Prédiction du prix de Gracy jusqu'à $0.007986 d'ici 2026
| Année | Prix min. | Prix max. |
|---|---|---|
| 2026 | $0.002675 | $0.007986 |
| 2027 | $0.002575 | $0.006766 |
| 2028 | $0.004648 | $0.011385 |
| 2029 | $0.010211 | $0.03359 |
| 2030 | $0.008684 | $0.0251088 |
| 2031 | $0.010267 | $0.022921 |
| 2032 | $0.015672 | $0.042518 |
| 2033 | $0.036419 | $0.113253 |
| 2034 | $0.029279 | $0.06559 |
| 2035 | $0.034617 | $0.077281 |
Calculateur de profit d’investissement
Si vous ouvrez une position short de $10,000.00 sur Gracy aujourd’hui et la fermez le Apr 06, 2026, notre prévision indique que vous pourriez gagner environ $3,955.45, soit un rendement de 39.55% sur les 90 prochains jours.
Prévision du prix à long terme de Gracy pour 2027, 2028, 2029, 2030, 2031, 2032 et 2037
[
'name' => 'Gracy'
'name_with_ticker' => 'Gracy <small>GRACY</small>'
'name_lang' => 'Gracy'
'name_lang_with_ticker' => 'Gracy <small>GRACY</small>'
'name_with_lang' => 'Gracy'
'name_with_lang_with_ticker' => 'Gracy <small>GRACY</small>'
'image' => '/uploads/coins/gracy.png?1717115437'
'price_for_sd' => 0.007744
'ticker' => 'GRACY'
'marketcap' => '$0'
'low24h' => '$0.0077'
'high24h' => '$0.00791'
'volume24h' => '$120.91K'
'current_supply' => '0'
'max_supply' => '190M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.007744'
'change_24h_pct' => '0.1521%'
'ath_price' => '$0.1363'
'ath_days' => 666
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '11 mars 2024'
'ath_pct' => '-94.27%'
'fdv' => '$1.48M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.38184'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.00781'
'next_week_prediction_price_date' => '13 janvier 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.006844'
'next_month_prediction_price_date' => '5 février 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.002675'
'current_year_max_price_prediction' => '$0.007986'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.008684'
'grand_prediction_max_price' => '$0.0251088'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0078909077585718
107 => 0.0079203695437428
108 => 0.0079867484500891
109 => 0.0074195479630547
110 => 0.0076742043296018
111 => 0.0078237910868734
112 => 0.0071479526755073
113 => 0.0078104319344669
114 => 0.0074096742644827
115 => 0.0072736510921118
116 => 0.0074567883740189
117 => 0.0073854195971529
118 => 0.0073240609137186
119 => 0.0072898217140863
120 => 0.0074242975217947
121 => 0.0074180240646317
122 => 0.0071979955425913
123 => 0.0069109773050996
124 => 0.0070073100466543
125 => 0.0069723114585232
126 => 0.0068454720602284
127 => 0.0069309465000317
128 => 0.0065545603247618
129 => 0.0059070074730609
130 => 0.0063348007219748
131 => 0.0063183311472411
201 => 0.0063100264408246
202 => 0.0066315012440465
203 => 0.0066005988594023
204 => 0.0065445107286761
205 => 0.0068444419577227
206 => 0.0067349630244764
207 => 0.0070723513002609
208 => 0.0072945770395981
209 => 0.0072382134038526
210 => 0.0074472177858094
211 => 0.0070095293584549
212 => 0.0071549118970103
213 => 0.0071848750367151
214 => 0.0068407408529134
215 => 0.0066056548717063
216 => 0.0065899773169362
217 => 0.0061823706223668
218 => 0.0064001108285195
219 => 0.0065917131992319
220 => 0.0064999505326053
221 => 0.006470901213683
222 => 0.0066193078840285
223 => 0.0066308403533315
224 => 0.0063678988310663
225 => 0.0064225726998203
226 => 0.0066505718212989
227 => 0.0064168277069446
228 => 0.0059627010746383
301 => 0.0058500713910344
302 => 0.0058350445150647
303 => 0.0055295838803582
304 => 0.0058575978450526
305 => 0.0057144109592358
306 => 0.0061667366158889
307 => 0.0059083706266798
308 => 0.0058972329852745
309 => 0.0058803968067537
310 => 0.0056174742200419
311 => 0.0056750375569297
312 => 0.0058663868558886
313 => 0.0059346624414613
314 => 0.0059275407385206
315 => 0.0058654491399335
316 => 0.0058938743558062
317 => 0.0058023068314783
318 => 0.0057699724328249
319 => 0.0056679161763976
320 => 0.0055179216732101
321 => 0.005538779328848
322 => 0.0052416009698367
323 => 0.0050796824273981
324 => 0.0050348655089032
325 => 0.0049749344524638
326 => 0.0050416348811985
327 => 0.0052407591008841
328 => 0.0050005730453834
329 => 0.0045887909003202
330 => 0.0046135397088811
331 => 0.0046691429337303
401 => 0.004565526692076
402 => 0.0044674626152021
403 => 0.0045527213738539
404 => 0.0043782438505625
405 => 0.0046902277088439
406 => 0.004681789419802
407 => 0.0047980777092169
408 => 0.004870795163064
409 => 0.0047032049745017
410 => 0.0046610564952904
411 => 0.0046850661845908
412 => 0.0042882395026997
413 => 0.0047656485032639
414 => 0.0047697771561257
415 => 0.0047344251237458
416 => 0.004988630678197
417 => 0.0055250836867898
418 => 0.0053232484861849
419 => 0.0052450917960095
420 => 0.0050965158708538
421 => 0.0052944844695583
422 => 0.005279283569969
423 => 0.0052105393372563
424 => 0.0051689626108166
425 => 0.0052455690040938
426 => 0.0051594702309241
427 => 0.0051440045254268
428 => 0.0050502991769665
429 => 0.0050168506308879
430 => 0.0049920866589963
501 => 0.0049648239592012
502 => 0.0050249586815076
503 => 0.0048886854893798
504 => 0.0047243533786994
505 => 0.0047106909417944
506 => 0.0047484141313029
507 => 0.0047317244281065
508 => 0.0047106110379165
509 => 0.0046702998261541
510 => 0.0046583403507369
511 => 0.00469720284393
512 => 0.0046533293549391
513 => 0.0047180670778578
514 => 0.0047004619993255
515 => 0.0046021214617542
516 => 0.00447955274161
517 => 0.0044784616229041
518 => 0.0044520543932021
519 => 0.0044184208158229
520 => 0.004409064724028
521 => 0.0045455411190063
522 => 0.0048280431722164
523 => 0.00477258125947
524 => 0.0048126581753947
525 => 0.0050097969361626
526 => 0.0050724614200413
527 => 0.0050279836536738
528 => 0.0049670997438009
529 => 0.0049697783268442
530 => 0.005177837077693
531 => 0.0051908134467734
601 => 0.0052236005451041
602 => 0.0052657412320921
603 => 0.0050351603948893
604 => 0.0049589179901477
605 => 0.0049227901090136
606 => 0.00481153021837
607 => 0.004931514471727
608 => 0.0048616047855339
609 => 0.0048710379906563
610 => 0.0048648946034452
611 => 0.0048682493082765
612 => 0.0046901405029972
613 => 0.0047550339905178
614 => 0.004647135981216
615 => 0.0045026726588808
616 => 0.004502188367169
617 => 0.0045375455606494
618 => 0.0045165137184401
619 => 0.004459917571833
620 => 0.0044679567873323
621 => 0.0043975248002986
622 => 0.0044765085057704
623 => 0.0044787734758261
624 => 0.0044483604469479
625 => 0.0045700457428783
626 => 0.0046199003079067
627 => 0.0045998818007888
628 => 0.004618495756082
629 => 0.0047748859523402
630 => 0.0048003843781129
701 => 0.0048117090945097
702 => 0.0047965354747754
703 => 0.0046213542817801
704 => 0.0046291243126174
705 => 0.0045721129818298
706 => 0.0045239444150203
707 => 0.0045258709050818
708 => 0.0045506358098973
709 => 0.0046587856016688
710 => 0.0048863804626736
711 => 0.0048950175212791
712 => 0.0049054858882696
713 => 0.0048629057787392
714 => 0.0048500632102681
715 => 0.0048670058730297
716 => 0.0049524785364538
717 => 0.0051723374323824
718 => 0.0050946246146793
719 => 0.0050314428842146
720 => 0.0050868702955043
721 => 0.0050783376799907
722 => 0.0050063138181348
723 => 0.0050042923482154
724 => 0.0048660555298923
725 => 0.0048149525256583
726 => 0.0047722470303269
727 => 0.0047256137442801
728 => 0.0046979679691496
729 => 0.0047404444445301
730 => 0.0047501593170165
731 => 0.0046572837612354
801 => 0.0046446251661694
802 => 0.0047204693498783
803 => 0.0046870931523842
804 => 0.0047214213991968
805 => 0.0047293858469196
806 => 0.0047281033873994
807 => 0.0046932548039836
808 => 0.0047154662518531
809 => 0.0046629295560905
810 => 0.0046058037902052
811 => 0.0045693611106314
812 => 0.0045375600392832
813 => 0.0045552051219563
814 => 0.0044923036240916
815 => 0.0044721801689676
816 => 0.0047079415130884
817 => 0.0048821009528519
818 => 0.0048795686056231
819 => 0.0048641535931341
820 => 0.0048412500113967
821 => 0.0049508029967921
822 => 0.0049126369272614
823 => 0.0049404059317268
824 => 0.0049474743088247
825 => 0.004968868157441
826 => 0.0049765146194579
827 => 0.0049534017004335
828 => 0.0048758319211822
829 => 0.0046825354064011
830 => 0.0045925553569766
831 => 0.0045628604419302
901 => 0.0045639397956935
902 => 0.0045341664004553
903 => 0.0045429359997029
904 => 0.0045311166917219
905 => 0.0045087337818036
906 => 0.0045538230403422
907 => 0.0045590191573533
908 => 0.0045484947856338
909 => 0.0045509736561616
910 => 0.0044638363533427
911 => 0.0044704612132237
912 => 0.0044335731515595
913 => 0.0044266570846897
914 => 0.0043334072770137
915 => 0.0041682017259398
916 => 0.0042597416381256
917 => 0.0041491742966646
918 => 0.0041073007690847
919 => 0.0043055235359783
920 => 0.0042856274680259
921 => 0.0042515740483042
922 => 0.0042012019431814
923 => 0.004182518439403
924 => 0.004069003384924
925 => 0.0040622963099261
926 => 0.0041185574360902
927 => 0.0040925948621926
928 => 0.0040561335756448
929 => 0.0039240744917898
930 => 0.0037755963582768
1001 => 0.0037800779798273
1002 => 0.0038273061115639
1003 => 0.0039646282741694
1004 => 0.0039109741295419
1005 => 0.0038720474320043
1006 => 0.0038647576316877
1007 => 0.0039560047448802
1008 => 0.0040851385269088
1009 => 0.0041457252082312
1010 => 0.0040856856470856
1011 => 0.0040167154320012
1012 => 0.0040209133294162
1013 => 0.0040488400602269
1014 => 0.0040517747647724
1015 => 0.0040068822450051
1016 => 0.0040195192263601
1017 => 0.004000322496132
1018 => 0.0038825121981564
1019 => 0.0038803813834465
1020 => 0.0038514688363756
1021 => 0.0038505933759409
1022 => 0.0038014059208004
1023 => 0.0037945242558094
1024 => 0.0036968595781629
1025 => 0.0037611427647457
1026 => 0.0037180249782047
1027 => 0.0036530363034298
1028 => 0.0036418322314029
1029 => 0.0036414954234685
1030 => 0.0037082242612605
1031 => 0.0037603629994247
1101 => 0.0037187750305619
1102 => 0.0037093062562008
1103 => 0.003810407994044
1104 => 0.0037975418763407
1105 => 0.0037863999013871
1106 => 0.0040735760130799
1107 => 0.0038462537120436
1108 => 0.0037471282136885
1109 => 0.0036244415860524
1110 => 0.0036643889706504
1111 => 0.0036728064715344
1112 => 0.0033777672479964
1113 => 0.0032580698717518
1114 => 0.0032169942429252
1115 => 0.0031933546378113
1116 => 0.0032041275027092
1117 => 0.0030963858249871
1118 => 0.0031687900142992
1119 => 0.0030754948285693
1120 => 0.0030598535870728
1121 => 0.0032266769362137
1122 => 0.0032498894306788
1123 => 0.003150857717734
1124 => 0.0032144521092226
1125 => 0.0031913918988407
1126 => 0.0030770941067552
1127 => 0.0030727287718152
1128 => 0.0030153781575083
1129 => 0.0029256355513853
1130 => 0.0028846207722715
1201 => 0.0028632599192024
1202 => 0.0028720738234935
1203 => 0.002867617243774
1204 => 0.0028385350465577
1205 => 0.002869284201276
1206 => 0.0027907328173988
1207 => 0.0027594530234074
1208 => 0.0027453246661472
1209 => 0.0026756057917072
1210 => 0.0027865595250654
1211 => 0.0028084188082953
1212 => 0.0028303211610658
1213 => 0.0030209661885617
1214 => 0.0030114421017453
1215 => 0.0030975352081475
1216 => 0.0030941897883478
1217 => 0.003069634639786
1218 => 0.0029660405071298
1219 => 0.0030073312820187
1220 => 0.0028802446949217
1221 => 0.0029754666070227
1222 => 0.0029320113029019
1223 => 0.0029607743249874
1224 => 0.0029090558178206
1225 => 0.0029376789750915
1226 => 0.002813602455275
1227 => 0.0026977415468741
1228 => 0.0027443673586054
1229 => 0.0027950549482656
1230 => 0.0029049585576067
1231 => 0.0028395008745683
]
'min_raw' => 0.0026756057917072
'max_raw' => 0.0079867484500891
'avg_raw' => 0.0053311771208981
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.002675'
'max' => '$0.007986'
'avg' => '$0.005331'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0050685542082928
'max_diff' => 0.00024258845008912
'year' => 2026
]
1 => [
'items' => [
101 => 0.0028630419326179
102 => 0.0027841833288771
103 => 0.0026214755045132
104 => 0.0026223964131291
105 => 0.0025973673591333
106 => 0.0025757386021793
107 => 0.0028470194768822
108 => 0.0028132814117969
109 => 0.0027595242206123
110 => 0.0028314803572388
111 => 0.0028505067018603
112 => 0.0028510483551438
113 => 0.0029035456949697
114 => 0.0029315635346455
115 => 0.0029365018003247
116 => 0.003019107498821
117 => 0.0030467958393614
118 => 0.0031608401954469
119 => 0.0029291864166988
120 => 0.0029244156595695
121 => 0.0028324929276447
122 => 0.0027741940778171
123 => 0.0028364846997693
124 => 0.002891665687301
125 => 0.0028342075547437
126 => 0.0028417103738483
127 => 0.0027645775253921
128 => 0.0027921488892774
129 => 0.0028158970621192
130 => 0.002802784716929
131 => 0.0027831549015347
201 => 0.0028871414755991
202 => 0.0028812741455637
203 => 0.0029781088339735
204 => 0.0030535983983039
205 => 0.0031888891929578
206 => 0.0030477061958678
207 => 0.0030425609263023
208 => 0.0030928567616327
209 => 0.0030467881393311
210 => 0.0030759019183909
211 => 0.003184198513054
212 => 0.0031864866494477
213 => 0.0031481574167561
214 => 0.0031458250794635
215 => 0.0031531866278777
216 => 0.0031963034468739
217 => 0.0031812371054706
218 => 0.0031986722571756
219 => 0.0032204751813592
220 => 0.0033106613200309
221 => 0.0033324048927409
222 => 0.0032795792838055
223 => 0.0032843488448291
224 => 0.0032645906169918
225 => 0.0032455044164709
226 => 0.0032884074079262
227 => 0.003366813468071
228 => 0.0033663257080401
301 => 0.0033845143899977
302 => 0.0033958457881741
303 => 0.0033472031321106
304 => 0.0033155385516533
305 => 0.0033276807666702
306 => 0.0033470964329053
307 => 0.003321384527788
308 => 0.0031626787384905
309 => 0.0032108199367983
310 => 0.0032028068874155
311 => 0.0031913953306744
312 => 0.0032398016778377
313 => 0.0032351327675658
314 => 0.0030952807783548
315 => 0.0031042336489554
316 => 0.0030958252320689
317 => 0.0031229945472296
318 => 0.0030453209071503
319 => 0.0030692127956988
320 => 0.0030841975642238
321 => 0.0030930237080035
322 => 0.003124909791479
323 => 0.003121168327611
324 => 0.0031246772168318
325 => 0.0031719558610121
326 => 0.0034110750192049
327 => 0.0034240897473986
328 => 0.0033600004658594
329 => 0.0033856028697292
330 => 0.0033364518529295
331 => 0.0033694472597903
401 => 0.003392021879172
402 => 0.0032900115150358
403 => 0.0032839711233134
404 => 0.0032346172427834
405 => 0.0032611372226336
406 => 0.003218942027838
407 => 0.0032292952527156
408 => 0.0032003467333799
409 => 0.0032524483045914
410 => 0.0033107059569714
411 => 0.003325424140627
412 => 0.0032867069360056
413 => 0.0032586731282715
414 => 0.0032094549968009
415 => 0.0032913058463342
416 => 0.0033152415290971
417 => 0.0032911801223823
418 => 0.0032856045686944
419 => 0.0032750389045306
420 => 0.0032878461242939
421 => 0.0033151111702283
422 => 0.003302253478072
423 => 0.0033107462102646
424 => 0.0032783806728137
425 => 0.0033472192348538
426 => 0.0034565514382756
427 => 0.0034569029591872
428 => 0.0034440451977231
429 => 0.0034387840787563
430 => 0.0034519769222927
501 => 0.0034591334987124
502 => 0.0035017967355553
503 => 0.0035475760884661
504 => 0.0037612083534042
505 => 0.0037012212682729
506 => 0.0038907685227662
507 => 0.0040406757914399
508 => 0.0040856264266648
509 => 0.0040442739573487
510 => 0.0039028093936351
511 => 0.0038958684672469
512 => 0.0041072762502334
513 => 0.0040475438684498
514 => 0.0040404388917036
515 => 0.0039648539431707
516 => 0.0040095340091316
517 => 0.0039997618232889
518 => 0.0039843359498646
519 => 0.0040695824032776
520 => 0.0042291561540635
521 => 0.0042042850885304
522 => 0.0041857199918454
523 => 0.0041043731423903
524 => 0.0041533621152389
525 => 0.0041359180803295
526 => 0.0042108687245584
527 => 0.0041664696232772
528 => 0.0040470913369094
529 => 0.0040661027224895
530 => 0.0040632291898046
531 => 0.0041223662888376
601 => 0.004104614799581
602 => 0.0040597629266261
603 => 0.0042286107483312
604 => 0.0042176467099706
605 => 0.0042331912096378
606 => 0.0042400343791209
607 => 0.0043428090727605
608 => 0.0043849125763213
609 => 0.0043944708087551
610 => 0.004434465880736
611 => 0.0043934756949296
612 => 0.0045574656636625
613 => 0.00466650942379
614 => 0.0047931693625186
615 => 0.0049782535759831
616 => 0.0050478469523705
617 => 0.0050352755318323
618 => 0.0051756042701442
619 => 0.0054277718935581
620 => 0.0050862458182725
621 => 0.0054458736048383
622 => 0.005332019599714
623 => 0.0050620738017105
624 => 0.0050446924747709
625 => 0.0052275029033141
626 => 0.0056329588389712
627 => 0.0055313967257322
628 => 0.0056331249582048
629 => 0.0055144535714123
630 => 0.0055085605368171
701 => 0.0056273613538278
702 => 0.0059049459382686
703 => 0.0057730759073033
704 => 0.0055840078820564
705 => 0.0057236127696744
706 => 0.0056026740961973
707 => 0.0053301654162499
708 => 0.0055313190630983
709 => 0.0053968133479768
710 => 0.0054360692663664
711 => 0.0057187802733365
712 => 0.0056847637370173
713 => 0.0057287842848608
714 => 0.0056510891701354
715 => 0.0055785096815868
716 => 0.0054430346763873
717 => 0.0054029272061847
718 => 0.0054140114680331
719 => 0.005402921713375
720 => 0.0053271246930454
721 => 0.005310756333722
722 => 0.0052834750177352
723 => 0.0052919306383189
724 => 0.0052406337828333
725 => 0.0053374415476057
726 => 0.0053554099218146
727 => 0.0054258585399183
728 => 0.0054331727491542
729 => 0.0056293711477998
730 => 0.0055213083668059
