Previsão de Preço Plasma - Projeção XPL
Previsão de Preço Plasma até $0.198313 até 2026
| Ano | Preço Mínimo | Preço Máximo |
|---|---|---|
| 2026 | $0.066436 | $0.198313 |
| 2027 | $0.063956 | $0.168013 |
| 2028 | $0.115422 | $0.2827059 |
| 2029 | $0.25355 | $0.834065 |
| 2030 | $0.215633 | $0.623459 |
| 2031 | $0.254945 | $0.569148 |
| 2032 | $0.389155 | $1.05 |
| 2033 | $0.904312 | $2.81 |
| 2034 | $0.727023 | $1.62 |
| 2035 | $0.859567 | $1.91 |
Calculadora de lucro do investimento
Se você abrir um short de $10,000.00 em Plasma hoje e fechar em Apr 06, 2026, nossa previsão mostra que pode lucrar cerca de $3,954.44, com um retorno de 39.54% nos próximos 90 dias.
Previsão de preço de longo prazo de Plasma para os anos 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'Plasma'
'name_with_ticker' => 'Plasma <small>XPL</small>'
'name_lang' => 'Plasma'
'name_lang_with_ticker' => 'Plasma <small>XPL</small>'
'name_with_lang' => 'Plasma'
'name_with_lang_with_ticker' => 'Plasma <small>XPL</small>'
'image' => '/uploads/coins/plasma.png?1755180802'
'price_for_sd' => 0.1922
'ticker' => 'XPL'
'marketcap' => '$398.4M'
'low24h' => '$0.1864'
'high24h' => '$0.1985'
'volume24h' => '$106.93M'
'current_supply' => '2.07B'
'max_supply' => '10B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.1922'
'change_24h_pct' => '-0.1621%'
'ath_price' => '$1.68'
'ath_days' => 100
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '28 de set. de 2025'
'ath_pct' => '-88.54%'
'fdv' => '$1.93B'
'new_prediction' => true
'change_24h_pct_is_increased' => false
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$9.48'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.193935'
'next_week_prediction_price_date' => '13 de janeiro de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.169949'
'next_month_prediction_price_date' => '5 de fevereiro de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.066436'
'current_year_max_price_prediction' => '$0.198313'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.215633'
'grand_prediction_max_price' => '$0.623459'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.19593379435546
107 => 0.19666534001962
108 => 0.19831354975461
109 => 0.18422977802832
110 => 0.19055297805561
111 => 0.19426726566792
112 => 0.17748597910855
113 => 0.19393555358859
114 => 0.18398461089613
115 => 0.18060711148816
116 => 0.18515446948928
117 => 0.18338235965379
118 => 0.18185880367902
119 => 0.18100863326709
120 => 0.18434771110952
121 => 0.18419193913711
122 => 0.17872855969981
123 => 0.17160180393969
124 => 0.17399377710057
125 => 0.17312475082636
126 => 0.16997528750198
127 => 0.17209764551496
128 => 0.16275185492661
129 => 0.14667290797128
130 => 0.15729515284144
131 => 0.15688620796871
201 => 0.15667999941971
202 => 0.16466232286235
203 => 0.16389500664688
204 => 0.16250232020221
205 => 0.16994970972326
206 => 0.16723131236655
207 => 0.17560877248496
208 => 0.1811267095391
209 => 0.17972718221561
210 => 0.18491682868552
211 => 0.17404888333109
212 => 0.17765877883155
213 => 0.17840277329109
214 => 0.1698578100926
215 => 0.16402054906929
216 => 0.16363127030868
217 => 0.15351026411837
218 => 0.15891682393133
219 => 0.16367437282808
220 => 0.16139587610724
221 => 0.16067457211358
222 => 0.16435955778546
223 => 0.16464591273193
224 => 0.15811698960581
225 => 0.15947455946784
226 => 0.1651358514697
227 => 0.15933190943477
228 => 0.14805579812945
301 => 0.1452591666213
302 => 0.14488604442597
303 => 0.13730135797221
304 => 0.14544605091129
305 => 0.14189067417918
306 => 0.15312206667596
307 => 0.14670675551696
308 => 0.14643020427502
309 => 0.14601215651157
310 => 0.13948370356138
311 => 0.14091301985264
312 => 0.14566428489582
313 => 0.14735958979006
314 => 0.14718275560037
315 => 0.14564100110507
316 => 0.14634680841795
317 => 0.14407315714357
318 => 0.14327028355663
319 => 0.14073619366845
320 => 0.13701178159304
321 => 0.13752968393527
322 => 0.13015064906845
323 => 0.12613015923798
324 => 0.12501734064211
325 => 0.12352923310782
326 => 0.12518542634781
327 => 0.1301297451898
328 => 0.1241658476706
329 => 0.11394116369271
330 => 0.1145556846218
331 => 0.11593633069655
401 => 0.11336350587014
402 => 0.11092854309276
403 => 0.11304554567292
404 => 0.10871321228186
405 => 0.11645987248889
406 => 0.11625034704006
407 => 0.11913782291499
408 => 0.12094342083655
409 => 0.11678210219662
410 => 0.11573554181207
411 => 0.11633171017063
412 => 0.10647837518519
413 => 0.1183325952321
414 => 0.11843511101932
415 => 0.11755730860998
416 => 0.12386931482698
417 => 0.13718961670895
418 => 0.13217798333305
419 => 0.13023732741248
420 => 0.12654813908887
421 => 0.13146376348776
422 => 0.13108632022961
423 => 0.12937937867516
424 => 0.12834701509704
425 => 0.13024917664371
426 => 0.12811131623112
427 => 0.12772729775654
428 => 0.12540056361683
429 => 0.12457002538861
430 => 0.12395512794911
501 => 0.1232781862868
502 => 0.12477135091051
503 => 0.12138764343103
504 => 0.11730722391972
505 => 0.1169679811881
506 => 0.11790466019662
507 => 0.1174902494629
508 => 0.11696599714894
509 => 0.11596505670998
510 => 0.11566809906345
511 => 0.11663306735131
512 => 0.11554367441546
513 => 0.11715113303461
514 => 0.11671399323494
515 => 0.11427216584894
516 => 0.11122874484569
517 => 0.11120165201497
518 => 0.11054595195203
519 => 0.10971081933671
520 => 0.10947850454838
521 => 0.11286725762042
522 => 0.11988187506269
523 => 0.1185047378132
524 => 0.11949986061066
525 => 0.12439487986492
526 => 0.12595085928748
527 => 0.12484646194874
528 => 0.1233346947552
529 => 0.12340120483937
530 => 0.12856737098273
531 => 0.12888957842814
601 => 0.12970369269463
602 => 0.13075005959575
603 => 0.12502466275662
604 => 0.12313153916313
605 => 0.12223447217803
606 => 0.11947185307256
607 => 0.12245110092875
608 => 0.12071522078706
609 => 0.12094945032428
610 => 0.12079690803089
611 => 0.12088020643795
612 => 0.11645770713949
613 => 0.11806903344413
614 => 0.11538989094079
615 => 0.11180281987668
616 => 0.11179079475668
617 => 0.11266872531782
618 => 0.11214649786663
619 => 0.11074119722317
620 => 0.11094081354674
621 => 0.10919196450608
622 => 0.11115315548421
623 => 0.11120939542398
624 => 0.11045423007061
625 => 0.11347571536462
626 => 0.11471362035487
627 => 0.11421655434207
628 => 0.11467874487834
629 => 0.11856196408332
630 => 0.11919509825047
701 => 0.11947629462502
702 => 0.1190995287345
703 => 0.11474972299688
704 => 0.11494265537814
705 => 0.11352704557706
706 => 0.11233100446843
707 => 0.11237883984037
708 => 0.11299376044466
709 => 0.11567915478824
710 => 0.12133040887165
711 => 0.12154486983311
712 => 0.12180480277465
713 => 0.12074752486955
714 => 0.12042863973658
715 => 0.1208493315382
716 => 0.12297164544311
717 => 0.12843081300913
718 => 0.12650117858576
719 => 0.124932355763
720 => 0.12630863633015
721 => 0.12609676872449
722 => 0.12430839291662
723 => 0.12425819916406
724 => 0.12082573421042
725 => 0.11955683007051
726 => 0.11849643879537
727 => 0.11733851920513
728 => 0.11665206565822
729 => 0.11770677029383
730 => 0.1179479937229
731 => 0.11564186360405
801 => 0.1153275465903
802 => 0.11721078222662
803 => 0.11638204043718
804 => 0.11723442191943
805 => 0.1174321817349
806 => 0.11740033784982
807 => 0.11653503624125
808 => 0.11708655368288
809 => 0.11578205051815
810 => 0.11436359925654
811 => 0.11345871572428
812 => 0.11266908482699
813 => 0.11310721794242
814 => 0.11154535338585
815 => 0.11104568148008
816 => 0.11689971198319
817 => 0.12122414725727
818 => 0.12116126825573
819 => 0.12077850850496
820 => 0.1202098051553
821 => 0.12293004125085
822 => 0.121982365388
823 => 0.12267187875919
824 => 0.12284738885094
825 => 0.12337860503842
826 => 0.12356846916587
827 => 0.1229945679036
828 => 0.12106848517129
829 => 0.11626887012883
830 => 0.11403463637025
831 => 0.11329730201581
901 => 0.1133241027192
902 => 0.11258481967619
903 => 0.1128025716647
904 => 0.11250909442098
905 => 0.11195331952116
906 => 0.11307290040849
907 => 0.11320192167614
908 => 0.11294059811904
909 => 0.11300214927679
910 => 0.11083850183677
911 => 0.11100299925244
912 => 0.11008705673868
913 => 0.1099153285592
914 => 0.10759990564464
915 => 0.10349779832557
916 => 0.10577076398152
917 => 0.10302534109647
918 => 0.10198560784995
919 => 0.10690754332726
920 => 0.10641351751858
921 => 0.10556796008197
922 => 0.10431720440362
923 => 0.10385328695595
924 => 0.10103467140233
925 => 0.10086813255869
926 => 0.10226511453609
927 => 0.10162045542073
928 => 0.10071510987127
929 => 0.097436040064547
930 => 0.093749279939083
1001 => 0.093860560053123
1002 => 0.095033249854422
1003 => 0.098443003610467
1004 => 0.097110753828641
1005 => 0.096144191326122
1006 => 0.095963183224162
1007 => 0.098228878586318
1008 => 0.10143531220162
1009 => 0.10293969911401
1010 => 0.10144889737274
1011 => 0.099736344602837
1012 => 0.099840579754736
1013 => 0.10053400952215
1014 => 0.10060687918613
1015 => 0.099492183386194
1016 => 0.099805963724508
1017 => 0.099329302697933
1018 => 0.096404034857685
1019 => 0.096351126038579
1020 => 0.095633218134267
1021 => 0.095611480168239
1022 => 0.094390139732483
1023 => 0.094219265762793
1024 => 0.091794220197535
1025 => 0.093390392532302
1026 => 0.092319763932949
1027 => 0.090706074097969
1028 => 0.090427873362182
1029 => 0.090419510312127
1030 => 0.092076408958207
1031 => 0.093371030706929
1101 => 0.092338387975811
1102 => 0.092103275242873
1103 => 0.094613664125576
1104 => 0.094294194257549
1105 => 0.094017535412198
1106 => 0.10114821123984
1107 => 0.095503724908688
1108 => 0.093042406692289
1109 => 0.089996058007843
1110 => 0.090987964500522
1111 => 0.091196973772667
1112 => 0.083871054332197
1113 => 0.080898929727583
1114 => 0.079879008565433
1115 => 0.079292029517047
1116 => 0.079559523240215
1117 => 0.076884262500617
1118 => 0.078682081962356
1119 => 0.076365532296025
1120 => 0.07597715520576
1121 => 0.080119432974595
1122 => 0.080695806727293
1123 => 0.078236817232995
1124 => 0.079815886562572
1125 => 0.079243294072962
1126 => 0.076405242891153
1127 => 0.0762968502113
1128 => 0.074872815890591
1129 => 0.072644477926061
1130 => 0.071626067681981
1201 => 0.071095670784621
1202 => 0.071314522881701
1203 => 0.071203864564433
1204 => 0.070481744192086
1205 => 0.071245255658892
1206 => 0.069294799365924
1207 => 0.06851811195417
1208 => 0.068167300269292
1209 => 0.066436158045207
1210 => 0.069191175166167
1211 => 0.069733948245787
1212 => 0.070277790756045
1213 => 0.075011568510792
1214 => 0.074775082351682
1215 => 0.076912802056607
1216 => 0.076829734199887
1217 => 0.07622002191128
1218 => 0.073647746058447
1219 => 0.074673009366978
1220 => 0.071517408264614
1221 => 0.073881799170523
1222 => 0.072802789900391
1223 => 0.073516985050905
1224 => 0.0722327977739
1225 => 0.072943520035788
1226 => 0.069862659878519
1227 => 0.066985796012533
1228 => 0.068143530013097
1229 => 0.069402119274653
1230 => 0.072131061476286
1231 => 0.070505726014278
]
'min_raw' => 0.066436158045207
'max_raw' => 0.19831354975461
'avg_raw' => 0.13237485389991
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.066436'
'max' => '$0.198313'
'avg' => '$0.132374'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.12585384195479
'max_diff' => 0.0060235497546069
'year' => 2026
]
1 => [
'items' => [
101 => 0.071090258107154
102 => 0.069132173445509
103 => 0.065092085489303
104 => 0.065114951948383
105 => 0.064493472434421
106 => 0.063956423396863
107 => 0.070692415343908
108 => 0.069854688265019
109 => 0.068519879803818
110 => 0.070306573972315
111 => 0.070779004269115
112 => 0.070792453695506
113 => 0.072095979639591
114 => 0.072791671669618
115 => 0.072914290405213
116 => 0.074965416642771
117 => 0.075652927102592
118 => 0.07848468538647
119 => 0.0727326470614
120 => 0.072614187617329
121 => 0.070331716423318
122 => 0.068884137107634
123 => 0.070430833417521
124 => 0.07180099520298
125 => 0.070374291169304
126 => 0.070560588596736
127 => 0.068645354997528
128 => 0.069329960889128
129 => 0.069919635709346
130 => 0.069594051933106
131 => 0.06910663726164
201 => 0.071688657561691
202 => 0.071542969857343
203 => 0.073947406521141
204 => 0.075821836843487
205 => 0.07918115107563
206 => 0.075675531549377
207 => 0.075547772840265
208 => 0.076796634714979
209 => 0.075652735908346
210 => 0.076375640468093
211 => 0.079064679974994
212 => 0.079121495142441
213 => 0.078169767885481
214 => 0.078111855195402
215 => 0.078294644825857
216 => 0.079365249400759
217 => 0.078991147265933
218 => 0.079424067727461
219 => 0.079965441393716
220 => 0.082204792415024
221 => 0.082744692364974
222 => 0.081433015392625
223 => 0.081551445137004
224 => 0.081060841943007
225 => 0.080586925404846
226 => 0.08165222057268
227 => 0.083599068430324
228 => 0.083586957190843
301 => 0.084038588052502
302 => 0.084319950337803
303 => 0.083112137439509
304 => 0.08232589565523
305 => 0.082627390785187
306 => 0.083109488063698
307 => 0.082471053135311
308 => 0.078530337005477
309 => 0.079725698545348
310 => 0.07952673193492
311 => 0.079243379286505
312 => 0.080445324558302
313 => 0.080329394004672
314 => 0.076856823834974
315 => 0.077079126510512
316 => 0.076870342796963
317 => 0.077544965688568
318 => 0.075616304058276
319 => 0.076209547386019
320 => 0.076581624039869
321 => 0.076800780047414
322 => 0.077592521823349
323 => 0.077499620064192
324 => 0.07758674691956
325 => 0.078760690961191
326 => 0.084698097074816
327 => 0.085021256989433
328 => 0.083429899379675
329 => 0.084065615356633
330 => 0.082845179696676
331 => 0.083664466331413
401 => 0.084225001439276
402 => 0.081692051071547
403 => 0.081542066189482
404 => 0.080316593357424
405 => 0.080975093043043
406 => 0.07992737269542
407 => 0.080184446621025
408 => 0.079465645513732
409 => 0.080759344394986
410 => 0.082205900764709
411 => 0.082571358029944
412 => 0.081609997304358
413 => 0.080913908782274
414 => 0.079691806643309
415 => 0.08172418973673
416 => 0.082318520488999
417 => 0.081721067970303
418 => 0.081582625167125
419 => 0.081320276305265
420 => 0.081638283718372
421 => 0.082315283636083
422 => 0.081996022977116
423 => 0.082206900267013
424 => 0.081403253493644
425 => 0.083112537275835
426 => 0.085827291283498
427 => 0.085836019661539
428 => 0.085516757281638
429 => 0.085386121994387
430 => 0.085713704570626
501 => 0.085891404680096
502 => 0.086950746663283
503 => 0.08808746281729
504 => 0.093392021119926
505 => 0.091902522375079
506 => 0.096609042070763
507 => 0.10033128808495
508 => 0.10144742691052
509 => 0.10042063170939
510 => 0.096908020792712
511 => 0.096735675343345
512 => 0.10198499903894
513 => 0.10050182466068
514 => 0.1003254057878
515 => 0.09844860704483
516 => 0.099558027547974
517 => 0.099315381009719
518 => 0.09893235157841
519 => 0.10104904861551
520 => 0.1050113165101
521 => 0.10439375990082
522 => 0.10393278253961
523 => 0.1019129139313
524 => 0.10312932598749
525 => 0.10269618495312
526 => 0.10455723371487
527 => 0.10345478965569
528 => 0.10049058815602
529 => 0.10096264701498
530 => 0.1008912962681
531 => 0.10235968958294
601 => 0.10191891435758
602 => 0.10080522783116
603 => 0.10499777390919
604 => 0.10472553328705
605 => 0.10511150824638
606 => 0.10528142636014
607 => 0.10783335527689
608 => 0.10887879890147
609 => 0.10911613290732
610 => 0.11010922349315
611 => 0.10909142390886
612 => 0.11316334792484
613 => 0.11587093979212
614 => 0.11901594707737
615 => 0.12361164801938
616 => 0.12533967408619
617 => 0.12502752164418
618 => 0.12851192964841
619 => 0.13477333337796
620 => 0.12629313035831
621 => 0.13522280472955
622 => 0.13239577292166
623 => 0.1256929313613
624 => 0.12526134738612
625 => 0.12980058951239
626 => 0.13986819166259
627 => 0.13734637150976
628 => 0.13987231645694
629 => 0.13692566750259
630 => 0.1367793415457
701 => 0.13972920429427
702 => 0.14662171939496
703 => 0.14334734383269
704 => 0.13865272355435
705 => 0.14211915811149
706 => 0.13911621169472
707 => 0.13234973294595
708 => 0.13734444312142
709 => 0.13400462266824
710 => 0.1349793598311
711 => 0.14199916566288
712 => 0.1411545240531
713 => 0.14224756850787
714 => 0.14031837365516
715 => 0.13851620145662
716 => 0.13515231321699
717 => 0.13415643174692
718 => 0.13443165755719
719 => 0.13415629535868
720 => 0.13227423080434
721 => 0.13186779914302
722 => 0.13119039523464
723 => 0.13140035103127
724 => 0.13012663350202
725 => 0.13253040164319
726 => 0.13297656219212
727 => 0.13472582418763
