
905 => 0.0011201871832698
906 => 0.0011162598910193
907 => 0.0011319050145885
908 => 0.0011345634259482
909 => 0.0011404727450932
910 => 0.0011580548705392
911 => 0.0011562980015921
912 => 0.0011591635277367
913 => 0.0011529081002523
914 => 0.0011290804182067
915 => 0.0011303743759802
916 => 0.0011142387018102
917 => 0.0011400601196267
918 => 0.0011339452670617
919 => 0.0011300029818336
920 => 0.0011289272927841
921 => 0.0011465530009183
922 => 0.0011518268890412
923 => 0.0011485405558805
924 => 0.0011418001906902
925 => 0.0011547436844657
926 => 0.0011582068173578
927 => 0.001158982085097
928 => 0.0011819154743983
929 => 0.0011602638068007
930 => 0.0011654755783905
1001 => 0.0012061363325684
1002 => 0.0011692626393296
1003 => 0.0011887954570197
1004 => 0.0011878394272377
1005 => 0.0011978317558134
1006 => 0.0011870197646402
1007 => 0.0011871537922289
1008 => 0.0011960263030652
1009 => 0.0011835664617614
1010 => 0.0011804812298314
1011 => 0.001176219004017
1012 => 0.0011855254181523
1013 => 0.0011911041925335
1014 => 0.0012360650168879
1015 => 0.0012651117598834
1016 => 0.0012638507641647
1017 => 0.0012753739045492
1018 => 0.0012701826242661
1019 => 0.0012534186108414
1020 => 0.0012820327376037
1021 => 0.0012729780306302
1022 => 0.0012737244896716
1023 => 0.0012736967064288
1024 => 0.0012797172949899
1025 => 0.0012754511562155
1026 => 0.001267042158781
1027 => 0.0012726244437095
1028 => 0.0012892018342438
1029 => 0.0013406585631188
1030 => 0.0013694544303082
1031 => 0.0013389250157568
1101 => 0.0013599837971092
1102 => 0.0013473560323088
1103 => 0.0013450611918011
1104 => 0.0013582876627221
1105 => 0.0013715372848295
1106 => 0.001370693341181
1107 => 0.0013610747959066
1108 => 0.0013556415237426
1109 => 0.0013967840808478
1110 => 0.0014270972160777
1111 => 0.0014250300634769
1112 => 0.001434153802783
1113 => 0.0014609413835722
1114 => 0.0014633905042467
1115 => 0.0014630819713341
1116 => 0.0014570115702031
1117 => 0.0014833874222971
1118 => 0.0015053906221529
1119 => 0.001455606447732
1120 => 0.0014745636096288
1121 => 0.0014830740903659
1122 => 0.0014955700010337
1123 => 0.0015166526968882
1124 => 0.0015395540964951
1125 => 0.0015427926055005
1126 => 0.0015404947283842
1127 => 0.0015253906397208
1128 => 0.0015504496244412
1129 => 0.0015651285899849
1130 => 0.001573869578044
1201 => 0.0015960352694001
1202 => 0.0014831266481976
1203 => 0.0014032043141878
1204 => 0.0013907232876397
1205 => 0.0014161039459174
1206 => 0.0014227966230983
1207 => 0.0014200988133186
1208 => 0.0013301389601699
1209 => 0.0013902496676305
1210 => 0.0014549237346062
1211 => 0.0014574081289122
1212 => 0.0014897853191112
1213 => 0.0015003286594259
1214 => 0.0015263965413115
1215 => 0.001524765988202
1216 => 0.0015311131026105
1217 => 0.0015296540109247
1218 => 0.0015779392728776
1219 => 0.0016312050872423
1220 => 0.0016293606614658
1221 => 0.0016217030704383
1222 => 0.0016330758989274
1223 => 0.0016880519276634
1224 => 0.0016829906159103
1225 => 0.0016879072491569
1226 => 0.0017527270853499
1227 => 0.0018370020929149
1228 => 0.0017978478908285
1229 => 0.0018828012430378
1230 => 0.0019362748750699
1231 => 0.0020287519923925
]
'min_raw' => 0.00082829449818665
'max_raw' => 0.0020287519923925
'avg_raw' => 0.0014285232452896
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.000828'
'max' => '$0.002028'
'avg' => '$0.001428'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.00036933091084687
'max_diff' => 0.00082305168975621
'year' => 2028
]
3 => [
'items' => [
101 => 0.0020171734018443
102 => 0.0020531740649896
103 => 0.0019964453082383
104 => 0.0018661846159639
105 => 0.0018455703627936
106 => 0.0018868406196766
107 => 0.0019882995191307
108 => 0.0018836453178712
109 => 0.0019048167264841
110 => 0.0018987193593793
111 => 0.0018983944565984
112 => 0.0019107946742692
113 => 0.0018928075117859
114 => 0.0018195245760001
115 => 0.0018531097136117
116 => 0.0018401408790891
117 => 0.0018545307678825
118 => 0.0019321870628594
119 => 0.0018978533637553
120 => 0.0018616856007923
121 => 0.001907048001817
122 => 0.0019648099265336
123 => 0.001961195289093
124 => 0.001954181381657
125 => 0.0019937184106376
126 => 0.002059021999251
127 => 0.0020766732968421
128 => 0.0020897031238589
129 => 0.0020914997168638
130 => 0.0021100057413906
131 => 0.0020104941833916
201 => 0.0021684215815741
202 => 0.0021956912805839
203 => 0.0021905657073832
204 => 0.0022208748301483
205 => 0.0022119571173626
206 => 0.0021990367506824
207 => 0.0022470831572002
208 => 0.0021920018292726
209 => 0.0021138208188256
210 => 0.0020709291702494
211 => 0.0021274123530652
212 => 0.0021619046618194
213 => 0.002184701883783
214 => 0.0021916003093747
215 => 0.002018218982366
216 => 0.0019247760632775
217 => 0.001984671903088
218 => 0.0020577489614468
219 => 0.0020100882366426
220 => 0.0020119564468213
221 => 0.0019440047782687
222 => 0.0020637611763201
223 => 0.0020463136764339
224 => 0.0021368313367078
225 => 0.0021152285706338
226 => 0.0021890422087118
227 => 0.0021696046040415
228 => 0.0022502890142862
301 => 0.002282476209976
302 => 0.0023365235210763
303 => 0.0023762809431337
304 => 0.0023996272618042
305 => 0.002398225636401
306 => 0.0024907353820631
307 => 0.0024361856170905
308 => 0.0023676582558925
309 => 0.0023664188121295
310 => 0.0024019101035341
311 => 0.002476290113758
312 => 0.0024955757682239
313 => 0.002506353818073
314 => 0.0024898468595425
315 => 0.0024306369992817
316 => 0.0024050704818219
317 => 0.002426853895431
318 => 0.0024002146524571
319 => 0.0024462014594814
320 => 0.0025093511677777
321 => 0.0024963110027356
322 => 0.0025399023193808
323 => 0.0025850147461683
324 => 0.0026495275426003
325 => 0.0026663935764896
326 => 0.0026942724891508
327 => 0.0027229690480248
328 => 0.0027321856093412
329 => 0.0027497828846252
330 => 0.0027496901382982
331 => 0.0028027207117999
401 => 0.0028612150765923
402 => 0.0028832953451538
403 => 0.0029340677051979
404 => 0.0028471218178981
405 => 0.0029130712721774
406 => 0.0029725593307591
407 => 0.0029016352149132
408 => 0.0029993875854072
409 => 0.0030031830884419
410 => 0.0030604906780363
411 => 0.0030023984571766
412 => 0.0029679034818671
413 => 0.0030674891830759
414 => 0.0031156755669707
415 => 0.0031011614359878
416 => 0.0029907081825569
417 => 0.0029264196514972
418 => 0.0027581641653824
419 => 0.0029574700567814
420 => 0.0030545461426493
421 => 0.0029904567789463
422 => 0.0030227797261425
423 => 0.0031991232452938
424 => 0.0032662634399893
425 => 0.003252298748838
426 => 0.0032546585517642
427 => 0.0032908861821411
428 => 0.003451539446153
429 => 0.0033552722864436
430 => 0.0034288649229798
501 => 0.0034678981920406
502 => 0.003504154467692
503 => 0.0034151205136057
504 => 0.0032992886475081
505 => 0.003262599833224
506 => 0.0029840843547894
507 => 0.0029695864146054
508 => 0.0029614482814476
509 => 0.0029101385030495
510 => 0.0028698230721598
511 => 0.0028377627447002
512 => 0.0027536268714222
513 => 0.0027820202588191
514 => 0.0026479252373354
515 => 0.0027337144800449
516 => 0.0025196955879195
517 => 0.0026979368808872
518 => 0.002600928248762
519 => 0.0026660669361953
520 => 0.0026658396734513
521 => 0.0025458986976469
522 => 0.0024767192459073
523 => 0.0025208030850603
524 => 0.0025680644600119
525 => 0.0025757324590914
526 => 0.0026370080653643
527 => 0.0026541087699602
528 => 0.0026022928366788
529 => 0.0025152605220826
530 => 0.0025354761437676
531 => 0.0024763095769791
601 => 0.0023726224444914
602 => 0.0024470923532477
603 => 0.0024725196543078
604 => 0.0024837497990174
605 => 0.0023817854127634
606 => 0.0023497459888478
607 => 0.002332688468392
608 => 0.0025020982002311
609 => 0.0025113788477621
610 => 0.0024638977428422
611 => 0.0026785168394232
612 => 0.002629941927969
613 => 0.0026842120052056
614 => 0.0025336417879898
615 => 0.0025393937730571
616 => 0.0024681114192323
617 => 0.0025080247742856
618 => 0.0024798153014014
619 => 0.0025048001696288
620 => 0.0025197759966277
621 => 0.0025910466537197
622 => 0.0026987506773076
623 => 0.0025804011942171
624 => 0.0025288346296387
625 => 0.0025608262362818
626 => 0.0026460241005768
627 => 0.0027751032261822
628 => 0.0026986857858643
629 => 0.0027325985482251
630 => 0.0027400069781272
701 => 0.0026836595867642
702 => 0.0027771808348749
703 => 0.0028272996315027
704 => 0.0028787111462191
705 => 0.0029233503239295
706 => 0.0028581762566779
707 => 0.0029279218509727
708 => 0.0028717192137259
709 => 0.0028212996379936
710 => 0.0028213761036777
711 => 0.0027897471673084
712 => 0.0027284621175905
713 => 0.0027171602141412
714 => 0.0027759541431577
715 => 0.0028231013064232
716 => 0.0028269845726094
717 => 0.0028530876647019
718 => 0.002868535205719
719 => 0.0030199421076002
720 => 0.0030808392160404
721 => 0.0031553030475179
722 => 0.0031843109064299
723 => 0.0032716141618622
724 => 0.0032011096926769
725 => 0.0031858556072748
726 => 0.0029740864662733
727 => 0.0030087636512487
728 => 0.0030642851702451
729 => 0.0029750019956717
730 => 0.0030316316197846
731 => 0.0030428115071639
801 => 0.0029719681875643
802 => 0.0030098086655216
803 => 0.0029093155749868
804 => 0.0027009411520653
805 => 0.0027774128151746
806 => 0.0028337216993065
807 => 0.0027533619788149
808 => 0.0028974036674453
809 => 0.0028132574865715
810 => 0.0027865871869634
811 => 0.0026825368395442
812 => 0.0027316445982609
813 => 0.0027980635450807
814 => 0.0027570243579774
815 => 0.0028421868332816
816 => 0.0029627996103149
817 => 0.0030487554578439
818 => 0.0030553540804991
819 => 0.0030000902291325
820 => 0.0030886509036367
821 => 0.0030892959714666
822 => 0.0029893991688449
823 => 0.0029282129334668
824 => 0.002914311292052
825 => 0.0029490403178836
826 => 0.002991207766575
827 => 0.003057694080431
828 => 0.0030978703674353
829 => 0.0032026288160863
830 => 0.0032309734486311
831 => 0.0032621156062423
901 => 0.0033037311326966
902 => 0.0033537012422069
903 => 0.0032443694873983
904 => 0.0032487134418367
905 => 0.00314690522556
906 => 0.0030381085456934
907 => 0.0031206716640146
908 => 0.0032286119583082
909 => 0.0032038503355338
910 => 0.0032010641471376
911 => 0.0032057497431958
912 => 0.0031870802882629
913 => 0.0031026390355237
914 => 0.0030602331670283
915 => 0.0031149475562783
916 => 0.0031440258191073
917 => 0.0031891236688641
918 => 0.0031835644069814
919 => 0.0032997316247995
920 => 0.0033448706929293
921 => 0.0033333221876921
922 => 0.003335447390586
923 => 0.0034171695173121
924 => 0.0035080613296686
925 => 0.0035931935061716
926 => 0.0036797936126224
927 => 0.0035753938042362
928 => 0.0035223860200228
929 => 0.0035770765226819
930 => 0.0035480569721464
1001 => 0.0037148119172814
1002 => 0.0037263576678794
1003 => 0.0038931005547338
1004 => 0.0040513594097323
1005 => 0.0039519598584097
1006 => 0.0040456891582528
1007 => 0.0041470650378951
1008 => 0.0043426355573687
1009 => 0.0042767742866638
1010 => 0.0042263255854816
1011 => 0.0041786518066307
1012 => 0.0042778533724201
1013 => 0.0044054746020245
1014 => 0.0044329629925403
1015 => 0.0044775046865494
1016 => 0.0044306745415981
1017 => 0.0044870762930206
1018 => 0.0046861992597277
1019 => 0.0046323944764164
1020 => 0.0045559830345638
1021 => 0.0047131714928061
1022 => 0.0047700573847893
1023 => 0.0051693123661003
1024 => 0.0056733882724061
1025 => 0.0054646975372547
1026 => 0.0053351564635382
1027 => 0.0053656016886169
1028 => 0.0055496731455535
1029 => 0.0056087910553856
1030 => 0.0054480881972965
1031 => 0.0055048511635574
1101 => 0.0058176206884665
1102 => 0.0059854115037325
1103 => 0.0057575290392883
1104 => 0.0051288103578364
1105 => 0.0045491030202607
1106 => 0.0047028675107474
1107 => 0.0046854353893939
1108 => 0.0050214672251159
1109 => 0.0046311112501289
1110 => 0.0046376838436239
1111 => 0.0049806644618448
1112 => 0.0048891631130798
1113 => 0.004740942646688
1114 => 0.004550185193696
1115 => 0.0041975523989114
1116 => 0.0038852156986778
1117 => 0.0044977798946821
1118 => 0.0044713650126747
1119 => 0.0044331123490618
1120 => 0.0045182395125619
1121 => 0.0049315928547512
1122 => 0.0049220637223196
1123 => 0.0048614442435954
1124 => 0.0049074235839321
1125 => 0.0047328822460201
1126 => 0.0047778655230324
1127 => 0.0045490111916566
1128 => 0.0046524629072396
1129 => 0.0047406246321363
1130 => 0.004758324403666
1201 => 0.004798202892695
1202 => 0.0044574455701583
1203 => 0.0046104356038679
1204 => 0.0047003029154447
1205 => 0.0042942791323399
1206 => 0.0046922771307187
1207 => 0.0044515137432896
1208 => 0.0043697950334514
1209 => 0.0044798185106272
1210 => 0.0044369422545704
1211 => 0.0044000797673911
1212 => 0.0043795098661671
1213 => 0.0044602989649569
1214 => 0.0044565300569345
1215 => 0.004324343410826
1216 => 0.0041519113195944
1217 => 0.0042097851893022
1218 => 0.0041887590698669
1219 => 0.0041125577006102
1220 => 0.0041639082229008
1221 => 0.0039377865106375
1222 => 0.0035487558574723
1223 => 0.0038057614232844
1224 => 0.0037958669885689
1225 => 0.0037908777659085
1226 => 0.0039840103455042
1227 => 0.0039654451043028
1228 => 0.0039317490097308
1229 => 0.0041119388454086
1230 => 0.0040461671314909
1231 => 0.0042488600560205
]
'min_raw' => 0.0018195245760001
'max_raw' => 0.0059854115037325
'avg_raw' => 0.0039024680398663
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.001819'
'max' => '$0.005985'
'avg' => '$0.0039024'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.00099123007781343
'max_diff' => 0.00395665951134
'year' => 2029
]
4 => [
'items' => [
101 => 0.0043823667254721
102 => 0.0043485051156108
103 => 0.0044740687835238
104 => 0.0042111184863715
105 => 0.0042984600273506
106 => 0.0043164609978963
107 => 0.0041097153308065
108 => 0.0039684826073635
109 => 0.0039590639948808
110 => 0.0037141859154988
111 => 0.0038449978089179
112 => 0.0039601068617627
113 => 0.0039049785582734
114 => 0.0038875265842999
115 => 0.0039766849344591
116 => 0.0039836133018561
117 => 0.003825645790969
118 => 0.0038584922386629
119 => 0.0039954673858141
120 => 0.0038550408163967
121 => 0.0035822149305686
122 => 0.0035145503387703
123 => 0.0035055226349185
124 => 0.0033220108954149
