Prédiction du prix de BakerySwap jusqu'à $0.007753 d'ici 2026
| Année | Prix min. | Prix max. |
|---|---|---|
| 2026 | $0.002597 | $0.007753 |
| 2027 | $0.0025005 | $0.006568 |
| 2028 | $0.004512 | $0.011052 |
| 2029 | $0.009913 | $0.0326094 |
| 2030 | $0.00843 | $0.024375 |
| 2031 | $0.009967 | $0.022252 |
| 2032 | $0.015214 | $0.041276 |
| 2033 | $0.035355 | $0.109945 |
| 2034 | $0.028424 | $0.063674 |
| 2035 | $0.0336065 | $0.075024 |
Calculateur de profit d’investissement
Si vous ouvrez une position short de $10,000.00 sur BakerySwap aujourd’hui et la fermez le Apr 06, 2026, notre prévision indique que vous pourriez gagner environ $3,954.49, soit un rendement de 39.54% sur les 90 prochains jours.
Prévision du prix à long terme de BakeryToken pour 2027, 2028, 2029, 2030, 2031, 2032 et 2037
[
'name' => 'BakerySwap'
'name_with_ticker' => 'BakerySwap <small>BAKE</small>'
'name_lang' => 'BakeryToken'
'name_lang_with_ticker' => 'BakeryToken <small>BAKE</small>'
'name_with_lang' => 'BakeryToken/BakerySwap'
'name_with_lang_with_ticker' => 'BakeryToken/BakerySwap <small>BAKE</small>'
'image' => '/uploads/coins/bakerytoken.jpg?1717208119'
'price_for_sd' => 0.007517
'ticker' => 'BAKE'
'marketcap' => '$2.17M'
'low24h' => '$0.00709'
'high24h' => '$0.007522'
'volume24h' => '$250.17K'
'current_supply' => '288.71M'
'max_supply' => '289.77M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.007517'
'change_24h_pct' => '3.0129%'
'ath_price' => '$8.38'
'ath_days' => 1710
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '2 mai 2021'
'ath_pct' => '-99.91%'
'fdv' => '$2.18M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.370687'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.007582'
'next_week_prediction_price_date' => '13 janvier 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.006644'
'next_month_prediction_price_date' => '5 février 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.002597'
'current_year_max_price_prediction' => '$0.007753'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.00843'
'grand_prediction_max_price' => '$0.024375'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0076604315770478
107 => 0.0076890328478198
108 => 0.0077534729712863
109 => 0.0072028391716864
110 => 0.0074500575819477
111 => 0.0075952752367438
112 => 0.0069391765893116
113 => 0.0075823062760021
114 => 0.007193253862285
115 => 0.0070612036296982
116 => 0.007238991871581
117 => 0.0071697076208146
118 => 0.0071101410905133
119 => 0.0070769019431222
120 => 0.0072074500061887
121 => 0.007201359783008
122 => 0.0069877578135441
123 => 0.0067091227519085
124 => 0.0068026418244775
125 => 0.0067686654686672
126 => 0.0066455307721735
127 => 0.0067285086902703
128 => 0.0063631159331354
129 => 0.0057344766859475
130 => 0.0061497750283807
131 => 0.0061337864939547
201 => 0.0061257243498748
202 => 0.0064378095762102
203 => 0.0064078097827293
204 => 0.0063533598638025
205 => 0.0066445307567123
206 => 0.006538249463999
207 => 0.0068657833651193
208 => 0.0070815183759616
209 => 0.0070268009989155
210 => 0.0072297008193505
211 => 0.0068047963150275
212 => 0.0069459325471538
213 => 0.0069750205289887
214 => 0.006640937753091
215 => 0.0064127181199565
216 => 0.0063974984723207
217 => 0.006001797079068
218 => 0.0062131775693535
219 => 0.0063991836532858
220 => 0.0063101011737374
221 => 0.0062819003219758
222 => 0.0064259723576075
223 => 0.0064371679886696
224 => 0.0061819064139935
225 => 0.0062349833784514
226 => 0.0064563231435522
227 => 0.0062294061842702
228 => 0.0057885435990603
301 => 0.0056792035825261
302 => 0.0056646156087841
303 => 0.0053680768120773
304 => 0.0056865102052605
305 => 0.0055475054956517
306 => 0.0059866197077739
307 => 0.0057358000248264
308 => 0.0057249876896015
309 => 0.0057086432590843
310 => 0.0054534000668954
311 => 0.0055092821044337
312 => 0.0056950425082856
313 => 0.0057613239131207
314 => 0.0057544102195688
315 => 0.0056941321809655
316 => 0.0057217271583646
317 => 0.0056328341214346
318 => 0.005601444139946
319 => 0.0055023687238735
320 => 0.0053567552325292
321 => 0.0053770036816
322 => 0.0050885052534043
323 => 0.0049313159979528
324 => 0.0048878080837649
325 => 0.004829627482592
326 => 0.0048943797374801
327 => 0.0050876879736051
328 => 0.0048545172282082
329 => 0.0044547623402513
330 => 0.0044787882901667
331 => 0.004532767466258
401 => 0.0044321776287198
402 => 0.004336977789355
403 => 0.0044197463258755
404 => 0.0042503649099726
405 => 0.0045532364011406
406 => 0.004545044576092
407 => 0.0046579363385521
408 => 0.0047285298743905
409 => 0.0045658346292115
410 => 0.0045249172150238
411 => 0.0045482256337379
412 => 0.0041629893925372
413 => 0.0046264543188781
414 => 0.0046304623828069
415 => 0.0045961429060824
416 => 0.0048429236714847
417 => 0.0053637080593344
418 => 0.0051677680241219
419 => 0.0050918941201687
420 => 0.0049476577732901
421 => 0.0051398441415989
422 => 0.0051250872270872
423 => 0.0050583508632715
424 => 0.0050179885022056
425 => 0.005092357390047
426 => 0.005008773373998
427 => 0.0049937593879805
428 => 0.004902790968092
429 => 0.0048703193809911
430 => 0.0048462787106328
501 => 0.0048198122947558
502 => 0.0048781906131606
503 => 0.004745897663348
504 => 0.0045863653347117
505 => 0.0045731019477493
506 => 0.0046097233252814
507 => 0.0045935210918643
508 => 0.0045730243776891
509 => 0.0045338905683808
510 => 0.0045222804031205
511 => 0.0045600078077649
512 => 0.0045174157675657
513 => 0.0045802626429881
514 => 0.0045631717703495
515 => 0.0044677035451003
516 => 0.0043487147895759
517 => 0.0043476555400643
518 => 0.0043220196078673
519 => 0.0042893683938261
520 => 0.0042802855730384
521 => 0.00441277579059
522 => 0.0046870265758233
523 => 0.0046331845844169
524 => 0.0046720909411572
525 => 0.0048634717092831
526 => 0.0049243059004499
527 => 0.0048811272324965
528 => 0.0048220216086577
529 => 0.0048246219561405
530 => 0.0050266037652868
531 => 0.0050392011229673
601 => 0.0050710305817644
602 => 0.0051119404313226
603 => 0.0048880943567755
604 => 0.0048140788261595
605 => 0.0047790061615283
606 => 0.0046709959292937
607 => 0.0047874757046612
608 => 0.0047196079277159
609 => 0.0047287656095192
610 => 0.0047228016572311
611 => 0.0047260583784611
612 => 0.0045531517423863
613 => 0.0046161498328667
614 => 0.0045114032887624
615 => 0.0043711594245581
616 => 0.0043706892779495
617 => 0.0044050137650301
618 => 0.0043845962169972
619 => 0.0043296531202239
620 => 0.0043374575277965
621 => 0.0042690827052774
622 => 0.0043457594692164
623 => 0.0043479582844435
624 => 0.0043184335537154
625 => 0.0044365646879179
626 => 0.0044849631099865
627 => 0.0044655292997403
628 => 0.0044835995820531
629 => 0.0046354219622419
630 => 0.0046601756346875
701 => 0.004671169580852
702 => 0.0046564391494103
703 => 0.0044863746164586
704 => 0.0044939177016653
705 => 0.0044385715473346
706 => 0.0043918098791593
707 => 0.0043936801006537
708 => 0.0044177216766871
709 => 0.0045227126492451
710 => 0.0047436599614376
711 => 0.0047520447504249
712 => 0.0047622073592791
713 => 0.0047208709217511
714 => 0.0047084034566563
715 => 0.0047248512612422
716 => 0.0048078274548439
717 => 0.0050212647526042
718 => 0.0049458217565779
719 => 0.0048844854264683
720 => 0.0049382939241303
721 => 0.0049300105276802
722 => 0.0048600903255256
723 => 0.0048581278983276
724 => 0.0047239286755522
725 => 0.0046743182784606
726 => 0.004632860117377
727 => 0.0045875888877664
728 => 0.0045607505853479
729 => 0.0046019864156531
730 => 0.0046114175379319
731 => 0.0045212546742907
801 => 0.0045089658091396
802 => 0.0045825947498896
803 => 0.0045501933982291
804 => 0.0045835189919268
805 => 0.0045912508155263
806 => 0.0045900058138477
807 => 0.0045561750814427
808 => 0.0045777377814307
809 => 0.0045267355678087
810 => 0.0044712783207797
811 => 0.0044359000522837
812 => 0.0044050278207746
813 => 0.0044221575291205
814 => 0.0043610932466286
815 => 0.0043415575536783
816 => 0.0045704328238509
817 => 0.0047395054467511
818 => 0.0047370470638541
819 => 0.0047220822902128
820 => 0.0046998476720755
821 => 0.0048062008540362
822 => 0.0047691495320401
823 => 0.0047961074645338
824 => 0.0048029693897743
825 => 0.0048237383707977
826 => 0.0048311614963594
827 => 0.0048087236552199
828 => 0.0047334195198046
829 => 0.0045457687740519
830 => 0.0044584168453505
831 => 0.0044295892539175
901 => 0.0044306370821147
902 => 0.004401733302725
903 => 0.0044102467611318
904 => 0.004398772669323
905 => 0.0043770435153181
906 => 0.0044208158150918
907 => 0.0044258601648736
908 => 0.0044156431870663
909 => 0.0044180496551999
910 => 0.0043334574426845
911 => 0.0043398888048774
912 => 0.0043040781629292
913 => 0.0042973640992677
914 => 0.004206837914812
915 => 0.0040464576570685
916 => 0.0041353238883467
917 => 0.0040279859774457
918 => 0.0039873354841527
919 => 0.0041797685969529
920 => 0.0041604536496915
921 => 0.0041273948559857
922 => 0.0040784940100385
923 => 0.0040603562105998
924 => 0.00395015668294
925 => 0.0039436455069543
926 => 0.0039982633685
927 => 0.0039730591046825
928 => 0.0039376627726816
929 => 0.003809460846243
930 => 0.0036653194347269
1001 => 0.0036696701578999
1002 => 0.0037155188590569
1003 => 0.0038488301412106
1004 => 0.0037967431169645
1005 => 0.0037589533832443
1006 => 0.0037518765020737
1007 => 0.0038404584863778
1008 => 0.0039658205526674
1009 => 0.0040246376293524
1010 => 0.0039663516926588
1011 => 0.0038993959469228
1012 => 0.0039034712329227
1013 => 0.0039305822849197
1014 => 0.003933431273155
1015 => 0.0038898499658428
1016 => 0.0039021178485722
1017 => 0.0038834818129075
1018 => 0.0037691124964326
1019 => 0.0037670439181666
1020 => 0.0037389758434493
1021 => 0.0037381259533019
1022 => 0.0036903751562984
1023 => 0.0036836944897119
1024 => 0.0035888823839953
1025 => 0.0036512879990955
1026 => 0.0036094295889282
1027 => 0.0035463390914052
1028 => 0.003535462265852
1029 => 0.0035351352953417
1030 => 0.0035999151295207
1031 => 0.0036505310090164
1101 => 0.0036101577338942
1102 => 0.0036009655217519
1103 => 0.0036991142986435
1104 => 0.0036866239721381
1105 => 0.0036758074299383
1106 => 0.0039545957546144
1107 => 0.003733913041509
1108 => 0.0036376827824662
1109 => 0.0035185795632702
1110 => 0.003557360172011
1111 => 0.0035655318160783
1112 => 0.0032791100438807
1113 => 0.0031629087665717
1114 => 0.003123032867152
1115 => 0.0031000837232736
1116 => 0.0031105419363162
1117 => 0.0030059471576877
1118 => 0.003076236578764
1119 => 0.0029856663416483
1120 => 0.0029704819466548
1121 => 0.0031324327501171
1122 => 0.003154967258316
1123 => 0.0030588280454165
1124 => 0.0031205649836228
1125 => 0.0030981783116216
1126 => 0.0029872189084113
1127 => 0.0029829810753708
1128 => 0.0029273055472515
1129 => 0.0028401841266514
1130 => 0.0028003672996573
1201 => 0.0027796303504533
1202 => 0.0027881868198499
1203 => 0.0027838604070907
1204 => 0.0027556276373383
1205 => 0.0027854786764048
1206 => 0.0027092216068908
1207 => 0.0026788554273654
1208 => 0.0026651397285638
1209 => 0.0025974571901769
1210 => 0.0027051702073118
1211 => 0.0027263910286202
1212 => 0.002747653661502
1213 => 0.0029327303641223
1214 => 0.0029234844550807
1215 => 0.0030070629698763
1216 => 0.0030038152624823
1217 => 0.0029799773161805
1218 => 0.0028794089418848
1219 => 0.0029194937034201
1220 => 0.0027961190379693
1221 => 0.0028885597259869
1222 => 0.0028463736563911
1223 => 0.0028742965734212
1224 => 0.0028240886508932
1225 => 0.0028518757882545
1226 => 0.002731423272593
1227 => 0.0026189464082809
1228 => 0.0026642103818845
1229 => 0.0027134174977548
1230 => 0.0028201110627015
1231 => 0.002756565255622
]
'min_raw' => 0.0025974571901769
'max_raw' => 0.0077534729712863
'avg_raw' => 0.0051754650807316
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.002597'
'max' => '$0.007753'
'avg' => '$0.005175'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0049205128098231
'max_diff' => 0.0002355029712863
'year' => 2026
]
1 => [
'items' => [
101 => 0.0027794187307808
102 => 0.0027028634146244
103 => 0.0025449079304489
104 => 0.0025458019413354
105 => 0.0025215039313423
106 => 0.0025005069031407
107 => 0.0027638642559834
108 => 0.0027311116060937
109 => 0.0026789245450554
110 => 0.0027487790000866
111 => 0.0027672496267361
112 => 0.0027677754595101
113 => 0.0028187394666964
114 => 0.0028459389664675
115 => 0.0028507329961916
116 => 0.0029309259626494
117 => 0.0029578055872353
118 => 0.0030685189567576
119 => 0.0028436312789443
120 => 0.0028389998652112
121 => 0.0027497619955225
122 => 0.002693165927771
123 => 0.0027536371767015
124 => 0.0028072064481052
125 => 0.0027514265421087
126 => 0.0027587102202538
127 => 0.0026838302538393
128 => 0.0027105963184026
129 => 0.0027336508589828
130 => 0.0027209214967577
131 => 0.0027018650253986
201 => 0.002802814378746
202 => 0.0027971184206064
203 => 0.0028911247792592
204 => 0.0029644094582882
205 => 0.0030957487043115
206 => 0.0029586893542164
207 => 0.0029536943667374
208 => 0.0030025211705662
209 => 0.002957798112106
210 => 0.0029860615412653
211 => 0.003091195028923
212 => 0.00309341633385
213 => 0.0030562066143326
214 => 0.0030539423995183
215 => 0.0030610889331814
216 => 0.0031029464040638
217 => 0.0030883201175873
218 => 0.0031052460265902
219 => 0.0031264121349769
220 => 0.0032139641335087
221 => 0.0032350726239488
222 => 0.0031837899356768
223 => 0.0031884201882398
224 => 0.0031692390550849
225 => 0.003150710320796
226 => 0.003192360209573
227 => 0.0032684761999434
228 => 0.0032680026863178
301 => 0.0032856601166003
302 => 0.0032966605493842
303 => 0.0032494386390665
304 => 0.0032186989118475
305 => 0.0032304864792829
306 => 0.003249335056312
307 => 0.0032243741397872
308 => 0.0030703037999743
309 => 0.0031170388990221
310 => 0.003109259893311
311 => 0.0030981816432189
312 => 0.0031451741467033
313 => 0.0031406416051033
314 => 0.003004874387054
315 => 0.0030135657638579
316 => 0.0030054029384642
317 => 0.0030317786972681
318 => 0.0029563737345728
319 => 0.0029795677932377
320 => 0.0029941148894015
321 => 0.0030026832407981
322 => 0.003033638001416
323 => 0.003030005817536
324 => 0.0030334122197662
325 => 0.0030793099580088
326 => 0.0033114449678379
327 => 0.0033240795642459
328 => 0.0032618621906465
329 => 0.003286716804216
330 => 0.003239001381269
331 => 0.0032710330643589
401 => 0.0032929483284125
402 => 0.0031939174642174
403 => 0.0031880534991447
404 => 0.0031401411376739
405 => 0.0031658865268334
406 => 0.0031249237615216
407 => 0.0031349745913124
408 => 0.0031068715950017
409 => 0.0031574513931103
410 => 0.0032140074667017
411 => 0.0032282957643579
412 => 0.0031907094047233
413 => 0.003163494403286
414 => 0.003115713825941
415 => 0.0031951739909254
416 => 0.0032184105646715
417 => 0.0031950519390956
418 => 0.0031896392351536
419 => 0.0031793821709641
420 => 0.0031918153198097
421 => 0.0032182840133006
422 => 0.0032058018662503
423 => 0.0032140465442841
424 => 0.0031826263334943
425 => 0.0032494542714837
426 => 0.0033555931200301
427 => 0.0033559343737837
428 => 0.00334345215945
429 => 0.0033383447062777
430 => 0.0033511522156682
501 => 0.003358099764121
502 => 0.0033995169009941
503 => 0.0034439591389906
504 => 0.0036513516720525
505 => 0.0035931166786633
506 => 0.0037771276718328
507 => 0.0039226564765929
508 => 0.0039662942019371
509 => 0.0039261495479341
510 => 0.0037888168551614
511 => 0.0037820786580738
512 => 0.0039873116814435
513 => 0.0039293239520736
514 => 0.0039224264961804
515 => 0.0038490492189132
516 => 0.0038924242777307
517 => 0.0038829375160936
518 => 0.0038679621987412
519 => 0.0039507187894322
520 => 0.004105631739474
521 => 0.0040814871034455
522 => 0.0040634642526877
523 => 0.00398449336704
524 => 0.0040320514789858
525 => 0.0040151169462375
526 => 0.0040878784458441
527 => 0.0040447761453417
528 => 0.0039288846379911
529 => 0.0039473407425201
530 => 0.003944551139449
531 => 0.0040019609729774
601 => 0.0039847279659519
602 => 0.0039411861182474
603 => 0.0041051022638519
604 => 0.0040944584611059
605 => 0.0041095489398877
606 => 0.004116192235336
607 => 0.004215965104639
608 => 0.0042568388568168
609 => 0.0042661179141568
610 => 0.0043049448174362
611 => 0.0042651518654328
612 => 0.0044243520453406
613 => 0.0045302108753913
614 => 0.0046531713539408
615 => 0.0048328496617624
616 => 0.0049004103676206
617 => 0.0048882061308198
618 => 0.00502443617317
619 => 0.0052692385310496
620 => 0.0049376876865145
621 => 0.0052868115308783
622 => 0.0051762829525813
623 => 0.0049142216817635
624 => 0.0048973480254222
625 => 0.005074818960614
626 => 0.0054684324139248
627 => 0.0053698367081973
628 => 0.0054685936811784
629 => 0.0053533884264105
630 => 0.0053476675144851
701 => 0.0054629984190973
702 => 0.0057324753640841
703 => 0.0056044569687131
704 => 0.0054209112075504
705 => 0.0055564385413046
706 => 0.0054390322223441
707 => 0.0051744829257666
708 => 0.0053697613139193
709 => 0.0052391842169699
710 => 0.00527729355572
711 => 0.0055517471916303
712 => 0.0055187242040434
713 => 0.0055614590078272
714 => 0.0054860331977132
715 => 0.0054155735975082
716 => 0.0052840555213269
717 => 0.0052451195027325
718 => 0.0052558800175008
719 => 0.0052451141703557
720 => 0.0051715310154458
721 => 0.0051556407401489
722 => 0.0051291562518185
723 => 0.0051373649021924
724 => 0.0050875663158209
725 => 0.0051815465372169
726 => 0.0051989900944588
727 => 0.0052673810622908
728 => 0.0052744816394494
