Prédiction du prix de Arcona jusqu'à $0.007561 d'ici 2026
| Année | Prix min. | Prix max. |
|---|---|---|
| 2026 | $0.002533 | $0.007561 |
| 2027 | $0.002438 | $0.0064063 |
| 2028 | $0.004401 | $0.010779 |
| 2029 | $0.009667 | $0.0318025 |
| 2030 | $0.008222 | $0.023772 |
| 2031 | $0.00972 | $0.0217013 |
| 2032 | $0.014838 | $0.040254 |
| 2033 | $0.034481 | $0.107224 |
| 2034 | $0.027721 | $0.062098 |
| 2035 | $0.032774 | $0.073167 |
Calculateur de profit d’investissement
Si vous ouvrez une position short de $10,000.00 sur Arcona aujourd’hui et la fermez le Apr 06, 2026, notre prévision indique que vous pourriez gagner environ $3,955.22, soit un rendement de 39.55% sur les 90 prochains jours.
Prévision du prix à long terme de Arcona pour 2027, 2028, 2029, 2030, 2031, 2032 et 2037
[
'name' => 'Arcona'
'name_with_ticker' => 'Arcona <small>ARCONA</small>'
'name_lang' => 'Arcona'
'name_lang_with_ticker' => 'Arcona <small>ARCONA</small>'
'name_with_lang' => 'Arcona'
'name_with_lang_with_ticker' => 'Arcona <small>ARCONA</small>'
'image' => '/uploads/coins/arcona.png?1717120823'
'price_for_sd' => 0.007331
'ticker' => 'ARCONA'
'marketcap' => '$110.63K'
'low24h' => '$0.002961'
'high24h' => '$0.007335'
'volume24h' => '$1.51K'
'current_supply' => '15.18M'
'max_supply' => '15.18M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '0.0025 ETH'
'price' => '$0.007331'
'change_24h_pct' => '6.8296%'
'ath_price' => '$2.24'
'ath_days' => 1403
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '5 mars 2022'
'ath_pct' => '-99.68%'
'fdv' => '$110.63K'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.361515'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.007394'
'next_week_prediction_price_date' => '13 janvier 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.00648'
'next_month_prediction_price_date' => '5 février 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.002533'
'current_year_max_price_prediction' => '$0.007561'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.008222'
'grand_prediction_max_price' => '$0.023772'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0074708764063996
107 => 0.0074987699469729
108 => 0.0075616155181642
109 => 0.0070246069931716
110 => 0.0072657080551513
111 => 0.0074073323409499
112 => 0.0067674686653761
113 => 0.0073946842934024
114 => 0.0070152588694876
115 => 0.0068864761818323
116 => 0.0070598651049312
117 => 0.0069922952729733
118 => 0.0069342026992896
119 => 0.0069017860450169
120 => 0.0070291037339036
121 => 0.0070231642115395
122 => 0.0068148477612223
123 => 0.0065431074438482
124 => 0.0066343124139308
125 => 0.0066011767932487
126 => 0.0064810890293164
127 => 0.0065620136827548
128 => 0.0062056624640418
129 => 0.0055925787137706
130 => 0.0059976006184629
131 => 0.0059820077157113
201 => 0.0059741450670621
202 => 0.0062785078344551
203 => 0.0062492503772141
204 => 0.0061961478058317
205 => 0.0064801137589494
206 => 0.0063764623661804
207 => 0.006695891535355
208 => 0.0069062882455567
209 => 0.006852924834229
210 => 0.0070508039571093
211 => 0.0066364135922334
212 => 0.0067740574489894
213 => 0.0068024256571007
214 => 0.0064766096631668
215 => 0.0062540372590518
216 => 0.0062391942172085
217 => 0.0058532843408396
218 => 0.0060594342818402
219 => 0.0062408376988565
220 => 0.0061539595395795
221 => 0.0061264565097636
222 => 0.0062669635244137
223 => 0.0062778821228132
224 => 0.0060289369222031
225 => 0.0060807005124792
226 => 0.0062965632889112
227 => 0.0060752613243599
228 => 0.0056453077567074
301 => 0.0055386733273565
302 => 0.0055244463288186
303 => 0.0052352452991356
304 => 0.0055457991498181
305 => 0.0054102340716694
306 => 0.0058384825292221
307 => 0.0055938693070105
308 => 0.0055833245199032
309 => 0.0055673845276066
310 => 0.0053184572546143
311 => 0.0053729565072462
312 => 0.0055541203234649
313 => 0.0056187616140482
314 => 0.0056120189978499
315 => 0.0055532325219318
316 => 0.0055801446695717
317 => 0.00549345126521
318 => 0.0054628380197627
319 => 0.0053662141962946
320 => 0.005224203868809
321 => 0.0052439512758458
322 => 0.0049625916580733
323 => 0.0048092920054257
324 => 0.0047668606820298
325 => 0.0047101197430577
326 => 0.0047732697220685
327 => 0.0049617946016271
328 => 0.0047343935990951
329 => 0.0043445305305796
330 => 0.0043679619652918
331 => 0.0044206054422345
401 => 0.0043225046712232
402 => 0.0042296605244346
403 => 0.0043103809773835
404 => 0.0041451908557795
405 => 0.0044405678792252
406 => 0.0044325787585255
407 => 0.0045426770468735
408 => 0.0046115237660218
409 => 0.004452854367775
410 => 0.0044129494432036
411 => 0.0044356811018172
412 => 0.0040599774203301
413 => 0.0045119740406992
414 => 0.0045158829262417
415 => 0.0044824126750734
416 => 0.0047230869215899
417 => 0.0052309846499197
418 => 0.0050398930943832
419 => 0.0049658966683067
420 => 0.0048252294082441
421 => 0.005012660180282
422 => 0.0049982684213651
423 => 0.0049331834296299
424 => 0.004893819823551
425 => 0.0049663484747055
426 => 0.0048848327210339
427 => 0.0048701902517714
428 => 0.0047814728192041
429 => 0.0047498047321636
430 => 0.0047263589412617
501 => 0.0047005474292145
502 => 0.0047574811929626
503 => 0.0046284617940491
504 => 0.0044728770468871
505 => 0.0044599418586109
506 => 0.0044956570507149
507 => 0.0044798557368923
508 => 0.0044598662079995
509 => 0.004421700753519
510 => 0.0044103778784506
511 => 0.004447171729345
512 => 0.0044056336169
513 => 0.0044669253645107
514 => 0.0044502574005877
515 => 0.004357151509046
516 => 0.0042411070959691
517 => 0.0042400740572813
518 => 0.0042150724788349
519 => 0.0041832292096709
520 => 0.0041743711406647
521 => 0.0043035829259838
522 => 0.004571047454611
523 => 0.0045185377677577
524 => 0.0045564813979184
525 => 0.0047431265041177
526 => 0.0048024553707642
527 => 0.0047603451464997
528 => 0.0047027020742809
529 => 0.004705238076915
530 => 0.0049022219044312
531 => 0.0049145075441281
601 => 0.0049455493921447
602 => 0.0049854469392711
603 => 0.0047671398712972
604 => 0.0046949558336455
605 => 0.0046607510319881
606 => 0.0045554134818077
607 => 0.0046690109987183
608 => 0.0046028225903451
609 => 0.0046117536679527
610 => 0.0046059372919444
611 => 0.0046091134265465
612 => 0.0044404853153274
613 => 0.004501924536223
614 => 0.0043997699151511
615 => 0.0042629963449302
616 => 0.0042625378319638
617 => 0.0042960129695084
618 => 0.0042761006478146
619 => 0.0042225171021292
620 => 0.0042301283918866
621 => 0.0041634454846363
622 => 0.0042382249041598
623 => 0.0042403693103381
624 => 0.0042115751605591
625 => 0.0043267831739064
626 => 0.0043739839909756
627 => 0.0043550310647605
628 => 0.0043726542031477
629 => 0.0045207197823135
630 => 0.0045448609322717
701 => 0.0045555828364083
702 => 0.0045412169052454
703 => 0.004375360570127
704 => 0.0043827170038651
705 => 0.0043287403741655
706 => 0.0042831358099864
707 => 0.0042849597533891
708 => 0.0043084064275555
709 => 0.0044107994287695
710 => 0.0046262794634273
711 => 0.0046344567732287
712 => 0.004644367911257
713 => 0.0046040543319571
714 => 0.0045918953706913
715 => 0.0046079361790951
716 => 0.0046888591507106
717 => 0.0048970150040781
718 => 0.004823438823236
719 => 0.0047636202429299
720 => 0.0048160972648318
721 => 0.0048080188386385
722 => 0.0047398287917263
723 => 0.0047379149242235
724 => 0.0046070364225221
725 => 0.0045586536204024
726 => 0.0045182213295612
727 => 0.0044740703234743
728 => 0.0044478961271109
729 => 0.0044881115886846
730 => 0.0044973093405619
731 => 0.0044093775309849
801 => 0.0043973927502588
802 => 0.0044691997640993
803 => 0.0044376001745434
804 => 0.0044701011360337
805 => 0.0044776416378876
806 => 0.0044764274434166
807 => 0.0044434338427305
808 => 0.0044644629799245
809 => 0.0044147228013732
810 => 0.0043606378279319
811 => 0.0043261349844893
812 => 0.0042960266774475
813 => 0.0043127325160994
814 => 0.0042531792516712
815 => 0.0042341269638102
816 => 0.0044573387814137
817 => 0.0046222277510089
818 => 0.0046198302000878
819 => 0.0046052357254556
820 => 0.0045835512965331
821 => 0.004687272799671
822 => 0.0046511383019547
823 => 0.0046774291681816
824 => 0.0046841212970605
825 => 0.0047043763556368
826 => 0.0047116157980967
827 => 0.0046897331748668
828 => 0.0046162924185699
829 => 0.0044332850364156
830 => 0.0043480946060038
831 => 0.0043199803450091
901 => 0.0043210022449997
902 => 0.0042928136812972
903 => 0.0043011164766304
904 => 0.0042899263079151
905 => 0.0042687348355609
906 => 0.0043114240023975
907 => 0.0043163435311983
908 => 0.0043063793695611
909 => 0.0043087262903346
910 => 0.0042262272877274
911 => 0.0042324995077172
912 => 0.0041975749897788
913 => 0.0041910270636867
914 => 0.004102740923564
915 => 0.0039463292290561
916 => 0.004032996491064
917 => 0.0039283146258196
918 => 0.0038886700172624
919 => 0.0040763414281705
920 => 0.00405750442371
921 => 0.0040252636603226
922 => 0.0039775728517088
923 => 0.0039598838668876
924 => 0.0038524111947661
925 => 0.0038460611359527
926 => 0.0038993274942624
927 => 0.003874746902686
928 => 0.0038402264427146
929 => 0.0037151968359814
930 => 0.003574622162133
1001 => 0.0035788652279156
1002 => 0.003623579416182
1003 => 0.0037535919490963
1004 => 0.003702793803247
1005 => 0.0036659391655918
1006 => 0.0036590373998053
1007 => 0.0037454274484485
1008 => 0.0038676874665534
1009 => 0.0039250491316345
1010 => 0.0038682054636388
1011 => 0.0038029065185258
1012 => 0.0038068809627486
1013 => 0.0038333211595809
1014 => 0.0038360996504237
1015 => 0.0037935967499952
1016 => 0.0038055610675036
1017 => 0.0037873861751681
1018 => 0.0036758468944535
1019 => 0.0036738295025602
1020 => 0.003646455964259
1021 => 0.0036456271043981
1022 => 0.0035990578870986
1023 => 0.0035925425316806
1024 => 0.0035000765241828
1025 => 0.0035609379303307
1026 => 0.0035201152944539
1027 => 0.0034585859531014
1028 => 0.0034479782714604
1029 => 0.0034476593917411
1030 => 0.0035108362676012
1031 => 0.0035601996717529
1101 => 0.0035208254216827
1102 => 0.0035118606681795
1103 => 0.0036075807818861
1104 => 0.0035953995249087
1105 => 0.003584850634927
1106 => 0.0038567404228917
1107 => 0.0036415184398929
1108 => 0.0035476693708641
1109 => 0.0034315133264861
1110 => 0.0034693343202452
1111 => 0.0034773037593363
1112 => 0.003197969411308
1113 => 0.0030846435011018
1114 => 0.0030457543193158
1115 => 0.0030233730453857
1116 => 0.003033572472962
1117 => 0.0029315658619729
1118 => 0.0030001159915912
1119 => 0.0029117868888789
1120 => 0.0028969782273614
1121 => 0.0030549216048872
1122 => 0.0030768985031781
1123 => 0.002983138227382
1124 => 0.0030433475028529
1125 => 0.0030215147825956
1126 => 0.002913301037825
1127 => 0.0029091680687411
1128 => 0.0028548702155123
1129 => 0.0027699045893453
1130 => 0.0027310730182548
1201 => 0.0027108491988798
1202 => 0.0027191939409083
1203 => 0.0027149745839854
1204 => 0.0026874404259802
1205 => 0.0027165528096919
1206 => 0.0026421826993759
1207 => 0.0026125679222074
1208 => 0.002599191614418
1209 => 0.0025331838609287
1210 => 0.0026382315505113
1211 => 0.002658927268715
1212 => 0.0026796637638768
1213 => 0.0028601607968538
1214 => 0.0028511436751656
1215 => 0.0029326540637106
1216 => 0.0029294867198997
1217 => 0.002906238636706
1218 => 0.0028081587978354
1219 => 0.0028472516735042
1220 => 0.0027269298785774
1221 => 0.0028170831484233
1222 => 0.0027759409609562
1223 => 0.0028031729334554
1224 => 0.0027542073914939
1225 => 0.0027813069441531
1226 => 0.0026638349912617
1227 => 0.0025541413345267
1228 => 0.0025982852641543
1229 => 0.0026462747641302
1230 => 0.0027503282275752
1231 => 0.0026883548431698
]
'min_raw' => 0.0025331838609287
'max_raw' => 0.0075616155181642
'avg_raw' => 0.0050473996895464
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.002533'
'max' => '$0.007561'
'avg' => '$0.005047'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0047987561390713
'max_diff' => 0.00022967551816419
'year' => 2026
]
1 => [
'items' => [
101 => 0.0027106428156751
102 => 0.0026359818387439
103 => 0.0024819349174811
104 => 0.002482806806326
105 => 0.0024591100435843
106 => 0.0024386325807915
107 => 0.0026954732318717
108 => 0.0026635310368601
109 => 0.0026126353296001
110 => 0.0026807612562826
111 => 0.0026987748326013
112 => 0.0026992876537949
113 => 0.0027489905713178
114 => 0.0027755170273095
115 => 0.0027801924301503
116 => 0.0028584010447751
117 => 0.0028846155408008
118 => 0.0029925893399161
119 => 0.0027732664428486
120 => 0.002768749632113
121 => 0.0026817199277798
122 => 0.0026265243134066
123 => 0.0026854992187179
124 => 0.0027377429339463
125 => 0.0026833432856408
126 => 0.0026904467312702
127 => 0.0026174196480346
128 => 0.0026435233940477
129 => 0.0026660074566685
130 => 0.0026535930788414
131 => 0.0026350081543716
201 => 0.0027334595450771
202 => 0.0027279045317793
203 => 0.002819584730192
204 => 0.0028910560009685
205 => 0.0030191452952179
206 => 0.0028854774392227
207 => 0.0028806060512687
208 => 0.0029282246499149
209 => 0.0028846082506414
210 => 0.0029121723093953
211 => 0.003014704299214
212 => 0.003016870638591
213 => 0.0029805816628544
214 => 0.0029783734753829
215 => 0.002985343170131
216 => 0.0030261648899652
217 => 0.0030119005267304
218 => 0.0030284076089952
219 => 0.0030490499681327
220 => 0.0031344355177046
221 => 0.0031550216846349
222 => 0.003105007971698
223 => 0.0031095236499964
224 => 0.0030908171484508
225 => 0.0030727469023496
226 => 0.0031133661766376
227 => 0.0031875986987728
228 => 0.0031871369021053
301 => 0.0032043574043666
302 => 0.0032150856346131
303 => 0.0031690322168507
304 => 0.0031390531353186
305 => 0.0031505490227965
306 => 0.0031689311972216
307 => 0.0031445879313792
308 => 0.0029943300177021
309 => 0.0030399086701991
310 => 0.0030323221537413
311 => 0.0030215180317536
312 => 0.0030673477192886
313 => 0.0030629273341236
314 => 0.0029305196367393
315 => 0.0029389959479301
316 => 0.0029310351092972
317 => 0.0029567582075544
318 => 0.0028832191189195
319 => 0.0029058392472903
320 => 0.0029200263797539
321 => 0.0029283827097657
322 => 0.0029585715037573
323 => 0.0029550291972201
324 => 0.0029583513090093
325 => 0.0030031133209527
326 => 0.0032295042168949
327 => 0.0032418261738577
328 => 0.003181148351229
329 => 0.003205387944552
330 => 0.0031588532259881
331 => 0.0031900922943156
401 => 0.0032114652714789
402 => 0.0031148848974649
403 => 0.0031091660345172
404 => 0.0030624392506164
405 => 0.0030875475775444
406 => 0.0030475984240494
407 => 0.003057400548955
408 => 0.0030299929531851
409 => 0.0030793211687731
410 => 0.0031344777786302
411 => 0.0031484125164807
412 => 0.003111756220478
413 => 0.0030852146464044
414 => 0.0030386163856693
415 => 0.0031161103317818
416 => 0.0031387719232103
417 => 0.0031159913000894
418 => 0.0031107125319458
419 => 0.0031007092758522
420 => 0.0031128347700145
421 => 0.0031386485033166
422 => 0.0031264752233961
423 => 0.0031345158892492
424 => 0.0031038731625159
425 => 0.0031690474624483
426 => 0.0032725599357904
427 => 0.0032728927453181
428 => 0.0032607193997792
429 => 0.003255738329063
430 => 0.0032682289203264
501 => 0.0032750045536959
502 => 0.0033153968354589
503 => 0.0033587393630901
504 => 0.0035610000277187
505 => 0.0035042060424501
506 => 0.0036836637366494
507 => 0.0038255914730959
508 => 0.0038681493955084
509 => 0.0038289981093939
510 => 0.0036950636745068
511 => 0.0036884922121633
512 => 0.0038886468035444
513 => 0.0038320939638182
514 => 0.0038253671834824
515 => 0.0037538056057843
516 => 0.0037961073612777
517 => 0.003786855346822
518 => 0.0037722505893796
519 => 0.0038529593920951
520 => 0.0040040390658541
521 => 0.0039804918818825
522 => 0.0039629150013702
523 => 0.0038858982275182
524 => 0.0039322795276963
525 => 0.0039157640350782
526 => 0.0039867250723563
527 => 0.0039446893258522
528 => 0.003831665520436
529 => 0.0038496649339799
530 => 0.0038469443588325
531 => 0.0039029336025831
601 => 0.0038861270213477
602 => 0.0038436626041103
603 => 0.0040035226919536
604 => 0.0039931422670376
605 => 0.004007859336273
606 => 0.0040143382452909
607 => 0.0041116422637104
608 => 0.0041515046066756
609 => 0.0041605540564172
610 => 0.0041984201991699
611 => 0.0041596119122903
612 => 0.0043148727296484
613 => 0.0044181121134717
614 => 0.0045380299704325
615 => 0.0047132621903336
616 => 0.0047791511260051
617 => 0.004767248879525
618 => 0.0049001079487564
619 => 0.0051388527428739
620 => 0.0048155060283911
621 => 0.0051559909038886
622 => 0.005048197323393
623 => 0.0047926206831617
624 => 0.0047761645605814
625 => 0.0049492440286519
626 => 0.0053331176305508
627 => 0.0052369616471335
628 => 0.0053332749072927
629 => 0.0052209203733369
630 => 0.0052153410237277
701 => 0.0053278180983585
702 => 0.0055906269140396
703 => 0.0054657762969507
704 => 0.0052867723227264
705 => 0.0054189460716833
706 => 0.0053044449382338
707 => 0.0050464418377228
708 => 0.0052368881184651
709 => 0.0051095421141305
710 => 0.0051467084482813
711 => 0.0054143708081041
712 => 0.0053821649648234
713 => 0.0054238423082094
714 => 0.0053502828880192
715 => 0.0052815667903057
716 => 0.005153303090999
717 => 0.0051153305329583
718 => 0.0051258247818912
719 => 0.0051153253325297
720 => 0.0050435629715718
721 => 0.0050280658965555
722 => 0.0050022367592526
723 => 0.0050102422889398
724 => 0.0049616759542296
725 => 0.0050533306621444
726 => 0.0050703425835919
727 => 0.005137041236644
728 => 0.0051439661120681
