Prédiction du prix de Mainframe jusqu'à $0.000565 d'ici 2026
| Année | Prix min. | Prix max. |
|---|---|---|
| 2026 | $0.000189 | $0.000565 |
| 2027 | $0.000182 | $0.000478 |
| 2028 | $0.000329 | $0.0008059 |
| 2029 | $0.000722 | $0.002377 |
| 2030 | $0.000614 | $0.001777 |
| 2031 | $0.000726 | $0.001622 |
| 2032 | $0.0011094 | $0.0030097 |
| 2033 | $0.002578 | $0.008016 |
| 2034 | $0.002072 | $0.004642 |
| 2035 | $0.00245 | $0.00547 |
Calculateur de profit d’investissement
Si vous ouvrez une position short de $10,000.00 sur Mainframe aujourd’hui et la fermez le Apr 06, 2026, notre prévision indique que vous pourriez gagner environ $3,961.95, soit un rendement de 39.62% sur les 90 prochains jours.
Prévision du prix à long terme de Mainframe pour 2027, 2028, 2029, 2030, 2031, 2032 et 2037
[
'name' => 'Mainframe'
'name_with_ticker' => 'Mainframe <small>MFT</small>'
'name_lang' => 'Mainframe'
'name_lang_with_ticker' => 'Mainframe <small>MFT</small>'
'name_with_lang' => 'Mainframe'
'name_with_lang_with_ticker' => 'Mainframe <small>MFT</small>'
'image' => '/uploads/coins/mainframe.png?1717217505'
'price_for_sd' => 0.0005481
'ticker' => 'MFT'
'marketcap' => '$5.15M'
'low24h' => '$0.0005317'
'high24h' => '$0.0005487'
'volume24h' => '$2.07'
'current_supply' => '9.39B'
'max_supply' => '10B'
'algo' => null
'proof' => null
'ico_price_and_roi' => ''
'price' => '$0.0005481'
'change_24h_pct' => '2.8611%'
'ath_price' => '$0.06027'
'ath_days' => 952
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '30 mai 2023'
'ath_pct' => '-99.09%'
'fdv' => '$5.48M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.027029'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.000552'
'next_week_prediction_price_date' => '13 janvier 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.000484'
'next_month_prediction_price_date' => '5 février 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.000189'
'current_year_max_price_prediction' => '$0.000565'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.000614'
'grand_prediction_max_price' => '$0.001777'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.00055857791215206
107 => 0.00056066343931225
108 => 0.00056536223849383
109 => 0.00052521151394948
110 => 0.00054323801050655
111 => 0.00055382688837952
112 => 0.00050598595292276
113 => 0.00055288122690588
114 => 0.00052451257916246
115 => 0.00051488383403555
116 => 0.00052784767085822
117 => 0.00052279565104068
118 => 0.00051845222106612
119 => 0.00051602851251072
120 => 0.00052554772350683
121 => 0.00052510364093594
122 => 0.00050952836414707
123 => 0.00048921105050548
124 => 0.00049603020785668
125 => 0.00049355274406105
126 => 0.00048457409566649
127 => 0.00049062462059828
128 => 0.00046398117089925
129 => 0.00041814250049808
130 => 0.00044842493024154
131 => 0.00044725908963737
201 => 0.00044667121993808
202 => 0.0004694276289454
203 => 0.00046724012529903
204 => 0.00046326978476077
205 => 0.00048450117724892
206 => 0.00047675143338822
207 => 0.00050063431789762
208 => 0.00051636513028363
209 => 0.00051237528742406
210 => 0.00052717019250672
211 => 0.00049618730746929
212 => 0.00050647857906114
213 => 0.00050859959587313
214 => 0.00048423918516128
215 => 0.00046759802794889
216 => 0.00046648825248591
217 => 0.00043763477917234
218 => 0.00045304807171935
219 => 0.00046661113131533
220 => 0.0004601154783048
221 => 0.00045805914861378
222 => 0.00046856449104171
223 => 0.00046938084612053
224 => 0.00045076786380992
225 => 0.00045463809222879
226 => 0.00047077758810741
227 => 0.00045423141834233
228 => 0.00042208491329027
301 => 0.00041411213557715
302 => 0.00041304842006278
303 => 0.00039142561457583
304 => 0.00041464491470726
305 => 0.00040450906796134
306 => 0.00043652808638563
307 => 0.00041823899478311
308 => 0.00041745058859807
309 => 0.00041625879701534
310 => 0.00039764715510588
311 => 0.00040172192185251
312 => 0.00041526706712278
313 => 0.0004201001275522
314 => 0.00041959599975332
315 => 0.00041520068852143
316 => 0.00041721283949575
317 => 0.00041073100012759
318 => 0.00040844212773887
319 => 0.00040121781687613
320 => 0.0003906000756747
321 => 0.00039207653771115
322 => 0.00037104001410802
323 => 0.00035957819955623
324 => 0.00035640572035258
325 => 0.00035216334857443
326 => 0.00035688490753344
327 => 0.00037098042027976
328 => 0.00035397824137785
329 => 0.00032482919821472
330 => 0.00032658110537638
331 => 0.00033051712062272
401 => 0.00032318238225051
402 => 0.00031624066793915
403 => 0.0003222759253338
404 => 0.00030992509148053
405 => 0.00033200965988708
406 => 0.00033141233420297
407 => 0.00033964409560438
408 => 0.00034479158494143
409 => 0.00033292828853899
410 => 0.00032994470157554
411 => 0.00033164428830639
412 => 0.0003035539055217
413 => 0.00033734851204059
414 => 0.00033764076920112
415 => 0.00033513828595822
416 => 0.00035313287063811
417 => 0.00039110705696439
418 => 0.00037681964056033
419 => 0.00037128712108924
420 => 0.00036076979753044
421 => 0.00037478350671566
422 => 0.00037370747249815
423 => 0.00036884123769273
424 => 0.00036589812369883
425 => 0.00037132090147339
426 => 0.00036522618152134
427 => 0.00036413140234625
428 => 0.00035749823167668
429 => 0.00035513049153768
430 => 0.00035337751100122
501 => 0.00035144765167488
502 => 0.0003557044404578
503 => 0.0003460579970485
504 => 0.0003344253319494
505 => 0.00033345820171359
506 => 0.00033612853332562
507 => 0.0003349471103701
508 => 0.000333452545515
509 => 0.0003305990141861
510 => 0.00032975243239686
511 => 0.00033250341250878
512 => 0.00032939771635453
513 => 0.00033398034020615
514 => 0.00033273412008666
515 => 0.00032577283580389
516 => 0.00031709649819002
517 => 0.00031701926058602
518 => 0.00031514995787916
519 => 0.00031276911983042
520 => 0.00031210682515146
521 => 0.00032176765278972
522 => 0.00034176527687668
523 => 0.00033783926476582
524 => 0.00034067621086982
525 => 0.00035463117787274
526 => 0.00035906704224247
527 => 0.00035591857078204
528 => 0.00035160874885774
529 => 0.0003517983591497
530 => 0.00036652632533684
531 => 0.00036744489052224
601 => 0.00036976580840538
602 => 0.00037274884377655
603 => 0.00035642659460476
604 => 0.00035102958268154
605 => 0.0003484721790175
606 => 0.00034059636557202
607 => 0.00034908975515176
608 => 0.00034414102076685
609 => 0.00034480877410821
610 => 0.00034437389886865
611 => 0.00034461137015558
612 => 0.00033200348680012
613 => 0.00033659713684401
614 => 0.00032895930269297
615 => 0.00031873310015184
616 => 0.00031869881833515
617 => 0.00032120166691964
618 => 0.00031971287464511
619 => 0.0003157065729147
620 => 0.0003162756491663
621 => 0.00031128994239216
622 => 0.00031688100423781
623 => 0.00031704133588576
624 => 0.00031488847252799
625 => 0.00032350227471907
626 => 0.00032703135650495
627 => 0.00032561429572406
628 => 0.00032693193174297
629 => 0.00033800240829391
630 => 0.00033980737901047
701 => 0.00034060902777309
702 => 0.00033953492462929
703 => 0.00032713427973196
704 => 0.00032768430106477
705 => 0.00032364860946949
706 => 0.00032023887534219
707 => 0.00032037524682558
708 => 0.00032212829340143
709 => 0.00032978395061296
710 => 0.00034589482988898
711 => 0.00034650622598061
712 => 0.00034724725587934
713 => 0.00034423311486941
714 => 0.00034332402109937
715 => 0.00034452335043906
716 => 0.00035057374962534
717 => 0.00036613701899982
718 => 0.00036063592016707
719 => 0.00035616344118634
720 => 0.00036008701102412
721 => 0.00035948300820155
722 => 0.00035438461653211
723 => 0.00035424152165867
724 => 0.0003444560779906
725 => 0.00034083862227029
726 => 0.00033781560550852
727 => 0.00033451455012253
728 => 0.00033255757383734
729 => 0.00033556437884121
730 => 0.00033625207072107
731 => 0.00032967763903014
801 => 0.00032878156828402
802 => 0.0003341503911218
803 => 0.00033178777236078
804 => 0.00033421778434662
805 => 0.00033478156797159
806 => 0.00033469078582293
807 => 0.00033222394049139
808 => 0.00033379623414333
809 => 0.0003300772909332
810 => 0.0003260334987594
811 => 0.00032345381128967
812 => 0.00032120269182644
813 => 0.00032245174374047
814 => 0.00031799910173482
815 => 0.00031657461194324
816 => 0.00033326357643178
817 => 0.00034559189393606
818 => 0.000345412635317
819 => 0.00034432144457504
820 => 0.00034270015647243
821 => 0.00035045514230226
822 => 0.00034775346030498
823 => 0.00034971915969109
824 => 0.00035021951268499
825 => 0.00035173393050087
826 => 0.00035227520470143
827 => 0.00035063909812822
828 => 0.00034514812463493
829 => 0.00033146514075575
830 => 0.00032509567482348
831 => 0.00032299364497398
901 => 0.00032307004976669
902 => 0.00032096246449784
903 => 0.00032158324281486
904 => 0.00032074658313297
905 => 0.00031916215210519
906 => 0.00032235390958932
907 => 0.00032272172990608
908 => 0.00032197673557063
909 => 0.00032215220870581
910 => 0.00031598397379947
911 => 0.0003164529313027
912 => 0.00031384171633249
913 => 0.00031335214500424
914 => 0.00030675122094406
915 => 0.00029505672715219
916 => 0.00030153661192486
917 => 0.00029370982232916
918 => 0.00029074569851405
919 => 0.00030477739963894
920 => 0.00030336900602481
921 => 0.00030095844837141
922 => 0.00029739273119778
923 => 0.00029607017201302
924 => 0.00028803472107775
925 => 0.00028755994376903
926 => 0.00029154253022798
927 => 0.00028970470360961
928 => 0.00028712369899805
929 => 0.00027777556192722
930 => 0.00026726516079778
1001 => 0.00026758240374186
1002 => 0.00027092556678816
1003 => 0.00028064626423226
1004 => 0.00027684821957108
1005 => 0.00027409269459185
1006 => 0.00027357666759402
1007 => 0.00028003582584759
1008 => 0.00028917688801189
1009 => 0.00029346566985964
1010 => 0.00028921561730076
1011 => 0.0002843333857602
1012 => 0.00028463054457199
1013 => 0.00028660740901735
1014 => 0.0002868151495192
1015 => 0.0002836373186878
1016 => 0.00028453185945259
1017 => 0.00028317297023236
1018 => 0.0002748334695961
1019 => 0.00027468263447443
1020 => 0.00027263598652568
1021 => 0.00027257401483918
1022 => 0.0002690921561181
1023 => 0.00026860502001407
1024 => 0.00026169157818964
1025 => 0.00026624202653431
1026 => 0.00026318982469397
1027 => 0.00025858943657895
1028 => 0.00025779632793392
1029 => 0.00025777248613035
1030 => 0.00026249605609652
1031 => 0.00026618682886906
1101 => 0.00026324291905174
1102 => 0.00026257264785163
1103 => 0.00026972939069634
1104 => 0.00026881862993419
1105 => 0.00026802991698795
1106 => 0.00028835840615513
1107 => 0.00027226682072751
1108 => 0.00026524997100549
1109 => 0.00025656528701087
1110 => 0.00025939306391149
1111 => 0.00025998891805314
1112 => 0.00023910381857802
1113 => 0.00023063073632203
1114 => 0.00022772309379315
1115 => 0.00022604970440974
1116 => 0.00022681228896486
1117 => 0.00021918552114105
1118 => 0.00022431083525375
1119 => 0.00021770669899297
1120 => 0.00021659949405713
1121 => 0.0002284085077869
1122 => 0.00023005166306014
1123 => 0.00022304145217617
1124 => 0.00022754314241373
1125 => 0.00022591076695542
1126 => 0.00021781990795414
1127 => 0.00021751089665262
1128 => 0.00021345118801322
1129 => 0.00020709853010706
1130 => 0.00020419519497938
1201 => 0.00020268311283697
1202 => 0.00020330702739882
1203 => 0.00020299155710425
1204 => 0.00020093290003983
1205 => 0.00020310955691741
1206 => 0.00019754909805193
1207 => 0.00019533487852804
1208 => 0.0001943347669386
1209 => 0.00018939953964742
1210 => 0.00019725368097322
1211 => 0.00019880104575827
1212 => 0.00020035145932995
1213 => 0.00021384675095913
1214 => 0.00021317256432663
1215 => 0.00021926688314219
1216 => 0.00021903006911975
1217 => 0.00021729187067213
1218 => 0.00020995869734141
1219 => 0.00021288156952979
1220 => 0.00020388542324915
1221 => 0.00021062594772109
1222 => 0.00020754985384313
1223 => 0.00020958591728668
1224 => 0.00020592489163074
1225 => 0.00020795105438878
1226 => 0.00019916798335226
1227 => 0.00019096647519949
1228 => 0.00019426700149711
1229 => 0.00019785505104359
1230 => 0.00020563485667838
1231 => 0.0002010012686243
]
'min_raw' => 0.00018939953964742
'max_raw' => 0.00056536223849383
'avg_raw' => 0.00037738088907062
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.000189'
'max' => '$0.000565'
'avg' => '$0.000377'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.00035879046035258
'max_diff' => 1.7172238493827E-5
'year' => 2026
]
1 => [
'items' => [
101 => 0.00020266768210391
102 => 0.00019708547590147
103 => 0.00018556779002746
104 => 0.00018563297887869
105 => 0.0001838612338334
106 => 0.00018233018743526
107 => 0.00020153349195162
108 => 0.00019914525747569
109 => 0.0001953399184027
110 => 0.00020043351597006
111 => 0.00020178034401314
112 => 0.00020181868631411
113 => 0.00020553484361447
114 => 0.00020751815743184
115 => 0.00020786772508832
116 => 0.00021371517889334
117 => 0.000215675168279
118 => 0.00022374808717047
119 => 0.00020734988711108
120 => 0.00020701217697199
121 => 0.0002005051933335
122 => 0.00019637836143863
123 => 0.000200787761044
124 => 0.00020469388715129
125 => 0.00020062656755994
126 => 0.00020115767363277
127 => 0.0001956976293936
128 => 0.00019764933829014
129 => 0.00019933041291542
130 => 0.00019840222231634
131 => 0.00019701267606458
201 => 0.00020437362935537
202 => 0.00020395829552289
203 => 0.00021081298445486
204 => 0.00021615670466083
205 => 0.00022573360657418
206 => 0.00021573961017241
207 => 0.00021537538922099
208 => 0.00021893570744399
209 => 0.00021567462321284
210 => 0.00021773551587812
211 => 0.00022540156490453
212 => 0.00022556353644045
213 => 0.00022285030452516
214 => 0.00022268520411653
215 => 0.00022320630998537
216 => 0.0002262584433356
217 => 0.00022519193416044
218 => 0.00022642612557864
219 => 0.00022796950084571
220 => 0.00023435355532785
221 => 0.00023589272925038
222 => 0.00023215333458881
223 => 0.00023249096005853
224 => 0.00023109232380642
225 => 0.00022974125871175
226 => 0.00023277825573736
227 => 0.00023832842749399
228 => 0.00023829390016355
301 => 0.00023958143213116
302 => 0.00024038355388049
303 => 0.00023694026014335
304 => 0.00023469880253388
305 => 0.00023555832000901
306 => 0.00023693270716958
307 => 0.00023511262477636
308 => 0.00022387823310121
309 => 0.00022728602987973
310 => 0.00022671880586304
311 => 0.00022591100988647
312 => 0.00022933757589898
313 => 0.00022900707524791
314 => 0.00021910729761347
315 => 0.00021974104925788
316 => 0.00021914583815002
317 => 0.00022106908700825
318 => 0.00021557076146293
319 => 0.00021726200936888
320 => 0.00021832274420103
321 => 0.00021894752516611
322 => 0.00022120466242832
323 => 0.00022093981342238
324 => 0.00022118819904225
325 => 0.00022453493773995
326 => 0.00024146159361092
327 => 0.00024238287414341
328 => 0.00023784615185888
329 => 0.00023965848292866
330 => 0.00023617920358792
331 => 0.00023851486711851
401 => 0.00024011286878671
402 => 0.00023289180652614
403 => 0.00023246422208337
404 => 0.00022897058251914
405 => 0.0002308478665311
406 => 0.00022786097268658
407 => 0.00022859385195891
408 => 0.0002265446576222
409 => 0.00023023279943776
410 => 0.00023435671506686
411 => 0.00023539857901313
412 => 0.00023265788352112
413 => 0.00023067343936427
414 => 0.00022718940914138
415 => 0.00023298342904872
416 => 0.00023467777703918
417 => 0.00023297452936003
418 => 0.00023257984965607
419 => 0.00023183193233025
420 => 0.00023273852385238
421 => 0.00023466854925615
422 => 0.0002337583849177
423 => 0.00023435956449828
424 => 0.00023206848787082
425 => 0.00023694140001685
426 => 0.00024468075723491
427 => 0.00024470564053388
428 => 0.00024379547128931
429 => 0.0002434230496443
430 => 0.00024435693852292
501 => 0.00024486353492944
502 => 0.00024788356031694
503 => 0.00025112416788086
504 => 0.00026624666939379
505 => 0.00026200033148263
506 => 0.00027541791446654
507 => 0.00028602948055173
508 => 0.00028921142523313
509 => 0.0002862841858483
510 => 0.0002762702580392
511 => 0.00027577892696691
512 => 0.00029074396288499
513 => 0.00028651565479607
514 => 0.00028601271100326
515 => 0.00028066223878468
516 => 0.00028382503053473
517 => 0.00028313328158364
518 => 0.00028204132202282
519 => 0.00028807570835995
520 => 0.00029937154088966
521 => 0.00029761097945826
522 => 0.00029629680201981
523 => 0.00029053845903583
524 => 0.00029400626768466
525 => 0.00029277144744631
526 => 0.00029807701882653
527 => 0.00029493411587368
528 => 0.00028648362120364
529 => 0.00028782939033304
530 => 0.00028762598003644
531 => 0.0002918121495266
601 => 0.00029055556535277
602 => 0.00028738061180905
603 => 0.00029933293296209
604 => 0.00029855681570871
605 => 0.00029965717252889
606 => 0.0003001415836308
607 => 0.00030741675089314
608 => 0.00031039715414113
609 => 0.00031107375785772
610 => 0.00031390491043066
611 => 0.00031100331620259
612 => 0.00032261176191648
613 => 0.00033033070094464
614 => 0.00033929664583881
615 => 0.00035239830114799
616 => 0.00035732464474133
617 => 0.00035643474486518
618 => 0.00036636827039348
619 => 0.00038421859495796
620 => 0.00036004280581997
621 => 0.00038549997048567
622 => 0.00037744052606961
623 => 0.00035833172834235
624 => 0.00035710134704664
625 => 0.00037004204672524
626 => 0.00039874327311621
627 => 0.00039155394143189
628 => 0.00039875503228733
629 => 0.00039035457729599
630 => 0.00038993742390108
701 => 0.00039834704093857
702 => 0.00041799656953104
703 => 0.00040866181504832
704 => 0.00039527815552165
705 => 0.00040516044144334
706 => 0.00039659949081558
707 => 0.00037730927299204
708 => 0.00039154844388544
709 => 0.00038202711581726
710 => 0.0003848059455292
711 => 0.00040481836093784
712 => 0.00040241041416959
713 => 0.00040552652025757
714 => 0.00040002667457497
715 => 0.00039488895146137
716 => 0.0003852990097375
717 => 0.00038245990077147
718 => 0.00038324452834924
719 => 0.00038245951194901
720 => 0.00037709402769062
721 => 0.00037593535187587
722 => 0.00037400417475521
723 => 0.00037460272729644
724 => 0.0003709715493238
725 => 0.00037782433239783
726 => 0.00037909626932289
727 => 0.00038408315336948
728 => 0.00038460090821455
729 => 0.00039848930930047
730 => 0.00039083981136745
731 => 0.0003959717550068
801 => 0.00039551270566397
