Prédiction du prix de JUNO jusqu'à $0.041862 d'ici 2026
| Année | Prix min. | Prix max. |
|---|---|---|
| 2026 | $0.014024 | $0.041862 |
| 2027 | $0.01350083 | $0.035466 |
| 2028 | $0.024365 | $0.059677 |
| 2029 | $0.053522 | $0.176066 |
| 2030 | $0.045519 | $0.1316088 |
| 2031 | $0.053817 | $0.120143 |
| 2032 | $0.082148 | $0.22286 |
| 2033 | $0.190895 | $0.59362 |
| 2034 | $0.15347 | $0.343792 |
| 2035 | $0.181449 | $0.405073 |
Calculateur de profit d’investissement
Si vous ouvrez une position short de $10,000.00 sur JUNO aujourd’hui et la fermez le Apr 06, 2026, notre prévision indique que vous pourriez gagner environ $3,954.62, soit un rendement de 39.55% sur les 90 prochains jours.
Prévision du prix à long terme de Juno Network pour 2027, 2028, 2029, 2030, 2031, 2032 et 2037
[
'name' => 'JUNO'
'name_with_ticker' => 'JUNO <small>JUNO</small>'
'name_lang' => 'Juno Network'
'name_lang_with_ticker' => 'Juno Network <small>JUNO</small>'
'name_with_lang' => 'Juno Network/JUNO'
'name_with_lang_with_ticker' => 'Juno Network/JUNO <small>JUNO</small>'
'image' => '/uploads/coins/juno-network.png?1717253932'
'price_for_sd' => 0.04059
'ticker' => 'JUNO'
'marketcap' => '$3.23M'
'low24h' => '$0.03747'
'high24h' => '$0.04059'
'volume24h' => '$14.3K'
'current_supply' => '79.51M'
'max_supply' => '105.63M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.04059'
'change_24h_pct' => '1.7645%'
'ath_price' => '$45.74'
'ath_days' => 1405
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '3 mars 2022'
'ath_pct' => '-99.91%'
'fdv' => '$4.29M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$2.00'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.040938'
'next_week_prediction_price_date' => '13 janvier 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.035875'
'next_month_prediction_price_date' => '5 février 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.014024'
'current_year_max_price_prediction' => '$0.041862'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.045519'
'grand_prediction_max_price' => '$0.1316088'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.041360504162966
107 => 0.041514929271647
108 => 0.041862856926648
109 => 0.038889853208573
110 => 0.040224644595185
111 => 0.041008709481781
112 => 0.037466275799618
113 => 0.040938686957677
114 => 0.038838099828178
115 => 0.038125129006666
116 => 0.039085050291068
117 => 0.038710968032983
118 => 0.038389354074328
119 => 0.038209887959369
120 => 0.038914748207988
121 => 0.0388818656349
122 => 0.03772857746068
123 => 0.03622416005145
124 => 0.036729091914805
125 => 0.036545645435087
126 => 0.03588081172752
127 => 0.036328829374092
128 => 0.03435598639513
129 => 0.030961812589281
130 => 0.03320410777178
131 => 0.033117781846402
201 => 0.033074252400257
202 => 0.034759275257418
203 => 0.034597299189794
204 => 0.034303311040981
205 => 0.035875412404619
206 => 0.035301574259144
207 => 0.037070008210226
208 => 0.038234813185546
209 => 0.037939380966311
210 => 0.039034885675591
211 => 0.036740724525118
212 => 0.037502752833536
213 => 0.037659805811775
214 => 0.035856012917822
215 => 0.034623800477649
216 => 0.03454162595614
217 => 0.032405139394213
218 => 0.033546433270477
219 => 0.03455072465164
220 => 0.034069747016223
221 => 0.033917483865648
222 => 0.034695363280087
223 => 0.034755811172676
224 => 0.033377592815675
225 => 0.033664168054595
226 => 0.034859234440059
227 => 0.033634055447906
228 => 0.031253732798004
301 => 0.030663379870292
302 => 0.030584615907373
303 => 0.028983531945939
304 => 0.030702830075804
305 => 0.029952310367793
306 => 0.032323193132795
307 => 0.030968957612725
308 => 0.030910579226131
309 => 0.030822331732547
310 => 0.029444212626995
311 => 0.029745933127073
312 => 0.030748898022661
313 => 0.031106767196615
314 => 0.031069438509836
315 => 0.030743982947507
316 => 0.030892974837339
317 => 0.030413020047974
318 => 0.030243538022455
319 => 0.029708606130211
320 => 0.028922404027319
321 => 0.029031730251784
322 => 0.027474058164985
323 => 0.026625355740183
324 => 0.026390446094715
325 => 0.026076315099247
326 => 0.026425928026524
327 => 0.027469645475675
328 => 0.02621070079499
329 => 0.024052328444658
330 => 0.024182050300601
331 => 0.024473496796139
401 => 0.023930388179815
402 => 0.023416381454116
403 => 0.023863268599428
404 => 0.022948737781272
405 => 0.02458401347629
406 => 0.024539783851547
407 => 0.025149313505879
408 => 0.025530464907541
409 => 0.024652034325943
410 => 0.0244311114102
411 => 0.024556959143394
412 => 0.022476976442987
413 => 0.024979334544161
414 => 0.025000975040932
415 => 0.024815675969247
416 => 0.026148104406483
417 => 0.028959944003903
418 => 0.027902016841368
419 => 0.027492355468017
420 => 0.026713588897815
421 => 0.027751249114025
422 => 0.027671572999441
423 => 0.027311247393024
424 => 0.027093321341978
425 => 0.027494856773007
426 => 0.027043566658478
427 => 0.026962502553285
428 => 0.026471342274435
429 => 0.026296020401254
430 => 0.026166219066116
501 => 0.026023320550144
502 => 0.026338519068285
503 => 0.025624237758359
504 => 0.024762884520448
505 => 0.024691272318686
506 => 0.024888999903958
507 => 0.024801520166563
508 => 0.02469085349936
509 => 0.024479560693395
510 => 0.024416874631422
511 => 0.024620573921881
512 => 0.024390609299359
513 => 0.024729934626711
514 => 0.024637656913398
515 => 0.024122201108052
516 => 0.023479752328409
517 => 0.023474033186688
518 => 0.023335618650941
519 => 0.023159326928902
520 => 0.02311028660484
521 => 0.023825633010519
522 => 0.025306378661759
523 => 0.025015672859181
524 => 0.025225737594273
525 => 0.026259048182217
526 => 0.02658750654539
527 => 0.026354374579172
528 => 0.02603524916486
529 => 0.0260492890635
530 => 0.02713983721004
531 => 0.027207853360246
601 => 0.027379708228975
602 => 0.027600590301472
603 => 0.02639199175124
604 => 0.025992364180472
605 => 0.025802998466949
606 => 0.025219825363051
607 => 0.025848727558121
608 => 0.025482293181331
609 => 0.025531737697941
610 => 0.025499536891634
611 => 0.025517120709287
612 => 0.024583556383406
613 => 0.024923698157061
614 => 0.024358146486779
615 => 0.023600936286425
616 => 0.023598397852321
617 => 0.023783723976119
618 => 0.023673484745872
619 => 0.023376833811788
620 => 0.023418971676822
621 => 0.023049799639581
622 => 0.023463795846218
623 => 0.023475667776075
624 => 0.023316256685994
625 => 0.023954074962786
626 => 0.024215389631198
627 => 0.02411046183679
628 => 0.024208027617426
629 => 0.025027752997736
630 => 0.025161404001852
701 => 0.025220762949391
702 => 0.025141229823242
703 => 0.024223010692587
704 => 0.024263737615601
705 => 0.023964910477264
706 => 0.023712433034997
707 => 0.023722530808618
708 => 0.023852337033713
709 => 0.024419208431739
710 => 0.025612155869989
711 => 0.025657427353237
712 => 0.025712297711597
713 => 0.025489112388516
714 => 0.02542179755948
715 => 0.025510603194411
716 => 0.025958611530021
717 => 0.027111010602287
718 => 0.026703675804002
719 => 0.026372506272453
720 => 0.026663031234286
721 => 0.026618307193622
722 => 0.026240791281731
723 => 0.02623019566744
724 => 0.025505621933383
725 => 0.025237763521648
726 => 0.025013920983948
727 => 0.024769490776336
728 => 0.024624584355889
729 => 0.024847226476486
730 => 0.02489814736369
731 => 0.024411336475888
801 => 0.024344985950708
802 => 0.024742526230231
803 => 0.024567583575008
804 => 0.024747516434274
805 => 0.024789262401059
806 => 0.024782540338915
807 => 0.024599880114827
808 => 0.024716302294655
809 => 0.02444092913224
810 => 0.024141502177826
811 => 0.023950486435868
812 => 0.023783799866449
813 => 0.023876287263043
814 => 0.023546586581716
815 => 0.023441108698196
816 => 0.024676861079711
817 => 0.025589724650513
818 => 0.02557645125266
819 => 0.02549565285687
820 => 0.025375602830082
821 => 0.025949829122816
822 => 0.025749780164445
823 => 0.02589533249631
824 => 0.025932381673581
825 => 0.026044518374685
826 => 0.026084597606854
827 => 0.025963450330422
828 => 0.025556865273822
829 => 0.024543693969721
830 => 0.024072059992659
831 => 0.023916412924543
901 => 0.023922070399853
902 => 0.023766011974718
903 => 0.023811978174968
904 => 0.023750026806139
905 => 0.023632705901221
906 => 0.023869043027766
907 => 0.023896278679968
908 => 0.023841114770614
909 => 0.023854107868229
910 => 0.023397374259592
911 => 0.023432098723884
912 => 0.023238748494138
913 => 0.023202497656932
914 => 0.022713725113065
915 => 0.02184779370289
916 => 0.022327603762123
917 => 0.021748060682074
918 => 0.021528578936149
919 => 0.022567571384944
920 => 0.022463285360249
921 => 0.022284793018018
922 => 0.022020765642794
923 => 0.02192283532103
924 => 0.021327841686966
925 => 0.021292686288898
926 => 0.021587581200119
927 => 0.021451497345305
928 => 0.021260384074159
929 => 0.020568191178911
930 => 0.019789937187461
1001 => 0.019813427783533
1002 => 0.020060975898283
1003 => 0.02078075542833
1004 => 0.020499525113628
1005 => 0.020295489293566
1006 => 0.020257279517763
1007 => 0.020735554859527
1008 => 0.021412414669904
1009 => 0.021729982149049
1010 => 0.021415282421884
1011 => 0.021053772319954
1012 => 0.021075775764782
1013 => 0.021222154825506
1014 => 0.021237537195099
1015 => 0.021002231282582
1016 => 0.021068468518643
1017 => 0.020967848100206
1018 => 0.020350340777989
1019 => 0.020339172028667
1020 => 0.020187625773144
1021 => 0.020183037012755
1022 => 0.019925219027125
1023 => 0.019889148508724
1024 => 0.019377235249824
1025 => 0.019714178107048
1026 => 0.019488174528716
1027 => 0.019147533827315
1028 => 0.019088807241998
1029 => 0.019087041849929
1030 => 0.019436803684401
1031 => 0.019710090936371
1101 => 0.019492105957722
1102 => 0.019442475003544
1103 => 0.019972403748993
1104 => 0.019904965485727
1105 => 0.019846564384668
1106 => 0.021351809297748
1107 => 0.02016029049332
1108 => 0.019640720285074
1109 => 0.018997653488662
1110 => 0.019207039280198
1111 => 0.019251159942992
1112 => 0.017704700219125
1113 => 0.017077301701752
1114 => 0.016862002173604
1115 => 0.016738094251266
1116 => 0.016794560647413
1117 => 0.01622982839527
1118 => 0.016609337808519
1119 => 0.016120327413793
1120 => 0.01603834322974
1121 => 0.016912754392274
1122 => 0.017034423597305
1123 => 0.016515344968985
1124 => 0.016848677479563
1125 => 0.016727806477558
1126 => 0.016128710093466
1127 => 0.016105829018248
1128 => 0.015805223511967
1129 => 0.015334834103332
1130 => 0.015119853521353
1201 => 0.015007889767711
1202 => 0.015054088194594
1203 => 0.015030728856267
1204 => 0.014878293372818
1205 => 0.015039466279744
1206 => 0.014627736103791
1207 => 0.014463781830192
1208 => 0.014389727488517
1209 => 0.014024293259054
1210 => 0.014605861627469
1211 => 0.014720437922451
1212 => 0.01483523996813
1213 => 0.015834513397075
1214 => 0.015784592520482
1215 => 0.016235852932427
1216 => 0.016218317782633
1217 => 0.016089611003213
1218 => 0.015546618272074
1219 => 0.015763045496791
1220 => 0.015096916139371
1221 => 0.015596025546344
1222 => 0.015368252856308
1223 => 0.015519015370724
1224 => 0.015247930776097
1225 => 0.015397960183572
1226 => 0.014747608212492
1227 => 0.014140318692597
1228 => 0.014384709723289
1229 => 0.014650390723156
1230 => 0.015226454825127
1231 => 0.014883355798418
]
'min_raw' => 0.014024293259054
'max_raw' => 0.041862856926648
'avg_raw' => 0.027943575092851
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.014024'
'max' => '$0.041862'
'avg' => '$0.027943'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.026567026740946
'max_diff' => 0.0012715369266481
'year' => 2026
]
1 => [
'items' => [
101 => 0.015006747182433
102 => 0.014593406701452
103 => 0.013740567224316
104 => 0.013745394203138
105 => 0.013614203429699
106 => 0.01350083544728
107 => 0.014922764848913
108 => 0.014745925450443
109 => 0.014464155013148
110 => 0.014841315940579
111 => 0.01494104327614
112 => 0.014943882373184
113 => 0.015219049249904
114 => 0.015365905861337
115 => 0.015391789975615
116 => 0.015824771001508
117 => 0.01596990053023
118 => 0.016567668519536
119 => 0.015353446103887
120 => 0.015328439992278
121 => 0.014846623368288
122 => 0.014541047648135
123 => 0.014867546399279
124 => 0.015156779721268
125 => 0.014855610653837
126 => 0.014894936976018
127 => 0.014490642109409
128 => 0.01463515850038
129 => 0.014759635484744
130 => 0.014690906610397
131 => 0.014588016158985
201 => 0.015133065887238
202 => 0.015102312045503
203 => 0.015609874883092
204 => 0.016005556411159
205 => 0.016714688445989
206 => 0.015974672199755
207 => 0.015947703066444
208 => 0.016211330670544
209 => 0.015969860170218
210 => 0.016122461191145
211 => 0.016690102062315
212 => 0.016702095419446
213 => 0.016501191234933
214 => 0.016488966197047
215 => 0.016527552043334
216 => 0.016753550550242
217 => 0.016674579727696
218 => 0.016765966762843
219 => 0.016880247649662
220 => 0.01735296185164
221 => 0.01746693164537
222 => 0.017190044133169
223 => 0.017215043975342
224 => 0.017111480445047
225 => 0.017011439372428
226 => 0.017236317093849
227 => 0.017647285549728
228 => 0.017644728936293
301 => 0.017740065629972
302 => 0.017799459600322
303 => 0.017544497200536
304 => 0.017378526053503
305 => 0.017442169952294
306 => 0.017543937932444
307 => 0.017409167967926
308 => 0.016577305315394
309 => 0.01682963930458
310 => 0.016787638590278
311 => 0.01672782446565
312 => 0.016981548243018
313 => 0.016957075965728
314 => 0.016224036249774
315 => 0.016270963074048
316 => 0.016226890025385
317 => 0.016369299062113
318 => 0.015962169614888
319 => 0.016087399890796
320 => 0.016165943145884
321 => 0.016212205726529
322 => 0.016379337890366
323 => 0.016359726859972
324 => 0.016378118841182
325 => 0.016625931718898
326 => 0.017879284215273
327 => 0.017947501426285
328 => 0.017611574929992
329 => 0.017745770939404
330 => 0.017488143946775
331 => 0.017661090672878
401 => 0.017779416430507
402 => 0.017244725084516
403 => 0.017213064133124
404 => 0.016954373822253
405 => 0.017093379342347
406 => 0.016872211565027
407 => 0.016926478401461
408 => 0.016774743595894
409 => 0.017047836035816
410 => 0.017353195817924
411 => 0.017430341757907
412 => 0.017227404003226
413 => 0.017080463694587
414 => 0.016822484917763
415 => 0.017251509373053
416 => 0.017376969198063
417 => 0.017250850386002
418 => 0.017221625901497
419 => 0.017166245556167
420 => 0.017233375103558
421 => 0.017376285916912
422 => 0.017308891816483
423 => 0.017353406807148
424 => 0.017183761566393
425 => 0.017544581603699
426 => 0.018117650659013
427 => 0.018119493169732
428 => 0.018052098706024
429 => 0.018024522343508
430 => 0.018093673153111
501 => 0.018131184630606
502 => 0.018354805668773
503 => 0.01859475995218
504 => 0.019714521892588
505 => 0.019400097220521
506 => 0.020393616628987
507 => 0.021179361488734
508 => 0.021414972015713
509 => 0.021198221417224
510 => 0.020456729328429
511 => 0.020420348189078
512 => 0.021528450419623
513 => 0.021215360785196
514 => 0.021178119769424
515 => 0.020781938281299
516 => 0.021016130608813
517 => 0.020964909311391
518 => 0.02088405398758
519 => 0.021330876634498
520 => 0.022167288741395
521 => 0.022036926070712
522 => 0.021939616384397
523 => 0.021513233665391
524 => 0.021770011298261
525 => 0.021678577701447
526 => 0.022071434458552
527 => 0.021838714818486
528 => 0.021212988823283
529 => 0.021312637750439
530 => 0.021297576015565
531 => 0.021607545451982
601 => 0.021514500321084
602 => 0.021279407460437
603 => 0.022164429975743
604 => 0.022106961536353
605 => 0.022188438644294
606 => 0.022224307386973
607 => 0.022763004996194
608 => 0.022983692170291
609 => 0.023033792022484
610 => 0.023243427769317
611 => 0.023028576094129
612 => 0.023888135981532
613 => 0.024459693149945
614 => 0.025123586213119
615 => 0.02609371241605
616 => 0.026458488842521
617 => 0.026392595246066
618 => 0.027128133861231
619 => 0.028449880402577
620 => 0.026659758012252
621 => 0.028544761236021
622 => 0.027947990978785
623 => 0.026533059434315
624 => 0.026441954523799
625 => 0.027400162593406
626 => 0.029525375867687
627 => 0.028993034046449
628 => 0.0295262465882
629 => 0.028904225834996
630 => 0.028873337261797
701 => 0.029496036428594
702 => 0.030951006973379
703 => 0.030259805006307
704 => 0.029268797496833
705 => 0.030000542020044
706 => 0.02936663719428
707 => 0.027938272203045
708 => 0.028992626974691
709 => 0.028287609965187
710 => 0.028493371409326
711 => 0.029975212299939
712 => 0.029796913283515
713 => 0.030027648720811
714 => 0.029620406713382
715 => 0.029239978462272
716 => 0.028529880880603
717 => 0.028319655994059
718 => 0.028377754589601
719 => 0.02831962720328
720 => 0.02792233413247
721 => 0.027836538731655
722 => 0.027693542638181
723 => 0.027737863106884
724 => 0.02746898861617
725 => 0.027976410332452
726 => 0.028070592274379
727 => 0.028439851484029
728 => 0.028478189200145
729 => 0.029506570842946
730 => 0.028940155515343
731 => 0.029320155819046
801 => 0.029286165015181