731 => 0.0055938062099882
801 => 0.0055873213205178
802 => 0.0050679243457005
803 => 0.005139492666152
804 => 0.0052508305133984
805 => 0.0052006729641288
806 => 0.0051297619245205
807 => 0.0050724974580274
808 => 0.0049857359356981
809 => 0.0051078511122692
810 => 0.0052684195839589
811 => 0.0054372450305745
812 => 0.0056400777428018
813 => 0.0055948078426657
814 => 0.0054334532141069
815 => 0.0054406914648745
816 => 0.0054854354829725
817 => 0.0054274879141128
818 => 0.0054103980447851
819 => 0.0054830875973597
820 => 0.0054835881703588
821 => 0.0054169124891881
822 => 0.0053428146710876
823 => 0.0053425041985242
824 => 0.0053293192074932
825 => 0.0055167991520261
826 => 0.0056198941651588
827 => 0.0056317138422686
828 => 0.0056190986067151
829 => 0.0056239537101988
830 => 0.0055639649936005
831 => 0.005701081410643
901 => 0.0058269129943293
902 => 0.0057931874419017
903 => 0.0057426280444429
904 => 0.0057023550490965
905 => 0.0057837004040923
906 => 0.0057800782234838
907 => 0.0058258139652189
908 => 0.0058237391277914
909 => 0.0058083599180541
910 => 0.0057931879911417
911 => 0.0058533429663924
912 => 0.0058360192995796
913 => 0.0058186687243272
914 => 0.0057838694894185
915 => 0.0057885992833967
916 => 0.0057380486157307
917 => 0.0057146615638272
918 => 0.005362976416583
919 => 0.0052689946535956
920 => 0.0052985632294066
921 => 0.0053082979723113
922 => 0.0052673969886183
923 => 0.0053260384926335
924 => 0.0053168992763494
925 => 0.0053524546206479
926 => 0.0053302411851638
927 => 0.0053311528323044
928 => 0.0053964778096594
929 => 0.0054154419284978
930 => 0.0054057966245974
1001 => 0.0054125518648276
1002 => 0.0055682235247239
1003 => 0.0055460919927861
1004 => 0.0055343350575419
1005 => 0.0055375918089529
1006 => 0.0055773692556944
1007 => 0.005588504769014
1008 => 0.0055413228166004
1009 => 0.0055635740981143
1010 => 0.0056583172306923
1011 => 0.0056914719650977
1012 => 0.0057972859621444
1013 => 0.0057523342955051
1014 => 0.0058348450250841
1015 => 0.0060884548778291
1016 => 0.0062910559766689
1017 => 0.0061047356333313
1018 => 0.0064767867502561
1019 => 0.0067664819123451
1020 => 0.0067553629295115
1021 => 0.0067048478772315
1022 => 0.0063750376371377
1023 => 0.0060715413370096
1024 => 0.0063254288792003
1025 => 0.0063260760907578
1026 => 0.0063042669257219
1027 => 0.0061688120747474
1028 => 0.0062995533905234
1029 => 0.006309931161387
1030 => 0.0063041223693754
1031 => 0.0062002694527239
1101 => 0.0060417052442244
1102 => 0.0060726883110161
1103 => 0.0061234392064584
1104 => 0.0060273571736402
1105 => 0.0059966531423392
1106 => 0.0060537377782088
1107 => 0.006237676369037
1108 => 0.0062029038439246
1109 => 0.0062019957927671
1110 => 0.0063507674010433
1111 => 0.0062442790364401
1112 => 0.0060730791067099
1113 => 0.0060298488666033
1114 => 0.0058764106376043
1115 => 0.0059823909689021
1116 => 0.0059862050123524
1117 => 0.0059281606679933
1118 => 0.006077789085354
1119 => 0.0060764102331464
1120 => 0.0062184601461795
1121 => 0.0064900062283879
1122 => 0.0064096966899077
1123 => 0.0063163054343082
1124 => 0.0063264596532505
1125 => 0.0064378263722996
1126 => 0.0063704915117076
1127 => 0.0063947055970518
1128 => 0.0064377897213813
1129 => 0.006463783443308
1130 => 0.0063227195566859
1201 => 0.0062898308168486
1202 => 0.0062225519975206
1203 => 0.0062050002093766
1204 => 0.0062597974039006
1205 => 0.006245360279157
1206 => 0.0059858844567691
1207 => 0.0059587677896197
1208 => 0.0059595994190875
1209 => 0.0058914132702132
1210 => 0.005787413026629
1211 => 0.0060607194572364
1212 => 0.0060387691259376
1213 => 0.0060145376590044
1214 => 0.0060175058754409
1215 => 0.0061361389337532
1216 => 0.006067325768819
1217 => 0.0062502768460524
1218 => 0.006212667604586
1219 => 0.0061740938279887
1220 => 0.0061687617570769
1221 => 0.0061539141440469
1222 => 0.0061029961544135
1223 => 0.0060415096222343
1224 => 0.0060009108878175
1225 => 0.0055355230870623
1226 => 0.0056218963558461
1227 => 0.0057212609284108
1228 => 0.0057555611806816
1229 => 0.0056968882256672
1230 => 0.0061053129202933
1231 => 0.0061799360476798
]
'min_raw' => 0.0025757386021793
'max_raw' => 0.0067664819123451
'avg_raw' => 0.0046711102572622
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.002575'
'max' => '$0.006766'
'avg' => '$0.004671'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -9.9867189527889E-5
'max_diff' => -0.0012202665377441
'year' => 2027
]
2 => [
'items' => [
101 => 0.00595389772728
102 => 0.005911615186617
103 => 0.0061080849566199
104 => 0.0059895896678556
105 => 0.0060429480891306
106 => 0.00592761636783
107 => 0.0061619615215127
108 => 0.0061601762040771
109 => 0.0060690106463692
110 => 0.0061460631514691
111 => 0.006132673382539
112 => 0.0060297476924176
113 => 0.0061652244494747
114 => 0.006165291644256
115 => 0.0060775467770723
116 => 0.0059750799820231
117 => 0.0059567613392259
118 => 0.0059429607026417
119 => 0.0060395539785253
120 => 0.0061261592076432
121 => 0.0062873100677745
122 => 0.0063278272228615
123 => 0.0064859683765459
124 => 0.0063918030192799
125 => 0.0064335453025104
126 => 0.0064788624557635
127 => 0.0065005891655163
128 => 0.0064651866578937
129 => 0.0067108449630613
130 => 0.0067315860507934
131 => 0.0067385403581003
201 => 0.0066557057597786
202 => 0.0067292822707674
203 => 0.0066948582578737
204 => 0.0067844199761569
205 => 0.0067984643971651
206 => 0.0067865692722159
207 => 0.00679102719312
208 => 0.0065814011667542
209 => 0.0065705309514217
210 => 0.0064223147940485
211 => 0.0064827139737366
212 => 0.0063698006023177
213 => 0.0064056065955312
214 => 0.0064213895361677
215 => 0.0064131454236532
216 => 0.006486128852734
217 => 0.0064240780284858
218 => 0.0062603157011949
219 => 0.0060965087569675
220 => 0.006094452294217
221 => 0.0060513248172346
222 => 0.0060201515505678
223 => 0.0060261566276588
224 => 0.0060473193025823
225 => 0.0060189215374296
226 => 0.0060249816404282
227 => 0.0061256197284596
228 => 0.0061458019792963
229 => 0.0060772148052388
301 => 0.0058018274043156
302 => 0.0057342466453721
303 => 0.005782822354716
304 => 0.0057596062943259
305 => 0.0046484517983616
306 => 0.0049095010652008
307 => 0.0047543944552404
308 => 0.0048258747172221
309 => 0.0046675510331145
310 => 0.0047431113936259
311 => 0.004729158154062
312 => 0.0051489176501301
313 => 0.0051423636829593
314 => 0.0051455007202157
315 => 0.004995761758459
316 => 0.0052342999903933
317 => 0.0053518125010016
318 => 0.0053300640627822
319 => 0.0053355376761303
320 => 0.0052414828638611
321 => 0.0051464113763921
322 => 0.005040962465392
323 => 0.0052368735081509
324 => 0.0052150915445091
325 => 0.0052650515322002
326 => 0.0053921138474399
327 => 0.0054108242560217
328 => 0.0054359712348979
329 => 0.0054269578330547
330 => 0.0056416936325899
331 => 0.0056156877103938
401 => 0.0056783545004721
402 => 0.0055494441587403
403 => 0.0054035698707888
404 => 0.0054312958039386
405 => 0.0054286255736184
406 => 0.0053946304768945
407 => 0.0053639412235957
408 => 0.0053128522634967
409 => 0.0054745052929934
410 => 0.005467942475209
411 => 0.0055741868666984
412 => 0.0055554071384997
413 => 0.0054299915174096
414 => 0.0054344707608523
415 => 0.005464595825655
416 => 0.0055688590188993
417 => 0.0055998114334337
418 => 0.0055854730417809
419 => 0.0056194109512865
420 => 0.0056462340911997
421 => 0.0056227795246833
422 => 0.0059548467252523
423 => 0.0058169492719316
424 => 0.0058841595311958
425 => 0.0059001887820044
426 => 0.0058591301931169
427 => 0.0058680343308487
428 => 0.0058815216732802
429 => 0.0059634141754318
430 => 0.0061783237968641
501 => 0.0062735058052572
502 => 0.0065598655737053
503 => 0.0062656022644576
504 => 0.0062481418974695
505 => 0.0062997239390036
506 => 0.0064678474373426
507 => 0.0066040957417091
508 => 0.0066492971646207
509 => 0.0066552712788527
510 => 0.0067400721531687
511 => 0.0067886784328839
512 => 0.0067297750965423
513 => 0.0066798606864291
514 => 0.0065010734650085
515 => 0.0065217685727094
516 => 0.0066643373424176
517 => 0.0068657241268891
518 => 0.0070385349386894
519 => 0.0069780226154617
520 => 0.0074396889266458
521 => 0.0074854612556619
522 => 0.0074791369997884
523 => 0.007583413177123
524 => 0.0073764462005881
525 => 0.0072879638083231
526 => 0.0066906527484482
527 => 0.0068584727922715
528 => 0.0071024090816944
529 => 0.0070701231990751
530 => 0.0068929701452606
531 => 0.0070384005522123
601 => 0.0069903167116448
602 => 0.0069523909915888
603 => 0.0071261360674279
604 => 0.0069350962194884
605 => 0.0071005033130733
606 => 0.0068883670046334
607 => 0.0069782990306571
608 => 0.0069272492631634
609 => 0.006960284719156
610 => 0.0067671601184485
611 => 0.0068713654651556
612 => 0.0067628248334301
613 => 0.0067627733710383
614 => 0.0067603773305771
615 => 0.0068880749024593
616 => 0.0068922391156938
617 => 0.0067978704171326
618 => 0.0067842704133538
619 => 0.0068345567553746
620 => 0.0067756846188821
621 => 0.0068032305210101
622 => 0.0067765189561961
623 => 0.0067705056203248
624 => 0.0067225903370178
625 => 0.006701947115511
626 => 0.0067100418545741
627 => 0.0066824103370276
628 => 0.0066657613482303
629 => 0.0067570654276563
630 => 0.006708285341215
701 => 0.0067495891798043
702 => 0.0067025182427718
703 => 0.0065393498671864
704 => 0.0064455100089129
705 => 0.0061373000731484
706 => 0.006224708028598
707 => 0.0062826595934911
708 => 0.0062635066016396
709 => 0.0063046546393605
710 => 0.0063071807946861
711 => 0.0062938031481684
712 => 0.0062783135472836
713 => 0.0062707740662016
714 => 0.0063269671812063
715 => 0.0063595891758398
716 => 0.00628847580832
717 => 0.0062718149412919
718 => 0.006343714482131
719 => 0.0063875731605078
720 => 0.0067114009995797
721 => 0.0066874107873111
722 => 0.0067476215122639
723 => 0.0067408427086431
724 => 0.0068039531407143
725 => 0.0069071120246921
726 => 0.0066973611698876
727 => 0.0067337666656428
728 => 0.0067248408788093
729 => 0.0068222902789905
730 => 0.0068225945053809
731 => 0.0067641687220137
801 => 0.0067958422870272
802 => 0.0067781629719555
803 => 0.0068101118837928
804 => 0.0066870903834001
805 => 0.006836917291528
806 => 0.0069218594938038
807 => 0.0069230389163648
808 => 0.0069633008461005
809 => 0.0070042092985258
810 => 0.0070827295105807
811 => 0.0070020194124285
812 => 0.0068568298028224
813 => 0.0068673120236764
814 => 0.0067821874086871
815 => 0.0067836183688441
816 => 0.0067759797913797
817 => 0.0067989037373556
818 => 0.0066921209004165
819 => 0.0067171826188116
820 => 0.0066820960662972
821 => 0.0067336903943299
822 => 0.0066781834262147
823 => 0.0067248365745246
824 => 0.0067449705267588
825 => 0.006819265243956
826 => 0.0066672100360775
827 => 0.0063571591739806
828 => 0.0064223356241967
829 => 0.0063259345348274
830 => 0.0063348568226733
831 => 0.0063528812640937
901 => 0.0062944581522199
902 => 0.0063056034408416
903 => 0.0063052052527038
904 => 0.0063017738824513
905 => 0.0062865757746453
906 => 0.0062645355114726
907 => 0.0063523371363174
908 => 0.0063672563433055
909 => 0.0064004198923413
910 => 0.0064990921192217
911 => 0.006489232436905
912 => 0.0065053139878378
913 => 0.0064702080524455
914 => 0.0063364852863299
915 => 0.0063437470758896
916 => 0.0062531924437177
917 => 0.0063981042068021
918 => 0.0063637871885619
919 => 0.006341662783657
920 => 0.0063356259347976
921 => 0.006434542751043
922 => 0.0064641402127948
923 => 0.0064456970608429
924 => 0.0064078696181168
925 => 0.0064805094908304
926 => 0.0064999448563384
927 => 0.0065042957179269
928 => 0.0066329996450614
929 => 0.0065114888377314
930 => 0.0065407376967693
1001 => 0.0067689289455277
1002 => 0.0065619909711437
1003 => 0.0066716106314424
1004 => 0.006666245319504
1005 => 0.0067223230283858
1006 => 0.00666164531059
1007 => 0.0066623974836237
1008 => 0.0067121906900777
1009 => 0.0066422651118651
1010 => 0.0066249505553341
1011 => 0.0066010306194957
1012 => 0.0066532589243055
1013 => 0.006684567430956
1014 => 0.0069368910009944
1015 => 0.007099903534592
1016 => 0.0070928267305936
1017 => 0.0071574954719174
1018 => 0.0071283616116532
1019 => 0.0070342806917363
1020 => 0.0071948653500886
1021 => 0.0071440496450384
1022 => 0.0071482388300217
1023 => 0.0071480829083474
1024 => 0.0071818709098197
1025 => 0.0071579290141517
1026 => 0.0071107370802049
1027 => 0.0071420652883141
1028 => 0.0072350988663592
1029 => 0.0075238779472297
1030 => 0.0076854825466988
1031 => 0.007514149147425
1101 => 0.0076323326319985
1102 => 0.0075614646543357
1103 => 0.0075485858346546
1104 => 0.0076228137966577
1105 => 0.007697171684882
1106 => 0.0076924354088601
1107 => 0.0076384554003291
1108 => 0.0076079634632019
1109 => 0.0078388586266774
1110 => 0.0080089782499297
1111 => 0.0079973772321203
1112 => 0.0080485803518778
1113 => 0.0081989142951387
1114 => 0.0082126589468642
1115 => 0.008210927436664
1116 => 0.0081768598832563
1117 => 0.0083248831737261
1118 => 0.008448366806858
1119 => 0.0081689742289487
1120 => 0.0082753632650991
1121 => 0.0083231247310677
1122 => 0.0083932527332981
1123 => 0.0085115704278785
1124 => 0.0086400948264113
1125 => 0.0086582695855622
1126 => 0.0086453737242023
1127 => 0.0085606084284487
1128 => 0.0087012413589383
1129 => 0.0087836208313711
1130 => 0.0088326759219841
1201 => 0.0089570714697899
1202 => 0.0083234196896216
1203 => 0.0078748894650816
1204 => 0.0078048449936647
1205 => 0.0079472831806538
1206 => 0.0079848429946395
1207 => 0.0079697026807179
1208 => 0.0074648411344141
1209 => 0.0078021870021069
1210 => 0.0081651427908982
1211 => 0.0081790854009297
1212 => 0.0083607886578462
1213 => 0.0084199586865664
1214 => 0.0085662536247745
1215 => 0.0085571028365578
1216 => 0.0085927233259506
1217 => 0.0085845347923001
1218 => 0.0088555153592969
1219 => 0.0091544471656981
1220 => 0.0091440961077874
1221 => 0.0091011211238166
1222 => 0.0091649463033368
1223 => 0.0094734759630221
1224 => 0.0094450714960453
1225 => 0.0094726640162265
1226 => 0.009836437872965
1227 => 0.010309395632953
1228 => 0.010089659269256
1229 => 0.010566423951043
1230 => 0.010866522046018
1231 => 0.011385510670556
]
'min_raw' => 0.0046484517983616
'max_raw' => 0.011385510670556
'avg_raw' => 0.0080169812344586
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.004648'
'max' => '$0.011385'
'avg' => '$0.008016'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0020727131961823
'max_diff' => 0.0046190287582107
'year' => 2028
]
3 => [
'items' => [
101 => 0.011320530738691
102 => 0.011522569201709
103 => 0.011204203098931
104 => 0.01047317017455
105 => 0.010357481415985
106 => 0.010589093240338
107 => 0.011158488310159
108 => 0.010571160963284
109 => 0.01068997652062
110 => 0.010655757632114
111 => 0.010653934252967
112 => 0.01072352521881
113 => 0.010622579893233
114 => 0.010211310477116
115 => 0.010399792826897
116 => 0.01032701073998
117 => 0.010407767891678
118 => 0.010843580932607
119 => 0.010650897598727
120 => 0.010447921358807
121 => 0.0107024986077
122 => 0.011026662927774
123 => 0.011006377307203
124 => 0.010967014724564
125 => 0.011188899541943
126 => 0.011555388254103
127 => 0.011654448680329
128 => 0.011727573061767
129 => 0.011737655678521
130 => 0.011841512897397
131 => 0.011283046456112
201 => 0.012169347040867
202 => 0.012322386668295
203 => 0.012293621561181
204 => 0.012463718666175
205 => 0.012413671782938
206 => 0.012341161701244
207 => 0.012610801793351
208 => 0.012301681186584
209 => 0.01186292340248
210 => 0.011622212204476
211 => 0.011939200127627
212 => 0.012132773590941
213 => 0.012260713336607
214 => 0.012299427826342
215 => 0.011326398616199
216 => 0.010801989838606
217 => 0.011138129852684
218 => 0.011548243869004
219 => 0.011280768252044
220 => 0.011291252789831
221 => 0.010909902851402
222 => 0.011581984876703
223 => 0.011484068178716
224 => 0.011992060181083
225 => 0.011870823812828
226 => 0.012285071570623
227 => 0.012175986253041
228 => 0.012628793307444
301 => 0.012809430300707
302 => 0.013112747926298
303 => 0.013335869606408
304 => 0.013466890924606
305 => 0.01345902489611
306 => 0.013978196633373
307 => 0.013672059198388
308 => 0.013287478428993
309 => 0.013280522576212
310 => 0.013479702406233
311 => 0.013897128687639
312 => 0.014005361249103
313 => 0.014065848485603
314 => 0.013973210177327
315 => 0.013640919932718
316 => 0.013497438689846
317 => 0.013619688865825
318 => 0.01347018740568
319 => 0.013728268868591
320 => 0.014082669840394
321 => 0.01400948744117
322 => 0.014254125229657
323 => 0.014507299604095
324 => 0.014869350330314
325 => 0.014964003796848
326 => 0.015120462377678
327 => 0.015281509651319
328 => 0.015333233695267
329 => 0.015431990944192
330 => 0.015431470444742
331 => 0.015729082061506
401 => 0.01605735689106
402 => 0.016181273039638
403 => 0.016466211390515
404 => 0.015978264450069
405 => 0.016348377809527
406 => 0.016682229324298
407 => 0.016284197785306
408 => 0.016832791532352
409 => 0.016854092184409
410 => 0.01717570674118
411 => 0.016849688773999
412 => 0.016656100345773
413 => 0.017214982884398
414 => 0.017485408540203
415 => 0.017403954131878
416 => 0.01678408206262
417 => 0.016423289930748
418 => 0.015479027330034
419 => 0.016597547169688
420 => 0.017142345555912
421 => 0.016782671166413
422 => 0.016964070007467
423 => 0.017953723265484
424 => 0.018330519150834
425 => 0.018252148240683
426 => 0.018265391634404
427 => 0.018468703854809
428 => 0.019370302206173