728 => 0.13490743837096
729 => 0.13977910812928
730 => 0.13709587429148
731 => 0.13889601920914
801 => 0.13873499730408
802 => 0.1258382022627
803 => 0.12761526683002
804 => 0.13037982162318
805 => 0.12913439343613
806 => 0.12737364936495
807 => 0.12595175412234
808 => 0.12379743743355
809 => 0.12682959680304
810 => 0.13081656393972
811 => 0.13500855443704
812 => 0.14004495634948
813 => 0.1389208900728
814 => 0.13491440240654
815 => 0.13509413051651
816 => 0.13620513897192
817 => 0.1347662820764
818 => 0.13434193508808
819 => 0.13614684021202
820 => 0.13615926960165
821 => 0.13450369085168
822 => 0.13266381803881
823 => 0.13265610890454
824 => 0.13232872130856
825 => 0.13698390902862
826 => 0.13954379158209
827 => 0.13983727799139
828 => 0.13952403760837
829 => 0.13964459139973
830 => 0.13815505214503
831 => 0.14155969717213
901 => 0.1446841361335
902 => 0.14384671974795
903 => 0.14259131354026
904 => 0.14159132202728
905 => 0.14361115352768
906 => 0.14352121361048
907 => 0.14465684688487
908 => 0.14460532799981
909 => 0.14422345724296
910 => 0.14384673338576
911 => 0.14534040089662
912 => 0.14491024864106
913 => 0.14447942824023
914 => 0.14361535197107
915 => 0.14373279428684
916 => 0.14247760484273
917 => 0.14189689677232
918 => 0.1331644407069
919 => 0.13083084310499
920 => 0.13156504041531
921 => 0.13180675723329
922 => 0.13079117256635
923 => 0.13224726009645
924 => 0.13202033039726
925 => 0.13290318110736
926 => 0.13235161431261
927 => 0.13237425080626
928 => 0.13399629114318
929 => 0.13446717635365
930 => 0.1342276803351
1001 => 0.13439541513704
1002 => 0.13826079285154
1003 => 0.13771125974836
1004 => 0.13741933123989
1005 => 0.13750019743181
1006 => 0.1384878843125
1007 => 0.13876438271339
1008 => 0.13759283955963
1009 => 0.13814534608355
1010 => 0.1404978487389
1011 => 0.14132109152815
1012 => 0.14394848733249
1013 => 0.14283232289657
1014 => 0.14488109102516
1015 => 0.15117830577593
1016 => 0.15620895665297
1017 => 0.15158256220601
1018 => 0.16082071189216
1019 => 0.16801393655669
1020 => 0.16773784861312
1021 => 0.16648354351057
1022 => 0.15829424847178
1023 => 0.15075833708157
1024 => 0.15706244695118
1025 => 0.15707851742369
1026 => 0.15653698879505
1027 => 0.15317360099135
1028 => 0.15641995019005
1029 => 0.15667763360043
1030 => 0.15653339941416
1031 => 0.15395469787095
1101 => 0.15001749723816
1102 => 0.15078681681748
1103 => 0.1520469779821
1104 => 0.14966123000032
1105 => 0.14889883896257
1106 => 0.15031626895258
1107 => 0.15488352371363
1108 => 0.15402011065736
1109 => 0.15399756345313
1110 => 0.15769161065198
1111 => 0.15504747008288
1112 => 0.15079652040108
1113 => 0.14972309954329
1114 => 0.14591317864106
1115 => 0.1485447045787
1116 => 0.14863940851238
1117 => 0.14719814864988
1118 => 0.15091347069569
1119 => 0.15087923334897
1120 => 0.15440637867875
1121 => 0.16114895581402
1122 => 0.15915484397305
1123 => 0.15683590886076
1124 => 0.15708804140456
1125 => 0.15985331309393
1126 => 0.15818136670552
1127 => 0.15878261028402
1128 => 0.15985240303976
1129 => 0.16049783557076
1130 => 0.15699517359599
1201 => 0.15617853553798
1202 => 0.15450798067231
1203 => 0.15407216409023
1204 => 0.15543279617106
1205 => 0.1550743176896
1206 => 0.14863144901347
1207 => 0.14795813338903
1208 => 0.14797878301796
1209 => 0.14628569886589
1210 => 0.14370333914724
1211 => 0.15048962630317
1212 => 0.14994459247052
1213 => 0.14934291730155
1214 => 0.14941661907664
1215 => 0.15236231632242
1216 => 0.15065366315859
1217 => 0.15519639763737
1218 => 0.15426254799563
1219 => 0.15330474863432
1220 => 0.1531723515873
1221 => 0.1528036805488
1222 => 0.15153937038132
1223 => 0.15001263988082
1224 => 0.14900456016126
1225 => 0.13744883039751
1226 => 0.13959350662508
1227 => 0.1420607611315
1228 => 0.14291244750022
1229 => 0.14145557903162
1230 => 0.15159689642817
1231 => 0.15344981284069
]
'min_raw' => 0.063956423396863
'max_raw' => 0.16801393655669
'avg_raw' => 0.11598517997678
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.063956'
'max' => '$0.168013'
'avg' => '$0.115985'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.0024797346483438
'max_diff' => -0.03029961319792
'year' => 2027
]
2 => [
'items' => [
101 => 0.14783720816443
102 => 0.14678731899064
103 => 0.15166572698762
104 => 0.14872345060432
105 => 0.15004835747956
106 => 0.1471846335006
107 => 0.15300349953664
108 => 0.15295916952671
109 => 0.15069549921364
110 => 0.1526087378613
111 => 0.15227626556378
112 => 0.1497205873555
113 => 0.15308451909432
114 => 0.1530861875625
115 => 0.15090745410261
116 => 0.14836317040754
117 => 0.14790831257616
118 => 0.14756563830176
119 => 0.14996408061438
120 => 0.15211451649213
121 => 0.15611594452237
122 => 0.15712199860076
123 => 0.16104869464551
124 => 0.15871053833822
125 => 0.15974701274505
126 => 0.16087225233192
127 => 0.16141173356918
128 => 0.16053267784323
129 => 0.16663245309331
130 => 0.1671474610167
131 => 0.16732013871861
201 => 0.16526332882428
202 => 0.16709025741279
203 => 0.16623549802774
204 => 0.16845934448865
205 => 0.16880807200921
206 => 0.16851271220564
207 => 0.16862340382495
208 => 0.1634183217231
209 => 0.16314841075712
210 => 0.15946815558403
211 => 0.16096788677014
212 => 0.15816421120169
213 => 0.1590532856055
214 => 0.15944518113129
215 => 0.15924047714849
216 => 0.16105267932122
217 => 0.15951193726596
218 => 0.15544566566068
219 => 0.15137828620241
220 => 0.15132722356653
221 => 0.15025635435038
222 => 0.14948231204658
223 => 0.14963142005492
224 => 0.15015689612476
225 => 0.14945177042214
226 => 0.14960224474158
227 => 0.15210112104935
228 => 0.1526022528717
229 => 0.1508992111345
301 => 0.14406125281191
302 => 0.14238320068782
303 => 0.14358935127739
304 => 0.14301288898162
305 => 0.11542256310651
306 => 0.12190450091778
307 => 0.11805315357614
308 => 0.11982803162314
309 => 0.11589680328888
310 => 0.11777299150332
311 => 0.11742652804753
312 => 0.12784929223357
313 => 0.12768655510685
314 => 0.12776444875755
315 => 0.1240463818586
316 => 0.12996936338515
317 => 0.13288723706865
318 => 0.13234721630653
319 => 0.13248312789807
320 => 0.13014771645883
321 => 0.12778706064524
322 => 0.12516873004564
323 => 0.13003326466426
324 => 0.12949241145504
325 => 0.13073293412414
326 => 0.13388793254843
327 => 0.13435251805108
328 => 0.134976925678
329 => 0.13475311999211
330 => 0.14008507941607
331 => 0.13943934394842
401 => 0.14099538063467
402 => 0.13779449511428
403 => 0.13417238931711
404 => 0.13486083321359
405 => 0.13479453053024
406 => 0.13395042127255
407 => 0.13318839717739
408 => 0.13191984175789
409 => 0.13593373881605
410 => 0.13577078192573
411 => 0.13840886456342
412 => 0.13794255783224
413 => 0.13482844735681
414 => 0.13493966842166
415 => 0.13568768353381
416 => 0.13827657237766
417 => 0.1390451308515
418 => 0.13868910394466
419 => 0.1395317932252
420 => 0.14019782047334
421 => 0.13961543599323
422 => 0.14786077209133
423 => 0.14443673368057
424 => 0.14610558617767
425 => 0.14650359766477
426 => 0.14548409960983
427 => 0.14570519223246
428 => 0.14604008731161
429 => 0.14807350465303
430 => 0.15340978013096
501 => 0.15577318021488
502 => 0.16288358597547
503 => 0.15557693273803
504 => 0.15514338617286
505 => 0.15642418496402
506 => 0.16059874585838
507 => 0.16398183536668
508 => 0.1651042013317
509 => 0.16525254052222
510 => 0.16735817368608
511 => 0.16856508334787
512 => 0.16710249443634
513 => 0.16586310347326
514 => 0.16142375888237
515 => 0.1619376251067
516 => 0.16547765381571
517 => 0.17047815287384
518 => 0.17476910127897
519 => 0.17326656070215
520 => 0.184729884675
521 => 0.18586642642342
522 => 0.18570939310259
523 => 0.1882986043456
524 => 0.18315954731192
525 => 0.18096250086548
526 => 0.16613107386716
527 => 0.17029809988764
528 => 0.17635511692927
529 => 0.17555344801117
530 => 0.171154680331
531 => 0.17476576441924
601 => 0.17357182709063
602 => 0.17263011918305
603 => 0.17694426566674
604 => 0.17220068439255
605 => 0.17630779607741
606 => 0.17104038285895
607 => 0.17327342418094
608 => 0.17200584192652
609 => 0.17282612299417
610 => 0.16803077663381
611 => 0.1706182291294
612 => 0.16792313010324
613 => 0.16792185227539
614 => 0.16786235781501
615 => 0.1710331298674
616 => 0.17113652863019
617 => 0.1687933232927
618 => 0.16845563079583
619 => 0.16970425694859
620 => 0.16824244273941
621 => 0.16892641640734
622 => 0.16826315960504
623 => 0.16811384652851
624 => 0.16692409453125
625 => 0.16641151665792
626 => 0.16661251164956
627 => 0.16592641212308
628 => 0.16551301234107
629 => 0.16778012219324
630 => 0.16656889685418
701 => 0.16759448453862
702 => 0.16642569793271
703 => 0.16237417434057
704 => 0.16004410027864
705 => 0.15239114778952
706 => 0.15456151562198
707 => 0.15600047174031
708 => 0.15552489675178
709 => 0.15654661585022
710 => 0.1566093411048
711 => 0.15627716981071
712 => 0.15589255800593
713 => 0.15570535024972
714 => 0.15710064348802
715 => 0.15791065817626
716 => 0.15614489023753
717 => 0.1557311955152
718 => 0.15751648439198
719 => 0.15860550957548
720 => 0.16664625966008
721 => 0.16605057492253
722 => 0.16754562671655
723 => 0.16737730682798
724 => 0.16894435928854
725 => 0.17150582777577
726 => 0.16629764614338
727 => 0.16720160638939
728 => 0.16697997621256
729 => 0.16939967636866
730 => 0.16940723040842
731 => 0.16795649929186
801 => 0.16874296416557
802 => 0.1683039810486
803 => 0.1690972828731
804 => 0.16604261918969
805 => 0.16976286982551
806 => 0.17187201220837
807 => 0.1719012976524
808 => 0.17290101440268
809 => 0.17391678452066
810 => 0.17586646680719
811 => 0.17386240893988
812 => 0.1702573039277
813 => 0.17051758086516
814 => 0.16840390911557
815 => 0.16843944031955
816 => 0.16824977196809
817 => 0.16881898096838
818 => 0.16616752855585
819 => 0.16678981913743
820 => 0.16591860867909
821 => 0.167199712548
822 => 0.16582145655911
823 => 0.16697986933578
824 => 0.16747980188819
825 => 0.16932456376938
826 => 0.16554898372933
827 => 0.15785032044337
828 => 0.15946867280335
829 => 0.15707500254411
830 => 0.15729654583994
831 => 0.15774409855589
901 => 0.15629343377337
902 => 0.15657017489817
903 => 0.1565602877578
904 => 0.15647508572351
905 => 0.15609771178624
906 => 0.15555044491605
907 => 0.15773058768704
908 => 0.1581010364267
909 => 0.15892449808608
910 => 0.16137456142501
911 => 0.16112974232098
912 => 0.1615290524371
913 => 0.16065736069564
914 => 0.15733698111976
915 => 0.15751729370556
916 => 0.15526879287134
917 => 0.15886699886443
918 => 0.15801489619127
919 => 0.15746554005462
920 => 0.15731564314299
921 => 0.15977177971504
922 => 0.16050669427263
923 => 0.16004874483862
924 => 0.15910947718896
925 => 0.16091314874586
926 => 0.1613957351637
927 => 0.16150376846555
928 => 0.16469952864466
929 => 0.16168237595909
930 => 0.16240863459843
1001 => 0.16807469718285
1002 => 0.16293636028197
1003 => 0.16565825193695
1004 => 0.16552502950448
1005 => 0.16691745717138
1006 => 0.16541080979388
1007 => 0.16542948649382
1008 => 0.16666586793081
1009 => 0.16492959318513
1010 => 0.16449966714081
1011 => 0.16390572738978
1012 => 0.16520257310731
1013 => 0.16597997346368
1014 => 0.17224524939841
1015 => 0.17629290338354
1016 => 0.17611718404912
1017 => 0.17772292983293
1018 => 0.17699952665038
1019 => 0.1746634669498
1020 => 0.17865083600656
1021 => 0.17738906559839
1022 => 0.17749308441779
1023 => 0.17748921283214
1024 => 0.17832817984768
1025 => 0.17773369482697
1026 => 0.17656190382851
1027 => 0.17733979337848
1028 => 0.1796498472413
1029 => 0.1868203253126
1030 => 0.19083301983749
1031 => 0.18657875606371
1101 => 0.189513290248
1102 => 0.18775361541887
1103 => 0.18743383015663
1104 => 0.18927693448473
1105 => 0.19112326492298
1106 => 0.19100566165597
1107 => 0.18966532056792
1108 => 0.18890819589718
1109 => 0.19464139755942
1110 => 0.19886552288163
1111 => 0.19857746585355
1112 => 0.19984885589432
1113 => 0.20358169637665
1114 => 0.20392298052888
1115 => 0.20387998657002
1116 => 0.20303407818942
1117 => 0.20670954441486
1118 => 0.2097756830038
1119 => 0.20283827483995
1120 => 0.2054799490514
1121 => 0.20666588171435
1122 => 0.20840718271393
1123 => 0.21134504937614
1124 => 0.21453635180196
1125 => 0.21498763695582
1126 => 0.21466742854317
1127 => 0.21256267880653
1128 => 0.21605464000101
1129 => 0.21810014897217
1130 => 0.21931820275386
1201 => 0.22240698447939
1202 => 0.20667320563074
1203 => 0.19553605494212
1204 => 0.19379682803968
1205 => 0.1973336143375
1206 => 0.1982662366789
1207 => 0.19789029778249
1208 => 0.185354422137
1209 => 0.19373082924877
1210 => 0.20274313899271
1211 => 0.20308933851377
1212 => 0.20760108921009
1213 => 0.20907030017973
1214 => 0.21270285085896
1215 => 0.21247563382493
1216 => 0.21336010210882
1217 => 0.21315677816721
1218 => 0.21988531337669
1219 => 0.22730788690989
1220 => 0.22705086679077
1221 => 0.22598378402547
1222 => 0.22756858389659
1223 => 0.23522947523418
1224 => 0.2345241831231
1225 => 0.23520931433237
1226 => 0.2442419369683
1227 => 0.25598563127059
1228 => 0.25052950621955
1229 => 0.26236772762263
1230 => 0.26981926047871
1231 => 0.28270591605044
]
'min_raw' => 0.11542256310651
'max_raw' => 0.28270591605044
'avg_raw' => 0.19906423957848
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.115422'
'max' => '$0.2827059'
'avg' => '$0.199064'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.051466139709652
'max_diff' => 0.11469197949375
'year' => 2028
]
3 => [
'items' => [
101 => 0.28109244330474
102 => 0.28610912375217
103 => 0.27820399034802
104 => 0.26005220616105
105 => 0.25717961683122
106 => 0.26293061341508
107 => 0.27706887734247
108 => 0.2624853491702
109 => 0.26543557792582
110 => 0.26458591184573
111 => 0.26454063675117
112 => 0.2662686029634
113 => 0.26376209784791
114 => 0.25355014509574
115 => 0.25823022286264
116 => 0.25642302008104
117 => 0.25842824630312
118 => 0.26924962520544
119 => 0.26446523564327
120 => 0.25942526989177
121 => 0.26574650540209
122 => 0.27379561041891
123 => 0.27329191189259
124 => 0.27231452622187
125 => 0.27782399807343
126 => 0.2869240314484
127 => 0.28938373390276
128 => 0.29119943596817
129 => 0.29144979060645
130 => 0.29402859897529
131 => 0.28016169643264
201 => 0.30216882689515
202 => 0.30596885039131
203 => 0.30525460346887
204 => 0.30947816965542
205 => 0.3082354893418
206 => 0.30643504053794
207 => 0.31313029132192
208 => 0.30545472657697
209 => 0.29456022874824
210 => 0.28858329177066
211 => 0.29645420452849
212 => 0.30126069629269
213 => 0.30443748159853
214 => 0.30539877491262
215 => 0.28123814460302
216 => 0.26821690487613
217 => 0.27656337025225
218 => 0.28674663405338
219 => 0.28010512788806
220 => 0.28036546235571
221 => 0.27089641992108
222 => 0.28758443419831
223 => 0.28515313088641
224 => 0.29776673676945
225 => 0.29475639849495
226 => 0.30504230443521
227 => 0.3023336806829
228 => 0.31357702644165
301 => 0.31806230146625
302 => 0.32559377630987
303 => 0.33113395986346
304 => 0.33438726161295
305 => 0.33419194557874
306 => 0.34708314789871
307 => 0.33948165627492
308 => 0.32993239126143
309 => 0.32975967518489
310 => 0.3347053748495
311 => 0.3450702045601
312 => 0.34775765410192
313 => 0.34925957176719
314 => 0.3469593325807
315 => 0.3387084582269
316 => 0.33514577251381
317 => 0.3381812839623
318 => 0.33446911430527
319 => 0.34087736058416
320 => 0.34967725145262
321 => 0.34786010878682
322 => 0.35393454427733
323 => 0.36022094596075
324 => 0.36921078270802
325 => 0.37156105892644
326 => 0.3754459761425
327 => 0.37944483208665
328 => 0.38072915684372
329 => 0.38318133130754
330 => 0.38316840713769
331 => 0.39055819993478
401 => 0.3987093702328
402 => 0.40178624832027
403 => 0.40886135982238
404 => 0.3967454793165
405 => 0.40593551385741
406 => 0.4142251550548
407 => 0.40434190307748
408 => 0.41796366342584
409 => 0.4184925655126
410 => 0.42647835908111
411 => 0.41838322740649
412 => 0.41357636405868
413 => 0.42745359843299
414 => 0.43416835501793
415 => 0.43214581568805
416 => 0.41675419152253
417 => 0.40779560608039
418 => 0.38434925999622
419 => 0.41212246973969
420 => 0.4256499900501
421 => 0.41671915851294
422 => 0.42122335046484
423 => 0.44579676126525
424 => 0.45515272508753
425 => 0.45320675001562
426 => 0.4535355877693
427 => 0.45858389602504
428 => 0.48097087498515
429 => 0.46755607826614
430 => 0.47781118771498
501 => 0.4832504607891
502 => 0.48830276075432
503 => 0.47589590883554
504 => 0.45975477678206
505 => 0.45464220270209
