Previsão de Preço Plasma - Projeção XPL
Previsão de Preço Plasma até $0.199627 até 2026
| Ano | Preço Mínimo | Preço Máximo |
|---|---|---|
| 2026 | $0.066876 | $0.199627 |
| 2027 | $0.06438 | $0.169127 |
| 2028 | $0.116187 | $0.284578 |
| 2029 | $0.25523 | $0.839591 |
| 2030 | $0.217062 | $0.62759 |
| 2031 | $0.256634 | $0.572919 |
| 2032 | $0.391733 | $1.06 |
| 2033 | $0.9103034 | $2.83 |
| 2034 | $0.73184 | $1.63 |
| 2035 | $0.865262 | $1.93 |
Calculadora de lucro do investimento
Se você abrir um short de $10,000.00 em Plasma hoje e fechar em Apr 06, 2026, nossa previsão mostra que pode lucrar cerca de $3,954.43, com um retorno de 39.54% nos próximos 90 dias.
Previsão de preço de longo prazo de Plasma para os anos 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'Plasma'
'name_with_ticker' => 'Plasma <small>XPL</small>'
'name_lang' => 'Plasma'
'name_lang_with_ticker' => 'Plasma <small>XPL</small>'
'name_with_lang' => 'Plasma'
'name_with_lang_with_ticker' => 'Plasma <small>XPL</small>'
'image' => '/uploads/coins/plasma.png?1755180802'
'price_for_sd' => 0.1935
'ticker' => 'XPL'
'marketcap' => '$397.05M'
'low24h' => '$0.1864'
'high24h' => '$0.1985'
'volume24h' => '$110.32M'
'current_supply' => '2.07B'
'max_supply' => '10B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.1935'
'change_24h_pct' => '1.5797%'
'ath_price' => '$1.68'
'ath_days' => 100
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '28 de set. de 2025'
'ath_pct' => '-88.57%'
'fdv' => '$1.92B'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$9.54'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.19522'
'next_week_prediction_price_date' => '13 de janeiro de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.1710756'
'next_month_prediction_price_date' => '5 de fevereiro de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.066876'
'current_year_max_price_prediction' => '$0.199627'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.217062'
'grand_prediction_max_price' => '$0.62759'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.19723193598534
107 => 0.19796832843911
108 => 0.1996274582386
109 => 0.18545037575679
110 => 0.19181546957385
111 => 0.19555436586274
112 => 0.17866189640734
113 => 0.19522045605503
114 => 0.18520358429195
115 => 0.18180370756719
116 => 0.18638119367738
117 => 0.18459734288849
118 => 0.18306369273143
119 => 0.18220788959234
120 => 0.18556909019295
121 => 0.18541228616743
122 => 0.1799127096039
123 => 0.1727387361682
124 => 0.17514655713087
125 => 0.17427177320169
126 => 0.17110144339296
127 => 0.17323786289696
128 => 0.16383015261851
129 => 0.14764467605467
130 => 0.1583372976473
131 => 0.15792564334732
201 => 0.15771806858223
202 => 0.16575327818674
203 => 0.16498087818709
204 => 0.16357896462437
205 => 0.17107569615099
206 => 0.1683392882985
207 => 0.17677225252109
208 => 0.18232674816801
209 => 0.18091794840284
210 => 0.18614197840597
211 => 0.17520202846273
212 => 0.17883584099927
213 => 0.1795847647268
214 => 0.17098318764764
215 => 0.16510725237947
216 => 0.16471539448764
217 => 0.15452733248639
218 => 0.1599697129723
219 => 0.16475878257889
220 => 0.16246518988415
221 => 0.16173910695612
222 => 0.16544850716722
223 => 0.16573675933248
224 => 0.15916457941682
225 => 0.16053114373515
226 => 0.16622994411504
227 => 0.1603875485872
228 => 0.14903672842649
301 => 0.14622156808927
302 => 0.14584597380658
303 => 0.13821103569886
304 => 0.14640969056421
305 => 0.1428307580052
306 => 0.15413656307694
307 => 0.14767874785421
308 => 0.14740036434703
309 => 0.14697954684594
310 => 0.1404078402213
311 => 0.14184662631835
312 => 0.14662937043827
313 => 0.14833590742172
314 => 0.1481579016331
315 => 0.14660593238286
316 => 0.14731641595825
317 => 0.14502770081303
318 => 0.14421950785977
319 => 0.14166862858828
320 => 0.13791954075758
321 => 0.13844087441493
322 => 0.13101295042012
323 => 0.12696582319798
324 => 0.12584563172317
325 => 0.12434766486704
326 => 0.12601483106551
327 => 0.13099190804471
328 => 0.12498849726201
329 => 0.11469607056538
330 => 0.11531466294729
331 => 0.11670445636771
401 => 0.11411458552315
402 => 0.11166349012017
403 => 0.11379451870941
404 => 0.10943348183538
405 => 0.11723146683884
406 => 0.11702055319809
407 => 0.11992715978323
408 => 0.12174472053048
409 => 0.11755583145034
410 => 0.11650233717464
411 => 0.11710245539272
412 => 0.1071838380277
413 => 0.11911659713717
414 => 0.11921979213347
415 => 0.11833617392367
416 => 0.12468999976686
417 => 0.13809855410397
418 => 0.1330537166045
419 => 0.13110020304368
420 => 0.12738657233657
421 => 0.13233476476023
422 => 0.13195482078592
423 => 0.13023657004461
424 => 0.129197366635
425 => 0.13111213078092
426 => 0.12896010616756
427 => 0.12857354341332
428 => 0.12623139370704
429 => 0.12539535282293
430 => 0.12477638143607
501 => 0.12409495475801
502 => 0.12559801220886
503 => 0.12219188628157
504 => 0.11808443231991
505 => 0.11774294196627
506 => 0.11868582685682
507 => 0.11826867048227
508 => 0.11774094478204
509 => 0.11673337270274
510 => 0.11643444759019
511 => 0.11740580918815
512 => 0.11630919857795
513 => 0.11792730726876
514 => 0.1174872712389
515 => 0.11502926574644
516 => 0.11196568083265
517 => 0.11193840850083
518 => 0.11127836415644
519 => 0.11043769844553
520 => 0.11020384447658
521 => 0.11361504942554
522 => 0.12067614158113
523 => 0.11928988023337
524 => 0.1202915961269
525 => 0.12521904688841
526 => 0.12678533531188
527 => 0.12567362088848
528 => 0.12415183761816
529 => 0.12421878835888
530 => 0.12941918246867
531 => 0.12974352467036
601 => 0.13056303277728
602 => 0.13161633228764
603 => 0.12585300234969
604 => 0.12394733603709
605 => 0.12304432561583
606 => 0.12026340302739
607 => 0.12326238962074
608 => 0.1215150085622
609 => 0.12175078996604
610 => 0.12159723701748
611 => 0.1216810873106
612 => 0.11722928714311
613 => 0.11885128914441
614 => 0.11615439622478
615 => 0.11254355934583
616 => 0.11253145455449
617 => 0.11341520176514
618 => 0.11288951434321
619 => 0.11147490300746
620 => 0.11167584187093
621 => 0.10991540598916
622 => 0.1118895906607
623 => 0.1119462032131
624 => 0.11118603458
625 => 0.11422753845149
626 => 0.11547364506927
627 => 0.11497328579057
628 => 0.11543853852842
629 => 0.11934748565096
630 => 0.11998481459126
701 => 0.12026787400695
702 => 0.11988861188811
703 => 0.11550998690607
704 => 0.11570419754337
705 => 0.11427920874761
706 => 0.11307524337681
707 => 0.11312339567768
708 => 0.11374239038281
709 => 0.11644557656368
710 => 0.1221342725198
711 => 0.12235015437295
712 => 0.12261180947669
713 => 0.12154752667247
714 => 0.1212265287949
715 => 0.121650007852
716 => 0.12378638295569
717 => 0.12928171974257
718 => 0.12733930070089
719 => 0.12576008378444
720 => 0.12714548277399
721 => 0.12693221145866
722 => 0.12513198692866
723 => 0.12508146062194
724 => 0.12162625418226
725 => 0.12034894303275
726 => 0.11928152623115
727 => 0.11811593494941
728 => 0.11742493336662
729 => 0.11848662585239
730 => 0.11872944748546
731 => 0.11640803831013
801 => 0.11609163881743
802 => 0.1179873516611
803 => 0.1171531191179
804 => 0.11801114797656
805 => 0.1182102180318
806 => 0.11817816316793
807 => 0.11730712858183
808 => 0.11786230005239
809 => 0.11654915401995
810 => 0.11512130493782
811 => 0.11421042618157
812 => 0.1134155636562
813 => 0.11385659958296
814 => 0.11228438703406
815 => 0.11178140459728
816 => 0.11767422044992
817 => 0.12202730687871
818 => 0.12196401127802
819 => 0.12157871558715
820 => 0.1210062443449
821 => 0.12374450311862
822 => 0.12279054851507
823 => 0.12348463019472
824 => 0.12366130311271
825 => 0.12419603882499
826 => 0.12438716088004
827 => 0.12380945728687
828 => 0.12187061346766
829 => 0.11703919900992
830 => 0.11479016253768
831 => 0.11404794304118
901 => 0.1140749213102
902 => 0.11333074021427
903 => 0.11354993489888
904 => 0.11325451324824
905 => 0.11269505611209
906 => 0.11382205468131
907 => 0.11395193076769
908 => 0.11368887583501
909 => 0.11375083479438
910 => 0.11157285230398
911 => 0.1117384395824
912 => 0.11081642857437
913 => 0.11064356262537
914 => 0.10831279908575
915 => 0.10418351362573
916 => 0.10647153861002
917 => 0.10370792617399
918 => 0.10266130426891
919 => 0.10761584958447
920 => 0.10711855065249
921 => 0.10626739105157
922 => 0.10500834860462
923 => 0.10454135751387
924 => 0.10170406747787
925 => 0.10153642524619
926 => 0.10294266280131
927 => 0.1022937325553
928 => 0.1013823887208
929 => 0.098081593733704
930 => 0.094370407312542
1001 => 0.09448242470291
1002 => 0.095662884054404
1003 => 0.099095228825505
1004 => 0.097754152343269
1005 => 0.096781185968326
1006 => 0.096598978613562
1007 => 0.098879685135379
1008 => 0.10210736268654
1009 => 0.10362171677833
1010 => 0.10212103786498
1011 => 0.10039713873162
1012 => 0.10050206448409
1013 => 0.1012000885077
1014 => 0.10127344096305
1015 => 0.10015135984692
1016 => 0.10046721910849
1017 => 0.099987400007398
1018 => 0.097042751069702
1019 => 0.096989491708001
1020 => 0.096266827369812
1021 => 0.096244945380857
1022 => 0.095015513064529
1023 => 0.094843506984811
1024 => 0.092402394499535
1025 => 0.094009142129713
1026 => 0.092931420177427
1027 => 0.091307038986423
1028 => 0.091026995056827
1029 => 0.091018576598141
1030 => 0.092686452876314
1031 => 0.093989652024318
1101 => 0.092950167612199
1102 => 0.092713497161119
1103 => 0.095240518398268
1104 => 0.094918931911531
1105 => 0.094640440088027
1106 => 0.10181835956331
1107 => 0.096136476198582
1108 => 0.093658850740996
1109 => 0.090592318748921
1110 => 0.091590797028337
1111 => 0.091801191072508
1112 => 0.084426734415505
1113 => 0.081434918268188
1114 => 0.080408239710642
1115 => 0.079817371685671
1116 => 0.080086637664304
1117 => 0.077393652226686
1118 => 0.079203382978633
1119 => 0.076871485222049
1120 => 0.076480534974505
1121 => 0.080650257029978
1122 => 0.081230449494835
1123 => 0.078755168188088
1124 => 0.080344699498662
1125 => 0.07976831334931
1126 => 0.076911458916133
1127 => 0.076802348090384
1128 => 0.075368878959105
1129 => 0.073125777342972
1130 => 0.072100619713948
1201 => 0.071566708719925
1202 => 0.071787010801777
1203 => 0.071675619327838
1204 => 0.070948714612289
1205 => 0.071717284655249
1206 => 0.069753905790554
1207 => 0.068972072506615
1208 => 0.068618936550653
1209 => 0.066876324800366
1210 => 0.069649595038036
1211 => 0.070195964211595
1212 => 0.070743409901207
1213 => 0.07550855087224
1214 => 0.075270497895475
1215 => 0.077422380868922
1216 => 0.077338762653633
1217 => 0.076725010771413
1218 => 0.074135692537611
1219 => 0.075167748635445
1220 => 0.071991240383441
1221 => 0.074371296347408
1222 => 0.073285138198966
1223 => 0.074004065184843
1224 => 0.072711369641204
1225 => 0.073426800729145
1226 => 0.070325528611605
1227 => 0.067429604344323
1228 => 0.068595008806777
1229 => 0.06986193673763
1230 => 0.072608959298954
1231 => 0.070972855323874
]
'min_raw' => 0.066876324800366
'max_raw' => 0.1996274582386
'avg_raw' => 0.13325189151948
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.066876'
'max' => '$0.199627'
'avg' => '$0.133251'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.12668767519963
'max_diff' => 0.0060634582386018
'year' => 2026
]
1 => [
'items' => [
101 => 0.071561260181253
102 => 0.069590202406815
103 => 0.065523347213331
104 => 0.065546365172067
105 => 0.064920768101806
106 => 0.064380160894432
107 => 0.071160781546769
108 => 0.070317504182901
109 => 0.06897385206899
110 => 0.070772383818073
111 => 0.071247944159067
112 => 0.071261482693416
113 => 0.072573645030723
114 => 0.073273946305362
115 => 0.073397377440296
116 => 0.075462093229192
117 => 0.076154158727371
118 => 0.079004678569591
119 => 0.073214530634941
120 => 0.07309528634854
121 => 0.07079769284811
122 => 0.069340522726622
123 => 0.070897466532992
124 => 0.072276706201412
125 => 0.070840549669224
126 => 0.071028081393409
127 => 0.069100158587245
128 => 0.069789300273249
129 => 0.070382881930646
130 => 0.070055141028549
131 => 0.06956449703527
201 => 0.072163624277244
202 => 0.07201697133219
203 => 0.074437338373593
204 => 0.076324187564474
205 => 0.079705758629171
206 => 0.076176912937873
207 => 0.076048307774991
208 => 0.077305443871081
209 => 0.076153966266384
210 => 0.076881660364896
211 => 0.079588515859793
212 => 0.079645707450993
213 => 0.078687674611188
214 => 0.07862937822582
215 => 0.078813378912435
216 => 0.079891076681099
217 => 0.079514495966421
218 => 0.079950284703304
219 => 0.080495245191811
220 => 0.082749432830733
221 => 0.083292909838961
222 => 0.081972542469489
223 => 0.082091756859426
224 => 0.081597903218348
225 => 0.081120846789036
226 => 0.082193199973634
227 => 0.084152946495643
228 => 0.08414075501424
301 => 0.084595378115318
302 => 0.084878604540988
303 => 0.083662789387597
304 => 0.082871338429502
305 => 0.083174831088169
306 => 0.083660122458587
307 => 0.083017457637336
308 => 0.07905063264927
309 => 0.080253913948888
310 => 0.080053629103182
311 => 0.079768399127428
312 => 0.080978307778892
313 => 0.080861609137867
314 => 0.077366031768646
315 => 0.07758980729045
316 => 0.077379640299294
317 => 0.07805873284384
318 => 0.076117293040387
319 => 0.076714466848133
320 => 0.077089008662194
321 => 0.077309616668042
322 => 0.07810660405749
323 => 0.078013086786132
324 => 0.078100790892598
325 => 0.079282512794279
326 => 0.085259256654999
327 => 0.085584557636396
328 => 0.083982656630753
329 => 0.084622584486407
330 => 0.083394062940389
331 => 0.08421877768461
401 => 0.084783026567123
402 => 0.082233294365869
403 => 0.082082315772535
404 => 0.080848723681088
405 => 0.081511586196804
406 => 0.080456924272798
407 => 0.080715701418441
408 => 0.079992137959436
409 => 0.081294408125597
410 => 0.082750548523689
411 => 0.083118427092974
412 => 0.082150696958868
413 => 0.081449996565251
414 => 0.080219797499118
415 => 0.082265645962871
416 => 0.082863914399774
417 => 0.082262503513462
418 => 0.082123143470016
419 => 0.081859056439505
420 => 0.082179170781959
421 => 0.082860656101382
422 => 0.0825392802098
423 => 0.082751554648105
424 => 0.081942583385739
425 => 0.083663191873003
426 => 0.08639593223776
427 => 0.086404718444881
428 => 0.086083340820963
429 => 0.085951840021434
430 => 0.086281592966398
501 => 0.086460470411867
502 => 0.087526830969534
503 => 0.088671078333589
504 => 0.094010781507397
505 => 0.092511414223359
506 => 0.097249116539525
507 => 0.10099602395796
508 => 0.10211955766035
509 => 0.1010859595205
510 => 0.097550076117949
511 => 0.097376588809398
512 => 0.10266069142427
513 => 0.10116769040834
514 => 0.10099010268818
515 => 0.099100869384916
516 => 0.10021764025324
517 => 0.099973386082299
518 => 0.099587818924142
519 => 0.10171853994598
520 => 0.10570705948807
521 => 0.10508541131334
522 => 0.10462137978833
523 => 0.10258812872328
524 => 0.1038126000075
525 => 0.10337658923639
526 => 0.10524996820836
527 => 0.10414022000579
528 => 0.10115637945723
529 => 0.10163156589946
530 => 0.10155974242466
531 => 0.10303786444657
601 => 0.10259416890484
602 => 0.10147310374908
603 => 0.10569342716188
604 => 0.10541938283413
605 => 0.10580791503563
606 => 0.10597895892649
607 => 0.10854779541743
608 => 0.10960016553416
609 => 0.109839071975
610 => 0.11083874219267
611 => 0.1098141992693
612 => 0.1139131014495
613 => 0.11663863222176
614 => 0.11980447646827
615 => 0.12443062581114
616 => 0.12617010075833
617 => 0.12585588017856
618 => 0.12936337381281
619 => 0.13566626190635
620 => 0.12712987406873
621 => 0.13611871118971
622 => 0.13327294913832
623 => 0.12652569850756
624 => 0.1260912551118
625 => 0.13066057157614
626 => 0.14079487571365
627 => 0.13825634746953
628 => 0.14079902783645
629 => 0.13783285612602
630 => 0.13768556069974
701 => 0.1406549674971
702 => 0.14759314833307
703 => 0.14429707869172
704 => 0.13957135463141
705 => 0.14306075573713
706 => 0.14003791357053
707 => 0.13322660412892
708 => 0.13825440630482
709 => 0.13489245817336
710 => 0.13587365336911
711 => 0.14293996828941
712 => 0.14208973058305
713 => 0.14319001690497
714 => 0.14124804034629
715 => 0.13943392801888
716 => 0.13604775264202
717 => 0.13504527304936
718 => 0.13532232234333
719 => 0.13504513575749
720 => 0.1331506017547
721 => 0.13274147731717
722 => 0.13205958533048
723 => 0.13227093217025
724 => 0.13098877574073
725 => 0.13340846983027
726 => 0.13385758637555
727 => 0.13561843794818
728 => 0.13580125539985
729 => 0.14070520196544
730 => 0.13800419060459