125 => 0.0035190720103451
126 => 0.0034330495527685
127 => 0.0037047934655456
128 => 0.0035495747999592
129 => 0.0035428836335173
130 => 0.0035327689540598
131 => 0.0033748128190946
201 => 0.0034093951740159
202 => 0.0035243521888158
203 => 0.0035653701467798
204 => 0.003561091637714
205 => 0.0035237888367287
206 => 0.0035408658679985
207 => 0.0034858548002463
208 => 0.0034664292472667
209 => 0.0034051168586436
210 => 0.0033150045853473
211 => 0.0033275352496399
212 => 0.003148999257081
213 => 0.0030517233727127
214 => 0.0030247986899951
215 => 0.0029887938790051
216 => 0.0030288655292015
217 => 0.003148493487046
218 => 0.0030041967893985
219 => 0.0027568102225184
220 => 0.0027716785767141
221 => 0.0028050833541379
222 => 0.0027428337724034
223 => 0.0026839197675032
224 => 0.0027351407149197
225 => 0.0026303197652931
226 => 0.0028177504651122
227 => 0.0028126809899506
228 => 0.0028825435642064
301 => 0.002926230065613
302 => 0.0028255468235437
303 => 0.0028002252604397
304 => 0.0028146495735846
305 => 0.0025762478078539
306 => 0.0028630610537976
307 => 0.0028655414266587
308 => 0.0028443029683439
309 => 0.0029970221674435
310 => 0.0033193073118562
311 => 0.0031980506766382
312 => 0.0031510964424806
313 => 0.0030618364090237
314 => 0.0031807701038687
315 => 0.0031716378517593
316 => 0.0031303383444167
317 => 0.0031053602735135
318 => 0.003151383135022
319 => 0.0030996575316602
320 => 0.0030903661919719
321 => 0.003034070782538
322 => 0.003013975882648
323 => 0.0029990984187705
324 => 0.0029827197928708
325 => 0.0030188469603063
326 => 0.0029369780459727
327 => 0.002838252160995
328 => 0.002830044171888
329 => 0.0028527071514663
330 => 0.0028426804700633
331 => 0.002829996167995
401 => 0.0028057783809825
402 => 0.002798593480907
403 => 0.0028219409205343
404 => 0.0027955830224354
405 => 0.0028344755368693
406 => 0.0028238989249643
407 => 0.0027648188306314
408 => 0.0026911831588402
409 => 0.0026905276469052
410 => 0.0026746629622045
411 => 0.0026544569009668
412 => 0.0026488360369826
413 => 0.0027308270295951
414 => 0.002900545930519
415 => 0.0028672260492386
416 => 0.0028913030782225
417 => 0.0030097382309119
418 => 0.0030473852044826
419 => 0.0030206642743596
420 => 0.002984087017132
421 => 0.0029856962308173
422 => 0.0031106917914527
423 => 0.0031184876112469
424 => 0.0031381851328399
425 => 0.0031635020146059
426 => 0.0030249758487976
427 => 0.0029791716608652
428 => 0.0029574670955032
429 => 0.0028906254349121
430 => 0.0029627084352887
501 => 0.0029207087578711
502 => 0.002926375949268
503 => 0.0029226851834361
504 => 0.0029247005911488
505 => 0.0028176980744118
506 => 0.002856684167624
507 => 0.0027918622261815
508 => 0.0027050729231944
509 => 0.0027047819750185
510 => 0.0027260235339703
511 => 0.0027133882235235
512 => 0.0026793869279947
513 => 0.0026842166515429
514 => 0.0026419031911861
515 => 0.0026893542717402
516 => 0.0026907149989424
517 => 0.0026724437482512
518 => 0.0027455486848321
519 => 0.0027754998369973
520 => 0.0027634733083842
521 => 0.0027746560236895
522 => 0.002868610640736
523 => 0.0028839293428419
524 => 0.0028907328984207
525 => 0.0028816170352435
526 => 0.0027763733416142
527 => 0.0027810413469574
528 => 0.0027467906210192
529 => 0.002717852366854
530 => 0.0027190097452594
531 => 0.00273388776961
601 => 0.0027988609745339
602 => 0.0029355932539164
603 => 0.002940782143969
604 => 0.0029470712300833
605 => 0.0029214903562149
606 => 0.0029137749198802
607 => 0.0029239535719288
608 => 0.0029753030270231
609 => 0.0031073877667669
610 => 0.0030607001980983
611 => 0.0030227424780355
612 => 0.0030560416318584
613 => 0.0030509154881348
614 => 0.0030076456763384
615 => 0.0030064312368359
616 => 0.0029233826338031
617 => 0.002892681456187
618 => 0.0028670252542277
619 => 0.0028390093514603
620 => 0.0028224005851982
621 => 0.002847919198726
622 => 0.0028537556075672
623 => 0.0027979587130995
624 => 0.0027903538025602
625 => 0.0028359187510421
626 => 0.0028158673160477
627 => 0.0028364907141911
628 => 0.0028412755194646
629 => 0.0028405050556122
630 => 0.0028195690545854
701 => 0.0028329130373193
702 => 0.0028013505401209
703 => 0.0027670310649513
704 => 0.002745137377972
705 => 0.0027260322323064
706 => 0.0027366328775192
707 => 0.0026988435129367
708 => 0.0026867539346571
709 => 0.0028283923962182
710 => 0.0029330222506434
711 => 0.0029315008911221
712 => 0.002922240006298
713 => 0.0029084802099513
714 => 0.0029742964122159
715 => 0.0029513673633834
716 => 0.0029680501621952
717 => 0.0029722966346677
718 => 0.0029851494278861
719 => 0.0029897431967268
720 => 0.0029758576367126
721 => 0.0029292560013268
722 => 0.0028131291566958
723 => 0.0027590717970416
724 => 0.0027412319679592
725 => 0.0027418804118637
726 => 0.0027239934341969
727 => 0.0027292619507579
728 => 0.0027221612591437
729 => 0.0027087142670683
730 => 0.0027358025636512
731 => 0.0027389242374875
801 => 0.002732601505384
802 => 0.0027340907376806
803 => 0.0026817412163378
804 => 0.0026857212367483
805 => 0.002663559977346
806 => 0.0026594050083661
807 => 0.0026033832743988
808 => 0.0025041326521956
809 => 0.0025591271313872
810 => 0.0024927015339177
811 => 0.002467545153644
812 => 0.00258663154524
813 => 0.0025746785744661
814 => 0.0025542202843327
815 => 0.0025239582093441
816 => 0.0025127337113603
817 => 0.002444537214855
818 => 0.0024405078020273
819 => 0.0024743078271556
820 => 0.0024587102785467
821 => 0.0024368054130463
822 => 0.0023574682106642
823 => 0.0022682669275418
824 => 0.0022709593535799
825 => 0.0022993326220923
826 => 0.0023818317269486
827 => 0.0023495978994323
828 => 0.0023262118877286
829 => 0.0023218323907174
830 => 0.0023766509649102
831 => 0.0024542307322394
901 => 0.0024906294233208
902 => 0.0024545594259038
903 => 0.0024131241550178
904 => 0.002415646127964
905 => 0.0024324236841118
906 => 0.0024341867680411
907 => 0.0024072166663089
908 => 0.0024148085919683
909 => 0.0024032757626715
910 => 0.0023324988105654
911 => 0.0023312186799379
912 => 0.0023138488744585
913 => 0.0023133229236518
914 => 0.0022837725514303
915 => 0.0022796382500845
916 => 0.0022209641924594
917 => 0.0022595836348696
918 => 0.0022336797405126
919 => 0.0021946364616055
920 => 0.0021879053856056
921 => 0.0021877030413331
922 => 0.0022277917588532
923 => 0.0022591151748646
924 => 0.0022341303498453
925 => 0.0022284417894989
926 => 0.0022891807315111
927 => 0.0022814511474923
928 => 0.0022747573775825
929 => 0.0024472843149774
930 => 0.0023107157815845
1001 => 0.0022511641059659
1002 => 0.0021774575988313
1003 => 0.0022014568092148
1004 => 0.0022065137954643
1005 => 0.0020292629324022
1006 => 0.0019573522793331
1007 => 0.0019326752530956
1008 => 0.001918473275614
1009 => 0.0019249452950895
1010 => 0.001860217273049
1011 => 0.0019037155743629
1012 => 0.0018476665785993
1013 => 0.0018382697820603
1014 => 0.0019384923296239
1015 => 0.0019524377116257
1016 => 0.0018929423795153
1017 => 0.0019311480141495
1018 => 0.0019172941199331
1019 => 0.0018486273777613
1020 => 0.0018460048132887
1021 => 0.0018115502558196
1022 => 0.0017576355450974
1023 => 0.0017329950755726
1024 => 0.0017201621051057
1025 => 0.0017254572388299
1026 => 0.0017227798571852
1027 => 0.0017053081309025
1028 => 0.001723781316084
1029 => 0.0016765899615922
1030 => 0.001657797983987
1031 => 0.0016493100836733
1101 => 0.0016074250403288
1102 => 0.0016740827706532
1103 => 0.0016872151832591
1104 => 0.0017003734707746
1105 => 0.0018149073800526
1106 => 0.0018091855896146
1107 => 0.0018609077885497
1108 => 0.0018588979590101
1109 => 0.0018441459500297
1110 => 0.0017819096507292
1111 => 0.0018067159303751
1112 => 0.001730366057377
1113 => 0.0017875725735139
1114 => 0.0017614659085502
1115 => 0.0017787458838287
1116 => 0.0017476749302055
1117 => 0.0017648708788288
1118 => 0.0016903293654683
1119 => 0.0016207235491197
1120 => 0.0016487349615388
1121 => 0.001679186570332
1122 => 0.0017452134171212
1123 => 0.0017058883718832
1124 => 0.0017200311451954
1125 => 0.0016726552220713
1126 => 0.0015749051604028
1127 => 0.0015754584151362
1128 => 0.0015604216977494
1129 => 0.0015474277785304
1130 => 0.0017104053263857
1201 => 0.0016901364920162
1202 => 0.0016578407571677
1203 => 0.0017010698816438
1204 => 0.0017125003482938
1205 => 0.00171282575761
1206 => 0.0017443646109226
1207 => 0.0017611969025891
1208 => 0.0017641636669507
1209 => 0.0018137907340801
1210 => 0.001830425072385
1211 => 0.0018989395576833
1212 => 0.0017597688002419
1213 => 0.0017569026700763
1214 => 0.0017016782040771
1215 => 0.0016666539746761
1216 => 0.0017040763430287
1217 => 0.0017372274527264
1218 => 0.0017027083014637
1219 => 0.0017072157738796
1220 => 0.0016608766336278
1221 => 0.0016774406958086
1222 => 0.0016917078975789
1223 => 0.0016838303873487
1224 => 0.0016720373732583
1225 => 0.0017345094397814
1226 => 0.0017309845209582
1227 => 0.0017891599455311
1228 => 0.0018345118491502
1229 => 0.0019157905680582
1230 => 0.0018309719877223
1231 => 0.0018278808615315
]
'min_raw' => 0.0015474277785304
'max_raw' => 0.0044740687835238
'avg_raw' => 0.0030107482810271
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.001547'
'max' => '$0.004474'
'avg' => '$0.00301'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.00027209679746965
'max_diff' => -0.0015113427202088
'year' => 2030
]
5 => [
'items' => [
101 => 0.0018580971158785
102 => 0.0018304204464339
103 => 0.0018479111461567
104 => 0.0019129725459276
105 => 0.0019143471907824
106 => 0.0018913201183355
107 => 0.0018899189188844
108 => 0.0018943415200364
109 => 0.0019202448331211
110 => 0.0019111934196009
111 => 0.0019216679444802
112 => 0.0019347664982334
113 => 0.0019889476702285
114 => 0.002002010567367
115 => 0.001970274499656
116 => 0.0019731399112367
117 => 0.0019612697507382
118 => 0.0019498033244294
119 => 0.0019755781762345
120 => 0.0020226822245144
121 => 0.0020223891926747
122 => 0.0020333164163038
123 => 0.0020401239860987
124 => 0.0020109009130933
125 => 0.001991877767129
126 => 0.0019991724517659
127 => 0.002010836811358
128 => 0.0019953898571586
129 => 0.0019000441001145
130 => 0.0019289659120911
131 => 0.0019241519083738
201 => 0.0019172961816776
202 => 0.0019463772872659
203 => 0.001943572343688
204 => 0.0018595533936266
205 => 0.0018649320142107
206 => 0.0018598804853589
207 => 0.0018762030085248
208 => 0.001829538976617
209 => 0.0018438925185448
210 => 0.0018528949254858
211 => 0.0018581974123338
212 => 0.001877353630778
213 => 0.0018751058696439
214 => 0.0018772139067899
215 => 0.0019056175216886
216 => 0.0020492732589025
217 => 0.0020570921237205
218 => 0.0020185891737411
219 => 0.0020339703428208
220 => 0.0020044418616797
221 => 0.0020242645288933
222 => 0.0020378266943597
223 => 0.0019765418764714
224 => 0.0019729129872913
225 => 0.0019432626316047
226 => 0.0019591950532687
227 => 0.0019338454248196
228 => 0.0019400653369486
301 => 0.0019226739203936
302 => 0.0019539750075961
303 => 0.0019889744867857
304 => 0.0019978167374004
305 => 0.0019745565828615
306 => 0.0019577146980566
307 => 0.0019281458964008
308 => 0.0019773194725381
309 => 0.0019916993247382
310 => 0.0019772439412962
311 => 0.0019738943130963
312 => 0.0019675467737101
313 => 0.0019752409735838
314 => 0.0019916210089749
315 => 0.0019838964867762
316 => 0.001988998669777
317 => 0.0019695544095262
318 => 0.0020109105871464
319 => 0.0020765941501135
320 => 0.0020768053335088
321 => 0.002069080769672
322 => 0.0020659200445781
323 => 0.0020738459158403
324 => 0.0020781453758638
325 => 0.0021037761901696
326 => 0.0021312790750964
327 => 0.002259623038601
328 => 0.0022235845672256
329 => 0.0023374589668635
330 => 0.0024275188322368
331 => 0.0024545238480217
401 => 0.0024296805041838
402 => 0.0023446927669255
403 => 0.0023405228630802
404 => 0.0024675304234413
405 => 0.0024316449703245
406 => 0.0024273765098628
407 => 0.0023819673022283
408 => 0.0024088097679801
409 => 0.0024029389269649
410 => 0.0023936715172112
411 => 0.0024448850720032
412 => 0.0025407522747082
413 => 0.0025258104721297
414 => 0.0025146571096351
415 => 0.0024657863218789
416 => 0.0024952174517938
417 => 0.0024847375901472
418 => 0.0025297657264653
419 => 0.0025030920560058
420 => 0.0024313731027228
421 => 0.0024427945824219
422 => 0.0024410682487422
423 => 0.0024765960735408
424 => 0.0024659315023911
425 => 0.002438985820065
426 => 0.0025404246110315
427 => 0.0025338377401783
428 => 0.0025431764170798
429 => 0.00254728759146
430 => 0.0026090315959693
501 => 0.002634326139029
502 => 0.0026400684431469
503 => 0.0026640963027034
504 => 0.0026394706081122
505 => 0.0027379909442997
506 => 0.0028035012190434
507 => 0.002879594774286
508 => 0.0029907879105151
509 => 0.0030325975583312
510 => 0.0030250450196769
511 => 0.003109350386536
512 => 0.0032608452567789
513 => 0.0030556664643571
514 => 0.0032717202309902
515 => 0.0032033201029349
516 => 0.0030411446297813
517 => 0.0030307024412335
518 => 0.003140529554549
519 => 0.0033841155214149
520 => 0.0033230999994442
521 => 0.0033842153209507
522 => 0.0033129210520819
523 => 0.0033093806907173
524 => 0.0033807527174435
525 => 0.0035475173481759
526 => 0.0034682937231937
527 => 0.0033547072303518
528 => 0.0034385777290646
529 => 0.0033659213412313
530 => 0.0032022061642004
531 => 0.0033230533420245
601 => 0.003242246275743
602 => 0.0032658300736238
603 => 0.0034356745078035
604 => 0.0034152383761304
605 => 0.0034416846228503
606 => 0.0033950076896085
607 => 0.0033514040736839
608 => 0.0032700146865135
609 => 0.0032459193014207
610 => 0.0032525783989992
611 => 0.0032459160015026
612 => 0.0032003793873879
613 => 0.0031905457599054
614 => 0.0031741559499468
615 => 0.0031792358373876
616 => 0.0031484181996574
617 => 0.0032065774493031
618 => 0.0032173723185349
619 => 0.0032596957703481
620 => 0.003264089931518
621 => 0.0033819601423813
622 => 0.0033170392109662
623 => 0.003360593776763
624 => 0.0033566978464466
625 => 0.0030446594640436
626 => 0.0030876556000008
627 => 0.0031545440946194
628 => 0.0031244109184589
629 => 0.0030818096574453
630 => 0.0030474068550417
701 => 0.0029952830915331
702 => 0.0030686462877233
703 => 0.0031651110894072