506 => 0.41583116332402
507 => 0.41381088017659
508 => 0.41267683402509
509 => 0.40552683345392
510 => 0.39990889155496
511 => 0.39544129557609
512 => 0.38371698959046
513 => 0.38767359869
514 => 0.36898750200175
515 => 0.38094220446829
516 => 0.35111874296225
517 => 0.37595660791342
518 => 0.36243848725964
519 => 0.37151554170996
520 => 0.3714838727221
521 => 0.35477013759631
522 => 0.34513000398251
523 => 0.35127307232084
524 => 0.3578589292169
525 => 0.3589274623408
526 => 0.36746619771499
527 => 0.36984917521842
528 => 0.36262864213244
529 => 0.35050071801151
530 => 0.3533177581763
531 => 0.34507291675349
601 => 0.33062414929325
602 => 0.34100150633447
603 => 0.34454479228852
604 => 0.34610970922238
605 => 0.33190100587739
606 => 0.32743632280044
607 => 0.32505936299259
608 => 0.34866655283493
609 => 0.34995980798471
610 => 0.34334333179058
611 => 0.37325043158807
612 => 0.36648153381682
613 => 0.37404405104752
614 => 0.35306214130817
615 => 0.3538636785161
616 => 0.34393050619547
617 => 0.34949241896021
618 => 0.3455614382869
619 => 0.34904307137271
620 => 0.35112994788903
621 => 0.36106149027382
622 => 0.3760700101742
623 => 0.35957804902929
624 => 0.35239226538922
625 => 0.35685028514513
626 => 0.36872257922612
627 => 0.38670971249037
628 => 0.37606096757314
629 => 0.38078669973999
630 => 0.38181906198526
701 => 0.37396707172126
702 => 0.38699922657136
703 => 0.39398326422857
704 => 0.40114744172191
705 => 0.40736789630367
706 => 0.39828591168743
707 => 0.40800493707817
708 => 0.40017311825217
709 => 0.3931471671267
710 => 0.39315782259437
711 => 0.38875034082059
712 => 0.38021028950546
713 => 0.37863537301505
714 => 0.38682828748817
715 => 0.39339822902371
716 => 0.39393936087648
717 => 0.39757681808634
718 => 0.39972942779435
719 => 0.42082792926383
720 => 0.42931392109081
721 => 0.43969043126524
722 => 0.44373266676625
723 => 0.45589834640265
724 => 0.44607357204806
725 => 0.44394792031572
726 => 0.41443796088128
727 => 0.41927021508549
728 => 0.42700712030961
729 => 0.41456553959875
730 => 0.42245685890267
731 => 0.42401477249426
801 => 0.41414277944702
802 => 0.41941583747719
803 => 0.40541215870181
804 => 0.37637525210386
805 => 0.38703155294905
806 => 0.39487817724318
807 => 0.38368007689365
808 => 0.40375223834385
809 => 0.39202649599816
810 => 0.38830999860947
811 => 0.37381061726921
812 => 0.38065376712945
813 => 0.38990922529988
814 => 0.38419042821305
815 => 0.39605779084992
816 => 0.41286514125374
817 => 0.42484306004652
818 => 0.42576257592102
819 => 0.4180615765955
820 => 0.43040247716177
821 => 0.43049236714953
822 => 0.41657178089671
823 => 0.40804549932701
824 => 0.40610831021493
825 => 0.41094778842521
826 => 0.41682380838947
827 => 0.42608865413402
828 => 0.43168720637877
829 => 0.4462852613904
830 => 0.45023507651751
831 => 0.45457472583309
901 => 0.46037383561698
902 => 0.46733715377377
903 => 0.45210181006864
904 => 0.45270713867627
905 => 0.43852019756574
906 => 0.42335941637598
907 => 0.43486455948095
908 => 0.44990600362566
909 => 0.44645547971954
910 => 0.4460672252923
911 => 0.44672016154613
912 => 0.44411857920449
913 => 0.43235171869242
914 => 0.4264424750077
915 => 0.43406690696984
916 => 0.43811895323328
917 => 0.44440332361232
918 => 0.44362864231614
919 => 0.45981650552043
920 => 0.46610661966605
921 => 0.46449733929844
922 => 0.46479348561557
923 => 0.47618143682119
924 => 0.48884718067264
925 => 0.50071032118162
926 => 0.5127780172411
927 => 0.49822993863121
928 => 0.49084332151385
929 => 0.4984644248875
930 => 0.49442056016264
1001 => 0.51765780635986
1002 => 0.51926670286942
1003 => 0.54250226874924
1004 => 0.56455558760892
1005 => 0.5507042931594
1006 => 0.56376543994929
1007 => 0.57789213509348
1008 => 0.6051448220003
1009 => 0.59596707581116
1010 => 0.58893706606391
1011 => 0.58229374082151
1012 => 0.59611744605276
1013 => 0.61390142199367
1014 => 0.61773192007854
1015 => 0.62393879033892
1016 => 0.61741302520012
1017 => 0.62527259052035
1018 => 0.65302030976878
1019 => 0.64552263109196
1020 => 0.63487472205889
1021 => 0.65677888148624
1022 => 0.66470591163273
1023 => 0.72034196061875
1024 => 0.79058477067416
1025 => 0.76150378607206
1026 => 0.74345228049203
1027 => 0.74769481249078
1028 => 0.77334510885383
1029 => 0.78158316994593
1030 => 0.75918928006765
1031 => 0.76709918055558
1101 => 0.81068350992835
1102 => 0.83406510428414
1103 => 0.8023097585819
1104 => 0.7146980192247
1105 => 0.63391599435176
1106 => 0.65534302501005
1107 => 0.65291386469157
1108 => 0.69973978934679
1109 => 0.64534381393517
1110 => 0.64625970265485
1111 => 0.69405393784242
1112 => 0.681303255295
1113 => 0.66064878255222
1114 => 0.63406679486039
1115 => 0.58492753207577
1116 => 0.54140351667772
1117 => 0.62676413385542
1118 => 0.62308322882451
1119 => 0.61775273286018
1120 => 0.62961517480888
1121 => 0.68721582569886
1122 => 0.68588794426073
1123 => 0.67744064004244
1124 => 0.68384784584089
1125 => 0.65952556839737
1126 => 0.66579397310252
1127 => 0.63390319806629
1128 => 0.64831916025908
1129 => 0.66060446733011
1130 => 0.6630709246117
1201 => 0.66862797880755
1202 => 0.62114355913483
1203 => 0.64246266949857
1204 => 0.65498564950676
1205 => 0.59840637023983
1206 => 0.6538672590719
1207 => 0.62031696103163
1208 => 0.60892948596819
1209 => 0.62426122095535
1210 => 0.61828642892025
1211 => 0.61314965358004
1212 => 0.6102832446792
1213 => 0.62154117875192
1214 => 0.62101598267129
1215 => 0.60259581745746
1216 => 0.57856746283802
1217 => 0.58663216735216
1218 => 0.58370218459517
1219 => 0.57308354910852
1220 => 0.58023922732758
1221 => 0.54872924185671
1222 => 0.49451794960059
1223 => 0.53033158980177
1224 => 0.52895280361177
1225 => 0.5282575570918
1226 => 0.55517051788667
1227 => 0.55258345769389
1228 => 0.54788791811143
1229 => 0.5729973118418
1230 => 0.56383204536121
1231 => 0.59207723704602
]
'min_raw' => 0.25355014509574
'max_raw' => 0.83406510428414
'avg_raw' => 0.54380762468994
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.25355'
'max' => '$0.834065'
'avg' => '$0.5438076'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.13812758198922
'max_diff' => 0.5513591882337
'year' => 2029
]
4 => [
'items' => [
101 => 0.6106813470741
102 => 0.60596274299107
103 => 0.62345999839394
104 => 0.58681796185575
105 => 0.5989889765704
106 => 0.60149740583479
107 => 0.5726874658208
108 => 0.55300673273614
109 => 0.55169425221618
110 => 0.51757057321947
111 => 0.5357991671028
112 => 0.55183957536966
113 => 0.5441574645958
114 => 0.54172553782133
115 => 0.55414972429155
116 => 0.55511518998624
117 => 0.53310246983168
118 => 0.537679611404
119 => 0.55676705264705
120 => 0.537198656858
121 => 0.49918046031918
122 => 0.48975142193486
123 => 0.48849341440274
124 => 0.462921114478
125 => 0.49038151536641
126 => 0.47839431448563
127 => 0.51626173843929
128 => 0.49463206896403
129 => 0.49369965714362
130 => 0.492290179922
131 => 0.47027904499837
201 => 0.47509808466605
202 => 0.49111730648186
203 => 0.4968331452952
204 => 0.49623693647848
205 => 0.49103880355571
206 => 0.49341848218901
207 => 0.48575270817616
208 => 0.48304576382294
209 => 0.47450190284046
210 => 0.46194478749805
211 => 0.46369093140368
212 => 0.43881200016241
213 => 0.42525663799735
214 => 0.42150469240686
215 => 0.41648743395866
216 => 0.422071405099
217 => 0.43874152127608
218 => 0.41863382440408
219 => 0.384160588508
220 => 0.38623248872489
221 => 0.39088743335954
222 => 0.3822129748284
223 => 0.37400332782079
224 => 0.38114094982419
225 => 0.36653418532238
226 => 0.39265259106495
227 => 0.3919461613856
228 => 0.40168148789505
301 => 0.40776918735042
302 => 0.39373901102189
303 => 0.3902104596169
304 => 0.3922204828609
305 => 0.35899927601961
306 => 0.398966606543
307 => 0.39931224567704
308 => 0.39635267356774
309 => 0.41763404321855
310 => 0.46254437100741
311 => 0.44564729917949
312 => 0.43910424225102
313 => 0.42666588624705
314 => 0.44323925710584
315 => 0.44196668080874
316 => 0.43621160818306
317 => 0.43273092230212
318 => 0.4391441927614
319 => 0.43193624711969
320 => 0.43064150202134
321 => 0.4227967554219
322 => 0.41999653779913
323 => 0.4179233681511
324 => 0.41564101207406
325 => 0.4206753208523
326 => 0.40926691484234
327 => 0.39550949557415
328 => 0.39436571501934
329 => 0.39752379369339
330 => 0.39612657897143
331 => 0.3943590256928
401 => 0.39098428511941
402 => 0.38998307168121
403 => 0.39323652963566
404 => 0.38956356529347
405 => 0.39498322425709
406 => 0.39350937690239
407 => 0.38527658538754
408 => 0.37501547899021
409 => 0.37492413361988
410 => 0.37271339507816
411 => 0.36989768715852
412 => 0.36911442162995
413 => 0.38053983920751
414 => 0.4041901116591
415 => 0.3995469972738
416 => 0.40290212326268
417 => 0.41940602243774
418 => 0.42465211569592
419 => 0.42092856296179
420 => 0.41583153432058
421 => 0.41605577771293
422 => 0.43347386755545
423 => 0.43456021245347
424 => 0.4373050555426
425 => 0.4408329546047
426 => 0.42152937942713
427 => 0.41514658105801
428 => 0.41212205708655
429 => 0.40280769389253
430 => 0.41285243604413
501 => 0.40699979495114
502 => 0.40778951618927
503 => 0.40727520919693
504 => 0.40755605559204
505 => 0.39264529043825
506 => 0.39807798957354
507 => 0.38904507357179
508 => 0.37695101303784
509 => 0.37691046950621
510 => 0.37987047368824
511 => 0.37810974737579
512 => 0.3733716781414
513 => 0.37404469851309
514 => 0.36814833187177
515 => 0.37476062418051
516 => 0.374950241064
517 => 0.37240414835114
518 => 0.38259129697326
519 => 0.38676498007566
520 => 0.38508908730946
521 => 0.38664739497159
522 => 0.39973993963891
523 => 0.40187459568745
524 => 0.40282266889675
525 => 0.40155237639192
526 => 0.38688670265379
527 => 0.38753718764734
528 => 0.38276436036827
529 => 0.3787318242656
530 => 0.37889310456184
531 => 0.38096635231161
601 => 0.39002034682923
602 => 0.40907394452941
603 => 0.40979701463414
604 => 0.41067339669451
605 => 0.40710871042066
606 => 0.40603356693101
607 => 0.40745195871193
608 => 0.41460748821755
609 => 0.43301345281331
610 => 0.42650755563213
611 => 0.4212181599535
612 => 0.42585838597449
613 => 0.42514405954985
614 => 0.41911442565321
615 => 0.41894519391205
616 => 0.40737239867382
617 => 0.40309419977404
618 => 0.39951901655575
619 => 0.3956150098139
620 => 0.39330058375384
621 => 0.39685659406992
622 => 0.39766989570269
623 => 0.38989461699815
624 => 0.38883487524136
625 => 0.39518433567254
626 => 0.39239017486852
627 => 0.39526403854731
628 => 0.39593079957233
629 => 0.39582343569049
630 => 0.39290601090377
701 => 0.39476549046397
702 => 0.39036726696657
703 => 0.38558485950496
704 => 0.38253398149896
705 => 0.37987168579849
706 => 0.38134888218665
707 => 0.37608294678827
708 => 0.37439826807199
709 => 0.39413554062859
710 => 0.40871567607759
711 => 0.40850367513379
712 => 0.40721317391065
713 => 0.40529575086168
714 => 0.41446721677863
715 => 0.41127206144241
716 => 0.41359680391367
717 => 0.41418854844174
718 => 0.41597958090616
719 => 0.41661972106775
720 => 0.4146847728935
721 => 0.40819085048672
722 => 0.39200861327263
723 => 0.38447573816636
724 => 0.38198976391133
725 => 0.38208012435396
726 => 0.37958757995936
727 => 0.38032174599158
728 => 0.37933226697447
729 => 0.37745843309676
730 => 0.38123317822502
731 => 0.38166818243687
801 => 0.38078711181909
802 => 0.3809946358448
803 => 0.37369974743976
804 => 0.37425436196153
805 => 0.3711661978273
806 => 0.37058720428051
807 => 0.3627805942664
808 => 0.34895005304019
809 => 0.35661351544263
810 => 0.34735713050636
811 => 0.34385159727388
812 => 0.36044624637419
813 => 0.35878060386843
814 => 0.35592974793598
815 => 0.35171273784144
816 => 0.35014860777694
817 => 0.34064544864843
818 => 0.34008395130974
819 => 0.34479397358071
820 => 0.34262046036463
821 => 0.33956802463542
822 => 0.3285124118447
823 => 0.31608224268032
824 => 0.31645743135414
825 => 0.32041123689381
826 => 0.33190745974372
827 => 0.32741568658958
828 => 0.3241568536291
829 => 0.32354657217576
830 => 0.33118552227507
831 => 0.34199623707511
901 => 0.34706838258317
902 => 0.34204204042803
903 => 0.33626804919768
904 => 0.33661948528977
905 => 0.33895743216432
906 => 0.33920311732404
907 => 0.33544484260897
908 => 0.33650277492704
909 => 0.33489567899653
910 => 0.32503293423746
911 => 0.32485454845987
912 => 0.32243407183775
913 => 0.32236078076759
914 => 0.31824294621717
915 => 0.31766683269833
916 => 0.30949062226378
917 => 0.31487222873164
918 => 0.31126252966002
919 => 0.30582186171716
920 => 0.3048838885131
921 => 0.30485569190595
922 => 0.31044204137218
923 => 0.3148069489856
924 => 0.31132532192082
925 => 0.31053262292668
926 => 0.31899657431446
927 => 0.31791945934974
928 => 0.31698668473693
929 => 0.34102825613772
930 => 0.32199747638678
1001 => 0.31369897017644
1002 => 0.30342799289756
1003 => 0.30677227489033
1004 => 0.30747696424393
1005 => 0.28277711537102
1006 => 0.27275638975945
1007 => 0.26931765435264
1008 => 0.26733861350944
1009 => 0.26824048727292
1010 => 0.25922065890862
1011 => 0.26528213274362
1012 => 0.25747172380725
1013 => 0.2561622833318
1014 => 0.27012826203403
1015 => 0.27207154638238
1016 => 0.26378089162119
1017 => 0.26910483411296
1018 => 0.26717429855711
1019 => 0.25760561085123
1020 => 0.25724015736337
1021 => 0.2524389262282
1022 => 0.2449259292032
1023 => 0.24149228796215
1024 => 0.23970401779157
1025 => 0.24044189291664
1026 => 0.24006880067406
1027 => 0.23763412142186
1028 => 0.24020835363886
1029 => 0.23363225407061
1030 => 0.23101359823529
1031 => 0.22983081214684
1101 => 0.22399414527385
1102 => 0.23328287784632
1103 => 0.23511287517946
1104 => 0.23694647817267
1105 => 0.25290674037461
1106 => 0.25210941077823
1107 => 0.25931688201421
1108 => 0.25903681293567
1109 => 0.25698112538587
1110 => 0.24830851775748
1111 => 0.25176526458379
1112 => 0.24112593515014
1113 => 0.24909764416591
1114 => 0.24545968907764
1115 => 0.24786764789111
1116 => 0.2435379208276
1117 => 0.2459341705546
1118 => 0.23554683543558
1119 => 0.22584728805518
1120 => 0.22975066906849
1121 => 0.23399409063572
1122 => 0.24319490979719
1123 => 0.23771497780973
1124 => 0.23968576857159
1125 => 0.23308394942575
1126 => 0.21946251081147
1127 => 0.21953960667474
1128 => 0.2174442451031
1129 => 0.21563354677741
1130 => 0.23834441391881
1201 => 0.2355199585841
1202 => 0.23101955866381
1203 => 0.2370435227959
1204 => 0.23863635452559
1205 => 0.23868170020568
1206 => 0.24307662893544
1207 => 0.24542220318634
1208 => 0.24583562081436
1209 => 0.25275113612935
1210 => 0.25506912564509
1211 => 0.26461659640623
1212 => 0.24522319759877
1213 => 0.24482380331251
1214 => 0.23712829232485
1215 => 0.23224767759526
1216 => 0.23746247219093
1217 => 0.24208206831225
1218 => 0.23727183605341
1219 => 0.23789995083687
1220 => 0.2314426070398
1221 => 0.23375080360099
1222 => 0.23573893342714
1223 => 0.23464120499401
1224 => 0.23299785239896
1225 => 0.24170331411148
1226 => 0.24121211784468
1227 => 0.24931884392908
1228 => 0.25563861662942
1229 => 0.26696477910292
1230 => 0.25514533811561
1231 => 0.25471459070801
]
'min_raw' => 0.21563354677741
'max_raw' => 0.62345999839394
'avg_raw' => 0.41954677258568
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.215633'
'max' => '$0.623459'
'avg' => '$0.419546'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.037916598318324
'max_diff' => -0.2106051058902
'year' => 2030
]
5 => [
'items' => [
101 => 0.25892521571136
102 => 0.25506848102034
103 => 0.25750580421511
104 => 0.26657208865537
105 => 0.26676364495913
106 => 0.26355483006481
107 => 0.26335957338687
108 => 0.26397586138792
109 => 0.26758547945942
110 => 0.26632416799288
111 => 0.26778378955446
112 => 0.26960906866774
113 => 0.27715919698258
114 => 0.27897950735845
115 => 0.27455709686781
116 => 0.27495639101948
117 => 0.2733022880981
118 => 0.2717044454019
119 => 0.27529616243678
120 => 0.2818600959134
121 => 0.28181926202392
122 => 0.28334196700586
123 => 0.28429059959484
124 => 0.28021837408144
125 => 0.27756750501209
126 => 0.27858401689246
127 => 0.28020944152592
128 => 0.27805691359076
129 => 0.26477051402701
130 => 0.26880075891616
131 => 0.2681299290977
201 => 0.26717458586052
202 => 0.27122702826152
203 => 0.27083616030594
204 => 0.2591281475317
205 => 0.25987765652295
206 => 0.25917372765591
207 => 0.26144826583562
208 => 0.25494564849423
209 => 0.25694580979265
210 => 0.25820029220867
211 => 0.25893919198909
212 => 0.2616086046643
213 => 0.26129537989711
