Prédiction du prix de Plasma jusqu'à $0.209923 d'ici 2026
| Année | Prix min. | Prix max. |
|---|---|---|
| 2026 | $0.070325 | $0.209923 |
| 2027 | $0.06770054 | $0.177849 |
| 2028 | $0.122179 | $0.299256 |
| 2029 | $0.268393 | $0.882892 |
| 2030 | $0.228257 | $0.659958 |
| 2031 | $0.26987 | $0.602467 |
| 2032 | $0.411937 | $1.11 |
| 2033 | $0.957252 | $2.97 |
| 2034 | $0.769584 | $1.72 |
| 2035 | $0.909887 | $2.03 |
Calculateur de profit d’investissement
Si vous ouvrez une position short de $10,000.00 sur Plasma aujourd’hui et la fermez le Apr 06, 2026, notre prévision indique que vous pourriez gagner environ $3,954.43, soit un rendement de 39.54% sur les 90 prochains jours.
Prévision du prix à long terme de Plasma pour 2027, 2028, 2029, 2030, 2031, 2032 et 2037
[
'name' => 'Plasma'
'name_with_ticker' => 'Plasma <small>XPL</small>'
'name_lang' => 'Plasma'
'name_lang_with_ticker' => 'Plasma <small>XPL</small>'
'name_with_lang' => 'Plasma'
'name_with_lang_with_ticker' => 'Plasma <small>XPL</small>'
'image' => '/uploads/coins/plasma.png?1755180802'
'price_for_sd' => 0.2035
'ticker' => 'XPL'
'marketcap' => '$420.69M'
'low24h' => '$0.1864'
'high24h' => '$0.2037'
'volume24h' => '$140.53M'
'current_supply' => '2.07B'
'max_supply' => '10B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.2035'
'change_24h_pct' => '8.0508%'
'ath_price' => '$1.68'
'ath_days' => 100
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '28 sept. 2025'
'ath_pct' => '-87.91%'
'fdv' => '$2.04B'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$10.03'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.205288'
'next_week_prediction_price_date' => '13 janvier 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.179898'
'next_month_prediction_price_date' => '5 février 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.070325'
'current_year_max_price_prediction' => '$0.209923'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.228257'
'grand_prediction_max_price' => '$0.659958'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.20740410858428
107 => 0.20817848023804
108 => 0.20992317911436
109 => 0.1950149182398
110 => 0.20170828968893
111 => 0.20564001833121
112 => 0.18787632528789
113 => 0.20528888723437
114 => 0.19475539858586
115 => 0.19118017433086
116 => 0.19599374279023
117 => 0.19411789048027
118 => 0.1925051428179
119 => 0.19160520191178
120 => 0.19513975533418
121 => 0.19497486419232
122 => 0.18919164876602
123 => 0.18164767999642
124 => 0.18417968353783
125 => 0.18325978291358
126 => 0.17992594438174
127 => 0.182172549023
128 => 0.17227963916348
129 => 0.1552594019389
130 => 0.16650349199342
131 => 0.16607060675754
201 => 0.16585232639183
202 => 0.17430194930398
203 => 0.17348971302695
204 => 0.17201549623069
205 => 0.17989886923418
206 => 0.17702133204158
207 => 0.18588922363616
208 => 0.19173019057962
209 => 0.19024873242727
210 => 0.19574219006944
211 => 0.1842380157855
212 => 0.18805924101526
213 => 0.18884679023913
214 => 0.17980158963502
215 => 0.17362260492697
216 => 0.17321053709252
217 => 0.16249702912529
218 => 0.16822009860497
219 => 0.17325616291038
220 => 0.17084427892247
221 => 0.17008074850488
222 => 0.1739814598188
223 => 0.17428457849522
224 => 0.16737344054966
225 => 0.16881048497582
226 => 0.17480319912165
227 => 0.16865948395506
228 => 0.15672324895656
301 => 0.15376289764557
302 => 0.15336793221058
303 => 0.14533922466675
304 => 0.15396072247564
305 => 0.15019720764028
306 => 0.16208610591134
307 => 0.15529523098035
308 => 0.15500248993483
309 => 0.15455996890874
310 => 0.14764932866404
311 => 0.14916231968353
312 => 0.15419173226735
313 => 0.15598628333765
314 => 0.1557990969587
315 => 0.15416708540191
316 => 0.15491421193535
317 => 0.15250745705498
318 => 0.15165758181445
319 => 0.14897514177874
320 => 0.14503269596921
321 => 0.14558091723945
322 => 0.13776990049371
323 => 0.1335140440086
324 => 0.1323360790248
325 => 0.13076085501793
326 => 0.13251400476789
327 => 0.13774777286467
328 => 0.13143473813411
329 => 0.12061148289646
330 => 0.12126197897818
331 => 0.12272345053976
401 => 0.12000000795335
402 => 0.11742249810651
403 => 0.11966343379835
404 => 0.11507747787371
405 => 0.12327764140359
406 => 0.1230558499608
407 => 0.12611236383003
408 => 0.12802366467844
409 => 0.12361873501386
410 => 0.12251090711541
411 => 0.12314197623434
412 => 0.11271180942233
413 => 0.12525999668058
414 => 0.12536851392506
415 => 0.12443932339506
416 => 0.13112084572826
417 => 0.14522094187039
418 => 0.13991591852667
419 => 0.1378616531428
420 => 0.13395649314641
421 => 0.13915988697614
422 => 0.13876034751561
423 => 0.13695347855423
424 => 0.13586067856861
425 => 0.13787419604919
426 => 0.13561118147015
427 => 0.13520468186828
428 => 0.13274173655684
429 => 0.13186257713753
430 => 0.13121168250381
501 => 0.13049511146768
502 => 0.13207568861501
503 => 0.12849389285691
504 => 0.12417459830041
505 => 0.12381549569346
506 => 0.12480700956389
507 => 0.12436833848575
508 => 0.1238133955051
509 => 0.12275385822532
510 => 0.12243951614784
511 => 0.12346097540255
512 => 0.12230780745876
513 => 0.12400936957614
514 => 0.12354663883194
515 => 0.12096186251003
516 => 0.11774027420617
517 => 0.11771159531276
518 => 0.11701750939716
519 => 0.11613348662712
520 => 0.1158875717162
521 => 0.11947470844486
522 => 0.12689997411922
523 => 0.1254422167958
524 => 0.12649559585895
525 => 0.1316771782821
526 => 0.13332424751879
527 => 0.13215519678756
528 => 0.13055492804274
529 => 0.13062533174601
530 => 0.13609393448136
531 => 0.13643500452604
601 => 0.13729677849558
602 => 0.13840440158373
603 => 0.13234382978897
604 => 0.13033987935949
605 => 0.12939029647107
606 => 0.12646594870955
607 => 0.12961960705572
608 => 0.12778210539052
609 => 0.12803004714315
610 => 0.12786857475148
611 => 0.12795674959605
612 => 0.12327534929077
613 => 0.12498100551486
614 => 0.12214502122484
615 => 0.11834795661469
616 => 0.11833522752269
617 => 0.11926455370673
618 => 0.11871175412793
619 => 0.11722418467515
620 => 0.11743548689479
621 => 0.11558425710812
622 => 0.11766025970848
623 => 0.11771979203477
624 => 0.116920417953
625 => 0.12011878639202
626 => 0.12142916055111
627 => 0.12090299540624
628 => 0.1213922434019
629 => 0.12550279319397
630 => 0.12617299216594
701 => 0.12647065027842
702 => 0.12607182783983
703 => 0.12146737670625
704 => 0.12167160369367
705 => 0.12017312156677
706 => 0.1189070620757
707 => 0.11895769781573
708 => 0.11960861697036
709 => 0.1224512190945
710 => 0.12843330768422
711 => 0.12866032357335
712 => 0.1289354734535
713 => 0.12781630061169
714 => 0.12747874737356
715 => 0.12792406722454
716 => 0.13017062517556
717 => 0.13594938216012
718 => 0.13390678349158
719 => 0.13224611897911
720 => 0.13370296946848
721 => 0.13347869875481
722 => 0.13158562823339
723 => 0.13153249604892
724 => 0.12789908846705
725 => 0.12655590041272
726 => 0.12543343193864
727 => 0.12420772566773
728 => 0.12348108590428
729 => 0.1245975348328
730 => 0.12485287991219
731 => 0.1224117448178
801 => 0.12207902712473
802 => 0.12407251073837
803 => 0.12319525292457
804 => 0.12409753434101
805 => 0.12430687136926
806 => 0.12427316328627
807 => 0.12335720537624
808 => 0.12394100963383
809 => 0.1225601385242
810 => 0.1210586485926
811 => 0.12010079156238
812 => 0.1192649342622
813 => 0.11972871647265
814 => 0.11807541757569
815 => 0.11754649398422
816 => 0.12374322988737
817 => 0.12832082532517
818 => 0.12825426527458
819 => 0.12784909808445
820 => 0.12724710182509
821 => 0.13012658539958
822 => 0.12912343089932
823 => 0.12985330961463
824 => 0.13003909438058
825 => 0.13060140891235
826 => 0.13080238802489
827 => 0.13019488955783
828 => 0.12815605050268
829 => 0.12307545742427
830 => 0.12071042763147
831 => 0.11992992840716
901 => 0.11995829807158
902 => 0.11917573607899
903 => 0.11940623565778
904 => 0.11909557773211
905 => 0.11850726677713
906 => 0.119692389929
907 => 0.11982896433206
908 => 0.11955234242725
909 => 0.11961749689969
910 => 0.1173271856746
911 => 0.11750131306275
912 => 0.1165317496385
913 => 0.11634996818471
914 => 0.11389899627775
915 => 0.1095567442705
916 => 0.11196277339512
917 => 0.10905662855147
918 => 0.10795602746391
919 => 0.11316610183387
920 => 0.11264315487209
921 => 0.11174809699311
922 => 0.11042411984369
923 => 0.10993304384015
924 => 0.10694942149841
925 => 0.10677313317345
926 => 0.1082518969706
927 => 0.10756949835937
928 => 0.10661115226464
929 => 0.10314011985552
930 => 0.099237530208334
1001 => 0.099355324858979
1002 => 0.10059666601549
1003 => 0.1042060328457
1004 => 0.10279579078246
1005 => 0.10177264398491
1006 => 0.10158103934541
1007 => 0.10397937256024
1008 => 0.10737351652558
1009 => 0.10896597293442
1010 => 0.10738789699688
1011 => 0.10557508832947
1012 => 0.10568542559331
1013 => 0.10641944997766
1014 => 0.10649658556191
1015 => 0.10531663347917
1016 => 0.10564878307885
1017 => 0.10514421746454
1018 => 0.10204769922085
1019 => 0.10199169302499
1020 => 0.10123175750988
1021 => 0.1012087469645
1022 => 0.099915907078516
1023 => 0.099735029841486
1024 => 0.097168017778083
1025 => 0.098857632891843
1026 => 0.097724327782308
1027 => 0.096016169662589
1028 => 0.095721682558906
1029 => 0.095712829920966
1030 => 0.09746672637275
1031 => 0.098837137590636
1101 => 0.097744042109898
1102 => 0.0974951654577
1103 => 0.10015251698876
1104 => 0.099814344784136
1105 => 0.099521489835908
1106 => 0.10706960816078
1107 => 0.10109468351963
1108 => 0.098489275339307
1109 => 0.095264587962569
1110 => 0.09631456243272
1111 => 0.096535807480915
1112 => 0.088781015633448
1113 => 0.085634897546728
1114 => 0.084555268378325
1115 => 0.083933926528193
1116 => 0.084217079811618
1117 => 0.081385204530725
1118 => 0.083288271554379
1119 => 0.080836106933584
1120 => 0.080424993554874
1121 => 0.084809767661761
1122 => 0.085419883363255
1123 => 0.082816940232589
1124 => 0.084488451100691
1125 => 0.083882338024178
1126 => 0.080878142257869
1127 => 0.080763404076964
1128 => 0.079256004244017
1129 => 0.076897215395579
1130 => 0.075819185597089
1201 => 0.075257738318151
1202 => 0.07548940240783
1203 => 0.07537226595505
1204 => 0.074607871366512
1205 => 0.075416080158097
1206 => 0.073351440670527
1207 => 0.072529284590646
1208 => 0.07215793576324
1209 => 0.070325449381807
1210 => 0.07324175012506
1211 => 0.073816298110069
1212 => 0.074391978132096
1213 => 0.079402879690396
1214 => 0.079152549209204
1215 => 0.081415414843289
1216 => 0.081327484045892
1217 => 0.080682078111058
1218 => 0.077959216636116
1219 => 0.079044500689689
1220 => 0.075704165063381
1221 => 0.078206971635355
1222 => 0.077064795235607
1223 => 0.077820800645674
1224 => 0.076461434752114
1225 => 0.077213763964452
1226 => 0.07395254475164
1227 => 0.070907264137309
1228 => 0.072132773953799
1229 => 0.07346504327837
1230 => 0.076353742629953
1231 => 0.074633257127402
]
'min_raw' => 0.070325449381807
'max_raw' => 0.20992317911436
'avg_raw' => 0.14012431424809
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.070325'
'max' => '$0.209923'
'avg' => '$0.140124'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.13322155061819
'max_diff' => 0.0063761791143636
'year' => 2026
]
1 => [
'items' => [
101 => 0.075252008772879
102 => 0.073179294338307
103 => 0.068902692418176
104 => 0.068926897520607
105 => 0.068269035486032
106 => 0.06770054663873
107 => 0.074830875583788
108 => 0.07394410646565
109 => 0.07253115593337
110 => 0.074422446369249
111 => 0.07492253357931
112 => 0.074936770359141
113 => 0.076316607039887
114 => 0.07705302612375
115 => 0.077182823179104
116 => 0.079354026009601
117 => 0.080081784559526
118 => 0.083079319030422
119 => 0.076990546109558
120 => 0.076865151838081
121 => 0.074449060704234
122 => 0.072916737510259
123 => 0.074553980184285
124 => 0.07600435368756
125 => 0.074494127851881
126 => 0.074691331463413
127 => 0.072663976668999
128 => 0.073388660612093
129 => 0.074012856049354
130 => 0.07366821201741
131 => 0.07315226322063
201 => 0.075885439600133
202 => 0.075731223077397
203 => 0.078276419757443
204 => 0.0802605825783
205 => 0.083816557064804
206 => 0.080105712310994
207 => 0.079970474378894
208 => 0.081292446858026
209 => 0.080081582172427
210 => 0.080846806856097
211 => 0.083693267537938
212 => 0.083753408766751
213 => 0.082745965696532
214 => 0.082684662694152
215 => 0.082878153156008
216 => 0.084011432834658
217 => 0.08361543009277
218 => 0.084073694491245
219 => 0.084646761138732
220 => 0.08701720776796
221 => 0.087588714425157
222 => 0.086200249540395
223 => 0.086325612373507
224 => 0.085806288392393
225 => 0.085304627933747
226 => 0.086432287383157
227 => 0.088493107191154
228 => 0.088480286938086
301 => 0.088958357076928
302 => 0.089256190812881
303 => 0.087977670390554
304 => 0.087145400608118
305 => 0.087464545801407
306 => 0.087974865915552
307 => 0.087299055866312
308 => 0.083127643176732
309 => 0.084392983315876
310 => 0.084182368844751
311 => 0.083882428226274
312 => 0.085154737520769
313 => 0.085032020185496
314 => 0.081356159556594
315 => 0.081591476227755
316 => 0.08137046994276
317 => 0.082084586463211
318 => 0.080043017536792
319 => 0.080670990388382
320 => 0.08106484907402
321 => 0.081296834865625
322 => 0.08213492661905
323 => 0.082036586225005
324 => 0.08212881364208
325 => 0.08337148246439
326 => 0.08965647493519
327 => 0.089998553208321
328 => 0.088314034682172
329 => 0.08898696660771
330 => 0.087695084464712
331 => 0.088562333602164
401 => 0.08915568343627
402 => 0.086474449630559
403 => 0.086315684365648
404 => 0.085018470165498
405 => 0.08571551959869
406 => 0.084606463830853
407 => 0.084878587323156
408 => 0.084117706315376
409 => 0.085487140639483
410 => 0.087018381002415
411 => 0.087405232788606
412 => 0.086387592289303
413 => 0.085650753502031
414 => 0.084357107321367
415 => 0.086508469750597
416 => 0.087137593686485
417 => 0.086505165230388
418 => 0.086358617738275
419 => 0.086080910505527
420 => 0.086417534640509
421 => 0.087134167342419
422 => 0.086796216594327
423 => 0.087019439017368
424 => 0.086168745326698
425 => 0.087978093634013
426 => 0.090851774189412
427 => 0.090861013542292
428 => 0.090523060972519
429 => 0.090384778062257
430 => 0.090731537907521
501 => 0.090919640898744
502 => 0.092040998653447
503 => 0.093244260201107
504 => 0.098859356819895
505 => 0.097282660158511
506 => 0.10226470792229
507 => 0.10620486086551
508 => 0.10738634045117
509 => 0.10629943482527
510 => 0.10258118939255
511 => 0.1023987545328
512 => 0.10795538301201
513 => 0.10638538095692
514 => 0.10619863420818
515 => 0.10421196431512
516 => 0.10538633227577
517 => 0.10512948077584
518 => 0.10472402811759
519 => 0.10696464037932
520 => 0.11115886651246
521 => 0.11050515703641
522 => 0.11001719323725
523 => 0.10787907791344
524 => 0.10916670090372
525 => 0.10870820301967
526 => 0.11067820089948
527 => 0.10951121779628
528 => 0.10637348664722
529 => 0.1068731806748
530 => 0.10679765292778
531 => 0.10835200860959
601 => 0.10788542961539
602 => 0.10670654589083
603 => 0.11114453110351
604 => 0.11085635302917
605 => 0.11126492365191
606 => 0.1114447890755
607 => 0.11414611246839
608 => 0.11525275822975
609 => 0.11550398619213
610 => 0.11655521407437
611 => 0.11547783068478
612 => 0.11978813240448
613 => 0.12265423153501
614 => 0.12598335316323
615 => 0.1308480946456
616 => 0.13267728244434
617 => 0.13234685604092
618 => 0.13603524751232
619 => 0.1426632049981
620 => 0.13368655574935
621 => 0.14313898920529
622 => 0.14014645790673
623 => 0.13305122003119
624 => 0.13259437035937
625 => 0.13739934782609
626 => 0.14805632538533
627 => 0.14538687337718
628 => 0.14806069165251
629 => 0.14494154060612
630 => 0.14478664846639
701 => 0.14790920144826
702 => 0.1552052166919
703 => 0.15173915333669
704 => 0.14676970160339
705 => 0.15043906743003
706 => 0.14726032316722
707 => 0.14009772266862
708 => 0.14538483209754
709 => 0.14184949259063
710 => 0.14288129260773
711 => 0.15031205040919
712 => 0.14941796197117
713 => 0.15057499520033
714 => 0.1485328618357
715 => 0.14662518725826
716 => 0.1430643709937
717 => 0.14201018884389
718 => 0.1423015268646
719 => 0.14201004447123
720 => 0.1400178004968
721 => 0.13958757560021
722 => 0.1388705152573
723 => 0.13909276224121
724 => 0.13774447901314
725 => 0.14028896803404
726 => 0.14076124761828
727 => 0.14261291453492
728 => 0.14280516073688
729 => 0.14796202674289
730 => 0.14512171160439