802 => 0.00035874587393204
803 => 0.0003638120189482
804 => 0.00037169335074945
805 => 0.00036814282145588
806 => 0.00036312320373067
807 => 0.00035906959328269
808 => 0.00035292795895105
809 => 0.00036157219133319
810 => 0.00037293843770408
811 => 0.00038488917497968
812 => 0.00039924720277299
813 => 0.00039604265811539
814 => 0.00038462076163732
815 => 0.00038513313956963
816 => 0.00038830045833386
817 => 0.00038419849275293
818 => 0.00038298874302323
819 => 0.00038813425729797
820 => 0.00038816969162685
821 => 0.00038344988448689
822 => 0.00037820468256641
823 => 0.00037818270497885
824 => 0.00037724937195974
825 => 0.00039052061516668
826 => 0.00039781845705647
827 => 0.00039865514286807
828 => 0.00039776214143498
829 => 0.00039810582224462
830 => 0.00039385936884593
831 => 0.0004035655020687
901 => 0.00041247280975101
902 => 0.00041008546101528
903 => 0.0004065064858788
904 => 0.00040365565979579
905 => 0.00040941389699068
906 => 0.0004091574917527
907 => 0.00041239501218897
908 => 0.00041224813956116
909 => 0.00041115948320774
910 => 0.00041008549989463
911 => 0.00041434372233356
912 => 0.00041311742265611
913 => 0.00041188921819654
914 => 0.00040942586612419
915 => 0.00040976067658277
916 => 0.0004061823194068
917 => 0.00040452680764272
918 => 0.00037963188283902
919 => 0.00037297914546634
920 => 0.00037507223207274
921 => 0.00037576133053054
922 => 0.00037286605070023
923 => 0.00037701713824053
924 => 0.00037637019564446
925 => 0.00037888707083699
926 => 0.00037731463648671
927 => 0.00037737916974094
928 => 0.00038200336388674
929 => 0.00038334578712
930 => 0.00038266301982888
1001 => 0.00038314120663569
1002 => 0.0003941608197685
1003 => 0.0003925941831684
1004 => 0.00039176193869883
1005 => 0.00039199247610456
1006 => 0.00039480822352316
1007 => 0.00039559647906626
1008 => 0.00039225658494042
1009 => 0.00039383169831786
1010 => 0.00040053833116738
1011 => 0.00040288527310217
1012 => 0.00041037558516197
1013 => 0.00040719356746929
1014 => 0.00041303429865871
1015 => 0.000430986715083
1016 => 0.00044532834753545
1017 => 0.00043213918963915
1018 => 0.00045847577124219
1019 => 0.00047898257777841
1020 => 0.00047819549238767
1021 => 0.0004746196563371
1022 => 0.00045127320229728
1023 => 0.00042978944721381
1024 => 0.00044776152058956
1025 => 0.00044780733510058
1026 => 0.00044626351805896
1027 => 0.00043667500300301
1028 => 0.00044592985851933
1029 => 0.00044666447534151
1030 => 0.00044625328527147
1031 => 0.00043890179325953
1101 => 0.00042767742374013
1102 => 0.00042987063867688
1103 => 0.00043346316948364
1104 => 0.000426661759186
1105 => 0.00042448829648392
1106 => 0.00042852917716528
1107 => 0.00044154973667156
1108 => 0.00043908827531986
1109 => 0.00043902399661642
1110 => 0.00044955517210103
1111 => 0.00044201712322396
1112 => 0.00042989830214088
1113 => 0.00042683813998978
1114 => 0.00041597662592564
1115 => 0.00042347871237713
1116 => 0.00042374869911281
1117 => 0.0004196398830328
1118 => 0.00043023170992079
1119 => 0.00043013410437136
1120 => 0.00044018946761613
1121 => 0.00045941154551816
1122 => 0.00045372663122153
1123 => 0.00044711569441145
1124 => 0.0004478344865441
1125 => 0.00045571786210911
1126 => 0.00045095139328255
1127 => 0.00045266544870558
1128 => 0.00045571526768094
1129 => 0.00045755529919152
1130 => 0.00044756973432621
1201 => 0.00044524162149132
1202 => 0.00044047911968772
1203 => 0.00043923667186346
1204 => 0.00044311563020964
1205 => 0.00044209366173104
1206 => 0.00042372600777312
1207 => 0.00042180648573785
1208 => 0.00042186535473823
1209 => 0.00041703862531226
1210 => 0.00040967670438986
1211 => 0.00042902339301647
1212 => 0.00042746958316302
1213 => 0.00042575429734014
1214 => 0.00042596441006616
1215 => 0.00043436215187886
1216 => 0.00042949103753136
1217 => 0.00044244169338411
1218 => 0.00043977942787314
1219 => 0.00043704888529745
1220 => 0.00043667144113913
1221 => 0.00043562041520644
1222 => 0.00043201605621371
1223 => 0.00042766357614159
1224 => 0.00042478969179261
1225 => 0.00039184603638053
1226 => 0.00039796018720059
1227 => 0.00040499396039668
1228 => 0.00040742199071789
1229 => 0.00040326867683887
1230 => 0.0004321800543604
1231 => 0.00043746244163055
]
'min_raw' => 0.00018233018743526
'max_raw' => 0.00047898257777841
'avg_raw' => 0.00033065638260683
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.000182'
'max' => '$0.000478'
'avg' => '$0.00033'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -7.0693522121564E-6
'max_diff' => -8.6379660715419E-5
'year' => 2027
]
2 => [
'items' => [
101 => 0.00042146174602767
102 => 0.00041846866918447
103 => 0.00043237627997994
104 => 0.000423988290534
105 => 0.0004277654016679
106 => 0.00041960135336573
107 => 0.00043619006922352
108 => 0.00043606369100239
109 => 0.00042961030586056
110 => 0.00043506466279156
111 => 0.00043411683404967
112 => 0.00042683097811853
113 => 0.00043642104385208
114 => 0.00043642580040504
115 => 0.00043021455751473
116 => 0.00042296118563475
117 => 0.00042166445405961
118 => 0.00042068754100912
119 => 0.00042752514094334
120 => 0.00043365571166375
121 => 0.00044506318387705
122 => 0.00044793129342633
123 => 0.00045912571593804
124 => 0.00045245998237886
125 => 0.00045541481572994
126 => 0.00045862270531924
127 => 0.00046016068555458
128 => 0.00045765462929366
129 => 0.00047504417526246
130 => 0.00047651238574415
131 => 0.00047700466401869
201 => 0.00047114100695919
202 => 0.00047634930683405
203 => 0.00047391251580336
204 => 0.00048025236910516
205 => 0.0004812465390542
206 => 0.00048040451247599
207 => 0.00048072007770972
208 => 0.00046588116795146
209 => 0.00046511169219901
210 => 0.00045461983571484
211 => 0.00045889534478403
212 => 0.00045090248550967
213 => 0.00045343710352114
214 => 0.00045455433898987
215 => 0.00045397075858356
216 => 0.00045913707565188
217 => 0.00045474465073496
218 => 0.0004431523191977
219 => 0.00043155682933746
220 => 0.00043141125740775
221 => 0.00042835836960495
222 => 0.00042615169088781
223 => 0.00042657677549486
224 => 0.00042807482909478
225 => 0.00042606462128927
226 => 0.0004264936010447
227 => 0.00043361752326195
228 => 0.00043504617505714
229 => 0.00043019105804682
301 => 0.00041069706266035
302 => 0.00040591318729553
303 => 0.00040935174203939
304 => 0.00040770833434311
305 => 0.00032905244614572
306 => 0.00034753148035842
307 => 0.00033655186571794
308 => 0.00034161177729205
309 => 0.00033040443390155
310 => 0.00033575316559469
311 => 0.00033476545015538
312 => 0.00036447919033502
313 => 0.00036401525115202
314 => 0.00036423731428781
315 => 0.00035363766223446
316 => 0.00037052319576736
317 => 0.0003788416167698
318 => 0.00037730209842986
319 => 0.0003776895620284
320 => 0.0003710316536771
321 => 0.00036430177739411
322 => 0.00035683730887575
323 => 0.00037070536874667
324 => 0.00036916347722471
325 => 0.00037270002162104
326 => 0.00038169444975673
327 => 0.00038301891346622
328 => 0.00038479900612316
329 => 0.00038416096962127
330 => 0.00039936158762855
331 => 0.00039752069249096
401 => 0.00040195672011087
402 => 0.00039283147473449
403 => 0.00038250539341487
404 => 0.0003844680438887
405 => 0.00038427902486543
406 => 0.00038187259575329
407 => 0.00037970017914957
408 => 0.00037608371757896
409 => 0.00038752673712398
410 => 0.00038706217142786
411 => 0.00039458295004951
412 => 0.00039325357937519
413 => 0.00038437571665988
414 => 0.00038469279126356
415 => 0.00038682527035416
416 => 0.00039420580483492
417 => 0.00039639684997392
418 => 0.00039538187056749
419 => 0.00039778425153739
420 => 0.00039968299550303
421 => 0.0003980227045459
422 => 0.00042152892325521
423 => 0.00041176750239925
424 => 0.00041652515100491
425 => 0.00041765982216367
426 => 0.00041475338585008
427 => 0.00041538368781481
428 => 0.00041633842354439
429 => 0.00042213539193792
430 => 0.00043734831436888
501 => 0.00044408601415569
502 => 0.00046435671639655
503 => 0.0004435265419817
504 => 0.00044229056563576
505 => 0.0004459419312259
506 => 0.00045784297931303
507 => 0.00046748766097905
508 => 0.0004706873583027
509 => 0.00047111025112527
510 => 0.00047711309601629
511 => 0.0004805538147614
512 => 0.00047638419275603
513 => 0.0004728508746841
514 => 0.00046019496792202
515 => 0.00046165992359062
516 => 0.00047175201542064
517 => 0.00048600768955178
518 => 0.0004982405410064
519 => 0.00049395702278491
520 => 0.0005266372431223
521 => 0.00052987735348202
522 => 0.00052942967499561
523 => 0.00053681112858813
524 => 0.00052216044641387
525 => 0.00051589699594077
526 => 0.00047361481815611
527 => 0.00048549438544598
528 => 0.00050276203416433
529 => 0.0005004765961061
530 => 0.00048793636804126
531 => 0.0004982310281189
601 => 0.00049482729155345
602 => 0.00049214262330312
603 => 0.00050444160900644
604 => 0.00049091836901115
605 => 0.00050262712950064
606 => 0.00048761052306125
607 => 0.00049397658953533
608 => 0.00049036290231265
609 => 0.00049270140082257
610 => 0.00047903058631695
611 => 0.00048640702598392
612 => 0.00047872370217533
613 => 0.00047872005927944
614 => 0.00047855044948052
615 => 0.00048758984586826
616 => 0.00048788462025994
617 => 0.00048120449267163
618 => 0.00048024178192295
619 => 0.00048380142813795
620 => 0.000479634014693
621 => 0.00048158392121451
622 => 0.00047969307537514
623 => 0.00047926740614939
624 => 0.00047587560133698
625 => 0.00047441431856418
626 => 0.00047498732519201
627 => 0.00047303135816605
628 => 0.00047185281728249
629 => 0.00047831600803534
630 => 0.00047486298594046
701 => 0.00047778678287599
702 => 0.00047445474725536
703 => 0.00046290446009546
704 => 0.00045626176780774
705 => 0.00043444434607488
706 => 0.00044063173981389
707 => 0.00044473398826417
708 => 0.00044337819517583
709 => 0.00044629096335187
710 => 0.00044646978366136
711 => 0.00044552281303517
712 => 0.00044442634236449
713 => 0.00044389264108064
714 => 0.00044787041319723
715 => 0.00045017964379657
716 => 0.00044514570377716
717 => 0.00044396632206293
718 => 0.00044905591335398
719 => 0.00045216056110137
720 => 0.00047508353571719
721 => 0.00047338532771741
722 => 0.00047764749654035
723 => 0.0004771676417392
724 => 0.00048163507368238
725 => 0.00048893743683188
726 => 0.00047408969077611
727 => 0.00047666674609496
728 => 0.00047603491164368
729 => 0.00048293311450691
730 => 0.00048295464994328
731 => 0.00047881883273599
801 => 0.00048106092634003
802 => 0.00047980945119887
803 => 0.00048207103592596
804 => 0.00047336264711423
805 => 0.00048396852467443
806 => 0.00048998137382341
807 => 0.00049006486223968
808 => 0.00049291490501537
809 => 0.00049581071353883
810 => 0.00050136896582783
811 => 0.00049565569689923
812 => 0.00048537808227222
813 => 0.00048612009285179
814 => 0.00048009433115641
815 => 0.00048019562529915
816 => 0.00047965490922663
817 => 0.00048127763886347
818 => 0.00047371874501551
819 => 0.00047549280229313
820 => 0.0004730091117156
821 => 0.0004766613470367
822 => 0.00047273214556732
823 => 0.00047603460695397
824 => 0.00047745983981012
825 => 0.00048271897973237
826 => 0.00047195536632473
827 => 0.00045000762995398
828 => 0.00045462131022969
829 => 0.00044779731470515
830 => 0.00044842890147173
831 => 0.00044970480725651
901 => 0.00044556917915764
902 => 0.00044635812667029
903 => 0.0004463299399134
904 => 0.00044608704167024
905 => 0.00044501120507619
906 => 0.00044345102916703
907 => 0.00044966628979229
908 => 0.00045072238368482
909 => 0.00045306994958557
910 => 0.00046005471333704
911 => 0.00045935677072619
912 => 0.00046049514408184
913 => 0.00045801008143816
914 => 0.00044854417640044
915 => 0.00044905822058583
916 => 0.000442648081357
917 => 0.00045290602791353
918 => 0.00045047681077067
919 => 0.00044891067867567
920 => 0.00044848334502344
921 => 0.00045548542265323
922 => 0.00045758055402419
923 => 0.00045627500875285
924 => 0.00045359729731248
925 => 0.00045873929487231
926 => 0.00046011507649585
927 => 0.00046042306326449
928 => 0.00046953369706026
929 => 0.00046093224648716
930 => 0.00046300270113117
1001 => 0.00047915579722641
1002 => 0.00046450716804292
1003 => 0.00047226687362483
1004 => 0.00047188707641615
1005 => 0.00047585667921773
1006 => 0.0004715614531224
1007 => 0.00047161469759763
1008 => 0.00047513943596125
1009 => 0.00047018957661946
1010 => 0.0004689639218364
1011 => 0.00046727068853192
1012 => 0.00047096780150656
1013 => 0.00047318405352882
1014 => 0.00049104541717051
1015 => 0.00050258467266017
1016 => 0.00050208372314674
1017 => 0.00050666146396128
1018 => 0.00050459914979703
1019 => 0.00049793939334969
1020 => 0.00050930678553453
1021 => 0.00050570966701535
1022 => 0.00050600620909557
1023 => 0.00050599517178454
1024 => 0.00050838694113423
1025 => 0.00050669215334753
1026 => 0.00050335155265355
1027 => 0.00050556919929352
1028 => 0.00051215481699105
1029 => 0.00053259677639562
1030 => 0.00054403636769835
1031 => 0.00053190809863522
1101 => 0.00054027401623097
1102 => 0.00053525744675475
1103 => 0.00053434578685091
1104 => 0.0005396002013375
1105 => 0.00054486381298107
1106 => 0.00054452854367459
1107 => 0.00054070743191081
1108 => 0.00053854898283256
1109 => 0.00055489348238651
1110 => 0.00056693583123656
1111 => 0.00056611462377792
1112 => 0.0005697391664294
1113 => 0.00058038093575702
1114 => 0.00058135388577734
1115 => 0.00058123131643778
1116 => 0.00057881975829558
1117 => 0.00058929796220699
1118 => 0.00059803906425635
1119 => 0.00057826155226227
1120 => 0.00058579256992298
1121 => 0.0005891734863851
1122 => 0.00059413767482421
1123 => 0.00060251309281558
1124 => 0.00061161101822411
1125 => 0.00061289756463055
1126 => 0.00061198469838827
1127 => 0.00060598437201598
1128 => 0.00061593943055882
1129 => 0.00062177087037836
1130 => 0.00062524335934078
1201 => 0.00063404901358238
1202 => 0.00058919436577417
1203 => 0.00055744401663487
1204 => 0.00055248574113617
1205 => 0.00056256858933733
1206 => 0.00056522735599877
1207 => 0.00056415561049135
1208 => 0.00052841770591962
1209 => 0.00055229758846473
1210 => 0.00057799033420571
1211 => 0.00057897729720662
1212 => 0.00059183962293454
1213 => 0.00059602812343609
1214 => 0.00060638398155063
1215 => 0.00060573621980597
1216 => 0.00060825770645917
1217 => 0.00060767806034366
1218 => 0.00062686010681765
1219 => 0.00064802075263993
1220 => 0.00064728802676184
1221 => 0.00064424593356349
1222 => 0.00064876396071701
1223 => 0.00067060401491822
1224 => 0.00066859333270711
1225 => 0.0006705465392057
1226 => 0.00069629719396044
1227 => 0.00072977670812953
1228 => 0.00071422211250972
1229 => 0.00074797110929039
1230 => 0.00076921431380637
1231 => 0.00080595223942841
]
'min_raw' => 0.00032905244614572
'max_raw' => 0.00080595223942841
'avg_raw' => 0.00056750234278707
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.000329'
'max' => '$0.0008059'
'avg' => '$0.000567'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.00014672225871046
'max_diff' => 0.00032696966165001
'year' => 2028
]
3 => [
'items' => [
101 => 0.00080135247020244
102 => 0.00081565427505175
103 => 0.00079311792328713
104 => 0.00074136990428741
105 => 0.00073318058219725
106 => 0.00074957581240842
107 => 0.00078988188605942
108 => 0.00074830643071201
109 => 0.00075671709118081
110 => 0.00075429482039998
111 => 0.00075416574788406
112 => 0.00075909192084095
113 => 0.00075194625003508
114 => 0.00072283350169032
115 => 0.00073617570269422
116 => 0.0007310236381415
117 => 0.0007367402378746
118 => 0.00076759036892908
119 => 0.00075395079061462
120 => 0.00073958260284971
121 => 0.00075760349886302
122 => 0.00078055029213969
123 => 0.00077911432305578
124 => 0.0007763279428445
125 => 0.00079203462220538
126 => 0.00081797745488429
127 => 0.00082498969831066
128 => 0.00083016599304899
129 => 0.00083087971663919
130 => 0.000838231513195
131 => 0.00079869905022315
201 => 0.00086143808422513
202 => 0.00087227138226643
203 => 0.00087023517122886
204 => 0.0008822759260669
205 => 0.00087873323054908
206 => 0.00087360042057566
207 => 0.00089268757813595
208 => 0.00087080569224727
209 => 0.00083974711008111
210 => 0.00082270775763566
211 => 0.00084514655146118
212 => 0.00085884913984445
213 => 0.00086790567911748
214 => 0.00087064618242939
215 => 0.00080176784278917
216 => 0.00076464623789093
217 => 0.00078844076103064
218 => 0.00081747172147134
219 => 0.0007985377817721
220 => 0.00079927995636162
221 => 0.00077228513410232
222 => 0.00081986016424761
223 => 0.00081292888252442
224 => 0.00084888838436552
225 => 0.00084030636065811
226 => 0.00086962993846971
227 => 0.0008619080576918
228 => 0.00089396115307633
301 => 0.00090674800062814
302 => 0.00092821910778152
303 => 0.00094401334160668
304 => 0.00095328801780437
305 => 0.00095273120103389
306 => 0.00098948208875445
307 => 0.00096781137424386
308 => 0.0009405878494233
309 => 0.00094009546174841
310 => 0.00095419491101331
311 => 0.00098374348867753
312 => 0.00099140500495155
313 => 0.00099568674734545
314 => 0.00098912910982066
315 => 0.00096560710237351
316 => 0.00095545041881712
317 => 0.00096410420747462
318 => 0.00095352136757504
319 => 0.00097179031826215
320 => 0.00099687748959286
321 => 0.0009916970879185
322 => 0.0010090143940267
323 => 0.0010269359840149
324 => 0.001052564662607
325 => 0.0010592649482182
326 => 0.0010703402655445
327 => 0.0010817404051255
328 => 0.0010854018227165
329 => 0.0010923926049689
330 => 0.0010923557600957
331 => 0.0011134229529473
401 => 0.0011366607190593
402 => 0.0011454324378111
403 => 0.0011656025214053
404 => 0.0011310619600942
405 => 0.0011572613726221
406 => 0.001180893898536
407 => 0.0011527182268867
408 => 0.0011915518261658
409 => 0.0011930596468269
410 => 0.0012158259486436
411 => 0.0011927479402567
412 => 0.0011790442925442
413 => 0.0012186062100212
414 => 0.0012377489756996
415 => 0.0012319830188883
416 => 0.0011881038028537
417 => 0.0011625642170535
418 => 0.001095722194796
419 => 0.0011748994575204
420 => 0.0012134643925611
421 => 0.0011880039289885
422 => 0.0012008447058678
423 => 0.0012708998208851
424 => 0.0012975722729509
425 => 0.0012920245893758
426 => 0.0012929620565773
427 => 0.0013073540275728
428 => 0.0013711759527698
