Prédiction du prix de BakerySwap jusqu'à $0.007746 d'ici 2026
| Année | Prix min. | Prix max. |
|---|---|---|
| 2026 | $0.002595 | $0.007746 |
| 2027 | $0.002498 | $0.006562 |
| 2028 | $0.0045085 | $0.011042 |
| 2029 | $0.0099039 | $0.032579 |
| 2030 | $0.008422 | $0.024352 |
| 2031 | $0.009958 | $0.022231 |
| 2032 | $0.01520079 | $0.041238 |
| 2033 | $0.035323 | $0.109843 |
| 2034 | $0.028398 | $0.063615 |
| 2035 | $0.033575 | $0.074955 |
Calculateur de profit d’investissement
Si vous ouvrez une position short de $10,000.00 sur BakerySwap aujourd’hui et la fermez le Apr 06, 2026, notre prévision indique que vous pourriez gagner environ $3,955.56, soit un rendement de 39.56% sur les 90 prochains jours.
Prévision du prix à long terme de BakeryToken pour 2027, 2028, 2029, 2030, 2031, 2032 et 2037
[
'name' => 'BakerySwap'
'name_with_ticker' => 'BakerySwap <small>BAKE</small>'
'name_lang' => 'BakeryToken'
'name_lang_with_ticker' => 'BakeryToken <small>BAKE</small>'
'name_with_lang' => 'BakeryToken/BakerySwap'
'name_with_lang_with_ticker' => 'BakeryToken/BakerySwap <small>BAKE</small>'
'image' => '/uploads/coins/bakerytoken.jpg?1717208119'
'price_for_sd' => 0.007511
'ticker' => 'BAKE'
'marketcap' => '$2.17M'
'low24h' => '$0.00709'
'high24h' => '$0.007525'
'volume24h' => '$249.75K'
'current_supply' => '288.71M'
'max_supply' => '289.77M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.007511'
'change_24h_pct' => '4.6701%'
'ath_price' => '$8.38'
'ath_days' => 1710
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '2 mai 2021'
'ath_pct' => '-99.91%'
'fdv' => '$2.18M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.370345'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.007575'
'next_week_prediction_price_date' => '13 janvier 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.006638'
'next_month_prediction_price_date' => '5 février 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.002595'
'current_year_max_price_prediction' => '$0.007746'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.008422'
'grand_prediction_max_price' => '$0.024352'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.007653370257193
107 => 0.0076819451635599
108 => 0.0077463258866756
109 => 0.0071961996565699
110 => 0.0074431901830298
111 => 0.0075882739774423
112 => 0.0069327801160929
113 => 0.0075753169713769
114 => 0.0071866231828242
115 => 0.0070546946730046
116 => 0.0072323190312172
117 => 0.0071630986460764
118 => 0.0071035870236897
119 => 0.0070703785158585
120 => 0.0072008062408448
121 => 0.0071947216315793
122 => 0.0069813165585713
123 => 0.0067029383403358
124 => 0.0067963712078292
125 => 0.006762426171131
126 => 0.0066394049791401
127 => 0.0067223064089066
128 => 0.0063572504676684
129 => 0.0057291906947247
130 => 0.0061441062187224
131 => 0.0061281324223898
201 => 0.0061200777099248
202 => 0.0064318752587863
203 => 0.0064019031188567
204 => 0.0063475033913963
205 => 0.0066384058854845
206 => 0.0065322225619516
207 => 0.0068594545451426
208 => 0.0070749906933099
209 => 0.0070203237542707
210 => 0.0072230365433986
211 => 0.0067985237123883
212 => 0.0069395298463513
213 => 0.0069685910151351
214 => 0.0066348161938631
215 => 0.0064068069316209
216 => 0.0063916013133252
217 => 0.005996264674209
218 => 0.006207450315779
219 => 0.006393284940905
220 => 0.0063042845768191
221 => 0.0062761097203598
222 => 0.0064200489516298
223 => 0.0064312342626556
224 => 0.0061762079859007
225 => 0.0062292360244699
226 => 0.0064503717604813
227 => 0.0062236639712982
228 => 0.0057832077694225
301 => 0.0056739685415739
302 => 0.0056593940149005
303 => 0.0053631285651027
304 => 0.0056812684291265
305 => 0.0055423918528618
306 => 0.005981101293285
307 => 0.0057305128137612
308 => 0.0057197104452538
309 => 0.0057033810808919
310 => 0.0054483731696793
311 => 0.0055042036956367
312 => 0.0056897928671481
313 => 0.005756013174355
314 => 0.0057491058537864
315 => 0.0056888833789599
316 => 0.0057164529195465
317 => 0.0056276418234523
318 => 0.0055962807769784
319 => 0.0054972966877711
320 => 0.0053518174216891
321 => 0.005372047205914
322 => 0.0050838147130848
323 => 0.0049267703533352
324 => 0.0048833025443679
325 => 0.0048251755735721
326 => 0.0048898681403893
327 => 0.0050829981866471
328 => 0.0048500423760352
329 => 0.0044506559786912
330 => 0.0044746597816928
331 => 0.0045285892002445
401 => 0.0044280920855523
402 => 0.0043329800005795
403 => 0.0044156722417759
404 => 0.0042464469602034
405 => 0.0045490392670392
406 => 0.0045408549931445
407 => 0.0046536426929501
408 => 0.0047241711562752
409 => 0.0045616258821721
410 => 0.0045207461853043
411 => 0.0045440331185188
412 => 0.0041591519847675
413 => 0.0046221896931308
414 => 0.0046261940624607
415 => 0.0045919062211343
416 => 0.0048384595061523
417 => 0.0053587638394385
418 => 0.0051630044200629
419 => 0.0050872004560209
420 => 0.0049430970649648
421 => 0.0051351062775344
422 => 0.0051203629658194
423 => 0.0050536881190091
424 => 0.00501336296362
425 => 0.0050876632988611
426 => 0.0050041563298383
427 => 0.0049891561835837
428 => 0.0048982716176012
429 => 0.0048658299625297
430 => 0.0048418114526543
501 => 0.0048153694332915
502 => 0.0048736939390652
503 => 0.0047415229357543
504 => 0.0045821376626447
505 => 0.0045688865017582
506 => 0.0046054741220198
507 => 0.004589286823682
508 => 0.0045688090032014
509 => 0.0045297112671014
510 => 0.0045181118039915
511 => 0.0045558044318393
512 => 0.0045132516526159
513 => 0.0045760405963298
514 => 0.0045589654779103
515 => 0.004463585254449
516 => 0.0043447061817347
517 => 0.0043436479086302
518 => 0.0043180356074147
519 => 0.0042854144909814
520 => 0.0042763400426597
521 => 0.0044087081318698
522 => 0.0046827061150912
523 => 0.0046289137547687
524 => 0.0046677842479645
525 => 0.0048589886029465
526 => 0.0049197667176798
527 => 0.0048766278514507
528 => 0.0048175767106669
529 => 0.0048201746611718
530 => 0.0050219702852259
531 => 0.0050345560307706
601 => 0.0050663561494467
602 => 0.0051072282886579
603 => 0.0048835885534945
604 => 0.0048096412497571
605 => 0.0047746009148062
606 => 0.0046666902454735
607 => 0.0047830626507872
608 => 0.0047152574337741
609 => 0.0047244066741052
610 => 0.004718448219337
611 => 0.0047217019385494
612 => 0.0045489546863226
613 => 0.0046118947057058
614 => 0.0045072447160638
615 => 0.0043671301274457
616 => 0.0043666604142142
617 => 0.0044009532612782
618 => 0.0043805545339653
619 => 0.0043256620832654
620 => 0.0043334592968022
621 => 0.0042651475016057
622 => 0.0043417535855641
623 => 0.0043439503739423
624 => 0.0043144528588567
625 => 0.004432475100797
626 => 0.004480828909617
627 => 0.0044614130132896
628 => 0.0044794666385718
629 => 0.0046311490701981
630 => 0.0046558799249216
701 => 0.0046668637369613
702 => 0.0046521468839044
703 => 0.0044822391149746
704 => 0.0044897752470303
705 => 0.004434480110308
706 => 0.0043877615466357
707 => 0.004389630044176
708 => 0.0044136494588917
709 => 0.0045185436516754
710 => 0.0047392872965383
711 => 0.0047476643564993
712 => 0.0047578175975482
713 => 0.0047165192635924
714 => 0.0047040632908995
715 => 0.0047204959340407
716 => 0.0048033956409018
717 => 0.0050166361939992
718 => 0.0049412627406769
719 => 0.0048799829498682
720 => 0.0049337418473204
721 => 0.0049254660864338
722 => 0.0048556103361195
723 => 0.00485364971787
724 => 0.0047195741987824
725 => 0.0046700095321276
726 => 0.0046285895868198
727 => 0.0045833600878388
728 => 0.0045565465247363
729 => 0.0045977443442082
730 => 0.0046071667729597
731 => 0.0045170870206697
801 => 0.0045048094832887
802 => 0.0045783705535152
803 => 0.0045459990691416
804 => 0.004579293943594
805 => 0.0045870186400651
806 => 0.0045857747860184
807 => 0.0045519752384911
808 => 0.004573518062168
809 => 0.0045225628619473
810 => 0.004467156734931
811 => 0.0044318110778182
812 => 0.0044009673040662
813 => 0.0044180812223945
814 => 0.0043570732284323
815 => 0.0043375555433155
816 => 0.0045662198382352
817 => 0.0047351366114477
818 => 0.0047326804946668
819 => 0.0047177295154251
820 => 0.0046955153929672
821 => 0.0048017705394808
822 => 0.0047647533710742
823 => 0.0047916864539779
824 => 0.0047985420539548
825 => 0.0048192918903104
826 => 0.0048267081732988
827 => 0.0048042910151681
828 => 0.0047290562944562
829 => 0.0045415785235448
830 => 0.004454307115099
831 => 0.0044255060966916
901 => 0.0044265529590098
902 => 0.004397675822875
903 => 0.0044061814336492
904 => 0.0043947179185594
905 => 0.0043730087943015
906 => 0.0044167407451463
907 => 0.0044217804450898
908 => 0.0044115728852048
909 => 0.0044139771350767
910 => 0.0043294628989343
911 => 0.0043358883327529
912 => 0.0043001107007461
913 => 0.0042934028260506
914 => 0.0042029600878521
915 => 0.0040427276672489
916 => 0.0041315119824005
917 => 0.0040242730146613
918 => 0.003983659992643
919 => 0.0041759157222571
920 => 0.0041566185793477
921 => 0.0041235902589532
922 => 0.0040747344893847
923 => 0.0040566134092133
924 => 0.0039465154625291
925 => 0.0039400102884893
926 => 0.0039945778037606
927 => 0.0039693967730165
928 => 0.0039340330690496
929 => 0.0038059493180426
930 => 0.0036619407748383
1001 => 0.0036662874875522
1002 => 0.0037120939257713
1003 => 0.0038452823227332
1004 => 0.0037932433118575
1005 => 0.0037554884123884
1006 => 0.0037484180546259
1007 => 0.0038369183848197
1008 => 0.0039621648934363
1009 => 0.0040209277530465
1010 => 0.0039626955438273
1011 => 0.0038958015173212
1012 => 0.0038998730467575
1013 => 0.0039269591080203
1014 => 0.0039298054700827
1015 => 0.0038862643356443
1016 => 0.003898520909945
1017 => 0.0038799020528175
1018 => 0.0037656381609936
1019 => 0.0037635714895253
1020 => 0.0037355292877175
1021 => 0.0037346801809915
1022 => 0.0036869734002614
1023 => 0.0036802988918559
1024 => 0.0035855741831218
1025 => 0.0036479222732634
1026 => 0.0036061024478181
1027 => 0.0035430701065724
1028 => 0.0035322033071833
1029 => 0.0035318766380716
1030 => 0.0035965967587574
1031 => 0.0036471659809713
1101 => 0.0036068299215863
1102 => 0.003597646182746
1103 => 0.0036957044869404
1104 => 0.0036832256739104
1105 => 0.0036724191023061
1106 => 0.0039509504423054
1107 => 0.0037304711526244
1108 => 0.0036343295978057
1109 => 0.0035153361669313
1110 => 0.003554081028041
1111 => 0.0035622451395572
1112 => 0.0032760873884825
1113 => 0.0031599932245102
1114 => 0.0031201540823512
1115 => 0.0030972260927959
1116 => 0.0031076746655478
1117 => 0.0030031763014854
1118 => 0.0030734009303788
1119 => 0.0029829141801276
1120 => 0.0029677437819786
1121 => 0.0031295453005851
1122 => 0.0031520590366684
1123 => 0.0030560084440674
1124 => 0.0031176884736957
1125 => 0.0030953224375359
1126 => 0.0029844653157479
1127 => 0.0029802313891054
1128 => 0.0029246071822084
1129 => 0.0028375660693835
1130 => 0.0027977859451977
1201 => 0.0027770681111348
1202 => 0.0027856166932517
1203 => 0.0027812942685425
1204 => 0.0027530875235141
1205 => 0.0027829110461499
1206 => 0.0027067242697458
1207 => 0.0026763860815032
1208 => 0.0026626830257146
1209 => 0.0025950628765088
1210 => 0.0027026766047121
1211 => 0.0027238778648502
1212 => 0.0027451208980201
1213 => 0.0029300269985298
1214 => 0.0029207896122876
1215 => 0.003004291085128
1216 => 0.0030010463714427
1217 => 0.0029772303987545
1218 => 0.0028767547275201
1219 => 0.0029168025392675
1220 => 0.0027935415995208
1221 => 0.0028858970765082
1222 => 0.0028437498936681
1223 => 0.0028716470715937
1224 => 0.0028214854302963
1225 => 0.0028492469537137
1226 => 0.0027289054701438
1227 => 0.0026165322860366
1228 => 0.0026617545356991
1229 => 0.0027109162928737
1230 => 0.0028175115086112
1231 => 0.0027540242775094
]
'min_raw' => 0.0025950628765088
'max_raw' => 0.0077463258866756
'avg_raw' => 0.0051706943815922
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.002595'
'max' => '$0.007746'
'avg' => '$0.00517'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0049159771234912
'max_diff' => 0.00023528588667556
'year' => 2026
]
1 => [
'items' => [
101 => 0.0027768566865316
102 => 0.0027003719384063
103 => 0.0025425620562358
104 => 0.0025434552430307
105 => 0.002519179630734
106 => 0.0024982019574121
107 => 0.0027613165497151
108 => 0.002728594090936
109 => 0.0026764551354811
110 => 0.0027462451992772
111 => 0.0027646987998622
112 => 0.0027652241479281
113 => 0.0028161411769315
114 => 0.0028433156044379
115 => 0.0028481052150667
116 => 0.0029282242603387
117 => 0.0029550791075181
118 => 0.0030656904224099
119 => 0.0028410100441212
120 => 0.0028363828995853
121 => 0.0027472272885964
122 => 0.0026906833906128
123 => 0.0027510988976667
124 => 0.0028046187893774
125 => 0.002748890300818
126 => 0.0027561672649312
127 => 0.0026813563222249
128 => 0.0027080977140604
129 => 0.0027311310031636
130 => 0.002718413374755
131 => 0.0026993744694871
201 => 0.00280023076859
202 => 0.0027945400609356
203 => 0.0028884597653365
204 => 0.0029616768911795
205 => 0.0030928950698169
206 => 0.0029559620598504
207 => 0.0029509716767078
208 => 0.0029997534724093
209 => 0.0029550716392793
210 => 0.002983309015453
211 => 0.0030883455919672
212 => 0.0030905648493145
213 => 0.0030533894293961
214 => 0.0030511273017155
215 => 0.0030582672477654
216 => 0.0031000861347916
217 => 0.0030854733307
218 => 0.0031023836375457
219 => 0.0031235302351961
220 => 0.0032110015290496
221 => 0.003232090561865
222 => 0.0031808551455334
223 => 0.0031854811299695
224 => 0.0031663176778179
225 => 0.0031478060231568
226 => 0.0031894175194249
227 => 0.003265463346731
228 => 0.0032649902695861
301 => 0.0032826314234014
302 => 0.0032936217160812
303 => 0.0032464433345137
304 => 0.0032157319429105
305 => 0.0032275086446678
306 => 0.0032463398472409
307 => 0.0032214019394739
308 => 0.0030674736203735
309 => 0.0031141656394095
310 => 0.0031063938043188
311 => 0.0030953257660623
312 => 0.0031422749522616
313 => 0.0031377465887194
314 => 0.0030021045197225
315 => 0.0030107878848901
316 => 0.0030026325839186
317 => 0.0030289840297751
318 => 0.002953648574725
319 => 0.0029768212533064
320 => 0.0029913549400823
321 => 0.0029999153932463
322 => 0.0030308416200325
323 => 0.0030272127842683
324 => 0.0030306160465063
325 => 0.003076471476609
326 => 0.0033083925063853
327 => 0.0033210154563311
328 => 0.0032588554341709
329 => 0.0032836871369717
330 => 0.0032360156976906
331 => 0.0032680178542509
401 => 0.0032899129170028
402 => 0.0031909733386054
403 => 0.0031851147788852
404 => 0.0031372465826166
405 => 0.0031629682398981
406 => 0.0031220432337106
407 => 0.0031320847987331
408 => 0.0031040077075223
409 => 0.0031545408816086
410 => 0.0032110448222984
411 => 0.0032253199491249
412 => 0.0031877682362729
413 => 0.0031605783213896
414 => 0.0031128417877693
415 => 0.0031922287070579
416 => 0.0032154438615305
417 => 0.0031921067677345
418 => 0.0031866990531764
419 => 0.0031764514438603
420 => 0.0031888731319364
421 => 0.0032153174268135
422 => 0.0032028467856989
423 => 0.0032110838638595
424 => 0.0031796926159493
425 => 0.0032464589525211
426 => 0.003352499963191
427 => 0.0033528409023798
428 => 0.0033403701940438
429 => 0.0033352674488778
430 => 0.0033480631524164
501 => 0.0033550042966789
502 => 0.003396383255592
503 => 0.0034407845271162
504 => 0.0036479858875272
505 => 0.0035898045746535
506 => 0.0037736459480742
507 => 0.0039190406056353
508 => 0.0039626381061001
509 => 0.0039225304570934
510 => 0.0037853243564142
511 => 0.0037785923705386
512 => 0.0039836362118749
513 => 0.0039257019350945
514 => 0.0039188108372168
515 => 0.0038455011984919
516 => 0.0038888362745537
517 => 0.0038793582577318
518 => 0.0038643967444979
519 => 0.0039470770508763
520 => 0.0041018472034949
521 => 0.004077724823784
522 => 0.0040597185863348
523 => 0.0039808204953693
524 => 0.0040283347686571
525 => 0.0040114158460153
526 => 0.0040841102746982
527 => 0.0040410477055252
528 => 0.003925263025968
529 => 0.0039437021178188
530 => 0.0039409150861798
531 => 0.0039982719998181
601 => 0.00398105487803
602 => 0.0039375531668258
603 => 0.0041013182159389
604 => 0.0040906842245586
605 => 0.004105760793067
606 => 0.0041123979647828
607 => 0.0042120788643142
608 => 0.0042529149394191
609 => 0.0042621854434041
610 => 0.0043009765563784
611 => 0.0042612202851754
612 => 0.0044202737157285
613 => 0.0045260349660213
614 => 0.0046488821006606
615 => 0.0048283947825655
616 => 0.0048958932115469
617 => 0.0048837002245064
618 => 0.0050198046911768
619 => 0.0052643813923512
620 => 0.0049331361685293
621 => 0.00528193819354
622 => 0.0051715114995346
623 => 0.0049096917945393
624 => 0.0048928336921892
625 => 0.0050701410362013
626 => 0.0054633916600207
627 => 0.0053648868389656
628 => 0.0054635527786196
629 => 0.0053484537190633
630 => 0.0053427380806252
701 => 0.0054579626742028
702 => 0.0057271912176625
703 => 0.0055992908285458
704 => 0.0054159142582851
705 => 0.0055513166641102
706 => 0.0054340185692834
707 => 0.0051697131319691
708 => 0.0053648115141854
709 => 0.0052343547820794
710 => 0.0052724289919692
711 => 0.0055466296388817
712 => 0.0055136370916002
713 => 0.00555633250281
714 => 0.0054809762195582
715 => 0.0054105815684058
716 => 0.0052791847244545
717 => 0.0052402845967467
718 => 0.0052510351925651
719 => 0.0052402792692853
720 => 0.0051667639426939
721 => 0.0051508883149159
722 => 0.0051244282397588
723 => 0.0051326293234694
724 => 0.0050828766410059
725 => 0.0051767702322432
726 => 0.0051941977101643
727 => 0.0052625256357911