731 => 0.1470272402203
801 => 0.14685679180537
802 => 0.1332049953506
803 => 0.13508609245125
804 => 0.13801248921906
805 => 0.1366941514418
806 => 0.13483033026828
807 => 0.13332519473889
808 => 0.13104476050386
809 => 0.1342544278978
810 => 0.13847479921077
811 => 0.14291219631805
812 => 0.14824343819266
813 => 0.14705356706874
814 => 0.14281253245953
815 => 0.14300278217403
816 => 0.14417883104851
817 => 0.14265574090075
818 => 0.14220655188192
819 => 0.14411711937509
820 => 0.14413027640338
821 => 0.14237777711679
822 => 0.14043019486373
823 => 0.14042203442297
824 => 0.14007548097245
825 => 0.14500319169509
826 => 0.14771293434479
827 => 0.14802360197261
828 => 0.14769202393817
829 => 0.14781963516377
830 => 0.14624289562101
831 => 0.14984685464817
901 => 0.15315420384609
902 => 0.15226776360984
903 => 0.15093886368079
904 => 0.14988033087881
905 => 0.15201840692235
906 => 0.15192320176177
907 => 0.15312531703612
908 => 0.15307078214352
909 => 0.1526665559906
910 => 0.15226777804603
911 => 0.15384888752044
912 => 0.15339355338365
913 => 0.15293751198718
914 => 0.15202285115011
915 => 0.15214716874878
916 => 0.15081849827304
917 => 0.15020379451514
918 => 0.14096012487684
919 => 0.13848991430387
920 => 0.1392670928359
921 => 0.13952296018807
922 => 0.13844792138105
923 => 0.13998925087551
924 => 0.13974903630647
925 => 0.14068357067378
926 => 0.14009971417385
927 => 0.14012367584826
928 => 0.14184067332322
929 => 0.14233912499483
930 => 0.14208560845165
1001 => 0.14226316274845
1002 => 0.14635482657732
1003 => 0.14577312282489
1004 => 0.14546410430021
1005 => 0.14554970454342
1006 => 0.14659521237795
1007 => 0.14688789748901
1008 => 0.14564777010684
1009 => 0.14623262134936
1010 => 0.14872284371135
1011 => 0.14959428060367
1012 => 0.15237548885052
1013 => 0.15119398215522
1014 => 0.15336268882884
1015 => 0.16002855377697
1016 => 0.16535370794031
1017 => 0.1604564761004
1018 => 0.17023544356707
1019 => 0.17784977244945
1020 => 0.17755752182461
1021 => 0.17622978746137
1022 => 0.1675610764662
1023 => 0.15958399936524
1024 => 0.16625716308477
1025 => 0.16627417435144
1026 => 0.1657009436698
1027 => 0.16214065713759
1028 => 0.16557705341585
1029 => 0.16584982207326
1030 => 0.16569714416015
1031 => 0.16296748082343
1101 => 0.15879978943438
1102 => 0.15961414635576
1103 => 0.1609480796054
1104 => 0.15842266567619
1105 => 0.15761564290559
1106 => 0.15911605177851
1107 => 0.16395068178968
1108 => 0.16303672299117
1109 => 0.16301285583335
1110 => 0.16692315915221
1111 => 0.16412422587218
1112 => 0.15962441800447
1113 => 0.1584881571727
1114 => 0.15445519669692
1115 => 0.15724077686245
1116 => 0.15734102493354
1117 => 0.15581539114482
1118 => 0.15974821477817
1119 => 0.15971197311603
1120 => 0.16344560383236
1121 => 0.17058290347432
1122 => 0.168472052765
1123 => 0.16601736304998
1124 => 0.16628425588317
1125 => 0.16921141151558
1126 => 0.16744158639976
1127 => 0.16807802785106
1128 => 0.16921044818521
1129 => 0.16989366548922
1130 => 0.16618595142724
1201 => 0.16532150591892
1202 => 0.16355315378806
1203 => 0.16309182372497
1204 => 0.16453210963768
1205 => 0.16415264518574
1206 => 0.15733259947134
1207 => 0.15661986674781
1208 => 0.15664172524289
1209 => 0.15484952492098
1210 => 0.15211598925271
1211 => 0.159299557778
1212 => 0.15872261669144
1213 => 0.15808571838358
1214 => 0.1581637347922
1215 => 0.1612818784153
1216 => 0.15947319764388
1217 => 0.16428187191166
1218 => 0.16329335304419
1219 => 0.16227948239778
1220 => 0.16213933459119
1221 => 0.16174908089171
1222 => 0.16041075574916
1223 => 0.15879464771866
1224 => 0.15772755321204
1225 => 0.14549533039119
1226 => 0.14776555979518
1227 => 0.15037725178654
1228 => 0.15127879739626
1229 => 0.14973664124578
1230 => 0.16047164947353
1231 => 0.16243303892186
]
'min_raw' => 0.06770054663873
'max_raw' => 0.17784977244945
'avg_raw' => 0.12277515954409
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.06770054'
'max' => '$0.177849'
'avg' => '$0.122775'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.0026249027430778
'max_diff' => -0.032073406664918
'year' => 2027
]
2 => [
'items' => [
101 => 0.15649186234461
102 => 0.15538051078365
103 => 0.16054450949685
104 => 0.15742998699962
105 => 0.15883245628942
106 => 0.15580108479457
107 => 0.16196059763994
108 => 0.16191367247207
109 => 0.15951748285631
110 => 0.16154272591115
111 => 0.16119079009159
112 => 0.15848549791695
113 => 0.16204636022722
114 => 0.1620481263705
115 => 0.15974184596299
116 => 0.15704861535671
117 => 0.15656712933558
118 => 0.1562043942972
119 => 0.15874324570604
120 => 0.16101957194042
121 => 0.16525525071348
122 => 0.16632020099427
123 => 0.17047677283796
124 => 0.16800173668485
125 => 0.16909888815444
126 => 0.17029000127623
127 => 0.17086106470855
128 => 0.16993054749054
129 => 0.176387414477
130 => 0.17693257188396
131 => 0.17711535844691
201 => 0.17493813922823
202 => 0.17687201947892
203 => 0.175967220953
204 => 0.17832125535717
205 => 0.17869039800957
206 => 0.17837774731562
207 => 0.17849491902001
208 => 0.17298512211645
209 => 0.17269941008051
210 => 0.16880370619721
211 => 0.17039123432524
212 => 0.16742342658209
213 => 0.16836454898925
214 => 0.16877938677898
215 => 0.16856269905946
216 => 0.17048099078369
217 => 0.16885005093699
218 => 0.16454573253021
219 => 0.16024024141475
220 => 0.16018618948097
221 => 0.15905262966851
222 => 0.15823327354593
223 => 0.15839111060336
224 => 0.15894734898075
225 => 0.15820094396025
226 => 0.15836022731506
227 => 0.16100539230449
228 => 0.16153586127867
229 => 0.15973312043681
301 => 0.15249485582248
302 => 0.15071856753031
303 => 0.1519953283294
304 => 0.15138511890136
305 => 0.1221796060775
306 => 0.12904100810397
307 => 0.12496419601104
308 => 0.12684297858856
309 => 0.12268160912705
310 => 0.12466763275015
311 => 0.12430088670493
312 => 0.13533381811985
313 => 0.13516155407111
314 => 0.13524400775523
315 => 0.13130827858012
316 => 0.13757800202276
317 => 0.14066669324257
318 => 0.14009505870064
319 => 0.14023892679946
320 => 0.13776679620389
321 => 0.13526794338321
322 => 0.13249633103437
323 => 0.13764564419686
324 => 0.1370731284749
325 => 0.13838627355643
326 => 0.14172597122281
327 => 0.14221775439046
328 => 0.14287871595496
329 => 0.14264180828454
330 => 0.14828591013522
331 => 0.14760237216012
401 => 0.14924950201282
402 => 0.14586123093778
403 => 0.14202708059873
404 => 0.14275582723036
405 => 0.14268564306953
406 => 0.14179211814844
407 => 0.14098548380189
408 => 0.13964266488269
409 => 0.14389154264283
410 => 0.14371904596514
411 => 0.14651156667164
412 => 0.14601796151167
413 => 0.14272154544769
414 => 0.1428392775923
415 => 0.14363108284496
416 => 0.14637152986507
417 => 0.1471850811245
418 => 0.14680821176672
419 => 0.14770023358266
420 => 0.14840525125532
421 => 0.14778877294771
422 => 0.15651680574587
423 => 0.15289231801175
424 => 0.15465886811433
425 => 0.15508017990468
426 => 0.15400099861294
427 => 0.15423503439253
428 => 0.15458953482769
429 => 0.15674199205164
430 => 0.16239066262581
501 => 0.16489242037131
502 => 0.1724190819832
503 => 0.16468468421669
504 => 0.16422575706135
505 => 0.16558153610106
506 => 0.17000048324528
507 => 0.17358162485507
508 => 0.17476969612806
509 => 0.1749267193597
510 => 0.1771556200493
511 => 0.17843318435805
512 => 0.17688497287968
513 => 0.17557302575626
514 => 0.17087379400504
515 => 0.17141774287583
516 => 0.17516501118741
517 => 0.18045824839052
518 => 0.18500039657825
519 => 0.18340989459275
520 => 0.19554430202268
521 => 0.19674737895475
522 => 0.19658115262287
523 => 0.19932194091598
524 => 0.19388203430599
525 => 0.191556368837
526 => 0.17585668361558
527 => 0.18026765478096
528 => 0.18667926041709
529 => 0.18583066036886
530 => 0.18117438097319
531 => 0.18499686437279
601 => 0.18373303182077
602 => 0.18273619465054
603 => 0.18730289897378
604 => 0.1822816199805
605 => 0.18662916931806
606 => 0.181053392323
607 => 0.18341715987185
608 => 0.18207537108855
609 => 0.18294367287479
610 => 0.17786759837476
611 => 0.18060652496023
612 => 0.17775365002404
613 => 0.17775229738987
614 => 0.17768932001753
615 => 0.18104571472837
616 => 0.18115516663939
617 => 0.17867478587685
618 => 0.17831732425814
619 => 0.17963904721574
620 => 0.17809165579218
621 => 0.1788156705001
622 => 0.17811358546012
623 => 0.17795553132945
624 => 0.17669612912555
625 => 0.17615354402813
626 => 0.17636630562553
627 => 0.1756400406075
628 => 0.17520243966398
629 => 0.17760227017561
630 => 0.17632013754213
701 => 0.17740576496116
702 => 0.17616855550008
703 => 0.17187984848146
704 => 0.1694133677228
705 => 0.16131239772798
706 => 0.16360982276929
707 => 0.16513301794854
708 => 0.16462960195088
709 => 0.16571113430997
710 => 0.16577753161298
711 => 0.16542591441812
712 => 0.16501878675143
713 => 0.16482061951885
714 => 0.16629759571509
715 => 0.16715503010974
716 => 0.1652858909625
717 => 0.16484797781233
718 => 0.1667377806882
719 => 0.16789055935077
720 => 0.17640202930485
721 => 0.17577147211897
722 => 0.17735404691494
723 => 0.1771758732795
724 => 0.17883466378961
725 => 0.18154608521647
726 => 0.17603300733031
727 => 0.17698988702346
728 => 0.17675528222028
729 => 0.17931663594472
730 => 0.17932463221147
731 => 0.17778897270456
801 => 0.17862147863648
802 => 0.17815679666389
803 => 0.1789965397939
804 => 0.17576305064332
805 => 0.17970109139515
806 => 0.1819337067397
807 => 0.18196470660592
808 => 0.18302294856011
809 => 0.1840981836748
810 => 0.18616200384421
811 => 0.18404062485041
812 => 0.18022447055266
813 => 0.18049998456685
814 => 0.17826257469836
815 => 0.17830018596247
816 => 0.178099414087
817 => 0.17870194559869
818 => 0.17589527242685
819 => 0.17655399301038
820 => 0.17563178033597
821 => 0.17698788231321
822 => 0.17552894075739
823 => 0.17675516908674
824 => 0.17728436858358
825 => 0.17923712611975
826 => 0.17524051688156
827 => 0.16709116009822
828 => 0.16880425369548
829 => 0.16627045370453
830 => 0.16650496654055
831 => 0.16697871979175
901 => 0.1654431305022
902 => 0.16573607254667
903 => 0.16572560659544
904 => 0.1656354166819
905 => 0.16523595060042
906 => 0.16465664575031
907 => 0.16696441797251
908 => 0.16735655344296
909 => 0.16822822201845
910 => 0.17082171644067
911 => 0.17056256518908
912 => 0.17098525163251
913 => 0.17006252949979
914 => 0.16654776897386
915 => 0.16673863738044
916 => 0.16435850529191
917 => 0.16816735668968
918 => 0.16726537040431
919 => 0.16668385397836
920 => 0.16652518183383
921 => 0.16912510502709
922 => 0.16990304279531
923 => 0.16941828418361
924 => 0.16842403012836
925 => 0.17033329183928
926 => 0.17084412972783
927 => 0.17095848749211
928 => 0.17434133317924
929 => 0.17114755098729
930 => 0.17191632610435
1001 => 0.17791409011117
1002 => 0.17247494579185
1003 => 0.17535618184519
1004 => 0.1752151603336
1005 => 0.17668910320278
1006 => 0.17509425399716
1007 => 0.17511402406448
1008 => 0.17642278547877
1009 => 0.17458486610876
1010 => 0.17412977142603
1011 => 0.17350106138128
1012 => 0.17487382676309
1013 => 0.17569673752464
1014 => 0.18232879390139
1015 => 0.18661340477929
1016 => 0.18642739852122
1017 => 0.18812714753083
1018 => 0.18736139503409
1019 => 0.1848885782268
1020 => 0.18910937498896
1021 => 0.18777373828777
1022 => 0.18788384655462
1023 => 0.18787974831943
1024 => 0.18876782996233
1025 => 0.18813854272685
1026 => 0.1868981529907
1027 => 0.18772158158412
1028 => 0.19016687012546
1029 => 0.19775712078841
1030 => 0.20200472561684
1031 => 0.19750140964429
1101 => 0.20060773670035
1102 => 0.19874504736421
1103 => 0.19840654130163
1104 => 0.20035754424861
1105 => 0.20231196216797
1106 => 0.20218747419568
1107 => 0.2007686671467
1108 => 0.19996721904562
1109 => 0.20603605257178
1110 => 0.21050746573398
1111 => 0.21020254533305
1112 => 0.21154836481732
1113 => 0.21549973244775
1114 => 0.21586099598373
1115 => 0.21581548508174
1116 => 0.21492005571388
1117 => 0.21881069029597
1118 => 0.22205632611355
1119 => 0.21471278968666
1120 => 0.21750911222407
1121 => 0.218764471503
1122 => 0.22060771137278
1123 => 0.22371756599597
1124 => 0.22709569296496
1125 => 0.22757339715766
1126 => 0.22723444317269
1127 => 0.22500647762771
1128 => 0.22870286446662
1129 => 0.23086812118591
1130 => 0.23215748201123
1201 => 0.23542708653506
1202 => 0.21877222417453
1203 => 0.20698308479538
1204 => 0.20514204044409
1205 => 0.20888587652793
1206 => 0.20987309624671
1207 => 0.20947514921594
1208 => 0.19620540102304
1209 => 0.20507217796609
1210 => 0.21461208441703
1211 => 0.2149785510763
1212 => 0.21975442771568
1213 => 0.22130964891925
1214 => 0.22515485560241
1215 => 0.22491433687744
1216 => 0.22585058351419
1217 => 0.22563535662594
1218 => 0.23275779230269
1219 => 0.24061489654609
1220 => 0.2403428300102
1221 => 0.23921327831417
1222 => 0.24089085519996
1223 => 0.2490002287976
1224 => 0.2482536476268
1225 => 0.2489788876406
1226 => 0.2585402961365
1227 => 0.27097148727566
1228 => 0.26519595092033
1229 => 0.27772720294557
1230 => 0.28561496184233
1231 => 0.29925602524478
]
'min_raw' => 0.1221796060775
'max_raw' => 0.29925602524478
'avg_raw' => 0.21071781566114
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.122179'
'max' => '$0.299256'
'avg' => '$0.210717'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.054479059438767
'max_diff' => 0.12140625279533
'year' => 2028
]
3 => [
'items' => [
101 => 0.29754809692314
102 => 0.30285846280297
103 => 0.294490548772
104 => 0.27527612672247
105 => 0.27223537088328
106 => 0.27832304107754
107 => 0.29328898422397
108 => 0.27785171026859
109 => 0.28097465068421
110 => 0.28007524363442
111 => 0.28002731805497
112 => 0.28185644249514
113 => 0.27920320209396
114 => 0.26839342339072
115 => 0.27334748126799
116 => 0.27143448160818
117 => 0.27355709735431
118 => 0.28501197910288
119 => 0.27994750283156
120 => 0.27461248848437
121 => 0.28130378041021
122 => 0.28982409440916
123 => 0.28929090847158
124 => 0.28825630489825
125 => 0.29408831107105
126 => 0.30372107665104
127 => 0.30632477447972
128 => 0.3082467709866
129 => 0.3085117818325
130 => 0.3112415582486
131 => 0.29656286246698
201 => 0.31985832964806
202 => 0.32388081330594
203 => 0.32312475309313
204 => 0.32759557438687
205 => 0.32628014534846
206 => 0.3243742950563
207 => 0.33146149777785
208 => 0.32333659176536
209 => 0.31180431057786
210 => 0.30547747303574
211 => 0.31380916308263
212 => 0.31889703545836
213 => 0.32225979544925
214 => 0.32327736459066
215 => 0.29770232783562
216 => 0.28391880148121
217 => 0.29275388384593
218 => 0.30353329409571
219 => 0.29650298229877
220 => 0.29677855721107
221 => 0.28675518012208
222 => 0.3044201405573
223 => 0.30184650440759
224 => 0.31519853330496
225 => 0.31201196445188
226 => 0.32290002569491
227 => 0.32003283427095
228 => 0.33193438556929
301 => 0.33668223660383
302 => 0.34465461743484
303 => 0.35051913322756
304 => 0.35396288907135
305 => 0.35375613888769
306 => 0.36740201521316
307 => 0.35935551869464
308 => 0.34924722265376
309 => 0.34906439546964
310 => 0.35429962522488
311 => 0.36527123057671
312 => 0.36811600821407
313 => 0.36970585082166
314 => 0.36727095152532
315 => 0.35853705625207
316 => 0.35476580455493
317 => 0.35797902026457
318 => 0.35404953356646
319 => 0.36083293002664
320 => 0.37014798222178
321 => 0.36822446077919
322 => 0.37465450457131
323 => 0.38130892343582
324 => 0.39082504128072
325 => 0.3933129068662
326 => 0.39742525407394
327 => 0.40165821018639
328 => 0.40301772160835
329 => 0.40561345074448
330 => 0.40559976997064
331 => 0.41342217443509
401 => 0.42205052879908
402 => 0.42530753282462
403 => 0.43279683398911
404 => 0.41997166820134
405 => 0.42969970377625
406 => 0.43847463537334
407 => 0.42801280017532
408 => 0.44243200270082
409 => 0.44299186766027
410 => 0.45144516384566
411 => 0.44287612870617
412 => 0.43778786299367
413 => 0.45247749545083
414 => 0.45958534587776
415 => 0.45744440348356
416 => 0.44115172615236
417 => 0.43166868911979
418 => 0.40684975206433
419 => 0.43624885510482
420 => 0.45056830061224
421 => 0.44111464224782
422 => 0.44588251764037
423 => 0.47189449979333
424 => 0.48179817844605
425 => 0.47973828251823
426 => 0.48008637102126
427 => 0.48543021625778
428 => 0.50912776894588
429 => 0.4949276460702
430 => 0.5057831079402
501 => 0.51154080577377
502 => 0.51688887640158
503 => 0.50375570521477
504 => 0.48666964246533
505 => 0.48125776916846
506 => 0.44017466223472
507 => 0.43803610810393
