Prédiction du prix de BakerySwap jusqu'à $0.007741 d'ici 2026
| Année | Prix min. | Prix max. |
|---|---|---|
| 2026 | $0.002593 | $0.007741 |
| 2027 | $0.002496 | $0.006558 |
| 2028 | $0.0045055 | $0.011035 |
| 2029 | $0.009897 | $0.032557 |
| 2030 | $0.008417 | $0.024336 |
| 2031 | $0.009951 | $0.022216 |
| 2032 | $0.01519 | $0.041211 |
| 2033 | $0.035300054 | $0.109771 |
| 2034 | $0.028379 | $0.063573 |
| 2035 | $0.033553 | $0.0749056 |
Calculateur de profit d’investissement
Si vous ouvrez une position short de $10,000.00 sur BakerySwap aujourd’hui et la fermez le Apr 06, 2026, notre prévision indique que vous pourriez gagner environ $3,955.57, soit un rendement de 39.56% sur les 90 prochains jours.
Prévision du prix à long terme de BakeryToken pour 2027, 2028, 2029, 2030, 2031, 2032 et 2037
[
'name' => 'BakerySwap'
'name_with_ticker' => 'BakerySwap <small>BAKE</small>'
'name_lang' => 'BakeryToken'
'name_lang_with_ticker' => 'BakeryToken <small>BAKE</small>'
'name_with_lang' => 'BakeryToken/BakerySwap'
'name_with_lang_with_ticker' => 'BakeryToken/BakerySwap <small>BAKE</small>'
'image' => '/uploads/coins/bakerytoken.jpg?1717208119'
'price_for_sd' => 0.007506
'ticker' => 'BAKE'
'marketcap' => '$2.15M'
'low24h' => '$0.00709'
'high24h' => '$0.007488'
'volume24h' => '$250.09K'
'current_supply' => '288.71M'
'max_supply' => '289.77M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.007506'
'change_24h_pct' => '3.2417%'
'ath_price' => '$8.38'
'ath_days' => 1710
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '2 mai 2021'
'ath_pct' => '-99.91%'
'fdv' => '$2.16M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.3701019'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.00757'
'next_week_prediction_price_date' => '13 janvier 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.006634'
'next_month_prediction_price_date' => '5 février 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.002593'
'current_year_max_price_prediction' => '$0.007741'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.008417'
'grand_prediction_max_price' => '$0.024336'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0076483264572967
107 => 0.0076768825319457
108 => 0.0077412208262393
109 => 0.0071914571457725
110 => 0.0074382848980885
111 => 0.0075832730779413
112 => 0.006928211206651
113 => 0.0075703246109304
114 => 0.0071818869832094
115 => 0.0070500454182235
116 => 0.0072275527166716
117 => 0.0071583779498349
118 => 0.0070989055473872
119 => 0.0070657189249559
120 => 0.0071960606941705
121 => 0.0071899800948446
122 => 0.0069767156621621
123 => 0.0066985209034982
124 => 0.0067918921959375
125 => 0.0067579695300338
126 => 0.0066350294126877
127 => 0.0067178762079326
128 => 0.0063530608494777
129 => 0.0057254149867084
130 => 0.0061400570689665
131 => 0.0061240937998434
201 => 0.0061160443956749
202 => 0.0064276364606264
203 => 0.0063976840732334
204 => 0.0063433201968203
205 => 0.0066340309774647
206 => 0.0065279176319177
207 => 0.0068549339594449
208 => 0.0070703280628443
209 => 0.0070156971509529
210 => 0.0072182763462901
211 => 0.0067940432819318
212 => 0.0069349564886353
213 => 0.0069639985052396
214 => 0.0066304436515574
215 => 0.0064025846542383
216 => 0.0063873890568999
217 => 0.0059923129564525
218 => 0.0062033594203686
219 => 0.0063890715749187
220 => 0.0063001298647346
221 => 0.0062719735763483
222 => 0.00641581794736
223 => 0.0064269958869313
224 => 0.0061721376801201
225 => 0.0062251307716259
226 => 0.0064461207725736
227 => 0.006219562390604
228 => 0.0057793964625384
301 => 0.0056702292266081
302 => 0.0056556643049837
303 => 0.005359594102978
304 => 0.0056775243033164
305 => 0.0055387392508691
306 => 0.0059771595686501
307 => 0.0057267362344289
308 => 0.0057159409850054
309 => 0.005699622382183
310 => 0.0054447825288107
311 => 0.0055005762607816
312 => 0.0056860431234784
313 => 0.0057522197895224
314 => 0.0057453170210846
315 => 0.0056851342346701
316 => 0.0057126856061049
317 => 0.0056239330391793
318 => 0.0055925926605729
319 => 0.0054936738048409
320 => 0.0053482904139462
321 => 0.0053685068661382
322 => 0.0050804643271422
323 => 0.0049235234643226
324 => 0.0048800843019415
325 => 0.0048219956385578
326 => 0.0048866455710387
327 => 0.0050796483388199
328 => 0.0048468460530544
329 => 0.0044477228632911
330 => 0.0044717108470687
331 => 0.0045256047245207
401 => 0.0044251738404326
402 => 0.0043301244371685
403 => 0.0044127621817048
404 => 0.004243648424654
405 => 0.0045460413141097
406 => 0.0045378624338962
407 => 0.0046505758032344
408 => 0.0047210577861928
409 => 0.0045586196342867
410 => 0.0045177668783618
411 => 0.0045410384647909
412 => 0.0041564109792177
413 => 0.0046191435318826
414 => 0.0046231452622135
415 => 0.0045888800175999
416 => 0.0048352708166293
417 => 0.0053552322537985
418 => 0.0051596018457351
419 => 0.0050838478387726
420 => 0.0049398394161609
421 => 0.0051317220889169
422 => 0.0051169884934852
423 => 0.0050503575873931
424 => 0.0050100590074875
425 => 0.0050843103765855
426 => 0.0050008584411527
427 => 0.0049858681804432
428 => 0.0048950435101078
429 => 0.0048626232350573
430 => 0.0048386205540982
501 => 0.004812195960817
502 => 0.004870482028997
503 => 0.0047383981303303
504 => 0.0045791178968825
505 => 0.0045658754689074
506 => 0.004602438976833
507 => 0.0045862623464089
508 => 0.0045657980214245
509 => 0.0045267260519019
510 => 0.0045151342331851
511 => 0.0045528020204638
512 => 0.0045102772847946
513 => 0.0045730248487167
514 => 0.004555960983311
515 => 0.0044606436182696
516 => 0.0043418428904195
517 => 0.0043407853147487
518 => 0.0043151898928057
519 => 0.0042825902746638
520 => 0.0042735218066749
521 => 0.0044058026613554
522 => 0.004679620071711
523 => 0.0046258631621629
524 => 0.0046647080385411
525 => 0.0048557863841347
526 => 0.0049165244442726
527 => 0.0048734140078465
528 => 0.0048144017835306
529 => 0.0048169980219084
530 => 0.005018660656611
531 => 0.005031238107773
601 => 0.0050630172692197
602 => 0.0051038624724688
603 => 0.0048803701225795
604 => 0.0048064715523269
605 => 0.0047714543100047
606 => 0.0046636147570304
607 => 0.0047799104694486
608 => 0.0047121499381015
609 => 0.0047212931488096
610 => 0.0047153386208412
611 => 0.0047185901957554
612 => 0.0045459567891343
613 => 0.0046088553291623
614 => 0.0045042743069933
615 => 0.0043642520580797
616 => 0.0043637826544032
617 => 0.0043980529014555
618 => 0.0043776676175139
619 => 0.0043228113425807
620 => 0.0043306034175207
621 => 0.0042623366418402
622 => 0.0043388922400981
623 => 0.0043410875807271
624 => 0.0043116095053862
625 => 0.0044295539671392
626 => 0.004477875909353
627 => 0.0044584728086821
628 => 0.0044765145360852
629 => 0.0046280970044525
630 => 0.0046528115608032
701 => 0.0046637881341822
702 => 0.0046490809799716
703 => 0.0044792851853431
704 => 0.0044868163508624
705 => 0.004431557655289
706 => 0.0043848698805474
707 => 0.0043867371466919
708 => 0.004410740731895
709 => 0.0045155657962685
710 => 0.0047361639644674
711 => 0.0047445355036954
712 => 0.0047546820534547
713 => 0.0047134109363361
714 => 0.0047009631725018
715 => 0.0047173849860397
716 => 0.0048002300595146
717 => 0.00501333008071
718 => 0.0049380063007477
719 => 0.0048767668951538
720 => 0.0049304903638848
721 => 0.0049222200569721
722 => 0.0048524103436865
723 => 0.004850451017543
724 => 0.0047164638582325
725 => 0.0046669318561754
726 => 0.0046255392078503
727 => 0.0045803395164619
728 => 0.0045535436242994
729 => 0.0045947142931761
730 => 0.0046041305122653
731 => 0.0045141101252261
801 => 0.0045018406791095
802 => 0.0045753532703906
803 => 0.0045430031197934
804 => 0.0045762760519278
805 => 0.0045839956575929
806 => 0.0045827526232832
807 => 0.0045489753506686
808 => 0.0045705039769804
809 => 0.0045195823577606
810 => 0.004464212745039
811 => 0.0044288903817714
812 => 0.0043980669349888
813 => 0.0044151695747331
814 => 0.0043542017868636
815 => 0.004334696964485
816 => 0.0045632105627954
817 => 0.0047320160148024
818 => 0.0047295615166759
819 => 0.0047146203905767
820 => 0.0046924209078899
821 => 0.004798606029084
822 => 0.0047616132560985
823 => 0.0047885285892951
824 => 0.0047953796712266
825 => 0.0048161158328194
826 => 0.0048235272282555
827 => 0.0048011248437025
828 => 0.0047259397049217
829 => 0.0045385854874684
830 => 0.0044513715934909
831 => 0.004422589555816
901 => 0.0044236357282206
902 => 0.0043947776229822
903 => 0.0044032776283044
904 => 0.004391821668014
905 => 0.0043701268507182
906 => 0.0044138299808994
907 => 0.00441886635953
908 => 0.0044086655267322
909 => 0.0044110681921316
910 => 0.0043266096533984
911 => 0.004333030852664
912 => 0.0042972767991867
913 => 0.0042905733451812
914 => 0.0042001902114522
915 => 0.0040400633888064
916 => 0.0041287891924389
917 => 0.0040216208983868
918 => 0.0039810346415646
919 => 0.0041731636689029
920 => 0.0041538792433879
921 => 0.0041208726896443
922 => 0.0040720491174891
923 => 0.0040539399796516
924 => 0.003943914590807
925 => 0.0039374137038715
926 => 0.0039919452575182
927 => 0.0039667808218264
928 => 0.0039314404235981
929 => 0.0038034410836138
930 => 0.0036595274463464
1001 => 0.0036638712944466
1002 => 0.003709647544853
1003 => 0.0038427481666779
1004 => 0.0037907434510668
1005 => 0.0037530134332055
1006 => 0.0037459477350203
1007 => 0.0038343897408496
1008 => 0.0039595537082712
1009 => 0.0040182778413994
1010 => 0.0039600840089478
1011 => 0.0038932340676057
1012 => 0.0038973029137824
1013 => 0.0039243711245207
1014 => 0.0039272156107454
1015 => 0.0038837031712168
1016 => 0.0038959516680685
1017 => 0.0038773450813247
1018 => 0.0037631564928229
1019 => 0.0037610911833529
1020 => 0.0037330674621948
1021 => 0.0037322189150555
1022 => 0.0036845435745208
1023 => 0.0036778734648159
1024 => 0.0035832111824979
1025 => 0.0036455181833834
1026 => 0.0036037259184538
1027 => 0.0035407351174061
1028 => 0.0035298754795628
1029 => 0.0035295490257359
1030 => 0.0035942264939264
1031 => 0.0036447623895105
1101 => 0.003604452912795
1102 => 0.0035952752263133
1103 => 0.0036932689071525
1104 => 0.0036807983180334
1105 => 0.003669998868283
1106 => 0.003948346647799
1107 => 0.003728012660564
1108 => 0.0036319344659053
1109 => 0.0035130194552607
1110 => 0.0035517387823481
1111 => 0.0035598975134707
1112 => 0.0032739283489124
1113 => 0.0031579106944663
1114 => 0.0031180978074934
1115 => 0.003095184928169
1116 => 0.0031056266149989
1117 => 0.0030011971184838
1118 => 0.0030713754672464
1119 => 0.00298094835047
1120 => 0.0029657879500671
1121 => 0.0031274828366336
1122 => 0.0031499817354915
1123 => 0.0030539944431037
1124 => 0.0031156338237478
1125 => 0.0030932825274748
1126 => 0.0029824984638455
1127 => 0.0029782673274873
1128 => 0.0029226797786063
1129 => 0.002835696028478
1130 => 0.0027959421205837
1201 => 0.0027752379401931
1202 => 0.0027837808885387
1203 => 0.0027794613124367
1204 => 0.0027512731564968
1205 => 0.0027810770245393
1206 => 0.0027049404574994
1207 => 0.0026746222630302
1208 => 0.0026609282379652
1209 => 0.0025933526524601
1210 => 0.002700895459998
1211 => 0.0027220827478716
1212 => 0.0027433117812473
1213 => 0.0029280960231066
1214 => 0.0029188647245782
1215 => 0.0030023111674506
1216 => 0.0029990685921287
1217 => 0.0029752683148788
1218 => 0.0028748588601168
1219 => 0.0029148802791585
1220 => 0.0027917005720575
1221 => 0.0028839951840234
1222 => 0.0028418757774373
1223 => 0.0028697545702884
1224 => 0.0028196259870128
1225 => 0.002847369214756
1226 => 0.0027271070398229
1227 => 0.0026148079130049
1228 => 0.0026600003598524
1229 => 0.0027091297179587
1230 => 0.0028156546842609
1231 => 0.0027522092931432
]
'min_raw' => 0.0025933526524601
'max_raw' => 0.0077412208262393
'avg_raw' => 0.0051672867393497
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.002593'
'max' => '$0.007741'
'avg' => '$0.005167'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0049127373475399
'max_diff' => 0.00023513082623931
'year' => 2026
]
1 => [
'items' => [
101 => 0.002775026654925
102 => 0.0026985923125363
103 => 0.0025408864317978
104 => 0.002541779029956
105 => 0.0025175194160137
106 => 0.002496555567606
107 => 0.0027594967595234
108 => 0.0027267958658234
109 => 0.0026746912714995
110 => 0.0027444353415563
111 => 0.0027628767806665
112 => 0.0027634017825124
113 => 0.0028142852556708
114 => 0.0028414417744168
115 => 0.0028462282285489
116 => 0.0029262944729738
117 => 0.0029531316220058
118 => 0.0030636700407329
119 => 0.0028391377335332
120 => 0.0028345136384241
121 => 0.0027454167836492
122 => 0.0026889101497854
123 => 0.0027492858412134
124 => 0.0028027704617148
125 => 0.002747078699896
126 => 0.0027543508682723
127 => 0.0026795892282146
128 => 0.0027063129966731
129 => 0.0027293311061499
130 => 0.0027166218590388
131 => 0.0026975955009789
201 => 0.0027983853327642
202 => 0.0027926983754564
203 => 0.0028865561839631
204 => 0.0029597250575304
205 => 0.0030908567594637
206 => 0.0029540139924461
207 => 0.0029490268981153
208 => 0.0029977765451545
209 => 0.0029531241586888
210 => 0.0029813429255871
211 => 0.003086310279856
212 => 0.0030885280746463
213 => 0.0030513771544414
214 => 0.0030491165175706
215 => 0.0030562517581825
216 => 0.0030980430853115
217 => 0.0030834399114949
218 => 0.0031003390739426
219 => 0.0031214717353526
220 => 0.0032088853830074
221 => 0.0032299605175194
222 => 0.0031787588668596
223 => 0.0031833818026336
224 => 0.0031642309797701
225 => 0.003145731524843
226 => 0.0031873155978906
227 => 0.0032633113087221
228 => 0.0032628385433492
301 => 0.0032804680711166
302 => 0.0032914511208647
303 => 0.0032443038312617
304 => 0.0032136126793841
305 => 0.0032253816199427
306 => 0.0032442004121901
307 => 0.0032192789392502
308 => 0.0030654520635157
309 => 0.0031121133111147
310 => 0.0031043465978958
311 => 0.0030932858538075
312 => 0.003140204099089
313 => 0.0031356787198738
314 => 0.0030001260430572
315 => 0.0030088036856274
316 => 0.0030006537592431
317 => 0.0030269878387087
318 => 0.0029517020319766
319 => 0.0029748594390698
320 => 0.0029893835477114
321 => 0.0029979383592808
322 => 0.0030288442047586
323 => 0.0030252177605057
324 => 0.003028618779892
325 => 0.0030744439898949
326 => 0.0033062121767763
327 => 0.0033188268078205
328 => 0.003256707750974
329 => 0.00328152308894
330 => 0.0032338830665631
331 => 0.0032658641327451
401 => 0.0032877447659958
402 => 0.0031888703917397
403 => 0.0031830156929856
404 => 0.00313517904329
405 => 0.0031608837492301
406 => 0.0031199857138456
407 => 0.0031300206611764
408 => 0.0031019620736085
409 => 0.0031524619448217
410 => 0.0032089286477247
411 => 0.0032231943668157
412 => 0.0031856674016655
413 => 0.0031584954057493
414 => 0.0031107903319324
415 => 0.0031901249328669
416 => 0.0032133247878583
417 => 0.0031900030739051
418 => 0.0031845989231926
419 => 0.0031743580673576
420 => 0.0031867715691697
421 => 0.0032131984364656
422 => 0.0032007360138764
423 => 0.0032089676635562
424 => 0.0031775971034173
425 => 0.0032443194389764
426 => 0.0033502905654488
427 => 0.0033506312799484
428 => 0.0033381687901822
429 => 0.0033330694078779
430 => 0.0033458566786652
501 => 0.003352793248506
502 => 0.0033941449374476
503 => 0.0034385169472059
504 => 0.0036455817557235
505 => 0.003587438786075
506 => 0.0037711590025323
507 => 0.0039164578406657
508 => 0.0039600266090737
509 => 0.0039199453922073
510 => 0.003782829714452
511 => 0.0037761021651564
512 => 0.0039810108764688
513 => 0.0039231147801095
514 => 0.0039162282236714
515 => 0.0038429668981909
516 => 0.0038862734151416
517 => 0.0038768016446162
518 => 0.003861849991467
519 => 0.0039444758090507
520 => 0.0040991439635099
521 => 0.0040750374811686
522 => 0.0040570431103685
523 => 0.0039781970156046
524 => 0.0040256799755653
525 => 0.0040087722029995
526 => 0.0040814187238797
527 => 0.0040383845342277
528 => 0.0039226761602372
529 => 0.003941103100175
530 => 0.0039383179052732
531 => 0.00399563701899
601 => 0.0039784312438001
602 => 0.0039349582015246
603 => 0.0040986153245725
604 => 0.0040879883413105
605 => 0.0041030549739094
606 => 0.0041096877715305
607 => 0.0042093029783678
608 => 0.004250112141278
609 => 0.0042593765357235
610 => 0.0042981420841943
611 => 0.004258412013563
612 => 0.0044173606231484
613 => 0.0045230521736141
614 => 0.0046458183483176
615 => 0.0048252127259963
616 => 0.0048926666714942
617 => 0.0048804817199969
618 => 0.0050164964897531
619 => 0.0052609120075666
620 => 0.0049298850842541
621 => 0.0052784572382984
622 => 0.005168103318787
623 => 0.0049064561608078
624 => 0.0048896091684513
625 => 0.0050667996616208
626 => 0.0054597911215178
627 => 0.0053613512180858
628 => 0.0054599521339346
629 => 0.005344928928101
630 => 0.0053392170564396
701 => 0.0054543657135639
702 => 0.0057234168273614
703 => 0.0055956007284264
704 => 0.0054123450088098
705 => 0.0055476581803999
706 => 0.0054304373885257
707 => 0.0051663061363995
708 => 0.0053612759429469
709 => 0.005230905185729
710 => 0.0052689543035758
711 => 0.0055429742440612
712 => 0.0055100034398551
713 => 0.005552670713512
714 => 0.0054773640923046
715 => 0.0054070158333327
716 => 0.0052757055838314
717 => 0.0052368310924711
718 => 0.0052475746033254
719 => 0.0052368257685207
720 => 0.0051633588907282
721 => 0.0051474937254637
722 => 0.0051210510882875
723 => 0.0051292467672387
724 => 0.0050795268732809
725 => 0.0051733585858334
726 => 0.0051907745785254
727 => 0.0052590574740056
728 => 0.0052661468307342