802 => 0.026563725291332
803 => 0.026938853464989
804 => 0.027522435181494
805 => 0.027259532409235
806 => 0.026887849399035
807 => 0.026587695439916
808 => 0.026132931499533
809 => 0.026773003012654
810 => 0.027614628988392
811 => 0.028499534223784
812 => 0.029562689882821
813 => 0.02932540591622
814 => 0.028479659268254
815 => 0.028517598845064
816 => 0.028752126380226
817 => 0.028448391913117
818 => 0.028358814689166
819 => 0.028739819845207
820 => 0.02874244361832
821 => 0.028392960406375
822 => 0.02800457377105
823 => 0.028002946416866
824 => 0.02793383676648
825 => 0.028916520288272
826 => 0.029456896864747
827 => 0.029518850168379
828 => 0.029452726913794
829 => 0.029478175130146
830 => 0.02916374190668
831 => 0.029882443013246
901 => 0.030541994220804
902 => 0.030365220407922
903 => 0.030100211332534
904 => 0.029889118839421
905 => 0.030315493725161
906 => 0.030296507922675
907 => 0.030536233616386
908 => 0.030525358274196
909 => 0.030444747539941
910 => 0.030365223286785
911 => 0.030680527961533
912 => 0.030589725278844
913 => 0.030498781554508
914 => 0.030316379992565
915 => 0.030341171394202
916 => 0.030076208076367
917 => 0.02995362392164
918 => 0.028110252355062
919 => 0.027617643238568
920 => 0.0277726280946
921 => 0.027823653133386
922 => 0.027609269014592
923 => 0.027916640770181
924 => 0.02786873720766
925 => 0.028055101946783
926 => 0.027938669348795
927 => 0.02794344778323
928 => 0.028285851227865
929 => 0.028385252404531
930 => 0.028334696163813
1001 => 0.028370104021845
1002 => 0.029186063165482
1003 => 0.029070059868161
1004 => 0.029008435428491
1005 => 0.029025505819429
1006 => 0.029234000874989
1007 => 0.029292368107138
1008 => 0.02904506204313
1009 => 0.029161693012576
1010 => 0.0296582928778
1011 => 0.029832074725511
1012 => 0.030386702963383
1013 => 0.030151087030204
1014 => 0.030583570272773
1015 => 0.031912876316027
1016 => 0.03297481796436
1017 => 0.031998212537958
1018 => 0.033948333137669
1019 => 0.035466781752729
1020 => 0.035408501165774
1021 => 0.035143724527389
1022 => 0.033415011149188
1023 => 0.031824223324904
1024 => 0.033154984888337
1025 => 0.033158377273236
1026 => 0.033044063674743
1027 => 0.032334071732239
1028 => 0.03301935749414
1029 => 0.033073752989328
1030 => 0.033043305976952
1031 => 0.032498956819299
1101 => 0.031667836268103
1102 => 0.031830235234385
1103 => 0.032096248054005
1104 => 0.031592630290377
1105 => 0.031431693899622
1106 => 0.031730905269437
1107 => 0.032695026646146
1108 => 0.032512765084654
1109 => 0.032508005498707
1110 => 0.0332877977497
1111 => 0.032729634787689
1112 => 0.031832283605423
1113 => 0.031605690597293
1114 => 0.030801438069771
1115 => 0.03135693815518
1116 => 0.031376929614316
1117 => 0.031072687894611
1118 => 0.031856971144206
1119 => 0.03184974383599
1120 => 0.032594304056324
1121 => 0.034017623553553
1122 => 0.033596677940924
1123 => 0.033107163992188
1124 => 0.033160387731165
1125 => 0.033744120780362
1126 => 0.033391182453488
1127 => 0.033518101536606
1128 => 0.033743928673129
1129 => 0.033880175791566
1130 => 0.033140783867546
1201 => 0.032968396240853
1202 => 0.032615751656474
1203 => 0.032523753266832
1204 => 0.032810974922638
1205 => 0.032735302164024
1206 => 0.031375249409586
1207 => 0.031233116329486
1208 => 0.031237475348133
1209 => 0.03088007496016
1210 => 0.030334953582579
1211 => 0.031767500015355
1212 => 0.031652446488328
1213 => 0.031525436298927
1214 => 0.031540994322419
1215 => 0.032162814175383
1216 => 0.031802127258008
1217 => 0.032761072543272
1218 => 0.032563942221156
1219 => 0.032361756250118
1220 => 0.032333807990185
1221 => 0.032255983641032
1222 => 0.031989094990621
1223 => 0.031666810907728
1224 => 0.031454011040434
1225 => 0.029014662532067
1226 => 0.029467391426182
1227 => 0.029988214751325
1228 => 0.030168000876096
1229 => 0.029860464268854
1230 => 0.032001238410333
1231 => 0.032392378474994
]
'min_raw' => 0.01350083544728
'max_raw' => 0.035466781752729
'avg_raw' => 0.024483808600005
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.01350083'
'max' => '$0.035466'
'avg' => '$0.024483'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00052345781177393
'max_diff' => -0.0063960751739195
'year' => 2027
]
2 => [
'items' => [
101 => 0.0312075897057
102 => 0.030985964101572
103 => 0.032015768148043
104 => 0.031394670419596
105 => 0.031674350688685
106 => 0.031069834923843
107 => 0.032298164287335
108 => 0.0322888064756
109 => 0.031810958610124
110 => 0.032214832353863
111 => 0.032144649352044
112 => 0.031605160288809
113 => 0.032315267052909
114 => 0.032315619257004
115 => 0.031855701075793
116 => 0.031318617329174
117 => 0.03122259944063
118 => 0.031150262859801
119 => 0.031656560324114
120 => 0.032110505047467
121 => 0.032955183635185
122 => 0.033167555901206
123 => 0.033996458993907
124 => 0.033502887560763
125 => 0.033721681384256
126 => 0.033959213029933
127 => 0.034073094435808
128 => 0.033887530796148
129 => 0.035175158489237
130 => 0.035283873718427
131 => 0.035320324994391
201 => 0.034886144181037
202 => 0.03527179836458
203 => 0.035091363543624
204 => 0.035560804821514
205 => 0.035634419208014
206 => 0.035572070441556
207 => 0.035595436809756
208 => 0.034496673726795
209 => 0.034439697064506
210 => 0.033662816231322
211 => 0.033979400913258
212 => 0.033387561024678
213 => 0.033575239549973
214 => 0.033657966455656
215 => 0.033614754614838
216 => 0.033997300136175
217 => 0.033672058294152
218 => 0.032813691598344
219 => 0.031955091041103
220 => 0.031944312010508
221 => 0.031718257639345
222 => 0.031554861732918
223 => 0.031586337581277
224 => 0.031697262576354
225 => 0.031548414570553
226 => 0.031580178839376
227 => 0.032107677346054
228 => 0.032213463409621
229 => 0.031853961032337
301 => 0.030410507111597
302 => 0.030056279898817
303 => 0.030310891394732
304 => 0.030189203498765
305 => 0.024365043394231
306 => 0.025733343419804
307 => 0.024920346007687
308 => 0.025295012619403
309 => 0.024465152786291
310 => 0.024861205395332
311 => 0.024788068939968
312 => 0.026988254890147
313 => 0.026953902012792
314 => 0.026970344917268
315 => 0.026185482244862
316 => 0.027435789793348
317 => 0.028051736251337
318 => 0.027937740954847
319 => 0.027966431115042
320 => 0.027473439107857
321 => 0.026975118157524
322 => 0.026422403532561
323 => 0.027449278988151
324 => 0.027335107966838
325 => 0.027596975212293
326 => 0.028262977347816
327 => 0.028361048692168
328 => 0.028492857573518
329 => 0.028445613472349
330 => 0.029571159632862
331 => 0.029434848566231
401 => 0.029763319017441
402 => 0.029087630378189
403 => 0.028323024545922
404 => 0.028468351117788
405 => 0.028454355000275
406 => 0.028276168360336
407 => 0.028115309429062
408 => 0.027847524630214
409 => 0.028694835358462
410 => 0.028660436090267
411 => 0.029217320257582
412 => 0.029118885571724
413 => 0.028461514648517
414 => 0.028484992779643
415 => 0.028642894494668
416 => 0.02918939413326
417 => 0.029351632434527
418 => 0.029276477189302
419 => 0.029454364080181
420 => 0.0295949586257
421 => 0.029472020590467
422 => 0.031212563915992
423 => 0.030489768976976
424 => 0.030842054201078
425 => 0.030926072151241
426 => 0.030710861938605
427 => 0.030757533327626
428 => 0.0308282277648
429 => 0.031257470543931
430 => 0.03238392779877
501 => 0.032882828048885
502 => 0.034383794066659
503 => 0.03284140132814
504 => 0.032749882126091
505 => 0.033020251430724
506 => 0.033901477376546
507 => 0.034615628236291
508 => 0.034852553276819
509 => 0.034883866832131
510 => 0.035328353958642
511 => 0.035583125690364
512 => 0.035274381530312
513 => 0.035012753181529
514 => 0.034075632910693
515 => 0.034184107133736
516 => 0.034931386961791
517 => 0.035986963733481
518 => 0.036892758417636
519 => 0.036575580689377
520 => 0.038995422863414
521 => 0.039235340330801
522 => 0.039202191494268
523 => 0.039748759189482
524 => 0.038663933621059
525 => 0.038200149673052
526 => 0.035069320200143
527 => 0.035948955577156
528 => 0.037227557256818
529 => 0.037058329530005
530 => 0.036129774813113
531 => 0.036892054025618
601 => 0.036640020679289
602 => 0.036441231522166
603 => 0.03735192318812
604 => 0.036350580292252
605 => 0.037217568095445
606 => 0.03610564727001
607 => 0.036577029530523
608 => 0.036309450161261
609 => 0.036482606806467
610 => 0.035470336596762
611 => 0.036016533030449
612 => 0.035447613029394
613 => 0.035447343287238
614 => 0.035434784346682
615 => 0.036104116204946
616 => 0.036125943092814
617 => 0.035631305838253
618 => 0.035560020882184
619 => 0.035823598726727
620 => 0.035515018101914
621 => 0.035659401034081
622 => 0.035519391313844
623 => 0.035487872176763
624 => 0.035236722329962
625 => 0.035128520070451
626 => 0.035170948964434
627 => 0.035026117275676
628 => 0.034938850944408
629 => 0.035417424876931
630 => 0.035161742130401
701 => 0.035378237829019
702 => 0.035131513656509
703 => 0.034276260181985
704 => 0.033784394864645
705 => 0.032168900333308
706 => 0.03262705257838
707 => 0.032930807990856
708 => 0.032830416828845
709 => 0.033046095891067
710 => 0.033059336833815
711 => 0.032989217372099
712 => 0.032908028018291
713 => 0.03286850953091
714 => 0.033163047958958
715 => 0.033334037430147
716 => 0.032961293910221
717 => 0.032873965318739
718 => 0.033250829597118
719 => 0.033480716589221
720 => 0.035178072976573
721 => 0.035052327333009
722 => 0.035367924222019
723 => 0.035332392855545
724 => 0.035663188673754
725 => 0.036203900031782
726 => 0.035104482655638
727 => 0.035295303497144
728 => 0.035248518633503
729 => 0.035759303507081
730 => 0.035760898121702
731 => 0.035454657074396
801 => 0.035620675314334
802 => 0.035528008487273
803 => 0.035695469968445
804 => 0.035050647923276
805 => 0.035835971570054
806 => 0.036281199472639
807 => 0.036287381462498
808 => 0.036498415954776
809 => 0.036712839221224
810 => 0.037124406008841
811 => 0.036701360846896
812 => 0.035940343783174
813 => 0.035995286757104
814 => 0.035549102731089
815 => 0.035556603165176
816 => 0.0355165652602
817 => 0.035636722026946
818 => 0.035077015576576
819 => 0.035208377561752
820 => 0.03502447001325
821 => 0.03529490371805
822 => 0.035003961755979
823 => 0.035248496072426
824 => 0.035354028976963
825 => 0.035743447666667
826 => 0.034946444298883
827 => 0.033321300479585
828 => 0.033662925413365
829 => 0.033157635302245
830 => 0.033204401825804
831 => 0.033298877646231
901 => 0.032992650601662
902 => 0.033051069071443
903 => 0.033048981952618
904 => 0.033030996290137
905 => 0.032951334808795
906 => 0.032835809900305
907 => 0.033296025579036
908 => 0.033374225190743
909 => 0.033548053240686
910 => 0.034065247608625
911 => 0.034013567694984
912 => 0.03409785977831
913 => 0.03391385063369
914 => 0.033212937482272
915 => 0.033251000438589
916 => 0.0327763547634
917 => 0.033535915483623
918 => 0.033356041479362
919 => 0.033240075538666
920 => 0.03320843315733
921 => 0.03372690955007
922 => 0.033882045812899
923 => 0.033785375304711
924 => 0.033587101272088
925 => 0.03396784602918
926 => 0.034069717263846
927 => 0.034092522476421
928 => 0.034767129185421
929 => 0.034130225497508
930 => 0.034283534545467
1001 => 0.035479607973645
1002 => 0.034394934421139
1003 => 0.034969510193008
1004 => 0.034941387698923
1005 => 0.035235321221227
1006 => 0.034917276570817
1007 => 0.034921219115432
1008 => 0.035182212170457
1009 => 0.03481569449502
1010 => 0.034724939564232
1011 => 0.034599562277348
1012 => 0.034873318996423
1013 => 0.035037423768558
1014 => 0.036359987710286
1015 => 0.037214424332885
1016 => 0.037177330985682
1017 => 0.037516294743284
1018 => 0.037363588465932
1019 => 0.036870459614482
1020 => 0.03771217043325
1021 => 0.037445817911515
1022 => 0.037467775689789
1023 => 0.037466958420185
1024 => 0.037644059562197
1025 => 0.037518567172
1026 => 0.037271208789393
1027 => 0.0374354168275
1028 => 0.03792305599523
1029 => 0.039436702934462
1030 => 0.040283759814811
1031 => 0.039385709046669
1101 => 0.040005172441155
1102 => 0.03963371514184
1103 => 0.039566210300657
1104 => 0.039955279090379
1105 => 0.040345028893513
1106 => 0.040320203515988
1107 => 0.040037265172786
1108 => 0.039877440482007
1109 => 0.041087686585791
1110 => 0.041979375299056
1111 => 0.041918568106768
1112 => 0.042186951277967
1113 => 0.042974932569388
1114 => 0.043046975703372
1115 => 0.043037899924383
1116 => 0.042859333499879
1117 => 0.043635203413583
1118 => 0.044282447745727
1119 => 0.042818000531886
1120 => 0.043375642859895
1121 => 0.043625986467052
1122 => 0.04399356515596
1123 => 0.044613732017488
1124 => 0.045287397720244
1125 => 0.045382661436983
1126 => 0.045315067271168
1127 => 0.044870766631095
1128 => 0.045607899681554
1129 => 0.046039694934615
1130 => 0.046296819126355
1201 => 0.04694884329522
1202 => 0.043627532503943
1203 => 0.041276543646019
1204 => 0.040909402787164
1205 => 0.041655998160748
1206 => 0.041852869406775
1207 => 0.041773510854357
1208 => 0.039127259152209
1209 => 0.040895470819607
1210 => 0.042797917898267
1211 => 0.042870998638518
1212 => 0.043823403424388
1213 => 0.044133545463058
1214 => 0.044900356150233
1215 => 0.04485239193297
1216 => 0.045039098132674
1217 => 0.044996177610662
1218 => 0.046416532937612
1219 => 0.047983395788045
1220 => 0.047929140309853
1221 => 0.047703885236824
1222 => 0.04803842743197
1223 => 0.049655597808844
1224 => 0.049506714675169
1225 => 0.049651341957699
1226 => 0.051558076971762
1227 => 0.054037103719937
1228 => 0.052885346905194
1229 => 0.055384327784092
1230 => 0.056957303782073
1231 => 0.059677603121829
]
'min_raw' => 0.024365043394231
'max_raw' => 0.059677603121829
'avg_raw' => 0.04202132325803
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.024365'
'max' => '$0.059677'
'avg' => '$0.042021'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.010864207946951
'max_diff' => 0.0242108213691
'year' => 2028
]
3 => [
'items' => [
101 => 0.059337008246735
102 => 0.060396000817223
103 => 0.058727272336021
104 => 0.054895534437512
105 => 0.05428914724777
106 => 0.055503149757804
107 => 0.058487656468089
108 => 0.055409157020539
109 => 0.056031933449332
110 => 0.055852573795943
111 => 0.055843016482244
112 => 0.056207780273755
113 => 0.055678671369368
114 => 0.053522986508022
115 => 0.054510924176446
116 => 0.054129433998004
117 => 0.054552725792962
118 => 0.056837057031537
119 => 0.055827099739308
120 => 0.054763191774212
121 => 0.05609756846252
122 => 0.057796688528312
123 => 0.057690360648207
124 => 0.057484040119198
125 => 0.058647058138634
126 => 0.060568023174436
127 => 0.06108725230455
128 => 0.061470536633229
129 => 0.061523385066512
130 => 0.062067756774444
131 => 0.059140532901556
201 => 0.06378611236427
202 => 0.064588275605938
203 => 0.064437502162764
204 => 0.065329072845689
205 => 0.065066750133807
206 => 0.064686685681463
207 => 0.066100014856421
208 => 0.064479747007115
209 => 0.062179980781075
210 => 0.060918283545252
211 => 0.062579788243597
212 => 0.063594411184354
213 => 0.064265012406055
214 => 0.064467935930553
215 => 0.059367764958071
216 => 0.056619055672353
217 => 0.058380946810482
218 => 0.060530575598231
219 => 0.059128591605103
220 => 0.059183546723327
221 => 0.057184685984039
222 => 0.060707430420524
223 => 0.060194196187073
224 => 0.062856856298116
225 => 0.062221391093433
226 => 0.064392687050118
227 => 0.063820912056671
228 => 0.06619431808696
301 => 0.067141134009845
302 => 0.068730985304501
303 => 0.069900486388709
304 => 0.070587239794347
305 => 0.070546009695819
306 => 0.073267268828144
307 => 0.071662637391365
308 => 0.069646842124178
309 => 0.069610382747547
310 => 0.070654391680463
311 => 0.072842347993992
312 => 0.07340965323262
313 => 0.073726699467809
314 => 0.073241132122158
315 => 0.071499419702505
316 => 0.070747357110381
317 => 0.071388136228222
318 => 0.07060451842988
319 => 0.071957262594139
320 => 0.073814869262228
321 => 0.07343128083104
322 => 0.074713559445708
323 => 0.076040582912246
324 => 0.077938286069747
325 => 0.078434415946863
326 => 0.079254499767605
327 => 0.08009863540265
328 => 0.080369749018533
329 => 0.080887389032869
330 => 0.080884660814479
331 => 0.082444603838871
401 => 0.084165269302189
402 => 0.084814780681095
403 => 0.086308296282622
404 => 0.083750703154036
405 => 0.085690666921581
406 => 0.087440562800349
407 => 0.085354264793942
408 => 0.088229740550683
409 => 0.088341388758349
410 => 0.090027144139249
411 => 0.088318308109053
412 => 0.087303606729121
413 => 0.090233011592621
414 => 0.09165045833068
415 => 0.091223511837613
416 => 0.08797442794442
417 => 0.086083321758818
418 => 0.081133932103957
419 => 0.086996697947861
420 => 0.089852280171203
421 => 0.087967032676319
422 => 0.088917841854441
423 => 0.09410514842936
424 => 0.096080138919861
425 => 0.095669354704062
426 => 0.095738770474449
427 => 0.09680443949451
428 => 0.10153020280411
429 => 0.098698415886662
430 => 0.10086321088002
501 => 0.10201141033875
502 => 0.10307792198587
503 => 0.10045890645501