728 => 0.0052696196676989
729 => 0.0054599119679823
730 => 0.0053551021667184
731 => 0.0054254176302491
801 => 0.0054191279533561
802 => 0.0049153662214533
803 => 0.0049847801433821
804 => 0.0050927664226147
805 => 0.0050441187501924
806 => 0.0049753423231894
807 => 0.0049198016708258
808 => 0.0048356519031717
809 => 0.0049540910851917
810 => 0.0051098260149453
811 => 0.0052735693625192
812 => 0.0054702962657401
813 => 0.0054263891110948
814 => 0.0052698916899039
815 => 0.005276912049897
816 => 0.0053203091529651
817 => 0.0052641059614494
818 => 0.0052475305430548
819 => 0.0053180319450105
820 => 0.0053185174494189
821 => 0.0052538488851975
822 => 0.0051819816102877
823 => 0.0051816804837818
824 => 0.0051688923963671
825 => 0.0053507286914054
826 => 0.0054507202679535
827 => 0.0054621841410602
828 => 0.005449948657954
829 => 0.0054546576097927
830 => 0.0053964747145634
831 => 0.0055294635594559
901 => 0.0056515072747629
902 => 0.0056187969519769
903 => 0.0055697595280744
904 => 0.0055306988579737
905 => 0.0056095954994671
906 => 0.0056060823562163
907 => 0.0056504413293783
908 => 0.0056484289501258
909 => 0.0056335126958768
910 => 0.0056187974846833
911 => 0.0056771416337333
912 => 0.0056603394557853
913 => 0.005643511179414
914 => 0.0056097594948712
915 => 0.0056143469093567
916 => 0.0055653179524568
917 => 0.0055426349135825
918 => 0.005201536433133
919 => 0.0051103837734425
920 => 0.0051390622557647
921 => 0.0051485039567816
922 => 0.0051088342024689
923 => 0.0051657104398295
924 => 0.0051568463384837
925 => 0.0051913313714943
926 => 0.0051697866200353
927 => 0.0051706708241503
928 => 0.0052340293443658
929 => 0.0052524225923308
930 => 0.0052430676379641
1001 => 0.0052496195273335
1002 => 0.0054006050524708
1003 => 0.0053791397390416
1004 => 0.0053677367191019
1005 => 0.0053708954335548
1006 => 0.0054094754723936
1007 => 0.0054202757768764
1008 => 0.0053745141278587
1009 => 0.0053960955860804
1010 => 0.0054879866960934
1011 => 0.0055201433840116
1012 => 0.0056227720957606
1013 => 0.0055791735949297
1014 => 0.0056592005301037
1015 => 0.0059051760456357
1016 => 0.0061016783076536
1017 => 0.0059209667067025
1018 => 0.0062818180864863
1019 => 0.0065627926467041
1020 => 0.0065520083750954
1021 => 0.0065030139614627
1022 => 0.0061831318947499
1023 => 0.0058887716477879
1024 => 0.0061350164935679
1025 => 0.0061356442223205
1026 => 0.0061144915716843
1027 => 0.0059831142752617
1028 => 0.0061099199265456
1029 => 0.006119985298654
1030 => 0.0061143513668717
1031 => 0.0060136247017349
1101 => 0.0058598337014704
1102 => 0.0058898840947985
1103 => 0.0059391072520812
1104 => 0.0058459175463186
1105 => 0.0058161377887641
1106 => 0.0058715040238887
1107 => 0.0060499055694732
1108 => 0.0060161797906903
1109 => 0.0060152990743097
1110 => 0.0061595922578992
1111 => 0.0060563094788671
1112 => 0.005890263126493
1113 => 0.0058483342326363
1114 => 0.005699514906132
1115 => 0.0058023049450248
1116 => 0.0058060041755309
1117 => 0.0057497071217181
1118 => 0.0058948313221392
1119 => 0.0058934939770837
1120 => 0.0060312678064968
1121 => 0.0062946396228475
1122 => 0.0062167476170126
1123 => 0.0061261676888528
1124 => 0.0061360162385527
1125 => 0.0062440305204692
1126 => 0.0061787226198963
1127 => 0.0062022077962852
1128 => 0.006243994972842
1129 => 0.006269206213976
1130 => 0.0061323887289325
1201 => 0.0061004900284321
1202 => 0.0060352364821307
1203 => 0.0060182130499158
1204 => 0.0060713607018184
1205 => 0.0060573581732763
1206 => 0.005805693269531
1207 => 0.0057793928868393
1208 => 0.0057801994820282
1209 => 0.0057140659192349
1210 => 0.0056131963621014
1211 => 0.0058782755356399
1212 => 0.0058569859682241
1213 => 0.0058334839334787
1214 => 0.0058363627986343
1215 => 0.0059514246835005
1216 => 0.0058846829795136
1217 => 0.006062126738313
1218 => 0.0060256496359515
1219 => 0.0059882370335551
1220 => 0.0059830654722882
1221 => 0.0059686648122588
1222 => 0.0059192795907685
1223 => 0.0058596439682273
1224 => 0.0058202673646764
1225 => 0.0053688889857452
1226 => 0.0054526621873276
1227 => 0.0055490356195805
1228 => 0.005582303342202
1229 => 0.0055253966006017
1230 => 0.0059215266157776
1231 => 0.005993903386754
]
'min_raw' => 0.0024982019574121
'max_raw' => 0.0065627926467041
'avg_raw' => 0.0045304973020581
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.002498'
'max' => '$0.006562'
'avg' => '$0.00453'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -9.6860919096655E-5
'max_diff' => -0.0011835332399714
'year' => 2027
]
2 => [
'items' => [
101 => 0.0057746694264464
102 => 0.0057336597037365
103 => 0.0059242152063711
104 => 0.0058092869438196
105 => 0.0058610391334094
106 => 0.0057491792064506
107 => 0.0059764699420651
108 => 0.0059747383674758
109 => 0.0058863171377277
110 => 0.0059610501556283
111 => 0.0059480634546789
112 => 0.0058482361040651
113 => 0.0059796346471383
114 => 0.0059796998191764
115 => 0.0058945963079871
116 => 0.0057952140384722
117 => 0.0057774468359873
118 => 0.0057640616356028
119 => 0.0058577471946425
120 => 0.0059417453739304
121 => 0.0060980451606704
122 => 0.0061373426406482
123 => 0.0062907233211828
124 => 0.0061993925938942
125 => 0.0062398783223704
126 => 0.0062838313076871
127 => 0.0063049039851655
128 => 0.0062705671880367
129 => 0.0065088305189139
130 => 0.0065289472442397
131 => 0.0065356922082325
201 => 0.0064553511536342
202 => 0.0065267128141754
203 => 0.006493325056458
204 => 0.0065801907266525
205 => 0.0065938123728956
206 => 0.0065822753231319
207 => 0.0065865990486525
208 => 0.0063832833282806
209 => 0.0063727403356035
210 => 0.0062289858823539
211 => 0.0062875668846324
212 => 0.0061780525087333
213 => 0.006212780645454
214 => 0.0062280884772186
215 => 0.0062200925346166
216 => 0.006290878966607
217 => 0.0062306960387025
218 => 0.0060718633969731
219 => 0.0059129874813967
220 => 0.0059109929236942
221 => 0.0058691636995158
222 => 0.0058389288318393
223 => 0.0058447531399933
224 => 0.0058652787616046
225 => 0.0058377358453977
226 => 0.0058436135230318
227 => 0.0059412221345181
228 => 0.0059607968454389
229 => 0.0058942743293967
301 => 0.005627176828334
302 => 0.0055616304316098
303 => 0.0056087438817336
304 => 0.0055862266870692
305 => 0.0045085209235819
306 => 0.0047617119068777
307 => 0.0046112744221567
308 => 0.004680602936412
309 => 0.0045270452201097
310 => 0.0046003310109786
311 => 0.0045867978013737
312 => 0.0049939214100475
313 => 0.0049875647348783
314 => 0.004990607338894
315 => 0.0048453759217599
316 => 0.0050767335127172
317 => 0.0051907085813727
318 => 0.0051696148295128
319 => 0.0051749236724089
320 => 0.005083700162416
321 => 0.0049914905818754
322 => 0.0048892159661033
323 => 0.0050792295606834
324 => 0.0050581032926063
325 => 0.0051065593505838
326 => 0.0052297967491213
327 => 0.0052479439241892
328 => 0.0052723339115111
329 => 0.0052635918372537
330 => 0.0054718635129089
331 => 0.0054466404387663
401 => 0.0055074207902763
402 => 0.0053823909958039
403 => 0.0052409079154213
404 => 0.0052677992235717
405 => 0.0052652093743506
406 => 0.0052322376212751
407 => 0.0052024721968653
408 => 0.0051529211515793
409 => 0.0053097079910391
410 => 0.0053033427316834
411 => 0.0054063888818473
412 => 0.0053881744738689
413 => 0.0052665341995677
414 => 0.0052708786057612
415 => 0.0053000968252629
416 => 0.005401221416566
417 => 0.0054312420803519
418 => 0.0054173353127697
419 => 0.0054502516001156
420 => 0.0054762672915287
421 => 0.0054535187704125
422 => 0.0057755898570328
423 => 0.0056418434871502
424 => 0.0057070305372297
425 => 0.0057225772645693
426 => 0.0056827546494014
427 => 0.0056913907486904
428 => 0.005704472085917
429 => 0.0057838994039684
430 => 0.0059923396690149
501 => 0.0060846564435031
502 => 0.0063623960143803
503 => 0.0060769908204934
504 => 0.0060600560574122
505 => 0.0061100853410587
506 => 0.006273147870883
507 => 0.006405294735621
508 => 0.0064491354743901
509 => 0.0064549297517502
510 => 0.0065371778921582
511 => 0.0065843209924031
512 => 0.0065271908045718
513 => 0.0064787789521648
514 => 0.0063053737059433
515 => 0.0063254458353602
516 => 0.00646372290247
517 => 0.0066590474042413
518 => 0.0068266561468117
519 => 0.006767965406918
520 => 0.007215734323102
521 => 0.0072601287821696
522 => 0.0072539949033712
523 => 0.0073551320879086
524 => 0.0071543953728313
525 => 0.0070685765380451
526 => 0.0064892461441531
527 => 0.0066520143542571
528 => 0.006888607506685
529 => 0.0068572935157824
530 => 0.0066854732443361
531 => 0.0068265258057283
601 => 0.0067798894178107
602 => 0.0067431053637145
603 => 0.0069116202464688
604 => 0.0067263312106706
605 => 0.0068867591068142
606 => 0.0066810086705959
607 => 0.0067682335012741
608 => 0.0067187204687908
609 => 0.0067507614688965
610 => 0.0065634504369837
611 => 0.0066645189230856
612 => 0.0065592456556795
613 => 0.0065591957424438
614 => 0.006556871829231
615 => 0.0066807253614811
616 => 0.0066847642207213
617 => 0.0065932362732562
618 => 0.0065800456660912
619 => 0.0066288182542572
620 => 0.0065717183270759
621 => 0.0065984350236214
622 => 0.0065725275485975
623 => 0.0065666952302748
624 => 0.0065202223255917
625 => 0.0065002005204551
626 => 0.0065080515861475
627 => 0.0064812518514375
628 => 0.006465104041886
629 => 0.0065536596234768
630 => 0.0065063479485548
701 => 0.00654640843075
702 => 0.0065007544552526
703 => 0.0063424978856883
704 => 0.0062514828589989
705 => 0.0059525508694836
706 => 0.0060373276108862
707 => 0.006093534678144
708 => 0.0060749582427506
709 => 0.0061148676141018
710 => 0.0061173177253723
711 => 0.0061043427819181
712 => 0.0060893194595914
713 => 0.0060820069371246
714 => 0.0061365084885549
715 => 0.0061681484735981
716 => 0.0060991758092968
717 => 0.0060830164790812
718 => 0.0061527516507749
719 => 0.0061952900652234
720 => 0.0065093698172408
721 => 0.0064861017747471
722 => 0.0065444999952835
723 => 0.0065379252518448
724 => 0.0065991358905331
725 => 0.0066991894152423
726 => 0.0064957526241029
727 => 0.0065310622167298
728 => 0.0065224051200352
729 => 0.0066169210317335
730 => 0.006617216100093
731 => 0.00656054908961
801 => 0.0065912691953101
802 => 0.0065741220750703
803 => 0.0066051092389159
804 => 0.0064857910158537
805 => 0.0066311077319372
806 => 0.0067134929459542
807 => 0.0067146368647307
808 => 0.0067536868023253
809 => 0.0067933638005412
810 => 0.0068695203434784
811 => 0.0067912398358927
812 => 0.0066504208231998
813 => 0.0066605875010736
814 => 0.0065780253654554
815 => 0.0065794132498712
816 => 0.0065720046140892
817 => 0.0065942384877672
818 => 0.0064906701008069
819 => 0.0065149773942169
820 => 0.0064809470410995
821 => 0.0065309882413881
822 => 0.0064771521819844
823 => 0.0065224009453211
824 => 0.0065419288115569
825 => 0.0066139870583722
826 => 0.006466509120341
827 => 0.0061657916213166
828 => 0.0062290060854588
829 => 0.0061355069276035
830 => 0.0061441606306394
831 => 0.0061616424879985
901 => 0.0061049780685898
902 => 0.0061157878541119
903 => 0.0061154016525057
904 => 0.006112073575707
905 => 0.0060973329717351
906 => 0.0060759561796361
907 => 0.0061611147399286
908 => 0.0061755848387458
909 => 0.0062077500759503
910 => 0.0063034520039822
911 => 0.006293889124565
912 => 0.0063094865776546
913 => 0.0062754374251359
914 => 0.0061457400731694
915 => 0.006152783263374
916 => 0.0060649545686636
917 => 0.0062055040987607
918 => 0.0061722201148706
919 => 0.0061507617139315
920 => 0.0061449065904246
921 => 0.0062408457450252
922 => 0.0062695522437437
923 => 0.0062516642801638
924 => 0.0062149755449861
925 => 0.0062854287625781
926 => 0.0063042790714231
927 => 0.0063084989604008
928 => 0.0064333285539092
929 => 0.0063154755479942
930 => 0.0063438439378761
1001 => 0.0065651660176206
1002 => 0.0063644574316516
1003 => 0.006470777245975
1004 => 0.0064655734443254
1005 => 0.0065199630636669
1006 => 0.0064611119080254
1007 => 0.0064618414386321
1008 => 0.0065101357359353
1009 => 0.0064423151052953
1010 => 0.0064255217633851
1011 => 0.0064023218818125
1012 => 0.0064529779744757
1013 => 0.0064833440110493
1014 => 0.0067280719644363
1015 => 0.0068861773832749
1016 => 0.0068793136100697
1017 => 0.0069420356487198
1018 => 0.0069137787958399
1019 => 0.0068225299641096
1020 => 0.0069782805932638
1021 => 0.0069289945773163
1022 => 0.0069330576565885
1023 => 0.006932906428575
1024 => 0.0069656773205218
1025 => 0.0069424561401694
1026 => 0.0068966848100894
1027 => 0.006927069955055
1028 => 0.0070173029727147
1029 => 0.0072973890282175
1030 => 0.0074541288955235
1031 => 0.0072879530913973
1101 => 0.0074025789359008
1102 => 0.0073338442745632
1103 => 0.0073213531419191
1104 => 0.0073933466430507
1105 => 0.0074654661592757
1106 => 0.0074608724578734
1107 => 0.0074085173924722
1108 => 0.0073789433444877
1109 => 0.0076028879438595
1110 => 0.0077678865098799
1111 => 0.0077566347138418
1112 => 0.0078062964822742
1113 => 0.0079521049703724
1114 => 0.0079654358711926
1115 => 0.0079637564840965
1116 => 0.0079307144554779
1117 => 0.0080742818476354
1118 => 0.008194048292001
1119 => 0.0079230661805287
1120 => 0.008026252621161
1121 => 0.0080725763388204
1122 => 0.008140593299972
1123 => 0.0082553493144011
1124 => 0.0083800047836006
1125 => 0.0083976324337231
1126 => 0.0083851247724005
1127 => 0.0083029111395445
1128 => 0.0084393106413917
1129 => 0.0085192102706119
1130 => 0.0085667886713419
1201 => 0.0086874395793025
1202 => 0.0080728624183302
1203 => 0.0076378341573272
1204 => 0.0075698982124873
1205 => 0.0077080486277683
1206 => 0.0077444777905489
1207 => 0.0077297932407103
1208 => 0.0072401293819123
1209 => 0.007567320233609
1210 => 0.0079193500790464
1211 => 0.0079328729790964
1212 => 0.0081091064803193
1213 => 0.0081664953323728
1214 => 0.0083083864003103
1215 => 0.008299511075378
1216 => 0.0083340592924408
1217 => 0.0083261172556298
1218 => 0.0085889405802946
1219 => 0.0088788737370412
1220 => 0.0088688342737541
1221 => 0.0088271529521383
1222 => 0.0088890568224592
1223 => 0.0091882989113471
1224 => 0.009160749495059
1225 => 0.0091875114063291
1226 => 0.0095403346936731
1227 => 0.0099990551557475
1228 => 0.0097859334463325
1229 => 0.010248346231643
1230 => 0.010539410568548
1231 => 0.01104277624261
]
'min_raw' => 0.0045085209235819
'max_raw' => 0.01104277624261
'avg_raw' => 0.007775648583096
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.0045085'
'max' => '$0.011042'
'avg' => '$0.007775'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0020103189661698
'max_diff' => 0.0044799835959059
'year' => 2028
]
3 => [
'items' => [
101 => 0.010979752381089
102 => 0.011175708944134
103 => 0.01086692651549
104 => 0.0101578996441
105 => 0.010045693427656
106 => 0.01027033311449
107 => 0.01082258786455
108 => 0.010252940647103
109 => 0.010368179537282
110 => 0.010334990729158
111 => 0.010333222238616
112 => 0.010400718329618
113 => 0.010302811729261
114 => 0.009903922626345
115 => 0.010086731151543
116 => 0.010016140000778
117 => 0.010094466145471
118 => 0.01051716004422
119 => 0.010330276995819
120 => 0.010133410885475
121 => 0.010380324675934
122 => 0.010694730779972
123 => 0.010675055811023
124 => 0.010636878147764
125 => 0.01085208363664
126 => 0.01120754005497
127 => 0.011303618496505
128 => 0.011374541637809
129 => 0.011384320740739
130 => 0.011485051578592
131 => 0.010943396476018
201 => 0.011803017034492
202 => 0.011951449758402
203 => 0.011923550558213
204 => 0.012088527283835
205 => 0.012039986946102
206 => 0.011969659612471
207 => 0.012231182814138
208 => 0.011931367567261
209 => 0.01150581757001
210 => 0.011272352425093
211 => 0.011579798161015
212 => 0.011767544543566
213 => 0.011891632959519
214 => 0.01192918203921
215 => 0.010985443619736
216 => 0.010476820953772
217 => 0.010802842251284
218 => 0.011200610735037
219 => 0.010941186852007
220 => 0.010951355777067
221 => 0.010581485495262
222 => 0.011233336047849
223 => 0.011138366905263
224 => 0.011631066984996
225 => 0.011513480156802
226 => 0.011915257945317
227 => 0.011809456388561
228 => 0.01224863273537
301 => 0.012423832070337
302 => 0.012718019021345
303 => 0.012934424140064
304 => 0.013061501364945
305 => 0.013053872125018
306 => 0.013557415399621
307 => 0.01326049352305
308 => 0.012887489666963
309 => 0.012880743204018
310 => 0.013073927186591
311 => 0.013478787816627
312 => 0.013583762287512
313 => 0.013642428695856
314 => 0.013552579049285
315 => 0.013230291632849
316 => 0.013091129560467
317 => 0.01320969967805
318 => 0.013064698613092
319 => 0.013315011131323
320 => 0.013658743682722
321 => 0.013587764270124
322 => 0.013825037804612
323 => 0.014070590950903
324 => 0.01442174297858
325 => 0.014513547121737
326 => 0.014665295879377
327 => 0.014821495197858
328 => 0.014871662209265
329 => 0.014967446599949
330 => 0.01496694176893
331 => 0.01525559447729
401 => 0.015573987353442
402 => 0.015694173293377
403 => 0.015970534235167
404 => 0.015497275807194
405 => 0.015856247761213
406 => 0.016180049449388
407 => 0.015793999727969
408 => 0.016326079330896
409 => 0.01634673877616
410 => 0.016658671871614
411 => 0.016342467920221
412 => 0.016154707023243
413 => 0.01669676569751
414 => 0.016959050815299
415 => 0.016880048403274
416 => 0.016278836146931
417 => 0.015928904826533
418 => 0.01501306706434
419 => 0.016097916454905
420 => 0.016626314947558
421 => 0.016277467722487
422 => 0.016453405971582
423 => 0.017413268010473
424 => 0.017778721328418
425 => 0.017702709592997
426 => 0.017715554325023