729 => 0.0054563137227005
730 => 0.0053515729942303
731 => 0.0054218421177675
801 => 0.0054155565859597
802 => 0.0049121268481047
803 => 0.004981495024183
804 => 0.0050894101372279
805 => 0.0050407945250766
806 => 0.004972063423796
807 => 0.0049165593743834
808 => 0.0048324650639429
809 => 0.0049508261909998
810 => 0.0051064584867769
811 => 0.0052700939225875
812 => 0.0054666911768955
813 => 0.0054228129583783
814 => 0.0052664186736684
815 => 0.0052734344070344
816 => 0.0053168029101136
817 => 0.005260636758182
818 => 0.0052440722634839
819 => 0.0053145272029072
820 => 0.0053150123873537
821 => 0.0052503864416502
822 => 0.005178566529424
823 => 0.0051782656013694
824 => 0.0051654859416868
825 => 0.0053472024011683
826 => 0.0054471280802769
827 => 0.0054585843983484
828 => 0.0054463569787915
829 => 0.00545106282729
830 => 0.0053929182763289
831 => 0.0055258194775951
901 => 0.0056477827624436
902 => 0.0056150939967387
903 => 0.0055660888899652
904 => 0.0055270539620143
905 => 0.0056058986082613
906 => 0.0056023877802769
907 => 0.0056467175195489
908 => 0.0056447064665146
909 => 0.0056298000425232
910 => 0.0056150945290941
911 => 0.0056734002276049
912 => 0.0056566091227946
913 => 0.0056397919367608
914 => 0.0056060624955875
915 => 0.0056106468868297
916 => 0.0055616502414787
917 => 0.0055389821514054
918 => 0.0051981084650562
919 => 0.0051070158776946
920 => 0.0051356754600392
921 => 0.0051451109386927
922 => 0.0051054673279346
923 => 0.0051623060821537
924 => 0.0051534478225158
925 => 0.0051879101288583
926 => 0.0051663795760349
927 => 0.0051672631974329
928 => 0.0052305799624887
929 => 0.0052489610887531
930 => 0.0052396122995811
1001 => 0.0052461598710595
1002 => 0.0053970458922201
1003 => 0.0053755947250744
1004 => 0.0053641992200658
1005 => 0.0053673558528315
1006 => 0.0054059104662708
1007 => 0.00541670365303
1008 => 0.0053709721623076
1009 => 0.0053925393977029
1010 => 0.0054843699487261
1011 => 0.0055165054444252
1012 => 0.0056190665207837
1013 => 0.0055754967526689
1014 => 0.0056554709476991
1015 => 0.0059012843580097
1016 => 0.00609765711916
1017 => 0.0059170646125586
1018 => 0.0062776781804909
1019 => 0.0065584675700701
1020 => 0.0065476904056189
1021 => 0.0064987282807701
1022 => 0.0061790570259063
1023 => 0.0058848907711507
1024 => 0.0061309733342127
1025 => 0.0061316006492733
1026 => 0.0061104619388665
1027 => 0.0059791712240115
1028 => 0.0061058933065786
1029 => 0.0061159520453058
1030 => 0.0061103218264531
1031 => 0.0060096615432011
1101 => 0.0058559718958054
1102 => 0.0058860024850255
1103 => 0.0059351932027754
1104 => 0.0058420649118161
1105 => 0.0058123047800124
1106 => 0.0058676345271321
1107 => 0.0060459185007625
1108 => 0.0060122149482764
1109 => 0.0060113348123143
1110 => 0.0061555329023803
1111 => 0.0060523181897885
1112 => 0.0058863812669268
1113 => 0.0058444800054651
1114 => 0.0056957587553479
1115 => 0.0057984810525308
1116 => 0.0058021778451334
1117 => 0.0057459178927628
1118 => 0.0058909464519954
1119 => 0.0058896099882903
1120 => 0.0060272930206293
1121 => 0.0062904912670761
1122 => 0.0062126505944026
1123 => 0.0061221303611245
1124 => 0.0061319724203357
1125 => 0.0062399155176099
1126 => 0.0061746506568967
1127 => 0.0061981203558519
1128 => 0.0062398799934096
1129 => 0.0062650746195817
1130 => 0.0061283473013528
1201 => 0.00609646962305
1202 => 0.0060312590807873
1203 => 0.0060142468675233
1204 => 0.0060673594935338
1205 => 0.0060533661930768
1206 => 0.0058018671440299
1207 => 0.005775584094077
1208 => 0.0057763901576955
1209 => 0.005710300178898
1210 => 0.0056094970978195
1211 => 0.0058744015762546
1212 => 0.0058531260393004
1213 => 0.0058296394930988
1214 => 0.0058325164609962
1215 => 0.005947502516639
1216 => 0.0058808047974312
1217 => 0.0060581316154865
1218 => 0.0060216785526264
1219 => 0.0059842906062539
1220 => 0.0059791224532006
1221 => 0.0059647312836368
1222 => 0.0059153786084845
1223 => 0.0058557822876022
1224 => 0.0058164316344107
1225 => 0.005365350727331
1226 => 0.005449068719868
1227 => 0.0055453786391468
1228 => 0.0055786244373441
1229 => 0.0055217551989885
1230 => 0.0059176241526369
1231 => 0.0059899532251566
]
'min_raw' => 0.002496555567606
'max_raw' => 0.0065584675700701
'avg_raw' => 0.0045275115688381
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.002496'
'max' => '$0.006558'
'avg' => '$0.004527'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -9.6797084854056E-5
'max_diff' => -0.0011827532561692
'year' => 2027
]
2 => [
'items' => [
101 => 0.0057708637465857
102 => 0.0057298810505096
103 => 0.0059203109713688
104 => 0.0058054584499796
105 => 0.0058571765333287
106 => 0.0057453903254072
107 => 0.0059725312696291
108 => 0.0059708008361993
109 => 0.0058824378786861
110 => 0.0059571216452928
111 => 0.0059441435029677
112 => 0.0058443819415636
113 => 0.0059756938890671
114 => 0.0059757590181548
115 => 0.0058907115927247
116 => 0.0057913948190977
117 => 0.0057736393257307
118 => 0.0057602629465936
119 => 0.0058538867640479
120 => 0.0059378295860234
121 => 0.0060940263665293
122 => 0.0061332979482925
123 => 0.0062865775463714
124 => 0.0061953070087636
125 => 0.0062357660559338
126 => 0.0062796900749187
127 => 0.0063007488648724
128 => 0.0062664346967198
129 => 0.0065045410049359
130 => 0.0065246444727382
131 => 0.0065313849915979
201 => 0.0064510968841575
202 => 0.0065224115152301
203 => 0.0064890457610436
204 => 0.0065758541841635
205 => 0.0065894668533343
206 => 0.0065779374068314
207 => 0.0065822582828875
208 => 0.0063790765536562
209 => 0.0063685405091265
210 => 0.0062248807943611
211 => 0.006283423190007
212 => 0.006173980987357
213 => 0.0062086862371969
214 => 0.0062239839806426
215 => 0.0062159933076059
216 => 0.0062867330892205
217 => 0.0062265898236655
218 => 0.0060678618573974
219 => 0.005909090645801
220 => 0.0059070974025716
221 => 0.005865295745103
222 => 0.0058350808031086
223 => 0.0058409012728693
224 => 0.0058614133674821
225 => 0.0058338886028807
226 => 0.0058397624069494
227 => 0.0059373066914415
228 => 0.0059568685020424
229 => 0.0058903898263278
301 => 0.0056234683505066
302 => 0.0055579651508183
303 => 0.0056050475517694
304 => 0.0055825451966097
305 => 0.0045055496734525
306 => 0.0047585737963179
307 => 0.0046082354543986
308 => 0.0046775182790895
309 => 0.0045240617619148
310 => 0.0045972992552558
311 => 0.0045837749644407
312 => 0.0049906302664802
313 => 0.00498427778055
314 => 0.0049873183793987
315 => 0.0048421826741121
316 => 0.0050733877934975
317 => 0.0051872877491739
318 => 0.0051662078987274
319 => 0.0051715132429372
320 => 0.0050803498519658
321 => 0.0049882010402966
322 => 0.0048859938265551
323 => 0.0050758821964934
324 => 0.0050547698512588
325 => 0.0051031939752449
326 => 0.005226350156651
327 => 0.0052444853721878
328 => 0.0052688592857786
329 => 0.0052601229728096
330 => 0.0054682573912015
331 => 0.0054430509398192
401 => 0.0055037912352597
402 => 0.0053788438391612
403 => 0.0052374540003601
404 => 0.0052643275863341
405 => 0.0052617394439011
406 => 0.0052287894201971
407 => 0.0051990436120922
408 => 0.005149525222427
409 => 0.0053062087346704
410 => 0.005299847670211
411 => 0.00540282590988
412 => 0.0053846235057412
413 => 0.0052630633960188
414 => 0.0052674049391187
415 => 0.0052966039029399
416 => 0.0053976618501129
417 => 0.0054276627293835
418 => 0.005413765126777
419 => 0.0054466597213051
420 => 0.0054726582675995
421 => 0.005449924738439
422 => 0.0057717835705808
423 => 0.005638125343556
424 => 0.0057032694334199
425 => 0.0057188059150012
426 => 0.0056790095441278
427 => 0.005687639951969
428 => 0.0057007126682031
429 => 0.0057800876412764
430 => 0.0059883905379542
501 => 0.0060806464729271
502 => 0.0063582030051205
503 => 0.0060729859017922
504 => 0.0060560622992264
505 => 0.0061060586120787
506 => 0.006269013678819
507 => 0.0064010734548208
508 => 0.0064448853012319
509 => 0.0064506757599899
510 => 0.0065328696964135
511 => 0.0065799817279454
512 => 0.0065228891906166
513 => 0.0064745092430682
514 => 0.0063012182760901
515 => 0.0063212771773734
516 => 0.0064594631157604
517 => 0.0066546588928433
518 => 0.0068221571762395
519 => 0.0067635051152987
520 => 0.0072109789383751
521 => 0.0072553441401664
522 => 0.0072492143037776
523 => 0.0073502848358856
524 => 0.0071496804123071
525 => 0.0070639181346997
526 => 0.0064849695368639
527 => 0.0066476304778493
528 => 0.0068840677083138
529 => 0.0068527743542677
530 => 0.0066810673175191
531 => 0.0068220269210548
601 => 0.0067754212679115
602 => 0.0067386614556071
603 => 0.0069070652820138
604 => 0.0067218983572318
605 => 0.0068822205265938
606 => 0.0066766056860665
607 => 0.0067637730329726
608 => 0.0067142926310585
609 => 0.0067463125151869
610 => 0.0065591249268462
611 => 0.006660126805793
612 => 0.0065549229166187
613 => 0.0065548730362773
614 => 0.0065525506545928
615 => 0.0066763225636609
616 => 0.0066803587611721
617 => 0.0065888911333618
618 => 0.0065757092192014
619 => 0.0066244496647731
620 => 0.0065673873681516
621 => 0.006594086457595
622 => 0.006568196056372
623 => 0.0065623675817214
624 => 0.0065159253040725
625 => 0.0064959166939043
626 => 0.0065037625855096
627 => 0.0064769805126263
628 => 0.0064608433449642
629 => 0.0065493405657782
630 => 0.006502060070665
701 => 0.0065420941518043
702 => 0.0064964702636422
703 => 0.0063383179898903
704 => 0.0062473629448257
705 => 0.0059486279604319
706 => 0.0060333488314264
707 => 0.0060895188565458
708 => 0.0060709546635789
709 => 0.0061108377334608
710 => 0.0061132862300347
711 => 0.0061003198374563
712 => 0.0060853064159483
713 => 0.0060779987126525
714 => 0.0061324643459304
715 => 0.0061640834792772
716 => 0.0060951562700245
717 => 0.0060790075892908
718 => 0.0061486968034207
719 => 0.0061912071837819
720 => 0.0065050799478491
721 => 0.0064818272396914
722 => 0.0065401869740538
723 => 0.0065336165635678
724 => 0.0065947868626144
725 => 0.0066947744490585
726 => 0.0064914717288488
727 => 0.0065267580513981
728 => 0.0065181066599892
729 => 0.0066125602828748
730 => 0.0066128551567755
731 => 0.0065562254915472
801 => 0.0065869253517789
802 => 0.0065697895320041
803 => 0.006600756274382
804 => 0.0064815166855974
805 => 0.0066267376336188
806 => 0.0067090685533158
807 => 0.0067102117182156
808 => 0.0067492359207334
809 => 0.0067888867706209
810 => 0.0068649931241186
811 => 0.0067867642057286
812 => 0.0066460379969767
813 => 0.0066561979747057
814 => 0.0065736902500042
815 => 0.0065750772197626
816 => 0.0065676734664931
817 => 0.0065898926873834
818 => 0.0064863925550876
819 => 0.0065106838292643
820 => 0.0064766759031674
821 => 0.0065266841248084
822 => 0.0064728835449779
823 => 0.0065181024880263
824 => 0.0065376174848143
825 => 0.0066096282430898
826 => 0.0064622474974305
827 => 0.0061617281802318
828 => 0.0062249009841515
829 => 0.0061314634450376
830 => 0.0061401114450244
831 => 0.0061575817813167
901 => 0.006100954705455
902 => 0.0061117573670052
903 => 0.0061113714199174
904 => 0.0061080455364208
905 => 0.0060933146469478
906 => 0.0060719519427942
907 => 0.0061570543810485
908 => 0.0061715149436378
909 => 0.006203658982989
910 => 0.0062992978405881
911 => 0.0062897412633944
912 => 0.0063053284372959
913 => 0.0062713017241871
914 => 0.0061416898466545
915 => 0.0061487283951861
916 => 0.0060609575822123
917 => 0.0062014144859656
918 => 0.0061681524372163
919 => 0.0061467081780052
920 => 0.0061408569131997
921 => 0.0062367328410281
922 => 0.0062654204213054
923 => 0.0062475442464285
924 => 0.0062108796902246
925 => 0.0062812864770391
926 => 0.0063001243629668
927 => 0.0063043414709115
928 => 0.0064290887979844
929 => 0.0063113134607249
930 => 0.0063396631549895
1001 => 0.0065608393768641
1002 => 0.0063602630638561
1003 => 0.006466512810242
1004 => 0.0064613124380534
1005 => 0.006515666213009
1006 => 0.0064568538420392
1007 => 0.0064575828918634
1008 => 0.0065058453617804
1009 => 0.0064380694269643
1010 => 0.0064212871523687
1011 => 0.0063981025602119
1012 => 0.006448725268995
1013 => 0.0064790712934423
1014 => 0.0067236379637888
1015 => 0.0068816391864277
1016 => 0.0068747799366543
1017 => 0.0069374606396051
1018 => 0.0069092224088363
1019 => 0.0068180337128152
1020 => 0.0069736816976465
1021 => 0.0069244281626576
1022 => 0.006928488564239
1023 => 0.0069283374358894
1024 => 0.0069610867308383
1025 => 0.0069378808539382
1026 => 0.0068921396885337
1027 => 0.00692250480878
1028 => 0.0070126783601824
1029 => 0.0072925798305977
1030 => 0.0074492164016434
1031 => 0.0072831501123421
1101 => 0.0073977004149859
1102 => 0.0073290110518458
1103 => 0.0073165281512317
1104 => 0.0073884742064929
1105 => 0.0074605461937998
1106 => 0.0074559555197841
1107 => 0.0074036349579368
1108 => 0.0073740804001344
1109 => 0.0075978774133175
1110 => 0.0077627672403482
1111 => 0.0077515228595801
1112 => 0.0078011518994218
1113 => 0.0079468642953655
1114 => 0.0079601864107234
1115 => 0.0079585081303936
1116 => 0.0079254878774601
1117 => 0.0080689606544123
1118 => 0.0081886481691092
1119 => 0.0079178446429528
1120 => 0.0080209630806347
1121 => 0.0080672562695787
1122 => 0.0081352284055186
1123 => 0.0082499087923021
1124 => 0.0083744821098192
1125 => 0.0083920981427931
1126 => 0.0083795987243933
1127 => 0.0082974392727803
1128 => 0.0084337488832763
1129 => 0.0085135958562512
1130 => 0.0085611429013922
1201 => 0.008681714296796
1202 => 0.0080675421605535
1203 => 0.0076328005961853
1204 => 0.0075649094231649
1205 => 0.0077029687931904
1206 => 0.0077393739480633
1207 => 0.0077246990757822
1208 => 0.007235357920112
1209 => 0.0075623331432518
1210 => 0.0079141309904926
1211 => 0.0079276449785469
1212 => 0.0081037623366218
1213 => 0.0081611133677054
1214 => 0.0083029109251854
1215 => 0.0082940414493577
1216 => 0.0083285668981122
1217 => 0.008320630095341
1218 => 0.0085832802115743
1219 => 0.0088730222936994
1220 => 0.0088629894467188
1221 => 0.0088213355943406
1222 => 0.0088831986681594
1223 => 0.009182243547561
1224 => 0.0091547122871623
1225 => 0.0091814565615325
1226 => 0.0095340473277778
1227 => 0.0099924654793484
1228 => 0.0097794842235139
1229 => 0.010241592264969
1230 => 0.010532464781771
1231 => 0.011035498722799
]
'min_raw' => 0.0045055496734525
'max_raw' => 0.011035498722799
'avg_raw' => 0.0077705241981258
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.0045055'
'max' => '$0.011035'
'avg' => '$0.00777'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0020089941058465
'max_diff' => 0.0044770311527289
'year' => 2028
]
3 => [
'items' => [
101 => 0.010972516395888
102 => 0.011168343817697
103 => 0.010859764885909
104 => 0.010151205284432
105 => 0.010039073015241
106 => 0.010263564657802
107 => 0.010815455455466
108 => 0.010246183652571
109 => 0.010361346596876
110 => 0.010328179661169
111 => 0.010326412336115
112 => 0.010393863945174
113 => 0.010296021868195
114 => 0.0098973956451279
115 => 0.01008008369404
116 => 0.010009539064955
117 => 0.010087813590376
118 => 0.010510228921204
119 => 0.010323469034321
120 => 0.010126732664631
121 => 0.010373483731518
122 => 0.01068768263253
123 => 0.010668020629975
124 => 0.010629868126937
125 => 0.010844931788959
126 => 0.011200153950879
127 => 0.011296169073848
128 => 0.011367045474681
129 => 0.011376818132889
130 => 0.011477482586107
131 => 0.010936184450445
201 => 0.011795238493262
202 => 0.011943573395568
203 => 0.011915692581786
204 => 0.012080560582812
205 => 0.012032052234612
206 => 0.011961771248798
207 => 0.012223122098853
208 => 0.011923504439191
209 => 0.011498234892115
210 => 0.011264923607712
211 => 0.011572166727699
212 => 0.011759789379768
213 => 0.011883796017744
214 => 0.011921320351468
215 => 0.010978203883838
216 => 0.010469916415423
217 => 0.01079572285515
218 => 0.011193229197575
219 => 0.010933976282642
220 => 0.010944138506077
221 => 0.01057451197985
222 => 0.011225932943427
223 => 0.011131026388347
224 => 0.011623401763991
225 => 0.011505892429034
226 => 0.01190740543397
227 => 0.011801673603604
228 => 0.012240560520066
301 => 0.012415644393431
302 => 0.01270963746644
303 => 0.012925899967713
304 => 0.013052893444903
305 => 0.013045269232873
306 => 0.013548480657398
307 => 0.013251754461223
308 => 0.012878996425834
309 => 0.01287225440901
310 => 0.01306531107756
311 => 0.013469904892332
312 => 0.013574810181902
313 => 0.013633437927328
314 => 0.013543647494361
315 => 0.013221572474972
316 => 0.013082502114557
317 => 0.013200994090887
318 => 0.013056088585967
319 => 0.013306236140762
320 => 0.01364974216213
321 => 0.013578809527088
322 => 0.01381592669122
323 => 0.014061318010643
324 => 0.014412238618632
325 => 0.014503982260113
326 => 0.014655631010783
327 => 0.014811727389242
328 => 0.014861861339087
329 => 0.014957582604993
330 => 0.014957078106673
331 => 0.015245540584266
401 => 0.01556372362999
402 => 0.015683830363796
403 => 0.01596000917546
404 => 0.015487062638945
405 => 0.01584579801971
406 => 0.016169386312888
407 => 0.015783591009781
408 => 0.016315319956337
409 => 0.016335965786408
410 => 0.016647693308623
411 => 0.016331697745091
412 => 0.01614406058816
413 => 0.016685762029549
414 => 0.016947874293601
415 => 0.016868923946528
416 => 0.016268107907043
417 => 0.015918407201851
418 => 0.015003173004135
419 => 0.016087307446505
420 => 0.016615357708748
421 => 0.016266740384432
422 => 0.016442562684958
423 => 0.017401792146058
424 => 0.017767004619337
425 => 0.017691042977923
426 => 0.017703879244887
427 => 0.017900941266392