731 => 0.13981626221955
801 => 0.13965417347843
802 => 0.12667193188818
803 => 0.12846077023603
804 => 0.13124364133688
805 => 0.12998996167804
806 => 0.1282175519563
807 => 0.12678623607539
808 => 0.12461764615626
809 => 0.12766989482336
810 => 0.13168327725014
811 => 0.13590304140128
812 => 0.14097281153898
813 => 0.13984129786287
814 => 0.13580826557501
815 => 0.13598918445731
816 => 0.13710755379875
817 => 0.13565916388702
818 => 0.13523200542613
819 => 0.13704886878568
820 => 0.13706138052511
821 => 0.1353948328879
822 => 0.13354277016415
823 => 0.13353500995371
824 => 0.13320545328082
825 => 0.13789148352601
826 => 0.14046832634977
827 => 0.14076375722672
828 => 0.14044844149788
829 => 0.14056979400747
830 => 0.13907038594519
831 => 0.14249758813993
901 => 0.14564272778899
902 => 0.14479976317693
903 => 0.14353603938898
904 => 0.14252942252269
905 => 0.14456263623398
906 => 0.14447210042799
907 => 0.14561525773791
908 => 0.14556339751914
909 => 0.14517899671213
910 => 0.14479977690509
911 => 0.14630334057493
912 => 0.14587033838451
913 => 0.14543666362209
914 => 0.14456686249378
915 => 0.14468508291298
916 => 0.14342157732476
917 => 0.14283702182556
918 => 0.13404670966244
919 => 0.13169765102072
920 => 0.1324367126889
921 => 0.13268003097979
922 => 0.13165771764851
923 => 0.13312345235482
924 => 0.13289501915344
925 => 0.13378371911106
926 => 0.13322849796041
927 => 0.1332512844301
928 => 0.13488407144854
929 => 0.13535807646636
930 => 0.13511699368861
1001 => 0.13528583980231
1002 => 0.13917682722718
1003 => 0.13862365324214
1004 => 0.13832979058775
1005 => 0.13841119255131
1006 => 0.13940542326208
1007 => 0.13968375357811
1008 => 0.13850444847116
1009 => 0.13906061557708
1010 => 0.14142870452596
1011 => 0.14225740163584
1012 => 0.14490220501339
1013 => 0.14377864553098
1014 => 0.14584098758747
1015 => 0.15217992396491
1016 => 0.15724390496425
1017 => 0.15258685875939
1018 => 0.16188621497058
1019 => 0.16912709769441
1020 => 0.16884918055515
1021 => 0.16758656516762
1022 => 0.15934301269536
1023 => 0.15175717280595
1024 => 0.15810304998522
1025 => 0.15811922693119
1026 => 0.15757411045361
1027 => 0.15418843882828
1028 => 0.15745629641992
1029 => 0.15771568708843
1030 => 0.15757049729161
1031 => 0.15497471079459
1101 => 0.15101142459519
1102 => 0.15178584123178
1103 => 0.1530543514802
1104 => 0.15065279694099
1105 => 0.14988535475039
1106 => 0.15131217579456
1107 => 0.15590969048887
1108 => 0.1550405569675
1109 => 0.15501786037881
1110 => 0.1587363821532
1111 => 0.15607472306996
1112 => 0.1517956091056
1113 => 0.15071507639501
1114 => 0.1468799132065
1115 => 0.14952887408119
1116 => 0.14962420546721
1117 => 0.14817339666787
1118 => 0.1519133342438
1119 => 0.15187887006063
1120 => 0.15542938417273
1121 => 0.16221663364286
1122 => 0.16020930999428
1123 => 0.15787501098717
1124 => 0.15812881401234
1125 => 0.16091240675913
1126 => 0.15922938304118
1127 => 0.15983461010461
1128 => 0.16091149067548
1129 => 0.16156119946133
1130 => 0.1580353309165
1201 => 0.15721328229692
1202 => 0.1555316593211
1203 => 0.15509295527569
1204 => 0.15646260210128
1205 => 0.15610174855307
1206 => 0.14961619323336
1207 => 0.14893841661716
1208 => 0.14895920305834
1209 => 0.14725490153039
1210 => 0.14465543262102
1211 => 0.1514866817086
1212 => 0.1509380368036
1213 => 0.15033237529022
1214 => 0.15040656536975
1215 => 0.15337177906616
1216 => 0.15165180537536
1217 => 0.15622463733049
1218 => 0.15528460055243
1219 => 0.15432045537809
1220 => 0.15418718114642
1221 => 0.1538160675113
1222 => 0.15254338077117
1223 => 0.15100653505586
1224 => 0.14999177639531
1225 => 0.13835948518937
1226 => 0.14051837077527
1227 => 0.14300197185323
1228 => 0.14385930099294
1229 => 0.1423927801741
1230 => 0.15260128795165
1231 => 0.15446648069424
]
'min_raw' => 0.064380160894432
'max_raw' => 0.16912709769441
'avg_raw' => 0.11675362929442
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.06438'
'max' => '$0.169127'
'avg' => '$0.116753'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.0024961639059338
'max_diff' => -0.030500360544189
'year' => 2027
]
2 => [
'items' => [
101 => 0.14881669021343
102 => 0.1477598450939
103 => 0.15267057454174
104 => 0.14970880437243
105 => 0.15104248929832
106 => 0.1481597919752
107 => 0.15401721038177
108 => 0.15397258666737
109 => 0.15169391861142
110 => 0.15361983324866
111 => 0.15328515818601
112 => 0.15071254756295
113 => 0.1540987667272
114 => 0.15410044624966
115 => 0.15190727778832
116 => 0.14934613717179
117 => 0.148888265721
118 => 0.1485433210892
119 => 0.15095765406439
120 => 0.15312233746052
121 => 0.15715027659019
122 => 0.15816299618887
123 => 0.16211570820305
124 => 0.15976206065266
125 => 0.16080540212691
126 => 0.16193809688687
127 => 0.16248115240827
128 => 0.16159627257812
129 => 0.16773646133732
130 => 0.16825488139912
131 => 0.16842870316152
201 => 0.1663582660593
202 => 0.16819729879791
203 => 0.16733687628188
204 => 0.16957545663633
205 => 0.16992649461954
206 => 0.1696291779363
207 => 0.16974060293293
208 => 0.16450103503048
209 => 0.16422933579381
210 => 0.16052469742299
211 => 0.1620343649424
212 => 0.1592121138751
213 => 0.16010707876095
214 => 0.16050157075509
215 => 0.16029551052458
216 => 0.16211971927886
217 => 0.16056876917649
218 => 0.15647555685653
219 => 0.15238122934362
220 => 0.15232982839686
221 => 0.15125186423359
222 => 0.15047269358253
223 => 0.15062278949249
224 => 0.1511517470565
225 => 0.15044194960732
226 => 0.15059342088075
227 => 0.15310885326744
228 => 0.15361330529335
229 => 0.15189898020718
301 => 0.1450157176103
302 => 0.14332654770366
303 => 0.14454068953486
304 => 0.14396040794029
305 => 0.11618728485698
306 => 0.12271216816085
307 => 0.11883530406579
308 => 0.12062194140674
309 => 0.11666466707477
310 => 0.1185532858045
311 => 0.11820452688644
312 => 0.12869634615372
313 => 0.12853253082689
314 => 0.12861094055493
315 => 0.12486823994008
316 => 0.13083046364493
317 => 0.13376766943656
318 => 0.13322407081573
319 => 0.13336088287722
320 => 0.13100999838077
321 => 0.12863370225563
322 => 0.1259980241435
323 => 0.13089478829618
324 => 0.13035035171295
325 => 0.13159909335277
326 => 0.13477499493371
327 => 0.13524265850558
328 => 0.13587120308875
329 => 0.13564591459854
330 => 0.14101320043732
331 => 0.14036318670775
401 => 0.14192953277429
402 => 0.13870744007645
403 => 0.13506133634498
404 => 0.13575434146422
405 => 0.13568759949844
406 => 0.13483789767123
407 => 0.13407082485435
408 => 0.13279386473568
409 => 0.13683435550569
410 => 0.13667031895923
411 => 0.1393258799748
412 => 0.13885648377055
413 => 0.13572174103788
414 => 0.13583369898783
415 => 0.13658667000644
416 => 0.13919271129912
417 => 0.13996636178761
418 => 0.1396079760567
419 => 0.14045624849885
420 => 0.14112668845026
421 => 0.14054044543447
422 => 0.14884041026099
423 => 0.14539368619349
424 => 0.14707359552184
425 => 0.14747424399805
426 => 0.14644799135096
427 => 0.14667054880276
428 => 0.14700766269896
429 => 0.14905455226303
430 => 0.15442618275142
501 => 0.15680524132879
502 => 0.16396275643952
503 => 0.15660769363204
504 => 0.15617127464332
505 => 0.15746055925101
506 => 0.16166277832093
507 => 0.16506828218273
508 => 0.16619808428192
509 => 0.16634740628032
510 => 0.16846699012623
511 => 0.1696818960588
512 => 0.16820961689675
513 => 0.16696201446096
514 => 0.16249325739408
515 => 0.16301052819259
516 => 0.16657401104157
517 => 0.17160764045386
518 => 0.17592701814948
519 => 0.17441452262598
520 => 0.18595379581482
521 => 0.18709786761778
522 => 0.18693979388688
523 => 0.18954615971476
524 => 0.1843730543236
525 => 0.18216145154468
526 => 0.16723176026846
527 => 0.17142639454289
528 => 0.177523541803
529 => 0.17671656149999
530 => 0.17228865018249
531 => 0.17592365918168
601 => 0.17472181152931
602 => 0.17377386442118
603 => 0.17811659389212
604 => 0.17334158444932
605 => 0.17747590743111
606 => 0.17217359544287
607 => 0.17442143157813
608 => 0.17314545107216
609 => 0.17397116683781
610 => 0.16914404934394
611 => 0.17174864477198
612 => 0.16903568961102
613 => 0.16903440331704
614 => 0.16897451468149
615 => 0.17216629439728
616 => 0.17227037821922
617 => 0.16991164818674
618 => 0.16957171833878
619 => 0.17082861715116
620 => 0.16935711782418
621 => 0.17004562309777
622 => 0.16937797194752
623 => 0.16922766961072
624 => 0.16803003501923
625 => 0.16751406110757
626 => 0.16771638777334
627 => 0.16702574255651
628 => 0.16660960383164
629 => 0.16889173421506
630 => 0.16767248401207
701 => 0.16870486663494
702 => 0.16752833633911
703 => 0.16344996974392
704 => 0.16110445798708
705 => 0.15340080155354
706 => 0.15558554896174
707 => 0.15703403875366
708 => 0.15655531288607
709 => 0.15758380129196
710 => 0.15764694212705
711 => 0.15731257006209
712 => 0.15692541004659
713 => 0.15673696196234
714 => 0.15814149958976
715 => 0.15895688095704
716 => 0.15717941408257
717 => 0.15676297846328
718 => 0.15856009561001
719 => 0.15965633603135
720 => 0.16775035937825
721 => 0.16715072798536
722 => 0.16865568510979
723 => 0.16848625003303
724 => 0.17006368485791
725 => 0.17264212412289
726 => 0.16739943615423
727 => 0.16830938550708
728 => 0.16808628693956
729 => 0.17052201860015
730 => 0.17052962268852
731 => 0.16906927988418
801 => 0.16986095540977
802 => 0.16941906384987
803 => 0.17021762162384
804 => 0.16714271954253
805 => 0.1708876183624
806 => 0.17301073467731
807 => 0.1730402141494
808 => 0.17404655443258
809 => 0.17506905444359
810 => 0.17703165417373
811 => 0.17501431860232
812 => 0.171385328293
813 => 0.17164732967176
814 => 0.16951965398121
815 => 0.16955542059396
816 => 0.169364495612
817 => 0.16993747585503
818 => 0.1672684564844
819 => 0.16789486999593
820 => 0.16701788741152
821 => 0.16830747911821
822 => 0.16692009161895
823 => 0.16808617935467
824 => 0.16858942416499
825 => 0.17044640834914
826 => 0.16664581354509
827 => 0.15889614346196
828 => 0.1605252180691
829 => 0.15811568876409
830 => 0.158338699875
831 => 0.15878921781098
901 => 0.15732894178017
902 => 0.15760751642826
903 => 0.15759756378153
904 => 0.15751179724887
905 => 0.15713192305472
906 => 0.15658103031738
907 => 0.15877561742709
908 => 0.15914852054136
909 => 0.15997743797147
910 => 0.16244373398342
911 => 0.16219729285256
912 => 0.16259924856173
913 => 0.16172178150549
914 => 0.1583794030551
915 => 0.15856091028562
916 => 0.15629751221253
917 => 0.15991955779393
918 => 0.15906180959159
919 => 0.15850881374556
920 => 0.1583579237055
921 => 0.16083033318822
922 => 0.16157011685572
923 => 0.16110913331917
924 => 0.16016364263666
925 => 0.1619792642563
926 => 0.16246504800679
927 => 0.16257379707351
928 => 0.1657907304726
929 => 0.16275358791485
930 => 0.1634846583151
1001 => 0.16918826088461
1002 => 0.16401588039742
1003 => 0.16675580569933
1004 => 0.16662170061368
1005 => 0.16802335368413
1006 => 0.16650672415072
1007 => 0.16652552459145
1008 => 0.1677700975618
1009 => 0.16602231928486
1010 => 0.16558954480443
1011 => 0.16499166995931
1012 => 0.16629710781082
1013 => 0.16707965876293
1014 => 0.1733864447166
1015 => 0.17746091606705
1016 => 0.17728403252007
1017 => 0.17890041702731
1018 => 0.17817222100241
1019 => 0.17582068394961
1020 => 0.17983447095935
1021 => 0.17856434080549
1022 => 0.17866904879216
1023 => 0.17866515155567
1024 => 0.17950967707128
1025 => 0.17891125334384
1026 => 0.17773169875013
1027 => 0.17851474213694
1028 => 0.18084010105266
1029 => 0.18805808647776
1030 => 0.19209736674723
1031 => 0.18781491673366
1101 => 0.19076889340873
1102 => 0.1889975600132
1103 => 0.18867565604263
1104 => 0.19053097169173
1105 => 0.19238953482528
1106 => 0.19227115238846
1107 => 0.19092193099178
1108 => 0.19015979006002
1109 => 0.19593097653124
1110 => 0.20018308841364
1111 => 0.19989312288978
1112 => 0.20117293641026
1113 => 0.20493050848952
1114 => 0.20527405378902
1115 => 0.20523077497759
1116 => 0.20437926210753
1117 => 0.20807907980196
1118 => 0.21116553281475
1119 => 0.20418216148068
1120 => 0.20684133786565
1121 => 0.20803512781818
1122 => 0.20978796565
1123 => 0.21274529688202
1124 => 0.21595774299336
1125 => 0.21641201809619
1126 => 0.21608968817167
1127 => 0.21397099360605
1128 => 0.21748609047353
1129 => 0.21954515177934
1130 => 0.22077127566617
1201 => 0.2238805218356
1202 => 0.20804250025851
1203 => 0.19683156138549
1204 => 0.19508081139255
1205 => 0.19864103034804
1206 => 0.19957983169439
1207 => 0.19920140204883
1208 => 0.18658247109328
1209 => 0.19501437533262
1210 => 0.2040863953195
1211 => 0.20443488855416
1212 => 0.20897653144658
1213 => 0.21045547654059
1214 => 0.21411209435573
1215 => 0.2138833719158
1216 => 0.21477370016429
1217 => 0.2145690291183
1218 => 0.22134214362913
1219 => 0.22881389475181
1220 => 0.22855517176915
1221 => 0.22748101914351
1222 => 0.22907631896282
1223 => 0.23678796684294
1224 => 0.23607800188278
1225 => 0.2367676723669
1226 => 0.24586013982699
1227 => 0.25768164091352
1228 => 0.25218936679953
1229 => 0.2641060212676
1230 => 0.27160692358054
1231 => 0.284578958523
]
'min_raw' => 0.11618728485698
'max_raw' => 0.284578958523
'avg_raw' => 0.20038312168999
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.116187'
'max' => '$0.284578'
'avg' => '$0.200383'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.051807123962551
'max_diff' => 0.11545186082858
'year' => 2028
]
3 => [
'items' => [
101 => 0.28295479585958
102 => 0.28800471386949
103 => 0.28004720571909
104 => 0.26177515852805
105 => 0.25888353711747
106 => 0.26467263640895
107 => 0.278904572125
108 => 0.2642244221061
109 => 0.26719419733545
110 => 0.26633890186961
111 => 0.26629332680901
112 => 0.26803274150506
113 => 0.26550962976667
114 => 0.25523001864533
115 => 0.25994110384411
116 => 0.25812192760397
117 => 0.26014043927098
118 => 0.2710335142403
119 => 0.26621742613789
120 => 0.26114406854923
121 => 0.26750718483358
122 => 0.27560961846755
123 => 0.27510258273221
124 => 0.27411872148115
125 => 0.27966469584006
126 => 0.28882502066295
127 => 0.29130101965341
128 => 0.2931287514886
129 => 0.29338076482889
130 => 0.2959766588593
131 => 0.28201788240828
201 => 0.30417081912285
202 => 0.30799601933092
203 => 0.30727704023011
204 => 0.31152858927236
205 => 0.31027767569274
206 => 0.3084652981782
207 => 0.31520490774058
208 => 0.30747848923576
209 => 0.29651181089721
210 => 0.29049527426438
211 => 0.29841833504265
212 => 0.30325667178323
213 => 0.30645450459274
214 => 0.30742216686872
215 => 0.28310146248863
216 => 0.26999395171587
217 => 0.27839571584329
218 => 0.28864644793754
219 => 0.28196093907392
220 => 0.28222299836403
221 => 0.27269121964535
222 => 0.28948979885154
223 => 0.28704238715948
224 => 0.29973956334725
225 => 0.29670928034883
226 => 0.30706333462841
227 => 0.30433676513445
228 => 0.31565460266343
301 => 0.32016959447196
302 => 0.32775096842084
303 => 0.33332785795939
304 => 0.33660271416532
305 => 0.33640610408239
306 => 0.34938271589716
307 => 0.34173086127828
308 => 0.33211832847329
309 => 0.331944468082
310 => 0.33692293503234
311 => 0.34735643598456
312 => 0.35006169098021
313 => 0.3515735594651
314 => 0.34925808025197
315 => 0.34095254047653
316 => 0.33736625051153
317 => 0.34042187346653
318 => 0.33668510916524
319 => 0.34313581270015
320 => 0.3519940064495
321 => 0.35016482446936
322 => 0.3562795055827
323 => 0.36260755725179
324 => 0.37165695534919
325 => 0.37402280311009
326 => 0.37793345949372
327 => 0.38195880949618
328 => 0.38325164343075
329 => 0.38572006455464
330 => 0.38570705475687
331 => 0.39314580795764
401 => 0.4013509830971
402 => 0.404448246762
403 => 0.41157023377534
404 => 0.3993740805992
405 => 0.40862500288261
406 => 0.41696956634785
407 => 0.40702083377862
408 => 0.42073284386791
409 => 0.42126525014759
410 => 0.42930395286898
411 => 0.42115518763176
412 => 0.41631647684568
413 => 0.43028565358096
414 => 0.43704489817823
415 => 0.43500895869697
416 => 0.41951535871791
417 => 0.41049741897834
418 => 0.3868957312492
419 => 0.4148529498814
420 => 0.42847009555389
421 => 0.41948009360028
422 => 0.4240141276685
423 => 0.44875034737921
424 => 0.45816829829343
425 => 0.45620943033972
426 => 0.45654044677818
427 => 0.46162220214359
428 => 0.48415750400762
429 => 0.47065382876649
430 => 0.48097688251528
501 => 0.4864521930011
502 => 0.49153796652269
503 => 0.47904891412888
504 => 0.46280084046515
505 => 0.45765439348811
506 => 0.41858621507957
507 => 0.41655254672891
508 => 0.41541098705722
