Prédiction du prix de BakerySwap jusqu'à $0.007748 d'ici 2026
| Année | Prix min. | Prix max. |
|---|---|---|
| 2026 | $0.002595 | $0.007748 |
| 2027 | $0.002499 | $0.006564 |
| 2028 | $0.0045099 | $0.011046 |
| 2029 | $0.0099071 | $0.03259 |
| 2030 | $0.008425 | $0.02436 |
| 2031 | $0.009961 | $0.022238 |
| 2032 | $0.0152057 | $0.041251 |
| 2033 | $0.035334 | $0.109879 |
| 2034 | $0.0284075 | $0.063636 |
| 2035 | $0.033586 | $0.074979 |
Calculateur de profit d’investissement
Si vous ouvrez une position short de $10,000.00 sur BakerySwap aujourd’hui et la fermez le Apr 06, 2026, notre prévision indique que vous pourriez gagner environ $3,954.88, soit un rendement de 39.55% sur les 90 prochains jours.
Prévision du prix à long terme de BakeryToken pour 2027, 2028, 2029, 2030, 2031, 2032 et 2037
[
'name' => 'BakerySwap'
'name_with_ticker' => 'BakerySwap <small>BAKE</small>'
'name_lang' => 'BakeryToken'
'name_lang_with_ticker' => 'BakeryToken <small>BAKE</small>'
'name_with_lang' => 'BakeryToken/BakerySwap'
'name_with_lang_with_ticker' => 'BakeryToken/BakerySwap <small>BAKE</small>'
'image' => '/uploads/coins/bakerytoken.jpg?1717208119'
'price_for_sd' => 0.007513
'ticker' => 'BAKE'
'marketcap' => '$2.17M'
'low24h' => '$0.00709'
'high24h' => '$0.007523'
'volume24h' => '$247.8K'
'current_supply' => '288.71M'
'max_supply' => '289.77M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.007513'
'change_24h_pct' => '2.6788%'
'ath_price' => '$8.38'
'ath_days' => 1710
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '2 mai 2021'
'ath_pct' => '-99.91%'
'fdv' => '$2.18M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.370467'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.007577'
'next_week_prediction_price_date' => '13 janvier 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.00664'
'next_month_prediction_price_date' => '5 février 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.002595'
'current_year_max_price_prediction' => '$0.007748'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.008425'
'grand_prediction_max_price' => '$0.02436'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.007655876872899
107 => 0.0076844611380591
108 => 0.0077488629470136
109 => 0.0071985565407238
110 => 0.0074456279610007
111 => 0.007590759272952
112 => 0.0069350507256337
113 => 0.0075777980232352
114 => 0.0071889769305116
115 => 0.0070570052117443
116 => 0.0072346877451126
117 => 0.007165444689057
118 => 0.0071059135755492
119 => 0.0070726941913374
120 => 0.0072031646337375
121 => 0.0071970780316536
122 => 0.0069836030646655
123 => 0.0067051336725824
124 => 0.0067985971410117
125 => 0.0067646409867066
126 => 0.006641579503074
127 => 0.0067245080845422
128 => 0.006359332580951
129 => 0.0057310671071934
130 => 0.0061461185234496
131 => 0.0061301394954128
201 => 0.0061220821448854
202 => 0.0064339818130234
203 => 0.0064039998566816
204 => 0.006349582312337
205 => 0.0066405800821974
206 => 0.006534361981726
207 => 0.0068617011392469
208 => 0.0070773078793594
209 => 0.0070226230359195
210 => 0.0072254022171132
211 => 0.0068007503505546
212 => 0.0069418026665496
213 => 0.0069708733533861
214 => 0.0066369892148877
215 => 0.0064089052755322
216 => 0.0063936946771245
217 => 0.0059982285581849
218 => 0.0062094833668314
219 => 0.0063953788561224
220 => 0.0063063493428248
221 => 0.0062781652585958
222 => 0.0064221516325396
223 => 0.0064333406069549
224 => 0.006178230804531
225 => 0.0062312762107317
226 => 0.0064524843726537
227 => 0.006225702332613
228 => 0.0057851018734498
301 => 0.0056758268677994
302 => 0.0056612475677077
303 => 0.0053648850856738
304 => 0.0056831291461957
305 => 0.0055442070853673
306 => 0.0059830602109824
307 => 0.0057323896592476
308 => 0.0057215837527712
309 => 0.0057052490402502
310 => 0.0054501576093837
311 => 0.0055060064208373
312 => 0.0056916563761233
313 => 0.0057578983716658
314 => 0.005750988788826
315 => 0.0056907465900614
316 => 0.0057183251601659
317 => 0.0056294849768486
318 => 0.0055981136590708
319 => 0.0054990971508031
320 => 0.0053535702376583
321 => 0.0053738066474995
322 => 0.0050854797533714
323 => 0.0049283839587839
324 => 0.0048849019133313
325 => 0.0048267559049125
326 => 0.0048914696597029
327 => 0.0050846629595067
328 => 0.0048516308516983
329 => 0.0044521136481627
330 => 0.0044761253128394
331 => 0.0045300723942407
401 => 0.004429542364945
402 => 0.0043343991290626
403 => 0.0044171184534477
404 => 0.0042478377475674
405 => 0.0045505291587982
406 => 0.0045423422044072
407 => 0.0046551668442028
408 => 0.0047257184068616
409 => 0.0045631198962727
410 => 0.0045222268105727
411 => 0.0045455213706745
412 => 0.004160514181465
413 => 0.0046237035429632
414 => 0.0046277092237957
415 => 0.0045934101525877
416 => 0.0048400441882184
417 => 0.0053605189304838
418 => 0.0051646953963955
419 => 0.0050888666051989
420 => 0.0049447160177036
421 => 0.0051367881167261
422 => 0.0051220399763127
423 => 0.005055343292297
424 => 0.005015004929698
425 => 0.0050893295996284
426 => 0.005005795280579
427 => 0.0049907902215081
428 => 0.004899875889204
429 => 0.00486742360891
430 => 0.0048433972325428
501 => 0.0048169465529455
502 => 0.0048752901610384
503 => 0.004743075869359
504 => 0.0045836383947204
505 => 0.0045703828938416
506 => 0.0046069824972036
507 => 0.0045907898972359
508 => 0.0045703053699027
509 => 0.0045311948285945
510 => 0.0045195915664529
511 => 0.0045572965393107
512 => 0.0045147298232907
513 => 0.0045775393315072
514 => 0.0045604586206809
515 => 0.0044650471584897
516 => 0.0043461291507519
517 => 0.0043450705310441
518 => 0.0043194498413416
519 => 0.0042868180409089
520 => 0.0042777406205431
521 => 0.0044101520626709
522 => 0.0046842397851346
523 => 0.0046304298068516
524 => 0.0046693130308295
525 => 0.0048605800086591
526 => 0.0049213780293124
527 => 0.0048782250343327
528 => 0.0048191545532437
529 => 0.0048217533546239
530 => 0.0050236150703557
531 => 0.0050362049379573
601 => 0.0050680154717413
602 => 0.0051089009973095
603 => 0.004885188016131
604 => 0.0048112164933285
605 => 0.0047761646820409
606 => 0.004668218670033
607 => 0.0047846291893918
608 => 0.0047168017649569
609 => 0.0047259540018279
610 => 0.0047199935955592
611 => 0.0047232483804228
612 => 0.0045504445503798
613 => 0.0046134051837456
614 => 0.0045087209193594
615 => 0.0043685604407064
616 => 0.0043680905736354
617 => 0.0044023946522205
618 => 0.0043819892439593
619 => 0.0043270788149996
620 => 0.0043348785822634
621 => 0.0042665444137316
622 => 0.0043431755875532
623 => 0.0043453730954189
624 => 0.0043158659193693
625 => 0.0044339268157057
626 => 0.0044822964612633
627 => 0.0044628742058825
628 => 0.00448093374405
629 => 0.0046326658543868
630 => 0.0046574048089078
701 => 0.0046683922183424
702 => 0.0046536705452528
703 => 0.0044837071284884
704 => 0.0044912457287622
705 => 0.0044359324818932
706 => 0.0043891986170553
707 => 0.004391067726562
708 => 0.0044150950080658
709 => 0.0045200235555746
710 => 0.0047408394979311
711 => 0.0047492193015292
712 => 0.0047593758679462
713 => 0.004718064008047
714 => 0.0047056039558001
715 => 0.0047220419809261
716 => 0.0048049688389245
717 => 0.0050182792321188
718 => 0.0049428810926418
719 => 0.004881581231605
720 => 0.0049353577360581
721 => 0.0049270792647117
722 => 0.0048572006353892
723 => 0.0048552393750021
724 => 0.0047211199437829
725 => 0.0046715390438129
726 => 0.0046301055327319
727 => 0.0045848612202806
728 => 0.0045580388752564
729 => 0.0045992501877514
730 => 0.0046086757025169
731 => 0.0045185664474962
801 => 0.004506284889002
802 => 0.0045798700517953
803 => 0.0045474879651813
804 => 0.0045807937443009
805 => 0.0045885209707483
806 => 0.0045872767093171
807 => 0.0045534660918332
808 => 0.0045750159711703
809 => 0.0045240440822098
810 => 0.0044686198086954
811 => 0.0044332625752475
812 => 0.0044024086996077
813 => 0.0044195282230505
814 => 0.0043585002478786
815 => 0.0043389761703707
816 => 0.0045677153569386
817 => 0.0047366874534169
818 => 0.0047342305322138
819 => 0.0047192746562588
820 => 0.0046970532582784
821 => 0.0048033432052537
822 => 0.0047663139130621
823 => 0.0047932558170324
824 => 0.004800113662341
825 => 0.0048208702946392
826 => 0.004828289006593
827 => 0.0048058645064419
828 => 0.0047306051450128
829 => 0.0045430659717768
830 => 0.0044557659803831
831 => 0.0044269555291268
901 => 0.0044280027343111
902 => 0.0043991161403975
903 => 0.0044076245369114
904 => 0.0043961572673153
905 => 0.0043744410329308
906 => 0.004418187306772
907 => 0.0044232286573074
908 => 0.0044130177542638
909 => 0.0044154227915707
910 => 0.0043308808755036
911 => 0.0043373084137668
912 => 0.0043015190639453
913 => 0.0042948089923008
914 => 0.0042043366324872
915 => 0.0040440517328992
916 => 0.0041328651265026
917 => 0.0040255910360826
918 => 0.0039849647125728
919 => 0.0041772834093785
920 => 0.0041579799463095
921 => 0.0041249408085491
922 => 0.0040760690378419
923 => 0.0040579420226925
924 => 0.0039478080169607
925 => 0.00394130071236
926 => 0.003995886099469
927 => 0.0039706968214867
928 => 0.0039353215352739
929 => 0.0038071958345467
930 => 0.0036631401259675
1001 => 0.0036674882623076
1002 => 0.0037133097029549
1003 => 0.0038465417215
1004 => 0.0037944856669171
1005 => 0.0037567184020428
1006 => 0.0037496457286117
1007 => 0.0038381750442472
1008 => 0.0039634625733365
1009 => 0.0040222446788347
1010 => 0.0039639933975251
1011 => 0.0038970774620283
1012 => 0.0039011503249634
1013 => 0.0039282452573959
1014 => 0.0039310925516928
1015 => 0.0038875371567537
1016 => 0.0038997977453019
1017 => 0.0038811727901655
1018 => 0.0037668714748724
1019 => 0.0037648041265321
1020 => 0.0037367527404015
1021 => 0.0037359033555778
1022 => 0.0036881809500235
1023 => 0.003681504255597
1024 => 0.0035867485228258
1025 => 0.0036491170330826
1026 => 0.0036072835108961
1027 => 0.0035442305254308
1028 => 0.0035333601669705
1029 => 0.0035330333908688
1030 => 0.0035977747085521
1031 => 0.0036483604930912
1101 => 0.003608011222925
1102 => 0.0035988244762459
1103 => 0.0036969148962895
1104 => 0.003684431996225
1105 => 0.0036736218852751
1106 => 0.0039522444492722
1107 => 0.0037316929486787
1108 => 0.0036355199057804
1109 => 0.0035164875024282
1110 => 0.0035552450531732
1111 => 0.003563411838582
1112 => 0.0032771603657234
1113 => 0.0031610281788351
1114 => 0.0031211759886441
1115 => 0.003098240489762
1116 => 0.0031086924846084
1117 => 0.003004159895462
1118 => 0.0030744075241778
1119 => 0.0029838911378968
1120 => 0.002968715771171
1121 => 0.00313057028267
1122 => 0.0031530913924048
1123 => 0.003057009341516
1124 => 0.0031187095724577
1125 => 0.0030963362110209
1126 => 0.0029854427815418
1127 => 0.0029812074682126
1128 => 0.0029255650433925
1129 => 0.0028384954230457
1130 => 0.0027987022701574
1201 => 0.0027779776506332
1202 => 0.0027865290325636
1203 => 0.002782205192183
1204 => 0.0027539892089409
1205 => 0.002783822499314
1206 => 0.0027076107703774
1207 => 0.0026772626458352
1208 => 0.0026635551020507
1209 => 0.002595912806036
1210 => 0.0027035617796609
1211 => 0.002724769983591
1212 => 0.0027460199742345
1213 => 0.0029309866348007
1214 => 0.0029217462231492
1215 => 0.0030052750442161
1216 => 0.0030020292678291
1217 => 0.0029782054949836
1218 => 0.002877696916169
1219 => 0.0029177578442914
1220 => 0.0027944565343813
1221 => 0.00288684225944
1222 => 0.0028446812726433
1223 => 0.0028725875873939
1224 => 0.0028224095172614
1225 => 0.0028501801330745
1226 => 0.0027297992355154
1227 => 0.0026173892471796
1228 => 0.002662626307938
1229 => 0.0027118041664679
1230 => 0.0028184342940458
1231 => 0.0027549262697399
]
'min_raw' => 0.002595912806036
'max_raw' => 0.0077488629470136
'avg_raw' => 0.0051723878765248
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.002595'
'max' => '$0.007748'
'avg' => '$0.005172'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.004917587193964
'max_diff' => 0.00023536294701357
'year' => 2026
]
1 => [
'items' => [
101 => 0.0027777661567846
102 => 0.0027012563585357
103 => 0.0025433947908049
104 => 0.0025442882701346
105 => 0.0025200047071404
106 => 0.0024990201632551
107 => 0.0027622209302952
108 => 0.0027294877543253
109 => 0.0026773317224296
110 => 0.0027471446437204
111 => 0.0027656042881897
112 => 0.0027661298083165
113 => 0.002817063513558
114 => 0.0028442468411757
115 => 0.0028490380204876
116 => 0.0029291833061806
117 => 0.002956046948803
118 => 0.0030666944908796
119 => 0.0028419405257467
120 => 0.0028373118657382
121 => 0.0027481270546914
122 => 0.0026915646375693
123 => 0.002751999931783
124 => 0.0028055373522159
125 => 0.0027497906115792
126 => 0.0027570699590284
127 => 0.0026822345143997
128 => 0.0027089846645195
129 => 0.0027320254974371
130 => 0.0027193037037776
131 => 0.0027002585629275
201 => 0.0028011478942731
202 => 0.0027954553228101
203 => 0.0028894057875947
204 => 0.0029626468933566
205 => 0.0030939080482955
206 => 0.002956930190318
207 => 0.0029519381727356
208 => 0.0030007359453481
209 => 0.0029560394781182
210 => 0.0029842861025379
211 => 0.0030893570804104
212 => 0.0030915770646042
213 => 0.0030543894690705
214 => 0.0030521266005026
215 => 0.0030592688850126
216 => 0.0031011014684726
217 => 0.0030864838784263
218 => 0.0031033997237
219 => 0.0031245532472395
220 => 0.0032120531895069
221 => 0.0032331491293579
222 => 0.0031818969325107
223 => 0.0031865244320395
224 => 0.0031673547035144
225 => 0.0031488369859551
226 => 0.0031904621107329
227 => 0.0032665328444081
228 => 0.003266059612322
301 => 0.0032837065439309
302 => 0.0032947004361281
303 => 0.0032475066027965
304 => 0.003216785152663
305 => 0.0032285657115009
306 => 0.0032474030816298
307 => 0.0032224570062518
308 => 0.0030684782728725
309 => 0.0031151855843802
310 => 0.0031074112038745
311 => 0.0030963395406373
312 => 0.0031433041035353
313 => 0.003138774256873
314 => 0.0030030877626714
315 => 0.0030117739717964
316 => 0.0030036159998179
317 => 0.0030299760762445
318 => 0.0029546159474848
319 => 0.0029777962155331
320 => 0.0029923346623514
321 => 0.0030008979192171
322 => 0.0030318342748959
323 => 0.0030282042506231
324 => 0.0030316086274903
325 => 0.0030774790760669
326 => 0.0033094760641304
327 => 0.0033221031483182
328 => 0.0032599227676384
329 => 0.0032847626032662
330 => 0.0032370755507357
331 => 0.0032690881885749
401 => 0.0032909904223517
402 => 0.003192018439472
403 => 0.0031861579609687
404 => 0.0031382740870092
405 => 0.0031640041685938
406 => 0.0031230657587344
407 => 0.0031331106125491
408 => 0.0031050243255886
409 => 0.0031555740501936
410 => 0.0032120964969351
411 => 0.003226376299121
412 => 0.0031888122874111
413 => 0.0031616134673442
414 => 0.0031138612991549
415 => 0.0031932742190801
416 => 0.0032164969769312
417 => 0.0031931522398194
418 => 0.003187742754138
419 => 0.0031774917885465
420 => 0.0031899175449477
421 => 0.0032163705008046
422 => 0.0032038957753318
423 => 0.0032121355512829
424 => 0.0031807340221774
425 => 0.0032475222259191
426 => 0.0033535979669175
427 => 0.0033539390177699
428 => 0.0033414642250538
429 => 0.0033363598086475
430 => 0.003349159703008
501 => 0.0033561031206194
502 => 0.0033974956318819
503 => 0.0034419114456171
504 => 0.0036491806681812
505 => 0.0035909802998864
506 => 0.0037748818846465
507 => 0.0039203241615597
508 => 0.003963935940986
509 => 0.0039238151560066
510 => 0.0037865641178743
511 => 0.0037798299271528
512 => 0.0039849409240161
513 => 0.0039269876727234
514 => 0.0039200943178879
515 => 0.0038467606689445
516 => 0.0038901099380191
517 => 0.0038806288169771
518 => 0.0038656624035799
519 => 0.0039483697892381
520 => 0.0041031906318511
521 => 0.0040790603516292
522 => 0.004061048216815
523 => 0.003982124285313
524 => 0.0040296541203755
525 => 0.0040127296564838
526 => 0.0040854478938929
527 => 0.0040423712209579
528 => 0.0039265486198463
529 => 0.0039449937508296
530 => 0.0039422058063879
531 => 0.0039995815054417
601 => 0.0039823587447382
602 => 0.0039388427859451
603 => 0.0041026614710422
604 => 0.0040920239968394
605 => 0.0041071055031938
606 => 0.0041137448487021
607 => 0.0042134583955117
608 => 0.004254307845162
609 => 0.0042635813854029
610 => 0.0043023852031608
611 => 0.0042626159110676
612 => 0.0044217214344652
613 => 0.00452751732346
614 => 0.0046504046927341
615 => 0.0048299761682544
616 => 0.0048974967041791
617 => 0.0048852997237172
618 => 0.0050214487670358
619 => 0.0052661055714562
620 => 0.0049347518588963
621 => 0.0052836681228116
622 => 0.005173205262088
623 => 0.0049112998064544
624 => 0.004894436182774
625 => 0.005071801598114
626 => 0.0054651810185494
627 => 0.0053666439354028
628 => 0.0054653421899175
629 => 0.0053502054333596
630 => 0.0053444879229478
701 => 0.0054597502546416
702 => 0.0057290669752667
703 => 0.005601124696484
704 => 0.0054176880671152
705 => 0.005553134819651
706 => 0.0054357983075993
707 => 0.0051714063055249
708 => 0.0053665685859524
709 => 0.0052360691269323
710 => 0.0052741558068071
711 => 0.0055484462593379
712 => 0.0055154429064069
713 => 0.0055581523011278
714 => 0.0054827713373448
715 => 0.0054123536306846
716 => 0.0052809137519157
717 => 0.00524200088372
718 => 0.0052527550005509
719 => 0.0052419955545137
720 => 0.0051684561503374
721 => 0.0051525753230073
722 => 0.005126106581702
723 => 0.0051343103514143
724 => 0.0050845413740571
725 => 0.0051784657171256
726 => 0.0051958989028576
727 => 0.0052642492071027
728 => 0.0052713455624328
