Previsão de Preço Plasma - Projeção XPL
Previsão de Preço Plasma até $0.198977 até 2026
| Ano | Preço Mínimo | Preço Máximo |
|---|---|---|
| 2026 | $0.066658 | $0.198977 |
| 2027 | $0.06417 | $0.168576 |
| 2028 | $0.1158091 | $0.283652 |
| 2029 | $0.254399 | $0.836858 |
| 2030 | $0.216355 | $0.625548 |
| 2031 | $0.255799 | $0.571054 |
| 2032 | $0.390458 | $1.05 |
| 2033 | $0.90734 | $2.82 |
| 2034 | $0.729458 | $1.63 |
| 2035 | $0.862445 | $1.92 |
Calculadora de lucro do investimento
Se você abrir um short de $10,000.00 em Plasma hoje e fechar em Apr 06, 2026, nossa previsão mostra que pode lucrar cerca de $3,954.46, com um retorno de 39.54% nos próximos 90 dias.
Previsão de preço de longo prazo de Plasma para os anos 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'Plasma'
'name_with_ticker' => 'Plasma <small>XPL</small>'
'name_lang' => 'Plasma'
'name_lang_with_ticker' => 'Plasma <small>XPL</small>'
'name_with_lang' => 'Plasma'
'name_with_lang_with_ticker' => 'Plasma <small>XPL</small>'
'image' => '/uploads/coins/plasma.png?1755180802'
'price_for_sd' => 0.1929
'ticker' => 'XPL'
'marketcap' => '$399.45M'
'low24h' => '$0.1864'
'high24h' => '$0.1985'
'volume24h' => '$110.23M'
'current_supply' => '2.07B'
'max_supply' => '10B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.1929'
'change_24h_pct' => '1.495%'
'ath_price' => '$1.68'
'ath_days' => 100
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '28 de set. de 2025'
'ath_pct' => '-88.47%'
'fdv' => '$1.93B'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$9.51'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.194585'
'next_week_prediction_price_date' => '13 de janeiro de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.170518'
'next_month_prediction_price_date' => '5 de fevereiro de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.066658'
'current_year_max_price_prediction' => '$0.198977'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.216355'
'grand_prediction_max_price' => '$0.625548'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.19658999781672
107 => 0.19732399350639
108 => 0.19897772327399
109 => 0.18484678347348
110 => 0.19119116058131
111 => 0.19491788774442
112 => 0.17808039884201
113 => 0.19458506472548
114 => 0.18460079525006
115 => 0.18121198423141
116 => 0.18577457182612
117 => 0.1839965270032
118 => 0.18246786847475
119 => 0.18161485075018
120 => 0.18496511152532
121 => 0.18480881785573
122 => 0.17932714097001
123 => 0.17217651693432
124 => 0.17457650107193
125 => 0.17370456433477
126 => 0.1705445531172
127 => 0.17267401913663
128 => 0.16329692848515
129 => 0.14716413139805
130 => 0.15782195131473
131 => 0.15741163684142
201 => 0.15720473767769
202 => 0.16521379478457
203 => 0.16444390874413
204 => 0.16304655804198
205 => 0.17051888967574
206 => 0.16779138811237
207 => 0.17619690525048
208 => 0.18173332247239
209 => 0.18032910798058
210 => 0.18553613513762
211 => 0.17463179185917
212 => 0.17825377728996
213 => 0.17900026346739
214 => 0.17042668226328
215 => 0.16456987162168
216 => 0.16417928912442
217 => 0.15402438659012
218 => 0.15944905355643
219 => 0.16422253599882
220 => 0.16193640834612
221 => 0.16121268862739
222 => 0.1649100157147
223 => 0.16519732969485
224 => 0.15864654049929
225 => 0.16000865700956
226 => 0.16568890929042
227 => 0.15986552922611
228 => 0.14855165300488
301 => 0.14574565527544
302 => 0.14537128345353
303 => 0.1377611950648
304 => 0.14593316546112
305 => 0.14236588138794
306 => 0.1536348890325
307 => 0.14719809230282
308 => 0.14692061486087
309 => 0.14650116701027
310 => 0.13995084956529
311 => 0.14138495279135
312 => 0.14615213033486
313 => 0.14785311298848
314 => 0.14767568656197
315 => 0.14612876856417
316 => 0.14683693970206
317 => 0.14455567372374
318 => 0.14375011122635
319 => 0.14120753439716
320 => 0.13747064886303
321 => 0.1379902857162
322 => 0.1305865376638
323 => 0.1265525827782
324 => 0.12543603723254
325 => 0.12394294586523
326 => 0.12560468587544
327 => 0.1305655637758
328 => 0.12458169251901
329 => 0.11432276496901
330 => 0.11493934399512
331 => 0.11632461400285
401 => 0.11374317250793
402 => 0.11130005477694
403 => 0.11342414742763
404 => 0.10907730458364
405 => 0.11684990919326
406 => 0.11663968202104
407 => 0.11953682836487
408 => 0.12134847342909
409 => 0.11717321808311
410 => 0.11612315265469
411 => 0.11672131764553
412 => 0.10683498277591
413 => 0.11872890388741
414 => 0.11883176301109
415 => 0.11795102074657
416 => 0.12428416655483
417 => 0.13764907956797
418 => 0.13262066169005
419 => 0.13067350630298
420 => 0.1269719624888
421 => 0.13190404984527
422 => 0.13152534248884
423 => 0.12981268420257
424 => 0.12877686312722
425 => 0.13068539521857
426 => 0.12854037488031
427 => 0.12815507028634
428 => 0.12582054366243
429 => 0.12498722387189
430 => 0.12437026707439
501 => 0.12369105826126
502 => 0.12518922365473
503 => 0.12179418377306
504 => 0.11770009849564
505 => 0.11735971960344
506 => 0.11829953565122
507 => 0.11788373701116
508 => 0.11735772891952
509 => 0.11635343622281
510 => 0.11605548403301
511 => 0.117023684104
512 => 0.11593064267342
513 => 0.11754348484528
514 => 0.11710488101716
515 => 0.11465487568724
516 => 0.111601261938
517 => 0.11157407837046
518 => 0.11091618229712
519 => 0.11007825273238
520 => 0.1098451598967
521 => 0.11324526226916
522 => 0.12028337242366
523 => 0.11890162299263
524 => 0.11990007856393
525 => 0.1248114917669
526 => 0.12637268233278
527 => 0.12526458624795
528 => 0.12374775598263
529 => 0.12381448881626
530 => 0.12899795700859
531 => 0.12932124356157
601 => 0.13013808438477
602 => 0.13118795568176
603 => 0.1254433838696
604 => 0.12354392000051
605 => 0.1226438486411
606 => 0.11987197722555
607 => 0.12286120290492
608 => 0.12111950911296
609 => 0.12135452311022
610 => 0.1212014699362
611 => 0.12128504731863
612 => 0.11684773659187
613 => 0.11846445940251
614 => 0.11577634416127
615 => 0.11217725960834
616 => 0.11216519421492
617 => 0.11304606506042
618 => 0.11252208861304
619 => 0.11111208146578
620 => 0.111312366326
621 => 0.10955766020082
622 => 0.11152541941958
623 => 0.11158184771299
624 => 0.1108241532292
625 => 0.11385575780414
626 => 0.11509780867204
627 => 0.11459907793142
628 => 0.11506281639376
629 => 0.11895904091971
630 => 0.11959429552164
701 => 0.11987643365325
702 => 0.11949840593303
703 => 0.1151340322257
704 => 0.11532761075837
705 => 0.11390725992701
706 => 0.11270721314739
707 => 0.11275520872516
708 => 0.11337218876505
709 => 0.11606657678462
710 => 0.12173675752896
711 => 0.12195193674336
712 => 0.12221274022843
713 => 0.12115192138531
714 => 0.12083196827156
715 => 0.1212540690155
716 => 0.12338349077914
717 => 0.12886094168758
718 => 0.12692484470989
719 => 0.12535076772988
720 => 0.12673165760945
721 => 0.12651908043627
722 => 0.12472471516446
723 => 0.1246743533076
724 => 0.12123039265772
725 => 0.11995723882066
726 => 0.11889329618049
727 => 0.11773149859235
728 => 0.11704274603829
729 => 0.11810098299376
730 => 0.11834301430617
731 => 0.11602916070822
801 => 0.1157137910128
802 => 0.11760333380889
803 => 0.11677181647359
804 => 0.11762705267358
805 => 0.11782547480806
806 => 0.11779352427436
807 => 0.11692532467715
808 => 0.11747868921033
809 => 0.11616981712345
810 => 0.11474661531521
811 => 0.11383870123016
812 => 0.11304642577362
813 => 0.11348602624423
814 => 0.11191893083439
815 => 0.11141758547339
816 => 0.11729122175758
817 => 0.12163014003295
818 => 0.12156705044282
819 => 0.12118300878827
820 => 0.1206124007896
821 => 0.12334174724994
822 => 0.12239089751816
823 => 0.12308272014418
824 => 0.12325881803821
825 => 0.12379181332614
826 => 0.12398231332908
827 => 0.12340649000943
828 => 0.12147395661781
829 => 0.11665826714564
830 => 0.11441655069664
831 => 0.11367674692973
901 => 0.11370363739157
902 => 0.11296187840972
903 => 0.11318035967318
904 => 0.11288589954245
905 => 0.1123282632924
906 => 0.11345159377717
907 => 0.11358104715099
908 => 0.11331884839304
909 => 0.11338060569227
910 => 0.11120971196305
911 => 0.11137476029835
912 => 0.11045575019408
913 => 0.11028344687836
914 => 0.10796026936212
915 => 0.10384442364213
916 => 0.10612500170582
917 => 0.10337038410269
918 => 0.10232716867712
919 => 0.10726558824849
920 => 0.10676990789396
921 => 0.10592151859408
922 => 0.10466657399973
923 => 0.10420110284237
924 => 0.10137304744051
925 => 0.10120595084028
926 => 0.10260761146136
927 => 0.10196079331293
928 => 0.10105241566334
929 => 0.097762363897308
930 => 0.094063256413578
1001 => 0.094174909216752
1002 => 0.095351526482985
1003 => 0.098772699873014
1004 => 0.097435988242629
1005 => 0.096466188617786
1006 => 0.096284574300122
1007 => 0.098557857721008
1008 => 0.10177503002916
1009 => 0.10328445529597
1010 => 0.10178866069849
1011 => 0.1000703724042
1012 => 0.10017495665089
1013 => 0.10087070878957
1014 => 0.10094382250194
1015 => 0.099825393465244
1016 => 0.10014022468784
1017 => 0.099661967271948
1018 => 0.09672690239343
1019 => 0.096673816376968
1020 => 0.095953504121465
1021 => 0.095931693352639
1022 => 0.094706262515715
1023 => 0.094534816270626
1024 => 0.092101648965579
1025 => 0.09370316705407
1026 => 0.092628952803784
1027 => 0.091009858547077
1028 => 0.090730726086947
1029 => 0.090722335028134
1030 => 0.09238478280692
1031 => 0.093683740383851
1101 => 0.092647639220579
1102 => 0.092411739069679
1103 => 0.094930535516168
1104 => 0.094609995709013
1105 => 0.094332410303276
1106 => 0.10148696753522
1107 => 0.095823577209074
1108 => 0.093354015771855
1109 => 0.0902974645363
1110 => 0.091292693031066
1111 => 0.091502402297862
1112 => 0.084151947561122
1113 => 0.081169868989867
1114 => 0.080146532001473
1115 => 0.079557587096791
1116 => 0.079825976685359
1117 => 0.0771417562083
1118 => 0.078945596761793
1119 => 0.076621288720169
1120 => 0.076231610913038
1121 => 0.080387761617976
1122 => 0.080966065708688
1123 => 0.078498840792713
1124 => 0.0800831985962
1125 => 0.079508688432435
1126 => 0.076661132310374
1127 => 0.076552376611716
1128 => 0.075123573046103
1129 => 0.072887772136807
1130 => 0.071865951126711
1201 => 0.071333777872797
1202 => 0.071553362929212
1203 => 0.071442334005275
1204 => 0.070717795173727
1205 => 0.071483863722984
1206 => 0.069526875141012
1207 => 0.068747586519142
1208 => 0.068395599928002
1209 => 0.066658659921441
1210 => 0.069422903892606
1211 => 0.069967494777953
1212 => 0.070513158675578
1213 => 0.075262790363832
1214 => 0.075025512187006
1215 => 0.077170391346348
1216 => 0.077087045286396
1217 => 0.076475291005413
1218 => 0.07389440032264
1219 => 0.07492309734884
1220 => 0.071756927797208
1221 => 0.074129237303893
1222 => 0.073046614315055
1223 => 0.073763201382346
1224 => 0.072474713223307
1225 => 0.073187815770891
1226 => 0.070096637479859
1227 => 0.067210138685746
1228 => 0.06837175006265
1229 => 0.069634554475719
1230 => 0.072372636199832
1231 => 0.070741857313634
]
'min_raw' => 0.066658659921441
'max_raw' => 0.19897772327399
'avg_raw' => 0.13281819159772
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.066658'
'max' => '$0.198977'
'avg' => '$0.132818'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.12627534007856
'max_diff' => 0.0060437232739889
'year' => 2026
]
1 => [
'items' => [
101 => 0.071328347067688
102 => 0.069363704568807
103 => 0.065310085921229
104 => 0.065333028962553
105 => 0.064709468046506
106 => 0.064170620373656
107 => 0.070929171886014
108 => 0.070088639168564
109 => 0.068749360289509
110 => 0.070542038289951
111 => 0.071016050806893
112 => 0.071029545276867
113 => 0.072337436870273
114 => 0.073035458848126
115 => 0.073158488247123
116 => 0.075216483928215
117 => 0.075906296934898
118 => 0.078747539083432
119 => 0.072976236560113
120 => 0.072857380382557
121 => 0.070567264945741
122 => 0.069114837530419
123 => 0.070666713893473
124 => 0.072041464498891
125 => 0.070609982279153
126 => 0.070796903636812
127 => 0.068875255713209
128 => 0.069562154423958
129 => 0.070153804128904
130 => 0.069827129937395
131 => 0.069338082861497
201 => 0.071928750626696
202 => 0.071782574998474
203 => 0.074195064380622
204 => 0.076075772372777
205 => 0.079446337311486
206 => 0.075928977086419
207 => 0.075800790499577
208 => 0.077053834947733
209 => 0.075906105100321
210 => 0.076631430745598
211 => 0.079329476136541
212 => 0.079386481584127
213 => 0.078431566889685
214 => 0.078373460243745
215 => 0.078556862056435
216 => 0.07963105220181
217 => 0.079255697158487
218 => 0.079690067517448
219 => 0.080233254302643
220 => 0.082480105152635
221 => 0.083021813285891
222 => 0.081705743365545
223 => 0.081824569743942
224 => 0.081332323466806
225 => 0.08085681973092
226 => 0.081925682687448
227 => 0.083879050749056
228 => 0.083866898947725
301 => 0.084320042369969
302 => 0.084602346967984
303 => 0.083390488973707
304 => 0.082601613980686
305 => 0.08290411885043
306 => 0.08338783072485
307 => 0.082747257608862
308 => 0.078793343594647
309 => 0.079992708529555
310 => 0.079793075558437
311 => 0.079508773931367
312 => 0.080714744647831
313 => 0.080598425830243
314 => 0.077114225647599
315 => 0.077337272838832
316 => 0.077127789886053
317 => 0.077804672162661
318 => 0.075869551236046
319 => 0.076464781399835
320 => 0.076838104178627
321 => 0.077057994163336
322 => 0.077852387568079
323 => 0.077759174670887
324 => 0.077846593323513
325 => 0.079024469030664
326 => 0.084981760159304
327 => 0.085306002371414
328 => 0.083709315132967
329 => 0.084347160191464
330 => 0.083122637160531
331 => 0.083944667674787
401 => 0.08450708007533
402 => 0.081965646582962
403 => 0.081815159385311
404 => 0.080585582312243
405 => 0.081246287384504
406 => 0.08019505810816
407 => 0.080452993002136
408 => 0.07973178455222
409 => 0.081029816170899
410 => 0.082481217214304
411 => 0.082847898435432
412 => 0.081883318008835
413 => 0.081184898211031
414 => 0.079958703119872
415 => 0.08199789288401
416 => 0.082594214114226
417 => 0.081994760662449
418 => 0.081855854199356
419 => 0.081592626702793
420 => 0.081911699157109
421 => 0.08259096642074
422 => 0.082270636523308
423 => 0.082482220064048
424 => 0.081675881790747
425 => 0.083390890149128
426 => 0.086114736161476
427 => 0.0861234937718
428 => 0.085803162147671
429 => 0.085672089348718
430 => 0.086000769034423
501 => 0.086179064280771
502 => 0.087241954114795
503 => 0.0883824772541
504 => 0.09370480109601
505 => 0.092210313858825
506 => 0.096932596197829
507 => 0.10066730841636
508 => 0.10178718531153
509 => 0.10075695126226
510 => 0.097232576231843
511 => 0.097059653578932
512 => 0.10232655782713
513 => 0.10083841613752
514 => 0.10066140641876
515 => 0.098778322073884
516 => 0.099891458146241
517 => 0.099647998958496
518 => 0.099263686720209
519 => 0.10138747280453
520 => 0.1053630107627
521 => 0.10474338588956
522 => 0.10428086466534
523 => 0.10225423129867
524 => 0.10347471725035
525 => 0.10304012557983
526 => 0.10490740719509
527 => 0.10380127093156
528 => 0.10082714200059
529 => 0.1013007818357
530 => 0.10122919212746
531 => 0.10270250325027
601 => 0.10226025182103
602 => 0.10114283543802
603 => 0.10534942280616
604 => 0.10507627042074
605 => 0.10546353805193
606 => 0.10563402523983
607 => 0.10819450084244
608 => 0.10924344577074
609 => 0.10948157463384
610 => 0.11047799118741
611 => 0.10945678288227
612 => 0.11354234421203
613 => 0.11625900409722
614 => 0.11941454435189
615 => 0.12402563679324
616 => 0.12575945020618
617 => 0.12544625233189
618 => 0.12894232999525
619 => 0.13522470384286
620 => 0.12671609970644
621 => 0.1356756805226
622 => 0.13283918067953
623 => 0.12611389057809
624 => 0.12568086118152
625 => 0.13023530572044
626 => 0.14033662535873
627 => 0.13780635935756
628 => 0.14034076396746
629 => 0.13738424636718
630 => 0.13723743034884
701 => 0.14019717250669
702 => 0.14711277138565
703 => 0.1438274295856
704 => 0.13911708651638
705 => 0.14259513053764
706 => 0.13958212692864
707 => 0.13279298651097
708 => 0.13780442451083
709 => 0.13445341863786
710 => 0.13543142030086
711 => 0.14247473622135
712 => 0.14162726581549
713 => 0.14272397099432
714 => 0.14078831505946
715 => 0.13898010719139
716 => 0.13560495292635
717 => 0.13460573614156
718 => 0.13488188371282
719 => 0.13460559929654
720 => 0.13271723150452
721 => 0.13230943865962
722 => 0.13162976605232
723 => 0.13184042501361
724 => 0.13056244166664
725 => 0.1329742602872
726 => 0.13342191507605
727 => 0.13517703553912
728 => 0.13535925796798
729 => 0.14024724347503