429 => 0.01883004357515
430 => 0.019243051055462
501 => 0.019462108733811
502 => 0.019665581713678
503 => 0.01916591638342
504 => 0.018515859130296
505 => 0.018309958710684
506 => 0.016746908636785
507 => 0.016665545092456
508 => 0.016619873269456
509 => 0.016331918885852
510 => 0.016105665617683
511 => 0.015925740618589
512 => 0.015453563690815
513 => 0.01561290954304
514 => 0.014860358071152
515 => 0.015341813834079
516 => 0.014140723513956
517 => 0.015141027223146
518 => 0.014596607392462
519 => 0.014962170666642
520 => 0.014960895250817
521 => 0.01428777736111
522 => 0.013899537009939
523 => 0.014146938872246
524 => 0.014412173307423
525 => 0.014455206702174
526 => 0.014799090070708
527 => 0.014895060527118
528 => 0.014604265563765
529 => 0.014115833586749
530 => 0.014229285195063
531 => 0.013897237916718
601 => 0.013315337833433
602 => 0.013733268632249
603 => 0.013875968582085
604 => 0.013938993009369
605 => 0.013366761109134
606 => 0.013186953422322
607 => 0.013091225318595
608 => 0.014041965634209
609 => 0.014094049334874
610 => 0.013827581758382
611 => 0.015032040471616
612 => 0.014759434369561
613 => 0.015064002175673
614 => 0.014218990650752
615 => 0.014251271228963
616 => 0.013851229231154
617 => 0.014075226019111
618 => 0.013916912309137
619 => 0.014057129292224
620 => 0.01414117477375
621 => 0.014541151128602
622 => 0.015145594310628
623 => 0.014481407999223
624 => 0.014192012512021
625 => 0.014371551844659
626 => 0.014849688746891
627 => 0.015574090629151
628 => 0.015145230134907
629 => 0.015335551139729
630 => 0.01537712781249
701 => 0.015060901961313
702 => 0.015585750327344
703 => 0.01586702083056
704 => 0.01615554616613
705 => 0.016406064630709
706 => 0.016040302802295
707 => 0.016431720388597
708 => 0.016116306908543
709 => 0.015833348410088
710 => 0.01583377754133
711 => 0.015656273541886
712 => 0.015312337176018
713 => 0.015248910033222
714 => 0.015578866040014
715 => 0.015843459510512
716 => 0.015865252696059
717 => 0.01601174523663
718 => 0.016098438013146
719 => 0.016948145076123
720 => 0.017289904285998
721 => 0.017707800978662
722 => 0.017870595291822
723 => 0.018360547809442
724 => 0.017964871359466
725 => 0.017879264270592
726 => 0.016690799725094
727 => 0.016885410727841
728 => 0.017197001720406
729 => 0.016695937745796
730 => 0.017013747508657
731 => 0.017076489887977
801 => 0.016678911783673
802 => 0.016891275427518
803 => 0.016327300550898
804 => 0.015157887421773
805 => 0.015587052218451
806 => 0.015903061964114
807 => 0.015452077093332
808 => 0.016260450018685
809 => 0.015788215243898
810 => 0.015638539491557
811 => 0.015054601018418
812 => 0.015330197499887
813 => 0.015702945687235
814 => 0.015472630644081
815 => 0.015950568940602
816 => 0.016627457029963
817 => 0.017109847791824
818 => 0.01714687976465
819 => 0.016836734822444
820 => 0.017333744071648
821 => 0.017337364241431
822 => 0.016776735777987
823 => 0.01643335396572
824 => 0.016355336895491
825 => 0.01655023883307
826 => 0.016786885766173
827 => 0.017160012022458
828 => 0.017385484404546
829 => 0.017973396795721
830 => 0.018132469032003
831 => 0.018307241191989
901 => 0.018540790695468
902 => 0.018821226755259
903 => 0.018207648621671
904 => 0.018232027224771
905 => 0.017660671762342
906 => 0.017050096510074
907 => 0.017513447017266
908 => 0.018119216168483
909 => 0.017980252055879
910 => 0.017964615754431
911 => 0.017990911676317
912 => 0.017886137273557
913 => 0.017412246532992
914 => 0.017174261569794
915 => 0.017481322888759
916 => 0.017644512314062
917 => 0.017897604881094
918 => 0.017866405880072
919 => 0.018518345152588
920 => 0.018771669040267
921 => 0.018706857949459
922 => 0.018718784749933
923 => 0.019177415548251
924 => 0.019687507320598
925 => 0.020165275577939
926 => 0.02065128196993
927 => 0.020065382295232
928 => 0.019767898573689
929 => 0.020074825839289
930 => 0.019911965911847
1001 => 0.020847807362316
1002 => 0.02091260299388
1003 => 0.02184837677236
1004 => 0.022736537518007
1005 => 0.022178699666719
1006 => 0.022704715634914
1007 => 0.023273644791229
1008 => 0.02437120143919
1009 => 0.024001582972665
1010 => 0.023718461019967
1011 => 0.023450912142703
1012 => 0.024007638884102
1013 => 0.024723858942985
1014 => 0.024878125883798
1015 => 0.025128097262422
1016 => 0.024865282922844
1017 => 0.025181813846815
1018 => 0.026299307099168
1019 => 0.025997350557997
1020 => 0.025568523727597
1021 => 0.026450677325136
1022 => 0.026769925282801
1023 => 0.029010574641143
1024 => 0.031839487012658
1025 => 0.03066829871521
1026 => 0.029941304344975
1027 => 0.030112165266517
1028 => 0.031145188299867
1029 => 0.031476962511667
1030 => 0.030575085834566
1031 => 0.030893643923716
1101 => 0.032648930314872
1102 => 0.033590585147398
1103 => 0.032311691403711
1104 => 0.028783274286542
1105 => 0.025529912563415
1106 => 0.026392850593176
1107 => 0.026295020200686
1108 => 0.028180856451546
1109 => 0.025990148994353
1110 => 0.02602703488955
1111 => 0.027951868236943
1112 => 0.027438355699856
1113 => 0.026606531155492
1114 => 0.025535985803141
1115 => 0.02355698370586
1116 => 0.021804126359743
1117 => 0.025241883274418
1118 => 0.025093640945102
1119 => 0.02487896408397
1120 => 0.025356704207956
1121 => 0.027676474641136
1122 => 0.027622996424287
1123 => 0.02728279529352
1124 => 0.027540834852812
1125 => 0.026561295573146
1126 => 0.02681374514921
1127 => 0.025529397214296
1128 => 0.026109976119985
1129 => 0.026604746433611
1130 => 0.026704078899272
1201 => 0.026927880016445
1202 => 0.025015523973736
1203 => 0.025874115693089
1204 => 0.026378457889044
1205 => 0.024099821499592
1206 => 0.026333416573999
1207 => 0.02498223410964
1208 => 0.024523622487157
1209 => 0.025141082619344
1210 => 0.024900457805331
1211 => 0.024693582720206
1212 => 0.024578142868141
1213 => 0.025031537442631
1214 => 0.025010386043807
1215 => 0.024268544519847
1216 => 0.02330084249317
1217 => 0.023625635057059
1218 => 0.023507634873652
1219 => 0.023079986986657
1220 => 0.023368170028089
1221 => 0.022099157759723
1222 => 0.019915888109517
1223 => 0.021358222915801
1224 => 0.021302694594717
1225 => 0.021274694697218
1226 => 0.022358569440934
1227 => 0.022254379893571
1228 => 0.022065274844879
1229 => 0.02307651392414
1230 => 0.022707398057125
1231 => 0.023844926184629
]
'min_raw' => 0.010211310477116
'max_raw' => 0.033590585147398
'avg_raw' => 0.021900947812257
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.010211'
'max' => '$0.03359'
'avg' => '$0.02190094'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.0055628586787542
'max_diff' => 0.022205074476842
'year' => 2029
]
4 => [
'items' => [
101 => 0.02459417578011
102 => 0.024404141847011
103 => 0.025108814712998
104 => 0.023633117621742
105 => 0.024123285000767
106 => 0.024224307818241
107 => 0.023064035390872
108 => 0.022271426592053
109 => 0.022218568621574
110 => 0.020844294192643
111 => 0.021578420499822
112 => 0.022224421269929
113 => 0.021915037032733
114 => 0.021817095225828
115 => 0.02231745867632
116 => 0.022356341201747
117 => 0.021469815501439
118 => 0.021654152267151
119 => 0.022422867223606
120 => 0.021634782622567
121 => 0.020103662975638
122 => 0.019723924133814
123 => 0.019673259972339
124 => 0.018643378115846
125 => 0.019749300099017
126 => 0.019266535516496
127 => 0.020791583048271
128 => 0.019920484077115
129 => 0.019882932741512
130 => 0.019826168390165
131 => 0.018939706532397
201 => 0.019133785341658
202 => 0.019778932862679
203 => 0.020009128766287
204 => 0.019985117447601
205 => 0.019775771287867
206 => 0.019871608887768
207 => 0.019562882586455
208 => 0.01945386490388
209 => 0.019109775109995
210 => 0.018604058170216
211 => 0.018674381212435
212 => 0.017672423626698
213 => 0.017126503956074
214 => 0.016975400586351
215 => 0.016773338845313
216 => 0.016998223997667
217 => 0.017669585206747
218 => 0.016859781151371
219 => 0.015471428899579
220 => 0.015554871235549
221 => 0.015742341390221
222 => 0.015392991997229
223 => 0.015062362115433
224 => 0.015349817972804
225 => 0.014761554821396
226 => 0.015813430181609
227 => 0.015784979900961
228 => 0.016177053987713
301 => 0.016422225960329
302 => 0.015857183938818
303 => 0.015715077398444
304 => 0.015796027742223
305 => 0.014458098878673
306 => 0.016067716655708
307 => 0.016081636697084
308 => 0.015962444851715
309 => 0.016819516626613
310 => 0.018628205399037
311 => 0.017947703928513
312 => 0.017684193190861
313 => 0.017183259085959
314 => 0.017850724038217
315 => 0.017799473143959
316 => 0.017567697163799
317 => 0.017427518327813
318 => 0.017685802131235
319 => 0.017395514106269
320 => 0.017343370400404
321 => 0.017027436275771
322 => 0.016914662167364
323 => 0.016831168707166
324 => 0.016739250611386
325 => 0.016941999026115
326 => 0.016482544444565
327 => 0.015928487260105
328 => 0.015882423400199
329 => 0.016009609767375
330 => 0.015953339267811
331 => 0.015882153998696
401 => 0.0157462419338
402 => 0.015705919727447
403 => 0.01583694733654
404 => 0.015689024805258
405 => 0.015907292557922
406 => 0.015847935806503
407 => 0.015516373818164
408 => 0.015103124820723
409 => 0.015099446037827
410 => 0.015010412219192
411 => 0.014897014264837
412 => 0.014865469548129
413 => 0.015325609242276
414 => 0.016278084638337
415 => 0.016091090927286
416 => 0.016226213047407
417 => 0.016890880143125
418 => 0.017102157825616
419 => 0.01695219793097
420 => 0.016746923578054
421 => 0.016755954607798
422 => 0.017457439212482
423 => 0.017501189946818
424 => 0.017611733937962
425 => 0.017753814206311
426 => 0.016976394815042
427 => 0.016719338224381
428 => 0.016597530550769
429 => 0.016222410061547
430 => 0.016626945348773
501 => 0.016391239960834
502 => 0.01642304467051
503 => 0.01640233181161
504 => 0.016413642433167
505 => 0.015813136161008
506 => 0.016031929084902
507 => 0.015668143413343
508 => 0.015181075235983
509 => 0.015179442412664
510 => 0.015298651659044
511 => 0.015227741334639
512 => 0.015036923474936
513 => 0.015064028251272
514 => 0.014826561889584
515 => 0.015092860967048
516 => 0.015100497471726
517 => 0.014997957821493
518 => 0.015408228292519
519 => 0.015576316439247
520 => 0.015508822644851
521 => 0.015571580894707
522 => 0.016098861360206
523 => 0.016184831082942
524 => 0.01622301315494
525 => 0.016171854236618
526 => 0.015581218613674
527 => 0.015607415815128
528 => 0.015415198132974
529 => 0.015252794446954
530 => 0.015259289742699
531 => 0.015342786348315
601 => 0.01570742092205
602 => 0.016474772886093
603 => 0.016503893332202
604 => 0.016539188162389
605 => 0.016395626350259
606 => 0.016352326734019
607 => 0.016409450104418
608 => 0.016697627156664
609 => 0.017438896774345
610 => 0.017176882583723
611 => 0.016963860968254
612 => 0.017150738355235
613 => 0.017121970046303
614 => 0.01687913656751
615 => 0.016872321040543
616 => 0.01640624595618
617 => 0.016233948609507
618 => 0.016089964050395
619 => 0.015932736670656
620 => 0.015839527009637
621 => 0.015982739411995
622 => 0.016015493782854
623 => 0.015702357362174
624 => 0.015659678025114
625 => 0.01591539198576
626 => 0.015802861805657
627 => 0.015918601886507
628 => 0.015945454578065
629 => 0.015941130676254
630 => 0.015823636244217
701 => 0.015898523691463
702 => 0.015721392553705
703 => 0.015528789045629
704 => 0.015405920007099
705 => 0.015298700474768
706 => 0.015358192102941
707 => 0.015146115311248
708 => 0.015078267677323
709 => 0.015873153509357
710 => 0.016460344219944
711 => 0.016451806234459
712 => 0.016399833443611
713 => 0.016322612418706
714 => 0.016691977957712
715 => 0.016563298389619
716 => 0.016656923526944
717 => 0.016680755053828
718 => 0.016752885908109
719 => 0.016778666488658
720 => 0.016700739668474
721 => 0.016439207741979
722 => 0.015787495046863
723 => 0.015484121028022
724 => 0.015384002548711
725 => 0.015387641665282
726 => 0.015287258584524
727 => 0.015316825900661
728 => 0.015276976278605
729 => 0.015201510735091
730 => 0.015353532318285
731 => 0.01537105138957
801 => 0.015335567735529
802 => 0.015343925420583
803 => 0.015050135920397
804 => 0.015072472098019
805 => 0.014948101422676
806 => 0.01492478342036
807 => 0.014610385183286
808 => 0.014053383133557
809 => 0.014362016338604
810 => 0.013989230827303
811 => 0.013848051305551
812 => 0.014516373203605
813 => 0.014449292221404
814 => 0.014334478739279
815 => 0.014164645669989
816 => 0.01410165293256
817 => 0.013718929001015
818 => 0.013696315629387
819 => 0.013886003944276
820 => 0.013798469313731
821 => 0.013675537540489
822 => 0.013230291119201
823 => 0.01272968672565
824 => 0.012744796825604
825 => 0.012904029769117
826 => 0.013367021027869
827 => 0.013186122333245
828 => 0.013054878254721
829 => 0.013030300183996
830 => 0.013337946196795
831 => 0.013773329758737
901 => 0.013977601984842
902 => 0.013775174412612
903 => 0.013542636517108
904 => 0.01355679002133
905 => 0.013650946944041
906 => 0.01366084150531
907 => 0.013509483240619
908 => 0.013552089705544
909 => 0.013487366589307
910 => 0.01309016094443
911 => 0.013082976753867
912 => 0.012985496082807
913 => 0.012982544406829
914 => 0.012816705467664
915 => 0.012793503453685
916 => 0.01246422017427
917 => 0.012680955425942
918 => 0.012535580798232
919 => 0.012316466943864
920 => 0.012278691632782
921 => 0.012277556061316
922 => 0.01250253699679
923 => 0.012678326392721
924 => 0.012538109652121
925 => 0.012506185018274
926 => 0.01284705658611
927 => 0.012803677571989
928 => 0.012766111625526
929 => 0.013734345936094
930 => 0.012967912927014
1001 => 0.012633704388588
1002 => 0.012220057857806
1003 => 0.012354743254016
1004 => 0.012383123445937
1005 => 0.011388378104798
1006 => 0.010984810043786
1007 => 0.010846320693388
1008 => 0.010766618114282
1009 => 0.010802939580422
1010 => 0.010439680991699
1011 => 0.010683796771064
1012 => 0.010369245538713
1013 => 0.010316510000971
1014 => 0.010878966569834
1015 => 0.010957229115568
1016 => 0.010623336781201
1017 => 0.010837749712123
1018 => 0.010760000602808
1019 => 0.010374637616775
1020 => 0.010359919585247
1021 => 0.010166557985019
1022 => 0.009863984522847
1023 => 0.0097257003315043
1024 => 0.0096536807240147
1025 => 0.0096833974176991
1026 => 0.0096683717480264
1027 => 0.0095703190896577
1028 => 0.0096739920116278
1029 => 0.0094091505366032
1030 => 0.0093036885272757
1031 => 0.0092560537843625
1101 => 0.0090209917315717
1102 => 0.0093950799901312
1103 => 0.0094687800897071
1104 => 0.0095426254012463
1105 => 0.01018539842186
1106 => 0.010153287298208
1107 => 0.010443556217272
1108 => 0.010432276900847
1109 => 0.010349487503085
1110 => 0.010000212652123
1111 => 0.010139427382491
1112 => 0.0097109460811915
1113 => 0.010031993406022
1114 => 0.0098854808142259
1115 => 0.009982457351357
1116 => 0.0098080847935735
1117 => 0.0099045897667174
1118 => 0.00948625711741
1119 => 0.009095623975586
1120 => 0.0092528261551483
1121 => 0.0094237229025823
1122 => 0.0097942705947008
1123 => 0.0095735754462271
1124 => 0.0096529457670257
1125 => 0.0093870684787816
1126 => 0.0088384876890412
1127 => 0.0088415925967354
1128 => 0.008757205393716
1129 => 0.0086842825295739
1130 => 0.0095989249388607
1201 => 0.0094851746969091
1202 => 0.0093039285736228
1203 => 0.0095465337120761
1204 => 0.0096106823613444
1205 => 0.0096125085832067
1206 => 0.0097895070296773
1207 => 0.0098839711322874
1208 => 0.0099006208398032
1209 => 0.010179131719629
1210 => 0.0102724848929
1211 => 0.010656993401764
1212 => 0.0098759565131649
1213 => 0.0098598715724197
1214 => 0.0095499476638952
1215 => 0.0093533890214058
1216 => 0.0095634062023097
1217 => 0.0097494527543865
1218 => 0.009555728648871
1219 => 0.0095810249273122
1220 => 0.0093209661434986
1221 => 0.0094139249218089
1222 => 0.0094939935445894
1223 => 0.0094497843573061
1224 => 0.0093836010641942
1225 => 0.0097341990587631
1226 => 0.0097144169459049
1227 => 0.01004090185866
1228 => 0.010295420195314
1229 => 0.010751562555191
1230 => 0.01027555422342
1231 => 0.010258206587848
]
'min_raw' => 0.0086842825295739
'max_raw' => 0.025108814712998
'avg_raw' => 0.016896548621286
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.008684'
'max' => '$0.0251088'
'avg' => '$0.016896'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0015270279475419
'max_diff' => -0.0084817704343993
'year' => 2030
]
5 => [
'items' => [
101 => 0.010427782508208
102 => 0.01027245893171
103 => 0.010370618070469
104 => 0.010735747600402
105 => 0.010743462212006
106 => 0.010614232527925
107 => 0.010606368889904
108 => 0.01063118886435
109 => 0.010776560229916
110 => 0.010725763007976
111 => 0.010784546839233
112 => 0.010858056920349
113 => 0.011162125783476
114 => 0.011235435756956
115 => 0.011057330528264
116 => 0.011073411436255
117 => 0.011006795191626
118 => 0.010942444734014
119 => 0.011087095165097
120 => 0.011351446671011
121 => 0.011349802154013
122 => 0.011411126565126
123 => 0.011449331165211
124 => 0.011285329054171
125 => 0.011178569710408
126 => 0.01121950803608
127 => 0.011284969310351
128 => 0.0111982798271
129 => 0.010663192177999
130 => 0.010825503589205
131 => 0.010798487033757
201 => 0.010760012173475
202 => 0.01092321755256
203 => 0.010907475995605
204 => 0.010435955249826
205 => 0.010466140478126
206 => 0.010437790913536
207 => 0.010529394156501
208 => 0.010267512055973
209 => 0.010348065226293
210 => 0.010398587419578
211 => 0.010428345379553
212 => 0.010535851536206
213 => 0.010523236929554