504 => 0.097051605730351
505 => 0.095972370562097
506 => 0.08777958196712
507 => 0.087353111741274
508 => 0.087113721080136
509 => 0.085604396824144
510 => 0.084418481397642
511 => 0.083475397420271
512 => 0.081000463434933
513 => 0.081835681002535
514 => 0.077891152788775
515 => 0.080414722154442
516 => 0.074119159881317
517 => 0.079362291216019
518 => 0.076508693206469
519 => 0.078424807522609
520 => 0.078418122380269
521 => 0.074889948419658
522 => 0.07285497131029
523 => 0.074151737926873
524 => 0.075541974677313
525 => 0.075767535912754
526 => 0.077570014148591
527 => 0.078073047080073
528 => 0.07654883381332
529 => 0.07398869834643
530 => 0.074583359424916
531 => 0.072842920522514
601 => 0.069792868291071
602 => 0.071983469052497
603 => 0.072731436466364
604 => 0.073061781487091
605 => 0.070062405418332
606 => 0.069119936337906
607 => 0.068618173707568
608 => 0.073601516560505
609 => 0.073874515331249
610 => 0.072477815021985
611 => 0.078791032860417
612 => 0.077362157227362
613 => 0.078958561392514
614 => 0.074529400164985
615 => 0.074698600088534
616 => 0.072601764182964
617 => 0.073775852179457
618 => 0.072946044626159
619 => 0.073680997471904
620 => 0.07412152517732
621 => 0.07621801701275
622 => 0.079386229785138
623 => 0.075904871044379
624 => 0.074387993187054
625 => 0.075329055678493
626 => 0.077835229104961
627 => 0.081632210134716
628 => 0.079384320943736
629 => 0.080381895995059
630 => 0.080599821764748
701 => 0.078942311496701
702 => 0.081693324902547
703 => 0.083167615335933
704 => 0.084679932259168
705 => 0.085993034669454
706 => 0.084075879623466
707 => 0.086127510336054
708 => 0.084474258143281
709 => 0.082991120016294
710 => 0.08299336932462
711 => 0.082062975112371
712 => 0.080260219088922
713 => 0.079927763218958
714 => 0.081657240639057
715 => 0.083044117747854
716 => 0.083158347589228
717 => 0.083926194016977
718 => 0.084380597623472
719 => 0.088834370698869
720 => 0.090625715073336
721 => 0.092816137066022
722 => 0.093669429877592
723 => 0.096237535318014
724 => 0.094163581603547
725 => 0.093714868671642
726 => 0.087485484894064
727 => 0.088505546138666
728 => 0.090138762612544
729 => 0.087512416032168
730 => 0.089178228435764
731 => 0.089507095090965
801 => 0.08742317378035
802 => 0.088536286193274
803 => 0.085580189639378
804 => 0.079450664611933
805 => 0.08170014881612
806 => 0.083356526358598
807 => 0.080992671375604
808 => 0.085229789938799
809 => 0.082754552746062
810 => 0.081970021388303
811 => 0.078909284856062
812 => 0.080353834680727
813 => 0.082307609002547
814 => 0.081100403622306
815 => 0.083605536049105
816 => 0.087153471659867
817 => 0.089681941859315
818 => 0.089876046405089
819 => 0.088250409461191
820 => 0.090855503038464
821 => 0.090874478301129
822 => 0.087935922103846
823 => 0.086136072794959
824 => 0.085727143245064
825 => 0.086748729436061
826 => 0.087989123667146
827 => 0.089944879652209
828 => 0.091126702033526
829 => 0.094208268013841
830 => 0.095042051412694
831 => 0.095958126580702
901 => 0.09718228551228
902 => 0.098652202177547
903 => 0.095436108196345
904 => 0.095563889605768
905 => 0.092569107420325
906 => 0.089368753159971
907 => 0.091797423113789
908 => 0.094972586005982
909 => 0.09424420013027
910 => 0.094162241839679
911 => 0.094300072951119
912 => 0.09375089378769
913 => 0.091266976785034
914 => 0.090019569216443
915 => 0.091629043227536
916 => 0.092484407034985
917 => 0.093811001704776
918 => 0.093647470910708
919 => 0.097064636314222
920 => 0.098392443460309
921 => 0.098052733572269
922 => 0.098115248367243
923 => 0.1005191797809
924 => 0.10319284591909
925 => 0.10569708707882
926 => 0.10824450874616
927 => 0.10517349249862
928 => 0.10361421984207
929 => 0.10522299120716
930 => 0.10436935447575
1001 => 0.10927460433955
1002 => 0.10961423319735
1003 => 0.11451912835575
1004 => 0.11917445792512
1005 => 0.11625052883149
1006 => 0.11900766227013
1007 => 0.1219897268764
1008 => 0.12774261332444
1009 => 0.12580524355773
1010 => 0.12432124867888
1011 => 0.12291888068898
1012 => 0.12583698585631
1013 => 0.12959108153622
1014 => 0.13039967778939
1015 => 0.13170991262707
1016 => 0.13033236090315
1017 => 0.13199147022227
1018 => 0.13784885516836
1019 => 0.13626613805136
1020 => 0.13401842531075
1021 => 0.13864226817645
1022 => 0.14031561893482
1023 => 0.15206007089762
1024 => 0.16688792663977
1025 => 0.16074909699757
1026 => 0.15693852733986
1027 => 0.15783410159734
1028 => 0.16324873255978
1029 => 0.16498774017312
1030 => 0.16026051800819
1031 => 0.16193025279354
1101 => 0.17113065562549
1102 => 0.17606637656057
1103 => 0.16936300457497
1104 => 0.1508686671263
1105 => 0.13381604337121
1106 => 0.13833916708072
1107 => 0.13782638522093
1108 => 0.14771107029023
1109 => 0.13622839077156
1110 => 0.13642172964568
1111 => 0.14651081953415
1112 => 0.1438192233227
1113 => 0.13945918217374
1114 => 0.13384787649671
1115 => 0.12347485896977
1116 => 0.11428718807317
1117 => 0.13230632649565
1118 => 0.13152930848119
1119 => 0.13040407124865
1120 => 0.1329081649463
1121 => 0.14506733314268
1122 => 0.14478702496037
1123 => 0.14300384731898
1124 => 0.14435637184377
1125 => 0.13922207808518
1126 => 0.14054530249247
1127 => 0.13381334214849
1128 => 0.13685646937546
1129 => 0.13944982748362
1130 => 0.13997048251916
1201 => 0.14114354489953
1202 => 0.13111985529555
1203 => 0.13562019764767
1204 => 0.13826372715449
1205 => 0.12632016467026
1206 => 0.13802764132566
1207 => 0.13094536516024
1208 => 0.12854153425748
1209 => 0.13177797588741
1210 => 0.13051673143668
1211 => 0.12943238752071
1212 => 0.1288273049842
1213 => 0.13120379052419
1214 => 0.13109292463324
1215 => 0.12720453303384
1216 => 0.12213228470355
1217 => 0.12383469773407
1218 => 0.12321619511988
1219 => 0.12097466185761
1220 => 0.12248518463262
1221 => 0.11583360678955
1222 => 0.10438991282948
1223 => 0.11194996758933
1224 => 0.11165891370483
1225 => 0.11151215113803
1226 => 0.11719332334549
1227 => 0.11664720972468
1228 => 0.11565600815536
1229 => 0.12095645766348
1230 => 0.11902172229191
1231 => 0.1249841208261
]
'min_raw' => 0.053522986508022
'max_raw' => 0.17606637656057
'avg_raw' => 0.11479468153429
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.053522'
'max' => '$0.176066'
'avg' => '$0.114794'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.02915794311379
'max_diff' => 0.11638877343874
'year' => 2029
]
4 => [
'items' => [
101 => 0.12891134212448
102 => 0.12791527177091
103 => 0.13160884238394
104 => 0.12387391789191
105 => 0.12644314953685
106 => 0.12697266461808
107 => 0.12089105093932
108 => 0.11673656066695
109 => 0.11645950353044
110 => 0.10925618992217
111 => 0.11310414190859
112 => 0.11649018041757
113 => 0.11486853073897
114 => 0.11435516489613
115 => 0.11697783965172
116 => 0.11718164394192
117 => 0.11253488452716
118 => 0.11350109295322
119 => 0.11753034270869
120 => 0.11339956619738
121 => 0.10537414219441
122 => 0.10338372608151
123 => 0.1031181678814
124 => 0.097720001521313
125 => 0.10351673520372
126 => 0.10098630560854
127 => 0.1089799023805
128 => 0.10441400277488
129 => 0.10421717596863
130 => 0.10391964338276
131 => 0.099273218601193
201 => 0.10029049033266
202 => 0.1036720565029
203 => 0.10487863740852
204 => 0.10475278113484
205 => 0.10365548498386
206 => 0.10415782154271
207 => 0.102539620461
208 => 0.1019681999791
209 => 0.10016463975665
210 => 0.097513904475872
211 => 0.097882505474569
212 => 0.092630705280735
213 => 0.089769245801001
214 => 0.088977231530441
215 => 0.087918116947293
216 => 0.089096861340804
217 => 0.092615827590639
218 => 0.088371207703001
219 => 0.081094104631112
220 => 0.081531470925312
221 => 0.082514103133164
222 => 0.080682974514596
223 => 0.078949964952097
224 => 0.080456676163179
225 => 0.077373271659265
226 => 0.082886717836322
227 => 0.082737594568487
228 => 0.08479266635407
301 => 0.086077744915913
302 => 0.083116054879989
303 => 0.082371197845216
304 => 0.082795502264088
305 => 0.075782695369913
306 => 0.084219570417083
307 => 0.08429253286284
308 => 0.083667784105485
309 => 0.088160159608809
310 => 0.097640473127882
311 => 0.094073597837279
312 => 0.092692395915381
313 => 0.090066730052201
314 => 0.093565273918276
315 => 0.093296640335148
316 => 0.09208177739598
317 => 0.091347024499769
318 => 0.092700829239792
319 => 0.091179273110586
320 => 0.090905959820214
321 => 0.089249978648354
322 => 0.088658868712343
323 => 0.088221234448485
324 => 0.087739442125031
325 => 0.088802155935403
326 => 0.086393906629457
327 => 0.083489794050076
328 => 0.083248348512034
329 => 0.083915000870677
330 => 0.083620056828409
331 => 0.083246936433433
401 => 0.082534547986132
402 => 0.082323197551588
403 => 0.0830099839312
404 => 0.082234642150752
405 => 0.083378701182856
406 => 0.083067580429797
407 => 0.081329685194097
408 => 0.079163624279188
409 => 0.079144341793579
410 => 0.078677667522514
411 => 0.078083287673366
412 => 0.077917944796902
413 => 0.080329785147541
414 => 0.085322222493058
415 => 0.084342087583233
416 => 0.085050335503848
417 => 0.088534214294541
418 => 0.089641634598213
419 => 0.088855613897354
420 => 0.087779660282374
421 => 0.087826996780876
422 => 0.091503855996573
423 => 0.091733177195729
424 => 0.092312597884172
425 => 0.09305731721309
426 => 0.088982442819326
427 => 0.087635070563377
428 => 0.086996610839142
429 => 0.085030402003505
430 => 0.087150789662733
501 => 0.085915330577753
502 => 0.086082036217609
503 => 0.085973468950957
504 => 0.086032754019836
505 => 0.082885176715751
506 => 0.084031988453567
507 => 0.082125191511654
508 => 0.079572204454434
509 => 0.079563645946626
510 => 0.080188485912066
511 => 0.079816806650632
512 => 0.07881662731486
513 => 0.078958698068793
514 => 0.077714008770467
515 => 0.079109825885437
516 => 0.079149852925821
517 => 0.078612387305885
518 => 0.08076283615714
519 => 0.081643876806099
520 => 0.081290105421428
521 => 0.081619055262668
522 => 0.08438281661378
523 => 0.084833430305373
524 => 0.085033563141309
525 => 0.084765411653674
526 => 0.081669571746658
527 => 0.081806885411062
528 => 0.080799368850714
529 => 0.079948123526699
530 => 0.079982168875466
531 => 0.080419819626156
601 => 0.082331066122295
602 => 0.086353171699286
603 => 0.086505807665812
604 => 0.086690806909947
605 => 0.085938322010881
606 => 0.085711365365012
607 => 0.086010779763394
608 => 0.087521271145847
609 => 0.091406665075927
610 => 0.090033307364302
611 => 0.088916746167164
612 => 0.089896271359791
613 => 0.089745481134158
614 => 0.088472659879898
615 => 0.088436936026554
616 => 0.085993985094059
617 => 0.085090881757617
618 => 0.084336181013573
619 => 0.083512067503038
620 => 0.083023505389458
621 => 0.083774158843427
622 => 0.08394584216982
623 => 0.082304525273541
624 => 0.082080819845453
625 => 0.08342115465324
626 => 0.082831323277051
627 => 0.083437979474575
628 => 0.083578728916202
629 => 0.083556065014365
630 => 0.082940213315922
701 => 0.083332738823548
702 => 0.082404298980527
703 => 0.081394760098398
704 => 0.080750737188094
705 => 0.080188741781611
706 => 0.080500569496492
707 => 0.079388960630432
708 => 0.079033334581912
709 => 0.083199760013668
710 => 0.086277543276727
711 => 0.086232791089146
712 => 0.085960373656576
713 => 0.085555616609635
714 => 0.087491660646787
715 => 0.086817181616666
716 => 0.087307921465688
717 => 0.087432835353551
718 => 0.087810912070455
719 => 0.087946041999957
720 => 0.087537585499233
721 => 0.086166755594043
722 => 0.082750777804907
723 => 0.081160630922809
724 => 0.080635855965725
725 => 0.080654930538726
726 => 0.080128768662729
727 => 0.080283746916131
728 => 0.080074873550816
729 => 0.079679317928802
730 => 0.08047614505148
731 => 0.08056797195441
801 => 0.080381982982602
802 => 0.080425790118362
803 => 0.078885880868721
804 => 0.079002956824464
805 => 0.078351063025593
806 => 0.078228840797002
807 => 0.076580910040343
808 => 0.073661361833539
809 => 0.07527907494751
810 => 0.07332510499072
811 => 0.072585106960607
812 => 0.076088142541856
813 => 0.075736534928582
814 => 0.075134735534811
815 => 0.07424454880544
816 => 0.073914369888337
817 => 0.07190830730996
818 => 0.071789778430902
819 => 0.072784037212991
820 => 0.072325220995413
821 => 0.071680869258643
822 => 0.06934709258495
823 => 0.066723154916817
824 => 0.066802355101534
825 => 0.067636980853671
826 => 0.070063767792628
827 => 0.069115580151737
828 => 0.068427659139071
829 => 0.068298832212229
830 => 0.069911370919103
831 => 0.072193451026634
901 => 0.073264151954424
902 => 0.072203119852655
903 => 0.070984263304169
904 => 0.071058449454638
905 => 0.071551976677727
906 => 0.071603839410774
907 => 0.070810489098187
908 => 0.071033812564105
909 => 0.070694563798251
910 => 0.06861259474841
911 => 0.068574938530294
912 => 0.068063989749177
913 => 0.068048518423148
914 => 0.067179267084321
915 => 0.067057652813169
916 => 0.065331701520143
917 => 0.066467727887875
918 => 0.065705741044462
919 => 0.064557247136913
920 => 0.064359246354358
921 => 0.064353294211742
922 => 0.065532540656256
923 => 0.06645394770658
924 => 0.065718996131838
925 => 0.065551661904707
926 => 0.067338353668429
927 => 0.067110980855438
928 => 0.066914077465786
929 => 0.071989115783079
930 => 0.067971826944763
1001 => 0.066220059712427
1002 => 0.064051915110836
1003 => 0.064757873925848
1004 => 0.064906629820864
1005 => 0.059692632891477
1006 => 0.057577314986586
1007 => 0.056851417595701
1008 => 0.056433653384565
1009 => 0.056624033781532
1010 => 0.054719999565088
1011 => 0.055999542048358
1012 => 0.054350809360922
1013 => 0.054074393960434
1014 => 0.057022532244355
1015 => 0.057432748463789
1016 => 0.055682638627495
1017 => 0.056806492459442
1018 => 0.056398967437241
1019 => 0.054379072150699
1020 => 0.054301927008097
1021 => 0.053288414556062
1022 => 0.051702463823311
1023 => 0.050977641781704
1024 => 0.050600148169241
1025 => 0.050755909390947
1026 => 0.050677151750881
1027 => 0.050163204875726
1028 => 0.05070661058416
1029 => 0.049318433549854
1030 => 0.04876565026949
1031 => 0.048515970886225
1101 => 0.047283883867789
1102 => 0.049244682225705
1103 => 0.049630984203701
1104 => 0.050018047315928
1105 => 0.053387167448659
1106 => 0.053218855727862
1107 => 0.054740311712731
1108 => 0.054681190730937
1109 => 0.054247246838099
1110 => 0.052416508934524
1111 => 0.053146208433124
1112 => 0.050900306796914
1113 => 0.052583089009229
1114 => 0.051815137482194
1115 => 0.052323443825449
1116 => 0.051409463188141
1117 => 0.051915297810163
1118 => 0.049722590733542
1119 => 0.047675071717615
1120 => 0.04849905314043
1121 => 0.049394815180736
1122 => 0.051337055520042
1123 => 0.050180273197086
1124 => 0.050596295863204
1125 => 0.049202689573064
1126 => 0.046327281732548
1127 => 0.046343556228657
1128 => 0.045901237376559
1129 => 0.045519009308736
1130 => 0.050313143562281
1201 => 0.049716917183806
1202 => 0.048766908481884
1203 => 0.050038532881251
1204 => 0.050374770555837
1205 => 0.050384342769738
1206 => 0.05131208710614
1207 => 0.051807224424785
1208 => 0.051894494523244
1209 => 0.053354320281815
1210 => 0.053843634620521
1211 => 0.055859051131293
1212 => 0.05176521548263
1213 => 0.051680905631469
1214 => 0.050056427244326
1215 => 0.049026157369214
1216 => 0.05012697070411
1217 => 0.051102141042822
1218 => 0.050086728505027
1219 => 0.050219319945934
1220 => 0.048856211576197
1221 => 0.049343458678168
1222 => 0.049763141521658
1223 => 0.0495314173233
1224 => 0.04918451498278
1225 => 0.051022188195744
1226 => 0.050918499471169
1227 => 0.052629783015005
1228 => 0.053963850912486
1229 => 0.056354739077933
1230 => 0.05385972263747
1231 => 0.053768794321588
]
'min_raw' => 0.045519009308736
'max_raw' => 0.13160884238394
'avg_raw' => 0.088563925846339
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.045519'
'max' => '$0.1316088'
'avg' => '$0.088563'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0080039771992853
'max_diff' => -0.044457534176624
'year' => 2030
]
5 => [
'items' => [
101 => 0.054657633194701
102 => 0.05384349854392
103 => 0.054358003540241
104 => 0.05627184436881
105 => 0.056312280809727
106 => 0.055634918324959
107 => 0.055593700756202
108 => 0.055723795630935
109 => 0.056485765375687
110 => 0.056219509733906
111 => 0.056527627503344
112 => 0.056912933492092
113 => 0.058506722427911
114 => 0.05889097954459
115 => 0.057957433965533
116 => 0.058041722678855
117 => 0.057692551005889
118 => 0.057355255544911
119 => 0.058113446483142
120 => 0.059499055325039
121 => 0.059490435524347
122 => 0.05981186984328
123 => 0.060012120761069
124 => 0.059152497229285
125 => 0.058592913919327
126 => 0.058807493767576
127 => 0.059150611617868
128 => 0.058696225273154
129 => 0.055891542261349
130 => 0.056742303923286
131 => 0.05660069558262
201 => 0.056399028085349
202 => 0.057254475515172
203 => 0.057171965523687
204 => 0.054700470942152
205 => 0.054858688006517
206 => 0.054710092645867
207 => 0.055190234655878
208 => 0.053817569299688