427 => 0.01791274630194
428 => 0.018787204123191
429 => 0.018263208726924
430 => 0.018663783573637
501 => 0.018876247027954
502 => 0.019073594925041
503 => 0.01858897086224
504 => 0.017958482077077
505 => 0.017758779812697
506 => 0.016242781740981
507 => 0.016163867457702
508 => 0.01611957047915
509 => 0.015840284295313
510 => 0.015620841857741
511 => 0.015446333084008
512 => 0.014988369949002
513 => 0.015142919063418
514 => 0.014413021410553
515 => 0.014879984062871
516 => 0.013715049784904
517 => 0.014685241667804
518 => 0.014157210335153
519 => 0.014511769173671
520 => 0.014510532151285
521 => 0.013857676916592
522 => 0.013481123641962
523 => 0.013721078044229
524 => 0.013978328211063
525 => 0.014020066185138
526 => 0.014353597741355
527 => 0.014446679229459
528 => 0.014164637974946
529 => 0.013690909111307
530 => 0.013800945521725
531 => 0.013478893757617
601 => 0.012914510428559
602 => 0.013319860388676
603 => 0.013458264687039
604 => 0.013519391909916
605 => 0.01296438572565
606 => 0.012789990732784
607 => 0.012697144301897
608 => 0.013619264782387
609 => 0.013669780623878
610 => 0.013411334436592
611 => 0.014579535709997
612 => 0.014315135783241
613 => 0.014610535280982
614 => 0.013790960870827
615 => 0.013822269716998
616 => 0.013434270056968
617 => 0.013651523940438
618 => 0.013497975898021
619 => 0.013633971973599
620 => 0.013715487460567
621 => 0.014103423453671
622 => 0.014689671273695
623 => 0.014045478752826
624 => 0.013764794846477
625 => 0.01393892956335
626 => 0.014402673261587
627 => 0.01510526870302
628 => 0.014689318060641
629 => 0.014873909892429
630 => 0.014914234995755
701 => 0.014607528391395
702 => 0.015116577413004
703 => 0.015389380919192
704 => 0.015669220867809
705 => 0.015912198054255
706 => 0.015557446638519
707 => 0.015937081504975
708 => 0.015631162817186
709 => 0.015356722128947
710 => 0.015357138342187
711 => 0.015184977689516
712 => 0.014851394731328
713 => 0.014789876915757
714 => 0.0151099003612
715 => 0.015366528858112
716 => 0.015387666010285
717 => 0.015529748732223
718 => 0.015613831823498
719 => 0.016437960423411
720 => 0.016769431763846
721 => 0.017174748644498
722 => 0.017332642411919
723 => 0.01780784604381
724 => 0.017424080516906
725 => 0.017341050431162
726 => 0.016188361858119
727 => 0.01637711454738
728 => 0.016679325814813
729 => 0.016193345210608
730 => 0.01650158804666
731 => 0.016562441711973
801 => 0.01617683177564
802 => 0.016382802703857
803 => 0.015835804984636
804 => 0.014701594329202
805 => 0.015117840113695
806 => 0.015424337117898
807 => 0.014986928102092
808 => 0.015770966832858
809 => 0.015312947592189
810 => 0.015167777481698
811 => 0.014601417123791
812 => 0.014868717411514
813 => 0.01523024487803
814 => 0.015006862935802
815 => 0.015470414006893
816 => 0.016126925948112
817 => 0.016594795453387
818 => 0.016630712664444
819 => 0.016329903917374
820 => 0.016811951854289
821 => 0.016815463047245
822 => 0.016271711005182
823 => 0.015938665907042
824 => 0.015862997360012
825 => 0.016052032226186
826 => 0.016281555451483
827 => 0.016643449606047
828 => 0.016862134664305
829 => 0.017432349314649
830 => 0.017586633049696
831 => 0.017756144098608
901 => 0.017982663135226
902 => 0.018254657316974
903 => 0.017659549531946
904 => 0.017683194273665
905 => 0.017129038144075
906 => 0.01653684284558
907 => 0.016986245258952
908 => 0.017573779132937
909 => 0.017438998213078
910 => 0.017423832606269
911 => 0.017449336950333
912 => 0.017347716538292
913 => 0.01688809118086
914 => 0.016657270203765
915 => 0.016955088152929
916 => 0.017113365138558
917 => 0.017358838940065
918 => 0.017328579112706
919 => 0.017960893263426
920 => 0.018206591422208
921 => 0.018143731319175
922 => 0.018155299090946
923 => 0.018600123871348
924 => 0.019094860512348
925 => 0.019558246662895
926 => 0.020029622958129
927 => 0.019461360436094
928 => 0.019172831772965
929 => 0.019470519704129
930 => 0.019312562297592
1001 => 0.020220232408764
1002 => 0.020283077517917
1003 => 0.021190681994208
1004 => 0.022052106717739
1005 => 0.021511061282917
1006 => 0.022021242758733
1007 => 0.022573045620534
1008 => 0.023637562867737
1009 => 0.023279070909047
1010 => 0.023004471686976
1011 => 0.022744976748973
1012 => 0.023284944521297
1013 => 0.023979604434195
1014 => 0.024129227526063
1015 => 0.02437167409531
1016 => 0.024116771172703
1017 => 0.024423773666348
1018 => 0.025507627372644
1019 => 0.025214760533762
1020 => 0.024798842541855
1021 => 0.025654440948559
1022 => 0.025964078685891
1023 => 0.028137278485027
1024 => 0.030881033001843
1025 => 0.029745100615418
1026 => 0.029039990726855
1027 => 0.029205708276097
1028 => 0.030207634543687
1029 => 0.030529421461286
1030 => 0.029654693692648
1031 => 0.029963662328359
1101 => 0.031666109888254
1102 => 0.03257941838308
1103 => 0.03133902277341
1104 => 0.027916820481136
1105 => 0.024761393677341
1106 => 0.025598354956428
1107 => 0.025503469521312
1108 => 0.02733253703976
1109 => 0.025207775756512
1110 => 0.025243551287268
1111 => 0.027110441984981
1112 => 0.02661238755344
1113 => 0.025805603160336
1114 => 0.024767284096251
1115 => 0.022847855273402
1116 => 0.021147763637771
1117 => 0.024482034842963
1118 => 0.024338255005617
1119 => 0.024130040494161
1120 => 0.024593399358243
1121 => 0.026843338475517
1122 => 0.026791470096522
1123 => 0.026461509932832
1124 => 0.026711781808855
1125 => 0.025761729290423
1126 => 0.026006579456716
1127 => 0.024760893841613
1128 => 0.025323995764067
1129 => 0.025803872163374
1130 => 0.025900214455226
1201 => 0.026117278558129
1202 => 0.024262489564741
1203 => 0.025095235369029
1204 => 0.025584395511318
1205 => 0.023374352192658
1206 => 0.025540710060739
1207 => 0.0242302018149
1208 => 0.023785395633088
1209 => 0.024384268558139
1210 => 0.024150887196824
1211 => 0.023950239606978
1212 => 0.023838274804281
1213 => 0.024278020985245
1214 => 0.024257506300293
1215 => 0.02353799619718
1216 => 0.022599424598653
1217 => 0.022914440034681
1218 => 0.022799991973486
1219 => 0.022385217435624
1220 => 0.022664725394074
1221 => 0.021433913800798
1222 => 0.019316366426585
1223 => 0.02071528308422
1224 => 0.02066142631463
1225 => 0.020634269289192
1226 => 0.021685516494189
1227 => 0.021584463331828
1228 => 0.021401050852627
1229 => 0.022381848921609
1230 => 0.022023844432835
1231 => 0.023127129910771
]
'min_raw' => 0.009903922626345
'max_raw' => 0.03257941838308
'avg_raw' => 0.021241670504712
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.0099039'
'max' => '$0.032579'
'avg' => '$0.021241'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.0053954017027631
'max_diff' => 0.02153664214047
'year' => 2029
]
4 => [
'items' => [
101 => 0.02385382508257
102 => 0.023669511680876
103 => 0.024352972002376
104 => 0.022921697354085
105 => 0.023397109379475
106 => 0.023495091139016
107 => 0.022369746025683
108 => 0.021600996878935
109 => 0.021549730075229
110 => 0.020216824994926
111 => 0.02092885212999
112 => 0.021555406543162
113 => 0.021255335601839
114 => 0.021160342106181
115 => 0.021645643273924
116 => 0.021683355330981
117 => 0.020823516433536
118 => 0.021002304167871
119 => 0.021747878741038
120 => 0.020983517601575
121 => 0.019498488765281
122 => 0.01913018108175
123 => 0.019081042047509
124 => 0.018082162398923
125 => 0.019154793162295
126 => 0.018686561089366
127 => 0.020165700597468
128 => 0.019320824043224
129 => 0.019284403103604
130 => 0.019229347511578
131 => 0.018369570534841
201 => 0.018557807051069
202 => 0.019183533900242
203 => 0.019406800289344
204 => 0.019383511775794
205 => 0.019180467497317
206 => 0.019273420128249
207 => 0.018973987317175
208 => 0.018868251359429
209 => 0.018534519591819
210 => 0.018044026089185
211 => 0.018112232219098
212 => 0.017140436245774
213 => 0.016610950222391
214 => 0.016464395469632
215 => 0.016268416329299
216 => 0.016486531835014
217 => 0.017137683269881
218 => 0.016352256489948
219 => 0.015005697367035
220 => 0.015086627864747
221 => 0.015268454664626
222 => 0.014929621625956
223 => 0.014608944590957
224 => 0.014887747255539
225 => 0.014317192403785
226 => 0.015337403492602
227 => 0.015309809641758
228 => 0.015690081246239
301 => 0.015927872884479
302 => 0.015379840144292
303 => 0.015242011392173
304 => 0.015320524913347
305 => 0.014022871299362
306 => 0.015584035261369
307 => 0.015597536272142
308 => 0.015481932421209
309 => 0.016313204035448
310 => 0.018067446421611
311 => 0.0174074298717
312 => 0.017151851514468
313 => 0.016665996870545
314 => 0.017313369336379
315 => 0.017263661231586
316 => 0.017038862330476
317 => 0.01690290325367
318 => 0.017153412021419
319 => 0.016871862445088
320 => 0.016821288404714
321 => 0.016514864745146
322 => 0.016405485440068
323 => 0.016324505357105
324 => 0.0162353542427
325 => 0.016431999386003
326 => 0.015986375620456
327 => 0.015448997044242
328 => 0.015404319830147
329 => 0.015527677546325
330 => 0.015473100939818
331 => 0.015404058538352
401 => 0.015272237791374
402 => 0.01523312939165
403 => 0.015360212718054
404 => 0.015216743051962
405 => 0.015428440359478
406 => 0.01537087040558
407 => 0.015049289322946
408 => 0.014648480229417
409 => 0.014644912187759
410 => 0.014558558526017
411 => 0.014448574154429
412 => 0.014417979018355
413 => 0.014864267272771
414 => 0.01578807060313
415 => 0.015606705904641
416 => 0.015737760486301
417 => 0.016382419318585
418 => 0.016587336975801
419 => 0.01644189127645
420 => 0.016242796232478
421 => 0.016251555403989
422 => 0.016931923439408
423 => 0.01697435715922
424 => 0.01708157347955
425 => 0.017219376750502
426 => 0.016465359769371
427 => 0.016216041271985
428 => 0.01609790033626
429 => 0.015734071980522
430 => 0.016126429669899
501 => 0.015897819646731
502 => 0.015928666949287
503 => 0.015908577603029
504 => 0.015919547744521
505 => 0.015337118322811
506 => 0.015549324992493
507 => 0.015196490245986
508 => 0.014724084127972
509 => 0.014722500457018
510 => 0.014838121185144
511 => 0.014769345451815
512 => 0.014584271721812
513 => 0.014610560571635
514 => 0.014380242584753
515 => 0.014638525345285
516 => 0.014645931970676
517 => 0.014546479039115
518 => 0.014944399267866
519 => 0.015107427510258
520 => 0.015041965460216
521 => 0.015102834518318
522 => 0.015614242426676
523 => 0.015697624230029
524 => 0.015734656919186
525 => 0.015685038021607
526 => 0.015112182116078
527 => 0.01513759071146
528 => 0.014951159297418
529 => 0.014793644398211
530 => 0.014799944168122
531 => 0.014880927301818
601 => 0.015234585396267
602 => 0.015978838006751
603 => 0.016007081849278
604 => 0.016041314210351
605 => 0.015902073994061
606 => 0.015860077812479
607 => 0.01591548161612
608 => 0.016194983765675
609 => 0.016913939178423
610 => 0.01665981231814
611 => 0.01645320322501
612 => 0.016634455101097
613 => 0.016606552795472
614 => 0.016371029256115
615 => 0.0163644188948
616 => 0.015912373921343
617 => 0.015745263187222
618 => 0.015605612949768
619 => 0.015453118536131
620 => 0.015362714736068
621 => 0.015501616060757
622 => 0.015533384437146
623 => 0.015229674263133
624 => 0.015188279688662
625 => 0.015436295972801
626 => 0.01532715325313
627 => 0.015439409246921
628 => 0.015465453600394
629 => 0.015461259859633
630 => 0.015347302325335
701 => 0.015419935459434
702 => 0.015248136444311
703 => 0.015061330818743
704 => 0.014942160468033
705 => 0.014838168531384
706 => 0.014895869301884
707 => 0.014690176590798
708 => 0.014624371352746
709 => 0.015395328987898
710 => 0.015964843682177
711 => 0.01595656271297
712 => 0.015906154442612
713 => 0.015831257977805
714 => 0.016189504622773
715 => 0.016064698655034
716 => 0.016155505424451
717 => 0.016178619558416
718 => 0.016248579080396
719 => 0.01627358359628
720 => 0.016198002582526
721 => 0.015944343468926
722 => 0.015312249075018
723 => 0.015018007428348
724 => 0.014920902783965
725 => 0.01492443235336
726 => 0.014827071072744
727 => 0.014855748333312
728 => 0.01481709829183
729 => 0.014743904463712
730 => 0.014891349789252
731 => 0.014908341489472
801 => 0.014873925988651
802 => 0.014882032084954
803 => 0.014597086437204
804 => 0.014618750235933
805 => 0.014498123451707
806 => 0.014475507383843
807 => 0.014170573377496
808 => 0.013630338584362
809 => 0.013929681101619
810 => 0.0135681174347
811 => 0.013431187795455
812 => 0.014079391410715
813 => 0.014014329746113
814 => 0.013902972457939
815 => 0.013738251819838
816 => 0.013677155332867
817 => 0.013305952418828
818 => 0.013284019770376
819 => 0.013467997957895
820 => 0.013383098354658
821 => 0.013263867157718
822 => 0.012832023848677
823 => 0.012346488990908
824 => 0.0123611442363
825 => 0.01251558384086
826 => 0.012964637820133
827 => 0.012789184661718
828 => 0.012661891382195
829 => 0.012638053177362
830 => 0.012936438219507
831 => 0.013358715567739
901 => 0.013556838651607
902 => 0.013360504692582
903 => 0.013134966811824
904 => 0.013148694257584
905 => 0.01324001680422
906 => 0.01324961351264
907 => 0.013102811537936
908 => 0.013144135433918
909 => 0.013081360657185
910 => 0.012696111968251
911 => 0.012689144041105
912 => 0.012594597799866
913 => 0.012591734977256
914 => 0.012430888235244
915 => 0.012408384664155
916 => 0.01208901369519
917 => 0.012299224634108
918 => 0.012158226172852
919 => 0.011945708233564
920 => 0.011909070060728
921 => 0.011907968673011
922 => 0.012126177078517
923 => 0.012296674741842
924 => 0.012160678901452
925 => 0.012129715284764
926 => 0.012460325703567
927 => 0.012418252514193
928 => 0.012381817403539
929 => 0.013320905262784
930 => 0.012577543944252
1001 => 0.012253395979791
1002 => 0.011852201319743
1003 => 0.011982832324054
1004 => 0.012010358196031
1005 => 0.011045557359386
1006 => 0.010654137780118
1007 => 0.010519817330849
1008 => 0.010442514013282
1009 => 0.010477742105811
1010 => 0.010125418575532
1011 => 0.010362185814773
1012 => 0.010057103418718
1013 => 0.010005955362195
1014 => 0.010551480478798
1015 => 0.010627387111862
1016 => 0.010303545832869
1017 => 0.010511504359123
1018 => 0.010436095706664
1019 => 0.010062333180758
1020 => 0.01004805820148
1021 => 0.0098605173043687
1022 => 0.0095670521154631
1023 => 0.009432930649411
1024 => 0.0093630790253951
1025 => 0.009391901166845
1026 => 0.0093773278101559
1027 => 0.0092822267999606
1028 => 0.009382778888739
1029 => 0.0091259098529019
1030 => 0.0090236225330971
1031 => 0.008977421723789
1101 => 0.0087494356696535
1102 => 0.0091122628676416
1103 => 0.0091837443964218
1104 => 0.0092553667658955
1105 => 0.0098787905934957
1106 => 0.0098476461008463
1107 => 0.010129177146414
1108 => 0.010118237367686
1109 => 0.010037940152989
1110 => 0.0096991794124352
1111 => 0.0098342034057905
1112 => 0.0094186205416304
1113 => 0.009730003480347
1114 => 0.0095879013107792
1115 => 0.0096819585938742
1116 => 0.0095128351180661
1117 => 0.0096064350325155
1118 => 0.0092006953186855
1119 => 0.0088218212828229
1120 => 0.0089742912548766
1121 => 0.0091400435515553
1122 => 0.0094994367636544
1123 => 0.0092853851314578
1124 => 0.009362366192584
1125 => 0.0091044925242851
1126 => 0.0085724254886129
1127 => 0.0085754369302525
1128 => 0.0084935900085247
1129 => 0.0084228623183058
1130 => 0.0093099715363294
1201 => 0.0091996454819467
1202 => 0.0090238553534049
1203 => 0.0092591574260801
1204 => 0.0093213750288415
1205 => 0.0093231462765244
1206 => 0.0094948165947227
1207 => 0.0095864370743187
1208 => 0.0096025855809534
1209 => 0.0098727125358211
1210 => 0.009963255528032
1211 => 0.010336189298825
1212 => 0.0095786637167417
1213 => 0.0095630629758822
1214 => 0.009262468608787
1215 => 0.0090718269089662
1216 => 0.0092755220090748
1217 => 0.0094559680606169
1218 => 0.0092680755705998
1219 => 0.0092926103631691
1220 => 0.0090403800467015
1221 => 0.0091305405162992
1222 => 0.0092081988586436
1223 => 0.0091653204865474
1224 => 0.0091011294881827
1225 => 0.0094411735421701
1226 => 0.0094219869240007
1227 => 0.0097386437646528
1228 => 0.009985500416289
1229 => 0.010427911666926
1230 => 0.0099662324634662
1231 => 0.0099494070382835
]
'min_raw' => 0.0084228623183058
'max_raw' => 0.024352972002376
'avg_raw' => 0.016387917160341
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.008422'
'max' => '$0.024352'
'avg' => '$0.016387'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0014810603080392
'max_diff' => -0.0082264463807038
'year' => 2030
]
5 => [
'items' => [
101 => 0.010113878268327
102 => 0.0099632303483436
103 => 0.010058434633584
104 => 0.010412572784721
105 => 0.010420055165811
106 => 0.010294715642051
107 => 0.010287088720639
108 => 0.010311161547242
109 => 0.010452156844552
110 => 0.010402888755324
111 => 0.010459903035494
112 => 0.010531200265881
113 => 0.010826115840158
114 => 0.010897218986685
115 => 0.01072447520338
116 => 0.010740072032883
117 => 0.010675461116004
118 => 0.010613047779871
119 => 0.010753343844761
120 => 0.011009737660874
121 => 0.011008142648251
122 => 0.011067621030005
123 => 0.011104675569093
124 => 0.010945610361749
125 => 0.010842064760757
126 => 0.010881770732955
127 => 0.010945261447183
128 => 0.010861181550038
129 => 0.010342201475258
130 => 0.010499626877371
131 => 0.01047342359275
201 => 0.010436106929023
202 => 0.010594399388181
203 => 0.010579131694339
204 => 0.010121804988489
205 => 0.010151081560404
206 => 0.010123585393794
207 => 0.010212431133299
208 => 0.0099584323868435
209 => 0.010036560690545
210 => 0.01008556203022
211 => 0.010114424195734
212 => 0.010218694128544