214 => 0.26158913417298
215 => 0.2655471684715
216 => 0.28556554772004
217 => 0.28665510393448
218 => 0.28128973064814
219 => 0.28343309144872
220 => 0.27931830741308
221 => 0.28208058950286
222 => 0.28397047275433
223 => 0.27543045374459
224 => 0.2749247692431
225 => 0.27079300203003
226 => 0.27301317969508
227 => 0.26948071739357
228 => 0.27034746008207
301 => 0.26792397196374
302 => 0.27228576806506
303 => 0.27716293386093
304 => 0.27839509854608
305 => 0.2751538037397
306 => 0.27280689268814
307 => 0.26868649000218
308 => 0.2755388114981
309 => 0.27754263912423
310 => 0.27552828624464
311 => 0.27506151666796
312 => 0.27417698916358
313 => 0.27524917335944
314 => 0.27753172584863
315 => 0.27645531624686
316 => 0.27716630375272
317 => 0.27445675254749
318 => 0.28021972215753
319 => 0.28937270483243
320 => 0.2894021331684
321 => 0.28832571776437
322 => 0.28788527177274
323 => 0.28898973929962
324 => 0.28958886762532
325 => 0.29316051308253
326 => 0.29699303095875
327 => 0.31487771962852
328 => 0.30985577061679
329 => 0.3257241303695
330 => 0.33827394268526
331 => 0.34203708266198
401 => 0.33857517095282
402 => 0.32673215800458
403 => 0.32615108328926
404 => 0.34384954462503
405 => 0.33884891865679
406 => 0.33825411010973
407 => 0.33192635211389
408 => 0.33566684079751
409 => 0.33484874105274
410 => 0.33355733058282
411 => 0.34069392242646
412 => 0.3540529852698
413 => 0.35197085004517
414 => 0.35041663268745
415 => 0.34360650465182
416 => 0.34770772282643
417 => 0.34624735758811
418 => 0.35252201342262
419 => 0.3488050463069
420 => 0.33881103399683
421 => 0.34040261339791
422 => 0.34016204937325
423 => 0.34511283995418
424 => 0.34362673550796
425 => 0.339871863629
426 => 0.35400732544531
427 => 0.35308944718053
428 => 0.35439078870381
429 => 0.35496367948768
430 => 0.3635676860005
501 => 0.3670924721713
502 => 0.36789266034214
503 => 0.37124093458765
504 => 0.3678093522287
505 => 0.38153812834126
506 => 0.39066696335982
507 => 0.40127057499943
508 => 0.41676530158702
509 => 0.42259146211819
510 => 0.42153901836617
511 => 0.43328694322602
512 => 0.45439770305745
513 => 0.42580610650783
514 => 0.4559131271004
515 => 0.44638159198306
516 => 0.42378249368484
517 => 0.4223273781803
518 => 0.43763174992878
519 => 0.47157537347572
520 => 0.4630728807626
521 => 0.47158928050786
522 => 0.46165444782981
523 => 0.46116109965
524 => 0.47110676785965
525 => 0.49434536374165
526 => 0.48330557792386
527 => 0.4674773378875
528 => 0.47916466401565
529 => 0.46904002051248
530 => 0.44622636499054
531 => 0.46306637906667
601 => 0.45180594122995
602 => 0.4550923356285
603 => 0.47876010109757
604 => 0.47591233293919
605 => 0.47959760863236
606 => 0.47309319349437
607 => 0.46701704410336
608 => 0.45567546004427
609 => 0.45231777613771
610 => 0.45324571917267
611 => 0.45231731629523
612 => 0.4459718042487
613 => 0.44460149152642
614 => 0.4423175769545
615 => 0.44302545758148
616 => 0.43873103000349
617 => 0.44683550211716
618 => 0.44833976355782
619 => 0.45423752250527
620 => 0.45484984740425
621 => 0.47127502212354
622 => 0.462228311902
623 => 0.46829762617399
624 => 0.4677547295789
625 => 0.42427228467142
626 => 0.43026378193082
627 => 0.43958467143101
628 => 0.43538562334534
629 => 0.42944915177813
630 => 0.42465513269414
701 => 0.41739170356828
702 => 0.42761484058113
703 => 0.44105717864361
704 => 0.45519076728075
705 => 0.47217134795887
706 => 0.46838148002726
707 => 0.45487332713642
708 => 0.45547929300739
709 => 0.45922513558296
710 => 0.45437392910192
711 => 0.45294321360386
712 => 0.45902857724365
713 => 0.45907048379858
714 => 0.45348858445426
715 => 0.44728532480984
716 => 0.44725933292543
717 => 0.44615552278809
718 => 0.46185081320112
719 => 0.47048163595544
720 => 0.47147114587495
721 => 0.47041503405385
722 => 0.47082148957822
723 => 0.46579940398468
724 => 0.47727840239828
725 => 0.48781266649789
726 => 0.48498925868747
727 => 0.48075656900858
728 => 0.47738502780538
729 => 0.48419503072912
730 => 0.48389179201886
731 => 0.48772065889087
801 => 0.48754695937295
802 => 0.48625945545486
803 => 0.48498930466829
804 => 0.49002530896571
805 => 0.48857502060381
806 => 0.4871224795435
807 => 0.48420918607414
808 => 0.4846051510413
809 => 0.48037319219596
810 => 0.47841529439284
811 => 0.44897320908766
812 => 0.44110532184623
813 => 0.443580719338
814 => 0.44439568446595
815 => 0.44097156985551
816 => 0.44588087062401
817 => 0.44511576129948
818 => 0.44809235410726
819 => 0.44623270814959
820 => 0.44630902866837
821 => 0.45177785091154
822 => 0.45336547327477
823 => 0.45255799572715
824 => 0.45312352532279
825 => 0.46615591615926
826 => 0.46430312693471
827 => 0.46331886958663
828 => 0.46359151559858
829 => 0.46692157087491
830 => 0.467853804538
831 => 0.46390386500057
901 => 0.46576667932075
902 => 0.47369830626974
903 => 0.47647392681068
904 => 0.48533237520392
905 => 0.48156914888011
906 => 0.48847671366609
907 => 0.50970821285581
908 => 0.52666940351656
909 => 0.51107119163409
910 => 0.54221825828795
911 => 0.56647071745932
912 => 0.56553986768174
913 => 0.56131089045572
914 => 0.5337001104741
915 => 0.50829225908147
916 => 0.52954700564576
917 => 0.52960118836583
918 => 0.52777538678606
919 => 0.51643548998165
920 => 0.52738078295792
921 => 0.52824958056691
922 => 0.5277632849378
923 => 0.51906901264566
924 => 0.50579446582566
925 => 0.50838828049951
926 => 0.51263700184767
927 => 0.50459328595948
928 => 0.50202283134727
929 => 0.50680179552037
930 => 0.5222006138228
1001 => 0.519289556422
1002 => 0.51921353694876
1003 => 0.53166827498982
1004 => 0.52275337045312
1005 => 0.50842099680909
1006 => 0.50480188344319
1007 => 0.49195646912113
1008 => 0.50082884254718
1009 => 0.5011481434716
1010 => 0.49628883521961
1011 => 0.50881530289256
1012 => 0.50869986928772
1013 => 0.52059188602452
1014 => 0.54332495558777
1015 => 0.5366016682915
1016 => 0.52878321665752
1017 => 0.52963329913229
1018 => 0.5389566056981
1019 => 0.53331952171802
1020 => 0.5353466564204
1021 => 0.53895353738694
1022 => 0.54112965822787
1023 => 0.52932018883187
1024 => 0.52656683660345
1025 => 0.5209344442394
1026 => 0.51946505820521
1027 => 0.524052524262
1028 => 0.5228438890336
1029 => 0.50112130746529
1030 => 0.4988511768281
1031 => 0.49892079849375
1101 => 0.4932124470677
1102 => 0.48450584098166
1103 => 0.50738628193133
1104 => 0.50554866231151
1105 => 0.50352007247169
1106 => 0.50376856315209
1107 => 0.51370018707825
1108 => 0.50793934364205
1109 => 0.52325549010086
1110 => 0.52010695083443
1111 => 0.51687766341635
1112 => 0.51643127752867
1113 => 0.51518827738256
1114 => 0.51092556738158
1115 => 0.50577808890624
1116 => 0.50237927774986
1117 => 0.4634183280561
1118 => 0.47064925369385
1119 => 0.47896777452046
1120 => 0.48183929457543
1121 => 0.47692736081827
1122 => 0.5111195204649
1123 => 0.51736675751619
1124 => 0.49844346899065
1125 => 0.4949036943403
1126 => 0.51135158750167
1127 => 0.5014314972522
1128 => 0.50589851328412
1129 => 0.49624326795024
1130 => 0.51586198105099
1201 => 0.5157125193275
1202 => 0.50808039682257
1203 => 0.51453101450122
1204 => 0.51341006093765
1205 => 0.50479341342668
1206 => 0.51613514414632
1207 => 0.51614076950326
1208 => 0.50879501752892
1209 => 0.50021678741478
1210 => 0.49868320247912
1211 => 0.49752785223825
1212 => 0.50561436794912
1213 => 0.51286471264962
1214 => 0.52635580662435
1215 => 0.52974778819008
1216 => 0.54298691805815
1217 => 0.53510366082325
1218 => 0.53859820665021
1219 => 0.54239203047906
1220 => 0.54421092913586
1221 => 0.54124713138208
1222 => 0.56181294951044
1223 => 0.56354933468086
1224 => 0.56413152960883
1225 => 0.55719685144821
1226 => 0.56335646873647
1227 => 0.56047458779238
1228 => 0.56797244139932
1229 => 0.56914820058229
1230 => 0.56815237438316
1231 => 0.56852557890593
]
'min_raw' => 0.25494564849423
'max_raw' => 0.56914820058229
'avg_raw' => 0.41204692453826
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.254945'
'max' => '$0.569148'
'avg' => '$0.412046'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.039312101716823
'max_diff' => -0.054311797811654
'year' => 2031
]
6 => [
'items' => [
101 => 0.55097628119231
102 => 0.55006625752593
103 => 0.53765802026262
104 => 0.54271446866448
105 => 0.53326168073908
106 => 0.53625925716473
107 => 0.5375805602912
108 => 0.53689038652122
109 => 0.54300035267049
110 => 0.53780563326
111 => 0.52409591464477
112 => 0.51038246082587
113 => 0.51021029958391
114 => 0.50659978925596
115 => 0.50399005158681
116 => 0.5044927796473
117 => 0.50626445890435
118 => 0.50388707836765
119 => 0.50439441304141
120 => 0.51281954897902
121 => 0.51450914990599
122 => 0.50876722578646
123 => 0.48571257189082
124 => 0.48005490199661
125 => 0.4841215229201
126 => 0.4821779400426
127 => 0.38915523005963
128 => 0.41100953594477
129 => 0.39802444948992
130 => 0.40400857474342
131 => 0.39075416394485
201 => 0.39707986350112
202 => 0.39591173777064
203 => 0.43105281491801
204 => 0.43050413533333
205 => 0.43076675921504
206 => 0.41823103707808
207 => 0.43820078282421
208 => 0.44803859766758
209 => 0.44621787996503
210 => 0.44667611538494
211 => 0.43880211266435
212 => 0.43084299677309
213 => 0.42201511235053
214 => 0.43841623044816
215 => 0.43659270609212
216 => 0.44077521488151
217 => 0.45141251234396
218 => 0.45297889480246
219 => 0.45508412871138
220 => 0.45432955221579
221 => 0.47230662567918
222 => 0.47012948346622
223 => 0.4753757697929
224 => 0.46458376078221
225 => 0.4523715781997
226 => 0.45469271486231
227 => 0.4544691707363
228 => 0.45162319744017
229 => 0.44905398000049
301 => 0.44477695683595
302 => 0.45831009100889
303 => 0.45776067047587
304 => 0.4666551502739
305 => 0.46508296457323
306 => 0.45458352368506
307 => 0.45495851327042
308 => 0.45748049844579
309 => 0.46620911793326
310 => 0.46880036648687
311 => 0.46759999691343
312 => 0.47044118265748
313 => 0.4726867400251
314 => 0.47072319008964
315 => 0.49852291641535
316 => 0.48697853185476
317 => 0.49260518456428
318 => 0.49394710808133
319 => 0.49050979921
320 => 0.49125522842339
321 => 0.49238435056437
322 => 0.49924015909964
323 => 0.51723178444035
324 => 0.52520015283062
325 => 0.54917338228511
326 => 0.52453849076085
327 => 0.52307675824712
328 => 0.52739506079404
329 => 0.54146988430789
330 => 0.55287620678491
331 => 0.55666034199706
401 => 0.55716047793461
402 => 0.56425976715717
403 => 0.56832894734564
404 => 0.56339772671571
405 => 0.55921903355217
406 => 0.54425147331885
407 => 0.54598400917117
408 => 0.55791946312052
409 => 0.57477899481871
410 => 0.58924622695105
411 => 0.58418030649225
412 => 0.62282970361043
413 => 0.62666163346607
414 => 0.62613218466114
415 => 0.63486189113991
416 => 0.61753520155337
417 => 0.61012770606632
418 => 0.56012251444431
419 => 0.57417193360484
420 => 0.59459358944812
421 => 0.59189070671998
422 => 0.57705995437416
423 => 0.58923497649549
424 => 0.58520953343404
425 => 0.58203449947568
426 => 0.59657994554952
427 => 0.58058663009734
428 => 0.59443404389223
429 => 0.57667459246713
430 => 0.58420344719018
501 => 0.57992970511965
502 => 0.58269534000941
503 => 0.56652749495507
504 => 0.57525127169414
505 => 0.56616455716161
506 => 0.5661602488758
507 => 0.56595965914886
508 => 0.57665013849972
509 => 0.57699875464755
510 => 0.56909847425485
511 => 0.56795992042469
512 => 0.57216975067502
513 => 0.56724114200817
514 => 0.56954720698309
515 => 0.56731099036703
516 => 0.56680757090483
517 => 0.56279623898023
518 => 0.56106804689325
519 => 0.56174571554058
520 => 0.5594324830851
521 => 0.55803867685741
522 => 0.56568239600858
523 => 0.56159866521286
524 => 0.56505650569519
525 => 0.56111586005131
526 => 0.54745586539206
527 => 0.5395998580117
528 => 0.51379739438254
529 => 0.52111494105992
530 => 0.52596648207756
531 => 0.52436304780017
601 => 0.5278078450747
602 => 0.52801932764987
603 => 0.52689938894037
604 => 0.5256026433878
605 => 0.52497145936734
606 => 0.52967578793651
607 => 0.53240680901133
608 => 0.52645339912393
609 => 0.52505859848437
610 => 0.5310778245773
611 => 0.53474954901679
612 => 0.56185949931425
613 => 0.55985110663223
614 => 0.56489177813695
615 => 0.56432427588092
616 => 0.56960770265981
617 => 0.57824387250053
618 => 0.56068412450328
619 => 0.5637318895852
620 => 0.56298464797029
621 => 0.57114283598464
622 => 0.57116830495712
623 => 0.5662770637108
624 => 0.56892868494176
625 => 0.56744862271406
626 => 0.57012329520192
627 => 0.5598242833235
628 => 0.57236736808178
629 => 0.5794784888812
630 => 0.5795772268004
701 => 0.58294784162197
702 => 0.58637258149354
703 => 0.59294607144504
704 => 0.58618925042656
705 => 0.57403438717759
706 => 0.5749119290442
707 => 0.56778553716862
708 => 0.56790533310353
709 => 0.56726585301437
710 => 0.56918498089976
711 => 0.56024542397242
712 => 0.56234352011513
713 => 0.5594061732289
714 => 0.56372550436672
715 => 0.55907861807344
716 => 0.56298428762775
717 => 0.5646698451324
718 => 0.570889588612
719 => 0.55815995690438
720 => 0.53220337613226
721 => 0.53765976410368
722 => 0.52958933770392
723 => 0.5303362863935
724 => 0.53184524162245
725 => 0.52695422402599
726 => 0.52788727604972
727 => 0.52785394086564
728 => 0.52756667625842
729 => 0.52629433368152
730 => 0.52444918521971
731 => 0.53179968878482
801 => 0.5330486825745
802 => 0.53582504105135
803 => 0.54408560065652
804 => 0.54326017595455
805 => 0.54460647789
806 => 0.54166750832408
807 => 0.53047261676249
808 => 0.53108055323453
809 => 0.52349957568664
810 => 0.53563117841109
811 => 0.53275825475661
812 => 0.53090606218709
813 => 0.53040067428405
814 => 0.53868171021871
815 => 0.5411595259597
816 => 0.53961551746994
817 => 0.53644871101154
818 => 0.54252991559396
819 => 0.54415698939479
820 => 0.54452123121463
821 => 0.55529595977936
822 => 0.54512341884909
823 => 0.54757205055737
824 => 0.5666755761526
825 => 0.54935131454406
826 => 0.55852836229524
827 => 0.55807919356287
828 => 0.56277386065801
829 => 0.557694093834
830 => 0.55775706363183
831 => 0.56192560996802
901 => 0.55607163844014
902 => 0.55462211276525
903 => 0.55261960342708
904 => 0.55699200930662
905 => 0.5596130688845
906 => 0.58073688412603
907 => 0.59438383213507
908 => 0.59379138213074
909 => 0.59920526615044
910 => 0.59676626181407
911 => 0.58889007343509
912 => 0.60233376659916
913 => 0.59807961957403
914 => 0.598430326286
915 => 0.59841727296466
916 => 0.60124590883238
917 => 0.59924156107943
918 => 0.59529078591629
919 => 0.59791349484454
920 => 0.60570200272584
921 => 0.62987777017001
922 => 0.64340684991808
923 => 0.62906330258156
924 => 0.63895728946654
925 => 0.63302442292354
926 => 0.63194624458519
927 => 0.63816039950884
928 => 0.64438543148807
929 => 0.64398892386255
930 => 0.63946987030456
1001 => 0.63691717161639
1002 => 0.65624706130001
1003 => 0.67048899474283
1004 => 0.66951779036116
1005 => 0.67380437064925
1006 => 0.68638990295403
1007 => 0.68754056630095
1008 => 0.68739560916693
1009 => 0.68454357000228
1010 => 0.69693566099422
1011 => 0.7072733613178
1012 => 0.683883405339
1013 => 0.69278999437872
1014 => 0.69678844915102
1015 => 0.70265936704484
1016 => 0.71256458961181
1017 => 0.72332428855005
1018 => 0.72484582795402
1019 => 0.72376622293454
1020 => 0.71666991224853
1021 => 0.72844330321667
1022 => 0.73533987952581
1023 => 0.73944663289256
1024 => 0.74986067613204
1025 => 0.69681314224646
1026 => 0.65926346112874
1027 => 0.65339953619824
1028 => 0.66532405813187
1029 => 0.66846845946949
1030 => 0.66720095523304
1031 => 0.6249353752674
1101 => 0.65317701666679
1102 => 0.68356264818787
1103 => 0.68472988404398
1104 => 0.69994156651702
1105 => 0.70489511387818
1106 => 0.71714251210978
1107 => 0.71637643401579
1108 => 0.71935848058651
1109 => 0.71867295972175
1110 => 0.74135868595183
1111 => 0.76638441084656
1112 => 0.76551784957039
1113 => 0.76192010552583
1114 => 0.76726336893851
1115 => 0.79309259894953
1116 => 0.79071465735509
1117 => 0.79302462506151
1118 => 0.82347874291611
1119 => 0.86307342817485
1120 => 0.84467772163076
1121 => 0.88459111160947
1122 => 0.90971447488317
1123 => 0.9531627338608
1124 => 0.94772279784961
1125 => 0.96463688623155
1126 => 0.93798417704068
1127 => 0.87678416933722
1128 => 0.86709903385392
1129 => 0.88648892035817
1130 => 0.93415706429139
1201 => 0.88498768086919
1202 => 0.89493458309716
1203 => 0.89206987458634
1204 => 0.89191722644402
1205 => 0.89774318517129
1206 => 0.88929232817582
1207 => 0.8548620164961
1208 => 0.87064122543981