704 => 0.0032665364380799
705 => 0.0033883923488581
706 => 0.0033611955281316
707 => 0.0032642584265891
708 => 0.0032686069541517
709 => 0.0032954878404612
710 => 0.0032606746503044
711 => 0.0032504075608929
712 => 0.0032940773000379
713 => 0.0032943780295309
714 => 0.003254321246941
715 => 0.003209805463406
716 => 0.0032096189406476
717 => 0.003201697786939
718 => 0.0033143302077297
719 => 0.0033762666507425
720 => 0.0033833675641183
721 => 0.0033757887026951
722 => 0.0033787055056627
723 => 0.00334266605415
724 => 0.0034250415531406
725 => 0.003500637457107
726 => 0.0034803761399731
727 => 0.0034500015452734
728 => 0.0034258067175564
729 => 0.0034746766074857
730 => 0.0034725005082154
731 => 0.0034999771928343
801 => 0.0034987306917069
802 => 0.00348949131612
803 => 0.0034803764699403
804 => 0.0035165158047474
805 => 0.0035061082567029
806 => 0.0034956845428617
807 => 0.0034747781889623
808 => 0.003477619709675
809 => 0.0034472503595773
810 => 0.0034332001086153
811 => 0.0032219180454114
812 => 0.0031654565742827
813 => 0.003183220502479
814 => 0.0031890688488814
815 => 0.0031644967442889
816 => 0.0031997268302188
817 => 0.0031942362586446
818 => 0.0032155968607632
819 => 0.003202251683929
820 => 0.0032027993746413
821 => 0.0032420446942189
822 => 0.0032534377774538
823 => 0.003247643163367
824 => 0.0032517015124456
825 => 0.0033452244540398
826 => 0.0033319284824404
827 => 0.0033248652625268
828 => 0.0033268218227138
829 => 0.0033507189394456
830 => 0.0033574088273963
831 => 0.0033290633020591
901 => 0.0033424312156716
902 => 0.0033993500951931
903 => 0.003419268481696
904 => 0.0034828384100455
905 => 0.0034558327746172
906 => 0.0035054027872223
907 => 0.0036577641063075
908 => 0.0037794808705941
909 => 0.0036675451039981
910 => 0.003891062441074
911 => 0.0040651027496453
912 => 0.004058422792723
913 => 0.0040280748392988
914 => 0.0038299345750913
915 => 0.0036476029498628
916 => 0.0038001310965762
917 => 0.0038005199221899
918 => 0.0037874176191167
919 => 0.0037060403400103
920 => 0.0037845858661993
921 => 0.0037908205248327
922 => 0.0037873307739275
923 => 0.0037249390048358
924 => 0.003629678305359
925 => 0.0036482920180149
926 => 0.0036787816590546
927 => 0.0036210584077609
928 => 0.0036026123313975
929 => 0.0036369070968668
930 => 0.003747411976807
1001 => 0.0037265216693655
1002 => 0.0037259761390138
1003 => 0.0038153537331177
1004 => 0.0037513786646313
1005 => 0.0036485267965408
1006 => 0.0036225553433985
1007 => 0.0035303741812104
1008 => 0.0035940440382717
1009 => 0.0035963354030781
1010 => 0.0035614640730558
1011 => 0.0036513564127853
1012 => 0.0036505280390494
1013 => 0.0037358674369135
1014 => 0.0038990043136155
1015 => 0.0038507567116965
1016 => 0.003794649999989
1017 => 0.003800750355222
1018 => 0.0038676561951681
1019 => 0.0038272033970249
1020 => 0.0038417505052841
1021 => 0.0038676341763774
1022 => 0.0038832504378034
1023 => 0.0037985034155234
1024 => 0.0037787448307112
1025 => 0.0037383257005065
1026 => 0.0037277811038949
1027 => 0.0037607016420738
1028 => 0.0037520282433634
1029 => 0.0035961428227387
1030 => 0.0035798519289452
1031 => 0.0035803515473998
1101 => 0.0035393873203661
1102 => 0.0034769070415987
1103 => 0.0036411014836958
1104 => 0.0036279143720957
1105 => 0.0036133568214905
1106 => 0.0036151400383754
1107 => 0.0036864112806238
1108 => 0.0036450703608357
1109 => 0.0037549819717358
1110 => 0.0037323874487802
1111 => 0.0037092134615677
1112 => 0.003706010110638
1113 => 0.0036970901026729
1114 => 0.0036665000763717
1115 => 0.0036295607814374
1116 => 0.0036051702592949
1117 => 0.0033255789956207
1118 => 0.003377469507851
1119 => 0.0034371648122031
1120 => 0.0034577713920515
1121 => 0.0034225224112889
1122 => 0.0036678919209773
1123 => 0.0037127232948368
1124 => 0.0035769261391382
1125 => 0.0035515240358683
1126 => 0.0036695572786387
1127 => 0.0035983688042711
1128 => 0.0036304249699199
1129 => 0.0035611370735723
1130 => 0.0037019247296899
1201 => 0.0037008521636341
1202 => 0.0036460825855709
1203 => 0.0036923734579041
1204 => 0.0036843292796738
1205 => 0.0036224945609319
1206 => 0.0037038850005666
1207 => 0.0037039253692092
1208 => 0.0036512108411167
1209 => 0.0035896518129987
1210 => 0.0035786465127306
1211 => 0.0035703554973326
1212 => 0.0036283858883804
1213 => 0.0036804157555376
1214 => 0.0037772304390192
1215 => 0.0038015719507066
1216 => 0.0038965784913288
1217 => 0.0038400067221728
1218 => 0.0038650842547126
1219 => 0.0038923094637181
1220 => 0.0039053622300893
1221 => 0.0038840934477375
1222 => 0.004031677711576
1223 => 0.004044138345309
1224 => 0.0040483162880156
1225 => 0.0039985517046227
1226 => 0.0040427543022213
1227 => 0.0040220733706411
1228 => 0.0040758794092846
1229 => 0.0040843168831739
1230 => 0.0040771706429615
1231 => 0.0040798488303504
]
'min_raw' => 0.001829538976617
'max_raw' => 0.0040843168831739
'avg_raw' => 0.0029569279298954
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.001829'
'max' => '$0.004084'
'avg' => '$0.002956'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.00028211119808654
'max_diff' => -0.00038975190034989
'year' => 2031
]
6 => [
'items' => [
101 => 0.0039539116968125
102 => 0.0039473811920672
103 => 0.0038583372964823
104 => 0.0038946233421124
105 => 0.0038267883190424
106 => 0.0038482995036361
107 => 0.0038577814288389
108 => 0.0038528286092075
109 => 0.0038966749006892
110 => 0.0038593965957242
111 => 0.0037610130198006
112 => 0.0036626026393376
113 => 0.0036613671771743
114 => 0.0036354574610858
115 => 0.0036167294819551
116 => 0.0036203371551464
117 => 0.0036330510660289
118 => 0.003615990526342
119 => 0.0036196312574755
120 => 0.0036800916523566
121 => 0.0036922165533662
122 => 0.0036510114022309
123 => 0.0034855667745481
124 => 0.0034449662479283
125 => 0.0034741491013192
126 => 0.0034602015770148
127 => 0.0027926527303114
128 => 0.0029494834299524
129 => 0.0028562999536931
130 => 0.0028992431867189
131 => 0.0028041269872024
201 => 0.0028495214230788
202 => 0.0028411387283118
203 => 0.0030933178523767
204 => 0.0030893804222155
205 => 0.0030912650616695
206 => 0.0030013063101275
207 => 0.0031446130439802
208 => 0.0032152110942195
209 => 0.0032021452740265
210 => 0.003205433659477
211 => 0.0031489283024945
212 => 0.0030918121570397
213 => 0.0030284615616185
214 => 0.0031461591375408
215 => 0.0031330731762628
216 => 0.0031630876632542
217 => 0.0032394229544363
218 => 0.0032506636160324
219 => 0.0032657711792091
220 => 0.0032603561932398
221 => 0.0033893631277808
222 => 0.0033737395367927
223 => 0.00341138789586
224 => 0.0033339423648706
225 => 0.0032463053953589
226 => 0.0032629623181947
227 => 0.0032613581225791
228 => 0.0032409348711824
229 => 0.0032224976730068
301 => 0.0031918049326928
302 => 0.0032889213047172
303 => 0.0032849785573683
304 => 0.0033488070540041
305 => 0.0033375247472268
306 => 0.0032621787413191
307 => 0.0032648697386603
308 => 0.0032829679890287
309 => 0.0033456062401959
310 => 0.0033642015378797
311 => 0.0033555874550981
312 => 0.0033759763501008
313 => 0.0033920909013887
314 => 0.0033780000896386
315 => 0.0035774962691284
316 => 0.0034946515465791
317 => 0.0035350294879198
318 => 0.0035446593890089
319 => 0.0035199925998641
320 => 0.0035253419431781
321 => 0.00353344474069
322 => 0.0035826433404919
323 => 0.0037117547021014
324 => 0.0037689372452676
325 => 0.0039409737477198
326 => 0.003764189031077
327 => 0.0037536993575994
328 => 0.0037846883266957
329 => 0.0038856919655484
330 => 0.0039675459280491
331 => 0.003994701609679
401 => 0.0039982906812978
402 => 0.004049236545311
403 => 0.0040784377644793
404 => 0.0040430503774106
405 => 0.0040130632720837
406 => 0.0039056531829394
407 => 0.0039180861932258
408 => 0.0040037373048761
409 => 0.0041247245449076
410 => 0.0042285441834314
411 => 0.0041921901645001
412 => 0.0044695456670085
413 => 0.0044970443321866
414 => 0.0044932449057973
415 => 0.004555890957423
416 => 0.0044315513025925
417 => 0.0043783936911851
418 => 0.0040195468246235
419 => 0.0041203681569538
420 => 0.0042669178845252
421 => 0.0042475214785479
422 => 0.0041410931491001
423 => 0.0042284634479999
424 => 0.0041995760948617
425 => 0.0041767914409043
426 => 0.0042811723577058
427 => 0.0041664012519508
428 => 0.00426577295495
429 => 0.0041383277179849
430 => 0.0041923562265963
501 => 0.0041616870320436
502 => 0.0041815337595943
503 => 0.004065510195868
504 => 0.0041281136945419
505 => 0.0040629056845019
506 => 0.0040628747674148
507 => 0.0040614352969791
508 => 0.0041381522316145
509 => 0.0041406539680987
510 => 0.0040839600374903
511 => 0.004075789556364
512 => 0.0041060001074105
513 => 0.0040706314642909
514 => 0.004087180229799
515 => 0.0040711327095396
516 => 0.0040675200747167
517 => 0.004038733985809
518 => 0.0040263321472175
519 => 0.0040311952276853
520 => 0.0040145950269591
521 => 0.0040045928055661
522 => 0.0040594456033917
523 => 0.004030139966269
524 => 0.0040549540942007
525 => 0.00402667526363
526 => 0.0039286485163719
527 => 0.0038722722974098
528 => 0.0036871088589236
529 => 0.0037396209803837
530 => 0.0037744365712395
531 => 0.0037629300186694
601 => 0.0037876505460348
602 => 0.0037891681856432
603 => 0.0037811312902008
604 => 0.0037718255948685
605 => 0.003767296097018
606 => 0.0038010552630478
607 => 0.0038206535952094
608 => 0.0037779307815544
609 => 0.0037679214240708
610 => 0.0038111165474671
611 => 0.0038374655477859
612 => 0.0040320117619155
613 => 0.0040175991499968
614 => 0.0040537719775805
615 => 0.0040496994723118
616 => 0.0040876143584029
617 => 0.0041495891731354
618 => 0.0040235770463535
619 => 0.0040454483943913
620 => 0.0040400860449357
621 => 0.0040986307702094
622 => 0.0040988135404513
623 => 0.0040637130531238
624 => 0.0040827415967444
625 => 0.0040721203857162
626 => 0.004091314349587
627 => 0.0040174066607776
628 => 0.0041074182479054
629 => 0.0041584490175883
630 => 0.0041591575798748
701 => 0.0041833457596993
702 => 0.0042079223512859
703 => 0.0042550949786662
704 => 0.0042066067323112
705 => 0.0041193810973542
706 => 0.004125678506461
707 => 0.0040745381486003
708 => 0.0040753978272552
709 => 0.0040708087952211
710 => 0.0040845808258016
711 => 0.0040204288470216
712 => 0.0040354851882161
713 => 0.004014406222374
714 => 0.0040454025728363
715 => 0.0040120556236191
716 => 0.0040400834590484
717 => 0.0040521793436822
718 => 0.0040968134183867
719 => 0.0040054631344944
720 => 0.0038191937217674
721 => 0.003858349810621
722 => 0.0038004348795622
723 => 0.0038057951269294
724 => 0.0038166236796881
725 => 0.003781524797315
726 => 0.0037882205579789
727 => 0.0037879813382907
728 => 0.0037859198722542
729 => 0.0037767892973658
730 => 0.0037635481573484
731 => 0.0038162967837696
801 => 0.003825259803273
802 => 0.0038451834853459
803 => 0.0039044628488322
804 => 0.0038985394425162
805 => 0.0039082007639773
806 => 0.0038871101534738
807 => 0.0038067734598613
808 => 0.003811136128836
809 => 0.003756733576815
810 => 0.0038437922897771
811 => 0.0038231756374288
812 => 0.0038098839475406
813 => 0.003806257186808
814 => 0.0038656834923704
815 => 0.0038834647743879
816 => 0.003872384672692
817 => 0.0038496590608556
818 => 0.0038932989538055
819 => 0.0039049751481396
820 => 0.0039075890174496
821 => 0.0039849105406373
822 => 0.0039119104316608
823 => 0.0039294822834501
824 => 0.0040665728550041
825 => 0.0039422506238103
826 => 0.0040081068823902
827 => 0.0040048835612322
828 => 0.0040385733946674
829 => 0.0040021200115579
830 => 0.0040025718949306
831 => 0.004032486184674
901 => 0.0039904769597999
902 => 0.003980074884944
903 => 0.0039657044930317
904 => 0.003997081718042
905 => 0.0040158909453659
906 => 0.004167479503741
907 => 0.0042654126257294
908 => 0.0042611610906237
909 => 0.00430001216295
910 => 0.0042825093990319
911 => 0.0042259883573447
912 => 0.0043224628834981
913 => 0.0042919343067575
914 => 0.0042944510455318
915 => 0.0042943573723889
916 => 0.0043146562070669
917 => 0.0043002726223367
918 => 0.0042719211003887
919 => 0.0042907421637679
920 => 0.0043466339933508
921 => 0.0045201239473467
922 => 0.004617211224039
923 => 0.0045142791713834
924 => 0.0045852803229901
925 => 0.0045427049323232
926 => 0.0045349677173308
927 => 0.0045795616874837
928 => 0.0046242337134781
929 => 0.0046213882985447
930 => 0.0045889587016067
1001 => 0.004570640045167
1002 => 0.0047093550489287
1003 => 0.0048115579007519
1004 => 0.0048045883514341
1005 => 0.0048353496755037
1006 => 0.004925665874384
1007 => 0.0049339232557301
1008 => 0.0049328830154742
1009 => 0.0049124162342392
1010 => 0.0050013442610772
1011 => 0.0050755295856053
1012 => 0.0049076787657254
1013 => 0.0049715941606071
1014 => 0.0050002878405949
1015 => 0.0050424186758482
1016 => 0.0051135004568684
1017 => 0.0051907141245676
1018 => 0.0052016329837851
1019 => 0.0051938855306547
1020 => 0.0051429610411923
1021 => 0.0052274491577394
1022 => 0.0052769403149226
1023 => 0.0053064111664402
1024 => 0.0053811443424066
1025 => 0.005000465042994
1026 => 0.0047310013138809
1027 => 0.0046889206614765
1028 => 0.0047744933228808
1029 => 0.004797058151264
1030 => 0.0047879622972366
1031 => 0.0044846563715494
1101 => 0.0046873238185484
1102 => 0.0049053769507563
1103 => 0.0049137532596137
1104 => 0.005022915216873
1105 => 0.0050584628248564
1106 => 0.0051463525086349
1107 => 0.0051408549849848
1108 => 0.0051622547243546
1109 => 0.0051573352948653
1110 => 0.0053201324267086
1111 => 0.0054997218387398
1112 => 0.0054935032284605
1113 => 0.0054676851256755
1114 => 0.0055060294109519
1115 => 0.0056913849301391
1116 => 0.005674320364194
1117 => 0.0056908971364534
1118 => 0.0059094417397544
1119 => 0.006193580811653
1120 => 0.0060615696856597
1121 => 0.0063479958438869
1122 => 0.0065282859276928
1123 => 0.0068400789852923
1124 => 0.0068010409588676
1125 => 0.006922419708148
1126 => 0.0067311547440856
1127 => 0.0062919717255714
1128 => 0.0062224693317664
1129 => 0.0063616148842448
1130 => 0.0067036906473885
1201 => 0.0063508417011191
1202 => 0.006422222583398
1203 => 0.0064016648844996
1204 => 0.0064005694520899
1205 => 0.0064423776517225
1206 => 0.0063817326775864
1207 => 0.0061346541431334