428 => 0.018774822793787
429 => 0.018251172726157
430 => 0.018651483582066
501 => 0.018863807016613
502 => 0.019061024855533
503 => 0.018576720174483
504 => 0.017946646900286
505 => 0.017747076245671
506 => 0.016232077262025
507 => 0.016153214985619
508 => 0.016108947200101
509 => 0.015829845074211
510 => 0.015610547255769
511 => 0.015436153488537
512 => 0.014978492164934
513 => 0.015132939426861
514 => 0.014403522798379
515 => 0.014870177708343
516 => 0.013706011156906
517 => 0.014675563654339
518 => 0.014147880310129
519 => 0.014502205483768
520 => 0.014500969276617
521 => 0.013848544293049
522 => 0.013472239178289
523 => 0.013712035443428
524 => 0.013969116074708
525 => 0.01401082654221
526 => 0.014344138291157
527 => 0.014437158435775
528 => 0.014155303054885
529 => 0.013681886392735
530 => 0.013791850285868
531 => 0.013470010763504
601 => 0.012905999379939
602 => 0.01331108220231
603 => 0.013449395288101
604 => 0.013510482226309
605 => 0.012955841807719
606 => 0.012781561746368
607 => 0.012688776504057
608 => 0.013610289279571
609 => 0.013660771829611
610 => 0.013402495966092
611 => 0.014569927359919
612 => 0.014305701680623
613 => 0.01460090650126
614 => 0.013781872215153
615 => 0.013813160427858
616 => 0.013425416471209
617 => 0.013642527177872
618 => 0.013489080328207
619 => 0.013624986778303
620 => 0.013706448544128
621 => 0.01409412887581
622 => 0.014679990340987
623 => 0.014036222362256
624 => 0.013755723434996
625 => 0.013929743391882
626 => 0.014393181469153
627 => 0.015095313879176
628 => 0.014679637360711
629 => 0.014864107540961
630 => 0.014904406068838
701 => 0.014597901593303
702 => 0.015106615136383
703 => 0.015379238856901
704 => 0.015658894382622
705 => 0.015901711439836
706 => 0.015547193815892
707 => 0.015926578491617
708 => 0.015620861413393
709 => 0.015346601589776
710 => 0.015347017528719
711 => 0.015174970335067
712 => 0.014841607218025
713 => 0.014780129944535
714 => 0.015099942484955
715 => 0.015356401856012
716 => 0.01537752507817
717 => 0.015519514163346
718 => 0.015603541841348
719 => 0.016427127315866
720 => 0.016758380206774
721 => 0.017163429971479
722 => 0.017321219682186
723 => 0.01779611014067
724 => 0.017412597526727
725 => 0.017329622160292
726 => 0.016177693243494
727 => 0.016366321539087
728 => 0.016668333640256
729 => 0.016182673311804
730 => 0.016490713006608
731 => 0.016551526567536
801 => 0.016166170759683
802 => 0.016372005946899
803 => 0.015825368715534
804 => 0.014691905538844
805 => 0.015107877004916
806 => 0.015414172018427
807 => 0.014977051268244
808 => 0.015760573294037
809 => 0.015302855901747
810 => 0.0151577814627
811 => 0.014591794353207
812 => 0.014858918482046
813 => 0.01522020769115
814 => 0.014996972964302
815 => 0.015460218541373
816 => 0.016116297821589
817 => 0.016583858986867
818 => 0.016619752527407
819 => 0.016319142022298
820 => 0.016800872275205
821 => 0.016804381154181
822 => 0.016260987460976
823 => 0.015928161849516
824 => 0.015852543170322
825 => 0.016041453456865
826 => 0.016270825419492
827 => 0.016632481074985
828 => 0.016851022013249
829 => 0.017420860875084
830 => 0.017575042932536
831 => 0.017744442268597
901 => 0.017970812022395
902 => 0.018242626951842
903 => 0.017647911360643
904 => 0.01767154051977
905 => 0.017117749595643
906 => 0.016525944571562
907 => 0.016975050815302
908 => 0.017562197486892
909 => 0.01742750539169
910 => 0.01741234977947
911 => 0.017437837315408
912 => 0.017336283874258
913 => 0.016876961423683
914 => 0.016646292564515
915 => 0.016943914242744
916 => 0.017102086919106
917 => 0.017347398946036
918 => 0.017317159060808
919 => 0.017949056497591
920 => 0.018194592733939
921 => 0.018131774057593
922 => 0.018143334205857
923 => 0.018587865833425
924 => 0.019082276428182
925 => 0.019545357193396
926 => 0.020016422837554
927 => 0.019448534817517
928 => 0.019160196303406
929 => 0.01945768804932
930 => 0.019299834741439
1001 => 0.02020690667086
1002 => 0.020269710363207
1003 => 0.021176716701004
1004 => 0.022037573719878
1005 => 0.021496884850179
1006 => 0.022006730101144
1007 => 0.022558169308356
1008 => 0.023621985006855
1009 => 0.023263729305088
1010 => 0.022989311052117
1011 => 0.022729987129039
1012 => 0.023269599046451
1013 => 0.023963801157691
1014 => 0.024113325643467
1015 => 0.024355612433174
1016 => 0.024100877499217
1017 => 0.024407677669036
1018 => 0.025490817083324
1019 => 0.025198143252447
1020 => 0.024782499362936
1021 => 0.025637533904702
1022 => 0.025946967581504
1023 => 0.028118735176977
1024 => 0.030860681477506
1025 => 0.029725497704497
1026 => 0.029020852504438
1027 => 0.02918646084086
1028 => 0.030187726809073
1029 => 0.03050930165947
1030 => 0.029635150362593
1031 => 0.029943915378732
1101 => 0.031645240974768
1102 => 0.032557947571981
1103 => 0.031318369420116
1104 => 0.027898422461503
1105 => 0.024745075178344
1106 => 0.025581484874917
1107 => 0.02548666197214
1108 => 0.027314524080389
1109 => 0.025191163078375
1110 => 0.025226915031986
1111 => 0.027092575392894
1112 => 0.02659484919412
1113 => 0.02578859649606
1114 => 0.024750961715293
1115 => 0.022832797853443
1116 => 0.021133826629047
1117 => 0.024465900449794
1118 => 0.02432221536766
1119 => 0.024114138075794
1120 => 0.024577191572527
1121 => 0.026825647912632
1122 => 0.026773813716449
1123 => 0.026444071006376
1124 => 0.026694177945748
1125 => 0.025744751540339
1126 => 0.02598944034305
1127 => 0.024744575672023
1128 => 0.025307306493469
1129 => 0.025786866639877
1130 => 0.025883145439277
1201 => 0.026100066490444
1202 => 0.024246499858476
1203 => 0.025078696858373
1204 => 0.025567534629498
1205 => 0.023358947795483
1206 => 0.025523877968938
1207 => 0.024214233387227
1208 => 0.023769720345993
1209 => 0.024368198595875
1210 => 0.024134971039857
1211 => 0.023934455682774
1212 => 0.023822564668231
1213 => 0.02426202104331
1214 => 0.024241519878148
1215 => 0.023522483953712
1216 => 0.022584530901939
1217 => 0.022899338733373
1218 => 0.022784966096874
1219 => 0.022370464907837
1220 => 0.022649788662184
1221 => 0.021419788210558
1222 => 0.019303636363397
1223 => 0.020701631093116
1224 => 0.020647809816747
1225 => 0.020620670688601
1226 => 0.021671225090249
1227 => 0.021570238524944
1228 => 0.021386946920053
1229 => 0.022367098613774
1230 => 0.022009330060665
1231 => 0.023111888440474
]
'min_raw' => 0.0098973956451279
'max_raw' => 0.032557947571981
'avg_raw' => 0.021227671608554
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.009897'
'max' => '$0.032557'
'avg' => '$0.021227'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.0053918459716754
'max_diff' => 0.021522448849182
'year' => 2029
]
4 => [
'items' => [
101 => 0.023838104698421
102 => 0.023653912764771
103 => 0.024336922665478
104 => 0.022906591269987
105 => 0.023381689984634
106 => 0.023479607171264
107 => 0.022355003694019
108 => 0.02158676117595
109 => 0.021535528158601
110 => 0.02020350150261
111 => 0.020915059390497
112 => 0.021541200885571
113 => 0.021241327699973
114 => 0.02114639680787
115 => 0.021631378147629
116 => 0.021669065351312
117 => 0.020809793113417
118 => 0.020988463021288
119 => 0.021733546238512
120 => 0.0209696888359
121 => 0.019485638678024
122 => 0.019117573720272
123 => 0.019068467070125
124 => 0.018070245713101
125 => 0.01914216958072
126 => 0.018674246086731
127 => 0.020152410797659
128 => 0.019308091042333
129 => 0.019271694105201
130 => 0.019216674796457
131 => 0.018357464438462
201 => 0.018545576901196
202 => 0.019170891377661
203 => 0.019394010627536
204 => 0.019370737461812
205 => 0.019167826995587
206 => 0.019260718367955
207 => 0.018961482892059
208 => 0.018855816617472
209 => 0.018522304789078
210 => 0.018032134536332
211 => 0.018100295716365
212 => 0.017129140185652
213 => 0.016600003109395
214 => 0.016453544940601
215 => 0.016257694956382
216 => 0.016475666717456
217 => 0.017126389024053
218 => 0.016341479863858
219 => 0.01499580816368
220 => 0.015076685325774
221 => 0.015258392296353
222 => 0.01491978255879
223 => 0.014599316859547
224 => 0.014877935784835
225 => 0.014307756945793
226 => 0.01532729568499
227 => 0.015299720019319
228 => 0.015679741013439
301 => 0.015917375939878
302 => 0.015369704369657
303 => 0.015231966450808
304 => 0.015310428229224
305 => 0.01401362980778
306 => 0.015573764916045
307 => 0.015587257029247
308 => 0.01547172936471
309 => 0.016302453146093
310 => 0.018055539434058
311 => 0.017395957854793
312 => 0.017140547931343
313 => 0.016655013480161
314 => 0.017301959308178
315 => 0.017252283962513
316 => 0.017027633210602
317 => 0.016891763734894
318 => 0.017142107409873
319 => 0.016860743383133
320 => 0.016810202672564
321 => 0.016503980955353
322 => 0.016394673734508
323 => 0.016313747019841
324 => 0.016224654658687
325 => 0.01642117020696
326 => 0.015975840120802
327 => 0.015438815693142
328 => 0.015394167922667
329 => 0.01551744434242
330 => 0.015462903703529
331 => 0.015393906803071
401 => 0.015262172929908
402 => 0.015223090303789
403 => 0.01535008987848
404 => 0.015206714763189
405 => 0.015418272555847
406 => 0.015360740542271
407 => 0.015039371391188
408 => 0.01463882644284
409 => 0.014635260752628
410 => 0.014548964000532
411 => 0.014439052111934
412 => 0.014408477138969
413 => 0.014854471276078
414 => 0.015777665792414
415 => 0.015596420618685
416 => 0.015727388831456
417 => 0.016371622814289
418 => 0.01657640542464
419 => 0.016431055578355
420 => 0.016232091743972
421 => 0.016240845142926
422 => 0.016920764795462
423 => 0.016963170550184
424 => 0.017070316211752
425 => 0.017208028666227
426 => 0.016454508604838
427 => 0.016205354415798
428 => 0.016087291338482
429 => 0.015723702756513
430 => 0.016115801870438
501 => 0.015887342508112
502 => 0.015918169481373
503 => 0.015898093374596
504 => 0.015909056286436
505 => 0.015327010703134
506 => 0.015539077522274
507 => 0.015186475304418
508 => 0.014714380516164
509 => 0.014712797888896
510 => 0.014828342419505
511 => 0.014759612011441
512 => 0.014574660250561
513 => 0.014600931775246
514 => 0.014370765574806
515 => 0.014628878119273
516 => 0.014636279863477
517 => 0.014536892474372
518 => 0.014934550461792
519 => 0.015097471263696
520 => 0.015032052355103
521 => 0.015092881298676
522 => 0.015603952173926
523 => 0.015687279026177
524 => 0.015724287309685
525 => 0.015674701112443
526 => 0.015102222736089
527 => 0.015127614586446
528 => 0.014941306036282
529 => 0.014783894944104
530 => 0.014790190562279
531 => 0.014871120325668
601 => 0.015224545348855
602 => 0.01596830747461
603 => 0.0159965327036
604 => 0.016030742504523
605 => 0.0158915940517
606 => 0.015849625546857
607 => 0.015904992837735
608 => 0.016184310787014
609 => 0.016902792386642
610 => 0.016648833003561
611 => 0.016442360072003
612 => 0.016623492497682
613 => 0.016595608580512
614 => 0.01636024025821
615 => 0.016353634253322
616 => 0.015901887191022
617 => 0.015734886587872
618 => 0.015595328384102
619 => 0.015442934468844
620 => 0.015352590247589
621 => 0.015491400032151
622 => 0.01552314747223
623 => 0.015219637452304
624 => 0.015178270158097
625 => 0.015426122992086
626 => 0.015317052200732
627 => 0.015429234214465
628 => 0.015455261403931
629 => 0.01545107042697
630 => 0.015337187994096
701 => 0.015409773260787
702 => 0.015238087466353
703 => 0.01505140495128
704 => 0.014932313137394
705 => 0.014828389734543
706 => 0.014886052478508
707 => 0.014680495325071
708 => 0.014614733454639
709 => 0.015385183005652
710 => 0.015954322372714
711 => 0.015946046860913
712 => 0.015895671811113
713 => 0.015820824705317
714 => 0.016178835255031
715 => 0.016054111538157
716 => 0.016144858463198
717 => 0.016167957364257
718 => 0.01623787078082
719 => 0.01626285881798
720 => 0.016187327614375
721 => 0.015933835669717
722 => 0.015302157844919
723 => 0.015008110112295
724 => 0.014911069462776
725 => 0.01491459670608
726 => 0.01481729958946
727 => 0.014845957950855
728 => 0.014807333380906
729 => 0.01473418778971
730 => 0.014881535944371
731 => 0.014898516446552
801 => 0.014864123626575
802 => 0.014872224380718
803 => 0.014587466520672
804 => 0.01460911604231
805 => 0.014488568754743
806 => 0.014465967591543
807 => 0.014161234545827
808 => 0.013621355783579
809 => 0.013920501025164
810 => 0.013559175639516
811 => 0.013422336240998
812 => 0.014070112670689
813 => 0.01400509388367
814 => 0.013893809983279
815 => 0.013729197901005
816 => 0.013668141678446
817 => 0.013297183398229
818 => 0.013275265204049
819 => 0.01345912214444
820 => 0.013374278492581
821 => 0.013255125872566
822 => 0.01282356716118
823 => 0.012338352285404
824 => 0.012352997872552
825 => 0.012507335696793
826 => 0.012956093736064
827 => 0.012780756206528
828 => 0.012653546817083
829 => 0.01262972432234
830 => 0.012927912719817
831 => 0.013349911774648
901 => 0.013547904289478
902 => 0.013351699720404
903 => 0.013126310475855
904 => 0.013140028874818
905 => 0.013231291237164
906 => 0.013240881621066
907 => 0.013094176393254
908 => 0.013135473055552
909 => 0.013072739649275
910 => 0.012687744850749
911 => 0.012680781515675
912 => 0.012586297583237
913 => 0.012583436647313
914 => 0.012422695908114
915 => 0.012400207167552
916 => 0.012081046673607
917 => 0.012291119077229
918 => 0.012150213538176
919 => 0.011937835654566
920 => 0.011901221627382
921 => 0.011900120965512
922 => 0.012118185565153
923 => 0.012288570865418
924 => 0.012152664650354
925 => 0.012121721439616
926 => 0.012452113976265
927 => 0.012410068514382
928 => 0.012373657415555
929 => 0.013312126387814
930 => 0.012569254966624
1001 => 0.012245320625366
1002 => 0.011844390364597
1003 => 0.01197493527917
1004 => 0.012002443010774
1005 => 0.011038278006736
1006 => 0.010647116384677
1007 => 0.010512884456601
1008 => 0.010435632084232
1009 => 0.010470836960395
1010 => 0.01011874562186
1011 => 0.010355356824409
1012 => 0.010050475486777
1013 => 0.0099993611383535
1014 => 0.010544526737589
1015 => 0.010620383345911
1016 => 0.010296755488007
1017 => 0.010504576963373
1018 => 0.010429218007471
1019 => 0.010055701802248
1020 => 0.010041436230608
1021 => 0.0098540189285569
1022 => 0.0095607471419878
1023 => 0.0094267140659931
1024 => 0.0093569084762866
1025 => 0.0093857116230833
1026 => 0.009371147870672
1027 => 0.0092761095348868
1028 => 0.0093765953568314
1029 => 0.0091198956053713
1030 => 0.0090176756959694
1031 => 0.0089715053343765
1101 => 0.0087436695298693
1102 => 0.0091062576138824
1103 => 0.0091776920341973
1104 => 0.0092492672023875
1105 => 0.0098722801750399
1106 => 0.0098411562075426
1107 => 0.010122501715732
1108 => 0.010111569146645
1109 => 0.010031324850214
1110 => 0.0096927873631196
1111 => 0.0098277223716249
1112 => 0.0094124133890016
1113 => 0.0097235911170487
1114 => 0.0095815825970606
1115 => 0.0096755778935931
1116 => 0.0095065658752136
1117 => 0.00960010410452
1118 => 0.0091946317852963
1119 => 0.0088160074387547
1120 => 0.0089683769285367
1121 => 0.0091340199894946
1122 => 0.0094931763507181
1123 => 0.009279265784949
1124 => 0.0093561961132536
1125 => 0.0090984923914146
1126 => 0.0085667760038319
1127 => 0.0085697854608414
1128 => 0.008487992478683
1129 => 0.0084173114001272
1130 => 0.0093038359866445
1201 => 0.0091935826404313
1202 => 0.0090179083628417
1203 => 0.0092530553644136
1204 => 0.0093152319639139
1205 => 0.0093170020442917
1206 => 0.009488559226616
1207 => 0.0095801193255758
1208 => 0.0095962571898616
1209 => 0.0098662061229871
1210 => 0.0099566894446582
1211 => 0.010329377440943
1212 => 0.0095723510908738
1213 => 0.0095567606313692
1214 => 0.009256364364952
1215 => 0.0090658483037132
1216 => 0.0092694091626587
1217 => 0.0094497362948561
1218 => 0.0092619676316093
1219 => 0.0092864862550165
1220 => 0.0090344221658712
1221 => 0.0091245232170229
1222 => 0.0092021303801971
1223 => 0.0091592802662305
1224 => 0.0090951315716536
1225 => 0.0094349515264394
1226 => 0.0094157775528252
1227 => 0.0097322257071487
1228 => 0.0099789196728685
1229 => 0.01042103936126
1230 => 0.0099596644182029
1231 => 0.0099428500814786
]
'min_raw' => 0.0084173114001272
'max_raw' => 0.024336922665478
'avg_raw' => 0.016377117032803
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.008417'
'max' => '$0.024336'
'avg' => '$0.016377'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0014800842450007
'max_diff' => -0.0082210249065025
'year' => 2030
]
5 => [
'items' => [
101 => 0.010107212920063
102 => 0.009956664281564
103 => 0.010051805824333
104 => 0.010405710587837
105 => 0.010413188037814
106 => 0.010287931116549
107 => 0.010280309221506
108 => 0.010304366183396
109 => 0.010445268560589
110 => 0.010396032940505
111 => 0.010453009646559
112 => 0.010524259889938
113 => 0.010818981106032
114 => 0.010890037393459
115 => 0.010717407453474
116 => 0.010732994004199
117 => 0.010668425667847
118 => 0.01060605346397
119 => 0.010746257069557
120 => 0.011002481914476
121 => 0.011000887953014
122 => 0.011060327136736
123 => 0.011097357255774
124 => 0.010938396877159
125 => 0.010834919515816
126 => 0.01087459932059
127 => 0.010938048192539
128 => 0.01085402370656
129 => 0.010335385655172
130 => 0.010492707309236
131 => 0.010466521293364
201 => 0.010429229222434
202 => 0.010587417362128
203 => 0.010572159730152
204 => 0.010115134416279
205 => 0.010144391694058
206 => 0.010116913648243
207 => 0.010205700835749
208 => 0.009951869482064
209 => 0.010029946296877
210 => 0.010078915343203
211 => 0.010107758487687
212 => 0.010211959703493
213 => 0.010199732893504