729 => 0.0053297209114222
730 => 0.0052274102894205
731 => 0.0052960490877333
801 => 0.0052899093875588
802 => 0.0047981598039316
803 => 0.0048659185578121
804 => 0.0049713299149819
805 => 0.0049238422414586
806 => 0.004856705781501
807 => 0.004802489490456
808 => 0.0047203462656224
809 => 0.0048359612771548
810 => 0.0049879827230341
811 => 0.0051478216268092
812 => 0.0053398575966351
813 => 0.0052969974037151
814 => 0.0051442316479307
815 => 0.0051510846081398
816 => 0.0051934469116116
817 => 0.0051385838795945
818 => 0.005122403700399
819 => 0.0051912240034537
820 => 0.0051916979310578
821 => 0.0051285713823032
822 => 0.005058417775399
823 => 0.0050581238292246
824 => 0.0050456406724794
825 => 0.0052231410991904
826 => 0.0053207483865642
827 => 0.0053319389047595
828 => 0.0053199951755282
829 => 0.0053245918428797
830 => 0.0052677963129867
831 => 0.0053976140521309
901 => 0.0055167476472133
902 => 0.0054848172988131
903 => 0.0054369491673949
904 => 0.0053988198950787
905 => 0.0054758352540212
906 => 0.0054724058813209
907 => 0.0055157071191901
908 => 0.0055137427249203
909 => 0.0054991821472668
910 => 0.0054848178188172
911 => 0.0055417707574497
912 => 0.0055253692257597
913 => 0.0055089422179609
914 => 0.0054759953389712
915 => 0.0054804733670156
916 => 0.0054326135007051
917 => 0.0054104713366314
918 => 0.005077506315443
919 => 0.0049885271818356
920 => 0.0050165218286058
921 => 0.0050257383932032
922 => 0.0049870145602274
923 => 0.0050425345893782
924 => 0.0050338818516453
925 => 0.0050675445924817
926 => 0.0050465135734734
927 => 0.0050473766938295
928 => 0.0051092244364468
929 => 0.0051271790992477
930 => 0.0051180472128353
1001 => 0.0051244428730558
1002 => 0.0052718281633985
1003 => 0.0052508746882281
1004 => 0.005239743572162
1005 => 0.0052428269673837
1006 => 0.0052804870690425
1007 => 0.0052910298413417
1008 => 0.0052463593742827
1009 => 0.0052674262247846
1010 => 0.0053571262004403
1011 => 0.0053885161153409
1012 => 0.0054886976556896
1013 => 0.0054461387567646
1014 => 0.0055242574576474
1015 => 0.0057643677115337
1016 => 0.0059561843967038
1017 => 0.0057797818458616
1018 => 0.0061320287604689
1019 => 0.0064063035103096
1020 => 0.0063957763885822
1021 => 0.0063479502418582
1022 => 0.0060356957311361
1023 => 0.0057483544749172
1024 => 0.0059887276368985
1025 => 0.0059893403975216
1026 => 0.005968692129731
1027 => 0.0058404475118442
1028 => 0.0059642294950149
1029 => 0.0059740548593288
1030 => 0.0059685552680883
1031 => 0.0058702304202398
1101 => 0.0057201065510447
1102 => 0.0057494403957397
1103 => 0.0057974898317443
1104 => 0.0057065222252252
1105 => 0.0056774525630207
1106 => 0.0057314985957884
1107 => 0.0059056461743039
1108 => 0.0058727245833538
1109 => 0.0058718648675675
1110 => 0.0060127173945793
1111 => 0.0059118973831166
1112 => 0.0057498103894613
1113 => 0.0057088812858985
1114 => 0.0055636105413985
1115 => 0.0056639495620613
1116 => 0.0056675605847848
1117 => 0.0056126059286077
1118 => 0.0057542696569376
1119 => 0.0057529642007417
1120 => 0.0058874528269276
1121 => 0.0061445445685738
1122 => 0.0060685098898527
1123 => 0.0059800898310497
1124 => 0.0059897035430638
1125 => 0.0060951422351963
1126 => 0.0060313915950018
1127 => 0.006054316769701
1128 => 0.0060951075351987
1129 => 0.0061197176168012
1130 => 0.0059861625310489
1201 => 0.0059550244518818
1202 => 0.0058913268698866
1203 => 0.0058747093597158
1204 => 0.0059265897111572
1205 => 0.0059129210715122
1206 => 0.0056672570923075
1207 => 0.0056415838396191
1208 => 0.0056423712016261
1209 => 0.0055778145870446
1210 => 0.0054793502544449
1211 => 0.005738108641517
1212 => 0.0057173267217138
1213 => 0.0056943850906439
1214 => 0.0056971953095468
1215 => 0.0058095135552393
1216 => 0.0057443633005303
1217 => 0.005917575930591
1218 => 0.0058819686210988
1219 => 0.0058454481184768
1220 => 0.0058403998725727
1221 => 0.0058263425948461
1222 => 0.0057781349590389
1223 => 0.0057199213419719
1224 => 0.0056814836696071
1225 => 0.0052408683631221
1226 => 0.0053226440010644
1227 => 0.005416719418433
1228 => 0.0054491938755251
1229 => 0.0053936440695051
1230 => 0.0057803284039606
1231 => 0.0058509793580486
]
'min_raw' => 0.0024386325807915
'max_raw' => 0.0064063035103096
'avg_raw' => 0.0044224680455506
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.002438'
'max' => '$0.0064063'
'avg' => '$0.004422'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -9.4551280137176E-5
'max_diff' => -0.0011553120078546
'year' => 2027
]
2 => [
'items' => [
101 => 0.0056369730096684
102 => 0.0055969411597081
103 => 0.0057829528853794
104 => 0.005670765075791
105 => 0.0057212832395793
106 => 0.0056120906014271
107 => 0.0058339616121102
108 => 0.0058322713267444
109 => 0.0057459584924047
110 => 0.0058189095089439
111 => 0.0058062324745838
112 => 0.0057087854971933
113 => 0.0058370508551065
114 => 0.0058371144731238
115 => 0.0057540402466746
116 => 0.0056570277374685
117 => 0.0056396841921557
118 => 0.0056266181605399
119 => 0.0057180697967641
120 => 0.0058000650478409
121 => 0.0059526378817482
122 => 0.0059909983172336
123 => 0.0061407216507319
124 => 0.0060515686955304
125 => 0.0060910890458472
126 => 0.0061339939766109
127 => 0.0061545641781956
128 => 0.0061210461385712
129 => 0.0063536281040768
130 => 0.0063732651480928
131 => 0.0063798492790916
201 => 0.0063014239489307
202 => 0.0063710839977906
203 => 0.0063384923678274
204 => 0.0064232867347761
205 => 0.0064365835742225
206 => 0.0064253216242602
207 => 0.0064295422509768
208 => 0.006231074573688
209 => 0.0062207829776202
210 => 0.0060804563349771
211 => 0.0061376404790963
212 => 0.0060307374625727
213 => 0.0060646375103354
214 => 0.0060795803283777
215 => 0.0060717750482299
216 => 0.0061408735848064
217 => 0.006082125712818
218 => 0.0059270804195961
219 => 0.0057719928843878
220 => 0.0057700458867148
221 => 0.0057292140762168
222 => 0.0056997001559459
223 => 0.0057053855840526
224 => 0.0057254217742629
225 => 0.0056985356161471
226 => 0.0057042731411439
227 => 0.0057995542850203
228 => 0.0058186622389106
229 => 0.0057537259456316
301 => 0.0054929973578539
302 => 0.0054290139084251
303 => 0.0054750039430276
304 => 0.0054530236686252
305 => 0.0044010156916282
306 => 0.0046481693611687
307 => 0.0045013190432733
308 => 0.0045689944260178
309 => 0.004419098278152
310 => 0.0044906365766438
311 => 0.0044774260650727
312 => 0.0048748418518851
313 => 0.0048686367510016
314 => 0.0048716068044279
315 => 0.0047298384159568
316 => 0.0049556793082225
317 => 0.0050669366527284
318 => 0.0050463458792787
319 => 0.0050515281333452
320 => 0.0049624798388538
321 => 0.0048724689865685
322 => 0.0047726330988134
323 => 0.0049581158381738
324 => 0.0049374933238529
325 => 0.0049847939519586
326 => 0.0051050927670139
327 => 0.0051228072245015
328 => 0.0051466156350072
329 => 0.005138082014639
330 => 0.0053413874729514
331 => 0.0053167658404972
401 => 0.0053760968905848
402 => 0.005254048419097
403 => 0.0051159389886613
404 => 0.0051421890762496
405 => 0.005139660981725
406 => 0.0051074754368146
407 => 0.0050784197659824
408 => 0.0050300502604313
409 => 0.0051830985333348
410 => 0.0051768850529539
411 => 0.0052774740779401
412 => 0.0052596939907041
413 => 0.005140954216617
414 => 0.0051451950308779
415 => 0.0051737165448484
416 => 0.0052724298303533
417 => 0.0053017346544041
418 => 0.0052881594923084
419 => 0.0053202908940641
420 => 0.0053456862439091
421 => 0.005323480159011
422 => 0.0056378714926791
423 => 0.0055073142916528
424 => 0.0055709469630219
425 => 0.0055861229801979
426 => 0.0055472499313187
427 => 0.0055556801036811
428 => 0.0055684495177256
429 => 0.0056459828992965
430 => 0.005849452927003
501 => 0.0059395684172069
502 => 0.0062106853157054
503 => 0.0059320855802137
504 => 0.0059155546248699
505 => 0.0059643909652355
506 => 0.0061235652852923
507 => 0.0062525611212148
508 => 0.0062953564819386
509 => 0.0063010125953326
510 => 0.0063812995370322
511 => 0.0064273185147516
512 => 0.0063715505905537
513 => 0.006324293113941
514 => 0.0061550226985283
515 => 0.0061746162100203
516 => 0.0063095960742502
517 => 0.0065002630827492
518 => 0.0066638752115625
519 => 0.0066065839465105
520 => 0.0070436758575276
521 => 0.0070870117351446
522 => 0.0070810241180746
523 => 0.0071797496965294
524 => 0.0069837995284111
525 => 0.0069000270351848
526 => 0.0063345107167798
527 => 0.0064933977351407
528 => 0.0067243493474358
529 => 0.0066937820355244
530 => 0.0065260588013215
531 => 0.0066637479784493
601 => 0.0066182236305522
602 => 0.0065823166885588
603 => 0.0067468133507337
604 => 0.0065659425135219
605 => 0.0067225450224756
606 => 0.006521700684897
607 => 0.0066068456481834
608 => 0.0065585132490236
609 => 0.006589790234676
610 => 0.0064069456156455
611 => 0.0065056041337722
612 => 0.0064028410969324
613 => 0.0064027923738728
614 => 0.0064005238741389
615 => 0.0065214241312598
616 => 0.0065253666843041
617 => 0.0064360212116216
618 => 0.0064231451331694
619 => 0.0064707547438329
620 => 0.0064150163587227
621 => 0.0064410959983026
622 => 0.0064158062844379
623 => 0.006410113037164
624 => 0.0063647482742601
625 => 0.006345203887071
626 => 0.0063528677448846
627 => 0.006326707047177
628 => 0.0063109442805344
629 => 0.0063973882631106
630 => 0.0063512047303604
701 => 0.0063903099743515
702 => 0.0063457446133484
703 => 0.0061912616559082
704 => 0.0061024168734568
705 => 0.0058106128874299
706 => 0.0058933681358854
707 => 0.0059482349512279
708 => 0.0059301014690845
709 => 0.0059690592054546
710 => 0.0059714508940661
711 => 0.005958785336845
712 => 0.0059441202441415
713 => 0.0059369820880439
714 => 0.0059901840554138
715 => 0.0060210695881679
716 => 0.0059537415701708
717 => 0.0059379675575732
718 => 0.00600603990105
719 => 0.0060475639912468
720 => 0.0063541545428889
721 => 0.0063314413245488
722 => 0.0063884470453384
723 => 0.0063820290760016
724 => 0.0064417801531126
725 => 0.0065394479114999
726 => 0.0063408620503639
727 => 0.0063753296892747
728 => 0.0063668790201878
729 => 0.0064591412093941
730 => 0.0064594292418781
731 => 0.0064041134506107
801 => 0.006434101038453
802 => 0.0064173627895859
803 => 0.0064476110675987
804 => 0.0063311379756703
805 => 0.0064729896291458
806 => 0.0065534103759478
807 => 0.0065545270180952
808 => 0.0065926458138208
809 => 0.0066313767179698
810 => 0.006705717315733
811 => 0.0066293033990466
812 => 0.0064918422016727
813 => 0.0065017664561261
814 => 0.0064211730064009
815 => 0.0064225277968512
816 => 0.0064152958192507
817 => 0.0064369995284275
818 => 0.0063359007193291
819 => 0.0063596284077511
820 => 0.0063264095050112
821 => 0.0063752574778676
822 => 0.0063227051339333
823 => 0.0063668749450193
824 => 0.0063859371712315
825 => 0.0064562771963352
826 => 0.0063123158550337
827 => 0.0060187689347941
828 => 0.0060804760563409
829 => 0.0059892063765834
830 => 0.0059976537329331
831 => 0.0060147187371464
901 => 0.0059594054751693
902 => 0.0059699575024333
903 => 0.005969580509766
904 => 0.0059663317906267
905 => 0.005951942674887
906 => 0.0059310756102645
907 => 0.0060142035731766
908 => 0.00602832863393
909 => 0.0060597268942601
910 => 0.0061531468193589
911 => 0.006143811965848
912 => 0.0061590374992236
913 => 0.0061258002453523
914 => 0.0059991955138135
915 => 0.0060060707598498
916 => 0.0059203363316088
917 => 0.0060575344721727
918 => 0.0060250441415602
919 => 0.0060040974140522
920 => 0.0059983819053816
921 => 0.0060920334004053
922 => 0.0061200553955237
923 => 0.006102593968652
924 => 0.0060667800727071
925 => 0.0061355533403492
926 => 0.0061539541654591
927 => 0.0061580734316048
928 => 0.0062799264759007
929 => 0.0061648836631625
930 => 0.0061925756116158
1001 => 0.0064086202884332
1002 => 0.0062126975786873
1003 => 0.0063164822076375
1004 => 0.0063114024901195
1005 => 0.0063644951944101
1006 => 0.0063070473387078
1007 => 0.0063077594737298
1008 => 0.0063549021983285
1009 => 0.0062886987438649
1010 => 0.0062723058375184
1011 => 0.0062496591548089
1012 => 0.0062991073579927
1013 => 0.0063287493194515
1014 => 0.0065676417591877
1015 => 0.0067219771700761
1016 => 0.0067152770628588
1017 => 0.0067765035007502
1018 => 0.0067489204297102
1019 => 0.0066598474172756
1020 => 0.0068118841882048
1021 => 0.0067637733923941
1022 => 0.0067677395879462
1023 => 0.0067675919659496
1024 => 0.006799581439245
1025 => 0.006776913965623
1026 => 0.0067322340483458
1027 => 0.0067618946625589
1028 => 0.0068499760829081
1029 => 0.00712338351434
1030 => 0.0072763859351361
1031 => 0.0071141725764926
1101 => 0.0072260651791614
1102 => 0.007158969488971
1103 => 0.0071467762061395
1104 => 0.0072170530294139
1105 => 0.0072874528629644
1106 => 0.007282968697914
1107 => 0.0072318620338279
1108 => 0.0072029931760692
1109 => 0.0074215978387948
1110 => 0.0075826620304577
1111 => 0.0075716785323743
1112 => 0.0076201561208894
1113 => 0.007762487820125
1114 => 0.0077755008469442
1115 => 0.007773861504666
1116 => 0.0077416073599257
1117 => 0.0078817514019299
1118 => 0.0079986620273696
1119 => 0.0077341414573302
1120 => 0.0078348674275727
1121 => 0.0078800865608026
1122 => 0.0079464816642964
1123 => 0.0080585013330018
1124 => 0.0081801844049656
1125 => 0.0081973917255283
1126 => 0.0081851823081429
1127 => 0.0081049290511663
1128 => 0.00823807612049
1129 => 0.0083160705510169
1130 => 0.0083625144495248
1201 => 0.0084802884486131
1202 => 0.007880365818775
1203 => 0.0074557107632862
1204 => 0.0073893947442783
1205 => 0.0075242509766795
1206 => 0.0075598114897054
1207 => 0.0075454770914938
1208 => 0.0070674892185926
1209 => 0.0073868782370493
1210 => 0.0077305139659173
1211 => 0.0077437144137637
1212 => 0.0079157456447192
1213 => 0.0079717660653168
1214 => 0.0081102737548849
1215 => 0.0081016100611908
1216 => 0.008135334479462
1217 => 0.0081275818197269
1218 => 0.0083841381484168
1219 => 0.0086671578779453
1220 => 0.0086573578046593
1221 => 0.0086166703700022
1222 => 0.0086770981487066
1223 => 0.0089692048398174
1224 => 0.0089423123366142
1225 => 0.0089684361127781
1226 => 0.0093128463640094
1227 => 0.009760628682397
1228 => 0.0095525888388963
1229 => 0.010003975437441
1230 => 0.010288099374249
1231 => 0.010779462343995
]
'min_raw' => 0.0044010156916282
'max_raw' => 0.010779462343995
'avg_raw' => 0.0075902390178117
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.004401'
'max' => '$0.010779'
'avg' => '$0.00759'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0019623831108367
'max_diff' => 0.0043731588336856
'year' => 2028
]
3 => [
'items' => [
101 => 0.010717941280169
102 => 0.010909225278504
103 => 0.010607805736088
104 => 0.0099156855397601
105 => 0.0098061548693615
106 => 0.010025438045258
107 => 0.010564524335859
108 => 0.010008460299521
109 => 0.010120951329853
110 => 0.01008855390555
111 => 0.010086827584489
112 => 0.01015271423793
113 => 0.010057142210697
114 => 0.009667764578674
115 => 0.0098462140528135
116 => 0.0097773061410007
117 => 0.0098537646065821
118 => 0.010266379411456
119 => 0.010083952570713
120 => 0.009891780713143
121 => 0.010132806868884
122 => 0.010439715990716
123 => 0.010420510169441
124 => 0.010383242848756
125 => 0.010593316784203
126 => 0.010940297379676
127 => 0.011034084840351
128 => 0.011103316826421
129 => 0.011112862747616
130 => 0.011211191668682
131 => 0.01068245227803
201 => 0.011521575269986
202 => 0.011666468630392
203 => 0.01163923468385
204 => 0.011800277555897
205 => 0.011752894657677
206 => 0.011684244272306
207 => 0.011939531479301
208 => 0.011646865297097
209 => 0.011231462497105
210 => 0.011003564305294
211 => 0.011303679028294
212 => 0.011486948617069
213 => 0.011608078157115
214 => 0.011644731882744
215 => 0.010723496811798
216 => 0.010227002202598
217 => 0.010545249554773
218 => 0.010933533288686
219 => 0.010680295342283
220 => 0.010690221790339
221 => 0.010329171028531
222 => 0.010965478269676
223 => 0.010872773656827
224 => 0.011353725352277
225 => 0.01123894237028
226 => 0.011631139807482
227 => 0.011527861078299
228 => 0.011956565308901
301 => 0.012127587033192
302 => 0.012414759125682
303 => 0.012626004085919
304 => 0.012750051167042
305 => 0.01274260384558
306 => 0.013234140181
307 => 0.012944298376974
308 => 0.01258018876065
309 => 0.012573603166442
310 => 0.012762180696209
311 => 0.013157387464883
312 => 0.013259858829976
313 => 0.013317126343662
314 => 0.013229419152955
315 => 0.012914816647835
316 => 0.012778972881194
317 => 0.012894715706145
318 => 0.012753172177125
319 => 0.012997516018313
320 => 0.013333052301292
321 => 0.013263765385711
322 => 0.013495381156424
323 => 0.013735079112421
324 => 0.014077857955007
325 => 0.014167473037522
326 => 0.014315603361164
327 => 0.014468078122468
328 => 0.014517048906489
329 => 0.014610549327927
330 => 0.014610056534552
331 => 0.014891826347859
401 => 0.015202627177621
402 => 0.0153199472958
403 => 0.015589718438484
404 => 0.015127744810546
405 => 0.015478157114108
406 => 0.015794237783309
407 => 0.015417393379011
408 => 0.015936785596851
409 => 0.015956952419702
410 => 0.016261447501592
411 => 0.015952783401897
412 => 0.015769499644789
413 => 0.016298632984007
414 => 0.016554663939311
415 => 0.016477545331925
416 => 0.015890668921898
417 => 0.015549081678949
418 => 0.014655081976893
419 => 0.015714063241891
420 => 0.016229862125165
421 => 0.015889333127398
422 => 0.016061076146483
423 => 0.016998050370748
424 => 0.01735478949076
425 => 0.017280590247592
426 => 0.017293128698264