1208 => 0.0062478887794303
1209 => 0.0062041634483822
1210 => 0.0062526799631194
1211 => 0.0065145035834234
1212 => 0.0063987451197915
1213 => 0.0062768029818092
1214 => 0.0064297454839657
1215 => 0.0066244938459565
1216 => 0.0066123068434596
1217 => 0.0065886589648437
1218 => 0.006721960818439
1219 => 0.0069421364267998
1220 => 0.0070016490090026
1221 => 0.0070455799805034
1222 => 0.0070516373192535
1223 => 0.0071140316729949
1224 => 0.0067785215075261
1225 => 0.0073109847566372
1226 => 0.0074029264507583
1227 => 0.0073856452228563
1228 => 0.0074878345463739
1229 => 0.0074577678551021
1230 => 0.0074142059367686
1231 => 0.0075761977508365
]
'min_raw' => 0.0027926527303114
'max_raw' => 0.0075761977508365
'avg_raw' => 0.005184425240574
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.002792'
'max' => '$0.007576'
'avg' => '$0.005184'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.00096311375369444
'max_diff' => 0.0034918808676626
'year' => 2032
]
7 => [
'items' => [
101 => 0.007390487208073
102 => 0.0071268944729273
103 => 0.0069822822851532
104 => 0.0071727192795465
105 => 0.0072890125066873
106 => 0.007365874932189
107 => 0.0073891334557042
108 => 0.0068045662065965
109 => 0.0064895168809133
110 => 0.0066914598866284
111 => 0.0069378442909624
112 => 0.0067771528297197
113 => 0.0067834516307713
114 => 0.0065543478360123
115 => 0.0069581148931673
116 => 0.0068992894291552
117 => 0.0072044760405099
118 => 0.0071316408064346
119 => 0.0073805086407183
120 => 0.007314973399482
121 => 0.0075870065218278
122 => 0.0076955278993343
123 => 0.0078777521821715
124 => 0.0080117971064127
125 => 0.008090510849798
126 => 0.008085785171893
127 => 0.0083976882382167
128 => 0.0082137698970687
129 => 0.0079827251143621
130 => 0.0079785462431799
131 => 0.0080982076100735
201 => 0.0083489850075899
202 => 0.0084140079381031
203 => 0.0084503468856687
204 => 0.0083946925225042
205 => 0.0081950623447343
206 => 0.0081088630461212
207 => 0.0081823073459736
208 => 0.0080924912783948
209 => 0.0082475390089736
210 => 0.0084604526594664
211 => 0.0084164868325915
212 => 0.0085634580001093
213 => 0.0087155576966726
214 => 0.0089330670939828
215 => 0.0089899321047894
216 => 0.0090839278052699
217 => 0.0091806802570435
218 => 0.0092117545370015
219 => 0.0092710849792241
220 => 0.0092707722785073
221 => 0.0094495685595445
222 => 0.0096467863943884
223 => 0.0097212315614386
224 => 0.0098924141181401
225 => 0.009599269988741
226 => 0.0098216231782873
227 => 0.010022191321119
228 => 0.009783065712781
301 => 0.010112644654754
302 => 0.010125441458229
303 => 0.010318657997635
304 => 0.010122796019137
305 => 0.010006493801519
306 => 0.010342253945996
307 => 0.010504717703563
308 => 0.01045578229761
309 => 0.010083381442068
310 => 0.0098666281711181
311 => 0.0092993430524593
312 => 0.009971316780404
313 => 0.010298615581544
314 => 0.010082533817242
315 => 0.01019151289043
316 => 0.01078606737716
317 => 0.011012435231155
318 => 0.010965352299955
319 => 0.010973308540276
320 => 0.011095452525425
321 => 0.011637106221494
322 => 0.011312534771375
323 => 0.01156065748353
324 => 0.011692260875385
325 => 0.011814501440076
326 => 0.011514317247722
327 => 0.011123782024051
328 => 0.011000083125161
329 => 0.010061048744289
330 => 0.010012167926745
331 => 0.0099847296426169
401 => 0.0098117351424134
402 => 0.009675808852435
403 => 0.0095677152200247
404 => 0.0092840452490888
405 => 0.0093797755370603
406 => 0.0089276648099127
407 => 0.0092169092313214
408 => 0.0084953295941986
409 => 0.0090962825578491
410 => 0.0087692111817125
411 => 0.0089888308142318
412 => 0.0089880645820234
413 => 0.0085836752080875
414 => 0.0083504318565921
415 => 0.008499063598132
416 => 0.0086584086234651
417 => 0.0086842618177243
418 => 0.0088908568023993
419 => 0.0089485130218778
420 => 0.0087738119851465
421 => 0.0084803764600832
422 => 0.0085485348400037
423 => 0.0083490506291985
424 => 0.0079994622228118
425 => 0.0082505427195067
426 => 0.0083362726403085
427 => 0.0083741358572605
428 => 0.0080303558100789
429 => 0.0079223326554265
430 => 0.0078648220342917
501 => 0.008435998772997
502 => 0.0084672891241019
503 => 0.0083072032638396
504 => 0.0090308065321892
505 => 0.0088670328268294
506 => 0.0090500081812483
507 => 0.0085423501814282
508 => 0.0085617434006735
509 => 0.0083214099679783
510 => 0.0084559806312018
511 => 0.0083608704238504
512 => 0.0084451086514666
513 => 0.0084956006977725
514 => 0.0087358946941163
515 => 0.0090990263292978
516 => 0.0087000027841611
517 => 0.0085261425114226
518 => 0.0086340044468023
519 => 0.008921254994598
520 => 0.0093564542785934
521 => 0.0090988075432663
522 => 0.0092131467892792
523 => 0.009238124827934
524 => 0.0090481456639044
525 => 0.0093634590813547
526 => 0.0095324381033679
527 => 0.0097057756146718
528 => 0.0098562797189301
529 => 0.0096365408008834
530 => 0.00987169294153
531 => 0.0096822018261096
601 => 0.009512208706346
602 => 0.0095124665157386
603 => 0.0094058273485077
604 => 0.0091992005245981
605 => 0.009161095368045
606 => 0.0093593232045853
607 => 0.0095182831572447
608 => 0.0095313758603125
609 => 0.009619384257762
610 => 0.009671466720814
611 => 0.010181945661399
612 => 0.010387264514206
613 => 0.01063832452093
614 => 0.010736126542516
615 => 0.011030475563525
616 => 0.010792764823202
617 => 0.010741334609262
618 => 0.010027340165127
619 => 0.010144256715355
620 => 0.01033145139304
621 => 0.010030426936413
622 => 0.010221357667864
623 => 0.010259051438719
624 => 0.010020198240566
625 => 0.010147780053937
626 => 0.009808960582995
627 => 0.0091064116678776
628 => 0.0093642412191314
629 => 0.0095540905533428
630 => 0.0092831521451691
701 => 0.0097687987550561
702 => 0.009485094031341
703 => 0.0093951732541517
704 => 0.0090443602432646
705 => 0.0092099304803722
706 => 0.0094338665967977
707 => 0.0092955001122146
708 => 0.0095826313435568
709 => 0.0099892857422397
710 => 0.010279091883429
711 => 0.010301339600413
712 => 0.010115013667131
713 => 0.010413602164331
714 => 0.010415777055557
715 => 0.010078968010945
716 => 0.0098726743464818
717 => 0.0098258039918701
718 => 0.0099428953271645
719 => 0.010085065824465
720 => 0.010309229073556
721 => 0.01044468623021
722 => 0.010797886653838
723 => 0.010893452561422
724 => 0.010998450520085
725 => 0.011138760173028
726 => 0.011307237886044
727 => 0.010938618241407
728 => 0.010953264187082
729 => 0.010610010677882
730 => 0.01024319507577
731 => 0.010521562393563
801 => 0.010885490631925
802 => 0.010802005091939
803 => 0.010792611263236
804 => 0.010808409077484
805 => 0.010745463706718
806 => 0.010460764127608
807 => 0.010317789781293
808 => 0.010502263164686
809 => 0.010600302557993
810 => 0.01075235310708
811 => 0.010733609667507
812 => 0.011125275552917
813 => 0.011277465072625
814 => 0.011238528480927
815 => 0.011245693750861
816 => 0.011521225606774
817 => 0.011827673697998
818 => 0.012114702774817
819 => 0.012406681079942
820 => 0.012054689837006
821 => 0.011875970391645
822 => 0.01206036323973
823 => 0.011962521799019
824 => 0.012524747739
825 => 0.01256367504324
826 => 0.013125860327886
827 => 0.013659441106794
828 => 0.013324308579654
829 => 0.013640323458046
830 => 0.013982119314098
831 => 0.014641498974801
901 => 0.014419443102332
902 => 0.014249351784081
903 => 0.014088616310208
904 => 0.014423081315299
905 => 0.01485336520114
906 => 0.014946044228942
907 => 0.015096219660096
908 => 0.014938328556816
909 => 0.015128490999582
910 => 0.015799847984156
911 => 0.015618441400692
912 => 0.01536081488961
913 => 0.015890786751121
914 => 0.016082581507588
915 => 0.017428697552171
916 => 0.019128224663737
917 => 0.018424609279852
918 => 0.017987852505548
919 => 0.018090500707519
920 => 0.018711110476039
921 => 0.018910430636519
922 => 0.018368609730556
923 => 0.018559990034369
924 => 0.019614514324471
925 => 0.020180232772921
926 => 0.019411911133801
927 => 0.01729214220355
928 => 0.015337618441039
929 => 0.015856046156209
930 => 0.015797272541994
1001 => 0.016930227337124
1002 => 0.015614114913672
1003 => 0.015636274871524
1004 => 0.016792657971998
1005 => 0.016484154786217
1006 => 0.015984419135354
1007 => 0.015341267064331
1008 => 0.01415234097668
1009 => 0.01309927598519
1010 => 0.015164578939885
1011 => 0.015075519320969
1012 => 0.014946547794882
1013 => 0.015233559970011
1014 => 0.016627209622612
1015 => 0.016595081487315
1016 => 0.01639069868248
1017 => 0.0165457212386
1018 => 0.015957242931743
1019 => 0.016108907190822
1020 => 0.015337308834489
1021 => 0.015686103516346
1022 => 0.01598334692709
1023 => 0.016043022942561
1024 => 0.016177476052549
1025 => 0.0150285889487
1026 => 0.015544405528775
1027 => 0.015847399444092
1028 => 0.014478461911679
1029 => 0.015820339950546
1030 => 0.015008589380266
1031 => 0.014733069044628
1101 => 0.01510402087952
1102 => 0.0149594605887
1103 => 0.014835176139518
1104 => 0.014765823281397
1105 => 0.015038209368481
1106 => 0.015025502231947
1107 => 0.014579825725615
1108 => 0.013998458891204
1109 => 0.014193584683548
1110 => 0.014122693653876
1111 => 0.013865775417217
1112 => 0.014038907288299
1113 => 0.013276522148089
1114 => 0.01196487813969
1115 => 0.012831390348381
1116 => 0.01279803057093
1117 => 0.012781209058394
1118 => 0.013432369034587
1119 => 0.013369775027693
1120 => 0.013256166292257
1121 => 0.013863688903697
1122 => 0.01364193497819
1123 => 0.014325328324809
1124 => 0.014775455382003
1125 => 0.014661288600214
1126 => 0.015084635273158
1127 => 0.014198079987705
1128 => 0.014492558091108
1129 => 0.01455324962009
1130 => 0.013856192168976
1201 => 0.013380016181334
1202 => 0.013348260671762
1203 => 0.012522637130284
1204 => 0.012963678561941
1205 => 0.013351776770265
1206 => 0.013165907846115
1207 => 0.013107067297406
1208 => 0.013407670899805
1209 => 0.013431030374207
1210 => 0.012898431882312
1211 => 0.013009175973977
1212 => 0.013470997245897
1213 => 0.012997539262836
1214 => 0.012077687740672
1215 => 0.011849551845233
1216 => 0.011819114311402
1217 => 0.011200391669286
1218 => 0.01186479697664
1219 => 0.011574766255025
1220 => 0.012490969829507
1221 => 0.011967639261461
1222 => 0.01194507952664
1223 => 0.011910977178665
1224 => 0.011378417041484
1225 => 0.011495013865564
1226 => 0.011882599467005
1227 => 0.012020894376063
1228 => 0.012006469084031
1229 => 0.011880700086111
1230 => 0.011938276489317
1231 => 0.011752802833641
]
'min_raw' => 0.0064895168809133
'max_raw' => 0.020180232772921
'avg_raw' => 0.013334874826917
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.006489'
'max' => '$0.02018'
'avg' => '$0.013334'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.0036968641506019
'max_diff' => 0.012604035022084
'year' => 2033
]
8 => [
'items' => [
101 => 0.011687308225521
102 => 0.011480589226584
103 => 0.011176769405728
104 => 0.011219017415253
105 => 0.010617070851356
106 => 0.010289098415623
107 => 0.010198319968019
108 => 0.010076927233991
109 => 0.010212031600341
110 => 0.010615365612371
111 => 0.010128859221779
112 => 0.0092947781395642
113 => 0.0093449078338103
114 => 0.0094575343731415
115 => 0.0092476555621969
116 => 0.0090490228814312
117 => 0.0092217178817782
118 => 0.0088683067317472
119 => 0.009500242422181
120 => 0.0094831503327341
121 => 0.0097186968794869
122 => 0.0098659889690731
123 => 0.0095265283889571
124 => 0.0094411549710569
125 => 0.0094897875498984
126 => 0.0086859993520574
127 => 0.0096530102354181
128 => 0.0096613729856934
129 => 0.0095897660406633
130 => 0.010104669482941
131 => 0.011191276348559
201 => 0.010782451137054
202 => 0.010624141658352
203 => 0.010323195223615
204 => 0.01072418847947
205 => 0.01069339845389
206 => 0.010554154281445
207 => 0.010469938971482
208 => 0.010625108262271
209 => 0.01045071177917
210 => 0.010419385378711
211 => 0.010229581475384
212 => 0.010161830117424
213 => 0.01011166970925
214 => 0.01005644802851
215 => 0.010178253295837
216 => 0.009902226535256
217 => 0.0095693653212325
218 => 0.0095416915128947
219 => 0.0096181013308215
220 => 0.0095842956744308
221 => 0.0095415296644179
222 => 0.0094598777046734
223 => 0.0094356533124353
224 => 0.0095143708352048
225 => 0.0094255033415147
226 => 0.0095566321693173
227 => 0.009520972383844
228 => 0.0093217797209603
301 => 0.0090735119124378
302 => 0.0090713018081826
303 => 0.0090178129160772
304 => 0.0089496867698723
305 => 0.0089307356345132
306 => 0.0092071739905345
307 => 0.0097793931143948
308 => 0.0096670528083379
309 => 0.0097482301925617
310 => 0.010147542578732
311 => 0.010274471978554
312 => 0.010184380497048
313 => 0.010061057720563
314 => 0.010066483296855
315 => 0.010487914556448
316 => 0.010514198707171
317 => 0.010580610276459
318 => 0.010665967910901
319 => 0.010198917271291
320 => 0.01004448525373
321 => 0.0099713067962477
322 => 0.0097459454708292
323 => 0.0099889783392732
324 => 0.0098473734945359
325 => 0.0098664808260013
326 => 0.0098540371513182
327 => 0.0098608322391328
328 => 0.0095000657832766
329 => 0.0096315101184639
330 => 0.009412958417167
331 => 0.0091203422227102
401 => 0.0091193612706219
402 => 0.0091909786696661
403 => 0.0091483778383255
404 => 0.0090337400965555
405 => 0.009050023846699
406 => 0.0089073610608744
407 => 0.0090673456918912
408 => 0.0090719334786563
409 => 0.009010330681293
410 => 0.0092568090789992
411 => 0.0093577914796467
412 => 0.0093172431987624
413 => 0.0093549465041664
414 => 0.0096717210552407
415 => 0.0097233691289084
416 => 0.0097463077915514
417 => 0.0097155730224002
418 => 0.0093607365614488
419 => 0.0093764750673732
420 => 0.0092609963535632
421 => 0.0091634290092408
422 => 0.0091673311913403
423 => 0.009217493489189
424 => 0.0094365551858739
425 => 0.0098975576121551
426 => 0.009915052317244
427 => 0.0099362564101684
428 => 0.0098500087079217
429 => 0.0098239955756447
430 => 0.0098583136116772
501 => 0.010031441884632
502 => 0.010476774806541
503 => 0.010319364409152
504 => 0.010191387305837
505 => 0.010303657727824
506 => 0.010286374576364
507 => 0.01014048738489
508 => 0.010136392817318
509 => 0.0098563886539246
510 => 0.0097528774901044
511 => 0.0096663758139398
512 => 0.0095719182417515