214 => 0.010211199667817
215 => 0.010365702562755
216 => 0.011147125186364
217 => 0.011189656295655
218 => 0.010980217558483
219 => 0.011063884202987
220 => 0.010903262541423
221 => 0.011011088938902
222 => 0.011084861021564
223 => 0.010751499165571
224 => 0.01073175963996
225 => 0.010570475035663
226 => 0.010657140246385
227 => 0.010519249664677
228 => 0.01055308319022
301 => 0.010458481703247
302 => 0.010628745544831
303 => 0.010819126976047
304 => 0.010867224843963
305 => 0.010740700060911
306 => 0.010649087779591
307 => 0.010488246792555
308 => 0.010755728938571
309 => 0.010833948869437
310 => 0.010755318082573
311 => 0.01073709761114
312 => 0.010702569850699
313 => 0.010744422838741
314 => 0.010833522866895
315 => 0.010791504939037
316 => 0.010819258520647
317 => 0.010713490486916
318 => 0.010938449499659
319 => 0.011295738551228
320 => 0.011296887293952
321 => 0.011254869139602
322 => 0.011237676216135
323 => 0.011280789392373
324 => 0.011304176521887
325 => 0.011443596628237
326 => 0.011593199957092
327 => 0.012291333415812
328 => 0.012095300334229
329 => 0.012714725870951
330 => 0.013204611048159
331 => 0.013351506192721
401 => 0.013216369571674
402 => 0.012754074491011
403 => 0.012731392088859
404 => 0.013422256115318
405 => 0.013227055384266
406 => 0.013203836878431
407 => 0.012956831204631
408 => 0.013102842150095
409 => 0.013070907414471
410 => 0.013020496871987
411 => 0.013299075584721
412 => 0.013820550066066
413 => 0.013739273377791
414 => 0.013678604100312
415 => 0.013412768986957
416 => 0.013572861101619
417 => 0.01351585536595
418 => 0.013760788183116
419 => 0.013615695408153
420 => 0.013225576546743
421 => 0.013287704261271
422 => 0.013278313782204
423 => 0.013471569175993
424 => 0.013413558703671
425 => 0.013266986306449
426 => 0.01381876772298
427 => 0.01378293810696
428 => 0.013833736310686
429 => 0.013856099250953
430 => 0.014191958875716
501 => 0.014329549817673
502 => 0.014360785370365
503 => 0.014491486123558
504 => 0.01435753341656
505 => 0.014893439751215
506 => 0.015249786192758
507 => 0.015663700922032
508 => 0.016268541591291
509 => 0.016495967278021
510 => 0.016454884863322
511 => 0.016913468155803
512 => 0.017737532138658
513 => 0.016621451755148
514 => 0.017796687109039
515 => 0.017424621164741
516 => 0.016542459503993
517 => 0.016485658693044
518 => 0.01708306881181
519 => 0.01840806695664
520 => 0.018076169949365
521 => 0.018408609821245
522 => 0.018020801052113
523 => 0.018001543078017
524 => 0.018389774814934
525 => 0.019296899429651
526 => 0.018865958528257
527 => 0.018248099075064
528 => 0.018704316880344
529 => 0.018309098796446
530 => 0.017418561838847
531 => 0.018075916153978
601 => 0.017636362043823
602 => 0.017764647301148
603 => 0.018688524661956
604 => 0.018577361293627
605 => 0.018721216985695
606 => 0.018467315454554
607 => 0.018230131387871
608 => 0.017787409713889
609 => 0.017656341652137
610 => 0.017692564149071
611 => 0.017656323702067
612 => 0.017408624994296
613 => 0.017355134481936
614 => 0.017265981284531
615 => 0.017293613588318
616 => 0.017125979494508
617 => 0.0174423396645
618 => 0.017501058899806
619 => 0.017731279449277
620 => 0.017755181710451
621 => 0.018396342663744
622 => 0.018043201984942
623 => 0.018280119240982
624 => 0.01825892713165
625 => 0.01656157862213
626 => 0.016795458270909
627 => 0.017159301608932
628 => 0.016995390678331
629 => 0.016763658971711
630 => 0.016576523193948
701 => 0.01629299335502
702 => 0.016692056158602
703 => 0.017216781309715
704 => 0.017768489606211
705 => 0.018431330975093
706 => 0.018283392497883
707 => 0.017756098247883
708 => 0.017779752282749
709 => 0.017925972218773
710 => 0.01773660411614
711 => 0.017680755765769
712 => 0.017918299513042
713 => 0.017919935346278
714 => 0.017702044458299
715 => 0.017459898609922
716 => 0.017458884009976
717 => 0.017415796495109
718 => 0.018028466225289
719 => 0.018365372628991
720 => 0.018403998405224
721 => 0.018362772806497
722 => 0.018378638903261
723 => 0.018182600490173
724 => 0.018630686169108
725 => 0.019041893899179
726 => 0.018931681443348
727 => 0.018766457304434
728 => 0.018634848319516
729 => 0.018900678549095
730 => 0.018888841547428
731 => 0.019038302358387
801 => 0.019031521952674
802 => 0.018981263903454
803 => 0.018931683238221
804 => 0.019128264971525
805 => 0.019071652589339
806 => 0.019014952272488
807 => 0.018901231106658
808 => 0.018916687701803
809 => 0.018751492091165
810 => 0.018675065042848
811 => 0.01752578561028
812 => 0.01721866059211
813 => 0.017315288374932
814 => 0.017347100749977
815 => 0.017213439548478
816 => 0.017405075376682
817 => 0.017375209135849
818 => 0.017491401207764
819 => 0.017418809445705
820 => 0.017421788636941
821 => 0.017635265530962
822 => 0.017697238781491
823 => 0.017665718686087
824 => 0.017687794280463
825 => 0.018196517035331
826 => 0.018124192927627
827 => 0.018085772186882
828 => 0.01809641499464
829 => 0.018226404565648
830 => 0.018262794548363
831 => 0.018108607634522
901 => 0.018181323074433
902 => 0.018490936188612
903 => 0.01859928325599
904 => 0.018945075085519
905 => 0.018798176570375
906 => 0.01906781515254
907 => 0.019896592227546
908 => 0.020558676702073
909 => 0.0199497964575
910 => 0.021165630279019
911 => 0.022112331310075
912 => 0.02207599534769
913 => 0.021910916125336
914 => 0.020833122170828
915 => 0.019841320104888
916 => 0.020671004647187
917 => 0.020673119683712
918 => 0.020601849045717
919 => 0.020159193234159
920 => 0.020586445582987
921 => 0.020620359322884
922 => 0.020601376646933
923 => 0.020261993474073
924 => 0.019743818097609
925 => 0.019845068325834
926 => 0.020010918265114
927 => 0.019696929730135
928 => 0.019596591367973
929 => 0.019783139473386
930 => 0.020384236337871
1001 => 0.020270602457557
1002 => 0.020267635017712
1003 => 0.020753808945958
1004 => 0.020405813336234
1005 => 0.01984634541546
1006 => 0.019705072386989
1007 => 0.019203648308833
1008 => 0.019549983705627
1009 => 0.019562447699988
1010 => 0.019372763342626
1011 => 0.01986173725565
1012 => 0.019857231274959
1013 => 0.020321439231212
1014 => 0.021208830495022
1015 => 0.020946385232442
1016 => 0.020641189946024
1017 => 0.020674373135805
1018 => 0.021038310824611
1019 => 0.020818265790069
1020 => 0.020897395518699
1021 => 0.02103819105229
1022 => 0.021123136493461
1023 => 0.020662150794056
1024 => 0.02055467297603
1025 => 0.020334811079936
1026 => 0.020277453215162
1027 => 0.020456526141961
1028 => 0.02040934675249
1029 => 0.019561400149525
1030 => 0.019472785011585
1031 => 0.019475502711352
1101 => 0.019252675733582
1102 => 0.018912811107879
1103 => 0.019805955051963
1104 => 0.019734223093712
1105 => 0.019655036563415
1106 => 0.019664736461544
1107 => 0.020052419976214
1108 => 0.019827543959219
1109 => 0.020425413706855
1110 => 0.020302509660351
1111 => 0.020176453588813
1112 => 0.020159028799965
1113 => 0.020110507967021
1114 => 0.019944111977051
1115 => 0.019743178820314
1116 => 0.019610505345704
1117 => 0.018089654574022
1118 => 0.018371915630864
1119 => 0.018696631247856
1120 => 0.018808721777626
1121 => 0.018616983170026
1122 => 0.01995168298594
1123 => 0.020195545503795
1124 => 0.019456870030454
1125 => 0.019318694009313
1126 => 0.019960741782882
1127 => 0.019573508488272
1128 => 0.019747879617124
1129 => 0.019370984612453
1130 => 0.020136806164372
1201 => 0.020130971887248
1202 => 0.019833050006688
1203 => 0.020084851540056
1204 => 0.020041094827102
1205 => 0.019704741757698
1206 => 0.020147469156614
1207 => 0.02014768874388
1208 => 0.019860945411221
1209 => 0.019526091974862
1210 => 0.019466228089326
1211 => 0.019421128693156
1212 => 0.01973678793031
1213 => 0.020019807015301
1214 => 0.020546435366088
1215 => 0.020678842245856
1216 => 0.021195635112419
1217 => 0.020887910122569
1218 => 0.021024320624864
1219 => 0.021172413521548
1220 => 0.021243414702155
1221 => 0.02112772208849
1222 => 0.021930514130692
1223 => 0.021998294375967
1224 => 0.02202102050591
1225 => 0.021750323546138
1226 => 0.021990765803828
1227 => 0.021878270834066
1228 => 0.022170951493385
1229 => 0.022216847557901
1230 => 0.022177975224056
1231 => 0.022192543359353
]
'min_raw' => 0.009951869482064
'max_raw' => 0.022216847557901
'avg_raw' => 0.016084358519982
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.009951'
'max' => '$0.022216'
'avg' => '$0.016084'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0015345580819368
'max_diff' => -0.0021200751075775
'year' => 2031
]
6 => [
'items' => [
101 => 0.021507501973554
102 => 0.021471978963819
103 => 0.020987620205487
104 => 0.021184999979707
105 => 0.020816007952461
106 => 0.02093301912534
107 => 0.020984596535421
108 => 0.020957655423387
109 => 0.021196159535995
110 => 0.020993382317107
111 => 0.020458219896801
112 => 0.019922911671852
113 => 0.019916191313141
114 => 0.019775254106487
115 => 0.019673382320013
116 => 0.019693006440183
117 => 0.019762164399279
118 => 0.019669362733708
119 => 0.019689166674221
120 => 0.020018044039711
121 => 0.020083998049914
122 => 0.019859860553349
123 => 0.018959916161755
124 => 0.018739067550719
125 => 0.018897809152714
126 => 0.018821940891229
127 => 0.015190775291478
128 => 0.016043863787299
129 => 0.01553698757123
130 => 0.015770579451848
131 => 0.015253190090201
201 => 0.015500115412279
202 => 0.01545451732156
203 => 0.016826258378116
204 => 0.016804840528286
205 => 0.016815092119592
206 => 0.016325756956167
207 => 0.017105281158401
208 => 0.017489302811205
209 => 0.017418230623677
210 => 0.017436117962087
211 => 0.017128754224602
212 => 0.016818068072435
213 => 0.016473469315426
214 => 0.017113691212256
215 => 0.01704250946628
216 => 0.017205774781164
217 => 0.017621004445264
218 => 0.017682148590607
219 => 0.017764326942011
220 => 0.017734871852886
221 => 0.018436611575975
222 => 0.018351626265281
223 => 0.018556416412111
224 => 0.018135147542616
225 => 0.017658441829575
226 => 0.01774904800094
227 => 0.017740321898029
228 => 0.017629228592614
229 => 0.017528938523802
301 => 0.017361983815782
302 => 0.017890253216605
303 => 0.017868806443664
304 => 0.01821600476842
305 => 0.018154634092014
306 => 0.01774478569503
307 => 0.017759423510708
308 => 0.017857869855837
309 => 0.018198593780371
310 => 0.018299743839427
311 => 0.01825288710194
312 => 0.018363793524018
313 => 0.01845144943801
314 => 0.018374801757242
315 => 0.019459971281273
316 => 0.01900933323714
317 => 0.019228971084331
318 => 0.019281353416705
319 => 0.019147177173812
320 => 0.019176275196404
321 => 0.019220350771895
322 => 0.019487969035396
323 => 0.020190276794789
324 => 0.020501324120653
325 => 0.021437125347321
326 => 0.020475495970228
327 => 0.020418436862609
328 => 0.020587002922022
329 => 0.021136417306696
330 => 0.021581666061606
331 => 0.021729380760626
401 => 0.021748903696605
402 => 0.022026026291855
403 => 0.022184867795422
404 => 0.021992376319744
405 => 0.021829259948804
406 => 0.021244997354849
407 => 0.021312627340993
408 => 0.021778530880099
409 => 0.022436647070668
410 => 0.023001379227495
411 => 0.022803629709077
412 => 0.024312318945204
413 => 0.024461899320523
414 => 0.024441232149166
415 => 0.024781998504688
416 => 0.024105646684839
417 => 0.023816493178155
418 => 0.021864527559651
419 => 0.022412950278808
420 => 0.023210114908839
421 => 0.02310460718084
422 => 0.02252568491824
423 => 0.023000940063046
424 => 0.022843805849571
425 => 0.022719867575898
426 => 0.023287652834208
427 => 0.022663349619363
428 => 0.023203887006704
429 => 0.022510642216296
430 => 0.02280453301222
501 => 0.022637706382555
502 => 0.022745663657451
503 => 0.02211454763434
504 => 0.022455082520936
505 => 0.022100380263483
506 => 0.02210021208843
507 => 0.022092382016437
508 => 0.022509687649339
509 => 0.022523295971046
510 => 0.022214906477818
511 => 0.022170462733894
512 => 0.022334794549089
513 => 0.022142405032067
514 => 0.022232422876196
515 => 0.022145131580863
516 => 0.022125480471647
517 => 0.021968897090057
518 => 0.021901436663919
519 => 0.021927889635249
520 => 0.021837592006658
521 => 0.021783184419224
522 => 0.022081558977877
523 => 0.021922149487584
524 => 0.022057127187236
525 => 0.021903303062939
526 => 0.021370081630146
527 => 0.021063420345432
528 => 0.020056214488538
529 => 0.020341856820118
530 => 0.020531237981474
531 => 0.020468647508775
601 => 0.020603116063429
602 => 0.020611371340577
603 => 0.020567654242714
604 => 0.020517035443896
605 => 0.020492397012027
606 => 0.020676031697292
607 => 0.020782637812948
608 => 0.020550244914609
609 => 0.02049579851005
610 => 0.020730760561035
611 => 0.020874087276402
612 => 0.021932331214352
613 => 0.021853933085346
614 => 0.022050697004295
615 => 0.02202854440661
616 => 0.02223478434062
617 => 0.022571899469226
618 => 0.021886450153897
619 => 0.022005420453984
620 => 0.021976251683828
621 => 0.022294708667928
622 => 0.022295702855872
623 => 0.022104771985798
624 => 0.022208278707965
625 => 0.022150504095209
626 => 0.022254910629165
627 => 0.021852886030536
628 => 0.022342508595793
629 => 0.022620093039712
630 => 0.022623947299985
701 => 0.022755520123357
702 => 0.022889205732086
703 => 0.02314580361648
704 => 0.022882049356359
705 => 0.022407581118362
706 => 0.022441836192623
707 => 0.022163655638286
708 => 0.022168331903662
709 => 0.0221433696326
710 => 0.022218283287128
711 => 0.021869325364944
712 => 0.021951225091794
713 => 0.0218365649946
714 => 0.022005171205325
715 => 0.02182377879419
716 => 0.021976237617764
717 => 0.022042033791928
718 => 0.022284823091085
719 => 0.021787918617299
720 => 0.020774696757775
721 => 0.020987688276775
722 => 0.020672657090052
723 => 0.020701814425791
724 => 0.020760716884341
725 => 0.020569794744497
726 => 0.020606216672131
727 => 0.020604915424579
728 => 0.020593701976164
729 => 0.020544035753828
730 => 0.020472009905278
731 => 0.020758938717515
801 => 0.020807693513888
802 => 0.020916069386786
803 => 0.021238522472473
804 => 0.021206301805246
805 => 0.021258855050317
806 => 0.021144131611401
807 => 0.020707136117088
808 => 0.020730867074878
809 => 0.020434941650974
810 => 0.020908501908366
811 => 0.020796356588726
812 => 0.020724055771605
813 => 0.020704327823791
814 => 0.021027580208308
815 => 0.021124302388116
816 => 0.021064031616444
817 => 0.020940414505365
818 => 0.021177795902755
819 => 0.021241309150379
820 => 0.021255527424244
821 => 0.02167612174705
822 => 0.021279033974669
823 => 0.021374616948194
824 => 0.022120328022275
825 => 0.021444070979177
826 => 0.021802299417238
827 => 0.021784765999326
828 => 0.021968023546448
829 => 0.021769733531575
830 => 0.021772191573957
831 => 0.021934911860861
901 => 0.021706400564663
902 => 0.021649817954163
903 => 0.02157164948301
904 => 0.021742327480037
905 => 0.021844641220153
906 => 0.022669214824326
907 => 0.023201926977746
908 => 0.023178800538238
909 => 0.023390132904463
910 => 0.023294925737896
911 => 0.022987476682669
912 => 0.023512254730523
913 => 0.023346192998536
914 => 0.023359882925956
915 => 0.023359373386174
916 => 0.023469789920577
917 => 0.023391549686425
918 => 0.023237330153718
919 => 0.023339708276653
920 => 0.023643734700923
921 => 0.024587442050525
922 => 0.025115553185821
923 => 0.024555649097064
924 => 0.024941863440074
925 => 0.024710272456509
926 => 0.024668185485561
927 => 0.024910756633987
928 => 0.025153752371097
929 => 0.025138274593143
930 => 0.02496187216597
1001 => 0.024862226910906
1002 => 0.025616774165861
1003 => 0.026172711729935
1004 => 0.026134800515118
1005 => 0.026302128287933
1006 => 0.026793407804172
1007 => 0.026838324246221
1008 => 0.026832665806916
1009 => 0.02672133571875
1010 => 0.027205064203194
1011 => 0.02760859901531
1012 => 0.026695566019975
1013 => 0.027043237032119
1014 => 0.027199317750731
1015 => 0.027428490552715
1016 => 0.027815143483485
1017 => 0.028235151120925
1018 => 0.028294544806009
1019 => 0.028252402144192
1020 => 0.027975395816889
1021 => 0.02843497318551
1022 => 0.028704182829632
1023 => 0.028864491011954
1024 => 0.029271005889583
1025 => 0.027200281652113
1026 => 0.025734520115159
1027 => 0.02550562028531
1028 => 0.025971097090348
1029 => 0.026093839611729
1030 => 0.026044362255267
1031 => 0.024394514384216
1101 => 0.025496934177713
1102 => 0.026683045181427
1103 => 0.026728608535668
1104 => 0.027322400504539
1105 => 0.027515763509958
1106 => 0.027993843874992
1107 => 0.027963939817992
1108 => 0.028080344778957
1109 => 0.028053585294284
1110 => 0.02893912849881
1111 => 0.029916014157841
1112 => 0.029882187713775
1113 => 0.029741748842303
1114 => 0.029950324514825
1115 => 0.030958575204374
1116 => 0.030865751637769
1117 => 0.030955921826033
1118 => 0.032144706211531
1119 => 0.033690295015284
1120 => 0.032972213841362
1121 => 0.034530243366482
1122 => 0.035510940364948
1123 => 0.037206954417834
1124 => 0.036994605105367
1125 => 0.037654850930229
1126 => 0.036614455517413
1127 => 0.034225497350982
1128 => 0.03384743557658
1129 => 0.034604324822982
1130 => 0.036465063179089
1201 => 0.034545723550343
1202 => 0.034934003457485
1203 => 0.034822178818107
1204 => 0.034816220158299
1205 => 0.035043637967562
1206 => 0.03471375657391
1207 => 0.033369760431646
1208 => 0.033985705943427
1209 => 0.033747859801195
1210 => 0.034011767828606
1211 => 0.03543597060859
1212 => 0.034806296610805
1213 => 0.034142986204701
1214 => 0.034974924654318
1215 => 0.036034268185748
1216 => 0.035967976371375
1217 => 0.035839342543661
1218 => 0.036564444695434