729 => 0.0054617001868496
730 => 0.0053568560585004
731 => 0.0054271945516036
801 => 0.0054209028147289
802 => 0.0049169760918447
803 => 0.0049864127480751
804 => 0.0050944343947463
805 => 0.0050457707893408
806 => 0.0049769718368273
807 => 0.0049214129939063
808 => 0.0048372356656975
809 => 0.0049557136386689
810 => 0.0051114995743987
811 => 0.0052752965508489
812 => 0.0054720878856507
813 => 0.0054281663506266
814 => 0.0052716176737299
815 => 0.0052786403330166
816 => 0.0053220516494125
817 => 0.0052658300503459
818 => 0.0052492492032051
819 => 0.0053197736956316
820 => 0.0053202593590513
821 => 0.005255569614718
822 => 0.0051836788019897
823 => 0.0051833775768594
824 => 0.0051705853011173
825 => 0.005352481150796
826 => 0.0054525054763746
827 => 0.0054639731041049
828 => 0.005451733613659
829 => 0.0054564441077636
830 => 0.0053982421565951
831 => 0.0055312745577139
901 => 0.0056533582445215
902 => 0.0056206372085195
903 => 0.0055715837239832
904 => 0.0055325102608141
905 => 0.0056114327423694
906 => 0.0056079184485012
907 => 0.0056522919500207
908 => 0.005650278911678
909 => 0.0056353577720888
910 => 0.0056206377414004
911 => 0.0056790009992032
912 => 0.0056621933182412
913 => 0.0056453595303083
914 => 0.0056115967914849
915 => 0.0056161857084307
916 => 0.0055671406936701
917 => 0.0055444502256947
918 => 0.0052032400293894
919 => 0.0051120575155718
920 => 0.00514074539061
921 => 0.005150190183953
922 => 0.005110507437086
923 => 0.005167402302432
924 => 0.0051585352979344
925 => 0.0051930316254104
926 => 0.0051714798176598
927 => 0.0051723643113675
928 => 0.005235743582632
929 => 0.0052541428547148
930 => 0.0052447848364332
1001 => 0.0052513388716636
1002 => 0.0054023738472621
1003 => 0.0053809015035586
1004 => 0.0053694947489258
1005 => 0.0053726544979143
1006 => 0.0054112471724061
1007 => 0.0054220510141819
1008 => 0.0053762743774053
1009 => 0.0053978629039407
1010 => 0.0054897841099366
1011 => 0.0055219513297454
1012 => 0.0056246136542339
1013 => 0.0055810008741139
1014 => 0.0056610540195411
1015 => 0.0059071100964558
1016 => 0.0061036767164807
1017 => 0.0059229059292467
1018 => 0.0062838754943144
1019 => 0.0065649420787283
1020 => 0.0065541542750776
1021 => 0.0065051438148978
1022 => 0.0061851569810843
1023 => 0.0058907003258742
1024 => 0.0061370258212474
1025 => 0.0061376537555924
1026 => 0.0061164941770846
1027 => 0.0059850738522466
1028 => 0.0061119210346503
1029 => 0.0061219897033482
1030 => 0.0061163539263525
1031 => 0.0060155942714305
1101 => 0.0058617529018615
1102 => 0.0058918131372311
1103 => 0.0059410524159786
1104 => 0.0058478321889199
1105 => 0.0058180426779619
1106 => 0.0058734270465192
1107 => 0.0060518870218022
1108 => 0.0060181501972232
1109 => 0.0060172691923922
1110 => 0.0061616096345813
1111 => 0.0060582930285909
1112 => 0.0058921922930653
1113 => 0.0058502496667455
1114 => 0.005701381599249
1115 => 0.0058042053037187
1116 => 0.0058079057457891
1117 => 0.0057515902536838
1118 => 0.0058967619848773
1119 => 0.0058954242018173
1120 => 0.0060332431546249
1121 => 0.0062967012299581
1122 => 0.0062187837130975
1123 => 0.0061281741183904
1124 => 0.0061380258936666
1125 => 0.0062460755521932
1126 => 0.0061807462621143
1127 => 0.0062042391303186
1128 => 0.0062460399929235
1129 => 0.0062712594911901
1130 => 0.0061343971959721
1201 => 0.0061024880480765
1202 => 0.006037213130071
1203 => 0.0060201841223775
1204 => 0.0060733491810871
1205 => 0.0060593420664663
1206 => 0.0058075947379619
1207 => 0.0057812857414242
1208 => 0.0057820926007875
1209 => 0.005715937378069
1210 => 0.0056150347843506
1211 => 0.0058802007760617
1212 => 0.0058589042359316
1213 => 0.0058353945038493
1214 => 0.0058382743118847
1215 => 0.0059533738815771
1216 => 0.0058866103184879
1217 => 0.0060641121932934
1218 => 0.0060276231440282
1219 => 0.005990198288335
1220 => 0.0059850250332893
1221 => 0.0059706196567861
1222 => 0.0059212182607521
1223 => 0.0058615631064774
1224 => 0.0058221736063842
1225 => 0.0053706473929571
1226 => 0.005454448031762
1227 => 0.0055508530280385
1228 => 0.0055841316464344
1229 => 0.0055272062668579
1230 => 0.005923466021702
1231 => 0.0059958664973661
]
'min_raw' => 0.0024990201632551
'max_raw' => 0.0065649420787283
'avg_raw' => 0.0045319811209917
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.002499'
'max' => '$0.006564'
'avg' => '$0.004531'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -9.6892642780855E-5
'max_diff' => -0.0011839208682853
'year' => 2027
]
2 => [
'items' => [
101 => 0.0057765607340135
102 => 0.0057355375798856
103 => 0.0059261554928571
104 => 0.0058111895892431
105 => 0.005862958728601
106 => 0.0057510621655145
107 => 0.005978427342912
108 => 0.0059766952012011
109 => 0.005888245011918
110 => 0.0059630025062193
111 => 0.0059500115518929
112 => 0.0058501515060355
113 => 0.0059815930844828
114 => 0.0059816582778658
115 => 0.0058965268937538
116 => 0.0057971120747674
117 => 0.0057793390532058
118 => 0.0057659494689286
119 => 0.0058596657116653
120 => 0.0059436914018599
121 => 0.0061000423795768
122 => 0.0061393527301825
123 => 0.0062927836456346
124 => 0.0062014230058986
125 => 0.0062419219941752
126 => 0.0062858893748811
127 => 0.0063069689540384
128 => 0.0062726209109942
129 => 0.0065109622773756
130 => 0.006531085591289
131 => 0.0065378327643781
201 => 0.0064574653966469
202 => 0.0065288504294088
203 => 0.0064954517366033
204 => 0.0065823458568592
205 => 0.0065959719644351
206 => 0.0065844311360812
207 => 0.0065887562776992
208 => 0.0063853739677909
209 => 0.006374827522095
210 => 0.0062310259866897
211 => 0.0062896261752947
212 => 0.0061800759314779
213 => 0.0062148154422847
214 => 0.0062301282876382
215 => 0.0062221297262219
216 => 0.0062929393420354
217 => 0.0062327367031451
218 => 0.0060738520408835
219 => 0.0059149240906019
220 => 0.005912928879646
221 => 0.0058710859556481
222 => 0.0058408411855115
223 => 0.0058466674012307
224 => 0.0058671997453503
225 => 0.0058396478083455
226 => 0.0058455274110242
227 => 0.0059431679910773
228 => 0.0059627491130662
229 => 0.0058962048097097
301 => 0.005629019829436
302 => 0.0055634519650941
303 => 0.0056105808457158
304 => 0.0055880562762673
305 => 0.0045099975448583
306 => 0.0047632714527316
307 => 0.0046127846970425
308 => 0.0046821359176268
309 => 0.0045285279084246
310 => 0.0046018377017014
311 => 0.0045883000597282
312 => 0.0049955570086688
313 => 0.0049891982515747
314 => 0.0049922418520977
315 => 0.0048469628690758
316 => 0.0050783962337839
317 => 0.0051924086313138
318 => 0.0051713079708727
319 => 0.0051766185525099
320 => 0.0050853651651852
321 => 0.004993125384357
322 => 0.0048908172718181
323 => 0.0050808930992505
324 => 0.0050597599119426
325 => 0.0051082318401461
326 => 0.0052315096011368
327 => 0.0052496627197293
328 => 0.0052740606952085
329 => 0.0052653157577654
330 => 0.005473655646121
331 => 0.0054484243109703
401 => 0.005509224569133
402 => 0.0053841538251657
403 => 0.0052426244065426
404 => 0.0052695245220776
405 => 0.0052669338246345
406 => 0.00523395127272
407 => 0.005204176099601
408 => 0.005154608825461
409 => 0.0053114470154163
410 => 0.0053050796713243
411 => 0.0054081595709462
412 => 0.0053899391974233
413 => 0.0052682590837557
414 => 0.0052726049128199
415 => 0.0053018327018113
416 => 0.0054029904132275
417 => 0.005433020909318
418 => 0.0054191095870205
419 => 0.0054520366550396
420 => 0.0054780608670571
421 => 0.0054553048953932
422 => 0.0057774814660574
423 => 0.0056436912918454
424 => 0.0057088996918503
425 => 0.0057244515110212
426 => 0.0056846158532344
427 => 0.0056932547810004
428 => 0.005706340402599
429 => 0.0057857937345183
430 => 0.0059943022674813
501 => 0.0060866492773651
502 => 0.0063644798129216
503 => 0.0060789811437267
504 => 0.0060620408342076
505 => 0.0061120865033397
506 => 0.0062752024390603
507 => 0.0064073925842611
508 => 0.0064512476816566
509 => 0.0064570438567462
510 => 0.0065393189348919
511 => 0.0065864774753457
512 => 0.0065293285763557
513 => 0.0064809008682007
514 => 0.0063074388286582
515 => 0.0063275175320567
516 => 0.0064658398873802
517 => 0.0066612283614209
518 => 0.0068288919988537
519 => 0.0067701820366924
520 => 0.0072180976052087
521 => 0.0072625066042561
522 => 0.0072563707165026
523 => 0.0073575410252776
524 => 0.0071567385653342
525 => 0.007070891623344
526 => 0.0064913714883817
527 => 0.006654193007987
528 => 0.0068908636489058
529 => 0.0068595394021108
530 => 0.0066876628564512
531 => 0.0068287616150812
601 => 0.006782109952912
602 => 0.0067453138513799
603 => 0.0069138839257737
604 => 0.0067285342045007
605 => 0.006889014643651
606 => 0.0066831968204832
607 => 0.0067704502188542
608 => 0.0067209209699668
609 => 0.0067529724640734
610 => 0.006565600084446
611 => 0.0066667016722855
612 => 0.0065613939260007
613 => 0.0065613439964174
614 => 0.0065590193220815
615 => 0.0066829134185796
616 => 0.0066869536006185
617 => 0.0065953956761128
618 => 0.0065822007487879
619 => 0.0066309893108493
620 => 0.0065738706824201
621 => 0.0066005961291618
622 => 0.0065746801689763
623 => 0.0065688459404649
624 => 0.0065223578150739
625 => 0.0065023294524379
626 => 0.0065101830894948
627 => 0.0064833745773921
628 => 0.006467221479144
629 => 0.0065558060642724
630 => 0.0065084788939303
701 => 0.0065485524966503
702 => 0.006502883568659
703 => 0.0063445751672363
704 => 0.0062535303314972
705 => 0.0059545004364063
706 => 0.0060393049437086
707 => 0.0060955304197867
708 => 0.0060769479002783
709 => 0.0061168703426628
710 => 0.0061193212563885
711 => 0.0061063420634082
712 => 0.0060913138206746
713 => 0.0060839989032258
714 => 0.0061385183048895
715 => 0.006170168652594
716 => 0.0061011733985109
717 => 0.0060850087758255
718 => 0.0061547667870358
719 => 0.0061973191335762
720 => 0.0065115017523323
721 => 0.0064882260891384
722 => 0.006546643436137
723 => 0.0065400665393522
724 => 0.0066012972256199
725 => 0.0067013835196488
726 => 0.0064978800993201
727 => 0.0065332012564703
728 => 0.0065245413244217
729 => 0.0066190881917723
730 => 0.006619383356772
731 => 0.0065626977868291
801 => 0.0065934279539135
802 => 0.006576275217685
803 => 0.0066072725303812
804 => 0.0064879152284659
805 => 0.0066332795383742
806 => 0.0067156917350229
807 => 0.0067168360284533
808 => 0.0067558987556012
809 => 0.006795588748744
810 => 0.0068717702343118
811 => 0.0067934640884591
812 => 0.0066525989550198
813 => 0.0066627689626625
814 => 0.0065801797864676
815 => 0.0065815681254403
816 => 0.0065741570631975
817 => 0.006596398218867
818 => 0.0064927959114067
819 => 0.0065171111658903
820 => 0.0064830696672233
821 => 0.0065331272569004
822 => 0.0064792735652239
823 => 0.0065245371483403
824 => 0.0065440714103018
825 => 0.0066161532574822
826 => 0.0064686270177874
827 => 0.0061678110284011
828 => 0.0062310461964115
829 => 0.0061375164159089
830 => 0.0061461729531874
831 => 0.0061636605361677
901 => 0.0061069775581476
902 => 0.0061177908840679
903 => 0.0061174045559738
904 => 0.0061140753891704
905 => 0.0060993299573869
906 => 0.006077946164006
907 => 0.0061631326152508
908 => 0.0061776074532843
909 => 0.0062097832251795
910 => 0.0063055164973053
911 => 0.0062959504858739
912 => 0.0063115530474085
913 => 0.0062774927431832
914 => 0.0061477529130131
915 => 0.0061547984099885
916 => 0.006066940949809
917 => 0.0062075365123923
918 => 0.0061742416274018
919 => 0.0061527761984524
920 => 0.0061469191572878
921 => 0.0062428897336782
922 => 0.0062716056342887
923 => 0.0062537118120807
924 => 0.0062170110606858
925 => 0.0062874873529671
926 => 0.0063063438356256
927 => 0.0063105651066925
928 => 0.0064354355841264
929 => 0.0063175439792431
930 => 0.0063459216602803
1001 => 0.0065673162269662
1002 => 0.0063665419053439
1003 => 0.0064728965413089
1004 => 0.0064676910353212
1005 => 0.0065220984682362
1006 => 0.0064632280377882
1007 => 0.0064639578073292
1008 => 0.006512267921879
1009 => 0.0064444250787689
1010 => 0.0064276262367387
1011 => 0.0064044187567897
1012 => 0.0064550914402297
1013 => 0.0064854674222237
1014 => 0.0067302755283945
1015 => 0.0068884327295868
1016 => 0.0068815667083731
1017 => 0.0069443092896132
1018 => 0.0069160431821084
1019 => 0.0068247644647528
1020 => 0.006980566105025
1021 => 0.0069312639470254
1022 => 0.0069353283570287
1023 => 0.0069351770794854
1024 => 0.0069679587044857
1025 => 0.0069447299187812
1026 => 0.0068989435977717
1027 => 0.0069293386944159
1028 => 0.0070196012650035
1029 => 0.0072997790537012
1030 => 0.0074565702561184
1031 => 0.0072903400264428
1101 => 0.0074050034129616
1102 => 0.0073362462397924
1103 => 0.0073237510160789
1104 => 0.0073957680963703
1105 => 0.0074679112330274
1106 => 0.0074633160271057
1107 => 0.0074109438144837
1108 => 0.0073813600804693
1109 => 0.0076053780257046
1110 => 0.0077704306317078
1111 => 0.0077591751505051
1112 => 0.0078088531840553
1113 => 0.0079547094270424
1114 => 0.0079680446939712
1115 => 0.0079663647568457
1116 => 0.0079333119063715
1117 => 0.0080769263194189
1118 => 0.0081967319894381
1119 => 0.0079256611264754
1120 => 0.0080288813625135
1121 => 0.0080752202520193
1122 => 0.0081432594899427
1123 => 0.00825805308902
1124 => 0.0083827493851162
1125 => 0.0084003828086095
1126 => 0.008387871050804
1127 => 0.0083056304915122
1128 => 0.0084420746666369
1129 => 0.0085220004644153
1130 => 0.008569594447923
1201 => 0.0086902848712148
1202 => 0.0080755064252252
1203 => 0.0076403356846825
1204 => 0.0075723774896051
1205 => 0.007710573151619
1206 => 0.0077470142456023
1207 => 0.0077323248863109
1208 => 0.0072425006538373
1209 => 0.0075697986663925
1210 => 0.0079219438079035
1211 => 0.0079354711369451
1212 => 0.0081117623577932
1213 => 0.0081691700057226
1214 => 0.0083111075455238
1215 => 0.0083022293137638
1216 => 0.0083367888459858
1217 => 0.0083288442080157
1218 => 0.0085917536120222
1219 => 0.0088817817270656
1220 => 0.0088717389756746
1221 => 0.0088300440026802
1222 => 0.0088919681476262
1223 => 0.0091913082436528
1224 => 0.009163749804438
1225 => 0.0091905204807129
1226 => 0.0095434593239967
1227 => 0.010002330025231
1228 => 0.0097891385146423
1229 => 0.010251702748414
1230 => 0.010542862414098
1231 => 0.011046392949425
]
'min_raw' => 0.0045099975448583
'max_raw' => 0.011046392949425
'avg_raw' => 0.0077781952471417
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.0045099'
'max' => '$0.011046'
'avg' => '$0.007778'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0020109773816031
'max_diff' => 0.0044814508706968
'year' => 2028
]
3 => [
'items' => [
101 => 0.010983348446462
102 => 0.011179369188787
103 => 0.010870485628373
104 => 0.010161226537995
105 => 0.010048983572008
106 => 0.010273696832359
107 => 0.010826132455731
108 => 0.010256298668627
109 => 0.010371575301605
110 => 0.010338375623552
111 => 0.010336606553799
112 => 0.010404124750978
113 => 0.010306186084457
114 => 0.0099071663382225
115 => 0.010090034736484
116 => 0.010019420465853
117 => 0.01009777226376
118 => 0.010520604602325
119 => 0.010333660346382
120 => 0.010136729758863
121 => 0.010383724418007
122 => 0.01069823349567
123 => 0.010678552082817
124 => 0.01064036191569
125 => 0.010855637888214
126 => 0.011211210724882
127 => 0.011307320633826
128 => 0.011378267003728
129 => 0.011388049309489
130 => 0.011488813138493
131 => 0.010946980634181
201 => 0.01180688273377
202 => 0.011955364072053
203 => 0.011927455734377
204 => 0.012092486492829
205 => 0.012043930257266
206 => 0.011973579890175
207 => 0.01223518874537
208 => 0.011935275303635
209 => 0.011509585931145
210 => 0.011276044322216
211 => 0.011583590752118
212 => 0.011771398624968
213 => 0.011895527682098
214 => 0.011933089059784
215 => 0.010989041549091
216 => 0.010480252300103
217 => 0.010806380375424
218 => 0.011204279135473
219 => 0.010944770286478
220 => 0.010954942542044
221 => 0.010584951121104
222 => 0.01123701516641
223 => 0.011142014919731
224 => 0.011634876367556
225 => 0.011517251027572
226 => 0.011919160405502
227 => 0.011813324196843
228 => 0.012252644381764
301 => 0.012427901097648
302 => 0.012722184400147
303 => 0.012938660395414
304 => 0.01306577924036
305 => 0.01305814750172
306 => 0.013561855695756
307 => 0.013264836571957
308 => 0.012891710550433
309 => 0.012884961877901
310 => 0.013078209131685
311 => 0.013483202360821
312 => 0.013588211212724
313 => 0.013646896835367
314 => 0.013557017761429
315 => 0.013234624790097
316 => 0.013095417139646
317 => 0.013214026091064
318 => 0.013068977535663
319 => 0.013319372035722
320 => 0.013663217165683
321 => 0.013592214506057
322 => 0.013829565751873
323 => 0.014075199321213
324 => 0.014426466357464
325 => 0.01451830056812
326 => 0.014670099026193
327 => 0.014826349502746
328 => 0.014876532944746
329 => 0.014972348706533
330 => 0.014971843710172
331 => 0.01526059095746
401 => 0.015579088112976
402 => 0.015699313415957
403 => 0.0159757648709
404 => 0.015502351442324
405 => 0.015861440966081
406 => 0.016185348705103
407 => 0.015799172545492
408 => 0.016331426414011
409 => 0.016352092625612
410 => 0.016664127884736
411 => 0.016347820370891
412 => 0.01615999797886
413 => 0.016702234187042
414 => 0.016964605207901
415 => 0.016885576921172
416 => 0.016284167757057
417 => 0.01593412182789
418 => 0.015017984112443
419 => 0.016103188810594
420 => 0.016631760363209
421 => 0.01628279888443
422 => 0.016458794756449
423 => 0.017418971167333
424 => 0.017784544177779
425 => 0.017708507547155
426 => 0.017721356486061
427 => 0.017918613046878