513 => 0.0095159206267119
514 => 0.0096019584138737
515 => 0.0096216362737668
516 => 0.0094335131484543
517 => 0.009407872661613
518 => 0.0095614980666629
519 => 0.0094938932536328
520 => 0.009563426480353
521 => 0.009579558785397
522 => 0.0095769611127264
523 => 0.0095063739235597
524 => 0.0095513640929943
525 => 0.0094449489300664
526 => 0.009329238423423
527 => 0.0092554223292039
528 => 0.0091910079967136
529 => 0.0092267488121622
530 => 0.009099339331103
531 => 0.0090585784738659
601 => 0.0095361224359007
602 => 0.0098888892951185
603 => 0.0098837599252744
604 => 0.0098525362055157
605 => 0.0098061440914545
606 => 0.01002804801253
607 => 0.0099507411235363
608 => 0.010006988344486
609 => 0.010021305622906
610 => 0.010064639712595
611 => 0.010080127924969
612 => 0.010033311789922
613 => 0.0098761911225963
614 => 0.0094846613582056
615 => 0.0093024031959673
616 => 0.0092422549666788
617 => 0.0092444412405757
618 => 0.0091841340465432
619 => 0.0092018972179646
620 => 0.009177956740433
621 => 0.0091326192678115
622 => 0.0092239493509854
623 => 0.0092344742922726
624 => 0.0092131567595466
625 => 0.0092181778102095
626 => 0.0090416777440755
627 => 0.0090550966607657
628 => 0.0089803784274412
629 => 0.0089663696594347
630 => 0.0087774884720514
701 => 0.008442858069836
702 => 0.0086282757960224
703 => 0.008404317256467
704 => 0.0083195007640117
705 => 0.0087210088476242
706 => 0.0086807085721302
707 => 0.0086117320185932
708 => 0.0085097013199386
709 => 0.0084718571413168
710 => 0.0082419278920216
711 => 0.0082283424453484
712 => 0.0083423015899111
713 => 0.0082897133657901
714 => 0.0082158595824065
715 => 0.0079483686654287
716 => 0.0076476203115467
717 => 0.0076566980139136
718 => 0.0077523604696615
719 => 0.008030511961588
720 => 0.0079218333616227
721 => 0.0078429857904045
722 => 0.0078282200104647
723 => 0.0080130446606663
724 => 0.0082746102626629
725 => 0.0083973309909193
726 => 0.0082757184763012
727 => 0.0081360165675907
728 => 0.0081445195754576
729 => 0.0082010862773814
730 => 0.0082070306379435
731 => 0.0081160990569612
801 => 0.0081416957643729
802 => 0.0081028120252025
803 => 0.0078641825896876
804 => 0.0078598665399013
805 => 0.0078013030280065
806 => 0.0077995297481409
807 => 0.0076998986050552
808 => 0.0076859595194199
809 => 0.007488135837645
810 => 0.0076183439840545
811 => 0.0075310071956775
812 => 0.0073993700549277
813 => 0.0073766757622454
814 => 0.0073759935444032
815 => 0.0075111554544272
816 => 0.0076167645384408
817 => 0.0075325264565034
818 => 0.0075133470781329
819 => 0.0077181326617845
820 => 0.0076920718296028
821 => 0.0076695033170078
822 => 0.0082511899318808
823 => 0.0077907395866362
824 => 0.0075899569545227
825 => 0.0073414503196945
826 => 0.0074223653330738
827 => 0.0074394153152817
828 => 0.0068418016552077
829 => 0.0065993498677437
830 => 0.0065161495508889
831 => 0.0064682665922592
901 => 0.0064900874577831
902 => 0.0062718524123073
903 => 0.0064185099721416
904 => 0.0062295368697086
905 => 0.0061978549141141
906 => 0.0065357622305394
907 => 0.006582780059594
908 => 0.0063821873935523
909 => 0.0065110003581539
910 => 0.0064642909865552
911 => 0.0062327762711642
912 => 0.0062239341119432
913 => 0.0061077681658957
914 => 0.005925990954491
915 => 0.0058429138911453
916 => 0.0057996466352467
917 => 0.0058174995482925
918 => 0.0058084725691484
919 => 0.0057495654241492
920 => 0.0058118490577455
921 => 0.0056527401112813
922 => 0.0055893816467714
923 => 0.0055607640982574
924 => 0.0054195457503012
925 => 0.0056442869419839
926 => 0.0056885637879604
927 => 0.0057329278730012
928 => 0.0061190869446343
929 => 0.0060997955286897
930 => 0.0062741805335282
1001 => 0.0062674042529136
1002 => 0.0062176668246839
1003 => 0.0060078327963926
1004 => 0.0060914689001376
1005 => 0.0058340499727469
1006 => 0.0060269257359336
1007 => 0.0059389052922996
1008 => 0.0059971659354004
1009 => 0.0058924080459548
1010 => 0.0059503853873212
1011 => 0.0056990634707041
1012 => 0.0054643826011618
1013 => 0.0055588250338273
1014 => 0.0056614947589369
1015 => 0.0058841088827339
1016 => 0.0057515217471271
1017 => 0.005799205094766
1018 => 0.0056394738622716
1019 => 0.0053099027046649
1020 => 0.0053117680416257
1021 => 0.0052610706991258
1022 => 0.0052172607932728
1023 => 0.0057667509745959
1024 => 0.0056984131843941
1025 => 0.0055895258595363
1026 => 0.0057352758708687
1027 => 0.0057738144872287
1028 => 0.0057749116274576
1029 => 0.0058812470733734
1030 => 0.0059379983199203
1031 => 0.0059480009730982
1101 => 0.0061153220947761
1102 => 0.0061714059277435
1103 => 0.0064024072984554
1104 => 0.0059331833731497
1105 => 0.0059235200151894
1106 => 0.0057373268724241
1107 => 0.0056192402376852
1108 => 0.0057454123653322
1109 => 0.0058571836462144
1110 => 0.0057407999176824
1111 => 0.005755997175634
1112 => 0.0055997615289797
1113 => 0.0056556084210882
1114 => 0.0057037112879608
1115 => 0.0056771517122296
1116 => 0.0056373907418619
1117 => 0.005848019675805
1118 => 0.0058361351658905
1119 => 0.0060322776715165
1120 => 0.0061851847809371
1121 => 0.0064592216564342
1122 => 0.0061732498909876
1123 => 0.0061628279432199
1124 => 0.0062647041543821
1125 => 0.0061713903310264
1126 => 0.0062303614463035
1127 => 0.0064497204980732
1128 => 0.0064543552091756
1129 => 0.006376717826722
1130 => 0.006371993584944
1201 => 0.0063869046935041
1202 => 0.0064742395220807
1203 => 0.0064437220494478
1204 => 0.0064790376413865
1205 => 0.0065232003298773
1206 => 0.0067058759340671
1207 => 0.006749918403792
1208 => 0.0066429180357631
1209 => 0.0066525789709638
1210 => 0.0066125578960952
1211 => 0.0065738980392347
1212 => 0.0066607997516383
1213 => 0.0068196143391134
1214 => 0.0068186263618072
1215 => 0.006855468259187
1216 => 0.0068784204560398
1217 => 0.0067798928251124
1218 => 0.0067157549603401
1219 => 0.0067403494988922
1220 => 0.0067796767016364
1221 => 0.0067275962170811
1222 => 0.0064061313403787
1223 => 0.0065036432487144
1224 => 0.0064874124990786
1225 => 0.0064642979378707
1226 => 0.0065623469157395
1227 => 0.006552889852632
1228 => 0.0062696140964841
1229 => 0.0062877484913068
1230 => 0.0062707169090963
1231 => 0.0063257494355523
]
'min_raw' => 0.0052172607932728
'max_raw' => 0.011687308225521
'avg_raw' => 0.0084522845093969
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.005217'
'max' => '$0.011687'
'avg' => '$0.008452'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0012722560876405
'max_diff' => -0.0084929245473996
'year' => 2034
]
9 => [
'items' => [
101 => 0.0061684183939964
102 => 0.0062168123627383
103 => 0.0062471646062679
104 => 0.0062650423108837
105 => 0.006329628838813
106 => 0.0063220503552154
107 => 0.0063291577496319
108 => 0.0064249225203398
109 => 0.0069092678680797
110 => 0.0069356297167095
111 => 0.0068058143326636
112 => 0.0068576730180947
113 => 0.0067581156823148
114 => 0.0068249491888
115 => 0.0068706749765502
116 => 0.0066640489342705
117 => 0.0066518138810386
118 => 0.0065518456367195
119 => 0.0066055629087258
120 => 0.0065200948665552
121 => 0.0065410657345586
122 => 0.0064824293594135
123 => 0.0065879631602889
124 => 0.0067059663479623
125 => 0.0067357786132557
126 => 0.006657355378256
127 => 0.0066005717877731
128 => 0.0065008785085628
129 => 0.0066666706536992
130 => 0.0067151533293611
131 => 0.0066664159948436
201 => 0.0066551224895041
202 => 0.0066337213172927
203 => 0.0066596628493587
204 => 0.0067148892822973
205 => 0.0066888455163955
206 => 0.0067060478826057
207 => 0.0066404902016154
208 => 0.006779925441858
209 => 0.0070013821602813
210 => 0.0070020941798428
211 => 0.0069760502735555
212 => 0.0069653936682264
213 => 0.0069921162965537
214 => 0.0070066122262016
215 => 0.0070930283061199
216 => 0.0071857562028408
217 => 0.007618476836486
218 => 0.007496970614118
219 => 0.0078809061029538
220 => 0.0081845492268391
221 => 0.0082755985229878
222 => 0.0081918374547314
223 => 0.0079052953649106
224 => 0.0078912362429627
225 => 0.008319451100105
226 => 0.0081984607894793
227 => 0.0081840693770184
228 => 0.008030969063109
301 => 0.0081214703104722
302 => 0.0081016763601007
303 => 0.008070430641086
304 => 0.0082431007166835
305 => 0.0085663236838379
306 => 0.0085159463532411
307 => 0.0084783420128877
308 => 0.008313570739918
309 => 0.0084127998492419
310 => 0.0083774662640201
311 => 0.0085292817693804
312 => 0.0084393496271301
313 => 0.0081975441688791
314 => 0.0082360524851068
315 => 0.0082302320305769
316 => 0.0083500165723591
317 => 0.0083140602261512
318 => 0.0082232109769011
319 => 0.008565218942875
320 => 0.0085430108479129
321 => 0.0085744968490918
322 => 0.0085883579605477
323 => 0.0087965321825797
324 => 0.0088818145005141
325 => 0.0089011750797623
326 => 0.0089821866858288
327 => 0.0088991594372035
328 => 0.0092313276291297
329 => 0.0094522000942093
330 => 0.0097087548283923
331 => 0.010083650250445
401 => 0.010224614397114
402 => 0.010199150485739
403 => 0.010483391916118
404 => 0.010994167448176
405 => 0.0103023928244
406 => 0.011030833182996
407 => 0.010800217375713
408 => 0.010253431445245
409 => 0.010218224877506
410 => 0.010588514657934
411 => 0.011409781751851
412 => 0.011204063659559
413 => 0.011410118232954
414 => 0.011169744627856
415 => 0.011157808052335
416 => 0.011398443823478
417 => 0.011960702419127
418 => 0.011693594436282
419 => 0.01131062964531
420 => 0.011593404887372
421 => 0.011348438803085
422 => 0.010796461653497
423 => 0.011203906350811
424 => 0.010931459685074
425 => 0.011010974106197
426 => 0.011583616474194
427 => 0.011514714629453
428 => 0.011603879996687
429 => 0.011446505457383
430 => 0.011299492821985
501 => 0.011025082820715
502 => 0.010943843547589
503 => 0.010966295159998
504 => 0.010943832421684
505 => 0.010790302547932
506 => 0.010757147786313
507 => 0.010701888397737
508 => 0.01071901559291
509 => 0.010615111775684
510 => 0.010811199746414
511 => 0.010847595401702
512 => 0.01099029187442
513 => 0.011005107095595
514 => 0.011402514740955
515 => 0.011183629288055
516 => 0.011330476547521
517 => 0.011317341146455
518 => 0.010265281954359
519 => 0.010410246428633
520 => 0.010635765658245
521 => 0.010534169550989
522 => 0.010390536425156
523 => 0.010274544974925
524 => 0.010098806067091
525 => 0.010346155205101
526 => 0.010671393018936
527 => 0.011013355663278
528 => 0.011424201374174
529 => 0.011332505394273
530 => 0.011005675188491
531 => 0.011020336552773
601 => 0.011110967337728
602 => 0.010993592236535
603 => 0.010958976027759
604 => 0.011106211602211
605 => 0.011107225532693
606 => 0.010972171293515
607 => 0.010822083221335
608 => 0.010821454346832
609 => 0.010794747624066
610 => 0.011174495694506
611 => 0.011383318736388
612 => 0.011407259961605
613 => 0.011381707301177
614 => 0.011391541506027
615 => 0.011270031979058
616 => 0.011547766725179
617 => 0.011802643593339
618 => 0.011734331148022
619 => 0.011631921081305
620 => 0.011550346530428
621 => 0.011715114776312
622 => 0.011707777905692
623 => 0.011800417466245
624 => 0.011796214800666
625 => 0.011765063600802
626 => 0.011734332260529
627 => 0.011856178550999
628 => 0.011821088776135
629 => 0.011785944497159
630 => 0.011715457265352
701 => 0.011725037650824
702 => 0.011622645266649
703 => 0.011575273864573
704 => 0.010862921637239
705 => 0.010672557845315
706 => 0.010732450169466
707 => 0.010752168277681
708 => 0.010669321711477
709 => 0.010788102405876
710 => 0.010769590560474
711 => 0.010841609321866
712 => 0.01079661512644
713 => 0.010798461703915
714 => 0.010930780038891
715 => 0.010969192614457
716 => 0.010949655668497
717 => 0.01096333867576
718 => 0.011278657802908
719 => 0.011233829506366
720 => 0.011210015367289
721 => 0.011216612046562
722 => 0.011297182844067
723 => 0.011319738268365
724 => 0.01122416935067
725 => 0.011269240204732
726 => 0.011461146180988
727 => 0.01152830241174
728 => 0.011742632863481
729 => 0.011651581478161
730 => 0.011818710236527
731 => 0.01233240706135
801 => 0.012742783630136
802 => 0.012365384377952
803 => 0.013118988685385
804 => 0.01370577773684
805 => 0.013683255795697
806 => 0.0135809355519
807 => 0.012912891817413
808 => 0.012298148012968
809 => 0.012812407308787
810 => 0.012813718261491
811 => 0.012769542931906
812 => 0.012495173753818
813 => 0.012759995479238
814 => 0.012781016066111
815 => 0.012769250127287
816 => 0.01255889192174
817 => 0.012237713822565
818 => 0.012300471254352
819 => 0.012403269207836
820 => 0.012208651235991
821 => 0.012146459001667
822 => 0.012262086197831
823 => 0.012634661115754
824 => 0.0125642279857
825 => 0.012562388692032
826 => 0.012863731490697
827 => 0.012648035080699
828 => 0.012301262826544
829 => 0.012213698259005
830 => 0.011902903034805
831 => 0.012117570403175
901 => 0.012125295899598
902 => 0.012007724775789
903 => 0.012310803075269
904 => 0.012308010155384
905 => 0.012595737893489
906 => 0.013145765263143
907 => 0.012983095104733
908 => 0.012793927408966
909 => 0.012814495182547
910 => 0.013040072893142
911 => 0.012903683459878
912 => 0.01295273005102
913 => 0.013039998655252
914 => 0.013092649970942
915 => 0.012806919468477
916 => 0.012740302020282
917 => 0.012604026100823
918 => 0.012568474257147
919 => 0.012679468150056
920 => 0.012650225180746
921 => 0.012124646601538
922 => 0.012069720715719
923 => 0.012071405214221
924 => 0.011933291462746
925 => 0.011722634840648
926 => 0.012276227865868
927 => 0.012231766598413
928 => 0.012182684800172
929 => 0.0121886970404
930 => 0.01242899300964
1001 => 0.012289609212243
1002 => 0.012660183882177
1003 => 0.012584004870533
1004 => 0.01250587215469
1005 => 0.012495071833379
1006 => 0.01246499740375
1007 => 0.012361860994348
1008 => 0.012237317582458
1009 => 0.012155083234162
1010 => 0.011212421768246
1011 => 0.011387374253111
1012 => 0.011588641139526
1013 => 0.011658117662191
1014 => 0.011539273262544
1015 => 0.012366553695611
1016 => 0.012517705802605
1017 => 0.012059856211113
1018 => 0.01197421124642
1019 => 0.012372168565238
1020 => 0.012132151653687
1021 => 0.012240231254262
1022 => 0.0120066222742
1023 => 0.012481297686281
1024 => 0.012477681454939
1025 => 0.012293021998609
1026 => 0.012449094906606