427 => 0.01748561865215
428 => 0.018339225113831
429 => 0.017827724335549
430 => 0.018218747514977
501 => 0.018426144799407
502 => 0.018618786955562
503 => 0.018145718705225
504 => 0.017530263862289
505 => 0.017335323478494
506 => 0.015855474229663
507 => 0.015778441649602
508 => 0.015735200928087
509 => 0.015462574295461
510 => 0.015248364440935
511 => 0.015078016811515
512 => 0.014630973761807
513 => 0.014781837667997
514 => 0.014069344351899
515 => 0.014525172326326
516 => 0.013388015790081
517 => 0.014335073544255
518 => 0.01381963306609
519 => 0.01416573748445
520 => 0.01416452995874
521 => 0.013527241992032
522 => 0.013159667592696
523 => 0.013393900306163
524 => 0.013645016368415
525 => 0.01368575910466
526 => 0.014011337634169
527 => 0.014102199603469
528 => 0.013826883594553
529 => 0.013364450748439
530 => 0.013471863351621
531 => 0.013157490879721
601 => 0.012606565214879
602 => 0.013002249645608
603 => 0.013137353707275
604 => 0.013197023357616
605 => 0.012655251240484
606 => 0.012485014678836
607 => 0.012394382161838
608 => 0.0132945147714
609 => 0.013343826067686
610 => 0.013091542503971
611 => 0.014231888134473
612 => 0.013973792797612
613 => 0.014262148523779
614 => 0.013462116783728
615 => 0.013492679073583
616 => 0.013113931226766
617 => 0.013326004713043
618 => 0.01317611800839
619 => 0.013308871271103
620 => 0.013388443029411
621 => 0.013767128727434
622 => 0.014339397526635
623 => 0.013710565712204
624 => 0.01343657468562
625 => 0.013606557177529
626 => 0.014059242953514
627 => 0.01474508507669
628 => 0.01433905273591
629 => 0.014519242993872
630 => 0.01455860654913
701 => 0.014259213333174
702 => 0.014756124131612
703 => 0.015022422665391
704 => 0.015295589858331
705 => 0.01553277327799
706 => 0.015186480874396
707 => 0.015557063385308
708 => 0.015258439298132
709 => 0.014990542620744
710 => 0.014990948909421
711 => 0.01482289341035
712 => 0.014497264704543
713 => 0.014437213775152
714 => 0.014749606293442
715 => 0.015000115509429
716 => 0.015020748648316
717 => 0.015159443421915
718 => 0.015241521560261
719 => 0.016045998895869
720 => 0.016369566335236
721 => 0.016765218475276
722 => 0.016919347281555
723 => 0.017383219730217
724 => 0.017008605054044
725 => 0.016927554812417
726 => 0.015802351983483
727 => 0.015986603883686
728 => 0.016281608953575
729 => 0.015807216508428
730 => 0.016108109324785
731 => 0.016167511940515
801 => 0.015791096834671
802 => 0.015992156406639
803 => 0.0154582017935
804 => 0.014351036278072
805 => 0.014757356723331
806 => 0.015056545337024
807 => 0.014629566295593
808 => 0.015394909700987
809 => 0.014947811883451
810 => 0.014806103339772
811 => 0.014253247788137
812 => 0.014514174327147
813 => 0.014867081207266
814 => 0.014649025785181
815 => 0.015101523527194
816 => 0.015742381006625
817 => 0.01619909421019
818 => 0.01623415497893
819 => 0.015940518986445
820 => 0.016411072538361
821 => 0.016414500007272
822 => 0.015883713678443
823 => 0.015558610007466
824 => 0.015484745769396
825 => 0.015669273118032
826 => 0.015893323384903
827 => 0.01624658820943
828 => 0.016460058744276
829 => 0.017016676683128
830 => 0.017167281537895
831 => 0.017332750612745
901 => 0.017553868325517
902 => 0.017819376833117
903 => 0.017238459333895
904 => 0.017261540269105
905 => 0.016720597937179
906 => 0.016142523476539
907 => 0.016581209934166
908 => 0.017154734121499
909 => 0.017023167039237
910 => 0.017008363054811
911 => 0.017033259250333
912 => 0.016934061966886
913 => 0.016485396330281
914 => 0.016260079256373
915 => 0.01655079576623
916 => 0.016705298652916
917 => 0.016944919156098
918 => 0.016915380871306
919 => 0.017532617554139
920 => 0.01777245706482
921 => 0.017711095854677
922 => 0.017722387794083
923 => 0.018156605771942
924 => 0.01863954546706
925 => 0.019091882221043
926 => 0.019552018595511
927 => 0.018997306236662
928 => 0.01871565751074
929 => 0.019006247102864
930 => 0.018852056174938
1001 => 0.019738082982797
1002 => 0.019799429556589
1003 => 0.020685392294624
1004 => 0.021526276431501
1005 => 0.020998132171133
1006 => 0.02149614842052
1007 => 0.022034793598093
1008 => 0.023073927537661
1009 => 0.022723983783987
1010 => 0.022455932352991
1011 => 0.022202625045914
1012 => 0.022729717340538
1013 => 0.023407813157066
1014 => 0.023553868501226
1015 => 0.023790533956199
1016 => 0.023541709168369
1017 => 0.023841391218159
1018 => 0.024899400540882
1019 => 0.024613517082575
1020 => 0.024207516613721
1021 => 0.025042713361715
1022 => 0.025344967818069
1023 => 0.027466347884649
1024 => 0.030144677848545
1025 => 0.029035831656629
1026 => 0.028347535043064
1027 => 0.028509301073866
1028 => 0.02948733650949
1029 => 0.029801450450119
1030 => 0.02894758047792
1031 => 0.029249181787315
1101 => 0.030911034654865
1102 => 0.031802565399683
1103 => 0.030591746899667
1104 => 0.027251146679881
1105 => 0.024170960713648
1106 => 0.024987964734475
1107 => 0.0248953418331
1108 => 0.026680795418916
1109 => 0.024606698856643
1110 => 0.024641621323434
1111 => 0.026463996198577
1112 => 0.025977817825304
1113 => 0.025190271125622
1114 => 0.024176710676107
1115 => 0.022303050442184
1116 => 0.020643497322118
1117 => 0.023898263162826
1118 => 0.023757911741367
1119 => 0.02355466208418
1120 => 0.024006972202341
1121 => 0.026203261745668
1122 => 0.026152630162999
1123 => 0.025830537866518
1124 => 0.026074842034607
1125 => 0.025147443423763
1126 => 0.025386455162251
1127 => 0.024170472796454
1128 => 0.024720147609704
1129 => 0.02518858140411
1130 => 0.025282626423618
1201 => 0.025494514654627
1202 => 0.023683952919876
1203 => 0.02449684198348
1204 => 0.024974338150942
1205 => 0.022816993094889
1206 => 0.024931694375577
1207 => 0.023652435068211
1208 => 0.023218235245461
1209 => 0.023802828105317
1210 => 0.023575011699296
1211 => 0.023379148531227
1212 => 0.023269853518088
1213 => 0.023699113995207
1214 => 0.023679088480872
1215 => 0.022976735024438
1216 => 0.022060543572108
1217 => 0.022368047496469
1218 => 0.022256328437884
1219 => 0.021851444157526
1220 => 0.022124287276573
1221 => 0.020922824263034
1222 => 0.018855769594855
1223 => 0.020221329224251
1224 => 0.020168756663962
1225 => 0.020142247195089
1226 => 0.021168427515284
1227 => 0.021069783955505
1228 => 0.020890744928587
1229 => 0.021848155965393
1230 => 0.021498688057963
1231 => 0.022575665803667
]
'min_raw' => 0.009667764578674
'max_raw' => 0.031802565399683
'avg_raw' => 0.020735164989179
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.009667'
'max' => '$0.0318025'
'avg' => '$0.020735'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.0052667488870459
'max_diff' => 0.021023103055688
'year' => 2029
]
4 => [
'items' => [
101 => 0.023285033001542
102 => 0.023105114534536
103 => 0.023772277812806
104 => 0.022375131765816
105 => 0.022839207638856
106 => 0.022934853033108
107 => 0.021836341661814
108 => 0.021085923261831
109 => 0.021035878909948
110 => 0.019734756818403
111 => 0.020429805737416
112 => 0.021041420023068
113 => 0.020748504243427
114 => 0.020655775858202
115 => 0.021129505067982
116 => 0.021166317884798
117 => 0.020326981760142
118 => 0.020501506318776
119 => 0.021229302740574
120 => 0.02048316771628
121 => 0.01903354924454
122 => 0.018674023821005
123 => 0.018626056502138
124 => 0.01765099503919
125 => 0.018698049028944
126 => 0.018240981903114
127 => 0.019684851477105
128 => 0.018860120920069
129 => 0.018824568434123
130 => 0.018770825637201
131 => 0.01793154995676
201 => 0.018115297992024
202 => 0.01872610444686
203 => 0.018944047071172
204 => 0.018921313869905
205 => 0.018723111162007
206 => 0.01881384734672
207 => 0.018521554481175
208 => 0.018418339786801
209 => 0.018092565819918
210 => 0.017613768085956
211 => 0.017680347847501
212 => 0.016731724252279
213 => 0.016214863770338
214 => 0.016071803601048
215 => 0.015880497563778
216 => 0.016093412127004
217 => 0.016729036920822
218 => 0.015962338564155
219 => 0.014647888009285
220 => 0.014726888727347
221 => 0.01490437988531
222 => 0.014573626286668
223 => 0.014260595763599
224 => 0.014532750406438
225 => 0.013975800378244
226 => 0.014971684635357
227 => 0.014944748757135
228 => 0.015315952823117
301 => 0.01554807434345
302 => 0.015013109389317
303 => 0.014878567150052
304 => 0.014955208524141
305 => 0.013688497331215
306 => 0.015212435494185
307 => 0.015225614574701
308 => 0.015112767286069
309 => 0.015924217311539
310 => 0.01763662996289
311 => 0.016992351441812
312 => 0.01674286732503
313 => 0.016268597836654
314 => 0.016900533770579
315 => 0.01685201095059
316 => 0.016632572356866
317 => 0.016499855210691
318 => 0.016744390621847
319 => 0.016469554567095
320 => 0.016420186459672
321 => 0.016121069441718
322 => 0.016014298275266
323 => 0.015935249154307
324 => 0.015848223839338
325 => 0.016040179998803
326 => 0.01560518208752
327 => 0.015080617249883
328 => 0.015037005359504
329 => 0.015157421623237
330 => 0.015104146390472
331 => 0.015036750298186
401 => 0.014908072803778
402 => 0.014869896939947
403 => 0.014993949977102
404 => 0.014853901330895
405 => 0.015060550737217
406 => 0.015004353533131
407 => 0.014690440519353
408 => 0.014299188678701
409 => 0.014295705716641
410 => 0.014211411149355
411 => 0.014104049344142
412 => 0.014074183746037
413 => 0.014509830301519
414 => 0.015411605633563
415 => 0.015234565558228
416 => 0.015362495156454
417 => 0.01599178216315
418 => 0.016191813579258
419 => 0.016049836018108
420 => 0.015855488375612
421 => 0.015864038685551
422 => 0.016528183412994
423 => 0.016569605304988
424 => 0.016674265062848
425 => 0.016808782428542
426 => 0.016072744907156
427 => 0.015829371384484
428 => 0.015714047507594
429 => 0.015358894602727
430 => 0.015741896562117
501 => 0.01551873772216
502 => 0.015548849473861
503 => 0.015529239156063
504 => 0.015539947715625
505 => 0.014971406265411
506 => 0.01517855288821
507 => 0.014834131451058
508 => 0.014372989809832
509 => 0.014371443901354
510 => 0.014484307664745
511 => 0.01441717188192
512 => 0.014236511216558
513 => 0.014262173211379
514 => 0.014037347133933
515 => 0.014289471167788
516 => 0.014296701182936
517 => 0.014199619696613
518 => 0.01458805155718
519 => 0.014747192407384
520 => 0.014683291293399
521 => 0.01474270893488
522 => 0.015241922372646
523 => 0.015323315945211
524 => 0.015359465593587
525 => 0.015311029853674
526 => 0.014751833640103
527 => 0.014776636370061
528 => 0.014594650394501
529 => 0.014440891422362
530 => 0.014447040974888
531 => 0.014526093073834
601 => 0.014871318226278
602 => 0.015597824207463
603 => 0.01562539457838
604 => 0.015658810672216
605 => 0.015522890625002
606 => 0.015481895838183
607 => 0.01553597854365
608 => 0.015808815992313
609 => 0.016510627984919
610 => 0.016262560754285
611 => 0.016060878234383
612 => 0.016237808177554
613 => 0.016210571199625
614 => 0.015980663695584
615 => 0.015974210957676
616 => 0.015532944951545
617 => 0.015369818956219
618 => 0.015233498664755
619 => 0.015084640465208
620 => 0.014996392334745
621 => 0.015131981571195
622 => 0.015162992433816
623 => 0.014866524198624
624 => 0.014826116673655
625 => 0.015068219034224
626 => 0.014961678811823
627 => 0.015071258072633
628 => 0.015096681401094
629 => 0.015092587659663
630 => 0.01498134743141
701 => 0.015052248635667
702 => 0.014884546150933
703 => 0.014702194886883
704 => 0.014585866141305
705 => 0.014484353882019
706 => 0.014540678783398
707 => 0.014339890794502
708 => 0.01427565467579
709 => 0.015028228902992
710 => 0.015584163576163
711 => 0.01557608006584
712 => 0.015526873775664
713 => 0.015453763209594
714 => 0.015803467499027
715 => 0.015681637517146
716 => 0.0157702790082
717 => 0.015792841987945
718 => 0.015861133332098
719 => 0.015885541617793
720 => 0.015811762825778
721 => 0.015564152188453
722 => 0.014947130022352
723 => 0.014659904538413
724 => 0.014565115344594
725 => 0.014568560751759
726 => 0.014473521041174
727 => 0.014501514495322
728 => 0.014463786060226
729 => 0.014392337531642
730 => 0.014536267038094
731 => 0.014552853572917
801 => 0.014519258706281
802 => 0.014527171513526
803 => 0.01424902036634
804 => 0.014270167593948
805 => 0.014152417143366
806 => 0.014130340353385
807 => 0.01383267746802
808 => 0.013305324519671
809 => 0.013597529244446
810 => 0.01324458702712
811 => 0.013110922461471
812 => 0.013743669726147
813 => 0.013680159450451
814 => 0.013571457465712
815 => 0.013410664574805
816 => 0.013351024927474
817 => 0.012988673309914
818 => 0.012967263643278
819 => 0.013146854889258
820 => 0.013063979708596
821 => 0.012947591567661
822 => 0.012526045519271
823 => 0.012052088191781
824 => 0.012066393984308
825 => 0.012217150991893
826 => 0.012655497323799
827 => 0.012484227828455
828 => 0.012359969844492
829 => 0.012336700059277
830 => 0.012627970139838
831 => 0.0130401783268
901 => 0.013233577185485
902 => 0.013041924790139
903 => 0.012821764837664
904 => 0.012835164953848
905 => 0.012924309923464
906 => 0.012933677799328
907 => 0.012790376303076
908 => 0.012830714834878
909 => 0.012769436916438
910 => 0.012393374444085
911 => 0.012386572666467
912 => 0.012294280870925
913 => 0.012291486312035
914 => 0.01213447494455
915 => 0.012112507968871
916 => 0.011800752368822
917 => 0.012005950848857
918 => 0.011868314481853
919 => 0.011660864011641
920 => 0.011625099472384
921 => 0.011624024347147
922 => 0.011837029594978
923 => 0.012003461758518
924 => 0.011870708725384
925 => 0.011840483433049
926 => 0.012163210479376
927 => 0.012122140521008
928 => 0.012086574201935
929 => 0.013003269604797
930 => 0.012277633662797
1001 => 0.011961214974234
1002 => 0.011569586760858
1003 => 0.011697102881894
1004 => 0.011723972402198
1005 => 0.010782177145319
1006 => 0.010400090926896
1007 => 0.010268973335349
1008 => 0.010193513307683
1009 => 0.010227901389858
1010 => 0.0098839789790341
1011 => 0.010115100527059
1012 => 0.0098172927903237
1013 => 0.0097673643541097
1014 => 0.010299881478692
1015 => 0.010373978125658
1016 => 0.010057858809678
1017 => 0.010260858585606
1018 => 0.010187248044947
1019 => 0.00982239784921
1020 => 0.0098084632553892
1021 => 0.009625394252273
1022 => 0.0093389267115404
1023 => 0.0092080033584753
1024 => 0.0091398173394703
1025 => 0.0091679522198308
1026 => 0.009153726363379
1027 => 0.0090608930272909
1028 => 0.0091590474615367
1029 => 0.008908303442251
1030 => 0.0088084551533896
1031 => 0.0087633559977736
1101 => 0.0085408062483703
1102 => 0.0088949818679937
1103 => 0.0089647589268465
1104 => 0.0090346734680603
1105 => 0.0096432318166425
1106 => 0.0096128299613154
1107 => 0.0098876479271686
1108 => 0.0098769690063733
1109 => 0.0097985864707561
1110 => 0.0094679034462884
1111 => 0.0095997078059831
1112 => 0.0091940344737882
1113 => 0.0094979925173738
1114 => 0.0093592787598727
1115 => 0.0094510932564292
1116 => 0.0092860025130412
1117 => 0.0093773705468619
1118 => 0.0089813056560587
1119 => 0.00861146583381
1120 => 0.0087603001745803
1121 => 0.0089221001242691
1122 => 0.0092729236410547
1123 => 0.0090639760486884
1124 => 0.0091391215040865
1125 => 0.0088873968077
1126 => 0.0083680168574498
1127 => 0.0083709564915638
1128 => 0.008291061201525
1129 => 0.0082220200060283
1130 => 0.0090879761931869
1201 => 0.0089802808525722
1202 => 0.0088086824221204
1203 => 0.0090383737403307
1204 => 0.0090991077705569
1205 => 0.0091008367830155
1206 => 0.0092684136395906
1207 => 0.0093578494379846
1208 => 0.0093736128850885
1209 => 0.0096372986896472
1210 => 0.0097256826932354
1211 => 0.010089723895443
1212 => 0.0093502614353441
1213 => 0.0093350326925951
1214 => 0.009041605968216
1215 => 0.0088555101007218
1216 => 0.0090543481114753
1217 => 0.0092304914449077
1218 => 0.0090470792325834
1219 => 0.0090710289954698
1220 => 0.0088248130857528
1221 => 0.0089128236879413
1222 => 0.0089886302748545
1223 => 0.0089467743332662
1224 => 0.0088841139628582
1225 => 0.0092160497002783
1226 => 0.0091973205851064
1227 => 0.0095064267749617
1228 => 0.0097473971543496
1229 => 0.01017925915282
1230 => 0.0097285886439409
1231 => 0.0097121644193444
]
'min_raw' => 0.0082220200060283
'max_raw' => 0.023772277812806
'avg_raw' => 0.015997148909417
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.008222'
'max' => '$0.023772'
'avg' => '$0.015997'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0014457445726458
'max_diff' => -0.0080302875868771
'year' => 2030
]
5 => [
'items' => [
101 => 0.0098727138493046
102 => 0.0097256581139542
103 => 0.0098185922625042
104 => 0.010164286024733
105 => 0.010171589989191
106 => 0.01004923917388
107 => 0.010041794115649
108 => 0.010065292928101
109 => 0.010202926206603
110 => 0.010154832910051
111 => 0.010210487690395
112 => 0.01028008484543
113 => 0.01056796818724
114 => 0.010637375886326
115 => 0.010468751161314
116 => 0.010483976085971
117 => 0.010420905809964
118 => 0.01035998071361
119 => 0.010496931432819
120 => 0.010747211563947
121 => 0.010745654584241
122 => 0.010803714709912
123 => 0.010839885687209
124 => 0.010684613373876
125 => 0.010583536807418
126 => 0.010622295994667
127 => 0.010684272779144
128 => 0.010602197758763
129 => 0.010095592712128
130 => 0.010249264321222
131 => 0.010223685851311
201 => 0.01018725899971
202 => 0.01034177699096
203 => 0.010326873353755
204 => 0.0098804515576138
205 => 0.0099090300325908
206 => 0.009882189509332
207 => 0.0099689167310355
208 => 0.0097209745593677
209 => 0.0097972399014567
210 => 0.0098450728090718
211 => 0.0098732467591267