509 => 0.40821361480407
510 => 0.40255845173927
511 => 0.3980612561074
512 => 0.38625927179307
513 => 0.39024209504827
514 => 0.37143219531679
515 => 0.38346610258308
516 => 0.35344504843073
517 => 0.37844747440924
518 => 0.36483979066995
519 => 0.37397698432341
520 => 0.37394510551552
521 => 0.35712063504963
522 => 0.34741663160264
523 => 0.35360040028453
524 => 0.36022989117968
525 => 0.36130550377313
526 => 0.36990081176611
527 => 0.37229957747142
528 => 0.36503120539666
529 => 0.35282292881159
530 => 0.35565863302116
531 => 0.34735916614734
601 => 0.33281466968536
602 => 0.3432607809669
603 => 0.34682754264151
604 => 0.34840282779095
605 => 0.3340999859673
606 => 0.3296057225365
607 => 0.32721301439647
608 => 0.35097661153955
609 => 0.35227843503434
610 => 0.34561812197572
611 => 0.37572336855746
612 => 0.36890962406635
613 => 0.37652224607085
614 => 0.35540132258658
615 => 0.35620817030678
616 => 0.34620918665151
617 => 0.35180794936613
618 => 0.34785092433599
619 => 0.35135562466684
620 => 0.35345632759474
621 => 0.36345367051517
622 => 0.37856162800644
623 => 0.36196040086487
624 => 0.35472700846533
625 => 0.35921456442786
626 => 0.37116551731928
627 => 0.38927182270782
628 => 0.37855252549445
629 => 0.38330956757227
630 => 0.3843487696402
701 => 0.37644475672502
702 => 0.38956325493817
703 => 0.39659356470508
704 => 0.40380520780831
705 => 0.41006687544919
706 => 0.40092471896545
707 => 0.41070813687971
708 => 0.40282442904656
709 => 0.39575192811749
710 => 0.395762654182
711 => 0.39132597103644
712 => 0.38272933838387
713 => 0.38114398742673
714 => 0.38939118331353
715 => 0.39600465340239
716 => 0.3965493704753
717 => 0.40021092732885
718 => 0.40237779895775
719 => 0.42361608664009
720 => 0.43215830163826
721 => 0.44260356044217
722 => 0.44667257740882
723 => 0.45891885965512
724 => 0.44902899214682
725 => 0.44688925710121
726 => 0.41718378210008
727 => 0.42204805196738
728 => 0.42983621735717
729 => 0.4173122060788
730 => 0.4252558086049
731 => 0.42682404401206
801 => 0.41688664496793
802 => 0.42219463916707
803 => 0.40809818028476
804 => 0.3788688922889
805 => 0.38959579549134
806 => 0.39749440688491
807 => 0.38622211453452
808 => 0.40642726227464
809 => 0.39462383208377
810 => 0.39088271137784
811 => 0.37628726569815
812 => 0.38317575422874
813 => 0.39249253360001
814 => 0.38673584714042
815 => 0.39868183591489
816 => 0.41560054189838
817 => 0.42765781930857
818 => 0.42858342735232
819 => 0.42083140575241
820 => 0.433254069839
821 => 0.43334455538474
822 => 0.419331739547
823 => 0.41074896787006
824 => 0.40879894408676
825 => 0.41367048582214
826 => 0.4195854368251
827 => 0.42891166596702
828 => 0.4345473109132
829 => 0.44924208401775
830 => 0.45321806828767
831 => 0.45758646955721
901 => 0.46342400081838
902 => 0.4704334538097
903 => 0.45509716971307
904 => 0.45570650887064
905 => 0.44142557346516
906 => 0.42616434589111
907 => 0.43774571528094
908 => 0.45288681515314
909 => 0.44941343011303
910 => 0.4490226033412
911 => 0.44967986556511
912 => 0.44706104667502
913 => 0.43521622589308
914 => 0.42926783104889
915 => 0.43694277799527
916 => 0.44102167072467
917 => 0.44734767763116
918 => 0.44656786375413
919 => 0.46286297818169
920 => 0.46919476690956
921 => 0.46757482440045
922 => 0.46787293280822
923 => 0.47933633385438
924 => 0.49208599344594
925 => 0.5040277321192
926 => 0.51617538160724
927 => 0.50153091601857
928 => 0.49409535953771
929 => 0.50176695584234
930 => 0.49769629885757
1001 => 0.52108750132737
1002 => 0.52270705743521
1003 => 0.54609656845483
1004 => 0.56829599958361
1005 => 0.55435293463574
1006 => 0.56750061687215
1007 => 0.58172090715708
1008 => 0.60915415427566
1009 => 0.59991560175939
1010 => 0.5928390153185
1011 => 0.58615167532568
1012 => 0.60006696826541
1013 => 0.61796877033014
1014 => 0.62182464703356
1015 => 0.62807264035136
1016 => 0.62150363934597
1017 => 0.62941527750524
1018 => 0.65734683675742
1019 => 0.64979948288879
1020 => 0.63908102709765
1021 => 0.66113031055179
1022 => 0.66910986051942
1023 => 0.72511452111503
1024 => 0.79582271855413
1025 => 0.76654906051928
1026 => 0.74837795632202
1027 => 0.75264859683273
1028 => 0.77846883691395
1029 => 0.78676147853458
1030 => 0.76421921996472
1031 => 0.77218152678278
1101 => 0.81605462018707
1102 => 0.83959112718111
1103 => 0.80762538930859
1104 => 0.71943318629784
1105 => 0.63811594742682
1106 => 0.65968494093841
1107 => 0.65723968643799
1108 => 0.70437585202103
1109 => 0.6496194809951
1110 => 0.65054143785263
1111 => 0.69865232942187
1112 => 0.68581716838069
1113 => 0.6650258512972
1114 => 0.63826774705058
1115 => 0.58880291652564
1116 => 0.54499053670085
1117 => 0.63091670292574
1118 => 0.62721141039153
1119 => 0.6218455977084
1120 => 0.63378663319313
1121 => 0.69176891198489
1122 => 0.69043223278842
1123 => 0.68192896172019
1124 => 0.68837861788105
1125 => 0.66389519538857
1126 => 0.67020513084205
1127 => 0.63810306636072
1128 => 0.65261454020692
1129 => 0.66498124246859
1130 => 0.66746404103978
1201 => 0.6730579129955
1202 => 0.62525888959579
1203 => 0.64671924779667
1204 => 0.65932519767604
1205 => 0.60237105751263
1206 => 0.65819939744653
1207 => 0.62442681494163
1208 => 0.6129638931923
1209 => 0.62839720720267
1210 => 0.62238282972344
1211 => 0.61721202114289
1212 => 0.61432662110918
1213 => 0.62565914360568
1214 => 0.62513046788593
1215 => 0.60658826153381
1216 => 0.5824007092245
1217 => 0.59051884570885
1218 => 0.58756945061615
1219 => 0.57688046232067
1220 => 0.58408354983846
1221 => 0.55236479780931
1222 => 0.49779433354043
1223 => 0.53384525377498
1224 => 0.5324573325618
1225 => 0.5317574797489
1226 => 0.55884874993092
1227 => 0.55624454940486
1228 => 0.55151789994966
1229 => 0.57679365369674
1230 => 0.5675676635722
1231 => 0.59599999121939
]
'min_raw' => 0.25523001864533
'max_raw' => 0.83959112718111
'avg_raw' => 0.54741057291322
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.25523'
'max' => '$0.839591'
'avg' => '$0.54741'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.13904273378835
'max_diff' => 0.55501216865812
'year' => 2029
]
4 => [
'items' => [
101 => 0.61472736109549
102 => 0.60997749432796
103 => 0.62759067621366
104 => 0.59070587117711
105 => 0.60295752384873
106 => 0.6054825724843
107 => 0.57648175481896
108 => 0.55667062881761
109 => 0.5553494525767
110 => 0.5209996902317
111 => 0.5393490560148
112 => 0.55549573855558
113 => 0.54776273065173
114 => 0.54531469136641
115 => 0.55782119316017
116 => 0.55879305546049
117 => 0.53663449201986
118 => 0.54124195902961
119 => 0.56045586238793
120 => 0.54075781796278
121 => 0.502487735302
122 => 0.49299622567684
123 => 0.49172988332962
124 => 0.46598815644506
125 => 0.49363049373542
126 => 0.48156387273959
127 => 0.51968218388508
128 => 0.49790920899138
129 => 0.49697061956081
130 => 0.49555180397536
131 => 0.47339483626848
201 => 0.47824580404753
202 => 0.49437115976835
203 => 0.50012486835467
204 => 0.49952470941037
205 => 0.49429213672816
206 => 0.49668758170697
207 => 0.48897101880187
208 => 0.48624613983371
209 => 0.47764567227318
210 => 0.46500536089902
211 => 0.46676307372314
212 => 0.44171930937353
213 => 0.4280741373827
214 => 0.42429733361611
215 => 0.41924683377593
216 => 0.42486780101192
217 => 0.44164836353571
218 => 0.42140744493709
219 => 0.3867058097351
220 => 0.38879143713945
221 => 0.39347722268868
222 => 0.38474529231725
223 => 0.37648125303606
224 => 0.38366616470836
225 => 0.3689626244097
226 => 0.39525407528678
227 => 0.3945429652215
228 => 0.40434279225606
301 => 0.41047082521346
302 => 0.39634769322087
303 => 0.39279576371775
304 => 0.39481910418892
305 => 0.36137779324697
306 => 0.4016099237032
307 => 0.40195785283806
308 => 0.39897867235148
309 => 0.42040103979175
310 => 0.46560891689468
311 => 0.44859989504591
312 => 0.44201348768566
313 => 0.4294927224792
314 => 0.44617589870734
315 => 0.44489489107111
316 => 0.43910168873236
317 => 0.43559794188199
318 => 0.44205370288454
319 => 0.43479800165103
320 => 0.43349467833616
321 => 0.42559795707777
322 => 0.42277918686645
323 => 0.42069228162047
324 => 0.41839480399971
325 => 0.42346246713535
326 => 0.41197847576339
327 => 0.39812990795837
328 => 0.39697854938897
329 => 0.40015755162758
330 => 0.39875107978588
331 => 0.3969718157429
401 => 0.39357471613112
402 => 0.39256686924386
403 => 0.39584188268967
404 => 0.39214458345449
405 => 0.39760014987831
406 => 0.39611653768129
407 => 0.38782920055101
408 => 0.37750011012149
409 => 0.37740815955067
410 => 0.37518277396073
411 => 0.37234841082299
412 => 0.37155995583951
413 => 0.38306107148767
414 => 0.40686803667992
415 => 0.40219415976028
416 => 0.40557151483289
417 => 0.42218475909896
418 => 0.42746560987345
419 => 0.42371738707752
420 => 0.41858658853413
421 => 0.4188123176308
422 => 0.43634580945189
423 => 0.43743935182975
424 => 0.44020238062847
425 => 0.44375365346666
426 => 0.424322184198
427 => 0.41789709717569
428 => 0.41485253449426
429 => 0.4054764598295
430 => 0.41558775251155
501 => 0.40969633527444
502 => 0.4104912887392
503 => 0.4099735742524
504 => 0.4102562813699
505 => 0.39524672629044
506 => 0.4007154192824
507 => 0.39162265651282
508 => 0.37944846787486
509 => 0.37940765572572
510 => 0.3823872711477
511 => 0.38061487930235
512 => 0.37584541841885
513 => 0.37652289782613
514 => 0.37058746534103
515 => 0.3772435667943
516 => 0.3774344399673
517 => 0.3748714783475
518 => 0.38512612100126
519 => 0.38932745646349
520 => 0.38764046022138
521 => 0.38920909230996
522 => 0.40238838044758
523 => 0.40453717946667
524 => 0.40549153404926
525 => 0.40421282533635
526 => 0.38944998550355
527 => 0.39010478022658
528 => 0.38530033101214
529 => 0.38124107770631
530 => 0.38140342655057
531 => 0.38349041041575
601 => 0.392604391355
602 => 0.41178422694312
603 => 0.41251208768341
604 => 0.41339427613384
605 => 0.40980597235355
606 => 0.40872370559797
607 => 0.41015149480533
608 => 0.41735443262438
609 => 0.43588234427352
610 => 0.42933334285911
611 => 0.4240089027679
612 => 0.42867987218663
613 => 0.42796081305688
614 => 0.42189123036631
615 => 0.42172087739556
616 => 0.41007140764938
617 => 0.40576486392981
618 => 0.40216599365853
619 => 0.39823612127317
620 => 0.39590636119262
621 => 0.39948593153337
622 => 0.40030462162253
623 => 0.3924778285123
624 => 0.39141106553237
625 => 0.39780259373924
626 => 0.39498992047559
627 => 0.3978828246782
628 => 0.39855400326808
629 => 0.39844592805655
630 => 0.39550917413583
701 => 0.39738097350964
702 => 0.39295360998033
703 => 0.38813951711071
704 => 0.38506842578847
705 => 0.38238849128867
706 => 0.38387547470787
707 => 0.37857465033088
708 => 0.37687880992816
709 => 0.39674684999861
710 => 0.41142358481607
711 => 0.4112101792792
712 => 0.40991112795695
713 => 0.40798100119502
714 => 0.41721323182973
715 => 0.41399690728087
716 => 0.41633705212308
717 => 0.41693271720099
718 => 0.41873561598898
719 => 0.41937999734129
720 => 0.41743222934296
721 => 0.41089528204073
722 => 0.39460583087786
723 => 0.38702304738901
724 => 0.38452060253644
725 => 0.38461156165402
726 => 0.38210250313201
727 => 0.38284153331486
728 => 0.38184549859404
729 => 0.37995924979948
730 => 0.38375900416012
731 => 0.38419689045302
801 => 0.38330998238156
802 => 0.38351888133893
803 => 0.37617566131067
804 => 0.37673395038078
805 => 0.37362532589445
806 => 0.37304249627829
807 => 0.36518416427574
808 => 0.35126199004978
809 => 0.35897622602911
810 => 0.3496585137518
811 => 0.346129754926
812 => 0.36283435037274
813 => 0.36115767230324
814 => 0.3582879282827
815 => 0.35404297876926
816 => 0.35246848570251
817 => 0.34290236425288
818 => 0.34233714676436
819 => 0.3470783748618
820 => 0.34489046123053
821 => 0.34181780186454
822 => 0.33068894111138
823 => 0.31817641698567
824 => 0.3185540914381
825 => 0.3225340925587
826 => 0.33410648259313
827 => 0.3295849496023
828 => 0.32630452553884
829 => 0.32569020072094
830 => 0.33337976199309
831 => 0.34426210220607
901 => 0.34936785275537
902 => 0.34430820902497
903 => 0.33849596273805
904 => 0.33884972723818
905 => 0.34120316396825
906 => 0.34145047689277
907 => 0.33766730206856
908 => 0.3387322436215
909 => 0.33711450002229
910 => 0.32718641054002
911 => 0.3270068428836
912 => 0.32457032961258
913 => 0.32449655295906
914 => 0.32035143606834
915 => 0.31977150556149
916 => 0.31154112438435
917 => 0.31695838619903
918 => 0.31332477139276
919 => 0.30784805679661
920 => 0.30690386913594
921 => 0.30687548571472
922 => 0.31249884703398
923 => 0.31689267394794
924 => 0.313387979678
925 => 0.31259002872837
926 => 0.32111005726041
927 => 0.32002580596793
928 => 0.3190868513413
929 => 0.34328770799855
930 => 0.32413084153795
1001 => 0.31577735432541
1002 => 0.3054383276157
1003 => 0.30880476684628
1004 => 0.30951412505545
1005 => 0.28465062956824
1006 => 0.27456351254563
1007 => 0.27110199410845
1008 => 0.26910984130917
1009 => 0.27001769035569
1010 => 0.26093810193452
1011 => 0.26703973551607
1012 => 0.25917757942185
1013 => 0.25785946336698
1014 => 0.2719179723977
1015 => 0.27387413180071
1016 => 0.26552854805639
1017 => 0.27088776384753
1018 => 0.26894443770299
1019 => 0.25931235352233
1020 => 0.25894447875544
1021 => 0.25411143749771
1022 => 0.24654866379057
1023 => 0.24309227327009
1024 => 0.24129215507727
1025 => 0.24203491892723
1026 => 0.24165935479574
1027 => 0.2392085447964
1028 => 0.24179983235609
1029 => 0.23518016343504
1030 => 0.23254415793238
1031 => 0.23135353540169
1101 => 0.22547819822033
1102 => 0.23482847245018
1103 => 0.23667059426511
1104 => 0.23851634562907
1105 => 0.25458235110443
1106 => 0.25377973887294
1107 => 0.26103496255759
1108 => 0.2607530379067
1109 => 0.25868373058501
1110 => 0.24995366337932
1111 => 0.25343331256902
1112 => 0.24272349322067
1113 => 0.25074801807338
1114 => 0.24708596004277
1115 => 0.24950987256953
1116 => 0.24515145929104
1117 => 0.24756358515383
1118 => 0.23710742968564
1119 => 0.22734361883152
1120 => 0.23127286134263
1121 => 0.23554439731558
1122 => 0.24480617567208
1123 => 0.23928993689096
1124 => 0.24127378494873
1125 => 0.23462822604736
1126 => 0.22091653982376
1127 => 0.2209941464787
1128 => 0.21888490227852
1129 => 0.21706220733487
1130 => 0.23992354327204
1201 => 0.23708037476402
1202 => 0.23255015785117
1203 => 0.23861403321268
1204 => 0.2402174181049
1205 => 0.24026306421869
1206 => 0.24468711115117
1207 => 0.24704822579209
1208 => 0.24746438248121
1209 => 0.25442571591733
1210 => 0.2567590630629
1211 => 0.26636978972789
1212 => 0.246847901711
1213 => 0.24644586127403
1214 => 0.23869936437447
1215 => 0.2337864135735
1216 => 0.23903575831903
1217 => 0.24368596115654
1218 => 0.23884385913902
1219 => 0.23947613544016
1220 => 0.23297600909591
1221 => 0.23529949840461
1222 => 0.23730080040507
1223 => 0.23619579907151
1224 => 0.2345415585925
1225 => 0.24330469755408
1226 => 0.24281024691085
1227 => 0.25097068337557
1228 => 0.25733232715823
1229 => 0.26873353009661
1230 => 0.25683578047226
1231 => 0.25640217918668
]
'min_raw' => 0.21706220733487
'max_raw' => 0.62759067621366
'avg_raw' => 0.42232644177427
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.217062'
'max' => '$0.62759'
'avg' => '$0.422326'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.038167811310458
'max_diff' => -0.21200045096745
'year' => 2030
]
5 => [
'items' => [
101 => 0.26064070130508
102 => 0.25675841416725
103 => 0.25921188562636
104 => 0.26833823791402
105 => 0.26853106335674
106 => 0.26530098874962
107 => 0.26510443841623
108 => 0.26572480957767
109 => 0.26935834284718
110 => 0.26808867467561
111 => 0.26955796682781
112 => 0.27139533916274
113 => 0.27899549016972
114 => 0.28082786084732
115 => 0.27637615007604
116 => 0.27677808971499
117 => 0.27511302768434
118 => 0.27350459862589
119 => 0.27712011225708
120 => 0.28372753448116
121 => 0.28368643005043
122 => 0.28521922357648
123 => 0.28617414124487
124 => 0.28207493556971
125 => 0.27940650340715
126 => 0.28042975009502
127 => 0.28206594383235
128 => 0.27989915451808
129 => 0.26652472711594
130 => 0.27058167402802
131 => 0.26990639968728
201 => 0.2689447269099
202 => 0.27302401840144
203 => 0.27263056078558
204 => 0.26084497763184
205 => 0.26159945242711
206 => 0.26089085974303
207 => 0.2631804676697
208 => 0.25663476782536
209 => 0.25864818101152
210 => 0.2599109748873
211 => 0.26065477018137
212 => 0.26334186880878
213 => 0.26302656879923
214 => 0.26332226931748
215 => 0.26730652721419
216 => 0.28745753642354