730 => 0.13755502319701
731 => 0.13936119699462
801 => 0.1391996358098
802 => 0.12625964800745
803 => 0.12804266415613
804 => 0.1308164777422
805 => 0.12956687848149
806 => 0.12780023748805
807 => 0.12637358016455
808 => 0.12421204843624
809 => 0.12725436283529
810 => 0.13125468275598
811 => 0.1354607126827
812 => 0.14051398204966
813 => 0.1393861511535
814 => 0.13536624532687
815 => 0.13554657536571
816 => 0.13666130470856
817 => 0.13521762892572
818 => 0.13479186075347
819 => 0.1366028106998
820 => 0.1366152817168
821 => 0.13495415825461
822 => 0.13310812350876
823 => 0.13310038855577
824 => 0.13277190450333
825 => 0.13744268295038
826 => 0.14001113882729
827 => 0.14030560815431
828 => 0.13999131869537
829 => 0.14011227623441
830 => 0.1386177483517
831 => 0.14203379590311
901 => 0.14516869894836
902 => 0.1443284779648
903 => 0.14306886726598
904 => 0.14206552667331
905 => 0.14409212280779
906 => 0.14400188167208
907 => 0.14514131830509
908 => 0.14508962687771
909 => 0.14470647719441
910 => 0.14432849164828
911 => 0.14582716161313
912 => 0.14539556873116
913 => 0.14496330546623
914 => 0.14409633531222
915 => 0.144214170955
916 => 0.14295477774573
917 => 0.14237212482121
918 => 0.13361042281629
919 => 0.13126900974371
920 => 0.1320056659602
921 => 0.13224819231394
922 => 0.13122920634415
923 => 0.13269017046881
924 => 0.13246248075753
925 => 0.13334828823011
926 => 0.13279487417853
927 => 0.13281758648424
928 => 0.13444505920963
929 => 0.13491752146557
930 => 0.13467722334896
1001 => 0.13484551991289
1002 => 0.13872384319527
1003 => 0.13817246964631
1004 => 0.13787956343771
1005 => 0.13796070045925
1006 => 0.13895169521009
1007 => 0.13922911963401
1008 => 0.13805365285557
1009 => 0.13860800978358
1010 => 0.14096839122466
1011 => 0.14179439114302
1012 => 0.14443058637998
1013 => 0.14331068378869
1014 => 0.14536631346325
1015 => 0.15168461826707
1016 => 0.15673211733779
1017 => 0.15209022859563
1018 => 0.16135931784389
1019 => 0.16857663339554
1020 => 0.1682996208036
1021 => 0.16704111489765
1022 => 0.15882439302436
1023 => 0.15126324305213
1024 => 0.15758846606729
1025 => 0.15760459036155
1026 => 0.15706124809498
1027 => 0.15368659594189
1028 => 0.15694381751504
1029 => 0.15720236393502
1030 => 0.15705764669287
1031 => 0.15447030879938
1101 => 0.150519922056
1102 => 0.15129181816977
1103 => 0.15255619975037
1104 => 0.15016246164066
1105 => 0.1493975172729
1106 => 0.15081969438918
1107 => 0.15540224538023
1108 => 0.15453594066029
1109 => 0.15451331794304
1110 => 0.15821973690534
1111 => 0.15556674082361
1112 => 0.15130155425172
1113 => 0.15022453839141
1114 => 0.14640185765216
1115 => 0.14904219685468
1116 => 0.14913721796208
1117 => 0.14769113116447
1118 => 0.1514188962255
1119 => 0.1513845442142
1120 => 0.15492350233505
1121 => 0.16168866109014
1122 => 0.15968787075301
1123 => 0.15736116927631
1124 => 0.15761414623926
1125 => 0.16038867912249
1126 => 0.15871113320486
1127 => 0.15931439041311
1128 => 0.16038776602046
1129 => 0.16103536017479
1130 => 0.15752096740636
1201 => 0.1567015943392
1202 => 0.15502544460466
1203 => 0.15458816842574
1204 => 0.15595335741051
1205 => 0.15559367834586
1206 => 0.14912923180594
1207 => 0.14845366117468
1208 => 0.14847437996145
1209 => 0.1467756254875
1210 => 0.14418461716695
1211 => 0.15099363233229
1212 => 0.15044677312241
1213 => 0.14984308287824
1214 => 0.14991703148854
1215 => 0.15287259419288
1216 => 0.15115821856487
1217 => 0.15571616715257
1218 => 0.15477918994742
1219 => 0.15381818281249
1220 => 0.15368534235345
1221 => 0.15331543659578
1222 => 0.15204689211685
1223 => 0.15051504843084
1224 => 0.14950359254331
1225 => 0.1379091613912
1226 => 0.14006102037133
1227 => 0.14253653797985
1228 => 0.14339107673829
1229 => 0.14192932905969
1230 => 0.15210461082466
1231 => 0.15396373285457
]
'min_raw' => 0.064170620373656
'max_raw' => 0.16857663339554
'avg_raw' => 0.1163736268846
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.06417'
'max' => '$0.168576'
'avg' => '$0.116373'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.0024880395477849
'max_diff' => -0.030401089878452
'year' => 2027
]
2 => [
'items' => [
101 => 0.14833233095843
102 => 0.14727892559229
103 => 0.15217367190509
104 => 0.14922154152007
105 => 0.15055088565168
106 => 0.1476775707515
107 => 0.15351592479901
108 => 0.15347144632309
109 => 0.1512001947334
110 => 0.15311984102415
111 => 0.15278625524095
112 => 0.15022201779004
113 => 0.15359721569995
114 => 0.15359888975601
115 => 0.1514128594822
116 => 0.14886005470595
117 => 0.14840367350652
118 => 0.14805985157893
119 => 0.15046632653416
120 => 0.15262396445417
121 => 0.15663879369951
122 => 0.15764821716178
123 => 0.16158806413614
124 => 0.15924207709057
125 => 0.16028202276225
126 => 0.16141103089816
127 => 0.16195231891641
128 => 0.16107031913779
129 => 0.16719052319467
130 => 0.16770725593528
131 => 0.16788051195349
201 => 0.16581681358044
202 => 0.16764986075033
203 => 0.16679223868368
204 => 0.16902353304682
205 => 0.16937342849356
206 => 0.16907707949806
207 => 0.16918814183558
208 => 0.163965627351
209 => 0.16369481242402
210 => 0.16000223167845
211 => 0.16150698562645
212 => 0.15869392024539
213 => 0.15958597225551
214 => 0.15997918028178
215 => 0.15977379072322
216 => 0.16159206215695
217 => 0.16004615998996
218 => 0.15596627000144
219 => 0.15188526844961
220 => 0.15183403479944
221 => 0.15075957912651
222 => 0.14998294447135
223 => 0.15013255185853
224 => 0.15065978780454
225 => 0.1499523005597
226 => 0.1501032788339
227 => 0.1526105241486
228 => 0.15311333431561
229 => 0.1514045889075
301 => 0.14454372952318
302 => 0.1428600574211
303 => 0.14407024753941
304 => 0.14349185460908
305 => 0.11580912574961
306 => 0.12231277227142
307 => 0.11844852635113
308 => 0.12022934865661
309 => 0.11628495421362
310 => 0.11816742598524
311 => 0.11781980218588
312 => 0.12827747333606
313 => 0.12811419118511
314 => 0.12819234571007
315 => 0.12446182660308
316 => 0.13040464483515
317 => 0.13333229079309
318 => 0.13279046144305
319 => 0.1329268282172
320 => 0.13058359523256
321 => 0.12821503332742
322 => 0.12558793365555
323 => 0.13046876012655
324 => 0.12992609554146
325 => 0.13117077285509
326 => 0.13433633771022
327 => 0.13480247915995
328 => 0.13542897799552
329 => 0.13520442276019
330 => 0.14055423949274
331 => 0.1399063413872
401 => 0.14146758940855
402 => 0.13825598377647
403 => 0.13462174715537
404 => 0.1353124967249
405 => 0.1352459719867
406 => 0.13439903571584
407 => 0.13363445951959
408 => 0.13236165557084
409 => 0.13638899560422
410 => 0.13622549295365
411 => 0.13887241081532
412 => 0.13840454237248
413 => 0.13528000240438
414 => 0.1353915959606
415 => 0.13614211625624
416 => 0.13873967556873
417 => 0.139510808028
418 => 0.13915358874855
419 => 0.1399991002866
420 => 0.140667358132
421 => 0.14008302318331
422 => 0.14835597380346
423 => 0.14492046791787
424 => 0.14659490958241
425 => 0.14699425405302
426 => 0.14597134158886
427 => 0.14619317467459
428 => 0.14652919135357
429 => 0.14856941882951
430 => 0.15392356607097
501 => 0.1562948814373
502 => 0.16342910071554
503 => 0.15609797670643
504 => 0.15566297814694
505 => 0.15694806647173
506 => 0.16113660842186
507 => 0.1645310282627
508 => 0.16565715315269
509 => 0.1658059891472
510 => 0.16791867430418
511 => 0.16912962603691
512 => 0.16766213875698
513 => 0.16641859693957
514 => 0.16196438450367
515 => 0.16247997172154
516 => 0.16603185636944
517 => 0.17104910263957
518 => 0.17535442189483
519 => 0.17384684914716
520 => 0.18534856503139
521 => 0.18648891318101
522 => 0.1863313539386
523 => 0.18892923673001
524 => 0.1837729684387
525 => 0.18156856384618
526 => 0.16668746479529
527 => 0.17086844663645
528 => 0.17694574928302
529 => 0.17614139548903
530 => 0.17172789586033
531 => 0.1753510738596
601 => 0.17415313790579
602 => 0.17320827611661
603 => 0.17753687114331
604 => 0.17277740310257
605 => 0.17689826994851
606 => 0.17161321559368
607 => 0.17385373561249
608 => 0.17258190808805
609 => 0.17340493636568
610 => 0.1685935298719
611 => 0.17118964802565
612 => 0.16848552282146
613 => 0.16848424071402
614 => 0.16842454700026
615 => 0.17160593831107
616 => 0.1717096833675
617 => 0.169358630382
618 => 0.16901980691644
619 => 0.17027261485318
620 => 0.16880590487017
621 => 0.16949216923986
622 => 0.16882669111882
623 => 0.16867687797666
624 => 0.16748314137133
625 => 0.16696884681928
626 => 0.16717051496488
627 => 0.1664821176169
628 => 0.16606733331432
629 => 0.16834203596251
630 => 0.16712675409883
701 => 0.16815577658731
702 => 0.16698307558869
703 => 0.162917983006
704 => 0.16058010527412
705 => 0.15290152221969
706 => 0.15507915884867
707 => 0.15652293418661
708 => 0.15604576644604
709 => 0.1570709073922
710 => 0.15713384272045
711 => 0.15680055894877
712 => 0.15641465903747
713 => 0.15622682430225
714 => 0.15762679052846
715 => 0.15843951804346
716 => 0.156667836357
717 => 0.15625275612632
718 => 0.15804402412856
719 => 0.15913669657515
720 => 0.16720437600113
721 => 0.16660669625099
722 => 0.16810675513511
723 => 0.16793787152504
724 => 0.16951017221372
725 => 0.17208021933585
726 => 0.16685459494007
727 => 0.16776158264668
728 => 0.16753921020643
729 => 0.16996701419996
730 => 0.16997459353902
731 => 0.1685190037671
801 => 0.1693081025967
802 => 0.16886764927781
803 => 0.16966360795589
804 => 0.16659871387354
805 => 0.17033142403097
806 => 0.1724476301597
807 => 0.17247701368385
808 => 0.17348007859362
809 => 0.17449925063555
810 => 0.17645546261885
811 => 0.17444469294507
812 => 0.17082751404642
813 => 0.17108866267949
814 => 0.16896791201468
815 => 0.1690035622165
816 => 0.16881325864523
817 => 0.16938437398801
818 => 0.16672404157468
819 => 0.16734841627469
820 => 0.16647428803834
821 => 0.16775968246261
822 => 0.16637681054541
823 => 0.1675391029717
824 => 0.16804070985229
825 => 0.16989165004047
826 => 0.16610342517466
827 => 0.15837897823299
828 => 0.16000275062999
829 => 0.15760106371025
830 => 0.15782334897854
831 => 0.15827240059692
901 => 0.1568168773812
902 => 0.15709454534195
903 => 0.15708462508847
904 => 0.15699913770336
905 => 0.15662049989998
906 => 0.15607140017387
907 => 0.15825884447871
908 => 0.15863053389126
909 => 0.15945675341276
910 => 0.16191502227871
911 => 0.16166938324903
912 => 0.16207003069791
913 => 0.16119541956655
914 => 0.15786391968048
915 => 0.15804483615262
916 => 0.155788804846
917 => 0.15939906162
918 => 0.15854410516286
919 => 0.15799290917312
920 => 0.15784251024052
921 => 0.16030687267951
922 => 0.1610442485454
923 => 0.16058476538923
924 => 0.15964235203066
925 => 0.16145206427861
926 => 0.16193626693054
927 => 0.1620446620476
928 => 0.16525112517307
929 => 0.16222386771695
930 => 0.16295255867499
1001 => 0.1686375975156
1002 => 0.1634820517689
1003 => 0.16621305933332
1004 => 0.16607939072452
1005 => 0.16747648178222
1006 => 0.16596478847975
1007 => 0.16598352772999
1008 => 0.16722404994208
1009 => 0.16548196022455
1010 => 0.16505059431143
1011 => 0.16445466539196
1012 => 0.16575585438601
1013 => 0.16653585834023
1014 => 0.17282211736145
1015 => 0.1768833273774
1016 => 0.17670701953993
1017 => 0.17831814313998
1018 => 0.17759231720196
1019 => 0.17524843378487
1020 => 0.1792491569717
1021 => 0.17798316075802
1022 => 0.17808752794769
1023 => 0.17808364339568
1024 => 0.17892542020247
1025 => 0.17832894418715
1026 => 0.17715322873394
1027 => 0.17793372352012
1028 => 0.18025151400309
1029 => 0.1874460067807
1030 => 0.1914721402534
1031 => 0.18720362849028
1101 => 0.19014799074683
1102 => 0.18838242257644
1103 => 0.18806156631878
1104 => 0.18991084340256
1105 => 0.19176335740107
1106 => 0.191645360268
1107 => 0.19030053023273
1108 => 0.1895408698696
1109 => 0.19529327264408
1110 => 0.19953154501869
1111 => 0.19924252325648
1112 => 0.20051817131996
1113 => 0.20426351348865
1114 => 0.2046059406384
1115 => 0.20456280268813
1116 => 0.2037140612689
1117 => 0.20740183702812
1118 => 0.2104782444467
1119 => 0.20351760215285
1120 => 0.20616812361685
1121 => 0.2073580280965
1122 => 0.20910516090139
1123 => 0.2120528667967
1124 => 0.21525485723937
1125 => 0.215707653796
1126 => 0.21538637297076
1127 => 0.2132745741997
1128 => 0.21677823034976
1129 => 0.21883058995162
1130 => 0.22005272312711
1201 => 0.2231518495166
1202 => 0.20736537654148
1203 => 0.19619092633107
1204 => 0.1944458745697
1205 => 0.19799450594722
1206 => 0.19893025174167
1207 => 0.19855305378525
1208 => 0.18597519413688
1209 => 0.1943796547417
1210 => 0.20342214768537
1211 => 0.20376950666605
1212 => 0.20829636770326
1213 => 0.20977049921928
1214 => 0.21341521570348
1215 => 0.21318723769504
1216 => 0.21407466815884
1217 => 0.21387066326337
1218 => 0.22062173306473
1219 => 0.22806916559921
1220 => 0.22781128469193
1221 => 0.22674062815108
1222 => 0.22833073568831
1223 => 0.23601728417927
1224 => 0.23530962996865
1225 => 0.23599705575642
1226 => 0.24505992962214
1227 => 0.25684295482636
1228 => 0.25136855662261
1229 => 0.2632464255091
1230 => 0.27072291435436
1231 => 0.28365272872887
]
'min_raw' => 0.11580912574961
'max_raw' => 0.28365272872887
'avg_raw' => 0.19973092723924
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.1158091'
'max' => '$0.283652'
'avg' => '$0.19973'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.051638505375952
'max_diff' => 0.11507609533334
'year' => 2028
]
3 => [
'items' => [
101 => 0.28203385228851
102 => 0.28706733414114
103 => 0.27913572559054
104 => 0.2609231491158
105 => 0.25804093917372
106 => 0.26381119646693
107 => 0.2779968109688
108 => 0.26336444098395
109 => 0.26632455037465
110 => 0.26547203867099
111 => 0.26542661194524
112 => 0.26716036530314
113 => 0.26464546563102
114 => 0.25439931194498
115 => 0.25909506379833
116 => 0.25728180849923
117 => 0.25929375044072
118 => 0.27015137131097
119 => 0.26535095831088
120 => 0.26029411316917
121 => 0.26663651918065
122 => 0.27471258152042
123 => 0.27420719605327
124 => 0.27322653701228
125 => 0.27875446068074
126 => 0.28788497105136
127 => 0.29035291131518
128 => 0.29217469436311
129 => 0.29242588746615
130 => 0.29501333254303
131 => 0.2810999882445
201 => 0.30318082296629
202 => 0.30699357315199
203 => 0.30627693413939
204 => 0.31051464550574
205 => 0.3092678033214
206 => 0.30746132461983
207 => 0.31417899852256
208 => 0.30647772748141
209 => 0.29554674280156
210 => 0.28954978841584
211 => 0.29744706171147
212 => 0.30226965093626
213 => 0.30545707563956
214 => 0.30642158842889
215 => 0.28218004155619
216 => 0.26911519228962
217 => 0.27748961088069
218 => 0.28770697953328
219 => 0.28104323024575
220 => 0.28130443660167
221 => 0.27180368132016
222 => 0.28854758556148
223 => 0.28610813955192
224 => 0.29876398976482
225 => 0.29574356954197
226 => 0.30606392409331
227 => 0.3033462288672
228 => 0.31462722980651
301 => 0.3191275265021
302 => 0.32668422506926
303 => 0.33224296329656
304 => 0.33550716070535
305 => 0.33531119053663
306 => 0.34824556688694
307 => 0.34061861704585
308 => 0.33103737051138
309 => 0.33086407599002
310 => 0.33582633933753
311 => 0.34622588198346
312 => 0.34892233208435
313 => 0.35042927983427
314 => 0.34812133689805
315 => 0.33984282947396
316 => 0.33626821194123
317 => 0.33931388964576
318 => 0.33558928753119
319 => 0.34201899571971
320 => 0.35084835837412
321 => 0.34902512990107
322 => 0.35511990933279
323 => 0.36142736485513
324 => 0.37044730953762
325 => 0.37280545708521
326 => 0.37670338530905
327 => 0.38071563385411
328 => 0.38200425995365
329 => 0.38446464701487
330 => 0.38445167956057
331 => 0.39186622157271
401 => 0.40004469102135
402 => 0.4031318739062
403 => 0.41023068072168
404 => 0.39807422282204
405 => 0.40729503578224
406 => 0.41561243988425
407 => 0.40569608782751
408 => 0.41936346892403
409 => 0.41989414236106
410 => 0.42790668121563
411 => 0.41978443806981
412 => 0.41496147601694
413 => 0.42888518674955
414 => 0.43562243178028
415 => 0.4335931187475
416 => 0.41814994636855
417 => 0.40916135765518
418 => 0.385636487223
419 => 0.41350271244869
420 => 0.42707553788718
421 => 0.41811479602962
422 => 0.42263407300735
423 => 0.44728978281736
424 => 0.45667708077403
425 => 0.45472458842121
426 => 0.45505452748807
427 => 0.46011974307398
428 => 0.48258169844706
429 => 0.46912197412346
430 => 0.4794114290426
501 => 0.48486891883033
502 => 0.48993813949438
503 => 0.47748973568712
504 => 0.46129454523725
505 => 0.45616484859393
506 => 0.4172238268488
507 => 0.41519677755468
508 => 0.41405893336001