508 => 0.43683567286549
509 => 0.42926709849209
510 => 0.4233202722416
511 => 0.4185911352157
512 => 0.40618046741989
513 => 0.410368703482
514 => 0.39058868932315
515 => 0.40324324142132
516 => 0.37167386121866
517 => 0.39796577914064
518 => 0.38365628356252
519 => 0.39326472499058
520 => 0.3932312020436
521 => 0.37553901501543
522 => 0.3653345307641
523 => 0.37183722529352
524 => 0.37880863001358
525 => 0.37993971697479
526 => 0.38897832516664
527 => 0.39150080642875
528 => 0.38385757044116
529 => 0.37101965598361
530 => 0.37400161071045
531 => 0.36527410154674
601 => 0.34997947743613
602 => 0.36096434349089
603 => 0.36471505973245
604 => 0.36637158969831
605 => 0.35133108348497
606 => 0.34660502988747
607 => 0.34408891860758
608 => 0.36907811550206
609 => 0.37044708011786
610 => 0.36344326359133
611 => 0.39510117842039
612 => 0.38793601728541
613 => 0.39594125778028
614 => 0.37373102957436
615 => 0.37457949020186
616 => 0.36406481223448
617 => 0.36995232930518
618 => 0.36579122200314
619 => 0.36947667610744
620 => 0.37168572210187
621 => 0.38219867471406
622 => 0.39808582017228
623 => 0.38062839016987
624 => 0.37302193792282
625 => 0.37774093811658
626 => 0.39030825749513
627 => 0.40934838966289
628 => 0.39807624820121
629 => 0.40307863316853
630 => 0.40417143174327
701 => 0.39585977194678
702 => 0.40965485241521
703 => 0.41704774810928
704 => 0.42463132934718
705 => 0.43121594044893
706 => 0.42160228023424
707 => 0.43189027472801
708 => 0.42359996724153
709 => 0.41616270438992
710 => 0.4161739836477
711 => 0.41150848001981
712 => 0.40246847884949
713 => 0.40080136393518
714 => 0.40947390625281
715 => 0.41642846389875
716 => 0.41700127457655
717 => 0.42085167502741
718 => 0.42313030235195
719 => 0.44546394777609
720 => 0.45444672471928
721 => 0.46543069433015
722 => 0.4697095695162
723 => 0.48258744976453
724 => 0.4721875155737
725 => 0.46993742439286
726 => 0.43869989923294
727 => 0.44381504222792
728 => 0.45200487970077
729 => 0.43883494663636
730 => 0.447188237865
731 => 0.44883735450044
801 => 0.43838743735037
802 => 0.44396918961449
803 => 0.42914571047521
804 => 0.39840893150962
805 => 0.40968907123678
806 => 0.41799505092994
807 => 0.40614139378789
808 => 0.42738861541513
809 => 0.41497642717218
810 => 0.41104235938927
811 => 0.39569415837171
812 => 0.40293791844556
813 => 0.4127352076661
814 => 0.40668162198493
815 => 0.41924372122383
816 => 0.43703500393559
817 => 0.4497141314852
818 => 0.45068747746111
819 => 0.44253564788228
820 => 0.45559900680663
821 => 0.4556941591148
822 => 0.44095863688275
823 => 0.43193321156334
824 => 0.42988261594112
825 => 0.43500540584839
826 => 0.44122541851501
827 => 0.45103264487502
828 => 0.45695894636632
829 => 0.47241159758819
830 => 0.47659264194659
831 => 0.48118634208304
901 => 0.48732494210999
902 => 0.49469590534708
903 => 0.47856865741349
904 => 0.47920942303885
905 => 0.46419195306003
906 => 0.44814363266463
907 => 0.46032230739336
908 => 0.47624430453998
909 => 0.4725917808023
910 => 0.47218079726752
911 => 0.47287195757569
912 => 0.47011807395776
913 => 0.45766236041753
914 => 0.45140717905452
915 => 0.45947795887976
916 => 0.46376721916779
917 => 0.47041948781173
918 => 0.46959945528901
919 => 0.48673498491428
920 => 0.49339333357514
921 => 0.49168984306089
922 => 0.4920033263123
923 => 0.50405794851861
924 => 0.51746516763417
925 => 0.53002279757427
926 => 0.54279695811209
927 => 0.52739720899977
928 => 0.51957816612502
929 => 0.52764542250027
930 => 0.5233648227127
1001 => 0.54796241880041
1002 => 0.54966550298487
1003 => 0.57426132038641
1004 => 0.59760567991592
1005 => 0.58294350595308
1006 => 0.59676927560122
1007 => 0.61172297270722
1008 => 0.64057108057462
1009 => 0.63085605273355
1010 => 0.62341449366119
1011 => 0.61638225629516
1012 => 0.63101522591763
1013 => 0.64984030756953
1014 => 0.65389504985296
1015 => 0.66046528138289
1016 => 0.65355748629886
1017 => 0.6618771646089
1018 => 0.69124928489524
1019 => 0.683312678719
1020 => 0.67204142207562
1021 => 0.69522789011327
1022 => 0.70361898276098
1023 => 0.76251206541196
1024 => 0.83686701501073
1025 => 0.80608357763591
1026 => 0.78697530468205
1027 => 0.7914662020805
1028 => 0.81861811260009
1029 => 0.82733844450041
1030 => 0.80363357631666
1031 => 0.81200653650501
1101 => 0.85814237035408
1102 => 0.88289276499935
1103 => 0.8492784046496
1104 => 0.7565377176095
1105 => 0.67102656873637
1106 => 0.69370797603474
1107 => 0.69113660833312
1108 => 0.74070380624147
1109 => 0.6831233932865
1110 => 0.68409289976747
1111 => 0.73468509483598
1112 => 0.7211879645615
1113 => 0.69932434209869
1114 => 0.67118619737608
1115 => 0.61917023439298
1116 => 0.57309824540642
1117 => 0.66345602555447
1118 => 0.65955963376952
1119 => 0.65391708105201
1120 => 0.66647397153686
1121 => 0.72744666739573
1122 => 0.72604104940683
1123 => 0.71709922491402
1124 => 0.72388151998219
1125 => 0.69813537298132
1126 => 0.70477074129232
1127 => 0.6710130233335
1128 => 0.68627292169772
1129 => 0.69927743258434
1130 => 0.7018882806799
1201 => 0.70777065475241
1202 => 0.65750641235227
1203 => 0.68007358150931
1204 => 0.69332967913127
1205 => 0.63343814781428
1206 => 0.69214581612309
1207 => 0.65663142371993
1208 => 0.64457730553002
1209 => 0.66080658766342
1210 => 0.65448202063254
1211 => 0.64904452929043
1212 => 0.64601031569357
1213 => 0.65792730933183
1214 => 0.65737136733472
1215 => 0.63787285275373
1216 => 0.61243783534397
1217 => 0.62097466206267
1218 => 0.61787315288259
1219 => 0.60663288351132
1220 => 0.61420746791226
1221 => 0.58085283161999
1222 => 0.52346791350227
1223 => 0.56137814815841
1224 => 0.55991864536255
1225 => 0.5591826978697
1226 => 0.58767119145186
1227 => 0.58493268013531
1228 => 0.57996225528019
1229 => 0.606541597761
1230 => 0.5968397802129
1231 => 0.62673849586046
]
'min_raw' => 0.26839342339072
'max_raw' => 0.88289276499935
'avg_raw' => 0.57564309419503
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.268393'
'max' => '$0.882892'
'avg' => '$0.575643'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.14621381731322
'max_diff' => 0.58363673975457
'year' => 2029
]
4 => [
'items' => [
101 => 0.64643172371362
102 => 0.64143688412087
103 => 0.65995846010241
104 => 0.6211713333083
105 => 0.63405486095988
106 => 0.63671013815307
107 => 0.60621361280059
108 => 0.58538073445444
109 => 0.58399141898095
110 => 0.54787007887619
111 => 0.56716580719888
112 => 0.58414524961136
113 => 0.57601341435374
114 => 0.57343911824285
115 => 0.5865906387767
116 => 0.58761262455734
117 => 0.56431124045363
118 => 0.56915633606766
119 => 0.58936119020828
120 => 0.56864722558363
121 => 0.52840337592485
122 => 0.51842234479472
123 => 0.51709069125506
124 => 0.49002134322458
125 => 0.51908932502099
126 => 0.50640037199338
127 => 0.54648462257061
128 => 0.52358871361704
129 => 0.52260171674353
130 => 0.52110972620825
131 => 0.49781002013773
201 => 0.5029111749936
202 => 0.51986819066235
203 => 0.52591864488742
204 => 0.52528753294183
205 => 0.51978509203471
206 => 0.52230408130493
207 => 0.5141895391915
208 => 0.51132412548166
209 => 0.50228009161926
210 => 0.48898786031965
211 => 0.49083622660785
212 => 0.46450083830183
213 => 0.45015192102785
214 => 0.44618032984211
215 => 0.44086935212431
216 => 0.44678021890731
217 => 0.46442623345562
218 => 0.44314139609953
219 => 0.40665003541025
220 => 0.40884322836593
221 => 0.41377068177251
222 => 0.40458840494772
223 => 0.39589815054313
224 => 0.40345362168529
225 => 0.38799175110414
226 => 0.41563917496228
227 => 0.41489138962793
228 => 0.42519663953702
301 => 0.43164072379019
302 => 0.41678919588368
303 => 0.413054076778
304 => 0.41518177037229
305 => 0.38001573475461
306 => 0.42232282418226
307 => 0.42268869764847
308 => 0.41955586690256
309 => 0.44208308593794
310 => 0.48962254451841
311 => 0.47173628793014
312 => 0.4648101887642
313 => 0.4516436691868
314 => 0.46918727477311
315 => 0.46784019958696
316 => 0.46174821473211
317 => 0.45806376328374
318 => 0.4648524780488
319 => 0.45722256639696
320 => 0.45585202460834
321 => 0.44754803253347
322 => 0.44458388517031
323 => 0.44238934846873
324 => 0.43997337919101
325 => 0.44530240539562
326 => 0.4332261309242
327 => 0.41866332776344
328 => 0.41745258825234
329 => 0.4207955464918
330 => 0.41931653632481
331 => 0.41744550732068
401 => 0.41387320340736
402 => 0.41281337714647
403 => 0.41625729833974
404 => 0.41236931210562
405 => 0.41810624758364
406 => 0.41654611857274
407 => 0.40783136474012
408 => 0.39696955484956
409 => 0.39687286195811
410 => 0.39453270283413
411 => 0.39155215834446
412 => 0.39072303905305
413 => 0.40281732097962
414 => 0.42785212261623
415 => 0.42293719202293
416 => 0.42648873307893
417 => 0.44395879998509
418 => 0.44951200891132
419 => 0.44557047275045
420 => 0.44017505495008
421 => 0.44041242595109
422 => 0.45885020187898
423 => 0.46000014334737
424 => 0.4629056744528
425 => 0.46664010302628
426 => 0.44620646208464
427 => 0.4394500033003
428 => 0.43624841829422
429 => 0.42638877564483
430 => 0.43702155494033
501 => 0.43082628978584
502 => 0.43166224271558
503 => 0.43111782727343
504 => 0.43141511491805
505 => 0.41563144694385
506 => 0.42138218598849
507 => 0.41182046695261
508 => 0.39901839851689
509 => 0.39897548149451
510 => 0.40210876960747
511 => 0.40024496723231
512 => 0.39522952296348
513 => 0.39594194314963
514 => 0.38970039267514
515 => 0.39669978038416
516 => 0.39690049777864
517 => 0.39420535225144
518 => 0.40498887474656
519 => 0.40940689271132
520 => 0.40763289018971
521 => 0.40928242396528
522 => 0.42314142957866
523 => 0.42540105220445
524 => 0.42640462731254
525 => 0.42505996961593
526 => 0.40953574114655
527 => 0.41022430669329
528 => 0.40517206958178
529 => 0.40090346161418
530 => 0.40107418354698
531 => 0.40326880292252
601 => 0.41285283444822
602 => 0.43302186378454
603 => 0.43378726370448
604 => 0.43471495073575
605 => 0.43094158136145
606 => 0.42980349705188
607 => 0.43130492402069
608 => 0.43887935100223
609 => 0.45836283363561
610 => 0.45147606961492
611 => 0.44587702326723
612 => 0.45078889640621
613 => 0.450032752037
614 => 0.44365013260406
615 => 0.44347099373455
616 => 0.43122070639586
617 => 0.42669205409229
618 => 0.42290757326368
619 => 0.41877501899522
620 => 0.4163251023004
621 => 0.42008928781086
622 => 0.42095020157364
623 => 0.4127197441683
624 => 0.41159796323653
625 => 0.4183191324205
626 => 0.41536139645308
627 => 0.4184035012439
628 => 0.41910929565006
629 => 0.41899564649484
630 => 0.41590743045104
701 => 0.41787576726543
702 => 0.41322006390995
703 => 0.4081576857749
704 => 0.40492820392204
705 => 0.40211005267682
706 => 0.40367372677958
707 => 0.39809951411884
708 => 0.39631621130194
709 => 0.4172089390417
710 => 0.43264262165773
711 => 0.43241820980008
712 => 0.43105216033071
713 => 0.42902248791223
714 => 0.43873086782277
715 => 0.43534866238712
716 => 0.43780949943427
717 => 0.43843588574378
718 => 0.44033176844717
719 => 0.44100938355701
720 => 0.43896116006112
721 => 0.43208707183951
722 => 0.41495749755996
723 => 0.40698363449242
724 => 0.40435212686494
725 => 0.40444777716926
726 => 0.4018093147745
727 => 0.40258646019735
728 => 0.40153905531153
729 => 0.39955552385224
730 => 0.40355124930141
731 => 0.40401171943667
801 => 0.40307906937147
802 => 0.40329874222425
803 => 0.39557679802444
804 => 0.39616388067077
805 => 0.39289492989315
806 => 0.39228204103014
807 => 0.38401841812441
808 => 0.36937821231562
809 => 0.37749030749286
810 => 0.36769203725196
811 => 0.3639812838437
812 => 0.38154741333781
813 => 0.37978426114519
814 => 0.37676651101526
815 => 0.37230262961887
816 => 0.3706469325871
817 => 0.36058744155205
818 => 0.3599930731564
819 => 0.36497882854248
820 => 0.36267807398117
821 => 0.3594469432132
822 => 0.34774411510611
823 => 0.3345862616405
824 => 0.33498341452931
825 => 0.33916868290615
826 => 0.35133791517216
827 => 0.34658318559597
828 => 0.34313357473422
829 => 0.34248756631473
830 => 0.35057371419482
831 => 0.36201730754551
901 => 0.36738638550969
902 => 0.36206579230851
903 => 0.35595378132009
904 => 0.35632579110862
905 => 0.35880060556841
906 => 0.35906067357614
907 => 0.35508238274756
908 => 0.35620224831284
909 => 0.35450107011653
910 => 0.34406094266593
911 => 0.34387211386635
912 => 0.34130993822018
913 => 0.34123235655989
914 => 0.33687345662108
915 => 0.33626361638799
916 => 0.32760875599317
917 => 0.33330541131437
918 => 0.32948439401274
919 => 0.32372521965231
920 => 0.32273233582181
921 => 0.32270248853492
922 => 0.32861587287526
923 => 0.33323630997541
924 => 0.32955086224462
925 => 0.32871175723572
926 => 0.33767120345304
927 => 0.33653103225472
928 => 0.33554365135029
929 => 0.36099265927539
930 => 0.34084778369182
1001 => 0.33206346810809
1002 => 0.32119120947693
1003 => 0.32473127170993
1004 => 0.32547721483675
1005 => 0.29933139270074
1006 => 0.28872403591641
1007 => 0.28508399079784
1008 => 0.28298909336942
1009 => 0.28394376443362
1010 => 0.27439589920887
1011 => 0.28081222254701
1012 => 0.27254457832334
1013 => 0.271158480864
1014 => 0.28594205290052
1015 => 0.28799910058502
1016 => 0.2792230960883
1017 => 0.28485871168126
1018 => 0.28281515912634
1019 => 0.27268630335397
1020 => 0.27229945556629
1021 => 0.26721715178621
1022 => 0.25926433049833
1023 => 0.25562967776708
1024 => 0.25373671906714
1025 => 0.25451779071977
1026 => 0.25412285699101
1027 => 0.25154564726743
1028 => 0.2542705796356
1029 => 0.24730950345473
1030 => 0.24453754683031
1031 => 0.24328551833196
1101 => 0.23710716255684
1102 => 0.24693967412234
1103 => 0.24887680276746
1104 => 0.25081774815441
1105 => 0.2677123526082
1106 => 0.26686834591334
1107 => 0.27449775538689
1108 => 0.27420129056434
1109 => 0.27202525939424
1110 => 0.26284494182736
1111 => 0.26650405278609
1112 => 0.25524187800721
1113 => 0.26368026510499
1114 => 0.25982933762903
1115 => 0.26237826265169
1116 => 0.25779506563365
1117 => 0.260331596099
1118 => 0.24933616783195
1119 => 0.23906879162603
1120 => 0.24320068353469
1121 => 0.24769252257855
1122 => 0.25743197412496
1123 => 0.25163123713265
1124 => 0.25371740150524
1125 => 0.24672910007678
1126 => 0.23231023812024
1127 => 0.23239184731303
1128 => 0.230173819533
1129 => 0.2282571196937
1130 => 0.25229752155563
1201 => 0.24930771756159
1202 => 0.24454385619295
1203 => 0.2509204739432
1204 => 0.2526065528869
1205 => 0.25265455318407
1206 => 0.25730676889033
1207 => 0.25978965724671
1208 => 0.26022727708098
1209 => 0.26754763901254
1210 => 0.27000132777409
1211 => 0.28010772452389
1212 => 0.25957900151665
1213 => 0.25915622597562
1214 => 0.25101020603175
1215 => 0.24584387139988
1216 => 0.25136394938399
1217 => 0.25625398491213
1218 => 0.25116215306654
1219 => 0.25182703881113
1220 => 0.24499167057637
1221 => 0.24743499308633
1222 => 0.24953951158299
1223 => 0.24837752016701
1224 => 0.24663796277628
1225 => 0.25585305776405
1226 => 0.25533310599059
1227 => 0.26391441429732
1228 => 0.27060415777767
1229 => 0.28259337402913
1230 => 0.27008200185875
1231 => 0.26962603772866
]
'min_raw' => 0.2282571196937
'max_raw' => 0.65995846010241
'avg_raw' => 0.44410778989805
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.228257'
'max' => '$0.659958'
'avg' => '$0.4441077'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.040136303697019
'max_diff' => -0.22293430489694
'year' => 2030
]
5 => [
'items' => [
101 => 0.27408316023923
102 => 0.27000064541186
103 => 0.27258065385913
104 => 0.2821776947815
105 => 0.28238046513337
106 => 0.2789838004847
107 => 0.27877711313213
108 => 0.27942947973335
109 => 0.28325041129298
110 => 0.28191526040068
111 => 0.28346033081514
112 => 0.28539246502737
113 => 0.29338459133711
114 => 0.29531146593317
115 => 0.29063015963468
116 => 0.29105282917907
117 => 0.2893018921187
118 => 0.28761050885756
119 => 0.29141249142191
120 => 0.29836068928642
121 => 0.29831746490812
122 => 0.29992931175902
123 => 0.30093347899387
124 => 0.29662285812655
125 => 0.29381680244785
126 => 0.29489282274902
127 => 0.29661340264328
128 => 0.29433486187871
129 => 0.28027065275706
130 => 0.28453683537941
131 => 0.28382673398538
201 => 0.282815463249
202 => 0.28710514286519
203 => 0.28669139280147
204 => 0.27429797205073
205 => 0.27509135863684
206 => 0.27434622051681
207 => 0.27675391422353
208 => 0.26987062205032
209 => 0.27198787636312
210 => 0.27331579842008
211 => 0.27409795471321
212 => 0.27692363957358
