Predicción del precio de JUNO - Pronóstico de JUNO
Predicción de precio de JUNO hasta $0.041847 para el año 2026
| Año | Precio min. | Precio max. |
|---|---|---|
| 2026 | $0.014019 | $0.041847 |
| 2027 | $0.013495 | $0.035453 |
| 2028 | $0.024355 | $0.059655 |
| 2029 | $0.053503 | $0.17600092 |
| 2030 | $0.045502 | $0.131559 |
| 2031 | $0.053797 | $0.120099 |
| 2032 | $0.082117 | $0.222777 |
| 2033 | $0.190824 | $0.593399 |
| 2034 | $0.153413 | $0.343665 |
| 2035 | $0.181382 | $0.404923 |
Calculadora de ganancias de inversión
Si abres una posición corta de $10,000.00 en JUNO hoy y la cierras el Apr 06, 2026, nuestra previsión indica que podrías obtener una ganancia de alrededor de $3,954.59, equivalente a un ROI del 39.55% en los próximos 90 días.
Predicción del precio a largo plazo de Juno Network para 2027, 2028, 2029, 2030, 2031, 2032 y 2037
[
'name' => 'JUNO'
'name_with_ticker' => 'JUNO <small>JUNO</small>'
'name_lang' => 'Juno Network'
'name_lang_with_ticker' => 'Juno Network <small>JUNO</small>'
'name_with_lang' => 'Juno Network/JUNO'
'name_with_lang_with_ticker' => 'Juno Network/JUNO <small>JUNO</small>'
'image' => '/uploads/coins/juno-network.png?1717253932'
'price_for_sd' => 0.04057
'ticker' => 'JUNO'
'marketcap' => '$3.23M'
'low24h' => '$0.03747'
'high24h' => '$0.04119'
'volume24h' => '$21.82K'
'current_supply' => '79.51M'
'max_supply' => '105.63M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.04057'
'change_24h_pct' => '3.5796%'
'ath_price' => '$45.74'
'ath_days' => 1405
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '3 mar. 2022'
'ath_pct' => '-99.91%'
'fdv' => '$4.29M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$2.00'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.040923'
'next_week_prediction_price_date' => '13 de enero de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.035862'
'next_month_prediction_price_date' => '5 de febrero de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.014019'
'current_year_max_price_prediction' => '$0.041847'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.045502'
'grand_prediction_max_price' => '$0.131559'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.041345128215403
107 => 0.041499495915878
108 => 0.041847294227258
109 => 0.038875395736263
110 => 0.040209690908364
111 => 0.040993464315423
112 => 0.03745234754841
113 => 0.040923467822498
114 => 0.038823661595412
115 => 0.038110955823909
116 => 0.039070520253393
117 => 0.038696577062016
118 => 0.038375082664751
119 => 0.038195683267102
120 => 0.038900281480854
121 => 0.038867411132006
122 => 0.037714551697687
123 => 0.036210693562181
124 => 0.036715437714917
125 => 0.036532059432227
126 => 0.035867472879486
127 => 0.036315323973547
128 => 0.034343214407555
129 => 0.030950302400601
130 => 0.0331917640001
131 => 0.03310547016676
201 => 0.033061956902877
202 => 0.034746353345452
203 => 0.034584437493136
204 => 0.034290558635698
205 => 0.035862075563807
206 => 0.035288450745161
207 => 0.037056227273221
208 => 0.038220599227218
209 => 0.037925276836197
210 => 0.03902037428683
211 => 0.036727066000757
212 => 0.037488811021831
213 => 0.037645805614942
214 => 0.035842683288854
215 => 0.034610928929022
216 => 0.034528784956249
217 => 0.032393092642507
218 => 0.033533962237802
219 => 0.03453788026927
220 => 0.034057081439383
221 => 0.033904874893298
222 => 0.034682465127677
223 => 0.034742890548498
224 => 0.033365184550174
225 => 0.033651653253501
226 => 0.034846275367831
227 => 0.033621551841304
228 => 0.031242114086714
301 => 0.030651980625275
302 => 0.030573245943202
303 => 0.028972757191704
304 => 0.030691416165002
305 => 0.02994117546596
306 => 0.032311176844968
307 => 0.030957444767851
308 => 0.030899088083677
309 => 0.030810873396483
310 => 0.029433266612711
311 => 0.029734874946879
312 => 0.030737466985898
313 => 0.031095203120428
314 => 0.031057888310751
315 => 0.030732553737945
316 => 0.030881490239393
317 => 0.030401713875312
318 => 0.030232294855473
319 => 0.02969756182649
320 => 0.028911651997654
321 => 0.029020937579619
322 => 0.027463844564203
323 => 0.026615457648223
324 => 0.02638063533144
325 => 0.026066621115537
326 => 0.026416104072686
327 => 0.027459433515329
328 => 0.026200956852813
329 => 0.024043386886802
330 => 0.02417306051808
331 => 0.024464398667114
401 => 0.023921491953784
402 => 0.023407676312323
403 => 0.023854397325393
404 => 0.022940206488052
405 => 0.024574874262208
406 => 0.024530661080021
407 => 0.025139964139049
408 => 0.025520973846017
409 => 0.024642869824813
410 => 0.024422029038126
411 => 0.024547829986877
412 => 0.022468620529099
413 => 0.02497004836775
414 => 0.024991680819572
415 => 0.024806450633624
416 => 0.026138383734786
417 => 0.028949178018589
418 => 0.027891644145084
419 => 0.027482135065132
420 => 0.026703658004795
421 => 0.0277409324663
422 => 0.027661285971659
423 => 0.027301094317855
424 => 0.027083249281768
425 => 0.027484635440252
426 => 0.027033513094788
427 => 0.026952479125529
428 => 0.026461501437652
429 => 0.026286244741141
430 => 0.026156491660214
501 => 0.026013646267389
502 => 0.026328727609108
503 => 0.025614711836369
504 => 0.024753678810276
505 => 0.024682093230662
506 => 0.024879747309843
507 => 0.024792300093421
508 => 0.024681674567034
509 => 0.02447046031009
510 => 0.024407797551934
511 => 0.024611421116294
512 => 0.024381541984122
513 => 0.024720741165806
514 => 0.024628497757135
515 => 0.024113233574729
516 => 0.023471023628218
517 => 0.023465306612613
518 => 0.023326943533072
519 => 0.023150717348249
520 => 0.02310169525514
521 => 0.023816775727678
522 => 0.025296970905273
523 => 0.025006373173843
524 => 0.025216359816455
525 => 0.026249286266687
526 => 0.026577622524034
527 => 0.02634457722564
528 => 0.026025570447589
529 => 0.026039605126837
530 => 0.027129747857353
531 => 0.027197738722259
601 => 0.027369529703192
602 => 0.027590329661816
603 => 0.026382180413359
604 => 0.025982701405882
605 => 0.025793406089887
606 => 0.025210449783131
607 => 0.025839118181071
608 => 0.025472820027856
609 => 0.025522246163252
610 => 0.025490057327735
611 => 0.025507634608526
612 => 0.024574417339251
613 => 0.024914432663719
614 => 0.024349091239734
615 => 0.02359216253557
616 => 0.02358962504514
617 => 0.023774882273144
618 => 0.023664684024811
619 => 0.023368143372004
620 => 0.023410265572103
621 => 0.023041230776175
622 => 0.023455073077919
623 => 0.023466940594334
624 => 0.02330758876602
625 => 0.02394516993109
626 => 0.024206387454636
627 => 0.024101498667592
628 => 0.024199028177725
629 => 0.025018448821554
630 => 0.025152050140327
701 => 0.025211387020919
702 => 0.025131883461556
703 => 0.024214005682862
704 => 0.024254717465465
705 => 0.023956001417418
706 => 0.02370361783474
707 => 0.023713711854469
708 => 0.023843469823535
709 => 0.024410130484649
710 => 0.025602634439494
711 => 0.025647889092871
712 => 0.025702739052936
713 => 0.025479636699972
714 => 0.025412346895516
715 => 0.025501119516565
716 => 0.025948961303126
717 => 0.027100931966018
718 => 0.026693748596218
719 => 0.026362702178384
720 => 0.026653119136298
721 => 0.02660841172199
722 => 0.026231036153284
723 => 0.026220444477959
724 => 0.025496140107343
725 => 0.025228381273139
726 => 0.025004621949877
727 => 0.02476028261026
728 => 0.024615430059406
729 => 0.024837989411824
730 => 0.024888891368967
731 => 0.024402261455232
801 => 0.02433593559615
802 => 0.024733328088342
803 => 0.024558450468813
804 => 0.024738316437255
805 => 0.024780046884795
806 => 0.024773327321607
807 => 0.024590735002253
808 => 0.024707113901628
809 => 0.024431843110386
810 => 0.024132527469246
811 => 0.023941582738223
812 => 0.023774958135261
813 => 0.023867411149263
814 => 0.0235378330356
815 => 0.023432394363942
816 => 0.024667687349128
817 => 0.025580211558922
818 => 0.025566943095512
819 => 0.025486174736878
820 => 0.02536616933921
821 => 0.025940182160819
822 => 0.025740207571519
823 => 0.025885705793671
824 => 0.025922741197749
825 => 0.026034836211546
826 => 0.026074900544086
827 => 0.025953798304681
828 => 0.025547364397847
829 => 0.024534569744591
830 => 0.024063111099514
831 => 0.023907521893874
901 => 0.023913177265993
902 => 0.023757176856256
903 => 0.023803125968372
904 => 0.023741197630233
905 => 0.023623920339873
906 => 0.023860169607062
907 => 0.023887395134291
908 => 0.023832251732361
909 => 0.023845239999736
910 => 0.023388676183807
911 => 0.023423387739128
912 => 0.023230109388172
913 => 0.023193872027373
914 => 0.022705281186827
915 => 0.021839671690426
916 => 0.022319303378179
917 => 0.021739975745794
918 => 0.021520575593164
919 => 0.022559181791991
920 => 0.022454934536081
921 => 0.022276508549155
922 => 0.022012579327258
923 => 0.021914685411518
924 => 0.021319912968928
925 => 0.021284770640032
926 => 0.021579555922786
927 => 0.021443522657738
928 => 0.021252480433783
929 => 0.020560544864259
930 => 0.019782580192119
1001 => 0.01980606205546
1002 => 0.02005351814312
1003 => 0.020773030091992
1004 => 0.020491904325885
1005 => 0.020287944357027
1006 => 0.020249748785874
1007 => 0.020727846326697
1008 => 0.021404454511492
1009 => 0.021721903933543
1010 => 0.021407321197373
1011 => 0.021045945488398
1012 => 0.021067940753349
1013 => 0.021214265397019
1014 => 0.02122964204815
1015 => 0.02099442361163
1016 => 0.021060636223711
1017 => 0.020960053211352
1018 => 0.020342775450171
1019 => 0.02033161085288
1020 => 0.020180120935338
1021 => 0.020175533880841
1022 => 0.01991781174017
1023 => 0.019881754631142
1024 => 0.019370031678225
1025 => 0.019706849275474
1026 => 0.019480929714957
1027 => 0.01914041564822
1028 => 0.019081710894767
1029 => 0.01907994615899
1030 => 0.019429577967977
1031 => 0.019702763624221
1101 => 0.019484859682437
1102 => 0.019435247178783
1103 => 0.019964978920912
1104 => 0.019897565728114
1105 => 0.019839186337919
1106 => 0.021343871669647
1107 => 0.020152795817524
1108 => 0.019633418761765
1109 => 0.018990591028236
1110 => 0.019199898979692
1111 => 0.019244003240437
1112 => 0.017698118419708
1113 => 0.017070953140466
1114 => 0.016855733650855
1115 => 0.016731871791827
1116 => 0.016788317196346
1117 => 0.016223794885878
1118 => 0.016603163214849
1119 => 0.016114334611867
1120 => 0.016032380905791
1121 => 0.016906467002167
1122 => 0.017028090976141
1123 => 0.016509205317562
1124 => 0.016842413910327
1125 => 0.016721587842645
1126 => 0.016122714175242
1127 => 0.016099841606164
1128 => 0.015799347851288
1129 => 0.015329133311965
1130 => 0.015114232649954
1201 => 0.015002310519325
1202 => 0.015048491771741
1203 => 0.01502514111735
1204 => 0.014872762302456
1205 => 0.015033875292652
1206 => 0.014622298179186
1207 => 0.014458404856301
1208 => 0.01438437804465
1209 => 0.014019079666954
1210 => 0.014600431834795
1211 => 0.014714965535541
1212 => 0.014829724903059
1213 => 0.015828626847754
1214 => 0.015778724529465
1215 => 0.016229817183386
1216 => 0.016212288552361
1217 => 0.016083629620246
1218 => 0.01554083874902
1219 => 0.015757185515974
1220 => 0.015091303795043
1221 => 0.01559022765592
1222 => 0.015362539641375
1223 => 0.015513246109169
1224 => 0.015242262291421
1225 => 0.01539223592481
1226 => 0.014742125724908
1227 => 0.014135061967537
1228 => 0.014379362144799
1229 => 0.014644944376597
1230 => 0.015220794324229
1231 => 0.014877822846078
]
'min_raw' => 0.014019079666954
'max_raw' => 0.041847294227258
'avg_raw' => 0.027933186947106
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.014019'
'max' => '$0.041847'
'avg' => '$0.027933'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.026557150333046
'max_diff' => 0.0012710642272577
'year' => 2026
]
1 => [
'items' => [
101 => 0.015001168358808
102 => 0.014587981538951
103 => 0.013735459108605
104 => 0.013740284292977
105 => 0.013609142290279
106 => 0.013495816452902
107 => 0.014917217246086
108 => 0.014740443588433
109 => 0.014458777900526
110 => 0.014835798616739
111 => 0.014935488878229
112 => 0.014938326919825
113 => 0.015213391502061
114 => 0.015360193518909
115 => 0.015386068010654
116 => 0.015818888073966
117 => 0.015963963650153
118 => 0.016561509416605
119 => 0.015347738393428
120 => 0.015322741577949
121 => 0.014841104071389
122 => 0.01453564195034
123 => 0.014862019324151
124 => 0.015151145122393
125 => 0.014850088015875
126 => 0.014889399718324
127 => 0.014485255150093
128 => 0.014629717816466
129 => 0.014754148525969
130 => 0.014685445201881
131 => 0.014582593000441
201 => 0.015127440104085
202 => 0.015096697695224
203 => 0.015604071844117
204 => 0.015999606275853
205 => 0.016708474687761
206 => 0.015968733545789
207 => 0.015941774438371
208 => 0.01620530403776
209 => 0.015963923305145
210 => 0.016116467595978
211 => 0.016683897444182
212 => 0.01669588634273
213 => 0.016495056845223
214 => 0.016482836352048
215 => 0.016521407853878
216 => 0.016747322344857
217 => 0.016668380880058
218 => 0.016759733941677
219 => 0.016873972344079
220 => 0.017346510812493
221 => 0.017460438237456
222 => 0.017183653659393
223 => 0.017208644207767
224 => 0.017105119177664
225 => 0.017005115295751
226 => 0.017229909417899
227 => 0.017640725094464
228 => 0.017638169431462
301 => 0.017733470683309
302 => 0.017792842573692
303 => 0.017537974957289
304 => 0.017372065510753
305 => 0.017435685749647
306 => 0.017537415897108
307 => 0.01740269603391
308 => 0.016571142629943
309 => 0.01682338281287
310 => 0.016781397712516
311 => 0.016721605824049
312 => 0.016975235278498
313 => 0.016950772098883
314 => 0.016218004893637
315 => 0.016264914272659
316 => 0.016220857608344
317 => 0.016363213703892
318 => 0.015956235608812
319 => 0.01608141932982
320 => 0.016159933386111
321 => 0.01620617876844
322 => 0.016373248800168
323 => 0.016353645060259
324 => 0.01637203020417
325 => 0.016619750956369
326 => 0.017872637513496
327 => 0.017940829364462
328 => 0.017605027750307
329 => 0.017739173871768
330 => 0.017481642653095
331 => 0.017654525085499
401 => 0.017772806855013
402 => 0.017238314282858
403 => 0.017206665101563
404 => 0.016948070959942
405 => 0.017087024804129
406 => 0.016865939246893
407 => 0.016920185909394
408 => 0.016768507511902
409 => 0.01704149842852
410 => 0.017346744691799
411 => 0.017423861952443
412 => 0.017220999640756
413 => 0.017074113957817
414 => 0.016816231085727
415 => 0.017245096049307
416 => 0.01737050923408
417 => 0.017244437307237
418 => 0.017215223687062
419 => 0.017159863929617
420 => 0.017226968521306
421 => 0.017369826206942
422 => 0.017302457160563
423 => 0.017346955602587
424 => 0.017177373428189
425 => 0.017538059329075
426 => 0.018110915343472
427 => 0.018112757169229
428 => 0.018045387759706
429 => 0.018017821648824
430 => 0.018086946751312
501 => 0.018124444283752
502 => 0.018347982189823
503 => 0.018587847269181
504 => 0.01970719293321
505 => 0.019392885149885
506 => 0.020386035213183
507 => 0.021171487968856
508 => 0.021407010906596
509 => 0.021190340886086
510 => 0.020449124450205
511 => 0.020412756835701
512 => 0.021520447124415
513 => 0.021207473882424
514 => 0.021170246711161
515 => 0.02077421250523
516 => 0.021008317770726
517 => 0.020957115515045
518 => 0.020876290249552
519 => 0.021322946788205
520 => 0.022159047955259
521 => 0.022028733747466
522 => 0.021931460236451
523 => 0.021505236027077
524 => 0.021761918201744
525 => 0.021670518595769
526 => 0.022063229306663
527 => 0.021830596181137
528 => 0.021205102802298
529 => 0.021304714684531
530 => 0.021289658548923
531 => 0.021599512752851
601 => 0.021506502211886
602 => 0.021271496748034
603 => 0.022156190252365
604 => 0.022098743177118
605 => 0.022180189995589
606 => 0.022216045403907
607 => 0.022754542749945
608 => 0.022975147882624
609 => 0.023025229109979
610 => 0.023234786923811
611 => 0.023020015120668
612 => 0.023879255462939
613 => 0.024450600152485
614 => 0.025114246410522
615 => 0.026084011964811
616 => 0.026448652784057
617 => 0.026382783683834
618 => 0.027118048859315
619 => 0.028439304035628
620 => 0.026649847131098
621 => 0.028534149596709
622 => 0.027937601191414
623 => 0.026523195653909
624 => 0.02643212461204
625 => 0.027389976463624
626 => 0.029514399680614
627 => 0.028982255759767
628 => 0.029515270077433
629 => 0.028893480563153
630 => 0.028862603472916
701 => 0.029485071148585
702 => 0.030939500801734
703 => 0.030248555792003
704 => 0.029257916693887
705 => 0.029989389187884
706 => 0.029355720019
707 => 0.027927886028672
708 => 0.02898184883934
709 => 0.028277093922979
710 => 0.028482778874405
711 => 0.029964068884213
712 => 0.029785836151226
713 => 0.030016485811618
714 => 0.029609395198178
715 => 0.029229108372928
716 => 0.028519274773128
717 => 0.0283091280386
718 => 0.028367205035736
719 => 0.028309099258525
720 => 0.027911953883144
721 => 0.027826190377143
722 => 0.02768324744309
723 => 0.027727551435465
724 => 0.027458776900014
725 => 0.027966009980063
726 => 0.028060156909443
727 => 0.028429278845374
728 => 0.028467602309277
729 => 0.029495601646723
730 => 0.028929396886485