1209 => 0.86454811508679
1210 => 0.87130887529493
1211 => 0.90779390978867
1212 => 0.8916630063444
1213 => 0.87467040993405
1214 => 0.89598289679164
1215 => 0.92312101632642
1216 => 0.92142276157782
1217 => 0.91812743755013
1218 => 0.93670300655668
1219 => 0.96738440442445
1220 => 0.97567746298027
1221 => 0.98179922926206
1222 => 0.98264331740422
1223 => 0.99133794986643
1224 => 0.94458471978766
1225 => 1.0187832966308
1226 => 1.0315953411573
1227 => 1.0291872077911
1228 => 1.0434272560691
1229 => 1.0392374726305
1230 => 1.033167133785
1231 => 1.0557406392506
]
'min_raw' => 0.38915523005963
'max_raw' => 1.0557406392506
'avg_raw' => 0.72244793465514
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.389155'
'max' => '$1.05'
'avg' => '$0.722447'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.13420958156539
'max_diff' => 0.48659243866835
'year' => 2032
]
7 => [
'items' => [
101 => 1.0298619368222
102 => 0.99313037676311
103 => 0.97297871644681
104 => 0.99951604833939
105 => 1.0157214709009
106 => 1.0264322243557
107 => 1.0296732918794
108 => 0.9482140399493
109 => 0.90431202109618
110 => 0.93245271184336
111 => 0.96678629672165
112 => 0.94439399499011
113 => 0.94527173082376
114 => 0.91334619314797
115 => 0.96961099840361
116 => 0.96141368953936
117 => 1.0039413424279
118 => 0.9937917767603
119 => 1.0284714267769
120 => 1.0193391126859
121 => 1.0572468378969
122 => 1.0723692557942
123 => 1.0977621490603
124 => 1.1164412647144
125 => 1.1274099987011
126 => 1.1267514770552
127 => 1.170215065712
128 => 1.1445861059833
129 => 1.1123900922819
130 => 1.1118077679711
131 => 1.1284825396881
201 => 1.1634282867067
202 => 1.1724892104687
203 => 1.1775530307377
204 => 1.1697976137229
205 => 1.1419792147814
206 => 1.1299673711609
207 => 1.1402018099422
208 => 1.127685970768
209 => 1.1492918205068
210 => 1.1789612669586
211 => 1.172834643592
212 => 1.1933150269518
213 => 1.21451006913
214 => 1.2448199313738
215 => 1.2527440517352
216 => 1.2658423213654
217 => 1.2793247433723
218 => 1.2836549339595
219 => 1.2919226113696
220 => 1.2918790366286
221 => 1.3167942389828
222 => 1.3442764787392
223 => 1.3546503880319
224 => 1.3785046204297
225 => 1.3376550834004
226 => 1.3686399264828
227 => 1.396589030544
228 => 1.3632669564759
301 => 1.4091936725313
302 => 1.4109769028436
303 => 1.4379015634101
304 => 1.4106082617851
305 => 1.3944015864035
306 => 1.441189650974
307 => 1.4638289216095
308 => 1.4570097890496
309 => 1.4051158535667
310 => 1.37491135728
311 => 1.2958603644857
312 => 1.3894996801994
313 => 1.4351086593872
314 => 1.4049977373289
315 => 1.4201839349674
316 => 1.5030349051417
317 => 1.5345791903811
318 => 1.5280181995625
319 => 1.5291268990077
320 => 1.5461476227536
321 => 1.6216268853266
322 => 1.5763979615972
323 => 1.6109737790929
324 => 1.6293126680202
325 => 1.6463468500932
326 => 1.6045162826303
327 => 1.5500953289742
328 => 1.532857928515
329 => 1.4020037995516
330 => 1.3951922738684
331 => 1.3913687580921
401 => 1.3672620319692
402 => 1.3483207486247
403 => 1.3332579368644
404 => 1.2937286206689
405 => 1.3070686044897
406 => 1.2440671248836
407 => 1.2843732389002
408 => 1.183821356225
409 => 1.2675639520322
410 => 1.221986664443
411 => 1.2525905872619
412 => 1.2524838130583
413 => 1.196132288166
414 => 1.1636299046344
415 => 1.1843416884324
416 => 1.2065463647673
417 => 1.2101489987972
418 => 1.2389379412667
419 => 1.2469723162937
420 => 1.2226277848728
421 => 1.1817376419545
422 => 1.1912354895495
423 => 1.1634374310561
424 => 1.1147224027831
425 => 1.1497103865716
426 => 1.16165682255
427 => 1.1669330492515
428 => 1.1190274139039
429 => 1.1039744231957
430 => 1.0959603372495
501 => 1.1755536260043
502 => 1.179913926034
503 => 1.1576060145978
504 => 1.2584398896121
505 => 1.235618078187
506 => 1.2611156330284
507 => 1.190373659432
508 => 1.1930760980901
509 => 1.1595857140991
510 => 1.1783380913058
511 => 1.1650845155135
512 => 1.1768230845421
513 => 1.183859134418
514 => 1.2173440229664
515 => 1.267946295672
516 => 1.2123424972399
517 => 1.188115126002
518 => 1.2031456508581
519 => 1.2431739192493
520 => 1.3038187948712
521 => 1.2679158079112
522 => 1.2838489438518
523 => 1.2873296252389
524 => 1.2608560918554
525 => 1.3047949118085
526 => 1.3283420823797
527 => 1.3524966069854
528 => 1.3734693039061
529 => 1.3428487586885
530 => 1.3756171313541
531 => 1.3492116073821
601 => 1.3255231226263
602 => 1.3255590482795
603 => 1.3106989157587
604 => 1.2819055365024
605 => 1.2765955955978
606 => 1.3042185787549
607 => 1.3263695953407
608 => 1.3281940591629
609 => 1.3404580001051
610 => 1.3477156740261
611 => 1.4188507447808
612 => 1.4474618586985
613 => 1.4824469872163
614 => 1.4960756664279
615 => 1.5370931047026
616 => 1.5039681920223
617 => 1.4968014087984
618 => 1.3973065202457
619 => 1.4135988026724
620 => 1.439684318809
621 => 1.3977366607989
622 => 1.4243427947863
623 => 1.4295954092304
624 => 1.3963112954311
625 => 1.414089778733
626 => 1.3668753980362
627 => 1.2689754401491
628 => 1.3049039024478
629 => 1.3313593440893
630 => 1.2936041669345
701 => 1.3612788606574
702 => 1.3217447016737
703 => 1.3092142712502
704 => 1.260328594747
705 => 1.2834007522743
706 => 1.3146061756913
707 => 1.2953248520394
708 => 1.3353364937224
709 => 1.3920036490606
710 => 1.4323880385421
711 => 1.4354882505115
712 => 1.4095237936189
713 => 1.4511320014923
714 => 1.4514350718619
715 => 1.4045008434062
716 => 1.375753889808
717 => 1.3692225214664
718 => 1.385539160134
719 => 1.4053505716941
720 => 1.4365876459727
721 => 1.4554635557443
722 => 1.5046819174197
723 => 1.517998994888
724 => 1.5326304255401
725 => 1.5521825290574
726 => 1.5756598423864
727 => 1.5242928173868
728 => 1.5263337250501
729 => 1.4785014625954
730 => 1.4273858303222
731 => 1.466176223564
801 => 1.516889502658
802 => 1.5052558204006
803 => 1.5039467934921
804 => 1.5061482136585
805 => 1.497376797157
806 => 1.4577040054045
807 => 1.4377805777513
808 => 1.4634868824325
809 => 1.4771486393145
810 => 1.4983368328082
811 => 1.4957249407316
812 => 1.5503034517254
813 => 1.571511010729
814 => 1.5660852096133
815 => 1.5670836875978
816 => 1.6054789601689
817 => 1.648182399858
818 => 1.6881798063421
819 => 1.7288668861463
820 => 1.6798170233986
821 => 1.6549125280703
822 => 1.680607610183
823 => 1.6669734379295
824 => 1.7453194358562
825 => 1.7507439427677
826 => 1.8290842753869
827 => 1.9034385796359
828 => 1.8567379733329
829 => 1.9007745416351
830 => 1.9484036806081
831 => 2.0402880172363
901 => 2.0093446051898
902 => 1.9856424365074
903 => 1.9632440016305
904 => 2.0098515889579
905 => 2.0698115054802
906 => 2.0827262972102
907 => 2.1036531936429
908 => 2.0816511208631
909 => 2.1081501940776
910 => 2.2017035668075
911 => 2.1764246196774
912 => 2.1405244509591
913 => 2.214375853768
914 => 2.2411023893545
915 => 2.4286832128958
916 => 2.665511751194
917 => 2.5674631812385
918 => 2.5066012698595
919 => 2.5209052626974
920 => 2.607387027732
921 => 2.6351622258671
922 => 2.559659662651
923 => 2.5863284443976
924 => 2.7332760538386
925 => 2.81210873166
926 => 2.7050433665374
927 => 2.4096542704383
928 => 2.1372920335583
929 => 2.2095347634103
930 => 2.201344679798
1001 => 2.3592215540547
1002 => 2.1758217251487
1003 => 2.1789097079124
1004 => 2.3400513087342
1005 => 2.2970614923014
1006 => 2.2274234953999
1007 => 2.1378004680017
1008 => 1.9721240127296
1009 => 1.8253797560654
1010 => 2.113179036568
1011 => 2.1007686082637
1012 => 2.0827964689566
1013 => 2.1227915201959
1014 => 2.3169961362205
1015 => 2.3125190912421
1016 => 2.2840384152982
1017 => 2.3056407569845
1018 => 2.2236365004565
1019 => 2.2447708645659
1020 => 2.1372488899885
1021 => 2.1858533130118
1022 => 2.2272740835345
1023 => 2.2355899164619
1024 => 2.2543259126644
1025 => 2.0942288764815
1026 => 2.1661077455256
1027 => 2.2083298469498
1028 => 2.0175688566622
1029 => 2.2045591155151
1030 => 2.0914419432653
1031 => 2.0530482760408
1101 => 2.1047402909776
1102 => 2.0845958624846
1103 => 2.0672768657869
1104 => 2.0576125680514
1105 => 2.0955694787814
1106 => 2.0937987435276
1107 => 2.0316938704543
1108 => 1.9506805952487
1109 => 1.9778713095778
1110 => 1.9679926681477
1111 => 1.9321911972351
1112 => 1.9563170659441
1113 => 1.8500789499721
1114 => 1.6673017932191
1115 => 1.7880499815859
1116 => 1.7834013076825
1117 => 1.7810572354998
1118 => 1.8717961618227
1119 => 1.86307370776
1120 => 1.8472423682256
1121 => 1.9319004422694
1122 => 1.9009991064316
1123 => 1.9962297422133
1124 => 2.0589547980704
1125 => 2.0430456949621
1126 => 2.1020389131722
1127 => 1.9784977287184
1128 => 2.019533154582
1129 => 2.0279904989798
1130 => 1.9308557747769
1201 => 1.864500809117
1202 => 1.8600756894095
1203 => 1.7450253232329
1204 => 1.8064843001903
1205 => 1.8605656565676
1206 => 1.8346648837457
1207 => 1.8264654728338
1208 => 1.8683544849472
1209 => 1.8716096199435
1210 => 1.7973921970634
1211 => 1.8128243494403
1212 => 1.8771789902338
1213 => 1.8112027776093
1214 => 1.6830217736329
1215 => 1.6512311124057
1216 => 1.6469896521799
1217 => 1.5607708575827
1218 => 1.6533555164019
1219 => 1.6129398317127
1220 => 1.7406124953916
1221 => 1.6676865546205
1222 => 1.664542863069
1223 => 1.6597907122098
1224 => 1.5855786340464
1225 => 1.6018263627406
1226 => 1.655836287519
1227 => 1.6751076371452
1228 => 1.6730974774937
1229 => 1.6555716094225
1230 => 1.6635948620786
1231 => 1.637749169787
]
'min_raw' => 0.90431202109618
'max_raw' => 2.81210873166
'avg_raw' => 1.8582103763781
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.904312'
'max' => '$2.81'
'avg' => '$1.85'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.51515679103655
'max_diff' => 1.7563680924093
'year' => 2033
]
8 => [
'items' => [
101 => 1.6286225179073
102 => 1.5998162940915
103 => 1.5574791030048
104 => 1.5633663490945
105 => 1.4794852954231
106 => 1.4337824454784
107 => 1.4211324989676
108 => 1.4042164618157
109 => 1.4230432103757
110 => 1.4792476709371
111 => 1.4114531670586
112 => 1.2952242453905
113 => 1.3022098016272
114 => 1.3179042724608
115 => 1.2886577298917
116 => 1.2609783318263
117 => 1.2850433227436
118 => 1.235795596414
119 => 1.3238556249039
120 => 1.3214738479187
121 => 1.3542971809441
122 => 1.3748222846875
123 => 1.3275185656402
124 => 1.3156218082227
125 => 1.3223987419252
126 => 1.2103911236292
127 => 1.3451437689187
128 => 1.3463091153908
129 => 1.3363307113936
130 => 1.4080823349891
131 => 1.5595006406682
201 => 1.5025309832845
202 => 1.4804706100285
203 => 1.4385338243428
204 => 1.494412101309
205 => 1.4901215214749
206 => 1.4707178923111
207 => 1.4589825168498
208 => 1.4806053059635
209 => 1.4563032139898
210 => 1.4519378904945
211 => 1.4254887796317
212 => 1.4160476504116
213 => 1.4090578141992
214 => 1.4013626913365
215 => 1.4183362148665
216 => 1.3798719774945
217 => 1.3334878779194
218 => 1.3296315419227
219 => 1.3402792246622
220 => 1.3355684176767
221 => 1.3296089883912
222 => 1.3182308149312
223 => 1.3148551539218
224 => 1.3258244145644
225 => 1.3134407588465
226 => 1.3317135174309
227 => 1.3267443381738
228 => 1.2989869067863
301 => 1.2643908701601
302 => 1.2640828928665
303 => 1.2566292335243
304 => 1.2471358776868
305 => 1.2444950432713
306 => 1.2830166363313
307 => 1.3627551811111
308 => 1.3471005967891
309 => 1.3584126383081
310 => 1.4140566866422
311 => 1.4317442563327
312 => 1.4191900383195
313 => 1.4020050503924
314 => 1.4027611026459
315 => 1.4614874086422
316 => 1.465150096312
317 => 1.4744045264259
318 => 1.4862990844238
319 => 1.42121573298
320 => 1.3996956826458
321 => 1.3894982889105
322 => 1.3580942630938
323 => 1.3919608125594
324 => 1.372228224496
325 => 1.374890824787
326 => 1.3731568028545
327 => 1.3741036960837
328 => 1.3238310103313
329 => 1.3421477347649
330 => 1.3116926278069
331 => 1.2709166583364
401 => 1.2707799629888
402 => 1.2807598237494
403 => 1.274823412057
404 => 1.2588486808318
405 => 1.2611178160038
406 => 1.2412378042014
407 => 1.2635316093758
408 => 1.2641709159371
409 => 1.2555865865932
410 => 1.2899332694167
411 => 1.3040051333937
412 => 1.2983547439253
413 => 1.3036086870058
414 => 1.3477511154439
415 => 1.3549482573485
416 => 1.358144752366
417 => 1.353861872497
418 => 1.3044155295642
419 => 1.3066086851354
420 => 1.2905167647359
421 => 1.276920787723
422 => 1.277464555502
423 => 1.2844546550399
424 => 1.3149808296858
425 => 1.3792213646117
426 => 1.3816592459529
427 => 1.3846140292565
428 => 1.3725954406057
429 => 1.3689705192663
430 => 1.3737527261846
501 => 1.3978780934959
502 => 1.4599350881939
503 => 1.4380000016203
504 => 1.420166434796
505 => 1.435811280796
506 => 1.4334028793827
507 => 1.4130735477246
508 => 1.4125029710939
509 => 1.3734844839614
510 => 1.3590602376765
511 => 1.3470062578447
512 => 1.3338436265455
513 => 1.3260403774959
514 => 1.3380297145493
515 => 1.3407718177871
516 => 1.3145569227821
517 => 1.3109839294603
518 => 1.3323915786092
519 => 1.3229708703764
520 => 1.3326603024162
521 => 1.3349083337638
522 => 1.3345463489403
523 => 1.3247100475837
524 => 1.3309794127457
525 => 1.31615049515
526 => 1.3000262744962
527 => 1.2897400262935
528 => 1.2807639104638
529 => 1.285744381221
530 => 1.2679899123695
531 => 1.262309900457
601 => 1.328855492894
602 => 1.3780134375128
603 => 1.3772986615294
604 => 1.3729476465557
605 => 1.3664829208758
606 => 1.3974051585461
607 => 1.3866324692515
608 => 1.3944705008017
609 => 1.3964656087923
610 => 1.402504199792
611 => 1.40466247704
612 => 1.3981386641767
613 => 1.3762439513911
614 => 1.321684408816
615 => 1.2962867944667
616 => 1.2879051587007
617 => 1.2882098152418
618 => 1.2798060277915
619 => 1.282281319827
620 => 1.2789452222376
621 => 1.272627460492
622 => 1.2853542772362
623 => 1.2868209243075
624 => 1.2838503332052
625 => 1.2845500149468
626 => 1.2599547893763
627 => 1.2618247109584
628 => 1.2514127499711
629 => 1.2494606328041
630 => 1.2231401021014
701 => 1.1765094667397
702 => 1.2023473652754
703 => 1.1711388172026
704 => 1.1593196671608
705 => 1.2152696852039
706 => 1.2096538552043
707 => 1.2000419953876
708 => 1.1858240514316
709 => 1.1805504777151
710 => 1.1485099132239
711 => 1.146616785744
712 => 1.1624969546739
713 => 1.155168803116
714 => 1.1448773029407
715 => 1.1076025325386
716 => 1.0656933493542
717 => 1.0669583241628
718 => 1.0802888555857
719 => 1.1190491735648
720 => 1.10390484677
721 => 1.0929174639193
722 => 1.0908598573909
723 => 1.1166151109852
724 => 1.1530641907135
725 => 1.1701652834198
726 => 1.1532186199158
727 => 1.1337512053554
728 => 1.1349360966764
729 => 1.1428186477942
730 => 1.1436469924634
731 => 1.1309757068672
801 => 1.13454259954
802 => 1.1291241634065
803 => 1.0958712308564
804 => 1.0952697907527
805 => 1.087108984829
806 => 1.0868618788689
807 => 1.0729783121842
808 => 1.0710359052324
809 => 1.0434692409076
810 => 1.0616137028457
811 => 1.0494433504046
812 => 1.0310997585799
813 => 1.0279373164353
814 => 1.0278422496056
815 => 1.0466770168575
816 => 1.0613936076242
817 => 1.0496550588959
818 => 1.0469824188927
819 => 1.0755192219308
820 => 1.0718876536255
821 => 1.0687427388941
822 => 1.1498005754008
823 => 1.0856369727839
824 => 1.0576579797126
825 => 1.0230286627201
826 => 1.034304142949
827 => 1.0366800523045
828 => 0.95340278734112
829 => 0.919617211317
830 => 0.90802327480809
831 => 0.90135080043302
901 => 0.9043915307934
902 => 0.87398054971887
903 => 0.89441723195216
904 => 0.86808389291785
905 => 0.86366902293266
906 => 0.91075629520071
907 => 0.91730821405696
908 => 0.88935569269458
909 => 0.90730573651137
910 => 0.90079680109913
911 => 0.86853530243433
912 => 0.86730315048486
913 => 0.85111546450137
914 => 0.82578487049088
915 => 0.81420810931751
916 => 0.80817883158437
917 => 0.81066662908535
918 => 0.809408722541
919 => 0.80120003145833
920 => 0.80987923510511
921 => 0.78770745628214
922 => 0.77887847530467
923 => 0.77489062942795
924 => 0.75521189956259
925 => 0.78652950994927
926 => 0.7926994737243
927 => 0.79888159423397
928 => 0.85269273255773
929 => 0.85000448015577
930 => 0.87430497263744
1001 => 0.87336070018534
1002 => 0.86642980608769
1003 => 0.83718950396644
1004 => 0.8488441672337
1005 => 0.81297292523389
1006 => 0.83985009874751
1007 => 0.82758447917349
1008 => 0.83570308043143
1009 => 0.82110510334489
1010 => 0.82918422660028
1011 => 0.79416260102593
1012 => 0.76145989983217
1013 => 0.7746204214439
1014 => 0.78892741352405
1015 => 0.81994861770761