213 => 0.010206459255408
214 => 0.010217933591651
215 => 0.010372538375767
216 => 0.011154476319867
217 => 0.011197035476915
218 => 0.010987458622328
219 => 0.011071180442015
220 => 0.010910452856165
221 => 0.011018350361327
222 => 0.01109217109406
223 => 0.010758589397752
224 => 0.010738836854624
225 => 0.010577445888854
226 => 0.010664168252207
227 => 0.010526186736553
228 => 0.010560042574106
301 => 0.010465378700809
302 => 0.010635754825355
303 => 0.010826261806369
304 => 0.010874391393122
305 => 0.010747783171465
306 => 0.010656110475097
307 => 0.010495163419138
308 => 0.010762821960137
309 => 0.010841093474271
310 => 0.010762410833194
311 => 0.010744178346007
312 => 0.010709627815733
313 => 0.010751508404336
314 => 0.010840667190796
315 => 0.010798621553605
316 => 0.010826393437718
317 => 0.010720555653722
318 => 0.010945663018951
319 => 0.011303187689971
320 => 0.01130433719025
321 => 0.011262291326418
322 => 0.011245087064829
323 => 0.011288228672677
324 => 0.011311631225173
325 => 0.011451143274135
326 => 0.011600845261077
327 => 0.012299439114039
328 => 0.012103276755596
329 => 0.012723110781479
330 => 0.013213319020577
331 => 0.013360311037274
401 => 0.013225085298422
402 => 0.012762485350558
403 => 0.012739787990166
404 => 0.013431107616935
405 => 0.013235778157928
406 => 0.013212544340312
407 => 0.012965375775035
408 => 0.013111483009536
409 => 0.013079527214087
410 => 0.01302908342764
411 => 0.013307845853149
412 => 0.01382966422841
413 => 0.013748333941044
414 => 0.013687624654328
415 => 0.013421614232149
416 => 0.01358181192188
417 => 0.013524768592951
418 => 0.013769862934619
419 => 0.013624674476119
420 => 0.013234298345164
421 => 0.013296467030715
422 => 0.01328707035896
423 => 0.013480453197823
424 => 0.013422404469654
425 => 0.013275735413136
426 => 0.013827880709932
427 => 0.013792027465551
428 => 0.01384285916889
429 => 0.013865236856722
430 => 0.01420131796899
501 => 0.014338999647291
502 => 0.014370255798722
503 => 0.014501042744424
504 => 0.014367001700369
505 => 0.014903261446234
506 => 0.015259842885611
507 => 0.015674030576961
508 => 0.016279270117178
509 => 0.016506845783079
510 => 0.016465736275985
511 => 0.016924621987874
512 => 0.017749229411684
513 => 0.016632413012765
514 => 0.017808423392668
515 => 0.017436112084084
516 => 0.016553368669024
517 => 0.016496530399955
518 => 0.017094334489496
519 => 0.018420206423585
520 => 0.01808809054201
521 => 0.01842074964619
522 => 0.018032685130936
523 => 0.018013414456889
524 => 0.01840190221886
525 => 0.019309625050071
526 => 0.018878399958444
527 => 0.018260133048867
528 => 0.0187166517136
529 => 0.0183211729974
530 => 0.017430048762279
531 => 0.018087836579255
601 => 0.017647992598761
602 => 0.017776362455661
603 => 0.018700849080804
604 => 0.018589612404179
605 => 0.018733562963971
606 => 0.01847949399378
607 => 0.018242153512622
608 => 0.017799139879406
609 => 0.017667985382919
610 => 0.017704231767303
611 => 0.017667967421011
612 => 0.017420105364731
613 => 0.017366579577277
614 => 0.017277367586501
615 => 0.017305018112813
616 => 0.017137273470266
617 => 0.017453842268564
618 => 0.017512600227122
619 => 0.017742972598877
620 => 0.017766890622743
621 => 0.018408474398933
622 => 0.018055100836385
623 => 0.018292174330948
624 => 0.018270968246172
625 => 0.01657250039554
626 => 0.016806534279649
627 => 0.017170617559443
628 => 0.017006598535399
629 => 0.016774714009941
630 => 0.016587454822773
701 => 0.016303738005978
702 => 0.016703063977318
703 => 0.017228135166048
704 => 0.017780207294589
705 => 0.018443485783832
706 => 0.018295449746445
707 => 0.017767807764599
708 => 0.017791477398462
709 => 0.017937793761345
710 => 0.017748300777168
711 => 0.017692415596792
712 => 0.017930115995737
713 => 0.017931752907746
714 => 0.017713718328459
715 => 0.017471412793488
716 => 0.017470397524449
717 => 0.017427281594894
718 => 0.018040355359021
719 => 0.018377483940542
720 => 0.018416135189103
721 => 0.018374882403556
722 => 0.018390758963449
723 => 0.018194591269983
724 => 0.018642972445523
725 => 0.019054451352501
726 => 0.018944166215466
727 => 0.018778833117095
728 => 0.018647137340722
729 => 0.018913142875904
730 => 0.018901298068154
731 => 0.019050857443215
801 => 0.019044072566065
802 => 0.018993781373445
803 => 0.018944168011523
804 => 0.019140879383503
805 => 0.019084229667461
806 => 0.019027491958762
807 => 0.018913695797859
808 => 0.01892916258608
809 => 0.018763858034799
810 => 0.018687380585555
811 => 0.017537343243985
812 => 0.017230015687763
813 => 0.017326707193179
814 => 0.017358540547356
815 => 0.017224791201038
816 => 0.017416553406271
817 => 0.017386667469712
818 => 0.017502936166175
819 => 0.017430296532425
820 => 0.017433277688332
821 => 0.017646895362789
822 => 0.017708909482478
823 => 0.017677368600689
824 => 0.017699458753136
825 => 0.018208516992609
826 => 0.018136145189722
827 => 0.018097699111862
828 => 0.018108348938175
829 => 0.018238424232692
830 => 0.018274838213309
831 => 0.018120549618669
901 => 0.018193313011833
902 => 0.018503130304874
903 => 0.018611548823299
904 => 0.018957568690268
905 => 0.018810573300767
906 => 0.019080389700008
907 => 0.019909713324086
908 => 0.02057223441983
909 => 0.019962952640342
910 => 0.021179588261122
911 => 0.022126913607914
912 => 0.022090553683251
913 => 0.021925365597008
914 => 0.020846860875633
915 => 0.019854404751424
916 => 0.020684636441238
917 => 0.020686752872554
918 => 0.020615435234103
919 => 0.020172487506744
920 => 0.020600021613335
921 => 0.020633957718141
922 => 0.020614962523788
923 => 0.020275355539768
924 => 0.019756838445032
925 => 0.019858155444189
926 => 0.020024114755619
927 => 0.019709919156343
928 => 0.019609514624591
929 => 0.019796185751861
930 => 0.020397679018397
1001 => 0.020283970200572
1002 => 0.020281000803805
1003 => 0.020767495346505
1004 => 0.020419270246025
1005 => 0.01985943337601
1006 => 0.01971806718299
1007 => 0.019216312433448
1008 => 0.019562876226146
1009 => 0.019575348440069
1010 => 0.019385538992605
1011 => 0.019874835366572
1012 => 0.019870326414347
1013 => 0.020334840499275
1014 => 0.021222816966135
1015 => 0.020960198630216
1016 => 0.020654802078337
1017 => 0.020688007151254
1018 => 0.021052184844052
1019 => 0.020831994697618
1020 => 0.020911176609496
1021 => 0.021052064992745
1022 => 0.02113706645242
1023 => 0.020675776749305
1024 => 0.020568228053471
1025 => 0.020348221166259
1026 => 0.020290825476008
1027 => 0.020470016495048
1028 => 0.020422805992443
1029 => 0.019574300198784
1030 => 0.019485626622305
1031 => 0.019488346114299
1101 => 0.019265372190043
1102 => 0.01892528343568
1103 => 0.019819016376502
1104 => 0.019747237113569
1105 => 0.019667998362566
1106 => 0.019677704657434
1107 => 0.020065643835624
1108 => 0.019840619520876
1109 => 0.020438883542395
1110 => 0.020315898445034
1111 => 0.02018975924399
1112 => 0.020172322964111
1113 => 0.0201237701334
1114 => 0.01995726441118
1115 => 0.019756198746156
1116 => 0.019623437778097
1117 => 0.018101584059299
1118 => 0.018384031257292
1119 => 0.018708961012711
1120 => 0.018821125462207
1121 => 0.0186292604098
1122 => 0.01996484041288
1123 => 0.020208863749412
1124 => 0.019469701145809
1125 => 0.019331434002485
1126 => 0.019973905183778
1127 => 0.01958641652255
1128 => 0.019760902642975
1129 => 0.019383759089422
1130 => 0.020150085673479
1201 => 0.020144247548857
1202 => 0.019846129199388
1203 => 0.020098096786932
1204 => 0.020054311217979
1205 => 0.019717736335661
1206 => 0.020160755697586
1207 => 0.020160975429662
1208 => 0.01987404299995
1209 => 0.019538968739632
1210 => 0.019479065375988
1211 => 0.019433936238367
1212 => 0.019749803641586
1213 => 0.020033009367621
1214 => 0.020559985011117
1215 => 0.020692479208525
1216 => 0.021209612881645
1217 => 0.020901684958084
1218 => 0.021038185418264
1219 => 0.021186375976959
1220 => 0.021257423980325
1221 => 0.021141655071486
1222 => 0.021944976526553
1223 => 0.022012801470494
1224 => 0.022035542587514
1225 => 0.021764667112703
1226 => 0.02200526793353
1227 => 0.021892698777326
1228 => 0.022185572449155
1229 => 0.022231498780496
1230 => 0.022192600811727
1231 => 0.022207178554192
]
'min_raw' => 0.0099584323868435
'max_raw' => 0.022231498780496
'avg_raw' => 0.01609496558367
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.009958'
'max' => '$0.022231'
'avg' => '$0.016094'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0015355700685378
'max_diff' => -0.0021214732218797
'year' => 2031
]
6 => [
'items' => [
101 => 0.021521685407908
102 => 0.021486138972009
103 => 0.021001460796263
104 => 0.02119897073544
105 => 0.020829735371046
106 => 0.020946823708641
107 => 0.020998435132194
108 => 0.020971476253453
109 => 0.021210137651059
110 => 0.021007226707791
111 => 0.02047171136686
112 => 0.019936050125132
113 => 0.019929325334582
114 => 0.019788295184841
115 => 0.019686356217539
116 => 0.019705993279121
117 => 0.019775196845436
118 => 0.01968233398046
119 => 0.019702150980969
120 => 0.020031245229411
121 => 0.020097242733943
122 => 0.019872957426653
123 => 0.018972419553668
124 => 0.018751425300809
125 => 0.018910271587258
126 => 0.018834353293346
127 => 0.015200793068735
128 => 0.016054444146147
129 => 0.0155472336632
130 => 0.015780979589374
131 => 0.015263249027804
201 => 0.015510337188369
202 => 0.015464709027327
203 => 0.016837354698434
204 => 0.016815922724292
205 => 0.016826181076159
206 => 0.016336523213557
207 => 0.017116561484341
208 => 0.017500836385798
209 => 0.017429717328684
210 => 0.01744761646316
211 => 0.017140050030196
212 => 0.016829158991537
213 => 0.016484332983875
214 => 0.017124977084328
215 => 0.017053748396517
216 => 0.017217121379082
217 => 0.017632624872411
218 => 0.017693809340148
219 => 0.017776041885259
220 => 0.017746567371548
221 => 0.018448769867083
222 => 0.018363728511592
223 => 0.018568653710257
224 => 0.018147107028892
225 => 0.017670086945349
226 => 0.017760752868269
227 => 0.017752021010802
228 => 0.017640854443294
229 => 0.017540498236741
301 => 0.017373433428016
302 => 0.017902051203762
303 => 0.017880590287436
304 => 0.018228017577166
305 => 0.018166606428978
306 => 0.017756487751518
307 => 0.017771135220317
308 => 0.017869646487317
309 => 0.018210595107189
310 => 0.018311811871119
311 => 0.018264924233276
312 => 0.018375903794205
313 => 0.018463617514162
314 => 0.018386919286967
315 => 0.019472804441793
316 => 0.01902186921786
317 => 0.019241651908418
318 => 0.019294068785081
319 => 0.019159804057717
320 => 0.019188921269422
321 => 0.019233025911192
322 => 0.01950082065944
323 => 0.020203591565879
324 => 0.020514844016418
325 => 0.021451262370788
326 => 0.020488998833244
327 => 0.020431902097168
328 => 0.020600579319915
329 => 0.02115035602388
330 => 0.021595898404544
331 => 0.021743710516166
401 => 0.021763246326829
402 => 0.022040551674597
403 => 0.022199497928499
404 => 0.022006879511523
405 => 0.021843655571125
406 => 0.021259007676722
407 => 0.021326682262442
408 => 0.0217928930484
409 => 0.022451443243243
410 => 0.023016547820888
411 => 0.022818667893679
412 => 0.024328352056821
413 => 0.02447803107509
414 => 0.024457350274467
415 => 0.024798341353308
416 => 0.024121543503435
417 => 0.023832199310273
418 => 0.02187894643971
419 => 0.022427730824189
420 => 0.023225421156006
421 => 0.023119843849405
422 => 0.022540539808116
423 => 0.023016108366825
424 => 0.022858870528912
425 => 0.022734850522346
426 => 0.023303010214885
427 => 0.022678295294224
428 => 0.02321918914679
429 => 0.022525487186044
430 => 0.022819571792518
501 => 0.022652635146612
502 => 0.022760663615499
503 => 0.022129131393767
504 => 0.022469890851035
505 => 0.022114954680031
506 => 0.022114786394072
507 => 0.022106951158425
508 => 0.022524531989583
509 => 0.022538149285496
510 => 0.02222955642034
511 => 0.022185083367344
512 => 0.02234952355354
513 => 0.022157007162458
514 => 0.022247084370161
515 => 0.022159735509316
516 => 0.022140071440892
517 => 0.021983384798118
518 => 0.021915879884222
519 => 0.021942350300348
520 => 0.021851993123676
521 => 0.021797549656368
522 => 0.022096120982455
523 => 0.02193660636726
524 => 0.022071673079915
525 => 0.021917747514066
526 => 0.021384174440659
527 => 0.02107731092371
528 => 0.020069440850294
529 => 0.020355271552856
530 => 0.020544777604368
531 => 0.020482145855474
601 => 0.020616703087368
602 => 0.020624963808577
603 => 0.02058121788084
604 => 0.020530565700721
605 => 0.02050591102068
606 => 0.020689666806504
607 => 0.02079634322511
608 => 0.020563797071901
609 => 0.02050931476187
610 => 0.02074443176199
611 => 0.02088785299624
612 => 0.021946794808515
613 => 0.021868344978725
614 => 0.022065238656497
615 => 0.022043071449959
616 => 0.022249447391887
617 => 0.022586784835958
618 => 0.021900883491129
619 => 0.022019932247907
620 => 0.021990744241982
621 => 0.022309411237163
622 => 0.022310406080738
623 => 0.02211934929853
624 => 0.022222924279708
625 => 0.022165111566646
626 => 0.022269586953006
627 => 0.021867297233419
628 => 0.022357242687384
629 => 0.022635010188394
630 => 0.022638866990415
701 => 0.022770526581394
702 => 0.022904300351039
703 => 0.023161067452632
704 => 0.022897139255936
705 => 0.022422358122973
706 => 0.022456635787239
707 => 0.022178271782698
708 => 0.022182951131905
709 => 0.022157972399111
710 => 0.022232935456536
711 => 0.021883747408986
712 => 0.021965701145799
713 => 0.02185096543434
714 => 0.022019682834878
715 => 0.021838170801884
716 => 0.021990730166642
717 => 0.022056569731048
718 => 0.022299519141132
719 => 0.021802286976479
720 => 0.020788396933093
721 => 0.021001528912441
722 => 0.020686289973829
723 => 0.020715466537797
724 => 0.020774407840428
725 => 0.020583359794208
726 => 0.020619805740811
727 => 0.020618503635132
728 => 0.020607282791846
729 => 0.020557583816399
730 => 0.020485510469357
731 => 0.020772628500964
801 => 0.020821415449396
802 => 0.020929862792336
803 => 0.021252528524391
804 => 0.021220286608777
805 => 0.021272874510848
806 => 0.021158075415895
807 => 0.02072079173856
808 => 0.020744538346075
809 => 0.020448417769855
810 => 0.020922290323433
811 => 0.020810071047933
812 => 0.020737722550989
813 => 0.020717981593294
814 => 0.021041447151288
815 => 0.021138233115941
816 => 0.021077922597834
817 => 0.020954223965657
818 => 0.021191761907655
819 => 0.021255317040012
820 => 0.021269544690324
821 => 0.021690416380161
822 => 0.021293066742484
823 => 0.021388712749589
824 => 0.022134915593662
825 => 0.021458212583041
826 => 0.021816677260045
827 => 0.021799132279466
828 => 0.021982510678438
829 => 0.021784089898336
830 => 0.02178654956171
831 => 0.021949377156868
901 => 0.02172071516558
902 => 0.021664095240857
903 => 0.02158587522037
904 => 0.02175666577348
905 => 0.021859046985877
906 => 0.022684164367081
907 => 0.023217227825263
908 => 0.023194086134689
909 => 0.02340555786711
910 => 0.023310287914795
911 => 0.023002636107826
912 => 0.023527760228181
913 => 0.023361588984375
914 => 0.023375287939816
915 => 0.02337477806401
916 => 0.023485267414199
917 => 0.02340697558339
918 => 0.023252654348374
919 => 0.023355099986048
920 => 0.023659326904956
921 => 0.024603656596067
922 => 0.025132116001918
923 => 0.024571842676282
924 => 0.024958311713947
925 => 0.024726568004346
926 => 0.024684453278533
927 => 0.024927184394024
928 => 0.025170340378201
929 => 0.025154852393201
930 => 0.024978333634887
1001 => 0.024878622667313
1002 => 0.025633667519408
1003 => 0.026189971704577
1004 => 0.026152035488659
1005 => 0.026319473608203
1006 => 0.02681107710585
1007 => 0.026856023168699
1008 => 0.026850360997853
1009 => 0.026738957491445
1010 => 0.027223004977659
1011 => 0.027626805906664
1012 => 0.026713170798468
1013 => 0.027061071087308
1014 => 0.027217254735615
1015 => 0.02744657866893
1016 => 0.027833486583587
1017 => 0.02825377120116
1018 => 0.028313204054271
1019 => 0.028271033600865
1020 => 0.027993844597718
1021 => 0.028453725041305
1022 => 0.028723112219635
1023 => 0.028883526119514
1024 => 0.029290309079281
1025 => 0.027218219272655
1026 => 0.02575149111798
1027 => 0.025522440336817
1028 => 0.02598822410729
1029 => 0.026111047573008
1030 => 0.026061537587985
1031 => 0.024410601700809
1101 => 0.02551374850104
1102 => 0.026700641702871
1103 => 0.026746235104528
1104 => 0.027340418658131
1105 => 0.027533909179591
1106 => 0.028012304821661
1107 => 0.027982381043996
1108 => 0.028098862769903
1109 => 0.028072085638299
1110 => 0.028958212827145
1111 => 0.029935742707603
1112 => 0.029901893956197
1113 => 0.029761362470273
1114 => 0.02997007569105
1115 => 0.030978991286151
1116 => 0.030886106505697
1117 => 0.030976336158001
1118 => 0.032165904504616
1119 => 0.03371251256934
1120 => 0.032993957846365
1121 => 0.03455301483667
1122 => 0.035534358570007
1123 => 0.037231491083977
1124 => 0.037019001734674
1125 => 0.037679682968229
1126 => 0.036638601451556
1127 => 0.034248067851987
1128 => 0.033869756759261
1129 => 0.034627145147262
1130 => 0.036489110594286
1201 => 0.034568505229163
1202 => 0.034957041193126
1203 => 0.034845142809366
1204 => 0.034839180220033
1205 => 0.035066748003271
1206 => 0.034736649064547
1207 => 0.033391766604519
1208 => 0.034008118310508
1209 => 0.033770115317185
1210 => 0.034034197382575
1211 => 0.035459339373754
1212 => 0.034829250128312
1213 => 0.034165502292532
1214 => 0.034997989376036
1215 => 0.036058031506934
1216 => 0.035991695975462
1217 => 0.035862977318303
1218 => 0.036588557649215