209 => 0.05423979191821
210 => 0.054504605986455
211 => 0.05466058350705
212 => 0.055224081266223
213 => 0.055157961308051
214 => 0.055219971156786
215 => 0.056055489575747
216 => 0.060281255023556
217 => 0.060511254113254
218 => 0.059378654477365
219 => 0.059831105692362
220 => 0.05896249829977
221 => 0.059545600261581
222 => 0.059944543814668
223 => 0.058141794610702
224 => 0.058035047502588
225 => 0.057162855058306
226 => 0.057631521874358
227 => 0.056885839271683
228 => 0.057068803699509
301 => 0.056557219208754
302 => 0.057477969436657
303 => 0.058507511261572
304 => 0.058767614184385
305 => 0.058083395375814
306 => 0.057587975866193
307 => 0.056718182408629
308 => 0.058164668313169
309 => 0.058587664872516
310 => 0.058162446492318
311 => 0.058063914102421
312 => 0.05787719540161
313 => 0.058103527357474
314 => 0.05858536114241
315 => 0.058358137227507
316 => 0.058508222626471
317 => 0.057936251853013
318 => 0.059152781800443
319 => 0.061084924130838
320 => 0.061091136284367
321 => 0.060863911144643
322 => 0.060770935513101
323 => 0.061004082295633
324 => 0.061130554860975
325 => 0.061884508803875
326 => 0.062693531423457
327 => 0.066468886984823
328 => 0.065408782250521
329 => 0.068758502301472
330 => 0.071407695955064
331 => 0.072202073296578
401 => 0.071471283520727
402 => 0.068971291174031
403 => 0.068848629622659
404 => 0.072584673658167
405 => 0.071529070096479
406 => 0.071403509411718
407 => 0.070067755863995
408 => 0.070857351646995
409 => 0.070684655466582
410 => 0.070412046097213
411 => 0.071918539847457
412 => 0.07473856166229
413 => 0.074299034816451
414 => 0.073970948415096
415 => 0.072533369308874
416 => 0.073399113025738
417 => 0.073090838270391
418 => 0.074415382255353
419 => 0.073630751740903
420 => 0.071521072861284
421 => 0.071857046176456
422 => 0.071806264485752
423 => 0.072851348082006
424 => 0.07253763992698
425 => 0.071745007933647
426 => 0.074728923134302
427 => 0.07453516427858
428 => 0.074809870036553
429 => 0.07493080400677
430 => 0.076747060606925
501 => 0.07749112282228
502 => 0.077660037971808
503 => 0.078366839528558
504 => 0.077642452105195
505 => 0.080540518278128
506 => 0.08246756317628
507 => 0.084705924990306
508 => 0.087976773215536
509 => 0.08920664240526
510 => 0.088984477544268
511 => 0.091464397338962
512 => 0.095920758084508
513 => 0.089885235463173
514 => 0.096240655438833
515 => 0.094228602851391
516 => 0.089458062361847
517 => 0.089150895795298
518 => 0.092381561201931
519 => 0.099546866133821
520 => 0.097752038516599
521 => 0.099549801828824
522 => 0.097452615431293
523 => 0.09734847245018
524 => 0.099447946166503
525 => 0.10435348094105
526 => 0.10202304525088
527 => 0.098681794242757
528 => 0.10114892199153
529 => 0.099011667613649
530 => 0.094195835320442
531 => 0.097750666045746
601 => 0.095373651975485
602 => 0.096067391050205
603 => 0.10106352107173
604 => 0.10046237348942
605 => 0.1012403141257
606 => 0.099867269264922
607 => 0.098584628855654
608 => 0.096190485281628
609 => 0.09548169739921
610 => 0.095677580870394
611 => 0.09548160032909
612 => 0.094142099002738
613 => 0.093852833818847
614 => 0.093370712506031
615 => 0.093520142060618
616 => 0.092613612942958
617 => 0.094324420686455
618 => 0.094641961679235
619 => 0.095886944885426
620 => 0.096016203171966
621 => 0.099483463679982
622 => 0.097573754857112
623 => 0.09885495241182
624 => 0.098740350043428
625 => 0.089561454439799
626 => 0.090826225267898
627 => 0.092793811769469
628 => 0.091907416717511
629 => 0.090654261498542
630 => 0.089642271469293
701 => 0.088109003093687
702 => 0.090267048888542
703 => 0.09310464962619
704 => 0.096088169409427
705 => 0.099672672941026
706 => 0.098872653480994
707 => 0.096021159609232
708 => 0.096149075541302
709 => 0.096939801500293
710 => 0.095915739538371
711 => 0.095613723673736
712 => 0.096898309158261
713 => 0.096907155392497
714 => 0.095728848343284
715 => 0.094419375685997
716 => 0.09441388894775
717 => 0.094180880936391
718 => 0.097494067038883
719 => 0.099315984394356
720 => 0.099524864282995
721 => 0.099301925113583
722 => 0.09938772555175
723 => 0.09832759198581
724 => 0.10075074294471
725 => 0.10297446588938
726 => 0.1023784606373
727 => 0.10148496403728
728 => 0.10077325095875
729 => 0.10221080365456
730 => 0.10214679169593
731 => 0.10295504360939
801 => 0.10291837663391
802 => 0.10264659191531
803 => 0.10237847034359
804 => 0.10344154206837
805 => 0.10313539448404
806 => 0.10282877136795
807 => 0.10221379176699
808 => 0.10229737770849
809 => 0.10140403538326
810 => 0.10099073434705
811 => 0.094775678410236
812 => 0.093114812381108
813 => 0.093637354643917
814 => 0.093809389124638
815 => 0.093086578100304
816 => 0.094122903434281
817 => 0.093961393228721
818 => 0.094589734958246
819 => 0.094197174325065
820 => 0.094213285150382
821 => 0.095367722269815
822 => 0.095702860276913
823 => 0.095532406381607
824 => 0.095651786447062
825 => 0.09840284966828
826 => 0.098011736452272
827 => 0.097803965351444
828 => 0.097861519366306
829 => 0.098564475002788
830 => 0.098761264201048
831 => 0.097927454539889
901 => 0.098320683996288
902 => 0.099995005113387
903 => 0.100580922746
904 => 0.1024508905729
905 => 0.10165649500401
906 => 0.10311464245134
907 => 0.10759649058536
908 => 0.11117690099511
909 => 0.10788420761558
910 => 0.11445917537058
911 => 0.11957873089095
912 => 0.11938223382301
913 => 0.11848952090058
914 => 0.11266104305107
915 => 0.10729759083623
916 => 0.11178434635815
917 => 0.11179578402069
918 => 0.11141036774225
919 => 0.10901658033804
920 => 0.11132706912942
921 => 0.11151046733921
922 => 0.11140781311125
923 => 0.10957250192097
924 => 0.10677032095563
925 => 0.10731786040879
926 => 0.10821474120255
927 => 0.10651675875102
928 => 0.10597415047336
929 => 0.10698296249697
930 => 0.11023356503135
1001 => 0.10961905745168
1002 => 0.10960301017536
1003 => 0.11223213419294
1004 => 0.11035024879682
1005 => 0.10732476663475
1006 => 0.10656079248762
1007 => 0.10384919893997
1008 => 0.1057221062617
1009 => 0.10578950886194
1010 => 0.10476373666247
1011 => 0.10740800239539
1012 => 0.10738363502114
1013 => 0.10989397178753
1014 => 0.11469279284544
1015 => 0.11327354532297
1016 => 0.11162311486804
1017 => 0.11180256241996
1018 => 0.11377065915027
1019 => 0.11258070293985
1020 => 0.11300861948978
1021 => 0.11377001144732
1022 => 0.1142293781196
1023 => 0.11173646662507
1024 => 0.11115524970596
1025 => 0.10996628386886
1026 => 0.10965610487506
1027 => 0.11062449274079
1028 => 0.11036935675182
1029 => 0.10578384393438
1030 => 0.10530463233141
1031 => 0.10531932906711
1101 => 0.10411432870616
1102 => 0.10227641392249
1103 => 0.10710634423779
1104 => 0.10671843323864
1105 => 0.10629020951751
1106 => 0.10634266447994
1107 => 0.10843917352828
1108 => 0.107223092404
1109 => 0.11045624338468
1110 => 0.10979160474047
1111 => 0.10910992062294
1112 => 0.10901569111329
1113 => 0.1087533008866
1114 => 0.10785346716817
1115 => 0.10676686388154
1116 => 0.10604939427174
1117 => 0.097824960465912
1118 => 0.099351367540944
1119 => 0.10110735974439
1120 => 0.10171352121632
1121 => 0.10067664007348
1122 => 0.10789440955555
1123 => 0.10921316559209
1124 => 0.1052185675371
1125 => 0.10447134133938
1126 => 0.10794339758068
1127 => 0.10584932322556
1128 => 0.10679228477945
1129 => 0.10475411767234
1130 => 0.10889551588057
1201 => 0.10886396536496
1202 => 0.10725286792424
1203 => 0.10861455644882
1204 => 0.10837792955817
1205 => 0.10655900451555
1206 => 0.10895317904878
1207 => 0.10895436652948
1208 => 0.10740372027106
1209 => 0.10559290492134
1210 => 0.10526917390636
1211 => 0.10502528607372
1212 => 0.10673230332321
1213 => 0.10826280965141
1214 => 0.11111070248347
1215 => 0.11182673040572
1216 => 0.11462143505493
1217 => 0.11295732450802
1218 => 0.11369500315963
1219 => 0.11449585768696
1220 => 0.11487981679781
1221 => 0.11425417603106
1222 => 0.1185955026976
1223 => 0.11896204368307
1224 => 0.11908494170493
1225 => 0.11762107077917
1226 => 0.1189213307845
1227 => 0.11831298218809
1228 => 0.11989573623184
1229 => 0.12014393227552
1230 => 0.11993371905636
1231 => 0.12001250039813
]
'min_raw' => 0.053817569299688
'max_raw' => 0.12014393227552
'avg_raw' => 0.086980750787604
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.053817'
'max' => '$0.120143'
'avg' => '$0.08698'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0082985599909518
'max_diff' => -0.011464910108421
'year' => 2031
]
6 => [
'items' => [
101 => 0.11630794395074
102 => 0.11611584315585
103 => 0.11349653518668
104 => 0.11456392254506
105 => 0.11256849303977
106 => 0.1132012642911
107 => 0.11348018382942
108 => 0.11333449209115
109 => 0.11462427102481
110 => 0.11352769544677
111 => 0.1106336522026
112 => 0.10773882047829
113 => 0.10770247822407
114 => 0.10694032012908
115 => 0.10638941942263
116 => 0.10649554244294
117 => 0.10686953380838
118 => 0.10636768236459
119 => 0.10647477781463
120 => 0.10825327585867
121 => 0.10860994095773
122 => 0.10739785359306
123 => 0.10253114792055
124 => 0.10133684614131
125 => 0.1021952865762
126 => 0.10178500733897
127 => 0.082148444916657
128 => 0.086761763984532
129 => 0.084020686447913
130 => 0.085283901087701
131 => 0.0824859707214
201 => 0.083821289744294
202 => 0.083574705078808
203 => 0.090992785621915
204 => 0.09087696249747
205 => 0.090932400897918
206 => 0.088286181600542
207 => 0.092501680793946
208 => 0.094578387281065
209 => 0.094194044180053
210 => 0.094290775058231
211 => 0.092628618086405
212 => 0.090948494210701
213 => 0.089084978263334
214 => 0.092547160556009
215 => 0.092162224986486
216 => 0.093045128687525
217 => 0.095290601386227
218 => 0.095621255770831
219 => 0.096065658616907
220 => 0.095906371831337
221 => 0.099701229294628
222 => 0.099241647016548
223 => 0.10034910807588
224 => 0.098070976653565
225 => 0.095493054707001
226 => 0.095983033390425
227 => 0.095935844503052
228 => 0.095335075805904
229 => 0.094792728688303
301 => 0.093889873542849
302 => 0.096746640820484
303 => 0.096630661286082
304 => 0.098508235136595
305 => 0.098176355720737
306 => 0.095959983756972
307 => 0.096039141915253
308 => 0.096571518571806
309 => 0.098414080258706
310 => 0.098961078018544
311 => 0.098707686862095
312 => 0.099307444934361
313 => 0.099781469260573
314 => 0.099366975091526
315 => 0.10523533843439
316 => 0.10279838483357
317 => 0.10398613906239
318 => 0.10426941144731
319 => 0.10354381518992
320 => 0.10370117103649
321 => 0.10393952226715
322 => 0.10538674426577
323 => 0.10918467354719
324 => 0.11086675057256
325 => 0.11592736229558
326 => 0.11072707749124
327 => 0.11041851411187
328 => 0.11133008309902
329 => 0.11430119790059
330 => 0.11670900738464
331 => 0.11750781670036
401 => 0.11761339253834
402 => 0.11911201191847
403 => 0.11997099259956
404 => 0.11893004010812
405 => 0.11804794186389
406 => 0.11488837544312
407 => 0.11525410385953
408 => 0.11777360997323
409 => 0.121332560757
410 => 0.1243865107752
411 => 0.12331712391973
412 => 0.13147579075748
413 => 0.13228468924928
414 => 0.13217292563253
415 => 0.13401571677708
416 => 0.13035815163304
417 => 0.12879447167198
418 => 0.11823866151653
419 => 0.12120441360431
420 => 0.12551530843641
421 => 0.12494474534036
422 => 0.12181405828274
423 => 0.12438413586833
424 => 0.12353438784478
425 => 0.12286415632252
426 => 0.12593461685674
427 => 0.1225585193718
428 => 0.12548162928142
429 => 0.12173271058663
430 => 0.12332200878881
501 => 0.12241984626355
502 => 0.12300365598227
503 => 0.1195907162958
504 => 0.12143225570619
505 => 0.11951410220191
506 => 0.1195131927474
507 => 0.11947084940248
508 => 0.12172754849387
509 => 0.12180113937022
510 => 0.120133435332
511 => 0.11989309312566
512 => 0.12078176423095
513 => 0.11974136310999
514 => 0.12022816024628
515 => 0.11975610769934
516 => 0.11964983872807
517 => 0.11880306948486
518 => 0.11843825801248
519 => 0.11858130999083
520 => 0.11809299984036
521 => 0.11779877531175
522 => 0.11941232073821
523 => 0.11855026850709
524 => 0.11928019887022
525 => 0.11844835109688
526 => 0.11556480429563
527 => 0.11390644603727
528 => 0.10845969343465
529 => 0.11000438571608
530 => 0.11102851829676
531 => 0.11069004248496
601 => 0.11141721950147
602 => 0.1114618622644
603 => 0.11122544960364
604 => 0.11095171402881
605 => 0.11081847468952
606 => 0.1118115315637
607 => 0.11238803450391
608 => 0.11113130370236
609 => 0.11083686925909
610 => 0.11210749348547
611 => 0.11288257352954
612 => 0.11860532909514
613 => 0.11818136887858
614 => 0.11924542582415
615 => 0.11912562934136
616 => 0.12024093053788
617 => 0.12206397663273
618 => 0.11835721419019
619 => 0.11900057998002
620 => 0.11884284154584
621 => 0.12056498840897
622 => 0.12057036476349
623 => 0.11953785169143
624 => 0.12009759377841
625 => 0.11978516110118
626 => 0.12034976917674
627 => 0.11817570663142
628 => 0.12082348013607
629 => 0.12232459709446
630 => 0.12234544010488
701 => 0.12305695762955
702 => 0.12377990064294
703 => 0.12516752680206
704 => 0.1237412005025
705 => 0.12117537833964
706 => 0.12136062241224
707 => 0.11985628181696
708 => 0.11988157005415
709 => 0.11974657946216
710 => 0.12015169639033
711 => 0.11826460701545
712 => 0.11870750311987
713 => 0.11808744598008
714 => 0.11899923209689
715 => 0.11801830095885
716 => 0.11884276547959
717 => 0.11919857703531
718 => 0.12051152933599
719 => 0.11782437683651
720 => 0.11234509098583
721 => 0.11349690330156
722 => 0.11179328241369
723 => 0.111950959013
724 => 0.11226949083766
725 => 0.11123702497681
726 => 0.11143398692632
727 => 0.11142695005949
728 => 0.11136631014271
729 => 0.11109772589658
730 => 0.11070822560192
731 => 0.11225987489399
801 => 0.11252353034458
802 => 0.11310960375125
803 => 0.11485336067212
804 => 0.1146791182351
805 => 0.11496331487912
806 => 0.11434291520092
807 => 0.11197973757472
808 => 0.11210806948942
809 => 0.11050776845681
810 => 0.11306868045588
811 => 0.11246222269212
812 => 0.11207123542658
813 => 0.1119645509287
814 => 0.11371263028569
815 => 0.11423568302709
816 => 0.11390975165941
817 => 0.11324125691537
818 => 0.11452496444666
819 => 0.11486843042676
820 => 0.11494531979316
821 => 0.11721980341209
822 => 0.1150724381611
823 => 0.11558933031999
824 => 0.11962197539027
825 => 0.1159649227785
826 => 0.11790214510896
827 => 0.1178073281567
828 => 0.11879834554893
829 => 0.11772603580491
830 => 0.11773932836934
831 => 0.11861928467631
901 => 0.11738354474413
902 => 0.11707755815867
903 => 0.11665483988238
904 => 0.11757782977382
905 => 0.1181311204705
906 => 0.1225902371385
907 => 0.12547102986646
908 => 0.12534596705659
909 => 0.12648880703104
910 => 0.12597394715533
911 => 0.12431132880351
912 => 0.12714921559536
913 => 0.12625118947219
914 => 0.12632522165469
915 => 0.12632246617316
916 => 0.12691957503826
917 => 0.12649646868311
918 => 0.12566248262614
919 => 0.12621612149125
920 => 0.12786023099114
921 => 0.13296359732621
922 => 0.13581950873793
923 => 0.13279166787324
924 => 0.1348802319573
925 => 0.13362783773834
926 => 0.13340024045325
927 => 0.13471201304172
928 => 0.13602608171444
929 => 0.13594238122087
930 => 0.13498843484264
1001 => 0.13444957473907
1002 => 0.13853000397467
1003 => 0.14153639472715
1004 => 0.14133137903293
1005 => 0.14223625163255
1006 => 0.14489298557167
1007 => 0.14513588402779
1008 => 0.14510528440527
1009 => 0.14450323523795
1010 => 0.14711913482151
1011 => 0.14930136427649
1012 => 0.14436387825059
1013 => 0.14624400829281
1014 => 0.14708805924277
1015 => 0.14832737645595
1016 => 0.15041831232826
1017 => 0.15268962327894
1018 => 0.15301081155102
1019 => 0.15278291310171
1020 => 0.15128492247362
1021 => 0.15377021801823
1022 => 0.15522604586091
1023 => 0.15609295802519
1024 => 0.1582913030334
1025 => 0.14709327181409
1026 => 0.1391667487388
1027 => 0.13792890770022
1028 => 0.14044610612788
1029 => 0.14110987127897
1030 => 0.14084230837886
1031 => 0.13192028600967
1101 => 0.1378819350989
1102 => 0.14429616824921
1103 => 0.1445425650673
1104 => 0.14775366429764
1105 => 0.14879932983445
1106 => 0.15138468560327
1107 => 0.15122297089601
1108 => 0.15185246388372
1109 => 0.15170775434715
1110 => 0.156496581498
1111 => 0.16177936899311
1112 => 0.16159644286039
1113 => 0.16083697965486
1114 => 0.16196491202279
1115 => 0.16741731485565
1116 => 0.16691534497577
1117 => 0.16740296595638
1118 => 0.17383165618028
1119 => 0.18218986794187
1120 => 0.17830663942787
1121 => 0.18673212793435
1122 => 0.19203552633322
1123 => 0.20120720548244
1124 => 0.20005886608149
1125 => 0.20362933346939
1126 => 0.19800309888811
1127 => 0.18508412703989
1128 => 0.18303965029308
1129 => 0.1871327445146
1130 => 0.19719521725993
1201 => 0.18681584143855
1202 => 0.18891557564909
1203 => 0.1883108520552
1204 => 0.18827862890479
1205 => 0.18950845549486
1206 => 0.18772452788252
1207 => 0.18045648586738
1208 => 0.18378738669208
1209 => 0.18250116592067
1210 => 0.18392832376066
1211 => 0.19163010601843