212 => 0.0099750303857837
213 => 0.0099630872519777
214 => 0.0099742879838174
215 => 0.010125206232269
216 => 0.010888498944045
217 => 0.010930043282237
218 => 0.010725463766854
219 => 0.010807189248097
220 => 0.010650294195508
221 => 0.010755618895416
222 => 0.010827679380136
223 => 0.010502051906121
224 => 0.010482770360415
225 => 0.010325227746134
226 => 0.010409882223379
227 => 0.01027519086321
228 => 0.010308239411691
301 => 0.010215832789016
302 => 0.010382146311857
303 => 0.010568110672902
304 => 0.010615092614457
305 => 0.010491503353223
306 => 0.01040201658316
307 => 0.010244907293705
308 => 0.010506183543478
309 => 0.010582588681161
310 => 0.010505782219817
311 => 0.010487984484469
312 => 0.010454257808144
313 => 0.010495139758287
314 => 0.010582172562373
315 => 0.010541129499209
316 => 0.010568239165514
317 => 0.010464925072926
318 => 0.010684664775473
319 => 0.011033664306356
320 => 0.011034786396915
321 => 0.010993743112514
322 => 0.010976949084827
323 => 0.011019061985337
324 => 0.011041906506302
325 => 0.011178091904365
326 => 0.011324224262352
327 => 0.012006160214536
328 => 0.011814675327974
329 => 0.012419729473303
330 => 0.01289824874581
331 => 0.013041735752523
401 => 0.012909734457932
402 => 0.012458165159707
403 => 0.012436009015611
404 => 0.0131108441948
405 => 0.01292017234727
406 => 0.012897492537719
407 => 0.01265621768224
408 => 0.0127988410043
409 => 0.012767647191608
410 => 0.012718406232219
411 => 0.012990521595483
412 => 0.013499897263607
413 => 0.013420506288835
414 => 0.013361244609009
415 => 0.013101577178828
416 => 0.013257954970617
417 => 0.013202271834181
418 => 0.013441521925705
419 => 0.013299795471524
420 => 0.012918727820494
421 => 0.012979414099936
422 => 0.012970241490882
423 => 0.013159013135231
424 => 0.013102348573198
425 => 0.012959176825711
426 => 0.01349815627295
427 => 0.013463157945607
428 => 0.013512777572048
429 => 0.013534621666144
430 => 0.013862688957795
501 => 0.013997087630202
502 => 0.014027598481819
503 => 0.014155266825839
504 => 0.014024421977116
505 => 0.014547894662803
506 => 0.014895973453307
507 => 0.015300284880448
508 => 0.015891092544167
509 => 0.016113241691002
510 => 0.016073112436007
511 => 0.016521056063844
512 => 0.01732600080584
513 => 0.016235814782615
514 => 0.01738378331225
515 => 0.017020349729701
516 => 0.01615865524337
517 => 0.016103172277161
518 => 0.016686721787783
519 => 0.017980978437784
520 => 0.017656781826297
521 => 0.017981508707301
522 => 0.017602697551726
523 => 0.01758388638498
524 => 0.017963110694997
525 => 0.018849188965791
526 => 0.018428246393484
527 => 0.017824721996728
528 => 0.018270355019413
529 => 0.017884306453774
530 => 0.0170144309872
531 => 0.017656533919258
601 => 0.01722717797463
602 => 0.017352486865089
603 => 0.018254929198821
604 => 0.01814634494966
605 => 0.018286863022705
606 => 0.018038852301779
607 => 0.017807171180733
608 => 0.017374721163435
609 => 0.017246694032842
610 => 0.017282076125804
611 => 0.017246676499234
612 => 0.017004724688976
613 => 0.016952475218588
614 => 0.016865390478838
615 => 0.016892381681106
616 => 0.016728636892838
617 => 0.0170376571397
618 => 0.017095014020595
619 => 0.017319893186111
620 => 0.017343240887083
621 => 0.017969526162091
622 => 0.017624578756913
623 => 0.017855999257632
624 => 0.017835298829834
625 => 0.016177330775775
626 => 0.016405784145249
627 => 0.016761185895532
628 => 0.016601077888765
629 => 0.0163747226267
630 => 0.016191928616181
701 => 0.015914976998598
702 => 0.016304781081962
703 => 0.016817332000542
704 => 0.017356240024216
705 => 0.018003702704007
706 => 0.017859196571174
707 => 0.017344136159783
708 => 0.017367241393586
709 => 0.017510068857383
710 => 0.017325094314522
711 => 0.017270541710701
712 => 0.01750257416733
713 => 0.017504172047336
714 => 0.017291336480855
715 => 0.017054808697209
716 => 0.017053817637159
717 => 0.017011729802647
718 => 0.017610184883987
719 => 0.01793927466809
720 => 0.017977004281483
721 => 0.017936735164495
722 => 0.0179522331494
723 => 0.017760743055028
724 => 0.018198432626138
725 => 0.0186000998596
726 => 0.018492444460664
727 => 0.018331053713541
728 => 0.018202498209826
729 => 0.018462160869541
730 => 0.018450598500051
731 => 0.018596591646723
801 => 0.018589968554293
802 => 0.018540876550147
803 => 0.018492446213894
804 => 0.01868446702282
805 => 0.018629168113609
806 => 0.018573783309918
807 => 0.018462700607127
808 => 0.018477798591324
809 => 0.01831643571059
810 => 0.018241781858499
811 => 0.017119167042687
812 => 0.016819167681404
813 => 0.016913553587514
814 => 0.016944627878534
815 => 0.016814067772044
816 => 0.017001257426611
817 => 0.01697208411723
818 => 0.017085580398217
819 => 0.017014672849292
820 => 0.017017582919833
821 => 0.017226106902139
822 => 0.017286642301327
823 => 0.01725585350872
824 => 0.017277416923684
825 => 0.017774336720187
826 => 0.017703690615725
827 => 0.017666161280758
828 => 0.017676557163024
829 => 0.017803530825111
830 => 0.01783907651799
831 => 0.017688466919509
901 => 0.017759495276816
902 => 0.018061925007392
903 => 0.018167758297053
904 => 0.01850552735479
905 => 0.018362037055697
906 => 0.018625419709797
907 => 0.019434968194737
908 => 0.020081691541002
909 => 0.019486938024804
910 => 0.020674563090497
911 => 0.021599299558837
912 => 0.021563806632953
913 => 0.021402557440158
914 => 0.020349769556344
915 => 0.019380978449476
916 => 0.020191413347415
917 => 0.020193479312637
918 => 0.020123862236165
919 => 0.019691476553206
920 => 0.020108816151648
921 => 0.020141943053418
922 => 0.020123400797581
923 => 0.019791891708239
924 => 0.019285738601933
925 => 0.019384639707346
926 => 0.01954664173554
927 => 0.019239938099006
928 => 0.019141927703304
929 => 0.019324147676154
930 => 0.019911298395714
1001 => 0.019800300953314
1002 => 0.019797402361517
1003 => 0.020272296490347
1004 => 0.019932374782672
1005 => 0.019385887167011
1006 => 0.01924789183677
1007 => 0.018758101379209
1008 => 0.01909640139282
1009 => 0.019108576208046
1010 => 0.018923292747933
1011 => 0.019400921898643
1012 => 0.019396520461935
1013 => 0.019849958254816
1014 => 0.020716761011349
1015 => 0.020460404783469
1016 => 0.020162290381923
1017 => 0.020194703683187
1018 => 0.020550197595206
1019 => 0.020335257860862
1020 => 0.020412551687945
1021 => 0.020550080601741
1022 => 0.020633055210085
1023 => 0.020182764913953
1024 => 0.02007778070605
1025 => 0.01986301986113
1026 => 0.019806992765391
1027 => 0.019981910992446
1028 => 0.01993582621957
1029 => 0.019107552961969
1030 => 0.019020993798081
1031 => 0.01902364844406
1101 => 0.018805991310799
1102 => 0.018474011938879
1103 => 0.019346433906826
1104 => 0.019276366213263
1105 => 0.019199016902377
1106 => 0.019208491751611
1107 => 0.019587180558773
1108 => 0.019367521926376
1109 => 0.019951520401946
1110 => 0.01983146787197
1111 => 0.019708336447599
1112 => 0.019691315934076
1113 => 0.019643920840773
1114 => 0.0194813854309
1115 => 0.019285114156613
1116 => 0.019155518860603
1117 => 0.01766995359201
1118 => 0.017945665864726
1119 => 0.01826284770252
1120 => 0.0183723376019
1121 => 0.01818504755254
1122 => 0.019488780783595
1123 => 0.019726985407995
1124 => 0.019005448062985
1125 => 0.018870477885909
1126 => 0.019497629405934
1127 => 0.019119380373203
1128 => 0.019289705889481
1129 => 0.018921555286365
1130 => 0.019669608889422
1201 => 0.0196639099743
1202 => 0.019372900227153
1203 => 0.019618859672693
1204 => 0.019576118166265
1205 => 0.019247568878463
1206 => 0.019680024487868
1207 => 0.019680238980455
1208 => 0.019400148425925
1209 => 0.019073063977939
1210 => 0.019014589004029
1211 => 0.018970535966195
1212 => 0.019278871542675
1213 => 0.019555324256406
1214 => 0.020069734218219
1215 => 0.020199069104698
1216 => 0.020703871776937
1217 => 0.020403286364015
1218 => 0.020536531984331
1219 => 0.020681188953927
1220 => 0.020750542824735
1221 => 0.020637534413987
1222 => 0.021421700749043
1223 => 0.021487908413958
1224 => 0.02151010727131
1225 => 0.021245690795191
1226 => 0.021480554513431
1227 => 0.021370669557535
1228 => 0.021656559685856
1229 => 0.021701390908406
1230 => 0.021663420457823
1231 => 0.021677650595473
]
'min_raw' => 0.0097209745593677
'max_raw' => 0.021701390908406
'avg_raw' => 0.015711182733887
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.00972'
'max' => '$0.0217013'
'avg' => '$0.015711'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0014989545533395
'max_diff' => -0.0020708869044005
'year' => 2031
]
6 => [
'items' => [
101 => 0.021008502964923
102 => 0.020973804130244
103 => 0.02050068305728
104 => 0.020693483391647
105 => 0.020333052407708
106 => 0.020447348785565
107 => 0.020497729539869
108 => 0.020471413492904
109 => 0.020704384033277
110 => 0.020506311481223
111 => 0.019983565450208
112 => 0.019460676997388
113 => 0.019454112558798
114 => 0.019316445258918
115 => 0.019216937016129
116 => 0.019236105833934
117 => 0.01930365924811
118 => 0.019213010688891
119 => 0.019232355154999
120 => 0.019553602183896
121 => 0.019618025984512
122 => 0.019399088738014
123 => 0.018520024100833
124 => 0.018304299433902
125 => 0.018459358046486
126 => 0.018385250016724
127 => 0.014838331673428
128 => 0.015671627526002
129 => 0.015176511426456
130 => 0.015404683704323
131 => 0.014899298376379
201 => 0.015140494744388
202 => 0.015095954582298
203 => 0.01643586965422
204 => 0.016414948723365
205 => 0.016424962465854
206 => 0.015946980446171
207 => 0.016708418782153
208 => 0.017083530686894
209 => 0.017014107456606
210 => 0.017031579788005
211 => 0.016731347245974
212 => 0.016427869373137
213 => 0.016091265707251
214 => 0.016716633712996
215 => 0.016647103466145
216 => 0.016806580836228
217 => 0.017212176690182
218 => 0.017271902220386
219 => 0.017352173938656
220 => 0.017323402241786
221 => 0.01800886078882
222 => 0.017925847235973
223 => 0.018125886013705
224 => 0.017714391070932
225 => 0.017248745483725
226 => 0.017337249486752
227 => 0.017328725839556
228 => 0.017220210027768
229 => 0.017122246804955
301 => 0.016959165639939
302 => 0.017475178577522
303 => 0.017454229394606
304 => 0.017793372315249
305 => 0.017733425509767
306 => 0.017333086071285
307 => 0.01734738427265
308 => 0.01744354654831
309 => 0.017776365282332
310 => 0.017875168542617
311 => 0.017829398935823
312 => 0.017937732200186
313 => 0.018023354395234
314 => 0.017948485029621
315 => 0.019008477361185
316 => 0.018568294642712
317 => 0.018782836636924
318 => 0.018834003638389
319 => 0.018702940440063
320 => 0.018731363354759
321 => 0.018774416325742
322 => 0.019035825534916
323 => 0.019721838939152
324 => 0.020025669606037
325 => 0.020939759158102
326 => 0.02000044069868
327 => 0.019944705428584
328 => 0.020109360559771
329 => 0.020646027893038
330 => 0.021080946360053
331 => 0.02122523390661
401 => 0.021244303887815
402 => 0.02151499691721
403 => 0.021670153113534
404 => 0.021482127663508
405 => 0.021322795781697
406 => 0.02075208875805
407 => 0.020818149650021
408 => 0.021273243686265
409 => 0.021916090817365
410 => 0.022467720532693
411 => 0.022274559032621
412 => 0.023748244927399
413 => 0.023894354864399
414 => 0.023874167195405
415 => 0.024207027375965
416 => 0.02354636770335
417 => 0.023263922893629
418 => 0.021357245143038
419 => 0.021892943818579
420 => 0.022671613303959
421 => 0.022568553477708
422 => 0.022003062883531
423 => 0.022467291557368
424 => 0.022313803040025
425 => 0.022192740278152
426 => 0.022747352259464
427 => 0.022137533603806
428 => 0.022665529896382
429 => 0.021988369189732
430 => 0.022275441378083
501 => 0.022112485319855
502 => 0.022217937860672
503 => 0.021601464461807
504 => 0.021934098543789
505 => 0.021587625790397
506 => 0.0215874615172
507 => 0.021579813111966
508 => 0.021987436769836
509 => 0.022000729362684
510 => 0.021699494863634
511 => 0.021656082266153
512 => 0.021816601392502
513 => 0.021628675535573
514 => 0.021716604861239
515 => 0.021631338825273
516 => 0.021612143644599
517 => 0.021459193179202
518 => 0.021393297913248
519 => 0.02141913714494
520 => 0.021330934526138
521 => 0.021277789257881
522 => 0.021569241180463
523 => 0.021413530175364
524 => 0.021545376235721
525 => 0.021395121009645
526 => 0.02087427093298
527 => 0.020574724546
528 => 0.019590887034007
529 => 0.019869902131961
530 => 0.020054889430567
531 => 0.019993751129482
601 => 0.020125099857595
602 => 0.020133163602731
603 => 0.02009046079228
604 => 0.020041016408346
605 => 0.020016949616692
606 => 0.020196323764123
607 => 0.020300456494163
608 => 0.020073455380793
609 => 0.020020272196014
610 => 0.020249782854705
611 => 0.020389784223923
612 => 0.021423475674253
613 => 0.021346896472833
614 => 0.021539095240488
615 => 0.02151745660878
616 => 0.021718911536947
617 => 0.022048205203295
618 => 0.021378659107653
619 => 0.021494869158694
620 => 0.021466377137861
621 => 0.021777445550311
622 => 0.02177841667194
623 => 0.021591915619657
624 => 0.021693020865734
625 => 0.021636586691051
626 => 0.021738570872239
627 => 0.02134587371091
628 => 0.021824136464369
629 => 0.022095280627009
630 => 0.022099045463971
701 => 0.022227565645129
702 => 0.022358149592573
703 => 0.022608794108226
704 => 0.022351159253069
705 => 0.021887699228888
706 => 0.021921159545667
707 => 0.021649433103064
708 => 0.021654000873655
709 => 0.021629617756255
710 => 0.021702793327049
711 => 0.02136193163368
712 => 0.021441931191809
713 => 0.021329931341952
714 => 0.021494625692894
715 => 0.021317441796232
716 => 0.021466363398146
717 => 0.021530633024703
718 => 0.021767789330323
719 => 0.021282413617066
720 => 0.020292699680686
721 => 0.020500749549235
722 => 0.020193027451687
723 => 0.020221508303396
724 => 0.020279044156541
725 => 0.020092551631937
726 => 0.020128128528576
727 => 0.020126857471478
728 => 0.020115904188081
729 => 0.020067390279749
730 => 0.019997035514482
731 => 0.020277307245249
801 => 0.02032493087376
802 => 0.020430792300619
803 => 0.020745764100461
804 => 0.02071429099011
805 => 0.020765624938899
806 => 0.020653563216921
807 => 0.020226706525277
808 => 0.020249886897303
809 => 0.019960827286702
810 => 0.020423400396481
811 => 0.020313856978419
812 => 0.020243233624172
813 => 0.020223963387645
814 => 0.020539715941656
815 => 0.020634194054631
816 => 0.020575321634815
817 => 0.02045457258419
818 => 0.020686446457642
819 => 0.020748486124205
820 => 0.020762374517613
821 => 0.021173210563964
822 => 0.020785335688785
823 => 0.020878701026385
824 => 0.021607110738033
825 => 0.020946543643238
826 => 0.021296460765755
827 => 0.021279334143488
828 => 0.021458339902818
829 => 0.021264650446437
830 => 0.021267051459383
831 => 0.021425996446768
901 => 0.021202786877866
902 => 0.021147517049602
903 => 0.021071162177707
904 => 0.021237880247104
905 => 0.021337820189698
906 => 0.022143262729206
907 => 0.022663615342371
908 => 0.022641025463101
909 => 0.022847454673145
910 => 0.022754456423345
911 => 0.022454140543043
912 => 0.022966743131099
913 => 0.022804534224035
914 => 0.022817906529249
915 => 0.022817408811381
916 => 0.02292526355403
917 => 0.022848838584122
918 => 0.022698197123569
919 => 0.022798199955227
920 => 0.023095172613582
921 => 0.024016984857352
922 => 0.024532843201354
923 => 0.023985929537313
924 => 0.024363183259303
925 => 0.024136965455354
926 => 0.02409585495098
927 => 0.024332798167221
928 => 0.024570156121195
929 => 0.024555037445654
930 => 0.024382727759534
1001 => 0.024285394390041
1002 => 0.025022435272911
1003 => 0.025565474440245
1004 => 0.025528442809614
1005 => 0.025691888383889
1006 => 0.026171769645144
1007 => 0.026215643973606
1008 => 0.026210116816659
1009 => 0.026101369715755
1010 => 0.026573875137917
1011 => 0.026968047474026
1012 => 0.026076197903902
1013 => 0.026415802545037
1014 => 0.02656826200982
1015 => 0.026792117736808
1016 => 0.027169799870812
1017 => 0.027580062843578
1018 => 0.027638078526232
1019 => 0.027596913623083
1020 => 0.027326334164083
1021 => 0.02777524880434
1022 => 0.028038212472258
1023 => 0.028194801318687
1024 => 0.028591884579331
1025 => 0.026569203547572
1026 => 0.025137449379522
1027 => 0.0249138602914
1028 => 0.025368537494303
1029 => 0.025488432246725
1030 => 0.025440102822359
1031 => 0.023828533336825
1101 => 0.024905375711581
1102 => 0.02606396756334
1103 => 0.02610847379488
1104 => 0.026688489100883
1105 => 0.026877365860149
1106 => 0.027344354205826
1107 => 0.027315143957656
1108 => 0.027428848188421
1109 => 0.027402709554851
1110 => 0.02826770712922
1111 => 0.029221927907132
1112 => 0.029188886275829
1113 => 0.029051705749176
1114 => 0.029255442224011
1115 => 0.030240300327329
1116 => 0.030149630375205
1117 => 0.030237708510445
1118 => 0.031398911718427
1119 => 0.032908641068034
1120 => 0.032207220210793
1121 => 0.033729101642592
1122 => 0.03468704533244
1123 => 0.036343709890807
1124 => 0.036136287328855
1125 => 0.036781214684261
1126 => 0.035764957652565
1127 => 0.033431426088358
1128 => 0.033062135785922
1129 => 0.033801464323318
1130 => 0.035619031389883
1201 => 0.03374422266822
1202 => 0.034123494030857
1203 => 0.034014263852902
1204 => 0.034008443440917
1205 => 0.034230584893051
1206 => 0.033908357130612
1207 => 0.032595543258768
1208 => 0.033197198119773
1209 => 0.032964870284099
1210 => 0.033222655338967
1211 => 0.034613814961444
1212 => 0.033998750131243
1213 => 0.033350829296437
1214 => 0.034163465808428
1215 => 0.035198231340394
1216 => 0.035133477573056