731 => 0.02930925592342
801 => 0.029275277755784
802 => 0.02655385011076
803 => 0.026928838828885
804 => 0.027512203596345
805 => 0.027249398559336
806 => 0.026877853723914
807 => 0.026577811348337
808 => 0.026123216468429
809 => 0.026763050032178
810 => 0.027604363129793
811 => 0.028488939397811
812 => 0.0295516998241
813 => 0.029314504068848
814 => 0.028469071830882
815 => 0.028506997303488
816 => 0.028741437652018
817 => 0.02843781609952
818 => 0.028348272176292
819 => 0.028729135692007
820 => 0.028731758489721
821 => 0.028382405199682
822 => 0.02799416294878
823 => 0.027992536199573
824 => 0.027923452241
825 => 0.028905770445912
826 => 0.029445946135041
827 => 0.029507876407263
828 => 0.029441777734286
829 => 0.029467216490153
830 => 0.029152900158608
831 => 0.029871334084907
901 => 0.030530640101431
902 => 0.030353932004984
903 => 0.030089021447874
904 => 0.029878007429314
905 => 0.030304223808333
906 => 0.030285245063902
907 => 0.030524881638542
908 => 0.030514010339309
909 => 0.030433429572445
910 => 0.030353934882777
911 => 0.030669122341638
912 => 0.030578353415242
913 => 0.030487443499632
914 => 0.030305109746264
915 => 0.030329891931589
916 => 0.030065027115022
917 => 0.029942488531489
918 => 0.028099802246318
919 => 0.027607376259409
920 => 0.027762303499146
921 => 0.027813309569151
922 => 0.027599005148587
923 => 0.027906262637387
924 => 0.027858376883224
925 => 0.028044672340444
926 => 0.027928283026781
927 => 0.027933059684812
928 => 0.028275335839476
929 => 0.028374700063321
930 => 0.028324162617106
1001 => 0.028359557312113
1002 => 0.029175213119384
1003 => 0.029059252946794
1004 => 0.028997651416278
1005 => 0.029014715461224
1006 => 0.029223133007839
1007 => 0.029281478541715
1008 => 0.029034264414814
1009 => 0.029150852026188
1010 => 0.02964726727825
1011 => 0.029820984521802
1012 => 0.030375406574211
1013 => 0.030139878232281
1014 => 0.030572200697321
1015 => 0.031901012565264
1016 => 0.032962559432164
1017 => 0.031986317063083
1018 => 0.033935712696967
1019 => 0.035453596822141
1020 => 0.035395337901249
1021 => 0.035130659694732
1022 => 0.033402588973259
1023 => 0.031812392531277
1024 => 0.033142659378302
1025 => 0.033146050502067
1026 => 0.033031779400153
1027 => 0.032322051400246
1028 => 0.03300708240418
1029 => 0.033061457677606
1030 => 0.03303102198404
1031 => 0.032486875190556
1101 => 0.031656063612045
1102 => 0.031818402205804
1103 => 0.032084316133999
1104 => 0.031580885592469
1105 => 0.031420009030518
1106 => 0.031719109167203
1107 => 0.032682872127592
1108 => 0.032500678322629
1109 => 0.032495920506078
1110 => 0.033275422865906
1111 => 0.032717467403407
1112 => 0.031820449815352
1113 => 0.031593941044159
1114 => 0.030789987501017
1115 => 0.03134528107685
1116 => 0.031365265104074
1117 => 0.031061136487553
1118 => 0.031845128176434
1119 => 0.031837903555002
1120 => 0.032582186981831
1121 => 0.034004977353838
1122 => 0.033584188229573
1123 => 0.03309485625978
1124 => 0.0331480602126
1125 => 0.033731576256494
1126 => 0.03337876913598
1127 => 0.033505641036376
1128 => 0.033731384220678
1129 => 0.033867580688655
1130 => 0.033128463636803
1201 => 0.032956140095961
1202 => 0.032603626608742
1203 => 0.032511662419902
1204 => 0.032798777299807
1205 => 0.032723132672871
1206 => 0.031363585523968
1207 => 0.031221505282458
1208 => 0.031225862680622
1209 => 0.030868595157799
1210 => 0.030323676431465
1211 => 0.031755690308865
1212 => 0.031640679553488
1213 => 0.031513716580678
1214 => 0.031529268820407
1215 => 0.032150857509132
1216 => 0.03179030467869
1217 => 0.032748893471868
1218 => 0.032551836433807
1219 => 0.032349725626285
1220 => 0.032321787756239
1221 => 0.032243992338627
1222 => 0.031977202905234
1223 => 0.031655038632853
1224 => 0.031442317874835
1225 => 0.029003876204901
1226 => 0.029456436795078
1227 => 0.029977066501881
1228 => 0.030156785790377
1229 => 0.029849363511209
1230 => 0.031989341810577
1231 => 0.032380336467215
]
'min_raw' => 0.013495816452902
'max_raw' => 0.035453596822141
'avg_raw' => 0.024474706637522
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.013495'
'max' => '$0.035453'
'avg' => '$0.024474'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00052326321405255
'max_diff' => -0.0063936974051165
'year' => 2027
]
2 => [
'items' => [
101 => 0.031195988148307
102 => 0.030974444934462
103 => 0.032003866146793
104 => 0.031382999314133
105 => 0.031662575610863
106 => 0.031058284577389
107 => 0.032286157304091
108 => 0.032276802971163
109 => 0.031799132747713
110 => 0.032202856349628
111 => 0.032132699438645
112 => 0.03159341093282
113 => 0.032303253711637
114 => 0.032303605784799
115 => 0.031843858580175
116 => 0.031306974496777
117 => 0.031210992303302
118 => 0.031138682613912
119 => 0.031644791859938
120 => 0.032098567827363
121 => 0.032942932402137
122 => 0.033155225717843
123 => 0.033983820662209
124 => 0.033490432716395
125 => 0.033709145202331
126 => 0.033946588544584
127 => 0.03406042761455
128 => 0.033874932958982
129 => 0.035162081970868
130 => 0.035270756784698
131 => 0.035307194509741
201 => 0.034873175104996
202 => 0.035258685919916
203 => 0.035078318176391
204 => 0.035547584937441
205 => 0.035621171957473
206 => 0.03555884636944
207 => 0.03558220405109
208 => 0.034483849438091
209 => 0.034426893957125
210 => 0.033650301932774
211 => 0.033966768922976
212 => 0.033375149053452
213 => 0.033562757808438
214 => 0.033645453960034
215 => 0.033602258183405
216 => 0.033984661491778
217 => 0.033659540559827
218 => 0.032801492965576
219 => 0.031943211596833
220 => 0.031932436573389
221 => 0.031706466238923
222 => 0.031543131075636
223 => 0.031574595222711
224 => 0.031685478980938
225 => 0.031536686310032
226 => 0.03156843877035
227 => 0.03209574117716
228 => 0.032201487914297
229 => 0.031842119183588
301 => 0.030399201873129
302 => 0.030045106345859
303 => 0.030299623188841
304 => 0.03017798053088
305 => 0.024355985583231
306 => 0.025723776937309
307 => 0.024911081760521
308 => 0.025285609088292
309 => 0.024456057759188
310 => 0.024851963133947
311 => 0.024778853867378
312 => 0.026978221888848
313 => 0.026943881782324
314 => 0.026960318574079
315 => 0.02617574767779
316 => 0.027425590418999
317 => 0.02804130789621
318 => 0.027927354977968
319 => 0.027956034472471
320 => 0.027463225737212
321 => 0.026965090039863
322 => 0.026412580888968
323 => 0.027439074599135
324 => 0.027324946021397
325 => 0.027586715916563
326 => 0.028252470462891
327 => 0.028350505348794
328 => 0.028482265229619
329 => 0.02843503869165
330 => 0.029560166425475
331 => 0.029423906033077
401 => 0.029752254373966
402 => 0.029076816924909
403 => 0.02831249533819
404 => 0.02845776788427
405 => 0.028443776969874
406 => 0.028265656571595
407 => 0.028104857440329
408 => 0.027837172191647
409 => 0.028684167928441
410 => 0.028649781448323
411 => 0.029206458591524
412 => 0.02910806049919
413 => 0.028450933956486
414 => 0.028474403359514
415 => 0.028632246373889
416 => 0.029178542848861
417 => 0.029340720837332
418 => 0.029265593531397
419 => 0.02944341429205
420 => 0.029583956570933
421 => 0.029461064238451
422 => 0.031200960509414
423 => 0.030478434272565
424 => 0.0308305885331
425 => 0.030914575249224
426 => 0.030699445041922
427 => 0.030746099080651
428 => 0.03081676723686
429 => 0.031245850443119
430 => 0.032371888932567
501 => 0.032870603714341
502 => 0.03437101174146
503 => 0.032829192394159
504 => 0.032737707214773
505 => 0.033007976008439
506 => 0.033888874354678
507 => 0.03460275972573
508 => 0.034839596688343
509 => 0.034870898602704
510 => 0.03531522048919
511 => 0.035569897508411
512 => 0.035261268125345
513 => 0.03499973703804
514 => 0.034062965145746
515 => 0.034171399043024
516 => 0.034918401066549
517 => 0.035973585422977
518 => 0.036879043374013
519 => 0.036561983557956
520 => 0.038980926145125
521 => 0.039220754422149
522 => 0.03918761790884
523 => 0.039733982415133
524 => 0.038649560135339
525 => 0.038185948601035
526 => 0.035056283027619
527 => 0.035935591396349
528 => 0.037213717750268
529 => 0.037044552934599
530 => 0.036116343411968
531 => 0.036878339243855
601 => 0.036626399592021
602 => 0.036427684335633
603 => 0.037338037447993
604 => 0.036337066805708
605 => 0.037203732302409
606 => 0.036092224838384
607 => 0.036563431860488
608 => 0.036295951965022
609 => 0.036469044238492
610 => 0.035457150344646
611 => 0.03600314372743
612 => 0.035434435224863
613 => 0.035434165582984
614 => 0.03542161131127
615 => 0.0360906943425
616 => 0.036112513116127
617 => 0.03561805974512
618 => 0.035546801289544
619 => 0.035810281147876
620 => 0.035501815239254
621 => 0.035646144496437
622 => 0.035506186825424
623 => 0.035474679405719
624 => 0.035223622924967
625 => 0.035115460890117
626 => 0.035157874010974
627 => 0.035013096164027
628 => 0.034925862274398
629 => 0.035404258294977
630 => 0.035148670599622
701 => 0.035365085815021
702 => 0.035118453363296
703 => 0.034263517832976
704 => 0.03377183536871
705 => 0.032156941404502
706 => 0.032614923329481
707 => 0.03291856581956
708 => 0.0328182119784
709 => 0.033033810860992
710 => 0.033047046881362
711 => 0.03297695348686
712 => 0.032895794315548
713 => 0.032856290519337
714 => 0.033150719451442
715 => 0.033321645356551
716 => 0.032949040405651
717 => 0.032861744278953
718 => 0.033238468456395
719 => 0.033468269987009
720 => 0.035164995374731
721 => 0.035039296477658
722 => 0.035354776042149
723 => 0.035319257884616
724 => 0.035649930728038
725 => 0.036190441074264
726 => 0.035091432411318
727 => 0.035282182314345
728 => 0.035235414843181
729 => 0.035746009830257
730 => 0.035747603852073
731 => 0.03544147665121
801 => 0.035607433173145
802 => 0.03551480079538
803 => 0.035682200022018
804 => 0.035037617692252
805 => 0.035822649391544
806 => 0.036267711778717
807 => 0.036273891470394
808 => 0.036484847509681
809 => 0.036699191063346
810 => 0.037110604849216
811 => 0.036687716956153
812 => 0.035926982803839
813 => 0.035981905352479
814 => 0.035535887197319
815 => 0.035543384843087
816 => 0.035503361822377
817 => 0.035623473920322
818 => 0.035063975543262
819 => 0.035195288694048
820 => 0.035011449513979
821 => 0.03528178268387
822 => 0.034990948880741
823 => 0.03523539229049
824 => 0.035340885962711
825 => 0.035730159884321
826 => 0.03493345280601
827 => 0.033308913141005
828 => 0.033650411074229
829 => 0.033145308806907
830 => 0.033192057944808
831 => 0.033286498643437
901 => 0.032980385440106
902 => 0.033038782192566
903 => 0.033036695849636
904 => 0.033018716873404
905 => 0.032939085006564
906 => 0.032823603044963
907 => 0.03328364763651
908 => 0.033361818177171
909 => 0.03353558160578
910 => 0.034052583704459
911 => 0.034000923003052
912 => 0.034085183750429
913 => 0.033901243012009
914 => 0.033200590428108
915 => 0.033238639234355
916 => 0.032764170010763
917 => 0.03352344836098
918 => 0.033343641225664
919 => 0.033227718395812
920 => 0.033196087777669
921 => 0.033714371424551
922 => 0.0338694500148
923 => 0.033772815444294
924 => 0.033574615120906
925 => 0.033955218334476
926 => 0.034057051698067
927 => 0.034079848432705
928 => 0.034754204353723
929 => 0.03411753743753
930 => 0.034270789492183
1001 => 0.035466418274854
1002 => 0.034382147954465
1003 => 0.034956510125288
1004 => 0.034928398085863
1005 => 0.0352222223371
1006 => 0.034904295921174
1007 => 0.034908237000131
1008 => 0.035169133029851
1009 => 0.034802751608956
1010 => 0.034712030416709
1011 => 0.034586699739378
1012 => 0.0348603546882
1013 => 0.035024398453671
1014 => 0.036346470726493
1015 => 0.037200589708557
1016 => 0.037163510150967
1017 => 0.037502347897316
1018 => 0.037349698389188
1019 => 0.036856752860536
1020 => 0.037698150769641
1021 => 0.037431897265616
1022 => 0.03745384688099
1023 => 0.03745302991521
1024 => 0.037630065219101
1025 => 0.037504619481247
1026 => 0.037257353055195
1027 => 0.037421500048249
1028 => 0.037908957933995
1029 => 0.039422042168385
1030 => 0.040268784151649
1031 => 0.039371067237792
1101 => 0.039990300344062
1102 => 0.039618981135616
1103 => 0.039551501389652
1104 => 0.039940425541357
1105 => 0.040330030453304
1106 => 0.040305214304722
1107 => 0.040022381145081
1108 => 0.039862615869826
1109 => 0.041072412059351
1110 => 0.041963769283453
1111 => 0.041902984696504
1112 => 0.04217126809509
1113 => 0.042958956451033
1114 => 0.043030972802669
1115 => 0.04302190039764
1116 => 0.042843400355982
1117 => 0.043618981836667
1118 => 0.044265985552911
1119 => 0.0428020827537
1120 => 0.043359517775745
1121 => 0.043609768316576
1122 => 0.043977210356505
1123 => 0.044597146668302
1124 => 0.045270561932899
1125 => 0.045365790234935
1126 => 0.045298221197546
1127 => 0.044854085728171
1128 => 0.045590944746208
1129 => 0.046022579477503
1130 => 0.046279608082205
1201 => 0.046931389858246
1202 => 0.04361131377872
1203 => 0.041261198911144
1204 => 0.040894194538502
1205 => 0.041640512362004
1206 => 0.041837310420288
1207 => 0.041757981369758
1208 => 0.039112713423205
1209 => 0.040880267750215
1210 => 0.042782007585888
1211 => 0.042855061158055
1212 => 0.043807111883298
1213 => 0.044117138625315
1214 => 0.044883664247276
1215 => 0.04483571786092
1216 => 0.045022354651781
1217 => 0.044979450085661
1218 => 0.046399277389331
1219 => 0.047965557751675
1220 => 0.047911322443194
1221 => 0.047686151109719
1222 => 0.048020568937347
1223 => 0.04963713812409
1224 => 0.049488310338368
1225 => 0.049632883855076
1226 => 0.051538910032094
1227 => 0.054017015191278
1228 => 0.052865686547147
1229 => 0.055363738419019
1230 => 0.056936129656322
1231 => 0.05965541771295
]
'min_raw' => 0.024355985583231
'max_raw' => 0.05965541771295
'avg_raw' => 0.042005701648091
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.024355'
'max' => '$0.059655'
'avg' => '$0.0420057'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.010860169130329
'max_diff' => 0.024201820890809
'year' => 2028
]
3 => [
'items' => [
101 => 0.059314949455485
102 => 0.060373548340872
103 => 0.058705440216751
104 => 0.054875126783495
105 => 0.054268965020831
106 => 0.055482516220144
107 => 0.058465913427061
108 => 0.055388558425089
109 => 0.056011103334033
110 => 0.055831810358376
111 => 0.055822256597649
112 => 0.056186884786632
113 => 0.055657972580785
114 => 0.053503089104675
115 => 0.054490659502968
116 => 0.054109311145161
117 => 0.054532445579551
118 => 0.056815927608039
119 => 0.055806345771832
120 => 0.054742833319156
121 => 0.056076713947118
122 => 0.057775202357626
123 => 0.057668914005374
124 => 0.057462670176919
125 => 0.058625255839341
126 => 0.060545506748024
127 => 0.061064542852448
128 => 0.061447684693508
129 => 0.061500513480156
130 => 0.062044682815535
131 => 0.059118547150871
201 => 0.063762399599187
202 => 0.064564264633176
203 => 0.064413547240686
204 => 0.065304786478326
205 => 0.065042561286055
206 => 0.064662638124327
207 => 0.066075441888008
208 => 0.064455776380332
209 => 0.062156865102403
210 => 0.060895636908022
211 => 0.062556523934759
212 => 0.063570769685019
213 => 0.064241121607795
214 => 0.064443969694589
215 => 0.059345694732879
216 => 0.05659800729181
217 => 0.058359243439235
218 => 0.060508073093119
219 => 0.059106610293647
220 => 0.059161544982066
221 => 0.057163427327964
222 => 0.060684862168862
223 => 0.060171818732472
224 => 0.062833488988022
225 => 0.062198260020297
226 => 0.064368748788253
227 => 0.063797186354651
228 => 0.06616971006091
301 => 0.067116174000853
302 => 0.068705434261365
303 => 0.069874500578451
304 => 0.07056099868052
305 => 0.070519783909461
306 => 0.073240031401851
307 => 0.071635996493797
308 => 0.06962095060728
309 => 0.069584504784582
310 => 0.07062812560263
311 => 0.072815268533869
312 => 0.073382362874304
313 => 0.073699291246175
314 => 0.073213904412299
315 => 0.071472839481824
316 => 0.070721056472245
317 => 0.071361597377657
318 => 0.070578270892645
319 => 0.071930512168369
320 => 0.073787428263088
321 => 0.073403982432571
322 => 0.074685784354579
323 => 0.076012314494363
324 => 0.077909312172451
325 => 0.078405257611123
326 => 0.079225036562133
327 => 0.08006885838608
328 => 0.080339871214296
329 => 0.080857318793701
330 => 0.080854591589539
331 => 0.082413954698317
401 => 0.084133980496756
402 => 0.084783250416977
403 => 0.086276210797574
404 => 0.083719568465373
405 => 0.085658811042938
406 => 0.087408056390292
407 => 0.085322533974256
408 => 0.08819694076036
409 => 0.088308547462319
410 => 0.089993676156314
411 => 0.088285475393355
412 => 0.08727115123308
413 => 0.090199467077563
414 => 0.091616386873624
415 => 0.091189599099775
416 => 0.08794172306767
417 => 0.086051319909029
418 => 0.081103770211329
419 => 0.086964356546496
420 => 0.089818877194709
421 => 0.087934330548793
422 => 0.088884786259461
423 => 0.094070164430569
424 => 0.096044420709753
425 => 0.095633789204776
426 => 0.095703179169547
427 => 0.096768452022509
428 => 0.10149245850902
429 => 0.098661724320688
430 => 0.10082571454208
501 => 0.10197348715266