213 => 0.27659207806915
214 => 0.27690302924493
215 => 0.28109277393972
216 => 0.30228306485918
217 => 0.30343640564018
218 => 0.29775693381994
219 => 0.3000257707895
220 => 0.29567009994805
221 => 0.29859409096437
222 => 0.30059461135642
223 => 0.2915546443827
224 => 0.29101935620742
225 => 0.28664570796301
226 => 0.28899585879346
227 => 0.28525659984039
228 => 0.28617408319375
301 => 0.283608719753
302 => 0.28822586318758
303 => 0.29338854697899
304 => 0.29469284478526
305 => 0.29126179879247
306 => 0.28877749537674
307 => 0.28441587695914
308 => 0.29166934559262
309 => 0.2937904808665
310 => 0.29165820417202
311 => 0.29116410907074
312 => 0.29022779974663
313 => 0.29136275152007
314 => 0.29377892870826
315 => 0.2926395041661
316 => 0.29339211415027
317 => 0.29052394097864
318 => 0.29662428512142
319 => 0.30631309974792
320 => 0.30634425087122
321 => 0.30520482018714
322 => 0.30473858970059
323 => 0.30590771472889
324 => 0.30654191709673
325 => 0.31032265305741
326 => 0.31437953337439
327 => 0.33331122365816
328 => 0.32799528078286
329 => 0.34479260265391
330 => 0.35807710339465
331 => 0.36206054430599
401 => 0.35839596610294
402 => 0.34585964202693
403 => 0.34524455016007
404 => 0.36397911102913
405 => 0.35868573948637
406 => 0.35805610978473
407 => 0.35135791353542
408 => 0.35531737710651
409 => 0.35445138434168
410 => 0.3530843723966
411 => 0.3606387530716
412 => 0.374779879311
413 => 0.37257585217195
414 => 0.37093064815452
415 => 0.36372184306185
416 => 0.36806315387255
417 => 0.36651729624519
418 => 0.37315928163781
419 => 0.36922471662921
420 => 0.35864563699076
421 => 0.36033039029229
422 => 0.36007574322001
423 => 0.36531636192289
424 => 0.36374325826844
425 => 0.35976856948407
426 => 0.37473154647885
427 => 0.37375993398126
428 => 0.3751374583613
429 => 0.37574388719475
430 => 0.38485158761424
501 => 0.3885827210622
502 => 0.38942975367757
503 => 0.39297404187692
504 => 0.3893415685584
505 => 0.40387405174205
506 => 0.41353730506527
507 => 0.42476167106667
508 => 0.44116348661986
509 => 0.44733072099314
510 => 0.44621666530438
511 => 0.45865233466548
512 => 0.48099895607798
513 => 0.45073355640621
514 => 0.48260309575072
515 => 0.47251356754577
516 => 0.4485914776747
517 => 0.44705117710992
518 => 0.46325149411178
519 => 0.49918223799918
520 => 0.49018199417851
521 => 0.49919695917382
522 => 0.48868052364873
523 => 0.48815829398543
524 => 0.49868619937349
525 => 0.52328522415894
526 => 0.51159914956403
527 => 0.49484429608918
528 => 0.50721581916061
529 => 0.49649846094573
530 => 0.47234925328789
531 => 0.49017511186168
601 => 0.47825546788461
602 => 0.48173425368025
603 => 0.50678757240682
604 => 0.50377309081478
605 => 0.50767410912835
606 => 0.50078891391231
607 => 0.4943570558849
608 => 0.48235151524068
609 => 0.47879726652193
610 => 0.47977953299932
611 => 0.47879677975945
612 => 0.47207979010562
613 => 0.47062925682941
614 => 0.46821163781974
615 => 0.46896095904279
616 => 0.46441512800521
617 => 0.47299405038974
618 => 0.47458637398151
619 => 0.48082939827022
620 => 0.48147756976231
621 => 0.49886430354246
622 => 0.48928798274854
623 => 0.49571260551686
624 => 0.49513792678557
625 => 0.44910994190033
626 => 0.45545219210917
627 => 0.46531874312636
628 => 0.46087387526691
629 => 0.45458987205254
630 => 0.44951520253
701 => 0.44182655929176
702 => 0.45264817700227
703 => 0.46687745354086
704 => 0.48183844769721
705 => 0.49981310189289
706 => 0.49580136832446
707 => 0.48150242403993
708 => 0.48214386423515
709 => 0.48610899512457
710 => 0.48097379035264
711 => 0.47945931821428
712 => 0.48590092990907
713 => 0.48594528974856
714 => 0.48003661604822
715 => 0.47347020650616
716 => 0.47344269301042
717 => 0.4722742638564
718 => 0.48888838459955
719 => 0.49802447113122
720 => 0.49907190872853
721 => 0.49795397023537
722 => 0.498384220392
723 => 0.49306813293915
724 => 0.50521913241959
725 => 0.51637009115215
726 => 0.51338139600634
727 => 0.50890091711472
728 => 0.50533199986844
729 => 0.51254067252494
730 => 0.51221968167904
731 => 0.5162726972555
801 => 0.5160888290576
802 => 0.51472595236087
803 => 0.51338144467896
804 => 0.51871226566147
805 => 0.51717707482887
806 => 0.51563949942088
807 => 0.51255565654913
808 => 0.51297480201261
809 => 0.50849509673884
810 => 0.50642258010183
811 => 0.4752569025439
812 => 0.46692841513253
813 => 0.46954872681414
814 => 0.47041140145609
815 => 0.46678683306141
816 => 0.47198353306415
817 => 0.47117363287339
818 => 0.47432448073988
819 => 0.47235596778681
820 => 0.47243675624505
821 => 0.4782257331088
822 => 0.47990629772042
823 => 0.47905154899513
824 => 0.47965018570325
825 => 0.4934455159731
826 => 0.49148426115856
827 => 0.49044238362759
828 => 0.49073099082399
829 => 0.49425599348315
830 => 0.49524280176971
831 => 0.49106162571778
901 => 0.49303349251496
902 => 0.50142945107019
903 => 0.50436756139443
904 => 0.51374459917641
905 => 0.50976106686307
906 => 0.51707301282745
907 => 0.5395474418959
908 => 0.55750157094797
909 => 0.54099021188592
910 => 0.57396068344551
911 => 0.59963292488789
912 => 0.59864758150198
913 => 0.59417103239686
914 => 0.56494386804655
915 => 0.53804859565893
916 => 0.56054763304477
917 => 0.56060498771803
918 => 0.55867230045318
919 => 0.54666854583855
920 => 0.55825459581224
921 => 0.5591742543848
922 => 0.55865949014112
923 => 0.54945623962237
924 => 0.53540457712525
925 => 0.53815023834226
926 => 0.5426476874257
927 => 0.53413307804459
928 => 0.53141214442896
929 => 0.53647087769923
930 => 0.55277117032497
1001 => 0.54968969442524
1002 => 0.54960922463628
1003 => 0.56279308528448
1004 => 0.55335628631557
1005 => 0.53818486992304
1006 => 0.53435388719752
1007 => 0.52075647938114
1008 => 0.53014825739222
1009 => 0.53048625076298
1010 => 0.52534246992796
1011 => 0.5386022593888
1012 => 0.53848006809458
1013 => 0.55106826472845
1014 => 0.57513216878166
1015 => 0.56801528824032
1016 => 0.55973913048515
1017 => 0.5606389783061
1018 => 0.57050808788825
1019 => 0.56454099894502
1020 => 0.56668680573303
1021 => 0.57050483995268
1022 => 0.57280835479385
1023 => 0.56030753796953
1024 => 0.5573929995846
1025 => 0.55143087691298
1026 => 0.54987547039625
1027 => 0.55473149490851
1028 => 0.55345210401541
1029 => 0.53045784372894
1030 => 0.52805481559015
1031 => 0.52812851303243
1101 => 0.52208598451968
1102 => 0.51286967816472
1103 => 0.53708958098849
1104 => 0.53514438383442
1105 => 0.53299703672263
1106 => 0.53326007449123
1107 => 0.54377311341836
1108 => 0.53767501991943
1109 => 0.5538878009442
1110 => 0.55055494056632
1111 => 0.54713660489577
1112 => 0.54666408678105
1113 => 0.54534831918659
1114 => 0.54083606252961
1115 => 0.53538724147172
1116 => 0.53178945784051
1117 => 0.49054766457349
1118 => 0.49820190151137
1119 => 0.50700740340276
1120 => 0.51004702736983
1121 => 0.50484754023858
1122 => 0.5410413699728
1123 => 0.54765433143766
1124 => 0.52762323980779
1125 => 0.52387624042792
1126 => 0.54128702262834
1127 => 0.53078619257992
1128 => 0.53551471570775
1129 => 0.52529423506926
1130 => 0.54606146267089
1201 => 0.54590325119119
1202 => 0.53782433060505
1203 => 0.5446525789624
1204 => 0.54346600277537
1205 => 0.53434492133111
1206 => 0.54635061722166
1207 => 0.54635657189703
1208 => 0.53858078648375
1209 => 0.52950037145934
1210 => 0.5278770077228
1211 => 0.52665402121556
1212 => 0.5352139359974
1213 => 0.54288872882465
1214 => 0.55716961553366
1215 => 0.5607601697578
1216 => 0.57477434193136
1217 => 0.56642958473966
1218 => 0.57012870752005
1219 => 0.57414462857102
1220 => 0.57607000880346
1221 => 0.57293270503629
1222 => 0.59470248288523
1223 => 0.59654051914444
1224 => 0.5971567968032
1225 => 0.58981615019881
1226 => 0.59633636248324
1227 => 0.59328577108209
1228 => 0.60122256242918
1229 => 0.60246715265444
1230 => 0.60141302901123
1231 => 0.60180808159325
]
'min_raw' => 0.26987062205032
'max_raw' => 0.60246715265444
'avg_raw' => 0.43616888735238
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.26987'
'max' => '$0.602467'
'avg' => '$0.436168'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.041613502356619
'max_diff' => -0.057491307447963
'year' => 2031
]
6 => [
'items' => [
101 => 0.58323141665115
102 => 0.58226811857419
103 => 0.5691334809423
104 => 0.57448594286364
105 => 0.56447977185188
106 => 0.56765283175469
107 => 0.56905148632583
108 => 0.56832090855081
109 => 0.5747885630299
110 => 0.56928973546816
111 => 0.55477742544177
112 => 0.54026116154623
113 => 0.54007892167771
114 => 0.53625704562735
115 => 0.53349452925446
116 => 0.53402668791341
117 => 0.53590208443811
118 => 0.53338552779916
119 => 0.53392256275074
120 => 0.54284092119212
121 => 0.54462943437472
122 => 0.53855136776305
123 => 0.51414705325634
124 => 0.5081581732628
125 => 0.5124628614375
126 => 0.51040549774742
127 => 0.41193707219797
128 => 0.43507076817801
129 => 0.42132551157276
130 => 0.42765995820531
131 => 0.41362961052828
201 => 0.42032562783328
202 => 0.41908911793645
203 => 0.45628741649653
204 => 0.4557066162291
205 => 0.45598461458185
206 => 0.44271502888414
207 => 0.46385383920911
208 => 0.47426757730222
209 => 0.47234027153385
210 => 0.47282533287357
211 => 0.46449037197197
212 => 0.4560653152227
213 => 0.44672063068082
214 => 0.46408189952172
215 => 0.46215162279335
216 => 0.46657898311658
217 => 0.47783900696903
218 => 0.47949708825398
219 => 0.48172556631554
220 => 0.48092681556434
221 => 0.49995629901254
222 => 0.49765170300639
223 => 0.50320511630369
224 => 0.49178132381266
225 => 0.47885421825272
226 => 0.48131123840074
227 => 0.48107460760238
228 => 0.47806202594703
229 => 0.47534240193021
301 => 0.47081499419152
302 => 0.48514038220701
303 => 0.48455879761481
304 => 0.49397397614437
305 => 0.4923097518851
306 => 0.48119565497698
307 => 0.48159259712234
308 => 0.48426222381374
309 => 0.49350183227396
310 => 0.49624477714547
311 => 0.49497413579353
312 => 0.49798164962495
313 => 0.50035866593109
314 => 0.49828016627582
315 => 0.52770733822661
316 => 0.51548712477737
317 => 0.52144317178483
318 => 0.52286365390104
319 => 0.51922511882988
320 => 0.52001418680065
321 => 0.5212094097682
322 => 0.52846656957852
323 => 0.54751145679692
324 => 0.55594630770302
325 => 0.58132297282223
326 => 0.55524591075407
327 => 0.55369860580855
328 => 0.55826970949839
329 => 0.57316849831618
330 => 0.58524256728092
331 => 0.58924823252627
401 => 0.58977764731477
402 => 0.59729254160664
403 => 0.60159993887026
404 => 0.59638003577827
405 => 0.59195671445444
406 => 0.57611292651533
407 => 0.57794688811048
408 => 0.59058106484889
409 => 0.60842758364118
410 => 0.62374175337878
411 => 0.61837926488938
412 => 0.65929126673666
413 => 0.66334752460928
414 => 0.6627870809258
415 => 0.67202784001173
416 => 0.65368681507402
417 => 0.64584567157253
418 => 0.59291308673148
419 => 0.60778498397974
420 => 0.62940216002598
421 => 0.62654104571601
422 => 0.61084207464246
423 => 0.62372984430146
424 => 0.61946874461438
425 => 0.61610783849798
426 => 0.63150480096089
427 => 0.61457520826057
428 => 0.62923327438833
429 => 0.61043415296119
430 => 0.61840376028509
501 => 0.61387982572152
502 => 0.61680736581672
503 => 0.59969302623964
504 => 0.60892750844832
505 => 0.5993088414196
506 => 0.59930428091904
507 => 0.59909194831127
508 => 0.61040826741486
509 => 0.61077729217456
510 => 0.60241451525899
511 => 0.60120930845433
512 => 0.60566558968562
513 => 0.60044845146569
514 => 0.60288951760252
515 => 0.60052238887222
516 => 0.59998949833567
517 => 0.59574333587659
518 => 0.59391397233855
519 => 0.59463131291871
520 => 0.59218265970422
521 => 0.59070725757083
522 => 0.5987984536916
523 => 0.59447565400219
524 => 0.59813592264153
525 => 0.59396458456428
526 => 0.57950490942305
527 => 0.57118899734104
528 => 0.54387601141185
529 => 0.55162194033971
530 => 0.55675749923263
531 => 0.55506019704915
601 => 0.55870665890801
602 => 0.55893052205081
603 => 0.55774502012921
604 => 0.55637236077621
605 => 0.55570422611599
606 => 0.5606839544808
607 => 0.56357485440652
608 => 0.55727292127245
609 => 0.55579646651255
610 => 0.56216806885036
611 => 0.56605474259566
612 => 0.59475175779769
613 => 0.59262579022139
614 => 0.59796155163784
615 => 0.59736082678628
616 => 0.60295355480418
617 => 0.61209530145024
618 => 0.59350757444625
619 => 0.5967337611389
620 => 0.59594277466539
621 => 0.60457855757536
622 => 0.60460551754697
623 => 0.5994279343031
624 => 0.6022347861763
625 => 0.60066807846263
626 => 0.60349933105448
627 => 0.59259739662826
628 => 0.60587477596829
629 => 0.61340219447866
630 => 0.61350671269198
701 => 0.6170746493246
702 => 0.62069987958431
703 => 0.6276581933768
704 => 0.62050581598927
705 => 0.60763938533901
706 => 0.60856830007364
707 => 0.60102471649103
708 => 0.60115152549392
709 => 0.60047460909832
710 => 0.60250608615738
711 => 0.59304319160286
712 => 0.59526411404064
713 => 0.59215480962205
714 => 0.59672700211833
715 => 0.59180807880282
716 => 0.59594239322776
717 => 0.59772662627887
718 => 0.60431048464926
719 => 0.59083563756834
720 => 0.5633595122034
721 => 0.56913532687093
722 => 0.56059244329721
723 => 0.56138311969701
724 => 0.56298041185982
725 => 0.55780306535867
726 => 0.55879073991415
727 => 0.55875545322887
728 => 0.55845137163853
729 => 0.55710454385497
730 => 0.55515137710706
731 => 0.56293219227773
801 => 0.56425430439436
802 => 0.56719319585459
803 => 0.57593734337112
804 => 0.57506359683302
805 => 0.57648871368806
806 => 0.5733776915952
807 => 0.56152743108927
808 => 0.56217095724806
809 => 0.55414617573607
810 => 0.56698798414916
811 => 0.56394687441335
812 => 0.56198625118309
813 => 0.56145127696966
814 => 0.57021709953658
815 => 0.57283997103603
816 => 0.57120557353193
817 => 0.56785337656803
818 => 0.57429058572679
819 => 0.57601291133362
820 => 0.57639847652007
821 => 0.58780397693697
822 => 0.57703591729407
823 => 0.57962789627542
824 => 0.59984977637492
825 => 0.58151132155338
826 => 0.59122561006869
827 => 0.59075014619659
828 => 0.59571964748742
829 => 0.59034250204186
830 => 0.59040915820411
831 => 0.5948217386872
901 => 0.58862506521179
902 => 0.58709068171526
903 => 0.58497094190428
904 => 0.58959931623244
905 => 0.59237381731881
906 => 0.61473425842843
907 => 0.62918012314524
908 => 0.62855299005962
909 => 0.6342838125182
910 => 0.63170202451229
911 => 0.62336474999996
912 => 0.6375954609702
913 => 0.63309226858098
914 => 0.63346350629017
915 => 0.63344968880409
916 => 0.63644391806701
917 => 0.63432223221715
918 => 0.63014017162049
919 => 0.63291641861315
920 => 0.64116087965488
921 => 0.66675193969939
922 => 0.68107303593674
923 => 0.6658897917238
924 => 0.67636299027014
925 => 0.67008280312454
926 => 0.66894150630081
927 => 0.6755194489512
928 => 0.68210890541943
929 => 0.68168918552941
930 => 0.67690557850581
1001 => 0.67420344027771
1002 => 0.69466493622359
1003 => 0.70974061788402
1004 => 0.70871255746343
1005 => 0.71325008181675
1006 => 0.72657239365845
1007 => 0.72779041889261
1008 => 0.7276369757091
1009 => 0.72461797307845
1010 => 0.7377355192074
1011 => 0.74867840696944
1012 => 0.72391916119683
1013 => 0.73334715786471
1014 => 0.73757968932001
1015 => 0.74379430123188
1016 => 0.75427939321709
1017 => 0.76566898414633
1018 => 0.76727959718424
1019 => 0.76613679015891
1020 => 0.75862504877244
1021 => 0.7710876750733
1022 => 0.77838798927579
1023 => 0.78273515931865
1024 => 0.79375885924723
1025 => 0.73760582799335
1026 => 0.69785792148511
1027 => 0.69165071191712
1028 => 0.70427331666009
1029 => 0.70760179686742
1030 => 0.70626009066941
1031 => 0.66152020817283
1101 => 0.69141516569491
1102 => 0.72357962634925
1103 => 0.72481519427687
1104 => 0.74091739580759
1105 => 0.74616093267753
1106 => 0.75912531547356
1107 => 0.75831438979985
1108 => 0.76147101070229
1109 => 0.76074535822187
1110 => 0.78475914737864
1111 => 0.81124992290075
1112 => 0.81033263157992
1113 => 0.80652426917399
1114 => 0.81218033676909
1115 => 0.83952165603194
1116 => 0.83700450548993
1117 => 0.83944970283112
1118 => 0.87168665913124
1119 => 0.91359928797497
1120 => 0.89412666391792
1121 => 0.93637665502508
1122 => 0.96297078485124
1123 => 1.0089625825012
1124 => 1.0032041829211
1125 => 1.0211084522428
1126 => 0.99289544585834
1127 => 0.92811268041023
1128 => 0.9178605597996
1129 => 0.93838556488712
1130 => 0.98884428709408
1201 => 0.93679644015748
1202 => 0.94732565180549
1203 => 0.94429323814252
1204 => 0.94413165370535
1205 => 0.95029867446077