1219 => 0.037787003780791
1220 => 0.038110938954409
1221 => 0.038350061277011
1222 => 0.038383032205293
1223 => 0.038722653257917
1224 => 0.036896425262437
1225 => 0.039794695992125
1226 => 0.040295147284029
1227 => 0.040201083182731
1228 => 0.040757313731473
1229 => 0.040593656593826
1230 => 0.040356543078394
1231 => 0.04123828681178
]
'min_raw' => 0.015200793068735
'max_raw' => 0.04123828681178
'avg_raw' => 0.028219539940258
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.01520079'
'max' => '$0.041238'
'avg' => '$0.028219'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0052423606818917
'max_diff' => 0.019006788031284
'year' => 2032
]
7 => [
'items' => [
101 => 0.040227438774503
102 => 0.038792667247818
103 => 0.038005523211715
104 => 0.039042097975553
105 => 0.039675098012355
106 => 0.040093470770318
107 => 0.040220070114089
108 => 0.037038190143121
109 => 0.035323333313923
110 => 0.036422536880566
111 => 0.037763641094847
112 => 0.036888975360812
113 => 0.036923260601625
114 => 0.035676217123003
115 => 0.037873976771801
116 => 0.037553781677039
117 => 0.039214954395078
118 => 0.038818502194174
119 => 0.040173124059382
120 => 0.03981640672395
121 => 0.041297120439529
122 => 0.041887817229396
123 => 0.042879689074199
124 => 0.04360931404088
125 => 0.044037763776817
126 => 0.044012041261746
127 => 0.045709772568338
128 => 0.044708679731055
129 => 0.043451071187961
130 => 0.04342832501712
131 => 0.044079658302039
201 => 0.04544467418267
202 => 0.045798602940344
203 => 0.045996400832035
204 => 0.045693466475517
205 => 0.044606851949615
206 => 0.044137657306592
207 => 0.044537424736325
208 => 0.044048543522168
209 => 0.044892489653645
210 => 0.046051407949329
211 => 0.04581209590413
212 => 0.046612080191564
213 => 0.047439979768257
214 => 0.048623913346225
215 => 0.048933437424439
216 => 0.049445068955581
217 => 0.049971705863328
218 => 0.050140847444834
219 => 0.050463791205479
220 => 0.050462089132451
221 => 0.051435301891777
222 => 0.052508785703204
223 => 0.05291400099081
224 => 0.053845771200959
225 => 0.052250147369201
226 => 0.053460446374795
227 => 0.05455216637359
228 => 0.053250572784694
301 => 0.055044516314576
302 => 0.055114171076678
303 => 0.056165875286474
304 => 0.055099771587699
305 => 0.054466722614489
306 => 0.056294311280109
307 => 0.057178623866898
308 => 0.056912261718983
309 => 0.054885232621424
310 => 0.053705414743277
311 => 0.050617603786294
312 => 0.054275249248347
313 => 0.056056781657932
314 => 0.05488061888287
315 => 0.055473806973308
316 => 0.058710048852857
317 => 0.059942200229445
318 => 0.059685921356503
319 => 0.059729228267321
320 => 0.060394074784998
321 => 0.063342370382045
322 => 0.061575683319338
323 => 0.062926249382276
324 => 0.06364258475223
325 => 0.064307956965648
326 => 0.062674013102542
327 => 0.060548276144044
328 => 0.059874966016921
329 => 0.054763672674525
330 => 0.054497607658831
331 => 0.054348257302927
401 => 0.05340662443498
402 => 0.052666758935724
403 => 0.05207839042127
404 => 0.050534335737632
405 => 0.051055408867159
406 => 0.048594507970699
407 => 0.050168905155282
408 => 0.046241247904001
409 => 0.049512317573833
410 => 0.047732023069831
411 => 0.048927442948401
412 => 0.04892327224106
413 => 0.046722125236395
414 => 0.04545254958087
415 => 0.046261572601194
416 => 0.047128909499309
417 => 0.047269631992956
418 => 0.048394156921172
419 => 0.048707987657054
420 => 0.047757065875974
421 => 0.04615985593752
422 => 0.046530851377743
423 => 0.045445031370115
424 => 0.043542173572211
425 => 0.044908839263375
426 => 0.045375479018388
427 => 0.045581573718082
428 => 0.043710331618537
429 => 0.043122346724218
430 => 0.042809308500153
501 => 0.045918302080521
502 => 0.04608861976701
503 => 0.045217250402439
504 => 0.049155922556931
505 => 0.048264479744063
506 => 0.049260439774829
507 => 0.046497187430133
508 => 0.046602747390913
509 => 0.045294579447851
510 => 0.046027066084152
511 => 0.045509368138761
512 => 0.045967888402513
513 => 0.046242723558056
514 => 0.047550676843631
515 => 0.04952725229936
516 => 0.047355312239165
517 => 0.046408966852183
518 => 0.046996074207818
519 => 0.048559618463976
520 => 0.050928468048414
521 => 0.049526061416886
522 => 0.050148425665549
523 => 0.050284384566824
524 => 0.049250301836651
525 => 0.050966596153676
526 => 0.051886372221319
527 => 0.052829872145883
528 => 0.053649086694113
529 => 0.052453017528004
530 => 0.053732982985521
531 => 0.052701556771081
601 => 0.051776260829847
602 => 0.051777664121844
603 => 0.051197212461491
604 => 0.050072514227941
605 => 0.049865102617708
606 => 0.05094408400734
607 => 0.051809324901908
608 => 0.051880590286209
609 => 0.052359632103124
610 => 0.052643124115851
611 => 0.055421731229279
612 => 0.056539309996144
613 => 0.057905864157582
614 => 0.058438214018235
615 => 0.060040396240812
616 => 0.058746503973203
617 => 0.058466562242142
618 => 0.054580192239981
619 => 0.055216585110117
620 => 0.056235511497982
621 => 0.054596993960823
622 => 0.055636256203402
623 => 0.055841428584671
624 => 0.054541317761897
625 => 0.055235763126813
626 => 0.053391522126298
627 => 0.049567451713442
628 => 0.050970853437214
629 => 0.052004229485822
630 => 0.05052947445011
701 => 0.053172915770722
702 => 0.051628671922926
703 => 0.051139220759951
704 => 0.04922969727125
705 => 0.050130918853618
706 => 0.05134983394802
707 => 0.050596686133769
708 => 0.052159580934053
709 => 0.054373056780075
710 => 0.055950511482715
711 => 0.056071608867451
712 => 0.05505741117491
713 => 0.05668266944973
714 => 0.056694507681927
715 => 0.054861209708555
716 => 0.053738324907711
717 => 0.053483203118389
718 => 0.054120547367688
719 => 0.054894400946575
720 => 0.056114552355332
721 => 0.056851864297351
722 => 0.058774382802101
723 => 0.059294561186561
724 => 0.05986607952285
725 => 0.060629804269861
726 => 0.061546851643653
727 => 0.059540404197332
728 => 0.05962012409486
729 => 0.057751748014002
730 => 0.055755120219372
731 => 0.057270311832328
801 => 0.059251223308775
802 => 0.058796800027365
803 => 0.058745668125182
804 => 0.058831657801848
805 => 0.058489037487742
806 => 0.056939378505142
807 => 0.05616114946546
808 => 0.057165263474053
809 => 0.057698905381647
810 => 0.058526537441862
811 => 0.058424514321247
812 => 0.060556405627164
813 => 0.061384794123597
814 => 0.061172856897467
815 => 0.061211858447629
816 => 0.062711616251428
817 => 0.06437965537797
818 => 0.065941994137126
819 => 0.06753127222695
820 => 0.065615335459087
821 => 0.064642540926918
822 => 0.065646216570747
823 => 0.065113652146374
824 => 0.068173925297692
825 => 0.068385811970909
826 => 0.071445863829645
827 => 0.074350217427783
828 => 0.072526044969692
829 => 0.07424615743514
830 => 0.076106599309349
831 => 0.079695693530513
901 => 0.078487012862682
902 => 0.077561182413564
903 => 0.076686277112728
904 => 0.078506816156463
905 => 0.080848910552406
906 => 0.081353375252991
907 => 0.082170800788287
908 => 0.081311377787963
909 => 0.082346458129515
910 => 0.086000746572542
911 => 0.08501332557794
912 => 0.083611029029759
913 => 0.086495738793936
914 => 0.087539704043567
915 => 0.09486679889432
916 => 0.10411755881059
917 => 0.10028768346149
918 => 0.097910356242997
919 => 0.098469084530298
920 => 0.10184714889373
921 => 0.10293207595287
922 => 0.099982870209361
923 => 0.10102457953616
924 => 0.10676450034544
925 => 0.10984378370091
926 => 0.10566170330125
927 => 0.094123509342312
928 => 0.083484767568454
929 => 0.086306640955667
930 => 0.085986728086483
1001 => 0.092153556926346
1002 => 0.08498977591378
1003 => 0.085110395613492
1004 => 0.091404747942978
1005 => 0.089725522653988
1006 => 0.087005392744751
1007 => 0.083504627527067
1008 => 0.077033139240589
1009 => 0.071301161594453
1010 => 0.08254288975414
1011 => 0.082058125994138
1012 => 0.081356116231691
1013 => 0.082918362992626
1014 => 0.09050418981225
1015 => 0.090329311951132
1016 => 0.089216828222171
1017 => 0.090060637325606
1018 => 0.086857468929162
1019 => 0.087682998359714
1020 => 0.083483082337402
1021 => 0.085381619783474
1022 => 0.086999556567638
1023 => 0.087324381331023
1024 => 0.088056228108892
1025 => 0.081802677520452
1026 => 0.084610338140063
1027 => 0.08625957571186
1028 => 0.078808260362702
1029 => 0.086112287165213
1030 => 0.081693817117602
1031 => 0.08019412202025
1101 => 0.082213263899029
1102 => 0.081426402345189
1103 => 0.080749904987258
1104 => 0.080372407837832
1105 => 0.081855042789051
1106 => 0.081785876096445
1107 => 0.079359997549208
1108 => 0.076195537875796
1109 => 0.077257634412041
1110 => 0.076871764783215
1111 => 0.075473323470178
1112 => 0.076415704066717
1113 => 0.072265936847464
1114 => 0.065126478032869
1115 => 0.069843023213328
1116 => 0.069661441354494
1117 => 0.069569879547188
1118 => 0.073114232894569
1119 => 0.072773525102363
1120 => 0.072155137123288
1121 => 0.075461966289996
1122 => 0.074254929161019
1123 => 0.077974733178812
1124 => 0.08042483668677
1125 => 0.079803411184607
1126 => 0.082107745376219
1127 => 0.077282102971103
1128 => 0.078884987806913
1129 => 0.079215340150071
1130 => 0.075421160531385
1201 => 0.072829269110772
1202 => 0.072656419502743
1203 => 0.06816243696404
1204 => 0.070563086162056
1205 => 0.072675558110695
1206 => 0.071663847981742
1207 => 0.071343570778896
1208 => 0.072979797548587
1209 => 0.073106946381927
1210 => 0.070207939507155
1211 => 0.070810734836028
1212 => 0.073324491563815
1213 => 0.070747394616123
1214 => 0.065740516213156
1215 => 0.064498741143711
1216 => 0.064333065458991
1217 => 0.060965272984232
1218 => 0.06458172249163
1219 => 0.063003045366829
1220 => 0.067990067488617
1221 => 0.065141507198588
1222 => 0.06501871145783
1223 => 0.064833087685456
1224 => 0.061934289580675
1225 => 0.062568942137392
1226 => 0.064678623896232
1227 => 0.065431382115053
1228 => 0.065352863265663
1229 => 0.064668285304681
1230 => 0.064981681589612
1231 => 0.063972122961345
]
'min_raw' => 0.035323333313923
'max_raw' => 0.10984378370091
'avg_raw' => 0.072583558507415
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.035323'
'max' => '$0.109843'
'avg' => '$0.072583'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.020122540245188
'max_diff' => 0.068605496889127
'year' => 2033
]
8 => [
'items' => [
101 => 0.063615626797558
102 => 0.062490426842651
103 => 0.060836693753359
104 => 0.061066655482359
105 => 0.05779017750967
106 => 0.056004978414301
107 => 0.055510858833249
108 => 0.054850101478788
109 => 0.055585493134644
110 => 0.057780895659241
111 => 0.055132774433949
112 => 0.050592756337292
113 => 0.050865619160715
114 => 0.051478660911249
115 => 0.050336261664807
116 => 0.049255076652351
117 => 0.050195079301369
118 => 0.048271413783814
119 => 0.051711126698624
120 => 0.051618092103963
121 => 0.052900204368184
122 => 0.053701935478594
123 => 0.051854204832629
124 => 0.051389505571963
125 => 0.051654219390242
126 => 0.047279089631409
127 => 0.052542662926303
128 => 0.052588182526732
129 => 0.052198416072109
130 => 0.055001106357047
131 => 0.060915657039287
201 => 0.058690365160378
202 => 0.057828664885062
203 => 0.056190572031786
204 => 0.058373233498446
205 => 0.05820563915263
206 => 0.057447713962579
207 => 0.056989318442766
208 => 0.057833926243196
209 => 0.056884662189432
210 => 0.056714148281345
211 => 0.055681019519295
212 => 0.055312239555607
213 => 0.055039209552046
214 => 0.054738630345499
215 => 0.05540163317547
216 => 0.05389918153747
217 => 0.052087372149191
218 => 0.051936739802605
219 => 0.052352648955261
220 => 0.052168640116006
221 => 0.051935858839076
222 => 0.05149141598721
223 => 0.05135955928708
224 => 0.051788029594725
225 => 0.051304311598764
226 => 0.052018063851287
227 => 0.051823962732314
228 => 0.050739729660138
301 => 0.049388373817711
302 => 0.049376343916148
303 => 0.049085196516565
304 => 0.048714376528891
305 => 0.048611222891532
306 => 0.050115914900149
307 => 0.053230582326344
308 => 0.052619098582907
309 => 0.053060958254914
310 => 0.055234470516601
311 => 0.055925364704797
312 => 0.055434984374741
313 => 0.054763721533619
314 => 0.054793253691912
315 => 0.057087162025107
316 => 0.057230230274083
317 => 0.05759171758368
318 => 0.058056330932812
319 => 0.055514110037144
320 => 0.054673515316344
321 => 0.05427519490321
322 => 0.053048522200156
323 => 0.05437138354343
324 => 0.053600608889275
325 => 0.053704612723532
326 => 0.053636880090033
327 => 0.053673866687984
328 => 0.051710165228763
329 => 0.052425634831393
330 => 0.051236027849409
331 => 0.049643277640183
401 => 0.049637938182992
402 => 0.050027761540252
403 => 0.049795879353564
404 => 0.049171890351423
405 => 0.049260525044032
406 => 0.04848399187097
407 => 0.049354810230829
408 => 0.049379782185452
409 => 0.04904446968311
410 => 0.050386085516249
411 => 0.05093574661774
412 => 0.050715036745609
413 => 0.050920261024744
414 => 0.05264450849313
415 => 0.052925636064668
416 => 0.053050494361701
417 => 0.052883200784232
418 => 0.050951777103221
419 => 0.051037443956521
420 => 0.050408877427852
421 => 0.049877804947836
422 => 0.049899045061928
423 => 0.050172085351246
424 => 0.051364468308301
425 => 0.053873767946606
426 => 0.053968994033606
427 => 0.05408441082899
428 => 0.053614952718328
429 => 0.053473359660044
430 => 0.05366015745219
501 => 0.054602518463631
502 => 0.057026526833575
503 => 0.056169720381561
504 => 0.055473123399087
505 => 0.056084226753915
506 => 0.055990152182426
507 => 0.055196068125753
508 => 0.055173780831061
509 => 0.053649679642277
510 => 0.053086254134888
511 => 0.052615413609246
512 => 0.052101268046848
513 => 0.051796465323143
514 => 0.052264780837114
515 => 0.052371890136106
516 => 0.051347910080053
517 => 0.05120834538215
518 => 0.052044549600067
519 => 0.051676567300597
520 => 0.052055046221124
521 => 0.052142856577218
522 => 0.052128717087443
523 => 0.051744501304298
524 => 0.051989388986995
525 => 0.051410156612885
526 => 0.050780328403931
527 => 0.050378537246301
528 => 0.050027921171407
529 => 0.050222463347684
530 => 0.049528956011253
531 => 0.049307089056784
601 => 0.051906426550245
602 => 0.053826585104251
603 => 0.05379866523841
604 => 0.053628710235506
605 => 0.053376191575305
606 => 0.054584045150796
607 => 0.054163253116889
608 => 0.054469414479907
609 => 0.054547345396347
610 => 0.054783218809121
611 => 0.054867523280182
612 => 0.054612696615414
613 => 0.053757467203996
614 => 0.051626316823515
615 => 0.050634260568471
616 => 0.050306865480302
617 => 0.050318765669945
618 => 0.049990505314802
619 => 0.050087192700989
620 => 0.049956881387672
621 => 0.049710103285941
622 => 0.050207225495305
623 => 0.05026451419892
624 => 0.050148479935087
625 => 0.050175810204721
626 => 0.049215096059063
627 => 0.049288137068996
628 => 0.048881435444086
629 => 0.048805183792277
630 => 0.047777077500067
701 => 0.045955638177027
702 => 0.046964892373384
703 => 0.0457458552268
704 => 0.045284187387962
705 => 0.047469651132943
706 => 0.047250291188276
707 => 0.046874842316481
708 => 0.046319475184695
709 => 0.046113484113251
710 => 0.044861947572009
711 => 0.044788000116464
712 => 0.045408295420633
713 => 0.045122050480817
714 => 0.04472005417588
715 => 0.043264064309109
716 => 0.041627049637179
717 => 0.041676460820217
718 => 0.042197164729617
719 => 0.043711181572687
720 => 0.043119628999342
721 => 0.042690450820097
722 => 0.042610078648173
723 => 0.04361610465034
724 => 0.04503984221237
725 => 0.045707828022142
726 => 0.045045874371689
727 => 0.044285457660164
728 => 0.044331740701963
729 => 0.044639641043882
730 => 0.044671997016341
731 => 0.044177043909239
801 => 0.044316370309684
802 => 0.044104720767135
803 => 0.042805827915188
804 => 0.042782335062331
805 => 0.042463565808986
806 => 0.042453913602682
807 => 0.041911607582026
808 => 0.041835735220952
809 => 0.040758953701318
810 => 0.041467694558336
811 => 0.040992308402013
812 => 0.040275789332177
813 => 0.040152261174465
814 => 0.04014854776888
815 => 0.040884252642869
816 => 0.041459097418535
817 => 0.041000577947733
818 => 0.040896181952258
819 => 0.042010858061736
820 => 0.041869005366307
821 => 0.041746161846916
822 => 0.044912362129381
823 => 0.042406067544121
824 => 0.041313180050654
825 => 0.039960524243783
826 => 0.040400955795183
827 => 0.040493761194349
828 => 0.037240867813358
829 => 0.035921169373813
830 => 0.035468298601147
831 => 0.035207665068825
901 => 0.035326439042334
902 => 0.034138555661555
903 => 0.034936832939217
904 => 0.033908226340744
905 => 0.033735777097135
906 => 0.035575053115109
907 => 0.035830977628116
908 => 0.034739124146116
909 => 0.035440270836582
910 => 0.035186025299951
911 => 0.033925858848595
912 => 0.03387772975931
913 => 0.033245422531013
914 => 0.032255984157532
915 => 0.031803784270676
916 => 0.031568274643422
917 => 0.031665450505618
918 => 0.031616315416061
919 => 0.031295675720447
920 => 0.031634694108086
921 => 0.030768642219738
922 => 0.030423773379543
923 => 0.030268004125324
924 => 0.029499333226328
925 => 0.030722630456131
926 => 0.030963635421094
927 => 0.031205115240289
928 => 0.033307032201105
929 => 0.033202026369698
930 => 0.034151227945701
1001 => 0.034114343717927
1002 => 0.033843616052405
1003 => 0.032701460564107
1004 => 0.033156703384779
1005 => 0.031755536743194
1006 => 0.03280538606114
1007 => 0.032326278675185
1008 => 0.03264339937201
1009 => 0.032073187765498
1010 => 0.032388766412002
1011 => 0.031020786638982
1012 => 0.029743386374931