729 => 0.0054649495113769
730 => 0.0053600430082018
731 => 0.0054304233477233
801 => 0.0054241278677111
802 => 0.0049199013441414
803 => 0.004989379310261
804 => 0.0050974652221563
805 => 0.0050487726653544
806 => 0.0049799327823402
807 => 0.0049243408858452
808 => 0.0048401134780919
809 => 0.0049586619370605
810 => 0.0051145405543811
811 => 0.0052784349784236
812 => 0.0054753433901226
813 => 0.0054313957248979
814 => 0.0052747539126335
815 => 0.0052817807499047
816 => 0.0053252178929572
817 => 0.0052689628460237
818 => 0.005252372134454
819 => 0.0053229385839552
820 => 0.0053234245363103
821 => 0.0052586963061638
822 => 0.005186762723497
823 => 0.0051864613191591
824 => 0.0051736614329195
825 => 0.0053556654977374
826 => 0.0054557493307007
827 => 0.0054672237808568
828 => 0.0054549770087816
829 => 0.0054596903052963
830 => 0.0054014537280917
831 => 0.0055345652740609
901 => 0.0056567215920098
902 => 0.0056239810893104
903 => 0.0055748984214273
904 => 0.0055358017123169
905 => 0.0056147711471552
906 => 0.0056112547625313
907 => 0.0056556546631393
908 => 0.0056536404271815
909 => 0.0056387104105717
910 => 0.0056239816225083
911 => 0.0056823796023131
912 => 0.0056655619219722
913 => 0.0056487181191285
914 => 0.0056149352938683
915 => 0.0056195269408945
916 => 0.0055704527478261
917 => 0.0055477487806303
918 => 0.0052063355884406
919 => 0.0051150988274897
920 => 0.0051438037697804
921 => 0.005153254182106
922 => 0.005113547826817
923 => 0.0051704765405756
924 => 0.0051616042608387
925 => 0.0051961211111847
926 => 0.005174556481636
927 => 0.0051754415015547
928 => 0.0052388584789938
929 => 0.0052572686973395
930 => 0.0052479051117002
1001 => 0.0052544630461171
1002 => 0.0054055878768219
1003 => 0.0053841027585957
1004 => 0.0053726892177523
1005 => 0.0053758508465675
1006 => 0.0054144664809654
1007 => 0.0054252767502614
1008 => 0.0053794728796303
1009 => 0.0054010742498089
1010 => 0.0054930501424077
1011 => 0.0055252364994325
1012 => 0.0056279599007281
1013 => 0.0055843211740949
1014 => 0.00566442194547
1015 => 0.005910624408312
1016 => 0.0061073079715447
1017 => 0.0059264296385039
1018 => 0.00628761395488
1019 => 0.0065688477539918
1020 => 0.0065580535323625
1021 => 0.0065090139144323
1022 => 0.006188836711131
1023 => 0.0058942048750799
1024 => 0.0061406769166652
1025 => 0.0061413052245866
1026 => 0.0061201330576292
1027 => 0.005988634547012
1028 => 0.0061155571944993
1029 => 0.0061256318533415
1030 => 0.0061199927234578
1031 => 0.0060191731236822
1101 => 0.0058652402294015
1102 => 0.0058953183484806
1103 => 0.0059445869211093
1104 => 0.0058513112346223
1105 => 0.0058215040010165
1106 => 0.0058769213193478
1107 => 0.0060554874656682
1108 => 0.0060217305700696
1109 => 0.0060208490411032
1110 => 0.0061652753556256
1111 => 0.006061897283577
1112 => 0.0058956977298857
1113 => 0.0058537301506759
1114 => 0.0057047735172298
1115 => 0.0058076583945163
1116 => 0.0058113610380874
1117 => 0.0057550120422556
1118 => 0.0059002701403404
1119 => 0.0058989315613944
1120 => 0.0060368325067113
1121 => 0.0063004473209274
1122 => 0.0062224834486665
1123 => 0.0061318199476723
1124 => 0.0061416775840566
1125 => 0.0062497915244723
1126 => 0.0061844233680957
1127 => 0.0062079302128917
1128 => 0.0062497559440473
1129 => 0.0062749904461279
1130 => 0.0061380467275441
1201 => 0.0061061185959669
1202 => 0.0060408048440115
1203 => 0.0060237657052652
1204 => 0.0060769623934168
1205 => 0.0060629469455556
1206 => 0.0058110498452326
1207 => 0.0057847251967066
1208 => 0.005785532536094
1209 => 0.0057193379557066
1210 => 0.0056183753320962
1211 => 0.0058836990787793
1212 => 0.0058623898687172
1213 => 0.0058388661500105
1214 => 0.0058417476713276
1215 => 0.0059569157171066
1216 => 0.0058901124344291
1217 => 0.0060677199102701
1218 => 0.0060312091526066
1219 => 0.0059937620317767
1220 => 0.0059885856990108
1221 => 0.0059741717523296
1222 => 0.0059247409659661
1223 => 0.0058650503211025
1224 => 0.0058256373870485
1225 => 0.0053738425475251
1226 => 0.0054576930417709
1227 => 0.0055541553921877
1228 => 0.005587453809003
1229 => 0.0055304945628602
1230 => 0.0059269900641745
1231 => 0.0059994336129904
]
'min_raw' => 0.0025005069031407
'max_raw' => 0.0065688477539918
'avg_raw' => 0.0045346773285662
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.0025005'
'max' => '$0.006568'
'avg' => '$0.004534'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -9.6950287036294E-5
'max_diff' => -0.0011846252172945
'year' => 2027
]
2 => [
'items' => [
101 => 0.0057799973782514
102 => 0.0057389498182542
103 => 0.0059296811353743
104 => 0.0058146468351956
105 => 0.0058664467735224
106 => 0.0057544836399113
107 => 0.0059819840834754
108 => 0.0059802509112629
109 => 0.0058917481003859
110 => 0.005966550070098
111 => 0.0059535513870745
112 => 0.0058536319315672
113 => 0.0059851517084381
114 => 0.0059852169406065
115 => 0.0059000349093545
116 => 0.0058005609455964
117 => 0.0057827773503467
118 => 0.0057693798002158
119 => 0.005863151797475
120 => 0.0059472274770001
121 => 0.0061036714724679
122 => 0.0061430052099461
123 => 0.0062965274059189
124 => 0.0062051124130772
125 => 0.0062456354953816
126 => 0.0062896290335629
127 => 0.0063107211535759
128 => 0.0062763526758804
129 => 0.0065148358384829
130 => 0.0065349711243419
131 => 0.0065417223115208
201 => 0.0064613071309016
202 => 0.0065327346326989
203 => 0.0064993160700382
204 => 0.0065862618861372
205 => 0.0065998961002814
206 => 0.0065883484059525
207 => 0.0065926761207233
208 => 0.0063891728127548
209 => 0.0063786200926712
210 => 0.0062347330055439
211 => 0.0062933680571079
212 => 0.0061837526386601
213 => 0.0062185128170139
214 => 0.006233834772425
215 => 0.0062258314524315
216 => 0.006296683194948
217 => 0.0062364447397543
218 => 0.0060774655523792
219 => 0.0059184430512307
220 => 0.0059164466532657
221 => 0.0058745788356936
222 => 0.0058443160720623
223 => 0.0058501457539669
224 => 0.0058706903133761
225 => 0.0058431219849215
226 => 0.005849005085547
227 => 0.0059467037548253
228 => 0.005966296526194
229 => 0.0058997126336931
301 => 0.0056323686972922
302 => 0.005566761824718
303 => 0.0056139187436835
304 => 0.0055913807737125
305 => 0.004512680673763
306 => 0.0047661052616614
307 => 0.004615528977018
308 => 0.0046849214566634
309 => 0.0045312220615824
310 => 0.0046045754689905
311 => 0.0045910297730798
312 => 0.0049985290110417
313 => 0.0049921664709378
314 => 0.0049952118821874
315 => 0.0048498464684668
316 => 0.0050814175196248
317 => 0.0051954977464508
318 => 0.0051743845326123
319 => 0.0051796982736691
320 => 0.0050883905970463
321 => 0.0049960959400858
322 => 0.0048937269614708
323 => 0.0050839158705493
324 => 0.0050627701104927
325 => 0.0051112708760582
326 => 0.0052346219785797
327 => 0.0052527858969912
328 => 0.0052771983875366
329 => 0.0052684482474755
330 => 0.0054769120832992
331 => 0.0054516657372923
401 => 0.0055125021672995
402 => 0.0053873570151036
403 => 0.005245743396507
404 => 0.0052726595157042
405 => 0.0052700672769798
406 => 0.0052370651027844
407 => 0.0052072722155477
408 => 0.0051576754523926
409 => 0.0053146069499553
410 => 0.0053082358177448
411 => 0.0054113770426015
412 => 0.0053931458292477
413 => 0.0052713933245362
414 => 0.0052757417390607
415 => 0.0053049869165151
416 => 0.0054062048096003
417 => 0.0054362531717077
418 => 0.0054223335731594
419 => 0.0054552802304502
420 => 0.0054813199250295
421 => 0.0054585504151752
422 => 0.0057809186580655
423 => 0.005647048888182
424 => 0.0057122960825634
425 => 0.0057278571539645
426 => 0.0056879977967845
427 => 0.0056966418641003
428 => 0.0057097352707163
429 => 0.0057892358717371
430 => 0.0059978684524997
501 => 0.0060902704023095
502 => 0.0063682662273441
503 => 0.0060825977066751
504 => 0.0060656473188724
505 => 0.0061157227616308
506 => 0.0062789357397727
507 => 0.0064112045287413
508 => 0.0064550857168116
509 => 0.0064608853402146
510 => 0.0065432093662008
511 => 0.0065903959626439
512 => 0.0065332130641092
513 => 0.0064847565449001
514 => 0.0063111913077377
515 => 0.0063312819565417
516 => 0.0064696866038635
517 => 0.0066651913201985
518 => 0.0068329547056128
519 => 0.006774209815185
520 => 0.0072223918617197
521 => 0.0072668272809741
522 => 0.0072606877428023
523 => 0.0073619182407409
524 => 0.0071609963175652
525 => 0.0070750983027286
526 => 0.006495233394358
527 => 0.0066581517812279
528 => 0.0068949632244047
529 => 0.0068636203419029
530 => 0.0066916415418799
531 => 0.0068328242442713
601 => 0.0067861448276694
602 => 0.0067493268350647
603 => 0.0069179971967058
604 => 0.0067325372054848
605 => 0.0068931131191227
606 => 0.006687172848937
607 => 0.0067744781568962
608 => 0.006724919441616
609 => 0.0067569900040899
610 => 0.0065695061511762
611 => 0.0066706678872952
612 => 0.0065652974903647
613 => 0.0065652475310769
614 => 0.0065629214737245
615 => 0.0066868892784294
616 => 0.0066909318640902
617 => 0.0065993194691084
618 => 0.0065861166917369
619 => 0.0066349342795349
620 => 0.00657778166957
621 => 0.0066045230160583
622 => 0.0065785916377133
623 => 0.0065727539382494
624 => 0.0065262381557186
625 => 0.0065061978776262
626 => 0.0065140561870406
627 => 0.0064872317257732
628 => 0.0064710690175764
629 => 0.0065597063042548
630 => 0.0065123509776005
701 => 0.006552448421274
702 => 0.0065067523235072
703 => 0.0063483497398054
704 => 0.0062572507388415
705 => 0.0059580429421561
706 => 0.0060428979021299
707 => 0.0060991568283814
708 => 0.0060805632535909
709 => 0.0061205094469992
710 => 0.0061229618188449
711 => 0.0061099749041647
712 => 0.0060949377206917
713 => 0.0060876184513855
714 => 0.0061421702882292
715 => 0.0061738394656474
716 => 0.0061048031642781
717 => 0.0060886289247878
718 => 0.0061584284370708
719 => 0.0062010060992416
720 => 0.006515375634389
721 => 0.0064920861238251
722 => 0.006550538225005
723 => 0.0065439574154327
724 => 0.0066052245296192
725 => 0.0067053703678997
726 => 0.0065017458774586
727 => 0.0065370880481941
728 => 0.0065284229640997
729 => 0.0066230260801355
730 => 0.0066233214207375
731 => 0.0065666021268979
801 => 0.0065973505762538
802 => 0.0065801876353629
803 => 0.0066112033892633
804 => 0.0064917750782126
805 => 0.0066372258695829
806 => 0.0067196870956479
807 => 0.0067208320698518
808 => 0.0067599180365538
809 => 0.0067996316424296
810 => 0.0068758584505821
811 => 0.0067975057181224
812 => 0.0066565567799122
813 => 0.0066667328379887
814 => 0.0065840945270872
815 => 0.0065854836920233
816 => 0.0065780682207236
817 => 0.0066003226083045
818 => 0.0064966586648138
819 => 0.0065209883851505
820 => 0.0064869266342045
821 => 0.0065370140045997
822 => 0.0064831282737934
823 => 0.0065284187855338
824 => 0.0065479646689967
825 => 0.0066200893997676
826 => 0.0064724753924157
827 => 0.0061714804388353
828 => 0.006234753227289
829 => 0.0061411678031957
830 => 0.0061498294905004
831 => 0.0061673274773531
901 => 0.0061106107769784
902 => 0.0061214305360612
903 => 0.0061210439781293
904 => 0.0061177128307076
905 => 0.0061029586264372
906 => 0.0060815621112148
907 => 0.0061667992423607
908 => 0.0061812826918969
909 => 0.0062134776060961
910 => 0.006309267832734
911 => 0.0062996961302037
912 => 0.0063153079741566
913 => 0.0062812274064642
914 => 0.0061514103902902
915 => 0.006158460078837
916 => 0.0060705503496953
917 => 0.0062112295566739
918 => 0.0061779148635866
919 => 0.0061564366642283
920 => 0.0061505761385393
921 => 0.006246603810621
922 => 0.0062753367951572
923 => 0.0062574323273931
924 => 0.0062207097416522
925 => 0.0062912279623327
926 => 0.0063100956632619
927 => 0.0063143194456859
928 => 0.006439264212204
929 => 0.006321302470171
930 => 0.0063496970339173
1001 => 0.0065712233146796
1002 => 0.0063703295465653
1003 => 0.0064767474560011
1004 => 0.0064715388531063
1005 => 0.0065259786545879
1006 => 0.006467073200406
1007 => 0.0064678034041082
1008 => 0.0065161422597523
1009 => 0.0064482590549587
1010 => 0.0064314502188081
1011 => 0.0064082289320533
1012 => 0.0064589317621487
1013 => 0.0064893258156991
1014 => 0.0067342795653429
1015 => 0.006892530858861
1016 => 0.0068856607528513
1017 => 0.0069484406614805
1018 => 0.0069201577376449
1019 => 0.0068288247159217
1020 => 0.0069847190471278
1021 => 0.0069353875578384
1022 => 0.0069394543858776
1023 => 0.0069393030183349
1024 => 0.0069721041460787
1025 => 0.006948861540893
1026 => 0.0069030479802675
1027 => 0.00693346115984
1028 => 0.00702377743026
1029 => 0.0073041219048851
1030 => 0.0074610063869555
1031 => 0.0072946772620745
1101 => 0.0074094088651817
1102 => 0.0073406107863675
1103 => 0.0073281081288814
1104 => 0.0074001680542316
1105 => 0.007472354110942
1106 => 0.0074677561711985
1107 => 0.0074153528008218
1108 => 0.0073857514665823
1109 => 0.0076099026866183
1110 => 0.0077750534872244
1111 => 0.0077637913098081
1112 => 0.0078134988982674
1113 => 0.0079594419153819
1114 => 0.0079727851158494
1115 => 0.0079711041792805
1116 => 0.0079380316647028
1117 => 0.0080817315181476
1118 => 0.0082016084640496
1119 => 0.0079303763331348
1120 => 0.0080336579778979
1121 => 0.0080800244357587
1122 => 0.0081481041522067
1123 => 0.0082629660453396
1124 => 0.0083877365268945
1125 => 0.0084053804410251
1126 => 0.0083928612396104
1127 => 0.0083105717530144
1128 => 0.0084470971027532
1129 => 0.0085270704507168
1130 => 0.0085746927492715
1201 => 0.0086954549748115
1202 => 0.0080803107792175
1203 => 0.0076448811429257
1204 => 0.0075768825175386
1205 => 0.0077151603961772
1206 => 0.0077516231700288
1207 => 0.0077369250716096
1208 => 0.0072468094284327
1209 => 0.007574302160109
1210 => 0.0079266568030218
1211 => 0.0079401921798655
1212 => 0.0081165882814957
1213 => 0.0081740300829071
1214 => 0.008316052065485
1215 => 0.0083071685518063
1216 => 0.0083417486445007
1217 => 0.008333799280034
1218 => 0.0085968650965029
1219 => 0.0088870657577198
1220 => 0.0088770170316035
1221 => 0.0088352972530551
1222 => 0.0088972582384787
1223 => 0.0091967764206474
1224 => 0.0091692015861144
1225 => 0.0091959881890444
1226 => 0.0095491370059264
1227 => 0.010008280702706
1228 => 0.0097949623582786
1229 => 0.010257801784987
1230 => 0.010549134670036
1231 => 0.011052964770345
]
'min_raw' => 0.004512680673763
'max_raw' => 0.011052964770345
'avg_raw' => 0.0077828227220542
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.004512'
'max' => '$0.011052'
'avg' => '$0.007782'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0020121737706223
'max_diff' => 0.0044841170163536
'year' => 2028
]
3 => [
'items' => [
101 => 0.010989882760371
102 => 0.011186020121146
103 => 0.010876952796904
104 => 0.010167271747634
105 => 0.010054962005037
106 => 0.010279808953852
107 => 0.010832573237268
108 => 0.010262400439446
109 => 0.010377745653851
110 => 0.010344526224343
111 => 0.010342756102118
112 => 0.010410314467839
113 => 0.010312317534753
114 => 0.0099130604000488
115 => 0.010096037592047
116 => 0.01002538131093
117 => 0.010103779722604
118 => 0.010526863616443
119 => 0.010339808141916
120 => 0.010142760394655
121 => 0.010389901998116
122 => 0.01070459818639
123 => 0.010684905064492
124 => 0.010646692176922
125 => 0.010862096223392
126 => 0.011217880600698
127 => 0.011314047688226
128 => 0.01138503626619
129 => 0.011394824391729
130 => 0.011495648168071
131 => 0.010953493311819
201 => 0.011813906992214
202 => 0.01196247666637
203 => 0.011934551725211
204 => 0.012099680665268
205 => 0.012051095542186
206 => 0.011980703321613
207 => 0.012242467815536
208 => 0.011942375946559
209 => 0.011516433319062
210 => 0.011282752769427
211 => 0.011590482167658
212 => 0.011778401772882
213 => 0.011902604678004
214 => 0.011940188402048
215 => 0.010995579249993
216 => 0.010486487307461
217 => 0.010812809405873
218 => 0.011210944887484
219 => 0.010951281649116
220 => 0.010961459956453
221 => 0.010591248416839
222 => 0.01124370039404
223 => 0.011148643628946
224 => 0.011641798294402
225 => 0.011524102975678
226 => 0.011926251461203
227 => 0.011820352287501
228 => 0.012259933836796
301 => 0.012435294818005
302 => 0.012729753198213
303 => 0.012946357981355
304 => 0.013073552453005
305 => 0.013065916174021
306 => 0.013569924038733
307 => 0.013272728209606
308 => 0.012899380204544
309 => 0.01289262751703
310 => 0.013085989739234
311 => 0.013491223910639
312 => 0.013596295235367
313 => 0.013655015771796
314 => 0.013565083226178
315 => 0.013242498453877
316 => 0.01310320798474
317 => 0.013221887500078
318 => 0.013076752651066
319 => 0.013327296118107
320 => 0.013671345811552
321 => 0.013600300910375
322 => 0.013837793363361
323 => 0.014083573067266
324 => 0.014435049082508
325 => 0.014526937928011
326 => 0.014678826695408
327 => 0.014835170129921
328 => 0.014885383427513
329 => 0.014981256192886
330 => 0.014980750896089
331 => 0.015269669927524
401 => 0.015588356566275
402 => 0.015708653394791
403 => 0.015985269318757
404 => 0.015511574242743
405 => 0.015870877399317
406 => 0.016194977840488
407 => 0.015808571933431
408 => 0.016341142455279
409 => 0.016361820961812
410 => 0.0166740418598
411 => 0.016357546165402
412 => 0.016169612032359
413 => 0.016712170832655
414 => 0.016974697945677
415 => 0.016895622642718
416 => 0.016293855682774
417 => 0.015943601501088
418 => 0.015026918748629
419 => 0.016112769066665
420 => 0.016641655081892
421 => 0.016292485995764
422 => 0.016468586572854
423 => 0.017429334220653
424 => 0.017795124721131
425 => 0.0177190428541
426 => 0.017731899437214
427 => 0.017929273351705