214 => 0.010535067394545
215 => 0.010694470644288
216 => 0.011500677580902
217 => 0.011544557645666
218 => 0.011328476158386
219 => 0.011414796450536
220 => 0.011249080365781
221 => 0.011360326683678
222 => 0.011436438589033
223 => 0.011092503524212
224 => 0.011072137921793
225 => 0.010905737867808
226 => 0.010995151831439
227 => 0.010852887786211
228 => 0.010887794406725
301 => 0.010790192452664
302 => 0.010965856537619
303 => 0.011162276280038
304 => 0.011211899663823
305 => 0.011081361905293
306 => 0.01098684396526
307 => 0.010820901598706
308 => 0.011096867452552
309 => 0.011177568278123
310 => 0.01109644356547
311 => 0.011077645196939
312 => 0.011042022322539
313 => 0.011085202758143
314 => 0.011177128764096
315 => 0.011133778157295
316 => 0.011162411996826
317 => 0.01105328932762
318 => 0.011285383345694
319 => 0.011654004502861
320 => 0.011655189680157
321 => 0.01161183883968
322 => 0.011594100609764
323 => 0.011638581202842
324 => 0.011662710099897
325 => 0.011806552181565
326 => 0.011960900466116
327 => 0.012681176562684
328 => 0.012478925916999
329 => 0.01311799771929
330 => 0.013623420541815
331 => 0.013774974746828
401 => 0.013635552009392
402 => 0.013158594356091
403 => 0.013135192538173
404 => 0.013847968638532
405 => 0.013646576742967
406 => 0.013622621817814
407 => 0.013367781886662
408 => 0.013518423848512
409 => 0.013485476241671
410 => 0.013433466832421
411 => 0.013720881201821
412 => 0.014258895243679
413 => 0.014175040709791
414 => 0.014112447190144
415 => 0.013838180607751
416 => 0.014003350350011
417 => 0.01394453656841
418 => 0.014197237898315
419 => 0.014047543228499
420 => 0.013645051001284
421 => 0.0137091492151
422 => 0.013699460899029
423 => 0.013898845757239
424 => 0.013838995371841
425 => 0.013687774150716
426 => 0.014257056370173
427 => 0.014220090349356
428 => 0.014272499715266
429 => 0.014295571938953
430 => 0.014642083994059
501 => 0.014784038895887
502 => 0.014816265143872
503 => 0.014951111321422
504 => 0.014812910048133
505 => 0.01536581367713
506 => 0.015733462327592
507 => 0.01616050515413
508 => 0.016784529501993
509 => 0.017019168429337
510 => 0.016976783007284
511 => 0.017449911145942
512 => 0.018300111894063
513 => 0.017148632886649
514 => 0.018361143077466
515 => 0.017977276350156
516 => 0.017067135245174
517 => 0.017008532887871
518 => 0.017624891011121
519 => 0.018991914006218
520 => 0.018649490250593
521 => 0.018992474088813
522 => 0.01859236522287
523 => 0.018572496445294
524 => 0.018973041694254
525 => 0.019908937501033
526 => 0.019464328484762
527 => 0.018826872437334
528 => 0.01929756006284
529 => 0.018889806881543
530 => 0.017971024841152
531 => 0.0186492284056
601 => 0.018195732996179
602 => 0.01832808706579
603 => 0.019281266964042
604 => 0.019166577836884
605 => 0.019314996187354
606 => 0.019053041683558
607 => 0.018808334870578
608 => 0.018351571431985
609 => 0.018216346295983
610 => 0.018253717658683
611 => 0.018216327776592
612 => 0.017960772830572
613 => 0.01790558576431
614 => 0.01781360490274
615 => 0.017842113617891
616 => 0.017669162688189
617 => 0.017995556826021
618 => 0.018056138454178
619 => 0.018293660888681
620 => 0.018318321255781
621 => 0.018979817854949
622 => 0.018615476644126
623 => 0.018859908184053
624 => 0.018838043926443
625 => 0.017086860762708
626 => 0.017328158351851
627 => 0.017703541677202
628 => 0.017534431997951
629 => 0.017295350477061
630 => 0.017102279330203
701 => 0.016809756800173
702 => 0.017221476643792
703 => 0.017762844456627
704 => 0.018332051236907
705 => 0.019015915887509
706 => 0.018863285258557
707 => 0.018319266862951
708 => 0.018343671130772
709 => 0.018494528711717
710 => 0.018299154437537
711 => 0.018241534749922
712 => 0.018486612651449
713 => 0.018488300368265
714 => 0.01826349865405
715 => 0.01801367268698
716 => 0.018012625907056
717 => 0.017968171789248
718 => 0.018600273511673
719 => 0.018947865546314
720 => 0.018987716412913
721 => 0.018945183265477
722 => 0.018961552585844
723 => 0.018759296439555
724 => 0.019221594012776
725 => 0.019645843982455
726 => 0.019532135927803
727 => 0.019361671389326
728 => 0.019225888173744
729 => 0.019500149717464
730 => 0.01948793728265
731 => 0.019642138529078
801 => 0.01963514306983
802 => 0.019583290990459
803 => 0.019532137779604
804 => 0.019734954478548
805 => 0.019676546526388
806 => 0.019618047850546
807 => 0.019500719800447
808 => 0.019516666631068
809 => 0.019346231525697
810 => 0.019267380447373
811 => 0.018081649419566
812 => 0.017764783344057
813 => 0.017864475861816
814 => 0.017897297227177
815 => 0.01775939670504
816 => 0.017957110630047
817 => 0.017926297124265
818 => 0.018046174449962
819 => 0.017971280301335
820 => 0.017974353983319
821 => 0.018194601705315
822 => 0.018258540556012
823 => 0.018226020740498
824 => 0.01824879650457
825 => 0.018773654374559
826 => 0.018699036369456
827 => 0.018659397041437
828 => 0.018670377406198
829 => 0.01880448984506
830 => 0.018842034005674
831 => 0.018682956758973
901 => 0.018757978508132
902 => 0.019077411594373
903 => 0.01918919509621
904 => 0.01954595437495
905 => 0.019394396692451
906 => 0.019672587377941
907 => 0.020527650702946
908 => 0.021210734452841
909 => 0.020582542406808
910 => 0.021836938723299
911 => 0.022813666188152
912 => 0.022776177761226
913 => 0.022605862735616
914 => 0.021493884484524
915 => 0.020470625519207
916 => 0.021326625093565
917 => 0.021328807212518
918 => 0.021255276089932
919 => 0.020798580602716
920 => 0.021239384076922
921 => 0.021274373455942
922 => 0.021254788708118
923 => 0.020904641348848
924 => 0.020370031049292
925 => 0.020474492622149
926 => 0.020645602809447
927 => 0.020321655527568
928 => 0.020218134742349
929 => 0.020410599577706
930 => 0.021030761378865
1001 => 0.020913523382709
1002 => 0.020910461824833
1003 => 0.021412055689038
1004 => 0.021053022732998
1005 => 0.020475810217115
1006 => 0.020330056444357
1007 => 0.019812728742572
1008 => 0.020170048828853
1009 => 0.020182908142634
1010 => 0.0199872075831
1011 => 0.020491690238954
1012 => 0.020487041342468
1013 => 0.020965972541867
1014 => 0.021881509116775
1015 => 0.021610739900756
1016 => 0.021295864762133
1017 => 0.021330100420242
1018 => 0.021705581088892
1019 => 0.021478556905236
1020 => 0.021560196384547
1021 => 0.021705457517762
1022 => 0.021793097166061
1023 => 0.021317490423549
1024 => 0.021206603740969
1025 => 0.020979768504348
1026 => 0.020920591425193
1027 => 0.021105343992349
1028 => 0.021056668218308
1029 => 0.020181827367104
1030 => 0.020090401630585
1031 => 0.020093205527398
1101 => 0.019863311165863
1102 => 0.019512667083554
1103 => 0.020434138795992
1104 => 0.020360131721495
1105 => 0.020278433638943
1106 => 0.020288441187893
1107 => 0.020688420826688
1108 => 0.020456412436731
1109 => 0.02107324476686
1110 => 0.020946442583462
1111 => 0.020816388402529
1112 => 0.020798410953177
1113 => 0.020748351189219
1114 => 0.02057667763219
1115 => 0.020369371496095
1116 => 0.020232490028495
1117 => 0.018663402565911
1118 => 0.018954616072004
1119 => 0.019289630665819
1120 => 0.019405276361117
1121 => 0.019207456396871
1122 => 0.020584488770105
1123 => 0.020836085854109
1124 => 0.020073981875389
1125 => 0.019931423337471
1126 => 0.020593834884117
1127 => 0.020194319744972
1128 => 0.020374221387666
1129 => 0.019985372437098
1130 => 0.020775483484195
1201 => 0.020769464161814
1202 => 0.020462093119026
1203 => 0.020721881019604
1204 => 0.020676736478813
1205 => 0.020329715328526
1206 => 0.020786484673629
1207 => 0.020786711225526
1208 => 0.020490873279665
1209 => 0.020145399326153
1210 => 0.020083636742996
1211 => 0.020037106933223
1212 => 0.020362777906791
1213 => 0.020654773483346
1214 => 0.021198104859473
1215 => 0.021334711276666
1216 => 0.021867895217376
1217 => 0.021550410140938
1218 => 0.021691147163203
1219 => 0.021843937109338
1220 => 0.02191719022818
1221 => 0.021797828202007
1222 => 0.022626082329194
1223 => 0.02269601235458
1224 => 0.022719459287199
1225 => 0.022440176655631
1226 => 0.022688244999377
1227 => 0.022572182036498
1228 => 0.022874145622689
1229 => 0.022921497368669
1230 => 0.022881392124411
1231 => 0.022896422315982
]
'min_raw' => 0.010267512055973
'max_raw' => 0.022921497368669
'avg_raw' => 0.016594504712321
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.010267'
'max' => '$0.022921'
'avg' => '$0.016594'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0015832295263995
'max_diff' => -0.0021873173443295
'year' => 2031
]
6 => [
'items' => [
101 => 0.022189653532468
102 => 0.02215300384254
103 => 0.021653282719834
104 => 0.021856922771089
105 => 0.02147622745599
106 => 0.021596949862004
107 => 0.02165016314829
108 => 0.021622367547362
109 => 0.021868436274048
110 => 0.021659227587845
111 => 0.021107091467863
112 => 0.020554804918765
113 => 0.020547871411024
114 => 0.020402464111313
115 => 0.020297361266298
116 => 0.020317607802972
117 => 0.020388959239007
118 => 0.020293214191126
119 => 0.020313646251489
120 => 0.020652954591614
121 => 0.020721000459389
122 => 0.020489754013451
123 => 0.019561266164304
124 => 0.019333412917188
125 => 0.019497189312689
126 => 0.01941891474419
127 => 0.015672579782717
128 => 0.016552725611743
129 => 0.016029772847064
130 => 0.016270773540928
131 => 0.015736974186152
201 => 0.015991731217072
202 => 0.015944686895698
203 => 0.017359935343364
204 => 0.017337838185464
205 => 0.017348414925595
206 => 0.016843559561592
207 => 0.017647807864766
208 => 0.018044009498743
209 => 0.017970683120859
210 => 0.017989137790418
211 => 0.017672025424155
212 => 0.017351485266474
213 => 0.016995956900829
214 => 0.017656484659563
215 => 0.017583045248377
216 => 0.017751488834972
217 => 0.01817988830201
218 => 0.018242971750863
219 => 0.01832775654585
220 => 0.01829736723224
221 => 0.019021363972748
222 => 0.018933683190388
223 => 0.019144968648393
224 => 0.018710338431011
225 => 0.018218513084565
226 => 0.018311993003942
227 => 0.018302990135988
228 => 0.018188373293922
229 => 0.01808490233377
301 => 0.017912652337879
302 => 0.018457676813081
303 => 0.01843554981472
304 => 0.018793760198373
305 => 0.018730443033592
306 => 0.018307595510848
307 => 0.018322697592845
308 => 0.018424266352093
309 => 0.01877579698754
310 => 0.018880155214171
311 => 0.018831812325639
312 => 0.018946236357006
313 => 0.019036672445955
314 => 0.0189575937374
315 => 0.02007718148831
316 => 0.019612250596746
317 => 0.019838854678326
318 => 0.019892898416554
319 => 0.0197544665175
320 => 0.01978448743953
321 => 0.019829960956194
322 => 0.02010606724475
323 => 0.02083065003792
324 => 0.021151562824613
325 => 0.022117044776936
326 => 0.021124915484999
327 => 0.021066046638655
328 => 0.02123995909303
329 => 0.021806799205688
330 => 0.022266169876413
331 => 0.022418569629622
401 => 0.022438711772854
402 => 0.022724623841218
403 => 0.02288850330686
404 => 0.022689906595885
405 => 0.022521616677276
406 => 0.021918823077731
407 => 0.021988598078231
408 => 0.022469278639136
409 => 0.023148268243358
410 => 0.023730911960608
411 => 0.02352689043801
412 => 0.02508343063868
413 => 0.02523775524168
414 => 0.025216432571457
415 => 0.025568006983671
416 => 0.02487020337231
417 => 0.024571878809145
418 => 0.022558002867851
419 => 0.023123819862422
420 => 0.023946268093299
421 => 0.02383741398592
422 => 0.023240130096553
423 => 0.023730458867218
424 => 0.023568340841638
425 => 0.02344047162858
426 => 0.024026265282265
427 => 0.023382161096961
428 => 0.023939842661337
429 => 0.023224610286548
430 => 0.02352782239114
501 => 0.023355704535854
502 => 0.023467085882195
503 => 0.022815952807381
504 => 0.023167288409189
505 => 0.022801336091261
506 => 0.022801162582214
507 => 0.022793084164513
508 => 0.023223625443674
509 => 0.02323766537933
510 => 0.022919494723519
511 => 0.022873641361257
512 => 0.02304318527426
513 => 0.022844693755754
514 => 0.022937566687972
515 => 0.02284750678226
516 => 0.022827232400532
517 => 0.022665682677524
518 => 0.02259608261495
519 => 0.022623374592858
520 => 0.02253021300228
521 => 0.022474079774154
522 => 0.022781917852586
523 => 0.022617452385432
524 => 0.022756711160978
525 => 0.022598008210385
526 => 0.022047874640047
527 => 0.021731487006188
528 => 0.020692335689227
529 => 0.020987037713654
530 => 0.02118242546074
531 => 0.021117849811494
601 => 0.021256583293534
602 => 0.021265100402585
603 => 0.021219996733353
604 => 0.021167772462521
605 => 0.021142352575663
606 => 0.021331811586179
607 => 0.021441798918681
608 => 0.021202035235111
609 => 0.021145861958701
610 => 0.021388276280506
611 => 0.021536148876769
612 => 0.022627957045137
613 => 0.022547072369531
614 => 0.022750077032487
615 => 0.022727221822799
616 => 0.022940003050757
617 => 0.023287810430411
618 => 0.022580620779101
619 => 0.02270336444979
620 => 0.022673270536302
621 => 0.023001827992713
622 => 0.023002853713229
623 => 0.022805867105448
624 => 0.022912656741269
625 => 0.022853049696174
626 => 0.022960767683035
627 => 0.022545992105375
628 => 0.023051143986709
629 => 0.023337532552157
630 => 0.023341509057666
701 => 0.023477254964768
702 => 0.023615180668257
703 => 0.023879917045306
704 => 0.023607797314387
705 => 0.023118280408785
706 => 0.023153621948239
707 => 0.022866618365592
708 => 0.022871442947668
709 => 0.022845688950438
710 => 0.022922978634795
711 => 0.022562952844715
712 => 0.022647450178037
713 => 0.02252915341657
714 => 0.022703107295734
715 => 0.02251596167736
716 => 0.022673256024106
717 => 0.022741139049771
718 => 0.022991628875893
719 => 0.022478964126375
720 => 0.021433605997755
721 => 0.021653352950133
722 => 0.021328329946816
723 => 0.021358412063223
724 => 0.021419182725898
725 => 0.021222205125244
726 => 0.021259782243971
727 => 0.021258439724864
728 => 0.021246870620487
729 => 0.021195629138921
730 => 0.021121318852832
731 => 0.02141734816111
801 => 0.021467649309096
802 => 0.021579462530075
803 => 0.021912142832077
804 => 0.021878900224766
805 => 0.021933120296514
806 => 0.021814758184321
807 => 0.021363902542136
808 => 0.021388386172639
809 => 0.021083074907949
810 => 0.021571655034604
811 => 0.02145595281167
812 => 0.021381358835856
813 => 0.021361005178447
814 => 0.02169451013057
815 => 0.021794300039295
816 => 0.021732117664829
817 => 0.021604579800651
818 => 0.021849490203059
819 => 0.021915017894803
820 => 0.021929687128416
821 => 0.022363621404571
822 => 0.021953939234044
823 => 0.022052553804381
824 => 0.022821916531374
825 => 0.02212421070279
826 => 0.022493801040888
827 => 0.022475711517093
828 => 0.022664781427809
829 => 0.022460202265877
830 => 0.022462738269775
831 => 0.022630619541786
901 => 0.022394860572794
902 => 0.022336483336586
903 => 0.02225583560287
904 => 0.022431926979
905 => 0.022537485795063
906 => 0.023388212328116
907 => 0.023937820466312
908 => 0.023913960527545
909 => 0.024131995703945
910 => 0.024033768860003
911 => 0.023716568469983
912 => 0.024257990857281
913 => 0.024086662159865
914 => 0.024100786289516
915 => 0.024100260588705
916 => 0.024214179194672
917 => 0.024133457421857
918 => 0.02397434652172
919 => 0.024079971762626
920 => 0.024393640966402
921 => 0.025367279799468
922 => 0.025912140989451
923 => 0.025334478471683
924 => 0.02573294234123
925 => 0.025494006006696
926 => 0.025450584166971
927 => 0.025700848923295
928 => 0.025951551734946
929 => 0.025935583049661
930 => 0.025753585682135
1001 => 0.025650779987232
1002 => 0.026429259151475
1003 => 0.027002829338643
1004 => 0.026963715697141
1005 => 0.027136350590291
1006 => 0.027643211975976
1007 => 0.02768955302889
1008 => 0.027683715121359
1009 => 0.027568853986525
1010 => 0.028067924845
1011 => 0.028484258535456
1012 => 0.027542266952468
1013 => 0.027900965015694
1014 => 0.028061996132807
1015 => 0.028298437588507
1016 => 0.028697353956462
1017 => 0.029130682939403
1018 => 0.029191960408801
1019 => 0.029148481111866
1020 => 0.028862688999109
1021 => 0.029336842742932
1022 => 0.02961459088579
1023 => 0.029779983548709
1024 => 0.030199391823156
1025 => 0.028062990606164
1026 => 0.026550739638748
1027 => 0.026314579813017
1028 => 0.026794820105167
1029 => 0.026921455640362
1030 => 0.026870409014912
1031 => 0.025168233063242
1101 => 0.026305618208905
1102 => 0.027529348991578
1103 => 0.027576357474741
1104 => 0.028188982691552
1105 => 0.028388478574501
1106 => 0.028881722172656
1107 => 0.028850869651296
1108 => 0.028970966618227
1109 => 0.028943358405319
1110 => 0.029856988306208
1111 => 0.030864857762242
1112 => 0.030829958447808
1113 => 0.030685065288933
1114 => 0.030900256337817
1115 => 0.031940485626299
1116 => 0.03184471798275
1117 => 0.031937748090989
1118 => 0.033164237046863
1119 => 0.034758847155518
1120 => 0.03401799066381
1121 => 0.035625436075103
1122 => 0.036637237754492
1123 => 0.038387044136749
1124 => 0.038167959759712
1125 => 0.038849146543652
1126 => 0.037775753000527
1127 => 0.035311024456885
1128 => 0.034920971730252
1129 => 0.03570186716668
1130 => 0.037621622398475
1201 => 0.035641407242602
1202 => 0.036042002189597
1203 => 0.035926630817913
1204 => 0.035920483167813
1205 => 0.036155113967841
1206 => 0.035814769754881
1207 => 0.034428146204527
1208 => 0.03506362760623
1209 => 0.034818237718709
1210 => 0.035090516093942
1211 => 0.036559890188928
1212 => 0.035910244876031
1213 => 0.035225896311794
1214 => 0.036084221280451
1215 => 0.037177163918011
1216 => 0.037108769531959
1217 => 0.036976055836383
1218 => 0.037724155989682