217 => 0.28855431139411
218 => 0.28315339031243
219 => 0.2853109517561
220 => 0.28116890559107
221 => 0.28394948893095
222 => 0.28585189343294
223 => 0.2772552932998
224 => 0.27674625843138
225 => 0.27258711656842
226 => 0.27482200381974
227 => 0.27126613750881
228 => 0.27213862272259
301 => 0.26969907800297
302 => 0.27408977278978
303 => 0.27899925180642
304 => 0.28023958008723
305 => 0.27697681037532
306 => 0.27461435007691
307 => 0.27046664803568
308 => 0.2773643689678
309 => 0.27938147277259
310 => 0.27735377398023
311 => 0.27688391186394
312 => 0.2759935240026
313 => 0.27707281185786
314 => 0.27937048719208
315 => 0.27828694593586
316 => 0.27900264402513
317 => 0.2762751409335
318 => 0.28207629257735
319 => 0.29128991751097
320 => 0.29131954082171
321 => 0.29023599372481
322 => 0.2897926295981
323 => 0.29090441467466
324 => 0.29150751247089
325 => 0.29510282154198
326 => 0.29896073141869
327 => 0.31696391347535
328 => 0.31190869199474
329 => 0.3278821861295
330 => 0.34051514609148
331 => 0.34430321841169
401 => 0.34081837011967
402 => 0.32889689236049
403 => 0.32831196778721
404 => 0.34612768867752
405 => 0.34109393151429
406 => 0.34049518211701
407 => 0.33412550013299
408 => 0.33789077108601
409 => 0.33706725109539
410 => 0.33576728450223
411 => 0.34295115918953
412 => 0.35639873129525
413 => 0.35430280107204
414 => 0.35273828638782
415 => 0.34588303846495
416 => 0.35001142888957
417 => 0.34854138813347
418 => 0.35485761613259
419 => 0.35111602258749
420 => 0.34105579585295
421 => 0.34265792011936
422 => 0.34241576225952
423 => 0.34739935385559
424 => 0.3459034033588
425 => 0.34212365391587
426 => 0.35635276895573
427 => 0.35542880937154
428 => 0.35673877281535
429 => 0.35731545923529
430 => 0.36597647081492
501 => 0.36952461013763
502 => 0.37033009988281
503 => 0.37370055781645
504 => 0.370246239819
505 => 0.38406597469576
506 => 0.39325529198492
507 => 0.40392915689422
508 => 0.41952654239113
509 => 0.42539130362185
510 => 0.42433188699896
511 => 0.43615764667222
512 => 0.45740827393319
513 => 0.42862724634709
514 => 0.45893373828105
515 => 0.44933905284003
516 => 0.4265902262604
517 => 0.42512547001972
518 => 0.44053123949875
519 => 0.47469975345288
520 => 0.46614092824345
521 => 0.47471375262481
522 => 0.46471309761158
523 => 0.46421648079803
524 => 0.4742280431327
525 => 0.4976206042295
526 => 0.48650767530945
527 => 0.47057456670059
528 => 0.48233932615074
529 => 0.47214760273794
530 => 0.44918279740511
531 => 0.46613438347111
601 => 0.45479934062215
602 => 0.4581075087295
603 => 0.48193208283764
604 => 0.47906544704894
605 => 0.48277513920284
606 => 0.47622762965076
607 => 0.47011122328162
608 => 0.45869449658333
609 => 0.45531456664579
610 => 0.45624865768339
611 => 0.45531410375667
612 => 0.44892655009411
613 => 0.44754715848884
614 => 0.44524811204753
615 => 0.44596068267357
616 => 0.44163780275415
617 => 0.44979597031466
618 => 0.45131019810342
619 => 0.45724703211925
620 => 0.45786341392146
621 => 0.47439741214999
622 => 0.46529076376827
623 => 0.47140028973292
624 => 0.47085379622555
625 => 0.42708326231286
626 => 0.43311445569534
627 => 0.44249709990573
628 => 0.43827023140682
629 => 0.43229442828427
630 => 0.42746864686052
701 => 0.42015709454205
702 => 0.43044796402437
703 => 0.44397936308166
704 => 0.45820659253176
705 => 0.47529967651106
706 => 0.47148469915231
707 => 0.45788704921647
708 => 0.4584970298595
709 => 0.46226769017619
710 => 0.45738434246546
711 => 0.4559441478913
712 => 0.46206982955739
713 => 0.46211201376041
714 => 0.45649313204693
715 => 0.4502487732669
716 => 0.45022260917561
717 => 0.44911148584406
718 => 0.46491076398389
719 => 0.4735987694736
720 => 0.47459483530158
721 => 0.47353172630714
722 => 0.47394087476581
723 => 0.46888551579848
724 => 0.48044056727766
725 => 0.49104462519111
726 => 0.48820251114765
727 => 0.48394177816619
728 => 0.48054789912175
729 => 0.48740302110381
730 => 0.48709777331291
731 => 0.49095200799601
801 => 0.49077715764765
802 => 0.48948112348882
803 => 0.48820255743311
804 => 0.49327192732144
805 => 0.49181203020519
806 => 0.49034986546549
807 => 0.48741727023379
808 => 0.48781585863102
809 => 0.48355586132518
810 => 0.48158499164729
811 => 0.45194784046932
812 => 0.44402782525271
813 => 0.44651962326663
814 => 0.44733998787232
815 => 0.44389318710028
816 => 0.44883501399692
817 => 0.44806483550976
818 => 0.45106114946392
819 => 0.44918918259019
820 => 0.44926600876366
821 => 0.45477106419388
822 => 0.45636920520546
823 => 0.45555637778839
824 => 0.45612565424921
825 => 0.46924439001222
826 => 0.46737932530028
827 => 0.46638854684417
828 => 0.46666299924762
829 => 0.47001511750393
830 => 0.47095352759683
831 => 0.46697741809232
901 => 0.46885257432026
902 => 0.47683675154609
903 => 0.47963076170983
904 => 0.48854790095154
905 => 0.48475974171215
906 => 0.49171307194375
907 => 0.5130852385107
908 => 0.53015880400582
909 => 0.51445724758157
910 => 0.54581067630791
911 => 0.57022381795359
912 => 0.56928680091502
913 => 0.56502980498295
914 => 0.5372360922763
915 => 0.51165990346272
916 => 0.53305547142762
917 => 0.5331100131304
918 => 0.53127211486742
919 => 0.51985708660257
920 => 0.53087489662731
921 => 0.53174945037627
922 => 0.53125993283947
923 => 0.52250805743275
924 => 0.50914556130364
925 => 0.51175656106198
926 => 0.51603343192908
927 => 0.50793642312893
928 => 0.50534893820222
929 => 0.51015956497012
930 => 0.5256604067502
1001 => 0.52273006240194
1002 => 0.52265353926856
1003 => 0.53519079504982
1004 => 0.52621682561957
1005 => 0.51178949413051
1006 => 0.5081464026564
1007 => 0.49521588220377
1008 => 0.50414703873733
1009 => 0.50446845516115
1010 => 0.49957695200192
1011 => 0.51218641265327
1012 => 0.51207021425351
1013 => 0.52404102047143
1014 => 0.54692470593058
1015 => 0.54015687410254
1016 => 0.53228662202453
1017 => 0.53314233664383
1018 => 0.54252741393389
1019 => 0.53685298196384
1020 => 0.53889354726382
1021 => 0.54252432529391
1022 => 0.54471486382662
1023 => 0.53282715185945
1024 => 0.53005555754491
1025 => 0.52438584827477
1026 => 0.52290672695633
1027 => 0.52752458685449
1028 => 0.52630794392272
1029 => 0.50444144135531
1030 => 0.50215627017294
1031 => 0.50222635311063
1101 => 0.49648018151861
1102 => 0.48771589060157
1103 => 0.51074792384293
1104 => 0.50889812924055
1105 => 0.50685609916225
1106 => 0.50710623619518
1107 => 0.51710366119723
1108 => 0.51130464981398
1109 => 0.52672227201562
1110 => 0.52355287238711
1111 => 0.52030218961736
1112 => 0.51985284624037
1113 => 0.51860161070924
1114 => 0.51431065850876
1115 => 0.50912907588043
1116 => 0.5057077462082
1117 => 0.46648866426674
1118 => 0.47376749774817
1119 => 0.48214113218201
1120 => 0.48503167723334
1121 => 0.48008719990341
1122 => 0.51450589661069
1123 => 0.52079452416592
1124 => 0.50174586110409
1125 => 0.49818263399701
1126 => 0.51473950118661
1127 => 0.50475368627659
1128 => 0.50925029811913
1129 => 0.49953108283073
1130 => 0.51927977794037
1201 => 0.51912932597175
1202 => 0.51144663752959
1203 => 0.51793999319212
1204 => 0.51681161285212
1205 => 0.50813787652255
1206 => 0.51955475085308
1207 => 0.51956041348031
1208 => 0.51216599289078
1209 => 0.50353092848902
1210 => 0.50198718292511
1211 => 0.50082417801573
1212 => 0.50896427020492
1213 => 0.51626265140835
1214 => 0.52984312940577
1215 => 0.53325758423852
1216 => 0.54658442876388
1217 => 0.53864894172132
1218 => 0.54216664034553
1219 => 0.54598559981096
1220 => 0.54781654941627
1221 => 0.54483311528858
1222 => 0.56553519038452
1223 => 0.56728307981781
1224 => 0.5678691320256
1225 => 0.56088850878217
1226 => 0.56708893605755
1227 => 0.56418796147197
1228 => 0.57173549142971
1229 => 0.57291904049878
1230 => 0.57191661654325
1231 => 0.57229229369883
]
'min_raw' => 0.25663476782536
'max_raw' => 0.57291904049878
'avg_raw' => 0.41477690416207
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.256634'
'max' => '$0.572919'
'avg' => '$0.414776'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.039572560490484
'max_diff' => -0.054671635714884
'year' => 2031
]
6 => [
'items' => [
101 => 0.55462672470075
102 => 0.5537106717549
103 => 0.54122022483808
104 => 0.54631017428141
105 => 0.53679475776473
106 => 0.53981219436182
107 => 0.54114225166262
108 => 0.54044750520877
109 => 0.54659795238603
110 => 0.54136881583201
111 => 0.52756826471632
112 => 0.51376395364969
113 => 0.513590651769
114 => 0.50995622033149
115 => 0.50732919208149
116 => 0.50783525092127
117 => 0.50961866827896
118 => 0.50722553662258
119 => 0.50773623259633
120 => 0.51621718850994
121 => 0.517917983735
122 => 0.51213801701664
123 => 0.4889306165972
124 => 0.48323546232291
125 => 0.48732902627545
126 => 0.48537256636542
127 => 0.3917335428325
128 => 0.41373264244429
129 => 0.4006615244738
130 => 0.40668529700783
131 => 0.39334307030954
201 => 0.39971068021598
202 => 0.39853481517414
203 => 0.43390871634922
204 => 0.43335640153758
205 => 0.43362076541006
206 => 0.42100198898009
207 => 0.44110404247015
208 => 0.45100703686582
209 => 0.44917425616284
210 => 0.44963552758007
211 => 0.44170935636675
212 => 0.43369750807316
213 => 0.42481113530095
214 => 0.44132091752284
215 => 0.43948531157115
216 => 0.44369553119416
217 => 0.45440330510867
218 => 0.45598006549246
219 => 0.45809924743819
220 => 0.45733967156429
221 => 0.47543585050167
222 => 0.47324428382992
223 => 0.47852532895207
224 => 0.46766181846195
225 => 0.45536872516848
226 => 0.45770524031207
227 => 0.45748021511468
228 => 0.45461538607993
229 => 0.45202914652252
301 => 0.44772378632792
302 => 0.46134658305707
303 => 0.46079352238802
304 => 0.46974693175733
305 => 0.46816432968252
306 => 0.45759532569856
307 => 0.45797279974349
308 => 0.46051149410349
309 => 0.46929794426976
310 => 0.47190636090626
311 => 0.4706980383928
312 => 0.47355804815598
313 => 0.4758184832608
314 => 0.47384192400287
315 => 0.50182583490052
316 => 0.49020496406435
317 => 0.4958688956524
318 => 0.49721970996233
319 => 0.49375962751201
320 => 0.49450999549922
321 => 0.49564659853681
322 => 0.50254782961133
323 => 0.52065865683818
324 => 0.52867981893238
325 => 0.55281188084994
326 => 0.52801377308042
327 => 0.52654235599015
328 => 0.53088926905996
329 => 0.54505734404375
330 => 0.5565392380785
331 => 0.56034844473618
401 => 0.56085189427914
402 => 0.56799821920023
403 => 0.57209435937392
404 => 0.5671304673878
405 => 0.56292408867072
406 => 0.54785736222107
407 => 0.54960137683295
408 => 0.56161590805274
409 => 0.57858714105304
410 => 0.59315022452314
411 => 0.58805074026661
412 => 0.62695620546908
413 => 0.63081352342933
414 => 0.63028056680925
415 => 0.63906811116858
416 => 0.6216266251676
417 => 0.6141700519893
418 => 0.56383355549378
419 => 0.57797605781001
420 => 0.59853301548669
421 => 0.59581222505355
422 => 0.58088321289969
423 => 0.5931388995287
424 => 0.58908678625839
425 => 0.58589071639977
426 => 0.60053253201076
427 => 0.58443325429384
428 => 0.59837241287616
429 => 0.58049529781221
430 => 0.58807403428114
501 => 0.58377197691914
502 => 0.58655593527268
503 => 0.57028097162351
504 => 0.57906254695619
505 => 0.56991562921853
506 => 0.56991129238856
507 => 0.56970937367253
508 => 0.58047068182725
509 => 0.58082160769983
510 => 0.57286898471406
511 => 0.57172288749849
512 => 0.57596060959831
513 => 0.5709993468806
514 => 0.5733206904804
515 => 0.57106965801344
516 => 0.57056290319113
517 => 0.56652499454974
518 => 0.56478535248242
519 => 0.56546751096207
520 => 0.56313895239423
521 => 0.56173591162945
522 => 0.56943027355039
523 => 0.56531948636571
524 => 0.56880023645735
525 => 0.56483348242224
526 => 0.55108298470409
527 => 0.5431749280575
528 => 0.51720151253972
529 => 0.52456754096064
530 => 0.52945122542442
531 => 0.52783716773828
601 => 0.53130478820552
602 => 0.53151767193937
603 => 0.53039031317726
604 => 0.52908497615434
605 => 0.52844961028125
606 => 0.53318510695378
607 => 0.53593422216168
608 => 0.52994136849563
609 => 0.52853732673061
610 => 0.5345964326615
611 => 0.53829248377912
612 => 0.56558204859985
613 => 0.56356034949379
614 => 0.56863441751157
615 => 0.56806315532069
616 => 0.57338158696575
617 => 0.58207497496851
618 => 0.56439888644939
619 => 0.56746684422315
620 => 0.56671465182652
621 => 0.57492689117755
622 => 0.57495252889241
623 => 0.57002888116968
624 => 0.57269807047723
625 => 0.57120820223114
626 => 0.5739005955196
627 => 0.56353334846966
628 => 0.57615953630133
629 => 0.58331777118831
630 => 0.58341716328666
701 => 0.58681010981183
702 => 0.59025753998761
703 => 0.59687458200213
704 => 0.59007299427723
705 => 0.57783760008136
706 => 0.57872095602222
707 => 0.57154734888193
708 => 0.57166793851398
709 => 0.57102422160734
710 => 0.57295606450092
711 => 0.56395727934785
712 => 0.56606927623676
713 => 0.56311246822445
714 => 0.56746041669999
715 => 0.56278274288194
716 => 0.56671428909657
717 => 0.56841101410998
718 => 0.57467196593735
719 => 0.56185799520641
720 => 0.53572944145647
721 => 0.5412219802328
722 => 0.533098083953
723 => 0.53384998148355
724 => 0.53536893415886
725 => 0.53044551156778
726 => 0.53138474544328
727 => 0.53135118939996
728 => 0.53106202154707
729 => 0.52978124917952
730 => 0.52792387585349
731 => 0.53532307951503
801 => 0.53658034840007
802 => 0.53937510138886
803 => 0.54769039058442
804 => 0.54685949710576
805 => 0.5482147188429
806 => 0.54525627739998
807 => 0.53398721509707
808 => 0.53459917939721
809 => 0.52696797476837
810 => 0.53917995432921
811 => 0.53628799637895
812 => 0.53442353227512
813 => 0.53391479597025
814 => 0.54225069715937
815 => 0.5447449294444
816 => 0.54319069126607
817 => 0.54000290341795
818 => 0.54612439847122
819 => 0.54776225230233
820 => 0.54812890737339
821 => 0.55897502292752
822 => 0.54873508474755
823 => 0.5511999396437
824 => 0.57043003391961
825 => 0.55299099198298
826 => 0.56222884143385
827 => 0.56177669677468
828 => 0.56650246796197
829 => 0.5613890456024
830 => 0.56145243260093
831 => 0.56564859726377
901 => 0.55975584077709
902 => 0.55829671140097
903 => 0.55628093461834
904 => 0.5606823094775
905 => 0.5633207346485
906 => 0.58458450381701
907 => 0.59832186844555
908 => 0.5977254932173
909 => 0.60317524643582
910 => 0.60072008269686
911 => 0.59279171134427
912 => 0.60632447448125
913 => 0.60204214198985
914 => 0.60239517227741
915 => 0.60238203247248
916 => 0.60522940921125
917 => 0.60321178183358
918 => 0.599234831167
919 => 0.60187491661599
920 => 0.6097150265517
921 => 0.63405096835607
922 => 0.64766968379814
923 => 0.63323110458629
924 => 0.64319064318634
925 => 0.63721846897277
926 => 0.63613314726137
927 => 0.64238847350632
928 => 0.6486547488718
929 => 0.64825561422087
930 => 0.64370662008233
1001 => 0.64113700871993
1002 => 0.66059496683902
1003 => 0.67493125892351
1004 => 0.67395361991507
1005 => 0.67826860055308
1006 => 0.69093751716363
1007 => 0.69209580412646
1008 => 0.69194988659207
1009 => 0.68907895149993
1010 => 0.70155314516973
1011 => 0.71195933699162
1012 => 0.68841441297539
1013 => 0.69738001181509
1014 => 0.70140495798778
1015 => 0.707314773117
1016 => 0.71728562184003
1017 => 0.72811660819025
1018 => 0.72964822841589
1019 => 0.72856147057102
1020 => 0.72141814392052
1021 => 0.73326953842546
1022 => 0.74021180737706
1023 => 0.74434576966674
1024 => 0.75482881020762
1025 => 0.70142981468508
1026 => 0.66363135155195
1027 => 0.65772857571729
1028 => 0.66973210249227
1029 => 0.6728973367765
1030 => 0.67162143480539
1031 => 0.62907582806313
1101 => 0.65750458190281
1102 => 0.68809153067678
1103 => 0.68926649994846
1104 => 0.70457896604765
1105 => 0.70956533268873
1106 => 0.72189387494939
1107 => 0.72112272127429
1108 => 0.72412452512481
1109 => 0.72343446240357
1110 => 0.74627049086058
1111 => 0.77146202143171
1112 => 0.7705897188322
1113 => 0.76696813825993
1114 => 0.77234680298099
1115 => 0.79834716221888
1116 => 0.79595346578752
1117 => 0.79827873797601
1118 => 0.82893462683351
1119 => 0.8687916430976
1120 => 0.85027405746392
1121 => 0.89045188999727
1122 => 0.91574170584163
1123 => 0.95947782732868
1124 => 0.95400184951356
1125 => 0.97102800065799
1126 => 0.94419870635345
1127 => 0.88259322353523
1128 => 0.87284392006293
1129 => 0.89236227250616
1130 => 0.94034623741484
1201 => 0.89085108669075
1202 => 0.90086389121961
1203 => 0.8979802028417
1204 => 0.89782654334293
1205 => 0.90369110143272
1206 => 0.8951842540487
1207 => 0.86052582745359
1208 => 0.87640958011874
1209 => 0.87027610041427