509 => 0.40688498666388
510 => 0.4012482296701
511 => 0.39676567122928
512 => 0.3850020992753
513 => 0.38897195948649
514 => 0.37022328104012
515 => 0.38221802109774
516 => 0.35229467759467
517 => 0.37721572724098
518 => 0.36365233293958
519 => 0.37275978742665
520 => 0.37272801237592
521 => 0.35595830114414
522 => 0.3462858816806
523 => 0.35244952381897
524 => 0.35905743746182
525 => 0.36012954921868
526 => 0.36869688174083
527 => 0.37108784009356
528 => 0.3638431246616
529 => 0.35167458281155
530 => 0.35450105754843
531 => 0.34622860326027
601 => 0.33173144531564
602 => 0.34214355724757
603 => 0.34569871004937
604 => 0.34726886805924
605 => 0.33301257823053
606 => 0.32853294244724
607 => 0.326148021944
608 => 0.34983427481748
609 => 0.35113186121859
610 => 0.34449322573032
611 => 0.37450048763853
612 => 0.3677089200968
613 => 0.37529676501536
614 => 0.35424458459176
615 => 0.35504880623446
616 => 0.34508236664578
617 => 0.35066290685771
618 => 0.34671876090512
619 => 0.35021205435656
620 => 0.35230592004796
621 => 0.36227072424198
622 => 0.37732950929819
623 => 0.36078231479233
624 => 0.35357246518593
625 => 0.35804541533201
626 => 0.36995747100948
627 => 0.38800484512776
628 => 0.37732043641248
629 => 0.3820619955673
630 => 0.38309781530534
701 => 0.37521952787701
702 => 0.38829532882271
703 => 0.39530275677714
704 => 0.40249092787547
705 => 0.40873221543218
706 => 0.39961981426753
707 => 0.4093713897251
708 => 0.40151334129109
709 => 0.39446385949567
710 => 0.39447455064965
711 => 0.39005230774289
712 => 0.38148365487257
713 => 0.37990346381656
714 => 0.38812381724604
715 => 0.39471576222612
716 => 0.39525870638797
717 => 0.3989083458353
718 => 0.40106816486596
719 => 0.42223732749798
720 => 0.43075173982908
721 => 0.44116300205797
722 => 0.44521877544271
723 => 0.45742519925555
724 => 0.44756752066941
725 => 0.4454347498996
726 => 0.41582595842045
727 => 0.42067439636645
728 => 0.42843721332266
729 => 0.41595396441284
730 => 0.4238717125983
731 => 0.42543484381095
801 => 0.41552978839166
802 => 0.42082050646328
803 => 0.40676992785363
804 => 0.37763577351608
805 => 0.38832776346493
806 => 0.39620066695219
807 => 0.38496506295387
808 => 0.40510444824293
809 => 0.39333943511836
810 => 0.3896104907781
811 => 0.37506254944208
812 => 0.38192861775107
813 => 0.3912150734516
814 => 0.38547712349502
815 => 0.39738423121244
816 => 0.41424787124993
817 => 0.42626590538778
818 => 0.42718850082036
819 => 0.41946171001548
820 => 0.43184394159202
821 => 0.43193413263107
822 => 0.41796692482982
823 => 0.4094120878213
824 => 0.40746841085343
825 => 0.41232409699948
826 => 0.4182197963899
827 => 0.42751567110454
828 => 0.43313297350607
829 => 0.44777991898225
830 => 0.45174296246726
831 => 0.45609714573759
901 => 0.46191567736714
902 => 0.4689023164293
903 => 0.45361594791088
904 => 0.45422330382947
905 => 0.43998884911929
906 => 0.42477729283418
907 => 0.43632096790732
908 => 0.45141278747471
909 => 0.44795070739098
910 => 0.44756115265768
911 => 0.44821627566561
912 => 0.44560598034344
913 => 0.4337997113433
914 => 0.42787067696259
915 => 0.4355206439717
916 => 0.43958626097618
917 => 0.44589167839107
918 => 0.44511440260347
919 => 0.46135648071184
920 => 0.4676676611298
921 => 0.46605299110825
922 => 0.46635012925142
923 => 0.47777621993687
924 => 0.49048438273387
925 => 0.50238725418303
926 => 0.51449536626135
927 => 0.49989856456328
928 => 0.49248720886657
929 => 0.5001338361394
930 => 0.49607642807437
1001 => 0.51939149832146
1002 => 0.52100578319938
1003 => 0.54431916750152
1004 => 0.56644634531041
1005 => 0.55254866137821
1006 => 0.56565355136084
1007 => 0.57982755833442
1008 => 0.60717151743619
1009 => 0.59796303398279
1010 => 0.59090947997282
1011 => 0.58424390551593
1012 => 0.59811390783058
1013 => 0.61595744422969
1014 => 0.61980077106679
1015 => 0.62602842880674
1016 => 0.61948080817494
1017 => 0.62736669602919
1018 => 0.65520734538941
1019 => 0.64768455617607
1020 => 0.63700098614442
1021 => 0.65897850496992
1022 => 0.66693208359743
1023 => 0.72275446372676
1024 => 0.79323252454755
1025 => 0.76405414458384
1026 => 0.74594218255994
1027 => 0.75019892325704
1028 => 0.77593512523587
1029 => 0.78420077648525
1030 => 0.76173188704858
1031 => 0.76966827864845
1101 => 0.81339857665254
1102 => 0.8368584784958
1103 => 0.80499678070748
1104 => 0.71709162016277
1105 => 0.63603904755454
1106 => 0.65753783965515
1107 => 0.65510054381613
1108 => 0.70208329355575
1109 => 0.64750514014129
1110 => 0.64842409627131
1111 => 0.69637839951994
1112 => 0.68358501355809
1113 => 0.66286136675298
1114 => 0.63619035311037
1115 => 0.58688651762186
1116 => 0.54321673559051
1117 => 0.62886323470415
1118 => 0.62517000192432
1119 => 0.61982165355269
1120 => 0.63172382410201
1121 => 0.68951738579949
1122 => 0.68818505714286
1123 => 0.67970946198943
1124 => 0.68613812621284
1125 => 0.66173439083248
1126 => 0.66802378910272
1127 => 0.63602620841293
1128 => 0.65049045122172
1129 => 0.6628169031144
1130 => 0.66529162082809
1201 => 0.67086728619926
1202 => 0.62322383607114
1203 => 0.64461434644046
1204 => 0.65717926726266
1205 => 0.60041049787223
1206 => 0.65605713121732
1207 => 0.62239446960152
1208 => 0.61096885665291
1209 => 0.62635193927817
1210 => 0.62035713701857
1211 => 0.61520315806236
1212 => 0.6123271492482
1213 => 0.62362278735932
1214 => 0.62309583234023
1215 => 0.60461397600155
1216 => 0.58050514782459
1217 => 0.58859686190609
1218 => 0.58565706632006
1219 => 0.5750028678751
1220 => 0.58218251123418
1221 => 0.55056699541517
1222 => 0.49617414368007
1223 => 0.53210772763438
1224 => 0.53072432374036
1225 => 0.53002674876462
1226 => 0.55702984397497
1227 => 0.5544341194379
1228 => 0.5497228539857
1229 => 0.57491634179045
1230 => 0.56572037984149
1231 => 0.59406016772707
]
'min_raw' => 0.25439931194498
'max_raw' => 0.8368584784958
'avg_raw' => 0.54562889522039
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.254399'
'max' => '$0.836858'
'avg' => '$0.545628'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.13859018619537
'max_diff' => 0.55320574976692
'year' => 2029
]
4 => [
'items' => [
101 => 0.61272658493107
102 => 0.60799217773279
103 => 0.62554803333578
104 => 0.58878327865556
105 => 0.60099505541439
106 => 0.60351188567959
107 => 0.57460545806163
108 => 0.55485881207403
109 => 0.5535419359149
110 => 0.51930397302785
111 => 0.53759361644293
112 => 0.55368774577134
113 => 0.54597990677792
114 => 0.54353983521774
115 => 0.55600563163173
116 => 0.55697433077542
117 => 0.53488788764109
118 => 0.53948035855541
119 => 0.55863172570288
120 => 0.53899779324064
121 => 0.50085226965116
122 => 0.49139165239784
123 => 0.49012943166248
124 => 0.46447148734047
125 => 0.49202385608041
126 => 0.47999650876785
127 => 0.51799075481848
128 => 0.49628864524159
129 => 0.49535311067319
130 => 0.49393891295996
131 => 0.47185406036568
201 => 0.47668923951822
202 => 0.49276211143987
203 => 0.49849709321537
204 => 0.49789888763087
205 => 0.49268334559893
206 => 0.49507099403325
207 => 0.48737954651443
208 => 0.4846635363119
209 => 0.47609106101524
210 => 0.4634918905359
211 => 0.46524388246626
212 => 0.44028162899441
213 => 0.42668086845587
214 => 0.42291635719395
215 => 0.41788229540475
216 => 0.42348496786817
217 => 0.44021091406666
218 => 0.42003587434384
219 => 0.38544718385356
220 => 0.38752602308829
221 => 0.39219655763581
222 => 0.38349304740518
223 => 0.37525590540214
224 => 0.38241743207333
225 => 0.36776174793795
226 => 0.39396762704522
227 => 0.39325883145649
228 => 0.40302676262699
301 => 0.40913485044602
302 => 0.39505768554006
303 => 0.39151731663491
304 => 0.39353407166408
305 => 0.36020160340927
306 => 0.40030278884376
307 => 0.40064958556063
308 => 0.39768010152435
309 => 0.41903274478302
310 => 0.46409348211526
311 => 0.44713982016691
312 => 0.44057484983337
313 => 0.42809483643033
314 => 0.4447237133
315 => 0.4434468750073
316 => 0.43767252802116
317 => 0.43418018494689
318 => 0.44061493414233
319 => 0.43338284831136
320 => 0.43208376697169
321 => 0.42421274746772
322 => 0.42140315161338
323 => 0.41932303869605
324 => 0.41703303876175
325 => 0.42208420798439
326 => 0.41063759398925
327 => 0.39683409963651
328 => 0.39568648843696
329 => 0.39885514385793
330 => 0.3974532497128
331 => 0.39567977670714
401 => 0.39229373376269
402 => 0.39128916715244
403 => 0.39455352128933
404 => 0.39086825579245
405 => 0.3963060657799
406 => 0.39482728235107
407 => 0.38656691832731
408 => 0.37627144637526
409 => 0.3761797950794
410 => 0.37396165253529
411 => 0.37113651450539
412 => 0.37035062573588
413 => 0.38181430827221
414 => 0.40554378804325
415 => 0.40088512336587
416 => 0.40425148603444
417 => 0.4208106585522
418 => 0.4260743215439
419 => 0.42233829822908
420 => 0.41722419908787
421 => 0.41744919349559
422 => 0.4349256184042
423 => 0.43601560158873
424 => 0.43876963745414
425 => 0.44230935183163
426 => 0.42294112689373
427 => 0.41653695184277
428 => 0.41350229841353
429 => 0.40415674041012
430 => 0.4142351234892
501 => 0.40836288126842
502 => 0.40915524736836
503 => 0.40863921790629
504 => 0.40892100488634
505 => 0.39396030196793
506 => 0.3994111958
507 => 0.39034802758593
508 => 0.37821346273567
509 => 0.37817278341937
510 => 0.38114270097544
511 => 0.3793760778002
512 => 0.37462214025967
513 => 0.37529741464935
514 => 0.36938130043865
515 => 0.37601573802924
516 => 0.37620598996018
517 => 0.37365137010754
518 => 0.3838726365918
519 => 0.38806029781017
520 => 0.3863787922979
521 => 0.38794231890088
522 => 0.40107871191582
523 => 0.40322051715827
524 => 0.40417176556725
525 => 0.40289721871548
526 => 0.38818242805037
527 => 0.38883509158849
528 => 0.38404627959484
529 => 0.38000023809278
530 => 0.38016205853417
531 => 0.3822422498148
601 => 0.39132656713896
602 => 0.41044397739788
603 => 0.41116946914256
604 => 0.4120487863012
605 => 0.40847216150761
606 => 0.40739341724618
607 => 0.40881655937453
608 => 0.4159960535221
609 => 0.43446366168331
610 => 0.42793597554906
611 => 0.42262886511243
612 => 0.42728463175206
613 => 0.42656791297099
614 => 0.42051808517851
615 => 0.42034828666196
616 => 0.40873673288125
617 => 0.4044442058308
618 => 0.40085704893737
619 => 0.39693996725485
620 => 0.39461778993168
621 => 0.39818570971079
622 => 0.39900173517865
623 => 0.39120041622508
624 => 0.39013712527857
625 => 0.39650785073922
626 => 0.39370433198858
627 => 0.39658782054754
628 => 0.39725681462732
629 => 0.39714909117224
630 => 0.39422189561448
701 => 0.39608760277277
702 => 0.39167464914935
703 => 0.38687622488808
704 => 0.38381512916179
705 => 0.38114391714518
706 => 0.38262606082375
707 => 0.37734248923838
708 => 0.37565216835093
709 => 0.39545554316728
710 => 0.41008450906627
711 => 0.40987179810839
712 => 0.40857697485713
713 => 0.40665313015106
714 => 0.41585531229897
715 => 0.41264945604207
716 => 0.41498198432722
717 => 0.41557571067169
718 => 0.41737274149747
719 => 0.41801502555767
720 => 0.41607359703279
721 => 0.40955792577776
722 => 0.39332149250165
723 => 0.3857633889822
724 => 0.38326908893062
725 => 0.38335975200014
726 => 0.38085885980488
727 => 0.38159548463851
728 => 0.3806026917492
729 => 0.37872258219924
730 => 0.38250996935705
731 => 0.38294643044503
801 => 0.38206240902649
802 => 0.3822706280726
803 => 0.37495130829758
804 => 0.37550778028335
805 => 0.37240927355355
806 => 0.37182834089477
807 => 0.36399558569969
808 => 0.35011872449558
809 => 0.35780785266217
810 => 0.34852046709197
811 => 0.34500319344968
812 => 0.361653419824
813 => 0.35998219890141
814 => 0.35712179514421
815 => 0.35289066182693
816 => 0.35132129332173
817 => 0.34178630708585
818 => 0.34122292923186
819 => 0.34594872587665
820 => 0.34376793332981
821 => 0.34070527466333
822 => 0.32961263543006
823 => 0.31714083628522
824 => 0.31751728150647
825 => 0.32148432876837
826 => 0.33301905371155
827 => 0.32851223712348
828 => 0.32524248997908
829 => 0.32463016462717
830 => 0.33229469839626
831 => 0.343141619449
901 => 0.34823075212077
902 => 0.3431875762023
903 => 0.33739424725105
904 => 0.33774686034061
905 => 0.34009263725202
906 => 0.3403391452379
907 => 0.33656828365448
908 => 0.33762975910226
909 => 0.33601728083373
910 => 0.32612150467612
911 => 0.32594252146527
912 => 0.32351393840525
913 => 0.32344040187537
914 => 0.31930877625183
915 => 0.31873073326652
916 => 0.31052713981924
917 => 0.31592676986901
918 => 0.31230498152492
919 => 0.30684609219688
920 => 0.30590497761915
921 => 0.30587668657851
922 => 0.31148174533309
923 => 0.31586127149403
924 => 0.31236798408379
925 => 0.31157263025501
926 => 0.3200649283311
927 => 0.3189842059919
928 => 0.31804830741606
929 => 0.3421703966388
930 => 0.32307588074891
1001 => 0.31474958194405
1002 => 0.30444420605179
1003 => 0.30779968840652
1004 => 0.30850673784096
1005 => 0.28372416650368
1006 => 0.27366988039862
1007 => 0.27021962829514
1008 => 0.26823395943018
1009 => 0.2691388536664
1010 => 0.26008881692171
1011 => 0.26617059128794
1012 => 0.2583340244476
1013 => 0.25702019851442
1014 => 0.27103295078929
1015 => 0.27298274340703
1016 => 0.26466432234668
1017 => 0.27000609529747
1018 => 0.26806909416931
1019 => 0.25846835989376
1020 => 0.25810168246266
1021 => 0.25328437148532
1022 => 0.24574621262099
1023 => 0.24230107174419
1024 => 0.24050681246346
1025 => 0.24124715881211
1026 => 0.24087281704326
1027 => 0.23842998378701
1028 => 0.24101283738603
1029 => 0.23441471374933
1030 => 0.2317872877525
1031 => 0.23060054038555
1101 => 0.22474432588416
1102 => 0.23406416742629
1103 => 0.23590029361836
1104 => 0.23774003754624
1105 => 0.25375375239188
1106 => 0.25295375245248
1107 => 0.26018536228888
1108 => 0.25990435522872
1109 => 0.25784178295906
1110 => 0.24914012983006
1111 => 0.25260845367523
1112 => 0.241933491977
1113 => 0.24993189910815
1114 => 0.24628176011496
1115 => 0.24869778344284
1116 => 0.24435355565527
1117 => 0.24675783068168
1118 => 0.23633570725429
1119 => 0.22660367504103
1120 => 0.23052012889937
1121 => 0.23477776214423
1122 => 0.24400939584384
1123 => 0.23851111097167
1124 => 0.24048850212487
1125 => 0.23386457277293
1126 => 0.22019751448801
1127 => 0.22027486855367
1128 => 0.21817248938958
1129 => 0.21635572683943
1130 => 0.23914265513034
1201 => 0.23630874038933
1202 => 0.23179326814314
1203 => 0.23783740718241
1204 => 0.23943557347777
1205 => 0.23948107102545
1206 => 0.24389071884669
1207 => 0.24624414867936
1208 => 0.24665895088771
1209 => 0.25359762701119
1210 => 0.25592337972442
1211 => 0.2655028259974
1212 => 0.24604447660055
1213 => 0.24564374469965
1214 => 0.23792246061367
1215 => 0.23302550017767
1216 => 0.23825775968425
1217 => 0.24289282733244
1218 => 0.2380664850857
1219 => 0.23869670349348
1220 => 0.23221773335388
1221 => 0.23453366031491
1222 => 0.23652844860279
1223 => 0.23542704375846
1224 => 0.23377818739789
1225 => 0.2425128046429
1226 => 0.2420199633067
1227 => 0.25015383969324
1228 => 0.25649477799563
1229 => 0.26785887301182
1230 => 0.25599984743875
1231 => 0.25556765741152
]
'min_raw' => 0.21635572683943
'max_raw' => 0.62554803333578
'avg_raw' => 0.4209518800876
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.216355'
'max' => '$0.625548'
'avg' => '$0.420951'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.038043585105557
'max_diff' => -0.21131044516002
'year' => 2030
]
5 => [
'items' => [
101 => 0.25979238425324
102 => 0.25592273294075
103 => 0.25836821899442
104 => 0.2674648674015
105 => 0.26765706524803
106 => 0.2644375036857
107 => 0.26424159307204
108 => 0.26485994508823
109 => 0.26848165216093
110 => 0.26721611642591
111 => 0.26868062641792
112 => 0.27051201858829
113 => 0.27808743309916
114 => 0.27991383989128
115 => 0.27547661826977
116 => 0.27587724970073
117 => 0.27421760700983
118 => 0.27261441296568
119 => 0.27621815904924
120 => 0.28280407584875
121 => 0.28276310520215
122 => 0.28429090988771
123 => 0.2852427195498
124 => 0.28115685571287
125 => 0.27849710859641
126 => 0.27951702488497
127 => 0.28114789324126
128 => 0.27898815625731
129 => 0.26565725910493
130 => 0.26970100171996
131 => 0.2690279252199
201 => 0.26806938243493
202 => 0.27213539690368
203 => 0.27174321988906
204 => 0.25999599571418
205 => 0.26074801489208
206 => 0.26004172849116
207 => 0.26232388434515
208 => 0.25579948903524
209 => 0.2578063490901
210 => 0.25906503290336
211 => 0.25980640733903
212 => 0.2624847601659
213 => 0.2621704863751
214 => 0.26246522446581
215 => 0.26643651464912