1219 => 0.038959798270153
1220 => 0.039293787413351
1221 => 0.039540331370753
1222 => 0.039574325617084
1223 => 0.039924487481604
1224 => 0.038041578883929
1225 => 0.041029803184961
1226 => 0.041545786973719
1227 => 0.041448803406769
1228 => 0.042022297672056
1229 => 0.041853561111064
1230 => 0.04160908830814
1231 => 0.042518198704349
]
'min_raw' => 0.015672579782717
'max_raw' => 0.042518198704349
'avg_raw' => 0.029095389243533
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.015672'
'max' => '$0.042518'
'avg' => '$0.029095'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0054050677267433
'max_diff' => 0.01959670133568
'year' => 2032
]
7 => [
'items' => [
101 => 0.041475976996522
102 => 0.039996674494325
103 => 0.039185099884335
104 => 0.040253846798627
105 => 0.040906493245058
106 => 0.041337851030039
107 => 0.04146837963514
108 => 0.038187743718414
109 => 0.036419662911707
110 => 0.037552982437718
111 => 0.038935710476987
112 => 0.038033897759856
113 => 0.03806924711101
114 => 0.036783499168593
115 => 0.039049470640165
116 => 0.038719337656577
117 => 0.040432068159427
118 => 0.040023311279401
119 => 0.04141997651666
120 => 0.041052187752341
121 => 0.042578858350239
122 => 0.043187888584697
123 => 0.044210545136339
124 => 0.044962815458687
125 => 0.045404562980609
126 => 0.045378042116346
127 => 0.04712846587594
128 => 0.046096302140055
129 => 0.04479966122547
130 => 0.044776209082175
131 => 0.045447757785382
201 => 0.046855139636916
202 => 0.047220053274446
203 => 0.047423990215391
204 => 0.047111653691238
205 => 0.045991313931776
206 => 0.045507556903892
207 => 0.04591973190744
208 => 0.045415677296703
209 => 0.04628581696758
210 => 0.047480704587497
211 => 0.047233965019082
212 => 0.048058778403031
213 => 0.04891237348252
214 => 0.050133052783542
215 => 0.050452183554453
216 => 0.050979694583313
217 => 0.051522676710355
218 => 0.051697067935783
219 => 0.052030034895543
220 => 0.052028279995308
221 => 0.053031698339806
222 => 0.054138499847068
223 => 0.054556291793545
224 => 0.055516981337287
225 => 0.053871834160205
226 => 0.055119697192111
227 => 0.056245300882927
228 => 0.054903309759543
301 => 0.056752931879298
302 => 0.056824748514875
303 => 0.057909094447439
304 => 0.05680990210924
305 => 0.056157205207564
306 => 0.05804151670647
307 => 0.058953275685534
308 => 0.058678646460899
309 => 0.056588704501311
310 => 0.055372268639002
311 => 0.052188621354388
312 => 0.055959789086342
313 => 0.057796614882105
314 => 0.056583947566244
315 => 0.057195546423719
316 => 0.060532231478509
317 => 0.061802625113015
318 => 0.061538392117759
319 => 0.061583043144312
320 => 0.062268524490216
321 => 0.065308326279425
322 => 0.063486806585277
323 => 0.064879290140412
324 => 0.065617858397083
325 => 0.066303881754735
326 => 0.064619225208251
327 => 0.062427511793794
328 => 0.061733304153565
329 => 0.056463371700742
330 => 0.056189048830416
331 => 0.056035063090469
401 => 0.055064204781813
402 => 0.054301376091682
403 => 0.053694746395277
404 => 0.052102768916946
405 => 0.052640014582894
406 => 0.050102734753958
407 => 0.051725996472835
408 => 0.047676436601089
409 => 0.0510490303956
410 => 0.049213480926271
411 => 0.050446003027981
412 => 0.050441702874479
413 => 0.048172238913743
414 => 0.046863259463694
415 => 0.047697392115507
416 => 0.048591648531783
417 => 0.048736738626684
418 => 0.049896165412867
419 => 0.050219736507095
420 => 0.049239300985494
421 => 0.047592518473754
422 => 0.047975028492121
423 => 0.046855507910381
424 => 0.044893591152619
425 => 0.046302674019824
426 => 0.046783796863688
427 => 0.046996288120502
428 => 0.045066968316905
429 => 0.044460734147044
430 => 0.044137980161808
501 => 0.04734346751447
502 => 0.047519071347628
503 => 0.046620657309314
504 => 0.050681573953605
505 => 0.049762463447775
506 => 0.050789335070328
507 => 0.047940319717235
508 => 0.048049155940431
509 => 0.04670038641478
510 => 0.047455607224332
511 => 0.046921841498043
512 => 0.047394592846158
513 => 0.04767795805499
514 => 0.049026506260834
515 => 0.051064428649908
516 => 0.048825078129001
517 => 0.047849361038951
518 => 0.048454690433976
519 => 0.050066762382305
520 => 0.052509133904466
521 => 0.051063200806039
522 => 0.051704881361585
523 => 0.05184506001659
524 => 0.050778882481163
525 => 0.052548445390977
526 => 0.05349676853025
527 => 0.054469551843321
528 => 0.05531419233729
529 => 0.054081000796117
530 => 0.055400692516236
531 => 0.054337253946768
601 => 0.053383239613697
602 => 0.05338468645964
603 => 0.052786219332579
604 => 0.051626613862188
605 => 0.051412764821908
606 => 0.052525234535601
607 => 0.053417329894709
608 => 0.053490807141334
609 => 0.05398471696965
610 => 0.054277007718372
611 => 0.057141854405852
612 => 0.058294119442811
613 => 0.059703087318744
614 => 0.060251959711498
615 => 0.061903868832045
616 => 0.060569818055704
617 => 0.06028118777867
618 => 0.056274196587579
619 => 0.056930341170644
620 => 0.057980891956667
621 => 0.056291519783099
622 => 0.057363037587355
623 => 0.057574577899766
624 => 0.056234115563087
625 => 0.056950114415066
626 => 0.055048633743075
627 => 0.051105875732411
628 => 0.05255283480774
629 => 0.053618283728341
630 => 0.052097756749739
701 => 0.054823242506363
702 => 0.053231069992789
703 => 0.052726427743745
704 => 0.050757638412273
705 => 0.051686831191077
706 => 0.052943577729168
707 => 0.052167054481095
708 => 0.0537784568164
709 => 0.056060632268498
710 => 0.057687046401561
711 => 0.057811902283433
712 => 0.056766226957157
713 => 0.058441928340924
714 => 0.0584541339961
715 => 0.05656393598977
716 => 0.055406200235559
717 => 0.055143160236306
718 => 0.055800285726471
719 => 0.056598157383588
720 => 0.057856178607498
721 => 0.058616374485687
722 => 0.060598562159263
723 => 0.061134885309959
724 => 0.061724141849554
725 => 0.06251157030644
726 => 0.063457080061444
727 => 0.061388358545396
728 => 0.061470552707807
729 => 0.059544187875462
730 => 0.05748559078344
731 => 0.059047809368535
801 => 0.061090202355317
802 => 0.060621675147505
803 => 0.060568956265484
804 => 0.060657614802045
805 => 0.060304360588023
806 => 0.058706604870215
807 => 0.057904221951212
808 => 0.05893950062644
809 => 0.059489705167372
810 => 0.060343024427478
811 => 0.060237834817285
812 => 0.06243589359152
813 => 0.063289992765341
814 => 0.063071477647713
815 => 0.063111689688217
816 => 0.064657995445325
817 => 0.066377805469263
818 => 0.067988634505602
819 => 0.069627238988083
820 => 0.067651837328631
821 => 0.066648850191798
822 => 0.067683676896743
823 => 0.067134583280859
824 => 0.070289838069477
825 => 0.070508301065182
826 => 0.073663327692967
827 => 0.076657823656316
828 => 0.074777034393704
829 => 0.076550533955738
830 => 0.078468718327619
831 => 0.082169207195176
901 => 0.080923012729351
902 => 0.079968447298886
903 => 0.079066387579523
904 => 0.080943430657569
905 => 0.083358216590981
906 => 0.083878338352505
907 => 0.08472113430798
908 => 0.083835037412985
909 => 0.084902243522636
910 => 0.088669950043831
911 => 0.087651882483338
912 => 0.086206062884912
913 => 0.089180305329015
914 => 0.090256672107461
915 => 0.097811177856253
916 => 0.10734905342517
917 => 0.10340031031057
918 => 0.1009491980342
919 => 0.1015252675603
920 => 0.10500817684061
921 => 0.10612677675943
922 => 0.10308603657556
923 => 0.10416007741415
924 => 0.11007814803211
925 => 0.11325300304421
926 => 0.10894112349787
927 => 0.097044818841113
928 => 0.086075882649129
929 => 0.088985338464877
930 => 0.088655496466297
1001 => 0.095013725050955
1002 => 0.087627601908718
1003 => 0.087751965279665
1004 => 0.094241675297973
1005 => 0.092510331926884
1006 => 0.089705777399426
1007 => 0.086096359000885
1008 => 0.079424015260389
1009 => 0.073514134337361
1010 => 0.085104771791711
1011 => 0.084604962428473
1012 => 0.083881164402906
1013 => 0.085491898585678
1014 => 0.093313166562344
1015 => 0.093132861020508
1016 => 0.091985849156043
1017 => 0.092855847545941
1018 => 0.089553262475297
1019 => 0.090404413846466
1020 => 0.086074145113594
1021 => 0.088031607428849
1022 => 0.089699760085
1023 => 0.090034666428144
1024 => 0.090789227519991
1025 => 0.08434158560556
1026 => 0.087236387532318
1027 => 0.088936812458029
1028 => 0.081254230781679
1029 => 0.088784952519671
1030 => 0.084229346504538
1031 => 0.082683105400096
1101 => 0.084764915345452
1102 => 0.08395363198512
1103 => 0.083256138192064
1104 => 0.082866924671074
1105 => 0.084395576133965
1106 => 0.084324262716087
1107 => 0.081823092224335
1108 => 0.078560417278596
1109 => 0.07965547808404
1110 => 0.079257632227172
1111 => 0.077815787518747
1112 => 0.078787416763232
1113 => 0.074508853300828
1114 => 0.067147807244139
1115 => 0.072010739744126
1116 => 0.071823522132729
1117 => 0.07172911852342
1118 => 0.075383477895578
1119 => 0.07503219556236
1120 => 0.074394614687804
1121 => 0.077804077845988
1122 => 0.0765595779295
1123 => 0.080394833431059
1124 => 0.08292098075316
1125 => 0.08228026807997
1126 => 0.084656121846335
1127 => 0.079680706073285
1128 => 0.081333339614059
1129 => 0.081673945096361
1130 => 0.077762005599854
1201 => 0.075089669696457
1202 => 0.07491145535856
1203 => 0.070277993172642
1204 => 0.072753151272359
1205 => 0.074931187971109
1206 => 0.073888077414883
1207 => 0.073557859774824
1208 => 0.07524487008242
1209 => 0.075375965231587
1210 => 0.072386981937751
1211 => 0.07300848621333
1212 => 0.075600262358984
1213 => 0.072943180104273
1214 => 0.06778090331529
1215 => 0.066500587297561
1216 => 0.06632976953989
1217 => 0.062857450956667
1218 => 0.066586144135935
1219 => 0.06495846964042
1220 => 0.070100273869217
1221 => 0.067163302869778
1222 => 0.067036695920041
1223 => 0.066845310946313
1224 => 0.063856542902059
1225 => 0.064510893157633
1226 => 0.066686053067517
1227 => 0.067462174628294
1228 => 0.067381218790929
1229 => 0.066675393597304
1230 => 0.066998516756536
1231 => 0.06595762447708
]
'min_raw' => 0.036419662911707
'max_raw' => 0.11325300304421
'avg_raw' => 0.07483633297796
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.036419'
'max' => '$0.113253'
'avg' => '$0.074836'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.020747083128991
'max_diff' => 0.070734804339865
'year' => 2033
]
8 => [
'items' => [
101 => 0.065590063748905
102 => 0.06442994098524
103 => 0.062724881014747
104 => 0.062961980061385
105 => 0.059583810106627
106 => 0.057743203822226
107 => 0.057233748261505
108 => 0.056552482994095
109 => 0.057310698986236
110 => 0.05957424017559
111 => 0.056843929264178
112 => 0.052163002715602
113 => 0.052444334377083
114 => 0.053076403092308
115 => 0.051898547223038
116 => 0.050783805492724
117 => 0.051752982985377
118 => 0.049769612699181
119 => 0.053316083915732
120 => 0.053220161808195
121 => 0.054542066965416
122 => 0.055368681388451
123 => 0.053463602762952
124 => 0.05298448064052
125 => 0.053257410376344
126 => 0.048746489801675
127 => 0.054173428516871
128 => 0.054220360908238
129 => 0.053818497279868
130 => 0.056708174607775
131 => 0.06280629508262
201 => 0.060511936863655
202 => 0.059623492013928
203 => 0.057934557705147
204 => 0.060184962392601
205 => 0.060012166424387
206 => 0.059230717525196
207 => 0.058758094792696
208 => 0.059628916668731
209 => 0.058650190325296
210 => 0.058474384180414
211 => 0.0574091902214
212 => 0.057028964441269
213 => 0.056747460410884
214 => 0.056437552133446
215 => 0.057121132569144
216 => 0.055572049369356
217 => 0.05370400688891
218 => 0.053548699369161
219 => 0.053977517085966
220 => 0.053787797168004
221 => 0.053547791063184
222 => 0.05308955404731
223 => 0.052953604913385
224 => 0.053395373645498
225 => 0.052896642503659
226 => 0.053632547470734
227 => 0.053432422039169
228 => 0.052314537646565
301 => 0.05092123979957
302 => 0.05090883652619
303 => 0.050608652790522
304 => 0.050226323670221
305 => 0.050119968455458
306 => 0.051671361560201
307 => 0.054882698857731
308 => 0.054252236505437
309 => 0.05470781016735
310 => 0.056948781686137
311 => 0.057661119143594
312 => 0.057155518888928
313 => 0.056463422076276
314 => 0.056493870823582
315 => 0.058858975144368
316 => 0.059006483799759
317 => 0.059379190583837
318 => 0.059858224128302
319 => 0.05723710037295
320 => 0.056370416130418
321 => 0.055959733054496
322 => 0.054694988135006
323 => 0.056058907099641
324 => 0.055264209927782
325 => 0.055371441726987
326 => 0.05530160687708
327 => 0.055339741427341
328 => 0.053315092604749
329 => 0.054052768223292
330 => 0.052826239432925
331 => 0.051184055066941
401 => 0.051178549889123
402 => 0.051580472186216
403 => 0.051341393076684
404 => 0.050698037340218
405 => 0.05078942298603
406 => 0.049988788568226
407 => 0.050886634500305
408 => 0.05091238150899
409 => 0.050566661919141
410 => 0.051949917456372
411 => 0.052516638378605
412 => 0.052289078338535
413 => 0.052500672159565
414 => 0.054278435062542
415 => 0.054568287984961
416 => 0.05469702150649
417 => 0.054524535641564
418 => 0.052533166401946
419 => 0.052621492095679
420 => 0.051973416760085
421 => 0.051425861394005
422 => 0.051447760737099
423 => 0.051729275372479
424 => 0.0529586662958
425 => 0.055545847017376
426 => 0.055644028634555
427 => 0.055763027618736
428 => 0.055278998945974
429 => 0.055133011266738
430 => 0.055325606698267
501 => 0.056297215749791
502 => 0.058796458019594
503 => 0.057913058882667
504 => 0.057194841633418
505 => 0.05782491179099
506 => 0.057727917428885
507 => 0.056909187401043
508 => 0.056886208376026
509 => 0.055314803688775
510 => 0.054733891155051
511 => 0.054248437161322
512 => 0.053718334073267
513 => 0.053404071193452
514 => 0.053886921806773
515 => 0.05399735545496
516 => 0.05294159415015
517 => 0.052797697785476
518 => 0.053659855257175
519 => 0.053280451898351
520 => 0.053670677661652
521 => 0.053761213386032
522 => 0.053746635049193
523 => 0.053350494368382
524 => 0.053602982625245
525 => 0.053005772627391
526 => 0.052356396452766
527 => 0.05194213491092
528 => 0.05158063677184
529 => 0.051781216949796
530 => 0.051066185239874
531 => 0.050837432205125
601 => 0.053517445284986
602 => 0.055497199762075
603 => 0.055468413347909
604 => 0.05529318345494
605 => 0.055032827378074
606 => 0.05627816908111
607 => 0.055844316933166
608 => 0.056159980620355
609 => 0.056240330277108
610 => 0.056483524488331
611 => 0.056570445515595
612 => 0.05630770980067
613 => 0.055425936650916
614 => 0.053228641798205
615 => 0.052205795112784
616 => 0.051868238669736
617 => 0.05188050820533
618 => 0.051542059640033
619 => 0.051641747910714
620 => 0.051507392127741
621 => 0.051252954778946
622 => 0.051765506160494
623 => 0.051824572932471
624 => 0.051704937315485
625 => 0.051733115834157
626 => 0.050742584022552
627 => 0.050817892004866
628 => 0.050398567589664
629 => 0.050319949316845
630 => 0.049259933709968
701 => 0.047381962410665
702 => 0.048422540809564
703 => 0.047165668431159
704 => 0.046689671816733
705 => 0.048942965756765
706 => 0.048716797541831
707 => 0.048329695870824
708 => 0.047757091820347
709 => 0.047544707408092
710 => 0.046254326951959
711 => 0.046178084390699
712 => 0.046817631787961
713 => 0.046522502669607
714 => 0.0461080296133
715 => 0.044606850217816
716 => 0.042919027553875
717 => 0.042969972310824
718 => 0.043506837297167
719 => 0.045067844651065
720 => 0.044457932072196
721 => 0.044015433498285
722 => 0.04393256681685
723 => 0.044969816828159
724 => 0.046437742904757
725 => 0.047126460976902
726 => 0.046443962284085
727 => 0.045659944534117
728 => 0.045707664061769
729 => 0.046025120700514
730 => 0.04605848090465
731 => 0.045548165947748
801 => 0.045691816618929
802 => 0.045473598113712
803 => 0.044134391549996
804 => 0.044110169549928
805 => 0.04378150666157
806 => 0.043771554879929
807 => 0.043212417318031
808 => 0.043134190107986
809 => 0.042023988541613
810 => 0.042754726574599
811 => 0.042264585867541
812 => 0.041525828209498
813 => 0.041398466110797
814 => 0.041394637452316
815 => 0.042153176383936
816 => 0.04274586260554
817 => 0.042273112074987
818 => 0.042165475943064
819 => 0.043314748232917
820 => 0.043168492858184
821 => 0.043041836646911
822 => 0.046306306224952
823 => 0.043722223824195
824 => 0.042595416403198
825 => 0.041200778244788
826 => 0.041654879461542
827 => 0.041750565260047
828 => 0.038396711891495
829 => 0.037036053997569
830 => 0.036569127483685
831 => 0.036300404673573
901 => 0.03642286503255
902 => 0.035198113338764
903 => 0.036021166732511
904 => 0.034960635291376
905 => 0.034782833744002
906 => 0.036679195335387
907 => 0.036943062972444
908 => 0.035817321655508
909 => 0.036540229821945
910 => 0.03627809327162
911 => 0.034978815059025
912 => 0.034929192188147
913 => 0.034277260052904
914 => 0.033257112500185
915 => 0.03279087769438
916 => 0.03254805855948
917 => 0.03264825046699
918 => 0.03259759037263
919 => 0.032266998989122
920 => 0.032616539483757
921 => 0.03172360796007
922 => 0.0313680354325
923 => 0.031207431571016
924 => 0.030414903448524
925 => 0.031676168130265
926 => 0.031924653161562
927 => 0.032173627785132
928 => 0.034340781901109
929 => 0.034232517005789
930 => 0.035211178932341
1001 => 0.035173149929519
1002 => 0.034894019694794
1003 => 0.033716415149185
1004 => 0.034185787332282
1005 => 0.032741132709341
1006 => 0.033823566179814
1007 => 0.033329588747393
1008 => 0.033656551913016
1009 => 0.033068642660146
1010 => 0.033394015914862
1011 => 0.03198357818067
1012 => 0.030666531269875