428 => 0.018793357268714
429 => 0.018269190254577
430 => 0.018669896296721
501 => 0.018882429336621
502 => 0.019079841868675
503 => 0.018595059082822
504 => 0.0179643638013
505 => 0.017764596130855
506 => 0.016248101542644
507 => 0.016169161413525
508 => 0.01612484992692
509 => 0.01584547227186
510 => 0.015625957962963
511 => 0.015451392034484
512 => 0.014993278908357
513 => 0.015147878640373
514 => 0.014417741932966
515 => 0.014884857523909
516 => 0.013719541709121
517 => 0.014690051347223
518 => 0.014161847074862
519 => 0.014516522037744
520 => 0.014515284610211
521 => 0.013862215553746
522 => 0.013485538951181
523 => 0.013725571942808
524 => 0.013982906363675
525 => 0.014024658007684
526 => 0.014358298801454
527 => 0.01445141077541
528 => 0.01416927714734
529 => 0.013695393129021
530 => 0.013805465578333
531 => 0.013483308336509
601 => 0.012918740161812
602 => 0.013324222881294
603 => 0.013462672509542
604 => 0.013523819752678
605 => 0.012968631793956
606 => 0.012794179683609
607 => 0.012701302843855
608 => 0.013623725335302
609 => 0.013674257721635
610 => 0.013415726888598
611 => 0.014584310768823
612 => 0.014319824246361
613 => 0.014615320492722
614 => 0.013795477657283
615 => 0.013826796757661
616 => 0.0134386700208
617 => 0.013655995058804
618 => 0.013502396726656
619 => 0.013638437343382
620 => 0.01371997952813
621 => 0.014108042577213
622 => 0.014694482403889
623 => 0.014050078898443
624 => 0.013769303063092
625 => 0.0139434948122
626 => 0.014407390394797
627 => 0.015110215948808
628 => 0.014694129075151
629 => 0.014878781364067
630 => 0.014919119674586
701 => 0.014612312618325
702 => 0.015121528362598
703 => 0.015394421216815
704 => 0.015674352818023
705 => 0.015917409583846
706 => 0.015562541980672
707 => 0.01594230118434
708 => 0.015636282302708
709 => 0.015361751730233
710 => 0.01536216807979
711 => 0.015189951041424
712 => 0.014856258828848
713 => 0.014794720865092
714 => 0.01511484912394
715 => 0.015371561671276
716 => 0.015392705746245
717 => 0.015534835002817
718 => 0.015618945632809
719 => 0.016443344149585
720 => 0.016774924052815
721 => 0.017180373681998
722 => 0.017338319162454
723 => 0.017813678432037
724 => 0.017429787215056
725 => 0.017346729935473
726 => 0.016193663836297
727 => 0.016382478345441
728 => 0.016684788592471
729 => 0.016198648820923
730 => 0.016506992612019
731 => 0.016567866207996
801 => 0.016182129977509
802 => 0.016388168364891
803 => 0.015840991494129
804 => 0.01470640936441
805 => 0.015122791476846
806 => 0.015429388864302
807 => 0.014991836589217
808 => 0.015776132106696
809 => 0.01531796285653
810 => 0.01517274520023
811 => 0.014606199349172
812 => 0.014873587182522
813 => 0.015235233055753
814 => 0.015011777951941
815 => 0.015475480844302
816 => 0.01613220780493
817 => 0.01660023054584
818 => 0.016636159520425
819 => 0.016335252253109
820 => 0.016817458069348
821 => 0.016820970412283
822 => 0.016277040281697
823 => 0.015943886105328
824 => 0.015868192775495
825 => 0.01605728955397
826 => 0.01628688795223
827 => 0.016648900633605
828 => 0.016867657315133
829 => 0.017438058720978
830 => 0.017592392986709
831 => 0.017761959553523
901 => 0.017988552779178
902 => 0.018260636043888
903 => 0.017665333350412
904 => 0.017688985836207
905 => 0.017134648210568
906 => 0.016542258957517
907 => 0.01699180855822
908 => 0.017579534860062
909 => 0.01744470979704
910 => 0.017429539223224
911 => 0.017455051920416
912 => 0.017353398225872
913 => 0.016893622332911
914 => 0.016662725757816
915 => 0.016960641247688
916 => 0.017118970071862
917 => 0.017364524270431
918 => 0.017334254532437
919 => 0.017966775777356
920 => 0.018212554406682
921 => 0.01814967371584
922 => 0.018161245276263
923 => 0.01860621574474
924 => 0.019101114420843
925 => 0.019564652338645
926 => 0.020036183018051
927 => 0.019467734379872
928 => 0.019179111218442
929 => 0.019476896647731
930 => 0.019318887507317
1001 => 0.020226854896691
1002 => 0.020289720588743
1003 => 0.02119762232174
1004 => 0.022059329177282
1005 => 0.021518106540398
1006 => 0.022028455109777
1007 => 0.022580438696889
1008 => 0.023645304592538
1009 => 0.023286695221318
1010 => 0.023012006063088
1011 => 0.022752426135849
1012 => 0.02329257075728
1013 => 0.02398745818373
1014 => 0.024137130279838
1015 => 0.024379656254675
1016 => 0.024124669846799
1017 => 0.024431772889254
1018 => 0.025515981577033
1019 => 0.025223018819021
1020 => 0.024806964606529
1021 => 0.025662843237022
1022 => 0.025972582386253
1023 => 0.02814649394721
1024 => 0.030891147092726
1025 => 0.029754842668118
1026 => 0.029049501843449
1027 => 0.029215273668155
1028 => 0.030217528084525
1029 => 0.030539420393098
1030 => 0.029664406135464
1031 => 0.029973475963931
1101 => 0.031676481105864
1102 => 0.032590088725565
1103 => 0.031349286864138
1104 => 0.027925963739377
1105 => 0.024769503476842
1106 => 0.025606738875724
1107 => 0.02551182236393
1108 => 0.027341488934719
1109 => 0.025216031754131
1110 => 0.025251819002014
1111 => 0.027119321139836
1112 => 0.026621103586557
1113 => 0.025814054957128
1114 => 0.02477539582497
1115 => 0.022855338354835
1116 => 0.021154689908773
1117 => 0.024490053147448
1118 => 0.024346226219631
1119 => 0.024137943514197
1120 => 0.024601454136598
1121 => 0.026852130149193
1122 => 0.026800244782376
1123 => 0.026470176550829
1124 => 0.026720530395369
1125 => 0.025770166717737
1126 => 0.026015097076841
1127 => 0.024769003477409
1128 => 0.025332289825818
1129 => 0.025812323393233
1130 => 0.02590869723891
1201 => 0.026125832434191
1202 => 0.024270435964218
1203 => 0.025103454507658
1204 => 0.025592774858646
1205 => 0.023382007711254
1206 => 0.0255490751003
1207 => 0.024238137639561
1208 => 0.023793185775766
1209 => 0.024392254842415
1210 => 0.024158797044528
1211 => 0.023958083739007
1212 => 0.023846082265834
1213 => 0.024285972471541
1214 => 0.024265451067662
1215 => 0.023545705312115
1216 => 0.022606826314595
1217 => 0.022921944923815
1218 => 0.022807459378833
1219 => 0.022392548994887
1220 => 0.022672148497196
1221 => 0.021440933791099
1222 => 0.01932269288223
1223 => 0.020722067710103
1224 => 0.020668193301456
1225 => 0.020641027381607
1226 => 0.021692618888874
1227 => 0.021591532629794
1228 => 0.021408060079725
1229 => 0.022389179377624
1230 => 0.022031057635974
1231 => 0.023134704459646
]
'min_raw' => 0.0099071663382225
'max_raw' => 0.032590088725565
'avg_raw' => 0.021248627531894
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.0099071'
'max' => '$0.03259'
'avg' => '$0.021248'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.0053971687933642
'max_diff' => 0.02154369577614
'year' => 2029
]
4 => [
'items' => [
101 => 0.023861637637117
102 => 0.023677263869486
103 => 0.02436094803647
104 => 0.022929204620122
105 => 0.023404772351457
106 => 0.023502786201777
107 => 0.022377072517783
108 => 0.021608071591934
109 => 0.021556787997432
110 => 0.020223446366865
111 => 0.020935706703556
112 => 0.02156246632451
113 => 0.021262297104584
114 => 0.021167272496856
115 => 0.021652732609416
116 => 0.021690457017846
117 => 0.020830336507776
118 => 0.021009182798294
119 => 0.021755001560475
120 => 0.020990390079061
121 => 0.01950487486925
122 => 0.019136446558363
123 => 0.019087291430209
124 => 0.018088084630664
125 => 0.019161066699805
126 => 0.018692681272493
127 => 0.020172305225251
128 => 0.019327151958818
129 => 0.019290719090689
130 => 0.019235645466971
131 => 0.01837558689789
201 => 0.018563885064945
202 => 0.019189816850858
203 => 0.019413156363698
204 => 0.019389860222742
205 => 0.019186749443631
206 => 0.019279732518213
207 => 0.018980201637535
208 => 0.018874431049371
209 => 0.018540589978635
210 => 0.018049935830603
211 => 0.018118164299243
212 => 0.01714605004535
213 => 0.01661639060582
214 => 0.016469787853757
215 => 0.016273744526748
216 => 0.016491931469194
217 => 0.017143296167808
218 => 0.01635761214655
219 => 0.015010612001429
220 => 0.015091569005328
221 => 0.015273455356737
222 => 0.014934511344184
223 => 0.014613729281718
224 => 0.014892623259161
225 => 0.014321881540484
226 => 0.015342426766688
227 => 0.015314823878364
228 => 0.0156952200286
301 => 0.015933089547857
302 => 0.015384877317141
303 => 0.015247003423639
304 => 0.015325542659397
305 => 0.014027464040633
306 => 0.015589139311773
307 => 0.015602644744368
308 => 0.015487003031105
309 => 0.016318546901672
310 => 0.018073363833606
311 => 0.017413131116465
312 => 0.017157469052749
313 => 0.016671455282736
314 => 0.017319039774636
315 => 0.01726931538955
316 => 0.017044442862777
317 => 0.01690843925694
318 => 0.017159030070793
319 => 0.016877388281938
320 => 0.016826797677661
321 => 0.016520273658861
322 => 0.016410858530104
323 => 0.016329851924714
324 => 0.016240671611724
325 => 0.01643738115983
326 => 0.015991611444526
327 => 0.015454056867213
328 => 0.015409365020531
329 => 0.015532763138568
330 => 0.015478168657246
331 => 0.015409103643158
401 => 0.015277239722527
402 => 0.015238118514102
403 => 0.01536524346257
404 => 0.015221726807595
405 => 0.015433493449767
406 => 0.015375904640679
407 => 0.015054218234486
408 => 0.014653277868807
409 => 0.014649708658552
410 => 0.014563326714441
411 => 0.014453306321002
412 => 0.014422701164474
413 => 0.014869135586279
414 => 0.015793241478759
415 => 0.015611817380086
416 => 0.015742914884467
417 => 0.016387784854053
418 => 0.016592769625468
419 => 0.016447276290048
420 => 0.016248116038887
421 => 0.016256878079183
422 => 0.016937468947308
423 => 0.016979916564923
424 => 0.017087168000517
425 => 0.017225016404506
426 => 0.016470752469321
427 => 0.016221352315666
428 => 0.01610317268667
429 => 0.015739225170636
430 => 0.016131711364177
501 => 0.015903026467135
502 => 0.015933883872735
503 => 0.015913787946857
504 => 0.015924761681267
505 => 0.015342141503499
506 => 0.015554417674662
507 => 0.015201467368462
508 => 0.014728906528992
509 => 0.014727322339357
510 => 0.014842980935341
511 => 0.014774182676728
512 => 0.014589048331766
513 => 0.014615345791659
514 => 0.014384952371515
515 => 0.014643319724272
516 => 0.014650728775466
517 => 0.01455124327129
518 => 0.014949293826036
519 => 0.015112375463095
520 => 0.01504689197306
521 => 0.015107780966868
522 => 0.015619356370466
523 => 0.015702765482852
524 => 0.015739810300878
525 => 0.015690175152222
526 => 0.015117131626134
527 => 0.015142548543285
528 => 0.014956056069619
529 => 0.014798489581463
530 => 0.014804791414662
531 => 0.014885801071784
601 => 0.015239574995587
602 => 0.015984071362118
603 => 0.016012324455009
604 => 0.016046568027792
605 => 0.01590728220784
606 => 0.015865272271757
607 => 0.015920694221135
608 => 0.016200287912645
609 => 0.016919478796156
610 => 0.016665268704779
611 => 0.016458591943474
612 => 0.016639903182793
613 => 0.016611991738665
614 => 0.016376391061134
615 => 0.016369778534808
616 => 0.015917585508533
617 => 0.015750420042656
618 => 0.015610724067251
619 => 0.015458179708964
620 => 0.015367746300039
621 => 0.015506693117398
622 => 0.015538471898498
623 => 0.015234662253968
624 => 0.015193254122034
625 => 0.015441351635944
626 => 0.01533217317008
627 => 0.015444465929716
628 => 0.015470518813182
629 => 0.015466323698895
630 => 0.015352328841466
701 => 0.015424985764216
702 => 0.015253130481842
703 => 0.015066263674089
704 => 0.014947054292956
705 => 0.014843028297087
706 => 0.014900747965622
707 => 0.014694987886493
708 => 0.014629161096047
709 => 0.015400371233621
710 => 0.015970072454152
711 => 0.015961788772779
712 => 0.015911363992811
713 => 0.015836442998072
714 => 0.016194806975226
715 => 0.016069960131299
716 => 0.016160796641559
717 => 0.016183918345816
718 => 0.016253900780792
719 => 0.016278913486102
720 => 0.016203307718214
721 => 0.015949565526715
722 => 0.015317264110582
723 => 0.015022926094508
724 => 0.014925789646616
725 => 0.014929320372008
726 => 0.014831927203831
727 => 0.014860613856715
728 => 0.014821951156653
729 => 0.014748733356246
730 => 0.014896226972769
731 => 0.014913224238075
801 => 0.014878797465561
802 => 0.014886906216755
803 => 0.014601867244207
804 => 0.014623538138218
805 => 0.014502871846562
806 => 0.01448024837153
807 => 0.01417521449384
808 => 0.013634802764145
809 => 0.013934243321432
810 => 0.013572561235943
811 => 0.013435586749791
812 => 0.014084002663334
813 => 0.014018919689872
814 => 0.013907525930194
815 => 0.013742751343136
816 => 0.013681634845972
817 => 0.013310310356337
818 => 0.01328837052455
819 => 0.013472408968218
820 => 0.013387481558841
821 => 0.013268211311552
822 => 0.012836226566099
823 => 0.012350532686976
824 => 0.012365192732224
825 => 0.012519682918517
826 => 0.012968883971004
827 => 0.01279337334854
828 => 0.01266603837819
829 => 0.012642192365919
830 => 0.012940675134504
831 => 0.013363090786124
901 => 0.013561278758847
902 => 0.013364880496937
903 => 0.013139268748488
904 => 0.013153000690232
905 => 0.013244353146636
906 => 0.01325395299815
907 => 0.013107102943172
908 => 0.013148440373469
909 => 0.013085645036874
910 => 0.0127002701721
911 => 0.012693299962833
912 => 0.012598722756009
913 => 0.012595858995774
914 => 0.012434959573575
915 => 0.012412448632164
916 => 0.012092973063492
917 => 0.012303252850253
918 => 0.012162208209478
919 => 0.011949620666763
920 => 0.01191297049427
921 => 0.011911868745828
922 => 0.012130148618492
923 => 0.012300702122852
924 => 0.012164661741391
925 => 0.012133687983564
926 => 0.012464406683196
927 => 0.0124223197141
928 => 0.012385872670294
929 => 0.013325268097617
930 => 0.012581663314952
1001 => 0.012257409186233
1002 => 0.011856083127754
1003 => 0.011986756916056
1004 => 0.012014291803249
1005 => 0.011049174977067
1006 => 0.010657627200882
1007 => 0.010523262759262
1008 => 0.010445934123476
1009 => 0.010481173753836
1010 => 0.010128734831296
1011 => 0.010365579616044
1012 => 0.010060397300046
1013 => 0.010009232491619
1014 => 0.010554936277459
1015 => 0.010630867771304
1016 => 0.010306920428498
1017 => 0.01051494706489
1018 => 0.010439513714748
1019 => 0.010065628774927
1020 => 0.010051349120337
1021 => 0.0098637468002266
1022 => 0.0095701854962205
1023 => 0.0094360201029883
1024 => 0.0093661456013156
1025 => 0.0093949771825326
1026 => 0.0093803990528084
1027 => 0.0092852668953306
1028 => 0.0093858519167173
1029 => 0.0091288987516746
1030 => 0.0090265779309423
1031 => 0.0089803619900425
1101 => 0.0087523012663947
1102 => 0.0091152472967824
1103 => 0.0091867522370424
1104 => 0.0092583980641237
1105 => 0.0098820260741828
1106 => 0.0098508713811547
1107 => 0.010132494633178
1108 => 0.010121551271476
1109 => 0.010041227758005
1110 => 0.0097023560672466
1111 => 0.0098374242833757
1112 => 0.0094217053083914
1113 => 0.0097331902305922
1114 => 0.0095910415200211
1115 => 0.0096851296085594
1116 => 0.0095159507417866
1117 => 0.0096095813118829
1118 => 0.0092037087110365
1119 => 0.0088247105871477
1120 => 0.0089772304958455
1121 => 0.0091430370793672
1122 => 0.0095025479991741
1123 => 0.0092884262612378
1124 => 0.009365432535039
1125 => 0.0091074744084995
1126 => 0.0085752331113524
1127 => 0.008578245539293
1128 => 0.0084963718112339
1129 => 0.0084256209564308
1130 => 0.0093130207185969
1201 => 0.0092026585304573
1202 => 0.0090268108275029
1203 => 0.0092621899658173
1204 => 0.0093244279459569
1205 => 0.0093261997737552
1206 => 0.0094979263170544
1207 => 0.0095895768039969
1208 => 0.0096057305995565
1209 => 0.0098759460258355
1210 => 0.0099665186724965
1211 => 0.010339574585773
1212 => 0.0095818009005062
1213 => 0.0095661950501249
1214 => 0.0092655022329957
1215 => 0.0090747980946071
1216 => 0.0092785599085057
1217 => 0.0094590650593586
1218 => 0.0092711110311889
1219 => 0.0092956538593418
1220 => 0.0090433409329323
1221 => 0.009133530931697
1222 => 0.0092112147085381
1223 => 0.0091683222930078
1224 => 0.0091041102709426
1225 => 0.0094442656954423
1226 => 0.0094250727933121
1227 => 0.0097418333447457
1228 => 0.0099887708463524
1229 => 0.01043132699459
1230 => 0.0099694965829303
1231 => 0.0099526656471198
]
'min_raw' => 0.0084256209564308
'max_raw' => 0.02436094803647
'avg_raw' => 0.016393284496451
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.008425'
'max' => '$0.02436'
'avg' => '$0.016393'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0014815453817917
'max_diff' => -0.0082291406890947
'year' => 2030
]
5 => [
'items' => [
101 => 0.010117190744435
102 => 0.0099664934845613
103 => 0.010061728950909
104 => 0.010415983088627
105 => 0.010423467920331
106 => 0.010298087345634
107 => 0.010290457926269
108 => 0.010314538637153
109 => 0.010455580112946
110 => 0.010406295887537
111 => 0.010463328840904
112 => 0.010534649422409
113 => 0.010829661586815
114 => 0.010900788020894
115 => 0.01072798766091
116 => 0.010743589598653
117 => 0.010678957520542
118 => 0.010616523742926
119 => 0.010756865757287
120 => 0.011013343546962
121 => 0.011011748011944
122 => 0.011071245873933
123 => 0.011108312549045
124 => 0.010949195244999
125 => 0.010845615730971
126 => 0.010885334707585
127 => 0.010948846216158
128 => 0.010864738781341
129 => 0.010345588731301
130 => 0.01050306569305
131 => 0.010476853826385
201 => 0.010439524940782
202 => 0.010597869243554
203 => 0.010582596549268
204 => 0.010125120060739
205 => 0.010154406221255
206 => 0.010126901049158
207 => 0.010215775887232
208 => 0.009961693951643
209 => 0.010039847843762
210 => 0.010088865232252
211 => 0.010117736850642
212 => 0.010222040933721
213 => 0.010209802053445