502 => 0.10303960231942
503 => 0.100421560419
504 => 0.097015526373225
505 => 0.095936692415345
506 => 0.087746949525211
507 => 0.087320637841529
508 => 0.087081336174913
509 => 0.085572573016786
510 => 0.084387098459509
511 => 0.083444365077713
512 => 0.080970351159864
513 => 0.081805258231698
514 => 0.077862196413481
515 => 0.080384827631246
516 => 0.074091605760814
517 => 0.079332787938607
518 => 0.076480250766546
519 => 0.078395652758844
520 => 0.078388970101734
521 => 0.07486210775516
522 => 0.072827887157395
523 => 0.074124171695341
524 => 0.075513891619213
525 => 0.075739369001283
526 => 0.077541177157985
527 => 0.078044023084784
528 => 0.076520376450952
529 => 0.073961192725572
530 => 0.074555632736211
531 => 0.072815840849552
601 => 0.06976692248831
602 => 0.071956708884362
603 => 0.072704398238085
604 => 0.073034620451612
605 => 0.07003635941397
606 => 0.069094240700529
607 => 0.068592664602635
608 => 0.073574154876162
609 => 0.073847052158424
610 => 0.072450871078583
611 => 0.078761741950787
612 => 0.077333397508472
613 => 0.078929208203422
614 => 0.074501693535871
615 => 0.074670830558611
616 => 0.072574774160922
617 => 0.073748425685088
618 => 0.072918926616362
619 => 0.073653606240186
620 => 0.074093970177509
621 => 0.076189682632968
622 => 0.079356717608459
623 => 0.075876653077974
624 => 0.0743603391266
625 => 0.075301051773959
626 => 0.07780629351954
627 => 0.08160186300506
628 => 0.079354809476677
629 => 0.08035201367513
630 => 0.080569858429965
701 => 0.078912964348579
702 => 0.08166295505321
703 => 0.083136697412706
704 => 0.084648452125538
705 => 0.085961066384284
706 => 0.084044624049034
707 => 0.086095492058969
708 => 0.0844428544699
709 => 0.082960267705971
710 => 0.082962516178107
711 => 0.082032467843958
712 => 0.080230382002913
713 => 0.079898049724867
714 => 0.081626884204202
715 => 0.083013245735394
716 => 0.083127433111327
717 => 0.083894994088822
718 => 0.084349228768797
719 => 0.088801346134655
720 => 0.090592024569049
721 => 0.092781632262819
722 => 0.09363460785907
723 => 0.09620175859511
724 => 0.094128575881969
725 => 0.09368002976105
726 => 0.087452961784023
727 => 0.088472643816415
728 => 0.090105253134955
729 => 0.087479882910359
730 => 0.089145076040939
731 => 0.089473820438529
801 => 0.087390673834737
802 => 0.088503372443274
803 => 0.085548374831146
804 => 0.079421128481327
805 => 0.081669776429964
806 => 0.083325538206876
807 => 0.080962561997268
808 => 0.085198105393182
809 => 0.082723788380652
810 => 0.081939548675842
811 => 0.078879949985738
812 => 0.080323962792713
813 => 0.08227701079042
814 => 0.081070254194037
815 => 0.083574455326946
816 => 0.087121071977192
817 => 0.089648602206831
818 => 0.089842634593395
819 => 0.088217601987111
820 => 0.0908217271095
821 => 0.090840695318029
822 => 0.08790323154181
823 => 0.086104051334743
824 => 0.08569527380619
825 => 0.086716480218071
826 => 0.087956413327198
827 => 0.089911442251456
828 => 0.091092825285155
829 => 0.094173245679896
830 => 0.095006719116139
831 => 0.095922453729213
901 => 0.097146157574376
902 => 0.098615527791721
903 => 0.095400629407464
904 => 0.095528363313591
905 => 0.092534694451469
906 => 0.08933552993675
907 => 0.091763297021935
908 => 0.094937279533494
909 => 0.094209164438403
910 => 0.094127236616164
911 => 0.094265016488288
912 => 0.093716041484605
913 => 0.091233047888913
914 => 0.089986104049518
915 => 0.091594979731638
916 => 0.092450025553866
917 => 0.09377612705631
918 => 0.093612657055527
919 => 0.097028552112919
920 => 0.098355865640917
921 => 0.098016282041507
922 => 0.098078773596334
923 => 0.10048181133802
924 => 0.10315448352917
925 => 0.10565779372635
926 => 0.10820426837859
927 => 0.10513439379471
928 => 0.10357570080457
929 => 0.10518387410189
930 => 0.10433055471365
1001 => 0.10923398102945
1002 => 0.10957348362874
1003 => 0.11447655537101
1004 => 0.11913015430134
1005 => 0.11620731219108
1006 => 0.11896342065335
1007 => 0.12194437666412
1008 => 0.12769512445157
1009 => 0.12575847491051
1010 => 0.12427503171322
1011 => 0.12287318505972
1012 => 0.12579020540875
1013 => 0.12954290548724
1014 => 0.13035120114124
1015 => 0.13166094889341
1016 => 0.13028390928034
1017 => 0.13194240181835
1018 => 0.13779760925607
1019 => 0.13621548052105
1020 => 0.13396860337744
1021 => 0.13859072730942
1022 => 0.14026345599235
1023 => 0.15200354190399
1024 => 0.16682588532618
1025 => 0.16068933782064
1026 => 0.1568801847588
1027 => 0.15777542608265
1028 => 0.16318804413245
1029 => 0.16492640526213
1030 => 0.16020094046263
1031 => 0.1618700545168
1101 => 0.17106703705892
1102 => 0.17600092311824
1103 => 0.16930004314038
1104 => 0.15081258104221
1105 => 0.13376629667427
1106 => 0.13828773889284
1107 => 0.13777514766194
1108 => 0.14765615805651
1109 => 0.13617774727396
1110 => 0.13637101427352
1111 => 0.14645635349888
1112 => 0.14376575790004
1113 => 0.13940733761537
1114 => 0.13379811796567
1115 => 0.12342895665317
1116 => 0.11424470131325
1117 => 0.13225714104253
1118 => 0.13148041188791
1119 => 0.1303555929672
1120 => 0.13285875575711
1121 => 0.14501340372977
1122 => 0.14473319975324
1123 => 0.14295068501591
1124 => 0.14430270673381
1125 => 0.13917032167129
1126 => 0.14049305416414
1127 => 0.13376359645573
1128 => 0.13680559238691
1129 => 0.1393979864029
1130 => 0.13991844788266
1201 => 0.14109107417198
1202 => 0.13107111091827
1203 => 0.13556978024852
1204 => 0.13821232701173
1205 => 0.12627320459887
1206 => 0.13797632894883
1207 => 0.13089668565043
1208 => 0.12849374838227
1209 => 0.13172898685093
1210 => 0.13046821127332
1211 => 0.12938427046692
1212 => 0.12877941287248
1213 => 0.13115501494362
1214 => 0.13104419026754
1215 => 0.12715724419466
1216 => 0.12208688149478
1217 => 0.12378866164585
1218 => 0.12317038896269
1219 => 0.12092968900017
1220 => 0.12243965023177
1221 => 0.11579054514173
1222 => 0.10435110542473
1223 => 0.1119083497013
1224 => 0.11161740401735
1225 => 0.11147069601017
1226 => 0.11714975621711
1227 => 0.11660384561643
1228 => 0.11561301253061
1229 => 0.12091149157353
1230 => 0.11897747544827
1231 => 0.12493765743483
]
'min_raw' => 0.053503089104675
'max_raw' => 0.17600092311824
'avg_raw' => 0.11475200611146
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.053503'
'max' => '$0.17600092'
'avg' => '$0.114752'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.029147103521444
'max_diff' => 0.11634550540529
'year' => 2029
]
4 => [
'items' => [
101 => 0.12886341877159
102 => 0.12786771871151
103 => 0.13155991622358
104 => 0.12382786722341
105 => 0.12639614374531
106 => 0.12692546197699
107 => 0.12084610916461
108 => 0.11669316334209
109 => 0.11641620920278
110 => 0.10921557345772
111 => 0.11306209495123
112 => 0.11644687468564
113 => 0.11482582786237
114 => 0.11431265286553
115 => 0.11693435263035
116 => 0.11713808115542
117 => 0.11249304919371
118 => 0.11345889842758
119 => 0.1174866502919
120 => 0.11335740941475
121 => 0.10533496889811
122 => 0.10334529273106
123 => 0.10307983325337
124 => 0.097683673685141
125 => 0.10347825240655
126 => 0.1009487635096
127 => 0.10893938862714
128 => 0.10437518641458
129 => 0.10417843277956
130 => 0.10388101080273
131 => 0.099236313349807
201 => 0.10025320690607
202 => 0.10363351596437
203 => 0.10483964831828
204 => 0.10471383883221
205 => 0.10361695060586
206 => 0.10411910041891
207 => 0.10250150091049
208 => 0.10193029285665
209 => 0.10012740311557
210 => 0.097477653257174
211 => 0.097846117226844
212 => 0.092596269412606
213 => 0.089735873692897
214 => 0.088944153857091
215 => 0.087885433004402
216 => 0.089063739194551
217 => 0.092581397253356
218 => 0.088338355321648
219 => 0.08106395754452
220 => 0.081501161245896
221 => 0.082483428155944
222 => 0.080652980267416
223 => 0.07892061495877
224 => 0.080426766043397
225 => 0.077344507808537
226 => 0.082855904337965
227 => 0.082706836507354
228 => 0.084761144311049
301 => 0.08604574513934
302 => 0.083085156124587
303 => 0.08234057599366
304 => 0.082764722675516
305 => 0.075754522822847
306 => 0.084188261424973
307 => 0.084261196746623
308 => 0.083636680242339
309 => 0.088127385685505
310 => 0.097604174856737
311 => 0.094038625567558
312 => 0.09265793711349
313 => 0.09003324735303
314 => 0.093530490620186
315 => 0.093261956902762
316 => 0.092047545594183
317 => 0.091313065845561
318 => 0.092666367302776
319 => 0.091145376818688
320 => 0.090872165133722
321 => 0.089216799580075
322 => 0.088625909391757
323 => 0.088188437820343
324 => 0.087706824605284
325 => 0.088769143347168
326 => 0.08636178931839
327 => 0.083458756355509
328 => 0.083217400575898
329 => 0.083883805103622
330 => 0.083588970708086
331 => 0.083215989022243
401 => 0.082503865408449
402 => 0.08229259354435
403 => 0.082979124608135
404 => 0.08220407106437
405 => 0.083347704787547
406 => 0.083036699694983
407 => 0.081299450529405
408 => 0.079134194857075
409 => 0.079114919539814
410 => 0.078648418756942
411 => 0.078054259871092
412 => 0.077888978461562
413 => 0.080299922200047
414 => 0.085290503585237
415 => 0.084310733044833
416 => 0.085018717671198
417 => 0.088501301314778
418 => 0.089608309930128
419 => 0.088822581435889
420 => 0.087747027811351
421 => 0.087794346712304
422 => 0.091469839039573
423 => 0.091699074987574
424 => 0.092278280273854
425 => 0.093022722750117
426 => 0.088949363208657
427 => 0.087602491844212
428 => 0.08696426947016
429 => 0.084998791581222
430 => 0.087118390977103
501 => 0.085883391179418
502 => 0.086050034845727
503 => 0.085941507939429
504 => 0.086000770968825
505 => 0.082854363790312
506 => 0.084000749195869
507 => 0.082094661114024
508 => 0.079542623140862
509 => 0.079534067814716
510 => 0.080158675493178
511 => 0.079787134405128
512 => 0.07878732689038
513 => 0.078929344828892
514 => 0.077685118249234
515 => 0.079080416463112
516 => 0.079120428623269
517 => 0.078583162808518
518 => 0.080732812221047
519 => 0.081613525339307
520 => 0.081259885470689
521 => 0.081588713023393
522 => 0.084351446934185
523 => 0.084801893108176
524 => 0.085001951543859
525 => 0.084733899742708
526 => 0.08163921072766
527 => 0.081776473345111
528 => 0.080769331333432
529 => 0.079918402463574
530 => 0.079952435155834
531 => 0.080389923207952
601 => 0.082300459189882
602 => 0.086321069531607
603 => 0.086473648755048
604 => 0.086658579224908
605 => 0.08590637406538
606 => 0.085679501791633
607 => 0.085978804881408
608 => 0.087488734732111
609 => 0.091372684250076
610 => 0.089999837090161
611 => 0.088883690979511
612 => 0.089862852029381
613 => 0.089712117860672
614 => 0.088439769783257
615 => 0.088404059210411
616 => 0.085962016455565
617 => 0.085059248851721
618 => 0.084304828670966
619 => 0.083481021528218
620 => 0.082992641039732
621 => 0.083743015435009
622 => 0.083914634937378
623 => 0.082273928207804
624 => 0.082050305943183
625 => 0.083390142475668
626 => 0.082800530371862
627 => 0.083406961042303
628 => 0.083547658159711
629 => 0.083525002683279
630 => 0.082909379930387
701 => 0.083301759514945
702 => 0.08237366482348
703 => 0.081364501241827
704 => 0.080720717749845
705 => 0.080158931267602
706 => 0.080470643059172
707 => 0.079359447438549
708 => 0.079003953595562
709 => 0.083168830140517
710 => 0.086245469224243
711 => 0.086200733673483
712 => 0.08592841751328
713 => 0.085523810936534
714 => 0.087459135240884
715 => 0.086784906951279
716 => 0.087275464365625
717 => 0.087400331816206
718 => 0.087778267981444
719 => 0.087913347675806
720 => 0.087505043020565
721 => 0.086134722727363
722 => 0.082720014842848
723 => 0.081130459104779
724 => 0.080605879235071
725 => 0.080624946717016
726 => 0.080098980443989
727 => 0.08025390108355
728 => 0.080045105367818
729 => 0.079649696795329
730 => 0.080446227694054
731 => 0.080538020459933
801 => 0.080352100630335
802 => 0.080395891480601
803 => 0.078856554698931
804 => 0.078973587131178
805 => 0.078321935676666
806 => 0.07819975888472
807 => 0.076552440753498
808 => 0.073633977901456
809 => 0.075251089623531
810 => 0.073297846063582
811 => 0.07255812313096
812 => 0.076059856443474
813 => 0.075708379541861
814 => 0.075106803869636
815 => 0.07421694807106
816 => 0.073886891899407
817 => 0.07188157508353
818 => 0.071763090268099
819 => 0.072756979430156
820 => 0.072298333779505
821 => 0.071654221583299
822 => 0.069321312501249
823 => 0.066698350293373
824 => 0.066777521035076
825 => 0.067611836511455
826 => 0.070037721281797
827 => 0.069089886133792
828 => 0.068402220858759
829 => 0.068273441823887
830 => 0.069885381062474
831 => 0.072166612796786
901 => 0.073236915686842
902 => 0.072176278028379
903 => 0.070957874595123
904 => 0.071032033166568
905 => 0.071525376918762
906 => 0.071577220371612
907 => 0.070784164990459
908 => 0.071007405434905
909 => 0.070668282786258
910 => 0.068587087717479
911 => 0.068549445498226
912 => 0.068038686664544
913 => 0.068023221090048
914 => 0.067154292899192
915 => 0.067032723838675
916 => 0.06530741417556
917 => 0.066443018220541
918 => 0.065681314649056
919 => 0.06453324769912
920 => 0.064335320524218
921 => 0.064329370594336
922 => 0.065508178648848
923 => 0.066429243162088
924 => 0.065694564808795
925 => 0.065527292788892
926 => 0.067313320342169
927 => 0.067086032056012
928 => 0.066889201866052
929 => 0.071962353515747
930 => 0.067946558122054
1001 => 0.066195442116816
1002 => 0.064028103532424
1003 => 0.064733799904171
1004 => 0.064882500498536
1005 => 0.059670441895216
1006 => 0.05755591036897
1007 => 0.056830282833601
1008 => 0.05641267392813
1009 => 0.056602983550356
1010 => 0.054699657166923
1011 => 0.055978723974703
1012 => 0.054330604210825
1013 => 0.054054291568965
1014 => 0.057001333869639
1015 => 0.057411397589407
1016 => 0.055661938364067
1017 => 0.056785374398457
1018 => 0.056378000875458
1019 => 0.054358856493786
1020 => 0.054281740030227
1021 => 0.05326860435586
1022 => 0.051683243207201
1023 => 0.050958690621345
1024 => 0.050581337343777
1025 => 0.05073704066057
1026 => 0.050658312299
1027 => 0.050144556485835
1028 => 0.050687760180829
1029 => 0.049300099207382
1030 => 0.04874752142661
1031 => 0.048497934862743
1101 => 0.047266305878023
1102 => 0.049226375300608
1103 => 0.049612533669162
1104 => 0.049999452888992
1105 => 0.053367320536639
1106 => 0.053199071386458
1107 => 0.054719961763437
1108 => 0.054660862760126
1109 => 0.05422708018782
1110 => 0.052397022869035
1111 => 0.053126451098668
1112 => 0.050881384386173
1113 => 0.052563541016871
1114 => 0.051795874979161
1115 => 0.052303992357319
1116 => 0.051390351496294
1117 => 0.051895998072092
1118 => 0.049704106143877
1119 => 0.047657348302061
1120 => 0.048481023406194
1121 => 0.04937645244306
1122 => 0.051317970746061
1123 => 0.050161618461972
1124 => 0.050577486469851
1125 => 0.049184398258919
1126 => 0.046310059363792
1127 => 0.046326327809786
1128 => 0.045884173391648
1129 => 0.045502087418774
1130 => 0.05029443943203
1201 => 0.049698434703307
1202 => 0.048748779171258
1203 => 0.050019930838716
1204 => 0.050356043515482
1205 => 0.050365612170871
1206 => 0.051293011614275
1207 => 0.051787964863465
1208 => 0.051875202518885
1209 => 0.053334485580873
1210 => 0.053823618014842
1211 => 0.055838285285748
1212 => 0.051745971538317
1213 => 0.051661693029711
1214 => 0.050037818549484
1215 => 0.049007931681685
1216 => 0.050108335784429
1217 => 0.051083143599321
1218 => 0.050068108545559
1219 => 0.050200650695021
1220 => 0.048838049066756
1221 => 0.049325115032495
1222 => 0.049744641857061
1223 => 0.049513003803183
1224 => 0.049166230425119
1225 => 0.051003220475062
1226 => 0.050899570297222
1227 => 0.052610217663947
1228 => 0.053943789615877
1229 => 0.056333788958235
1230 => 0.053839700051001
1231 => 0.053748805538116
]
'min_raw' => 0.045502087418774
'max_raw' => 0.13155991622358
'avg_raw' => 0.088531001821177
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.045502'
'max' => '$0.131559'
'avg' => '$0.088531'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0080010016859011
'max_diff' => -0.044441006894665
'year' => 2030
]
5 => [
'items' => [
101 => 0.054637313981507
102 => 0.053823481988828
103 => 0.054337795715675
104 => 0.056250925065581
105 => 0.056291346474075
106 => 0.055614235801761
107 => 0.055573033555815
108 => 0.055703080067212
109 => 0.056464766546393
110 => 0.056198609886306
111 => 0.056506613111621
112 => 0.05689177586119
113 => 0.05848497229903
114 => 0.058869086566452
115 => 0.05793588803703
116 => 0.058020145415656
117 => 0.05767110354878
118 => 0.057333933478859
119 => 0.058091842556307
120 => 0.059476936292082
121 => 0.059468319695838
122 => 0.059789634520163
123 => 0.059989810993802
124 => 0.05913050703081
125 => 0.058571131748384
126 => 0.05878563182564
127 => 0.059128622120376
128 => 0.058674404695765
129 => 0.055870764337085
130 => 0.056721209724669
131 => 0.05657965402752
201 => 0.056378061501019
202 => 0.057233190914535
203 => 0.057150711596499
204 => 0.054680135803838
205 => 0.054838294050321
206 => 0.054689753930643