1013 => 0.031196549393775
1014 => 0.031772739709379
1015 => 0.03302206712417
1016 => 0.032277978022647
1017 => 0.032545580600679
1018 => 0.031649156760404
1019 => 0.029799578327107
1020 => 0.029810046740176
1021 => 0.029525529393469
1022 => 0.029279664865702
1023 => 0.032363445606907
1024 => 0.031979928724378
1025 => 0.031368844765519
1026 => 0.032186804927964
1027 => 0.032403086577688
1028 => 0.032409243812199
1029 => 0.033006006432111
1030 => 0.033324498749334
1031 => 0.03338063440067
1101 => 0.034319653277011
1102 => 0.034634400018403
1103 => 0.035930797301568
1104 => 0.0332974769014
1105 => 0.033243245400663
1106 => 0.032198315304876
1107 => 0.031535604118437
1108 => 0.032243691706786
1109 => 0.032870960646468
1110 => 0.032217806299338
1111 => 0.032303094468232
1112 => 0.03142628812188
1113 => 0.031739705133128
1114 => 0.032009662085045
1115 => 0.031860607723532
1116 => 0.031637466130036
1117 => 0.032819531746695
1118 => 0.03275283497205
1119 => 0.033853601649855
1120 => 0.034711727991784
1121 => 0.036249643804952
1122 => 0.034644748480546
1123 => 0.034586259716044
1124 => 0.035157996770948
1125 => 0.034634312488439
1126 => 0.034965262878018
1127 => 0.036196322580718
1128 => 0.036222332932357
1129 => 0.035786626029949
1130 => 0.03576011322534
1201 => 0.035843795502059
1202 => 0.036333925210569
1203 => 0.036162658830251
1204 => 0.036360852621489
1205 => 0.036608696992284
1206 => 0.037633886393725
1207 => 0.03788105608765
1208 => 0.037280561874205
1209 => 0.037334779778231
1210 => 0.037110178458468
1211 => 0.036893216397823
1212 => 0.037380915425388
1213 => 0.038272194984012
1214 => 0.038266650380135
1215 => 0.038473409913737
1216 => 0.038602219390283
1217 => 0.03804927482265
1218 => 0.037689328241456
1219 => 0.037827354664682
1220 => 0.038048061921244
1221 => 0.037755782275997
1222 => 0.035951696908427
1223 => 0.036498941163528
1224 => 0.036407852960602
1225 => 0.036278132282932
1226 => 0.036828390613151
1227 => 0.036775316854837
1228 => 0.035185551739917
1229 => 0.035287323344594
1230 => 0.035191740808275
1231 => 0.035500587537467
]
'min_raw' => 0.029279664865702
'max_raw' => 0.065590063748905
'avg_raw' => 0.047434864307303
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.029279'
'max' => '$0.06559'
'avg' => '$0.047434'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0071399980460048
'max_diff' => -0.047662939295309
'year' => 2034
]
9 => [
'items' => [
101 => 0.034617633751514
102 => 0.034889224389288
103 => 0.035059563491297
104 => 0.035159894530986
105 => 0.035522359043983
106 => 0.035479828016932
107 => 0.035519715255625
108 => 0.036057154441315
109 => 0.038775337415678
110 => 0.03892328211764
111 => 0.038194748296947
112 => 0.03848578318862
113 => 0.037927059838942
114 => 0.038302134566702
115 => 0.03855875116957
116 => 0.037399150085745
117 => 0.037330486035309
118 => 0.036769456635619
119 => 0.037070922056683
120 => 0.036591268895639
121 => 0.036708959003804
122 => 0.036379887201336
123 => 0.036972150928236
124 => 0.03763439380339
125 => 0.037801702506417
126 => 0.037361585339678
127 => 0.037042911505824
128 => 0.036483425231263
129 => 0.037413863374822
130 => 0.037685951842588
131 => 0.037412434209933
201 => 0.037349054197968
202 => 0.037228949189821
203 => 0.03737453504322
204 => 0.037684469990358
205 => 0.037538310392887
206 => 0.037634851382018
207 => 0.037266936684089
208 => 0.03804945787031
209 => 0.039292289838007
210 => 0.039296285746006
211 => 0.039150125360681
212 => 0.039090319680075
213 => 0.039240289105173
214 => 0.039321641366221
215 => 0.039806614987297
216 => 0.040327011004914
217 => 0.042755472152562
218 => 0.042073569979946
219 => 0.044228245179939
220 => 0.045932313513576
221 => 0.046443289096956
222 => 0.045973215603505
223 => 0.044365119575281
224 => 0.044286218712309
225 => 0.046689393099107
226 => 0.046010386262477
227 => 0.045929620559841
228 => 0.045070409939609
301 => 0.045578309831472
302 => 0.04546722467468
303 => 0.045291871320211
304 => 0.046260908933272
305 => 0.048074860838337
306 => 0.0477921394228
307 => 0.04758110100117
308 => 0.046656392069949
309 => 0.047213273387761
310 => 0.047014978616847
311 => 0.047866978793664
312 => 0.047362272763032
313 => 0.046005242117867
314 => 0.046221353720941
315 => 0.046188688886893
316 => 0.046860928856955
317 => 0.046659139103964
318 => 0.046149286199012
319 => 0.048068660947927
320 => 0.047944027427856
321 => 0.048120729264128
322 => 0.048198518877141
323 => 0.049366808463629
324 => 0.049845419326116
325 => 0.049954072371163
326 => 0.050408715673433
327 => 0.049942760431632
328 => 0.051806913619295
329 => 0.053046466712736
330 => 0.054486271417587
331 => 0.056590213074395
401 => 0.057381314599904
402 => 0.057238409190196
403 => 0.058833593742434
404 => 0.061700104923845
405 => 0.05781781305665
406 => 0.061905875819747
407 => 0.060611642347905
408 => 0.057543038068433
409 => 0.057345456129303
410 => 0.05942355057459
411 => 0.064032564045057
412 => 0.062878058445703
413 => 0.064034452402628
414 => 0.062685457426394
415 => 0.062618468455602
416 => 0.063968934727645
417 => 0.067124372782359
418 => 0.065625342442391
419 => 0.063476114872728
420 => 0.065063071064483
421 => 0.063688302745323
422 => 0.060590564948831
423 => 0.06287717561703
424 => 0.061348184182128
425 => 0.061794425168487
426 => 0.06500813774434
427 => 0.064621455344784
428 => 0.065121858175635
429 => 0.064238660277006
430 => 0.063413614172161
501 => 0.061873604348739
502 => 0.061417683361591
503 => 0.06154368352012
504 => 0.06141762092217
505 => 0.060555999579387
506 => 0.060369932532448
507 => 0.060059812635767
508 => 0.060155931759311
509 => 0.059572815624773
510 => 0.060673276248586
511 => 0.060877531437592
512 => 0.061678354908803
513 => 0.061761499058214
514 => 0.063991781026528
515 => 0.062763379196746
516 => 0.063587497199275
517 => 0.06351378032823
518 => 0.057609544027991
519 => 0.058423095696646
520 => 0.059688726786495
521 => 0.059118561696041
522 => 0.058312481656222
523 => 0.05766152880479
524 => 0.056675268671525
525 => 0.058063410869647
526 => 0.059888670247713
527 => 0.061807790648178
528 => 0.064113488063588
529 => 0.063598883241745
530 => 0.061764687238807
531 => 0.061846967931618
601 => 0.062355594798315
602 => 0.061696876792318
603 => 0.061502607992647
604 => 0.06232890524844
605 => 0.062334595503516
606 => 0.061576660828887
607 => 0.060734355138617
608 => 0.06073082584702
609 => 0.060580945685144
610 => 0.062712120774231
611 => 0.063884051587124
612 => 0.064018411566161
613 => 0.06387500809001
614 => 0.0639301983965
615 => 0.063248277678211
616 => 0.064806946222912
617 => 0.066237334615873
618 => 0.065853959970769
619 => 0.06527922687784
620 => 0.064821424286426
621 => 0.065746116229407
622 => 0.065704941152786
623 => 0.066224841421104
624 => 0.066201255741843
625 => 0.066026432836046
626 => 0.065853966214245
627 => 0.066537776874944
628 => 0.066340850386326
629 => 0.066143618016479
630 => 0.065748038303984
701 => 0.065801804156796
702 => 0.065227170299639
703 => 0.064961318383862
704 => 0.060963543438514
705 => 0.059895207342053
706 => 0.060231327625986
707 => 0.060341987150816
708 => 0.059877045912526
709 => 0.06054365221463
710 => 0.060439762328558
711 => 0.060843937101713
712 => 0.060591426250674
713 => 0.06060178938408
714 => 0.061344369955996
715 => 0.061559944255187
716 => 0.061450301426721
717 => 0.061527091505442
718 => 0.063296686458515
719 => 0.063045106644649
720 => 0.062911459882705
721 => 0.062948480949122
722 => 0.063400650400176
723 => 0.063527233158934
724 => 0.062990893115262
725 => 0.063243834180403
726 => 0.06432082513277
727 => 0.06469771101369
728 => 0.0659005498301
729 => 0.065389562522134
730 => 0.066327501840919
731 => 0.069210407539786
801 => 0.071513472093943
802 => 0.069395478751773
803 => 0.073624763511978
804 => 0.076917868352664
805 => 0.076791473503925
806 => 0.076217244504064
807 => 0.072468132194665
808 => 0.06901814315144
809 => 0.07190420548037
810 => 0.071911562646771
811 => 0.071663647333194
812 => 0.070123866612583
813 => 0.071610066301785
814 => 0.071728035436029
815 => 0.071662004091377
816 => 0.070481457823092
817 => 0.068678981872841
818 => 0.069031181359002
819 => 0.069608091302009
820 => 0.068515880423875
821 => 0.06816685286892
822 => 0.06881576149879
823 => 0.070906680309714
824 => 0.070511404220376
825 => 0.070501081964248
826 => 0.07219224069758
827 => 0.070981736019411
828 => 0.069035623722421
829 => 0.068544204701364
830 => 0.066799998236128
831 => 0.068004727854317
901 => 0.068048083928536
902 => 0.067388265828693
903 => 0.069089164324759
904 => 0.06907349024568
905 => 0.070688240222363
906 => 0.073775035705386
907 => 0.072862118389075
908 => 0.071800494875328
909 => 0.071915922786899
910 => 0.073181882076476
911 => 0.072416454190958
912 => 0.072691707395343
913 => 0.073181465447785
914 => 0.073476948640831
915 => 0.071873407302648
916 => 0.071499545110469
917 => 0.070734754273069
918 => 0.070535234619089
919 => 0.071158140798267
920 => 0.070994027027653
921 => 0.068044440018381
922 => 0.067736191764565
923 => 0.067745645298433
924 => 0.066970540407806
925 => 0.065788319403113
926 => 0.0688951256167
927 => 0.068645605598023
928 => 0.068370154808721
929 => 0.06840389595871
930 => 0.069752455236595
1001 => 0.068970222751546
1002 => 0.071049916018433
1003 => 0.070622393604063
1004 => 0.070183906852954
1005 => 0.070123294627318
1006 => 0.069954514638073
1007 => 0.069375705254682
1008 => 0.068676758143187
1009 => 0.068215252718416
1010 => 0.062924964788123
1011 => 0.063906811455797
1012 => 0.065036336548815
1013 => 0.065426244084637
1014 => 0.064759280263833
1015 => 0.06940204105152
1016 => 0.070250318186187
1017 => 0.067680831413533
1018 => 0.067200185349823
1019 => 0.069433552127438
1020 => 0.068086558942552
1021 => 0.068693109891229
1022 => 0.06738207850582
1023 => 0.0700459930649
1024 => 0.070025698499237
1025 => 0.068989375568516
1026 => 0.069865268613128
1027 => 0.069713060641958
1028 => 0.068543054605524
1029 => 0.070083084343157
1030 => 0.070083848178693
1031 => 0.069086409889477
1101 => 0.067921620334992
1102 => 0.067713383473751
1103 => 0.067556504971492
1104 => 0.0686545273965
1105 => 0.069639010869335
1106 => 0.071470890538131
1107 => 0.071931468611254
1108 => 0.07372913549307
1109 => 0.072658712391761
1110 => 0.073133217088271
1111 => 0.073648359059121
1112 => 0.073895337063665
1113 => 0.073492899658831
1114 => 0.0762854162755
1115 => 0.076521190238445
1116 => 0.076600243208784
1117 => 0.075658622317561
1118 => 0.076495002058081
1119 => 0.076103687675477
1120 => 0.077121778988745
1121 => 0.077281428706308
1122 => 0.077146211075236
1123 => 0.07719688641549
1124 => 0.074813966116851
1125 => 0.074690399128461
1126 => 0.073005554473844
1127 => 0.073692141124343
1128 => 0.072408600290189
1129 => 0.072815624310635
1130 => 0.07299503662058
1201 => 0.072901321811424
1202 => 0.073730959703416
1203 => 0.073025598011399
1204 => 0.071164032533968
1205 => 0.069301959874267
1206 => 0.069278583068836
1207 => 0.068788332205849
1208 => 0.068433970625834
1209 => 0.068502233237797
1210 => 0.068742799585988
1211 => 0.068419988472351
1212 => 0.068488876590385
1213 => 0.069632878348868
1214 => 0.069862299742885
1215 => 0.069082636205291
1216 => 0.065952174596941
1217 => 0.065183951466084
1218 => 0.065736135018017
1219 => 0.065472226845368
1220 => 0.052841196962006
1221 => 0.055808670074388
1222 => 0.054045498316876
1223 => 0.054858048982369
1224 => 0.053058307189063
1225 => 0.053917238305378
1226 => 0.053758625091337
1227 => 0.058530234042133
1228 => 0.0584557319315
1229 => 0.058491392149296
1230 => 0.056789237041683
1231 => 0.059500816346658
]
'min_raw' => 0.034617633751514
'max_raw' => 0.077281428706308
'avg_raw' => 0.055949531228911
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.034617'
'max' => '$0.077281'
'avg' => '$0.055949'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0053379688858114
'max_diff' => 0.011691364957404
'year' => 2035
]
10 => [
'items' => [
101 => 0.060836637817526
102 => 0.060589412815006
103 => 0.060651634021887
104 => 0.059582467538953
105 => 0.058501744017933
106 => 0.057303055310964
107 => 0.05953007076611
108 => 0.059282464663919
109 => 0.059850383976481
110 => 0.061294762689496
111 => 0.061507452941648
112 => 0.061793310797433
113 => 0.061690851104882
114 => 0.064131856663343
115 => 0.06383623478394
116 => 0.064548598457082
117 => 0.063083212334267
118 => 0.061424988840575
119 => 0.061740162915316
120 => 0.061709809117449
121 => 0.06132337043213
122 => 0.060974510865865
123 => 0.060393757978607
124 => 0.062231346049146
125 => 0.062156743329312
126 => 0.063364474647249
127 => 0.063150996405527
128 => 0.061725336460324
129 => 0.061776254184173
130 => 0.06211870034728
131 => 0.063303910427774
201 => 0.06365576147492
202 => 0.063492770051042
203 => 0.063878558661627
204 => 0.064183470249565
205 => 0.063916850862571
206 => 0.067691619131884
207 => 0.06612407217054
208 => 0.066888083652577
209 => 0.067070295889226
210 => 0.066603563076561
211 => 0.066704780711179
212 => 0.066858097847471
213 => 0.067789009476463
214 => 0.070231990952389
215 => 0.071313970818139
216 => 0.074569160628195
217 => 0.071224127452176
218 => 0.071025647026634
219 => 0.07161200500874
220 => 0.073523146024078
221 => 0.075071946312662
222 => 0.075585772720818
223 => 0.075653683363005
224 => 0.076617655863239
225 => 0.07717018692335
226 => 0.076500604246717
227 => 0.075933203036499
228 => 0.073900842329928
229 => 0.074136093615648
301 => 0.075756741686784
302 => 0.078046002542958
303 => 0.080010426514553
304 => 0.079322553706788
305 => 0.084570537667511
306 => 0.085090853841125
307 => 0.085018962969767
308 => 0.086204320646688
309 => 0.083851627051894
310 => 0.082845804958828
311 => 0.076055881618425
312 => 0.077963573119704
313 => 0.080736514751607
314 => 0.080369505528627
315 => 0.078355721194597
316 => 0.080008898878555
317 => 0.079462306636592
318 => 0.079031186657224
319 => 0.081006230859431
320 => 0.07883458862876
321 => 0.080714850959137
322 => 0.078303395071606
323 => 0.079325695851831
324 => 0.07874538848585
325 => 0.079120918471436
326 => 0.07692557784904
327 => 0.078110130360004
328 => 0.076876296570137
329 => 0.076875711572271
330 => 0.076848474622974
331 => 0.078300074605096
401 => 0.078347411228399
402 => 0.077274676648365
403 => 0.077120078836118
404 => 0.077691707975987
405 => 0.07702247996311
406 => 0.077335607538264
407 => 0.077031964278373
408 => 0.076963607784866
409 => 0.076418931614703
410 => 0.076184270144414
411 => 0.076276286953396
412 => 0.075962186146425
413 => 0.075772929048702
414 => 0.076810826622705
415 => 0.076256319817584
416 => 0.076725840502073
417 => 0.076190762423864
418 => 0.074335948682368
419 => 0.073269225685334
420 => 0.069765654468973
421 => 0.070759262919766
422 => 0.071418026350605
423 => 0.071200305040642
424 => 0.071668054661404
425 => 0.071696770689213
426 => 0.071544700519361
427 => 0.071368622744067
428 => 0.071282917820766
429 => 0.071921692102327
430 => 0.072292522072928
501 => 0.071484142074007
502 => 0.071294749950698
503 => 0.07211206676149
504 => 0.072610629543924
505 => 0.076291737011191
506 => 0.076019028680195
507 => 0.076703473074687
508 => 0.076626415139523
509 => 0.077343821905493
510 => 0.078516478769133
511 => 0.076132139485336
512 => 0.076545978340754
513 => 0.076444514610341
514 => 0.077552269013779
515 => 0.077555727302111
516 => 0.076891573200813
517 => 0.077251621913796
518 => 0.077050652599629
519 => 0.077413831312961
520 => 0.076015386494172
521 => 0.077718541330667
522 => 0.078684120374087
523 => 0.078697527440041
524 => 0.079155204243313
525 => 0.07962023038229
526 => 0.080512807560815
527 => 0.079595336889228
528 => 0.077944896465012
529 => 0.078064052932751
530 => 0.077096400315906
531 => 0.077112666731216
601 => 0.07702583533147
602 => 0.07728642289847
603 => 0.076072570811019
604 => 0.076357459469731
605 => 0.075958613679228
606 => 0.076545111327899
607 => 0.075914136809464
608 => 0.076444465681458
609 => 0.07667333804193
610 => 0.077517881979341
611 => 0.075789396983231
612 => 0.072264899068015
613 => 0.0730057912602
614 => 0.071909953512133
615 => 0.072011377467865
616 => 0.072216269999947
617 => 0.071552146266805
618 => 0.071678840146144
619 => 0.071674313749243
620 => 0.071635307706107
621 => 0.071462543473441
622 => 0.071212001155714
623 => 0.07221008463668
624 => 0.072379678469029
625 => 0.072756664550111
626 => 0.073878319415307
627 => 0.073766239643831
628 => 0.073949046401254
629 => 0.073549980276216
630 => 0.072029889000856
701 => 0.072112437270488
702 => 0.071083059025434
703 => 0.072730341034027
704 => 0.072340242911332
705 => 0.072088744113892
706 => 0.072020120336891
707 => 0.073144555567545
708 => 0.07348100421192
709 => 0.073271351994975
710 => 0.072841349181487
711 => 0.073667081702303
712 => 0.073888012890016
713 => 0.073937471235316
714 => 0.075400510943696
715 => 0.07401923890267
716 => 0.074351724811609
717 => 0.076945684960857
718 => 0.074593321047521
719 => 0.07583942067639
720 => 0.075778430583946
721 => 0.076415892988363
722 => 0.075726140060651
723 => 0.075734690374851
724 => 0.07630071380453
725 => 0.07550583598041
726 => 0.075309013052765
727 => 0.075037103587898
728 => 0.075630807956828
729 => 0.075986706875063
730 => 0.078854990777083
731 => 0.080708032987425
801 => 0.080627587538023
802 => 0.081362708357987
803 => 0.081031529695658