214 => 0.010221280147739
215 => 0.010375935567687
216 => 0.011158129610456
217 => 0.01120070270639
218 => 0.010991057211632
219 => 0.011074806451713
220 => 0.010914026224703
221 => 0.011021959068229
222 => 0.011095803978572
223 => 0.01076211302829
224 => 0.010742354015851
225 => 0.010580910191651
226 => 0.010667660958131
227 => 0.010529634251061
228 => 0.010563501177007
301 => 0.010468806299597
302 => 0.010639238225372
303 => 0.010829807600832
304 => 0.010877952950886
305 => 0.010751303262771
306 => 0.010659600541954
307 => 0.010498600772954
308 => 0.010766346976915
309 => 0.010844644126371
310 => 0.010765935715321
311 => 0.010747697256668
312 => 0.010713135410477
313 => 0.010755029715722
314 => 0.01084421770328
315 => 0.010802158295391
316 => 0.010829939275293
317 => 0.010724066827529
318 => 0.010949247919448
319 => 0.011306889686195
320 => 0.011308039562956
321 => 0.011265979928351
322 => 0.011248770032058
323 => 0.011291925769555
324 => 0.011315335986805
325 => 0.01145489372846
326 => 0.011604644745481
327 => 0.012303467400431
328 => 0.012107240795305
329 => 0.012727277827923
330 => 0.013217646618991
331 => 0.013364686778204
401 => 0.013229416750502
402 => 0.012766665292877
403 => 0.012743960498694
404 => 0.013435506545011
405 => 0.013240113112111
406 => 0.013216871685004
407 => 0.0129696221676
408 => 0.013115777254834
409 => 0.01308381099329
410 => 0.0130333506856
411 => 0.013312204410792
412 => 0.013834193690908
413 => 0.013752836766417
414 => 0.013692107596324
415 => 0.013426010050972
416 => 0.013586260208312
417 => 0.013529198196673
418 => 0.013774372811123
419 => 0.013629136800806
420 => 0.013238632814682
421 => 0.01330082186159
422 => 0.013291422112257
423 => 0.01348486828746
424 => 0.013426800547293
425 => 0.013280083454035
426 => 0.013832409588296
427 => 0.013796544601336
428 => 0.013847392952967
429 => 0.013869777969893
430 => 0.014205969154739
501 => 0.014343695926252
502 => 0.014374962314632
503 => 0.014505792095399
504 => 0.014371707150504
505 => 0.014908142531032
506 => 0.015264840757211
507 => 0.01567916410244
508 => 0.016284601869437
509 => 0.016512252070441
510 => 0.016471129099247
511 => 0.016930165104419
512 => 0.017755042601915
513 => 0.016637860425641
514 => 0.017814255969987
515 => 0.017441822722787
516 => 0.016558790193463
517 => 0.016501933308845
518 => 0.017099933189921
519 => 0.018426239370793
520 => 0.018094014715325
521 => 0.018426782771313
522 => 0.018038591157987
523 => 0.018019314172449
524 => 0.018407929171114
525 => 0.019315949297795
526 => 0.018884582972234
527 => 0.018266113569181
528 => 0.018722781751946
529 => 0.018327173509389
530 => 0.017435757415136
531 => 0.018093760669392
601 => 0.017653772632124
602 => 0.01778218453245
603 => 0.018706973943505
604 => 0.018595700834877
605 => 0.018739698541054
606 => 0.018485546358729
607 => 0.018248128144316
608 => 0.017804969416208
609 => 0.017673771964276
610 => 0.01771003022
611 => 0.017673753996485
612 => 0.017425810760948
613 => 0.01737226744284
614 => 0.017283026233541
615 => 0.017310685815895
616 => 0.017142886233976
617 => 0.01745955871422
618 => 0.017518335917061
619 => 0.017748783739889
620 => 0.017772709597337
621 => 0.018414503503693
622 => 0.018061014204981
623 => 0.018298165345355
624 => 0.018276952315207
625 => 0.016577928185963
626 => 0.016812038720356
627 => 0.017176241243938
628 => 0.017012168500729
629 => 0.016780208028941
630 => 0.016592887511038
701 => 0.016309077771908
702 => 0.01670853452965
703 => 0.017233777688589
704 => 0.017786030630631
705 => 0.018449526355447
706 => 0.01830144183361
707 => 0.017773627039573
708 => 0.017797304425665
709 => 0.017943668709775
710 => 0.017754113663255
711 => 0.017698210179482
712 => 0.017935988429561
713 => 0.017937625877688
714 => 0.017719519888175
715 => 0.017477134993805
716 => 0.017476119392247
717 => 0.017432989341455
718 => 0.018046263898209
719 => 0.018383502895373
720 => 0.01842216680291
721 => 0.018380900506337
722 => 0.018396782266087
723 => 0.018200550324192
724 => 0.01864907835259
725 => 0.019060692026272
726 => 0.018950370768882
727 => 0.018784983520963
728 => 0.018653244611866
729 => 0.018919337268621
730 => 0.018907488581485
731 => 0.019057096939917
801 => 0.019050309840598
802 => 0.019000002176713
803 => 0.018950372565527
804 => 0.019147148364002
805 => 0.019090480094164
806 => 0.01903372380285
807 => 0.018919890371668
808 => 0.018935362225539
809 => 0.01877000353406
810 => 0.018693501037083
811 => 0.017543087037704
812 => 0.017235658826208
813 => 0.017332381999823
814 => 0.017364225779993
815 => 0.01723043262837
816 => 0.017422257639157
817 => 0.017392361914419
818 => 0.017508668690961
819 => 0.017436005266431
820 => 0.01743898739872
821 => 0.017652675036787
822 => 0.017714709467211
823 => 0.017683158255218
824 => 0.017705255642586
825 => 0.018214480607741
826 => 0.018142085101794
827 => 0.018103626432155
828 => 0.018114279746476
829 => 0.01824439764298
830 => 0.018280823549827
831 => 0.018126484422912
901 => 0.018199271647389
902 => 0.018509190411138
903 => 0.018617644438567
904 => 0.018963777633234
905 => 0.018816734100113
906 => 0.019086638869053
907 => 0.019916234111457
908 => 0.020578972194715
909 => 0.019969490864542
910 => 0.021186524955258
911 => 0.022134160568051
912 => 0.022097788734863
913 => 0.021932546546566
914 => 0.020853688595596
915 => 0.019860907424248
916 => 0.020691411029796
917 => 0.020693528154281
918 => 0.020622187158027
919 => 0.020179094357362
920 => 0.020606768489023
921 => 0.02064071570851
922 => 0.020621714292892
923 => 0.020281996081508
924 => 0.019763309163145
925 => 0.019864659345432
926 => 0.020030673011506
927 => 0.019716374507549
928 => 0.019615937091517
929 => 0.019802669356921
930 => 0.020404359623265
1001 => 0.020290613563767
1002 => 0.020287643194469
1003 => 0.020774297072838
1004 => 0.020425957922406
1005 => 0.019865937695799
1006 => 0.019724525202821
1007 => 0.01922260611962
1008 => 0.019569283418161
1009 => 0.019581759716958
1010 => 0.019391888103503
1011 => 0.019881344730788
1012 => 0.019876834301801
1013 => 0.020341500523403
1014 => 0.021229767818445
1015 => 0.020967063470322
1016 => 0.020661566895607
1017 => 0.02069478284378
1018 => 0.021059079811289
1019 => 0.020838817548642
1020 => 0.020918025394013
1021 => 0.021058959920728
1022 => 0.021143989219903
1023 => 0.020682548436155
1024 => 0.0205749645162
1025 => 0.020354885572795
1026 => 0.020297471084429
1027 => 0.020476720791734
1028 => 0.020429494826845
1029 => 0.019580711132355
1030 => 0.019492008513693
1031 => 0.019494728896369
1101 => 0.019271681944163
1102 => 0.018931481804648
1103 => 0.019825507459
1104 => 0.019753704687074
1105 => 0.019674439983962
1106 => 0.019684149457815
1107 => 0.020072215693028
1108 => 0.01984711767879
1109 => 0.020445577642482
1110 => 0.0203225522653
1111 => 0.020196371751411
1112 => 0.020178929760839
1113 => 0.020130361028207
1114 => 0.019963800772383
1115 => 0.019762669254756
1116 => 0.019629864805105
1117 => 0.018107512651982
1118 => 0.018390052356486
1119 => 0.018715088532214
1120 => 0.018827289717575
1121 => 0.01863536182593
1122 => 0.019971379255359
1123 => 0.0202154825139
1124 => 0.019476077821318
1125 => 0.01933776539303
1126 => 0.019980446995131
1127 => 0.019592831424434
1128 => 0.019767374692185
1129 => 0.01939010761737
1130 => 0.020156685187096
1201 => 0.020150845150383
1202 => 0.01985262916182
1203 => 0.020104679273259
1204 => 0.020060879363747
1205 => 0.019724194247134
1206 => 0.020167358705827
1207 => 0.020167578509869
1208 => 0.019880552104652
1209 => 0.019545368101518
1210 => 0.019485445118451
1211 => 0.019440301200229
1212 => 0.019756272055675
1213 => 0.020039570536652
1214 => 0.020566718774102
1215 => 0.02069925636573
1216 => 0.021216559409381
1217 => 0.020908530633915
1218 => 0.021045075800439
1219 => 0.021193314894193
1220 => 0.021264386167051
1221 => 0.021148579341824
1222 => 0.021952163899041
1223 => 0.022020011056865
1224 => 0.022042759622008
1225 => 0.021771795430632
1226 => 0.022012475052532
1227 => 0.021899869027916
1228 => 0.022192838621113
1229 => 0.02223877999415
1230 => 0.022199869285599
1231 => 0.022214451802536
]
'min_raw' => 0.009961693951643
'max_raw' => 0.02223877999415
'avg_raw' => 0.016100236972896
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.009961'
'max' => '$0.022238'
'avg' => '$0.01610023'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0015360729952122
'max_diff' => -0.0021221680423208
'year' => 2031
]
6 => [
'items' => [
101 => 0.021528734144981
102 => 0.021493176066988
103 => 0.021008339150466
104 => 0.021205913777682
105 => 0.0208365574821
106 => 0.020953684168221
107 => 0.021005312495439
108 => 0.020978344787182
109 => 0.021217084350667
110 => 0.021014106950434
111 => 0.020478416218646
112 => 0.019942579538277
113 => 0.019935852545238
114 => 0.019794776205599
115 => 0.019692803851461
116 => 0.019712447344532
117 => 0.019781673576254
118 => 0.019688780297027
119 => 0.019708603787959
120 => 0.020037805820656
121 => 0.020103824940552
122 => 0.01987946617581
123 => 0.018978633360558
124 => 0.018757566728127
125 => 0.018916465039576
126 => 0.018840521881065
127 => 0.015205771600463
128 => 0.016059702263878
129 => 0.015552325660422
130 => 0.015786148142569
131 => 0.015268248014976
201 => 0.015515417101335
202 => 0.015469773996254
203 => 0.016842869233379
204 => 0.016821430239882
205 => 0.016831691951543
206 => 0.01634187371723
207 => 0.017122167464505
208 => 0.017506568222868
209 => 0.01743542587299
210 => 0.017453330869753
211 => 0.017145663703279
212 => 0.016834670842242
213 => 0.016489731897892
214 => 0.017130585820751
215 => 0.017059333804271
216 => 0.017222760294411
217 => 0.017638399872569
218 => 0.017699604379314
219 => 0.017781863857054
220 => 0.017752379689913
221 => 0.01845481216933
222 => 0.018369742961274
223 => 0.018574735276608
224 => 0.018153050531162
225 => 0.017675874215006
226 => 0.017766569832638
227 => 0.017757835115332
228 => 0.017646632138784
229 => 0.017546243063777
301 => 0.017379123538338
302 => 0.017907914445864
303 => 0.017886446500704
304 => 0.018233987579088
305 => 0.01817255631765
306 => 0.017762303318986
307 => 0.017776955585092
308 => 0.017875499116295
309 => 0.018216559402941
310 => 0.018317809317172
311 => 0.018270906322789
312 => 0.01838192223151
313 => 0.018469664679279
314 => 0.018392941332043
315 => 0.019479182133687
316 => 0.0190280992204
317 => 0.019247953893721
318 => 0.01930038793785
319 => 0.019166079236384
320 => 0.019195205984498
321 => 0.019239325071327
322 => 0.019507207527147
323 => 0.020210208603633
324 => 0.020521562994918
325 => 0.021458288043056
326 => 0.020495709346985
327 => 0.020438593910706
328 => 0.020607326378262
329 => 0.021157283143935
330 => 0.021602971447701
331 => 0.021750831970435
401 => 0.021770374179425
402 => 0.022047770349656
403 => 0.0222067686613
404 => 0.022014087158347
405 => 0.021850809759188
406 => 0.021265970382137
407 => 0.021333667132496
408 => 0.021800030610827
409 => 0.022458796492643
410 => 0.023024086152149
411 => 0.022826141415724
412 => 0.024336320027443
413 => 0.024486048068268
414 => 0.024465360494313
415 => 0.024806463253834
416 => 0.024129443740555
417 => 0.023840004781992
418 => 0.021886112186163
419 => 0.022435076307348
420 => 0.023233027897022
421 => 0.023127416011964
422 => 0.022547922238235
423 => 0.023023646554157
424 => 0.022866357218039
425 => 0.022742296592701
426 => 0.023310642367707
427 => 0.022685722841731
428 => 0.023226793846712
429 => 0.022532864686161
430 => 0.022827045610606
501 => 0.022660054289961
502 => 0.022768118140105
503 => 0.022136379080269
504 => 0.022477250142358
505 => 0.022122197723406
506 => 0.02212202938233
507 => 0.022114191580503
508 => 0.022531909176856
509 => 0.022545530932677
510 => 0.022236836997836
511 => 0.022192349379119
512 => 0.022356843422418
513 => 0.022164263978774
514 => 0.022254370688374
515 => 0.022166993219214
516 => 0.022147322710455
517 => 0.021990584750002
518 => 0.021923057727039
519 => 0.0219495368127
520 => 0.021859150042436
521 => 0.021804688743919
522 => 0.022103357857457
523 => 0.021943790998371
524 => 0.022078901947791
525 => 0.021924925968566
526 => 0.02139117814043
527 => 0.021084214120188
528 => 0.020076013951288
529 => 0.02036193826852
530 => 0.020551506386654
531 => 0.020488854124742
601 => 0.020623455426537
602 => 0.020631718853281
603 => 0.020587958597969
604 => 0.020537289828354
605 => 0.020512627073465
606 => 0.020696443042597
607 => 0.020803154399639
608 => 0.020570532083403
609 => 0.020516031929441
610 => 0.020751225934586
611 => 0.020894694141857
612 => 0.021953982776523
613 => 0.02187550725301
614 => 0.022072465416984
615 => 0.02205029095029
616 => 0.022256734484032
617 => 0.022594182412152
618 => 0.021908056422359
619 => 0.022027144169735
620 => 0.021997946604216
621 => 0.02231671796854
622 => 0.022317713137944
623 => 0.022126593781222
624 => 0.022230202685059
625 => 0.022172371037298
626 => 0.022276880641217
627 => 0.021874459164549
628 => 0.022364565084417
629 => 0.022642423559254
630 => 0.022646281624446
701 => 0.022777984336298
702 => 0.022911801919246
703 => 0.023168653116659
704 => 0.022904638478756
705 => 0.022429701846476
706 => 0.02246399073729
707 => 0.022185535563557
708 => 0.022190216445335
709 => 0.022165229531559
710 => 0.022240217140727
711 => 0.021890914727842
712 => 0.02197289530597
713 => 0.021858122016513
714 => 0.022026894675019
715 => 0.021845323193587
716 => 0.021997932524266
717 => 0.022063793652308
718 => 0.022306822632671
719 => 0.021809427615586
720 => 0.020795205505069
721 => 0.021008407288954
722 => 0.020693065103949
723 => 0.020722251223764
724 => 0.020781211830726
725 => 0.020590101212852
726 => 0.020626559096155
727 => 0.020625256564013
728 => 0.0206140320457
729 => 0.020564316792949
730 => 0.020492219840596
731 => 0.020779431908496
801 => 0.020828234835527
802 => 0.020936717696913
803 => 0.021259489107768
804 => 0.02122723663235
805 => 0.0212798417579
806 => 0.021165005064189
807 => 0.020727578168625
808 => 0.020751332553579
809 => 0.020455114992572
810 => 0.02092914274789
811 => 0.02081688671857
812 => 0.020744514526198
813 => 0.020724767102986
814 => 0.021048338601738
815 => 0.021145156265527
816 => 0.021084825994646
817 => 0.020961086848953
818 => 0.021198702588877
819 => 0.021262278536678
820 => 0.0212765108468
821 => 0.021697520379647
822 => 0.021300040602853
823 => 0.021395717935737
824 => 0.022142165174593
825 => 0.021465240531628
826 => 0.021823822612228
827 => 0.021806271885353
828 => 0.021989710344032
829 => 0.021791224577574
830 => 0.021793685046533
831 => 0.021956565970642
901 => 0.02172782908846
902 => 0.021671190619698
903 => 0.021592944980755
904 => 0.021763791470827
905 => 0.021866206214903
906 => 0.022691593836814
907 => 0.023224831882817
908 => 0.023201682612925
909 => 0.023413223606123
910 => 0.023317922451194
911 => 0.023010169882753
912 => 0.023535465990654
913 => 0.023369240322791
914 => 0.023382943764886
915 => 0.023382433722086
916 => 0.023492959259515
917 => 0.02341464178673
918 => 0.023260270008748
919 => 0.023362749199202
920 => 0.023667075757869
921 => 0.024611714733852
922 => 0.025140347219614
923 => 0.024579890394438
924 => 0.024966486007628
925 => 0.024734666397816
926 => 0.024692537878677
927 => 0.024935348492952
928 => 0.025178584115064
929 => 0.025163091057472
930 => 0.024986514486106
1001 => 0.024886770861406
1002 => 0.0256420630042
1003 => 0.026198549388945
1004 => 0.026160600748237
1005 => 0.026328093706761
1006 => 0.02681985821335
1007 => 0.026864818996839
1008 => 0.026859154971531
1009 => 0.026747714978481
1010 => 0.027231920998908
1011 => 0.027635854179943
1012 => 0.026721919839901
1013 => 0.02706993407231
1014 => 0.027226168873557
1015 => 0.027455567914564
1016 => 0.027842602548486
1017 => 0.028263024816791
1018 => 0.028322477135225
1019 => 0.028280292870241
1020 => 0.028003013082736
1021 => 0.028463044145397
1022 => 0.028732519552848
1023 => 0.02889298599115
1024 => 0.029299902179615
1025 => 0.027227133726501
1026 => 0.02575992519211
1027 => 0.025530799392717
1028 => 0.02599673571571
1029 => 0.026119599408311
1030 => 0.026070073207881
1031 => 0.02441859660966
1101 => 0.025522104710208
1102 => 0.026709386640801
1103 => 0.026754994975113
1104 => 0.027349373134462
1105 => 0.02754292702753
1106 => 0.028021479352732
1107 => 0.027991545774495
1108 => 0.028108065650251
1109 => 0.028081279748658
1110 => 0.028967697160014
1111 => 0.029945547198999
1112 => 0.029911687361522
1113 => 0.029771109849021
1114 => 0.029979891427113
1115 => 0.030989137460124
1116 => 0.030896222258243
1117 => 0.030986481462373
1118 => 0.032176439413907
1119 => 0.033723554020447
1120 => 0.033004763957942
1121 => 0.034564331567308
1122 => 0.035545996708278
1123 => 0.037243685063514
1124 => 0.037031126120147
1125 => 0.037692023738628
1126 => 0.03665060124913
1127 => 0.034259284707032
1128 => 0.033880849710653
1129 => 0.034638486156904
1130 => 0.036501061430929
1201 => 0.034579827033182
1202 => 0.034968490249626
1203 => 0.034856555217143
1204 => 0.034850590674955
1205 => 0.035078232990715
1206 => 0.034748025938681
1207 => 0.033402703005582
1208 => 0.034019256577784
1209 => 0.033781175634222
1210 => 0.034045344191214
1211 => 0.035470952941896
1212 => 0.034840657330951
1213 => 0.034176692105879
1214 => 0.035009451843799
1215 => 0.036069841157463
1216 => 0.036003483899917
1217 => 0.035874723085095
1218 => 0.036600541056548
1219 => 0.037799379700677