1219 => 0.037762101015166
1220 => 0.038085822705817
1221 => 0.038324787439657
1222 => 0.038357736639111
1223 => 0.038697133871303
1224 => 0.036872109414691
1225 => 0.039768470097287
1226 => 0.040268591576822
1227 => 0.040174589466581
1228 => 0.040730453442755
1229 => 0.040566904160057
1230 => 0.040329946909523
1231 => 0.041211109547417
]
'min_raw' => 0.015190775291478
'max_raw' => 0.041211109547417
'avg_raw' => 0.028200942419448
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.01519'
'max' => '$0.041211'
'avg' => '$0.02820094'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0052389058094139
'max_diff' => 0.018994261989517
'year' => 2032
]
7 => [
'items' => [
101 => 0.040200927689229
102 => 0.038767101719891
103 => 0.03798047643525
104 => 0.039016368065317
105 => 0.039648950936163
106 => 0.040067047973965
107 => 0.040193563884983
108 => 0.03701378086808
109 => 0.03530005418082
110 => 0.036398533339437
111 => 0.037738753725932
112 => 0.036864664422775
113 => 0.036898927068589
114 => 0.035652705428915
115 => 0.037849016688374
116 => 0.037529032611756
117 => 0.039189110567292
118 => 0.038792919640245
119 => 0.040146648769129
120 => 0.039790166521091
121 => 0.041269904402046
122 => 0.041860211905062
123 => 0.042851430076654
124 => 0.043580574198661
125 => 0.044008741573407
126 => 0.043983036010243
127 => 0.045679648461129
128 => 0.044679215373966
129 => 0.043422435632514
130 => 0.04339970445208
131 => 0.044050608488885
201 => 0.045414724783225
202 => 0.045768420291263
203 => 0.045966087828227
204 => 0.04566335311451
205 => 0.04457745470008
206 => 0.044108569270358
207 => 0.044508073241399
208 => 0.044019514214584
209 => 0.04486290416032
210 => 0.046021058694186
211 => 0.045781904362782
212 => 0.046581361436645
213 => 0.047408715402756
214 => 0.048591868733087
215 => 0.048901188825676
216 => 0.049412483176337
217 => 0.049938773014611
218 => 0.050107803126756
219 => 0.050430534057804
220 => 0.050428833106493
221 => 0.051401404489504
222 => 0.052474180842994
223 => 0.052879129081606
224 => 0.05381028522732
225 => 0.052215712959388
226 => 0.05342521434174
227 => 0.054516214864405
228 => 0.053215479064612
301 => 0.055008240332055
302 => 0.055077849189585
303 => 0.056128860294852
304 => 0.0550634591903
305 => 0.054430827415297
306 => 0.056257211645326
307 => 0.057140941443673
308 => 0.056874754836379
309 => 0.05484906161162
310 => 0.053670021268741
311 => 0.050584245271528
312 => 0.054239480235829
313 => 0.056019838562275
314 => 0.054844450913658
315 => 0.055437248075404
316 => 0.058671357174764
317 => 0.059902696526744
318 => 0.059646586549244
319 => 0.059689864919512
320 => 0.06035427328345
321 => 0.063300625865521
322 => 0.061535103102426
323 => 0.062884779101936
324 => 0.063600642385457
325 => 0.064265576098686
326 => 0.062632709053454
327 => 0.060508373019189
328 => 0.059835506623577
329 => 0.054727581776361
330 => 0.05446169210547
331 => 0.054312440175918
401 => 0.053371427872193
402 => 0.052632049966429
403 => 0.052044069204423
404 => 0.050501032099001
405 => 0.051021761825752
406 => 0.048562482736583
407 => 0.050135842346334
408 => 0.04621077353865
409 => 0.049479687475738
410 => 0.04770056623906
411 => 0.048895198300177
412 => 0.048891030341457
413 => 0.0466913339585
414 => 0.045422594991302
415 => 0.04623108484126
416 => 0.047097850138419
417 => 0.047238479891734
418 => 0.048362263724389
419 => 0.048675887636431
420 => 0.047725592541245
421 => 0.04612943521191
422 => 0.046500186155042
423 => 0.045415081735273
424 => 0.043513477977568
425 => 0.044879242995168
426 => 0.045345575220626
427 => 0.045551534097749
428 => 0.043681525202713
429 => 0.043093927808024
430 => 0.042781095885512
501 => 0.045888040546127
502 => 0.046058245988166
503 => 0.045187450882068
504 => 0.049123527333812
505 => 0.048232672008418
506 => 0.049227975671737
507 => 0.04646654439298
508 => 0.046572034786589
509 => 0.045264728965326
510 => 0.045996732871026
511 => 0.045479376104064
512 => 0.045937594189249
513 => 0.046212248220205
514 => 0.047519339525447
515 => 0.049494612358835
516 => 0.047324103672098
517 => 0.046378381955029
518 => 0.046965102389358
519 => 0.048527616223089
520 => 0.050894904664803
521 => 0.049493422261188
522 => 0.050115376353198
523 => 0.05025124565349
524 => 0.049217844414763
525 => 0.050933007642503
526 => 0.051852177550209
527 => 0.052795055680104
528 => 0.053613730341446
529 => 0.052418449420689
530 => 0.053697571342688
531 => 0.052666824868972
601 => 0.051742138725437
602 => 0.051743541092623
603 => 0.051163471967274
604 => 0.050039514943497
605 => 0.049832240023718
606 => 0.050910510332345
607 => 0.051775181007285
608 => 0.051846399425567
609 => 0.052325125539597
610 => 0.052608430722609
611 => 0.055385206650847
612 => 0.05650204889988
613 => 0.057867702461255
614 => 0.058399701487428
615 => 0.060000827824002
616 => 0.058707788270096
617 => 0.058428031029008
618 => 0.054544222260912
619 => 0.055180195729112
620 => 0.056198450614014
621 => 0.054561012908917
622 => 0.055599590246595
623 => 0.055804627413129
624 => 0.054505373402271
625 => 0.055199361106922
626 => 0.053356335516384
627 => 0.049534785280301
628 => 0.050937262120363
629 => 0.051969957143249
630 => 0.050496174015213
701 => 0.053137873228935
702 => 0.051594647084019
703 => 0.051105518484
704 => 0.049197253428387
705 => 0.050097881078779
706 => 0.051315992871678
707 => 0.050563341404362
708 => 0.05212520621023
709 => 0.054337223309468
710 => 0.055913638422281
711 => 0.056034656000219
712 => 0.05502112669429
713 => 0.056645313875298
714 => 0.056657144305746
715 => 0.054825054530569
716 => 0.053702909744392
717 => 0.05344795608796
718 => 0.054084880308336
719 => 0.054858223894571
720 => 0.056077571187057
721 => 0.056814397218455
722 => 0.058735648726011
723 => 0.059255484297358
724 => 0.059826625985971
725 => 0.060589847415532
726 => 0.061506290427678
727 => 0.059501165290233
728 => 0.059580832649964
729 => 0.057713687884823
730 => 0.055718375927625
731 => 0.057232568983991
801 => 0.05921217498053
802 => 0.058758051177654
803 => 0.058706952972923
804 => 0.05879288597982
805 => 0.058450491462749
806 => 0.056901853751766
807 => 0.056124137588295
808 => 0.057127589855726
809 => 0.057660880077343
810 => 0.058487966703277
811 => 0.05838601081895
812 => 0.060516497144736
813 => 0.061344339708374
814 => 0.061132542155215
815 => 0.061171518002189
816 => 0.062670287420741
817 => 0.06433722725961
818 => 0.065898536390797
819 => 0.067486767098828
820 => 0.065572092990597
821 => 0.06459993955912
822 => 0.065602953750681
823 => 0.065070740302192
824 => 0.068128996641976
825 => 0.068340743675538
826 => 0.07139877886858
827 => 0.074301218410833
828 => 0.072478248136949
829 => 0.074197226996837
830 => 0.076056442784209
831 => 0.079643171684939
901 => 0.078435287573818
902 => 0.077510067274655
903 => 0.076635738562579
904 => 0.078455077816636
905 => 0.080795628702325
906 => 0.081299760945585
907 => 0.082116647773004
908 => 0.081257791158141
909 => 0.082292189350791
910 => 0.085944069508442
911 => 0.084957299253807
912 => 0.083555926860991
913 => 0.086438735515158
914 => 0.087482012760466
915 => 0.094804278836575
916 => 0.10404894222539
917 => 0.10022159087869
918 => 0.097845830389932
919 => 0.098404190458581
920 => 0.10178002857657
921 => 0.10286424063632
922 => 0.099916978507607
923 => 0.10095800131681
924 => 0.1066941393466
925 => 0.10977139336224
926 => 0.10559206907865
927 => 0.094061479134612
928 => 0.083429748609765
929 => 0.08624976229802
930 => 0.085930060260985
1001 => 0.092092824976205
1002 => 0.084933765109581
1003 => 0.085054305317302
1004 => 0.091344509480352
1005 => 0.08966639085105
1006 => 0.086948053588777
1007 => 0.083449595480072
1008 => 0.076982372097924
1009 => 0.071254171996489
1010 => 0.082488491521101
1011 => 0.082004047234915
1012 => 0.081302500117897
1013 => 0.082863717311494
1014 => 0.090444544844366
1015 => 0.090269782232989
1016 => 0.089158031664078
1017 => 0.090001284672077
1018 => 0.086800227259406
1019 => 0.087625212641374
1020 => 0.083428064489331
1021 => 0.085325350742445
1022 => 0.086942221257879
1023 => 0.08726683195203
1024 => 0.087998196420984
1025 => 0.081748767109414
1026 => 0.084554577396704
1027 => 0.086202728071616
1028 => 0.078756323362127
1029 => 0.086055536592526
1030 => 0.081639978448824
1031 => 0.080141271695394
1101 => 0.082159082899287
1102 => 0.081372739910745
1103 => 0.080696688384805
1104 => 0.080319440017291
1105 => 0.081801097867734
1106 => 0.081731976758047
1107 => 0.079307696937326
1108 => 0.076145322737482
1109 => 0.077206719320344
1110 => 0.076821103991144
1111 => 0.075423584292756
1112 => 0.076365343832298
1113 => 0.072218311433753
1114 => 0.065083557736044
1115 => 0.069796994572167
1116 => 0.069615532381209
1117 => 0.069524030915872
1118 => 0.073066048428393
1119 => 0.072725565172812
1120 => 0.07210758472991
1121 => 0.075412234597296
1122 => 0.074205992941887
1123 => 0.077923345497581
1124 => 0.080371834314049
1125 => 0.079750818349877
1126 => 0.08205363391634
1127 => 0.077231171753893
1128 => 0.078833000240658
1129 => 0.079163134871742
1130 => 0.0753714557309
1201 => 0.072781272444252
1202 => 0.072608536749284
1203 => 0.06811751587948
1204 => 0.070516582977876
1205 => 0.072627662744321
1206 => 0.071616619362602
1207 => 0.071296553232011
1208 => 0.072931701679324
1209 => 0.07305876671778
1210 => 0.070161670375242
1211 => 0.070764068443965
1212 => 0.073276168530887
1213 => 0.07070076996716
1214 => 0.065697191246806
1215 => 0.06445623454427
1216 => 0.064290668044782
1217 => 0.060925095045987
1218 => 0.064539161204999
1219 => 0.062961524475639
1220 => 0.067945260000697
1221 => 0.065098576997093
1222 => 0.064975862182401
1223 => 0.064790360741645
1224 => 0.061893473031512
1225 => 0.062527707333213
1226 => 0.064635998748678
1227 => 0.065388260877318
1228 => 0.065309793774199
1229 => 0.064625666970568
1230 => 0.064938856717974
1231 => 0.063929963419037
]
'min_raw' => 0.03530005418082
'max_raw' => 0.10977139336224
'avg_raw' => 0.072535723771531
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.035300054'
'max' => '$0.109771'
'avg' => '$0.072535'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.020109278889342
'max_diff' => 0.068560283814825
'year' => 2033
]
8 => [
'items' => [
101 => 0.063573702196884
102 => 0.062449243782399
103 => 0.060796600552673
104 => 0.061026410730016
105 => 0.057752092054304
106 => 0.055968069458531
107 => 0.055474275517061
108 => 0.054813953621458
109 => 0.055548860632219
110 => 0.057742816320892
111 => 0.055096440286687
112 => 0.050559414197738
113 => 0.050832097196401
114 => 0.051444734934085
115 => 0.050303088562914
116 => 0.049222616083717
117 => 0.050161999242876
118 => 0.04823960147843
119 => 0.051677047519555
120 => 0.051584074237474
121 => 0.052865341551368
122 => 0.053666544296998
123 => 0.05182003136079
124 => 0.051355638350835
125 => 0.051620177714791
126 => 0.04724793129732
127 => 0.05250803573999
128 => 0.052553525341641
129 => 0.052164015754769
130 => 0.054964858982986
131 => 0.060875511799434
201 => 0.058651686454427
202 => 0.057790554065364
203 => 0.05615354076427
204 => 0.058334763791746
205 => 0.058167279895615
206 => 0.057409854200933
207 => 0.056951760777477
208 => 0.057795811956106
209 => 0.056847173495744
210 => 0.056676771961422
211 => 0.055644324062125
212 => 0.055275787135463
213 => 0.05500293706684
214 => 0.05470255595098
215 => 0.055365121842257
216 => 0.053863660364821
217 => 0.052053045013117
218 => 0.051902511937753
219 => 0.052318146993838
220 => 0.052134259421911
221 => 0.051901631554805
222 => 0.05145748160407
223 => 0.051325711801449
224 => 0.051753899734347
225 => 0.051270500523013
226 => 0.051983782391454
227 => 0.051789809190924
228 => 0.05070629066077
301 => 0.049355825402258
302 => 0.049343803428761
303 => 0.049052847904022
304 => 0.04868227229781
305 => 0.048579186641783
306 => 0.050082887013364
307 => 0.053195501780571
308 => 0.05258442102321
309 => 0.053025989496479
310 => 0.055198069348579
311 => 0.055888508216842
312 => 0.05539845106209
313 => 0.054727630603257
314 => 0.054757143298974
315 => 0.057049539877971
316 => 0.057192513840692
317 => 0.05755376291934
318 => 0.05801807007438
319 => 0.055477524578314
320 => 0.054637483834577
321 => 0.054239425926508
322 => 0.053013561637452
323 => 0.054335551175537
324 => 0.053565284484931
325 => 0.053669219777551
326 => 0.053601531781883
327 => 0.05363849400456
328 => 0.051676086683331
329 => 0.052391084770094
330 => 0.051202261774691
331 => 0.049610561235488
401 => 0.049605225297159
402 => 0.049994791749168
403 => 0.049763062379776
404 => 0.04913948460505
405 => 0.049228060884746
406 => 0.048452039470269
407 => 0.049322283934784
408 => 0.049347239432142
409 => 0.049012147910767
410 => 0.050352879578948
411 => 0.050902178437334
412 => 0.050681614019609
413 => 0.050886703049807
414 => 0.052609814187542
415 => 0.052890756487603
416 => 0.053015532499283
417 => 0.052848349173285
418 => 0.050918198358245
419 => 0.051003808754527
420 => 0.05037565647
421 => 0.049844933982631
422 => 0.049866160098853
423 => 0.050139020446454
424 => 0.051330617587478
425 => 0.053838263522274
426 => 0.053933426852434
427 => 0.054048767584699
428 => 0.053579618860972
429 => 0.053438119116748
430 => 0.053624793803563
501 => 0.054566533770912
502 => 0.056988944646844
503 => 0.056132702855907
504 => 0.055436564951678
505 => 0.056047265571118
506 => 0.055953252997585
507 => 0.055159692266056
508 => 0.055137419659358
509 => 0.053614322898839
510 => 0.053051268705711
511 => 0.052580738478057
512 => 0.052066931752961
513 => 0.051762329903368
514 => 0.052230336783409
515 => 0.052337375494169
516 => 0.051314070271598
517 => 0.051174597551005
518 => 0.052010250685333
519 => 0.051642510897204
520 => 0.052020740388803
521 => 0.052108492875246
522 => 0.052094362703818
523 => 0.051710400130365
524 => 0.051955126424755
525 => 0.051376275782104
526 => 0.050746862648775
527 => 0.050345336283536
528 => 0.049994951275121
529 => 0.050189365242286
530 => 0.049496314947931
531 => 0.04927459421042
601 => 0.051872218662732
602 => 0.053791111774823
603 => 0.053763210309008
604 => 0.053593367311535
605 => 0.053341015068683
606 => 0.054548072632543
607 => 0.054127557913172
608 => 0.054433517506695
609 => 0.05451139706433
610 => 0.05474711502947
611 => 0.054831363941364
612 => 0.054576705214989
613 => 0.053722039425332
614 => 0.05159229353669
615 => 0.050600891076388
616 => 0.050273711751374
617 => 0.050285604098436
618 => 0.049957560076685
619 => 0.050054183742992
620 => 0.049923958308728
621 => 0.049677342841147
622 => 0.050174137432107
623 => 0.050231388380753
624 => 0.05011543058697
625 => 0.050142742845139
626 => 0.049182661838836
627 => 0.049255654712559
628 => 0.048849221116183
629 => 0.048773019716493
630 => 0.047745590977079
701 => 0.045925352037028
702 => 0.046933941104685
703 => 0.04571570734004
704 => 0.045254343754115
705 => 0.047438367213125
706 => 0.047219151833222
707 => 0.046843950393462
708 => 0.046288949265226
709 => 0.046083093948059
710 => 0.044832382206829
711 => 0.044758483484869
712 => 0.045378369995881
713 => 0.045092313700041
714 => 0.044690582322692
715 => 0.043235551996788
716 => 0.041599616166487
717 => 0.041648994786078
718 => 0.042169355536029
719 => 0.043682374596718
720 => 0.043091211874211
721 => 0.042662316536222
722 => 0.042581997331963
723 => 0.043587360332906
724 => 0.045010159609302
725 => 0.045677705196447
726 => 0.045016187793247
727 => 0.044256272219077
728 => 0.044302524758967
729 => 0.044610222185353
730 => 0.044642556834258
731 => 0.044147929916057
801 => 0.044287164496237
802 => 0.044075654437067
803 => 0.042777617594357
804 => 0.042754140223991
805 => 0.042435581049119
806 => 0.042425935203907
807 => 0.041883986579138
808 => 0.041808164220219
809 => 0.040732092331811
810 => 0.041440366107407
811 => 0.040965293244779
812 => 0.04024924638244
813 => 0.040125799633478
814 => 0.040122088675138
815 => 0.040857308697612
816 => 0.041431774633378
817 => 0.040973557340621
818 => 0.040869230145229
819 => 0.041983171649813
820 => 0.041841412439553
821 => 0.041718649877716
822 => 0.0448827635395
823 => 0.04237812067733
824 => 0.041285953429407
825 => 0.039934189063168
826 => 0.040374330357003
827 => 0.040467074594635
828 => 0.03721632496767
829 => 0.035897496248866
830 => 0.035444923931584
831 => 0.035184462164555
901 => 0.035303157862463
902 => 0.034116057332359
903 => 0.03491380852142
904 => 0.033885879805459
905 => 0.033713544211059
906 => 0.035551608091129
907 => 0.035807363942227
908 => 0.034716230024327
909 => 0.035416914638154
910 => 0.035162836656936
911 => 0.03390350069296
912 => 0.033855403322185
913 => 0.033223512803261
914 => 0.032234726499261
915 => 0.031782824625655
916 => 0.031547470206288
917 => 0.031644582026685
918 => 0.031595479318622
919 => 0.031275050934157
920 => 0.031613845898539
921 => 0.030748364764287
922 => 0.030403723202973
923 => 0.03024805660535
924 => 0.029479892283466
925 => 0.030702383323808
926 => 0.030943229459292
927 => 0.031184550136064
928 => 0.033285081870738
929 => 0.033180145241315
930 => 0.03412872126509
1001 => 0.034091861345126
1002 => 0.033821312097232
1003 => 0.032679909323561
1004 => 0.033134852125598
1005 => 0.031734608894736
1006 => 0.032783766330582
1007 => 0.032304974690724
1008 => 0.032621886395525
1009 => 0.032052050575517
1010 => 0.032367421246254
1011 => 0.031000343012818
1012 => 0.029723784593745
1013 => 0.030237508966643