804 => 0.079962066434482
805 => 0.08178750981416
806 => 0.081209863149035
807 => 0.081257483638267
808 => 0.081255711201279
809 => 0.081639795734839
810 => 0.081367636641982
811 => 0.0808311831334
812 => 0.081187306007633
813 => 0.082244863627848
814 => 0.085527554930825
815 => 0.087364592473846
816 => 0.085416962964083
817 => 0.086760411720119
818 => 0.085954821186235
819 => 0.085808421421985
820 => 0.08665220652086
821 => 0.08749746855385
822 => 0.087443629016517
823 => 0.086830012185251
824 => 0.08648339560722
825 => 0.089108092461146
826 => 0.091041924392574
827 => 0.090910050019424
828 => 0.091492100614663
829 => 0.093201019164432
830 => 0.093357261259758
831 => 0.09333757834693
901 => 0.092950316011488
902 => 0.094632968254851
903 => 0.096036666359713
904 => 0.092860675969917
905 => 0.094070051533584
906 => 0.094612979187762
907 => 0.095410158063471
908 => 0.096755132449484
909 => 0.098216131369531
910 => 0.098422732635864
911 => 0.09827613915062
912 => 0.09731257108909
913 => 0.098911213540748
914 => 0.09984766079615
915 => 0.10040529370653
916 => 0.10181935798598
917 => 0.094616332124119
918 => 0.089517672405482
919 => 0.088721443064878
920 => 0.090340606739169
921 => 0.090767567287491
922 => 0.090595460025825
923 => 0.084856454962639
924 => 0.088691228390935
925 => 0.092817122162874
926 => 0.092975614545886
927 => 0.095041123236489
928 => 0.095713737534211
929 => 0.09737674276256
930 => 0.097272721332739
1001 => 0.097677636641649
1002 => 0.097584553624286
1003 => 0.10066492062274
1004 => 0.10406302286095
1005 => 0.10394535738575
1006 => 0.10345683998448
1007 => 0.10418237162995
1008 => 0.10768957730256
1009 => 0.10736669000605
1010 => 0.10768034751113
1011 => 0.11181554065659
1012 => 0.11719187997004
1013 => 0.1146940305833
1014 => 0.12011364501573
1015 => 0.12352500501953
1016 => 0.12942459940488
1017 => 0.12868594113172
1018 => 0.13098260993272
1019 => 0.12736358866013
1020 => 0.11905358429339
1021 => 0.11773849429293
1022 => 0.12037133777723
1023 => 0.12684392657426
1024 => 0.12016749292202
1025 => 0.12151812675446
1026 => 0.12112914411986
1027 => 0.12110841688833
1028 => 0.12189949101202
1029 => 0.12075199673595
1030 => 0.11607689862497
1031 => 0.11821946853871
1101 => 0.11739211940036
1102 => 0.11831012495232
1103 => 0.12326422230199
1104 => 0.12107389777277
1105 => 0.11876656880876
1106 => 0.12166047136692
1107 => 0.12534540377627
1108 => 0.12511480732855
1109 => 0.12466735383815
1110 => 0.12718962573568
1111 => 0.13135567995407
1112 => 0.13248174766874
1113 => 0.13331298783427
1114 => 0.13342760180918
1115 => 0.13460819698293
1116 => 0.12825983918539
1117 => 0.13833484604748
1118 => 0.14007452141611
1119 => 0.13974753454896
1120 => 0.14168111050447
1121 => 0.14111220340827
1122 => 0.14028794628467
1123 => 0.14335307545755
1124 => 0.13983915220401
1125 => 0.13485158053626
1126 => 0.13211530007634
1127 => 0.13571865491541
1128 => 0.13791909797587
1129 => 0.13937345086437
1130 => 0.13981353716969
1201 => 0.12875264412976
1202 => 0.12279143624649
1203 => 0.12661250215427
1204 => 0.13127446627766
1205 => 0.1282339417393
1206 => 0.12835312454473
1207 => 0.12401813558881
1208 => 0.13165801661029
1209 => 0.13054495020698
1210 => 0.13631954067636
1211 => 0.13494138831686
1212 => 0.13965034267633
1213 => 0.13841031717924
1214 => 0.14355759368879
1215 => 0.1456109816454
1216 => 0.14905893960886
1217 => 0.15159527152249
1218 => 0.15308465413448
1219 => 0.15299523718899
1220 => 0.15889691310514
1221 => 0.15541690100624
1222 => 0.15104518563414
1223 => 0.15096611509564
1224 => 0.15323028843454
1225 => 0.15797537460725
1226 => 0.15920570641363
1227 => 0.15989329404845
1228 => 0.15884022965063
1229 => 0.15506292593198
1230 => 0.15343190533763
1231 => 0.15482158213923
]
'min_raw' => 0.057303055310964
'max_raw' => 0.15989329404845
'avg_raw' => 0.10859817467971
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.057303'
'max' => '$0.159893'
'avg' => '$0.108598'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.02268542155945
'max_diff' => 0.082611865342145
'year' => 2036
]
11 => [
'items' => [
101 => 0.15312212682717
102 => 0.15605586347874
103 => 0.16008451051368
104 => 0.15925261083196
105 => 0.16203352674258
106 => 0.16491148214918
107 => 0.16902708763768
108 => 0.17010305931281
109 => 0.17188159957625
110 => 0.17371230172738
111 => 0.17430027391951
112 => 0.17542289527135
113 => 0.17541697850269
114 => 0.1788000735076
115 => 0.18253173206374
116 => 0.18394034678059
117 => 0.18717937865052
118 => 0.18163265008248
119 => 0.18583990741757
120 => 0.18963495884829
121 => 0.18511034208098
122 => 0.19134647219422
123 => 0.19158860699515
124 => 0.1952445550134
125 => 0.19153855130201
126 => 0.18933793812816
127 => 0.19569102590515
128 => 0.19876508496005
129 => 0.19783915335519
130 => 0.19079276812335
131 => 0.18669146968474
201 => 0.1759575805895
202 => 0.18867233589231
203 => 0.19486532230581
204 => 0.19077672978465
205 => 0.1928387780331
206 => 0.20408864465523
207 => 0.20837186549002
208 => 0.20748098549836
209 => 0.20763152955182
210 => 0.20994267776831
211 => 0.22019158173281
212 => 0.21405020090955
213 => 0.21874505643579
214 => 0.22123519087834
215 => 0.22354816652529
216 => 0.21786822935985
217 => 0.21047871456246
218 => 0.2081381450354
219 => 0.19037019983578
220 => 0.18944530112586
221 => 0.18892612745269
222 => 0.18565281088189
223 => 0.18308088069412
224 => 0.18103558631915
225 => 0.17566812310264
226 => 0.17747948437468
227 => 0.1689248682842
228 => 0.17439780850191
301 => 0.16074443466308
302 => 0.17211537010825
303 => 0.16592668691844
304 => 0.1700822212363
305 => 0.17006772296854
306 => 0.162416066776
307 => 0.15800275117014
308 => 0.16081508764301
309 => 0.16383013558547
310 => 0.1643193169703
311 => 0.1682284053285
312 => 0.1693193478637
313 => 0.1660137410508
314 => 0.16046149883779
315 => 0.16175115807071
316 => 0.15797661626694
317 => 0.1513618769415
318 => 0.1561126982073
319 => 0.15773483746631
320 => 0.15845126657433
321 => 0.15194643015569
322 => 0.14990246932609
323 => 0.1488142817309
324 => 0.15962180614038
325 => 0.16021386672414
326 => 0.1571848010687
327 => 0.17087646505907
328 => 0.16777761981842
329 => 0.17123978918775
330 => 0.16163413501289
331 => 0.1620010839381
401 => 0.15745361331429
402 => 0.15999989300153
403 => 0.15820026458901
404 => 0.15979417876562
405 => 0.16074956435113
406 => 0.16529628877976
407 => 0.17216728639772
408 => 0.16461715977002
409 => 0.16132746147853
410 => 0.16336837179661
411 => 0.16880358492166
412 => 0.17703821102957
413 => 0.17216314663639
414 => 0.17432661743012
415 => 0.17479923955243
416 => 0.1712045475536
417 => 0.17717075245098
418 => 0.18036809012484
419 => 0.18364789698242
420 => 0.18649566137876
421 => 0.18233786999901
422 => 0.18678730277132
423 => 0.18320184538745
424 => 0.17998531945635
425 => 0.17999019759846
426 => 0.17797242389594
427 => 0.17406273309144
428 => 0.17334172612168
429 => 0.17709249543155
430 => 0.18010025721889
501 => 0.1803479908859
502 => 0.18201324235575
503 => 0.18299872102216
504 => 0.1926577516462
505 => 0.19654269366689
506 => 0.20129312723159
507 => 0.20314368882481
508 => 0.20871321575734
509 => 0.20421537042446
510 => 0.20324223329392
511 => 0.18973238273396
512 => 0.19194462000632
513 => 0.19548662532851
514 => 0.18979078909712
515 => 0.19340348618516
516 => 0.19411670911772
517 => 0.18959724676152
518 => 0.19201128688041
519 => 0.18560031203765
520 => 0.17230702813012
521 => 0.17718555167605
522 => 0.18077778709913
523 => 0.17565122423097
524 => 0.18484038974676
525 => 0.17947226895531
526 => 0.17777083237967
527 => 0.17113292169213
528 => 0.17426576002003
529 => 0.17850296871645
530 => 0.17588486637045
531 => 0.18131782184845
601 => 0.1890123357216
602 => 0.19449590452382
603 => 0.19491686484672
604 => 0.19139129747746
605 => 0.19704104168656
606 => 0.19708219390516
607 => 0.19070925935741
608 => 0.18680587243156
609 => 0.18591901470921
610 => 0.18813455917834
611 => 0.19082463917593
612 => 0.19506614556458
613 => 0.19762919904307
614 => 0.20431228317646
615 => 0.20612053412391
616 => 0.20810725368774
617 => 0.21076212370663
618 => 0.21394997585901
619 => 0.20697513683413
620 => 0.20725226019131
621 => 0.20075738666456
622 => 0.19381668284215
623 => 0.19908381187241
624 => 0.20596988242267
625 => 0.20439021023001
626 => 0.20421246483856
627 => 0.20451138328452
628 => 0.20332036203853
629 => 0.19793341708419
630 => 0.19522812705219
701 => 0.19871864138657
702 => 0.20057369441037
703 => 0.20345071987267
704 => 0.2030960657578
705 => 0.2105069743787
706 => 0.21338662937453
707 => 0.21264989039921
708 => 0.21278546810129
709 => 0.217998945921
710 => 0.22379740549001
711 => 0.22922842805051
712 => 0.23475309746691
713 => 0.22809289285393
714 => 0.22471125169577
715 => 0.22820024218079
716 => 0.22634893471834
717 => 0.23698709653102
718 => 0.23772365977364
719 => 0.24836105232614
720 => 0.2584572045356
721 => 0.25211599222419
722 => 0.25809546981938
723 => 0.26456276235253
724 => 0.27703921892938
725 => 0.27283758728133
726 => 0.26961920328689
727 => 0.26657784596326
728 => 0.27290642775186
729 => 0.28104804712132
730 => 0.28280167395404
731 => 0.28564321936006
801 => 0.28265568181327
802 => 0.28625384172191
803 => 0.29895692731099
804 => 0.29552444145159
805 => 0.29064975973159
806 => 0.30067762578686
807 => 0.30430667152992
808 => 0.32977721510072
809 => 0.36193482849453
810 => 0.34862136539122
811 => 0.34035726922022
812 => 0.34229952784739
813 => 0.3540423996549
814 => 0.35781383737935
815 => 0.34756176955175
816 => 0.35118297322617
817 => 0.37113616150114
818 => 0.38184040683573
819 => 0.3673026038994
820 => 0.3271933821757
821 => 0.29021084797775
822 => 0.30002028139227
823 => 0.29890819606522
824 => 0.32034540765574
825 => 0.29544257779904
826 => 0.29586187758696
827 => 0.31774238801077
828 => 0.31190504295661
829 => 0.30244929155954
830 => 0.29027988542731
831 => 0.26778361265807
901 => 0.24785803651137
902 => 0.28693667992117
903 => 0.28525153775744
904 => 0.28281120218028
905 => 0.28824190493536
906 => 0.31461185598218
907 => 0.31400394325935
908 => 0.3101367126765
909 => 0.31306997298939
910 => 0.30193507684458
911 => 0.30480479311797
912 => 0.29020498975539
913 => 0.29680471061692
914 => 0.30242900376384
915 => 0.30355816388216
916 => 0.30610221928509
917 => 0.28436354441061
918 => 0.29412357121529
919 => 0.2998566725722
920 => 0.27395431206966
921 => 0.2993446661875
922 => 0.28398512244523
923 => 0.27877186260649
924 => 0.28579083018459
925 => 0.28305553169324
926 => 0.28070388267249
927 => 0.27939162211245
928 => 0.28454557724662
929 => 0.2843051390793
930 => 0.27587226814021
1001 => 0.26487193176796
1002 => 0.26856400572822
1003 => 0.26722264064508
1004 => 0.26236136054424
1005 => 0.26563727637901
1006 => 0.25121180094576
1007 => 0.22639352023381
1008 => 0.24278923667662
1009 => 0.24215801942868
1010 => 0.24183973106884
1011 => 0.2541606588313
1012 => 0.2529762859191
1013 => 0.25082663748606
1014 => 0.262321880565
1015 => 0.25812596220835
1016 => 0.27105679390084
1017 => 0.27957387596728
1018 => 0.27741366845649
1019 => 0.2854240253066
1020 => 0.26864906365533
1021 => 0.27422103302123
1022 => 0.27536940818513
1023 => 0.26218003104976
1024 => 0.25317006397493
1025 => 0.25256920189218
1026 => 0.23694716063436
1027 => 0.24529232897757
1028 => 0.25263573177307
1029 => 0.24911881170511
1030 => 0.24800545987659
1031 => 0.25369333291195
1101 => 0.25413532936013
1102 => 0.24405776350082
1103 => 0.24615320855797
1104 => 0.25489156278508
1105 => 0.24593302445176
1106 => 0.22852804783905
1107 => 0.22421137299647
1108 => 0.22363544900036
1109 => 0.21192828446749
1110 => 0.22449983385043
1111 => 0.2190120156482
1112 => 0.2363479675949
1113 => 0.22644576481752
1114 => 0.22601890064707
1115 => 0.22537363284607
1116 => 0.21529679271575
1117 => 0.21750298028769
1118 => 0.22483668378868
1119 => 0.22745343181792
1120 => 0.22718048356008
1121 => 0.22480074464064
1122 => 0.22589017693172
1123 => 0.22238073593876
1124 => 0.22114147928145
1125 => 0.21723004438657
1126 => 0.21148131565256
1127 => 0.21228071164203
1128 => 0.20089097578327
1129 => 0.19468524318838
1130 => 0.19296757819636
1201 => 0.19067064478287
1202 => 0.19322702293732
1203 => 0.20085871009263
1204 => 0.19165327623058
1205 => 0.1758712055602
1206 => 0.17681973489883
1207 => 0.17895079870184
1208 => 0.17497957540333
1209 => 0.17122114583079
1210 => 0.17448879541308
1211 => 0.16780172401868
1212 => 0.179758899332
1213 => 0.17943549124937
1214 => 0.18389238677941
1215 => 0.18667937501905
1216 => 0.18025626942484
1217 => 0.17864087573782
1218 => 0.1795610773975
1219 => 0.16435219373758
1220 => 0.18264949651263
1221 => 0.18280773234684
1222 => 0.18145282106656
1223 => 0.19119556992843
1224 => 0.21175580886654
1225 => 0.20402021994433
1226 => 0.20102476610424
1227 => 0.19533040616456
1228 => 0.20291780268654
1229 => 0.20233520901548
1230 => 0.19970049949284
1231 => 0.19810701895275
]
'min_raw' => 0.1488142817309
'max_raw' => 0.38184040683573
'avg_raw' => 0.26532734428332
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.148814'
'max' => '$0.38184'
'avg' => '$0.265327'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.091511226419938
'max_diff' => 0.22194711278728
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0046711102572622
]
1 => [
'year' => 2028
'avg' => 0.0080169812344586
]
2 => [
'year' => 2029
'avg' => 0.021900947812257
]
3 => [
'year' => 2030
'avg' => 0.016896548621286
]
4 => [
'year' => 2031
'avg' => 0.016594504712321
]
5 => [
'year' => 2032
'avg' => 0.029095389243533
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0046711102572622
'min' => '$0.004671'
'max_raw' => 0.029095389243533
'max' => '$0.029095'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.029095389243533
]
1 => [
'year' => 2033
'avg' => 0.07483633297796
]
2 => [
'year' => 2034
'avg' => 0.047434864307303
]
3 => [
'year' => 2035
'avg' => 0.055949531228911
]
4 => [
'year' => 2036
'avg' => 0.10859817467971
]
5 => [
'year' => 2037
'avg' => 0.26532734428332
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.029095389243533
'min' => '$0.029095'
'max_raw' => 0.26532734428332
'max' => '$0.265327'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.26532734428332
]
]
]
]
'prediction_2025_max_price' => '$0.007986'
'last_price' => 0.00774416
'sma_50day_nextmonth' => '$0.007213'
'sma_200day_nextmonth' => '$0.012573'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'augmenter'
'sma_200day_date_nextmonth' => '4 févr. 2026'
'sma_50day_date_nextmonth' => '4 févr. 2026'
'daily_sma3' => '$0.007824'
'daily_sma3_action' => 'SELL'
'daily_sma5' => '$0.007635'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.007483'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.007313'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.0078013'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.009972'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.014546'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.007724'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.007663'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.007561'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.007511'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.008174'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.010098'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.013635'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.012096'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.0180061'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.031079'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.007727'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.007813'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.00878'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.011565'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.017875'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.027532'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.018932'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '52.60'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 76.52
'stoch_rsi_14_action' => 'NEUTRAL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.0077037'
'vwma_10_action' => 'BUY'
'hma_9' => '0.0079032'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 51.89
'stochastic_fast_14_action' => 'NEUTRAL'
'cci_20' => 64.7
'cci_20_action' => 'NEUTRAL'
'adx_14' => 17.24
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.000294'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'NEUTRAL'
'williams_percent_r_14' => -48.11
'williams_percent_r_14_action' => 'NEUTRAL'
'ultimate_oscillator' => 60.5
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.001682'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 17
'buy_signals' => 15
'sell_pct' => 53.13
'buy_pct' => 46.88
'overall_action' => 'bearish'
'overall_action_label' => 'Baissier'
'overall_action_dir' => -1
'last_updated' => 1767687154
'last_updated_date' => '6 janvier 2026'
]
Prévision du prix de Gracy pour 2026
La prévision du prix de Gracy pour 2026 suggère que le prix moyen pourrait varier entre $0.002675 à la baisse et $0.007986 à la hausse. Sur le marché des cryptomonnaies, comparé au prix moyen d'aujourd'hui, Gracy pourrait potentiellement gagner 3.13% d'ici 2026 si GRACY atteint l'objectif de prix prévu.