207 => 0.055169717445771
208 => 0.053797562383906
209 => 0.05421962803933
210 => 0.054484343661792
211 => 0.054640263197064
212 => 0.055203551473491
213 => 0.055137456095701
214 => 0.055199442892005
215 => 0.056034650703355
216 => 0.060258845204453
217 => 0.060488758790988
218 => 0.059356580203947
219 => 0.059808863218235
220 => 0.058940578734224
221 => 0.059523463925341
222 => 0.059922259169424
223 => 0.058120180145326
224 => 0.058013472720915
225 => 0.057141604517973
226 => 0.057610097105095
227 => 0.056864691713175
228 => 0.057047588123178
301 => 0.056536193816186
302 => 0.057456601751181
303 => 0.058485760839439
304 => 0.058745767067857
305 => 0.058061802620609
306 => 0.057566567285348
307 => 0.05669709717729
308 => 0.058143045344395
309 => 0.058565884652928
310 => 0.058140824349515
311 => 0.058042328589464
312 => 0.057855679302143
313 => 0.058081927118117
314 => 0.058563581779245
315 => 0.058336442335822
316 => 0.058486471939885
317 => 0.057914713799053
318 => 0.059130791496177
319 => 0.061062215544245
320 => 0.061068425388379
321 => 0.06084128472059
322 => 0.060748343653145
323 => 0.060981403762345
324 => 0.061107829310959
325 => 0.061861502968198
326 => 0.062670224830097
327 => 0.06644417688659
328 => 0.06538446625084
329 => 0.068732941028773
330 => 0.071381149833086
331 => 0.072175231861363
401 => 0.071444713759795
402 => 0.068945650796142
403 => 0.068823034844736
404 => 0.072557689989602
405 => 0.071502478853135
406 => 0.071376964846106
407 => 0.070041707870582
408 => 0.07083101011791
409 => 0.070658378138054
410 => 0.070385870112406
411 => 0.071891803817037
412 => 0.074710777276478
413 => 0.074271413826658
414 => 0.073943449392852
415 => 0.072506404712924
416 => 0.07337182658579
417 => 0.073063666432926
418 => 0.074387718012893
419 => 0.073603379188255
420 => 0.071494484590947
421 => 0.071830333006576
422 => 0.071779570194187
423 => 0.072824265276062
424 => 0.072510673743409
425 => 0.071718336414472
426 => 0.074701142331655
427 => 0.074507455506632
428 => 0.074782059141542
429 => 0.07490294815403
430 => 0.076718529552883
501 => 0.077462315159869
502 => 0.077631167514454
503 => 0.078337706314647
504 => 0.077613588185463
505 => 0.080510576989675
506 => 0.082436905500492
507 => 0.084674435193765
508 => 0.087944067466921
509 => 0.089173479447418
510 => 0.088951397177181
511 => 0.091430395050891
512 => 0.09588509912492
513 => 0.089851820235406
514 => 0.09620487755601
515 => 0.094193572957881
516 => 0.089424805937541
517 => 0.089117753561501
518 => 0.092347217954199
519 => 0.099509859152773
520 => 0.097715698770534
521 => 0.099512793756418
522 => 0.097416386997064
523 => 0.097312282731559
524 => 0.099410975959384
525 => 0.10431468708001
526 => 0.10198511773946
527 => 0.098645108855952
528 => 0.10111131943924
529 => 0.098974859594982
530 => 0.094160817608404
531 => 0.097714326809903
601 => 0.095338196404976
602 => 0.096031677579174
603 => 0.10102595026761
604 => 0.10042502616453
605 => 0.10120267759799
606 => 0.099830143172614
607 => 0.098547979590505
608 => 0.09615472604978
609 => 0.095446201662344
610 => 0.095642012312995
611 => 0.09544610462831
612 => 0.09410710126741
613 => 0.093817943619111
614 => 0.093336001536993
615 => 0.093485375540492
616 => 0.09257918342898
617 => 0.094289355172248
618 => 0.09460677811778
619 => 0.095851298496042
620 => 0.095980508730251
621 => 0.099446480269072
622 => 0.097537481388775
623 => 0.098818202652712
624 => 0.098703642888249
625 => 0.089528159579038
626 => 0.090792460223073
627 => 0.092759315265792
628 => 0.091873249735056
629 => 0.090620560381998
630 => 0.089608946564449
701 => 0.08807624818804
702 => 0.090233491719971
703 => 0.093070037567187
704 => 0.09605244821395
705 => 0.099635619190749
706 => 0.098835897141436
707 => 0.09598546332494
708 => 0.096113331703705
709 => 0.096903763706876
710 => 0.095880082444449
711 => 0.095578178855527
712 => 0.096862286789803
713 => 0.096871129735414
714 => 0.095693260726978
715 => 0.094384274871854
716 => 0.094378790173326
717 => 0.09414586878371
718 => 0.097457823194839
719 => 0.0992790632446
720 => 0.09948786548123
721 => 0.099265009190426
722 => 0.099350777731906
723 => 0.098291038275236
724 => 0.10071328841721
725 => 0.1029361846832
726 => 0.10234040099866
727 => 0.1014472365599
728 => 0.1007357880638
729 => 0.10217280634314
730 => 0.10210881818123
731 => 0.10291676962352
801 => 0.10288011627915
802 => 0.1026084325977
803 => 0.10234041070134
804 => 0.10340308722458
805 => 0.10309705345195
806 => 0.10279054432434
807 => 0.10217579334472
808 => 0.10225934821279
809 => 0.10136633799146
810 => 0.1009531906017
811 => 0.094740445139004
812 => 0.093080196544056
813 => 0.093602544549503
814 => 0.093774515075656
815 => 0.093051972759469
816 => 0.09408791283499
817 => 0.093926462671552
818 => 0.094554570812302
819 => 0.094162156115247
820 => 0.094178260951294
821 => 0.0953322689037
822 => 0.095667282321784
823 => 0.095496891793456
824 => 0.095616227478851
825 => 0.098366267980335
826 => 0.097975300162369
827 => 0.097767606301352
828 => 0.097825138920259
829 => 0.098527833229921
830 => 0.09872454927094
831 => 0.097891049582153
901 => 0.098284132853789
902 => 0.099957831534721
903 => 0.10054353134991
904 => 0.10241280400812
905 => 0.10161870375924
906 => 0.10307630913391
907 => 0.10755649112136
908 => 0.11113557049795
909 => 0.10784410119153
910 => 0.11441662467362
911 => 0.11953427697693
912 => 0.11933785295764
913 => 0.11844547190512
914 => 0.11261916081763
915 => 0.10725770248952
916 => 0.11174279004053
917 => 0.11175422345107
918 => 0.11136895045281
919 => 0.10897605294949
920 => 0.1112856828066
921 => 0.11146901283731
922 => 0.1113663967715
923 => 0.10953176786616
924 => 0.10673062862379
925 => 0.10727796452677
926 => 0.1081745119012
927 => 0.10647716068203
928 => 0.10593475412137
929 => 0.10694319111471
930 => 0.11019258522344
1001 => 0.10957830608964
1002 => 0.10956226477896
1003 => 0.11219041140824
1004 => 0.11030922561122
1005 => 0.10728486818532
1006 => 0.10652117804891
1007 => 0.10381059254796
1008 => 0.10568280360824
1009 => 0.10575018115126
1010 => 0.10472479028708
1011 => 0.1073680730027
1012 => 0.10734371468713
1013 => 0.10985311822489
1014 => 0.11465015530017
1015 => 0.11323143538915
1016 => 0.11158161848893
1017 => 0.11176099933044
1018 => 0.11372836441222
1019 => 0.1125388505732
1020 => 0.1129666080433
1021 => 0.11372771695006
1022 => 0.11418691285078
1023 => 0.11169492810695
1024 => 0.11111392725776
1025 => 0.10992540342389
1026 => 0.10961533974048
1027 => 0.1105833676038
1028 => 0.11032832646275
1029 => 0.10574451832967
1030 => 0.1052654848757
1031 => 0.10528017614783
1101 => 0.10407562375101
1102 => 0.10223839222016
1103 => 0.10706652698783
1104 => 0.10667876019629
1105 => 0.10625069566919
1106 => 0.10630313113125
1107 => 0.10839886079323
1108 => 0.1071832317524
1109 => 0.11041518079513
1110 => 0.10975078923322
1111 => 0.10906935853474
1112 => 0.10897516405532
1113 => 0.10871287137334
1114 => 0.10781337217201
1115 => 0.10672717283488
1116 => 0.10600996994754
1117 => 0.097788593610796
1118 => 0.099314433237349
1119 => 0.10106977264304
1120 => 0.1016757087718
1121 => 0.10063921309405
1122 => 0.10785429933888
1123 => 0.10917256512211
1124 => 0.10517945207636
1125 => 0.10443250366323
1126 => 0.10790326915249
1127 => 0.10580997327864
1128 => 0.10675258428246
1129 => 0.10471517487285
1130 => 0.10885503349826
1201 => 0.1088234947117
1202 => 0.10721299620346
1203 => 0.1085741785144
1204 => 0.10833763959083
1205 => 0.10651939074151
1206 => 0.10891267522994
1207 => 0.10891386226918
1208 => 0.10736379247027
1209 => 0.10555365029904
1210 => 0.10523003963248
1211 => 0.1049862424662
1212 => 0.10669262512459
1213 => 0.10822256248039
1214 => 0.1110693965959
1215 => 0.11178515833165
1216 => 0.11457882403723
1217 => 0.11291533213067
1218 => 0.11365273654702
1219 => 0.11445329335319
1220 => 0.11483710972557
1221 => 0.1142117015435
1222 => 0.11855141430295
1223 => 0.11891781902521
1224 => 0.11904067135919
1225 => 0.11757734463383
1226 => 0.11887712126184
1227 => 0.11826899882167
1228 => 0.11985116446971
1229 => 0.12009926824543
1230 => 0.11988913317394
1231 => 0.11996788522841
]
'min_raw' => 0.053797562383906
'max_raw' => 0.12009926824543
'avg_raw' => 0.086948415314666
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.053797'
'max' => '$0.120099'
'avg' => '$0.086948'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0082954749651319
'max_diff' => -0.011460647978154
'year' => 2031
]
6 => [
'items' => [
101 => 0.11626470596601
102 => 0.11607267658543
103 => 0.1134543423554
104 => 0.11452133290789
105 => 0.11252664521221
106 => 0.11315918122807
107 => 0.11343799707683
108 => 0.1132923595001
109 => 0.11458165895283
110 => 0.11348549103153
111 => 0.11059252366055
112 => 0.10769876810254
113 => 0.10766243935871
114 => 0.10690056459931
115 => 0.10634986869259
116 => 0.10645595226121
117 => 0.10682980459373
118 => 0.1063281397154
119 => 0.10643519535224
120 => 0.10821303223188
121 => 0.10856956473914
122 => 0.10735792797323
123 => 0.10249303151975
124 => 0.1012991737274
125 => 0.10215729503331
126 => 0.10174716831918
127 => 0.082117905874473
128 => 0.086729509920891
129 => 0.083989451391785
130 => 0.085252196426028
131 => 0.082455306202528
201 => 0.083790128814759
202 => 0.083543635818197
203 => 0.090958958657553
204 => 0.090843178590859
205 => 0.09089859638184
206 => 0.088253360828013
207 => 0.092467292891232
208 => 0.09454322735367
209 => 0.094159027133879
210 => 0.094255722051932
211 => 0.0925941829942
212 => 0.090914683711864
213 => 0.089051860534667
214 => 0.092512755745995
215 => 0.092127963277947
216 => 0.09301053875569
217 => 0.095255176690136
218 => 0.095585708152533
219 => 0.096029945789914
220 => 0.095870718219901
221 => 0.099664164928402
222 => 0.099204753502035
223 => 0.10031180285789
224 => 0.098034518340859
225 => 0.095457554748007
226 => 0.095947351279721
227 => 0.095900179935022
228 => 0.095299634576254
229 => 0.094757489078556
301 => 0.093854969573435
302 => 0.096710674835392
303 => 0.096594738416887
304 => 0.098471614271143
305 => 0.098139858232904
306 => 0.095924310215069
307 => 0.09600343894596
308 => 0.096535617689172
309 => 0.09837749439574
310 => 0.098924288806778
311 => 0.098670991849596
312 => 0.099270526959186
313 => 0.099744375064791
314 => 0.099330034985756
315 => 0.10519621673899
316 => 0.10276016908628
317 => 0.1039474817623
318 => 0.10423064883948
319 => 0.10350532232565
320 => 0.1036626196745
321 => 0.10390088229705
322 => 0.10534756628459
323 => 0.10914408366926
324 => 0.11082553537516
325 => 0.11588426579374
326 => 0.11068591421793
327 => 0.11037746554834
328 => 0.11128869565574
329 => 0.11425870593245
330 => 0.11666562030283
331 => 0.11746413265771
401 => 0.11756966924741
402 => 0.11906773150926
403 => 0.11992639286055
404 => 0.11888582734772
405 => 0.11800405702736
406 => 0.11484566518916
407 => 0.11521125764445
408 => 0.11772982712078
409 => 0.1212874548491
410 => 0.12434026954807
411 => 0.12327128024182
412 => 0.13142691405964
413 => 0.1322355118399
414 => 0.13212378977177
415 => 0.13396589585068
416 => 0.13030969042241
417 => 0.12874659176618
418 => 0.11819470577914
419 => 0.12115935533566
420 => 0.12546864757383
421 => 0.12489829658709
422 => 0.12176877337602
423 => 0.12433789552408
424 => 0.12348846339806
425 => 0.12281848103729
426 => 0.12588780011444
427 => 0.12251295770843
428 => 0.12543498093921
429 => 0.12168745592128
430 => 0.12327616329493
501 => 0.12237433615252
502 => 0.12295792883743
503 => 0.11954625792616
504 => 0.12138711273625
505 => 0.11946967231389
506 => 0.11946876319747
507 => 0.11942643559387
508 => 0.12168229574755
509 => 0.12175585926617
510 => 0.12008877520419
511 => 0.11984852234611
512 => 0.12073686308405
513 => 0.11969684873673
514 => 0.12018346490407
515 => 0.11971158784472
516 => 0.1196053583794
517 => 0.11875890392634
518 => 0.11839422807422
519 => 0.11853722687238
520 => 0.11804909825333
521 => 0.11775498310397
522 => 0.11936792868789
523 => 0.11850619692844
524 => 0.11923585593678
525 => 0.11840431740647
526 => 0.1155218425763
527 => 0.11386410081986
528 => 0.10841937307123
529 => 0.10996349110658
530 => 0.11098724296152
531 => 0.11064889297957
601 => 0.11137579966486
602 => 0.11142042583164
603 => 0.11118410105832
604 => 0.11091046724589
605 => 0.11077727743889
606 => 0.11176996513986
607 => 0.1123462537626
608 => 0.11108999015619
609 => 0.11079566517021
610 => 0.1120658170365
611 => 0.11284060894119
612 => 0.11856123704748
613 => 0.11813743443998
614 => 0.11920109581774
615 => 0.11908134386982
616 => 0.12019623044826
617 => 0.12201859881779
618 => 0.11831321438033
619 => 0.11895634099612
620 => 0.11879866120189
621 => 0.12052016784942
622 => 0.12052554220526
623 => 0.11949341297444
624 => 0.12005294697485
625 => 0.11974063044583
626 => 0.12030502862588
627 => 0.11813177429778
628 => 0.1207785634811
629 => 0.12227912239272
630 => 0.12229995765466
701 => 0.1230112106696
702 => 0.12373388492577
703 => 0.12512099522882
704 => 0.12369519917227
705 => 0.12113033086498
706 => 0.12131550607229
707 => 0.11981172472218
708 => 0.11983700355835
709 => 0.11970206314971
710 => 0.12010702947389
711 => 0.1182206416327
712 => 0.11866337308857
713 => 0.11804354645772
714 => 0.11895499361407
715 => 0.11797442714145
716 => 0.11879858516392
717 => 0.11915426444514
718 => 0.12046672865009
719 => 0.11778057511125
720 => 0.11230332620895
721 => 0.11345471033344
722 => 0.11175172277405
723 => 0.1119093407564
724 => 0.11222775416547
725 => 0.1111956721283
726 => 0.11139256085635
727 => 0.1113855266055
728 => 0.11132490923187
729 => 0.11105642483311
730 => 0.11066706933687
731 => 0.11221814179656
801 => 0.1124816992321
802 => 0.11306755476343
803 => 0.11481066343506
804 => 0.11463648577343
805 => 0.11492057676611
806 => 0.11430040772419
807 => 0.11193810861957
808 => 0.11206639282631
809 => 0.11046668671259
810 => 0.11302664668147
811 => 0.11242041437102
812 => 0.11202957245669
813 => 0.11192292761925
814 => 0.11367035712012
815 => 0.11419321541438
816 => 0.11386740521311
817 => 0.11319915898491
818 => 0.11448238929233
819 => 0.11482572758745
820 => 0.1149025883699
821 => 0.11717622643964
822 => 0.11502965948103
823 => 0.11554635948301
824 => 0.11957750539992
825 => 0.11592181231339
826 => 0.11785831447301
827 => 0.11776353276937
828 => 0.11875418174657
829 => 0.11768227063836
830 => 0.11769555826122
831 => 0.1185751874406
901 => 0.11733990690012
902 => 0.11703403406651
903 => 0.11661147293757
904 => 0.11753411970351
905 => 0.11808720471196
906 => 0.12254466368392
907 => 0.12542438546463
908 => 0.12529936914741
909 => 0.12644178426612
910 => 0.12592711579181
911 => 0.12426511552561
912 => 0.12710194732068
913 => 0.12620425504264
914 => 0.12627825970334
915 => 0.12627550524617
916 => 0.12687239213345
917 => 0.12644944306994
918 => 0.12561576705091
919 => 0.12616920009837
920 => 0.12781269839339
921 => 0.1329141675298
922 => 0.13576901724401
923 => 0.13274230199235
924 => 0.13483008964362
925 => 0.13357816100766
926 => 0.13335064833286
927 => 0.13466193326415
928 => 0.13597551342612
929 => 0.13589184404857
930 => 0.13493825230406
1001 => 0.13439959252408
1002 => 0.13847850484234
1003 => 0.14148377795597
1004 => 0.14127883847723
1005 => 0.14218337468651
1006 => 0.14483912097322
1007 => 0.14508192913078
1008 => 0.14505134088381
1009 => 0.14444951553088
1010 => 0.14706444264238
1011 => 0.14924586084406
1012 => 0.14431021035009
1013 => 0.14618964144578
1014 => 0.14703337861613
1015 => 0.14827223510773
1016 => 0.15036239366553
1017 => 0.15263286024647
1018 => 0.15295392911541
1019 => 0.15272611538834
1020 => 0.15122868164479
1021 => 0.15371305326995
1022 => 0.15516833990229
1023 => 0.15603492978821
1024 => 0.15823245755208
1025 => 0.14703858924965
1026 => 0.13911501289384
1027 => 0.13787763202805
1028 => 0.14039389467623
1029 => 0.14105741306974
1030 => 0.1407899496373
1031 => 0.13187124406878
1101 => 0.137830676889
1102 => 0.1442425255202
1103 => 0.14448883073921
1104 => 0.14769873622942
1105 => 0.14874401303551
1106 => 0.15132840768706
1107 => 0.15116675309795
1108 => 0.1517960120689
1109 => 0.15165135632873
1110 => 0.15643840321223
1111 => 0.16171922680807
1112 => 0.16153636867894
1113 => 0.16077718780717
1114 => 0.16190470086132
1115 => 0.16735507673969
1116 => 0.1668532934693
1117 => 0.16734073317468
1118 => 0.17376703350499
1119 => 0.18212213806496
1120 => 0.17824035315807
1121 => 0.1866627094525
1122 => 0.19196413628992
1123 => 0.20113240582747
1124 => 0.19998449332669
1125 => 0.20355363337779
1126 => 0.19792949037373
1127 => 0.18501532120956
1128 => 0.18297160450587
1129 => 0.1870631771018
1130 => 0.19712190907906
1201 => 0.18674639183585
1202 => 0.18884534546105
1203 => 0.18824084667578
1204 => 0.18820863550447
1205 => 0.18943800490116
1206 => 0.18765474047167
1207 => 0.1803894003828
1208 => 0.18371906293061
1209 => 0.18243332031738
1210 => 0.18385994760522
1211 => 0.1915588666919