429 => 0.0013329323758111
430 => 0.0013621681574366
501 => 0.0013776747105932
502 => 0.0013920780613548
503 => 0.0013567079841102
504 => 0.0013106920333047
505 => 0.0012961168500664
506 => 0.0011854723876572
507 => 0.0011797128628842
508 => 0.0011764798670977
509 => 0.00115609628598
510 => 0.0011400803747543
511 => 0.001127343927515
512 => 0.0010939196865339
513 => 0.0011051993866861
514 => 0.0010519281227434
515 => 0.0010860091895963
516 => 0.0010009869660641
517 => 0.0010717960002707
518 => 0.0010332578622438
519 => 0.001059135185449
520 => 0.0010590449019061
521 => 0.0010113965454726
522 => 0.00098391396787755
523 => 0.001001426935959
524 => 0.0010202022279235
525 => 0.0010232484558771
526 => 0.0010475911119943
527 => 0.001054384624073
528 => 0.0010337999653158
529 => 0.00099922506946139
530 => 0.001007256029199
531 => 0.0009837512207348
601 => 0.00094255994800076
602 => 0.00097214423920897
603 => 0.00098224561695692
604 => 0.00098670696083321
605 => 0.00094620007494892
606 => 0.0009334719319568
607 => 0.00092669557542725
608 => 0.00099399613915741
609 => 0.00099768301596098
610 => 0.00097882043296207
611 => 0.0010640810967407
612 => 0.0010447839826462
613 => 0.0010663435869975
614 => 0.0010065273037793
615 => 0.0010088123663516
616 => 0.00098049437927762
617 => 0.00099635055983044
618 => 0.00098514392248426
619 => 0.0009950695371356
620 => 0.0010010189096328
621 => 0.0010293322500037
622 => 0.0010721192931374
623 => 0.001025103181119
624 => 0.0010046175878294
625 => 0.0010173267346909
626 => 0.0010511728675748
627 => 0.0011024514914457
628 => 0.0010720935140357
629 => 0.0010855658688984
630 => 0.0010885089790925
701 => 0.0010661241304638
702 => 0.0011032768527441
703 => 0.0011231872984423
704 => 0.0011436112958424
705 => 0.0011613448805175
706 => 0.0011354535021474
707 => 0.0011631609883867
708 => 0.0011408336455076
709 => 0.0011208037107867
710 => 0.0011208340879297
711 => 0.0011082690172887
712 => 0.0010839226096209
713 => 0.001079432758506
714 => 0.0011027895310112
715 => 0.0011215194506657
716 => 0.0011230621365587
717 => 0.0011334319824575
718 => 0.0011395687504425
719 => 0.0011997174192269
720 => 0.0012239097113879
721 => 0.0012534915883056
722 => 0.0012650153965083
723 => 0.0012996979276846
724 => 0.0012716889669823
725 => 0.0012656290521497
726 => 0.0011815005760857
727 => 0.0011952766093282
728 => 0.001217333367739
729 => 0.0011818642839078
730 => 0.001204361253741
731 => 0.001208802632137
801 => 0.0011806590580117
802 => 0.0011956917569641
803 => 0.0011557693654311
804 => 0.0010729894921775
805 => 0.0011033690104069
806 => 0.0011257385614589
807 => 0.0010938144539619
808 => 0.0011510371810168
809 => 0.0011176088451882
810 => 0.0011070136675736
811 => 0.0010656781022456
812 => 0.0010851868979286
813 => 0.0011115728234289
814 => 0.0010952693891628
815 => 0.0011291014632379
816 => 0.0011770167028129
817 => 0.0012111639559358
818 => 0.0012137853580225
819 => 0.0011918309619527
820 => 0.0012270130217656
821 => 0.0012272692846622
822 => 0.0011875837774703
823 => 0.0011632766252851
824 => 0.001157753989166
825 => 0.0011715506169682
826 => 0.0011883022701182
827 => 0.0012147149581867
828 => 0.0012306755924113
829 => 0.0012722924616028
830 => 0.0012835527931569
831 => 0.0012959244836156
901 => 0.0013124568773565
902 => 0.0013323082548611
903 => 0.0012888745710205
904 => 0.00129060027225
905 => 0.0012501554272378
906 => 0.0012069343099649
907 => 0.0012397337503867
908 => 0.0012826146556116
909 => 0.0012727777285738
910 => 0.0012716708733319
911 => 0.0012735322968328
912 => 0.0012661155750903
913 => 0.0012325700175256
914 => 0.0012157236485229
915 => 0.0012374597625035
916 => 0.001249011539721
917 => 0.0012669273387646
918 => 0.0012647188383758
919 => 0.0013108680126956
920 => 0.0013288001863577
921 => 0.001324212368974
922 => 0.0013250566377846
923 => 0.0013575219816476
924 => 0.0013936301210304
925 => 0.0014274501584511
926 => 0.0014618533531198
927 => 0.0014203789591671
928 => 0.0013993208197029
929 => 0.0014210474443761
930 => 0.0014095189915001
1001 => 0.0014757649012867
1002 => 0.0014803516243486
1003 => 0.0015465927438018
1004 => 0.0016094634540087
1005 => 0.0015699754873735
1006 => 0.0016072108613334
1007 => 0.0016474839541156
1008 => 0.0017251772841663
1009 => 0.0016990129038896
1010 => 0.0016789713986457
1011 => 0.00166003227303
1012 => 0.0016994415869346
1013 => 0.0017501410396937
1014 => 0.0017610612162247
1015 => 0.0017787560740334
1016 => 0.0017601520946719
1017 => 0.0017825585386518
1018 => 0.0018616631317913
1019 => 0.0018402883724494
1020 => 0.00180993277802
1021 => 0.0018723782570177
1022 => 0.0018949770331164
1023 => 0.0020535870788476
1024 => 0.0022538388134373
1025 => 0.0021709332803934
1026 => 0.0021194711406882
1027 => 0.0021315659642172
1028 => 0.0022046911187404
1029 => 0.0022281765974968
1030 => 0.0021643349703068
1031 => 0.0021868849123135
1101 => 0.0023111373098321
1102 => 0.0023777947346067
1103 => 0.0022872649984763
1104 => 0.002037497046954
1105 => 0.0018071995888694
1106 => 0.0018682848451831
1107 => 0.0018613596728133
1108 => 0.0019948533731448
1109 => 0.0018397785915082
1110 => 0.0018423896531196
1111 => 0.0019786438618016
1112 => 0.0019422935749138
1113 => 0.0018834107655484
1114 => 0.0018076294985413
1115 => 0.00166754081756
1116 => 0.001543460366153
1117 => 0.0017868107053835
1118 => 0.001776316996252
1119 => 0.0017611205503491
1120 => 0.001794938596279
1121 => 0.0019591494278946
1122 => 0.0019553638367273
1123 => 0.0019312818371463
1124 => 0.0019495478215795
1125 => 0.0018802086501625
1126 => 0.0018980789334603
1127 => 0.0018071631085754
1128 => 0.0018482608584036
1129 => 0.0018832844294851
1130 => 0.0018903159299126
1201 => 0.0019061582594129
1202 => 0.0017707872883776
1203 => 0.0018315648800895
1204 => 0.0018672660211301
1205 => 0.0017059669670902
1206 => 0.0018640776574477
1207 => 0.0017684307809451
1208 => 0.0017359667944922
1209 => 0.001779675275446
1210 => 0.0017626420379104
1211 => 0.0017479978605026
1212 => 0.0017398261578901
1213 => 0.0017719208423736
1214 => 0.001770423586981
1215 => 0.0017179104538562
1216 => 0.0016494092124041
1217 => 0.001672400477512
1218 => 0.001664047535354
1219 => 0.0016337753954225
1220 => 0.0016541751626642
1221 => 0.0015643449118177
1222 => 0.0014097966342064
1223 => 0.0015118959603382
1224 => 0.0015079652473448
1225 => 0.0015059832036099
1226 => 0.0015827080253799
1227 => 0.0015753327041095
1228 => 0.0015619464237844
1229 => 0.0016335295458867
1230 => 0.0016074007433905
1231 => 0.0016879235559637
]
'min_raw' => 0.00072283350169032
'max_raw' => 0.0023777947346067
'avg_raw' => 0.0015503141181485
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.000722'
'max' => '$0.002377'
'avg' => '$0.00155'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.0003937810555446
'max_diff' => 0.0015718424951783
'year' => 2029
]
4 => [
'items' => [
101 => 0.0017409610882134
102 => 0.0017275090544504
103 => 0.0017773911098839
104 => 0.0016729301498243
105 => 0.0017076278905098
106 => 0.0017147790467761
107 => 0.0016326462212715
108 => 0.0015765393978815
109 => 0.001572797712426
110 => 0.0014755162126641
111 => 0.0015274832046081
112 => 0.0015732120069785
113 => 0.0015513114593415
114 => 0.0015443784002198
115 => 0.0015797978956752
116 => 0.0015825502938195
117 => 0.0015197953244424
118 => 0.0015328440697673
119 => 0.0015872595069457
120 => 0.0015314729403661
121 => 0.0014230887541857
122 => 0.0013962079774844
123 => 0.0013926215863614
124 => 0.0013197187880061
125 => 0.001398004279519
126 => 0.0013638305645529
127 => 0.0014717849206669
128 => 0.0014101219714254
129 => 0.0014074638049278
130 => 0.0014034455963984
131 => 0.0013406951462773
201 => 0.0013544335068547
202 => 0.0014001019098252
203 => 0.0014163969104965
204 => 0.0014146972084255
205 => 0.0013998781097364
206 => 0.0014066622172302
207 => 0.0013848082432528
208 => 0.0013770911501903
209 => 0.0013527338817313
210 => 0.0013169354259637
211 => 0.0013219134208029
212 => 0.0012509873127517
213 => 0.001212343004752
214 => 0.0012016467696215
215 => 0.0011873433169785
216 => 0.0012032623826576
217 => 0.001250786387999
218 => 0.001193462354777
219 => 0.0010951843206313
220 => 0.0011010909979411
221 => 0.0011143615481479
222 => 0.001089631965631
223 => 0.0010662274911752
224 => 0.0010865757828495
225 => 0.0010449340842055
226 => 0.0011193937484835
227 => 0.0011173798232356
228 => 0.0011451337815237
301 => 0.0011624889012098
302 => 0.00112249096912
303 => 0.0011124315973654
304 => 0.0011181618726898
305 => 0.0010234531859233
306 => 0.0011373940612658
307 => 0.0011383794266873
308 => 0.001129942129716
309 => 0.0011906121283061
310 => 0.0013186447487782
311 => 0.0012704737268563
312 => 0.0012518204511914
313 => 0.0012163605605168
314 => 0.0012636087594407
315 => 0.0012599808349501
316 => 0.0012435739845539
317 => 0.0012336510702418
318 => 0.001251934344115
319 => 0.0012313855702769
320 => 0.001227694445853
321 => 0.0012053302478274
322 => 0.0011973472466384
323 => 0.0011914369503705
324 => 0.0011849302949133
325 => 0.0011992823554944
326 => 0.0011667586980468
327 => 0.0011275383554984
328 => 0.0011242776083855
329 => 0.0011332808178521
330 => 0.0011292975678733
331 => 0.0011242585381171
401 => 0.0011146376580145
402 => 0.0011117833484056
403 => 0.0011210584699203
404 => 0.0011105873985034
405 => 0.0011260380347678
406 => 0.0011218363166266
407 => 0.0010983658606459
408 => 0.0010691129826182
409 => 0.0010688525706437
410 => 0.001062550086057
411 => 0.0010545229243509
412 => 0.0010522899516008
413 => 0.0010848621064807
414 => 0.0011522854922794
415 => 0.0011390486683422
416 => 0.0011486136302011
417 => 0.0011956637757561
418 => 0.0012106196021808
419 => 0.0012000043108327
420 => 0.0011854734453128
421 => 0.0011861127296503
422 => 0.001235769095924
423 => 0.0012388661025787
424 => 0.0012466912392631
425 => 0.0012567487512858
426 => 0.0012017171486201
427 => 0.0011835207461136
428 => 0.0011748982811081
429 => 0.0011483444262049
430 => 0.0011769804821625
501 => 0.0011602954786742
502 => 0.0011625468556857
503 => 0.0011610806434535
504 => 0.0011618812944771
505 => 0.0011193729354898
506 => 0.0011348607473312
507 => 0.0011091092562344
508 => 0.0010746309003963
509 => 0.0010745153168579
510 => 0.0010829538456038
511 => 0.0010779342785061
512 => 0.001064426752511
513 => 0.0010663454328248
514 => 0.0010495357743449
515 => 0.001068386429713
516 => 0.0010689269990581
517 => 0.0010616684699392
518 => 0.0010907105054229
519 => 0.0011026090510566
520 => 0.0010978313316978
521 => 0.00110227383353
522 => 0.0011395987181375
523 => 0.0011456843029274
524 => 0.0011483871176999
525 => 0.0011447657039591
526 => 0.0011029560639023
527 => 0.0011048104992272
528 => 0.0010912038832507
529 => 0.0010797077265805
530 => 0.0010801675125579
531 => 0.0010860780314822
601 => 0.0011118896142717
602 => 0.0011662085685765
603 => 0.0011682699331858
604 => 0.0011707683672264
605 => 0.0011606059803708
606 => 0.0011575409072542
607 => 0.0011615845298575
608 => 0.0011819838731394
609 => 0.0012344565224283
610 => 0.0012159091836392
611 => 0.0012008299084971
612 => 0.0012140584981401
613 => 0.0012120220604537
614 => 0.0011948324769818
615 => 0.0011943500226254
616 => 0.0011613577161007
617 => 0.001149161211577
618 => 0.0011389688995044
619 => 0.0011278391607982
620 => 0.0011212410786209
621 => 0.0011313787316199
622 => 0.001133697332806
623 => 0.0011115311773478
624 => 0.0011085100122656
625 => 0.0011266113733025
626 => 0.0011186456391969
627 => 0.0011268385942652
628 => 0.0011287394301189
629 => 0.0011284333517665
630 => 0.0011201162105015
701 => 0.0011254173083231
702 => 0.0011128786316418
703 => 0.0010992447039993
704 => 0.0010905471075871
705 => 0.0010829573011487
706 => 0.0010871685668828
707 => 0.0010721561734872
708 => 0.0010673534067002
709 => 0.0011236214156596
710 => 0.001165187198861
711 => 0.0011645828159113
712 => 0.0011609037901403
713 => 0.0011554375041077
714 => 0.0011815839802687
715 => 0.0011724750707895
716 => 0.0011791025635105
717 => 0.001180789538563
718 => 0.0011858955039625
719 => 0.0011877204477203
720 => 0.0011822042001794
721 => 0.0011636909996792
722 => 0.0011175578642151
723 => 0.0010960827651226
724 => 0.0010889956247259
725 => 0.001089253228819
726 => 0.0010821473579381
727 => 0.0010842403553753
728 => 0.0010814194988441
729 => 0.0010760774790125
730 => 0.0010868387122116
731 => 0.00108807884409
801 => 0.0010855670436742
802 => 0.0010861586636006
803 => 0.0010653620289615
804 => 0.0010669431519252
805 => 0.0010581392583439
806 => 0.0010564886344299
807 => 0.0010342331580992
808 => 0.00099480435579646
809 => 0.0010166517397186
810 => 0.00099026317214771
811 => 0.00098026942175655
812 => 0.0010275782817612
813 => 0.0010228297843603
814 => 0.0010147024209321
815 => 0.0010026803565308
816 => 0.0009982212559012
817 => 0.00097112917205567
818 => 0.00096952842721143
819 => 0.00098295599551307
820 => 0.00097675963475628
821 => 0.00096805759750842
822 => 0.00093653970070802
823 => 0.00090110314948737
824 => 0.0009021727562225
825 => 0.00091344446384532
826 => 0.00094621847395553
827 => 0.00093341310120934
828 => 0.00092412265635725
829 => 0.00092238283530621
830 => 0.00094416033832216
831 => 0.00097498006761767
901 => 0.00098943999505055
902 => 0.00097511064611909
903 => 0.00095864986161357
904 => 0.0009596517532945
905 => 0.00096631688979228
906 => 0.00096701730139824
907 => 0.00095630302288113
908 => 0.00095931902952445
909 => 0.00095473743964382
910 => 0.00092662023100335
911 => 0.00092611167985967
912 => 0.00091921126340806
913 => 0.00091900232154031
914 => 0.00090726299176657
915 => 0.00090562057838107
916 => 0.00088231142658892
917 => 0.00089765358088512
918 => 0.00088736286928248
919 => 0.00087185233956384
920 => 0.00086917831839407
921 => 0.00086909793408873
922 => 0.0008850237800188
923 => 0.00089746747810295
924 => 0.00088754188061665
925 => 0.00088528201446864
926 => 0.0009094114726374
927 => 0.00090634077914053
928 => 0.00090368157837609
929 => 0.00097222049889301
930 => 0.0009179665951452
1001 => 0.0008943087964066
1002 => 0.00086502777797344
1003 => 0.00087456182522299
1004 => 0.00087657078906277
1005 => 0.00080615521803131
1006 => 0.00077758762963354
1007 => 0.00076778430984229
1008 => 0.00076214236070383
1009 => 0.00076471346777336
1010 => 0.00073899928757146
1011 => 0.00075627964194042
1012 => 0.00073401333545113
1013 => 0.00073028031670737
1014 => 0.0007700952309763
1015 => 0.00077563524370147
1016 => 0.00075199982826887
1017 => 0.00076717759120278
1018 => 0.00076167392337626
1019 => 0.00073439502736771
1020 => 0.00073335317419016
1021 => 0.00071966558307263
1022 => 0.0006982471534136
1023 => 0.00068845835632623
1024 => 0.0006833602658129
1025 => 0.0006854638373185
1026 => 0.00068440020719492
1027 => 0.00067745930117139
1028 => 0.00068479805180345
1029 => 0.00066605057651967
1030 => 0.00065858518080299
1031 => 0.00065521323475363
1101 => 0.00063857377137485
1102 => 0.00066505455721344
1103 => 0.00067027160561979
1104 => 0.00067549893322313
1105 => 0.00072099925116208
1106 => 0.00071872618386041
1107 => 0.0007392736052388
1108 => 0.00073847517022832
1109 => 0.00073261471280504
1110 => 0.00070789040693471
1111 => 0.00071774507458625
1112 => 0.00068741393931019
1113 => 0.00071014008817573
1114 => 0.00069976882290016
1115 => 0.00070663355295351
1116 => 0.00069429014934984
1117 => 0.00070112149855075
1118 => 0.00067150876133667
1119 => 0.00064385680398862
1120 => 0.00065498475883643
1121 => 0.000667082118392
1122 => 0.00069331227625837
1123 => 0.00067768981062727
1124 => 0.00068330824001904
1125 => 0.00066448744207032
1126 => 0.00062565476000696
1127 => 0.00062587454877022
1128 => 0.00061990098665074
1129 => 0.00061473895682516
1130 => 0.00067948423873397
1201 => 0.00067143213945716
1202 => 0.00065860217309228
1203 => 0.00067577559291428
1204 => 0.00068031651769403
1205 => 0.00068044579143872
1206 => 0.00069297507523073
1207 => 0.00069966195623652
1208 => 0.00070084054799639
1209 => 0.00072055564675621
1210 => 0.00072716388781205
1211 => 0.00075438229748782
1212 => 0.00069909462110182
1213 => 0.00069795600778971
1214 => 0.00067601725814946
1215 => 0.0006621033562897
1216 => 0.00067696995491366
1217 => 0.0006901397318014
1218 => 0.00067642647982797
1219 => 0.00067821714103315
1220 => 0.00065980822067268
1221 => 0.00066638854348133
1222 => 0.00067205640394936
1223 => 0.00066892694454036
1224 => 0.00066424199233753
1225 => 0.00068905996028276
1226 => 0.00068765963326889
1227 => 0.0007107706955821
1228 => 0.00072878742134318
1229 => 0.00076107661478198
1230 => 0.00072738115815487
1231 => 0.00072615316178806
]
'min_raw' => 0.00061473895682516
'max_raw' => 0.0017773911098839
'avg_raw' => 0.0011960650333545
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.000614'
'max' => '$0.001777'
'avg' => '$0.001196'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.00010809454486516
'max_diff' => -0.00060040362472281
'year' => 2030
]
5 => [
'items' => [
101 => 0.00073815702325036
102 => 0.00072716205008341
103 => 0.00073411049359135
104 => 0.00075995711311033
105 => 0.0007605032114522
106 => 0.00075135536061797
107 => 0.00075079871306334
108 => 0.00075255565788258
109 => 0.00076284613856603
110 => 0.0007592503284207
111 => 0.00076341149095565
112 => 0.00076861508842358
113 => 0.00079013937383057
114 => 0.00079532880617207
115 => 0.00078272117599441
116 => 0.0007838595038378
117 => 0.00077914390406417
118 => 0.00077458869376913
119 => 0.00078482814127734
120 => 0.00080354093285542
121 => 0.00080342452155021
122 => 0.00080776552547164
123 => 0.00081046993495187
124 => 0.00079886062971399
125 => 0.00079130339889011
126 => 0.00079420132206707
127 => 0.0007988351643356
128 => 0.00079269862947276
129 => 0.00075482109357983
130 => 0.00076631071834338
131 => 0.00076439828296878
201 => 0.00076167474243526
202 => 0.00077322764898165
203 => 0.00077211334296175
204 => 0.00073873555148682
205 => 0.00074087228940307
206 => 0.00073886549359661
207 => 0.00074534986139908
208 => 0.00072681187294219
209 => 0.00073251403333627
210 => 0.00073609037488101