1220 => 0.038123420968861
1221 => 0.038362621608302
1222 => 0.038395603335153
1223 => 0.038735335619748
1224 => 0.036908509501922
1225 => 0.039807729467134
1226 => 0.040308344665791
1227 => 0.040214249756818
1228 => 0.040770662481017
1229 => 0.040606951742729
1230 => 0.040369760568378
1231 => 0.041251793088615
]
'min_raw' => 0.015205771600463
'max_raw' => 0.041251793088615
'avg_raw' => 0.028228782344539
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.0152057'
'max' => '$0.041251'
'avg' => '$0.028228'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.00524407764882
'max_diff' => 0.019013013094465
'year' => 2032
]
7 => [
'items' => [
101 => 0.040240613980518
102 => 0.038805372540484
103 => 0.038017970700625
104 => 0.039054884961246
105 => 0.039688092316887
106 => 0.040106602099414
107 => 0.040233242906736
108 => 0.037050320813142
109 => 0.035334902337647
110 => 0.036434465913126
111 => 0.037776009363035
112 => 0.036901057160322
113 => 0.036935353630164
114 => 0.035687901722488
115 => 0.037886381176897
116 => 0.037566081212512
117 => 0.039227797994341
118 => 0.038831215948247
119 => 0.040186281476355
120 => 0.039829447309613
121 => 0.041310645985429
122 => 0.041901536239065
123 => 0.042893732939645
124 => 0.043623596871558
125 => 0.04405218693245
126 => 0.044026455992795
127 => 0.045724743336769
128 => 0.044723322623668
129 => 0.043465302191273
130 => 0.043442548570655
131 => 0.044094095178879
201 => 0.045459558126636
202 => 0.045813602802312
203 => 0.046011465476351
204 => 0.04570843190341
205 => 0.044621461491808
206 => 0.044152113179143
207 => 0.044552011539863
208 => 0.044062970208361
209 => 0.044907192747297
210 => 0.046066490609461
211 => 0.045827100185285
212 => 0.046627346481888
213 => 0.047455517210506
214 => 0.048639838547905
215 => 0.048949464000793
216 => 0.049461263100416
217 => 0.049988072491174
218 => 0.050157269469575
219 => 0.05048031900008
220 => 0.050478616369593
221 => 0.051452147873512
222 => 0.052525983270095
223 => 0.052931331272959
224 => 0.053863406654525
225 => 0.05226726022741
226 => 0.053477955627586
227 => 0.054570033184215
228 => 0.053268013300128
301 => 0.055062544378617
302 => 0.0551322219539
303 => 0.056184270615643
304 => 0.05511781774883
305 => 0.054484561440754
306 => 0.056312748674364
307 => 0.057197350889349
308 => 0.056930901503064
309 => 0.054903208517205
310 => 0.053723004227592
311 => 0.050634181957268
312 => 0.054293025363658
313 => 0.056075141256986
314 => 0.054898593267569
315 => 0.055491975637721
316 => 0.058729277444394
317 => 0.059961832372605
318 => 0.059705469563747
319 => 0.059748790658353
320 => 0.060413854925161
321 => 0.063363116141771
322 => 0.061595850457439
323 => 0.062946858854929
324 => 0.063663428837535
325 => 0.064329018972258
326 => 0.0626945399633
327 => 0.060568106787911
328 => 0.059894576139673
329 => 0.054781608757248
330 => 0.054515456600501
331 => 0.054366057329683
401 => 0.053424116060122
402 => 0.052684008241676
403 => 0.052095447026006
404 => 0.05055088663683
405 => 0.051072130427131
406 => 0.048610423541593
407 => 0.050185336369425
408 => 0.046256392740114
409 => 0.049528533743795
410 => 0.047747656161487
411 => 0.048943467561457
412 => 0.048939295488135
413 => 0.046737427568439
414 => 0.04546743610417
415 => 0.04627672409401
416 => 0.047144345060478
417 => 0.047285113643261
418 => 0.048410006873512
419 => 0.048723940394576
420 => 0.047772707169597
421 => 0.046174974116308
422 => 0.046546091064176
423 => 0.045459915431066
424 => 0.043556434413184
425 => 0.044923547711817
426 => 0.045390340299699
427 => 0.045596502499095
428 => 0.04372464753428
429 => 0.043136470064386
430 => 0.042823329314702
501 => 0.045933341146099
502 => 0.046103714614677
503 => 0.045232059861048
504 => 0.049172022001148
505 => 0.048280287224807
506 => 0.049276573450304
507 => 0.046512416091021
508 => 0.046618010624577
509 => 0.045309414233106
510 => 0.046042140771887
511 => 0.045524273271155
512 => 0.045982943708498
513 => 0.046257868877473
514 => 0.047566250541153
515 => 0.049543473360711
516 => 0.047370821951283
517 => 0.046424166619253
518 => 0.047011466263053
519 => 0.048575522607932
520 => 0.050945148032996
521 => 0.049542282088202
522 => 0.050164850172293
523 => 0.050300853602541
524 => 0.04926643219177
525 => 0.050983288625895
526 => 0.051903365936659
527 => 0.05284717487433
528 => 0.053666657729983
529 => 0.052470196829821
530 => 0.053750581498928
531 => 0.052718817473947
601 => 0.051793218481735
602 => 0.051794622233336
603 => 0.051213980464677
604 => 0.050088913872331
605 => 0.049881434331084
606 => 0.050960769106428
607 => 0.051826293382871
608 => 0.051897582107861
609 => 0.052376780819542
610 => 0.052660365680976
611 => 0.055439882837954
612 => 0.056557827631862
613 => 0.057924829364241
614 => 0.058457353578999
615 => 0.060060060544923
616 => 0.058765744504444
617 => 0.058485711087457
618 => 0.054598068229579
619 => 0.055234669529767
620 => 0.056253929634256
621 => 0.054614875453285
622 => 0.055654478072844
623 => 0.055859717651739
624 => 0.054559181019407
625 => 0.055253853827607
626 => 0.053409008805163
627 => 0.049583685940821
628 => 0.050987547303769
629 => 0.052021261801524
630 => 0.050546023757149
701 => 0.053190330852095
702 => 0.051645581236806
703 => 0.051155969769818
704 => 0.049245820878005
705 => 0.050147337626567
706 => 0.051366651937474
707 => 0.050613257453837
708 => 0.052176664130134
709 => 0.054390864929103
710 => 0.055968836276385
711 => 0.056089973322681
712 => 0.055075443462248
713 => 0.056701234038234
714 => 0.056713076147665
715 => 0.054879177736402
716 => 0.053755925170693
717 => 0.05350071982442
718 => 0.054138272815365
719 => 0.054912379845147
720 => 0.056132930875323
721 => 0.056870484300196
722 => 0.058793632464157
723 => 0.059313981216346
724 => 0.059885686735117
725 => 0.060649661615648
726 => 0.061567009338864
727 => 0.059559904745102
728 => 0.059639650752323
729 => 0.057770662744867
730 => 0.055773381018907
731 => 0.057289068884228
801 => 0.059270629144629
802 => 0.058816057031464
803 => 0.058764908382667
804 => 0.058850926222491
805 => 0.058508193694102
806 => 0.056958027170456
807 => 0.056179543246838
808 => 0.057183986120736
809 => 0.057717802805604
810 => 0.058545705930127
811 => 0.058443649395115
812 => 0.060576238933582
813 => 0.06140489874207
814 => 0.061192892102706
815 => 0.061231906426574
816 => 0.06273215542789
817 => 0.064400740867093
818 => 0.065963591320149
819 => 0.067553389926985
820 => 0.065636825655548
821 => 0.064663712515763
822 => 0.065667716881325
823 => 0.065134978032573
824 => 0.068196253478107
825 => 0.068408209548001
826 => 0.071469263628477
827 => 0.074374568454388
828 => 0.072549798547175
829 => 0.074270474380235
830 => 0.076131525582447
831 => 0.079721795296191
901 => 0.078512718763814
902 => 0.077586585088658
903 => 0.07671139324068
904 => 0.078532528543528
905 => 0.080875390017295
906 => 0.081380019939096
907 => 0.082197713195881
908 => 0.081338008719146
909 => 0.082373428068031
910 => 0.086028913355912
911 => 0.085041168963266
912 => 0.083638413137873
913 => 0.086524067696116
914 => 0.087568374863046
915 => 0.094897869468472
916 => 0.10415165917414
917 => 0.10032052947233
918 => 0.097942423636641
919 => 0.098501334917454
920 => 0.10188050565741
921 => 0.10296578804957
922 => 0.10001561638841
923 => 0.10105766689366
924 => 0.10679946762971
925 => 0.10987975950558
926 => 0.10569630939976
927 => 0.094154336475835
928 => 0.08351211032368
929 => 0.086334907924921
930 => 0.086014890278548
1001 => 0.092183738865203
1002 => 0.08501761158617
1003 => 0.085138270790991
1004 => 0.091434684633494
1005 => 0.089754909368175
1006 => 0.087033888567719
1007 => 0.083531976786785
1008 => 0.077058368972094
1009 => 0.071324514000713
1010 => 0.082569924027528
1011 => 0.08208500149872
1012 => 0.081382761815515
1013 => 0.082945520240219
1014 => 0.090533831553864
1015 => 0.090358896417117
1016 => 0.089246048329829
1017 => 0.090090133795844
1018 => 0.086885916304434
1019 => 0.087711716110646
1020 => 0.083510424540685
1021 => 0.085409583791742
1022 => 0.087028050479154
1023 => 0.087352981628461
1024 => 0.088085068099245
1025 => 0.081829469361089
1026 => 0.084638049539791
1027 => 0.086287827266405
1028 => 0.078834071478139
1029 => 0.086140490480123
1030 => 0.081720573304509
1031 => 0.080220387030177
1101 => 0.082240190214052
1102 => 0.081453070948973
1103 => 0.080776352026052
1104 => 0.080398731239555
1105 => 0.08188185178025
1106 => 0.081812662434314
1107 => 0.079385989368445
1108 => 0.076220493277867
1109 => 0.077282937669732
1110 => 0.076896941661698
1111 => 0.075498042334108
1112 => 0.076440731577155
1113 => 0.072289605234883
1114 => 0.065147808119775
1115 => 0.069865898053177
1116 => 0.069684256723035
1117 => 0.069592664927599
1118 => 0.073138179114123
1119 => 0.072797359734018
1120 => 0.072178769221815
1121 => 0.075486681434246
1122 => 0.074279248979011
1123 => 0.078000271299181
1124 => 0.080451177259879
1125 => 0.079829548229744
1126 => 0.082134637132037
1127 => 0.077307414242685
1128 => 0.078910824051961
1129 => 0.079241284591422
1130 => 0.075445862311019
1201 => 0.072853121999588
1202 => 0.072680215780219
1203 => 0.068184761381821
1204 => 0.070586196835405
1205 => 0.072699360656408
1206 => 0.071687319174284
1207 => 0.071366937074924
1208 => 0.073003699738159
1209 => 0.073130890215017
1210 => 0.07023093386362
1211 => 0.07083392661875
1212 => 0.073348506646845
1213 => 0.07077056565379
1214 => 0.065762047408554
1215 => 0.064519865635553
1216 => 0.064354135689083
1217 => 0.060985240202026
1218 => 0.064602874161349
1219 => 0.063023679991542
1220 => 0.06801233545231
1221 => 0.065162842207815
1222 => 0.065040006249255
1223 => 0.064854321681774
1224 => 0.061954574168744
1225 => 0.062589434585529
1226 => 0.064699807302895
1227 => 0.065452812063502
1228 => 0.065374267497784
1229 => 0.06468946532527
1230 => 0.065002964253093
1231 => 0.06399307497631
]
'min_raw' => 0.035334902337647
'max_raw' => 0.10987975950558
'avg_raw' => 0.072607330921611
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.035334'
'max' => '$0.109879'
'avg' => '$0.0726073'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.020129130737184
'max_diff' => 0.068627966416961
'year' => 2033
]
8 => [
'items' => [
101 => 0.06363646205365
102 => 0.062510893575624
103 => 0.060856618859153
104 => 0.061086655904735
105 => 0.057809104826882
106 => 0.056023321046866
107 => 0.055529039632809
108 => 0.054868065868491
109 => 0.055603698378273
110 => 0.057799819936481
111 => 0.055150831404103
112 => 0.050609326370281
113 => 0.050882278561162
114 => 0.051495521093838
115 => 0.050352747691202
116 => 0.049271208571308
117 => 0.050211519088013
118 => 0.04828722353558
119 => 0.051728063017919
120 => 0.051634997952763
121 => 0.052917530131693
122 => 0.053719523823387
123 => 0.051871188012572
124 => 0.051406336554584
125 => 0.051671137071375
126 => 0.047294574379259
127 => 0.052559871588592
128 => 0.052605406097504
129 => 0.052215511987393
130 => 0.055019120203549
131 => 0.060935608006971
201 => 0.058709587305153
202 => 0.057847604807578
203 => 0.056208975449581
204 => 0.058392351776928
205 => 0.058224702540964
206 => 0.057466529116852
207 => 0.057007983464303
208 => 0.057852867888901
209 => 0.056903292934174
210 => 0.05673272317973
211 => 0.055699256049525
212 => 0.0553303553038
213 => 0.055057235878027
214 => 0.054756558226411
215 => 0.055419778201673
216 => 0.053916834483876
217 => 0.052104431695604
218 => 0.051953750014229
219 => 0.052369795384574
220 => 0.052185726279131
221 => 0.051952868762168
222 => 0.051508280347315
223 => 0.051376380461757
224 => 0.051804991101094
225 => 0.051321114678835
226 => 0.052035100697991
227 => 0.051840936007429
228 => 0.050756347829521
301 => 0.049404549393874
302 => 0.049392515552304
303 => 0.049101272796738
304 => 0.048730331358882
305 => 0.048627143936862
306 => 0.050132328759036
307 => 0.053248016294545
308 => 0.052636332279241
309 => 0.053078336668197
310 => 0.055252560794042
311 => 0.055943681262447
312 => 0.055453140324059
313 => 0.054781657632345
314 => 0.054811199462948
315 => 0.057105859092168
316 => 0.057248974198556
317 => 0.057610579901714
318 => 0.058075345420033
319 => 0.055532291901531
320 => 0.054691421870919
321 => 0.054292971000722
322 => 0.053065896540408
323 => 0.054389191144443
324 => 0.053618164047797
325 => 0.053722201945171
326 => 0.053654447128022
327 => 0.053691445839746
328 => 0.051727101233159
329 => 0.052442805164886
330 => 0.05125280856533
331 => 0.04965953670191
401 => 0.049654195495951
402 => 0.050044146527336
403 => 0.049812188395083
404 => 0.049187995025378
405 => 0.049276658747435
406 => 0.048499871245863
407 => 0.049370974814317
408 => 0.049395954947702
409 => 0.049060532624515
410 => 0.050402587860846
411 => 0.050952428986184
412 => 0.05073164682762
413 => 0.050936938321379
414 => 0.052661750511664
415 => 0.052942970157513
416 => 0.053067869347871
417 => 0.052900520978762
418 => 0.050968464721935
419 => 0.051054159632663
420 => 0.050425387237209
421 => 0.049894140821452
422 => 0.049915387892062
423 => 0.050188517606961
424 => 0.05138129109077
425 => 0.053891412569607
426 => 0.053986669844854
427 => 0.054102124441304
428 => 0.053632512574711
429 => 0.053490873142166
430 => 0.053677732113932
501 => 0.054620401765466
502 => 0.057045204041526
503 => 0.056188116970068
504 => 0.055491291839617
505 => 0.056102595341728
506 => 0.056008489959134
507 => 0.055214145825724
508 => 0.055191851231544
509 => 0.053667250872349
510 => 0.053103640833025
511 => 0.052632646098685
512 => 0.052118332144415
513 => 0.051813429592364
514 => 0.052281898488046
515 => 0.05238904286725
516 => 0.051364727439406
517 => 0.051225117031567
518 => 0.052061595121328
519 => 0.05169349230107
520 => 0.052072095180216
521 => 0.052159934295773
522 => 0.052145790175062
523 => 0.051761448554373
524 => 0.052006416442168
525 => 0.051426994359091
526 => 0.050796959870128
527 => 0.050395037118706
528 => 0.050044306210773
529 => 0.050238912103094
530 => 0.049545177630601
531 => 0.049323238010734
601 => 0.051923426833735
602 => 0.053844214274027
603 => 0.05381628526393
604 => 0.053646274597722
605 => 0.053393673233141
606 => 0.05460192240229
607 => 0.054180992551463
608 => 0.054487254187806
609 => 0.054565210628016
610 => 0.054801161293552
611 => 0.054885493375837
612 => 0.054630583250776
613 => 0.053775073736423
614 => 0.051643225366058
615 => 0.050650844194839
616 => 0.050323341878921
617 => 0.050335245966089
618 => 0.050006878099805
619 => 0.050103597152841
620 => 0.049973243160237
621 => 0.049726384234263
622 => 0.050223669260045
623 => 0.050280976726736
624 => 0.050164904459605
625 => 0.050192243680392
626 => 0.04923121488366
627 => 0.04930427981583
628 => 0.048897444988861
629 => 0.048821168363272
630 => 0.047792725347855
701 => 0.045970689470844
702 => 0.04698027421601
703 => 0.045760837812948
704 => 0.045299018769631
705 => 0.047485198293095
706 => 0.04726576650412
707 => 0.046890194666101
708 => 0.046334645641642
709 => 0.046128587104437
710 => 0.044876640662583
711 => 0.044802668987923
712 => 0.045423167449904
713 => 0.045136828759748
714 => 0.044734700793828
715 => 0.043278234064322
716 => 0.041640683240795
717 => 0.04169011060688
718 => 0.042210985056128
719 => 0.043725497766805
720 => 0.043133751449407
721 => 0.042704432706629
722 => 0.04262403421138
723 => 0.043630389705065
724 => 0.045054593566622
725 => 0.0457227981537
726 => 0.045060627701581
727 => 0.044299961939976
728 => 0.044346260140299
729 => 0.04465426132509
730 => 0.044686627894709
731 => 0.044191512681608
801 => 0.044330884713942
802 => 0.044119165852381
803 => 0.042819847589783
804 => 0.042796347042596
805 => 0.042477473386617
806 => 0.042467818019042
807 => 0.041925334383461
808 => 0.041849437172831
809 => 0.040772302987981
810 => 0.041481275970312
811 => 0.041005734116517
812 => 0.040288980373864
813 => 0.04016541175847
814 => 0.040161697136678
815 => 0.040897642967178
816 => 0.041472676014794
817 => 0.041014006370661
818 => 0.040909576183629
819 => 0.042024617369479
820 => 0.041882718214753
821 => 0.041759834461913
822 => 0.044927071731625
823 => 0.042419956290041
824 => 0.041326710856365
825 => 0.039973612030513
826 => 0.040414187831127
827 => 0.040507023625721
828 => 0.037253064863943
829 => 0.035932934199544
830 => 0.035479915103597
831 => 0.035219196209129
901 => 0.03533800908324
902 => 0.034149736649398
903 => 0.034948275377152
904 => 0.033919331891613
905 => 0.033746826167791
906 => 0.035586704581572
907 => 0.035842712914436
908 => 0.034750501830884
909 => 0.035451878159437
910 => 0.035197549352844
911 => 0.033936970174426
912 => 0.033888825322003
913 => 0.033256311001774
914 => 0.032266548569521
915 => 0.03181420057911
916 => 0.031578613818239
917 => 0.031675821507269
918 => 0.031626670325091
919 => 0.031305925614239
920 => 0.031645055036467
921 => 0.030778719500628
922 => 0.030433737709718
923 => 0.03027791743828
924 => 0.02950899478581
925 => 0.030732692667345
926 => 0.030973776565747
927 => 0.031215335473904
928 => 0.033317940850135
929 => 0.03321290062744
930 => 0.034162413083943
1001 => 0.034125516775925
1002 => 0.033854700442248
1003 => 0.03271217087759
1004 => 0.033167562798432
1005 => 0.0317659372497
1006 => 0.032816130412083
1007 => 0.032336866109886
1008 => 0.032654090669414
1009 => 0.032083692308398
1010 => 0.032399374312555
1011 => 0.031030946501681
1012 => 0.029753127866186
1013 => 0.030267359386961