1016 => 0.80147264441526
1017 => 0.80811730306509
1018 => 0.78585880889059
1019 => 0.73993317758406
1020 => 0.74019311166975
1021 => 0.7331284538375
1022 => 0.72702355801351
1023 => 0.80359483220286
1024 => 0.7940719838447
1025 => 0.77889857130555
1026 => 0.79920878695665
1027 => 0.80457913034126
1028 => 0.80473201646761
1029 => 0.8195498255241
1030 => 0.82745809287379
1031 => 0.82885195927057
1101 => 0.85216810198092
1102 => 0.85998336547007
1103 => 0.89217332972439
1104 => 0.82678713164116
1105 => 0.82544054592022
1106 => 0.79949459334191
1107 => 0.78303926002746
1108 => 0.8006213040921
1109 => 0.81619659494501
1110 => 0.79997856104466
1111 => 0.80209629389067
1112 => 0.7803249084415
1113 => 0.78810715430068
1114 => 0.79481027281633
1115 => 0.79110920476308
1116 => 0.78556852675365
1117 => 0.81491959871335
1118 => 0.81326349620561
1119 => 0.84059588919271
1120 => 0.86190344408433
1121 => 0.90009039163114
1122 => 0.86024032113544
1123 => 0.8587880261769
1124 => 0.87298444235214
1125 => 0.85998119207272
1126 => 0.86819879739237
1127 => 0.89876640837046
1128 => 0.89941225382262
1129 => 0.88859351037413
1130 => 0.88793518885208
1201 => 0.89001304687545
1202 => 0.90218312621903
1203 => 0.89793052654762
1204 => 0.90285174255002
1205 => 0.90900579851737
1206 => 0.93446158326396
1207 => 0.94059888678621
1208 => 0.92568842105418
1209 => 0.92703466916438
1210 => 0.92145774567917
1211 => 0.9160705074711
1212 => 0.92818023221988
1213 => 0.95031099221552
1214 => 0.95017331790617
1215 => 0.95530722406466
1216 => 0.95850560506982
1217 => 0.94477581243768
1218 => 0.93583822229262
1219 => 0.93926546306787
1220 => 0.94474569570309
1221 => 0.937488297485
1222 => 0.89269227372903
1223 => 0.90628052575551
1224 => 0.90401877618673
1225 => 0.90079776976263
1226 => 0.91446086225011
1227 => 0.91314302364836
1228 => 0.87366864115264
1229 => 0.87619566304569
1230 => 0.87382231772371
1231 => 0.8814910819998
]
'min_raw' => 0.72702355801351
'max_raw' => 1.6286225179073
'avg_raw' => 1.1778230379604
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.727023'
'max' => '$1.62'
'avg' => '$1.17'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.17728846308266
'max_diff' => -1.1834862137527
'year' => 2034
]
9 => [
'items' => [
101 => 0.85956705363507
102 => 0.86631073709948
103 => 0.87054031215025
104 => 0.87303156434828
105 => 0.88203167555519
106 => 0.88097561638395
107 => 0.88196602943433
108 => 0.8953108184129
109 => 0.96280418168798
110 => 0.96647769653533
111 => 0.94838796590204
112 => 0.95561445648588
113 => 0.94174117482468
114 => 0.95105440174675
115 => 0.95742627507652
116 => 0.92863300474007
117 => 0.92692805413753
118 => 0.91299751250791
119 => 0.92048299651346
120 => 0.90857305323528
121 => 0.91149533672361
122 => 0.90332437733014
123 => 0.91803047741661
124 => 0.93447418241021
125 => 0.93862851167318
126 => 0.9277002599335
127 => 0.91978748546709
128 => 0.90589526013403
129 => 0.92899834047135
130 => 0.9357543852156
131 => 0.92896285384444
201 => 0.92738910762785
202 => 0.92440686139112
203 => 0.92802180526497
204 => 0.93571759034498
205 => 0.93208840022008
206 => 0.93448554423568
207 => 0.9253501031724
208 => 0.94478035757033
209 => 0.97564027769963
210 => 0.97573949738895
211 => 0.97211028770136
212 => 0.97062529328961
213 => 0.97434908266794
214 => 0.97636908564784
215 => 0.98841113767115
216 => 1.0013327392687
217 => 1.0616322157879
218 => 1.0447003640736
219 => 1.0982016468733
220 => 1.1405142152958
221 => 1.1532019044614
222 => 1.141529827431
223 => 1.1016002824232
224 => 1.0996411484512
225 => 1.1593127465119
226 => 1.1424527869274
227 => 1.1404473483828
228 => 1.1191128705098
301 => 1.1317241892592
302 => 1.1289659088519
303 => 1.1246118282891
304 => 1.1486733459509
305 => 1.1937143590272
306 => 1.1866942947473
307 => 1.1814541424138
308 => 1.1584933202737
309 => 1.1723208636873
310 => 1.1673971403268
311 => 1.1885525805554
312 => 1.1760205664144
313 => 1.1423250561513
314 => 1.1476911772226
315 => 1.1468800988178
316 => 1.1635720349146
317 => 1.1585615300176
318 => 1.1459017173209
319 => 1.1935604137411
320 => 1.1904657230871
321 => 1.1948532868896
322 => 1.1967848281654
323 => 1.2257938368359
324 => 1.2376778995035
325 => 1.2403757897888
326 => 1.2516647301766
327 => 1.240094910668
328 => 1.286382437844
329 => 1.317160942464
330 => 1.3529117594275
331 => 1.4051533119248
401 => 1.4247966189252
402 => 1.421248231336
403 => 1.4608571802149
404 => 1.5320335808927
405 => 1.4356350169242
406 => 1.5371429388571
407 => 1.5050067027384
408 => 1.4288122650073
409 => 1.4239062414908
410 => 1.475505999358
411 => 1.5899492960146
412 => 1.5612825482072
413 => 1.5899961845444
414 => 1.5565002025425
415 => 1.5548368447098
416 => 1.588369359463
417 => 1.6667199079461
418 => 1.6294984992882
419 => 1.5761324829132
420 => 1.6155371189373
421 => 1.5814011764863
422 => 1.5044833440955
423 => 1.5612606272854
424 => 1.5232952749403
425 => 1.5343755831037
426 => 1.6141731068133
427 => 1.6045716576425
428 => 1.6169968219398
429 => 1.5950667321782
430 => 1.5745805702833
501 => 1.5363416277839
502 => 1.525020962067
503 => 1.5281495867962
504 => 1.5250194116759
505 => 1.5036250747816
506 => 1.4990049697662
507 => 1.4913045923291
508 => 1.4936912612857
509 => 1.4792122988791
510 => 1.5065370924465
511 => 1.5116088149179
512 => 1.5314935209776
513 => 1.5335580171257
514 => 1.5889366404608
515 => 1.5584350253278
516 => 1.5788981421418
517 => 1.5770677283676
518 => 1.4304636295147
519 => 1.4506643808377
520 => 1.4820904105513
521 => 1.4679330267623
522 => 1.4479177984023
523 => 1.4317544283529
524 => 1.4072652699386
525 => 1.4417332901341
526 => 1.4870550714258
527 => 1.5347074522916
528 => 1.5919586655941
529 => 1.5791808612626
530 => 1.533637180682
531 => 1.5356802369232
601 => 1.548309606693
602 => 1.5319534253418
603 => 1.5271296681507
604 => 1.5476468965288
605 => 1.5477881874046
606 => 1.5289684240494
607 => 1.5080537010605
608 => 1.5079660676075
609 => 1.5042444946639
610 => 1.5571622621016
611 => 1.5862616836026
612 => 1.5895978853816
613 => 1.5860371306414
614 => 1.5874075238196
615 => 1.5704752116102
616 => 1.6091774561998
617 => 1.6446944630904
618 => 1.6351751465335
619 => 1.6209043377642
620 => 1.6095369512041
621 => 1.6324973515207
622 => 1.6314749610377
623 => 1.6443842530196
624 => 1.6437986129676
625 => 1.6394577036171
626 => 1.6351753015611
627 => 1.6521545416524
628 => 1.6472647931844
629 => 1.6423674495864
630 => 1.6325450772548
701 => 1.633880100787
702 => 1.6196117560739
703 => 1.6130105669347
704 => 1.5137445207475
705 => 1.4872173895947
706 => 1.4955633650649
707 => 1.4983110768929
708 => 1.4867664354197
709 => 1.5033184857171
710 => 1.5007388662112
711 => 1.5107746566817
712 => 1.5045047304991
713 => 1.5047620504567
714 => 1.5232005664705
715 => 1.5285533461124
716 => 1.5258308791843
717 => 1.5277376017001
718 => 1.5716772172977
719 => 1.5654304090695
720 => 1.5621119167018
721 => 1.5630311617666
722 => 1.5742586756278
723 => 1.5774017665094
724 => 1.564084269583
725 => 1.570364878121
726 => 1.597106912148
727 => 1.6064651105895
728 => 1.6363319878244
729 => 1.6236440075336
730 => 1.6469333444803
731 => 1.7185168263344
801 => 1.7757026648396
802 => 1.7231122044455
803 => 1.8281267142877
804 => 1.9098955736366
805 => 1.9067571486217
806 => 1.8924988566464
807 => 1.7994071842152
808 => 1.7137428393254
809 => 1.785404701326
810 => 1.7855873821496
811 => 1.77943156465
812 => 1.7411983108476
813 => 1.7781011302931
814 => 1.7810303420893
815 => 1.7793907624237
816 => 1.750077416376
817 => 1.7053213549731
818 => 1.7140665822404
819 => 1.7283914429019
820 => 1.7012714931906
821 => 1.6926050260021
822 => 1.7087176373683
823 => 1.7606358283862
824 => 1.7508209951158
825 => 1.7505646901543
826 => 1.7925567090217
827 => 1.7624994859575
828 => 1.7141768875623
829 => 1.7019747941707
830 => 1.6586655829457
831 => 1.688579409401
901 => 1.6896559547605
902 => 1.6732724577229
903 => 1.7155063180523
904 => 1.7151171255942
905 => 1.7552118902965
906 => 1.8318580215012
907 => 1.8091899889769
908 => 1.7828295334261
909 => 1.7856956458406
910 => 1.8171298248597
911 => 1.7981240026523
912 => 1.8049586288314
913 => 1.8171194798344
914 => 1.8244564231815
915 => 1.7846399726021
916 => 1.775356853331
917 => 1.7563668492346
918 => 1.751412711631
919 => 1.7668796737282
920 => 1.7628046756714
921 => 1.6895654752917
922 => 1.6819115713529
923 => 1.6821463056594
924 => 1.6629002002822
925 => 1.6335452699873
926 => 1.7106882741105
927 => 1.7044926112637
928 => 1.6976530789871
929 => 1.6984908826652
930 => 1.7319760461361
1001 => 1.7125529602817
1002 => 1.7641924174067
1003 => 1.753576897446
1004 => 1.7426891294543
1005 => 1.7411841082683
1006 => 1.7369932464922
1007 => 1.722621222111
1008 => 1.7052661390459
1009 => 1.6938068099348
1010 => 1.5624472478756
1011 => 1.5868268185104
1012 => 1.6148732922579
1013 => 1.6245548226063
1014 => 1.6079938950038
1015 => 1.7232751484728
1016 => 1.7443381443594
1017 => 1.6805369559137
1018 => 1.6686023585408
1019 => 1.7240575786896
1020 => 1.690611301815
1021 => 1.7056721582437
1022 => 1.6731188244928
1023 => 1.7392646854468
1024 => 1.7387607648109
1025 => 1.7130285309278
1026 => 1.7347772387991
1027 => 1.7309978655971
1028 => 1.7019462369187
1029 => 1.7401856738943
1030 => 1.740204640178
1031 => 1.7154379245325
1101 => 1.6865158227898
1102 => 1.6813452341077
1103 => 1.6774498901066
1104 => 1.7047141424084
1105 => 1.729159185769
1106 => 1.7746453510229
1107 => 1.7860816536923
1108 => 1.830718304369
1109 => 1.8041393522101
1110 => 1.8159214574471
1111 => 1.8287125993624
1112 => 1.8348451431753
1113 => 1.8248524921227
1114 => 1.894191583802
1115 => 1.9000459276346
1116 => 1.9020088384818
1117 => 1.8786280868995
1118 => 1.8993956666376
1119 => 1.8896792038281
1120 => 1.9149587407473
1121 => 1.9189228949216
1122 => 1.9155653973649
1123 => 1.9168236824697
1124 => 1.8576549999754
1125 => 1.8545867916484
1126 => 1.8127515533997
1127 => 1.8297997222165
1128 => 1.7979289877534
1129 => 1.8080355259566
1130 => 1.8124903916979
1201 => 1.8101634226461
1202 => 1.8307636001025
1203 => 1.8132492409263
1204 => 1.7670259674331
1205 => 1.7207901004399
1206 => 1.7202096467927
1207 => 1.7080365591443
1208 => 1.6992376463866
1209 => 1.700932629142
1210 => 1.7069059694518
1211 => 1.6988904649889
1212 => 1.7006009792625
1213 => 1.7290069133003
1214 => 1.7347035207898
1215 => 1.7153442227324
1216 => 1.6376138474987
1217 => 1.6185386184445
1218 => 1.6322495148105
1219 => 1.6256965894424
1220 => 1.3120640280966
1221 => 1.3857473462072
1222 => 1.3419672206349
1223 => 1.3621431167254
1224 => 1.3174549453246
1225 => 1.3387824830248
1226 => 1.3348440655685
1227 => 1.4533246606426
1228 => 1.4514747491152
1229 => 1.4523602038682
1230 => 1.4100951414673
1231 => 1.4774245334935
]
'min_raw' => 0.85956705363507
'max_raw' => 1.9189228949216
'avg_raw' => 1.3892449742783
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.859567'
'max' => '$1.91'
'avg' => '$1.38'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.13254349562156
'max_diff' => 0.29030037701432
'year' => 2035
]
10 => [
'items' => [
101 => 1.5105934130922
102 => 1.5044547362396
103 => 1.5059997089508
104 => 1.479451959033
105 => 1.4526172441179
106 => 1.4228534154441
107 => 1.4781509301997
108 => 1.4720027905189
109 => 1.4861044109158
110 => 1.5219688019828
111 => 1.527249969803
112 => 1.5343479129097
113 => 1.5318038055719
114 => 1.5924147638729
115 => 1.5850743768987
116 => 1.6027625975331
117 => 1.5663765856796
118 => 1.5252023594753
119 => 1.5330282337899
120 => 1.5322745391617
121 => 1.5226791414943
122 => 1.5140168455194
123 => 1.4995965633079
124 => 1.5452244700252
125 => 1.5433720603388
126 => 1.5733604199706
127 => 1.5680596861143
128 => 1.5326600881123
129 => 1.5339243916803
130 => 1.5424274407784
131 => 1.5718565907931
201 => 1.5805931662068
202 => 1.5765460363829
203 => 1.5861252924842
204 => 1.5936963459289
205 => 1.5870761002309
206 => 1.6808048184529
207 => 1.6418821199037
208 => 1.6608527723542
209 => 1.665377161182
210 => 1.6537880343371
211 => 1.6563013009742
212 => 1.6601082151053
213 => 1.6832230522393
214 => 1.7438830732106
215 => 1.7707489835721
216 => 1.8515764004354
217 => 1.7685181437081
218 => 1.7635898104832
219 => 1.7781492690144
220 => 1.8256035191641
221 => 1.8640607317594
222 => 1.8768192078271
223 => 1.8785054510589
224 => 1.9024412003293
225 => 1.9161607254358
226 => 1.8995347707952
227 => 1.8854460150473
228 => 1.8349818407189
229 => 1.8408232063068
301 => 1.8810644226038
302 => 1.9379075108192
303 => 1.9866847940233
304 => 1.9696046895052
305 => 2.0999138303038
306 => 2.1128334493489
307 => 2.1110483757382
308 => 2.14048119062
309 => 2.0820630469681
310 => 2.0570881587587
311 => 1.8884921639541
312 => 1.935860761553
313 => 2.0047138000231
314 => 1.9956008421959
315 => 1.9455979252119
316 => 1.9866468623269
317 => 1.9730747999977
318 => 1.9623699513333
319 => 2.0114109383019
320 => 1.9574883586373
321 => 2.0041758810423
322 => 1.9442986506373
323 => 1.9696827099839
324 => 1.9552734902099
325 => 1.9645980213312
326 => 1.9100870029276
327 => 1.939499825278
328 => 1.9088633328175
329 => 1.908848807131
330 => 1.9081725048619
331 => 1.9442162023788
401 => 1.9453915860608
402 => 1.9187552391369
403 => 1.9149165254072
404 => 1.9291102620171
405 => 1.9124931137924
406 => 1.9202681728597
407 => 1.9127286124109
408 => 1.9110312985465
409 => 1.8975068129005
410 => 1.8916800926207
411 => 1.8939648997785
412 => 1.8861656750501
413 => 1.881466360041
414 => 1.9072376928266
415 => 1.8934691093318
416 => 1.9051274599367
417 => 1.8918412980213
418 => 1.8457856723173
419 => 1.8192985949455
420 => 1.7323037873493
421 => 1.7569754068668
422 => 1.7733327161316
423 => 1.7679266255172
424 => 1.7795410000363
425 => 1.7802540283038
426 => 1.7764780767531
427 => 1.7721060085867
428 => 1.7699779275938
429 => 1.7858388998105
430 => 1.7950467280381
501 => 1.7749743909489
502 => 1.7702717232108
503 => 1.790565964232
504 => 1.8029454395314
505 => 1.8943485297155
506 => 1.8875770935666
507 => 1.9045720694732
508 => 1.9026586959953
509 => 1.9204721382574
510 => 1.9495895878335
511 => 1.8903856714783
512 => 1.9006614242402
513 => 1.8981420469647
514 => 1.9256479474416
515 => 1.9257338178605
516 => 1.909242656503
517 => 1.9181827826135
518 => 1.9131926494781
519 => 1.9222104945106
520 => 1.8874866569085
521 => 1.9297765429012
522 => 1.9537521831591
523 => 1.9540850849473
524 => 1.9654493481471
525 => 1.9769960977318
526 => 1.9991590780497
527 => 1.9763779842397
528 => 1.9353970141703
529 => 1.9383557078416
530 => 1.9143285800843
531 => 1.9147324804427
601 => 1.9125764286751
602 => 1.9190469023299
603 => 1.8889065620094
604 => 1.895980439639
605 => 1.886076969533
606 => 1.9006398960303
607 => 1.8849725944572
608 => 1.8981408320447
609 => 1.9038238068535
610 => 1.9247941062436
611 => 1.8818752641869
612 => 1.794360839883
613 => 1.8127574328815
614 => 1.7855474268156
615 => 1.7880658164728
616 => 1.7931533643791
617 => 1.7766629570727
618 => 1.7798088071143
619 => 1.7796964152138
620 => 1.7787278825344
621 => 1.7744380907042
622 => 1.7682170438411
623 => 1.7929997798066
624 => 1.7972108495705
625 => 1.8065715360143
626 => 1.834422589457
627 => 1.831639612445
628 => 1.8361787634162
629 => 1.8262698223324
630 => 1.7885254638301
701 => 1.7905751640904
702 => 1.7650153690007
703 => 1.8059179145876
704 => 1.7962316519054
705 => 1.7899868553414
706 => 1.7882829047412
707 => 1.8162029955584
708 => 1.8245571243247
709 => 1.8193513919022
710 => 1.8086742828284
711 => 1.8291774886542
712 => 1.8346632815723
713 => 1.8358913482984
714 => 1.872219097922
715 => 1.8379216659514
716 => 1.8461773987139
717 => 1.9105862690238
718 => 1.8521763114693
719 => 1.8831173686834
720 => 1.8816029649422
721 => 1.8974313628247
722 => 1.8803045743196
723 => 1.8805168813894
724 => 1.8945714264004
725 => 1.8748343526829
726 => 1.8699471756674
727 => 1.863195575623
728 => 1.8779374473175
729 => 1.8867745326809
730 => 1.9579949505854
731 => 2.0040065885974
801 => 2.0020091020442
802 => 2.0202623900019
803 => 2.012039116596
804 => 1.9854839975784
805 => 2.0308103476897
806 => 2.0164671939795
807 => 2.0176496261444
808 => 2.0176056159602
809 => 2.0271425592772
810 => 2.0203847608891
811 => 2.0070644465922
812 => 2.0159070928555
813 => 2.0421665909536
814 => 2.1236768787898
815 => 2.1692911157306
816 => 2.120930844451
817 => 2.1542891120098