1206 => 0.94135308920486
1207 => 0.90490716559224
1208 => 0.92161011760673
1209 => 0.9151603056923
1210 => 0.92231685287669
1211 => 0.96093778644628
1212 => 0.9438625511071
1213 => 0.92587517775675
1214 => 0.94843533565578
1215 => 0.97716216917257
1216 => 0.97536449555817
1217 => 0.97187625737696
1218 => 0.99153927336623
1219 => 1.0240168150574
1220 => 1.0327953640712
1221 => 1.0392755094836
1222 => 1.040169012053
1223 => 1.0493726438268
1224 => 0.99988239616527
1225 => 1.0784246902039
1226 => 1.0919867746973
1227 => 1.0894376649033
1228 => 1.104511351038
1229 => 1.1000762901946
1230 => 1.0936505828724
1231 => 1.1175455816608
]
'min_raw' => 0.41193707219797
'max_raw' => 1.1175455816608
'avg_raw' => 0.76474132692937
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.411937'
'max' => '$1.11'
'avg' => '$0.764741'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.14206645014765
'max_diff' => 0.51507842900633
'year' => 2032
]
7 => [
'items' => [
101 => 1.0901518937769
102 => 1.051270002595
103 => 1.0299386280961
104 => 1.0580295027892
105 => 1.0751836197279
106 => 1.0865213998176
107 => 1.0899522052222
108 => 1.0037241832106
109 => 0.95725206177161
110 => 0.98704015881003
111 => 1.0233836930615
112 => 0.99968050599747
113 => 1.0006096260543
114 => 0.96681511038894
115 => 1.0263737578244
116 => 1.0176965638602
117 => 1.0627138614965
118 => 1.0519701221292
119 => 1.0886799807903
120 => 1.0790130447235
121 => 1.1191399558656
122 => 1.1351476671129
123 => 1.1620271056985
124 => 1.1817997301411
125 => 1.1934105934038
126 => 1.1927135207248
127 => 1.2387215454807
128 => 1.2115922206801
129 => 1.1775113948396
130 => 1.1768949802237
131 => 1.1945459228556
201 => 1.2315374563123
202 => 1.2411288227327
203 => 1.2464890880834
204 => 1.2382796551066
205 => 1.2088327174117
206 => 1.1961176790145
207 => 1.2069512601191
208 => 1.1937027213684
209 => 1.2165734161355
210 => 1.2479797649676
211 => 1.2414944781279
212 => 1.2631738197044
213 => 1.2856096575027
214 => 1.317693913211
215 => 1.3260819257296
216 => 1.3399469914554
217 => 1.3542186985241
218 => 1.3588023862013
219 => 1.3675540682118
220 => 1.3675079425277
221 => 1.3938817253224
222 => 1.422972824473
223 => 1.4339540409419
224 => 1.4592047427043
225 => 1.4159638008263
226 => 1.4487625519569
227 => 1.4783478464827
228 => 1.4430750386905
301 => 1.4916903867218
302 => 1.4935780105211
303 => 1.5220788888005
304 => 1.4931877885567
305 => 1.4760323454557
306 => 1.5255594668824
307 => 1.5495240808511
308 => 1.5423057440932
309 => 1.4873738449526
310 => 1.4554011235128
311 => 1.3717223444275
312 => 1.4708434729083
313 => 1.5191224831884
314 => 1.4872488139793
315 => 1.5033240387478
316 => 1.5910252526751
317 => 1.6244161967055
318 => 1.6174711137675
319 => 1.6186447184582
320 => 1.6366618657685
321 => 1.7165598191667
322 => 1.6686831134705
323 => 1.7052830610693
324 => 1.7246955413048
325 => 1.7427269348168
326 => 1.6984475312318
327 => 1.6408406777612
328 => 1.6225941690959
329 => 1.4840796057379
330 => 1.4768693211768
331 => 1.4728219699587
401 => 1.4473039930378
402 => 1.4272538531401
403 => 1.4113092374795
404 => 1.3694658045208
405 => 1.3835867348175
406 => 1.3168970360845
407 => 1.3595627419961
408 => 1.253124372539
409 => 1.3417694094561
410 => 1.2935239460574
411 => 1.325919477172
412 => 1.3258064522158
413 => 1.2661560084213
414 => 1.2317508773136
415 => 1.2536751659231
416 => 1.2771797436648
417 => 1.2809932823245
418 => 1.3114675808987
419 => 1.319972302588
420 => 1.2942025988221
421 => 1.2509186739139
422 => 1.2609725424689
423 => 1.2315471359882
424 => 1.1799802429627
425 => 1.2170164858052
426 => 1.2296622874803
427 => 1.2352473939154
428 => 1.1845372771225
429 => 1.168603057456
430 => 1.1601198126066
501 => 1.2443726346263
502 => 1.2489881944066
503 => 1.2253743379965
504 => 1.3321112081277
505 => 1.3079533671056
506 => 1.3349435943421
507 => 1.2600602592772
508 => 1.2629209035204
509 => 1.227469932642
510 => 1.2473201074992
511 => 1.2332906437112
512 => 1.245716409534
513 => 1.2531643623349
514 => 1.2886095160578
515 => 1.3421741361753
516 => 1.2833151920833
517 => 1.2576695072668
518 => 1.2735799458901
519 => 1.3159515405972
520 => 1.3801466755403
521 => 1.3421418636065
522 => 1.3590077537792
523 => 1.3626922004707
524 => 1.3346688591653
525 => 1.3811799361063
526 => 1.4061056000944
527 => 1.4316741737067
528 => 1.4538746497591
529 => 1.4214615231409
530 => 1.4561482148616
531 => 1.4281968643601
601 => 1.4031216134028
602 => 1.4031596422079
603 => 1.3874295709914
604 => 1.3569505758929
605 => 1.3513297815651
606 => 1.3805698634866
607 => 1.4040176401415
608 => 1.4059489113341
609 => 1.4189308052806
610 => 1.4266133563939
611 => 1.5019128012267
612 => 1.5321988608482
613 => 1.5692320812675
614 => 1.5836586076988
615 => 1.6270772800609
616 => 1.5920131758363
617 => 1.5844268363238
618 => 1.4791073393127
619 => 1.4963534010482
620 => 1.5239660098841
621 => 1.4795626610621
622 => 1.5077263656476
623 => 1.5132864775216
624 => 1.4780538522602
625 => 1.4968731197242
626 => 1.4468947248639
627 => 1.343263528608
628 => 1.3812953072523
629 => 1.4092994976928
630 => 1.3693340650425
701 => 1.4409705561924
702 => 1.3991219969399
703 => 1.385858012742
704 => 1.3341104814341
705 => 1.3585333242663
706 => 1.3915655688983
707 => 1.3711554821263
708 => 1.413509476768
709 => 1.4734940285784
710 => 1.5162425923404
711 => 1.519524296255
712 => 1.4920398336874
713 => 1.5360838603554
714 => 1.5364046730058
715 => 1.4867228309991
716 => 1.4562929793996
717 => 1.4493792530913
718 => 1.4666510969254
719 => 1.4876223038983
720 => 1.5206880522898
721 => 1.5406689915289
722 => 1.592768683993
723 => 1.6068653669586
724 => 1.6223533476905
725 => 1.6430500662648
726 => 1.6679017834428
727 => 1.6135276410663
728 => 1.615688027109
729 => 1.5650555785891
730 => 1.5109475459181
731 => 1.5520087980539
801 => 1.6056909230721
802 => 1.5933761842794
803 => 1.591990524598
804 => 1.5943208198322
805 => 1.5850359089443
806 => 1.5430406011133
807 => 1.5219508204251
808 => 1.5491620180898
809 => 1.5636235586175
810 => 1.5860521467971
811 => 1.5832873498939
812 => 1.6410609843899
813 => 1.6635100717711
814 => 1.6577666345684
815 => 1.6588235652372
816 => 1.6994665656326
817 => 1.7446699409429
818 => 1.7870088670317
819 => 1.8300778411483
820 => 1.77815651184
821 => 1.7517940628796
822 => 1.7789933809866
823 => 1.7645610399409
824 => 1.8474935524999
825 => 1.8532356197334
826 => 1.9361621353278
827 => 2.0148692733327
828 => 1.9654347301367
829 => 2.0120492777898
830 => 2.0624667116165
831 => 2.159730121402
901 => 2.1269752267543
902 => 2.1018854907887
903 => 2.078175811534
904 => 2.1275118902575
905 => 2.1909819673721
906 => 2.2046528140738
907 => 2.2268048083958
908 => 2.2035146949832
909 => 2.2315650712669
910 => 2.3305952255082
911 => 2.3038364036688
912 => 2.2658345749617
913 => 2.3440093707781
914 => 2.3723005254873
915 => 2.5708626654288
916 => 2.8215555692978
917 => 2.7177670609577
918 => 2.6533421845967
919 => 2.66848355872
920 => 2.7600281207227
921 => 2.7894293285587
922 => 2.7095067104562
923 => 2.7377367303126
924 => 2.8932869152358
925 => 2.9767345987997
926 => 2.8634014360008
927 => 2.5507197346971
928 => 2.2624129260736
929 => 2.3388848743454
930 => 2.3302153286122
1001 => 2.4973345970314
1002 => 2.3031982146177
1003 => 2.306466973407
1004 => 2.4770420913148
1005 => 2.4315355742549
1006 => 2.3578208446521
1007 => 2.2629511251773
1008 => 2.0875756743412
1009 => 1.9322407468295
1010 => 2.2368883111774
1011 => 2.2237513542371
1012 => 2.2047270937995
1013 => 2.2470635267633
1014 => 2.4526372278292
1015 => 2.4478980886425
1016 => 2.4177501030667
1017 => 2.4406170844138
1018 => 2.3538121522617
1019 => 2.3761837597889
1020 => 2.2623672568021
1021 => 2.3138170695492
1022 => 2.3576626859494
1023 => 2.3664653425871
1024 => 2.3862981774668
1025 => 2.2168287748774
1026 => 2.2929155612798
1027 => 2.3376094199235
1028 => 2.135680940595
1029 => 2.3336179431367
1030 => 2.2138786896137
1031 => 2.1732373885448
1101 => 2.2279555463499
1102 => 2.2066318270381
1103 => 2.1882989453446
1104 => 2.1780688823608
1105 => 2.2182478584301
1106 => 2.2163734611722
1107 => 2.1506328579196
1108 => 2.0648769209064
1109 => 2.0936594282107
1110 => 2.0832024734696
1111 => 2.0453051205138
1112 => 2.0708433606622
1113 => 1.9583858756564
1114 => 1.7649086177355
1115 => 1.8927256206868
1116 => 1.8878048051113
1117 => 1.8853235067569
1118 => 1.9813744518723
1119 => 1.9721413697718
1120 => 1.9553832353488
1121 => 2.0449973442333
1122 => 2.0122869890106
1123 => 2.113092596278
1124 => 2.1794896889222
1125 => 2.1626492385067
1126 => 2.2250960250635
1127 => 2.0943225190465
1128 => 2.137760232023
1129 => 2.1467126844653
1130 => 2.0438915200401
1201 => 1.9736520161909
1202 => 1.9689678420731
1203 => 1.8471822219985
1204 => 1.9122391172232
1205 => 1.9694864927836
1206 => 1.942069442466
1207 => 1.9333900233965
1208 => 1.9777312930862
1209 => 1.9811769894984
1210 => 1.9026147461421
1211 => 1.9189503242785
1212 => 1.9870724006715
1213 => 1.9172338227367
1214 => 1.7815488738762
1215 => 1.7478971305676
1216 => 1.7434073676856
1217 => 1.6521411708793
1218 => 1.7501459009676
1219 => 1.7073642099206
1220 => 1.8425110593347
1221 => 1.7653159037565
1222 => 1.7619881748875
1223 => 1.7569578246303
1224 => 1.6784012388801
1225 => 1.6956001386279
1226 => 1.7527719008561
1227 => 1.7731714297051
1228 => 1.7710435917178
1229 => 1.7524917280313
1230 => 1.760984676226
1231 => 1.7336259309513
]
'min_raw' => 0.95725206177161
'max_raw' => 2.9767345987997
'avg_raw' => 1.9669933302857
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.957252'
'max' => '$2.97'
'avg' => '$1.96'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.54531498957365
'max_diff' => 1.8591890171389
'year' => 2033
]
8 => [
'items' => [
101 => 1.7239649885718
102 => 1.6934723969705
103 => 1.6486567111099
104 => 1.6548886070994
105 => 1.5660970067475
106 => 1.5177186303489
107 => 1.5043281333785
108 => 1.4864218012023
109 => 1.5063507012447
110 => 1.5658454712998
111 => 1.4940821560938
112 => 1.3710489857845
113 => 1.3784434889584
114 => 1.3950567421425
115 => 1.3640980547416
116 => 1.3347982552824
117 => 1.3602720537443
118 => 1.3081412775666
119 => 1.4013564973858
120 => 1.3988352869224
121 => 1.4335801564804
122 => 1.4553068364516
123 => 1.4052338732142
124 => 1.3926406583717
125 => 1.3998143258757
126 => 1.2812495815765
127 => 1.4238908873685
128 => 1.4251244553043
129 => 1.4145618977172
130 => 1.4905139894952
131 => 1.6507965931982
201 => 1.5904918303323
202 => 1.5671400034296
203 => 1.5227481634173
204 => 1.581897654507
205 => 1.5773558964671
206 => 1.5568163442001
207 => 1.5443939589018
208 => 1.5672825847051
209 => 1.5415578048675
210 => 1.536936927539
211 => 1.5089394384924
212 => 1.4989456087073
213 => 1.4915465750003
214 => 1.4834009659029
215 => 1.5013681498125
216 => 1.4606521472935
217 => 1.4115526396946
218 => 1.4074705469017
219 => 1.418741564004
220 => 1.4137549779648
221 => 1.4074466730463
222 => 1.3954024009922
223 => 1.3918291227589
224 => 1.4034405435089
225 => 1.3903319264701
226 => 1.4096744049743
227 => 1.4044143210893
228 => 1.3750319200979
301 => 1.3384105697045
302 => 1.3380845628701
303 => 1.3301945529989
304 => 1.320145439157
305 => 1.3173500055788
306 => 1.35812672149
307 => 1.4425333030819
308 => 1.4259622714371
309 => 1.4379365400681
310 => 1.4968380903633
311 => 1.5155611219708
312 => 1.5022719576151
313 => 1.4840809298051
314 => 1.4848812427077
315 => 1.5470454915331
316 => 1.5509225994801
317 => 1.5607188004597
318 => 1.5733096871247
319 => 1.5044162400587
320 => 1.4816363675464
321 => 1.4708420001709
322 => 1.4375995266002
323 => 1.4734486843519
324 => 1.452560915344
325 => 1.4553793890109
326 => 1.4535438543379
327 => 1.4545461803877
328 => 1.4013304418322
329 => 1.4207194600249
330 => 1.3884814567175
331 => 1.3453183891747
401 => 1.3451736914373
402 => 1.3557377910694
403 => 1.349453851235
404 => 1.3325439307155
405 => 1.3349459051127
406 => 1.3139020819168
407 => 1.3375010062594
408 => 1.3381777389685
409 => 1.3290908676545
410 => 1.3654482666283
411 => 1.3803439226527
412 => 1.3743627492942
413 => 1.3799242675853
414 => 1.4266508726157
415 => 1.4342693480603
416 => 1.4376529716046
417 => 1.4331193642995
418 => 1.380778344148
419 => 1.3830998909629
420 => 1.3660659208055
421 => 1.3516740110181
422 => 1.3522496119339
423 => 1.359648924382
424 => 1.3919621558066
425 => 1.4599634463707
426 => 1.4625440456393
427 => 1.4656718072342
428 => 1.4529496289405
429 => 1.4491124982323
430 => 1.4541746640839
501 => 1.4797123734818
502 => 1.5454022954735
503 => 1.5221830897593
504 => 1.5033055140851
505 => 1.5198662373092
506 => 1.5173168437761
507 => 1.4957973967377
508 => 1.4951934175321
509 => 1.4538907184819
510 => 1.43862205106
511 => 1.4258624097224
512 => 1.4119292144805
513 => 1.4036691492962
514 => 1.4163603635518
515 => 1.4192629944101
516 => 1.3915134326358
517 => 1.3877312699041
518 => 1.4103921610649
519 => 1.4004199477482
520 => 1.4106766164434
521 => 1.4130562515608
522 => 1.4126730754992
523 => 1.4022609394952
524 => 1.4088973244898
525 => 1.393200295576
526 => 1.3761321342497
527 => 1.3652437107076
528 => 1.3557421170272
529 => 1.3610141534369
530 => 1.3422203062722
531 => 1.3362077763187
601 => 1.406649066577
602 => 1.4586848050623
603 => 1.4579281848163
604 => 1.4533224536558
605 => 1.4464792713896
606 => 1.4792117520755
607 => 1.4678084103111
608 => 1.4761052942258
609 => 1.4782171994012
610 => 1.484609300302
611 => 1.4868939269543
612 => 1.4799881984356
613 => 1.4568117300629
614 => 1.3990581744307
615 => 1.3721737383812
616 => 1.3633014266891
617 => 1.3636239183682
618 => 1.3547281581927
619 => 1.3573483582444
620 => 1.3538169595444
621 => 1.3471293447437
622 => 1.3606012120682
623 => 1.3621537192782
624 => 1.3590092244679
625 => 1.3597498668281
626 => 1.3337147928295
627 => 1.3356941829604
628 => 1.3246726871828
629 => 1.3226062895906
630 => 1.2947449080162
701 => 1.2453844319854
702 => 1.2727349272438
703 => 1.2396993750332
704 => 1.2271883108408
705 => 1.2864137428581
706 => 1.2804691521414
707 => 1.2702945968857
708 => 1.2552443090995
709 => 1.2496620109599
710 => 1.2157457346039
711 => 1.2137417800605
712 => 1.230551602439
713 => 1.222794447802
714 => 1.2119004648275
715 => 1.172443562799
716 => 1.1280809411878
717 => 1.1294199698807
718 => 1.1435308944193
719 => 1.1845603106328
720 => 1.1685294079021
721 => 1.1568988040376
722 => 1.1547207415484
723 => 1.181983753683
724 => 1.220566627631
725 => 1.2386688488442
726 => 1.2207300973945
727 => 1.2001230256201
728 => 1.201377282595
729 => 1.2097212923322
730 => 1.2105981297777
731 => 1.1971850444937
801 => 1.2009607494335
802 => 1.1952251083722
803 => 1.1600254897661
804 => 1.1593888402847
805 => 1.1507502862083
806 => 1.150488714224
807 => 1.1357923787516
808 => 1.1337362598281
809 => 1.1045557937439
810 => 1.1237624648871
811 => 1.1108796382797
812 => 1.0914621798308
813 => 1.0881146026754
814 => 1.0880139704638
815 => 1.1079513586265
816 => 1.1235294848983
817 => 1.1111037405642
818 => 1.1082746394422
819 => 1.1384820378925
820 => 1.1346378710932
821 => 1.1313088474371
822 => 1.2171119544496
823 => 1.1491920999493
824 => 1.1195751666574
825 => 1.0829185876056
826 => 1.0948541545834
827 => 1.0973691539156
828 => 1.009216689141
829 => 0.97345324516065
830 => 0.96118057890355
831 => 0.95411748596255
901 => 0.9573362261085
902 => 0.92514493189259
903 => 0.94677801400055
904 => 0.91890307427194
905 => 0.91422974991353
906 => 0.9640735951907
907 => 0.9710090750775
908 => 0.94142016319571
909 => 0.96042103463352
910 => 0.9535310545183
911 => 0.91938091010765
912 => 0.91807662578263
913 => 0.90094128375298
914 => 0.87412779153262
915 => 0.86187330608587
916 => 0.85549106366688
917 => 0.85812450127638
918 => 0.8567929546365
919 => 0.8481037121184
920 => 0.85729101184637
921 => 0.83382125749576
922 => 0.82447541220469
923 => 0.82025411070867
924 => 0.79942335285385
925 => 0.83257435208094
926 => 0.83910551655396
927 => 0.84564954943857
928 => 0.90261088789811
929 => 0.89976526039974
930 => 0.92548834710818
1001 => 0.92448879526042
1002 => 0.91715215424479
1003 => 0.88620007261874
1004 => 0.89853702068708
1005 => 0.86056581212014
1006 => 0.8890164233697
1007 => 0.87603275252133
1008 => 0.88462663119547
1009 => 0.86917406246057
1010 => 0.87772615201939
1011 => 0.84065429794074