1212 => 0.18815499104437
1213 => 0.18456928455811
1214 => 0.18906655622385
1215 => 0.19479312848455
1216 => 0.19443476988412
1217 => 0.193739404417
1218 => 0.19765914314699
1219 => 0.20413340315326
1220 => 0.20588336961727
1221 => 0.20717515908451
1222 => 0.20735327502708
1223 => 0.209187979934
1224 => 0.19932230924432
1225 => 0.21497938199724
1226 => 0.21768292594376
1227 => 0.21717477173223
1228 => 0.22017964704627
1229 => 0.21929553650255
1230 => 0.21801459903739
1231 => 0.22277796556545
]
'min_raw' => 0.082117905874473
'max_raw' => 0.22277796556545
'avg_raw' => 0.15244793571996
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.082117'
'max' => '$0.222777'
'avg' => '$0.152447'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.028320343490567
'max_diff' => 0.10267869732003
'year' => 2032
]
7 => [
'items' => [
101 => 0.21731715022489
102 => 0.20956621034649
103 => 0.20531389143299
104 => 0.21091368800307
105 => 0.21433328836245
106 => 0.21659342667256
107 => 0.21727734315959
108 => 0.20008815317599
109 => 0.19082413313102
110 => 0.19676226376764
111 => 0.20400719297221
112 => 0.19928206329678
113 => 0.1994672794342
114 => 0.19273048625928
115 => 0.2046032496841
116 => 0.20287348791876
117 => 0.21184749501723
118 => 0.20970577620227
119 => 0.21702373062212
120 => 0.21509666797202
121 => 0.22309579729199
122 => 0.2262868665455
123 => 0.23164516847243
124 => 0.23558675718209
125 => 0.23790133346298
126 => 0.23776237498483
127 => 0.24693387932704
128 => 0.2415257636444
129 => 0.23473189575199
130 => 0.2346090161162
131 => 0.23812765656753
201 => 0.24550176166164
202 => 0.24741375982368
203 => 0.24848230595668
204 => 0.24684579035764
205 => 0.24097566838727
206 => 0.23844097948266
207 => 0.2406006078664
208 => 0.23795956793207
209 => 0.24251874380364
210 => 0.24877946606273
211 => 0.24748665167381
212 => 0.25180833634641
213 => 0.25628082532807
214 => 0.26267668544389
215 => 0.26434880011618
216 => 0.26711274208465
217 => 0.26995774627784
218 => 0.27087148494968
219 => 0.27261609559069
220 => 0.27260690063145
221 => 0.27786440222395
222 => 0.28366358929175
223 => 0.28585264815835
224 => 0.2908862683167
225 => 0.28226637019462
226 => 0.28880466193847
227 => 0.29470236475549
228 => 0.2876708803233
301 => 0.29736214348732
302 => 0.2977384332751
303 => 0.30341996231884
304 => 0.29766064418375
305 => 0.29424077945953
306 => 0.30411380077769
307 => 0.30889104479629
308 => 0.30745210001939
309 => 0.29650165921768
310 => 0.29012803298459
311 => 0.27344702375191
312 => 0.293206399754
313 => 0.30283061541571
314 => 0.29647673482416
315 => 0.29968126261138
316 => 0.31716412714681
317 => 0.32382047003025
318 => 0.32243599724184
319 => 0.32266995035272
320 => 0.32626159215146
321 => 0.34218890984032
322 => 0.33264489188882
323 => 0.33994093600521
324 => 0.3438107314967
325 => 0.34740521321524
326 => 0.33857830216212
327 => 0.32709462057508
328 => 0.32345725656431
329 => 0.29584496662063
330 => 0.29440762701496
331 => 0.29360080473846
401 => 0.28851390441235
402 => 0.2845169941753
403 => 0.28133850275904
404 => 0.27299719210487
405 => 0.27581213958891
406 => 0.26251783137301
407 => 0.27102305864819
408 => 0.24980502173331
409 => 0.26747603337339
410 => 0.25785850514
411 => 0.26431641668613
412 => 0.26429388564112
413 => 0.25240282300198
414 => 0.24554430623186
415 => 0.24991482005524
416 => 0.25460035780573
417 => 0.2553605705417
418 => 0.26143549254025
419 => 0.26313087269004
420 => 0.25799379168646
421 => 0.24936532507984
422 => 0.25136952107819
423 => 0.24550369126393
424 => 0.23522405014032
425 => 0.24260706786061
426 => 0.24512795471869
427 => 0.24624132196698
428 => 0.23613247554667
429 => 0.23295605652767
430 => 0.2312649576947
501 => 0.24806039994844
502 => 0.24898049218866
503 => 0.24427317019973
504 => 0.2655507119563
505 => 0.26073494894521
506 => 0.26611533611918
507 => 0.25118766129833
508 => 0.25175791857926
509 => 0.24469091809247
510 => 0.24864796614793
511 => 0.24585125212394
512 => 0.24832827576936
513 => 0.24981299352927
514 => 0.25687883439082
515 => 0.26755671392601
516 => 0.25582343339114
517 => 0.25071107503842
518 => 0.25388275340745
519 => 0.26232935086307
520 => 0.2751263783817
521 => 0.26755028052649
522 => 0.27091242410415
523 => 0.27164690290451
524 => 0.26606056882847
525 => 0.27533235448735
526 => 0.2803011797458
527 => 0.28539816630745
528 => 0.28982373692461
529 => 0.28336231778959
530 => 0.29027696247212
531 => 0.2847049794571
601 => 0.27970633467161
602 => 0.2797139155524
603 => 0.27657819265991
604 => 0.27050233442921
605 => 0.26938185295108
606 => 0.27521073910153
607 => 0.27988495379661
608 => 0.28026994450688
609 => 0.2828578299319
610 => 0.28438931386909
611 => 0.29939993840499
612 => 0.30543733576773
613 => 0.3128197509808
614 => 0.31569561775641
615 => 0.32435094569571
616 => 0.31736106543336
617 => 0.31584876087019
618 => 0.29485376642565
619 => 0.29829169558978
620 => 0.30379615189238
621 => 0.29494453288266
622 => 0.30055884778248
623 => 0.30166723247116
624 => 0.29464375825582
625 => 0.29839529930064
626 => 0.28843231854001
627 => 0.26777387968091
628 => 0.27535535323533
629 => 0.28093786966778
630 => 0.27297093039936
701 => 0.28725136067488
702 => 0.27890902811584
703 => 0.2762649091972
704 => 0.26594925859916
705 => 0.27081784859563
706 => 0.27740268627735
707 => 0.27333402215959
708 => 0.28177711111693
709 => 0.29373477677011
710 => 0.30225652140586
711 => 0.30291071514407
712 => 0.29743180425583
713 => 0.30621179392018
714 => 0.30627574655955
715 => 0.29637188235085
716 => 0.29030582066798
717 => 0.28892759869052
718 => 0.29237066740654
719 => 0.29655118845332
720 => 0.30314270496722
721 => 0.30712582034686
722 => 0.31751167277582
723 => 0.32032178665737
724 => 0.3234092498399
725 => 0.32753505279014
726 => 0.33248913706607
727 => 0.32164988270651
728 => 0.32208054648911
729 => 0.31198718290918
730 => 0.30120097638927
731 => 0.30938636261826
801 => 0.32008766625636
802 => 0.31763277537789
803 => 0.3173565500052
804 => 0.31782108446354
805 => 0.31597017691042
806 => 0.30759859064546
807 => 0.30339443243211
808 => 0.30881886912249
809 => 0.31170171580952
810 => 0.31617275961046
811 => 0.31562160908971
812 => 0.32713853776589
813 => 0.3316136679956
814 => 0.33046873818122
815 => 0.33067943282134
816 => 0.33878144234216
817 => 0.34779254323466
818 => 0.35623262833997
819 => 0.36481824541918
820 => 0.35446794892785
821 => 0.3492127066871
822 => 0.35463477523811
823 => 0.3517577493438
824 => 0.36828999351381
825 => 0.36943465023064
826 => 0.38596569893122
827 => 0.40165563262873
828 => 0.39180106638768
829 => 0.40109347849358
830 => 0.41114397980758
831 => 0.43053302747737
901 => 0.42400347833711
902 => 0.41900194602675
903 => 0.41427552216068
904 => 0.4241104599273
905 => 0.43676295024708
906 => 0.43948817547792
907 => 0.44390408146804
908 => 0.43926129627072
909 => 0.44485301965487
910 => 0.46459426032869
911 => 0.45926000283787
912 => 0.45168449967623
913 => 0.4672683132193
914 => 0.47290803475999
915 => 0.51249055407769
916 => 0.56246511978859
917 => 0.54177532143359
918 => 0.52893249593901
919 => 0.53195086456613
920 => 0.55019988421795
921 => 0.55606089013518
922 => 0.54012865564225
923 => 0.54575619020969
924 => 0.57676445896328
925 => 0.59339940028521
926 => 0.57080691559934
927 => 0.50847514638197
928 => 0.4510024085019
929 => 0.46624676661881
930 => 0.46451852949586
1001 => 0.49783304591129
1002 => 0.45913278256087
1003 => 0.45978439574333
1004 => 0.49378782107754
1005 => 0.48471629016467
1006 => 0.47002157187971
1007 => 0.45110969620753
1008 => 0.41614934489074
1009 => 0.38518398678794
1010 => 0.44591418492361
1011 => 0.4432953883493
1012 => 0.43950298282579
1013 => 0.44794257093722
1014 => 0.48892281518744
1015 => 0.48797808791737
1016 => 0.48196821502925
1017 => 0.4865266506463
1018 => 0.46922245607632
1019 => 0.47368214102619
1020 => 0.45099330452658
1021 => 0.46124960619392
1022 => 0.469990043614
1023 => 0.47174481583047
1024 => 0.47569840723506
1025 => 0.44191540155367
1026 => 0.45708297928768
1027 => 0.46599251019657
1028 => 0.4257389254187
1029 => 0.46519682625065
1030 => 0.44132731458516
1031 => 0.43322564381786
1101 => 0.44413347619207
1102 => 0.43988268330763
1103 => 0.43622810120052
1104 => 0.43418878159106
1105 => 0.44219828983315
1106 => 0.44182463670022
1107 => 0.4287195266376
1108 => 0.41162444479353
1109 => 0.41736211538733
1110 => 0.41527756586966
1111 => 0.40772288950536
1112 => 0.41281382921979
1113 => 0.39039590718305
1114 => 0.35182703750101
1115 => 0.37730681420939
1116 => 0.37632587052278
1117 => 0.37583123423374
1118 => 0.39497858222078
1119 => 0.39313800651631
1120 => 0.38979734358971
1121 => 0.40766153561093
1122 => 0.4011408652159
1123 => 0.42123603491022
1124 => 0.434472013345
1125 => 0.43111494107489
1126 => 0.44356344276783
1127 => 0.41749429972935
1128 => 0.42615342333425
1129 => 0.42793805670819
1130 => 0.40744109425437
1201 => 0.39343914746434
1202 => 0.39250537724733
1203 => 0.36822793110054
1204 => 0.38119674687146
1205 => 0.3926087680638
1206 => 0.38714329552129
1207 => 0.38541309019067
1208 => 0.39425233398902
1209 => 0.39493921893516
1210 => 0.37927816937047
1211 => 0.38253459749591
1212 => 0.39611444411511
1213 => 0.3821924202034
1214 => 0.35514420189265
1215 => 0.3484358697807
1216 => 0.34754085461788
1217 => 0.32934732588576
1218 => 0.34888415260956
1219 => 0.34035580419022
1220 => 0.36729675466162
1221 => 0.35190822823957
1222 => 0.35124485962218
1223 => 0.35024208066196
1224 => 0.33458215891702
1225 => 0.33801068653922
1226 => 0.3494076345349
1227 => 0.35347419397557
1228 => 0.35305001850957
1229 => 0.34935178327214
1230 => 0.3510448164258
1231 => 0.34559096674599
]
'min_raw' => 0.19082413313102
'max_raw' => 0.59339940028521
'avg_raw' => 0.39211176670811
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.190824'
'max' => '$0.593399'
'avg' => '$0.392111'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.10870622725654
'max_diff' => 0.37062143471976
'year' => 2033
]
8 => [
'items' => [
101 => 0.34366509891198
102 => 0.33758653027618
103 => 0.32865271362898
104 => 0.32989501562806
105 => 0.31219478718968
106 => 0.30255076331423
107 => 0.2998814246117
108 => 0.29631187333933
109 => 0.30028461492613
110 => 0.31214464466643
111 => 0.29783893255395
112 => 0.27331279256613
113 => 0.27478685536991
114 => 0.27809863683682
115 => 0.27192715398285
116 => 0.26608636339487
117 => 0.2711644569328
118 => 0.26077240809757
119 => 0.27935446628996
120 => 0.27885187369147
121 => 0.28577811587882
122 => 0.29010923725937
123 => 0.2801274046944
124 => 0.27761700079806
125 => 0.27904704094891
126 => 0.25541166270911
127 => 0.28384660123101
128 => 0.28409250776013
129 => 0.28198690676359
130 => 0.29712763369626
131 => 0.32907929003536
201 => 0.3170577916682
202 => 0.31240270414872
203 => 0.30355337937134
204 => 0.31534457921628
205 => 0.31443919903956
206 => 0.3103447265252
207 => 0.30786837677298
208 => 0.31243112712047
209 => 0.3073030015112
210 => 0.30638184924031
211 => 0.30080066870226
212 => 0.29880844117771
213 => 0.29733347523139
214 => 0.29570968265166
215 => 0.29929136445865
216 => 0.29117480227453
217 => 0.28138702395689
218 => 0.28057327609501
219 => 0.28282010548711
220 => 0.28182605073788
221 => 0.28056851694331
222 => 0.27816754246052
223 => 0.27745522462018
224 => 0.2797699120338
225 => 0.27715676489849
226 => 0.28101260584213
227 => 0.27996403045887
228 => 0.27410677360626
301 => 0.26680646293368
302 => 0.26674147485578
303 => 0.26516863489628
304 => 0.26316538672978
305 => 0.26260812891798
306 => 0.27073679405899
307 => 0.28756288763043
308 => 0.28425952284806
309 => 0.28664654244576
310 => 0.29838831634631
311 => 0.30212067318184
312 => 0.2994715347057
313 => 0.29584523056782
314 => 0.29600476954608
315 => 0.30839694854215
316 => 0.30916983354557
317 => 0.31112266460709
318 => 0.31363260439112
319 => 0.29989898830421
320 => 0.29535791746343
321 => 0.29320610617005
322 => 0.28657936024221
323 => 0.29372573759112
324 => 0.2895618495483
325 => 0.29012370030395
326 => 0.28975779426226
327 => 0.28995760370348
328 => 0.27934927222599
329 => 0.2832143906589
330 => 0.27678788161214
331 => 0.26818350740802
401 => 0.2681546625286
402 => 0.27026057092525
403 => 0.26900789420672
404 => 0.26563697336642
405 => 0.26611579676149
406 => 0.26192079997904
407 => 0.26662514532374
408 => 0.26676004911527
409 => 0.26494861991014
410 => 0.27219631298821
411 => 0.27516569875585
412 => 0.27397337724846
413 => 0.27508204230041
414 => 0.28439679256856
415 => 0.28591550329332
416 => 0.28659001427686
417 => 0.2856862589145
418 => 0.27525229883598
419 => 0.27571508933409
420 => 0.2723194397253
421 => 0.26945047363062
422 => 0.26956521722866
423 => 0.27104023874081
424 => 0.27748174419325
425 => 0.29103751267043
426 => 0.291551944175
427 => 0.29217545016557
428 => 0.28963933795293
429 => 0.28887442224228
430 => 0.28988354350613
501 => 0.29497437741771
502 => 0.30806938438622
503 => 0.30344073433744
504 => 0.29967756979855
505 => 0.30297887964103
506 => 0.30247066886731
507 => 0.2981808584918
508 => 0.29806045780221
509 => 0.28982694015627
510 => 0.28678319615069
511 => 0.28423961583934
512 => 0.28146209254119
513 => 0.27981548362662
514 => 0.28234542328976
515 => 0.28292405042409
516 => 0.27739229313485
517 => 0.27663833505687
518 => 0.28115568747054
519 => 0.27916776909715
520 => 0.28121239244218
521 => 0.28168676259668
522 => 0.28161037807614
523 => 0.27953476298335
524 => 0.28085769814776
525 => 0.27772856209798
526 => 0.27432609662489
527 => 0.27215553563414
528 => 0.27026143328658
529 => 0.27131239135488
530 => 0.26756591773875
531 => 0.26636734542734
601 => 0.28040951748104
602 => 0.29078262095591
603 => 0.29063179192318
604 => 0.28971365897655
605 => 0.28834949965432
606 => 0.29487458066647
607 => 0.29260137291495
608 => 0.29425532148704
609 => 0.29467632081464
610 => 0.2959505589824
611 => 0.29640598960291
612 => 0.29502936195084
613 => 0.2904092314096
614 => 0.27889630536967
615 => 0.27353700721953
616 => 0.27176834956381
617 => 0.27183263691044
618 => 0.27005930489914
619 => 0.27058163065163
620 => 0.26987766131839
621 => 0.2685445137097
622 => 0.27123007324676
623 => 0.27153955896569
624 => 0.27091271727969
625 => 0.27106036118874
626 => 0.26587037975628
627 => 0.26626496277254
628 => 0.2640678743968
629 => 0.26365594681265
630 => 0.25810189872115
701 => 0.24826209745492
702 => 0.25371430252903
703 => 0.24712880549556
704 => 0.24463477798241
705 => 0.25644111632877
706 => 0.25525608741565
707 => 0.25322783303607
708 => 0.25022762208342
709 => 0.24911481465691
710 => 0.24235374900543
711 => 0.24195426917786
712 => 0.24530523587886
713 => 0.24375888004607
714 => 0.24158721080609
715 => 0.23372164495745
716 => 0.22487814474422
717 => 0.22514507442739
718 => 0.22795802730605
719 => 0.23613706717913
720 => 0.23294137480189
721 => 0.23062286331586
722 => 0.23018867580872
723 => 0.23562344149362
724 => 0.24331477355637
725 => 0.24692337447636
726 => 0.24334736055949
727 => 0.23923942831806
728 => 0.23948945911927
729 => 0.24115280202395
730 => 0.24132759584483
731 => 0.23865375425792
801 => 0.23940642500252
802 => 0.23826304931581
803 => 0.23124615483703
804 => 0.23111924146672
805 => 0.22939718239892
806 => 0.22934503913473
807 => 0.22641538707263
808 => 0.22600550849742
809 => 0.22018850651095
810 => 0.22401727483395
811 => 0.22144913806224
812 => 0.21757835018506
813 => 0.21691102489604
814 => 0.21689096429203
815 => 0.22086539794957
816 => 0.22397083126263
817 => 0.2214938119009
818 => 0.22092984260724
819 => 0.22695155919957
820 => 0.22618524087403
821 => 0.22552161414634
822 => 0.24262609912942
823 => 0.2290865645857
824 => 0.22318255471503
825 => 0.215875221359
826 => 0.2182545259465
827 => 0.21875588038234
828 => 0.20118306090693
829 => 0.19405377023432
830 => 0.19160726633713
831 => 0.19019926875581
901 => 0.19084091093414
902 => 0.18442371314639
903 => 0.18873617619041
904 => 0.18317942533845
905 => 0.18224781797489
906 => 0.19218397684753
907 => 0.19356653530846
908 => 0.18766811138689
909 => 0.19145585441263
910 => 0.19008236613793
911 => 0.18327467988296
912 => 0.18301467634197
913 => 0.17959881868097
914 => 0.17425366288189
915 => 0.17181078325203
916 => 0.17053851033074
917 => 0.17106347493417
918 => 0.1707980367665
919 => 0.16906587317313
920 => 0.17089732235607
921 => 0.1662187265007
922 => 0.16435567193308
923 => 0.16351417340742
924 => 0.15936165029585
925 => 0.16597016120177
926 => 0.16727212110207
927 => 0.16857664626556
928 => 0.17993164717661
929 => 0.17936438342
930 => 0.18449217151116
1001 => 0.18429291509533
1002 => 0.18283038686707
1003 => 0.17666022084627
1004 => 0.17911953904953
1005 => 0.1715501398828
1006 => 0.17722164840762
1007 => 0.17463340876475
1008 => 0.17634656198083
1009 => 0.17326615802952
1010 => 0.17497098076294
1011 => 0.16758086409395
1012 => 0.1606800771302