1013 => 0.030257449530823
1014 => 0.030816294971531
1015 => 0.032028014278156
1016 => 0.031306324255597
1017 => 0.031565871277831
1018 => 0.030696432200996
1019 => 0.028902531042493
1020 => 0.028912684328233
1021 => 0.028636731717259
1022 => 0.028398268371636
1023 => 0.03138921903619
1024 => 0.03101724704112
1025 => 0.030424558349466
1026 => 0.031217895715757
1027 => 0.031427666707361
1028 => 0.031433638592589
1029 => 0.032012437056033
1030 => 0.032321341899729
1031 => 0.0323757877173
1101 => 0.033286539605298
1102 => 0.033591811625047
1103 => 0.03484918387068
1104 => 0.032295133481939
1105 => 0.032242534494922
1106 => 0.031229059599432
1107 => 0.030586297798308
1108 => 0.031273070049862
1109 => 0.031881456510977
1110 => 0.03124796386265
1111 => 0.031330684628762
1112 => 0.030480272506633
1113 => 0.030784254824685
1114 => 0.031046085347831
1115 => 0.030901517922636
1116 => 0.030685093489978
1117 => 0.031831575759114
1118 => 0.031766886736389
1119 => 0.032834517382922
1120 => 0.033666811818894
1121 => 0.035158432238583
1122 => 0.033601848570707
1123 => 0.03354512047499
1124 => 0.034099646710097
1125 => 0.03359172672997
1126 => 0.033912714624609
1127 => 0.035106716126304
1128 => 0.035131943496552
1129 => 0.034709352541269
1130 => 0.034683637843235
1201 => 0.034764801058835
1202 => 0.035240176547695
1203 => 0.035074065745074
1204 => 0.035266293371278
1205 => 0.035506676961339
1206 => 0.036501005410364
1207 => 0.036740734633141
1208 => 0.036158316907145
1209 => 0.036210902706747
1210 => 0.035993062489501
1211 => 0.03578263156917
1212 => 0.036255649547105
1213 => 0.037120099198973
1214 => 0.037114721502554
1215 => 0.037315257019287
1216 => 0.037440188984886
1217 => 0.036903889532747
1218 => 0.036554778309682
1219 => 0.03668864976713
1220 => 0.036902713142929
1221 => 0.036619231899432
1222 => 0.034869454343282
1223 => 0.035400225077595
1224 => 0.035311878874042
1225 => 0.035186063136918
1226 => 0.035719757214598
1227 => 0.035668281118851
1228 => 0.034126372200547
1229 => 0.034225080206785
1230 => 0.034132374961337
1231 => 0.034431924575089
]
'min_raw' => 0.028398268371636
'max_raw' => 0.063615626797558
'avg_raw' => 0.046006947584597
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.028398'
'max' => '$0.063615'
'avg' => '$0.0460069'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0069250649422874
'max_diff' => -0.046228156903349
'year' => 2034
]
9 => [
'items' => [
101 => 0.033575550067789
102 => 0.033838965098464
103 => 0.034004176536341
104 => 0.034101487342465
105 => 0.034453040700827
106 => 0.034411789971837
107 => 0.034450476497594
108 => 0.0349717373214
109 => 0.037608095693097
110 => 0.037751586862472
111 => 0.037044983865042
112 => 0.037327257825387
113 => 0.036785353548053
114 => 0.037149137519871
115 => 0.037398029274277
116 => 0.036273335295246
117 => 0.036206738217012
118 => 0.035662597307959
119 => 0.035954987810767
120 => 0.035489773497178
121 => 0.035603920817227
122 => 0.035284754959185
123 => 0.035859189958372
124 => 0.036501497545636
125 => 0.036663769807675
126 => 0.036236901348853
127 => 0.035927820452664
128 => 0.035385176216533
129 => 0.036287605674835
130 => 0.036551503549481
131 => 0.036286219531644
201 => 0.036224747428141
202 => 0.03610825790308
203 => 0.036249461231564
204 => 0.036550066304981
205 => 0.036408306503662
206 => 0.036501941349919
207 => 0.036145101871819
208 => 0.036904067070181
209 => 0.038109486460102
210 => 0.038113362080547
211 => 0.037971601515089
212 => 0.037913596145978
213 => 0.038059051088888
214 => 0.038137954428542
215 => 0.038608329042038
216 => 0.039113059742871
217 => 0.0414684176924
218 => 0.04080704260529
219 => 0.042896856298983
220 => 0.04454962760235
221 => 0.045045221449299
222 => 0.044589298429598
223 => 0.043029610407677
224 => 0.042953084672437
225 => 0.045283917060484
226 => 0.044625350151975
227 => 0.04454701571375
228 => 0.043713669639161
301 => 0.044206280381162
302 => 0.044098539185723
303 => 0.043928464437843
304 => 0.044868331418019
305 => 0.046627678502405
306 => 0.046353467760251
307 => 0.046148782161504
308 => 0.045251909450873
309 => 0.045792027146445
310 => 0.045599701580325
311 => 0.046426054265197
312 => 0.045936541240632
313 => 0.044620360859924
314 => 0.044829966923739
315 => 0.044798285388862
316 => 0.045450289131648
317 => 0.045254573791792
318 => 0.044760068827636
319 => 0.046621665245336
320 => 0.046500783528714
321 => 0.046672166165477
322 => 0.046747614102364
323 => 0.047880735036809
324 => 0.048344938427826
325 => 0.048450320724611
326 => 0.048891278043298
327 => 0.048439349304819
328 => 0.050247386478465
329 => 0.051449625697046
330 => 0.052846088416091
331 => 0.05488669578241
401 => 0.05565398302882
402 => 0.055515379455478
403 => 0.057062544671491
404 => 0.059842766173116
405 => 0.056077341710531
406 => 0.060042342812798
407 => 0.05878706924196
408 => 0.055810838186908
409 => 0.055619203994422
410 => 0.057634742219656
411 => 0.062105012014859
412 => 0.060985260132541
413 => 0.062106843527799
414 => 0.060798456920821
415 => 0.060733484497837
416 => 0.062043298110671
417 => 0.065103749011283
418 => 0.063649843507689
419 => 0.061565313456031
420 => 0.063104498007296
421 => 0.061771113904185
422 => 0.058766626329166
423 => 0.06098440387938
424 => 0.05950143919022
425 => 0.059934247125256
426 => 0.06305121832752
427 => 0.062676176105981
428 => 0.063161515468628
429 => 0.062304904197099
430 => 0.061504694194292
501 => 0.060011042799679
502 => 0.059568846257857
503 => 0.059691053473452
504 => 0.059568785698031
505 => 0.058733101470109
506 => 0.058552635540656
507 => 0.058251851085173
508 => 0.058345076765131
509 => 0.057779513991227
510 => 0.058846847796816
511 => 0.059044954356446
512 => 0.0598216708919
513 => 0.059902312179269
514 => 0.062065456674642
515 => 0.060874033036757
516 => 0.061673342875618
517 => 0.061601845080235
518 => 0.055875342138593
519 => 0.056664403718588
520 => 0.057891935915896
521 => 0.057338934324889
522 => 0.056557119457649
523 => 0.055925762034092
524 => 0.054969190977792
525 => 0.056315546370215
526 => 0.058085860542317
527 => 0.059947210268137
528 => 0.062183500003245
529 => 0.061684386167651
530 => 0.05990540438707
531 => 0.0599852082102
601 => 0.060478524043142
602 => 0.059839635217012
603 => 0.059651214429595
604 => 0.060452637920349
605 => 0.060458156883475
606 => 0.059723038076719
607 => 0.058906088048331
608 => 0.058902664997883
609 => 0.058757296631133
610 => 0.060824317630328
611 => 0.061960970180491
612 => 0.06209128556356
613 => 0.061952198916912
614 => 0.062005727847055
615 => 0.061344334772545
616 => 0.062856083210852
617 => 0.064243413074266
618 => 0.063871579034892
619 => 0.063314146950546
620 => 0.062870125445797
621 => 0.063766981679579
622 => 0.063727046083272
623 => 0.064231295958189
624 => 0.064208420271175
625 => 0.064038860004037
626 => 0.063871585090423
627 => 0.064534811215004
628 => 0.064343812742211
629 => 0.064152517596033
630 => 0.063768845894553
701 => 0.063820993250896
702 => 0.063263657415059
703 => 0.063005808355448
704 => 0.059128377165299
705 => 0.058092200852572
706 => 0.05841820301387
707 => 0.058525531390012
708 => 0.058074586130817
709 => 0.05872112579417
710 => 0.058620363272491
711 => 0.059012371300239
712 => 0.058767461703512
713 => 0.05877751287879
714 => 0.059497739782532
715 => 0.059706824716752
716 => 0.059600482431685
717 => 0.059674960922946
718 => 0.061391286318642
719 => 0.06114727973237
720 => 0.061017656096645
721 => 0.061053562729605
722 => 0.061492120666637
723 => 0.06161489294463
724 => 0.061094698175717
725 => 0.061340025035947
726 => 0.062384595670188
727 => 0.062750136274595
728 => 0.063916766414418
729 => 0.063421161195824
730 => 0.064330866023845
731 => 0.067126988523951
801 => 0.069360724653996
802 => 0.067306488595757
803 => 0.071408460534004
804 => 0.074602434080856
805 => 0.074479844056286
806 => 0.073922900890453
807 => 0.070286646923543
808 => 0.066940511809699
809 => 0.069739695916831
810 => 0.069746831612778
811 => 0.069506379215501
812 => 0.068012950027089
813 => 0.06945441111694
814 => 0.069568829063635
815 => 0.069504785439674
816 => 0.068359776782448
817 => 0.066611560195836
818 => 0.066953157532221
819 => 0.067512700937616
820 => 0.06645336853822
821 => 0.0661148476494
822 => 0.066744222387951
823 => 0.068772198930998
824 => 0.068388821712803
825 => 0.068378810184287
826 => 0.070019060500966
827 => 0.068844995262397
828 => 0.066957466168579
829 => 0.06648084017894
830 => 0.064789139009459
831 => 0.065957603032852
901 => 0.065999653972878
902 => 0.065359698168678
903 => 0.067009395055092
904 => 0.06699419280786
905 => 0.068560334476532
906 => 0.071554209131086
907 => 0.07066877307611
908 => 0.069639107279342
909 => 0.069751060500986
910 => 0.070978911018329
911 => 0.070236524566443
912 => 0.070503491910643
913 => 0.070978506931279
914 => 0.071265095287189
915 => 0.069709824846915
916 => 0.069347216910103
917 => 0.068605448329477
918 => 0.068411934752557
919 => 0.069016089783969
920 => 0.068856916278304
921 => 0.065996119754198
922 => 0.065697150600107
923 => 0.065706319557233
924 => 0.064954547404064
925 => 0.06380791442449
926 => 0.066821197432912
927 => 0.066579188636467
928 => 0.066312029655185
929 => 0.066344755106004
930 => 0.067652719130323
1001 => 0.066894033942452
1002 => 0.068911122860465
1003 => 0.068496470018165
1004 => 0.068071182895087
1005 => 0.068012395260115
1006 => 0.067848696001523
1007 => 0.067287310333998
1008 => 0.066609403406414
1009 => 0.06616179053353
1010 => 0.061030754468166
1011 => 0.061983044916034
1012 => 0.0630785682723
1013 => 0.063456738544849
1014 => 0.062809852125068
1015 => 0.06731285335267
1016 => 0.068135595068953
1017 => 0.065643456744219
1018 => 0.065177279416999
1019 => 0.067343415860633
1020 => 0.066036970785711
1021 => 0.066625262922953
1022 => 0.065353697100829
1023 => 0.06793742068219
1024 => 0.067917737037421
1025 => 0.066912610208228
1026 => 0.06776213652145
1027 => 0.067614510418712
1028 => 0.066479724704071
1029 => 0.067973395413425
1030 => 0.067974136255462
1031 => 0.067006723535705
1101 => 0.065876997272905
1102 => 0.06567502890006
1103 => 0.065522872861754
1104 => 0.066587841864865
1105 => 0.067542689742983
1106 => 0.069319424917297
1107 => 0.069766138354305
1108 => 0.071509690638349
1109 => 0.070471490145221
1110 => 0.070931710976877
1111 => 0.071431345791852
1112 => 0.071670889095612
1113 => 0.071280566136737
1114 => 0.073989020508608
1115 => 0.074217697042491
1116 => 0.074294370306258
1117 => 0.07338109473101
1118 => 0.07419229719664
1119 => 0.073812762427174
1120 => 0.07480020645953
1121 => 0.074955050292121
1122 => 0.074823903074645
1123 => 0.074873052951154
1124 => 0.072561864948854
1125 => 0.072442017658447
1126 => 0.070807891349769
1127 => 0.071473809899407
1128 => 0.070228907089165
1129 => 0.070623678594213
1130 => 0.070797690112117
1201 => 0.07070679637023
1202 => 0.071511459935067
1203 => 0.07082733152305
1204 => 0.069021804162613
1205 => 0.067215784887453
1206 => 0.067193111786605
1207 => 0.066717618790343
1208 => 0.066373924444932
1209 => 0.06644013216907
1210 => 0.066673456824542
1211 => 0.066360363191795
1212 => 0.066427177592592
1213 => 0.06753674182784
1214 => 0.067759257022169
1215 => 0.067003063449541
1216 => 0.063966837137225
1217 => 0.063221739584386
1218 => 0.06375730092944
1219 => 0.063501337101072
1220 => 0.051250535116722
1221 => 0.054128679324231
1222 => 0.052418583768671
1223 => 0.053206674478386
1224 => 0.051461109743257
1225 => 0.052294184727747
1226 => 0.052140346197139
1227 => 0.056768316912335
1228 => 0.056696057515182
1229 => 0.056730644264717
1230 => 0.055079728594136
1231 => 0.057709682084617
]
'min_raw' => 0.033575550067789
'max_raw' => 0.074955050292121
'avg_raw' => 0.054265300179955
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.033575'
'max' => '$0.074955'
'avg' => '$0.054265'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0051772816961537
'max_diff' => 0.011339423494564
'year' => 2035
]
10 => [
'items' => [
101 => 0.059005291744096
102 => 0.058765508877661
103 => 0.058825857059223
104 => 0.057788875356886
105 => 0.056740684514325
106 => 0.055578079554511
107 => 0.057738055867529
108 => 0.057497903373547
109 => 0.058048726790603
110 => 0.05944962582789
111 => 0.059655913532629
112 => 0.059933166299761
113 => 0.05983379091894
114 => 0.06220131565885
115 => 0.061914592791416
116 => 0.062605512406134
117 => 0.061184238338462
118 => 0.059575931822318
119 => 0.059881618311535
120 => 0.059852178244448
121 => 0.059477372400693
122 => 0.059139014443652
123 => 0.058575743776942
124 => 0.060358015514785
125 => 0.060285658537039
126 => 0.061457033900962
127 => 0.061249981927256
128 => 0.05986723817263
129 => 0.059916623136337
130 => 0.060248760750867
131 => 0.061398292827037
201 => 0.061739552213357
202 => 0.061581467268778
203 => 0.061955642606795
204 => 0.062251375537605
205 => 0.06199278210972
206 => 0.065653919723295
207 => 0.064133560132515
208 => 0.064874572818467
209 => 0.065051299977766
210 => 0.064598617075393
211 => 0.064696787787558
212 => 0.064845489666571
213 => 0.065748378357123
214 => 0.068117819534079
215 => 0.069167228902022
216 => 0.072324428762423
217 => 0.069080090062498
218 => 0.068887584430453
219 => 0.069456291463613
220 => 0.071309902005214
221 => 0.072812079248397
222 => 0.073310438102645
223 => 0.073376304452242
224 => 0.074311258793081
225 => 0.074847157185384
226 => 0.074197730744363
227 => 0.07364740983338
228 => 0.071676228638585
229 => 0.071904398229231
301 => 0.073476260443884
302 => 0.075696608404303
303 => 0.077601897942175
304 => 0.076934731952056
305 => 0.082024737510871
306 => 0.08252939077122
307 => 0.082459664008033
308 => 0.083609339237581
309 => 0.081327468034217
310 => 0.080351923885607
311 => 0.073766395460742
312 => 0.075616660327915
313 => 0.078306128974597
314 => 0.077950167714219
315 => 0.075997003693296
316 => 0.07760041629212
317 => 0.077070277943601
318 => 0.076652135832664
319 => 0.078567725903704
320 => 0.076461455932492
321 => 0.078285117320422
322 => 0.07594625272704
323 => 0.076937779510101
324 => 0.076374940953282
325 => 0.076739166478443
326 => 0.0746099115007
327 => 0.075758805801947
328 => 0.074562113720554
329 => 0.074561546332694
330 => 0.07453512928867
331 => 0.075943032215484
401 => 0.075988943879382
402 => 0.074948501489243
403 => 0.07479855748606
404 => 0.075352979054664
405 => 0.074703896601067
406 => 0.075007598195829
407 => 0.074713095412987
408 => 0.074646796633391
409 => 0.074118516677768
410 => 0.073890919147526
411 => 0.0739801660036
412 => 0.073675520473912
413 => 0.073491960522764
414 => 0.07449861459425
415 => 0.073960799932165
416 => 0.074416186783937
417 => 0.07389721599194
418 => 0.072098237122066
419 => 0.071063625350145
420 => 0.067665521030382
421 => 0.068629219200131
422 => 0.069268152083693
423 => 0.069056984769487
424 => 0.069510653871303
425 => 0.069538505469607
426 => 0.069391013019998
427 => 0.069220235658303
428 => 0.06913711068321
429 => 0.069756656144536
430 => 0.070116323137777
501 => 0.069332277546377
502 => 0.069148586634276
503 => 0.069941300015525
504 => 0.07042485472015
505 => 0.07399515097319
506 => 0.07373065189486
507 => 0.074394492676146
508 => 0.07431975439164
509 => 0.075015565288558
510 => 0.076152922033393
511 => 0.073840357761196
512 => 0.074241738956394
513 => 0.074143329556577
514 => 0.075217737579448
515 => 0.07522109176402
516 => 0.074576930483647
517 => 0.07492614076406
518 => 0.074731221165617
519 => 0.075083467224968
520 => 0.073727119348411
521 => 0.075379004653352
522 => 0.076315517176115
523 => 0.076328520653402
524 => 0.076772420156569
525 => 0.077223447760712
526 => 0.078089155970639
527 => 0.077199303628601
528 => 0.075598545890655
529 => 0.075714115428918
530 => 0.074775591752855
531 => 0.074791368505407
601 => 0.074707150963834
602 => 0.074959894145696
603 => 0.073782582263848
604 => 0.07405889500934
605 => 0.073672055547566
606 => 0.074240898042952
607 => 0.07362891755095
608 => 0.074143282100584
609 => 0.074365264788752
610 => 0.075184385687035
611 => 0.073507932728266
612 => 0.070089531659448
613 => 0.07080812100822
614 => 0.069745270917411
615 => 0.069843641739871
616 => 0.070042366456841
617 => 0.069398234630461
618 => 0.069521114684007
619 => 0.069516724543801
620 => 0.069478892687248
621 => 0.069311329121656
622 => 0.069068328800105
623 => 0.070036367289609
624 => 0.070200855892443
625 => 0.070566493680718
626 => 0.071654383724142
627 => 0.071545677854591
628 => 0.071722981637993
629 => 0.071335928474344
630 => 0.069861596026037
701 => 0.069941659371208
702 => 0.068943268174004
703 => 0.070540962573116
704 => 0.070162607450871
705 => 0.069918679442213
706 => 0.069852121425074
707 => 0.070942708137495
708 => 0.071269028774703
709 => 0.071065687652158
710 => 0.07064862907741
711 => 0.071449504833226
712 => 0.071663785399246
713 => 0.071711754915615
714 => 0.073130753202225
715 => 0.071791061156732
716 => 0.072113538347476
717 => 0.074629413334487
718 => 0.072347861888284
719 => 0.073556450574007
720 => 0.073497296447032
721 => 0.074115569522237
722 => 0.073446580008827
723 => 0.073454872935622
724 => 0.074003857540958
725 => 0.073232907672659
726 => 0.073042009643376
727 => 0.072778285383159
728 => 0.073354117657184
729 => 0.073699303062808
730 => 0.076481243921395
731 => 0.078278504587957
801 => 0.078200480762484
802 => 0.078913472472829
803 => 0.078592263177063