216 => 0.28652193761412
217 => 0.28761514287011
218 => 0.28223180036855
219 => 0.28438233951619
220 => 0.28025377462393
221 => 0.28302530789508
222 => 0.28492152056989
223 => 0.27635290011315
224 => 0.27584552201959
225 => 0.27169991707141
226 => 0.2739275303515
227 => 0.27038323745182
228 => 0.2712528829553
301 => 0.26882127831324
302 => 0.27319768254129
303 => 0.27809118249271
304 => 0.27932747383061
305 => 0.27607532357749
306 => 0.27372055246708
307 => 0.26958635010703
308 => 0.2764616207685
309 => 0.27847215942999
310 => 0.27645106026483
311 => 0.27598272742637
312 => 0.27509523754375
313 => 0.2761710126004
314 => 0.27846120960466
315 => 0.27738119499075
316 => 0.27809456367064
317 => 0.27537593788547
318 => 0.28115820830381
319 => 0.2903418453073
320 => 0.29037137220194
321 => 0.28929135176635
322 => 0.28884943067347
323 => 0.28995759718151
324 => 0.29055873205275
325 => 0.29414233933676
326 => 0.29798769272971
327 => 0.31593227915549
328 => 0.31089351109355
329 => 0.32681501569873
330 => 0.3394068586928
331 => 0.34318260183216
401 => 0.33970909580639
402 => 0.32782641932735
403 => 0.32724339852998
404 => 0.34500113392629
405 => 0.33998376032102
406 => 0.33938695969583
407 => 0.33303800935432
408 => 0.33679102533895
409 => 0.33597018568969
410 => 0.33467445014648
411 => 0.34183494320779
412 => 0.35523874699695
413 => 0.35314963847633
414 => 0.35159021587665
415 => 0.34475727998592
416 => 0.34887223358362
417 => 0.34740697742423
418 => 0.35370264775953
419 => 0.34997323211907
420 => 0.33994574878124
421 => 0.34154265855381
422 => 0.34130128885422
423 => 0.34626866016808
424 => 0.34477757859739
425 => 0.34101013124654
426 => 0.35519293425278
427 => 0.35427198191445
428 => 0.35557768177118
429 => 0.35615249122823
430 => 0.3647853134891
501 => 0.36832190454988
502 => 0.36912477263742
503 => 0.37248426061539
504 => 0.36904118551611
505 => 0.3828159407842
506 => 0.39197534925822
507 => 0.40261447353965
508 => 0.41816109364185
509 => 0.42400676661455
510 => 0.42295079811462
511 => 0.43473806804497
512 => 0.45591953009354
513 => 0.42723217719581
514 => 0.45744002945545
515 => 0.44787657219647
516 => 0.42520178707469
517 => 0.423741798231
518 => 0.43909742597514
519 => 0.47315473038725
520 => 0.46462376190677
521 => 0.47316868399555
522 => 0.46320057848873
523 => 0.46270557803252
524 => 0.47268455536031
525 => 0.49600097981243
526 => 0.48492422055833
527 => 0.46904297003478
528 => 0.48076943828174
529 => 0.47061088625282
530 => 0.44772082533197
531 => 0.46461723843595
601 => 0.45331908817546
602 => 0.45661648906417
603 => 0.4803635204387
604 => 0.47750621479687
605 => 0.48120383287678
606 => 0.47467763374925
607 => 0.46858113467699
608 => 0.45720156642665
609 => 0.45383263727366
610 => 0.45476368809018
611 => 0.45383217589112
612 => 0.44746541203869
613 => 0.44609050999094
614 => 0.44379894634219
615 => 0.44450919773792
616 => 0.44020038765767
617 => 0.44833200252469
618 => 0.44984130189955
619 => 0.45575881307937
620 => 0.45637318872064
621 => 0.47285337312592
622 => 0.46377636449374
623 => 0.46986600555543
624 => 0.46932129074094
625 => 0.42569321842424
626 => 0.43170478185574
627 => 0.44105688802263
628 => 0.43684377687092
629 => 0.4308874234186
630 => 0.42607734864638
701 => 0.41878959351106
702 => 0.42904696891507
703 => 0.44253432682109
704 => 0.45671525037467
705 => 0.47375270085338
706 => 0.46995014024432
707 => 0.45639674708897
708 => 0.45700474240516
709 => 0.4607631302125
710 => 0.45589567651646
711 => 0.45446016939751
712 => 0.46056591357807
713 => 0.46060796048259
714 => 0.45500736675385
715 => 0.4487833317222
716 => 0.44875725278816
717 => 0.44764974587132
718 => 0.46339760150889
719 => 0.47205732982176
720 => 0.47305015371698
721 => 0.47199050486321
722 => 0.47239832165107
723 => 0.4673594165499
724 => 0.47887685937028
725 => 0.4894464038593
726 => 0.48661354015086
727 => 0.4823666747366
728 => 0.47898384187739
729 => 0.4858166522372
730 => 0.48551239794772
731 => 0.48935408810885
801 => 0.48917980685247
802 => 0.48788799094455
803 => 0.48661358628567
804 => 0.49166645670597
805 => 0.49021131117154
806 => 0.48875390539417
807 => 0.48583085499
808 => 0.48622814608666
809 => 0.48198201395359
810 => 0.48001755893905
811 => 0.45047686890696
812 => 0.44258263126049
813 => 0.4450663191261
814 => 0.44588401366038
815 => 0.4424484313199
816 => 0.44737417386746
817 => 0.44660650210907
818 => 0.44959306384799
819 => 0.44772718973495
820 => 0.44780376585939
821 => 0.45329090377954
822 => 0.45488384326171
823 => 0.45407366138448
824 => 0.45464108499988
825 => 0.46771712272229
826 => 0.46585812830631
827 => 0.46487057457396
828 => 0.46514413370688
829 => 0.46848534169837
830 => 0.46942069751279
831 => 0.4654575292008
901 => 0.46732658228754
902 => 0.47528477311273
903 => 0.47806968950695
904 => 0.48695780580162
905 => 0.48318197602598
906 => 0.49011267499325
907 => 0.51141528076927
908 => 0.52843327629135
909 => 0.51278282431084
910 => 0.54403420585848
911 => 0.56836788913775
912 => 0.56743392184362
913 => 0.56319078131564
914 => 0.53548752984664
915 => 0.50999458481265
916 => 0.5313205158212
917 => 0.53137488000506
918 => 0.5295429636184
919 => 0.51816508827354
920 => 0.52914703821937
921 => 0.53001874552549
922 => 0.52953082123974
923 => 0.52080743088968
924 => 0.50748842617717
925 => 0.5100909278168
926 => 0.51435387859211
927 => 0.50628322342975
928 => 0.50370416008714
929 => 0.50849912952794
930 => 0.52394952013775
1001 => 0.52102871329098
1002 => 0.52095243922031
1003 => 0.53344888952564
1004 => 0.52450412800979
1005 => 0.51012375369684
1006 => 0.50649251952899
1007 => 0.49360408452555
1008 => 0.50250617248945
1009 => 0.50282654278719
1010 => 0.49795096018649
1011 => 0.51051938035402
1012 => 0.51040356014955
1013 => 0.52233540453614
1014 => 0.54514460960721
1015 => 0.53839880529488
1016 => 0.53055416882106
1017 => 0.53140709831395
1018 => 0.54076162964147
1019 => 0.53510566645767
1020 => 0.53713959025334
1021 => 0.5407585510542
1022 => 0.54294195995911
1023 => 0.53109293937328
1024 => 0.52833036587056
1025 => 0.52267911001552
1026 => 0.52120480284863
1027 => 0.52580763282524
1028 => 0.52459494974678
1029 => 0.5027996169042
1030 => 0.50052188335407
1031 => 0.50059173819019
1101 => 0.49486426887805
1102 => 0.48612850342689
1103 => 0.50908557344709
1104 => 0.50724179944047
1105 => 0.50520641563395
1106 => 0.50545573853651
1107 => 0.51542062454498
1108 => 0.50964048742126
1109 => 0.52500792931052
1110 => 0.52184884524568
1111 => 0.51860874259488
1112 => 0.5181608617126
1113 => 0.51691369862462
1114 => 0.51263671234697
1115 => 0.50747199440967
1116 => 0.50406180026726
1117 => 0.4649703661406
1118 => 0.4722255089301
1119 => 0.48057188938234
1120 => 0.48345302646844
1121 => 0.47852464211405
1122 => 0.51283131500013
1123 => 0.51909947472374
1124 => 0.50011281005898
1125 => 0.49656118032061
1126 => 0.5130641592545
1127 => 0.50311084555024
1128 => 0.50759282210182
1129 => 0.49790524030741
1130 => 0.51758965859947
1201 => 0.5174396963125
1202 => 0.50978201300414
1203 => 0.51625423449882
1204 => 0.51512952674057
1205 => 0.50648402114547
1206 => 0.51786373654754
1207 => 0.51786938074441
1208 => 0.5104990270525
1209 => 0.50189206751824
1210 => 0.50035334644083
1211 => 0.49919412680709
1212 => 0.50730772513337
1213 => 0.51458235202216
1214 => 0.52811862912925
1215 => 0.53152197080798
1216 => 0.54480543995335
1217 => 0.53689578083766
1218 => 0.54040203027641
1219 => 0.54420856003145
1220 => 0.54603355037651
1221 => 0.54305982654361
1222 => 0.56369452182041
1223 => 0.5654367223325
1224 => 0.56602086709423
1225 => 0.55906296394669
1226 => 0.56524321045921
1227 => 0.56235167778426
1228 => 0.56987464251358
1229 => 0.57105433944117
1230 => 0.57005517811244
1231 => 0.57042963253751
]
'min_raw' => 0.25579948903524
'max_raw' => 0.57105433944117
'avg_raw' => 0.41342691423821
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.255799'
'max' => '$0.571054'
'avg' => '$0.413426'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.039443762195817
'max_diff' => -0.054493693894606
'year' => 2031
]
6 => [
'items' => [
101 => 0.55282156032844
102 => 0.55190848889442
103 => 0.53945869510296
104 => 0.54453207809721
105 => 0.53504763176304
106 => 0.53805524739623
107 => 0.53938097570972
108 => 0.53868849047317
109 => 0.54481891955966
110 => 0.53960680247222
111 => 0.52585116852709
112 => 0.51209178686868
113 => 0.51191904904011
114 => 0.50829644672271
115 => 0.50567796875994
116 => 0.50618238051107
117 => 0.50795999331349
118 => 0.50557465067234
119 => 0.50608368446477
120 => 0.51453703709355
121 => 0.5162322966767
122 => 0.51047114223248
123 => 0.48733927580833
124 => 0.48166265776595
125 => 0.48574289824258
126 => 0.48379280609589
127 => 0.39045855299976
128 => 0.41238605131815
129 => 0.39935747640485
130 => 0.40536164314081
131 => 0.39206284188744
201 => 0.39840972689544
202 => 0.3972376889856
203 => 0.43249645739972
204 => 0.43194594022778
205 => 0.43220944366527
206 => 0.41963173803953
207 => 0.43966836462325
208 => 0.44953912737218
209 => 0.4477123118892
210 => 0.44817208198907
211 => 0.44027170838205
212 => 0.43228593655115
213 => 0.4234284865892
214 => 0.43988453380459
215 => 0.43805490226833
216 => 0.44225141873186
217 => 0.45292434165359
218 => 0.45449597009631
219 => 0.4566082546612
220 => 0.45585115100734
221 => 0.47388843163341
222 => 0.47170399793578
223 => 0.47696785464259
224 => 0.46613970202691
225 => 0.45388661952458
226 => 0.45621552992483
227 => 0.45599123712537
228 => 0.45313573235697
229 => 0.45055791033031
301 => 0.44626656295277
302 => 0.45984502105522
303 => 0.45929376045344
304 => 0.46821802882596
305 => 0.4666405777054
306 => 0.45610597305452
307 => 0.45648221852054
308 => 0.45901265009694
309 => 0.46777050267479
310 => 0.47037042959997
311 => 0.46916603985905
312 => 0.47201674104133
313 => 0.47426981902336
314 => 0.47229969294688
315 => 0.5001925235617
316 => 0.48860947560906
317 => 0.49425497258684
318 => 0.49560139035085
319 => 0.49215256956047
320 => 0.49290049529689
321 => 0.49403339899
322 => 0.50091216836928
323 => 0.51896404960848
324 => 0.52695910492601
325 => 0.55101262331788
326 => 0.52629522687844
327 => 0.52482859886447
328 => 0.52916136387352
329 => 0.54328332549305
330 => 0.55472784897727
331 => 0.55852465766739
401 => 0.55902646861427
402 => 0.56614953412399
403 => 0.57023234243686
404 => 0.56528460661589
405 => 0.56109191855715
406 => 0.54607423034635
407 => 0.54781256864855
408 => 0.55978799572362
409 => 0.57670399181628
410 => 0.59121967627321
411 => 0.58613678949907
412 => 0.62491562762689
413 => 0.62876039102992
414 => 0.6282291690437
415 => 0.6369881122533
416 => 0.61960339371001
417 => 0.6121710897197
418 => 0.56199842530448
419 => 0.57609489748877
420 => 0.59658494766542
421 => 0.59387301269079
422 => 0.5789925905519
423 => 0.59120838813865
424 => 0.58716946343316
425 => 0.5839837959428
426 => 0.59857795628817
427 => 0.58253107749338
428 => 0.59642486777422
429 => 0.57860593802618
430 => 0.5861600076977
501 => 0.58187195240291
502 => 0.58464684970293
503 => 0.56842485678747
504 => 0.57717785039803
505 => 0.5680607034761
506 => 0.56805638076137
507 => 0.56785511923775
508 => 0.57858140215979
509 => 0.57893118586079
510 => 0.57100444657489
511 => 0.56986207960485
512 => 0.57408600903185
513 => 0.5691408939217
514 => 0.57145468215756
515 => 0.56921097621027
516 => 0.56870587074186
517 => 0.56468110443295
518 => 0.56294712444382
519 => 0.56362706267672
520 => 0.56130608295565
521 => 0.5599076087202
522 => 0.56757692751323
523 => 0.56347951986155
524 => 0.56694894102551
525 => 0.56299509773332
526 => 0.54928935427506
527 => 0.54140703627661
528 => 0.51551815740705
529 => 0.52286021133941
530 => 0.52772800069246
531 => 0.52611919634031
601 => 0.52957553061336
602 => 0.52978772146654
603 => 0.52866403196122
604 => 0.52736294346759
605 => 0.5267296455436
606 => 0.53144972941777
607 => 0.53418989697744
608 => 0.52821654847666
609 => 0.52681707649895
610 => 0.53285646163085
611 => 0.53654048307247
612 => 0.56374122752455
613 => 0.5617261085183
614 => 0.56678366177687
615 => 0.56621425889443
616 => 0.57151538044083
617 => 0.58018047374808
618 => 0.56256191625626
619 => 0.56561988863296
620 => 0.56487014442509
621 => 0.57305565509314
622 => 0.57308120936397
623 => 0.56817358682189
624 => 0.57083408861903
625 => 0.56934906950292
626 => 0.57203269975811
627 => 0.56169919537541
628 => 0.57428428828067
629 => 0.58141922499249
630 => 0.58151829359565
701 => 0.58490019697069
702 => 0.58833640666637
703 => 0.59493191194643
704 => 0.58815246160382
705 => 0.57595689040367
706 => 0.57683737125287
707 => 0.5696871123204
708 => 0.56980730946486
709 => 0.56916568768774
710 => 0.5710912429399
711 => 0.56212174646989
712 => 0.56422686936343
713 => 0.56127968498489
714 => 0.56561348202969
715 => 0.5609510328118
716 => 0.56486978287573
717 => 0.56656098549469
718 => 0.57280155956767
719 => 0.56002929494717
720 => 0.53398578277966
721 => 0.53946044478434
722 => 0.531362989654
723 => 0.5321124399555
724 => 0.53362644883866
725 => 0.52871905069547
726 => 0.5296552276113
727 => 0.52962178078409
728 => 0.52933355409664
729 => 0.52805695030689
730 => 0.52620562224338
731 => 0.53358074343966
801 => 0.53483392024457
802 => 0.53761957704614
803 => 0.54590780215854
804 => 0.54507961302
805 => 0.54643042386619
806 => 0.54348161137344
807 => 0.53224922690964
808 => 0.53285919942666
809 => 0.52525283236532
810 => 0.53742506513893
811 => 0.53454251975252
812 => 0.53268412398983
813 => 0.53217704348807
814 => 0.5404858135074
815 => 0.54297192772119
816 => 0.54142274818008
817 => 0.53824533574445
818 => 0.54434690693851
819 => 0.54597942998542
820 => 0.54634489169049
821 => 0.55715570598612
822 => 0.54694909611645
823 => 0.54940592855706
824 => 0.56857343392493
825 => 0.5511911514912
826 => 0.56039893416751
827 => 0.55994826112049
828 => 0.56465865116331
829 => 0.559561871651
830 => 0.55962505234149
831 => 0.56380755959005
901 => 0.5579339824786
902 => 0.5564796021855
903 => 0.55447038622706
904 => 0.55885743576663
905 => 0.56148727355641
906 => 0.58268183473905
907 => 0.59637448785246
908 => 0.595780053669
909 => 0.60121206937163
910 => 0.59876489654603
911 => 0.59086232996061
912 => 0.60435104750659
913 => 0.60008265288313
914 => 0.60043453414979
915 => 0.60042143711147
916 => 0.60325954638654
917 => 0.60124848585626
918 => 0.59728447911995
919 => 0.59991597178396
920 => 0.60773056422023
921 => 0.6319872989234
922 => 0.64556168902229
923 => 0.63117010359494
924 => 0.64109722651172
925 => 0.63514449015722
926 => 0.63406270088304
927 => 0.64029766768339
928 => 0.64654354796776
929 => 0.64614571239533
930 => 0.64161152403838
1001 => 0.63905027608631
1002 => 0.65844490366039
1003 => 0.67273453487812
1004 => 0.67176007782797
1005 => 0.6760610143369
1006 => 0.68868869695009
1007 => 0.68984321399297
1008 => 0.68969777138184
1009 => 0.68683618042967
1010 => 0.69926977387415
1011 => 0.7096420962738
1012 => 0.68617380480355
1013 => 0.69511022297293
1014 => 0.69912206900257
1015 => 0.70501264923517
1016 => 0.71495104546344
1017 => 0.72574677979675
1018 => 0.72727341500068
1019 => 0.72619019426727
1020 => 0.71907011726954
1021 => 0.73088293859694
1022 => 0.73780261228579
1023 => 0.74192311961358
1024 => 0.75237204060981
1025 => 0.69914684479785
1026 => 0.66147140573828
1027 => 0.65558784188919
1028 => 0.66755230033603
1029 => 0.6707072326137
1030 => 0.66943548336852
1031 => 0.6270283514059
1101 => 0.65536457711576
1102 => 0.68585197340205
1103 => 0.68702311845723
1104 => 0.70228574649954
1105 => 0.70725588382637
1106 => 0.71954429991882
1107 => 0.71877565614646
1108 => 0.72176768991356
1109 => 0.72107987316531
1110 => 0.74384157634527
1111 => 0.7689511150984
1112 => 0.76808165161482
1113 => 0.76447185833648
1114 => 0.76983301691603
1115 => 0.79574875181096
1116 => 0.79336284623303
1117 => 0.79568055027104
1118 => 0.82623666225897
1119 => 0.86596395439954
1120 => 0.84750663864533
1121 => 0.88755370288243
1122 => 0.91276120701602
1123 => 0.9563549789105
1124 => 0.95089682396546
1125 => 0.9678675594581
1126 => 0.94112558746252
1127 => 0.87972061431643
1128 => 0.87000304226727
1129 => 0.88945786759781
1130 => 0.93728565729885
1201 => 0.88795160029547
1202 => 0.89793181577444
1203 => 0.8950575130451
1204 => 0.89490435366765
1205 => 0.90074982416059
1206 => 0.89227066433134
1207 => 0.85772504181527
1208 => 0.87355709703576
1209 => 0.86744358019739