1013 => 0.16345715525095
1014 => 0.1664761567656
1015 => 0.17302212127665
1016 => 0.1691233988169
1017 => 0.17052552684044
1018 => 0.16582863267497
1019 => 0.15613759841012
1020 => 0.15619244861161
1021 => 0.15470169412062
1022 => 0.15341346458669
1023 => 0.16957121399071
1024 => 0.16756174243611
1025 => 0.16435991250697
1026 => 0.16864568910278
1027 => 0.16977891645913
1028 => 0.16981117784884
1029 => 0.17293796982124
1030 => 0.17460673925742
1031 => 0.1749008671034
1101 => 0.17982094183078
1102 => 0.18147008598205
1103 => 0.18826267734548
1104 => 0.1744651558298
1105 => 0.17418100495389
1106 => 0.16870599876852
1107 => 0.16523366328932
1108 => 0.16894375254949
1109 => 0.1722303851563
1110 => 0.16880812360506
1111 => 0.16925499871577
1112 => 0.16466089219227
1113 => 0.16630306910162
1114 => 0.16771753308107
1115 => 0.16693654920996
1116 => 0.16576737855488
1117 => 0.17196091876281
1118 => 0.1716114549516
1119 => 0.1773790219821
1120 => 0.18187525292505
1121 => 0.18993330257224
1122 => 0.18152430768977
1123 => 0.18121785049352
1124 => 0.18421351874409
1125 => 0.18146962736085
1126 => 0.18320367199915
1127 => 0.18965392117278
1128 => 0.18979020477365
1129 => 0.18750727886759
1130 => 0.18736836261873
1201 => 0.18780682351146
1202 => 0.19037490265527
1203 => 0.18947753689332
1204 => 0.19051599127157
1205 => 0.19181459437295
1206 => 0.19718616739655
1207 => 0.19848123546717
1208 => 0.19533489147138
1209 => 0.19561897110608
1210 => 0.19444215208258
1211 => 0.19330535965138
1212 => 0.19586070302152
1213 => 0.20053064325584
1214 => 0.20050159180001
1215 => 0.20158492716371
1216 => 0.20225983612046
1217 => 0.19936263281454
1218 => 0.19747665999551
1219 => 0.19819986198189
1220 => 0.19935627770741
1221 => 0.19782485194789
1222 => 0.18837218273468
1223 => 0.19123951873512
1224 => 0.19076225381908
1225 => 0.19008257054124
1226 => 0.19296569906214
1227 => 0.19268761428286
1228 => 0.18435789550781
1229 => 0.18489113707808
1230 => 0.18439032369385
1231 => 0.18600855419508
]
'min_raw' => 0.15341346458669
'max_raw' => 0.34366509891198
'avg_raw' => 0.24853928174934
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.153413'
'max' => '$0.343665'
'avg' => '$0.248539'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.037410668544328
'max_diff' => -0.24973430137323
'year' => 2034
]
9 => [
'items' => [
101 => 0.1813822376032
102 => 0.18280526142815
103 => 0.18369776863113
104 => 0.18422346223025
105 => 0.18612262798176
106 => 0.18589978280091
107 => 0.18610877561243
108 => 0.18892473706074
109 => 0.20316690374504
110 => 0.20394207345409
111 => 0.2001248543017
112 => 0.20164975806176
113 => 0.19872227630223
114 => 0.20068751441983
115 => 0.20203208042825
116 => 0.19595624518136
117 => 0.19559647364989
118 => 0.19265690913177
119 => 0.19423646459836
120 => 0.19172327827696
121 => 0.19233992629271
122 => 0.19061572468227
123 => 0.19371894429594
124 => 0.19718882601559
125 => 0.19806545516776
126 => 0.19575942128099
127 => 0.19408970077193
128 => 0.19115822159815
129 => 0.19603333679642
130 => 0.19745896904684
131 => 0.19602584855712
201 => 0.19569376322535
202 => 0.19506446212171
203 => 0.19582727242939
204 => 0.19745120474743
205 => 0.19668538825556
206 => 0.19719122354039
207 => 0.1952635010497
208 => 0.19936359190939
209 => 0.20587552293517
210 => 0.20589645985823
211 => 0.20513063923832
212 => 0.20481728194049
213 => 0.20560306037039
214 => 0.2060293129343
215 => 0.20857037628949
216 => 0.21129703851004
217 => 0.22402118135743
218 => 0.22044829296236
219 => 0.23173790945921
220 => 0.24066653033498
221 => 0.24334383333436
222 => 0.24088084055177
223 => 0.23245507529081
224 => 0.23204166704987
225 => 0.24463331761609
226 => 0.241075599597
227 => 0.24065242035919
228 => 0.23615050824155
301 => 0.23881169587574
302 => 0.23822965510288
303 => 0.2373108752685
304 => 0.2423882358946
305 => 0.25189260172754
306 => 0.2504112571811
307 => 0.24930550219478
308 => 0.24446040572514
309 => 0.24737823599134
310 => 0.2463392525209
311 => 0.25080338486509
312 => 0.24815893175703
313 => 0.24104864638389
314 => 0.24218098276537
315 => 0.24200983239926
316 => 0.24553209480608
317 => 0.24447479905948
318 => 0.24180337843574
319 => 0.25186011683838
320 => 0.25120708818503
321 => 0.25213293351235
322 => 0.25254051925815
323 => 0.25866187870423
324 => 0.26116960380764
325 => 0.26173890131002
326 => 0.26412104620383
327 => 0.26167963137497
328 => 0.27144703138967
329 => 0.27794178245585
330 => 0.28548577003606
331 => 0.29650956352344
401 => 0.30065461185049
402 => 0.2999058459711
403 => 0.30826396038041
404 => 0.32328330618351
405 => 0.30294168517743
406 => 0.32436146149014
407 => 0.31758020761275
408 => 0.30150197665899
409 => 0.30046672813546
410 => 0.31135509280945
411 => 0.33550443769008
412 => 0.32945530069708
413 => 0.33551433191115
414 => 0.32844615015555
415 => 0.32809515535607
416 => 0.33517104609976
417 => 0.35170425050913
418 => 0.34384994483214
419 => 0.33258887168941
420 => 0.3409038728563
421 => 0.33370064932851
422 => 0.31746977066508
423 => 0.32945067503603
424 => 0.32143938547969
425 => 0.32377750567581
426 => 0.34061604473384
427 => 0.33858998716513
428 => 0.34121189326692
429 => 0.33658429762449
430 => 0.33226139358961
501 => 0.32419237218542
502 => 0.32180353274559
503 => 0.32246372202532
504 => 0.32180320558857
505 => 0.31728866227107
506 => 0.31631374707149
507 => 0.3146888456935
508 => 0.31519247057526
509 => 0.31213718060298
510 => 0.31790314403579
511 => 0.31897335765841
512 => 0.32316934500336
513 => 0.32360498632917
514 => 0.33529075135871
515 => 0.32885442835174
516 => 0.33317246951021
517 => 0.33278622326601
518 => 0.30185044067722
519 => 0.30611311856924
520 => 0.3127445076672
521 => 0.3097570758672
522 => 0.30553354625339
523 => 0.3021228196389
524 => 0.29695522005326
525 => 0.30422851723509
526 => 0.31379212960029
527 => 0.32384753532111
528 => 0.3359284464384
529 => 0.33323212771433
530 => 0.32362169109108
531 => 0.32405280825757
601 => 0.32671780494246
602 => 0.32326639209505
603 => 0.32224850306676
604 => 0.32657796262073
605 => 0.32660777722925
606 => 0.32263650963112
607 => 0.31822317243009
608 => 0.31820468038608
609 => 0.31741936965894
610 => 0.32858585518933
611 => 0.33472629317202
612 => 0.33543028449092
613 => 0.33467890894715
614 => 0.33496808357292
615 => 0.33139509800611
616 => 0.33956188347588
617 => 0.34705653343431
618 => 0.34504780714561
619 => 0.34203644088157
620 => 0.33963774260522
621 => 0.34448275006343
622 => 0.34426700950806
623 => 0.34699107420511
624 => 0.34686749489549
625 => 0.34595149439513
626 => 0.34504783985887
627 => 0.34863072795067
628 => 0.34759891371965
629 => 0.34656549679614
630 => 0.34449282094782
701 => 0.34477453201911
702 => 0.34176368570992
703 => 0.34037073044034
704 => 0.3194240253528
705 => 0.31382638130008
706 => 0.31558751406962
707 => 0.31616732470514
708 => 0.31373122283982
709 => 0.31722396713147
710 => 0.31667962663335
711 => 0.318797337083
712 => 0.31747428353436
713 => 0.31752858211349
714 => 0.32141940049529
715 => 0.32254892162425
716 => 0.32197443806171
717 => 0.32237678665677
718 => 0.33164874020922
719 => 0.33033056491444
720 => 0.3296303105613
721 => 0.32982428580275
722 => 0.33219346872832
723 => 0.33285671059489
724 => 0.33004650820106
725 => 0.33137181589558
726 => 0.33701480785225
727 => 0.3389895356714
728 => 0.345291918947
729 => 0.3426145545156
730 => 0.34752897280306
731 => 0.36263421917008
801 => 0.37470133517159
802 => 0.36360391660194
803 => 0.38576363840076
804 => 0.40301816044444
805 => 0.4023559031495
806 => 0.39934717812689
807 => 0.37970336351537
808 => 0.36162683243706
809 => 0.37674861825412
810 => 0.37678716679599
811 => 0.37548819198345
812 => 0.36742037098427
813 => 0.3752074493007
814 => 0.37582555929894
815 => 0.37547958206864
816 => 0.36929400262457
817 => 0.35984976609965
818 => 0.36169514731031
819 => 0.36471791937813
820 => 0.35899518123743
821 => 0.35716641964855
822 => 0.36056643537841
823 => 0.37152199448145
824 => 0.36945090949425
825 => 0.36939682509532
826 => 0.37825780494726
827 => 0.37191525569241
828 => 0.3617184234771
829 => 0.35914358886304
830 => 0.35000466059957
831 => 0.3563169509029
901 => 0.35654411899336
902 => 0.35308694210427
903 => 0.36199895432806
904 => 0.36191682856649
905 => 0.37037745779502
906 => 0.38655100321274
907 => 0.38176768998089
908 => 0.37620521711524
909 => 0.37681001214638
910 => 0.38344312087663
911 => 0.37943259191918
912 => 0.38087480609468
913 => 0.38344093791275
914 => 0.38498914895206
915 => 0.37658724840344
916 => 0.37462836347619
917 => 0.37062117239024
918 => 0.36957577103367
919 => 0.3728395445604
920 => 0.37197965554693
921 => 0.35652502639499
922 => 0.35490993165987
923 => 0.35495946430957
924 => 0.35089823180454
925 => 0.34470387742688
926 => 0.36098227088569
927 => 0.35967488807498
928 => 0.35823163863534
929 => 0.35840842845663
930 => 0.36547432733115
1001 => 0.36137574914748
1002 => 0.37227249099252
1003 => 0.37003244845523
1004 => 0.3677349572793
1005 => 0.3674173740155
1006 => 0.3665330359255
1007 => 0.3635003115672
1008 => 0.35983811466607
1009 => 0.35742001505788
1010 => 0.32970107074038
1011 => 0.33484554557203
1012 => 0.3407637949322
1013 => 0.34280675089544
1014 => 0.33931213335207
1015 => 0.36363830036775
1016 => 0.3680829254943
1017 => 0.35461986607027
1018 => 0.35210147734513
1019 => 0.36380340551331
1020 => 0.35674571232536
1021 => 0.35992379113575
1022 => 0.35305452306386
1023 => 0.36701234545513
1024 => 0.36690601023426
1025 => 0.36147610207234
1026 => 0.36606542326838
1027 => 0.36526791577292
1028 => 0.35913756283139
1029 => 0.36720668857789
1030 => 0.36721069076359
1031 => 0.36198452221412
1101 => 0.35588150150375
1102 => 0.35479042554766
1103 => 0.35396844638017
1104 => 0.35972163464878
1105 => 0.36487992526067
1106 => 0.37447822524071
1107 => 0.37689146590567
1108 => 0.38631050487955
1109 => 0.38070192577529
1110 => 0.38318813624895
1111 => 0.38588726941405
1112 => 0.38718133311073
1113 => 0.38507272576027
1114 => 0.39970437031782
1115 => 0.40093972942048
1116 => 0.40135393464179
1117 => 0.39642022642101
1118 => 0.40080251406985
1119 => 0.39875218680507
1120 => 0.40408656875071
1121 => 0.4049230679526
1122 => 0.40421458288792
1123 => 0.40448010093784
1124 => 0.39199457350695
1125 => 0.39134713304325
1126 => 0.38251923638048
1127 => 0.38611666952308
1128 => 0.37939144069245
1129 => 0.38152408003217
1130 => 0.38246412713259
1201 => 0.38197309987454
1202 => 0.38632006299541
1203 => 0.38262425631677
1204 => 0.37287041484496
1205 => 0.36311391594557
1206 => 0.36299143104936
1207 => 0.36042271710566
1208 => 0.35856600740779
1209 => 0.35892367556591
1210 => 0.36018414480654
1211 => 0.35849274664411
1212 => 0.35885369219813
1213 => 0.36484779336244
1214 => 0.36604986760297
1215 => 0.36196474965293
1216 => 0.3455624116038
1217 => 0.34153723670439
1218 => 0.3444304525994
1219 => 0.34304768174855
1220 => 0.27686625294489
1221 => 0.2924145979593
1222 => 0.28317629932364
1223 => 0.28743373236864
1224 => 0.27800382170746
1225 => 0.28250426933894
1226 => 0.28167320099144
1227 => 0.30667447966564
1228 => 0.30628411908727
1229 => 0.30647096403871
1230 => 0.29755236768453
1231 => 0.31175993384302
]
'min_raw' => 0.1813822376032
'max_raw' => 0.4049230679526
'avg_raw' => 0.2931526527779
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.181382'
'max' => '$0.404923'
'avg' => '$0.293152'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.027968773016509
'max_diff' => 0.061257969040615
'year' => 2035
]
10 => [
'items' => [
101 => 0.31875909182024
102 => 0.31746373395522
103 => 0.31778974762246
104 => 0.31218775268436
105 => 0.30652520359507
106 => 0.30024456519499
107 => 0.31191321503197
108 => 0.31061586036059
109 => 0.31359152520325
110 => 0.32115947871485
111 => 0.3222738886173
112 => 0.32377166682741
113 => 0.3232348199582
114 => 0.3360246903859
115 => 0.33447575268682
116 => 0.33820824688181
117 => 0.33053022313771
118 => 0.32184181046655
119 => 0.32349319366973
120 => 0.32333415218768
121 => 0.32130937158185
122 => 0.31948149018497
123 => 0.31643858266156
124 => 0.32606679233122
125 => 0.32567590460181
126 => 0.33200392258372
127 => 0.33088538393833
128 => 0.32341550911158
129 => 0.32368229715237
130 => 0.32547657494064
131 => 0.33168659085256
201 => 0.33353014638534
202 => 0.33267613800957
203 => 0.33469751248976
204 => 0.33629512446083
205 => 0.33489814795606
206 => 0.35467638930081
207 => 0.34646308456029
208 => 0.35046619214301
209 => 0.35142090971381
210 => 0.34897542073176
211 => 0.34950575972557
212 => 0.35030907879247
213 => 0.35518667486069
214 => 0.36798689828749
215 => 0.37365603010916
216 => 0.39071189290467
217 => 0.37318528762949
218 => 0.37214533140477
219 => 0.37521760733195
220 => 0.38523120433935
221 => 0.3933462841845
222 => 0.39603852433933
223 => 0.39639434831983
224 => 0.40144516982702
225 => 0.4043402065227
226 => 0.40083186724626
227 => 0.3978589170479
228 => 0.38721017845356
229 => 0.38844279894141
301 => 0.39693433177175
302 => 0.40892912204341
303 => 0.41922189994171
304 => 0.41561772786125
305 => 0.4431150166862
306 => 0.44584126055684
307 => 0.44546458180394
308 => 0.45167537106074
309 => 0.43934821919122
310 => 0.43407812293968
311 => 0.3985017026252
312 => 0.40849722559025
313 => 0.42302630523641
314 => 0.42110332706399
315 => 0.41055192106153
316 => 0.41921389575409
317 => 0.41634997603574
318 => 0.41409108372974
319 => 0.42443950729135
320 => 0.41306099049555
321 => 0.42291279582726
322 => 0.41027775358546
323 => 0.41563419141572
324 => 0.41259361824152
325 => 0.41456124172386
326 => 0.40305855505124
327 => 0.40926512556785
328 => 0.40280034131244
329 => 0.40279727616296
330 => 0.40265456569221
331 => 0.41026035569946
401 => 0.41050838023854
402 => 0.40488768993147
403 => 0.40407766064654
404 => 0.40707276346647
405 => 0.403566282483
406 => 0.40520694286564
407 => 0.40361597641462
408 => 0.40325781635562
409 => 0.40040393606957
410 => 0.39917440597326
411 => 0.39965653640511
412 => 0.39801077668594
413 => 0.39701914692541
414 => 0.40245730557388
415 => 0.39955191678269
416 => 0.40201201307249
417 => 0.39920842286136
418 => 0.38948995772349
419 => 0.3839007656518
420 => 0.36554348590855
421 => 0.3707495876716
422 => 0.37420123852661
423 => 0.37306046793962
424 => 0.37551128458008
425 => 0.3756617448171
426 => 0.37486495934417
427 => 0.37394238384105
428 => 0.37349332510776
429 => 0.3768402409988
430 => 0.37878323832555
501 => 0.37454765786704
502 => 0.37355532062768
503 => 0.37783772632404
504 => 0.38044999132496
505 => 0.39973748838681
506 => 0.39830860830668
507 => 0.40189481690426
508 => 0.40149106485103
509 => 0.40524998278914
510 => 0.41139422498069
511 => 0.39890126264813
512 => 0.40106960893492
513 => 0.40053798049983
514 => 0.40634216035373
515 => 0.40636028036969
516 => 0.40288038460699
517 => 0.40476689255481
518 => 0.40371389557197
519 => 0.40561680344104
520 => 0.39828952474206
521 => 0.40721335926656
522 => 0.41227259840275
523 => 0.41234284594307
524 => 0.41474088514102
525 => 0.4171774318512
526 => 0.4218541710829
527 => 0.41704700013233
528 => 0.40839936756092
529 => 0.40902369870089
530 => 0.40395359488831
531 => 0.40403882424939
601 => 0.40358386324041
602 => 0.40494923547623
603 => 0.39858914716628
604 => 0.40008184718026
605 => 0.39799205841945
606 => 0.40106506614229
607 => 0.39775901781889
608 => 0.4005377241325
609 => 0.40173692166189
610 => 0.40616198636219
611 => 0.39710543216474
612 => 0.37863850508133
613 => 0.38252047704411
614 => 0.37677873558884
615 => 0.37731015562087
616 => 0.37838370866046
617 => 0.37490397201447
618 => 0.37556779610742
619 => 0.37554407963956
620 => 0.37533970393223
621 => 0.3744344900368
622 => 0.37312175079732
623 => 0.37835129988758
624 => 0.37923990218247
625 => 0.38121515500947
626 => 0.38709216759584
627 => 0.38650491544896
628 => 0.38746274806538
629 => 0.38537180484174
630 => 0.37740714848005
701 => 0.37783966763961
702 => 0.37244614678927
703 => 0.38107723055504
704 => 0.37903327599457
705 => 0.37771552519272
706 => 0.37735596467756
707 => 0.38324754524139
708 => 0.38501039848529
709 => 0.38391190664437
710 => 0.38165886783051
711 => 0.38598536840425
712 => 0.38714295743738
713 => 0.38740209893166
714 => 0.39506782842412
715 => 0.38783052805465
716 => 0.38957261818616
717 => 0.40316390809065
718 => 0.39083848361708
719 => 0.3973675358505
720 => 0.39704797271922
721 => 0.40038801491075
722 => 0.39677399177099
723 => 0.39681879191917
724 => 0.3997845231112
725 => 0.39561968852444
726 => 0.39458841691055
727 => 0.39316372256208
728 => 0.39627449055057
729 => 0.39813925527173
730 => 0.41316788940554
731 => 0.42287707244496
801 => 0.42245557120307
802 => 0.42630730353668
803 => 0.42457206284257
804 => 0.4189685129079
805 => 0.42853308936626
806 => 0.42550645717596
807 => 0.42575596905637
808 => 0.42574668221172
809 => 0.42775912802549
810 => 0.42633312572848
811 => 0.42352232882495