1012 => 0.80603712221716
1013 => 0.81996808426669
1014 => 0.83511263321327
1015 => 0.86794987408878
1016 => 0.84839228432468
1017 => 0.8554259331582
1018 => 0.83186438698452
1019 => 0.78325018720528
1020 => 0.78352533829654
1021 => 0.77604710277842
1022 => 0.7695848154505
1023 => 0.85063870877526
1024 => 0.84055837586789
1025 => 0.82449668466135
1026 => 0.84599589660754
1027 => 0.85168062948449
1028 => 0.8518424658377
1029 => 0.86752773589867
1030 => 0.87589896734194
1031 => 0.87737443316681
1101 => 0.90205554451043
1102 => 0.91032832748108
1103 => 0.94440274972911
1104 => 0.87518872684052
1105 => 0.87376330958668
1106 => 0.846298434609
1107 => 0.82887977669567
1108 => 0.84749110501864
1109 => 0.86397820121313
1110 => 0.84681073464537
1111 => 0.84905244335412
1112 => 0.82600652212045
1113 => 0.83424435455011
1114 => 0.84133988559439
1115 => 0.83742215040777
1116 => 0.83155711121288
1117 => 0.86262644734155
1118 => 0.86087339363546
1119 => 0.88980587371942
1120 => 0.91236081092637
1121 => 0.95278329057852
1122 => 0.91060032578998
1123 => 0.90906301089099
1124 => 0.92409051062172
1125 => 0.91032602684916
1126 => 0.91902470545959
1127 => 0.95138179897334
1128 => 0.95206545337164
1129 => 0.94061336136109
1130 => 0.93991650052148
1201 => 0.94211600006426
1202 => 0.95499853758648
1203 => 0.95049698313582
1204 => 0.95570629591154
1205 => 0.96222062130539
1206 => 0.98916663315112
1207 => 0.99566322538183
1208 => 0.97987987435808
1209 => 0.98130493423684
1210 => 0.97540152769129
1211 => 0.96969891093774
1212 => 0.98251756059941
1213 => 1.0059438948073
1214 => 1.005798160798
1215 => 1.0112326149914
1216 => 1.0146182349324
1217 => 1.0000846757203
1218 => 0.99062386308698
1219 => 0.99425174065773
1220 => 1.0000527958983
1221 => 0.9923705366279
1222 => 0.94495207364253
1223 => 0.95933580620915
1224 => 0.95694164978147
1225 => 0.9535320798891
1226 => 0.96799503421094
1227 => 0.96660004698399
1228 => 0.92481476364187
1229 => 0.92748972190942
1230 => 0.92497743671386
1231 => 0.93309514414589
]
'min_raw' => 0.7695848154505
'max_raw' => 1.7239649885718
'avg_raw' => 1.2467749020112
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.769584'
'max' => '$1.72'
'avg' => '$1.24'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.18766724632112
'max_diff' => -1.2527696102279
'year' => 2034
]
9 => [
'items' => [
101 => 0.90988764400779
102 => 0.91702611474537
103 => 0.92150329667298
104 => 0.92414039122367
105 => 0.93366738501342
106 => 0.93254950225235
107 => 0.93359789585142
108 => 0.94772391260851
109 => 1.0191684579023
110 => 1.0230570268692
111 => 1.0039082910992
112 => 1.0115578333472
113 => 0.99687238500202
114 => 1.0067308248601
115 => 1.0134757190338
116 => 0.98299683923151
117 => 0.98119207777592
118 => 0.96644601736152
119 => 0.97436971496866
120 => 0.96176254234168
121 => 0.96485590152416
122 => 0.95620659957573
123 => 0.97177362102407
124 => 0.98917996987389
125 => 0.9935775009909
126 => 0.98200948987823
127 => 0.97363348746357
128 => 0.95892798645015
129 => 0.98338356236893
130 => 0.99053511803775
131 => 0.98334599829151
201 => 0.98168012216094
202 => 0.97852328990367
203 => 0.98234985904762
204 => 0.9904961691297
205 => 0.98665451973372
206 => 0.98919199684092
207 => 0.97952175074331
208 => 1.0000894869331
209 => 1.0327560018978
210 => 1.0328610300849
211 => 1.029019359981
212 => 1.0274474313444
213 => 1.0313892180031
214 => 1.0335274755648
215 => 1.0462744908188
216 => 1.0599525460498
217 => 1.12378206161
218 => 1.1058589890586
219 => 1.1624923324984
220 => 1.2072819542401
221 => 1.2207124033876
222 => 1.2083570221233
223 => 1.1660899302429
224 => 1.1640161050694
225 => 1.2271809850447
226 => 1.2093340133169
227 => 1.2072111728185
228 => 1.1846277365108
301 => 1.1979773443817
302 => 1.1950575893134
303 => 1.1904486130988
304 => 1.2159187349746
305 => 1.2635965293926
306 => 1.256165498013
307 => 1.2506185778038
308 => 1.2263135881312
309 => 1.2409506206301
310 => 1.2357386537111
311 => 1.2581325711909
312 => 1.2448669105619
313 => 1.2091988049531
314 => 1.2148790683349
315 => 1.2140205079519
316 => 1.2316896197969
317 => 1.2263857909954
318 => 1.2129848502549
319 => 1.2634335718745
320 => 1.2601577125031
321 => 1.2648021321261
322 => 1.2668467492776
323 => 1.2975539971212
324 => 1.3101337740404
325 => 1.3129896036411
326 => 1.3249394187595
327 => 1.3126922813549
328 => 1.3616895630342
329 => 1.3942698962802
330 => 1.4321136299141
331 => 1.4874134961899
401 => 1.508206757462
402 => 1.5044506409264
403 => 1.5463783684081
404 => 1.6217215626916
405 => 1.5196796546355
406 => 1.6271300315957
407 => 1.5931124828244
408 => 1.5124574866371
409 => 1.5072642557426
410 => 1.5618847555843
411 => 1.6830277672051
412 => 1.6526828167868
413 => 1.6830774006732
414 => 1.6476205040663
415 => 1.6458597702956
416 => 1.6813553383463
417 => 1.7642926678595
418 => 1.7248922514671
419 => 1.6684020931901
420 => 1.7101135469776
421 => 1.6739792254941
422 => 1.5925584858319
423 => 1.6526596125751
424 => 1.6124717007034
425 => 1.6242006698945
426 => 1.708669683148
427 => 1.698506147996
428 => 1.7116587036007
429 => 1.6884447872208
430 => 1.6667593288234
501 => 1.6262818103413
502 => 1.6142984126363
503 => 1.6176101926445
504 => 1.6142967714826
505 => 1.5916499718995
506 => 1.5867593976858
507 => 1.5786082264019
508 => 1.5811346152213
509 => 1.5658080284983
510 => 1.594732464279
511 => 1.6001010944412
512 => 1.6211498867046
513 => 1.6233352421441
514 => 1.6819558289868
515 => 1.6496685948328
516 => 1.671329659049
517 => 1.6693920895837
518 => 1.5142055249718
519 => 1.5355888643527
520 => 1.5688546299677
521 => 1.5538684476488
522 => 1.5326814920765
523 => 1.5155718894791
524 => 1.4896490919975
525 => 1.5261349316497
526 => 1.5741099309559
527 => 1.6245519672973
528 => 1.6851547688683
529 => 1.671628929052
530 => 1.6234190400763
531 => 1.6255817004784
601 => 1.6389504161087
602 => 1.6216367146916
603 => 1.6165305661401
604 => 1.638248909708
605 => 1.638398472004
606 => 1.6184769660928
607 => 1.5963378578697
608 => 1.5962450941979
609 => 1.592305653728
610 => 1.6483213217744
611 => 1.6791242753771
612 => 1.6826557843662
613 => 1.6788865766845
614 => 1.6803371951267
615 => 1.6624136351221
616 => 1.7033815782261
617 => 1.7409778141279
618 => 1.7309012197798
619 => 1.7157949723797
620 => 1.70376211871
621 => 1.7280666618648
622 => 1.726984418817
623 => 1.7406494438056
624 => 1.7400295193391
625 => 1.735434485403
626 => 1.7309013838829
627 => 1.7488746190115
628 => 1.7436986159358
629 => 1.7385145730977
630 => 1.7281171815486
701 => 1.7295303597425
702 => 1.7144267206489
703 => 1.7074390861088
704 => 1.6023618283041
705 => 1.5742817515202
706 => 1.5831163152991
707 => 1.5860248830844
708 => 1.5738043976825
709 => 1.5913254345638
710 => 1.5885947995252
711 => 1.5992181030922
712 => 1.5925811242338
713 => 1.5928535081612
714 => 1.6123714478308
715 => 1.6180375887521
716 => 1.6151557437482
717 => 1.6171740892051
718 => 1.6636860083691
719 => 1.6570735008314
720 => 1.6535607379942
721 => 1.6545337973067
722 => 1.6664185898799
723 => 1.6697456829148
724 => 1.6556485559354
725 => 1.6622968425134
726 => 1.6906044029695
727 => 1.7005104470599
728 => 1.7321257846258
729 => 1.71869502731
730 => 1.7433477636327
731 => 1.8191218703515
801 => 1.8796554699678
802 => 1.8239862701038
803 => 1.9351485168918
804 => 2.0217042712934
805 => 2.0183821172733
806 => 2.0032891194227
807 => 1.9047476942402
808 => 1.8140684056174
809 => 1.8899254809964
810 => 1.8901188562817
811 => 1.8836026662323
812 => 1.8431311694737
813 => 1.8821943458722
814 => 1.8852950389581
815 => 1.8835594753708
816 => 1.8525300736964
817 => 1.8051539125317
818 => 1.8144111010207
819 => 1.8295745646074
820 => 1.800866964608
821 => 1.7916931469533
822 => 1.8087490193635
823 => 1.8637065940013
824 => 1.8533171828636
825 => 1.8530458733519
826 => 1.897496179995
827 => 1.8656793534151
828 => 1.8145278638132
829 => 1.8016114380835
830 => 1.7557668282899
831 => 1.7874318635672
901 => 1.7885714318147
902 => 1.7712288156021
903 => 1.8159351215383
904 => 1.8155231450587
905 => 1.8579651288896
906 => 1.9390982614931
907 => 1.9151032018632
908 => 1.8871995581688
909 => 1.8902334579225
910 => 1.9235078499179
911 => 1.903389392937
912 => 1.9106241303382
913 => 1.9234968992764
914 => 1.9312633603897
915 => 1.8891159836873
916 => 1.879289414036
917 => 1.8591877011865
918 => 1.8539435395203
919 => 1.8703159652002
920 => 1.8660024094799
921 => 1.7884756555161
922 => 1.7803736783721
923 => 1.7806221544441
924 => 1.7602493476875
925 => 1.7291759273498
926 => 1.8108350206998
927 => 1.8042766526855
928 => 1.7970367219751
929 => 1.7979235721766
930 => 1.8333690169164
1001 => 1.8128088689295
1002 => 1.8674713920947
1003 => 1.8562344206378
1004 => 1.844709263264
1005 => 1.84311613545
1006 => 1.8386799331413
1007 => 1.8234665447866
1008 => 1.8050954641654
1009 => 1.7929652854636
1010 => 1.6539157000537
1011 => 1.6797224942916
1012 => 1.7094108586989
1013 => 1.7196591631237
1014 => 1.702128729244
1015 => 1.8241587531655
1016 => 1.8464548144465
1017 => 1.7789185904902
1018 => 1.7662853204738
1019 => 1.8249869882445
1020 => 1.7895827065918
1021 => 1.8055252524522
1022 => 1.7710661884083
1023 => 1.8410843461888
1024 => 1.840550925139
1025 => 1.8133122803306
1026 => 1.8363341964004
1027 => 1.8323335719418
1028 => 1.8015812090389
1029 => 1.8420592509448
1030 => 1.8420793275486
1031 => 1.8158627241397
1101 => 1.7852474709105
1102 => 1.7797741867332
1103 => 1.7756508023378
1104 => 1.804511152659
1105 => 1.8303872525129
1106 => 1.878536259112
1107 => 1.8906420633632
1108 => 1.9378918232846
1109 => 1.9097568918005
1110 => 1.9222287425191
1111 => 1.9357687007251
1112 => 1.9422602546045
1113 => 1.9316826159139
1114 => 2.005080941849
1115 => 2.0112780094245
1116 => 2.0133558325782
1117 => 1.9886063300439
1118 => 2.0105896809875
1119 => 2.000304399093
1120 => 2.0270638452488
1121 => 2.0312600680878
1122 => 2.0277060166282
1123 => 2.0290379639901
1124 => 1.9664054411565
1125 => 1.9631576144347
1126 => 1.9188732666277
1127 => 1.9369194656924
1128 => 1.9031829615177
1129 => 1.913881154516
1130 => 1.9185968160536
1201 => 1.9161336220778
1202 => 1.9379397707113
1203 => 1.919400089671
1204 => 1.8704708231999
1205 => 1.8215282259829
1206 => 1.8209137915426
1207 => 1.8080280696039
1208 => 1.79871405278
1209 => 1.8005082628528
1210 => 1.8068312931718
1211 => 1.7983465467632
1212 => 1.800157197597
1213 => 1.8302260657421
1214 => 1.8362561628072
1215 => 1.8157635368689
1216 => 1.7334826866547
1217 => 1.7132907596262
1218 => 1.727804316351
1219 => 1.7208677710293
1220 => 1.3888745994434
1221 => 1.4668714705832
1222 => 1.4205283782754
1223 => 1.441885407354
1224 => 1.3945811105933
1225 => 1.4171572004381
1226 => 1.4129882209906
1227 => 1.5384048816881
1228 => 1.5364466730363
1229 => 1.5373839638919
1230 => 1.4926446292591
1231 => 1.5639156041344
]
'min_raw' => 0.90988764400779
'max_raw' => 2.0312600680878
'avg_raw' => 1.4705738560478
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.909887'
'max' => '$2.03'
'avg' => '$1.47'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.14030282855729
'max_diff' => 0.307295079516
'year' => 2035
]
10 => [
'items' => [
101 => 1.5990262491793
102 => 1.592528203221
103 => 1.5941636213938
104 => 1.5660617187857
105 => 1.5376560517368
106 => 1.5061497953788
107 => 1.564684525401
108 => 1.5581764626437
109 => 1.5731036170819
110 => 1.6110675736502
111 => 1.6166579104659
112 => 1.6241713798379
113 => 1.6214783359132
114 => 1.6856375679549
115 => 1.6778674616184
116 => 1.6965911822772
117 => 1.6580750683099
118 => 1.6144904293729
119 => 1.6227744443457
120 => 1.6219766270879
121 => 1.6118194977052
122 => 1.6026500954544
123 => 1.5873856241699
124 => 1.6356846700308
125 => 1.6337238169732
126 => 1.6654677487324
127 => 1.6598567004499
128 => 1.6223847467627
129 => 1.6237230649194
130 => 1.6327238976968
131 => 1.6638758827093
201 => 1.6731239128499
202 => 1.6688398568185
203 => 1.678979899679
204 => 1.6869941761131
205 => 1.6799863694092
206 => 1.7792021341808
207 => 1.7380008313486
208 => 1.7580820596722
209 => 1.7628713143019
210 => 1.7506037392751
211 => 1.7532641370295
212 => 1.7572939147124
213 => 1.7817619356916
214 => 1.84597310262
215 => 1.8744117913524
216 => 1.959970989544
217 => 1.8720503541389
218 => 1.8668335074857
219 => 1.8822453027202
220 => 1.9324776094196
221 => 1.9731861759188
222 => 1.9866915559602
223 => 1.9884765148821
224 => 2.0138135056604
225 => 2.0283361962675
226 => 2.0107369285509
227 => 1.9958233918811
228 => 1.9424049546665
229 => 1.9485882842276
301 => 1.9911852931912
302 => 2.0513560773036
303 => 2.1029888697751
304 => 2.0849088654361
305 => 2.222846536049
306 => 2.2365224926654
307 => 2.2346329176576
308 => 2.265788782085
309 => 2.2039507359781
310 => 2.1775137732116
311 => 1.999047867785
312 => 2.0491895076802
313 => 2.1220733259831
314 => 2.1124268793304
315 => 2.0594967022888
316 => 2.1029487174895
317 => 2.088582122394
318 => 2.0772505927716
319 => 2.1291625266969
320 => 2.0720832229213
321 => 2.1215039162646
322 => 2.0581213658602
323 => 2.084991453373
324 => 2.0697386921408
325 => 2.0796090979661
326 => 2.021906907197
327 => 2.0530416086945
328 => 2.0206116012533
329 => 2.0205962252073
330 => 2.0198803309956
331 => 2.0580340909335
401 => 2.0592782836753
402 => 2.031082597434
403 => 2.0270191585473
404 => 2.0420438218462
405 => 2.0244538760887
406 => 2.0326841009988
407 => 2.024703161217
408 => 2.0229064835678
409 => 2.0085902503794
410 => 2.0024224234888
411 => 2.0048409873379
412 => 1.9965851820658
413 => 1.9916107607638
414 => 2.0188907933942
415 => 2.0043161724331
416 => 2.0166570237024
417 => 2.0025930661415
418 => 1.9538412618605
419 => 1.9258035836776
420 => 1.8337159446856
421 => 1.8598318848693
422 => 1.8771467802301
423 => 1.8714242074166
424 => 1.8837185081616
425 => 1.8844732783772
426 => 1.8804762758794
427 => 1.8758482590348
428 => 1.8735955963802
429 => 1.8903850982356
430 => 1.9001319691714
501 => 1.8788845616229
502 => 1.8739065913172
503 => 1.8953888934502
504 => 1.9084930853414
505 => 2.0052470756566
506 => 1.9980792275428
507 => 2.0160691196893
508 => 2.014043733911
509 => 2.0329000068952
510 => 2.0637220439687
511 => 2.0010522246211
512 => 2.0119295383005
513 => 2.0092626721802
514 => 2.0383788171923
515 => 2.0384697146189
516 => 2.0210131312248
517 => 2.0304766282834
518 => 2.0251943638428
519 => 2.0347401296279
520 => 1.9979834965612
521 => 2.0427491080031
522 => 2.0681283250584
523 => 2.0684807155118
524 => 2.0805102629741
525 => 2.0927329799002
526 => 2.1161934206655
527 => 2.0920786809404
528 => 2.0486986116976
529 => 2.0518305125801
530 => 2.0263967938552
531 => 2.0268243392619
601 => 2.0245420683734
602 => 2.0313913351112
603 => 1.9994865254425
604 => 2.0069745205013
605 => 1.9964912835693
606 => 2.0119067497908
607 => 1.9953222564043
608 => 2.0092613861366
609 => 2.0152770524396
610 => 2.0374749906057
611 => 1.9920436028886
612 => 1.8994059278989
613 => 1.918879490305
614 => 1.890076561891
615 => 1.8927423825762
616 => 1.8981277646225
617 => 1.8806719794231
618 => 1.8840019931442
619 => 1.8838830216211
620 => 1.882857789309
621 => 1.8783168654042
622 => 1.8717316273479
623 => 1.8979651889349
624 => 1.9024227822431
625 => 1.9123314599881
626 => 1.941812963837
627 => 1.9388670663807
628 => 1.943671947356
629 => 1.9331829191653
630 => 1.8932289385107
701 => 1.8953986318847
702 => 1.8683425207447
703 => 1.9116395743958
704 => 1.901386260598
705 => 1.8947758824909
706 => 1.8929721795796
707 => 1.9225267623741
708 => 1.9313699567576
709 => 1.9258594714625
710 => 1.9145573053558
711 => 1.9362608054662
712 => 1.9420677464985
713 => 1.9433677064439
714 => 1.9818221474061
715 => 1.9455168825182
716 => 1.95425592062
717 => 2.022435401222
718 => 1.9606060204412
719 => 1.9933584224005
720 => 1.9917553627599
721 => 2.0085103833214
722 => 1.9903809620314
723 => 1.9906056979362
724 => 2.0054830211115
725 => 1.9845905038512
726 => 1.9794172227654
727 => 1.9722703719972
728 => 1.9878752591874
729 => 1.9972296833095
730 => 2.0726194716668
731 => 2.1213247131376
801 => 2.1192102901544
802 => 2.1385321581867
803 => 2.1298274796701
804 => 2.1017177765619
805 => 2.1496976121546
806 => 2.1345147846114
807 => 2.135766438467
808 => 2.1357198518479
809 => 2.1458151048583
810 => 2.1386616928841
811 => 2.1245615836003
812 => 2.1339218941675