1212 => 0.18822496449471
1213 => 0.18463792451071
1214 => 0.18913686867854
1215 => 0.19486557060914
1216 => 0.19450707873779
1217 => 0.19381145466939
1218 => 0.19773265112125
1219 => 0.20420931885695
1220 => 0.20595993612055
1221 => 0.20725220599475
1222 => 0.20743038817732
1223 => 0.20926577539743
1224 => 0.19939643573775
1225 => 0.21505933124029
1226 => 0.21776388061482
1227 => 0.21725553742449
1228 => 0.22026153022945
1229 => 0.21937709089155
1230 => 0.21809567705522
1231 => 0.22286081504409
]
'min_raw' => 0.082148444916657
'max_raw' => 0.22286081504409
'avg_raw' => 0.15250462998037
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.082148'
'max' => '$0.22286'
'avg' => '$0.1525046'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.028330875616969
'max_diff' => 0.10271688276857
'year' => 2032
]
7 => [
'items' => [
101 => 0.21739796886666
102 => 0.20964414647102
103 => 0.20539024615155
104 => 0.21099212524458
105 => 0.21441299732805
106 => 0.2166739761669
107 => 0.21735814699741
108 => 0.20016256448112
109 => 0.19089509921557
110 => 0.19683543819908
111 => 0.20408306173927
112 => 0.19935617482304
113 => 0.19954145984098
114 => 0.19280216130247
115 => 0.20467934012024
116 => 0.20294893506929
117 => 0.21192627953466
118 => 0.20978376423031
119 => 0.21710444014332
120 => 0.21517666083285
121 => 0.22317876496989
122 => 0.22637102095847
123 => 0.23173131559828
124 => 0.23567437015564
125 => 0.23798980721034
126 => 0.23785079705456
127 => 0.24702571221144
128 => 0.24161558529055
129 => 0.2348191908089
130 => 0.23469626547508
131 => 0.23821621448278
201 => 0.24559306195207
202 => 0.2475057711721
203 => 0.2485747146895
204 => 0.2469375904824
205 => 0.24106528545707
206 => 0.23852965392039
207 => 0.24069008545396
208 => 0.2380480633364
209 => 0.24260893473178
210 => 0.2488719853072
211 => 0.24757869013016
212 => 0.25190198200535
213 => 0.2563761342726
214 => 0.26277437296152
215 => 0.26444710948089
216 => 0.26721207933895
217 => 0.27005814156817
218 => 0.27097222005267
219 => 0.27271747950148
220 => 0.2727082811227
221 => 0.27796773794118
222 => 0.28376908168378
223 => 0.2859589546452
224 => 0.29099444676968
225 => 0.2823713429712
226 => 0.28891206625742
227 => 0.29481196238652
228 => 0.28777786299724
301 => 0.2974727302704
302 => 0.29784915999757
303 => 0.30353280195996
304 => 0.29777134197703
305 => 0.2943502054304
306 => 0.30422689845221
307 => 0.30900591909255
308 => 0.30756643918272
309 => 0.29661192599303
310 => 0.29023592945545
311 => 0.27354871667874
312 => 0.2933154410467
313 => 0.30294323588308
314 => 0.2965869923303
315 => 0.29979271185772
316 => 0.31728207814124
317 => 0.32394089646939
318 => 0.32255590880579
319 => 0.3227899489221
320 => 0.32638292642587
321 => 0.34231616736645
322 => 0.33276860006522
323 => 0.34006735752649
324 => 0.34393859216632
325 => 0.34753441064604
326 => 0.33870421692994
327 => 0.32721626464661
328 => 0.32357754792705
329 => 0.29595498917685
330 => 0.29451711503521
331 => 0.29370999270746
401 => 0.28862120060073
402 => 0.2846228039423
403 => 0.28144313046858
404 => 0.27309871774264
405 => 0.27591471208484
406 => 0.26261545981398
407 => 0.27112385012031
408 => 0.24989792237435
409 => 0.26757550573304
410 => 0.25795440081199
411 => 0.26441471400769
412 => 0.26439217458354
413 => 0.2524966897461
414 => 0.2456356223443
415 => 0.25000776152947
416 => 0.25469504179681
417 => 0.25545553725028
418 => 0.26153271846741
419 => 0.26322872911654
420 => 0.25808973767052
421 => 0.24945806220094
422 => 0.25146300354497
423 => 0.24559499227196
424 => 0.2353115282258
425 => 0.24269729163581
426 => 0.24521911599308
427 => 0.24633289729441
428 => 0.23622029146885
429 => 0.2330426911631
430 => 0.23135096342297
501 => 0.24815265177753
502 => 0.24907308619326
503 => 0.24436401358607
504 => 0.26564946830314
505 => 0.26083191434538
506 => 0.26621430244557
507 => 0.2512810761328
508 => 0.2518515454882
509 => 0.24478191683617
510 => 0.24874043648855
511 => 0.24594268238729
512 => 0.24842062721949
513 => 0.24990589713496
514 => 0.2569743657305
515 => 0.26765621629016
516 => 0.25591857223498
517 => 0.25080431263398
518 => 0.25397717052676
519 => 0.26242690920953
520 => 0.2752286958481
521 => 0.2676497804981
522 => 0.2710131744321
523 => 0.2717479263797
524 => 0.26615951478731
525 => 0.27543474855474
526 => 0.28040542168257
527 => 0.28550430377585
528 => 0.28993152023002
529 => 0.28346769814098
530 => 0.29038491432875
531 => 0.28481085913444
601 => 0.2798103553899
602 => 0.27981793908996
603 => 0.27668105004531
604 => 0.27060293224785
605 => 0.26948203407094
606 => 0.27531308794106
607 => 0.27998904094204
608 => 0.2803741748275
609 => 0.28296302266799
610 => 0.28449507615273
611 => 0.29951128302894
612 => 0.30555092565512
613 => 0.31293608633384
614 => 0.31581302262305
615 => 0.32447156941483
616 => 0.31747908966768
617 => 0.31596622268963
618 => 0.29496342036184
619 => 0.29840262806642
620 => 0.30390913143563
621 => 0.29505422057423
622 => 0.30067062339626
623 => 0.30177942028501
624 => 0.29475333409153
625 => 0.29850627030673
626 => 0.2885395843872
627 => 0.2678734628074
628 => 0.27545775585578
629 => 0.28104234838483
630 => 0.27307244627059
701 => 0.28735818733257
702 => 0.27901275232171
703 => 0.2763676500748
704 => 0.26604816316255
705 => 0.27091856375165
706 => 0.27750585028584
707 => 0.27343567306197
708 => 0.28188190194168
709 => 0.29384401456232
710 => 0.30236892837191
711 => 0.30302336539993
712 => 0.29754241694523
713 => 0.30632567182284
714 => 0.30638964824572
715 => 0.29648210086314
716 => 0.29041378325676
717 => 0.28903504872874
718 => 0.29247939789656
719 => 0.29666147364822
720 => 0.30325544149838
721 => 0.3072400381692
722 => 0.3176297530199
723 => 0.32044091196203
724 => 0.32352952334929
725 => 0.32765686065515
726 => 0.3326127873184
727 => 0.32176950192027
728 => 0.32220032586355
729 => 0.31210320863632
730 => 0.30131299080593
731 => 0.30950142111955
801 => 0.32020670449338
802 => 0.31775090065913
803 => 0.31747457256026
804 => 0.31793927977554
805 => 0.31608768388358
806 => 0.30771298428758
807 => 0.30350726257886
808 => 0.30893371657714
809 => 0.31181763537355
810 => 0.31629034192263
811 => 0.31573898643308
812 => 0.32726019816989
813 => 0.33173699266746
814 => 0.33059163706215
815 => 0.33080241005805
816 => 0.33890743265632
817 => 0.34792188471062
818 => 0.3563651086212
819 => 0.36495391862794
820 => 0.35459977293785
821 => 0.34934257631135
822 => 0.35476666128958
823 => 0.35188856545061
824 => 0.36842695784002
825 => 0.36957204024622
826 => 0.38610923672162
827 => 0.40180500538949
828 => 0.3919467743081
829 => 0.40124264219337
830 => 0.41129688121452
831 => 0.43069313952781
901 => 0.42416116209649
902 => 0.41915776975324
903 => 0.41442958816508
904 => 0.42426818347235
905 => 0.43692537915976
906 => 0.43965161788171
907 => 0.44406916611462
908 => 0.43942465429981
909 => 0.44501845720456
910 => 0.46476703949985
911 => 0.4594307982381
912 => 0.45185247780284
913 => 0.46744208685096
914 => 0.47308390576241
915 => 0.51268114552645
916 => 0.56267429640894
917 => 0.54197680367086
918 => 0.52912920202442
919 => 0.53214869316052
920 => 0.55040449948784
921 => 0.55626768506985
922 => 0.54032952549668
923 => 0.54595915290263
924 => 0.57697895340216
925 => 0.59362008113581
926 => 0.57101919447188
927 => 0.50866424453029
928 => 0.45117013296384
929 => 0.46642016034485
930 => 0.46469128050329
1001 => 0.49801818634111
1002 => 0.45930353064882
1003 => 0.45995538616141
1004 => 0.49397145711815
1005 => 0.48489655256999
1006 => 0.47019636942792
1007 => 0.45127746056897
1008 => 0.41630410775595
1009 => 0.38532723386537
1010 => 0.44608001711281
1011 => 0.44346024662741
1012 => 0.43966643073632
1013 => 0.44810915746819
1014 => 0.48910464196832
1015 => 0.48815956336116
1016 => 0.48214745544574
1017 => 0.4867075863113
1018 => 0.46939695643928
1019 => 0.47385829991301
1020 => 0.45116102560282
1021 => 0.46142114151293
1022 => 0.47016482943708
1023 => 0.47192025424037
1024 => 0.47587531595638
1025 => 0.4420797466249
1026 => 0.45725296506895
1027 => 0.46616580936652
1028 => 0.42589725457803
1029 => 0.46536982951163
1030 => 0.44149144095119
1031 => 0.43338675723242
1101 => 0.44429864614886
1102 => 0.44004627242596
1103 => 0.43639033120678
1104 => 0.43435025318943
1105 => 0.44236274010843
1106 => 0.44198894801667
1107 => 0.42887896426049
1108 => 0.41177752488185
1109 => 0.41751732927293
1110 => 0.4154320045267
1111 => 0.4078745186341
1112 => 0.41296735163138
1113 => 0.39054109253514
1114 => 0.35195787937558
1115 => 0.37744713182457
1116 => 0.37646582333225
1117 => 0.37597100309163
1118 => 0.39512547183585
1119 => 0.39328421163488
1120 => 0.38994230634044
1121 => 0.40781314192261
1122 => 0.40129004653846
1123 => 0.42139268947786
1124 => 0.43463359027517
1125 => 0.4312752695347
1126 => 0.4437284007334
1127 => 0.41764956277333
1128 => 0.42631190664229
1129 => 0.42809720370819
1130 => 0.40759261858555
1201 => 0.39358546457501
1202 => 0.39265134709575
1203 => 0.3683648723462
1204 => 0.38133851112383
1205 => 0.3927547763625
1206 => 0.38728727125115
1207 => 0.38555642246997
1208 => 0.39439895351774
1209 => 0.39508609391131
1210 => 0.37941922011806
1211 => 0.38267685928505
1212 => 0.39626175614883
1213 => 0.38233455473934
1214 => 0.35527627739613
1215 => 0.34856545050506
1216 => 0.34767010249271
1217 => 0.32946980772174
1218 => 0.34901390004699
1219 => 0.34048237999791
1220 => 0.36743334960965
1221 => 0.35203910030837
1222 => 0.35137548498909
1223 => 0.35037233310279
1224 => 0.33470658754871
1225 => 0.33813639021499
1226 => 0.34953757665138
1227 => 0.35360564841545
1228 => 0.35318131520173
1229 => 0.34948170461795
1230 => 0.35117536739813
1231 => 0.34571948947194
]
'min_raw' => 0.19089509921557
'max_raw' => 0.59362008113581
'avg_raw' => 0.39225759017569
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.190895'
'max' => '$0.59362'
'avg' => '$0.392257'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.10874665429891
'max_diff' => 0.37075926609172
'year' => 2033
]
8 => [
'items' => [
101 => 0.34379290542192
102 => 0.33771207621137
103 => 0.3287749371438
104 => 0.3300177011458
105 => 0.31231089012331
106 => 0.30266327970667
107 => 0.29999294829681
108 => 0.2964220695347
109 => 0.30039628855473
110 => 0.31226072895243
111 => 0.29794969665136
112 => 0.27341443557337
113 => 0.27488904657021
114 => 0.27820205966417
115 => 0.27202828168135
116 => 0.26618531894652
117 => 0.27126530098991
118 => 0.26086938742853
119 => 0.279458356151
120 => 0.27895557664204
121 => 0.28588439464766
122 => 0.29021712674023
123 => 0.28023158200552
124 => 0.27772024450853
125 => 0.27915081648074
126 => 0.25550664841849
127 => 0.28395216168383
128 => 0.28419815966377
129 => 0.28209177560979
130 => 0.29723813326689
131 => 0.32920167219079
201 => 0.31717570311725
202 => 0.31251888440513
203 => 0.30366626862928
204 => 0.31546185353428
205 => 0.31455613665337
206 => 0.31046014143494
207 => 0.30798287074656
208 => 0.31254731794718
209 => 0.3074172852259
210 => 0.30649579038529
211 => 0.30091253424745
212 => 0.29891956582821
213 => 0.29744405135296
214 => 0.29581965489677
215 => 0.29940266870475
216 => 0.29128308803115
217 => 0.28149166971111
218 => 0.28067761922241
219 => 0.28292528419375
220 => 0.28193085976291
221 => 0.28067285830082
222 => 0.27827099091337
223 => 0.27755840816729
224 => 0.27987395639604
225 => 0.27725983745063
226 => 0.28111711235302
227 => 0.28006814701232
228 => 0.27420871188919
301 => 0.26690568628503
302 => 0.26684067403854
303 => 0.26526724915148
304 => 0.26326325599181
305 => 0.26270579093994
306 => 0.27083747907143
307 => 0.28766983014269
308 => 0.28436523686338
309 => 0.28675314417602
310 => 0.2984992847555
311 => 0.30223302962694
312 => 0.29958290595578
313 => 0.29595525322219
314 => 0.29611485153182
315 => 0.30851163908766
316 => 0.30928481152131
317 => 0.31123836882626
318 => 0.31374924203834
319 => 0.30001051852112
320 => 0.29546775888966
321 => 0.29331514735357
322 => 0.2866859369879
323 => 0.29383497202173
324 => 0.28966953545972
325 => 0.29023159516351
326 => 0.28986555304407
327 => 0.29006543679295
328 => 0.2794531601554
329 => 0.28331971599728
330 => 0.27689081697931
331 => 0.26828324287203
401 => 0.26825438726542
402 => 0.27036107883383
403 => 0.26910793625409
404 => 0.26573576179324
405 => 0.26621476325919
406 => 0.26201820638845
407 => 0.26672430124441
408 => 0.26685925520567
409 => 0.2650471523434
410 => 0.27229754078495
411 => 0.27526803084521
412 => 0.27407526592226
413 => 0.27518434327855
414 => 0.28450255763348
415 => 0.28602183315553
416 => 0.28669659498471
417 => 0.28579250352242
418 => 0.27535466313127
419 => 0.27581762573774
420 => 0.27242071331197
421 => 0.26955068027
422 => 0.26966546654034
423 => 0.27114103660209
424 => 0.27758493760279
425 => 0.29114574737006
426 => 0.29166037018791
427 => 0.29228410805574
428 => 0.28974705268172
429 => 0.28898185250457
430 => 0.28999134905316
501 => 0.29508407620824
502 => 0.30818395311305
503 => 0.30355358170353
504 => 0.29978901767156
505 => 0.30309155524677
506 => 0.30258315547321
507 => 0.29829174974893
508 => 0.29817130428323
509 => 0.28993472465293
510 => 0.28688984870145
511 => 0.28434532245139
512 => 0.28156676621285
513 => 0.2799195449366
514 => 0.2824504254656
515 => 0.28302926778708
516 => 0.2774954532782
517 => 0.27674121480878
518 => 0.28126024719242
519 => 0.27927158952689
520 => 0.28131697325223
521 => 0.28179151982148
522 => 0.2817151068941
523 => 0.2796387198954
524 => 0.28096214704962
525 => 0.27783184729728
526 => 0.27442811647242
527 => 0.27225674826609
528 => 0.27036194151587
529 => 0.27141329042771
530 => 0.26766542352573
531 => 0.26646640547413
601 => 0.28051379970783
602 => 0.29089076086319
603 => 0.29073987573827
604 => 0.28982140134478
605 => 0.28845673470178
606 => 0.29498424234332
607 => 0.29271018920265
608 => 0.29436475286599
609 => 0.29478590876012
610 => 0.29606062080764
611 => 0.29651622079943
612 => 0.29513908118971
613 => 0.29051723245608
614 => 0.27900002484405
615 => 0.27363873361055
616 => 0.27186941820412
617 => 0.27193372945874
618 => 0.27015973795837
619 => 0.27068225795995
620 => 0.26997802682571
621 => 0.26864438342928
622 => 0.27133094170608
623 => 0.27164054252046
624 => 0.27101346771668
625 => 0.27116116653341
626 => 0.26596925498521
627 => 0.26636398474398
628 => 0.26416607928732
629 => 0.26375399851034
630 => 0.25819788490941
701 => 0.24835442429383
702 => 0.2538086570027
703 => 0.24722071087156
704 => 0.24472575584802
705 => 0.25653648488434
706 => 0.25535101526772
707 => 0.25332200659533
708 => 0.25032067988641
709 => 0.24920745861504
710 => 0.24244387857322
711 => 0.24204425018206
712 => 0.2453964630828
713 => 0.24384953217171
714 => 0.24167705530399
715 => 0.23380856430955
716 => 0.22496177526396
717 => 0.22522880421631
718 => 0.22804280321135
719 => 0.2362248848089
720 => 0.23302800397729
721 => 0.23070863025398
722 => 0.23027428127572
723 => 0.2357110681098
724 => 0.24340526052209
725 => 0.24701520345408
726 => 0.24343785964407
727 => 0.23932839969301
728 => 0.23957852347882
729 => 0.24124248496844
730 => 0.24141734379385
731 => 0.23874250782501
801 => 0.2394954584823
802 => 0.23835165758263
803 => 0.23133215357265
804 => 0.2312051930042
805 => 0.22948249351536
806 => 0.22943033085948
807 => 0.22649958928144
808 => 0.22608955827541
809 => 0.2202703929889
810 => 0.22410058520254
811 => 0.22153149335975
812 => 0.21765926596516
813 => 0.21699169250281
814 => 0.21697162443841
815 => 0.22094753615845
816 => 0.2240541243592
817 => 0.22157618381228
818 => 0.2210120047826
819 => 0.22703596080683
820 => 0.22626935749316
821 => 0.2256054839676
822 => 0.24271632998221
823 => 0.22917176018568
824 => 0.22326555465737
825 => 0.21595550375809
826 => 0.21833569319137
827 => 0.21883723407722
828 => 0.20125787940015
829 => 0.19412593739704
830 => 0.19167852366313
831 => 0.19027000245792
901 => 0.19091188325823
902 => 0.18449229896206
903 => 0.18880636577921
904 => 0.18324754841268
905 => 0.18231559459123
906 => 0.19225544864791
907 => 0.19363852127211
908 => 0.18773790377028
909 => 0.19152705542966
910 => 0.19015305636482
911 => 0.18334283838166
912 => 0.18308273814727
913 => 0.17966561015406
914 => 0.17431846653104
915 => 0.17187467841231
916 => 0.17060193234213
917 => 0.17112709217601
918 => 0.17086155529384
919 => 0.16912874752163
920 => 0.17096087780699
921 => 0.1662805420164
922 => 0.16441679459256
923 => 0.16357498311983
924 => 0.1594209157156
925 => 0.16603188427788
926 => 0.16733432836744
927 => 0.1686393386742
928 => 0.17999856242615
929 => 0.17943108770834
930 => 0.18456078278599
1001 => 0.18436145226817
1002 => 0.18289838013648
1003 => 0.17672591947654
1004 => 0.17918615228206
1005 => 0.17161393811173
1006 => 0.17728755582865
1007 => 0.17469835363859
1008 => 0.17641214396369
1009 => 0.17333059443292
1010 => 0.17503605117731
1011 => 0.16764318617856
1012 => 0.16073983286315