1014 => 0.03082638785955
1015 => 0.03203850402593
1016 => 0.031316577636976
1017 => 0.031576209665503
1018 => 0.030706485831814
1019 => 0.028911997138581
1020 => 0.028922153749704
1021 => 0.028646110759312
1022 => 0.028407569312676
1023 => 0.031399499567092
1024 => 0.031027405744538
1025 => 0.030434522936732
1026 => 0.031228120135206
1027 => 0.031437959830563
1028 => 0.03144393367169
1029 => 0.032022921701988
1030 => 0.032331927717548
1031 => 0.032386391367099
1101 => 0.033297441542637
1102 => 0.033602813544435
1103 => 0.034860597601977
1104 => 0.032305710716032
1105 => 0.032253094501906
1106 => 0.031239287675253
1107 => 0.030596315358138
1108 => 0.031283312539893
1109 => 0.03189189825846
1110 => 0.031258198129955
1111 => 0.031340945988598
1112 => 0.030490255341282
1113 => 0.030794337218982
1114 => 0.03105625349631
1115 => 0.030911638722697
1116 => 0.030695143407164
1117 => 0.031842001169758
1118 => 0.03177729096022
1119 => 0.032845271274894
1120 => 0.033677838302187
1121 => 0.035169947254254
1122 => 0.033612853777373
1123 => 0.03355610710219
1124 => 0.034110814954562
1125 => 0.033602728621553
1126 => 0.033923821645471
1127 => 0.035118214204022
1128 => 0.035143449836685
1129 => 0.034720720475303
1130 => 0.034694997355245
1201 => 0.034776187153251
1202 => 0.035251718336089
1203 => 0.035085553129208
1204 => 0.035277843713399
1205 => 0.035518306033388
1206 => 0.036512960142773
1207 => 0.03675276788116
1208 => 0.036170159402936
1209 => 0.036222762425329
1210 => 0.036004850861513
1211 => 0.035794351021291
1212 => 0.036267523921078
1213 => 0.037132256695675
1214 => 0.037126877237964
1215 => 0.037327478433667
1216 => 0.03745245131672
1217 => 0.036915976216914
1218 => 0.036566750653677
1219 => 0.036700665956422
1220 => 0.036914799441807
1221 => 0.036631225353131
1222 => 0.034880874713521
1223 => 0.035411819284747
1224 => 0.035323444146232
1225 => 0.035197587202202
1226 => 0.035731456074243
1227 => 0.035679963119153
1228 => 0.034137549198088
1229 => 0.034236289532965
1230 => 0.03414355392489
1231 => 0.0344432016465
]
'min_raw' => 0.028407569312676
'max_raw' => 0.06363646205365
'avg_raw' => 0.046022015683163
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.0284075'
'max' => '$0.063636'
'avg' => '$0.046022'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0069273330249707
'max_diff' => -0.046243297451926
'year' => 2034
]
9 => [
'items' => [
101 => 0.033586546661226
102 => 0.033850047965037
103 => 0.034015313512616
104 => 0.034112656189769
105 => 0.034464324688147
106 => 0.034423060448805
107 => 0.034461759645092
108 => 0.034983191191145
109 => 0.037620413017383
110 => 0.037763951182683
111 => 0.037057116760128
112 => 0.037339483170246
113 => 0.036797401409565
114 => 0.037161304527142
115 => 0.037410277798052
116 => 0.036285215461618
117 => 0.036218596571648
118 => 0.035674277446711
119 => 0.035966763712641
120 => 0.03550139703304
121 => 0.035615581738379
122 => 0.035296311347808
123 => 0.035870934484735
124 => 0.036513452439227
125 => 0.036675777848335
126 => 0.036248769582455
127 => 0.035939587456742
128 => 0.035396765494914
129 => 0.036299490515011
130 => 0.036563474820934
131 => 0.036298103917833
201 => 0.036236611681116
202 => 0.036120084003651
203 => 0.036261333578752
204 => 0.03656203710571
205 => 0.036420230875519
206 => 0.036513896388865
207 => 0.03615694003945
208 => 0.036916153812495
209 => 0.038121967998836
210 => 0.038125844888615
211 => 0.037984037894036
212 => 0.037926013527128
213 => 0.038071516109135
214 => 0.038150445291045
215 => 0.038620973960644
216 => 0.039125869969812
217 => 0.041481999341216
218 => 0.04082040764193
219 => 0.042910905787003
220 => 0.044564218402545
221 => 0.045059974565347
222 => 0.044603902222699
223 => 0.043043703375043
224 => 0.042967152576255
225 => 0.045298748353616
226 => 0.04463996575266
227 => 0.044561605658505
228 => 0.043727986648165
301 => 0.044220758728999
302 => 0.04411298224639
303 => 0.043942851795987
304 => 0.044883026599417
305 => 0.046642949901454
306 => 0.046368649350376
307 => 0.046163896713432
308 => 0.04526673026094
309 => 0.045807024854722
310 => 0.045614636298537
311 => 0.0464412596287
312 => 0.04595158627986
313 => 0.044634974826527
314 => 0.044844649540078
315 => 0.044812957628932
316 => 0.04546517491461
317 => 0.045269395474478
318 => 0.044774728551098
319 => 0.046636934674936
320 => 0.046516013367389
321 => 0.046687452135031
322 => 0.046762924782468
323 => 0.047896416834295
324 => 0.048360772260229
325 => 0.048466189071602
326 => 0.048907290811701
327 => 0.048455214058473
328 => 0.050263843396646
329 => 0.051466476370083
330 => 0.052863396455657
331 => 0.054904672157402
401 => 0.055672210704115
402 => 0.055533561735622
403 => 0.057081233675928
404 => 0.059862365749844
405 => 0.05609570804337
406 => 0.060062007754446
407 => 0.058806323059052
408 => 0.055829117235074
409 => 0.055637420278961
410 => 0.057653618629029
411 => 0.06212535251758
412 => 0.061005233896484
413 => 0.062127184630372
414 => 0.060818369503369
415 => 0.060753375800753
416 => 0.062063618400984
417 => 0.065125071654028
418 => 0.063670689970366
419 => 0.061585477197817
420 => 0.063125165859563
421 => 0.061791345049299
422 => 0.058785873450838
423 => 0.061004377362884
424 => 0.059520926976253
425 => 0.059953876663632
426 => 0.063071868729739
427 => 0.062696703675161
428 => 0.063182201995134
429 => 0.062325310168086
430 => 0.061524838082185
501 => 0.060030697490012
502 => 0.059588356120911
503 => 0.059710603361555
504 => 0.05958829554125
505 => 0.05875233761179
506 => 0.058571812576516
507 => 0.058270929608742
508 => 0.058364185821778
509 => 0.057798437815946
510 => 0.058866121192454
511 => 0.059064292635527
512 => 0.059841263559546
513 => 0.059921931258379
514 => 0.062085784222281
515 => 0.060893970371836
516 => 0.061693541998971
517 => 0.06162202078678
518 => 0.055893642312957
519 => 0.056682962324739
520 => 0.057910896560806
521 => 0.057357713851883
522 => 0.056575642926285
523 => 0.055944078721874
524 => 0.054987194371437
525 => 0.056333990719342
526 => 0.058104884701012
527 => 0.059966844052174
528 => 0.062203866212186
529 => 0.06170458890788
530 => 0.059925024478933
531 => 0.060004854439243
601 => 0.060498331841948
602 => 0.059859233768295
603 => 0.059670751269699
604 => 0.060472437240986
605 => 0.060477958011671
606 => 0.059742598440352
607 => 0.058925380846212
608 => 0.058921956674654
609 => 0.058776540697162
610 => 0.060844238682721
611 => 0.061981263506933
612 => 0.062111621570622
613 => 0.061972489370608
614 => 0.062026035832434
615 => 0.061364426139858
616 => 0.062876669702828
617 => 0.064264453941597
618 => 0.063892498119921
619 => 0.063334883466593
620 => 0.062890716536857
621 => 0.063787866507103
622 => 0.063747917831173
623 => 0.064252332856948
624 => 0.064229449677737
625 => 0.064059833876577
626 => 0.063892504177436
627 => 0.064555947520441
628 => 0.064364886492229
629 => 0.064173528693469
630 => 0.063789731332641
701 => 0.063841895768177
702 => 0.06328437739488
703 => 0.063026443885088
704 => 0.059147742766843
705 => 0.058111227087833
706 => 0.058437336020672
707 => 0.058544699548777
708 => 0.058093606596941
709 => 0.058740358013602
710 => 0.058639562490395
711 => 0.059031698907786
712 => 0.058786709098784
713 => 0.058796763566002
714 => 0.059517226356942
715 => 0.05972637977022
716 => 0.059620002656152
717 => 0.059694505540451
718 => 0.061411393063425
719 => 0.061167306560631
720 => 0.061037640470845
721 => 0.06107355886387
722 => 0.061512260436473
723 => 0.061635072924585
724 => 0.061114707782577
725 => 0.061360114991743
726 => 0.062405027741559
727 => 0.062770688067054
728 => 0.063937700299123
729 => 0.063441932760952
730 => 0.064351935533582
731 => 0.06714897381384
801 => 0.069383441532437
802 => 0.067328532675131
803 => 0.071431848082587
804 => 0.074626867712927
805 => 0.074504237537931
806 => 0.073947111963245
807 => 0.070309667058095
808 => 0.066962436025127
809 => 0.069762536915142
810 => 0.069769674948156
811 => 0.069529143798417
812 => 0.068035225485223
813 => 0.069477158679374
814 => 0.069591614099993
815 => 0.069527549500599
816 => 0.06838216583255
817 => 0.066633376673724
818 => 0.066975085889349
819 => 0.067534812555222
820 => 0.06647513320551
821 => 0.066136501445041
822 => 0.066766082315081
823 => 0.068794723056733
824 => 0.06841122027564
825 => 0.068401205468169
826 => 0.070041992996177
827 => 0.068867543230234
828 => 0.066979395936862
829 => 0.066502613843683
830 => 0.064810358611799
831 => 0.065979205328067
901 => 0.066021270040528
902 => 0.065381104639352
903 => 0.067031341831015
904 => 0.067016134604775
905 => 0.068582789212868
906 => 0.071577644414942
907 => 0.070691918363815
908 => 0.069661915333074
909 => 0.069773905221402
910 => 0.071002157881759
911 => 0.070259528285026
912 => 0.070526583065809
913 => 0.071001753662364
914 => 0.071288435881088
915 => 0.069732656061916
916 => 0.069369929364516
917 => 0.068627917841406
918 => 0.068434340885328
919 => 0.069038693788323
920 => 0.068879468150487
921 => 0.066017734664329
922 => 0.06571866759249
923 => 0.065727839552614
924 => 0.064975821180613
925 => 0.063828812658221
926 => 0.066843082570746
927 => 0.06660099451209
928 => 0.066333748031461
929 => 0.066366484200451
930 => 0.067674876606392
1001 => 0.066915942935546
1002 => 0.068933692486273
1003 => 0.068518903837747
1004 => 0.068093477425527
1005 => 0.068034670536553
1006 => 0.067870917663524
1007 => 0.067309348132148
1008 => 0.066631219177914
1009 => 0.066183459703805
1010 => 0.061050743132317
1011 => 0.062003345472347
1012 => 0.063099227632115
1013 => 0.063477521762195
1014 => 0.062830423475536
1015 => 0.067334899516616
1016 => 0.068157910695532
1017 => 0.065664956150904
1018 => 0.065198626142267
1019 => 0.067365472034347
1020 => 0.066058599075285
1021 => 0.06664708388873
1022 => 0.065375101606046
1023 => 0.067959671403112
1024 => 0.067939981311597
1025 => 0.066934525285382
1026 => 0.067784329833673
1027 => 0.067636655380745
1028 => 0.066501498003477
1029 => 0.067995657916715
1030 => 0.067996399001391
1031 => 0.067028669436658
1101 => 0.065898573168292
1102 => 0.06569653864719
1103 => 0.065544332775059
1104 => 0.066609650574575
1105 => 0.067564811182459
1106 => 0.069342128269334
1107 => 0.069788988012987
1108 => 0.071533111341602
1109 => 0.070494570819236
1110 => 0.070954942381449
1111 => 0.071454740835766
1112 => 0.071694362594245
1113 => 0.071303911797616
1114 => 0.074013253236758
1115 => 0.074242004666298
1116 => 0.074318703041931
1117 => 0.07340512835259
1118 => 0.074216596501543
1119 => 0.073836937427648
1120 => 0.074824704865594
1121 => 0.074979599412311
1122 => 0.074848409241775
1123 => 0.074897575215747
1124 => 0.072585630258021
1125 => 0.072465743715482
1126 => 0.070831082201198
1127 => 0.071497218851076
1128 => 0.070251908312888
1129 => 0.070646809112668
1130 => 0.070820877622458
1201 => 0.070729954111244
1202 => 0.071534881217797
1203 => 0.070850528741483
1204 => 0.069044410038528
1205 => 0.067237799259739
1206 => 0.067215118733045
1207 => 0.066739470004319
1208 => 0.06639566309286
1209 => 0.066461892501212
1210 => 0.066695293574684
1211 => 0.06638209739817
1212 => 0.066448933681878
1213 => 0.067558861319268
1214 => 0.067781449391304
1215 => 0.06702500815175
1216 => 0.063987787420988
1217 => 0.063242445835367
1218 => 0.063778182586345
1219 => 0.063522134925244
1220 => 0.051267320584032
1221 => 0.054146407435269
1222 => 0.052435751792815
1223 => 0.053224100616339
1224 => 0.051477964177525
1225 => 0.052311312008979
1226 => 0.0521574230935
1227 => 0.056786909551916
1228 => 0.056714626488518
1229 => 0.056749224565832
1230 => 0.055097768190828
1231 => 0.057728583038136
]
'min_raw' => 0.033586546661226
'max_raw' => 0.074979599412311
'avg_raw' => 0.054283073036769
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.033586'
'max' => '$0.074979'
'avg' => '$0.054283'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0051789773485496
'max_diff' => 0.011343137358661
'year' => 2035
]
10 => [
'items' => [
101 => 0.059024617032962
102 => 0.058784755633347
103 => 0.05884512358002
104 => 0.057807802247619
105 => 0.056759268103802
106 => 0.05559628237006
107 => 0.057756966113971
108 => 0.057516734965749
109 => 0.05806773878733
110 => 0.05946909664412
111 => 0.059675451911773
112 => 0.059952795484147
113 => 0.059853387556111
114 => 0.062221687702737
115 => 0.061934870928433
116 => 0.062626016831688
117 => 0.061204277271327
118 => 0.05959544400602
119 => 0.059901230613033
120 => 0.059871780903797
121 => 0.059496852304421
122 => 0.059158383529095
123 => 0.058594928381163
124 => 0.060377783844892
125 => 0.060305403168941
126 => 0.061477162179255
127 => 0.061270042392322
128 => 0.059886845764375
129 => 0.059936246902541
130 => 0.060268493298083
131 => 0.061418401866578
201 => 0.061759773021452
202 => 0.061601636301226
203 => 0.061975934188361
204 => 0.062271763976998
205 => 0.062013085855138
206 => 0.065675422556792
207 => 0.064154565021042
208 => 0.064895820401908
209 => 0.065072605442514
210 => 0.06461977427839
211 => 0.06471797714322
212 => 0.064866727724759
213 => 0.065769912127513
214 => 0.068140129338853
215 => 0.069189882407141
216 => 0.072348116306991
217 => 0.069102715028088
218 => 0.068910146347004
219 => 0.069479039641893
220 => 0.071333257274115
221 => 0.072835926507225
222 => 0.073334448582915
223 => 0.07340033650492
224 => 0.074335597060035
225 => 0.074871670968651
226 => 0.07422203182885
227 => 0.073671530677921
228 => 0.071699703886014
229 => 0.071927948206283
301 => 0.073500325233937
302 => 0.075721400398044
303 => 0.077627313952332
304 => 0.076959929453414
305 => 0.082051602080128
306 => 0.082556420623449
307 => 0.0824866710235
308 => 0.083636722792257
309 => 0.081354104235244
310 => 0.080378240578468
311 => 0.073790555275205
312 => 0.075641426137231
313 => 0.078331775633019
314 => 0.077975697788959
315 => 0.076021894071869
316 => 0.07762583181701
317 => 0.077095519838696
318 => 0.076677240778735
319 => 0.078593458239801
320 => 0.076486498427484
321 => 0.078310757097151
322 => 0.075971126483764
323 => 0.076962978009588
324 => 0.07639995511307
325 => 0.076764299928608
326 => 0.07463434758176
327 => 0.075783618166449
328 => 0.074586534146986
329 => 0.074585966573296
330 => 0.074559540877218
331 => 0.075967904917433
401 => 0.076013831618222
402 => 0.074973048464583
403 => 0.074823055352055
404 => 0.075377658503644
405 => 0.074728363463929
406 => 0.075032164526397
407 => 0.074737565288624
408 => 0.074671244794993
409 => 0.074142791818231
410 => 0.073915119745725
411 => 0.074004395831741
412 => 0.073699650525191
413 => 0.073516030454875
414 => 0.074523014223582
415 => 0.073985023417571
416 => 0.074440559416686
417 => 0.073921418652468
418 => 0.072121850584824
419 => 0.071086899959034
420 => 0.067687682699302
421 => 0.068651696497446
422 => 0.06929083864296
423 => 0.069079602167681
424 => 0.069533419854246
425 => 0.069561280574446
426 => 0.06941373981842
427 => 0.069242906524083
428 => 0.069159754324074
429 => 0.069779502697624
430 => 0.070139287488241
501 => 0.069354985107881
502 => 0.069171234033719
503 => 0.069964207042785
504 => 0.070447920120229
505 => 0.074019385709177
506 => 0.073754800002666
507 => 0.074418858203686
508 => 0.074344095441055
509 => 0.075040134228492
510 => 0.076177863478012
511 => 0.073864541799637
512 => 0.074266054454357
513 => 0.074167612823701
514 => 0.075242372734425
515 => 0.075245728017552
516 => 0.074601355762834
517 => 0.074950680415863
518 => 0.074755696977763
519 => 0.075108058404002
520 => 0.073751266299245
521 => 0.075403692626181
522 => 0.076340511873554
523 => 0.076353519609712
524 => 0.076797564497909
525 => 0.077248739821663
526 => 0.07811473156652
527 => 0.077224587781917
528 => 0.075623305767168
529 => 0.075738913156523
530 => 0.074800082097162
531 => 0.074815864016883
601 => 0.074731618892558
602 => 0.074984444852335
603 => 0.073806747379779
604 => 0.07408315062264
605 => 0.07369618446402
606 => 0.074265213265502
607 => 0.073653032338937
608 => 0.074167565352166
609 => 0.074389620743636
610 => 0.075209009918671
611 => 0.07353200789156
612 => 0.070112487235224
613 => 0.070831311934866
614 => 0.069768113741634
615 => 0.069866516782298
616 => 0.070065306585169
617 => 0.06942096379409
618 => 0.069543884093053
619 => 0.069539492514997
620 => 0.069501648267834
621 => 0.069334029822176
622 => 0.069090949913671
623 => 0.070059305453102
624 => 0.070223847928897
625 => 0.07058960547009
626 => 0.071677851816971
627 => 0.071569110344301
628 => 0.071746472197865
629 => 0.071359292267379
630 => 0.069884476948815
701 => 0.069964566516163
702 => 0.068965848327978
703 => 0.070564066000594
704 => 0.070185586960276
705 => 0.069941579060831
706 => 0.06987499924475
707 => 0.070965943143834
708 => 0.07129237065689
709 => 0.071088962936489
710 => 0.070671767767595
711 => 0.071472905824551
712 => 0.071687256571291
713 => 0.071735241798535
714 => 0.073154704832475
715 => 0.071814574013865
716 => 0.072137156821659
717 => 0.074653855802746
718 => 0.07237155710762
719 => 0.073580541627763
720 => 0.073521368126754
721 => 0.074139843697453
722 => 0.073470635078007
723 => 0.073478930720884
724 => 0.074028095128501
725 => 0.073256892760326
726 => 0.073065932208523
727 => 0.072802121573891
728 => 0.07337814244329
729 => 0.073723440903311
730 => 0.076506292897307
731 => 0.078304142198898
801 => 0.078226092819226
802 => 0.078939318047114
803 => 0.078618003549556