1217 => 0.035007828199445
1218 => 0.035716107139701
1219 => 0.036885976442747
1220 => 0.037202187414445
1221 => 0.037435607889103
1222 => 0.037467792628887
1223 => 0.037799315451369
1224 => 0.036016633680378
1225 => 0.038845795433455
1226 => 0.039334313514195
1227 => 0.039242492362016
1228 => 0.039785459648775
1229 => 0.03962570489926
1230 => 0.039394245331965
1231 => 0.040254963973932
]
'min_raw' => 0.014838331673428
'max_raw' => 0.040254963973932
'avg_raw' => 0.02754664782368
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.014838'
'max' => '$0.040254'
'avg' => '$0.027546'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0051173571140599
'max_diff' => 0.018553573065526
'year' => 2032
]
7 => [
'items' => [
101 => 0.039268219507329
102 => 0.037867659964661
103 => 0.037099285299626
104 => 0.03811114304156
105 => 0.03872904925559
106 => 0.039137445956848
107 => 0.039261026551888
108 => 0.036155018191616
109 => 0.03448105195255
110 => 0.03555404511973
111 => 0.036863170837721
112 => 0.036009361420916
113 => 0.036042829133579
114 => 0.034825521282383
115 => 0.036970875571457
116 => 0.036658315496808
117 => 0.038279877716994
118 => 0.037892878879296
119 => 0.039215199921175
120 => 0.038866988475044
121 => 0.040312394719692
122 => 0.040889006403494
123 => 0.04185722716304
124 => 0.042569454295129
125 => 0.042987687689826
126 => 0.042962578525563
127 => 0.044619827598402
128 => 0.043642605720021
129 => 0.042414984727262
130 => 0.042392780936598
131 => 0.043028583244272
201 => 0.044361050457312
202 => 0.044706539819043
203 => 0.044899621239726
204 => 0.044603910322738
205 => 0.043543206011879
206 => 0.043085199268342
207 => 0.043475434283568
208 => 0.042998210393224
209 => 0.043822032713332
210 => 0.044953316717792
211 => 0.044719711044453
212 => 0.045500619786306
213 => 0.046308778180129
214 => 0.04746448097996
215 => 0.047766624487387
216 => 0.048266056215674
217 => 0.048780135518859
218 => 0.048945243936216
219 => 0.049260487135083
220 => 0.049258825647817
221 => 0.05020883224592
222 => 0.051256718942882
223 => 0.051652271912353
224 => 0.052561824154732
225 => 0.051004247814169
226 => 0.052185687360634
227 => 0.053251375404895
228 => 0.051980818185366
301 => 0.053731985310622
302 => 0.053799979161865
303 => 0.054826605589626
304 => 0.053785923027265
305 => 0.053167969043711
306 => 0.054951979039797
307 => 0.055815205281115
308 => 0.055555194512062
309 => 0.053576499721253
310 => 0.052424814482791
311 => 0.049410632070243
312 => 0.052981061340896
313 => 0.054720113287782
314 => 0.053571995996835
315 => 0.054151039576394
316 => 0.057310113590956
317 => 0.058512884440807
318 => 0.058262716512041
319 => 0.058304990773888
320 => 0.058953984092632
321 => 0.061831977875092
322 => 0.060107417289268
323 => 0.061425779239078
324 => 0.062125033663549
325 => 0.062774540142871
326 => 0.061179557508288
327 => 0.059104508535644
328 => 0.058447253421377
329 => 0.053457838359169
330 => 0.05319811763725
331 => 0.053052328525693
401 => 0.052133148799608
402 => 0.051410925319421
403 => 0.050836586393539
404 => 0.049329349539901
405 => 0.049837997732602
406 => 0.047435776772682
407 => 0.048972632613355
408 => 0.04513862995767
409 => 0.048331701297329
410 => 0.046593857738291
411 => 0.047760772949032
412 => 0.047756701691792
413 => 0.045608040818014
414 => 0.044368738067427
415 => 0.045158470014485
416 => 0.046005125350732
417 => 0.046142492330548
418 => 0.047240203073957
419 => 0.047546550547229
420 => 0.046618303401219
421 => 0.045059178774516
422 => 0.045421327865453
423 => 0.044361399127658
424 => 0.042503914784242
425 => 0.043837992468248
426 => 0.044293505244823
427 => 0.044494685636949
428 => 0.042668063118718
429 => 0.042094098665586
430 => 0.041788524806766
501 => 0.044823384745156
502 => 0.04498964122339
503 => 0.044139049574448
504 => 0.047983804484075
505 => 0.047113618036208
506 => 0.048085829499331
507 => 0.045388466631317
508 => 0.045491509525356
509 => 0.044214534716481
510 => 0.044929555281964
511 => 0.044424201792469
512 => 0.044871788686243
513 => 0.045140070424902
514 => 0.046416835694777
515 => 0.048346279905814
516 => 0.046226129539827
517 => 0.045302349664254
518 => 0.045875457503524
519 => 0.047401719202769
520 => 0.049714083805024
521 => 0.048345117419814
522 => 0.048952641455014
523 => 0.049085358429842
524 => 0.048075933299278
525 => 0.049751302749417
526 => 0.050649146848423
527 => 0.051570149111346
528 => 0.052369829570344
529 => 0.051202280554261
530 => 0.052451725363047
531 => 0.051444893403864
601 => 0.050541661052103
602 => 0.050543030882742
603 => 0.049976420034363
604 => 0.048878540118067
605 => 0.048676074217003
606 => 0.049729327402966
607 => 0.050573936714662
608 => 0.050643502782979
609 => 0.051111121895526
610 => 0.051387854069472
611 => 0.054100205573289
612 => 0.055191135785873
613 => 0.056525104599568
614 => 0.057044760630866
615 => 0.058608738978072
616 => 0.057345699442592
617 => 0.0570724328942
618 => 0.053278732997296
619 => 0.053899951142887
620 => 0.054894581332613
621 => 0.053295134082779
622 => 0.054309615220791
623 => 0.054509895287083
624 => 0.053240785477266
625 => 0.053918671861687
626 => 0.05211840660397
627 => 0.048385520768875
628 => 0.049755458518453
629 => 0.050764193818203
630 => 0.049324604169295
701 => 0.05190501289515
702 => 0.050397591387953
703 => 0.049919811139165
704 => 0.048055820047685
705 => 0.048935552091267
706 => 0.050125402276761
707 => 0.049390213197057
708 => 0.050915840926639
709 => 0.05307653666178
710 => 0.054616377114298
711 => 0.054734586943967
712 => 0.053744572694296
713 => 0.05533107684758
714 => 0.055342632798311
715 => 0.053553049632347
716 => 0.052456939907635
717 => 0.052207901471946
718 => 0.052830048311158
719 => 0.053585449428605
720 => 0.054776506448661
721 => 0.055496237260928
722 => 0.057372913503594
723 => 0.057880688286335
724 => 0.058438578824872
725 => 0.059184092631428
726 => 0.060079273102016
727 => 0.058120669195023
728 => 0.058198488179542
729 => 0.056374663340068
730 => 0.05442564493615
731 => 0.05590470695615
801 => 0.057838383795924
802 => 0.057394796192357
803 => 0.057344883525283
804 => 0.057428822786682
805 => 0.057094372219809
806 => 0.055581664701159
807 => 0.054821992455343
808 => 0.055802163465505
809 => 0.056323080735013
810 => 0.057130977991261
811 => 0.057031387601786
812 => 0.059112444172049
813 => 0.059921079827369
814 => 0.059714196223267
815 => 0.059752267785354
816 => 0.061216264013838
817 => 0.062844528913699
818 => 0.064369613860897
819 => 0.06592099577311
820 => 0.064050744326471
821 => 0.063101145982941
822 => 0.064080889081102
823 => 0.063561023602335
824 => 0.066548324845448
825 => 0.066755159102066
826 => 0.069742244329297
827 => 0.072577343905432
828 => 0.070796668657747
829 => 0.072475765212939
830 => 0.074291845036131
831 => 0.077795357663401
901 => 0.076615497865597
902 => 0.075711743751239
903 => 0.074857700480079
904 => 0.076634828951812
905 => 0.078921076340375
906 => 0.079413512130466
907 => 0.080211446235364
908 => 0.079372516090804
909 => 0.080382915044802
910 => 0.083950067344214
911 => 0.082986191304789
912 => 0.081617332377999
913 => 0.084433256525436
914 => 0.085452328527765
915 => 0.092604709532264
916 => 0.10163488600057
917 => 0.097896333647354
918 => 0.095575693559384
919 => 0.096121099026376
920 => 0.099418613781836
921 => 0.1004776708634
922 => 0.097598788636836
923 => 0.098615658508591
924 => 0.1042187114784
925 => 0.10722456962924
926 => 0.10314221051979
927 => 0.091879143645523
928 => 0.081494081608652
929 => 0.084248667706268
930 => 0.083936383127557
1001 => 0.089956164548525
1002 => 0.082963203180023
1003 => 0.08308094671502
1004 => 0.089225210840714
1005 => 0.087586026511333
1006 => 0.084930757828603
1007 => 0.081513468008532
1008 => 0.075196291715081
1009 => 0.069600992504478
1010 => 0.080574662776921
1011 => 0.080101458160449
1012 => 0.079416187750802
1013 => 0.080941182893468
1014 => 0.088346126428833
1015 => 0.08817541851288
1016 => 0.087089461847529
1017 => 0.087913150407015
1018 => 0.084786361241649
1019 => 0.08559220600523
1020 => 0.081492436561766
1021 => 0.083345703571708
1022 => 0.084925060814552
1023 => 0.085242140163836
1024 => 0.085956536128247
1025 => 0.079852100830152
1026 => 0.082592813062192
1027 => 0.084202724728508
1028 => 0.076929085251005
1029 => 0.084058948262572
1030 => 0.079745836192755
1031 => 0.07828190117549
1101 => 0.080252896817464
1102 => 0.079484797898931
1103 => 0.078824431553057
1104 => 0.078455935785526
1105 => 0.079903217454141
1106 => 0.079835700034425
1107 => 0.077467666319303
1108 => 0.074378662871329
1109 => 0.07541543382155
1110 => 0.075038765215555
1111 => 0.073673669596212
1112 => 0.074593579221376
1113 => 0.070542762787762
1114 => 0.063573543656845
1115 => 0.068177623287684
1116 => 0.068000371230172
1117 => 0.067910992705033
1118 => 0.071370831300194
1119 => 0.071038247651326
1120 => 0.070434605071964
1121 => 0.07366258322686
1122 => 0.07248432777789
1123 => 0.076115433439718
1124 => 0.078507114473787
1125 => 0.077900506800771
1126 => 0.080149894373311
1127 => 0.075439318930261
1128 => 0.077003983136958
1129 => 0.077326458261428
1130 => 0.073622750477495
1201 => 0.071092662449413
1202 => 0.070923934423055
1203 => 0.066537110449967
1204 => 0.068880516407185
1205 => 0.070942616672808
1206 => 0.06995503067102
1207 => 0.069642390446146
1208 => 0.071239601551634
1209 => 0.071363718533719
1210 => 0.068533838188865
1211 => 0.069122259923215
1212 => 0.071576076372432
1213 => 0.06906043004454
1214 => 0.064172940157939
1215 => 0.062960775091228
1216 => 0.062799049926694
1217 => 0.059511562127749
1218 => 0.063041777757178
1219 => 0.061500744031036
1220 => 0.066368851107502
1221 => 0.063588214453606
1222 => 0.063468346765045
1223 => 0.063287149173017
1224 => 0.060457472620055
1225 => 0.061076991949827
1226 => 0.063136368557449
1227 => 0.063871177331586
1228 => 0.063794530756333
1229 => 0.063126276488583
1230 => 0.063432199870343
1231 => 0.06244671406692
]
'min_raw' => 0.03448105195255
'max_raw' => 0.10722456962924
'avg_raw' => 0.070852810790896
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.034481'
'max' => '$0.107224'
'avg' => '$0.070852'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.019642720279123
'max_diff' => 0.066969605655311
'year' => 2033
]
8 => [
'items' => [
101 => 0.062098718518619
102 => 0.061000348844461
103 => 0.059386048855817
104 => 0.059610527170316
105 => 0.056412176488243
106 => 0.054669545287331
107 => 0.054187207938428
108 => 0.053542206277211
109 => 0.054260062592347
110 => 0.056403115962612
111 => 0.053818138923937
112 => 0.049386377106185
113 => 0.049652733542787
114 => 0.050251157373895
115 => 0.049135998523595
116 => 0.048080594259974
117 => 0.048998182639538
118 => 0.047120386734473
119 => 0.050478080037746
120 => 0.050387263843719
121 => 0.051638804268818
122 => 0.052421418180828
123 => 0.050617746487909
124 => 0.050164127934787
125 => 0.050422529678459
126 => 0.046151724452554
127 => 0.051289788366974
128 => 0.051334222557069
129 => 0.050953750044699
130 => 0.053689610459202
131 => 0.059463129270065
201 => 0.057290899254162
202 => 0.056449746136005
203 => 0.054850713443509
204 => 0.056981329565093
205 => 0.056817731489745
206 => 0.056077878950291
207 => 0.055630413825949
208 => 0.056454882037579
209 => 0.055528253090542
210 => 0.055361805069594
211 => 0.054353311159879
212 => 0.053993324717661
213 => 0.053726805087315
214 => 0.053433393161982
215 => 0.05408058675557
216 => 0.052613960927093
217 => 0.050845353953053
218 => 0.050698313419755
219 => 0.051104305260128
220 => 0.050924684093301
221 => 0.050697453462713
222 => 0.050263608306341
223 => 0.050134895716081
224 => 0.050553149191956
225 => 0.050080965403385
226 => 0.050777698304603
227 => 0.050588225507462
228 => 0.049529845864801
301 => 0.048210712967715
302 => 0.048198969917956
303 => 0.04791476489909
304 => 0.047552787077054
305 => 0.047452093127894
306 => 0.048920905905573
307 => 0.051961304397502
308 => 0.051364401422966
309 => 0.051795724995145
310 => 0.053917410073637
311 => 0.054591829958793
312 => 0.054113142698819
313 => 0.053457886053224
314 => 0.053486714020146
315 => 0.055725924337823
316 => 0.055865581138665
317 => 0.056218448819402
318 => 0.056671983509544
319 => 0.05419038161769
320 => 0.053369830794207
321 => 0.052981008291614
322 => 0.051783585476873
323 => 0.053074903323297
324 => 0.052322507713929
325 => 0.052424031587127
326 => 0.052357914031521
327 => 0.052394018687731
328 => 0.050477141494038
329 => 0.05117555079532
330 => 0.050014309873226
331 => 0.048459538633953
401 => 0.048454326495586
402 => 0.048834854553755
403 => 0.048608501574692
404 => 0.047999391528099
405 => 0.048085912735299
406 => 0.047327895918333
407 => 0.048177949701216
408 => 0.048202326202071
409 => 0.047875009192918
410 => 0.049184634330266
411 => 0.04972118881759
412 => 0.049505741750357
413 => 0.049706072477015
414 => 0.051389205436414
415 => 0.051663629549035
416 => 0.051785510612422
417 => 0.05162220613363
418 => 0.049736837057742
419 => 0.049820461193466
420 => 0.04920688277101
421 => 0.048688473661335
422 => 0.048709207307024
423 => 0.048975736977864
424 => 0.05013968768218
425 => 0.052589153320771
426 => 0.052682108751219
427 => 0.052794773444624
428 => 0.052336509515809
429 => 0.052198292729883
430 => 0.052380636347298
501 => 0.053300526854368
502 => 0.055666734986388
503 => 0.054830358998805
504 => 0.054150372301932
505 => 0.054746903958187
506 => 0.054655072585476
507 => 0.05387992338397
508 => 0.053858167527598
509 => 0.052370408379718
510 => 0.051820417697383
511 => 0.051360804317135
512 => 0.050858918504416
513 => 0.050561383771271
514 => 0.051018532348499
515 => 0.051123087636934
516 => 0.050123524283234
517 => 0.049987287491639
518 => 0.050803552503343
519 => 0.050444344705119
520 => 0.050813798833518
521 => 0.050899515360425
522 => 0.050885713025374
523 => 0.050510658829275
524 => 0.050749707189591
525 => 0.050184286553697
526 => 0.049569476535595
527 => 0.049177266048063
528 => 0.048835010378521
529 => 0.049024913715999
530 => 0.048347942992867
531 => 0.048131366433809
601 => 0.050668722983874
602 => 0.052543095548587
603 => 0.052515841429163
604 => 0.052349938986361
605 => 0.052103441608437
606 => 0.053282494035836
607 => 0.052871735746028
608 => 0.053170596721867
609 => 0.053246669383373
610 => 0.053476918418134
611 => 0.053559212657488
612 => 0.053310462309137
613 => 0.052475625757773
614 => 0.050395292445654
615 => 0.049426891673109
616 => 0.049107303288179
617 => 0.049118919718987
618 => 0.048798486699286
619 => 0.048892868584389
620 => 0.048765664531346
621 => 0.04852477082885
622 => 0.049010039208691
623 => 0.04906596186888
624 => 0.048952694430499
625 => 0.048979373012579
626 => 0.048041566999947
627 => 0.04811286635428
628 => 0.047715862489071
629 => 0.047641429050297
630 => 0.04663783785013
701 => 0.044859830566163
702 => 0.045845019196824
703 => 0.04465504986947
704 => 0.044204390454224
705 => 0.046337742034082
706 => 0.046123612705426
707 => 0.045757116374549
708 => 0.045214991916655
709 => 0.045013912681774
710 => 0.043792218904587
711 => 0.043720034718748
712 => 0.044325539143229
713 => 0.044046119685466
714 => 0.043653708942344
715 => 0.042232437008793
716 => 0.040634456788517
717 => 0.040682689766821
718 => 0.041190977543412
719 => 0.042668892805796
720 => 0.042091445744589
721 => 0.041672501276242
722 => 0.041594045570745
723 => 0.042576082983184
724 => 0.043965871664985
725 => 0.044617929419716
726 => 0.043971759988066
727 => 0.043229475337218
728 => 0.0432746547645
729 => 0.043575213253461
730 => 0.043606797700983
731 => 0.043123646701376
801 => 0.043259650877693
802 => 0.043053048097386
803 => 0.041785127216003
804 => 0.041762194547879
805 => 0.041451026315602
806 => 0.041441604265194
807 => 0.040912229477537
808 => 0.040838166285349
809 => 0.039787060513702
810 => 0.040478901515641
811 => 0.040014850894824
812 => 0.039315417150776
813 => 0.039194834509669
814 => 0.03919120964987
815 => 0.039909371714484
816 => 0.040470509373782
817 => 0.04002292325405
818 => 0.039921016570679
819 => 0.041009113339453
820 => 0.040870643107404
821 => 0.040750728779487
822 => 0.043841431331865
823 => 0.04139489909113
824 => 0.040328071390992
825 => 0.039007669526985
826 => 0.039437599031949
827 => 0.039528191495624
828 => 0.036352863033012
829 => 0.035064632671192
830 => 0.034622560556953
831 => 0.034368141805226
901 => 0.034484083625177
902 => 0.033324525205189
903 => 0.034103767640747
904 => 0.033099688064071
905 => 0.032931350855483
906 => 0.034726769520172
907 => 0.03497659153868
908 => 0.033910773194108
909 => 0.03459520111164
910 => 0.034347018034483
911 => 0.03311690012653
912 => 0.033069918670581
913 => 0.032452688745105
914 => 0.031486843431
915 => 0.031045426205364
916 => 0.030815532281693
917 => 0.030910390995143
918 => 0.030862427526898
919 => 0.030549433452861
920 => 0.030880367980844
921 => 0.030034967013434
922 => 0.029698321536353
923 => 0.029546266584471
924 => 0.028795924566431
925 => 0.029990052395743
926 => 0.030225310621344
927 => 0.030461032378324
928 => 0.032512829338756
929 => 0.03241032736093
930 => 0.033336895319982
1001 => 0.033300890592942
1002 => 0.033036618401615
1003 => 0.031921697497071
1004 => 0.032366085098068
1005 => 0.030998329135365
1006 => 0.032023144900987
1007 => 0.031555461782887
1008 => 0.031865020768311
1009 => 0.03130840580071