211 => 0.00073819686752561
212 => 0.00074580696339342
213 => 0.00074491400647873
214 => 0.00074575145593784
215 => 0.00075703521911899
216 => 0.00081410462116933
217 => 0.00081721078280639
218 => 0.00080191490688025
219 => 0.00080802530761493
220 => 0.00079629467440209
221 => 0.00080416952706628
222 => 0.00080955730125955
223 => 0.00078521098568956
224 => 0.00078376935488779
225 => 0.00077199030517886
226 => 0.00077831969929296
227 => 0.00076824917815789
228 => 0.00077072013179256
301 => 0.00076381113001615
302 => 0.00077624595764516
303 => 0.00079015002711125
304 => 0.00079366274414672
305 => 0.00078442229794615
306 => 0.00077773160592186
307 => 0.00076598495477817
308 => 0.00078551989742132
309 => 0.00079123250996677
310 => 0.00078548989149955
311 => 0.00078415920132201
312 => 0.00078163754584006
313 => 0.00078469418245314
314 => 0.000791201397852
315 => 0.0007881327152393
316 => 0.00079015963416822
317 => 0.0007824351093609
318 => 0.00079886447287708
319 => 0.00082495825608243
320 => 0.0008250421518622
321 => 0.00082197345270816
322 => 0.00082071780713037
323 => 0.00082386647868665
324 => 0.00082557450384067
325 => 0.00083575673028609
326 => 0.00084668266493982
327 => 0.00089766923461002
328 => 0.00088335240987268
329 => 0.00092859072768868
330 => 0.00096436836362076
331 => 0.00097509651227038
401 => 0.00096522712031113
402 => 0.0009314644635526
403 => 0.00092980790653877
404 => 0.00098026356996201
405 => 0.00096600753402916
406 => 0.00096431182391728
407 => 0.0009462723332743
408 => 0.00095693590647868
409 => 0.0009546036265937
410 => 0.00095092200869622
411 => 0.00097126736353924
412 => 0.001009352051563
413 => 0.0010034161957786
414 => 0.0009989853547919
415 => 0.00097957069938676
416 => 0.00099126265836092
417 => 0.00098709937571495
418 => 0.0010049874800465
419 => 0.00099439096331052
420 => 0.00096589953053577
421 => 0.00097043688511414
422 => 0.00096975107309751
423 => 0.0009838650358026
424 => 0.00097962837452862
425 => 0.00096892379698778
426 => 0.0010092218822397
427 => 0.0010066051487331
428 => 0.0010103150785768
429 => 0.0010119483044274
430 => 0.0010364770387884
501 => 0.0010465256764241
502 => 0.0010488068930935
503 => 0.0010583523216579
504 => 0.0010485693941352
505 => 0.0010877080793354
506 => 0.0011137330211879
507 => 0.0011439623303809
508 => 0.0011881354759841
509 => 0.0012047449873554
510 => 0.0012017446277922
511 => 0.0012352362026474
512 => 0.0012954198181864
513 => 0.001213909457208
514 => 0.0012997400652409
515 => 0.0012725670856997
516 => 0.0012081404400286
517 => 0.0012039921235876
518 => 0.0012476225960448
519 => 0.0013443907846776
520 => 0.0013201514509608
521 => 0.0013444304315441
522 => 0.0013161077110397
523 => 0.001314701249244
524 => 0.0013430548602267
525 => 0.0014093046177624
526 => 0.0013778318412922
527 => 0.0013327078987808
528 => 0.0013660267157249
529 => 0.0013371628729769
530 => 0.0012721245567849
531 => 0.0013201329155991
601 => 0.0012880310932594
602 => 0.0012974001116449
603 => 0.0013648733674173
604 => 0.0013567548067707
605 => 0.0013672609760059
606 => 0.0013487178623001
607 => 0.0013313956701182
608 => 0.0012990625120478
609 => 0.0012894902579486
610 => 0.001292135684608
611 => 0.0012894889470065
612 => 0.0012713988422232
613 => 0.0012674922858176
614 => 0.0012609811873248
615 => 0.0012629992490072
616 => 0.0012507564789517
617 => 0.0012738611155318
618 => 0.0012781495396784
619 => 0.0012949631674146
620 => 0.0012967088140233
621 => 0.0013435345279417
622 => 0.0013177437115896
623 => 0.0013350464178705
624 => 0.0013334987009614
625 => 0.0012095367607989
626 => 0.0012266176224279
627 => 0.0012531900828528
628 => 0.0012412192254495
629 => 0.0012242952338304
630 => 0.001210628203191
701 => 0.0011899212542467
702 => 0.0012190658872441
703 => 0.0012573879804495
704 => 0.0012976807255481
705 => 0.0013460898186987
706 => 0.0013352854726514
707 => 0.0012967757512243
708 => 0.0012985032691961
709 => 0.0013091821055449
710 => 0.0012953520421987
711 => 0.001291273286523
712 => 0.0013086217471486
713 => 0.0013087412164624
714 => 0.0012928280571636
715 => 0.0012751434926804
716 => 0.0012750693937095
717 => 0.0012719225962723
718 => 0.0013166675193131
719 => 0.0013412727027636
720 => 0.001344093647393
721 => 0.0013410828307139
722 => 0.0013422415745586
723 => 0.001327924360447
724 => 0.0013606492662682
725 => 0.0013906808760075
726 => 0.0013826317630656
727 => 0.0013705649985169
728 => 0.0013609532393397
729 => 0.0013803675380696
730 => 0.0013795030499081
731 => 0.0013904185760954
801 => 0.0013899233847764
802 => 0.0013862529038733
803 => 0.00138263189415
804 => 0.0013969887884025
805 => 0.0013928542334225
806 => 0.0013887132563365
807 => 0.0013804078928388
808 => 0.0013815367296757
809 => 0.001369472048624
810 => 0.0013638903751272
811 => 0.0012799553980434
812 => 0.0012575252295121
813 => 0.0012645822171402
814 => 0.001266905560702
815 => 0.0012571439226122
816 => 0.0012711396040739
817 => 0.0012689583919432
818 => 0.0012774442123774
819 => 0.0012721426401816
820 => 0.0012723602185538
821 => 0.0012879510119673
822 => 0.0012924770856233
823 => 0.001290175088032
824 => 0.001291787328237
825 => 0.0013289407232791
826 => 0.0013236586986028
827 => 0.0013208527282682
828 => 0.0013216300012272
829 => 0.0013311234902383
830 => 0.0013337811488361
831 => 0.0013225204626068
901 => 0.0013278310673298
902 => 0.0013504429482241
903 => 0.0013583558268155
904 => 0.001383609936882
905 => 0.0013728815420697
906 => 0.0013925739750617
907 => 0.0014531018004339
908 => 0.0015014556155481
909 => 0.0014569874488631
910 => 0.0015457830724992
911 => 0.0016149232024756
912 => 0.0016122694891282
913 => 0.0016002133082268
914 => 0.0015214991084341
915 => 0.0014490651282223
916 => 0.0015096592283788
917 => 0.0015098136952013
918 => 0.0015046086082597
919 => 0.0014722802602998
920 => 0.0015034836518264
921 => 0.0015059604637317
922 => 0.0015045741077022
923 => 0.0014797880391192
924 => 0.001441944293624
925 => 0.0014493388709087
926 => 0.0014614513393462
927 => 0.0014385199096684
928 => 0.001431191928422
929 => 0.0014448160397645
930 => 0.0014887157652063
1001 => 0.0014804167764053
1002 => 0.0014802000562689
1003 => 0.0015157066496784
1004 => 0.0014902915915996
1005 => 0.0014494321402089
1006 => 0.0014391145898628
1007 => 0.0014024942368689
1008 => 0.001427788045119
1009 => 0.0014286983242482
1010 => 0.0014148451639661
1011 => 0.0014505562478167
1012 => 0.0014502271638922
1013 => 0.001484129523115
1014 => 0.0015489381008043
1015 => 0.0015297710153452
1016 => 0.0015074817803291
1017 => 0.0015099052381888
1018 => 0.001536484589306
1019 => 0.001520414106873
1020 => 0.0015261931644033
1021 => 0.0015364758420102
1022 => 0.0015426796367151
1023 => 0.0015090126076018
1024 => 0.0015011632126353
1025 => 0.0014851061052972
1026 => 0.0014809171057128
1027 => 0.0014939952845971
1028 => 0.00149054964652
1029 => 0.0014286218188122
1030 => 0.0014221500162536
1031 => 0.0014223484971984
1101 => 0.0014060748419473
1102 => 0.0013812536115645
1103 => 0.0014464823230118
1104 => 0.0014412435446074
1105 => 0.0014354603386981
1106 => 0.0014361687484235
1107 => 0.0014644823212566
1108 => 0.0014480590191437
1109 => 0.0014917230595371
1110 => 0.0014827470454934
1111 => 0.0014735408305591
1112 => 0.001472268251227
1113 => 0.0014687246439147
1114 => 0.0014565722959224
1115 => 0.0014418976054788
1116 => 0.001432208103748
1117 => 0.0013211362694736
1118 => 0.0013417505558398
1119 => 0.0013654654132528
1120 => 0.0013736516870004
1121 => 0.0013596484992822
1122 => 0.0014571252271239
1123 => 0.0014749351646097
1124 => 0.0014209877022517
1125 => 0.0014108963347049
1126 => 0.0014577868155002
1127 => 0.0014295061234525
1128 => 0.00144224091735
1129 => 0.0014147152585035
1130 => 0.0014706452722052
1201 => 0.0014702191792092
1202 => 0.0014484611406426
1203 => 0.0014668508858465
1204 => 0.0014636552150679
1205 => 0.0014390904431139
1206 => 0.0014714240192916
1207 => 0.0014714400563419
1208 => 0.0014504984172821
1209 => 0.0014260431675745
1210 => 0.001421671146534
1211 => 0.0014183774159784
1212 => 0.0014414308615426
1213 => 0.0014621005087493
1214 => 0.0015005615977607
1215 => 0.0015102316293511
1216 => 0.0015479744064189
1217 => 0.0015255004203375
1218 => 0.0015354628472806
1219 => 0.0015462784709986
1220 => 0.0015514638787404
1221 => 0.0015430145350894
1222 => 0.0016016446034226
1223 => 0.0016065947775688
1224 => 0.0016082545281412
1225 => 0.0015884847989776
1226 => 0.0016060449456376
1227 => 0.0015978291345463
1228 => 0.0016192043925877
1229 => 0.0016225563059816
1230 => 0.0016197173545848
1231 => 0.0016207813048023
]
'min_raw' => 0.00072681187294219
'max_raw' => 0.0016225563059816
'avg_raw' => 0.0011746840894619
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.000726'
'max' => '$0.001622'
'avg' => '$0.001174'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.00011207291611704
'max_diff' => -0.00015483480390229
'year' => 2031
]
6 => [
'items' => [
101 => 0.0015707508845328
102 => 0.0015681565433103
103 => 0.0015327825166559
104 => 0.0015471976939892
105 => 0.0015202492109021
106 => 0.0015287948524891
107 => 0.0015325616898748
108 => 0.0015305941077907
109 => 0.0015480127064873
110 => 0.0015332033392106
111 => 0.0014941189840819
112 => 0.0014550239804469
113 => 0.0014545331745224
114 => 0.0014442401501494
115 => 0.0014368001787892
116 => 0.0014382333812203
117 => 0.0014432841735232
118 => 0.0014365066175587
119 => 0.0014379529527545
120 => 0.0014619717538864
121 => 0.0014667885531591
122 => 0.0014504191871854
123 => 0.0013846938207126
124 => 0.0013685646509206
125 => 0.0013801579783118
126 => 0.0013746171145247
127 => 0.0011094232958884
128 => 0.0011717266499015
129 => 0.0011347081125689
130 => 0.0011517679577128
131 => 0.001113981617
201 => 0.0011320152393399
202 => 0.0011286850877762
203 => 0.001228867037339
204 => 0.0012273028339923
205 => 0.0012280515353585
206 => 0.0011923140684166
207 => 0.0012492448236331
208 => 0.0012772909608164
209 => 0.0012721003672476
210 => 0.0012734067278219
211 => 0.0012509591249752
212 => 0.0012282688772221
213 => 0.0012031019004599
214 => 0.0012498590325518
215 => 0.001244660437634
216 => 0.0012565841439799
217 => 0.0012869094864103
218 => 0.0012913750082779
219 => 0.0012973767149529
220 => 0.0012952255303405
221 => 0.0013464754752253
222 => 0.0013402687687417
223 => 0.0013552251455758
224 => 0.0013244587436851
225 => 0.001289643639572
226 => 0.0012962608526724
227 => 0.0012956235618385
228 => 0.0012875101180755
229 => 0.0012801856638227
301 => 0.0012679925111441
302 => 0.0013065734504663
303 => 0.0013050071347869
304 => 0.0013303639649937
305 => 0.0013258818989516
306 => 0.0012959495649743
307 => 0.0012970186041381
308 => 0.001304208406277
309 => 0.0013290923935713
310 => 0.0013364796552314
311 => 0.001333057581299
312 => 0.0013411573764679
313 => 0.0013475591243141
314 => 0.0013419613374343
315 => 0.0014212141949645
316 => 0.001388302883028
317 => 0.0014043436274704
318 => 0.0014081692505024
319 => 0.0013983699975502
320 => 0.0014004951046306
321 => 0.0014037140628004
322 => 0.0014232589464706
323 => 0.0014745503765789
324 => 0.0014972670018213
325 => 0.0015656110896816
326 => 0.0014953807023256
327 => 0.0014912135217821
328 => 0.0015035243557995
329 => 0.0015436495703299
330 => 0.0015761672879371
331 => 0.0015869552908595
401 => 0.0015883811035362
402 => 0.0016086201141915
403 => 0.001620220737664
404 => 0.0016061625659592
405 => 0.0015942497373913
406 => 0.0015515794641357
407 => 0.0015565186644524
408 => 0.0015905448566646
409 => 0.0016386088572971
410 => 0.0016798527700468
411 => 0.0016654105892973
412 => 0.001775594233825
413 => 0.0017865184921201
414 => 0.0017850091128472
415 => 0.001809896198991
416 => 0.0017605004011625
417 => 0.0017393827405923
418 => 0.001596825426144
419 => 0.0016368782166667
420 => 0.0016950972999093
421 => 0.0016873917859318
422 => 0.0016451115314804
423 => 0.0016798206966824
424 => 0.0016683447612107
425 => 0.0016592932147672
426 => 0.0017007601037537
427 => 0.0016551655559471
428 => 0.0016946424594169
429 => 0.0016440129223806
430 => 0.0016654765599625
501 => 0.0016532927611917
502 => 0.0016611771721866
503 => 0.0016150850666151
504 => 0.0016399552479589
505 => 0.0016140503853057
506 => 0.0016140381030278
507 => 0.001613466251749
508 => 0.0016439432077808
509 => 0.0016449370602228
510 => 0.0016224145436672
511 => 0.0016191686971637
512 => 0.0016311702929042
513 => 0.001617119567515
514 => 0.0016236938134904
515 => 0.0016173186947283
516 => 0.0016158835212144
517 => 0.0016044478144811
518 => 0.0015995209975891
519 => 0.0016014529294409
520 => 0.0015948582500516
521 => 0.0015908847171796
522 => 0.0016126758160484
523 => 0.0016010337109732
524 => 0.0016108914964743
525 => 0.0015996573057441
526 => 0.0015607147061692
527 => 0.0015383184053432
528 => 0.0014647594447271
529 => 0.0014856206747082
530 => 0.0014994516917682
531 => 0.0014948805407123
601 => 0.0015047011419809
602 => 0.0015053040471391
603 => 0.0015021112695576
604 => 0.0014984144421382
605 => 0.0014966150309979
606 => 0.0015100263674082
607 => 0.0015178120995992
608 => 0.0015008398193653
609 => 0.0014968634515739
610 => 0.0015140233639556
611 => 0.0015244909005955
612 => 0.0016017773099437
613 => 0.0015960516831074
614 => 0.0016104218828691
615 => 0.0016088040189046
616 => 0.0016238662776072
617 => 0.0016484867048004
618 => 0.0015984264923368
619 => 0.0016071152142686
620 => 0.0016049849403028
621 => 0.0016282427128734
622 => 0.0016283153211007
623 => 0.0016143711246327
624 => 0.0016219304997567
625 => 0.0016177110639431
626 => 0.0016253361547493
627 => 0.0015959752138703
628 => 0.0016317336705432
629 => 0.0016520064112527
630 => 0.0016522878982771
701 => 0.001661897016479
702 => 0.0016716604370947
703 => 0.0016904004727519
704 => 0.0016711377876714
705 => 0.0016364860923963
706 => 0.0016389878328709
707 => 0.0016186715566096
708 => 0.001619013076884
709 => 0.0016171900148939
710 => 0.0016226611611599
711 => 0.0015971758228064
712 => 0.0016031571807786
713 => 0.0015947832445907
714 => 0.0016070970109667
715 => 0.0015938494338847
716 => 0.0016049839130202
717 => 0.0016097891851013
718 => 0.0016275207425306
719 => 0.0015912304684353
720 => 0.0015172321429193
721 => 0.0015327874880857
722 => 0.0015097799107385
723 => 0.001511909349618
724 => 0.0015162111550523
725 => 0.0015022675961767
726 => 0.0015049275877981
727 => 0.0015048325541793
728 => 0.0015040136057939
729 => 0.0015003863476045
730 => 0.0014951261055988
731 => 0.0015160812907325
801 => 0.0015196419850253
802 => 0.0015275569673615
803 => 0.0015511065860102
804 => 0.0015487534237689
805 => 0.0015525915290162
806 => 0.0015442129668115
807 => 0.0015122980070884
808 => 0.0015140311429489
809 => 0.0014924189109973
810 => 0.0015270042939996
811 => 0.0015188140187999
812 => 0.0015135336950977
813 => 0.0015120929098537
814 => 0.0015357009034521
815 => 0.0015427647851466
816 => 0.001538363048114
817 => 0.001529334957041
818 => 0.0015466715608168
819 => 0.0015513101046146
820 => 0.001552348503508
821 => 0.0015830656414345
822 => 0.0015540652502932
823 => 0.00156104593268
824 => 0.0016155072239383
825 => 0.0015661183479115
826 => 0.0015922807370463
827 => 0.0015910002242406
828 => 0.001604384017235
829 => 0.0015899023625714
830 => 0.0015900818800371
831 => 0.0016019657815194
901 => 0.0015852769851604
902 => 0.0015811446044869
903 => 0.001575435750183
904 => 0.0015879008247012
905 => 0.0015953730731281
906 => 0.0016555939076866
907 => 0.0016944993132151
908 => 0.0016928103269554
909 => 0.0017082444997192
910 => 0.0017012912635283
911 => 0.0016788374296967
912 => 0.0017171633860939
913 => 0.0017050354498637
914 => 0.0017060352621911
915 => 0.0017059980491263
916 => 0.0017140620664768
917 => 0.0017083479711277
918 => 0.0016970849026546
919 => 0.0017045618531324
920 => 0.0017267657229928
921 => 0.0017956872163373
922 => 0.0018342565971012
923 => 0.0017933652911862
924 => 0.00182157156645
925 => 0.0018046578522152
926 => 0.0018015841271993
927 => 0.0018192997524924
928 => 0.0018370463866423
929 => 0.0018359160027678
930 => 0.0018230328576746
1001 => 0.0018157554959092
1002 => 0.0018708621172919
1003 => 0.0019114637372098
1004 => 0.0019086949789281
1005 => 0.0019209153775351
1006 => 0.0019567948458077
1007 => 0.0019600752147305
1008 => 0.0019596619636446
1009 => 0.0019515312269986
1010 => 0.0019868592230507
1011 => 0.0020163304588944
1012 => 0.0019496491963846
1013 => 0.0019750405482265
1014 => 0.0019864395441266
1015 => 0.0020031766520376
1016 => 0.0020314149585485
1017 => 0.0020620892492603
1018 => 0.0020664269302934
1019 => 0.0020633491380232
1020 => 0.0020431186187297
1021 => 0.0020766827936468
1022 => 0.0020963439001365
1023 => 0.0021080516391148
1024 => 0.0021377405171815
1025 => 0.0019865099404446
1026 => 0.0018794614215829
1027 => 0.0018627442495632
1028 => 0.0018967392762354
1029 => 0.0019057034936636
1030 => 0.0019020900288585
1031 => 0.0017815971884541
1101 => 0.0018621098796951
1102 => 0.001948734765771
1103 => 0.0019520623804362
1104 => 0.0019954286096467
1105 => 0.0020095504315195
1106 => 0.0020444659301756
1107 => 0.0020422819562282
1108 => 0.002050783324524
1109 => 0.002048829007176
1110 => 0.0021135026161108
1111 => 0.0021848472108897
1112 => 0.0021823767744344
1113 => 0.002172120144824
1114 => 0.0021873529888107
1115 => 0.0022609882563739
1116 => 0.0022542091009178
1117 => 0.0022607944729964
1118 => 0.0023476146033553
1119 => 0.0024604931228414
1120 => 0.002408049717722
1121 => 0.0025218368166478
1122 => 0.0025934597638266
1123 => 0.0027173242450213
1124 => 0.0027018158019303
1125 => 0.0027500353354999
1126 => 0.0026740524520877
1127 => 0.0024995803930988
1128 => 0.0024719695219116
1129 => 0.002527247185247
1130 => 0.0026631419266415
1201 => 0.0025229673762322
1202 => 0.0025513245052163
1203 => 0.0025431576501611
1204 => 0.0025427224731622
1205 => 0.0025593314092207
1206 => 0.0025352392812039
1207 => 0.0024370836175724
1208 => 0.0024820677797798
1209 => 0.0024646972344346
1210 => 0.002483971149555
1211 => 0.0025879845202926
1212 => 0.0025419977297204