1210 => 0.87422698292243
1211 => 0.91083420974137
1212 => 0.89464928215743
1213 => 0.87759977570449
1214 => 0.89898364038483
1215 => 0.92621264841605
1216 => 0.92450870602868
1217 => 0.92120234560454
1218 => 0.93984012620005
1219 => 0.97062427938649
1220 => 0.97894511229204
1221 => 0.98508738103098
1222 => 0.98593429611559
1223 => 0.99465804784196
1224 => 0.94774823614079
1225 => 1.0221953120399
1226 => 1.0350502654888
1227 => 1.0326340670236
1228 => 1.0469218067628
1229 => 1.0427179912866
1230 => 1.0366273222199
1231 => 1.059276428796
]
'min_raw' => 0.39045855299976
'max_raw' => 1.059276428796
'avg_raw' => 0.72486749089789
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.390458'
'max' => '$1.05'
'avg' => '$0.724867'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.13465906396452
'max_diff' => 0.48822208935483
'year' => 2032
]
7 => [
'items' => [
101 => 1.0333110557952
102 => 0.99645647777012
103 => 0.97623732736465
104 => 1.0028635356509
105 => 1.0191232319247
106 => 1.0298698568508
107 => 1.0331217790601
108 => 0.95138971128805
109 => 0.90734065982719
110 => 0.9355755967902
111 => 0.97002416855632
112 => 0.94755687258528
113 => 0.94843754805113
114 => 0.91640508829794
115 => 0.97285833046962
116 => 0.96463356793171
117 => 1.0073036505278
118 => 0.9971200928674
119 => 1.0319158887814
120 => 1.0227529895831
121 => 1.0607876718643
122 => 1.0759607363742
123 => 1.1014386731853
124 => 1.1201803472173
125 => 1.13118581668
126 => 1.130525089574
127 => 1.1741342424884
128 => 1.1484194486025
129 => 1.1161156069703
130 => 1.1155313323925
131 => 1.1322619497228
201 => 1.1673247338264
202 => 1.1764160036017
203 => 1.1814967831522
204 => 1.1737153924073
205 => 1.1458038266401
206 => 1.1337517540567
207 => 1.1440204690799
208 => 1.1314627130072
209 => 1.1531409230727
210 => 1.1829097357085
211 => 1.1767625936179
212 => 1.1973115679958
213 => 1.2185775946618
214 => 1.2489889679113
215 => 1.2569396270086
216 => 1.2700817641599
217 => 1.2836093402558
218 => 1.2879540331194
219 => 1.2962493998751
220 => 1.2962056791976
221 => 1.3212043252583
222 => 1.3487786060069
223 => 1.3591872586434
224 => 1.3831213814446
225 => 1.3421350348992
226 => 1.3732236495711
227 => 1.4012663582037
228 => 1.3678326849068
301 => 1.4139132144998
302 => 1.4157024170432
303 => 1.442717251209
304 => 1.4153325413659
305 => 1.3990715880762
306 => 1.4460163509336
307 => 1.4687314429342
308 => 1.461889472362
309 => 1.4098217384785
310 => 1.3795160840682
311 => 1.3002003409521
312 => 1.3941532648582
313 => 1.4399149934485
314 => 1.4097032266567
315 => 1.424940284513
316 => 1.5080687315441
317 => 1.5397186620052
318 => 1.533135697719
319 => 1.5342481103186
320 => 1.5513258383085
321 => 1.6270578890925
322 => 1.5816774888076
323 => 1.6163691044542
324 => 1.6347694123033
325 => 1.6518606436938
326 => 1.6098899811379
327 => 1.555286765824
328 => 1.5379916354471
329 => 1.4066992618581
330 => 1.3998649236389
331 => 1.3960286024948
401 => 1.3718411403399
402 => 1.3528364205895
403 => 1.3377231618441
404 => 1.2980614576949
405 => 1.3114461185637
406 => 1.2482336401908
407 => 1.2886747437411
408 => 1.1877861019393
409 => 1.271809160754
410 => 1.2260792299009
411 => 1.2567856485662
412 => 1.2566785167642
413 => 1.2001382645224
414 => 1.1675270269943
415 => 1.1883081767956
416 => 1.2105872189923
417 => 1.214201918633
418 => 1.2430872783835
419 => 1.2511485614011
420 => 1.2267224975124
421 => 1.1856954090844
422 => 1.195225065998
423 => 1.1673339088011
424 => 1.1184557286316
425 => 1.1535608909605
426 => 1.1655473368446
427 => 1.1708412341998
428 => 1.1227751577
429 => 1.1076717528984
430 => 1.0996308269119
501 => 1.1794906821962
502 => 1.1838655853421
503 => 1.1614829622987
504 => 1.2626545408624
505 => 1.2397562967233
506 => 1.2653392456327
507 => 1.1943603495182
508 => 1.1970718389355
509 => 1.1634692920277
510 => 1.1822844729731
511 => 1.1689865095225
512 => 1.1807643922879
513 => 1.1878240066555
514 => 1.2214210397161
515 => 1.2721927849039
516 => 1.2164027633392
517 => 1.1920942520156
518 => 1.2071751157245
519 => 1.2473374431142
520 => 1.3081854249815
521 => 1.2721621950363
522 => 1.2881486927718
523 => 1.2916410313373
524 => 1.2650788352282
525 => 1.3091648110399
526 => 1.3327908436312
527 => 1.3570262643514
528 => 1.3780692011016
529 => 1.3473461043674
530 => 1.3802242218559
531 => 1.3537302629292
601 => 1.3299624428768
602 => 1.3299984888489
603 => 1.3150885881376
604 => 1.2861987767411
605 => 1.2808710522704
606 => 1.3085865477846
607 => 1.3308117505199
608 => 1.3326423246687
609 => 1.344947338875
610 => 1.3522293195307
611 => 1.4236026293283
612 => 1.4523095649598
613 => 1.4874118624557
614 => 1.5010861855874
615 => 1.5422409956976
616 => 1.5090051441033
617 => 1.5018143585476
618 => 1.4019862508559
619 => 1.4183330978979
620 => 1.4445059772484
621 => 1.4024178319963
622 => 1.4291130728031
623 => 1.4343832788209
624 => 1.4009876929259
625 => 1.4188257182905
626 => 1.371453211528
627 => 1.2732253760972
628 => 1.3092741667007
629 => 1.3358182104765
630 => 1.2979365871514
701 => 1.3658379307404
702 => 1.3261713675839
703 => 1.3135989713942
704 => 1.264549571475
705 => 1.2876990001523
706 => 1.3190089339063
707 => 1.2996630350168
708 => 1.3398086800138
709 => 1.3966656197819
710 => 1.43718526095
711 => 1.4402958558645
712 => 1.4142444411986
713 => 1.4559919994587
714 => 1.4562960848438
715 => 1.4092046685826
716 => 1.3803614383287
717 => 1.3738081957283
718 => 1.3901794805829
719 => 1.4100572427023
720 => 1.44139893332
721 => 1.4603380605542
722 => 1.5097212598442
723 => 1.5230829376448
724 => 1.5377633705401
725 => 1.557380956166
726 => 1.5809368975557
727 => 1.5293978388356
728 => 1.5314455817194
729 => 1.4834531238462
730 => 1.4321662997939
731 => 1.4710866062567
801 => 1.5219697296054
802 => 1.5102970848883
803 => 1.5089836739072
804 => 1.5111924668677
805 => 1.5023916739439
806 => 1.4625860137226
807 => 1.4425958603561
808 => 1.4683882582309
809 => 1.4820957698139
810 => 1.5033549248584
811 => 1.5007342852728
812 => 1.5554955856008
813 => 1.5767741710125
814 => 1.5713301983022
815 => 1.5723320202974
816 => 1.6108558827876
817 => 1.6537023409133
818 => 1.6938337030361
819 => 1.7346570482695
820 => 1.6854429122283
821 => 1.6604550090525
822 => 1.6862361467734
823 => 1.6725563122029
824 => 1.7511646993472
825 => 1.7566073735189
826 => 1.8352100763821
827 => 1.909813401235
828 => 1.8629563895522
829 => 1.9071404410829
830 => 1.9549290951919
831 => 2.0471211623977
901 => 2.0160741175188
902 => 1.9922925677108
903 => 1.9698191180538
904 => 2.0165827992303
905 => 2.0767435279958
906 => 2.0897015727596
907 => 2.1106985556311
908 => 2.0886227955307
909 => 2.1152106170064
910 => 2.2090773100964
911 => 2.1837137010393
912 => 2.1476932987745
913 => 2.2217920379161
914 => 2.2486080835599
915 => 2.43681713556
916 => 2.6744388382384
917 => 2.5760618930213
918 => 2.5149961485209
919 => 2.5293480469773
920 => 2.6161194487932
921 => 2.6439876690698
922 => 2.5682322396063
923 => 2.5949903379865
924 => 2.7424300908591
925 => 2.8215267878417
926 => 2.7141028492357
927 => 2.4177244631169
928 => 2.1444500556583
929 => 2.2169347342233
930 => 2.2087172211355
1001 => 2.3671228421134
1002 => 2.1831087873516
1003 => 2.1862071121034
1004 => 2.3478883935687
1005 => 2.3047545995927
1006 => 2.2348833775104
1007 => 2.1449601929037
1008 => 1.9787288692703
1009 => 1.8314931502248
1010 => 2.120256301634
1011 => 2.1078043094635
1012 => 2.0897719795188
1013 => 2.1299009785089
1014 => 2.3247560067895
1015 => 2.3202639677035
1016 => 2.2916879068966
1017 => 2.3133625971608
1018 => 2.2310836995115
1019 => 2.2522888448914
1020 => 2.144406767596
1021 => 2.193173972087
1022 => 2.2347334652486
1023 => 2.2430771487996
1024 => 2.261875893879
1025 => 2.1012426754126
1026 => 2.1733622745605
1027 => 2.2157257823673
1028 => 2.0243259128986
1029 => 2.2119424223454
1030 => 2.0984464084557
1031 => 2.0599241566887
1101 => 2.1117892937723
1102 => 2.0915773994103
1103 => 2.0742003995201
1104 => 2.0645037350066
1105 => 2.1025877675346
1106 => 2.1008111018969
1107 => 2.038498232889
1108 => 1.9572136354658
1109 => 1.984495414437
1110 => 1.9745836883687
1111 => 1.9386623144591
1112 => 1.962868983311
1113 => 1.8562750644023
1114 => 1.6728857671898
1115 => 1.7940383542945
1116 => 1.7893741114796
1117 => 1.7870221887458
1118 => 1.8780650095434
1119 => 1.869313343039
1120 => 1.8534289826368
1121 => 1.9383705857237
1122 => 1.9073657579712
1123 => 2.0029153314482
1124 => 2.0658504602991
1125 => 2.0498880758844
1126 => 2.1090788687606
1127 => 1.985123931523
1128 => 2.0262967894644
1129 => 2.034782458423
1130 => 1.9373224195267
1201 => 1.8707452239128
1202 => 1.8663052840009
1203 => 1.750869601709
1204 => 1.8125344114251
1205 => 1.866796892112
1206 => 1.8408093748016
1207 => 1.8325825031761
1208 => 1.8746118061199
1209 => 1.8778778429153
1210 => 1.8034118578617
1211 => 1.8188956941854
1212 => 1.8834658656289
1213 => 1.817268691535
1214 => 1.6886583955177
1215 => 1.6567612639289
1216 => 1.6525055985942
1217 => 1.5659980479321
1218 => 1.6588927827837
1219 => 1.6183417415969
1220 => 1.7464419948301
1221 => 1.6732718171987
1222 => 1.6701175970844
1223 => 1.6653495307582
1224 => 1.5908889083214
1225 => 1.6071910524156
1226 => 1.6613818622715
1227 => 1.6807177537312
1228 => 1.6787008618377
1229 => 1.6611162977395
1230 => 1.6691664211361
1231 => 1.6432341688267
]
'min_raw' => 0.90734065982719
'max_raw' => 2.8215267878417
'avg_raw' => 1.8644337238345
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.90734'
'max' => '$2.82'
'avg' => '$1.86'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.51688210682743
'max_diff' => 1.7622503590457
'year' => 2033
]
8 => [
'items' => [
101 => 1.6340769508031
102 => 1.6051742518293
103 => 1.5626952689122
104 => 1.5686022320256
105 => 1.4844402516363
106 => 1.4385843379059
107 => 1.4258920253566
108 => 1.4089193345673
109 => 1.4278091359438
110 => 1.4842018313203
111 => 1.4161802763185
112 => 1.2995620914253
113 => 1.3065710430451
114 => 1.3223180763584
115 => 1.2929735839561
116 => 1.265201484594
117 => 1.2893470717677
118 => 1.2399344094781
119 => 1.3282893605243
120 => 1.3258996067104
121 => 1.3588328686269
122 => 1.3794267131618
123 => 1.3319645688451
124 => 1.3200279679007
125 => 1.3268275982869
126 => 1.2144448543672
127 => 1.349648800835
128 => 1.3508180501785
129 => 1.3408062274274
130 => 1.4127981549679
131 => 1.5647235769238
201 => 1.5075631219981
202 => 1.4854288661669
203 => 1.4433516296519
204 => 1.4994170490091
205 => 1.4951120995592
206 => 1.4756434855434
207 => 1.4638688070409
208 => 1.4855640132132
209 => 1.461180530906
210 => 1.4568005874703
211 => 1.4302628956757
212 => 1.420790147093
213 => 1.4137769011634
214 => 1.4060560065022
215 => 1.4230863761977
216 => 1.384493317936
217 => 1.3379538729966
218 => 1.3340846217136
219 => 1.3447679646939
220 => 1.3400413807065
221 => 1.3340619926479
222 => 1.3226457124548
223 => 1.3192587459917
224 => 1.3302647438742
225 => 1.3178396139544
226 => 1.3361735699829
227 => 1.3311877484072
228 => 1.3033373543809
301 => 1.2686254518876
302 => 1.2683164431448
303 => 1.2608378206915
304 => 1.2513126705789
305 => 1.2486629917235
306 => 1.2873135977635
307 => 1.3673191955509
308 => 1.3516121823335
309 => 1.3629621091026
310 => 1.4187925153707
311 => 1.4365393226445
312 => 1.4239430591977
313 => 1.4067005168881
314 => 1.4074591012424
315 => 1.4663820879867
316 => 1.4700570423936
317 => 1.4793424665945
318 => 1.4912768607531
319 => 1.4259755381287
320 => 1.4043834148192
321 => 1.3941518689098
322 => 1.3626426676153
323 => 1.3966226398166
324 => 1.3768239651824
325 => 1.3794954828096
326 => 1.3777556534502
327 => 1.3787057179271
328 => 1.3282646635148
329 => 1.3466427326389
330 => 1.316085628235
331 => 1.275173095634
401 => 1.275035942479
402 => 1.2850492268723
403 => 1.2790929334953
404 => 1.2630647011681
405 => 1.265341435919
406 => 1.2453948438077
407 => 1.2677633133461
408 => 1.2684047610142
409 => 1.2597916818232
410 => 1.2942533954009
411 => 1.3083723875718
412 => 1.3027030743382
413 => 1.3079746134421
414 => 1.3522648796456
415 => 1.3594861255566
416 => 1.3626933259815
417 => 1.3583961022848
418 => 1.3087841582035
419 => 1.3109846588898
420 => 1.294838844909
421 => 1.2811973334992
422 => 1.2817429224153
423 => 1.2887564325523
424 => 1.3193848426574
425 => 1.3838405260803
426 => 1.3862865721498
427 => 1.3892512513421
428 => 1.3771924111385
429 => 1.3735553495456
430 => 1.3783535725919
501 => 1.4025597383667
502 => 1.4648245686495
503 => 1.4428160190994
504 => 1.4249227257316
505 => 1.4406199680124
506 => 1.4382035006023
507 => 1.4178060838145
508 => 1.417233596261
509 => 1.3780844319965
510 => 1.3636118773513
511 => 1.3515175274378
512 => 1.3383108130632
513 => 1.3304814300889
514 => 1.3425109207284
515 => 1.3452622075664
516 => 1.3189595160437
517 => 1.315374556381
518 => 1.3368539020614
519 => 1.3274016428582
520 => 1.3371235258534
521 => 1.3393790861011
522 => 1.3390158889513
523 => 1.329146644758
524 => 1.3354370067017
525 => 1.3205584254578
526 => 1.3043802030456
527 => 1.2940595050856
528 => 1.2850533272735
529 => 1.2900504781658
530 => 1.2722365476785
531 => 1.266537512792
601 => 1.3333059736128
602 => 1.3826285535031
603 => 1.3819113836576
604 => 1.3775457966643
605 => 1.3710594199192
606 => 1.4020852195067
607 => 1.3912764513109
608 => 1.3991407332761
609 => 1.4011425230992
610 => 1.407201337993
611 => 1.4093668435448
612 => 1.4028211817269
613 => 1.380853141181
614 => 1.326110872799
615 => 1.3006281990932
616 => 1.2922184923229
617 => 1.2925241691916
618 => 1.2840922365486
619 => 1.2865758186047
620 => 1.2832285480638
621 => 1.276889627451
622 => 1.2896590676805
623 => 1.2911306267114
624 => 1.2881500867784
625 => 1.2888521118297
626 => 1.2641745141897
627 => 1.2660506983413
628 => 1.255603866571
629 => 1.2536452115525
630 => 1.2272365305468
701 => 1.1804497241456
702 => 1.206374156597
703 => 1.1750610877225
704 => 1.1632023540693
705 => 1.2193397547721
706 => 1.2137051167506
707 => 1.2040610657762
708 => 1.1897955043887
709 => 1.1845042689036
710 => 1.1523563970979
711 => 1.1504569293293
712 => 1.1663902826618
713 => 1.1590375883321
714 => 1.1487116208101
715 => 1.1113120131717
716 => 1.0692624716017
717 => 1.0705316829477
718 => 1.0839068597616
719 => 1.1227969902363
720 => 1.1076019434538
721 => 1.09657776267
722 => 1.0945132649948
723 => 1.120354775718
724 => 1.1569259273551
725 => 1.1740842934699
726 => 1.1570808737575
727 => 1.137548260721
728 => 1.1387371203711
729 => 1.1466460710049
730 => 1.1474771898899
731 => 1.1347634667882
801 => 1.1383423053703
802 => 1.1329057223083
803 => 1.0995414220919
804 => 1.0989379677003
805 => 1.0907498303552
806 => 1.0905018968105
807 => 1.0765718325599
808 => 1.0746229202772
809 => 1.0469639322131
810 => 1.0651691619161
811 => 1.0529580496488
812 => 1.0345530231518
813 => 1.0313799896465
814 => 1.0312846044278
815 => 1.0501824513515
816 => 1.0649483295719
817 => 1.0531704671747
818 => 1.0504888762111
819 => 1.079121252088
820 => 1.0754775212678
821 => 1.072322073877
822 => 1.1536513818419
823 => 1.0892728883826
824 => 1.0612001906384
825 => 1.0264548963193
826 => 1.0377681393506
827 => 1.0401520058834
828 => 0.95659583635588
829 => 0.92269710878483
830 => 0.91106434292904
831 => 0.90436952171587
901 => 0.90742043581098
902 => 0.87690760507286
903 => 0.89741273196452
904 => 0.87099119973069
905 => 0.86656154386858
906 => 0.91380651650244
907 => 0.92038037844332
908 => 0.89233424106473
909 => 0.91034440151899
910 => 0.90381366697831
911 => 0.87144412106644
912 => 0.87020784250687
913 => 0.85396594221285
914 => 0.82855051330433
915 => 0.81693498030613
916 => 0.81088550986999
917 => 0.81338163927377
918 => 0.8121195198644
919 => 0.80388333698778
920 => 0.81259160822596
921 => 0.79034557371854
922 => 0.78148702352921
923 => 0.77748582192549
924 => 0.75774118586619
925 => 0.78916368231604
926 => 0.79535430996685
927 => 0.8015571350665
928 => 0.85554849271045
929 => 0.85285123706056
930 => 0.87723311451886
1001 => 0.87628567959623
1002 => 0.86933157318489
1003 => 0.83999334213044
1004 => 0.85168703812506
1005 => 0.81569565945746
1006 => 0.84266284753108
1007 => 0.83035614907098
1008 => 0.8385019404023
1009 => 0.8238550731122
1010 => 0.83196125422487
1011 => 0.79682233744
1012 => 0.76401011136419
1013 => 0.77721470898569
1014 => 0.79156961672916
1015 => 0.82269471427948