1013 => 0.16351794375872
1014 => 0.16653806801772
1015 => 0.17308646692458
1016 => 0.16918629455877
1017 => 0.17058894402336
1018 => 0.16589030311767
1019 => 0.15619566482881
1020 => 0.15625053542869
1021 => 0.15475922653712
1022 => 0.15347051792015
1023 => 0.16963427627174
1024 => 0.16762405740951
1025 => 0.16442103674349
1026 => 0.16870840718794
1027 => 0.16984205598317
1028 => 0.16987432937065
1029 => 0.17300228417387
1030 => 0.17467167421306
1031 => 0.17496591144302
1101 => 0.17988781590982
1102 => 0.18153757336561
1103 => 0.18833269084356
1104 => 0.17453003813162
1105 => 0.1742457815821
1106 => 0.16876873928239
1107 => 0.1652951124673
1108 => 0.16900658148224
1109 => 0.17229443636343
1110 => 0.16887090209841
1111 => 0.16931794339867
1112 => 0.16472212836091
1113 => 0.16636491598371
1114 => 0.16777990599186
1115 => 0.16699863167863
1116 => 0.16582902621762
1117 => 0.17202486975737
1118 => 0.17167527598315
1119 => 0.1774449879292
1120 => 0.1819428909872
1121 => 0.19000393736349
1122 => 0.18159181523798
1123 => 0.18128524407257
1124 => 0.18428202639002
1125 => 0.18153711457385
1126 => 0.18327180409053
1127 => 0.18972445206415
1128 => 0.18986078634789
1129 => 0.18757701143856
1130 => 0.18743804352777
1201 => 0.18787666748087
1202 => 0.19044570167433
1203 => 0.18954800218869
1204 => 0.19058684276044
1205 => 0.19188592880271
1206 => 0.19725949947462
1207 => 0.19855504917147
1208 => 0.19540753507361
1209 => 0.19569172035543
1210 => 0.19451446368164
1211 => 0.19337724848573
1212 => 0.19593354216918
1213 => 0.20060521911975
1214 => 0.20057615685991
1215 => 0.20165989510802
1216 => 0.20233505505842
1217 => 0.19943677430401
1218 => 0.19755010010563
1219 => 0.19827357104548
1220 => 0.19943041683346
1221 => 0.19789842154802
1222 => 0.18844223695701
1223 => 0.19131063929851
1224 => 0.19083319689117
1225 => 0.19015326084415
1226 => 0.19303746157923
1227 => 0.19275927338228
1228 => 0.18442645684639
1229 => 0.18495989672526
1230 => 0.18445889709223
1231 => 0.18607772940143
]
'min_raw' => 0.15347051792015
'max_raw' => 0.34379290542192
'avg_raw' => 0.24863171167103
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.15347'
'max' => '$0.343792'
'avg' => '$0.248631'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.037424581295422
'max_diff' => -0.24982717571389
'year' => 2034
]
9 => [
'items' => [
101 => 0.1814496923166
102 => 0.18287324535358
103 => 0.1837660844734
104 => 0.18429197357409
105 => 0.1861918456113
106 => 0.18596891755597
107 => 0.18617798809037
108 => 0.18899499677394
109 => 0.20324246001474
110 => 0.20401791800368
111 => 0.2001992792557
112 => 0.2017247501162
113 => 0.19879617964785
114 => 0.20076214862297
115 => 0.20210721466555
116 => 0.19602911986045
117 => 0.1956692145326
118 => 0.19272855681217
119 => 0.19430869970376
120 => 0.19179457874695
121 => 0.19241145608953
122 => 0.19068661326126
123 => 0.19379098693936
124 => 0.19726215908238
125 => 0.19813911424645
126 => 0.19583222276272
127 => 0.19416188129695
128 => 0.19122931192773
129 => 0.19610624014531
130 => 0.19753240257782
131 => 0.19609874912119
201 => 0.19576654028934
202 => 0.19513700515327
203 => 0.19590009914446
204 => 0.19752463539093
205 => 0.19675853409757
206 => 0.1972645574988
207 => 0.19533611810237
208 => 0.19943773375554
209 => 0.20595208652033
210 => 0.20597303122967
211 => 0.20520692580674
212 => 0.20489345197365
213 => 0.20567952262874
214 => 0.20610593371282
215 => 0.20864794207069
216 => 0.21137561831677
217 => 0.22410449317882
218 => 0.22053027605298
219 => 0.23182409107474
220 => 0.24075603243862
221 => 0.24343433110719
222 => 0.2409704223558
223 => 0.23254152361502
224 => 0.23212796163061
225 => 0.24472429493859
226 => 0.24116525383047
227 => 0.24074191721544
228 => 0.23623833086995
301 => 0.23890050818015
302 => 0.23831825095063
303 => 0.23739912942882
304 => 0.24247837828781
305 => 0.25198627872415
306 => 0.25050438327662
307 => 0.24939821706819
308 => 0.244551318743
309 => 0.2474702341287
310 => 0.24643086426799
311 => 0.25089665679
312 => 0.24825122022938
313 => 0.24113829059367
314 => 0.24227104808268
315 => 0.242099834067
316 => 0.24562340637718
317 => 0.24456571743011
318 => 0.24189330332479
319 => 0.2519537817541
320 => 0.25130051024422
321 => 0.25222669988657
322 => 0.2526344372105
323 => 0.25875807314491
324 => 0.26126673085274
325 => 0.26183624007265
326 => 0.26421927086855
327 => 0.26177694809556
328 => 0.27154798053413
329 => 0.27804514695022
330 => 0.28559194008364
331 => 0.29661983323833
401 => 0.30076642307821
402 => 0.30001737873833
403 => 0.30837860146861
404 => 0.32340353285539
405 => 0.30305434695082
406 => 0.32448208912001
407 => 0.31769831334443
408 => 0.30161410301543
409 => 0.30057846949062
410 => 0.31147088346694
411 => 0.33562920931043
412 => 0.3295778226881
413 => 0.33563910721109
414 => 0.32856829685094
415 => 0.32821717151909
416 => 0.33529569373424
417 => 0.35183504672012
418 => 0.3439778200849
419 => 0.33271255903231
420 => 0.34103065248667
421 => 0.3338247501333
422 => 0.31758783532608
423 => 0.32957319530679
424 => 0.32155892641109
425 => 0.32389791613682
426 => 0.34074271732307
427 => 0.33871590627852
428 => 0.34133878744781
429 => 0.33670947083677
430 => 0.33238495914582
501 => 0.32431293693223
502 => 0.32192320910067
503 => 0.32258364389991
504 => 0.32192288182198
505 => 0.31740665957919
506 => 0.31643138181585
507 => 0.31480587614905
508 => 0.31530968832518
509 => 0.31225326211315
510 => 0.31802136986513
511 => 0.31909198149229
512 => 0.32328952929392
513 => 0.32372533263151
514 => 0.33541544351069
515 => 0.32897672688277
516 => 0.33329637388883
517 => 0.33290998400251
518 => 0.30196269662485
519 => 0.30622695977526
520 => 0.31286081503781
521 => 0.30987227223401
522 => 0.30564717192075
523 => 0.30223517688225
524 => 0.29706565550452
525 => 0.30434165757182
526 => 0.31390882657375
527 => 0.32396797182564
528 => 0.33605337574447
529 => 0.33335605427939
530 => 0.32374204360581
531 => 0.32417332110158
601 => 0.32683930887904
602 => 0.3233866124767
603 => 0.32236834490301
604 => 0.32669941455098
605 => 0.32672924024733
606 => 0.32275649576414
607 => 0.31834151727563
608 => 0.31832301835456
609 => 0.31753741557617
610 => 0.32870805383999
611 => 0.33485077540617
612 => 0.33555502853424
613 => 0.33480337355946
614 => 0.33509265572713
615 => 0.3315183413934
616 => 0.33968816403032
617 => 0.34718560119367
618 => 0.34517612787451
619 => 0.34216364170562
620 => 0.33976405137111
621 => 0.34461086065178
622 => 0.3443950398641
623 => 0.34712011762067
624 => 0.34699649235282
625 => 0.34608015119864
626 => 0.34517616059994
627 => 0.34876038114134
628 => 0.34772818318623
629 => 0.34669438194261
630 => 0.34462093528146
701 => 0.34490275111902
702 => 0.34189078509834
703 => 0.34049731179899
704 => 0.31954281678667
705 => 0.3139430910115
706 => 0.3157048787333
707 => 0.31628490499611
708 => 0.31384789716251
709 => 0.31734194037995
710 => 0.31679739744562
711 => 0.31891589545613
712 => 0.31759234987365
713 => 0.31764666864603
714 => 0.32153893399442
715 => 0.32266887518394
716 => 0.32209417797521
717 => 0.32249667620074
718 => 0.33177207792418
719 => 0.33045341240975
720 => 0.32975289763719
721 => 0.3299469450166
722 => 0.33231700902379
723 => 0.33298049754511
724 => 0.33016925005778
725 => 0.33149505062443
726 => 0.3371401411681
727 => 0.33911560337393
728 => 0.34542033045928
729 => 0.34274197033584
730 => 0.34765821625914
731 => 0.36276908015561
801 => 0.37484068382837
802 => 0.36373913821078
803 => 0.38590710104634
804 => 0.40316803991923
805 => 0.40250553633569
806 => 0.39949569239049
807 => 0.37984457238951
808 => 0.36176131878292
809 => 0.37688872828034
810 => 0.37692729115813
811 => 0.37562783326647
812 => 0.36755701190429
813 => 0.37534698617758
814 => 0.37596532604637
815 => 0.37561922014969
816 => 0.36943134033435
817 => 0.35998359156767
818 => 0.36182965906196
819 => 0.36485355527637
820 => 0.35912868889166
821 => 0.35729924719986
822 => 0.36070052737044
823 => 0.37166016076492
824 => 0.36958830555653
825 => 0.36953420104402
826 => 0.37839847622887
827 => 0.37205356822683
828 => 0.36185294388499
829 => 0.35927715170898
830 => 0.35013482474563
831 => 0.35644946254306
901 => 0.35667671511566
902 => 0.35321825252804
903 => 0.3621335790633
904 => 0.36205142275977
905 => 0.37051519843377
906 => 0.38669475867347
907 => 0.38190966656279
908 => 0.3763451250546
909 => 0.37695014500454
910 => 0.3835857205389
911 => 0.37957370009537
912 => 0.38101645061966
913 => 0.38358353676319
914 => 0.38513232357074
915 => 0.37672729841741
916 => 0.37476768499534
917 => 0.37075900366464
918 => 0.36971321353104
919 => 0.37297820083101
920 => 0.37211799203117
921 => 0.3566576154169
922 => 0.35504192003998
923 => 0.35509147111051
924 => 0.35102872826313
925 => 0.34483207025087
926 => 0.36111651752387
927 => 0.35980864850716
928 => 0.35836486233372
929 => 0.35854171790184
930 => 0.36561024453192
1001 => 0.36151014211732
1002 => 0.37241093638011
1003 => 0.37017006078755
1004 => 0.36787171519164
1005 => 0.36755401382096
1006 => 0.36666934685217
1007 => 0.3636354946461
1008 => 0.35997193580101
1009 => 0.35755293691945
1010 => 0.32982368413146
1011 => 0.33497007215527
1012 => 0.34089052246863
1013 => 0.34293423819209
1014 => 0.33943832102629
1015 => 0.36377353476367
1016 => 0.36821981281344
1017 => 0.35475174657714
1018 => 0.35223242128185
1019 => 0.36393870131061
1020 => 0.35687838341873
1021 => 0.36005764413313
1022 => 0.35318582143123
1023 => 0.36714883463347
1024 => 0.36704245986732
1025 => 0.36161053236269
1026 => 0.36620156029336
1027 => 0.36540375621076
1028 => 0.35927112343628
1029 => 0.367343250031
1030 => 0.36734725370508
1031 => 0.36211914158217
1101 => 0.35601385120351
1102 => 0.35492236948433
1103 => 0.35410008462886
1104 => 0.35985541246567
1105 => 0.3650156214077
1106 => 0.37461749092455
1107 => 0.37703162905588
1108 => 0.38645417090073
1109 => 0.38084350600736
1110 => 0.38333064108431
1111 => 0.38603077803709
1112 => 0.3873253229865
1113 => 0.38521593146055
1114 => 0.39985301741855
1115 => 0.40108883594213
1116 => 0.4015031952033
1117 => 0.3965676521729
1118 => 0.40095156956213
1119 => 0.39890047979579
1120 => 0.40423684555865
1121 => 0.4050736558484
1122 => 0.40436490730337
1123 => 0.40463052409749
1124 => 0.39214035339124
1125 => 0.39149267214922
1126 => 0.38266149245693
1127 => 0.38626026345832
1128 => 0.3795325335648
1129 => 0.38166596601733
1130 => 0.38260636271432
1201 => 0.38211515284686
1202 => 0.38646373257119
1203 => 0.38276655144936
1204 => 0.37300908259601
1205 => 0.36324895532679
1206 => 0.36312642487935
1207 => 0.36055675564993
1208 => 0.35869935545544
1209 => 0.35905715662771
1210 => 0.36031809462753
1211 => 0.35862606744663
1212 => 0.35898714723363
1213 => 0.36498347755986
1214 => 0.36618599884292
1215 => 0.3620993616677
1216 => 0.3456909237103
1217 => 0.3416642518781
1218 => 0.34455854373871
1219 => 0.34317525864561
1220 => 0.27696921745778
1221 => 0.29252334478677
1222 => 0.28328161049614
1223 => 0.28754062684901
1224 => 0.27810720927377
1225 => 0.28260933058845
1226 => 0.28177795317278
1227 => 0.3067885296377
1228 => 0.30639802388713
1229 => 0.30658493832482
1230 => 0.29766302521059
1231 => 0.3118758750579
]
'min_raw' => 0.1814496923166
'max_raw' => 0.4050736558484
'avg_raw' => 0.2932616740825
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.181449'
'max' => '$0.405073'
'avg' => '$0.293261'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.02797917439645
'max_diff' => 0.061280750426485
'year' => 2035
]
10 => [
'items' => [
101 => 0.31887763597024
102 => 0.3175817963712
103 => 0.31790793128051
104 => 0.31230385300191
105 => 0.30663919805247
106 => 0.30035622392939
107 => 0.312029213251
108 => 0.31073137610301
109 => 0.31370814757343
110 => 0.321278915551
111 => 0.32239373989424
112 => 0.323892075117
113 => 0.32335502859841
114 => 0.33614965548438
115 => 0.33460014174682
116 => 0.33833402402881
117 => 0.33065314488443
118 => 0.32196150105683
119 => 0.32361349839721
120 => 0.32345439776881
121 => 0.32142886416204
122 => 0.31960030298958
123 => 0.31655626383135
124 => 0.32618805416102
125 => 0.32579702106335
126 => 0.33212739238838
127 => 0.33100843776673
128 => 0.32353578494875
129 => 0.32380267220604
130 => 0.32559761727296
131 => 0.33180994264389
201 => 0.33365418378135
202 => 0.33279985780618
203 => 0.33482198402059
204 => 0.33642019013174
205 => 0.33502269410174
206 => 0.35480829082824
207 => 0.34659193162041
208 => 0.35059652792925
209 => 0.35155160055245
210 => 0.34910520211112
211 => 0.34963573833409
212 => 0.35043935614941
213 => 0.35531876615955
214 => 0.36812374989483
215 => 0.37379499002471
216 => 0.39085719576952
217 => 0.3733240724794
218 => 0.37228372950264
219 => 0.37535714798653
220 => 0.38537446897664
221 => 0.39349256676
222 => 0.39618580813904
223 => 0.39654176444785
224 => 0.40159446431822
225 => 0.40449057765665
226 => 0.40098093365476
227 => 0.3980068778382
228 => 0.38735417905669
229 => 0.38858725794699
301 => 0.39708194871563
302 => 0.40908119976112
303 => 0.41937780546744
304 => 0.41577229302202
305 => 0.44327980788543
306 => 0.44600706562601
307 => 0.44563024678906
308 => 0.45184334579248
309 => 0.4395116095463
310 => 0.43423955338492
311 => 0.39864990246271
312 => 0.40864914268886
313 => 0.42318362559235
314 => 0.42125993227856
315 => 0.4107046022862
316 => 0.41936979830312
317 => 0.41650481351419
318 => 0.41424508114284
319 => 0.42459735320668
320 => 0.41321460482459
321 => 0.42307007396989
322 => 0.41043033284927
323 => 0.41578876269917
324 => 0.41274705875827
325 => 0.41471541398525
326 => 0.40320844954848
327 => 0.40941732824279
328 => 0.40295013978189
329 => 0.40294707349251
330 => 0.40280430994879
331 => 0.41041292849313
401 => 0.4106610452707
402 => 0.40503826467045
403 => 0.40422793414161
404 => 0.40722415081815
405 => 0.40371636580032
406 => 0.40535763633242
407 => 0.40376607821275
408 => 0.40340778495666
409 => 0.40055284333363
410 => 0.39932285598417
411 => 0.39980516571676
412 => 0.39815879395172
413 => 0.39716679541141
414 => 0.40260697647088
415 => 0.39970050718708
416 => 0.4021615183685
417 => 0.3993568855229
418 => 0.38963480615968
419 => 0.38404353550877
420 => 0.36567942882889
421 => 0.3708874667027
422 => 0.37434040120114
423 => 0.37319920637001
424 => 0.37565093445106
425 => 0.37580145064313
426 => 0.37500436885157
427 => 0.37408145024944
428 => 0.37363222451453
429 => 0.37698038509884
430 => 0.37892410501194
501 => 0.37468694937237
502 => 0.37369424309012
503 => 0.37797824138151
504 => 0.38059147786447
505 => 0.39988614780391
506 => 0.39845673633383
507 => 0.40204427861589
508 => 0.40164037641025
509 => 0.40540069226215
510 => 0.41154721945196
511 => 0.39904961107905
512 => 0.40121876375781
513 => 0.40068693761403
514 => 0.40649327599951
515 => 0.40651140275417
516 => 0.40303021284396
517 => 0.40491742237014
518 => 0.40386403378551
519 => 0.40576764933194
520 => 0.39843764567218
521 => 0.40736479890477
522 => 0.4124259195346
523 => 0.41249619319946
524 => 0.41489512421046
525 => 0.41733257705436
526 => 0.42201105553081
527 => 0.4172020968289
528 => 0.40855124826685
529 => 0.40917581159096
530 => 0.40410382224425
531 => 0.4041890833015
601 => 0.40373395309588
602 => 0.40509983310355
603 => 0.39873737952376
604 => 0.40023063466185
605 => 0.39814006872404
606 => 0.40121421927574
607 => 0.3979069414574
608 => 0.40068668115136
609 => 0.40188632465344
610 => 0.40631303500259
611 => 0.39725311273958
612 => 0.37877931794249
613 => 0.38266273358195
614 => 0.37691885681548
615 => 0.37745047447869
616 => 0.37852442676472
617 => 0.37504339603039
618 => 0.37570746699461
619 => 0.37568374170678
620 => 0.37547928999363
621 => 0.37457373945585
622 => 0.37326051201834
623 => 0.37849200593926
624 => 0.37938093869877
625 => 0.3813569261077
626 => 0.38723612431161
627 => 0.38664865377
628 => 0.38760684259728
629 => 0.38551512176732
630 => 0.3775475034088
701 => 0.37798018341903
702 => 0.37258465675816
703 => 0.38121895036018
704 => 0.37917423566812
705 => 0.37785599480449
706 => 0.37749630057143
707 => 0.38339007217052
708 => 0.38515358100652
709 => 0.3840546806446
710 => 0.38180080394226
711 => 0.38612891350958
712 => 0.38728693304151
713 => 0.3875461709086
714 => 0.3952147512292
715 => 0.38797475936122
716 => 0.38971749736317
717 => 0.4033138417679
718 => 0.39098383356009
719 => 0.39751531389976
720 => 0.39719563192532
721 => 0.40053691625385
722 => 0.3969215490856
723 => 0.39696636589463
724 => 0.39993320002016
725 => 0.3957668165622
726 => 0.39473516142603
727 => 0.39330993724426
728 => 0.39642186210437
729 => 0.39828732031775
730 => 0.4133215434895
731 => 0.42303433730232
801 => 0.42261267930724
802 => 0.42646584407163
803 => 0.42472995805433
804 => 0.41912432420086
805 => 0.42869245765451
806 => 0.42566469988206
807 => 0.4259143045541
808 => 0.42590501425574
809 => 0.42791820848323
810 => 0.42649167586651
811 => 0.42367983364839