1213 => 0.0024935543815162
1214 => 0.0025543130906038
1215 => 0.0026316798062301
1216 => 0.0026268383362075
1217 => 0.0026174438607863
1218 => 0.0026704000268569
1219 => 0.0027578680985046
1220 => 0.0027815103667958
1221 => 0.0027989626059034
1222 => 0.0028013689748184
1223 => 0.0028261560701923
1224 => 0.0026928696112143
1225 => 0.0029043986446514
1226 => 0.0029409238653544
1227 => 0.0029340586376775
1228 => 0.0029746548832726
1229 => 0.0029627104379912
1230 => 0.0029454048108045
1231 => 0.0030097584951418
]
'min_raw' => 0.0011094232958884
'max_raw' => 0.0030097584951418
'avg_raw' => 0.0020595908955151
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.0011094'
'max' => '$0.0030097'
'avg' => '$0.002059'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.00038261142294625
'max_diff' => 0.0013872021891602
'year' => 2032
]
7 => [
'items' => [
101 => 0.0029359821891236
102 => 0.0028312660109094
103 => 0.00277381664449
104 => 0.0028494706044993
105 => 0.0028956698379176
106 => 0.0029262045923841
107 => 0.002935444390636
108 => 0.0027032162596069
109 => 0.0025780581769448
110 => 0.0026582830729909
111 => 0.0027561629829936
112 => 0.0026923258833722
113 => 0.0026948281768177
114 => 0.0026038132488522
115 => 0.0027642157845696
116 => 0.0027408464843132
117 => 0.0028620864553827
118 => 0.0028331515632754
119 => 0.002932018053174
120 => 0.0029059831930068
121 => 0.0030140524419714
122 => 0.0030571641912415
123 => 0.003129555528074
124 => 0.0031828068901337
125 => 0.0032140771084714
126 => 0.0032121997618541
127 => 0.003336107945669
128 => 0.0032630436186955
129 => 0.0031712576040772
130 => 0.0031695974846539
131 => 0.0032171347622426
201 => 0.0033167598548534
202 => 0.0033425911918812
203 => 0.0033570273853039
204 => 0.0033349178525495
205 => 0.0032556117621873
206 => 0.0032213677944599
207 => 0.0032505446471069
208 => 0.0032148638635152
209 => 0.0032764589062542
210 => 0.0033610420559261
211 => 0.0033435759699968
212 => 0.0034019624765963
213 => 0.003462386368487
214 => 0.0035487952476976
215 => 0.0035713857284348
216 => 0.0036087269340543
217 => 0.0036471633005839
218 => 0.003659508025624
219 => 0.0036830779360689
220 => 0.0036829537110065
221 => 0.0037539832225701
222 => 0.0038323309734257
223 => 0.003861905435619
224 => 0.0039299102806873
225 => 0.0038134543666819
226 => 0.0039017875152041
227 => 0.0039814662262933
228 => 0.0038864699821651
301 => 0.0040174001734097
302 => 0.0040224838960416
303 => 0.0040992420721088
304 => 0.0040214329555774
305 => 0.0039752301505566
306 => 0.0041086159174552
307 => 0.0041731570884451
308 => 0.0041537167624895
309 => 0.0040057749220798
310 => 0.0039196664254373
311 => 0.0036943038806355
312 => 0.0039612555498907
313 => 0.004091279920898
314 => 0.0040054381903705
315 => 0.0040487317661333
316 => 0.0042849274775061
317 => 0.0043748555118571
318 => 0.0043561511093565
319 => 0.0043593118454785
320 => 0.004407835380505
321 => 0.0046230154572114
322 => 0.0044940745674138
323 => 0.0045926450463411
324 => 0.0046449264729418
325 => 0.0046934883756441
326 => 0.0045742356907542
327 => 0.0044190896998822
328 => 0.0043699484519875
329 => 0.0039969029220251
330 => 0.003977484282136
331 => 0.0039665840111212
401 => 0.0038978593442468
402 => 0.0038438605813541
403 => 0.0038009187602563
404 => 0.0036882265981825
405 => 0.0037262568947693
406 => 0.0035466491091057
407 => 0.0036615558054642
408 => 0.0033748974427635
409 => 0.0036136350453199
410 => 0.0034837010223152
411 => 0.0035709482241985
412 => 0.0035706438269303
413 => 0.0034099940665127
414 => 0.0033173346373787
415 => 0.0033763808319818
416 => 0.0034396830396891
417 => 0.0034499536099154
418 => 0.0035320265745645
419 => 0.0035549313748456
420 => 0.003485528760671
421 => 0.0033689570853556
422 => 0.0033960340268145
423 => 0.0033167859240243
424 => 0.0031779066721186
425 => 0.0032776521754364
426 => 0.0033117096757693
427 => 0.0033267514081292
428 => 0.0031901796142699
429 => 0.0031472657915214
430 => 0.0031244188323719
501 => 0.0033513273817635
502 => 0.0033637579443162
503 => 0.0033001614287919
504 => 0.0035876237094309
505 => 0.00352256214198
506 => 0.0035952518532937
507 => 0.0033935770781842
508 => 0.0034012813261845
509 => 0.003305805255666
510 => 0.003359265475443
511 => 0.0033214815152079
512 => 0.0033549464179892
513 => 0.0033750051427353
514 => 0.0034704655465701
515 => 0.0036147250497915
516 => 0.0034562069455612
517 => 0.0033871383375269
518 => 0.0034299881134948
519 => 0.0035441027135746
520 => 0.0037169921741144
521 => 0.0036146381337501
522 => 0.0036600611187795
523 => 0.0036699840202804
524 => 0.0035945119402684
525 => 0.0037197749373567
526 => 0.003786904395131
527 => 0.0038557653283235
528 => 0.003915555347175
529 => 0.0038282607573221
530 => 0.0039216784816527
531 => 0.0038464002862904
601 => 0.0037788679629337
602 => 0.0037789703815921
603 => 0.0037366063686606
604 => 0.0036545207553967
605 => 0.0036393829088916
606 => 0.0037181318981105
607 => 0.003781281129907
608 => 0.0037864824031022
609 => 0.0038214450625494
610 => 0.0038421356042663
611 => 0.0040449310405188
612 => 0.0041264970425914
613 => 0.0042262344059604
614 => 0.0042650877298824
615 => 0.0043820223052002
616 => 0.0042875881386692
617 => 0.0042671567127215
618 => 0.0039835116820088
619 => 0.0040299585398979
620 => 0.0041043244408336
621 => 0.0039847379483245
622 => 0.0040605880528053
623 => 0.0040755624701547
624 => 0.0039806744450694
625 => 0.004031358239137
626 => 0.0038967571087912
627 => 0.0036176589866106
628 => 0.0037200856533511
629 => 0.0037955061565153
630 => 0.003687871799219
701 => 0.0038808022186478
702 => 0.0037680962505097
703 => 0.0037323738694505
704 => 0.0035930081249902
705 => 0.003658783391696
706 => 0.0037477453817267
707 => 0.0036927772148292
708 => 0.0038068444146534
709 => 0.0039683939902156
710 => 0.0040835238382047
711 => 0.0040923620783603
712 => 0.0040183412992041
713 => 0.0041369600701963
714 => 0.0041378240784439
715 => 0.0040040216201928
716 => 0.0039220683595292
717 => 0.0039034484062753
718 => 0.0039499647001604
719 => 0.0040064440683185
720 => 0.0040954962902167
721 => 0.0041493086828408
722 => 0.0042896228629169
723 => 0.0043275878569227
724 => 0.0043692998750681
725 => 0.0044250399948203
726 => 0.0044919703000562
727 => 0.0043455306025444
728 => 0.0043513489247243
729 => 0.004214986305997
730 => 0.0040692632915092
731 => 0.0041798488948753
801 => 0.00432442486069
802 => 0.0042912589743899
803 => 0.0042875271346635
804 => 0.0042938030539572
805 => 0.0042687970587835
806 => 0.0041556958693781
807 => 0.0040988971601097
808 => 0.0041721819859621
809 => 0.0042111296093704
810 => 0.0042715339766868
811 => 0.0042640878634336
812 => 0.0044196830266854
813 => 0.0044801426021715
814 => 0.004464674455551
815 => 0.0044675209667909
816 => 0.0045769801402829
817 => 0.0046987212532018
818 => 0.0048127478706052
819 => 0.0049287406433851
820 => 0.004788906828524
821 => 0.0047179078410882
822 => 0.0047911606730783
823 => 0.0047522916893161
824 => 0.0049756443993031
825 => 0.0049911088563411
826 => 0.0052144454153849
827 => 0.0054264184043403
828 => 0.005293281967868
829 => 0.0054188236308646
830 => 0.0055546071749573
831 => 0.0058165556615984
901 => 0.0057283406267565
902 => 0.0056607692925735
903 => 0.0055969147082729
904 => 0.0057297859615727
905 => 0.0059007227062728
906 => 0.0059375408438694
907 => 0.005997200292387
908 => 0.0059344756770811
909 => 0.0060100205673273
910 => 0.0062767272260036
911 => 0.0062046607325444
912 => 0.0061023147265656
913 => 0.0063128540188107
914 => 0.0063890473702234
915 => 0.0069238122132058
916 => 0.0075989749175049
917 => 0.0073194531245677
918 => 0.0071459449275797
919 => 0.0071867234695414
920 => 0.0074332700334515
921 => 0.0075124529647827
922 => 0.0072972064614313
923 => 0.0073732351652938
924 => 0.0077921607985532
925 => 0.0080169009600535
926 => 0.0077116736341056
927 => 0.0068695635473066
928 => 0.0060930995885191
929 => 0.0062990527950173
930 => 0.0062757040928725
1001 => 0.0067257874237727
1002 => 0.0062029419705094
1003 => 0.0062117453470305
1004 => 0.0066711359245671
1005 => 0.0065485783944287
1006 => 0.0063500508915869
1007 => 0.0060945490589935
1008 => 0.0056222302903856
1009 => 0.0052038843854464
1010 => 0.0060243570443403
1011 => 0.0059889767713561
1012 => 0.0059377408930122
1013 => 0.0060517607959654
1014 => 0.0066054090795918
1015 => 0.0065926456946696
1016 => 0.0065114515517307
1017 => 0.0065730365935375
1018 => 0.0063392547359989
1019 => 0.0063995056438005
1020 => 0.0060929765926609
1021 => 0.00623154052556
1022 => 0.006349624940729
1023 => 0.0063733321353439
1024 => 0.0064267456553305
1025 => 0.0059703329751854
1026 => 0.0061752488689983
1027 => 0.0062956177585906
1028 => 0.0057517867363547
1029 => 0.006284867967831
1030 => 0.0059623878458506
1031 => 0.0058529332489616
1101 => 0.0060002994441261
1102 => 0.0059428706945522
1103 => 0.0058934968279978
1104 => 0.0058659453621098
1105 => 0.0059741548316251
1106 => 0.005969106730534
1107 => 0.0057920550358539
1108 => 0.005561098317694
1109 => 0.0056386149732043
1110 => 0.0056104524455349
1111 => 0.0055083878122226
1112 => 0.0055771670517443
1113 => 0.0052742980892674
1114 => 0.0047532277810847
1115 => 0.0050974627874854
1116 => 0.0050842101141946
1117 => 0.0050775275153605
1118 => 0.0053362106087138
1119 => 0.0053113441981223
1120 => 0.005266211419406
1121 => 0.0055075589133479
1122 => 0.0054194638314772
1123 => 0.005690952115991
1124 => 0.005869771858933
1125 => 0.0058244173879102
1126 => 0.0059925982204581
1127 => 0.0056404008003856
1128 => 0.0057573866556258
1129 => 0.0057814972782554
1130 => 0.0055045807227361
1201 => 0.0053154126504231
1202 => 0.0053027972966738
1203 => 0.0049748059282492
1204 => 0.0051500162698078
1205 => 0.0053041941196828
1206 => 0.0052303548942771
1207 => 0.0052069796013978
1208 => 0.0053263989032357
1209 => 0.0053356788057457
1210 => 0.0051240960450786
1211 => 0.0051680908009759
1212 => 0.0053515562465873
1213 => 0.0051634679424704
1214 => 0.0047980430916211
1215 => 0.0047074126762167
1216 => 0.0046953209081518
1217 => 0.004449524033586
1218 => 0.0047134690339402
1219 => 0.0045982499679994
1220 => 0.0049622256167701
1221 => 0.0047543246782328
1222 => 0.0047453624842988
1223 => 0.0047318148136996
1224 => 0.0045202472900198
1225 => 0.0045665671318881
1226 => 0.0047205413409695
1227 => 0.0047754810734133
1228 => 0.0047697504092115
1229 => 0.0047197867833447
1230 => 0.0047426598754113
1231 => 0.004668977676351
]
'min_raw' => 0.0025780581769448
'max_raw' => 0.0080169009600535
'avg_raw' => 0.0052974795684991
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.002578'
'max' => '$0.008016'
'avg' => '$0.005297'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.0014686348810563
'max_diff' => 0.0050071424649117
'year' => 2033
]
8 => [
'items' => [
101 => 0.0046429589583005
102 => 0.0045608367271207
103 => 0.0044401397341318
104 => 0.0044569233912846
105 => 0.0042177910660875
106 => 0.004087499083607
107 => 0.0040514359800772
108 => 0.0040032108908562
109 => 0.0040568831322267
110 => 0.0042171136342556
111 => 0.0040238416540115
112 => 0.003692490400336
113 => 0.003712405175277
114 => 0.0037571477618196
115 => 0.0036737702477993
116 => 0.0035948604281234
117 => 0.0036634661141756
118 => 0.0035230682198669
119 => 0.0037741141765879
120 => 0.0037673240870068
121 => 0.0038608984950945
122 => 0.003919412492812
123 => 0.003784556672205
124 => 0.0037506407980112
125 => 0.0037699608213425
126 => 0.00345064387156
127 => 0.0038348034878752
128 => 0.0038381257161897
129 => 0.0038096787803779
130 => 0.0040142319164682
131 => 0.0044459028353419
201 => 0.0042834908717391
202 => 0.0042206000505046
203 => 0.0041010445533647
204 => 0.0042603451548006
205 => 0.0042481133540868
206 => 0.0041927965124865
207 => 0.0041593407140875
208 => 0.0042209840484483
209 => 0.0041517024227836
210 => 0.0041392575390825
211 => 0.0040638550840206
212 => 0.0040369398381567
213 => 0.0040170128616458
214 => 0.0039950752184916
215 => 0.0040434641927697
216 => 0.0039338084109558
217 => 0.0038015742877771
218 => 0.0037905804512278
219 => 0.0038209354005283
220 => 0.0038075055951231
221 => 0.0037905161544863
222 => 0.003758078685512
223 => 0.0037484551813842
224 => 0.0037797269011391
225 => 0.0037444229527904
226 => 0.0037965158516846
227 => 0.0037823494656169
228 => 0.0037032171846231
301 => 0.0036045890639819
302 => 0.0036037110668287
303 => 0.0035824618000191
304 => 0.0035553976638884
305 => 0.0035478690403604
306 => 0.0036576883346531
307 => 0.0038850109872239
308 => 0.0038403821111542
309 => 0.0038726310478657
310 => 0.0040312638985407
311 => 0.0040816885115141
312 => 0.004045898315598
313 => 0.003996906487985
314 => 0.0039990618797622
315 => 0.0041664817855508
316 => 0.0041769235597134
317 => 0.0042033065543782
318 => 0.004237216158356
319 => 0.0040516732677847
320 => 0.0039903228263019
321 => 0.0039612515835344
322 => 0.0038717234077975
323 => 0.0039682718697641
324 => 0.0039120172155935
325 => 0.0039196078903738
326 => 0.0039146644534652
327 => 0.003917363904291
328 => 0.0037740440041267
329 => 0.0038262622430744
330 => 0.0037394392929298
331 => 0.0036231931090198
401 => 0.0036228034110502
402 => 0.0036512544998763
403 => 0.0036343306789513
404 => 0.0035887891119933
405 => 0.0035952580766296
406 => 0.0035385831394517
407 => 0.0036021394401359
408 => 0.0036039620074241
409 => 0.0035794893697256
410 => 0.003677406620009
411 => 0.003717523397343
412 => 0.0037014149829551
413 => 0.0037163931880478
414 => 0.0038422366424422
415 => 0.0038627546164433
416 => 0.0038718673451533
417 => 0.0038596574958871
418 => 0.00371869337538
419 => 0.0037249457335502
420 => 0.003679070077802
421 => 0.0036403099829523
422 => 0.0036418601834764
423 => 0.0036617879106888
424 => 0.003748813464171
425 => 0.0039319536110379
426 => 0.0039389036457378
427 => 0.0039473272905409
428 => 0.003913064093742
429 => 0.0039027299857329
430 => 0.0039163633416566
501 => 0.0039851411517683
502 => 0.004162056352369
503 => 0.0040995227047077
504 => 0.0040486818757649
505 => 0.0040932829893368
506 => 0.0040864169974975
507 => 0.0040284611166838
508 => 0.0040268344881374
509 => 0.0039155986232399
510 => 0.0038744772567054
511 => 0.0038401131649482
512 => 0.0038025884738467
513 => 0.0037803425791227
514 => 0.0038145223839971
515 => 0.0038223397097754
516 => 0.0037476049690568
517 => 0.0037374189000512
518 => 0.0037984489025835
519 => 0.0037715918738968
520 => 0.0037992149939233
521 => 0.0038056237947162
522 => 0.0038045918301813
523 => 0.0037765500077224
524 => 0.0037944230291385
525 => 0.0037521480052852
526 => 0.003706180266348
527 => 0.0036768557127974
528 => 0.0036512661504869
529 => 0.0036654647269309
530 => 0.0036148493944658
531 => 0.0035986565309249
601 => 0.0037883680516384
602 => 0.0039285099917321
603 => 0.0039264722724208
604 => 0.0039140681801724
605 => 0.0038956382151694
606 => 0.0039837928850352
607 => 0.0039530815607622
608 => 0.0039754266151878
609 => 0.0039811143693581
610 => 0.0039983294881896
611 => 0.0040044824134824
612 => 0.0039858839997662
613 => 0.0039234654517295
614 => 0.0037679243645997
615 => 0.0036955195686656
616 => 0.0036716247800101
617 => 0.003672493310195
618 => 0.0036485353704043
619 => 0.0036555920573922
620 => 0.0036460813426513
621 => 0.0036280703498211
622 => 0.0036643525988773
623 => 0.0036685337900884
624 => 0.0036600650796181
625 => 0.0036620597675057
626 => 0.0035919424618452
627 => 0.0035972733283077
628 => 0.0035675903864303
629 => 0.0035620251926615
630 => 0.0034869893003847
701 => 0.0033540523405899
702 => 0.0034277123208191
703 => 0.0033387414228628
704 => 0.0033050467956777
705 => 0.0034645519201826
706 => 0.0034485420296658
707 => 0.0034211400564331
708 => 0.0033806068269504
709 => 0.0033655726578534
710 => 0.0032742298056593
711 => 0.0032688327826565
712 => 0.0033141047666684
713 => 0.0032932133037608
714 => 0.0032638737776227
715 => 0.0031576089880509
716 => 0.0030381321815095
717 => 0.0030417384352946
718 => 0.0030797417845104
719 => 0.0031902416478053
720 => 0.0031470674395489
721 => 0.003115744056092
722 => 0.0031098781279479
723 => 0.0031833024998229
724 => 0.0032872133689075
725 => 0.0033359660238074
726 => 0.0032876536234418
727 => 0.0032321549392261
728 => 0.0032355328869782
729 => 0.0032580048600254
730 => 0.0032603663466561
731 => 0.0032242424085887
801 => 0.0032344110855575
802 => 0.0032189639353985
803 => 0.0031241648033864
804 => 0.0031224501876996
805 => 0.0030991849518613
806 => 0.0030984804897663
807 => 0.0030589005198203
808 => 0.0030533630084214
809 => 0.0029747745757612
810 => 0.0030265017201258
811 => 0.002991805867483
812 => 0.002939511033626
813 => 0.0029304953845579
814 => 0.0029302243632602
815 => 0.0029839194647205
816 => 0.0030258742616025
817 => 0.0029924094166943
818 => 0.0029847901201975
819 => 0.0030661442730784
820 => 0.0030557912155648
821 => 0.003046825534528
822 => 0.0032779092902854
823 => 0.0030949884659131
824 => 0.0030152245457311
825 => 0.0029165015477483
826 => 0.0029486462536961
827 => 0.0029554196155432
828 => 0.0027180086015525
829 => 0.0026216909827441
830 => 0.002588638405622
831 => 0.0025696161801933
901 => 0.0025782848471872
902 => 0.0024915876933298
903 => 0.0025498496145606
904 => 0.002474777207648
905 => 0.0024621910743224
906 => 0.0025964298375687
907 => 0.0026151083772629
908 => 0.0025354199239599
909 => 0.0025865928113691
910 => 0.0025680368110382
911 => 0.0024760641085937
912 => 0.0024725514278657
913 => 0.0024264027587758
914 => 0.0023541890277934
915 => 0.0023211854149814
916 => 0.0023039968468784
917 => 0.0023110891850762
918 => 0.0023075030818542
919 => 0.0022841013325973
920 => 0.0023088444427285
921 => 0.0022456360209023
922 => 0.0022204659180262
923 => 0.0022090971664991
924 => 0.0021529960539873
925 => 0.0022422778722715
926 => 0.0022598675152162
927 => 0.0022774918151912
928 => 0.0024308993138531
929 => 0.0024232355087451
930 => 0.0024925125744975
1001 => 0.0024898205951147
1002 => 0.002470061653748
1003 => 0.0023867019303103
1004 => 0.0024199276303284
1005 => 0.0023176640900929