1016 => 0.80415686295499
1017 => 0.81082377528504
1018 => 0.78849073500701
1019 => 0.74241129379585
1020 => 0.74267209842889
1021 => 0.73558378029375
1022 => 0.72945843851359
1023 => 0.80628615817893
1024 => 0.79673141677203
1025 => 0.78150718683377
1026 => 0.80188542359298
1027 => 0.80727375283822
1028 => 0.80742715099673
1029 => 0.82229458649783
1030 => 0.8302293394899
1031 => 0.83162787409594
1101 => 0.85502210508912
1102 => 0.86286354274067
1103 => 0.89516131466559
1104 => 0.82955613113556
1105 => 0.82820503555345
1106 => 0.80217218717473
1107 => 0.78566174316989
1108 => 0.80330267140104
1109 => 0.81893012558699
1110 => 0.80265777573764
1111 => 0.80478260109991
1112 => 0.782938300927
1113 => 0.79074661036896
1114 => 0.79747217835325
1115 => 0.79375871502294
1116 => 0.78819948068381
1117 => 0.81764885255688
1118 => 0.81598720358278
1119 => 0.84341113570912
1120 => 0.8647900519058
1121 => 0.90310489166864
1122 => 0.86312135897834
1123 => 0.86166420012696
1124 => 0.87590816163486
1125 => 0.86286136206438
1126 => 0.87110648903271
1127 => 0.90177647424488
1128 => 0.90242448270328
1129 => 0.89156950611328
1130 => 0.89090897980128
1201 => 0.89299379679582
1202 => 0.90520463505092
1203 => 0.90093779296343
1204 => 0.9058754906503
1205 => 0.91205015721644
1206 => 0.93759119613838
1207 => 0.94374905415368
1208 => 0.92878865165983
1209 => 0.9301394085005
1210 => 0.92454380729557
1211 => 0.91913852664428
1212 => 0.93128880817053
1213 => 0.95349368647412
1214 => 0.95335555107863
1215 => 0.95850665124391
1216 => 0.96171574397286
1217 => 0.94793996878075
1218 => 0.93897244567998
1219 => 0.94241116465514
1220 => 0.94790975118197
1221 => 0.94062804715259
1222 => 0.8956819966698
1223 => 0.90931575722146
1224 => 0.90704643280883
1225 => 0.90381463888598
1226 => 0.91752349054742
1227 => 0.91620123836171
1228 => 0.87659465189112
1229 => 0.87913013705371
1230 => 0.87674884314165
1231 => 0.88444329093843
]
'min_raw' => 0.72945843851359
'max_raw' => 1.6340769508031
'avg_raw' => 1.1817676946583
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.729458'
'max' => '$1.63'
'avg' => '$1.18'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.17788222131359
'max_diff' => -1.1874498370386
'year' => 2034
]
9 => [
'items' => [
101 => 0.86244583663233
102 => 0.86921210542177
103 => 0.87345584577667
104 => 0.87595544144766
105 => 0.88498569500008
106 => 0.8839260989725
107 => 0.88491982902326
108 => 0.89830931114294
109 => 0.96602871698886
110 => 0.96971453483461
111 => 0.95156421973761
112 => 0.95881491261973
113 => 0.94489516783829
114 => 0.95423958576425
115 => 0.96063279918672
116 => 0.93174309707484
117 => 0.93003243640839
118 => 0.91605523988871
119 => 0.92356579358951
120 => 0.91161596262362
121 => 0.91454803315531
122 => 0.90634970833539
123 => 0.92110506074105
124 => 0.93760383748053
125 => 0.94177208004136
126 => 0.93080722840507
127 => 0.92286795320146
128 => 0.90892920130375
129 => 0.93210965635498
130 => 0.93888832782353
131 => 0.93207405087953
201 => 0.93049503401671
202 => 0.92750279991489
203 => 0.93112985062661
204 => 0.93885140972292
205 => 0.93521006504791
206 => 0.93761523735799
207 => 0.92844920071488
208 => 0.94794452913555
209 => 0.97890780247387
210 => 0.97900735446066
211 => 0.97536599015744
212 => 0.97387602233885
213 => 0.97761228309042
214 => 0.9796390512787
215 => 0.9917214334362
216 => 1.0046863108745
217 => 1.0651877368601
218 => 1.0481991785437
219 => 1.101879642924
220 => 1.1443339207129
221 => 1.1570641023213
222 => 1.1453529342429
223 => 1.1052896608718
224 => 1.1033239655483
225 => 1.1631954102424
226 => 1.1462789848305
227 => 1.1442668298553
228 => 1.1228609005094
301 => 1.1355144559288
302 => 1.1327469377421
303 => 1.1283782748928
304 => 1.1525203771787
305 => 1.1977122374775
306 => 1.1906686622434
307 => 1.1854109600731
308 => 1.1623732396572
309 => 1.1762470930087
310 => 1.1713068795664
311 => 1.1925331716515
312 => 1.1799591864402
313 => 1.1461508262702
314 => 1.1515349190611
315 => 1.150721124267
316 => 1.1674689634625
317 => 1.1624416778429
318 => 1.1497394660648
319 => 1.197557776612
320 => 1.1944527215045
321 => 1.1988549797325
322 => 1.2007929899489
323 => 1.2298991529258
324 => 1.2418230166041
325 => 1.2445299424157
326 => 1.2558566906854
327 => 1.2442481226003
328 => 1.2906906717094
329 => 1.3215722568691
330 => 1.3574428071838
331 => 1.4098593222887
401 => 1.429568416848
402 => 1.4260081453252
403 => 1.4657497488563
404 => 1.5371645269955
405 => 1.4404431138137
406 => 1.542290996752
407 => 1.5100471329041
408 => 1.4335975117631
409 => 1.4286750574434
410 => 1.4804476284785
411 => 1.595274208109
412 => 1.5665114522638
413 => 1.5953212536736
414 => 1.5617130900064
415 => 1.5600441614085
416 => 1.5936889801791
417 => 1.6723019331202
418 => 1.6349558659403
419 => 1.5814111210067
420 => 1.6209477274172
421 => 1.5866974600042
422 => 1.5095220214765
423 => 1.5664894579265
424 => 1.5283969555116
425 => 1.5395143728251
426 => 1.6195791470691
427 => 1.6099455416069
428 => 1.6224123191228
429 => 1.6004087831197
430 => 1.5798540108536
501 => 1.5414870020015
502 => 1.5301284221511
503 => 1.5332675249828
504 => 1.5301268665676
505 => 1.5086608777259
506 => 1.5040252994793
507 => 1.4962991326456
508 => 1.4986937948145
509 => 1.4841663407975
510 => 1.5115826480528
511 => 1.5166713562711
512 => 1.5366226583613
513 => 1.5386940687302
514 => 1.5942581610623
515 => 1.5636543927224
516 => 1.584186042727
517 => 1.5823494986992
518 => 1.4352544068687
519 => 1.455522812692
520 => 1.4870540915769
521 => 1.4728492931789
522 => 1.452767031655
523 => 1.4365495287318
524 => 1.4119783534783
525 => 1.4465618108
526 => 1.4920353796373
527 => 1.5398473534787
528 => 1.5972903072845
529 => 1.5844697087047
530 => 1.5387734974138
531 => 1.5408233960712
601 => 1.5534950629659
602 => 1.5370841029949
603 => 1.5322441905195
604 => 1.5528301333137
605 => 1.5529718973879
606 => 1.5340891046105
607 => 1.513104335953
608 => 1.5130164090061
609 => 1.5092823721124
610 => 1.5623773668746
611 => 1.5915742454844
612 => 1.5949216205639
613 => 1.591348940471
614 => 1.5927239232442
615 => 1.5757349028904
616 => 1.6145667654815
617 => 1.6502027226683
618 => 1.6406515248911
619 => 1.6263329216402
620 => 1.6149274644736
621 => 1.6379647616532
622 => 1.6369389470739
623 => 1.6498914736704
624 => 1.6493038722466
625 => 1.6449484247213
626 => 1.6406516804378
627 => 1.65768778584
628 => 1.6527816610756
629 => 1.6478679157444
630 => 1.6380126472259
701 => 1.6393521418963
702 => 1.6250360109541
703 => 1.6184127137187
704 => 1.5188142148104
705 => 1.4921982414273
706 => 1.5005721684717
707 => 1.5033290826837
708 => 1.491745776958
709 => 1.5083532618615
710 => 1.505765002931
711 => 1.5158344043488
712 => 1.5095434795055
713 => 1.5098016612555
714 => 1.528301929853
715 => 1.5336726365326
716 => 1.5309410517684
717 => 1.532854160104
718 => 1.5769409342249
719 => 1.5706732047606
720 => 1.5673435984032
721 => 1.5682659221191
722 => 1.5795310381381
723 => 1.5826846555709
724 => 1.5693225569074
725 => 1.5756241998825
726 => 1.6024557958728
727 => 1.6118453359325
728 => 1.6418122405685
729 => 1.6290817668599
730 => 1.652449102314
731 => 1.7242723249883
801 => 1.7816496850495
802 => 1.7288830935175
803 => 1.8342493083072
804 => 1.9162920204067
805 => 1.9131430844671
806 => 1.8988370399304
807 => 1.8054335934234
808 => 1.7194823493807
809 => 1.791384214705
810 => 1.7915675073465
811 => 1.7853910733485
812 => 1.7470297722454
813 => 1.7840561832231
814 => 1.7869952052663
815 => 1.7853501344711
816 => 1.7559386148582
817 => 1.7110326605668
818 => 1.7198071765457
819 => 1.7341800127143
820 => 1.7069692353593
821 => 1.6982737432352
822 => 1.7144403174789
823 => 1.7665323881317
824 => 1.7566846839237
825 => 1.7564275205691
826 => 1.7985601752478
827 => 1.7684022872938
828 => 1.719917851292
829 => 1.7076748917704
830 => 1.6642206333145
831 => 1.6942346444088
901 => 1.6953147952352
902 => 1.6788764280946
903 => 1.7212517341885
904 => 1.7208612382828
905 => 1.761090284687
906 => 1.8379931120719
907 => 1.8152491618559
908 => 1.7888004222894
909 => 1.7916761336243
910 => 1.8232155891075
911 => 1.8041461143466
912 => 1.8110036304277
913 => 1.8232052094356
914 => 1.8305667249993
915 => 1.790616924822
916 => 1.7813027153808
917 => 1.7622491117075
918 => 1.7572783821614
919 => 1.7727971447869
920 => 1.7687084991211
921 => 1.6952240127408
922 => 1.6875444750502
923 => 1.6877799955073
924 => 1.6684694328423
925 => 1.639016189712
926 => 1.7164175540966
927 => 1.7102011413051
928 => 1.7033387026954
929 => 1.7041793122686
930 => 1.7377766211723
1001 => 1.7182884853034
1002 => 1.7701008885535
1003 => 1.7594498160687
1004 => 1.7485255837648
1005 => 1.7470155221001
1006 => 1.7428106246749
1007 => 1.7283904668301
1008 => 1.7109772597154
1009 => 1.6994795520721
1010 => 1.5676800526373
1011 => 1.59214127309
1012 => 1.6202816775104
1013 => 1.6299956323508
1014 => 1.6133792404112
1015 => 1.729046583262
1016 => 1.7501801213991
1017 => 1.6861652558752
1018 => 1.6741906882455
1019 => 1.7298316339222
1020 => 1.6962733418502
1021 => 1.7113846387154
1022 => 1.6787222803302
1023 => 1.7450896709241
1024 => 1.7445840626035
1025 => 1.718765648687
1026 => 1.7405871953324
1027 => 1.7367951646009
1028 => 1.7076462388771
1029 => 1.7460137438615
1030 => 1.7460327736653
1031 => 1.7211831116114
1101 => 1.6921641466229
1102 => 1.6869762410803
1103 => 1.6830678511511
1104 => 1.7104234143815
1105 => 1.7349503268352
1106 => 1.7805888301745
1107 => 1.792063434258
1108 => 1.8368495779039
1109 => 1.8101816099605
1110 => 1.8220031747418
1111 => 1.8348371555743
1112 => 1.8409902379395
1113 => 1.8309641204181
1114 => 1.9005354362122
1115 => 1.9064093868753
1116 => 1.9083788717232
1117 => 1.884919815476
1118 => 1.905756948084
1119 => 1.89600794379
1120 => 1.9213721446115
1121 => 1.9253495751667
1122 => 1.9219808329877
1123 => 1.9232433322253
1124 => 1.8638764874161
1125 => 1.8607980033277
1126 => 1.818822654343
1127 => 1.8359279193204
1128 => 1.8039504463218
1129 => 1.8140908324141
1130 => 1.8185606179825
1201 => 1.8162258556597
1202 => 1.8368950253377
1203 => 1.819322008679
1204 => 1.7729439284453
1205 => 1.7265532125346
1206 => 1.7259708148854
1207 => 1.7137569582503
1208 => 1.7049285769825
1209 => 1.7066292364183
1210 => 1.7126225820907
1211 => 1.7045802328367
1212 => 1.7062964758075
1213 => 1.7347975443897
1214 => 1.7405132304335
1215 => 1.7210890959938
1216 => 1.6430983933295
1217 => 1.6239592792708
1218 => 1.637716094911
1219 => 1.6311412230874
1220 => 1.3164582723843
1221 => 1.3903883638938
1222 => 1.3464616139476
1223 => 1.3667050812954
1224 => 1.321867244377
1225 => 1.3432662103068
1226 => 1.3393146026647
1227 => 1.4581920020615
1228 => 1.4563358949805
1229 => 1.4572243152172
1230 => 1.4148177025526
1231 => 1.4823725879923
]
'min_raw' => 0.86244583663233
'max_raw' => 1.9253495751667
'avg_raw' => 1.3938977058995
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.862445'
'max' => '$1.92'
'avg' => '$1.39'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.13298739811873
'max_diff' => 0.29127262436362
'year' => 2035
]
10 => [
'items' => [
101 => 1.5156525537549
102 => 1.5094933178099
103 => 1.5110434648017
104 => 1.4844068035992
105 => 1.4574822163225
106 => 1.4276187053684
107 => 1.4831014174796
108 => 1.4769326870143
109 => 1.4910815352625
110 => 1.5270660400528
111 => 1.532364895075
112 => 1.5394866099605
113 => 1.5369339821323
114 => 1.5977479330858
115 => 1.5903829623619
116 => 1.6081304227597
117 => 1.5716225502184
118 => 1.5303104270789
119 => 1.5381625110927
120 => 1.5374062922597
121 => 1.5277787585681
122 => 1.5190874516274
123 => 1.5046188743317
124 => 1.5503995938418
125 => 1.5485409802351
126 => 1.5786297741256
127 => 1.5733112875385
128 => 1.5377931324555
129 => 1.5390616703128
130 => 1.5475931970417
131 => 1.5771209084616
201 => 1.585886743611
202 => 1.5818260595117
203 => 1.5914373975773
204 => 1.5990338072986
205 => 1.592391389682
206 => 1.686434015515
207 => 1.6473809606401
208 => 1.6664151478568
209 => 1.670954689352
210 => 1.6593267492683
211 => 1.6618484331071
212 => 1.6656680970052
213 => 1.6888603482278
214 => 1.7497235261679
215 => 1.7766794133679
216 => 1.8577775299891
217 => 1.77444110218
218 => 1.7694962634342
219 => 1.7841044831662
220 => 1.8317176627303
221 => 1.8703036726885
222 => 1.8831048782719
223 => 1.8847967689147
224 => 1.9088126815973
225 => 1.9225781548767
226 => 1.9058965181164
227 => 1.8917605776022
228 => 1.841127393298
229 => 1.8469883222508
301 => 1.887364310732
302 => 1.9443977725955
303 => 1.9933384161948
304 => 1.9762011085599
305 => 2.1069466687599
306 => 2.119909557006
307 => 2.1181185049908
308 => 2.1476498935518
309 => 2.0890361012208
310 => 2.0639775694106
311 => 1.8948169283911
312 => 1.9423441685447
313 => 2.0114278032849
314 => 2.0022843251767
315 => 1.9521139430175
316 => 1.993300357461
317 => 1.9796828408277
318 => 1.9689421404678
319 => 2.0181473710039
320 => 1.96404419879
321 => 2.0108880827553
322 => 1.9508103170318
323 => 1.9762793903377
324 => 1.9618219125288
325 => 1.971177672513
326 => 1.9164840908151
327 => 1.9459954198876
328 => 1.9152563225015
329 => 1.9152417481669
330 => 1.9145631808884
331 => 1.9507275926453
401 => 1.9519069128143
402 => 1.9251813578846
403 => 1.9213297878876
404 => 1.9355710608561
405 => 1.9188982600053
406 => 1.926699358586
407 => 1.9191345473342
408 => 1.9174315489821
409 => 1.9038617683714
410 => 1.8980155337754
411 => 1.9003079929994
412 => 1.8924826478242
413 => 1.8877675943011
414 => 1.9136252380665
415 => 1.899810542097
416 => 1.9115079377785
417 => 1.8981772790704
418 => 1.8519674080964
419 => 1.8253916226388
420 => 1.7381054600263
421 => 1.762859707465
422 => 1.779271799127
423 => 1.7738476029306
424 => 1.7855008752458
425 => 1.786216291522
426 => 1.7824276939013
427 => 1.7780409832059
428 => 1.7759057750397
429 => 1.7918198673672
430 => 1.801058533607
501 => 1.7809189720908
502 => 1.7762005546099
503 => 1.7965627632385
504 => 1.8089836987391
505 => 1.9006929077546
506 => 1.8938987933339
507 => 1.9109506872523
508 => 1.9090309056797
509 => 1.9269040070859
510 => 1.9561189741488
511 => 1.8967167774767
512 => 1.9070269448456
513 => 1.9044991299032
514 => 1.9320971506147
515 => 1.9321833086229
516 => 1.915636916583
517 => 1.9246069841424
518 => 1.9196001385117
519 => 1.9286481852822
520 => 1.8938080537937
521 => 1.9362395731869
522 => 1.9602955104562
523 => 1.9606295271685
524 => 1.9720318505144
525 => 1.9836172714118
526 => 2.005854477947
527 => 1.9829970877908
528 => 1.9418788680219
529 => 1.9448474706782
530 => 1.9207398734723
531 => 1.9211451265367
601 => 1.9189818539185
602 => 1.9254739978892
603 => 1.8952327143103
604 => 1.9023302831208
605 => 1.8923936452228
606 => 1.9070053445354
607 => 1.8912855714754
608 => 1.9044979109143
609 => 1.9101999186202
610 => 1.9312404498102
611 => 1.8881778679111
612 => 1.8003703483384
613 => 1.8188285535159
614 => 1.7915274181977
615 => 1.7940542422142
616 => 1.7991588288684
617 => 1.7826131934051
618 => 1.7857695792386
619 => 1.7856568109255
620 => 1.7846850345254
621 => 1.7803808757186
622 => 1.7741389938969
623 => 1.7990047299247
624 => 1.8032299030164
625 => 1.8126219394113
626 => 1.8405662690431
627 => 1.8377739715402
628 => 1.8423283246188
629 => 1.8323861974199
630 => 1.7945154289802
701 => 1.7965719939082
702 => 1.7709265963014
703 => 1.8119661289357
704 => 1.8022474259126
705 => 1.7959817148496
706 => 1.7942720575347
707 => 1.8222856557546
708 => 1.8306677634014
709 => 1.8254445964183
710 => 1.8147317285517
711 => 1.8353036018306
712 => 1.8408077672623
713 => 1.8420399469167
714 => 1.8784893621014
715 => 1.844077064323
716 => 1.8523604464271
717 => 1.9169850290074
718 => 1.8583794501899
719 => 1.8894241323499
720 => 1.8879046567069
721 => 1.9037860656052
722 => 1.8866019176336
723 => 1.8868149357428
724 => 1.9009165509446
725 => 1.8811133756333
726 => 1.8762098309335
727 => 1.8694356190507
728 => 1.8842268628673
729 => 1.893093544585
730 => 1.9645524873693
731 => 2.0107182233316
801 => 2.0087140469801
802 => 2.0270284671727
803 => 2.018777653135
804 => 1.9921335981527
805 => 2.0376117511112
806 => 2.0232205606284
807 => 2.0244069528865
808 => 2.0243627953074
809 => 2.0339316788787
810 => 2.0271512478931
811 => 2.0137863224236
812 => 2.0226585836652
813 => 2.0490060276615
814 => 2.1307893022644
815 => 2.1765563062164
816 => 2.1280340711597
817 => 2.1615040591632