812 => 0.42538826698391
813 => 0.43092943623094
814 => 0.44812939559756
815 => 0.45775472072828
816 => 0.44754993893878
817 => 0.4545890607697
818 => 0.45036809596671
819 => 0.44960102109918
820 => 0.45402210979602
821 => 0.45845093702336
822 => 0.45816883987533
823 => 0.45495373873107
824 => 0.45313760967485
825 => 0.46688994733641
826 => 0.47702243546049
827 => 0.47633146769949
828 => 0.47938117468179
829 => 0.48833520870571
830 => 0.48915385336125
831 => 0.48905072295098
901 => 0.48702162675549
902 => 0.49583803608029
903 => 0.503192839849
904 => 0.48655194961246
905 => 0.49288858276929
906 => 0.49573330154695
907 => 0.4999101927026
908 => 0.50695730821041
909 => 0.51461234480697
910 => 0.51569485091493
911 => 0.51492676102864
912 => 0.50987805861479
913 => 0.51825429100232
914 => 0.52316089148812
915 => 0.52608265979185
916 => 0.53349177807424
917 => 0.49575086956167
918 => 0.46903597867161
919 => 0.46486406269143
920 => 0.47334781788962
921 => 0.47558491647871
922 => 0.47468314484253
923 => 0.44461310633415
924 => 0.46470575016182
925 => 0.48632374548291
926 => 0.48715418072525
927 => 0.49797660119395
928 => 0.50150082492457
929 => 0.51021429192895
930 => 0.5096692621954
1001 => 0.51179085274943
1002 => 0.51130313582188
1003 => 0.52744299861056
1004 => 0.54524766405928
1005 => 0.54463114511016
1006 => 0.54207151379666
1007 => 0.5458730027792
1008 => 0.56424932558618
1009 => 0.56255752825669
1010 => 0.56420096525534
1011 => 0.58586768548894
1012 => 0.61403750384764
1013 => 0.60094979501651
1014 => 0.62934635729331
1015 => 0.64722048800947
1016 => 0.67813194886346
1017 => 0.67426168172239
1018 => 0.68629528659407
1019 => 0.66733309579074
1020 => 0.62379207281525
1021 => 0.61690153926104
1022 => 0.63069656193267
1023 => 0.66461027907225
1024 => 0.62962849829127
1025 => 0.6367052669829
1026 => 0.63466715712363
1027 => 0.63455855491064
1028 => 0.63870345966339
1029 => 0.63269105913583
1030 => 0.60819545777637
1031 => 0.61942164752593
1101 => 0.61508667653772
1102 => 0.61989665004263
1103 => 0.64585409326471
1104 => 0.63437768886807
1105 => 0.6222882291036
1106 => 0.63745109451413
1107 => 0.6567586327076
1108 => 0.65555040166643
1109 => 0.65320592844518
1110 => 0.66642160124077
1111 => 0.68825002087029
1112 => 0.69415015498245
1113 => 0.69850551336112
1114 => 0.69910604369715
1115 => 0.70529187938584
1116 => 0.67202908185645
1117 => 0.72481799578483
1118 => 0.73393318295594
1119 => 0.73221990555357
1120 => 0.74235105246855
1121 => 0.73937021204377
1122 => 0.7350514419478
1123 => 0.75111146476479
1124 => 0.73269994458213
1125 => 0.70656710962877
1126 => 0.69223011952449
1127 => 0.7111102246258
1128 => 0.72263964598631
1129 => 0.73025986009669
1130 => 0.73256573228223
1201 => 0.67461117814161
1202 => 0.64337688776675
1203 => 0.66339770979517
1204 => 0.68782449443317
1205 => 0.67189338983445
1206 => 0.67251785897314
1207 => 0.649804290436
1208 => 0.68983414125265
1209 => 0.6840021286927
1210 => 0.71425862017036
1211 => 0.7070376656557
1212 => 0.7317106599055
1213 => 0.72521343363744
1214 => 0.7521830566211
1215 => 0.76294196940267
1216 => 0.781007858454
1217 => 0.79429719998155
1218 => 0.80210095551113
1219 => 0.80163244730028
1220 => 0.83255481452403
1221 => 0.81432097491741
1222 => 0.79141497498546
1223 => 0.7910006777142
1224 => 0.80286401965948
1225 => 0.82772632982788
1226 => 0.83417276512264
1227 => 0.83777544301354
1228 => 0.83225781641351
1229 => 0.81246629035158
1230 => 0.80392040974336
1231 => 0.81120174761956
]
'min_raw' => 0.30024456519499
'max_raw' => 0.83777544301354
'avg_raw' => 0.56901000410426
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.300244'
'max' => '$0.837775'
'avg' => '$0.56901'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.11886232759179
'max_diff' => 0.43285237506094
'year' => 2036
]
11 => [
'items' => [
101 => 0.80229729708946
102 => 0.81766887685197
103 => 0.83877733905815
104 => 0.83441852508448
105 => 0.84898938668855
106 => 0.86406869554942
107 => 0.88563278447461
108 => 0.89127043583555
109 => 0.90058925915451
110 => 0.91018138942371
111 => 0.91326212315102
112 => 0.91914419973199
113 => 0.91911319828493
114 => 0.93683923197109
115 => 0.95639159605649
116 => 0.96377216086046
117 => 0.98074336266047
118 => 0.9516807743198
119 => 0.97372508142315
120 => 0.99360959823518
121 => 0.96990245754948
122 => 1.0025772279294
123 => 1.0038459152206
124 => 1.0230015870632
125 => 1.003583643868
126 => 0.99205333118301
127 => 1.0253409118695
128 => 1.0414477236148
129 => 1.0365962208355
130 => 0.9996760451372
131 => 0.97818691929996
201 => 0.92194573204109
202 => 0.98856584778771
203 => 1.0210145628325
204 => 0.99959201080427
205 => 1.0103962999719
206 => 1.0693409983677
207 => 1.0917833231302
208 => 1.0871154764633
209 => 1.0879042657107
210 => 1.1000137367956
211 => 1.1537138003934
212 => 1.1215354775279
213 => 1.1461345996598
214 => 1.1591818853399
215 => 1.1713009314126
216 => 1.1415403845218
217 => 1.102822350286
218 => 1.090558723571
219 => 0.99746196019742
220 => 0.99261586936508
221 => 0.9898956117293
222 => 0.9727447721238
223 => 0.95926891020422
224 => 0.9485524044791
225 => 0.92042909323687
226 => 0.92991988521266
227 => 0.88509719688378
228 => 0.91377316445806
301 => 0.84223507160352
302 => 0.90181412109869
303 => 0.86938795318544
304 => 0.8911612528402
305 => 0.89108528784887
306 => 0.85099373995352
307 => 0.82786977181674
308 => 0.8426052643118
309 => 0.85840288197135
310 => 0.86096599228705
311 => 0.88144801594267
312 => 0.88716410848533
313 => 0.86984408122223
314 => 0.84075260363771
315 => 0.84750989037463
316 => 0.82773283561669
317 => 0.79307430786682
318 => 0.81796666757662
319 => 0.82646601362134
320 => 0.83021980903175
321 => 0.79613712754856
322 => 0.78542760905553
323 => 0.7797259512714
324 => 0.83635295745021
325 => 0.83945511267693
326 => 0.82358404793651
327 => 0.89532276551931
328 => 0.87908608430158
329 => 0.89722643530526
330 => 0.84689673742979
331 => 0.84881939966656
401 => 0.82499251412312
402 => 0.83833397791438
403 => 0.82890466132216
404 => 0.83725611948295
405 => 0.84226194907018
406 => 0.86608492485616
407 => 0.90208614121479
408 => 0.86252656669997
409 => 0.84528989358031
410 => 0.85598342864102
411 => 0.88446172168524
412 => 0.92760779342423
413 => 0.90206445055913
414 => 0.91340015236857
415 => 0.91587649892367
416 => 0.89704178356089
417 => 0.92830225624522
418 => 0.94505499751638
419 => 0.96223984356923
420 => 0.97716096388848
421 => 0.95537583815286
422 => 0.97868904546508
423 => 0.95990271570651
424 => 0.943049435818
425 => 0.94307499528686
426 => 0.93250268662567
427 => 0.91201750639799
428 => 0.90823972486495
429 => 0.92789222148102
430 => 0.94365166266875
501 => 0.9449496857276
502 => 0.95367492211845
503 => 0.95883842713748
504 => 1.0094477957686
505 => 1.0298033024947
506 => 1.0546936308093
507 => 1.0643898164299
508 => 1.093571858873
509 => 1.0700049895506
510 => 1.0649061491301
511 => 0.99412005953665
512 => 1.0057112777421
513 => 1.0242699364752
514 => 0.99442608498358
515 => 1.0133551396473
516 => 1.0170921360101
517 => 0.99341200232978
518 => 1.0060605848866
519 => 0.97246969965904
520 => 0.90281833071946
521 => 0.92837979812975
522 => 0.94720164204062
523 => 0.92034055006319
524 => 0.96848801776491
525 => 0.94036126109904
526 => 0.93144642955838
527 => 0.89666649335134
528 => 0.91308128443855
529 => 0.93528252442117
530 => 0.92156473928309
531 => 0.95003120318041
601 => 0.99034730778764
602 => 1.0190789647963
603 => 1.021284624659
604 => 1.002812094074
605 => 1.0324144422266
606 => 1.0326300630153
607 => 0.99923849336996
608 => 0.97878634288723
609 => 0.97413957126586
610 => 0.98574811782928
611 => 0.99984303641318
612 => 1.0220667945448
613 => 1.0354961461395
614 => 1.0705127727208
615 => 1.0799872678683
616 => 1.090396865548
617 => 1.1043072982491
618 => 1.1210103392685
619 => 1.0844650364227
620 => 1.0859170494337
621 => 1.0518865694278
622 => 1.0155201210771
623 => 1.0431177222335
624 => 1.0791979145905
625 => 1.0709210785988
626 => 1.0699897654693
627 => 1.0715559758284
628 => 1.0653155117868
629 => 1.037090124209
630 => 1.0229155112677
701 => 1.0412043782914
702 => 1.0509240971706
703 => 1.0659985335038
704 => 1.064140291043
705 => 1.102970420161
706 => 1.1180586341741
707 => 1.1141984233685
708 => 1.1149087950579
709 => 1.1422252858216
710 => 1.1726068416156
711 => 1.2010631778161
712 => 1.2300101852273
713 => 1.1951134379721
714 => 1.1773950218481
715 => 1.1956759045246
716 => 1.1859758108544
717 => 1.241715426318
718 => 1.2455747163562
719 => 1.3013103012112
720 => 1.3542100081085
721 => 1.320984650003
722 => 1.3523146661935
723 => 1.3862006330773
724 => 1.451572160996
725 => 1.4295573301911
726 => 1.4126943148109
727 => 1.3967588467581
728 => 1.4299180260916
729 => 1.4725767805734
730 => 1.4817650677084
731 => 1.4966536030628
801 => 1.4810001286211
802 => 1.4998530144124
803 => 1.5664119856336
804 => 1.5484271640773
805 => 1.5228858262631
806 => 1.5754277416507
807 => 1.5944424565779
808 => 1.7278976840208
809 => 1.8963904214279
810 => 1.8266333217584
811 => 1.783332838946
812 => 1.7935094795081
813 => 1.85503732337
814 => 1.8747981140223
815 => 1.8210814730763
816 => 1.8400550987724
817 => 1.9446016418033
818 => 2.0006875078847
819 => 1.9245153684094
820 => 1.7143594566278
821 => 1.5205861082468
822 => 1.571983525965
823 => 1.5661566538434
824 => 1.6784788718832
825 => 1.5479982320312
826 => 1.5501951913701
827 => 1.6648401139277
828 => 1.6342548141009
829 => 1.5847105454506
830 => 1.5209478362369
831 => 1.4030765709186
901 => 1.2986747041427
902 => 1.5034308072041
903 => 1.4946013517153
904 => 1.4818149917155
905 => 1.5102696522664
906 => 1.6484374069053
907 => 1.6452521929555
908 => 1.6249894869173
909 => 1.64035857086
910 => 1.5820162707271
911 => 1.5970524099008
912 => 1.5205554135584
913 => 1.5551352507019
914 => 1.5846042457016
915 => 1.5905205827437
916 => 1.6038503921952
917 => 1.4899486298863
918 => 1.5410871771829
919 => 1.5711262826858
920 => 1.4354085111917
921 => 1.5684435787093
922 => 1.487965853613
923 => 1.4606505049805
924 => 1.4974270233907
925 => 1.4830951783999
926 => 1.470773499671
927 => 1.4638977912269
928 => 1.4909024074712
929 => 1.4896426098459
930 => 1.4454578163002
1001 => 1.3878205543224
1002 => 1.4071655113208
1003 => 1.4001373070833
1004 => 1.3746661882704
1005 => 1.3918306469557
1006 => 1.3162470576395
1007 => 1.186209420714
1008 => 1.2721162668275
1009 => 1.2688089467008
1010 => 1.2671412459179
1011 => 1.3316978664814
1012 => 1.3254922369888
1013 => 1.3142289586942
1014 => 1.3744593293318
1015 => 1.3524744338362
1016 => 1.4202267014606
1017 => 1.46485272686
1018 => 1.453534123318
1019 => 1.4955051159024
1020 => 1.4076111800587
1021 => 1.4368060198533
1022 => 1.4428230358727
1023 => 1.3737160959074
1024 => 1.3265075547201
1025 => 1.3233592832397
1026 => 1.2415061785586
1027 => 1.2852314463841
1028 => 1.323707872596
1029 => 1.3052806503318
1030 => 1.2994471422605
1031 => 1.3292492698629
1101 => 1.3315651504156
1102 => 1.2787628283887
1103 => 1.2897421031702
1104 => 1.3355275041614
1105 => 1.2885884285384
1106 => 1.1973934720574
1107 => 1.1747758619812
1108 => 1.1717582558718
1109 => 1.1104175035198
1110 => 1.1762872788368
1111 => 1.1475333567107
1112 => 1.2383666521822
1113 => 1.1864831609576
1114 => 1.1842465673491
1115 => 1.180865628073
1116 => 1.1280671085691
1117 => 1.1396266288195
1118 => 1.1780522346964
1119 => 1.1917629237688
1120 => 1.1903327865702
1121 => 1.1778639282646
1122 => 1.183572107746
1123 => 1.1651840727749
1124 => 1.1586908749127
1125 => 1.138196556365
1126 => 1.1080755697998
1127 => 1.1122640777245
1128 => 1.052586521754
1129 => 1.0200710219337
1130 => 1.0110711601308
1201 => 0.9990361687979
1202 => 1.0124305444258
1203 => 1.052417462736
1204 => 1.0041847555559
1205 => 0.92149316222652
1206 => 0.92646306788523
1207 => 0.93762897032213
1208 => 0.91682138500081
1209 => 0.89712875174245
1210 => 0.91424989864676
1211 => 0.8792123804491
1212 => 0.94186308700259
1213 => 0.9401685609669
1214 => 0.96352087007634
1215 => 0.97812354820009
1216 => 0.94446910279802
1217 => 0.93600510079069
1218 => 0.94082658100151
1219 => 0.86113825309662
1220 => 0.95700863358719
1221 => 0.95783772461878
1222 => 0.95073854385057
1223 => 1.0017865617959
1224 => 1.1095138019366
1225 => 1.0689824808774
1226 => 1.0532875282977
1227 => 1.0234514119706
1228 => 1.0632062654831
1229 => 1.0601537130057
1230 => 1.0463489130566
1231 => 1.0379997269738
]
'min_raw' => 0.7797259512714
'max_raw' => 2.0006875078847
'avg_raw' => 1.3902067295781
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.779725'
'max' => '$2.00'
'avg' => '$1.39'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.47948138607641
'max_diff' => 1.1629120648712
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.024474706637522
]
1 => [
'year' => 2028
'avg' => 0.042005701648091
]
2 => [
'year' => 2029
'avg' => 0.11475200611146
]
3 => [
'year' => 2030
'avg' => 0.088531001821177
]
4 => [
'year' => 2031
'avg' => 0.086948415314666
]
5 => [
'year' => 2032
'avg' => 0.15244793571996
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.024474706637522
'min' => '$0.024474'
'max_raw' => 0.15244793571996
'max' => '$0.152447'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.15244793571996
]
1 => [
'year' => 2033
'avg' => 0.39211176670811
]
2 => [
'year' => 2034
'avg' => 0.24853928174934
]
3 => [
'year' => 2035
'avg' => 0.2931526527779
]
4 => [
'year' => 2036
'avg' => 0.56901000410426
]
5 => [
'year' => 2037
'avg' => 1.3902067295781
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.15244793571996
'min' => '$0.152447'
'max_raw' => 1.3902067295781
'max' => '$1.39'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 1.3902067295781
]
]
]
]
'prediction_2025_max_price' => '$0.041847'
'last_price' => 0.04057623
'sma_50day_nextmonth' => '$0.0387016'
'sma_200day_nextmonth' => '$0.063145'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 feb. 2026'
'sma_50day_date_nextmonth' => '4 feb. 2026'
'daily_sma3' => '$0.040018'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.040226'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.040627'
'daily_sma10_action' => 'SELL'
'daily_sma21' => '$0.040721'
'daily_sma21_action' => 'SELL'
'daily_sma50' => '$0.044879'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.059033'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.069181'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.040238'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.04024'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.040503'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.041428'
'daily_ema21_action' => 'SELL'
'daily_ema50' => '$0.046271'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.05479'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.06906'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.065556'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.08692'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.134246'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$1.85'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.041089'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.042878'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.049241'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.061402'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.105494'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.724582'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$2.90'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '44.77'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 59.48
'stoch_rsi_14_action' => 'NEUTRAL'
'momentum_10' => -0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.040352'
'vwma_10_action' => 'BUY'
'hma_9' => '0.039739'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 51.97
'stochastic_fast_14_action' => 'NEUTRAL'
'cci_20' => -8.83
'cci_20_action' => 'NEUTRAL'
'adx_14' => 19.68
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '-0.001811'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -48.03
'williams_percent_r_14_action' => 'NEUTRAL'
'ultimate_oscillator' => 45.53
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.009493'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 20
'buy_signals' => 13
'sell_pct' => 60.61
'buy_pct' => 39.39
'overall_action' => 'bearish'
'overall_action_label' => 'Bajista'
'overall_action_dir' => -1
'last_updated' => 1767697296
'last_updated_date' => '6 de enero de 2026'
]
Predicción de precio de Juno Network para 2026
La previsión del precio de Juno Network para 2026 sugiere que el precio medio podría oscilar entre $0.014019 en el extremo inferior y $0.041847 en el extremo superior. En el mercado de criptomonedas, en comparación con el precio medio de hoy, Juno Network podría potencialmente ganar 3.13% para 2026 si JUNO alcanza el objetivo de precio previsto.