804 => 0.07758039427846
805 => 0.07935146678125
806 => 0.078791025336546
807 => 0.078837227448312
808 => 0.078835507803404
809 => 0.079208152369491
810 => 0.078944099542045
811 => 0.078423624314684
812 => 0.078769140060168
813 => 0.079795198300117
814 => 0.08298011456023
815 => 0.084762435893918
816 => 0.082872816577994
817 => 0.084176250679107
818 => 0.083394654679497
819 => 0.083252615435901
820 => 0.084071268374424
821 => 0.084891354256543
822 => 0.084839118331181
823 => 0.084243778092638
824 => 0.083907485498085
825 => 0.086454005690329
826 => 0.088330238389135
827 => 0.0882022918975
828 => 0.088767006101148
829 => 0.090425024469014
830 => 0.090576612889608
831 => 0.090557516232834
901 => 0.090181788515773
902 => 0.091814322919828
903 => 0.093176211841401
904 => 0.090094818405091
905 => 0.091268172687236
906 => 0.091794929227605
907 => 0.092568364110489
908 => 0.093873278400652
909 => 0.095290761431191
910 => 0.095491209073619
911 => 0.095348981879013
912 => 0.094414113716384
913 => 0.095965140562489
914 => 0.096873695712882
915 => 0.097414719513026
916 => 0.098786665852415
917 => 0.091798182296669
918 => 0.086851386285742
919 => 0.086078872656035
920 => 0.087649809499642
921 => 0.088064053017314
922 => 0.087897071974758
923 => 0.082329003321443
924 => 0.086049557926914
925 => 0.090052561849284
926 => 0.090206333532689
927 => 0.092210320995093
928 => 0.092862901459073
929 => 0.094476374034949
930 => 0.094375450886027
1001 => 0.094768305782296
1002 => 0.094677995244942
1003 => 0.097666613435018
1004 => 0.10096350311277
1005 => 0.10084934230669
1006 => 0.10037537540849
1007 => 0.10107929707569
1008 => 0.10448204053929
1009 => 0.10416877044902
1010 => 0.10447308565744
1011 => 0.10848511197125
1012 => 0.11370131688329
1013 => 0.11127786600324
1014 => 0.11653605708375
1015 => 0.1198458096442
1016 => 0.12556968446269
1017 => 0.12485302714474
1018 => 0.12708128960784
1019 => 0.12357006097471
1020 => 0.11550757029663
1021 => 0.11423165028485
1022 => 0.11678607445988
1023 => 0.12306587703711
1024 => 0.1165883011288
1025 => 0.11789870629864
1026 => 0.11752130952157
1027 => 0.11750119965115
1028 => 0.11826871161221
1029 => 0.11715539548196
1030 => 0.11261954528557
1031 => 0.11469829870064
1101 => 0.11389559217715
1102 => 0.1147862549107
1103 => 0.11959279434645
1104 => 0.11746770868832
1105 => 0.11522910357541
1106 => 0.11803681117324
1107 => 0.12161198777828
1108 => 0.12138825965154
1109 => 0.12095413357458
1110 => 0.12340127954032
1111 => 0.12744324772925
1112 => 0.12853577548877
1113 => 0.1293422571451
1114 => 0.12945345733989
1115 => 0.13059888845675
1116 => 0.12443961665557
1117 => 0.13421453918536
1118 => 0.13590239827947
1119 => 0.13558515072437
1120 => 0.1374611350715
1121 => 0.13690917288745
1122 => 0.13610946628296
1123 => 0.13908330050648
1124 => 0.13567403954526
1125 => 0.13083502282483
1126 => 0.12818024254711
1127 => 0.13167627137183
1128 => 0.1338111741805
1129 => 0.13522220913171
1130 => 0.13564918745538
1201 => 0.1249177433923
1202 => 0.11913409023548
1203 => 0.12284134559928
1204 => 0.12736445300422
1205 => 0.12441449056556
1206 => 0.12453012350814
1207 => 0.1203242523071
1208 => 0.12773657928057
1209 => 0.12665666558802
1210 => 0.13225925973532
1211 => 0.13092215567844
1212 => 0.13549085371411
1213 => 0.13428776240757
1214 => 0.13928172715707
1215 => 0.14127395490185
1216 => 0.14461921535081
1217 => 0.14708000255473
1218 => 0.14852502386823
1219 => 0.14843827020871
1220 => 0.15416416455955
1221 => 0.15078780470837
1222 => 0.14654630098837
1223 => 0.14646958556785
1224 => 0.14866632044701
1225 => 0.15327007410895
1226 => 0.1544637604516
1227 => 0.15513086827145
1228 => 0.15410916942315
1229 => 0.15044437279059
1230 => 0.14886193218558
1231 => 0.15021021742876
]
'min_raw' => 0.05559628237006
'max_raw' => 0.15513086827145
'avg_raw' => 0.10536357532076
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.055596'
'max' => '$0.15513'
'avg' => '$0.105363'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.022009735708834
'max_diff' => 0.080151268859141
'year' => 2036
]
11 => [
'items' => [
101 => 0.14856138043583
102 => 0.15140773566759
103 => 0.15531638934946
104 => 0.15450926782065
105 => 0.15720735408106
106 => 0.15999958951363
107 => 0.16399261158934
108 => 0.16503653542112
109 => 0.16676210181817
110 => 0.16853827645976
111 => 0.1691087358854
112 => 0.17019791993209
113 => 0.17019217939453
114 => 0.17347450882979
115 => 0.17709501984217
116 => 0.17846167893432
117 => 0.18160423615869
118 => 0.17622271704029
119 => 0.18030466111003
120 => 0.18398667683863
121 => 0.17959682589531
122 => 0.18564721271659
123 => 0.18588213552639
124 => 0.18942919104115
125 => 0.18583357074333
126 => 0.18369850288811
127 => 0.18986236378618
128 => 0.19284486191495
129 => 0.19194650920619
130 => 0.18511000073536
131 => 0.1811308595737
201 => 0.17071667963462
202 => 0.18305272563156
203 => 0.18906125378927
204 => 0.18509444009899
205 => 0.18709507018859
206 => 0.19800985925098
207 => 0.20216550424569
208 => 0.20130115913694
209 => 0.20144721923199
210 => 0.20368952984083
211 => 0.21363316994348
212 => 0.2076747103022
213 => 0.21222972943873
214 => 0.21464569516441
215 => 0.21688977877365
216 => 0.21137901867927
217 => 0.20420960076562
218 => 0.20193874516068
219 => 0.18470001865484
220 => 0.18380266807622
221 => 0.18329895800394
222 => 0.18012313724937
223 => 0.1776278120668
224 => 0.17564343683614
225 => 0.17043584364627
226 => 0.17219325347735
227 => 0.16389343684187
228 => 0.16920336539781
301 => 0.15595665764151
302 => 0.166988909489
303 => 0.16098455638335
304 => 0.16501631800724
305 => 0.16500225157075
306 => 0.15757850014998
307 => 0.15329663526022
308 => 0.15602520622065
309 => 0.15895045088446
310 => 0.15942506198946
311 => 0.16321771805279
312 => 0.1642761668372
313 => 0.1610690176062
314 => 0.15568214906688
315 => 0.15693339576717
316 => 0.15327127878578
317 => 0.14685355963719
318 => 0.15146287757233
319 => 0.1530367013728
320 => 0.15373179162184
321 => 0.14742070191923
322 => 0.14543762051424
323 => 0.14438184461389
324 => 0.15486746663754
325 => 0.15544189268195
326 => 0.1525030478231
327 => 0.16578690525781
328 => 0.16278035920045
329 => 0.16613940776819
330 => 0.15681985824407
331 => 0.15717587758633
401 => 0.1527638534892
402 => 0.15523429217203
403 => 0.15348826573696
404 => 0.15503470513981
405 => 0.15596163454167
406 => 0.16037293466906
407 => 0.16703927945049
408 => 0.15971403353392
409 => 0.15652231898862
410 => 0.15850244074164
411 => 0.16377576590733
412 => 0.1717651234699
413 => 0.16703526299205
414 => 0.16913429475388
415 => 0.16959283981442
416 => 0.16610521580701
417 => 0.17189371714174
418 => 0.17499582203273
419 => 0.17817793976073
420 => 0.18094088342303
421 => 0.1769069319639
422 => 0.18122383826939
423 => 0.17774517382371
424 => 0.17462445219821
425 => 0.17462918504474
426 => 0.17267151078259
427 => 0.16887827021685
428 => 0.16817873845778
429 => 0.1718177910096
430 => 0.1747359665366
501 => 0.17497632145013
502 => 0.17659197336315
503 => 0.17754809952273
504 => 0.18691943567717
505 => 0.19068866460225
506 => 0.19529760638398
507 => 0.19709304895369
508 => 0.20249668738673
509 => 0.19813281048999
510 => 0.19718865827331
511 => 0.18408119895142
512 => 0.18622754468108
513 => 0.18966405128584
514 => 0.18413786567959
515 => 0.18764295849417
516 => 0.18833493806378
517 => 0.18395008800731
518 => 0.18629222588066
519 => 0.18007220208452
520 => 0.16717485897188
521 => 0.17190807557153
522 => 0.17539331617235
523 => 0.17041944810791
524 => 0.17933491409815
525 => 0.17412668291923
526 => 0.17247592367469
527 => 0.16603572332361
528 => 0.16907524998328
529 => 0.17318625331231
530 => 0.1706461312104
531 => 0.17591726597311
601 => 0.18338259855739
602 => 0.18870283912519
603 => 0.1891112611343
604 => 0.18569070287764
605 => 0.19117216931365
606 => 0.19121209581238
607 => 0.18502897928011
608 => 0.18124185483183
609 => 0.18038141218901
610 => 0.18253096661051
611 => 0.18514092250784
612 => 0.18925609552223
613 => 0.19174280838853
614 => 0.19822683669324
615 => 0.19998122884083
616 => 0.20190877391258
617 => 0.20448456856131
618 => 0.2075774704573
619 => 0.20081037718787
620 => 0.2010792464189
621 => 0.19477782286319
622 => 0.18804384807836
623 => 0.19315409553824
624 => 0.1998350643043
625 => 0.19830244268755
626 => 0.19812999144705
627 => 0.19842000659959
628 => 0.1972644599513
629 => 0.19203796528766
630 => 0.18941325238717
701 => 0.19279980166448
702 => 0.1945996018874
703 => 0.19739093507408
704 => 0.19704684434093
705 => 0.20423701886252
706 => 0.20703090326201
707 => 0.20631610807557
708 => 0.20644764759238
709 => 0.21150584184436
710 => 0.21713159414955
711 => 0.22240085356676
712 => 0.2277609705659
713 => 0.22129914031451
714 => 0.21801822142313
715 => 0.22140329223897
716 => 0.21960712601576
717 => 0.22992842991181
718 => 0.23064305459976
719 => 0.24096361214805
720 => 0.25075905021051
721 => 0.24460671106698
722 => 0.25040808977189
723 => 0.2566827538346
724 => 0.26878759883911
725 => 0.26471111289517
726 => 0.2615885885488
727 => 0.2586378181294
728 => 0.26477790295055
729 => 0.27267702398272
730 => 0.27437841899621
731 => 0.27713532890098
801 => 0.27423677523502
802 => 0.27772776386046
803 => 0.29005248772638
804 => 0.28672223854446
805 => 0.28199274934187
806 => 0.29172193515495
807 => 0.29524288967945
808 => 0.31995479247062
809 => 0.35115459054225
810 => 0.33823766927167
811 => 0.33021971941258
812 => 0.33210412781778
813 => 0.34349723789373
814 => 0.34715634325088
815 => 0.33720963352088
816 => 0.34072297955296
817 => 0.36008186161427
818 => 0.37046728073287
819 => 0.35636248662194
820 => 0.31744791907413
821 => 0.28156691058563
822 => 0.29108416977965
823 => 0.29000520794199
824 => 0.31080391164715
825 => 0.28664281320286
826 => 0.28704962413607
827 => 0.30827842300765
828 => 0.30261494342246
829 => 0.29344083181812
830 => 0.28163389175302
831 => 0.25980767103293
901 => 0.24047557867195
902 => 0.27839026370681
903 => 0.27675531354473
904 => 0.27438766342399
905 => 0.27965661256119
906 => 0.30524113395412
907 => 0.304651327927
908 => 0.30089928290413
909 => 0.30374517598497
910 => 0.29294193300136
911 => 0.2957261747035
912 => 0.28156122685057
913 => 0.28796437486057
914 => 0.29342114829492
915 => 0.29451667635077
916 => 0.29698495699967
917 => 0.27589376910202
918 => 0.28536309326332
919 => 0.2909254340524
920 => 0.26579457600765
921 => 0.29042867779072
922 => 0.27552661844438
923 => 0.27046863568081
924 => 0.2772785431334
925 => 0.27462471557627
926 => 0.27234311048064
927 => 0.27106993563432
928 => 0.27607038008544
929 => 0.27583710337498
930 => 0.26765540570849
1001 => 0.25698271463123
1002 => 0.2605648200759
1003 => 0.25926340758544
1004 => 0.25454692083443
1005 => 0.25772526343383
1006 => 0.24372945114847
1007 => 0.21965038355053
1008 => 0.23555775316752
1009 => 0.23494533674115
1010 => 0.2346365286081
1011 => 0.24659047722786
1012 => 0.24544138089259
1013 => 0.24335575979209
1014 => 0.25450861676736
1015 => 0.25043767394429
1016 => 0.26298336049022
1017 => 0.27124676105351
1018 => 0.26915089537765
1019 => 0.2769226635479
1020 => 0.26064734455051
1021 => 0.26605335266898
1022 => 0.2671675234498
1023 => 0.2543709922435
1024 => 0.24562938726416
1025 => 0.24504642187363
1026 => 0.22988968350683
1027 => 0.23798629080145
1028 => 0.24511097016035
1029 => 0.24169880164489
1030 => 0.24061861102853
1031 => 0.24613707062275
1101 => 0.24656590219563
1102 => 0.23678849688841
1103 => 0.23882152906194
1104 => 0.24729961118904
1105 => 0.23860790314486
1106 => 0.22172133419747
1107 => 0.21753323162344
1108 => 0.21697446153801
1109 => 0.20561599519463
1110 => 0.21781310066362
1111 => 0.2124887372643
1112 => 0.22930833744709
1113 => 0.21970107202801
1114 => 0.21928692201759
1115 => 0.21866087353424
1116 => 0.20888417234016
1117 => 0.21102464855989
1118 => 0.218139917518
1119 => 0.2206787256415
1120 => 0.22041390715438
1121 => 0.21810504881839
1122 => 0.21916203234134
1123 => 0.21575712013645
1124 => 0.21455477476978
1125 => 0.21075984206143
1126 => 0.20518233935708
1127 => 0.20595792531693
1128 => 0.19490743302664
1129 => 0.18888653833288
1130 => 0.18722003403576
1201 => 0.18499151484164
1202 => 0.1874717512086
1203 => 0.1948761283704
1204 => 0.18594487858702
1205 => 0.17063287728773
1206 => 0.1715531546562
1207 => 0.17362074467035
1208 => 0.16976780435747
1209 => 0.16612131970409
1210 => 0.16929164226155
1211 => 0.1628037454565
1212 => 0.17440477600294
1213 => 0.17409100063817
1214 => 0.17841514742297
1215 => 0.18111912514793
1216 => 0.17488733191508
1217 => 0.17332005276958
1218 => 0.17421284619973
1219 => 0.15945695952141
1220 => 0.17720927667399
1221 => 0.1773627994499
1222 => 0.17604824423613
1223 => 0.18550080507857
1224 => 0.20544865678379
1225 => 0.19794347257181
1226 => 0.19503723839954
1227 => 0.18951248511361
1228 => 0.19687389083972
1229 => 0.19630864973578
1230 => 0.1937524151024
1231 => 0.1922063964202
]
'min_raw' => 0.14438184461389
'max_raw' => 0.37046728073287
'avg_raw' => 0.25742456267338
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.144381'
'max' => '$0.370467'
'avg' => '$0.257424'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.088785562243833
'max_diff' => 0.21533641246142
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0045319811209917
]
1 => [
'year' => 2028
'avg' => 0.0077781952471417
]
2 => [
'year' => 2029
'avg' => 0.021248627531894
]
3 => [
'year' => 2030
'avg' => 0.016393284496451
]
4 => [
'year' => 2031
'avg' => 0.016100236972896
]
5 => [
'year' => 2032
'avg' => 0.028228782344539
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0045319811209917
'min' => '$0.004531'
'max_raw' => 0.028228782344539
'max' => '$0.028228'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.028228782344539
]
1 => [
'year' => 2033
'avg' => 0.072607330921611
]
2 => [
'year' => 2034
'avg' => 0.046022015683163
]
3 => [
'year' => 2035
'avg' => 0.054283073036769
]
4 => [
'year' => 2036
'avg' => 0.10536357532076
]
5 => [
'year' => 2037
'avg' => 0.25742456267338
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.028228782344539
'min' => '$0.028228'
'max_raw' => 0.25742456267338
'max' => '$0.257424'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.25742456267338
]
]
]
]
'prediction_2025_max_price' => '$0.007748'
'last_price' => 0.0075135
'sma_50day_nextmonth' => '$0.006913'
'sma_200day_nextmonth' => '$0.033826'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'augmenter'
'sma_200day_date_nextmonth' => '4 févr. 2026'
'sma_50day_date_nextmonth' => '4 févr. 2026'
'daily_sma3' => '$0.007321'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.0072045'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.0073059'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.006952'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.00763'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.011785'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.04680065'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.007364'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.007291'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.0072063'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.007269'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.00914'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.01915'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.047171'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.027152'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.084797'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.19148'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.222591'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.007413'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.00767'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.011424'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.029523'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.08339'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.164683'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.395984'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '51.24'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 81.64
'stoch_rsi_14_action' => 'NEUTRAL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.007336'
'vwma_10_action' => 'BUY'
'hma_9' => '0.007251'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 82.17
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 97.12
'cci_20_action' => 'NEUTRAL'
'adx_14' => 12.57
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '-0.000277'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -17.83
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 63.44
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.000780'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 16
'buy_signals' => 17
'sell_pct' => 48.48
'buy_pct' => 51.52
'overall_action' => 'bullish'
'overall_action_label' => 'Haussier'
'overall_action_dir' => 1
'last_updated' => 1767694698
'last_updated_date' => '6 janvier 2026'
]
Prévision du prix de BakeryToken pour 2026
La prévision du prix de BakeryToken pour 2026 suggère que le prix moyen pourrait varier entre $0.002595 à la baisse et $0.007748 à la hausse. Sur le marché des cryptomonnaies, comparé au prix moyen d'aujourd'hui, BakeryToken pourrait potentiellement gagner 3.13% d'ici 2026 si BAKE atteint l'objectif de prix prévu.