818 => 2.1414339929373
819 => 2.1377866648713
820 => 2.1588082907501
821 => 2.1798667122023
822 => 2.1785253817939
823 => 2.1632380491815
824 => 2.1546026228905
825 => 2.2199929638462
826 => 2.2681714531669
827 => 2.2648860031879
828 => 2.2793869109096
829 => 2.3219620244766
830 => 2.3258545592925
831 => 2.3253641893745
901 => 2.3157161356894
902 => 2.3576368640732
903 => 2.3926078732161
904 => 2.3134828900204
905 => 2.3436126477992
906 => 2.3571388667863
907 => 2.3769993693077
908 => 2.410507366068
909 => 2.4469059381068
910 => 2.4520530952831
911 => 2.4484009409524
912 => 2.4243951042466
913 => 2.4642228560968
914 => 2.4875530190549
915 => 2.5014455971952
916 => 2.5366748638544
917 => 2.3572224001099
918 => 2.2301970269054
919 => 2.2103601806109
920 => 2.2506991875962
921 => 2.2613362620407
922 => 2.2570484706699
923 => 2.1140698644865
924 => 2.2096074278394
925 => 2.3123978129806
926 => 2.3163464103009
927 => 2.3678054263482
928 => 2.3845625913496
929 => 2.4259938441551
930 => 2.4234023080116
1001 => 2.4334901587545
1002 => 2.4311711365659
1003 => 2.5079138080085
1004 => 2.5925723710067
1005 => 2.5896409141678
1006 => 2.5774702441022
1007 => 2.5955457645573
1008 => 2.6829224741343
1009 => 2.6748782268997
1010 => 2.6826925278808
1011 => 2.7857145928077
1012 => 2.9196579319306
1013 => 2.8574278032167
1014 => 2.9924492762888
1015 => 3.0774381364069
1016 => 3.2244175819691
1017 => 3.2060150314957
1018 => 3.2632330510681
1019 => 3.1730706254201
1020 => 2.9660394712998
1021 => 2.9332759986768
1022 => 2.9988693005712
1023 => 3.1601240327779
1024 => 2.9937908151972
1025 => 3.0274398084809
1026 => 3.0177488961515
1027 => 3.0172325086172
1028 => 3.0369409205019
1029 => 3.0083528411415
1030 => 2.8918798629303
1031 => 2.9452587424649
1101 => 2.9246465936123
1102 => 2.9475173095018
1103 => 3.0709411305568
1104 => 3.016372517212
1105 => 2.9588889158474
1106 => 3.0309861085909
1107 => 3.1227906102368
1108 => 3.1170456495123
1109 => 3.1058980244996
1110 => 3.1687366030256
1111 => 3.2725275247747
1112 => 3.3005817938577
1113 => 3.3212908817506
1114 => 3.3241463150881
1115 => 3.3535590531064
1116 => 3.1953993478175
1117 => 3.4464028619403
1118 => 3.4897442349972
1119 => 3.4815978531784
1120 => 3.5297699652473
1121 => 3.5155965078681
1122 => 3.495061391873
1123 => 3.5714244360043
1124 => 3.4838803680876
1125 => 3.3596225851716
1126 => 3.2914523079236
1127 => 3.3812244281431
1128 => 3.436045129346
1129 => 3.4722781255896
1130 => 3.4832422083604
1201 => 3.2076768355161
1202 => 3.0591623831093
1203 => 3.1543584443804
1204 => 3.2705042092124
1205 => 3.1947541522295
1206 => 3.1977234110494
1207 => 3.0897237365566
1208 => 3.2800597839779
1209 => 3.2523294228468
1210 => 3.3961945854494
1211 => 3.3618600098042
1212 => 3.4791764650932
1213 => 3.448283110713
1214 => 3.5765196975208
1215 => 3.6276767438654
1216 => 3.7135773866366
1217 => 3.7767662491375
1218 => 3.8138719578084
1219 => 3.8116442702398
1220 => 3.9586755739845
1221 => 3.8719763510488
1222 => 3.7630616936035
1223 => 3.7610917710717
1224 => 3.8175002154952
1225 => 3.9357168401059
1226 => 3.9663686908856
1227 => 3.983498893869
1228 => 3.9572633916932
1229 => 3.8631575989857
1230 => 3.8225231948218
1231 => 3.8571448844615
]
'min_raw' => 1.4276187053684
'max_raw' => 3.983498893869
'avg_raw' => 2.7055587996187
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$1.42'
'max' => '$3.98'
'avg' => '$2.70'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.56517286873605
'max_diff' => 2.0581493187023
'year' => 2036
]
11 => [
'items' => [
101 => 3.8148055331079
102 => 3.887895131868
103 => 3.9882627620616
104 => 3.9675372433232
105 => 4.0368195451221
106 => 4.1085194387732
107 => 4.211053506938
108 => 4.2378597091818
109 => 4.2821693421423
110 => 4.3277785094148
111 => 4.3424269447413
112 => 4.3703953529219
113 => 4.3702479456052
114 => 4.4545326261486
115 => 4.5475012388673
116 => 4.5825947379402
117 => 4.6632903039917
118 => 4.5251019750385
119 => 4.6299194099426
120 => 4.7244673599767
121 => 4.6117433961916
122 => 4.7671071189542
123 => 4.7731395402474
124 => 4.8642219397528
125 => 4.7718924785776
126 => 4.7170675392579
127 => 4.8753450848103
128 => 4.9519306034072
129 => 4.9288624219322
130 => 4.7533124218909
131 => 4.6511347921731
201 => 4.3837162266089
202 => 4.700485069142
203 => 4.8547739320661
204 => 4.7529128510094
205 => 4.8042856553891
206 => 5.0845590183975
207 => 5.1912689686747
208 => 5.1690740449759
209 => 5.1728246217215
210 => 5.2304033739685
211 => 5.4857392706296
212 => 5.3327360827105
213 => 5.4497012869546
214 => 5.5117392095362
215 => 5.569363489441
216 => 5.4278564703355
217 => 5.2437579176301
218 => 5.1854461780569
219 => 4.7427847739607
220 => 4.7197423254965
221 => 4.7068079009159
222 => 4.6252581835457
223 => 4.5611824440403
224 => 4.5102270370059
225 => 4.3765048323751
226 => 4.4216321509815
227 => 4.2085068667931
228 => 4.3448568709205
301 => 4.0047037712659
302 => 4.2879933803622
303 => 4.1338117257291
304 => 4.2373405601129
305 => 4.2369793577627
306 => 4.0463499498152
307 => 3.9363988856454
308 => 4.0064639830939
309 => 4.081579329333
310 => 4.0937665415419
311 => 4.1911555486521
312 => 4.2183347271668
313 => 4.1359805473926
314 => 3.9976548543381
315 => 4.0297847579615
316 => 3.9357477741739
317 => 3.7709515771667
318 => 3.8893110829229
319 => 3.9297242220881
320 => 3.9475729666293
321 => 3.7855148338437
322 => 3.7345926500692
323 => 3.7074821067062
324 => 3.9767351844343
325 => 3.9914854758367
326 => 3.916020899541
327 => 4.2571279402424
328 => 4.1799249114233
329 => 4.2661796098155
330 => 4.0268693059774
331 => 4.036011281858
401 => 3.9227179489033
402 => 3.9861546450947
403 => 3.9413196328868
404 => 3.9810295869361
405 => 4.004831569663
406 => 4.1181063122966
407 => 4.2892867959674
408 => 4.1011868431269
409 => 4.0192290000334
410 => 4.0700751849402
411 => 4.2054852757789
412 => 4.4106384949147
413 => 4.289183660093
414 => 4.34308325335
415 => 4.3548579166507
416 => 4.2653016179556
417 => 4.4139405633893
418 => 4.4935973817879
419 => 4.5753087948088
420 => 4.6462565252331
421 => 4.5426714595758
422 => 4.653522328165
423 => 4.5641960958945
424 => 4.4840612311718
425 => 4.4841827626833
426 => 4.4339129914592
427 => 4.3365089753136
428 => 4.3185461802906
429 => 4.411990908451
430 => 4.486924731187
501 => 4.4930966397363
502 => 4.5345838542418
503 => 4.5591355604338
504 => 4.7997756575418
505 => 4.8965630952779
506 => 5.0149129420492
507 => 5.0610168771985
508 => 5.1997731928224
509 => 5.0877161987192
510 => 5.0634719631734
511 => 4.7268945283148
512 => 4.7820090644175
513 => 4.8702527544796
514 => 4.7283496342618
515 => 4.8183545024441
516 => 4.8361233699871
517 => 4.7235278205367
518 => 4.7836699684646
519 => 4.6239502544721
520 => 4.2927682492688
521 => 4.4143092636345
522 => 4.5038043604708
523 => 4.3760838226196
524 => 4.6050179432504
525 => 4.4712793561374
526 => 4.4288906446069
527 => 4.2635171682595
528 => 4.3415670832866
529 => 4.4471307109279
530 => 4.3819046621345
531 => 4.5172585071213
601 => 4.7089556491744
602 => 4.8455704483637
603 => 4.8560580362927
604 => 4.7682238728947
605 => 4.9089786802901
606 => 4.9100039253965
607 => 4.7512319276542
608 => 4.6539849630832
609 => 4.6318902481233
610 => 4.6870871780171
611 => 4.7541064408236
612 => 4.8597771389481
613 => 4.923631728706
614 => 5.0901306329372
615 => 5.1351804625245
616 => 5.184676566986
617 => 5.2508186265799
618 => 5.3302391275983
619 => 5.1564715927816
620 => 5.1633757008831
621 => 5.001565778437
622 => 4.8286486704132
623 => 4.9598712009815
624 => 5.1314272038977
625 => 5.0920720672762
626 => 5.0876438104538
627 => 5.0950909101331
628 => 5.065418422339
629 => 4.9312108597604
630 => 4.8638126620171
701 => 4.9507735322199
702 => 4.9969893645497
703 => 5.068666090049
704 => 5.0598304207191
705 => 5.2444619680869
706 => 5.3162042044258
707 => 5.297849470347
708 => 5.3012271831488
709 => 5.4311130751846
710 => 5.5755729001995
711 => 5.7108785894788
712 => 5.8485173481283
713 => 5.6825884524442
714 => 5.5983399922873
715 => 5.6852628980946
716 => 5.6391403807448
717 => 5.9041740462641
718 => 5.9225244022293
719 => 6.1875389027979
720 => 6.4390692211773
721 => 6.281087534837
722 => 6.4300571494045
723 => 6.5911799332301
724 => 6.9020119244594
725 => 6.7973346450147
726 => 6.7171534894621
727 => 6.6413826848975
728 => 6.79904970092
729 => 7.0018857982409
730 => 7.0455747508638
731 => 7.1163675445774
801 => 7.0419375781186
802 => 7.1315802745264
803 => 7.4480583838427
804 => 7.3625432050759
805 => 7.241097903976
806 => 7.4909269764006
807 => 7.5813391465251
808 => 8.21589910568
809 => 9.0170572664775
810 => 8.6853725272192
811 => 8.479485106162
812 => 8.5278735338253
813 => 8.8204293732334
814 => 8.914389023593
815 => 8.6589743040817
816 => 8.7491911009611
817 => 9.2462945216861
818 => 9.512974557918
819 => 9.1507872488079
820 => 8.1515268275302
821 => 7.2301630833738
822 => 7.4745502378742
823 => 7.4468443187702
824 => 7.9809199294246
825 => 7.3605036963441
826 => 7.370949914563
827 => 7.9160696432498
828 => 7.7706410453543
829 => 7.535065341851
830 => 7.2318830467131
831 => 6.6714225331826
901 => 6.1750070267511
902 => 7.1485921525268
903 => 7.1066093915537
904 => 7.045812132168
905 => 7.1811098539803
906 => 7.8380771861722
907 => 7.8229319627694
908 => 7.7265857786419
909 => 7.7996635101463
910 => 7.5222544621926
911 => 7.5937490903369
912 => 7.2300171346493
913 => 7.3944391694084
914 => 7.5345599021937
915 => 7.5626912138232
916 => 7.626072495345
917 => 7.0844863842323
918 => 7.3276426479891
919 => 7.4704741722853
920 => 6.8251561492594
921 => 7.4577183098258
922 => 7.0750585749582
923 => 6.9451781135877
924 => 7.1200450443734
925 => 7.0518992313825
926 => 6.9933114630294
927 => 6.9606184816228
928 => 7.0890214562328
929 => 7.0830313039925
930 => 6.872939115587
1001 => 6.5988824202652
1002 => 6.6908648428195
1003 => 6.6574467663657
1004 => 6.5363353462795
1005 => 6.617949820369
1006 => 6.2585609806188
1007 => 5.640251161235
1008 => 6.0487255672619
1009 => 6.0329997469645
1010 => 6.0250700752614
1011 => 6.3320273019873
1012 => 6.3025204473457
1013 => 6.2489652172393
1014 => 6.53535176248
1015 => 6.4308168210245
1016 => 6.7529688790605
1017 => 6.9651590599718
1018 => 6.9113407664594
1019 => 7.1109066572106
1020 => 6.6929839320568
1021 => 6.8318010972034
1022 => 6.8604111225479
1023 => 6.5318177969664
1024 => 6.3073481336825
1025 => 6.292378566283
1026 => 5.9031791039737
1027 => 6.111086315231
1028 => 6.2940360573525
1029 => 6.2064173283498
1030 => 6.1786798562826
1031 => 6.3203845855501
1101 => 6.3313962566331
1102 => 6.0803289889758
1103 => 6.1325338241881
1104 => 6.3502366653551
1105 => 6.1270482711586
1106 => 5.693429678852
1107 => 5.5858862727139
1108 => 5.5715379999169
1109 => 5.2798717530952
1110 => 5.5930728373509
1111 => 5.4563521708061
1112 => 5.888251118256
1113 => 5.6415527557931
1114 => 5.6309180824571
1115 => 5.6148422139424
1116 => 5.363793026722
1117 => 5.4187568437151
1118 => 5.6014649426258
1119 => 5.6666572506712
1120 => 5.6598571588372
1121 => 5.6005695732651
1122 => 5.6277111263385
1123 => 5.5402787271452
1124 => 5.509404527242
1125 => 5.4119570597299
1126 => 5.2687362030371
1127 => 5.2886519415848
1128 => 5.0048939487007
1129 => 4.8502875340008
1130 => 4.8074945160917
1201 => 4.7502699041003
1202 => 4.813958188285
1203 => 5.0040900979591
1204 => 4.7747506761574
1205 => 4.3815643237682
1206 => 4.4051954935037
1207 => 4.4582877157422
1208 => 4.359350710841
1209 => 4.2657151388554
1210 => 4.3471236718028
1211 => 4.1805254310114
1212 => 4.4784203172093
1213 => 4.4703630953784
1214 => 4.5813998872568
1215 => 4.6508334719228
1216 => 4.4908115386578
1217 => 4.450566455187
1218 => 4.473491883769
1219 => 4.0945856163311
1220 => 4.5504351614852
1221 => 4.5543773672813
1222 => 4.5206218078729
1223 => 4.7633476178917
1224 => 5.2755747851101
1225 => 5.0828543205125
1226 => 5.0082271316134
1227 => 4.8663607909641
1228 => 5.0553892666895
1229 => 5.0408748290573
1230 => 4.9752350376479
1231 => 4.9355358869948
]
'min_raw' => 3.7074821067062
'max_raw' => 9.512974557918
'avg_raw' => 6.6102283323121
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$3.70'
'max' => '$9.51'
'avg' => '$6.61'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 2.2798634013378
'max_diff' => 5.529475664049
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.1163736268846
]
1 => [
'year' => 2028
'avg' => 0.19973092723924
]
2 => [
'year' => 2029
'avg' => 0.54562889522039
]
3 => [
'year' => 2030
'avg' => 0.4209518800876
]
4 => [
'year' => 2031
'avg' => 0.41342691423821
]
5 => [
'year' => 2032
'avg' => 0.72486749089789
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.1163736268846
'min' => '$0.116373'
'max_raw' => 0.72486749089789
'max' => '$0.724867'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.72486749089789
]
1 => [
'year' => 2033
'avg' => 1.8644337238345
]
2 => [
'year' => 2034
'avg' => 1.1817676946583
]
3 => [
'year' => 2035
'avg' => 1.3938977058995
]
4 => [
'year' => 2036
'avg' => 2.7055587996187
]
5 => [
'year' => 2037
'avg' => 6.6102283323121
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.72486749089789
'min' => '$0.724867'
'max_raw' => 6.6102283323121
'max' => '$6.61'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 6.6102283323121
]
]
]
]
'prediction_2025_max_price' => '$0.198977'
'last_price' => 0.192934
'sma_50day_nextmonth' => '$0.167486'
'sma_200day_nextmonth' => '—'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'decrease'
'sma_200day_direction_label' => 'diminuir'
'sma_200day_date_nextmonth' => '4 de fev. de 2026'
'sma_50day_date_nextmonth' => '4 de fev. de 2026'
'daily_sma3' => '$0.194646'
'daily_sma3_action' => 'SELL'
'daily_sma5' => '$0.190097'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.174365'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.151582'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.175285'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.336373'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '—'
'daily_sma200_action' => '—'
'daily_ema3' => '$0.191926'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.187714'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.176582'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.167288'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.21515'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.361112'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.188624'
'daily_ema200_action' => 'BUY'
'weekly_sma21' => '—'
'weekly_sma21_action' => '—'
'weekly_sma50' => '—'
'weekly_sma50_action' => '—'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.186176'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.186358'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.252597'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.291873'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.122586'
'weekly_ema50_action' => 'BUY'
'weekly_ema100' => '$0.061293'
'weekly_ema100_action' => 'BUY'
'weekly_ema200' => '$0.030646'
'weekly_ema200_action' => 'BUY'
'rsi_14' => '62.34'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 92.91
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0.05
'momentum_10_action' => 'SELL'
'vwma_10' => '0.176272'
'vwma_10_action' => 'BUY'
'hma_9' => '0.2039035'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 91.15
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 123.25
'cci_20_action' => 'SELL'
'adx_14' => 24.42
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.032884'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0.01
'macd_12_26_action' => 'NEUTRAL'
'williams_percent_r_14' => -8.85
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 80.45
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '-0.089061'
'ichimoku_cloud_action' => 'NEUTRAL'
'sell_signals' => 9
'buy_signals' => 20
'sell_pct' => 31.03
'buy_pct' => 68.97
'overall_action' => 'bullish'
'overall_action_label' => 'Altista'
'overall_action_dir' => 1
'last_updated' => 1767682578
'last_updated_date' => '6 de janeiro de 2026'
]
Previsão de preço de Plasma para 2026
A previsão de preço para Plasma em 2026 sugere que o preço médio poderia variar entre $0.066658 na extremidade inferior e $0.198977 na extremidade superior. No mercado de criptomoedas, comparado ao preço médio de hoje, Plasma poderia potencialmente ganhar 3.13% até 2026 se XPL atingir a meta de preço prevista.