1027 => 0.012421973398076
1028 => 0.012213493326676
1029 => 0.012487906876403
1030 => 0.0124880429821
1031 => 0.012310312270225
1101 => 0.012102761709012
1102 => 0.012065656570792
1103 => 0.012037702833517
1104 => 0.012233356348488
1105 => 0.012408778678218
1106 => 0.012735196142961
1107 => 0.012817265249085
1108 => 0.013137586433938
1109 => 0.012946850764513
1110 => 0.013031401416329
1111 => 0.013123193109294
1112 => 0.01316720142243
1113 => 0.013095492237792
1114 => 0.013593082887327
1115 => 0.013635094783932
1116 => 0.013649181009462
1117 => 0.013481396242101
1118 => 0.013630428386031
1119 => 0.013560701181312
1120 => 0.013742111997216
1121 => 0.013770559529519
1122 => 0.013746465481709
1123 => 0.013755495177476
1124 => 0.013330889339103
1125 => 0.013308871286409
1126 => 0.013008653575598
1127 => 0.013130994511851
1128 => 0.01290228399548
1129 => 0.0129748104562
1130 => 0.013006779429029
1201 => 0.012990080651846
1202 => 0.013137911484827
1203 => 0.01301222507695
1204 => 0.012680517981801
1205 => 0.012348720513277
1206 => 0.012344555066336
1207 => 0.012257198649585
1208 => 0.0121940559604
1209 => 0.012206219482445
1210 => 0.012249085320642
1211 => 0.012191564519959
1212 => 0.012203839499163
1213 => 0.012407685941714
1214 => 0.012448565892002
1215 => 0.012309639848098
1216 => 0.01175183173489
1217 => 0.011614944224753
1218 => 0.011713336252442
1219 => 0.011666311200465
1220 => 0.0094156236570322
1221 => 0.0099443893104415
1222 => 0.0096302147143706
1223 => 0.0097750008227182
1224 => 0.0094543099152471
1225 => 0.0096073604251429
1226 => 0.0095790975844748
1227 => 0.010429337107844
1228 => 0.010416061787153
1229 => 0.010422415980653
1230 => 0.01011911376911
1231 => 0.010602282427651
]
'min_raw' => 0.0061684183939964
'max_raw' => 0.013770559529519
'avg_raw' => 0.0099694889617579
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.006168'
'max' => '$0.01377'
'avg' => '$0.009969'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.00095115760072365
'max_diff' => 0.0020832513039983
'year' => 2035
]
10 => [
'items' => [
101 => 0.010840308683031
102 => 0.010796256358024
103 => 0.010807343379158
104 => 0.010616831623014
105 => 0.010424260550891
106 => 0.010210669595431
107 => 0.010607495190035
108 => 0.010563374957954
109 => 0.01066457089639
110 => 0.01092194066017
111 => 0.010959839335539
112 => 0.011010775539566
113 => 0.010992518536308
114 => 0.01142747442309
115 => 0.011374798395269
116 => 0.011501732466389
117 => 0.011240619451584
118 => 0.010945145290257
119 => 0.011001305268547
120 => 0.010995896611028
121 => 0.010927038193038
122 => 0.010864875892145
123 => 0.010761393175278
124 => 0.011088827804007
125 => 0.011075534556046
126 => 0.011290736788817
127 => 0.011252697703812
128 => 0.010998663384404
129 => 0.011007736269819
130 => 0.011068755784516
131 => 0.011279945021589
201 => 0.011342640366012
202 => 0.011313597384498
203 => 0.011382339967507
204 => 0.011436671302256
205 => 0.011389163146651
206 => 0.01206177844418
207 => 0.011782461678071
208 => 0.011918598726399
209 => 0.011951066610259
210 => 0.011867900808477
211 => 0.01188593649294
212 => 0.01191325564047
213 => 0.012079132154639
214 => 0.012514440124573
215 => 0.012707235061215
216 => 0.013287268140438
217 => 0.012691226125562
218 => 0.012655859459066
219 => 0.012760340931955
220 => 0.013100881752196
221 => 0.013376858101628
222 => 0.013468415378193
223 => 0.013480516183736
224 => 0.013652283721184
225 => 0.013750737670374
226 => 0.013631426624203
227 => 0.013530323004961
228 => 0.013168182390277
229 => 0.013210101152503
301 => 0.013498879855402
302 => 0.013906796782227
303 => 0.014256831941966
304 => 0.014134261828983
305 => 0.015069385270033
306 => 0.015162098939576
307 => 0.015149288908237
308 => 0.015360504445101
309 => 0.014941284617722
310 => 0.014762060019516
311 => 0.013552182755016
312 => 0.013892108916088
313 => 0.01438621155437
314 => 0.014320815217404
315 => 0.013961984674082
316 => 0.014256559736822
317 => 0.014159164008866
318 => 0.014082343957275
319 => 0.014434271505914
320 => 0.014047312709798
321 => 0.014382351344371
322 => 0.013952660830001
323 => 0.014134821718934
324 => 0.014031418388245
325 => 0.014098333015836
326 => 0.013707151470227
327 => 0.013918223536842
328 => 0.013698370178315
329 => 0.013698265939197
330 => 0.013693412664122
331 => 0.013952069165451
401 => 0.013960503944673
402 => 0.013769356399383
403 => 0.013741809051821
404 => 0.013843666033907
405 => 0.01372441818427
406 => 0.013780213502578
407 => 0.013726108167622
408 => 0.01371392791709
409 => 0.013616873608557
410 => 0.013575059943878
411 => 0.013591456159204
412 => 0.013535487423467
413 => 0.013501764235707
414 => 0.013686704273277
415 => 0.013587898271663
416 => 0.013671560836452
417 => 0.013576216784818
418 => 0.013245712762428
419 => 0.013055636404135
420 => 0.012431344943581
421 => 0.012608393227363
422 => 0.01272577642268
423 => 0.012686981277328
424 => 0.012770328261273
425 => 0.012775445089171
426 => 0.012748348135068
427 => 0.012716973333553
428 => 0.01270170181531
429 => 0.01281552320057
430 => 0.012881600345764
501 => 0.012737557396715
502 => 0.012703810149128
503 => 0.012849445523446
504 => 0.012938283017649
505 => 0.01359420916137
506 => 0.013545616034029
507 => 0.013667575247734
508 => 0.013653844511888
509 => 0.013781677197476
510 => 0.01399062961229
511 => 0.013565770928959
512 => 0.013639511705878
513 => 0.013621432170301
514 => 0.013818819799023
515 => 0.013819436021654
516 => 0.013701092277992
517 => 0.013765248341339
518 => 0.013729438186808
519 => 0.013794151976079
520 => 0.013544967043188
521 => 0.013848447393597
522 => 0.014020501196438
523 => 0.014022890163657
524 => 0.0141044423007
525 => 0.014187303995117
526 => 0.014346349801818
527 => 0.01418286829389
528 => 0.013888780975733
529 => 0.013910013130208
530 => 0.013737589843175
531 => 0.013740488309781
601 => 0.013725016067882
602 => 0.013771449430516
603 => 0.013555156555112
604 => 0.013605920060649
605 => 0.013534850855626
606 => 0.013639357215306
607 => 0.01352692564781
608 => 0.013621423451801
609 => 0.013662205571352
610 => 0.01381269247047
611 => 0.013504698610454
612 => 0.01287667828053
613 => 0.01300869576789
614 => 0.012813431534334
615 => 0.012831503982573
616 => 0.012868013204224
617 => 0.012749674871778
618 => 0.012772250096339
619 => 0.012771443550458
620 => 0.01276449317379
621 => 0.012733708803077
622 => 0.012689065375042
623 => 0.012866911051812
624 => 0.012897130497846
625 => 0.012964304582982
626 => 0.013164169095729
627 => 0.013144197917775
628 => 0.013176771737613
629 => 0.013105663271801
630 => 0.012834802500358
701 => 0.012849511543398
702 => 0.012666089540994
703 => 0.012959614069991
704 => 0.01289010358719
705 => 0.012845289726736
706 => 0.012833061849714
707 => 0.013033421787929
708 => 0.013093372621701
709 => 0.013056015285245
710 => 0.012979394298287
711 => 0.013126529244208
712 => 0.013165896348611
713 => 0.013174709191484
714 => 0.013435404105328
715 => 0.013189279141209
716 => 0.013248523866344
717 => 0.013710734299696
718 => 0.013291573217326
719 => 0.013513612191065
720 => 0.013502744538735
721 => 0.013616332164311
722 => 0.013493427038064
723 => 0.013494950594404
724 => 0.013595808710823
725 => 0.01345417167617
726 => 0.013419100354544
727 => 0.013370649574902
728 => 0.013476440079713
729 => 0.013539856702853
730 => 0.01405094811099
731 => 0.014381136469246
801 => 0.014366802121805
802 => 0.014497791224648
803 => 0.014438779434094
804 => 0.014248214795873
805 => 0.014573485396435
806 => 0.014470556168517
807 => 0.014479041529008
808 => 0.014478725703467
809 => 0.014547164641803
810 => 0.014498669381655
811 => 0.014403080245967
812 => 0.014466536775195
813 => 0.014654979980876
814 => 0.015239913473456
815 => 0.015567250005241
816 => 0.015220207403226
817 => 0.01545959274301
818 => 0.015316046840858
819 => 0.015289960280316
820 => 0.015440311964138
821 => 0.015590926818679
822 => 0.015581333303571
823 => 0.015471994653332
824 => 0.015410232024178
825 => 0.015877919344133
826 => 0.01622250339463
827 => 0.016199005072507
828 => 0.016302719024294
829 => 0.016607226394495
830 => 0.016635066732215
831 => 0.016631559489565
901 => 0.016562554307686
902 => 0.016862381358927
903 => 0.017112502360028
904 => 0.016546581601833
905 => 0.016762076818107
906 => 0.016858819563514
907 => 0.017000866616052
908 => 0.017240523803533
909 => 0.017500855075067
910 => 0.017537668771249
911 => 0.01751154769211
912 => 0.017339852220453
913 => 0.017624709804164
914 => 0.017791572695969
915 => 0.01789093572945
916 => 0.018142903849924
917 => 0.016859417013775
918 => 0.015950901237713
919 => 0.015809023380154
920 => 0.016097537582572
921 => 0.016173616476891
922 => 0.016142949169986
923 => 0.015120332065388
924 => 0.015803639512734
925 => 0.016538820871957
926 => 0.016567062182085
927 => 0.016935109342429
928 => 0.0170549605846
929 => 0.017351286789721
930 => 0.01733275150491
1001 => 0.017404902220277
1002 => 0.01738831602029
1003 => 0.017937197916433
1004 => 0.018542696157628
1005 => 0.018521729678902
1006 => 0.0184346821428
1007 => 0.018563962577722
1008 => 0.019188901651771
1009 => 0.019131367276277
1010 => 0.019187257021303
1011 => 0.019924095409629
1012 => 0.020882090128491
1013 => 0.020437005400483
1014 => 0.021402711190582
1015 => 0.022010571795584
1016 => 0.023061803857977
1017 => 0.022930184426339
1018 => 0.023339421353931
1019 => 0.022694558173901
1020 => 0.021213821964201
1021 => 0.020979489790986
1022 => 0.021448628735999
1023 => 0.022601961054405
1024 => 0.021412306196931
1025 => 0.021652971825188
1026 => 0.02158366010806
1027 => 0.02157996678121
1028 => 0.021720926045226
1029 => 0.02151645728083
1030 => 0.020683414751449
1031 => 0.021065193233514
1101 => 0.02091777022708
1102 => 0.021081347043832
1103 => 0.021964103659628
1104 => 0.021573815917495
1105 => 0.021162679485559
1106 => 0.021678335809684
1107 => 0.022334943509033
1108 => 0.022293854179245
1109 => 0.02221412370545
1110 => 0.022663560211684
1111 => 0.023405897647443
1112 => 0.023606548473375
1113 => 0.023754664810953
1114 => 0.023775087551459
1115 => 0.023985454471332
1116 => 0.022854258523883
1117 => 0.024649495543658
1118 => 0.024959483384551
1119 => 0.024901218518143
1120 => 0.025245756957013
1121 => 0.025144385008201
1122 => 0.024997512959143
1123 => 0.025543679670181
1124 => 0.024917543609357
1125 => 0.024028822299357
1126 => 0.023541252211776
1127 => 0.024183323834259
1128 => 0.024575414568898
1129 => 0.02483456160284
1130 => 0.02491297933873
1201 => 0.022942070045181
1202 => 0.021879859247599
1203 => 0.022560724190578
1204 => 0.0233914264118
1205 => 0.022849643931101
1206 => 0.022870880778614
1207 => 0.022098441339068
1208 => 0.023459770162382
1209 => 0.023261436003403
1210 => 0.024290393971034
1211 => 0.024044824894155
1212 => 0.02488390017284
1213 => 0.024662943531487
1214 => 0.025580122196222
1215 => 0.025946009597206
1216 => 0.026560391489285
1217 => 0.027012333310082
1218 => 0.027277722191523
1219 => 0.02726178923853
1220 => 0.028313392203017
1221 => 0.027693298675068
1222 => 0.026914315059141
1223 => 0.026900225703191
1224 => 0.027303672356163
1225 => 0.028149185860608
1226 => 0.028368415210589
1227 => 0.028490934509411
1228 => 0.028303291938338
1229 => 0.027630224856253
1230 => 0.027339597902737
1231 => 0.027587220487406
]
'min_raw' => 0.010210669595431
'max_raw' => 0.028490934509411
'avg_raw' => 0.019350802052421
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.01021'
'max' => '$0.02849'
'avg' => '$0.01935'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.0040422512014345
'max_diff' => 0.014720374979892
'year' => 2036
]
11 => [
'items' => [
101 => 0.027284399344806
102 => 0.02780715359354
103 => 0.028525006831333
104 => 0.028376772976428
105 => 0.028872296528914
106 => 0.029385111275138
107 => 0.030118459394191
108 => 0.030310183748313
109 => 0.030627096815054
110 => 0.030953304461249
111 => 0.031058073565664
112 => 0.031258110293937
113 => 0.031257056001638
114 => 0.031859880146313
115 => 0.032524813845799
116 => 0.032775810924104
117 => 0.033352964865607
118 => 0.032364608966669
119 => 0.033114288269428
120 => 0.033790517766207
121 => 0.032984289082477
122 => 0.034095487495808
123 => 0.034138632812167
124 => 0.034790075864722
125 => 0.03412971352957
126 => 0.033737592482908
127 => 0.034869631252038
128 => 0.035417389153532
129 => 0.035252400015801
130 => 0.033996824531142
131 => 0.033266025744905
201 => 0.031353384360765
202 => 0.033618990700238
203 => 0.034722501459553
204 => 0.033993966704864
205 => 0.034361397258793
206 => 0.036365979221272
207 => 0.037129194245514
208 => 0.036970450855747
209 => 0.036997275875479
210 => 0.037409092849227
211 => 0.039235316102576
212 => 0.038141000797646
213 => 0.038977563845053
214 => 0.039421273868945
215 => 0.039833416467365
216 => 0.038821324504652
217 => 0.037504607731748
218 => 0.037087548257759
219 => 0.033921528281361
220 => 0.033756723192262
221 => 0.033664213101645
222 => 0.033080950066119
223 => 0.032622665089386
224 => 0.032258219860858
225 => 0.031301806748643
226 => 0.031624568098214
227 => 0.030100245216273
228 => 0.031075452977453
301 => 0.028642596851812
302 => 0.030668751725956
303 => 0.029566007745917
304 => 0.030306470670309
305 => 0.030303887264922
306 => 0.028940460257132
307 => 0.028154064013035
308 => 0.028655186306773
309 => 0.029192429184798
310 => 0.029279595034256
311 => 0.029976144449089
312 => 0.030170536418489
313 => 0.029581519675913
314 => 0.028592181316148
315 => 0.028821982052715
316 => 0.028149407108443
317 => 0.026970745388827
318 => 0.027817280813315
319 => 0.02810632522677
320 => 0.028233983706249
321 => 0.02707490527522
322 => 0.026710697667373
323 => 0.026516796592954
324 => 0.028442558845785
325 => 0.028548056449158
326 => 0.028008315794446
327 => 0.030447994734054
328 => 0.029895820252118
329 => 0.030512734434473
330 => 0.028801130044529
331 => 0.028866515637206
401 => 0.02805621468933
402 => 0.028509929075812
403 => 0.028189258371344
404 => 0.028473273437077
405 => 0.028643510896439
406 => 0.029453678881903
407 => 0.030678002542959
408 => 0.029332666801597