1210 => 0.87708165342758
1211 => 0.91380841621684
1212 => 0.89757063893103
1213 => 0.88046545961035
1214 => 0.90191915042165
1215 => 0.92923707111242
1216 => 0.92752756473061
1217 => 0.92421040783168
1218 => 0.9429090475903
1219 => 0.97379372228413
1220 => 0.9821417257492
1221 => 0.9883040512397
1222 => 0.98915373181149
1223 => 0.99790596977454
1224 => 0.95084298039929
1225 => 1.0255331532011
1226 => 1.0384300827696
1227 => 1.0360059945337
1228 => 1.0503403889633
1229 => 1.0461228464936
1230 => 1.0400122891672
1231 => 1.0627353533513
]
'min_raw' => 0.3917335428325
'max_raw' => 1.0627353533513
'avg_raw' => 0.72723444809188
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.391733'
'max' => '$1.06'
'avg' => '$0.727234'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.13509877500715
'max_diff' => 0.48981631285247
'year' => 2032
]
7 => [
'items' => [
101 => 1.0366851939209
102 => 0.99971027223348
103 => 0.97942509891472
104 => 1.0061382514991
105 => 1.0224510416219
106 => 1.0332327582047
107 => 1.0364952991282
108 => 0.95449634629334
109 => 0.91030345858579
110 => 0.93863059293384
111 => 0.97319165187285
112 => 0.95065099197185
113 => 0.95153454316486
114 => 0.91939748572726
115 => 0.97603506836028
116 => 0.9677834489677
117 => 1.0105928649733
118 => 1.0003760542765
119 => 1.0352854711771
120 => 1.0260926517652
121 => 1.0642515311804
122 => 1.0794741412895
123 => 1.1050352728728
124 => 1.1238381453179
125 => 1.1348795516594
126 => 1.1342166670379
127 => 1.1779682197695
128 => 1.1521694576865
129 => 1.1197601322089
130 => 1.1191739497611
131 => 1.1359591986697
201 => 1.1711364755739
202 => 1.1802574316666
203 => 1.1853548018187
204 => 1.17754800199
205 => 1.1495452947628
206 => 1.1374538677591
207 => 1.1477561138886
208 => 1.1351573521543
209 => 1.156906349496
210 => 1.1867723681812
211 => 1.1806051534258
212 => 1.2012212277128
213 => 1.2225566957256
214 => 1.2530673732198
215 => 1.2610439941239
216 => 1.2742290451546
217 => 1.2878007937289
218 => 1.292159673602
219 => 1.3004821277609
220 => 1.3004382643194
221 => 1.325518540093
222 => 1.3531828609427
223 => 1.3636255016329
224 => 1.3876377780896
225 => 1.3465175961481
226 => 1.3777077265054
227 => 1.4058420048272
228 => 1.3722991583717
301 => 1.4185301577298
302 => 1.4203252026731
303 => 1.4474282501426
304 => 1.4199541192167
305 => 1.4036400679734
306 => 1.4507381226332
307 => 1.4735273877083
308 => 1.4666630756025
309 => 1.4144253215445
310 => 1.3840207081
311 => 1.304445970104
312 => 1.3987056846332
313 => 1.4446168419867
314 => 1.4143064227382
315 => 1.4295932351554
316 => 1.5129931269377
317 => 1.5447464059854
318 => 1.5381419459156
319 => 1.5392579909488
320 => 1.5563914839601
321 => 1.6323708275592
322 => 1.5868422436872
323 => 1.6216471401338
324 => 1.6401075317107
325 => 1.6572545722162
326 => 1.6151468601126
327 => 1.5603653453511
328 => 1.5430137400545
329 => 1.411292648897
330 => 1.4044359940666
331 => 1.4005871459324
401 => 1.3763207028764
402 => 1.3572539257725
403 => 1.3420913167155
404 => 1.3023001026115
405 => 1.3157284692883
406 => 1.2523095790783
407 => 1.2928827376072
408 => 1.1916646575295
409 => 1.2759620823297
410 => 1.2300828265445
411 => 1.2608895128856
412 => 1.2607820312591
413 => 1.2040571544363
414 => 1.1713394293029
415 => 1.1921884371509
416 => 1.2145402285601
417 => 1.2181667315158
418 => 1.2471464125194
419 => 1.2552340185713
420 => 1.2307281946597
421 => 1.1895671377985
422 => 1.1991279125236
423 => 1.1711456805083
424 => 1.1221078952224
425 => 1.1573276887323
426 => 1.1693532747416
427 => 1.1746644586058
428 => 1.1264414288049
429 => 1.1112887058685
430 => 1.1032215233208
501 => 1.1833421502101
502 => 1.1877313390132
503 => 1.1652756285278
504 => 1.2667775692594
505 => 1.2438045539872
506 => 1.2694710405716
507 => 1.1982603724286
508 => 1.2009807158496
509 => 1.1672684443491
510 => 1.1861450637346
511 => 1.1728036775748
512 => 1.1846200194306
513 => 1.1917026860184
514 => 1.2254094256668
515 => 1.2763469591526
516 => 1.2203747627841
517 => 1.1959868752897
518 => 1.2111169835285
519 => 1.2514104555909
520 => 1.3124571283502
521 => 1.2763162693979
522 => 1.2923549688893
523 => 1.2958587112161
524 => 1.269209779832
525 => 1.3134397124619
526 => 1.3371428926816
527 => 1.361457450905
528 => 1.3825691005319
529 => 1.351745681662
530 => 1.3847311582163
531 => 1.358150686834
601 => 1.3343052561654
602 => 1.3343414198407
603 => 1.3193828328562
604 => 1.2903986856703
605 => 1.2850535642326
606 => 1.3128595609658
607 => 1.3351573371082
608 => 1.3369938887504
609 => 1.3493390833239
610 => 1.3566448423069
611 => 1.4282512120378
612 => 1.4570518863025
613 => 1.4922688056246
614 => 1.5059877804173
615 => 1.5472769760188
616 => 1.5139325972261
617 => 1.5067183311283
618 => 1.406564248192
619 => 1.422964473662
620 => 1.449222817026
621 => 1.4069972386025
622 => 1.4337796491238
623 => 1.4390670642898
624 => 1.4055624296055
625 => 1.4234587026402
626 => 1.3759315073352
627 => 1.2773829221334
628 => 1.3135494252089
629 => 1.3401801449857
630 => 1.3021748243201
701 => 1.3702978906042
702 => 1.3305018016266
703 => 1.3178883519698
704 => 1.2686787878393
705 => 1.291903807859
706 => 1.3233159799861
707 => 1.3039069096685
708 => 1.344183644864
709 => 1.4012262433136
710 => 1.4418781959143
711 => 1.4449989480577
712 => 1.4188624660047
713 => 1.4607463452954
714 => 1.4610514236303
715 => 1.4138062366898
716 => 1.3848688227511
717 => 1.3782941814193
718 => 1.3947189245003
719 => 1.4146615947755
720 => 1.446105627464
721 => 1.4651065978683
722 => 1.5146510513465
723 => 1.5280563599069
724 => 1.5427847297792
725 => 1.5624663739897
726 => 1.5860992341343
727 => 1.5343918815573
728 => 1.5364463110698
729 => 1.4882971402871
730 => 1.4368428460163
731 => 1.4758902414995
801 => 1.5269395168365
802 => 1.5152287566698
803 => 1.5139110569219
804 => 1.5161270623984
805 => 1.5072975316703
806 => 1.4673618914251
807 => 1.4473064629042
808 => 1.4731830823816
809 => 1.486935353998
810 => 1.5082639279509
811 => 1.5056347310196
812 => 1.5605748470007
813 => 1.5819229147681
814 => 1.5764611654979
815 => 1.5774662588079
816 => 1.6161159157842
817 => 1.6591022832499
818 => 1.6993646889324
819 => 1.7403213373031
820 => 1.690946499127
821 => 1.6658770013178
822 => 1.6917423238726
823 => 1.6780178196442
824 => 1.7568828918928
825 => 1.7623433383842
826 => 1.8412027077903
827 => 1.9160496397558
828 => 1.8690396228103
829 => 1.9133679514122
830 => 1.9613126529368
831 => 2.0538057609253
901 => 2.0226573361015
902 => 1.9987981308446
903 => 1.9762512971636
904 => 2.0231676788447
905 => 2.0835248543698
906 => 2.0965252118841
907 => 2.117590757576
908 => 2.0954429120533
909 => 2.1221175524803
910 => 2.2162907546182
911 => 2.1908443241107
912 => 2.1547063020722
913 => 2.2290470006696
914 => 2.2559506104999
915 => 2.4447742338185
916 => 2.6831718581731
917 => 2.5844736762871
918 => 2.52320852982
919 => 2.5376072924685
920 => 2.6246620346139
921 => 2.6526212548116
922 => 2.5766184561931
923 => 2.6034639295407
924 => 2.7513851270748
925 => 2.8307401036717
926 => 2.7229653866579
927 => 2.4256192168242
928 => 2.1514524685823
929 => 2.2241738361056
930 => 2.2159294898352
1001 => 2.3748523630404
1002 => 2.1902374351588
1003 => 2.1933458770729
1004 => 2.3555551069938
1005 => 2.3122804654211
1006 => 2.2421810882707
1007 => 2.1519642716121
1008 => 1.985190141973
1009 => 1.8374736445111
1010 => 2.1271797131117
1011 => 2.1146870606373
1012 => 2.0965958485471
1013 => 2.1368558833803
1014 => 2.3323471845201
1015 => 2.3278404772853
1016 => 2.2991711051993
1017 => 2.3209165712463
1018 => 2.2383690029349
1019 => 2.2596433908619
1020 => 2.1514090391686
1021 => 2.2003354863998
1022 => 2.2420306864906
1023 => 2.2504016152168
1024 => 2.2692617450672
1025 => 2.1081040004538
1026 => 2.1804590964424
1027 => 2.2229609365801
1028 => 2.030936076608
1029 => 2.2191652225054
1030 => 2.1052986026637
1031 => 2.0666505616702
1101 => 2.1186850573758
1102 => 2.0984071637941
1103 => 2.0809734216505
1104 => 2.0712450939846
1105 => 2.109453484793
1106 => 2.1076710176929
1107 => 2.0451546744012
1108 => 1.9636046530694
1109 => 1.9909755170166
1110 => 1.9810314255414
1111 => 1.9449927552218
1112 => 1.9692784676916
1113 => 1.8623364806927
1114 => 1.6783483504221
1115 => 1.7998965449877
1116 => 1.7952170717159
1117 => 1.7928574690951
1118 => 1.8841975779658
1119 => 1.8754173340727
1120 => 1.8594811054304
1121 => 1.9447000738855
1122 => 1.9135940040425
1123 => 2.0094555817867
1124 => 2.0725962168272
1125 => 2.0565817093954
1126 => 2.1159657818361
1127 => 1.9916060864406
1128 => 2.032913388806
1129 => 2.0414267665741
1130 => 1.9436484850429
1201 => 1.8768538905608
1202 => 1.8723994526229
1203 => 1.7565868306529
1204 => 1.8184529985025
1205 => 1.8728926660141
1206 => 1.8468202899649
1207 => 1.8385665545978
1208 => 1.8807330985715
1209 => 1.8840098001703
1210 => 1.8093006564687
1211 => 1.8248350531752
1212 => 1.8896160698196
1213 => 1.8232027377667
1214 => 1.6941724821441
1215 => 1.6621711947668
1216 => 1.6579016331299
1217 => 1.5711116037086
1218 => 1.6643096738095
1219 => 1.6236262186575
1220 => 1.75214476602
1221 => 1.6787356610253
1222 => 1.6755711412299
1223 => 1.670787505425
1224 => 1.5960837418512
1225 => 1.612439118402
1226 => 1.6668068810511
1227 => 1.686205911261
1228 => 1.6841824334786
1229 => 1.6665404493539
1230 => 1.6746168593446
1231 => 1.6485999287568
]
'min_raw' => 0.91030345858579
'max_raw' => 2.8307401036717
'avg_raw' => 1.8705217811287
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.9103034'
'max' => '$2.83'
'avg' => '$1.87'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.51856991575328
'max_diff' => 1.7680047503204
'year' => 2033
]
8 => [
'items' => [
101 => 1.6394128090707
102 => 1.6104157322249
103 => 1.5677980399086
104 => 1.5737242914147
105 => 1.4892874914102
106 => 1.4432818413676
107 => 1.4305480837805
108 => 1.4135199709548
109 => 1.4324714544343
110 => 1.4890482925647
111 => 1.4208046223336
112 => 1.3038056364593
113 => 1.310837474867
114 => 1.3266359279973
115 => 1.2971956151061
116 => 1.2693328296928
117 => 1.2935572610304
118 => 1.2439832483451
119 => 1.3326267105877
120 => 1.3302291533545
121 => 1.3632699544035
122 => 1.383931045365
123 => 1.3363139198064
124 => 1.3243383414988
125 => 1.3311601751625
126 => 1.218410460524
127 => 1.3540558972748
128 => 1.3552289646446
129 => 1.3451844496344
130 => 1.4174114571212
131 => 1.5698329710869
201 => 1.5124858663918
202 => 1.4902793341284
203 => 1.4480647000629
204 => 1.5043131934983
205 => 1.4999941868156
206 => 1.480462000662
207 => 1.4686488735322
208 => 1.4904149224792
209 => 1.4659518191935
210 => 1.4615575736423
211 => 1.4349332265882
212 => 1.4254295460205
213 => 1.4183933992805
214 => 1.4106472930774
215 => 1.4277332731521
216 => 1.3890141944549
217 => 1.3423227812242
218 => 1.3384408954221
219 => 1.3491591234205
220 => 1.3444171054094
221 => 1.3384181924643
222 => 1.3269646339453
223 => 1.3235666077992
224 => 1.3346085442859
225 => 1.3221428417773
226 => 1.3405366648707
227 => 1.335534562766
228 => 1.3075932270278
301 => 1.2727679774906
302 => 1.2724579597213
303 => 1.2649549168334
304 => 1.2553986636256
305 => 1.2527403326006
306 => 1.2915171469906
307 => 1.3717839922855
308 => 1.3560256899313
309 => 1.367412678358
310 => 1.4234253913007
311 => 1.4412301483842
312 => 1.4285927535351
313 => 1.4112939080252
314 => 1.4120549694345
315 => 1.4711703612586
316 => 1.4748573157343
317 => 1.4841730602376
318 => 1.4961464245536
319 => 1.4306318692524
320 => 1.4089692397714
321 => 1.3987042841264
322 => 1.3670921937776
323 => 1.401183123003
324 => 1.3813197984625
325 => 1.3840000395708
326 => 1.3822545290329
327 => 1.3832076958175
328 => 1.3326019329334
329 => 1.3510400131678
330 => 1.3203831286537
331 => 1.2793370016861
401 => 1.2791994006759
402 => 1.2892453821012
403 => 1.2832696392501
404 => 1.2671890688883
405 => 1.2694732380101
406 => 1.2494615129879
407 => 1.2719030237517
408 => 1.2725465659808
409 => 1.2639053619394
410 => 1.2984796056028
411 => 1.3126447014416
412 => 1.306956875829
413 => 1.3122456284341
414 => 1.3566805185386
415 => 1.3639253444558
416 => 1.3671430175619
417 => 1.3628317618597
418 => 1.3130578166549
419 => 1.3152655027799
420 => 1.2990669668175
421 => 1.2853809108889
422 => 1.2859282813521
423 => 1.2929646931622
424 => 1.3236931162166
425 => 1.3883592709953
426 => 1.3908133042989
427 => 1.3937876642519
428 => 1.3816894475293
429 => 1.3780405096014
430 => 1.3828544005991
501 => 1.4071396083491
502 => 1.4696077560516
503 => 1.4475273405462
504 => 1.4295756190382
505 => 1.4453241185501
506 => 1.4428997604911
507 => 1.4224357386851
508 => 1.4218613817505
509 => 1.3825843811613
510 => 1.3680645683375
511 => 1.3559307259527
512 => 1.3426808868306
513 => 1.3348259380604
514 => 1.3468947093818
515 => 1.3496549801765
516 => 1.3232664007561
517 => 1.3196697348903
518 => 1.341219218482
519 => 1.331736094199
520 => 1.3414897226943
521 => 1.3437526481702
522 => 1.343388265049
523 => 1.3334867941677
524 => 1.3397976964413
525 => 1.3248705311936
526 => 1.3086394809745
527 => 1.2982850821648
528 => 1.2892494958917
529 => 1.2942629643074
530 => 1.2763908648286
531 => 1.270673220511
601 => 1.3376597047508
602 => 1.3871433408848
603 => 1.3864238292177
604 => 1.3820439869879
605 => 1.3755364298529
606 => 1.4066635400116
607 => 1.3958194772385
608 => 1.4037094389577
609 => 1.4057177653559
610 => 1.4117963644939
611 => 1.4139689412126
612 => 1.4074019054174
613 => 1.3853621311928
614 => 1.330441109304
615 => 1.3048752253583
616 => 1.2964380578228
617 => 1.2967447328382
618 => 1.2882852668544
619 => 1.2907769587133
620 => 1.2874187581112
621 => 1.2810591386066
622 => 1.2938702757239
623 => 1.2953466399327
624 => 1.2923563674478
625 => 1.2930606848674
626 => 1.2683025058549
627 => 1.2701848164333
628 => 1.2597038719404
629 => 1.2577388211976
630 => 1.2312439061998
701 => 1.1843043237818
702 => 1.2103134089769
703 => 1.178898091492
704 => 1.1670006347408
705 => 1.2233213445671
706 => 1.2176683073938
707 => 1.2079927650694
708 => 1.193680621412
709 => 1.1883721081098
710 => 1.1561192617571
711 => 1.1542135915324
712 => 1.1701989730849
713 => 1.1628222695218
714 => 1.1524625839431
715 => 1.1149408529216
716 => 1.0727540042352
717 => 1.07402736002
718 => 1.0874462116729
719 => 1.1264633326324
720 => 1.1112186684705
721 => 1.1001584897087
722 => 1.0980872506943
723 => 1.1240131433914
724 => 1.1607037132002
725 => 1.1779181076493
726 => 1.1608591655592
727 => 1.1412627714047
728 => 1.142455513116
729 => 1.1503902893631
730 => 1.151224122155
731 => 1.1384688841023
801 => 1.1420594088999
802 => 1.1366050734079
803 => 1.1031318265614
804 => 1.1025264016707
805 => 1.0943115270656
806 => 1.0940627839273
807 => 1.0800872329274
808 => 1.0781319567341
809 => 1.0503826519685
810 => 1.0686473283979
811 => 1.0563963423876
812 => 1.0379312167547
813 => 1.0347478221357
814 => 1.0346521254494
815 => 1.0536116807478
816 => 1.0684257749554
817 => 1.0566094535344
818 => 1.0539191061966
819 => 1.0826449772417
820 => 1.0789893483091
821 => 1.0758235972297
822 => 1.1574184750995
823 => 1.0928297623379
824 => 1.064665396979
825 => 1.0298066465794
826 => 1.0411568314826
827 => 1.0435484822106
828 => 0.95971947126162
829 => 0.92571005195987
830 => 0.91403930087344
831 => 0.907322618623
901 => 0.91038349506731
902 => 0.87977102878872
903 => 0.9003431124114
904 => 0.8738353042215
905 => 0.86939118391459
906 => 0.91679042864544
907 => 0.92338575664736
908 => 0.89524803838335
909 => 0.91331700859165
910 => 0.90676494881664
911 => 0.87428970451089
912 => 0.87304938905014
913 => 0.85675445301755
914 => 0.83125603344791
915 => 0.81960257149064
916 => 0.8135333473233
917 => 0.81603762750157
918 => 0.8147713868112
919 => 0.80650830978834
920 => 0.81524501671374
921 => 0.79292634077589
922 => 0.78403886418364
923 => 0.78002459719482
924 => 0.76021548768492
925 => 0.79174059006615
926 => 0.79795143237803
927 => 0.80417451196789
928 => 0.85834217112073
929 => 0.85563610794567
930 => 0.88009760114199
1001 => 0.87914707249818
1002 => 0.87217025838867
1003 => 0.84273622729087
1004 => 0.8544681074753
1005 => 0.81835920380661
1006 => 0.84541444960197
1007 => 0.83306756527504
1008 => 0.84123995559119
1009 => 0.82654526092803
1010 => 0.8346779116837
1011 => 0.79942425349724
1012 => 0.76650488351507
1013 => 0.77975259897221
1014 => 0.79415438073415
1015 => 0.82538111309978