Prévision du prix de BakeryToken de 2027 à 2032
La prévision du prix de BAKE pour 2027-2032 se situe actuellement dans une fourchette de prix comprise entre $0.004531 à la baisse et $0.028228 à la hausse. Compte tenu de la volatilité des prix sur le marché, si BakeryToken atteint l'objectif de prix le plus élevé, il pourrait gagner 275.71% d'ici 2032 par rapport au prix actuel.
| Prévision du Prix de BakeryToken | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2027 | $0.002499 | $0.004531 | $0.006564 |
| 2028 | $0.0045099 | $0.007778 | $0.011046 |
| 2029 | $0.0099071 | $0.021248 | $0.03259 |
| 2030 | $0.008425 | $0.016393 | $0.02436 |
| 2031 | $0.009961 | $0.01610023 | $0.022238 |
| 2032 | $0.0152057 | $0.028228 | $0.041251 |
Prévision du prix de BakeryToken de 2032 à 2037
La prévision du prix de BakeryToken pour 2032-2037 est actuellement estimée entre $0.028228 à la baisse et $0.257424 à la hausse. Par rapport au prix actuel, BakeryToken pourrait potentiellement gagner 3326.16% d'ici 2037 s'il atteint l'objectif de prix le plus élevé. Veuillez noter que ces informations sont à titre général seulement et ne doivent pas être considérées comme un conseil en investissement à long terme.
| Prévision du Prix de BakeryToken | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2032 | $0.0152057 | $0.028228 | $0.041251 |
| 2033 | $0.035334 | $0.0726073 | $0.109879 |
| 2034 | $0.0284075 | $0.046022 | $0.063636 |
| 2035 | $0.033586 | $0.054283 | $0.074979 |
| 2036 | $0.055596 | $0.105363 | $0.15513 |
| 2037 | $0.144381 | $0.257424 | $0.370467 |
BakeryToken Histogramme des prix potentiels
Prévision du prix de BakeryToken basée sur l'analyse technique
Au 6 janvier 2026, le sentiment global de prévision du prix pour BakeryToken est Haussier, avec 17 indicateurs techniques montrant des signaux haussiers et 16 indiquant des signaux baissiers. La prévision du prix de BAKE a été mise à jour pour la dernière fois le 6 janvier 2026.
Moyennes Mobiles Simples sur 50 et 200 jours de BakeryToken et Indice de Force Relative sur 14 jours - RSI (14)
Selon nos indicateurs techniques, le SMA sur 200 jours de BakeryToken devrait augmenter au cours du prochain mois, atteignant $0.033826 d'ici le 4 févr. 2026. Le SMA à court terme sur 50 jours pour BakeryToken devrait atteindre $0.006913 d'ici le 4 févr. 2026.
Le Relative Strength Index (RSI), un oscillateur de momentum, est un outil couramment utilisé pour identifier si une cryptomonnaie est survendue (en dessous de 30) ou surachetée (au-dessus de 70). Actuellement, le RSI est à 51.24, ce qui suggère que le marché de BAKE est dans un état NEUTRAL.
Moyennes Mobiles et Oscillateurs Populaires de BAKE pour le Samedi 19 Octobre 2024
Les moyennes mobiles (MA) sont des indicateurs largement utilisés sur les marchés financiers, conçus pour lisser les mouvements de prix sur une période donnée. En tant qu'indicateurs retardés, ils sont basés sur des données historiques de prix. Le tableau ci-dessous met en évidence deux types : la moyenne mobile simple (SMA) et la moyenne mobile exponentielle (EMA).
Moyenne Mobile Simple Quotidienne (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 3 | $0.007321 | BUY |
| SMA 5 | $0.0072045 | BUY |
| SMA 10 | $0.0073059 | BUY |
| SMA 21 | $0.006952 | BUY |
| SMA 50 | $0.00763 | SELL |
| SMA 100 | $0.011785 | SELL |
| SMA 200 | $0.04680065 | SELL |
Moyenne Mobile Exponentielle Quotidienne (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 3 | $0.007364 | BUY |
| EMA 5 | $0.007291 | BUY |
| EMA 10 | $0.0072063 | BUY |
| EMA 21 | $0.007269 | BUY |
| EMA 50 | $0.00914 | SELL |
| EMA 100 | $0.01915 | SELL |
| EMA 200 | $0.047171 | SELL |
Moyenne Mobile Simple Hebdomadaire (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 21 | $0.027152 | SELL |
| SMA 50 | $0.084797 | SELL |
| SMA 100 | $0.19148 | SELL |
| SMA 200 | $0.222591 | SELL |
Moyenne Mobile Exponentielle Hebdomadaire (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 21 | $0.029523 | SELL |
| EMA 50 | $0.08339 | SELL |
| EMA 100 | $0.164683 | SELL |
| EMA 200 | $0.395984 | SELL |
Oscillateurs de BakeryToken
Un oscillateur est un outil d'analyse technique qui établit des limites hautes et basses entre deux extrêmes, créant un indicateur de tendance qui fluctue à l'intérieur de ces limites. Les traders utilisent cet indicateur pour identifier les conditions de surachat ou de survente à court terme.
| Période | Valeur | Action |
|---|---|---|
| RSI (14) | 51.24 | NEUTRAL |
| Stoch RSI (14) | 81.64 | NEUTRAL |
| Stochastique Rapide (14) | 82.17 | SELL |
| Indice de Canal des Matières Premières (20) | 97.12 | NEUTRAL |
| Indice Directionnel Moyen (14) | 12.57 | NEUTRAL |
| Oscillateur Impressionnant (5, 34) | -0.000277 | NEUTRAL |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Plage de Pourcentage de Williams (14) | -17.83 | SELL |
| Oscillateur Ultime (7, 14, 28) | 63.44 | NEUTRAL |
| VWMA (10) | 0.007336 | BUY |
| Moyenne Mobile de Hull (9) | 0.007251 | BUY |
| Nuage Ichimoku B/L (9, 26, 52, 26) | -0.000780 | SELL |
Prévision du cours de BakeryToken basée sur les flux monétaires mondiaux
Définitions des flux monétaires mondiaux utilisés pour la prédiction du cours de BakeryToken
M0 : le total de toutes les devises physiques, plus les comptes à la banque centrale qui peuvent être échangés contre des devises physiques.
M1 : M0 plus le montant des comptes à vue, y compris les comptes de "chèques" et les comptes "courants".
M2 : M1 plus la plupart des comptes d'épargne, comptes du marché monétaire et comptes de certificats de dépôt (CD) de moins de 100 000 $.
Prédictions du cours de BakeryToken par des sociétés Internet ou des niches technologiques
| Comparaison | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Action Facebook | $0.010557 | $0.014835 | $0.020846 | $0.029292 | $0.04116 | $0.057837 |
| Action Amazon.com | $0.015677 | $0.032711 | $0.068255 | $0.142418 | $0.297163 | $0.62005 |
| Action Apple | $0.010657 | $0.015116 | $0.021441 | $0.030413 | $0.043139 | $0.061189 |
| Action Netflix | $0.011855 | $0.0187055 | $0.029514 | $0.046569 | $0.073478 | $0.115937 |
| Action Google | $0.009729 | $0.01260024 | $0.016317 | $0.02113 | $0.027364 | $0.035436 |
| Action Tesla | $0.017032 | $0.038611 | $0.087529 | $0.198422 | $0.4498083 | $1.01 |
| Action Kodak | $0.005634 | $0.004225 | $0.003168 | $0.002375 | $0.001781 | $0.001336 |
| Action Nokia | $0.004977 | $0.003297 | $0.002184 | $0.001447 | $0.000958 | $0.000635 |
Ce calcul montre la valeur potentielle des cryptomonnaies si l'on suppose que leur capitalisation se comportera comme celle de certaines sociétés Internet ou niches technologiques. En extrapolant les données, vous pourrez obtenir une potentielle image des cours futurs pour 2024, 2025, 2026, 2027, 2028, 2029 et 2030.
Aperçu des prévisions relatives à BakeryToken
Vous vous posez peut-être des questions telles que : "Devrais-je investir dans BakeryToken maintenant ?", "Devrais-je acheter BAKE aujourd'hui ?", " BakeryToken sera-t-il un bon ou un mauvais investissement à court ou à long terme ?".
Nous mettons régulièrement à jour les prévisions de BakeryToken/BakerySwap avec de nouvelles valeurs. Regardez nos prévisions similaires. Nous faisons une prévision des cours futurs pour une grande quantité de devises numériques comme BakeryToken en utilisant des méthodes d'analyse technique.
Si vous souhaitez trouver des cryptomonnaies ayant un bon rendement, vous devriez consulter un maximum d'informations disponibles à propos de BakeryToken afin de prendre une décision responsable concernant cet investissement.
Le cours de BakeryToken est de $0.007513 USD actuellement, mais ce cours peut subir une hausse ou une baisse, ce qui pourrait causer la perte de votre investissement, car les cryptomonnaies sont des actifs à haut risque.
Prévision à court terme de BakeryToken
basée sur l'historique des cours sur 4 heures
Prévision à long terme de BakeryToken
basée sur l'historique des cours sur 1 mois
Prévision du cours de BakeryToken basée sur le modèle de croissance du Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si BakeryToken présente 1 % de la précédente croissance annuelle moyenne du Bitcoin | $0.0077088 | $0.0079091 | $0.008114 | $0.008325 |
| Si BakeryToken présente 2 % de la précédente croissance annuelle moyenne du Bitcoin | $0.0079041 | $0.008315 | $0.008747 | $0.009202 |
| Si BakeryToken présente 5 % de la précédente croissance annuelle moyenne du Bitcoin | $0.00849 | $0.009593 | $0.01084 | $0.012249 |
| Si BakeryToken présente 10 % de la précédente croissance annuelle moyenne du Bitcoin | $0.009466 | $0.011927 | $0.015027 | $0.018933 |
| Si BakeryToken présente 20 % de la précédente croissance annuelle moyenne du Bitcoin | $0.011419 | $0.017356 | $0.026378 | $0.040092 |
| Si BakeryToken présente 50 % de la précédente croissance annuelle moyenne du Bitcoin | $0.017278 | $0.039734 | $0.091376 | $0.210134 |
| Si BakeryToken présente 100 % de la précédente croissance annuelle moyenne du Bitcoin | $0.027043 | $0.097338 | $0.350351 | $1.26 |
Boîte à questions
Est-ce que BAKE est un bon investissement ?
La décision d'acquérir BakeryToken dépend entièrement de votre tolérance individuelle au risque. Comme vous pouvez le discerner, la valeur de BakeryToken a connu une hausse de 2.6788% au cours des 24 heures précédentes, et BakeryToken a enregistré une déclin de sur une période de 30 jours précédents. Par conséquent, la détermination de si investir ou non dans BakeryToken dépendra de la mesure dans laquelle cet investissement s'aligne avec vos aspirations de trading.
Est-ce que BakeryToken peut monter ?
Il semble que la valeur moyenne de BakeryToken pourrait potentiellement s'envoler jusqu'à $0.007748 pour la fin de cette année. En regardant les perspectives de BakeryToken sur une période de cinq ans plus longue, la monnaie numérique pourrait potentiellement croître jusqu'à $0.02436. Cependant, compte tenu de l'imprévisibilité du marché, il est essentiel de mener des recherches approfondies avant d'investir des fonds dans un projet, un réseau ou un actif particulier.
Quel sera le prix de BakeryToken la semaine prochaine ?
Basé sur notre nouveau pronostic expérimental de BakeryToken, le prix de BakeryToken va augmenter de 0.86% durant la prochaine semaine et atteindre $0.007577 d'ici 13 janvier 2026.
Quel sera le prix de BakeryToken le mois prochain ?
Basé sur notre nouveau pronostic expérimental de BakeryToken, le prix de BakeryToken va diminuer de -11.62% durant le prochain mois et atteindre $0.00664 d'ici 5 février 2026.
Jusqu'où le prix de BakeryToken peut-il monter cette année en 2026 ?
Selon notre prédiction la plus récente sur la valeur de BakeryToken en 2026, BAKE devrait fluctuer dans la fourchette de $0.002595 et $0.007748. Cependant, il est crucial de garder à l'esprit que le marché des cryptomonnaies est exceptionnellement instable, et cette prévision de prix de BakeryToken ne prend pas en compte les fluctuations de prix soudaines et extrêmes.
Où sera BakeryToken dans 5 ans ?
L'avenir de BakeryToken semble suivre une tendance haussière, avec un prix maximum de $0.02436 prévue après une période de cinq ans. Selon la prévision de BakeryToken pour 2030, la valeur de BakeryToken pourrait potentiellement atteindre son point le plus élevé d'environ $0.02436, tandis que son point le plus bas devrait être autour de $0.008425.
Combien vaudra BakeryToken en 2026 ?
Basé sur notre nouvelle simulation expérimentale de prédiction de prix de BakeryToken, il est attendu que la valeur de BAKE en 2026 augmente de 3.13% jusqu'à $0.007748 si le meilleur scénario se produit. Le prix sera entre $0.007748 et $0.002595 durant 2026.
Combien vaudra BakeryToken en 2027 ?
Selon notre dernière simulation expérimentale pour la prédiction de prix de BakeryToken, le valeur de BAKE pourrait diminuer de -12.62% jusqu'à $0.006564 en 2027, en supposant les conditions les plus favorables. Il est prévu que le prix fluctue entre $0.006564 et $0.002499 tout au long de l'année.
Combien vaudra BakeryToken en 2028 ?
Notre nouveau modèle expérimental de prédiction de prix de BakeryToken suggère que la valeur de BAKE en 2028 pourrait augmenter de 47.02%, atteignant $0.011046 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.011046 et $0.0045099 durant l'année.
Combien vaudra BakeryToken en 2029 ?
Basé sur notre modèle de prévision expérimental, la valeur de BakeryToken pourrait connaître un 333.75% croissance en 2029, atteignant potentiellement $0.03259 sous des conditions optimales. Le range de prix prévu pour 2029 se situe entre $0.03259 et $0.0099071.
Combien vaudra BakeryToken en 2030 ?
En utilisant notre nouvelle simulation expérimentale pour les prédictions de prix de BakeryToken, il est prévu que la valeur de BAKE en 2030 augmente de 224.23%, atteignant $0.02436 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.02436 et $0.008425 au cours de 2030.
Combien vaudra BakeryToken en 2031 ?
Notre simulation expérimentale indique que le prix de BakeryToken pourrait augmenter de 195.98% en 2031, atteignant potentiellement $0.022238 dans des conditions idéales. Il est probable que le prix fluctue entre $0.022238 et $0.009961 durant l'année.
Combien vaudra BakeryToken en 2032 ?
Basé sur les résultats de notre dernière prédiction expérimentale de prix de BakeryToken, BAKE pourrait connaître une 449.04% hausse en valeur, atteignant $0.041251 si le scénario le plus positif se réalise en 2032. Il est prévu que le prix reste dans une fourchette de $0.041251 et $0.0152057 tout au long de l'année.
Combien vaudra BakeryToken en 2033 ?
Selon notre prédiction expérimentale de prix de BakeryToken, la valeur de BAKE est anticipée à augmenter de 1362.43% en 2033, avec le prix potentiel le plus élevé étant $0.109879. Tout au long de l'année, le prix de BAKE pourrait osciller entre $0.109879 et $0.035334.
Combien vaudra BakeryToken en 2034 ?
Les résultats de notre nouvelle simulation de prédiction de prix de BakeryToken suggèrent que BAKE pourrait augmenter de 746.96% en 2034, atteignant potentiellement $0.063636 dans les meilleures circonstances. La fourchette de prix prévue pour l'année est entre $0.063636 et $0.0284075.
Combien vaudra BakeryToken en 2035 ?
Basé sur notre prédiction expérimentale pour le prix de BakeryToken, BAKE pourrait augmenter de 897.93%, avec la valeur potentiellement atteignant $0.074979 en 2035. La fourchette de prix attendue pour l'année se situe entre $0.074979 et $0.033586.
Combien vaudra BakeryToken en 2036 ?
Notre récente simulation de prédiction de prix de BakeryToken suggère que la valeur de BAKE pourrait augmenter de 1964.7% en 2036, pouvant atteindre $0.15513 si les conditions sont optimales. La fourchette de prix attendue pour 2036 est entre $0.15513 et $0.055596.
Combien vaudra BakeryToken en 2037 ?
Selon la simulation expérimentale, la valeur de BakeryToken pourrait augmenter de 4830.69% en 2037, avec un maximum de $0.370467 sous des conditions favorables. Il est prévu que le prix chute entre $0.370467 et $0.144381 au cours de l'année.
Prévisions liées
Prévision du cours de Kinesis Gold
Prévision du cours de LTO NetworkPrévision du cours de GameFi
Prévision du cours de HUNT Platform
Prévision du cours de Puff The Dragon
Prévision du cours de Clearpool
Prévision du cours de MATH
Prévision du cours de Stafi
Prévision du cours de Pangolin
Prévision du cours de StakeWise Staked ETH
Prévision du cours de BENQI
Prévision du cours de Velo
Prévision du cours de Dimitra
Prévision du cours de IX Swap
Prévision du cours de BitMart Token
Prévision du cours de LON
Prévision du cours de Moon Tropica
Prévision du cours de Kinesis Silver
Prévision du cours de Perpetual Protocol
Prévision du cours de USDX
Prévision du cours de Metadium
Prévision du cours de ARPA
Prévision du cours de Storj
Prévision du cours de Ozone Chain
Prévision du cours de Humanscape
Comment lire et prédire les mouvements de prix de BakeryToken ?
Les traders de BakeryToken utilisent des indicateurs et des modèles graphiques pour prédire la direction du marché. Ils identifient également des niveaux clés de support et de résistance pour évaluer quand une tendance baissière pourrait ralentir ou une tendance haussière pourrait s'arrêter.
Indicateurs de prédiction du prix de BakeryToken
Les moyennes mobiles sont des outils populaires pour la prédiction du prix de BakeryToken. Une moyenne mobile simple (SMA) calcule le prix de clôture moyen de BAKE sur une période spécifique, comme une SMA de 12 jours. Une moyenne mobile exponentielle (EMA) donne plus de poids aux prix récents, réagissant plus rapidement aux changements de prix.
Les moyennes mobiles couramment utilisées sur le marché des cryptomonnaies incluent les moyennes sur 50 jours, 100 jours et 200 jours, qui aident à identifier les niveaux clés de résistance et de support. Un mouvement de prix de BAKE au-dessus de ces moyennes est considéré comme haussier, tandis qu'une chute en dessous indique une faiblesse.
Les traders utilisent également le RSI et les niveaux de retracement de Fibonacci pour évaluer la direction future de BAKE.
Comment lire les graphiques de BakeryToken et prédire les mouvements de prix ?
La plupart des traders préfèrent les graphiques en chandeliers aux simples graphiques linéaires parce qu'ils fournissent des informations plus détaillées. Les chandeliers peuvent représenter l'action des prix de BakeryToken dans différentes périodes, comme 5 minutes pour les tendances à court terme et hebdomadaire pour les tendances à long terme. Les options populaires incluent les graphiques de 1 heure, 4 heures et 1 jour.
Par exemple, un graphique en chandeliers de 1 heure montre les prix d'ouverture, de clôture, les plus hauts et les plus bas de BAKE au sein de chaque heure. La couleur du chandelier est cruciale : le vert indique que le prix a clôturé plus haut qu'il n'a ouvert, tandis que le rouge signifie le contraire. Certains graphiques utilisent des chandeliers creux et pleins pour transmettre la même information.
Qu'est-ce qui affecte le prix de BakeryToken ?
L'action du prix de BakeryToken est déterminée par l'offre et la demande, influencée par des facteurs tels que les réductions de récompenses de bloc, les hard forks et les mises à jour de protocole. Les événements du monde réel, tels que les réglementations, l'adoption par les entreprises et les gouvernements et les piratages d'échanges de cryptomonnaies, impactent également le prix de BAKE. La capitalisation boursière de BakeryToken peut changer rapidement.
Les traders surveillent souvent l'activité des « baleines » de BAKE, de grands détenteurs de BakeryToken, car leurs actions peuvent influencer significativement les mouvements de prix sur le marché relativement petit de BakeryToken.
Modèles de prédiction de prix haussiers et baissiers
Les traders identifient souvent des modèles de chandeliers pour obtenir un avantage dans les prédictions de prix des cryptomonnaies. Certaines formations indiquent des tendances haussières, tandis que d'autres suggèrent des mouvements baissiers.
Modèles de chandeliers haussiers couramment suivis :
- Marteau
- Englobante haussière
- Ligne pénétrante
- Étoile du matin
- Trois soldats blancs
Modèles de chandeliers baissiers courants :
- Harami baissier
- Nuage sombre
- Étoile du soir
- Étoile filante
- Pendu