409 => 0.028746484753522
410 => 0.029110148799334
411 => 0.03007863407642
412 => 0.031545938847055
413 => 0.030677264890579
414 => 0.031062767641422
415 => 0.031146982842658
416 => 0.030506454827211
417 => 0.031569556028624
418 => 0.03213928059908
419 => 0.03272370012048
420 => 0.033231135215848
421 => 0.032490270111972
422 => 0.03328310197196
423 => 0.032644219446473
424 => 0.03207107577465
425 => 0.032071944997016
426 => 0.031712403599389
427 => 0.031015746836353
428 => 0.030887272640617
429 => 0.031555611631338
430 => 0.032091556209959
501 => 0.032135699172456
502 => 0.032432425629007
503 => 0.032608025289468
504 => 0.034329140678152
505 => 0.035021387525293
506 => 0.035867853866416
507 => 0.036197600210512
508 => 0.037190018485635
509 => 0.036388560128202
510 => 0.036215159571162
511 => 0.033807877453258
512 => 0.034202069765206
513 => 0.034833209690536
514 => 0.033818284718163
515 => 0.034462021009608
516 => 0.034589108189738
517 => 0.033783797955968
518 => 0.034213948947226
519 => 0.033071595445326
520 => 0.030702902727609
521 => 0.031572193060746
522 => 0.032212283345896
523 => 0.031298795586423
524 => 0.032936187038421
525 => 0.031979656754784
526 => 0.031676482576422
527 => 0.030493692017234
528 => 0.031051923631387
529 => 0.031806939882636
530 => 0.031340427619424
531 => 0.032308510612757
601 => 0.03367957430962
602 => 0.034656675948259
603 => 0.034731685679355
604 => 0.034103474786435
605 => 0.035110186751527
606 => 0.03511751954914
607 => 0.033981944339978
608 => 0.033286410847275
609 => 0.033128384174318
610 => 0.033523165786319
611 => 0.034002503543994
612 => 0.034758285588885
613 => 0.035214988849859
614 => 0.036405828737788
615 => 0.036728035867406
616 => 0.037082043815759
617 => 0.037555107606766
618 => 0.038123141978937
619 => 0.036880315110842
620 => 0.036929694939231
621 => 0.03577239176777
622 => 0.034535647355002
623 => 0.035474182201926
624 => 0.03670119166622
625 => 0.036419714339386
626 => 0.036388042390057
627 => 0.036441305823762
628 => 0.036229081111519
629 => 0.03526919660346
630 => 0.034787148612707
701 => 0.035409113504336
702 => 0.035739660163764
703 => 0.03625230920584
704 => 0.036189114390695
705 => 0.037509643268593
706 => 0.038022760859824
707 => 0.037891483422447
708 => 0.037915641630293
709 => 0.038844616519525
710 => 0.039877827654609
711 => 0.040845566226832
712 => 0.041829991467837
713 => 0.040643228417035
714 => 0.040040663329207
715 => 0.040662356690421
716 => 0.040332477441993
717 => 0.042228061452
718 => 0.042359307576063
719 => 0.044254754513771
720 => 0.046053759363278
721 => 0.044923836649822
722 => 0.045989302875775
723 => 0.047141691467878
724 => 0.049364836030356
725 => 0.048616159152882
726 => 0.048042684398
727 => 0.047500753525645
728 => 0.048628425641911
729 => 0.050079157804485
730 => 0.050391631617364
731 => 0.050897958568411
801 => 0.050365617690099
802 => 0.051006763642601
803 => 0.053270290588742
804 => 0.05265866562719
805 => 0.051790059858167
806 => 0.053576896990706
807 => 0.054223546402818
808 => 0.05876207062995
809 => 0.064492144943789
810 => 0.062119856552163
811 => 0.060647300594213
812 => 0.060993386173826
813 => 0.063085815337983
814 => 0.063757837175128
815 => 0.061931050161948
816 => 0.062576302217998
817 => 0.066131704486611
818 => 0.068039063732761
819 => 0.065448613683967
820 => 0.058301664738082
821 => 0.051711851412288
822 => 0.05345976664945
823 => 0.053261607305681
824 => 0.05708144349784
825 => 0.052644078574135
826 => 0.052718792419193
827 => 0.05661761877853
828 => 0.055577478748664
829 => 0.053892585111352
830 => 0.051724153000455
831 => 0.047715605687769
901 => 0.044165123546312
902 => 0.051128436652914
903 => 0.050828165929794
904 => 0.050393329425088
905 => 0.051361011012086
906 => 0.05605979811734
907 => 0.055951475866074
908 => 0.05526238497002
909 => 0.055785054341308
910 => 0.053800958643496
911 => 0.054312305281841
912 => 0.051710807552189
913 => 0.052886793174134
914 => 0.05388897008633
915 => 0.054090171938936
916 => 0.05454348998648
917 => 0.050669936903117
918 => 0.052409048516003
919 => 0.053430613655852
920 => 0.048815145189155
921 => 0.053339380684128
922 => 0.050602506961813
923 => 0.049673570913996
924 => 0.050924260924364
925 => 0.050436865810987
926 => 0.050017832113308
927 => 0.04978400411009
928 => 0.050702372820085
929 => 0.050659529822076
930 => 0.049156900364838
1001 => 0.047196781492884
1002 => 0.04785466172502
1003 => 0.047615647669025
1004 => 0.046749429896672
1005 => 0.047333156087705
1006 => 0.044762721359458
1007 => 0.040340422009079
1008 => 0.043261928418632
1009 => 0.043149453599852
1010 => 0.043092738695896
1011 => 0.045288170018168
1012 => 0.04507712995375
1013 => 0.044694090170321
1014 => 0.046742395070666
1015 => 0.045994736228451
1016 => 0.048298844609578
1017 => 0.049816479409775
1018 => 0.049431558134103
1019 => 0.050858900999054
1020 => 0.047869817956838
1021 => 0.048862671442265
1022 => 0.049067297169576
1023 => 0.046717119306145
1024 => 0.045111658718265
1025 => 0.045004592800644
1026 => 0.042220945387357
1027 => 0.043707947366718
1028 => 0.045016447572233
1029 => 0.044389777517509
1030 => 0.044191392499419
1031 => 0.045204898532381
1101 => 0.045283656631235
1102 => 0.04348796363097
1103 => 0.043861345067927
1104 => 0.045418407729535
1105 => 0.043822111083865
1106 => 0.040720767454905
1107 => 0.039951591355493
1108 => 0.039848969085103
1109 => 0.037762902499371
1110 => 0.040002991380414
1111 => 0.039025132553189
1112 => 0.042114176871846
1113 => 0.040349731323906
1114 => 0.040273669602887
1115 => 0.040158691155738
1116 => 0.038363127471073
1117 => 0.03875624180399
1118 => 0.040063013719608
1119 => 0.040529284660939
1120 => 0.040480648781713
1121 => 0.040056609824314
1122 => 0.040250732687581
1123 => 0.03962539530811
1124 => 0.039404575664147
1125 => 0.038707608126571
1126 => 0.037683258388531
1127 => 0.037825700502308
1128 => 0.035796195635562
1129 => 0.034690413670183
1130 => 0.034384347796138
1201 => 0.033975063717992
1202 => 0.034430577521828
1203 => 0.035790446303268
1204 => 0.034150156040596
1205 => 0.031337993438227
1206 => 0.031507009202321
1207 => 0.03188673744301
1208 => 0.03117911637864
1209 => 0.030509412427348
1210 => 0.031091665678197
1211 => 0.029900115311489
1212 => 0.032030730612128
1213 => 0.031973103439226
1214 => 0.032767265066938
1215 => 0.033263870630583
1216 => 0.032119355584341
1217 => 0.031831513145309
1218 => 0.031995481280291
1219 => 0.029285453252571
1220 => 0.032545797960365
1221 => 0.032573993556787
1222 => 0.03233256574218
1223 => 0.034068598647231
1224 => 0.03773216955913
1225 => 0.036353786815275
1226 => 0.035820035355016
1227 => 0.034805373438892
1228 => 0.036157350197464
1229 => 0.036053539476528
1230 => 0.035584068027412
1231 => 0.035300130230146
]
'min_raw' => 0.026516796592954
'max_raw' => 0.068039063732761
'avg_raw' => 0.047277930162857
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.026516'
'max' => '$0.068039'
'avg' => '$0.047277'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.016306126997523
'max_diff' => 0.03954812922335
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.00083233194498805
]
1 => [
'year' => 2028
'avg' => 0.0014285232452896
]
2 => [
'year' => 2029
'avg' => 0.0039024680398663
]
3 => [
'year' => 2030
'avg' => 0.0030107482810271
]
4 => [
'year' => 2031
'avg' => 0.0029569279298954
]
5 => [
'year' => 2032
'avg' => 0.005184425240574
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.00083233194498805
'min' => '$0.000832'
'max_raw' => 0.005184425240574
'max' => '$0.005184'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.005184425240574
]
1 => [
'year' => 2033
'avg' => 0.013334874826917
]
2 => [
'year' => 2034
'avg' => 0.0084522845093969
]
3 => [
'year' => 2035
'avg' => 0.0099694889617579
]
4 => [
'year' => 2036
'avg' => 0.019350802052421
]
5 => [
'year' => 2037
'avg' => 0.047277930162857
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.005184425240574
'min' => '$0.005184'
'max_raw' => 0.047277930162857
'max' => '$0.047277'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.047277930162857
]
]
]
]
'prediction_2025_max_price' => '$0.001423'
'last_price' => 0.00137991
'sma_50day_nextmonth' => '$0.001297'
'sma_200day_nextmonth' => '$0.0015015'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'augmenter'
'sma_200day_date_nextmonth' => '4 févr. 2026'
'sma_50day_date_nextmonth' => '4 févr. 2026'
'daily_sma3' => '$0.001365'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.001357'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.001348'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.00134'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.001341'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.001429'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.001543'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.001367'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.00136'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.001351'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.001346'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.001364'
'daily_ema50_action' => 'BUY'
'daily_ema100' => '$0.001453'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.001881'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.001523'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.002578'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.005497'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.080247'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.001365'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.001362'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.001391'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.001591'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.004612'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.088122'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.430227'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '61.50'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 120.68
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.001354'
'vwma_10_action' => 'BUY'
'hma_9' => '0.001368'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 223.18
'cci_20_action' => 'SELL'
'adx_14' => 9.83
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.000011'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 81.18
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '-0.000051'
'ichimoku_cloud_action' => 'NEUTRAL'
'sell_signals' => 14
'buy_signals' => 21
'sell_pct' => 40
'buy_pct' => 60
'overall_action' => 'bullish'
'overall_action_label' => 'Haussier'
'overall_action_dir' => 1
'last_updated' => 1767682741
'last_updated_date' => '6 janvier 2026'
]
Prévision du prix de Position pour 2026
La prévision du prix de Position pour 2026 suggère que le prix moyen pourrait varier entre $0.000476 à la baisse et $0.001423 à la hausse. Sur le marché des cryptomonnaies, comparé au prix moyen d'aujourd'hui, Position pourrait potentiellement gagner 3.13% d'ici 2026 si POSI atteint l'objectif de prix prévu.
Prévision du prix de Position de 2027 à 2032
La prévision du prix de POSI pour 2027-2032 se situe actuellement dans une fourchette de prix comprise entre $0.000832 à la baisse et $0.005184 à la hausse. Compte tenu de la volatilité des prix sur le marché, si Position atteint l'objectif de prix le plus élevé, il pourrait gagner 275.71% d'ici 2032 par rapport au prix actuel.
| Prévision du Prix de Position | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2027 | $0.000458 | $0.000832 | $0.0012057 |
| 2028 | $0.000828 | $0.001428 | $0.002028 |
| 2029 | $0.001819 | $0.0039024 | $0.005985 |
| 2030 | $0.001547 | $0.00301 | $0.004474 |
| 2031 | $0.001829 | $0.002956 | $0.004084 |
| 2032 | $0.002792 | $0.005184 | $0.007576 |
Prévision du prix de Position de 2032 à 2037
La prévision du prix de Position pour 2032-2037 est actuellement estimée entre $0.005184 à la baisse et $0.047277 à la hausse. Par rapport au prix actuel, Position pourrait potentiellement gagner 3326.16% d'ici 2037 s'il atteint l'objectif de prix le plus élevé. Veuillez noter que ces informations sont à titre général seulement et ne doivent pas être considérées comme un conseil en investissement à long terme.
| Prévision du Prix de Position | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2032 | $0.002792 | $0.005184 | $0.007576 |
| 2033 | $0.006489 | $0.013334 | $0.02018 |
| 2034 | $0.005217 | $0.008452 | $0.011687 |
| 2035 | $0.006168 | $0.009969 | $0.01377 |
| 2036 | $0.01021 | $0.01935 | $0.02849 |
| 2037 | $0.026516 | $0.047277 | $0.068039 |
Position Histogramme des prix potentiels
Prévision du prix de Position basée sur l'analyse technique
Au 6 janvier 2026, le sentiment global de prévision du prix pour Position est Haussier, avec 21 indicateurs techniques montrant des signaux haussiers et 14 indiquant des signaux baissiers. La prévision du prix de POSI a été mise à jour pour la dernière fois le 6 janvier 2026.
Moyennes Mobiles Simples sur 50 et 200 jours de Position et Indice de Force Relative sur 14 jours - RSI (14)
Selon nos indicateurs techniques, le SMA sur 200 jours de Position devrait augmenter au cours du prochain mois, atteignant $0.0015015 d'ici le 4 févr. 2026. Le SMA à court terme sur 50 jours pour Position devrait atteindre $0.001297 d'ici le 4 févr. 2026.
Le Relative Strength Index (RSI), un oscillateur de momentum, est un outil couramment utilisé pour identifier si une cryptomonnaie est survendue (en dessous de 30) ou surachetée (au-dessus de 70). Actuellement, le RSI est à 61.50, ce qui suggère que le marché de POSI est dans un état NEUTRAL.
Moyennes Mobiles et Oscillateurs Populaires de POSI pour le Samedi 19 Octobre 2024
Les moyennes mobiles (MA) sont des indicateurs largement utilisés sur les marchés financiers, conçus pour lisser les mouvements de prix sur une période donnée. En tant qu'indicateurs retardés, ils sont basés sur des données historiques de prix. Le tableau ci-dessous met en évidence deux types : la moyenne mobile simple (SMA) et la moyenne mobile exponentielle (EMA).