1006 => 0.0023942868876821
1007 => 0.0023593194427069
1008 => 0.0023824643593619
1009 => 0.0023408477123233
1010 => 0.0023638800831037
1011 => 0.0022640386720911
1012 => 0.0021708081672942
1013 => 0.0022083268439926
1014 => 0.0022491139363448
1015 => 0.0023375507449224
1016 => 0.0022848785113215
1017 => 0.002303821438282
1018 => 0.0022403658039718
1019 => 0.0021094387051839
1020 => 0.0021101797383444
1021 => 0.0020900394565977
1022 => 0.0020726353126394
1023 => 0.0022909285509662
1024 => 0.0022637803360748
1025 => 0.002220523208716
1026 => 0.0022784245926557
1027 => 0.0022937346375879
1028 => 0.0022941704930437
1029 => 0.0023364138481151
1030 => 0.0023589591342893
1031 => 0.0023629328386943
1101 => 0.0024294036706273
1102 => 0.0024516838167197
1103 => 0.0025434525852702
1104 => 0.0023570463242726
1105 => 0.0023532074099953
1106 => 0.0022792393838686
1107 => 0.0022323276923109
1108 => 0.0022824514675243
1109 => 0.0023268542897858
1110 => 0.0022806191033287
1111 => 0.0022866564426019
1112 => 0.0022245894823368
1113 => 0.0022467755001097
1114 => 0.002265885087395
1115 => 0.0022553338965057
1116 => 0.0022395382530609
1117 => 0.0023232137647235
1118 => 0.0023184924644285
1119 => 0.0023964130245803
1120 => 0.0024571576733714
1121 => 0.0025660229434098
1122 => 0.0024524163588499
1123 => 0.0024482760833632
1124 => 0.0024887479403662
1125 => 0.0024516776206893
1126 => 0.0024751047831012
1127 => 0.0025622484653628
1128 => 0.0025640896740497
1129 => 0.0025332470562796
1130 => 0.0025313702801853
1201 => 0.0025372939423093
1202 => 0.002571989016392
1203 => 0.0025598654914355
1204 => 0.0025738951414452
1205 => 0.0025914394336119
1206 => 0.0026640100646392
1207 => 0.0026815065980932
1208 => 0.0026389990927125
1209 => 0.0026428370445121
1210 => 0.0026269380706426
1211 => 0.0026115798610982
1212 => 0.0026461028732675
1213 => 0.0027091943565585
1214 => 0.0027088018677154
1215 => 0.0027234378655157
1216 => 0.0027325559708941
1217 => 0.0026934143877488
1218 => 0.0026679346563971
1219 => 0.0026777052067147
1220 => 0.0026933285294476
1221 => 0.0026726387737183
1222 => 0.0025449320169302
1223 => 0.0025836700890005
1224 => 0.0025772221796131
1225 => 0.0025680395725528
1226 => 0.0026069910035721
1227 => 0.0026032340430277
1228 => 0.002490698488707
1229 => 0.0024979026497739
1230 => 0.0024911365976024
1231 => 0.0025129990963725
]
'min_raw' => 0.0020726353126394
'max_raw' => 0.0046429589583005
'avg_raw' => 0.0033577971354699
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.002072'
'max' => '$0.004642'
'avg' => '$0.003357'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.00050542286430541
'max_diff' => -0.003373942001753
'year' => 2034
]
9 => [
'items' => [
101 => 0.0024504969740091
102 => 0.0024697222058899
103 => 0.0024817800911001
104 => 0.002488882278122
105 => 0.0025145402476603
106 => 0.0025115295810781
107 => 0.0025143531003984
108 => 0.0025523970957708
109 => 0.0027448105692419
110 => 0.0027552832100666
111 => 0.0027037120964576
112 => 0.0027243137391492
113 => 0.0026847630902654
114 => 0.0027113137058274
115 => 0.0027294789626824
116 => 0.0026473936599327
117 => 0.0026425331010331
118 => 0.0026028192125524
119 => 0.0026241592067123
120 => 0.0025902057416041
121 => 0.0025985367342998
122 => 0.0025752425524396
123 => 0.0026171674419627
124 => 0.0026640459829188
125 => 0.002675889353654
126 => 0.0026447345441414
127 => 0.0026221764088523
128 => 0.0025825717543963
129 => 0.0026484351774039
130 => 0.0026676956494427
131 => 0.0026483340103437
201 => 0.0026438474955043
202 => 0.0026353455579905
203 => 0.002645651221739
204 => 0.0026675907527756
205 => 0.0026572444750983
206 => 0.0026640783737821
207 => 0.0026380345990851
208 => 0.0026934273452415
209 => 0.0027814043571281
210 => 0.002781687217607
211 => 0.0027713408841594
212 => 0.0027671073874275
213 => 0.0027777233534127
214 => 0.00278348207947
215 => 0.0028178121668311
216 => 0.0028546497183405
217 => 0.0030265544977522
218 => 0.0029782843235815
219 => 0.0031308084705366
220 => 0.0032514352679964
221 => 0.003287605970184
222 => 0.0032543306261345
223 => 0.0031404974716397
224 => 0.0031349122740104
225 => 0.0033050270659438
226 => 0.0032569618454716
227 => 0.0032512446404387
228 => 0.0031904232382588
301 => 0.0032263762198243
302 => 0.0032185127753575
303 => 0.0032060999435738
304 => 0.0032746957278944
305 => 0.0034031009125545
306 => 0.003383087760349
307 => 0.0033681488706111
308 => 0.0033026910044247
309 => 0.0033421112604126
310 => 0.0033280744623006
311 => 0.003388385454962
312 => 0.0033526585589614
313 => 0.003256597704153
314 => 0.003271895711902
315 => 0.0032695834488061
316 => 0.0033171696594717
317 => 0.0033028854601922
318 => 0.0032667942296435
319 => 0.0034026620375928
320 => 0.003393839537881
321 => 0.0034063478253681
322 => 0.0034118543603515
323 => 0.0034945547007909
324 => 0.0035284343841532
325 => 0.0035361256654238
326 => 0.0035683087442692
327 => 0.003535324921104
328 => 0.0036672837308322
329 => 0.0037550286392914
330 => 0.0038569488657785
331 => 0.0040058817102504
401 => 0.0040618818374777
402 => 0.0040517659157318
403 => 0.0041646850986634
404 => 0.004367598360339
405 => 0.0040927804874286
406 => 0.0043821643749131
407 => 0.0042905487772332
408 => 0.0040733298432282
409 => 0.0040593435047213
410 => 0.0042064466887932
411 => 0.0045327073929077
412 => 0.0044509827869453
413 => 0.004532841065086
414 => 0.0044373490354764
415 => 0.0044326070513363
416 => 0.0045282032303501
417 => 0.0047515689132923
418 => 0.0046454562500639
419 => 0.0044933177274334
420 => 0.0046056544450062
421 => 0.0045083379839723
422 => 0.0042890567601005
423 => 0.0044509202936793
424 => 0.0043426867583832
425 => 0.0043742750579938
426 => 0.0046017658506629
427 => 0.004574393556623
428 => 0.0046098158397168
429 => 0.0045472964372188
430 => 0.0044888934568807
501 => 0.0043798799570174
502 => 0.0043476064340084
503 => 0.0043565256746884
504 => 0.0043476020140757
505 => 0.004286609962788
506 => 0.0042734387351195
507 => 0.0042514861119606
508 => 0.0042582901478194
509 => 0.0042170127938143
510 => 0.0042949116891584
511 => 0.004309370410577
512 => 0.0043660587303796
513 => 0.0043719442997978
514 => 0.0045298204635406
515 => 0.0044428649255522
516 => 0.0045012022078148
517 => 0.0044959839721974
518 => 0.0040780376361935
519 => 0.0041356269537231
520 => 0.0042252178592758
521 => 0.0041848572777619
522 => 0.0041277968584229
523 => 0.0040817175104205
524 => 0.0040119025863417
525 => 0.0041101657513058
526 => 0.004239371364111
527 => 0.0043752211673603
528 => 0.0045384358047326
529 => 0.0045020081976989
530 => 0.0043721699832444
531 => 0.0043779944306979
601 => 0.0044139988730202
602 => 0.0043673698488643
603 => 0.0043536180393341
604 => 0.0044121095855642
605 => 0.0044125123846967
606 => 0.0043588600570995
607 => 0.0042992353132475
608 => 0.0042989854833937
609 => 0.0042883758361319
610 => 0.0044392364681548
611 => 0.0045221945620371
612 => 0.0045317055738071
613 => 0.0045215543951652
614 => 0.0045254611809386
615 => 0.0044771896939654
616 => 0.0045875239987214
617 => 0.0046887776676974
618 => 0.0046616395214427
619 => 0.0046209555822921
620 => 0.0045885488651547
621 => 0.0046540055287854
622 => 0.0046510908465923
623 => 0.0046878933052307
624 => 0.0046862237331255
625 => 0.0046738484504959
626 => 0.004661639963403
627 => 0.0047100452347415
628 => 0.0046961052939609
629 => 0.004682143700602
630 => 0.0046541415877075
701 => 0.0046579475399157
702 => 0.0046172706254209
703 => 0.0045984516235266
704 => 0.0043154589881355
705 => 0.0042398341089079
706 => 0.0042636272353993
707 => 0.0042714605504285
708 => 0.0042385485060727
709 => 0.0042857359232684
710 => 0.0042783818142823
711 => 0.0043069923503373
712 => 0.0042891177295352
713 => 0.0042898513102078
714 => 0.004342416758716
715 => 0.0043576767320473
716 => 0.0043499153864479
717 => 0.0043553511668623
718 => 0.0044806164322139
719 => 0.0044628077172386
720 => 0.0044533471923488
721 => 0.0044559678223977
722 => 0.0044879757834126
723 => 0.0044969362649269
724 => 0.004458970075109
725 => 0.004476875149707
726 => 0.0045531126848533
727 => 0.0045797915074837
728 => 0.0046649375027586
729 => 0.0046287659706164
730 => 0.0046951603833306
731 => 0.0048992341724907
801 => 0.0050622624361039
802 => 0.0049123349074573
803 => 0.0052117155520588
804 => 0.0054448263274838
805 => 0.0054358791476567
806 => 0.0053952308920119
807 => 0.0051298404717611
808 => 0.0048856242502981
809 => 0.0050899214895204
810 => 0.0050904422851973
811 => 0.0050728929711659
812 => 0.0049638956889259
813 => 0.0050691001020092
814 => 0.0050774508462735
815 => 0.0050727766501276
816 => 0.0049892086893919
817 => 0.0048616158592892
818 => 0.0048865471928771
819 => 0.0049273852258797
820 => 0.0048500703096997
821 => 0.0048253635093042
822 => 0.0048712981519005
823 => 0.0050193091412086
824 => 0.0049913285210492
825 => 0.0049905978339783
826 => 0.0051103107926498
827 => 0.0050246221499144
828 => 0.0048868616568349
829 => 0.0048520753154946
830 => 0.0047286072386241
831 => 0.0048138870790968
901 => 0.0048169561487346
902 => 0.0047702492516466
903 => 0.0048906516641172
904 => 0.0048895421346898
905 => 0.0050038463057966
906 => 0.0052223529502665
907 => 0.0051577297834378
908 => 0.0050825800713965
909 => 0.0050907509287709
910 => 0.0051803650667734
911 => 0.0051261823132453
912 => 0.0051456668091896
913 => 0.0051803355746552
914 => 0.0052012521016376
915 => 0.0050877413624252
916 => 0.0050612765792685
917 => 0.0050071389208067
918 => 0.0049930154162412
919 => 0.0050371094094391
920 => 0.0050254922000952
921 => 0.0048166982053156
922 => 0.0047948780711423
923 => 0.0047955472635054
924 => 0.0047406794986358
925 => 0.0046569929874373
926 => 0.0048769161422051
927 => 0.0048592532350546
928 => 0.004839754752561
929 => 0.0048421432054097
930 => 0.0049376043930071
1001 => 0.004882232083295
1002 => 0.0050294484440075
1003 => 0.0049991851859739
1004 => 0.0049681457895655
1005 => 0.0049638551994987
1006 => 0.0049519076800383
1007 => 0.0049109351903324
1008 => 0.0048614584469477
1009 => 0.0048287896153629
1010 => 0.004454303171319
1011 => 0.0045238056770461
1012 => 0.0046037619745324
1013 => 0.00463136256802
1014 => 0.0045841498429566
1015 => 0.0049127994364829
1016 => 0.0049728468841664
1017 => 0.0047909592483349
1018 => 0.004756935498094
1019 => 0.0049150300278843
1020 => 0.0048196797001505
1021 => 0.0048626159468907
1022 => 0.0047698112663098
1023 => 0.004958383212414
1024 => 0.0049569466101291
1025 => 0.004883587864004
1026 => 0.0049455901738899
1027 => 0.0049348157467453
1028 => 0.0048519939030447
1029 => 0.0049610088125859
1030 => 0.004961062882621
1031 => 0.0048904566844322
1101 => 0.0048080041026321
1102 => 0.0047932635284493
1103 => 0.00478215848592
1104 => 0.00485988478718
1105 => 0.0049295739458458
1106 => 0.0050592481927153
1107 => 0.0050918513793625
1108 => 0.0052191037873632
1109 => 0.005143331174206
1110 => 0.005176920192199
1111 => 0.005213385822687
1112 => 0.0052308687869221
1113 => 0.0052023812348886
1114 => 0.0054000566036945
1115 => 0.0054167464614385
1116 => 0.0054223424263734
1117 => 0.0053556874042199
1118 => 0.0054148926646944
1119 => 0.0053871924839905
1120 => 0.0054592606588501
1121 => 0.0054705618688807
1122 => 0.005460990146037
1123 => 0.0054645773284782
1124 => 0.005295896273527
1125 => 0.0052871492709643
1126 => 0.0051678832703633
1127 => 0.005216485047178
1128 => 0.0051256263549667
1129 => 0.0051544385822152
1130 => 0.0051671387374533
1201 => 0.0051605048970844
1202 => 0.0052192329187176
1203 => 0.0051693021029872
1204 => 0.0050375264708885
1205 => 0.004905714936607
1206 => 0.0049040601501654
1207 => 0.004869356499856
1208 => 0.0048442721169728
1209 => 0.0048491042590324
1210 => 0.0048661333579166
1211 => 0.0048432823547884
1212 => 0.0048481587748811
1213 => 0.0049291398398362
1214 => 0.0049453800148825
1215 => 0.0048901895546294
1216 => 0.0046685918927679
1217 => 0.0046142112707114
1218 => 0.004653298983431
1219 => 0.0046346175743222
1220 => 0.0037404980995489
1221 => 0.0039505582074852
1222 => 0.0038257476243167
1223 => 0.0038832660832996
1224 => 0.0037558667974283
1225 => 0.0038166684142147
1226 => 0.0038054405757138
1227 => 0.004143211013145
1228 => 0.0041379371923526
1229 => 0.0041404614912815
1230 => 0.0040199701263766
1231 => 0.0042119161423672
]
'min_raw' => 0.0024504969740091
'max_raw' => 0.0054705618688807
'avg_raw' => 0.0039605294214449
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.00245'
'max' => '$0.00547'
'avg' => '$0.00396'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.00037786166136973
'max_diff' => 0.00082760291058027
'year' => 2035
]
10 => [
'items' => [
101 => 0.0043064756519997
102 => 0.0042889752033866
103 => 0.0042933796892701
104 => 0.0042176960290307
105 => 0.0041411942745489
106 => 0.0040563420552929
107 => 0.0042139869906193
108 => 0.0041964595648998
109 => 0.0042366611733316
110 => 0.0043389051825834
111 => 0.0043539610013329
112 => 0.0043741961744134
113 => 0.0043669433053017
114 => 0.0045397360726377
115 => 0.00451880972839
116 => 0.004569236197107
117 => 0.0044655051250907
118 => 0.0043481235708605
119 => 0.0043704339668276
120 => 0.0043682852962871
121 => 0.0043409302541773
122 => 0.0043162353452871
123 => 0.0042751252797325
124 => 0.0044052036102923
125 => 0.0043999226676225
126 => 0.0044854149910223
127 => 0.0044703033924333
128 => 0.0043693844386202
129 => 0.0043729887787987
130 => 0.0043972296986859
131 => 0.0044811277991934
201 => 0.0045060344676423
202 => 0.0044944967064576
203 => 0.0045218057313792
204 => 0.0045433896711986
205 => 0.0045245163419084
206 => 0.0047917228843293
207 => 0.004680760098341
208 => 0.0047348425881576
209 => 0.0047477409433063
210 => 0.0047147020778161
211 => 0.0047218670247078
212 => 0.0047327199669177
213 => 0.004798616906792
214 => 0.0049715495444555
215 => 0.0050481402324844
216 => 0.0052785670963372
217 => 0.0050417804420374
218 => 0.0050277305018918
219 => 0.0050692373382964
220 => 0.0052045223005387
221 => 0.0053141580557657
222 => 0.005350530560813
223 => 0.0053553377877996
224 => 0.0054235750252667
225 => 0.0054626873372337
226 => 0.0054152892298206
227 => 0.0053751242965768
228 => 0.0052312584911525
229 => 0.0052479113498639
301 => 0.0053626330325404
302 => 0.0055246841663944
303 => 0.0056637408977879
304 => 0.0056150480770702
305 => 0.0059865399273715
306 => 0.0060233718269207
307 => 0.0060182828493209
308 => 0.0061021913978156
309 => 0.0059356500167324
310 => 0.0058644503497319
311 => 0.0053838084110355
312 => 0.0055188491906793
313 => 0.0057151388945585
314 => 0.0056891592162014
315 => 0.0055466083864056
316 => 0.0056636327602006
317 => 0.0056249408425335
318 => 0.0055944229217402
319 => 0.005734231433084
320 => 0.0055805062318444
321 => 0.0057136053680824
322 => 0.0055429043491229
323 => 0.0056152705017737
324 => 0.0055741919735722
325 => 0.0056007748157136
326 => 0.0054453720637313
327 => 0.0055292236165124
328 => 0.0054418835634573
329 => 0.0054418421529001
330 => 0.0054399141163881
331 => 0.0055426693014824
401 => 0.0055460201443793
402 => 0.0054700839073402
403 => 0.0054591403092359
404 => 0.0054996045271994
405 => 0.0054522315255596
406 => 0.0054743970548647
407 => 0.0054529028968618
408 => 0.0054480641091592
409 => 0.0054095078254923
410 => 0.0053928967183615
411 => 0.005399410361483
412 => 0.0053771759394962
413 => 0.005363778895995
414 => 0.0054372491072371
415 => 0.0053979969371503
416 => 0.0054312331492159
417 => 0.0053933562908228
418 => 0.0052620585974705
419 => 0.0051865479055757
420 => 0.004938538734136
421 => 0.0050088738275019
422 => 0.0050555060671704
423 => 0.0050400941122381
424 => 0.0050732049550674
425 => 0.005075237691902
426 => 0.0050644730193731
427 => 0.0050520089076246
428 => 0.0050459420673341
429 => 0.0050911593243909
430 => 0.0051174094640553
501 => 0.00506018623628
502 => 0.0050467796346503
503 => 0.0051046354773121
504 => 0.0051399275079136
505 => 0.0054005040329958
506 => 0.0053811996823666
507 => 0.0054296498141584
508 => 0.0054241950728465
509 => 0.0054749785296756
510 => 0.0055579880189009
511 => 0.0053892065174876
512 => 0.0054185011501077
513 => 0.0054113187827011
514 => 0.0054897339867285
515 => 0.0054899787904362
516 => 0.0054429649584918
517 => 0.0054684519195012
518 => 0.005454225797064
519 => 0.0054799343230838
520 => 0.0053809418609947
521 => 0.0055015039942432
522 => 0.0055698549549429
523 => 0.0055708040080986
524 => 0.0056032018210034
525 => 0.0056361198752696
526 => 0.0056993032138751
527 => 0.0056343577262487
528 => 0.0055175271163245
529 => 0.0055259619090004
530 => 0.0054574641651485
531 => 0.0054586156245978
601 => 0.0054524690438161
602 => 0.0054709153954351
603 => 0.0053849897978467
604 => 0.0054051563638551
605 => 0.0053769230533481
606 => 0.0054184397764046
607 => 0.005373774645356
608 => 0.0054113153191461
609 => 0.0054275166294609
610 => 0.0054872998133116
611 => 0.005364944620493
612 => 0.0051154540996177
613 => 0.0051679000318859
614 => 0.0050903283785222
615 => 0.0050975079303771
616 => 0.0051120117677413
617 => 0.0050650000854838
618 => 0.0050739684329501
619 => 0.0050736480204693
620 => 0.0050708868788107
621 => 0.0050586573245783
622 => 0.0050409220513976
623 => 0.0051115739211202
624 => 0.0051235790505281
625 => 0.0051502649660809
626 => 0.0052296641495369
627 => 0.005221730298748
628 => 0.005234670738557
629 => 0.0052064218311113
630 => 0.0050988183161737
701 => 0.0051046617047309
702 => 0.0050317945557882
703 => 0.0051484015892548
704 => 0.0051207875045923
705 => 0.0051029845245701
706 => 0.0050981268165276
707 => 0.0051777228152018
708 => 0.0052015391855195
709 => 0.0051866984217947
710 => 0.0051562595824207
711 => 0.0052147111524537
712 => 0.0052303503267208
713 => 0.0052338513610886
714 => 0.0053374163362101
715 => 0.0052396394927345
716 => 0.0052631753507774
717 => 0.0054467953966204
718 => 0.005280277352875
719 => 0.0053684856744425
720 => 0.0053641683361157
721 => 0.0054092927286228
722 => 0.0053604668188478
723 => 0.0053610720745168
724 => 0.0054011394780719
725 => 0.0053448720359731
726 => 0.0053309394260185