1010 => 0.031616459505849
1011 => 0.030281099074138
1012 => 0.029034158292035
1013 => 0.029535963663224
1014 => 0.030081483490112
1015 => 0.03126430947067
1016 => 0.030559828074752
1017 => 0.030813186224115
1018 => 0.029964478835391
1019 => 0.028213353071172
1020 => 0.028223264252826
1021 => 0.027953891704349
1022 => 0.02772111449343
1023 => 0.030640746237565
1024 => 0.030277643877634
1025 => 0.029699087788746
1026 => 0.030473508104628
1027 => 0.03067827712785
1028 => 0.03068410661407
1029 => 0.031249103685856
1030 => 0.031550642724349
1031 => 0.031603790286829
1101 => 0.032492825386853
1102 => 0.032790818225725
1103 => 0.034018208555512
1104 => 0.031525059243669
1105 => 0.031473714474254
1106 => 0.03048440578661
1107 => 0.029856970576555
1108 => 0.030527366812237
1109 => 0.031121246358839
1110 => 0.030502859279556
1111 => 0.030583607577247
1112 => 0.02975347344739
1113 => 0.030050207337372
1114 => 0.030305794537797
1115 => 0.030164674308444
1116 => 0.029953410494806
1117 => 0.031072555008531
1118 => 0.031009408489104
1119 => 0.032051581589306
1120 => 0.032864030047427
1121 => 0.034320082926913
1122 => 0.032800615841416
1123 => 0.032745240421485
1124 => 0.0332865440338
1125 => 0.032790735354962
1126 => 0.033104069325254
1127 => 0.034269599980174
1128 => 0.034294225806294
1129 => 0.03388171149021
1130 => 0.033856609956587
1201 => 0.033935837843403
1202 => 0.034399878051122
1203 => 0.03423772814403
1204 => 0.034425372121651
1205 => 0.034660023788972
1206 => 0.035630642575258
1207 => 0.035864655478617
1208 => 0.035296125445234
1209 => 0.035347457341688
1210 => 0.035134811502704
1211 => 0.03492939828669
1212 => 0.035391137198098
1213 => 0.036234974134197
1214 => 0.036229724668412
1215 => 0.036425478435741
1216 => 0.036547431411075
1217 => 0.036023919965907
1218 => 0.035683133265152
1219 => 0.035813812571043
1220 => 0.036022771626987
1221 => 0.03574604996548
1222 => 0.034037995680716
1223 => 0.034556110239783
1224 => 0.034469870642647
1225 => 0.034347054969231
1226 => 0.034868023164835
1227 => 0.034817774511458
1228 => 0.033312632257594
1229 => 0.033408986581264
1230 => 0.033318491883152
1231 => 0.033610898766226
]
'min_raw' => 0.02772111449343
'max_raw' => 0.062098718518619
'avg_raw' => 0.044909916506024
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.027721'
'max' => '$0.062098'
'avg' => '$0.0449099'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0067599374591207
'max_diff' => -0.045125851110624
'year' => 2034
]
9 => [
'items' => [
101 => 0.032774944423679
102 => 0.033032078349208
103 => 0.033193350336819
104 => 0.033288340776472
105 => 0.033631511380051
106 => 0.033591244270582
107 => 0.033629008319989
108 => 0.034137839731418
109 => 0.036711334400569
110 => 0.036851404037315
111 => 0.036161649917915
112 => 0.036437193083817
113 => 0.035908210459951
114 => 0.036263320039228
115 => 0.036506276994563
116 => 0.035408401231338
117 => 0.035343392153794
118 => 0.034812226230471
119 => 0.035097644710889
120 => 0.034643523386228
121 => 0.034754948874811
122 => 0.034443393494836
123 => 0.035004131148733
124 => 0.035631122975613
125 => 0.035789525871741
126 => 0.035372836048764
127 => 0.035071125155731
128 => 0.034541420217313
129 => 0.035422331335147
130 => 0.035679936591282
131 => 0.035420978244403
201 => 0.035360971937079
202 => 0.03524726009313
203 => 0.035385096442324
204 => 0.035678533617734
205 => 0.035540154064744
206 => 0.035631556197428
207 => 0.035283225521108
208 => 0.036024093269979
209 => 0.037200769554719
210 => 0.037204552761381
211 => 0.037066172462474
212 => 0.037009550225606
213 => 0.037151536809904
214 => 0.03722855870729
215 => 0.037687717285021
216 => 0.03818041273261
217 => 0.040479607406646
218 => 0.039834002742553
219 => 0.041873985037061
220 => 0.043487346173469
221 => 0.043971122634545
222 => 0.043526071053796
223 => 0.042003573637268
224 => 0.041928872650556
225 => 0.044204126572678
226 => 0.043561263126447
227 => 0.043484796565092
228 => 0.042671321544573
301 => 0.043152186032541
302 => 0.043047013915166
303 => 0.042880994582693
304 => 0.043798450528426
305 => 0.04551584615698
306 => 0.045248173942636
307 => 0.045048369051584
308 => 0.044172882181327
309 => 0.044700120824294
310 => 0.044512381242124
311 => 0.045319029629607
312 => 0.044841188994312
313 => 0.043556392803568
314 => 0.043761000831688
315 => 0.043730074739851
316 => 0.044366531518391
317 => 0.044175482991302
318 => 0.043692769448718
319 => 0.045509976285427
320 => 0.045391976981286
321 => 0.045559273016161
322 => 0.045632921904514
323 => 0.046739023683243
324 => 0.047192158190679
325 => 0.047295027657103
326 => 0.047725470392486
327 => 0.047284317849722
328 => 0.049049242557211
329 => 0.05022281450148
330 => 0.051585978706208
331 => 0.053577927993312
401 => 0.054326919351824
402 => 0.05419162076687
403 => 0.05570189398255
404 => 0.058415821379638
405 => 0.054740183087976
406 => 0.058610639134243
407 => 0.057385297436559
408 => 0.054480034314305
409 => 0.054292969620034
410 => 0.056260447537223
411 => 0.060624124194815
412 => 0.059531072684499
413 => 0.060625912035511
414 => 0.05934872377674
415 => 0.059285300614704
416 => 0.06056388185252
417 => 0.063551356606513
418 => 0.062132119334708
419 => 0.060097294694318
420 => 0.061599777543404
421 => 0.060298187851303
422 => 0.057365341982983
423 => 0.059530236848609
424 => 0.058082633304621
425 => 0.058505120977594
426 => 0.061547768312281
427 => 0.061181668935125
428 => 0.061655435429055
429 => 0.060819249967898
430 => 0.060038120892832
501 => 0.058580085466816
502 => 0.058148433057451
503 => 0.058267726254173
504 => 0.058148373941667
505 => 0.057332616520848
506 => 0.057156453783491
507 => 0.056862841503363
508 => 0.056953844226277
509 => 0.056401767240334
510 => 0.057443650577734
511 => 0.0576370333062
512 => 0.0583952291133
513 => 0.058473947517211
514 => 0.060585512047742
515 => 0.059422497787726
516 => 0.060202748163165
517 => 0.060132955225584
518 => 0.054543000175693
519 => 0.055313246660977
520 => 0.056511508475416
521 => 0.055971693152217
522 => 0.055208520582545
523 => 0.05459221781381
524 => 0.053658456098984
525 => 0.054972707781297
526 => 0.056700808988453
527 => 0.058517775015626
528 => 0.060700740644943
529 => 0.060213528129001
530 => 0.058476965991625
531 => 0.058554866900548
601 => 0.059036419666634
602 => 0.05841276508087
603 => 0.058228837168345
604 => 0.059011150795858
605 => 0.059016538159859
606 => 0.058298948187763
607 => 0.057501478251358
608 => 0.057498136823207
609 => 0.057356234750669
610 => 0.059373967840207
611 => 0.060483517023628
612 => 0.060610725049379
613 => 0.060474954909954
614 => 0.060527207448095
615 => 0.05988158522551
616 => 0.061357286173016
617 => 0.062711535294145
618 => 0.06234856760037
619 => 0.061804427428503
620 => 0.061370993572269
621 => 0.062246464358567
622 => 0.062207481022572
623 => 0.062699707109493
624 => 0.062677376890955
625 => 0.062511859771483
626 => 0.062348573511507
627 => 0.062995985075268
628 => 0.062809540942016
629 => 0.062622807209529
630 => 0.062248284121521
701 => 0.062299188029351
702 => 0.061755141810957
703 => 0.061503441136466
704 => 0.057718466906493
705 => 0.056706998114643
706 => 0.057025226786905
707 => 0.057129995928617
708 => 0.056689803414172
709 => 0.057320926403707
710 => 0.057222566554313
711 => 0.05760522718972
712 => 0.057366157437911
713 => 0.057375968943916
714 => 0.05807902210894
715 => 0.058283121433749
716 => 0.058179314869867
717 => 0.058252017428929
718 => 0.05992741721667
719 => 0.059689228943123
720 => 0.059562696170069
721 => 0.059597746612945
722 => 0.06002584717969
723 => 0.060145691964954
724 => 0.059637901188446
725 => 0.059877378254151
726 => 0.060897041205756
727 => 0.061253865530893
728 => 0.062392677491337
729 => 0.061908889929772
730 => 0.06279690293686
731 => 0.065526352174705
801 => 0.067706825089418
802 => 0.065701572085194
803 => 0.069705732911512
804 => 0.072823546477557
805 => 0.072703879599901
806 => 0.072160216688335
807 => 0.068610668834755
808 => 0.065344321979114
809 => 0.068076759820271
810 => 0.068083725366259
811 => 0.067849006532425
812 => 0.066391188014125
813 => 0.067798277607993
814 => 0.067909967270155
815 => 0.067847450760022
816 => 0.066729744720078
817 => 0.065023214183689
818 => 0.065356666165643
819 => 0.065902867314319
820 => 0.064868794590379
821 => 0.064538345698404
822 => 0.065152713059059
823 => 0.067132332703612
824 => 0.066758097076965
825 => 0.066748324272349
826 => 0.068349462983748
827 => 0.067203393213746
828 => 0.065360872062996
829 => 0.064895611172564
830 => 0.063244248448818
831 => 0.064384850564061
901 => 0.064425898803614
902 => 0.063801202681767
903 => 0.065411562710387
904 => 0.065396722959225
905 => 0.066925520135942
906 => 0.069848006147827
907 => 0.06898368322731
908 => 0.067978569708815
909 => 0.06808785341705
910 => 0.069286425961215
911 => 0.068561741640263
912 => 0.068822343174756
913 => 0.069286031509581
914 => 0.069565786194714
915 => 0.06804760102304
916 => 0.067693639436331
917 => 0.06696955825356
918 => 0.066780658988591
919 => 0.067370408003508
920 => 0.067215029974218
921 => 0.064422448858026
922 => 0.06413060859361
923 => 0.064139558917868
924 => 0.063405712696744
925 => 0.062286421066257
926 => 0.065227852641747
927 => 0.064991614520926
928 => 0.064730825918919
929 => 0.064762771034626
930 => 0.06603954678718
1001 => 0.065298952371977
1002 => 0.067267944005831
1003 => 0.066863178519217
1004 => 0.066448032325191
1005 => 0.066390646475515
1006 => 0.066230850609424
1007 => 0.065682851127175
1008 => 0.065021108822696
1009 => 0.064584169234142
1010 => 0.059575482212227
1011 => 0.060505065389302
1012 => 0.061574466100355
1013 => 0.061943618940456
1014 => 0.061312157462864
1015 => 0.065707785075113
1016 => 0.066510908597193
1017 => 0.064078195062363
1018 => 0.063623133687035
1019 => 0.06573761882312
1020 => 0.064462325800766
1021 => 0.065036590170645
1022 => 0.063795344708783
1023 => 0.066317459658926
1024 => 0.066298245368704
1025 => 0.065317085688548
1026 => 0.066146355131524
1027 => 0.066002249158488
1028 => 0.064894522296083
1029 => 0.06635257657628
1030 => 0.066353299753013
1031 => 0.065408954893114
1101 => 0.064306166840424
1102 => 0.064109014383295
1103 => 0.063960486490554
1104 => 0.065000061413956
1105 => 0.065932141039612
1106 => 0.067666510140822
1107 => 0.06810257174046
1108 => 0.069804549194111
1109 => 0.06879110448824
1110 => 0.069240351400047
1111 => 0.069728072472668
1112 => 0.069961903890231
1113 => 0.069580888143398
1114 => 0.072224759690786
1115 => 0.072447983455516
1116 => 0.072522828452953
1117 => 0.071631329842749
1118 => 0.072423189266457
1119 => 0.072052704465732
1120 => 0.073016602993578
1121 => 0.073167754590418
1122 => 0.073039734565268
1123 => 0.073087712467871
1124 => 0.070831634513077
1125 => 0.070714644969361
1126 => 0.069119484239602
1127 => 0.069769524027812
1128 => 0.068554305800972
1129 => 0.068939664018838
1130 => 0.069109526249445
1201 => 0.069020799859773
1202 => 0.069806276302126
1203 => 0.06913846086389
1204 => 0.067375986123363
1205 => 0.065613031197772
1206 => 0.065590898734753
1207 => 0.065126743821584
1208 => 0.064791244833575
1209 => 0.064855873841132
1210 => 0.065083634893455
1211 => 0.064778006947167
1212 => 0.064843228165238
1213 => 0.065926334951913
1214 => 0.066143544293616
1215 => 0.065405382081339
1216 => 0.06244155428275
1217 => 0.061714223506777
1218 => 0.06223701444495
1219 => 0.061987154048552
1220 => 0.050028471216196
1221 => 0.052837986362008
1222 => 0.051168667864486
1223 => 0.051937966629795
1224 => 0.050234024711754
1225 => 0.051047235106291
1226 => 0.050897064840109
1227 => 0.055414682054978
1228 => 0.055344145675947
1229 => 0.055377907707887
1230 => 0.053766357956886
1231 => 0.056333600468575
]
'min_raw' => 0.032774944423679
'max_raw' => 0.073167754590418
'avg_raw' => 0.052971349507048
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.032774'
'max' => '$0.073167'
'avg' => '$0.052971'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0050538299302489
'max_diff' => 0.0110690360718
'year' => 2035
]
10 => [
'items' => [
101 => 0.057598316444887
102 => 0.057364251176997
103 => 0.057423160362187
104 => 0.056410905385162
105 => 0.055387708548744
106 => 0.054252825788293
107 => 0.056361297681463
108 => 0.056126871599758
109 => 0.056664560687347
110 => 0.058032055426751
111 => 0.058233424221735
112 => 0.058504065924275
113 => 0.058407060139503
114 => 0.060718131488016
115 => 0.060438245498771
116 => 0.061112690204156
117 => 0.059725306274936
118 => 0.058155349667333
119 => 0.05845374709269
120 => 0.058425009021067
121 => 0.058059140385291
122 => 0.057728850540003
123 => 0.057179011006187
124 => 0.058918784652122
125 => 0.058848153019297
126 => 0.059991597054445
127 => 0.05978948221441
128 => 0.058439709846763
129 => 0.058487917230934
130 => 0.058812135057157
131 => 0.059934256655572
201 => 0.060267378745846
202 => 0.060113063321011
203 => 0.060478316485395
204 => 0.060766997693953
205 => 0.060514570400576
206 => 0.064088408552746
207 => 0.062604301784838
208 => 0.063327645097168
209 => 0.063500158214972
210 => 0.063058269491276
211 => 0.063154099332597
212 => 0.063299255430129
213 => 0.064180614829867
214 => 0.066493556918176
215 => 0.067517943224359
216 => 0.07059985996884
217 => 0.067432882201776
218 => 0.067244966847336
219 => 0.067800113117986
220 => 0.069609524501015
221 => 0.071075882477592
222 => 0.071562358014643
223 => 0.0716266537877
224 => 0.072539314235491
225 => 0.073062434184055
226 => 0.072428493251776
227 => 0.071891294688053
228 => 0.069967116112334
229 => 0.070189845021838
301 => 0.071724226338686
302 => 0.073891630323343
303 => 0.075751488422129
304 => 0.075100230938533
305 => 0.080068865822237
306 => 0.080561485675903
307 => 0.080493421540433
308 => 0.081615682878747
309 => 0.079388222666741
310 => 0.078435940271099
311 => 0.072007443114992
312 => 0.073813588600867
313 => 0.076438927135791
314 => 0.076091453736179
315 => 0.074184862716617
316 => 0.075750042101872
317 => 0.075232544849422
318 => 0.074824373295434
319 => 0.076694286312202
320 => 0.074638240138473
321 => 0.076418416502414
322 => 0.074135321902093
323 => 0.07510320582786
324 => 0.074553788100317
325 => 0.074909328704141
326 => 0.07283084559907
327 => 0.073952344630241
328 => 0.072784187552227
329 => 0.072783633693673
330 => 0.072757846561431
331 => 0.074132178183314
401 => 0.074176995088163
402 => 0.073161361943092
403 => 0.073014993339716
404 => 0.073556194781288
405 => 0.072922589634089
406 => 0.0732190494946
407 => 0.072931569101255
408 => 0.07286685120945
409 => 0.072351168036703
410 => 0.072128997546879
411 => 0.072216116320567
412 => 0.071918735033163
413 => 0.071739552050751
414 => 0.072722202556259
415 => 0.072197212031175
416 => 0.072641740228866
417 => 0.072135144243666
418 => 0.070379061845598
419 => 0.069369120288234
420 => 0.066052043427208
421 => 0.066992762310174
422 => 0.067616459902824
423 => 0.067410327852174
424 => 0.067853179259485
425 => 0.067880366739204
426 => 0.067736391232351
427 => 0.067569686039821
428 => 0.067488543171472
429 => 0.068093315633037
430 => 0.068444406402681
501 => 0.067679056300244
502 => 0.067499745479629
503 => 0.06827355668933
504 => 0.068745581080231
505 => 0.072230743975051
506 => 0.071972551850875
507 => 0.072620563414912
508 => 0.072547607257349
509 => 0.073226826612798
510 => 0.074337063199439
511 => 0.072079641791766
512 => 0.072471452092379
513 => 0.07237538925489
514 => 0.073424178125567
515 => 0.073427452329942
516 => 0.072798651011081
517 => 0.073139534407172
518 => 0.072949262647121
519 => 0.073293109434304
520 => 0.071969103537645
521 => 0.073581599802171
522 => 0.074495781277193
523 => 0.07450847468786
524 => 0.074941789451628
525 => 0.075382062347515
526 => 0.076227127831481
527 => 0.075358493929827
528 => 0.073795906100557
529 => 0.073908719894702
530 => 0.072992575222129
531 => 0.07300797577959
601 => 0.0729257663969
602 => 0.073172482942787
603 => 0.072023243945392
604 => 0.072292968041014
605 => 0.071915352727641
606 => 0.072470631230434
607 => 0.071873243352253
608 => 0.072375342930481
609 => 0.072592032463579
610 => 0.073391621505704
611 => 0.071755143400605
612 => 0.068418253764482
613 => 0.069119708421871
614 => 0.068082201885518
615 => 0.068178227065523
616 => 0.068372213211428
617 => 0.067743440644233
618 => 0.067863390635153
619 => 0.067859105177402
620 => 0.067822175417698
621 => 0.067658607388621
622 => 0.067421401385512
623 => 0.068366357093741
624 => 0.068526923482239
625 => 0.068883842673904
626 => 0.069945792087699
627 => 0.069839678298769
628 => 0.070012754291132
629 => 0.069634930371583
630 => 0.068195753233526
701 => 0.068273907476213
702 => 0.067299322817574
703 => 0.068858920353018
704 => 0.068489587070943
705 => 0.068251475501334
706 => 0.068186504553478
707 => 0.069251086334465
708 => 0.069569625888612
709 => 0.069371133414862
710 => 0.068964019560251
711 => 0.069745798513511
712 => 0.069954969580797
713 => 0.07000179526883
714 => 0.071386957682761
715 => 0.070079210460534
716 => 0.070393998214813
717 => 0.072849882413574
718 => 0.070622734334152
719 => 0.071802504343151
720 => 0.071744760740437
721 => 0.072348291155801
722 => 0.071695253630645
723 => 0.071703348813427
724 => 0.072239242935578
725 => 0.071486676290031
726 => 0.071300330205225
727 => 0.071042894423702
728 => 0.071604996034559
729 => 0.071941950528599