812 => 0.42554646573596
813 => 0.43108969570287
814 => 0.44829605160724
815 => 0.45792495632522
816 => 0.44771637945281
817 => 0.45475811908111
818 => 0.45053558453251
819 => 0.4497682243955
820 => 0.45419095726255
821 => 0.458621431538
822 => 0.45833922948012
823 => 0.45512293266351
824 => 0.45330612820232
825 => 0.4670635802566
826 => 0.47719983657812
827 => 0.47650861185131
828 => 0.4795594529971
829 => 0.48851681696008
830 => 0.48933576606352
831 => 0.48923259729982
901 => 0.48720274649845
902 => 0.4960224345807
903 => 0.50337997354657
904 => 0.48673289468596
905 => 0.49307188438982
906 => 0.49591766109737
907 => 0.50009610560796
908 => 0.50714584188594
909 => 0.51480372533402
910 => 0.515886634018
911 => 0.51511825848476
912 => 0.5100676784958
913 => 0.51844702594224
914 => 0.52335545115649
915 => 0.52627830604426
916 => 0.53369017972296
917 => 0.4959352356455
918 => 0.46921040968499
919 => 0.46503694220009
920 => 0.47352385244414
921 => 0.47576178299365
922 => 0.47485967599527
923 => 0.44477845466184
924 => 0.46487857079523
925 => 0.48650460568898
926 => 0.48733534976405
927 => 0.49816179501092
928 => 0.50168732937429
929 => 0.51040403685264
930 => 0.50985880442657
1001 => 0.51198118398444
1002 => 0.51149328567857
1003 => 0.52763915076291
1004 => 0.5454504376351
1005 => 0.54483368940714
1006 => 0.54227310618568
1007 => 0.54607600891387
1008 => 0.56445916573947
1009 => 0.56276673924305
1010 => 0.56441078742378
1011 => 0.58608556535048
1012 => 0.6142658598564
1013 => 0.60117328380309
1014 => 0.6295804065515
1015 => 0.64746118452475
1016 => 0.67838414112254
1017 => 0.67451243465772
1018 => 0.6865505147381
1019 => 0.66758127203618
1020 => 0.6240240564761
1021 => 0.61713096038339
1022 => 0.63093111332198
1023 => 0.66485744272228
1024 => 0.62986265247561
1025 => 0.6369420529652
1026 => 0.63490318514794
1027 => 0.63479454254659
1028 => 0.63894098875878
1029 => 0.63292635226391
1030 => 0.60842164117138
1031 => 0.61965200585792
1101 => 0.61531542272604
1102 => 0.62012718502455
1103 => 0.64609428162788
1104 => 0.63461360924128
1105 => 0.62251965349608
1106 => 0.63768815786418
1107 => 0.65700287638838
1108 => 0.65579419601502
1109 => 0.65344885090151
1110 => 0.66666943850813
1111 => 0.68850597596555
1112 => 0.69440830429397
1113 => 0.69876528239823
1114 => 0.69936603606706
1115 => 0.70555417222231
1116 => 0.67227900450439
1117 => 0.72508755023965
1118 => 0.73420612728149
1119 => 0.73249221272392
1120 => 0.74262712733755
1121 => 0.73964517836025
1122 => 0.73532480214561
1123 => 0.75139079756637
1124 => 0.73297243027544
1125 => 0.70682987671394
1126 => 0.69248755478901
1127 => 0.71137468126186
1128 => 0.72290839032895
1129 => 0.73053143834062
1130 => 0.73283816806298
1201 => 0.67486206105208
1202 => 0.64361615487551
1203 => 0.66364442249965
1204 => 0.68808029127829
1205 => 0.67214326201953
1206 => 0.67276796339369
1207 => 0.6500459478483
1208 => 0.69009068547057
1209 => 0.68425650402826
1210 => 0.71452424767144
1211 => 0.70730060773718
1212 => 0.73198277769115
1213 => 0.72548313515268
1214 => 0.75246278793976
1215 => 0.76322570188147
1216 => 0.7812983095034
1217 => 0.79459259323883
1218 => 0.8023992509274
1219 => 0.80193056848181
1220 => 0.83286443550535
1221 => 0.81462381486857
1222 => 0.79170929636457
1223 => 0.79129484501921
1224 => 0.80316259885367
1225 => 0.82803415513144
1226 => 0.83448298780783
1227 => 0.83808700550801
1228 => 0.83256732694343
1229 => 0.81276844055926
1230 => 0.80421938180121
1231 => 0.81150342755315
]
'min_raw' => 0.30035622392939
'max_raw' => 0.83808700550801
'avg_raw' => 0.5692216147187
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.300356'
'max' => '$0.838087'
'avg' => '$0.569221'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.1189065316128
'max_diff' => 0.43301334965961
'year' => 2036
]
11 => [
'items' => [
101 => 0.80259566552372
102 => 0.81797296186311
103 => 0.83908927415036
104 => 0.83472883916599
105 => 0.84930511956578
106 => 0.86439003631015
107 => 0.88596214476061
108 => 0.89160189272242
109 => 0.90092418164289
110 => 0.91051987915443
111 => 0.91360175858384
112 => 0.91948602266561
113 => 0.91945500968934
114 => 0.9371876355564
115 => 0.95674727102148
116 => 0.96413058060294
117 => 0.98110809386745
118 => 0.952034697365
119 => 0.97408720258322
120 => 0.99397911430006
121 => 0.97026315710398
122 => 1.0029500789894
123 => 1.0042192380961
124 => 1.0233820337915
125 => 1.0039568692068
126 => 0.99242226848368
127 => 1.0257222285754
128 => 1.0418350303249
129 => 1.0369817233076
130 => 1.0000478172688
131 => 0.97855069978455
201 => 0.92228859684387
202 => 0.98893348811908
203 => 1.0213942706011
204 => 0.99996375168417
205 => 1.010772058887
206 => 1.0697386783805
207 => 1.0921893492777
208 => 1.0875197666731
209 => 1.0883088492654
210 => 1.1004228237731
211 => 1.1541428580276
212 => 1.1219525682816
213 => 1.1465608386453
214 => 1.1596129765144
215 => 1.1717365295708
216 => 1.1419649149526
217 => 1.1032324817661
218 => 1.090964294299
219 => 0.99783290892724
220 => 0.99298501586954
221 => 0.99026374659005
222 => 0.97310652871408
223 => 0.95962565522107
224 => 0.94890516410668
225 => 0.92077139401289
226 => 0.93026571554406
227 => 0.88542635798872
228 => 0.91411298994337
301 => 0.8425482926009
302 => 0.90214949910417
303 => 0.86971127213877
304 => 0.89149266912272
305 => 0.89141667588057
306 => 0.85131021823491
307 => 0.82817765046531
308 => 0.84291862298111
309 => 0.8587221156579
310 => 0.86128617917537
311 => 0.88177581994419
312 => 0.88749403825941
313 => 0.8701675698062
314 => 0.84106527331621
315 => 0.84782507303812
316 => 0.8280406633397
317 => 0.79336924633956
318 => 0.81827086333393
319 => 0.82677337022262
320 => 0.83052856164179
321 => 0.7964332050613
322 => 0.7857197037775
323 => 0.78001592558899
324 => 0.83666399093282
325 => 0.83976729982813
326 => 0.82389033275605
327 => 0.89565572943763
328 => 0.87941300991818
329 => 0.89756010718431
330 => 0.84721169206623
331 => 0.84913506932687
401 => 0.82529932274082
402 => 0.83864574812385
403 => 0.8292129248385
404 => 0.83756748884484
405 => 0.84257518006309
406 => 0.86640701543767
407 => 0.90242162038254
408 => 0.86284733395438
409 => 0.8456042506434
410 => 0.85630176255075
411 => 0.88479064646165
412 => 0.92795276390579
413 => 0.90239992166029
414 => 0.91373983913344
415 => 0.91621710662351
416 => 0.89737538676932
417 => 0.92864748499236
418 => 0.94540645648416
419 => 0.96259769345424
420 => 0.97752436282783
421 => 0.95573113536499
422 => 0.97905301268667
423 => 0.96025969643094
424 => 0.94340014893222
425 => 0.94342571790645
426 => 0.93284947748182
427 => 0.91235667896704
428 => 0.90857749250497
429 => 0.92823729773926
430 => 0.94400259974668
501 => 0.94530110553071
502 => 0.95402958677248
503 => 0.95919501206085
504 => 1.0098232019421
505 => 1.0301862787306
506 => 1.0550858635744
507 => 1.0647856551347
508 => 1.0939785501637
509 => 1.0704029164968
510 => 1.0653021798553
511 => 0.99448976543831
512 => 1.0060852943321
513 => 1.0246508548932
514 => 0.99479590469384
515 => 1.0137319989331
516 => 1.0174703850572
517 => 0.99378144491021
518 => 1.0064347313814
519 => 0.9728313539519
520 => 0.90315408218307
521 => 0.92872505571415
522 => 0.94755389932964
523 => 0.92068281791065
524 => 0.96884819129972
525 => 0.94071097450095
526 => 0.93179282760034
527 => 0.89699995699212
528 => 0.91342085261879
529 => 0.93563034907845
530 => 0.92190746239747
531 => 0.9503845127623
601 => 0.99071561063082
602 => 1.0194579527303
603 => 1.0216644328616
604 => 1.003185032479
605 => 1.0327983895261
606 => 1.0330140905026
607 => 0.99961010277933
608 => 0.97915034629302
609 => 0.97450184657164
610 => 0.98611471026771
611 => 1.0002148706476
612 => 1.0224468936306
613 => 1.0358812395019
614 => 1.0709108885078
615 => 1.08038890715
616 => 1.0908023760821
617 => 1.1047179819703
618 => 1.1214272347272
619 => 1.0848683409534
620 => 1.0863208939574
621 => 1.0522777582675
622 => 1.0158977855034
623 => 1.0435056500037
624 => 1.0795992603176
625 => 1.0713193462317
626 => 1.0703876867538
627 => 1.0719544795749
628 => 1.0657116947508
629 => 1.0374758103601
630 => 1.023295925985
701 => 1.0415915945031
702 => 1.051314928074
703 => 1.0663949704786
704 => 1.0645360369512
705 => 1.1033806067072
706 => 1.1184744319156
707 => 1.1146127855261
708 => 1.1153234213974
709 => 1.1426500709621
710 => 1.1730429254322
711 => 1.2015098443337
712 => 1.230467616923
713 => 1.1955578918255
714 => 1.1778328863535
715 => 1.1961205675551
716 => 1.1864168664918
717 => 1.2421772111064
718 => 1.246037936386
719 => 1.301794248893
720 => 1.3547136288003
721 => 1.3214759144297
722 => 1.3528175820216
723 => 1.386716150846
724 => 1.4521119899528
725 => 1.430088971995
726 => 1.413219685384
727 => 1.3972782910484
728 => 1.4304498020357
729 => 1.4731244209929
730 => 1.4823161251839
731 => 1.4972101974746
801 => 1.4815509016215
802 => 1.5004107986617
803 => 1.5669945226722
804 => 1.5490030126938
805 => 1.5234521762448
806 => 1.5760136315823
807 => 1.5950354179415
808 => 1.728540276397
809 => 1.8970956750076
810 => 1.8273126331884
811 => 1.7839960472465
812 => 1.794176472426
813 => 1.8557271980383
814 => 1.8754953375826
815 => 1.8217587198149
816 => 1.840739401662
817 => 1.9453248247795
818 => 2.0014315487799
819 => 1.925231081449
820 => 1.7149970142373
821 => 1.5211516029804
822 => 1.5725681350183
823 => 1.566739095926
824 => 1.6791030857685
825 => 1.548573921131
826 => 1.5507716975028
827 => 1.6654592556597
828 => 1.6348625813859
829 => 1.5852998875884
830 => 1.5215134654944
831 => 1.4035983647238
901 => 1.2991576716655
902 => 1.5039899220081
903 => 1.49515718291
904 => 1.4823660677574
905 => 1.5108313103863
906 => 1.6490504485918
907 => 1.6458640500845
908 => 1.6255938084957
909 => 1.6409686080871
910 => 1.582604610884
911 => 1.5976463418867
912 => 1.5211208968768
913 => 1.5557135940062
914 => 1.5851935483073
915 => 1.5911120855914
916 => 1.6044468523005
917 => 1.4905027307681
918 => 1.5416602961125
919 => 1.5717105729367
920 => 1.4359423290066
921 => 1.5690268712824
922 => 1.488519217115
923 => 1.4611937101062
924 => 1.4979839054318
925 => 1.4836467305338
926 => 1.4713204694636
927 => 1.4644422039944
928 => 1.4914568630558
929 => 1.4901965969211
930 => 1.4459953713773
1001 => 1.3883366745279
1002 => 1.4076888257727
1003 => 1.4006580077981
1004 => 1.3751774164644
1005 => 1.392348258485
1006 => 1.3167365601906
1007 => 1.1866505632292
1008 => 1.2725893574637
1009 => 1.2692808073691
1010 => 1.2676124863806
1011 => 1.3321931150741
1012 => 1.3259851777538
1013 => 1.3147177107292
1014 => 1.3749704805964
1015 => 1.3529774090808
1016 => 1.4207548732727
1017 => 1.465397494761
1018 => 1.454074681914
1019 => 1.4960612832003
1020 => 1.4081346602516
1021 => 1.4373403573913
1022 => 1.4433596110945
1023 => 1.3742269707691
1024 => 1.3270008730743
1025 => 1.3238514307749
1026 => 1.2419678855293
1027 => 1.2857094144586
1028 => 1.324200149769
1029 => 1.3057660745571
1030 => 1.2999303970473
1031 => 1.3297436078407
1101 => 1.3320603496522
1102 => 1.2792383908321
1103 => 1.2902217487247
1104 => 1.3360241769681
1105 => 1.2890676450498
1106 => 1.1978387738386
1107 => 1.1752127524404
1108 => 1.1721940241056
1109 => 1.1108304595813
1110 => 1.1767247313808
1111 => 1.1479601158836
1112 => 1.2388271915862
1113 => 1.1869244052748
1114 => 1.1846869798937
1115 => 1.1813047832712
1116 => 1.1284866283882
1117 => 1.1400504475387
1118 => 1.1784903436144
1119 => 1.1922061315907
1120 => 1.1907754625346
1121 => 1.1783019671528
1122 => 1.184012269464
1123 => 1.1656173961186
1124 => 1.1591217834841
1125 => 1.1386198432508
1126 => 1.1084876549134
1127 => 1.1126777205132
1128 => 1.0529779709008
1129 => 1.0204503788064
1130 => 1.0114471700215
1201 => 0.99940770296426
1202 => 1.0128070598614
1203 => 1.052808849011
1204 => 1.0045582044436
1205 => 0.92183585872193
1206 => 0.92680761265182
1207 => 0.93797766760529
1208 => 0.9171623440968
1209 => 0.8974623872937
1210 => 0.91458990142598
1211 => 0.8795393530343
1212 => 0.94221335892245
1213 => 0.94051820270505
1214 => 0.96387919636563
1215 => 0.97848730511744
1216 => 0.94482034387589
1217 => 0.93635319416878
1218 => 0.94117646745245
1219 => 0.86145850404746
1220 => 0.95736453802387
1221 => 0.95819393738829
1222 => 0.95109211648723
1223 => 1.0021591188131
1224 => 1.109926421918
1225 => 1.0693800275602
1226 => 1.0536792381436
1227 => 1.0238320259855
1228 => 1.0636016640341
1229 => 1.060547976335
1230 => 1.0467380424828
1231 => 1.0383857513994
]
'min_raw' => 0.78001592558899
'max_raw' => 2.0014315487799
'avg_raw' => 1.3907237371845
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.780015'
'max' => '$2.00'
'avg' => '$1.39'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.4796597016596
'max_diff' => 1.1633445432719
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.024483808600005
]
1 => [
'year' => 2028
'avg' => 0.04202132325803
]
2 => [
'year' => 2029
'avg' => 0.11479468153429
]
3 => [
'year' => 2030
'avg' => 0.088563925846339
]
4 => [
'year' => 2031
'avg' => 0.086980750787604
]
5 => [
'year' => 2032
'avg' => 0.15250462998037
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.024483808600005
'min' => '$0.024483'
'max_raw' => 0.15250462998037
'max' => '$0.1525046'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.15250462998037
]
1 => [
'year' => 2033
'avg' => 0.39225759017569
]
2 => [
'year' => 2034
'avg' => 0.24863171167103
]
3 => [
'year' => 2035
'avg' => 0.2932616740825
]
4 => [
'year' => 2036
'avg' => 0.5692216147187
]
5 => [
'year' => 2037
'avg' => 1.3907237371845
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.15250462998037
'min' => '$0.1525046'
'max_raw' => 1.3907237371845
'max' => '$1.39'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 1.3907237371845
]
]
]
]
'prediction_2025_max_price' => '$0.041862'
'last_price' => 0.04059132
'sma_50day_nextmonth' => '$0.03871'
'sma_200day_nextmonth' => '$0.063147'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'augmenter'
'sma_200day_date_nextmonth' => '4 févr. 2026'
'sma_50day_date_nextmonth' => '4 févr. 2026'
'daily_sma3' => '$0.040023'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.040229'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.040628'
'daily_sma10_action' => 'SELL'
'daily_sma21' => '$0.040721'
'daily_sma21_action' => 'SELL'
'daily_sma50' => '$0.044879'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.059033'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.069181'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.040246'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.040245'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.0405058'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.041429'
'daily_ema21_action' => 'SELL'
'daily_ema50' => '$0.046271'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.05479'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.06906'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.065557'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.086921'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.134246'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$1.85'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.041096'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.042883'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.049243'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.0614033'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.105495'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.724583'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$2.90'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '44.82'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 59.68
'stoch_rsi_14_action' => 'NEUTRAL'
'momentum_10' => -0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.040335'
'vwma_10_action' => 'BUY'
'hma_9' => '0.039743'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 52.42
'stochastic_fast_14_action' => 'NEUTRAL'
'cci_20' => -8.16
'cci_20_action' => 'NEUTRAL'
'adx_14' => 19.67
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '-0.0018085'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -47.58
'williams_percent_r_14_action' => 'NEUTRAL'
'ultimate_oscillator' => 45.61
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.009493'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 20
'buy_signals' => 13
'sell_pct' => 60.61
'buy_pct' => 39.39
'overall_action' => 'bearish'
'overall_action_label' => 'Baissier'
'overall_action_dir' => -1
'last_updated' => 1767676933
'last_updated_date' => '6 janvier 2026'
]
Prévision du prix de Juno Network pour 2026
La prévision du prix de Juno Network pour 2026 suggère que le prix moyen pourrait varier entre $0.014024 à la baisse et $0.041862 à la hausse. Sur le marché des cryptomonnaies, comparé au prix moyen d'aujourd'hui, Juno Network pourrait potentiellement gagner 3.13% d'ici 2026 si JUNO atteint l'objectif de prix prévu.