818 => 2.1342860382406
819 => 2.1306508846968
820 => 2.1516023418804
821 => 2.1725904718162
822 => 2.1712536186734
823 => 2.1560173140924
824 => 2.1474107122415
825 => 2.2125827848797
826 => 2.2606004578222
827 => 2.2573259744421
828 => 2.2717784791628
829 => 2.3142114800222
830 => 2.3180910218331
831 => 2.3176022887352
901 => 2.3079864395685
902 => 2.349767239536
903 => 2.3846215179321
904 => 2.305760648315
905 => 2.3357898351006
906 => 2.3492709045287
907 => 2.3690651141021
908 => 2.4024612635472
909 => 2.4387383397356
910 => 2.4438683160666
911 => 2.4402283523678
912 => 2.4163026454414
913 => 2.4559974550823
914 => 2.4792497436122
915 => 2.4930959493126
916 => 2.5282076231797
917 => 2.349354159024
918 => 2.2227527875006
919 => 2.2029821551912
920 => 2.243186513434
921 => 2.2537880820789
922 => 2.2495146030513
923 => 2.1070132493086
924 => 2.2022319150551
925 => 2.3046791931855
926 => 2.3086146103681
927 => 2.3599018598718
928 => 2.3766030906455
929 => 2.4178960488694
930 => 2.4153131630897
1001 => 2.4253673413027
1002 => 2.4230560598456
1003 => 2.4995425696972
1004 => 2.58391854842
1005 => 2.5809968765761
1006 => 2.5688668313434
1007 => 2.586882016994
1008 => 2.6739670693154
1009 => 2.6659496732071
1010 => 2.6737378906061
1011 => 2.7764160751915
1012 => 2.909912320954
1013 => 2.8478899119934
1014 => 2.9824606929705
1015 => 3.067165866305
1016 => 3.2136547049086
1017 => 3.1953135808427
1018 => 3.2523406107264
1019 => 3.1624791408566
1020 => 2.9561390420363
1021 => 2.9234849315598
1022 => 2.9888592876675
1023 => 3.1495757630219
1024 => 2.9837977539172
1025 => 3.0173344292494
1026 => 3.0076758644976
1027 => 3.0071612006282
1028 => 3.0268038272326
1029 => 2.9983111728524
1030 => 2.8822269731766
1031 => 2.9354276777996
1101 => 2.914884330837
1102 => 2.9376787058999
1103 => 3.0606905469993
1104 => 3.0063040798132
1105 => 2.9490123546305
1106 => 3.0208688920612
1107 => 3.1123669567957
1108 => 3.1066411723425
1109 => 3.0955307573109
1110 => 3.1581595851213
1111 => 3.2616040601393
1112 => 3.2895646860631
1113 => 3.3102046484902
1114 => 3.3130505505939
1115 => 3.3423651109801
1116 => 3.1847333315632
1117 => 3.434899013769
1118 => 3.4780957163984
1119 => 3.469976526624
1120 => 3.5179878436015
1121 => 3.5038616962171
1122 => 3.4833951249819
1123 => 3.5595032746912
1124 => 3.4722514226604
1125 => 3.3484084034055
1126 => 3.2804656737051
1127 => 3.3699381409583
1128 => 3.424575854551
1129 => 3.4606879076245
1130 => 3.4716153930651
1201 => 3.1969698378792
1202 => 3.0489511161749
1203 => 3.1438294197493
1204 => 3.2595874982608
1205 => 3.1840902895923
1206 => 3.187049637237
1207 => 3.0794104579932
1208 => 3.2691111771959
1209 => 3.2414733780423
1210 => 3.3848583289418
1211 => 3.3506383596735
1212 => 3.4675632209603
1213 => 3.4367729864047
1214 => 3.5645815285863
1215 => 3.6155678163407
1216 => 3.7011817288624
1217 => 3.7641596714247
1218 => 3.8011415238733
1219 => 3.7989212721677
1220 => 3.945461795855
1221 => 3.8590519687726
1222 => 3.7505008607245
1223 => 3.7485375136542
1224 => 3.8047576706934
1225 => 3.9225796966007
1226 => 3.9531292336777
1227 => 3.9702022572593
1228 => 3.9440543273279
1229 => 3.8502626530781
1230 => 3.8097638836716
1231 => 3.8442700085682
]
'min_raw' => 1.4228534154441
'max_raw' => 3.9702022572593
'avg_raw' => 2.6965278363517
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$1.42'
'max' => '$3.97'
'avg' => '$2.69'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.56328636180899
'max_diff' => 2.0512793623377
'year' => 2036
]
11 => [
'items' => [
101 => 3.8020719829647
102 => 3.8749176138312
103 => 3.9749502239979
104 => 3.9542938855703
105 => 4.0233449279625
106 => 4.094805492457
107 => 4.1969973091788
108 => 4.2237140342219
109 => 4.2678757647721
110 => 4.3133326918811
111 => 4.3279322317699
112 => 4.3558072833889
113 => 4.3556603681074
114 => 4.4396637123686
115 => 4.5323220024557
116 => 4.5672983619192
117 => 4.6477245718979
118 => 4.5099975057799
119 => 4.6144650675249
120 => 4.7086974232116
121 => 4.5963497240179
122 => 4.7511948536998
123 => 4.7572071391987
124 => 4.8479855121185
125 => 4.7559642401324
126 => 4.7013223025693
127 => 4.8590715289072
128 => 4.9354014104781
129 => 4.9124102289557
130 => 4.7374462023562
131 => 4.6356096343152
201 => 4.3690836929449
202 => 4.6847951835619
203 => 4.8385690412109
204 => 4.7370479652139
205 => 4.7882492908185
206 => 5.0675871212314
207 => 5.1739408812675
208 => 5.1518200426489
209 => 5.1555581002354
210 => 5.2129446586936
211 => 5.4674282622522
212 => 5.3149357881161
213 => 5.4315105708091
214 => 5.4933414152079
215 => 5.5507733493558
216 => 5.4097386706377
217 => 5.2262546258363
218 => 5.1681375267115
219 => 4.7269536949678
220 => 4.7039881605612
221 => 4.6910969101719
222 => 4.609819399971
223 => 4.5459575407368
224 => 4.4951722192349
225 => 4.3618963698332
226 => 4.4068730566527
227 => 4.194459169538
228 => 4.330354047028
301 => 3.9913363542803
302 => 4.2736803627657
303 => 4.1200133555539
304 => 4.2231966180358
305 => 4.2228366213534
306 => 4.0328435208412
307 => 3.9232594655206
308 => 3.9930906906461
309 => 4.0679553071902
310 => 4.0801018393497
311 => 4.1771657688656
312 => 4.2042542252113
313 => 4.1221749378447
314 => 3.9843109661369
315 => 4.0163336224222
316 => 3.922610527413
317 => 3.7583644084162
318 => 3.8763288385419
319 => 3.9166070815166
320 => 3.9343962482151
321 => 3.772879053976
322 => 3.7221268448372
323 => 3.6951067945439
324 => 3.9634611246067
325 => 3.9781621805832
326 => 3.9029494996877
327 => 4.2429179492946
328 => 4.1659726187068
329 => 4.2519394050371
330 => 4.0134279020099
331 => 4.0225393626239
401 => 3.9096241947745
402 => 3.9728491437759
403 => 3.9281637876569
404 => 3.9677411926977
405 => 3.9914637260954
406 => 4.1043603656769
407 => 4.2749694610414
408 => 4.0874973724946
409 => 4.005813098865
410 => 4.056489562815
411 => 4.1914476643802
412 => 4.3959160966296
413 => 4.2748666694273
414 => 4.3285863496671
415 => 4.3403217099773
416 => 4.2510643438516
417 => 4.3992071430341
418 => 4.4785980726259
419 => 4.560036738749
420 => 4.630747650684
421 => 4.5275083446247
422 => 4.6379892008814
423 => 4.548961133235
424 => 4.4690937530037
425 => 4.4692148788517
426 => 4.4191129045564
427 => 4.3220340161042
428 => 4.3041311796163
429 => 4.3972639959056
430 => 4.4719476948591
501 => 4.4780990020157
502 => 4.5194477351434
503 => 4.5439174894825
504 => 4.7837543470239
505 => 4.8802187151616
506 => 4.9981735185434
507 => 5.044123562029
508 => 5.1824167189185
509 => 5.0707337631092
510 => 5.0465704531011
511 => 4.7111164898341
512 => 4.7660470575266
513 => 4.8539961964137
514 => 4.7125667387407
515 => 4.8022711770604
516 => 4.8199807333846
517 => 4.7077610198876
518 => 4.7677024175939
519 => 4.6085158366718
520 => 4.2784392934988
521 => 4.399574612584
522 => 4.4887709811382
523 => 4.3614767653784
524 => 4.5896467201614
525 => 4.4563545429611
526 => 4.4141073219415
527 => 4.2492858505221
528 => 4.3270752404718
529 => 4.4322865042156
530 => 4.3672781753441
531 => 4.502180218802
601 => 4.6932374893992
602 => 4.8293962780839
603 => 4.8398488591887
604 => 4.7523078799948
605 => 4.8925928578321
606 => 4.8936146807431
607 => 4.7353726526616
608 => 4.638450291557
609 => 4.6164293271877
610 => 4.6714420136467
611 => 4.7382375709101
612 => 4.8435555477434
613 => 4.9071969954123
614 => 5.0731401381172
615 => 5.1180395945703
616 => 5.1673704845477
617 => 5.2332917666406
618 => 5.3124471676629
619 => 5.1392596565456
620 => 5.1461407192242
621 => 4.9848709068161
622 => 4.8125309838274
623 => 4.9433155029011
624 => 5.1142988640545
625 => 5.0750750920861
626 => 5.0706616164707
627 => 5.0780838582598
628 => 5.0485104151242
629 => 4.9147508278651
630 => 4.8475776005229
701 => 4.9342482015123
702 => 4.9803097686735
703 => 5.0517472423498
704 => 5.0429410658571
705 => 5.2269563262226
706 => 5.298459092068
707 => 5.2801656247889
708 => 5.2835320630251
709 => 5.412984405171
710 => 5.5569620335419
711 => 5.6918160820326
712 => 5.8289954122735
713 => 5.6636203754677
714 => 5.579653130692
715 => 5.6662858940083
716 => 5.6203173303482
717 => 5.8844663323008
718 => 5.90275543608
719 => 6.1668853370532
720 => 6.4175760650802
721 => 6.2601217103973
722 => 6.4085940749634
723 => 6.5691790423711
724 => 6.8789734984725
725 => 6.7746456243579
726 => 6.6947321078124
727 => 6.6192142208161
728 => 6.7763549555284
729 => 6.9785140003511
730 => 7.0220571223507
731 => 7.0926136147428
801 => 7.0184320902299
802 => 7.1077755656788
803 => 7.4231972935258
804 => 7.337967558357
805 => 7.2169276330535
806 => 7.465922793764
807 => 7.5560331744809
808 => 8.1884750175252
809 => 8.986958969238
810 => 8.6563813701006
811 => 8.4511811866435
812 => 8.4994080971694
813 => 8.7909874059473
814 => 8.8846334256621
815 => 8.6300712623585
816 => 8.7199869219723
817 => 9.2154310467571
818 => 9.4812209239535
819 => 9.1202425703778
820 => 8.1243176094716
821 => 7.2060293121065
822 => 7.4496007196286
823 => 7.4219872809164
824 => 7.9542801850843
825 => 7.3359348573605
826 => 7.3463462068444
827 => 7.8896463645626
828 => 7.7447031970061
829 => 7.5099138284829
830 => 7.2077435343301
831 => 6.6491537982195
901 => 6.1543952915192
902 => 7.1247306592378
903 => 7.0828880337414
904 => 7.0222937112929
905 => 7.1571398189115
906 => 7.8119142407717
907 => 7.7968195710498
908 => 7.7007949836476
909 => 7.7736287868703
910 => 7.4971457106317
911 => 7.568401694781
912 => 7.2058838505485
913 => 7.3697570562241
914 => 7.5094100759473
915 => 7.537447487255
916 => 7.6006172065571
917 => 7.0608388714484
918 => 7.3031834968529
919 => 7.4455382596574
920 => 6.8023742623959
921 => 7.4328249753615
922 => 7.0514425315325
923 => 6.9219956019249
924 => 7.0962788393054
925 => 7.0283604922022
926 => 6.9699682856621
927 => 6.9373844311072
928 => 7.0653588057005
929 => 7.0593886481632
930 => 6.8499977325729
1001 => 6.576855819051
1002 => 6.6685312108066
1003 => 6.6352246815204
1004 => 6.5145175227595
1005 => 6.5958595735264
1006 => 6.2376703482185
1007 => 5.621424403132
1008 => 6.0285353505799
1009 => 6.0128620219547
1010 => 6.004958818933
1011 => 6.3108914442199
1012 => 6.2814830813651
1013 => 6.2281066148162
1014 => 6.513537222093
1015 => 6.4093512108535
1016 => 6.730427948182
1017 => 6.9419098533279
1018 => 6.88827120146
1019 => 7.0871709554305
1020 => 6.6706432266744
1021 => 6.8089970299753
1022 => 6.8375115570855
1023 => 6.5100150527054
1024 => 6.2862946532276
1025 => 6.2713750531817
1026 => 5.8834747110572
1027 => 6.0906879427979
1028 => 6.2730270116636
1029 => 6.1857007477603
1030 => 6.1580558614064
1031 => 6.299287590344
1101 => 6.3102625052504
1102 => 6.060033282315
1103 => 6.1120638614922
1104 => 6.3290400260252
1105 => 6.1065966188494
1106 => 5.6744254146312
1107 => 5.5672409807507
1108 => 5.55294060147
1109 => 5.2622479158815
1110 => 5.5744035571449
1111 => 5.4381392544824
1112 => 5.8685965538964
1113 => 5.6227216530599
1114 => 5.6121224775088
1115 => 5.5961002691023
1116 => 5.3458890662526
1117 => 5.4006694179252
1118 => 5.582767650168
1119 => 5.6477423509157
1120 => 5.6409649573057
1121 => 5.5818752694867
1122 => 5.6089262259821
1123 => 5.5217856699325
1124 => 5.4910145259175
1125 => 5.3938923311364
1126 => 5.2511495354992
1127 => 5.270998796725
1128 => 4.9881879678836
1129 => 4.834097618424
1130 => 4.7914474405718
1201 => 4.7344138402741
1202 => 4.797889537486
1203 => 4.9873868003388
1204 => 4.7588128972514
1205 => 4.3669389730031
1206 => 4.3904912635711
1207 => 4.4434062677395
1208 => 4.3447995075394
1209 => 4.251476484448
1210 => 4.3326132814898
1211 => 4.1665711338031
1212 => 4.4634716680117
1213 => 4.4554413406155
1214 => 4.5661074995626
1215 => 4.6353093198504
1216 => 4.4758215284424
1217 => 4.4357107802041
1218 => 4.4585596853325
1219 => 4.0809181801254
1220 => 4.5352461318481
1221 => 4.539175178841
1222 => 4.5055322930944
1223 => 4.747447901585
1224 => 5.2579652908705
1225 => 5.0658881135069
1226 => 4.9915100248683
1227 => 4.8501172239962
1228 => 5.0385147360845
1229 => 5.0240487466151
1230 => 4.9586280561711
1231 => 4.9190614184655
]
'min_raw' => 3.6951067945439
'max_raw' => 9.4812209239535
'avg_raw' => 6.5881638592487
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$3.69'
'max' => '$9.48'
'avg' => '$6.58'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 2.2722533790999
'max_diff' => 5.5110186666942
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.11598517997678
]
1 => [
'year' => 2028
'avg' => 0.19906423957848
]
2 => [
'year' => 2029
'avg' => 0.54380762468994
]
3 => [
'year' => 2030
'avg' => 0.41954677258568
]
4 => [
'year' => 2031
'avg' => 0.41204692453826
]
5 => [
'year' => 2032
'avg' => 0.72244793465514
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.11598517997678
'min' => '$0.115985'
'max_raw' => 0.72244793465514
'max' => '$0.722447'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.72244793465514
]
1 => [
'year' => 2033
'avg' => 1.8582103763781
]
2 => [
'year' => 2034
'avg' => 1.1778230379604
]
3 => [
'year' => 2035
'avg' => 1.3892449742783
]
4 => [
'year' => 2036
'avg' => 2.6965278363517
]
5 => [
'year' => 2037
'avg' => 6.5881638592487
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.72244793465514
'min' => '$0.722447'
'max_raw' => 6.5881638592487
'max' => '$6.58'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 6.5881638592487
]
]
]
]
'prediction_2025_max_price' => '$0.198313'
'last_price' => 0.19229
'sma_50day_nextmonth' => '$0.167117'
'sma_200day_nextmonth' => '—'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'decrease'
'sma_200day_direction_label' => 'diminuir'
'sma_200day_date_nextmonth' => '4 de fev. de 2026'
'sma_50day_date_nextmonth' => '4 de fev. de 2026'
'daily_sma3' => '$0.194431'
'daily_sma3_action' => 'SELL'
'daily_sma5' => '$0.189968'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.17430096'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.151551'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.175272'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.336366'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '—'
'daily_sma200_action' => '—'
'daily_ema3' => '$0.1916048'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.187500062'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.176465'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.16723'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.215125'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.361100055'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.188621'
'daily_ema200_action' => 'BUY'
'weekly_sma21' => '—'
'weekly_sma21_action' => '—'
'weekly_sma50' => '—'
'weekly_sma50_action' => '—'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.185854'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.186143'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.252479'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.291842'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.122573'
'weekly_ema50_action' => 'BUY'
'weekly_ema100' => '$0.061286'
'weekly_ema100_action' => 'BUY'
'weekly_ema200' => '$0.030643'
'weekly_ema200_action' => 'BUY'
'rsi_14' => '62.10'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 92.68
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0.05
'momentum_10_action' => 'SELL'
'vwma_10' => '0.176175'
'vwma_10_action' => 'BUY'
'hma_9' => '0.203710'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 90.22
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 121.57
'cci_20_action' => 'SELL'
'adx_14' => 24.39
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.032774'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0.01
'macd_12_26_action' => 'NEUTRAL'
'williams_percent_r_14' => -9.78
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 80.28
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '-0.089061'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 9
'buy_signals' => 20
'sell_pct' => 31.03
'buy_pct' => 68.97
'overall_action' => 'bullish'
'overall_action_label' => 'Altista'
'overall_action_dir' => 1
'last_updated' => 1767677044
'last_updated_date' => '6 de janeiro de 2026'
]
Previsão de preço de Plasma para 2026
A previsão de preço para Plasma em 2026 sugere que o preço médio poderia variar entre $0.066436 na extremidade inferior e $0.198313 na extremidade superior. No mercado de criptomoedas, comparado ao preço médio de hoje, Plasma poderia potencialmente ganhar 3.13% até 2026 se XPL atingir a meta de preço prevista.