730 => 0.074657556284753
731 => 0.076411961449896
801 => 0.076335798094763
802 => 0.077031788588855
803 => 0.076718238496724
804 => 0.075705702538899
805 => 0.077433977953301
806 => 0.076887079298069
807 => 0.076932164958725
808 => 0.076930486868183
809 => 0.077294126663202
810 => 0.077036454541334
811 => 0.07652855633963
812 => 0.076865722868537
813 => 0.077866986920153
814 => 0.080974941258899
815 => 0.08271419368178
816 => 0.080870236079172
817 => 0.082142173341875
818 => 0.08137946422184
819 => 0.081240857286099
820 => 0.082039727882502
821 => 0.082839996796131
822 => 0.08278902312599
823 => 0.082208068988959
824 => 0.081879902738116
825 => 0.084364887533261
826 => 0.086195781999712
827 => 0.086070927271573
828 => 0.086621995436649
829 => 0.088239948613209
830 => 0.088387873974824
831 => 0.088369238779286
901 => 0.088002590336107
902 => 0.0895956753562
903 => 0.090924654907626
904 => 0.087917721815004
905 => 0.08906272257303
906 => 0.089576750302928
907 => 0.090331495515574
908 => 0.091604877199292
909 => 0.092988107455621
910 => 0.093183711380214
911 => 0.093044921035206
912 => 0.092132643497932
913 => 0.093646190549776
914 => 0.0945327909157
915 => 0.09506074114412
916 => 0.09639953508085
917 => 0.089579924763192
918 => 0.084752665623729
919 => 0.083998819402635
920 => 0.085531795336768
921 => 0.085936028865345
922 => 0.085773082836842
923 => 0.080339563800176
924 => 0.083970213049399
925 => 0.087876486367904
926 => 0.088026542234867
927 => 0.089982104334434
928 => 0.090618915515252
929 => 0.092193399326786
930 => 0.092094914935689
1001 => 0.092478276688289
1002 => 0.092390148460266
1003 => 0.095306548174453
1004 => 0.098523770148749
1005 => 0.098412367981918
1006 => 0.097949854258671
1007 => 0.098636766008002
1008 => 0.10195728386394
1009 => 0.10165158378998
1010 => 0.10194854537236
1011 => 0.10586362306069
1012 => 0.11095378096883
1013 => 0.108588891577
1014 => 0.11372002107867
1015 => 0.11694979511049
1016 => 0.12253535533365
1017 => 0.12183601568425
1018 => 0.12401043329039
1019 => 0.12058405175523
1020 => 0.11271638716453
1021 => 0.11147129912684
1022 => 0.11396399690894
1023 => 0.12009205117235
1024 => 0.1137710026723
1025 => 0.11504974255131
1026 => 0.11468146538013
1027 => 0.11466184145475
1028 => 0.11541080687004
1029 => 0.11432439347175
1030 => 0.10989814984509
1031 => 0.11192667121517
1101 => 0.11114336169659
1102 => 0.11201250200705
1103 => 0.11670289380189
1104 => 0.11462915978442
1105 => 0.11244464945348
1106 => 0.11518451019013
1107 => 0.11867329442617
1108 => 0.11845497257863
1109 => 0.11803133694294
1110 => 0.12041934884047
1111 => 0.12436364487336
1112 => 0.12542977224158
1113 => 0.12621676566879
1114 => 0.12632527876604
1115 => 0.12744303110822
1116 => 0.12143259505446
1117 => 0.13097131143072
1118 => 0.13261838424718
1119 => 0.13230880282186
1120 => 0.13413945493793
1121 => 0.13360083064622
1122 => 0.1328204485551
1123 => 0.13572242154995
1124 => 0.1323955436885
1125 => 0.12767345940644
1126 => 0.12508283057707
1127 => 0.12849437959966
1128 => 0.13057769354109
1129 => 0.13195463153273
1130 => 0.13237129213703
1201 => 0.12189916809579
1202 => 0.11625527404819
1203 => 0.11987294542533
1204 => 0.12428675418378
1205 => 0.12140807612395
1206 => 0.12152091485383
1207 => 0.1174166764438
1208 => 0.12464988821327
1209 => 0.12359607009935
1210 => 0.12906328033856
1211 => 0.12775848673787
1212 => 0.13221678445207
1213 => 0.13104276525009
1214 => 0.13591605331896
1215 => 0.13786013986864
1216 => 0.14112456375847
1217 => 0.14352588726042
1218 => 0.14493599035076
1219 => 0.14485133305038
1220 => 0.15043886400489
1221 => 0.14714409221448
1222 => 0.14300508232763
1223 => 0.14293022069719
1224 => 0.14507387256781
1225 => 0.14956637880646
1226 => 0.15073122031084
1227 => 0.15138220780118
1228 => 0.15038519779868
1229 => 0.14680895915861
1230 => 0.14526475744577
1231 => 0.14658046204494
]
'min_raw' => 0.054252825788293
'max_raw' => 0.15138220780118
'avg_raw' => 0.10281751679474
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.054252'
'max' => '$0.151382'
'avg' => '$0.102817'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.021477881364615
'max_diff' => 0.078214453210766
'year' => 2036
]
11 => [
'items' => [
101 => 0.14497146837994
102 => 0.14774904284962
103 => 0.15156324585438
104 => 0.15077562801689
105 => 0.15340851636136
106 => 0.15613327880995
107 => 0.16002981148817
108 => 0.16104850941845
109 => 0.16273237835958
110 => 0.16446563262214
111 => 0.16502230717876
112 => 0.16608517163332
113 => 0.166079569813
114 => 0.16928258338584
115 => 0.17281560654576
116 => 0.17414924099896
117 => 0.17721585988705
118 => 0.17196438250834
119 => 0.17594768842472
120 => 0.17954073006991
121 => 0.17525695769679
122 => 0.18116113992218
123 => 0.18139038593882
124 => 0.18485172861679
125 => 0.18134299469965
126 => 0.17925951969993
127 => 0.18527443395733
128 => 0.18818486149847
129 => 0.18730821703723
130 => 0.18063690940196
131 => 0.17675392221239
201 => 0.16659139576499
202 => 0.17862934733041
203 => 0.18449268238606
204 => 0.18062172478065
205 => 0.18257401063666
206 => 0.19322504923626
207 => 0.19728027513131
208 => 0.19643681649331
209 => 0.19657934711862
210 => 0.19876747340404
211 => 0.20847083037671
212 => 0.20265635395663
213 => 0.20710130331551
214 => 0.209458888428
215 => 0.21164874487012
216 => 0.20627114955949
217 => 0.19927497707293
218 => 0.1970589955671
219 => 0.18023683433503
220 => 0.17936116778795
221 => 0.17886962961967
222 => 0.17577055099809
223 => 0.17333552411061
224 => 0.17139910032293
225 => 0.16631734603898
226 => 0.16803228893335
227 => 0.15993303324927
228 => 0.16511465001595
301 => 0.15218804238079
302 => 0.16295370533557
303 => 0.15709444444391
304 => 0.16102878054834
305 => 0.16101505402031
306 => 0.15377069386966
307 => 0.1495922981207
308 => 0.15225493451753
309 => 0.15510949209527
310 => 0.15557263445838
311 => 0.1592736428695
312 => 0.16030651476413
313 => 0.15717686470321
314 => 0.15192016716968
315 => 0.15314117811422
316 => 0.14956755437288
317 => 0.14330491622364
318 => 0.14780285227759
319 => 0.1493386454067
320 => 0.15001693914472
321 => 0.14385835379379
322 => 0.14192319256714
323 => 0.14089292896764
324 => 0.15112517113708
325 => 0.1516857164611
326 => 0.14881788733028
327 => 0.16178074694031
328 => 0.15884685257684
329 => 0.1621247314024
330 => 0.15303038416903
331 => 0.15337780048051
401 => 0.14907239075685
402 => 0.15148313251452
403 => 0.14977929794203
404 => 0.15128836840391
405 => 0.15219289901663
406 => 0.15649760226492
407 => 0.16300285813193
408 => 0.15585462314883
409 => 0.15274003480208
410 => 0.15467230789529
411 => 0.15981820577449
412 => 0.16761450447513
413 => 0.16299893872921
414 => 0.16504724842986
415 => 0.1654947129765
416 => 0.16209136567299
417 => 0.16773999074469
418 => 0.17076713480997
419 => 0.17387235824173
420 => 0.17656853674115
421 => 0.17263206371776
422 => 0.17684465412403
423 => 0.17345004987889
424 => 0.17040473894325
425 => 0.17040935742289
426 => 0.16849898938808
427 => 0.16479741059876
428 => 0.1641147826776
429 => 0.16766589932987
430 => 0.17051355859299
501 => 0.17074810544926
502 => 0.17232471593534
503 => 0.17325773778063
504 => 0.18240262024608
505 => 0.18608076762412
506 => 0.19057833661422
507 => 0.19233039320497
508 => 0.19760345539605
509 => 0.19334502941958
510 => 0.19242369217281
511 => 0.17963296810273
512 => 0.18172744845266
513 => 0.18508091358018
514 => 0.17968826550753
515 => 0.18310865949314
516 => 0.18378391771975
517 => 0.17950502538954
518 => 0.18179056666313
519 => 0.17572084665623
520 => 0.16313516144145
521 => 0.16775400221015
522 => 0.1711550237009
523 => 0.16630134669067
524 => 0.17500137486827
525 => 0.16991899801195
526 => 0.16830812854561
527 => 0.16202355244098
528 => 0.16498963044685
529 => 0.16900129341993
530 => 0.16652255210844
531 => 0.17166631251466
601 => 0.17895124904065
602 => 0.18414292863454
603 => 0.18454148132841
604 => 0.18120357916506
605 => 0.18655258868404
606 => 0.18659155037874
607 => 0.18055784578998
608 => 0.17686223532518
609 => 0.17602258485194
610 => 0.17812019635726
611 => 0.18066708396515
612 => 0.18468281586521
613 => 0.18710943854877
614 => 0.19343678352627
615 => 0.19514878165799
616 => 0.19702974855934
617 => 0.19954330040825
618 => 0.20256146386434
619 => 0.19595789404656
620 => 0.19622026618601
621 => 0.19007111340434
622 => 0.18349986177942
623 => 0.18848662264466
624 => 0.19500614911496
625 => 0.19351056253924
626 => 0.19334227849741
627 => 0.19362528557766
628 => 0.19249766214086
629 => 0.18739746312786
630 => 0.18483617511247
701 => 0.18814089010659
702 => 0.18989719905002
703 => 0.19262108105504
704 => 0.19228530510375
705 => 0.19930173262512
706 => 0.20202810419417
707 => 0.20133058167879
708 => 0.20145894260844
709 => 0.20639490810572
710 => 0.21188471689743
711 => 0.21702664727494
712 => 0.22225723970599
713 => 0.21595155637686
714 => 0.21274991926281
715 => 0.21605319152174
716 => 0.21430042876423
717 => 0.2243723234721
718 => 0.22506967960899
719 => 0.23514084600423
720 => 0.2446995821655
721 => 0.23869591124515
722 => 0.24435710251176
723 => 0.2504801424303
724 => 0.26229247986058
725 => 0.2583145001771
726 => 0.25526743008245
727 => 0.25238796356633
728 => 0.25837967628393
729 => 0.26608791897516
730 => 0.26774820062223
731 => 0.27043849116687
801 => 0.26760997961225
802 => 0.27101661022946
803 => 0.28304351325755
804 => 0.27979373789495
805 => 0.2751785344526
806 => 0.28467261931723
807 => 0.28810849172242
808 => 0.31222324364238
809 => 0.34266911407205
810 => 0.3300643237958
811 => 0.3222401237173
812 => 0.32407899632825
813 => 0.33519679755141
814 => 0.33876748244292
815 => 0.32906113001891
816 => 0.33248957778712
817 => 0.3513806620675
818 => 0.36151512268538
819 => 0.34775116392665
820 => 0.30977694759784
821 => 0.27476298587865
822 => 0.28405026522583
823 => 0.28299737596569
824 => 0.3032934893142
825 => 0.27971623182732
826 => 0.28011321237615
827 => 0.30082902785475
828 => 0.29530240344405
829 => 0.28634997969529
830 => 0.27482834847936
831 => 0.25352954755483
901 => 0.23466460561496
902 => 0.2716631010957
903 => 0.27006765869317
904 => 0.26775722166299
905 => 0.27289884925825
906 => 0.29786513338439
907 => 0.2972895797273
908 => 0.293628201011
909 => 0.2964053244974
910 => 0.28586313652093
911 => 0.28858009840362
912 => 0.27475743948822
913 => 0.28100585860321
914 => 0.28633077181466
915 => 0.28739982697855
916 => 0.28980846285009
917 => 0.2692269330445
918 => 0.27846743568524
919 => 0.28389536526867
920 => 0.25937178194098
921 => 0.28341061287561
922 => 0.26886865440036
923 => 0.26393289528097
924 => 0.27057824469841
925 => 0.26798854556762
926 => 0.2657620743272
927 => 0.26451966511941
928 => 0.26939927631113
929 => 0.26917163661664
930 => 0.26118764561527
1001 => 0.25077285482309
1002 => 0.2542684004668
1003 => 0.25299843596353
1004 => 0.24839592077498
1005 => 0.25149746030226
1006 => 0.23783984987736
1007 => 0.21434264100213
1008 => 0.22986561692408
1009 => 0.22926799923683
1010 => 0.22896665329912
1011 => 0.24063174068092
1012 => 0.23951041168851
1013 => 0.23747518858721
1014 => 0.24835854230668
1015 => 0.24438597179731
1016 => 0.25662849805187
1017 => 0.26469221764007
1018 => 0.2626469975185
1019 => 0.27023096476654
1020 => 0.25434893077843
1021 => 0.25962430539267
1022 => 0.26071155278932
1023 => 0.24822424341116
1024 => 0.23969387497938
1025 => 0.2391249966583
1026 => 0.22433451335477
1027 => 0.23223547015091
1028 => 0.2391879851677
1029 => 0.23585827001162
1030 => 0.23480418166561
1031 => 0.24018929042148
1101 => 0.24060775949215
1102 => 0.23106662033354
1103 => 0.2330505252932
1104 => 0.24132373877172
1105 => 0.23284206154042
1106 => 0.2163635481541
1107 => 0.21227664900102
1108 => 0.2117313813175
1109 => 0.20064738667829
1110 => 0.21254975514469
1111 => 0.20735405234547
1112 => 0.22376721523415
1113 => 0.21439210461769
1114 => 0.21398796233681
1115 => 0.21337704200448
1116 => 0.20383658994446
1117 => 0.20592534261825
1118 => 0.21286867463193
1119 => 0.21534613371664
1120 => 0.21508771443688
1121 => 0.21283464851714
1122 => 0.21386609055763
1123 => 0.21054345636697
1124 => 0.2093701650796
1125 => 0.20566693503745
1126 => 0.20022420991891
1127 => 0.20098105422882
1128 => 0.1901975916025
1129 => 0.184322188842
1130 => 0.18269595479446
1201 => 0.18052128666108
1202 => 0.18294158934669
1203 => 0.19016704340775
1204 => 0.18145161284452
1205 => 0.16650961846024
1206 => 0.16740765778266
1207 => 0.16942528550986
1208 => 0.16566544958817
1209 => 0.1621070804274
1210 => 0.16520079371307
1211 => 0.15886967371562
1212 => 0.17019037111427
1213 => 0.16988417797552
1214 => 0.1741038338985
1215 => 0.1767424713432
1216 => 0.17066126630219
1217 => 0.1691318596797
1218 => 0.17000307919953
1219 => 0.15560376120229
1220 => 0.17292710241792
1221 => 0.17307691539212
1222 => 0.17179412575293
1223 => 0.1810182701521
1224 => 0.20048409191713
1225 => 0.19316026675826
1226 => 0.19032426029296
1227 => 0.18493300992931
1228 => 0.1921165309381
1229 => 0.19156494860501
1230 => 0.18907048411339
1231 => 0.18756182420565
]
'min_raw' => 0.14089292896764
'max_raw' => 0.36151512268538
'avg_raw' => 0.25120402582651
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.140892'
'max' => '$0.361515'
'avg' => '$0.251204'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.086640103179351
'max_diff' => 0.2101329148842
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0044224680455506
]
1 => [
'year' => 2028
'avg' => 0.0075902390178117
]
2 => [
'year' => 2029
'avg' => 0.020735164989179
]
3 => [
'year' => 2030
'avg' => 0.015997148909417
]
4 => [
'year' => 2031
'avg' => 0.015711182733887
]
5 => [
'year' => 2032
'avg' => 0.02754664782368
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0044224680455506
'min' => '$0.004422'
'max_raw' => 0.02754664782368
'max' => '$0.027546'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.02754664782368
]
1 => [
'year' => 2033
'avg' => 0.070852810790896
]
2 => [
'year' => 2034
'avg' => 0.044909916506024
]
3 => [
'year' => 2035
'avg' => 0.052971349507048
]
4 => [
'year' => 2036
'avg' => 0.10281751679474
]
5 => [
'year' => 2037
'avg' => 0.25120402582651
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.02754664782368
'min' => '$0.027546'
'max_raw' => 0.25120402582651
'max' => '$0.251204'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.25120402582651
]
]
]
]
'prediction_2025_max_price' => '$0.007561'
'last_price' => 0.00733194
'sma_50day_nextmonth' => '$0.00539'
'sma_200day_nextmonth' => '$0.00600074'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'augmenter'
'sma_200day_date_nextmonth' => '4 févr. 2026'
'sma_50day_date_nextmonth' => '4 févr. 2026'
'daily_sma3' => '$0.004373'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.003748'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.003614'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.003328'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.003427'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.003915'
'daily_sma100_action' => 'BUY'
'daily_sma200' => '$0.006155'
'daily_sma200_action' => 'BUY'
'daily_ema3' => '$0.005119'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.004416'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.003822'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.003522'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.003552'
'daily_ema50_action' => 'BUY'
'daily_ema100' => '$0.00419'
'daily_ema100_action' => 'BUY'
'daily_ema200' => '$0.005881'
'daily_ema200_action' => 'BUY'
'weekly_sma21' => '$0.003987'
'weekly_sma21_action' => 'BUY'
'weekly_sma50' => '$0.008093'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.02086'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.0579009'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.005146'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.004521'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.004155'
'weekly_ema10_action' => 'BUY'
'weekly_ema21' => '$0.004814'
'weekly_ema21_action' => 'BUY'
'weekly_ema50' => '$0.009515'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.025026'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.049878'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '64.49'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 41.07
'stoch_rsi_14_action' => 'NEUTRAL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.005736'
'vwma_10_action' => 'BUY'
'hma_9' => '0.004041'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 263.89
'cci_20_action' => 'SELL'
'adx_14' => 8.05
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.000249'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 60.07
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.000186'
'ichimoku_cloud_action' => 'NEUTRAL'
'sell_signals' => 6
'buy_signals' => 28
'sell_pct' => 17.65
'buy_pct' => 82.35
'overall_action' => 'bullish'
'overall_action_label' => 'Haussier'
'overall_action_dir' => 1
'last_updated' => 1767713512
'last_updated_date' => '6 janvier 2026'
]
Prévision du prix de Arcona pour 2026
La prévision du prix de Arcona pour 2026 suggère que le prix moyen pourrait varier entre $0.002533 à la baisse et $0.007561 à la hausse. Sur le marché des cryptomonnaies, comparé au prix moyen d'aujourd'hui, Arcona pourrait potentiellement gagner 3.13% d'ici 2026 si ARCONA atteint l'objectif de prix prévu.