Prévision du prix de Gracy de 2027 à 2032
La prévision du prix de GRACY pour 2027-2032 se situe actuellement dans une fourchette de prix comprise entre $0.004671 à la baisse et $0.029095 à la hausse. Compte tenu de la volatilité des prix sur le marché, si Gracy atteint l'objectif de prix le plus élevé, il pourrait gagner 275.71% d'ici 2032 par rapport au prix actuel.
| Prévision du Prix de Gracy | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2027 | $0.002575 | $0.004671 | $0.006766 |
| 2028 | $0.004648 | $0.008016 | $0.011385 |
| 2029 | $0.010211 | $0.02190094 | $0.03359 |
| 2030 | $0.008684 | $0.016896 | $0.0251088 |
| 2031 | $0.010267 | $0.016594 | $0.022921 |
| 2032 | $0.015672 | $0.029095 | $0.042518 |
Prévision du prix de Gracy de 2032 à 2037
La prévision du prix de Gracy pour 2032-2037 est actuellement estimée entre $0.029095 à la baisse et $0.265327 à la hausse. Par rapport au prix actuel, Gracy pourrait potentiellement gagner 3326.16% d'ici 2037 s'il atteint l'objectif de prix le plus élevé. Veuillez noter que ces informations sont à titre général seulement et ne doivent pas être considérées comme un conseil en investissement à long terme.
| Prévision du Prix de Gracy | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2032 | $0.015672 | $0.029095 | $0.042518 |
| 2033 | $0.036419 | $0.074836 | $0.113253 |
| 2034 | $0.029279 | $0.047434 | $0.06559 |
| 2035 | $0.034617 | $0.055949 | $0.077281 |
| 2036 | $0.057303 | $0.108598 | $0.159893 |
| 2037 | $0.148814 | $0.265327 | $0.38184 |
Gracy Histogramme des prix potentiels
Prévision du prix de Gracy basée sur l'analyse technique
Au 6 janvier 2026, le sentiment global de prévision du prix pour Gracy est Baissier, avec 15 indicateurs techniques montrant des signaux haussiers et 17 indiquant des signaux baissiers. La prévision du prix de GRACY a été mise à jour pour la dernière fois le 6 janvier 2026.
Moyennes Mobiles Simples sur 50 et 200 jours de Gracy et Indice de Force Relative sur 14 jours - RSI (14)
Selon nos indicateurs techniques, le SMA sur 200 jours de Gracy devrait augmenter au cours du prochain mois, atteignant $0.012573 d'ici le 4 févr. 2026. Le SMA à court terme sur 50 jours pour Gracy devrait atteindre $0.007213 d'ici le 4 févr. 2026.
Le Relative Strength Index (RSI), un oscillateur de momentum, est un outil couramment utilisé pour identifier si une cryptomonnaie est survendue (en dessous de 30) ou surachetée (au-dessus de 70). Actuellement, le RSI est à 52.60, ce qui suggère que le marché de GRACY est dans un état NEUTRAL.
Moyennes Mobiles et Oscillateurs Populaires de GRACY pour le Samedi 19 Octobre 2024
Les moyennes mobiles (MA) sont des indicateurs largement utilisés sur les marchés financiers, conçus pour lisser les mouvements de prix sur une période donnée. En tant qu'indicateurs retardés, ils sont basés sur des données historiques de prix. Le tableau ci-dessous met en évidence deux types : la moyenne mobile simple (SMA) et la moyenne mobile exponentielle (EMA).
Moyenne Mobile Simple Quotidienne (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 3 | $0.007824 | SELL |
| SMA 5 | $0.007635 | BUY |
| SMA 10 | $0.007483 | BUY |
| SMA 21 | $0.007313 | BUY |
| SMA 50 | $0.0078013 | SELL |
| SMA 100 | $0.009972 | SELL |
| SMA 200 | $0.014546 | SELL |
Moyenne Mobile Exponentielle Quotidienne (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 3 | $0.007724 | BUY |
| EMA 5 | $0.007663 | BUY |
| EMA 10 | $0.007561 | BUY |
| EMA 21 | $0.007511 | BUY |
| EMA 50 | $0.008174 | SELL |
| EMA 100 | $0.010098 | SELL |
| EMA 200 | $0.013635 | SELL |
Moyenne Mobile Simple Hebdomadaire (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 21 | $0.012096 | SELL |
| SMA 50 | $0.0180061 | SELL |
| SMA 100 | $0.031079 | SELL |
| SMA 200 | — | — |
Moyenne Mobile Exponentielle Hebdomadaire (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 21 | $0.011565 | SELL |
| EMA 50 | $0.017875 | SELL |
| EMA 100 | $0.027532 | SELL |
| EMA 200 | $0.018932 | SELL |
Oscillateurs de Gracy
Un oscillateur est un outil d'analyse technique qui établit des limites hautes et basses entre deux extrêmes, créant un indicateur de tendance qui fluctue à l'intérieur de ces limites. Les traders utilisent cet indicateur pour identifier les conditions de surachat ou de survente à court terme.
| Période | Valeur | Action |
|---|---|---|
| RSI (14) | 52.60 | NEUTRAL |
| Stoch RSI (14) | 76.52 | NEUTRAL |
| Stochastique Rapide (14) | 51.89 | NEUTRAL |
| Indice de Canal des Matières Premières (20) | 64.7 | NEUTRAL |
| Indice Directionnel Moyen (14) | 17.24 | NEUTRAL |
| Oscillateur Impressionnant (5, 34) | 0.000294 | BUY |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | NEUTRAL |
| Plage de Pourcentage de Williams (14) | -48.11 | NEUTRAL |
| Oscillateur Ultime (7, 14, 28) | 60.5 | NEUTRAL |
| VWMA (10) | 0.0077037 | BUY |
| Moyenne Mobile de Hull (9) | 0.0079032 | BUY |
| Nuage Ichimoku B/L (9, 26, 52, 26) | -0.001682 | SELL |
Prévision du cours de Gracy basée sur les flux monétaires mondiaux
Définitions des flux monétaires mondiaux utilisés pour la prédiction du cours de Gracy
M0 : le total de toutes les devises physiques, plus les comptes à la banque centrale qui peuvent être échangés contre des devises physiques.
M1 : M0 plus le montant des comptes à vue, y compris les comptes de "chèques" et les comptes "courants".
M2 : M1 plus la plupart des comptes d'épargne, comptes du marché monétaire et comptes de certificats de dépôt (CD) de moins de 100 000 $.
Prédictions du cours de Gracy par des sociétés Internet ou des niches technologiques
| Comparaison | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Action Facebook | $0.010881 | $0.01529 | $0.021486 | $0.030191 | $0.042424 | $0.059613 |
| Action Amazon.com | $0.016158 | $0.033715 | $0.07035 | $0.14679 | $0.306286 | $0.639085 |
| Action Apple | $0.010984 | $0.01558 | $0.022099 | $0.031347 | $0.044463 | $0.063068 |
| Action Netflix | $0.012219 | $0.019279 | $0.03042 | $0.047998 | $0.075734 | $0.119497 |
| Action Google | $0.010028 | $0.012987 | $0.016818 | $0.021779 | $0.0282043 | $0.036524 |
| Action Tesla | $0.017555 | $0.039796 | $0.090216 | $0.204513 | $0.463617 | $1.05 |
| Action Kodak | $0.0058072 | $0.004354 | $0.003265 | $0.002448 | $0.001836 | $0.001377 |
| Action Nokia | $0.00513 | $0.003398 | $0.002251 | $0.001491 | $0.000988 | $0.000654 |
Ce calcul montre la valeur potentielle des cryptomonnaies si l'on suppose que leur capitalisation se comportera comme celle de certaines sociétés Internet ou niches technologiques. En extrapolant les données, vous pourrez obtenir une potentielle image des cours futurs pour 2024, 2025, 2026, 2027, 2028, 2029 et 2030.
Aperçu des prévisions relatives à Gracy
Vous vous posez peut-être des questions telles que : "Devrais-je investir dans Gracy maintenant ?", "Devrais-je acheter GRACY aujourd'hui ?", " Gracy sera-t-il un bon ou un mauvais investissement à court ou à long terme ?".
Nous mettons régulièrement à jour les prévisions de Gracy avec de nouvelles valeurs. Regardez nos prévisions similaires. Nous faisons une prévision des cours futurs pour une grande quantité de devises numériques comme Gracy en utilisant des méthodes d'analyse technique.
Si vous souhaitez trouver des cryptomonnaies ayant un bon rendement, vous devriez consulter un maximum d'informations disponibles à propos de Gracy afin de prendre une décision responsable concernant cet investissement.
Le cours de Gracy est de $0.007744 USD actuellement, mais ce cours peut subir une hausse ou une baisse, ce qui pourrait causer la perte de votre investissement, car les cryptomonnaies sont des actifs à haut risque.
Prévision du cours de Gracy basée sur le modèle de croissance du Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si Gracy présente 1 % de la précédente croissance annuelle moyenne du Bitcoin | $0.007945 | $0.008151 | $0.008363 | $0.008581 |
| Si Gracy présente 2 % de la précédente croissance annuelle moyenne du Bitcoin | $0.008146 | $0.00857 | $0.009015 | $0.009484 |
| Si Gracy présente 5 % de la précédente croissance annuelle moyenne du Bitcoin | $0.00875 | $0.009887 | $0.011173 | $0.012625 |
| Si Gracy présente 10 % de la précédente croissance annuelle moyenne du Bitcoin | $0.009757 | $0.012293 | $0.015488 | $0.019514 |
| Si Gracy présente 20 % de la précédente croissance annuelle moyenne du Bitcoin | $0.01177 | $0.017888 | $0.027188 | $0.041323 |
| Si Gracy présente 50 % de la précédente croissance annuelle moyenne du Bitcoin | $0.0178089 | $0.040954 | $0.094181 | $0.216585 |
| Si Gracy présente 100 % de la précédente croissance annuelle moyenne du Bitcoin | $0.027873 | $0.100326 | $0.3611072 | $1.29 |
Boîte à questions
Est-ce que GRACY est un bon investissement ?
La décision d'acquérir Gracy dépend entièrement de votre tolérance individuelle au risque. Comme vous pouvez le discerner, la valeur de Gracy a connu une hausse de 0.1521% au cours des 24 heures précédentes, et Gracy a enregistré une déclin de sur une période de 30 jours précédents. Par conséquent, la détermination de si investir ou non dans Gracy dépendra de la mesure dans laquelle cet investissement s'aligne avec vos aspirations de trading.
Est-ce que Gracy peut monter ?
Il semble que la valeur moyenne de Gracy pourrait potentiellement s'envoler jusqu'à $0.007986 pour la fin de cette année. En regardant les perspectives de Gracy sur une période de cinq ans plus longue, la monnaie numérique pourrait potentiellement croître jusqu'à $0.0251088. Cependant, compte tenu de l'imprévisibilité du marché, il est essentiel de mener des recherches approfondies avant d'investir des fonds dans un projet, un réseau ou un actif particulier.
Quel sera le prix de Gracy la semaine prochaine ?
Basé sur notre nouveau pronostic expérimental de Gracy, le prix de Gracy va augmenter de 0.86% durant la prochaine semaine et atteindre $0.00781 d'ici 13 janvier 2026.
Quel sera le prix de Gracy le mois prochain ?
Basé sur notre nouveau pronostic expérimental de Gracy, le prix de Gracy va diminuer de -11.62% durant le prochain mois et atteindre $0.006844 d'ici 5 février 2026.
Jusqu'où le prix de Gracy peut-il monter cette année en 2026 ?
Selon notre prédiction la plus récente sur la valeur de Gracy en 2026, GRACY devrait fluctuer dans la fourchette de $0.002675 et $0.007986. Cependant, il est crucial de garder à l'esprit que le marché des cryptomonnaies est exceptionnellement instable, et cette prévision de prix de Gracy ne prend pas en compte les fluctuations de prix soudaines et extrêmes.
Où sera Gracy dans 5 ans ?
L'avenir de Gracy semble suivre une tendance haussière, avec un prix maximum de $0.0251088 prévue après une période de cinq ans. Selon la prévision de Gracy pour 2030, la valeur de Gracy pourrait potentiellement atteindre son point le plus élevé d'environ $0.0251088, tandis que son point le plus bas devrait être autour de $0.008684.
Combien vaudra Gracy en 2026 ?
Basé sur notre nouvelle simulation expérimentale de prédiction de prix de Gracy, il est attendu que la valeur de GRACY en 2026 augmente de 3.13% jusqu'à $0.007986 si le meilleur scénario se produit. Le prix sera entre $0.007986 et $0.002675 durant 2026.
Combien vaudra Gracy en 2027 ?
Selon notre dernière simulation expérimentale pour la prédiction de prix de Gracy, le valeur de GRACY pourrait diminuer de -12.62% jusqu'à $0.006766 en 2027, en supposant les conditions les plus favorables. Il est prévu que le prix fluctue entre $0.006766 et $0.002575 tout au long de l'année.
Combien vaudra Gracy en 2028 ?
Notre nouveau modèle expérimental de prédiction de prix de Gracy suggère que la valeur de GRACY en 2028 pourrait augmenter de 47.02%, atteignant $0.011385 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.011385 et $0.004648 durant l'année.
Combien vaudra Gracy en 2029 ?
Basé sur notre modèle de prévision expérimental, la valeur de Gracy pourrait connaître un 333.75% croissance en 2029, atteignant potentiellement $0.03359 sous des conditions optimales. Le range de prix prévu pour 2029 se situe entre $0.03359 et $0.010211.
Combien vaudra Gracy en 2030 ?
En utilisant notre nouvelle simulation expérimentale pour les prédictions de prix de Gracy, il est prévu que la valeur de GRACY en 2030 augmente de 224.23%, atteignant $0.0251088 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.0251088 et $0.008684 au cours de 2030.
Combien vaudra Gracy en 2031 ?
Notre simulation expérimentale indique que le prix de Gracy pourrait augmenter de 195.98% en 2031, atteignant potentiellement $0.022921 dans des conditions idéales. Il est probable que le prix fluctue entre $0.022921 et $0.010267 durant l'année.
Combien vaudra Gracy en 2032 ?
Basé sur les résultats de notre dernière prédiction expérimentale de prix de Gracy, GRACY pourrait connaître une 449.04% hausse en valeur, atteignant $0.042518 si le scénario le plus positif se réalise en 2032. Il est prévu que le prix reste dans une fourchette de $0.042518 et $0.015672 tout au long de l'année.
Combien vaudra Gracy en 2033 ?
Selon notre prédiction expérimentale de prix de Gracy, la valeur de GRACY est anticipée à augmenter de 1362.43% en 2033, avec le prix potentiel le plus élevé étant $0.113253. Tout au long de l'année, le prix de GRACY pourrait osciller entre $0.113253 et $0.036419.
Combien vaudra Gracy en 2034 ?
Les résultats de notre nouvelle simulation de prédiction de prix de Gracy suggèrent que GRACY pourrait augmenter de 746.96% en 2034, atteignant potentiellement $0.06559 dans les meilleures circonstances. La fourchette de prix prévue pour l'année est entre $0.06559 et $0.029279.
Combien vaudra Gracy en 2035 ?
Basé sur notre prédiction expérimentale pour le prix de Gracy, GRACY pourrait augmenter de 897.93%, avec la valeur potentiellement atteignant $0.077281 en 2035. La fourchette de prix attendue pour l'année se situe entre $0.077281 et $0.034617.
Combien vaudra Gracy en 2036 ?
Notre récente simulation de prédiction de prix de Gracy suggère que la valeur de GRACY pourrait augmenter de 1964.7% en 2036, pouvant atteindre $0.159893 si les conditions sont optimales. La fourchette de prix attendue pour 2036 est entre $0.159893 et $0.057303.
Combien vaudra Gracy en 2037 ?
Selon la simulation expérimentale, la valeur de Gracy pourrait augmenter de 4830.69% en 2037, avec un maximum de $0.38184 sous des conditions favorables. Il est prévu que le prix chute entre $0.38184 et $0.148814 au cours de l'année.
Prévisions liées
Prévision du cours de SolPod
Prévision du cours de zuzalu
Prévision du cours de SOFT COQ INU
Prévision du cours de All Street Bets
Prévision du cours de MagicRing
Prévision du cours de AI INU
Prévision du cours de Wall Street Baby On Solana
Prévision du cours de Meta Masters Guild Games
Prévision du cours de Morfey
Prévision du cours de PANTIESPrévision du cours de Celer Bridged BUSD (zkSync)
Prévision du cours de Bridged BUSD
Prévision du cours de Multichain Bridged BUSD (Moonriver)
Prévision du cours de tooker kurlson
Prévision du cours de dogwifsaudihatPrévision du cours de Harmony Horizen Bridged BUSD (Harmony)
Prévision du cours de IoTeX Bridged BUSD (IoTeX)
Prévision du cours de MIMANY
Prévision du cours de The Open League MEME
Prévision du cours de Sandwich Cat
Prévision du cours de Hege
Prévision du cours de DexNet
Prévision du cours de SolDocs
Prévision du cours de Secret Society
Prévision du cours de duk
Comment lire et prédire les mouvements de prix de Gracy ?
Les traders de Gracy utilisent des indicateurs et des modèles graphiques pour prédire la direction du marché. Ils identifient également des niveaux clés de support et de résistance pour évaluer quand une tendance baissière pourrait ralentir ou une tendance haussière pourrait s'arrêter.
Indicateurs de prédiction du prix de Gracy
Les moyennes mobiles sont des outils populaires pour la prédiction du prix de Gracy. Une moyenne mobile simple (SMA) calcule le prix de clôture moyen de GRACY sur une période spécifique, comme une SMA de 12 jours. Une moyenne mobile exponentielle (EMA) donne plus de poids aux prix récents, réagissant plus rapidement aux changements de prix.
Les moyennes mobiles couramment utilisées sur le marché des cryptomonnaies incluent les moyennes sur 50 jours, 100 jours et 200 jours, qui aident à identifier les niveaux clés de résistance et de support. Un mouvement de prix de GRACY au-dessus de ces moyennes est considéré comme haussier, tandis qu'une chute en dessous indique une faiblesse.
Les traders utilisent également le RSI et les niveaux de retracement de Fibonacci pour évaluer la direction future de GRACY.
Comment lire les graphiques de Gracy et prédire les mouvements de prix ?
La plupart des traders préfèrent les graphiques en chandeliers aux simples graphiques linéaires parce qu'ils fournissent des informations plus détaillées. Les chandeliers peuvent représenter l'action des prix de Gracy dans différentes périodes, comme 5 minutes pour les tendances à court terme et hebdomadaire pour les tendances à long terme. Les options populaires incluent les graphiques de 1 heure, 4 heures et 1 jour.
Par exemple, un graphique en chandeliers de 1 heure montre les prix d'ouverture, de clôture, les plus hauts et les plus bas de GRACY au sein de chaque heure. La couleur du chandelier est cruciale : le vert indique que le prix a clôturé plus haut qu'il n'a ouvert, tandis que le rouge signifie le contraire. Certains graphiques utilisent des chandeliers creux et pleins pour transmettre la même information.
Qu'est-ce qui affecte le prix de Gracy ?
L'action du prix de Gracy est déterminée par l'offre et la demande, influencée par des facteurs tels que les réductions de récompenses de bloc, les hard forks et les mises à jour de protocole. Les événements du monde réel, tels que les réglementations, l'adoption par les entreprises et les gouvernements et les piratages d'échanges de cryptomonnaies, impactent également le prix de GRACY. La capitalisation boursière de Gracy peut changer rapidement.
Les traders surveillent souvent l'activité des « baleines » de GRACY, de grands détenteurs de Gracy, car leurs actions peuvent influencer significativement les mouvements de prix sur le marché relativement petit de Gracy.
Modèles de prédiction de prix haussiers et baissiers
Les traders identifient souvent des modèles de chandeliers pour obtenir un avantage dans les prédictions de prix des cryptomonnaies. Certaines formations indiquent des tendances haussières, tandis que d'autres suggèrent des mouvements baissiers.
Modèles de chandeliers haussiers couramment suivis :
- Marteau
- Englobante haussière
- Ligne pénétrante
- Étoile du matin
- Trois soldats blancs
Modèles de chandeliers baissiers courants :
- Harami baissier
- Nuage sombre
- Étoile du soir
- Étoile filante
- Pendu