428 => 0.018804537984358
429 => 0.018280059127997
430 => 0.018681003561837
501 => 0.018893663043833
502 => 0.019091193022352
503 => 0.018606121825099
504 => 0.017975051324584
505 => 0.017775164806533
506 => 0.016257768011519
507 => 0.016178780918619
508 => 0.01613444306982
509 => 0.015854899204855
510 => 0.015635254300501
511 => 0.015460584517667
512 => 0.015002198846697
513 => 0.015156890554597
514 => 0.014426319467596
515 => 0.01489371295921
516 => 0.013727703864101
517 => 0.014698790886655
518 => 0.014170272370187
519 => 0.014525158339535
520 => 0.014523920175821
521 => 0.013870462589552
522 => 0.013493561891104
523 => 0.01373373768535
524 => 0.013991225201959
525 => 0.014033001685237
526 => 0.014366840971633
527 => 0.014460008340615
528 => 0.014177706863032
529 => 0.013703540917307
530 => 0.013813678851925
531 => 0.013491329949374
601 => 0.012926425896626
602 => 0.013332149849588
603 => 0.013470681845553
604 => 0.013531865466964
605 => 0.012976347210755
606 => 0.012801791313766
607 => 0.012708859218875
608 => 0.01363183048633
609 => 0.013682392935851
610 => 0.013423708295292
611 => 0.014592987400105
612 => 0.014328343526906
613 => 0.014624015572592
614 => 0.01380368498877
615 => 0.013835022721794
616 => 0.013446665077031
617 => 0.013664119408031
618 => 0.013510429695761
619 => 0.013646551247012
620 => 0.013728141943581
621 => 0.014116435862676
622 => 0.014703224579486
623 => 0.014058437699624
624 => 0.01377749482255
625 => 0.013951790203404
626 => 0.014415961770995
627 => 0.0151192054564
628 => 0.014702871040542
629 => 0.014887633184483
630 => 0.014927995493439
701 => 0.014621005908723
702 => 0.015130524600274
703 => 0.015403579806399
704 => 0.01568367794707
705 => 0.015926879314442
706 => 0.015571800590196
707 => 0.015951785723675
708 => 0.015645584782496
709 => 0.015370890883787
710 => 0.015371307481043
711 => 0.015198987985745
712 => 0.014865097249952
713 => 0.014803522675469
714 => 0.015123841387942
715 => 0.015380706661051
716 => 0.015401863315245
717 => 0.015544077128652
718 => 0.015628237798508
719 => 0.016453126773975
720 => 0.016784903943747
721 => 0.017190594786724
722 => 0.017348634233546
723 => 0.017824276308205
724 => 0.017440156703158
725 => 0.01735705001038
726 => 0.016203297918595
727 => 0.01639222475899
728 => 0.016694714859192
729 => 0.016208285868933
730 => 0.016516813102733
731 => 0.016577722914185
801 => 0.016191757197979
802 => 0.016397918163599
803 => 0.015850415761378
804 => 0.014715158635703
805 => 0.015131788465986
806 => 0.015438568257158
807 => 0.015000755669479
808 => 0.015785517787207
809 => 0.015327075958809
810 => 0.015181771908295
811 => 0.014614889002608
812 => 0.014882435912768
813 => 0.015244296939663
814 => 0.015020708895902
815 => 0.01548468765862
816 => 0.016141805325245
817 => 0.016610106506516
818 => 0.016646056856295
819 => 0.01634497057048
820 => 0.016827463265005
821 => 0.016830977697536
822 => 0.016286723967071
823 => 0.015953371587579
824 => 0.015877633225579
825 => 0.016066842503235
826 => 0.01629657749627
827 => 0.016658805549534
828 => 0.016877692375783
829 => 0.017448433130039
830 => 0.017602859213721
831 => 0.017772526660624
901 => 0.017999254693189
902 => 0.018271499828159
903 => 0.01767584297177
904 => 0.017699509529118
905 => 0.01714484211188
906 => 0.016552100429207
907 => 0.017001917480062
908 => 0.0175899934374
909 => 0.01745508816302
910 => 0.017439908563788
911 => 0.017465436439227
912 => 0.017363722267939
913 => 0.016903672840907
914 => 0.016672638898714
915 => 0.016970731627188
916 => 0.017129154645791
917 => 0.017374854931706
918 => 0.017344567185363
919 => 0.017977464735594
920 => 0.018223389585786
921 => 0.018160471485389
922 => 0.018172049930071
923 => 0.01861728512444
924 => 0.019112478230181
925 => 0.019576291920192
926 => 0.020048103126934
927 => 0.019479316302102
928 => 0.019190521430347
929 => 0.019488484020862
930 => 0.019330380876208
1001 => 0.020238888441829
1002 => 0.020301791534511
1003 => 0.021210233404695
1004 => 0.022072452914745
1005 => 0.021530908288749
1006 => 0.022041560479357
1007 => 0.022593872457583
1008 => 0.023659371872971
1009 => 0.02330054915459
1010 => 0.023025696575779
1011 => 0.02276596221688
1012 => 0.02330642818608
1013 => 0.0240017290213
1014 => 0.024151490161698
1015 => 0.024394160422301
1016 => 0.024139022315584
1017 => 0.024446308062584
1018 => 0.025531161777692
1019 => 0.025238024727601
1020 => 0.02482172299234
1021 => 0.02567811080996
1022 => 0.025988034232033
1023 => 0.028163239116298
1024 => 0.030909525135915
1025 => 0.029772544690708
1026 => 0.029066784238238
1027 => 0.02923265468543
1028 => 0.030235505372145
1029 => 0.030557589183829
1030 => 0.029682054354726
1031 => 0.029991308057837
1101 => 0.031695326367133
1102 => 0.032609477518618
1103 => 0.031367937468022
1104 => 0.027942577708621
1105 => 0.024784239575936
1106 => 0.025621973070544
1107 => 0.025527000090152
1108 => 0.027357755182878
1109 => 0.025231033505904
1110 => 0.025266842044662
1111 => 0.027135455213902
1112 => 0.026636941256488
1113 => 0.025829412490323
1114 => 0.024790135429594
1115 => 0.022868935661343
1116 => 0.021167275449985
1117 => 0.024504622993401
1118 => 0.024360710498756
1119 => 0.024152303879873
1120 => 0.024616090258245
1121 => 0.026868105263556
1122 => 0.026816189028623
1123 => 0.026485924429871
1124 => 0.026736427217206
1125 => 0.02578549814054
1126 => 0.026030574215849
1127 => 0.024783739279039
1128 => 0.025347360742904
1129 => 0.02582767989627
1130 => 0.025924111077555
1201 => 0.026141375452888
1202 => 0.024284875153512
1203 => 0.025118389283947
1204 => 0.025608000745865
1205 => 0.023395918348702
1206 => 0.02556427498926
1207 => 0.024252557613641
1208 => 0.023807341035022
1209 => 0.024406766505308
1210 => 0.024173169816577
1211 => 0.023972337100864
1212 => 0.023860268994752
1213 => 0.024300420903955
1214 => 0.024279887291296
1215 => 0.023559713338035
1216 => 0.022620275774052
1217 => 0.022935581856511
1218 => 0.022821028200743
1219 => 0.022405870974525
1220 => 0.022685636818721
1221 => 0.021453689627133
1222 => 0.019334188515049
1223 => 0.020734395871767
1224 => 0.020680489411666
1225 => 0.020653307330019
1226 => 0.021705524459704
1227 => 0.021604378061464
1228 => 0.021420796358231
1229 => 0.022402499352579
1230 => 0.022044164553873
1231 => 0.023148467969187
]
'min_raw' => 0.0099130604000488
'max_raw' => 0.032609477518618
'avg_raw' => 0.021261268959333
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.009913'
'max' => '$0.0326094'
'avg' => '$0.021261'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.0054003797262858
'max_diff' => 0.021556512748273
'year' => 2029
]
4 => [
'items' => [
101 => 0.023875833620379
102 => 0.023691350163423
103 => 0.024375441074033
104 => 0.022942845871822
105 => 0.023418696532253
106 => 0.023516768693867
107 => 0.022390385290014
108 => 0.021620926863115
109 => 0.021569612758509
110 => 0.020235477884168
111 => 0.020948161965281
112 => 0.021575294463788
113 => 0.021274946664451
114 => 0.021179865523816
115 => 0.021665614450737
116 => 0.021703361302516
117 => 0.020842729081702
118 => 0.021021681773087
119 => 0.021767944244573
120 => 0.021002877873518
121 => 0.01951647888744
122 => 0.019147831387819
123 => 0.019098647015848
124 => 0.018098845759073
125 => 0.0191724661765
126 => 0.018703802093055
127 => 0.0201843063172
128 => 0.019338650244472
129 => 0.019302195701368
130 => 0.019247089312747
131 => 0.018386519069772
201 => 0.018574929260891
202 => 0.019201233431855
203 => 0.019424705815877
204 => 0.019401395815368
205 => 0.019198164199739
206 => 0.019291202592659
207 => 0.018991493512336
208 => 0.018885659998169
209 => 0.018551620315656
210 => 0.018060674263179
211 => 0.018128943322923
212 => 0.017156250729944
213 => 0.016626276180586
214 => 0.016479586210276
215 => 0.016283426251382
216 => 0.016501742999595
217 => 0.017153495214041
218 => 0.016367343766473
219 => 0.015019542251732
220 => 0.01510054741931
221 => 0.015282541980207
222 => 0.014943396319989
223 => 0.01462242341493
224 => 0.014901483314524
225 => 0.014330402044974
226 => 0.015351554423259
227 => 0.015323935113173
228 => 0.015704557572158
301 => 0.015942568606921
302 => 0.015394030228781
303 => 0.015256074310084
304 => 0.015334660271121
305 => 0.014035809387577
306 => 0.015598413744823
307 => 0.015611927212193
308 => 0.015496216700307
309 => 0.016328255280544
310 => 0.018084116204184
311 => 0.017423490695369
312 => 0.017167676530844
313 => 0.016681373617082
314 => 0.017329343375859
315 => 0.017279589408288
316 => 0.017054583098299
317 => 0.016918498579956
318 => 0.017169238477583
319 => 0.016887429131824
320 => 0.016836808429723
321 => 0.016530102050856
322 => 0.016420621827852
323 => 0.016339567029273
324 => 0.016250333660318
325 => 0.016447160236663
326 => 0.016001125319971
327 => 0.015463250935783
328 => 0.015418532500619
329 => 0.015542004031791
330 => 0.015487377070622
331 => 0.015418270967745
401 => 0.015286328597427
402 => 0.015247184114656
403 => 0.015374384693458
404 => 0.015230782656245
405 => 0.01544267528456
406 => 0.015385052214212
407 => 0.015063174427406
408 => 0.014661995530626
409 => 0.014658424196943
410 => 0.014571990861697
411 => 0.014461905013922
412 => 0.014431281649495
413 => 0.014877981668141
414 => 0.015802637338134
415 => 0.015621105304979
416 => 0.015752280803084
417 => 0.016397534424599
418 => 0.016602641147426
419 => 0.016457061253783
420 => 0.016257782516387
421 => 0.016266549769476
422 => 0.016947545540932
423 => 0.016990018411872
424 => 0.017097333654468
425 => 0.017235264068488
426 => 0.016480551399718
427 => 0.016231002870647
428 => 0.016112752933148
429 => 0.015748588894135
430 => 0.016141308589145
501 => 0.015912487640797
502 => 0.015943363404366
503 => 0.015923255522837
504 => 0.015934235785841
505 => 0.015351268990358
506 => 0.015563671450799
507 => 0.015210511164182
508 => 0.014737669184503
509 => 0.014736084052387
510 => 0.014851811457039
511 => 0.014782972268338
512 => 0.014597727781563
513 => 0.01462404088658
514 => 0.014393510398679
515 => 0.0146520314617
516 => 0.014659444920755
517 => 0.014559900229754
518 => 0.01495818759637
519 => 0.015121366255444
520 => 0.015055843807374
521 => 0.015116769025818
522 => 0.015628648780525
523 => 0.015712107515422
524 => 0.015749174372488
525 => 0.015699509694436
526 => 0.015126125248063
527 => 0.015151557286479
528 => 0.014964953863008
529 => 0.014807293633959
530 => 0.014813599216302
531 => 0.014894657068429
601 => 0.015248641462643
602 => 0.015993580751749
603 => 0.016021850653227
604 => 0.01605611459851
605 => 0.015916745913366
606 => 0.015874710984348
607 => 0.015930165905859
608 => 0.0162099259358
609 => 0.016929544686915
610 => 0.01667518335855
611 => 0.01646838363922
612 => 0.016649802745877
613 => 0.016621874696417
614 => 0.01638613385318
615 => 0.01637951739287
616 => 0.015927055343792
617 => 0.015759790426311
618 => 0.015620011341701
619 => 0.015467376230332
620 => 0.015376889019938
621 => 0.015515918500805
622 => 0.015547716188028
623 => 0.015243725798292
624 => 0.015202293031454
625 => 0.015450538145801
626 => 0.015341294726488
627 => 0.015453654292358
628 => 0.015479722675442
629 => 0.01547552506536
630 => 0.01536146238907
701 => 0.015434162537539
702 => 0.015262205013452
703 => 0.015075227033192
704 => 0.014955946730926
705 => 0.014851858846963
706 => 0.014909612854609
707 => 0.014703730362816
708 => 0.014637864410095
709 => 0.015409533363043
710 => 0.015979573515425
711 => 0.015971284905848
712 => 0.01592083012671
713 => 0.015845864559288
714 => 0.016204441737611
715 => 0.01607952061866
716 => 0.016170411170206
717 => 0.016193546630239
718 => 0.016263570699803
719 => 0.0162885982859
720 => 0.016212947537938
721 => 0.015959054387819
722 => 0.015326376797157
723 => 0.015031863670823
724 => 0.014934669433629
725 => 0.014938202259553
726 => 0.014840751149343
727 => 0.014869454868752
728 => 0.014830769167123
729 => 0.014757507807314
730 => 0.014905089172086
731 => 0.01492209654956
801 => 0.014887649295557
802 => 0.014895762870883
803 => 0.014610554320348
804 => 0.014632238107005
805 => 0.014511500027457
806 => 0.014488863093061
807 => 0.014183647741832
808 => 0.013642914505458
809 => 0.013942533208655
810 => 0.013580635947958
811 => 0.013443579971694
812 => 0.014092381646751
813 => 0.014027259953533
814 => 0.013915799922462
815 => 0.013750927306203
816 => 0.013689774449055
817 => 0.013318229047665
818 => 0.013296276163233
819 => 0.013480424096732
820 => 0.013395446161566
821 => 0.013276104956932
822 => 0.012843863211171
823 => 0.012357880378612
824 => 0.012372549145548
825 => 0.012527131242553
826 => 0.012976599537831
827 => 0.012800984498985
828 => 0.012673573773353
829 => 0.012649713574394
830 => 0.012948373919072
831 => 0.013371040878067
901 => 0.013569346758588
902 => 0.013372831653631
903 => 0.013147085682181
904 => 0.013160825793457
905 => 0.013252232598099
906 => 0.013261838160844
907 => 0.013114900740491
908 => 0.013156262763629
909 => 0.013093430068259
910 => 0.012707825932754
911 => 0.012700851576706
912 => 0.012606218103147
913 => 0.012603352639177
914 => 0.012442357493226
915 => 0.0124198331594
916 => 0.012100167525407
917 => 0.012310572413738
918 => 0.012169443861398
919 => 0.011956729844161
920 => 0.011920057867413
921 => 0.011918955463509
922 => 0.012137365197227
923 => 0.012308020168835
924 => 0.012171898852988
925 => 0.012140906667971
926 => 0.012471822121789
927 => 0.01242971011393
928 => 0.012393241386716
929 => 0.013333195687741
930 => 0.012589148512931
1001 => 0.012264701475986
1002 => 0.011863136656946
1003 => 0.011993888186891
1004 => 0.01202143945539
1005 => 0.011055748453096
1006 => 0.010663967733735
1007 => 0.010529523354795
1008 => 0.010452148713951
1009 => 0.010487409309393
1010 => 0.010134760710673
1011 => 0.010371746401282
1012 => 0.010066382523434
1013 => 0.010015187275573
1014 => 0.010561215716491
1015 => 0.010637192384192
1016 => 0.010313052315676
1017 => 0.010521202713174
1018 => 0.010445724485534
1019 => 0.010071617110673
1020 => 0.0100573289607
1021 => 0.009869615030505
1022 => 0.0095758790783284
1023 => 0.0094416338661959
1024 => 0.0093717177941469
1025 => 0.0094005665281114
1026 => 0.0093859797254331
1027 => 0.0092907909710639
1028 => 0.0093914358334096
1029 => 0.0091343297994446
1030 => 0.0090319481050757
1031 => 0.0089857046689665
1101 => 0.0087575082653514
1102 => 0.0091206702229043
1103 => 0.009192217703536
1104 => 0.0092639061548067
1105 => 0.0098879051793337
1106 => 0.0098567319514713
1107 => 0.01013852274937
1108 => 0.010127572877144
1109 => 0.010047201576875
1110 => 0.0097081282814771
1111 => 0.0098432768536222
1112 => 0.0094273105553107
1113 => 0.0097389807889646
1114 => 0.0095967475099851
1115 => 0.0096908915742678
1116 => 0.0095216120580595
1117 => 0.0096152983317091
1118 => 0.0092091842654303
1119 => 0.0088299606645184
1120 => 0.0089825713117524
1121 => 0.0091484765384402
1122 => 0.009508201341765
1123 => 0.0092939522165699
1124 => 0.0093710043036464
1125 => 0.0091128927103037
1126 => 0.0085803347673061
1127 => 0.0085833489874278
1128 => 0.0085014265503031
1129 => 0.0084306336037557
1130 => 0.0093185613058881
1201 => 0.0092081334600682
1202 => 0.0090321811401933
1203 => 0.0092677003124131
1204 => 0.0093299753197399
1205 => 0.0093317482016501
1206 => 0.009503576910072
1207 => 0.0095952819225587
1208 => 0.0096114453284818
1209 => 0.0098818215137886
1210 => 0.0099724480447553
1211 => 0.01034572589986
1212 => 0.0095875013929565
1213 => 0.0095718862582003
1214 => 0.0092710145501557
1215 => 0.0090801969563204
1216 => 0.0092840799940572
1217 => 0.009464692532682
1218 => 0.0092766266851863
1219 => 0.0093011841145825
1220 => 0.0090487210798638
1221 => 0.0091389647352859
1222 => 0.0092166947284685
1223 => 0.0091737767949909
1224 => 0.0091095265713234
1225 => 0.009449884364193
1226 => 0.0094306800436464
1227 => 0.0097476290451584
1228 => 0.0099947134570776
1229 => 0.010437532894859
1230 => 0.0099754277268347
1231 => 0.0099585867778103
]
'min_raw' => 0.0084306336037557
'max_raw' => 0.024375441074033
'avg_raw' => 0.016403037338894
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.00843'
'max' => '$0.024375'
'avg' => '$0.016403'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0014824267962932
'max_diff' => -0.0082340364445855
'year' => 2030
]
5 => [
'items' => [
101 => 0.010123209755898
102 => 0.0099724228418351
103 => 0.010067714966535
104 => 0.010422179860359
105 => 0.010429669145007
106 => 0.010304213977754
107 => 0.010296580019425
108 => 0.010320675056625
109 => 0.010461800442101
110 => 0.010412486896071
111 => 0.010469553780003
112 => 0.0105409167922
113 => 0.010836104467935
114 => 0.010907273217201
115 => 0.010734370053249
116 => 0.010749981273039
117 => 0.010685310743423
118 => 0.010622839822134
119 => 0.010763265330048
120 => 0.01101989570583
121 => 0.011018299221582
122 => 0.011077832480582
123 => 0.011114921207738
124 => 0.010955709240174
125 => 0.010852068103675
126 => 0.010891810710266
127 => 0.010955360003685
128 => 0.010871202530906
129 => 0.010351743623379
130 => 0.010509314272759
131 => 0.010483086811892
201 => 0.010445735718247
202 => 0.010604174224657
203 => 0.0105888924442
204 => 0.010131143789583
205 => 0.01016044737329
206 => 0.010132925837565
207 => 0.010221853549869
208 => 0.0099676204535348
209 => 0.010045820841681
210 => 0.010094867392043
211 => 0.010123756187
212 => 0.010228122323616
213 => 0.010215876162073