1014 => 0.030795986111492
1015 => 0.032006906858854
1016 => 0.031285692451604
1017 => 0.031545068424587
1018 => 0.030676202334108
1019 => 0.02888348341012
1020 => 0.028893630004541
1021 => 0.02861785925459
1022 => 0.028379553063444
1023 => 0.031368532602057
1024 => 0.030996805747656
1025 => 0.030404507655577
1026 => 0.031197322188816
1027 => 0.031406954935063
1028 => 0.03141292288464
1029 => 0.031991339902586
1030 => 0.032300041168751
1031 => 0.0323544511049
1101 => 0.033264602780165
1102 => 0.033569673616523
1103 => 0.034826217216241
1104 => 0.032273850023092
1105 => 0.032221285700381
1106 => 0.031208478715158
1107 => 0.030566140513285
1108 => 0.031252460161385
1109 => 0.031860445677627
1110 => 0.031227370519901
1111 => 0.031310036770554
1112 => 0.030460185095448
1113 => 0.03076396708006
1114 => 0.031025625049061
1115 => 0.030881152898123
1116 => 0.030664871095638
1117 => 0.03181059779867
1118 => 0.031745951407946
1119 => 0.032812878453952
1120 => 0.033644624382999
1121 => 0.035135261780221
1122 => 0.033579703947535
1123 => 0.03352301323733
1124 => 0.034077174023064
1125 => 0.033569588777394
1126 => 0.03389036513141
1127 => 0.035083579750405
1128 => 0.035108790495062
1129 => 0.034686478039857
1130 => 0.034660780288578
1201 => 0.034741890015193
1202 => 0.035216952217387
1203 => 0.035050950886753
1204 => 0.035243051829202
1205 => 0.035483276999289
1206 => 0.036476950156128
1207 => 0.036716521390177
1208 => 0.036134487494881
1209 => 0.036187038638869
1210 => 0.03596934198484
1211 => 0.03575904974478
1212 => 0.03623175598972
1213 => 0.037095635943414
1214 => 0.037090261791057
1215 => 0.037290665148887
1216 => 0.037415514780584
1217 => 0.036879568765824
1218 => 0.036530687617496
1219 => 0.03666447084965
1220 => 0.036878393151282
1221 => 0.036595098730403
1222 => 0.034846474329995
1223 => 0.035376895270519
1224 => 0.035288607289757
1225 => 0.035162874468967
1226 => 0.035696216826288
1227 => 0.035644774654827
1228 => 0.034103881900616
1229 => 0.034202524855326
1230 => 0.034109880705407
1231 => 0.034409232907004
]
'min_raw' => 0.028379553063444
'max_raw' => 0.063573702196884
'avg_raw' => 0.045976627630164
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.028379'
'max' => '$0.063573'
'avg' => '$0.045976'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0069205011173757
'max_diff' => -0.046197691165359
'year' => 2034
]
9 => [
'items' => [
101 => 0.033553422776118
102 => 0.033816664208409
103 => 0.033981766767007
104 => 0.034079013442399
105 => 0.034430335116585
106 => 0.034389111573058
107 => 0.034427772603238
108 => 0.034948689900572
109 => 0.037583310833253
110 => 0.037726707437656
111 => 0.037020570112734
112 => 0.037302658046098
113 => 0.03676111089989
114 => 0.03712465512719
115 => 0.037373382854486
116 => 0.036249430082425
117 => 0.036182876893656
118 => 0.035639094589737
119 => 0.035931292398459
120 => 0.035466384675016
121 => 0.035580456768567
122 => 0.035261501250372
123 => 0.035835557679713
124 => 0.036477441967068
125 => 0.036639607286832
126 => 0.036213020147092
127 => 0.035904142944457
128 => 0.035361856327107
129 => 0.036263691057406
130 => 0.036527415015461
131 => 0.036262305827725
201 => 0.036200874236176
202 => 0.036084461481196
203 => 0.036225571752464
204 => 0.036525978718148
205 => 0.036384312340777
206 => 0.036477885478871
207 => 0.036121281168658
208 => 0.036879746186256
209 => 0.038084371168747
210 => 0.038088244235042
211 => 0.037946577094037
212 => 0.037888609952198
213 => 0.038033969035951
214 => 0.038112820375945
215 => 0.038582884998503
216 => 0.039087283066708
217 => 0.041441088764904
218 => 0.040780149543757
219 => 0.042868585987724
220 => 0.04452026806537
221 => 0.045015535301153
222 => 0.044559912748357
223 => 0.04300125260749
224 => 0.042924777304998
225 => 0.045254073604791
226 => 0.04459594071157
227 => 0.044517657898083
228 => 0.043684861023481
301 => 0.044177147120271
302 => 0.044069476929501
303 => 0.043899514265966
304 => 0.044838761845693
305 => 0.046596949467733
306 => 0.046322919438659
307 => 0.046118368733842
308 => 0.045222087089151
309 => 0.045761848831008
310 => 0.045569650013188
311 => 0.046395458106926
312 => 0.045906267686085
313 => 0.044590954707613
314 => 0.044800422634763
315 => 0.044768761978965
316 => 0.045420336031784
317 => 0.04522474967419
318 => 0.044730570603596
319 => 0.04659094017358
320 => 0.046470138121624
321 => 0.046641407812104
322 => 0.046716806026544
323 => 0.047849180200404
324 => 0.048313077667503
325 => 0.048418390514202
326 => 0.048859057228828
327 => 0.048407426324904
328 => 0.050214271947978
329 => 0.051415718854957
330 => 0.052811261263305
331 => 0.05485052380834
401 => 0.055617305389506
402 => 0.055478793160064
403 => 0.057024938747927
404 => 0.059803328000432
405 => 0.056040385065184
406 => 0.060002773113139
407 => 0.058748326805127
408 => 0.055774057175354
409 => 0.055582549275532
410 => 0.057596759200794
411 => 0.062064082954506
412 => 0.060945069022168
413 => 0.062065913260424
414 => 0.060758388919351
415 => 0.060693459315137
416 => 0.062002409721627
417 => 0.065060843693563
418 => 0.063607896357179
419 => 0.06152474007317
420 => 0.063062910255781
421 => 0.061730404892673
422 => 0.058727897364824
423 => 0.060944213333303
424 => 0.059462225962226
425 => 0.059894748663888
426 => 0.063009665688908
427 => 0.062634870631409
428 => 0.0631198901409
429 => 0.062263843401819
430 => 0.061464160761337
501 => 0.059971493727665
502 => 0.05952958860659
503 => 0.059651715283974
504 => 0.059529528086674
505 => 0.058694394599652
506 => 0.058514047602643
507 => 0.058213461373113
508 => 0.058306625614559
509 => 0.057741435563438
510 => 0.058808065964127
511 => 0.05900604196561
512 => 0.059782246621637
513 => 0.059862834763986
514 => 0.062024553682441
515 => 0.060833915228367
516 => 0.061632698298138
517 => 0.06156124762194
518 => 0.055838518617005
519 => 0.05662706018182
520 => 0.057853783398696
521 => 0.057301146252277
522 => 0.056519846624418
523 => 0.055888905284285
524 => 0.05493296463692
525 => 0.056278432740872
526 => 0.058047580222988
527 => 0.05990770326367
528 => 0.06214251921696
529 => 0.061643734312312
530 => 0.059865924933929
531 => 0.059945676163953
601 => 0.060438666887007
602 => 0.059800199107722
603 => 0.059611902495239
604 => 0.060412797823943
605 => 0.060418313149907
606 => 0.059683678808431
607 => 0.058867267174545
608 => 0.05886384637999
609 => 0.058718573815341
610 => 0.060784232585878
611 => 0.061920136048015
612 => 0.062050365549349
613 => 0.061911370564961
614 => 0.061964864217938
615 => 0.061303907021245
616 => 0.062814659172117
617 => 0.06420107474366
618 => 0.063829485754038
619 => 0.063272421034107
620 => 0.06282869215281
621 => 0.063724957331511
622 => 0.063685048053955
623 => 0.064188965613125
624 => 0.064166105001872
625 => 0.063996656480021
626 => 0.063829491805578
627 => 0.064492280844308
628 => 0.06430140824522
629 => 0.064110239168265
630 => 0.063726820317911
701 => 0.063778933307587
702 => 0.063221964772734
703 => 0.062964285643365
704 => 0.059089409796337
705 => 0.05805391635479
706 => 0.058379703670913
707 => 0.058486961314445
708 => 0.058036313241663
709 => 0.058682426816041
710 => 0.058581730699878
711 => 0.058973480382611
712 => 0.058728732188633
713 => 0.058738776739886
714 => 0.059458528992558
715 => 0.059667476133553
716 => 0.059561203931233
717 => 0.05963563333894
718 => 0.061350827624868
719 => 0.061106981846235
720 => 0.060977443636363
721 => 0.061013326605777
722 => 0.061451595520012
723 => 0.061574286887402
724 => 0.061054434942401
725 => 0.061299600124892
726 => 0.062343482355844
727 => 0.062708782058061
728 => 0.06387464335373
729 => 0.063379364753798
730 => 0.064288470059129
731 => 0.067082749830881
801 => 0.06931501386201
802 => 0.067262131606771
803 => 0.071361400222829
804 => 0.074553268845588
805 => 0.074430759611511
806 => 0.073874183487882
807 => 0.070240325921088
808 => 0.066896396010361
809 => 0.069693735371448
810 => 0.069700866364758
811 => 0.069460572432803
812 => 0.067968127458891
813 => 0.069408638582773
814 => 0.069522981124619
815 => 0.069458979707321
816 => 0.068314725645045
817 => 0.06656766118545
818 => 0.066909033398973
819 => 0.067468208048529
820 => 0.066409573780868
821 => 0.066071275987438
822 => 0.066700235949213
823 => 0.068726875995065
824 => 0.068343751433923
825 => 0.068333746503304
826 => 0.069972915845967
827 => 0.068799624351504
828 => 0.066913339195811
829 => 0.066437027316954
830 => 0.064746441029139
831 => 0.065914134999795
901 => 0.065956158226993
902 => 0.065316624172808
903 => 0.066965233859635
904 => 0.066950041631139
905 => 0.068515151165611
906 => 0.071507052767226
907 => 0.070622200241092
908 => 0.06959321302488
909 => 0.069705092466003
910 => 0.070932133793132
911 => 0.070190236596121
912 => 0.070457028000857
913 => 0.070931729972388
914 => 0.071218129457999
915 => 0.069663883987461
916 => 0.069301515020124
917 => 0.068560235287177
918 => 0.068366849241493
919 => 0.068970606116669
920 => 0.068811537511105
921 => 0.065952626337469
922 => 0.065653854212992
923 => 0.065663017127502
924 => 0.064911740414665
925 => 0.063765863100519
926 => 0.066777160265317
927 => 0.066535310959907
928 => 0.066268328044383
929 => 0.066301031928151
930 => 0.06760813396506
1001 => 0.066849948773418
1002 => 0.068865708369507
1003 => 0.068451328795831
1004 => 0.068026321949688
1005 => 0.067967573057526
1006 => 0.06780398168164
1007 => 0.06724296598406
1008 => 0.066565505817416
1009 => 0.066118187934803
1010 => 0.060990533375665
1011 => 0.061942196235646
1012 => 0.063036997609256
1013 => 0.063414918656285
1014 => 0.062768458554002
1015 => 0.067268492169119
1016 => 0.068090691674004
1017 => 0.065600195742961
1018 => 0.065134325640542
1019 => 0.067299034535475
1020 => 0.065993450446931
1021 => 0.06658135488206
1022 => 0.065310627059843
1023 => 0.067892647890089
1024 => 0.067872977217431
1025 => 0.06686851279688
1026 => 0.067717479246854
1027 => 0.067569950434133
1028 => 0.066435912577217
1029 => 0.0679285989129
1030 => 0.0679293392667
1031 => 0.066962564100859
1101 => 0.065833582361454
1102 => 0.065631747091807
1103 => 0.065479691328881
1104 => 0.066543958485568
1105 => 0.067498177090377
1106 => 0.069273741343072
1107 => 0.069720160382566
1108 => 0.071462563613508
1109 => 0.070425047325555
1110 => 0.070884964857919
1111 => 0.071384270398608
1112 => 0.071623655836167
1113 => 0.071233590111795
1114 => 0.07394025953123
1115 => 0.074168785360439
1116 => 0.074245408094232
1117 => 0.073332734394902
1118 => 0.074143402253846
1119 => 0.073764117609143
1120 => 0.07475091088635
1121 => 0.074905652672225
1122 => 0.074774591884687
1123 => 0.074823709369957
1124 => 0.072514044509674
1125 => 0.072394276202215
1126 => 0.070761226831648
1127 => 0.071426706521046
1128 => 0.070182624138989
1129 => 0.070577135477808
1130 => 0.070751032316917
1201 => 0.070660198476725
1202 => 0.071464331744207
1203 => 0.070780654193274
1204 => 0.068976316729367
1205 => 0.067171487674924
1206 => 0.067148829516327
1207 => 0.066673649884171
1208 => 0.066330182043613
1209 => 0.066396346134881
1210 => 0.066629517022426
1211 => 0.066316629727747
1212 => 0.066383400095856
1213 => 0.067492233095088
1214 => 0.067714601645249
1215 => 0.066958906426801
1216 => 0.063924681078433
1217 => 0.063180074567165
1218 => 0.063715282961275
1219 => 0.063459487820726
1220 => 0.05121675948128
1221 => 0.054093006905676
1222 => 0.052384038354233
1223 => 0.053171609688601
1224 => 0.051427195332838
1225 => 0.052259721295998
1226 => 0.052105984149583
1227 => 0.056730904893664
1228 => 0.056658693117615
1229 => 0.056693257073447
1230 => 0.055043429405669
1231 => 0.057671649678143
]
'min_raw' => 0.033553422776118
'max_raw' => 0.074905652672225
'avg_raw' => 0.054229537724171
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.033553'
'max' => '$0.0749056'
'avg' => '$0.054229'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0051738697126738
'max_diff' => 0.011331950475341
'year' => 2035
]
10 => [
'items' => [
101 => 0.058966405492107
102 => 0.058726780649752
103 => 0.058787089060059
104 => 0.057750790759677
105 => 0.056703290706231
106 => 0.055541451937857
107 => 0.057700004761884
108 => 0.057460010535578
109 => 0.058010470943527
110 => 0.059410446746451
111 => 0.059616598501423
112 => 0.059893668550689
113 => 0.059794358661216
114 => 0.062160323131515
115 => 0.061873789223026
116 => 0.062564253501053
117 => 0.061143916095499
118 => 0.059536669501451
119 => 0.05984215453413
120 => 0.059812733868927
121 => 0.059438175033433
122 => 0.059100040064405
123 => 0.058537140609911
124 => 0.060318237777375
125 => 0.060245928485041
126 => 0.061416531877566
127 => 0.061209616357302
128 => 0.059827783872166
129 => 0.059877136289705
130 => 0.060209055015613
131 => 0.061357829515765
201 => 0.061698864001943
202 => 0.061540883240071
203 => 0.061914811985348
204 => 0.062210350019313
205 => 0.061951927012231
206 => 0.065610651826621
207 => 0.064091294198282
208 => 0.064831818534712
209 => 0.065008429225528
210 => 0.064556044654726
211 => 0.064654150669456
212 => 0.064802754549483
213 => 0.065705048209384
214 => 0.06807292785374
215 => 0.069121645629523
216 => 0.072276764800791
217 => 0.069034564217101
218 => 0.068842185452024
219 => 0.069410517690241
220 => 0.071262906647057
221 => 0.07276409391051
222 => 0.073262124331368
223 => 0.07332794727307
224 => 0.074262285451037
225 => 0.074797830670271
226 => 0.074148832220698
227 => 0.073598873987654
228 => 0.071628991860221
229 => 0.071857011080283
301 => 0.073427837390724
302 => 0.075646722075432
303 => 0.077550755970515
304 => 0.076884029662737
305 => 0.081970680755657
306 => 0.082475001434414
307 => 0.082405320623249
308 => 0.083554238182437
309 => 0.081273870800442
310 => 0.080298969564602
311 => 0.073717781199929
312 => 0.075566826687218
313 => 0.078254522893625
314 => 0.077898796222363
315 => 0.075946919394945
316 => 0.077549275296912
317 => 0.07701948632542
318 => 0.076601619782639
319 => 0.078515947422532
320 => 0.076411065546225
321 => 0.078233525086758
322 => 0.075896201875094
323 => 0.07688707521235
324 => 0.076324607582973
325 => 0.07668859307262
326 => 0.074560741337589
327 => 0.075708878483131
328 => 0.07451297505761
329 => 0.074512408043675
330 => 0.074486008409274
331 => 0.075892983485951
401 => 0.07593886489269
402 => 0.074899108185204
403 => 0.074749262999602
404 => 0.075303319187811
405 => 0.074654664498964
406 => 0.074958165945292
407 => 0.074663857248592
408 => 0.074597602161875
409 => 0.074069670358542
410 => 0.073842222821879
411 => 0.073931410861606
412 => 0.073626966102433
413 => 0.073443527122784
414 => 0.074449517779129
415 => 0.073912057552991
416 => 0.074367144291209
417 => 0.073848515516485
418 => 0.072050722227489
419 => 0.071016792295669
420 => 0.067620927428283
421 => 0.068583990492117
422 => 0.069222502299799
423 => 0.069011474151169
424 => 0.069464844271479
425 => 0.069492677514746
426 => 0.069345282267072
427 => 0.069174617452766
428 => 0.069091547259518
429 => 0.069710684421856
430 => 0.070070114383791
501 => 0.069286585501886
502 => 0.069103015647589
503 => 0.069895206607011
504 => 0.070378442634625
505 => 0.073946385955653
506 => 0.073682061190126
507 => 0.074345464480483
508 => 0.074270775450742
509 => 0.074966127787468
510 => 0.076102734980192
511 => 0.073791694757016
512 => 0.074192811430001
513 => 0.074094466884921
514 => 0.075168166840772
515 => 0.075171518814836
516 => 0.074527782056013
517 => 0.074876762196407
518 => 0.074681971055808
519 => 0.075033984974472
520 => 0.073678530971731
521 => 0.075329327634851
522 => 0.076265222967853
523 => 0.07627821787546
524 => 0.076721824835578
525 => 0.077172555199041
526 => 0.078037692881366
527 => 0.077148426978635
528 => 0.075548724187913
529 => 0.075664217562394
530 => 0.074726312401502
531 => 0.074742078756703
601 => 0.074657916717009
602 => 0.074910493333555
603 => 0.073733957335448
604 => 0.074010087982577
605 => 0.073623503459577
606 => 0.074191971070746
607 => 0.073580393892191
608 => 0.074094419460204
609 => 0.074316255855141
610 => 0.075134836928254
611 => 0.073459488802124
612 => 0.070043340561848
613 => 0.070761456338748
614 => 0.069699306697936
615 => 0.069797612691082
616 => 0.06999620644252
617 => 0.069352499118278
618 => 0.069475298190194
619 => 0.069470910943221
620 => 0.069433104018994
621 => 0.069265650882802
622 => 0.069022810705731
623 => 0.069990211228918
624 => 0.070154591428844
625 => 0.070519988250881
626 => 0.07160716134223
627 => 0.071498527113097
628 => 0.071675714048004
629 => 0.071288915963965
630 => 0.069815555144837
701 => 0.069895565725868
702 => 0.068897832498324
703 => 0.070494473969042
704 => 0.070116368194139
705 => 0.069872600941334
706 => 0.069806086787919
707 => 0.070895954771079
708 => 0.071222060353228
709 => 0.071018853238564
710 => 0.07060206951789
711 => 0.07140241747263
712 => 0.071616556821349
713 => 0.071664494724372
714 => 0.073082557848672
715 => 0.071743748700304
716 => 0.072066013368935
717 => 0.074580230319084
718 => 0.072300182483521
719 => 0.073507974673153
720 => 0.073448859530518
721 => 0.074066725145274
722 => 0.073398176515962
723 => 0.073406463977471
724 => 0.073955086785532
725 => 0.073184644996255
726 => 0.072993872774482
727 => 0.07273032231644
728 => 0.073305775099774
729 => 0.073650733017892
730 => 0.076430840494251
731 => 0.078226916712282
801 => 0.078148944306843
802 => 0.078861466134327
803 => 0.078540468525093
804 => 0.077503882569988