1016 => 0.80678272891776
1017 => 0.81347141115238
1018 => 0.79106544533828
1019 => 0.74483553791607
1020 => 0.74509719417153
1021 => 0.7379857300879
1022 => 0.73184038682889
1023 => 0.80891897706856
1024 => 0.79933303594007
1025 => 0.78405909332876
1026 => 0.80450387247635
1027 => 0.80990979658524
1028 => 0.81006369564479
1029 => 0.82497967875473
1030 => 0.83294034161435
1031 => 0.83434344294684
1101 => 0.85781406465149
1102 => 0.8656811074619
1103 => 0.89808434341241
1104 => 0.83226493498877
1105 => 0.83090942758595
1106 => 0.80479157244596
1107 => 0.78822721580923
1108 => 0.8059257481163
1109 => 0.82160423164979
1110 => 0.80527874663295
1111 => 0.80741051032635
1112 => 0.78549488053238
1113 => 0.7933286869575
1114 => 0.80007621637849
1115 => 0.79635062723367
1116 => 0.79077323996331
1117 => 0.82031877479511
1118 => 0.81865169993001
1119 => 0.8461651812143
1120 => 0.86761390738332
1121 => 0.90605385909663
1122 => 0.86593976556379
1123 => 0.86447784855637
1124 => 0.87876832180274
1125 => 0.8656789196649
1126 => 0.87395096998521
1127 => 0.90472110390463
1128 => 0.9053712283474
1129 => 0.89448080629289
1130 => 0.89381812312115
1201 => 0.89590974780488
1202 => 0.90816045890821
1203 => 0.90387968402238
1204 => 0.90883350509623
1205 => 0.91502833420467
1206 => 0.94065277395031
1207 => 0.94683073962185
1208 => 0.93182148594796
1209 => 0.93317665350322
1210 => 0.92756278061596
1211 => 0.92213984974848
1212 => 0.93432980638312
1213 => 0.9566071917271
1214 => 0.95646860526908
1215 => 0.96163652565839
1216 => 0.96485609724757
1217 => 0.95103533911637
1218 => 0.94203853377632
1219 => 0.94548848142529
1220 => 0.95100502284609
1221 => 0.94369954139262
1222 => 0.8986067256336
1223 => 0.91228500539466
1224 => 0.91000827080871
1225 => 0.90676592389794
1226 => 0.92051953996869
1227 => 0.9191929701465
1228 => 0.8794570537005
1229 => 0.88200081814851
1230 => 0.8796117484418
1231 => 0.88733132142186
]
'min_raw' => 0.73184038682889
'max_raw' => 1.6394128090707
'avg_raw' => 1.1856265979498
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.73184'
'max' => '$1.63'
'avg' => '$1.18'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.17846307175689
'max_diff' => -1.191327294601
'year' => 2034
]
9 => [
'items' => [
101 => 0.8652620373905
102 => 0.87205040051965
103 => 0.8763079982373
104 => 0.87881575600141
105 => 0.88787549663094
106 => 0.8868124406352
107 => 0.88780941557765
108 => 0.9012426192484
109 => 0.96918315369625
110 => 0.97288100708391
111 => 0.95467142457675
112 => 0.96194579362023
113 => 0.94798059578638
114 => 0.95735552665094
115 => 0.96376961625104
116 => 0.93478557870668
117 => 0.93306933210815
118 => 0.91904649493515
119 => 0.92658157333783
120 => 0.91459272180786
121 => 0.91753436662109
122 => 0.90930927127532
123 => 0.92411280529757
124 => 0.94066545657106
125 => 0.94484730996675
126 => 0.93384665408377
127 => 0.92588145424594
128 => 0.91189718723066
129 => 0.93515333493679
130 => 0.94195414124433
131 => 0.93511761319645
201 => 0.93353344026667
202 => 0.93053143542727
203 => 0.93417032978474
204 => 0.94191710259263
205 => 0.93826386759686
206 => 0.94067689367328
207 => 0.93148092657165
208 => 0.95103991436239
209 => 0.98210429410084
210 => 0.98220417116124
211 => 0.97855091647317
212 => 0.97705608336528
213 => 0.98080454437327
214 => 0.98283793070019
215 => 0.99495976624983
216 => 1.0079669787498
217 => 1.0686659639959
218 => 1.0516219318297
219 => 1.1054776825388
220 => 1.1480705890557
221 => 1.1608423393581
222 => 1.1490929300372
223 => 1.1088988354411
224 => 1.1069267214042
225 => 1.1669936682398
226 => 1.1500220045183
227 => 1.148003279122
228 => 1.1265274515959
301 => 1.1392223254968
302 => 1.1364457703521
303 => 1.1320628422225
304 => 1.1562837772928
305 => 1.2016232055267
306 => 1.194556630446
307 => 1.1892817599572
308 => 1.1661688129671
309 => 1.1800879695188
310 => 1.1751316244746
311 => 1.1964272281586
312 => 1.1838121842916
313 => 1.1498934274735
314 => 1.1552951012944
315 => 1.1544786491631
316 => 1.1712811761725
317 => 1.1662374746286
318 => 1.1534937854881
319 => 1.2014682402901
320 => 1.1983530460432
321 => 1.2027696792527
322 => 1.2047140177805
323 => 1.2339152230137
324 => 1.2458780224634
325 => 1.2485937873768
326 => 1.2599575216179
327 => 1.2483110473168
328 => 1.2949052483168
329 => 1.3258876731349
330 => 1.361875353902
331 => 1.4144630280795
401 => 1.4342364800335
402 => 1.4306645829233
403 => 1.4705359573098
404 => 1.5421839307916
405 => 1.4451466868579
406 => 1.5473271403449
407 => 1.514977988501
408 => 1.4382787314154
409 => 1.433340203484
410 => 1.485281830879
411 => 1.6004833612448
412 => 1.5716266844931
413 => 1.6005305604303
414 => 1.5668126538298
415 => 1.5651382755703
416 => 1.5988929569665
417 => 1.6777626099209
418 => 1.640294594187
419 => 1.5865750060981
420 => 1.6262407139736
421 => 1.5918786069239
422 => 1.5144511623928
423 => 1.5716046183362
424 => 1.5333877299836
425 => 1.5445414497264
426 => 1.6248676647106
427 => 1.6152026020069
428 => 1.6277100881062
429 => 1.6056347025189
430 => 1.5850128114115
501 => 1.5465205202578
502 => 1.5351248504942
503 => 1.5382742036436
504 => 1.5351232898312
505 => 1.5135872066931
506 => 1.5089364915899
507 => 1.5011850959987
508 => 1.5035875776145
509 => 1.4890126861524
510 => 1.5165185176677
511 => 1.5216238423775
512 => 1.5416402927584
513 => 1.5437184670389
514 => 1.5994639964333
515 => 1.5687602956084
516 => 1.5893589889517
517 => 1.5875164479367
518 => 1.439941036889
519 => 1.4602756264625
520 => 1.4919098664931
521 => 1.4776586842385
522 => 1.4575108467936
523 => 1.4412403877981
524 => 1.4165889786801
525 => 1.4512853636253
526 => 1.4969074202791
527 => 1.5448755176835
528 => 1.6025060437207
529 => 1.5896435812025
530 => 1.5437981550862
531 => 1.5458547474117
601 => 1.5585677919285
602 => 1.5421032441773
603 => 1.5372475276194
604 => 1.557900691038
605 => 1.5580429180237
606 => 1.5390984660289
607 => 1.5180451744349
608 => 1.5179569603744
609 => 1.5142107304859
610 => 1.5674790998047
611 => 1.5967713168904
612 => 1.6001296223725
613 => 1.5965452761739
614 => 1.5979247487681
615 => 1.5808802530559
616 => 1.6198389158659
617 => 1.6555912374727
618 => 1.6460088515452
619 => 1.6316434928233
620 => 1.6202007926719
621 => 1.6433133150437
622 => 1.642284150805
623 => 1.6552789721331
624 => 1.654689451976
625 => 1.6503197823233
626 => 1.6460090075998
627 => 1.6631007421104
628 => 1.6581785970562
629 => 1.6532488065512
630 => 1.6433613569803
701 => 1.6447052255901
702 => 1.63034234725
703 => 1.6236974225292
704 => 1.5237736981329
705 => 1.4970708138723
706 => 1.505472084848
707 => 1.5082380013921
708 => 1.4966168719412
709 => 1.5132785863506
710 => 1.510681875809
711 => 1.5207841575014
712 => 1.5144726904901
713 => 1.5147317152977
714 => 1.5332923940314
715 => 1.5386806380306
716 => 1.5359401336442
717 => 1.5378594889774
718 => 1.5820902225233
719 => 1.5758020266323
720 => 1.5724615478936
721 => 1.5733868833335
722 => 1.5846887840721
723 => 1.587852699218
724 => 1.5744469684204
725 => 1.5807691885622
726 => 1.6076883995165
727 => 1.6171085998551
728 => 1.6471733573833
729 => 1.6344013140269
730 => 1.6578449523687
731 => 1.7299027041062
801 => 1.7874674222113
802 => 1.7345285284793
803 => 1.8402388024566
804 => 1.9225494139862
805 => 1.9193901956202
806 => 1.9050374366212
807 => 1.8113289937357
808 => 1.7250970874782
809 => 1.7972337386627
810 => 1.7974176298217
811 => 1.7912210275101
812 => 1.7527344627433
813 => 1.7898817784807
814 => 1.7928303975047
815 => 1.7911799549523
816 => 1.7616723959821
817 => 1.7166198073432
818 => 1.7254229753226
819 => 1.7398427440526
820 => 1.7125431135678
821 => 1.7038192274849
822 => 1.7200385915002
823 => 1.7723007617959
824 => 1.7624209012356
825 => 1.7621628981488
826 => 1.8044331313385
827 => 1.7741767668619
828 => 1.7255340114624
829 => 1.7132510742049
830 => 1.6696549217188
831 => 1.6997669395251
901 => 1.7008506174386
902 => 1.6843585730234
903 => 1.7268722499739
904 => 1.7264804789564
905 => 1.7668408878951
906 => 1.8439948311085
907 => 1.8211766135853
908 => 1.7946415092209
909 => 1.7975266108039
910 => 1.8291690541326
911 => 1.8100373105694
912 => 1.8169172189459
913 => 1.8291586405672
914 => 1.8365441941688
915 => 1.7964639432979
916 => 1.7871193195599
917 => 1.7680034989092
918 => 1.7630165381151
919 => 1.7785859751704
920 => 1.7744839785827
921 => 1.7007595385062
922 => 1.6930549243193
923 => 1.6932912138367
924 => 1.6739175951293
925 => 1.6443681763993
926 => 1.7220222845177
927 => 1.7157855728673
928 => 1.7089007258883
929 => 1.7097440803588
930 => 1.7434510967512
1001 => 1.7238993249985
1002 => 1.7758809146753
1003 => 1.7651950625474
1004 => 1.7542351586338
1005 => 1.7527201660661
1006 => 1.7485015381144
1007 => 1.7340342931858
1008 => 1.7165642255878
1009 => 1.7050289737283
1010 => 1.5727991007738
1011 => 1.5973401960484
1012 => 1.6255724891705
1013 => 1.6353181636225
1014 => 1.6186475130923
1015 => 1.7346925520775
1016 => 1.7558950989379
1017 => 1.6916712014898
1018 => 1.6796575325217
1019 => 1.735480166215
1020 => 1.7018122940585
1021 => 1.7169729348291
1022 => 1.6842039219103
1023 => 1.7507880262823
1024 => 1.7502807669659
1025 => 1.7243780464949
1026 => 1.7462708484628
1027 => 1.7424664353655
1028 => 1.7132223277494
1029 => 1.7517151166555
1030 => 1.7517342085986
1031 => 1.726803403319
1101 => 1.6976896808075
1102 => 1.6924848348579
1103 => 1.6885636826075
1104 => 1.7160085717465
1105 => 1.7406155735305
1106 => 1.7864031032575
1107 => 1.7979151761158
1108 => 1.8428475628836
1109 => 1.8160925142816
1110 => 1.827952680791
1111 => 1.8408285692599
1112 => 1.847001743687
1113 => 1.8369428872288
1114 => 1.9067413787875
1115 => 1.9126345100456
1116 => 1.914610425981
1117 => 1.8910747673442
1118 => 1.9119799408032
1119 => 1.9021991024483
1120 => 1.9276461266525
1121 => 1.9316365449717
1122 => 1.9282568026186
1123 => 1.9295234243776
1124 => 1.8699627251299
1125 => 1.8668741886662
1126 => 1.824761774831
1127 => 1.8419228947481
1128 => 1.809841003617
1129 => 1.8200145017747
1130 => 1.824498882826
1201 => 1.8221564966512
1202 => 1.8428931587199
1203 => 1.8252627597413
1204 => 1.7787332381311
1205 => 1.7321910395837
1206 => 1.7316067401934
1207 => 1.7193530008539
1208 => 1.7104957916958
1209 => 1.712202004406
1210 => 1.7182149205417
1211 => 1.7101463100791
1212 => 1.7118681572102
1213 => 1.7404622921944
1214 => 1.7461966420415
1215 => 1.7267090807061
1216 => 1.648463709903
1217 => 1.6292620996443
1218 => 1.6430638363138
1219 => 1.6364674951314
1220 => 1.3207569896224
1221 => 1.3949284898916
1222 => 1.3508583030578
1223 => 1.3711678727226
1224 => 1.3261836238848
1225 => 1.3476524652567
1226 => 1.3436879541719
1227 => 1.4629535317105
1228 => 1.4610913637617
1229 => 1.4619826850151
1230 => 1.4194375992666
1231 => 1.4872130760889
]
'min_raw' => 0.8652620373905
'max_raw' => 1.9316365449717
'avg_raw' => 1.3984492911811
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.865262'
'max' => '$1.93'
'avg' => '$1.39'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.13342165056161
'max_diff' => 0.29222373590098
'year' => 2035
]
10 => [
'items' => [
101 => 1.5206017130989
102 => 1.5144223649981
103 => 1.5159775737862
104 => 1.489253934153
105 => 1.4622414282617
106 => 1.4322804020335
107 => 1.4879442854708
108 => 1.4817554118467
109 => 1.4959504612539
110 => 1.5320524685995
111 => 1.5373686263194
112 => 1.544513596206
113 => 1.5419526331152
114 => 1.6029651638374
115 => 1.5955761437933
116 => 1.6133815561335
117 => 1.5767544720499
118 => 1.5353074497347
119 => 1.5431851736716
120 => 1.5424264855078
121 => 1.5327675144012
122 => 1.5240478271679
123 => 1.5095320046811
124 => 1.5554622149667
125 => 1.5535975323076
126 => 1.5837845771033
127 => 1.5784487237143
128 => 1.5428145888781
129 => 1.544087268975
130 => 1.5526466542557
131 => 1.5822707844417
201 => 1.5910652432454
202 => 1.5869912995289
203 => 1.596634022125
204 => 1.6042552368994
205 => 1.5975911293624
206 => 1.691940838728
207 => 1.6527602613606
208 => 1.6718566021528
209 => 1.6764109669096
210 => 1.6647450573531
211 => 1.667274975411
212 => 1.6711071119073
213 => 1.6943750943036
214 => 1.7554370127565
215 => 1.7824809207767
216 => 1.8638438523786
217 => 1.780235300685
218 => 1.7752743152341
219 => 1.7899302361408
220 => 1.837698890132
221 => 1.8764108975104
222 => 1.8892539037071
223 => 1.8909513189909
224 => 1.9150456524028
225 => 1.9288560749818
226 => 1.9121199665828
227 => 1.8979378670581
228 => 1.8471393469079
229 => 1.8530194139351
301 => 1.8935272447703
302 => 1.9507469417245
303 => 1.999847394406
304 => 1.9826541272005
305 => 2.1138266194234
306 => 2.1268318362358
307 => 2.1250349357813
308 => 2.1546627551155
309 => 2.0958575673376
310 => 2.0707172102656
311 => 1.901004197949
312 => 1.9486866319062
313 => 2.0179958499541
314 => 2.0088225150492
315 => 1.9584883082621
316 => 1.9998092113965
317 => 1.9861472285962
318 => 1.9753714559254
319 => 2.0247373595167
320 => 1.9704575206785
321 => 2.0174543670397
322 => 1.9571804254613
323 => 1.9827326645968
324 => 1.9682279778407
325 => 1.9776142877995
326 => 1.9227421115746
327 => 1.9523498059188
328 => 1.9215103341488
329 => 1.9214957122238
330 => 1.9208149291752
331 => 1.9570974309494
401 => 1.9582806020296
402 => 1.9314677783987
403 => 1.9276036316185
404 => 1.9418914075463
405 => 1.9251641639092
406 => 1.932990735927
407 => 1.9254012228026
408 => 1.9236926635387
409 => 1.9100785726365
410 => 1.9042132479486
411 => 1.9065131928895
412 => 1.8986622951032
413 => 1.8939318452076
414 => 1.9198739236273
415 => 1.9060141176281
416 => 1.9177497095803
417 => 1.904375521401
418 => 1.8580147583152
419 => 1.8313521932083
420 => 1.7437810093842
421 => 1.768616088485
422 => 1.7850817716226
423 => 1.7796398634438
424 => 1.7913311879507
425 => 1.7920489403224
426 => 1.7882479715463
427 => 1.7838469366378
428 => 1.7817047562368
429 => 1.7976708138901
430 => 1.8069396477506
501 => 1.7867343232078
502 => 1.78200049837
503 => 1.8024291970493
504 => 1.8148906914423
505 => 1.906899364532
506 => 1.9000830648454
507 => 1.9171906394275
508 => 1.9152645890667
509 => 1.933196052679
510 => 1.9625064172833
511 => 1.902910250736
512 => 1.9132540845682
513 => 1.9107180153866
514 => 1.9384061537188
515 => 1.9384925930644
516 => 1.9218921710092
517 => 1.9308915291164
518 => 1.9258683343054
519 => 1.9349459262544
520 => 1.8999920290074
521 => 1.9425621028142
522 => 1.9666965915076
523 => 1.9670316989066
524 => 1.9784712550041
525 => 1.9900945065336
526 => 2.0124043256727
527 => 1.9894722977865
528 => 1.9482198120072
529 => 1.9511981082358
530 => 1.927011790917
531 => 1.9274183672808
601 => 1.9252480307872
602 => 1.9317613739798
603 => 1.9014213415611
604 => 1.908542086527
605 => 1.8985730018758
606 => 1.9132324137251
607 => 1.8974613098628
608 => 1.9107167924172
609 => 1.9164374192615
610 => 1.9375466554732
611 => 1.8943434585109
612 => 1.8062492153056
613 => 1.8247676932669
614 => 1.7973774097672
615 => 1.7999124847872
616 => 1.805033739782
617 => 1.7884340767737
618 => 1.7916007693602
619 => 1.7914876328173
620 => 1.7905126832122
621 => 1.7861944697544
622 => 1.779932205908
623 => 1.8048791376488
624 => 1.8091181074744
625 => 1.8185408122996
626 => 1.8465763903773
627 => 1.8437749750029
628 => 1.8483441997082
629 => 1.8383696078316
630 => 1.8003751774966
701 => 1.8024384578605
702 => 1.7767093186607
703 => 1.8178828603632
704 => 1.8081324222239
705 => 1.8018462513251
706 => 1.8001310113544
707 => 1.8282360842075
708 => 1.8366455624982
709 => 1.8314053399665
710 => 1.8206574906724
711 => 1.8412965386336
712 => 1.8468186771765
713 => 1.8480548803476
714 => 1.88462331619
715 => 1.8500986496865
716 => 1.8584090800596
717 => 1.9232446855131
718 => 1.8644477380687
719 => 1.8955937924584
720 => 1.8940693551723
721 => 1.910002622673
722 => 1.89276236218
723 => 1.8929760758711
724 => 1.9071237379987
725 => 1.8872558980848
726 => 1.88233634152
727 => 1.8755400093603
728 => 1.8903795519922
729 => 1.8992751866651
730 => 1.9709674690057
731 => 2.017283952963
801 => 2.0152732322434
802 => 2.0336474557093
803 => 2.0253696997493
804 => 1.9986386421928
805 => 2.0442652979365
806 => 2.0298271149589
807 => 2.0310173812211
808 => 2.0309730794514
809 => 2.0405732089237
810 => 2.0337706373536
811 => 2.0203620705194
812 => 2.0292633029356
813 => 2.0556967809628
814 => 2.1377471078374
815 => 2.1836635577787
816 => 2.1349828798966
817 => 2.1685621596394