214 => 0.01022736108502
215 => 0.010382108513982
216 => 0.01116476790677
217 => 0.011207366330679
218 => 0.01099759611171
219 => 0.011081395176654
220 => 0.010920519296803
221 => 0.011028516352722
222 => 0.011102405195553
223 => 0.010768515722805
224 => 0.010748744955154
225 => 0.010587205083321
226 => 0.010674007460358
227 => 0.01053589863718
228 => 0.010569785711546
301 => 0.010475034497396
302 => 0.010645567818088
303 => 0.01083625056882
304 => 0.010884424561945
305 => 0.010757699526241
306 => 0.010665942248805
307 => 0.010504846696353
308 => 0.010772752190329
309 => 0.01085109592104
310 => 0.010772340684064
311 => 0.01075409137482
312 => 0.01071950896678
313 => 0.010761428196168
314 => 0.010850669244257
315 => 0.010808584814002
316 => 0.010836382321618
317 => 0.010730446887251
318 => 0.01095576194596
319 => 0.011313616484212
320 => 0.011314767045067
321 => 0.011272682387961
322 => 0.011255462253
323 => 0.011298643665101
324 => 0.011322067809772
325 => 0.011461708578392
326 => 0.011611548686655
327 => 0.012310787091558
328 => 0.012114443745509
329 => 0.012734849656217
330 => 0.013225510181962
331 => 0.013372637819649
401 => 0.013237287315868
402 => 0.012774260553922
403 => 0.012751542251995
404 => 0.013443499719198
405 => 0.013247990041054
406 => 0.013224734786945
407 => 0.012977338173601
408 => 0.013123580212754
409 => 0.01309159493355
410 => 0.013041104605553
411 => 0.013320124228948
412 => 0.013842424055691
413 => 0.013761018729596
414 => 0.013700253429951
415 => 0.013433997575418
416 => 0.013594343070245
417 => 0.013537247110753
418 => 0.013782567586722
419 => 0.013637245171272
420 => 0.013246508862953
421 => 0.013308734907936
422 => 0.013299329566418
423 => 0.013492890828386
424 => 0.013434788542029
425 => 0.013287984162499
426 => 0.013840638891664
427 => 0.013804752567579
428 => 0.013855631170376
429 => 0.0138780295048
430 => 0.014214420699574
501 => 0.014352229408756
502 => 0.014383514398421
503 => 0.014514422013635
504 => 0.0143802572977
505 => 0.014917011819261
506 => 0.015273922255605
507 => 0.015688492093861
508 => 0.01629429005342
509 => 0.016522075690159
510 => 0.016480928253712
511 => 0.016940237352774
512 => 0.01776560559392
513 => 0.016647758773429
514 => 0.01782485418975
515 => 0.017452199371163
516 => 0.016568641500067
517 => 0.016511750789631
518 => 0.017110106438255
519 => 0.018437201677307
520 => 0.018104779371714
521 => 0.018437745401111
522 => 0.018049322841287
523 => 0.018030034387309
524 => 0.018418880584356
525 => 0.019327440918659
526 => 0.018895817960706
527 => 0.018276980612191
528 => 0.018733920480159
529 => 0.018338076878736
530 => 0.017446130455083
531 => 0.018104525174642
601 => 0.017664275375675
602 => 0.01779276367198
603 => 0.018718103267193
604 => 0.018606763958952
605 => 0.018750847333558
606 => 0.018496543948697
607 => 0.018258984487273
608 => 0.017815562111129
609 => 0.017684286606012
610 => 0.017720566432828
611 => 0.017684268627531
612 => 0.017436177883341
613 => 0.017382602710754
614 => 0.01729330840926
615 => 0.017320984447105
616 => 0.017153085036327
617 => 0.017469945914253
618 => 0.017528758085365
619 => 0.017759343008315
620 => 0.017783283099952
621 => 0.018425458828198
622 => 0.018071759228405
623 => 0.0183090514569
624 => 0.018287825806502
625 => 0.016587790878315
626 => 0.016822040691884
627 => 0.017186459890157
628 => 0.017022289535293
629 => 0.016790191063464
630 => 0.016602759103129
701 => 0.016318780517319
702 => 0.01671847492352
703 => 0.017244030564914
704 => 0.017796612058317
705 => 0.018460502516066
706 => 0.018312329894433
707 => 0.017784201088002
708 => 0.01780789256046
709 => 0.017954343920946
710 => 0.017764676102607
711 => 0.017708739360224
712 => 0.017946659071509
713 => 0.017948297493802
714 => 0.017730061746683
715 => 0.017487532650479
716 => 0.017486516444711
717 => 0.017443360734594
718 => 0.018057000146246
719 => 0.018394439776712
720 => 0.018433126686534
721 => 0.01839183583944
722 => 0.018407727047711
723 => 0.018211378361718
724 => 0.018660173232504
725 => 0.01907203178715
726 => 0.018961644896431
727 => 0.01879615925482
728 => 0.018664341970409
729 => 0.018930592933437
730 => 0.018918737197171
731 => 0.019068434561973
801 => 0.019061643424812
802 => 0.019011305831432
803 => 0.018961646694145
804 => 0.019158539560273
805 => 0.019101837576831
806 => 0.019045047519547
807 => 0.018931146365541
808 => 0.018946627424068
809 => 0.018781170355887
810 => 0.018704622345346
811 => 0.017553523931171
812 => 0.017245912821677
813 => 0.017342693538725
814 => 0.017374556263688
815 => 0.017240683514622
816 => 0.017432622647695
817 => 0.017402709137119
818 => 0.01751908510795
819 => 0.017446378453832
820 => 0.017449362360278
821 => 0.017663177127346
822 => 0.017725248463859
823 => 0.017693678481132
824 => 0.017715789014878
825 => 0.018225316932798
826 => 0.018152878356656
827 => 0.018114396806834
828 => 0.018125056459123
829 => 0.018255251766553
830 => 0.018291699344233
831 => 0.018137268396476
901 => 0.018210098924193
902 => 0.018520202067641
903 => 0.01862872061753
904 => 0.018975059736917
905 => 0.018827928723315
906 => 0.019097994066463
907 => 0.019928082859242
908 => 0.020591215224689
909 => 0.01998137129632
910 => 0.021199129436066
911 => 0.022147328824888
912 => 0.022110935353036
913 => 0.021945594857348
914 => 0.020866095062359
915 => 0.019872723256575
916 => 0.020703720952908
917 => 0.020705839336932
918 => 0.020634455897842
919 => 0.020191099488363
920 => 0.020619028055823
921 => 0.020652995471499
922 => 0.020633982751385
923 => 0.020294062431742
924 => 0.019775066931423
925 => 0.019876477409886
926 => 0.020042589842325
927 => 0.019728104353034
928 => 0.019627607183857
929 => 0.019814450541725
930 => 0.020416498771134
1001 => 0.020302685040792
1002 => 0.020299712904336
1003 => 0.020786656307271
1004 => 0.020438109919733
1005 => 0.01987775652078
1006 => 0.019736259897392
1007 => 0.019234042207908
1008 => 0.019580925754872
1009 => 0.019593409476183
1010 => 0.019403424902574
1011 => 0.019893172721864
1012 => 0.019888659609491
1013 => 0.020353602274563
1014 => 0.021242398025691
1015 => 0.0209795373871
1016 => 0.020673859063575
1017 => 0.020707094772882
1018 => 0.021071608471268
1019 => 0.020851215168186
1020 => 0.020930470136611
1021 => 0.021071488509381
1022 => 0.021156568394963
1023 => 0.020694853086652
1024 => 0.020587205161889
1025 => 0.020366995287111
1026 => 0.020309546641193
1027 => 0.02048890298937
1028 => 0.020441648928379
1029 => 0.019592360267746
1030 => 0.019503604877312
1031 => 0.019506326878423
1101 => 0.019283147229089
1102 => 0.018942744694602
1103 => 0.019837302230856
1104 => 0.01976545674137
1105 => 0.019686144881377
1106 => 0.019695860131679
1107 => 0.020084157238799
1108 => 0.019858925307195
1109 => 0.020457741312151
1110 => 0.020334642743589
1111 => 0.020208387161237
1112 => 0.020190934793917
1113 => 0.020142337166331
1114 => 0.019975677818959
1115 => 0.019774426642334
1116 => 0.019641543183448
1117 => 0.018118285338686
1118 => 0.018400993134291
1119 => 0.018726222683507
1120 => 0.018838490620621
1121 => 0.018646448545483
1122 => 0.019983260810596
1123 => 0.020227509293276
1124 => 0.019487664707305
1125 => 0.019349269992925
1126 => 0.019992333945031
1127 => 0.01960448777054
1128 => 0.019779134879165
1129 => 0.019401643357179
1130 => 0.020168676986229
1201 => 0.020162833475108
1202 => 0.019864440069167
1203 => 0.020116640132559
1204 => 0.020072814165206
1205 => 0.019735928744809
1206 => 0.020179356854947
1207 => 0.020179576789757
1208 => 0.019892379624171
1209 => 0.019556996210311
1210 => 0.019497037577315
1211 => 0.019451866801662
1212 => 0.019768025637373
1213 => 0.020051492660869
1214 => 0.020578954514159
1215 => 0.020711570956261
1216 => 0.021229181758561
1217 => 0.020920969727804
1218 => 0.021057596129024
1219 => 0.021205923414534
1220 => 0.021277036969762
1221 => 0.021161161247681
1222 => 0.021965223880758
1223 => 0.022033111402832
1224 => 0.022055873501759
1225 => 0.021784748105893
1226 => 0.022025570915111
1227 => 0.021912897897891
1228 => 0.022206041787232
1229 => 0.02225201049213
1230 => 0.022213076634466
1231 => 0.022227667826967
]
'min_raw' => 0.0099676204535348
'max_raw' => 0.02225201049213
'avg_raw' => 0.016109815472832
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.009967'
'max' => '$0.022252'
'avg' => '$0.0161098'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0015369868497791
'max_diff' => -0.0021234305819028
'year' => 2031
]
6 => [
'items' => [
101 => 0.021541542216004
102 => 0.021505962983474
103 => 0.021020837623349
104 => 0.021218529793466
105 => 0.020848953757065
106 => 0.020966150125263
107 => 0.021017809167676
108 => 0.020990825415544
109 => 0.021229707012149
110 => 0.021026608854749
111 => 0.020490599424941
112 => 0.019954443959723
113 => 0.0199477129646
114 => 0.019806552694538
115 => 0.019704519674076
116 => 0.019724174853633
117 => 0.019793442270056
118 => 0.019700493725912
119 => 0.019720329010416
120 => 0.020049726894991
121 => 0.020115785291584
122 => 0.019891293049279
123 => 0.018989924302346
124 => 0.018768726150936
125 => 0.018927718995619
126 => 0.018851730656311
127 => 0.015214817956895
128 => 0.016069256648534
129 => 0.015561578191959
130 => 0.015795539781912
131 => 0.015277331540447
201 => 0.015524647674895
202 => 0.015478977415401
203 => 0.016852889546878
204 => 0.016831437798699
205 => 0.016841705615351
206 => 0.016351595973903
207 => 0.017132353940657
208 => 0.017516983390228
209 => 0.017445798715694
210 => 0.01746371436466
211 => 0.017155864158028
212 => 0.016844686278279
213 => 0.016499542119704
214 => 0.017140777305228
215 => 0.017069482898848
216 => 0.017233006616167
217 => 0.017648893470417
218 => 0.017710134389506
219 => 0.017792442805805
220 => 0.017762941097674
221 => 0.018465791474634
222 => 0.018380671656428
223 => 0.018585785927661
224 => 0.018163850309677
225 => 0.017686390107432
226 => 0.017777139682529
227 => 0.017768399768685
228 => 0.017657130634247
229 => 0.017556681834855
301 => 0.017389462885142
302 => 0.017918568385782
303 => 0.017897087668716
304 => 0.018244835509411
305 => 0.018183367700726
306 => 0.017772870630603
307 => 0.017787531613769
308 => 0.01788613377139
309 => 0.018227396964734
310 => 0.018328707115489
311 => 0.018281776217148
312 => 0.018392858172466
313 => 0.018480652820773
314 => 0.018403883828583
315 => 0.01949077086652
316 => 0.019039419590869
317 => 0.019259405062139
318 => 0.019311870300807
319 => 0.019177481695183
320 => 0.019206625771648
321 => 0.019250771106207
322 => 0.019518812933103
323 => 0.020222232245406
324 => 0.020533771870487
325 => 0.02147105420364
326 => 0.020507902841465
327 => 0.02045075342555
328 => 0.020619586276966
329 => 0.021169870227938
330 => 0.021615823684657
331 => 0.021763772173923
401 => 0.021783326009143
402 => 0.022060887210435
403 => 0.022219980114806
404 => 0.022027183980014
405 => 0.021863809442375
406 => 0.021278622127344
407 => 0.021346359152471
408 => 0.02181300008402
409 => 0.022472157884847
410 => 0.023037783851637
411 => 0.022839721352122
412 => 0.024350798413085
413 => 0.024500615531483
414 => 0.024479915649888
415 => 0.024821221341376
416 => 0.024143799049468
417 => 0.023854187895239
418 => 0.021899132871792
419 => 0.022448423587723
420 => 0.02324684990204
421 => 0.023141175185395
422 => 0.022561336653941
423 => 0.023037343992115
424 => 0.022879961079989
425 => 0.022755826647372
426 => 0.023324510547834
427 => 0.022699219239029
428 => 0.023240612142912
429 => 0.02254627014369
430 => 0.022840626084936
501 => 0.02267353541629
502 => 0.022781663556766
503 => 0.022149548656963
504 => 0.022490622513175
505 => 0.022135358863198
506 => 0.022135190421971
507 => 0.022127347957207
508 => 0.022545314065925
509 => 0.022558943925725
510 => 0.022250066339871
511 => 0.022205552254174
512 => 0.022370144159771
513 => 0.022177450145006
514 => 0.022267610461713
515 => 0.022180181009151
516 => 0.022160498797833
517 => 0.022003667589403
518 => 0.021936100392647
519 => 0.021962595231487
520 => 0.0218721546875
521 => 0.02181766098837
522 => 0.022116507788864
523 => 0.021956845998806
524 => 0.022092037329665
525 => 0.021937969745645
526 => 0.021403904375379
527 => 0.0210967577333
528 => 0.020087957756754
529 => 0.02037405217869
530 => 0.020563733076419
531 => 0.020501043540851
601 => 0.020635724920881
602 => 0.020643993263778
603 => 0.020600206974216
604 => 0.020549508060275
605 => 0.020524830632794
606 => 0.0207087559594
607 => 0.020815530802137
608 => 0.02058277009211
609 => 0.020528237514419
610 => 0.020763571443327
611 => 0.020907125004014
612 => 0.021967043840343
613 => 0.021888521629455
614 => 0.022085596969578
615 => 0.022063409310648
616 => 0.022269975663661
617 => 0.022607624349383
618 => 0.021921090163253
619 => 0.022040248759399
620 => 0.022011033823398
621 => 0.022329994834091
622 => 0.022330990595551
623 => 0.022139757536356
624 => 0.022243428080148
625 => 0.022185562026656
626 => 0.022290133806382
627 => 0.021887472917456
628 => 0.022377870415611
629 => 0.022655894196548
630 => 0.022659754557016
701 => 0.022791535622647
702 => 0.022925432817573
703 => 0.023182436823245
704 => 0.022918265115344
705 => 0.022443045929427
706 => 0.022477355219702
707 => 0.022198734384875
708 => 0.022203418051445
709 => 0.022178416272227
710 => 0.022253448493707
711 => 0.021903938270643
712 => 0.021985967621405
713 => 0.021871126049975
714 => 0.022039999116251
715 => 0.021858319612656
716 => 0.022011019735071
717 => 0.022076920045816
718 => 0.022320093611199
719 => 0.021822402679331
720 => 0.020807577178538
721 => 0.021020905802374
722 => 0.020705376011118
723 => 0.020734579494606
724 => 0.02079357517895
725 => 0.020602350863803
726 => 0.020638830436962
727 => 0.020637527129906
728 => 0.020626295933801
729 => 0.020576551103998
730 => 0.020504411259068
731 => 0.020791794197793
801 => 0.020840626159107
802 => 0.020949173560106
803 => 0.021272136997076
804 => 0.02123986533372
805 => 0.021292501755592
806 => 0.021177596742187
807 => 0.020739909608622
808 => 0.020763678125751
809 => 0.020467284336289
810 => 0.020941594104526
811 => 0.020829271290824
812 => 0.020756856042128
813 => 0.020737096870598
814 => 0.02106086087146
815 => 0.021157736134896
816 => 0.02109736997178
817 => 0.020973557210065
818 => 0.021211314314514
819 => 0.021274928085498
820 => 0.021289168862836
821 => 0.021710428866517
822 => 0.021312712617426
823 => 0.021408446871542
824 => 0.022155338193603
825 => 0.021478010828451
826 => 0.021836806239975
827 => 0.021819245071662
828 => 0.022002792663223
829 => 0.021804188811801
830 => 0.021806650744564
831 => 0.021969628571279
901 => 0.021740755606864
902 => 0.021684083442227
903 => 0.021605791252674
904 => 0.021776739384299
905 => 0.02187921505789
906 => 0.022705093726939
907 => 0.023238649011787
908 => 0.02321548596972
909 => 0.023427152814816
910 => 0.023331794962454
911 => 0.023023859303047
912 => 0.023549467924903
913 => 0.023383143364548
914 => 0.02339685495922
915 => 0.023396344612981
916 => 0.023506935905271
917 => 0.023428571839141
918 => 0.023274108220891
919 => 0.0233766483792
920 => 0.023681155990602
921 => 0.024626356959826
922 => 0.025155303944452
923 => 0.024594513687187
924 => 0.024981339297367
925 => 0.024749381771317
926 => 0.024707228188695
927 => 0.024950183258076
928 => 0.025193563588145
929 => 0.025178061313282
930 => 0.02500137969137
1001 => 0.024901576726283
1002 => 0.025657318214372
1003 => 0.026214135669077
1004 => 0.026176164451617
1005 => 0.026343757056581
1006 => 0.026835814128199
1007 => 0.026880801660167
1008 => 0.026875134265166
1009 => 0.026763627973218
1010 => 0.02724812206191
1011 => 0.02765229555456
1012 => 0.026737817488358
1013 => 0.027086038764571
1014 => 0.027242366514452
1015 => 0.02747190203163
1016 => 0.027859166923729
1017 => 0.028279839313488
1018 => 0.028339327001838
1019 => 0.028297117640206
1020 => 0.028019672890879
1021 => 0.028479977639419
1022 => 0.028749613365639
1023 => 0.028910175270099
1024 => 0.029317333544856
1025 => 0.027243331941415
1026 => 0.025775250521931
1027 => 0.025545988408926
1028 => 0.026012201931009
1029 => 0.026135138718799
1030 => 0.02608558305379
1031 => 0.024433123944038
1101 => 0.025537288553697
1102 => 0.026725276832893
1103 => 0.026770912300931
1104 => 0.02736564407316
1105 => 0.027559313117077
1106 => 0.028038150146997
1107 => 0.028008198760402
1108 => 0.028124787957226
1109 => 0.02809798611992
1110 => 0.028984930886813
1111 => 0.029963362677269
1112 => 0.029929482695588
1113 => 0.029788821549431
1114 => 0.029997727337764
1115 => 0.031007573800638
1116 => 0.030914603320796
1117 => 0.031004916222756
1118 => 0.032195582114936
1119 => 0.033743617145019
1120 => 0.03302439945337
1121 => 0.034584894894933
1122 => 0.035567144057088
1123 => 0.037265842416577
1124 => 0.037053157015703
1125 => 0.037714447821427
1126 => 0.036672405759356
1127 => 0.034279666553394
1128 => 0.033901006415013
1129 => 0.034659093601254
1130 => 0.036522776975562
1201 => 0.034600399579511
1202 => 0.034989294023022
1203 => 0.034877292397129
1204 => 0.034871324306461
1205 => 0.035099102053265
1206 => 0.034768698551438
1207 => 0.03342257524654
1208 => 0.03403949562442
1209 => 0.033801273039571
1210 => 0.034065598758131
1211 => 0.035492055644984
1212 => 0.034861385052822
1213 => 0.034197024815497
1214 => 0.035030279986441
1215 => 0.036091300156594
1216 => 0.036024903421183
1217 => 0.035896066002802
1218 => 0.036622315784508