804 => 0.077554993630304
805 => 0.079325486265076
806 => 0.078765228314876
807 => 0.078811415299577
808 => 0.0788096962177
809 => 0.079182218775983
810 => 0.078918252402248
811 => 0.078397947584025
812 => 0.078743350203971
813 => 0.079769072501513
814 => 0.082952945986089
815 => 0.084734683768771
816 => 0.082845683134356
817 => 0.084148690477249
818 => 0.083367350380501
819 => 0.083225357642068
820 => 0.084043742544891
821 => 0.08486355992215
822 => 0.084811341099387
823 => 0.084216195781585
824 => 0.083880013292812
825 => 0.086425699727197
826 => 0.088301318127415
827 => 0.088173413526826
828 => 0.088737942837024
829 => 0.090395418352
830 => 0.090546957140929
831 => 0.090527866736603
901 => 0.090152262036803
902 => 0.09178426193169
903 => 0.093145704956311
904 => 0.090065320401063
905 => 0.091238290514507
906 => 0.091764874589168
907 => 0.092538056241227
908 => 0.09384254328854
909 => 0.095259562220023
910 => 0.095459944233756
911 => 0.09531776360585
912 => 0.094383201529024
913 => 0.095933720552404
914 => 0.096841978232155
915 => 0.097382824895339
916 => 0.09875432204487
917 => 0.091768126593143
918 => 0.086822950215967
919 => 0.086050689515458
920 => 0.087621112017595
921 => 0.088035219907523
922 => 0.08786829353634
923 => 0.082302047928062
924 => 0.086021384384292
925 => 0.090023077680503
926 => 0.090176799017419
927 => 0.092180130352963
928 => 0.092832497155143
929 => 0.094445441462896
930 => 0.094344551357289
1001 => 0.094737277628677
1002 => 0.094646996659956
1003 => 0.097634636344575
1004 => 0.1009304465855
1005 => 0.10081632315689
1006 => 0.1003425114405
1007 => 0.10104620263624
1008 => 0.10444783200536
1009 => 0.10413466448305
1010 => 0.10443888005543
1011 => 0.10844959278905
1012 => 0.11366408986
1013 => 0.1112414324436
1014 => 0.11649790193629
1015 => 0.11980657084847
1016 => 0.12552857160933
1017 => 0.12481214893262
1018 => 0.12703968183884
1019 => 0.12352960281939
1020 => 0.11546975188671
1021 => 0.11419424962475
1022 => 0.11674783745407
1023 => 0.12302558395698
1024 => 0.11655012887609
1025 => 0.1178601050053
1026 => 0.11748283179196
1027 => 0.11746272850573
1028 => 0.11822998917519
1029 => 0.11711703755651
1030 => 0.11258267244583
1031 => 0.11466074525487
1101 => 0.11385830154605
1102 => 0.11474867266713
1103 => 0.11955363839063
1104 => 0.11742924850819
1105 => 0.11519137633847
1106 => 0.11799816466289
1107 => 0.121572170717
1108 => 0.12134851584124
1109 => 0.12091453190178
1110 => 0.12336087664585
1111 => 0.12740152145129
1112 => 0.12849369150558
1113 => 0.12929990911122
1114 => 0.12941107289788
1115 => 0.13055612898838
1116 => 0.12439887379845
1117 => 0.1341705959144
1118 => 0.13585790238545
1119 => 0.13554075870058
1120 => 0.13741612883044
1121 => 0.13686434736468
1122 => 0.13606490259267
1123 => 0.13903776315116
1124 => 0.13562961841832
1125 => 0.13079218604355
1126 => 0.12813827496919
1127 => 0.13163315915681
1128 => 0.13376736297554
1129 => 0.13517793593886
1130 => 0.13560477446528
1201 => 0.12487684399139
1202 => 0.11909508446427
1203 => 0.12280112603315
1204 => 0.1273227525245
1205 => 0.12437375593499
1206 => 0.12448935101811
1207 => 0.12028485686414
1208 => 0.12769475696274
1209 => 0.12661519684544
1210 => 0.13221595664369
1211 => 0.13087929036893
1212 => 0.13544649256416
1213 => 0.13424379516254
1214 => 0.13923612483475
1215 => 0.14122770030292
1216 => 0.14457186547795
1217 => 0.1470318469939
1218 => 0.14847639519202
1219 => 0.14838966993657
1220 => 0.15411368956856
1221 => 0.15073843517359
1222 => 0.14649832016712
1223 => 0.14642162986405
1224 => 0.14861764550879
1225 => 0.1532198918527
1226 => 0.15441318736972
1227 => 0.15508007677136
1228 => 0.15405871243816
1229 => 0.15039511569908
1230 => 0.148813193202
1231 => 0.15016103700222
]
'min_raw' => 0.055578079554511
'max_raw' => 0.15508007677136
'avg_raw' => 0.10532907816294
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.055578'
'max' => '$0.15508'
'avg' => '$0.105329'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.022002529486722
'max_diff' => 0.08012502647924
'year' => 2036
]
11 => [
'items' => [
101 => 0.14851273985609
102 => 0.1513581631608
103 => 0.15526553710779
104 => 0.15445867983917
105 => 0.15715588271737
106 => 0.1599472039423
107 => 0.16393891866002
108 => 0.1649825007
109 => 0.16670750212821
110 => 0.1684830952313
111 => 0.16905336788243
112 => 0.17014219531866
113 => 0.17013645666061
114 => 0.17341771142623
115 => 0.1770370370447
116 => 0.17840324867809
117 => 0.18154477699573
118 => 0.17616501984406
119 => 0.18024562744179
120 => 0.18392643763919
121 => 0.17953802397986
122 => 0.18558642984
123 => 0.18582127573357
124 => 0.18936716990453
125 => 0.18577272685113
126 => 0.18363835803989
127 => 0.18980020082419
128 => 0.19278172245128
129 => 0.19188366387277
130 => 0.1850493937477
131 => 0.18107155539928
201 => 0.17066078517373
202 => 0.1829927922177
203 => 0.18899935311923
204 => 0.18503383820605
205 => 0.18703381326803
206 => 0.19794502871212
207 => 0.20209931310435
208 => 0.20123525099141
209 => 0.20138126326482
210 => 0.20362283971727
211 => 0.21356322416614
212 => 0.20760671538807
213 => 0.21216024316278
214 => 0.21457541787552
215 => 0.21681876674786
216 => 0.21130981093508
217 => 0.20414274036529
218 => 0.20187262826268
219 => 0.18463954589969
220 => 0.18374248912321
221 => 0.18323894397097
222 => 0.18006416301398
223 => 0.17756965482748
224 => 0.17558592930242
225 => 0.17038004113408
226 => 0.17213687557044
227 => 0.16383977638341
228 => 0.16914796641214
301 => 0.15590559576917
302 => 0.1669342355398
303 => 0.16093184832337
304 => 0.16496228990551
305 => 0.16494822807453
306 => 0.15752690726912
307 => 0.15324644430758
308 => 0.15597412190478
309 => 0.15889840881231
310 => 0.15937286452457
311 => 0.16316427883187
312 => 0.16422238106886
313 => 0.16101628189271
314 => 0.15563117707158
315 => 0.15688201410036
316 => 0.15322109613511
317 => 0.14680547821619
318 => 0.1514132870115
319 => 0.15298659552527
320 => 0.15368145819436
321 => 0.1473724348098
322 => 0.14539000268681
323 => 0.14433457245874
324 => 0.15481676137795
325 => 0.15539099934915
326 => 0.15245311669943
327 => 0.16573262485761
328 => 0.16272706317547
329 => 0.16608501195491
330 => 0.15676851375065
331 => 0.15712441652838
401 => 0.15271383697498
402 => 0.15518346680985
403 => 0.15343801204245
404 => 0.15498394512455
405 => 0.15591057103985
406 => 0.16032042686054
407 => 0.16698458900962
408 => 0.15966174145666
409 => 0.15647107191273
410 => 0.15845054535278
411 => 0.16372214397559
412 => 0.17170888573732
413 => 0.16698057386622
414 => 0.16907891838267
415 => 0.16953731331067
416 => 0.16605083118854
417 => 0.17183743730623
418 => 0.174938526535
419 => 0.17811960240373
420 => 0.18088164144882
421 => 0.1768490107484
422 => 0.18116450365275
423 => 0.17768697815889
424 => 0.17456727829092
425 => 0.17457200958787
426 => 0.17261497628914
427 => 0.16882297767081
428 => 0.16812367494589
429 => 0.17176153603311
430 => 0.17467875611834
501 => 0.1749190323371
502 => 0.17653415526846
503 => 0.17748996838215
504 => 0.18685823626122
505 => 0.19062623110057
506 => 0.19523366386562
507 => 0.19702851858829
508 => 0.2024303878125
509 => 0.19806793969558
510 => 0.1971240966044
511 => 0.18402092880443
512 => 0.18616657179762
513 => 0.18960195325348
514 => 0.18407757697931
515 => 0.18758152218913
516 => 0.18827327519726
517 => 0.18388986078744
518 => 0.18623123181988
519 => 0.18001324452585
520 => 0.16712012414084
521 => 0.17185179103491
522 => 0.17533589053081
523 => 0.17036365096379
524 => 0.17927619793542
525 => 0.17406967198691
526 => 0.17241945321855
527 => 0.16598136145772
528 => 0.16901989294396
529 => 0.17312955028667
530 => 0.17059025984782
531 => 0.17585966878481
601 => 0.18332255713962
602 => 0.18864105580394
603 => 0.18904934409133
604 => 0.1856299057619
605 => 0.19110957750737
606 => 0.19114949093374
607 => 0.18496839881974
608 => 0.18118251431638
609 => 0.18032235339165
610 => 0.18247120402611
611 => 0.18508030539606
612 => 0.18919413105894
613 => 0.19168002974893
614 => 0.19816193511365
615 => 0.19991575285455
616 => 0.20184266682749
617 => 0.20441761813359
618 => 0.20750950738054
619 => 0.20074462972958
620 => 0.20101341092996
621 => 0.19471405052749
622 => 0.1879822805178
623 => 0.19309085482818
624 => 0.19976963617384
625 => 0.19823751635375
626 => 0.19806512157562
627 => 0.19835504177411
628 => 0.19719987346411
629 => 0.19197509001055
630 => 0.18935123646904
701 => 0.19273667695401
702 => 0.19453588790316
703 => 0.19732630717759
704 => 0.19698232910341
705 => 0.20417014948521
706 => 0.20696311913717
707 => 0.20624855798229
708 => 0.20638005443166
709 => 0.21143659257692
710 => 0.21706050295083
711 => 0.22232803715633
712 => 0.22768639919602
713 => 0.22122668461674
714 => 0.21794683993319
715 => 0.22133080244075
716 => 0.21953522430152
717 => 0.22985314889263
718 => 0.23056753960484
719 => 0.24088471809257
720 => 0.25067694902418
721 => 0.24452662422208
722 => 0.25032610349375
723 => 0.25659871316455
724 => 0.26869959491376
725 => 0.26462444365478
726 => 0.26150294165616
727 => 0.25855313735045
728 => 0.26469121184238
729 => 0.27258774661812
730 => 0.27428858457674
731 => 0.27704459183982
801 => 0.27414698719123
802 => 0.27763683282977
803 => 0.28995752144971
804 => 0.28662836262687
805 => 0.28190042190946
806 => 0.29162642228339
807 => 0.29514622400985
808 => 0.31985003586059
809 => 0.35103961878572
810 => 0.33812692665287
811 => 0.33011160195604
812 => 0.33199539338584
813 => 0.34338477323609
814 => 0.34704268056314
815 => 0.33709922749194
816 => 0.34061142321707
817 => 0.35996396697402
818 => 0.37034598579568
819 => 0.35624580974471
820 => 0.31734398324117
821 => 0.28147472257738
822 => 0.29098886571928
823 => 0.28991025714522
824 => 0.31070215113306
825 => 0.28654896328998
826 => 0.28695564102895
827 => 0.30817748936546
828 => 0.30251586406387
829 => 0.29334475616147
830 => 0.28154168181442
831 => 0.25972260723168
901 => 0.24039684440383
902 => 0.27829911576661
903 => 0.27666470090464
904 => 0.27429782597779
905 => 0.27956505000487
906 => 0.30514119475275
907 => 0.30455158183441
908 => 0.30080076527108
909 => 0.30364572657618
910 => 0.2928460206895
911 => 0.29562935080123
912 => 0.28146904070323
913 => 0.28787009225431
914 => 0.29332507908286
915 => 0.29442024845115
916 => 0.29688772095865
917 => 0.27580343854077
918 => 0.28526966234439
919 => 0.29083018196379
920 => 0.26570755202988
921 => 0.29033358834541
922 => 0.27543640809217
923 => 0.27038008136607
924 => 0.27718775918236
925 => 0.27453480051667
926 => 0.27225394244287
927 => 0.27098118444757
928 => 0.27597999169987
929 => 0.27574679136669
930 => 0.26756777247525
1001 => 0.25689857575082
1002 => 0.26047950837598
1003 => 0.25917852198184
1004 => 0.25446357945888
1005 => 0.25764088143502
1006 => 0.24364965152781
1007 => 0.21957846767331
1008 => 0.2354806290479
1009 => 0.2348684131332
1010 => 0.23455970610723
1011 => 0.24650974087677
1012 => 0.24536102076789
1013 => 0.24327608252197
1014 => 0.25442528793296
1015 => 0.25035567797997
1016 => 0.26289725693439
1017 => 0.27115795197223
1018 => 0.26906277250514
1019 => 0.27683199611564
1020 => 0.2605620058312
1021 => 0.26596624396498
1022 => 0.2670800499544
1023 => 0.25428770846884
1024 => 0.24554896558416
1025 => 0.24496619106272
1026 => 0.22981441517364
1027 => 0.23790837155272
1028 => 0.24503071821564
1029 => 0.24161966688053
1030 => 0.2405398299301
1031 => 0.24605648272181
1101 => 0.24648517389067
1102 => 0.23671096981018
1103 => 0.2387433363473
1104 => 0.24721864265992
1105 => 0.23852978037362
1106 => 0.22164874026893
1107 => 0.21746200892432
1108 => 0.21690342178619
1109 => 0.20554867432577
1110 => 0.21774178633241
1111 => 0.21241916618642
1112 => 0.2292332594528
1113 => 0.21962913955484
1114 => 0.21921512514155
1115 => 0.21858928163315
1116 => 0.20881578143526
1117 => 0.21095555684026
1118 => 0.21806849618346
1119 => 0.22060647307412
1120 => 0.22034174129139
1121 => 0.21803363890023
1122 => 0.21909027635551
1123 => 0.21568647895517
1124 => 0.2144845272492
1125 => 0.21069083704227
1126 => 0.20511516047177
1127 => 0.20589049249651
1128 => 0.1948436182552
1129 => 0.18882469486654
1130 => 0.1871587362007
1201 => 0.18493094664753
1202 => 0.18741037095865
1203 => 0.19481232384844
1204 => 0.18588399825145
1205 => 0.17057701026463
1206 => 0.17149698632447
1207 => 0.17356389938761
1208 => 0.16971222056846
1209 => 0.16606692981304
1210 => 0.16923621437309
1211 => 0.16275044177462
1212 => 0.17434767401999
1213 => 0.17403400138862
1214 => 0.17835673240166
1215 => 0.18105982481549
1216 => 0.17483007193818
1217 => 0.17326330593658
1218 => 0.17415580705663
1219 => 0.15940475161292
1220 => 0.17715125646761
1221 => 0.17730472897853
1222 => 0.17599060416415
1223 => 0.1854400701374
1224 => 0.20538139070332
1225 => 0.19787866376866
1226 => 0.19497338112844
1227 => 0.18945043670563
1228 => 0.19680943222903
1229 => 0.19624437619104
1230 => 0.19368897849614
1231 => 0.19214346599694
]
'min_raw' => 0.14433457245874
'max_raw' => 0.37034598579568
'avg_raw' => 0.25734027912721
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.144334'
'max' => '$0.370345'
'avg' => '$0.25734'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.08875649290423
'max_diff' => 0.21526590902432
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0045304973020581
]
1 => [
'year' => 2028
'avg' => 0.007775648583096
]
2 => [
'year' => 2029
'avg' => 0.021241670504712
]
3 => [
'year' => 2030
'avg' => 0.016387917160341
]
4 => [
'year' => 2031
'avg' => 0.01609496558367
]
5 => [
'year' => 2032
'avg' => 0.028219539940258
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0045304973020581
'min' => '$0.00453'
'max_raw' => 0.028219539940258
'max' => '$0.028219'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.028219539940258
]
1 => [
'year' => 2033
'avg' => 0.072583558507415
]
2 => [
'year' => 2034
'avg' => 0.046006947584597
]
3 => [
'year' => 2035
'avg' => 0.054265300179955
]
4 => [
'year' => 2036
'avg' => 0.10532907816294
]
5 => [
'year' => 2037
'avg' => 0.25734027912721
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.028219539940258
'min' => '$0.028219'
'max_raw' => 0.25734027912721
'max' => '$0.25734'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.25734027912721
]
]
]
]
'prediction_2025_max_price' => '$0.007746'
'last_price' => 0.00751104
'sma_50day_nextmonth' => '$0.006911'
'sma_200day_nextmonth' => '$0.033826'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'augmenter'
'sma_200day_date_nextmonth' => '4 févr. 2026'
'sma_50day_date_nextmonth' => '4 févr. 2026'
'daily_sma3' => '$0.00732'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.007204'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.0073056'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.006952'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.00763'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.011785'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.04680064'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.007363'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.00729'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.0072058'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.007269'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.00914'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.01915'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.047171'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.027152'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.084797'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.19148'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.222591'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.007411'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.007669'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.011423'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.029523'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.08339'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.164683'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.395984'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '51.22'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 81.57
'stoch_rsi_14_action' => 'NEUTRAL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.007336'
'vwma_10_action' => 'BUY'
'hma_9' => '0.007250'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 81.99
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 96.77
'cci_20_action' => 'NEUTRAL'
'adx_14' => 12.57
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '-0.000278'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -18.01
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 63.38
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.000780'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 16
'buy_signals' => 17
'sell_pct' => 48.48
'buy_pct' => 51.52
'overall_action' => 'bullish'
'overall_action_label' => 'Haussier'
'overall_action_dir' => 1
'last_updated' => 1767695342
'last_updated_date' => '6 janvier 2026'
]
Prévision du prix de BakeryToken pour 2026
La prévision du prix de BakeryToken pour 2026 suggère que le prix moyen pourrait varier entre $0.002595 à la baisse et $0.007746 à la hausse. Sur le marché des cryptomonnaies, comparé au prix moyen d'aujourd'hui, BakeryToken pourrait potentiellement gagner 3.13% d'ici 2026 si BAKE atteint l'objectif de prix prévu.