Moyenne Mobile Simple Quotidienne (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 3 | $0.001365 | BUY |
| SMA 5 | $0.001357 | BUY |
| SMA 10 | $0.001348 | BUY |
| SMA 21 | $0.00134 | BUY |
| SMA 50 | $0.001341 | BUY |
| SMA 100 | $0.001429 | SELL |
| SMA 200 | $0.001543 | SELL |
Moyenne Mobile Exponentielle Quotidienne (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 3 | $0.001367 | BUY |
| EMA 5 | $0.00136 | BUY |
| EMA 10 | $0.001351 | BUY |
| EMA 21 | $0.001346 | BUY |
| EMA 50 | $0.001364 | BUY |
| EMA 100 | $0.001453 | SELL |
| EMA 200 | $0.001881 | SELL |
Moyenne Mobile Simple Hebdomadaire (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 21 | $0.001523 | SELL |
| SMA 50 | $0.002578 | SELL |
| SMA 100 | $0.005497 | SELL |
| SMA 200 | $0.080247 | SELL |
Moyenne Mobile Exponentielle Hebdomadaire (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 21 | $0.001591 | SELL |
| EMA 50 | $0.004612 | SELL |
| EMA 100 | $0.088122 | SELL |
| EMA 200 | $0.430227 | SELL |
Oscillateurs de Position
Un oscillateur est un outil d'analyse technique qui établit des limites hautes et basses entre deux extrêmes, créant un indicateur de tendance qui fluctue à l'intérieur de ces limites. Les traders utilisent cet indicateur pour identifier les conditions de surachat ou de survente à court terme.
| Période | Valeur | Action |
|---|---|---|
| RSI (14) | 61.50 | NEUTRAL |
| Stoch RSI (14) | 120.68 | SELL |
| Stochastique Rapide (14) | 100 | SELL |
| Indice de Canal des Matières Premières (20) | 223.18 | SELL |
| Indice Directionnel Moyen (14) | 9.83 | NEUTRAL |
| Oscillateur Impressionnant (5, 34) | 0.000011 | BUY |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Plage de Pourcentage de Williams (14) | -0 | SELL |
| Oscillateur Ultime (7, 14, 28) | 81.18 | SELL |
| VWMA (10) | 0.001354 | BUY |
| Moyenne Mobile de Hull (9) | 0.001368 | BUY |
| Nuage Ichimoku B/L (9, 26, 52, 26) | -0.000051 | NEUTRAL |
Prévision du cours de Position basée sur les flux monétaires mondiaux
Définitions des flux monétaires mondiaux utilisés pour la prédiction du cours de Position
M0 : le total de toutes les devises physiques, plus les comptes à la banque centrale qui peuvent être échangés contre des devises physiques.
M1 : M0 plus le montant des comptes à vue, y compris les comptes de "chèques" et les comptes "courants".
M2 : M1 plus la plupart des comptes d'épargne, comptes du marché monétaire et comptes de certificats de dépôt (CD) de moins de 100 000 $.
Prédictions du cours de Position par des sociétés Internet ou des niches technologiques
| Comparaison | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Action Facebook | $0.001939 | $0.002724 | $0.003828 | $0.005379 | $0.007559 | $0.010622 |
| Action Amazon.com | $0.002879 | $0.0060077 | $0.012535 | $0.026156 | $0.054576 | $0.113876 |
| Action Apple | $0.001957 | $0.002776 | $0.003937 | $0.005585 | $0.007922 | $0.011237 |
| Action Netflix | $0.002177 | $0.003435 | $0.00542 | $0.008552 | $0.013494 | $0.021292 |
| Action Google | $0.001786 | $0.002314 | $0.002996 | $0.00388 | $0.005025 | $0.0065081 |
| Action Tesla | $0.003128 | $0.007091 | $0.016075 | $0.036441 | $0.08261 | $0.187272 |
| Action Kodak | $0.001034 | $0.000775 | $0.000581 | $0.000436 | $0.000327 | $0.000245 |
| Action Nokia | $0.000914 | $0.0006055 | $0.0004011 | $0.000265 | $0.000176 | $0.000116 |
Ce calcul montre la valeur potentielle des cryptomonnaies si l'on suppose que leur capitalisation se comportera comme celle de certaines sociétés Internet ou niches technologiques. En extrapolant les données, vous pourrez obtenir une potentielle image des cours futurs pour 2024, 2025, 2026, 2027, 2028, 2029 et 2030.
Aperçu des prévisions relatives à Position
Vous vous posez peut-être des questions telles que : "Devrais-je investir dans Position maintenant ?", "Devrais-je acheter POSI aujourd'hui ?", " Position sera-t-il un bon ou un mauvais investissement à court ou à long terme ?".
Nous mettons régulièrement à jour les prévisions de Position avec de nouvelles valeurs. Regardez nos prévisions similaires. Nous faisons une prévision des cours futurs pour une grande quantité de devises numériques comme Position en utilisant des méthodes d'analyse technique.
Si vous souhaitez trouver des cryptomonnaies ayant un bon rendement, vous devriez consulter un maximum d'informations disponibles à propos de Position afin de prendre une décision responsable concernant cet investissement.
Le cours de Position est de $0.001379 USD actuellement, mais ce cours peut subir une hausse ou une baisse, ce qui pourrait causer la perte de votre investissement, car les cryptomonnaies sont des actifs à haut risque.
Prévision à court terme de Position
basée sur l'historique des cours sur 4 heures
Prévision à long terme de Position
basée sur l'historique des cours sur 1 mois
Prévision du cours de Position basée sur le modèle de croissance du Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si Position présente 1 % de la précédente croissance annuelle moyenne du Bitcoin | $0.001415 | $0.001452 | $0.00149 | $0.001529 |
| Si Position présente 2 % de la précédente croissance annuelle moyenne du Bitcoin | $0.001451 | $0.001527 | $0.0016065 | $0.00169 |
| Si Position présente 5 % de la précédente croissance annuelle moyenne du Bitcoin | $0.001559 | $0.001761 | $0.00199 | $0.002249 |
| Si Position présente 10 % de la précédente croissance annuelle moyenne du Bitcoin | $0.001738 | $0.00219 | $0.002759 | $0.003477 |
| Si Position présente 20 % de la précédente croissance annuelle moyenne du Bitcoin | $0.002097 | $0.003187 | $0.004844 | $0.007363 |
| Si Position présente 50 % de la précédente croissance annuelle moyenne du Bitcoin | $0.003173 | $0.007297 | $0.016781 | $0.038592 |
| Si Position présente 100 % de la précédente croissance annuelle moyenne du Bitcoin | $0.004966 | $0.017876 | $0.064344 | $0.231597 |
Boîte à questions
Est-ce que POSI est un bon investissement ?
La décision d'acquérir Position dépend entièrement de votre tolérance individuelle au risque. Comme vous pouvez le discerner, la valeur de Position a connu une hausse de 0.9511% au cours des 24 heures précédentes, et Position a enregistré une déclin de sur une période de 30 jours précédents. Par conséquent, la détermination de si investir ou non dans Position dépendra de la mesure dans laquelle cet investissement s'aligne avec vos aspirations de trading.
Est-ce que Position peut monter ?
Il semble que la valeur moyenne de Position pourrait potentiellement s'envoler jusqu'à $0.001423 pour la fin de cette année. En regardant les perspectives de Position sur une période de cinq ans plus longue, la monnaie numérique pourrait potentiellement croître jusqu'à $0.004474. Cependant, compte tenu de l'imprévisibilité du marché, il est essentiel de mener des recherches approfondies avant d'investir des fonds dans un projet, un réseau ou un actif particulier.
Quel sera le prix de Position la semaine prochaine ?
Basé sur notre nouveau pronostic expérimental de Position, le prix de Position va augmenter de 0.86% durant la prochaine semaine et atteindre $0.001391 d'ici 13 janvier 2026.
Quel sera le prix de Position le mois prochain ?
Basé sur notre nouveau pronostic expérimental de Position, le prix de Position va diminuer de -11.62% durant le prochain mois et atteindre $0.001219 d'ici 5 février 2026.
Jusqu'où le prix de Position peut-il monter cette année en 2026 ?
Selon notre prédiction la plus récente sur la valeur de Position en 2026, POSI devrait fluctuer dans la fourchette de $0.000476 et $0.001423. Cependant, il est crucial de garder à l'esprit que le marché des cryptomonnaies est exceptionnellement instable, et cette prévision de prix de Position ne prend pas en compte les fluctuations de prix soudaines et extrêmes.
Où sera Position dans 5 ans ?
L'avenir de Position semble suivre une tendance haussière, avec un prix maximum de $0.004474 prévue après une période de cinq ans. Selon la prévision de Position pour 2030, la valeur de Position pourrait potentiellement atteindre son point le plus élevé d'environ $0.004474, tandis que son point le plus bas devrait être autour de $0.001547.
Combien vaudra Position en 2026 ?
Basé sur notre nouvelle simulation expérimentale de prédiction de prix de Position, il est attendu que la valeur de POSI en 2026 augmente de 3.13% jusqu'à $0.001423 si le meilleur scénario se produit. Le prix sera entre $0.001423 et $0.000476 durant 2026.
Combien vaudra Position en 2027 ?
Selon notre dernière simulation expérimentale pour la prédiction de prix de Position, le valeur de POSI pourrait diminuer de -12.62% jusqu'à $0.0012057 en 2027, en supposant les conditions les plus favorables. Il est prévu que le prix fluctue entre $0.0012057 et $0.000458 tout au long de l'année.
Combien vaudra Position en 2028 ?
Notre nouveau modèle expérimental de prédiction de prix de Position suggère que la valeur de POSI en 2028 pourrait augmenter de 47.02%, atteignant $0.002028 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.002028 et $0.000828 durant l'année.
Combien vaudra Position en 2029 ?
Basé sur notre modèle de prévision expérimental, la valeur de Position pourrait connaître un 333.75% croissance en 2029, atteignant potentiellement $0.005985 sous des conditions optimales. Le range de prix prévu pour 2029 se situe entre $0.005985 et $0.001819.
Combien vaudra Position en 2030 ?
En utilisant notre nouvelle simulation expérimentale pour les prédictions de prix de Position, il est prévu que la valeur de POSI en 2030 augmente de 224.23%, atteignant $0.004474 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.004474 et $0.001547 au cours de 2030.
Combien vaudra Position en 2031 ?
Notre simulation expérimentale indique que le prix de Position pourrait augmenter de 195.98% en 2031, atteignant potentiellement $0.004084 dans des conditions idéales. Il est probable que le prix fluctue entre $0.004084 et $0.001829 durant l'année.
Combien vaudra Position en 2032 ?
Basé sur les résultats de notre dernière prédiction expérimentale de prix de Position, POSI pourrait connaître une 449.04% hausse en valeur, atteignant $0.007576 si le scénario le plus positif se réalise en 2032. Il est prévu que le prix reste dans une fourchette de $0.007576 et $0.002792 tout au long de l'année.
Combien vaudra Position en 2033 ?
Selon notre prédiction expérimentale de prix de Position, la valeur de POSI est anticipée à augmenter de 1362.43% en 2033, avec le prix potentiel le plus élevé étant $0.02018. Tout au long de l'année, le prix de POSI pourrait osciller entre $0.02018 et $0.006489.
Combien vaudra Position en 2034 ?
Les résultats de notre nouvelle simulation de prédiction de prix de Position suggèrent que POSI pourrait augmenter de 746.96% en 2034, atteignant potentiellement $0.011687 dans les meilleures circonstances. La fourchette de prix prévue pour l'année est entre $0.011687 et $0.005217.
Combien vaudra Position en 2035 ?
Basé sur notre prédiction expérimentale pour le prix de Position, POSI pourrait augmenter de 897.93%, avec la valeur potentiellement atteignant $0.01377 en 2035. La fourchette de prix attendue pour l'année se situe entre $0.01377 et $0.006168.
Combien vaudra Position en 2036 ?
Notre récente simulation de prédiction de prix de Position suggère que la valeur de POSI pourrait augmenter de 1964.7% en 2036, pouvant atteindre $0.02849 si les conditions sont optimales. La fourchette de prix attendue pour 2036 est entre $0.02849 et $0.01021.
Combien vaudra Position en 2037 ?
Selon la simulation expérimentale, la valeur de Position pourrait augmenter de 4830.69% en 2037, avec un maximum de $0.068039 sous des conditions favorables. Il est prévu que le prix chute entre $0.068039 et $0.026516 au cours de l'année.
Prévisions liées
Prévision du cours de Primate
Prévision du cours de PlotX
Prévision du cours de Nyxia AI
Prévision du cours de Spartan Protocol Token
Prévision du cours de Playermon
Prévision du cours de Solrise Finance
Prévision du cours de AllianceBlock
Prévision du cours de Metaverse Face
Prévision du cours de Furucombo
Prévision du cours de Coinzix Token
Prévision du cours de Tranche Finance
Prévision du cours de Natus Vincere Fan Token
Prévision du cours de Arcona
Prévision du cours de UnFederalReserve
Prévision du cours de Coin
Prévision du cours de Chronicle
Prévision du cours de Bankless BED Index
Prévision du cours de Ties.DB
Prévision du cours de Ryo Currency
Prévision du cours de NUSA
Prévision du cours de Synthswap
Prévision du cours de pTokens BTC
Prévision du cours de Smartlands
Prévision du cours de Avatly
Prévision du cours de Rainmaker Games
Comment lire et prédire les mouvements de prix de Position ?
Les traders de Position utilisent des indicateurs et des modèles graphiques pour prédire la direction du marché. Ils identifient également des niveaux clés de support et de résistance pour évaluer quand une tendance baissière pourrait ralentir ou une tendance haussière pourrait s'arrêter.
Indicateurs de prédiction du prix de Position
Les moyennes mobiles sont des outils populaires pour la prédiction du prix de Position. Une moyenne mobile simple (SMA) calcule le prix de clôture moyen de POSI sur une période spécifique, comme une SMA de 12 jours. Une moyenne mobile exponentielle (EMA) donne plus de poids aux prix récents, réagissant plus rapidement aux changements de prix.
Les moyennes mobiles couramment utilisées sur le marché des cryptomonnaies incluent les moyennes sur 50 jours, 100 jours et 200 jours, qui aident à identifier les niveaux clés de résistance et de support. Un mouvement de prix de POSI au-dessus de ces moyennes est considéré comme haussier, tandis qu'une chute en dessous indique une faiblesse.
Les traders utilisent également le RSI et les niveaux de retracement de Fibonacci pour évaluer la direction future de POSI.
Comment lire les graphiques de Position et prédire les mouvements de prix ?
La plupart des traders préfèrent les graphiques en chandeliers aux simples graphiques linéaires parce qu'ils fournissent des informations plus détaillées. Les chandeliers peuvent représenter l'action des prix de Position dans différentes périodes, comme 5 minutes pour les tendances à court terme et hebdomadaire pour les tendances à long terme. Les options populaires incluent les graphiques de 1 heure, 4 heures et 1 jour.
Par exemple, un graphique en chandeliers de 1 heure montre les prix d'ouverture, de clôture, les plus hauts et les plus bas de POSI au sein de chaque heure. La couleur du chandelier est cruciale : le vert indique que le prix a clôturé plus haut qu'il n'a ouvert, tandis que le rouge signifie le contraire. Certains graphiques utilisent des chandeliers creux et pleins pour transmettre la même information.
Qu'est-ce qui affecte le prix de Position ?
L'action du prix de Position est déterminée par l'offre et la demande, influencée par des facteurs tels que les réductions de récompenses de bloc, les hard forks et les mises à jour de protocole. Les événements du monde réel, tels que les réglementations, l'adoption par les entreprises et les gouvernements et les piratages d'échanges de cryptomonnaies, impactent également le prix de POSI. La capitalisation boursière de Position peut changer rapidement.
Les traders surveillent souvent l'activité des « baleines » de POSI, de grands détenteurs de Position, car leurs actions peuvent influencer significativement les mouvements de prix sur le marché relativement petit de Position.
Modèles de prédiction de prix haussiers et baissiers
Les traders identifient souvent des modèles de chandeliers pour obtenir un avantage dans les prédictions de prix des cryptomonnaies. Certaines formations indiquent des tendances haussières, tandis que d'autres suggèrent des mouvements baissiers.
Modèles de chandeliers haussiers couramment suivis :
- Marteau
- Englobante haussière
- Ligne pénétrante
- Étoile du matin
- Trois soldats blancs
Modèles de chandeliers baissiers courants :
- Harami baissier
- Nuage sombre
- Étoile du soir
- Étoile filante
- Pendu