1219 => 0.037821867652665
1220 => 0.038146101702438
1221 => 0.038385444649307
1222 => 0.038418445997948
1223 => 0.038758380399175
1224 => 0.03693046744928
1225 => 0.039831412244897
1226 => 0.040332325274117
1227 => 0.040238174385342
1228 => 0.040794918135678
1229 => 0.040631110001103
1230 => 0.040393777714814
1231 => 0.041276334981888
]
'min_raw' => 0.015214817956895
'max_raw' => 0.041276334981888
'avg_raw' => 0.028245576469392
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.015214'
'max' => '$0.041276'
'avg' => '$0.028245'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0052471975033605
'max_diff' => 0.019024324489758
'year' => 2032
]
7 => [
'items' => [
101 => 0.040264554293886
102 => 0.038828458986915
103 => 0.038040588698766
104 => 0.039078119849884
105 => 0.039711703919024
106 => 0.040130462685211
107 => 0.040257178834838
108 => 0.03707236312818
109 => 0.035355924100268
110 => 0.036456141838146
111 => 0.037798483411329
112 => 0.036923010674065
113 => 0.036957327547876
114 => 0.035709133494725
115 => 0.037908920888598
116 => 0.037588430368435
117 => 0.039251135753979
118 => 0.038854317769674
119 => 0.040210189465734
120 => 0.039853143007953
121 => 0.041335222892005
122 => 0.041926464683464
123 => 0.042919251670761
124 => 0.043649549819987
125 => 0.04407839486159
126 => 0.044052648613849
127 => 0.045751946318431
128 => 0.044749929830979
129 => 0.043491160965585
130 => 0.043468393808175
131 => 0.044120328040455
201 => 0.045486603341892
202 => 0.045840858649058
203 => 0.046038839037366
204 => 0.045735625180925
205 => 0.044648008098965
206 => 0.044178380557318
207 => 0.044578516829221
208 => 0.044089184552785
209 => 0.0449339093443
210 => 0.04609389690653
211 => 0.045854364062017
212 => 0.046655086448451
213 => 0.047483749879959
214 => 0.048668775804618
215 => 0.048978585462707
216 => 0.049490689046521
217 => 0.050017811851531
218 => 0.050187109490142
219 => 0.050510351212223
220 => 0.050508647568791
221 => 0.051482758254958
222 => 0.052557232507497
223 => 0.052962821663695
224 => 0.053895451564054
225 => 0.052298355542938
226 => 0.053509771221072
227 => 0.054602498486449
228 => 0.053299703992809
301 => 0.055095302690106
302 => 0.055165021718608
303 => 0.056217696274744
304 => 0.055150608944057
305 => 0.054516975893359
306 => 0.056346250768804
307 => 0.057231379259413
308 => 0.056964771354627
309 => 0.054935872035149
310 => 0.053754965607627
311 => 0.050664305706965
312 => 0.054325325865871
313 => 0.056108501991853
314 => 0.054931254039766
315 => 0.055524989430375
316 => 0.058764217202187
317 => 0.059997505413227
318 => 0.059740990086666
319 => 0.059784336954253
320 => 0.060449796887165
321 => 0.063400812705178
322 => 0.061632495623014
323 => 0.062984307774751
324 => 0.063701304065712
325 => 0.064367290179393
326 => 0.062731838771264
327 => 0.060604140518841
328 => 0.059930209167603
329 => 0.054814199931953
330 => 0.054547889433535
331 => 0.054398401280739
401 => 0.053455899622881
402 => 0.052715351492736
403 => 0.052126440124855
404 => 0.050580960831715
405 => 0.05110251472513
406 => 0.048639343298461
407 => 0.050215193087808
408 => 0.046283912015492
409 => 0.049557999711165
410 => 0.047776062632911
411 => 0.048972585455914
412 => 0.048968410900504
413 => 0.046765233025448
414 => 0.045494486006264
415 => 0.046304255465102
416 => 0.047172392604555
417 => 0.047313244934668
418 => 0.048438807396667
419 => 0.048752927685926
420 => 0.047801128544595
421 => 0.046202444953375
422 => 0.046573782689525
423 => 0.045486960858894
424 => 0.04358234740471
425 => 0.044950274038865
426 => 0.045417344335254
427 => 0.045623629186547
428 => 0.043750660600691
429 => 0.043162133206888
430 => 0.042848806160651
501 => 0.045960668228673
502 => 0.046131143057391
503 => 0.04525896973096
504 => 0.049201275869298
505 => 0.048309010573964
506 => 0.049305889519157
507 => 0.046540087682147
508 => 0.046645745036967
509 => 0.045336370123386
510 => 0.046069532582528
511 => 0.045551356987336
512 => 0.046010300301082
513 => 0.046285389031048
514 => 0.04759454908909
515 => 0.049572948216095
516 => 0.047399004233059
517 => 0.046451785708199
518 => 0.047039434753663
519 => 0.048604421601219
520 => 0.05097545678547
521 => 0.049571756234863
522 => 0.050194694702841
523 => 0.050330779045491
524 => 0.049295742227293
525 => 0.051013620069318
526 => 0.051934244760874
527 => 0.052878615197972
528 => 0.053698585587847
529 => 0.052501412878244
530 => 0.053782559285486
531 => 0.052750181434034
601 => 0.051824031776021
602 => 0.051825436362754
603 => 0.051244449153395
604 => 0.050118713226162
605 => 0.049911110249293
606 => 0.050991087152333
607 => 0.051857126354379
608 => 0.051928457491107
609 => 0.052407941292061
610 => 0.052691694866389
611 => 0.055472865639084
612 => 0.056591475530913
613 => 0.05795929053244
614 => 0.058492131561364
615 => 0.060095792024345
616 => 0.058800705957553
617 => 0.05852050594053
618 => 0.054630550210678
619 => 0.055267530243522
620 => 0.056287396735536
621 => 0.054647367433491
622 => 0.055687588542929
623 => 0.055892950224828
624 => 0.054591639865372
625 => 0.055286725954659
626 => 0.053440783380176
627 => 0.04961318471984
628 => 0.051017881280804
629 => 0.052052210765423
630 => 0.050576095058966
701 => 0.053221975329224
702 => 0.051676306697394
703 => 0.051186403946283
704 => 0.049275118651257
705 => 0.050177171738392
706 => 0.051397211454897
707 => 0.050643368754938
708 => 0.052207705547405
709 => 0.054423223638923
710 => 0.056002133767322
711 => 0.056123342881575
712 => 0.055108209447778
713 => 0.056734967253933
714 => 0.056746816408579
715 => 0.054911826957735
716 => 0.053787906136357
717 => 0.05353254896099
718 => 0.054170481250779
719 => 0.054945048819381
720 => 0.056166325990916
721 => 0.056904318207806
722 => 0.058828610508626
723 => 0.059349268831444
724 => 0.059921314474481
725 => 0.060685743865921
726 => 0.061603637346018
727 => 0.05959533866727
728 => 0.059675132117714
729 => 0.057805032194853
730 => 0.055806562227818
731 => 0.057323151819999
801 => 0.059305890968317
802 => 0.058851048416961
803 => 0.058799869338343
804 => 0.058885938352686
805 => 0.058543001922732
806 => 0.056991913159869
807 => 0.056212966093489
808 => 0.05721800653971
809 => 0.057752140807673
810 => 0.058580536475879
811 => 0.058478419224462
812 => 0.060612277502563
813 => 0.061441430304908
814 => 0.061229297536619
815 => 0.061268335071244
816 => 0.06276947661439
817 => 0.064439054743673
818 => 0.066002834981984
819 => 0.067593579406319
820 => 0.065675874914972
821 => 0.064702182841836
822 => 0.065706784518839
823 => 0.065173728728229
824 => 0.068236825415693
825 => 0.068448907584426
826 => 0.071511782775136
827 => 0.074418816051512
828 => 0.072592960535531
829 => 0.074314660048762
830 => 0.076176818444543
831 => 0.079769224114316
901 => 0.078559428267092
902 => 0.077632743608036
903 => 0.076757031082936
904 => 0.078579249832221
905 => 0.08092350514252
906 => 0.08142843528336
907 => 0.082246615009681
908 => 0.081386399069712
909 => 0.082422434419727
910 => 0.086080094462281
911 => 0.085091762431725
912 => 0.083688172066032
913 => 0.086575543384225
914 => 0.087620471839906
915 => 0.094954326975163
916 => 0.10421362202987
917 => 0.10038021307741
918 => 0.098000692437287
919 => 0.098559936230701
920 => 0.10194111733776
921 => 0.10302704539603
922 => 0.10007511859182
923 => 0.10111778904326
924 => 0.10686300574381
925 => 0.10994513017504
926 => 0.10575919121289
927 => 0.094210351633092
928 => 0.083561794110617
929 => 0.086386271076372
930 => 0.08606606304218
1001 => 0.092238581656543
1002 => 0.085068191039659
1003 => 0.085188922028156
1004 => 0.091489081790653
1005 => 0.089808307178101
1006 => 0.087085667563114
1007 => 0.083581672392859
1008 => 0.077104213240319
1009 => 0.071366947031603
1010 => 0.082619047280394
1011 => 0.082133836257049
1012 => 0.081431178791001
1013 => 0.082994866946212
1014 => 0.090587692767286
1015 => 0.090412653556531
1016 => 0.089299143403501
1017 => 0.090143731040546
1018 => 0.086937607266819
1019 => 0.08776389836539
1020 => 0.0835601073247
1021 => 0.085460396440914
1022 => 0.0870798260013
1023 => 0.087404950461612
1024 => 0.088137472471962
1025 => 0.081878152095906
1026 => 0.084688403180764
1027 => 0.086339162408201
1028 => 0.078880972163506
1029 => 0.086191737966973
1030 => 0.08176919125389
1031 => 0.080268112475047
1101 => 0.082289117298668
1102 => 0.081501529753411
1103 => 0.080824408230692
1104 => 0.08044656278659
1105 => 0.081930565678894
1106 => 0.081861335170201
1107 => 0.079433218405842
1108 => 0.076265839069436
1109 => 0.077328915540417
1110 => 0.076942689892114
1111 => 0.075542958318567
1112 => 0.076486208394903
1113 => 0.072332612426658
1114 => 0.065186566448423
1115 => 0.069907463310953
1116 => 0.069725713917093
1117 => 0.06963406763103
1118 => 0.073181691147216
1119 => 0.072840669003735
1120 => 0.072221710474018
1121 => 0.075531590659776
1122 => 0.074323439867803
1123 => 0.078046675932536
1124 => 0.080499040008579
1125 => 0.079877041153227
1126 => 0.08218350142005
1127 => 0.077353406675195
1128 => 0.07895777039967
1129 => 0.079288427539732
1130 => 0.075490747252063
1201 => 0.0728964644439
1202 => 0.072723455357585
1203 => 0.068225326482424
1204 => 0.070628190619907
1205 => 0.072742611623618
1206 => 0.071729968048539
1207 => 0.071409395344535
1208 => 0.073047131765554
1209 => 0.073174397911732
1210 => 0.070272716291833
1211 => 0.070876067784916
1212 => 0.073392143809913
1213 => 0.070812669124672
1214 => 0.065801171166046
1215 => 0.064558250382927
1216 => 0.064392421838884
1217 => 0.061021522097774
1218 => 0.064641308292912
1219 => 0.063061174614496
1220 => 0.068052797971705
1221 => 0.06520160948068
1222 => 0.06507870044343
1223 => 0.064892905406791
1224 => 0.061991432749503
1225 => 0.062626670863243
1226 => 0.064738299102808
1227 => 0.06549175184788
1228 => 0.065413160553713
1229 => 0.06472795097244
1230 => 0.065041636409906
1231 => 0.064031146320576
]
'min_raw' => 0.035355924100268
'max_raw' => 0.10994513017504
'avg_raw' => 0.072650527137652
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.035355'
'max' => '$0.109945'
'avg' => '$0.07265'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.020141106143372
'max_diff' => 0.068668795193149
'year' => 2033
]
8 => [
'items' => [
101 => 0.063674321238502
102 => 0.062548083127003
103 => 0.060892824234319
104 => 0.061122998135639
105 => 0.057843497147182
106 => 0.05605665095238
107 => 0.055562075475913
108 => 0.05490070847905
109 => 0.055636778638039
110 => 0.05783420673293
111 => 0.055183642240115
112 => 0.050639435332666
113 => 0.050912549910756
114 => 0.051526157279277
115 => 0.050382704007457
116 => 0.049300521448438
117 => 0.050241391383258
118 => 0.048315951011351
119 => 0.051758837549322
120 => 0.051665717117047
121 => 0.052949012311728
122 => 0.053751483132829
123 => 0.051902047693203
124 => 0.051436919681542
125 => 0.051701877735874
126 => 0.047322711299134
127 => 0.052591140987141
128 => 0.05263670258586
129 => 0.052246576516386
130 => 0.055051852680732
131 => 0.060971860375081
201 => 0.058744515348709
202 => 0.057882020032638
203 => 0.056242415806307
204 => 0.058427091087827
205 => 0.05825934211245
206 => 0.057500717628884
207 => 0.057041899174171
208 => 0.057887286245122
209 => 0.056937146360595
210 => 0.056766475129236
211 => 0.055732393159333
212 => 0.055363272943809
213 => 0.055089991031334
214 => 0.054789134497826
215 => 0.055452749041968
216 => 0.053948911179178
217 => 0.052135430139695
218 => 0.051984658813399
219 => 0.052400951701253
220 => 0.052216773087738
221 => 0.051983777037056
222 => 0.051538924123605
223 => 0.051406945766963
224 => 0.051835811399254
225 => 0.051351647104817
226 => 0.052066057895053
227 => 0.051871777690261
228 => 0.050786544259254
301 => 0.049433941599343
302 => 0.04942190059849
303 => 0.049130484574125
304 => 0.048759322452404
305 => 0.04865607364118
306 => 0.050162153941647
307 => 0.053279695090424
308 => 0.052667647166482
309 => 0.053109914516724
310 => 0.055285432151831
311 => 0.055976963787934
312 => 0.055486131012453
313 => 0.054814248836127
314 => 0.054843808242026
315 => 0.057139833031097
316 => 0.05728303328083
317 => 0.057644854113754
318 => 0.058109896134617
319 => 0.055565329679504
320 => 0.054723959390819
321 => 0.054325271470593
322 => 0.053097466987941
323 => 0.054421548858481
324 => 0.053650063055356
325 => 0.053754162847905
326 => 0.053686367721442
327 => 0.053723388444778
328 => 0.051757875192368
329 => 0.052474004917211
330 => 0.051283300354015
331 => 0.049689080606756
401 => 0.049683736223158
402 => 0.05007391924777
403 => 0.049841823116867
404 => 0.049217258396346
405 => 0.049305974867033
406 => 0.048528725231951
407 => 0.049400347045291
408 => 0.049425342040085
409 => 0.049089720164388
410 => 0.05043257382847
411 => 0.050982742070309
412 => 0.050761828562008
413 => 0.050967242189656
414 => 0.052693080520953
415 => 0.05297446747256
416 => 0.053099440969085
417 => 0.052931993039557
418 => 0.050998787346186
419 => 0.051084533239312
420 => 0.050455386768845
421 => 0.049923824299122
422 => 0.049945084010233
423 => 0.050218376217955
424 => 0.051411859317452
425 => 0.053923474140671
426 => 0.054018788087246
427 => 0.054134311370998
428 => 0.053664420118627
429 => 0.053522696420658
430 => 0.053709666560269
501 => 0.054652897033436
502 => 0.057079141894999
503 => 0.056221544917477
504 => 0.055524305225459
505 => 0.05613597240983
506 => 0.056041811041202
507 => 0.05524699432933
508 => 0.055224686471447
509 => 0.053699179083089
510 => 0.053135233735736
511 => 0.052663958792911
512 => 0.052149338858289
513 => 0.051844254910828
514 => 0.052313002512302
515 => 0.052420210634817
516 => 0.05139528581189
517 => 0.051255592345752
518 => 0.052092568080694
519 => 0.051724246265346
520 => 0.052103074386372
521 => 0.052190965759978
522 => 0.052176813224518
523 => 0.051792242947804
524 => 0.05203735657413
525 => 0.051457589775979
526 => 0.050827180461147
527 => 0.050425018594173
528 => 0.050074079026207
529 => 0.050268800695242
530 => 0.049574653499904
531 => 0.049352581841693
601 => 0.051954317592762
602 => 0.05387624776545
603 => 0.053848302139571
604 => 0.053678190329066
605 => 0.053425438684575
606 => 0.054634406676349
607 => 0.054213226402093
608 => 0.054519670242404
609 => 0.05459767306117
610 => 0.054833764100631
611 => 0.054918146354527
612 => 0.054663084576008
613 => 0.053807066094126
614 => 0.05167394942507
615 => 0.050680977857387
616 => 0.050353280700801
617 => 0.050365191870058
618 => 0.050036628648166
619 => 0.050133405242184
620 => 0.050002973698193
621 => 0.049755967908653
622 => 0.050253548783782
623 => 0.050310890344354
624 => 0.05019474902245
625 => 0.050222104508135
626 => 0.04926050396738
627 => 0.049333612368007
628 => 0.048926535503149
629 => 0.048850213498373
630 => 0.04782115863225
701 => 0.045998038773025
702 => 0.047008224149563
703 => 0.045788062268265
704 => 0.045325968475348
705 => 0.047513448620688
706 => 0.047293886285351
707 => 0.046918091008706
708 => 0.04636221147195
709 => 0.046156030344519
710 => 0.04490333908326
711 => 0.044829323400697
712 => 0.045450191015286
713 => 0.045163681973904
714 => 0.044761314770343
715 => 0.043303981546357
716 => 0.041665456496147
717 => 0.041714913268012
718 => 0.042236097600641
719 => 0.043751511339044
720 => 0.043159412974526
721 => 0.042729838817523
722 => 0.042649392490868
723 => 0.043656346694748
724 => 0.045081397856666
725 => 0.045749999978116
726 => 0.045087435581507
727 => 0.044326317277685
728 => 0.044372643022156
729 => 0.044680827445823
730 => 0.044713213271257
731 => 0.044217803499694
801 => 0.04435725844851
802 => 0.044145413629231
803 => 0.042845322364353
804 => 0.042821807836005
805 => 0.0425027444728
806 => 0.042493083360966
807 => 0.041950276986069
808 => 0.041874334621978
809 => 0.040796559618627
810 => 0.041505954389636
811 => 0.04103012962214
812 => 0.040312949461809
813 => 0.040189307331846
814 => 0.040185590500118
815 => 0.040921974166228
816 => 0.041497349317754
817 => 0.041038406797689
818 => 0.040933914482098
819 => 0.042049619038427
820 => 0.041907635463761
821 => 0.041784678603797
822 => 0.044953800155214
823 => 0.042445193157629
824 => 0.0413512973204
825 => 0.039997393496644
826 => 0.040438231408635
827 => 0.040531122433947
828 => 0.037275227797321
829 => 0.035954311748738
830 => 0.035501023138536
831 => 0.035240149134804
901 => 0.035359032694154
902 => 0.03417005332243
903 => 0.034969067124132
904 => 0.033939511490143
905 => 0.033766903137641
906 => 0.035607876148682
907 => 0.03586403678836
908 => 0.034771175916621
909 => 0.035472969514381
910 => 0.035218489400173
911 => 0.033957160266484
912 => 0.033908986771286
913 => 0.033276096149864
914 => 0.032285744879112
915 => 0.031833127773705
916 => 0.031597400855408
917 => 0.031694666376123
918 => 0.031645485952476
919 => 0.031324550421253
920 => 0.031663881601452
921 => 0.030797030657369
922 => 0.030451843626742
923 => 0.030295930653286
924 => 0.029526550546334
925 => 0.030750976441382
926 => 0.030992203767617
927 => 0.031233906386204
928 => 0.033337762663618
929 => 0.033232659949434
930 => 0.034182737298555
1001 => 0.034145819039848
1002 => 0.033874841589646
1003 => 0.032731632300872
1004 => 0.033187295147631
1005 => 0.031784835731034
1006 => 0.032835653683919
1007 => 0.032356104253429
1008 => 0.032673517539087
1009 => 0.032102779831472
1010 => 0.032418649644049
1011 => 0.031049407715611
1012 => 0.02977082886859