Previsão de preço de Plasma 2027-2032
A previsão de preço de XPL para 2027-2032 está atualmente dentro de uma faixa de preço entre $0.116373 na extremidade inferior e $0.724867 na extremidade superior. Considerando a volatilidade de preços no mercado, se Plasma atingir a meta de preço superior, poderia ganhar 275.71% até 2032 em comparação com o preço de hoje.
| Previsão de Preço de Plasma | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.06417 | $0.116373 | $0.168576 |
| 2028 | $0.1158091 | $0.19973 | $0.283652 |
| 2029 | $0.254399 | $0.545628 | $0.836858 |
| 2030 | $0.216355 | $0.420951 | $0.625548 |
| 2031 | $0.255799 | $0.413426 | $0.571054 |
| 2032 | $0.390458 | $0.724867 | $1.05 |
Previsão de preço de Plasma 2032-2037
A previsão de preço de Plasma para 2032-2037 é atualmente estimada entre $0.724867 na extremidade inferior e $6.61 na extremidade superior. Comparado ao preço atual, Plasma poderia potencialmente ganhar 3326.16% até 2037 se atingir a meta de preço superior. Por favor, note que esta informação é apenas para fins gerais e não deve ser considerada como aconselhamento de investimento a longo prazo.
| Previsão de Preço de Plasma | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.390458 | $0.724867 | $1.05 |
| 2033 | $0.90734 | $1.86 | $2.82 |
| 2034 | $0.729458 | $1.18 | $1.63 |
| 2035 | $0.862445 | $1.39 | $1.92 |
| 2036 | $1.42 | $2.70 | $3.98 |
| 2037 | $3.70 | $6.61 | $9.51 |
Plasma Histograma de preços potenciais
Previsão de preço de Plasma baseada na análise técnica
Em 6 de janeiro de 2026, o sentimento geral de previsão de preço para Plasma é Altista, com 20 indicadores técnicos mostrando sinais de alta e 9 indicando sinais de baixa. A previsão de preço de XPL foi atualizada pela última vez em 6 de janeiro de 2026.
Médias Móveis Simples de 50 e 200 dias e Índice de Força Relativa de 14 dias - RSI (14) de Plasma
De acordo com nossos indicadores técnicos, o SMA de 200 dias de Plasma está projetado para diminuir no próximo mês, alcançando — até 4 de fev. de 2026. O SMA de 50 dias de curto prazo para Plasma é esperado para alcançar $0.167486 até 4 de fev. de 2026.
O oscilador de momentum Índice de Força Relativa (RSI) é uma ferramenta comumente usada para identificar se uma criptomoeda está sobrevendida (abaixo de 30) ou sobrecomprada (acima de 70). No momento, o RSI está em 62.34, sugerindo que o mercado de XPL está em um estado NEUTRAL.
Médias Móveis e Osciladores Populares de XPL para Sábado, 19 de Outubro de 2024
Médias móveis (MA) são indicadores amplamente utilizados nos mercados financeiros, projetados para suavizar movimentos de preços ao longo de um período definido. Como indicadores atrasados, eles se baseiam em dados históricos de preços. A tabela abaixo destaca dois tipos: a média móvel simples (SMA) e a média móvel exponencial (EMA).
Média Móvel Simples Diária (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 3 | $0.194646 | SELL |
| SMA 5 | $0.190097 | BUY |
| SMA 10 | $0.174365 | BUY |
| SMA 21 | $0.151582 | BUY |
| SMA 50 | $0.175285 | BUY |
| SMA 100 | $0.336373 | SELL |
| SMA 200 | — | — |
Média Móvel Exponencial Diária (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 3 | $0.191926 | BUY |
| EMA 5 | $0.187714 | BUY |
| EMA 10 | $0.176582 | BUY |
| EMA 21 | $0.167288 | BUY |
| EMA 50 | $0.21515 | SELL |
| EMA 100 | $0.361112 | SELL |
| EMA 200 | $0.188624 | BUY |
Média Móvel Simples Semanal (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 21 | — | — |
| SMA 50 | — | — |
| SMA 100 | — | — |
| SMA 200 | — | — |
Média Móvel Exponencial Semanal (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 21 | $0.291873 | SELL |
| EMA 50 | $0.122586 | BUY |
| EMA 100 | $0.061293 | BUY |
| EMA 200 | $0.030646 | BUY |
Osciladores de Plasma
Um oscilador é uma ferramenta de análise técnica que define limites altos e baixos entre dois extremos, criando um indicador de tendência que flutua dentro desses limites. Os traders usam esse indicador para identificar condições de sobrecompra ou sobrevenda de curto prazo.
| Período | Valor | Ação |
|---|---|---|
| RSI (14) | 62.34 | NEUTRAL |
| Stoch RSI (14) | 92.91 | SELL |
| Estocástico Rápido (14) | 91.15 | SELL |
| Índice de Canal de Commodities (20) | 123.25 | SELL |
| Índice Direcional Médio (14) | 24.42 | NEUTRAL |
| Oscilador Impressionante (5, 34) | 0.032884 | BUY |
| Momentum (10) | 0.05 | SELL |
| MACD (12, 26) | 0.01 | NEUTRAL |
| Williams Percent Range (14) | -8.85 | SELL |
| Oscilador Ultimate (7, 14, 28) | 80.45 | SELL |
| VWMA (10) | 0.176272 | BUY |
| Média Móvel de Hull (9) | 0.2039035 | BUY |
| Nuvem Ichimoku B/L (9, 26, 52, 26) | -0.089061 | NEUTRAL |
Previsão do preço de Plasma com base nos fluxos financeiros mundiais
Definições dos fluxos financeiros mundiais, usadas na previsão do preço do Plasma
M0: o total de todas as moedas físicas, mais as contas no Banco Central que podem ser trocadas por moedas físicas.
M1: o valor de M0, mais o valor em contas de demanda, incluindo contas 'correntes'.
M2: o valor de M1, mais a maioria das contas de poupança, do mercado de moedas e de certificados de depósito (CD) de menos de US$ 100.000.
Previsões de preço de Plasma por empresas de Internet ou nichos tecnológicos
| Comparação | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.2711044 | $0.380947 | $0.535294 | $0.752177 | $1.05 | $1.48 |
| Amazon.com stock | $0.402568 | $0.839982 | $1.75 | $3.65 | $7.63 | $15.92 |
| Apple stock | $0.273662 | $0.388168 | $0.550587 | $0.780966 | $1.10 | $1.57 |
| Netflix stock | $0.304419 | $0.480326 | $0.757879 | $1.19 | $1.88 | $2.97 |
| Google stock | $0.249848 | $0.323552 | $0.418999 | $0.5426025 | $0.702667 | $0.909951 |
| Tesla stock | $0.437366 | $0.991477 | $2.24 | $5.09 | $11.55 | $26.18 |
| Kodak stock | $0.144679 | $0.108494 | $0.081359 | $0.06101 | $0.045751 | $0.0343089 |
| Nokia stock | $0.12781 | $0.084669 | $0.056089 | $0.037157 | $0.024615 | $0.0163064 |
Este cálculo mostra quanto a criptomoeda pode custar, se assumirmos que sua capitalização se comportará da mesma forma que a de algumas empresas de Internet ou nichos tecnológicos. Se você extrapolar os dados, poderá obter uma imagem em potencial do preço futuro para 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Visão geral da previsão para Plasma
Você pode fazer perguntas como: 'Devo investir em Plasma agora?', 'Devo comprar XPL hoje?', 'Plasma será um bom ou mau investimento no curto ou no longo prazo?'.
Atualizamos a previsão para Plasma regularmente com novos valores. Veja nossas previsões semelhantes. Fazemos previsões de preços futuros para uma enorme quantidade de moedas digitais, como Plasma, com métodos de análise técnica.
Se você estiver tentando encontrar criptomoedas com bom retorno, você deve explorar o máximo de fontes de informações disponíveis sobre Plasma para poder tomar sozinho uma decisão de tão grande responsabilidade sobre o seu investimento.
O preço de Plasma é de $0.1929 USD hoje, mas o preço pode tanto subir quanto descer e seu investimento pode ser perdido, porque criptomoedas são ativos de alto risco
Previsão de curto prazo para Plasma
com base no histórico de preços de 4 horas
Previsão de longo prazo para Plasma
com base no histórico de preços de 1 mês
Previsão do preço de Plasma com base no padrão de crescimento do Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se Plasma tiver 1% da média anterior do crescimento anual do Bitcoin | $0.197948 | $0.203094 | $0.208373 | $0.213789 |
| Se Plasma tiver 2% da média anterior do crescimento anual do Bitcoin | $0.202963 | $0.213515 | $0.224615 | $0.236292 |
| Se Plasma tiver 5% da média anterior do crescimento anual do Bitcoin | $0.2180088 | $0.246342 | $0.278358 | $0.314536 |
| Se Plasma tiver 10% da média anterior do crescimento anual do Bitcoin | $0.243083 | $0.306269 | $0.385878 | $0.48618 |
| Se Plasma tiver 20% da média anterior do crescimento anual do Bitcoin | $0.293233 | $0.445675 | $0.677365 | $1.02 |
| Se Plasma tiver 50% da média anterior do crescimento anual do Bitcoin | $0.443682 | $1.02 | $2.34 | $5.39 |
| Se Plasma tiver 100% da média anterior do crescimento anual do Bitcoin | $0.694431 | $2.49 | $8.99 | $32.38 |
Perguntas Frequentes sobre Plasma
XPL é um bom investimento?
A decisão de adquirir Plasma depende inteiramente da sua tolerância individual ao risco. Como você pode perceber, o valor de Plasma experimentou uma escalada de 1.495% nas últimas 24 horas, e Plasma registrou um declínio de durante os últimos 30 dias. Consequentemente, a decisão de investir ou não em Plasma dependerá de quão alinhado esse investimento está com suas aspirações de negociação.
Plasma pode subir?
Parece que o valor médio de Plasma pode potencialmente subir para $0.198977 até o final deste ano. Observando as perspectivas de Plasma em um horizonte de cinco anos mais longo, a moeda digital poderia potencialmente crescer até $0.625548. No entanto, dada a imprevisibilidade do mercado, é vital conduzir uma pesquisa aprofundada antes de investir quaisquer fundos em um projeto, rede ou ativo específico.
Qual será o preço de Plasma na próxima semana?
Com base na nossa nova previsão experimental de Plasma, o preço de Plasma aumentará 0.86% na próxima semana e atingirá $0.194585 até 13 de janeiro de 2026.
Qual será o preço de Plasma no próximo mês?
Com base na nossa nova previsão experimental de Plasma, o preço de Plasma diminuirá -11.62% no próximo mês e atingirá $0.170518 até 5 de fevereiro de 2026.
Até onde o preço de Plasma pode subir este ano em 2026?
De acordo com nossa previsão mais recente sobre o valor de Plasma em 2026, espera-se que XPL fluctue dentro do intervalo de $0.066658 e $0.198977. No entanto, é crucial lembrar que o mercado de criptomoedas é excepcionalmente instável, e essa previsão de preço de Plasma não considera flutuações repentinas e extremas de preço.
Onde estará Plasma em 5 anos?
O futuro de Plasma parece seguir uma tendência de alta, com um preço máximo de $0.625548 projetada após um período de cinco anos. Com base na previsão de Plasma para 2030, o valor de Plasma pode potencialmente atingir seu pico mais alto de aproximadamente $0.625548, enquanto seu pico mais baixo está previsto para cerca de $0.216355.
Quanto será Plasma em 2026?
Com base na nossa nova simulação experimental de previsão de preços de Plasma, espera-se que o valor de XPL em 2026 aumente 3.13% para $0.198977 se o melhor cenário ocorrer. O preço ficará entre $0.198977 e $0.066658 durante 2026.
Quanto será Plasma em 2027?
De acordo com nossa última simulação experimental para previsão de preços de Plasma, o valor de XPL pode diminuir -12.62% para $0.168576 em 2027, assumindo as condições mais favoráveis. O preço está projetado para flutuar entre $0.168576 e $0.06417 ao longo do ano.
Quanto será Plasma em 2028?
Nosso novo modelo experimental de previsão de preços de Plasma sugere que o valor de XPL em 2028 pode aumentar 47.02%, alcançando $0.283652 no melhor cenário. O preço é esperado para variar entre $0.283652 e $0.1158091 durante o ano.
Quanto será Plasma em 2029?
Com base no nosso modelo de previsão experimental, o valor de Plasma pode experimentar um 333.75% crescimento em 2029, potencialmente alcançando $0.836858 sob condições ótimas. A faixa de preço prevista para 2029 está entre $0.836858 e $0.254399.
Quanto será Plasma em 2030?
Usando nossa nova simulação experimental para previsões de preços de Plasma, espera-se que o valor de XPL em 2030 aumente 224.23%, alcançando $0.625548 no melhor cenário. O preço está previsto para variar entre $0.625548 e $0.216355 ao longo de 2030.
Quanto será Plasma em 2031?
Nossa simulação experimental indica que o preço de Plasma poderia aumentar 195.98% em 2031, potencialmente atingindo $0.571054 sob condições ideais. O preço provavelmente oscilará entre $0.571054 e $0.255799 durante o ano.
Quanto será Plasma em 2032?
Com base nos achados da nossa mais recente previsão experimental de preços de Plasma, XPL poderia ver um 449.04% aumento em valor, atingindo $1.05 se o cenário mais positivo se desenrolar em 2032. O preço é esperado para permanecer dentro de uma faixa de $1.05 e $0.390458 ao longo do ano.
Quanto será Plasma em 2033?
De acordo com nossa previsão experimental de preços de Plasma, espera-se que o valor de XPL seja aumentar 1362.43% em 2033, com o preço potencial mais alto sendo $2.82. Ao longo do ano, o preço de XPL poderia variar entre $2.82 e $0.90734.
Quanto será Plasma em 2034?
Os resultados da nossa nova simulação de previsão de preços de Plasma sugerem que XPL pode aumentar 746.96% em 2034, atingindo potencialmente $1.63 nas melhores circunstâncias. A faixa de preço prevista para o ano é entre $1.63 e $0.729458.
Quanto será Plasma em 2035?
Com base em nossa previsão experimental para o preço de Plasma, XPL poderia aumentar 897.93%, com o valor potencialmente atingindo $1.92 em 2035. A faixa de preço esperada para o ano está entre $1.92 e $0.862445.
Quanto será Plasma em 2036?
Nossa recente simulação de previsão de preços de Plasma sugere que o valor de XPL pode aumentar 1964.7% em 2036, possivelmente atingindo $3.98 se as condições forem ideais. A faixa de preço esperada para 2036 está entre $3.98 e $1.42.
Quanto será Plasma em 2037?
De acordo com a simulação experimental, o valor de Plasma poderia aumentar 4830.69% em 2037, com um pico de $9.51 sob condições favoráveis. O preço é esperado para cair entre $9.51 e $3.70 ao longo do ano.
Previsões relacionadas
Como ler e prever os movimentos de preço de Plasma?
Traders de Plasma utilizam indicadores e padrões de gráfico para prever a direção do mercado. Eles também identificam níveis-chave de suporte e resistência para avaliar quando uma tendência de baixa pode desacelerar ou uma tendência de alta pode estagnar.
Indicadores de Previsão de Preço de Plasma
Médias móveis são ferramentas populares para a previsão de preço de Plasma. Uma média móvel simples (SMA) calcula o preço médio de fechamento de XPL em um período específico, como uma SMA de 12 dias. Uma média móvel exponencial (EMA) dá mais peso aos preços recentes, reagindo mais rapidamente às mudanças de preço.
Médias móveis comumente usadas no mercado de criptomoedas incluem as de 50 dias, 100 dias e 200 dias, que ajudam a identificar níveis-chave de resistência e suporte. Um movimento de preço de XPL acima dessas médias é visto como altista, enquanto uma queda abaixo indica fraqueza.
Traders também usam RSI e níveis de retração de Fibonacci para avaliar a direção futura de XPL.
Como ler gráficos de Plasma e prever movimentos de preço?
A maioria dos traders prefere gráficos de velas em vez de gráficos de linha simples porque eles fornecem informações mais detalhadas. Velas podem representar a ação de preço de Plasma em diferentes períodos de tempo, como 5 minutos para tendências de curto prazo e semanal para tendências de longo prazo. Opções populares incluem gráficos de 1 hora, 4 horas e 1 dia.
Por exemplo, um gráfico de velas de 1 hora mostra os preços de abertura, fechamento, máximo e mínimo de XPL dentro de cada hora. A cor da vela é crucial: verde indica que o preço fechou mais alto do que abriu, enquanto vermelho significa o oposto. Alguns gráficos usam velas vazias e preenchidas para transmitir a mesma informação.
O que afeta o preço de Plasma?
A ação de preço de Plasma é impulsionada pela oferta e demanda, influenciada por fatores como reduções pela metade das recompensas de bloco, hard forks e atualizações de protocolo. Eventos do mundo real, como regulamentações, adoção por empresas e governos e hacks de exchanges de criptomoedas, também impactam o preço de XPL. A capitalização de mercado de Plasma pode mudar rapidamente.
Traders frequentemente monitoram a atividade de "baleias" de XPL, grandes detentores de Plasma, pois suas ações podem influenciar significativamente os movimentos de preço no relativamente pequeno mercado de Plasma.
Padrões de previsão de preço altistas e baixistas
Traders frequentemente identificam padrões de velas para ganhar vantagem em previsões de preço de criptomoedas. Certas formações indicam tendências altistas, enquanto outras sugerem movimentos baixistas.
Padrões de velas altistas comumente seguidos:
- Martelo
- Engolfo de Alta
- Linha de Perfuração
- Estrela da Manhã
- Três Soldados Brancos
Padrões de velas baixistas comuns:
- Harami de Baixa
- Nuvem Negra
- Estrela da Noite
- Estrela Cadente
- Homem Enforcado