805 => 0.079273208397162
806 => 0.078713319673707
807 => 0.078759476219804
808 => 0.078757758270853
809 => 0.079130035325629
810 => 0.078866242913629
811 => 0.078346280991843
812 => 0.078691455981131
813 => 0.079716502297003
814 => 0.082898277513729
815 => 0.084678841077924
816 => 0.082791085351423
817 => 0.084093233973507
818 => 0.083312408803251
819 => 0.083170509642279
820 => 0.083988355204975
821 => 0.084807632298064
822 => 0.084755447889066
823 => 0.084160694789828
824 => 0.08382473385537
825 => 0.086368742606259
826 => 0.088243124917855
827 => 0.088115304610223
828 => 0.088679461878721
829 => 0.090335845067761
830 => 0.090487283988097
831 => 0.090468206164918
901 => 0.090092848999849
902 => 0.091723773357995
903 => 0.093084319150945
904 => 0.090005964661246
905 => 0.091178161752304
906 => 0.091704398792312
907 => 0.092477070894537
908 => 0.093780698245871
909 => 0.095196783319498
910 => 0.095397033275492
911 => 0.095254946348872
912 => 0.094321000176405
913 => 0.095870497361376
914 => 0.096778156472152
915 => 0.097318646701209
916 => 0.0986892399931
917 => 0.091707648653118
918 => 0.086765731295075
919 => 0.085993979537465
920 => 0.087563367084204
921 => 0.087977202064648
922 => 0.087810385702936
923 => 0.082247808416989
924 => 0.085964693719256
925 => 0.089963749779903
926 => 0.090117369809861
927 => 0.092119380890139
928 => 0.092771317763085
929 => 0.0943831990923
930 => 0.094282375476289
1001 => 0.094674842929319
1002 => 0.094584621458457
1003 => 0.097570292199169
1004 => 0.10086393040257
1005 => 0.10074988218471
1006 => 0.10027638272442
1007 => 0.10097961016661
1008 => 0.10437899776024
1009 => 0.1040660366247
1010 => 0.10437005170992
1011 => 0.10837812126389
1012 => 0.11358918182531
1013 => 0.11116812101261
1014 => 0.1164211263347
1015 => 0.1197276147351
1016 => 0.12544584452633
1017 => 0.12472989399359
1018 => 0.12695595888901
1019 => 0.12344819311661
1020 => 0.11539365386675
1021 => 0.11411899219893
1022 => 0.11667089713749
1023 => 0.12294450641771
1024 => 0.11647331885538
1025 => 0.11778243167114
1026 => 0.11740540709213
1027 => 0.11738531705457
1028 => 0.1181520720763
1029 => 0.11703985392603
1030 => 0.11250847709757
1031 => 0.11458518039448
1101 => 0.11378326552006
1102 => 0.11467304985994
1103 => 0.11947484896732
1104 => 0.11735185912136
1105 => 0.11511546177632
1106 => 0.11792040034329
1107 => 0.12149205102051
1108 => 0.12126854354001
1109 => 0.12083484560894
1110 => 0.12327957813866
1111 => 0.12731756003833
1112 => 0.12840901031989
1113 => 0.12921469660402
1114 => 0.12932578713041
1115 => 0.13047008859471
1116 => 0.1243168912201
1117 => 0.13408217347892
1118 => 0.13576836796454
1119 => 0.13545143328684
1120 => 0.1373255674917
1121 => 0.13677414966643
1122 => 0.13597523175243
1123 => 0.1389461331069
1124 => 0.13554023444338
1125 => 0.13070599008122
1126 => 0.12805382801363
1127 => 0.13154640896805
1128 => 0.13367920628263
1129 => 0.13508884963618
1130 => 0.13551540686324
1201 => 0.12479454641639
1202 => 0.11901659724171
1203 => 0.12272019641836
1204 => 0.12723884302262
1205 => 0.12429178991006
1206 => 0.12440730881257
1207 => 0.12020558554599
1208 => 0.12761060229881
1209 => 0.12653175364392
1210 => 0.13212882237395
1211 => 0.13079303700224
1212 => 0.13535722927463
1213 => 0.13415532448657
1214 => 0.13914436406421
1215 => 0.14113462702458
1216 => 0.14447658829475
1217 => 0.14693494860931
1218 => 0.14837854480696
1219 => 0.14829187670605
1220 => 0.15401212403791
1221 => 0.15063909403653
1222 => 0.14640177339266
1223 => 0.14632513363079
1224 => 0.14851970203555
1225 => 0.15311891536147
1226 => 0.15431142446105
1227 => 0.15497787436264
1228 => 0.15395718313908
1229 => 0.15029600081982
1230 => 0.14871512085698
1231 => 0.15006207638782
]
'min_raw' => 0.055541451937857
'max_raw' => 0.15497787436264
'avg_raw' => 0.10525966315025
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.055541'
'max' => '$0.154977'
'avg' => '$0.105259'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.021988029161739
'max_diff' => 0.080072221690412
'year' => 2036
]
11 => [
'items' => [
101 => 0.14841486551881
102 => 0.15125841360446
103 => 0.15516321247516
104 => 0.15435688694961
105 => 0.15705231229045
106 => 0.1598417939512
107 => 0.16383087800954
108 => 0.16487377229774
109 => 0.16659763689843
110 => 0.16837205983255
111 => 0.16894195665695
112 => 0.17003006652334
113 => 0.17002433164724
114 => 0.17330342396782
115 => 0.17692036434246
116 => 0.17828567560153
117 => 0.18142513355805
118 => 0.17604892182724
119 => 0.18012684018253
120 => 0.18380522461592
121 => 0.17941970305244
122 => 0.18546412283222
123 => 0.18569881395532
124 => 0.18924237127598
125 => 0.18565029706805
126 => 0.18351733486969
127 => 0.1896751168153
128 => 0.19265467353048
129 => 0.19175720679943
130 => 0.18492744066277
131 => 0.18095222382878
201 => 0.17054831461218
202 => 0.18287219449468
203 => 0.18887479689294
204 => 0.18491189537268
205 => 0.18691055239128
206 => 0.19781457701806
207 => 0.20196612361263
208 => 0.20110263094246
209 => 0.20124854698942
210 => 0.20348864617595
211 => 0.21342247961417
212 => 0.20746989635353
213 => 0.21202042321725
214 => 0.21443400625762
215 => 0.21667587669596
216 => 0.21117055144982
217 => 0.20400820419389
218 => 0.20173958816305
219 => 0.18451786291674
220 => 0.18362139732751
221 => 0.18311818402659
222 => 0.1799454953452
223 => 0.1774526311142
224 => 0.17547021292359
225 => 0.17026775559125
226 => 0.17202343222118
227 => 0.16373180107066
228 => 0.1690364928434
301 => 0.15580284931874
302 => 0.16682422088591
303 => 0.16082578942217
304 => 0.16485357482278
305 => 0.16483952225896
306 => 0.15742309232592
307 => 0.15314545031749
308 => 0.15587133029358
309 => 0.15879369000857
310 => 0.15926783304033
311 => 0.1630567486922
312 => 0.16411415360817
313 => 0.16091016734727
314 => 0.15552861147127
315 => 0.15677862416104
316 => 0.15312011885022
317 => 0.14670872901539
318 => 0.15131350112689
319 => 0.1528857727833
320 => 0.15358017751711
321 => 0.14727531196765
322 => 0.14529418632671
323 => 0.14423945165874
324 => 0.15471473250195
325 => 0.15528859203315
326 => 0.15235264553596
327 => 0.1656234021011
328 => 0.162619821174
329 => 0.16597555696477
330 => 0.15666519861146
331 => 0.15702086683862
401 => 0.15261319398905
402 => 0.155081196264
403 => 0.15333689180349
404 => 0.15488180606946
405 => 0.15580782131056
406 => 0.16021477090438
407 => 0.16687454117129
408 => 0.15955651959388
409 => 0.15636795279661
410 => 0.15834612170446
411 => 0.16361424618611
412 => 0.17159572444615
413 => 0.16687052867399
414 => 0.16896749031865
415 => 0.16942558315067
416 => 0.16594139872454
417 => 0.17172419129573
418 => 0.17482323681396
419 => 0.17800221625855
420 => 0.1807624350373
421 => 0.17673246196112
422 => 0.18104511082658
423 => 0.17756987712603
424 => 0.17445223323357
425 => 0.17445696141245
426 => 0.1725012178572
427 => 0.16871171827937
428 => 0.16801287641586
429 => 0.17164834004382
430 => 0.17456363759376
501 => 0.17480375546331
502 => 0.17641781398035
503 => 0.17737299718462
504 => 0.18673509109497
505 => 0.19050060271302
506 => 0.19510499904209
507 => 0.19689867090182
508 => 0.20229698013265
509 => 0.19793740699951
510 => 0.19699418592916
511 => 0.18389965350865
512 => 0.18604388245894
513 => 0.18947699989567
514 => 0.18395626435069
515 => 0.18745790035583
516 => 0.18814919747803
517 => 0.18376867186941
518 => 0.18610849986831
519 => 0.17989461041387
520 => 0.1670099869808
521 => 0.17173853556488
522 => 0.175220338935
523 => 0.17025137622258
524 => 0.17915804955919
525 => 0.173954954867
526 => 0.17230582364216
527 => 0.16587197477635
528 => 0.16890850377946
529 => 0.17301545273507
530 => 0.17047783576457
531 => 0.17574377200347
601 => 0.18320174209166
602 => 0.18851673570629
603 => 0.18892475491949
604 => 0.18550757010219
605 => 0.19098363058009
606 => 0.19102351770232
607 => 0.18484649911289
608 => 0.18106310962064
609 => 0.18020351556768
610 => 0.18235095004531
611 => 0.18495833193943
612 => 0.18906944646815
613 => 0.19155370687656
614 => 0.19803134047179
615 => 0.19978400239434
616 => 0.20170964647334
617 => 0.20428290080952
618 => 0.20737275240898
619 => 0.20061233301472
620 => 0.20088093708025
621 => 0.19458572814469
622 => 0.18785839457277
623 => 0.19296360217989
624 => 0.1996379820089
625 => 0.19810687190159
626 => 0.19793459073678
627 => 0.19822431986918
628 => 0.19706991284965
629 => 0.19184857268464
630 => 0.18922644834109
701 => 0.19260965771953
702 => 0.19440768293485
703 => 0.19719626323953
704 => 0.19685251185719
705 => 0.20403559525038
706 => 0.20682672425181
707 => 0.2061126340141
708 => 0.20624404380338
709 => 0.21129724953877
710 => 0.21691745358754
711 => 0.22218151633046
712 => 0.22753634704931
713 => 0.22108088961513
714 => 0.21780320644732
715 => 0.22118493882239
716 => 0.21939054402285
717 => 0.22970166879307
718 => 0.23041558870043
719 => 0.24072596785897
720 => 0.25051174541754
721 => 0.24436547386342
722 => 0.2501611311048
723 => 0.25642960693822
724 => 0.26852251384445
725 => 0.26445004823203
726 => 0.26133060339658
727 => 0.25838274310014
728 => 0.2645167724174
729 => 0.27240810314055
730 => 0.27410782019608
731 => 0.27686201116795
801 => 0.27396631612748
802 => 0.27745386185338
803 => 0.28976643077103
804 => 0.28643946596343
805 => 0.28171464110035
806 => 0.29143423174915
807 => 0.294951713821
808 => 0.31963924512089
809 => 0.35080827317805
810 => 0.33790409089551
811 => 0.32989404853738
812 => 0.33177659849229
813 => 0.34315847240058
814 => 0.3468139690573
815 => 0.33687706901907
816 => 0.34038695010217
817 => 0.35972673995399
818 => 0.37010191671474
819 => 0.3560110331015
820 => 0.3171348440651
821 => 0.28128922231686
822 => 0.29079709535388
823 => 0.28971919761513
824 => 0.31049738912299
825 => 0.28636011895307
826 => 0.28676652867925
827 => 0.307974391183
828 => 0.30231649706181
829 => 0.29315143319381
830 => 0.28135613742576
831 => 0.25955144226573
901 => 0.24023841569358
902 => 0.27811570832596
903 => 0.27648237059226
904 => 0.27411705550678
905 => 0.27938080827569
906 => 0.30494009757925
907 => 0.30435087323346
908 => 0.30060252857042
909 => 0.30344561496094
910 => 0.29265302640343
911 => 0.29543452221737
912 => 0.28128354418723
913 => 0.2876803772539
914 => 0.29313176908299
915 => 0.29422621670191
916 => 0.29669206307123
917 => 0.27562167582604
918 => 0.28508166110506
919 => 0.29063851617573
920 => 0.26553244280632
921 => 0.2901422498274
922 => 0.27525488726149
923 => 0.27020189280593
924 => 0.27700508415894
925 => 0.27435387387235
926 => 0.27207451895223
927 => 0.27080259974252
928 => 0.27579811263134
929 => 0.27556506598415
930 => 0.26739143731077
1001 => 0.25672927190608
1002 => 0.26030784458954
1003 => 0.25900771558435
1004 => 0.25429588034952
1005 => 0.25747108838864
1006 => 0.24348907912039
1007 => 0.21943375889597
1008 => 0.2353254402706
1009 => 0.2347136278245
1010 => 0.23440512424569
1011 => 0.24634728358492
1012 => 0.24519932051695
1013 => 0.24311575630769
1014 => 0.25425761405887
1015 => 0.25019068610055
1016 => 0.26272399977934
1017 => 0.2709792507721
1018 => 0.26888545209094
1019 => 0.27664955555072
1020 => 0.26039028767647
1021 => 0.26579096425569
1022 => 0.26690403621366
1023 => 0.25412012526372
1024 => 0.24538714147197
1025 => 0.24480475101636
1026 => 0.22966296060075
1027 => 0.23775158282051
1028 => 0.24486923564396
1029 => 0.2414604322937
1030 => 0.24038130698811
1031 => 0.24589432414065
1101 => 0.2463227327892
1102 => 0.23655497020153
1103 => 0.23858599734832
1104 => 0.2470557181806
1105 => 0.23837258211441
1106 => 0.22150266712002
1107 => 0.21731869495659
1108 => 0.21676047594408
1109 => 0.20541321160185
1110 => 0.21759828798299
1111 => 0.21227917560288
1112 => 0.22908218787891
1113 => 0.21948439738321
1114 => 0.2190706558178
1115 => 0.21844522475899
1116 => 0.20867816559004
1117 => 0.21081653081904
1118 => 0.21792478252249
1119 => 0.22046108681047
1120 => 0.2201965294939
1121 => 0.21788994821125
1122 => 0.21894588931084
1123 => 0.21554433511479
1124 => 0.21434317553094
1125 => 0.21055198547933
1126 => 0.20497998344644
1127 => 0.20575480450418
1128 => 0.19471521048339
1129 => 0.18870025374526
1130 => 0.187035392996
1201 => 0.18480907162277
1202 => 0.18728686191912
1203 => 0.19468393670058
1204 => 0.18576149513719
1205 => 0.17046459491325
1206 => 0.17138396468136
1207 => 0.17344951558696
1208 => 0.16960037513935
1209 => 0.16595748673956
1210 => 0.1691246826463
1211 => 0.16264318436595
1212 => 0.17423277368842
1213 => 0.1739193077767
1214 => 0.17823918998072
1215 => 0.1809405009758
1216 => 0.17471485369196
1217 => 0.17314912023601
1218 => 0.17404103317113
1219 => 0.15929969911414
1220 => 0.17703450849136
1221 => 0.17718787985931
1222 => 0.17587462109248
1223 => 0.18531785958504
1224 => 0.2052460382243
1225 => 0.19774825581108
1226 => 0.19484488783901
1227 => 0.18932558320176
1228 => 0.19667972892702
1229 => 0.19611504527786
1230 => 0.19356133166647
1231 => 0.19201683770622
]
'min_raw' => 0.14423945165874
'max_raw' => 0.37010191671474
'avg_raw' => 0.25717068418674
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.144239'
'max' => '$0.3701019'
'avg' => '$0.25717'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.088697999720878
'max_diff' => 0.21512404235211
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0045275115688381
]
1 => [
'year' => 2028
'avg' => 0.0077705241981258
]
2 => [
'year' => 2029
'avg' => 0.021227671608554
]
3 => [
'year' => 2030
'avg' => 0.016377117032803
]
4 => [
'year' => 2031
'avg' => 0.016084358519982
]
5 => [
'year' => 2032
'avg' => 0.028200942419448
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0045275115688381
'min' => '$0.004527'
'max_raw' => 0.028200942419448
'max' => '$0.02820094'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.028200942419448
]
1 => [
'year' => 2033
'avg' => 0.072535723771531
]
2 => [
'year' => 2034
'avg' => 0.045976627630164
]
3 => [
'year' => 2035
'avg' => 0.054229537724171
]
4 => [
'year' => 2036
'avg' => 0.10525966315025
]
5 => [
'year' => 2037
'avg' => 0.25717068418674
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.028200942419448
'min' => '$0.02820094'
'max_raw' => 0.25717068418674
'max' => '$0.25717'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.25717068418674
]
]
]
]
'prediction_2025_max_price' => '$0.007741'
'last_price' => 0.00750609
'sma_50day_nextmonth' => '$0.0069091'
'sma_200day_nextmonth' => '$0.033825'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'augmenter'
'sma_200day_date_nextmonth' => '4 févr. 2026'
'sma_50day_date_nextmonth' => '4 févr. 2026'
'daily_sma3' => '$0.007319'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.007203'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.0073051'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.006952'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.00763'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.011785'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.04680061'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.007361'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.007289'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.0072049'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.007269'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.00914'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.01915'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.047171'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.027152'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.084797'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.19148'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.222591'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.0074093'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.007667'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.011422'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.029522'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.08339'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.164683'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.395984'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '51.16'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 81.43
'stoch_rsi_14_action' => 'NEUTRAL'
'momentum_10' => 0
'momentum_10_action' => 'SELL'
'vwma_10' => '0.007336'
'vwma_10_action' => 'BUY'
'hma_9' => '0.007249'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 81.64
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 96.06
'cci_20_action' => 'NEUTRAL'
'adx_14' => 12.56
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '-0.000278'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -18.36
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 63.26
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.000780'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 17
'buy_signals' => 16
'sell_pct' => 51.52
'buy_pct' => 48.48
'overall_action' => 'bearish'
'overall_action_label' => 'Baissier'
'overall_action_dir' => -1
'last_updated' => 1767691370
'last_updated_date' => '6 janvier 2026'
]
Prévision du prix de BakeryToken pour 2026
La prévision du prix de BakeryToken pour 2026 suggère que le prix moyen pourrait varier entre $0.002593 à la baisse et $0.007741 à la hausse. Sur le marché des cryptomonnaies, comparé au prix moyen d'aujourd'hui, BakeryToken pourrait potentiellement gagner 3.13% d'ici 2026 si BAKE atteint l'objectif de prix prévu.