Predicción de precio de Juno Network 2027-2032
La predicción del precio de JUNO para 2027-2032 está actualmente dentro de un rango de precios de $0.024474 en el extremo inferior y $0.152447 en el extremo superior. Considerando la volatilidad de precios en el mercado, si Juno Network alcanza el objetivo de precio superior, podría ganar 275.71% para 2032 en comparación con el precio de hoy.
| Predicción de Precio de Juno Network | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.013495 | $0.024474 | $0.035453 |
| 2028 | $0.024355 | $0.0420057 | $0.059655 |
| 2029 | $0.053503 | $0.114752 | $0.17600092 |
| 2030 | $0.045502 | $0.088531 | $0.131559 |
| 2031 | $0.053797 | $0.086948 | $0.120099 |
| 2032 | $0.082117 | $0.152447 | $0.222777 |
Predicción de precio de Juno Network 2032-2037
La predicción de precio de Juno Network para 2032-2037 se estima actualmente entre $0.152447 en el extremo inferior y $1.39 en el extremo superior. Comparado con el precio actual, Juno Network podría potencialmente ganar 3326.16% para 2037 si alcanza el objetivo de precio superior. Tenga en cuenta que esta información es solo para fines generales y no debe considerarse como consejo de inversión a largo plazo.
| Predicción de Precio de Juno Network | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.082117 | $0.152447 | $0.222777 |
| 2033 | $0.190824 | $0.392111 | $0.593399 |
| 2034 | $0.153413 | $0.248539 | $0.343665 |
| 2035 | $0.181382 | $0.293152 | $0.404923 |
| 2036 | $0.300244 | $0.56901 | $0.837775 |
| 2037 | $0.779725 | $1.39 | $2.00 |
Juno Network Histograma de precios potenciales
Pronóstico de precio de Juno Network basado en análisis técnico
A fecha de 6 de enero de 2026, el sentimiento general de predicción de precio para Juno Network es Bajista, con 13 indicadores técnicos mostrando señales alcistas y 20 indicando señales bajistas. La predicción de precio de JUNO se actualizó por última vez el 6 de enero de 2026.
Promedios Móviles Simples de 50 y 200 días y el Índice de Fuerza Relativa de 14 días - RSI (14) de Juno Network
Según nuestros indicadores técnicos, se proyecta que el SMA de 200 días de Juno Network aumentar durante el próximo mes, alcanzando $0.063145 para el 4 feb. 2026. Se espera que el SMA de 50 días a corto plazo para Juno Network alcance $0.0387016 para el 4 feb. 2026.
El oscilador de momento del Índice de Fuerza Relativa (RSI) es una herramienta comúnmente utilizada para identificar si una criptomoneda está sobrevendida (por debajo de 30) o sobrecomprada (por encima de 70). Actualmente, el RSI se encuentra en 44.77, lo que sugiere que el mercado de JUNO está en un estado NEUTRAL.
Promedios Móviles y Osciladores Populares de JUNO para Sáb, 19 de Oct de 2024
Los promedios móviles (MA) son indicadores ampliamente utilizados en los mercados financieros, diseñados para suavizar los movimientos de precios durante un período establecido. Como indicadores rezagados, se basan en datos históricos de precios. La tabla a continuación resalta dos tipos: el promedio móvil simple (SMA) y el promedio móvil exponencial (EMA).
Promedio Móvil Simple Diario (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 3 | $0.040018 | BUY |
| SMA 5 | $0.040226 | BUY |
| SMA 10 | $0.040627 | SELL |
| SMA 21 | $0.040721 | SELL |
| SMA 50 | $0.044879 | SELL |
| SMA 100 | $0.059033 | SELL |
| SMA 200 | $0.069181 | SELL |
Promedio Móvil Exponencial Diario (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 3 | $0.040238 | BUY |
| EMA 5 | $0.04024 | BUY |
| EMA 10 | $0.040503 | BUY |
| EMA 21 | $0.041428 | SELL |
| EMA 50 | $0.046271 | SELL |
| EMA 100 | $0.05479 | SELL |
| EMA 200 | $0.06906 | SELL |
Promedio Móvil Simple Semanal (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 21 | $0.065556 | SELL |
| SMA 50 | $0.08692 | SELL |
| SMA 100 | $0.134246 | SELL |
| SMA 200 | $1.85 | SELL |
Promedio Móvil Exponencial Semanal (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 21 | $0.061402 | SELL |
| EMA 50 | $0.105494 | SELL |
| EMA 100 | $0.724582 | SELL |
| EMA 200 | $2.90 | SELL |
Osciladores de Juno Network
Un oscilador es una herramienta de análisis técnico que establece límites altos y bajos entre dos extremos, creando un indicador de tendencia que fluctúa dentro de estos límites. Los traders utilizan este indicador para identificar condiciones de sobrecompra o sobreventa a corto plazo.
| Período | Valor | Acción |
|---|---|---|
| RSI (14) | 44.77 | NEUTRAL |
| Stoch RSI (14) | 59.48 | NEUTRAL |
| Estocástico Rápido (14) | 51.97 | NEUTRAL |
| Índice de Canal de Materias Primas (20) | -8.83 | NEUTRAL |
| Índice Direccional Medio (14) | 19.68 | NEUTRAL |
| Oscilador Asombroso (5, 34) | -0.001811 | NEUTRAL |
| Momentum (10) | -0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Rango Percentil de Williams (14) | -48.03 | NEUTRAL |
| Oscilador Ultimate (7, 14, 28) | 45.53 | NEUTRAL |
| VWMA (10) | 0.040352 | BUY |
| Promedio Móvil de Hull (9) | 0.039739 | BUY |
| Nube Ichimoku B/L (9, 26, 52, 26) | -0.009493 | SELL |
Predicción de precios de Juno Network basada en flujos de dinero globales
Definiciones de flujos de dinero globales utilizadas para la predicción de precios de Juno Network
M0: El total de toda la moneda física, además de cuentas en el banco central que pueden cambiarse por moneda física.
M1: Medir M0 más la cantidad en cuentas a la vista, incluyendo cuentas "de cheques" o "corrientes".
M2: Medir M1 más la mayoría de cuentas de ahorro, cuentas del mercado monetario, y cuentas de certificados de depósito (CD) inferiores a 100 000 $.
Predicciones de precios de Juno Network por parte de empresas de Internet o nichos tecnológicos
| Comparación | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook acción | $0.057016 | $0.080117 | $0.112578 | $0.158191 | $0.222285 | $0.312348 |
| Amazon.com acción | $0.084664 | $0.176657 | $0.3686073 | $0.769121 | $1.60 | $3.34 |
| Apple acción | $0.057554 | $0.081636 | $0.115794 | $0.164246 | $0.23297 | $0.330451 |
| Netflix acción | $0.064022 | $0.101018 | $0.15939 | $0.251493 | $0.396817 | $0.626116 |
| Google acción | $0.052546 | $0.068046 | $0.08812 | $0.114115 | $0.147779 | $0.191373 |
| Tesla acción | $0.091983 | $0.208519 | $0.472696 | $1.07 | $2.42 | $5.50 |
| Kodak acción | $0.030427 | $0.022817 | $0.01711 | $0.012831 | $0.009622 | $0.007215 |
| Nokia acción | $0.02688 | $0.0178069 | $0.011796 | $0.007814 | $0.005176 | $0.003429 |
Este cálculo muestra cuánto puede costar la criptomoneda si asumimos que su capitalización se comportará como la capitalización de algunas empresas de Internet o nichos tecnológicos. Si extrapola los datos, puede obtener una imagen potencial del precio futuro en 2024, 2025, 2026, 2027, 2028, 2029 y 2030.
Resumen de pronósticos y predicciones de Juno Network
Podría preguntarse cosas como: "¿Debo invertir en Juno Network ahora?", "¿Debería comprar JUNO hoy?", "¿Será Juno Network una buena o mala inversión a corto plazo?, ¿Lo será a largo plazo?".
Actualizamos el pronóstico de Juno Network/JUNO regularmente con valores actualizados. Aquí hay algunas predicciones similares. Hacemos un pronóstico de precios futuros para una gran cantidad de monedas digitales, como Juno Network, con métodos de análisis técnico.
Si está tratando de encontrar criptomonedas que ofrezcan un buen rendimiento, debería explorar el máximo de fuentes de información disponibles acerca de Juno Network a fin de tomar una decisión responsable sobre la inversión por sus propios medios.
El precio de Juno Network es de $0.04057 USD hoy, pero dicho precio puede subir y bajar, y su inversión puede perderse porque estos son activos de criptomonedas conllevan un alto riesgo
Predicción de precios de Juno Network basada en el patrón de crecimiento del Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si Juno Network ofrece un 1 % del crecimiento medio anterior anual del Bitcoin | $0.04163 | $0.042713 | $0.043823 | $0.044962 |
| Si Juno Network ofrece un 2 % del crecimiento medio anterior anual del Bitcoin | $0.042685 | $0.0449047 | $0.047239 | $0.049694 |
| Si Juno Network ofrece un 5 % del crecimiento medio anterior anual del Bitcoin | $0.045849 | $0.0518086 | $0.058542 | $0.06615 |
| Si Juno Network ofrece un 10 % del crecimiento medio anterior anual del Bitcoin | $0.051123 | $0.064411 | $0.081154 | $0.102249 |
| Si Juno Network ofrece un 20 % del crecimiento medio anterior anual del Bitcoin | $0.06167 | $0.09373 | $0.142457 | $0.216516 |
| Si Juno Network ofrece un 50 % del crecimiento medio anterior anual del Bitcoin | $0.093311 | $0.214584 | $0.493472 | $1.13 |
| Si Juno Network ofrece un 100 % del crecimiento medio anterior anual del Bitcoin | $0.146046 | $0.525669 | $1.89 | $6.81 |
Cuadro de preguntas
¿Es JUNO una buena inversión?
La decisión de adquirir Juno Network depende completamente de su tolerancia individual al riesgo. Como puede discernir, el valor de Juno Network ha experimentado un aumento de 3.5796% durante las últimas 24 horas, y Juno Network ha sufrido un declive de durante el período previo de 30 días. Por lo tanto, la determinación de si invertir o no en Juno Network dependerá de si dicha inversión se alinea con sus aspiraciones comerciales.
¿Puede Juno Network subir?
Parece que el valor medio de Juno Network podría potencialmente aumentar hasta $0.041847 para el final de este año. Mirando las perspectivas de Juno Network en un horizonte de cinco años más extendido, la moneda digital podría potencialmente crecer hasta $0.131559. Sin embargo, dada la imprevisibilidad del mercado, es vital realizar una investigación exhaustiva antes de invertir cualquier fondo en un proyecto, red o activo en particular.
¿Cuál será el precio de Juno Network la próxima semana?
Basado en nuestro nuevo pronóstico experimental de Juno Network, el precio de Juno Network aumentará en un 0.86% durante la próxima semana y alcanzará $0.040923 para el 13 de enero de 2026.
¿Cuál será el precio de Juno Network el próximo mes?
Basado en nuestro nuevo pronóstico experimental de Juno Network, el precio de Juno Network disminuirá en un -11.62% durante el próximo mes y alcanzará $0.035862 para el 5 de febrero de 2026.
¿Hasta qué punto puede subir el precio de Juno Network este año en 2026?
Según nuestra predicción más reciente sobre el valor de Juno Network en 2026, se anticipa que JUNO fluctúe dentro del rango de $0.014019 y $0.041847. Sin embargo, es crucial tener en cuenta que el mercado de criptomonedas es excepcionalmente inestable, y esta predicción de precios proyectada de Juno Network no considera fluctuaciones de precios repentinas y extremas.
¿Dónde estará Juno Network en 5 años?
El futuro de Juno Network parece estar en una tendencia alcista, con un precio máximo de $0.131559 proyectada después de un período de cinco años. Basado en el pronóstico de Juno Network para 2030, el valor de Juno Network podría potencialmente alcanzar su punto más alto de aproximadamente $0.131559, mientras que su punto más bajo se anticipa que esté alrededor de $0.045502.
¿Cuánto será Juno Network en 2026?
Basado en nuestra nueva simulación experimental de predicción de precios de Juno Network, se espera que el valor de JUNO en 2026 crezca en un 3.13% hasta $0.041847 si ocurre lo mejor. El precio estará entre $0.041847 y $0.014019 durante 2026.
¿Cuánto será Juno Network en 2027?
Según nuestra última simulación experimental para la predicción de precios de Juno Network, el valor de JUNO podría disminuir en un -12.62% hasta $0.035453 en 2027, asumiendo las condiciones más favorables. Se proyecta que el precio fluctúe entre $0.035453 y $0.013495 a lo largo del año.
¿Cuánto será Juno Network en 2028?
Nuestro nuevo modelo experimental de predicción de precios de Juno Network sugiere que el valor de JUNO en 2028 podría aumentar en un 47.02% , alcanzando $0.059655 en el mejor escenario. Se espera que el precio oscile entre $0.059655 y $0.024355 durante el año.
¿Cuánto será Juno Network en 2029?
Basado en nuestro modelo de pronóstico experimental, el valor de Juno Network podría experimentar un 333.75% crecimiento en 2029, potencialmente alcanzando $0.17600092 bajo condiciones óptimas. El rango de precios previsto para 2029 se encuentra entre $0.17600092 y $0.053503.
¿Cuánto será Juno Network en 2030?
Usando nuestra nueva simulación experimental para las predicciones de precios de Juno Network, se espera que el valor de JUNO en 2030 aumente en un 224.23% , alcanzando $0.131559 en el mejor escenario. Se pronostica que el precio oscile entre $0.131559 y $0.045502 durante el transcurso de 2030.
¿Cuánto será Juno Network en 2031?
Nuestra simulación experimental indica que el precio de Juno Network podría crecer en un 195.98% en 2031, potencialmente alcanzando $0.120099 bajo condiciones ideales. Es probable que el precio fluctúe entre $0.120099 y $0.053797 durante el año.
¿Cuánto será Juno Network en 2032?
Basado en los hallazgos de nuestra última predicción experimental de precios de Juno Network, JUNO podría experimentar un 449.04% aumento en valor, alcanzando $0.222777 si se desarrolla el escenario más positivo en 2032. Se espera que el precio se mantenga dentro de un rango de $0.222777 y $0.082117 a lo largo del año.
¿Cuánto será Juno Network en 2033?
Según nuestra predicción experimental de precios de Juno Network, se anticipa que el valor de JUNO aumente en un 1362.43% en 2033, con el precio potencial más alto siendo $0.593399. A lo largo del año, el precio de JUNO podría oscilar entre $0.593399 y $0.190824.
¿Cuánto será Juno Network en 2034?
Los resultados de nuestra nueva simulación de predicción de precios de Juno Network sugieren que JUNO podría aumentar en un 746.96% en 2034, alcanzando potencialmente $0.343665 bajo las mejores circunstancias. El rango de precios previsto para el año está entre $0.343665 y $0.153413.
¿Cuánto será Juno Network en 2035?
Basado en nuestra predicción experimental para el precio de Juno Network, JUNO podría crecer en un 897.93% , con el valor potencialmente alcanzando $0.404923 en 2035. El rango de precios esperado para el año está entre $0.404923 y $0.181382.
¿Cuánto será Juno Network en 2036?
Nuestra reciente simulación de predicción de precios de Juno Network sugiere que el valor de JUNO podría aumentar en un 1964.7% en 2036, posiblemente alcanzando $0.837775 si las condiciones son óptimas. El rango de precios esperado para 2036 está entre $0.837775 y $0.300244.
¿Cuánto será Juno Network en 2037?
Según la simulación experimental, el valor de Juno Network podría aumentar en un 4830.69% en 2037, con un máximo de $2.00 bajo condiciones favorables. Se espera que el precio caiga entre $2.00 y $0.779725 durante el transcurso del año.
Predicciones relacionadas
Predicción de precios de Data Lake
Predicción de precios de Wagmi
Predicción de precios de Fuse Network Token
Predicción de precios de Soil
Predicción de precios de WINR Protocol
Predicción de precios de Cakepie
Predicción de precios de Gyroscope GYD
Predicción de precios de Wrapped STEAMX
Predicción de precios de XANA
Predicción de precios de Radiant
Predicción de precios de Atletico Madrid
Predicción de precios de ParagonsDAO
Predicción de precios de Jade Protocol
Predicción de precios de SpartaDEX
Predicción de precios de Shiden Network
Predicción de precios de MaidSafeCoin
Predicción de precios de Syndicate
Predicción de precios de LORDS
Predicción de precios de Bad Idea AI
Predicción de precios de Vector ETH
Predicción de precios de Terracoin
Predicción de precios de Phantasma
Predicción de precios de Bifrost Native Coin
Predicción de precios de NvirWorld
Predicción de precios de OPEN Ticketing Ecosystem
¿Cómo leer y predecir los movimientos de precio de Juno Network?
Los traders de Juno Network utilizan indicadores y patrones de gráficos para predecir la dirección del mercado. También identifican niveles clave de soporte y resistencia para estimar cuándo una tendencia bajista podría desacelerar o una tendencia alcista podría estancarse.
Indicadores de predicción de precio de Juno Network
Las medias móviles son herramientas populares para la predicción de precios de Juno Network. Una media móvil simple (SMA) calcula el precio de cierre promedio de JUNO durante un período específico, como una SMA de 12 días. Una media móvil exponencial (EMA) da más peso a los precios recientes, reaccionando más rápido a los cambios de precio.
Las medias móviles comúnmente utilizadas en el mercado de criptomonedas incluyen las de 50 días, 100 días y 200 días, que ayudan a identificar niveles clave de resistencia y soporte. Un movimiento de precio de JUNO por encima de estas medias se considera alcista, mientras que una caída por debajo indica debilidad.
Los traders también utilizan RSI y niveles de retroceso de Fibonacci para evaluar la dirección futura de JUNO.
¿Cómo leer gráficos de Juno Network y predecir movimientos de precio?
La mayoría de los traders prefieren gráficos de velas sobre gráficos lineales simples porque proporcionan información más detallada. Las velas pueden representar la acción del precio de Juno Network en diferentes marcos de tiempo, como 5 minutos para tendencias a corto plazo y semanal para tendencias a largo plazo. Las opciones populares incluyen gráficos de 1 hora, 4 horas y 1 día.
Por ejemplo, un gráfico de velas de 1 hora muestra los precios de apertura, cierre, máximo y mínimo de JUNO dentro de cada hora. El color de la vela es crucial: el verde indica que el precio cerró más alto de lo que abrió, mientras que el rojo significa lo contrario. Algunos gráficos usan velas huecas y llenas para transmitir la misma información.
¿Qué afecta el precio de Juno Network?
La acción del precio de Juno Network está impulsada por la oferta y la demanda, influenciada por factores como reducciones a la mitad de recompensas de bloque, hard forks y actualizaciones de protocolo. Los eventos del mundo real, como regulaciones, adopción por empresas y gobiernos y hacks de exchanges de criptomonedas, también impactan el precio de JUNO. La capitalización de mercado de Juno Network puede cambiar rápidamente.
Los traders a menudo monitorean la actividad de las "ballenas" de JUNO, grandes poseedores de Juno Network, ya que sus acciones pueden influir significativamente en los movimientos de precios en el relativamente pequeño mercado de Juno Network.
Patrones de predicción de precios alcistas y bajistas
Los traders a menudo identifican patrones de velas para obtener una ventaja en las predicciones de precios de criptomonedas. Ciertas formaciones indican tendencias alcistas, mientras que otras sugieren movimientos bajistas.
Patrones de velas alcistas comúnmente seguidos:
- Martillo
- Envolvente Alcista
- Línea Penetrante
- Estrella de la Mañana
- Tres Soldados Blancos
Patrones de velas bajistas comunes:
- Harami Bajista
- Cubierta de Nube Oscura
- Estrella de la Tarde
- Estrella Fugaz
- Hombre Colgado