1013 => 0.030285366320675
1014 => 0.030844727375586
1015 => 0.032057564665179
1016 => 0.031335208781188
1017 => 0.031594995272371
1018 => 0.03072475401464
1019 => 0.028929197727816
1020 => 0.028939360381402
1021 => 0.028663153164994
1022 => 0.028424469803104
1023 => 0.031418180043976
1024 => 0.031045864851968
1025 => 0.030452629320911
1026 => 0.031246698653474
1027 => 0.031456663188578
1028 => 0.031462640583717
1029 => 0.032041973070859
1030 => 0.032351162923097
1031 => 0.03240565897466
1101 => 0.033317251160484
1102 => 0.033622804836981
1103 => 0.034881337186895
1104 => 0.032324930324324
1105 => 0.03227228280728
1106 => 0.031257872837416
1107 => 0.030614517997341
1108 => 0.03130192389373
1109 => 0.031910871677668
1110 => 0.031276794542498
1111 => 0.031359591630252
1112 => 0.030508394882292
1113 => 0.030812657667158
1114 => 0.031074729766109
1115 => 0.030930028956954
1116 => 0.030713404842052
1117 => 0.031860944903734
1118 => 0.031796196196208
1119 => 0.032864811883479
1120 => 0.033697874229147
1121 => 0.035190870880291
1122 => 0.033632851043146
1123 => 0.033576070607713
1124 => 0.034131108471944
1125 => 0.033622719863576
1126 => 0.033944003915086
1127 => 0.035139107052561
1128 => 0.035164357698637
1129 => 0.034741376843244
1130 => 0.034715638419753
1201 => 0.034796876519935
1202 => 0.035272690610125
1203 => 0.035106426546722
1204 => 0.035298831530183
1205 => 0.03553943690821
1206 => 0.036534682766296
1207 => 0.036774633173291
1208 => 0.036191678084314
1209 => 0.036244312401777
1210 => 0.036026271196025
1211 => 0.035815646123316
1212 => 0.036289100527443
1213 => 0.037154347756756
1214 => 0.037148965098648
1215 => 0.037349685637846
1216 => 0.037474732870907
1217 => 0.036937938606439
1218 => 0.036588505278742
1219 => 0.036722500251601
1220 => 0.036936761131234
1221 => 0.036653018336072
1222 => 0.034901626361884
1223 => 0.0354328868075
1224 => 0.035344459092041
1225 => 0.035218527272049
1226 => 0.035752713758232
1227 => 0.035701190168483
1228 => 0.03415785862045
1229 => 0.034256657698828
1230 => 0.034163866919639
1231 => 0.034463692910406
]
'min_raw' => 0.028424469803104
'max_raw' => 0.063674321238502
'avg_raw' => 0.046049395520803
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.028424'
'max' => '$0.063674'
'avg' => '$0.046049'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0069314542971637
'max_diff' => -0.046270808936535
'year' => 2034
]
9 => [
'items' => [
101 => 0.033606528276129
102 => 0.033870186344541
103 => 0.034035550213408
104 => 0.034132950802556
105 => 0.034484828518767
106 => 0.034443539730127
107 => 0.034482261949693
108 => 0.03500400371056
109 => 0.037642794496879
110 => 0.037786418057214
111 => 0.037079163118272
112 => 0.037361697516393
113 => 0.036819293255482
114 => 0.037183412869624
115 => 0.037432534261985
116 => 0.036306802593196
117 => 0.036240144069709
118 => 0.03569550111347
119 => 0.035988161387999
120 => 0.035522517848204
121 => 0.03563677048535
122 => 0.035317310151525
123 => 0.035892275148493
124 => 0.036535175355632
125 => 0.036697597336854
126 => 0.036270335031319
127 => 0.035960968964153
128 => 0.035417824061729
129 => 0.036321086139234
130 => 0.03658522749711
131 => 0.03631969871713
201 => 0.03625816989689
202 => 0.036141572893716
203 => 0.036282906502303
204 => 0.036583788926548
205 => 0.0364418983317
206 => 0.036535619569388
207 => 0.036178450856243
208 => 0.036938116307676
209 => 0.038144647867999
210 => 0.038148527064253
211 => 0.038006635704562
212 => 0.037948576817268
213 => 0.038094165962999
214 => 0.038173142102178
215 => 0.038643950702988
216 => 0.039149147089499
217 => 0.041506678190894
218 => 0.040844692891436
219 => 0.042936434734746
220 => 0.04459073095412
221 => 0.045086782056704
222 => 0.044630438383335
223 => 0.043069311327939
224 => 0.042992714986852
225 => 0.045325697898454
226 => 0.04466652336854
227 => 0.044588116655683
228 => 0.043754001701112
301 => 0.04424706694641
302 => 0.044139226344433
303 => 0.043968994678469
304 => 0.044909728819274
305 => 0.046670699150947
306 => 0.046396235410481
307 => 0.046191360960229
308 => 0.045293660757282
309 => 0.045834276788055
310 => 0.045641773774315
311 => 0.046468888886775
312 => 0.045978924216997
313 => 0.04466152947316
314 => 0.044871328928306
315 => 0.044839618162718
316 => 0.045492223471458
317 => 0.045296327556434
318 => 0.044801366341293
319 => 0.046664680345795
320 => 0.04654368709864
321 => 0.046715227860199
322 => 0.046790745408512
323 => 0.047924911807776
324 => 0.048389543492278
325 => 0.048495023019183
326 => 0.048936387183556
327 => 0.0484840414767
328 => 0.050293746821147
329 => 0.051497095275969
330 => 0.052894846429991
331 => 0.054937336546109
401 => 0.055705331723859
402 => 0.055566600269057
403 => 0.05711519296448
404 => 0.059897979614874
405 => 0.056129081014017
406 => 0.06009774039232
407 => 0.058841308653525
408 => 0.055862331603084
409 => 0.055670520600868
410 => 0.057687918446061
411 => 0.062162312699353
412 => 0.061041527687063
413 => 0.062164145902123
414 => 0.060854552122878
415 => 0.060789519753616
416 => 0.062100541855333
417 => 0.065163816456091
418 => 0.063708569518402
419 => 0.061622116192037
420 => 0.063162720859416
421 => 0.061828106520301
422 => 0.058820846879244
423 => 0.061040670643887
424 => 0.059556337709411
425 => 0.05998954497117
426 => 0.063109392021577
427 => 0.062734003770381
428 => 0.063219790927445
429 => 0.06236238931049
430 => 0.061561441000429
501 => 0.060066411500498
502 => 0.059623806969632
503 => 0.05974612693872
504 => 0.05962374635393
505 => 0.058787291088749
506 => 0.058606658653872
507 => 0.058305596682057
508 => 0.058398908375931
509 => 0.057832823790131
510 => 0.058901142362579
511 => 0.059099431703616
512 => 0.059876864870268
513 => 0.059957580560665
514 => 0.062122720863723
515 => 0.060930197968504
516 => 0.06173024528409
517 => 0.061658681521846
518 => 0.055926895068816
519 => 0.056716684670063
520 => 0.057945349439974
521 => 0.057391837626545
522 => 0.056609301424173
523 => 0.055977361483822
524 => 0.055019907855012
525 => 0.056367505451293
526 => 0.058139452989375
527 => 0.06000252007439
528 => 0.062240873104044
529 => 0.061741298765127
530 => 0.059960675621466
531 => 0.060040553074945
601 => 0.06053432406173
602 => 0.059894845770019
603 => 0.059706251137694
604 => 0.060508414055316
605 => 0.060513938110469
606 => 0.059778141052322
607 => 0.058960437271631
608 => 0.058957011062933
609 => 0.058811508573241
610 => 0.060880436692559
611 => 0.062018137965958
612 => 0.062148573583456
613 => 0.062009358609643
614 => 0.062062936927819
615 => 0.061400933624365
616 => 0.062914076865079
617 => 0.064302686737115
618 => 0.063930509628086
619 => 0.063372563233559
620 => 0.062928132055979
621 => 0.063825815766875
622 => 0.063785843324314
623 => 0.06429055844128
624 => 0.064267661648198
625 => 0.064097944937658
626 => 0.063930515689205
627 => 0.064594353733979
628 => 0.064403179037997
629 => 0.064211707394908
630 => 0.063827681701851
701 => 0.063879877171529
702 => 0.063322027114313
703 => 0.063063940152363
704 => 0.059182931481846
705 => 0.058145799149467
706 => 0.058472102094009
707 => 0.058579529495804
708 => 0.058128168175631
709 => 0.058775304363549
710 => 0.058674448874149
711 => 0.059066818584917
712 => 0.058821683024342
713 => 0.058831743473254
714 => 0.059552634888495
715 => 0.05976191273323
716 => 0.059655472332318
717 => 0.059730019540553
718 => 0.061447928489924
719 => 0.061203696772959
720 => 0.06107395354104
721 => 0.061109893302963
722 => 0.06154885587191
723 => 0.061671741424748
724 => 0.06115106670236
725 => 0.061396619911423
726 => 0.062442154310269
727 => 0.062808032177744
728 => 0.063975738699382
729 => 0.063479676214661
730 => 0.064390220374447
731 => 0.067188922694249
801 => 0.069424719762776
802 => 0.067368588380337
803 => 0.071474344969648
804 => 0.074671265410229
805 => 0.07454856227897
806 => 0.073991105254053
807 => 0.070351496326978
808 => 0.067002273928772
809 => 0.069804040680366
810 => 0.069811182960004
811 => 0.069570508711279
812 => 0.068075701622565
813 => 0.069518492664774
814 => 0.069633016178257
815 => 0.069568913464966
816 => 0.06842284837481
817 => 0.066673018810376
818 => 0.067014931318766
819 => 0.067574990982336
820 => 0.066514681198514
821 => 0.066175847976147
822 => 0.066805803402185
823 => 0.068835651041303
824 => 0.068451920103235
825 => 0.068441899337663
826 => 0.070083663017964
827 => 0.068908514537646
828 => 0.067019243930453
829 => 0.066542178185719
830 => 0.064848916181905
831 => 0.066018458279132
901 => 0.066060548017115
902 => 0.065420001762895
903 => 0.067071220728731
904 => 0.067056004455269
905 => 0.068623591111821
906 => 0.071620228040488
907 => 0.070733975045134
908 => 0.069703359235588
909 => 0.069815415749963
910 => 0.071044399133604
911 => 0.070301327724893
912 => 0.070568541384343
913 => 0.071043994673727
914 => 0.071330847448053
915 => 0.069774142050151
916 => 0.069411199556073
917 => 0.068668746588695
918 => 0.068475054468047
919 => 0.069079766918187
920 => 0.068920446552381
921 => 0.066057010537617
922 => 0.065757765542067
923 => 0.065766942958857
924 => 0.065014477189221
925 => 0.06386678627805
926 => 0.066882849467545
927 => 0.066640617383651
928 => 0.066373211910307
929 => 0.066405967554997
930 => 0.067715138361691
1001 => 0.066955753179098
1002 => 0.068974703147805
1003 => 0.06855966772943
1004 => 0.068133988218646
1005 => 0.068075146343741
1006 => 0.067911296049358
1007 => 0.06734939242391
1008 => 0.066670860031009
1009 => 0.066222834171747
1010 => 0.061087063997667
1011 => 0.062040233068575
1012 => 0.063136767200561
1013 => 0.063515286388838
1014 => 0.06286780312456
1015 => 0.067374959009641
1016 => 0.06819845982188
1017 => 0.065704022145979
1018 => 0.065237414704037
1019 => 0.067405549715853
1020 => 0.066097899260002
1021 => 0.066686734180203
1022 => 0.06541399515821
1023 => 0.06800010259113
1024 => 0.067980400785406
1025 => 0.066974346584115
1026 => 0.067824656705885
1027 => 0.067676894397123
1028 => 0.066541061681667
1029 => 0.068036110514158
1030 => 0.068036852039727
1031 => 0.067068546744488
1101 => 0.065937778148935
1102 => 0.065735623431613
1103 => 0.065583327007775
1104 => 0.06664927859588
1105 => 0.067605007456631
1106 => 0.06938338192121
1107 => 0.06983050751474
1108 => 0.071575668473126
1109 => 0.070536510092752
1110 => 0.070997155543418
1111 => 0.071497251342393
1112 => 0.071737015658835
1113 => 0.071346332571655
1114 => 0.074057285876935
1115 => 0.074286173397364
1116 => 0.074362917403094
1117 => 0.07344879920156
1118 => 0.074260750116552
1119 => 0.073880865172415
1120 => 0.074869220261981
1121 => 0.075024206959976
1122 => 0.074892938740586
1123 => 0.074942133964828
1124 => 0.072628813563706
1125 => 0.07250885569717
1126 => 0.070873221675137
1127 => 0.071539754629112
1128 => 0.070293703219412
1129 => 0.070688838957179
1130 => 0.070863011025396
1201 => 0.070772033421137
1202 => 0.071577439402271
1203 => 0.070892679784736
1204 => 0.069085486569156
1205 => 0.067277800984993
1206 => 0.067255106964993
1207 => 0.066779175258983
1208 => 0.066435163806779
1209 => 0.066501432616935
1210 => 0.066734972547504
1211 => 0.066421590041462
1212 => 0.066488466088022
1213 => 0.067599054053692
1214 => 0.067821774549857
1215 => 0.067064883281375
1216 => 0.064025855619534
1217 => 0.063280070608494
1218 => 0.06381612608487
1219 => 0.063559926093556
1220 => 0.05129782100634
1221 => 0.054178620710206
1222 => 0.052466947348883
1223 => 0.053255765184085
1224 => 0.051508589917843
1225 => 0.052342433532195
1226 => 0.052188453063717
1227 => 0.056820693738473
1228 => 0.056748367671776
1229 => 0.056782986332494
1230 => 0.055130547457989
1231 => 0.057762927453679
]
'min_raw' => 0.033606528276129
'max_raw' => 0.075024206959976
'avg_raw' => 0.054315367618053
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.0336065'
'max' => '$0.075024'
'avg' => '$0.054315'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0051820584730253
'max_diff' => 0.011349885721474
'year' => 2035
]
10 => [
'items' => [
101 => 0.059059732496879
102 => 0.058819728396731
103 => 0.058880132258053
104 => 0.057842193792977
105 => 0.056793035845657
106 => 0.055629358217827
107 => 0.057791327415432
108 => 0.057550953346704
109 => 0.058102284976507
110 => 0.059504476541904
111 => 0.059710954576316
112 => 0.05998846314846
113 => 0.059888996079752
114 => 0.062258705197118
115 => 0.061971717787161
116 => 0.062663274873245
117 => 0.061240689478608
118 => 0.05963089907153
119 => 0.059936867599902
120 => 0.059907400370177
121 => 0.059532248714856
122 => 0.059193578574597
123 => 0.058629788210785
124 => 0.06041370434716
125 => 0.060341280609836
126 => 0.061513736733717
127 => 0.06130649372519
128 => 0.059922474193279
129 => 0.059971904721621
130 => 0.060304348780222
131 => 0.061454941462818
201 => 0.061796515709336
202 => 0.061638284908968
203 => 0.062012805476818
204 => 0.062308811263214
205 => 0.062049979246204
206 => 0.065714494778638
207 => 0.06419273244044
208 => 0.064934428815723
209 => 0.065111319030899
210 => 0.064658218464326
211 => 0.064756479752901
212 => 0.064905318830493
213 => 0.065809040563956
214 => 0.068180667886554
215 => 0.069231045483519
216 => 0.072391158308707
217 => 0.069143826246053
218 => 0.068951143000251
219 => 0.069520374746333
220 => 0.071375695506632
221 => 0.072879258721438
222 => 0.073378077382432
223 => 0.07344400450308
224 => 0.074379821471942
225 => 0.074916214306541
226 => 0.074266188677493
227 => 0.073715360017395
228 => 0.071742360128294
229 => 0.071970740237758
301 => 0.073544052718306
302 => 0.075766449264722
303 => 0.077673496702498
304 => 0.077005715157102
305 => 0.08210041696817
306 => 0.082605535842747
307 => 0.082535744746729
308 => 0.083686480714782
309 => 0.081402504161501
310 => 0.080426059935012
311 => 0.073834455425879
312 => 0.075686427424891
313 => 0.078378377487958
314 => 0.078022087802816
315 => 0.076067121710986
316 => 0.077672013685411
317 => 0.077141386209054
318 => 0.076722858302697
319 => 0.078640215777345
320 => 0.076532002473265
321 => 0.078357346447551
322 => 0.076016323919764
323 => 0.077008765526951
324 => 0.076445407671713
325 => 0.076809969246594
326 => 0.074678749729054
327 => 0.075828704048289
328 => 0.074630907848675
329 => 0.074630339937319
330 => 0.074603898519824
331 => 0.076013100436829
401 => 0.076059054460751
402 => 0.075017652114898
403 => 0.074867569767099
404 => 0.075422502868256
405 => 0.07477282154401
406 => 0.075076803346579
407 => 0.074782028843139
408 => 0.074715668893514
409 => 0.074186901524684
410 => 0.07395909400343
411 => 0.07404842320239
412 => 0.073743496593981
413 => 0.073559767282736
414 => 0.074567350135418
415 => 0.074029039263007
416 => 0.074484846273756
417 => 0.073965396657576
418 => 0.072164757974471
419 => 0.071129191626409
420 => 0.067727952073318
421 => 0.06869253939135
422 => 0.069332061781143
423 => 0.069120699635132
424 => 0.069574787311057
425 => 0.069602664606412
426 => 0.069455036074092
427 => 0.069284101146053
428 => 0.069200899476378
429 => 0.069821016556287
430 => 0.070181015393356
501 => 0.069396246408665
502 => 0.069212386015637
503 => 0.070005830787442
504 => 0.070489831639886
505 => 0.074063421997741
506 => 0.073798678881486
507 => 0.074463132150073
508 => 0.074388324908896
509 => 0.075084777790082
510 => 0.076223183907872
511 => 0.073908485967048
512 => 0.074310237493343
513 => 0.074211737296893
514 => 0.075287136613593
515 => 0.075290493892876
516 => 0.074645738282334
517 => 0.074995270758774
518 => 0.074800171319347
519 => 0.075152742375662
520 => 0.073795143075762
521 => 0.075448552479252
522 => 0.076385929067681
523 => 0.076398944542521
524 => 0.076843253605956
525 => 0.077294697347052
526 => 0.078161204295622
527 => 0.077270530938554
528 => 0.075668296274492
529 => 0.075783972442051
530 => 0.074844582844747
531 => 0.074860374153592
601 => 0.074776078909389
602 => 0.075029055282692
603 => 0.073850657163607
604 => 0.074127224846808
605 => 0.073740028470748
606 => 0.074309395804039
607 => 0.07369685067321
608 => 0.074211689797116
609 => 0.074433877295806
610 => 0.075253753949328
611 => 0.073575754224864
612 => 0.070154199196087
613 => 0.070873451545481
614 => 0.069809620824675
615 => 0.069908082408175
616 => 0.070106990476889
617 => 0.069462264347515
618 => 0.069585257775345
619 => 0.069580863584611
620 => 0.069542996822804
621 => 0.069375278656049
622 => 0.069132054132227
623 => 0.070100985774574
624 => 0.070265626141481
625 => 0.070631601282489
626 => 0.071720495058819
627 => 0.07161168889268
628 => 0.071789156263977
629 => 0.071401745988872
630 => 0.069926053259717
701 => 0.070006190474682
702 => 0.069006878119957
703 => 0.070606046618818
704 => 0.070227342410295
705 => 0.069983189343443
706 => 0.06991656991709
707 => 0.071008162850476
708 => 0.071334784564768
709 => 0.071131255831189
710 => 0.070713812460737
711 => 0.071515427138059
712 => 0.071729905408302
713 => 0.071777919183355
714 => 0.073198226697199
715 => 0.07185729859573
716 => 0.072180073317433
717 => 0.074698269556049
718 => 0.072414613054952
719 => 0.0736243168352
720 => 0.073565108130152
721 => 0.074183951649983
722 => 0.073514344898837
723 => 0.073522645477033
724 => 0.074072136598552
725 => 0.073300475419625
726 => 0.073109401259827
727 => 0.072845433676565
728 => 0.073421797237557
729 => 0.073767301125689
730 => 0.076551808719395
731 => 0.078350727613902
801 => 0.078272631800381
802 => 0.078986281346731