Prévision du prix de Juno Network de 2027 à 2032
La prévision du prix de JUNO pour 2027-2032 se situe actuellement dans une fourchette de prix comprise entre $0.024483 à la baisse et $0.1525046 à la hausse. Compte tenu de la volatilité des prix sur le marché, si Juno Network atteint l'objectif de prix le plus élevé, il pourrait gagner 275.71% d'ici 2032 par rapport au prix actuel.
| Prévision du Prix de Juno Network | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2027 | $0.01350083 | $0.024483 | $0.035466 |
| 2028 | $0.024365 | $0.042021 | $0.059677 |
| 2029 | $0.053522 | $0.114794 | $0.176066 |
| 2030 | $0.045519 | $0.088563 | $0.1316088 |
| 2031 | $0.053817 | $0.08698 | $0.120143 |
| 2032 | $0.082148 | $0.1525046 | $0.22286 |
Prévision du prix de Juno Network de 2032 à 2037
La prévision du prix de Juno Network pour 2032-2037 est actuellement estimée entre $0.1525046 à la baisse et $1.39 à la hausse. Par rapport au prix actuel, Juno Network pourrait potentiellement gagner 3326.16% d'ici 2037 s'il atteint l'objectif de prix le plus élevé. Veuillez noter que ces informations sont à titre général seulement et ne doivent pas être considérées comme un conseil en investissement à long terme.
| Prévision du Prix de Juno Network | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2032 | $0.082148 | $0.1525046 | $0.22286 |
| 2033 | $0.190895 | $0.392257 | $0.59362 |
| 2034 | $0.15347 | $0.248631 | $0.343792 |
| 2035 | $0.181449 | $0.293261 | $0.405073 |
| 2036 | $0.300356 | $0.569221 | $0.838087 |
| 2037 | $0.780015 | $1.39 | $2.00 |
Juno Network Histogramme des prix potentiels
Prévision du prix de Juno Network basée sur l'analyse technique
Au 6 janvier 2026, le sentiment global de prévision du prix pour Juno Network est Baissier, avec 13 indicateurs techniques montrant des signaux haussiers et 20 indiquant des signaux baissiers. La prévision du prix de JUNO a été mise à jour pour la dernière fois le 6 janvier 2026.
Moyennes Mobiles Simples sur 50 et 200 jours de Juno Network et Indice de Force Relative sur 14 jours - RSI (14)
Selon nos indicateurs techniques, le SMA sur 200 jours de Juno Network devrait augmenter au cours du prochain mois, atteignant $0.063147 d'ici le 4 févr. 2026. Le SMA à court terme sur 50 jours pour Juno Network devrait atteindre $0.03871 d'ici le 4 févr. 2026.
Le Relative Strength Index (RSI), un oscillateur de momentum, est un outil couramment utilisé pour identifier si une cryptomonnaie est survendue (en dessous de 30) ou surachetée (au-dessus de 70). Actuellement, le RSI est à 44.82, ce qui suggère que le marché de JUNO est dans un état NEUTRAL.
Moyennes Mobiles et Oscillateurs Populaires de JUNO pour le Samedi 19 Octobre 2024
Les moyennes mobiles (MA) sont des indicateurs largement utilisés sur les marchés financiers, conçus pour lisser les mouvements de prix sur une période donnée. En tant qu'indicateurs retardés, ils sont basés sur des données historiques de prix. Le tableau ci-dessous met en évidence deux types : la moyenne mobile simple (SMA) et la moyenne mobile exponentielle (EMA).
Moyenne Mobile Simple Quotidienne (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 3 | $0.040023 | BUY |
| SMA 5 | $0.040229 | BUY |
| SMA 10 | $0.040628 | SELL |
| SMA 21 | $0.040721 | SELL |
| SMA 50 | $0.044879 | SELL |
| SMA 100 | $0.059033 | SELL |
| SMA 200 | $0.069181 | SELL |
Moyenne Mobile Exponentielle Quotidienne (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 3 | $0.040246 | BUY |
| EMA 5 | $0.040245 | BUY |
| EMA 10 | $0.0405058 | BUY |
| EMA 21 | $0.041429 | SELL |
| EMA 50 | $0.046271 | SELL |
| EMA 100 | $0.05479 | SELL |
| EMA 200 | $0.06906 | SELL |
Moyenne Mobile Simple Hebdomadaire (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 21 | $0.065557 | SELL |
| SMA 50 | $0.086921 | SELL |
| SMA 100 | $0.134246 | SELL |
| SMA 200 | $1.85 | SELL |
Moyenne Mobile Exponentielle Hebdomadaire (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 21 | $0.0614033 | SELL |
| EMA 50 | $0.105495 | SELL |
| EMA 100 | $0.724583 | SELL |
| EMA 200 | $2.90 | SELL |
Oscillateurs de Juno Network
Un oscillateur est un outil d'analyse technique qui établit des limites hautes et basses entre deux extrêmes, créant un indicateur de tendance qui fluctue à l'intérieur de ces limites. Les traders utilisent cet indicateur pour identifier les conditions de surachat ou de survente à court terme.
| Période | Valeur | Action |
|---|---|---|
| RSI (14) | 44.82 | NEUTRAL |
| Stoch RSI (14) | 59.68 | NEUTRAL |
| Stochastique Rapide (14) | 52.42 | NEUTRAL |
| Indice de Canal des Matières Premières (20) | -8.16 | NEUTRAL |
| Indice Directionnel Moyen (14) | 19.67 | NEUTRAL |
| Oscillateur Impressionnant (5, 34) | -0.0018085 | NEUTRAL |
| Momentum (10) | -0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Plage de Pourcentage de Williams (14) | -47.58 | NEUTRAL |
| Oscillateur Ultime (7, 14, 28) | 45.61 | NEUTRAL |
| VWMA (10) | 0.040335 | BUY |
| Moyenne Mobile de Hull (9) | 0.039743 | BUY |
| Nuage Ichimoku B/L (9, 26, 52, 26) | -0.009493 | SELL |
Prévision du cours de Juno Network basée sur les flux monétaires mondiaux
Définitions des flux monétaires mondiaux utilisés pour la prédiction du cours de Juno Network
M0 : le total de toutes les devises physiques, plus les comptes à la banque centrale qui peuvent être échangés contre des devises physiques.
M1 : M0 plus le montant des comptes à vue, y compris les comptes de "chèques" et les comptes "courants".
M2 : M1 plus la plupart des comptes d'épargne, comptes du marché monétaire et comptes de certificats de dépôt (CD) de moins de 100 000 $.
Prédictions du cours de Juno Network par des sociétés Internet ou des niches technologiques
| Comparaison | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Action Facebook | $0.057037 | $0.080147 | $0.11262 | $0.15825 | $0.222368 | $0.312464 |
| Action Amazon.com | $0.084696 | $0.176723 | $0.368744 | $0.7694071 | $1.60 | $3.34 |
| Action Apple | $0.057575 | $0.081666 | $0.115838 | $0.1643073 | $0.233057 | $0.330574 |
| Action Netflix | $0.064046 | $0.101055 | $0.15945 | $0.251587 | $0.396965 | $0.626348 |
| Action Google | $0.052565 | $0.068072 | $0.088153 | $0.114157 | $0.147834 | $0.191444 |
| Action Tesla | $0.092017 | $0.208596 | $0.472872 | $1.07 | $2.43 | $5.50 |
| Action Kodak | $0.030439 | $0.022826 | $0.017117 | $0.012836 | $0.009625 | $0.007218 |
| Action Nokia | $0.02689 | $0.017813 | $0.01180072 | $0.007817 | $0.005178 | $0.00343 |
Ce calcul montre la valeur potentielle des cryptomonnaies si l'on suppose que leur capitalisation se comportera comme celle de certaines sociétés Internet ou niches technologiques. En extrapolant les données, vous pourrez obtenir une potentielle image des cours futurs pour 2024, 2025, 2026, 2027, 2028, 2029 et 2030.
Aperçu des prévisions relatives à Juno Network
Vous vous posez peut-être des questions telles que : "Devrais-je investir dans Juno Network maintenant ?", "Devrais-je acheter JUNO aujourd'hui ?", " Juno Network sera-t-il un bon ou un mauvais investissement à court ou à long terme ?".
Nous mettons régulièrement à jour les prévisions de Juno Network/JUNO avec de nouvelles valeurs. Regardez nos prévisions similaires. Nous faisons une prévision des cours futurs pour une grande quantité de devises numériques comme Juno Network en utilisant des méthodes d'analyse technique.
Si vous souhaitez trouver des cryptomonnaies ayant un bon rendement, vous devriez consulter un maximum d'informations disponibles à propos de Juno Network afin de prendre une décision responsable concernant cet investissement.
Le cours de Juno Network est de $0.04059 USD actuellement, mais ce cours peut subir une hausse ou une baisse, ce qui pourrait causer la perte de votre investissement, car les cryptomonnaies sont des actifs à haut risque.
Prévision du cours de Juno Network basée sur le modèle de croissance du Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si Juno Network présente 1 % de la précédente croissance annuelle moyenne du Bitcoin | $0.041646 | $0.042728 | $0.043839 | $0.044979 |
| Si Juno Network présente 2 % de la précédente croissance annuelle moyenne du Bitcoin | $0.0427015 | $0.044921 | $0.047256 | $0.049713 |
| Si Juno Network présente 5 % de la précédente croissance annuelle moyenne du Bitcoin | $0.045866 | $0.051827 | $0.058563 | $0.066175 |
| Si Juno Network présente 10 % de la précédente croissance annuelle moyenne du Bitcoin | $0.051142 | $0.064435 | $0.081184 | $0.102287 |
| Si Juno Network présente 20 % de la précédente croissance annuelle moyenne du Bitcoin | $0.061693 | $0.093765 | $0.14251 | $0.216596 |
| Si Juno Network présente 50 % de la précédente croissance annuelle moyenne du Bitcoin | $0.093346 | $0.214664 | $0.493656 | $1.13 |
| Si Juno Network présente 100 % de la précédente croissance annuelle moyenne du Bitcoin | $0.1461012 | $0.525865 | $1.89 | $6.81 |
Boîte à questions
Est-ce que JUNO est un bon investissement ?
La décision d'acquérir Juno Network dépend entièrement de votre tolérance individuelle au risque. Comme vous pouvez le discerner, la valeur de Juno Network a connu une hausse de 1.7645% au cours des 24 heures précédentes, et Juno Network a enregistré une déclin de sur une période de 30 jours précédents. Par conséquent, la détermination de si investir ou non dans Juno Network dépendra de la mesure dans laquelle cet investissement s'aligne avec vos aspirations de trading.
Est-ce que Juno Network peut monter ?
Il semble que la valeur moyenne de Juno Network pourrait potentiellement s'envoler jusqu'à $0.041862 pour la fin de cette année. En regardant les perspectives de Juno Network sur une période de cinq ans plus longue, la monnaie numérique pourrait potentiellement croître jusqu'à $0.1316088. Cependant, compte tenu de l'imprévisibilité du marché, il est essentiel de mener des recherches approfondies avant d'investir des fonds dans un projet, un réseau ou un actif particulier.
Quel sera le prix de Juno Network la semaine prochaine ?
Basé sur notre nouveau pronostic expérimental de Juno Network, le prix de Juno Network va augmenter de 0.86% durant la prochaine semaine et atteindre $0.040938 d'ici 13 janvier 2026.
Quel sera le prix de Juno Network le mois prochain ?
Basé sur notre nouveau pronostic expérimental de Juno Network, le prix de Juno Network va diminuer de -11.62% durant le prochain mois et atteindre $0.035875 d'ici 5 février 2026.
Jusqu'où le prix de Juno Network peut-il monter cette année en 2026 ?
Selon notre prédiction la plus récente sur la valeur de Juno Network en 2026, JUNO devrait fluctuer dans la fourchette de $0.014024 et $0.041862. Cependant, il est crucial de garder à l'esprit que le marché des cryptomonnaies est exceptionnellement instable, et cette prévision de prix de Juno Network ne prend pas en compte les fluctuations de prix soudaines et extrêmes.
Où sera Juno Network dans 5 ans ?
L'avenir de Juno Network semble suivre une tendance haussière, avec un prix maximum de $0.1316088 prévue après une période de cinq ans. Selon la prévision de Juno Network pour 2030, la valeur de Juno Network pourrait potentiellement atteindre son point le plus élevé d'environ $0.1316088, tandis que son point le plus bas devrait être autour de $0.045519.
Combien vaudra Juno Network en 2026 ?
Basé sur notre nouvelle simulation expérimentale de prédiction de prix de Juno Network, il est attendu que la valeur de JUNO en 2026 augmente de 3.13% jusqu'à $0.041862 si le meilleur scénario se produit. Le prix sera entre $0.041862 et $0.014024 durant 2026.
Combien vaudra Juno Network en 2027 ?
Selon notre dernière simulation expérimentale pour la prédiction de prix de Juno Network, le valeur de JUNO pourrait diminuer de -12.62% jusqu'à $0.035466 en 2027, en supposant les conditions les plus favorables. Il est prévu que le prix fluctue entre $0.035466 et $0.01350083 tout au long de l'année.
Combien vaudra Juno Network en 2028 ?
Notre nouveau modèle expérimental de prédiction de prix de Juno Network suggère que la valeur de JUNO en 2028 pourrait augmenter de 47.02%, atteignant $0.059677 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.059677 et $0.024365 durant l'année.
Combien vaudra Juno Network en 2029 ?
Basé sur notre modèle de prévision expérimental, la valeur de Juno Network pourrait connaître un 333.75% croissance en 2029, atteignant potentiellement $0.176066 sous des conditions optimales. Le range de prix prévu pour 2029 se situe entre $0.176066 et $0.053522.
Combien vaudra Juno Network en 2030 ?
En utilisant notre nouvelle simulation expérimentale pour les prédictions de prix de Juno Network, il est prévu que la valeur de JUNO en 2030 augmente de 224.23%, atteignant $0.1316088 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.1316088 et $0.045519 au cours de 2030.
Combien vaudra Juno Network en 2031 ?
Notre simulation expérimentale indique que le prix de Juno Network pourrait augmenter de 195.98% en 2031, atteignant potentiellement $0.120143 dans des conditions idéales. Il est probable que le prix fluctue entre $0.120143 et $0.053817 durant l'année.
Combien vaudra Juno Network en 2032 ?
Basé sur les résultats de notre dernière prédiction expérimentale de prix de Juno Network, JUNO pourrait connaître une 449.04% hausse en valeur, atteignant $0.22286 si le scénario le plus positif se réalise en 2032. Il est prévu que le prix reste dans une fourchette de $0.22286 et $0.082148 tout au long de l'année.
Combien vaudra Juno Network en 2033 ?
Selon notre prédiction expérimentale de prix de Juno Network, la valeur de JUNO est anticipée à augmenter de 1362.43% en 2033, avec le prix potentiel le plus élevé étant $0.59362. Tout au long de l'année, le prix de JUNO pourrait osciller entre $0.59362 et $0.190895.
Combien vaudra Juno Network en 2034 ?
Les résultats de notre nouvelle simulation de prédiction de prix de Juno Network suggèrent que JUNO pourrait augmenter de 746.96% en 2034, atteignant potentiellement $0.343792 dans les meilleures circonstances. La fourchette de prix prévue pour l'année est entre $0.343792 et $0.15347.
Combien vaudra Juno Network en 2035 ?
Basé sur notre prédiction expérimentale pour le prix de Juno Network, JUNO pourrait augmenter de 897.93%, avec la valeur potentiellement atteignant $0.405073 en 2035. La fourchette de prix attendue pour l'année se situe entre $0.405073 et $0.181449.
Combien vaudra Juno Network en 2036 ?
Notre récente simulation de prédiction de prix de Juno Network suggère que la valeur de JUNO pourrait augmenter de 1964.7% en 2036, pouvant atteindre $0.838087 si les conditions sont optimales. La fourchette de prix attendue pour 2036 est entre $0.838087 et $0.300356.
Combien vaudra Juno Network en 2037 ?
Selon la simulation expérimentale, la valeur de Juno Network pourrait augmenter de 4830.69% en 2037, avec un maximum de $2.00 sous des conditions favorables. Il est prévu que le prix chute entre $2.00 et $0.780015 au cours de l'année.
Prévisions liées
Prévision du cours de Data Lake
Prévision du cours de Wagmi
Prévision du cours de Fuse Network Token
Prévision du cours de Soil
Prévision du cours de WINR Protocol
Prévision du cours de Cakepie
Prévision du cours de Gyroscope GYD
Prévision du cours de Wrapped STEAMX
Prévision du cours de XANA
Prévision du cours de Radiant
Prévision du cours de Atletico Madrid
Prévision du cours de ParagonsDAO
Prévision du cours de Jade Protocol
Prévision du cours de SpartaDEX
Prévision du cours de Shiden Network
Prévision du cours de MaidSafeCoin
Prévision du cours de Syndicate
Prévision du cours de LORDS
Prévision du cours de Bad Idea AI
Prévision du cours de Vector ETH
Prévision du cours de Terracoin
Prévision du cours de Phantasma
Prévision du cours de Bifrost Native Coin
Prévision du cours de NvirWorld
Prévision du cours de OPEN Ticketing Ecosystem
Comment lire et prédire les mouvements de prix de Juno Network ?
Les traders de Juno Network utilisent des indicateurs et des modèles graphiques pour prédire la direction du marché. Ils identifient également des niveaux clés de support et de résistance pour évaluer quand une tendance baissière pourrait ralentir ou une tendance haussière pourrait s'arrêter.
Indicateurs de prédiction du prix de Juno Network
Les moyennes mobiles sont des outils populaires pour la prédiction du prix de Juno Network. Une moyenne mobile simple (SMA) calcule le prix de clôture moyen de JUNO sur une période spécifique, comme une SMA de 12 jours. Une moyenne mobile exponentielle (EMA) donne plus de poids aux prix récents, réagissant plus rapidement aux changements de prix.
Les moyennes mobiles couramment utilisées sur le marché des cryptomonnaies incluent les moyennes sur 50 jours, 100 jours et 200 jours, qui aident à identifier les niveaux clés de résistance et de support. Un mouvement de prix de JUNO au-dessus de ces moyennes est considéré comme haussier, tandis qu'une chute en dessous indique une faiblesse.
Les traders utilisent également le RSI et les niveaux de retracement de Fibonacci pour évaluer la direction future de JUNO.
Comment lire les graphiques de Juno Network et prédire les mouvements de prix ?
La plupart des traders préfèrent les graphiques en chandeliers aux simples graphiques linéaires parce qu'ils fournissent des informations plus détaillées. Les chandeliers peuvent représenter l'action des prix de Juno Network dans différentes périodes, comme 5 minutes pour les tendances à court terme et hebdomadaire pour les tendances à long terme. Les options populaires incluent les graphiques de 1 heure, 4 heures et 1 jour.
Par exemple, un graphique en chandeliers de 1 heure montre les prix d'ouverture, de clôture, les plus hauts et les plus bas de JUNO au sein de chaque heure. La couleur du chandelier est cruciale : le vert indique que le prix a clôturé plus haut qu'il n'a ouvert, tandis que le rouge signifie le contraire. Certains graphiques utilisent des chandeliers creux et pleins pour transmettre la même information.
Qu'est-ce qui affecte le prix de Juno Network ?
L'action du prix de Juno Network est déterminée par l'offre et la demande, influencée par des facteurs tels que les réductions de récompenses de bloc, les hard forks et les mises à jour de protocole. Les événements du monde réel, tels que les réglementations, l'adoption par les entreprises et les gouvernements et les piratages d'échanges de cryptomonnaies, impactent également le prix de JUNO. La capitalisation boursière de Juno Network peut changer rapidement.
Les traders surveillent souvent l'activité des « baleines » de JUNO, de grands détenteurs de Juno Network, car leurs actions peuvent influencer significativement les mouvements de prix sur le marché relativement petit de Juno Network.
Modèles de prédiction de prix haussiers et baissiers
Les traders identifient souvent des modèles de chandeliers pour obtenir un avantage dans les prédictions de prix des cryptomonnaies. Certaines formations indiquent des tendances haussières, tandis que d'autres suggèrent des mouvements baissiers.
Modèles de chandeliers haussiers couramment suivis :
- Marteau
- Englobante haussière
- Ligne pénétrante
- Étoile du matin
- Trois soldats blancs
Modèles de chandeliers baissiers courants :
- Harami baissier
- Nuage sombre
- Étoile du soir
- Étoile filante
- Pendu