Previsão de preço de Plasma 2027-2032
A previsão de preço de XPL para 2027-2032 está atualmente dentro de uma faixa de preço entre $0.115985 na extremidade inferior e $0.722447 na extremidade superior. Considerando a volatilidade de preços no mercado, se Plasma atingir a meta de preço superior, poderia ganhar 275.71% até 2032 em comparação com o preço de hoje.
| Previsão de Preço de Plasma | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.063956 | $0.115985 | $0.168013 |
| 2028 | $0.115422 | $0.199064 | $0.2827059 |
| 2029 | $0.25355 | $0.5438076 | $0.834065 |
| 2030 | $0.215633 | $0.419546 | $0.623459 |
| 2031 | $0.254945 | $0.412046 | $0.569148 |
| 2032 | $0.389155 | $0.722447 | $1.05 |
Previsão de preço de Plasma 2032-2037
A previsão de preço de Plasma para 2032-2037 é atualmente estimada entre $0.722447 na extremidade inferior e $6.58 na extremidade superior. Comparado ao preço atual, Plasma poderia potencialmente ganhar 3326.16% até 2037 se atingir a meta de preço superior. Por favor, note que esta informação é apenas para fins gerais e não deve ser considerada como aconselhamento de investimento a longo prazo.
| Previsão de Preço de Plasma | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.389155 | $0.722447 | $1.05 |
| 2033 | $0.904312 | $1.85 | $2.81 |
| 2034 | $0.727023 | $1.17 | $1.62 |
| 2035 | $0.859567 | $1.38 | $1.91 |
| 2036 | $1.42 | $2.69 | $3.97 |
| 2037 | $3.69 | $6.58 | $9.48 |
Plasma Histograma de preços potenciais
Previsão de preço de Plasma baseada na análise técnica
Em 6 de janeiro de 2026, o sentimento geral de previsão de preço para Plasma é Altista, com 20 indicadores técnicos mostrando sinais de alta e 9 indicando sinais de baixa. A previsão de preço de XPL foi atualizada pela última vez em 6 de janeiro de 2026.
Médias Móveis Simples de 50 e 200 dias e Índice de Força Relativa de 14 dias - RSI (14) de Plasma
De acordo com nossos indicadores técnicos, o SMA de 200 dias de Plasma está projetado para diminuir no próximo mês, alcançando — até 4 de fev. de 2026. O SMA de 50 dias de curto prazo para Plasma é esperado para alcançar $0.167117 até 4 de fev. de 2026.
O oscilador de momentum Índice de Força Relativa (RSI) é uma ferramenta comumente usada para identificar se uma criptomoeda está sobrevendida (abaixo de 30) ou sobrecomprada (acima de 70). No momento, o RSI está em 62.10, sugerindo que o mercado de XPL está em um estado NEUTRAL.
Médias Móveis e Osciladores Populares de XPL para Sábado, 19 de Outubro de 2024
Médias móveis (MA) são indicadores amplamente utilizados nos mercados financeiros, projetados para suavizar movimentos de preços ao longo de um período definido. Como indicadores atrasados, eles se baseiam em dados históricos de preços. A tabela abaixo destaca dois tipos: a média móvel simples (SMA) e a média móvel exponencial (EMA).
Média Móvel Simples Diária (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 3 | $0.194431 | SELL |
| SMA 5 | $0.189968 | BUY |
| SMA 10 | $0.17430096 | BUY |
| SMA 21 | $0.151551 | BUY |
| SMA 50 | $0.175272 | BUY |
| SMA 100 | $0.336366 | SELL |
| SMA 200 | — | — |
Média Móvel Exponencial Diária (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 3 | $0.1916048 | BUY |
| EMA 5 | $0.187500062 | BUY |
| EMA 10 | $0.176465 | BUY |
| EMA 21 | $0.16723 | BUY |
| EMA 50 | $0.215125 | SELL |
| EMA 100 | $0.361100055 | SELL |
| EMA 200 | $0.188621 | BUY |
Média Móvel Simples Semanal (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 21 | — | — |
| SMA 50 | — | — |
| SMA 100 | — | — |
| SMA 200 | — | — |
Média Móvel Exponencial Semanal (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 21 | $0.291842 | SELL |
| EMA 50 | $0.122573 | BUY |
| EMA 100 | $0.061286 | BUY |
| EMA 200 | $0.030643 | BUY |
Osciladores de Plasma
Um oscilador é uma ferramenta de análise técnica que define limites altos e baixos entre dois extremos, criando um indicador de tendência que flutua dentro desses limites. Os traders usam esse indicador para identificar condições de sobrecompra ou sobrevenda de curto prazo.
| Período | Valor | Ação |
|---|---|---|
| RSI (14) | 62.10 | NEUTRAL |
| Stoch RSI (14) | 92.68 | SELL |
| Estocástico Rápido (14) | 90.22 | SELL |
| Índice de Canal de Commodities (20) | 121.57 | SELL |
| Índice Direcional Médio (14) | 24.39 | NEUTRAL |
| Oscilador Impressionante (5, 34) | 0.032774 | BUY |
| Momentum (10) | 0.05 | SELL |
| MACD (12, 26) | 0.01 | NEUTRAL |
| Williams Percent Range (14) | -9.78 | SELL |
| Oscilador Ultimate (7, 14, 28) | 80.28 | SELL |
| VWMA (10) | 0.176175 | BUY |
| Média Móvel de Hull (9) | 0.203710 | BUY |
| Nuvem Ichimoku B/L (9, 26, 52, 26) | -0.089061 | SELL |
Previsão do preço de Plasma com base nos fluxos financeiros mundiais
Definições dos fluxos financeiros mundiais, usadas na previsão do preço do Plasma
M0: o total de todas as moedas físicas, mais as contas no Banco Central que podem ser trocadas por moedas físicas.
M1: o valor de M0, mais o valor em contas de demanda, incluindo contas 'correntes'.
M2: o valor de M1, mais a maioria das contas de poupança, do mercado de moedas e de certificados de depósito (CD) de menos de US$ 100.000.
Previsões de preço de Plasma por empresas de Internet ou nichos tecnológicos
| Comparação | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.270199 | $0.379675 | $0.5335075 | $0.749667 | $1.05 | $1.48 |
| Amazon.com stock | $0.401224 | $0.837178 | $1.74 | $3.64 | $7.60 | $15.86 |
| Apple stock | $0.272748 | $0.386873 | $0.54875 | $0.77836 | $1.10 | $1.56 |
| Netflix stock | $0.3034034 | $0.478723 | $0.75535 | $1.19 | $1.88 | $2.96 |
| Google stock | $0.249014 | $0.322472 | $0.41760098 | $0.540791 | $0.700322 | $0.906914 |
| Tesla stock | $0.4359068 | $0.988167 | $2.24 | $5.07 | $11.51 | $26.09 |
| Kodak stock | $0.144197 | $0.108132 | $0.081087 | $0.0608072 | $0.045598 | $0.034194 |
| Nokia stock | $0.127384 | $0.084386 | $0.0559026 | $0.037033 | $0.024532 | $0.016252 |
Este cálculo mostra quanto a criptomoeda pode custar, se assumirmos que sua capitalização se comportará da mesma forma que a de algumas empresas de Internet ou nichos tecnológicos. Se você extrapolar os dados, poderá obter uma imagem em potencial do preço futuro para 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Visão geral da previsão para Plasma
Você pode fazer perguntas como: 'Devo investir em Plasma agora?', 'Devo comprar XPL hoje?', 'Plasma será um bom ou mau investimento no curto ou no longo prazo?'.
Atualizamos a previsão para Plasma regularmente com novos valores. Veja nossas previsões semelhantes. Fazemos previsões de preços futuros para uma enorme quantidade de moedas digitais, como Plasma, com métodos de análise técnica.
Se você estiver tentando encontrar criptomoedas com bom retorno, você deve explorar o máximo de fontes de informações disponíveis sobre Plasma para poder tomar sozinho uma decisão de tão grande responsabilidade sobre o seu investimento.
O preço de Plasma é de $0.1922 USD hoje, mas o preço pode tanto subir quanto descer e seu investimento pode ser perdido, porque criptomoedas são ativos de alto risco
Previsão de curto prazo para Plasma
com base no histórico de preços de 4 horas
Previsão de longo prazo para Plasma
com base no histórico de preços de 1 mês
Previsão do preço de Plasma com base no padrão de crescimento do Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se Plasma tiver 1% da média anterior do crescimento anual do Bitcoin | $0.197288 | $0.202416 | $0.207677 | $0.213076 |
| Se Plasma tiver 2% da média anterior do crescimento anual do Bitcoin | $0.202286 | $0.2128026 | $0.223865 | $0.2355034 |
| Se Plasma tiver 5% da média anterior do crescimento anual do Bitcoin | $0.217281 | $0.24552 | $0.277429 | $0.313486 |
| Se Plasma tiver 10% da média anterior do crescimento anual do Bitcoin | $0.242272 | $0.305246 | $0.38459 | $0.484557 |
| Se Plasma tiver 20% da média anterior do crescimento anual do Bitcoin | $0.292254 | $0.444187 | $0.6751046 | $1.02 |
| Se Plasma tiver 50% da média anterior do crescimento anual do Bitcoin | $0.4422017 | $1.01 | $2.33 | $5.37 |
| Se Plasma tiver 100% da média anterior do crescimento anual do Bitcoin | $0.692113 | $2.49 | $8.96 | $32.27 |
Perguntas Frequentes sobre Plasma
XPL é um bom investimento?
A decisão de adquirir Plasma depende inteiramente da sua tolerância individual ao risco. Como você pode perceber, o valor de Plasma experimentou uma queda de -0.1621% nas últimas 24 horas, e Plasma registrou um declínio de durante os últimos 30 dias. Consequentemente, a decisão de investir ou não em Plasma dependerá de quão alinhado esse investimento está com suas aspirações de negociação.
Plasma pode subir?
Parece que o valor médio de Plasma pode potencialmente subir para $0.198313 até o final deste ano. Observando as perspectivas de Plasma em um horizonte de cinco anos mais longo, a moeda digital poderia potencialmente crescer até $0.623459. No entanto, dada a imprevisibilidade do mercado, é vital conduzir uma pesquisa aprofundada antes de investir quaisquer fundos em um projeto, rede ou ativo específico.
Qual será o preço de Plasma na próxima semana?
Com base na nossa nova previsão experimental de Plasma, o preço de Plasma aumentará 0.86% na próxima semana e atingirá $0.193935 até 13 de janeiro de 2026.
Qual será o preço de Plasma no próximo mês?
Com base na nossa nova previsão experimental de Plasma, o preço de Plasma diminuirá -11.62% no próximo mês e atingirá $0.169949 até 5 de fevereiro de 2026.
Até onde o preço de Plasma pode subir este ano em 2026?
De acordo com nossa previsão mais recente sobre o valor de Plasma em 2026, espera-se que XPL fluctue dentro do intervalo de $0.066436 e $0.198313. No entanto, é crucial lembrar que o mercado de criptomoedas é excepcionalmente instável, e essa previsão de preço de Plasma não considera flutuações repentinas e extremas de preço.
Onde estará Plasma em 5 anos?
O futuro de Plasma parece seguir uma tendência de alta, com um preço máximo de $0.623459 projetada após um período de cinco anos. Com base na previsão de Plasma para 2030, o valor de Plasma pode potencialmente atingir seu pico mais alto de aproximadamente $0.623459, enquanto seu pico mais baixo está previsto para cerca de $0.215633.
Quanto será Plasma em 2026?
Com base na nossa nova simulação experimental de previsão de preços de Plasma, espera-se que o valor de XPL em 2026 aumente 3.13% para $0.198313 se o melhor cenário ocorrer. O preço ficará entre $0.198313 e $0.066436 durante 2026.
Quanto será Plasma em 2027?
De acordo com nossa última simulação experimental para previsão de preços de Plasma, o valor de XPL pode diminuir -12.62% para $0.168013 em 2027, assumindo as condições mais favoráveis. O preço está projetado para flutuar entre $0.168013 e $0.063956 ao longo do ano.
Quanto será Plasma em 2028?
Nosso novo modelo experimental de previsão de preços de Plasma sugere que o valor de XPL em 2028 pode aumentar 47.02%, alcançando $0.2827059 no melhor cenário. O preço é esperado para variar entre $0.2827059 e $0.115422 durante o ano.
Quanto será Plasma em 2029?
Com base no nosso modelo de previsão experimental, o valor de Plasma pode experimentar um 333.75% crescimento em 2029, potencialmente alcançando $0.834065 sob condições ótimas. A faixa de preço prevista para 2029 está entre $0.834065 e $0.25355.
Quanto será Plasma em 2030?
Usando nossa nova simulação experimental para previsões de preços de Plasma, espera-se que o valor de XPL em 2030 aumente 224.23%, alcançando $0.623459 no melhor cenário. O preço está previsto para variar entre $0.623459 e $0.215633 ao longo de 2030.
Quanto será Plasma em 2031?
Nossa simulação experimental indica que o preço de Plasma poderia aumentar 195.98% em 2031, potencialmente atingindo $0.569148 sob condições ideais. O preço provavelmente oscilará entre $0.569148 e $0.254945 durante o ano.
Quanto será Plasma em 2032?
Com base nos achados da nossa mais recente previsão experimental de preços de Plasma, XPL poderia ver um 449.04% aumento em valor, atingindo $1.05 se o cenário mais positivo se desenrolar em 2032. O preço é esperado para permanecer dentro de uma faixa de $1.05 e $0.389155 ao longo do ano.
Quanto será Plasma em 2033?
De acordo com nossa previsão experimental de preços de Plasma, espera-se que o valor de XPL seja aumentar 1362.43% em 2033, com o preço potencial mais alto sendo $2.81. Ao longo do ano, o preço de XPL poderia variar entre $2.81 e $0.904312.
Quanto será Plasma em 2034?
Os resultados da nossa nova simulação de previsão de preços de Plasma sugerem que XPL pode aumentar 746.96% em 2034, atingindo potencialmente $1.62 nas melhores circunstâncias. A faixa de preço prevista para o ano é entre $1.62 e $0.727023.
Quanto será Plasma em 2035?
Com base em nossa previsão experimental para o preço de Plasma, XPL poderia aumentar 897.93%, com o valor potencialmente atingindo $1.91 em 2035. A faixa de preço esperada para o ano está entre $1.91 e $0.859567.
Quanto será Plasma em 2036?
Nossa recente simulação de previsão de preços de Plasma sugere que o valor de XPL pode aumentar 1964.7% em 2036, possivelmente atingindo $3.97 se as condições forem ideais. A faixa de preço esperada para 2036 está entre $3.97 e $1.42.
Quanto será Plasma em 2037?
De acordo com a simulação experimental, o valor de Plasma poderia aumentar 4830.69% em 2037, com um pico de $9.48 sob condições favoráveis. O preço é esperado para cair entre $9.48 e $3.69 ao longo do ano.
Previsões relacionadas
Como ler e prever os movimentos de preço de Plasma?
Traders de Plasma utilizam indicadores e padrões de gráfico para prever a direção do mercado. Eles também identificam níveis-chave de suporte e resistência para avaliar quando uma tendência de baixa pode desacelerar ou uma tendência de alta pode estagnar.
Indicadores de Previsão de Preço de Plasma
Médias móveis são ferramentas populares para a previsão de preço de Plasma. Uma média móvel simples (SMA) calcula o preço médio de fechamento de XPL em um período específico, como uma SMA de 12 dias. Uma média móvel exponencial (EMA) dá mais peso aos preços recentes, reagindo mais rapidamente às mudanças de preço.
Médias móveis comumente usadas no mercado de criptomoedas incluem as de 50 dias, 100 dias e 200 dias, que ajudam a identificar níveis-chave de resistência e suporte. Um movimento de preço de XPL acima dessas médias é visto como altista, enquanto uma queda abaixo indica fraqueza.
Traders também usam RSI e níveis de retração de Fibonacci para avaliar a direção futura de XPL.
Como ler gráficos de Plasma e prever movimentos de preço?
A maioria dos traders prefere gráficos de velas em vez de gráficos de linha simples porque eles fornecem informações mais detalhadas. Velas podem representar a ação de preço de Plasma em diferentes períodos de tempo, como 5 minutos para tendências de curto prazo e semanal para tendências de longo prazo. Opções populares incluem gráficos de 1 hora, 4 horas e 1 dia.
Por exemplo, um gráfico de velas de 1 hora mostra os preços de abertura, fechamento, máximo e mínimo de XPL dentro de cada hora. A cor da vela é crucial: verde indica que o preço fechou mais alto do que abriu, enquanto vermelho significa o oposto. Alguns gráficos usam velas vazias e preenchidas para transmitir a mesma informação.
O que afeta o preço de Plasma?
A ação de preço de Plasma é impulsionada pela oferta e demanda, influenciada por fatores como reduções pela metade das recompensas de bloco, hard forks e atualizações de protocolo. Eventos do mundo real, como regulamentações, adoção por empresas e governos e hacks de exchanges de criptomoedas, também impactam o preço de XPL. A capitalização de mercado de Plasma pode mudar rapidamente.
Traders frequentemente monitoram a atividade de "baleias" de XPL, grandes detentores de Plasma, pois suas ações podem influenciar significativamente os movimentos de preço no relativamente pequeno mercado de Plasma.
Padrões de previsão de preço altistas e baixistas
Traders frequentemente identificam padrões de velas para ganhar vantagem em previsões de preço de criptomoedas. Certas formações indicam tendências altistas, enquanto outras sugerem movimentos baixistas.
Padrões de velas altistas comumente seguidos:
- Martelo
- Engolfo de Alta
- Linha de Perfuração
- Estrela da Manhã
- Três Soldados Brancos
Padrões de velas baixistas comuns:
- Harami de Baixa
- Nuvem Negra
- Estrela da Noite
- Estrela Cadente
- Homem Enforcado