803 => 0.078664775689819
804 => 0.077626549114745
805 => 0.079398675280155
806 => 0.078837900412511
807 => 0.078884130011258
808 => 0.078882409343284
809 => 0.079255275606477
810 => 0.078991065686313
811 => 0.078470280813079
812 => 0.078816002115944
813 => 0.079842670787827
814 => 0.083029481847392
815 => 0.084812863535956
816 => 0.08292212003046
817 => 0.084226329582487
818 => 0.08344426858865
819 => 0.083302144841771
820 => 0.084121284820772
821 => 0.08494185859587
822 => 0.084889591593834
823 => 0.084293897170043
824 => 0.083957404505229
825 => 0.08650543969651
826 => 0.088382788620799
827 => 0.088254766010069
828 => 0.088819816178646
829 => 0.090478820949932
830 => 0.090630499554894
831 => 0.090611391536962
901 => 0.090235440288538
902 => 0.091868945934862
903 => 0.093231645083823
904 => 0.090148418436804
905 => 0.091322470781588
906 => 0.091849540704766
907 => 0.092623435726591
908 => 0.093929126348274
909 => 0.095347452680755
910 => 0.095548019575325
911 => 0.095405707765618
912 => 0.094470283422689
913 => 0.096022233019842
914 => 0.096931328696158
915 => 0.097472674367119
916 => 0.098845436917347
917 => 0.091852795709176
918 => 0.086903056705214
919 => 0.086130083484647
920 => 0.08770195492434
921 => 0.088116444887547
922 => 0.087949364503104
923 => 0.082377983243563
924 => 0.08610075131534
925 => 0.090106136741342
926 => 0.090259999908
927 => 0.092265179600916
928 => 0.092918148304022
929 => 0.09453258078173
930 => 0.094431597590687
1001 => 0.094824686207778
1002 => 0.094734321942054
1003 => 0.097724718148142
1004 => 0.10102356924159
1005 => 0.10090934051793
1006 => 0.10043509164301
1007 => 0.10113943209371
1008 => 0.10454419994852
1009 => 0.10423074348474
1010 => 0.10453523973914
1011 => 0.10854965292427
1012 => 0.11376896110855
1013 => 0.11134406844698
1014 => 0.11660538777852
1015 => 0.11991710940717
1016 => 0.12564438952552
1017 => 0.12492730584725
1018 => 0.1271568939686
1019 => 0.12364357640328
1020 => 0.11557628911466
1021 => 0.1142996100209
1022 => 0.11685555389727
1023 => 0.12313909251197
1024 => 0.11665766290508
1025 => 0.11796884767312
1026 => 0.11759122637171
1027 => 0.11757110453735
1028 => 0.11833907311363
1029 => 0.11722509463919
1030 => 0.1126865459334
1031 => 0.11476653605942
1101 => 0.11396335198244
1102 => 0.11485454459719
1103 => 0.11966394358326
1104 => 0.11753759364977
1105 => 0.11529765672548
1106 => 0.11810703471033
1107 => 0.12168433829207
1108 => 0.12146047706295
1109 => 0.12102609271174
1110 => 0.1234746945559
1111 => 0.12751906742943
1112 => 0.12861224516554
1113 => 0.1294192066213
1114 => 0.12953047297233
1115 => 0.13067658553952
1116 => 0.12451364940815
1117 => 0.13429438732407
1118 => 0.13598325057471
1119 => 0.1356658142798
1120 => 0.13754291470467
1121 => 0.13699062414223
1122 => 0.13619044176899
1123 => 0.13916604521311
1124 => 0.13575475598325
1125 => 0.13091286039082
1126 => 0.12825650070698
1127 => 0.13175460942108
1128 => 0.13389078234562
1129 => 0.13530265676262
1130 => 0.13572988910813
1201 => 0.1249920605964
1202 => 0.11920496657584
1203 => 0.12291442749385
1204 => 0.12744022582713
1205 => 0.12448850836989
1206 => 0.12460421010588
1207 => 0.12039583670955
1208 => 0.12781257349224
1209 => 0.12673201732758
1210 => 0.13233794462132
1211 => 0.1310000450823
1212 => 0.1355714611695
1213 => 0.1343676541089
1214 => 0.1393645899135
1215 => 0.14135800289259
1216 => 0.14470525353443
1217 => 0.14716750473233
1218 => 0.1486133857311
1219 => 0.1485265804593
1220 => 0.15425588131148
1221 => 0.15087751276547
1222 => 0.14663348565136
1223 => 0.1465567245906
1224 => 0.14875476637133
1225 => 0.15336125894042
1226 => 0.15455565544184
1227 => 0.15522316014357
1228 => 0.15420085345687
1229 => 0.15053387653004
1230 => 0.14895049448503
1231 => 0.15029958186237
]
'min_raw' => 0.055629358217827
'max_raw' => 0.15522316014357
'avg_raw' => 0.1054262591807
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.055629'
'max' => '$0.155223'
'avg' => '$0.105426'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.022022829941698
'max_diff' => 0.080198953183597
'year' => 2036
]
11 => [
'items' => [
101 => 0.14864976392828
102 => 0.15149781253968
103 => 0.15540879159348
104 => 0.15460118988455
105 => 0.15730088131507
106 => 0.16009477792983
107 => 0.16409017557069
108 => 0.16513472046315
109 => 0.16686131344991
110 => 0.16863854478954
111 => 0.1692093435981
112 => 0.17029917563211
113 => 0.17029343167934
114 => 0.17357771386799
115 => 0.17720037882782
116 => 0.17856785098527
117 => 0.18171227780847
118 => 0.1763275570676
119 => 0.18041192960477
120 => 0.18409613587177
121 => 0.17970367327825
122 => 0.18575765965089
123 => 0.18599272222311
124 => 0.18954188798451
125 => 0.18594412854744
126 => 0.18380779047817
127 => 0.18997531843662
128 => 0.19295959094041
129 => 0.19206070377546
130 => 0.18522012806661
131 => 0.18123861959796
201 => 0.1708182439599
202 => 0.18316162902992
203 => 0.18917373183604
204 => 0.18520455817276
205 => 0.18720637849547
206 => 0.1981276610838
207 => 0.20228577839275
208 => 0.20142091905993
209 => 0.20156706605038
210 => 0.20381071067512
211 => 0.2137602665389
212 => 0.20779826203642
213 => 0.21235599108652
214 => 0.21477339414057
215 => 0.21701881282051
216 => 0.21150477421444
217 => 0.20433109100524
218 => 0.20205888440216
219 => 0.18480990207581
220 => 0.18391201763719
221 => 0.18340800789311
222 => 0.18023029775027
223 => 0.17773348802607
224 => 0.17574793223278
225 => 0.17053724089404
226 => 0.17229569625942
227 => 0.16399094182127
228 => 0.16930402940837
301 => 0.15604944079978
302 => 0.16708825605524
303 => 0.16108033078503
304 => 0.16511449102134
305 => 0.16510041621632
306 => 0.1576722481896
307 => 0.1533878358937
308 => 0.15611803016047
309 => 0.15904501513754
310 => 0.15951990860251
311 => 0.1633148210274
312 => 0.16437389951381
313 => 0.16116484225632
314 => 0.155774768912
315 => 0.1570267600154
316 => 0.15336246433395
317 => 0.14694092709731
318 => 0.15155298724995
319 => 0.15312774736403
320 => 0.15382325114251
321 => 0.14750840678881
322 => 0.14552414559093
323 => 0.14446774157875
324 => 0.15495960180436
325 => 0.15553436959155
326 => 0.15259377632829
327 => 0.16588553671672
328 => 0.16287720197753
329 => 0.16623824894111
330 => 0.15691315494552
331 => 0.15726938609405
401 => 0.15285473715528
402 => 0.15532664557404
403 => 0.15357958037699
404 => 0.15512693980168
405 => 0.15605442066084
406 => 0.16046834519917
407 => 0.16713865598328
408 => 0.15980905206455
409 => 0.1566154386753
410 => 0.15859673846043
411 => 0.16387320088086
412 => 0.17186731154495
413 => 0.16713463713534
414 => 0.1692349176723
415 => 0.16969373553465
416 => 0.16620403663813
417 => 0.17199598172092
418 => 0.17509993214446
419 => 0.17828394300698
420 => 0.18104853042495
421 => 0.17701217905059
422 => 0.18133165360939
423 => 0.1778509196049
424 => 0.17472834137121
425 => 0.17473307703344
426 => 0.17277423809386
427 => 0.16897874081882
428 => 0.16827879288793
429 => 0.17192001041811
430 => 0.17483992205273
501 => 0.17508041996039
502 => 0.1766970330718
503 => 0.17765372805869
504 => 0.18703063949397
505 => 0.19080211084312
506 => 0.19541379461856
507 => 0.19721030534935
508 => 0.20261715856429
509 => 0.19825068547008
510 => 0.19730597154975
511 => 0.18419071421851
512 => 0.18633833687177
513 => 0.1897768879544
514 => 0.18424741465937
515 => 0.18775459275576
516 => 0.18844698400418
517 => 0.18405952527268
518 => 0.18640305655208
519 => 0.18017933228261
520 => 0.16727431616488
521 => 0.17201034869295
522 => 0.17549766276493
523 => 0.1705208356015
524 => 0.17944160566213
525 => 0.17423027595478
526 => 0.17257853462549
527 => 0.16613450281164
528 => 0.16917583777425
529 => 0.1732892868589
530 => 0.17074765356437
531 => 0.17602192427868
601 => 0.18349169820676
602 => 0.18881510394065
603 => 0.1892237689319
604 => 0.1858011756855
605 => 0.19128590320556
606 => 0.19132585345773
607 => 0.18513905840933
608 => 0.18134968089041
609 => 0.18048872634519
610 => 0.18263955959923
611 => 0.18525106823535
612 => 0.18936868948603
613 => 0.19185688177024
614 => 0.19834476761226
615 => 0.20010020349884
616 => 0.20202889532329
617 => 0.20460622238729
618 => 0.20770096434071
619 => 0.20092984513038
620 => 0.20119887431955
621 => 0.19489370186341
622 => 0.18815572084084
623 => 0.19326900853578
624 => 0.19995395200476
625 => 0.19842041858677
626 => 0.19824786475
627 => 0.19853805244101
628 => 0.19738181832436
629 => 0.19215221426681
630 => 0.18952593984816
701 => 0.19291450388228
702 => 0.19471537485878
703 => 0.19750836869088
704 => 0.19716407324812
705 => 0.20435852541397
706 => 0.20715407197667
707 => 0.20643885153775
708 => 0.20657046931125
709 => 0.21163167283032
710 => 0.21726077205942
711 => 0.22253316631254
712 => 0.22789647220142
713 => 0.22143079761899
714 => 0.2181479268134
715 => 0.22153501150646
716 => 0.21973777669165
717 => 0.23006522103202
718 => 0.23078027087101
719 => 0.2411069684196
720 => 0.25090823407349
721 => 0.2447522347242
722 => 0.25055706483828
723 => 0.2568354618814
724 => 0.26894750841079
725 => 0.26486859724663
726 => 0.26174421521957
727 => 0.25879168930089
728 => 0.26493542703736
729 => 0.27283924748671
730 => 0.27454165470965
731 => 0.27730020478043
801 => 0.27439992668046
802 => 0.27789299219671
803 => 0.29022504839986
804 => 0.2868928179557
805 => 0.28216051504221
806 => 0.29189548903133
807 => 0.29541853827423
808 => 0.32014514289617
809 => 0.35136350263645
810 => 0.33843889671317
811 => 0.33041617674216
812 => 0.33230170623681
813 => 0.34370159440579
814 => 0.34736287667131
815 => 0.33741024935396
816 => 0.34092568557793
817 => 0.36029608480206
818 => 0.370687682509
819 => 0.35657449704521
820 => 0.31763677808767
821 => 0.2817344229421
822 => 0.29125734423083
823 => 0.29017774048734
824 => 0.31098881794715
825 => 0.28681334536165
826 => 0.28722039831853
827 => 0.3084618268209
828 => 0.30279497786674
829 => 0.29361540831619
830 => 0.28180144395854
831 => 0.259962238184
901 => 0.24061864459817
902 => 0.27855588618352
903 => 0.27691996334197
904 => 0.27455090463721
905 => 0.27982298842572
906 => 0.30542273079564
907 => 0.30483257387574
908 => 0.301078296652
909 => 0.30392588283752
910 => 0.29311621268999
911 => 0.29590211081862
912 => 0.28172873582562
913 => 0.28813569325488
914 => 0.29359571308269
915 => 0.29469189290009
916 => 0.29716164200104
917 => 0.27605790634137
918 => 0.28553286407944
919 => 0.29109851406707
920 => 0.26595270494287
921 => 0.29060146227062
922 => 0.27569053725511
923 => 0.27062954535027
924 => 0.27744350421516
925 => 0.27478809781872
926 => 0.27250513532976
927 => 0.27123120303464
928 => 0.27623462239582
929 => 0.27600120690224
930 => 0.2678146417055
1001 => 0.25713560113345
1002 => 0.26071983767699
1003 => 0.25941765093832
1004 => 0.25469835821197
1005 => 0.25787859169996
1006 => 0.24387445289821
1007 => 0.21978105996159
1008 => 0.2356978933361
1009 => 0.23508511256537
1010 => 0.23477612071337
1011 => 0.24673718108535
1012 => 0.2455874011192
1013 => 0.24350053922195
1014 => 0.25466003135669
1015 => 0.25058666661116
1016 => 0.26313981695145
1017 => 0.27140813365242
1018 => 0.26931102108503
1019 => 0.27708741290654
1020 => 0.26080241124781
1021 => 0.26621163555798
1022 => 0.26732646919144
1023 => 0.25452232495599
1024 => 0.24577551934123
1025 => 0.24519220712761
1026 => 0.23002645157567
1027 => 0.23812787577782
1028 => 0.24525679381599
1029 => 0.24184259530209
1030 => 0.24076176204887
1031 => 0.24628350473544
1101 => 0.24671259143272
1102 => 0.23692936926229
1103 => 0.23896361094587
1104 => 0.24744673693097
1105 => 0.23874985793651
1106 => 0.22185324267739
1107 => 0.21766264847914
1108 => 0.21710354596512
1109 => 0.20573832213927
1110 => 0.21794268402158
1111 => 0.21261515300338
1112 => 0.22944475965623
1113 => 0.21983177859512
1114 => 0.21941738219479
1115 => 0.21879096125697
1116 => 0.20900844361857
1117 => 0.21115019326995
1118 => 0.21826969530882
1119 => 0.22081001384322
1120 => 0.22054503780787
1121 => 0.2182348058648
1122 => 0.21929241821804
1123 => 0.2158854803317
1124 => 0.21468241965475
1125 => 0.2108852292304
1126 => 0.20530440830723
1127 => 0.20608045568576
1128 => 0.19502338913573
1129 => 0.18899891243634
1130 => 0.18733141668727
1201 => 0.18510157168218
1202 => 0.18758328361399
1203 => 0.19499206585544
1204 => 0.18605550261141
1205 => 0.17073439175656
1206 => 0.17165521662484
1207 => 0.1737240367085
1208 => 0.1698688041692
1209 => 0.1662201501159
1210 => 0.16939235879059
1211 => 0.16290060214675
1212 => 0.17450853448418
1213 => 0.1741945724453
1214 => 0.17852129179098
1215 => 0.18122687819105
1216 => 0.17499137748289
1217 => 0.17342316591737
1218 => 0.17431649049633
1219 => 0.15955182511122
1220 => 0.17731470363436
1221 => 0.17746831774544
1222 => 0.17615298046448
1223 => 0.1856111649107
1224 => 0.20557088417394
1225 => 0.19806123490926
1226 => 0.19515327173363
1227 => 0.18962523161104
1228 => 0.19699101685184
1229 => 0.1964254394695
1230 => 0.19386768405769
1231 => 0.19232074560394
]
'min_raw' => 0.14446774157875
'max_raw' => 0.370687682509
'avg_raw' => 0.25757771204387
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.144467'
'max' => '$0.370687'
'avg' => '$0.257577'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.08883838336092
'max_diff' => 0.21546452236542
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0045346773285662
]
1 => [
'year' => 2028
'avg' => 0.0077828227220542
]
2 => [
'year' => 2029
'avg' => 0.021261268959333
]
3 => [
'year' => 2030
'avg' => 0.016403037338894
]
4 => [
'year' => 2031
'avg' => 0.016109815472832
]
5 => [
'year' => 2032
'avg' => 0.028245576469392
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0045346773285662
'min' => '$0.004534'
'max_raw' => 0.028245576469392
'max' => '$0.028245'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.028245576469392
]
1 => [
'year' => 2033
'avg' => 0.072650527137652
]
2 => [
'year' => 2034
'avg' => 0.046049395520803
]
3 => [
'year' => 2035
'avg' => 0.054315367618053
]
4 => [
'year' => 2036
'avg' => 0.1054262591807
]
5 => [
'year' => 2037
'avg' => 0.25757771204387
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.028245576469392
'min' => '$0.028245'
'max_raw' => 0.25757771204387
'max' => '$0.257577'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.25757771204387
]
]
]
]
'prediction_2025_max_price' => '$0.007753'
'last_price' => 0.00751797
'sma_50day_nextmonth' => '$0.006915'
'sma_200day_nextmonth' => '$0.033827'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'augmenter'
'sma_200day_date_nextmonth' => '4 févr. 2026'
'sma_50day_date_nextmonth' => '4 févr. 2026'
'daily_sma3' => '$0.007323'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.0072054'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.0073063'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.006952'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.00763'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.011785'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.04680067'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.007367'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.007293'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.0072071'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.00727'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.00914'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.01915'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.047171'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.027152'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.084797'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.19148'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.222591'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.007415'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.007671'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.011424'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.029524'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.08339'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.164683'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.395984'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '51.29'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 81.76
'stoch_rsi_14_action' => 'NEUTRAL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.007337'
'vwma_10_action' => 'BUY'
'hma_9' => '0.007252'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 82.49
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 97.77
'cci_20_action' => 'NEUTRAL'
'adx_14' => 12.58
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '-0.000276'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -17.51
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 63.55
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.000780'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 16
'buy_signals' => 17
'sell_pct' => 48.48
'buy_pct' => 51.52
'overall_action' => 'bullish'
'overall_action_label' => 'Haussier'
'overall_action_dir' => 1
'last_updated' => 1767692857
'last_updated_date' => '6 janvier 2026'
]
Prévision du prix de BakeryToken pour 2026
La prévision du prix de BakeryToken pour 2026 suggère que le prix moyen pourrait varier entre $0.002597 à la baisse et $0.007753 à la hausse. Sur le marché des cryptomonnaies, comparé au prix moyen d'aujourd'hui, BakeryToken pourrait potentiellement gagner 3.13% d'ici 2026 si BAKE atteint l'objectif de prix prévu.