Prévision du prix de BakeryToken de 2027 à 2032
La prévision du prix de BAKE pour 2027-2032 se situe actuellement dans une fourchette de prix comprise entre $0.00453 à la baisse et $0.028219 à la hausse. Compte tenu de la volatilité des prix sur le marché, si BakeryToken atteint l'objectif de prix le plus élevé, il pourrait gagner 275.71% d'ici 2032 par rapport au prix actuel.
| Prévision du Prix de BakeryToken | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2027 | $0.002498 | $0.00453 | $0.006562 |
| 2028 | $0.0045085 | $0.007775 | $0.011042 |
| 2029 | $0.0099039 | $0.021241 | $0.032579 |
| 2030 | $0.008422 | $0.016387 | $0.024352 |
| 2031 | $0.009958 | $0.016094 | $0.022231 |
| 2032 | $0.01520079 | $0.028219 | $0.041238 |
Prévision du prix de BakeryToken de 2032 à 2037
La prévision du prix de BakeryToken pour 2032-2037 est actuellement estimée entre $0.028219 à la baisse et $0.25734 à la hausse. Par rapport au prix actuel, BakeryToken pourrait potentiellement gagner 3326.16% d'ici 2037 s'il atteint l'objectif de prix le plus élevé. Veuillez noter que ces informations sont à titre général seulement et ne doivent pas être considérées comme un conseil en investissement à long terme.
| Prévision du Prix de BakeryToken | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2032 | $0.01520079 | $0.028219 | $0.041238 |
| 2033 | $0.035323 | $0.072583 | $0.109843 |
| 2034 | $0.028398 | $0.0460069 | $0.063615 |
| 2035 | $0.033575 | $0.054265 | $0.074955 |
| 2036 | $0.055578 | $0.105329 | $0.15508 |
| 2037 | $0.144334 | $0.25734 | $0.370345 |
BakeryToken Histogramme des prix potentiels
Prévision du prix de BakeryToken basée sur l'analyse technique
Au 6 janvier 2026, le sentiment global de prévision du prix pour BakeryToken est Haussier, avec 17 indicateurs techniques montrant des signaux haussiers et 16 indiquant des signaux baissiers. La prévision du prix de BAKE a été mise à jour pour la dernière fois le 6 janvier 2026.
Moyennes Mobiles Simples sur 50 et 200 jours de BakeryToken et Indice de Force Relative sur 14 jours - RSI (14)
Selon nos indicateurs techniques, le SMA sur 200 jours de BakeryToken devrait augmenter au cours du prochain mois, atteignant $0.033826 d'ici le 4 févr. 2026. Le SMA à court terme sur 50 jours pour BakeryToken devrait atteindre $0.006911 d'ici le 4 févr. 2026.
Le Relative Strength Index (RSI), un oscillateur de momentum, est un outil couramment utilisé pour identifier si une cryptomonnaie est survendue (en dessous de 30) ou surachetée (au-dessus de 70). Actuellement, le RSI est à 51.22, ce qui suggère que le marché de BAKE est dans un état NEUTRAL.
Moyennes Mobiles et Oscillateurs Populaires de BAKE pour le Samedi 19 Octobre 2024
Les moyennes mobiles (MA) sont des indicateurs largement utilisés sur les marchés financiers, conçus pour lisser les mouvements de prix sur une période donnée. En tant qu'indicateurs retardés, ils sont basés sur des données historiques de prix. Le tableau ci-dessous met en évidence deux types : la moyenne mobile simple (SMA) et la moyenne mobile exponentielle (EMA).
Moyenne Mobile Simple Quotidienne (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 3 | $0.00732 | BUY |
| SMA 5 | $0.007204 | BUY |
| SMA 10 | $0.0073056 | BUY |
| SMA 21 | $0.006952 | BUY |
| SMA 50 | $0.00763 | SELL |
| SMA 100 | $0.011785 | SELL |
| SMA 200 | $0.04680064 | SELL |
Moyenne Mobile Exponentielle Quotidienne (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 3 | $0.007363 | BUY |
| EMA 5 | $0.00729 | BUY |
| EMA 10 | $0.0072058 | BUY |
| EMA 21 | $0.007269 | BUY |
| EMA 50 | $0.00914 | SELL |
| EMA 100 | $0.01915 | SELL |
| EMA 200 | $0.047171 | SELL |
Moyenne Mobile Simple Hebdomadaire (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 21 | $0.027152 | SELL |
| SMA 50 | $0.084797 | SELL |
| SMA 100 | $0.19148 | SELL |
| SMA 200 | $0.222591 | SELL |
Moyenne Mobile Exponentielle Hebdomadaire (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 21 | $0.029523 | SELL |
| EMA 50 | $0.08339 | SELL |
| EMA 100 | $0.164683 | SELL |
| EMA 200 | $0.395984 | SELL |
Oscillateurs de BakeryToken
Un oscillateur est un outil d'analyse technique qui établit des limites hautes et basses entre deux extrêmes, créant un indicateur de tendance qui fluctue à l'intérieur de ces limites. Les traders utilisent cet indicateur pour identifier les conditions de surachat ou de survente à court terme.
| Période | Valeur | Action |
|---|---|---|
| RSI (14) | 51.22 | NEUTRAL |
| Stoch RSI (14) | 81.57 | NEUTRAL |
| Stochastique Rapide (14) | 81.99 | SELL |
| Indice de Canal des Matières Premières (20) | 96.77 | NEUTRAL |
| Indice Directionnel Moyen (14) | 12.57 | NEUTRAL |
| Oscillateur Impressionnant (5, 34) | -0.000278 | NEUTRAL |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Plage de Pourcentage de Williams (14) | -18.01 | SELL |
| Oscillateur Ultime (7, 14, 28) | 63.38 | NEUTRAL |
| VWMA (10) | 0.007336 | BUY |
| Moyenne Mobile de Hull (9) | 0.007250 | BUY |
| Nuage Ichimoku B/L (9, 26, 52, 26) | -0.000780 | SELL |
Prévision du cours de BakeryToken basée sur les flux monétaires mondiaux
Définitions des flux monétaires mondiaux utilisés pour la prédiction du cours de BakeryToken
M0 : le total de toutes les devises physiques, plus les comptes à la banque centrale qui peuvent être échangés contre des devises physiques.
M1 : M0 plus le montant des comptes à vue, y compris les comptes de "chèques" et les comptes "courants".
M2 : M1 plus la plupart des comptes d'épargne, comptes du marché monétaire et comptes de certificats de dépôt (CD) de moins de 100 000 $.
Prédictions du cours de BakeryToken par des sociétés Internet ou des niches technologiques
| Comparaison | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Action Facebook | $0.010554 | $0.01483 | $0.020839 | $0.029282 | $0.041147 | $0.057818 |
| Action Amazon.com | $0.015672 | $0.032701 | $0.068232 | $0.142371 | $0.297066 | $0.619847 |
| Action Apple | $0.010653 | $0.015111 | $0.021434 | $0.0304035 | $0.043125 | $0.061169 |
| Action Netflix | $0.011851 | $0.018699 | $0.0295047 | $0.046553 | $0.073454 | $0.115899 |
| Action Google | $0.009726 | $0.012596 | $0.016311 | $0.021123 | $0.027355 | $0.035424 |
| Action Tesla | $0.017026 | $0.038598 | $0.08750063 | $0.198357 | $0.449661 | $1.01 |
| Action Kodak | $0.005632 | $0.004223 | $0.003167 | $0.002375 | $0.001781 | $0.001335 |
| Action Nokia | $0.004975 | $0.003296 | $0.002183 | $0.001446 | $0.000958 | $0.000634 |
Ce calcul montre la valeur potentielle des cryptomonnaies si l'on suppose que leur capitalisation se comportera comme celle de certaines sociétés Internet ou niches technologiques. En extrapolant les données, vous pourrez obtenir une potentielle image des cours futurs pour 2024, 2025, 2026, 2027, 2028, 2029 et 2030.
Aperçu des prévisions relatives à BakeryToken
Vous vous posez peut-être des questions telles que : "Devrais-je investir dans BakeryToken maintenant ?", "Devrais-je acheter BAKE aujourd'hui ?", " BakeryToken sera-t-il un bon ou un mauvais investissement à court ou à long terme ?".
Nous mettons régulièrement à jour les prévisions de BakeryToken/BakerySwap avec de nouvelles valeurs. Regardez nos prévisions similaires. Nous faisons une prévision des cours futurs pour une grande quantité de devises numériques comme BakeryToken en utilisant des méthodes d'analyse technique.
Si vous souhaitez trouver des cryptomonnaies ayant un bon rendement, vous devriez consulter un maximum d'informations disponibles à propos de BakeryToken afin de prendre une décision responsable concernant cet investissement.
Le cours de BakeryToken est de $0.007511 USD actuellement, mais ce cours peut subir une hausse ou une baisse, ce qui pourrait causer la perte de votre investissement, car les cryptomonnaies sont des actifs à haut risque.
Prévision à court terme de BakeryToken
basée sur l'historique des cours sur 4 heures
Prévision à long terme de BakeryToken
basée sur l'historique des cours sur 1 mois
Prévision du cours de BakeryToken basée sur le modèle de croissance du Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si BakeryToken présente 1 % de la précédente croissance annuelle moyenne du Bitcoin | $0.0077062 | $0.0079065 | $0.008112 | $0.008322 |
| Si BakeryToken présente 2 % de la précédente croissance annuelle moyenne du Bitcoin | $0.0079015 | $0.008312 | $0.008744 | $0.009198 |
| Si BakeryToken présente 5 % de la précédente croissance annuelle moyenne du Bitcoin | $0.008487 | $0.00959 | $0.010836 | $0.012245 |
| Si BakeryToken présente 10 % de la précédente croissance annuelle moyenne du Bitcoin | $0.009463 | $0.011923 | $0.015022 | $0.018927 |
| Si BakeryToken présente 20 % de la précédente croissance annuelle moyenne du Bitcoin | $0.011415 | $0.01735 | $0.02637 | $0.040079 |
| Si BakeryToken présente 50 % de la précédente croissance annuelle moyenne du Bitcoin | $0.017272 | $0.039721 | $0.091346 | $0.210065 |
| Si BakeryToken présente 100 % de la précédente croissance annuelle moyenne du Bitcoin | $0.027034 | $0.0973063 | $0.350236 | $1.26 |
Boîte à questions
Est-ce que BAKE est un bon investissement ?
La décision d'acquérir BakeryToken dépend entièrement de votre tolérance individuelle au risque. Comme vous pouvez le discerner, la valeur de BakeryToken a connu une hausse de 4.6701% au cours des 24 heures précédentes, et BakeryToken a enregistré une déclin de sur une période de 30 jours précédents. Par conséquent, la détermination de si investir ou non dans BakeryToken dépendra de la mesure dans laquelle cet investissement s'aligne avec vos aspirations de trading.
Est-ce que BakeryToken peut monter ?
Il semble que la valeur moyenne de BakeryToken pourrait potentiellement s'envoler jusqu'à $0.007746 pour la fin de cette année. En regardant les perspectives de BakeryToken sur une période de cinq ans plus longue, la monnaie numérique pourrait potentiellement croître jusqu'à $0.024352. Cependant, compte tenu de l'imprévisibilité du marché, il est essentiel de mener des recherches approfondies avant d'investir des fonds dans un projet, un réseau ou un actif particulier.
Quel sera le prix de BakeryToken la semaine prochaine ?
Basé sur notre nouveau pronostic expérimental de BakeryToken, le prix de BakeryToken va augmenter de 0.86% durant la prochaine semaine et atteindre $0.007575 d'ici 13 janvier 2026.
Quel sera le prix de BakeryToken le mois prochain ?
Basé sur notre nouveau pronostic expérimental de BakeryToken, le prix de BakeryToken va diminuer de -11.62% durant le prochain mois et atteindre $0.006638 d'ici 5 février 2026.
Jusqu'où le prix de BakeryToken peut-il monter cette année en 2026 ?
Selon notre prédiction la plus récente sur la valeur de BakeryToken en 2026, BAKE devrait fluctuer dans la fourchette de $0.002595 et $0.007746. Cependant, il est crucial de garder à l'esprit que le marché des cryptomonnaies est exceptionnellement instable, et cette prévision de prix de BakeryToken ne prend pas en compte les fluctuations de prix soudaines et extrêmes.
Où sera BakeryToken dans 5 ans ?
L'avenir de BakeryToken semble suivre une tendance haussière, avec un prix maximum de $0.024352 prévue après une période de cinq ans. Selon la prévision de BakeryToken pour 2030, la valeur de BakeryToken pourrait potentiellement atteindre son point le plus élevé d'environ $0.024352, tandis que son point le plus bas devrait être autour de $0.008422.
Combien vaudra BakeryToken en 2026 ?
Basé sur notre nouvelle simulation expérimentale de prédiction de prix de BakeryToken, il est attendu que la valeur de BAKE en 2026 augmente de 3.13% jusqu'à $0.007746 si le meilleur scénario se produit. Le prix sera entre $0.007746 et $0.002595 durant 2026.
Combien vaudra BakeryToken en 2027 ?
Selon notre dernière simulation expérimentale pour la prédiction de prix de BakeryToken, le valeur de BAKE pourrait diminuer de -12.62% jusqu'à $0.006562 en 2027, en supposant les conditions les plus favorables. Il est prévu que le prix fluctue entre $0.006562 et $0.002498 tout au long de l'année.
Combien vaudra BakeryToken en 2028 ?
Notre nouveau modèle expérimental de prédiction de prix de BakeryToken suggère que la valeur de BAKE en 2028 pourrait augmenter de 47.02%, atteignant $0.011042 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.011042 et $0.0045085 durant l'année.
Combien vaudra BakeryToken en 2029 ?
Basé sur notre modèle de prévision expérimental, la valeur de BakeryToken pourrait connaître un 333.75% croissance en 2029, atteignant potentiellement $0.032579 sous des conditions optimales. Le range de prix prévu pour 2029 se situe entre $0.032579 et $0.0099039.
Combien vaudra BakeryToken en 2030 ?
En utilisant notre nouvelle simulation expérimentale pour les prédictions de prix de BakeryToken, il est prévu que la valeur de BAKE en 2030 augmente de 224.23%, atteignant $0.024352 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.024352 et $0.008422 au cours de 2030.
Combien vaudra BakeryToken en 2031 ?
Notre simulation expérimentale indique que le prix de BakeryToken pourrait augmenter de 195.98% en 2031, atteignant potentiellement $0.022231 dans des conditions idéales. Il est probable que le prix fluctue entre $0.022231 et $0.009958 durant l'année.
Combien vaudra BakeryToken en 2032 ?
Basé sur les résultats de notre dernière prédiction expérimentale de prix de BakeryToken, BAKE pourrait connaître une 449.04% hausse en valeur, atteignant $0.041238 si le scénario le plus positif se réalise en 2032. Il est prévu que le prix reste dans une fourchette de $0.041238 et $0.01520079 tout au long de l'année.
Combien vaudra BakeryToken en 2033 ?
Selon notre prédiction expérimentale de prix de BakeryToken, la valeur de BAKE est anticipée à augmenter de 1362.43% en 2033, avec le prix potentiel le plus élevé étant $0.109843. Tout au long de l'année, le prix de BAKE pourrait osciller entre $0.109843 et $0.035323.
Combien vaudra BakeryToken en 2034 ?
Les résultats de notre nouvelle simulation de prédiction de prix de BakeryToken suggèrent que BAKE pourrait augmenter de 746.96% en 2034, atteignant potentiellement $0.063615 dans les meilleures circonstances. La fourchette de prix prévue pour l'année est entre $0.063615 et $0.028398.
Combien vaudra BakeryToken en 2035 ?
Basé sur notre prédiction expérimentale pour le prix de BakeryToken, BAKE pourrait augmenter de 897.93%, avec la valeur potentiellement atteignant $0.074955 en 2035. La fourchette de prix attendue pour l'année se situe entre $0.074955 et $0.033575.
Combien vaudra BakeryToken en 2036 ?
Notre récente simulation de prédiction de prix de BakeryToken suggère que la valeur de BAKE pourrait augmenter de 1964.7% en 2036, pouvant atteindre $0.15508 si les conditions sont optimales. La fourchette de prix attendue pour 2036 est entre $0.15508 et $0.055578.
Combien vaudra BakeryToken en 2037 ?
Selon la simulation expérimentale, la valeur de BakeryToken pourrait augmenter de 4830.69% en 2037, avec un maximum de $0.370345 sous des conditions favorables. Il est prévu que le prix chute entre $0.370345 et $0.144334 au cours de l'année.
Prévisions liées
Prévision du cours de Kinesis Gold
Prévision du cours de LTO NetworkPrévision du cours de GameFi
Prévision du cours de HUNT Platform
Prévision du cours de Puff The Dragon
Prévision du cours de Clearpool
Prévision du cours de MATH
Prévision du cours de Stafi
Prévision du cours de Pangolin
Prévision du cours de StakeWise Staked ETH
Prévision du cours de BENQI
Prévision du cours de Velo
Prévision du cours de Dimitra
Prévision du cours de IX Swap
Prévision du cours de BitMart Token
Prévision du cours de LON
Prévision du cours de Moon Tropica
Prévision du cours de Kinesis Silver
Prévision du cours de Perpetual Protocol
Prévision du cours de USDX
Prévision du cours de Metadium
Prévision du cours de ARPA
Prévision du cours de Storj
Prévision du cours de Ozone Chain
Prévision du cours de Humanscape
Comment lire et prédire les mouvements de prix de BakeryToken ?
Les traders de BakeryToken utilisent des indicateurs et des modèles graphiques pour prédire la direction du marché. Ils identifient également des niveaux clés de support et de résistance pour évaluer quand une tendance baissière pourrait ralentir ou une tendance haussière pourrait s'arrêter.
Indicateurs de prédiction du prix de BakeryToken
Les moyennes mobiles sont des outils populaires pour la prédiction du prix de BakeryToken. Une moyenne mobile simple (SMA) calcule le prix de clôture moyen de BAKE sur une période spécifique, comme une SMA de 12 jours. Une moyenne mobile exponentielle (EMA) donne plus de poids aux prix récents, réagissant plus rapidement aux changements de prix.
Les moyennes mobiles couramment utilisées sur le marché des cryptomonnaies incluent les moyennes sur 50 jours, 100 jours et 200 jours, qui aident à identifier les niveaux clés de résistance et de support. Un mouvement de prix de BAKE au-dessus de ces moyennes est considéré comme haussier, tandis qu'une chute en dessous indique une faiblesse.
Les traders utilisent également le RSI et les niveaux de retracement de Fibonacci pour évaluer la direction future de BAKE.
Comment lire les graphiques de BakeryToken et prédire les mouvements de prix ?
La plupart des traders préfèrent les graphiques en chandeliers aux simples graphiques linéaires parce qu'ils fournissent des informations plus détaillées. Les chandeliers peuvent représenter l'action des prix de BakeryToken dans différentes périodes, comme 5 minutes pour les tendances à court terme et hebdomadaire pour les tendances à long terme. Les options populaires incluent les graphiques de 1 heure, 4 heures et 1 jour.
Par exemple, un graphique en chandeliers de 1 heure montre les prix d'ouverture, de clôture, les plus hauts et les plus bas de BAKE au sein de chaque heure. La couleur du chandelier est cruciale : le vert indique que le prix a clôturé plus haut qu'il n'a ouvert, tandis que le rouge signifie le contraire. Certains graphiques utilisent des chandeliers creux et pleins pour transmettre la même information.
Qu'est-ce qui affecte le prix de BakeryToken ?
L'action du prix de BakeryToken est déterminée par l'offre et la demande, influencée par des facteurs tels que les réductions de récompenses de bloc, les hard forks et les mises à jour de protocole. Les événements du monde réel, tels que les réglementations, l'adoption par les entreprises et les gouvernements et les piratages d'échanges de cryptomonnaies, impactent également le prix de BAKE. La capitalisation boursière de BakeryToken peut changer rapidement.
Les traders surveillent souvent l'activité des « baleines » de BAKE, de grands détenteurs de BakeryToken, car leurs actions peuvent influencer significativement les mouvements de prix sur le marché relativement petit de BakeryToken.
Modèles de prédiction de prix haussiers et baissiers
Les traders identifient souvent des modèles de chandeliers pour obtenir un avantage dans les prédictions de prix des cryptomonnaies. Certaines formations indiquent des tendances haussières, tandis que d'autres suggèrent des mouvements baissiers.
Modèles de chandeliers haussiers couramment suivis :
- Marteau
- Englobante haussière
- Ligne pénétrante
- Étoile du matin
- Trois soldats blancs
Modèles de chandeliers baissiers courants :
- Harami baissier
- Nuage sombre
- Étoile du soir
- Étoile filante
- Pendu