813 => 2.1617186701796
814 => 2.2480007158303
815 => 2.2962852916616
816 => 2.2450939237374
817 => 2.2804050438518
818 => 2.2592309544217
819 => 2.2553829924977
820 => 2.2775609854008
821 => 2.2997777979446
822 => 2.2983626830315
823 => 2.2822344179706
824 => 2.2731239702773
825 => 2.3421113324349
826 => 2.3929400457035
827 => 2.3894738682186
828 => 2.4047724483757
829 => 2.4496895528841
830 => 2.4537962100008
831 => 2.4532788655945
901 => 2.4431000874453
902 => 2.4873268100569
903 => 2.5242215201546
904 => 2.4407439943969
905 => 2.4725311434044
906 => 2.4868014187118
907 => 2.507754416663
908 => 2.5431056363369
909 => 2.5815064373507
910 => 2.5869367316574
911 => 2.5830836779833
912 => 2.5577573174458
913 => 2.5997759321319
914 => 2.6243894511573
915 => 2.6390462384665
916 => 2.6762134124259
917 => 2.4868895470739
918 => 2.3528767051712
919 => 2.3319486647392
920 => 2.3745066579122
921 => 2.3857288613183
922 => 2.3812052051968
923 => 2.2303615677207
924 => 2.3311545042057
925 => 2.4395992289527
926 => 2.4437650324853
927 => 2.4980547291659
928 => 2.515733679815
929 => 2.5594440015561
930 => 2.5567099090302
1001 => 2.567352676791
1002 => 2.5649060887898
1003 => 2.6458702555211
1004 => 2.7351857547208
1005 => 2.7320930429894
1006 => 2.7192528832464
1007 => 2.7383227100373
1008 => 2.8305058768419
1009 => 2.8220191280477
1010 => 2.8302632816018
1011 => 2.93895243048
1012 => 3.080263784873
1013 => 3.0146104733294
1014 => 3.1570592681474
1015 => 3.2467232335992
1016 => 3.4017877904209
1017 => 3.3823729441978
1018 => 3.4427384382522
1019 => 3.3476163174577
1020 => 3.1291967007611
1021 => 3.0946309603422
1022 => 3.1638324480049
1023 => 3.3339575528411
1024 => 3.1584746030297
1025 => 3.1939745752271
1026 => 3.1837505808461
1027 => 3.1832057876347
1028 => 3.2039983286792
1029 => 3.1738376634281
1030 => 3.050957687395
1031 => 3.1072728562747
1101 => 3.0855268650937
1102 => 3.1096556635801
1103 => 3.2398688375374
1104 => 3.1822984894365
1105 => 3.1216528043475
1106 => 3.197715951804
1107 => 3.2945704766493
1108 => 3.2885094945488
1109 => 3.2767486559799
1110 => 3.3430438872156
1111 => 3.4525441865369
1112 => 3.4821416774356
1113 => 3.5039899401229
1114 => 3.5070024464181
1115 => 3.5380331335205
1116 => 3.3711733082308
1117 => 3.6359841362298
1118 => 3.6817096509738
1119 => 3.6731151493303
1120 => 3.7239371345444
1121 => 3.7089840172651
1122 => 3.6873192963996
1123 => 3.7678829531102
1124 => 3.6755232218434
1125 => 3.5444302110769
1126 => 3.4725099926447
1127 => 3.5672203379148
1128 => 3.6250566408357
1129 => 3.6632827579866
1130 => 3.6748499579397
1201 => 3.384126161479
1202 => 3.2274421594677
1203 => 3.3278748083712
1204 => 3.4504095715247
1205 => 3.3704926214345
1206 => 3.3736252145753
1207 => 3.2596846455518
1208 => 3.4604907836325
1209 => 3.4312350183596
1210 => 3.583013980348
1211 => 3.5467907129672
1212 => 3.6705605644434
1213 => 3.6379678145703
1214 => 3.7732584970574
1215 => 3.8272296131505
1216 => 3.9178555170043
1217 => 3.984520300793
1218 => 4.0236671369278
1219 => 4.0213169077223
1220 => 4.1764361753648
1221 => 4.0849677626904
1222 => 3.9700618789218
1223 => 3.9679835940079
1224 => 4.0274949794406
1225 => 4.1522145171563
1226 => 4.1845524786905
1227 => 4.2026249875623
1228 => 4.1749463111166
1229 => 4.0756639047588
1230 => 4.0327942650668
1231 => 4.0693204401374
]
'min_raw' => 1.5061497953788
'max_raw' => 4.2026249875623
'avg_raw' => 2.8543873914706
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$1.50'
'max' => '$4.20'
'avg' => '$2.85'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.59626215137102
'max_diff' => 2.1713649194745
'year' => 2036
]
11 => [
'items' => [
101 => 4.024652066756
102 => 4.1017622109443
103 => 4.207650908753
104 => 4.1857853113848
105 => 4.2588787251131
106 => 4.3345227186705
107 => 4.4426970268419
108 => 4.4709777966809
109 => 4.5177248338035
110 => 4.5658428906044
111 => 4.5812971136308
112 => 4.6108040205521
113 => 4.6106485045876
114 => 4.6995695546387
115 => 4.7976522265008
116 => 4.8346761645097
117 => 4.9198106684493
118 => 4.7740208139216
119 => 4.884604093294
120 => 4.9843529793669
121 => 4.8654282452269
122 => 5.0293382853296
123 => 5.0357025407586
124 => 5.1317952417452
125 => 5.0343868801613
126 => 4.9765461059913
127 => 5.1435302537546
128 => 5.2243286229059
129 => 5.1999914965586
130 => 5.0147847633834
131 => 4.906986500785
201 => 4.624857654833
202 => 4.9590514599223
203 => 5.1218275138144
204 => 5.0143632127277
205 => 5.0685619553707
206 => 5.3642527212298
207 => 5.4768326203097
208 => 5.453416788294
209 => 5.4573736784472
210 => 5.518119748521
211 => 5.7875012767
212 => 5.6260816208002
213 => 5.7494808994565
214 => 5.8149314319066
215 => 5.875725534044
216 => 5.7264344333678
217 => 5.5322089049098
218 => 5.4706895270141
219 => 5.0036780058745
220 => 4.9793680280709
221 => 4.9657221008621
222 => 4.879686460065
223 => 4.8120860135438
224 => 4.7583276286266
225 => 4.617249572991
226 => 4.6648592753782
227 => 4.4400102999737
228 => 4.5838607062791
301 => 4.2249963123652
302 => 4.5238692433298
303 => 4.3612062950904
304 => 4.4704300900272
305 => 4.4700490184961
306 => 4.2689333825818
307 => 4.1529340809627
308 => 4.2268533507148
309 => 4.3061006756079
310 => 4.3189582874518
311 => 4.4217045127426
312 => 4.4503787756985
313 => 4.3634944202687
314 => 4.2175596454536
315 => 4.2514569652253
316 => 4.1522471528594
317 => 3.9783857727385
318 => 4.1032560512698
319 => 4.145892254519
320 => 4.1647228308048
321 => 3.9937501315703
322 => 3.9400267974729
323 => 3.9114249451819
324 => 4.1954892169656
325 => 4.2110508990128
326 => 4.1314351334595
327 => 4.4913059432372
328 => 4.4098560955844
329 => 4.5008555311097
330 => 4.2483811387509
331 => 4.2580260005409
401 => 4.1385005771166
402 => 4.2054268275425
403 => 4.1581255108753
404 => 4.2000198478862
405 => 4.2251311407538
406 => 4.3446369512322
407 => 4.5252338077206
408 => 4.3267867683143
409 => 4.240320551431
410 => 4.2939637060809
411 => 4.4368224959259
412 => 4.653260875348
413 => 4.5251249985018
414 => 4.5819895247579
415 => 4.5944118940181
416 => 4.4999292422797
417 => 4.6567445854862
418 => 4.7407832018762
419 => 4.8269894329509
420 => 4.9018398879493
421 => 4.792556768544
422 => 4.9095053714275
423 => 4.8152654417109
424 => 4.7307224824102
425 => 4.7308506991816
426 => 4.6778156658367
427 => 4.5750536058867
428 => 4.5561027053791
429 => 4.6546876830547
430 => 4.7337434991184
501 => 4.7402549147813
502 => 4.7840242765886
503 => 4.8099265340459
504 => 5.0638038695391
505 => 5.1659154340579
506 => 5.2907755222786
507 => 5.3394155633695
508 => 5.4858046486333
509 => 5.3675835731426
510 => 5.3420056998147
511 => 4.9869136624695
512 => 5.0450599636922
513 => 5.1381578022332
514 => 4.988448811537
515 => 5.0834047078742
516 => 5.102151013252
517 => 4.98336175732
518 => 5.046812231494
519 => 4.8783065838422
520 => 4.5289067703666
521 => 4.6571335673599
522 => 4.7515516506201
523 => 4.6168054041421
524 => 4.8583328355541
525 => 4.7172374962614
526 => 4.6725170474763
527 => 4.4980466327745
528 => 4.5803899525316
529 => 4.6917604715459
530 => 4.6229464390076
531 => 4.7657458890035
601 => 4.96798799342
602 => 5.1121177607528
603 => 5.1231822546221
604 => 5.0305164701716
605 => 5.1790139811387
606 => 5.1800956233877
607 => 5.0125898243867
608 => 4.9099934551748
609 => 4.8866833442252
610 => 4.9449165715937
611 => 5.0156224600657
612 => 5.1271059393444
613 => 5.1944730710135
614 => 5.3701308216409
615 => 5.4176587724583
616 => 5.4698775808323
617 => 5.539658012504
618 => 5.6234473120614
619 => 5.4401210947573
620 => 5.4474049871336
621 => 5.2766941519044
622 => 5.0942651420517
623 => 5.2327060204328
624 => 5.4136990528977
625 => 5.3721790512707
626 => 5.367507202911
627 => 5.3753639559894
628 => 5.3440592306791
629 => 5.202469118308
630 => 5.1313634502763
701 => 5.2231079030278
702 => 5.2718659965895
703 => 5.3474855475509
704 => 5.3381638417599
705 => 5.5329516840898
706 => 5.6086403495406
707 => 5.5892759500177
708 => 5.5928394655602
709 => 5.729870178997
710 => 5.8822765148543
711 => 6.0250251601721
712 => 6.1702352133862
713 => 5.9951788265917
714 => 5.9062959893544
715 => 5.9980003893479
716 => 5.9493407438785
717 => 6.2289535001343
718 => 6.2483132807103
719 => 6.5279058177812
720 => 6.7932724287216
721 => 6.6266004149266
722 => 6.7837646168629
723 => 6.9537505150424
724 => 7.2816808918487
725 => 7.1712454776701
726 => 7.0866536811528
727 => 7.0067148421886
728 => 7.1730548761398
729 => 7.3870486724711
730 => 7.4331408865937
731 => 7.5078278820534
801 => 7.4293036386189
802 => 7.5238774406741
803 => 7.8577645197634
804 => 7.7675452836907
805 => 7.6394194650015
806 => 7.9029912470866
807 => 7.9983768504138
808 => 8.6678429683925
809 => 9.5130715966066
810 => 9.1631413944555
811 => 8.9459284258033
812 => 8.9969786257971
813 => 9.3056275080262
814 => 9.4047557329723
815 => 9.1352910460205
816 => 9.2304705289235
817 => 9.7549188375592
818 => 10.036268528826
819 => 9.6541578577809
820 => 8.5999296710963
821 => 7.6278831368835
822 => 7.8857136495826
823 => 7.8564836708549
824 => 8.419937952225
825 => 7.7653935847478
826 => 7.7764144332235
827 => 8.351520352424
828 => 8.1980919529928
829 => 7.9495575955391
830 => 7.6296977127375
831 => 7.0384071359207
901 => 6.5146845826765
902 => 7.5418251156892
903 => 7.4975329481718
904 => 7.4333913258752
905 => 7.5761315654479
906 => 8.2692376512889
907 => 8.2532593126448
908 => 8.1516132744111
909 => 8.2287108985443
910 => 7.936042009267
911 => 8.0114694459805
912 => 7.6277291597462
913 => 7.801195795534
914 => 7.9490243524304
915 => 7.9787031238666
916 => 8.0455709113478
917 => 7.4741929885418
918 => 7.7307249011072
919 => 7.8814133659498
920 => 7.2005973996978
921 => 7.8679558232872
922 => 7.4642465701069
923 => 7.327221586068
924 => 7.5117076754074
925 => 7.4398132669732
926 => 7.3780026763828
927 => 7.3435113047926
928 => 7.4789775278169
929 => 7.4726578665956
930 => 7.2510088328671
1001 => 6.9618767039387
1002 => 7.0589189368457
1003 => 7.0236625838548
1004 => 6.8958890124558
1005 => 6.9819929721389
1006 => 6.6028347099112
1007 => 5.9505126266801
1008 => 6.3814565760283
1009 => 6.3648657027552
1010 => 6.3564998321148
1011 => 6.6803422996341
1012 => 6.649212318699
1013 => 6.5927110984762
1014 => 6.8948513232376
1015 => 6.7845660768402
1016 => 7.1244392197649
1017 => 7.3483016533119
1018 => 7.2915228989733
1019 => 7.5020665997452
1020 => 7.0611545938941
1021 => 7.2076078759185
1022 => 7.2377916943683
1023 => 6.891122959764
1024 => 6.6543055685709
1025 => 6.6385125484943
1026 => 6.2279038276122
1027 => 6.4472476919896
1028 => 6.6402612155759
1029 => 6.5478227162326
1030 => 6.5185594488621
1031 => 6.6680591354295
1101 => 6.6796765414541
1102 => 6.4147984529375
1103 => 6.4698749951383
1104 => 6.6995533318287
1105 => 6.4640876903476
1106 => 6.006616412044
1107 => 5.8931572099894
1108 => 5.8780196609674
1109 => 5.5703093064326
1110 => 5.900739096397
1111 => 5.7564976381097
1112 => 6.2121546765612
1113 => 5.9518858199354
1114 => 5.9406661497191
1115 => 5.9237059726193
1116 => 5.6588469591165
1117 => 5.7168342504052
1118 => 5.9095928383626
1119 => 5.9783712741267
1120 => 5.9711971197914
1121 => 5.9086482161226
1122 => 5.93728278392
1123 => 5.8450408640997
1124 => 5.8124683223617
1125 => 5.709660420853
1126 => 5.5585612070428
1127 => 5.5795724794684
1128 => 5.2802053996505
1129 => 5.1170943259522
1130 => 5.0719473305219
1201 => 5.0115748814097
1202 => 5.0787665592941
1203 => 5.2793573303269
1204 => 5.0374023027553
1205 => 4.6225873791557
1206 => 4.6475184628743
1207 => 4.7035312058848
1208 => 4.5991518298462
1209 => 4.5003655103227
1210 => 4.5862522003609
1211 => 4.4104896488232
1212 => 4.7247712705226
1213 => 4.7162708334197
1214 => 4.8334155869441
1215 => 4.9066686053752
1216 => 4.7378441138378
1217 => 4.6953852107661
1218 => 4.7195717316052
1219 => 4.3198224182744
1220 => 4.80074753965
1221 => 4.8049066000705
1222 => 4.7692941997113
1223 => 5.0253719799465
1224 => 5.5657759689054
1225 => 5.362454250559
1226 => 5.2837219357838
1227 => 5.1340517478431
1228 => 5.3334783867376
1229 => 5.3181655324107
1230 => 5.2489149979169
1231 => 5.2070320585803
]
'min_raw' => 3.9114249451819
'max_raw' => 10.036268528826
'avg_raw' => 6.973846737004
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$3.91'
'max' => '$10.03'
'avg' => '$6.97'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 2.4052751498031
'max_diff' => 5.8336435412637
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.12277515954409
]
1 => [
'year' => 2028
'avg' => 0.21071781566114
]
2 => [
'year' => 2029
'avg' => 0.57564309419503
]
3 => [
'year' => 2030
'avg' => 0.44410778989805
]
4 => [
'year' => 2031
'avg' => 0.43616888735238
]
5 => [
'year' => 2032
'avg' => 0.76474132692937
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.12277515954409
'min' => '$0.122775'
'max_raw' => 0.76474132692937
'max' => '$0.764741'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.76474132692937
]
1 => [
'year' => 2033
'avg' => 1.9669933302857
]
2 => [
'year' => 2034
'avg' => 1.2467749020112
]
3 => [
'year' => 2035
'avg' => 1.4705738560478
]
4 => [
'year' => 2036
'avg' => 2.8543873914706
]
5 => [
'year' => 2037
'avg' => 6.973846737004
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.76474132692937
'min' => '$0.764741'
'max_raw' => 6.973846737004
'max' => '$6.97'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 6.973846737004
]
]
]
]
'prediction_2025_max_price' => '$0.209923'
'last_price' => 0.203547
'sma_50day_nextmonth' => '$0.173556'
'sma_200day_nextmonth' => '—'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'decrease'
'sma_200day_direction_label' => 'diminuer'
'sma_200day_date_nextmonth' => '4 févr. 2026'
'sma_50day_date_nextmonth' => '4 févr. 2026'
'daily_sma3' => '$0.198183'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.19222'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.175426'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.152087'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.175497'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.336479'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '—'
'daily_sma200_action' => '—'
'daily_ema3' => '$0.197233'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.191252'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.178511'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.168253'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.215566'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.361322'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.188677'
'daily_ema200_action' => 'BUY'
'weekly_sma21' => '—'
'weekly_sma21_action' => '—'
'weekly_sma50' => '—'
'weekly_sma50_action' => '—'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.191483'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.189895'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.254526'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.292378'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.122799'
'weekly_ema50_action' => 'BUY'
'weekly_ema100' => '$0.061399'
'weekly_ema100_action' => 'BUY'
'weekly_ema200' => '$0.030699'
'weekly_ema200_action' => 'BUY'
'rsi_14' => '65.88'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 96.41
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0.06
'momentum_10_action' => 'BUY'
'vwma_10' => '0.17780045'
'vwma_10_action' => 'BUY'
'hma_9' => '0.207087'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 150.33
'cci_20_action' => 'SELL'
'adx_14' => 24.93
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.034694'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0.01
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 82.83
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '-0.089061'
'ichimoku_cloud_action' => 'NEUTRAL'
'sell_signals' => 6
'buy_signals' => 24
'sell_pct' => 20
'buy_pct' => 80
'overall_action' => 'bullish'
'overall_action_label' => 'Haussier'
'overall_action_dir' => 1
'last_updated' => 1767706674
'last_updated_date' => '6 janvier 2026'
]
Prévision du prix de Plasma pour 2026
La prévision du prix de Plasma pour 2026 suggère que le prix moyen pourrait varier entre $0.070325 à la baisse et $0.209923 à la hausse. Sur le marché des cryptomonnaies, comparé au prix moyen d'aujourd'hui, Plasma pourrait potentiellement gagner 3.13% d'ici 2026 si XPL atteint l'objectif de prix prévu.