727 => 0.0053116916251536
728 => 0.0053537184941755
729 => 0.0053789117014422
730 => 0.0055819504496407
731 => 0.0057131227406687
801 => 0.0057074282055729
802 => 0.0057594655966258
803 => 0.0057360222753486
804 => 0.0056603176069088
805 => 0.0057895362447347
806 => 0.0057486460609891
807 => 0.0057520169980555
808 => 0.0057518915316096
809 => 0.0057790799291185
810 => 0.0057598144577034
811 => 0.0057218402359842
812 => 0.0057470492965441
813 => 0.005821911194003
814 => 0.0060542848207591
815 => 0.0061843241808328
816 => 0.0060464562880004
817 => 0.0061415557143515
818 => 0.0060845299459312
819 => 0.0060741666674395
820 => 0.0061338961349805
821 => 0.0061937301510474
822 => 0.0061899189828935
823 => 0.0061464825597396
824 => 0.0061219464264584
825 => 0.0063077422478714
826 => 0.0064446334441393
827 => 0.006435298382284
828 => 0.0064765003093883
829 => 0.0065974704416942
830 => 0.0066085304345451
831 => 0.0066071371296569
901 => 0.0065797237833849
902 => 0.0066988345885967
903 => 0.0067981989178596
904 => 0.0065733783857706
905 => 0.0066589871012732
906 => 0.0066974196118029
907 => 0.0067538499396725
908 => 0.0068490573616096
909 => 0.0069524778743548
910 => 0.0069671026688052
911 => 0.0069567256772818
912 => 0.0068885170690338
913 => 0.0070016810281429
914 => 0.0070679698213676
915 => 0.0071074432807408
916 => 0.0072075414059541
917 => 0.0066976569579039
918 => 0.0063367354026727
919 => 0.0062803722900529
920 => 0.0063949888959352
921 => 0.006425212380856
922 => 0.0064130293319815
923 => 0.0060067793080165
924 => 0.0062782334677521
925 => 0.0065702953191136
926 => 0.0065815146042837
927 => 0.0067277268738005
928 => 0.0067753395821987
929 => 0.00689305962364
930 => 0.0068856962029961
1001 => 0.0069143591597521
1002 => 0.0069077700423671
1003 => 0.0071258216302579
1004 => 0.0073663649126756
1005 => 0.0073580356636863
1006 => 0.0073234547208598
1007 => 0.0073748133178841
1008 => 0.0076230797635238
1009 => 0.007600223367598
1010 => 0.0076224264093368
1011 => 0.0079151465404298
1012 => 0.0082957243498038
1013 => 0.0081189077479622
1014 => 0.0085025488963519
1015 => 0.0087440306633197
1016 => 0.0091616484096098
1017 => 0.0091093606109635
1018 => 0.0092719361349737
1019 => 0.0090157545385938
1020 => 0.0084275098104627
1021 => 0.0083344178305256
1022 => 0.0085207903318241
1023 => 0.0089789689403037
1024 => 0.0085063606569238
1025 => 0.0086019686971252
1026 => 0.0085744335751154
1027 => 0.0085729663454802
1028 => 0.0086289645330005
1029 => 0.0085477362413332
1030 => 0.0082167975683899
1031 => 0.008368464811966
1101 => 0.008309898805562
1102 => 0.0083748821560522
1103 => 0.0087255704974755
1104 => 0.0085705228223664
1105 => 0.0084071926916892
1106 => 0.0086120449214159
1107 => 0.0088728922047213
1108 => 0.0088565688505197
1109 => 0.0088248947207358
1110 => 0.009003440131924
1111 => 0.00929834484231
1112 => 0.0093780564005042
1113 => 0.0094368978431321
1114 => 0.0094450110839362
1115 => 0.0095285825065691
1116 => 0.0090791979043614
1117 => 0.0097923828090802
1118 => 0.0099155301407897
1119 => 0.0098923835463623
1120 => 0.010029256622726
1121 => 0.0099889850915246
1122 => 0.0099306379612242
1123 => 0.010147610900998
1124 => 0.0098988689343607
1125 => 0.0095458110284616
1126 => 0.0093521164785917
1127 => 0.009607189086754
1128 => 0.0097629530277514
1129 => 0.0098659030843034
1130 => 0.0098970557092119
1201 => 0.0091140823517969
1202 => 0.0086921031378434
1203 => 0.0089625869759861
1204 => 0.0092925959263174
1205 => 0.0090773646879797
1206 => 0.009085801345036
1207 => 0.0087789381609408
1208 => 0.0093197465090594
1209 => 0.0092409552816526
1210 => 0.0096497243088179
1211 => 0.0095521682999085
1212 => 0.0098855035732396
1213 => 0.00979772522449
1214 => 0.010162088242528
1215 => 0.010307442515159
1216 => 0.010551514961491
1217 => 0.010731055646567
1218 => 0.010836485370909
1219 => 0.010830155765717
1220 => 0.011247920858442
1221 => 0.011001579378862
1222 => 0.010692116422282
1223 => 0.01068651921374
1224 => 0.010846794464077
1225 => 0.011182687419416
1226 => 0.011269779575692
1227 => 0.01131845220972
1228 => 0.0112439083764
1229 => 0.010976522355769
1230 => 0.010861066427739
1231 => 0.010959438223501
]
'min_raw' => 0.0040563420552929
'max_raw' => 0.01131845220972
'avg_raw' => 0.0076873971325063
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.004056'
'max' => '$0.011318'
'avg' => '$0.007687'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.0016058450812838
'max_diff' => 0.0058478903408389
'year' => 2036
]
11 => [
'items' => [
101 => 0.010839137970469
102 => 0.011046809957492
103 => 0.011331987952017
104 => 0.011273099823864
105 => 0.01146995400728
106 => 0.011673677377451
107 => 0.011965010946585
108 => 0.012041176329607
109 => 0.012167074811433
110 => 0.012296665704729
111 => 0.012338286807083
112 => 0.012417754405746
113 => 0.012417335572275
114 => 0.012656816529634
115 => 0.012920971441709
116 => 0.013020683805817
117 => 0.013249966888911
118 => 0.01285732764415
119 => 0.013155149021616
120 => 0.013423791359043
121 => 0.013103504889539
122 => 0.013544945170574
123 => 0.013562085296361
124 => 0.013820880846057
125 => 0.013558541977212
126 => 0.013402765994308
127 => 0.013852485420103
128 => 0.014070090484216
129 => 0.014004546067977
130 => 0.013505749824066
131 => 0.013215429015733
201 => 0.012455603461623
202 => 0.013355649652487
203 => 0.01379403589735
204 => 0.013504614509598
205 => 0.013650581822943
206 => 0.014446932154495
207 => 0.014750130800884
208 => 0.014687067601954
209 => 0.014697724244464
210 => 0.014861324730611
211 => 0.01558681938262
212 => 0.015152086170302
213 => 0.015484423421977
214 => 0.015660693901934
215 => 0.015824423747378
216 => 0.015422354994315
217 => 0.014899269454143
218 => 0.014733586305934
219 => 0.013475837256458
220 => 0.013410365956306
221 => 0.013373614931547
222 => 0.013141904918977
223 => 0.012959844319811
224 => 0.012815062971878
225 => 0.01243511347953
226 => 0.012563335279663
227 => 0.011957775090483
228 => 0.012345191039785
301 => 0.011378702356092
302 => 0.012183622851238
303 => 0.011745541220974
304 => 0.012039701253529
305 => 0.012038674956887
306 => 0.01149703307343
307 => 0.011184625338831
308 => 0.011383703706409
309 => 0.011597131519313
310 => 0.011631759463899
311 => 0.011908474194365
312 => 0.011985699327675
313 => 0.011751703568449
314 => 0.011358674026349
315 => 0.011449965824929
316 => 0.011182775313446
317 => 0.010714534219407
318 => 0.011050833147851
319 => 0.011165660388042
320 => 0.011216374638874
321 => 0.010755913300739
322 => 0.010611226351195
323 => 0.010534196233299
324 => 0.011299234249821
325 => 0.011341144759342
326 => 0.011126724667085
327 => 0.012095923816235
328 => 0.011876564199121
329 => 0.012121642635848
330 => 0.011441682051083
331 => 0.01146765746111
401 => 0.01114575322343
402 => 0.011325998086882
403 => 0.011198606826957
404 => 0.011311436083129
405 => 0.011379065474067
406 => 0.011700916890428
407 => 0.012187297877416
408 => 0.011652843021623
409 => 0.011419973387419
410 => 0.01156444439877
411 => 0.011949189740166
412 => 0.012532098627133
413 => 0.012187004833914
414 => 0.012340151599272
415 => 0.012373607354477
416 => 0.012119147967424
417 => 0.012541480907691
418 => 0.012767812561406
419 => 0.012999982005381
420 => 0.013201568228345
421 => 0.012907248423942
422 => 0.01322221280374
423 => 0.01296840711232
424 => 0.012740717169167
425 => 0.012741062480824
426 => 0.012598229253465
427 => 0.012321471877311
428 => 0.012270433570929
429 => 0.012535941286159
430 => 0.012748853330099
501 => 0.012766389785818
502 => 0.01288426883316
503 => 0.012954028439125
504 => 0.013637767411176
505 => 0.01391277288192
506 => 0.014249044365959
507 => 0.014380041060215
508 => 0.01477429414501
509 => 0.014455902759368
510 => 0.014387016780308
511 => 0.013430687755797
512 => 0.013587286579986
513 => 0.013838016407052
514 => 0.013434822198296
515 => 0.013690556121238
516 => 0.013741043414811
517 => 0.013421121813366
518 => 0.013592005763694
519 => 0.013138188655183
520 => 0.012197189850242
521 => 0.012542528508359
522 => 0.012796814000469
523 => 0.012433917250054
524 => 0.013084395629129
525 => 0.012704399588673
526 => 0.012583959086874
527 => 0.012114077749221
528 => 0.012335843653202
529 => 0.012635785213718
530 => 0.012450456201268
531 => 0.012835041729394
601 => 0.013379717402433
602 => 0.013767885723037
603 => 0.013797684466788
604 => 0.013548118241897
605 => 0.013948049709995
606 => 0.013950962774125
607 => 0.013499838444342
608 => 0.013223527304221
609 => 0.013160748831822
610 => 0.013317581764319
611 => 0.013508005897328
612 => 0.013808251680885
613 => 0.013989683919679
614 => 0.014462762974229
615 => 0.01459076460215
616 => 0.014731399583568
617 => 0.014919331288963
618 => 0.015144991485991
619 => 0.014651259821737
620 => 0.014670876701188
621 => 0.014211120611615
622 => 0.013719805294214
623 => 0.014092652376803
624 => 0.014580100339519
625 => 0.014468279238289
626 => 0.014455697080103
627 => 0.014476856780173
628 => 0.014392547321582
629 => 0.014011218765029
630 => 0.013819717951171
701 => 0.014066802858115
702 => 0.014198117489673
703 => 0.014401775031378
704 => 0.014376669940674
705 => 0.014901269896885
706 => 0.015105113576789
707 => 0.015052961640507
708 => 0.015062558851889
709 => 0.015431608097512
710 => 0.015842066759412
711 => 0.016226515461072
712 => 0.016617593192856
713 => 0.016146133723166
714 => 0.015906755680036
715 => 0.016153732717439
716 => 0.016022683224939
717 => 0.016775732480649
718 => 0.016827871977246
719 => 0.017580866778923
720 => 0.018295548510668
721 => 0.017846669719812
722 => 0.018269942201644
723 => 0.018727745900657
724 => 0.019610923512027
725 => 0.019313500363081
726 => 0.019085678892203
727 => 0.018870388703048
728 => 0.019318373410323
729 => 0.019894698579502
730 => 0.02001883350097
731 => 0.020219979496936
801 => 0.020008499077139
802 => 0.020263203948981
803 => 0.021162424069572
804 => 0.020919446855352
805 => 0.020574380150625
806 => 0.021284228073813
807 => 0.021541119277751
808 => 0.023344116281955
809 => 0.025620474477854
810 => 0.024678047237378
811 => 0.024093052237278
812 => 0.024230539938568
813 => 0.025061788892123
814 => 0.025328759673481
815 => 0.024603041059401
816 => 0.024859377142628
817 => 0.026271814163616
818 => 0.027029541308971
819 => 0.026000446069247
820 => 0.023161213117355
821 => 0.020543310669321
822 => 0.021237696284223
823 => 0.021158974504787
824 => 0.022676461878732
825 => 0.020913651929151
826 => 0.020943333127724
827 => 0.022492200533515
828 => 0.022078989263959
829 => 0.021409639927381
830 => 0.020548197660224
831 => 0.018955741955619
901 => 0.017545259529138
902 => 0.02031154038217
903 => 0.020192253321632
904 => 0.020019507980621
905 => 0.020403934044043
906 => 0.022270597886778
907 => 0.022227565243402
908 => 0.02195381352169
909 => 0.022161451789872
910 => 0.021373239935052
911 => 0.02157638007729
912 => 0.020542895980198
913 => 0.021010073954192
914 => 0.021408203804325
915 => 0.021488134266152
916 => 0.021668221678
917 => 0.020129394461175
918 => 0.020820282703936
919 => 0.021226114819084
920 => 0.019392550558546
921 => 0.021189871149011
922 => 0.020102606902911
923 => 0.019733573087624
924 => 0.0202304285034
925 => 0.020036803464665
926 => 0.019870336026403
927 => 0.01977744433558
928 => 0.020142280116995
929 => 0.020125260091719
930 => 0.01952831794175
1001 => 0.018749631241591
1002 => 0.019010984057684
1003 => 0.018916032129402
1004 => 0.018571914092264
1005 => 0.018803808100325
1006 => 0.017782664247698
1007 => 0.016025839323693
1008 => 0.017186451681494
1009 => 0.017141769368222
1010 => 0.017119238519688
1011 => 0.017991406629606
1012 => 0.017907567790179
1013 => 0.017755399475667
1014 => 0.018569119401837
1015 => 0.018272100682707
1016 => 0.019187442388652
1017 => 0.019790345636777
1018 => 0.019637429871176
1019 => 0.020204463290121
1020 => 0.019017005098709
1021 => 0.019411431077342
1022 => 0.019492721724888
1023 => 0.018559078224258
1024 => 0.017921284861162
1025 => 0.01787875131522
1026 => 0.016772905516951
1027 => 0.017363639416311
1028 => 0.017883460801518
1029 => 0.017634506697773
1030 => 0.017555695265819
1031 => 0.017958325779555
1101 => 0.01798961361877
1102 => 0.017276247568944
1103 => 0.017424578960068
1104 => 0.018043145519095
1105 => 0.017408992669858
1106 => 0.016176937272072
1107 => 0.015871370498922
1108 => 0.015830602258671
1109 => 0.015001880935083
1110 => 0.015891789931828
1111 => 0.015503320806671
1112 => 0.016730490118469
1113 => 0.016029537589011
1114 => 0.015999320926442
1115 => 0.015953644009149
1116 => 0.015240329331889
1117 => 0.015396499912697
1118 => 0.01591563470875
1119 => 0.016100867852454
1120 => 0.016081546517996
1121 => 0.015913090665037
1122 => 0.015990208891888
1123 => 0.015741784213429
1124 => 0.015654060288953
1125 => 0.015377179452939
1126 => 0.014970241114282
1127 => 0.01502682838617
1128 => 0.014220577056082
1129 => 0.013781288540454
1130 => 0.013659699269057
1201 => 0.013497105013781
1202 => 0.013678064722838
1203 => 0.014218293047364
1204 => 0.013566663072153
1205 => 0.01244948918618
1206 => 0.012516633240299
1207 => 0.012667485994655
1208 => 0.012386372884903
1209 => 0.012120322918558
1210 => 0.012351631778979
1211 => 0.011878270476049
1212 => 0.012724689446603
1213 => 0.012701796185512
1214 => 0.013017288835536
1215 => 0.013214572864157
1216 => 0.012759897049648
1217 => 0.012645547311873
1218 => 0.012710686119416
1219 => 0.011634086729226
1220 => 0.012929307696801
1221 => 0.012940508821514
1222 => 0.012844597991323
1223 => 0.013534263171095
1224 => 0.014989671812379
1225 => 0.014442088537851
1226 => 0.014230047743162
1227 => 0.013826958037456
1228 => 0.01436405113721
1229 => 0.014322810767107
1230 => 0.014136306173553
1231 => 0.014023507613441
]
'min_raw' => 0.010534196233299
'max_raw' => 0.027029541308971
'avg_raw' => 0.018781868771135
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.010534'
'max' => '$0.027029'
'avg' => '$0.018781'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.0064778541780059
'max_diff' => 0.015711089099252
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.00033065638260683
]
1 => [
'year' => 2028
'avg' => 0.00056750234278707
]
2 => [
'year' => 2029
'avg' => 0.0015503141181485
]
3 => [
'year' => 2030
'avg' => 0.0011960650333545
]
4 => [
'year' => 2031
'avg' => 0.0011746840894619
]
5 => [
'year' => 2032
'avg' => 0.0020595908955151
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.00033065638260683
'min' => '$0.00033'
'max_raw' => 0.0020595908955151
'max' => '$0.002059'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.0020595908955151
]
1 => [
'year' => 2033
'avg' => 0.0052974795684991
]
2 => [
'year' => 2034
'avg' => 0.0033577971354699
]
3 => [
'year' => 2035
'avg' => 0.0039605294214449
]
4 => [
'year' => 2036
'avg' => 0.0076873971325063
]
5 => [
'year' => 2037
'avg' => 0.018781868771135
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.0020595908955151
'min' => '$0.002059'
'max_raw' => 0.018781868771135
'max' => '$0.018781'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.018781868771135
]
]
]
]
'prediction_2025_max_price' => '$0.000565'
'last_price' => 0.00054819
'sma_50day_nextmonth' => '$0.000512'
'sma_200day_nextmonth' => '$0.00157'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'augmenter'
'sma_200day_date_nextmonth' => '4 févr. 2026'
'sma_50day_date_nextmonth' => '4 févr. 2026'
'daily_sma3' => '$0.000528'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.000521'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.00051'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.000529'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.00101'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.001869'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.001897'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.000533'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.000526'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.000523'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.0006042'
'daily_ema21_action' => 'SELL'
'daily_ema50' => '$0.0010054'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.001454'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.002036'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.001549'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.002174'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.004155'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.004691'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.000529'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.000555'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.000768'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.001245'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.002213'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.003331'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.004212'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '47.08'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 114.91
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.000511'
'vwma_10_action' => 'BUY'
'hma_9' => '0.000530'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 44.92
'cci_20_action' => 'NEUTRAL'
'adx_14' => 8.41
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '-0.000212'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 76.97
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '-0.000092'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 18
'buy_signals' => 16
'sell_pct' => 52.94
'buy_pct' => 47.06
'overall_action' => 'bearish'
'overall_action_label' => 'Baissier'
'overall_action_dir' => -1
'last_updated' => 1767691338
'last_updated_date' => '6 janvier 2026'
]
Prévision du prix de Mainframe pour 2026
La prévision du prix de Mainframe pour 2026 suggère que le prix moyen pourrait varier entre $0.000189 à la baisse et $0.000565 à la hausse. Sur le marché des cryptomonnaies, comparé au prix moyen d'aujourd'hui, Mainframe pourrait potentiellement gagner 3.13% d'ici 2026 si MFT atteint l'objectif de prix prévu.