Prévision du prix de BakeryToken de 2027 à 2032
La prévision du prix de BAKE pour 2027-2032 se situe actuellement dans une fourchette de prix comprise entre $0.004534 à la baisse et $0.028245 à la hausse. Compte tenu de la volatilité des prix sur le marché, si BakeryToken atteint l'objectif de prix le plus élevé, il pourrait gagner 275.71% d'ici 2032 par rapport au prix actuel.
| Prévision du Prix de BakeryToken | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2027 | $0.0025005 | $0.004534 | $0.006568 |
| 2028 | $0.004512 | $0.007782 | $0.011052 |
| 2029 | $0.009913 | $0.021261 | $0.0326094 |
| 2030 | $0.00843 | $0.016403 | $0.024375 |
| 2031 | $0.009967 | $0.0161098 | $0.022252 |
| 2032 | $0.015214 | $0.028245 | $0.041276 |
Prévision du prix de BakeryToken de 2032 à 2037
La prévision du prix de BakeryToken pour 2032-2037 est actuellement estimée entre $0.028245 à la baisse et $0.257577 à la hausse. Par rapport au prix actuel, BakeryToken pourrait potentiellement gagner 3326.16% d'ici 2037 s'il atteint l'objectif de prix le plus élevé. Veuillez noter que ces informations sont à titre général seulement et ne doivent pas être considérées comme un conseil en investissement à long terme.
| Prévision du Prix de BakeryToken | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2032 | $0.015214 | $0.028245 | $0.041276 |
| 2033 | $0.035355 | $0.07265 | $0.109945 |
| 2034 | $0.028424 | $0.046049 | $0.063674 |
| 2035 | $0.0336065 | $0.054315 | $0.075024 |
| 2036 | $0.055629 | $0.105426 | $0.155223 |
| 2037 | $0.144467 | $0.257577 | $0.370687 |
BakeryToken Histogramme des prix potentiels
Prévision du prix de BakeryToken basée sur l'analyse technique
Au 6 janvier 2026, le sentiment global de prévision du prix pour BakeryToken est Haussier, avec 17 indicateurs techniques montrant des signaux haussiers et 16 indiquant des signaux baissiers. La prévision du prix de BAKE a été mise à jour pour la dernière fois le 6 janvier 2026.
Moyennes Mobiles Simples sur 50 et 200 jours de BakeryToken et Indice de Force Relative sur 14 jours - RSI (14)
Selon nos indicateurs techniques, le SMA sur 200 jours de BakeryToken devrait augmenter au cours du prochain mois, atteignant $0.033827 d'ici le 4 févr. 2026. Le SMA à court terme sur 50 jours pour BakeryToken devrait atteindre $0.006915 d'ici le 4 févr. 2026.
Le Relative Strength Index (RSI), un oscillateur de momentum, est un outil couramment utilisé pour identifier si une cryptomonnaie est survendue (en dessous de 30) ou surachetée (au-dessus de 70). Actuellement, le RSI est à 51.29, ce qui suggère que le marché de BAKE est dans un état NEUTRAL.
Moyennes Mobiles et Oscillateurs Populaires de BAKE pour le Samedi 19 Octobre 2024
Les moyennes mobiles (MA) sont des indicateurs largement utilisés sur les marchés financiers, conçus pour lisser les mouvements de prix sur une période donnée. En tant qu'indicateurs retardés, ils sont basés sur des données historiques de prix. Le tableau ci-dessous met en évidence deux types : la moyenne mobile simple (SMA) et la moyenne mobile exponentielle (EMA).
Moyenne Mobile Simple Quotidienne (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 3 | $0.007323 | BUY |
| SMA 5 | $0.0072054 | BUY |
| SMA 10 | $0.0073063 | BUY |
| SMA 21 | $0.006952 | BUY |
| SMA 50 | $0.00763 | SELL |
| SMA 100 | $0.011785 | SELL |
| SMA 200 | $0.04680067 | SELL |
Moyenne Mobile Exponentielle Quotidienne (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 3 | $0.007367 | BUY |
| EMA 5 | $0.007293 | BUY |
| EMA 10 | $0.0072071 | BUY |
| EMA 21 | $0.00727 | BUY |
| EMA 50 | $0.00914 | SELL |
| EMA 100 | $0.01915 | SELL |
| EMA 200 | $0.047171 | SELL |
Moyenne Mobile Simple Hebdomadaire (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 21 | $0.027152 | SELL |
| SMA 50 | $0.084797 | SELL |
| SMA 100 | $0.19148 | SELL |
| SMA 200 | $0.222591 | SELL |
Moyenne Mobile Exponentielle Hebdomadaire (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 21 | $0.029524 | SELL |
| EMA 50 | $0.08339 | SELL |
| EMA 100 | $0.164683 | SELL |
| EMA 200 | $0.395984 | SELL |
Oscillateurs de BakeryToken
Un oscillateur est un outil d'analyse technique qui établit des limites hautes et basses entre deux extrêmes, créant un indicateur de tendance qui fluctue à l'intérieur de ces limites. Les traders utilisent cet indicateur pour identifier les conditions de surachat ou de survente à court terme.
| Période | Valeur | Action |
|---|---|---|
| RSI (14) | 51.29 | NEUTRAL |
| Stoch RSI (14) | 81.76 | NEUTRAL |
| Stochastique Rapide (14) | 82.49 | SELL |
| Indice de Canal des Matières Premières (20) | 97.77 | NEUTRAL |
| Indice Directionnel Moyen (14) | 12.58 | NEUTRAL |
| Oscillateur Impressionnant (5, 34) | -0.000276 | NEUTRAL |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Plage de Pourcentage de Williams (14) | -17.51 | SELL |
| Oscillateur Ultime (7, 14, 28) | 63.55 | NEUTRAL |
| VWMA (10) | 0.007337 | BUY |
| Moyenne Mobile de Hull (9) | 0.007252 | BUY |
| Nuage Ichimoku B/L (9, 26, 52, 26) | -0.000780 | SELL |
Prévision du cours de BakeryToken basée sur les flux monétaires mondiaux
Définitions des flux monétaires mondiaux utilisés pour la prédiction du cours de BakeryToken
M0 : le total de toutes les devises physiques, plus les comptes à la banque centrale qui peuvent être échangés contre des devises physiques.
M1 : M0 plus le montant des comptes à vue, y compris les comptes de "chèques" et les comptes "courants".
M2 : M1 plus la plupart des comptes d'épargne, comptes du marché monétaire et comptes de certificats de dépôt (CD) de moins de 100 000 $.
Prédictions du cours de BakeryToken par des sociétés Internet ou des niches technologiques
| Comparaison | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Action Facebook | $0.010564 | $0.014844 | $0.020858 | $0.0293097 | $0.041185 | $0.057871 |
| Action Amazon.com | $0.015686 | $0.032731 | $0.068295 | $0.1425028 | $0.29734 | $0.620419 |
| Action Apple | $0.010663 | $0.015125 | $0.021454 | $0.030431 | $0.043164 | $0.061226 |
| Action Netflix | $0.011862 | $0.018716 | $0.029531 | $0.046596 | $0.073522 | $0.1160068 |
| Action Google | $0.009735 | $0.0126077 | $0.016326 | $0.021143 | $0.02738 | $0.035457 |
| Action Tesla | $0.017042 | $0.038634 | $0.087581 | $0.19854 | $0.450075 | $1.02 |
| Action Kodak | $0.005637 | $0.004227 | $0.00317 | $0.002377 | $0.001782 | $0.001336 |
| Action Nokia | $0.00498 | $0.003299 | $0.002185 | $0.001447 | $0.000959 | $0.000635 |
Ce calcul montre la valeur potentielle des cryptomonnaies si l'on suppose que leur capitalisation se comportera comme celle de certaines sociétés Internet ou niches technologiques. En extrapolant les données, vous pourrez obtenir une potentielle image des cours futurs pour 2024, 2025, 2026, 2027, 2028, 2029 et 2030.
Aperçu des prévisions relatives à BakeryToken
Vous vous posez peut-être des questions telles que : "Devrais-je investir dans BakeryToken maintenant ?", "Devrais-je acheter BAKE aujourd'hui ?", " BakeryToken sera-t-il un bon ou un mauvais investissement à court ou à long terme ?".
Nous mettons régulièrement à jour les prévisions de BakeryToken/BakerySwap avec de nouvelles valeurs. Regardez nos prévisions similaires. Nous faisons une prévision des cours futurs pour une grande quantité de devises numériques comme BakeryToken en utilisant des méthodes d'analyse technique.
Si vous souhaitez trouver des cryptomonnaies ayant un bon rendement, vous devriez consulter un maximum d'informations disponibles à propos de BakeryToken afin de prendre une décision responsable concernant cet investissement.
Le cours de BakeryToken est de $0.007517 USD actuellement, mais ce cours peut subir une hausse ou une baisse, ce qui pourrait causer la perte de votre investissement, car les cryptomonnaies sont des actifs à haut risque.
Prévision à court terme de BakeryToken
basée sur l'historique des cours sur 4 heures
Prévision à long terme de BakeryToken
basée sur l'historique des cours sur 1 mois
Prévision du cours de BakeryToken basée sur le modèle de croissance du Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si BakeryToken présente 1 % de la précédente croissance annuelle moyenne du Bitcoin | $0.007713 | $0.007913 | $0.008119 | $0.00833 |
| Si BakeryToken présente 2 % de la précédente croissance annuelle moyenne du Bitcoin | $0.0079088 | $0.008319 | $0.008752 | $0.0092074 |
| Si BakeryToken présente 5 % de la précédente croissance annuelle moyenne du Bitcoin | $0.008495 | $0.009599 | $0.010846 | $0.012256 |
| Si BakeryToken présente 10 % de la précédente croissance annuelle moyenne du Bitcoin | $0.009472 | $0.011934 | $0.015036 | $0.018944 |
| Si BakeryToken présente 20 % de la précédente croissance annuelle moyenne du Bitcoin | $0.011426 | $0.017366 | $0.026394 | $0.040116 |
| Si BakeryToken présente 50 % de la précédente croissance annuelle moyenne du Bitcoin | $0.017288 | $0.039758 | $0.09143 | $0.210259 |
| Si BakeryToken présente 100 % de la précédente croissance annuelle moyenne du Bitcoin | $0.027059 | $0.097396 | $0.35056 | $1.26 |
Boîte à questions
Est-ce que BAKE est un bon investissement ?
La décision d'acquérir BakeryToken dépend entièrement de votre tolérance individuelle au risque. Comme vous pouvez le discerner, la valeur de BakeryToken a connu une hausse de 3.0129% au cours des 24 heures précédentes, et BakeryToken a enregistré une déclin de sur une période de 30 jours précédents. Par conséquent, la détermination de si investir ou non dans BakeryToken dépendra de la mesure dans laquelle cet investissement s'aligne avec vos aspirations de trading.
Est-ce que BakeryToken peut monter ?
Il semble que la valeur moyenne de BakeryToken pourrait potentiellement s'envoler jusqu'à $0.007753 pour la fin de cette année. En regardant les perspectives de BakeryToken sur une période de cinq ans plus longue, la monnaie numérique pourrait potentiellement croître jusqu'à $0.024375. Cependant, compte tenu de l'imprévisibilité du marché, il est essentiel de mener des recherches approfondies avant d'investir des fonds dans un projet, un réseau ou un actif particulier.
Quel sera le prix de BakeryToken la semaine prochaine ?
Basé sur notre nouveau pronostic expérimental de BakeryToken, le prix de BakeryToken va augmenter de 0.86% durant la prochaine semaine et atteindre $0.007582 d'ici 13 janvier 2026.
Quel sera le prix de BakeryToken le mois prochain ?
Basé sur notre nouveau pronostic expérimental de BakeryToken, le prix de BakeryToken va diminuer de -11.62% durant le prochain mois et atteindre $0.006644 d'ici 5 février 2026.
Jusqu'où le prix de BakeryToken peut-il monter cette année en 2026 ?
Selon notre prédiction la plus récente sur la valeur de BakeryToken en 2026, BAKE devrait fluctuer dans la fourchette de $0.002597 et $0.007753. Cependant, il est crucial de garder à l'esprit que le marché des cryptomonnaies est exceptionnellement instable, et cette prévision de prix de BakeryToken ne prend pas en compte les fluctuations de prix soudaines et extrêmes.
Où sera BakeryToken dans 5 ans ?
L'avenir de BakeryToken semble suivre une tendance haussière, avec un prix maximum de $0.024375 prévue après une période de cinq ans. Selon la prévision de BakeryToken pour 2030, la valeur de BakeryToken pourrait potentiellement atteindre son point le plus élevé d'environ $0.024375, tandis que son point le plus bas devrait être autour de $0.00843.
Combien vaudra BakeryToken en 2026 ?
Basé sur notre nouvelle simulation expérimentale de prédiction de prix de BakeryToken, il est attendu que la valeur de BAKE en 2026 augmente de 3.13% jusqu'à $0.007753 si le meilleur scénario se produit. Le prix sera entre $0.007753 et $0.002597 durant 2026.
Combien vaudra BakeryToken en 2027 ?
Selon notre dernière simulation expérimentale pour la prédiction de prix de BakeryToken, le valeur de BAKE pourrait diminuer de -12.62% jusqu'à $0.006568 en 2027, en supposant les conditions les plus favorables. Il est prévu que le prix fluctue entre $0.006568 et $0.0025005 tout au long de l'année.
Combien vaudra BakeryToken en 2028 ?
Notre nouveau modèle expérimental de prédiction de prix de BakeryToken suggère que la valeur de BAKE en 2028 pourrait augmenter de 47.02%, atteignant $0.011052 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.011052 et $0.004512 durant l'année.
Combien vaudra BakeryToken en 2029 ?
Basé sur notre modèle de prévision expérimental, la valeur de BakeryToken pourrait connaître un 333.75% croissance en 2029, atteignant potentiellement $0.0326094 sous des conditions optimales. Le range de prix prévu pour 2029 se situe entre $0.0326094 et $0.009913.
Combien vaudra BakeryToken en 2030 ?
En utilisant notre nouvelle simulation expérimentale pour les prédictions de prix de BakeryToken, il est prévu que la valeur de BAKE en 2030 augmente de 224.23%, atteignant $0.024375 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.024375 et $0.00843 au cours de 2030.
Combien vaudra BakeryToken en 2031 ?
Notre simulation expérimentale indique que le prix de BakeryToken pourrait augmenter de 195.98% en 2031, atteignant potentiellement $0.022252 dans des conditions idéales. Il est probable que le prix fluctue entre $0.022252 et $0.009967 durant l'année.
Combien vaudra BakeryToken en 2032 ?
Basé sur les résultats de notre dernière prédiction expérimentale de prix de BakeryToken, BAKE pourrait connaître une 449.04% hausse en valeur, atteignant $0.041276 si le scénario le plus positif se réalise en 2032. Il est prévu que le prix reste dans une fourchette de $0.041276 et $0.015214 tout au long de l'année.
Combien vaudra BakeryToken en 2033 ?
Selon notre prédiction expérimentale de prix de BakeryToken, la valeur de BAKE est anticipée à augmenter de 1362.43% en 2033, avec le prix potentiel le plus élevé étant $0.109945. Tout au long de l'année, le prix de BAKE pourrait osciller entre $0.109945 et $0.035355.
Combien vaudra BakeryToken en 2034 ?
Les résultats de notre nouvelle simulation de prédiction de prix de BakeryToken suggèrent que BAKE pourrait augmenter de 746.96% en 2034, atteignant potentiellement $0.063674 dans les meilleures circonstances. La fourchette de prix prévue pour l'année est entre $0.063674 et $0.028424.
Combien vaudra BakeryToken en 2035 ?
Basé sur notre prédiction expérimentale pour le prix de BakeryToken, BAKE pourrait augmenter de 897.93%, avec la valeur potentiellement atteignant $0.075024 en 2035. La fourchette de prix attendue pour l'année se situe entre $0.075024 et $0.0336065.
Combien vaudra BakeryToken en 2036 ?
Notre récente simulation de prédiction de prix de BakeryToken suggère que la valeur de BAKE pourrait augmenter de 1964.7% en 2036, pouvant atteindre $0.155223 si les conditions sont optimales. La fourchette de prix attendue pour 2036 est entre $0.155223 et $0.055629.
Combien vaudra BakeryToken en 2037 ?
Selon la simulation expérimentale, la valeur de BakeryToken pourrait augmenter de 4830.69% en 2037, avec un maximum de $0.370687 sous des conditions favorables. Il est prévu que le prix chute entre $0.370687 et $0.144467 au cours de l'année.
Prévisions liées
Prévision du cours de Kinesis Gold
Prévision du cours de LTO NetworkPrévision du cours de GameFi
Prévision du cours de HUNT Platform
Prévision du cours de Puff The Dragon
Prévision du cours de Clearpool
Prévision du cours de MATH
Prévision du cours de Stafi
Prévision du cours de Pangolin
Prévision du cours de StakeWise Staked ETH
Prévision du cours de BENQI
Prévision du cours de Velo
Prévision du cours de Dimitra
Prévision du cours de IX Swap
Prévision du cours de BitMart Token
Prévision du cours de LON
Prévision du cours de Moon Tropica
Prévision du cours de Kinesis Silver
Prévision du cours de Perpetual Protocol
Prévision du cours de USDX
Prévision du cours de Metadium
Prévision du cours de ARPA
Prévision du cours de Storj
Prévision du cours de Ozone Chain
Prévision du cours de Humanscape
Comment lire et prédire les mouvements de prix de BakeryToken ?
Les traders de BakeryToken utilisent des indicateurs et des modèles graphiques pour prédire la direction du marché. Ils identifient également des niveaux clés de support et de résistance pour évaluer quand une tendance baissière pourrait ralentir ou une tendance haussière pourrait s'arrêter.
Indicateurs de prédiction du prix de BakeryToken
Les moyennes mobiles sont des outils populaires pour la prédiction du prix de BakeryToken. Une moyenne mobile simple (SMA) calcule le prix de clôture moyen de BAKE sur une période spécifique, comme une SMA de 12 jours. Une moyenne mobile exponentielle (EMA) donne plus de poids aux prix récents, réagissant plus rapidement aux changements de prix.
Les moyennes mobiles couramment utilisées sur le marché des cryptomonnaies incluent les moyennes sur 50 jours, 100 jours et 200 jours, qui aident à identifier les niveaux clés de résistance et de support. Un mouvement de prix de BAKE au-dessus de ces moyennes est considéré comme haussier, tandis qu'une chute en dessous indique une faiblesse.
Les traders utilisent également le RSI et les niveaux de retracement de Fibonacci pour évaluer la direction future de BAKE.
Comment lire les graphiques de BakeryToken et prédire les mouvements de prix ?
La plupart des traders préfèrent les graphiques en chandeliers aux simples graphiques linéaires parce qu'ils fournissent des informations plus détaillées. Les chandeliers peuvent représenter l'action des prix de BakeryToken dans différentes périodes, comme 5 minutes pour les tendances à court terme et hebdomadaire pour les tendances à long terme. Les options populaires incluent les graphiques de 1 heure, 4 heures et 1 jour.
Par exemple, un graphique en chandeliers de 1 heure montre les prix d'ouverture, de clôture, les plus hauts et les plus bas de BAKE au sein de chaque heure. La couleur du chandelier est cruciale : le vert indique que le prix a clôturé plus haut qu'il n'a ouvert, tandis que le rouge signifie le contraire. Certains graphiques utilisent des chandeliers creux et pleins pour transmettre la même information.
Qu'est-ce qui affecte le prix de BakeryToken ?
L'action du prix de BakeryToken est déterminée par l'offre et la demande, influencée par des facteurs tels que les réductions de récompenses de bloc, les hard forks et les mises à jour de protocole. Les événements du monde réel, tels que les réglementations, l'adoption par les entreprises et les gouvernements et les piratages d'échanges de cryptomonnaies, impactent également le prix de BAKE. La capitalisation boursière de BakeryToken peut changer rapidement.
Les traders surveillent souvent l'activité des « baleines » de BAKE, de grands détenteurs de BakeryToken, car leurs actions peuvent influencer significativement les mouvements de prix sur le marché relativement petit de BakeryToken.
Modèles de prédiction de prix haussiers et baissiers
Les traders identifient souvent des modèles de chandeliers pour obtenir un avantage dans les prédictions de prix des cryptomonnaies. Certaines formations indiquent des tendances haussières, tandis que d'autres suggèrent des mouvements baissiers.
Modèles de chandeliers haussiers couramment suivis :
- Marteau
- Englobante haussière
- Ligne pénétrante
- Étoile du matin
- Trois soldats blancs
Modèles de chandeliers baissiers courants :
- Harami baissier
- Nuage sombre
- Étoile du soir
- Étoile filante
- Pendu