Prévision du prix de Plasma de 2027 à 2032
La prévision du prix de XPL pour 2027-2032 se situe actuellement dans une fourchette de prix comprise entre $0.122775 à la baisse et $0.764741 à la hausse. Compte tenu de la volatilité des prix sur le marché, si Plasma atteint l'objectif de prix le plus élevé, il pourrait gagner 275.71% d'ici 2032 par rapport au prix actuel.
| Prévision du Prix de Plasma | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2027 | $0.06770054 | $0.122775 | $0.177849 |
| 2028 | $0.122179 | $0.210717 | $0.299256 |
| 2029 | $0.268393 | $0.575643 | $0.882892 |
| 2030 | $0.228257 | $0.4441077 | $0.659958 |
| 2031 | $0.26987 | $0.436168 | $0.602467 |
| 2032 | $0.411937 | $0.764741 | $1.11 |
Prévision du prix de Plasma de 2032 à 2037
La prévision du prix de Plasma pour 2032-2037 est actuellement estimée entre $0.764741 à la baisse et $6.97 à la hausse. Par rapport au prix actuel, Plasma pourrait potentiellement gagner 3326.16% d'ici 2037 s'il atteint l'objectif de prix le plus élevé. Veuillez noter que ces informations sont à titre général seulement et ne doivent pas être considérées comme un conseil en investissement à long terme.
| Prévision du Prix de Plasma | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2032 | $0.411937 | $0.764741 | $1.11 |
| 2033 | $0.957252 | $1.96 | $2.97 |
| 2034 | $0.769584 | $1.24 | $1.72 |
| 2035 | $0.909887 | $1.47 | $2.03 |
| 2036 | $1.50 | $2.85 | $4.20 |
| 2037 | $3.91 | $6.97 | $10.03 |
Plasma Histogramme des prix potentiels
Prévision du prix de Plasma basée sur l'analyse technique
Au 6 janvier 2026, le sentiment global de prévision du prix pour Plasma est Haussier, avec 24 indicateurs techniques montrant des signaux haussiers et 6 indiquant des signaux baissiers. La prévision du prix de XPL a été mise à jour pour la dernière fois le 6 janvier 2026.
Moyennes Mobiles Simples sur 50 et 200 jours de Plasma et Indice de Force Relative sur 14 jours - RSI (14)
Selon nos indicateurs techniques, le SMA sur 200 jours de Plasma devrait diminuer au cours du prochain mois, atteignant — d'ici le 4 févr. 2026. Le SMA à court terme sur 50 jours pour Plasma devrait atteindre $0.173556 d'ici le 4 févr. 2026.
Le Relative Strength Index (RSI), un oscillateur de momentum, est un outil couramment utilisé pour identifier si une cryptomonnaie est survendue (en dessous de 30) ou surachetée (au-dessus de 70). Actuellement, le RSI est à 65.88, ce qui suggère que le marché de XPL est dans un état NEUTRAL.
Moyennes Mobiles et Oscillateurs Populaires de XPL pour le Samedi 19 Octobre 2024
Les moyennes mobiles (MA) sont des indicateurs largement utilisés sur les marchés financiers, conçus pour lisser les mouvements de prix sur une période donnée. En tant qu'indicateurs retardés, ils sont basés sur des données historiques de prix. Le tableau ci-dessous met en évidence deux types : la moyenne mobile simple (SMA) et la moyenne mobile exponentielle (EMA).
Moyenne Mobile Simple Quotidienne (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 3 | $0.198183 | BUY |
| SMA 5 | $0.19222 | BUY |
| SMA 10 | $0.175426 | BUY |
| SMA 21 | $0.152087 | BUY |
| SMA 50 | $0.175497 | BUY |
| SMA 100 | $0.336479 | SELL |
| SMA 200 | — | — |
Moyenne Mobile Exponentielle Quotidienne (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 3 | $0.197233 | BUY |
| EMA 5 | $0.191252 | BUY |
| EMA 10 | $0.178511 | BUY |
| EMA 21 | $0.168253 | BUY |
| EMA 50 | $0.215566 | SELL |
| EMA 100 | $0.361322 | SELL |
| EMA 200 | $0.188677 | BUY |
Moyenne Mobile Simple Hebdomadaire (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 21 | — | — |
| SMA 50 | — | — |
| SMA 100 | — | — |
| SMA 200 | — | — |
Moyenne Mobile Exponentielle Hebdomadaire (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 21 | $0.292378 | SELL |
| EMA 50 | $0.122799 | BUY |
| EMA 100 | $0.061399 | BUY |
| EMA 200 | $0.030699 | BUY |
Oscillateurs de Plasma
Un oscillateur est un outil d'analyse technique qui établit des limites hautes et basses entre deux extrêmes, créant un indicateur de tendance qui fluctue à l'intérieur de ces limites. Les traders utilisent cet indicateur pour identifier les conditions de surachat ou de survente à court terme.
| Période | Valeur | Action |
|---|---|---|
| RSI (14) | 65.88 | NEUTRAL |
| Stoch RSI (14) | 96.41 | SELL |
| Stochastique Rapide (14) | 100 | SELL |
| Indice de Canal des Matières Premières (20) | 150.33 | SELL |
| Indice Directionnel Moyen (14) | 24.93 | NEUTRAL |
| Oscillateur Impressionnant (5, 34) | 0.034694 | BUY |
| Momentum (10) | 0.06 | BUY |
| MACD (12, 26) | 0.01 | BUY |
| Plage de Pourcentage de Williams (14) | -0 | SELL |
| Oscillateur Ultime (7, 14, 28) | 82.83 | SELL |
| VWMA (10) | 0.17780045 | BUY |
| Moyenne Mobile de Hull (9) | 0.207087 | BUY |
| Nuage Ichimoku B/L (9, 26, 52, 26) | -0.089061 | NEUTRAL |
Prévision du cours de Plasma basée sur les flux monétaires mondiaux
Définitions des flux monétaires mondiaux utilisés pour la prédiction du cours de Plasma
M0 : le total de toutes les devises physiques, plus les comptes à la banque centrale qui peuvent être échangés contre des devises physiques.
M1 : M0 plus le montant des comptes à vue, y compris les comptes de "chèques" et les comptes "courants".
M2 : M1 plus la plupart des comptes d'épargne, comptes du marché monétaire et comptes de certificats de dépôt (CD) de moins de 100 000 $.
Prédictions du cours de Plasma par des sociétés Internet ou des niches technologiques
| Comparaison | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Action Facebook | $0.286017 | $0.4019023 | $0.564739 | $0.793553 | $1.11 | $1.56 |
| Action Amazon.com | $0.424712 | $0.886188 | $1.84 | $3.85 | $8.05 | $16.79 |
| Action Apple | $0.288715 | $0.409521 | $0.580874 | $0.823926 | $1.16 | $1.65 |
| Action Netflix | $0.321165 | $0.506748 | $0.799569 | $1.26 | $1.99 | $3.14 |
| Action Google | $0.263592 | $0.341351 | $0.442048 | $0.57245 | $0.74132 | $0.9600068 |
| Action Tesla | $0.461425 | $1.04 | $2.37 | $5.37 | $12.18 | $27.62 |
| Action Kodak | $0.152638 | $0.114462 | $0.085834 | $0.064367 | $0.048268 | $0.036196 |
| Action Nokia | $0.134841 | $0.089326 | $0.059175 | $0.0392011 | $0.025969 | $0.0172034 |
Ce calcul montre la valeur potentielle des cryptomonnaies si l'on suppose que leur capitalisation se comportera comme celle de certaines sociétés Internet ou niches technologiques. En extrapolant les données, vous pourrez obtenir une potentielle image des cours futurs pour 2024, 2025, 2026, 2027, 2028, 2029 et 2030.
Aperçu des prévisions relatives à Plasma
Vous vous posez peut-être des questions telles que : "Devrais-je investir dans Plasma maintenant ?", "Devrais-je acheter XPL aujourd'hui ?", " Plasma sera-t-il un bon ou un mauvais investissement à court ou à long terme ?".
Nous mettons régulièrement à jour les prévisions de Plasma avec de nouvelles valeurs. Regardez nos prévisions similaires. Nous faisons une prévision des cours futurs pour une grande quantité de devises numériques comme Plasma en utilisant des méthodes d'analyse technique.
Si vous souhaitez trouver des cryptomonnaies ayant un bon rendement, vous devriez consulter un maximum d'informations disponibles à propos de Plasma afin de prendre une décision responsable concernant cet investissement.
Le cours de Plasma est de $0.2035 USD actuellement, mais ce cours peut subir une hausse ou une baisse, ce qui pourrait causer la perte de votre investissement, car les cryptomonnaies sont des actifs à haut risque.
Prévision à court terme de Plasma
basée sur l'historique des cours sur 4 heures
Prévision à long terme de Plasma
basée sur l'historique des cours sur 1 mois
Prévision du cours de Plasma basée sur le modèle de croissance du Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si Plasma présente 1 % de la précédente croissance annuelle moyenne du Bitcoin | $0.208837 | $0.214266 | $0.219835 | $0.225549 |
| Si Plasma présente 2 % de la précédente croissance annuelle moyenne du Bitcoin | $0.214128 | $0.22526 | $0.23697 | $0.24929 |
| Si Plasma présente 5 % de la précédente croissance annuelle moyenne du Bitcoin | $0.2300012 | $0.259893 | $0.29367 | $0.331838 |
| Si Plasma présente 10 % de la précédente croissance annuelle moyenne du Bitcoin | $0.256455 | $0.323116 | $0.4071047 | $0.512924 |
| Si Plasma présente 20 % de la précédente croissance annuelle moyenne du Bitcoin | $0.309363 | $0.47019 | $0.714626 | $1.08 |
| Si Plasma présente 50 % de la précédente croissance annuelle moyenne du Bitcoin | $0.468089 | $1.07 | $2.47 | $5.69 |
| Si Plasma présente 100 % de la précédente croissance annuelle moyenne du Bitcoin | $0.732631 | $2.63 | $9.49 | $34.16 |
Boîte à questions
Est-ce que XPL est un bon investissement ?
La décision d'acquérir Plasma dépend entièrement de votre tolérance individuelle au risque. Comme vous pouvez le discerner, la valeur de Plasma a connu une hausse de 8.0508% au cours des 24 heures précédentes, et Plasma a enregistré une déclin de sur une période de 30 jours précédents. Par conséquent, la détermination de si investir ou non dans Plasma dépendra de la mesure dans laquelle cet investissement s'aligne avec vos aspirations de trading.
Est-ce que Plasma peut monter ?
Il semble que la valeur moyenne de Plasma pourrait potentiellement s'envoler jusqu'à $0.209923 pour la fin de cette année. En regardant les perspectives de Plasma sur une période de cinq ans plus longue, la monnaie numérique pourrait potentiellement croître jusqu'à $0.659958. Cependant, compte tenu de l'imprévisibilité du marché, il est essentiel de mener des recherches approfondies avant d'investir des fonds dans un projet, un réseau ou un actif particulier.
Quel sera le prix de Plasma la semaine prochaine ?
Basé sur notre nouveau pronostic expérimental de Plasma, le prix de Plasma va augmenter de 0.86% durant la prochaine semaine et atteindre $0.205288 d'ici 13 janvier 2026.
Quel sera le prix de Plasma le mois prochain ?
Basé sur notre nouveau pronostic expérimental de Plasma, le prix de Plasma va diminuer de -11.62% durant le prochain mois et atteindre $0.179898 d'ici 5 février 2026.
Jusqu'où le prix de Plasma peut-il monter cette année en 2026 ?
Selon notre prédiction la plus récente sur la valeur de Plasma en 2026, XPL devrait fluctuer dans la fourchette de $0.070325 et $0.209923. Cependant, il est crucial de garder à l'esprit que le marché des cryptomonnaies est exceptionnellement instable, et cette prévision de prix de Plasma ne prend pas en compte les fluctuations de prix soudaines et extrêmes.
Où sera Plasma dans 5 ans ?
L'avenir de Plasma semble suivre une tendance haussière, avec un prix maximum de $0.659958 prévue après une période de cinq ans. Selon la prévision de Plasma pour 2030, la valeur de Plasma pourrait potentiellement atteindre son point le plus élevé d'environ $0.659958, tandis que son point le plus bas devrait être autour de $0.228257.
Combien vaudra Plasma en 2026 ?
Basé sur notre nouvelle simulation expérimentale de prédiction de prix de Plasma, il est attendu que la valeur de XPL en 2026 augmente de 3.13% jusqu'à $0.209923 si le meilleur scénario se produit. Le prix sera entre $0.209923 et $0.070325 durant 2026.
Combien vaudra Plasma en 2027 ?
Selon notre dernière simulation expérimentale pour la prédiction de prix de Plasma, le valeur de XPL pourrait diminuer de -12.62% jusqu'à $0.177849 en 2027, en supposant les conditions les plus favorables. Il est prévu que le prix fluctue entre $0.177849 et $0.06770054 tout au long de l'année.
Combien vaudra Plasma en 2028 ?
Notre nouveau modèle expérimental de prédiction de prix de Plasma suggère que la valeur de XPL en 2028 pourrait augmenter de 47.02%, atteignant $0.299256 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.299256 et $0.122179 durant l'année.
Combien vaudra Plasma en 2029 ?
Basé sur notre modèle de prévision expérimental, la valeur de Plasma pourrait connaître un 333.75% croissance en 2029, atteignant potentiellement $0.882892 sous des conditions optimales. Le range de prix prévu pour 2029 se situe entre $0.882892 et $0.268393.
Combien vaudra Plasma en 2030 ?
En utilisant notre nouvelle simulation expérimentale pour les prédictions de prix de Plasma, il est prévu que la valeur de XPL en 2030 augmente de 224.23%, atteignant $0.659958 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.659958 et $0.228257 au cours de 2030.
Combien vaudra Plasma en 2031 ?
Notre simulation expérimentale indique que le prix de Plasma pourrait augmenter de 195.98% en 2031, atteignant potentiellement $0.602467 dans des conditions idéales. Il est probable que le prix fluctue entre $0.602467 et $0.26987 durant l'année.
Combien vaudra Plasma en 2032 ?
Basé sur les résultats de notre dernière prédiction expérimentale de prix de Plasma, XPL pourrait connaître une 449.04% hausse en valeur, atteignant $1.11 si le scénario le plus positif se réalise en 2032. Il est prévu que le prix reste dans une fourchette de $1.11 et $0.411937 tout au long de l'année.
Combien vaudra Plasma en 2033 ?
Selon notre prédiction expérimentale de prix de Plasma, la valeur de XPL est anticipée à augmenter de 1362.43% en 2033, avec le prix potentiel le plus élevé étant $2.97. Tout au long de l'année, le prix de XPL pourrait osciller entre $2.97 et $0.957252.
Combien vaudra Plasma en 2034 ?
Les résultats de notre nouvelle simulation de prédiction de prix de Plasma suggèrent que XPL pourrait augmenter de 746.96% en 2034, atteignant potentiellement $1.72 dans les meilleures circonstances. La fourchette de prix prévue pour l'année est entre $1.72 et $0.769584.
Combien vaudra Plasma en 2035 ?
Basé sur notre prédiction expérimentale pour le prix de Plasma, XPL pourrait augmenter de 897.93%, avec la valeur potentiellement atteignant $2.03 en 2035. La fourchette de prix attendue pour l'année se situe entre $2.03 et $0.909887.
Combien vaudra Plasma en 2036 ?
Notre récente simulation de prédiction de prix de Plasma suggère que la valeur de XPL pourrait augmenter de 1964.7% en 2036, pouvant atteindre $4.20 si les conditions sont optimales. La fourchette de prix attendue pour 2036 est entre $4.20 et $1.50.
Combien vaudra Plasma en 2037 ?
Selon la simulation expérimentale, la valeur de Plasma pourrait augmenter de 4830.69% en 2037, avec un maximum de $10.03 sous des conditions favorables. Il est prévu que le prix chute entre $10.03 et $3.91 au cours de l'année.
Prévisions liées
Comment lire et prédire les mouvements de prix de Plasma ?
Les traders de Plasma utilisent des indicateurs et des modèles graphiques pour prédire la direction du marché. Ils identifient également des niveaux clés de support et de résistance pour évaluer quand une tendance baissière pourrait ralentir ou une tendance haussière pourrait s'arrêter.
Indicateurs de prédiction du prix de Plasma
Les moyennes mobiles sont des outils populaires pour la prédiction du prix de Plasma. Une moyenne mobile simple (SMA) calcule le prix de clôture moyen de XPL sur une période spécifique, comme une SMA de 12 jours. Une moyenne mobile exponentielle (EMA) donne plus de poids aux prix récents, réagissant plus rapidement aux changements de prix.
Les moyennes mobiles couramment utilisées sur le marché des cryptomonnaies incluent les moyennes sur 50 jours, 100 jours et 200 jours, qui aident à identifier les niveaux clés de résistance et de support. Un mouvement de prix de XPL au-dessus de ces moyennes est considéré comme haussier, tandis qu'une chute en dessous indique une faiblesse.
Les traders utilisent également le RSI et les niveaux de retracement de Fibonacci pour évaluer la direction future de XPL.
Comment lire les graphiques de Plasma et prédire les mouvements de prix ?
La plupart des traders préfèrent les graphiques en chandeliers aux simples graphiques linéaires parce qu'ils fournissent des informations plus détaillées. Les chandeliers peuvent représenter l'action des prix de Plasma dans différentes périodes, comme 5 minutes pour les tendances à court terme et hebdomadaire pour les tendances à long terme. Les options populaires incluent les graphiques de 1 heure, 4 heures et 1 jour.
Par exemple, un graphique en chandeliers de 1 heure montre les prix d'ouverture, de clôture, les plus hauts et les plus bas de XPL au sein de chaque heure. La couleur du chandelier est cruciale : le vert indique que le prix a clôturé plus haut qu'il n'a ouvert, tandis que le rouge signifie le contraire. Certains graphiques utilisent des chandeliers creux et pleins pour transmettre la même information.
Qu'est-ce qui affecte le prix de Plasma ?
L'action du prix de Plasma est déterminée par l'offre et la demande, influencée par des facteurs tels que les réductions de récompenses de bloc, les hard forks et les mises à jour de protocole. Les événements du monde réel, tels que les réglementations, l'adoption par les entreprises et les gouvernements et les piratages d'échanges de cryptomonnaies, impactent également le prix de XPL. La capitalisation boursière de Plasma peut changer rapidement.
Les traders surveillent souvent l'activité des « baleines » de XPL, de grands détenteurs de Plasma, car leurs actions peuvent influencer significativement les mouvements de prix sur le marché relativement petit de Plasma.
Modèles de prédiction de prix haussiers et baissiers
Les traders identifient souvent des modèles de chandeliers pour obtenir un avantage dans les prédictions de prix des cryptomonnaies. Certaines formations indiquent des tendances haussières, tandis que d'autres suggèrent des mouvements baissiers.
Modèles de chandeliers haussiers couramment suivis :
- Marteau
- Englobante haussière
- Ligne pénétrante
- Étoile du matin
- Trois soldats blancs
Modèles de chandeliers baissiers courants :
- Harami baissier
- Nuage sombre
- Étoile du soir
- Étoile filante
- Pendu