818 => 2.1484265573145
819 => 2.1447673193897
820 => 2.1658575885575
821 => 2.1869847734496
822 => 2.1856390631073
823 => 2.1703018117686
824 => 2.1616381876557
825 => 2.2272420519655
826 => 2.2755778616563
827 => 2.2722816834828
828 => 2.2868299419662
829 => 2.3295440788341
830 => 2.3334493241984
831 => 2.3329573530435
901 => 2.3232777949381
902 => 2.3653354098162
903 => 2.4004206120808
904 => 2.321037256906
905 => 2.3512653993521
906 => 2.3648357863861
907 => 2.3847611407044
908 => 2.4183785533166
909 => 2.4548959799916
910 => 2.4600599445167
911 => 2.4563958645677
912 => 2.4323116400344
913 => 2.4722694440458
914 => 2.4956757885098
915 => 2.5096137309935
916 => 2.5449580340796
917 => 2.3649195924765
918 => 2.2374794350188
919 => 2.2175778141735
920 => 2.2580485427549
921 => 2.2687203511338
922 => 2.2644185585575
923 => 2.1209730749866
924 => 2.2168226033893
925 => 2.3199486366933
926 => 2.3239101276265
927 => 2.3755371761621
928 => 2.3923490594296
929 => 2.4339156004127
930 => 2.4313156019569
1001 => 2.4414363932182
1002 => 2.4391097985749
1003 => 2.5161030628783
1004 => 2.6010380670153
1005 => 2.5980970378988
1006 => 2.5858866261488
1007 => 2.6040211697822
1008 => 2.6916831962399
1009 => 2.683612681599
1010 => 2.6914524991278
1011 => 2.7948109687367
1012 => 2.9291916817991
1013 => 2.8667583489786
1014 => 3.0022207164915
1015 => 3.0874870962893
1016 => 3.2349464834413
1017 => 3.2164838419171
1018 => 3.2738886992285
1019 => 3.1834318603192
1020 => 2.9757246738401
1021 => 2.9428542165086
1022 => 3.0086617044988
1023 => 3.1704429923219
1024 => 3.0035666360145
1025 => 3.0373255055553
1026 => 3.0276029488565
1027 => 3.0270848751282
1028 => 3.0468576421783
1029 => 3.0181762122939
1030 => 2.9013229072545
1031 => 2.9548760883332
1101 => 2.9341966332837
1102 => 2.9571420304166
1103 => 3.0809688753413
1104 => 3.0262220755368
1105 => 2.9685507692116
1106 => 3.0408833856308
1107 => 3.132987662516
1108 => 3.1272239423959
1109 => 3.1160399163146
1110 => 3.1790836857581
1111 => 3.2832135227875
1112 => 3.311359399309
1113 => 3.33213610994
1114 => 3.3350008673106
1115 => 3.3645096486648
1116 => 3.2058334941531
1117 => 3.4576566264558
1118 => 3.5011395249308
1119 => 3.492966542199
1120 => 3.5412959538139
1121 => 3.527076214918
1122 => 3.5064740442664
1123 => 3.5830864416367
1124 => 3.4952565103533
1125 => 3.3705929803775
1126 => 3.3022001022677
1127 => 3.3922653612588
1128 => 3.4472650720802
1129 => 3.4836163822946
1130 => 3.4946162668015
1201 => 3.2181510723348
1202 => 3.0691516659799
1203 => 3.1646585771717
1204 => 3.2811836003607
1205 => 3.2051861917658
1206 => 3.2081651463006
1207 => 3.0998128134121
1208 => 3.290770377569
1209 => 3.2629494666773
1210 => 3.4072844015981
1211 => 3.372837711019
1212 => 3.490537247397
1213 => 3.4595430149277
1214 => 3.5881983410437
1215 => 3.6395224338352
1216 => 3.7257035735895
1217 => 3.7890987708131
1218 => 3.8263256431797
1219 => 3.8240906813973
1220 => 3.9716020960678
1221 => 3.8846197684929
1222 => 3.7753494648982
1223 => 3.7733731098495
1224 => 3.8299657484534
1225 => 3.9485683935349
1226 => 3.9793203338062
1227 => 3.9965064731611
1228 => 3.9701853024853
1229 => 3.8757722199823
1230 => 3.8350051296427
1231 => 3.8697398717484
]
'min_raw' => 1.4322804020335
'max_raw' => 3.9965064731611
'avg_raw' => 2.7143934375973
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$1.43'
'max' => '$3.99'
'avg' => '$2.71'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.56701836464296
'max_diff' => 2.0648699281894
'year' => 2036
]
11 => [
'items' => [
101 => 3.8272622669436
102 => 3.9005905299476
103 => 4.0012858971238
104 => 3.9804927019946
105 => 4.0500012358216
106 => 4.1219352558217
107 => 4.2248041351807
108 => 4.2516978694687
109 => 4.2961521895697
110 => 4.341910287437
111 => 4.3566065552567
112 => 4.3846662905086
113 => 4.3845184018531
114 => 4.4690783026726
115 => 4.5623504918786
116 => 4.5975585840477
117 => 4.6785176506051
118 => 4.5398780862696
119 => 4.6450377883946
120 => 4.7398944720294
121 => 4.626802423318
122 => 4.7826734653988
123 => 4.7887255847515
124 => 4.880105401569
125 => 4.7874744509698
126 => 4.7324704881924
127 => 4.8912648677591
128 => 4.9681004660553
129 => 4.9449569585396
130 => 4.7688337236096
131 => 4.6663224465993
201 => 4.398030661715
202 => 4.7158338702531
203 => 4.8706265426853
204 => 4.7684328479831
205 => 4.8199734033387
206 => 5.1011619612774
207 => 5.2082203585296
208 => 5.1859529602958
209 => 5.1897157840448
210 => 5.2474825519547
211 => 5.5036522136075
212 => 5.3501494143789
213 => 5.467496552749
214 => 5.5297370518139
215 => 5.5875494960461
216 => 5.4455804048225
217 => 5.2608807030807
218 => 5.202378554373
219 => 4.7582716990626
220 => 4.7351540085854
221 => 4.7221773483828
222 => 4.6403613413905
223 => 4.576076371185
224 => 4.5249545761297
225 => 4.3907957196443
226 => 4.4360703954336
227 => 4.2222491793253
228 => 4.3590444160327
301 => 4.0177805922301
302 => 4.3019952454022
303 => 4.1473101313352
304 => 4.2511770251884
305 => 4.2508146433806
306 => 4.0595627607681
307 => 3.9492526662022
308 => 4.0195465517927
309 => 4.0949071770813
310 => 4.1071341849908
311 => 4.2048412027911
312 => 4.2321091312538
313 => 4.1494860349939
314 => 4.0107086580131
315 => 4.0429434775107
316 => 3.948599428614
317 => 3.7832651118138
318 => 3.9020111045999
319 => 3.9425562074298
320 => 3.9604632346431
321 => 3.7978759228447
322 => 3.7467874595354
323 => 3.7195883903432
324 => 3.9897206777439
325 => 4.0045191342369
326 => 3.928808138528
327 => 4.2710290183435
328 => 4.1935738934285
329 => 4.2801102449249
330 => 4.0400185055107
331 => 4.0491903332827
401 => 3.9355270562033
402 => 3.9991708963849
403 => 3.9541894814812
404 => 3.9940291030389
405 => 4.0179088079356
406 => 4.1315534339897
407 => 4.3032928844819
408 => 4.1145787165716
409 => 4.0323532511764
410 => 4.083365467454
411 => 4.2192177217125
412 => 4.4250408410631
413 => 4.3031894118312
414 => 4.3572650069529
415 => 4.3690781188312
416 => 4.2792293861007
417 => 4.4283536919977
418 => 4.5082706190117
419 => 4.59024884965
420 => 4.6614282503354
421 => 4.5575049415931
422 => 4.6687177787685
423 => 4.5790998637137
424 => 4.4987033293797
425 => 4.498825257736
426 => 4.4483913373423
427 => 4.3506692614967
428 => 4.3326478113851
429 => 4.4263976707238
430 => 4.5015761797686
501 => 4.5077682418543
502 => 4.5493909272728
503 => 4.5740228037557
504 => 4.8154486787006
505 => 4.912552162783
506 => 5.0312884650441
507 => 5.0775429463861
508 => 5.2167523520762
509 => 5.1043294509463
510 => 5.0800060491137
511 => 4.742329565959
512 => 4.7976240711586
513 => 4.8861559091093
514 => 4.7437894233585
515 => 4.8340881903195
516 => 4.851915079707
517 => 4.7389518646499
518 => 4.7992903986643
519 => 4.6390491414506
520 => 4.3067857060003
521 => 4.4287235961839
522 => 4.5185109272091
523 => 4.3903733351381
524 => 4.6200550093157
525 => 4.4858797168533
526 => 4.4433525906926
527 => 4.2774391095244
528 => 4.3557438860403
529 => 4.4616522174943
530 => 4.3962131818208
531 => 4.532009006564
601 => 4.7243321098241
602 => 4.861393006246
603 => 4.8719148399813
604 => 4.7837938659489
605 => 4.9250082892164
606 => 4.9260368821226
607 => 4.766746435799
608 => 4.6691819243588
609 => 4.647015062082
610 => 4.7023922301186
611 => 4.7696303353042
612 => 4.8756460868657
613 => 4.939709185189
614 => 5.1067517691742
615 => 5.1519487029144
616 => 5.2016064302408
617 => 5.2679644678248
618 => 5.347644305796
619 => 5.1733093564907
620 => 5.1802360090276
621 => 5.0178977180662
622 => 4.8444159725081
623 => 4.9760669925818
624 => 5.148183188527
625 => 5.1086995430056
626 => 5.1042568263068
627 => 5.1117282434874
628 => 5.0819588641796
629 => 4.9473130648753
630 => 4.879694787392
701 => 4.9669396166079
702 => 5.0133063605155
703 => 5.0852171367112
704 => 5.0763526156927
705 => 5.2615870525194
706 => 5.3335635534716
707 => 5.3151488844799
708 => 5.3185376267481
709 => 5.4488476436763
710 => 5.5937791827994
711 => 5.7295266945892
712 => 5.8676148940731
713 => 5.7011441799211
714 => 5.616620617761
715 => 5.7038273586137
716 => 5.6575542343935
717 => 5.923453331663
718 => 5.9418636082448
719 => 6.207743477983
720 => 6.4600951347506
721 => 6.3015975804844
722 => 6.4510536352708
723 => 6.6127025438531
724 => 6.9245495150987
725 => 6.8195304260919
726 => 6.7390874497717
727 => 6.6630692258467
728 => 6.8212510822814
729 => 7.0247495135679
730 => 7.0685811265832
731 => 7.139605084633
801 => 7.0649320771401
802 => 7.1548674897033
803 => 7.4723790156744
804 => 7.3865845986053
805 => 7.2647427342263
806 => 7.5153875898494
807 => 7.6060949887422
808 => 8.2427270180053
809 => 9.0465012529075
810 => 8.7137334417918
811 => 8.5071737230822
812 => 8.555720156641
813 => 8.8492312977523
814 => 8.9434977606993
815 => 8.687249018811
816 => 8.7777604064936
817 => 9.2764870515081
818 => 9.5440378954919
819 => 9.1806679124895
820 => 8.1781445408485
821 => 7.2537722074397
822 => 7.4989573752884
823 => 7.4711609862359
824 => 8.006980548888
825 => 7.3845384301323
826 => 7.3950187590703
827 => 7.9419185028352
828 => 7.796015027434
829 => 7.5596700831893
830 => 7.2554977870876
831 => 6.6932071652118
901 => 6.1951706807823
902 => 7.1719349177009
903 => 7.1298150676744
904 => 7.0688192830241
905 => 7.2045588013302
906 => 7.86367137189
907 => 7.8484766937994
908 => 7.7518159041799
909 => 7.8251322611772
910 => 7.5468173713283
911 => 7.6185454555546
912 => 7.2536257821393
913 => 7.4185847149148
914 => 7.5591629930868
915 => 7.5873861637269
916 => 7.6509744082897
917 => 7.1076198206513
918 => 7.3515700784484
919 => 7.4948679998561
920 => 6.8474427777128
921 => 7.4820704848451
922 => 7.0981612261354
923 => 6.9678566576057
924 => 7.1432945928094
925 => 7.0749262588415
926 => 7.0161471800192
927 => 6.9833474440836
928 => 7.1121697013189
929 => 7.106159989043
930 => 6.8953817728834
1001 => 6.6204301823225
1002 => 6.712712961093
1003 => 6.67918576241
1004 => 6.5576788692881
1005 => 6.6395598444541
1006 => 6.2789974688365
1007 => 5.6586686419879
1008 => 6.0684768661899
1009 => 6.0526996953437
1010 => 6.0447441303653
1011 => 6.3527036845857
1012 => 6.3231004792832
1013 => 6.2693703717837
1014 => 6.5566920737282
1015 => 6.4518157874962
1016 => 6.7750197897026
1017 => 6.9879028490799
1018 => 6.9339088191763
1019 => 7.1341263654737
1020 => 6.7148389699309
1021 => 6.8541094238397
1022 => 6.8828128713698
1023 => 6.553146568526
1024 => 6.3279439297797
1025 => 6.3129254812734
1026 => 5.9224551405225
1027 => 6.1310412447851
1028 => 6.3145883846568
1029 => 6.2266835484917
1030 => 6.1988555034441
1031 => 6.3410229504257
1101 => 6.352070578638
1102 => 6.1001834846223
1103 => 6.152558787695
1104 => 6.3709725081779
1105 => 6.1470553223307
1106 => 5.7120208068942
1107 => 5.6041262322432
1108 => 5.5897311070932
1109 => 5.297112463413
1110 => 5.6113362636393
1111 => 5.4741691541663
1112 => 5.9074784094774
1113 => 5.6599744867278
1114 => 5.6493050872979
1115 => 5.633176725199
1116 => 5.3813077706595
1117 => 5.4364510645966
1118 => 5.6197557722041
1119 => 5.6851609569538
1120 => 5.6783386603355
1121 => 5.6188574791353
1122 => 5.6460876592958
1123 => 5.5583697613751
1124 => 5.5273947459291
1125 => 5.4296290768323
1126 => 5.2859405517155
1127 => 5.3059213224259
1128 => 5.0212367560217
1129 => 4.8661254948912
1130 => 4.8231927421438
1201 => 4.7657812708868
1202 => 4.8296775205884
1203 => 5.0204302804138
1204 => 4.7903419816089
1205 => 4.3958717321253
1206 => 4.4195800662638
1207 => 4.4728456540056
1208 => 4.373585583636
1209 => 4.2796442572973
1210 => 4.3613186188481
1211 => 4.1941763739324
1212 => 4.4930439957721
1213 => 4.4849604641682
1214 => 4.5963598317403
1215 => 4.6660201424283
1216 => 4.5054756790859
1217 => 4.4650991807137
1218 => 4.488099469196
1219 => 4.1079559343585
1220 => 4.5652939948258
1221 => 4.5692490733641
1222 => 4.5353832897214
1223 => 4.7789016881918
1224 => 5.2928014642575
1225 => 5.099451696931
1226 => 5.0245808229945
1227 => 4.8822512369109
1228 => 5.0718969596726
1229 => 5.0573351270987
1230 => 4.9914809977882
1231 => 4.9516522149039
]
'min_raw' => 3.7195883903432
'max_raw' => 9.5440378954919
'avg_raw' => 6.6318131429176
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$3.71'
'max' => '$9.54'
'avg' => '$6.63'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 2.2873079883098
'max_diff' => 5.5475314223308
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.11675362929442
]
1 => [
'year' => 2028
'avg' => 0.20038312168999
]
2 => [
'year' => 2029
'avg' => 0.54741057291322
]
3 => [
'year' => 2030
'avg' => 0.42232644177427
]
4 => [
'year' => 2031
'avg' => 0.41477690416207
]
5 => [
'year' => 2032
'avg' => 0.72723444809188
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.11675362929442
'min' => '$0.116753'
'max_raw' => 0.72723444809188
'max' => '$0.727234'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.72723444809188
]
1 => [
'year' => 2033
'avg' => 1.8705217811287
]
2 => [
'year' => 2034
'avg' => 1.1856265979498
]
3 => [
'year' => 2035
'avg' => 1.3984492911811
]
4 => [
'year' => 2036
'avg' => 2.7143934375973
]
5 => [
'year' => 2037
'avg' => 6.6318131429176
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.72723444809188
'min' => '$0.727234'
'max_raw' => 6.6318131429176
'max' => '$6.63'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 6.6318131429176
]
]
]
]
'prediction_2025_max_price' => '$0.199627'
'last_price' => 0.193564
'sma_50day_nextmonth' => '$0.167846'
'sma_200day_nextmonth' => '—'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'decrease'
'sma_200day_direction_label' => 'diminuir'
'sma_200day_date_nextmonth' => '4 de fev. de 2026'
'sma_50day_date_nextmonth' => '4 de fev. de 2026'
'daily_sma3' => '$0.194856'
'daily_sma3_action' => 'SELL'
'daily_sma5' => '$0.190223'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.174428'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.151612'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.175297'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.336379'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '—'
'daily_sma200_action' => '—'
'daily_ema3' => '$0.192241'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.187924'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.176696'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.167345'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.215175'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.361125'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.188627'
'daily_ema200_action' => 'BUY'
'weekly_sma21' => '—'
'weekly_sma21_action' => '—'
'weekly_sma50' => '—'
'weekly_sma50_action' => '—'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.186491'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.186568'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.252711'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.2919034'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.122599'
'weekly_ema50_action' => 'BUY'
'weekly_ema100' => '$0.061299'
'weekly_ema100_action' => 'BUY'
'weekly_ema200' => '$0.030649'
'weekly_ema200_action' => 'BUY'
'rsi_14' => '62.57'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 93.14
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0.05
'momentum_10_action' => 'SELL'
'vwma_10' => '0.176328'
'vwma_10_action' => 'BUY'
'hma_9' => '0.204092'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 92.07
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 124.9
'cci_20_action' => 'SELL'
'adx_14' => 24.45
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.032991'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0.01
'macd_12_26_action' => 'NEUTRAL'
'williams_percent_r_14' => -7.93
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 80.61
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '-0.089061'
'ichimoku_cloud_action' => 'NEUTRAL'
'sell_signals' => 9
'buy_signals' => 20
'sell_pct' => 31.03
'buy_pct' => 68.97
'overall_action' => 'bullish'
'overall_action_label' => 'Altista'
'overall_action_dir' => 1
'last_updated' => 1767680390
'last_updated_date' => '6 de janeiro de 2026'
]
Previsão de preço de Plasma para 2026
A previsão de preço para Plasma em 2026 sugere que o preço médio poderia variar entre $0.066876 na extremidade inferior e $0.199627 na extremidade superior. No mercado de criptomoedas, comparado ao preço médio de hoje, Plasma poderia potencialmente ganhar 3.13% até 2026 se XPL atingir a meta de preço prevista.