Prévision du prix de Mainframe de 2027 à 2032
La prévision du prix de MFT pour 2027-2032 se situe actuellement dans une fourchette de prix comprise entre $0.00033 à la baisse et $0.002059 à la hausse. Compte tenu de la volatilité des prix sur le marché, si Mainframe atteint l'objectif de prix le plus élevé, il pourrait gagner 275.71% d'ici 2032 par rapport au prix actuel.
| Prévision du Prix de Mainframe | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2027 | $0.000182 | $0.00033 | $0.000478 |
| 2028 | $0.000329 | $0.000567 | $0.0008059 |
| 2029 | $0.000722 | $0.00155 | $0.002377 |
| 2030 | $0.000614 | $0.001196 | $0.001777 |
| 2031 | $0.000726 | $0.001174 | $0.001622 |
| 2032 | $0.0011094 | $0.002059 | $0.0030097 |
Prévision du prix de Mainframe de 2032 à 2037
La prévision du prix de Mainframe pour 2032-2037 est actuellement estimée entre $0.002059 à la baisse et $0.018781 à la hausse. Par rapport au prix actuel, Mainframe pourrait potentiellement gagner 3326.16% d'ici 2037 s'il atteint l'objectif de prix le plus élevé. Veuillez noter que ces informations sont à titre général seulement et ne doivent pas être considérées comme un conseil en investissement à long terme.
| Prévision du Prix de Mainframe | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2032 | $0.0011094 | $0.002059 | $0.0030097 |
| 2033 | $0.002578 | $0.005297 | $0.008016 |
| 2034 | $0.002072 | $0.003357 | $0.004642 |
| 2035 | $0.00245 | $0.00396 | $0.00547 |
| 2036 | $0.004056 | $0.007687 | $0.011318 |
| 2037 | $0.010534 | $0.018781 | $0.027029 |
Mainframe Histogramme des prix potentiels
Prévision du prix de Mainframe basée sur l'analyse technique
Au 6 janvier 2026, le sentiment global de prévision du prix pour Mainframe est Baissier, avec 16 indicateurs techniques montrant des signaux haussiers et 18 indiquant des signaux baissiers. La prévision du prix de MFT a été mise à jour pour la dernière fois le 6 janvier 2026.
Moyennes Mobiles Simples sur 50 et 200 jours de Mainframe et Indice de Force Relative sur 14 jours - RSI (14)
Selon nos indicateurs techniques, le SMA sur 200 jours de Mainframe devrait augmenter au cours du prochain mois, atteignant $0.00157 d'ici le 4 févr. 2026. Le SMA à court terme sur 50 jours pour Mainframe devrait atteindre $0.000512 d'ici le 4 févr. 2026.
Le Relative Strength Index (RSI), un oscillateur de momentum, est un outil couramment utilisé pour identifier si une cryptomonnaie est survendue (en dessous de 30) ou surachetée (au-dessus de 70). Actuellement, le RSI est à 47.08, ce qui suggère que le marché de MFT est dans un état NEUTRAL.
Moyennes Mobiles et Oscillateurs Populaires de MFT pour le Samedi 19 Octobre 2024
Les moyennes mobiles (MA) sont des indicateurs largement utilisés sur les marchés financiers, conçus pour lisser les mouvements de prix sur une période donnée. En tant qu'indicateurs retardés, ils sont basés sur des données historiques de prix. Le tableau ci-dessous met en évidence deux types : la moyenne mobile simple (SMA) et la moyenne mobile exponentielle (EMA).
Moyenne Mobile Simple Quotidienne (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 3 | $0.000528 | BUY |
| SMA 5 | $0.000521 | BUY |
| SMA 10 | $0.00051 | BUY |
| SMA 21 | $0.000529 | BUY |
| SMA 50 | $0.00101 | SELL |
| SMA 100 | $0.001869 | SELL |
| SMA 200 | $0.001897 | SELL |
Moyenne Mobile Exponentielle Quotidienne (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 3 | $0.000533 | BUY |
| EMA 5 | $0.000526 | BUY |
| EMA 10 | $0.000523 | BUY |
| EMA 21 | $0.0006042 | SELL |
| EMA 50 | $0.0010054 | SELL |
| EMA 100 | $0.001454 | SELL |
| EMA 200 | $0.002036 | SELL |
Moyenne Mobile Simple Hebdomadaire (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 21 | $0.001549 | SELL |
| SMA 50 | $0.002174 | SELL |
| SMA 100 | $0.004155 | SELL |
| SMA 200 | $0.004691 | SELL |
Moyenne Mobile Exponentielle Hebdomadaire (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 21 | $0.001245 | SELL |
| EMA 50 | $0.002213 | SELL |
| EMA 100 | $0.003331 | SELL |
| EMA 200 | $0.004212 | SELL |
Oscillateurs de Mainframe
Un oscillateur est un outil d'analyse technique qui établit des limites hautes et basses entre deux extrêmes, créant un indicateur de tendance qui fluctue à l'intérieur de ces limites. Les traders utilisent cet indicateur pour identifier les conditions de surachat ou de survente à court terme.
| Période | Valeur | Action |
|---|---|---|
| RSI (14) | 47.08 | NEUTRAL |
| Stoch RSI (14) | 114.91 | SELL |
| Stochastique Rapide (14) | 100 | SELL |
| Indice de Canal des Matières Premières (20) | 44.92 | NEUTRAL |
| Indice Directionnel Moyen (14) | 8.41 | NEUTRAL |
| Oscillateur Impressionnant (5, 34) | -0.000212 | NEUTRAL |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Plage de Pourcentage de Williams (14) | -0 | SELL |
| Oscillateur Ultime (7, 14, 28) | 76.97 | SELL |
| VWMA (10) | 0.000511 | BUY |
| Moyenne Mobile de Hull (9) | 0.000530 | BUY |
| Nuage Ichimoku B/L (9, 26, 52, 26) | -0.000092 | SELL |
Prévision du cours de Mainframe basée sur les flux monétaires mondiaux
Définitions des flux monétaires mondiaux utilisés pour la prédiction du cours de Mainframe
M0 : le total de toutes les devises physiques, plus les comptes à la banque centrale qui peuvent être échangés contre des devises physiques.
M1 : M0 plus le montant des comptes à vue, y compris les comptes de "chèques" et les comptes "courants".
M2 : M1 plus la plupart des comptes d'épargne, comptes du marché monétaire et comptes de certificats de dépôt (CD) de moins de 100 000 $.
Prédictions du cours de Mainframe par des sociétés Internet ou des niches technologiques
| Comparaison | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Action Facebook | $0.00077 | $0.001082 | $0.00152 | $0.002137 | $0.0030031 | $0.004219 |
| Action Amazon.com | $0.001143 | $0.002386 | $0.004979 | $0.01039 | $0.021681 | $0.045239 |
| Action Apple | $0.000777 | $0.0011029 | $0.001564 | $0.002218 | $0.003147 | $0.004464 |
| Action Netflix | $0.000864 | $0.001364 | $0.002153 | $0.003397 | $0.005361 | $0.008458 |
| Action Google | $0.0007099 | $0.000919 | $0.00119 | $0.001541 | $0.001996 | $0.002585 |
| Action Tesla | $0.001242 | $0.002817 | $0.006386 | $0.014477 | $0.032818 | $0.074396 |
| Action Kodak | $0.000411 | $0.0003082 | $0.000231 | $0.000173 | $0.000129 | $0.000097 |
| Action Nokia | $0.000363 | $0.00024 | $0.000159 | $0.0001055 | $0.000069 | $0.000046 |
Ce calcul montre la valeur potentielle des cryptomonnaies si l'on suppose que leur capitalisation se comportera comme celle de certaines sociétés Internet ou niches technologiques. En extrapolant les données, vous pourrez obtenir une potentielle image des cours futurs pour 2024, 2025, 2026, 2027, 2028, 2029 et 2030.
Aperçu des prévisions relatives à Mainframe
Vous vous posez peut-être des questions telles que : "Devrais-je investir dans Mainframe maintenant ?", "Devrais-je acheter MFT aujourd'hui ?", " Mainframe sera-t-il un bon ou un mauvais investissement à court ou à long terme ?".
Nous mettons régulièrement à jour les prévisions de Mainframe avec de nouvelles valeurs. Regardez nos prévisions similaires. Nous faisons une prévision des cours futurs pour une grande quantité de devises numériques comme Mainframe en utilisant des méthodes d'analyse technique.
Si vous souhaitez trouver des cryptomonnaies ayant un bon rendement, vous devriez consulter un maximum d'informations disponibles à propos de Mainframe afin de prendre une décision responsable concernant cet investissement.
Le cours de Mainframe est de $0.0005481 USD actuellement, mais ce cours peut subir une hausse ou une baisse, ce qui pourrait causer la perte de votre investissement, car les cryptomonnaies sont des actifs à haut risque.
Prévision à court terme de Mainframe
basée sur l'historique des cours sur 4 heures
Prévision à long terme de Mainframe
basée sur l'historique des cours sur 1 mois
Prévision du cours de Mainframe basée sur le modèle de croissance du Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si Mainframe présente 1 % de la précédente croissance annuelle moyenne du Bitcoin | $0.000562 | $0.000577 | $0.000592 | $0.0006074 |
| Si Mainframe présente 2 % de la précédente croissance annuelle moyenne du Bitcoin | $0.000576 | $0.0006066 | $0.000638 | $0.000671 |
| Si Mainframe présente 5 % de la précédente croissance annuelle moyenne du Bitcoin | $0.000619 | $0.000699 | $0.00079 | $0.000893 |
| Si Mainframe présente 10 % de la précédente croissance annuelle moyenne du Bitcoin | $0.00069 | $0.00087 | $0.001096 | $0.001381 |
| Si Mainframe présente 20 % de la précédente croissance annuelle moyenne du Bitcoin | $0.000833 | $0.001266 | $0.001924 | $0.002925 |
| Si Mainframe présente 50 % de la précédente croissance annuelle moyenne du Bitcoin | $0.00126 | $0.002899 | $0.006666 | $0.015331 |
| Si Mainframe présente 100 % de la précédente croissance annuelle moyenne du Bitcoin | $0.001973 | $0.0071018 | $0.025561 | $0.0920054 |
Boîte à questions
Est-ce que MFT est un bon investissement ?
La décision d'acquérir Mainframe dépend entièrement de votre tolérance individuelle au risque. Comme vous pouvez le discerner, la valeur de Mainframe a connu une hausse de 2.8611% au cours des 24 heures précédentes, et Mainframe a enregistré une déclin de sur une période de 30 jours précédents. Par conséquent, la détermination de si investir ou non dans Mainframe dépendra de la mesure dans laquelle cet investissement s'aligne avec vos aspirations de trading.
Est-ce que Mainframe peut monter ?
Il semble que la valeur moyenne de Mainframe pourrait potentiellement s'envoler jusqu'à $0.000565 pour la fin de cette année. En regardant les perspectives de Mainframe sur une période de cinq ans plus longue, la monnaie numérique pourrait potentiellement croître jusqu'à $0.001777. Cependant, compte tenu de l'imprévisibilité du marché, il est essentiel de mener des recherches approfondies avant d'investir des fonds dans un projet, un réseau ou un actif particulier.
Quel sera le prix de Mainframe la semaine prochaine ?
Basé sur notre nouveau pronostic expérimental de Mainframe, le prix de Mainframe va augmenter de 0.86% durant la prochaine semaine et atteindre $0.000552 d'ici 13 janvier 2026.
Quel sera le prix de Mainframe le mois prochain ?
Basé sur notre nouveau pronostic expérimental de Mainframe, le prix de Mainframe va diminuer de -11.62% durant le prochain mois et atteindre $0.000484 d'ici 5 février 2026.
Jusqu'où le prix de Mainframe peut-il monter cette année en 2026 ?
Selon notre prédiction la plus récente sur la valeur de Mainframe en 2026, MFT devrait fluctuer dans la fourchette de $0.000189 et $0.000565. Cependant, il est crucial de garder à l'esprit que le marché des cryptomonnaies est exceptionnellement instable, et cette prévision de prix de Mainframe ne prend pas en compte les fluctuations de prix soudaines et extrêmes.
Où sera Mainframe dans 5 ans ?
L'avenir de Mainframe semble suivre une tendance haussière, avec un prix maximum de $0.001777 prévue après une période de cinq ans. Selon la prévision de Mainframe pour 2030, la valeur de Mainframe pourrait potentiellement atteindre son point le plus élevé d'environ $0.001777, tandis que son point le plus bas devrait être autour de $0.000614.
Combien vaudra Mainframe en 2026 ?
Basé sur notre nouvelle simulation expérimentale de prédiction de prix de Mainframe, il est attendu que la valeur de MFT en 2026 augmente de 3.13% jusqu'à $0.000565 si le meilleur scénario se produit. Le prix sera entre $0.000565 et $0.000189 durant 2026.
Combien vaudra Mainframe en 2027 ?
Selon notre dernière simulation expérimentale pour la prédiction de prix de Mainframe, le valeur de MFT pourrait diminuer de -12.62% jusqu'à $0.000478 en 2027, en supposant les conditions les plus favorables. Il est prévu que le prix fluctue entre $0.000478 et $0.000182 tout au long de l'année.
Combien vaudra Mainframe en 2028 ?
Notre nouveau modèle expérimental de prédiction de prix de Mainframe suggère que la valeur de MFT en 2028 pourrait augmenter de 47.02%, atteignant $0.0008059 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.0008059 et $0.000329 durant l'année.
Combien vaudra Mainframe en 2029 ?
Basé sur notre modèle de prévision expérimental, la valeur de Mainframe pourrait connaître un 333.75% croissance en 2029, atteignant potentiellement $0.002377 sous des conditions optimales. Le range de prix prévu pour 2029 se situe entre $0.002377 et $0.000722.
Combien vaudra Mainframe en 2030 ?
En utilisant notre nouvelle simulation expérimentale pour les prédictions de prix de Mainframe, il est prévu que la valeur de MFT en 2030 augmente de 224.23%, atteignant $0.001777 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.001777 et $0.000614 au cours de 2030.
Combien vaudra Mainframe en 2031 ?
Notre simulation expérimentale indique que le prix de Mainframe pourrait augmenter de 195.98% en 2031, atteignant potentiellement $0.001622 dans des conditions idéales. Il est probable que le prix fluctue entre $0.001622 et $0.000726 durant l'année.
Combien vaudra Mainframe en 2032 ?
Basé sur les résultats de notre dernière prédiction expérimentale de prix de Mainframe, MFT pourrait connaître une 449.04% hausse en valeur, atteignant $0.0030097 si le scénario le plus positif se réalise en 2032. Il est prévu que le prix reste dans une fourchette de $0.0030097 et $0.0011094 tout au long de l'année.
Combien vaudra Mainframe en 2033 ?
Selon notre prédiction expérimentale de prix de Mainframe, la valeur de MFT est anticipée à augmenter de 1362.43% en 2033, avec le prix potentiel le plus élevé étant $0.008016. Tout au long de l'année, le prix de MFT pourrait osciller entre $0.008016 et $0.002578.
Combien vaudra Mainframe en 2034 ?
Les résultats de notre nouvelle simulation de prédiction de prix de Mainframe suggèrent que MFT pourrait augmenter de 746.96% en 2034, atteignant potentiellement $0.004642 dans les meilleures circonstances. La fourchette de prix prévue pour l'année est entre $0.004642 et $0.002072.
Combien vaudra Mainframe en 2035 ?
Basé sur notre prédiction expérimentale pour le prix de Mainframe, MFT pourrait augmenter de 897.93%, avec la valeur potentiellement atteignant $0.00547 en 2035. La fourchette de prix attendue pour l'année se situe entre $0.00547 et $0.00245.
Combien vaudra Mainframe en 2036 ?
Notre récente simulation de prédiction de prix de Mainframe suggère que la valeur de MFT pourrait augmenter de 1964.7% en 2036, pouvant atteindre $0.011318 si les conditions sont optimales. La fourchette de prix attendue pour 2036 est entre $0.011318 et $0.004056.
Combien vaudra Mainframe en 2037 ?
Selon la simulation expérimentale, la valeur de Mainframe pourrait augmenter de 4830.69% en 2037, avec un maximum de $0.027029 sous des conditions favorables. Il est prévu que le prix chute entre $0.027029 et $0.010534 au cours de l'année.
Prévisions liées
Prévision du cours de Frontier Token
Prévision du cours de GamerCoin
Prévision du cours de BetProtocol
Prévision du cours de Shrapnel
Prévision du cours de LeverFi
Prévision du cours de REI Network
Prévision du cours de Burst
Prévision du cours de Kinesis Gold
Prévision du cours de BakeryToken
Prévision du cours de LTO NetworkPrévision du cours de GameFi
Prévision du cours de HUNT Platform
Prévision du cours de Puff The Dragon
Prévision du cours de Clearpool
Prévision du cours de MATH
Prévision du cours de Stafi
Prévision du cours de Pangolin
Prévision du cours de StakeWise Staked ETH
Prévision du cours de BENQI
Prévision du cours de Velo
Prévision du cours de Dimitra
Prévision du cours de IX Swap
Prévision du cours de BitMart Token
Prévision du cours de LON
Prévision du cours de Moon Tropica
Comment lire et prédire les mouvements de prix de Mainframe ?
Les traders de Mainframe utilisent des indicateurs et des modèles graphiques pour prédire la direction du marché. Ils identifient également des niveaux clés de support et de résistance pour évaluer quand une tendance baissière pourrait ralentir ou une tendance haussière pourrait s'arrêter.
Indicateurs de prédiction du prix de Mainframe
Les moyennes mobiles sont des outils populaires pour la prédiction du prix de Mainframe. Une moyenne mobile simple (SMA) calcule le prix de clôture moyen de MFT sur une période spécifique, comme une SMA de 12 jours. Une moyenne mobile exponentielle (EMA) donne plus de poids aux prix récents, réagissant plus rapidement aux changements de prix.
Les moyennes mobiles couramment utilisées sur le marché des cryptomonnaies incluent les moyennes sur 50 jours, 100 jours et 200 jours, qui aident à identifier les niveaux clés de résistance et de support. Un mouvement de prix de MFT au-dessus de ces moyennes est considéré comme haussier, tandis qu'une chute en dessous indique une faiblesse.
Les traders utilisent également le RSI et les niveaux de retracement de Fibonacci pour évaluer la direction future de MFT.
Comment lire les graphiques de Mainframe et prédire les mouvements de prix ?
La plupart des traders préfèrent les graphiques en chandeliers aux simples graphiques linéaires parce qu'ils fournissent des informations plus détaillées. Les chandeliers peuvent représenter l'action des prix de Mainframe dans différentes périodes, comme 5 minutes pour les tendances à court terme et hebdomadaire pour les tendances à long terme. Les options populaires incluent les graphiques de 1 heure, 4 heures et 1 jour.
Par exemple, un graphique en chandeliers de 1 heure montre les prix d'ouverture, de clôture, les plus hauts et les plus bas de MFT au sein de chaque heure. La couleur du chandelier est cruciale : le vert indique que le prix a clôturé plus haut qu'il n'a ouvert, tandis que le rouge signifie le contraire. Certains graphiques utilisent des chandeliers creux et pleins pour transmettre la même information.
Qu'est-ce qui affecte le prix de Mainframe ?
L'action du prix de Mainframe est déterminée par l'offre et la demande, influencée par des facteurs tels que les réductions de récompenses de bloc, les hard forks et les mises à jour de protocole. Les événements du monde réel, tels que les réglementations, l'adoption par les entreprises et les gouvernements et les piratages d'échanges de cryptomonnaies, impactent également le prix de MFT. La capitalisation boursière de Mainframe peut changer rapidement.
Les traders surveillent souvent l'activité des « baleines » de MFT, de grands détenteurs de Mainframe, car leurs actions peuvent influencer significativement les mouvements de prix sur le marché relativement petit de Mainframe.
Modèles de prédiction de prix haussiers et baissiers
Les traders identifient souvent des modèles de chandeliers pour obtenir un avantage dans les prédictions de prix des cryptomonnaies. Certaines formations indiquent des tendances haussières, tandis que d'autres suggèrent des mouvements baissiers.
Modèles de chandeliers haussiers couramment suivis :
- Marteau
- Englobante haussière
- Ligne pénétrante
- Étoile du matin
- Trois soldats blancs
Modèles de chandeliers baissiers courants :
- Harami baissier
- Nuage sombre
- Étoile du soir
- Étoile filante
- Pendu