Prévision du prix de BakeryToken de 2027 à 2032
La prévision du prix de BAKE pour 2027-2032 se situe actuellement dans une fourchette de prix comprise entre $0.004527 à la baisse et $0.02820094 à la hausse. Compte tenu de la volatilité des prix sur le marché, si BakeryToken atteint l'objectif de prix le plus élevé, il pourrait gagner 275.71% d'ici 2032 par rapport au prix actuel.
| Prévision du Prix de BakeryToken | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2027 | $0.002496 | $0.004527 | $0.006558 |
| 2028 | $0.0045055 | $0.00777 | $0.011035 |
| 2029 | $0.009897 | $0.021227 | $0.032557 |
| 2030 | $0.008417 | $0.016377 | $0.024336 |
| 2031 | $0.009951 | $0.016084 | $0.022216 |
| 2032 | $0.01519 | $0.02820094 | $0.041211 |
Prévision du prix de BakeryToken de 2032 à 2037
La prévision du prix de BakeryToken pour 2032-2037 est actuellement estimée entre $0.02820094 à la baisse et $0.25717 à la hausse. Par rapport au prix actuel, BakeryToken pourrait potentiellement gagner 3326.16% d'ici 2037 s'il atteint l'objectif de prix le plus élevé. Veuillez noter que ces informations sont à titre général seulement et ne doivent pas être considérées comme un conseil en investissement à long terme.
| Prévision du Prix de BakeryToken | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2032 | $0.01519 | $0.02820094 | $0.041211 |
| 2033 | $0.035300054 | $0.072535 | $0.109771 |
| 2034 | $0.028379 | $0.045976 | $0.063573 |
| 2035 | $0.033553 | $0.054229 | $0.0749056 |
| 2036 | $0.055541 | $0.105259 | $0.154977 |
| 2037 | $0.144239 | $0.25717 | $0.3701019 |
BakeryToken Histogramme des prix potentiels
Prévision du prix de BakeryToken basée sur l'analyse technique
Au 6 janvier 2026, le sentiment global de prévision du prix pour BakeryToken est Baissier, avec 16 indicateurs techniques montrant des signaux haussiers et 17 indiquant des signaux baissiers. La prévision du prix de BAKE a été mise à jour pour la dernière fois le 6 janvier 2026.
Moyennes Mobiles Simples sur 50 et 200 jours de BakeryToken et Indice de Force Relative sur 14 jours - RSI (14)
Selon nos indicateurs techniques, le SMA sur 200 jours de BakeryToken devrait augmenter au cours du prochain mois, atteignant $0.033825 d'ici le 4 févr. 2026. Le SMA à court terme sur 50 jours pour BakeryToken devrait atteindre $0.0069091 d'ici le 4 févr. 2026.
Le Relative Strength Index (RSI), un oscillateur de momentum, est un outil couramment utilisé pour identifier si une cryptomonnaie est survendue (en dessous de 30) ou surachetée (au-dessus de 70). Actuellement, le RSI est à 51.16, ce qui suggère que le marché de BAKE est dans un état NEUTRAL.
Moyennes Mobiles et Oscillateurs Populaires de BAKE pour le Samedi 19 Octobre 2024
Les moyennes mobiles (MA) sont des indicateurs largement utilisés sur les marchés financiers, conçus pour lisser les mouvements de prix sur une période donnée. En tant qu'indicateurs retardés, ils sont basés sur des données historiques de prix. Le tableau ci-dessous met en évidence deux types : la moyenne mobile simple (SMA) et la moyenne mobile exponentielle (EMA).
Moyenne Mobile Simple Quotidienne (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 3 | $0.007319 | BUY |
| SMA 5 | $0.007203 | BUY |
| SMA 10 | $0.0073051 | BUY |
| SMA 21 | $0.006952 | BUY |
| SMA 50 | $0.00763 | SELL |
| SMA 100 | $0.011785 | SELL |
| SMA 200 | $0.04680061 | SELL |
Moyenne Mobile Exponentielle Quotidienne (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 3 | $0.007361 | BUY |
| EMA 5 | $0.007289 | BUY |
| EMA 10 | $0.0072049 | BUY |
| EMA 21 | $0.007269 | BUY |
| EMA 50 | $0.00914 | SELL |
| EMA 100 | $0.01915 | SELL |
| EMA 200 | $0.047171 | SELL |
Moyenne Mobile Simple Hebdomadaire (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 21 | $0.027152 | SELL |
| SMA 50 | $0.084797 | SELL |
| SMA 100 | $0.19148 | SELL |
| SMA 200 | $0.222591 | SELL |
Moyenne Mobile Exponentielle Hebdomadaire (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 21 | $0.029522 | SELL |
| EMA 50 | $0.08339 | SELL |
| EMA 100 | $0.164683 | SELL |
| EMA 200 | $0.395984 | SELL |
Oscillateurs de BakeryToken
Un oscillateur est un outil d'analyse technique qui établit des limites hautes et basses entre deux extrêmes, créant un indicateur de tendance qui fluctue à l'intérieur de ces limites. Les traders utilisent cet indicateur pour identifier les conditions de surachat ou de survente à court terme.
| Période | Valeur | Action |
|---|---|---|
| RSI (14) | 51.16 | NEUTRAL |
| Stoch RSI (14) | 81.43 | NEUTRAL |
| Stochastique Rapide (14) | 81.64 | SELL |
| Indice de Canal des Matières Premières (20) | 96.06 | NEUTRAL |
| Indice Directionnel Moyen (14) | 12.56 | NEUTRAL |
| Oscillateur Impressionnant (5, 34) | -0.000278 | NEUTRAL |
| Momentum (10) | 0 | SELL |
| MACD (12, 26) | 0 | BUY |
| Plage de Pourcentage de Williams (14) | -18.36 | SELL |
| Oscillateur Ultime (7, 14, 28) | 63.26 | NEUTRAL |
| VWMA (10) | 0.007336 | BUY |
| Moyenne Mobile de Hull (9) | 0.007249 | BUY |
| Nuage Ichimoku B/L (9, 26, 52, 26) | -0.000780 | SELL |
Prévision du cours de BakeryToken basée sur les flux monétaires mondiaux
Définitions des flux monétaires mondiaux utilisés pour la prédiction du cours de BakeryToken
M0 : le total de toutes les devises physiques, plus les comptes à la banque centrale qui peuvent être échangés contre des devises physiques.
M1 : M0 plus le montant des comptes à vue, y compris les comptes de "chèques" et les comptes "courants".
M2 : M1 plus la plupart des comptes d'épargne, comptes du marché monétaire et comptes de certificats de dépôt (CD) de moins de 100 000 $.
Prédictions du cours de BakeryToken par des sociétés Internet ou des niches technologiques
| Comparaison | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Action Facebook | $0.010547 | $0.01482 | $0.020825 | $0.029263 | $0.04112 | $0.05778 |
| Action Amazon.com | $0.015661 | $0.032679 | $0.068187 | $0.142277 | $0.29687 | $0.619438 |
| Action Apple | $0.010646 | $0.0151016 | $0.02142 | $0.030383 | $0.043096 | $0.061129 |
| Action Netflix | $0.011843 | $0.018687 | $0.029485 | $0.046523 | $0.0734062 | $0.115823 |
| Action Google | $0.00972 | $0.012587 | $0.0163011 | $0.0211099 | $0.027337 | $0.0354016 |
| Action Tesla | $0.017015 | $0.038573 | $0.087442 | $0.198226 | $0.449364 | $1.01 |
| Action Kodak | $0.005628 | $0.00422 | $0.003165 | $0.002373 | $0.001779 | $0.001334 |
| Action Nokia | $0.004972 | $0.003294 | $0.002182 | $0.001445 | $0.000957 | $0.000634 |
Ce calcul montre la valeur potentielle des cryptomonnaies si l'on suppose que leur capitalisation se comportera comme celle de certaines sociétés Internet ou niches technologiques. En extrapolant les données, vous pourrez obtenir une potentielle image des cours futurs pour 2024, 2025, 2026, 2027, 2028, 2029 et 2030.
Aperçu des prévisions relatives à BakeryToken
Vous vous posez peut-être des questions telles que : "Devrais-je investir dans BakeryToken maintenant ?", "Devrais-je acheter BAKE aujourd'hui ?", " BakeryToken sera-t-il un bon ou un mauvais investissement à court ou à long terme ?".
Nous mettons régulièrement à jour les prévisions de BakeryToken/BakerySwap avec de nouvelles valeurs. Regardez nos prévisions similaires. Nous faisons une prévision des cours futurs pour une grande quantité de devises numériques comme BakeryToken en utilisant des méthodes d'analyse technique.
Si vous souhaitez trouver des cryptomonnaies ayant un bon rendement, vous devriez consulter un maximum d'informations disponibles à propos de BakeryToken afin de prendre une décision responsable concernant cet investissement.
Le cours de BakeryToken est de $0.007506 USD actuellement, mais ce cours peut subir une hausse ou une baisse, ce qui pourrait causer la perte de votre investissement, car les cryptomonnaies sont des actifs à haut risque.
Prévision à court terme de BakeryToken
basée sur l'historique des cours sur 4 heures
Prévision à long terme de BakeryToken
basée sur l'historique des cours sur 1 mois
Prévision du cours de BakeryToken basée sur le modèle de croissance du Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si BakeryToken présente 1 % de la précédente croissance annuelle moyenne du Bitcoin | $0.0077011 | $0.0079013 | $0.0081067 | $0.008317 |
| Si BakeryToken présente 2 % de la précédente croissance annuelle moyenne du Bitcoin | $0.007896 | $0.0083068 | $0.008738 | $0.009192 |
| Si BakeryToken présente 5 % de la précédente croissance annuelle moyenne du Bitcoin | $0.008481 | $0.009583 | $0.010829 | $0.012237 |
| Si BakeryToken présente 10 % de la précédente croissance annuelle moyenne du Bitcoin | $0.009457 | $0.011915 | $0.015012 | $0.018914 |
| Si BakeryToken présente 20 % de la précédente croissance annuelle moyenne du Bitcoin | $0.0114082 | $0.017338 | $0.026352 | $0.040052 |
| Si BakeryToken présente 50 % de la précédente croissance annuelle moyenne du Bitcoin | $0.017261 | $0.039695 | $0.091286 | $0.209927 |
| Si BakeryToken présente 100 % de la précédente croissance annuelle moyenne du Bitcoin | $0.027016 | $0.097242 | $0.350006 | $1.25 |
Boîte à questions
Est-ce que BAKE est un bon investissement ?
La décision d'acquérir BakeryToken dépend entièrement de votre tolérance individuelle au risque. Comme vous pouvez le discerner, la valeur de BakeryToken a connu une hausse de 3.2417% au cours des 24 heures précédentes, et BakeryToken a enregistré une déclin de sur une période de 30 jours précédents. Par conséquent, la détermination de si investir ou non dans BakeryToken dépendra de la mesure dans laquelle cet investissement s'aligne avec vos aspirations de trading.
Est-ce que BakeryToken peut monter ?
Il semble que la valeur moyenne de BakeryToken pourrait potentiellement s'envoler jusqu'à $0.007741 pour la fin de cette année. En regardant les perspectives de BakeryToken sur une période de cinq ans plus longue, la monnaie numérique pourrait potentiellement croître jusqu'à $0.024336. Cependant, compte tenu de l'imprévisibilité du marché, il est essentiel de mener des recherches approfondies avant d'investir des fonds dans un projet, un réseau ou un actif particulier.
Quel sera le prix de BakeryToken la semaine prochaine ?
Basé sur notre nouveau pronostic expérimental de BakeryToken, le prix de BakeryToken va augmenter de 0.86% durant la prochaine semaine et atteindre $0.00757 d'ici 13 janvier 2026.
Quel sera le prix de BakeryToken le mois prochain ?
Basé sur notre nouveau pronostic expérimental de BakeryToken, le prix de BakeryToken va diminuer de -11.62% durant le prochain mois et atteindre $0.006634 d'ici 5 février 2026.
Jusqu'où le prix de BakeryToken peut-il monter cette année en 2026 ?
Selon notre prédiction la plus récente sur la valeur de BakeryToken en 2026, BAKE devrait fluctuer dans la fourchette de $0.002593 et $0.007741. Cependant, il est crucial de garder à l'esprit que le marché des cryptomonnaies est exceptionnellement instable, et cette prévision de prix de BakeryToken ne prend pas en compte les fluctuations de prix soudaines et extrêmes.
Où sera BakeryToken dans 5 ans ?
L'avenir de BakeryToken semble suivre une tendance haussière, avec un prix maximum de $0.024336 prévue après une période de cinq ans. Selon la prévision de BakeryToken pour 2030, la valeur de BakeryToken pourrait potentiellement atteindre son point le plus élevé d'environ $0.024336, tandis que son point le plus bas devrait être autour de $0.008417.
Combien vaudra BakeryToken en 2026 ?
Basé sur notre nouvelle simulation expérimentale de prédiction de prix de BakeryToken, il est attendu que la valeur de BAKE en 2026 augmente de 3.13% jusqu'à $0.007741 si le meilleur scénario se produit. Le prix sera entre $0.007741 et $0.002593 durant 2026.
Combien vaudra BakeryToken en 2027 ?
Selon notre dernière simulation expérimentale pour la prédiction de prix de BakeryToken, le valeur de BAKE pourrait diminuer de -12.62% jusqu'à $0.006558 en 2027, en supposant les conditions les plus favorables. Il est prévu que le prix fluctue entre $0.006558 et $0.002496 tout au long de l'année.
Combien vaudra BakeryToken en 2028 ?
Notre nouveau modèle expérimental de prédiction de prix de BakeryToken suggère que la valeur de BAKE en 2028 pourrait augmenter de 47.02%, atteignant $0.011035 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.011035 et $0.0045055 durant l'année.
Combien vaudra BakeryToken en 2029 ?
Basé sur notre modèle de prévision expérimental, la valeur de BakeryToken pourrait connaître un 333.75% croissance en 2029, atteignant potentiellement $0.032557 sous des conditions optimales. Le range de prix prévu pour 2029 se situe entre $0.032557 et $0.009897.
Combien vaudra BakeryToken en 2030 ?
En utilisant notre nouvelle simulation expérimentale pour les prédictions de prix de BakeryToken, il est prévu que la valeur de BAKE en 2030 augmente de 224.23%, atteignant $0.024336 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.024336 et $0.008417 au cours de 2030.
Combien vaudra BakeryToken en 2031 ?
Notre simulation expérimentale indique que le prix de BakeryToken pourrait augmenter de 195.98% en 2031, atteignant potentiellement $0.022216 dans des conditions idéales. Il est probable que le prix fluctue entre $0.022216 et $0.009951 durant l'année.
Combien vaudra BakeryToken en 2032 ?
Basé sur les résultats de notre dernière prédiction expérimentale de prix de BakeryToken, BAKE pourrait connaître une 449.04% hausse en valeur, atteignant $0.041211 si le scénario le plus positif se réalise en 2032. Il est prévu que le prix reste dans une fourchette de $0.041211 et $0.01519 tout au long de l'année.
Combien vaudra BakeryToken en 2033 ?
Selon notre prédiction expérimentale de prix de BakeryToken, la valeur de BAKE est anticipée à augmenter de 1362.43% en 2033, avec le prix potentiel le plus élevé étant $0.109771. Tout au long de l'année, le prix de BAKE pourrait osciller entre $0.109771 et $0.035300054.
Combien vaudra BakeryToken en 2034 ?
Les résultats de notre nouvelle simulation de prédiction de prix de BakeryToken suggèrent que BAKE pourrait augmenter de 746.96% en 2034, atteignant potentiellement $0.063573 dans les meilleures circonstances. La fourchette de prix prévue pour l'année est entre $0.063573 et $0.028379.
Combien vaudra BakeryToken en 2035 ?
Basé sur notre prédiction expérimentale pour le prix de BakeryToken, BAKE pourrait augmenter de 897.93%, avec la valeur potentiellement atteignant $0.0749056 en 2035. La fourchette de prix attendue pour l'année se situe entre $0.0749056 et $0.033553.
Combien vaudra BakeryToken en 2036 ?
Notre récente simulation de prédiction de prix de BakeryToken suggère que la valeur de BAKE pourrait augmenter de 1964.7% en 2036, pouvant atteindre $0.154977 si les conditions sont optimales. La fourchette de prix attendue pour 2036 est entre $0.154977 et $0.055541.
Combien vaudra BakeryToken en 2037 ?
Selon la simulation expérimentale, la valeur de BakeryToken pourrait augmenter de 4830.69% en 2037, avec un maximum de $0.3701019 sous des conditions favorables. Il est prévu que le prix chute entre $0.3701019 et $0.144239 au cours de l'année.
Prévisions liées
Prévision du cours de Kinesis Gold
Prévision du cours de LTO NetworkPrévision du cours de GameFi
Prévision du cours de HUNT Platform
Prévision du cours de Puff The Dragon
Prévision du cours de Clearpool
Prévision du cours de MATH
Prévision du cours de Stafi
Prévision du cours de Pangolin
Prévision du cours de StakeWise Staked ETH
Prévision du cours de BENQI
Prévision du cours de Velo
Prévision du cours de Dimitra
Prévision du cours de IX Swap
Prévision du cours de BitMart Token
Prévision du cours de LON
Prévision du cours de Moon Tropica
Prévision du cours de Kinesis Silver
Prévision du cours de Perpetual Protocol
Prévision du cours de USDX
Prévision du cours de Metadium
Prévision du cours de ARPA
Prévision du cours de Storj
Prévision du cours de Ozone Chain
Prévision du cours de Humanscape
Comment lire et prédire les mouvements de prix de BakeryToken ?
Les traders de BakeryToken utilisent des indicateurs et des modèles graphiques pour prédire la direction du marché. Ils identifient également des niveaux clés de support et de résistance pour évaluer quand une tendance baissière pourrait ralentir ou une tendance haussière pourrait s'arrêter.
Indicateurs de prédiction du prix de BakeryToken
Les moyennes mobiles sont des outils populaires pour la prédiction du prix de BakeryToken. Une moyenne mobile simple (SMA) calcule le prix de clôture moyen de BAKE sur une période spécifique, comme une SMA de 12 jours. Une moyenne mobile exponentielle (EMA) donne plus de poids aux prix récents, réagissant plus rapidement aux changements de prix.
Les moyennes mobiles couramment utilisées sur le marché des cryptomonnaies incluent les moyennes sur 50 jours, 100 jours et 200 jours, qui aident à identifier les niveaux clés de résistance et de support. Un mouvement de prix de BAKE au-dessus de ces moyennes est considéré comme haussier, tandis qu'une chute en dessous indique une faiblesse.
Les traders utilisent également le RSI et les niveaux de retracement de Fibonacci pour évaluer la direction future de BAKE.
Comment lire les graphiques de BakeryToken et prédire les mouvements de prix ?
La plupart des traders préfèrent les graphiques en chandeliers aux simples graphiques linéaires parce qu'ils fournissent des informations plus détaillées. Les chandeliers peuvent représenter l'action des prix de BakeryToken dans différentes périodes, comme 5 minutes pour les tendances à court terme et hebdomadaire pour les tendances à long terme. Les options populaires incluent les graphiques de 1 heure, 4 heures et 1 jour.
Par exemple, un graphique en chandeliers de 1 heure montre les prix d'ouverture, de clôture, les plus hauts et les plus bas de BAKE au sein de chaque heure. La couleur du chandelier est cruciale : le vert indique que le prix a clôturé plus haut qu'il n'a ouvert, tandis que le rouge signifie le contraire. Certains graphiques utilisent des chandeliers creux et pleins pour transmettre la même information.
Qu'est-ce qui affecte le prix de BakeryToken ?
L'action du prix de BakeryToken est déterminée par l'offre et la demande, influencée par des facteurs tels que les réductions de récompenses de bloc, les hard forks et les mises à jour de protocole. Les événements du monde réel, tels que les réglementations, l'adoption par les entreprises et les gouvernements et les piratages d'échanges de cryptomonnaies, impactent également le prix de BAKE. La capitalisation boursière de BakeryToken peut changer rapidement.
Les traders surveillent souvent l'activité des « baleines » de BAKE, de grands détenteurs de BakeryToken, car leurs actions peuvent influencer significativement les mouvements de prix sur le marché relativement petit de BakeryToken.
Modèles de prédiction de prix haussiers et baissiers
Les traders identifient souvent des modèles de chandeliers pour obtenir un avantage dans les prédictions de prix des cryptomonnaies. Certaines formations indiquent des tendances haussières, tandis que d'autres suggèrent des mouvements baissiers.
Modèles de chandeliers haussiers couramment suivis :
- Marteau
- Englobante haussière
- Ligne pénétrante
- Étoile du matin
- Trois soldats blancs
Modèles de chandeliers baissiers courants :
- Harami baissier
- Nuage sombre
- Étoile du soir
- Étoile filante
- Pendu