Prévision du prix de Arcona de 2027 à 2032
La prévision du prix de ARCONA pour 2027-2032 se situe actuellement dans une fourchette de prix comprise entre $0.004422 à la baisse et $0.027546 à la hausse. Compte tenu de la volatilité des prix sur le marché, si Arcona atteint l'objectif de prix le plus élevé, il pourrait gagner 275.71% d'ici 2032 par rapport au prix actuel.
| Prévision du Prix de Arcona | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2027 | $0.002438 | $0.004422 | $0.0064063 |
| 2028 | $0.004401 | $0.00759 | $0.010779 |
| 2029 | $0.009667 | $0.020735 | $0.0318025 |
| 2030 | $0.008222 | $0.015997 | $0.023772 |
| 2031 | $0.00972 | $0.015711 | $0.0217013 |
| 2032 | $0.014838 | $0.027546 | $0.040254 |
Prévision du prix de Arcona de 2032 à 2037
La prévision du prix de Arcona pour 2032-2037 est actuellement estimée entre $0.027546 à la baisse et $0.251204 à la hausse. Par rapport au prix actuel, Arcona pourrait potentiellement gagner 3326.16% d'ici 2037 s'il atteint l'objectif de prix le plus élevé. Veuillez noter que ces informations sont à titre général seulement et ne doivent pas être considérées comme un conseil en investissement à long terme.
| Prévision du Prix de Arcona | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2032 | $0.014838 | $0.027546 | $0.040254 |
| 2033 | $0.034481 | $0.070852 | $0.107224 |
| 2034 | $0.027721 | $0.0449099 | $0.062098 |
| 2035 | $0.032774 | $0.052971 | $0.073167 |
| 2036 | $0.054252 | $0.102817 | $0.151382 |
| 2037 | $0.140892 | $0.251204 | $0.361515 |
Arcona Histogramme des prix potentiels
Prévision du prix de Arcona basée sur l'analyse technique
Au 6 janvier 2026, le sentiment global de prévision du prix pour Arcona est Haussier, avec 28 indicateurs techniques montrant des signaux haussiers et 6 indiquant des signaux baissiers. La prévision du prix de ARCONA a été mise à jour pour la dernière fois le 6 janvier 2026.
Moyennes Mobiles Simples sur 50 et 200 jours de Arcona et Indice de Force Relative sur 14 jours - RSI (14)
Selon nos indicateurs techniques, le SMA sur 200 jours de Arcona devrait augmenter au cours du prochain mois, atteignant $0.00600074 d'ici le 4 févr. 2026. Le SMA à court terme sur 50 jours pour Arcona devrait atteindre $0.00539 d'ici le 4 févr. 2026.
Le Relative Strength Index (RSI), un oscillateur de momentum, est un outil couramment utilisé pour identifier si une cryptomonnaie est survendue (en dessous de 30) ou surachetée (au-dessus de 70). Actuellement, le RSI est à 64.49, ce qui suggère que le marché de ARCONA est dans un état NEUTRAL.
Moyennes Mobiles et Oscillateurs Populaires de ARCONA pour le Samedi 19 Octobre 2024
Les moyennes mobiles (MA) sont des indicateurs largement utilisés sur les marchés financiers, conçus pour lisser les mouvements de prix sur une période donnée. En tant qu'indicateurs retardés, ils sont basés sur des données historiques de prix. Le tableau ci-dessous met en évidence deux types : la moyenne mobile simple (SMA) et la moyenne mobile exponentielle (EMA).
Moyenne Mobile Simple Quotidienne (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 3 | $0.004373 | BUY |
| SMA 5 | $0.003748 | BUY |
| SMA 10 | $0.003614 | BUY |
| SMA 21 | $0.003328 | BUY |
| SMA 50 | $0.003427 | BUY |
| SMA 100 | $0.003915 | BUY |
| SMA 200 | $0.006155 | BUY |
Moyenne Mobile Exponentielle Quotidienne (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 3 | $0.005119 | BUY |
| EMA 5 | $0.004416 | BUY |
| EMA 10 | $0.003822 | BUY |
| EMA 21 | $0.003522 | BUY |
| EMA 50 | $0.003552 | BUY |
| EMA 100 | $0.00419 | BUY |
| EMA 200 | $0.005881 | BUY |
Moyenne Mobile Simple Hebdomadaire (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 21 | $0.003987 | BUY |
| SMA 50 | $0.008093 | SELL |
| SMA 100 | $0.02086 | SELL |
| SMA 200 | $0.0579009 | SELL |
Moyenne Mobile Exponentielle Hebdomadaire (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 21 | $0.004814 | BUY |
| EMA 50 | $0.009515 | SELL |
| EMA 100 | $0.025026 | SELL |
| EMA 200 | $0.049878 | SELL |
Oscillateurs de Arcona
Un oscillateur est un outil d'analyse technique qui établit des limites hautes et basses entre deux extrêmes, créant un indicateur de tendance qui fluctue à l'intérieur de ces limites. Les traders utilisent cet indicateur pour identifier les conditions de surachat ou de survente à court terme.
| Période | Valeur | Action |
|---|---|---|
| RSI (14) | 64.49 | NEUTRAL |
| Stoch RSI (14) | 41.07 | NEUTRAL |
| Stochastique Rapide (14) | 100 | SELL |
| Indice de Canal des Matières Premières (20) | 263.89 | SELL |
| Indice Directionnel Moyen (14) | 8.05 | NEUTRAL |
| Oscillateur Impressionnant (5, 34) | 0.000249 | BUY |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Plage de Pourcentage de Williams (14) | -0 | SELL |
| Oscillateur Ultime (7, 14, 28) | 60.07 | NEUTRAL |
| VWMA (10) | 0.005736 | BUY |
| Moyenne Mobile de Hull (9) | 0.004041 | BUY |
| Nuage Ichimoku B/L (9, 26, 52, 26) | -0.000186 | NEUTRAL |
Prévision du cours de Arcona basée sur les flux monétaires mondiaux
Définitions des flux monétaires mondiaux utilisés pour la prédiction du cours de Arcona
M0 : le total de toutes les devises physiques, plus les comptes à la banque centrale qui peuvent être échangés contre des devises physiques.
M1 : M0 plus le montant des comptes à vue, y compris les comptes de "chèques" et les comptes "courants".
M2 : M1 plus la plupart des comptes d'épargne, comptes du marché monétaire et comptes de certificats de dépôt (CD) de moins de 100 000 $.
Prédictions du cours de Arcona par des sociétés Internet ou des niches technologiques
| Comparaison | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Action Facebook | $0.0103026 | $0.014476 | $0.020342 | $0.028584 | $0.040166 | $0.056439 |
| Action Amazon.com | $0.015298 | $0.031921 | $0.0666056 | $0.138976 | $0.289983 | $0.605067 |
| Action Apple | $0.010399 | $0.014751 | $0.020923 | $0.029678 | $0.042096 | $0.059711 |
| Action Netflix | $0.011568 | $0.018253 | $0.0288011 | $0.045443 | $0.0717031 | $0.113136 |
| Action Google | $0.009494 | $0.012295 | $0.015922 | $0.02062 | $0.026703 | $0.03458 |
| Action Tesla | $0.01662 | $0.037678 | $0.085414 | $0.193627 | $0.438938 | $0.995041 |
| Action Kodak | $0.005498 | $0.004123 | $0.003091 | $0.002318 | $0.001738 | $0.0013038 |
| Action Nokia | $0.004857 | $0.003217 | $0.002131 | $0.001412 | $0.000935 | $0.000619 |
Ce calcul montre la valeur potentielle des cryptomonnaies si l'on suppose que leur capitalisation se comportera comme celle de certaines sociétés Internet ou niches technologiques. En extrapolant les données, vous pourrez obtenir une potentielle image des cours futurs pour 2024, 2025, 2026, 2027, 2028, 2029 et 2030.
Aperçu des prévisions relatives à Arcona
Vous vous posez peut-être des questions telles que : "Devrais-je investir dans Arcona maintenant ?", "Devrais-je acheter ARCONA aujourd'hui ?", " Arcona sera-t-il un bon ou un mauvais investissement à court ou à long terme ?".
Nous mettons régulièrement à jour les prévisions de Arcona avec de nouvelles valeurs. Regardez nos prévisions similaires. Nous faisons une prévision des cours futurs pour une grande quantité de devises numériques comme Arcona en utilisant des méthodes d'analyse technique.
Si vous souhaitez trouver des cryptomonnaies ayant un bon rendement, vous devriez consulter un maximum d'informations disponibles à propos de Arcona afin de prendre une décision responsable concernant cet investissement.
Le cours de Arcona est de $0.007331 USD actuellement, mais ce cours peut subir une hausse ou une baisse, ce qui pourrait causer la perte de votre investissement, car les cryptomonnaies sont des actifs à haut risque.
Prévision du cours de Arcona basée sur le modèle de croissance du Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si Arcona présente 1 % de la précédente croissance annuelle moyenne du Bitcoin | $0.007522 | $0.007718 | $0.007918 | $0.008124 |
| Si Arcona présente 2 % de la précédente croissance annuelle moyenne du Bitcoin | $0.007713 | $0.008114 | $0.008535 | $0.008979 |
| Si Arcona présente 5 % de la précédente croissance annuelle moyenne du Bitcoin | $0.008284 | $0.009361 | $0.010578 | $0.011953 |
| Si Arcona présente 10 % de la précédente croissance annuelle moyenne du Bitcoin | $0.009237 | $0.011638 | $0.014664 | $0.018475 |
| Si Arcona présente 20 % de la précédente croissance annuelle moyenne du Bitcoin | $0.011143 | $0.016936 | $0.025741 | $0.039123 |
| Si Arcona présente 50 % de la précédente croissance annuelle moyenne du Bitcoin | $0.01686 | $0.038774 | $0.089168 | $0.205056 |
| Si Arcona présente 100 % de la précédente croissance annuelle moyenne du Bitcoin | $0.02639 | $0.094986 | $0.341885 | $1.23 |
Boîte à questions
Est-ce que ARCONA est un bon investissement ?
La décision d'acquérir Arcona dépend entièrement de votre tolérance individuelle au risque. Comme vous pouvez le discerner, la valeur de Arcona a connu une hausse de 6.8296% au cours des 24 heures précédentes, et Arcona a enregistré une déclin de sur une période de 30 jours précédents. Par conséquent, la détermination de si investir ou non dans Arcona dépendra de la mesure dans laquelle cet investissement s'aligne avec vos aspirations de trading.
Est-ce que Arcona peut monter ?
Il semble que la valeur moyenne de Arcona pourrait potentiellement s'envoler jusqu'à $0.007561 pour la fin de cette année. En regardant les perspectives de Arcona sur une période de cinq ans plus longue, la monnaie numérique pourrait potentiellement croître jusqu'à $0.023772. Cependant, compte tenu de l'imprévisibilité du marché, il est essentiel de mener des recherches approfondies avant d'investir des fonds dans un projet, un réseau ou un actif particulier.
Quel sera le prix de Arcona la semaine prochaine ?
Basé sur notre nouveau pronostic expérimental de Arcona, le prix de Arcona va augmenter de 0.86% durant la prochaine semaine et atteindre $0.007394 d'ici 13 janvier 2026.
Quel sera le prix de Arcona le mois prochain ?
Basé sur notre nouveau pronostic expérimental de Arcona, le prix de Arcona va diminuer de -11.62% durant le prochain mois et atteindre $0.00648 d'ici 5 février 2026.
Jusqu'où le prix de Arcona peut-il monter cette année en 2026 ?
Selon notre prédiction la plus récente sur la valeur de Arcona en 2026, ARCONA devrait fluctuer dans la fourchette de $0.002533 et $0.007561. Cependant, il est crucial de garder à l'esprit que le marché des cryptomonnaies est exceptionnellement instable, et cette prévision de prix de Arcona ne prend pas en compte les fluctuations de prix soudaines et extrêmes.
Où sera Arcona dans 5 ans ?
L'avenir de Arcona semble suivre une tendance haussière, avec un prix maximum de $0.023772 prévue après une période de cinq ans. Selon la prévision de Arcona pour 2030, la valeur de Arcona pourrait potentiellement atteindre son point le plus élevé d'environ $0.023772, tandis que son point le plus bas devrait être autour de $0.008222.
Combien vaudra Arcona en 2026 ?
Basé sur notre nouvelle simulation expérimentale de prédiction de prix de Arcona, il est attendu que la valeur de ARCONA en 2026 augmente de 3.13% jusqu'à $0.007561 si le meilleur scénario se produit. Le prix sera entre $0.007561 et $0.002533 durant 2026.
Combien vaudra Arcona en 2027 ?
Selon notre dernière simulation expérimentale pour la prédiction de prix de Arcona, le valeur de ARCONA pourrait diminuer de -12.62% jusqu'à $0.0064063 en 2027, en supposant les conditions les plus favorables. Il est prévu que le prix fluctue entre $0.0064063 et $0.002438 tout au long de l'année.
Combien vaudra Arcona en 2028 ?
Notre nouveau modèle expérimental de prédiction de prix de Arcona suggère que la valeur de ARCONA en 2028 pourrait augmenter de 47.02%, atteignant $0.010779 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.010779 et $0.004401 durant l'année.
Combien vaudra Arcona en 2029 ?
Basé sur notre modèle de prévision expérimental, la valeur de Arcona pourrait connaître un 333.75% croissance en 2029, atteignant potentiellement $0.0318025 sous des conditions optimales. Le range de prix prévu pour 2029 se situe entre $0.0318025 et $0.009667.
Combien vaudra Arcona en 2030 ?
En utilisant notre nouvelle simulation expérimentale pour les prédictions de prix de Arcona, il est prévu que la valeur de ARCONA en 2030 augmente de 224.23%, atteignant $0.023772 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.023772 et $0.008222 au cours de 2030.
Combien vaudra Arcona en 2031 ?
Notre simulation expérimentale indique que le prix de Arcona pourrait augmenter de 195.98% en 2031, atteignant potentiellement $0.0217013 dans des conditions idéales. Il est probable que le prix fluctue entre $0.0217013 et $0.00972 durant l'année.
Combien vaudra Arcona en 2032 ?
Basé sur les résultats de notre dernière prédiction expérimentale de prix de Arcona, ARCONA pourrait connaître une 449.04% hausse en valeur, atteignant $0.040254 si le scénario le plus positif se réalise en 2032. Il est prévu que le prix reste dans une fourchette de $0.040254 et $0.014838 tout au long de l'année.
Combien vaudra Arcona en 2033 ?
Selon notre prédiction expérimentale de prix de Arcona, la valeur de ARCONA est anticipée à augmenter de 1362.43% en 2033, avec le prix potentiel le plus élevé étant $0.107224. Tout au long de l'année, le prix de ARCONA pourrait osciller entre $0.107224 et $0.034481.
Combien vaudra Arcona en 2034 ?
Les résultats de notre nouvelle simulation de prédiction de prix de Arcona suggèrent que ARCONA pourrait augmenter de 746.96% en 2034, atteignant potentiellement $0.062098 dans les meilleures circonstances. La fourchette de prix prévue pour l'année est entre $0.062098 et $0.027721.
Combien vaudra Arcona en 2035 ?
Basé sur notre prédiction expérimentale pour le prix de Arcona, ARCONA pourrait augmenter de 897.93%, avec la valeur potentiellement atteignant $0.073167 en 2035. La fourchette de prix attendue pour l'année se situe entre $0.073167 et $0.032774.
Combien vaudra Arcona en 2036 ?
Notre récente simulation de prédiction de prix de Arcona suggère que la valeur de ARCONA pourrait augmenter de 1964.7% en 2036, pouvant atteindre $0.151382 si les conditions sont optimales. La fourchette de prix attendue pour 2036 est entre $0.151382 et $0.054252.
Combien vaudra Arcona en 2037 ?
Selon la simulation expérimentale, la valeur de Arcona pourrait augmenter de 4830.69% en 2037, avec un maximum de $0.361515 sous des conditions favorables. Il est prévu que le prix chute entre $0.361515 et $0.140892 au cours de l'année.
Prévisions liées
Prévision du cours de UnFederalReserve
Prévision du cours de Coin
Prévision du cours de Chronicle
Prévision du cours de Bankless BED Index
Prévision du cours de Ties.DB
Prévision du cours de Ryo Currency
Prévision du cours de NUSA
Prévision du cours de Synthswap
Prévision du cours de pTokens BTC
Prévision du cours de Smartlands
Prévision du cours de Avatly
Prévision du cours de Rainmaker Games
Prévision du cours de Polygon Ecosystem Index
Prévision du cours de Bonk 2.0 (Sol)
Prévision du cours de The Rug Game
Prévision du cours de Citadel.one
Prévision du cours de Play Token
Prévision du cours de SHELL
Prévision du cours de Public Masterpiece Token
Prévision du cours de Legia Warsaw Fan Token
Prévision du cours de CryptoZoon
Prévision du cours de Stride Staked Injective
Prévision du cours de Ubeswap (OLD)
Prévision du cours de FrontFanz
Prévision du cours de Binamon
Comment lire et prédire les mouvements de prix de Arcona ?
Les traders de Arcona utilisent des indicateurs et des modèles graphiques pour prédire la direction du marché. Ils identifient également des niveaux clés de support et de résistance pour évaluer quand une tendance baissière pourrait ralentir ou une tendance haussière pourrait s'arrêter.
Indicateurs de prédiction du prix de Arcona
Les moyennes mobiles sont des outils populaires pour la prédiction du prix de Arcona. Une moyenne mobile simple (SMA) calcule le prix de clôture moyen de ARCONA sur une période spécifique, comme une SMA de 12 jours. Une moyenne mobile exponentielle (EMA) donne plus de poids aux prix récents, réagissant plus rapidement aux changements de prix.
Les moyennes mobiles couramment utilisées sur le marché des cryptomonnaies incluent les moyennes sur 50 jours, 100 jours et 200 jours, qui aident à identifier les niveaux clés de résistance et de support. Un mouvement de prix de ARCONA au-dessus de ces moyennes est considéré comme haussier, tandis qu'une chute en dessous indique une faiblesse.
Les traders utilisent également le RSI et les niveaux de retracement de Fibonacci pour évaluer la direction future de ARCONA.
Comment lire les graphiques de Arcona et prédire les mouvements de prix ?
La plupart des traders préfèrent les graphiques en chandeliers aux simples graphiques linéaires parce qu'ils fournissent des informations plus détaillées. Les chandeliers peuvent représenter l'action des prix de Arcona dans différentes périodes, comme 5 minutes pour les tendances à court terme et hebdomadaire pour les tendances à long terme. Les options populaires incluent les graphiques de 1 heure, 4 heures et 1 jour.
Par exemple, un graphique en chandeliers de 1 heure montre les prix d'ouverture, de clôture, les plus hauts et les plus bas de ARCONA au sein de chaque heure. La couleur du chandelier est cruciale : le vert indique que le prix a clôturé plus haut qu'il n'a ouvert, tandis que le rouge signifie le contraire. Certains graphiques utilisent des chandeliers creux et pleins pour transmettre la même information.
Qu'est-ce qui affecte le prix de Arcona ?
L'action du prix de Arcona est déterminée par l'offre et la demande, influencée par des facteurs tels que les réductions de récompenses de bloc, les hard forks et les mises à jour de protocole. Les événements du monde réel, tels que les réglementations, l'adoption par les entreprises et les gouvernements et les piratages d'échanges de cryptomonnaies, impactent également le prix de ARCONA. La capitalisation boursière de Arcona peut changer rapidement.
Les traders surveillent souvent l'activité des « baleines » de ARCONA, de grands détenteurs de Arcona, car leurs actions peuvent influencer significativement les mouvements de prix sur le marché relativement petit de Arcona.
Modèles de prédiction de prix haussiers et baissiers
Les traders identifient souvent des modèles de chandeliers pour obtenir un avantage dans les prédictions de prix des cryptomonnaies. Certaines formations indiquent des tendances haussières, tandis que d'autres suggèrent des mouvements baissiers.
Modèles de chandeliers haussiers couramment suivis :
- Marteau
- Englobante haussière
- Ligne pénétrante
- Étoile du matin
- Trois soldats blancs
Modèles de chandeliers baissiers courants :
- Harami baissier
- Nuage sombre
- Étoile du soir
- Étoile filante
- Pendu