Previsão de preço de Plasma 2027-2032
A previsão de preço de XPL para 2027-2032 está atualmente dentro de uma faixa de preço entre $0.116753 na extremidade inferior e $0.727234 na extremidade superior. Considerando a volatilidade de preços no mercado, se Plasma atingir a meta de preço superior, poderia ganhar 275.71% até 2032 em comparação com o preço de hoje.
| Previsão de Preço de Plasma | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.06438 | $0.116753 | $0.169127 |
| 2028 | $0.116187 | $0.200383 | $0.284578 |
| 2029 | $0.25523 | $0.54741 | $0.839591 |
| 2030 | $0.217062 | $0.422326 | $0.62759 |
| 2031 | $0.256634 | $0.414776 | $0.572919 |
| 2032 | $0.391733 | $0.727234 | $1.06 |
Previsão de preço de Plasma 2032-2037
A previsão de preço de Plasma para 2032-2037 é atualmente estimada entre $0.727234 na extremidade inferior e $6.63 na extremidade superior. Comparado ao preço atual, Plasma poderia potencialmente ganhar 3326.16% até 2037 se atingir a meta de preço superior. Por favor, note que esta informação é apenas para fins gerais e não deve ser considerada como aconselhamento de investimento a longo prazo.
| Previsão de Preço de Plasma | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.391733 | $0.727234 | $1.06 |
| 2033 | $0.9103034 | $1.87 | $2.83 |
| 2034 | $0.73184 | $1.18 | $1.63 |
| 2035 | $0.865262 | $1.39 | $1.93 |
| 2036 | $1.43 | $2.71 | $3.99 |
| 2037 | $3.71 | $6.63 | $9.54 |
Plasma Histograma de preços potenciais
Previsão de preço de Plasma baseada na análise técnica
Em 6 de janeiro de 2026, o sentimento geral de previsão de preço para Plasma é Altista, com 20 indicadores técnicos mostrando sinais de alta e 9 indicando sinais de baixa. A previsão de preço de XPL foi atualizada pela última vez em 6 de janeiro de 2026.
Médias Móveis Simples de 50 e 200 dias e Índice de Força Relativa de 14 dias - RSI (14) de Plasma
De acordo com nossos indicadores técnicos, o SMA de 200 dias de Plasma está projetado para diminuir no próximo mês, alcançando — até 4 de fev. de 2026. O SMA de 50 dias de curto prazo para Plasma é esperado para alcançar $0.167846 até 4 de fev. de 2026.
O oscilador de momentum Índice de Força Relativa (RSI) é uma ferramenta comumente usada para identificar se uma criptomoeda está sobrevendida (abaixo de 30) ou sobrecomprada (acima de 70). No momento, o RSI está em 62.57, sugerindo que o mercado de XPL está em um estado NEUTRAL.
Médias Móveis e Osciladores Populares de XPL para Sábado, 19 de Outubro de 2024
Médias móveis (MA) são indicadores amplamente utilizados nos mercados financeiros, projetados para suavizar movimentos de preços ao longo de um período definido. Como indicadores atrasados, eles se baseiam em dados históricos de preços. A tabela abaixo destaca dois tipos: a média móvel simples (SMA) e a média móvel exponencial (EMA).
Média Móvel Simples Diária (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 3 | $0.194856 | SELL |
| SMA 5 | $0.190223 | BUY |
| SMA 10 | $0.174428 | BUY |
| SMA 21 | $0.151612 | BUY |
| SMA 50 | $0.175297 | BUY |
| SMA 100 | $0.336379 | SELL |
| SMA 200 | — | — |
Média Móvel Exponencial Diária (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 3 | $0.192241 | BUY |
| EMA 5 | $0.187924 | BUY |
| EMA 10 | $0.176696 | BUY |
| EMA 21 | $0.167345 | BUY |
| EMA 50 | $0.215175 | SELL |
| EMA 100 | $0.361125 | SELL |
| EMA 200 | $0.188627 | BUY |
Média Móvel Simples Semanal (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 21 | — | — |
| SMA 50 | — | — |
| SMA 100 | — | — |
| SMA 200 | — | — |
Média Móvel Exponencial Semanal (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 21 | $0.2919034 | SELL |
| EMA 50 | $0.122599 | BUY |
| EMA 100 | $0.061299 | BUY |
| EMA 200 | $0.030649 | BUY |
Osciladores de Plasma
Um oscilador é uma ferramenta de análise técnica que define limites altos e baixos entre dois extremos, criando um indicador de tendência que flutua dentro desses limites. Os traders usam esse indicador para identificar condições de sobrecompra ou sobrevenda de curto prazo.
| Período | Valor | Ação |
|---|---|---|
| RSI (14) | 62.57 | NEUTRAL |
| Stoch RSI (14) | 93.14 | SELL |
| Estocástico Rápido (14) | 92.07 | SELL |
| Índice de Canal de Commodities (20) | 124.9 | SELL |
| Índice Direcional Médio (14) | 24.45 | NEUTRAL |
| Oscilador Impressionante (5, 34) | 0.032991 | BUY |
| Momentum (10) | 0.05 | SELL |
| MACD (12, 26) | 0.01 | NEUTRAL |
| Williams Percent Range (14) | -7.93 | SELL |
| Oscilador Ultimate (7, 14, 28) | 80.61 | SELL |
| VWMA (10) | 0.176328 | BUY |
| Média Móvel de Hull (9) | 0.204092 | BUY |
| Nuvem Ichimoku B/L (9, 26, 52, 26) | -0.089061 | NEUTRAL |
Previsão do preço de Plasma com base nos fluxos financeiros mundiais
Definições dos fluxos financeiros mundiais, usadas na previsão do preço do Plasma
M0: o total de todas as moedas físicas, mais as contas no Banco Central que podem ser trocadas por moedas físicas.
M1: o valor de M0, mais o valor em contas de demanda, incluindo contas 'correntes'.
M2: o valor de M1, mais a maioria das contas de poupança, do mercado de moedas e de certificados de depósito (CD) de menos de US$ 100.000.
Previsões de preço de Plasma por empresas de Internet ou nichos tecnológicos
| Comparação | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.271989 | $0.382191 | $0.537042 | $0.754633 | $1.06 | $1.49 |
| Amazon.com stock | $0.403882 | $0.842725 | $1.75 | $3.66 | $7.65 | $15.97 |
| Apple stock | $0.274555 | $0.389436 | $0.552385 | $0.783517 | $1.11 | $1.57 |
| Netflix stock | $0.305413 | $0.481894 | $0.760354 | $1.19 | $1.89 | $2.98 |
| Google stock | $0.250664 | $0.3246094 | $0.420367 | $0.544374 | $0.704962 | $0.912923 |
| Tesla stock | $0.438794 | $0.994714 | $2.25 | $5.11 | $11.58 | $26.26 |
| Kodak stock | $0.145152 | $0.108848 | $0.081625 | $0.06121 | $0.045901 | $0.03442 |
| Nokia stock | $0.128228 | $0.084945 | $0.056273 | $0.037278 | $0.024695 | $0.016359 |
Este cálculo mostra quanto a criptomoeda pode custar, se assumirmos que sua capitalização se comportará da mesma forma que a de algumas empresas de Internet ou nichos tecnológicos. Se você extrapolar os dados, poderá obter uma imagem em potencial do preço futuro para 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Visão geral da previsão para Plasma
Você pode fazer perguntas como: 'Devo investir em Plasma agora?', 'Devo comprar XPL hoje?', 'Plasma será um bom ou mau investimento no curto ou no longo prazo?'.
Atualizamos a previsão para Plasma regularmente com novos valores. Veja nossas previsões semelhantes. Fazemos previsões de preços futuros para uma enorme quantidade de moedas digitais, como Plasma, com métodos de análise técnica.
Se você estiver tentando encontrar criptomoedas com bom retorno, você deve explorar o máximo de fontes de informações disponíveis sobre Plasma para poder tomar sozinho uma decisão de tão grande responsabilidade sobre o seu investimento.
O preço de Plasma é de $0.1935 USD hoje, mas o preço pode tanto subir quanto descer e seu investimento pode ser perdido, porque criptomoedas são ativos de alto risco
Previsão de curto prazo para Plasma
com base no histórico de preços de 4 horas
Previsão de longo prazo para Plasma
com base no histórico de preços de 1 mês
Previsão do preço de Plasma com base no padrão de crescimento do Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se Plasma tiver 1% da média anterior do crescimento anual do Bitcoin | $0.198595 | $0.203757 | $0.209053 | $0.214487 |
| Se Plasma tiver 2% da média anterior do crescimento anual do Bitcoin | $0.203626 | $0.214212 | $0.225348 | $0.237063 |
| Se Plasma tiver 5% da média anterior do crescimento anual do Bitcoin | $0.21872 | $0.247147 | $0.279267 | $0.315563 |
| Se Plasma tiver 10% da média anterior do crescimento anual do Bitcoin | $0.243877 | $0.307269 | $0.387138 | $0.487767 |
| Se Plasma tiver 20% da média anterior do crescimento anual do Bitcoin | $0.294191 | $0.44713 | $0.679577 | $1.03 |
| Se Plasma tiver 50% da média anterior do crescimento anual do Bitcoin | $0.445131 | $1.02 | $2.35 | $5.41 |
| Se Plasma tiver 100% da média anterior do crescimento anual do Bitcoin | $0.696699 | $2.50 | $9.02 | $32.48 |
Perguntas Frequentes sobre Plasma
XPL é um bom investimento?
A decisão de adquirir Plasma depende inteiramente da sua tolerância individual ao risco. Como você pode perceber, o valor de Plasma experimentou uma escalada de 1.5797% nas últimas 24 horas, e Plasma registrou um declínio de durante os últimos 30 dias. Consequentemente, a decisão de investir ou não em Plasma dependerá de quão alinhado esse investimento está com suas aspirações de negociação.
Plasma pode subir?
Parece que o valor médio de Plasma pode potencialmente subir para $0.199627 até o final deste ano. Observando as perspectivas de Plasma em um horizonte de cinco anos mais longo, a moeda digital poderia potencialmente crescer até $0.62759. No entanto, dada a imprevisibilidade do mercado, é vital conduzir uma pesquisa aprofundada antes de investir quaisquer fundos em um projeto, rede ou ativo específico.
Qual será o preço de Plasma na próxima semana?
Com base na nossa nova previsão experimental de Plasma, o preço de Plasma aumentará 0.86% na próxima semana e atingirá $0.19522 até 13 de janeiro de 2026.
Qual será o preço de Plasma no próximo mês?
Com base na nossa nova previsão experimental de Plasma, o preço de Plasma diminuirá -11.62% no próximo mês e atingirá $0.1710756 até 5 de fevereiro de 2026.
Até onde o preço de Plasma pode subir este ano em 2026?
De acordo com nossa previsão mais recente sobre o valor de Plasma em 2026, espera-se que XPL fluctue dentro do intervalo de $0.066876 e $0.199627. No entanto, é crucial lembrar que o mercado de criptomoedas é excepcionalmente instável, e essa previsão de preço de Plasma não considera flutuações repentinas e extremas de preço.
Onde estará Plasma em 5 anos?
O futuro de Plasma parece seguir uma tendência de alta, com um preço máximo de $0.62759 projetada após um período de cinco anos. Com base na previsão de Plasma para 2030, o valor de Plasma pode potencialmente atingir seu pico mais alto de aproximadamente $0.62759, enquanto seu pico mais baixo está previsto para cerca de $0.217062.
Quanto será Plasma em 2026?
Com base na nossa nova simulação experimental de previsão de preços de Plasma, espera-se que o valor de XPL em 2026 aumente 3.13% para $0.199627 se o melhor cenário ocorrer. O preço ficará entre $0.199627 e $0.066876 durante 2026.
Quanto será Plasma em 2027?
De acordo com nossa última simulação experimental para previsão de preços de Plasma, o valor de XPL pode diminuir -12.62% para $0.169127 em 2027, assumindo as condições mais favoráveis. O preço está projetado para flutuar entre $0.169127 e $0.06438 ao longo do ano.
Quanto será Plasma em 2028?
Nosso novo modelo experimental de previsão de preços de Plasma sugere que o valor de XPL em 2028 pode aumentar 47.02%, alcançando $0.284578 no melhor cenário. O preço é esperado para variar entre $0.284578 e $0.116187 durante o ano.
Quanto será Plasma em 2029?
Com base no nosso modelo de previsão experimental, o valor de Plasma pode experimentar um 333.75% crescimento em 2029, potencialmente alcançando $0.839591 sob condições ótimas. A faixa de preço prevista para 2029 está entre $0.839591 e $0.25523.
Quanto será Plasma em 2030?
Usando nossa nova simulação experimental para previsões de preços de Plasma, espera-se que o valor de XPL em 2030 aumente 224.23%, alcançando $0.62759 no melhor cenário. O preço está previsto para variar entre $0.62759 e $0.217062 ao longo de 2030.
Quanto será Plasma em 2031?
Nossa simulação experimental indica que o preço de Plasma poderia aumentar 195.98% em 2031, potencialmente atingindo $0.572919 sob condições ideais. O preço provavelmente oscilará entre $0.572919 e $0.256634 durante o ano.
Quanto será Plasma em 2032?
Com base nos achados da nossa mais recente previsão experimental de preços de Plasma, XPL poderia ver um 449.04% aumento em valor, atingindo $1.06 se o cenário mais positivo se desenrolar em 2032. O preço é esperado para permanecer dentro de uma faixa de $1.06 e $0.391733 ao longo do ano.
Quanto será Plasma em 2033?
De acordo com nossa previsão experimental de preços de Plasma, espera-se que o valor de XPL seja aumentar 1362.43% em 2033, com o preço potencial mais alto sendo $2.83. Ao longo do ano, o preço de XPL poderia variar entre $2.83 e $0.9103034.
Quanto será Plasma em 2034?
Os resultados da nossa nova simulação de previsão de preços de Plasma sugerem que XPL pode aumentar 746.96% em 2034, atingindo potencialmente $1.63 nas melhores circunstâncias. A faixa de preço prevista para o ano é entre $1.63 e $0.73184.
Quanto será Plasma em 2035?
Com base em nossa previsão experimental para o preço de Plasma, XPL poderia aumentar 897.93%, com o valor potencialmente atingindo $1.93 em 2035. A faixa de preço esperada para o ano está entre $1.93 e $0.865262.
Quanto será Plasma em 2036?
Nossa recente simulação de previsão de preços de Plasma sugere que o valor de XPL pode aumentar 1964.7% em 2036, possivelmente atingindo $3.99 se as condições forem ideais. A faixa de preço esperada para 2036 está entre $3.99 e $1.43.
Quanto será Plasma em 2037?
De acordo com a simulação experimental, o valor de Plasma poderia aumentar 4830.69% em 2037, com um pico de $9.54 sob condições favoráveis. O preço é esperado para cair entre $9.54 e $3.71 ao longo do ano.
Previsões relacionadas
Como ler e prever os movimentos de preço de Plasma?
Traders de Plasma utilizam indicadores e padrões de gráfico para prever a direção do mercado. Eles também identificam níveis-chave de suporte e resistência para avaliar quando uma tendência de baixa pode desacelerar ou uma tendência de alta pode estagnar.
Indicadores de Previsão de Preço de Plasma
Médias móveis são ferramentas populares para a previsão de preço de Plasma. Uma média móvel simples (SMA) calcula o preço médio de fechamento de XPL em um período específico, como uma SMA de 12 dias. Uma média móvel exponencial (EMA) dá mais peso aos preços recentes, reagindo mais rapidamente às mudanças de preço.
Médias móveis comumente usadas no mercado de criptomoedas incluem as de 50 dias, 100 dias e 200 dias, que ajudam a identificar níveis-chave de resistência e suporte. Um movimento de preço de XPL acima dessas médias é visto como altista, enquanto uma queda abaixo indica fraqueza.
Traders também usam RSI e níveis de retração de Fibonacci para avaliar a direção futura de XPL.
Como ler gráficos de Plasma e prever movimentos de preço?
A maioria dos traders prefere gráficos de velas em vez de gráficos de linha simples porque eles fornecem informações mais detalhadas. Velas podem representar a ação de preço de Plasma em diferentes períodos de tempo, como 5 minutos para tendências de curto prazo e semanal para tendências de longo prazo. Opções populares incluem gráficos de 1 hora, 4 horas e 1 dia.
Por exemplo, um gráfico de velas de 1 hora mostra os preços de abertura, fechamento, máximo e mínimo de XPL dentro de cada hora. A cor da vela é crucial: verde indica que o preço fechou mais alto do que abriu, enquanto vermelho significa o oposto. Alguns gráficos usam velas vazias e preenchidas para transmitir a mesma informação.
O que afeta o preço de Plasma?
A ação de preço de Plasma é impulsionada pela oferta e demanda, influenciada por fatores como reduções pela metade das recompensas de bloco, hard forks e atualizações de protocolo. Eventos do mundo real, como regulamentações, adoção por empresas e governos e hacks de exchanges de criptomoedas, também impactam o preço de XPL. A capitalização de mercado de Plasma pode mudar rapidamente.
Traders frequentemente monitoram a atividade de "baleias" de XPL, grandes detentores de Plasma, pois suas ações podem influenciar significativamente os movimentos de preço no relativamente pequeno mercado de Plasma.
Padrões de previsão de preço altistas e baixistas
Traders frequentemente identificam padrões de velas para ganhar vantagem em previsões de preço de criptomoedas. Certas formações indicam tendências altistas, enquanto outras sugerem movimentos baixistas.
Padrões de velas altistas comumente seguidos:
- Martelo
- Engolfo de Alta
- Linha de Perfuração
- Estrela da Manhã
- Três Soldados Brancos
Padrões de velas baixistas comuns:
- Harami de Baixa
- Nuvem Negra
- Estrela da Noite
- Estrela Cadente
- Homem Enforcado


